Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0 [ICC02]. 1 [ICC02, LRQ01, VDL+15]. 19.95 [Ano95b]. 2 [Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17]. 24.95 [Ano95c]. 27.50 [Ano96a]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12]. 35 [Ano00a, Ano00b]. 35.00

[Ano99a, Ano99c, Ano99b, Ano99d]. 3D [KA13]. 60 [Ano00a, Ano00b]. 3 [PBC+01]. A [ARYT17]. α [JMdVG+17]. $Ax = b$ [BG95]. D [UZC+12]. H^2/H^∞ [GWC95]. k [She95, TK16]. M^3 [JSH+05]. PVM+ [Wil94]. N [IHM05, Per99, Rol08b, SP99, SRK+12]. SU(3) [BW12]. r [RGDM15, RGDM16]. XY [KO14].

. [Wil94].

/ [Boi97, IEE92, IEE93b, IEE93f, IEE94d,
DMW96, FF95, HAM95b, IEE95i, Lev95, NM95, Van95, Ano98, FD97, KaM10). 95/NT [FD97]. ’96
[ACM96b, ACM96c, BDLS96, BFMR96, CH96, IEE96g, IEE96e, IEE96d, LHHM96, Li96, Sil96, Was96, YH96]. ’97 [ACM97a].
978 [Che10, SD13]. 978-0-12-415933-4 [SD13]. 978-0-13-138768-3 [Che10]. 981 [Riz17].
9th [IEE95f, Kra92, YH96].

Aachen [ANO93a, GH99+93], Abortable [CAWL17]. Abortable-locking [CAWL17].
Abstract [MKW11, We94, BG94b, HIA08].
Abstract [SW12, YWT15]. Abstracts [SI16]. ACC [APJ+16]. accelerate
[SD10, TBB12]. Accelerated [AB13, KA13, SCSL12, CP15, DCD+14, KM10, 5110, iYS12, SM15, ZWL+17, ARYT17].
Accelerating [BFH14a, BFH14b, HKO01, JKI10, JLS+14, NLS15, LSVMW08, LSW11, LAFA15, TMP16, TS12b, UZC+12, YEG+13, vdLRJ11, HWX+13].
Accelerator [CS15, TK16, HE13, PRS16, SWS+12].
Accelerator [APJ+16, SS15].
Accelerator-Aware [APJ+16].
Accelerators [AKL16, NTR16, SHM+10, MSZG17, UGT09].
Access [BR10, HDR+15, IFA+16, JPL17, LR08, SGH12, WTR03, CG99b, GB14, HGM12, LOHA01, MN19, SFL+04].
accesses [TGL02]. accessible [BG99+].
Accident [SM11, SBR95]. According [LGM00]. ACCT [FV00]. Accumulated [KS15b].
Accumulative [H04]. Accurate [HD00, MLA+14, RSPM98]. Accurately [BGdS09].
Achieving [CBPP02, Gro01a, KKL11, RH01]. ACM [ACM90, ACM95a, ACM95b, ACM97b, ACM98b, ACM95b, ACM95e, IE02].
ACM/IEEE [ACM97b, ACM98b, ACM05]. ACM
[CA01, CPC [Bos96, Vol93]. Across [NE98, AL96, CZ95b]. ACSCI [Van95].
Active [CSAGR98, Pla02, SKH96]. Activities [MS97, CMV+94]. activity
[Ve92], Ad [IBC+10, ITT02]. Ad-Hoc [IBC+10]. Ada [Ton96, KP96, Ton96].
Adam [AN95b]. adaptable [BCM+16]. Adaptation [WST95, Adapted [Uhl97a].
Adapting [VFD02]. Adaptive
[AN94b, BMCR90, BKdSH01, Bir94, CKO+94, FSS+11, HWX+13, KKL98, KT02, LFL11, MKC+12, MBES94, MRB17, MAGR01, OKW95, Run05, RA09, SHM+12, SGZ00, SS09, STY99, Sta95a, TMW17, ZSG12, BDP+10, CLSP07, DLR94, EZBA16, EASS95, IDS16, LCL+12, SLGZ99, TCBV10, Was95a, WL94, FSS+11].
Adaptive-CoMPI [FSS+11]. Adding
[CB00, GRV01, PSM+14]. Address
[SS01, DO96]. addresses [CGL+93].
ADDT [SR96]. ADI [Sch01]. adjacent
[Kan12]. adjoint [MN12]. Adjusting
[GH02]. ADOL [BGK08]. ADOL-C
[BGK08]. adoption [CMV+94]. Adsmith
[LK96]. Advanced [ANO98, AN00a, D+95, Gei96, Gei97, GLT99, GLT00b, GLT00a, GLT12, KG93, SSAS12, TG94, Ben95].
Advances [Bha93, BBH+98, CHD07, CDND11, KGR01, KDD04, KKW05, LD08, LK10, MTD06, RWD09, TBD12, AD08, B001, BDW07, C01, DKO5, DLM99, DKP00, DLO03, HPS+12, Kra02, HPS+13, IEE97a]. Advection
[AKK+94, CT94a, CT94b]. Advection-Char [AKK+94].
Aerospace [MAB05]. Affine [DMB+16].
Affinity [ETWaM12, AGG+95, NAAL01].
Affordable [Ro94]. again [Har94]. against
[GH12]. Age
[MdS09, An94f, GJLT11, HK95]. AGEB
[SAS01]. Agent
[MO11b, MCB05, ZWZ+95]. agent-based
[MCB05]. agents [KBA02]. Aging
[LRB15]. Aging-Aware [LRB15].
AIMS [Yan94]. Air [AKK+94, BZ97, MDP04, MSML10, BTC+17, SH94, Syd94].
airspace [TCP15]. Aix [GA96, Ano01a].
Aix-les-Bains [GA96]. AI [Ano95b].
Alamos [Old02]. Albuquerque
[IEE91, IEE95d]. ALDY [GS96]. ALE
[HAA+11].

Algebra
[BDT08, CDD+13, Coo95b, IS16, MGMH97, Neu94, van97, BKvH+14, Cal94, Coo95a, PMZM16, dCH93].

Algebraic
[CGPR98, Lev95].

Algorithm
[ACMR14, BST+13, BP99, BT01b, DYN+06, FJBB+00, HA10, HD02b, ITT02, MWM08, PKD95, PB12, RDMF99, SAS01, Sch96a, SWH15, Sta95b, TK16, WDB05, ART17, AAAA16, ARD+94, ADQ5, BB95, BAV08, BY12, BCM+16, CCC95, CT13, CSW99, GM94, GCN+13, GGL+08, GKK09, GP95, HWS09, IM95, JR13, KDSO12, KIY0, KWEF18, Kan12, KBP16, KN17, KO14, KRC17, LZY13, MM92, MLVS16, MK00, NB96, NAJ99, OKW95, OKM90, PGFB+07, PSLT99, Rmm07, RJC95, RAGJ95, Sch96b, SOA11, Sur95a, TNIB17, Was95a, YULMTS+17, ZSK15, ZWL+17, dH94, van93, HWS09, LTDD14, Riz17, SMW06].

Algorithm-based [PKD95].

Algorithm-Dependent [BP99].

algorithmic [RJDH14]. Algorithms
[ACM95b, ATC94, ADRCT98, ASA97, CCSM97, DALD18, DAK98, DK06, FB94, GAMR00, GK10, HO14, HHK94, IEE96d, KKO2a, LHHM96, Li96, LAD16, MTSS94, MGMH97, MSB15, Nar95, Pet97, PBK00, SG15, VRS00, AK99, AL92, BHJ96, BMS+17, BID95, DDLM95, FR95, FP92, GWC95, HL17, HPLT99, HKOO11, HS95b, Jon94, JRM+94, KL95, KR1G3, LFL11, LN+12, MT16, MJK+12, NP12, OBS95, PP16, Pan95b, PBK99, PDD1, PCS94, RHG+96, SPE95, Sur95b, TSZC94, WCVR96, YLZ13].

alias [SOA11]. alias-free [SOA11]. aligned [AGIS94]. Aligners [SMM+16]. Alignment
[dOSMM+16, AMHC11]. all-port [RJMC93]. All-to-All [LZH17, Trāč02b].

Allocation
[AGS97, BS01, DGG+12, RFR96]. alloy
[TG94]. ALM [PZ12]. Altera [TK16].

Alternative
[EM94, SWH05, Trāč12a, EKTB99].

ALWAN [HB96a, HB96b, MSB97].

Amazon [ZLZ+11]. AMBER [SL95].

AMBER4 [VM95]. American [Ara95].

AMIP [Gat95]. Among [CB16]. AMPI
[ZH06].

AMPIC [CWH03]. amplified [EZBA16]. AMR [NLRH07]. AN2 [HBT95].

analogue [WWZ+96]. analyses [ANS95].

Analysis
[BHW+17, BR02, BGG+02, BBC+00, BDL98, CGLD01, EML00, FK01, FJK+17, Hol12, JF95, KLD94, KRG13, LCK11, MCLD01, NAW+96, NMS+14, Ost94, PZ12, PGAB+05, SLP+12, SBR95, SN01, TFGM02, Wh104, WM01, BB93, BBDH14, BBH+15, Che99, DSGS17, EPP+17, GR95, GFB+14, GKS+11, GE95, GE96, GT07, JB96, LC07, LLG12, LL16, LBH12, MMB+94, MMW96, MLA+14, MJPB16, Pat93, PHJM11, PGAB+07, ŠASC13, iSYS12, SS94, SDJ17, SPH95, Shi94, Sil96, SLW+01, SSG95, TMC09, TW12, TFZ12, Uhl95a, Uhl95c, VM94, YCL14].

analysical
[BHW+12, HK09, JS13, KN17].

Analyzer
[JJPL17, KKM15].

Analyzers [Ano01a].

Analyzing
[BRU05, DF17, FM09, HG12, HcF05, PFG97].

anasslich [Ano94c].

Anatomy [KWEF18].

Andrew [Ano99c, Ano99d]. animal [LM99].

anisotropic
[LB+16, SBB+16, YSVM16].

'Annai [CEF95].

Annapolis [IEE96c].

Annealing [FH97].

Anncey [WV92].

Anniversary [Ano92, Ano93e]. annotated [GGH99].

Annotation [MGA+17].

Announcements [Ano98].

Annual
[ACM95b, Ano93b, Ano94h, IEE95b, USE00, Van95, Y+93, ACM95a, Eng00, IEE94e, IEE95].

Ant [ITT02].

ante [Ano03].

antenna [DSO11].

Anthony
[Ano95c, Ano00b].

Antonio
[Ano95d, IEE95g, IEE97c].

Any
[Gro02a, Mar07].

AP [PBC+14, SMTW96].
AP/ [SMTW96]. AP1000 [SH96, SWJ95]. AP3000 [TD99]. API [DM98, LPD+11]. APIs [WCS+13]. APOLLO [Sta95b]. APOLLO-II [Sta95b]. Appendix [Ano01a]. Appendixes [Ano01a]. APPL [AB93b, AB93a]. Application [AKE00, BSN95, BGdS09, BS07, BFM97, BBH+15, Cha02, CRGM14, DFMD94, FDG97a, FDG97b, FSC+11, GB98, HT08, JFY00, JCH+08, KNT02, LD01, LMRGB14, Mal01, MTSS94, MBB+12, NSLV16, NS16, PSSS01, Riz17, SBF+04, ST02a, SCL97, UTY02, ZZ04, ABC+00, ADMV05, ADR+05, BvdB94, BFLL99, BL97, BOMP03, CRM14, CRGM16, EPML99, FMFM15, GWVP+14, HZ96, KME09, LSG12, LCMG17, MMW96, MM03, MLA+14, MvWL+10, NMW93, Rol08b, SSS99, SFV13, SL00, TCP15, Wor96, ZZZ+15, CG99a]. application-centric [SFSV13]. Application-Level [CRMG14, LMRGB14, SBF+04, SCL97, BOMP03, CRM14, CRGM16, LCMG17]. Applications [APJ+16, AGS97, Ano89, Ano96c, AZG17, BCLN97, BHV12, BBH+06, BRU05, BFM96, BFMT96a, CBM01, CSL97, Cha05, CJA+95, CRGM14, Cot98, CTK00, Cot04, Cza02, Cza30, DWO2, DLM+17, DERC01, DHK97, DGF97, DGM93, EV01, EML00, FDL98, FD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GK10, HMK09, Hua98, IEE95l, ITT02, Jes93b, JNFL17, KB98, KSB04, KGK+03, KKP01, KK20b, Kuh98, La01, LAAS+15, LRG14, KLCCW07, LMRG14, DLRO14, MSORG01, MS02a, Mar02, Mat01b, MAB05, MC98, MG15, MANRO9, PSM+14, Rei01, RPM+08, RRK15, RRRL01, SPL+12, SG12, SC04, SSBB+17, TTSY00, TFGM02, VdS00, VY02, Vos03, Wai96a, WC09, Wiss96a, WSN99, WBH97, WM1, dGJM94, ACH+11, ACJ12, Ano93a, Ano94f, Ano03, Ara95, Arn95, AGMJ06, BKH+13, BR04, BDV03]. applications [BAG17, BFM96, BFMT96a, CGBS+15, CDMS15, CLS07, CBM+08, CIJ+10, CFP95, CCHW03, CCM+06, DZ98a, DSZ94, D+95, DCH02, EKT99, EGH90, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GSD12, GSH96, GHH+93, HZ99, HAJK01, JCI7, JPN04, LMG17, LCMG17, LS08, MA09, MBKM12, MLC04, MSC15, MS96b, NSB07, NCB+12, NFG+10, PK05, PTL+16, Rab09, RS05, SJLM14, SPE95, SGB+12, SDJ17, SGH12, SG05, SLG95, SB01, SD16, TMC09, TBB12, Vet02, Wis96b, Wai92, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94]. Applied [FGRD01, HC06, KaM10, HMKV94, MM92, NF94, PGK+10, DMW96, Was96]. Approach [AZG17, BHM94, BJ93, BNW01, CRGM14, CD98, DLM+17, FF03, GC06, H00, KB02, KK20a, LGM00, Mar06, PPR01, Pet00a, Pet00b, RGD13, Ros13, TJFP12, BK11, BS04, BTC+17, CLY+16, CDP99, CRGM16, DiN96, E015, FMS15, HDB+13, JS13, KDP+12, KSSS07, KJEM12, LSG12, MG05, MS99b, NEM17, OW92, SVC+11, SEC15, TF0909, W09]. Approaches [JCH+08, Ney00, SWHP05, SM02, BFLL99, CB11, PS00b]. Approximate [Huc96, MM02, GCC+07, G09, MM03]. Approximation [SLJ+14, SJLM14]. April [ANS95, AH95, Ano93g, Ano94h, CH96, DR94, GH94, Ham95a, IEE92, IE93b, IE95f, IEE96e, IEE97b, IEE05, LCH96, MC94, N95, Sie94, SW91, Ten95]. APS [GT94]. AQUAppush [CP15]. arbitrary [HP11]. ARCH [Ada97, Ada98]. architectural [GGC+07]. Architecture [BG94a, CGC+11, EBK01, EM02, FD97, Fu08, HRZ97, IEE97c, ITK00, LSZL02, PT01, PS01b, SMM+16, SC04, WKP11, YTH+12, BCR99, BG94c, CSPM+96, CS96, Din96, FHC+95, HK09, MRH+96].
architecture-independent [DiN96].

Architectures [ACM95b, BDT08, BFG10, CHPP01, HD02b, HHK94, IEE96d, KDT12, LHHM96, Li96, LZH17, LAD16, MS02b, MTSS94, MCS00, NO02b, Nar95, PZ12, TSCaM12, BDP10, BN00, BKML95, CLM+95, CDZ+98, DM93, DZZY94, GDC15, GP95, Hos12, LCL+12, LDJK13, MLC04, NO02a, PY95, RFH+95, RMMN+12, SPL99, TDG13, TSZC94, Uh95a, VDL+15, WST95, dAMC11]. Area [CDHL95, Fis01, BHW12, FGT96, FGG+98, KHB+99, Qu95]. area-based [Qu95]. arising [ARvW03]. Aristotle [FSV14]. Arithmetic [Ano98, JPT14, Sur95a]. Arithmetics [HD00]. Arizona [IEE95b, JB96]. ARM [MGL17]. Array [DDPR97, HD02b, WG17, CCM12, DK13, HSE+17, JKN+13, Ott93, Wal02]. arrays [HCL05, RBS94]. Arrivals [FJBB+00]. Art [Pan95a]. Ascona [DR94]. Ashes [Thr99]. ASL [FGRT00]. ASME [LF+93a]. aspects [CG99a]. assembly [TPD15]. Assessing [LMG17, dLR04, MABG96, TSCaM12, CMV+94]. Assessment [Mat01b, TAH+01, Boi97, LH98]. Assignment [Cza13, CK99]. assist [Kik93]. Assisted [GTH96, GM13, MBBD13]. Astro [CC17]. Astronomical [JB96, SPH95]. asymmetric [GCN+10]. Asynchronous [Ada97, Cav93, CZ95a, CDP99, HE02, BBHD14, BCK+09, CZ95b, DDDY99, Sch99]. Athapascan [CP98]. Atlanta [AGH+95, Ara95, USE00, UCW95]. ATM [GFV99, HBT95, Jon96, LHD+94, LHD+95]. Atmospheric [BG99a]. Atmospheric [HK93, RSBT95]. atom [MGG05]. Atomic [LRT07, LAFA15, SYF96, DS13, Hin11, SY95, XF95]. atomics [BDW16]. atoms [JLS+14]. Attacks [PV97, GHD12]. Attraction [GB96]. audio [BJ13]. August [ATC94, Agr95a, BMFR96, DMW96, GT94, HAM95b, IEE94g, IEE95k, IE96f, LF+93a, Ost94, PSB+94, PBG+95, Ree96, VV95, Was96]. Austin [IEE94b]. Australian [Bil95]. Australia [GN95, Nar95, ACDR94, Bil95]. Australian [ACDR94, GN95]. Austria [Bo96, BH95, Kra02, TWD12, Vol93]. Austrian [Fer92, FK95]. Austrian-Hungarian [Fer92, FK95]. Auto [CC17, DWM12, DBLG11, RDLQ12, WG17, FE17, SH14, TWFO09]. Auto-Generation [CC17, DWM12]. auto-parallelization [TWFO09]. Auto-scoping [RDLQ12]. Auto-Tuning [WG17, DBLG11, FE17, SH14]. AutoLink [GMPD98]. AutoMap [GMPD98]. Automata [Car07, BB+94]. Automated [BMP03, MXY95, LG12, RFRH96, Yan94]. Automatic [BVML12, BBH+08, BGK08, BHK+06, CBL10, Cza03, DW02, EML98, EML00, FAFD15, FFA11, GKF13, HZ99, JFY00, JJS+03, JPL17, KI01, KS12, MPA+17, NCB+17, OWSA95, RBS09, RGD13, SZ11, SR96, SSB+17, TJPF12, WC15, WM01, APBCF16, AMuHK15, AGG+95, BR04, BHR08, CHKK15, Cdst96, CPR+95, HZ96, LME00, LF93b, WMP14, ZK06, FVD00]. Automatically [WBSC17]. automation [Ano93a]. automotive [Ano93a, Ano93a]. Award [Str94]. Awards [Str94]. Aware [APJ+16, BHP+03, EGR15, HVA+16, LrbG15, MJB15, Pan14, ZLP17, CGH+14, GH12, HJYC10, HG12, JKN+13, KBG16, MBBD13, MCM15, SHM+12, SPK+12, WRSY16]. awareness [HK09, VGS14]. AXAF [NH95].
Balance [HE02]. balanced [EZBA16].
Balancing [BKdHS01, DBA97, DI02, DK06, GCB01, MM02, PT01, Pus95, ST97, Wal01a, Bin94, BS05, DZ96, DLR94, DvdlV94, DR95, FMBM96, FH97, Hum95, JH97, MM03, NP94, SG95, SY95].
Balatonfured [DKP00]. balls [BBH15].
Barrier [CLdJ15, SDB16, YL13].
Based [Ada97, AHD12, AAB17, AP96, BHW+17, BDG91b, BoFBW00, CAM12, CGC02, CLP99, CDPM03, DW02, DBK+09, FSC+11, FC05, For95, FSLS98, GSxx, HF14a, HF14b, HM01, Hsu00, KL16, LSL02, kl11, LWPO4, LAFA15, MDM17, MGL+17, MHH98, NSIV16, NE01, NHT02, NPS12, PPT96a, PCY14, PFG07, PSSS01, RDMB99, SPL+12, SM03, Smi93a, ST02b, ST97, SJK+17a, SJK+17b, THS+15, TD98, WTH17, WC09, WZH16, Wis96a, WM01, WJB14, YG96, YTH+12, ZWJK05, Ada98, AASB08, AAA16, AVA+16, Ano03, BLPP13, BDG+92a, BCH+03, Br95, BFMT96a, CsCW+11, CC10, CKmWH16, CRM14, CXB+12, DXB96, FE17, FFB99, FJZ+14, FNSW99, FSTG99, FFCC99, FWS+17, GS91a, GS92, GKS+11, Gra97, Gra09, GFGPG2, HZ94, HWX+13, IM95, ITT99, JKMK+17, KPL+12, KPNM16, LV12, LRW01, LKLM96, LNW+12, LGG16, LMM+15]. based [MYB16, MMO+16, MKP+96, MCB05, MT96, MS99a, MS99b, MFPP03, Neu94, NHT06, OLG+16, OP98, PARB14, PEE99, PPT96b, PK05, PA0+17, PGK+10, PSL11, PKD95, PSK+10, PSLT99, Qu95, Rag96, SJLM14, SS09, SG05, SSS99, SZ11, SVC+11, SLS96, SKB+14, St098, Str96, SLN+12, TBB12, TY14, TDB96, TF009, TMRP01, W009, WETO14, Wis96b, WC99, YC98, YL09, YWC11, YSL+12, ZAFAM16, ZLP17, ZHK06, ZZG+14, ZWZ+95, vHKS94, BFMF96b, FH97, KSJ95, WAS95b, FO94, GK97, KSJ96, PY95, Srt96, TSZC94, ZPLS96]. Basel [Ano94i]. Basic [PGC02, BKvH+14, BR94]. baisterte [Gra97]. Basis [OMK09, RB01]. Bath [BP93]. Bayesian [Fer10]. BC [IEE95i].
BCS [FP03]. BCS-MPI [FP03]. be [CB00]. Beach [IEE93]. beam [OIH10, RCF96]. bearings [NF94].
Beguelin [Ano95b]. Behavior [BFM97, DeP03, Ros13, LLG12, PPF89, YMY11].
behaviour [EPML99]. Beijing [CZG+08, LHHM96, Li96]. Beitrage [Ano94c]. Belgium [LCHS96]. Benard [TV96].
Benchmark [BWV+12, DS16, HC10, Lu99, Mii02, MBB+12, RSPM98, RTH00, SG+03, Trä12b, UTY02, Ano03, BKML95, DWM12, DH95, DHS96, Mii03, MwL+10, PHJM11, Rei01, RST02, Wor96, YSWY14].
Benchmarking [GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02].
Benchmarks [CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TSB03, WAS95b, ZsnH01, CDD+96, MMH99, Ste94, WT11, CE00, WT12].
Beneficial [CB00]. benefit [SBG12].
Benefits [FSM+14, SRP17].
Benutzerprofile [Wil94].
Benutzertreffens [Ano94c]. Beowulf [CMM03, Ste00, UP01]. Beowulf-Class [Ste00]. Berlin [PW95]. Besel [KT10].
Betriebssystemkern [Sei99]. Better [Str94]. Between [AAB+17, BS07, ASS+17, AKE00, BID95, GV99, JAT97, LDCZ97, MSP93]. Beverly [IEE93f]. Beyond [Gei93a, GKP97, Gei98, Gro12, Ohu14, Gei93b, LSG12, Sch93, SHM+10].

binary [CG93, EPP+17, SGS95, TCBV10]. binary-level [EPP+17]. binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Coo95a]. Bindings [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, BA06]. Biomolecular [BCGL97, PZKK02].

BLASTP [LSMW11]. Blood [Pat93]. Blue [KMH+14, AAC+05, BGK08, Am95, HS95b, MSL12, PW95, Sur95b, Kos95b]. Bulk [Cer99, DLRR99, HZG08, TNIB17].

Butterfly-Patterned [ST17].

C [Gal97, Pri14, SSL97, TBC+02, VDL+15, Vre04, BGK08, BB09, CNC10, CCHW03, DARG13, Don06, FLMR17, FH01, GSI97, Gör01, KK02a, KPO00, LYSS+16, Quo03, SSB+17, SC95, TNIB17, UZC+12, YULMTS+17, YSYM+16, ZT17]. C# [WLR05]. C-to-CUDA [UZC+12]. C/C [KPO00]. C11 [BDW16]. C2CU [TNIB17].

CA [ACM95b, Ano89, BBG+95]. Cache [LZH17, MM07, NIO+02, NIO+03, SS01, SVC+11]. Cache-Coherent [SS01].

cache-friendly [SVC+11].

Cache-Oblivious [LZH17]. Caching [kLCCW07, DO96, WMRR17]. CAE [KDL+95a, KDL+95b]. CAF
[CZG+08, IEE97a, LHHM96, Li96]. Chip
[Jes93b, URKG12, TDG13, dCZG06].

Cholesky [DG95, LC97b]. Chromosome
[BM97, dOSMM+16]. Chromosome-Wide
[dOSMM+16]. CICADA [MK94]. Circuit
[WPC07, BJJ95]. Circuits [GJN97].

Circulation [GAM+02, Nes10, RSBT95].

CIS [AH00]. citation [Squ03]. City
[Hol12]. civil [PW95].

CL [BHW12, BBH15, LW95]. CL-PVM
[LC97a, LH95, LVP04, MS98, MFPP03, Pan14, PKB01, PT01, PS00a,
Prod09, Rei01, dOSMM+16, SFG98, Slv99,
Ste00, Tou00, UP01, WLNL03, WT12,
YWCF15, YKI+96, AB95, ALR94, ADB94,
ABG+96, ADMV05, BWT96, BDV03, Brn95,
CRE01, EKTB99, GF95, HCL05, Hus99,
JKH08, Jon96, JR+94, KLY+03,
KLY+05, KSL+12, KJEM12, LBD+96, Lee12,
LLC13, LL95, LKYS04, NMW93, NN95,
PS97, PRs+14, FM95, PR94c, PRs16, PL96,
RCFS96, RGDM16, Slo05, SC96a, SL95,
TFZZ12, WLNL06, WLYC12, YST08, YL09,
YHL11, YWCF15, ZHS99, dCH93].

CM [SBG02]. CMMD [Har94, Har95]. CMPI
[GHZ12]. CMS [FMS15]. CNF
[IKM+01, IKM+02]. CO
[ACM01, AHHP17, HJ98, Wal02].

Co-Array [Wal02]. Co-designing
[AHHP17]. Co-processed [HJ98]. Coarray
[GRBR15, YBMCB14]. coarrays [SMCH15].

Coarse [ADRCT98, IOK00, KOI01, LGM00,
NIO+02]. coarse-grained
[Heb93, RJC95]. coarse-graining
[Heb93, RJC95]. codebooks
[PMM95]. Codes [FAFD15,

cluster-based [SL96]. Cluster-enabled
[SHHI01]. clustered [KHB+99]. Clustering
[BBH12, HA10, RJC95, GGL+08, YCL14].

Clusters [MS04]. Clusters
[AH00, AHHP17, BDH+95, BDH+97,
BMM+12, CMC96, DK06, GMdMBD+07,
GSY+13, HPP02, HSMW94, HVA+16,
Hus00, JN+15, LC97a, LH95, LVP04, MS98,
MFPP03, Pan14, PKB01, PT01, PS00a,
Prod09, Rei01, dOSMM+16, SFG98, Slv99,
Ste00, Tou00, UP01, WLNL03, WT12,
YWCF15, YKI+96, AB95, ALR94, ADB94,
ABG+96, ADMV05, BWT96, BDV03, Brn95,
CRE01, EKTB99, GF95, HCL05, Hus99,
JKH08, Jon96, JR+94, KLY+03,
KLY+05, KSL+12, KJEM12, LBD+96, Lee12,
LLC13, LL95, LKYS04, NMW93, NN95,
PS97, PRs+14, FM95, PR94c, PRs16, PL96,
RCFS96, RGDM16, Slo05, SC96a, SL95,
TFZZ12, WLNL06, WLYC12, YST08, YL09,
YHL11, YWCF15, ZHS99, dCH93].

CM [SBG02]. CMMD [Har94, Har95]. CMPI
[GHZ12]. CMS [FMS15]. CNF
[IKM+01, IKM+02]. CO
[ACM01, AHHP17, HJ98, Wal02].

Co-Array [Wal02]. Co-designing
[AHHP17]. Co-processed [HJ98]. Coarray
[GRBR15, YBMCB14]. coarrays [SMCH15].

Coarse [ADRCT98, IOK00, KOI01, LGM00,
NIO+02]. coarse-grained
[Heb93, RJC95]. coarse-graining
[Heb93, RJC95]. codebooks
[PMM95]. Codes [FAFD15,

cluster-based [SL96]. Cluster-enabled
[SHHI01]. clustered [KHB+99]. Clustering
JFY00, SWH15, HWS09, HASnP00, JPP95, KBG+09, LRW01, Mal01, OLG+16, WB96.

Coding [Uhl94, Uhl95b, SCC96].

Coefficient [MW98, ARY97].

Cognitive [PWD+12].

Coherence [MM07].

Collaborative [DCPJ12, DCPJ14].

Collapse [FKYW95].

Collection [LTRA02, DH95, MGC+15].

Collection-oriented [MGC+15].

Collectives [CSW12, SvL99, Zah12].

Collector [GTS+15, WK08a, WK08c, WK08b].

College [AGH+95, Ano94b].

Collision [QRM96, Sta97, FFFC99, LHLK10].

Colloquial [MKW11].

Colony [ITT02].

Colorado [R+92, IEE05].

Colt [WN10].

Comments [Str94].

Commercial [Ano93g].

Commodity [GGL+08].

Common [HEH98, DK13, WLR05].

Communication [FKK+96b, GMPD98, FKK96a].

Communication [ABF+17, BCG+10, BIL99, BIC05, DCPJ12, DZZY94, EM02, FST98a, FJK+17, FGKT97, FBSN01, GFD03, GB+03, GGS99, GVV99, GLB00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KBG16, LRT07, LC93, LCVD94a, MH01, MMH98, MR96, Nit00, Rk01, RRAGM97, RsT06, SWHP05, SCP97, SH12, SBG+02, SJ02, ST02b, SGL+00, SCH96, Sun12, TRG05, TGT05, TRH00, Tra02b, UMK97, WBB97, XH96, YC98, ZSG12, FHX9, BJH96, BVML12, BBH+13b, BS94, BMG07, CAHT17, CGL+93, Dem96, DWM12, DCPJ14, DGB+14, DBB+16, DS96b, G97, GM13, Gra97, GL94, GB96a, HWX+13, Has99, HWW97, KH96, KB01, KLY03, KLY05, KHB+99, LRT06b, LFL11, MALV10, MMU99, MABG96, Pan95b, Par93, PGK+10, PM95, PKE+10, PSK+10, PSE00b, SH14, SC95, TG09, Tra12a].

Communication [Vet02, Wu99, WM14].

Communication-based [PGK+10].

Communication-buffers [MR96].

Communications [BPS01, CP98, CDHL95, CDH+95, FVD00, FST98b, GT01, GBS+07, GMdMBD+07, IEE95b, IEE95e, LZH17, MM00, VFD02, YTH+12, bT01a, ADLL03a, ADLL03b, CDP99, HS12, KBHA94, MBBD13, McR92, MN91, MS99c, RGDML16, SCB14, SCB15, TD99, WLYC12].

Communicators [DFKS01, GFD03, FKS96, KH96, MJG+12].

Community [ACM04].

Community [BHW+17, FCP+01].

Como [CLM+95].

COMOPS [Luo09].

Compact [Uhl94, Uhl95b, Wor96].

Compaction [VSW+13, WK08a, WK08b, WK08c].

Compactly [KLR16].

Comparative [KB98, PSK08, SN01, AGR+95b, ED94, YCL14].

Comparing [BF01, Fin97, GBR15, HSVH95, ICC02, LJ03, ORA12, SSG95, WBS17].

