A Bibliography of Publications about *PVM (Parallel Virtual Machine)* and *MPI (Message Passing Interface)*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

27 July 2019
Version 3.196

Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lec12]. 0
[ICC02]. 1 [ICC02, LRQ01, VDL+15].
19.95 [Ano95b]. 2
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19]. 24.95
[Ano95c]. 27.50 [Ano96a]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12]. 35
[Ano00a, Ano00b]. 35.00
[Ano99a, Ano99c, Ano99b, Ano99d]. 3D
[KA13]. 860 [Ano00a, Ano00b]. 3 [PBC+01].
A [ARYT17]. α [JMdvG+17]. $Ax = b$
$[BG95].$ D [UZC+12]. H^2/H^∞ [GWC95]. k
[She95, TK16]. M^3 [JSH+05]. PVM^+
[Wil94]. N
[IHM05, Per99, Rol08b, SP99, SRK+12].
$SU(3)$ [BW12]. τ [RGDM15, RGDML16].
XY [KO14].
- *based* [Rét19]. - *body*
[IHM05, Per99, SP99, SRK+12]. - *D*
[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. - *Dimensional* [LRQ01].
- *Lop* [RGDM15, RGDML16]. - *Means*
[TK16]. - *Queens* [Rol08b]. - *set* [She95].
- *stable* [JMdvG+17].
/Fortran [TBG+02]. /many [KSG13].
/OpenMP [VDL+15].

1 [HMKV94, SOHL+98]. 10-Gigabit
[Heo05]. 100 [Str94]. 10th [DLO03, IEE96e].
'11 [ACM11]. 11th [IEE97b, KKD04].'12
[Hol12]. 128-processor [LO1]. 12th
[DKD05, Bi95]. 13th
[Ano95d, MTW06, PSB+94]. 14th
[CH07, CHD09]. 15-18 [SL94a]. 15th
[IEE95i, LCD08]. 16th [RWD09]. 17th
[KGRD10, MC94]. 18-21 [DKD07]. 18th
[DE91, EJL92, IEE91].
1992 [KG93, R+92, VW92]. 1993
[Ano94c, GGK+93, IEE93a, IEE93e, JPT94, MHH93]. 1994 [Ano94a, Ano94e, DSZ94, DT94, GN95, GT94, HK95, IEE94h, PSB+94, SPE95, SPH95, VV95]. 1995
[AC95a, ACM96a, AGH+95, BH95, Gat95, Ham95a, IEE95b, IEE95a, IEE95d, IEE95h, IEE95i, JB96, NM95, Nar95, Ten95, UCW95, ZL96]. 1996 [AC96b, Abr96, Boi97, ER96, IEE96f, IEE96e, Ree96]. 1998 [AC98b]. 1999 [AC99]. 19th
[TBD12, EE05]. 1st [Abr96, BR95a, CGB+10, Kum94, Van95, Fer92].

2 [AKL99, BCD06, BHS+02, BPMZ94a, CW1+11, CD96, DPS90, FST98a, FST98b, GF93, GH93, GTH01, GHLL+98, GLT99, GLT00b, GLT00a, HGMW12, Jon96, LC97b, LSK04, MSM02a, MLO4, PS00a, SS99, SSL97, TRH00, VAT95, bT91a]. 2-D [BMPZ94a]. 2.0
[BO01, LPD+11, LW97, Mat00b, NSM12]. 2.2 [HRR+11]. 2.X [KS96]. 2000 [ACM00, CLBS17, LO1, LSK04, NU05, ZSNH01]. 2001 [ACM01, O02]. 2003
[ACM03, AS14, DON06, OL05]. 2004
[ACM04]. 2005 [ACM05, DLO07]. 2006
[ACM06a, MTW07]. 2007 [SM07]. 2008
2012 [Hol12, TB14]. 2015 [IS16]. 21st
[IEE95a]. 25nm [Ano03]. 26th
[Ano93a, SL94a]. 27th [Ano94h]. 28th
[ZL96]. 2D [ZZZ+15]. 2D-DWT [ZZZ+15].

2nd [FK95, IEE93c, Nag05, YM97].
3 [Bri95, Che10, GBH14, GBH18, GPL+96, GLT12, Gro12, HDT+15]. 3-D [Bri95]. 3.0
[Ano97, Bra97, BM02, BRM03, DBB+16, KaM10, OP10]. 3.06 [Ano03]. 3.1 [WCC12]. 3.4 [Gei97, GKM97]. 3.X [KS96]. 3000
[HWM02]. 33rd [ACM95a]. 37th [ACM96a]. 3D [GAP97, Gra97, LO96]. 3D-Fall [Gra97].
3rd [ACM06b, CZ9+08, Ano95a, IEE96a].

4 [Ano03, HRZ97, KSHS01, NU05, SD10, SB01]. 4.0 [DSG17, CJP15, dOSSF16]. 4.5 [CBY18]. 43 [UZ+C12]. 45-degree
[CT13]. 48th [IEE94e]. 4th
[BDW97, EdS08, FF95, USE00].

5 [TRH00]. 512 [RBB97c]. 5th
[AD98, Cha05, IEE94a, MaSC09].

600 [LSK04]. 6000 [AL93, NMW93]. 64
[dCZG06]. 64-bit [W193]. 6th [ACBR94, DLM99, GT94, PW95, SHM+10, Sin93].

7th [ACM95b, CGKM11, DKP00, GN95, PBB+95].

857 [SMSW06]. 897 [HWS09]. 8th
[CMMR12, CD01].

90 [Ben95, SM03]. 9076 [Bri95]. 91
[BG91, EJL92, IEE91]. 92
[Sie92a, Sie92b, VW92]. 93 [Ano93g, GGK+93, GGH+93, IEE93a, IEE93e].
93SC038 [FS93]. 93SC041 [Kle93]. 94
[BS94, DW94, GT94, IEE94b, IEE94h, PSB+94, SPE95, WPH94, dGJM94]. 947
[LTD14]. 95
[ACM95b, AH95, BH95, CLM+95, CINW95, DMW96, FF95, HAM95b, IEE95l, Lev95, NM95, Van95, Ano98, FD97, KaM10].
AGEB [SAS01]. Agent [Mat01b, MCB05, ZWZ+95]. agent-based [MCB05]. agents [KBA02]. Aging [LRBG15]. Aging-Aware [LRBG15]. AIMS [Yan94]. Air [AKK+94, BZ97, MPD04, MSML10, BTC+17, SH94, Syd94]. airspace [TCP15]. Aix [GA96, Ano01a]. Aix-les-Bains [GA96]. Al [Ano95b, NMC95]. Alamos [Old02]. Albuquerque [IEE91, IEE95d]. ALDY [GS96]. ALE [HAA+11]. Algebra [BDT08, CDD+13, Coo95b, DGH+19, IS16, MGMH97, Neu94, van97, BKvH+14, Cal94, Coo95a, PMZM16, dCH93]. Algebraic [CGPR98, Lev95]. Algorithm [ACMR14, BST+13, BP99, BT01b, DYN+06, FJBB+00, HA10, HD02b, ITT02, MW98, PK95, PB12, RDMB99, Rtl91, SAS01, Sch96a, SSSLW10, SWH15, Sta95b, TK16, WHDB05, ART17, AAAA16, ARL+94, AD95, BB95a, BAV08, BY12, BCM+16, CCG95, CT13, CSW99, GM94, GCN+13, GGL+08, GKK09, GP95, HWS09, IM95, JR13, KDSO12, KY10, KWF18, Kan12, KPB16, KN17, KO14, Kom15, KRC17, LYIP19, LYZ13, MM92, MLVS16, MK00, NB96, NAJ99, OKW95, OMK09, PGBF+07, PSLT99, Ram07, RJC95, RAG95, Sch96b, SOA11, Sur95a, TNPB17, Was95a, YULMTS+17, ZSK15, ZWL+17, dH94, van93, HWS09, LTTD14, Riz17, SMSW06]. Algorithm-based [PKD95]. Algorithm-Dependant [BP99]. algorithmic [RJDH14]. Algorithms [ACM95b, ATC94, ADRC98, ASA97, CCM97, DALD18, DAK98, DK06, FB94, GAM900, GK10, HO14, HHHK94, IEE99d, KKO2a, LHMM96, LI96, LAD16, MTSS94, MGMH97, MBS15, Nar95, Ped97, PBK00, SG15, VRS00, AK99, AL92, BHJ96, BMS+17, BID95, DDLM95, FR95, FP92, GWC95, HLL7, HPLL99, HKOO11, HS95b, Jou94, JRM+94, KL95, KR913, LFL11, LW+12, MTK16, MJG+12, NP12, Ols95, PP16, Pan95b, PBK99, PD11, PCS94, RHG+96, SPE95, Sur95b, TSZC94, WCVR96, YLZ13]. alias [SOA11]. alias-free [SOA11]. aligned [AGS94]. Aligners [SMM+16]. Alignment [dOSSM+16, AMHC11]. all-port [BJM93]. All-to-All [LZH17, LZH18, Trå92]. Allocation [AGS97, BS01, DGG+12, RFRH96]. alloy [TG94]. ALM [PZ12]. Altera [RGB+18, TK16]. Alternative [EM94, SWHP05, Tia12a, EKTB99]. ALWAN [HB96a, HB96b, MSB97]. Amazon [ZLZ+11]. AMBER [SL95]. AMBER4 [VM95]. American [Aar95]. AMIP [Gat95]. Among [CB16]. AMPI [ZHK06]. AMPIC [CCHW03]. amplified [EZBA16]. AMR [NLH97]. AN2 [HBT95]. analogue [WWZ+96]. analyses [ANS95]. Analysis [BHW+17, BR02, BGG+02, BBC+00, BDL98, CGLD01, CLA+19, EML00, FK01, FJK+97, Hol12, JF95, KL94, KNT02, KRG13, LCK11, MK17, MCLD01, NA+96, NMS+14, Osd94, PZ12, PGAB+05, SPL+12, SBR95, SN01, TFGM02, Whi04, WM01, BB93, BBDH14, BBH+15, Che99, DSGS17, EPP+17, GR95, GFB+14, GKS+11, GE95, GE96, GT07, JB96, LC07, LLG12, LL16, LBH12, MMB+94, MMW96, MLA+14, MPB16, Pat93, PHJM11, PGAB+07, SASC13, iSYS12, SS94, SDJJ17, SP95, Sh94, Sil96, SWL+01, SSG95, TMC09, TW12, TFZZ12, Uhl95a, Uhl95c, VM94, YCL14]. analytical [BHW+12, HK09, JS13, KN17]. Analyzer [JJPL17, KKM15]. Analyzers [Ano01a]. Analyzing [BRU05, DF17, FM09, HG12, HcF05, PFG97]. anasslich [Ano94c]. Anatomy [KWE18]. Andrew [Ano99c, Ano99d]. animal [LM99]. anisotropic [LBB+16, SSB+16, YSVM+16]. 'Anai [CEF+95]. Annapolis [IEEE96c]. Annealing [FH97]. Annecy [VW92]. Anniversary [Ano92, Ano93a]. annotated
[GKH99]. Annotation [MGA+17].
announcement [WRMR19].
Announcements [Ano98]. Annual
[ACM95b, Ano93b, Ano94h, IEE95b, USE00, Van05, Y+93, ACM95a, Eng00, IEE94e, IEE95i]. ANTI [ITTO2]. ANTE [Ano03].
antenna [DSOF11]. Anthony
[Ano95c, Ano00b]. Antonio
[Ano95d, IEE95g, IEE97c]. Any
[Gro02a, Mar07]. AP
[PBC01, SMTW96]. AP/S
[SMTW96]. AP1000
[SH96, IM94, SWJ95]. AP3000 [TD99].
API [DM98, LPD11]. APIs [WCS13].
APOLLO [Sta95b]. APOLLO-II [Sta95b].
Appendix [Ano01a]. Appendixes
[Ano01a]. APPL [AB93b, AB93a].
Application
[AKE00, BSN95, BGdS99, BS07, BFM97, BBH15, Cha04, ABC+91, ADV05, ADR+05, BvdB94, BFLL99, BL97, BMP03, CBYG18, CRM14, CRGM16, EPM199, FM15, GDV+14, HTJ+16, HZ96, KME09, LSG12, LCGM17, LBB+19, MM96, MM03, MLA+14, MvWL+10, NM03, RBA11, Rol08b, SM12, SCJH19, SSS99, SFSV13, SL00, TCP15, Wor96, ZZZ+15, CG99a].
application-centric [SF13].
Application-Level [CRGM14, LMRG14, SBF+04, SCL97, BMP03, CRM14, CRGM16, LCGM17, LBB+19].
Applications
[APJ+16, AGS97, Ano89, Ano96c, AZG17, BCLN97, Ben18, BHR12, BBH+06, BRU05, BFM96, BFW01, CGS15, CBL10, CGLD01, Cha05, CJNW95, CRGM14, Cot98, CTK00, Cot04, Cza02, Cza03, DOW02, DLM+17, DERC01, DHR97, DGMJ93, EVO1, EML00, FLD98, FD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GK10, HMK09, Hus98, IEE95l, ITTO2, Jes93b, JPL17, KB08, KBS04, KGK+03, KKP01, KKK02b, Kuh98, LAF01, LADs+15, LRG14, kLCCW07, LMRG14, dLR04, MSOGR10, MS02a, Mar02, Mar01a, MAB05, MC98, MG15, MANR09, PSM+14, Rei01, RPM+08, RBBL01, SPL+12, SG12, SPH+18, SC04, SS+17, TTSY00, TFGM02, VdS00, YV02, Vos03, Wal96a, WC09, Wis96a, WSN99, WBH97, WM01, dGJM94, ACH+14, ACJ12, Ano93a, Ano94f, Ano03, Ara95, Arn95, AGMJ06].
applications
[BKH+13, BR04, BDV03, BAG17, BFM96, BFT96a, CGK+16, CGBS+15, CDMS15, CLSP07, CBM+08, CL+10, CFPS95, CCHW03, CCM+06, DS98a, DSZ94, D+95, DCH02, EKTB99, GHE99, EDVS90, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHG12, GJMM18, GS96, GHH+93, HZ99, HAJK01, JC17, JPT94, LGM17, LCMG17, LBB+19, LZHY19, LS08, MAO99, MBKM12, MLCO4, MSMC15, MS96b, NSR07, NC05, NF03, PK05, PTL+16, Rab99, RS95, RGP+18, SLM14, SPE95, SBG+12, SJ07, SH12, SG05, SL95, SB01, SD16, TBC09, TBY18, V02, Wis96b, Wol92, WT13, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94].
Applied
[FGRD01, HC06, KaM10, GFIS+18, HMKV94, MM92, NF94, PGK+10, DM96, Was96]. Approach
[AZG17, BFM94, B093, BHNW01, CRGM14, CD98, DLM+17, FFP03, GCB12, HD00, KBA02, KK02a, KWH10, LGM00, Mar06, PPR01, Pet00a, Pet00b, RGD13, Ros13, TJPF12, BK11, Bis04, BCP+17, CLY16, CDP99, CRGM16, DNO6, E015, FMS15, HD+13, JS3, KPL+12, KSS07, KJE12, LSG12, MGG05, MS99b, NEM17, OW92, SVC+11, SEC15, TWFO09, WO09]. Approaches
[JCH+08, Ney00, SWHP05, SM02, BFLL99, CB11, PS00b].
Approximate
Approximation [SLJ+14, SJLM14]. April
[ANS95, AH95, Ano93h, Ano94h, CH96,
DR94, GH94, Ham95a, IEE92, IEE93b,
IEE05f, IEE96e, IEE97b, IEE05, LCHS96,
MC94, Nar95, Sie94, SW91, Ten95]. APS
[GT94]. A Qsort [LTS16]. AQUAgpusph
[CP15]. arbitrary [HP11]. ARCH
[Ada97, Ada98]. architectural [GGC+
07]. Architecture [BG94a, CGC+11, CLOL18,
EBKG01, EM02, FD97, Fu08, HRZ07,
IEE07c, ITKT00, LSZL02, PT01, PS01b,
SMM+16, SC04, WKP11, YTH+12,
BBCR99, BG94c, CSPM+96, CS96,
CBIGL19, DiN96, FHC+95, HK90, MRH+96,
PWD+12, SWYC94, SSGF00, Squ03, SP11,
WCC+07, YAIG+15, YEG+13, ZWZ+95].
arbitrary-independent [DiN96].
Architectures [ACM95b, BDT08, BFG+
10, CHPP01, HD02a, HD02b, HHH94, IEE96d,
KDT+12, LHMM96, Li96, LZH17, LAD16,
MS02b, MTSS94, MCS00, NO02b, Nar95,
PZ12, TSCaM12, YKW+18, BDP+10, BN00,
BKML95, CLM+95, CDZ+98, DM93,
DZZY94, GDC15, GP95, Hos12, LCL+12,
LDJ13, MLC04, NO02a, PY95, RFH+95,
RMMN+12, SPL99, TDG13, TszC94,
Uhl95a, VDL+15, WST95, diAMC11]. Area
[CDHL95, Fis01, BHW+12, FGFT96,
FGG+98, KH9+99, Qu95]. area-based
[Qu95]. arising [Arw03]. Aristotle
[FSV14]. Arithmetic
[An98, JPT14, Sur95a]. Arithmetics
[HD00]. Arizona [IEE95b, JB96]. ARM
[MGL+17]. Array [DDPR97, HD02b,
LTS16, WG17, CCM12, DK13, HSE+17,
JKN+13, Ott93, TOC18, Wal02]. arrays
[HCL05, RBS94]. Arrival
[FPY08, MLVS16], art [LF93b]. artifact
[ZZZ+15]. Artificial [BPG94]. ARTUR
[FJBB+00]. ARVO [BHW+12]. ARVO-CL
[BHW+12]. ary [Pan95a]. Ascona [DR94].
Ashes [Thr99]. ASL [FGRT00]. ASME
[LF+93a]. aspects [CG99a]. Assembly
[PGF18, TPD15]. Assessing [LMG17,
dLR04, MABG96, TSCaM12, CMV+94].
Assessment
[Mat01b, TAH+01, Boi97, LH98]. Assignment
[Cza13, CK99], assist [Kik93]. Assisted
[GT96, GM13, MM03]. Atmospheric
[BS93]. Atmospheric
[HHK93, KHSB91, RSBT95]. atom [MGG95].
Atomic [LRT07, LAFA15, SYF96, DS13,
Hin11, SY95, XF95]. atomics [BDW16].
atomic [JLS+14]. Attacks [PV97, GH12].
attempt [GM18]. Attraction [GB96].
audio [BJ13]. August [ATC94, Agr95a,
BFMR96, DMW96, GT94, HAM95b, IEE94g,
IEE95k, IEE95l, IEE96f, LF+93a, Ost94,
PSB+94, PBC+95, Rec96, VV95, Was96].
Austin [IEE94b]. Australasian [Bil95].
Australia [GN95, Nar95, ACDR94, Bil95].
Australian [ACDR94, GN95]. Austria
[Bos96, BH95, Kra02, TBD12, Vol93].
Austrian [Fer92, FK95].
Austrian-Hungarian [Fer92, FK95]. Auto
[CC17, DWM12, DBLG11, PSB+19,
RDLQ12, WG17, FE17, SH14, TWFO09].
Auto-Generation [CC17, DWM12].
auto-parallelization [TWFO09].
Auto-scoping [RDLQ12]. Auto-tuned
[PSB+19]. Auto-Tuning
[WF17, DBLG11, FE17, SH14]. AutoLink
[GMPD98]. AutoMap [GMPD98].
Automata [Car07, BBK+94]. Automated
[BMPS03, MVY95, LLG12, RFHR96, Van94].
Automatic [BVML12, BBK+08, BKG08,
BHK+06, CBL10, Cza03, DW02, EML98,
EML00, FAFD15, FFM11, GKF13, Hz99,
automatically [WBSC17], automation [Ano93a], automotive [Ano93a, Ano93a], Autotuning [BAG17], Auxiliary [STMK97], Available [Bak98, BF98], Avoidance [CRGM14], AVTP [FHC95], award [Str94], Awards [Str94], Aware [APJ+16], BHP+03, Ben18, EGR15, GFIS+18, HVA+16, LRBG15, MJB15, Pan14, ZLP17, CLA+19, CGH+14, FA18, GHZ12, HJYC10, KGN+19, KBG16, MBBD13, MSMC15, SHM+12, SPK+12, WRSY16], awareness [HK09, VGS14], AXAF [NH95], AXC [CBIGL19].

B [Ano01a], Back [BIC+10], Backend [IOK00], backtracking [PGdCJ+18], Backup [Gua16], Bains [GA96], Balance [HE02], balanced [EZBA16], Balancing [BkdSH01, DBA97, DK06, FSG19a, GCBL12, MM02, PT01, Pus95, ST97, Wa101a, B594, BS05, DZ96, DLR94, DvdLVS94, DR95, FMBM06, FH97, Hum95, JHG97, MM03, NP94, SGS95, SY95], Balatonfured [DKP00], balls [BBH+15], Baltimore [IEE02, SPH95], Bamboo [NCB+12], banded [DG95], Bandwidth [NE01, RK01], Bangalore [Kum94, PBPT95], Barbara [ACM95b, AH95, IEE95f], Barcelona [DLM99], BARRACUDA [EP+17], Barrier [CLdJ+15, SDB+16, YLZ13], Based [Ada97, AID12, AAB+17, AP96, BHW+17, BDG+91b, BoFBW00, CAM12, CGC+02, CLOL18, CLP+99, CDPM03, DW02, DBK+09, FSC+11, FC05, For95, FSLS98, GSxx, HF14a, HF14b, HM01, Hus00, KLR16, LSL02, LIZ18, kL11, LWP04, LAFA15, MDMA17, MGL+17, MMH98, NSLV16, NE01, NHT02, NPS12, PPT96a, PCY14, PFG97, PSSS01, RDMMB9, SPL+12, SM03, Sni93a, St02b, St97, SJK+17a, SJK+17b, TSH+15, TD98, WTH17, WC09, WZHZ16, Wis96a, WM01, WJB14, YG96, YTH+12, ZWJK05, Ada98, AASB08, AAAA16, AVA+16, Ano03, BLPP13, BDG+92a, BCH+03, Bri95, BFMT96a, CwCW+11, CC10, CknWH16, CRM14, CXB+12, DX96, FE17, FFB99, FJZ+14, FNSW99, FSTG99, FLPG18, FFCC99, FWS+17, GS91a, GS92, GKS+11, Gra97, Gra09, GFPG12, HZ94, HWX+13, IM95, ITT99, JL18, JKM+17, KLV15, KPL+12, KPNM16], based [LV12, LRW01, LKL96, LN9+12, LGG16, LMM+15, MYB16, MMO+16, MKP96, MCB05, MT96, MS09a, MS99b, MFPF03, Neu94, NHT06, OLG+16, OP98, PARB14, PES99, PPT96b, PK05, PA0+17, PK+10, PSLT99, Qu95, Rag96, Rot19, SJLM14, SS09, SG05, SSS99, SZ11, SVC+11, SL96, SKB+14, Sto98, Str96, SL9+12, TBB12, TY14, TBD96, TFWO09, TMP01, WO99, WFT014, WGG+19, Wis96b, WCSS99, YC98, YL09, YWCC11, YSL+12, ZAFAM16, ZLP17, ZHK06, ZZG+14, ZWZ+95, vHKS94, BFMT96b, FH97, KJS95, WAS95b, FO94, GKS97, KS96, PY95, Sut96, TSZC94, ZPLS96], Basel [Ano94j], Basic [PGC02, BKvH+14, BR94], basierte [Gr97], Basis [OMK90, RB01], batch [VLMP+18], Bath [BP93], Bayesian [Fer10], BC [IEE95j], BCS [FPF03], BCS-MPI [FFP03], be [CB00], Beach [IEE93b], beam [OIH10, RCF96], bearings [NF94], Beguelin [Ano95b, NMC95], Behavior [BFM97, DeP03, Ros13, LLG12, PPF89, YMYI11], behaviour [EPML99], Beijing [CZG+08, LHHM96, Li96], Beitrage [Ano94c], Belgium [LCHS96], Benard [TVY96].
Benchmarking [GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02].

Benchmarks [CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TSB03, WAS95b, ZSh01, CDD96, MHH99, Ste94, WT11, CE00, WT12].

Beneﬁcial [CB00].

Beneﬁts [LB16, PSM14, SIRP17].

Benutzerproﬁle [Wil94].

Benutzerrechnens [Ano94c]. Beowulf [CMM03, Ste00, UP01]. Beowulf-Class [Ste00]. Berlin [PW95]. Bessel [KT10].

Betriebssystemkern [Sei99]. Better [Str94].

Between [AAB17, BS07, ASS17, AKE00, BID95, GVF99, JAT97, LDCZ97, MSP93]. Beverly [IEE93f]. Beyond [Gei93a, GPKS97, Gei98, Gro12, Olu14, Gei99b, LSG12, Sch93, SHM10].

Biconjugate [GFPG12]. bidirectional [HE15]. Big [CLOL18, GTS15, KLi14, VPS17, ASS17, Str94]. Biharmonic [RB01]. Biharmonic [Ano99c, Ano99d]. billion [KJ03]. Billions [MRB17]. binary [CG93, EPP17, SGS95, TCBV10].

binary-level [EPP17]. binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Co95a]. Bindings [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biomolecular [BCG179, PZKK02]. BIP [CDP99, Tou00].

BLASTP [LSMW11]. Blaze [PWP19]. Blaze-Tasks [PWP19]. Block [DDPR97, SM16, WO95, ZB97, ADDR95, DR18, GP95, HKMCS94, HC08, LYIP19, WO96].

Block-Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96].

block-tridiagonal [DR18]. Blocking [FHN98, BCH18, HKT12, Nak03, HTA08].

Blood [Pat93]. Blue [KMH14, AAC05, BGH14, AM13, MV17, MSW15].

blurred [Wil94]. BMMC [CC99]. bodies [AGIS94, LHLK10].

Body [RB01, RTRG07, IHM05, NS16, Per99, SP99, SRK12, ADB94]. BOF [Mat00a].

Boltzmann [OTK15, CGK16, MS95, Pri14, SJK17a, SJK17b].

Bonn [MTW06]. Book [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99d, Ano99b, Ano00a, Ano00b, Che10, Mar06, Nag05, NMC95, Per97, SD13, Vog13, Vre04, YM97].

books [YM97, Nov95].

Boosting [LRG14, SFO95].

Bose [KLM19]. Boston [IEE94e].

Both [BGD12, KP96].

Bottleneck [MWG97]. bottlenecks [DSG17, JKHK08].

Boulevard [ACM99].

Bound [ASA97, CLA98b, MBMK12, ADMV05].

boundaries [KGB09]. boundary [PTT94, SBZQ14, SP11, SD99].

boundary-value [SP11]. bounded [MSSAS18, PAD18].

BowMapCL [NTR16]. Box [JR13, JPP95].

Box-counting [JR13]. brackets [GSA17].

Braga [IEE96g].

Branch [ASA97, ADMV05]. Breaking [OS97].

breast [Str94].

Brest [IEE95d].

Bridge [VDL15]. Bridges [DS00]. Bridging [ACM04, AAB17, ASS17].

Bringing [FKKC96].

Brisbane [ACDR94, NMR95].

Bristol [MC94].

British [IEE95a, IEE95e].

Broadband [OIS06, CLASPD99].

Broadcast [PSM14, YSP15].

Broadcasts [SE02]. Brownian [SKM15].

Bruijn [PGF18]. Brussels [LCH96].

BSGP [HZG08].

BSP
HT01, JR10, DK02, PBK00, YPAE09. CFD-DEM [ADT14]. CG [ABF+17]. Ch [CNC10]. Chain [FK01]. Challenge [DGMJ93, LB96]. Challenges [Agr95a, Gro01a, Gro12, Ree96, Ten95, Wit16, BG9+12, GScFM13, WLK+18]. Chamfer [YPZC95]. Chandra [Sp02]. Channel [GK97, LBD+96, SG05]. CHAOS [BLW98, JL18]. Characteristic [OMK09]. Characteristics [WR01, WT12, BN00, GL99, WT11]. Characterization [KB98, MM07, Wor96]. Characterizing [BCM11, BGdS09, FLPG18, GScFM13, OdSSP12]. Charge [BL95]. Charm [ZHK06]. Charts [DSS00]. Chebyshev [Rot19]. Check [MC17, LCC+03]. checkerboard [BW12]. Checking [CGZQ13, Gro00, HMK09, LCC+03, MdSAS+18, PAdS+17, RAS16, SMAC08, YYY+12]. Checkpoint [SSB+05, SBF+04, CRM14, ZWZ05, ZHK06, BDB+13]. checkpoint-based [CRM14, ZHK06]. Checkpoint-on-Failure [BDB+13]. Checkpoint-Recovery [SBF+04]. Checkpoint/Restart [SSB+05]. Checkpointing [DCH02, LMRG14, SSB+05, BMP03, BCH+08, CG96, LCMG17, LBB+19, PKD95, SSCC95, Ste96]. chemical [NMW93]. Chemistry [AKK+94, BR95a, DMW96, SSGF00]. Chemkin [Ano97, Bra97]. CHEMIP [RR01]. Chicago [CGKM11]. China [CZG+08, IEE97a, LHHM96, Li96]. Chip [Jes93b, URKG12, TDG13, DCZG06]. Cholesky [DG95, LC97b]. Chromosome [BM97, dOSMM+16]. Chromosome-Wide [dOSMM+16]. CICADA [MK94]. Circuit [WPC07, BJ95]. Circuits [GJN97]. Circular [Tsu07]. Circulation [GAM+02, Nes10, RSBT95]. CIS [AH00]. citation [Squ03]. City [Hol12]. civil [PW95]. CL [BHW+12, BBH+15, LW95]. CL-PVM [LW95]. CL_ARRAY [ZT17]. clarified [WBBD15]. CLAS [DZD95]. Class [DFN12, Röt19, Ste00, Dem96, MSL96, RFH+95]. Classes [DeP03, GG09, Ott93]. classic [HL17]. Classical [BCGL97]. Classification [SNN+19, TPLY18]. clauses [WC15]. Clemson [ACM95a]. Client [Ano93f, FSLS98, KS97, kLCCW07, Mat01b, Sch93, Sto98, Vis95]. Client-Agent-Server [Mat01b]. Client-Server [FSLS98, Sto98, Vis95]. Client-Side [kLCCW07]. Client/Server [Ano93f, Sch93]. climate [Str94]. CLIPS [Ano95a, Ano95e]. cMAGMA [CDD+13]. clock [NB96]. clocks [TPLY18]. CLOMP [BGdS09]. clone [ZWL+17]. Closer [HCZ16]. Closure [CGPR98, KH15, PPR01]. Cloud [SIS17, URKG12, ZLZ+11, ZLP17, GFIS+18, GH12, GWV+14]. Cluster [AUR01, BKG02, BL95, BM97, CFE99, CMM03, HD02a, ES11, GGGC99, Gei94, Gei00, GSN+01, GT01, GC05, HD02b, ITKT00, I-DD94, KKH03, KKS96, KS01, KHS01, LR01, MFTB95, MM01, NO02b, OF00, PF97, RB01, RS06, RLL01, SCR92, SHH01, SHTS01, ST02a, TOTH99, Trä02b, YCA18, bT01a, AL93, BLP93, BAL95, BTC+17, BID95, CCF+94, Cou93, ED94, GKO7, GMU95, He99, KEGM10, KO14, Kom15, LC07, Li95, LW93, MM03, NO02a, PDY14, RJHD14, SS94, SR95, ST02b, SLS96, SY95, SSN94, Th04, THM+94, Tsu95, UH96, YW95, ZLZ+11, MS04]. cluster-based [LSL96]. Cluster-enabled [SHHI01]. clustered [KHB9]. Clustering [BBH12, HA10, RJ95, GGL+08, YCL14]. Clustern [MS04]. Clusters [AH00, AHHP17, BDH+95, BDH+97, BWV+12, CLOL18, CSC96, DK06, GDM18, GMdMBD+07, GSY+13, HPP02, HSMW94, HVA+16, Hus00, JNL+15, LC97a, LH95, LVP04, MS98, MFP03, Pan14, PKB01, PT01, P00a, Pus95, Rei01, dOSMM+16, SF98, SVL99, Ste00, Tou00, UP01, WLN03, WT12, YWC15, YKI+96, AB95, AB9.
ALR94, ADB94, ABG+96, ADMV05, BWT96, BVD03, Brü95, CRE01, EKTB99, GBF95, HCL05, Hus99, JKH08, Jon96, JR10, JRM+94, KYL03, KLY05, KSL+12, Kjem12, LBD+96, Lee12, LCC13, LL95, LKYS04, NMW93, NN95, PS07, PRS+14, PM95, PR94c, PRS16, PL96, RCF96, RGDML16, Sl05, SC96a, SL95, TFZZ12, WLKL06, WLYC12, YST08, YL09, YHL11, YWC11, ZHS99, dCH93]. CM [SBG02]. CMMD [Har94, Har95]. CMPI [GHZ12]. CMS [FMS15]. CNF [IKM+01, IKM+02]. CO [ACM01, AHHP17, GDM18, HJ98, PSB+19, TOC18, Wal02]. co-array [TOC18, Wal02]. Co-designing [AHHP17]. co-execution [PSB+19]. Co-Expression [GDM18]. Co-processed [Har98]. Coarray [GBR15, YBMCB14]. Coarrays [SMCH15]. Coarse [ADRCT98, IOK00, KOI01, LGM00, NIO+03, Heb93, RJC95]. Coarse-Grain [IOK00]. Coarse-grained [Heb93, RJC95]. Coarse-grain [IOK00]. Coarsening [PSLT99]. Coast [IS16]. Coastal [GAM+02]. CoCheck [MS96b, Ste96]. Code [AHPO1, And98, BCGL07, CB00, CP97, CK12, CCBPGA15, DDL00, DZDR95, HE02, KaM10, KAMAMA17, KHS01, LD01, MS02b, MM07, PBC+01, RGD13, SM03, SZBS95a, Sta05b, TGBS05, AMS94, ADB94, AFST95, BCAD06, BAD07, B12, Bha98, Bri95, Con93, DLR94, EZBA16, FMFM15, GSMK17, Heb93, IJM+05, JL18, KPL+12, KH10, MGS+15, MRH+96, MWO95, PKE+10, PSK+10, RP95, SZBS95b, SK00, SFLD15, SMSW06, TBD96, VBLVdG08, VDL+15, Wor96, YL09]. codebooks [PMM95]. Codes [FAF15, JFY00, SWH15, HTJ+16, HWS09, JAF99, JPA99, KBG+09, LRW01, Mal01, OLG+16, WB96]. Coding [Uhl94, Uhl95b, SCC96]. Coefficients [MW98, ARYT17]. cognitive [PWD+12]. Coherence [MM07]. Coherent [SS01]. Collaborative [DCPJ12, DCPJ14]. Collapse [PKYW95]. Collecting [BMR01]. Collection [LTRA02, DH95, MGC+15]. collection-oriented [MGC+15]. Collections [JFGRF12]. Collective [BIL99, BIC05, CCA00, FVD00, FCLG07, FPY08, GLB00, GM4MBD+07, Hus99, KH96, MJG+12, PGAB+05, SG15, TRG05, VFD02, WRA02, FA18, HS12, HMS+19, HG12, HH97, KBB94, KMH+14, MBBD13, Pan05, PGBF+07, PGAB+07, RJMC93, SCB14, SCB15, SS09, TD99, Tra12a, TFZZ12]. Collectives [CSW12, SvL99, ZHL12]. Collector [GTS+15, WK08a, WK08c, WK08]. College [AGH+95, Ano94h]. Collision [QRM96, Sta05b, ART17, FFFC99, LHLK10]. Collocative [MKW11]. Colony [ITT02]. Colorado [R+92, IEE05]. Colt [WN10]. Columbia [IEE95a, IEE95e, MAB05]. column [HSP+13]. column-stores [HSP+13]. COMA [GB96]. Combined [CBHH94, TJPF12]. Combining [DP94, Rab98, SCB14, Sch96a, SMAC08, YPAE09, Bor97, Sch96]. coming [Ano94f]. Coming [HK95]. Commands [OLG01]. comments [Str94]. commerce [Ano94f]. commercial [Ano93b]. commodity [GGL+08]. Common [HEH98, DK13, WLR05]. Communicating [FKK+96b, GMPD98, FKK96a]. Communication [ABF+17, BCG+10, BIL99, BIC05, DCPJ12, DZYY94, EM02, FST98a, FJK+17, FGKT97, FBSN01, GF03, GFB+03, GGS99, GFV99, GL00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KBG16, LRT07, LC93, LCVD94a, MH01, MMH98, MR96, Nii00, PLK+04, RK01, RAGM97, Rt06, SWHP05, SCP97, SGH12, SG+02, SJ02, ST02b, SGL+10, SKH96, Sum12, TRG05, TGT05, TRH00, Trä02b, UM97, WBH97, XH96, YC98, ZSG12, FH98, BHJ96, BVML12, BBH+13b, BS94, BMG07, CAHT17, CGL+93, Dem96, DWM12,
DCPJ14, DGB+14, DBB+16, DS96b, GK97, GM13, Gra97, GL94, GB94, HB96a, HWX+13, Hus99, HWW97, KH96, KB01, KYL03, KYLO5, KBH+99, LR06b, LFL11, MLAV10, MMU99, MABG96, OGM+16, Pan95b, Par93, PGK+10, PM95, PKE+10, PSK+10, PSM06b, SH14, SC95.

communication
[TG09, Tra12a, Vet02, Wu99, WMP14].

communication-based [PGK+10].

