A Bibliography of Publications about *PVM* (**Parallel Virtual Machine**) and *MPI* (**Message Passing Interface**)
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
06 April 2022
Version 3.253

Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0
[ICC02]. 1 [ICC02, LRQ01, VDL+15].
$\mathbf{19.95}$ [Ano95b]. 2
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19].
$\mathbf{24.95}$ [Ano95c]. 3
[And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SC19, SH14, TPD15, WR01, YSL+12].
$\mathbf{35}$ [Ano00a, Ano00b]. $\mathbf{35.00}$
[Ano99a, Ano99c, Ano99b, Ano99d]. 3
[KA13]. $\mathbf{860}$ [Ano00a, Ano00b]. 3 [PBC+01].
A [ARYT17]. α [JMdvG+17]. $Ax = b$
[BG95].
D [UZC+12]. $H^2/H\infty$ [GWC95]. hp
[BCM+16]. k [She95, TK16]. \leftrightarrow [GRW+19].
M^3 [JSH+05].
PVM^+ [Wil94].
N
[IHM05, Per99, Rol08b, SP99, SRK+12].
P_N [OGM+19].
P_{N-2} [OGM+19].
SU(3)
[BW12]. t [MPZ21]. τ
[RGDM15, RGDML16]. XY [KO14].
* [MMAH20].
- based [Rót19]. - body
[IHM05, Per99, SP99, SRK+12].
-D
[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. - **Dimensional** [LRQ01].
- Lop [RGDM15, RGDML16]. - Means
[TK16]. - Queens [Rol08b]. - set [She95].
-SNE [MPZ21]. - stable [JMdvG+17].
. [Wil94].
/Fortran [TBG+02]. /many [KSG13].
/MPI [BKK20]. /OpenMP [VDL+15].

'00 [RV00].

1 [HMKV94, SOHL+98], 1/Pascal [GDS+20], 10 [LLVM21a], 10-Gigabit [HeF05], 100 [Str94], 1007 [AEW+20], 100k [Sc19], 1012 [CWL+20], 1016 [HFB21], 10th [DLO03, Bil95], 13th [Ano95d, MTWD06, PSB+94], 15-18 [SL94a] 15th [IEE95i, LKD08] 16th [RWD09], 17th [KGRD10, MC94], 1990 [ACM90], 1991 [DE91, EJL92, IEE91], 1992 [KG93, R+92, VW92], 1993 [Ano94c, GGK+93, IEE93a, IEE93e, JPT94, MMH93], 1994 [Ano94a, Ano94e, DSZ94, DT94, GN95, GT94, HK95, IEE94h, PSB+94, SPE95, SPH95, VV95].

1995 [ACM95a, ACM96a, AGH+95, BH95, Cat95, Ham95a, IEE95b, IEE95a, IEE95d, IEE95h, IEE95i, JBB96, NM95, Nar95, Ten95, UCW95, ZL96].

1996 [ACM96b, Abr96, Boi97, ERS96, IEE96f, IEE96e, IEE96i, Ree96].

1997 [ACM97a, ACM97b, ACM97c]. 198th [TBD12, IE905]. 1st [Abr96, BR95a, CGB+10, Kum94, Van95, Fer92].

2 [AKL99, BCAD06, BHS+02, BMPZ94a, CwCW+11, CD96, DPD08, FST98a, FST98b, GF003, GHG+96, GT01, GILL+98, GLUT99, GTO00b, HGMW12, Jon96, LC97b, LSK04, MS02a, MK04, PSS99, SSL97, TRH99, VAT95, bT01a], 2-D [BMPZ94a], 2.0 [Bae20, BO01, LPD+11, LW97, Mat00b, NSM12, RS22, WY+21], 2.2 [HRR+11], 2.X [K96].

2000 [ACM00, CLBS17, LL01, LSK04, NU05, RV00, ZSnH01].

2001 [ACM01, Old02]. 2003 [ACM03, AS14, Don06, OL05].

2004 [ACM04].

2005 [ACM05, DKD07].

2006 [ACM06a, MTW07].

2007 [SM07].

2008 [SMCH15].

2010 [CGB+10].

2011 [LCK11].

2012 [Hol12, TB14].

2015 [IS16].

2017 [GT19].

2019 [TH20].

2021 [RWD09].

21st [IEE95a, Ano93a, SL94a], 27th [Ano94h], 28th [ZL96], 2D [TPV20, ZZZ+15], 2D-DWT [ZZZ+15].

2nd [FK95, IEE93c, Nag95].

90 [Ben95, SM03]. 9076 [Bri95]. 91 [BG91, EJL92, IEE91]. 92 [Sie92a, Sie92b, VW92]. 93 [Ano93a, GKK+93, GHH+93, IEE93a, IEE93c]. 93SC038 [FS93]. 93SC041 [Gle93]. 94 [BS94, DW94, GT94, IEE94b, IEE94h, PSB+94, SPE95, WPH94, dGJM94]. 947 [LTDD14]. 95 [ACM95b, AH95, BH95, CLM+95, CJNW95, DMW96, FF95, HAM95b, IEE95i, Lev95, NM95, Van95, Ano98, FD97, KaM10]. 95/NT [FD97]. 96 [ACM96b, ACM96c, BDLS96, BFMR96, CH96, IEE96d, IEE96e, IEE96d, LHMM96, Li96, Sil96, Was96, YH96]. 97 [ACM97a]. 978 [Che10, SD13]. 978-0-12-415933-4 [SD13]. 981 [Riz17]. 997 [Spe19]. 9th [IEE95f, Kra02, YH96].
Adaptive-CoMPI [FSC+11].
Adaptive-Length [FLS20]. Adas [HHC+18]. Adding
[CB00, GRV01, PSM+14]. Address
[SS01, D096]. addresses [CGL+93]. ADDT [SR96]. ADI [Sch01]. adjacent
[Kan12]. adjacent [RMNM+12]. Adjusting
[GSHL02]. ADOL [BGK08]. ADOL-C [BGK08]. adoption
[CMV+94]. Adsmith [LKL96]. Advanced
[Ano98, Ano00a, D+95, Gei96, Gei97,
GLT99, GLT00a, GLT12, KG93,
SSAS12, TG94, Ben95, DMK19]. Advances
[Bha93, BBH+08, CDND11,
KGRD10, KK02a, LKH+20, LK10,
MTW06, RWD09, TBJ2, AD98,
BC14, BDW97, CD01, DKD05,
DLM99, DKP00, DLO03, HPS+12,
HPS+13, IEE97a]. Advection
[AKK94, CT94a, CT94, CT94b].
Advection-Chemistry [AKK+94].
Advisor [GVF+18]. Aerospace [MAB05].
AES [HMK19]. Affine [DMB16]. Affinity
[ETWaM12, AGG+95, NAAL01, vdP17]. Affordable [Rol94]. After [DF21]. again
[Har94]. against [GHD12]. Age
[MdS09, Ano94f, GLT11, HK95]. AGEB
[SS01]. Agent
[Mat01b, MCB05, ZWZ+95]. agent-based
[MCB05], agents [KBA20]. Aggregation
[KLH+20]. Aging [LRBG15].
Aging-Aware [LRBG15]. AIMS [Yan94].
Air [AKK+94, BZ07, MPD04, MSL10,
BTC+17, SH94, Syd94]. airspace [TCP15].
Aix [GA96, Ano95]. Aix-les-Bains
[GA96]. Al [Ano95b, NMC95]. Alamos
[Old02]. Albuquerque [IEE91, IEE95d].
Alchemist [GRW+19]. ALDY [GS96].
ALE [HAA+11]. Algebra
[BTD08, CDD+13, Coo95b, DHG+19, IS16,
MGMH97, Neu94, van97, BKvH+14, Cal94,
Coo95a, LRLG19, PMZM16, VLMC+20,
dCH93]. Algebraic [CGPR98, Lev95].
Algorithm [AEW+20, AII+21, ACMR14,
BST+13, BP99, BT01b, DY+06, FJBB+00,
HA10, HD02b, ITT02, MW98, MPZ21,
Per21, PKD95, PB12, RDM99, Ro19,
SAS01, SGH19, SSLM10, SWH15, Sta95b,
TK16, WHDB05, ZJHS20, ZWL21, ART17,
AAAS16, ARL+94, AD95, BBC+19, BB95a,
BAV08, BY12, BCM+16, CCM95, CT13,
CSW99, GM94, GCN+13, GLT+08, GKK09,
GP95, HWS09, IM95, JPL22, JR13,
KDSO12, KY10, KWEF18, Kan12, KBP16,
KN17, KO14, Kom15, KRC17, LYP19,
LYZ13, MM92, MLVS16, MK00, NB96,
NA99, OKW95, OGM+19, OMK09,
PGBF+07, PSLT90, Ram07, RJ95,
RAGJ95, Sch96b, SOA11, SOYHDD19,
Sur95a, TNB17, TSCS14, TGKL19, Was95a,
YULMT+17, ZSK15, ZWL+17, dH94,
van93, AEW+20, CWL+20, HFB21, HWS09,
LTDD14, Riz17, Spec19, SMSW06].
Algorithm-based [PKD95].
Algorithm-Dependant [BP99].
Algorithmic [Stp20, HHS19, RJDH14].
Algorithms
[ACM95b, ATC94, ADRC98, ABG20,
ASA97, CDT05, CCMS97, DK20, DALD18,
DAK98, DK06, FB94, GAMR00, GK10,
HO14, HHHK94, IEE96d, KTAB+19, KKO2a,
LHNN96, L96, LAD16, ILM+H+21, MTSS94,
MGHH97, MBS15, Nar95, Pet97, PBK00,
Pro21, SG15, SGS+21, VRS00, AK99, AL92,
BH96, BMS+17, BID95, DDL95, FR95,
FP92, GWC95, H17, HPLL99, HKO11,
HS95b, JKN22, Jot94, JRM+94, KF95,
KRG13, LFL11, LNW+12, LRLG19,
MTK16, MJG+12, NP12, Ols95, PP16,
Pan95b, PBK99, PD11, PCS94, RHG+96,
SPE95, Sur95b, TSSC94, WCVR96, YLZ13].
alias [SOA11]. alias-free [SOA11]. aligned
[AGS94]. Aligners [SMM+16]. Alignment
[dOSMM+16, AMH11]. All-gather
[Pro21]. all-port [RJMC93]. All-to-All
[LZH17, LZH18, Tri02b]. Allgather
[KTAB+19]. Allgatherv [KTAB+19].
Allocation
Applications [Wis96a, WSN99, WBH97, WM01, dGJM94, AC07, ACH11, ACC21, ACJ12, Ano93a, Ano94f, Ano03, ABB20, Ara95, Arn95, ASB18, AGM06, BAE22, BKH13, BR04, BDV03, BAG17, BFM96, BFMT96a, CGK16, CGBS15, CDMS15, CLE20, CLSP07, CBM08, CZP21, CIJ10, CFPS95, CCHW03, CCM06, DZ98a, DSZ94, DPFT19, D+95, DCHO2, EKTB99, EGH99, EDSV09, FE17a, FE17b, FNSW99, FCS12, Fin94, Fin95, FFF95, GBR15, GS00, GHD12, GJMM18, GS96, GSM16, HD00a, HZ99, HAJK01, JC17, JPT94, KC19, KSC19, LRG16, LG01, LMG17, LBB19, LGM20, LZHY19, LS08, MA09, MBKM12, MLMC04, MSCM15, MS96b, NSBR07, NCB12, NFG10, PK05, PTL16, Rab99, RS95, RGGP18, RGP22, SJLM14, SPE95, SB12, SDJ17, SGGH12, SG05, SPBR20, SIC19, SLGB01].

Approach [AZG17, BHM94, BJ93, BHNW01, CRGM14, CD98, DLM+17, FFP03, GCBL12, HMKG19, HD00b, KBA02, KK02a, KMD10, LGM00, Mar06, PPR01, Pet00a, Pet00b, RGD13, Ros13, SDR21, TJPF12, BK11, BIS04, BTC17, CLYC16, CDP99, CRGM16, DiN96, EO15, FMS15, HDB13, JS13, KPL12, KSS07, KJEM12, LG20, MG05, MS99b, NEM17, OHG19, OW92, QM21, SVC11, SEC15, TFST009, VGP19, W009, YW21].

Approaches [JCH08, Nye00, SWHP05, SM02, AKB19, BFL09, CB11, PS00b].

ApproxHPVM [SSH19].

Approach [JCH08, Ney00, SWHP05, SM02, AKB19, BFL09, CB11, PS00b].
FGT96, FGG+98, KHB+99, Qu95].

area-based [Qu95]. arising [ARvW03].

Aristotle [FSV14]. Arithmetic
[Ano98, JPT14, Sur95a]. Arithmetics
[HD00b, HD00a]. Arizona [IEE95b, JB96].

ARM [AFGR18, MGL+17]. ARM-based
[AFGR18]. Array [DDPR97, HD02b, LTS16, MYK19, WGI7, CCM12, DK13, HSE+17, JKN+13, Ott93, TOC18, Wal02].

d arrays [HCL05, RBS94].

Arria [LLVM21a, LLVM21b]. Arrival
[FPY08, Pro21, MLVS16]. art [LF93b].

artifact [ZZZ+15]. Artificial
[BPG94]. ARTUR [FJBB+00].

ARVO [BHW+12]. ARVO-CL
[BHW+12]. ary [Pan95a].

Asson [DR94]. Ashes [Thr99]. ASL
[FGRT00]. ASME [LF93a]. aspects
[CG99a]. Assembly [PGF18, TPD15].

Assessing [LMG17, dLR04, MABG96, TSCaM12, CMV+94].

Assessment
[Mat01b, TAH+01, Boi97, LH98, LSB+20].

Assignment [Cza13, CK99]. assist [Kik93].

Assisted
[GAH95, Ara95, USE00, UCW95]. ATM
[GFV99, HBT95, Jon96, LHD+94, LHD+95].

Atmosphere
[BS93]. Atmospheric
[HK93, KHBS19, RSBT95]. atom
[MMG05, SPBR20]. atom-based
[SPBR20]. Atomic
[LRT07, LFA15, SYF96, DS13, Hin11, SY95, XF95]. atomics
[BDW16]. atoms
[JLS+14]. Attacks
[PV97, GHD12]. attempt
[GM18]. Attraction
[GB96]. attribution
[GADM20]. audio
[BJ13].

Augmented
[GFJT19]. Augmenting
[TL19]. August
[ATC94, Agr95a, BFM96, DMW96, GT94, HAM95b, IEE94g, IEE95k,
MJB15, Pan14, ZLP17, BLVB18, CLA+19, CGH+14, FA18, GMA20, GH212, HJYC10, HG12, JKN+13, KBG16, MBBD13, MSMC15, MAAH20, SHM+12, SSH+19, SPK+12, WRSY16. awareness [HK09, VGS14]. AXAF [NH95]. AXC [CBGL19]. azTotMD [RS22].

B [Ano01a]. Back [BIC+10]. Backend [IOK00]. backing [PGdC9+18].

Backup [Gua16]. Bains [GA96]. Balance [HE02]. balanced [EZBA16]. Balancing [BkISho1, DBA97, DI02, DK06, FSG19a, GCB12, KSB+20, MM02, PT01, Pus95, ST97, Wal01a, Bir94, BS05, DZ96, DLR94, DvdLV94, DR95, FM96, FH97, Hum97, JM97, MM03, NP94, SGS95, SY95].

Balatonfured [DKP00]. balls [BBH+15].

Baltimore [IEE02, SPH95]. Bamboo [NCB+12]. banded [DG95]. Bandwidth [NE01, RK01].

Bangalore [Kum94, PBPT95]. Barbara [ACM95b, AH95, IEE95f].

Barcelona [DLM99]. Barnes [MPZ21].

BARRACUDA [EPP+17]. Barrier [CLD15, SDB+16, YLZ13].

Based [Ada97, AHD12, AAB+17, ABC20, AP96, BHW+17, BDG+91b, BBD+20, BoFWB00, CAM12, CGC+02, CLOL18, CLP+99, CPM03, DW02, DZL219, DZL22].

DBK+09, FSC+11, FC05, Fz95, FLS98, GSxx, GFJT19, HF14a, HF14b, HM01, Hus00, KL16, LS10, LH18, kL11, LP04, LAFA15, MDM17, MGL+17, MMM98, MZLS20, NSLV16, N001, NHT02, NPS12, PPT96a, PCY14, PFG97, PSS01, RDB99, SPL+12, SM03, Sm093a, ST02b, ST97, SJK+17a, SJK+17b, THS+15, TD98, WTTH17, WC09, WZH16, WYH+21, WJG+21, Wis96a, WM01, WJB14, YG96, YTH+12, ZJHS20, ZWJK05, AKB+19, Ada98, AASB08, AAAA16, AWA+16, Ano03, AFG21, ABB20, AFG18, BLPP13, BDG+92a, BLVB18, BCH+03, Brij95, BFM96a, CwCW+11, CC10, CPM+18, CKnWH16, CRM14, CXB+12, DXB96, FE17a, FE17b, FFB99, FJZ+14, FN99, FG099, FLPG18, FCC99, FW5+17].

based [GS91a, GS92, GKS+91b, GA96].

Balancing [BBH+95b].

Bamboo [GA96].

Batch [VLMPS+18]. batched [GP94].

Batching [LML+19].

Bathing [LML+19].

Bayesian [CBS18, Fer10]. BC [IEE95i].

BCS [FFP03]. BCS-MPI [FFP03]. be [CB00].

Beach [IEE93b]. beam [OIH10, RCFS96]. bearings [NF94].

Beguelin [Ano95b, NMC95]. Behavior [BFM97, DePo3, Ros13, FGL+20, LLG12, PPF89, YMY11]. behaviour [EPML90].

Beijing [CZG+08, LHHM96, L96].

Beitrag [Ano94c]. Belgium [LCHS96].

belts [NS20]. Benard [TV96].

Benchmark [BWV+12, DS16, HC10, Luo99, Mü10, MBB+12, RSPM98, RTH00, SGJ+03,
Trä12h, UTyo2, Ano03, BKML95, DWM12, DH95, DH96, MKP22, Mül03, MvWL+10, PHJM11, PSH+20, Ret01, RST02, Wor96, YSWY14. **Benchmarking** [GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02].

Benchmarks [CRE99, KS96, KAC02, MM07, NAO1, RK01, TSB02, TSB03, WAS95b, ZSnH01, CDD+96, MKP22, MMH99, Ste94, WT11, CE00, WT12].

Beneficial [CB00]. **benefit** [DSW96, DS96a, Wal95].

Blame [Add01, ARvW03, FMFM15].

Black [FSXZ14, Kh13, van93]. **BLACS** [DSW96, DS96a, Wal95]. **blame** [DSGS17].

BLAS [Add01, ARvW03, FMFM15].

BLASTP [HWW21, LSMW11]. **Blaze** [PWPD19]. **Blaze-Tasks** [PWPD19]. **Block** [ABG20, DDPR97, MYL21, SMM+16, SBB20, SB21, WO95, ZB97, ADDR95, DR18, GP95, HKMCS94, HC08, LYP19, WO96]. **Block-Based** [ABG20].

Block-Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96]. **block-tridiagonal** [DR18].

Blocking [FH98, BCH+08, HKT+12, Nak03, HTA08, STP+19, TGLK19]. **Blood** [Pat93]. **Blue** [KMH+14, AAC+05, BGH+05, EFR+05, LM13, MV17, MSW+05].

blurred [Wil94].

BMMC [CC99]. **Boca** [Ed18].

bodies [AGIS94, LHLK10]. **Body** [RB01, RTRG+07, IHM05, NS16, Per99, SP99, SRK+12, ADB94].

BOF [Mat00a].

Bolsmann [OTK15, CGK16]. **Bond** [HLO14, STA20, SD13, Vog13, Vre04, YM97].

books [YM97, Nov95]. **Boost** [CVPS19]. **Boosting** [LRG14, SF095]. **Bose** [KLM+19, MBA21].

Bonn [MTWD06]. **Book** [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, Che10, Edd18, Mar06, Nag05, NMC95, Per97, SD13, Vog13, Vre04, YM97].

Boundary [KGB+12, BDG12, KP96, LSM+16, SGS+15, TCBV10].

Bottlenecks [MWG97].

Bottleneck [BGD12, KP96, LSM+18]. **Bottlenecks** [DSG17, JKHK08].

Boulevard [ACM99]. **Bound** [ASA97, SGS+21, CLA+19, MBKM12, ADMV05].

boundaries [KGB+09]. **Boundary** [BS21, PTT94, STA20, SBBQZ14, SP11, SD99].

boundary-value [SP11]. **Bounded** [CPKG17, MDAS+18, PAdS+17].

BowMapCL [NTR16]. **Box** [JR13, JPP95].

Box-counting [JR13]. **brackets** [GSMK17].

Braga [EE96]. **brain** [VLSP19]. **Branch** [ASA97, LW20, ADMV05].

Branches [GS+21]. **Breaking** [OS97]. **breast** [Str94].

Brest [EE94c]. **Bridge** [VDL+15].

Bridges [DS99]. **Bridging** [ACM04, AAB+17, ASS+17].

Bringing [FKKC96]. **Brisbane** [ACDR94, Nar95].

Bristol [MC94]. **British** [IEE95a, IEE95b].
[CHPP01, CBPP02, MCS00, SSFG00]. CCp [BB00]. cCUDA [SNN+20]. CE2014 [MBS15]. CEBAF [DZDR95]. Celebrating [EO15]. Cell [DBK+09, SYL19, JMS14, VDL+15, OOS+08, OIS+06].

Cell-Centered [SYL19]. Cells [MRB17].

Cellular [Car07, SC19]. Cenju [GPL+96, KSHS01]. Cenju-3 [GPL+96]. Cenju-4 [KSHS01]. Center [ACM98b, ACM99, ACM00, Ho12, IEE94b].

Centered [SYL19, JPOJ12]. Centers [EGR15]. Centre [IEE95e]. centric [IEE95a]. CERN [VV95]. Cesena [CH96]. Cetarao [D+95, KG93]. cf4ocl [FLMR17]. CFD [SPE95, AMS94, ADT14, CP97, HDZ+20, HAJK01, HT01, JR10, DK02, PBK00, XJR21, YPAE09]. CFD-DEM [ADT14]. CG [ABF+17]. CGM [CDT05].

CGMGRAPH [CDT05]. CGMGRAPH/CGMLIB [CDT05]. CGMLIB [CDT05]. CGPredict [WZM17]. Ch [CNC10]. Chain [AKB19]. Challenge [DGMJ93, MKP22, LB96]. Challenges [Agr95a, Gro01a, Gro12, Ree96, Ten95, Wit16, BDG+92c, GScFM13, WLK+18].

CHAMELEON [KB+20]. Chamfer [YPZC95]. Chandra [Stp02]. Channel [KG97, LBD+96, SG05]. CHAOS [BLW98, JL18]. Characteristic [OMK09].

Characteristics [WR01, WT12, BN00, GL99, WT11].

Characterization [AJC+20, KB98, LCY19, LPJ98, MM07, Wor96]. Characterizing [BCM11, BDGdS09, FLPG18, GScFM13, OdSSP12]. Charge [BL95]. Charm [ZHk06]. Charts [DSS00]. Chebyshev [R6t19]. Check [MC17, LCC+03].

checkerboard [BW12]. Checking [CGZQ13, Gro00, HMK99, LCC+03, MdSAS+18, PaDS+17, RAS16, SMAC08, YYW+12].

Check [SBF+04, CZP21, CRM14, ZWZ05, ZHK06, BDB+13].

Checkpointing [DCH02, LMRG14, SSB+05, TSS00b, BMPS03, BCH+08, CG96, LC MG17, LBB+19, PKD95, SS C95, Ste96].

checkpoints [LFW20]. chemical [NMW93]. ChemIO [NFK98]. Chemistry [AKK+94, NFK98, BR95a, DMW96, SSFG00].

Chemkin [Ano97, Bra97]. CHEMPI [RR01]. Chicago [CGKM11]. China [CGZ+08, IEK97a, LHMM96, Li96]. Chip [Jes93b, URKG12, WYZ+19, TDG13, dCGZ06, MYK19]. Cholesky [DG95, LC97b].

citation [Squ03]. City [Ho12]. civil [PW95]. CL [BH+12, BBH+15, LW95].

CL-PVM [LW95]. CLARRAY [ZT17]. clarified [WBBD15]. CLAS [DZDR95].

Class [AFGR18, DFN12, R6t19, Ste00, Dem96, MSL96, RFH+95]. Classes [De03, GGO9, Ott93]. classic [HL17].

Classical [BCGL97]. Classification [SNN+19, TPLY18]. clauses [WC15].

Clemson [ACM95a]. Client [Ano93f, FSL98, KS97, kLCCW07, Mat01b, HIIG16, Sch93, Sto98, Vis95].

Client-Agent-Server [Mat01b].

Client-Server [FSL98, Sto98, Vis95]. Client-Side [kLCCW07].

Client/Server [Ano93f, Sch93]. climate [Str94]. CLIPS [Ano95a, Ano95c]. clMAGMA [CDD+13].

clock [NB96]. clocks [TPLY18]. CLOMP [BGdS09]. clone [ZWL+17]. Closer [HCZ16].

Closure [CGPR98, KH15, PPR01]. Cloud [HC17, LSB+18, SIS17, URKG12, ZLZ+11, ZLP17].
GFIS^{+18}, GHZ12, GWVP^{+14}, KSC^{+19}, cloud-based [KSC^{+19}], Cluster
[AUR01, BKGS02, BL95, BM97, CRE99, CMM03, HD02a, ES11, GGGC99, Gei94, Gei00, GSN^{+01}, GT01, GC05, HD02b, ITKT00, ID04, KK93, KS96, KS01, LR01, MFTB95, MM01, NO02b, OF00, PFG97, RB01, RsT06, RLL01, SCR92, SHII01, SHTS01, ST02a, TOTH99, TSN21, Trä02b, YCA18, bT01a, AL93, BL93, BALU95, BTC^{+17}, BID95, CCF^{+94}, Con93, ED94, K97, GMV95, He93, KEGM10, KO14, Kom15, LC07, LZZ^{+20}, Liu95, MW93, MM03, NO02a, PDY14, RJDH14, SS94, SR95, ST02b, SLS96, SY95, SSN94, Tho94, THM^{+94}, Tsn95, UH96, YWO95, ZLZ^{+11}, MS04].

cluster-based [SLS96]. Cluster-enabled [SHII01].
Clustering [BBH12, HA10, RJC95, GGL^{+08}, YCL14].
Clusters [MS04].

[AH00, AHP17, AJC^{+20}, BDH^{+95}, BDH^{+97}, BWV^{+12}, CDT05, CLOL18, CSC96, DK06, GDM18, GmdMBD^{+07}, GSY^{+13}, HPP02, HSMW94, HVA^{+16}, HC17, Hus00, JNL^{+15}, LC97a, LI95, LVP04, LHCO05, MS98, MFPP03, Pan14, PK01, PT01, PS00a, Pus95, Re01, dOSMM^{+16}, SF98, SVL99, Ste00, Ton00, UP01, WLNO03, WT12, YWCF15, YKI^{+96}, AB95, ALR94, ADB94, ABG^{+96}, ADMV05, BWT96, BV03, Br95, CRE01, EKTB99, GB95, GDMME22, HCL05, Hus99, JKH08, Jno96, JR10, JRM^{+94}, KLY03, KSL^{+12}, KJEM12, LBD^{+96}, Lee12, LLC13, LL95, LKYS04, NMW93, NN95, PS07, PRS^{+14}, PM95, PR94c, PRS16, PL96, RCFS96, RGDML16, SPB20, Sl05, SC96a, SBR21, SL95, TFZZ12, WLNO06, WLYC12, YST08, YL09, YHL11, YWCI11, ZHS99, dCH93, NWT21]. CM [SBG^{+02}].

CM [Har94, Har95]. CMPI [GHZ12]. CMS [FMS15]. CNF [IKM^{+01}, IKM^{+02}]. CNN [MZL20]. CO [ACM01, AHP17, GDM18, HJ98, SNN^{+20}, PSB^{+19}, TOC18, Wa02].

c-coarray [TOC18, Wa02]. Co-designing [AHP17].
co-execution [PSB^{+19}].

Co-Expression [GDM18]. Co-processed [HJ98]. Co-Scheduling [SNN^{+20}].

Coarray [GBR15, YMCB14]. coarrays [SMCH15, SC19].

Coarse [ADRCT98, IOK00, LGM00, NIO^{+02}, NIO^{+03}, SSK^{+18}, HDZ^{+20}, He93, RJC95].

Coarse-Grain [IK00]. coarse-grained [HDZ^{+20}, He93, RJC95].

Coarse-Grid [SSE^{+18}].
coarsening [PSLT99].

Coast [IS16].

Coastal [GAM^{+02}]. CoCheck [MS96b, Ste96].

Code [AHP01, And98, BCGL97, CB00, CP97, CCK12, CCBPGA15, Cre16, DDL00, DZDR95, HE02, Ka10, KAMAMA17, KHS01, LD01, MMD98, MS92b, MM07, PBC^{+01}, RGD13, SM03, SZBS95a, Sta95b, TGBS05, AMS94, ADB94, AFST95, BCAD06, BADC07, BW12, Bha98, Bri95, Con93, DLR94, EZBA16, FMFM15, GSKM17, He93, IMM^{+05}, JL18, KPL^{+12}, KH10, MGS^{+15}, MRH^{+96}, MW905, PKE^{+10}, PSK^{+16}, RVP95, RZBS95b, SK00, SFLD15, SMSW06, TBD96, VBLvdG08, VDL^{+15}, WLYL20, Wor96, XR21, YL09, ZGZS20, ZT20].

codebooks [PMM95].

Codes [FAFD15, JFY00, SWH15, HTJ^{+16}, HWS09, HASnP00, JPP95, KBG^{+09}, LWR01, Mal01, OLG^{+16}, WB96].

Coding [FLS20, Uhl94, Uhl95b, SCC96].

Coefficients [MW98, ARYT17]. COFFEE [DFS19].

cognitive [PWD^{+12}].

Coherence [MM07].

Coherent [SS01].

Collaborative [DCP12, MZLS20, DCP14].

Collapse [PKYW95].

Collecting [BMR01].

Collection [LTRA02, DH95, MGC^{+15}].

collection-oriented [MGC^{+15}].

Collections [JGFR12].