Comparison [BvdB94, BS07, HC10, KMB97, LCW+03, Mat94, Mat95, Noy90, OP10, OF00, PPJ01, Pok96, RS93, RB97a, SS01, SHH94b, VS00, Wal02, ZBD12, Ahm97, AB93b, BLP93, BID95, GMU95, Har94, Har95, JS13, KDSO12, KC06, MSP93, Ols95, PS07, PSHL11, Pri14, SdM10, SYR+09].
comparison-based [PSHL11].
Comparisons [GGS99, PGC02, CLYC16].
Compass [PWD+12]. Compatible [MM14, LBH12, OIH10].
Compcon [IEE93a]. compete [Ano96a]. CoMPI [FSC+11, FCS+12]. Compilation [FSSD17, HKMCS94, LBHG15, SBW91, Coe94, FM90, PG8+13, SHM+12]. Compile [GB94, TSY99, JE95]. Compile-time [GB94]. Compile/run [TSY99]. Compile/run-time [TSY99]. compiled [KYL03, KYL05]. Compiler [Ano98, Dan12, IOK00, KSS00, KSHS01, MB12, Mar09, MKW11, SSE12, SKS01, TJPFI12, TBG+02, TGB05, BAG17, HEHC09, LME09, LHC8+07, LLCD15, MA09, Miit03, PP16, RKBA+13, SHH01, THH8+05].
Compilers [Ano01a, CFF+94, LZ97, MKV+01, SBT04, SS96, Hos12, PBG+95, ZT17]. Compiling [DMB16, Hos12, CGK11]. Complete [BdS07, GHLL8+98, Nag05, Per97, SOHL8+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, PRS+14, SOHL8+96]. Completed [PTT94].
Complex [BCGL97, GMPD98, MBS15]. Complexity [NPS12]. component [HLP10, KRKS11, Squ03]. Components [BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01]. Composed [We94]. Composing [PBA90]. composite [MALM95, YPA94].
Compositing [GPC8+17]. Composition [CTK00, Cot04, DLB07, FC05, KH15, CFP96]. compound [LLC13, SAP16].
Compton [BCD96]. Computation [BKGS02, B+05, Cer99, DSM94, DSS00, EMO+93, ESM+94, Fer10, FF95, GS91b, IEE94a, IEE96c, KS15b, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SME93, WTT917, ACM97a, ABDP15, Bis04, BALU95, Bos96, BHKR95, CL93, CMH99, CKP+93, DZZY94, HLM8+17, HK94, KB01, KIJ8+16, KG93, Lev95, MALV10, Neu94, NZZ94, NCK12, PF05, PKE+10, Röh00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07].
computation-communication [SH14].
Computational
[ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R8+92, SB95a, SM07, SN01, TDBEE11, TGE09, WPH94, Whi04, AGJM06, BvdB94, BDH8+92, BR95a, HVSC11, KB9+09, PBK99, RBB15, SPE95, SZBS95b, STT96, Str94, VDL8+15, BR95a, CCHW03, R8+92, SL94a, WPH94].
Computationally [DFN12].
Computations [AGH8+95, ACRG97, CGU12, CGPR98, IH04, PB00, PMvdG8+13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGDK92, HJYC10, KD13, MRRP11, MR96, Smi93b, SAP16, TS12b]. Compute [DBK8+09, KKL11, ZZL8+11]. computed [FWS8+17, SS99]. Computer [ACM06a, Ano94a, GTH96, IEE95l, IEE96h, IEE97c, IS16, KCR+17, Neu94, Old02, PSB+94, ST02a, Sum12, Ten95, UKRG12, YTH8+12, BN00, BS94, BKML95, BF96, Cal94, CLM8+95, GRT90, JWB96, Str94].
Computer-Assisted [GTH96]. Computers [Ano89, BP99, BCL00, DGMJ93, FFP03, GC05, IEE95b, IEE95e, ITK00, LF8+93a, MFTB95, PSZ600, SPM8+10, SS96, BvdB94, BB93, BBK8+94, DL9R94, Duv92, ESB13, GBF95, KOS8+95a, LR06a, MB8+94, NF94, POL99, PBK99, Wal94a, Wal94b].
Computing [ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACDR94, AIM97, BJ93, BBG8+95, BDG8+93a, BGR97a, BL95, BCP8+97, BRST94, BDH8+95, BDH8+97, BH9W01, BH12, CZ95a, CGB8+10, CL93, CNC10, Cze16, DDS8+94, DER01, DPP01, DKM8+92, DMS93, DT94, FTVB00, Fer98b, FGKT97, Fos98, FS93, GLN8+08]
computing [AMV94, BPG94, BDG+92a, BDG+94, BKML95, Bru95, BHW+12, CZ95b, CHKK15, DLR99a, DKDO8, DW94, DMW96, DE91, EKTB99, EJL92, FBD01a, FGRD01, FO94, FS95, Fer98a, FS98, FME+12, FHC+95, GGGC99, GS02, GS91a, GS93, Gei93b, Gei94, GH94, GlkLY97, HP05, HW11, HH14, HPY+93, H95a, HH95, mH12, IEE97a, IM95, JPOJ12, JY95, JIM+11, JPTE94, KO14, Kos95b, KSSS07, LV12, LH98, LCHS96, LHD+94, LHD+95, LM13, Maf94, MZK93, Mal95, Mar07, PG9+13, PKB06, Pen95, PKG+10, PTT94, PB9+95, PNV01, PWD+12, RBS94, RJDH14, Sch93, SGS95, SM00, ST96, Sti94, SP11, Sun94b, SGM94, Sun95, SD99, TJD09, TKP15, TDB00, Tho94, TSS98, VM94, Vis95, Was96, YULMTS+17, YLC16, YSL+12, Zem94, ZWL13, ZGC94, ZHS99, ZKR14, ACM98a, Kon00]. Computing [PW95, Per96, SCR92, TGEM09, Ano95b]. Concept [KaM10, LTR00, SB95]. Concurrency [ME17, NPS12, DGB+14, PTG13].

Concurrent [Ano89, BDG+91b, BRS92, BHV12, BKH+13, DG95, GS91b, GS92, GSSx, Gre94, HS93, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LPD+11, NP12, RGDM16, RCG95, Sun94b, SGM94, Wal94a, Wal94b, WK08a, WK08b, WK08c, ZWZ+95].

condensed [MC99]. Condition [GK10]. Condor [CF01, PL96]. conduction [iSYS12]. Cone [RCFS96, OHI10]. Conference [ACM90, ACM94, ACM96b, ACM96c, ACM97b, ACM98b, ACM04, Abr96, ATC94, AGH+95b, Ano89, Ano93f, Ano94a, Ano94e, Ano94i, ACDR94, BBG+95, B+95, Boi97, Bos96, BFM96, BH95, CGB+10, CH96, DSM94, DZ95, DKD07, DM+92, ERS95, ERS96, EJL92, FF95, Gat95, GN95, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE92, IEE94f, IEE95b, IEE95a, IEE95e, IEE95i, IEE95j, IEE95k, IEE96a, IEE96d, IEE96h, IEE96i, IEE92, IEE94f, IEE95b, IEE95a, IEE95e, IEE95i, IEE95j, IEE95k, IEE96a, IEE96d, IEE96h, IEE96i, ERI93, LM+95, MMH93, Nar95, OL05, PR94b, Re96, R+92, SPE95, Ssl96, SM07, Sin93, SW91, USE95, USE00, VW92, V939, WPH94, Y+93, Y96, ACM95a, ACM05, ACM06b, ANS95, Ano93b, Ano93c, Ano95a, BR95a, Bil95, BDL96, DR94, Eng00, GH94, JPTE94, LCH96, Mal95, PW95, Van95, ZL96, ACM94, Ano94g, IEE95b, KDV93]. Configurable [IEE94d, PKB+16, BB94]. configurations [PTL+16]. conflict [TCP15]. conformational [MK94]. Congress [CJNW95, GHH+93, PSB+94, BH95, dGJM94]. Congressi [GT94]. Conjugate [BG95, FPG912, MM92, Obs95]. Connected [BT01b, KRKS11, OF00, Pet01]. Connectivity [Wh94]. Conquer [CTK01, Cza02, Cza03]. conscious [ZA14]. consistency [WBSC17, YYW+12]. Consistent [TGT10, CG96, CG99a]. Console [PES99]. Consortium [BRST94]. Constrained [BHS15, EGR15]. Construct [DP94, EM94]. Constructing [DM93]. construction [ART17]. Constructs [KDT+12, PGC02, BKH+13, BN00]. consumer [ACJ12]. Contact [Nak03]. CONTAIN [SBR95]. containers [Str12, ZT17]. content [GFB+14]. contention [ALW+15, DSG17, ZAH12]. Context [DG+12, MDAS+18, OLG+16].
context-bounded

Contexts

Contract-based

contrarian

Controller

controller

controllers

contract

Crash

Crash-simulation

Crashworthiness

Creation

Cryptographic

Cryptography

Cryptosystem

Corfu

Corentin

correct

correction

Correctness

Correctness

Correction

corruption

Coscheduling

Cost

Cost

count

counters

Count

Coupled

Coupling

course

CPU

CPU
LSSZ15, LBH12, LSVMW08, LSMW11, LAD16, LBB+16, LYSS+16, LYZ13, MMO+16, MR12, MSML10, MdSAS+18, MGL+17, MM14, NSLV16, NS16, NBGS08, OIH10, ORA12, PGS+13, PRS+14, PAd+17, PSHL11, PRS16. CUDA

D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Brl95, BMP94a, BAS13, CGU12, CP15, EFR+05, ES11, GCN+13, HF14a, HF14b, JR10, KRKS11, KO14, KD13, KHS01, KLR16, MK94, MSZG17, NMS12, TPD15, WMRR17, WR01, YSL+12, vHK94]. D-CICADA [MK94]. Daemon [LB98]. Dagum [Stp02]. d’Aix [GA96]. d’Aix-Marlioz [GA96]. Dallas [ACM00, IEE95i]. Dame [IEE96i]. damping [YPA94]. DAMPVM [Cza02, Cza03]. DAMPVM/DAC [Cza02, Cza03]. DAMS [CD98]. Dangers [BGP+97]. DaReL [KN95]. Data [AJF16, BMR01, BCG+10, BGD12, CknWH16, DERC01, DiN96, EGR15, EAS95, GTS+15, GB98, GMPD98, Gua16, HA10, HB96b, HC06, JDB+14, KA13, KL14, LDJK13, MV17, Man01, ME17, MGA+17, MJB15, NJ01, NPP+00b, NPP+00c, NA01, NLRH07, PCY14, Re01, SGH12, SPK96, SR96, Str12, TSH+15, WO95, Wd94, ZDR01, ZG95b, AB95, ASS+17, AGG+95, BK11, Ben95, BR12, BID95, CFKL00, CGK11, CGL+93, DRUC12, EP96, FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPOJ12, KN95, KJ+16, KRG13, LOHA01, LF+93a, LL16, MA09, MBB+94, MMM13, MR96, NCB+12, NCB+17, NPP+00a, OPP00, PDY14, RJMC93, SK92, TW12, WO96, YCL14, YW095, ZRQ11]. Data-centered [JPOJ12]. Data-Driven [ME17, NCB+12, NCB+17]. Data-Intensive [Re01]. Data-Parallel [AJF16, GB98, CknWH16, SPK96, CGL+93, FKK+96b, MBB+94, MMM13, MR96, NCB+12, NPP+00a, OPP00, PDY14, RJMC93, SSS99, SP95, SK92, TW12, WO96, YCL14, YW095, ZRQ11]. Data-Parallelism [BR12]. data-privatization [KRG13]. Data-Structures [GMPD98]. Databank [FCP+01]. Database [AR01, BFZ97, EK97, MWG97, MM14, PPT96a, MN91, PPT96b, PPT96c, PMZM16]. Databases [BA06, BOS96, ZWL13]. Dataflow [DT17, CSPM+96]. Datasets [VPS17, KGB+09]. Datatype [Gru00, SWHP05, HKS12]. Datatypes [JJM+14, RTH00, SGH12, Tha98, CAHT17, THRZ99]. Dave [Stp02]. David [Ano96a, Ano99a, Ano99b, Nag05].
Divide-and-Conquer
[CTK01, Cza02, Cza03]. DMPI
[HWM02, ZLL+12]. DNAmp [CDZ+98].
DNMR [SR11], docking [ESB13, ZWL13].
document [AD95]. Documentation
[BDG+xx]. Documents [Ano98]. does
[KC94]. dog [LK14]. Domain
[BMR01, CP97, EGH+14, kL11, ETV94,
HE13, Nel93, NZZ94, Ohu14, OKM99,
Ram07, SHHC18, VM94]. Domains
[GA96].

Downloadable [Ano98]. DP
[Arn95, KLR+15]. draft [DHHW93b, GL92].
Draw [ST17]. Dresden [MdSC09]. Driven
[AIM97, ME17, PCY14, Hin11, NCB+12,
NCB+17, Qu95, SIS17, TWFO09, WFTO14].
Dror [Stp02]. drug [GWVP+14]. drugs
[Str94]. Dual [BBC+00, GAM+02, DK92].
Duality [LDD93, LDD94]. Dual...

Early
[CD96, LV12, SLG95, EFR+05, KJA+93].
Earth
[KTJ03, Nak03, Nak05a, Nak05b, UTY02].
Earthquake [UCZ+12, KTJ03, KME09].
Easily
[PKB01]. East [IS16]. Easy
[HCA16, TDG13, MJPB16, SBF94].
EasyGrid [BR04]. EASYPVM [Saa94].
ECMWF [HK93, HK95]. ed [Nag05].
EDEM [Ts95].

Dynamically [Wil94]. dynamite
[IvdLH+00, IHvA+00]. Dynamite/DPVM
[HvA+00]. Dysel [CKmWH16].

E-scale [Gua16]. each [Ano00a, Ano00b].

Editors
[AM07, GSA08]. education [ACM06a].
EDV [Ano94c]. EDV-Benutzertreffens
[Ano94c]. Edward [Che10]. Effect [DK60].
Effective [MLAV10, RK01, TMC09, Ts95,
Cza13, JH97, KS15a]. Effects [SE12].
efficacy [GSFM13]. Efficiency
[KS96, MTU+15, CZ96, MMU99, RS95].

Efficient [ADT14, Att96, BHW+17,
BGBP01, BCK+09, BHS+95, BFG+10,
BGD12, Bn95, BDH+95, BDH+97,
BMPZ94b, CAWL17, CFP96, DZ98a,
DG+12, FHPS94a, FHPS94b, HBT95,
HKT+12, HT08, HC06, HLO+16, KGE+03,
KDJ13, LAD16, MDM17, MB12, MRB17,
NBK99, PGS+13, RJMC93, RR02,
TGBS05, WSN99, WWFT11, YPZC95,
ZWS95, BdDA94, BHW+12, CBH+14,
FM90, FNSW99, FHB+13, HCL05,
KVGH11, LKL96, LA06, Pan95b, PRS+14,

Eigenvalue [DAK98, BSC99, THM+94].

Eighth [ERS95, Sie94, IEE96b]. Eileen [CSS95]. einen [BL94]. Einfluß [Gra97].

Einführung [MS04]. Einstein [ARYT17].

Electronic [GJN97]. Electrons [IEE95d].

Electrosoft [Sil96]. electrostatic

Element [MS02b, OD01, OMK09, SM07, Str94, DMW96, IEE94c, PW95, Sil96, LF+93a].

Elemental [PMvdG+13]. elements [KB13].

Embedded [YGH+14, ACJ12, CGK11, NEM17, TMW17, WSS+13]. Embedding [FS97, SML17, MS96a].

Embodiment [Ser97]. emerging [RNMN+12]. Emission [Pat93, EZBA16]. emphasis [Bos96]. eMPI [MS96a]. eMPI/eMPICH [MS96a].

Empirical [SS94, YY02]. Employing [AGM06]. emulation [MS95b]. emulator [LTL10]. enable [SPK+12]. Enabled [Fos98, GSY+13, LSMW11, Pan14, ZLP17, DS13, GLM+08, HJB14, KTF03, RA09, SHH101, SR11, ZLS+15]. Enabling [APCf16, BGG+15, CLSP07, DGB+14, GBH14, HJYC10, NPS12, TY14, ZP16, BR04, MA09, SHHC18]. encapsulation [DRUC12]. encoding [AAAA16, PGBF+07].

Engine [Wal01a, NPP+00a, Wal01b]. Engineering [Ano98, BPG94, BR95]. EGH+14, IE69h, KA10, LS15, LF+93a, MS02a, MBS15, Nag05, SM07, Str94, DMW96, IEE94c, PW95, Sil96, LF+93a].

engineers [HW11]. Engines [SL+14, HSW+12, SHM+12]. EngineTM [Oi+06]. English [Wil94]. Enhance [AR01]. Enhanced [Ano98, CDHL95, CD95, FMSG17, KY10, PLR02, Saa94, BR95b, FE17].

enhancement [ARL+94, Bov97].

Enhancements [BDG+95, BCP00, DM95b, DM95a].

Enhancing [BFIM99, FSC+11, MVT96, MSMC15, OFA+15]. Ensemble [Cot97, Cot98, BY12, FH97]. Ensemble-Based [FH97]. ENSOLV [AMS94]. Entwickelung [Sei09].

Environment [BDGS93, BFG+10, BFM97, BGL00, CHP91, CTK01, DL07, DI02, DHHW92, DHHW93a, DL00, FTVB00, FWR+95, GJN97, GL97a, HRSA97, KBA02, KK03, KDL+95b, KV97, LC93, Lus00, MSOR01, MM02, MFG+08, MSS97, NJ01, Ong02, Rol94, SDC99, SGL+00, SGHL01, TTP97, WL96a, ABG+96, BDG+92b, BDG+94, BK96, BT96, CEF+95, CLEASDP99, DS96, DL00, DHHW93b, EASS95, FBHM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL+96, GkLyCY97, HZ94, IJM+05, IvNLH+00, KCD+97, Kat93, KDL+95a, Kos95b, KFSS94, WL94, MSL12, MK97, NP94, PES99, PVKE01, PQQ07, RNPM13, SSKF95, Sch93, SPE96, SBF94, SWYC94, Skj93, SSG95, TJ09, Tho94, WCC+07, WL96b, WLC07, ZPLS96].

environmental [ANS95]. Environments [Ano90a, ANo01, Bak98, BF98, DT94].
environments-the [CDH+94]. EPS [GT94]. EPS-APS [GT94]. Epstein [BL95]. Epstein-Nesbet [BL95]. Equation [ES11, LZ97, SAS01, VRS00, DM12, LBB+16, LYSS+16, MS95, NP94, ON12, Ob95, Pri14, SYS12, SSB+16, YSVM+16, YSMA+17]. Equations [And98, BG95, GK10, Huc96, LLY93, MFTB95, ORA12, ZB97, BHW+12, Che99, IM95, JK10, Jou94, MM11, NF94, RBB15, SP11, SMSW06, ZZG+14, dH94]. Equi [LTRA02]. Equi-Join [LTRA02]. equivalencing [LLG12]. Era [ABB+10, CZG+08, CGKM11, EdS08]. Erratum [Ano01b, HF14b, Wal94b]. Error [DFC+07, HPS+12, HPS+13]. Errors [FCLG07, SD16]. Erweiterung [GBR97]. ESBMC [MdSAS+18]. ESBMC-GPU [MdSAS+18]. Espoo [RWD09]. ESPRIT [CDH+94]. Estimation [GK10, AMHC11, CCU95, GB94, JMdVG+17, KS13, ZWHS95]. Estuarine [LRQ01]. Ethernet [CC00a, Fin97, HcF05, KYL03, KYL05, OF0, PFG97]. EU [Ano03]. Eugene [MCIS+08]. Euler [DRL94, IDD94]. Euler/Navier [DRL94, IDD94]. EURO [HAM95b, BFMR96, HAM95b, BFMR96]. Euro-Par [BFMR96, HAM95b, BFMR96]. Euromicro [IEE95h]. EuroMPI [CDND11, KGRD10, TDB12, TBA4]. EUROPE [LCHS96, Ano92, Ano93e, Ano93f, Ano94g, Tou96]. European [AD98, Ano94i, BR95a, BDLS96, BC00, BDW97, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, KGRD10, Kra02, KKKD04, LKD08, MTWD06, RW0D9, TDB12, WPH94, DHK97]. EuroPVM [BDLS96, OL05, DKD07, MTW07]. EUROPE/MP/MPI [OL05, DKD07, MTW07]. EuroPVMMPI [KDV03]. EUROSIM [BH95, DSZ94, BH95]. Euros-pace [Ton96]. Eurospace-Ada-Europe [Ton96]. Evaluate [MW98]. Evaluating [BVW+12, FVL015, FST98a, GF03, GFD05, GCG001, GB96, HWW97, LH95, SSS97, ZSnH01, GScFM13, LTLC94, TG09, ZLZ+11]. Evaluation [ATM01, BF98, BIC+10, BF97, BEG+10, CLP+99, DI02, FST98b, FSSD17, Han98, JCH+08, KS96, KK02b, KSS00, LGCH99, LNK+15, LZ97, kl11, LVP04, MH01, MGC12, NON00, OM96, Pan14, Par93, RB01, SWHP05, SCP97, SEF+16, SFB+04, SM02, Sou01, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TTSY00, UMK97, VY02, AB13, BBG+14, BBH+13a, BMG07, CB11, DBB+16, HPR+95, HASn00, HPS95, IM94, JC17, JMDVG+17, LV12, LN+12, MKP+96, MM03, MT96, MMH99, NN95, PS08, SL94b, SW+12, SWYC94, SFV13, TSP95, THM+94, TMPJ01, Wor96, YWO95, YS93, ZHK06]. Evaluations [MM14]. Event [KKV01, NSLV16, THS+15, WM01]. Event-Based [NSLV16]. everything [CCM+06]. everything-shared [CCM+06]. Evolution [Mat01a, PS01a, RBB17, SSL97, SGDM94, GS93, SD+94]. Evolutionary [B+05, DSM94, Rag96]. Evolving [Bad16, ER12, MDSC09]. Ewing [Ano95c, Ano99e, Ano00a, Ano00b]. EWOMP’99 [BC00]. Exact [dOSMM+16]. Example [Che10, NB96, Pat93, SK10]. Exascale [Bad16, LV12, LSG12]. Exception [FMSG17]. exchange [MMM13, Pan95a]. excluded [BH+12]. executable [WMP14]. Execution [AHD12, BME02, DT17, FC05, FM09, GR07, KGK+03, Mar05, MFG+08, MAGR01, Ney00, STY99, SAP16, EPML99, Mor95, SMAC08, TNIB17, TSY99, TSY00, UGT09]. Executions [GAMLO1]. Exhibition
[HS95a, GH94, LCHS96]. Existing [CB00].

EXOCHI [WCC+07]. Expand [CGC+02].

Expanding [LA02]. expected [CAHT17].

Experience

[BCP+97, BT96, CP98, PS01a, Tou00, AMS94, CARB10, KJA±93, RSC±15].

Experiences [AHP01, BFZ97, CMV±94, CLLASPD99, GLN±08, GS91a, GS97, GB96, GL95d, ITT02, JR10, KS97, Mar02, TGM90, ZPL96, ZKRA14, AL92, CCF±04, Sch94, SGDM94, BDG±93b].

Experiment [Luo99]. Experimental

[BIL99, BIC05, EGC02, Ser97, UM97].

Experiments [BPMN97, Coe94, LG000, OS97, RR00, ZB97, RHG±96, HAJK01].

Expert [BPG94]. experts [EO15].

ExpEther [NMS±14]. Explicit

[BHV12, GFPG12, SGHL01, LC97b].

Explicitly [Mai12, SYR±09]. exploit

[ZP106].

Exploitation

[GGL±08, GAM±02, BK11, GAM±00].

Exploiting

[Add01, Bri10, FKLB08, HEHC09, KFL05, NAAL01, Nob08, THH±05].

Exploration

[AMHuK15, OFA±15, ABDP15, GE95, GE96, PDY14].

Explorations [BGG±15].

Exploring [IFA±16, MBKM12, MTU±15].

Expose

[SAL±17].

Exposing [SD16].

Exposition

[IEE95d, LF±93a]. EXPRESS

[K96, Ahm97, FK94, LH95, SHH94a, SHH94b].

Expression

[BN12, KH15, Sur95a].

expressions [SFLD15].

expressive [Tra12a, YLC16].

Extend

[DF±09].

Extended

[BR02, HTA08, SS99].

Extending

[ABB±10, BCC±00a, BCC±00b, BDB±13, CS96, CG99a, KDT±12, LMRG14, Mar03, OFA±15, RGDM16, SDV±95, TMTP96, CG96, GGH±96].

Extensible

[BL97, GS94].

Extension

[AELE16, BGR97a, CASG98, VAT95, Hum95, JH97, SG14, SC95, ZT17, GRB97].

Extensions

[Fis01, GOM±01, GHLL±98, HVA±16, HE15, DPD±08, HP05, Kat93, Ano99c, Ano99d].

Extent

[kL11].

Extent-Based

[kL11].

exterior [HMKV94].

external [BBB±94].

Extraction

[CBL10, HLO±16, dAT17].

Extreme

[MDSC09, ZKRA14].

Extreme-scale

[ZKRA14]. eyes [Str94].

F

[FP94, FHP±94]. F90 [DP94]. face

[HDDG09].

Faces [Gro12]. facilitate

[PKB06]. Facilitating

[MC99, ZLL±12, ESB13]. Facilities

[MMH98, MN91].

Facility

[K96, SHTS01, KZCS96, LHCT06].

factorization

[AZ95, BSvdG91, BRS92, DG95, KBP16, WLC07].

Factorizations

[TD98, LC97b].

Fail

[LFS92, LFS93a, LFS93b].

Fail-safe

[LFS92, LFS93a, LFS93b].

Failure

[BBB±13a, CRGM14, BBH±13b, CGH±14, BDB±13].

failure-aware

[CGH±14].

failures

[JS13].

Faithful

[KLR16].

Fall

[Gr97].

false

[JE95].

family

[AVA±16].

farming

[Str94].

Fast

[Ben01, BHS±02, BBH12, CS14, DFN12, EM02, Hg913, JFGRF12, JMDV±17, PSHL11, PR94c, PBC±01, RB01, SE02, SS99, STY99, SR11, UP01, WTR03, Lan09, LCL±12, NYNT12, TDG13, YULMTS±17, YLZ13, YBZL03, ZA14, AAB±17, DLBL11, PF97].

Faster

[Tsu12, ZG95a, ZG96].

Fat

[Zah12].

Fat-tree

[Zah12].

FATCOP

[CF01].

Fault

[BBC±02, BCH±03, BHK±06, CF01, CFDL01, FBD01a, FBVD02, FD02a, FD04, GFB±03, GK97, G90R, GL04, Gua16, IEE95c, JSH±05, LMRG14, LNLE00, dLR04, MSF00, RPM±08, TS12a, WC09, WIL93, BCH±08, FBD01b, FD02b, HG12, LMG17, LS08, PK95, SG05, ZHK06, FD00].

Fault-Management

[GJR09].

Fault-Tolerant

[BHK±06, FD04, GFB±03, IEE95c, JSH±05, LMG17, LS08].

Faults

[LA±15].

FCRC

[ACM96b].

FD

[And98].

FD-TD

[And98].

FDDI

[LC93].

FDTT

[DSOF11, VM94].

Fe

[Old02, BJS99].
feasibility [KBG16]. Feature
[Qu05, ZWL+17]. Feature-driven [Qu95].
Features
[GLT99, GLT00b, GLT00a, GLT12, KAHS96, Ano04b, CRD09, WKS96, ZKRA14, dAT17].
February [Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97c]. FEM [GEW98].
FEM-Systeme [GEW98]. Fermi
[SP11, WKP11]. FETI [KLR+15]. few
[NS16]. few-body [NS16]. Feynman
[NS16]. FFT [
DALD18, GB98, JKM+17, NSM12, SH14, WJB14]. FFT-Based
[WJB14]. FFTs [EFR+05]. FFTW [KT10].
FHP [BMS94a]. Field
[KNT02, Goe02, TKP15]. Fields
[BALU95, RSBT95]. Fifth
[DFN12, MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b, NZZ94, NB96, Ram07]. Finite-Difference
[UGC+12, VM94, HE13, HMKV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, Ram07].
Finite-Element
[MS02b, BBD93, KE909, KEGM10, Nak05a, Nak05b]. Finland
[RW09]. Fire [JML01, SJ02]. First
[AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kurn94, Nar95, PBPT95, SSP+94, USE94, AH95, BS94, PBPT95]. Fix [DL16]. FLAME
[VBLvG08]. flat [Nak05b]. Flattening
[THRZ99]. Flexibility [KK02b]. Flexible
[CS14, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAM+00, HC08]. Flink
[KWEF18]. flip [K014]. Florida [ACM98b].
Flow
[BBH+17, BGD12, CGZQ13, CCBBPA15, FM09, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTD99, JAT97, LL16, MBBM12, Os95, PTT94, RM99, SCCH95, SU96, TS12b]. Flow-Based [BBH+17]. Flows
[GAP97, BCM+16, BTC+17, Heb93, LLG12]. flowshop [CB11]. Fluid
[DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TGE94, ALR94, ATL+12, AGM06, BvdB94, Bi09, HVSC11, MRRP11, PBK99, SPE95, SZBS95b, WPH94]. fluid-particulate [ATL+12]. fluids
[HK94, WB96]. Flux [QRMG96, QRG95]. fly
[KS14, THRZ99, BCAD06, BADC07]. FM [LC97a]. FMA [LO96]. Fock
[CBHH94]. Focus [Cl98]. foolish [Ro08a]. footprint [TS12b]. force [Go02]. Forecast
[AHP01]. forecasting [Bjo95, KOS+95a].
Forest [JML01, NCKB12]. ForestGOMP
[BFG+10]. Foreword [CHD09]. FORGE
[WCR96]. Fork [BGD12, SML17].
Fork-Join [BGD12, SML17]. form
[NBC+12, NBC+17]. Formal
[GB94a, BD94, SL94, GBF+11, GPM14, MPP+11, SMCG11], form [NS16]. Forward
[pN+12, NBC+17]. forwarding
[CBX12]. Foundation [Gei01]. four
[GS17, MGG05]. four-atom [MGG05].
four-particle [SM17]. Fourier
[DBLG11, BCM+16]. Fourth [IEE95b].
Fourth [Ano98, IEE93d, IEE95k, Sie92a,
FPGA
[MTU+15, PWP+16, WTH17].
FPGA-Platform [WTH17].
FPGAs
[MC17, OFA+15, PGS+13, WZH16, Röh00].
fractal [Wu99].
fractals [OA17].
Framework [DGMS93, FC05, GC01, GCG01, GR07, MGL+17, NSZS13, PMvdG+13, SSb+05, SSAS12, Sun90a, Sun90b, WZH16, Ano93c, BA06, BR04, BAG17, EFR+05, FLMR17, GM13, KKM15, KJJ+16, KJJ+08, KH10, LME09, LGG16, LCM17, LS08, PTL+16, RSC+15, SL00, TBD00, YLC16, YWT15, ZT17, dAT17].
Frequen[CE]s [IEE94a].
friendly
[SVC11].
Frontiers [ACM90, BR95a, BFM96, CHD07, DE91, FR95, JPF94, MCi05+08, VV92, YH96, GA96, IEE94c].
Free
[PKW95, CP15, SOA11, Zal12].
freedom
[KTTJ03].
Generating
[IEE96c, Si92a, Si92b, Si92c].
Frontiers’95 [IEE94a].
Frontiers’96
[IEE96c].
FSI [HAA+11].
FT
[FD00, LNE00].
FT-MPI [FD00].
Fujitsu
[Ano98, AKL99, BHS+02, SWJ95, SH96].
Fully
[GA96, SSb+16].
Function
[AGS97, BR102, MCP17, RB01, SW12, HE15, JMDvG+17, KRC17].
Functional
[ACM90, AJF16, CNM11, NW98, Ser97, CBH94, EP96, HSE+17, SFLD15, W2WS08].
functionality [BFIM99].
Fundamentals
[BKGS02, Brr12, Hatt98, MD17, CDGM96, HWX+13, PN01].
Fuz[ing] [TW12].
Fusion
[FHK01, FMFM15, PKE+10].
fusions
[FFM11].
Futhark
[HSE+17].
Future
[Dar01, IEE93d, Mat00a, BDG+93b, FK94, FHP+95, Gei94].
Futures
[Kuh98].
Fuzzing
[LLCD15].
Fuzzy
[MD17].
G
[OPM06].
G2
[Cot04, KTF03, OPM06].
GA
[Ara95].
GAIN
[ARYT17].
GAIN-MPI
[ARYT17].
Gains
[CMM03].
Gallipoli
[Ano93b].
GAMMA
[CC00a].
Gap
[AAB+17, ASS+17].
Garbage
[GT+15].
Gas
[BMS94b, BBK+94, BMS94a].
gather
[MTK16].
gauge
[BW12].
Gauss
[BG95, LM99, Ols95].
GCell
[SSH94a, SHH94b].
GECCO
[B+05].
Geist
[Ano95b].
Gemini
[SWS+12].
gems
[Fe04, mH12, Ng08, PF05].
gene
[PCS94, AAC+05, BG+05, EFR+05, KM+14, LM13, MV+17, MSW+05].
gene-finding
[PCS94].
Gene/L
[AAC+05, BG+05, EFR+05, MSW+05].
Gene/Q
[KM+14, LM13, MV+17].
General
[Che10, IH04, MW98, SZS95a, Sun94a, ABDP15, ADL03a, ADL03b, CBM+08, FLD96, KPNM16, PF05, RSBT95, SK10, SZBS95b, SMSW06, YPA94].
General-Purpose
[Che10, ABDP15, CRM+08, KPNM16, PF05, SK10].
Generalized
[DFKS01, FK96, BSC99, SD99, van93].
Generating
[AZG17, CGL+93, ER12, IJM+05, PKB+16, SFLD15].
Generation
[AB93a, CC17, FACF15, Gei98, GTH96, HT08, JFY00, LTDD14, RGD13, SSb+17, TGBS05, VPS17, AB93b, CPR+05, DCD+14, DWM12, KHS12, KPL+12, KH10, SP11, WKS96, WMP14, ZKRA14].
generation
[WK08a, WK08b, WK08c].
generative
[MAS06].
generator
[Lan09, TNB17, YL09].
Generic
[ARS89, AKL99, GB98, BAS13, GM13, ZT17].
Genetic
[FTV00, MTSS94, MScW95, PB12, WKS96, Wal01a, WHD05, AB13, BB95, FSTG09, HPLT99, RJC95, Wal01b, B+05].
genetics
[L+99].
Geneva
[IEE97b].
genomic
[SdM10].
GeoComputation
[Abr96, Abr96].
GeoFEM
[NO02b, NO02a, Nak03].
geomechanics
[BJS99].
geometrical
[FMS15].
Geometry
Grid-Adaptive [KT02]. Grid-Enabled [Fos98, GLM +08, KTF03, KGK +03, KSSS07, LC07, LS08, NSBR07, RPM +08, RTRG +07, SHTS01].

Grids [NO02b, ACH +11, CC10, KBG +09, NO02a, NB96, BBH +06, GR07, Ram07, SN01].

GROMACS [BvdSvD95].

Gropp [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

Gross [LBB +16, LYSS +16, SSB +16, YSVM +16, YSMA +16].

Ground [HTHD99, NS16].

Groundwater [AFST95, EGDK92].

Group [AD98, Ano98, Ara95, ACDR94, CHD07, CHD09, CD01, CDND11, DKO05, DLM99, DKP00, GN95, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RWD09, TBD12, UMK97, BDW97, DLO03, MMU99].

Grouping [WPL95].