Communication-buffers [MR96]. Communication/Computation [HIP02]. Communications [BPS01, CP98, CDHL95, CDH+95, FVD00, FST98b, GT01, GBS+07, GMDMBD+07, IEE95b, IEE95e, LZ97, LZH18, MB00, VFD02, YTH+12, bT01a, ADL03a, ADL03b, CDF99, FA18, HS97, KBH94, MBBD13, McR92, MN91, MS99c, RGDL16, SCB14, SCB15, TD99, WLYC12].

Communicators [DFKS01, GFD03, GFD05, FKS96, GJMM18, KH96, MJG+12].

Communities [ACM04]. Community [BHW+17, FCP+01]. Como [CLM+95].

COMOPS [Luo99]. Compact
[UHV94, UHV95b, Wor96]. compaction [VSW+13, WK06a, WK08b, WK08c].

Compactly [KLR16]. Comparative [KB98, PSK08, SN01, AGR+95b, ED94, YCL14].

Comparing
[BT01b, Fin97, GBR15, HSVH95, ICC02, LKJ03, ORA12, SSG95, WBSC17].

Comparison
[BvdB94, BS07, HIC13, KBM97, LCW+03, Mat94, Mat95, Ney00, OP10, OF00, PPJ01, Pok96, RS93, RBB97a, SS01, SHH94b, VS00, Wal02, ZBD12, Ahm97, AB93b, BLP93, CID95, GMU95, Har94, Har95, JS13, KDS03, KC06, MSP93, OBS95, PS07, PSHL11, Pri14, SdM10, SYR+09, SWS+12, SHH94a, TOC18, TSZC94].

comparison-based [PSHL11].

Comparisons [GGS99, PGC02, CLY16].

Compass [PWD+12]. Compatible [MM14, LBH12, OHH10]. Compon [IEE93a]. compete [ANO96a]. CoMPI
[FSC+11, FCS+12]. Compilation
[FSSD17, HKMCS94, LRBG15, RVK919, SBW91, Coe94, FM90, PGS+13, SHM+12].

Compile [GB94, TSY99, JE95].

Compile-time [GB94]. Compile/run
[TSY99]. Compile/run-time [TSY99].

compiled [KYL03, KYLO5]. Compiler
[ANO98, Dan12, IOK00, KSS00, KSHS01, MB12, Mar09, MKW11, SSE12, SKS01, TJP12, TBG+02, TGB05, BAG17, HEHC09, LME09, LHC+07, LLC15, MA09, Mül03, PP16, RKBA+13, SHH01, THH+05].

Compilers
[ANO01a, CFF+94, LZ97, MKV+01, SBT04, SS96, Hos12, PBG+95, ZT17]. Compiling
[DBM16, Hos12, CGK11]. Complete
[BS07, GHH+98, Nag05, Per97, SOH+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, PRS+14, SOH+96]. Completed [PTT94].

Complex [BCGL97, GMP98, MBS15]. Complexity [NPS12]. component
[HLP10, KRKS11, Sn03]. Components
[BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01]. Composable [MLG18].

Composed [Wel94]. Composing [PHA10]. composite [MALM95, YPA94].

Compositing [GPC+17]. Composition
[CTK00, Cot04, DlB07, FC05, KH15, CFP96]. compound [LLC13, SAP16].

comprehensive [RST92]. Compression
[FSC+11, KB04, VPS17, AAA16, HE15, UH96, Wu99]. compression-based [AAA16].

COMPSAC [IEE95l].

Compton [BCD90]. Computation
[BKGS02, B+05, Cert99, DMS94, DSS00, EMO+93, ESM+94, Fer10, FF95, GS91b, HIP02, IEE94a, IEE96c, KS15, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SMOE93, WTH17, ACM97a, ABDP15, Bis04, BALU95, Bos96, BKHR95, CL93, CMH99, CK+93, DZSY94, HLM+17, HK94, KB01, KBBS19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZZ94, NCKB12, PF05, PKE+10, Rö00, Shi94, SH14, TBB12,
TPD15, TW12, Vol93, Wan97, Was96, SM07].

Computation-communication [SH14].

Computational
[ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEE11, TGEM09, WPH94, Whi04, AGMJ06, BvdB94, BDG+92a, BR95a, HVSC11, KBC+99, PBK99, RBH15, SPE95, SZBS95b, STT96, Str94, VDL+15, BR95a, CWH03, R+92, SL94a, WPH94].

Computationally [DFN12].

Computations
[AGH+95, ACGR97, CGU03, CGPR98, IH04, PBK99, PMvdG13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGDK92, HJYC10, KD13, MRRP11, MR96, Smi93b, SAP16, TS12b].

Compute
[DBK09, KKLL11, VLMPS18, ZLZ11].

computed
[FWS17, SSS99].

Computer
[ACM06a, Ano94a, GTH96, IEE95l, IEE96h, IS16, KCR17, Neu94, Old94, PSB+94, ST02a, Sun94a, Ten95, URK92, YTH12, BN90, BS94, BKML95, BFM96, Cal94, CLM95, GRTZ10, JWB96, Str94].

Computer-Assisted [GTH96].

Computers
[Ano89, BP99, BCL00, DGM93, FFP03, GC05, IEE95b, ITK96, LF93a, MFTB95, PSZ00, SPM+10, SS96, BvdB94, BB93, BB94, DLR94, Du92, ESB13, GB95, KOS+95a, LR06a, MB+94, NF94, POL99, PBK99, Wal94a, Wal94b].

Computing
[ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACNR94, AIM97, BJ93, BBG+95, BDG+93a, BGR97a, BL95, BCP+07, BRST94, BDH+95, BDH+97, BHWN01, BBH12, CZ95a, CGB+10, CLL03, CLOL18, CNC10, Cze16, DDS+94, DERC01, DPP01, DMG93, DTH94, FTV800, Fer98b, FGKT97, Fos98, FS93, GLN+08, GS92, Gei93a, GBD+94, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hol12, HT01, IEE92, IEE93d, IEE93c, IEE94g, IEE95c, IEE95k, IEE95i, IEE96a, IEE96f, IFF95, KK02a, KS97, LCK11, LRG14, LC93, LR01, Lus00, dFMBlfPM02, ME17, Mat94, Mat95, MS04, Nov95, PKY95, Pr94b, PWPD19, SHTS01, SCSL12, Sin93, SSSS97, Ste90, SGS10, SW91, Sun90a, Sun90b, Sun93, Sun94a, Ten95, VV95, VW92, WN10, YH96, YG96, ZL17, ACGR92, ARY17, AL92, AH95, ASCS95, Ano93h, Ano94e].

comparing
[Ano94h, Ano93, ADDR95, AMV94, BPG94, BDG+92a, BDG+94, BKML95, Br95u, BHW+12, CZ95b, CZ96, CHKK15, DLRR99, DKD08, DW94, D+95, DMW96, DE91, EKTB99, EJL92, FBD01a, FGRD01, FO94, FS95, Fer98a, FS98, FME+12, HIC+95, GGGC99, GS92, GS91a, GS93, Gei93b, Gei94, GH94, GkLyC97, HP05, HW11, HH14, HPY+93, HS95a, H95, mH12, IEE97a, IM95, JPOJ12, JY95, JIM+11, JPTE94, KO14, KS95b, KSSOS7, LV12, LH98, LCH96, LHD+94, LHD+95, LM13, MAF94, MZK93, MA95, Mar07, PG+13, PKB06, Pen95, PGK+10, PTT94, PBG+95, PN01, PWD+12, RBS94, RJDH14, Sch93, SG95, SMS00, STT96, Sti94, SP11, Sun94b, SGM94, Sun95, Swa01, SD90, TJD09, TKP15, TDB00, Th94, TSS98, VM94, Vis95, Was96, YULMTS+17, YL16, YSL+12, Zem94, ZWL13, ZGC94].

computer
[ZHS99, ZKRA14, ACM98a, Kon00, PW95, Per96, SCR92, TGEM09, NMC95, Ano95b].

Concept [KaM10, LTR00, SB95].

Concern
[Ano94i].

Concurrency
[ME17, NPS12, DGB+14, PTG13].

Concurrent
[Ano89, BDG+91b, BRS92, BHV12, BKH+13, DG95, GS91b, GS92, GSxx, Gre94, HS93, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LPD+11, NP12, RGDML16, RCC95, Sun94b, SGDM94, Wal94a, Wal94b, WK08a, WK08b, WK08c, ZWZ+95].

condensates [KLM+19].

condensed
[MC99].
Configuration [IEE94d, PKB +16, BB94].
configurations [PTL +16]. Conflict [TCP15]. conformational [MK94].
Congress [CJNW95, GHH +93, PSB +94, BH95, dGJM94]. Congressi [GT94].
Conjugate [BG95, GFPG12, MM92, Ols95]. Connected [BT01b, KRKS11, OF00, Pet01].
Connectivity [Wii94]. Conquer [CTK01, Cza02, Cza03]. conscious [ZA14].
considerations [FA18]. consistency [WBSC17, YYW +12]. Consistent [TGT10, CG96, CG99a]. Console [PES99].
Constructing [DM93]. construction [ART17]. Constructs [KDT +12, PGC02, BKH +13, BN00].
consumer [ACJ12]. Contact [Nak03].
CONTAIN [SBR95]. containers [Str12, ZT17]. content [GFB +14].
Contention [ALB +18, ALW +15, DSG17, Zah12]. Context [DGG +12, DR18, MdSAS +18, OL+16, PAdS +17, SCB15].
context-bounded [MdSAS +18, PAdS +17]. Contexts [CS14]. Contiguous [WTR03].
Contract-based [KPNM16]. contrarian [KSSS07]. Contrasts [GG99]. Control [FLD97, FM99, IEE94e, MSS97, MBKM12, SFl +94, SHPT00]. controller [GWC95].
convention [BB95b, CEQS07, TVV96]. Convention [ACM98b, ACM99, ACM00, Hol12, IEE94b].
Converse [BK96]. Conversion [ZG95b]. convex [GC +13]. convolutions [DZZY94].
Cook [SD13]. Cooperation [Wis01, Str94]. Cooperative [DGF97, DiN96, HRSA97, kLCCW07, Pet00a, Pet00b, JKN +13, SHLM14].
Core [ABB +10, Bri10, CZG +08, LZH17, SOHL +98, TCM18, YGH +14, YTH +12, ACMZR11, BBG +14, BL99, FHB +13, HTA08, JR13, JMJ +11, JR10, KSG13, LLCD15, LLH +14, MBBD13, PZ12, SFV13, SVC +11, TFZZ12, VDL +15, WCC +07, WYLC12, dCZG06, MMH98, Nag05, Ano99a, Ano99b]. Cores [BBG +11, DT17, BMS +17, WO09]. Corfu [SM07]. correct [DM93]. Correction [SSLMW10, BCD96, FME +12].
 Corrections [BL95]. Correctness [HMK09]. Correlated [MM07]. corruption [FME +12]. Coscheduling [GRV01, SGHL01]. Cosenza [KG93].
cosmological [BADC07, Sai10]. Cost [KS15b, RLL01, GK97, GWVP +14, Wu99].
[MBS15, SS01, SBR95, Gra97]. Coupling
[BS93, KR09, SB95, WB96]. course
[STT96]. CoW [KMG99]. CPPvm [Gör01].
CPS [Mat94]. CPU
[BB18, CLOL18, DF17, JR13, KSL+12,
Lee12, LRG14, LLC13, LFL11, OFA+15,
PDY14, PHO+15, Pri14, SSB+17].
CPU-MIC [BB18]. CPU/GPU
[KSL+12, Lee12, LLC13, OFA+15, SSB+17].
CPU/multi [SAP16]. CPUs
[KH12, LNK+15, SFSV13, OFA+15,
SSB+17].
CPU/MIC [BB18]. CPU/GPU
[KSL+12, Lee12, LLC13, OFA+15, SSB+17].
CPU/MIC [SAP16]. CPUs
[KH12, LNK+15, SFSV13, OFA+15,
SSB+17].
CPS [Mat94]. CPU
[BB18, CLOL18, DF17, JR13, KSL
+12, Le12, LRG14, LLC13, LFL11, OFA+15,
PDY14, PHO+15, Pri14, SSB+17].
cuThomasVBatch [VLMPs+18]. CVL [Har94]. Cybernetics [IEE95a]. cycles [PL96]. Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96]. Cyclops [dCZG06]. Cyclops-64 [dCZG06].

D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Bri95, BPMZ94a, BAS13, CGU12, CP15, EFR+05, ES11, GCN+13, HFI4a, HFI4b, JR10, KRRS11, KO14, KD13, KHS01, KLR16, MK94, MSZG17, NSM12, TPD15, WMRR17, WMR19, WR01, YSL+12, vHKS94]. D-CICADA [MK94]. DAC [Cza02, Cza03]. Daemon [LB98]. Dagum [Stp02]. d'Aix [GA96]. d'Aix-Marlioz [GA96]. Dallas [ACM00, IEE95i]. Dame [IEE96i]. damping [YPA94]. DAMPVM [Cza02, Cza03]. DAMPVM/DAC [Cza02, Cza03]. DAMS [CD98]. Dangers [BCP+97]. DaReL [KN95]. Data [AJF16, BMR01, BCG+10, BGD12. CKWH16, CLOL18, DERC01, Dn96, EGR15, EASS95, GTS+15, GB08, GMPD98, Gua16, HA10, HB96b, HC06, JDB+14, KA13, LI14, LDJK13, MV17, Man01, MK17, ME17, MGA+17, MJB15, NJ01, NPP+00b, NPP+00c, NA01, NLH07, PCY14, Rei01, SGH12, SPK96, SSLMW10, SR96, Str12, THS+15, WO95, Wh94, ZDR01, ZG95b, AB95, ASS+17, AGG+95, BK11, Ben95, BR12, EBD95, CFKL00, CGK11, CGL+93, DRUC12, EP96, FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GEE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPOJ12, KN95, KJJ+16, KRRS11, LOHA01, LF+93a, LL16, MA09, MMB+94, MMM13, MR96, NCB+12, NCB+17, NPP+00a, OPP00, PDI14, RJMC93, SJLM14, SSS99, SPH95, SK92, TW12, WO96, WLK+18, YCL14, YWO95, ZJDW18, ZIQ11]. data-centered [JPOJ12]. Data-Driven [ME17, NCB+12, NCB+17]. Data-Intensive [Rei01]. Data-Parallel [AJF16, GB98, CKWH16, SPK96, CGL+93, FKK+96b, MMB+94, MR96, SK92]. data-parallelism [BR12]. data-privatization [KR013]. Data-Structures [GMPD98]. Databank [FCP+01]. Database [AR01, BFZ97, EK97, MGW97, MM14, PPT96a, MN91, PPT96b, PPT96c, PMZM16]. Databases [RGB+18, BA06, Bos96, ZWL13]. Dataflow [DT17, CPSM+96]. Datasets [VPS17, KGB+09]. Datatype [Gro00, SWHP05, KHS12]. Datatypes [JDB+14, RTH00, SGH12, Tha98, CAHT17, THRZ99]. Dave [Stp02]. David [Ano96a, Ano99a, Ano99b, Nag05]. DawnCC [MGA+17]. DAWNING [HWM12]. DAWNING-3000 [HWM12]. Day [LIS16]. dbx [NE98, NE01]. DC [B+05, IEE94h, IEE95i]. DCE [Sch93, FLD96, RS93, Sch03]. DDL [FB97]. Deadlock [LZC+02, SG12, HPS+12, HPS+13]. Deadlocks [FJK+17]. Debugger [WCS99]. Debugger [HM01, NE01, CH94, CG99b, MT96, XWZ96]. Debuggers [Ano01a]. Debugging [BDGS93, GKP96, KV01, KV98, Mor95, NE98, Wis97, ZLL+12, BL97, BS96a, DK93, HLOC96, KCD+97, MLA+14]. December [Bil95, Eng90, HHK94, IEE96a, Kum94, NM95, PBPT95, Y+93]. Decimation [PCY14]. Declarative [EADT19]. decoder [MC17]. Decomposition [BJS97, CP97, EGH+14, KDHZ18, DBVF01, ETV94, OMK09, SHHC18]. decompositions [NZ04]. deconfliction [TCP15]. Dedicated [WLN03, Hus99, WLN06]. Deep [AHHP17, SEC15]. Defined [Gua16]. Defining [GAML01]. Deformable [STK08]. Deforming [GAP97]. degree [CT13]. degrees [KTJT03]. Delegation [YTH+12]. Delegation-Based [YTH+12]. Delft
[DSZ94]. Delivering [Hus98]. Delphi
[ACGdT02]. Demand [CTK00]. Denmark
[DW94, DMW96, Was96]. Dense
[AKL16, BDT08, CDD+13, Fuji08, Hog13, PMvdG+13, ZBd12, BRR99]. Densities
[MW98]. Density
[BL95, MC17, CBHH94, ZWHS95]. Denver
[ACM01, IEE05, R*92]. Dependable
[GM95]. Dependant
[LAdS+15]. Dependency
[PPR01]. Dependent
[GB98]. Derived
[JDB+14, RTH00, SWHP05, Tha98, CAHT17, Jou94, THRZ99]. Descent
[Sch01]. description
[LNW+12]. Design
[AS92, AAC+05, Ano01b, ACD+09, BCD+15, BBH+13b, BSH96, BM902, BRM03, CLP+99, ETWaM12, FD02a, FA18, FFP03, GG09, HWM02, JSH+05, KVGH11, kLCC+06, KL11, LVP04, Man94, MMSW02, NPS12, OFA+15, Pan14, PLK+04, PCS94, SBG+02, SWYC94, SSL97, SPK+12, Sun12, THM+94, USE94, VGRS16, BR91, CARB10, CSS95, DS96b, FD02b, GL94, GkLyCy97, KA95, LCO7, MAS06, OA17, PGK+10, PTW99, SL94b, Sep93, Sil96, SSD+94, SWL+01, Wa94a, Wa94b]. design-pattern
[MA06]. designed
[GKZ12, LAD16, SWHP05, SH14, WYLIC12, ZLP17, AHHP17, DSOF11, Pan95b]. Designs
[HVA+16, AAAA16, MC17, Shi94]. desktop
[Mar07]. Detailed
[DLV16, RSPM98, BTC+17, LR06b]. detect
[Str94]. Detecting
[AGG+95, PPJ01, ZRQA11]. Detection
[BHW+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KJS14, SG12, ZDD97, BBH+15, DFK94a, HDDD09, HGMW12, HPS+12, HPS+13, LZC+02, RAGJ95, TCP15, TDG13, TWF09, WTFO14, YULMTS+17]. Detector
[DZDR95]. Determination
[LAFA15]. Determine
[BP99]. Deterministic
[CFMR95, DK02, ZLL+12]. Develop
[PD98]. Developer
[IEE96i]. developers
[Str94]. Developing
[BFZ97, CCEM97, Cot98, DDLM95, Reu03]. Development
[AC17, Ano01a, BDG+91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TBD01, ARvW03, ABC+00, BL97, BBH+92a, DS94, DHR97, KCD+97, LLC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99]. Developments
[Mat00a]. device
[KKLI11, LS10, SBQ14, YWTC15]. Devices
[GJN97, ZJDW18]. DFB
[WWZ+96]. DFN
[RS93]. Diagnosis
[AP96, LAdS+15]. diagnostic
[RSBT95]. dictionary
[LSM15]. Diego
[Has95, LF+93a, NM95]. Difference
[UCZ+12, GFPG12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94]. Differences
[AKE00, LDCZ97]. Different
[AIM97, GL97b, JCH+08, Ney00, Rab98, RBB+97a, BN00, PY95]. Differential
[MFTB95, Riz17, JK10, NF94, RBB15, SP11]. Differentiating
[Cer99]. Differentiation
[BBH+08, BGK08, CDGM96]. Diffusion
[HF14a, HF14b, MW98, CEGS07, DM93, MM92]. Digest
[IEE93a, IEE95c]. Digit
[DALD18, LAD16]. Digital
[KL16, CLJ+10]. Dijon
[YP96]. Dimpems
[CRLBO]. Dimensional
[Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK+17a, SJK+17b, AL93, KT02, LSS15, Ols95, PR94c, Ram07, RG18]. Dimensions
[SAS01, Ano93b, HP11]. dipolar
[LBB+16, LYSS+16]. DIPORSI
[GGCGO01]. DipSystem
[SP99]. Direct
[Bri10, GPC+17, LB98, WJB14, BCM+16, Gra09, HWS09, MM11, SWH15]. direction
[BDG+93b]. Directions
[IFI95, FK94, FHP+95, Sun96]. directive [LV12, NO02a, YL09]. directive-based [LV12, YL09]. directive/mpi [NO02a].

Directives [BBG+01, BKO00, CCBPGA15, JFY00, LOHA01, VGS14]. directory [JCP15]. Discovering [FK94, FHP+95, Sun96]. directive-based [LV12, YL09]. directive/mpi [NO02a].

Directives [BBG+01, BKO00, CCBPGA15, JFY00, LOHA01, VGS14]. directory [JCP15]. Discovering [FK94, FHP+95, Sun96]. directive-based [LV12, YL09]. directive/mpi [NO02a].

[SSC96, SSC97]. **DTM** [PS07]. **DTS** [BHKR95]. **Dual** [BBC+00, GAM+02, DK02, CT13, LSSZ15]. **DTS** [BHKR95]. **Dual-dictionary** [LSSZ15]. **Dual-Level** [BBC+00, GAM+02, DK02]. **Dual-scanline** [CT13]. **Dublin** [LKD08]. **During** [DeP03]. **Dust** [dlfMBdlFM02]. **DVFS** [PTL+16]. **DWT** [ZZZ+15]. **Dyn** [WLNL03, WLNL06]. **Dynamic** [ACGR97, AGS97, AUR01, CGLD01, CKmWH16, CK02a, CK02b, CT13, LSSZ15a, LSSZ15b, LSSZ15c, LSSZ15d, LSSZ15e]. **Dyn-MPI** [WLNL03, WLNL06]. **DynamicPVM** [DvdLVS94]. **Dynamic/DPVM** [IvdLH+00]. **DynamicPVM** [Saa94]. **Dynamite/DPVM** [IHvA+00]. **DynamicPVM** [IvdLH+00]. **E-scale** [Gua16]. **EA** [Ben18]. each [An00a, An00b]. **Early** [CD96, LV12, SLG95, EFR+05, KJA+93]. **Earth** [KTJT03, Nak03, Nak05a, Nak05b, UTY02]. **Earthquake** [UZC+12, KTJT03, KME09]. **Easily** [PKB01]. **Easy** [NAG05]. **EasyGrid** [BR04]. **EASYPVM** [Saa94]. **ECMWF** [HK93, HK95]. **ed** [NAG05]. **EDEM** [Tsu95]. **Edge** [ZDD97, Gra97, RAG95]. edition [An90a, An90b, An00b]. Editors [AM07, GSA08]. **education** [ACM06a]. **EDV** [An94c]. **EDV-Benutzertreffens** [An94c]. **Edward** [Che10]. **Effect** [DK06]. Effective [MLAV10, RK01, TM09, Tsu95, Cza13, JH97, KS15a]. **Effects** [SSE12]. **efficacy** [GScFM13]. Efficiency [KS96, MTU+15, CZ06, MMU99, RS95]. **Efficient** [ADT14, Att96, BHW+17, BGBP01, BCK+09, BHLS+95, BFG+10, BGD12, Bn09, BDF+95, BDF97, BMPZ94a, CAYL17, CFP96, DZ98a, DGG+12, FHP94a, FHP94b, HBT95, HKT+12, HTO8, HCO6, HLO+16, KGG+03, KID13, LDM17, MB12, MR14, NBK99, PGS+13, RMJ93, RBL01, TGBS05, WSN99, WWFT11, YPZC95, ZWHS95, BfDA94, BHW+12, CGH+14, FM00, FSN99, FTH+13, HCL05, KVGH11, LKH16, LA06, Pan95b, PRS+14, RR01, SOA11, TPD15, TGD13, YLC16, dCZG06, CRD99, THRZ99]. Efficiently [CC99, CCM+06, PHA10]. **eigenproblem** [BV99, GG99]. **eigensolvers** [DR18]. **Eigenvalue** [DAK98, BSC99, THM+94]. Eighth [ERS95, Sie94, IEE96b]. **Eilean** [CSS95]. **Einstein** [ARYT17, KLM+19]. Einstein- [ARYT17]. **Ejector** [CCBPGA15]. **elastic** [PTG13]. **elasticity** [PTT94]. **Elastodynamic** [MAIVA14]. electric [BAU95, An90]. **electrical** [Sil96]. **electroabsorption** [WWZ+96]. **electromagnetic** [DSOF11, NZ94, OK09, WGG+19]. **electromagnetics** [OGM+16]. electron [ART17, JL18]. **electron-molecule** [ART17]. **Electronic** [GJN97]. **Electronics**
Equations [And98, BG95, GbK01, Huc96, LLY93, MFTB95, ORA12, ZbB97, Bnvw+12, Che99, IM95, JK10, Jou94, MM11, NF94, Rbb15, Sp11, SMS06, ZGZ+14, dh94].

Equi [LTRA02]. Equi-Join [LTRA02].

equivalencing [LLG12].

Era [ABB+10, CGZ+08, CGKM11, EdS08].

Error [DFC+07, SSLMW10, HPS+12, HPS+13].

Errors [FCLG07, SD16].

Error [DFC+07, SSLMW10, HPS+12, HPS+13].

Errors [FCLG07, SD16].

Essex [RWD09].

Estimation [Gk10, AMHC11, CCu95, GB94, JMdVG+17, KS96, Kk02b, Kss00, LGCH99, Lnk+15, Lz97, kl11, lvp04, Mh01, Mgc12, Nnon00, OTk15, OM96, Pan14, Par93, Rb01, SWHP05, SPC97, Ser+16, SFE+04, Sm02, Son01, Sjk+17a, Sjk+17b, TOTH99, TS02, Tsb03, TSS00, UMK97, VY02, AB13, BBG+14, BBH...13a, Bms07, CB11, DBB+16, Hpr+95, HsnP00, HPS95, IM94, JC17, JmdVG+17, LV12, LnW+12, MKP+96, MM03, MT96, Mmh99, Nn95, Psk08, RLFdS13, Sl94b, SWS+12, SWY94, SFVS13, TSP95, THM+94, Tmpj01, Wor96, Ywo95, Ys93, Zhk06].

Evaluations [mm14].

Event [Kkv01, NSL16, Ths+15, Wm01, WMC+18, Fsg19a, Fsg19b].

Event-Based [NSL16]. event-driven [Fsg19a, Fsg19b].

everything [CCm+06]. everything-shared [CCm+06].

Evolution [Mat01a, Bb05, Dsm94, Rag96].

Evolving [Bad16, Er12, MdSc09].

Ewing [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

EWOMP’99 [BC00].

Exchange [Che10, Sk10, Nb96, Pat93].

Exception [FMSG17]. exchange [MMm13, Pan95a]. excluded [Bhw+12].

executeable [Wmp14].

Execution [Ahd12, Bme02, DT17, FC05, FM09, Gr07, Kgk+03, MK17, Mar05, Mfg+08, Magr01, Ney00, STY99, SAP16, Epm19, Mor95, Psb+19, Smc08, Tnb17, Tsy99, Tsy00, Ugt09].

Executions [Gaml01].

Exhibition [Hs95a, Gh94, LchS96].

Existing [Cb00].

EXOCHI [Wcc+07].

Expand [Cgg+02].

expected [CahT17].

Experience [Bcp+97, Bt96, Cp98, Ps01a, Tou00, Asms94, CarB10, Kja+93, Rsc+15].

Experiences [Ahp01, Bfz97, Cmv+94, Cllasspdp99, Gln+08, Gs91a, Gs97, GB96, GL95d, Itt02, JR10, KS97, Mar02, Di02, Fst98b, Fssd17, Han98, Jch+08, KS96, Kk02b, Kss00, LGch99, Lnk+15, Lz97, kl11, Lvp04, Mh01, Mgc12, Nnon00, OTk15, OM96, Pan14, Par93, Rb01, SWHP05, SPC97, Ser+16, Sfe+04, Sm02, Son01, Sjk+17a, Sjk+17b, TOTH99, TS02, Tsb03, TSS00, UMK97, VY02, AB13, BBG+14, BBH...13a, Bms07, CB11, DBB+16, Hpr+95, HsnP00, HPS95, IM94, JC17, JmdVG+17, LV12, LnW+12, MKP+96, MM03, MT96, Mmh99, Nn95, Psk08, RLFdS13, Sl94b, SWS+12, SWY94, SFVS13, TSP95, THM+94, Tmpj01, Wor96, Ywo95, Ys93, Zhk06].
TGEM09, ZPLS96, ZKRA14, AL92, CCF+94, Sch94, SGDM94, BDG+93b.
Experiment [Luo99].

Experimental [BIL99, BIC05, BB18, EGC02, Ser97, UMK97]. Experiments
[BPMN97, Ccc94, LGM00, OS97, RR00, ZB97, RHG+96, HAJK01]. Expert
[BPG94]. experts [EO15].

ExpEther [NMS+14]. Explicit
[BHV12, GFPG12, SGHL01, LC97b]. Explicitly [Mai12, SYR+09]. exploit
[ZPI06]. Exploitation
[GGL+08, GAM+02, BK11, GAM+00]. Exploiting
[Add01, Bri10, FKL08, HEHC09, KFL05, NAAL01, Nobo8, THH+05]. Exploration
[AMuHK15, OPA+15, GE95, GE96, PDY14]. Explorations
[BGG+15]. Exploring
[IFA+16, MBKM12, MTU+15]. Expose
[SAL+17]. Exposing
[Sch94, SGDM94, BDG+93b]. Failure
[BBH+13a, CRGM14, BBH+13b, CGH+14, BDB+13]. failure-aware
[CGH+14]. failures
[JS13]. Faithful
[BL97, GS94]. Extension
[AELE16, BGR97a, CSAG95, VAT95, Hum95, JHT97, SG14, SC95, ZT17, GBR97].

Extensions
[Fis01, GOM+01, GHL+98, HVA+16, HE15, DPSD08, HP05, Kat93, Ano99c, Ano99d].
Extent
[kL11]. Extended
[kL11]. exterior
[HMKV94]. external
[BBB+94].

Extraction
[CBL10, HLO+16, dAT17]. Extreme
[MDSC09, ZKRA14]. Extreme-scale
[ZKRA14]. eyes

Fabric
[FHPS94b, FHP+94]. F90
[DP94].

F
[FHPS94b, FHP+94]. F90
[DP94]. fabric
[ZL17]. face
[HDDG09]. Faces
[Gro12]. facilitate
[PKB06]. Facilitating
[MC99, ZLL+12, ESB13]. Facilities
[MMH98, MN91]. Facility
[KG96, SHTS01, KZCS96, LHC96].

Factorisation
[BB18]. factorization
[AZ95, BSVG91, BR95, KBDP16, WC07]. Factorizations
[TDDS+98, LC97b]. Fail
[LFS92, LFS93a, LFS93b]. Fail-safe
[LFS92, LFS93a, LFS93b]. Failure
[BBH+13a, CRGM14, BBH+13b, CGH+14, BDB+13]. failure-aware
[CGH+14]. failures
[JS13]. Faithful
[KLR16]. Fail
[Gra97].

false
[JE95]. family
[AVA+16]. farming
[Str94]. Fast
[Ben01, BHS+02, BDA+18, BBH12, CS14, DMK99, DFD01, EM02, Hog13, Hol95, JFGRF12, JMDV+17, LIP+94, PSHL12, PR94c, RB01, SE02, S99, STY99, SR11, TPLY18, UP01, WTR03, LCL+12, NYNT12, TDG13, YUL1+17, YLZ13, YBZL03, ZA14, AAB+17, DBGLN1, PFG97]. Faster
[Tsu12, ZG95a, ZG96]. Fat
[Zah12].

Fat-tree
[Zah12]. FATCOP
[CF01]. Fault
[BBC+02, BCH+03, BHK+06, CF01, CFDL01, FBD01a, FBVD02, FDO2a, FDO4, GFB+03, GKP97, GJR09, GL04, Gua16, IEE95c, JSH+05, LMRG14, NL00, DLRO4, MS00, RPM+08, TS12a, WC09, WR93, BCH+08, FBD01b, FD02b, HG12, LMG17, LS08, PKD95, SG05, ZKH06, FD00]. Fault-Management
[GJR09]. Fault-Tolerant
[BBC+02, BDO+04, GFB+03, IEI95c, JSH+05, LMRG17, LS08]. Faults
[LDAS+15]. FCRC
[ACM96b]. FD
[And98]. FD-TD
[And98]. FDDI
[LC93]. FDTD
[DSOF11, VM94, WGG+19]. Fe
[Old02, BJS99]. feasibility
[KBG16]. Feature
[Qu95, ZWL+17]. Feature-driven
[Qu95]. Features
[GLT99, GLT00b, GLT00a, GLT12, KAH96, Ano99a, CRD99, WKS96, ZKRA14, dAT17]. February
[Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97]. FEM
[GEW98].
Sie92b, Ano94i, IEE96g. FPGA [MTU+15, PWP+16, PGF18, RGB+18, WTTH17]. FPGA-Platform [WTTH17]. FPGAs [LWZ18, MC17, OFA+15, PGs+13, WZH16, Röb00]. fractal [Wu99].

fragment [KS15a]. fragments [OA17]. Framework [Ben18, DGMS93, FC05, GCGCO01, GR07, GDM17, MGL+17, NSZS13, PWPD19, PMvdG+13, SSb+05, SSSA12, Sm90a, Sm90b, WZH16, Ano93c, BA06, BR04, BAG17, EFR+05, FLMR17, GM13, KKM15, KJJ+16, KKL+08, KH10, LME09, LGG16, LCMG17, LS08, PTL+16, RSC+15, SL00, TB100, YLC16, YWTC15, ZT17, dT17]. Frameworks [OP10, ASS+17, KDS12]. France [ACM90, BR95a, BFMR96, CHD07, DE91, FR95, JPT94, MCdS+08, VW92, YH96, GA96, IEE94c]. Francisco [BB+95, IEE93a, IEE94g]. Frankfurt/Main [Tou96].

Fredericton [BG91]. Free [PKYW95, CP15, SOA11, Zah12]. freedom [KTJT03]. Frequency [IEE94e]. friendly [SVC+11]. Frontiers [ACM06b, IEE94a, IEE94c, Sie92a, Sie92b, Sie92a]. Frontiers’95 [IEE94a]. Frontiers’96 [IEE96c]. FSI [HAA+11]. FT [FD00, LNE00]. FT-MPI [FD00]. Fujitsu [Ano98, AKL99, BHS+02, SWJ95, SH96].

gems [Fer04, MHi12, Ngu08, PF05]. Gene [GDM18, PCS94, AAC+05, BGH+05, EFR+05, KMH+14, LM13, MV17, MSW+05]. gene-finding [PCS94]. Gene/L [AAC+05, BGH+05, EFR+05, MSW+05].

Gene/Q [KMH+14, LM13, MV17]. General [Che10, IH04, MW98, SK10, SZBS95a, Sun94a, ABDP15, ADL03a, ADL03b, CBM+08, FLD96, KPNM16, PF05, RSBT95, SZBS95b, SMSW06, YPA94].

General-Purpose [Che10, SK10, ABD15, CBM+08, KPNM16, PF05]. Generalized [DFK01, FKS96, BSC99, SD99, van93].

Generating [AZG17, CGL+93, ER12]. IJM+05, PKB+16, SFLD15]. Generation [AB93a, CC17, FAFD15, Gei98, GTH96, HT08, JF00, LTTD14, RGD13, SSB+17, TGB05, VPS17, AB93b, CPR+95, DCD+14, DWM12, KHS12, KPL+12, KH10, SP11, WKS96, WMP14, ZKRA14].

gerational [WK08a, WK08b, WK08c]. generative [MAS06]. generator [Lan09, TMB17, YL09]. Generic [ARS89, AKL99, GB98, BAS13, GM13, ZT17].