Collective [BIL99, BIC05, CCA00, FVD00, FCLG07, FP08, GLB00, GMDM^{+07}, Hus99, KH96, KHL^{+20}, MGJ^{+12}, PGAB^{+05}, SG15, TRG05, VFD02, WRA02, BPJ22, FA18,
HS12, HMS+19, HG12, HWW97, KHB+99, KBHA94, KMH+14, LFW20, MBBD13, MB21, Pan95b, PGBF+07, PGAB+07, RJMC93, SCB14, SCB15, SS99, TD99, Trä12a, THMH21, TFZZ12. Collectives [CSW12, SvL99, ZGZS20, DJJ+19, HGXX+22, Zah12]. Collector [GTS+15, WK08a, WK08c, WK08b]. College [AGH+95, Ano94h]. Collision [QRMG96, Sta95b, ART17, FFFC99, LHLK10]. Collocative [MKW11]. Colony [ITT02]. Colorado [R+92, IEE05]. Colt [WN10]. Commerce [Ano94f]. Commercial [Ano93h]. Commodity [GGL+08]. Common [HEH98, Per21, DK13, WLR05]. Communicating [FKK+96b, GMPD98, FKK96a]. Communication [ABF+17, AJC+20, BCG+10, BIL99, BIC05, DCPJJ12, DZZY94, EM02, FST98a, FJK+17, FGT97, FBNS01, GF03, GSD99, GMAD20, GFV99, GLB00, GC05, HBH96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KBBG16, LRT07, LC93, LBB+21, LCVD94a, MH01, MMW98, MR96, Ni00, PLK+04, RK01, RRAGM97, RS06, SWHP05, SCP97, SGH12, SBG+02, SJ02, ST02b, SGL+00, SKH96, Sum12, TRG05, TGT05, TRH00, Trä02b, UMK07, WBH97, XH96, YC98, ZSG12, AC07, FH98, BJVH96, BVML12, BBH+13b, BS94, BMG07, CAHT17, CGL+93, Dem96, DWM12, DCPJJ14, DGB+14, DDB+16, DS96b, DWS+21, G97, GM13, Gra97, GL94, GB94, HB96a, HWX+13, Hus99, HWW97, KH96, KB01, KYL03, KLY05, KHB+99, LR06b, LFL11, MLAV10, MMU99, MABG96, OGM+16, Pan95b, Par93, PGK+10]. communication [PM95, PKE+10, PSK+10, PS00b, RS21, SH14, SG95, TG09, TGKL19, Trä12a, THMH21, Ve04, WK20, WU99, WMP14]. Communication-avoiding [GBK+18]. Communication-aware [GMA20]. communication-based [PGK+10]. Communication-buffers [MR96]. Communication/Computation [HIP02]. Communications [BPS01, CP98, CDHL95, CDH+95, VFD00, FST98b, GT01, GBS+07, GMdMBD+07, IEE95b, IEE95e, LZH17, LH18, MB00, VFD02, YTH+12, bT01a, AD03a, ADL03b, AI+S+21, BBW19, CDP99, FA18, HS12, KBHA94, MBBD13, McR92, MN91, MS99c, RGDML16, SCB14, SCB15, TD99, WLYC12]. Communicators [DFKS01, GF03, GF05, FK96, GJMM18, KH96, MJ+12]. communities [ACM04]. Community [BHW+17, FCP+01]. Como [CLM+95]. COMOPS [Luo99]. Compact [Uhl94, Uhl95b, Wor96]. compaction [VSW+13, WK08a, WK08b, WK08c]. Compactly [KLR16]. Comparative [KB98, ML21, PS08, SN01, AGR+95b, ED94, YCL14]. Comparing [BF01, DSU20, Fin97, GBR15, HVSH95, ICC02, LKJ03, ORA12, SSG95, JLG05, WBC17]. Comparison [BvdB94, BS07, HC10, KBBM97, LCW+03, Mat94, Mat95, Ney00, OP10, OF00, PPJ01, Pok96, RS93, RBB97a, SS01, SR98, SHH94b, VS00, W02, ZBd12, Ahm97, AB93b, BL93, BID95, EVMP20, DFDSR+19, GMU95, Har94, Har95, JS13, KDS02, KNH+18, KC06, MSP93, Ola95, PS07, PSHL11, Pri14, Sm10, SYR+09, SW+12, SHH94a, TOC18, TSZC94]. comparison-based [PSH11]. Comparisons [GGS99, PC02, CLY16]. Compass [PWD+12]. Compatible
[MM14, LBH12, OIH10]. Compcon
[IEE93a]. compete [Ano96a]. CoMPI
[FSC+11, FCS+12]. Compilation
[FSSD17, HKMC94, LRBG15, RBC20,
RVKP19, SBW91, ABB20, Coe94, FM90,
PGS+13, PG18, SHM+12]. Compile
[GB94, TSY99, JE95]. Compile-time
[GB94]. Compile/run [TSY99].
Compile/run-time [TSY99]. compiled
[KYL03, KYL05]. Compiler
[ADK22, Ano98, Dan12, IOK00, KSS00,
KSHS01, MB12, Mar09, MKW11, SSE12,
SKS01, TJPFI12, TBG+02, TGBS05, BAG17,
HEHC09, LME09, LCH+07, LLCD15, MA09,
Miil03, PP16, RKBA+13, SHHI01, SSH+19,
THH+05, TMT+20]. Compiler-assisted
[ADK22]. Compilers
[An00a, CFF+94, LZ97, MKV+01, SBT04,
S96, Hos12, PBB+95, ZT17]. Compiling
[DMB16, Hos12, CGK11]. Complete
[BdS07, GHL+98, Nag05, Per97, SOH+98,
YM97, Ano99a, Ano99c, Ano99b, Ano99d,
PRS+14, SOHL+96]. Completed [PTT94].
completion [PHM+22, SSN+21]. Complex
[BCGL97, GMPD98, MBS15, SOYHDD19,
ZT20]. Complexity [NPS12, LCH+22].
component [HLP+10, KRKS11, Squ03].
Components
[ABG20, BT01b, CT02, Fin00, Gro02a,
Lus00, Wis01, GKD+18, LRW01].
Composable [MLGW18]. Composed
[Wel94]. Composing [PHA10, RHM+17].
compressible [MALM95, YPA94].
Compositing [GPC+17]. Composition
[CTK00, Cot04, DLB07, FCO5, KH15,
CF96, SOYHDD19]. compound
[LLC13, SAP16]. Comprehensive
[MZLS20, RST02]. compressible
[HHS19]. Compression
[BKK20, FSC+11, KBS04, VPS17, AAAA16,
HE15, UH96, Wu99]. compression-based
[AAAA16]. COMPSAC [IEE95].
Compton [BCD96]. Computation
[BKGS02, B+05, Cer99, DSM94, DSS00,
EMO+93, ESM+94, Fer10, FF95, GS91b,
HIP02, IEE94a, IEE96c, KF16, KS15b,
Mar06, MR12, MSCW95, Nag05, PPR01,
Sie92a, Sie92b, SMOE93, SSB21, VZT+19,
WTTH17, ACM97a, AC07, ABDP15, Bis04,
BALU95, Bos96, BHKR95, CL93, CMH99,
CKP+93, Dabi19, DZZY94, HLM+17, HK94,
KB01, KHSB19, KJ+16, KG93, Lev95,
MLAV10, Neu94, NZZ94, NCKB12, PF05,
PKE+10, Röhon, Shi94, SH14, TBB12,
TPD15, TW12, Vol93, Wan97, Was96, SM07].
computation-communication [SH14].
Computational [ALR94, CMM03,
DFMD94, JFY00, KH15, Liv00, MBS15,
NFK98, R+92, SZBS95a, SM07, SYL19,
SN01, TDBEE11, TGM90, WPH94, Whi04,
AGM06, BvdB94, BDG+92c, BR95a,
HVSC11, KBG+09, PBK99, RBB15, SPE95,
SZBS95b, STT96, Str94, VDL+15, X21,
BR95a, CCHW03, R+92, SL94a, WPH94].
Computationally [DFN12].
Computations
[AGH+95, ACGR97, CGU12, CGPR98,
IH04, PBK00, PMvdG+13, WJ12, ANS95,
AASB08, BL99, CG93, DMW96, EGDK92,
HJYC10, KD13, MRRP11, MR96, RBC20,
Smi93b, SAP16, TS12b]. Compute
[DBK+09, LSM+18, KKL+11, OHG19,
VLMP+18, ZLZ+11]. Compute-intensive
[LSM+18]. computed [FWS+17, SSS99].
Computer
[ACM06a, Ano94a, GTH96, IEE95l, IEE96b,
IEE97c, IS16, KCR+17, Neu94, Old02,
PSB+94, ST02a, Sun12, Ten95, URKG12,
YTH+12, BN00, BS94, BKML95, BF96,
Cal94, CLM+95, GRTZ10, JW96, Str94].
Computer-Assisted [GTH96]. Computers
[An90, BP99, BCL00, DDP+19, DGMJ93,
FPF03, GC05, IEE95b, IE95e, ITKT00,
LF+93a, MFTB95, PSZÉ00, SPM+10, SS96,
BvdB94, BBK+94, DLR94, Duv92,
ESB13, GBF95, KOS+95a, LR06a, MM+94,
NF94, POL99, PBK99, Wal94a, Wal94b].
computing
[ARYT17, AL92, AH95, ASCS95, Ano93b, Ano94e, Ano94h, Ano89, ADDR95, AMV94, BPG94, BG95, BDD+94, BB3+20, BMKL95, Br95, BH98, CBB96, CKB15, DLD99, DKD08, DKB20, DW94, D+95, DM96, DE91, EKT99, EJL92, FBD01a, FGRD01, F094, FS95, Fer98a, FS98, FME+12, FHC+95, GGGC99, GS02, GS91a, GS93, Gei93b, Gei94, GH94, GLC97, HP95, HW11, HH14, HPY+93, HS95a, HH95, mH12, IEE97a, IM95, JPOJ12, JY95, JMJ+11, JPTE94, KO14, Kos95b, KS907, LV12, LH98, LC98, LHD+94, LHD+95, LM13, Ma94, MZK93, Ml95, Mar07, NRdA+20, PG9+13, PB06, Pen95, PGK+10, PTT94, PB+95, PNV01, PW0+12, RBS94, RJH14, RJ+20, Sch93, SGS95, SMS00, STT96, SBK21, Ste94, SP11, Sun94b, SGDM94, Sun95, Swa01, SD99, TJD09, TKP15, TDB00]. computing
[Tho94, TSS98, VM94, Vis95, Was96, XJR21, YULM+17, YCL16, YSL+12, Zem94, ZWL13, ZGC94, ZHS99, ZKRA14, ACM98a, Kon00, PW95, Per96, SCR92, TGE09, NMC95, Ano95b]. Concept
[KaM10, LTR00, SB95]. concern [Ano94i].
Concurrent
[ME17, NPS12, DGB+14, EBB+20, P TG13].
Conditional [JCP+20, SGS+21, CBS18].
conditions [STA20]. Condor [CF01, PL96].
conduction [SYS12]. Cone
[RCFS96, OHH10]. Conference
[ACM90, ACM94, ACM96b, ACM96c, ACM97b, ACM98b, ACM04, Abr96, ATC94, AGH+95, Ano89, Ano93g, Ano94a, Ano94e, Ano94i, ACDR94, BBG+95, B+95, Bob97, Bos96, BFM96, BH95, CGB+10, CH96, DSM94, DSZ94, DKD07, DKM+92, ERS95, ERS96, EJL92, FF95, Gat95, GN95, GT94, Ham95a, Ham95b, HS95a, HS94, Hol12, IEE92, IEE94f, IEE95b, IEE95a, IEE95e, IEE95i, IEE95j, IEE96a, IEE96d, IEE96h, IEE96i, IEE02, LCK11, LF9+93, MM93, Nar95, OL05, PR94b, Ree96, R+92, SPE95, SII96, SM07, Sin93, SW91, USE95, USE00, VW92, Vol93, WPH94, Y+93, YH96, ACM95a, ACM05, ACM06b, ANS95, Ano93b, Ano93c, Ano95a, BR96a, Bil95, BDL96, DR94, Eng00, GH94, JPTE94, LCHS96, Mal95, PW95, RV00, Van95, ZL96, ACM94, Ano94g, IEE95b, KKD03].
Configurable
[IEE94d, MYK19, PKB+16, BB94].
configurations [PTL+16]. conflict
[TCP15]. conformational [MK94].
Congress [CJNW95, GHH+93, PSB+94, BH95, dGJM94]. Congressi [GT94].
Conjugate [BG95, GFP12, SSK+18,
BAC20, MM92, Ols95. Connected [ABG20, BT01b, KRKS11, OF00, Pet01, GKD+18].
Connectivity [Whi94]. Conquer [CTK01, Cza02, Cza03]. conscious [ZA14].
Considerations [CIPC19, FA18].
Considers [WYZ+19]. consistency [DPFT19, KSTM20, WBSC17, YYW+12].
Consistent [TGT10, CG96, CG99a].
Console [Pes99]. Consortium [BRST94].
Constrained [BSH15, EGR15, TSCS14].
construction [ART17]. Constructor [MYK19]. Constructs [KDT+12, PGC02, BKH+13, BN00].
consumer [ACJ12]. Contact [Nak03].
CONTAIN [SBR95]. containers [Str12, ZT17]. content [GFB+14].
Contexts [CS14]. Contiguous [KLH+20, WTR03]. continual [NS16].
Contract [KPNM16].
Contract-based [KPNM16]. contrarian [KSSS07]. Contrasts [GGS99]. Control [FLD98, FM09, IEE94e, MSS97, CMZ99, MBKM12, MH18, OHG19, RRJ+20, SFL+94, SHPT00]. control-flow [MH18].
Controlled [DSU20]. controller [GWC95].
convection [BB95b, CEGS07, TVV96].
Convention [ACM98b, ACM09, ACM00, Hol12, IEE94b].
Converse [BK96]. Conversion [ZG95b].
convex [GCN+13]. Convolution [ADGA20, WTS19]. convolutions [DZZY94]. Cook [SD13]. Cooperation [Wis01, Str94]. Cooperative [DGF97, DiN96, HRS997, kLCCW07, Pet00a, Pet00b, JKN+13, SHLM14].
CORBA [DPP01, Fin97, LRW01]. Core [ABB+10, Bri10, CZG+08, LZh17, SOH+98, TCM18, YGH+14, YTH+12, ACMZR11, AV18, BBC+19, BBG+14, BL99, FHB+13, HTA08, JR13, JKM+11, JR10, KSG13, LLCD15, LLH+14, MBBD13, PZ12, SFSV13, SVC+11, TFZZ12, VDL+15, WCC+07, WYLC12, dCZG06, MMH98, Nag05, Ano99a, Ano99b]. Cores [BBG+11, DT17, BMS+17, DJJ+19, SC19, WO09].
Corfu [SM07]. correct [DM93].
Correction [SSLMW10, BCD96, FME+12].
Corrections [BL95, DLLZ20, Spe19].
Correctness [DFP+19, HMK09].
Correlated [MM07]. corruption [FME+12].
Coscheduling [GRV01, SGHL01]. Cosenza [KG93].
counting [JR13]. County [ACM98b].
Coupled [MBS15, SS01, SBR95, Gra97, MBA21, TK19].
Coupling [BS93, KR09, SB95, WB96]. course [STT96]. Coverage [DSY21].
Covering [MYK19]. CoW [KMGG99]. CPPvm [Gö01]. CPS [Mat94]. CPU [BB18, CLOL18, DF17, EBB+20, HSO+21, HCC+20, JR13, KSL+12, Lee12, LRG14, LLC13, LFL11, OFA+15, PDY14, PHO+15, Pri14, RBC20, SdR+21, SPB+17, SSB+17].
CPU-GPU [HSO+21]. CPU-MIC [BB18].
CPU/GPU [EBB+20, KSL+12, Lee12, LLC13, OFA+15, RBC20, SSB+17].
CPU/multi [SAP16]. CPUs [ASB18].
KH12, LNK+15, ÖN12, SFSV13, YSWY14.

CPVM [CG96]. **Cracow** [BDW97]. cranial [NAJ99]. **CRANIUM** [MBES94]. Crash [LCVD94b]. **Crash-simulation** [LCVD94b].

crashworthiness [LCVD94a]. **Crawler** [Wal01a]. **Cray** [BL94, GRRM99, MP95, Sch96a, Sch96b, ABG+96, AZ95, AFST95, BBW19, CCSM97, LKJ03, LSK04, MWO95, Oed93, RBB97c, SWS+12, SCC95].

CRAY-T3D [Sch96a, Sch96b]. **CRAY-T3E** [Che99]. **CRC** [Edd18]. **Creation** [Hat98, MFC98, PS00a]. Crew [GHL97]. **CRI** [MSCW95]. **CRI-MAP** [MSCW95].

Critical [DSGS17, SLN+12, KSC+19, SDJ17]. **Critical-blame** [DSGS17]. **critical-path** [SDJ17]. **cross** [JR13]. **cross-platform** [JR13]. **Crossbar** [ZL17]. **CRState** [CZP21].

cryptanalysis [BSN95]. **Cryptographic** [PV97, ABDP15]. **cryptosystem** [WLC07]. **Crystals** [LHZ+20, ILlm+21]. **CS** [FST98a, FST98b, Jon96]. **CS-2** [FST98a, FST98b]. **CT** [DYN+06, NAJ99]. **CT-scans** [NAJ99].

cube [Pan95a]. **Cubes** [DERC01]. **CUDA** [DLLZ20, Pri14, AMuHK15, AMKM20, AAAA16, ACMZ11, AC17, Ano12, AFG21, ASB18, BHS18, BY12, BTC+17, BAG17, BSH15, BBH12, CAM12, CGU12, CMI11, CLYC16, CBM+08, CSV12, CFF17, CB11, Cza13, DCD+14, DSU20, DS13, DR18, DS22, DARG13, DLLZ19, DLV16, DWL+10, DWL+12, DM12, Edd18, EADT19, EEP+17, ER12, FJZ+14, Fer10, FMM15, FFM11, FWS+17, Fuoj8, GDC15, GScFM13, GLN+08, GO19, GML+16, GDEBC20, GFP12, GWVP+14, GRTZ10, HE13, HJB14, HVA+16, HLM+17, HD11, HLP10, HP11, HLP11, Hog13, HF14a, HF14b, HKO011, HT08, HWW21, HLO+16, JRG21, JL18, JP122, JK10, JC17, JLS+14, JFGRF12, KRKS11, KHBS19, KID12, KAMAMA17, Kha13, KS13, KC19, KSC+19, KKB+21, KF16, KVGH11, KME09, KO14, KH15, KD13, KA13, Lan09, LRG14, LGK10, LLG12]. **CUDA** [LSSZ15, LBH12, LSVWM08, LSMW11, LAD16, LBB+16, LYSS+16, LYIP19, LZ13, MMO+16, MV20, MNYN21, MR12, Mat16, MSML10, MdSAS+18, MGL+17, MM14, MH21, NSLV16, NS20, NS16, NBGS08, OIH10, ORA12, OHG19, PG+13, PRS+14, PGD18, PHJM11, PAd5+17, PgdCJ+18, PSHL11, PSH+20, PTMF18, PSV19, PRS16, RBW+20, RS22, RBAI17, Ros13, RTN21, SSI12, STA20, SK10, iSYS12, SDJ17, STK08, SS09, Seg10, SSLWM10, SKM15, SP11, Stp20, SR11, SJK+17a, SJK+17b, TNIB17, TVCB18, TS12b, TA14, TCP15, Tsu12, UZC+12, VLMPS+18, WGG+19, WG17, WJ12, WMRR17, WRMR19, WWFT11, WJB14, XXL13, YULMTS+17, YHL11, YZ14, YW21, YMYI11, ZJHS20, ZSK15, ZAFAM16, ZWLZ21, ZZG+14, Zbd12, ZLS+15, ZZZ+15, dIAMCN12, dlAMCFN12, vdLJR11, Che10, SD13, Vog13].

CUDA-Aware [DS22, HVA+16]. **CUDA-Based** [DLLZ20, DLLZ19, ZJHS20, AAAA16, AFG21, WGG+19].

CUDA-BLASTP [LSMW11]. **CUDA-C** [YULMTS+17]. **CUDA-compatible** [LBH12]. **CUDA-Enabled** [LSMW11, SSLWM10, DS13, KHSB19, PSV19, SR11, ZLS+15]. **CUDA-JMI** [GDEBC20]. **CUDA-NP** [YZ14].

CUDA-powered [RTN21]. **CUDA-quicksort** [MMO+16]. **CUDA-sharing** [PRS+14]. **CUDA-streams** [TVCB18].

CUDA-to-OpenCL [GScFM13]. **CUDA/MPI** [LYSS+16]. **cudaBayesreg** [Fer10]. **CUDA-EASY** [Sai10]. **CUDAalign** [SlM10, dOSMM+16]. **CUDA** [KMM15]. **CUDA-TM** [SM12]. **culling** [LHLK10].

CUMODP [HLM+17]. **CUMULVS** [GKP97]. **cuPC** [ZJHS20]. **cuPentBatch** [GNP19]. **CURAND** [Ano12]. **CURD**

D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Bri95, BMPZ94a, BAS13, CGU12, CEP+15, ES11, GGN+13, HF14a, HF14b, JR10, KRKS11, KO14, KD13, KHS01, KL16, MK94, MSZG17, NSM12, SC19, TPD15, WMR17, WMR19, WR01, YSL+12, vHKS94]. D-CICADA [MK94]. DAC [Cza02, Cza03]. Daemon [LB98]. DAG [SGL+20]. Dagum [Stp02]. d'Aix [GA96]. d'Aix-Marlioz [GA96]. Dallas [ACM00, IEE95l]. Dame [IEE96i, PG18]. damping [YPA94]. DAMPVM [Cza02, Cza03]. DAMPVM/DAC [Cza02, Cza03]. DAMS [CD98]. Dangers [BCP+97]. DaReL [KN95]. Data [AJF16, BMR01, BCG+10, BKK20, BGD12, CKnWH16, CLOL18, DK20, DERC01, DiN96, EGR15, Edal18, EAS99, FLS20, GTS+15, GSYT21, GB98, GMPD98, Gua16, HA10, HB96b, HC06, IADB19, JDB+14, KAI3, LKM14, LHCW05, LDJK13, LLB+21, MV17, Man01, MK17, ME17, Mat16, MGA+17, MJB15, NJ01, NPP+00b, NPP+00c, NA01, NLRH07, PCY14, RJJ21, Rei01, SGH12, SPK96, SSSLW10, SR96, Str12, TSH+15, TPK+19, WO95, Wel94, ZDR01, ZG95b, Zha21, AB95, ASS+17, AGG+95, BK11, Ben95, BR12, BID95, CFKL00, CGK11, CGL+93, DRUE12, EP96, FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPOJ12, KN95, KJJ+16, KR13, LOHA01, LF+93a, LL16, LW02, MA09, MMB+94, MMM13, MR96, NCB+12, NCB+17, NPP+00a, OPP00]. data [PDY14, PG18, RJMC93, SJLM14, SSS99, SPH95, SK92, TW12, TGKL19, WO96, WZW21, WLK+18, YCL14, YWO95, ZJDW18, ZRQA11]. Data- [LSM+18]. data-centered [JPOJ12]. Data-Driven [ME17, NCB+12, NCB+17]. Data-Intensive [LBB+21, Rei01]. Data-Parallel [AJF16, GB98, RJ21, CKnWH16, SPK96, CGL+93, FKK+96b, MMB+94, MR96, SK92]. data-parallelism [BR12]. data-privatization [KRG13]. Data-Structures [GMPD98]. Databank [FCP+01]. Database [AR01, BF97, EK97, LBB+21, MV97, MM14, PPT96a, MN91, PPT96b, PPT96c, PMZM16]. Databases [RGB+18, BA06, Bos96, ZWL13]. Dataflow [DT17, CSPM+96]. Datasets [DLLZ19, DLLZ20, VPS17, KGB+09]. Datatype [Gro00, SWHP05, HCC+20, KHS12]. Datatypes [JDB+14, RHT00, SGIH2, Tha98, CAHT17, THR299]. Dave [Stp02]. David [An96a, An99a, An99b, Nag05]. DawnCC [MGA+17]. DAWNING [HWM02]. DAWNING-3000 [HWM02]. Day [JS16]. dbx [NE98, NE01]. DC [B+05, IE94h, IE95k]. DCE [Sch93, FLD96, RS93, Sch93]. DDL [FB97]. Deadlock [LZC+02, SG12, HPS+12, HPS+13]. Deadlocks [FJK+17]. Debugger [WCS99]. Debugger [HM01, NE01, CH94, CG99b, MT96, XWSZ96]. Debuggers [A001a]. Debugging [BDGS93, GKP96, KK01, KV98, Mor95, NE98, Wis97, ZLL+12, BL97, BS96a, DFK93, DH22, HLOC96, KCD+97, MLA+14].
December [Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, PBPT95, Y+93].

Decimation [Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, PBPT95, Y+93].

Decomposition [BKK20, BJS97, CP97, EGH+14, KDHZ18, DBVF01, ETV94, OMK09, SHHC18, TGS+20].

decompositions [NZZ94].

deconfliction [TCP15].

Dedicated [MC17].

Decomposition [BKK20, BJS97, CP97, EGH+14, KDHZ18, DBVF01, ETV94, OMK09, SHHC18, TGS+20].

Decomposition [AHHP17, AJC+20, GDS+20, SM19, TWLL19, AMC+19, NWT21, SEC15].

Deep-Learning [AHHP17, AJC+20].

Deferred [Spe19].

Defined [Gua16].

Defining [GAML01].

Deformable [STK08].

Deforming [GAP97].

Degree [CTBT21, CT13].

Degrees [KTJT03].

Delaunay [CWL+20].

DELAUNAYSPARSE [CWL+20].

Delegation [YTH+12].

Delegation-Based [YTH+12].

Delft [DSZ94].

Delivering [Hus98].

Delphi [ACGdT02].

Demand [CTK00, LSB+18].

Denmark [DW94, DMW96, Was96].

Dense [AKL16, BDT08, CDD+13, Fuj08, Hog13, PMvdG+13, ZBd12, BRR99, LRLG19].

Densities [MW98].

Density [BL95, MC17, CBHH94, ZWHS95].

Denver [ACM01, IEE05, R+92].

Dependable [GM95].

Dependant [BP99].

Dependence [LAAS+15, BLVB18].

dependence-aware [BLVB18].

Dependency [PPR01].

Dependent [DFA+09, HO14, MFTB95, DM12, LBB+16, LYSS+16, ON12, RS22, SSB+16, TV96, YPA94, YSV+16, YSM+17].

DEPICT [HM01].

Deploying [PKB01, CLLASPDP99].

depth [MKP22, SSS99].

Derivation [GB98].

Derived [JDB+14, RTH00, SWH05, Tha98, CAHT17, HCC+20, Jou94, THRZ99].

Descent [Sch01].

description [TKP15].

descriptors [LNW+12].

Design [AS92, AAC+05, Ano01b, ACD+09, BCD+15, BBH+13b, BS96b, BMR02, BRM03, CLP+99, ETWaM12, FD02a, FA18, FFP03, GG09, HWM02, JSH+05, KVKH11, LML+19, kLCC+06, kL11, LVPO4, Man94, MMSW02, MZLS20, NPS12, OFA+15, Pan14, PLK+04, PCS94, SBG+02, SWYC94, SSL97, SPK+12, Snn12, THM+94, TPV20, USE94, VGRS16, ZGZS20, BR91, BMS19, CAR10, CSS95, DS96b, FD02b, FGL+20, GL94, GlKCy97, HDZ+20, KA95, LC07, MAS06, OA17, PGK+10, PTW99, RSC+19, SL94b, Sep93, Sil96, SSD+94, SWL+01, WHMO19, Wal94a, Wal94b].

design-pattern [MAS06].

designed [BSH15].

Designing [BS15, GKR12, LAD16, SWHP05, SH14, WYLC12, ZL17, AHHP17, DSOIC11, Pan95b].

Designs [HVA+16, SM19, AAAA16, MC17, Shi94].

desktop [Mar07].

detach [PHM+22].

Detailed [DLV16, RSPM98, BTC+17, LPI+6b].

detect [DPFT19, Str94].

Detecting [AGG+95, LCH+22, PPJ01, ZRQA11].

Detection [BHW+17, CSW12, CBL10, CFMR95, DMMV97, ELM98, FME+12, HHC+18, KSJ14, SG12, ZDD97, BBH+15, DKF94a, HDM909, HGMW12, HPS+12, HPS+13, LZX+02, RAGJ95, TCP15, TGD13, TWF090, WFTO14, YULM+17].

Detector [DZDR95, PGD18].

Determination [LAFA15].

Determine [BP99].

Determinism [CTBT21].

Deterministic [CFMR95, DK02, ZL+12, MV20].

Develop [PD98].

Developer [IEE96a].

developers [Str94].

Developing [BZ97, CCMS97, Cot98, DDOIL95, Ren93].

Development [AC17, Ano01a, BDG+91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DF21, DeP03, PS01a, SK00, SB01, TDB96, TDBEE11, ArvW03, ABC+00, BL97, BDG+92a, DSZ94, DHP97, KCD+97, LLC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99].

Developments
20

mate device
[kkll11, ls10, sbqzi14, ywtc15]. devices [gjn97, rvkp18, zdjw18]. dfb [wwz+96]. dfn [rs93]. sox [rs93]. dg [mv20]. dg-mosfets [mv20]. dgx +d20. dgx-1 [gds+20]. diagnosis [ap96, lad+s15]. diagnostic [rsbt95]. dictionary [lssz15]. diego [has95, lf+93a, nm95]. difference [uzc+12, cdoo+20, go19, gfpg12, he13, nzz94, nb96, pri14, ram07, str94, vm94]. differences [ake00, ldcz97]. different [aim97, dsu20, gl97b, jch+98, nery90, rab98, rbb97a, bn00, py95]. differential [mftb95, mkk21, riz17, dfsw19, jk10, mps20, nf94, rbb15, sp11]. differentiating [cer99]. differentiation [bbh+08, bgk08, hh22, cdg96, hhsm19]. diffusion [hf14a, hf14b, mw98, cegs07, dm93, mm92]. digest [iie93a, iie95c]. digit [dald18, lad16]. digital [klr16, cj+10]. dixon [ykh96]. dimemas [glb00]. dimensional [car07, ga96, hd02b, kd12, lrq01, mw98, sjk+17a, sjk+17b, zwlz21, al93, kt02, lssz15, llmh+21, mkk21, ol95, pr94c, ram07, rg18, zwc21]. dimensions [cw1+20, sas01, ano93b, hp11, lzc+20]. diophantine [zt9d19]. dipolar [lbb+16, lyss+16]. diporsi [ggcgo01]. dipsys [spl99]. direct [bri10, gpc+17, lb98, wjb14, bcm+16, gra09, hws09, mni1, swh15]. direction [bdg+93b]. directions [ifi95, fk94, fhp+95, sun96]. directive [cp+18, lv12, no02a]. yl09]. directive-based [cp+18, lv12, yl09]. directive/mpi [no02a]. directives [aabb+16, bbg+99, bbg+01, bko00, ccbpga15, jfy00, bc19b, loha01, vgs14]. directory [jcp15]. discharges [lzc+20]. disciplined [lwka15]. discontinuous [cf19, kk19]. discovering [fjk+17]. discovery [asaak19, bk11, gwvp+14]. discrete [ssb21, st17, wmc+18, yw21]. discrete-event [wmc+18]. diskless [pkd95]. disks [difmb+02]. dispersion [rsv+05]. displacement [bjs97, pss01]. dissemination [gl97a]. distance [mr12]. distances [laf15]. distributed [ags97, ano95e, bms+17, bme02, bgr97a, bl95, bha93, bjs95]. brst94, bt01b, bhkr95, cgb+10, cl03, cs97, cc99, dmb16, db97, dfmd94, dgf97, dhhw92, dhhw93a, em+93, esm+94, fh95, fan98, ftvb00, fk01, fos98, fs93, ffc+99, ggcm99, ggcgo01, ggc98, gcbm97, gwc95, gm95, hj98, hc10, hrsa97, iee93d, iee93e, iee94d, iee94g, iee95h, iee95k, iee95i, iee95g, iee96b, iee96g, iee96f, iee96e, iee96d, iee95d, iee95c]. distributed [agr+95b, ab95, ano94e, arm95, admv05, bsc99, bb95a, bir94, bmpz94a, cbp02, ch94, cef+95, cbhh94, cllasdp99, cpr+95, ck99, dlr94, dr94, dhhw93b, dr95, eg99h, fb97, fs95, fs98, fch+95, fhb+13, gr97, gcn+10, gkk09, gklycy97, gp95, hp+y+93, hha95, iee97a, jwb96, kn95, ksg13, kjj+16, kdl+95a, lr06b, lfs93a, lfs93b, lh98, lkl96, liu95, lyp19, lmgdra+19, ma94, mvtp96, man98, mlc04, naja99, olg+16, pk05, pol99, par93, pr94c, rbw+20, ragg95, rfh+95, ssh08, ...
SHHI01, SL94b, Sch93, SFL+94, SSC96, SFL99, SM93b, SD99, THDS91, TSP95, THM+94, Uhl95a, VM94, VB99, Ve02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YLC16, YWO95, YX95, YPZ95, ZLC95, ZGC94, ZHS99, Pet01.

distributed-data [FB97].
Distributed-Memory [CSW97, C99, SSH98].
distributed-shared [ADM05].
Distributing [AL92]. Distribution [HB96b, LHCW05, MJ15, NPP+00b, NPP+00c, NA01, SR96, AGG+95, CSW99, GS96, H96a, JMV+17, KRC17, NPP+00a, RJMC93, Wil94]. Distributed [ST17, WO95, HKMCS94, WO96, vHKS95].

Divergence [SDSCP13, WYH+21, LW20, VSW+13].
Divergent [WJA+19]. diversity [EO15].

Divide [CTK01, Cza02, Cza03].
Divide-and-Conquer [CTK01, Cza02, Cza03].
DMMP [BB93].

DMPI [HWM02, ZLL+12].
DNA [dFdOSR+19, GDMME22, PGF18].

Domain [BMR01, CP97, EGH+14, KHZ18, kl11, ETFV94, HE13, Neil93, NZZ94, Oli14, OMK09, Ram07, SHHC18, VM94].

Domaine [GA96]. Domains [KR09].

Dongarra [Ano95b, Ano96a, Ano99a, Ano99b, NMC95, Nag05]. doOpenCL [KSG13]. dot2dot [GDMME22]. Double [FFK996, PTT94]. down [Str94].

Downloadable [Ano98]. DP [Arn95, KLR+15]. DPVM [IHVA+00].

DQN [PS19a]. DQN-based [PS19a]. draft [DHHW93b, GL92]. Draw [ST17]. Dresden [MDS09]. Driven [AIM97, LWSB19, ME17, PCY14, FSG19a, FSG19b, H11, NCB+12, NCB+17, Qu95, SIS17, TWF009, WFO14].

DVFS [PTL+16], DWT [ZZZ+15]. Dyn [WLN03, WLN06]. Dyn-MPI [WLN03, WLN06]. Dynamic [ACGR97, AGS97, AUR01, BB+B20, CGLD01, CKinWH16, CML04, CK99]. CTK01, DMB16, DBA97, DFMD94, FMBM96, FD00, GFD03, GFD05, GRV01, GCBL12, GMPD98, GL95a, KFL05, LZZ+20, MK17, NPP+00c, NLRH07, PK98, PLK+04, PT01, PGdCJ+18, Ran05, SPH+18, Sni93b, SY95, TS2a, TPK+19, VdS00, Vet92, Wal01a, Wil94, YST08, Zel95, DDLM95, EO15, FH97, FCS+12, FKB08, JC17, MSCMC15, NSBR07, NF94, OKW95, PGD18, PSH+20, RBA17, RCG95, SCB14, SCB15, SKK+12, SK+14, WRS16, YPA94, DvdLVS94, FCS+12]. Dynamically [HDW21, SSS99].

DynamicPVM [DvdLVS94]. Dynamics [BST+13, BCGL97, DR97, JFY00, KBM97, dFMBdFM02, MH01, OS97, SZBS95a, SA93, TDBEE11, TEGM09, YWC15, ZB94, AL94, Ais+21, ABG+96, AGMJ06, BvdB94, BHS18, BvdSvD95, BKB+94, BMPZ94b, BMPZ94a, CC00b, FHS099, HSI18, HVSC11, JAT97, JMS14, KFA96, KPK13, KR13, LHZ+20, LSMW08, NS20, OKM12, PARB14, PBK99, PIR+20, RS22, RBB15, SPE95, SZBS95b, SM15, TG94, WPH94, XR21].

Dynamische [Wil94]. dynamite [IvdLH+00, IHVA+00]. Dynamite/DPVM [IHVA+00]. dynamo [Hol95]. DySel
Enabling [APbF16, BGG+15, CLSP07, DGB+14, GBH14, GBH18, HJYC10, NPS12, TY14, ZPI06, BR04, MA09, SHHC18, WDR+19].

encapsulation [DREUE12], encoding [AAA16, PGBF+07, SM12].

endpoints [LLH+14].

energies [TKP15].

Energy [BPG94, CBB+20, CBB+21, EGR15, KFL05, LML+19, RBAI17, SPB+17, VW92, FKLB08, KN17, LRLG19, MNYN21, PT+16, TDG13].

Energy-Aware [EGR15].

Energy-Efficient [SPB+17, LML+19, MNYN21, TDG13].

Engine [Wal01a, NPP+00a, Wal01b, WGG+19].

Engineering [Ano98, BPG94, BP93, EGH+14, IEE96h, KaM10, LSB15, LF+93a, MS02a, MBS15, Nag05, SM07, Str94, DMW96, IEE94c, PW95, RMS+18, Sil96, LF+93a].

engineers [HW11].

Engines [SLJ+14, HSW+12, SHM+12].

Engine™ [OIS+06].

English [Wi94].

Enhance [AR01].

Enhanced [Ano98, CDHL95, CDH+95, FMSG17, KY10, PLR02, Saa94, BR95b, FE17a, FE17b, TSCS14].

enhancement [ARL+94, Boi97].

Enhancements [BDG+95, BCKP00, DM95b, DM95a].

Enhancing [BFIM99, CMZ99, FSC+11, HMS+19, IPG+18, MTPV96, MSC15, OFA+15].

Ensemble [Cot97, Cot98, BY12, FH97].

Ensemble-Based [FH97].

ENSOLV [AMS94].

Entwicklung [Sei99].

Environment [BDGS93, BFG+10, BFM07, BGL00, CHP+01, CTKO1, DLB07, DI02, DHHW92, DHHW93a, DLL00, FTVB00, FWR+95, GJN97, GL97a, HRSA97, KBA02, KKH03, KDL+95b, KVH97, LC93, Lus00, MSOR01, MM02, MFG+08, MSS97, NJ01, Ong02, Rol94, SDN99, SGL+00, SGHL01, TTP97, WL96a, ASAK9, ABG+96, BDG+92b, BDG+94, BK96, BT96, CEF+95, CLLASDP99, DZ96, DL10, DHWH93b, EASS95, FMBM96, FB95, Fun98, Fra95, GBR97, GGH99, GPL+96, GkLyCY97, HZ94, IJM+05, IvdLH+00, KCD+97, Kat93, KDL+95a, Ko95b, KFSS94, wL94, MSL12, MK97, NP94, PES99, PVKE01, PQ07, RNPM13, SSKF95, Sch93, SPK96, SBF94, SWC94, Skj93, SSS95, TJD09, TSCS14, Tho94, WCC+07, WL96b, WLCO7, ZPLS96].

environmental [ANS95].

Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GFB+03, Laf01, Mat94, Mat95, MFC98, PS01a, RB01, SHH94b, SSSS97, SCL00, TAH+01, ACGdT02, ARL+94, ALR94, ADDR95, AMV94, Bon96, BFM99, CDH+94, CK99, DR95, EO15, HS93, HVSH95, LC07, LGMDRA+19, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96].

environments-the [CDH+94].

EPS [GT94].

EPS-APS [GT94].

Epstein [BL95].

Epstein-Nesbet [BL95].

Equation [ES11, LZ97, SAS01, VRS00, DM12, LBB+16, LYSS+16, MS95, NP94, ON12, Ols95, Pri14, iSYS12, SBS+16, YSSM+16, YSMA+17].

Equations [An98, BG95, GK10, Huc96, LLY93, LLM+12, MTPB95, MKK21, ORA12, ZB97, BHW+12, Che99, DFSW19, IM95, JK10, Jou94, MPS20, MM11, NF94, RBB15, SP11, SMSW06, ZZ+14, diH94].

Equi [LTRA02].

Equi-Join [LTRA02].

equivalencing [LLG12].