Groups [GOM +01].

Grover [LYZ13].

Growth [PKYW95, BB95].

GTS [PKE +10].

GUI [VGS14].

GUI-awareness [VGS14].

Guide [Ano12, D +91, GBD +94, Lad04, Nov95, Per96, Ano95b, BDG +94a, McK94].

Guideline [Tra12b].

Guidelines [TGT10].

GVirtuS [MGL +17].

Hack [DLV16].

Hague [Ano93e].

Halide [RKBA +13].

Hamburg [PSB +94].

Hamiltonian [ART17].

Handling [DFC +07, FMSG17, LS15, LGM00, RC97, FFFC99, LN +12, THRZ99].

hands [KmWH10].

hands-on [KmWH10].

Harbor [BBC +00].

Hardware [BGG +15, BW +12, Bru12, BCKP00, CDP03, DW02, HSP +13, LSMW11, MFC98, PSM +14, PKB +16, vdLJR11, ER12, GGL +08, PMZM16, Rab99, SBG +12, SH94, SW +12, YÁJG +15, ZLS +15].

Hardware-Based [CDPM03].

Hardware-oblivious [HSP +13].

harmonic [GSMK17].

Harness [EBKG01, MS99b, PL96, FBD01a, FBD01b, FBVD02, FD02a, FD02b, MSF00, Gei98].

Harrogate [CJNW95].

Hartree [CBHH94].

HASEonGPU [EZBA16].

Haskell [WO97].

Hate [Dan12].

Hawaii [ERS95, ERS96, HS94, MMH93, ZL96].

HCA [KBG16].

HDL [Kat93, KMK16].

HDMR [KD12].

Heading [Sch99].

Heat [SAS01, NP94, iSYS12].

Held [HSP +13].

Helios [SPK96].

Helmholtz [HMKV94].

Helps [Stp02].

HeNCE [BDG +92a, BDG +92b, BDG +93a, BDG +94].

Henon [JPT14].

Herzliva [IEE96h].

HeSSE [MRV00].

Heterogeneous [ABB +10, BDG +93a, BDG +93b, BL95, BCP +97, BGR97b, BCKP00, CMMR12, DGMS93, DGMJ93, FDG97a, FDG97b, FL98, Fos98, GS91b, IEE93f, KR09, KCR +17, LC93, MRV00, MM01, MM02, NTR16, PD98, SMS00, SGS10, TQDL01, VLO +08, ACGT02, ADB94, ADDR95, AMV94, BDG +92c, BDG +94, BALU95, BRR99, BAG17, CCM12, CFPS95, FMBM96, GKZ12, GCN +10, GKCF13, HK94, KSG13, KSL +12, Kos95b, LCL +12, LR06a, Lee12, Mai12, MSL12, MM03, NP94, NEM17, Pen95, RCFS96, Skj93, Smi93b, Sun94b, Sun95, TBB12, TMW17, TKP15, TDG13, VB99, WCC +07, YST08, YSL +12].

HeteroMPI [LR06a, VLO +08].

Heuristic [BHM96, STV97, WH94].

HI [ERS96, HS94, IEE96c, ACM97a].

HICSS [ERS96, MMH93].

HICSS-26 [MMH93].

HICSS-29 [ERS96].

hicUDA [HA11].

Hierarchical [BMR01, FBSN01, HA10, HL17, MALM95, RR02, ADMV05, BDV03, OKM12, YPZC95].
hierarchies [SYR+09]. High
[ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, BPG94, BRST94, BS07, CDD+13, CNM11, CDHL95, CS14, DPP01, DDL00, DE91, FGKT97, GSHL02, GBH99, GBS+07, GLDS96, HVA+16, HA11, Hol12, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEH79c, IF95, JJJ+11, Kha13, KMK16, KE69M10, KH15, LaI01, LCK11, LC97a, LKLC+03, LBI12, LWP04, MW98, MDPO4, ME17, MAB05, NU05, OIH10, OLG01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCSL12, SJ02, SLO05, SV+11, SSSS97, Tou00, VW92, WN10, YCL14, YWCF15, YSP+05, AH95, An03, BADC07, Ber96, BWT96, CDH95, DLI0, Duv92, EZBA16, ES13, FME+12, GS02, GGC+07, GL96, GL97e, HDDD09, HW11, HS12, KB16, KME09, Lan09, LBD+06, MSL12, MSZG17, NS91, NGF+10, OId02, PG+13, PK+10, PF05, PTW99].

high [Reu03, RJDH14, SG14, SFLD15, ZSK15, ZWL13, dAT17, CDH+95, DZ98b, D+95, DE91, GH94, HS95a, KD12, LCS96, LC97b,SSH08, Ten95]. High-Dimensional [MW98]. High-Level
[CS14, DDL00, HA11, Hol12, SG14, SFLD15]. High-order [KE69M10, KM09].

High-Performance [ACM98a, FGKT97, IEE97c, LKLC+03, OL01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCSL12, WN10, GLDS96, OIH10, SVC+11, An03, ES13, FME+12, GL96, GL97e, HDDD09, KB16, LB+96, OId02, PG+13, PK+10, PF05, Reu03, RJDH14, SFLD15, ZSK15, HS95a, GH94, LCS96, SSH08]. High-Precision [Kha13]. High-Scalability [BS07]. High-Speed [CDHL95, KMK16, AH95, BWT96, CDH+95].

high-throughput [ES13]. Higher
[MYB16, KB13, wL94]. higher-level [wL94]. Higher-order [MYB16]. Highly
[MM95, PV97, TMP+16, CARB10, GBH14, VM95]. highly-scalable [GBH14]. Hills [IEE93f].

HiNet [AH95]. HIRLAM
[Bjo95, HE02, KOS+95a]. histogramming
[KRC17]. History [OWSA95]. Hitachi
[An03, NNON00, TSB92, TSB03]. HLA
[RTRG+07]. Hoare [KI17]. Hoc
[IBC+10, ITT02]. Högdskolan [Eng00]. Hole
[IN+13]. holistic [TWFO09]. homotopy
[GWC95, SMSW06, YV15]. Honolulu
[IEE96c]. honor [Str94]. Host
[AN95e, LLRS02]. Host-Parasite
[LLRS02]. HOTB [SGM97]. Hotel
[IEE94e]. Hotel-Copley [IEE94e]. Hough
[YULMTS+17]. house [HZL11]. Houston
[ACM96a, Cha05, DKM+92, Y+93]. HP
[CB9+10]. HPC
[ASS+17, CGBS+15, GDC15, GKK09]. HCD
[LLRS94a, OL+16, RPS+14, ZLP17]. HPC2002 [An03]. HPCN [LCH96].

HPF
[BP98, BF01, BID95, Bri00, BDV03, CM98, CDD+96, Coo94, FKK+96b, FKKC96]. FKK96a, LZ97, OP98, OPP00, SM02, Str94]. HPF-MPI [BP98]. HPL [Lee12]. HPVM
[BCKP00, CLP+99]. HPVM-Based
[CLP+99]. hull [GCN+13]. Hungarian
[Fer92, FK95]. Hungary
[DKP00, KKD04, VV95, FK95]. hunting
[JPP95]. Husky [YLC16]. Huss
[BBG+10, BBH+06, CGC+11, CMN11, Cha02, DR97, GPC+17, HVSC11, IDS16, KS15a, KLR+15, LLRS02, LG14, MS02b, NO02b, PZ12, SB+16, VPS17, WT12, YHL11, YPAE09, YTH+12, ADR+05, BBG+14, CSPM+96, FMS15, GÁVRL17, GKK99, HDB+13, JR10, JMS14, KN17, KRG13, KJEM12, LLIC13, LHL+14, MLA10, MRRP11, NO02a, Nak05a, Nak05b, PARB14, PHTM11, SDJ17, SVC+11, WT11, WYLC12, WLYC12, YWCF11, ZWL13].

hybrid-core [BBG+14]. Hybridizing
[LSG12]. HYDRA_MPI [PBC+01]. Hyper [CSW99, SBT04, TBG+02, ZAT+07]. Hyper-Rectangle [CSW99].

Hyper-Threading [SBT04, TBG+02, ZAT+07]. hypercube [HS95b, Sur95b]. Hypercubes [Ano89, RJMC93, She95]. Hypercubic [HS95b, Sur95b].

Hyperelastic [OKW95]. hypersonic [BTC+17]. Hyperspectral [VLO+08].

I-SPAN [LHHM96, Li96]. I-WAY [FGT96]. I/O [Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLC+06, MV17, MGC12, MG15, PSK08, PLR02, RK01, SBQZ14, Tha98, WSN99]. IASTED [Ham95a]. IBM [AL93, Ano03, BBB+94, BGBP01, BR95c, BR95b, Bri95, CE00, CDM93, FHP94a, FHP94, FHP95, Fra95, FWR95, GL95d, HSMW94, HMKV94, Heb93, JF95, KB98, KAC02, KHS01, KMH+14, LC97b, MP95, MW93, MABG96, NMW93, WZWS08, XH96].

IBM-SP1 [FHPS94b]. ICAP [IEE96d]. ICAPP [Nar95]. ICCMSE [SM07]. ICIP [IEE94b]. ICPP [Agr95a]. ID [DGG+12].

Idaho [Str94]. Ideas [IEE95d].

identification [HPLT99]. identity [KN17]. IEEE [ACM04, Bha93, IEE94e, IEE94g, IEE95a, IEE95b, IEE95c, IEE95g, IEE96b, IEE96f, IEE96d, IEE92, Nar95]. IEEE/ACM [ACM04]. IFIP [Boi97, DR94, PSB+94]. IFS [AHP01].

Igniting [ACM03]. II [DE91, GE95, HS94, BPS01, BWW+12, EM00b, GAVRL17, Sta95b]. III [BPG94, BP93, DSM94, GE96, Has95, OKW95, SSGF00]. ILDJIT [CARB10]. I’ll [Har94]. Illumination [STK08, ZWHS95].

ILU [ABF+17]. ILU-preconditioned [ABF+17]. im [Gra97]. Image [DYN+06, FJBB+00, GA96, GPC+17, KBA02, KS01, LSZL02, NJ01, PLR02, RBBL01, WN10, ARL+94, DZZY94, GDC15, JC96, KKL11, RKBA+13, SLS96, UH96, Wu99, YULMTS+17, YPZC95, YZPC95, dAT17].

Imagery [GC99, GCGCS98, GGC99]. Images [Uhl94, Uhl95b, VLO+08, NAJ99]. Imaging [NH95, Has95, LM13, Pat93].

imbalances [MLVS16]. immunodominance [ZWL+17]. Impact [ADLL03a, ADLL03b, BRU05, Bru12, TSS00a, WHDB05, DO96, FS14, SHHC18]. impacts [Str94]. Implement [GM95, PPT96c]. Implementation [AB93a, AKL99, BGG+15, BGBP01, BPS01, BK95, BHP+03, BNS09, Ben01, BP98, BCD+15, Bjo95, BJS97, BIC+10, BMR02, BRM03, BMS94b, BMG07, CGC+02, CDFM95, DYN+06, DAK98, EFR+05, ES11, FH97, FD04, FHS99, FSSX14, FJB+00, FHP94a, FHP94b, FHP94, FSLS98, GBH99, GB98, GBS+07, Gro02a, HPP02, HRZ97, HKT+12, Huc96, HHA95, HAA+11, IBC+10, IT02, IM94, JSS+15, JSH+05, LSZL02, LTRA02, LZ97, LWP04, MS02b, MW98, MN91, MT96, MRH+96, NSS12, NNON00, OL01, Pan14, PS00a, Pet97, PBK99, PTH+01a, PTH+01b, PB12, RDMB99, RSV+05, SH94, SBF+04, SBG+02, Ser97, SCCR96, SCCR97, SZBS95a, SW95, SYF96, Sun12, Sur95a, TOTH99, TBG+02, TRH00, TLPJ01, USE94, VTB97, WH94, WPC07, YGH+14, YWO95, ZGG+14, ACGD10, AS92, AAAA16, AAC+05, ADLL03a, ADLL03b]. implementation [AB93b, BR91, BVDV95, BR95b, Ber96, BBRC99, BK96, BCK+09, BS01, BS05, Bor99, BRR99, BS96b, BDV03, Bri95, BB00, BAS13, CDZ+98, CEGS07, CG99a, CDFG96, CBH94, CD96, DSW96, DS96a, DL10, DBB+16, DSO11, DM12, FF99, FWNK96, FGT96, FGG98, GCC99, GG99, GG09, GAARRL17, GL92, GL94, GL96, GLDS96, GL97c, GT07, GLLY97, HBT95, HCL05, HS95b, IIT99, IVDH97, JRM+94, JC96, KY10, KTF03, KBVP07, KL95,
implementation [dH94, dlAMCFN12, van93].

Implementations [AKK94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG10, FB94, Gro02b, kLCC06, LCW03, Mar02, ORA12, Sap97, TSCaM12, TGEM09, VS00, WT12, ZDD97, CLSP07, ER12, ED94, GML16, ICC02, KWEF18, MKP96, NN95, Pri14, WT11, YCL14].

implemented [BBDH14, EP96].

Implementing [DPZ97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MMLH98, MS99c, MSB97, SSC96, SS99, SMTW06, SHGL01, SSC95, Tra02a, Wil93, BWT96, LHZ97, YX95].

Implementor [GL95b]. Implicit [MS02b, NA01, SGHL01, Bjo95, TSP95, WADC99].

Importance [BCG10, PCY14].

Importance-Driven [PCY14]. Improve [KB04, SKH06, Tha98, GK97, RHG96].

Improved [Tra02b, MNO16, dlAMCFN12]. improvements [DPDS08]. Improving [CGZQ13, DZ96, DCPJ12, DCPJ14, GSY13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTC13, RSC+15, SCL00, XF95, C296, JKN9+13. In-house [ZLZ9+11].

In-memory [CRM14, HSP9+13]. In-place [HSE+17, PSHL11]. Including [BW99+12, GLT92]. incompressible [BCM9+16, L95, RM99, TS12b].

Incorporating [LM94, LRY13, TKP15].

Incremental [dOSMM16]. Independent [BCL00, BRU05, C5W12, CDMS15, DiN96, MV17, YBZL03]. Index [DALD18, LAD16]. Index-Digit [DALD18, LAD16]. Indexers [Wal01a]. Indexers/Crawler [Wal01a].

Indexing [LTR00]. India [CGB9+10, IEE96a, Kum94, PBPT95].

Information [Ano98, CGB9+10, Ano93c, CG99b, MM99, WADC99, PSB9+94].

Infrastructure [WR95]. infrastructures [GWVP9+14]. Initial [LLH9+14, VDL9+5, AL96, LSR95]. Initiated [SSB9+05]. initiatives [Sun95].

initio [SSGF90, SEC15]. Injection [RRAG97, SAL9+17]. Inn [IEE93c].

Innovation [AC03]. Input [CFF9+14, SHM9+12, JWB96]. input-aware [SHM9+12]. Input-Output [CFF94].

Input/output [JWB96]. Insight [IEE92].

Inspection [BPMN97]. inspired [NEM17, TDB90]. instances [ZLZ9+11].

Institute [Old92, TG94]. Instrumentation [MVY95, Yan94]. Insurance [PZ12].

Integer [ASA97, CF01, WLC97, ZC10, BH96, KVGH11].

Integrate [GLRS91]. Integrated [CFLD01, DMG93, HK9+01, KSV9, WL96a, DMF17, HK10, KW14, VDL9+5, WWZ9+6, WL96b, XWS96]. Integrating [BCL97, CM98, Fin00, GPJ90, KJA9+93, KAH96, wL94, WFT014, TWFO90].

Integration [CGC9+11, CSH97, FD96, FB94, MAIV14, Se99, AL96, CSH99, KB13, RB1+5].

Integrator [Per99, SP99]. Intel [Ano96c, Ano03, DSGS17, MP95, URK12, ...]
Intelligence

Intel(R)

Inter-Atomic

Inter-Node

Inter-workgroup

Inter-Node

Interconnect

Interface

Interfacing

Intermediate

International

Internet

Interoperability

Interoperable

Interoperability

Interoperable

Interprocess

Interprocess

Introducción

Introduction

Investigating

Investigation

Interface
Kernel-assisted [MBBD13, GM13].
Kernel-based [CKmWH16, TY14].
kernel-independent [YBZL03].
Kernel-Level [HKT +12].
Kernels [BCD +15, KI17, KAC02, Pet01, Ros13, SSB +17, ARS89, BCD +12, FSV14, FVLS15, FFM11, KKM15, PGT13, PGS +13, TBB12].
Kerr [Kha13].
key [LF +93a].
kind [SP11].
Kinect [KPK13].
Kinetics [LD01, BTC +17].
King [ACM99].
Kingdom [Boi97].
Kirchho [SSS99].
Klagenfurt [Bos96].
Knapsack [ICC02].
KNEM [GM13].
knowledge [FNSW99].
knowledge-based [FNSW99].
Knoxville [PR94b].
Kohr [Stp02].
Kolmogorov [Str97].
KOP3D [KR09].
Koppelrandkommunikation [Gra97].
Kpi [EML00].
KPN2GPU [BK11].
Kremlin [GJLT11].
Kronen [KAC02, Pet01, Ros13, SSB +17, ARS89, BCD +12, FSV14, FVLS15, FFM11, KKM15, PGT13, PGS +13, TBB12].
Krell [Kha13].
key [LF +93a].
kind [SP11].
Kung [Eng00].
Kyoto [IF95, SPE95, IF95].
L [AAC +05, BGH +05, EFR +05, MSW +05].
LA-MPI [YP +05].
Lab [Str97].
labeling [HLP10].
labatory [YJ95].
Lafayette [EV01, EdS08].
Lagrangian [CT94a, CT94b, RSV +05, TC94].
Lahey [Ano98].
Lake [Hol12].
LAM [OF00, RsT06, SSB +05, Squ03, ZWZ05].
LAM/LAPI [OF00, RsT06, SSB +05, Squ03, ZWZ05].
lambda [PP07].
LAMGAC [MSOGR01, MSO2a].
LAN [CCU95, CDH +95, MSOGR01, MTSS94, TSZC94, ZGC94].
LAN-based [TSZC94].
LAN-Message [MTSS94].
Lanczos [GP95, Sch96a, Sch96b].
Landing [dCZG06].
Landsat [GGCM99, GCGS98].
Landsat-TM [GGCM99, GCGS98].
Language [ACM96a, NM95, PD98, TA14, WLR05, Ben95, CGK11, Hos12, Nob08, RKBA +13, Röh00].
Languages [CFF +94, FMSG17, FSSD17, CH96, Mar05, Olu14, SWS +12, PBG +95, SS96].
LANs [Fin97].
LAPACK [Add01, ARvW03].
LaPerm [WRSY16].
LAPI [BGBP01].
Laplace [ACMR14].
Large [AKE00, BHW +17, BZ97, BJS99, BHNW01, CGC +11, DALD18, FFP03, Huc96, JFFR12, LLY93, MKC +12, MFPP03, PCY14, SGJ +03, SM03, S0L99, TEGM09, WT12, ZWJK05, AASB08, AMS94, BAC +06, BA06, BCH +08, Che99, CCHW03, DZZY94, FME +12, GG99, IM95, JLS +14, KEGM10, Kos95b, KA95, LS10, MLA +14, NFG +10, PTL +16, PD11, RNMN +12, SC96a, TBB12, WT11, ZWL13, ZA14].
Large-Scale [AKE00, BHW +17, BZ97, FFP03, MFPP03, SM03, WT12, BJS99, S0L99, AASB08, BAC +06, BA06, BCH +08, Che99, CCHW03, DZZY94, FME +12, GG99, IM95, JLS +14, KEGM10, Kos95b, KA95, LS10, MLA +14, NFG +10, PTL +16, PD11, RNMN +12, WT11, ZA14].
large-sized [JLS +14].
Larger [NB96].
LargeScale [LAdS +15].
laser [EZBA16, WWZ +96].
Lastverteilung [Wf94].
Latency [Jes93a, Jon96, KBHA94, NCB +12, NCB +17, TBD96].
latency-tolerant [NCB +12, NCB +17].
Lattice [BBK +94, BMS94, LP11, SJK +17a, SJK +17b, BW12, BMS94a, Sai0, SVC +11, BLPP13].
launches [Ano03].
Layer [CSAGR98, HEH98, FKK96a, PTT94, diAMC11, diAMCFN12].
layered [Di96].
Layering [Hus01].
layers [KC94].
Layout [WG17, BGH +05, HP11, LDJK13, Str12].
Lazy [TCBV10].
Leaks [DLV16].
Learned [GKPS97, MWO95].
Learning [AHHP17, Gro01b, FE17, KWEF18, LSSZ15, SEC15, TWFO09, WO09, W1FO14].
learning-based [FE17].
Least [PWP +16, VRS00, DK13].
Least-Squares [VRS00].
Lecture [Gei93a].
Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].
Leeds [Abr96].
legacy [BR04, LP00, LRW01].
Lemon [DRUC12].
Lengths [GSHL02].
LEO [CCBPGA15].
Leonardo [Stp02]. Lessons [MW095]. Level [AEGL16, BG*+15, BBC*+00, CS14, CRGM14, DH9W92, DH9W93a, DDL00, GS91b, GA*02, HA11, HK*+12, DK02, KC*+94a, KO97, LV94, LM94, NPP*00c, SHM*10, SBF*04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP*+17, GGS99, HE15, HK90, Hos12, KC*+94a, wL94, LCMG17, LM13, MALM95, NS91, Nak05b, ST99, SCL97, SG14, SFLD15, YZ14, ZW05, ZZZ*15, BBH*13a]. Leveraging [HDB*+12, NPP*00c, SHLM14, LFL11]. LIB [NPP*00d]. libefp [KS15a]. libOMP [BGD12]. Libraries [BHLS*+95, BWV*+12, CGZQ13, DARG13, GFD05, IEE94f, IEE95j, MM14, ARvW03, BCM11, BIDA94, CRD99, GS94, PS07, SK93, SDB94, SSG95, DHK97]. Library [AKL16, Ada97, Boo01, BLW98, Coo95b, DHP97, EM02, FH901, For95, GFB*+03, GSI97, Gro92a, HB96b, ITK90, JPT14, KBG16, OD01, PS01a, RR02, Saa94, SBG*02, Sta95b, SKH96, TD98, UTY92, WN10, YKLD17, ZC10, Ada98, AMHC11, Arn95, CSS95, CGG10, Coo95a, DRUC12, DX96, FB97, Fan98, FKK*+96b, GDC15, GLM*+08, GL94, HB96a, HLM*+17, Har94, Har95, JKM*+17, JC96, KS15a, KN95, LR06a, MSL96, PBK06, PS00b, RFI*+95, SSG96, SH96, ZT17, CC95, Mc96, Sun12]. Life [PZ12, Str94]. Lifting [vdLJR11]. Lightweight [CKmWH16, DT17, FLB*+05, KMK16, FS95, Ott93]. Like [BST*+13, BKO00, CGJ*+93, VG91, CSS95]. Likelihoods [MSCW95]. LIME [DRUC12]. Limits [GB96, MBK92]. Linda [Mat94, KS96, MSP93, BLP93, CSS95, Ga97, Mat95, TBD90]. Linda-like [CSS95]. Line [BoFBW00, Wis98, Bor99]. Linear [ASA97, BDT08, BG95, CDD*+13, Ga03, Huc96, LLY93, LZ97, MGMT97, MSB97, van97, BS95, BKvH*+14, BA08, BRR99, CE9S07, Gra09, GFPG12, Jou94, MW98, MM11, OKW95, SCC96, SM96, dCH93, dH94]. Linear-scaling [Gao003]. Lines [NE01, YULMTS*+17]. Link [BGR97b, SJ02]. Linked [WJ12]. Linköping [FF95]. LINPACK [JNL*+15]. Linux [Sei99, SMTW96, USE00, SSSS97, An01a, GSN*+01, MK04, OF00, PS07, PKB01, RS06, Sei99, Slo05, SGL*+00, YL09]. Linz [Kra02]. lipid [FHSW99]. Liquid [DSS00, JLS*+14]. Lisbon [IEE93d]. LISP [ACM90]. List [Tra98, WJ12]. Lithe [PHA10]. Lithography [RDGM99]. Liverpool [AD98]. LLVM [SML17]. Load [An04b, BKdSH10, BS05, DI02, DR95, DK06, GCBL12, HE02, MM02, NP94, PT01, Pu09, SGS95, ST97, Wal01a, Bir94, CKO*+94, D296, DLR94, DvdLV94, EZBA16, FMBM96, FH97, GS96, Hum95, JH97, MM03, SLC97, SY95, Wil94]. load-balanced [EZBA16]. Local [BSG00, CDHL95, CSM97, IKM*+01, AMHC11, BY12, CGL*+93, FSV14, IKM*+02, LHD*+94, LHD*+95]. Locality [MJB15, ZLP17, BHR08, HJYC10, RKBA*+13, WR816]. Locality-Aware [MJB15, HJYC10]. localization [HC08]. Locally [BHS*+02]. Locating [PNV01]. Lockheed [Str94]. Locating [kl11, CAWL17, PGK*+10]. Logging [BCH*+03]. Logic [KI17, BJ95, KMC96, KMC97, POL99]. LogP [CKP*+93]. London [EJL92, An09g, An09f]. Look [HCZ16]. lookup [BJ13]. Loop [DMB16, SHM*+10, TJPF12, SHL14, WYLC12, WLYC12, YST08, YWC11]. Loops [AHD12, LOHA01]. Loosely [Ada97]. Loop [RGDM96, RGDM95]. Louisiana [USE95, IEE96b]. Love [Dan12]. Love-Hate [Dan12]. Low [BGG*+15, GGS99, Jon96, MC17, NE01, RLL01, Str94, GK97, KBHA94, TBD96, ZRQA11]. Low-Bandwidth [NE01]. Low-Cost [RLL01, GK97]. Low-Density [MC17].

Lusk [Ano95c, Ano99a, Ano00a, Ano00b].

Lustre [DL10]. Luther [ACM99]. Lyngby [DW94, DMW96, Was96].

M [PBC01]. M-SPH [PBC01]. M6A [EM00a]. M6B [EM00b]. MA [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b].

Machine [AS92, AGIS94, BJ93, BS93, CHD07, DJ91, FE17, Fis01, GBD94, GRE94, KNT02, KKV03, KKD04, LKD08, MTWD06, Nov95, Pat93, Per96, RW09, TY14, VSO00, Wel94, AD98, AL92, Ano95b, BR01, BDC91a, BPC94, Bir94, BDLS96, BDW97, CARB10, CLM95, Cav93, Cha96, Che99, CD01, CC00b, DM93, DKD05, DLM99, DKP00, DLO03, FM90, KKEF18, KMC97, Kraf92, LC93, MN91, MRH96, NB96, Sch94, SK92, SCC96, SLO0, TW12, WRO09, WO09, WFT014, ARL94, BG94b, JPP95, KKD05, LK10, QRG95, SSS996]. machine-learning [TWFO09]. machine-learning-based [WFT014].

Machines [BP99, BZ97, BCC00a, BT01b, DR97, EGR15, GB96, GTS95, HD10, GL97, STY99, SCSL12, ZWJK05, BCA96, BSC99, BCC90b, DDS94, DCH02, GK92, KND95, PRS96, SL94h, TSY99, TSY00, WPL95, ZWKL13, GCI01, YC98]. makes [ZG95b, Str94]. Malleable [EDSV09, MSMC15]. Mambo [WZWS08]. Man [IEE95a]. Manageable [PKB01]. Managed [KCR97, SYR90]. Management [AJ97, AUR01, BGR97b, BGL00, EK97, FD97a, FD97b, GJR90, PRT06a, PS00a, SIS17, STY99, TSH15, ARS89, DZ96, DF17, FLD96, GL95a, JCP15, LF93a, PPT96b, PPT96c, YWTC15]. manager [Sep93]. managers [FLD96].

Managing [FLD98, FGKT97, Liv00, NPS12, Ob96]. Manchek [Ano95b]. Manipulation [KKV01]. Manual [CSW12, NSL16, Reu01]. Many [DT17, LZHI17, LLLC10, RB01, YTH12, ACMZ11, VDL98, dCZG06]. Many-Core [LZH17, YTH12, LLLC10, ACMZ11, dCZG06]. Many-Cores [DT17]. Manycore [MJB15, KGB99]. Map [JPT14, FBM11, FJBB90, MSCP95]. MAPA [JPL17]. Maple [Pet00a, Pet00b, Pet01]. Mapping [GAMR00, HC06, NTR16, RRB101, TSZC94, WO99, DDM95, EO15, HC08, TWFO09, WCS99, WFT014, WK08a, WO08c, dCZG06, WK08b]. MapReduce [JS13, MMB13, PD11, WZHZ16]. Maps [BM97, KRC17]. Marc [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. March [ACM95a, ACO06a, Ano89, Ano93c, Cal94, DKM92, IEE93f, IEE94d, IEE94e, IEE94f, IEE97a]. Marine [LLRS02]. market [LF93a]. Markov [BBH12, FK01]. Marliz [GA96]. marshaling [CFKL00]. Martin [ACM99].

Maryland [IEE95c, SPH95]. MASA [SMM16]. MasPar [RAL94]. Massachusetts [IEE94e]. masses [Cl98].

Massive [Sie92a, MAL95, OL86]. Massively [BJ93, BBH12, DSZ94, EIE94a, EIE96c, Oed93, Sie92b, Sta95b, CS96, DR94, HVSC11, KN17, KoWH10, LCL92, MYB16, RBB17, SRK12, DSZ94].

massively-parallel [MYB16]. Master
Master-Worker problem [FH98]. Master/Slave [LTR00].

Matching [GGC+07, KS01, MM02, OWSA95, WH94, MM03, Qu95, YPZC95, YZPC95].

Materials [Y+93, SSP+94]. Mathematical [Wan97, Has95].

Mathematics [Whi04, ANS95]. MATLAB [BKGS02, Whi04, Ano97, Bra97, ZZG+14].

MATLAB-MPI [BKGS02]. MatlabMPI [KA04, Kep05]. MATOG [WG17].

Matrices [GG99, GSMK17, Kan12]. Matrix [AKL16, BSvdG91, Cha96, DS13, Fuji08, GK10, PMvdG+13, TQDL01, TD98, ART17, CMH99, ER12, FAF16, FJZ+14, KPV95, PKD95, TPD15, XXL13].

Matrix-Vector [AKL16, DS13, Fuji08, XXL13]. Maui [ACM97a]. Max [Ano94c].

Max-Planck-Gesellschaft [Ano94c]. maximisation [CCU95].

Maximum [HK0011]. Maxwell [And98]. May [ACM96b, ACM06b, AGL+95, BR95a, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95c, IEE95d, IEE95e, PR94b, SPE95, SW91, SS96, Van95].

Mean [DWD04, TMD05]. Meeting [AD98, Ano93e, CHD07, CD01, CDND11, DGD05, DLM99, DKP00, DLO03, GA96, KGRD10, Kra02, KKD04, LKD08, MC94, MTW06, RW09, TBP12, BDW97, JB96, SP95, Ano92, CHD09]. megabase [SyD10]. MeteoRx [FST98a, FST98b].

Medium [MDR96, BWW+12, Bri10, B01b, CSW97, CC99, DM98, DMB16, DR97, DHHW92, DHHW93a, FB94, GCBM97, GB96, GS+91, GSHL02, GLRS01, HC10, HDB+12, HDT+15, HT01, JPL17, KB98, KS13, KSHS01, LSB15, Lu09, MB12, MBB17, MBE03, MM98, MLLS+08, MLLS+08, MPP+00d, PBK00, Pok96, PMvdG+13, Ros13, SY99, ST02b, SW91, Th99, VS00, VT97, ARS89, ABC95a, ABC95b, ADMV05, BCA+06, BCMV12, BSC99, CBV07, CBP10, Cha05, Cha96, CBHH94, CRM14, CC00b, DF17, DLR94, DBVF01, D96b, DHHW93b, DPZ97, EV01, FSV14, FHB+13, GCN+10, GBH96, GKK09, GL96, GL97c, GP95, HSP+13, HMGW12, HDB+13, HK09, JC17, JE95, KN95, KJA+93, KGD93, LKL96, LKLM04, NAJ99, NAAL10, OL+16, PK95, PS00b, RGD15, SSH08, SHHV01, SL94b, SBG+12, SYR+09].

MEM [SFL+94, SSC96, SPL99, SD16, TSY99, TSY00, Uhl95a, Vos03, W94a, W94b, WPL95, W08a, W08b, WK08c, WBC17, WMRR17, YX95, LBD+96, GKH97, SG05].

Memory-Based [MM98]. Memory-Efficient [MRB17].

memory-level [HK09]. Memory/Message [ST02b]. Memory [GRS+01]. Menon [Stp02].

Mesh [HAA+07]. Mesh [MRB17, Ron05].

mesh-particle [BAS13]. Meshes [MRB17, TP15].