Genetic [FTV00, MSST94, MSCW95, PB12, WKS96, Wal01a, WHDB05, AB13, BB95a, FSTG99, HPLT99, RJC95, Wal01b, B+05].
genomics [LM99]. Geneva [IEE97b].
genetics [SdM10]. GeoComputation
[Abrf, Abrf]. GeoFEM
[NO02b, NO02a, Nak03]. geometrical
[BJS99]. Geophysical
[STK08, Hol95, STT96]. Geomechanics
[Has95].

Germany
[BDLS96, GH94, KGRD10,
MTWD06, MDC09, PSB+94, Sch93, Tou96,
Ano93a, BPG94, Cal94, GHH+93, WPH94].

Gesellschaft [Ano94c].

Getting [Nob08]. GF100 [WKPI]. gHull
[GCN+13]. GHz [Ano03]. Gibbs [TKP15].
Giganet [GT01, Tra02b, bTO1a]. GIS
[CFPS95, CSM97]. Give [DZ98b]. Glenda
[SBF94, BiC95]. Global
[BSC00, DSS00, Pan95a, Ros13, Sith501, STK08, SWH15,
TTP97, HWS09, HCL05, HEHC09, LF+93a,
Str94, Wan02, YLZ13, Zah12, ZWH95].

Globally [BHS+02]. GLUE [Rabo].

GMRES [dh94]. Gmunden [Vol93]. GNU
[YSMA+17]. go [KC94]. good [Mat03].

Göttingen [Ano94c]. GP [LRBG15].

GP-GPUs [LRBG15]. GPPS
[AHP01, BIC+10, PTH+01a, PTH+01b].

GPGPU [BGG+15], HA11, HCZ16,
JKN+13, LME09, LDJK13, LZY13,
MBKM12, PTG13, TY14, YZ14, YEG+13].

GPUGs [JMDV+17, L5B15]. gprof
[WGG+19]. gprof [GJL11a].

[Che10, KA13, AKL16, AHHP17, BDYP+10,
BR12, BCD+12, BCD+15, BCT+17,
BWV+12, BBH12, CLOL18, CBYG18,
CCBPGA15, DF17, DS16, DK13, DALD18,
DSOF11, DWL+10, DWL+12, ER12, FA18,
Fer04, FFM11, FSSD17, GCN+13, HVA+16,
HSE+17, HK09, HK10, HZG08, mH12,
JDB+14, JLS+14, JR13, JNL+15, JPL17,
JPT14, KDSQ12, Kha13, KSL+12, KPL+12,
KL17, KPNM16, KEGM10, KO14, KMM15,
LV12, Lec12, LRG14, LLC13, LAD16,
MOM+16, MDSAS+18, MGL+17, Ngu08,
NMS+14, NSM12, OFA+15, Pan14, PDY14,
PGoC18, PF05, Pri14, RSC+15, RS19,
RMNM+12, Sai10, SK10, SD10,
DoSMM+16, ISYS12, SSO9, SNN+19,
SCSL12, SIRP17, SAP16, SD16, SSB+17,
SKM15, SKB+14, SG14, TBB12, TS12b,
WGG+19, WKP11, YLMTS+17, YHL11,
YCL14, YSS+17, ZRQA11, ZZG+14,
ARY17, PHI+15]. GPU-Accelerated
[KA13, SCSL12, PGoC18]. GPU-Aware
[Pan14, FA18]. GPU-based
[MMO+16, SSO9]. GPU-code [EZBA16].

GPU-programming [HSE+17],

GPU-Resident [JDB+14]. GPUTrigger
[OGM+16, YWCF15]. GPUMP [ZC10].

GPUrpe [IFA+16]. GPUs [BY12, BDA+18,
DS13, DS16, GML+16, GFGP12, GPC+17,
GM18, HTJ+16, HLP10, HP11, HLP11,
Hos12, IFA+16, JMK+17, JAK17, KGB+09,
KKM15, KLKL11, KVGH11, LBH12,
LRBG15, MA09, ONM+12, OHI10, PP16,
PB12, SHLM14, SSB+16, SKK+12, Ts12,
VLMPS+18, VY15, WRSY16, WJ12,
WJ14, YLZ13, YSW14, ZC10, ZZ+15].

gpusPHASE [WMR17, WRM19].

GPUTrigger [BCD+12]. GQ [RFG+00].

GRAdic [YKI+96, ZRQA11]. GRADE
[DDL00]. Gradient
[BG95, GFPG12, KN17, MM92, Ols95].

Grain
[AZG17, IOK00, KOI10, MJBP16, NIO+02,
NIO+03, BK11, JCP15, KW14, SFL+94].

Grained
[ADRCT98, BBG+10, LGM00,
TSM18, YSS+17, Heb93, LHZY19, RJC95].

Grammatical [RBB17]. Grand
[DMJ93, Ten95, BDG+92c]. Graph
[BSH+17, DW02, MM14, NPS12, PPR01,
STV97, HLP10, HKOO11, PP16, PD11].

Graph-Based [NPS12].

Graph-Partitioning [STV97]. Graphic
[HJB14].

Graphical
[BDG+91b, DLL00, BDG+92a, KCD+97,
KFS94, SKK95, VDL+15]. Graphics
[KS15b, LSWMV08, LSWW11, SLJ+14, SSLMV10, vdlJL91, ABDP15, BHS18, CBM+08, DBLQ11, Fer04, GKL95, HTAQ8, HSV+12, KFA96, KY10, KME09, LHLK10, MSZG17, PF05, SHM+12, SR11, WWFT11, ZLS+15, MSML10]. graphics-scalable [GKL95]. Graphs [GLM00, OP10, PFG18, EP96, MC99, MPB16]. Gravitational [ZSK95, KM90]. Greece [CD01, CNDN11, SM07, TG94]. green [PT1+16]. Grenoble [JPTE94]. Grid [AB3a, CGB+10, CLL03, DPP01, Fos98, KT02, LF01, Liv00, MRB17, PLK+04, Rei01, TGEM09, AB93b, En00, GLM+08, KRKS11, WYC12, AASB08, BR04, CCHW03, DDK08, FC05, GFB+94, LYZ13]. Guide [Trä12b]. Guidelines [TGT10]. GVirtuS [MGL+17]. Hack [DLV16]. Hague [Ano93f]. Halide [RKBA+13]. Hamburg [PSB+94]. Hamiltonian [ART17]. Handling [DFC+07, FMSG17, LSC15, LGM00, RC97, FFFC09, LWN+12, THR99]. Hands [KmmWH10]. Hands-on [KWH10]. Harbor [BBC+00]. Hardware [BBG+15, BWW+12, Bru12, CKB00, CDPM03, DW02, EADT19, GJMM18, HSV+13, LSWW11, MCF98, PSM+14, PKB+16, SLMW10, vdlJL91, ER12, GGL+08, PMZM16, Rab99, SBG+12, SH94, SWS+12, YAJG+15, ZLS+15]. Hardware-Based [CDPM03]. Hardware-oblivious [HSV+13]. harmonic [GSM17]. Harness [EBKG01, MS99b, PL96, FBDO1a, FBDO1b, FBVO1, FD02a, FD02b, MSF00, Ge98]. Harrogate [CJNW95]. Hartree [CBHH94]. HASEonGPU [EZB16]. Haskell [WO97]. Hate [Dan12]. Hawaii [ERS95, ERS96, HS94, MHH93, ZL06]. HCA [KBG16]. HDL [Kat93, KMK16]. HDMR [KD12]. Heading [Sch99]. Heat [SAS01, NP94, iSYS12]. Hector [RFRH96, RRG+99]. Heijen [Van95]. held [AGH+95, GA96, JB96, KG93, MHH93, Old02, R+92, SP95, TG94]. Helios [SPK96]. Helmholtz [HMKV94]. Helps [Stp02]. HeNCE [BDG+92a, BDG+92b, BDG+93a, BDG+94]. Hénon [JPT14]. Herzliya [IEE96b]. HeSSE [MRV00]. Heterogeneous [ABB+10, BDG+93a, BDGS93, BL95, BCP+97, BGR97b, CKB00, CMMR12, CLO18, CLBS17, DGM93, DGM93, FDC97a, FDC97b, FLD98, Fos98, GS91b, GDM17, IEE93f, K09, KCR+17, LC93, MRV00, MM01, MM02, NTR16, PD98, PHO+15, RY19, SMS00, SGS10, TQDL10, VLO+08, ACGT02, ADB94, ADDR95, AMV94, BDG+92c, BDG+94, BALU95, BRR99, BAG17, CCM12, CFPS95, FMBM96, GKEJ12, GCN+10, GKC13,
HK94, KSG13, KSL+12, Kos95b, LCL+12, LR06a, Lec12, Mai12, MSL12, MM03, NP94, NEM17, Pen95, PSB+19, RCFS96, SCJH19, Skj93, Sni93b, Sun94b, Sun95, TBB12, TMW17, TPK15, TGD13, VB5+07, YST08, YSL+12, ZJDW18. **HeteroMPI** [LR06a, VLO+08]. **Heuristic** [BHM96, STV97, WH94]. HI [ERS96, HS94, IEE96e, ACM97a]. **HICSS** [ERS96, MHH93]. **HICSS-29** [ERS96]. **hicUDA** [HA11]. Hierarchical [BMR01, FBSN01, HA10, HLI7, MALT95, RR02, ADMV01, BDV03, GJM18, OKM12, YPZC95]. hierarchies [SYR+09]. **High** [ACM97b, ACM98a, ACM99, ACM00, ACM01, ACM04, BPG94, BRST94, BSO7, BDA+18, CDD+13, CNM11, CDH95, CS14, DPP01, DL00, DE91, FGK97, GSHL02, GH99, GBS+07, GLD96, HVA+16, HAI11, Hol12, IEE92, IE93c, IE94g, IE95k, IEE96a, IEE96e, IE97e, IF95, JIM+11, Kha13, KMK16, KEGM10, KH15, Lafa01, LCK11, LC79a, LLCL+03, LBH12, LWP04, MW98, MPD04, ME17, MAB05, NU05, OIHS10, OLG01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SSLM10, SCLS12, SJ02, SL05, SVC+11, SSSE97, Tsa00, Tsa07, VV92, WN10, YCL14, YWC15, YSP+05, AH95, Ano03, BACD07, Ber96, BWT96, BID95, CHKK15, CBYG18, DL10, Duv92, EZBA16, ESB13, FME+12, GS02, GGC+07, GL96, GL97c, HDDL09, HW11, Hos12, KBP16, KEM90, Lan09, LBD+96, MSL12, MSZG17, NS91, NGF+10, Old02, OGM+16]. **high** [PGS+13, PGK+10, PF05, PTW99, Reu03, RJDH14, SG14, SFLD15, ZSK15, ZWL13, dAT17, CDH+95, DZ98b, D+95, DE91, GH94, HS95a, KD12, LC976, LC97b, SSH08, Ten95]. **High-Dimensional** [MW98]. **High-Level** [CS14, DDL00, HA11, Hos12, SG14, SFLD15]. **High-order** [KEGM10, KME09, OGM+16]. **High-Performance** [ACM98a, FGK97, IEE97c, LkLC+03, OL01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCLS12, WN10, GLD96, OIS01, SVC+11, Ano03, ESB13, FME+12, GL96, GL97c, HDDL09, KRP16, LBD+96, Old02, PG+13, PGK+10, PF05, Reu03, RJDH14, SFLD15, ZSK15, HS95a, GH94, LCHS96, SSH08]. **High-Precision** [Kha13]. **High-Quality** [BDA+18]. **High-Scalability** [BS07]. **High-Speed** [CDH95, KMK16, AH95, BWT96, CDH+95]. **High-Throughput** [SSLM10, ESB13]. **Higher** [MYB16, KB13, wL94]. **higher-level** [wL94]. **Higher-order** [MYB16]. **Highly** [MM95, PV97, TMP16, CARB10, GBH14, GBH18, VM95]. **highly-scalable** [GBH14]. **Hills** [IEE93f], HiNet [AH95]. **HIRLAM** [Bjo95, HE02, KOS+95a]. **histogramming** [KRC17]. **History** [OWSA95]. Hitachi [Ano03, NNO00, TSB02, TSB03]. **HLA** [RTRG+07]. Hoare [KI17]. **Hoc** [IBC+10, ITT02]. Högskolan [Eng00]. **Hole** [Kha13]. **holistic** [TWFO09]. **Homomorphisms** [RG18]. **homotopy** [GWC95, SSMW06, YY15]. Honolulu [IEE96e]. **honor** [Str94]. **Host** [H195e, LRRS02]. **Host-Parasite** [LRRS02]. **HOTB** [GSMK17]. **Hotel** [IEE94e]. **Hotel-Copley** [IEE94e]. **Hough** [YULMTS+17]. **house** [ZLZ+11]. **Houston** [ACM06a, Ano95a, Cha05, DKM+92, Y+93]. **HP** [CGB+10, BCM+16]. **HPC** [ASS+17, CGBS+15, GDC15, GKK99, LCVD94b, OLG+16, PRS+14, RGDP+18, ZLP17]. **HPC2002** [Ano03]. **HPCN** [LCHS96]. **HPF** [BP98, BF01, BID95, Bri00, BDV03, CM98, CDD+96, Coe94, FKK+96b, FKKC96, FKK96a, LZ97, OP89, OP00, SM02, Str94]. **HPF-MPI** [BP98]. **HPL** [Lee12]. **HPVM** [BCKP00, CLP+99]. **HPVM-Based** [CLP+99]. **hull** [GCN+13]. Hungarian [Fer92, FK95, LYIP19]. **Hungary** [DKP00, KKD04, VV95, FK95]. **hunting**
[JPP95]. Husky [YLC16]. Huss [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. Huss-Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

Hybrid [BBG+10, BBH+06, BR18, CGC+11, CNM11, Cha02, DR97, GPC+17, HVC11, IDS16, KS15a, KLR+15, LLRS02, LRG14, MS02b, N002b, PZ12, SS8+16, VPS17, WT12, YHL11, YPAE09, YTH+12, ADR+05, BBG+14, CSM+06, FMS15, GÄVRR17, GKK09, HDB+13, JR10, JMS14, KRG13, KJEM12, LLC13, LLH+14, MLAV10, MRRP11, N002a, Nak05a, Nak05b, PARB14, PHJM11, SDJ17, SVC+11, WT11, WLYC12, WLYC12, WT13, YWC11, ZWL13].

Hybrid-core [BBG+14].

Hybridizing [LSG12].

HYDRA MPI [PBC+01].

Hyper [CSW99, SBT04, TBG+02, ZAT+07].

Hyper-Rectangle [CSW99].

Hypercubes [Ano89, RJMC93, SH95].

Hypercubic [HP11].

hyperelastic [OKW95].

hypersonic [BTC+17].

Hyperspectral [VLO+08].

I-SPAN [LHNM96, Lf96]. I-WAY [FT96].

I/O [Bos96, CFF+96, DRUC12, IRU01, IBC+10, kLAC+03, KLCC+06, MV17, MC18, MG12, MG15, PS08, PLR02, ROK1, SBQZ14, Thaq8, Thaq8, Tsb07, WSN99, ZJDW18].

IASTED [Ham95a].

IBM [AL93, Ano93, BBB+94, BGBP01, BR95c, BR95b, Bri95, CE00, CDM93, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, HMKV94, Heb93, JF95, KB98, KAC02, KHS01, KM+14, LC97b, MP95, MW93, MABG96, NMW93, WZWS08, XH96].

IBM-SP1 [FHP94b]. ICA [IEE96]. ICAPP [Nar95]. ICCMSE [SM07]. ICIP [IEE94b]. ICPP [Agr95a]. ID [DGG+12].

Illumination [STK08, ZWHS95].

Image [DYN+06, FJBB+00, GA96, GPC+17, KBA02, KS01, LSSZ02, MC18, N01, PLR02, RBL01, WN10, ARL+94, DZZY94, GDC15, JC96, KKL11, RKBA+13, SLS96, UH96, WU99, YULMTS+17, YPZC95, YZPC95, dAT17].

Imagery [GGCM99, GGCG00, GCGS98, GGGC99].

Images [Uhl94, Uhl95b, Vlb08, VLO+08, NAJ99].

Imaging [NH95, Has95, LM13, Pat93].

Imbalances [MLVS16].

IMEC [ZL17].

immunodominance [ZWL+17].

Impact [ADLL03a, ADLL03b, BRU05, Bru12, TSS00a, WHDB05, DO96, FSV14, SHHC18].

impacts [Str94].

Implement [GM95, PPT96c].

Implementation [AB93a, AKL99, BGG+95, BGBP01, BPS01, BG95, BHP+03, BBSS99, Ben01, BP98, BCD+15, Bjo95, BJS07, BIC+10, BM902, BRM03, BMS94b, BG98, GBS+07, Gro02a, HPP02, CFMR95, DYN+06, DAK98, EFR+05, ES11, FH97, FD04, FHS99, FSX14, FJBB+00, FHPS94a, FHPS94b, FHP94, FSLS98, GB09, GB98, GBS+07, Gro02a, HPP02, HRZ97, HKT+12, Huc96, HHA95, HAA+11, IBC+10, ITT02, IM94, JSS+15, JSH+05, LSLZ02, LTAR02, LZ97, LWP04, MS02b, MW98, MN91, MT96, MRH+96, NSS12, NON00, OTH15, OLGG01, Pan14, PLK+04, PS00a, Pet97, PBK99, PTH+10a, PTH+10b, PB12, RDMB99, RG18, RSV+05, SH94, ...
SBF+04, SBG+02, Ser97, SCC96, SSC97, SZBS95a, SWJ95, SYF96, Sum12, Sur95a, TOTH99, TBG+02, TRH00, TMPJ01, USE94, VT97, WH94, WPC07, YGH+14, YWO95, ZZG+14, ACGdT02, AS92].

implementation
[AAAA16, AAC+05, ADLL03a, ADLL03b, AB93b, BR91, BvdSvD95, BR95b, Ber96, BBCR99, BK96, BCK+09, BS01, BS05, Bor99, BR99, BS96b, BV03, Br95, BB00, BAS13, CDZ+98, CEGS07, CG99a, CdGM96, CBHH94, CD96, DSW96, DS96a, DL10, DBB+16, DSO11, DM12, FFB99, FWNK96, FG+98, GCC99, GG99, GG09, GÁVRRL17, GL92, GL94, GL96, GLDS96, GL97c, GT07, GlkLyCy97, HBT95, HCL05, HS95b, IIT99, IvDLH+00, JRM+94, JC96, KY10, KTF03, KBVP07, KL95, KVHH11, KB13, Lec12, LC07, LYP19, LO96, MMO+16, Man94, MAIVAH14, MS95, MSZG17, ON12, OKW95, OA17, OGM+16, PHJM11, PR94a, PTO99, PTW09, PCs94, Ram07, RRH96, Sep93, SZBS95b, SCL97, Sto98, SNMP10, Sur95b, Swa01, SL95, TKP15, TPD15, TS12b, TA14, TCE15, Tsu95, TVV96, VDL+15]. implementation
[VGRS16, VM95, Was95a, WMRR17, WRMR19, YPA94, ZLS+15, dH94, diAMCFN12, van93]. Implementation
[AKK+94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG+10, FB94, Gro02b, kLCC+06, LCW+03, Mar02, ORA12, Sap97, TSCM12, TGM09, VSO0, WT12, ZDD97, CLS07, ER12, ED94, GML+16, ICC02, KWF18, MKP+96, NN95, Pri14, RLFdS13, WLK+18, WT11, YCL14]. implemented
[BBHD14, EP96]. Implementor
[GL95b]. Implicit
[MS02b, NA01, SGHL01, Bjo95, TSP95, WADC99]. Importance
[BCG+10, PCY14]. Importance-Driven
[PCY14]. Improve
[KBS04, SK96, Tha98, GK97, RHG+96]. Improved
[Trä02b, MMO+16, diAMCFN12]. improvements
[DP08]. Improving
[CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SM12, SCL00, XF95, C296, JKN+13]. in-house
[ZL+11]. In-Memory
[CLOL18, ZL17, CRM14, HSP+13]. In-Place
[LTS16, HSE+17, PSHL11]. Including
[BWW+12, GLT12]. incompressible
[BCM+16, Lou95, RM99, TS12b]. Incorporating
[LM94, LYZ13, TKP15]. Incremental
[dOSMM+16]. Indefinite
[YKW+18]. Independent
[BCL00, BRU05, BDA+18, CSW12, CDMS15, Di96, MV17, YBZL03]. Index
[DAL18, LAD16]. Index-Digit
[DAL18, LAD16]. Indexers
[Wal01a]. Indexers/Crawler
[Wal01a]. Indexing
[LTR00]. India
[CBG+10, IEE96a, Kum94, PBPT95]. indicator
[FSV14]. Industrial
[BPMM97, DHH97, ALR94, ABCI95a, ABCI95b, BT96, EKTB99, Wa96, Kon00]. industries
[Ano93a]. Industry
[DM98, Ano94f]. Industry-Standard
[DM98]. inefficiency
[HGMW12]. Inertial
[Str97]. Infer
[VBB18]. Inference
[LAdS+15, TVCB18]. Infiniband
[SWHP05, LC+03, LVP04, LWP04, PK05, PPR16, SPK+12, ZLP17]. InfiniBand-based
[PK05]. infiltration
[OdSSP12]. influence
[Gra97]. Information
[Ano98, CGB+10, Ano93c, CG99b, MMR99, WADC99, PSB+94]. infrastructure
[GFIS+18, WLR05]. infrastructures
[GWVP+14]. Initial
[LLH+14, VDL+15, AL96, LSR95]. Initiated
[SSB+05]. initiatives
[Sun95]. initio
[SGF00, SEC15]. Injection
PBG+95, PBPT95, Ree96, R+92, SHM+10, Sie94, Sil96, SM07, Tou96, VW92, Vol93, Vos03, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPT94, LCHS96, Ma95, ZL96, An93b, HH94, Sch93.

Internet [NE98]. Interoperabilität [GBR97]. Interoperability [BoFBW00, Don06, PLR02, GBR97]. Interoperable [Rab98, MSL12, YBMC14]. Interoperation [FDG97a, FDG97b, FLD98]. Interpolants [RB01]. interpolation [BAS13]. Interpretative [MKW11]. Interpreted [FSSD17]. Interpretive [CNC10]. interprocess [SC95]. interprocessor [DS96b]. interrupts [CB+12, SH96]. Intervals [MDM17]. intra [GM13, VSW+13]. intra-node [GM13]. intra-warp [VSW+13]. Introduccion [VP00]. Introducing [JKM+17, TBS12]. Introduction [An96b, AM07, CL03, CH96, DKD05, DKD07, D+95, DLO03, HS95a, IEE95b, KG93, OL05, ACM06b, An93b, CLM95, D95, DLO03, HS95a, IEE95b, KG93, OL05, ACM06b, An93b, CLM+95, DR94, Sil96]. Iteration [HF14a, HF14b]. iterations [Lou95, YST08]. Iterative [CCSM97, DK06, NO02b, Nak03, SC04, ADDR95, EDSV09, LSR95, MGG05, NO02a, Nak05a, Nak05b, OMK09, dH94]. Ithaca [PBG+95, Ree96]. IV [SPH95]. IWOMP [CGZ+08, CGKM11, CMR12, EdS08, McDo+08, McDo+09, SM07, SM07]. IWPP [Kum94, PBPT95]. IWPP-94 [Kum94, PBPT95]. IWWP [Kum94]. IX [R+92].

[BGD12, LTRa02, SML17, BMS17, She95].

Joint [GT94, Ano03, YHGL01, Ano93c].

Jose [ACM97b, GE95, GE96]. JPEG [CLBS17, NU05]. JPT [BDY99]. JPVM [Fer98b, Fer98a, LGCH99]. Jr [ACM99].

July [ACM95b, ACM97a, BOr05, BG91, CZG08, CGKM11, CMMR12, DSZ94, DW94, D+95, IEE94e, IEE95c, IEE95i, IEE96d, IEE96h, KG93, LHWHM6, Li96, MCDs+08, MsDC09, R+92, SL94a, SHM+10, TG94, Vos03].

Jumpshot [ZLGS99]. June [ACM90, Ano94f, B+05, BG91, CZG08, CGKM11, CMMR12, DSZ94, DW94, D+95, IEE94e, IEE95c, IEE95i, IEE96d, IEE96h, KG93, LHWHM6, Li96, MCDs+08, MsDC09, R+92, SL94a, SHM+10, TG94, Vos03].

Jupiter [Str94]. Just [FKLB08, FSSD17, KFL05, FK94]. Just-In-Time [FSSD17, FKLB08]. JVMPI [DeP03].

Kernels [BCD+15, KI17, KAC02, Pet01, Ros13, SSB+17, ARS89, BCD+12, FSV14, FVL15, FFM11, KKM15, PTG13, PSB+13, TBB12].

Kerr [Kha13]. key [LF+93a]. Kind [SP11].

KU [IM94]. Kungl [Eng00]. Kyoto [IF95, SPE95, IF95].

L [AAC+05, BGH+05, EFR+05, MSW+05]. LA-MPI [YSP+05]. Lab [Str94]. Labeling [PPJ01, KRKS11]. labelling [HLP10]. laboratory [JY95]. Lafayette [EV01, EdS08]. Lagrangian [CT94a, CT94b, RSV+05, TC94]. Lahey [Ano98]. Lake [Hol12]. LAM [FO00, RST06, SSB+05, Sual01, SWZ05].

LAM/MPI [FO00, RST06, SSB+05, Sual01, SWZ05]. lambda [PQ07]. lambda-calculus [PQ07].

LAMGAC [MSOGR01, MS02a]. Lamport [TPLY18]. LAN [CC95, CDH+95, MSOGR01, TSZ94, TSZ94, ZGC94]. LAN-based [TSZ94]. LAN-Message [MTS94]. Lanczos [GP95, Sch96a, Sch96b].

Language [ACM96a, NM95, PD98, TA14, WLR05, Beng95, CGK11, Hos12, Nobs08, RKBA+13, Rôh00]. Languages [CFF+94, FMSG17, FSSD17, CH06, Mar05, Ohu14, SWS+12, PBB+95, SS96]. LANs [Fin97].

LAPACK [Add01, ARvW03].

LaPerm [WRSY16]. LAPI [BBG01].

Laplace [ACM94]. Large [AKE00, BHW+17, BZ97, BJS99, BHWO1, CGC+11, DALD18, FFP03, Huc96, JGFR12, LLY93, MCK+12, MFPP03, PCY14, Ròt19, RRG+18, SGJ+03, SM03, SvL99, TGM99, WMC+18, WT12, ZWJK05, AASB08, AMS94, BCA+06, BA06, BCH+08, Che99, CCHW03, DZZY94, FME+12, GG99, IM95, JLS+14, KEGM10, Kos95b, KA95, LS10, MLA+14, NFG+10].
PTL+16, PD11, RMNM+12, SC96a, TBB12, TOC18, WT11, WT13, ZWL13, ZA14. Large-Scale [AKE00, BHW+17, BZ97, FP03, MFPP03, SM03, WMC+18, WT12, BJ99, SvL99, AASB08, BACH+08, Che99, FME+12, LS10, MLA+14, PD11, RMNM+12, WT11, WT13, ZA14].

large-sized [JLS+14]. Larger [NB96]. Large-Scale [LAdS+15]. laser [EZBA16, WWZ+96]. Lastverteilung [Wil94]. Latency [Jes93a, Jon96, KBHA94, NCB+12, NCB+17, TBD96]. latency-tolerant [NCB+12, NCB+17]. Lattice [BBK+94, BMS94b, HLP11, SJK+17a, SJK+17b, BW12, BMS94a, CGK+16, GM18, Sai10, SVC+11, BLPP13, OTK15]. launches [Ano03]. Layer [CSAGR98, HEH+98, FK96a, PTT94, dAMC+11, dAMCFN12]. layered [DiN96]. Layering [Hus94]. layers [KC94]. Layout [WG17, BGH+05, HP11, LDJK13, Str12]. Lazy [TCBV10]. Leaks [DLV16]. Learned [GKPS97, MWO95]. Learning [AHHP17, Gro01b, FK96, Fan98, FKK+96b, GDC15, GLM+08, GL94, HB96a, HLM+17, Har94, Har95, JKM+17, JC96, KS15a, KN95, LR06a, MSL96, PBO06, PS00b, RFH+95, SSC96, SH96, ZT17, CC95, McD96, Sum12]. Life [PZ12, Str94]. Lifting [vdLJR11]. Lightweight [CKmWH16, DT17, FLB+05, KMK16, TCM18, FS96, Ott93]. Like [BST+13, BK00, CGJ+00, KOB01, VGS14, CSS95].

Likelihoods [MSCW95]. LIME [DRUC12]. Limits [GB96, MBKM12]. Linda [Mat94, KS96, MSP93, BLP93, CSS95, Gal97, Mat95, TDB00]. Linda-like [CSS95]. Line [BoFBW00, CGS15, WIS98, Bor99]. Linear [ASA97, BDT08, BG95, CDD+13, DGH+19, Gao03, Huc96, LLY93, LZ97, MGMH97, MSB97, YKW+16, van97, BSN95, BKh+14, BAV08, BRR99, CEGS07, DR18, Gra09, GFP012, Jou94, MW98, MM11, OKW05, SCC96, SMSW06, dCH93, dH94].

Linear-scaling [Gao03]. Lines [NE01, YULMTS+17]. Link [BGR97b, SJ02]. Linked [WJ12]. Linköping [FF95]. LINPACK [JNL+15]. Linux [Sei99, SMTW96, USE00, SSSS97, Ano01a, GSN+01, MK04, OF00, PS07, PPK01, RS06, Sei99, Slo05, GL+00, YL09]. Linz
[GA96]. MEDINA [AC17]. medium [WLNL06]. medium-scale [WLNL06].
Meeting [AD98, Ano93f, CHD07, CD01, CDND11, DKD05, DLM99, DPK00, DLO03, GA96, KGRD10, Kra02, KKD04, MC94, MTWD06, RWD09, TBD12, BDW97, JB96, SPH05, Ano95, CD01]. megabase [SdM10].
Meiko [FST98a, FST98b, Jon96].
Melia [WZHZ16].
Mellon [IEE94d].
Membership [MDM17]. membrane [FHSO99].
Memory [Att96, BME02, BBG+14, Bri10, BDH+97, BGR97b, BWW+12, Bri10, BDH+97, BBG+14, Bri10, BDH+97, BGR97b, BWW+12, Bri10, BDH+97, BGR97b].
membrane [FHSO99]. Memory [Att96, BME02, BBG+14, Bri10, BDH+97, BGR97b, BWW+12, Bri10, BDH+97, BGR97b].
memory [RGDM15, SS90, SHH101, SL94b, SBG+12, SYR+99, SFL+94, SNC+99, SP99, SD16, TSY99, TSY00, Uh95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WK08c, WBSC17, WMRR17, WMRM19, YX95, LB+96, GK97, SG05].
Memory-access-aware [CLA+19].
Memory-Based [MMH98].
Memory-Efficient [MRB17].
memory-level [HK09]. Memory/Message [ST02b]. MemTo [GSN+01]. Menon [Stp02].
Mesh [HAA+11, MRB17, Ran05, BAS13, CLSP07, Cou93, GBR15, IDS16].
Meshes [MRB17, TPD15]. Message [Ano93d, AKL99, Att96, BZ97, BCH+03, BBG+01, BDH+97, BGR97b, BFM97, CHD07, Cer99, CGZQ13, CGH94, Cot97, Cot98, CTK00, CDND11, DFKS01, DDHW92, DHHW93a, DLM99, FKKC96, Fo98, GR07, GB96, Gle93, GLRS01, GL94, GL95c, GLT00b, Hem94, KGRD10, KS97, KSV01, KKDV03, KKD04, LKD08, Luo99, MP98, MP95, MS98, MBS94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, RC97, RRBLO1, RWD09, RFG+00, SAL+17, ST02b, TBD12, WD96, Wer95, Wis97, YHGL01, ZWL13, ZG96, ZL+92, Ada98, Ad98, AAC+05, Ano93c, Ano94d, Ano95c, Ano00a, Ano00b, BBG+14, BL97, BvdSvD95, Bjo95, Bru95, BDW97, BFIM99, CJ+00, CDZ+98, CRD99, CD01, CG99b, DKF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FK94, GL92, HP05]. Message-Passing [HPY+93, Hem96, KJA+93, Kra02, LR06a, LB+96, wL94, LCY96, LMM+15, LBB+19, LC97b, NS91, PS07, Pie94, PR94a, PS00b, Sei99, SJW95, SV+95, SJ99, SSG95, Sti94, VM95, Wal94a, Wal94b, ZKA14, ZA14, AMHC11, BC14, BBH+06, BRU05, BDH+95, Cot04, DKD08, DiN96, FKS96, FGT96, FGG+98, GGHL+96, GLDS96, GLT99, GLS99, GLT00a, GL04, Han98, IBC+10, KTO03, KKD05, KL10, MTS94, MSL96, PS01b, RRFH96, SWHP05, SLG95, SLW+01, TGT05, TDB00, Wer95, YGH+14].
Message-Passing-Interface [Ano93d, Att96, Cot97, Cot98, DDHW92, DLM99, GL94c, GLT00b, MP198, PBK00, Pok96, RRBLO1, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvdSvD95, CDZ+98, GL92, Hem96, KJA+93, LR06a, LB+96, wL94, LMM+15, PS00b, SSG95, Sti94, DiN96, GGHL+96, Han98, RRFH96, SLG95, Wer95, YGH+14]. Message-Passing-Interface [Wer95].
MessagePassing [Sei99]. Messages [KBSo4, SKH96]. Messaging [HEH98, KC94]. Meta [BCLN97, FBD01a, FGRD01]. Meta-Applications [BCLN97]. Meta-computing [FBD01a, FGRD01]. Metacomputer [OS97]. Metacomputing [Fin00, MSF00, MS99b, FVBD02]. MetaHaskell [Ma12]. metaheuristics [ZSK15]. metal [JLS+14]. MetaMP [OW92]. metaprogramming [Mai12]. meteorological [RSTB95]. Meteorology [HK93, HK95]. Method [ACMR14, BP99, BJS97, CGU12, FCLG07, GSI97, HC06, MKM16, OMK09, Riz17, TSS00a, ARYT17, BBDH14, BCM+16, DSOF11, ETV94, GF15+18, HE13, HMKV94, HJBB14, HPLT99, JMS14, KS15a, KD12, LCL+12, Nak05b, NS16, PTT94, Pri14, Qu95, SHHC18, TKP15, YBLZ03, dIAMCFN12, AAB+17, OTK15]. Methodologies [Sun94b]. Methodology [MOL05, WTTH17, HPR+95, LM94, WMP14]. Methods [BCMR00, CMK00, DFN12, EGH14, FGKT97, GFPG12, KLR+15, kL11, NA01, Sch01, SM07, TDBE11, Whi04, ZB97, CEGS07, DF17, D+95, Gra95, Has95, LSR95, MM11, Nak05a, PGK+10, R+92, SL94a, SGS95]. Metric [SNN+19]. Metrics [DW02, PARB14]. Metropolis [HJBB14]. Mexico [IEE91, Sie94]. MCGG [TSS00a]. MGF [GLM+08]. MIAOW [BGG15]. MIC [BB18, CCBPGA15]. MICE [BK96]. Micro [Ano03, BWV+12, SGH12, YSWY14]. Micro-applications [SGH12]. Micro-Benchmark [BWV+12, YSWY14]. microbenchmark [BO01]. Microwafer [PWP+16]. microtask [OIS+06]. MIDAS [BZ97]. Middleware [AUR01, CLJ03, CC10]. Middlewares [DPP01]. Midpoint [JMS14]. Migol [LS08]. Migratable [KOW97]. Migrating [VSRC94, VSRC95, IvDLH+00, KBG+09]. Migration [Ano94b, CCK+95, CLL03, CML04, CCBPGA15, CTK01, NPP+00c, NLRH07, Ott94, OS97, ST97, AMBG93, BBGL96, CKO+94, CRM14, CRGM16, CK99, DDYM99, HZ99, LCVD94b, LM13, QHCC17, RRFH96, SSS95, SCL97, Ste96]. Milan [HS95a]. million [LHLK10]. Millions [BBG+11]. MIMD [BvdB94, BB93, BCL00, Uhlu95a, WST95]. MIMD/DMMP [BB93]. MiMPI [GCC99]. mini [SCJH19]. mini-application [SCJH19]. MINIME [DS16]. MINIME-GPU [DS16]. minimization [POL99]. Minimum [KA95, Wu99, NCKB12]. mining [MA09]. minisweep [SCJH19]. Mississippi [IEE94f, IEE95j, IEE94f, IEE95j]. mitigating [ODSSP12]. Mitigation [BBH...13a]. Mitsubishi [An003]. mittels [Wil94]. Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01]. Mixed-Mode [BEG+10]. Mixing [CP98, GAP97, CBYG18]. mixture [EO15]. MK [NS91]. mm_par2.0 [OKM12]. MN [Ano94h]. Mob [STV97]. Mobile [ITT02]. Mode [BGK08, Bri02, BEG+10, LRT07, SB01, YX95]. Model [AP96, BGG+02, BS07, CKmWH16, Cha02, CZG+08, Dar01, DAF+09, FSXZ14, FBSN01, GLB00, GLRS01, HLP11, KD12, LWZ18, LGG16, LA02, LRQ01, MKW11, NSL16, NO02b, Rau05, RSV+05, RRRB01, SPM+10, SB95, SPH+18, THN00, V79, Wol01a, YCA18, AL93, BCS99, Br94, BG94b, BDV03, CMV+14, CL93, CKP+93, ED94, GKD12, GCN+10, GlKLyC97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, KOS+95a, KSL+12, KL15, LR06b, LA06, LLH+14, Mar05, MdsSAS+18, MSZG17, MGC+15, NO02a, Nak05a, PAdS+17, RAS16, RGDM16, RCC95, Sch93, SH94, SH99, SMAC08, Str94, VBLvdG08, Vis95, Wan02, WC15, WLK+18, WYLC12, YX95, TA14]. Model-Based [AP96, LGG16]. Modeling
[ACM96a, ATM01, BS07, CSC96, CDM93, FST98a, GAM+92, MOI05, NM95, RGDM15, Rö919, SEF+16, TD99, VFD02, WMC98, XH96, BDP+10, Bi95, BB95b, JL18, KM10, KME09, KEGM10, LHZY19, MS99a, WT13, XYL13, YMY11].