Era [ABB+10, CZG+08, CGKM11, EdS08].

Erratum [An01b, HF14b, Wal94b].

Error [DFC+07, SSSLW10, HPS+12, HPS+13].

Errors [FCLG07, DPFT19, SD16].

Erweiterung [GBR97].

ESA [Wi94].

ESBMC [MdSAS+18].

ESBMC-GPU [MdSAS+18].

Espoo [RWD09].

ESPRIT [CDH+94].

Estimation [GBK10, TSN21, WZM17, WQKH20, YNJS21, AMHC11, CCU95, GB94, JMdvG+17, KS13, ZWH95].

Estuarine [LRQ01].

Ethernet
Explicitly [Mai12, SYR+09]. exploit [ZP106].

Exploitation [GGL+08, GAM+02, BK11, GAM+00].

Exploiting [Add01, AML+99, Bri10, FKLB08, HEHC09, KFL05, LWKA15, LFW02, NAAL01, VGP+19, Nob08, SWCB20, THH+05].

Exploration [AMuHK15, HSO+21, MZLS20, OFA+15, ABDP15, GE95, GE96, PDY14].

Explorations [BGG+15]. Exploring [CPM+18, IFA+16, IMS16, LGMdRA+19, MBKM12, MTU+15]. Expose [SAL+17].

Exposing [SD16]. Exposition [IEE95d, LF+93a]. EXPRESS [KS96, Ahm97, FK94, LH95, SHH94a, SHH94b].

Express [HLK+20]. Expression [BN12, GDM18, KH15, Per21, Sur95a].

Expressions [VZT+19, SFLD16]. expressive [Trää12a, YLC16]. Extend [DFA+09]. Extended [BR02, Röt19, HTA08, SS99]. Extending [ABB+10, BCC+00a, BCC+00b, BDB+13, CS96, CG99a, KDT+12, LMRG14, Mar03, OFA+15, RGDM16, SDV+95, TMTP96, CG96, GGLH+96, KSC+19, LRG+16].

Extensile [BL07, GS94]. Extension [AELGE16, BGR97a, CASAGR98, VAT95, Hum95, JH97, SG91, SC95, ZT17, GBR97].

Extensions [Fis01, GOM+01, GHLH+98, HVA+16, HE15, DPSD08, HP05, Kat93, VLMC+20, ZCBBD22, Ano99c, Ano99d].

Extent [KL11]. Extent-Based [KL11].

exterior [HMKV94]. external [BBB+94].

Extraction [CBL10, HLO+16, RTN21, dAT17].

Extreme [MdSC09, ZKRA14].

Extreme-scale [ZKRA14]. eyes [Str94].

Facility [KG96, SHTS01, KZCS96, LHCT96].

Factorisation [BB18]. Factorization [KF16, OPJ+19, AZ95, BSvdG01, BRS92, DG95, KPB16, WLC07]. Factorizations [TD98, LC97b].

Fail [LFS92, LFS93a, LFS93b]. Fail-safe [LFS92, LFS93a, LFS93b]. Failure [BBH...13a, CRGM14, SRS+19, BBH+13b, CGH+14, BDB+13]. failure-aware [CGH+14]. failures [JS13]. Faithful [KLR16]. FALCON [HCC+20].

Fast [ADGA20, Ben01, BHS+02, BDA+18, BBH12, CS14, DMK19, DFN12, EM02, HKMG19, Hog13, Ho95, FJGRF12, JMdVG+17, KK19, LYP19, ILM+H+21, PSHL11, PR94c, PB+01, RB01, SE02, SS09, STY99, SR11, TPLY18, UP01, WTR03, AIIS+21, KKB+21, Lan09, LCL+12, NYNT12, STA20, TDG13, YULM+T+17, YLZ13, YBZL03, ZA14, AAB+17, DBLG11, PFG97].

Faster [Tsu12, ZG95a, ZG96].

Fat [Zah12]. Fat-tree [Zah12]. FASTCOP [CF01]. Fault [BBC+02, BCH+03, BHK+06, CF01, CFDL01, FDBD01a, FBVD02, FD02a, FD04, GFB+03, GKP97, GJR09, GL04, Gua16, IEE95c, JSH+05, LMRG14, LGM+20, LNLE00, dLR04, MSF00, RPM+08, TS12a, WC09, Wl93, BCH+08, CLE+20, FDBD01b, FDBD02, HG12, LRG+16, LMG17, LS08, MB21, PKD95, RG22, SG05, WDR+19, ZHK06, FD00].

Fault-Management [GJR09].

fault-tolerance [CLE+20, WDR+19].

Fault-Tolerant [BHK+06, FD04, GFB+03, IEE95c, JSH+05, LMG17, LS08, MB21].

Faults [LAdS+15].

FCRC [ACM96]. FD [And98].

FD-TD [And98]. FATTIC [LC93].

FDTD [DSOF11, VM94, WGG+19]. Fe [Old02, RV00, BJS99]. feasibility [KGB16].
Feature-driven [Qu95]. Features [GLT99, GLT00b, GLT00a, GLT12, KAHS96, Anoo0a, BPJ99, CR99, IMS16, LSB+20, WKS96, ZKRA14, dAT17].

February [Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97c].

FEM [EVMP20, GEW98]. FEM-Systeme [GEW98].

Fermi [SP11, WKP11]. fermions [GM18].

FETI [KLR +15]. few [NS16]. few-body [NS16].

Feynman [NS16]. FFT [DMK19, DALD18, GB98, JKM +17, NSM12, SH14, WJB14]. FFT-Based [WJB14]. FFTs [EFR +05].

FFTW [KT10]. FHP [BMS94a].

Fibonacci [GFJT19]. Field [KNT02, Goeo2, KKB+21, KL20, RS22, TKP15]. fields [BALU95, RS94f, SM07, IEE95c].

Fine [AZG17, BBG+10, JCP15, SFL+94, TCM18, YSS+17, BK11, KW14, LZYH19].

Fine-Grained [AZG17, JCP15, SFL+94, BK11, KW14].

Finite [DK20, DFN12, KK99, MMD98, MS02b, MAIVAH14, MKK21, ODM01, OMK09, Pr14, RHG+17, SM02, UZC+12, VM94, VRS00, BB93, CdOO+20, DS22, GO19, Gra09, FPGG12, HE13, HMKV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, PSV19, Ram07, TOC18].

Finite-Difference [UZC+12, VM94, CdOO+20, HE13, NZZ94, Ram07].

Finite-Element [MS02b, MKK21, BB93, KME09, KEGM10, Nak05a, Nak05b].

Finland [RWD09].

Firedrake [RHM+17]. First [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kum94, Nar95, PBPT95, SSP+94, USE94, AH95, BS94, GM18, MMDA19, PTMF18, PBPT95].

Floating-Point [LWSB19]. Florida [ACM98b]. Flow [BHW+17, BGD12, CGZQ13, CCBPA15, FM90, MK17, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTHD99, HSM19, JAT97, LL16, MBKM12, MH18, Ols95, PTT94, RM99, SCC95, SU96, TS12b, TOC18, TGS+20].

Flow-Based [BHW+17]. Flows [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kum94, Nar95, PBPT95, SSP+94, USE94, AH95, BS94, GM18, MMDA19, PTMF18, PBPT95].

Flowshop [CB11]. Fluid [DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TGEM09, AMS94, AFST95, EP96, ED94, HK94, HTHD99, HSM19, JAT97, LL16, MBKM12, MH18, Ols95, PTT94, RM99, SCC95, SU96, TS12b, TOC18, TGS+20].

Floating-Point [LWSB19]. Florida [ACM98b]. Flow [BHW+17, BGD12, CGZQ13, CCBPA15, FM90, MK17, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTHD99, HSM19, JAT97, LL16, MBKM12, MH18, Ols95, PTT94, RM99, SCC95, SU96, TS12b, TOC18, TGS+20].

Fluid [AZG17, BBG+10, JCP15, SFL+94, TCM18, YSS+17, BK11, KW14, LZYH19].

Fine-Grain [AZG17, JCP15, SFL+94, BK11, KW14].

Fine-Grained [BBG+10, TCM18, YSS+17, LZYH19].

Finite [DK20, DFN12, KK99, MMD98, MS02b, MAIVAH14, MKK21, ODM01, OMK09, Pr14, RHG+17, SM02, UZC+12, VM94, VRS00, BB93, CdOO+20, DS22, GO19, Gra09, FPGG12, HE13, HMKV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, PSV19, Ram07, TOC18].

Finite-Difference [UZC+12, VM94, CdOO+20, HE13, NZZ94, Ram07].

Finite-Element [MS02b, MKK21, BB93, KME09, KEGM10, Nak05a, Nak05b].

Finland [RWD09].

Firedrake [RHM+17]. First [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kum94, Nar95, PBPT95, SSP+94, USE94, AH95, BS94, GM18, MMDA19, PTMF18, PBPT95].

Flow-Based [BHW+17]. Flows [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kum94, Nar95, PBPT95, SSP+94, USE94, AH95, BS94, GM18, MMDA19, PTMF18, PBPT95].
Formalizing [FGRT00]. Format
[BBH12, MDM17, CBHGL19]. Forschung
[Ano94c]. Fortran
[Ano97, Ben95, Bra97, GBR15, TOC18, AC17, Ano98, AS14, BW12, BC19b, DZ98b, Don06, GML+16, HE13, HH14, HZ99, KaM10, Kuh98, KLM+19, LC97b, LCC+03, MWO95, iSYS12, SM03, SMCH15, SC19, TBG+02, Wal02, YBMCB14, YZ99, YSM+17, vHKS94]. Fortran/PVM
[MWO95]. Forum
[Str94]. Forward
[RMM+12, BDB+13, forward]. forwarding
[CXB+12]. foster
[SM12]. Foundation
[Gei01]. Foundations
[KSTM20]. four
[GSMK17, MG05]. four-atom
[MGG05]. four-particle
[GSMK17]. Fourier
[DBLG11, BCM+16, YW21]. Fourteenth
[IEE95b]. Fourth
[Ano89, IEE93d, IEE95k, Sie92a, Sie92b, Ano94i, IEE96g]. FPGA
[KNH+18, LLVM21a, LLVM21b, MKP22, MTU+15, MLZ19, PWP+16, PGF18, RGB+18, WTH17, WHMO19, WTS19]. FPGA-based
[WTS19]. FPGA-Platform
[WTH17]. FPGAs
[AJYH18, CJPC19, JCP+20, LLVM21a, LLVM21b, LWZ18, MC17, MKP22, OFA+15, PG5+13, WZHZ16, Röhh00]. fractal
[Wu99]. fragment
[KS15a]. fragments
[OA17]. frame
[MNYN21]. Framework
[Ben18, DGM93, FC05, GGGC00, GR07, GDDM17, HDW21, MGL+17, NSZS13, PWP19, PMvdG+13, RBP+21, SSB+05, SSS12, Sun99a, Sun90b, VT19, WZHZ16, Ano93c, BA06, BL0B18, BR04, BAG17, EFR+05, FLMR17, GM13, HDZ+20, JCP+20, KKM15, KJJ+16, KJJ+08, KH10, LLVM21a, LLVM21b, LME99, LGG16, LCMG17, LS08, MW21, PTL+16, RSC+15, SL00, TDB00, XJR21, YLC16, YWTC15, ZT17, dAT17]. Frameworks
[OP10, ASS+17, KDSO12]. France
[ACM90, BR95a, BFMR96, CHD07, DE91, FR95, JPTE94, MCD+08, VW92, YH96, GA96, IEE94c]. Francisco
[BBG+95, IEE93a, IEE94g]. Frankfurt
[Tou96]. Frankfurt/Main
[Tou96]. Fredericton
[BA06, BLVB18, BR04, BAG17]. Free
[DK20, KK19, PKYW95, CP15, MKK21, SOA11, Zab12]. freedom
[KTJT03]. Frequency
[IEE94e, SDR+21]. friendly
[SVC+11]. Frontiers
[ACM06b, IEE94a, IEE96c, Sie92a, Sie92b, Sie92a]. Frontiers'95
[IEE94a]. Frontiers'96
[IEE96c]. FSI
[HAA+11]. FT
[FD00, LDLE00, WTS19]. FT-MPI
[FD00]. Fujitsu
[Ano98, AKL99, BHS+02, SWJ95, SH96]. full
[CCF19]. full-orbit
[CCF19]. Fully
[GA96, ZL17, SSB+16, VLCM+20]. Function
[AGS97, Bri02, HHS17, MJDVG+17, KR17]. Functional
[ACM90, AJF+06, CNM11, NW98, SIE97, CBHH94, EP96, HMK+20, HSE+17, SFDL15, WZWS08]. functionality
[BF1M99]. functionally
[PSV19]. Functions
[BKGS02, Brü12, Hat98, MDM17, CDGM96, HXW+13, PN01]. Fundamentals
[Wal96a]. fused
[TW12]. fusing
[BAC20]. Fusion
[FHK01, FMMF15, LK20, PKE+10]. fusions
[FFM11]. Futhark
[HSE+17]. Future
[Dar01, IEE93d, Mat00a, BDG+93b, SWJ95, SH96]. Futures
[Kuh98]. fuzzing
[LLCD15]. Fuzzy
[Ano93b]. GAMMA [CC0a]. Gap
[AAB+17, ASS+17]. Garbage
[GTS+15]. Gas
[BMS94a, BBK+94, BMS94a]. GASPI
[SIC+19]. gather
[MTK16, Pro21]. gauge
[BW12]. Gauss
[BBG95, LM99, OS95]. GCel
[SHH94a, SHH94b]. GECCO [B+05]. Geist
[Ano95b, NMC95]. gem5 [PHO+15].
gem5-gpu [PHO+15]. Gemini [SW+S12].
gems [Fel04, mH12, gN08, PF05]. Gene
[GDM18, PCS94, AAC+15, BGH+15,
EFR+15, KMH+14, LM13, MV17, MSW+15].
gene-finding [PCS94]. Gene/L
[AAC+15, BGH+15, EFR+15, MSW+15].
Gene/Q [KMH+15, LM13, MV17].
General [AJYH18, Che10, IHI04, MW98,
SK10, SZBS95a, Sun94a, TPV20, ABDP15,
ADLL03a, ADLL03b, CBM+08, FLD96,
KPNM16, PF05, RSBT95, SSD+20,
SZBS95b, SMWS06, YPA94].
General-Purpose [AJYH18, Che10, SK10,
ABDP15, CBM+08, KPNM16, PF05].
generalised [TGS+20]. Generalized
[DFKS01, FKS96, BSC99, SD99, van93].
Generating [AZG17, CGL+93, ER12,
IJM+05, PKB+16, SFLD15]. Generation
[AB93a, CC17, FADF15, Gei96,
GYSY21, HT80, JFY00, LTDD14, RGD13,
SSK+18, SSB+17, TGBS05, VPS17, AB93b,
CPKG17, CPR+95, DCD+14, DWM12,
EYP+20, KHS12, KPL+12, KH10, LCH+22,
MMDA19, RBC20, SP11, TGKL19, WKS96,
WMP14, ZKRA14]. generational
[WK08a, WK08b, WK08c]. generative
[MA06]. generator
[Lan09, STP20, TNIB17, YL09]. generators
[CCS19]. Generic [ARS89, AKL99, GB98,
BAS13, BM13, ZT17]. Genetic
[TVB00, MTS89, MSCW95, PB12,
TGKL19, WKS96, Wal01a, WHDB05, AB13,
BB95a, FGST99, HPLT99, JPL22, RJ95,
Wal01b, B+05]. genetics [LM99]. Geneva
[IEE97b]. genomic [SmD10]. genomics
[CJP19]. GeoComputation
[ABr96, Abr96]. GeoFEM
[NO02b, NO02a, NAK03]. geomechanics
[BJS99]. Geometric
[DDP+19, TK19, VGP+19]. geometrical
[FMS15]. Geometry
[STK08, HoH95, STT96]. geophysical
[Has95]. Georeferencing [GGCS98]. Georgia
[USE00, UCW95]. German [EGH99,
GBR97, Gra97, GEW98, SEI99, Wer95].
Germany [BDLS96, GH94, KGRD10,
MTWD06, MsDC09, PSB+14, Sch93, Tou96,
Ano93a, BPG94, Cal94, GHH+13, WPH94].
Gesellschaft [Ano94c]. get [Str94].
Getting [Nob08]. GF100 [WK11]. gHull
[GCN+13]. GHz [Ano03]. Gibbs [TKP15].
Gigabit [CC00a, HeF05, EGH99, OF00].
Gigane [GT01, Tröne, BT01]. Gis
[CFPS95, CCMS97]. Give [DZ98b]. glass
[JRG21]. Glenda [SBF94, Bic95]. Global
[BG00, DSS00, Pan95a, Ros13, SHTS01,
STK08, SWH15, TTP97, HWS99, HCL05,
HEHCO9, LF+93a, Str94, Wan02, YLZ13,
Zah12, ZWS95]. Globally [BHS+20].
GLUE [Rah98]. GMRES [DiH94].
Gmünder [Vo93]. GNU [YSMA+17]. go
[KC94]. good [Mat03]. Göttingen
[Ano94c]. GP [LWB15]. GP-GPUs
[LWB15]. GPFS
[AHP01, BIC+10, PTH+01a, PTH+01b].
GPGPU
[AAB+16, ASB18, BGG+15, CVPS19,
CPM+18, HA11, HCZ16, JKN+13, LME09,
LDJK13, LCY19, LYZ13, MKBM12, PTG13,
TWLL19, TY14, YZ14, YNJS21, YEG+13].
GPGPUs [CS19, JMdVG+17, LSS15].
gpperMax [WGG+19]. gprof [GLJ11].
GPU [Che10, KAJ13, SPB+17, AKL16,
ADGA20, AHP17, BDP+10, BR12,
BOD+12, BCD+15, BDD+20, BAC+20,
BMS19, BWV+12, BBH12, CLOL12,
CBY18, CBGPA15, DSU20, DF17, DS22,
DS16, DK13, DALD18, DSO11, DWL+10,
DML+12, EBB+20, ER12, FA18, Fer04,
FMM11, FSSD17, GCHN+13, HSO+21,
HVA+16, HCC+20, HSE+17, HDW21, HK09,
HK10, HZG08, mH12, JDB+14, JLS+14,
JR13, JNL+15, JPL17, JPT14, KDS012,
Kha13, KSL+12, KPL+12, KF16, KI17,
KPNM16, KEGM10, KO14, KNH+18,
KMM15, LWSB19, LV12, Lee12, LRG14,
LLC13, LML+19, LW20, LAD16, LYGG20,
MMO+16, MBS20, MPZ21, MdSAS+18.
MGL+17, N RdA+20, Ngu08, NWT21, NMS+14, NSM12, OFA+15, Pan14, PDY14, PGdCJ+18, PF05, PS19b, Pri14, RSC+15, RS19, RBC20, RMM+12, Sai10, SK10, SdM10, dO5MM+16, iSYS12, SS09, SN19+19, SS+20, SCSL12, SIRP17. GPU

[SBK21, SAP16, SYL19, SD16, SSB+17, SKM15, SKB+14, SG14, TBB12, TS12b, TMT+20, TPV20, VZ+19, VT19, WZM17, WJA+19, WGG+19, WKP11, WYZ+19, XJR21, XR21, YULM+17, YHL11, YCL14, YSS+17, YSS+19, ZJHS20, ZGNZ22, ZRQA11, ZGZ+14, ARYT17, PHO+15].

GPU-Accelerated

[KA13, KF16, SCSL12, PGdCJ+18].

GPU-Aware

[Pan14, FA18].

GPU-based

[MMO+16, SS09].

GPU-clusters

[NWT21].

GPU-code

[EZBA16].

GPU-enabled

[SBK21].

GPU-Job

[PS19b].

GPU-programming

[HSE+17].

GPU-Resident

[JDB+14].

GPUMP

[ZC10].

GPUrpc

[IFA+16].

GPUs

[AJYH18, ABG20, BLVB18, BY12, BC19b, BDA+18, CPJC19, CPFG17, DS13, DS16, GNP19, GML+16, GFPG12, GPC+17, GM18, HTJ+16, HLP10, HP11, HLP11, Hos12, HWW21, IFA+16, JKM+17, JAK17, KGB+09, KKM15, KKL11, KC19, KVGH11, KW20, LWKA15, LBH12, LRBG15, MA09, MYL21, NS20, ÔN12, OIH10, PP16, PSV19, PB12, SHLM14, SN1+20, STH22, SDB+16, SKK+12, TPK+19, Tsz12, VLMPS+18, VY15, WRSY16, WQKH20, WJ12, WJB14, YLZ13, YSWY14, ZLWW20, ZC10, Zho21, ZZZ+15].

gpuSPHASE

[WMRR17, WRMR19].

gpuVerify

[BCD+12].

GQ

[RG+00].

gQoS

[LYGG20].

GRACE

[YKI+96, ZRQA11].

GRADE

[DDL00].

graded

[PSV19].

Gradient

[BG95, GFPG12, SK+18, BAC20, KN17, MM92, Ols95].

Grain

[AZG17, IOK00, KOI01, MJPB16, NIO+02, NIO+03, BK11, JCP15, KW14, SFL+94].

Grained

[PSV19].

Gradient

[BG95, GFPG12, SSK+18, BAC20, KN17, MM92, Ols95].

Gravitational

[ZSK15, KM10].

Greece

[CD01, CDND11, SM07, TG94].

green

[PTL+16, LWKA15].

Grid

[AB93a, CGB+10, CLLO3, DPP01, Fo198, KT02, Lao11, Liv00, MRB17, PLK+04, Rei01, SSK+18, TGEM09, AMKM20, AB93b, Eng00, GLM+08, KKS11, KTP21, PSV19, WYL12, AASB08, BR04, CCHW03, DCD08, FC11, GFB+03, GL02, KTP03, KGO+03, KSBS07, LC07, LS08, NSBR07, RPM+08, RTFR+07, SHTS01].

Grid-Adaptive

[KT02, KTP21].

Grid-Enabled

[Fo98, GLM+08, KTF03].

Grids

[NO02b, ACH+11, CC10, KBG+09, NO02a, NB96, TK19, XJR21, BBH+06, GR07, Ram07, SN01].

GROMACS

[BvdSvD95].

Gropp

[Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].
Gross [LBB+16, LYSS+16, SSB+16, YSVM+16, YSMA+17]. Ground
[HTHD99, NS16]. Groundwater
[MMD98, AFST95, E GDK92]. Group
[AD98, Ano98, Ara95, ACDR94, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DPK00, GN95, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RWD09, TBD12, UM97, WQKH20, BDW97, DLO03, MMU99]. grouping
[GOM01]. Grover
[LYZ13]. Growth
[PKYW95, BB95a]. GTS
[PKE+10]. Guest
[AM07, GSA08, GT19]. GUI
[VGS14]. GUI-awareness
[VGS14]. guidance
[SDJ17]. Guide
[Amo12, D+91, GBD+94, Lad04, Nov95, NMC95, Per96, Ano95b, BDG+91a, McK94]. Guided
[FDG19]. Guideline
[Tra12b]. Guidelines
[TGT10]. GVirtuS
[MGL+17]. Hack
[DLV16]. Hadoop
[LSM+18]. Hague
[Ano93f]. Halide
[RKA+13]. halo
[BBW19]. halo-swapping
[BBW19]. Hamburg
[PSB+94]. Hamiltonian
[ART17]. Handling
[DFC+07, FMSG17, LSB15, LGM00, RC97, FFCF99, LN+12, THRZ99]. Hands
[KmWH10]. Hands-on
[KmWH10]. Harbor
[BBC+00]. Hardware
[BGG+15, BWW+12, Bri92, BCP00, CDP03, DW02, EADT19, FGL+20, GJMM18, HSP+13, KF16, LSW11, MFC98, PSM+14, PKB+16, SSK+18, SSSLW10, ZGNZ22, vdLJR11, ER12, GGL+08, PMZM16, Ra99, RS21, SBG+12, SH94, SWS+12, YAJG+15, ZLS+15]. Hardware-Based
[CDP03]. Hardware-oblivious
[HSP+13]. harmonic
[GSMK17]. Harness
[EBKG01, MS99b, PL96, FBD01a, FBD01b, FBVD02, FD02a, FD02b, MSF00, Gei98]. HARP
[FDG19]. Harrogate
[CJNW95]. Hartree
[CBHH94, MDA19]. HASEonGPU
[EZBA16]. Haskell
[WO97]. Hate
[Dan12]. Hawaii
[ERS95, ERS96, HS94, MMH93, ZL96]. HCA
[KBG16]. HDL
[Kat93, KMK16]. HDMR
[KD12]. Heading
[Sch99]. Heaps
[GFTJ19]. Heat
[SAS01, NP94, iSYS12]. Hector
[RFRH96, RRG+99]. Heijen
[Van95]. held
[AGH+95, GA96, JB96, KG93, MMH93, Old02, R+92, SPH95, TG94]. Helios
[SPK96]. Helmholtz
[HMKV94]. Helps
[Stp02]. HeNCE
[BDG+92a, BDG+92b, BDG+93a, BDG+94]. Hénon
[JPT14]. Herzliya
[IIE96h]. HeSSE
[MRV00]. Heterogeneous
[ABB+10, BDG+93a, BDG+93b, BL95, BCP+97, BGR97b, BCP00, CMMR12, CLO18, CLBS17, DKK20, DGM93, DGMJ93, FDG97a, FDG97b, FL98, Fos98, GS91b, GDDM17, HSO+21, IIE93f, KR09, KCR+17, LC93, LSB+18, MRV00, MM01, MM02, NTR16, OPJ+19, PD98, PHO+15, RKVP19, SM19, SMS00, SG10, TQDL01, VLO+08, ACGD02, ADB94, ADD95, AMV94, BDG+92c, BDG+94]. BALU95, BRR99, BAG17, CCM12, CFP99, FBM99, GKEZ12, GCN+10, GDEBC20, GKF13, HHS8, HK94, IP+18, KSG13, KSL+12, Kos95b, KSS+18, LBG+20, LCL+12, LR06a, Lec12, Mai12, MLS12, MM03, NP94, NEM17, Pen95, PSB+19, RCFS96, RKVP18, SCJH19, Skj93, Smi93b, Sun94b, Sun95, TBD12, TMW17, TKP15, TDG13, VB99, VGP+19, WCC+07, WZW21, YST08, YSL+12, ZJDW18]. HeteroMPI
[LR06a, VLO+08]. Heuristic
[BHM96, STV97, WH94]. HI
[ERS95, HS94, IEE96e, ACM97a]. HICSS
[ERS95, MMH93]. HICSS-26
[MMH93]. HICSS-29
[ERS96]. hiCUDA
[HA11]. Hierarchical
[BM01, BFSN01, HA10, HL17, MB18, MALM95, RR02, ADMV05, BD03, GJMM18, LZ2+20, OKM12, YPZC95]. hierarchies
[SY+09]. High
[ACM97b, ACM98a, ACM98b, ACM00]

I-SPAN [LHHM96, Li96]. I-WAY [FGT96]. I/O [Bos96, CFF⁺96, DRUE12, IRU01, IBC⁺10, KLH⁺20, LkLC⁺03, kLLC⁺06, LPJ98, MMD98, MV17, MC18, MGC12, MG15, NFK98, OWO98, FS098, PLR02, RK01, SBQZ14, SR98, Tha98, Tsn07, WSN99, ZJDW18]. IASTED [Ham95a]. IBM [AL93, Ano03, BB⁺94, BGBP01, BR95c, BR95b, Bri95, CEE00, CDM93, FHP94b, FHP⁺94, FHP⁺95, Fra95, FWR⁺95, GLJ5d, HSMW94, HMKV94, Heb93, JF95, KB98, KAC02, KHS01, KMH⁺14, LC97b, MP95, MW93, MABG96, NMW93, WZWS08, XH96]. IBM-SP1 [FHP94b]. ICA [IEE96d]. ICAPP [Nar95]. ICCMSE [SM07]. ICIP [IEE94b]. ICPP [Agr95a]. ICS [RV00]. ID [DGG⁺12]. Idaho [Str94]. Ideas [IEE95d]. identification [HPLT99]. Identifying [CTBT21]. identity [KN17]. IEEE [ACM97b, ACM98b, ACM04, ACM05, Bha93, IEE94e, IEE94g, IEE95b, IEE95a, IEE95k, IEE96g, IEE96f, IEE96d, IEE02, Nar95]. IEEE/ACM [ACM04]. IFIP [Boi97, DR94, PSB⁺94]. IFS [AHP01]. Igniteg [SBK21]. Igniteg-GPU [SBK21]. Igniting [ACM03]. II [DE91, GE95, HS94, BPS01, BWW⁺12, EM00b, GAVRRL17, Sta95a]. III [BPG94, BP93, DSM94, GE96, Has95, OKW95, SSGF00]. ILDJIT [CARB10]. I'll [Har94]. Illumination [STK08, ZWHS95]. ILU [ABF⁺17]. ILU-preconditioned [ABF⁺17]. im [Gra97]. Image [DYN⁺06, FDL91, FLS20, FJB⁺00, GA96, GPC⁺17, KBA02, KS01, LSZL02, MC18, NJ01, PLR02, RRB01, WN10, WYZ⁺19, ARL⁺94, ASB18, DZZY94, GDC15, JC96, KKLL11, LK20, RKBA⁺13, SLS96, UH96, Wa99, YULMTS⁺17, YPZC95, YZPC95, dAT17, SBB20]. Imagery [GGCM99, GGC001, GCGS98, GGGC99]. Images [SSB21, Uhl94, Uhl95b, VLO⁺08, NAJ99, RTN21]. Imaging [NH95, Has95, LM13, Pat93]. Imbalanced [Pro21]. imbalances [MLVS16]. IMEC [ZL17]. immunodominance [ZW⁺17].

Impact [ADLL03a, ADLL03b, BRU05, Brü12, TSS00a, WHDB05, DO96, FS14, SHHC18]. impacts [Str94]. Implement [GM95, Gro19, PPT96c]. Implementation [AB93a, AKL99, BGC⁺15, BGBP01, BPS01, BG95, BHP⁺03, BBS99, Ben01, BP98, BCD⁺15, Bjo95, BJS97, BJC⁺10, BM02, BRM03, BMS94b, BMG07, BDA⁺18, CGC⁺02, CFM95, DYN⁺06, DAK98, DWS⁺21, EFR⁺05, ES11, FH97, FD04, FHSO99, FSXZ14, FJBB⁺00, FHPS94a, FHPS94b, FHP⁺94, FSLS98, GBH99, GB98, GBS⁺07, Gro02a, HPP02, HMKG91, HRZ97,
Implementation

[Sto98, SNMP10, Sur95b, Swa01, SL95, TSC41, TP15, TD15, TA14, TV15, TV15, VGR16, VM95, Was95a, WM17, WM1919, YPA94, ZLS95, dH94, dIAMCFN12, van93].

Implementations

[AKK94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG10, DFP19, FB94, Gro02b, kLCC06, LCW03, Mar02, ORA12, Sap97, TSCa12, TEG19, VS00, WT12, ZDD07, CLSP07, ER12, ED94, GML16, ICC02, KWEF18, MKP16, NN95, Pri14, RLFdS13, WLN18, WT11, YCL14]. implemented [BBDH14, EP96, VLC120].

Implementing

[CDT05, DP97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MMH98, MS99c, MSB97, SSC96, SS99, SMT96, SGH101, SCC95, Tra02a, Wil93, BWT96, LHZ97, YX95]. Implementor [GL95b]. Implicit

[BCG110, PCY14]. Importance-Driven

[PCY14]. Improve [KBS94, SKH96, Tha98, ZWL21, GKH1, HD00a, RHG96].

Improved [Trö02b, AFG21, MNO16, XJR21, dIAMCFN12]. improvements [DPS08]. Improving [CGZ13, DZ96, DCP12, DCPJ14, GSY13, HE02, IRU1, KLH20, KH12, KW20, KK02b, LB98, MK97, MPZ21, PTG13, RSC15, SM12, SPBR20, SCL00, XF95, CZ96, JKN13]. Imputation [Zho21]. In-depth [MKP22]. in-house [ZLZ11]. in-kernel [CZP21]. In-Memory

[CLL18, ZL17, CRM14, HSP13, SBK21]. In-Place [LTS16, HSE17, PSHL11]. Including

[YK18]. Independent

[BB100, BRU05, BDA18, CSW12, CBS18, CDMS15, DiN96, MV17, YBL01]. Index

[DALD18, LAD16]. Index-Digit

[DALD18, LAD16]. Indexers [Wal01a]. Indexers/Crawler [Wal01a]. Indexing

[LTR00]. India

[CGB10, IEE96a, Kum94, PBPT95]. indicator [FSV14]. Industrial

[BPMN97, DHHK97, ALR94, ABC95a, ABC95b, BT96, EKT99, Was96, Kon00]. industries [Ano93a]. Industry

[DM98, Ano94f]. Industry-Standard
inefficiency [HGMW12]. Inertial [Str97]. Infer [VBB18]. Inference [BBD+20, LAdS+15, TVCB18]. Inference-Based [BBD+20]. InfiniBand [LCW+03, LVP04, LWPO4, PK05, PRS16, SPK+12, ZLP17, SWHP05]. InfiniBand-based [PK05]. inflation [OdSSP12]. influence [Gra97]. influencing [KSC+19]. inform [FGL+20]. Information [Ano98, CGB+10, Ano93c, CG99b, Gro99, IMS16, MMR99, WADC99, PSB+94]. infrastructure [GFIS+18, WLR05]. infrastructures [GWVP+14]. Initial [LLH+14, VDL+15, AL96, LSR95]. Initiated [SSB+05]. initiatives [Sun95]. initio [SSGF00, SEC15]. Injection [RRAGM97, SAL+17]. Inn [IEE93c]. Innovation [ACM03]. Input [CF+94, YNJS21, CPKG17, LCH+22, SHM+12, JWBJ09]. input-aware [SHM+12]. Input-Output [CF+94]. Input/output [JWB96]. Insight [IEE02]. Insights [FG+20]. Inspection [BPMN97, DLLZ19, DLLZ20]. inspired [NEM17, TDB00]. instances [RBAI17, ZLZ+11]. Institute [Old02, TG94]. Instrumentation [MVFY95, Yan94]. Insurance [PZ12]. Integer [ASA97, CF01, Ger18, WLC+22, SHM+12, JWBJ09]. Integrate [GLRS01]. Integrals [FBSN01, NS16]. Integrate [GLRS01]. Integrating [BCLN97, CM98, Fin00, GJP01, KJA+93, KAH96, wL09, STP+19, WTF014, TWFO09]. Integration [CGC+11, CSW97, FD96, FB94, MAIVAHL, Sei99, AL96, CSW99, KB13, RMS+18, RBB15, STA20]. Integrator [Per99, SP99]. Integrity [KQT+21]. Intel [Ano96c, Ano03, CBGL19, DSGS17, GDS+20, MP95, MKP22, OTK15, URKG12, VDL+15, YSMA+17]. Intelligence [BPG94]. intelligent [IEE95a, ZWZ+95]. Intel(R) [TBG+02, MMDA19, SB04]. INTenSities [ARYT17]. Intensive [LCW+03, Reij01, BFLL99, BKML95, LSM+18, SL94a]. Inter [KFL05, LAFA15, FKLBO8, LFL11, RS19, SDB+16]. Inter-Atomic [LAFA15]. Inter-Node [KFL05, FKLBO8, LFL11, RS19]. inter-workgroup [SDB+16]. Interaction [DMMV97, GFS99, NSLV16, Sou01]. interactions [PARB14]. Interactive [Coo95b, KAA13, NE98, RTRG+07, STK08, Coo95a, IJM+05]. Intercommunication [TMP16]. Interconnect [Brü12, SJ02, BWT96, SWS+12, TBD96]. Interconnected [Hus00]. Interconnecting [MC98]. Interconnection [MANR09, SB95, AV+16]. Interconnects [AJC+20, RA09]. Interface [Ano93d, Ano01b, BCFK99, BC19a, BDH+97, CHD07, Cer99, CGH94, CDND11, DFKOS1, DHHW92, DHHW93a, DBK+09, FKKC96, FSLS98, Gle93, GLS94, GL95c, GLDS96, GLTO06, HDB+12, HSA97, KS95, KGRD10, KKDV03, KKD04, LKD08, LkLC+03, LW97, MP198a, MP198b, MS98, MMS98, MMSW02, MTSW06, PS01b, RWD09, SSL97, TDB00, TWD01, TBD12, WDB96, Wer95, YHL01, Ada98, AD98, Ano93c, Ano94d, BCBR99, Br05, BDW97, BK00, BR94, CFKL00, CFF+96, CD01, CG99b, DK05, DBB+16, DS96a, DLM99, DKP00, DLO03, EYP+20, GRW+19, HYP+93, HKH+19, HRR+11, IMS16, JKN22, KOB01, KSI96, KBHA94, Kra02, NS91, Pie94, PR94a, RMS+18, SL94a, SWJ95, SDV+95, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, AMHC11, BC14, BBH+06, BR05, BDH+95, Co04, DED08, Din96]. Interface [FSG96, FGT96, FGG+98, GGHG+96, GLT99, GLS99, GLTO0a, GL04, Han98, ...
Jack [Ano95b, Ano96a, Ano99a, Ano99b, Nag05, NMC95]. Jacobi [BBDH14, CGU12, LM99]. JaMP [KBVP07]. January [ERS96, GE96, HS94, IEE95h, IEE96g, MHH93, USE95]. Janus [GP01]. Japan [SHM+10, SPE95, HHK94, IFI95]. Jason [Che10]. Java [ACM98a, Ano97, BCFK99, BDY99, Bra97, BK00, BKO00, CGJ+00, CFKL00, CLL03, DeP03, Fer98b, Fer98a, GGS99, KOB01, KVP07, LRW01, MSS08, MG97, NE98, RAS16, SMS00, SZZ99, TDB00, VGRS16, VG14, WN10, WSC99, YC98, YHGL01]. Java-based [WCS99]. Java-MPI [GGS99]. Java/CORBA [LRW01]. JavaNOW [TDB00]. Jaypee [CGB+10]. Jeff [Stp02]. Jersey [Bha93]. Jerusalem [DSM94]. Jiang [Ano95b, NMC95]. JMI [GDEBC20]. Job [KSC+19, NSS12, PS19b]. Jobs [GSHL02, OPM06, WDR+19, ZA14]. Join [BDG12, LTRA02, SML17, BMS+17, SML19, She15]. Joint [GT94, Ano03, YHGL01, Ano93c]. JOMP [BK00]. Jose [ACM97b, GE95, GE96]. JPEG [CLBS17, NU05]. JPT [BDY99]. JPVM [Fer98b, Fer98a, LGCH99]. Jr [ACM99]. Juggler [BLVB18]. Julia [Cra13]. July [ACM95b, ACM97a, Boi97, EV01, GA96, Has95, IEE93c, IEE96i, Lev95, PW95, TG94]. Jumpshot [ZLGS99]. June [ACM90, Ano94f, B+05, BG91, CGZ+08, CGKM11, CMMR12, DSZ94, DW94, D+95, IEE94e, IEE95c, IEE95i, IEE96d, IEE96h, KG93, LHH96, LI96, MCDs+08, MdcS09, R+92, SL94a, SHM+10, TG94, Vos03]. Jupiter [Str94]. Just [FKL08, FSSD17, KFL05, FK94]. Just-In-Time [FSSD17, FKL08]. JVMPI [DeP03].