Medium [AKL99, Att96, B97, B9+01, BB+01].

medium-scale [WLNL06].
Meta-Applications [BCLN97].
Meta-computing [FBD01a, FGRD01].
Metacomputer [OS97]. Metacomputing [Fin00, MSF00, MS99b, FBD02].
meteorological [RSBT95]. Meteorology [HK93, HK95]. Method [ACMR14, BP99, BJS97, CGU12, FCLG07, GSI97, HC06, KMK16, OMK09, Riz17, TSS00a, ARYT17, BBDH14, BCM+16, DSOF11, ETV94, HE13, HMKV94, HJB14, HPLT99, JMS14, KS15a, KD12, LCL+12, Nak05b, NS16, PTT94, Pri14, Qu95, SHHC18, TKP15, YBZL03, dIAMCFN12, AAB+17].
Methodologies [Sun94b]. Methodology [MOl05, WTT17, HPR+95, LM94, WMP14]. Methods [BCMR00, CMK00, DFN12, EGH+14, FGKT97, GFPG12, KLR+15, kL11, NA01, Sch01, SM07, TDBEE11, Whi04, ZB97, CEGS07, DF17, Gra09, Has95, LSR95, MM11, Nak05a, PGK+10, R+92, SL94a, SGS95].
Migratable [KOW97]. Migrating [VSRGC94, VSRGC95, IvdLH+00, KBG+09]. Migration [Ano94b, CCK+95, CLL03, CML04, CCBPGA15, CTK01, NPP+00c, NLRH07, Ott94, OS97, ST97, AMBG93, BBGL96, CKO+94, CRM14, CRGM16, CK99, DDY99, HZ99, LCVD94b, LM13, RRFH96, SSS99, SCL97, Ste96]. Milan
HS95a. million [LHLK10]. Millions [BBG+11]. MIMD [BvdB94, BB93, BCL00, Uhl95a, WST95]. MIMD/MM [BB93]. MiMPI [GCC99]. MINIME [DS16]. MINIME-GPU [DS16]. minimization [POL99]. Minimum [KA95, Wu99, NCKB12]. mining [MA09]. Mississippi [IEE94f, IEE95j, IEE94f, IEE95j]. mitigating [OdSSP12]. Mitigation [BBH...13a]. Mitsubishi [Ano03]. mittels [Wil94]. Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01]. Mixed-Mode [BEG+10]. Mixing [CP98, GAP97]. mixture [EO15]. MK [NS91]. mm_par2.0 [OKM12]. MN [Ano94h]. Mob [STV97]. Mobile [ITT02]. Mode [BGK08, Brl02, BEG+10, LRT07, SB01, YX95]. Model [AP96, BGG+02, BdS07, CKnWH16, Cha02, CZG+08, Dar01, DFA+09, FSXZ14, FBSS01, GLB00, GLRS01, HLP11, KD12, LGG16, LA02, LRG01, MKW11, NSL16, NO02b, Ran05, RSV+05, RRB01, SPM+10, SB95, THN00, VT97, Wai01a, AL93, BSG99, Bir94, BG94b, BVD03, CMV+94, CL93, CKP+93, ED94, GKZ12, GCL+02, GlCy97, GWVP+14, GRTZ10, HPL99, HK09, HK10, Kos+95a, KSL+12, LR06b, LA06, LLH+14, Mar05, MsSAS+18, MSZG17, MGC+15, NO02a, Nak05a, PAdS+17, RAS16, RGDML16, RCG95, Sch93, SH94, Sch99, SMAC08, Str94, VBLvdG08, Vis95, Wan02, WC15, WYLC12, YX95, TA14]. Model-Based [AP96, LGG16]. Modeling [AC96a, ATM01, BS07, CSC96, CD93, FST98a, GAM+02, MOL05, NM95, RGD05, SEF+16, TD99, VFD02, XH96, BD+10, Bc95, KM10, KME09, KE010, MS99a, XXL13, YMYI11]. Modelling [FST98b, GC05, Ham95a, KDL+95b, BJS99, HTHD99, KDL+95a, MSML10]. Models [AKK+94, BS93, BZ97, CMK00, Cer99, CNM11, DK06, EMO+93, ESM+94, GJN97, PPF89, SS01, SMOE93, Whi04, BB95, CH96, Duv92, KO14, LV12, MCB05, Nes10, RSBT95, SYR+09, Wal00, WSBC17]. moderate [Uhl95a]. Modern [AHHP17, DARG13, KRT+12, LNK+15, SM07, HH14, PMZ16]. modes [WZWS08]. Modified [Riz17, GP95, KD12]. Modular [CT02, HPP02, FWS+17, HLM+17]. modulator [WWZ+96]. modulator/DFB [WWZ+96]. Module [Ano98]. Modules [AKK+94, DS96b]. Molecular [ABG+96, BST+13, BCGL97, BL95, BS07, DR97, DI02, KMB09, LA15, MA01, SA93, YWCF15, ZB94, BvdSvD95, BBK+94, BMD94, BMD94a, CC00b, DCD+14, FHS09, JAT97, JMS14, KF96, KRG13, L5VMW08, OKM12, PARB14, SL95, ZWL13]. molecule [ART17]. Möller [BL95, KN17]. Monitor [KRS99, Whi94]. Monitoring [AH00, BCLN97, Bg93b, BMF96, BFMFT96b, CD98, DBK+09, GSN+11, LY93, LW00, MWG97, MV95, SGL+00, WP01, Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a, BB94, BS96a, BMT96a, FLB+05, LC07]. Monodomain [ORA12]. Monte [HJJBB14, RP95, WH96, ADRC98, AK99, DAK98, NSL16, RR00, SK00, SKM15, ZZ04]. Monterey [Ano89, Gat95, USE94]. Montpellier [DE91]. Montréal [Lev95]. MOPS [GJN97]. Morehouse [AGH+95]. Morgan [SD13]. MOSIX [BGJL96]. motif [FMS15]. motors [SKM15]. movement [MV17]. Moving [HAA+11, LSG12]. MPE [GKL95, KF69]. MPEG [NU05]. MPEG-4 [NU05]. MPI [ARYT17, Ano95c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, CDND11, DKD05, GBR97, GEW98, IEE96i, JMS14, KGRD10, KKD04, Nag05, Per97, PS01b, RLVRGP12, ST02a, TDB00, TDB12, Vre04, WSN99, YMK97, ST02b, ACGdIT02, Ada97, Ada98, ACH+11, APJ+16, AAS08, ART17, ATM01, AK99, ABF+17, AHP01, ACMZ11, ALW+15.
MPI_Allgather [GMdMBD+07].

MPI_Connect [FGRD01]. MPICH
[BBC+02, BCH+03, BHK+06, Cot98, Cot04,
GL97a, KTF03, LKJ03, OPM06, OF00,
RFG+00, RsT06, SBC+02, TRG05].

MPICH-CM [SBG+02]. MPICH-G2
[Cot04, KTF03, OPM06]. MPICH-GQ
[RFG+00]. MPICH-V [BBC+02, BHK+06].

MPICH-V2 [BC+03]. MPICH2
[BMG07, Gro02b, ZSG12]. MPiConnect
[FL09]. mpicroscope [Trä12b]. mpiJava
[BCKF99]. MPINE [Sou01]. MPIPOV
[FFB99]. MPIPT [HIP02]. MPIWiz
[XLW+09]. MPJ [CGJ+00]. MPL [XH96].

MPL0* [CRD99]. MPP
[CDJ95, DOSW96, GB97]. MPP-Systeme
[GB97]. MPs [BGR97a, RBB97a].

MPSoc [KKJ+08, KK+10, PSM+14].

MPSocs [MB12, NEM17]. MPVM
[CC+95]. MRI [LSSZ15]. MRO
[MMM13]. MRO-MPI [MM13]. Multi
[Ada98, ABB+10, Bri10, BCKP00, CAWL17,
CZG+08, DWL+10, EBKG01, FSXZ14,
HD02b, HRZ97, JCH+08, JNL+15, KBA02,
KT02, LM13, MG15, MB00, NMS+14, PZ12,
RR02, Sini93a, ST02a, ST02b, SSB+17,
WBH97, YGH+14, ACMZR11, AGMJ06,
BCK+09, DCH02, DWL+12, Fin94, Fin95,
FHB+13, HTA08, HE15, JR13, JMJ+11,
JR10, KSG13, KO14, LSG12, LS10, LLH+14,
MALM95, NSM12, SBC15, SFV13,
SVC+11, SAP16, Str12, TS12b, TFZZ12,
WCC+07, WO09, WADC99, WYLCL12,
ZAFAM16, ZW+95, ZZZ+15, SAP16, SG14].

multi- [ACMRZ11, KSG13]. multi-/many-core [KSG13]. multi-agent
[ZW+95]. Multi-agents [KBA02].

Multi-cluster [ST02b, KO14]. Multi-Core
[ABB+10, Bri10, CZG+08, YGH+14, PZ12,
FHB+13, HTA08, JR13, JMJ+11, JR10,
LLH+14, SFV13, SVC+11, TFZZ12,
WCC+07, WYLC12]. multi-cores [WO09].

multi-CPU [SAP16]. multi-CPU/multi-GPU
[SAP16]. Multi-Dimensional
[HD02b, KT02]. multi-endpoint [LLH+14].

Multi-GPU
[JNL+15, NMS+14, NSM12, TS12b, SG14].

multi-kernel [SAP16]. Multi-level
[CAWL17, LM13, HE15, MALM95, ZZZ+15].

Multi-Network [BCKP00]. Multi-Node
[HRZ97]. multi-petaflops [LSG12].

multi-phase [ZAFAM16]. Multi-Physics
[WBH97]. multi-place [BCK+09].

Multi-platform [DWL+10, DWL+12]. Multi-Processor
[RR02, Sini93a, DCH02].

multi-programming [WADC99].

Multi-protocol [MB00]. multi-socket
[LS10]. Multi-Stage [FSXZ14].

Multi-Threaded
[MG15, Ada98, EBKG01, SCB15].

multi-valued [Str12]. Multi-versioned
[SSB+17]. multi-zonal [Fin94, Fin95].

Multi-Zone [JCH+08, AGMJ06].

Multiblock [IDD94, DLR94]. Multicast
[CC10, CDP03, ZG04]. Multicasting
[SE12]. multicenter [CwC+11].

MultiCL [APF+16]. multicompeller
[SW95, TD99]. multicomputers
[HWW97, Yan94, YX95]. Multiconference
[Ten95].

Multicore
[BDT08, CGC+11, CB16, DS16, KDT+12,
LNK+15, WT12, CLY16, GJJT11,
HWX+13, PJO12, KN17, LS10, MBBD13,
MM11, NOb08, OPW+12, PDY14, QB12,
RGDM16, WSC+13, WT11, WLYC12,
YHL11, YWC11, dlAMC11]. multicore/many
[MBBD13]. multicore/many-core
[MBBD13]. multicores [UGT09].

multidestination [Pan95a].

multidimensional [CSW99, PDY14, ZT17].

multidisciplinary [Fin94, Fin95].

multifrontal [IM95]. Multigrain
[AZG17, IOK00]. Multitgrid
[BCM00, IM05, Lou95, Mic93, Mic95,
PS1T99, RM99, Sta95a, ZZZ+14].

Multigroup [QR95, QRMG96].

Multilevel
[PSS01, BAV08, ET94, GAM+00, JJY+03].
Networked [FGKT97, GBD++94, Nov95, Per96, Aoo95b, BMPZ94b, BMS94a, BMPZ94a, GM94, HS93, RRG++99].

Networking [ACM97b, ACM98b, ACM00, ACM01, ACM04, Hol12, LCK11, CXB++12, GH94, HS95a, ITT99, LCHS96, MZK93].

Networks [CSV12, CDM93, DDPR97, GFV99, GHL97, HHK94, HLCZ00, TQDL01, Tou00, VLO++08, WAS95b, BK11, BRS92, CZ95b, CFRPS95, DG95, DZ98a, Jau94, LR06a, LTL94, LHD++94, LHD++95, NFG+10, Pan95a, TDB00, ZGN94].

Neural [AGH++95, CAM12, CSV12, QMGR00, Str94, GkLyCY97, Rag96].

Neurocomputing [PSZE00].

Neutron [LD01, RS97, VRS00, WR01, MM92].

Nevada [Ano94e].

never [Har94].

Neville [ACMZR11].

Newport [IEE93b].

News [Ano97, Ano03, Bra97, ESB13, KS15a, Str94].

Newton [ZB97].

Next [GKPS97, Gei98, Gei01, VPS17, SP11, ZKRA14].

Next-Generation [VPS17, ZKRA14].

NFS [CGC++02].

NHPDCC [BRST94].

NIC [MFP03].

NIC-based [MFP03].

Nice [ACM90].

nineteenth [IEE95].

Ninth [ERS96, R++92].

NIST [SNMP10].

Nitzberg [Ano99c, Ano99d].

NLP [VB99].

NM [IEE95d, Old02].

NoC [HWX++13].

NoC-based [HWX++13].

Node [HRZ97, KFL05, FKL08, GM13, JR10, LFL11, Zah12].

Nodes [BBC++02, BCC++03, DBK++09, JNL++15, MKC++12].

Noise [SAL++17].

Non [BBC++10, CCSM97, Gua16, HATA08, MW98, Man01, WLN03, WTO03, FHH08, BHH++08, OKW95, OMK09, WLN06].

Non-blocking [HTA08, FHH08, BHH++08].

Non-Contiguous [WTO03].

Non-Data-Communication [BCG++10].

non-dedicated [WLN06].

non-iterative [OMK09].

Non-linear [MW98, OKW95].

Non-Local [CCSM97].

Non-persistent [Man01].

non-stop [Gua16].

Nonaligned [AGIS94].

Noncontiguous [JDB++14, TGL02].

Nondeterminacy [DKF93].

nondeterminism [Obre96].

Nondeterministic [KSV01, CRD99].

Nonlinear [Nak03, Was95a, ZBG09, CEGS07, Jou94].

nonnegative [KBP16].

nonsymmetric [dH94].

Nordic [FF95].

Norfolk [Sin93].

normalized [Gra09].

North [CJN95].

Note [BR02, SGHL01].

Novice [IEE96].

novel [DDYM99, GKK09, MLVS16, MSL12].

November [ACM96c, ACM97b, ACM98b, ACM99, ACM00, ACM01, ACM03, ACM04, ACM05, Ano94e, ACDR94, BDW97, GN95, HK95, Hol12, IEE91, IEE93e, IEE94b, IEE94h, IEE02, LCK11, USE94].

novice [CGG10].

Novices [Stp02].

NOWs [SLGZ99].

NP [YAZ14].

NPACI [PKB01].

NPB [EGC02].

NR [Gua16].

NR-MPI [Gua16].

NRC [LD01].

NSGA [GÁVRR17].

NSW [GN95].

NT [Ano01a, Bak98, BF98, CLP++99, GGGC99, PS00a, SFG98, TAH++01].

NTRUEncrypt [KY10].

NTUG [FF95].

Nuclear [BPG94, GA96].

nuclei [NS16].

NUMA [BCC++00a, BCC++00b, BF++09, CAWL17, GTS++15, MKC++12, MJB15, OPW++12, SLN++12, TSCM12, ZLP17].

NumaGiC [GTS++15].

Number [BP99, HT08, WHDB05, Lan09].

Numerical [ACMR14, BS93, BCP++97, CSW97, DHH97, DHP97, FK01, For95, FB94, HH14, Hau98, IF95, KM10, Kha13, McD96, NHT02, PKY95, TDBEE11, YKCD17, AL92, Bao97, BCM++16, CSW99, FP92, GS94, JK10, KB13, Nob08, NHT06, Pr14, SMAC08, SU96].

Numerically [BKML95, BFFL99].

nur [BL94].

Nutzung [GEW98].

NVIDIA [KME09, Seg10, XVL13, KKM15, Lan09].

NX [Pie94, PR94a].

NY [IEE96f, PBG++95, Re96, SS96].

O [Bos96, CFF++96, DRU12, IRU01],
IBC+10, LkLC+03, kLCC+06, MV17, MGC12, MG15, PSDK8, PLR02, RK01, SBQZ14, Tha98, WSN99, O2000 [CML04].

O2WebCL [CHKK15]. Oberammergau [BPG94]. Object [Ada97, BCFK99, CFKL00, FMSIG17, MSL96, PD98, SWL+01, YHLG01, YX95, Ada98, BR91, DM12, LKL96, OKM12, RFH+95, SLL94b, TDG13]. object-based [LKL96]. Object-Oriented [BCFK99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. Objects [KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZPLS96]. Oblivious [LZH17, UALK17, HSP+13]. observations [ZKRA14]. observed [CAHT17]. Occam [ACDR94, GN95, MC94, SHH94a, SHH94b]. Ocean [BS93, GAM+02, Bi95, Mal01, Nes10, Sch99, Wal00]. Oceans [IEE94c, IEE94c]. OCLoptimizer [FAFD15]. OCM [BoFBW00]. OCM-Based [BoFBW00]. October [Ano93e, Ano94e, Ano94i, Ara95, BPG94, Bha93, BDL96, CHD07, CGB+10, DSM94, DLO03, DE91, FK95, GGG+93, IEE94f, IEE95a, IEE95g, IEE95j, IEE96b, IEE96c, IF95, JB96, Kra02, Old02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vol93]. ODE [Ano97, Bra97]. ODES [Pet97]. OdinMP [BB00]. OdinMP/CCp [BB00]. Offering [EK97]. Official [Ano98]. Offload [BRU05]. Offloading [MGA+17, DSGS17, KBG16]. oft [Rol08a]. Oil [FSXZ14, ZAFAM16]. OKs [Ano03]. old [LK14]. OMB [BVW+12]. OMB-GPU [OBV+12]. OMIS [LW97]. Omni [KSS00, KSHS01]. OmniRPC [SHTS01]. OMP [SGJ+03]. OMP2001 [TSB03]. OMP2012 [MBB+12]. OMPI [ACH+11, OM96]. OmpSs [ABF+17, YAJG+15]. on-chip [TDG13].

On-Demand [CTK00]. On-Line [BoFBW00, Wis98]. On-the-fly [KSJ14]. ONC [RS93]. One [BPS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DDB+16, LSK04, MS99c, Ols95, PGK+10, dlAMC11]. one-dimensional [Ols95]. one-layer [dlAMC11]. One-Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DDB+16, LSK04, MS99c, PGK+10]. only [LS10, Squ03]. Ontario [GGK+93]. onto [OFA+15]. OOMPI [BWV+12]. OOPS [RFH+95]. OPAL [CwCW+11, NW98]. OPAL-MPI [NW98]. opaque [SOA11]. Open [BGG+15, KDL+95b, AVA+16, KDL+95a, Nob08, GBS+07, VGRS16]. Open-Source [BGG+15, AVA+16, Nob08]. OpenACC [CCBPGA15, GML+16, JCP15, LSG12].

OpenCL [ABDP15, APBeF16, AB13, BLPP13, BDW16, BN12, BHH+12, BHH+15, BAS13, CDO+13, CP15, CJ+10, CHKK15, CCK12, CS14, DARG13, DI 14, DWL+10, DWL+12, FAFD15, FLMR17, FE17, FSV14, AVL15, GScFM13, HD11, HE15, JSS+15, JKM+17, JR13, JNL+15, JMDVG+17, KKM15, KH12, KM10, KKL11, KSL+12, KJJ+16, KB13, KPK13, Lee12, LNK+15, LL16, LAFA15, MC17, MAIVAH14, MTU+15, MSZG17, ON12, ORA12, PCY14, PHW+13, PB12, RGD13, RBB15, RBB17, SFSV13, SAP16, SSB+17, SG14, SFLD15, SGS10, Str12, THS+15, TK16, TMW17, TKP15, TY14, WTH17, WZH16, YSWY14, YWTCC15, YSL+12, ZWL+17, ZT17, dAT17]. OpenCL-accelerated [ZWL+17].

OpenCL-Based [WTTH17, WZHZ16, JKM+17].

OpenCL-to-WebCL [CHKK15]. OpenGL [Ano98, LHZ97, ORA12]. openMosix [Slo05]. OpenMP [Cha05, CZG+08, CGK11, CMMR12, EV01, JMS14, MDCS09, SHM+10, VOS03, OKM12, ST02a, ST02b, Add01, ARvW03, ABC+00, AHD12, AAB+17, AGLG16, ACMZ11, AT+12, ADT14, ACJ12].

on-chip [TDG13].
Ano97, Ano01b, Ano03, AKE00, ADMV05, AGMJ06, AM07, ACD+09, ABB+10, BST+13, BR02, BHP+03, BME02, BN00, B01, BBDH14, BWW+12, BCC+00a, BCC+00b, BKG08, BGG+02, BS01, B505, BBC+00, Bra97, Bri00, BDV03, BdS07, BdGs09, BFG+10, BGD12, BCO0, BS07, BB00, BKO00, BO01, BEG+10, CRE99, CE00, Car07, CB00, CGGLD01, CDK+01, CLYC16, CM08, CHFP01, CBP02, Cha02, CM05, CEGM11, CMRR12, Cla98, CCM+06, CCBPGA15, CCO00b, DM98, DW02, DBVF01, DGS17, HD02a, DFC+07, DFG+09, ETWA12, EM00a, EM00b, EV01, EdS08, FGR00, FMSG17, FSXZ14, FM09, GSA08, GJP01, GSMK17. OpenMP
[GG09, Goe02, GAM+00, GAML01, GOM+01, GAM+02, Gra09, HPP02, HP05, HDDG09, HA10, HO14, HD02b, HMK09, HASn00, HAJK01, HVSC11, HLC200, HT01, HCL05, HEHC09, HIYC10, HAA+11, LJM+05, ICC02, IOK00, IOT02, JCP15, JKKH08, JOJ12, JFY00, JJY+03, JCH+08, JJM+11, KB01, KOB01, KaM10, KOI01, KKH03, KT02, KSJ14, KBVP07, KBG+09, KKV01, KT10, KH15, KAC02, KC06, Kuh98, KPO00, KSS00, KSSH01, KJEM12, LOHA01, LP00, LD01, LMO09, LLC13, LHC+07, LNW+12, LIYS+16, LA02, LA06, LMRG14, LH298, LL01, LLH+14, MKC+12, M02b, Ma01, MM07, MB12, M02, Mar03, MLC04, Mar05, Mar09, MPD04, MCB05, Mat00a, Mat00b, Mat01a, Mat03, MGG05, MG12, MG15, MM11, MFG+08, MKV+01, MBE03, MRRP11, MMSW02, MKW11, MM14, MMS07, MB15, MJBP16, MDs+08, Mi010. OpenMP
[Mi010, Mi03, MBB+12, NO02b, Nak05a, NIO+02, NIO+03, NEM17, NPP+00b, NPP+00c, NPP+00a, NPP+00d, NAAL01, NA01, NNO000, Nob08, NU05, NH02, NH06, OOS+08, OP10, OPW+12, PARB14, PP01, PVKE01, PK05, PGC02, PKE+10, Qui03, Ran05, RDLQ12, RLRVRP12, RBA05, SSE12, SSB+16, SHH01, SHTS01, SKS01, SGLZ09, SGS00, SPL+12, SHPT00, SSAS12, SK00, Stp02, TBS12, TS1a, TSB02, TTSY00, TSS00a, TSCaMI2, TJPF12, Thr99, TGB+02, THH+05, TGBS05, VPS17, VGS14, Vos03, Vre04, Wal00, Wal02, Wan02, WCC12, WC07, WYLC12, WLYC12, YHL11, YWCI1, YCLI14, YKLD17, YPAE09, YSM+16, YSM+17, YYW+12, ZAT+07, ZSh01, aMST07, dCZG06, RM99, SSGF00, WCS+13]. OpenMP* [KDT+12]. OpenMP-based [LNW+12]. OpenMP-like [BKO00, KOB01, VGS14].
OpenMP-oriented [MLC04].
OpenMP-style [JPOJ12]. OpenMP/MPI [BE+10, HMK09, LCC13, LYSS+16, MG05, NO02b, Nak05a, SSB+16, SK00]. OpenSHMEM [HVA+16]. OpenTuner [BAG17]. OpenUH [HEHC09, LHC+07]. Operating [MMH98, RGD97, USE94, Wl93, ARS89, Sei99].
operational [KOS+95a]. Operations [BIL99, BIC05, CCA00, FCLG07, FPY08, GFD05, GLB00, PSM+14, PGAB+05, TRG05, TGT05, WRA02, BMG07, DS13, IDS16, KHB+99, KMH+14, PGAB+07, PKD95, SSS9, TFZZ12]. Operators [NHT02, NHT06]. opportunistic [CC10].
optical [MRH+96]. Optimal [BP99, GAM00, ZGN94, BB95, ER12, PQ07, PTL+16, Sur95a]. optimiertes [Sei99]. optimisation [AMuHK15]. Optimising [Bo01, FKH02]. Optimistic [SCL00, CXB+12, PY95]. Optimization [BSG00, BHNW01, DBA97, Goe02, HS12, Hsu00, ITT02, KG+03, KMH+14, MC17, MBS15, Mi010, NIO+02, NIO+03, PSSS01, SM03, SvL99, SWH15, TRG05, WTH17, WJ12, Cou93, DSOF11, FCS+12, HWS09, KHS12, LME09, LDJK13, MALM95, PP16, PPM95, SKS01, SDJ17, Str12, TM17, TFZZ12, VSW+13, Was96, XXL13]. Optimizations [NSLV16, SIE12, iSYS12,
Parallel [FFB94, FS93, FF95, GCBM97, GLN+08, GBD+94, GKP97, GR07, GSI97, GSMK17, GB98, GHL97, GK10, GFPG12, GJN97, Gre94, GLS94, GL97a, GL99, GlkCy97, HJ98, HLP10, HO14, HK94, HK93, HHHK94, HT01, HAA+11, IEE93b, IEE94a, IEE95c, IEK95g, IEE96b, IEK96c, IEK96g, IEK96e, IEK96d, IEK97b, IEO95, IKT00, IBC+10, IOK00, IDD94, IH04, IHH05, JAT97, JML01, Jom94, JRM+94, KFA96, Kan12, KCG02a, KCG02b, KNT20, Kat93, KBS04, Kre05, KR09, Kon00, KKP01, KMC96, KM97, KS96, KRD93, KST01, KY97, KSH01, Kuh98, KBG16, Kun94, Lad04, LDTD14, LTR00, LKD08, LSZL02, LTRA02, LHHM96, LI96, LZ97, LH97, kLCC+06, LQ96, Lu00, MS0R01, MS02b, MM92, MWG97, dIFMBdIFM02, Mar06, Mar07, MFT95, MSCW95, Mat94].

Parallel [Mat95, MBS15, MGC12, MG15, MRB17, MM11, Mic93, Mic95, MTWD06, MCLD01, MS95, MCD+98, MBB+12, MSB97, NO02b, NO02c, Na03, Nak03a, Nak05b, NSZS13, Nar95, NSS12, NAJ99, NJ01, Nov95, Oed93, OP10, OLG01, Ong02, Ott93, OWSA95, Pac97, PPT96a, PVKE01, Pat93, PSZ00, PV97, Per99, Per96, PLR02, PKB+16, PBC+01, Qui03, RR00, RDMB99, RBS94, Ree96, RS95, RCG97, RSV+95, Rolo01, Rolo94, RWD09, RTAL99, RRL01, SC97, SPE95, SGZ00, Sch01, Sch06a, Sch96b, Seg10, Ser97, Sver98, She95, SM03, SP99, Sie94, Sie92a, Sie92b, Sin93, STV97, SWH15, Sou01, Sta95b, Ste94, SSN94, SG10, Str96, Str97, Str94, SNMP10, Sun90a, Sun90b, Sun94a, Syd94, TMP16, TSS00b, TTP97, TCG94, TCP15, TQD01, TH00, TDBEE11].
Pasadena [IEE95c]. \textbf{PASCO} [ACM97a].

\textbf{Passing} [AMHC11, AKL99, Ata96, BZ97, BC14, BBH+06, BBG+01, BRU05, BDH+95, BDH+97, BGR97b, BFM97, CHD07, Cer99, CGH94, Cot97, Cot98, CTK00, Cot04, CDND11, DFKS01, DKD08, DHHW92, DHHW93a, DLL00, FKKC96, FKS96, FG93, Fos98, FGG+98, FB94, GR07, GB96, Gle93, GLS94, GL95c, GLDS96, GLT99, GLT00a, GL04, IBC+10, KTF03, KGRD10, KS97, KSV01, KKDv03, KKD04, KKD05, LKD08, LK10, Luo99, MI98, MTSS94, MS98, ML96, MBES94, MG97, MTWD06, MSS97, NW98, PK00, Pok96, PS10, RRL01, RWD09, RFG+00, SWHP05, SWL+01, ST02d, TGT05, TDB00, TBD12, WD96, Wer95, Wis97, YHGL01, YST08, YL09, MMB+94.

\textbf{PC} [AH00, EKT99, KS01, LKYS94, RLL01, Ste00, WLYC12, YST08, YL09, MMB+94].

\textbf{PCTE} [H94]. \textbf{PCTRAN} [KHS01]. \textbf{PDCS} [YH96]. \textbf{PDE} [GR07]. \textbf{Peer} [GR07]. \textbf{Peer-to-Peer} [GR07]. \textbf{PELCR} [PQ07]. \textbf{PEMPI} [FB95]. \textbf{PEMPIs} [MOL05].

\textbf{PPT96a} [Cou93, He93, MW93, SMW96]. \textbf{6000} [BGBP01, AL93, NMW93]. \textbf{ACM} [ACM04]. \textbf{AP1000} [IM94]. \textbf{C} [GTH96, KPO00]. \textbf{CCp} [BB00]. \textbf{Computation} [HIP02]. \textbf{CORBA} [LRW01].

\textbf{cost} [GWVP+14]. \textbf{Crawler} [Wa01a]. \textbf{CRAY-T3E} [Che99]. \textbf{CUDA} [PHJ11]. \textbf{DAC} [Cza02, Cza03]. \textbf{DFB} [WWZ+96]. \textbf{distributed} [FHC+95, Wan97]. \textbf{DMMP} [BB93]. \textbf{DPVM} [HvA+00]. \textbf{dynamic} [SCB15]. \textbf{eMPICH} [MS96a]. \textbf{ESA} [Whi94]. \textbf{Fortran} [TBG+02]. \textbf{GAMMA} [CC04a]. \textbf{GPFS} [PTH+01a]. \textbf{GPU} [KL+12, Lee12, LLC13, OWA+15, SSB+17].

\textbf{GPU-code} [EZBA16]. \textbf{hp} [BCM+16]. \textbf{IEEE} [ACM97b, ACM98b, ACM05]. \textbf{Main} [Ton96]. \textbf{many-core} [KSG13, MBBD13]. \textbf{MARTE} [RG+13]. \textbf{MBCF} [MMH99]. \textbf{Message} [ST02b]. \textbf{MPI} [AD98, BDW97, CHD07, CHD09, C005, DLM99, DLP00, DLO03, Kra02, LKD08, MTWD06, RWD09, NO02a, ACGR97, BEG+10, Coo95a, Coo95b, DKD07, HMK09, LLC13, LYSS+16, MGG05, MTW07, NO02b, Nak05a, OF00, OL05, RsT06, SSB+05, SSB+16, SK00, Squ03, SN01, ZWZ05].

POLSYS_GLK [SMW06]. polygonization [TSP95]. polygons [CT13]. polyhedral [BHR08, KGB^+09]. polymers [JAT97]. Polynomial [VY15, HLM^+17, SMW06]. port [CCHW03, Har94, RJC93]. Portability [KaM10, RS95, RH01, ABPD15, FE17]. MGC^+15. PHW^+13. Reu03]. Portable [An95c, An00b, BHV12, BHL^+95]. CDH^+94, DHK97, Di 14, FCLG07, FSLS98, GLS94, GL97a, GL99. JSS^+15, LNLE00, Man98, MKV^+01, MG97, PPT96a, PBC^+01, SCC95, SDB^+16, Sti94, Tra98, WCS^+13, YBMCB14, Arr95, BCK^+09, BIDA94, BB00, BB99, BASS13, CH94, CEF^+95, Dwl^+10, DWL^+12, FAF16, FWNK06, GR95, GL94, GS94, GLDS96, HZ94, HS9, JCD96, KN95, LFS93a, LFS93b, LHC^+07, MMB^+94, PPT96b, PPT96c, PMZM16, SFLD15, Sto98, VM95]. portal [AASB08]. portals [BS96b, BMRO2, BRM03]. Portfolio [SIS17]. Portfolio-driven [SIS17]. Porting [An96c, BSC99, BRW98, EM02, Har94, Har95, HASn00, KGK^+03, KME09, SR96, YKLD17, dCH93, BvdB94, HD11, MW095, RE94]. Polytope [HBF97, HBF98].
ZPLS96. Portland
[ACM99, ANS95, IEE93e, SW91]. Portugal
[IEE93d, IEE96g]. Positron [Pat93].

POSIX [LD01]. Post
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[JJP17, LZH17]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a]. Potts
[BBH+ 13b, Wit16, ABC+ 00]. Post-failure
[BBH+ 13b]. Post-ISA [Wit16]. Poster
[BBH+ 13b, Wit16]. POSYBL [Mat94].
MCdS+08, MdSC09, Ost94, PR94b, Rec96, RWD09, SCR92, SHM+10, Sie94, TBD12, USE94, USE95, USE00, VW92, Vos03, Y+93, YH96, AD98, BG91, BDL96, BS94, Bos96, BFM96, BDW97, CH96, CD01, DSH94, DKD05, DW94, DMW96, DLM99, DKP00, Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97b, LCHS96, Mal95, PBG+95, Sch93, Tou96, VV95, Vol93, Was96, Proceedings.

[Ano93e, Ano94g, IEE96i, IEE97b, LHHM96].

Process [AUR01, BGL00, CLL03, DeP03, DK06, FDG97a, FDG97b, FLD98, FPY08, KCP+94b, KOW97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HG12, JLS+14, KCP+94a, MLVS16, MK00, SHHC18, Ste96].

Processed [HJ98].

Processes [CB16, MW98, Pet00a, Pet00b, FS95, SPK+12].

Processing [ATC94, Agr95a, AR01, BBG+95, DCM+92, GGM99, GGC001, HJBB14, IDE93b, IEE95c, IEE95h, IEE95f, IEE95g, IEE96b, IEE96e, IEE96d, IEE97b, IEE05, IOK00, JDB+14, KO101, KS15b, LVMW80, MS010, Nar95, NH95, N01, PLR02, PD98, Rec96, RBRL01, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, BJ13, BFM96, CFP95, CLLAS00, DS89, W+94, GDC15, GGCG99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kmm94, HLL90, LG93, PSB+94, PBPT95, RKB+13, R+00, RCM95, SSSH99, SLS96, VDL+15, Wol92, WFT11].

Processor [HC06, Oed93, Ott94, PWP+16, RRO2, Smif03a, SBT04, UALK17, ABDP15, DCH02, HCO8, LLL01, OIS+06, RPNM13].

Processor-Oblivious [UALK17].

Processors [A97, Bri10, HK93, HK95, MJB15, OLG01, PZKK02, BBG+14, CBM+08, DDLG11, HTA08, HWX+13, KnWH10].