Modelling
[FST98b, GC05, Ham95a, KDL+95b, BJS99, HTHD99, KDL+95a, MSML10, QHCC17].

Models
[AKK+94, BS93, BZ97, CMK00, Cer99, CNM11, DK06, EMO+93, ESM+94, GJN97, PPF89, SS01, SME93, Whi04, BB95a, CH96, Duv92, KO14, LV12, MCB05, Nes10, RSB95, RBAI17, SYR+99, Wal00, WBSC17]. moderate [Uhl95a]. Modern
[AHH17, DARG13, KDT+12, LNK+15, SM07, HH14, PMZ16]. modes [WZWS08]. Modified
[Riz17, GP95, KD12]. Modular
[CT02, HPP02, FWS+17, HLM+17].

modulator [WWZ+96]. modulator/DFB
[WWZ+96]. Module [An98]. Modules
[AKK+94, DS96b]. modules-design
[DS96b]. Molecular
[ABG+96, BST+13, BCGL97, BL95, BS07, DR97, DI02, KMB97, LAF15, MH01, SA93, YWC15, ZB94].

BvdSvD95, BBK+94, BMM294b, BMP294a, CC00b, DCD+14, FHS099, JAT97, JMS14, KFA96, KRG13, LSMVW08, OKM12, PARB14, SL95, ZWL13]. molecule [ART17].

Møller
[BL95, KN17]. Monti
[SGL+00].

Monitor
[KRS99, WHI94]. Monitoring
[AH00, BCLN97, Beg93b, BFM96, BFM96], CD06, CDB+09, GSN+01, LNY93, LW97, MMG97, MV95, SGL+00, UP01, Wis98, Wis01, Yen94, Beg92, Beg93c, Beg93a, BB94, BS96a, BFM96, FLB+05, LC07].

Monodomain
[ORA12]. Monte
[HJBB14, RP95, WH96, ADR98, AK90, DAK98, NSV16, RR00, SK00, SM15, Z204].

Montereau
[AN98, Gat95, USE94].

Montpellier
[DE91]. Montréal
[Le95].

MOPS
[GJN97]. Morehouse
[AGH+95].

Morgan
[SD13]. Morphable
[ZL17].

Morton
[LZH18]. MOSIX
[BBGL96].

motif [FMS15]. motors
[SKM15]. movement
[MV17]. Moving
[HAA+11, LS92]. MPEG
[AKK+95, KFA96]. MPEG-4
[NU05]. MPI
[ARY17, AD98, AN95a, AN99a, AN99c, AN99b, AN99d, AN00a, AN00b, BDW97, CHD07, CHD09, CD01, CDN11, DK05, DLM99, DPK00, DLO03, GRB97, GE98, IE96, JMS14, KGRD10, Kra02, KKD04, LK08, MTWD06, Nag05, Per97, PS01b, RWD09, RLVRP12, ST02a, TDB00, TBD12, Vr04, WSN09, YM97, ST02b, ACGdT02, Ada97, Ada08, ACH+11, APJ+16, AAS08, ART17, ATM01, ACGR97, AK99, ABF+17, AHP01, ACMZ+11, ALW+15, ALB+18, ADLL03a, ADLL03b, An98, FH98, AVA+16, An93e, An94d, An98, An01a, An03, AKE00, AKL99, AJF16, AIM97, AD+15, AHHP17, Badi16, BV99, BCMR00, BAK98, BF98, BCFK99, BB+10, BG+10, BB+11, BGBP01, BBS99, BBG+14, BA06, BCAD06, BAC07, BGR97a, BKGS02, Ben01, BW12, BHV12, BK+13, BIL99, BICO0, BF98].

MPI
[BF01, BBCR99, BBDH14, BK96, KKD01, Bha98, BDA94, BHL95, BHS+02, BS04, BBH...13a, BBH+13b, BBH+13, BIC+10, BR04, BCM+16, BTC+17, BM00, Boo01, BBC+02, BCH+03, BHK+06, BBC+00, BS96b, BMR02, Bri02, BRM03, Bri03, BMP03, BS07, BDL98, Bru95, BDH+95, BDH+97, Bri12, BLM98, BFW01, BEC+10, BCH+08, BFW+12, CGC+02, CWW12, CGC+11, CwCW+11, CREE99, CE00, CRE01, CC10, CP98, CAHT17, CGJ+00, CFKL00, CSS95, CGBS+15, CGG10, CB00, CDMS15, CGS15, CBL10, Cha02, CEGS07, CPD99, CCA00, CFDL01, CLL03, CGZ13, CC17, CSA98, CNC10, CC00a, CGH94, CSM97, CFMR95, CDD+96, Coo95a, Coo95b, CFF+96, CRGM14, CRM14, CRGM16, CC99, CT02, CD96, CG99b, DPS05, DPSD08, DMK19,
SG05, Ser97, SS01, SWS+12, SG12, STY99, SM02, SM03, SPH+18, SP99, SZ11, SC04, SSC96, SS99, SZBS95a, SZBS95b, SDN99, SvL99, SJ02, SWJ95, SMTW96, SH96, SDB94, SLG95, SDV+95, SPH96, Slo05, SVC+11, SK00, SB01, SOHL+96, SOHL+98, Sni18, SHHH18, SSL97, Snu03, Ste96, STZ97, St098, SU96, Str96, Sum12, SN01, Swha01, TOETH99, TAH+01, TSY99, TSY00, TKP15, Tha98, TGL02, TGPLY18, TW01, TD99, TOC18, Tra98, THRZ99, TRH00, Tra02b, Tra02a, TGT10, Trä12a, Trä12b, TMPJ01, TFGM02, Tsu07, TSG07, TFFZ12, UTY02, URK12, VFD02, VS00, VPS17, VSRC94, VSRC95, VGRS16]. MPI [VdS00, VP00, VVD+09, WH06, Wal95, WO95, Wal96a, WD96, WO96, Wal01a, Wal01b, Wal00, WC09, WLNL03, WLNL06, Wer95, WST95, Wh04, WLR05, WWZ+96, Wis08, WB96, WM01, WADC99, WO96, WRA02, WCS99, WT11, WYL12, WT12, WLYC12, WT13, WMP14, XH96, XLW+09, YMO7, YL09, YHL11, YWC11, YBMCB14, YPAE09, YTH+12, YSF+05, Zahi12, ZO04, ZLZ+11, ZWZ05, ZLP17, ZJW18, ZLL+12, ZZ95, ZSuH01, ZKRA14, ZA14, bT01a, diAMCFN12, KH96, Mar06, YM97, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d]. MPI-1 [SOHL+98]. MPI-2 [Ano99c, Ano99d, Ano00a, AKL99, BCAD06, BHS+02, CrCW+11, CD96, DPS08, GF03, GGLH+96, GT01, GHL+98, GL97, GLT00b, GLT00a, GMW12, LSK04, MS02a, MK04, PS00a, SS99, SSL97, TRH00, bT01a, BADC07]. MPI-3 [GHB14, GBH18, GT12, HT15]. MPI-ACC [APJ+16]. MPI-Based [Ada97, FSC+11, RDMB99, SM03, Ada98, AVA+16, GKS+11, Gra97, LRW01, OL+16, OP98, SZ11, TMPJ01]. MPI-basierte [Gr97]. MPI-benchmark [Reu01]. MPI-CHECK [LCC+03]. MPI-CUDA [DR18, diAMCFN12]. MPI-DDL [FB97]. MPI-Delphi [ACGdT02]. MPI-driven [Hin11]. MPI-F [FHPS94b, FHP+94]. MPI-FM [LC97a]. MPI-FT [LNLE00]. MPI-GLUE [Rab98]. MPI-Hybrid [GC+11]. MPI-I [IR01, Tsu07]. MPI-I/O [IR01, Tsu07]. MPI-interoperable [YBMCB14]. MPI-IO [BIC+10, CC+02, CFF+96, DLR07, FSLS98, LRT07, LGG16, PSK08, PTH+01a, SW12, ST098, TGL02, ZO04]. MPI-IO/GPFS [PTH+01a]. MPI-LAPI [BGBP01]. MPI-Level [LVP04]. MPI-like [CGJ+00]. MPI-only [LS10]. MPI-OpenCL [INL+15]. MPI-OpenMP [MS02b]. MPI-parallelized [KMG99]. MPI-Performance-Aware-Reallocation [GFIS+18]. MPI-StarT [Hus98]. MPI-The [Ano99c, Ano99d]. MPI-thread [ID16]. MPI-Umgebung [GB97]. MPI/CUDA [PHJ01]. MPI/GAMMA [CC00a]. MPI/GPU [EZBA16]. MPI/GPU-code [EZBA16]. MPI/MBCF [MH99]. MPI/OpenACC [OGM+16]. MPI/OpenMP [ADR+05, GAVRRL17, HKN+01, JR10, KSN15, KN17, KRG13, LLRS02, PZ12, SB01, WT11, WT12, WT13]. MPI/PVM [ES11]. MPI/RT [SKD+04]. MPI/RT-1.1 [SKD+04]. MPI/SMPSs [MLAV10]. MPI1 [Sti94]. MPI2 [MPI98, Wal96b]. MPI2007 [MVWL+10]. MPI/Allgather [GMDMB16]. MPI/Connect [FGT01]. MPICH [BBC+02, BCR+03, BKH+06, COT98, Cot04, GL97a, KFT03, LKJ03, OPM06, OF00, RFG+00, RT06, SB+02, TRG05]. MPICH-CM [SBG+02]. MPICH-G2 [Cot04, KFT03, OPM06]. MPICH-GQ [RFG+00]. MPICH-V [BCH+02, BKH+06]. MPICH-V2 [BCH+03]. MPICH2 [BMG07, GRO02b, ZSG12]. MPIConnect [FLD98]. mpicroscope [Trä12b]. MPIGeneNet [GDM18]. mpiJava [BCFK99]. MPINE [Sou01]. MPIPOV [FFB99]. MPIWiz [Hin11].
Multi-Processing [MLGW18].
Multi-Processor [RR02, Smi93a, DCH02].
multi-programming [WADC99].
Multi-protocol [MB00]. multi-socket [LS10]. Multi-Stage [FSXZ14].
Multi-Threaded [MG15, Ada98, EBKG01, SCB15].
Multi-Threaded [MLGW18].
multi-valued [Str12]. Multi-versioned [SSB+17].
Multi-Zone [JCH+08, AGMJ06].
Multiblock [IDD94, DLR94]. Multicast [CCA00, CDPM03, ZGN94].
Multicasting [SE02]. multicon [CwCW+11].
MultiCL [APBcF16]. multicomputer [SWJ95, TD99].
multicomputers [HWW97, Yan94, YX95]. Multiconference [Ten95].
Multicore [BDT08, CGC+11, CB16, DS16, DGH+19, GDM18, KDT+12, LNK+15, WT12, YKW+18, CLYC16, HWX+13, JPOJ12, KN17, LS10, MBBD13, MM11, Nob08, OPW+12, PDY14, QB12, RGDML16, WCS+13, WT11, WLYC12, WT13, YHL11, YWC11, dlAMC11].
multicore/many-core [MBBD13].
multicore/many-core [MBBD13].
Multicores [GDDM17, UGT09].
multidestination [Pan95a].
multidimensional [CSW99, DMK99, PAN04].
multidisciplinary [Fin94, Fin95].
multifrontal [IM95].
multigrid [AZG17, IOK00].
multigrid [BCMR00, AGIS94, IHM95, Lou95, Mic93, Mic95, PSLT99, RM99, Sta95a, ZZG+14].
multigroup [QRG95, QRMG96].
multilevel [PSSS01, BAV08, ETV94, GAY+00, JJY+03].
multimedia [GFB+14]. multimethod [FGT96].
multiobjective [RLVRGP12].
multiparadigm [FS98]. Multiphase [SPH+18]. Multiphysics [NPS12].
multiphase [SBG00, CB16, FGKT97, FBSN01, JPT14].

Nests [DMB16]. Net [CN11, NE98, NE01, PES99]. Net-Console [PES99]. Net-dbx [NE98, NE01]. netCDF [LkLC+03]. Netherlands [DSZ94, A693f, Van95]. Nets [Sou01, Str94]. Network [AC98a, AR01, BDG+91b, BDG+93a, BCKP00, C95a, CDHL95, C96b, DM95b, DM95a, DBA97, DFMD94, DGM93, DGM93, EK97, Fer99b, Fis01, G91a, G92, Gei93a, GSxx, Hus98, ITTO2, LB98, LH95, MSCI95, MAN909, OF00, OWSA95, TW01, AL92, AH95, AVA+16, BDG+92a, BDG+92c, BDG+94, BSvdG91, B95, Bon96, BBK+94, BID95, FBM96, C94e, C95a, CLASDPD99, Fer98a, G91a, Gei93b, G97, GHZ12, HBT95, HK94, HH95, IM95, KMC96, KMC97, K95, LH98, LHD+94, LHD+95, MK94, MH96, POL99, PR94c, PTW99, Rag96, SEC15, SPK+12, TSS98, YS93, ZPLS96, G97].

Network-Balancing [DBA97]. Network-Based [BDG+91b, G92, BDG+92a, IM95]. Network-Specific [DM95b, DM95a]. network-topology-aware [SPK+12].

Networked [FGKT97, GBD+94, Nov95, NCM95, Per96, A95b, B95b, BMPZ94b, BMS94a, BMPZ94a, GM94, HS93, RR99+].
IBC, kLCC, MV17, MC18, MG12, MG15, PSK08, PLR02, RK01, SBJ04, Tha08, Tsu07, WSN99, ZJDW18.

O2000 [CML04]. **O2WebCL** [CHKK15].

Oberammergau [BPG94]. **Object** [Ada97, BCFK99, CFKL00, FMSG17, MSL96, PD98, SWL+01, YHGL01, YX95, Ada98, BR01, DM12, LKL96, OKM12, RFH+95, SL94b, TDG13]. **object-based** [LK96]. **Object-Oriented** [BCFK99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. **Objects** [KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZPL96]. **Oblivious** [LZH17, LZH18, UALK17, HSP+13].

observations [ZKRA14]. **observed** [CAHT17]. **Occam** [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. **Ocean** [BS93, GAM+02, Bic95, Mal01, Nes10, Sch99, Wal00]. **Oceans** [IEE94c, IEE94c].

OCLoptimizer [FAD15]. **OCM** [BoFBW00]. **OCM-Based** [BoFBW00].

October [Ano93f, Ano94e, Ano94i, Arra95, BPC94, Bha93, BDL96, CDD07, CGB+10, DSM94, DLO03, DE91, FK95, GKK+93, IE94f, IE95a, IE95g, IE95j, IE96b, IE96c, IF95, JB96, Kra02, Lod02, LO05, Sch93, Sie92a, Sie92b, Tou06, USE00, UCW95, Vo93]. **octree** [JL18].

octree-based [JL18]. **ODE** [Ano97, Bra97].

ODEs [Pet97]. **OdinMP** [BB00].

OdinMP/CCp [BB00]. **Off** [CGS15].

Off-Line [CGS15]. **Offering** [EK97].

Official [Ano98]. **Offload** [BR05].

Offloading [MGA+17, DSG17, KB16].

oft [Rol08a]. **Oil** [FSXZ14, ZAFAM16].

OKs [Ano03]. **old** [LK14]. **OMB** [BW+12]. **OMB-GPU** [BW+12]. **OMIS** [LW97]. **Omni** [KSS00, KSH01].

OmniRPC [SHTS01]. **OMP** [SGJ+03].

OMP2001 [TSB03]. **OMP2012** [MBB+12].

OMPI [ACH+11, OM96]. **OmpSs** [ABF+17, PSB+19, VAJ+15]. **on-chip** [TDG13]. **On-Demand** [CTK00]. **On-Line** [BoFBW00, Wis98]. **On-the-fly** [KSJ14].

ONC [RS93]. **One** [BPS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, GBH18, LSK04, MS99c, Ols95, PGK+10, dAMC11].

one-dimensional [Ols95]. **one-layer** [dAMC11]. **One-Sided** [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, LSK04, MS99c, PGK+10]. **only** [LS10, S003]. **Ontario** [GGK+93].

onto [OFA+15]. **OOMPI** [MSL96]. **OOPS** [RFH+95]. **OPAL** [CwCW+11, NW98].

OPAL-MPI [NW98]. **opaque** [SOA11].

Open [BGG+15, KDL+95b, WGG+19, AVA+16, KDL+95a, Nob08, GBS+07, VGRS16].

Open-Source [BGG+15, AVA+16, Nob08].

OpenACC [CGK+16, CCBPA15, GML+16, GM18, HTJ+16, JCP15, KDHZ18, KLV15, Kom15, LB16, LSG12, MGS+15, OGM+16, QHCC17, RLPa13, SCJH19, WLK+18].

OpenACC-based [KLV15]. **OpenCL** [ABDP15, APBcF16, AB13, BLPP13, BW16, BN12, BH+12, BBT+15, BAS13, CDD+13, CP15, CLOL18, CIJ+10, CHKK15, CCK12, CS14, CLBS17, CBG19, DARG13, Di14, DWL+10, DWL+12, FA15, FLMR17, FE17, FSV14, FVLS15, GSCFM13, GDDM17, HD11, HE15, HHC+18, JSS+15, JKM+17, JR13, JNL+15, JMDG+17, KKM15, KH12, KM10, KKL11, KSL+12, KJJ+16, KB13, KPK13, Lec12, LNK+15, LWZ18, LL16, LAFA15, MC17, MAIVAH14, MTU+15, MSZG17, MHSK16, ON12, OTe15, ORA12, PY14, PHW+13, PSB+19, PB12, RG18, RVKP19, RGD13, RBB15, RGB+18, RBB17, SFVS13, SAP16, SSB+17, SG14, SFLD15, SG10, Str12, THS+15, TK16, TMW17, TKP15, TY14, WTT17, WZH16, YSWY14, YWTC15, YSL+12, ZWL+17, ZT17, dAT17].
OpenCL-accelerated [ZWL+17].

OpenCL-Based [CLOL18, WTHH17, WZHZ16, JKM+17].

OpenCL-to-WebCL [CHKK15]. OpenCL [Ane98, LHZ97, ORA12, Röt19]. OpenGL [Röt19]. Openmosix [Slo05]. OpenGL [Ano98, LHZ97, ORA12, Rot19]. openMosix [Slo05]. OpenMP [Cha05, CZG+08, CGKM11, CMMR12, EV01, JMS14, MdSC09, SHM'+10, Vos03, OKM12, ST02a, ST02b, Add01, ARW03, ABC'+00, AHD12, AAB'+17, AELGE16, ACMZR11, ATL'+12, ADT14, ACJ12, Ano97, Ano01b, Ano03, AKE00, ADMV05, ADR'+05, AGMJ06, AM07, ACD'+09, ABB'+10, BST'+13, BR02, BHP'+03, BME02, Ben18, BN00, BF01, BBDH14, BWV'+12, BCC'+00a, BCC'+00b, BGK08, BGG'+02, BS05, BBC'+00, Bra97, Bri00, BD02, Bds07, BGDs09, BFG'+10, BGD12, BC00, BS07, BB00, BKO00, BO01, BEG+00, CRE99, CE00, Car97, Bri00, BDV03, BdS07, BGdS09, BFG+10, BGD12, BC00, BS07, BB00, BKO00, BO01, BEG+00, CRE99, CE00, Car97, CBO0, CGLD01, CDK'+01, CLYC16, CM08, CHP01, CBP02, Cha02, CM05, CGKM11, CMMR12, CLA'+19, Cla98, CBYG18, CCM'+06, CCBPGA15, CC00b, DM98, DW02, DBVF01, DSGS17, HD02a, DGH'+19, DFC'+07, DFA'+09, ETWalen12, EM00a, EM00b, EV01, Eds08, FGRT00]. OpenMP [FMSG17, FSG19a, FSG19b, FSXZ14, FM09, GSA08, GJP01, GMSK01, GGS09, Goee02, GAVRRL17, GAM'+00, GAML01, GOM'+01, GAM'+02, Gra98, HPP02, HP05, HDDG09, HA10, HO14, HD02b, HMK09, HASpd09, HKN'+01, HAJ01, HVSC11, HLCZ00, HT01, HCL05, HEHC99, HJY010, HAA'+11, IJM'+05, ICC02, IK000, IJT02, JCP15, JHKH08, JPOJ12, JFY00, JYY'+03, JCH'+08, JMM'+11, JR10, KB01, KS15a, KOB01, KaM10, KO01, KN17, KKH03, KTO2, KS14, KLJ'+15, KBVP07, KGB'+09, KKV01, KT10, KH15, KAC02, KCO6, Kuh98, KPO00, KLM'+19, KRG13, KSS00, KSHS01, KJEM12, LOHA01, LP00, LLRS02, LTS16, LD01, LME09, LCC13, LHC'+07, LNW'+12, LYSS'+16, LA02, LA06, LMRG14, LHZ98, LL01, LLH'+14, MKC'+12, MS02b, Mal01, MM07, MB12, Mar02, Mar03, MLC04, Mar05, Mar09, MD04, MCB05, Mat00a, Mat00b].

OpenMP [Mat01a, Mat03, MG05, MG12, MG15, MM11, MFG'+08, MKV'+01, MBE03, MRRP11, MMSW02, MKW11, MM14, MMS07, MJ15, MJPB16, MCdS'+08, Mül01, Mül02, Mü03, MBB'+12, NO02b, Nak05a, NIO'+02, NIO'+03, NEM17, NPP'+00b, NPP'+00c, NPP'+00d, NAA01, NAO1, NN00, No08, NU05, NHT02, NHT06, OOS'+08, OP10, OPW'+12, PARB14, PPJ01, PVKE01, PK05, PZ12, PGC02, PK'+10, Qui03, Ran05, RDLQ12, RLVRGP12, RBAA05, SSE12, SSB'+16, SHH01, SHTS01, SK01, SLGZ99, SGZ00, spl'+12, SHPT00, SSS01, SK00, SB01, St02, TCM18, TSB12, TSB02, TTSY00, TSS00a, TSCam12, TJPF12, Th09, TBC'+02, THH'+05, TGB05, VDL'+15, VPS17, VGS14, Vos03, Vre04, Wal00, Wal02, WCC12, WC15, WPC07, WT11, WYLC12, WT12, WLYC12, WT13, YKW'+18, YHL11, YWC11, YCL14, YKLD17]. OpenMP [YPAE09, YSVM'+16, YSMA'+17, YYW'+12, YCA18, ZAT'+07, ZSH01, aMST07, dCZG05, RM99, SSGF00, WCS+13]. OpenMP* [KDT'+12]. OpenMP-based [LNW'+12]. OpenMP-like [BKO00, KOB01, VGS14].

OpenMP-oriented [MLC04].

OpenMP-style [JPOJ12]. OpenMP/MPI [BEG'+10, HMK09, LCC13, LYSS'+16, MGG05, NO02b, Nak05a, SSB'+16, SK00].

OpenSHMEM [HVA'+16]. OpenTuner [BAG17]. OpenUH [HEHC09, LHC'+07].

Operating [MMH98, RGD97, USE04, Wil93, ARS98, Seis99]. operational [KOS'+95a]. Operations [BL99, BIC05, CCA00, FCLG07, FPY08, GFD05, GLB00, PSG'+14, PGAB'+05, TRG05, TGT05, WRA02, BMG07, DS13, HMS'+19, IDS16, KHB'+99, KMH'+14].
operators [NHT02, NHT06]. opportunistic [CC10]. Opportunities [LB16]. optical [MRH+96]. Optimal [BP99, GAMR00, ZGN94, BB95a, ER12, PQ07, PTL+16, Sur95a]. optimized [Sei99]. optimisation [AmuHK15]. Optimising [Boo01, FKH02]. Optimistic [SCL00, CXX+12, PY95]. Optimization [BSG00, HNW01, DBA97, Goe02, HS12, Huo00, ITT02, KGK+03, KMH+14, MC17, MBB15, Mii01, NIO+02, NIO+03, PSSS01, SM03, SLo99, SWH15, TRG05, WTT17, WJ12, Cou93, DSOF11, FCS+12, HWS09, KHS12, LME09, LDJK13, MALM95, PP16, PKS08, SH14]. Optimizations [NSLV16, SSE12, iSYS12, TSS01, bVML12, HEHC09, LL16, MV17]. optimize [GFIS+18, WLYC12]. Optimized [AKL16, Bri02, FAFD15, MAIVAH14, PM95, PTH+01a, TSH+15, WJB14, BKvH+14, MMM13, Sei99]. optimizieren [Sei99]. optimierter [Sei99]. optimisations [NSLV16, SSE12, iSYS12, TSS01, bVML12, HEHC09, LL16, MV17].
Paradigm [HIP02]. Paradigms [BGD12, CM98, HD02a, HD02b]. Parady [MHC94a, MHC94b]. Paragon [Ano96c, HWW97, MP95, PR94a]. Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC11, AGH+95, AS92, ADRCT98, AK99, AMBG93, ASA97, AL96, AP96, Ano95b, ACMR14, AB93a, AJF16, BMH94, BJ93, BBG+95, BCGL97, BFL99, BP99, BG95, BS93, BGD+91a, BKGS02, Ben01, BP98, Bha93, Bic95, BGK08, Bis04, BALU95, BCL00, BSG00, BBC+00, BBG+01, BFZ07, BD98, BDH+95, BDH+97, BT90b, BMS94b, BPMZ94a, BFM97, BKO00, BBH12, BGL00, CGC+02, CHD07, Cer99, CDZ+98, CCU95, CD91, CN91, CNC10, CFF+94, CSW97, CMH99, CFPS95, CCSM97, Coo95b, CT94a, CT94b, CC00b, Cze16, DSM94, DERC01, DYN+06, DK13, Di 14, DI02, DSS00, D+91, DZDR95, DK06, EKTB99, EGR15, EM00a, EM00b, EGDK92, EJL92, ES11, FGRD01, FHSO99, FJBB+00, FFP03, Fer98b, FHK01, Fis90, For95]. Parallel [FP92, FB94, FS93, FF95, GCBM97, GLN+08, GBD+94, GKP97, GR07, GSI97, GSMK17, GDM18, GB98, GHL97, GK10, GFFG12, GJ97, Gre94, GLS94, GL07a, GLS99, GlkLyC97, H98, HLP10, H1104, HK94, HK95, HHK94, HTO1, HAA+11, IEE93b, IEE94a, IEE94f, IEE95h, IEE95f, IEE95j, IEE96b, IEE96c, IEE96i, IEE96q, IEE96d, IEE97b, IEE95, ITKT00, IBC+10, IOK00, I194, IH04, IH05, JAT07, JML01, Jon94, JRM+94, KFA96, Kan12, KDHZ18, KK02a, K001, KNT02, Kat93, KBS04, Kep05, KmWH10, Kr09, Kon00, KKP01, KMC96, KMC97, KSK96, KKD03, KKD04, K001, KKH97, KHS01, Kuh98, KBG16, Kuu94, Lad04, LTDD14, LTR00, LKD08, LSL02, LTRA02, LHHM96, L96, LZ97, LH97, klCC+96, L996, Lus00, MSOG901, MS02b, MM92, MC18, MWG97, dIFMBdLFM02]. Parallel [Mar06, Mar07, MFTB95, MSCW95, Mat94, Mat95, MBS15, MGIC12, MG15, MRB17, MM11, Mic93, Mic95, MTWD06, MCLD01, MS95, MC93+08, MBB+12, MS97, NO02b, NO02a, Nak03, Nak05a, Nak05b, NSZ913, Nar95, NSS12, NAJ99, NJ01, Nov95, NMC95, Oed93, OP10, OL90, On902, OT93, OWS95, Pav97, PPT96a, PVKE01, Pat93, PSZ90, PV97, Per99, Per96, PLR02, PWP919, PK+16, PBC+01, Qui03, RR00, RMD99, RBS94, Re96, RS95, RC97, RSV+05, Rho00, R094, RWD09, RT99L, R001, SCP97, SPE95, SGZ00, Sch01, Sch96a, Sch96b, Seg10, Ser97, Sev98, She95, SSLMW10, SM03, SP99, Sie94, Sie92a, Sie92b, Sin93, ST97, SWH15, Sou01, Sta95b, Ste94, SSN94, SGS10, Str96, Str97, Str94, SNMP10, Sun90a, Sun90b, Sun94a, Syd94, T97, T97, T97]. Parallel [TSS00b, TTP97, TC94, TCP15, TQDL01, TGH00, TDBE11, Ts07, TV96, Uhl94, Uhl95b, UH96, UC95, VLO+08, VR90, VB99, WH96, Wal01a, Wel94, WAS95b, WHB05, WO97, WS99, WMC+18, WTR03, WT12, YM97, YHGL01, YH96, YPA94, YG96, YTH+12, YZ95, YSL+12, Z94, ZZ04, ZD90, ZW9K05, ZAT+07, ZLS+15, ZZZ+95, ZGC94, Z97, van97, ACM97a, ArvW03, APB16, ART17, AAA16, AD98, AL92, ABF+17, ASCS95, ADT14, AD95, ACJ12, An93b, An95c, An90b, ADB94, ADDR95, AB83b, AFST95, AB13, AG94, ADM15, BH96, BBD+94, BR91, BA06, BHS18, BB95a, BCAD06, BB93, BDG+92b, BB94, BPC94, Ben95, BvdS95, BKH+13, BAV08, BN00, Bir94, BCM+16, BKML95, B096, FM96, BID95, Bri95, Br95, BDW97, BSH15, BB95b, CARB10, CL93, CG911, Cav93].
CBHH94, Coo95a, CCHW03, CLLASPDP99, CFF+96, CPR+95, CD01, CDH+94, CFP+93, CB11, DMK19, DKF93, DKF94b, DR18, DLR94, DLR99, DDS+94, DR94, DSZ94, DM93, DRUC12, DBVF01, DKD05, DvdLVS94, DXB96, DM96, DLM99, DKP00, DLO03, Duu92, DZZY95, EASS95, EV01, FF96, FM90, FO94, FSTG99, Fer98a, FMS15, FCS+12, FKK+96b, FFM11, FHC+95, GG99, GCN+10, GGL+08, GBF95, GG09, GFB+14, GAVRRL17, GKS+11, GEW98, GKK09, GKCF13, Gra09, GP95, HAM95b, HPY+93, HWS09, Heb93, HPS+96, HZ94, HZ99, HPLT99, HDB+13, HVSH95, Hol95, HH95, HLOC96, HVSC11, HLO+16, IEE97a, IM95, JWB96, JC17, JC96, JMdVG+17, KCD+97, KHBS19, KOB01, KRC17, KG93, KFSS94, Kra02, KKK+08, KHI0, LMM99, LCL+12, LH98, LS10, LCVD94a, LMM+15, Lou95, LG93, LM13, LC97b, LSR95, MMR99, MYB16, MMB+94, MZK93, MM95, Mar05, MSP93, MK00, MN91, MHC94a, MRRP11, MALM95, MLA+14, MRH+96, MM99, Mor95, MC99, MR96, MvWL+10, NSBR07, Neu94, NB96, NBS08, NCKB12, NF94, OdSSP12, Ols95, Olu14, OW92, PHA10, PPT96b, PPT96c, PKB06, PBG+95, PNV01, PBK99, PPF89, PY95, PBPT95, PSLT99, PCS94, Ram07, RJC95, RBB15, Rol08b, RB17, SJLM14, SM12, SSKF95, SH94, Sch94, Sch99, SPK96, SF94, SWYC94, SK92, SCC96, SLO0, SMAC08, SZ11, SPL99, SMS00, SV+11, Smi93b, STT96, SH14, SRK+12, SLS96. parallel [Sta95a, Sti94, SMSW06, Sun95, Sur95a, Sut96, Swa01, SL95, TJ09, TDB00, TMPJ01, Uhl95a, Uhl95c, VM95, Vos03, Wan97, Was96, Was96a, WK08a, WK08b, Wol92, WT11, WYL12, WLYC12, WMP14, YULMTS+17, YHL11, YWC11, YBZL03, YYW+12, ZL96, ZWSHS95, ZAFAM16, ZWL13, ZJWD18, ZWL+17, dH94, ARL+94, Ano94e, Ano94f, ACDR94, BDSL96, BS94, BG94b, Bos96, CC95, Cza13, DSM94, DHK97, DW94, EJL92, FR95, FF95, GN95, JPTE94, JPP95, KKD05, Kuo94, LK10, LkLC+03, Mal95, MKP+96, OKW95, PQ07, QR95, SSSS96, SPE95, Sp02, TDTEE11, TGE09, Vol93, Vre04, WN10, YC98, ZPLS96, ZDR01, ZHS99]. parallel-programming [KKJ+08]. parallel/distributed [FHC+95, Wan97]. parallelle [GEW98]. paralleles [BL94]. Parallelisation [SJK+17a, SJK+17b, WCVR96, LF93b]. Parallelism [CGC+11, Ed08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, KT02, Mar03, MGA+17, MMS07, MdSC09, RBAA05, SHM+10, SML17, SGZ00, TCM18, TTSY00, Thr99, YPAE09, ATL+12, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, JC17, JPOJ12, Kos95b, OPP00, RKB+13, SLGZ99, SHPT00, THH+05, TWFO09, WO09, WTFO14, WRYS16, YZ14, PGdCJ+18]. Parallelization [AL93, And98, AIM97, BCM11, BS07, CRE99, CP97, Cou93, Cza03, ETV94, HA10, JR10, Kik93, KLR+15, LP00, OD01, Pok96, QGMR00, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZWS08, WR01, aMST07, AGJM06, BW12, BDI99, BJS99, CDD+96, FS919a, Gao03, Goe02, IDS16, IJM+05, JL18, JJJ+03, JMS14, KS15a, KD12, KR13, MCB05, MGG05, Nes10, NEM17, OLG+16, TWFO09, YBLvdG08]. Parallelized [FBSN01, OMK09, KMG99, OKM12]. parallelizer [BHRS08]. Parallelizing [BST+13, Car07, GG99, IOK00, IKM+01, IKM+02, SR95, ZZ95, AMS94, BY12]. Parallelldatorcentrum [Eng00]. Parallelizing [LRQ01]. parameter [HPLT99, JMdVG+17]. parameterized [CT13]. Parameters [GFV99, BAG17].
Parity [MC17]. Parix [HVSH95, RS95, SHH94a, SHH94b]. Park [SL94a, IEE93c]. PARKBENCH [DHS96, DH95]. PARMACS [GR95, HZ96, HZ99]. PARMACS-to-MPI [HZ96]. ParNSS [HSMW94]. PARRAY [CCM12]. parsing [Sur95a]. Parsytec [SHH94a, SHH94b]. part [VSR95, EM00a, EM00b, GK10]. Partial [DERC01, DIX16, FSSD17, KK20b, MK17, MFTB95, OM96, ST17]. partially [CdGM96]. Particle [GIS97, KHS10, NSLV16, ZZ04, BAS13, CFF19, FFFC99, GSKM17, KPK13, RFH95, VDL15].
particle-based [FFFC99]. particle-in-cell [VDL15]. particle-mesh [BAS13]. particulate [ATL12]. Partitionierung [Gra97]. Partitioning [CTK01, kl11, STV97, CT13, Cha96, Gra97, GKF13, YST08]. partners [Str94]. Pasadena [IEE95c]. PASCO [ACM97a]. passage [PTMF18]. Passing [AMHC11, Ano93d, AML99, Att96, BZ97, BC14, BBH96, BB91, BU90, BDH95]. BDH97, BGR97b, BM97, CHD07, Cer99, CGH94, Cot97, Cot98, CTK00, Cot04, CND11, DFK01, DKD01, DHWW92, DHWW93a, DLL00, FKBC96, FKS96, FGT96, Fos98, FGG98, FB94, G07, GB96, Gie93, GLRS01, GLS94, GL95c, GLS94, GLT99, GLTO0b, GLT00a, GL04, IBC110, KTF03, KGRD10, KS97, KSV01, KKKD03, KKD04, KKD05, LKD08, LK10, Luo09, MPI98, MTTSS94, MS98, MS96, MBES94, MG97, MTW06, MSS97, NW98, PBK90, Pok96, PS01b, RRBL01, RW01, RFG90, SWHP05, SWL90, ST02b, TGGT05, TDB00, TDB12, WD96, Wer95, Wis97, YHGL01, ZG95a, ZG96, ZLL12, Ada98, AD98, AAC95, Ano93e, Ano94d, Ano95c, An00a, An00b, BL97, BvD95, Bjo95, BRu95, BDW97]. passing [BFIM99, CGJ90, CDZ98, CRD99, CDD1, DKF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FK94, FHB95, GL92, HP95, HPY93, Hem96, KJA96, Kra02, LR06a, LB94, LKC96, LM95, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sie99, SWJ95, SDV95, SZ99, SSG95, Sti94, TSZ94, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, DiN96, GHGL96, Han98, Hem94, RRHF96, SLG95, Wer95, YGH94]. Past [Dar01]. Path [CGPR98, GAMM00, SDJ17, SLN95, Ze95]. path-based [SLN12]. Pathway [CMN11]. PATOP [BBMW01]. Pattern [CSW12, CC17, JJPL17, RDNB99, MAS06, SJLM14]. pattern-based [SJLM14].
Pattern-Independent [CSW12]. Patterned [ST17]. Patterns [DMM97, FPY98, KB98, PKB96]. RRAGM97, SGGH12, DZZY94, GAVRR17, HGMW12, PM95, PSK96].
PC [AH00, EKTB99, KS01, LKYS04, RLL01, Ste00, WLYC12, YST08, YL90, MMB94].
PC-Cluster [RLL01]. PCAT [ACD94, GN95]. PCAT93 [ACD94].
PCTE [HZ94]. PCTRAN [KHS01]. PD1CS [YH96].
PE [GBR15, NHT02, NHT06, NPS12]. PDES [PT01, SL00, SCL01, H014, HLA05].
[ACM96b, IEE94d]. pentadiagonal [Kan12]. Pentium [Ano03]. Pentium(R) [SBT04]. PENTRAN [KHS01]. people
Performance [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, ATM01, AR01, Ano01a, Ano01b, ADR+05, Bak98, BBGL96, Ben18, BN00, BBDH14, BGG+02, BY12, BRM03, BRST94, BS07, BDL08, BCKP00, BHNW01, BFMT96b, BFBW01, BEG+10, CGK+16, CDD+13, CRE99, CGLD01, CNM11, Che09, CSC96, CBBPGA15, DPSD08, DM95b, DW02, DZ98b, DPP01, DWL+10, DBK+09, EGH99, ELC98, EML00, FD02a, FGRT00, FCP+01, FST98b, FGKT97, GFD03, GKP96, GGS99, GBH99, GFS+18, GRRMM9, GC05, GMdMBD+07, GSY+13, HVA+16, HKN+01, Hol12, HF14a, HF14b, HPS95, Hus98, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IFI95, IRU01, IHuA+00, JSS+15, JC17, JC+08, JS13, KDSO12, KaM10, KL94, KH12, KBSO4, KMB97, KPK01, KH15, KCo06, KK02b, KHS01, KS00, La01].