LCMG17, LBB+19, LM13, MALM95, NS91, Nak05b, RBW+20, STY99, SCL97, SG14, SFLD15, WDR+19, YZ14, ZWZ05, ZZZ+15, BBH...13a]. levels [AML+99]. Leveraging [BBW19, HDB+12, NPP+10c, SHLM14, BPJ22, LFL11]. LFIB4 [Stp20]. LIB [NPP+00d]. libefp [KS15a]. libOMP [BGD12]. Libraries [BHLS+95, BWV+12, CGZQ13, DARG13, GFD05, IEE94f, IEE95], MLGW18, MM14, ARvW03, BCM11, BFD94, CRD99, DWS+21, GS94, PS07, Skj93, SDB94, SSG95, DHK97]. Library [AKL16, Ada97, BS21, Boo01, BLW98, CBB+20, CBB+21, Co005b, DHP97, EM02, FHK01, For95, GBF+03, GS197, Gro02a, HB96b, IKT00, JPT14, KBG16, MKK21, OD01, PLK+04, PS01a, RR02, Röt19, Saa94, SBG+02, Sta95b, SKH96, TD98, UTY02, WN10, YKL17, ZC10, Ada98, AMHC11, Arn95, CSS95, CGG10, CCS19, Co005a, DRUE12, DXB96, FBR97, Fan98, FKK+96b, GDC15, GO19, GLM+08, GL94, HB96a, HLM+17, Har94, Har95, KJM+17, JC96, KS15a, KN95, LR06a, MS96, PKB06, PS00b, RFIH+95, SCS96, SH96, TK19, VCLM+0, ZT17, CC95, McD96, Sum12]. Life [PZ12, Str94]. Lifting [vdLJ11]. light [LK20]. Lightweight [CKmWH16, DT17, FLB+05, KMK16, SWCB20, TCM18, FS95, HHWA21, Ott93]. Like [BST+13, BK00, BKO00, CGJ+00, HY20, KOB01, TSEE21, VGS14, CSS95]. Likelihood [TSN21]. Likelihoods [MSCW95]. LIME [DRUE12]. Limits [GB96, MBKM12]. LINDA [KS96, MSEP, BL99, CSS95, Gal97, Mat94, Mat95, TB00]. Linda-like [CSS95]. Line [BoFBW00, CGS15, Wis98, Bor99]. Linear [ASA97, BDT08, BG95, DDDH+19, Gao03, Huc96, LLY93, LZ97, MB18, MGMM97, MSB97, YKW+18, ZT1D19, van97, BS95, BAC20, BKvH+14, BAV08, BR99, CEGS07, DR18, Gra09, GFPG12, Jou94, LSB+20, LRLG19, MW98, MM11, OKW95, SCC96, SMSW06, VCLM+20, dCH93, dH94]. Linear-scaling [Ga003]. linearization [MH18]. Lines [NE01, YULMTS+17]. Link [BGR97b, SJ02]. Linked [WJ12]. Linköping [FF95]. LINPACK [JNL+15]. Linux [Sei99, USE00, SSSS97, Ano01a, GSN+01, MK04, OF00, PS07, PKB01, RST06, Sei99, SMTW96, Sle05, SGL+00, YL09]. Linz [Kra02]. lipid [FHS99]. Liquid [DS00, JLS+14, ZL18]. Lisbon [IEE93d]. LISP [ACM90]. List [Tra98, WJ12]. Lithe [PHA10]. Lithography [RDMB99]. Liverpool [AD98]. LLVM [SML17, SML19]. Load [Ano94b, BkSh01, BS05, DI02, DR95, DK06, GCB12, HE02, KSB+20, MM02, NP94, PT01, Pu95, SGS95, ST97, Wal01a, Bir94, CKO+94, DZ96, DLR94, DvdlVS94, EZBA16, FMN96, FH97, GS96, Hum95, JH97, MM03, SCL97, SY95, Wi94]. load-balanced [EZBA16]. Local [BSG00, CDHL95, CCM97, IKM+01, LBB+19, AMHC11, BY12, CGL+93, FS14, IKM+02, LH+94, LHD+95, PPH+22, RRJ+20]. Locality [AAB+16, MJB15, TPK+19, ZLP17, BHR08, CMZ99, HJYC10, KW20, RKBA+13, WRSY16]. Locality-Aware [AAB+16, MJB15, HJYC10]. localization [HC08]. Localized [DDN+22]. Locally [BHS+02]. Locating [PNV01]. Lock [ALB+18]. Lock heed [Str94]. Locking [KL11, CAWL17, PGK+10]. Log [DDN+22]. Logging [BCH+03, DDN+22, LBB+19]. Logic [Kl17, BJ95, KMC96, KMC97, POL99]. Logical [SR98, TPLY18]. Log P [CKP+93]. London [EJL92, Ano93h, Ano94f]. long [DFD0R+19, ZCBD22]. Longest [Per21]. Look [HCZ16]. lookup [BJ13]. Loop [DMB16, HC17, SHM+10, TPJF12, AV18, SHLM14, WYLC12, WLYC12, YST08, YWC11]. Loops [AHD12, CLA+19, COE20, DSC05, HH22, LOH01, RRJ+20].
Loosely [Ada97]. Lop [RGDML16, RGDM15]. Louisiana [USE95, IEE96b]. Love [Dan12].
Love-Hate [Dan12]. Low [BGG+15, FLS20, GGS99, Jon96, MC17, NE01, RLL01, SM19, Str94, GK97, KBHA94, LZHY19, TBD96, ZRQA11].

M [PBC+01]. M-SPH [PBC+01]. M2L [KKB+21]. M6A [EM00a]. M6B [EM00b]. MA [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Machine
[AS92, AGIS94, BJ93, BS93, CHD07, D+91, FE17a, FE17b, Fis01, GBD+94, Gre94, JCP+20, KNT02, KKD03, KKD04, LKD08, MTWDO9, Nov95, NMC95, Pat93, Per96, RWD09, TY14, VSO0, Wel94, AD98, AL92, Ano95b, BR91, BDG+91a, BPC94, Bir94, DLD96, DBW97, CARB10, CLM+95, Cav93, Cha96, Che99, CD01, CC00b, DM93, DDK05, DLM99, DKP00, DLO03, FM90, KWF18, KMC97, KSS+18, Kra02, LG93, MN91, MRR+96, NB06, Sch94, SK92, SCC96, SL00, TVCB18, TW12, TWF009, WO09, WTX014, ARL+94, BG94b, JPP95, KKD05, LK10, QRG95, SSS96].
machine-learning [TWF009].
machine-learning-based [TWF014]. Machines [BP99, BZ97, BCC+00a, BT01b, CDT05, DR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCSL12, ZWJK05, BCA+06, BSC99, BCC+00b, BBW19, BB95b, DDS+94, DCH02, GKZ12, Hol95, KN95, PRS16, RJI+20, SL94b, TSY99, TSY00, WPL95, ZWL13, Gei01, YC98]. made [MJPB16]. MAFFT [ZLS+15].
[MJB15, CDOO+20, DJ+19, KGB+09]. Map [JPT14, FMM11, FJBB+00, MCM95]. MAPA [JPL17]. Maple [Pet00a, Pet00b, Pet01]. Mapping [BB18, DDP+19, FDG19, GAMR00, HC06,
NTR16, RRBL01, SPB+17, Ta21, TSZC94, WO99, ASAK19, DDLM95, EO15, GFIs+18, HC08, TWF09, WCS+13, WTF014, WK08a, WK08c, dCZG06, WK08b.

MapReduce [EADT19, GGZ+20, JS13, MMM13, PD11, WZH16].

Maps [BM97, KRC17]. **Marc** [Ano96a, Ano99a, Ano99b, Ano99d, Nag05]. **March** [ACM95a, ACM06a, Ano89, Ano93c, Cal94, DKM+92, IEE93f, IEE94d, IEE95b, IEE97a]. **Marine** [LLRS02]. **market** [LF93a]. **Markov** [BBH12, FK01]. **Marlioz** [GA96]. **Marsa** [Stp20]. **Marsa-LFIB4** [Stp20]. **marshaling** [CFKL00]. **MARTE** [RGD13]. **Martin** [ACM99]. **Maryland** [IEE96c, SPH95]. **MASA** [dFdOSR+19, SMM+16]. **MASA-OpenCL** [dFdOSR+19]. **Massachusetts** [IEE94e]. **masses** [Cla98]. **Massive** [Sie92a, MALM95, OLG+16]. **Massively** [Bj93, BHS12, DSZ94, IEE94a, IEE96c, KHS19, KmWH10, LPJ98, Oed93, Sta95b, CS96, DR94, HVSC11, KN17, KB21, LCL+12, MYB16, RBB17, SRK+12, DSZ94]. **massively-parallel** [MYB16]. **Master** [FH98, EML00, LTR00, HP05]. **master-slave** [HP05]. **Master-Workerproblem** [FH98]. **Master/Slave** [LTR00]. **Master/Worker** [EML00]. **Matching** [GGC+07, KMM15, KS01, MM02, OWSA95, WH94, FLPG18, FGL+20, GMA20, LFS+19, MM03, Qu95, YPZC95, YZPC95]. **Materials** [STH22, Y+93, PSV19, SSP+94]. **Mathematical** [Per21, VZT+19, Wan97, Has95]. **Mathematics** [Whi04, ANS95]. **MATLAB** [BKGS02, RBC20, Whi04, Ano97, Bra97, ZZG+14]. **MATLAB-MPI** [BKGS02]. **MatlabMPI** [KA04, Kep05]. **Matloff** [Edd18]. **MATOG** [WG17]. **matrices** [DR18, GG99, GSMK17, Kan12]. **Matrix** [AKL16, BSvdG91, Cha96, DS13, DK20, Fuj08, GK10, KF16, KK19, MKK21, PMvdG+13, TQDL01, TD98, ART17, CMH99, ER12, FAF16, FJJ+14, KPB16, MPS20, PKD95, TPD15, XXL13]. **Matrix-Free** [DK20, KK19, MKK21]. **Matrix-Vector** [AKL16, DS13, Fuj08, XNL13]. **matting** [WLYL20]. **Maui** [ACM97a]. **Max** [Ano94c]. **Max-Planck-Gesellschaft** [Ano94c]. **Maximal** [BDA+18]. **maximisation** [CCU95]. **Maximizing** [PIR+20]. **Maximum** [TSN21, HKOO11]. **Maxwell** [And98, IILnH+21]. **May** [ACM96b, ACM06b, AGH+95, BR95a, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95e, IEE95d, IEE95i, PR94b, RV00, SPE95, SW91, SS96, Van95]. **Maydan** [Stp02]. **MBCF** [MMH99]. **MCA** [WCS+13]. **McDonald** [Stp02]. **MCHF** [SYF96]. **McLean** [IEE94a, Sie92a, Sie92b]. **MCNP** [MW93, McK94, WH96]. **MD** [IEE02, TMPJ01]. **mdb** [DFK94a]. **MDE** [RGD13]. **Means** [TK16]. **Measurement** [BFBW01, BFIM99, KRS99, Shi94, TMC09]. **Measurements** [HvA+00, EFR+05, GL99]. **MECCA** [AC17]. **mechanics** [Bil95, MGG05, SL95]. **Mechanism** [CGLD01, KSV01, MH01, THS+15, TSS00b, Tra02a, HWX+13, SIRP17, ZRQA11, ZA14]. **Mechanisms** [Wa101a, CBGR+15, Ott93, TMTP96]. **Mechatronic** [KDL+95b, KDL+95a]. **mEDA** [VAT95]. **mEDA-2** [VAT95]. **media** [EZBA16, MAIVAH14]. **Medical** [WYZ+19, RTN21]. **Medicine** [GA96]. **MEDINA** [AC17]. **Medium** [CW+20, WLNL06]. **medium-scale** [WLNL06]. **Meeting** [AD98, Ano93f, CHD07, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, GA96, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RWD09, TBD12, BDW97, JB96, SPH95, Ano92, CHD09]. **megabase** [SdM10]. **Meiko** [FST98a, FST98b, Jon96].
Melia [WZH16]. Mellon [IEE94d].
Membership [BMS19, MDM17].
membrane [FHSO99].
Memory [ADGA20, Att96, BME02, BWW+12, Bri10, BdS07, BT01b, CVPS19, CDT05, CLOL18, CLA+19, CSW’97, CCG98, DM98, DMB16, DR97, DHHW92, DHHW93a, EADT19, FB94, GGZ+20, GCBM97, GB96, GSN+01, GSHL02, GLRS01, HC10, HDB+12, HDT+15, HT01, JJP’17, KB98, KS13, KC19, KSHS01, LML+19, Luo99, MB12, MRB17, MBE03, M¨u02, NPP+00d, PBK00, Pok96, PMvdG+13, Ros13, STY99, ST02b, SW91, Thr99, VS00, VT97, WJA+19, ZL17, ZL18, ARS89, ABC195a, ABC195b, ADMV05, BCA+06, BVML12, BSC99, BMG07, CdOO+20, CBPP02, Cha05, CJvdP08, Cha96, CBHH94, CRM14, CC00b, DF17, DLR94, DBVF01, DPF+19, DHHW93b, DPZ97, EVMP20, EV01, FSV14, FHB+13, GCB99, GB96, GKK09, GL96, GL97c, GP95, GADM20, HSP+13, HGMW12, HDB+13, HK90].
memory [JC17, JE95, KN95, KSTM20, KJA+93, KC06, LKL96, MLC04, NAJ99, NAAL01, OLG+16, PK05, PS00b, QM21, RS19, RGD+15, SSH08, SHHI10, SL94b, SG+12, SYR+09, SFL+94, SCS96, SLP’99, SBK21, SD16, SPBN14, TSY99, TSY00, THDS19, TSCS14, UhI95a, Vos03, Wal94a, Wal94b, WP95, WK08a, WK08b, WK08c, WK20, WBS+17, WMRR17, WMR+19, YX95, LBD+96, GK97, SG05].
Memory-access-aware [CLA+19].
Memory-Based [MMH98].
memory-constrained [TSCS14].
Memory-Divergent [WJA+19].
Memory-Efficient [GGZ+20, MRB17].
memory-level [HK09].
Memory-Oriented [ZL18].
Memory/Message [ST02b].
MemTo [GSN+01].
Menon [Stp02].
Mesh [DDP+19, HAA+11, MRB17, Ran05, BAS13, CLSP07, Cour93, GBR15, HDZ+20, IDS16, SWCB20].
mesh-oriented [HDZ+20].
mesh-particle [BAS13].
Meshes [MRB17, TPD15].
Mesoscopic [VT19].
Message [Ano93d, AKL99, Att96, BC19a, BZ97, BCH+03, BBG+99, BBG+01, BDH+97, BGR97b, BFM97, CDH07, Cer99, CGZQ13, CGH94, Cot97, Cot98, CTK00, CDND11, DFKS01, DDN+22, DHHW92, DHHW93a, DDL00, FKKC96, Fos98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLTo0b, Hen94, KGRD10, KS97, KSV01, KKD03, KKD04, LK100, Luo99, MP198a, MP198b, MP95, MS98, MBES94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, RC97, RRBL01, RWD09, RFG+00, SAL+17, ST02b, TBD12, WD96, Wer95, Wis97, YHGL01, ZWL13, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93e, Ano94d, Ano95c, Ano00a, Ano00b, AMC+19, BBG+14, BL97, BvdSd95, Bjo95, Bruf95, BDW97, BFIM99, CGJ+00, CDZ+98, CRD99, CD01, CG99b, DKF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99].
message [DKP00, DLO03, FGL+20, FK94, GMA20, GL92, HP05, HPY+93, Hen96, JKN22, KJA+93, Kra02, LR06a, LBD+96, wL94, LFS+19, LC96, LMM+15, LBB+19, LC97b, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sci99, SWJ95, SDV+95, SZ99, SSG95, Stt94, TSZC94, VM95, Wal94a, Wal94b, ZKRA14, ZA14, AMHC11, BC14, BBH+06, BRU05, BDH+95, Cot04, DDK08, Din96, FKS96, FT96, FGL+98, GGH+96, GLDS96, GLT99, GLS99, GLTo0a, GLD95, Han98, IBC+10, KTF01, KKD05, LK10, MTSS94, MSL96, PS01b, RRHF96, SWHP05, SLG95, SWL+01, TGT05, TDB00, Wer95, YGH+14].
Message-Passing [Ano93d, Att96, Cot97, Cot98, DHHW92, DDL00, GLS94, GL95c, GLTo0b, MP198a, MP198b, PBK00, Pok96, RRBL01, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvdSd95, CDZ+98, GL92, Hen96,
KJA+93, LR06a, LBD+96, wL94, LMM+15, PS00b, SSG95, Sti94, DiN96, GGHL+96, Han98, RRFH96, SLG95, Wer95, YGH+14].
Message-Passing-Interface [Wer95].
Meta [BCLN97, FBD01a, FGRD01].
Meta-Applications [BCLN97].
Meta-computing [FBD01a, FGRD01].
Metagenomics [LSM+18]. MetaHaskell [Mai12].
metanumerical [ZSK15]. metal [JLS+14].
MetaMP [OW92]. metaprogramming [Mai12, TSEE21].
meteorological [RSBT95]. Meteorology [HK93, HK95]. Method [ADGA20, ACRM14, BP99, BJS97, CGU12, DAD19, FCLG07, GS97, HFB21, HC06, KM16, OMK09, RHM+17, Riz17, STA20, TSS00a, ARTY17, AFS21, AFG21, BBDH14, BCM+16, DSOF11, ET94, GFIS+18, HE13, HMKV94, HJBB14, HPLT99, JMS14, KS15, KD12, KKB+21, LCL+12, MMDA19, Nak05b, NS16, PTT94, PGPCK21, Pri14, Qu95, RTN21, SHHC18, TKP15, YBZL03, diAMCFN12, AAB+17, OTK15].
Methodologies [Sun94b]. Methodology [MOL05, WTH17, HPR+95, LM94, WMP14].
Methods [BCMR00, CMK00, DFN12, EGH+14, FGKT97, GGFG12, KLR+15, kL11, NA01, Sch01, SM07, TDBEE11, Whi04, ZGN22, ZB97, CddO+20, CECS07, DF17, D+95, Gra09, Has95, KW20, LSR95, MM11, Nak05a, PGK+10, PGPC21, R+92, SL94a, SG95].
Metric [SNN+19]. Metrics [DW02, PARB14]. Metropolis [HJBB14].
Micro-applications [SGH12].
Micro-Benchmark [BWV+12, YSWY14].
microbenchmark [BO01].
Microcoded [WP+16]. microtask [OIS+06]. MIDAS [BFZ97]. Middleware [AUR01, CLL03, CC10, RPS19].
Middleware [DPP01]. Midpoint [JMS14].
Migol [LS08]. Migratable [KOW97].
Migrating [VSR94, VSR95, InvLH+00, KBG+09].
Migration [An94b, CCK+95, CLL03, CML04, CCBPGA15, CTK01, NPP+00c, NLRH07, Ott94, OS97, PS19b, ST97, AMBG93, BBGL96, CK+94, CRM14, CRGM16, CK99, DDYM99, HZ99, LCVD94b, LM13, QHCC17, RRFH96, SSS99, SCL97, Ste96].
Milan [HS95a]. million [LHLK10].
Millions [BBG+11].
MIMD [BvdB94, BB93, BCL00, Uhl95a, WST95].
MIMD/DMMP [BB93]. MiMPI [GCC99].
Mini [LBG+20, SCJH19]. mini-application [SCJH19].
Minimum [AIS+21].
Mississippi [IEE94f, IEE95j, IEE94f, IEE95j].
mitigating [OdSSP12].
Mitigation [BBH.. .13a]. Mitsubishi [An03] mittels [Wil94].
Mixed [ASA97, BGE+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01].
Mixed-Mode [BEG+10].
Mixing [CP98, GAP97, HDW21, CBGY18].
mixture [EO15]. MK [NS91]. MLP [JLG05]. mm_par2.0 [OKM12].
Mobile [ITT02, TWLL19]. Mode [BGK08, BRI02, BGE+10, LRT07, IHSM19, SB01, YX95].
Model [AP96, BCG+02, BS07, CKmWH16, Cha02, CZG+08, Dar01].
DFA^09, FSXZ14, FBSN01, GLB00, GLRS01, HLP11, KD12, LWKA15, LWZ18, LGG16, LPJ98, LA02, LRQ01, MKW11, NSLV16, NO02b, PRQ21, Ran05, RSV^05, RRBL01, SPM^15, SB95, SPH^18, THN00, VT97, Wal01a, WYZ^19, YCA18, AL93, BSC99, Bir94, BG94b, BDV03, CMV^94, CL93, CKP^93, ED94, GKRZ12, GCN^10, GmLyCy97, GWVP^14, GRTZ10, HPLT99, HK09, HK10, HY^20, JPL22, KOS^95a, KSL^12, KLV15, LR06b, LA06, LLH^14, Mar05, MMAH20, MDSAS^18, MSZG17, MGC^15, NO02a, Nak05a, PAdS^17, PQR18, QM21, RAS16, RGDML16, RCG95, Sch93, Sch99, SMAC08, Str94, VBLvdG08, Wan02, WC15, WLK18, WYLC12, YX95, ZWC21, TA14].

Model-Based [AP96, LGG16]. Modeling [ACM96a, ATM01, BS07, COE20, CSC96, CDM93, FST98a, GAM^02, HSO^21, MOL05, MZLS20, MH21, NM95, RGDM15, Rot19, STH22, TD99, WJA^19, WMC^18, XH96, AC07, BDP^10, BAE22, Bic95, BB95b, JLA18, KM10, KME09, KEGM10, LZY19, MS99a, WT13, XYL13, YMY11]. Modelling [FST98b, GC05, Ham95a, KDL^95b, BJ999, HTHD99, KDL^95a, MSML10, QHCC17]. Models [AKK^94, BS93, BZ97, CMK00, Cer99, Cnm11, Dk06, EMO^93, ESM^94, GJN97, PFP98, SS01, SMOE93, SYL19, TSN21, Whi04, BB95a, CPM^18, CH96, CBS18, Duv92, EVMP20, KO14, LV12, MCB05, Nes10, RSBT95, RBA17, RJH^20, STP^19, SYR^09, Wal00, WBS17].

moderate [Uhl95a]. Modern [AHHP17, DARG13, KDT^12, LNK^15, MPZ21, SM07, EYP^20, HH14, HCC^20, PMZM16]. modernization [WLYL20]. modes [WZWS08]. Modified [Rix17, GP95, KD12]. Modular [CT02, HPP02, FWS^17, HLM^17]. modulator [WWZ^96], modulator/DFB [WWZ^96]. Module [Ano98]. Modules [AKK^94, DS96b], modules-design [DS96b]. Molecular [ABG^96, BST^13, BCGL97, BL95, BS07, DR97, DIO2, KBM97, LAF15, MH01, SA93, YWCF15, ZB94, AiiS^21, BvdSvD95, BBK^94, BMPZ94b, BMPZ94a, CC00b, DCD^14, Dab19, FHSO99, HHS18, JAT97, JMS14, KFA96, KRG13, LH^20, LSVMW08, OKM12, PARB14, PIR^20, SL95, VGP^19, ZWL13, RS22]. molecule [ART17]. Möller [BL95, KN17]. Moment [SSB21]. Monoc [BBW19]. Monitor [SGL^00]. Monitoring [AH00, BCLN97, Beg93b, BFM96, BFM96b, CD98, DBK^09, GSN^01, IADB19, LY93, LW97, MWG97, MV95, SGL^00, UP01, Wis98, Wis01, Yum94, Beg92, Beg93c, Beg93a, BB94, BS96a, BMF96b, FLB^05, LC07]. Monodomain [ORA12]. Monona [ZL18]. Monte [HJB14, RP95, WH96, ADRCT98, AK99, DAK98, NSLV16, RR00, SK00, SKM15, ZZ04]. Monterey [Ano89, Gat95, USE94]. Montpellier [DE91]. Montréal [Lev95]. MOPS [GJN97]. Morehouse [AGH^95]. Morgan [SD13]. Morphable [ZL17]. morphology [VLSPL19]. Morton [LZH18]. MOSFETs [MV20]. MOSIX [BBGL96]. motif [FMS15]. motors [SKM15], movement [MV17, PG18]. Moving [HAA^11, KQT^21, LSG12]. MPC [BPJ22]. MPE [GKL95, KFA96]. MPEG [NU05]. MPEG-4 [NU05]. MPI [ARYT17, AD98, Ano95c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, BDW97, CHD07, CHD09, CD01, CDND11, DKS05, DLM99, DK00, DLO03, GBR97, GEW98, IEE96i, JKN22, JMS14, KGRD10, Kra02, KKD04, LKD08, MTWD06, Nag05, Per97, PS01b, RWD09, RLRPG12, SBG20, ST02a, TDB00, TBD12, Vre04, WSN99, YMH7, ST02b, ACGD02, AKB^19, Ada97, Ada98, AC07, ACH^11, APJ^16, AASB08, ART17, ATM01,
ACC+21, ACGR97, AK99, AFB+17, AHP01, ACMZR11, ALW+15, ALB+18, ADL03a, ADL03b, And98, AitS+21, FH98, AYA+16, Ano93e, Ano94d, Ano98, Ano02a, Ano03, AKE00, AKL99, AJF16, AIM97, ADR+05, AHHP17, AMC+19, Bad16, BV99, BCMR00, Bak98, BF98, BCFK99, BBG+10, BCG+10, BGG+11, BKG20, BGP01, BSB99, BAC20, BBG+14, BA06, BCAD06, BADC07. **MPI** [BGR97a, BKGS02, Ben01, BW12, BHV12, BKH+13, BIL99, BIC05, BBG+10, BRR05, BF01, BBCR99, BBDH14, BK96, BKdSH01, Bha98, BfDA94, BHLS+95, BHS+02, Bis04, BBH. . . 13a, BBH+13b, BDB+13, BIC+10, BR04, BCM+16, BTC+17, BM00, Boo01, BBC+02, BPJ22, BCH+03, BHK+06, BBC+99, BBC+00, BS96b, BMR02, Bri02, BRR03, Bri10, BMPS03, BS07, BBW19, BDL98, Bru95, BDH+95, BDH+97, Bri12, BLW98, BFWB01, BFG+10, BCH+08, BWV+12, CDO0+20, CGC+02, CSW12, CGC+11, CwCW+11, CRE99, CRE00, CRE01, CC10, CP98, CAHT17, CGJ+00, CFKL00, CSS95, CGBS+15, CGG10, CB00, CDMS15, CGS15, CBL10, CBB+20, CBB+21, CLE+20, Cha02, CB00, CEGS07, CDP99, CCA00, CFDL01, CLL03, CGZQ13, CC17, CSAGR98, CNC10, CC00a, CGB+94, CCSM97, CFMR95, CDD+96, Coo05a, Coo95b, CFF+06, CRGM14]. **MPI** [CRM14, CRGML16, CC99, CT02, CD96, CG99b, Cre16, DPS05, DPD08, DMK19, Dan12, DSG17, DZ96, DZ98a, DR18, DK20, DW02, DLM+17, DZ98b, Dem96, DPP01, DJJ+19, DLB07, DS96, DS96a, DREUE12, DKO07, DI02, DDN+22, DL10, DCPJ12, DCPJ14, DFT19, DAK98, DGG+12, DGB+14, DDB+16, HD02a, DXB06, DOW95, DW5+21, DFSW19, DCH02, DH22, DBK+09, EZBA16, EGH99, EDSV09, EYP+20, ES11, FH97, FD96, FDG97a, FDG97b, FL98, FD00, FBD01a, FBD01b, FGRD01, FBD02, FD02a, FD02b, FD04, FCLG07, FB95, FB96, FB97, Fnn98, FPY08, FA18, FFB99, FNSW99, FTB00, FFP03, FLPG18, FGL+20, FL21, FMS15, FHK01, FHK02, FSC+11, FCS+12, Fin97, Fin94, Fin95, FWNK96, Fin00, FLB+05, FC05, FST98a, FST98b, FF+17, FKK+96b, FKK96a, FCT96, Fos98, FHPS94a, FHPS94b, FHP+94, FHP+95, Fra95]. **MPI** [FW+95, FKLB08, FBSN01, FSL98, FCS+19, GBH97, GFD03, GFD05, GDC15, GVF+18, GGGC99, GCCM99, Gao03, GGZ+20, GBR15, GCGS98, GCC99, GCB12, GGL+96, Gei01, GR07, GGL+08, GJR09, GSI97, GBH14, GHS99, GMA20, GR95, GLB00, GRV+19, Gle93, GM13, GJMM18, GT01, GBH99, GFIS+18, GH12, GSYT12, GAVRR17, GDMM22, GRR99, GAMR00, GKS+11, GB98, GMPD98, GPL+96, Gra97, GEW98, GBS+07, GLO+08, GL92, GL94, GL95, GL95a, GL95b, GL95c, GL96, GLDS96, GL97c, GL97b, GHL+98, GL99, GLT98, GL99, Gil00, GLT00b, GLT0a, Gil01a, Gil01b, Gil02a, Gil03, GT03, GLT12, Gil12, Gil19, GPC+17, GC05, GSY+13, Gua16, GADM20, HGX+22, HJ98, HCH10, Har94, Har95, HL17, HCC+20, Hat98, HO14, HD02b, HDZ+20, HE02, Hem94, HZ96]. **MPI** [Hem96, HRZ97, HZ99, HEH98, HGMW12, HM09, HPS+12, HPS+13, Hin11, HRR+11, HDB+12, HDB+13, HDT+15, HKN+01, HSM+19, HLOC96, HKT+12, HJB+21, HVSC11, HWX+13, HM01, HCA16, HG12, HcF05, Hu98, Hu00, Hu01, HWW97, IDS16, IRU01, ITKT00, IPG+18, ICC02, IMS16, JLF95, JDB+14, Jes93b, JJM+11, JS13, JNL+15, Jon96, JLG05, Jr10, JSH+05, KB01, KAF96, KS15a, KPW05, KW14, KWEF18, KD12, Kan12, KTB+19, KLB+20, KLB05, KB08, KK02a, KL94, KLY03, KLY05, KS05, KSJ95, KSJ96, KN17, KBS04, KGK+03, KTXP21, KKH+99, KBM97, KLR+15, KR09, KSB+20, KMG99, KEM10, KRC17, KV98, KAC02,
KC06, KBG16, KMH+14, KRG13, LK14, LAd+15, LRG+16, LLRS02, LTDD14, LGM00, LRT07, LC97a, LR06b, LTRA02, Lee12, LFS+19, LFW20, LZ97, LRW01, LPD+11, LLIC13, LZH12, LZH18. **MPI** [LK20, kLCC+06, kLCCW07, kL11, LZZ+20, LFL11, LS10, LSM+18, LZC+20, LCY96, LC+03, LVP04, LWP01, LGM16, LBB+21, LYSS+16, LB96, LGdRA+19, LMG17, LCMG17, LBB+19, LG+20, LNLE00, LO96, dLR04, LZYH19, LS08, LL01, LZC+02, LKJ03, LCC+03, LKYS04, LSK04, LLH+14, MBBD13, MMR09, MS02a, MS02b, MV17, MC18, MTK16, Man01, Man98, MK17, MLVS16, MB21, MLAV10, MKP+96, MSMC15, MSL12, MH01, MSL96, MS96a, MC98, MG05, MAS06, MM02, MM03, MOL05, MCO09, MRRP11, MG07, MMMA19, MMMA20, MMM13, MTW07, MK04, MCLD01, MMH08, MMH99, MS90c, MB00, MVWL+10, NAW+96, NO02b, NO02a, Nak05a, Nak05b, NSBR07, NE98, NE01, Nes10, NSS12, NH95, NCB+12, NCB+17, NWT21, NAJ99, NW98, Ni00, NHT02, NHT06, NFG+10, NN95, OM96, OL+16, OKM12, OIS+06. **MPI** [OD01, OF00, Ong02, OP98, OL05, OGM+16, OMK09, Pac07, PARB14, Pan14, PK98, PES0+14, PK08, PDY14, PS00a, PS01a, PHJM11, PTL+16, Per99, PZ12, PKG+10, PFG97, PLR02, PG+96, PG07, PG07, Pla02, PD11, PSSS01, PSK+10, PTH01a, PTH01b, PS06b, PHM+22, PTW99, QB12, QM02, Qu03, Rab98, Rab99, RDMB99, RR01, Ram07, RSBT95, RMS+18, Ran05, RA09, RA16, RCFS96, RJH+20, RBB97a, RBB97b, RBB97c, RSPM98, RTH00, RH01, Reu01, RST02, Reu03, RGD15, RGD16, RGGP+18, RG22, RNPM13, RPM+08, Rölh00, Rol08b, Ršt06, RSC+19, RFR96, RRG99, RTRG+07, SE02, SC14, SC15, STP+19, SPM+10, SWCB20, SS+05, Sap97, SSB+16, SDJ17, SGH12, SSN+21, SBF+04, SCJH19, SW12, SBS+02, SG05, Ser97, SS01, SWS+12, SG12, STY99. **MPI** [SM02, SM03, SC19, SPH+18, SP99, SZ11, SC04, SSC96, SS99, SIC+19, SZBS95a, SZBS95b, SDN99, SVl99, SJ02, SWJ95, SMTW96, SH96, SDB94, SLG95, SDV+95, SP96, Sl05, SVC+11, SK00, SB01, SOHL+96, SOHL+98, Sn11, SHHC18, SSL97, Sq03, Ste96, ST97, Stc98, SU96, Str96, SRS+19, Sun12, SN01, Swa01, TOTH99, TA+01, TSY99, TSY00, THDS19, TSCS14, TKP15, TK19, Tha98, TGL02, TG09, TGKL19, TPLY10, TW01, TD09, TOC18, Tra98, THZ99, TRH00, Tra02b, Tra02a, TGT10, Tra12a, Tra12b, THMH21, TME07, TFGM02, Tso07, TTZ+20, TPV20, UT02, URK12, VFD02, VLSPL19, VS00, VPS17, VSR94, VSR95, VGRS16, VdS00, VP00, VVD+09, WH96, Wa95, Wo95, Wa96, WD96, Wr05, Wr05, Wr01, WLNL03, WLNL06, Wr05, WZ95. **MPI** [Whi04, WK20, WR05, WWZ+96, Wis98, WB96, WM01, WADC99, Wor96, WRA02, WDR+19, WCSS99, WT11, WYLC12, WT12, WLYC12, WT13, WMP14, XH96, XLW+09, YM97, YL09, YHL11, YWC11, YCL14, YMB14, YW21, YPA09, YTH+12, YSP+05, Zah12, Z04, ZL+11, ZW09, ZLP17, ZJW18, ZWLL21, ZCB22, ZLL+12, ZGZ20, ZT20, ZWC21, ZR95, ZSnH01, ZKRA14, ZA14, bT01a, dAMCFN12, KH96, Mar06, YM97, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d. **MPI** [SOHL+98] **MPI-1** [APJ+16]. **MPI-AllReduce** [NWT21]. **MPI-AMRVAC** [KTXP21, TK19]. **MPI-Based**
[Ada97, FSC+11, RDMB99, SM03, Ada98, AVA+16, GKS+11, Gra97, LRW01, LZZ+20, OLG+16, OP98, SZ11, TSC+14, TMPJ01].
MPI-basierte [Gra97]. mpi-benchmark [Reu01]. MPI-CHECK [LCC+03].
MPI-CUDA [DR18, YW21, dIAMCFN12].
MPI-DDL [FB97], MPI-Delphi [ACGdT02], MPI-dot2dot [GDMME22].
MPI-driven [Hin11]. MPI-F [FHP94b, FHP+94]. MPI-FM [LC97a].
MPI-FT [LNLE00]. MPI-GLUE [Rab98]. MPI-GPU [TPV20]. MPI-Hybrid
[CGC+11]. MPI-I [IRU01, Tsu07].
MPI-I/O [IRU01, Tsu07]. MPI-Interoperable [YBMCB14]. MPI-IO
[BIC+10, CGC+02, CFF+96, DL10, FWNK96, FSLS98, LRT07, LG16, PK08,
PTh+01a, SW12, Sto12, TGL02, ZZ04].
MPI-IO/GPFS [PTH+01a]. MPI-LAPI
[BGBP01]. MPI-Level [VP04]. MPI-like
[CJG+00]. MPI-only [LS10].
MPI-OpenCL [JNL+15]. MPI-OpenMP
[MS02b]. MPI-Parallel [DK20].
MPI-parallelized [DFSW19, KMG99].
MPI-Performance-Aware-Reallocation
[GFS+18]. MPI-StarT [Hus98]. MPI-The
[Ano99c, Ano99d]. MPI-thread [IDS16].
MPI-Umgebung [GBR97]. MPI/CUDA
[PHMJ11]. MPI/GAMMA [CC00a].
MPI/GPU [EZBA16]. MPI/GPU-code
[EZBA16]. MPI/MBCF [MMH99].
MPI/OpenACC [OGM+16].
MPI/OpenMP
[ADR+05, GÃÂVRL17, HDZ+20, HKN+01,
JLG05, JR10, KS15a, KN17, KLR+15,
KRG13, LLRS02, MMDA19, PZ12, SB01,
WT11, WT12, WT13]. MPI/PVM [ES11].
MPI/RT [SKD+04]. MPI/RT-1.1
[SKD+04]. MPI/SMPSS [MLAV10]. MPI11
[Sti94]. MPI2 [MPI98a, MPI98b, Wal96b].
MPI2007 [MvWL+10]. mpi4py [DF21].
MPI_Allgather [GMdBMB+07].
MPI_Connect [GRD01]. MPI_T
[GVF+18, HHK+19]. MPICH
[BBCh+02, BCH+03, BHK+06, Cot98, Cot04,
GL97a, KTF03, LKJ03, OPM06, OF00,
RFG+00, RSt06, SBG+02, TRG05].
MPICH-CM [SBG+02]. MPICH-G2
[Cot04, KTF03, OPM06]. MPICH-GQ
[RFG+00]. MPICH-V [BBC+02, BHK+06].
MPICH-V2 [BCh+03]. MPICH2
[BMG07, Gro02b, ZSG12]. MPICOnnect
[FLD98]. mpiscopope [Trä12b].
MPIGeneNet [GDM18]. mpiJava
[BCFK99]. MPINE [Sou01]. MPIPOV
[FFB99]. MPIIT [HIP02]. MPIWiz
[XLW+09]. MPJ [CGJ+00]. MPL [XH96].
MPLO* [CRD99]. MPPI
[CDJ95, DOSW96, GBR97]. MPP-Systeme
[GBR97]. MPPs [BGR97a, RBB97a].
MPSocK [KKJ+08, KH10, PSM+14].
MPSocs [MB12, NEm17, SPB+17].
MPVM [CCK+95]. MRI [LSZ15]. MRO
[MMM13]. MRO-MPI [MMM13]. Multi
[Ada98, ABB+10, Bri10, BCKP00, CAWL17,
CZG+08, COF20, DK20, DSS2, DWL+10,
EBKG01, FSXZ14, HD02b, HRZ97, JCH+08,
JNL+15, KBA02, KT02, LTS16, LCY19,
LM13, MLGW18, MG15, MB00, NMS+14,
PZ12, RG18, RR02, Smth09, ST02a, ST02b,
SSB+17, TPV20, WBH07, XR21, YGH+14,
ZL18, ACMZ11, AGMJ06, BCC+19,
BCK+09, CDOO+20, DCH02, DWL+12,
Fin94, Fin95, FHB+13, HTA08, HE15, JR13,
JMJ+11, JR10, KS13, KL15, KO14,
Kom15, LSG12, LS10, LLH+14, MALM95,
NS12, SCB15, SFVS13, SVC+11, SAP16,
Str12, TS12b, TFZ012, VLSPL19, WCC+07,
WO09, WAD99, WYLC12, ZAFAM16,
ZWZ+95, ZZZ+15, SAP16, SG14]. multi-
[ACMZ11, BBC+19, CDOO+20, KSG13].
multi/-many-core [KSG13]. multi-accelerator [KL15]. multi-agent
[ZWZ+95]. Multi-agents [KBA02].
Multi-Array [LT15]. Multi-cluster
[ST02b, KO14, Kom15]. Multi-Context
[ZL18]. Multi-Core [ABB+10, Bri10,
CZG+08, YGH+14, PZ12, FHB+13, HTA08,
DGG, PS01b, RBAA65, TGBS05, WJ12, DSG17, TMC09, TG09, WCC+07.