Producing [HAJK01].

Productions [CMH99, ER12, SMSW06].

Production [Claj+15, SL00].

Productive [LV12].

Products [Ano97, Bra97].

Profile [TWFO09, WFT014].

Profile-Driven [TWFO09, WFT014].

Profiles [AS92].

Program [Ano96d, AB93a, BMS94b, CHPP01, Cot97, EML98, MM95, MRV00, Ney00, PS01b, TS00, THN00, UTY02, CDZ+98, JF95, LP00, LLC13, OKM12, PPF89, Saa10, TNIB17, TMP101, ZL96].

Programación [VP00].

Programmable [Oa17].

Programmable [BL94].

Programmers [Gua16, Wit16].

Programming [CGG10].

Programming [ACM90, Ad97, ACGR97, ASA97, ACJ12, Ano96b, BBG+10, BLP93, BHV12, BF01, BBG+101, BK000, CMK00, CDK+01, CKnWH16, Cha02, CZG+95, CF01, Cza03, DM98, DARL13, DDL00, DML+10, EM00a, EM00b, FTBV00, FWR+95, GLRS01, GLS94, GLS99, HA11, HDB+12, HDT+15, KKH03, Kep05, KP96, KnW01, KVH97, Lad04, La01, LLR02, MS0GR01, Mat94, Mat95, MCdS+08, NO02b, SM+10, SS01, SDN99, SHH94b, ST02a, ST02b, SG01, Sp02, TTP97, VT97, Vro04, Wal01a, Wal02, W097, YM97, YHGL01, ACDr02, AnMu16, Ano95c, An00b, AB13, BJ13, BCA+06, BB94, BS96a, BKH+13, CLY16, Cha05, CEF+95, CDH+94, CHP+14, DML+12, Duv92, EASS95, E01, F05, F06, F06, FST99, FST99, Fer04, Fra95, FHB+13, FF95, GZK12, Gel96, GB14, GRT10, HTO8, HS93, HZ94].

Programing [HDB+13, HSVH95, HSW+12, HZG08, KDS012, KOB01, KSG13, KSL+12, KPNM16, KFSS94, KKJ+08, LV12, LFS93a, LFS93b, LH98, LPD+11, LLH+14, MMB+94, MVTP96, MSP93, MC99, MGC+15, NO02a, NAK05a, NYNT12, NBG808, OIS+06, Olu14].
OW92, Pac97, PVKE01, PF05, Qui03, RJDH14, SK10, iSYS12, SSKF95, SYR+09, Seg10, SPK96, SBF94, SPL99, SH99a, SD99, VP00, Vos03, Wal01b, Wan02, WCC+07, WADC99, WYL12, WLYC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE+17, Che10, SD13]. Programs
[AJF16, Beg93b, BKdH01, BGK08, BGG+02, BDL98, BGL00, CSW12, CRE99, CHP90, CD98, DBL07, DMM97, Di14, FKH02, FJK+17, GR07, GTH96, GL04, GC05, HC10, HKN+01, HM01, KFL05, KL94, KSJ14, KKV01, KSV01, Mar09, MV95, MO+03, MKW11, MCLD01, MJB15, NSZS13, NE98, NE01, NPP+00d, OM96, PPJ01, RH01, RFG+00, SGZ00, SBF+04, SR96, TGBS05, We99, Wis97, ZLL+12, Beg92, Beg93c, Beg93a, BCK+09, BMPS03, CRE01, CldJ+15, CGL+93, CH94, CRM14, CPF96, DFK93, DFK94b, EP96, EPP+17, FLB+05, FKL08, GGH99, GRM99, GKS+11, GB94, HD11, HZ96, HLOC96, HEH90, KCD+97, KS13, KO14, LGKQ10, LLG12, LL16, LBB+16, LYS+16, LMM+15, LZC+02, LCC+03, MT96, MdSAS+18, Mor95, NBB99, Obe96, OdSSP12, PES99, PAdS+17, RAS16, Res03].
 programs [RRG+09, SSB+16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THI+05, UG97, VVD+09, YSV+16, YSMA+17, YYYW+12, ZRQA11].
 Progress
[BRU05, LAdS+15, MLA+14, MC94].
 Progress-Dependence [LAdS+15].
 Project [BHK+06, BSH15, DHK07, HMKV00, ABC+00, CDH+94]. Promise [Ano93e].
 Promotion [OCY+15, WBBD15].
 Propagation [EMO+93, ESM+94, JML01, SMOE93, KEGM10, RMN+12].
 Properties [FGRT00, MS96b, SSP+94].
 Proposal [DHWW92, DHWH93a, DFC+07, DFA+09, ZKRA14]. Proposals [Wal96b].
[CAWL17, GSY+13, KL11, LMM+15, RA99, XF95, DBD+13, CW+11, DRYM99, MN91, MB00, ZP06]. Protocol-based
[LMM+15]. Protocols
[BCH+08, DM93, LH98]. Protoplanetary
[DJFM+08, BS+09]. Prototype
[AM00, FH94, MMW02, BK96, CCF+94, KYL03, KHL05]. prover [Sut96].
 Provide [Add01, LMRG14]. Provides
[Ano98, Nell93]. Providing [GKP97, Zel12].
 Proving [MS96b]. PRS [UCW95].
 Pruning [SMM+16]. PS [AMV94]. Pseudo
[Wal01a, Lan09]. Pseudo-search [Wal01a].
 Pseudorandom [WHDB05].
 Pseudospectra [BKGS02].
 pseudospectral [Bri95, MRRP11].
 PSPVM [BWT96]. Pthread [ZAT+07].
 Pthreads [AS14, TS12b]. PTX [iSYS12].
 Public [StR94, GWVP+14, Nell93, RST02].
 Public-private [StR94]. Puma [BS96b].
 purely [HSE+17]. Purpose
[BDT08, Che10, SZB98a, Sun94a, ABD15, CBM+08, KPNM16, PF05, SK10, SZBS95b].
 PVaniM [BCL97, TSS98]. PVFS [IRU01].
 PVM [AD98, BL94, BDL96, BDW97, CHD07, CHD09, CD01, DK05, DLM99, DKP00, DLO03, Krad92, KD08, Mc96, MTOW06, RWD90, Wi94, AJ97, Ahm97, AS92, ACG97, ADRC98, AL92, AGR+95b, AB95, ASA97, AL96, ARL+94, AKK+94, AP96, Ano94b, Ano95c, Ano96b, Ano96c, ABC195a, ABC195b, ABG+96, AGL96, AB93b, AB93a, ADMV05, BSN95, BLF93, BFL99, BBGL96, BG95, BS93, BDG+91a, BDG+92b, Beg92, BDG+93b, BDG+93a, Beg93b, Beg93c, Beg93a, BDG+95, BS96a, BDG+xx, BL95, BR95b, Ber96, BJS97, BT96, BWT96, BG94a, Bon96, BG94b, BG94c, Bor99, BCD96, BRR99, BFZ97, BID95, BMS94b, BFM96, BFMT96a, BMT96b, CMV+94, CP97, CD95, CKO+94, CCK+95, CSPM+96, CZ95a, CGPR98, CG93, CDH95, CDH+95,
CF01, CZ96, CS96, CG96, CG99a. \textbf{PVM} [CSC96, CDM93, CdGM96, CPR+95, CT94a, CT94b, CFP96, CT02, CD98, CTK01, DG95, DKF94a, DDMY99, DM95b, DM95a, DP94, DMMV97, DGF97, DFN12, D+11, DGMS93, DGMJ93, DHP97, DPZ97, EP96, EM94, EGDK92, EM94, EML98, EML00, EMO+93, ESM+94, EK97, FMBM96, FD96, FLD96, FH95, FHSO99, FO94, FSTC99, FJB+00, Fin97, FD97, FS97, For95, FS93, GRV01, Ga97, GCBM97, GS91a, GS91b, GS92, GS93, Gei93a, Gei93b, GDB+93, GBD+94, Ge96, GKP96, Gei97, GKP97, Gei98, Gsx, Gei00, Gei01, GTH96, GB96, GM95, GSHL02, GFV99, GGH99, GS96, Gör01, GHL97, Gre95, Gre94, GL97b, GMU95, GkLyC97, HB96a, HB96b, HSMW94, HI98, Har94, Har95, HBT95, HPS+96, Hem96, HEH98, HTHD99, HVSH95, HH95, HRS97, Hue96, Hum95, HIS95b]. \textbf{PVM} [ITT99, IvdLH+00, IDD94, IKM+02, JAT97, JH97, JM901, JW96, JC96, KBA02, KAT93, KK98, KP96, KBM97, KG96, KCP+94a, KCP+94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAHS96, KK02b, LG00, LB98, LSZL02, LHC79, LK96, LCGZ97, MW98, Man94, MTP96, Man01, MP95, dIFMbldIFM02, MTSS94, MFTB95, MSCW95, MSP93, Mat94, Mat95, MMU99, Mat01b, MRV00, MK97, McK94, MC98, MFC98, MV95, MS96b, Mic93, Mic95, MT96, MS99a, MS99b, MHC94a, MHC94b, MRH+96, MS95, MC99, Ne93, NP94, Neu94, NBK99, Ney90, NB96, NAJ99, Nov95, Obe96, Ols95, OPP00, Ott94, OWSA95, PPR01, PK98, PPT96b, PPT96a, PPT96c, POL99, PT01, PKYW95, Per96, Pet97, PTT94, Pla02]. \textbf{PVM} [PNV01, PD98, PY95, PL96, Pus95, QRG95, QRMG96, Qu95, QMGR00, RR00, RS93, Rag96, RS95, RHG+96, RRAG97, Rol94, RGD97, Sau94, SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98, SGS95, SSS99, SPK96, Sep93, Sev98, Shi94, SA93, SR96, SHH94a, SHH94b, Smi93a, SB95, SC96a, SIT96, SMOE93, SGL+00, SGH91, SCL97, SSS97, Sta95b, SY95, SYF96, SC96b, Str94, SKH96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SGDM94, Sun96, STMK97, SN01, SCL00, Sur95b, Sur96, SL95, TMT96, TC94, TB96, TD98, Ts95, Uhl94, Uhl95b, UH96, UMK97, VSR94, VSR95, VB99, VAT95, WKS96, WH94, WCV96, WAS95b, WO97, Wis96a, WL96a, Wis96b, WL96b, WCS99, Wu99, WLC07, XWZ96, XF95, YG96, YKI+96, ZPS96, ZP106, ZB94, Zem94, ZDR01]. \textbf{PVM} [ZG95a, ZG95b, ZG96, ZG98, Zol93, van93, Ano95b]. \textbf{PVM-AMBER} [SL95]. \textbf{PVM-Based} [DI05, FO94, PY95, SIT96, ZPS96, LSZL02, TD98]. \textbf{PVM-GRACE} [YKI+96]. \textbf{PVM-Implementation} [BJ97, Hue96]. \textbf{PVM-RPC} [KS97]. \textbf{PVM/MPI} [DKD05, KKD04]. \textbf{PVM/C} [GTH96]. \textbf{PVM/MPI} [AD98, BDW97, CHD70, CHD09, CD01, DLM99, DKP00, DLO03, Kra02, LKD08, MTWD06, RWD09, ACG97, SN01]. \textbf{PVM3} [IM94]. \textbf{PVM3/AP1000} [IM94]. \textbf{PVMMaple} [Pet00a, Pet00b, Pet01]. \textbf{PMvE} [BR95c, BR95b]. \textbf{PVMGeant} [DZDR95]. \textbf{PVMPI} [FD96, FGG97a, FGG97b]. \textbf{PyCUDA} [KPL+12]. \textbf{PyOpenCL} [KPL+12]. \textbf{Python} [BL97, DSP05, DSPD08, Di 14, GFB+14, SSH08]. \textbf{PyTrilinos} [SSH08]. \textbf{Q} [KMH+14, LM13, MV17]. \textbf{QAPs} [Tsu12]. \textbf{QCD} [BLPP13, SVC+11]. \textbf{QCG} [ACH+11]. \textbf{QCG-OMPI} [ACH+11]. \textbf{QCMPI} [TJD09]. \textbf{QR} [GKK09, LC97b]. \textbf{QSATS} [Hin11]. \textbf{Quadratic} [Cza13]. \textbf{Quadrics} [YSP+05, LCW+03]. \textbf{quadtree} [HS95b, PGBF+07, SCC96, Sur95b]. \textbf{qualitative} [BLP93]. \textbf{Quality} [Boi97, RFG+00, WHDB05, Ano94i, Lan90, Boi97].
Quality-of-Service [RFG+00].
Quantifying [AKE00, LDC97].
quantitative [BLF93, BBH+95].
quantization [HIE95].
Quantum [BCGL97, BCL99, GRT90, Hin11, MGG05, NM93, SK00, SSGF00, TJD99].
Quasi [DDYM99, Pla02, ZB07]. Quasi- [Pla02].
Quasi-asynchronous [DDYM99].
Quasi-Newton [ZBG97]. Queens [Ro08b].
Queensland [ACD94]. Query [AR01].
Quest [MWG97]. Queue [NS12, CG99b, PTL+16, Sep93, ZA14].
queues [Man98]. quicksort [MMS+16, MMS+16].

R [BBH12, JPOJ12, LR01]. R&D [Str94].
R&D-100 [Str94]. Race [CFMR95, KSJ94, DKF94].
Races [PPJ01, SAL+17, DKF94b, LLG12, ZQA11, EPP+17].
Radiance [GC93, KM99, RC97].
Radiology [GA96]. Rajee [An00a].
Raleigh [Agr95a]. Ramesh [Stp02].
Random [IT98, LTDD14, Lan99].
Randomized [Tra98]. Range
[KBMB97, MH01, BMPZ94a, PARB14, She95].
range-join [She95]. Rank [Hat98].
Ranking [Tra98]. Rapid [FWS+17].
RASC [YCL14]. rate [BBG+14, YPA94].
rational [BBH+13b]. Ray [CG93, DP94, KGB+09, FWS+17, SG95, FF99].
Ray-Tracing [DP94]. Rayleigh [TV96].
Rayleigh-Benard [TV96]. rCUDA
[PRS16, RSC+15, SIRP17]. RDMA
[GSY+13, LWP04, Pan14, RA09].
RDMA-Based [LWP04].
RDMA-Enabled [GSY+13, Pan14, RA09]. Re [MCP17]. Re-Vectorization [MCP17].
Reaching [BHS+02]. Reaction
[HF14a, HF14b]. Reactive [BCL00, He93].
reactor [ANS95]. Reading [HK95]. Ready
[Bri02, DZ98b]. Ready-Mode [Bri02]. Real
[LHKL10, NSL16, Tho94, UP01, YGH14, Ano94f, Fer04, FLB+05, JR10, ZWZ+95, SKD+04].
Real-Time [UP01, YGH+14, LHLK10, Fer04, ZWZ+95, SKD+04].
Real-World [NSL16]. Realistic
[YMY11, ZSH01, CKP+93]. Reality
[ACM96a, Ano93e, NM95, Wilt6]. realizing
[YZ14]. rebooting [GJLT11]. Receive
[Bri02]. Receiver [ZG95b]. receptor
[ESB13]. Rechen [Ano94e, BL94, MS04].
Recognition [CC7]. recomputation
[RKBA+13]. Reconfigurable
[MFC98, SPM+10, NYNT12].
Reconfiguration [CS14, SMCM15].
Reconstruction [BMM97, DYN+06, GA96, LSSZ15, OH10, RAG95]. Record
[UALK17, CRD99]. Record&Replay
[KSV01]. record/replay [CRD99].
Recovery [SBF+04, BBH+13b, BBD+13, LFS93a, LFS93b, SSCC95, ZWZ05].
Rectangle [CSW99]. rectified [WBBD15].
Recurrents [ACGR97]. Recursive
[DSS00, PWP+16, SD99]. Red [van93].
redesign [HL17]. Redistribution
[DDPR97, HC06, W095, W096, HC08, KN95]. Reduce [PSM+14]. Reduced
[SW12]. Reducing
[CRGM16, JE95, BCM11]. Reduction
[FKH02, MFP03, SG12, HL17, Jes93a, MLVS16, Pan95a, PQ07]. Redundancy
[TS12a]. redundant [KJJ+16]. Reference
[GHL+98, Nag05, SOHL+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, SOHL+96, Per97, Ano96a]. Refinement
[MRB17, Ran05, CLSP07, DLR94]. regions
[LFL11]. Regular [HL11]. NHT02, NHT06].
Reims [MCD+08]. RELAP5 [SB95].
related [SD16]. Relating [EPM99].
relation [DO96, Hem96]. Relationship
[Dan12]. relaxation [OKW95]. Reliability
[CZGQ13]. Reliable [SE02, Am95].
Remark [SW15]. remedies [ALW+15].
Remo [JEE95]. Remote
[BMR01, HDT+15, IFA+16, OCY+15, WBBD15, AGL+96, FCH+95, GBH14, HGMW12, RSC+15, SIRP17, SH96].
Remote-Scope [OCY+15, WBBD15].
Remotely [GGCM99, GGC001, GCGS98,
VLO+08, GGGC99]. Remoting [ML+17].
removal [ZZZ+15]. Rendering
[GCBM97, LSZL02, SU96, UCW95].
Rendezvous [RA09]. Reordering [Hat98].
Reparcellization [KBG+09]. Repeated
[WH94, Shi94]. Replacement [GHD12].
Replay [CFMR95, HLOC96, UALK17,
MT96, NBK99, XLW+09]. replay-based
[MT96]. Replication [WC09, KJJ+16].
Replication-Based [WC09]. Report
[DZ98b]. Reports [Ano98, ACM11].
Representation
[BMRO1, KD12, MDM17, SML17, CCM12].
reproduce [AVA+16]. Reproducible
[GL99, HCA16, XLW+09]. Requirements
[GSHL02, GT07, Ber96, KBG16, LCVD94a].
Research [Ano96d, BR02, MC94, SL94a,
SGHL01, Ara95, BPG94, LP00, Oed93].
Reservoir
[QWSA95, ZAFAM16, ZZZ95, Ano95d].
Resident [JDB+14]. Resilient [CGH+14,
Gua16, LCMG17, LMG17, MLVS16].
Resolution
[MAB05, Str94, BADC07, KN17].
Resolving [Str97]. Resource
[BGR97b, BSH15, KK98, SIS17, YSS+17,
DZ96, FLD06, NEM17, ZA14].
resource-conscious [ZA14].
resource-restricted [NEM17]. Resources
[LSB15, NAW+96, Kos95b, R+92].
Response [BBC+90]. restart [LMG17].
restarted [dH94]. Restoration [FJBB+00].
Restore [Gua16]. restricted [NEM17].
Restructuring [KAMAM17]. Results
[BIL99, BICO5, HSMW94, Wal01a, BR95c,
DHS96, VDL+15]. retargetable [KKJ+08].
rethinking [GJLT11]. Retrieval
[RLL01, MMR99, MRH+96, RTL99].
reusable [LTLC94]. reuse
[BVML12, LM94, NAAL01]. Reverse
BGK08, LSB15, LM13]. Review
[Ano95b, Ano95c, Ano96a, Ano99a, Ano99c,
Ano99b, Ano99d, Ano00a, Ano00b, BDL98,
Che10, Mar06, MCLD01, Nag05, Per96,
Per97, SD13, Vre04, Stp02, Vog13]. Reviews
[Ano97, Bra97, YM97]. Revised [Cha05].
rewrite [SFLD15]. REYES [LSZL02].
RFSA [SW12]. Rhine [Cal94]. Rhodes
[TG94]. RHODOS [RGD97]. Rich
[MIW11]. Right [ZZZ95]. Rim [LLE95e].
ring [ZZZ+15]. RISC
[AL93, NMW93, BSvdG91]. RNA
[WHDB05]. RnaPredict [WHDB05].
Robust [Ano95b]. robotic [ZWW+95].
Robust [Att96, GR07, PSL799]. Rocks
[PKB01, Slo05]. Roe [dIAMCFN12]. Rohit
[Stp02]. rolling [NF94]. Rome [CMM12].
roots [PNV01]. routed
[Pan95b, RJMC93, ZGN94]. routers
[Les93a]. Routines
[Add01, BAO96, LSK04, Sch96b]. Routing
[BHM94, BHM96, MTSS94, MBB94,
WH94, BS94, Zal12]. RPC
[KZCS96, KS97, RS93, SHTS1]. RPVM
[CCMO03, LR01]. RS
[BGBP01, Cot93, Heb93, MW93]. RS/
[Cot93, Heb93, MW93]. RS/6000
[BGBP01]. RS6000 [CDM93]. RSA
[WL07]. RT [KAMAM17]. RT-CUDA
[KAMAM17]. RTL [BGG+15]. RUBIS
[BR94]. Ruby [Ong02]. rules [SFLD15].
Run [DL94, DGMJ93, FHK01, GOM+01,
OP98, SWB91, SSS96, KPL+12, RRG+99,
Str94, TCBV10]. Run-Time
[FFK01, GOM+01, OP98, SSS96, DLR94,
SWB91, KPL+12, TCBV10]. Running
[BZ97, CCM+06, YKI+96, CRE01, ZLZ+11].
Runtime
[AAB+17, BGD12, CFF+94, DMB16, DT17,
Gro00, KBS04, KCR+17, NPP+00d, TJPF12,
ZLP17, ALW+15, BL99, BR94, EP+17,
EO15, HPS+12, HPS+13, KW14, LLH+14,
MA99, NPP+00a, TSY00, YAJG+15].
Runtimes [AHHP17]. Russia [Mal95].
RWA [RLVGP12].
S [AHHP17, Röhl00]. S-Caffe [AHHP17].
S-language [Röhl00]. S1 [GLT00b]. S3D [LSG12]. Safe [Pla02, GCC99, LFS92, LFS93a, LFS93b, NYNT12], safety [GT07].
salesman [GM94]. Salt [Holl12]. San
[ACM97b, Ano95d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IEE95h, IEE95g, IEE97c, LF+93a, NM95]. Sanders [Che10].
Sandy [VDL+15]. Santa
[ACM95b, AH95, IEE95f, Old02]. Santorini [CD01, CDND11]. Santorini/Thera [CD01]. Saphir [Ano99c, Ano99d]. SAR
[ACM97b, ACM97b, ACM97b, ACM97b]. SBS [ACM03]. SBS-Type [ACM07].
[ACM95b, ACM97b]. SC98
[ACM95b, ACM97b]. SC'99 [ACM99]. Scalability [BS07, FSC+11, KBS04, LL01, LKYS04, LSK04]. Scalable
[Add01, AHHP17, BHW+17, BBC+02, BHNW01, BGL00, CDPM03, EFR+05, GFB+14, GS94, GHCW12, IEE92, IEE94f, IEE95j, IBC+10, KKK98, kLCC+06, MFPP03, NBGS08, NP+00d, NCKB12, NSM12, OLG01, PJP01, PR94b, PBK00, SJ17, SFB+04, Sk93, SS96, TPD15, UP01, VBLvdG08, VY02, ZLGS99, BBB+94, Bri95, CLSP07, FWS+17, GBH14, GM13, GKL95, HRR+11, HAJK01, KRC17, KR13, LM99, LTL94, MMB+94, MRRP11, PWD+12, SPK+12, TrAl92a]. ScaLAPACK
[BV99, BRR99, DHP97]. Scale
[AKE00, BHW+17, BZ97, BHNW01, FFP03, MFPP03, SM03, TGEM09, WT12, AASB08, BCA+06, BJS99, BCH+08, Che99, DZZY94, FME+12, Gua16, Kos95b, LS10, MLA+14, PTL+16, PD11, RMNM+12, SL99, TBB12, WLN06, WT11, ZKRA14, ZA14]. SCALEA [TFGM02]. Scaling
[CC17, KFL05, SLJ+14, FKL08, Gao03, LFL11, PDY14], scan [AAAAn16, YLZ13]. scanline [AAAA16, YLZ13]. scans [NAJ99]. SCASH
[SHH01]. SCATCI [ART17]. scatter [BCD96, MTK16]. Scattering
[BCL00, NZZ94, OMK09]. SCF [MM95]. schedule [NAAL01]. scheduler
[ADDR95, TCBV10, WRSY16]. schedulers [NP12]. Scheduling
[BBH+06, BSH15, CML04, DMB16, EGR15, GSHL02, GHL97, HC06, JW96, MJ15, NIO+02, NIO+03, TJPF12, APcF16, DZ98a, JKN+13, LHCT96, MBKM12, NSBR07, OPW+12, Sm93b, SKK+12, SKB+14, WYLC12, WYLC12, YWC11]. Scheme [CTK01, LNL00, MW98, SBF+04, BBGL96, Bjo95, MRRP11, OKM12, SCC96, YPPZ95, FM90]. Schemes
[PPJ01, WYLC12, WYLC12, ZAT+07]. School [VV95]. Schrödinger
[DM12, ON12]. SCI
[FS97, HEH98, Hus00, ZH99]. SCIDLE
[ABG+96, AGLv96]. SCIddle-PVM
[ABG+96]. Science
[EGH+14, IEE95d, MMH93, Old02, SM07, ACM06a, DMW96, HK93]. Sciences
[ERS96, HS94, ZL96, ERS95]. Scientific
[AGH+95, APJ+16, BBG+95, DKM+92, DT94, Gat95, GL97a, HJ98, KK02a, KkLC+03, Mar06, Nag05, Sin93, SS97, SFB+17, VY02, WN10, BOS04, DW94, SBB+12, TBB12, Ano97, Bra97]. scientists
[HW11, Str94]. SciPAL [KH15]. SCIPVM
[ZHS99]. Scope
[OCY+15, BDB+13, BBD15]. scoping
[RDLQ12, WC15]. Scottsdale [IEE95b]. Scratchpad
[JAK17, MB12]. Scripting
[Ong02, KPL+12, Nob08]. scripting-based
[KPL+12]. SCTP [KPW05, ZPI06]. SDK
[TK16]. SDSM [CCM+06]. Seamless
[KK02a]. Search
[BSH15, Cza13, IKM+01, Wal01b, FMS15, IKM+02, Wal01a, ZSK15, CB11]. Searches
[BGG00]. Searching
Second-Order}[BL95, KN17]. Secondary
Segmentation [KBA02, AD95, CCU95]. Seidel
[BG95, LM99, Ols95]. seismic
[AMBG93, KL95, KEGM10, LM13, RMNM+12, SSS99, WCVR96],
Seismograms [DP94]. Select [KKDV03].
Selected [DHS96, MTW07, OL05, TB14, CHD09, Cha05, DKD07, JC17]. selecting
[PTL+16]. Selection [CKmWH16, PGBF+07, WKS96, ZWL+17]. Selective [Nak03]. Self
[NSS12, SLJ+14, TGT10, VFD02, NSBR07, WYLCl2, WLYC12, YWC12].
Self-Consistent [TGT10]. self-scheduling
[NSBR07, WYLCl2, WLYC12, YWC12].
Self-Submitting [NSS12]. Self-Tuning
[SLJ+14]. Semantic
[MTU+15, DKF94a, OA17]. Semantically
[MKW11]. semantics [RNPM13].
Semaphores [TTP97]. Semi
[CT94a, Bjo95, PSLT99, TC94, CT94b]. semi-coarsening [PSLT99]. semi-implicit
[Bjo95]. Semi-Lagrangian
[CT94a, TC94, CT94b]. Semiconductor
[GJN97, Ano03, LS10]. Seminar
[Ano94f, Ano93g]. Send [GPC+17]. Sender
[BCH+03].Sensed [GGCM99, GCGG01, GCGS98, VLO+08, GGGC99]. sensitive
[GKCF13]. Sensitivity [dLR04]. Separable
[Ben01, CdGM96]. September
[Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CLM+95, CHD07, CINW95, CD01, CDND11, DKD05, DKD07, DLM99, DKP00, DLO03, EJL92, FK95, FR95, GHH+93, IEE93d, IEE94c, JPTE94, KGRD10, Kra02, KKD04, LKD08, Mal95, MTWD06, OL05, PSB+94, RWD09, SPH95, SM07, TBB12, VV95, VV92, WPH94, YH96].
Sequence [GMU95, SMM+16, AMHC11, TSZC94].
sequences [GÁVRL17, SdM10]. Sequencing [VPS17]. Sequential [EK97, RPM+08, GGHH99, SRS95, TNIB17, TSZC94].
Serial [SWH15, HPS+96, HWS09]. serialization [CFKL00]. Serialized [KH10].
Serialies [BL94]. Series [Nag05, BR94]. Server
[Ano93e, FSL98, KS97, Mat01b, Sto98, Vis95]. Servers
[CGC+02, SIS17, GKK97]. Service
[RFG+00, LS08, SPK+12]. Services
[FC05, AAC+05, ZKRA14]. Session
[NYNT12, ZL96]. Set [SW12, WL96a, Ano00a, Ano00b, She95, WL96b]. Sets
[SG12, CLG+93]. setting [GL95a]. Setup
[NSL16]. Seventh [BBG+95, HS94, IEE93b, IEE956, IEE96h, Eng00, Y+93]. several
[GBR15]. SG1
[Che99, CML04, KMG99, LB96, LL01, LK03, LSK04, TW12, ZSnH01]. SG1/CRAY
[Che99], SG1/CRAY-T3E [Che99]. shadow [SOA11]. shallow
[dlAMC11, dlAMCFN12]. Shane [SD13]. Shanghai [IEE97a]. SHARE
[Ano92, Ano93c, Ano94g]. Shared
[BCA+06, BME02, Bri10, DM98, DMB16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HT01, KB98, KSHS01, LRT07, Lu099, MBE03, MCD5+08, Mülä02, NPP+00d, PBK00, Pok96, PS00b, Ros13, SS01, STY99, ST02b, Thr99, VS00, VT97, ABCI95a, ABCI95b, ADMV05, BMG07, CBPP02, Cha96, CCM+06, CCO0b, DBVF01, DS96b, DPZ97, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JE95, KJA+93, KC06, LKL96, MLC04, PK05, RGDM15, SHHI01, SL94b, SFL+94, SSC96, TS99, TSY00, Vos03, WMRR17, YWW95, YX95, Cha05].
Shared-Memory
[DM98, HDB+12, NPP+00d, Pok96, Thr99,
PS00b, ABCI95a, ABCI95b, BMG07, GL96, GL97c, KJA+93, PK95, TSY90. Sharing [Att96, CML04, CB16, DiN96, JAK17, KK98, JEC95, O1h93, PRS+14], shear [JAT97].

ShearLab [KLR16]. Shearlet [KLR16].

Shearlets [KLR16]. SHMEM [BBDH14, Hus01, LSK04, Sch96a, Sch96b, SS01].

Short [KB97, MH01, BMPZ94a, PARB14]. Short-Range [KB97, MH01, BMPZ94a, PARB14]. shorter [NB96]. Showcase [USE00].

SHPCC [IEE92]. SHPCC-92 [IEE92].

SIAM [BBG+95, DKM+92, Sin93]. Side [kLCCW07].

Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, BM00, TGT05, TRH00, ZSG12, bT01a, BM00, DGB+16, LSK04, MS98c, PKG+10, GBH14]. SIGCSE [ACM06a]. Signal [IEE95e]. signals [Uhl95c]. Signatures [Gro00]. significance [AMHC11]. silent [FMF+12]. silicon [Ano93, Goe02]. SIMD [BvdB94, HS95b, KDT+12, LL16, Sur95b, VSW+13]. Simple [MSF00, Mli01, SC04, ITT99, JH97, Nesh97, PNV01]. simulate [Heb93]. Simulated [BHM94, BHM96, FH97, RSBT95].

Simulating [DLM+17], KDE+95b, KDL+95a, NFG+10]. Simulation [CDMS15, CCBPGA15, DMM97, DZDR95, G597, GM95, GOH97, Ham95a, JML01, K5M97, KMK16, LLRS02, MFTB95, MPD04, MANR09, PCY14, PKY95, PZKK02, RR00, RDB99, SSAS12, Str97, Ten95, UZC+12, ZZ04, ZWJK95, dLAMC11, Ano95d, ADR+05, BJ95, BCM+16, BH95, BMPZ94b, CwCW+11, CSPM+96, DSOF11, FHSO99, FO94, FFFC99, GRTZ10, JAT97, JLS+14, KJLT93, KCM96, KCM97, LCVD94b, LCVD94a, LYZ13, MMW96, MALM95, NB96, NF94, OKM12, PARB14, PY95, RFH+94, SWY9C4, SPP+94,SKM15, Str96, Syd94, Tho94, YPA94, YEG+13, YSL+12, Eng00]. Simulation-Based [ZWJ95]. Simulations [CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG+07, SM02, YPAE09, ADT14, ABG+96, BADC07, Hin11, JMS14, LS10, LSVMW08, RMNM+12, SU96, WWFT11].

Simulator [CAM12, MRV00, UTY02, WPC07, AMV94, LS10, PWD+12, WZWS08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b]. Simulators [SB95, AVA+16]. Singapore [IEE96d]. Single [BM00, HF14a, HF14b, MB00, URKG12, AG94, KKL11]. Single-Chip [URKG12], Single-sided [BM00]. single/multigrid [AGIS94]. Sinks [JPT14]. Sites [Ano98]. Sixth [HK95, IEE96c, MMH93, SW91]. size [GKCF13]. sized [JLS+14]. Sizes [DALL18, ZSNH01].

Simulation-Based [ZWJ95]. Simulations [CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG+07, SM02, YPAE09, ADT14, ABG+96, BADC07, Hin11, JMS14, LS10, LSVMW08, RMNM+12, SU96, WWFT11].

Simulator [CAM12, MRV00, UTY02, WPC07, AMV94, LS10, PWD+12, WZWS08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b]. Simulators [SB95, AVA+16]. Singapore [IEE96d]. Single [BM00, HF14a, HF14b, MB00, URKG12, AG94, KKL11]. Single-Chip [URKG12]. Single-sided [BM00]. single/multigrid [AGIS94]. Sinks [JPT14]. Sites [Ano98]. Sixth [HK95, IEE96c, MMH93, SW91]. size [GKCF13]. sized [JLS+14]. Sizes [DALL18, ZSNH01].