Performance-Portable [JSS+15, DWL+10, DWL+12, FAF16].

Performance-prediction [BDV03].

Performance-cost [GWVP+14].

Performances [GFV99, DS96b, IM94].

Performing [CC99].

Peridynamic [MSZG17].

Periscope [LGG16].

Permutations [CC99, LTDD+14].

Persistent [Man01, SG12, HMS+19].

Persistent-Sets [SG12].

Personalized [SSS97].
perspective [Sni18]. perturbation [KN17].
Perverse [Rol08a]. PES [MK94].
Pessimistic [BCH +03]. petaflips [LSG12].
Petascale
[CGKM11, CBYG18, ZWL13, Gei01].
Petersburg [Mal95]. Petri [CNM11].
PFSLib [LL95]. PGAS
[SWS +12, SJK +17a, SJK +17b]. Phase
[CBL10, ED94, TKP15, TG94, ZAFAM16].
phase-field
[TKP15]. Phi
[BB18, CBIGL19, DSGS17, MTK16, OTK15].
Philadelphia [ACM96b]. PHOENICS
[SZBS95b, SZBS95a]. Phoenix
[ACM03, IEE95b, Ten95]. Photo
[JFGRF12]. Phylogenetic [MR12, LBH12].
Physical [BM97, GJN97, GWVP +14].
Physics [GT94, KH15, VV92, WBB97, ANS95, BPG94, DMW96]. PIC
[BDV03, HTJ +16, JL18]. Picos [YAJG +15].
Pilot
[OS97, CGG10]. PINEAPL
[DHK97].
Pinhole [NH95]. Pipe [MTU +15]. Pipeline
[GAMR00]. Pipelined
[GAML01].
Pipelines
[MAGR01, FWS +17, RKBA +13]. pipelining
[MNI11]. Pisa
[Sil96].
Pitaevskii
[LLB +16, LYSS +16, SSB +16, YSVM +16, YSMA +17]. Pittsburgh
[ACM96c, ACM04, Ham95a, IEE94d]. Place
[IEE94e, LTS16, BCK +09, HSE +17, PSHL11]. placement
[SLN +12, SPK +12]. Planck
[Ano94c]. Planing
[GAMR00]. Planning
[HMS +19, Zel95]. plant
[FO94].
PLAPACK
[van97]. plasma
[BL18, DGH +19, YKL17].
Plasmas
[CF19]. plasmas
[BKGS02, BB18, NO02b, PGF18, WTT17, BSH15, CB11, Cza13, DWL +10, DWL +12, HTJ +16, HHA95, JR13, NO02a, XLL13, YSL +12]. Platforms
[AIM97, HD00, JML01, RVK19, ZB97, GGC +07, GFB +14, MBBD13, TKP15, TS12b]. Piesset
[BL95, KN17].
PLIERS
[MMR99]. plug
[MS99b]. plug-in
[MS99b]. plume
[BL18]. plus
[HDB +13]. PMAc
[PTL +16]. PMD
[Che99]. PML
[Ram07]. PMPIO
[FWNK96]. PMPIO-a
[FWNK96]. poci
[JSS +15]. Point
[GBS +07, HC10, KV98, ADLL03a, ADLL03b]. Point-to-Point
[GBS +07, HC10, KV98, ADLL03a, ADLL03b]. Pointers
[LRT07]. Poisson
[BP98, WJB14]. Poland
[BDW97]. Polder
[OS97]. Policies
[CML04, FZ12]. policy
[MMM13]. Polling
[DCP12, Pla02, DCP14, SH96]. Pollutant
[RSV +05]. Pollution
[AKK +94, BZ97, MPD04, MSML10, SH94, Syd94]. POLSYS_GL
[SMSW06]. polygonization
[TSP95]. polygons
[CT13]. polyhedral
[BHR808, KGB +09]. polymers
[JAT97]. Polynomial
[VY15, HLM +17, SMSW06]. port
[CCHW03, Har94, RJMC93]. Portability
[Ma10, RS95, ROH1, ABDP15, CGK +16, FZ17, MGC +15, PHW +13, QHCC17, RZU03]. Portable
[Ano95c, ANo00b, BHV12, BHS +95, CDH +94, DHK97, Di14, FCLG07, FLS09, GLS94, GL97a, GLS99, JSS +15, LNE00, Man98, MKV +01, MC97, PPT96a, PBC +01, SSC95, SDB +16, Sti94, Tra98, WCS +13, YBMCB14, An95, BCK +09, BDIA94, BB00, BL99, BAS13, CH94, CEF +95, DWL +10, DWL +12, FAF16, FWNK96, GR95, GL94, GS94, GLDS96, HTJ +16, HZ94, HSW +12, JC96, KN95, LFS93a, LFS93b, LHC +07, MMB +94, PPT96b, PPT96c, PMZM16, SLFD15, Sti98, VM95]. portal
[AASB08]. portals
[BS96b, BMR02, BRM03]. Portfolio
[SIS17]. Portfolio-driven
[SIS17]. Porting
[Ano96c, Ano00b, BSC99, BLW98, EM02, Har94, Har95, HASnP00, KGK +03, KME09, SR96, YKLD17, dCH93, BvdB94, EM02, Har94, Har95, HASnP00, KGK +03, KME09, SR96, YKLD17, dCH93, BvdB94, HD11, MWO95, ZPLS96]. Portland
[ACM99, ANS95, IEE93e, SW91]. Portugal
[IEE93d, IEE96g]. Positron
[Pat93]. POSIX
[LD01]. Post
[BBH +13b, Wit16, ABC +00]. Post-failure
[BBH +13b]. Post-ISA
[Wit16]. Poster
[JJPL17, LZh17]. POSYBL
[Mat94].
Potential [EGC02, Gro01a, KS15a]. Potts
Power [LWZ18, LB96, EZBA16, FO94,
HK10, Ne193, Br195]. Powered [NE98]. PP
[IEE96d]. PPARD
[PPT96b, PPT96a, PPT96c].
PPARD/PVM [PPT96b, PPT96c].
PPPE [CDH*94]. PPSN [DSM94].
Practical [BHJ96, BCP*97, CZG*08,
LPD*11, Mc994, Pan95b, VVD*09].
Practice [ACM11, GN95]. Praktische
[MS04]. Pre [AC17]. Pre-processor
[AC17]. Precedence [EGR15].
Precedence-Constrained [EGR15].
Precise [FJK*17]. Precision
[Ano99b, Kha13, ZC10, JPT14].
Preconditioned [GFPG12, ABF*17, MM92].
Preconditioner [BBS99, FSXZ14].
Preconditioners [Huc96].
Preconditioning [Nak03, GGC*07].
predictability [GRRM99]. Predicting
[RRAGM97]. Prediction
[MOL05, WHDB05, ZWJK05, ADR*05,
BDV03, CMV*94, HHA95, RBA117, SEC15,
SC96b, SSSN94, Was95a, ZAT*07].
Predictive [FJK*17]. Preemptive
[BBH*06, BBGL96]. Preface
[DKD07, OL05]. Prefetching [BIC*10].
Prefix [WJ12, DK13, MYB16].
Preliminary [BF98, Wal01a, WLK*18,
RJC95, RLFs13, SWS*12]. PREMER
[VBB18]. Preprocessors [Ano01].
presentation [MRH*96]. Present [Dar01].
presented [ACM90]. preservation
[IEE94c]. Preserving [RNPM13]. Press
[Ano95b, Ano95c, Ano96a, Ano99a,
Ano99c, Ano99b, Ano99d, An000a, An000b]. Pricing
[RR00]. Primitives
[DDL00, FST98a, ABDP15, CIJ*10].
Princeton [Bha93]. principles
[BSC99, HS12, SSP*94]. printing [YM97].
priority [DR95, Man98]. Prism [SDN99].
private [Str94]. privatization [KRG13].
Probabilistic [LAdS*15]. Probability
[QRMG96, Sta95b]. Problem
[BSH15, DALD18, DAK98, GAMR00, ICC02,
Lee06, MTSS94, RLVRG12, ZSuH01,
AB93b, DSM94, GM94, GKCF13, HMKV94,
IHM05, MM92, SL00, SP11, Cza13].
Problems
[ASA97, BHM94, BHM96, BMR01, BPMN97,
CGRP98, EML98, HAA*11, D02, MRI95,
Nak03, Riz17, AL96, CEGS07, FR95, LSR95,
NZZ94, OMK09, SC96a, SD99]. procedure
[AGLv96]. Proceedings
[ACM94, ACM96c, ACM97a, ACM97b,
ACM98b, ACM04, ACDR94, CNW95,
GN95, Hol12, IE93f, IE95d, IE02, KG93,
LCK11, MC94, R*92, SM07, Ten95, TG94,
dGJM94, ACM96b, Ano94e, Ano94i, BPC94,
Bo97, BH95, CLM*95, DJSN94, DE91,
EH92, FF95, GHH*93, HK95, HK94,
IE94a, IE94b, IE94c, IE95b, IE95e,
IE96a, IE97c, IE95, JPT94, Kum94,
LF*93a, Li96, PSB*94, PBPT95, SPE95,
SW91, WH94, ACM90, ACM95a, ACM95,
ACM06b, ACM06a, ATC94, Ager95a,
AGH*95, AH95, Ano89, Ano92, Ano94a,
BBG*95, Bha93, CHD07, CZG*08,
CGKM11, CMMR12, CGB*10, CNDN11,
DKM*92, DT94, DLO03, EV01, Edso8,
ERS95, ERS96, Fer92, FK95, Gat95,
GGK*93, GA96, GT94, Ham95a, HS94,
HK93, IE91, IE92, IE93d, IE93c,
IE93b, IE93e, IE94c, IE94d, IE94f,
IE94h, IE94g, IE95h, IE95k].
Procedural
[IEE95, IEE95i, IE95j, IEE95k].
Proceedings
[ACM94, ACM96c, ACM97a, ACM97b,
ACM98b, ACM04, ACDR94, CNW95,
GN94, HOL12, IE93f, IE95d, IE02, KG93,
LCK11, MC94, R*92, SM07, Ten95, TG94,
dGJM94, ACM96b, Ano94e, Ano94i, BPC94,
Bo97, BH95, CLM*95, DJSN94, DE91,
EH92, FF95, GHH*93, HK95, HK94,
IE94a, IE94b, IE94c, IE95b, IE95e,
IE96a, IE97c, IE95, JPT94, Kum94,
LF*93a, Li96, PSB*94, PBPT95, SPE95,
SW91, WH94, ACM90, ACM95a, ACM95,
ACM06b, ACM06a, ATC94, Ager95a,
AGH*95, AH95, Ano89, Ano92, Ano94a,
BBG*95, Bha93, CHD07, CZG*08,
CGKM11, CMMR12, CGB*10, CNDN11,
DKM*92, DT94, DLO03, EV01, Edso8,
ERS95, ERS96, Fer92, FK95, Gat95,
GGK*93, GA96, GT94, Ham95a, HS94,
HK93, IE91, IE92, IE93d, IE93c,
IE93b, IE93e, IE94c, IE94d, IE94f,
IE94h, IE94g, IE95h, IE95k].
Procedural
[IEE95, IEE95i, IE95j, IEE95k].
Proceedings
[ACM94, ACM96c, ACM97a, ACM97b,
ACM98b, ACM04, ACDR94, CNW95,
GN94, HOL12, IE93f, IE95d, IE02, KG93,
LCK11, MC94, R*92, SM07, Ten95, TG94,
dGJM94, ACM96b, Ano94e, Ano94i, BPC94,
Bo97, BH95, CLM*95, DJSN94, DE91,
EH92, FF95, GHH*93, HK95, HK94,
IE94a, IE94b, IE94c, IE95b, IE95e,
IE96a, IE97c, IE95, JPT94, Kum94,
LF*93a, Li96, PSB*94, PBPT95, SPE95,
SW91, WH94, ACM90, ACM95a, ACM95,
ACM06b, ACM06a, ATC94, Ager95a,
AGH*95, AH95, Ano89, Ano92, Ano94a,
BBG*95, Bha93, CHD07, CZG*08,
CGKM11, CMMR12, CGB*10, CNDN11,
DKM*92, DT94, DLO03, EV01, Edso8,
ERS95, ERS96, Fer92, FK95, Gat95,
GGK*93, GA96, GT94, Ham95a, HS94,
HK93, IE91, IE92, IE93d, IE93c,
IE93b, IE93e, IE94c, IE94d, IE94f,
IE94h, IE94g, IE95h, IE95k].
Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97a, Kra02, KKDO4, LCHS96, Mal95, PBG+95, Sch93, Tou96, VV95, Vol93, Was96. Proceedings. [Ano93f, Ano94g, IEE96i, IEE97b, LHHM96].

Process [AUR01, BGL00, CLL03, DeP03, DK06, FDG97a, FDG97b, FLD98, FPY08, KCP+94b, KOW97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HI12, JLS+14, KCP+94a, MLVS16, MK00, SHHC18, Ste96]. Process-Management [BGL00].

processed [HJ98]. Processes [CB16, MW98, Pet00a, Pet00b, FS95, GFIS+18, SPK+12]. Processing [ATC94, Agr95a, AR01, BBG+95, DKM+92, GGC99, GGCG01, HJBB14, IEE93b, IEE93f, IEE95e, IEE95h, IEE95f, IEE95g, IEE96b, IEE96g, IEE96e, IEE96d, IEE97b, IEE05, IOK00, JDB+14, KOI01, KS15b, LSVMW08, MLGW18, MSML10, Nar95, NH95, NJ01, PLR02, PD98, Ree96, RRBL01, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, BJ13, BHS18, BFMB96, CFPS95, CLASPD99, DZ94, FWS+17, GDC15, GGCG99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kum94, LHLK10, LG93, PSB+94, PBPT95, RKB+13, Rb900, RCG95, SS99, SLS96, VDL+15, Wol92, WWFT11]. Processor [HC06, Oed93, Ott94, PWP+16, RR02, Sni93a, SBTO4, UALK17, ABDP15, AC17, DCH2, HC08, LL01, OIS+06, RNPM13].

Processor-Oblivious [UALK17].

Processors [AJ97, Bri10, HK93, HK95, KmWH10, MB15, OLG00, PZKK02, BBG+14, CBM+08, DBLG11, HTA08, HWX+13]. Producing [HAJK01]. product [CMH99, ER12, SMSW06]. production [CLeJ+15, SL90]. productive [LV12].

Productivity [BS07, KaM10, Vit16]. products [Ano97, Bra97]. profile [TWFO09, WTFO14]. profile-driven [TWFO09, WTFO14]. profiler [AS92]. profiles [Wil94]. profiling [GPL+96, LZHY19, Rab99, Vet02]. Profitability [CLA+19]. Program [Ano96d, ADL93a, BM94b, CHP01, Cot97, EML98, MM95, MK17, MRV00, Nce00, PS01b, TSY00, THN00, UTB02, CDZ+98, JF95, LP00, LCC13, OMK12, PPJ89, Sat10, TN1B17, TMP00, ZL96]. programación [VP00]. Programmable [OA17]. Programmcode [BL94]. Programmer [Gua16, Vit16]. programmers [CGG10].

Programming [ACM90, Ada97, ACG97, ASA97, ACJ12, Ano96b, BBG+10, LPB93, BIH12, BF01, BBG+01, BKO00, CMK00, CDK+01, CkmWH16, Cha02, CZG+08, CF01, Cza03, DM98, DARG13, DDL00, DK06, DWL+10, EM00a, EM00b, FTVB00, FWR+95, GLRS01, GLS94, GLS99, HAI1, HDB+12, HDT+15, KKH03, Kep95, KmWH10, Kvh97, Lad94, La90, LLRS02, MSOC01, Mat94, Mat95, MCD+08, NO02b, SPM+10, Sk10, SS01, SDN99, SHH94b, ST02a, ST02b, SGS10, Stp02, TTP97, VT97, Vre04, Wal01a, Wal02, WO97, YM97, YHGL01, YCA18, ACGdT02, AMuHK15, Ano95c, Ano00b, AB13, BJ13, BCA+06, BB94, BS96a, BKH+13, CLYC16, Cha05, CEF+95, CDH+94, CGH+14, DWL+12, Duv92, EASS95, EV01, FSG19b, FB95, FB96, Fan98, FSTG99, Fer04, Fra95, FH+13, FF95, GZ12, Gei96, GBH14, GBH18].

programming [GRTZ10, HTA08, HS93, HZ94, HDB+13, HS95, HSW+12, HZG08, KDSO12, KOB01, KSG13, KSL+12, KL15, KPNM16, KFS99, KJ+08, LV12, LFS93a, LFS93b, LH98, LPD+11, LLH+14, MMB+94, MTV96, MSP93, MC99, MG+15, NO02a, Nak05a, NYNT12, NBGS08, OIS+06, Olu14, OW92, Pac97, PVKE01, PF05, Qui03, RJDH14, iSYS12, SSKF95, SYR+09, Seg10, SP96, SBF94, SPL99, SHH94a, SD99, VP00, Vos03, Wal01b, Wan02, WCC+07, WADC99,
WYLC12, WLYC12, YHL11, YWC11, YY95, YS93, ZGC94, DR94, HSE+17, Che10, SD13. **Programs** [AJF16, Beg93b, BDsdH01, BGK08, BGG+02, BDL98, BGL00, CSW12, CRE99, CHPP01, CD98, DLB07, DMV97, Di 14, FKH02, FJK+17, GR07, GTH96, GL04, GC05, HKN+01, HM01, FLK05, KL94, KSJ14, KKV01, KSV01, Mar09, MVY95, MOL05, MEO03, MKW11, MCD01, MJB15, NSZS13, NE98, NE01, NPP+00, OM96, PPJ01, RH01, RFG+00, SGZ00, SBF+04, SR96, TGBS05, We94, Wis07, ZLL+12, Beg92, Beg93a, BCK+09, BMPS03, CRE01, CldJ+15, CGL+93, CH94, CRM14, CFP96, DKF93, DKF94b, EP96, EPP+17, FSG19a, FLB+05, FKL08, GH99, GRRM99, GKS+11, GB94, HD11, HZ96, HLOC96, HLOC96, HTH+97, KS13, KO14, Kom15, KLM+19, LGK010, LLG12, LLB+16, LBG+16, LMM+15, LZC+02, LCC+12, MR95, NBK99, Obe96, OdS915, PES99]. **Programs** [PAoD+17, RAS16, Ruc03, RRG+99, SS+16, SK01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THS+05, UGT09, VVD+09, YSVM+16, YSMA+17, YY+12, ZJDW18, ZRQ11]. **Program** [BRU05, LAdS+15, SPH+18, MLA+14, MC94]. **Progress** [BRU05, LAdS+15, SPH+18, MLA+14, MC94]. **Progress-Dependence** [LAdS+15]. **Project** [BHK+06, BSH15, DKH07, MV00, ABC+00, CDH+94]. **Promise** [Ano93f]. **Promotion** [OCY+15, WBBD15]. **Propaganda** [EMO+93, ESM+94, JML01, SMOE93, KEGM10, RMMN+12]. **Properties** [FGRT00, JL18, MS96b, SSP+94]. **Proposal** [DHHW92, DHHW93a, DFC+07, DFD+09, ZKRA14]. **Proposals** [Wal96b]. **Proposal** [DHHW92, DHHW93a, DFC+07, DFA+09, ZKRA14]. **Pseudorandom** [FGRT00, JL18, MS96b, SSP+94]. **Proposal** [DHHW92, DHHW93a, DFC+07, DFA+09, ZKRA14]. **Pseudospectral** [BKGS02]. **Proposal** [Wal96b]. **Pseudo-random** [GHD12]. **Protein** [RGB+18, GÁVRR17, SEC15, ZAT+07]. **Protected** [GHD12]. **Protocols** [BCH+08, DM93, LH98]. **Prototypical** [dLFMBdLFM02]. **Prototype** [ANo01b, FHP+94, MMSW02, BK96, CCF+94, KKL93, KKL95], **Provide** [Add01, LMRG14]. **Provides** [Ano98, Ne93]. **Providing** [OCY+15, WBBD15]. **Propagation** [EMO+93, ESM+94, JML01, SMOE93, KEGM10, RMMN+12]. **Pseudospectral** [BKGS02]. **Pseudo-search** [Wal96b]. **Protect** [GHD12]. **Protocols** [BCH+08, DM93, LH98]. **Prototypical** [dLFMBdLFM02]. **Prototype** [ANo01b, FHP+94, MMSW02, BK96, CCF+94, KKL93, KKL95], **Provide** [Add01, LMRG14]. **Provides** [Ano98, Ne93]. **Providing** [OCY+15, WBBD15]. **Propagation** [EMO+93, ESM+94, JML01, SMOE93, KEGM10, RMMN+12]. **Pseudospectral** [BKGS02]. **Pseudo-random** [GHD12]. **Pseudospectral** [BCH+08, DM93, LH98]. **Prototypical** [dLFMBdLFM02]. **Prototype** [ANo01b, FHP+94, MMSW02, BK96, CCF+94, KKL93, KKL95], **Provide** [Add01, LMRG14]. **Provides** [Ano98, Ne93]. **Providing** [OCY+15, WBBD15]. **Propagation** [EMO+93, ESM+94, JML01, SMOE93, KEGM10, RMMN+12]. **Pseudospectral** [BKGS02]. **Pseudo-random** [GHD12]. **Pseudospectral** [BCH+08, DM93, LH98]. **Prototypical** [dLFMBdLFM02]. **Prototype** [ANo01b, FHP+94, MMSW02, BK96, CCF+94, KKL93, KKL95], **Provide** [Add01, LMRG14]. **Provides** [Ano98, Ne93]. **Providing** [OCY+15, WBBD15]. **Propagation** [EMO+93, ESM+94, JML01, SMOE93, KEGM10, RMMN+12]. **Pseudospectral** [BKGS02]. **Pseudo-random** [GHD12]. **Pseudospectral** [BCH+08, DM93, LH98]. **Prototypical** [dLFMBdLFM02]. **Prototype** [ANo01b, FHP+94, MMSW02, BK96, CCF+94, KKL93, KKL95], **Provide** [Add01, LMRG14]. **Provides** [Ano98, Ne93]. **Providing** [OCY+15, WBBD15]. **Propagation** [EMO+93, ESM+94, JML01, SMOE93, KEGM10, RMMN+12].
Quasi-Newton [ZB97]. Quasi- [Pla02]. Quasi-asynchronous [DDYM99].

Queens [ACDR94]. Query [AR01]. Quest [MWG97]. Queue [NSS12, CG99b, PTL+16, Sep93, ZA14]. queues [Man98]. quicksort [MMO+16, MMO+16].

Reaching [BHS+02]. Reaction [HF14a, HF14b]. Reactive [BCL00, Heb93]. reactor [ANS95]. Read [SSLMW10]. readability [SM12]. Reading [HK95].

rebooting [GJLT11]. Receive [Bri02]. Receiver [ZG95b], receptor [ESB13].

rechnen [Ano94c, BL94, MS04]. Recognition [CC17]. recomputation [RKBA+13]. Reconfigurable [MFC98, SPM+10, NYNT12].

Reconfiguration [CS14, MSMC15]. Reconstruction [BM97, DYN+96, GA96, LSSZ15, OIH10, RAGJ95]. Record [UALK17, CRD99]. Record&Replay [KSV01]. record/replay [CRD99].

Red [van93]. Redesign [HL17]. Redistribution [DDPR97, HC06, WQ95, WQ96, HC08, KN95]. Reduce [PSM+14]. Reduced [SW12]. Reducing [CRG16, JE95, BCI11]. Reduction [FKH02, MFPP03, SG12, HL17, Jes93a, MLVS16, Pan95a, PQ07]. Reductions [PWPD19]. Redundancy [TS12a].

redundant [KJJ+16]. Reference [GHLL+98, Nag05, SOHL+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, SOHL+96, Per97, Ano96a]. Refinement [MRB17, Ran05, CLSP07, DLR94]. regions [LFL11].

remedies [ALW+15]. Remo [IEE95h]. Remote [BMR01, HDT+15, IFA+16, OCY+15, Tsu07,
Remote-Scope [OCY*15, WBBD15].

Remote Scope [BCMR*15, WBBD15].

Remote Scope [GJLT93, GCG001, GCSG09, VLO*08, GCCG99]. Remoting [MGL*17].

Remote Scope [GJLT93, GCG001, GCSG09, VLO*08, GCCG99]. Remoting [MGL*17].

Remote [ZAM*15]. Remote [ZAM*15].

Remote Scope [BCMR*15, WBBD15].

Remote Scope [BCMR*15, WBBD15].

Remote Scope [BCMR*15, WBBD15].
Runtime

[AAB+17, BGD12, CFF+94, DMB16, DT17, Gro00, KBS04, KCR+17, NPP+00d, TJPF12, ZLP17, ALW+15, BL99, BR94, EPP+17, EO15, HPS+12, HPS+13, KW14, LLH+14, MA09, NPP+00a, TSY00, YÁJG+15].

Runtimes [AHHP17]. Russia [Mal95].

RWA [RLVRGP12].

S [AHHP17, Röh00]. S-Caffe [AHHP17].

S-language [Röh00]. S1 [GLT00b]. S3D [LSG12]. Safe [Pla02, GCC99, LFS92, LFS93a, LFS93b, NYNT12]. Safety [CLA+19, GT07]. salesman [GM94]. Salt [Hol12]. San [ACM97b, Ano95d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IEE95b, IEE95g, IEE97c, LF+93a, NM95].

Sanders [Che10]. Sandy [VDL+15]. Santa [ACM95b, AH95, IEE95f, Old92]. Santorini [CD01, CDND11]. Santorini/Thera [CD01]. Saphir [Ano99c, Ano99d]. SAR [AB95]. Satellite [Uhl94, Uhl95b, SS94].

Satisfiability [IKM+01, IKM+02].

saturated [TGC18]. Saturday [B+05].

Saturday-Wednesday [B+05]. Save [KLF05, FKL08]. SBS [MSB97, WWZ+96].

SBS-Type [MSB97]. SC'11 [LCK11].

SC2000 [ACM00]. SC2001 [ACM01].

Scalability [Ben18, BS07, FSC+11, KBS04, LL01, LKY804, LSK04].

Scalable [Add01, AHHP17, BHW+17, BHC+02, BHNW01, BGL00, CGS15, CDPM03, EFR+05, GFB+14, GS94, HGMW12, IEE92, IEE94f, IEE95j, IBC+10, KK98, LTS16, kLCC+06, MFPP03, NBS08, NPP+00d, NCBB12, NSM12, OLQ01, PPJ01, PR94b, PBK00, SDJ17, SBF+04, Skj93, SS96, TPD15, UP01, VBLVdG08, VVY20, ZLS99, BBR+94, Bri95, CLSP07, FWS+17, GBH14, GBH18, GM13, GKL05, HRR+11, HAJK01, KRC17, KRG13, LM99, LLTLC94, MMB+94, MRRP11, PWD+12, SPK+12, Trä12a].

ScalAPACK [BV99, BR99, DHP97].

Scale [AKE00, BHW+17, BZ97, BHNW01, FFP03, MFPP03, SM03, TGEM09, WMC+18, WT12, AASB08, BCA+06, BJS99, BCH+08, Che99, DZZY94, FME+12, Gua16, Kos95b, LS10, MLA+14, PTL+16, PD11, RMNN+12, SV99, TBB12, WLNL06, WT11, WT13, ZKRA14, ZA14, Ben18].

SCALE-EA [Ben18]. SCLEA [TGF02].

Scaling [CC17, KFL05, SLJ+14, FKL08, Ga03, LFL11, PDY14]. scan [AAAA16, YLZ13]. scanline [CT13]. scans [NAJ99]. SCASH [SHH01]. SCATCI [ART17]. scatter [BCD96, MTK16].

Scattering [BCL00, NZZ94, OM90]. SCF [MM95]. schedule [NAAL01]. scheduler [ADDR95, TCBV10, WRS16]. schedulers [NP12].

Scheduling [BBH+06, BSH15, CML04, DMB16, EGR15, GDM17, GSHL02, GHL97, HC06, JW96, MB15, NIO+02, NIO+03, TJPF12, APB+16, DZ98a, JKN+13, LHTC96, MBKM12, NSBR07, OPW+12, SMI93b, SKK+12, SKB+14, WYL12, WYLC12, WYC11].

Scheme [CTK01, LNL00, MW98, SBF+04, BBGL96, Bjo95, MRRP11, OKMI2, SCC96, YPZC95, FM90]. Schemes [PPJ01, WYL12, WYLC12, ZAT+07].

Schmidt [CBY18]. School [VV95].

Schrödinger [DM12, ÖN12]. SCI [FS97, HEH98, Hus00, RR01, ZHS99].

SCIDDLE [ABG+96, AGLV96].

SCIDDLE-PVM [ABG+96]. Science [EGH+14, IEE95d, MMH93, Old02, SM07, ACM06a, DMW96, HK93].

Sciences [ERS96, HS94, ZL96, ERS95]. Scientific [AGH+95, APJ+16, BBG+95, DKM+92, DT94, Gat95, GL97a, HJ98, KK02a, kLCC+03, Mar06, Nag05, Sin93, SSB+17, VV02, WN10, Bis04, DW94, SBG+12, TBB12, WT13, Ano97, Bra97]. scientists [HW11, Str94]. SciPAL [KH15]. SCIPVM [ZHS99]. Scope
[OCY+15, BDB+13, WBBD15]. scoping
[RDQL12, WC15]. Scottsdale [IEE95b].
Scratchpad [JAK17, MB12]. Scripting
[Ong02, KPL+12, Nob08]. scripting-based
[KPL+12]. SCTP [KPV05, ZP06]. SDK
[TK16]. SDSM [CCM+06]. Seamless
[kK02a]. Search
[BSH15, Cza13, IKM+01, Wal01b, FMS15,
IKM+02, Wal01a, ZSK15, CB11]. Searches
[BG95, LM99, Ols95]. Seidel
[AMBG93, KL95, KEGM10, LM13,
QHCC17, RMMM+12, SSS99, WCVR96].
Seismograms [DP94]. Select [KKDV03].
Selected [DHS96, MTW07, OL05, TB14,
CHD09, Cha05, DKD07, JC17]. selecting
[PTL+16]. Selection [CKmWH16, SNN+19,
PGBF+07, WK596, ZWL+17]. Selective
[Nak03]. Self
[NSS12, SLJ+14, TGT10, VFD02, NSB07,
WLYC12, WLYC12, YWC11].
Self-Consistent [TGT10]. self-scheduling
[NSB07, WLYC12, WLYC12, YWC11].
Self-Submitting [NSS12]. Self-Tuning
[SLJ+14]. Semantic
[EADT19, MTU+15, DKF94a, OA17].
Semantically [MKW11]. semantics
[RNPM13]. Semaphores [TT97]. Semi
[CT94a, Bjo95, PSLT99, TC94, CT94b].
semi-coarsening [PSLT99]. semi-implicit
[Bjo95]. Semi-Lagrangian
[CT94a, TC94, CT94b]. Semiconductor
[GJN97, Ano03, LS10]. Seminar
[Ano94f, Ano93h]. Send [GPC+17]. Sender
[BCH+03]. Sensed [GGCM99, GGCGO01,
GCGS98, VLO+08, GGGC99]. sensitive
[GKCF13]. Sensitivity [dLR04]. Separable
[Ben01, CgGM96]. September
[Abr96, AD98, Ano93a, Ano93b, Ano95a,
Bos96, BP93, BH95, CLM+95, CHD07,
CJW95, CD01, CND11, DKD05, DKD07,
DLM99, DPK00, DLO03, EJL92, FK95,
FR95, GHH+93, IEE93d, IEE94c, JPT94,
KGRD10, Ksa02, KKDO4, LKO08, Ma95,
MTW06, OL05, PFB+94, RWD09, SP95,
SM07, TBD12, VV95, VW92, WPH94, YH96].
Sequence
[GMU95, SMM+16, AMHC11, TSZC94].
sequences [GAVRRL17, SdM10].
Sequencing [VPS17]. Sequential [EK97,
RPM+08, GGH99, SR95, TNI17, TSZC94].
Serial [SWTH15, HPS+96, HW509].
serialization [CFKL00]. Serialized [KH10].
Serielles [BL94]. Series [Nag95, BR94].
Server [Ano93f, FSL98, KS97, Mat01b,
Sch93, Sto98, Vis95]. Servers
[CGR+02, SIS17, GK7]. Service
[RFG+00, LS08, SPK+12]. Services
[FC05, AAC+05, ZKRA14]. Session
[NYNT12, ZL96]. Set [BDA+18, SW12,
WL96a, Ano00a, Ano00b, She95, WL96b].
Sets [SG12, CGL+93]. setting [GL50a].
Setup [NSLV16]. Seventh [BBG+95, HS94,
IEE93b, IEE95g, IEE96h, Eng00, Y+93].
several [GBR15]. SGI
[Che99, CML04, KMG99, LB96, LL01,
LKJ03, LSK04, TW12, ZSH11].
SGI/CRAY [Che99]. SGI/CRAY-T3E
[Che99]. shadow [SOA11]. shallow
[dAMC11, dAMC12]. Shane [SD13].
Shanghai [IEE97a]. SHARE
[Ano92, Ano93f, Ano94g]. Shared
[BCH+06, BME02, Bri10, DM98, DMB16,
FKH02, FB94, GB96, GLRS01, HC10,
HDB+12, HT01, KB98, KSH01, LRT07,
Luo99, MBE03, MCdS+08, Milo02,
NPP+00d, PBK00, Pok96, PS00b, Ros13,
SS01, STY99, ST02b, Thr99, VS00, VT97, ABCI95a, ABCI95b, ADMV05, BMG07, CBPP02, Cha96, CCM+06, CC00b, DBVF91, DS97b, DPZ97, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JF95, KJA+93, KC06, LKL96, MLC04, PK05, RGDMA5, SHHI01, SFL+94, SSC96, TS99, TSY00, Vos03, WRMR17, YWVO95, XY95, Cha95.