Multithreading [BBG+10, ZWL13].

Munich [BDLS96, GH94]. Musly [Wit16].

MUST [HPS+12, HPS+13], mutual [She95]. MV [TWLL19]. MV-Net [TWLL19]. MVAPICH [RMS+18].

Myrinet [CFP99, GBH99, JSH+05, LCW+03, PTW99, Tou10].

n [DDN+22, Pan95a, ADB94, RTRG+07].

N-body [ABD94, RTRQ+07], n-cube [Pan95a], NAG [DPH97, For95, Mc96].

NAMD [PZKK02]. Naming [MSF00].

Nancy [BR95a]. NanosCompiler [GAM+00]. Narrow [YSS+17, YSS+19].

NAS [CRE99, CE00, ACF+94, CDD+96, KS96, KAC02, MMH99, WA595b, WT11, WT12].

NASA [MAB05]. NASLU [PHJM11].

National [Str94, BRST94]. Native [SZ99].

NATO [KG93, TG94]. NATUG [Ara95].

NATUG-7 [Ara95] nature [DSM94].

Naver [Che99, DLR94, HSMW94, ID994, Lou5, SCC95]. NB [BG91]. NC

[Agr95a, SL94a]. NCCL [AMC+19].

NCCL2 [AMC+19]. NCS [AL92].

ncUBE2 [BL94]. Near [PKYW95].

Nearest [DI02]. Nearest-Neighbor [DI02].

Nebelung [MFC+98]. NEC

[GPL+96, HRZ97, TRH00]. Necessary [NPP+00b]. Needed [Gei00]. Negative [KF16]. Neighbor [DI02]. neighborhood

[HS12]. Nek5000 [MGS+15, OGM+19].

Nekbone [GML+16]. Nemesis [BMG07].

Nestet [BR95]. Nested

[AHD12, BR12, BS01, DLR99, DSCL05, GL+00, HA10, MMS07, SGL+20, TTSY00, ZLP17, aMST07, AGM06, BS05, HSE+17, HY20, LW20, THH+05, YZ14, JLG05].

Nesting [BBC+99]. Nets [DMB16]. Net

[CNM11, NE98, NE01, PES99, TWLL19]. Net-Console [PES99]. Net-dbx [NE98, NE01]. netCDF [LKLC+03].

Netherlands [DSZ94, Ano93f, Van95]. Nets [Sou01, Str94]. Network

[ACM98a, AR01, BGD+91, BGD+93a, BCKP00, CZ95a, CDH95, CSC96, DM95b, DM95a, DBA97, DFMD94, DGMS93, DGM93, EK97, Fer98b, Fis01, GS91b, GS92, Gei93a, GSxx, HS98, ITT02, LB98, LH95, MSCW95, MANR09, OF00, OWSA95, RJ21, TW01, VZT+19, AL92, AH95, AVA+16, BGD+92a, BGD+92c, BGD+94, BSvdG91, BJ95, Bou96, BBK+94, BID95, BFM96, Cee94, CLASPDP99, Fer98a, GS91a, Gei93b, GK97, GHZ12, HBT95, HK94, HH95, IM95, KMC96, KMC97, KA95, LH98, LK20, LHD+94, LHD+95, MK94, MR+96, POL99, PR94c, PTW99, Rag96, SEC15, SPK+12, TSS98, YS93, ZP99, G97].

Network-Balancing [DBA97].

Network-Based

[BDG+91b, GS92, BGD+92a, IM95].

Network-Specific [DM95b, DM95a].

network-topology-aware [SKP+12].

Networked [FGKT97, GBD+94, Nov95, NMC95, Per96, Ano95b, BMPZ94b, BMS94a, BMPZ94a, GM94, HS93, RRG+99].

Networking [ACM97b, ACM98b, ACM00, ACM01, ACM04, Ho12, LCK11, CB3+12, GH94, HS95a, ITT99, LCHS96, MZK93].

Networks [CSV12, CDM93, DD+19, DDPR97, GVF99, GDM18, GLH07, HHH94, HLCZ00, HIP02, LH95, LHHM96, Li96, LHZ98, MBES94, QMR00, SG15, SM91, TQDL01, Tou00, VLO+08, VBB18, WAS95b, WMC+18, BK11, BRS92, CZ95b, CPF95, DG95, DZ98a, J94, LR06a, LTHC94, LHD+94, LHD+95, NFG+10, Pan95a, SOYHD19, TDB00, ZGN94].

Neural

[AGH+95, CAM12, CSV12, QMR00, RJ21, SM91, Str94, GLKLY97, Rag96].

Neurocomputing [PSZ00]. Neutral

[CBB+21]. neutrino [KBHS19]. Neutron

[LD01, RS97, VRS00, WR01, MM92].

Nevada [Ano94e]. never [Har94]. Neville
Newton [Ano97, Ano03, Bra97, ESB13, KS15a, Str94].

Next [GKPS97, Gei98, Gei01, VPS17, VZT+19, EYP+20, SP11, ZKRA14, vdP17].

Next-Generation [VPS17, ZKRA14]. NFS [CGC+02]. NHPDCC [BRST94]. NIC [MFPP03]. NIC-based [MFPP03]. Nice [ACM90]. nineteenth [IEE95]. Ninth ERS96, R+92. NIST [SNMP10]. Nitzberg [Ano99c, Ano99d]. NLP [VB99]. NM [IEE95d, Old02]. NMF [KF16]. nmfgpu4R [BF98]. non-blocking [ACMR14, BS93, BCP+97, CSW97, DHHK97, DHP97, FK01, For95, FB94, HH14, Hol95, Hus98, IFI95, KM10, Kha13, McD96, NS20, NHT02, PKYW95, TDTEE11, TPV20, YKLD17, AL92, Boi97, BCM+16, CSW99, DFSW19, FP92, GS94, HD00a, JK10, KB13, Nob08, NHT06, Pr14, SMAC08, SU96].

Non-blocking [HTA08, FH98, BCL+03, STP+19].

Non-Contiguous [KLH+20, WTR03].

Non-Data-Communication [BCG+10].

Non-dedicated [WLN06].

Non-Determinism [CTBT21].

Non-Intrusive [SDR+12]. non-iterative [OMK99]. Non-linear [MW98, OKW95].

Non-Local [CCSM97]. Non-Negative [KF16].

Non-persistent [Man01].

non-singleton [TVCB18]. Non-stop [Gua16]. nonaligned [AGIS94].

nonblocking [DJJ+19]. Noncontiguous [JDB+14, TGL02]. Nondeterminacy [DKF93]. nondeterminism [Obe96].

Nondeterministic [KSV01, CRD99].

Norfolk [Sin93]. normal [CBS18]. normalized [Gra09].

North [CJNW95]. Note [BR02, Cre16, SGHL01]. notification [SSN+21]. Notre [IEE96]. novel [DDY99, GKK09, MLVS16, MSL12, QM21].

November [ACM96, ACM97b, ACM98, ACM99, ACM00, ACM01, ACM03, ACM04, ACM05, Ano94c, ACDB94, BDW97, GN95, HK95, Hol12, IEE91, IEE93e, IEE94b, IE94h, IWE02, LCK11, USE94].

Novices [Stp02]. NOWs [SLGZ99]. NP [YZ14]. NPARCI [PKB01].

NPB [EGC02]. NR [Gua16]. NR-MPI [Gua16]. NRC [LD01].

NScluster [TSN21]. NSGA [GÁVRL17]. NSW [GN95].

NT [Ano01a, Bak98, BF98, CLP+99, FD97, GGGC99, PS00a, SFG98, TA+01].

NTRUEncrypt [KY10]. NTUG [FF95]. Nuclear [BPG94, GA96]. nuclei [NS16].

NUMA [BCC+00a, BCP+00b, BFG+10, CAWL17, GTS+15, MAAH20, MB15, NPW+12, SLN+12, TSCM12, ZLP17].

NUMA-aware [MMAH20].

NumaGiC [GTS+15]. Numba [BS21].

Number [BP99, HT08, WHDB05, CCS19, CBYG18, Lan09, STP20]. Numerical [MLGW18].

Numerical [ACMR14, BS93, BCP+97, CSW97, DHHK97, DHP97, FK01, For95, FB94, HH14, Hol95, Hus98, IFI95, KM10, Kha13, McD96, NS20, NHT02, PKYW95, TDTEE11, TPV20, YKLD17, AL92, Boi97, BCM+16, CSW99, DFSW19, FP92, GS94, HD00a, JK10, KB13, Nob08, NHT06, Pr14, SMAC08, SU96].

Numerically [BKM95, BFL199]. nur [BL94].

Nutzen [GEW98]. NVIDIA [GDS+20, GNP19, KC19, KME09, Seg10, VLMPS+18, XXL13, KKM15, Lan09].

NVRAM [MC18].

NX [Pie94, PR94a].

NY [IEE96f, PBG+95, Re96, SS96].

O [Bos96, CFF+96, DRUE12, IRU01, IBC+10, KLH+20, LkLC+03, kLCC+06, LPJ98, MMD98, MV17, MC18, MGC12,
MG15, NFK98, OWO98, PSK08, PLR02, RK01, SBQZ14, SR98, Tha98, Tsn07, WSN99, JDW18, **O2000** [CML04].

O2WebCL [CHKK15]. Oberammergau [BPG94]. **Object** [Ada97, CFK99, CFKL00, FMSG17, MSL96, PD98, SWL+01, YHGL01, YX95, Ada98, BR91, DM12, LKL96, OKM12, RFH+95, SL94b, TDG13].

object-based [LKL96]. **Object-Oriented** [BCFK99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. **Objects** [KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZPL96]. **Oblivious** [LZH17, LHZ18, UALK17, UALK19, HSP+13].

observations [ZKRA14]. observed [CAHT17]. **OcCam** [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. **Ocean** [BS93, GAM+99, Bha93, Mal01, Nes10, Sch99, Wal00]. **Oceans** [IEE94c, IEE94e].

OCLOptimizer [FAFD15]. **OCM** [BoFBW00]. **OCM-Based** [BoFBW00].

October [Ano93f, Ano94e, Ano94i, Ara95, BPG94, Bha93, BDLS96, CHD07, CGB+10, DQM94, DLO03, DE91, FK95, GGK+93, IEE+94f, IEE+95a, IEE+95g, IEE+95j, IEE96b, IEE96c, IF95, JB96, Kra02, Olh02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE90, UCW95, Vol93]. **octree** [JL18, TK19].

octree-based [JL18]. **ODE** [Ano97, Bra97].

ODEs [Pet97]. **OdmInMP** [BB00].

OdmInMP/CCp [BB00]. **Off** [CGS15].

Off-Line [CGS15]. **Offering** [EK97].

Official [Ano98]. **Offload** [BR05].

Offloading [DFP+19, MGA+17, DSGS17, KBG16, MNYN21, SWCB20, TSE21, TMT+20, WZW21]. **Oil** [Rolo8a]. **OKs** [Ano03]. **old** [LK14].

OMB [BWV+12]. **OMB-GPU** [BWV+12]. **OMIS** [LW97]. **Omni** [KSS00, KSHS01]. **OmniRPC** [SHTS01].

OMP [SGJ+03]. **OMP2001** [TSB03].

OMP2012 [MBB+12]. **OMPI** [ACH+11, OM96]. **OmpSs** [ABF+17, BAC20, PSB+19, VLCM+20, YÁJG+15].

On-Chip [WYZ+19, TGD13]. **On-Demand** [CTK00, LSB+18]. **On-GPU** [LW20].

On-Line [BoFBW00, Wis98]. **On-the-fly** [KSJ14]. **ONC** [RS93]. **One** [BPS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DPFT19, DBB+16, GBH18, KW20, LSK04, MS99c, Ols95, PGK+10, dlAMC11].

one-dimensional [Ols95]. **one-layer** [dlAMC11]. **One-Sided** [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DPFT19, DBB+16, LSK04, MS99c, PGK+10].

one-step [KW20]. **only** [LS10, Squ03].

Ontario [GGK+93]. **onto** [OFA+15].

OOMPI [MSL96]. **OOPS** [RFH+95].

OPAL [CwCW+01]. **OPAL-MPI** [NW98]. **opaque** [SOA11]. **Open** [BGG+15, KDL+95b, WGG+19, AVA+16, KDL+95a, LSB+20, Nob08, GBS+07, VGRS16].

Open-Source [BGG+15, AVA+16, LSB+20, Nob08].

OpenACC [ACC+21, CGK+16, CCBPGA15, GML+16, GM18, HTJ+16, HY20, JCP15, KDHZ18, KL15, Kom15, LLVM21a, LLVM21b, LGh+20, LB16, LGh+20, MGS+15, OGM+19, OGM+16, QHCC17, RLFDS13, SCJH19, STH22, StP20, VGP+19, WLK+18, XJR21, XR21, EVMP20].

OpenACC-based [KL15].

OpenACC-like [HY20].

OpenACC-to-FPGA [ABDP15, ABFP16, ASAK19, AB13, BLPP13, BCB+19, BDW16, BN12, BS21, BHW+12, BBH+15, BAS13, CJPC19, CDD+13, CP15, CLOL18, CZP21, CIJ+10, CHKK15, CCSI9, CCK12, CS14, CLBS17, CBGL19, CBS18, DARG13, Di14, DWL+10, DWL+12, FAFD15, FLMR17, FDG19, FE17a, FE17b, FSV14, FVLs15, dFdOSR+19, GScFM13, DDDM17, HSO+21, HHS18, HD11, HE15, HHC+18, JSS+15, JCP+20, JKM+17, JR13, WYZ+20].
OpenCL [SGS10, Str12, TSH+15, TSEE21, TK16, TM17, TKP15, TY14, TL19, WTT17, WM019, WZH16, WTS19, WQK20, WYH+21, YSWY14, YWT15, YSL+12, ZWL+17, ZT17, dAT17, KB21].

OpenCL-accelerated [ZW1+17].

OpenCL-Based
[CLO18, MZLS20, WTT17, WZH16, JKM+17, SXMG+18, WHM019].

OpenCL-like [TSEE21].

OpenCL-to-WebCL [CHKK15].

OpenCL-written [KH+18]. OpenCLC
[LSB+20]. openFabrics [FCS+19].

OpenFOAM [TGS+20]. OpenGL
[Ano98, Bae20, LHZ97, ORA12, Röt19].

OpenGL- [Röt19]. OpenHMPP
[AAB+16]. openMosix [Sl005]. OpenMP
[Cha05, CZH+08, CGK11, CMR12, EV01, JMS14, MdSOC0, SH+10, Vos03, OKM12, ST02a, ST02b, Add01, ARW03, ABC+00, AC07, AHD12, ADK22, AAB+17, AELGE16, ACC+21, ACMZ12, ATL+12, ADT14, ACJ12, Ano97, Ano01b, Ano03, ABB20, AKE00, ADMV05, ADI+05, ASB18, AML+99, AGM06, AM07, ACD+09, ABB+10, BST+13, BBB+22, BR02, BAE22, BHF+03, BEM02, Ben18, BN00, BF01, BBD14, BWW+12, BCC+00a, BCC+00b, BGGK08, BG+02, BS01, BS05, BBC+99, BBC+00, Bra97, Bri00, BVD03, BdS07, BGDs09, BFG+10, BGD12, BC00, BS07, BB00, BC19b, BK00, BK000, BO01, BEG+10, BB18, CdOO+20, CRE99, CE00, Car07, CB00, CGLD01, CDK+01, CLYC16, CM08, CM99, CHPP01, CBPP02, Cha02, CM05, CJvdP08, CGKM11, CMMR12, CLA+19, Cla98, CBY18, CCM+06, CCBG15, CC00b]. OpenMP
[CF19, Dah19, DM98, DW02, DBVF01, DFP+19, DKB20, DSGS17, HD02a, DGH+19, DFC+07, DFA+09, ETWAM12, EBB+20, EM00a, EM00b, E01, EdS80, FGRT00, FMAG17, FSG19a, FSG19b, FSXZ14, FM09, GSA08, GJP01, GSGK17, GG09, Goe02, GÅVRRL17, GSM+00, G+00, GAML10, GOM+01, GAM+02, Gra09, HPP02, HP15, HDDD09, HA10, HO14, HD02b, HDZ+20, HMK09, HASnP00, HKN+01, HAJK01, HVCN11, HLCZ00, HT01, HCL05, HEHC09, HJYC10, HHSM19, HH22, HAA+11, IJM+05, ICCC02, IOK00, IT10, JCP15, KJHK08, JP0J12, JFY00, JYJ+03, JCH+08, JJM+11, JLG05, JR10, KB01, KS15a, KOB01, KaM10, KOI10, KN17, KKH03, KT02, KSJ14, KLR+15, KBVP7, KB+09, KQT+21, KSB+20, KKV01, KT10, KH15, KAC02, KC06, Kuh98, KPO00, KLM+19, KRG13, KS00, KSHS01, KJEM12, LHOA01, LP00].

OpenMP [LLRS02, LTS16, LG+20, LD01, LMC09, LLC13, LHC+07, LNW+12, LRLG19, LHCW05, LYSS+16, LA02, LA06, LdSB19, LMAG14, LHZ98, LL01, LLH+14, MKC+12, MS02b, Mal01, MV02, MM07, MB12, Mar02, Mar03, MLC04, Mar05, Mar09, MP0D04, MCBO5, Mat00a, Mat00b, Mat01a, Mat03, MG005, MG12, MG15, MM11, MFG+08, MKV+01, MBE03, MRRP11, MMDA19, MMS02, MKW11, MM14, MMS07, MJB15, MJPB16, MC+08, Müller1, Müll01, Müll03, MBB+12, MBA21, NO00b, Naka05a, NIO+02, NIO+03, NEM17, NPP+00b, NPP+00c, NPP+00a, NPP+00d, NAA01, NA01, NNON00, Nobs08, N0U5, NHT02, NHT06, OOS+08, OP10, OPW+12, PARB14, PPJ01, PVKE01, PK05, Per21, PZ12, PQR18, PRQ21, PGC02, PKE+10, Qu03, Ramm05, RDLQ12,
RLVRGP12, RBAA05, SSE12, SSB+16, SHHl01, SHTS01, SKS01, SLGZ99, SGZ00].

OpenMP
[SPL1+12, SdR+21, SHPT00, SSAS12, SK00, SB01, SBB20, SSB21, Stp02, Stp18, Stp20, SGL+20, SGS+21, TaFN1, TCM18, TBS12, TS12a, TSB02, TTSY00, TSN21, TSS00a, THDS19, TScM12, TJPF12, Thr99, TBG+02, THH+05, TGBS05, TMT+20, VLSPL19, VLMC+20, VDL+15, VPS17, VGSL14, VGPH+19, Vol03, Vre04, Wal00, Wal02, Wan02, WCC12, WC15, WZW21, WJC+21, WMK+19, WPC07, WLYL20, WT11, WYLC12, WT12, WLYC12, WT13, YKW+18, YHL11, YWC11, YCL14, YKLD17, YPAE09, YSV+16, YSMA+17, YYW+12, YCFA18, ZAT+07, ZT20, ZWC21, ZSh01, aMST07, dCZG06, vdP17, RM99, SSGF00, WCSS+13, EVMP20]. OpenMP*
[KDT+12]. OpenMP-based
[ABB20, LNW+12]. OpenMP-like
[BK00, BK000, KOB01, VGS14].

OpenMP-oriented [MLC04].

OpenMP-parallel [IIHSM19].

OpenMP-style [JPO12]. OpenMP/OMI
[BEG+10, HMK09, LLC13, LS5+16, MGS05, NO02b, Nak05a, SSB+16, SK00].

OpenMPI [DS22]. OpenSHMEM
[HVA+16]. OpenTuner [BAG17].

OpenUH [HEHCO9, LHC+07]. Operating
[MMH98, RGD97, TL19, USE94, WI93, ARS89, Sei99]. operational [KOS+95a].

Operations
[BIL99, BIC05, CCA00, FCLG07, FPY08, GFD05, GLB00, PSM+14, PGAB+05, TRG05, TGT05, WRA02, ZLWW20, BMG07, DS13, HMS+19, IDS16, KHB+99, KMH+14, LFW20, MB21, PGAB+07, PKD95, SS99, TFZZ12].

Optimizers
[DK20, KK19, NHT02, NHT06].

Optimistic [CC10]. Opportunities
[LB16]. optical [MRH+96]. Optimal
[BP99, GARR00, ZGN94, BNB95a, ER12, P007, PTL+16, Sur95a]. optimiertes [Sei99]. optimisation [AMHK15].

Optimising [Boo01, FKH02]. Optimistic
[SCL00, CXB+12, PY95]. Optimization
[AEB+20, BSG00, BHNW01, DBA9, Goe02, HS12, HS00, ITT02, KGG+03, KMH+14, LLVM21a, LLVM21b, LCV19, LdSB19, MC17, MBS15, MAuthor+02, NIO+03, PSS01, SM03, SVL99, SWH15, TRG05, WTTH17, WJ12, AMK02, BMS19, Cots93, DSO01, DHU22, HS09, HDZ+20, KS12, LME09, LDKJ13, MALM95, P16, PS19a, PMHM95, SKS01, SDJ17, Stp20, Str12, TMW17, TM+20, TFSZ12, VSW+13, W19, XML13, X12, ZW21].

Optimizations
[NSLV16, SIE12, iSYS12, TSS00a, BVML12, HLK+20, HEHCO9, L16, MV17, SSS+19].

Optimize
[SdR+21, BBW19, GVF+18, GF18+18, WLYC12]. Optimized
[AKL16, ABG20, AMC+19, B102, FAFD15, MIAVA14, PM95, PTH+01a, THS+15, THS19, WJB14, BKH+14, EBB+20, MMM13, Sei99]. optimizer
[BHRS08, Rag96]. Optimizing
[BGH+05, CXB+12, FM15, KKP01, ME03, MZLS20, NSZS13, OM96, SSS12, TGL02, TGT05, WK20, GS02, LHC+07, KBKB+13].

Options
[RR00]. Orange [ACM98a]. orbit
[CFF19, MBA21, SSN94]. Order
[BL95, DFN12, LZH18, EVMP20, KN17, KME09, KEGM10, KB13, MY16, OGM+16, THDS19]. ordering [Zah12].

ordinary [NF94, RBB15, SP11]. Oregon
[ACM99, IEEE93e, SW91]. Organization
[BPC94, JFGR12]. Oriented
[ADA97, BCFK99, FMSG17, LYGG20, MS19, PD98, YHLO1, ZL18, Ada98, BR91, CJPC19, CBGL19, DM12, HDZ+20, MGC+15, OKM12, RFH+95, SWL+01, MLC04].

Origin
[LL01, LSK04, ZSH01].

Origin2000
[B100, MH01]. original
[PNPM13]. Orlando [ACM98b]. Orleans
[IEEE96b, USE95]. ORNL [Bo99].

Orthogonal [SSB21]. orthogonality
[THM21]. OSCAR [IOK00, Slo05].

P [CAM12, WHDB05]. P-RnaPredict [WHDB05]. P03M [BJ93]. P2P [GR07, GGL+08, GJR09, RS19, SBG+02]. P2P-MPI [GGL+08, GJR09]. P4 [KS06, Mat94, Mat95]. PA [ACM04, Ham95a, ACM96c]. Pablo [BFMT96a, BFM96b]. Pablo-based [BFMT96a, BFM96b]. Pacific [IEE95c].

Package [BKK20, BS93, HFB21, KCP+94b, KOW97, LW95, OD01, SYF96, TSN21, van97, BHW+12, BBH+15, CwCW+11, DFSW19, Gaoo3, KCP+94a, LFS93a, LFS93b, SL95].

Pages [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Pagoda [YSS+17, YSS+19]. pairwise [AMHC11]. Palazzo [GT94]. PALLAS [KVV97]. Palm [Tsn21]. Papers [BDD+13, OL05, TB14, ACM90, CHD07, DKD07, GT19, IEE93a, IEE95c, KKD+03, MTW07, Old92, TH20, Ano95g, Chao5]. PARA [Dw94, DMW96, Was96, CD96]. parabolized [SSC95]. ParaCells [SYL19]. Paradigm [HIP02]. Paradigms [BGD12, CM98, DSU20, HD02a, HD02b, CD00+20]. Paradyn [MHC94a, MHC94b]. Paragon [Ano96c, HWW97, MP95, PR94a]. Parallel [ACM95b, Ada97, ATC94, Agr95a, AMB93, ASA97, AL96, AP96, Ano95b, ACMR14, AB95a, AJF16, BHM94, BJ93, BBG95, BCGL97, BKK20, BPLL99, BP99, BG95, BS93, BDG+91a, BKGS02, Ben01, BP98, Bha93, Bic95, BGK08, Bis04, BALU95, BCL00, BSG00, BBG+99, BBC+00, BBG+01, BFZ97, BDL98, BDH+95, BDH+97, BT01b, BMS94b, BMPZ94a, BFM97, BKOO0, BBH12, BGL00, CCG+92, CHD07, Cer99, CDZ+98, CUC95, CD01+91, Cha02, CGB+10, COE20, CNC10, CFF+94, CSW97, CMH99, CPS95, CSSM97, Coo95b, CT94a, CT94b, CC00b, Cze16, DMS94, DK20, DERC01, DYN+06, DK13, DDP+19, Di 14, DJ02, DAD19, DSS00, D+91, DKN+92, DGM93, DT94, DGH+99, DZDR95, DK06, DSCUT05, EKT999, EGR15, EM00a, EM00b, EGD92, EJJ92, ES11, FGRD01]. Parallel [FHS099, FJBB+00, FPS99, Fesr98b, HFK01, dFdOSR+19, Fis01, For95, FP92, FB94, Fes93, FF95, GCBM97, GLN+08, GBD+94, GKP97, GR07, GSI97, GSMK17, GDM18, GBG98, GHL97, GKL0, GFP12, GJN97, Gre94, GLS94, GL97a, GLS99, GlkLY97, HFB21, HJ98, HLP10, H014, HK94, HK3, HK95, HK94, HT01, H22, HAA+11, IE93b, IE94a, IE94f, IE95h, IE95f, IE95g, IE95j, IE96b, IE96c, IE96g, IE97a].
IEE96e, IEE96d, IEE97b, IEE05, ITKT00, IBC+10, IOK00, IDD94, IH04, IHM05, JAT97, JML01, JLG05, Jou94, JRM+94, KFA96, Kan12, KDHZ18, KOI01, KNT02, Kat93, KBS04, Kep05, KnWH10, KR99, KSB+20, Kon00, KKI01, KMC96, KMC97, KS96, KKD03, KKD04, KS01, KVI97, KHS01, Kuh98, KBG16, Kun94, Lad04, LTTD14, LTR00, LKD08, LSZL02.