Simulation-Based [ZWJ95]. Simulations [CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG+07, SM02, YPAE09, ADT14, ABG+96, BADC07, Hin11, JMS14, LS10, LSVMW08, RMNM+12, SU96, WWFT11].

Simulator [CAM12, MRV00, UTY02, WPC07, AMV94, LS10, PWD+12, WZWS08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b]. Simulators [SB95, AVA+16]. Singapore [IEE96d]. Single [BM00, HF14a, HF14b, MB00, URKG12, AG94, KKL11]. Single-Chip [URKG12]. Single-sided [BM00]. single/multigrid [AGIS94]. Sinks [JPT14]. Sites [Ano98]. Sixth [HK95, IEE96c, MMH93, SW91]. size [GKCF13]. sized [JLS+14]. Sizes [DALL18, ZSNH01].
BDG+xx, CZ95b, ESB13, FFP03, GBF95, Gre95, HPR+95, HS94, HHA95, IEE951, IEE96h, IF95, K15a, KC94, KAMAMA17, KG93, MBE03, NPS12, Ost94, PZ12, Si96, TDBEE11, VdS00, Wis01, Wol92, An07, BSC99, Boi97, Bra97, BR94, CMV+94, CBPP02, DP97, Hum95, JH97, JB96, LM94, MK94, Neu94, Old02, PHA10, PK95, PGK+10, RAS16, SHH101, Sch94, Sci99, SPH95, Str94, ZGN94, An94i, KG93, Si96]. Solan [CGB+10]. Solaris [An01a]. solidification [JLS+14]. solids [Hin11]. Solution [DWL+10, FBSN01, HO14, RPM+08, SEF+16, Tsu12, VRS00, DWL+12, IM95, JK10, LSR95, MALM95, ON12, PRS+14, SC96a]. solutions [AGIS94, LMG17]. Solve [Hog13, Riz17, BAV08, Che99, GGGC99]. Solver [Ben01, BP98, CF01, HSMW94, ID94, LZ97, SJ+17a, SJ+17b, WJB14, AM94, CP15, DM12, JR10, LM99, Lou95, RM99, SRK+12, SCC95, THM+94, ZZG+14]. Solvers [DFN12, DALD18, GK10, MSB97, NO02b, NK03, NHT02, NLRH07, QRMG96, RS97, WR01, ABF+17, ADL03a, ADL03b, ADDR95, BRR99, CL93, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94, QR95, SSO8]. Solving [ADRCT98, BHM94, BHM96, BM96, BV99, BG95, BDG+92c, BSH15, DALD18, GFGP12, Huc96, LLY93, MS02a, NF94, SAS01, SP11, SD99, BB95, DSM94, HHA95, LBB+16, LYSS+16, MM11, SSB+16, SMSWO6, YSVM+16, YSMA+17]. SOM [GkLyCY97]. Some [BDT08, Mi01, Pet97, AL92, NN95, RST95]. Sopron [VW95]. Sorrento [DKD05, DKD07]. sort [KV91, PSHL11]. sorting [BJL06, PSHL11]. Sound [SG12]. Source [BG+15, MM07, AVA+16, NCB+17, Nw08, PK+10]. Source-Code-Correlated [MM07]. Sources [ZDR01, KM10]. South [AC95a]. southeast [AC95a]. Sowing [GL97a]. SP [BGBP01, CE00, HMKV94, LC97b, WT11, WT12]. SP-1 [HMKV94]. SP-2 [LC97b]. SP1 [BR95c, FHP94b, FHP+94, FHP+95, Fr95, FWR+95, GL95d, HSMW94, MP95]. SP1/SP2 [FHP+95, Fra95, FWR+95]. SP2 [BR95b, HW97, JF95, KB08, KHS01, MABG96, XH96]. SPAA [AC95b]. Space [CML04, CB16, HO14, MSF00, OFA+15, SAS01, SS01, TA14, SRK+12]. Space-Sharing [CML04]. Space-Time [HO14, SRK+12]. SPAI [BBS99]. Spain [DLM99]. SPAN [LHHM06, Li96]. Spanish [VP00]. spanning [NCKB12]. Spark [KWEF18]. Sparse [AZ95, BBH12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADL03a, ADL03b, ER12, FJZ+14, GG99, Gr90, NHT06, XLL13]. SPEC [Ano03, MvWL+10, MBB+12, NA01, SGJ+03, TS03]. Special [AM07, BDT08, BDB+13, BC00, CHD09, DKD07, DKD08, GSA08, MIP98, Bos96, Mar02, PNV01, Reu01, Old02]. Specific [DM95b, DM95a, Ob14]. Specification [BG94a, Bds07, MG12, BG94c, LPD+11]. Specifications [OFA+15, WMP14]. Specified [MGM97]. specifying [LD+11]. specimen [Rol08b]. SPECT [BCD96], spectator [YMY11]. Spectra [Str97, SR11]. Spectral [MW98, BCM+16]. spectral/hp [BCM+16]. Speculation [BCD96]. Speed [CDHL95, Tou00, AH95, An003, BWT96, BD95, KMK16, CD9+15]. Speeding [CSV12]. Speedup [VPS17]. SPH [CP15, OLG+16, PBC+16, WMRR17]. Sphere [CT94a, CT94b]. spherical [KT10]. SPICE3 [WPC07]. Spiking [CAM12]. Spin [HLP11, KO14]. splitting [TCBV10]. SPMD [BST+13, Dar01, KAC02, Wal00, Wal02]. SPMD-Like [BST+13]. Spokes [IE93c]. Sponge [HSW+12]. spontaneous [EZBA16]. Spring [An94g, IE93a]. SPTHEO [Sut96]. SPY [SSG95]. Squares
[PWP⁺16, VRS00]. SR [YWCF15, ZLP17].
SR-IOV [YWCF15]. SR8000
[NNON00, TSB02, TSB03]. SS7 [LTLC94].
SSGM [HP⁺96]. SSS [MMH98].
SSS-CORE [MMH98]. St [Mal95].
Stability [DSS00]. stable [JMdVG⁺17].
Stage [FSZX14]. Stampi [TKT00].
Standard [DM98, GS97, GLP⁺00, GL95c,
Hem94, MP98, NH95, SKD⁺04, SGS10,
Wer95, YKLD17, Ano94d, BDB⁺13, Bor99,
Cla98, CG99b, DHHW93b, DOSW96, FB95,
GK97, GL92, Hem96, Sti94, VM95, Wal94a,
Wal94b, WD96, Ano97, Bra97, CGH94,
DOSW95, GLDS96]. Standards
[FKKC96, Thr99]. Star [CDM93, Coo95a, Coo95b].
STAR/MPI [Coo95a, Coo95b]. Start [Gro02b, Hus98].
Startup [PS07]. State [ACM11, IEE94f,
IEE95j, Wis96a, Wis96b, BTC⁺17, LF93b].
state-to-state [BTC⁺17]. states [NS16].
Static [NIO⁺02, NIO⁺03, RLVRGP12,
SCB15, SCB14]. Static/dynamic [SCB15].
Statics [TG94, TG94]. Stationary [MW98].
Statistical [LR⁺01, SNMP10, AMHC11,
KKM15, Röh00, SL94a, Vet02]. Status
[Bak98, DZ98b, GL95c, BDG⁺93b, FHP⁺95,
Hem96, Sun96]. stealing [TCBV10].
Steepest [Sch01]. Steering [GKP97, PK98].
Stencil [CGU12, WTTH17, KD13, TBB12].
stencil-based [TBB12]. step [Kos95b, ZC98].
Stereo [ZBd12, Qu95].
Steve [Ano96a, Ano99a, Ano99b, Nag05].
Steven [Ano96a, Ano99a, Ano99c, Ano99b,
Ano99d, Nag05]. Still [HCA16]. Stochastic
[DK02, LLRS02, MW98, RSV⁺05, JK10].
Stockholm [Eng00, HAM95b]. Stokes
[Che99, DLR94, HSMW94, IDD94, Lou95,
PTT94, SCC95, ZZG⁺14]. stop [Gua16, LMG17]. stop-and-restart
[LMG17]. Storage
[ACM04, Hol12, LCK11, HP11, NFG⁺10].
stores [HSP⁺13]. straight [YULMTS⁺17].
Strategies
[MM02, BVML12, CG99a, DBVF01, MM03,
OPW⁺12, PSK08, TSZC94, VB99].
Strategy [AIM97, DI02, Hat98, VPS17,
ZB94, ZSG12, DKF94b, DR95, MSL12].
strayed [Rol08a]. stream
[HSW⁺12, UGT09]. Streamline [CGC⁺11].
StreamScan [YLZ13]. Strength [Kon00].
String [MM02, MM03]. striped [KDSO12].
Strongly [GAP97, ZSG⁺14]. Structural
[PSSS01]. Structure
[CB10, LAFA15, SYF96, WHDB05,
EPM99, SEC15, SY95, ZAT⁺07].
Structured [FB96, Mar06, MRB17,
NLRH07, Ran05, Bis04, CLSP07, FR95,
GBR15, JAT97, Smi93b]. Structures
[GMPD98, JY95, KA95, OKW95, SHPT00,
WB96, YPA94]. studies [DHP97]. Study
[AIM97, BF01, BHLS⁺95, DARG13, EGC02,
FPY08, GL97a, KCR⁺17, LS01, MM02,
NSL16, NA01, PK05, RRBL01, SCL01,
TG94, AGR⁺95b, BJ13, BfDA94, BJS99,
BY12, Bri00, CBM⁺08, DX96, ED94,
FO94, JR13, KBG16, LP⁺11, LLH⁺14,
MS96b, PK08, PGK⁺10, PSHL11, RSBT95,
RJC95, TPD15, Wal01b, ZSK15]. Stuttgart
[KGRD10, WPH94]. style [PJOJ12]. sub
[MJG⁺12]. sub-communicators [MJG⁺12].
subcircuit [HLO⁺16]. subdomain
[CEGS07]. subdomains [SHHC18].
subgroup [XLW⁺09]. Submitting [NSS12].
Subrange [Str97]. Subroutine [Sau94].
subroutines [dCH93]. subsurface [ED94].
subsystem [BMG07, MBA96].
Subsystems [STMK97]. Subtle [Sal⁺17].
Success [Gro01b, LF⁺93a]. Successes
[Gro01a]. Successful [Gro12]. suffix
[DK13]. Suitability [Mat01b]. suitable
[MAS06]. Suite [ACMR14, AKE00,
BW⁺12, MBB⁺12, Rix17, Ano03, BO01,
MyWL⁺10, TG09, YSWY14, SNMP10].
Suites [MCS00, SG⁺03]. summation
[IHM05]. Sums [ST17, MYB16]. SUN
[BM00, SJ02, WSN99]. Sunderam
[Ano95b]. Super [Gua16, YY95].
Super-Object [YX95]. Supercomputer
Supercomputers
[Ano93a, CLP99, Str94, AAC+95, BGH+95, EFR+95, GL96, GL97c, KMH+94, NSM12, Ste94, GS91b, MAB05].

[BP93, BDG+92c, EKTB99, KN17, WT11].

Supercomputing
[ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93c, IEE94h, Liu95, Sch94, ACM94, ACM96c, Ano93f, BG91].

Superlattice
[Pri14].

Superscalar
[ACJ12].

Supersonic
[BP93, BDG+92c, EKTB99, KN17, WT11].

Superlattice
[ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93c, IEE94h, Liu95, Sch94, ACM94, ACM96c, Ano93f, BG91].

Supercomputing
[ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93c, IEE94h, Liu95, Sch94, ACM94, ACM96c, Ano93f, BG91].

Supported
[KLR16, CDD+96].

Supporting
[FD00, FMSG17, GAML01, Gua16, MMS07, OOS+08, WLNL03, WLNL06, WCS99, YWCF15, FLD96, GAM+00].

Supports
[AELGE16, CLL03, DGMS93].

Suppression
[WWZ+96].

Surface
[KS15b, PKYW95, BHW+12, DCD+14, RAGJ95, TSP95].

Survey
[Sap97].

Survive
[ABB+10].

Symmetric
[BDV03, MDM17, BAV08, DCH02, GG99].

Symposium
[ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94c, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IEE05, LHHM96, Li96, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tor96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94h, Lev95, Old02].

System
[Ada97, BJ13, Cer99, DLR99, HZG08].

Synergia
[SSAS12].

Systeme
[GBR97, GEW98].

Synergistic
[UGT09].

Synchronisation
[SDB+16].

Synthesizer
[DS16].

Synchronizing
[VT97].

Survey
[ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94h, Lev95, Old02].

Synchronous
[Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BFZ97, BGD12, CAM12, CCC+02, DBA97, DALD18, ERS95, ERS96, EK97, FBDO1a, FBVD02, FFP03, Fis01, Gal97, GCBM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, KBA02, LLRS02, LTR00, LLY93, Maf94, MRV00, MM02, MSF00, MMH98, MMS07, MMH93, NPP+00d, NMS+14, Oed93, PPT96a, RGD97, SGJ+03, SSS+05, SCP97, SA93, ST02b, Sun93, TSS00b, UP01, Wim93, ARS89, AS92, AL92, BB94, Bri95, BBH+15, DL10, FNSW99, FK94, GS91a, GS93, GS96, GM95, GlKY97, HDDD99, Hum95, HS95b, IBC+10, ITT99, JH97, JLS+14, KW14, Kik93, LBD+96, LKL96, LL95, MA09, MMR99, MMB+94, MAS06, MM11, MS99b, MALM95, NAJ99, PPT96b, PPT96c, PK05, RJD14, RTL99, SHH01, SL94b, Sei99, SPL99, SGDM94].

System/6000
[AL93, NMW93].

System-Initiated
[SSB+05].

Syntactic
[CC17, DP94].

Systeme
[GBR97, GEW98].

Systems
[ABB+17, Ano94b, Att96, BCGL97, BGBP01, BME02, ...]
Task-Overlapped [GPC17].

Task-Parallel

[NSZS13, APBeF16, ABF+17]. Taskers [FLD96]. Tasking [DFA+09, KaM10, SHM+10, TSCaM12, WC15]. Tasks [ACD+09, DT17, DAF+09, JW96, OP98, RR02, RDLQ12, YSS+17, BS01, DDYM99, DR95, FKK+96b, FKKo6a, IvdlH+00, PKE+10]. TAU [MMS07]. taxonomy [SPH96]. TBSCM [BP98]. TC2 [Boi97].

TC2/WG2.5 [Boi97]. TCGMSG [GB96, Mat94, Mat95]. TCP [KFW05]. TD [And98].

Teaching

[MK00, JY95, MK97, PKB06]. Technical [Ano93c, Ano98, MC94, USE95, ACM06a].

Technique [BCD+15, HC06, HAA+11, HC08, Nes10, RBB17, MAIVAH14].

Techniques [CP97, GS02, Mii01, SAL+17, SPL+12, TGBS05, Wis01, BPG94, Fer04, FCS+12, HKMC94, JKN+13, KBY+09, NFG+10, PF05, SKS01, WST95].

technologies [Mal95]. Technology [Ano97, Bra97, CGB+10, CSV12, Dan12, GN95, HS94, PWP+16, STB04, TBG+02, Ano93a, Ano93c, D+95, DM12, IEE94c, NS16, ZAT+07]. Tekniska [Eng00].

Telegraphic [ES11]. TELMAT [BR94].

temperature [Hin11]. Template [GS97, PKB06]. Templates [BN12, KH15].

Tennessee [PR94b]. terabytes [KTJ03].

Terabytes [IE02]. teraflops [KTJ03].

Terms [KD12]. Tessellation [SS09]. Test [SNMP10, TG09, AAAA16, CPR+95, GL92].

Testbed [Mat01b, EGH99, PY95]. Testing [CCK12, DKF94b, Ost94, VdS00, CMV+94, DKF93].

Testsuite [WCC12]. Texas [ACM06a, IE94b, IE951, IE95g, IE97c, Y+93].

Text [LTR00, MM01, RLL01, RTL99]. Textbook [Ano98]. textural [WKS96]. texture [HE15].

TFETI [SHHC18]. TH [CFDL01].

TH-MPI [CFDL01]. Thakur [Ano00a].

Their [Bri12, GOM+01, GSMK17].

theorem [Sut96]. Theory

[GIK10, BW12, CBHH94]. Think [HCA16].

T3D

[AZ95, AFST95, CCSD97, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95]. T3E [BB99, BSH99, Che99, GRM99, LSH04, RR97c]. T3E-512 [RR97c]. T3E-600 [LSK04]. T9000 [BR94].

table [BJ13]. Tabu [BHS15, Cza13, CB11]. Tags [Wis97].

Tails [Kha13]. takes [GB+93].

Talbot [ACMR14, Riz17]. Tapir [SML17].

targeting [JKM+17]. Task

[AHD12, AAB+17, FKK96, GPC+17, IOK00, K010H, LCT96, Mar03, MJ15, NIO+02, NIO+03, NSZ13, NJ01, OP10, O97, SGZ00, SPL+12, TBS12, TS12a, APBeF16, ABF+17, BHH+05, GKF13, OdSSP12, OPW+12, OPP90, RRRF96, RRHF96, SKB+14, WC15]. Task-Based

[AHD12, AAB+17, SPL+12, SKB+14]. Task-Overlapped [GPC17].
Third [BPG94, Bos96, DSM94, GA96, IEE94g, SI96, Was96, BDL96, Mal95, IEE97c].
Thirty [Y+93]. Thirty-seventh [Y+93].
Thousands [PZKK02, BMS+17]. Thread [AELGE16, ETWaM12, GOM+01, GT07, Nit00, Pla92, STY99, HK09, IDS16, JKN+13, SPH96, SLN+12, YZ14].
Thread-Level [AELGE16, HK09, YZ14]. Thread-Safe [Pla02]. Thread-safety [GT07]. Threaded [BBG+10, MG15, Ada98, EBKG01, SCB15, SVC+11, TSY99, TSY00]. threaded-MPI [SVC+11]. Threading [BHV12, SBT04, TBG+02, KPO00, KRG13, QB12, ZAT+07]. Threads [CP98, LD01, Lee06, BSO1, MVTP96, ALW+15].
Three [Car07, GA96, Nak05b, Ram07, SAS01, GSMK17, LSSZ15, Mar05, PR94c]. Three-Dimensional [GA96, LSSZ15, PR94c]. Three-level [Nak05b]. throughput [ESB13, PP16].
Tightly [SS01]. Tightly-Coupled [SS01].
Tilwise [KS15b]. Time [BCL00, FHK01, FSSD17, GSHL02, GOM+01, HO14, KFL05, MFTB95, OP98, SCL01, SS96, TSP95, UP01, YGH+14, AL96, CDM915, DLR94, DM12, Fer04, FLB+05, FKB08, GB94, HE13, JE95, KC94, KPL+12, LHLK10, LB+16, LYSS+16, LM13, MMW96, NZZ94, ON12, OdSPP12, Ram07, SBW91, SBX+16, SK92, SRK+12, TSY99, Tho94, TVV96, TCBV10, Uhl95c, VM94, YSVM+16, YSMA+17, ZWZ+95, SKD+04].
time-dependent [DM12, LB+16, LYSS+16, ÖN12, SSB+16, YSVM+16, YSMA+17].
time-domain [HE13, NZZ94, Ram07, VM94].
time-independent [CDMS15].
time-varying [Uhl95c]. times [MLVS16, NB06, SSS99]. timing [Ols95].
Tolerant [BBC+02, BCR+03, BHK+06, CF01, CFDL01, FD00, FBD01a, FBVD02, FD02a, FD04, GFB+03, IEE95c, JS+05, MSF00, BCR+08, FBD01b, FD02b, HG12, LMG17, LS08, NCB+12, NCB+17, PKD95].
Tomographic [Pat93]. tomography [FTS+17, RCFS96]. tomorrow [IEE94c].
Tool [Ano01b, Beg93b, BFMT96b, DW02, GSN+01, KAMAMA17, KSJ14, KKP01, LMRG14, MMSW02, MK04, NE98, SR96, SGL+00, Tra12b, WL96a, AGG+95, BDP+10, Beg92, Beg93c, Beg93a, BDY99, BFMT96a, BCR+05, CPR+95, DTF94a, FSTG99, HPR+95, HD11, LCC+03, MdSAS+18, TSS98, WL96b, WL96b].
Tool-Set [WL96a]. Toolbox [Ano97, Bra97]. Toolkit [Ano12, LC07, LLC13, SLS96]. Tools [ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vos03, Wan97, AVA+16, BDG+92a, BFIM99, Fan98, GBF95, LH98, MSH+05, MHC94a, ZL96].
Tools-supported [CDD+96]. Top [AHP01, Gal97, Hus01, Man01, PTH+01b, Ser97, BBCR99, PTH+01a, SSSC96, SCL97, CCHW03]. TOP-C [CCHW03]. ToPe [JKM+17].
Topologies [BCM+16, MK00]. Topology [DK06, Hat98, HM01, Tra02a, HRR+11, MBBD13, SPK+12].
topology-aware [MBBD13].
Topology-Based [HM01]. TOPPER [KKP01]. Toronto [GGK+93, Vos03].
Torus [SG15]. Townsend [DT94]. TPVM [FS95, FS98]. Trace [Ney00]. Traceback [dOSMM+16]. Trackfiles [FCP+01]. Traces [CC17, MANR09, WM01, CDMS15, DWM12]. Tracking [CGLD01, DP94, KG96, CG93, Mor95, SSS95]. Tracking [GAP97, HD02b]. Trading

University
[CGB+10, IEE94d, IEE95j, R+92]. Unix
[OLG01, BRS94]. unscarcher [Wil94].
Unstructured [AB93a, NO02b, SM02, SM03, AB93b, NO02a, TPD15]. unveils
[Ano03]. UPC [EGC02, MTK16, Mar05, SJK+17a, SJK+17b]. Update
[KT10, GSMK17]. Updates
[ESB13, KS15a, ZDR01, HSE+17]. UPM
[NPP+00d]. ups [Ano03]. USA
[ACM96b, ACM98b, ACM00, ACM06a, AGH+95, BBT+95, BS94, Cha05, CGKM11,
DT94, Ev01, ED08, ERS96, Gat95, Ham95a, Hol12, IEE95b, IEE95d, IEE96f,
IIE96e, IEE96i, MCDs+08, O02d, PBB+95, Re96, Sin93, Ten95, ACM95b, ACM97b,
Agr95a, Ano89, B+95, DKM+92, H94, IEE94e, IEE95k, IEE02, Ost94, SL94a, S96,
USE95, USE95, USE95]. Usage
[FDB02a, FLC07, FD02b, FVL15]. Use
[FBB+00, Gro02a, HK93, HK95, MB12,
PSZ00, Sh94, AB95, GEW98]. UseNIX
[USE94, USE95]. User
[AD98, ACD94, BDG+91a, CHD07, CD01,
CDND11, DKD05, D+91, DHHW92,
DHWW93a, DLM99, DKP00, DLO03,
FCLG07, GBD+94, GN95, KGKD10,
KCP+94b, KOW97, Kra02, KKDO4, LKDO8,
MC94, MTWDO6, NPP+00c, Nov95, Per96,
RWD09, TBD12, X95, ZW205, Ano95b,
BBB+94, BDW97, KCP+94a, RSC+15,
Reu01, Wil94, BBH...13a]. User-Level
[DHWW92, DHWW93a, KCP+94b, KOW97,
NPP+00c, X95, ZW205, KCP+94a,
BBH...13a]. Users [Ara95, CHD09]. uses
[S96]. Using
[AR01, ADRCT98, AH99, And96, AP96,
Ano95e, AKE00, AZG17, AB93a, BST+13,
BPMN97, BG95, BS93, BKS02, BM97,
Bonn96, BBC+00, BBH12, CGC+11, CRE99,
CM003, CP97, CSPM+96, CC17, Che99,
CCSM97, CD93, CCHW03, CRGM14,
CT94a, CCBPAG15, CD98, DeP03, DARG13,
Dak98, DGMJ93, EM02, EMO+93, ESM+94,
EK97, FAFD15, FD04, FTVB00, FS93,
GCGM99, GCSS98, GTH96, GM95, GK97,
GS96, GMPD98, GHL97, GJN97, GLS94,
GLT99, GLS99, GLTO0b, GLTO0a, HB96b,
HSMW94, HJ98, HLP11, HT08, HRS97,
HT01, IOK00, IDD94, KIM+01, JFRGF12,
JFP95, KB98, KO01, KKV01, KS96, KA13,
LLRS02, LTR00, LTR07, LTRA02, LY93,
LLY93, LZ97, LAF15, MTSS94, MPD04,
MR12, MSCW95, MANR09, MBB+12,
MSB97, NO02b, NIO+02, NIO+03, Neu94,
NH95, NA01, OM96]. Using
[OCY+15, OWA95, PWP+16, PK98,
PPT96c, POL99, PT01, Per99, Pot97,
PBK00, PD98, PUS95, QRMG96, QMGR00,
R000, Re03, RRBL01, RLRVP12, RLL01,
RRG+99, SAS01, Sev98, SSAS12, SP99,
SA93, Sm93a, SBR95, STV97, SMOE93,
Sta95b, ST17, SKH96, SCL01, SJK+17a,
SJK+17b, TS12a, TS02, TS03, TK16,
TBB12, Tha98, Tra98, VLO+08, W095,
Wk01a, WJ12, WLR05, Wis97, Wis01,
WLYC12, ZBD12, van97, vdLJR11, AMHC11,
AK99, ABF+17, AJ96, ADT14, ABG+96,
AB93b, AGS94, AGG+95, BV99, BFL99,
BSC99, BDG+92c, Bic95, Bis04, BCM+16,
BTC+17, BCD96, BID95, BAG17, BSH15,
BMG07, CG93, CBM+08, CDGM06, CS14,
CT94b, CC00b, DG95, DS13, DRUC12,
DSOF11, DCH02, DM12, EGDK92, FB96,
FSV14, FSC+11, Fin94, Fin95, FHC+95,
FWS+17, GGGC99, GSKM17, GG09]. using
[GOe02, GFB+14, GMU95, GRTZ10, HB06a,
HDDG09, HP11, HPS+96, HPTL99,
HASn00, HLO+16, HAA+11, ILM+05,
IM95, IMK+02, JF95, JHKH08, JLS+14,
IJY+03, JMM+11, JPT14, JRI0, JMDVG+17, KFA96, KRKS11, KY10, Kat93,
KJ+16, KR09, KMK16, KME09, KMC96,
KMC97, KRC17, KD13, KP13, LP00,
LSG12, LSSZ15, LCY96, LSVMW08,
LCMG17, LO96, MMR99, MP95, Mar06,
MSM15, MAB05, McK94, MM11, Mic93,
Mic95, MRH+96, MMM13, MSML10, MS95,
MM14, MC99, MvWL+10, NO02a, Nak05a, NZZ94, NB96, NA99, NU05, OKM12, OIH10, Ols05, Pat93, PDI14, PNVo, PKE+10, QRC95, RJC95, RAS16, RCFS96, RM99, RCG95, SLM14, SmD10, SLSGZ99, SGS95, SSS99, SME90, SOA11, SVC+11, SSF00, SFLH15, SSN94, SU96, SP11, TC94, Tsu95, UHI94, Uh95b, UH96, VM94).

using [VB99, VGS14, VM95, WO96, Wal01b, WCS+13, WCVR96, WST95, WMRR17, WADC99, Wor96, WYLC12, XF95, YULMTS+17, YWC11, YWCF15, ZWHS95, ZSK15, ZAT+07, ZZ95, Ano95c, Ano00a, Ano00b].

V [J96, BBC+02, BHK+06]. V2 [BCH+03].

VA [Sin93, RP95]. Vacancy [HD02b].

Vaidy [Ano95b]. Valiation [BDV03, GLB00, WCC12, CMV+94, SCB14, SCB15].

Value [vHKS94, AL96, LSR95, SP11, SD99]. Valued [Str12].

VAMPIR [BH95, PLYW95]. Vapour [PKYW95]. Variable [Ano98, ZZG+14].

Variables [FKH02]. Various [LH95].

Varying [UHI95c]. VCMMO [Whi94].

cCUDA [SCSL12]. Vector [AKL16, DS13, Fuj08, KDT+12, LL16, UW95c, ER12, FVLS15, FJZ+14, GL96, GL97c, Har94, Har95, HE15, PMZM16, XLL13].

Vectorization [IKM+01, MCP17, IKM+02].

Vectorized [KB13]. Vectors [AAA16].

Vegas [Ano94e]. Vehicle [BHM94, BHM96, WH94, BKvH+14].

Vendor [Rab08, Bor99]. Venice [DLO03, OL05]. venture [Ano03].

Version [BCGL97, CCK+95, Bjo95].

BBH+12, BBH+15, Man94, Str94, Wal95].

versioned [SSB+17]. Versions [Ano98].

Versus [RTRG+07, Ahm97, CE00, KPW05, KAC02, KO00, LMG17, LC97b, MFTB95, NSSL16, NH02, NHT06, RS95, SZ99, Wal00, ZLZ+11]. verteleiter [GBR97].

VGRIDSG [AB93a]. VIA [Sei97, FKKC96, BH9+12, CGZQ13, DSS96b, GB96, Hos12, HCL05, LA+94, LSSZ15, NPP+00c, SL1+14, ST14, VH2dG98, YP95, ZLL+12, EM02, RR01]. VIA/SCI [RR01]. viable [Ano03]. Victoria [IEE95c].

Video [KSJ95, KSJ96]. videogames [YMY11]. Vienna [BH95, TBD12, Ben95].

View [ZDR01, ZDR04]. ViMPIOS [Sto98].

VinaMPI [ESB13]. ViPIOS [Sto98].

Virginia [IEE92, IEE94a, Sie92a, Sie92b].

VirtCL [YWTC15]. Virtual [ACM96a, AS92, ARL+94, BJ93, BP99, BS93, BG94b, CHD07, D+91, EGR15, Fis01, GBD+94, Gre15, Gre94, ITT99, JPP95, KNT02, KVD03, KKD05, KKD05, LKD08, LK10, MTWD06, NM95, Nov95, Pat93, Per96, QRG95, RWD90, SSS99, Sei99, SCSL12, TY14, WE94, YC98, ARS89, AD98, AL92, Ano95b, BR91, BG94b, BDC99, Bir94, BDL96, BCM+16, BFM96, BD97, CARB10, Cav93, Chat96, CD01, CXX+12, DDS+94, DM93, DKD05, DLM99, DKP00, DLO93, DPZ97, ESB13, FM90, KMC97, Kra92, LC93, ML91, MRH+96, NB96, PRS16, SCh94, SK92, SCC96, SL00, WK08a, WK08b, WK08c, AGIS94, Sei99].

virtual-time [SK92]. Virtualization [FC05, MGL+17, Ott94, YSS+17, ZLP17, RSC+15, SRP17]. Virtualized [EGR15, YWC95, RNM13]. viruses [Str94]. viscoelastic [HK94, MAVAH14].

viscosity [ZZG+14]. viscous [RM99].

Vision [KCR+17, JRM+94]. VISPAT [HPS95].

Visual [BPMN97, FNSW99, PDI14, Ros13, AGD+12, LC07, GE95, GE96].

Visualization
[BDGS93, GKP96, GKP97, HJ98, KA13, MVY95, NAW+96, PK98, PCY14, Wis96a, ZLGS99, Bor99, Eng00, FHC+95, HPS95, KFA96, TSS98, WST95, Wis96b].

REFERENCES

Workshops [MCdS+08]. Workstation [GHL97, HSMW94, KS96, LC97a, MTFB95, Pus95, YKI+96, AB95, ALR94, BLP93, BSvdG91, BRS92, BALU95, BWT96, CCU95, DG95, ED94, GBF95, Heb93, JRM+94, LL95, NMW93, NN95, PM95, PL96, RBS94, RCF96, SC96a, SSN94, SL95, THM+94, Tsu95, UH96, YW095, ZHS99, MS04].

Workstation-cluster [Heb93]. Workstation-Cluster [MS04].

Workstations [AR01, BL94, BL95, BM97, BDH+95, BDH+97, BMS94b, DDP97, EK97, GS91b, HIP92, IDD94, Liu95, LH98, MSCW95, MM01, OWSA95, PFG97, TQDL01, VLO+08, AL93, BJ95, BID95, Bru95, BMPZ94b, BMS94a, BMPZ94a, CCF+94, Coo94, DZ98a, DOSW96, GM94, GMU95, HK94, Hus99, KMC96, KMC97, KA95, MK94, MM03, RRG+99, SFO95, SR95, TDB00, dCH93].

World [CMRR12, CJNW95, FD00, GHH+93, HLP11, MC94, NSLV16, PSB+94, Vit16, dGJM94, GD+93, JR10]. Worlds [Rab98]. wormhole [Pan95a, Pan95b, RJMC93, ZGN94].

wormhole-routed [Pan95b, RJMC93, ZGN94]. worms [Pan95a]. WoTUG [MC94]. WoTUG-17 [MC94]. WPVM [ASC95, BPM97].

Wrapper [AS14]. Wrapping [LRW01]. Write [BIC+10]. Write-Back [BIC+10].

Writing [FAF16, SDB94, FNSW99]. Written [KaM10]. WWW [KS95, KS96].

X [Bad16, FWS+17]. X-ray [FWS+17]. X10 [CGH+14]. X11 [GKL95]. x86 [MGL+17]. Xab [Beg92, Beg93b, Beg93c, Beg93a]. Xen [PRS16]. Xeon [DSGS17, MTK16]. XPVM [KG96]. XXI [EGH+14].

References

REFERENCES

[Almasi:2005:DIM]

[Arth:1993:PIU]

[Arth:1993:CUA]

[Aloisio:1995:UPW]

[Augusto:2013:APG]
REFERENCES

86–100, January 2013. CO-
DEN JPDCER. ISSN
0743-7315 (print), 1096-0848
(electronic). URL http://
/www.sciencedirect.com/
science/article/pii/S074373151200024X

Ayguade:2010:EOS

[ABB+10] Eduard Ayguadé, Rosa M.
Badia, Pieter Bellens, Daniel
Cabrera, Alejandro Dur-
nan Roger Ferrer, Marc
González, Francisco Igual,
Daniel Jiménez-González,
Jesús Labarta, Luis Marti-
inell, Xavier Martorell,
Rafael Mayo, Josep M.
Pérez, Judit Planas, and En-
rique S. Quintana-Ortí.
The heterogeneous multi-core
era. International Journal of
Parallel Programming, 38(5–
CODEN IJPPE5. ISSN
0885-7458 (print), 1573-7640
(electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume= 38&issue=5&page=440.