Shared-Memory
[DM98, HDB+12, NPP+00d, Pok96, Thr99, PS00b, ABCI95a, ABCI95b, BMG07, GL96, GL97c, KJA+93, PK05, TSY00].

Shear
[Att96, CML04, CB16, DiN96, JAK17, KK98, JE95, Ott93, PRS+14].

ShearLab
[JAT97].

Shearlet
[JAT97].

SHMEM
[BBDH14, Hus01, LSK04, Sch96a, Sch96b, SS01].

Short
[KBM97, MH01, SSLMW10, BMPZ94a, PARBI4].

Short-Read
[SSLMW10].

Silicon
[Ano03, Goe02].

Signal
[IEE95e].

Signals
[Uhl95c].

Signatures
[Gro00].

Significance
[AMHC11].

Significant
[FME+12].

Silicon
[Ano03, Goe02].

Side
[kLCCW07].

Side
[BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, MB00, TGT05, TRH00, ZSG12, bT01a, BM00, DBB+16, GBH18, LSK04, MS99c, PKG+10, GBH14].

SIGCSE
[ACM06b].

Signal
[IEE95c].

signals
[Uhl95c].

Signatures
[Gr000].

significance
[AMHC11].

silent
[FME+12].

Silicon
[Ano03, Goe02].

SIMD
[BvdB94, HS95b, KDT+12, LLI6, Sur95b, VSW+13].

Simple
[MSF00, Mii01, SC04, ITT99, JH97, Nes10, PN01].

simulate
[Heb93].

Simulated
[BHM94, BHM96, FH97, RSBT95].

Simulating
[DLM+17, KDL+95b, KDL+95a, NFG+10].

Simulation
[CDMS15, CCBPA15, DMMV97, DZDR95, GSI97, GM95, GJN97, Ham95a, JML01, KDHZ18, KMB97, KMK16, LLRS02, MFTB95, MPD04, MANR09, PCY14, PKYW95, PZKK02, RR00, RDMB99, SSAS12, Str97, Ten95, UZC+12, WMC+18, ZZ04, ZWJK05, diAMC11, Ano95d, ADR+05, BJ95, BCM+16, BH95, BMPZ94b, CwC+11, CSPM+96, DSOF11, FHSO99, FO94, FLPG18, FFFC99, GRTZ10, JAT97, JLS+14, KTJT03, KMC96, KMC97, LCVD94b, LCVD94a, LY13, MMW96, MALM95, NB96, NF94, OKM12, PARBI4, PY95, RFH+95, SWYC94, SSP+94, SKM15, Str96, Syd94, Tho94, WGG+19, YPA94, YEC+13, YSL+12, Eng00].

Simulation-Based
[ZWJK05].

Simulations
[CGS15, CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG+07, SM02, YPAE09, ADT14, ABG+96, BHS18, BADC07, CFF19, GM18, Hin11, JMS14, LS10, LSVMW08, RMMN+12, SU96, TOC18, WWFT11].

Simulator
[CAM12, MRV00, PHO+15, UTY02, WPC07, AMV94, LS10, PWD+12, WZSW08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b].

Simulators
[SB95, AYA+16].

Singapore
[IEE96d].

Single
[BM00, HF14a, HF14b, MB00, URKG12, AGIS94, KKL11].

Single-Chip
[URKG12].

single/multigrid
[AGIS94].

singleton
[TVCB18].

Sinks
[JPT14].

Sites
[Ano98].

Sixth
[HK95, IEE96c, MMH93, SW91].

size
[GKCF13].

sizes
[JLS+14].

Sizes
[DALD18, ZSh91].

SKaMPI
[KRS99, RSPM98, RH01, Reu01, RST02, Reu03].

Skeleton
[SG14].

SkelCL
[SG14].

Skeletons
[Ser97].

Skjellum
[Ano95c, Ano00b].

Slack
[KF05, FKLB08].

SLAE
[ADRCT98, AK99].

Slave
[LTR00, HP05].

SLEPc
[DR18].

SLICC
[KBHA94].

Slices
[GSHL02].

Slim
[LTR00, HP05].

Small
[HLP11, TS12b, Ano94h].

small-footprint
[TS12b].

Small-World
[HLP11].

Smithsonian
[Str94].

smoking
[YSL+12].

SMP
61

[Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMDMB+07, HD02b, Hus00, HIP02, JKH08, KOI01, KKH03, KMG99, KAC02, NO02b, NO02a, ST02a, TOTH99, Trä02b, YWC11, bT01a]. **SMPCKpt** [DCH02]. **SMPI** [DLM+17]. **SMPs** [MLA10]. **SMPSuperscalar** [GBL12]. **SMT** [PAdS+17]. **snake** [JPP95]. **snake-in-the-box** [JPP95]. **Snir** [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. **SnuCL** [Lee12]. **soccer** [YMYI11]. **socket** [LS10]. **Softshell** [SKK+12]. **SMPCKpt** [DCH02]. **SMPI** [DLM+17]. **SMPs** [MLA10]. **SMPSuperscalar** [GBL12]. **SMT** [PAdS+17]. **snake** [JPP95]. **snake-in-the-box** [JPP95]. **Snir** [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. **SnuCL** [Lee12]. **soccer** [YMYI11]. **socket** [LS10].
LPD+11]. Specifications
[OFA+15, WMP14]. Specified [MGMH97].
specifying [LPD+11]. specimen [Rol08b].
SPECT [BCD96], spectator [YMYI11].
Spectra [Str97, SR11]. Spectral
[MW98, BCM+16, MGS+15]. spectral/hp
BCM+16]. Speculation
[AELGE16, SHLM14]. Speculative
[RA09, dOSMM+16]. Speed
[CDHL95, Tou00, AH95, Ano03, BWT96,
BI95, KMK16, CDH+95]. Speeding
[CSV12]. Speedup [VPS17]. SPH
[CP15, OLG+16, PBC+01, WMRR17, WMR19].
Sphere [CT94a, CT94b]. spherical
[Hol95, KT10]. SPICE3
[WPC07]. Spiking
[LMG17]. stop-and-restart
[LMG17]. Storage
[ACM04, Hol12, LCK11, HP11, NFG+10, RGGP+18, ZJDW18].
stores [HSP+13]. straight [YULMTS+17].
Strategies
[MM02, BVML12, CG99a, DBVF01, MM03,
OPW+12, FS99, TSSC94, VB99].
Strategy [AIM97, DI02, Hat98, VPS17,
ZB94, ZSG12, DKF94b, DR95, MSL12].
strayed [Rol08a]. stream
[HSW+12, UGT09]. Streamline
[CGC+11]. streams [TVCB18]. StreamScan
[YLZ13]. Strength [Kon00]. String
[KMM15, MM02, MM03]. striped
[KDSO12]. Strongly [GAP97, ZZG+14].
Structural [PSSS01]. Structure
[CBL10, LAF15, SY96, WHDB05,
EPML99, SEC15, SY95, ZAT+07].
Structured [FB96, Mar06, MRB17,
NRH07, Ran05, Bis04, CLSP07, FR95,
GBR15, JAT97, Smi93b]. Structures
[GMPD98, JY95, KA95, OKW95, SHPT00,
WB96, YAP94]. studies [DHP97]. Study
[AIM97, BF01, BZL+95, DARG13, EGC02,
FPY08, GL97a, HHC+18, KCR+17, LST15,
MM02, NSLV16, NA01, PK05, RRL01,
SCL01, TG94, AGR+95b, BJ13, BfDA94,
BJS99, BY12, Bhi00, CBM+08, DXB96, ED94, FO94, JR13, KBG16, LPD+11, LLIH+14, MS96b, PSK08, PGK+10, PSHL11, RSBT95, RJC95, TD15, Wol1b, WLK+18, ZSK15. Stuttgart [KGRD10, WPH94].

style [JPOJ12]. sub [MJG+12].

sub-communicators [MJG+12].

subcircuit [HLO+16]. subdomain [CEGS07]. subdomains [SHHC18].

subgroup [XLW+09]. Submitting [NSS12].

Subrange [Str97]. Subroutine [Saa94].

subroutines [dCH93]. subsurface [ED94].

subs [MJG+12].

subsystem [BMG07, MABG96].

Subsystems [STMK97]. Subtle [SAL+17].

Success [Gro01b, LF+93a]. Successes [Gro01a]. Sufficient [Gro12]. suffix [DK13]. Suitability [Mat01b]. suitable [MAS06].

Suite [ACMR14, AKE00]. BWV+12, MBB+12, Riz17, Ano03, BO01, MvWL+10, TG09, YSYW14, SNMP10].

Suites [MCS00, SGJ+03].

summation [IHM05].

Sums [ST17, MYB16].

SUN [BM00, SJ02, WSN99].

Sunderam [Ano95b, NMC95]. Super [Gua16, YX95].

Super-Object [YX95]. Supercomputer [Ano95a, CLP+99, Str94, AAC05, BHG+05, EFR+05, GL96, GL97c, KMH+14, NSM12, Ste94, G91b, MAB05].

Supercomputers [BP93, BDG+92c, EKT899, KN17, WT11, WT13].

Supercomputing [ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93e, IEE94h, Liu95, Sch94, ACM94, ACM96c, Ano95g, BG91].

superlattice [Pri14]. super scalar [AC12].

Supersonic [CCBPA15]. Support [Ano98, BFW+10, BBFW01, CFF+94, DMMV97, FGRD01, GRV01, GOM+01, HRSAA97, LMRG14, MK04, OP98, PSM+14, RRO2, SDN99, SBT04, TW01, W98, YSP+95, BBH…13a, BL99, CC10, CZ95b, DLR94, Hos12, MA94, RS19, TSY99, TSY00, TY14, WK08a, WK08b, WK08c, YAJG+15].

Supported [KLR16, CDD+96].

Supporting [FD00, FMSG17, FSG19b, GAML01, Gua16, MMS07, OOS+08, WLN03, WLN06, WCC99, YWCF15, FLD96, GAM+00].

Supports [AELG16, CLL03, DGMS93].

suppression [WWZ+96]. Surface [KS15b, PKYW95, Rot19, BHW+12, DCD+14, RAGJ95, TSP95].

Swapping [SC04]. Sweden [Eng00, HAM95b, FF95]. Swendsen [KO14, Kom15]. Switch [SCL01, TBD96].

Switched [LC93, KLY03, KLY05].

SWITCHES [DT17]. Switzerland [GT94, Ano94i, IEE97b]. SX [HRZ97, TRH00]. SX-4 [HRZ97]. SX-5 [TRH00]. Sydney [Bil95]. Sylvester [G10].

Sylvester-Type [G10].

Symbolic [CCK12, Coo95b, Ste00, YYW+12, ACM97a, BHKR95, Coo95a, Lev95, LGKQ10, LLG12, SMAC08].

Symmetric [BDV03, MDM17, YKV+18, BAO8, DCH02, GG99]. Symposium [ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94e, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IEE05, LHHM96, Li96, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tou96, USE94, UCW95, ACM97a, ACM96a, Ano93a, Ano94b, Lev95, Old92]. synchronisation [SDB+16].

Synchronization [LA02, OCY+15, TGT05, BMG07, LA06, TMTP96, YLZ13].

Synchronizing [VT97]. Synchronous [Ada97, BJ13, Cer99, DLR99, HZG08].

Synergia [SAS12]. Synergistic [UGT09].

Synthesis [CS14, GWC95]. synthesized [MC17]. Synthesizer [DS16]. Synthesizing [AJF16, NP12]. Synthetic [CC17, DP94].

Syracuse [IEE96f]. SYSMO [MM95].

System [Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BFZ97, BGD12, CAM12, CGC+02, DBA97,
DALD18, ERS95, ERS96, EK97, FBD01a, FBVD02, FFP03, Fis01, Gal97, GCBM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, KBA02, LLRS02, LTR00, LLY93, Maf94, MRY00, MM02, MSF00, MMH08, MMS07, MMH93, NPP+00d, NMS+14, Oed93, PPT96a, RGD97, SGJ+03, SSB+05, SCP97, SA93, ST02b, Sun93, TSS00b, Tsu07, UP01, Wil93, ARS89, AS92, AL92, BB94, Bri95, BBH+15, DL10, FNSW99, FK94, GS91a, GS93, GS96, GMU95, GkLyCY97, HDDG99, Hum95, HS95b, IBC+10, ITT99, JH97, JLS+14, KWK14, Kkk93, LBD96, LL95, MA09, MMR99, MMB+94, MAS06, MM11, MS99b, MALM95, NAJ99, PPT96b, PPT96c, PK05, RJDH14, RLL90, SHHI01, SL94b, Sei99, SPL99]. system [SGDM94, Sun96, Sur95b, VSRC94, VSRC95, WCC+07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, ZWZ+95, dCZG06, AL93, NMW93, Yan94]. System-Initiated [SSB+05]. system-on-a-chip [dCZG06]. System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [AAB+17, Ano94b, Att96, BGCL97, BGBP01, BME02, BPG94, Bha93, CDJ95, CAWL17, CFF94, CSW97, CJNW95, Coo95b, EADT19, FD96, FGKT97, Fo98, Gua16, HRS97, IEE93d, IEE94d, IEE95a, IEE96b, KKH03, KP96, KDL+95b, KCR+17, KSK97, LY93, LW97, MWG97, MBE03, MJB15, MBB+12, SM03, SGS10, SS96, TMD16, THN00, USE94, YGH+14, YH96, ZB97, dGJM94, AGR+95b, ACMZ11, ATL+12, Ano94e, BBB+94, BAV08, CKO+94, CLYC16, CBPP02, Coo95a, CPR+95, DF17, DR94, DBVF01, DvdLVS94, FHB+13, GBB97, GCH+10, GEW98, GKK09, GKCF13, Gra09, GFP912, GHH+93, HAA95, IM95, JBB96, JM+11, KSG13, KHB+99, KLV15, KDL+95a, KFPS94, LR06b, LHH98, LCVD94b, LLH+14, MSL12, MvWL+10, Old02, OPW+12, Pan95b, Par93, PSB+19, QB12, SSKF95, SCJH19, SPH95, SVC+11, Smi93b, SG14, SMWS96]. systems [SLN+12, Sun94b, TBB12, TMW17, TVCB18, TSP95, VLMPS+18, WCS+13, WWZ+96, WADC99, WYLC12, ZL96, ZGC94, dHH94, dIAMC11, dIAMCF12, JWB96]. System-Software [Sei99]. systolic [BSC99]. T3D [AZ95, AFST95, CCMS97, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95]. T3E [BBS99, Boo01, Che99, GRRM99, LSK04, RBB97c]. T3E-512 [RBB97c]. T3E-600 [LSK04]. T9000 [BR94]. table [BJ13]. Tag [Wis97]. Takes [GDB+93]. Talbot [ACMR14, Riz17]. Tapping [SML17]. targeting [JKM+17]. Task [AHD12, AAB+17, FKKC96, GDDM17, GPC+17, IOK00, KOI01, LHCT96, Mar03, MJB15, NIO+02, NIO+03, NSZS13, NJ01, OP10, OS97, SZG00, SPL+12, TS12a, YKW+18, APBcF16, ABF+17, BGH+05, GKF13, OdSSP12, OPW+12, OPP00, RRFH96, RFRH96, SKB+14, WC15]. Task-Based [AHD12, AAB+17, SPL+12, SKB+14]. Task-Overlapped [GPC+17]. Task-Parallel [NSZS13, APBcF16, ABF+17]. Taskers [FLD96]. Tasking [DFA+09, KaM10, SHM+10, TCM18, TSCAM12, WC15]. Tasks [ACD+09, DT17, DFA+09, JWW96, OP98, PWP19, RR02, RDLQ12, YSS+17, BS01, DDMY99, DR95, FKK+96b, FKK96a, IvdLH+00, PKE+10, PWP19]. Tau [MMS07, RMS+18]. Taxonomy [SPH96]. TBSCM [BP98]. TC2 [Boi97]. TC2/WG2.5 [Boi97]. TCMSG [BP98]. Teaching [MK00, JY95, MK97, PKB06]. Technical [Ano93c, Ano98, MC94, USE95, ACM06a, Sni18]. Technique
[BCD+15, HC06, HAA+11, MK17, HC08, Nes10, RBB17, MAIVAH14]. Techniques
[CP97, GS02, Milo1, SAL+17, SPL+12, TGBS05, Wis01, BPG94, Fer04, FCS+12, HKMC04, JKK+13, KGB+09, NFG+10, PF05, SKS01, WST95]. technologies
[Mal95]. Technology
[Ano97, Bra97, CGB+10, CSV12, Dan12, GN95, HS94, PWP+16, STB04, TGB+02, Ano93a, Ano93c, D+95, DM12, IEE94c, NS16, ZAT+07]. Tekniska
[Eng00]. Telegraphic
[ES11]. TELMAT
[BR94]. temperature
[Hin11]. Template
[GS197, PKB06]. Templates
[BN12, KH15]. Tennessee
[PR94b]. terabyte
[KTJ03]. Terabytes
[IEE02]. terabyte-MPI
[SVC+11]. threaded-MPI
[SVC+11]. Thread
[BHV12, MLGW18, SBT04, TGB+02, KPO00, KRG13, QB12, ZAT+07]. Threads
[CP98, LD01, Lee06, BS01, MVTP96, ALW+15]. Three
[Car07, GA96, Nak05b, Ram07, SAS01, GSMK17, LSSZ15, Mar05, PR94c]. three-Dimensional
[GA96, LSSZ15, PR94c]. Three-level
[Nak05b]. Throughput
[SSLMW10, Tsu07, ESB13, PP16]. Tightly
[SS01]. Tightly-Coupled
[SS01]. time-dependent
[DM12, LBB+16, LYSS+16, ÖN12, SS+16, YSM+16, ZW+95, SKD+04]. time-domain
[HE13, NZZ94, Ram07, VM94]. time-independent
[CDM15]. time-varying
[Uhl95c]. tips
[For04]. TLM
[SC96a]. TM
[GGCM99, GCGS98, KHS01]. TN
[DT94, BR94]. TOD
[GPC+17]. TOD-Tree
[GPC+17]. today
[IEE94c]. Toepplitz
[BV99, BAV08]. Tolerance
[GKP97, GL04, LMRG14, LNLE00, RPM+08, TS12a, WC09, Wil93, SG05, ZHK06]. Tolerant
[BB+02, BHI+06, BHK+06, CF01, CFDL01, FD00, FB01a, FBVD02, FD02a, FD04, GF+03, IEE95c, JSH+05, MS00, BCH+08, FB01b, FD02h, HG12, LGM17, LS08, NCB+12, NCB+17, PDK95]. Tomographic
[Pat93]. tomography
[FWS+17, RCFS96]. tomorrow
[IEE94c]. Tool
[Ano01b, Beg93b, BFMT96b, DW02, GSN+01, KAMAMA17, KSJ14, KKP01,
Transient [SIS17], transistor [Ano03].

transistors [Ano03]. Transition [MRV00].

Transitive [CGPR98, PPR01]. Translating
[Mar09, NCB+17]. Translation
[DDL00, SSE12, HCL05, LME09, NCB+17].

Translator
[KKM16, UCZ+12, CHKK15, GScFM13].

Transmitters [WWZ+96]. Transparent
[CC+95, IFA+16, NPP+00c, RVP919,
SLGZ99, LFS93a, LFS93b, LFL11,
NPP+00a, SOA11]. Transparently
[CB16].

Transport [KHS01, RS97, VRS00, WR01,
ZZ04, Pr14, SH94, SCJH19, WH96].

Transporter [Fer92], transpose [Bha98].

Transposition [HD02b]. Transputer
[Ara95, ACDR94, CJNIW95, FK95, FF95,
GN95, GHG+93, MC94, dGJM94, ZPL96,
Ara95, CJNIW95, GHG+93, dGJM94].

Transputers [ACDR94, ACDR94, SSB96a,
dGJM94].

Transists [GPM98].

Translated
[ACM98, ACDR94, AGR93a, BS96a,
CJNW95, FK95, FF95, GHG+93, MC94,
dGJM94].

Translating
[ACDR94, SPK91b, BDG99, Fan98, GBF95,
LH98, MSW06, MHC94a, ZL96].

Tools-supported [CDD+96]. Top
[AHP91, MCM96, BM97, TIA97, VFR97, Yu97,
Ser97, NBS96, MFC96, DCL97, CCHW03].

Traceback [FLPG18].

track [Hog13, MRB17].

Trees [NPP90, SOA11].

Traces
[CC+95, MAN90, WM01, CDMS15,
DWM12].

Traceback [FLPG18].

Trans [JKM+17]. Topologies
[BCM96, MK00].

Topologies
[TPVM, TOPPER].

Topological [HM01].

Toral [SG15].

Tool
[Ano12, LC07, LLC13, SLS96].

Tools
[ABC+00, BDG91b, BDG+93a, BS96a,
BDL98, BoFBW00, Cha05, CDD+96, DT94,
EV01, GMP98, MHC94b, MCLD01,
PKB01, STMK97, Vos03, Wan97, AVA16,
BDG+92a, BFIM99, Fan98, GBF95, LH98,
MSW05, MHC94a, ZL96].

Topologically aware
[MBBD13].

Topology-Based
[HM01].

Toppers
[KKP01].

Topologies
[CC+95, Vos03].

Topological [HM01].

Topology-Based
[HM01].

Topological [HM01].

Torus
[SG15].

Townsends
[DT94].

TPVM
[FS95, FS98].

Trace
[Ney00, FLPG18].

Trace-based
[FLPG18].

Traceback
[dOSMM+16].

Tracefiles
[FC+01].

Traces
[CC17, MAN90, WM01, CMDS15,
DWM12].

Tracer
[GAP97, HD02b].

Traj
[BHM94, BHM96].

Traffic
[Zah12].

Training
[CSV12].

Transactional
[BBW+12, MFC+08, SBG+12].

Transcendental
[BBW+12].

Transfer
[BKGS02].

Transform
[THS+15].

Transform
[YULMTS+17, KT10, DBLG11].

Transformation
[CLA+19, EP96, NSZS13,
GSM17, HZ96, TSY00].

Transformations
[JE95, TG94].

Transformed
[BY12].

Transform
[PSK+10].

Transforms
[ACMR14, KLR16, HP11, Uhl95c, Zem94].

Transient [SIS17], transistor [Ano03].

transistors [Ano03]. Transition [MRV00].

Transitive [CGPR98, PPR01]. Translating
[Mar09, NCB+17]. Translation
[DDL00, SSE12, HCL05, LME09, NCB+17].

Translator
[KKM16, UCZ+12, CHKK15, GScFM13].

Transmitters [WWZ+96]. Transparent
[CC+95, IFA+16, NPP+00c, RVP919,
SLGZ99, LFS93a, LFS93b, LFL11,
NPP+00a, SOA11]. Transparently
[CB16].

Transport [KHS01, RS97, VRS00, WR01,
ZZ04, Pr14, SH94, SCJH19, WH96].

Transporter [Fer92], transpose [Bha98].

Transposition [HD02b]. Transputer
[Ara95, ACDR94, CJNIW95, FK95, FF95,
GN95, GHG+93, MC94, dGJM94, ZPL96,
Ara95, CJNIW95, GHG+93, dGJM94].

Transputers [ACDR94, AGR+95b, dCH93].

Transtech
[Ste94].

trap
[BBW+16, SSB+16, YSV+16].

TRAPPER
[KFSS94, SSKF95].

travel
[SIS17].

travel-times
[SIS17].

traveling
[GM94].

traversing
[BDG+92b].

TreadMarks
[LDC97].

Tree
[GPC+17, ADD94, AB13,
BCAD06, CG93, GS95, Zah12].

Trees
[CDP03].

Trends
[Du12, IE93d, MBS15, JPT19, SGLD94, Sun96].

Triangle
[SL94a, SOA11].

Triangular
[Hog13, MRB17].

tricks
[Fer04, LK14].

Tridiagonal
[DALD18, DR18, VLMPS+18].

Triolet
[RJDH14].

Trivandrum
[IEE96a].

Troy
[SS96].

Truncated
[ZB97].

truncating
[Ram07].

SMC
[Ano03].

TSUBAME
[NM12].

TTIG
[RRBL01].

Tucson
[JBY96].

tuned
[PSB+19].

Tuning
[BC18, CzA02, CzA03,
NPP+00d, SLJ+14, WGL17, DQLG11,
FE17, LGG16, SH14, Yan94, FVD00].

tuple
[MYB16].

tuple-based
[MYB16].

Turbulence
[Str97, MRPR11, Str96].

turbulent
[BCM+16, CBYG18].

Tutorial
[EM00a, EM00b, GBD+94, GLUT00, Nov95,
NMC95, Per96, Ano95b].

TV
[CJ+10].
Twenty [ERS95, ERS96, HS94, IEE95c, MMH93].
Twenty-Eighth [ERS95]. Twenty-fifth [IEE95c]. Twenty-Ninth [ERS96].
Twenty-Seventh [HS94]. Twenty-Sixth [MMH93]. Two [CM98, STY99, SJK+17a, SJK+17b, YM97, AGR+95b, AL93, ADLI03a, ADLI03b, CB11, ED94, HAJK01, MSP93, diAMCFN12]. Two-Dimensional [SJK+17a, SJK+17b, AL93]. two-layer [diAMCFN12]. Two-level [STY99].
Two-phase [ED94]. TX [ACM00, Cha05, DKM+92, Ano95a, Ano95d]. Type [GK10, MSB97, FVLS15, GFPG12]. Types [Wel94, NYNT12]. typy [OA17].
unifying [CCM12]. Unintended [SAL+17]. unit [VDL+15, MSML10]. United [Boi97].
Units [KS15b, LSVMW08, ABDP15, BHS18, LHLK10, WWFT11, HJBB14].
Universal [LW97, DDL95]. University [CGB+10, IEE94d, IEE95]. R+92]. Unix [OLG01, RBS94]. Unleashing [TCM18].
unstructured [Wi94]. Unstructured [AB93a, N002, BM02, SM03, AB93b, NO02a, TPD15]. unveils [Ano03]. UPC [EGC02, MTK16, Mar05, SJK+17a, SJK+17b]. Update [KT10, GSKM17].
Updates [ESB13, KS15a, ZDR01, HSE+17]. UPM [NPP+00d]. ups [Ano03]. USA [ACM96b, ACM98b, ACM00, ACM06a, AGH+95, BBG+95, BS94, Chat05, CJKM11, DT94, EV01, Eds08, ERS96, Gat95, Ham95a, Hol12, IEE95b, IEE95d, IEE96f, IEE96e, IEE96i, MCD+08, Old02, PBB+95, Rec96, Sin93, Ten95, ACM95b, ACM97b, Agr95a, Ano89, B+05, DKM+92, HS94, IEE94e, IEE95k, IE02, Ost94, SL94a, SS96, USE94, USE95, USE00]. Usage [FD02a, FCLG07, FD02b, FLVS15]. Use [FJBB+00, Gro02a, HK93, HK95, MB12, PSZ00, Shi94, AB95, GEW98]. USENIX [USE94, USE95]. User [AD98, ACDR94, BDG+91a, CHD07, CD01, CDND11, DDK05, D+91, DHHW92, DHHW93a, DLM99, DKP00, DLO03, FCLG07, GB+94, GN95, KGRD10, KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MTWD06, NPP+00c, Nov95, NMC95, Per96, RWD09, TDB12, XF95, ZW205, Ano95b, BB+94, BW97, KCP+94a, RSC+15, Ren01, Wll94, BBI...13a]. User-Level [DHHW92, DHHW93a, KCP+94b, KOW97, NPP+00c, XF95, ZW205, KCP+94a, BBH...13a]. Users [Ara95, CHD09]. uses [SH96]. Using [AR01, ADRC97, AHP01, And98, AP96, Ano95e, AKE00, AZG17, AB93a, BST+13, BPMN97, BG95, BS93, BKG02, BM97, Bon96, BBC+00, BBH12, CGC+11, CRE99, CMM03, CP97, CSPM+96, CC17, Che99, CCSM97, CDM93, CCHW03, CRGM14, CT94a, CBPCF15, CD98, DeP03, DARG13, DAK98, DGMJ93, DGH+19, EM02, EMO+93, ESM+94, EK97, FADF15, FD04, FTVB00, FS93, GGCMA99, GCGS98, GTH96, GM95, GK97, GS96, GMPO, GPH97, GJN97, GLS94, GLT99, GLS99, GLT00b, GLT00a, HB96b, HSW94, HJ98, HLP11, HT08, HRSA97, HT01, IOK00, IDD94, IKM+01, JFRGF12, JPP95, KS98, KOL01, KKV01, KS96, KA13, LRR02, LTR00, LTR07, LTRA02, LY93, LLY93, LZ97, LAFA15, MK17, MTSS94, MPD04, MR12,
MSCW95, MANR09, MBB+12, MSB97, NO02b, NIO+02, NIO+03, Neu94, NH95.

Using [NA01, OM96, OCY+15, OWSA95, PWP+16, PK98, PPT96c, POL99, PT01, Per99, Pet97, PBK00, PD98, PGE18, Pus95, QRMG96, QMGR00, RR00, Res03, RRBL01, RVIRG12, RLL01, RRG+99, SAS01, Sev98, SSAS12, SP99, SA93, Sni93a, SBR95, STV97, SMOER93, Sta95b, ST17, SHK96, SCL01, SJK+17a, SJK+17b, TS12a, TSB02, TSB03, TK16, TBB12, Tha98, Tra98, Tsa07, VLO+08, WO95, Wal01a, WJ12, WLR05, Wis97, Wis01, WMC+18, WLYC12, YK+18, ZBl12, van97, vdLJR11, AMHC11, AK99, ABF+17, AL96, ADT14, ABG+96, AB93b, AGIS94, AGG+95, BV99, BFL99, BSC99, BG+92c, Bie95, Bis04, BCM+16, BTC+17, BCD96, BID95, BAG17, BSH15, BMG07, CG93, CBM+08, CBYG18, CDM96, CS14, CLBS17, CT94b, CC00b, DG95, DMR19, DS13, DRUC12, DSOF11, DCH02, DM12, EGD92, FRS96].

using [FSV14, FSC+11, Fin94, Fin95, FHC+95, FWS+17, GGC99, GSGM17, GCG09, Goe02, GBF+14, GM95, GM18, GRTZ10, HB96a, HDDG09, HTJ+16, HP11, HPS+96, HPLT99, HASn00, Hol95, HLO+16, HAA+11, IJM+05, IM95, IKM+02, JLI8, JF95, JKH08, JLS+14, JJJ+03, JJJ+11, JPT14, JR10, JMDVC+17, KFA96, KRKS11, KY10, Kat93, KJJ+16, KR09, KM16, KME09, KMC96, KMC97, KRC17, KMM15, KD13, KPK13, LP00, LSG12, LSSZ15, LCY96, LSVMW08, LCMG17, LQ96, MMR99, MP95, Mar06, MSMC15, MAB05, Mck94, MM11, Mic93, Mic95, MRH+96, MMM13, MSM10, MS95, MM14, MC99, MVL+10, NO02a, Nak05a, NZZ94, NB96, NAJ99, NU05, OKM12, OH10, Ols95, Pat93, PDP14, PGdCJ+18, PN01, PKE+10, QRC95, RJ95, RAS16, RCFS96, RBA117, RM99, RCG95, SLM14, SM10].

using [SLGZ99, SGS95, SSS99, SMS00, SOA11, SVC+11, SSGF00, SFLD15, SNS94, SU96, SP11, TC94, TPLY18, Tsa95, Uhl94, Uhl95b, UH96, VM94, VB99, VGS14, VM95, WO96, Wal01b, WSC+13, WCVR96, WST95, WMRR17, WMRM19, WADC99, W096, WYLC12, XF95, YULMTS+17, YW11, YWCF15, YCA18, ZAHS95, ZK15, ZAT+07, ZZ95, Ano95c, Ano00a, Ano00b].

UT [Hol12]. **UTE** [JF95]. **Utilising** [SC96a]. **Utilities** [CC95]. **UV2** [TW12]. **UVM** [NSLV16].

V [JB96, BHC+02, BHK+06]. **V2** [BCH+03]. **VA** [Sin93, RP95]. **Vacancy** [HD02b]. **Vaidy** [Ano95b, NM95].

Validation [BDV03, GLB00, WCC12, CMV+94, SCB14, SCB15]. **Value** [vHK94, AL96, LSR95, SP11, SD99].

Value-based [vHK94]. **valued** [Str12]. **VAMP1R** [BH01]. **Vancouver** [IEE95a, IEE95i]. **Vapour** [PKY95]. **Variable** [Ano98, ZZG+14].

Variables [FKH02]. **variably** [TOC18]. **Various** [LH95]. **varying** [Uhl95c].

VC1 [Whi94]. **vCUDA** [SCS12]. **Vector** [AKL16, DS13, Fuj08, KDT+12, LL16, Uhl95c, ER12, FVLS15, FJZ+14, GL96, GL97c, Har94, Har95, HE15, PMZ16, XLL13]. **Vectorization** [IKM+01, MCP17, IMK+02]. **Vectorized** [KB13]. **vectors** [AAA16]. **Vegas** [Ano94a]. **Vehicle** [BHM94, BHM96, WH94, BKvH+14].

Vendor [Rab98, Bor99]. **Venice** [DLO03, OL05]. **venture** [An03].

Verification [BCD+15, RAS16, Trå12b, LMM+15, SZ11, VVD+09]. **verified** [WBB15]. **verifier** [BCD+12, LGK10]. **verify** [MDSAS+18, MAC08]. **Verilog** [Kat93, KMK16]. **Versatile** [KSJ14].

Version [BCG19, CCK+95, MHSK16, Bjo95, BHW+12, BBH+15, Man94, Str94, Wal95, WRMR19]. **versioned** [SSB+17].

Versions [Ano98]. **Versus** [RTRG+07].
Ahm97, CE00, KPW05, KAC02, KPO00, LMG17, LC97b, MFTB95, NSLV16, NHT02, NHT06, RS95, SZ99, Wal00, ZLZ+11.

verteilter [GBR97], VGRIDS [AB93a].

VIA [Sei99, FKKC96, BHW+12, CGZQ13, DS96b, FLPG18, GB96, Hos12, HCL05, LA5S+15, LSSZ15, NPP+00c, QHCC17, SLJ+14, Sti94, VBLvG08, YPZC95, ZJDW18, ZLL+12, EMO2, RR01]. VIA/SCl [RR01]. Viable [Ano03]. Victoria [IEE95e]. Video [KS95, KSJ96]. videogames [YMYI11]. Vienna [BH95, TBD12, Ben95]. View [ZDR01, ZDR04]. ViMPIOS [Sto98].

VinaMPI [ESb13]. ViPIOS [Sto98]. Virginia [IEE92, IEE94a, Sie92a, Sie92b].

VirtCL [YWTC15]. Virtual

[ACM96a, AS92, ARL+94, BJD93, BP99, BS93, BG94b, CHD07, D+91, EGR15, Fis01, GB+94, Gei01, Gre94, ITT99, JPP99, KNT02, KKD03, KKD04, KKD05, LKD08, LK10, MTD06, NM95, Nov95, NMC95, Pat93, Per96, QRG95, RWD09, SSS99, Sei99, SCS12, TY14, Tsu07, Wei94, YC98, ARS98, AD98, AL92, Ano95b, BR91, BDC+91a, BPC94, BCR99, Bir94, BDL96, BCM+16, BFM96, BDW97, BB95b, CARB10, Cav93, Cha96, CD01, CXB+12, DDS+94, DM93, DKD05, DLM99, DPK00, DLO03, DPZ97, ESB13, FM90, Hol95, KMC97, Krao2, LG93, MN91, MRH+96, NB96, PRS16, Sch94, SK92, SCC96, SL00, WK08a, WK08b, WK08c, AGIS94, Sei99].

virtual-time [SK92].