Parallel [LTRA02, LHHM96, Li96, LZ97, LHZ97, kLCC+06, LPJ98, LO96, Lus00, MSOGR01, MMD98, MS02b, MM92, MC18, MWG97, dlFMBdlFM02, Mar06, Mar07, MS03, SP99, Sie92a, Sie92b, SR98, Sin93, STV97, SWH15, Sou01, SBB20, SSB21, Sta95b, Ste94, SSN94, SG10, Str96, Str97, Str94, SNMP10, Sun90a, Sun90b, Sun94a, Syd94, TMR96, UDP97, TC94, TCP15, TQDL01, THN00, TDB04, Tsu07, TVV96, Uhl95b, Uhl96, UCW95, VLO+08, VRS00, VB99, WH06, Wal01a, Wel94, WAS95b, WHBD05, WO97, WSN99, WMC+18, WTR03, WT12, YMC97, YHG01, YH96, YPA94, YG96, YTH+12, YZC95, YSL+12, ZTD19, ZHSS20, ZH94, ZO04, ZDR04, ZWLZ21, ZWJK05, ZAT+07, ZLS+15, ZZZ+15, ZWC21, ZGC94, ZB97, van97, ACM97a, ARvW03, APBaF16, ART17, AAAA16, AD98, AL92, ABF+17, ASCS95, ADT14, AD95, ACJ12, Ano93b, Ano95c, Ano00b, ADB94, AV18, ADDR95, AB93b, AFST95, AB13, AGS94, ADMV05, ASB18]. parallel

[BJH96, BBB+94, BR91, BA06, BHS18, BB95a, BCAD06, BB93, BDG+92b, BB94, BPC94, Ben95, BvdSvD95, BKH+13, BAV08, BN00, Bir94, BCM+16, BKL95, Bos96, BFM96, BI95, Br95, BDW97, BSH15, BB95b, CARB10, CL93, CGK11, Cav93, CLI+15, CLSP07, CT13, CLY+16, CKnWH16, Cha05, CJdvP08, Cha96, CGL+93, CEES07, CH94, Cz96, Cle99, CJI+10, CS96, CSW99, CSS99, Cla98, CEF+95, CDD+96, CdGM96, CBH94, Coo95a, CCH03, CLASD99, CFF+96, CPR+95, CD01, CDM+94, CKP+93, CB11, DMK19, DKF93, DKF94b, DR18, DL94, DLRR99, DDS+94, DR94, DSZ94, DM93, DRUE12, DBV01, DKD05, DvdLVS94, DXB96, DMW96, DLM99, DKP00, DLO03, Duv92, DZZY94, EASS95, EVMP20, EV01, FB96, FFB99, FM90, FO94, FSTG99, Fer98a, FMS15, FCS+12, FKK+96b]. parallel

[BFM11, FHC+95, GG99, GCN+10, GL+08, GB95, GKD+18, GO99, GF+14, GAVRL+17, GDM+22, GSN+00, GKS+11, GEW98, GKK90, GKCF13, Gra09, GP95, HHS18, HAM95b, HPS+93, HD90a, HWS09, HZ99, HPLT99, HDB+13, HVSH95, Hol95, HH95, HLOC96, HVSC11, HHS19, HLO+16, IEE97a, IM95, JW96, JC17, JY95, JMM+11, JC96, JMDV+17, KCD+97, KHBS19, KOB01, KB16, KN17, KOS+95a, KTXP21, KB21, KC19, KL95, Koss95b, KSS+18, KCR17, KG93, KFSS94, Kra02, KKJ+08, KH10, LM99, LCL+12, LHH98, LS10, LZC+20, LCVD94a, LGMDA+19, LMM+15, Lou95, LG93, LM13, LL95, LC97b, LSR95, MM99, MYB16, MM+94, MZK93, MV20, MM95, Mar05, MSP93, MW21, MK00, MN91, MHC94a, MRRP11, MALM95,
Parallel [MR96, MvWL+10, NSBR07, Neu94, NB96, NBS08, NCKB12, NF94, OdSSL12, Ols95, Olu14, OW92, PHA10, PPT96b, PPT96c, PKB06, PBG95, PNV01, PB99, PPF89, PY95, PBPT95, PSLT99, PCS94, Ram07, RJC95, RGP22, RBB15, Rol08b, RBB17, SJLM14, SWCB20, SM12, SSKF95, SH94, Sch94, Sch99, SPK96, SBF94, SWYC94, SK92, SCC96, SL00, SMAC08, SZ11, SPL99, SMS00, SVC11, Sma93b, STT96, SH14, SRK+12, SLS96, Sta95a, Sti94, SMSW06, Sun95, Sur95a, Sut96, Swa01, SL95, TJD09, THDS19, TDB00, TGKL19, TMJ01, Uhl95a, Uhl95c, VM95, Vis95, Vos03, Wan97, WZW21, Was96, Was95a, WK08a, WK08b, WK08c, Wol92, WT11, WLYC12, WMP14, YULMTS+17, YHL11, YWC11, YBLZ03, YYW+12, ZL06, ZWHS95, ZAFAM16, ZWL13, ZDW18, ZT20, ZWL+17, dH94, ARL+94, Ano94e, Ano94f, ACDR94].

Parallel [BDLS96, BS94, BG94b, Bos96, CC95, Cza13, DSR94, DSK97, DW94, Edl81, EJL92, FR95, FF95, GN95, JPT94, JPP95, KKD05, Kum94, LK10, LkLC+03, Mal95, MKP+96, OKW95, PQ07, QRG95, SSSS96, SPE95, Stp02, TDBEE11, TCGM09, Vol93, Vre04, WN10, YC98, ZPLS96, ZDR01, ZHS99].

Parallel-in-time [HFB21].

Parallel-programming [KKJ+08].

Parallel/distributed [FHC+95, Wan97].

Parallelle [GEW98]. paralleles [BL94].

Parallelisation [SJJK+17a, SJK+17b, WCVR96, LF93b].

Parallelism [CGC+11, EdS08, Ek97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, KT02, Mar03, MGA+17, MMS07, MsC90, RBA95, SHM+10, SML17, SML19, SGZ00, SGL+20, TCM18, TTSY00, TPK+19, Thr99, YPAE99, ATL+12, AML+99, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, HY20, JC17, JPOJ12, Kos95b, MAAH20, OPP00, RKBA+13, SLGZ99, SHPT00, THH+05, TWF009, W009, WFT014, WRSY16, WZV21, YZ14, PDJC+18].

Parallelization [AL93, And98, AAB+16, AIM97, BCM11, BS07, CRE99, CP97, Cou93, CF19, Cza03, ET94, HA10, JR10, Kik93, KLR+15, LP00, MB18, OD01, PO96, QMG00, Rag96, RF95, RM99, RS97, S01, WPL95, WZWS08, WR01, aMST07, ACC+21, ABB20, AGMJ06, BW12, BDY99, BJ99, DFD+96, FSG19a, Ga03, Goe02, IDS16, IJM+05, JL18, JJY+03, JMS14, KS15a, KD12, KRG13, MCB05, MGG05, MMDA19, Nes10, NEM17, OLG+16, Stp18, TWFO09, VBV98, ZT20].

Parallelize [KJN22]. Parallelized [FBSN01, OMK09, AiIS+21, DFSW19, KMG99, OKM12].

Parallelizer [BHRS08].

Parallelizing [BST+13, Car07, GGH99, AM99, BY12].

Parallelldatorcentrum [Eng00].

Parallizing [LRQ01]. parameter [DH22, HPLT99, JMDV+17].

Parameterizable [JCP+20].

Parameterized [CT13]. Parameters [GFV99, BAG17, KSC+19]. Parametric [LLG12, Par93]. parametrised [TGS+20].

Paramid [She94]. Paraperm [LTDD14].

Paraprox [SJLM14]. Parasite [LLRS02].

Parallelization [SBQZ14].

Parity [MC17]. Paris [HVSH95, RS95, SHH94a, SHH94b].

Park [SL94a, IEE93c]. PARKBENCH [DHS96, DH95].

PARMACS [GR95, HZ96, HZ99].

PARMACS-to-MPI [HZ96].

ParNSS [HSMW94].

PARRAY [CCM12]. parsing [Sur95a]. Parsytec [SHH94a, SHH94b].

Partial [DWC95, EM00a, EM00b, GK10]. Partial [DERC01, DL16, FSSD17, K02b, MK17, MFTB95, MH18, MKK21, OM96, ST17].
partially [CdGM96]. Particle
[GSI97, KHS01, NSLV16, RBP+21, ZZ04, BAS13, CFF19, FFC99, GSMK17, KPK13, RFH+95, VDL+15]. particle-based
[FFFC99]. particle-in-cell [VDL+15].

cell-based
[ATL+12]. Partition [DAD19, PS19a].

partitioned
[DWS+21]. Partitionierung [Gra97].

Partitioning [CTK01, DAD19, kL11, SPB+17, STV97, WJG+21, CT13, Cha96, Gra97, GKF13, YST08].

Partitioning-Based [WJG+21].

Partition-Based [CFF19, GSMK17, KPK13, RFH+95, VDL+15].

pathological
[LCH+22]. Pathway [CNM11, PATOP [BBF01]. Pattern [CSW12, CC17, JPL17, RMB99, MAS06, SJLM14].

pattern-based [SJLM14].

Pattern-Independent [CSW12].

Patterned [ST17]. Patterns
[ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, ATM01, AR01, Ano01a, Ano01b, ADR+05, AJC+20, Bak98, BBGL96, Ben18, BN00, BS21, BBDH14, BGG+02, BY12, BRM03, BRST94, BS07, TSZC94, VJ94a, Wal94b, ZWL13, ZKRA14, Dii96, GGHL+96, Han98, Hem94, RRFH96, SLG95, Wer95, YGH+14].

Pass [Dar01]. Path [CGPR98, GSYYT21, GAMR00, SD17, SLN+12, Zel95].

path-based [SLN+12].

Past [Dar01].

Path [CGPR98, GSYYT21, GAMR00, SD17, SLN+12, Zel95].

Path-based [SLN+12]. Part [Str94].

Pascal [GDS+20, KC19].

PASCO [ACM97a].

passage [PTMF18]. Passing
[AMHC11, Ano93d, AKL99, Att96, BC19a, BZ97, BC14, BBH+06, BBG+99, BBG+01, BRU05, BDH+95, BDH+97, BGR97b, BFM97, CHD07, Cer99, CGH94, Cot97, Cot98, CTK00, Cot04, CDND11, DFK01, DK08, DHHW92, DHHW93a, DDL00, FFFC96, FK96, FGT96, Fos98, FG98, FGT01, GB96, GL95a, GLDS96, GLT99, GLS99, GLT00b, GLTO0a, GL04, IBC+10, KTF03, KGRD10, K97, KSV01, KWD99, MG97, MTS94, MS98, MLS96, MBB94, MG97, MTW06, MTS97, NW98, PBK00, Pok96, PS01b, RRRL01, RWD09, RDF+00, SWHP05, SWL+01, ST02b, TGT05, TDB00, TBD12, WD96, Wer95, Wis97, YHL01, ZG95a, ZG96, ZL+12, Ada98, AD98, AAC+05, Ano93c, Ano94d, Ano95c, Ano95c, Ano00a, Ano00b, BL97, BvdSy95]. passing
[Bjo95, Br95, BDW97, BFM99, CGJ+00, CDZ+98, CRD99, CD01, DFK93, DMY93, DDK05, DS96b, DHHW93b, DOS96, DLM99, DKP00, DLD03, FK94, FHB+13, GL92, HPY+93, Hem96, JKN22, KJA+93, Kra02, LR06a, LBD+96, wL94, LCY96, LMM+15, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, SC99, SWJ95, SDV+95, SZ99, SSG95, St94, TSZC94, VJ94a, Wal94b, ZWL13, ZKRA14, Dii96, GGHL+96, Han98, Hem94, RRFH96, SLG95, Wer95, YGH+14].

Pass [Dar01]. Path [CGPR98, GSYYT21, GAMR00, SD17, SLN+12, Zel95].

path-based [SLN+12].

Past [Dar01]. Path [CGPR98, GSYYT21, GAMR00, SD17, SLN+12, Zel95].

Path-based [SLN+12].

Part [Str94].

Pasadena [IEE95c].

Pascal [GDS+20, KC19].

PASCO [ACM97a].

passage [PTMF18]. Passing
[AMHC11, Ano93d, AKL99, Att96, BC19a, BZ97, BC14, BBH+06, BBG+99, BBG+01, BRU05, BDH+95, BDH+97, BGR97b, BFM97, CHD07, Cer99, CGH94, Cot97, Cot98, CTk00, Cot04, CDND11, DFK01, DK08, DHHW92, DHHW93a, DDL00, FFFC96, FK96, FGT96, Fos98, FG98, FGT01, GB96, GL95a, GLDS96, GLT99, GLS99, GLT00b, GLTO0a, GL04, IBC+10, KTF03, KGRD10, K97, KSV01, KWD99, MG97, MTS94, MS98, MLS96, MBB94, MG97, MTW06, MTS97, NW98, PBK00, Pok96, PS01b, RRRL01, RWD09, RDF+00, SWHP05, SWL+01, ST02b, TGT05, TDB00, TBD12, WD96, Wer95, Wis97, YHL01, ZG95a, ZG96, ZL+12, Ada98, AD98, AAC+05, Ano93c, Ano94d, Ano95c, Ano95c, Ano00a, Ano00b, BL97, BvdSy95]. passing
[Bjo95, Br95, BDW97, BFM99, CGJ+00, CDZ+98, CRD99, CD01, DFK93, DMY93, DDK05, DS96b, DHHW93b, DOS96, DLM99, DKP00, DLD03, FK94, FHB+13, GL92, HPY+93, Hem96, JKN22, KJA+93, Kra02, LR06a, LBD+96, wL94, LCY96, LMM+15, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, SC99, SWJ95, SDV+95, SZ99, SSG95, St94, TSZC94, VJ94a, Wal94b, ZWL13, ZKRA14, Dii96, GGHL+96, Han98, Hem94, RRFH96, SLG95, Wer95, YGH+14].

Pass [Dar01]. Path [CGPR98, GSYYT21, GAMR00, SD17, SLN+12, Zel95].

path-based [SLN+12].

Past [Dar01]. Path [CGPR98, GSYYT21, GAMR00, SD17, SLN+12, Zel95].

Path-based [SLN+12].
BDL98, BCKP00, BHNW01, BFMT96b, BFBW01, BEG+10, CGK+16, CVPS19, CDD+13, CRE99, CDJ95, CGLD01, CBB+21, CNM11, Che99, COE20, CSC96, CCBPAGA15, DPSD08, DM95b, DW02, DZ98b, DPP01, DWL+10, DBK+09, EGH99, EGC02, EML98, EML00, FD02a, FGRT00, FCP+01, FSC+11, FST98b, FGKT97, GFD03, GKP96, GGS99, GBH99, GFIS+18, GRRM99, GBS+07, GC05, GMdBd07, GSYS+13, HVA+16, HKN+01, Hol12, HF14a, HF14b, HPS95, Has98, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IEE99g, IRU01, IHvA+00, IADB19, JSS+15, JC17, JCH+08, JS13, JLG05, KDSO12, KaM10, KL94, KH12, KBS04, KBM97.

Performance
[KC19, KKP01, KH15, KC06, KK02b, KHS01, Laf01, LAdS+15, LWSB19, LC97a, LB98, LGCH99, LNK+15, LH98, LC93, LkLC+03, LWZ18, LN+12, LRLG19, LS10, LCW+03, LV04, LW04, LDC97, LZHY19, LC97b, LKYS04, MMB+94, MKP+96, MPD04, ME17, MGHM97, MGC12, MM02, MM03, MOL05, MS99a, MHC94b, MMSW02, MK04, MCLD01, MMH99, MM07, MZLS20, NFS05, NM03, NSF98, NPP+00d, NMS+14, NN95, Otk15, OPJ+19, OF00, OL01, PARB14, PKB01, PHJM11, PZ12, PR94b, PFG97, PGAB+05, PGAB+07, PG02, PY95, PTH+01b, PS01b, QHCC17, QB12, Rab98, RBB97a, RBB97c, RH01, RRAG97, Ros13, RST06, SG13, SPM+10, SLJ+14, SWH95, SCP97, SEF+16, SPL+12, SCSL12, SM02, SM03, SSC97, SJ02, SSSS97, SC96b, SKH96, SJK+17a, SJK+17b, TSB02, TSB03, TTSY00].

Performance
[Ten95, Tha98, TAG+02, TGT10, Trä12b, TFGM02, TFZZ12, VF0D02, VY02, WZM17, WQKH20, WN10, WAS95b, WM01, WT11, WT12, WT13, WYZ+19, XF95, XH96, XXL13, YC98, Yan94, YWC11, YS93, YWCF15, YSP+05, ZLGS99, ZWLZ21, ZWJK05, ZHK06, Zhao21, ZSH01, ABDP15, Ahm97, ADDL03a, ADLL03b, Ano03, AFTS95, BDP+10, BAE22, Ber96, BPJ22, BDV03, BFMT96a, BFIM99, CREE01, CAHT17, CLYC16, CBPP02, CBM+08, CHK15, DM95a, DL10, DQ96, D+95, DWL+12, DE91, Duv92, EFR+05, ES83, FA16, FD02b, FE17a, FE17b, FS14, FME+12, Fin97, GV+18, GS02, GCC+07, GK97, GR95, GHZ12, GML+16, GSM+00, GL97, GLDS96, GL97c, GL99, GWVP+14, HCGN09, HLGK+20, HW11, HG+22, HASN00, HAJK01, HMA+19, HK10, HVSC11, HMA95, HG12, HcF05, JKH08, JMM+11, JKN+13, KP16, KKM15, KS13, KSC+19, LBD+96].

Performance
[LTLC94, LFS+19, LC07, LML+19, LHB12, LC96, LB96, L01, LK03, LK04, MC17, MP95, MSMC15, MSW+05, MLS12, MKP22, MABG96, MCH94a, MSZG17, MJPB16, MGC+15, NU05, NFG+10, OIH10, O12, PGS+13, PS19a, PHW+13, PGK+10, PF05, PMZM16, PTW99, Rab99, RMS+18, RPS19, Reu03, RGDM15, RJDH14, Sep93, SF95, SPBR20, SW95, Sto05, SVE+11, SK00, SFLD15, TMC09, TSP95, TG09, THM+94, VDL+15, Wor96, X21, YCL14, ZSK15, ZWL13, ZGSZ20, dAT17, HS95a, GH94, LCHS96, SSH08].

Performance-aware
[MSMC15]. Performance-based
[YWC11].

Performance-Driven
[LWSB19].

Performance-Neutral
[CBB+21].

Performance-Portable
[JSS+15, DWL+10, DWL+12, FA16].

Performance-prediction
[BDV03].

Performance/cost
[GWVP+14].

Performance/power
[RPS19].

Performances
[GFV99, DS96b, IM94].

Performing
[CC99]. Peridynamic
[MSZG17].

Periscope
[LG16]. perishable
[OH19].

Permutations
[CC99, LTDD14].

Persistent
[Man01, SG12, HMA+19].

Persistent-sets
[SG12].

Personal
personalized [BHJ96].
perspective [Sni18]. perturbation [KN17].
Perverse [Rol08a]. PES [MK94].
Pessimistic [BCH+03]. petaflops [LSG12].
Petascale
[CGKM11, CBYG18, ZWL13, Gei01].
Petersburg [Mal95]. Petri [CNM11].
PFACC [HY20]. PFSLib [L95]. PGAS
[SWS+12, SJK+17a, SJK+17b]. Phase
[CBL10, DH22, ED94, TKP15, TG94, ZAFAM16]. phase-field [TKP15]. PHAT
[BBC+19]. Phi
[BB18, CBIGL19, DSGS17, MTK16, OTK15].
Philadelphia [ACM96b]. Phi
[MMDA19]. PHOENICS
[SZBS95b, SZBS95a]. Phoenix
[ACM03, IEE95b, Ten95]. Photo
[JFGRF12]. Photonic [ILLmH+21].
Phylogenetic [MR12, LBH12]. Physical
[BM97, GJN97, SR98, GWVP+14]. Physics
[GT94, KH15, VW92, WB97, ANS95, BPG94, DMW96, SPB+20, PIC
[BDV03, HTJ+16, JL18]. Picos [YÁJ+15].
Pilot [OS97, CGG10]. PINEAPL
[DHK97]. Pinhole [NH95]. Pipe [MTU+15]. Pipeline
[GAMR00, KK21]. Pipelined [GAML01].
Pipelines [MAGR01, FWS+17, RKBA+13]. pipelining
[MN11]. Pisa [Sili96].
Pitaevskii [LBB+16, LYSS+16, SSB+16, YSV+16, YSMA+17]. Pittsburgh
[ACM96c, ACM04, Ham95a, IEE94d]. Place
[IEE94e, LTS16, BCK+09, HSE+17, PSHL11]. placement
[DJJ+19, SLN+12, SPA+12].
Planck [Aroc]. Planing [GAMR00].
Planning [HMS+19, Ze95]. plant [FO94].
PLAPACK [van97]. plasma
[JL18, DGH+19, YKLD17].
Plasmafusionsforschung [BL94]. plasmas
[CFF9]. Platform
[BKGS02, BB18, NO02b, PGF18, WTT17, BSH15, CBI11, Cza13, DWL+10, DWL+12, HTJ+16, HHA95, JPL22, JR13, KSC+19, NO02a, XXL13, YSL+12]. Platforms
[AIM97, COE20, HSO+21, HD00b, JML01,
OPJ+19, RVKP19, ZB97, BBC+19, EYP+20, GGC+07, GFB+14, MBBD13, TKP15, TS12b]. Pleseet [BL95, KN17]. PLIERS
[MMR99]. plug [MS99b]. plug-in [MS99b].
plume [JL18]. plus [HDB+13, Sp+18].
PMAc [PTL+16]. PMD [Che99]. PML
[Ran07]. PMPIO [FWK96]. PMPIO-a
[FWK96]. pool [JSS+15]. Point
[GBS+07, HC10, KV98, LWSB19, TSN21, ADLL03a, ADLL03b, WK20]. Point-to-Point
[GBS+07, HC10, KV98, ADLL03a, ADLL03b, WK20]. Pointer
[WYH+21]. Pointer-Based [WYH+21].
Pointers [LRT07]. Poisson [BP98, WJB14].
Poland [BDW97]. Polder [OS97]. Policies
[CML04, PZ12, OHG19]. policy [MMDA19].
Polling [DCPJ12, Pla02, DCPJ14, SH96].
Pollutant [Rsv+05]. Pollution
[AKK+94, BZ97, MPD04, SM10, SH94, Syd94].
POLSYS_GL
[MSW06]. polygonization [TSP95]. polygons [CT13].
polyhedral [BHR+08, KGB+09]. polymers
[JAT97]. Polynomial
[VY15, HLM+17, SWSW06]. port
[CCHW03, Har94, RMC93]. Portability
[KaM10, RS95, RH01, ABDP15, CGK+16].
portfolio [PPT96b, PPT96c, PMZM16, PHW+13].
PORTABLE
[Ano95c, Ano00b, BH12, BHS+95, CDH+94, DFK97, Di14, FCLG07, FLS98, GLS94, GL7a, GLS99, JSS+15, NLLE00, Man98, MKV+01, MG97, PPT96a, PBC+01, SSCC95, STH22, SOB+16, Sti94, Tra98, WCS+13, YMCB14, YTB20, Arn95, BCK+09, BD94, BB00, BL99, BAS13, CJvdP08, CH94, CEF+95, DWL+10, DWL+12, FAF16, FWNK96, GRR95, GL94, GS94, GLDS96, HTJ+16, HZ94, HSW+12, JC96, KNN95, LFS93a, LFS93b, LHC+07, MBB+94, PPT96b, PPT96c, PMZM16, SSH+19, SFLD15, Sth98, VM95]. portal
[AASB08]. portals
[BS96b, BM02, BRM03]. Portfolio
[SIS17]. Portfolio-driven [SIS17]. Porting
[Ano96c, BBB+22, BSC99, BLW98, EM02, HSO+21, Har94, Har95, HASnP00, KGK+03, KME09, SR96, YKLD17, dCH93, BvdB94, HD11, LBG+20, MWO95, ZPLS96].

Portland [ACM99, ANS95, IEE93e, SW91].

Portugal [IEE93d, IEE96g].

Positron [Pat93].

POSIX [LD01].

Post [BBH+13b, Wit16, ABC+00].

Post-failure [BBH+13b].

Post-ISA [Wit16].

Poster [JJPL17, LZH17].

POSYBL [Mat94].

Potential [EGC02, Gro01a, KS15a].

potentials [THDS19].

Potts [KO14].

POV [FFB99].

POV-Ray [FFB99].

Power [DDN+22, LWZ18, LB96, EZBA16, FO94, HK10, Nel93, RPS19, SM19, Bri95, DDN+22].

Power-Efficient [DDN+22].

Powered [NE98, RTN21].

PP [IEE96d].

PPARDB [PPT96b, PPT96a, PPT96c].

PPARDB/PVM [PPT96b, PPT96c].

PPPE [CDH+94].

PPSN [DSM94].

PPT [Bae22].

PPT-Multicore [Bae22].

Practical [ACC+21, BIJ96, BCP+97, CZA+08, RHG+96, TGBS05, AMS94, BHR08, LPD+11, MCK94, Pan95b, VVD+09, WDR+19].

Practice [ACM11, GN95, ZGSZ20].

Praktische [MS04].

Pre [AC17].

Pre-processor [AC17].

Precedence [EGR15].

Precedence-Constrained [EGR15].

Precise [FK+17].

Precision [Ano95a, Kha13, ZC10, JPT14].

Precisions [HDW21].

Preconditioned [GFPG12, ABF+17, MM92].

Preconditioner [BBS99, FSXZ14].

Preconditioners [Huc96].

Preconditioning [MYL21, Nak03, GCC+07].

predictability [GRRM99].

Predicting [RRAGM97].

Prediction [MOL05, WHDB05, ZWJK05, ADR+05, BAE22, BVD03, CMV+94, HHA95, RBA17, SEC15, SC96b, SSN94, Was95a, ZAT+07].

Predictive [FK+17].

Preemptive [BBH+06, BBGL96].

Preface [DKD07, OL05].

Prefetching [BIC+10, KC19].

Prefix [WJ12, DK13, MYB16].

Preliminary [BF98, Wal01a, WLK+18, RJC95, RLFdS13, SWS+12].

PREMER [VBB18].

Preprocessors [Ano01a].

prescription [MRH+96].

Present [Dar01].

presented [ACM90].

preservation [IEE94c].

Preserving [RNPM13].

Press [Ano95a, Ano95b, Ano95c, Ano96a, Ano99a, Ano99b, Ano99c, Ano99d, Ano00a, Ano00b, Edd18].

Pricing [RR00].

Primitives [DDL00, FST98a, ZLWW20, ABDP15, CLJ+10, STP+19].

Princeton [Bha93].

principles [BSC99, HS12, SSP+94].

printing [YM97].

priority [DR95, Man98].

Prism [SDN99].

private [Str94].

privatization [KRG13].

Probabilistic [LAdS+15].

Probability [QRMG96, Sta95b].

Problem [BSH15, DALD18, DAK98, GAMR00, ICC02, Lee06, MTSS94, RLRGP12, ZSnH01, AB93b, DMS94, GM94, GKF13, GADM20, HMKV94, IHO5, MM92, RRJ+20, SL00, SP11, TSCS14, Cza13].

Problems [ASA97, BH94, BM96, BMR01, BPNM97, CGP98, EML98, HAA+11, DK02, LMS+18, MBS15, Nak03, Rix17, AL96, CEGS07, FR95, JRG21, LSR95, NZZ94, OMK09, SC96a, SD99, TGS+20].

procedure [AGLv96].

Proceedings [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM04, ACDR94, CJNW95, GN95, Hol12, IEE93f, IE95d, IEE02, KG93, LCK11, MC94, RV00, R+92, SM07, Ten95, TG94, dGMJ94, ACM96b, Ano94e, Ano94i, BFG94, BOi97, BH95, CLM+95, DSZ94, DE91, EJL92, FF95, GHH+93, HK95, HHH94, IEE94a, IEE94b, IEE94c, IEE95b, IEE95e, IEE96a, IEE97c, IEE05, JPT94, KUM94, LF+93a, Li96, PSB+94, PBPT95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM05, ACM06b, ACM06a, ATCH94, Agr95a, AGH+95, AH95, Ano89, Ano92,
Ano94a, BBG+95, Bha93, CHD07, CZG+08, CGKM11, CMR12, CGB+10, CDND11, DKM+92, DT94, DLO03, EV01, EdS08, ERS95, ERS96, Fer92, FK95, Gat95, GGGC99, Gre94, HAM95b, HCC+20, HPS+96, JLP22, JC96, Kat93, KB21, Kum94, LHLK10, LG93, PSB+94, PBPT95, RKBA+13, Röhl00, RCG95, SSS99, SLS96, VDL+15, Wol92, WWFT11]. **Processor** [HC06, Oed93, Ott94, PWP+16, RR02, Smi93a, SB04, UALK17, UALK19, ABDP15, AC17, DJJ+19, DCH02, HC08, LL01, MMDA19, OIS+06, RNP13]. **Processor-Oblivious** [UALK17, UALK19]. **Processors** [AJ97, Bri10, DDP+19, HK93, HK95, KmWH10, MJB15, OL01, PZK02, AV18, BBG+14, CMB+08, DBLG11, HTA08, HWX+13]. **Producing** [HAJ01]. product [CMH99, ER12, SMSW06]. Production [IADB19, CLdJ+15, SL00]. productive [LV12]. **Productivity** [BS07, DSU20, KaM10, Wit16]. products [Ano97, Bra97]. profile [TWFO09, WFO14]. profile-driven [TWFO09, WFO14]. profiler [AS92]. profiles [BAE22, Wil94]. Profiling [AJC+20, EYP+20, GPL+96, LZYH19, Rab99, Vet02]. **Profitability** [CLA+19]. **Program** [Ano96d, AB93a, BMS94b, CHPP01, Cot97, EML98, MM95, MK17, MRV00, Ney00, PS01b, TS01, THN02, CDZ+98, CZP21, JF95, LP00, LL13, OKM12, PPF89, Sai10, TN17, TJP10, ZL96]. programación [VP00]. Programmable [OA17]. **Programmable** [BL94]. **Programmer** [Gua16, Wit16]. programmers [CGG10]. **Programming** [ACM90, Ad97, ACRG97, ASA97, ACJ12, Ano96b, BBG+10, BL93, BHK12, BF01, BBG+99, BBG+01, BK000, CMK00, CDK+01, CKnWH16, Cha02, CZG+08, CF01, Cza03, DM98, DSU20, DARG13, DL00, DK06, DWL+10, EM00a, EM00b, FTVB00, FWR+95, GLR01, GLR94, GLS99, HSO+21, HA11, HDB+12, HDT+15, KKH03, Kep05, KP96, KmWH10, KV17, Lad04, La01, LLRS02, MSOR91, Mat94, MMDA19, OIS+06, RNP13].
Mat95, MSM05, MCdS08, NO02b, SPM+10, SK10, SS01, SDN99, SHH94b, ST02a, ST02b, SGS10, St02p, TTP97, VT97, Vre04, Wal01a, Wal02, WO97, YMW97, YHGL01, YCA18, ACGdT02, AmuHK15, Ano95c, Ano00b, AB13, BJ13, BCA06, BB94, BS96a, BKH+13, CPM+18, CLYC16, Chat05, Cvdp08, CEF+05, CDH+94, CGH+14, DWL+12, Du92v, EASS95, EVMP20, EV01, FSG91b, FB95, FB96, Fan98, FSTG99, Fer04. **propositional**

Programs

AJF16, Beg93b, BKdSH01, BGK08, BGG+02, BDL98, BGL00, CSW12, CRE99, CHPP01, CD80, DLB07, DMM97, Di 14, FKH02, FJK+17, GR07, GTH96, GSYT21, GL04, GC05, HC10, HKN+01, HM01, JLG05, KFL05, KL94, KSJ14, KKV01, KSV01, Mar09, MYY95, MOL05, MBE03, MKW11, MCD01, MJB15, NSZS13, NE98, NE01, NPP+00d, OM96, PPJ01, RH01, RFG+00, SGZ00, SBF+04, SR96, TGBS05, WYH+21, We94, Wis97, ZLL+12, Beg92, Beg93c, Beg93a, BCK+09, BEMP03, CRE01, Clg+15, CGL+93, CH94, CRM14, CFP96, DK693, DFP94b, EP69, EPP+17, FSG19a, FLB+05, FKL08, GGH99, GRRM99, GKS+11, GB94, HD11, HZ96, HLOC96, HEHC09, KCD+97, KS13, KO14, Kom15, KLM+19, LGKQ10, LLG12, LL16, LBB+16, LYSS+16, LMM+15, LZC+02, LCC+03, MT96, MdSAS+18, Mor95, NBK99, Obe96. **programs**

[OdSSP12, PES99, PAdS+17, RAS16, Ren03, RRG+99, SSB+16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THH+05, TGL91, UGT09, VVD+09, WZW21, YSM+16, YSM+17, YY+12, ZJDW18, ZRQA11]. **Progress**

[BRU05, LAdS+15, SPH+18, DJJ+19, MLA+14, RSC+19, MC94].

Progress-Dependence [LAdS+15].

Project [BHK+06, BSH15, DHK97, MRV00, ABC+00, BBB+20, CDH+94]. **Promise** [Ano93].

Promotion [OCY+15, WBBD15].

Propagation [EMO+93, ESM+94, JML01, SMEG93, ASAK91, KEGM10, RMNM+12, ZWC21].

proper [TGS+20].

Properties [FGR00, JL18, MS96b, SSP07, WADC99].

protected [GHD12].

Protein [RGB+18, GAvRRL17, RJH+20, SEC15, ZAT+07].

protein-protein [RZH+20].

proteins [BHW+12, BBH+15, FMS15].

Protocol [CAWL17, GSY+13, knl11, LMM+15, RA09, X590, BBD+13, CwCW+11, DDM99, MN91, MB00, ZPIO6].

Protocol-based [LMM+15].

Protocols

[BC+08, DND+22, DM93, LH98, LZZ+20].

Protopleanetary [dlFMBdlFM02].

Prototype [Ano01b, FHP+94, MMSW02, BK96, CCF+94, KLY03, KLY05].

Prototyping [SXMX92, Spe19].

prover [Sut96].

Provide [Add01, LMRG14].

Provides [Ano98, Nc93].

Providing [GKP97, Zah12].

Proving [MS96b].

PRS [UCW95].

pruned [dFDR+19].

Pruning [SMB+16, WQKH20].

PS [AMV94].

Pseudo [Wal01a, Wan09].

Pseudo-search [Wal01a].

Pseudorandom [WHDB05, StP20].