Adhianto:2000:TOA

[ABC+00] L. Adhianto, F. Bodin,
B. Chapman, L. Hascoet,
A. Kneer, D. Lancaster,
I. Wolton, and M. Wirtz.
Tools for OpenMP appli-
cation development: the
POST project. Concur-
rency: practice and ex-
perience, 12(12):1177–1191,
October 2000. CODEN
CPEXEI. ISSN 1040-
interscience.wiley.com/
cgi-bin/abstract/76500357/
START; http://ww3.interscience.
wiley.com/cgi-bin/fulltext? ID=76500357&PLACEBO=1E.
pdf.

Appiani:1995:PSI

[ABC195a] E. Appiani, M. Bologna,
M. Corvi, and M. Iardella.
PVM in a shared-memory
industrial multiprocessor.
In Hertzberger and Ser-
azzi [HS95a], pages 588–593.
ISBN 3-540-59393-4. ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.88

Appiani:1995:PSM

[ABC195b] E. Appiani, M. Bologna,
M. Corvi, and M. Iardella.
PVM in a shared-memory
industrial multiprocessor.
In Hertzberger and Ser-
azzi [HS95a], pages 588–593.
ISBN 3-540-59393-4. ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.88

Agosta:2015:OPP

Giovanni Agosta, Alessan-
dro Barenghi, Alessandro
Di Federico, and Gerard
Pelosi. OpenCL perfor-
mance portability for
general-purpose computa-
tion on graphics pro-
cessor units: an exploration
on cryptographic primitives.

Aliaga:2017:CTP

Arbenz:1996:MDS

Abrahart:1996:GIC

Ayguade:2009:DOT

Arnold:1994:PCT

Acacio:2002:MDM
M. Acacio, O. Cánovas, J. M. García, and P. E. López de Teruel. MPI-Delphi: an MPI implementation for visual programming environments and heterogeneous computing. Future
REFERENCES

[ACM:1990:PAC]

[ACM:1994:CP1]

[ACM:1995:PAS]
REFERENCES

REFERENCES

ACM:1998:AWJ

ACM:1998:SHP

ACM:1999:SPO

ACM:2001:SHP

ACM:2003:SII

ACM:2004:SHP

ACM:2005:PAI

ACM:2006:PST

ACM:2006:PCC

ACM:2011:SSP

Antonelli:2014:ATS

Alonso:2011:NEM
Ancona:1995:PAD

Alexandrov:1998:RAP

Adamo:1997:A00

Adamo:1998:MTO

Antonuccio-Delogu:1994:PTN

Addison:2001:EOP

Cliff Addison. Exploiting OpenMP to provide scalable SMP BLAS and
REFERENCES

Arioli:1995:PSB

Amestoy:2003:IIMa

Amestoy:2003:IIMb

Aversa:2005:HDS

Aversa:2005:PPT

Alexandrov:1998:CGP

V. Alexandrov, F. Dehne,
REFERENCES

Amritkar:2014:EPC

Aldea:2016:OES

Ashby:1995:PPG

Ayguade:1995:DUA

Aityan:1995:PFI

Averbuch:1994:PES

A. Averbuch, E. Gabber, S. Itzikowitz, and B. Shoham. On the parallel elliptic single/multigrid

Astalos:2000:CMS

Agathos:2012:TBE

Awan:2017:CCD

Ahmad:1997:EVP

Allsopp:2001:EUM

Aversa:1997:MDP

Passing Kernel. In ACM [ACM99], page ??

Abdelfattah:2016:KOL

Alfano:1992:DNA

M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92], page ?? ISBN ???? LCCN ????. Proceedings available via anonymous ftp from ftp.scri.fsu.edu in directory pub/parallel-workshop.92.

Altevogt:1993:PTD

Alt:1996:PIA

Alund:1994:CFD

Amer:2015:MRC

Ayguade:2007:SIO

Eduard Ayguadé and Matthias S. Mueller. Special issue on OpenMP — Guest Editors’ introduction. Inter-
REFERENCES

REFERENCES

the Hague, the Netherlands. SHARE Europe, Geneva, Switzerland, 1993. ISBN ???? ISSN 0254-6213. LCCN ????

[Ano94c] Anonymous, editor. Forschung und wissenschaftliches Rech-

REFERENCES

Anonymous:1994:PSE

Anonymous:1994:SCC

Anonymous:1994:SQC

Anonymous:1995:CCS

Anonymous:1995:BRPb

Anonymous:1995:BRU

Anonymous:1995:RSS

REFERENCES

Richardson, TX, USA, 1995. ISBN ???? LCCN ????

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In 3rd CLIPS conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ???? LCCN ????

Anonymous:1996:BRMh

Anonymous:1996:IPP

Anonymous:1996:PPA

Anonymous:1996:RP

Anonymous:1997:TNR

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998.
1998. CODEN ???? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMA

Anonymous:1999:BRMF

Anonymous:1999:BRMb

Anonymous:1999:BRMg
Anonymous:2000:BRUd

Anonymous:2000:BRUe

Anonymous:2001:AAL

Anonymous:2001:EDP

Anonymous:2003:MNId

REFERENCES

[ARYT17] Ahmed F. Al-Refaie, Sergei N. Yurchenko, and Jonathan...

LCCN QA 76.58 I55 1994.
Three volumes.

Amritkar:2012:OPF

Al-Tawil:2001:PME

Attiya:1996:ERS

Angskun:2001:DPM

Andujar:2016:OSF

Asenjo:1995:SLF

R. Asenjo and E. L. Za-

Pedro Bruel, Marcos Amaris, and Alfredo Goldman. Auto-tuning CUDA compiler parameters for heterogeneous applications using the OpenTuner framework. *Concurrency and Computation: Practice and Experience*, 29(22):??, November 25, 2017. CODEN CCPEBO. ISSN
REFERENCES

1532-0626 (print), 1532-0634 (electronic).

Baker:1998:MNC

Blaszczyk:1995:PCE

Buyukkecici:2013:POI

Bernabeu:2008:MPA

Bedrosian:1993:MFA

Beguelin:1994:CMS

Beaumont:1995:DPG

P. M. Beaumont and P. T. Bradshaw. A distributed

Brunschen:2000:OCP

Bala:1994:IEU

Bova:2000:DLP

Bosilca:2002:MVT

Bertozi:1999:MIT

Bethune:2014:PAA

Iain Bethune, J. Mark Bull, Nicholas J. Dingle, and Nicholas J. Higham. Performance analysis of asynchronous Jacobi’s method

[Barak:1996:PPM]

[Boutilier:2006:HPS]

[Bischof:2008:AAD]

[Bustamam:2012:FPM]

[Bland:2013:EUL]

Wesley Bland, Aurélien Bouteiller, Thomas Herault, and Joshua Hursey An evaluation of User-Level Failure Mitigation support in MPI. *Comput-
REFERENCES

Bland:2013:PFR

Busa:2015:CCO

Boryczko:1994:LGA

Barnard:1999:MIS

Brorsson:2000:SIE

REFERENCES

REFERENCES

REFERENCES

Mathematical Sciences Section, Oak Ridge National Laboratory, Knoxville, TN, USA, September 1991.

A. Beguelin, J. J. Dongarra, G. Al Geist, R. Manchek,

Beguelin:1995:REP

Beguelin:19xx:PSS

[BDG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, 19xx.

Beguelin:1993:VDH

Bruck:1995:EMPb

Bruck:1997:EMP

Browne:1998:RPA

REFERENCES

perftools-review/. Accepted, to appear.

Bode:1996:PVM

Baghsorkhi:2010:APM

Bronevetsky:2007:CFS

Briguglio:2003:PPM

Bubak:1997:RAP

[BDW97] Marian Bubak, J. J. Dongarra, and Jerzy Wasniewski, editors. Recent advances in parallel virtual

REFERENCES

Benkner:1995:VFA

Bencheva:2001:MPI

Bernaschi:1996:RHP

Baker:1998:MNP

Berthou:2001:COH

Bubak:2001:PMS

REFERENCES

Bischof:1994:CSM

Broquedis:2010:FEO

Bubak:1996:MPP

Bubak:1997:EPA

Bouge:1996:EPP

Luc Bouge, P. Fraigniaud, A. Mignotte, and Y. Robert,

REFERENCES

Borger:1994:FSP

Barbour:1995:PIG

Banikazemi:2001:MLE

Broquedis:2012:LEO

Bronevetsky:2009:CAC

Blanco:2002:PMA

[BGG+02] V. Blanco, L. García, J. A. González, C. Rodríguez, and G. Rodríguez. A performance model for the analysis of OpenMP programs. *Parallel and Distributed Com-

REFERENCES

Balasubramanian:2015:EGL

Bhanot:2005:OTL

Bischof:2008:PRM

Butler:2000:SPM

Beisel:1997:EMD

REFERENCES

REFERENCES

[BWHN01] Georg Bifeling, Hans-Christian Hoppe, Alexander Supalov, Pierre Lagier, and Jean La-
REFERENCES

REFERENCES

[Bir94]

Branca:1995:CBH

[Bis04]

Bilger:1995:AFM

[Bil95]

Bernaschi:1999:ERA

[BJ93]

Biradar:1994:ADL

[Bil95]

Bisseling:2004:PSC

[Bi93]

Baiardi:1993:PVM

F. Baiardi and M. Jazayeri. P03M: a virtual machine approach to massively parallel computing. Proceedings of the International Conference...
REFERENCES

on Parallel Processing, pages I–340–??, ???. 1993. CODEN PCPADL. ISSN 0190-3918.

Boianov:1995:DLC

Barkati:2013:SPA

Bjorge:1995:ISS

Blaheta:1997:PIP

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Blaheta:1999:LFM

Bhandarkar:1996:MPM

Balevic:2011:KAD

Bhandarkar:2001:ALB

Milind Bhandarkar, L. V. Kale, Eric de Sturler, and

REFERENCES

124, May 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[BLW98] M. Bubak, P. Luszczek, and A. Wierzbowska. Port-
REFERENCES

Claude Barthels, Ingo Müller.

Berrendorf:2000:PCO

Bawidamann:2012:ETO

Bull:2001:MSO

Bubak:2000:IOB

Boisvert:1997:QNS

Bonnet:1996:UPW

C. Bonnet. Using PVM in wireless network envi-

REFERENCES

0302-9743 (print), 1611-3349 (electronic).

Beletsky:1994:OPV

Becks:1994:NCT

Baptista:2001:IOS

Barbosa:1997:EUW

Balou:1991:DIV

Burre:1994:RRB

REFERENCES

Bernardi:1995:CCE

Bernaschi:1995:PEI

Bernaschi:1995:DRP

Bane:2002:EOA

Boeres:2004:ETF

Bergstrom:2012:NDP

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

Barth:1993:CNM

Bolding:1994:PCR

Beguelin:1996:TMD

Brightwell:1996:DIM

Blikberg:2001:NPA

Blikberg:2005:LBO

Brown:2007:HSP

[BS07] Russell Brown and Ilya Sharapov. High-scalability parallelization of a molecular modeling application:

Benzoni:1991:MFR

Blaszczyk:1996:EPI

biewski:2001:MOS

Bu:2001:PAC

Bonelli:2017:MCA

Badia:1999:SIT

REFERENCES

Blattner:2012:PSC

Bendtsen:1997:RLS

Carpen­-Amarie:2017:EOC

Bendtsen:1997:RLS

Bendtsen:1997:RLS

Cabarle:2012:SNP

Santiago García Carbajal. Parallelizing three dimensional cellular automata with OpenMP. *Parallel Processing Letters*, 17(4):349–361, December 2007. CODEN PPLTEEE. ISSN 0129-

REFERENCES

REFERENCES

Ciaccio:2000:GMG

Couturier:2000:PMD

Cardoso:2010:MSO

Chen:2017:AAG

Chen:2000:MCO

Couder-Castaneda:2015:PCM

C. Couder-Castañeda, H. Barrios-Piña, I. Gitler, and M. Ar-
royo. Performance of a code migration for the simulation of supersonic eje-
tor flow to SMP, MIC, and GPU using OpenMP, OpenMP+LEO, and Open-

[KCC+95] Castagnera:1994:NEP

[CCF+94] [CCK12] Cooperman:2003:UTC

Gene Cooperman, Henri Casanova, Jim Hayes, and Thomas Witzel. Using TOPO-

[CCM+06] Casas:1995:MMT

[CCCHW03] Collingbourne:2012:STO

REFERENCES

REFERENCES

[138]

[CJ95] Henri Casanova, Jack Dongarra, and Weicheng Jiang. The performance of PVM on MPP systems. Techni-
REFERENCES

Coll:2003:SHB

Ceron:1998:PID

Cappello:2000:MVM

Clemencon:1995:AEP

Chau:2007:MIP

Cerin:1999:DMP

Chen:2001:FFT

Qun Chen and Michael C. Ferris. FATCOP: a fault tolerant Condor–PVM mixed
REFERENCES

Chen:2001:TMK

Choudhary:1994:LCR

Corbett:1996:OMP

Carpenter:2000:OSM

Clemencon:1995:IRD

REFERENCES

Carretero:2015:AMM

Calderon:2002:IMI

Camp:2011:SIU

Carter:2010:PLN

Clarke:1994:MMP

Cunningham:2014:RXE

David Cunningham, David Grove, Benjamin Herta, Arun Iyengar, Kiyokuni Kawachiya, Hiroki Murata, Vijay Saraswat, Mikio

Carpenter:2000:MML

Catanzaro:2011:CCE

Chatterjee:1993:GLA

Caubet:2001:DTM

Jordi Caubet, Judit Gimenez, Jesus Labarta, and Luiz DeRose. A dynamic tracing mechanism for performance analysis of OpenMP applications. *Lecture Notes in Computer Science*, 2104:
REFERENCES

REFERENCES

CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Chapman:2002:PAD

Chapman:2005:SMP

Cappello:2007:RAP

Cappello:2009:FSI

Franck Cappello, Thomas Herault, and Jack Dongarra. Foreword: Special issue: selected papers from the 14th European PVM/MPI Users Group Meeting. *Parallel Computing*, 35(12):571, 2009. CODEN PA-COEJ. ISSN 0167-8191 (print), 1872-7336 (elect-
REFERENCES 147

[CJNW95] B. M. Cook, M. R. Jane, P. Nixon, and P. M. Welch, editors. Transputer Applica-
REFERENCES

148

Czarnul:1999:DAP

Chang:2016:DLD

Casas:1994:ALM

Culler:1993:LTR

Castro-Leon:1993:MCP

Clark:1998:FOP

REFERENCES

REFERENCES

Chang:2016:APC

Chapman:1998:OHI

Chapman:2005:O

Claver:1999:PCS

Cahir:2000:PMM

Corbalan:2004:PMD
REFERENCES

Carson:2003:CGU

[Brett Carson, Robert Muri-
son, and Ian A. Mason. Compu-
tational gains using RPVM on a Beowulf cluster. R News: the Newslet-
ter of the R Project, 3(1): 21–26, June 2003. CO-
DEN ???? ISSN 1609-3631. URL http://CRAN.R-
project.org/doc/Rnews/.

Chapman:2012:OHW

[Barbara M. Chapman, Fed-
erico Massaioli, Matthias S. Mü-
ller, and Marco Rorro, editors. OpenMP in a Het-
erogeneous World: 8th Inter-
Verlag, Berlin, Germany / Heidelberg, Germany / Lon-
don, UK / etc., 2012. CO-
DEN LNCSD9. ISBN 3-642-30960-7 (print), 3-642-
30961-5 (e-book). ISSN 0302-9743 (print), 1611-
/www.springerlink.com/
content/978-3-642-30961-
8.

Campanai:1994:EAS

[M. Campanai, O. Morales, S.
Viti, R. Trotta, P. Vili-
iani, and M. Lo Moro. Ex-
periences assessing software testing activities: the adop-
tion of PVM, a prediction and validation model. In An-
onymous [Ano94i], pages 491–500. ISBN 3-7281-2153-
3. LCCN ????

Chou:2010:CMI

[Yu-Cheng Chou, Stephen S. Nestinger, and Harry H. Cheng. Ch MPI: Inter-
pretive parallel computing in C. Computing in Science and Engineering, 12(2):
54–67, March/April 2010. CODEN CSENFA. ISSN 0740-7475 (print), 1558-1918 (elec-
tronic).

Chalkidis:2011:HPH

[Georgios Chalkidis, Masao Nagasaki, and Satoru Miyano. High performance hybrid functional Petri net simu-
lations of biological pathway models on CUDA. IEEE/ACM Transactions on Computation-
bioinformatics, 8(6): 1545–1556, November 2011. CODEN ITCBCY. ISSN 1545-5963 (print), 1557-9964 (elec-
tronic).

Coelho:1994:EHC

[F. Coelho. Experiments with HPF compilation for a network of worksta-
ions. In Gentzsch and Harms [GH94], pages 423–428. ISBN 0-387-57981-
Cooperman:1995:SBP

Cooperman:1995:SMB

Cotronis:1997:MPP

Cotronis:1998:DMP

Cotronis:2004:CMP

Coussement:1993:PMO

Carvalho:1997:PCC

Carissimi:1998:AEM

Cercos-Pita:2015:ANF

Corno:1995:PTA

ChassindeKergommeaux:1999:MER

Cappello:1999:PNB

Cappello:2001:UPS

Cores:2014:FAM

Cores:2016:ROM

Cores:2014:MAL

Ciampolini:1996:EPM

Clements:2014:FFH

Chethur:1998:ALE

Clement:1996:NPM

Cavenaghi:1996:UPS

REFERENCES

Carreira:1995:DEL

Chevitarese:2012:STN

Ciegis:1997:NID

Ciegis:1999:HDA

Cote:1994:PSA

Cote:1994:PSL

J. Cote and S. J. Thomas. Parallel semi-Lagrangian advection on the sphere using PVM. In Dekker et al. [DSZ94], pages 801–808.
REFERENCES

Cui:2012:OOB

Cavender:1995:APN

Cavender:1995:SSA

Chengqing:1996:WIP

Czarnul:2002:DTI

Czarnul:2003:PTA

Czapinski:2013:EPM

Adrián Pérez Diéguez, Margarita Amor, Jacobo Lobeiras, and Ramón Doallo. Solving large problem sizes of index-digit algorithms on GPU: FFT and tridiagonal system solvers. IEEE Transactions on Computers, 67
REFERENCES

[DBB+16] James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. An implementation and evaluation of the MPI 3.0 one-sided communication inter-

Dursun:2009:MPM

Dotsenko:2011:ATF

DiMartino:2001:WDS

DAgostino:2014:CAM

daCunha:1993:PLA

Dow:2002:CMA
Chyi-Ren Dow, Jong-Shin Chen, and Min-Chang Hsieh.
REFERENCES

[Didelot:2012:IMC]

[Didelot:2014:IMC]

[delCuvillo:2006:LOC]

Juan del Cuvillo, Weirong Zhu, and Guang Gao. Land-

[DDLM95]

[Decker:1995:TDU]

[Dongarra:1997:BCA]

J. J. Dongarra, F. Desprez, A. Petitet, and C. Randreiamaro. Block-cyclic array redistribution on net-

Dean:1994:CPV

Dan:1999:QAM

Durand:1991:HPC

Demaine:1996:FCC

DePasquale:2003:UJU

C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. *Cmg*, 2(??):821–832, 2003. CODEN ?????.

Dehne:2001:CPD

Dashti:2017:AMM

REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Demaine:2001:GCM

Deshpande:1994:ADN

Diaz:2012:CCF

DAmbra:1995:CBC

REFERENCES

165

REFERENCES

woco96/woco96.ps; http://www.netlib.org/utk/people/ JackDongarra/pdf/woco96.pdf.

Deo:2013:PSA

DiMartino:2005:RAP

DiMartino:2007:SIS

DiMartino:2008:SSG

Damodaran-Kamal:1993:NTD

Damodaran-Kamal:1994:MSR

REFERENCES

5681-6. LCCN QA76.58.S32

Marc de la Asunció, José M. Mantas, Manuel J. Castro, and E. D. Fernández-Nieto. An MPI-CUDA im-

Desai:2007:CEM

Marcos:2002:DDP

Dongarra:1999:RAP

Degomme:2017:SMA

Dongarra:2003:RAP

Jack Dongarra, Domenico Laforenza, and Salvatore Orlando, editors. *Recent ad-

[Lu:2004:AFS]

[DLR94]
REFERENCES

[Davies:1995:NPE]

[Dagum:1998:OIS]

[Dziubak:2012:OOC]

[Dathathri:2016:CAL]

[DiMartino:1997:IPD]

[Dongarra:1996:APC]

Dinda:1996:PIA

Donev:2006:ICF

Sandes:2016:CIS

Dongarra:1995:IMS

Dongarra:1996:MPS

DeRoec:1994:CFP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Du:2010:COT

Du:2012:COT

Deshpande:2012:AGC

Dong:1996:SPL

Deng:2006:PIK

Dantas:1996:ILB

M. A. R. Dantas and E. J. Zaluska. Improving load

Dantas:1998:ESM

Delves:1998:HPF

Dragovitsch:1995:PPS

Dykes:1994:CCP

Edjlali:1995:DPP

Elwasif:2001:AMT

REFERENCES

REFERENCES

[EML00] Antonio Espinosa, Tomas Margalef, and Emilio Luque. Automatic performance analysis of master/worker PVM

Ewing:1993:DCW

Engquist:2000:SVG

Ewing:1993:DCW

Engquist:2000:SVG

Ewing:1993:DCW

Engquist:2000:SVG

Ewing:1993:DCW

Engquist:2000:SVG

Ewing:1993:DCW

Engquist:2000:SVG

[ER12]

[ERS95]

[ERS96]
Hesham El-Rewini and Bruce D. Shriver, editors. *Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences (HICSS-29): Wailea*, [ESM⁺94]

[ES11]

[ESB13]

[ESM⁺94]
Richard E. Ewing, Robert C.
REFERENCES

Escaig:1994:PMD

Eichenberger:2012:DOT

Eigenmann:2001:OSM

Eckert:2016:HAL

Fabeiro:2016:WPP

[FAF16] Jorge F. Fabeiro, Diego Andrade, and Basilio B.

Fabeiro:2015:AGO

Fang:1998:DDL

Fang:1999:SPP

Fang:1997:MDD

Fagg:2001:FTM

Graham E. Fagg, Antonin Bukovsky, and Jack J. Dongarra. Fault tolerant MPI for the HARNESS meta-
REFERENCES

[FCLG07] Christopher Falzone, Anthony Chan, Ewing Lusk, and William Gropp. A portable method for finding

Ferschweiler:2001:CDP

Filgueira:2012:DCD

Fagg:1996:PIP

Fischer:1997:AAP

Fagg:2000:FMF

Graham E. Fagg and Jack J. Dongarra. FT-MPI: Fault Tolerant MPI, supporting
REFERENCES

dynamic applications in a
dynamic world. Lecture
Notes in Computer Sci-
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/1
bibs/1908/19080346.htm;
http://link.springer-
ny.com/link/service/series/1
0558/papers/1908/19080346.
pdf.

Dongarra. HARNESS fault
tolerant MPI design, usage
and performance is-
sues. Technical report
????, University of Ten-
nessee, Knoxville, Knoxville,
TN 37996, USA, 2002.
URL http://www.netlib.
org/netlib/utk/people/
JackDongarra/PAPERS/ft-
mpi-fgcs-grid-se.pdf.

Dongarra. Building and using
a fault-tolerant MPI im-
plementation. The Interna-
tional Journal of High Per-
formance Computing Ap-
plications, 18(3):353–361,
Fall 2004. CODEN IH-
PCFL. ISSN 1094-3420
(print), 1741-2846 (elec-
sagepub.com/content/18/3/353.full.pdf+html.

[Fagg:1997:HMAa] G. Fagg, J. Dongarra, and
A. Geist. Heterogeneous
MPI application interop-
eration and process man-
agement under PV MPI.
Technical report CS-97-
????, University of Ten-
nessee, Knoxville, Knoxville,
TN 37996, USA, June
netlib.org/utk/papers/
pvmmpi97.ps; http://
www.netlib.org/utk/people/
JackDongarra/pdf/pvmmpi97.
pdf.

garra, and A. Geist. Het-
erogeneous MPI application
interoperation and process
management under PV MPI.
Lecture Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic).
REFERENCES

[Fritzson:1995:PPA] Peter Fritzson and Leif Finmo, editors. *Parallel programming and applications: proceedings of the Workshop on Paral-
REFERENCES

190

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

[Foster:1997:MMC] Ian Foster, Jonathan Geisler, Carl Kesselman, and Steven Tuecke. Managing multi-

[FH97] André Fachat and Karl Heinz Hoffmann. Implementation of Ensemble-Based Simulated Annealing with dynamic load balancing under MPI. *Computer Physics..."
REFERENCES

Andre:1998:BVN

Friedley:2013:OPE

Franke:1994:MMP

Franke:1995:AAV
H. Franke, P. Hochschild, P. Pattnaik, J.-P. Prost, and M. Snir. MPI on IBM
REFERENCES

Frank:1994:EIM

Frank:1994:MEI

Fang:1999:PMD

Fineberg:1994:IMM

Fineberg:1995:IMM

Fin:1997:CPM

Fink:2000:IMC

REFERENCES

REFERENCES

Ian Foster, David R. Kohr, Jr., Rakesh Krishnaiyer, and Alok Choudhary. Double standards: Bringing task parallelism to HPF via the message passing interface. In ACM [ACM96b], page ?? ISBN 0-89791-854-1. LCCN QA 76.88
REFERENCES

Fan:2017:SEE

Ferenc:1999:VMK

Femminella:1994:PBP

Ford:1995:NNN

Foster:1998:GEM

Freeman:1992:PNA

Faraj:2008:SPA

REFERENCES

REFERENCES

Fuerle:1998:IPC

Fumero:2017:JTG

Folino:1998:EMC

Folino:1998:PEM

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP
Chunsheng Feng, Shi Shu, Jinchao Xu, and Chen-Song Zhang. A multi-stage preconditioner for the black

Fernandez:2000:DCE

Fujimoto:2008:DMV

Fagg:2000:AAC

Fang:2015:EVD

Fineberg:1996:PPI

Frank:1995:MPEb

Fru:2017:RDP

Grangeat:1996:PTI

Galibert:1997:YCL

Gonzalez:2000:NSF

Gonzalez:2002:DLP

REFERENCES

Gonzalez:2001:DSP

Gonzalez:2000:PAM

Gao:2003:LSP

Galaktionov:1997:MST

Gates:1995:PFI

References

Golebiewski:1999:HPI

Gerstenberger:2014:EHS

Gabriel:1997:EMU

Garain:2015:CCF

Graham:2007:OMH

Grove:2005:CBP

REFERENCES

Geist:1993:PTW

Weicheng Jiang. PVM takes over the world. In IEEE [IEE93e], page 618.
ISSN 1063-9535. LCCN QA76.5 .S96 1993.

Galizia:2015:MCL

Antonella Galizia, Daniele D’Agostino, and Andrea Clematis. An MPI-CUDA library for image processing on HPC architectures.

Grinstein:1995:VDE

Grinstein:1996:VDE

Geist:1993:ILP

Geist:1993:PBN

REFERENCES

(Grabo) Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprint-Reihe des Chemnitzer SFB 393 Sonderforschungsbereich
Numerische Simulation auf Massiv Parallelen Rechnern 97.08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998.

REFERENCES

Gallud:1999:DPR

Gallud:1999:CCU

Godlevsky:1999:PST

Geist:1996:MEM

Gawman:1993:PCT

Genaud:2008:EPC
REFERENCES

Getov:1999:MJM
Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

Gentzsch:1994:HPC

Ghosh:2012:RAA
Sudeep Ghosh, Jason Hiser, and Jack W. Davidson. Replacement attacks against VM-protected applications. ACM SIGPLAN Notices,

REFERENCES

Gong:2012:OCN

Garcia:2011:KRR

Grecki:1997:MPE

M. Grecki, G. Jablonski, and A. Napieralski. MOPS — parallel environment for simulation of electronic circuits using physical models of semiconductor devices.

Gerlach:2001:IOJ

Genaud:2009:FMP

Gillett:1997:UMC

Richard Gillett and Richard Kaufmann. Using the Mem-

Granat:2010:PSS

Grasso:2013:APS

Granat:2009:NPQ

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

REFERENCES

epm.orl.gov/~geist/CapeCod.ps.

Geist:1997:CPF

Geist:1997:BPW

Garland:2012:DUP

Gopalakrishnan:2011:F

Gropp:1992:TIM

Gropp:1994:MCL

Gropp:1995:DPM

REFERENCES

I42 1995. IEEE catalog number 95TB8131.

[GL99] W. Gropp and E. Lusk. Reproducible measurements

[GLM∗08] F. Gregoretti, G. Laccetti, A. Murli, G. Oliva, and

References

Brice Goglin and Stéphanie Moreaud. KNEM: a generic and scalable kernel-assisted intra-node MPI commun-

REFERENCES

Goedecker:2002:OPF

Gonzalez:2001:OET

Gorzig:2001:CCP

Guarracino:1995:PMB

Grosset:2017:TTT

Govindan:1996:OMP

[GPL+96] V. Govindan, Y. Park, X. Li, S. Crear, and O. Johnson. An overview of a MPI profiling environment for the NEC Cenju-3. In IEEE [IEE96i], pages 185–188. ISBN 0-8186-
REFERENCES

7533-0. LCCN QA76.642 M67 1996.

Lothar Grabowsky. MPI-basierte Koppelrandkommunikation und Einfluss der Partitionierung im 3D-Fall. (German) [MPI-based coupled edge communication and influence of partitioning in 3D-Fall]. Preprint-Reihe des Chemnitzer SFB 393 97,17, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1997. 13 pp.

REFERENCES

[102x681] REFERENCES

//link.springer-ny.com/
link/service/series/0558/bibs/1908/19080160.htm;

[212x315] Gropp:2002:BLC

[212x287] Gropp:2002:MNS

[212x228] Gropp:2012:MBW
REFERENCES

Gonzalez:1999:PPM

Gutierrez:2010:QCS

Gaito:2001:ADC

Geist:1991:ENB

Geist:1991:PSS

Geist:1992:NBC

Geist:1993:EPC
G. A. Geist and V. S. Sunderam. The evolution of the PVM concurrent computing...

Gropp:1994:SEP

Gold:1996:UAL

Geist:19xx:NBC

G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

Garg:2002:TOA

Gao:2008:GEI

Gardner:2013:CCE

Gine:2002:ALT

Francesc Giné, Francesc Solsona, Porfidio Hernández, ...

Gerlach:1997:ECS

Germanas:2017:HUP

Gine:2001:MMM

Gu:2013:PCI

Hamza:1995:PII

Haridi:1995:EPP

Hansen:1998:EMP

[Han98] Per Brinch Hansen. An evaluation of the Message-Passing Interface. ACM SIGPLAN Notices, 33(3):65–72, March 1998. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). The author criticizes MPI, and remarks “MPI... lacks the elegance and security that can only be checked by a parallel programming language.”.

Hardwick:1994:PVL

Hassanzadeh:1995:MMG

Hisley:2000:PPE

Haechler:1996:IAC

Hausner:1995:EIP

Huang:2006:ECS

REFERENCES

issn=0920-8542&volume=37&issue=3&spage=297.