Virtualization

[FC05, MGL+17, Ott94, YSS+17, ZLP17, RSC+15, SIRP17]. Virtualized

[EGR15, YWCF15, RNP13]. viruses [Str94]. viscoelastic [HK94, MAIWAH94].

viscosity [ZZG+14], viscous [RM99].

Vision [KCR+17, JRM+94]. VISPAT [HPS95]. Visual

[BPMM97, FNSW99, PDY14, Ros13, ACGdT02, LC07, GE95, GE96].

Visualization

[BDGS93, GKP96, GKP97, HJ98, KA13, MVY95, NAW+96, PK98, PCY14, Wis96a, ZLGS99, Bor99, Eng00, FHC+95, HPS95, KFA96, TSS98, WST95, Wis96b].

[LG93]. VOBLA [BKvH+14]. Vol

[ATC94, HS94, Nag05]. Volatile

[BBC+02, BCH+03]. Voltage

[KFL05, FKL08]. Volume

[Ano99a, Ano99c, Ano99b, Ano99d, DIN12, GHL+98, SOHL+98, BHW+12, WST95]. Volumes [GAP97, SAI11]. Volumetric

[KA13, CLBS17, KGB+09]. Voodoo

[PMZM16]. VOOM [BR91]. VORD

[KSJ14]. VR [DBA97]. VRML

[ACM96a, NM95, KSJ95, KSJ96]. VRML-Based [KSJ95, KSJ96]. vs

[FH98, BCH+08, Luo99, Nak05]. VTC

[NU05]. VTDIRECT95 [HWS09, SWH15]. VxWorks [YGH+14].

WA [ACM05, LCK11]. Wailea

[ERS96, HS94, MMH93]. Waknaghat

[CGB+10]. Walker

[Ano96a, Ano99a, Ano99b, Nag05]. wall

[NB96]. wall-clock [NB96]. walls [JAT97].

WAMM [BCLN97]. Wang [KO14, Kom15]. Warehouse [DERC01].

Warp

[SCL01, HKOO11, MMW96, VSW+13].

WARPED [MMW96]. WARPmemory [SF095]. Washington [B+05, BS94, IEE93c, IEE94h, IEE95k, Ost94]. water

[HTHD99, R+92, dIAMC11, dIAMCFN12].

Waterman [KDS012, RGB+18].

watershed [NA99]. Wave

[BBC+00, EMO+93, ESM+94, NSLV16, SMOE93, Gei94, KM10, KEGM10, MA01, NB96, RNNM+12]. Wave-Particle

[NSLV16]. Waveform [LSR95]. Wavelet

[Uhl94, Uhl95b, Zsm94, vDJR11, Uhl95a, Uhl95c]. Way [Vog13, FGT96]. ways

[CZ96]. weak [SD16]. Weather

[AHP01, HE02, Bjo95, KOS+95a, Mal01].
REFERENCES

YLQ [Gal97]. YMP [BL94]. Yorkshire [CJNW95].

References

Almasi:2005:DIM

Akzhalova:2008:WPL

Arthur:1993:PIU

T. Arthur and M. Bockelie.

REFERENCES

CPEXEI. ISSN 1040-3108. URL http://www3.interscience.wiley.com/cgi-bin/abstract/76500357

Appiani:1995:PSI

Appiani:1995:PSM

Agosta:2015:OPP

Aliaga:2017:CTP

Arbenz:1996:MDS

Abrahart:1996:GIC

R. J. Abrahart, editor. GeoComputation 96. 1st International Conference on GeoComputation: Leeds, UK,
REFERENCES

Alvanos:2017:PMM

Ayguade:2009:DOT

Arnold:1994:PCT

Acacio:2002:MDM

Alexandrov:1997:PMC

Agullo:2011:QOM

Emmanuel Agullo, Camille Coti, Thomas Herault, Julien Langou, Sylvain Peyronnet, Ala Rezmerita, Franck Cappello, and Jack Dongarra. QCG-OMPI:

Andersch:2012:PPE

ACM:1990:PAC

ACM:1994:CPI

ACM:1995:PAS

ACM:1995:SAA

ACM:1996:SVR

ACM:1996:FCP

REFERENCES

ACM:1996:SCP

ACM:1997:PPS

ACM:1997:SHP

ACM:1998:AWJ

ACM:1998:SHP

REFERENCES

USA, 1998. ISBN ????
LCCN ????. URL http://www.supercomp.org/sc98/papers/.

REFERENCES

ACM:2006:PST

ACM:2006:PCC

ACM:2011:SSP

Antonelli:2014:ATS

ISSN 0098-3500 (print), 1557-7295 (electronic).

Alonso:2011:NEM

Ancona:1995:PAD

Alexandrov:1998:RAP

Vassil Alexandrov and J. J. Dongarra, editors. Recent advances in parallel virtual machine and message passing interface: 5th European PVM/MPI User’s Group Meeting, Liverpool, UK, September 7–9, 1998: proceedings, volume 1497 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / Lon-
REFERENCES

Adamo:1997:A0O

Adamo:1998:MTO

Antonuccio-Delogu:1994:PTN

Addison:2001:EOP

Arioli:1995:PSB

Amestoy:2003:IIMa

[ADLL03a] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Xiaoye S. Li. Impact of

Ashby:1995:PPG

Ayguade:1995:DUA

Aityan:1995:PFI

Averbuch:1994:PES

Arbenz:1996:SRP

Ayguade:2006:ENO

Eduard Ayguade, Marc Gonzalez, Xavier Martorell, and Gabriele Jost. Employing nested OpenMP for the parallelization of multi-zone computational fluid dy-

Agrawal:1995:PIW

Almeida:1995:CST

Alfaro:1997:FDW

Alnuweiri:1995:PHF

Astalos:2000:CMS

Agathos:2012:TBE

REFERENCES

tronic). URL http://link.springer.com/chapter/10.1007/978-3-642-30961-8_16/

REFERENCES

[AL92] M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92], page ?? LCCN ???. Proceedings available via anonymous ftp from ftp.scri.fsu.edu.
in directory pub/parallel-workshop.92.

REFERENCES

REFERENCES

Anonymous:1989:PFC

Anonymous:1992:PSE

Anonymous:1993:ATA

Anonymous:1993:ISA

Anonymous:1993:JFI

Anonymous:1993:MPI

Anonymous:1993:MMP

Anonymous:1993:PSE

REFERENCES

Anonymous:1993:SEC

Anonymous:1993:CDP

Anonymous:1994:ICS

Anonymous:1994:ALM

Anonymous:1994:FWR

Anonymous:1994:MMP

Anonymous:1994:PDC

Anonymous:1994:PPC

Anonymous, editor. Parallel processing comes of age: real applications from industry and commerce: Seminar
REFERENCES

REFERENCES

San Antonio, TX, Papers — Society of Petroleum Engineers of AIME. Society of Petroleum Engineers, Richardson, TX, USA, 1995. ISBN ???? LCCN ????

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In 3rd CLIPS conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ???? LCCN ????

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In 3rd CLIPS conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ???? LCCN ????

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In 3rd CLIPS conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ???? LCCN ????

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In 3rd CLIPS conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ???? LCCN ????

Anonymous:1996:PPA

Anonymous:1996:RP

Anonymous:1996:TPR

Anonymous:1997:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from
Anonymous:1999:BRMa

Anonymous:1999:BRMb

Anonymous:1999:BRMc

Anonymous:1999:BRMd

Anonymous:2000:BRUd

Anonymous:2000:BRUe

Anonymous:2001:AAL

Anonymous:2001:EDP

Anonymous:2003:MNIc

Anonymous. Micro news: IBM ups the ante in silicon transistor speed; new benchmark suite based on high-performance computing applications, MPI and OpenMP [SPEC HPC2002]; EU OKs Hitachi, Mitsubishi

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

Aji:2016:MEA

Aji:2016:MAA

AlHaddad:2001:UNW

Mohammed Al Haddad and Jerome Robinson. Using a network of workstations to enhance database query processing performance. *Lecture Notes in Computer Sci-...
REFERENCES

Arabnia:1995:TRA

Al-Refaie:2017:PAH

Addison:2003:OIA

Altas:1994:NIE

Abrossimov:1989:GVM

Arnow:1995:DLB

REFERENCES

Al-Refaie:2017:PCT

Al-Salman:1992:DIP

Awile:2014:PWF

Alonso:1997:PBB

Alves:1995:WPC

Anderson:2017:BGB

Agrawal:1994:PIC
REFERENCES

Amritkar:2012:OPF

Al-Tawil:2001:PME

Attiya:1996:ERS

Angskun:2001:DPM

Andújar:2016:OSF

REFERENCE

Pedro Bruel, Marcos Amaris, and Alfredo Goldman. Autotuning CUDA compiler pa-

REFERENCES

[BBC+02] George Bosilca, Aurélien Boutellier, Franck Cappello, Samir Djilali, Gilles Fedak,

Bertozzi:1999:MIT

Bethune:2014:PAA

Bova:2001:PPM

Balaji:2010:FGM

Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Fine-grained multithreading

Bustamam:2012:FPM

Bland:2013:EUL

Bland:2013:PFR

Busa:2015:CCO

Boryczko:1994:LGA

[Bircsak:2000:EONa] John Bircsak, Peter Craig, Raelyn Crowell, Zarka Cvetanovic, Jonathan Harris, C. Alexander Nel-

REFERENCES

[Bala:1997:PVQ]

[Bouteiller:2003:MFV]

[Bikshandi:2009:EPI]

[Bruno:2000:PEH]

[Bolloni:2000:TIQ]
Alessandro Bolloni, Stefano Crocchiola, and Antonio Laganà. Time independent 3D quantum reactive scattering on MIMD

REFERENCES

Burtsc\text{h}er:2018:HQF

Bland:2013:SIP

Beguelin:1991:UGP

Beguelin:1991:GDT

Beguelin:1992:HGD

REFERENCES

Adam Beguelin, J. J. Dongarra, G. A. Geist, Robert Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, ???. 19xx. [BDG+93b]

REFERENCES

Greg Bronevetsky and Bro-
REFERENCES

REFERENCES

111

[Ben18] Shajulin Benedict. SCALE-EA: A scalability aware

REFERENCES

REFERENCES

[Bubak:1996:PPM]

[BFMT96b]

[Boeras:1994:FSP]

[Boeras:1994:AMP]

[Boeras:1994:FSP]

[Bhavsar:1995:SSJ]
REFERENCES

REFERENCES

Bhargava:1993:PIW

Bhanot:1998:DTM

Bader:1996:PPA

Bouteiller:2006:MVP

Bubek:1995:DSC

Bischof:1995:CSM

Bachem:1994:PCT

REFERENCES

REFERENCES

REFERENCES

IHPCFL. ISSN 1094-3420 (print), 1741-2846 (electronic). URL http://hpc.sagepub.com/content/24/1/78.full.pdf+html.

[BJ95] L. Boianov and I. Jelly. Distributed logic circuit simulation on a network of work-

Bekas:2002:PCP

Berk:2013:CPC

Boryczko:1995:NIC

Bull:2000:PPJ

Beaugnon:2014:VVO

REFERENCES

Ballico:1994:PSP

Bendrider:1995:SME

Beazley:1997:EMP

Bubak:1999:TPR

Baraglia:1993:PWC

Bach:2013:LQB

Bubak:1998:PCL

REFERENCES

Bhandarkar:1997:CRP

Booth:2000:SSM

Basumallik:2002:TOE

Buntinas:2007:IES

Bronevetsky:2003:AAL

Bubak:1994:PDS
REFERENCES

Bubak:1994:EMD

Baiardi:2001:CRD

Brightwell:2002:DIM

Bubak:1994:FLG

Bubak:1994:IPL

Barthels:2017:DJA

Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten Hoeffer. Distributed join algorithms on thousands of cores. Proceedings of the VLDB Endowment, 10(5):
Berrendorf:2000:PCO

Bawidamann:2012:ETO

Bull:2001:MSO

Bubak:2000:IOB

Boisvert:1997:QNS

Bonnet:1996:UPW

REFERENCES

Booth:2001:OML

Borkowski:1999:LVC

Boszormenyi:1996:PCT

Brebbia:1993:ASE

Berthou:1998:PHM

Barbosa:1999:ADM

Beletsky:1994:OPV

V. Beletsky, T. Popova, and A. Chemeris. Organization of a parallel virtual machine. In Horiguchi

Becks:1994:NCT

Barbosa:1997:EUW

Baptista:2001:IOS

Balou:1991:DIV

Burrer:1994:RRB

C. Burrer and P. Remy. RUBIS: a runtime basic interface software on TELMAT T9000 TN series. In de Gloria et al. [dGJM94], pages 63–78. ISBN ????? LCCN ?????

Bernardi:1995:CCE

Francesco Bernardi and Jean-Louis Rivail, editors. Computational chemistry: 1st European conference on computational chemistry (May 1994, Nancy, France),
REFERENCES

REFERENCES

Boudet:1999:PIH

Benzoni:1992:CLF

Briley:1994:NNH

Bruck:1995:EMPa

Brightwell:2005:AIO

Brüning:2012:MFT

Barth:1993:CNM

REFERENCES

Bolding:1994:PCR

Beguelin:1996:TMD

Brightwell:1996:DIM

Blikberg:2001:NPA

Blikberg:2005:LBO

Brown:2007:HSP

REFERENCES

Bassomo:1999:PGE

Bolton:2000:MPL

Bukata:2015:SRC

Bakhtiari:1995:APL

Bai:2013:SLA

Benzoni:1991:MFR

REFERENCES

[NBM19] N. D. Baltas and C. S. van den Bergh. Comparison of the porting of a computational fluid dynamics application to SIMD

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

Blum:1996:PIP

Bureddy:2012:OGM

Bihari:2012:CIT

REFERENCES

[Carpanoni:2010:HFP] Simone Campanoni, Giovanni Agosta, Stefano Crespi

Cavender:1993:APV

Chabbi:2017:EAL

Cartwright:2000:AOE

Czapinski:2011:TST

Creec:2016:TSS

Cooper:1994:CHF
REFERENCES

Coronado-Barrientos:2019:ANF

Casas:2010:APD

Che:2008:PSG

Chapman:2002:APU

Clay:2018:GAP

Chapple:1995:PUL

[CC95] S. R. Chapple and L. J.
REFERENCES

Ciaccio:2000:GMG

Couturier:2000:PMD

Cardoso:2010:MSO

Chen:2017:AA

REFERENCES

trans/td/2017/08/07809142-abs.html.

Chen:2000:MCO

Couder-Castaneda:2015:PCM

Casas:1995:MMT

Collingbourne:2012:STO

Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly. Symbolic testing of

[Cot01] Yiannis Cotronis and J. J. Dongarra, editors. *Recent advances in parallel virtual machine and message passing interface: 8th European PVM/MPI Users’ Group*
REFERENCES

[Clemencon:1996:THM]

[Cowrie:1994:PPP]

[Chang:1995:EPCb]
Sheue-Ling Chang, David Hung-Chang Du, Jenwei Hsieh, Rose P. Tsang, and Mengjou Lin. Enhanced PVM communications over a High-Speed LAN. IEEE
parallel and distributed technology: systems and applications, 3(3):20–32, Fall 1995. CODEN IPDTEX. ISSN 1063-6552 (print); 1558-1861 (electronic).

REFERENCES

Chaussumier:1999:ACM

Coll:2003:SHB

Cappello:2000:MVM

Clemencon:1995:AEP

Chau:2007:MIP

Clematis:1999:EPC A. Clematis and V. Gianuzzi. Extending PVM with consistent cut capabilities: Application aspects
REFERENCES

REFERENCES

Carter:2010:PLN

Clarke:1994:MMP

Cunningham:2014:RXE

Carpenter:2000:MML

Catanzaro:2011:CCE

Calore:2016:PPA

Enrico Calore, Alessandro Gabban, Jiri Kraus, Sebastiani Fabio Schifano, and Raffaele Tripiccione. Performance and portability of accelerated lattice Boltzmann applications with OpenACC. *Concurrency and Computa-
REFERENCES

Chapman:2011:OPE

Chatterjee:1993:GLA

Chuang:2001:DTM

Chan:1998:PCT

Casanova:2015:TMS
References

Cecilia:2012:CSC
José María Cecilia, José Manuel García, and Manuel Ujaldón.

Chen:2013:IRM
Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin.

Cheng:1994:PDP
D. Cheng and R. Hood.

Ciancarini:1996:CLM
Paolo Ciancarini and Chris Hankin, editors.

Charny:1996:MPV
B. Charny.

Chapman:2002:PAD
Barbara Chapman.
REFERENCES

Chapman:2005:SMP

Cappello:2009:FSI

Chergui:1999:UPP

Cappello:2007:RAP

Cheng:2010:BRBb

Jie Cheng. Book review: *CUDA by Example: An Introduction to General-Purpose GPU Pro-
REFERENCES

P. Czarnul and H. Krawczyk. Dynamic assignment with process migration in distributed environments. In Dongarra et al. [DLM99], pages 509–516. ISBN 3-540-66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349
REFERENCES

(Cornelis:2017:HAV) Jan G. Cornelis, Jan Lemeire, Tim Bruylants, and Peter Schelkens. Heteroge-

Chabbi:2015:BEP

Chen:2003:GMD

Chien:1999:DEH

A. Chien, M. Lauria, R. Pen...
REFERENCES

[102x681]REFERENCES

155

REFERENCES

[Cou93] G. Coussement. Parallelization of a mesh optimization
code on a RS/6000 cluster. In Anonymous [Ano93f], pages 185–212. ISBN ???. ISSN 0254-6213. LCCN ???.

Carvalho:1997:PCC

Carissimi:1998:AEM

Cercos-Pita:2015:ANF

Corno:1995:PTA

ChassindeKergommeaux:1999:MER

Cappello:1999:PNB

Cappello:2001:UPS

Franck Cappello, Olivier Richard, and Daniel Etiemble. Understanding performance of SMP clus-
REFERENCES

Cores:2014:FAM

Cores:2016:ROM

Cores:2014:MAL

Ciampolini:1996:EPM

Coole:2014:FFH

Chetlur:1998:ALE

REFERENCES

REFERENCES

REFERENCES

Cao:2011:OMM

Cui:2012:OOB

Chengqing:1996:WIP

Czarnul:2002:DTI
Czarnul:2003:PTA

Czapinski:2013:EPM

Czech:2016:IPC

Chapman:2008:PPM

Dongarra:1991:UGP

Dongarra:1995:HPC

REFERENCES

5. ISSN 0927-5452. LCCN QA76.88.H55 1995. [Dar01]

Decker:1995:TDU

Dongarra:1997:BCA

Dean:1994:CPV

Dan:1999:QAM

Durand:1991:HPC

Demaine:1996:FCC

DePasquale:2003:UJU

C. J. DePasquale. Using the JVMP! to understand the behavior of Java classes during the development process. *Cmpg*, 2(??):821–832, 2003. CODEN ????

REFERENCES

REFERENCES

REFERENCES

Dongarra:1993:PUM

Dongarra:1993:DSM

Derakhshan:1997:PEP

Dongarra:1997:CSD

Dongarra:1996:SRP

DiPierro:2014:PPP

DiSerio:2002:ENN

[DI02] Angela Di Serio and María Ibáñez. Evaluation of a nearest-neighbor load balancing strategy for parallel molecular simulations in MPI environment. Lecture Notes in Computer Sci-
REFERENCES

REFERENCES

DiMartino:2007:SIS

DiMartino:2008:SSG

Damodaran-Kamal:1993:NTD

Damodaran-Kamal:1994:MSR

Damodaran-Kamal:1994:TRP

Dongarra:1992:PFS

[DKP00] J. J. Dongarra, Peter Kacsuk, and Norbert Podhorszki, editors. Recent advances in parallel virtual machine and message...
REFERENCES

Dickens:2010:HP1

delaAsuncion:2011:SOL

Desai:2007:CEM

Marcos:2002:DDP

REFERENCES

REFERENCES

Dathathri:2016:CAL [DMB16]

Dalcin:2019:FPM [DMK19]

DiMartino:1997:IPD [DMMV97]

Dongarra:1996:APC [DMW96]

Dinda:1996:PIA [DO96]

Donev:2006:ICF [Don06]

REFERENCES

Deuzeman:2012:LMP

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES

Deniz:2016:MGM

Dang:2017:ECB

Dietrich:2017:CBA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Eppstein:1994:CSP

Eigenmann:2008:ONE

ElMaghraoui:2009:MIM

Eleftheriou:2005:SFF

El-Ghazawi:2002:UPP

Tarek El-Ghazawi and François Cantonnet. UPC performance and potential: a

Exbrayat:1997:OPS

Exbrayat:1997:OPS

Eigenmann:2000:TMPa

Eigenmann:2000:TMPb

Eberl:1999:PCP

Eberl:1999:PCP

Espinosa:1998:ADP

Espinosa:1998:ADP

Espinosa:1998:ADP

Espinosa:1998:ADP

REFERENCES

Sally R. Ellingson, Jeremy C. Smith, and Jerome Baudry. Software news and updates: VinaMPI: Facilitat-

Ewing:1994:DCW

Escaig:1994:PMD

Eichenberger:2012:DOT

Eigenmann:2001:OSM

Eckert:2016:HAL

C. H. J. Eckert, E. Zenker, M. Bussmann, and D. Albach. HASEonGPU — an adaptive, load-balanced MPI/GPU-code for calculating the amplified spontaneous emission in high power laser media. *Com-
REFERENCES

REFERENCES

REFERENCES

org/utk/people/JackDongarra/\pdf/pvmpi.pdf.

Fischer:1997:AAP

Fagg:2000:FMF

Fagg:2002:HFTa

Fagg:2002:HFTb

Fagg:2004:BUF

Fagg:1997:HMAa

G. Fagg, J. Dongarra, and A. Geist. Heterogeneous MPI application interoperability and process management under PVMPI. Technical report CS-97-
REFERENCES

REFERENCES

US$45.99.

REFERENCES

[Foster:1996:MIW] I. Foster, J. Geisler, and S. Tuecke. MPI on the

Fan:1995:DMP

W. C. Fan and J. A. Halbleib, Sr. Distributed multitasking ITS with PVM. *Transactions of the American Nuclear Society, 72* (????):146–147, ????. 1995. CODEN TANSAO. ISSN 0003-018X.

Fachat:1997:IEB

Andre:1998:BVN

Friedley:2013:OPE

Franke:1995:AAV

Field:2001:RTF

REFERENCES

[Fin95] Samuel A. Fineberg. Implementing multidisciplinary and multi-zonal applications using MPI. Frontiers of
REFERENCES

REFERENCES

[FKK96a] I. T. Foster, D. R. Kohr, Jr., and R. Krishnaiyer. MPI as a coordination layer for com-

Foster:1996:CDT

Foster:1996:DSB

Freeh:2008:JTD

Foster:1996:GCM

Florez:2005:LMM

Fagg:1996:TGR

REFERENCES

data corruption for large-scale high-performance computing. In Hollingsworth [Hol12], pages 78:1–78:??.

[For95] Brian Ford. The new NAG numerical PVM library (or A new parallel numerical library based on PVM). In IFIP Working Group 2.5 [IFI95], page ??.

ISBN ???? LCCN
Foster:1998:GEM

Freeman:1992:PNA

Ferreira:1995:PAI

Franke:1995:MPEa

Fritscher:1993:PDC

Ferrari:1995:TDC

Fujimoto:2008:DMV

Fagg:2000:AAC

Fang:2015:EVD

Fineberg:1996:PPI

Franke:1995:MPEb

Frust:2017:RDP

Tobias Frust, Michael Wagner, Jan Stephan, Guido Juckeland, and André Bieberle.

[GAML01] M. Gonzalez, E. Ayguadé, X. Martorell, and J. Labarta. Defining and supporting pipelined executions in...

Gonzalez:2000:PAM

Gao:2003:LSP

Galaktionov:1997:MST

Gates:1995:PFI

Gonzalez-Alvarez:2017:HMO

REFERENCES

SUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. Enabling highly-scalable remote memory access programming with MPI-3 One Sided. *Scientific
REFERENCES

REFERENCES

Garcia:2012:DLB

GarciaSalcines:1997:PRR

Garcia:1999:MMI

Garcia-Consuegra:1998:DGR

Gelado:2010:ADS

Gao:2013:GGA

Geist:1993:PTW
[A. Geist, J. Dongarra, A. Beguelin, B. Manchek, and Weicheng Jiang. PVM

Galizia:2015:MCL

Ghose:2017:FOT

Gonzalez-Dominguez:2018:MPC

Grinstein:1995:VDE

Grinstein:1996:VDE

References

REFERENCES

Gabriel:2003:EPM

Gabriel:2003:FTC
Gabriel:2005:EDC

Gomez-Folgar:2018:MPA

Gravvanis:2012:SFD

Giordano:1999:IBP

Garzon:1999:PIE

Giannoutakis:2009:DIP
REFERENCES

Giannoutakis:2007:MHP

Gallud:2001:EDF

Gallud:1999:DPR

Gallud:1999:CCU

Godlevsky:1999:PSA

Geist:1996:MEM

A. Geist, W. Gropp, S. Huss-

REFERENCES

REFERENCES

Gerlach:2001:IOJ

Gillett:1997:UMC

Granat:2010:PSS

Grasso:2013:APS

Genaud:2009:FMP

REFERENCES

222, August 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP '13 Conference proceedings.

Granat:2009:NPQ

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

Geist:1997:CPF

Geist:1997:BPW

Gopalakrishnan:2011:FAM

Ganesh Gopalakrishnan, Robert M. Kirby, Stephen Siegel, Rajeev Thakur, William Gropp, Ewing Lusk,
REFERENCES

Bronis R. De Supinski, Martin Schulz, and Greg Bron- [GL95a]

Garland:2012:DUP [GKZ12]

Gropp:1995:DPM [GL95d]

Gropp:1995:IMM [GL95b]

Gropp:1995:EIS [GL94]

Gropp:1995:MMI [GL96]

Gropp:1996:HPM

GL97b

GL97c

GL99

GL02

GL04

[GLT00b] William Gropp, Ewing (Rusty)

V. Gianuzzi and F. Merani. Using PVM to implement a distributed dependable simulation system. In IEEE [IEE95h], pages 529–535.

Feng Long Gu, Hyacinthe Nzigou, M., Guilherme de Melo Baptista Domingues, Takeshi Nanri, and Kazuaki Murakami. Investigating the performance of collective communications on
REFERENCES

[SM07] Simos and Maroulis.

Gonzalez:2001:OET Marc Gonzalez, Jose Oliver, Xavier Martorell, Eduard

Genaud:2007:PMP

Grabowsky:1997:MBK

Gravvanis:2009:OBP

Grengbongdai:1994:CPU

Greenfield:1995:OPS

Gropp:2000:RCD

Gropp:2001:CSA

REFERENCES

 Gropp:2001:LSM

 Gropp:2002:BLC

 Gropp:2002:MNS

 Gropp:2012:MBW

 Gonzalez:1999:PPM

REFERENCES

G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

[Golbiewski:2001:MOS] Maciej Golbiewski and Jes-

Gropp:2007:TSM

Gennart:1996:CAG

Gidra:2015:NGC

Guang:2016:NMN

Ge:1995:DHA

Guerrero:2014:PCM

Ginés D. Guerrero, Richard M. Wallace, José L. Vázquez-Poletti, José M. Cecilia, José M. García, Daniel Mozos, and Horacio Pérez-Sánchez. A performance/cost model for a CUDA
REFERENCES

Hadjidoukas:2010:NOP

Han:2011:HHL

Hussain:2011:PIA

Hoeflinger:2001:PSP

Hamza:1995:PII

Haridi:1995:EPP

Seif Haridi, Khayri Ali, and Peter Magnusson, ed-
Hansen:1998:EMP

[Has95]

Hassanzadeh:1995:MMG

[Has95]

Hardwick:1995:PVL

[Har95]

Hisley:2000:PPE

Hatazaki:1998:RRS

Hachler:1996:IAC

Huang:2006:ECS

Huang:2008:FPM

Yun He and Chris H. Q. Ding. MPI and OpenMP paradigms on cluster of SMP architectures. In IEEE [IEE02], page ?? ISBN 0-7695-1524-X. LCCN
REFERENCES

He:2002:MOP

Harvey:2011:STP

Hoefer:2012:LMO

Hoefer:2013:MMN

Hadjidoukas:2009:HPF

Hoefer:2015:RMA

REFERENCES

2015. CODEN ??? ISSN 2329-4949 (print), 2329-4957 (electronic).

REFERENCES

REFERENCES

REFERENCES

Haimes:1998:UPM

Hall:2014:MMC

Huang:2010:ELA

Hoffmann:1993:PFE

Henriksen:1994:PCF

Hoffmann:1995:CAP

Geerd-R. Hoffmann and Norbert Kreitz, editors. Coming of age: proceedings
REFERENCES

Atsushi Hori, Toyohisa

Hasanov:2017:HRC

Hu:2000:ONS

Haque:2017:CCL

Hung:2016:EBP

Hong:1996:RDM

REFERENCES

Haynes:2014:MOA

Hogg:2013:FDT

Hollerbach:1995:FDA

Hollingsworth:2012:SPI

Hosking:2012:CHL

Hadjidoukas:2005:OEM
REFERENCES

[Hawick:2011:HSL]

[Hidalgo:1999:MMP]

[Hadjidoukas:2002:MOI]

[Hariri:1995:STE]

[Hondr:1995:PEV]

[Heck:1996:SSP]

[Hilbr:2012:MRE]
Hilbrich:2013:MRE

Hariri:1993:MPI

Hoefer:2011:SPT

Hoyos-Rivera:1997:UPB

Hempel:1997:IMN

Hartley:1993:CPS

Hesham:1994:PTS
REFERENCES

Hertzberger:1995:HPM

Hungenahally:1995:PIQ

Hoeffer:2012:OPC

Henriksen:2017:FPF

Haeuser:1994:RNS

Heimel:2013:HOP

Max Heimel, Michael Saecker, Holger Pirk, Stefan Mangel, and Volker Markl. Hardware-oblivious parallelism for in-memory column stores. Proceedings of the
REFERENCES

VLDB Endowment, 6(9):709–720, July 2013. CODEN ????. ISSN 2150-8097.

Hormati:2012:SPS

Hu:2001:PCC

Howes:2008:U

Ha:2008:NBP

Hluchy:1999:GWF

Hariri:2016:PPA

Huckle:1996:PIS

Humphres:1995:LBE

Husbands:1998:MSD

Huse:1999:CCD

Huse:2000:MOS

Huse:2001:LST

Hamidouche:2016:CAO

Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan, Hari Subramoni, Ching-Hsiang Chu,

Houzeaux:2011:HMO

Hoeckstra:1995:CPP

Hager:2011:IHP

Huang:2002:DDD

He:2009:AVS

Jian He, Layne T. Watson, and Masha Sosonkina. Algorithm 897: VTDIRECT95: Serial and parallel codes for the global optimization algorithm direct. ACM Transactions on Mathematical Software,
REFERENCES

Hwang:1997:EMC

Huang:2013:ACM

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP

Hou:2008:BBS

Isaila:2010:SMP

Florin Isaila, Francisco
REFERENCES

Isabel:2002:CMO

Issman:1994:PME

Ibanez:2016:HMT

IEEE:1991:PSA

IEEE:1992:PSH

IEEE:1993:DPC

IEEE, editor. Digest of

REFERENCES

IEEE:1994:PSP

IEEE:1994:PTI

IEEE:1994:PSW

IEEE:1995:PTI

IEEE:1995:CPI

IEEE:1995:DPT

IEEE:1995:ISE

IEEE:1995:IPR

IEEE:1995:PSI

IEEE:1995:PSW

IEEE:1995:PIC

IEEE, editor. Proceedings of the 15th International Conference on Distributed Com-

[IEEE:1996:FSS]

[IEEE:1996:PIS]

[IEEE:1996:PFI]

[IEEE:1996:PFE]

[IEEE:1996:PSI]
IEEE:1996:PSM

IEEE:1997:APD

IEEE:1997:PIP

IEEE:1997:TIS

IEEE:2002:STI

IEEE:2005:IPD

Iida:2016:GET

Yuki Iida, Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, and Shinpei Kato.
GPUrpc: Exploring transparent access to remote GPUs.
CODEN ????? ISSN 1539-9087 (print), 1558-3465 (electronic).

IFIP:1995:KWC

Iwasaki:2004:NPS

CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Izaguirre:2005:PMS

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Iskra:2000:PMD

CODEN LNCS-D9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/bibs/1908/19080027.htm;

Ierotheou:2005:GOC

C. S. Ierotheou, H. Jin,

Iwama:2001:PLS

Iwama:2002:PLS

Ingle:1995:MAS

Ishizaka:2000:CGT

ILROY:2001:IMP

ILIE:2016:AEC

SATATE:2012:OGA

IMAMURA:2000:ASM

ISHIHARA:1999:VBS

ISLAM:2002:IAC

Mohammad Towhidul Islam, Parimala Thulasiram, and Ruppa K. Thulasiram. Implementation of ant colony optimization algorithm for

Iskra:2000:IDE

Jatala:2017:SSG

Jabbarzadeh:1997:PSS

Jacoby:1996:AD

Juhasz:1996:PIP

Jarzabek:2017:PEU

REFERENCES

Jin:2008:PEM

Jaeger:2015:FGD

Jenkins:2014:PMD

Jeremiassen:1995:RFS

Jesshope:1993:LRV

Jesshope:1993:MCA

REFERENCES

Jann:1995:AMP

Johnson:2012:FOL

Jin:2000:AGO

Jackson:1997:SYE

Jin:2011:HPC

Jo:2017:PMA

REFERENCES

Jin:2003:AMP

Januszewski:2010:ANS

Jeun:2008:OPB

Jam:2018:COB

REFERENCES

Jones:1996:LLM
Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:PAL

Jiang:2012:OSP

Juric:1995:UPV

Joldes:2014:SSH

Joubert:1994:PCT

Jost:2010:EUH
Gabriele Jost and Bob Robins. Experiences using hybrid MPI/OpenMP in the real world: Parallelization of a 3D CFD solver for multicore node clusters. Scientific

Jimenez:2013:BCA

Judd:1994:PIV

Jin:2013:PCU

Jung:2005:DIM

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M³). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????.

Jaaskelainen:2015:PPP

Ju:1996:SPT

REFERENCES

Kapinos:2010:PPP

Khan:2017:RCS

Katamneni:1993:PPE

Kanal:2012:PAI

Karinsson:1998:CCC

Kaiser:2001:OCC
REFERENCES

Kitowski:1997:CPM

Kannan:2016:HPP

Ke:2004:RCM

Klemm:2007:JIO

Karamcheti:1994:SOM

Krawezik:2006:PCM

Kacsuk:1997:GDD

[KCD+97] Peter Kacsuk, Jose C. Cunha, Gabor Dozza, Joao Lourenco, Tibor Fadgyas, and Tiago Antao. A graphical development and debugging environment for parallel programs. *Parallel...*
REFERENCES

Konuru:1994:ULP

Konuru:1994:UPP

Kotselidis:2017:HMR

Kanal:2012:MMC

Krotkiewski:2013:ESC

Kang:2018:PRS

Zhijiang Kang, Ze Deng, Wei Han, and Dongmei Zhang. Parallel reservoir simulation with OpenACC and domain decomposition. Algorithms (Basel), 11(12), December 2018.

Klingebiel:1995:COD

Klingebiel:1995:CPO

Kakimoto:2012:PCG

Kepner:2005:PPM

Kale:1996:PMD

REFERENCES

Keller:2010:RAM

Kafura:1996:CCC

Kwon:2010:SPC

Karrenberg:2012:IPO

Kramer:2015:SET

Khanna:2013:HPN

Gaurav Khanna. High-precision numerical simulations on a CUDA GPU: Kerr black hole tails. *Journal of Scientific Comput-
Kielmann:1999:MMC

Kallenborn:2019:MPC

Kucukboyaci:2001:PPT

Kjolstad:2012:ADG

Kojima:2017:HLG

REFERENCES

3:??, April 2017. CODEN ???? ISSN 1529-3785 (print), 1557-945X (electronic).

Kikuchi:1993:PAS

Kranz:1993:IMP

Kwon:2012:HAO

Kim:2016:DOF

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Krysztop:2002:IFP

Kranzlmuller:2004:RAP

Kranzlmuller:2005:RAP

Kranzlmuller:2003:RAP

Kee:2003:POP

[YKH03] Yang-Suk Kee, Jin-Soo Kim, and Soonhoi Ha. ParADE: An OpenMP programming
paperpdfs/pap130.pdf.

Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhui Ha, and Yunheung Paek. A retargetable paralle
programming framework for MPSoC. ACM Transactions on Design Automation of Electronic Systems,

Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a single compute device image in
OpenCL for multiple GPUs. ACM SIGPLAN Notices, 46 (8):277–288, August 2011. CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP ’11 Conference proceedings.