Pseudospectra
pseudospectral

Pthread [ZAT+07]. Pthreads

[BKGS02]. PSVM [BWT96]. PSPNM

[PAT94]. PTX [YSY12]. Public

[AJYH18, BDT08, Che10, SZBS95a, Sun94a, ABDP15, CBM95, CT94a, CT94b, CFF96, CT02, CTK01, DG95, DKF94a, DDM99, DM95b, DM95a, DP94, DMMV97, DG07, DFN12, D+91, DGM93, DGMJ93, DHP97, DPZ97, EP96, EM94, EGD92, ED94, EM92, EML94, ESL92, ES93, ES94, EST99, FJBB+00, Fin97, FD97, FS97, For95, FS93, GRV01, Gai97, GCBM97, GS91a, GS91b, GS92, GS93, Ge93a, Ge93b, GDB+93, GBP+94, Ge96, GKP96, Ge97, GKS97, GFL98, GSxx, Ge00, Ge01, GTH96, GB96, GM95, GSHL02, GFV99, GGH99, GS96, Ger91, GL97, Gre95, Gre94, GL97b, GMU95, GlLyCY97, HB96a, HB96b, HSMW94, HK98, Har94, Har95, HBT95, HPS+96, Hem96, HEH98, HTHD99, HVSH95, HH95, HRSA97, Tue96, Hum95, HS95b]. PVFS [IT796, Ivld90+00, IDD94, IKM+01, IMK+02, JAT97, JH97, JML01, JW96, JC96, KBA02, Kat93, KK98, KP96, KBM97, KDL+95a, KDL+95b, KG96, KCP+94a, KCP+94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAHS96, KK02b, LM00, LB98, LSZL02, LHCT96, wL94, LS92, LFS93a, LFS93b, LH95, LC93, LY93, LLY93, LW95, LHZ97, LKL96, LDCZ97, MW98, Man94, MVT96, Man01, MP95, dFMB97f02, MTSS94, MFTP95, MS95, MSP93, Mat94, Mat95, MMU99, Mat01b, MRV00, MK97, Mc94, MC98, MF97, MVY95, MS96b, Mic93, Mic95, MT96, MS99a, MS99b, MHC94a, MHC94b, MRH+96, MS95, MC99, MWO95, Nel93, NP94, Neu94, NBK99, Ney00, NB96, NAJ99, Nov95, Ob96, Ols95, OPP00, Ott94, OW94, PPR00, PR98, PPT96b, PPT96c, POL99, PT01, PKY95]. PVM [Per96, Pet97, PTT94, PGPCR21, Pla02, PN01, PD98, PY95, PL96, Pur95, QRG95, QRM93, Qu95, QMGR00, RR00, RS93, Rag96, RS95, RHG+96, RRAG97, Rol94, SGD97, Saa01, SAS97, Sch94, Sch96a, Sch96b, SB95, SFG98, SG95, SS99, SP96, Sep93, Sev98, Shi94, SA93, SR96, SSH94a, Ssi94b, Smi93a, SBR95, SC96a, ST96, SMO93, SSL+00, SH95, SSS97, Sta95b, SY95, SYF96, SC96b, Str94, SK96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SGDM94, Sun96, STM97, SN01, SCL00, Sur95b, Sut96, SUT96, TDD96, TC94, TBD96, TD98, TS95, Uhl94, Uhl95b, UH96, UM97, VSRC94, VSRC95, VB99, VAT95, WKS96, WH94, WCVR96, WAS95b, WO97, Wis96a, WL96a, Wis98, Wis96b,
WL96b, WCS99, Wu99, WLC07, XWZS96, XF95, YG96, YKI+96. PVM [ZPL96, ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, Zol93, van93, NMC95, Ano95b]. PVM-AMBER [SL95]. PVM-Based [WAS95b, FO94, PY95, Sut96, ZPL96, LSL02, TD98]. PVM-GRACE [YKI+96]. PVM-Implementation [BJ97, Huc96]. PVM-RPC [KS97]. PVM/C [GHT96]. PVM/MPI [AD98, BDW97, CHD07, CHD09, CD01, DKD05, DLM99, DKP00, DLO03, Kra02, KKD04, LKD08, MTWD06, RWD09, ACRG97, SN01]. PVM3 [IM94]. PVM3/AP1000 [IM94]. PVMaple [Pet00a, Pet00b, Pet01]. PVM [BR95c, BR95b]. PVMGeant [DZDR95]. PyCUDA [KPL+12]. PyMGRIT [HFB21]. PyOpenCL [KPL+12]. pySDC [Spe19]. pySDC-Prototyping [Spe19]. PySPH [RBP+21]. Python [BL07, DPS05, DPD08, Di 14, DFSW19, GFB+14, HFB21, RBP+21, SSH08]. Python-based [RBP+21]. PyTrilinos [SSH08].

63
Reading [HK95]. Ready [Bri02, DZ98b].
Ready-Mode [Bri02]. Real [ASB18, LHLK10, NSLV16, PRQ21, SM19, SGL+20, TWLL19, Tho94, UP01, YGH+14, Ano94f, Fer04, FLB+05, JR10, ZWZ+95, SKD+04].
Reduction [DAD19, FKH02, MFPP03, SG12, HL17, Jes93a, MIYS16, Pan95a, PQ07].
Ara95, BPG94, LP00, Oed93]. Reservoir [KDHZ18, OWSA95, ZAFAM16, ZZ95, Ano95d]. Resident [JDB+14]. Resilience [YNJS21]. resiliency [RGP22]. Resilient [CGH+14, Gua16, LCMG17, Pro21, LM17, LBB+19, MLVS16]. Resistive [ZL17].

Resolution [MAB05, Str94, TPV20, ZWLL21, BADC07, KN17]. Resolving [Str97]. Resource [BGR97b, BSH15, KK98, SIS17, YSS+17, BMS19, DZ96, FLD96, FL21, NEM17, PIR+20, ZA14]. resource-conscious [ZA14]. resource-restricted [NEM17]. Resources [LSB15, NAW+96, WYZ+99, Kos95b, RSC+19, R+92]. Response [BBC+00].

Responsibility [KQT+21]. Restart [SSB+05, AKB+19, CSZ+21, LM17]. restarted [dH94]. Restoration [FJBB+00].

Restrict [Gua16]. Restricted [JCP+20, NEM17]. Restructuring [KAMAMA17].

Results [BII99, BOC05, HSMW94, Wal01a, BR95c, DSH96, VDL+15]. retargetable [KKJ+08].

Reverse [BGK08, HSHM19, LSB15, LM13, QHC17]. Reverse-mode [HSHM19]. Review [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, BDL98, Che10, Edl18, Mar06, MCLD01, Nag05, NMC95, Per96, Per97, SD13, Vre04, AMKM20, Stp02, Vos13].

Reviews [Ano97, Bra97, YM97]. Revised [Cha05].

Revision [MHSK16]. rewrite [HLK+20, SFLD15]. REYES [LSZL02].

RISC [AL93, NMW93, BSVdG91]. RMA [BBW19, FCS+19, SPH+18]. RNA [WHDB05]. RnaPredict [WHDB05].

Robert [Ano95b, NMC95]. robotic [ZWZ+95]. Robust [Att96, G07, LSB+18, PSLT99]. Rocks [PKB01, Slo05]. Roe [PGPCK21, dIAMCFN12]. Rohit [Sdp02].

Routines [Add01, Sch96a, LSK04, Sch96b, VLMPS+18].

Routing [BHM94, BHM96, MTSS94, MBES94, WH94, BS94, ZH92]. RPC [KZG96, KS97, RS93, SHTS01]. RPVM [CMM03, LR01].

RS/6000 [BGBP01, Cou93, Heb93, MW93]. RS/6000 [BGBP01].

RS6000 [CDM93]. RSA [ML19]. RT [KAMAMA17]. RT-1.1 [SKD+04]. RT-CUDA [KAMAMA17].

RTL [BG9+15]. RUBIS [BR94]. Ruby [Ong02]. rules [SFLD15]. Run [CBB+20, CBB+21, DLR94, DGMJ93, FHK01, GOM+01, OP98, SBW91, SPB+17, SS96, KPL+12, RRG+99, Str94, TCB90].

Run-Time [CBB+20, CBB+21, FHK01, GOM+01, OP98, SPB+17, SS96, DLR94, SBW91, KPL+12, TSY99, TCB90].

Running [BZ97, CCM+06, YKI+96, CRE01, ZLZ+11].
S [AHHP17, Röhl00]. S-Caffe [AHHP17].
S-language [Röhl00]. S1 [GLT00b]. S3D [LSG12]. SAEO [GSYT21]. Safe [Pla02, GCC99, LFS92, LFS93a, LFS93b, NYNT12]. Safety [CLA'+19, GT07]. salesman [GM94].
Salt [Hol12]. sampling [CBS18, SOYHDD19, WLYL20]. San [ACM97b, Ano95d, BBG95, GE96, Has95, IEE93a, IEE94g, IEE95a, IEE95g, IEE97c, LF93a, NM95]. Sanders [Che10].
Sandy [VDL+15]. Santa [ACM95b, AH95, IEE95f, Old02, RV00]. Santorini [CD01, CDDN11].
Santorini/Thera [CD01]. Saphir [Ano99c, Ano99d]. SAR [AB95]. Satellite [Uhl94, Uhl95b, SSN94]. Satisfiability [IKM'+01, IKM'+02]. saturated [TOC18].
Saturday [B+05]. Saturday-Wednesday [B+05]. Save [ADGA20, KFL05, FKL08]. Saving [CBB'+21]. SBS [MSB97, WWZ'+96].
SBS-Type [MSB97]. SC'11 [LCK11].
SC2000 [ACM00]. SC2001 [ACM01].
Scalability [Ben18, BS07, FSC'+11, KBS04, LL01, LKYS04, LSK04, VLSPL19]. Scalable [Add01, AHHP17, BHW'+17, BBC'+02, BHNW01, BGL00, CGS15, CLE'+20, CDPM03, EFR'+05, GFB'+14, GS04, HC17, HMGW12, IEE92, IEE94f, IEE95j, IBC'+10, KTAB'+19, KK98, LTS16, kLCC'+06, MFPP03, NBGS08, NPP'+00d, NCKB12, NSM12, OLG01, PPJ01, PR94b, PBK00, SDJ17, SBF'+04, Skj93, SSM96, TPD15, TPV'09, UP01, VBLvdG08, VY02, ZLGS99, ZL18, BBB'+94, Bz95, CLSP07, FWS'+17, GBH14, GBH18, GM13, GKL95, HRR'+11, HAJK01, KRC17, KRG13, LM99, LTLC94, MMB'+94, MRRP11, PWD'+12, SPK'+12, Trä12a]. ScaLAPACK [BV99, BRR99, DHP97]. Scale [AKE00, AFGR18, BHW'+17, BZ97, BHNW01, CBB'+20, FPFP03, HC17, MFPP03, SM03, TGEM09, WMC'+18, WT12, AASB08, BKK20, BCA'+06, BJS99, BKH'+08, Che99, DZZY94, FME'+12, Gua16, IPG'+18, Kos95b, LS10, MLA'+14, NWT21, PTL'+16, PDI1, RMNN'+12, SIC'+19, SvL99, TBB12, WLN06, WT11, WT13, ZKRA14, ZA14, Ben18]. SCALE-EA [Ben18].
Scale-Out [AFGR18]. Scale-Up [AFGR18].
SCALEA [TFGM02]. Scaling [CC17, GDS'+20, KFL05, SLJ'+14, FKL08, Gao03, LFL11, PDY14]. scan [AAAA16, YLZ13]. scanline [CT13]. scans [NAJ99]. SCASH [SHHI01]. SCATCI [ART17]. scatter [BCD96, MTK16].
Scattering [BCL00, NZZ94, OMK00]. SCF [MM95]. schedule [NAAL01]. scheduler [ADDR95, TCBV10, WRSY16]. schedulers [AV18, NP12]. Scheduling [BBH'+06, BSH15, CML04, DMB16, EGR15, GDDM17, GSB92, GHL02, GHL97, HC06, JW96, MJB15, NIO'+02, NIO'+03, SM19, SNN'+20, SGL'+20, TJPF12, WJG'+21, APBa16, DZ98a, HC17, JKN'+13, KSC'+19, LHCT06, MBKM12, NSBR07, OPW'+12, Smi93b, SKK'+12, SKB'+14, WYLC12, WLYC12, WYCC11].
Scheme [CTK01, LNLE00, MW98, SBF'+04, Bae20, BBG96, Bjo95, MRPP11, OKM12, SCC96, YPZC95, FM90]. Schemes [HC17, PPJ01, MPS20, WYLC12, WLYC12, ZAT'+07]. Schmidt [CBYG18]. School [VV95]. Schrödinger [DM12, ÖN12]. SCI [FS97, HEH98, Hus00, RR01, ZHS99].
SCID l l e [ABG96, AGLv96].
SCID l l e-PVM [ABG96]. Science [Edi18, EGH'+14, IEE95d, Mat16, MMH93, Old02, SM07, ACM06a, DMW96, HK93].
Sciences [ERS96, HS94, ZL96, ERS95]. Scientific [AGH'+95, APJ'+16, BBG'+95, DKM'+92, DT94, Gat95, GL97a, HJ98, KKL02a, LWSB19, LkLC'+03, Mar06, Nag05, Sm93, SSB'+17, VY02, WN10, ACC'+21, Bis04, DW94, SGB'+12, SIC'+19, TBB12, WT13, Ano97, Bra97]. scientists [HW11, Str94]. SciPAL [KH15]. SCIPVM
[Ano92, Ano93f, Ano94g]. **Shared**
[ADGA20, BCA+06, BME02, Bri10, CDT05, DM08, DMB16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HT01, KB98, KSHS01, LRT07, Luo99, MBE03, McDS+08, Müll02, NPP+00d, PBK00, Pok96, PS00b, Ros13, SS00, STY99, VT97, ABC]95a, ABC95b, ADMV05, BMG07, CdOO+20, CBPP02, CJvdP08, Cha96, CCM+06, CC00b, DBVF01, DS96b, DP97, EVMP20, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JE95, KJA+93, KC06, LKL96, MLC04, PK05, QM21, RGDLM15, SHH01, SFL+94, SSC96, TSY99, TSY00, THDS19, Vos03, WLYL20, WK20, WMRR17, WRMR19, YWO95.

Shared-Memory
[DM98, HDB+12, NPP+00d, Pok96, Thr99, PS00b, ABC]95a, ABC95b, BMG07, CdOO+20, EVMP20, GL96, GL97c, KJA+93, KC06, LKL96, MLC04, PK05, QM21, RGDLM15, SHH01, SFL+94, SSC96, TSY99, TSY00, THDS19.

Shared/distributed [THDS19]. **Sharing**
[Att96, CML04, CB16, DiN96, JAK17, KJA+93, LYGG20, JE95, Ott93, PRS+14]. **Shear**
[JAT97]. **ShearLab** [KLR16]. **Shearlet** [KLR16]. **Shearlets** [KLR16]. **Shelf** [LPJ98]. **SHMEM** [BBDH14, Hus01, LSK04, Sch96a, Sch96b, SS01]. **Short**
[KBM97, MH01, SSLMW10, BMPZ94a, PARB14]. **Short-Range**
[KBM97, MH01, BMPZ94a, PARB14]. **Short-Read** [SSLMW10]. **shorter** [NB96]. **Showcase** [USE00]. **SHPC** [IEE92]. **SHPC-92** [IEE92]. **SIAM**
[BBG+95, DKM+92, Sin93]. **Side** [kLCCW07]. **Sided**
[BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, MB00, TG05, TRH00, ZSG12, bT01a, BM00, DPFT19, DBB+16, GBH18, LSK04, MS90c, PGK+10, GBH14]. **SIGCSE** [ACM06a]. **Signal** [IEE95c]. **signals** [Uhl95c]. **Signatures** [Gro00]. **significance** [AMHC11]. **silent** [FME+12]. **Silicon** [LHZ+20, Ano03, Goe02, ZL18]. **Silicon-Monona** [ZL18]. **SIMD**
[BvdB94, HS95b, KDT+12, LL16, Sur95b, VSW+13, WMK+19, vdP17]. **similarity** [LSB+20]. **Simple**
[MSF00, Mül01, SC04, BC19b, ITT99, JH97, JKN22, Nes10, PGPC21, PN01]. **simulate** [Heb93]. **Simulated**
[BHM94, BH96, FH97, MPZ21, RSBT95]. **Simulating**
[BHM94, BH96, FH97, MPZ21, RSBT95]. **Simulation**
[CDMS15, CCBPGA15, DMMV97, DZDR95, GSI97, GM95, GJN97, Ham95a, JML01, KDJZ18, KMB97, KM16, LLRS02, MFTB95, MPD04, MANR09, PCY14, PKYW95, PZKK02, RR00, RDMB99, SSAS12, SXMX+18, Str97, Ten95, UZC+12, VT19, WMC+18, ZZ04, ZWJK05, diAMC11, ASAK19, Ano95d, ADR+05, BJ95, BCM+16, BH95, BMPZ94b, CwCW+11, CSGP+96, DSOF11, FHS09, FO94, FLPG18, FFFC99, GRTZ10, IPG+18, JAT97, JLS+14, KTJ03, KNH+18, KMC96, KMC97, LFS+19, LHZ+20, LCVD94a, LCVD94b, LYZ13, MMW96, MW21, MALM95, NS20, NB96, NF94, OKM12, PARB14, PY95, RFH+95, SWYC94, SSP+94, SKM15, Str96, Syd94, Th94, WHMO19, WGG+19, ZWJK05]. **Simulation-Based** [ZWJK05]. **Simulations**
[CGS15, CNM95, DDFM94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG+07, SI02, YPAE09, ADT14, ABG+96, BHS18, BAC07, CJ99, GM18, HIN11, JMS14, LS10, LSVW08, MNYM14, RMNM+12, SU96, THDS19, TOC18, VLSPL19, WWFT11]. **Simulator**
[CAM12, MRV00, PHO+15, UTY02, WPC07, AMV94, LS10, LZX+20, PWD+12, WZWS08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b]. **Simulators**
[SB95, AVA+16]. **Singapore** [IEE96d]. **Single**
[BM00, HF14a, HF14b, MB00, URKG12, WZM17, AGHS94, KKLL11, LK20, LHZ+20, Ano03, Goe02, ZL18].
MKP22, THMH21. Single-Chip
[URKG12]. Single-sided [BM00].
Single-Threaded [WZM17].
single/multigrid [AGIS94]. singleton
[TVCB18]. Sinks [JPT14]. Sites [Ano98].
Sixth [HK95, IEE96c, MMH93, SW91]. Size
[WQKH20, YT20, GKF13]. sized
[JLS+14]. Sizes [DALD18, ZSn01]. Sizing
[YNJS21]. SkMPI [KR99, RSPM98, RH01, Ren01, RST02, Ren03]. SkelCL
[SG14]. Skeleton [GB98, IH04, RJDH14].
SkelCLs [Ser97]. Skew [GGZ+20].
Skew-Tolerant [GGZ+20]. Skjellum
[Ano95c, Ano00b]. Slack
[CBB+20, KFL05, FKLB08]. SLAE
[ADRCT98, AK99]. sLAs [VLCM+20].
Slave [LTR00, HP05]. SELPc [DR18].
SLICC [KBHA94]. Slices [GSHL02]. Slim
[WMC+18]. Small [HLP11, TS12b, Ano94h].
small-footprint [TS12b]. Small-World
[HLP11]. Smith [KDSO12, RGB+18].
Smithsonian [Str94]. smoking [YSL+12].
Smoothed [RBP+21]. SMP
[Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GmdMBB+07, HD02b, Hus00, HIP02, JKH08, KO10, KKH03, KMG99, KAC02, NO02b, NO02a, ST02a, TOOTH99, Trä02b, YWCC+11, bT01a].
SMPCKpt [DCH02]. SMPi [DLM+17].
SMPs [HLCZ00, NU05, SVL9]. SMPs
[MLA10]. SMPSuperscalar [GCBL12].
SMT [PA+D+17]. SMT-Based [PA+D+17].
snake [JPP95]. snake-in-the-box [JPP95].
SNE [MPZ21]. Snir [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nac05].
SnuCL [Lee12]. soccer [YM+11]. Socket
[COE20, Gro19, LS10]. SoCs [AFGR18].
Soft [AJYH18]. Softshell [SKK+12].
Software
[Ano94i, BKK20, BME02, BPG94, BDG+xx, C95b, DGH+19, ES13, FF03, GBF95, Gre95, HPR+95, HS94, HHA95, IEE95i, IEE96h, IF195, KS15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, Si96, STH22, Swa01, TDBEE11, VdS00, Wis01, Wol92, Ano97, BSC99, Bøi97, Bra97, BR94, CMV+94, CBP02, DP297, Hum95, JH97, JB96, LSB+20, LM94, MK94, Neu94, Od02, PHA10, PK05, PKG+10, RAS16, RJH+20, SHI01, Sch94, Sei99, SPH95, SSD+20, Str94, WGG+19, ZGN94, Ano94i, KG93, Si96]. Software-Managed [LB16].
Solan [CGB+10]. Solaris [Ano01a].
Solidification [HSO+21, JLS+14]. solids
[Hin11]. Solution
[DWL+10, FBSN01, HO14, MC18, RPM+08, SEF+16, SSK+18, Tsu12, VRS00, DWW+12, GADM20, IM95, JK10, LGM+20, LSR95, MALM95, ÖN12, PRS+14, SC96a].
solutions [AGIS94, LMG+17]. Solve
[Hog13, LSM+18, Riz17, BAV08, Che99, GGGC99, TSCS14]. Solver
[Ben01, BP98, CF01, CF19, HSMW94, IDD94, LZ97, SJK+17a, SJK+17b, TPV20, WJB14, YK+18, AMS94, CP15, CFF19, DS22, DM12, GNP19, HDZ+20, HHS19, JR10, LM99, Lou95, MV20, MBA21, OGM+16, RM99, STA20, SRK+12, SCC95, THM+94, ZZG+14]. Solvers [DFN12, DALD18, GKI10, MSB97, N002b, Nak03, NHT02, NLRH07, QRGM96, RS97, SSK+18, WR01, ABF+17, ADL+03a, ADL+03b, ADDR95, BRR99, CL93, DR18, EVM20, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PGPC21, PR94c, QRG95, SH08a].
Solving [ADRCT98, BMH94, BMH96, BV99, BG95, BDG+92c, BSH15, DALD18, DAD19, GPGF12, HUC96, LLY93, MS02a, NF94, SAS01, SP11, SD99, ZTM19, BB95a, DSM94, HHA95, LBB+16, LYS+16, MM11, SSB+16, SWSM06, YSM+16, YMSA+17].
SOM [GkLyC+97]. Some [BDT08, Mü10, Pet97, AL92, NN95, RSBT95]. Supron
[VV95]. Sorrento [DKD05, DKD07]. sort
[KVGH11, PSHL11]. Sorting
[Ger18, LTS16, BHJ96, PSHL11]. Sound
[SG12]. Source [ABB20, BGG+15, HH22, MM07, AC17, AVA+16, LSB+20, NCB+17,
Source-Code-Correlated [MM07].

Source-to-Source [HH22, ABB20, AC17].

Sources [CTBT21, ZDR01, KM10]. South [ACM95a]. southeast [ACM95a]. Sowing [GL97a]. SP [BGBP01, CE00, HMK94, LC97b, WT11, WT12]. SP-1 [HMK94]. SP-2 [LC97b]. SP1

[BR95c, FHP94b, FHP94, FHP95, Fra95, FWR95, GL95d, HSMW94, MP95].

SP1/SP2 [FHP95, Fra95, FWR95]. SP2

[BR95b, FHP95, Fra95, FWR95, HWW97, JF95, KB98, KHS01, MABG96, XH96].

SPAA [ACM95b]. Space

[CML04, CB16, HO14, MSF00, MZLS20, OFA+15, SAS01, SS01, TA14, SRK+12].

[LHHM96, Li96]. Spanish [VP00].

spawning [NCKB12]. Spark

[GRW94, KWEF19]. Sparse

[AZ95, BHH12, CWL+19, DS13, DK20, Huc96, MYL21, NHT02, TD98, ZB97, AK99, ADLI03a, ADLI03b, BAC20, ER12, FJZ+14, GG99, Gra09, NHT06, XXL13].

SPEC [Ano03, MvWL+10, MBB+12, NA01, SGJ+03, TS93]. Special

[AM07, BDT08, BC19a, BDB+13, BC00, CHD09, DKD07, DKD08, GSA08, GT18, MP98a, MP98b, SGB20, TH20, Bos96, Mar02, PNV01, Reu01, Ol02]. Specific

[DM95b, DM95a, Otu14]. Specification

[BG94a, BdS07, MGC12, MHS16, BG94c, LP9+11].

Specifications

[OFA+15, WMP14]. Specified [MGHM97].

specifying [LP9+11]. specimen [Rol02b].

SPECT [BCD96]. spectator [YMYI11].

Spectra [Str97, SR11]. Spectral

[MW98, Spe19, BCM+16, MGS+15], spectral/ [BCM+16]. spectrum [NS20].

Speculation [AELGE16, SHLM14]. Speculative [RA09, dOSMM+16]. Speed

[CDHL95, Tou90, AH95, Ano03, BWT96, BID95, KMK16, CDH+95]. Speeding

[CSV12, YNJS21]. Speedup [VPS17]. SPH

[AFG21, CP15, OLG+16, PBC+01, WMRR17, WRMR19]. Sphere

[CT94a, CT94b]. spherical [Hol95, KT10].

SPICE3 [WPCR07]. Spiking [CAM12]. Spin

[HLP11, JRG21, KO14, Kom15, MABA1]. spin-1 [MABA1]. spin-glass [JRG21].

spin-orbit- [MABA1]. splitting

[MPS20, TCBV10]. SPMD

[BST+13, Dar01, Kak02, Wa10, Wa12]. SPMD-Like [BST+13]. SpMV [CBGL19].

Spokane [IEE93c]. Sponge [HSW12].

spontaneous [EZBA16]. spreading

[SOYHH19]. Spring [Ano94a, IEE93a].

SPTHEO [Sat96]. SPY [SSG95]. Squares

[PWP+16, VRS00]. SR [YWCFL15, ZLP17].

SR-IOV [YWCF15]. SR8000

[NNON00, TSB02, TS93]. SRP [BBC+19].

SS7 [LTLC94]. SSGM [HPS+96]. SSS

[MM98]. SSS-CORE [MM98]. St

[Ma95]. Stability [DSS00, HD00a]. stable

[JDVG+17]. Stage [FSXZ14]. stages

[KW20, SR9+19]. staggered [GM18].

Stamip [ITK00]. stamping [DPF19].

Standard [DM98, GSI97, GLP+00, GL95c, Hem94, MP98a, MP98b, NH95, SKD+04, SGS10, Wer95, YKL91, An094, BB9+13, Bor99, Cl98, CG99b, DHHW93b, DOSW96, FB95, GK97, GL92, Hem96, St94, VM95, Wa94a, Wa94b, WD96, An097, Bra97, CGH94, DOSW95, GLDS96].

Standards [FKK96, Thr99]. Star

[CDM93, Coo95a, Coo95b]. STAR/MI

[Co95a, Co95b]. Start [Gro02b]. Hs098.

Startup [PS07]. State [ACM11, IEE94f, IEE95j, Wis96a, Wis96b, BCT+17, LF93b].

state-to-state [BTC+17]. states [NS16].

Static [NIO+02, NIO+03]. RLVRG12,

SCB15, SCB14]. Static/dynamic [SCB15].

Statics [TG94, TG94]. Stationary [MW98].

Statistical [LR01, SNM10, AMHC1].

KKM15, Röll00, SL94a, Vet02]. statistics

[FL21]. Status [Bak98, DF21, DZ98b].
superscalar [ACJ12]. Supersonic [CCBPGA15]. Support
[Ano98, BBG+10, BFBW01, CFF+94, DMMV97, FGRD01, GRV01, GOM+01, HRSA97, LMRG14, MK04, OP98, PSM+14, RR02, SDN99, SBT04, TW01, Wis98, Wis01, YSP+05, ZL18, ADK22, BBH...13a, BPJ22, BL99, CC10, CZ95b, DLR94, Hos12, Ma94, RS19, RJH+20, TSY99, TSY00, TY14, WK08a, WK08b, WK08c, YAJG+15].

Supported [KLR16, ZGNZ22, CDD+96, RJH+20].
Supporting [FD00, FMSG17, FSG19b, GAML01, Gua16, MMS07, OOS+08, SGL+20, WLNL03, WLNL06, WCS99, YWCF15, FLD96, GAM+00]. Supports [AELGE16, CLL03, DGMS93]. suppression [WWZ+96]. Surface [KS15b, PKYW95, Rot19, BHW+12, DCD+14, RAGJ95, TSP95]. surfaces [Dab19]. Survey [Sap97, ZGNZ22, BBB+20, HJB+21].

Sydney [Bj95]. Sylvester [GK10].
Sylvester-Type [GK10]. Symbolic [CCK12, Coo95b, Ste00, YYW+12, ACM97a, BHKR95, Coo95a, Lev95, LGKQ10, LLG12, SMAC08]. Symmetric [BDV03, MDM17, YKW+18, BAV08, DCH02, GG99].

Symposium [ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94e, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IEE05, LHMM96, Li96, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tou96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94h, Lev95, Old02]. synchronisation [SDB+16]. Synchronization [LA02, OCY+15, TGT05, BMG07, LA06, SPNB14, TMTP96, YLZ13]. Synchronizing [VT97]. Synchronous [Ada97, BJ13, Cer99, CLE+20, DLR99, HZG08, SRS+19]. Synergia [SSAS12]. Synergistic [UGT09]. Synthesis [CS14, GWG95]. synthesized [MC17]. Synthesizer [DS16]. Synthesizing [AJF16, LC20, NP12]. Synthetic [CC17, DP94]. Syracuse [IEE96f]. SYSMO [MM95]. System [Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BFZ97, BDG12, CAM12, CGC+02, DBA97, DALD18, ERS95, ERS96, EK97, FBD01a, FBVD02, FFP03, Fis01, Gal97, GCBM97, GS91b, GS92, Gsx, GM95, Gre95, HS94, IADB19, KA02, LLRS02, LTR00, LLY93, Ma94, MRV00, MM02, MSF00, MMH98, MMS07, MMH93, NPM+04d, NMS+14, Oed93, PPT96a, RGD97, SGJ+03, SSB+05, SCP97, SA93, ST02b, Su93, TSS00b, Tsu07, UP01, Wil93, YSS+19, ARS89, ADK22, AS92, AL92, BB94, Bri95, BBH+15, DL10, DPFT19, DH22, FNSW99, FK94, GS91a, GS93, GS96, GMU95, GlkLyC97, Hddc09, Hum95, HS95b, IBC+10, ITT99, JH97, JLS+14, KW14, Kik93, LBD+96, LL95, LL95, MA09, MRR99, MMB+94, MAS06, MM11, MS99b, MALK5, MAAH20, NA099, PPT96b, PPT96c, PK05]. system [RJDH14, RTL99, SHH01, SL94b, Se99, SPL99, SGDM94, Sn96, Sur95b, VSR94, VSR95, WCC+07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, ZWZ+95, dCGZ06, AL93, NMW93, Yan94]. System-Initiated [SSB+05]. system-on-a-chip [dCGZ06]. System/6000 [AL93, NMW93]. Systems [GBR97, GEW98]. Systems [ABB+17, Ano94a, At96, BCGL97, BGBP01, BME02, BPG94, Bha93, CDJ95, CAWL17, COE20,
CFF, CSW97, CJNW95, Coo95b,
DAD19, EADT19, FD96, FGKT97, Fos98,
GGZ+20, Gua16, HC17, HRSA07, IEE93d,
IE94d, IE95a, IE95i, KHL03,
KP96, KQT+21, KDL+95b, KCR+17, KS97,
LY93, LBB+21, LW97, MFW97, MBE03,
MJB15, MBB+12, SM03, SGS+21,
SS96, TMI16, TWL19, THN00, TL19,
USE94, WJG+21, YGH+14, YH96, ZTD19,
ZB97, dGJM94, AGR+95, ACMZR11,
ATL+12, Ano94e, BBB94, BAC20, BA90,
CdOO94, CSW97, Coo95a, CPR+95, DF17,
DR94, DBFV01, DvdLVS94, FHB+13,
GBR97, GCN+10, GDEBC20, GEW98,
GKK09, GKF13, Gra99, GFG12,
GGH+93, HHA95, IPG+18, IM95,
JB96, JMJ+11, KHS+99, KLV15,
KDL+95a, KFFS94, LBG+20,
LR06b, LH98, LRLG19, LCVD94b.
systems
[LG+20, LLH+14, MSL12, MWL+10,
Old02, OPW+12, Pan95b, Par93, PSB+19,
Pgcc1, QB12, RPS19, SSKF95, SCJH19,
SHP95, SVC+11, Smi93b, SI14, SMSW06,
SLN+12, Smn94b, TBB12, TMW17, TVCB18,
TSP95, VLMP+18, WCS+13, WWZ+96,
WADC99, WYLC12, ZL96, ZGC94, dH94,
diAMC11, dAMCFN12, JW96].
Systemsoftware [Sei99]. systolic [BSC99].

T3D
[AZ95, AFST95, CCSM97, HHW97, MP95,
MWO95, Oed93, Sch96a, Sch96b, SCC95].
T3E [BBS97, Boo01, Che99, GRRM99,
LSK04, RBB97c]. T3E-512 [RBB97c].
T3E-600 [LSK04]. T9000 [BR94].
table [BJ13], tablets [MYN21]. Tabu
[BCH15, Cza13, CB11]. Tags [Wis97].
TaihuLight [LHZ+20]. Tails [Kha13].
takes [GDB+93]. Talbot [ACMR14, Riz17].
tandem [GDMME22]. Tapi
[SML17, SML19]. Targeting
[BC19b, ABB+20, JKM+17, RVKP18]. Task
[AHD12, AAP+17, FKKC96, GDDM17,
GPC+17, GFJT19, IOK00, KIO+1, KSB+20,
LHCT96, MAR03, MB15, NIO+02, NIO+03,
NSZS13, NJ01, OP10, OS07, SGZ00,
SPL+12, SGS+21, TBS12, TS12a, WJG+21,
YKW+18, APBeF16, ABF+17, BLBV18,
BGH+05, GKF13, OdSSP12, OPW+12,
OPP00, RRFH96, RFRH96, STP+19,
SWCB20, SKB+14, WC19, WDR+19].
Task-Based [AHD12, AAP+17, GFJT19,
SPL+12, BLBV18, STP+19, SKB+14].
task-level [WDR+19]. Task-Overlapped
[GPC+17]. Task-Parallel
[KSB+20, NSZS13, APBeF16, ABF+17].
Taskers [FLD96]. Tasking
[DFA+09, KaM10, SHM+10, TCM18,
TSCaM12, VLSPL19, WC15, vdPl7].
tasklet [PQR18]. Tasks
[ACD+09, DDP+19, DT17, DAF+09, JY96,
OP98, PWPD19, RR02, RDLQ12, SGL+20,
WJG+21, YSS+17, YSS+19, BS01,
DDYM99, DR95, EBB+20, FKK+96b,
FKK96a, IvdLH+00, PKE+10, PWPD19].
TAU [MMS07, RMS+18]. taxonomy
[SPP96]. TBB [Stp18]. TBSCM [BP98].
TC2 [Bo07]. TC2/WG2.5 [Bo07].
TCGMSG [GB96, Mat94, Mat95]. TCP
[KPW05]. TD [And98]. Teaching
[MK00, JY95, MK97, PK06]. Technical
[Ano93c, Ano98, MC94, USE95, ACM06a,
Sni18]. Technique
[BBD+15, HC06, HAA+11, MK17, HC08,
Nes10, RBB17, MAIAHA14]. Techniques
[CP97, GS02, Miö01, SAL+17, SLP+12,
TGBS05, Wis01, AMKM20, BPG94, Fer04,
FCE+12, GSM+00, HKMCS94, JKN+13,
KBG+09, NFG+10, PFS05, SKS01, WST95].
technologies [Mal95]. Technology
[Ano97, Bra97, CGB+10, CSV12, Dan12,
GN95, HS94, PWP+16, SBT04, TGB+02,
Ano93a, Ano93c, D+95, DM12, IE94c,
NS16, ZAT+07]. Tekniska [Eng00].
Telegraphic [ES11]. TELMAT [BR94].
temperature [Hin11, RS22].
temperature-dependent [RS22].
Template [GS97, PKB06]. Templates [BN12, KH15]. Tennessee [PR94b]. Tensor [BKK20, ZLWW20]. terabyte [KTJT03]. Terabytes [IEE02]. teraflops [KTJT03].