Huang:2008:FPM

Hamid:2010:CMB

Hunold:2016:RMB

Hurwitz:2005:AMP

Huang:2005:TME

Hu:2016:CLG

REFERENCES

He:2000:PAA

Ding:2002:MOP

He:2002:MOP

Harvey:2011:STP

Hoefer:2012:LMO

Hoefer:2013:MMN

Hadjidoukas:2009:HPF
P. E. Hadjidoukas, V. V. Dinakopoulos, M. Delakis, and C. Garcia. A high-performance face detection

Hoefler:2015:RMA

Heikonen:2002:ILB

Hadi:2013:CFA

Havran:2015:EBT

Hebeker:1993:CPC

Herland:1998:CML

B. G. Herland, M. Eberl, and H. Hellwagner. A common messaging layer for MPI and PVM over SCI. *Lecture Notes in Computer*
Huang:2009:EGO

Hempel:1994:MSM

Hempel:1996:SMM

Holmen:2014:ASI

Holmen:2014:EAS

Hursey:2012:AFA

Hermanns:2012:SDM

Hong:1995:PNP

Hanson:2014:NCM

Hui:1995:SPS

Horiguchi:1994:ISP

Hinde:2011:QMD
REFERENCES

REFERENCES

Hoffmann:1995:CAP

Hong:2009:AMG

Hong:2010:IGP

Hiranandani:1994:CTB

Hoflinder:2001:IPV

Hong:2011:ACG

Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating CUDA graph algorithms at maximum warp. *ACM SIGPLAN Notices*, 46 (8):267-276, August 2011. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
REFERENCES

Hori:2012:EKL

Hasanov:2017:HRC

Hu:2000:ONS

Haque:2017:CCL

Hung:2016:EBP

Hong:1996:RDM

Chul-Eui Hong, Bum-Sik Lee, Gi-Won On, and Dong-Hae Chi. Replay for debugging MPI parallel programs. In IEEE [IEE96],
Hawick:2010:PGC

Hawick:2011:RLS

Huband:2001:DTB

Hilbrich:2009:MCC

Hakula:1994:FEM

Haynes:2014:MOA
Ronald D. Haynes and Benjamin W. Ong. MPI–OpenMP algorithms for the parallel space-time solution
REFERENCES

Hogg:2013:FDT

Hollingsworth:2012:SPI

Hosking:2012:CHL

Hadjidoukas:2005:OEM

Hawick:2011:HSL

Hidalgo:1999:MMP

REFERENCES

Hoefer:2011:SPT

Hoyos-Rivera:1997:UPB

Hempel:1997:IMN

Hartley:1993:CPS

Hesha:1994:PTS

Hertzberger:1995:HPM

REFERENCES

REFERENCES

Huse:2000:MOS

Huse:2001:LST

Hamidouche:2016:CAO

Houzeaux:2011:HMO

Hoekstra:1995:CPP

REFERENCES

IEEE:1991:PSA

IEEE:1992:PSH

IEEE:1993:DPC

IEEE:1993:PSI

IEEE:1993:PIS

REFERENCES

IEEE:1995:IIC

IEEE:1995:CPI

IEEE:1995:DPT

IEEE:1995:ISE

IEEE:1995:IPR

IEEE:1995:PIP

IEEE:1995:PSI

IEEE:1995:PEW

IEEE:1995:PIC

IEEE:1995:PFI

IEEE:1995:PNA

IEEE, editor. Proceedings: the nineteenth annual International Computer Software and Applications Con-

IEEE, editor. *Proceedings of IPPS '96. The 10th International Parallel Processing Symposium: Honolulu, HI, USA, 15–19 April 1996*. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
IEEE:1996:PFI

IEEE:1996:PFE

IEEE:1996:PSI

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1997:PIP

IEEE, editor. *Proceedings, 11th International Parallel Processing Symposium, April 1–5, 1997, Geneva, Switzerland*. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
IEEE:1997:TIS

IEEE:2002:STI

IEEE:2005:IPD

Iida:2016:GET

IFIP:1995:KWC

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Iskra:2000:PMD

Ierotheou:2005:GOC

Iwama:2001:PLS

Iwama:2002:PLS

Iwahita:1994:IPE

Ingle:1995:MAS

Ishizaka:2000:CGT

Ilroy:2001:IMP

Ilie:2016:AEC

Satake:2012:OGA

REFERENCES

Imamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IAC

Iskra:2000:IDE

Jatala:2017:SSG

Jabbarzadeh:1997:PSS

References

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>doi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarzabek</td>
<td>2017</td>
<td>Performance evaluation of unified memory and dynamic parallelism for selected parallel CUDA applications.</td>
<td>DOI</td>
</tr>
<tr>
<td>Jin</td>
<td>2008</td>
<td>Performance evaluation of a multi-zone application in different OpenMP approaches.</td>
<td>DOI</td>
</tr>
<tr>
<td>Jaeger</td>
<td>2015</td>
<td>Fine-grain data management directory for OpenMP 4.0 and OpenACC.</td>
<td>DOI</td>
</tr>
<tr>
<td>Jenkins</td>
<td>2014</td>
<td>Performance evaluation of a multi-zone application in different OpenMP approaches.</td>
<td>DOI</td>
</tr>
</tbody>
</table>

Jeremiassen:1995:RFS

Jesshope:1993:LRV

Jesshope:1993:MCA

Jann:1995:AMP

Johnson:2012:FOL

Jin:2000:AGO

Jackson:1997:SYE

Jin:2011:HPC

Jo:2017:PMA

Jin:2003:AMP

Januszewski:2010:ANS

Jeun:2008:OPB

Jan:2017:ITF

Jog:2013:OCT

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

[Jon96] Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

REFERENCES

Joubert:1994:PCT

Jost:2010:EUH

Jimenez:2013:BCA

Judd:1994:PIV

Jin:2013:PCU

Jung:2005:DIM
Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yoom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M3). In ACM
[ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jaaskelainen:2015:PPP

JSS+:15

[Jaaskelainen:2015:PPP]

Ju:1996:SPT

[Ju:1996:SPT]

Jain:1996:IOP

[Jain:1996:IOP]

Kepner:2004:M

[Kepner:2004:M]

Kumar:2013:GAI

[Kumar:2013:GAI]

Krawezik:2002:SOV

Gérald Krawezik, Guillaume Alléon, and Franck

[JWB96]

KAC02

[ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Krone:1996:ICF

Kapinos:2010:PPP

Khan:2017:RCS

Kanal:2012:PAI

Katamneni:1993:PPE

[KB16] Kedar Kulkarni, Shreeya Badhe, and Geetanjali Gadre. HCA aware parallel communication library: A feasibility study for of-

Knies:1994:SLL

Kitowski:1997:CPM

Kannan:2016:HPP

Ke:2004:RCM

Klemm:2007:JIO

Karamcheti:1994:SOM

Krawezik:2006:PCM

Kacsuk:1997:GDD

Konuru:1994:ULP

Kotselidis:2017:HMR

Kanal:2012:MMC

Krotkiewski:2013:ESC

Klingebiel:1995:COD

Klingebiel:1995:CPO

Kakimoto:2012:PCG

Klemm:2012:EOV

Komatitsch:2010:HOF

REFERENCES

Kepner:2005:PPM

Kale:1996:PMD

Kappiah:2005:JTD

Krammer-Fuhrmann:1994:TGP

Kowalik:1993:SPC

Kohl:1996:PTF

Kainz:2009:RCM

Keller:2010:RAM

Kafura:1996:CCC

Kwon:2010:SPC

Karrenberg:2012:IPO

Kramer:2015:SET

S. Kikuchi. Parallelization assist system. *Jooho-

Kranz:1993:IMP

Kwon:2012:HAO

Kim:2016:DOF

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Krysztop:2002:IFP

Bartosz Krysho and Henry Krawczyk. Improving flexibility and performance
of PVM applications by distributed partial evaluation. [KDD05]

Kranzlmuller:2004:RAP

Kranzlmuller:2005:RAP

Kranzlmuller:2003:RAP

Kee:2003:POP

REFERENCES

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO

Kobler:2001:DOP

REFERENCES

Karrels:1994:PAM

Kofakis:1995:DPI

Liao:2011:DEM

Liao:2006:SDI

Liao:2007:CCS

Klawonn:2015:HMO

Kutyniok:2016:SFD

[GKLR16] Gitta Kutyniok, Wang-Q Lim, and Rafael Reisenhofer. ShearLab 3D: Faithful digital shearlet trans-

Khanna:2010:NMG

Kormicki:1996:PLS

Komatitsch:2009:PHO

Koholka:1999:MPR

REFERENCES

Kumar:2014:OMC

Kobayashi:2016:HSV

Kirk:2010:PMP

Kalns:1995:DPD

Katouda:2017:MOH

Kasprzyk:2002:APV

Kimmo Koski. A step towards large scale parallelism: Building a parallel computing environment from heterogeneous resources. *Future
REFERENCES

Kamal:2005:SVT

Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????

Klimach:2009:PCH

Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunaseth:2013:ASD

Kalentev:2011:CCL

Oleksandr Kalentev, Abha

Kranzlmüller:1999:MOM

Kotsis:1996:EEP

Krantz:1997:CSC

Krawczyk:2001:PIM

Kim:2013:MPE

Kaliman:2015:SNU

Kovanen:2015:TAC

Kegel:2013:DTU

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

Kim:2014:VVF

References

Koval:2010:USB

Karonis:2003:MGG

Komatitsch:2003:BDF

Kuhn:1998:FFW

Kumar:1994:PPI

Kranzlmueller:1998:DPP

REFERENCES

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

Kamburugamuve:2018:AML

Kamal:2010:EIN

Karwande:2003:CMC

Karwande:2005:MPC

REFERENCES

1123–1133, October 2005. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[Laf01] Domenico Laforenza. Programming high performance

Ladd:2004:GPP

[Laforenza:2001:PHP]

[LAF15]

[LB96]

[LB98]

[LBB+16]
Lawton:1996:BHP

Ling:2012:HPP

Lewis:1993:PCP

Lauria:1997:MFH

Luecke:1997:HPF

Li:2007:DIV

Kuan-Ching Li and Hsun-Chang Chang. The design and implementation of visual performance monitoring and analysis toolkit for cluster and Grid environments. The Journal of Supercomputing,
REFERENCES

REFERENCES

Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

Liu:1996:BMP

Lee:2001:APT

Lu:1997:QPD

REFERENCES

Liu:2013:DLO

Lee:2012:SMO

Lev95

LF93b
J. M. Levesque and R. Friedman. The state of the art in automatic parallelisation. In Anonymous [Ano93f], pages

Lee:2006:PT
REFERENCES

95–107. ISBN ?? LCCN ????

[Leon:1993:FPP]

[LFL11]

[Leon:1992:FP]

[LFS93b]

[LFS92]

[LG93]

[LGCH99]

[Liu:2016:MBM]
REFERENCES

ISSN 1532-0626 (print), 1532-0634 (electronic).

Li:2010:SVC

Lassous:2000:HGA

Leung:1998:PAN

Liao:2007:OOP

Lee:1996:TSF

Lin:1994:DNC

Mengjou Lin, Jehwei Hsieh, D. H. C. Du, J. P. Thomas,

Lin:1995:DNC
Lin:1996:PSI
Lin:1997:PIO
Lin:1998:ONW
Lin:1999:SIS

Guo-Jie Li, editor. Second International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN ’96): proceedings, June 12–14, 1996, Beijing,
REFERENCES

 REFERENCES

[102x681] REFERENCES

[298x646] content/978-3-540-87475-

1.

[Luecke:2003:CPM]

Glenn R. Luecke, Marina
Kraeva, and Lili Ju. Compar-
ing the performance of
MPICH with Cray's MPI
and with SGI's MPI. Con-
currency and Computation:
Practice and Experience,
15(9):779–802, August 10,
2003. CODEN CCPEBO.
ISSN 1532-0626 (print),
1532-0634 (electronic).

[Luecke:2004:PSM]

Glenn R. Luecke, Marina
Kraeva, Jing Yuan, and
Silvia Spanoyannis. Per-
formance and scalability of
MPI on PC clusters. Con-
currency and Computation:
Practice and Experience, 16
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).

[Liang:1996:AEO]

Wen-Yew Liang, Chun-Ta
King, and Feipei Lai. Ad-
smith: an efficient object-
based distributed shared
memory system on PVM.
In Li [Li96]. ISBN 0-8186-
7460-1. LCCN QA76.58.I565
1996. IEEE catalog number
94TH0697-3.

[LL95]

T. Ludwig and S. Lam-
berts. PFSLib — a para-
lel file system for worksta-
tion clusters. In Malyshkin
[Ma95], pages 246–251.
ISBN 3-540-60222-4. ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
QA76.58.I547 1995.

[Li:2003:PNH]

Jianwei Li, Wei keng Liao,
Alok Choudhary, Robert
Ross, Rajeev Thakur, William
Gropp, Rob Latham, And-
drew Siegel, Brad Gal-
lagher, and Michael Zingale.
Parallel netCDF: a high-
performance scientific I/O
interface. In ACM [ACM03],
page ?? ISBN 1-58113-695-
1. LCCN ????. URL http://
/www.sc-conference.org/
sc2003/inter_cal/inter_
cal_detail.php?eventid=10722#1; http://www.sc-
cconference.org/sc2003/
paperpdfs/pap258.pdf.

[Luecke:2001:SPO]

Glenn R. Luecke and Wei-
Hua Lin. Scalability and
performance of OpenMP
and MPI on a 128-processor
SGI Origin 2000. Con-
currency and Computation:
Practice and Experience, 13(10):905–928, Au-
gust 25, 2001. CODEN
CCPEBO. ISSN 1532-0626
(print), 1532-0634 (elec-
interscience.wiley.com/
cgi-bin/abstract/85007180/1;
http://www3.interscience.
REFERENCES

wiley.com/cgi-bin/fulltext?ID=85007180&PLACEBO=IE.pdf.

Li:1993:SLL

Loh:1994:ISR

Larsen:1999:SPG

Lu:2013:MLP

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP ’13 Conference proceedings.

Lee:2009:OGC

Losada:2017:ARV

Lopez:2015:PBV

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Losada:2014:EAL

Lee:2015:OPE

Lima:2012:PEO

Lu:1996:PIF

Labarta:2001:NOD

[LS10] Paul T. Lin and John N. Shadid. Towards large-scale

Lashgar:2015:CSR

Liu:2011:CBA

Lumsdaine:1995:WIM

Li:2015:AMR

Jiansen Li, Jianqi Sun, Ying Song, and Jun Zhao. Ac-
REFERENCES

Liu:2008:AMD

Lazzarino:2002:PBP

service/series/0558/papers/2474/24740165.pdf.

Langr:2014:APP

Lazar:1994:SRE

Laohawee:2000:PDT
REFERENCES

REFERENCES

Li:1995:CPP

Ludwig:1997:OUI

Liu:2004:HPR

Li:1997:EHC

Loncar:2016:OOM

Lu:2013:WGA

Li:1993:MSU

[LY93] Q. Li and T. G. Yip. Monitoring systems using PVM.

[MA09]

[LZC+02]

[MABG96]

[LZH17]

[Maf94]
S. Maffeis. System support for distributed computing. In Gentzsch and Harms [GH94], pages 293--301. ISBN 0-387-57981-
REFERENCES

REFERENCES

[102x681]310

September 2003. CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

Marowka:2005:EMT

Marowka:2006:BRP

Marowka:2007:PCD

Marowka:2009:BCT

Mehta:2006:MSG

Mattson:1994:PEP

Mattson:1995:PEP

REFERENCES

Mattson:2000:BOF

Mattson:2000:IO

Mattson:2001:EO

Matuszek:2001:APS

Mourao:2000:SSC

REFERENCES

Marongiu:2012:OCE

Muller:2012:SOA

Ma:2013:KAT

Min:2003:OOP

McKenzie:1994:CIM

Malits:2012:ELG

[MBKM12] Roman Malits, Evgeny Bolotin, Avinoam Kolodny,

Mehl:2015:RTC

Miles:1994:PTO

Medeiros:1998:IPM

Morrison:1999:FPP

Maier:2017:OLD

REFERENCES

Monteiro:2018:EGC

Muller:2009:EOA

[MG15] Kshitij Mehta and Edgar Gabriel. Multi-threaded par-

Montella:2017:VCB

REFERENCES

2017. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Mazzariol:1997:PCS

Matthey:2001:EMO

Hwu:2012:GCG

Miller:1994:PPP

Miller:1994:PPT

Michielse:1993:PMU

Michielse:1995:PMU

Michielse:1995:PMU

Muddukrishna:2015:LAT

Mittal:2012:CAS

Muddukrishna:2016:GGO

Matyska:1994:DCS

McDonald:1997:IPT

McDonald:2000:TPA

Mohror:2004:PTS

Maheo:2012:AOL

Markus:1996:PEM

Min:2001:PCO

Mokbel:2011:ASR

Mitra:2014:AAP

Marjanovic:2010:ECC

[MLAV10] Vladimir Marjanovic, Jesús Labarta, Eduard Ayguadé, and Mateo Valero. Effective communication and computation overlap with hybrid MPI/SMPSs. *ACM SIG-
REFERENCES

Marowka:2004:OOA

Marendic:2016:NMR

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2001:TSH

Michailidis:2002:PSL
REFERENCES

[MMH93] T. N. Mudge, V. Milutinovic, and L. Hunter, editors. *Proceedings of the Twenty-Sixth Hawaii Inter-
REFERENCES

[MMM13] Hisham Mohamed and Stéphane Marchand-Maillet. MRO-MPI: MapReduce overlapping using MPI and an optimized data exchange policy.

REFERENCES

a 325

Mohr:2002:DPP

Matuszek:1999:BPG

Martin:1996:WTW

Midorikawa:2005:PNM

Meleshchuk:1991:IPP

Mork:1995:DPP

Manke:1995:MPP

Martins:2012:PDC

Meister:2017:PME

REFERENCES

Mo:1996:IOP

Mininni:2011:HMO

Mazzocca:2000:TPP

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

REFERENCES

G. Mysliwiec, J. Sipowicz, and H. Burkhart. Imple-

Matise:1995:PCG

Migliardi:2000:SFT

McCandless:1996:OOM

Massetto:2012:NSB

Martin:2015:EPM

Molnar:2010:APM

Air pollution modelling using a Graphics Processing Unit with CUDA. [MSS97]

Maicas:2001:PPA

Matrone:1993:LPC

Mysliwiec:1997:CAM

Martins:1998:JIW

Martorell:2005:BGP

Mossaiby:2017:OIH

F. Mossaiby, A. Shojaei, M. Zaccariotto, and U. Gal-

Miei:1996:IER

Mallon:2016:MUB

Marin:1994:GAL

Momeni:2015:EEO

Mohr:2007:SPE

Mohr:2006:RAP

Muller:2001:SSO

Muller:2002:SMB

Malakar:2017:DMO

Manis:1996:EPT

552, June 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Maly:1993:DCP

Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

Nagle:2005:BRM

Nicolescu:1999:PWA

Nakajima:2003:PIS

C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ???? LCCN ????

REFERENCES

Nelson:1993:PPP

Neugebauer:2017:PAR

Nesterov:2010:SPT

Neun:1994:UPB

Neyman:2000:CDA

Nordling:1994:SOD

Nunez:2010:NTS

REFERENCES

[Nakajima:2002:PISa] Kengo Nakajima and Hiroshi Okuda. Parallel iterative solvers for unstructured grids using an OpenMP/MPI hybrid programming model for the Geo-
REFERENCES

Noble:2008:GMY

Novotny:1995:BPP

Nemer-Preece:1994:LBH

Nguyen:2012:SCS

Nikolopoulos:2000:TRD

Nikolopoulos:2000:DDN

Norcen:2005:HPJ

Nitsche:1998:FMP

Ng:2012:STT

Nguyen:1994:DCE

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

Marc S. Orr, Shuai Che, Ayse Yilmazer, Bradford M. Beckmann, Mark D. Hill, and David A. Wood. Synchronization using remote-scope promotion. ACM
REFERENCES

Okulicka-Dluzewska:2001:PFE

Olivier:2012:CMW

Ong:2000:PCL

Owaida:2015:EDS

Okitsu:2010:HPC

OBroin:2012:OIS

Ong:2002:MRS

OBrien:2008:SOC

ODowd:2006:WGM

Orlando:2000:MDT

OPP00

[OPW+12]

[OPW12]

[Oliveira:2012:CCO]

ORA12

[Overeinder:1997:BCD]

[Overeinder:1997]}

[Ostrand:1994]}

[Otto:1993:PAC]

Otto:1994:PVM

Otto:1992:MAP

Ouenes:1995:PRA

Pacheco:1997:PPM

Pereira:2017:SBC

Panda:1995:GRW

Panda:1995:IDE

Panda:2014:GAM

Dhabaleswar K. Panda. GPU-aware MPI on RDMA-enabled clusters: Design, implementation and evaluation. IEEE Transactions

REFERENCES

Plazek:1999:IIC

Puthukattukaran:1994:DIP

Peng:2014:IDI

REFERENCES

Papagapiou:1999:NWD

Petcu:1997:ISM

Petcu:2000:PDAa

Petcu:2000:PDAb

Petcu:2001:WMM

Pharr:2005:GGP

REFERENCES

<table>
<thead>
<tr>
<th>Piernas:1997:APM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pjesivac-Grbovic:2005:PAM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pjesivac-Grbovic:2007:PAM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pjesivac-Grbovic:2007:MCA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prabhakar:2002:PCB</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pervez:2010:FMA</th>
</tr>
</thead>
</table>

Inho Park and Seon Wook Kim. Study of OpenMP applications on the InfiniBand-based software distributed shared-memory system. *Par-

Papadopoulos:2001:NRC

Paul:2006:TLF

Preissl:2010:OCC

Periyathamby:1995:NSG

U. Periyathamby, B. C. Khoo, K. S. Yeo, and Q. X. Wang. A numerical simulation of the growth and collapse of vapour cavity near a free surface on distributed
LCCN ????

Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and Nichols A. Romero. Elemental: a new framework for dis-

So-Hee Park, Mi-Young Park, and Yong-Kee Jun. A comparison of scalable labeling schemes for detecting

Pierce:1994:PSH

Pozzo:1994:FTE

Priimak:2014:FDN

Pena:2014:CEC

Prades:2016:CAX

Pedroso:2000:MPC

[d] Hernan Pedroso and Joao Gabriel Silva. MPI-2 process creation & management imple-

REFERENCES

Pehrson:1994:IPP

Peters:2011:FPC

Patrick:2008:CEO

Preissl:2010:TMS

Prieto:1999:PRM

Peng:2014:BAH

[PSM+14] Yuanxi Peng, Manuel Saldaña, Christopher A. Madill, Xiaofeng Zou, and Paul Chow. Benefits of adding hardware support for broadcast and reduce operations in MPSoC applications. *ACM

REFERENCES

REFERENCES

T. Ragg. Parallelization of an evolutionary neural network optimizer based on PVM. In Bode et al. [BDLS96], pages 351–?? ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-
REFERENCES

Ratha:1995:DED

Ramadan:2007:TDM

Rantakokko:2005:DMO

Rehman:2016:VMJ

Rufai:2005:MPO

Resch:1997:CMP

Resch:1997:PM

Resch:1997:PMC

Rodriguez:2015:OPI

Russo:2017:MPG

Reale:1994:PCU

Reinhard:1997:MHP

Reimann:1996:CBT

D. A. Reimann, V. Chaudhary, M. J. Flynn, and I. K.

Ross:1995:DCM

Royuela:2012:ASO

Radhakrishna:1999:MBP

Reeves:1996:PIC

Reinefeld:2001:CDI

Reussner:2001:SSK

REFERENCES

Rico-Gallego:2016:EIL

Reussner:2001:APP

Roda:1996:PEI

Rizzardi:2017:ATS

Ratha:1995:CUC

Rodrigues:2014:TPS

Christopher Rodrigues, Thomas Jabin, Abdul Dakkak, and Wen-Mei Hwu. Triolet: a

Ro1999:PMI

Roe:1999:PMI

Rietmann:2012:FAS

Rietmann:2012:FAS

Rohrl:2000:PPS

Rohrl:2000:PPS

Rolfe:1994:PAP

Rolfe:1994:PAP

Rolfe:2008:PFO

Rolfe:2008:SMA
REFERENCES

Roig:2001:EMM

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

REFERENCES

REFERENCES

Schuster:1995:CSM

Smith:2001:DMM

Seyfarth:1994:GEE

Schulz:2004:IES

Selikhov:2002:MCC

Schindewolf:2012:WSA

Martin Schindewolf, Barna Bihari, John Gyllenhaal, Martin Schulz, Amy Wang, and Wolfgang Karl. What scientific applications can benefit from hardware transactional memory? In Hollingsworth [Hol12], pages 90:1–90:?? ISBN 1-
REFERENCES

[Sc04] Otto Sievert and Henri Casanova. A simple MPI

Stagg:1995:IPN

Shyu:1996:ILQ

Schill:1993:DOD
Schneenman:1994:DSS

Schuele:1996:PLA

Schuele:1999:HAP

Schevtschenko:2001:PAS

Song:1997:ALL

Suppi:2000:IOP

REFERENCES

bibs/1908/19080304.htm;

\[\text{Suppi:2001:PCS}\]

\[\text{San\,tos:1997:ECP}\]

\[\text{SCRI:1992:PWC}\]

\[\text{Shi:2012:VGA}\]

\[\text{Szeberenyi:1999:SGB}\]

\[\text{SM-D:2013:BRC}\]
REFERENCES

[SD99] Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

[SCH95] Chandra N. Sekharan, Vineet Goel, and R. Sridhar. Load balancing methods for ray tracing and bi-

Stone:2010:OPP

Scherer:2000:APO

Schmidt:1994:IAP

Sitsky:1996:MLW

Song:2014:DAT

Shen:1995:PSM

REFERENCES

[Sloot:1994:CIO]

[Sloot:1994:CIP]

[SHH94a]

[SHCI8]

[Sato:2001:CEO]

[Shi94]

[Shing:1994:UPC]
REFERENCES

CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

[SHTS01] Mitsuhisa Sato, Motonari Hirano, Yoshio Tanaka, and Satoshi Sekiguchi. Om

[Sie92a] H. J. Siegel, editor. Frontiers
REFERENCES

[SIS17] Prateek Sharma, David Ir-

[MHRZ17b] Lorna Smith and Paul Kent. Development and performance of a mixed OpenMP/ MPI quantum Monte Carlo

[S Sanders:2010:CEI]

[SKH96]

[SKB+14]

[Skj93]

REFERENCES

REFERENCES

(1096-987X (electronic).

Shy:2000:APV

Samadi:2014:SPS

Skjellum:1995:EAM

Scherer:1999:TAP

Su:2012:CPB

Sloan:2005:HPL

REFERENCES

REFERENCES

1049-331X (print), 1557-7392 (electronic).

0730-0301 (print), 1557-7368 (electronic).

Snir:1996:MCR

Snir:1998:MCR

SousaPinto:2001:PEI

SousaPinto:2001:PEI

Sidonio:1999:PBI

Stpiczynski:2011:SKB

Satofuka:1995:PCF

N. Satofuka, Jacques Periaux, and Akin Ecer, editors. *Parallel computational fluid dynamics: new algorithms and applications: proceedings of the Parallel
REFERENCES

Saldanha:2010:MPM

Squyres:2003:CAL

Sivaraman:1995:PSP

Sivaraman:1996:AAD

Szalay:2011:FCD

Speck:2012:MST

Schmidt:1994:EAO

REFERENCES

[SS96]

[Silva:1999:IME]

[Shan:2001:CMS]

[Schwarz:2009:GFG]

[Shan:2012:OAA]

Sabne:2012:ECO

Sala:2008:PHP

Stellner:1995:CMP

Schafer:1995:TGP

Sosa:2000:IQC

Squyres:1997:DEM

Stone:1994:PSO

1–8, October 1994. CODEN CMAPDK. ISSN 0898-1221 (print), 1873-7668 (electronic).

Smyk:2002:OMP

Stankovski:1995:MPA

Stephens:1994:PBT

R. Stephens. Parallel benchmarks on the Transtech Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???? LCCN ????

Stellner:1996:CCP

Sterling:2000:SCB

REFERENCES

REFERENCES

CODEN ISCEE4. ISSN 1070-9924 (print), 1558-190X (electronic).

REFERENCES

Sunderam:1990:PFPa
V. S. Sunderam. PVM: a framework for parallel distributed computing. Technical Report ORNL/TM-11375, Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA, February 1990. See also [Sun90b].

Sunderam:1990:PFPb

Sunderam:1992:CCP

Sunderam:1993:PCC
V. Sunderam. The PVM concurrent computing system. In Anonymous [Ano93g], pages 20–84. ISBN ???. LCCN ???.

Sunderam:1994:GPP
V. Sunderam. General purpose parallel computing with PVM. In Anonymous [Ano94f], pages 185–198. ISBN ???. LCCN ???.

Sunderam:1994:MSH

Sunderam:1995:RIH
V. S. Sunderam. Recent initiatives in heterogeneous parallel computing. In Gray and Naghdy [GN95], pages 1–16. ISBN ???. LCCN ???.

Sunderam:1996:PSS

Suresh:1995:IOP
volumes. IEEE catalog no. 95TH0682-5.

Suresh:1995:PIQ

Suttner:1996:SPB

Smelyanskiy:2011:HPL

Sistare:1999:OMC

Steve Sistare, Rolf van Deventer, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

Stout:1991:SDM

Sehrish:2012:RFS

Sosonkina:2015:RAV

Masha Sosonkina, Layne T. Watson, and Jian He. Remark on algorithm 897: VT-DIRECT95: Serial and parallel codes for the global optimization algorithm DIRECT. *ACM Transactions on Mathematical Software*, ?????
REFERENCES

Santhanaraman:2005:DZC

Sitsky:1995:IPM

Shan:2012:PEH

Shee:1994:DMA

Stathopoulos:1995:DLB

Sydow:1994:PSA

Stathopoulos:1996:PIM

Schneider:2009:CPM

Stankovic:1999:NVJ

Siegel:2011:AFV

Simmunovic:1995:MIP

Simunovic:1995:MIP

Thompson:2014:CIC

Takeda:2001:AME

Trafﬁ:2014:SPE

Tao:2012:UGA

Touhafi:1996:DPC

Trafﬁ:2012:RAM

REFERENCES

REFERENCES

REFERENCES

[Tian:2005:PCT] Xinmin Tian, Milind Girkar, Aart Bik, and Hideki Saito. Practical compiler techniques on efficient multithreaded code generation for OpenMP programs. *The

REFERENCES

Tallen:2009:EPM

Tampouratzis:2016:AIH

Trobec:2001:IEM

Theodoropoulos:1996:ESP

Taylor:2017:AOO

Takafuji:2017:CCC

REFERENCES

1532-0626 (print), 1532-0634 (electronic).

Takahashi:1999:IEM

Toussaint:1996:AES

Tourancheau:2000:HSN

Thebault:2015:SEI

Tinetti:2001:HNW

Traeff:1998:PRL

J. L. Traeff. Portable randomized list ranking on
REFERENCES

REFERENCES

REFERENCES

[Tsu12] Shigeyoshi Tsutsui. ACO

REFERENCES

REFERENCES

REFERENCES

[UP01] Uthayopas:2001:FSR

[URKG12] Urena:2012:IMI

[USE00] USENIX:2000:P

[USE95] USENIX:1995:PUT

[UTY02] Uehara:2002:MBP
REFERENCES

Unat:2012:AFD

vanderPas:1993:PIG

VanKatwijk:1995:AAC

vandeGeijn:1997:UPP

Vlassov:1995:MEP

Vazquez:1999:PNS

VanZee:2008:SPF

REFERENCES

/Vwww.sciencedirect.com/
\/science\/article\/pii\/S0167819116300758

Vikas:2014:MGA

vonHanxleden:1994:VDF

Viswanathan:1995:PCM

Valencia:2008:PPR

Varadarajan:1994:FDT

Vincent:1995:HPP

REFERENCES

Vlassov:1997:SSM

Vandoni:1995:CSC

Vo:2009:FVP

Verkerk:1992:PIC

Vetter:2002:EPE

Verschelde:2015:PHC

Wong:1999:BMM

F. C. Wong, A. C. Arpaci-Dusseau, and E. C. Culler. Building MPI for multiprogramming systems using implicit information. In Dongarra et al. [DLM99],
REFERENCES

REFERENCES

REFERENCES

Wang:2007:EAP

Wang:2012:OVT

Wang:2013:PMO

Wedemeijer:1996:PSA

Walker:1996:MSM

REFERENCES

Welch:1994:PVM

Werner:1995:UMP

Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI. (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.

Weber:2017:MAL

Wark:1994:PIR

P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ????

Wagner:1996:PMM

Wiese:2005:IPN

White:1994:VVC

R. White. VCMON — the VM/ESA Connectivity Monitor. In Anonymous [Ano94g], pages 783–792. ISBN ????. LCCN ????

White:2004:CMM

REFERENCES

Wilkinson:1993:IFT

Wilhelms:1994:DAL

Wismuller:1996:SBV

Wismuller:1996:SBV

Wismuller:1997:DMP

Wismuller:1998:LMS

Wismuller:2001:UMT

REFERENCES

Willcock:2005:UMC

Wu:2012:UHM

Wolf:2001:APA

Wu:2014:MA

Winkler:2017:GSM

Wendykier:2010:PCH
Piotr Wendykier and James G. Nagy. Parallel Colt: a high-performance Java li-

REFERENCES

[WSN99] Len Wisniewski, Brad Smisloff, and Nils Nieuwejaar. Sun MPI I/O: Efficient I/O
for parallel applications. In ACM [ACM99], page ??

West:1995:AVV

Wu:2011:PCH

Wu:2012:PCH

Wang:2014:IPD

Worringen:2003:FPN

Waidyasooriya:2017:OBF

[WTTH17] Hasitha Muthumala Waidyasooriya, Yasuhiro Takei, Shunsuke Tatsumi, and Masanori Hariyama. OpenCL-based FPGA-platform for stencil computation and its optimization methodology. IEEE Transactions on Parallel and Distributed...

[Huayong Wang, Xiaowei Shen, 2008]

Xu:1995:IPP

[Xu, 1995]

[XF95]

[XH96]

Xue:2009:MSR

[Xu, 2013]

[XLW+09]

Xue:2013:PMO

[Xiong, 1996]

Yelon:1993:PTS

Yazdanpanah:2015:PHR

Yalamanchilli:1998:CPJ

Yang:2014:HPD

Luobin Yang, Steve C. Chiu, and Wei-Keng Liao. High performance data clustering: a comparative anal-

Yu:2013:AGA

Yoon:1996:WBP

Yang:2014:IMP

Yetongnon:1996:PII

Yero:2001:JOO

REFERENCES

Yang:2011:HCO

Yuasa:1996:RPG

YarKhan:2017:PPN

Yang:2009:DBM

Yang:2016:HTM

Yan:2013:SFS

Yalamov:1997:BRT
[YM97] Plamen Y. Yalamov and Svetozar Margenov. Book reviews: Two books on MPI: *Parallel Programming with...

Yilmaz:2011:RMS

Yi:1994:PID

Yilmaz:2009:HPC

You:1995:EIM

Young:1993:PEN

Yuan:2012:PCS

Zhiyong Yuan, Weixin Si, Xiangyun Liao, Zhaoliang Duan, Yihua Ding, and Jianhui Zhao. Parallel computing of 3D smoking simulation based on OpenCL het-
Young-S:2017:OGI

Yu:2005:HPB

Yeh:2017:PFG

Yang:2008:DPL

Young-S:2016:OFP

REFERENCES

REFERENCES

REFERENCES

Zhao:2010:GMP

Zhang:1997:DED

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

Zemla:1994:WTC

Zielinski:1994:PPS

REFERENCES

References

Zhang:2017:DLN

Zhu:2015:PIM

Zhai:2011:CVH

Zollweg:1993:OP
J. A. Zollweg. Overview of PVM. In Anonymous [Ano93e], pages 981–986. ISBN ???? ISSN 0254-6213. LCCN ????.

Zarrelli:2006:EPE

Zambonelli:1996:EPP

Zheng:2011:GLO
REFERENCES

ZWJK05 Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad, and Laxmikant V. Kalé. Simulation-based performance prediction for large

Zhang:2013:MPI

Zhang:2005:ULC

Zhu:2017:OAP

Zhu:1995:RTC

Zhuang:1995:PRS

Zeyao:2004:AMI