Dimitris Konstantinou, Nectarios Koziris, and George Papakonstantinou. TOPPER: a tool for optimizing

Rene Kobler, Dieter Kranzlmüller, and Jens Volkert. Debugging OpenMP programs using event mani
Karrels:1994:PAM

Kofakis:1995:DPI

Liao:2007:CCS

Kumar:2019:FOP
Klawonn:2015:HMO

Kutyniok:2016:SFD

Kim:2015:OBU

Khanna:2010:NMG

Kormicki:1996:PLS

Kormicki:1997:PLS

REFERENCES

Kalns:1995:DPD

Katouda:2017:MOH

Kasprzyk:2002:APV

Komura:2014:CPG

Kambites:2001:OLI

REFERENCES

[Konuru:1997:MUL]
REFERENCES

[KPW05] Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????.

REFERENCES

Kranzlmuller:2002:RAP

[Kra02]

Kouetcha:2017:USP

[KRC17]

Kranzlmuller:1999:MOM

[KRS99]

Kegel:2013:DTU

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

Kim:2014:VVF

Kim:2012:OUP

Kusano:2000:PEO

Kurzyniec:2007:UCA

Kranzlmuller:2001:IRM

Keppens:2002:OPM

Koval:2010:USB

Krotz-Vogel:1997:PPP

Kamal:2014:IF

Kamburugamuve:2018:AML

Kamal:2010:EIN

A. A. Kamal and A. M. Youssef. Enhanced implement-
REFERENCES

Losada:2019:LRR

Lawton:1996:BHP

Ling:2012:HPP

Lauria:1997:MFH

REFERENCES

Ilya Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan-Anh Nguyen, Rahul Sampath, Aashay Shringarpure, Richard Vuduc, Lexing Ying, Denis Zorin, and George Biros. A mas-

Losada:2017:RMA

Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

Liu:1996:BMP

Lee:2001:APT

D. J. Lee and T. J. Downar. The application of POSIX threads and OpenMP to the U.S. NRC neutron kinetics code PARCS. *Lecture Notes in Computer Science*, 2104:90–??, 2001. CODEN LNCSD9. ISSN
Lu:1997:QPD

Liu:2013:DLO

Lee:2006:PT

Liu:2013:DLO

Lee:2013:DLO

Lee:2012:SMO

Levelt:1995:I

Levesque:1993:SAA

Lim:2011:ATC

Leon:1992:FP

Leon:1993:FPA

Leon:1993:FPP

Loyot:1993:VVM

Lee:1999:PEJ

Bu-Sung Lee, Yan Gu, Wentong Cai, and Alfred Heng.
REFERENCES

Liu:2016:MBM

Li:2010:SVC

Lassous:2000:HGA

Leung:1995:EPE

Leung:1998:PAN

Liao:2007:OOP

Lee:1996:TSF

Lin:1994:DNC

Lin:1995:DNC

Li:1997:PIO

REFERENCES

Lu:1998:ONW

Li:1996:SIS

Liu:1995:WCD

Livny:2000:MYW

Lastovetsky:2010:RAP

LaSalle:2014:MBD

Lastovetsky:2008:RAP
Alexey Lastovetsky, Tahar Kechadi, and Jack Dongarra, editors. Recent Advances in Parallel Virtual
REFERENCES

URL http://www.springerlink.com/content/978-3-540-87475-1.

Luecke:2003:CPM

Luecke:2004:PSM

Liang:1996:AEO

Liu:2003:PNH

Ludwig:1995:PPF
REFERENCES

Luecke:2001:SPO

Lin:2016:VDF

Li:2012:PF

Luo:2014:ISM

Lidbury:2015:MCC

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Langlais:2002:SSM

Li:1993:SLL

Loh:1994:ISR

Larsen:1999:SPG

Lu:2013:MLP

Lee:2009:OGC

Losada:2017:ARV

January 2017. CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

REFERENCES

Lu:1996:PIF

Labarta:2001:NOD

Lou:1995:PIN

Landman:2000:PLR

Li:2011:FSM

Li:2001:PCS

Lastovetskyy:2006:HTM

REFERENCES

REFERENCES

Laohawee:2000:PDT

Lee:2002:IPC

Langr:2016:ASM

Luo:1999:SMV

Lusk:2000:IIIC

REFERENCES

Lee:2012:EED

Liu:2004:BMI

Liu:2004:HPR

Liang:2018:FMP

Li:1993:MSU

Lopes:2019:FBD

[Paulo A. C. Lopes, Satyendra Singh Yadav, Aleksan-]

Loncar:2016:OOM

Lu:2013:WGA

Luecke:2002:DDM

Li:2017:PCO

Shigang Li, Yunquan Zhang, and Torsten Hoefler. Poster:
REFERENCES

\textbf{Li:2018:COM}

\textbf{Lu:2019:PMM}

\textbf{Ma:2009:CRS}

\textbf{Mavriplis:2005:HRAa}

\textbf{Miguel:1996:APN}

\textbf{Maffeis:1994:SSD}

REFERENCES

Muller:2012:SOA

Ma:2013:KAT

Min:2003:OOP

McKenzie:1994:CIM

Malits:2012:ELG

Roman Malits, Evgeny Bolotin, Avinoam Kolodny, and Avi Mendelson. Exploring the limits of GPGPU scheduling in control flow bound applications. ACM Transactions on Architecture and Code Optimization, 8(4):29:1–29:??, Jan-
REFERENCES

January 2012. CODEN ????? ISSN 1544-3566 (print), 1544-3093 (electronic).

Mehl:2015:RTC

Miles:1994:PTO

Medeiros:1998:IPM

Morrison:1999:FPP

Maier:2017:OLD

Malinowski:2018:SIP
Artur Malinowski and Pawel Czarnul. A solution to image processing with parallel MPI I/O and distributed NVRAM cache. Scalable Computing: Practice and
REFERENCES

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

McKinney:1994:PGU

Moore:2001:RPA

Moreira:2017:FCR

Rubens E. A. Moreira, Sylvain Collange, and Fernando
References

McRae:1992:VC

Mierendorf:2000:WMB

Marin:2017:ERF

Monteiro:2018:EGC

Muller:2009:EOA

MATHEOU:2017:DDC

MEGSON:1998:CRH

MILOVANOVIĆ:2008:NEE

MOODY:2003:SNB

MARTIN:1995:DPC

MINTCHEV:1997:TPM

Meh:2015:MTP

Mendonca:2017:DAA

Mehta:2012:SPE

Muralidharan:2015:COP

Medvedev:2005:OMA

Montella:2017:VCB

[RML+17] Raffaele Montella, Giulio Giunta, Giuliano Laccetti, Marco Lapegna, Carlo Palmieri, Carmine Ferraro, Valentina Pelliccia, Cheol-Ho Hong, Ivor Spence, and Dimitrios S. Nikolopoulos. On the virtualization of CUDA based GPU remot-

Mazzariol:1997:PCS

Markidis:2015:OAN

MHC94a

Miller:1994:PPT

Munshi:2016:OCS

Micelielse:1993:PMU

Micelielse:1995:PMU

Muddukrishna:2015:LAT

Mittal:2012:CAS

Muddukrishna:2016:GGO

Matyska:1994:DCS

REFERENCES

ISSN 0192-8651 (print), 1096-987X (electronic).

McDonald:1997:IPT

McDonald:2000:TPA

Mohror:2004:PTS

Manwade:2017:DFA

Maheo:2012:AOL

Markus:1996:PEM

Min:2001:PCO

Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eigenmann. Portable compilers for OpenMP. *Lecture Notes in Computer
REFERENCES

Mokbel:2011:ASR

Mitra:2014:AAP

Marjanovic:2010:ECC

Marowka:2004:OOA

Malakhov:2018:CMT

Marendic:2016:NMR

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2001:TSH

Michailidis:2002:PSL

Michailidis:2003:PEL

Panagiotis D. Michailidis and Konstantinos G. Margaritis. Performance evaluation of load balancing strategies for approximate string matching application on an MPI cluster of heterogeneous workstations. \textit{Future Generation Computer Syst-

[MMH98] K. Morimoto, T. Matsumoto, and K. Hiraki. Implementing MPI with the memory-based communication facilities on the SSSCORE operating system.
REFERENCES

REFERENCES

Martín:2004:HPA

MPIForum:1998:SIM

Muller:1996:CDI

Martins:2012:PDC

Meister:2017:PME

Mo:1996:IOP

Mininni:2011:HMO

Pablo D. Mininni, Duane Rosenberg, Raghu Reddy, and Annick Pouquet. A hybrid MPI–OpenMP scheme for scalable parallel pseudospectral computations for

Mazzocca:2000:TPP

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

Mierendorf:1999:PMB

Migliardi:1999:PEH

M. Migliardi and V. Sunderland. PVM emulation in the harness metacomputing system: a plug-in based approach. In Dongarra et al. [DLM99],
REFERENCES

Mourao:1999:IMO

Macias:2002:SEA

Mahinthakumar:2002:HMO

Mertens:2004:CCP

Mysliwiec:1997:IPS

Matise:1995:PCG

Matrone:1993:LPC

Mysliwiec:1997:CAM

Martins:1998:JIW

[MSW+05]

[MSS97]

[MSZG17]

T. Miei and N. Takahashi. Implementation and evaluation of a replay-based debugger for PVM programs. Transactions of the Infor-
references

Mallon:2016:MUB

Marin:1994:GAL

Momeni:2015:EEO

Mohr:2007:SPE

Mohr:2006:RAP

Müller:2001:SSO
Matthias Müller. Some simple OpenMP optimization techniques. *Lecture
Muller:2002:SMB

Muller:2003:OCB

Malakar:2017:DMO

Mehra:1995:AIM
P. Mehra, B. Van Voorst, and J. Yan. Automated

McKinney:1993:MMI

Mamontov:1998:AES

Manegold:1997:QBM

Morton:1995:LLP

Maleki:2016:HOT

Maly:1993:DCP

Nikolopoulos:2001:SID

Dimitrios S. Nikolopoulos and Eduard Ayguadé. A study of implicit data distribution methods for OpenMP using the SPEC benchmarks. *Lecture Notes in

Nagle:2005:BRM

Nicolescu:1999:PWA

Nagajima:2005:PIS

Nakajima:2005:TLH

Kengo Nakajima. Three-

[NB96] C. NicCanna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ???? LCCN ????

Nguyen:2017:ATM

Nobari:2012:SPM

Neophytou:2001:ND

Nelson:1993:PPP

Neugebauer:2017:PAR

Nesterov:2010:SPT

[Nes10] Oleksandr Nesterov. A sim-

[NH95] D. Nguyen and B. Hillberg. Simulations of pinhole imaging for AXAF: Distributed processing using the MPI standard. In Shaw et al. [SPH95], pages 361–366 (or 361–363??). ISBN
REFERENCES

0-937707-96-1. ISSN 1080-7926. LCCN QB51.3.E43 A87 1994.

REFERENCES

[NO02a] Nupairoj:1995:PES

[NNON00] Nishitani:2000:IEO

[NNON00] Nishitani:2000:IEO

[Nakajima:2002:PISb]

[Nakajima:2002:PISb]

[NO02b] Nakajima:2002:PISa

bibs/2327/23270437.htm;

Noble:2008:GMY

Novotny:1995:BPP

Nemer-Preece:1994:LBH

Nguyen:2012:SCS

Nikolopoulos:2000:TRD

Nikolopoulos:2000:DDN

Nikolopoulos:2000:LTD

REFERENCES

Nikolopoulos:2000:ULR

Notz:2012:GBS

Nagaraj:1991:MHL

Naumenko:2016:ACT

Nascimento:2007:DDS

Aline P. Nascimento, Alexandre C. Sena, Cristina Boeres, and Vinod E. F. Rebello.

Nadal-Serrano:2016:PSC

Neuberger:2012:MIS

Nukada:2012:SMG

Nandivada:2013:TFO

Nogueira:2016:BBW

REFERENCES

REFERENCES

[OGM+16] Matthew Otten, Jing Gong, Azamat Mametjanov, Aaron Vose, John Levesque, Paul Fischer, and Misun Min. An MPI/OpenACC implementation of a high-order electromagnetics solver with GPUDirect communication. *The International Journal of*
REFERENCES

Okitsu:2010:HPC

Ohara:2006:MMP

Oh:2012:MOO

Oakley:1995:ADR

Orlando:2005:PSP

Oldehoeft:2002:SIS

Rod Oldehoeft, editor. Special issue on software for high-performance systems:

Ong:2001:SUC

Olgotun:2014:BPP

Ogawa:1996:OOM

Ozgun:2009:PCB

OBroin:2012:OIS

Ong:2002:MRS

OBrien:2008:SOC

Orlando:1998:MBR

Olivier:2010:COO

[OPL0] Stephen L. Olivier and Jan F. Prins. Comparison of OpenMP 3.0 and other task parallel frameworks on unbalanced task graphs. *International Journal of Par-
ODowd:2006:WGM

Oliveira:2012:CCO

Ov�rierender:1997:BCD

Ostrand:1994:PIS

REFERENCES

Panda:1995:GRW

Panda:1995:IDE

Panda:2014:GAM

Parsons:1993:EDC

Pal:2014:PMH

Patterson:1993:PPE

Puzniakowski:2012:TOI

REFERENCES

CODEN LNCS9. ISSN 0302-9743 (print), 161-3349 (electronic). URL http://
link.springer.com/chapter/10.1007/978-3-642-25261-7_15/.

Pringle:2001:TPF

Gavin J. Pringle, Steven P. Booth, Hugh M. P. Couchman, Frazer R. Pearce, and
Alan D. Simpson. Towards a portable, fast parallel AP3M-SPH code: HY-
DRA_MPI. Lecture Notes in Computer Science, 2131:360–??, 2001. CODEN
LNCS9. ISSN 0302-9743 (print), 161-3349 (electronic). URL http://
link.springer-ny.com/link/service/series/0558/bibs/2131/21310360.htm;
pdf.

Pingali:1995:LCP

K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors. Languages and com-
pliers for parallel computing: 7th International Workshop, Ithaca, NY, USA, August 8–
10, 1994: proceedings, volume 892 of Lecture notes in computer science. Springer-
Verlag, Berlin, Germany / Heidelberg, Germany / Lon-

Plazek:1999:IIC

J. Plazek, K. Banas, and J. Kitowski. Implementation issues of computational
fluid dynamics algorithms on parallel computers. In Dongarra et al. [DLM99],

Plazek:2000:SCC

Joanna Plazek, Krzysztof Banas, and Jacek Kitowski. Scalable CFD computations
using message-passing and distributed shared memory algorithms. Lecture Notes in Computer
Science, 1908:282–??, 2000. CODEN LNCS9. ISSN 0302-9743 (print), 161-3349
(electronic). URL http://
link.springer-ny.com/link/service/series/0558/bibs/1908/19080282.htm;
pdf.

Prasanna:1995:FIP

Viktor K. Prasanna, V. P. Bhatkar, L. M. Patnaik, and S. K. Tripathi, editors. First IWPP paral-
lel processing: proceedings of the First International
REFERENCES

Puthukattukaran:1994:DIP

Peng:2014:IDI

Poggi:1998:UPD

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1996:RPP

REFERENCES

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

Petcu:1997:ISM

Petcu:2000:PDAa

Petcu:2000:PDAb

[PGC02] Achal Prabhakar, Vladimir Getov, and Barbara Chapman. Performance comparisons of basic OpenMP

Pessoa:2018:GAB

Poirier:2018:DAB

Pervez:2010:FMA

Papakonstantinou:2013:ECC

Pan:2010:CPS

Pennycook:2011:PAH

Power:2015:GGH

Pennycook:2013:IPP

Pierce:1994:NMP

Papadopoulos:1998:DVS

Park:2005:SOA

Papadopoulos:2001:NRC

Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno. NPACI rocks clusters: Tools for easily deploying and maintaining manageable high-performance

Paul:2006:TLF

Prabhakar:2016:GCH

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

Pruyne:1996:ICP

(print), 1872-7115 (electronic).

Plachetka:2002:QTS

Park:2004:DID

Piriyakumar:2002:EFI

Piscaglia:1995:DOC

Poulson:2013:ENF

[PMvdG+13] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and

Park, So-Hee; Park, Mi-Young; Jun, Yong-Kee. A

Pagourtzis:2001:PCT [PPR01]

Papakostas:1996:PSP [PPT96a]

Papakostas:1996:PPP [PPT96b]

Papakostas:1996:UPI [PPT96c]

Pedicini:2007:PPE [PQ07]

Pierce:1994:PIN [PR94a]

P. Pierce and G. Regnier. The Paragon imple-

Pierce:1994:PSH

Pozo:1994:FTE

Priimak:2014:FDN

Pena:2014:CEC

Prades:2016:CAX

Pedroso:2000:MPC

[Hernâni Pedroso and João Gabriel Silva. MPI-2 process creation & management imple-

Protopopov:2000:SMC

Pedroso:2001:WLE

Protopopov:2001:MMP

Pandey:2007:SCM

Pehrson:1994:IPP

Perez:2019:A

Peters:2011:FPC

Patrick:2008:CEO

Preissl:2010:TMS

Prieto:1999:PRM

M. Prieto, R. Santiago, I. M. Llorente, and F. Tirado. A parallel robust multigrid algorithm based on semi-
REFERENCES

Prost:2001:MIG

Prost:2001:THP

Peraza:2016:PGQ

Pierro:2018:SFP

Phan-Thien:1994:CDL

Prylli:1999:DHP

L. Prylli, B. Tourancheau, and R. Westrelin. The

Puskas:1995:LBW

Peinado:1997:HPC

Park:2001:PPE

Pahl:1995:CCB

Preissl:2012:CSS

Pang:2016:MKR

REFERENCES

Quoy:2000:PNN

QM:2003:PPC

Quinn:2003:PPC

[Qui03]

Qaddouri:1995:MFS

[R+92]

Qaddouri:1996:CPC

Rantakokko:2005:DMO

Rehman:2016:VMJ

Roussos:2001:BMB

Rufai:2005:MPO

Rejitha:2017:EPC

Resch:1997:CMP

Resch:1997:PM

REFERENCES

Roylea:2012:ASO

Radhakrishna:1999:MBP

Reeves:1996:PIC

Reinefeld:2001:CDI

Reussner:2001:SSK

Reussner:2003:USD

Roy:2000:MGQ

[RG+00] Alain J. Roy, Ian Foster, William Gropp, Nicholas

REFERENCES

[Reyes:2013:PEO] Ruymán Reyes, Iván López, Juan J. Fumero, and Fran-

Rungsawang:2001:LCP

Rubio-Largo:2012:UMO

Roe:1999:PMI

Rietmann:2012:FAS

Ramesh:2018:MPE

Srinivasan Ramesh, Aurèle Mahéo, Sameer Shende, Allen D. Malony, Hari Subramoni, Amit Ruhela, and Dhabaleswar K. (DK) Panda. MPI performance engineering with the MPI tool interface: the integra-

[Rot19] Ágoston Róth. Algorithm 992: An OpenGL- and C++-based function library for curve and surface modeling in a large class of ex-

[Ramon:1995:PKV]

[Rodriguez:2008:FTS]

[Rabaea:2000:EPM]

[Rageb:2001:CEM]

[Rauber:2002:LSH]

[Roda:1997:PPI]
REFERENCES

Roig:2001:EMM

Robinson:1996:TMI

Robust:1999:UHR

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

Roy:1997:PNT

REFERENCES

and Message Passing Interface: 16th European PVM/
MPI Users’ Group Meeting, Espoo, Finland, September
7–10, 2009. Proceedings, volume 5759 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2009. CO-
DEN LNCSD9. ISBN 3-642-03769-0 (print), 3-642-
03770-4 (e-book). ISSN 0302-9743 (print), 1611-
www.springerlink.com/content/978-3-642-03770-
2.

Simonsen:1993:DMD

[SA93] H. H. Simonsen and J. Amund-
sen. Distributed molecular dynamics using the PVM
system. In Sincovec [Sin93], pages 183–186. ISBN 0-
89871-315-3. LCCN QA 76.58 S55 1993. Two vol-
umes.

Sarainen:1994:EES

[Saa94] S. Sarainen. EASYPVM – an enhanced subroutine li-
brary for PVM. In Gentzsch and Harms [GH94], pages
267–272. ISBN 0-387-
57981-8 (New York), 3-540-
Two volumes.

Sainio:2010:CGA

[Sai10] J. Sainio. CUDA EASY — a GPU accelerated cos-
nological lattice program. Computer Physics Com-
munications, 181(5):906–912, May 2010. CO-
DEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0010465510000159.

Sato:2017:NIT

Kento Sato, Dong H. Ahn, Ignacio Laguna, Gregory L.
Lee, Martin Schulz, and Christopher M. Chambreau.
Noise injection techniques to expose subtle and unin-
tended message races. ACM SIGPLAN Notices, 52(8):
89–101, August 2017. CO-
DEN SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

Saphir:1997:SMI

NHSE Review, 2(1):??, Novem-
ber 1997.

Soldado:2016:ECM

Fábio Soldado, Fernando
Alexandre, and Hervé Paulino.
Execution of compound
multi-kernel OpenCL com-
putations in multi-CPU/
multi-GPU environments.
Concurrency and Compu-
tation: Practice and Ex-
perience, 28(3):768–787,
March 10, 2016. CODEN
CCPEBO. ISSN 1532-0626
REFERENCES

396

REFERENCES

Schindewolf:2012:WSA

Sani:2014:PDF

Smith:1995:CRC

Smith:2004:SIP

Saltz:1991:MRT

Stubbs:1995:ICE

Smith:1996:UWC

N. P. G. Smith and C. Christopoulos. Utilising workstation clusters with PVM for the
REFERENCES

Steed:1996:PPP

Sievert:2004:SMP

Saillard:2014:PCS

Saillard:2015:SDV

Stagg:1995:IPN

Shyu:1996:ILQ

Schill:1993:DOD

Alexander Schill, editor. DCE — the OSF dis-
REFERENCES

Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez. MPI + OpenACC: Accelerating radiation transport mini-application, min-

Song:1997:ALL

Suppi:2000:IOP

Suppi:2001:PCS

Santos:1997:ECP

SCR:1992:PWC

Shi:2012:VGA
 Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. vCUDA: GPU-accelerated

Szeberenyi:1999:SGB

SM-D:2013:BRC

Sorensen:2016:EER

Skjellum:1994:WLM

Sorensen:2016:PIW

Schmitt:2017:SCP

Sandes:2010:CUG

Edans Flavius O. Sandes and Alba Cristina M. A.

[SDN99] Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??

REFERENCES

REFERENCES

10.1007/s11227-014-1213-y.

[Sack:2015:CAM]

[Sunderam:1994:PCC]

[Schneider:2012:MAC]

[Solsona:2001:IEI]

[Saito:2003:LSP]
REFERENCES

NM; http://ipsapp007.kluweronline.com/content/getfile/4773/33/3/abstract.htm; http://ipsapp007.kluweronline.com/content/getfile/4773/33/3/fulltext.pdf.

Mitsuhisa Sato, Hiroshi Harada, Atsushi Hasegawa, and Yutaka Ishikawa. Cluster-enabled OpenMP: An OpenMP

Shing:1994:UPC

Samadi:2014:LGU

Sato:2010:BLL

Shah:2000:FCS

Sanjiv Shah, Grant Haab, Paul Petersen, and Joe Throop. Flexible control structures for parallelism in OpenMP. *Concurrency: practice and ex-
REFERENCES

REFERENCES

REFERENCES

Samadi:2014:PPB

Shen:1992:VTD

Smith:2000:DPM

Sanders:2010:CEI

Steinberger:2014:WTB

Skjellum:2004:RTM

J. Sall and A. Lehman, editors. *Computational intensive statistical methods: 26th
REFERENCES

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV

Skjellum:1995:EAM

Scherer:1999:TAP

Samadi:2014:SPS

Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Scott Mahlke, and Amir Hormati. Scaling performance via self-tuning approximation for graphics engines. ACM Transactions on
REFERENCES

Su:2012:CPB

Sloan:2005:HPL

Squyres:1996:CBP

Shires:2002:EHM

Shires:2003:OPF

Simos:2007:CMS

Theodore E. Simos and George Maroulis, editors. Computation in Modern Science and Engineering: Proceedings of the [Fifth]
REFERENCES

International Conference
on Computational Methods
in Science and Engineer-
ing 2007 (ICCMSE
2007), Corfu, Greece, 25–
30 September 2007, volume
2A, 2B of AIP Conference
Proceedings (#963). Amer-
ican Institute of Physics,
ISBN 0-7354-0476-3 (set),
0-7354-0477-1 (vol. 1), 0-
7354-0478-X (vol. 2). ISSN
0094-243X (print), 1551-
7616 (electronic), 1935-
0465. LCCN Q183.9 .I524
springer.com/physics/atoms/

Santos:2012:ICC [SMCH15]
Bruno F. L. Santos and Hen-
drik T. Macedo. Improv-
ing CUDA™ C/C++ en-
coding readability to fos-
ter parallel application de-
velopment. ACM SIGSOFT
Software Engineering Notes,
CODEN SFENDP. ISSN
0163-5948 (print), 1943-5843
(electronic).

Siegel:2008:CSE [SMAC08]
Stephen F. Siegel, Ana-
tasia Mironova, George S.
Avrunin, and Lori A. Clarke.
Combining symbolic execu-
tion with model checking
to verify parallel numerical
programs. ACM Trans-
actions on Software Engi-
eering and Methodology, 17

Smith:1993:MBA [Smi93a]
K. A. Smith. Multi-
processor based accident
using PVM. In Sin-
covec [Sin93], pages 262–265.
QA 76.58 S55 1993. Two vol-
umes.

Smith:1993:DSI [Smi93b]
S. L. Smith. Dynamic
scheduling of irregularly
structured parallel computa-
tions in heterogeneous dis-
tributed systems. ACM
SIGPLAN Notices, 28(1):
86, January 1993. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Schardl:2017:TEF [SML17]
Tao B. Schardl, William S.
Moses, and Charles E. Leis-
erson. Tapir: Embedding
fork-join parallelism into
LLVM’s intermediate rep-
resentation. ACM SIG-
PLAN Notices, 52(8):249–
265, August 2017. CODEN

Shterenlikht:2015:FC
Anton Shterenlikht, Lee
Margetts, Luis Cebamanos,
and David Henty. Fortran
2008 coarrays. ACM For-
tran Forum, 34(1):10–30, April
2015. CODEN ???. ISSN
1061-7264 (print), 1931-1311
(electronic).

Siegel:2008:CSE

Santos:2012:ICC

[SMAC08]
REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Shekofteh;2019:MSG

Snir:1996:MCR

Snir:1998:MCR
Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W.

SousaPinto:2001:PEI

Sidonio:1999:PBI

Stpiczynski:2011:SKB

Satofuka:1995:PCF

Shaw:1995:ADA

Skjellum:1996:TTM

Si:2018:DAA

Sener:1996:DPP

Subramoni:2012:DSI

Silva:1999:DPP

Schmidl:2012:PAT

Saldana:2010:MPM

Squyres:2003:CAL

Sivaraman:1995:PSP

Sivaraman:1996:AAD

Szalay:2011:FCD

Speck:2012:MST

Schmidt:1994:EOA

REFERENCES

Szymanski:1996:LCR

Silva:1999:IME

Shan:2001:CMS

Schwarz:2009:GFG

Shan:2012:OAA

Sankaran:2005:LMC
Sataric:2016:HOM

Sotomayor:2017:ACG

Silva:1996:IDS

Silva:1997:IPD

Silva:1995:PCR

Skjellum:1994:DEZ

[ST97] G. Stellner and J. Tritis. Load balancing based on
process migration for MPI. Lecture Notes in Computer Science, 1300:150–??, 1997.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Smyk:2002:AMM

Smyk:2002:OMP

Steele:2017:UBP

Stals:1995:AMP

Stankovski:1995:MPA

Stephens:1994:PBT

R. Stephens. Parallel benchmarks on the Transtech Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???? LCCN ????

Stellner:1996:CCP

G. Stellner. CoCheck: checkpointing and process

Strok:1994:NJI

Strietzel:1996:PTS

Strietzel:1997:PTS

Soch:1996:PCG

Soch:1997:PGP

Shen:1999:ATL

Kai Shen, Hong Tang, and Tao Yang. Adaptive two-level thread management
for fast MPI execution on shared memory machines. In ACM [ACM99], page ??.

REFERENCES

Stone:1996:RNF

Sumimoto:2012:MCL

Sunderam:1990:PFPa

V. S. Sunderam. PVM: a framework for parallel distributed computing. Technical Report ORNL/TM-11375, Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA, February 1990. See also [Sun90b].

Sunderam:1990:PFPb

Sunderam:1992:CCP

Sunderam:1993:PCC

V. Sunderam. The PVM concurrent computing system. In Anonymous [Ano93h], pages 20–84. ISBN ?? LCCN ???

Sunderam:1994:GPP

V. Sunderam. General purpose parallel computing with PVM. In Anonymous [Ano94f], pages 185–198. ISBN ?? LCCN ???

Sunderam:1994:MSH

Sunderam:1995:RIH

V. S. Sunderam. Recent initiatives in heterogeneous parallel computing. In Gray
and Naghdy [GN95], pages 1–16. ISBN ????. LCCN ????.

Sunderam:1996:PSS

Suresh:1995:OIP

Suresh:1995:PIQ

Suttner:1996:SPB

Smelyanskiy:2011:HPL

Sistare:1999:OMC

[Steve Sistare, Rolf vande Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??]

Stout:1991:SDM

Sehrish:2012:RFS

Swann:2001:SPC

Sosonkina:2015:RAV

Santhanaraman:2005:DZC

Sitsky:1995:IPM

Skjellum:2001:OOA

Shan:2012:PEH

Shee:1994:DMA

Stathopoulos:1995:DLB

A. Stathopoulos and A. Ynnerman. Dynamic load balancing of atomic structure programs on a PVM cluster. In Hertzberger and Serazzi [HS95a], pages 384–391.

Schneider:2009:CPM

REFERENCES

REFERENCES

[TC94] S. J. Thomas and J. Cote. Parallel Semi-Lagrangian...

Tzannes:2010:LBS

Tagliavini:2018:UFG

Thompson:2015:PCI

Tourino:1998:PBL

Tourino:1999:MMC

Thiruvathukal:2000:JNW

REFERENCES

[TFZZ12] Bibo Tu, Jianping Fan, Jianfeng Zhan, and Xiaofang Zhao. Performance analysis and optimization of

REFERENCES

Thoman:2012:AOL

Tang:2016:AKM

Tennyson:2015:MOI

Talent:2009:EPM

Tampouratzis:2016:AIH

Trobec:2001:IEM

REFERENCES

Theodoropoulos:1996:ESP

Taylor:2017:A00

Takafuji:2017:CCC

Takahashi:1999:IEM

Toussaint:1996:AES

REFERENCES

[Tra02a] Jesper Larsson Traeff. Im-

[TS12a] Oussama Tahan and Mohamed Shawky. Using dynamic task level redundancy for OpenMP fault

Thibault:2012:AIF

Takahashi:2002:PEH

Takahashi:2003:PEH

Terboven:2012:AOT

REFERENCES

Yoshizumi Tanaka, Kenjiro Taura, Mitsuhisa Sato, and Akinori Yonezawa. Performance evaluation of

Tellez-Velazquez:2018:CSI

Twerda:1996:PIT

Tourancheau:2001:SMN

Thorson:2012:SUF

Tournavitis:2009:THA

Tien:2014:EOS

Utterback:2017:POR

Uselton:1995:PRS

Udupa:2009:SES

Uhl:1996:PIC

Uhl:1994:PCC

Uhl:1995:AWA

Uhl:1995:PCC

Uhl:1995:VPW

Uminski:1997:EEP

Uthayopas:2001:FSR

Urena:2012:IMI

USENIX:1994:PFU

USENIX:1995:PUT

REFERENCES

USENIX:2000:PAL

Uehara:2002:MBP

Unat:2012:AFD

van der Pas:1993:PIG

VanKatwijk:1995:AAC

van de Geijn:1997:UPP

Vlassov:1995:MEP

REFERENCES

(VD+15)

[Vazquez:1999:PNS]

[VB99]

[VBB18]

(Vapirev:2015:IRC)

[vdLJR11]

[Vetter:2000:DST]

Two volumes.

Michael J. Voss, editor.
REFERENCES

VidalMacia:2000:IPM

Vargason:2004:PPC

Vrenios:2004:PPC

Varin:2000:PAL

VanVorst:2000:CMI

Vaidya:2013:SDO

Vlassov:1997:SSM

Vandoni:1995:CSC

REFERENCES

Vo:2009:FVP

Verkerk:1992:PIC

Vetter:2002:EPE

Verschelde:2015:PHC

Wong:1999:BMM

Walker:1994:DSM

Walker:1994:EDS

[Wal94b] David W. Walker. Erratum to: “The design of

REFERENCES

Wallcraft:2002:CCA

Wang:1997:TPD

Wang:2002:OPG

Wasniowski:1995:NAP

White:1995:PNP

Wasniewski:1996:APC

Wolf:1996:CFS

REFERENCES

Wu:1999:JBD

Wang:2013:PMO

Wedemeijer:1996:PSA

Walker:1996:MSM

Welch:1994:PVM

Werner:1995:UMP

Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI. (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.

Weber:2017:MAL

P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ????.

References

REFERENCES

Wei:2012:OLL

Wu:2014:OFB

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wegiel:2008:MCVc

Wittenbrink:2011:FGG

Wagner:1996:GSG

REFERENCES

Lehman:1994:IZP

Wismueller:1996:TSI

Wismueller:1996:TSI

Wu:2007:IFR

Wolfe:2018:ODM

Weatherly:2003:DMS

Weatherly:2006:DMS

REFERENCES

Willcock:2005:UMC

Wu:2012:UHM

Wolfe:2018:MLS

Wu:2014:MA
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Worley:1996:MPE

Weng:2007:OIS

Wagner:1994:CDFD

Wang:1995:PPG

Wu:2001:PCS

Worsch:2002:BCM

REFERENCES

/comjnl.oxfordjournals.org/content/55/2/154.full.pdf+html.

Wang:2014:IPD

Worringen:2003:FPN

Waidyasooriya:2017:OBF

Wu:1999:MCC

Wong:2011:EMS

Wilson:1996:SMS
G. C. Wilson, T. H. Wood, J. L. Zyskind, J. W. Suhoff,

Wu:2012:DPL

Wang:2016:MMF

Wang:2008:PIM

Xu:1995:IPP

Xu:1996:MCO

Xue:2009:MSR

Ruini Xue, Xuezhen Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin Zheng, Zheng Zhang, and

REFERENCES

REFERENCES

Yo on:1996:WBP

Yang:2014:IMP

Yetongnon:1996:PII

Yero:2001:JOO

Yang:2011:HCO

Yuasa:1996:RPG

F. Yuasa, S. Kawabata, T. Ishikawa, D. Perret-

YarKhan:2017:PPN

Yamazaki:2018:SIL

Yang:2016:HTM

Yan:2013:SFS

Yalamov:1997:BRT

Yilmaz:2011:RMS

Yi:1994:PID

You:1995:EIM

Young:1993:PEN

Yuan:2012:PCS

[ZSL12] Zhiyong Yuan, Weixin Si, Xiangyun Liao, Zhaoliang Duan, Yihua Ding, and Jianhui Zhao. Parallel computing of 3D smoking simulation based on OpenCL het-
REFERENCES

[YSS+16] Luis E. Young-S., Dusan Vudragović, Paulsamy Muruganandam, Sadhan K. Adhikari, and Antun Balaz. OpenMP Fortran and C programs for solving the time-dependent Gross–Pitaevskii equation in an anisotropic

Yan:2014:OMB

Yoshinaga:2012:DBM

Yam-Uicab:2017:FHT

Yang:2011:PBP

Younge:2015:SHP

REFERENCES

Zaza:2016:CBP

Zahavi:2012:FTR

Zhong:2007:PPS

Zdetsis:1994:PMD

Zilli:1997:TBN

Zhu:2012:CDS

Zhao:2010:GMP

Zhang:1997:DED

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

Zemla:1994:WTC

REFERENCES

Zaki:1999:TSP

Zhou:2012:DFD

Zhang:2017:DLN

Zhu:2015:PIM

Zhai:2011:CVH

Zollweg:1993:OP

Zarrelli:2006:EPE

REFERENCES

REFERENCES

[ZWL05] Youhui Zhang, Dongsheng Wong, and Weimin Zheng. User-level checkpoint and re-

Zhuang:1995:PRS

[XZ95]

Zeyao:2004:AMI

[XZ04]

Zheng:2014:IMS

[XZG+14]

Zhu:2015:PML

[ZZZ+15]