Terms [KD12]. Tesla [MVL21].

Tessellation [SS09]. Test [GSYT21, SNMP10, TG09, AAAA16, CPGK17, CPR+95, GL92, TGTKL19].

test-input [CPKG17]. Testbed [Mat01b, EGH99, PY95]. Testing [CDT05, CCK12, DFK94b, DLLLZ19, DLLZ20, Ost94, VdS00, CMV+94, DFK93, KSTM20].

Testsuite [WCC12]. Texas [ACM06a, IEE94b, IEE95l, IEE95g, IEE97c, Y+93]. Text [LTR00, MM01, RLL01, RTL99].

Textbook [Ano98]. textural [WKS96].

texture [HE15]. TFETI [SHHC18]. TH [CFDL01]. TH-MPI [CFDL01]. Thakur [Ano00a]. Their [Bri12, GOM+01, RG18, GSMK17].

theorem [Sut96]. Theory [GK10, BW12, CBHH94]. Thera [CD01]. thermostat [RS22]. Think [HCA16].

Third [BPG94, Bos96, DSM94, GA96, IEE94g, SI96, Was96, BDLS96, Mal95, IEE97c].

Thirty {Y+93}. Thirty-seventh {Y+93}.

Thousands [PZKK02]. BMS+17. Thread [AELEG16, BB18, ETWA12, GOM+01, GT07, LML+19, Nit00, Pla02, STY99, SPB+17, AKB+19, HK09, IDS16, JKN+13, LW20, SPH96, SLN+12, YZ14].

thread-based [AKB+19]. thread-data [LW20]. Thread-Level [AELEG16, HK09, YZ14].

Thread-Safe [Pla02]. Thread-safety [GT07]. Threaded [BBG+10, MG15, WZM17, Ada98, EBKG01, SCB15, SVC+11, TSY99, TSY00].

threaded-MPI [SVC+11]. Threading [BHV12, MLGW18, SBT04, WKM+19, KPO00, KRG13, QB12, ZAT+07].

Threads [CP98, LD01, Lee06, SrD+21, BS01, DJJ+19, MVT96, ALW+15]. Three [Car07, GA96, ILM+21, Nak05b, Ram07, SAS01, ZWLZ21, GSMK17, LSSZ15, LZZ+20, Mar05, PR94c, ZWC21].

Three-Dimensional [GA96, ZWLZ21, ILM+21, LSSZ15, PR94c, ZWC21]. Three-level [Nak05b].

Throughput [HMKG19, SSMW10, Ts07, CJPC19, ESB13, FP16].

throughput-oriented [CJP19]. Thrust [DS20]. Tied [WJG+21]. Tightly [SS01].

Tightly-Coupled [SS01]. Tilewise [KS15b]. tiling [KW20]. Time [BCL00, CBB+20, CBB+21, DLLZ19, DLLZ20, FHK01, FSSD17, GSHL02, GOM+01, HO14, KFL05, MFTB95, OP98, SPB+17, SGL+20, SCL01, SS96, TWLL19, TSP95, UP01, YGH+14, AL96, ASB18, CDMS15, DLR94, DS22, DPFT19, DM12, Fer04, FLB+05, FKLB08, GB94, HE13, HFB21, JE95, KC94, KPL+12, KSC+19, KW20, LHLK10, LBB+16, LYSS+16, LM13, MMW96, NZZ94, ON12, OdS12, PTMF18, PRQ21, QHCC17, Ram07, SBW91, SBB+16, SM19, SK92, SRK+12, TSY99, Tho94, TVV96, TCBV10, Uhl95c, VM94, YSVM+16, YSMA+17, ZWZ+95, SKD+04].

time-critical [KSC+19]. time-dependent [DM12, LBB+16, LYSS+16, ON12, SBB+16, YSV+16, YSA+17]. time-domain [HE13, NZZ94, Ram07, VM94].

time-explicit [DS22]. time-independent [CDMS15]. time-stamping [DPFT19].

Time-Varying [DLLZ19, DLLZ20, Uhl95c].

times [MLVS16, NB96, SWCB20, SSS99].

timing [Ols95]. tips [Fer04]. TLM [SC96a].

Toepplitz [BV99, BAV08].

Tolerance [GKP97, GL04, LMGR14, LNLE00, RPM+08, TS12a, WC09, Wil93, CLE+20, LRG+16, LGM+20, SG05, WDR+19, ZHK06].

Tolerant [BBC+02, BCH+03, BHK+06, CF01, CFDL01, FD00, FBD01a, FBVD02, FD02a, FD04, GFB+03, GGZ+20, IEE95c,
Fer04, LK14. Tridiagonal
DALD18, DAD19, DR18, VLMPS+18.
Triplet [RJDDH14]. Trivandrum [IEE96a].
Troy [SS96]. Truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].
TSUBAME [NSM12], TSUBASA [TSEE21].
Tsukuba [SHM+10]. tsunami [KH9+18].
Tunable [TIG] [RRBL03]. Tubal
ZLWW20, ZLWW20. Tubal-Rank
ZLWW20. Tucker [BBK20, OPJ+91].
TuckerMPI [BBK20]. Tucson [JB96].
tuned [PSB+91, VLM+20], Tuning
Ben18, Cza02, Cza03, LWSB19, NPP+00d,
PSH+20, SLJ+14, SrR+21, WG17, YT20,
DBLG11, FE17a, FE17b, LGG16, SH14,
Yan94, FVD00. tuple [MYB16].
tuple-based [MYB16]. Turbulence
[Str97, MRRP+11, Str96].
[BCM+16, CBYG18, NS20]. Tutorial
[EM00a, EM00b, GBD+94, GLT00b, Nov95,
NMC95, Per96, Ano95b]. TV [CIJ+10].
Twenty [ERS95, ERS96, HS94, IEE95c, MMH93].
Twenty-Eighth [ERS95]. Twenty-fifth
[IEE95c]. Twenty-Ninth [ERS96].
Twenty-Seventh [HS94]. Twenty-Sixth
[MMH93]. Two [CM98, STY99, SJK+17a,
SJK+17b, YM97, AGR+95b, AL93,
ADL03a, ADL03b, CB11, ED94, HAJK01,
LK20, MSP93, dIAMCFN12].
Two-Dimensional
[SJK+17a, SJK+17b, AL93]. two-layer
[dIAMCFN12]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DCM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].

U.S. [LD01], U.S.A [Ano94c]. Überblick
[Wer95]. UK [Abr96, AD98, EJL20, HK95,
BP93, CJNW95, MC94]. UKMO [RSBT95].
ULFM [LCMG17, LGM+20]. Ultra [SJ02].
Ultra-High [SJ02]. Ultrafast
[KRC17, FWS+17], ultrashort [MV20].

Ultrasonic [ASAK19, DLLZ19, DLLZ20].
Umgebung [GBR97], UML [RGD13].
UML/MARTE [RGD13]. Umpire
[VdS00]. Unbalanced [OP10].
Uncertainty [MBS15]. underlying [RS21].
Understand [DeP03]. Understanding
[CRe01]. underwater [ZWC21].
unexpected [LF20]. Unibus [KSSS07].
UNICOM [Ano93b]. Unified [KC19,
GKZ12, SJK+17a, KL15, STA20].
unifies [RJDDH14]. uniform [KSG13].
uniformly [Trä12a]. Unify
[VSRC94, VSRC95]. unifying [CCM12].
Unintended [SAL+17]. unit
[JPL22, VDL+15, MSML10]. United
[Boi97]. Units
[KS15b, LSVW08, ABP15, BHS18,
LHLK10, WWFT11, HJBB14]. Universal
[LG97, DDL15]. University
[GB+10, IEE95d, IE95e, R+92]. Unix
[OLG01, RBS94]. Unleashing [TCM18].
uncharfer [Wil94]. Unstructured
[AB93a, NOO2b, SM02, SM03, AB93b,
NO02a, TP15]. unsupervised [RTN21].
unveils [Ano03]. UPC
[EGC02, MTK16, Mar05, SJK+17a, SJK+17b].
Update [DF21, KT10, GSMK17]. Updates
[ESB13, KS15a, ZDR01, HSE+17].
UPM
[NPP+00d]. ups [Ano03]. USA
[ACM96b, ACM98b, ACM00, ACM06a,
AGH+95, BBG+95, BS94, Cha05, CGM11,
DT94, EV01, EdS08, ERS96, GAT95,
Ham95a, Hol12, IEE95b, IEE95d, IEE96f,
IEE96e, IEE96i, MD+80, Old02, PBG+95,
Rec96, RV00, Sin93, Ten95, ACM95b,
ACMG97a, AGR95a, Ano89, B+05, DCM+92,
GT19, HS94, IEE94e, IEE95k, IEE02, Os94,
SL94a, SS96, USE94, USE95, USE00].
Usage [FD02a, FCLG07, BBB+20, FD02b,
FVLS15, FL21, PIR+20]. Use
[FJBB+00, Gro02a, HK93, HK95, MB12,
PSZ+00, Shi94, AB95, GEW98]. used
[JKN22]. USENIX [USE94, USE95]. User
[AD98, ACDR94, BDG+91a, CHD07, CD01,
V [JB96, BBC+02, BHK+06]. V100 [MYL21]. V2 [BCH+03]. VA [Sin93, RP95]. Vacci

Vacancy [Hol12]. V3UT [JF95]. Utilities [CC95]. UV2 [TW12]. UVM [NSLV16].

V [YULMTS+17, YWCF15, YCA18, ZWS95, ZSK15, ZAT+07, ZZ95, A095c, Ano00a, Ano00b]. UT [Hol12]. UTE [JF95]. Utilising [SC96a]. Utilities [CC95]. UV2 [TW12]. UVM [NSLV16].
[BDGS93, GKP96, GKP97, HJ98, KA13, MVY95, NAW+96, PK98, PCY14, Wis96a, ZLGS99, Bor99, Eng00, FHC+95, HPS95, KFA96, TSS98, WST95, Wis96b].

Voltage [KFL05, FKL08]. Volume [Ano99a, Ano99c, Ano99d, DLYZ19, DLLZ20, DFN12, GHL+98, KLH+20, SOHL+98, BHW+12, DS22, WST95].

VTDIRECT95 [HWS09, SWH15]. vulnerabilities [LCH+22]. VxWorks [YGH+14].

WA [ACM05, LCK11]. Wailea [ERS96, HS94, MMH93]. wait [SWCB20].

Waknaghat [CGB+10]. walk [RJH+20].

Walker [Ano99, Ano99a, Ano99b, Nag05].

walks [MW21]. wall [NB96]. wall-clock [NB96]. walls [JAT97]. WAMM [BCLN97].

Wang [KO14, Kom15]. Warehousing [DERC01]. Warp [MPZ21, SCL01, HKOO11, MMW96, VSW+13]. WARPED [MMW96]. WARPmemory [SFO95].

Washington [B+05, BS94, IEE93c, EIE94, IEE95k, Ost94]. watching [JLG05]. water [DS22, HTHD99, R+92, STA20, dIAMC11, dIAMCF12]. Waterman [KDSO12, RGB+18]. watershed [NAJ99].

Wave [BBC+00, EMO+93, ESM+94, NSLV16, SMOE93, G694, KM10, KEGM10, Mal01, NS20, NB96, RMMM+12].

Wave-Particle [NSLV16]. Waveform [LRS95]. Wavelet [Uhl94, Uhl95b, Zem94, vDLJ+11, Uhl95a, Uhl95c]. Way [Mon13, HLK+20, WDR+19, FGT96]. ways [CZ96]. WCRT [SGS+21]. weak [SD16]. Weather [AHF01, HE02, Bjo95, KOS+95a, Ma01].

web [CHK15, AASB08, NE01, PES99, Wa101b].

Weighted-Averaging [RJ21]. welcomes [Str94]. West [EV01, EdS08]. Westin [IEE94e]. We’ve [GKPS97]. WG10.3 [DR94]. WG2.5 [Bo197]. Wheeler [NTR16].

where [KC94]. which [Sh96]. Whippletree [SKB+14]. whistler [NS20].

wk [CB00]. William [Ano95c, Ano99e, Ano99d, Ano00a, Ano00b]. Williamsburg [IEE92]. Win32 [MS98]. windows [QB12, QM21, GGGC99, PSH+00].

worker [WQKH20]. Work [BHR97, Pet00a, Pet00b]. Worker [EML00, YG96].

Worker-Based [YG96]. Workerproblem [FH98]. Workflow [LYZ13]. workflows
...References

Andion:2016:LAA

Agullo:2017:BGB

Almasi:2005:DIM

Akhalov:2008:WPL

Arthur:1993:PIU

REFERENCES

REFERENCES

Appiani:1995:PSI

Appiani:1995:PSM

Agosta:2015:OPP

Aliaga:2017:CTP

Arbenz:1996:MDS

P. Arbenz, M. Billeter, P. Güntert, P. Luginbühl, M. Taufer, and U. von Matt. Molecular dynamics simulations on Cray clusters using the SCIDDLE-PVM environment. In Bode et al. [BDLS96], pages 142–?? ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-
REFERENCES

[AC17] Michail Alvanos and Theodoros Christoudias. MEDINA:

Arnold:1994:PCT

Acacio:2002:MDM

Alexandrov:1997:PMC

Agullo:2011:QOM

Andersch:2012:PPE

ACM:1990:PAC

REFERENCES

[ACM97a] ACM, editor. 1997 Proceedings of the second international symposium on parallel symbolic computa-

[ACM97b]
REFERENCES

Jean-Marc Adamo. Multithreaded object-oriented MPI-based message passing interface: the ARCH library, volume SECS 446 of The
REFERENCES

Antonuccio-Delogu:1994:PTN

Addison:2001:EOP

Arioli:1995:PSB

Adamek:2020:GFC

Agathos:2022:CAA

Amestoy:2003:IIMa

Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent,

F. J. Alfaro, J. A. Gallud, and J. L. Sanchez. A function to dynamic workload allocation in distributed applications. *Lecture Notes in Computer Science*, 1332:
REFERENCES

REFERENCES

Andoh:2021:AMM

Aversa:1997:MDP

Aguilar:1997:PMS

Awan:2020:CPC

Aubrey-Jones:2016:SMI

AlKadi:2018:GPC

Alexandrov:1999:PMC

Adam:2019:CRA

Armstrong:2000:QDB

Andersen:1994:PIA

Asai:1999:MIF

Abdelfattah:2016:KOL

Alt:1996:PIA

Amer:2018:LCM

Alund:1994:CFD

Altevogt:1993:PTD

Alfano:1992:DNA

Ayguade:1999:EML

Amato:1994:PEP

anMey:2007:NPO

Al-Mouhamed:2015:EAO

Aversa:1994:PSH

Andersson:1998:PFT

Anonymous:1989:PFC

REFERENCES

Anonymous:1992:PSE

Anonymous:1993:ATA

Anonymous:1993:ISA

Anonymous:1993:JFI

Anonymous:1993:MPI

Anonymous:1993:MMP

Anonymous:1993:PSE

Anonymous:1993:SEC

REFERENCES

Fairs, Utrecht, Netherlands, 1993. ISBN ???? LCCN ????

Anonymous:1994:SCC

Anonymous:1994:SQC

Anonymous:1995:CCS

Anonymous:1995:BRPb

Anonymous:1995:BRU

Anonymous:1995:RSS

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In
REFERENCES

3rd CLIPS conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ???? LCCN ????

Anonymous:1996:BRMh

Anonymous:1997:TNR

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ????? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMa

REFERENCES

Anonymous:1999:BRMf

Anonymous:1999:BRMb

Anonymous:2000:BRUd

Anonymous:2000:BRUe

Anonymous:2001:AAL

Anonymous:2001:EDP

Anonymous:2003:MNIc
REFERENCES

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

Aji:2016:MEA

Aji:2016:MAA

AlHaddad:2001:UNW

Arabnia:1995:TRA

[AR95] Hamid Arabnia, editor. Transputer research and
Al-Refaie:2017:PAH

Al-Refaie:2017:PCT

Al-Refaie:2017:PAH

Al-Refaie:2017:PCT
REFERENCES

REFERENCES

Endowment, 10(8):901–912, April 2017. CODEN ???. ISSN 2150-8097.

Agrawal:1994:PIC

Amritkar:2012:OPF

Al-Tawil:2001:PME

Attiya:1996:ERS

Angskun:2001:DPM

REFERENCES

María Barreda, José I. Aliaga, and Marc Casas. Iteration-fusing conjugate gradient for sparse linear systems with MPI + OmpSs. *The Journal of
REFERENCES

Bader:2016:EMT

Becciani:2007:FMH

Back:2020:ESO

Barai:2022:PMP

Bruel:2017:ACC

Baker:1998:MNC

REFERENCES

ISSN 0302-9743 (print),
1611-3349 (electronic).

Blaszczyk:1995:PCE

[BALU95] A. Blaszczyk, Z. Andjelic,
P. Levin, and A. Ustundag.
Parallel computation of electric fields in a heterogeneous workstation cluster.
In Hertzberger and Serazzi [HS95a], pages 606–611. ISBN 3-540-59393-4. ISSN
0302-9743 (print), 1611-3349 (electronic). LCCN QA76.88.

Buyukkecici:2013:POI

[BAS13] Ferit Buyukkececi, Omar
Awile, and Ivo F. Sbalzarini.
A portable OpenCL implementation of generic
particle-mesh and mesh-particle interpolation in 2D
and 3D. Parallel Computing, 39(2):94–111,
February 2013. CODEN PACOEH. ISSN
0167-8191 (print), 1872-7336 (electronic).
URL http://www.sciencedirect.com/
science/article/pii/S0167819112000920.

Bernabeu:2008:MPA

[BAV08] Miguel O. Bernabeu, Pedro
Alonso, and Antonio M. Vidal.
A multilevel parallel algorithm to solve symmetric
Toeplitz linear systems. The Journal of Supercomputing,
44(3):237–256, June 2008. CODEN JOSUED.
ISSN 0920-8542 (print), 1573-0484 (electronic).
URL http://www.springerlink.com/
openurl.asp?genre=article&
issn=0920-8542&volume=
44&issue=3&spage=237.

Bedrosian:1993:MFA

Benway. Magnetostatic
finite-element analysis on
MIMD/DMMP parallel com-
puters. In Yelon et al.
[Y+93], pages 6772–6777.
CODEN JAPIAU. ISBN
1-56396-212-8. ISSN
0021-8979 (print), 1089-7550
(electronic), 1520-8850. LCCN
QC753.C748 1990. Two vol-
umes.

Beguelin:1994:CMS

A configurable monitoring system for parallel programming.
LCCN QA76.9.D5I595
94TH0651-0.

Beaumont:1995:DPG

[BB95a] P. M. Beaumont and P. T.
Bradshaw. A distributed parallel genetic algorithm for solving optimal growth models.
Computational Economics, 8(3):159–179,
August 1995. CODEN CNOMEL.
ISSN 0927-7099.

Bunge:1995:MCM

[BB95b] Hans-Peter Bunge and John R.
Baumgardner. Mantle convec-
tion modeling on parallel virtual machines. Com-

[BBD+20] N. Bombieri, F. Busato, A. Danese, L. Piccolboni,

Bethune:2014:PAA

Bailey:1995:PSS

Bova:1999:PPM

Bova:2001:PPM

Balaji:2010:FGM

Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Fine-grained multithreading support for hybrid threading MPI programming. *The International Journal of*
REFERENCES

Balaji:2011:MMC

Barrett:2014:EMM

Barak:1996:PPM

Bouteiller:2006:HPS

Bischof:2008:AAD

REFERENCES

REFERENCES

QA76.88.I57 1994. DM96.00.
Two volumes.

REFERENCES

[BCA+06] Christopher Barton, Călin Casca
caval, George Almási, Yili Zheng, Montse Farris,
siddhartha Chatterje, and José Nelson Amaral.

[BCAD06] U. Becciani, M. Comparato, and V. Antonuccio-

implementation of a verification technique for GPU kernels. ACM Transactions on Programming Languages and Systems, 37 (3):10:1–10:??, June 2015. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Mathematical Sciences Section, Oak Ridge National Laboratory, Knoxville, TN, USA, September 1991.

REFERENCES

Beguelin:1995:REP

Beguelin:1993:VDH

[BDG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, ??? 19xx.

Beguelin:1993:PSS

Beguelin:1995:EMP

Bruck:1997:EMP

Browne:1998:RPA

REFERENCES

perftools-review/. Accepted, to appear.

[Bubak:1997:RAP] Marian Bubak, J. J. Dongarra, and Jerzy Wasniewski, editors. Recent advances in parallel virtual...
Batty:2016:OSA

Beyls:1999:JJP

Beguelin:1992:XTM

Beguelin:1993:XTMb

Beguelin:1993:XAT

Beguelin:1993:XTMa

Bull:2010:PEM

REFERENCES

127

Benkner:1995:VFA

Bencheva:2001:MPI

Benedict:2018:SES

Bernaschi:1996:RHP

Baker:1998:MNP

Berthou:2001:COH

Bubak:2001:PMS

Marian Bubak, Wlodzimierz Funika, Bartosz Bali, and

M. Bubak, W. Funika, and J. Moscinski. Evaluation of

Bouge:1996:EPP

Bubak:1996:PBP

Bubak:1996:PPM

Bozas:1997:PED

Bhavsar:1991:SSJ

Boerger:1994:FSP

E. Boerger and U. Glaesser. A formal specification of the PVM architecture. In Pehrson et al. [PSB+94],
REFERENCES

REFERENCES

issn=0885-7458&volume=37&issue=3&spage=250.

Blanco:2002:PMA

Balasubramanian:2015:EGL

Bhanot:2005:OTL

Bischof:2008:PRM

Butler:2000:SPM

REFERENCES

Beisel:1997:EMD

Brune:1997:HMP

Breitenecker:1995:ESC

Bhargava:1993:PIW

Bhanot:1998:DTM

Bader:1996:PPA

Bouteiller:2006:MVP

REFERENCES

[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramachandran, and P. Sadayappan. A practical automatic polyhedral parallelizer and locality optimizer. ACM SIG-
REFERENCES

[Bae:2017:SEF] Seung-Hee Bae, Daniel Halperin, Jevin D. West, Martin Rosvall, and Bill Howe. Scalable and efficient flow-based community detection for large-scale graph analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 11
REFERENCES

Bickham:1995:POM

Bernaschi:2005:ERA

Blas:2010:IEF

Branca:1995:CBH

Bilger:1995:AFM

Bernaschi:1999:ERA

Biradar:1994:ADL

[Umesh V. Biradar. Adaptive distributed load balancing model for parallel virtual machine. Master of science
in computer science, Department of Computer Science, College of Engineering, Lamar University, Beaumont, TX, USA, 1994. viii + 44 pp.

REFERENCES

137

[102x681] REFERENCES

Bhandarkar:1996:MPM

M. A. Bhandarkar and L. V. Kale. MICE: a prototype MPI implementation in
Converse environment. In IEEE [IEE96i], pages 26–31.

Bull:2000:JOL

J. M. Bull and M. E. Kam-bites. JOMP: an OpenMP-like interface for Java. In
????, editor, Proceedings of the ACM 2000 conference on
Java Grande, pages 44–53.

Balevic:2011:KAD

Ana Balevic and Bart Kien-
huis. KPN2GPU: an approach for discovery and exploitation of fine-grain
data parallelism in process networks. ACM
SIGARCH Computer Archi-
tecture News, 39(4):66–71,
September 2011. CODEN CANED2. ISSN 0163-5964
(print), 1943-5851 (elec-
tronic).

Bhandarkar:2001:ALB

Milind Bhandarkar, L. V.
Kalé, Eric de Sturler, and
Jay Hoeflinger. Adaptive load balancing for
MPI programs. Lecture
CODEN LNCS9D9. ISSN 0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/
bibs/2074/20740108.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/2074/20740108.
pdf.

Bektas:2002:PCP

Constantine Bekas, Efrosini
Kokio-
poulou, Efstratios Gal-
lopoulos, and Valeria Si-
moncini. Parallel compu-
tation of pseudospectra us-
ing transfer functions on a
MATLAB-MPI cluster plat-
form. Lecture Notes in
Computer Science, 2474:
199–??, 2002. CODEN
LNCS9D9. ISSN 0302-9743
(print), 1611-3349 (elec-
tronic). URL http://
link.springer.de/link/
service/series/0558/bibs/
2474/24740199.htm; http://
link.springer.de/link/
service/series/0558/papers/
2474/24740199.pdf.

Berka:2013:CPC

Tobias Berka, Giorgos Kol-
lias, Helge Hagenauer, Mar-
ian Vajtersic, and Ananth
Grama. Concurrent pro-
gramming constructs for
parallel MPI applications.
The Journal of Super-
computing, 63(2):385–406,
Ballard:2020:TPC

Boryczko:1995:NIC

Bull:2000:PPJ

Beaugnon:2014:VVO

Ballico:1994:PSP

Bendrider:1995:SME

M. Bendrider and J.-M. Leclercq. Second-order Møller–Plesset and Epstein–Nesbet corrections to the molecular charge density: Distributed computing on a cluster of heterogeneous workstations with the PVM system. In Bernardi and Rivail [BR95a], pages 73–
REFERENCES

Beazley:1997:EMP

Bubak:1999:TPR

Baraglia:1993:PWC

Bach:2013:LQB

Belviranli:2018:JDA

Bubak:1998:PCL

Bhandarkar:1997:CRP

Suchendra M. Bhandarkar and Salem Machaka. Chromosome reconstruction from physical maps using a cluster of workstations. The
REFERENCES

Booth:2000:SSM

Basumallik:2002:TOE

Buntinas:2007:IES

Bronevetsky:2003:AAL

Bubak:1994:PDS

Bubak:1994:EMD

[BMG07] M. Bubak, J. Moscinski,
REFERENCES

Baiardi:2001:CRD

Brightwell:2002:DIM

Bubak:1994:FLG

Bubak:1994:IPL

Barthels:2017:DJA

Boschetti:2019:MOD

Marco Antonio Boschetti, Vittorio Maniezzo, and Francesco Strappaveccia. Membership overlay design optimization with re-

Berrendorf:2000:PCO [BO00]

Bawidamann:2012:ETO [BoFBW00]

Bull:2001:MSO

Bubak:2000:IOB

Boisvert:1997:QNS
REFERENCES

Bonnet:1996:UPW

Booth:2001:OML

link/service/series/0558/bibs/2150/21500080.htm;

Borkowski:1999:LVC

[Bor99] J. Borkowski. On line visualization or combining the standard ORNL PVM with a vendor PVM implementation. In Dongarra et al. [DLM99], pages 157–164.

Boszormenyi:1996:PCT

Brebbia:1993:ASE

Berthou:1998:PHM

Barbosa:1999:ADM

[BP99] J. Barbosa and A. Padilha. Algorithm-dependant method to determine the optimal number of computers in parallel virtual machines. Lecture Notes in Computer Sci-
REFERENCES

[BR91] A. T. Balou and A. N. Refenes. The design and implementation of VOOM: a parallel virtual object ori-
Burrer:1994:RRB

C. Burrer and P. Remy. RUBIS: a runtime basic interface software on TELMAT T9000 TN series. In de Gloria et al. [dGJM94], pages 63–78. ISBN ???? LCCN ????

Bernardi:1995:CCE

Bernaschi:1995:DRP

Bane:2002:EOA

Boeres:2004:ETF

Cristina Boeres and Vinod E. F. Rebello. EasyGrid: towards a framework for

Brightwell:2010:EDA

Brightwell:2003:DIP

Boudet:1999:PIH

Benzoni:1992:CLF

Briley:1994:NNH

Bruck:1995:EMPa

Brightwell:2005:AIO
REFERENCES

Blikberg:2005:LBO

Brown:2007:HSP

Betcke:2021:DHP

Bassomo:1999:PGE

Bolton:2000:MPL

Bukata:2015:SRC

REFERENCES

Bakhtiari:1995:APL

Bai:2013:SLA

Benzoni:1991:MFR

Blaszczyk:1996:EPI

biewski:2001:MOS

Bu:2001:PAC
Bonelli:2017:MCA

Badia:1999:SIT

Baltas:1994:CPC

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

Blum:1996:PIP
[BWT96] J. M. Blum, T. M. Warschko,
REFERENCES

Bureddy:2012:OGM

Bihari:2012:CIT

Blattner:2012:PSC

Bendtsen:1997:RLS

Calmet:1994:RWC

J. Calmet, editor. Rhine workshop on computer alge-
REFERENCES

[Czapinski:2011:TST] Michal Czapinski and Stuart Barnes. Tabu Search with two approaches to parallel flowshop evaluation on
Creech:2016:TSS

Cesarini:2020:CSR

Cesarini:2021:CRT

Cooper:1994:CHF

Coronado-Barrientos:2019:ANF

Casas:2010:APD
REFERENCES

Che:2008:PSG

Chapman:2002:APU

Clay:2018:GAP

Chapple:1995:PUL

Cowles:2018:ISB
REFERENCES

REFERENCES

Springer.com/chapter/10.1007/978-3-642-34188-5_18.

REFERENCES

Chang:1995:EPCb

Chang:1995:EPCa

Casanova:1995:PPM

Chandra:2001:PPO

Colombet:1993:SMI

Casanova:2015:SMA

Cotronis:2011:RAM
Yiannis Cotronis, Anthony
REFERENCES

REFERENCES

sagepub.com/content/19/1/81.full.pdf+html.

[Ceron:1998:PID]

[Cappello:2000:MVM]

[Clemencon:1995:AEP]

[Chau:2007:MIP]

[Cerin:1999:DMP]

[Chen:2001:FFT]

[Crivellini:2019:OPS]

162
REFERENCES

REFERENCES

[Chaudhuri:2010:PIC] Pranay Chaudhuri, Sukumar Ghosh, Raj Kumar Buyya, Jian-Nong Cao, and
REFERENCES

Carretero:2015:AMM

Calderon:2002:IMI

Camp:2011:SIU

Carter:2010:PLN

Clarke:1994:MMP

L. Clarke, I. Glendinning, and R. Hempel. The MPI Message Passing Interface Standard. In Decker and Rehmann [DR94], pages
Cunningham:2014:RXE

Carpenter:2000:MML

Catanzaro:2011:CCE

Calore:2016:PPA

Chapman:2011:OPE

REFERENCES

Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin. Improving the reliability of MPI libraries via message flow checking. *IEEE Transactions on Parallel and Dis-
REFERENCES

Cheng:1994:PDP

Ciancarini:1996:CLM

Charny:1996:MPV

Chapman:2002:PAD

Chapman:2005:SMP
REFERENCES

Cappello:2007:RAP

Cappello:2009:FSI

Chergui:1999:UPP

Cheng:2010:BRBb

Cho:2015:OAO
REFERENCES

Chang:2016:DLD

Casas:1994:ALM

Culler:1993:LTR

Castro-Leon:1993:MCP

Clark:1998:FOP

Chikin:2019:MAA

REFERENCES

REFERENCES

REFERENCES

Claver:1999:PCS

Cahir:2000:PMM

Corbalan:2004:PMD

Carson:2003:CGU

Chapman:2012:OHW

Campanai:1994:EAS

Chapman:1999:EOF

Chou:2010:CMI

Chalkidis:2011:HPH

Coelho:1994:EHC

Cho:2020:PMP

Cooperman:1995:SBP

REFERENCES

Cooperman:1995:SMB

Cotronis:1997:MPP

Cotronis:1998:DMP

Cotronis:2004:CMP

Coussement:1993:PMO

Carvalho:1997:PCC

Carissimi:1998:AEM

Cercos-Pita:2015:ANF

J. L. Cercos-Pita. AQUAgpush, a new free 3D SPH solver accelerated with OpenCL. Computer Physics Communications, 192(??):295–312, July 2015. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944
REFERENCES

REFERENCES

19/19/45/33/30/abstract.html.

REFERENCES

Chetlur:1998:ALE

Clement:1996:NPM

Cavenaghi:1996:UPS

Carreira:1995:DEL

Chevitarese:2012:STN

Ciegis:1997:NID

Ciegis:1999:HDA

R. Ciegis, R. Sablinskas, and J. Wasniewski. Hyperrectangle distribution algo-

REFERENCES

(Cprint), 1558-2183 (electronic).

Cotronis:2000:_CMP

J. Y. Cotronis, Z. Tsi-
atsoulis, and C. Kouni-
akis. Composition of mes-
 sage passing applications
on-demand. Lecture Notes
in Computer Science, 1908:
192–??, 2000. CODEN
LNCSD9. ISSN 0302-
9743 (print), 1611-3349
(electronic). URL http:
//link.springer-ny.com/
link/service/series/0558/
bibs/1908/19080192.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080192.
pdf.

Czarnul:2001:DPD

Pawel Czarnul, Karen Tomko,
and Henryk Krawczyk. Dy-
namic partitioning of the
divide-and-conquer scheme
with migration in PVM en-
vironment. Lecture Notes
in Computer Science, 2131:
174–??, 2001. CODEN
LNCSD9. ISSN 0302-
9743 (print), 1611-3349
(electronic). URL http:
//link.springer-ny.com/
link/service/series/0558/
bibs/2131/21310174.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/2131/21310174.
pdf.

Candel:2019:EMC

F. Candel, A. Valero, S. Pe-
tit, and J. Sahuquillo. Ef-
ficient management of cache
 accesses to boost GPGPU
memory subsystem perfor-
 mance. IEEE Transactions
on Computers, 68(10):
CODEN ITCOB4. ISSN
0018-9340 (print), 1557-9956
(electronic).

Cao:2011:OMM

Chao Cao, Yun wen Chen,
Yuning Wu, Erik Deumens,
and Hai-Ping Cheng. OPAL:
a multiscale multicenter sim-
 ulation package based on
MPI-2 protocol. International
Journal of Quantum Chem-
istry, 111(15):4020–
4029, December 2011. CO-
DEN IJQCB2. ISSN 0020-
7608 (print), 1097-461X
(electronic).

Chang:2020:ADI

Tyler H. Chang, Layne T.
Watson, Thomas C. H.
Lux, Ali R. Butt, Kirk W.
Cameron, and Yili Hong.
Algorithm 1012: DELAU-
AYSPARSE: Interpolation
via a sparse subset of the
Delaunay triangulation in
medium to high dimensions.
ACM Transactions on Math-
ematical Software, 46(4):
CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295
REFERENCES

[Cza13] Michal Czapinski. An effective Parallel Multistart Tabu Search for Quadratic Assignment Problem on CUDA platform. *Jour-
REFERENCES

Czech:2016:IPC

Chapman:2008:PPM

Chen:2021:CCR

Dongarra:1991:UGP

Dongarra:1995:HPC

Daberdaku:2019:ACT

Sebastian Daberdaku. Accelerating the computation of triangulated molecular

deAndrade:2017:OFH

Demuynck:1997:DOD

Dinan:2016:IEM

Dursun:2009:MPM

Dotsenko:2011:ATF

DiMartino:2001:WDS

Juan del Cuvillo, Weirong Zhu, and Guang Gao. Land-

Dan:1999:QAM

Durand:1991:HPC

Demaine:1996:FCC

DePasquale:2003:UJU

Dehne:2001:CPD

Dashti:2017:AMM

Dalcin:2021:MSU

August 2021. CODEN CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic).

REFERENCES

DIAZ:2012:CCF

DIAZ:2019:A0O

DOULIS:2019:CMP

DAMBRA:1995:CBC

DINAN:2014:ECC
Dinan:2012:EMC

Dongarra:2019:PPL

Dongarra:1993:UPR

Dongarra:1993:IPF

daCunha:1994:PIR

deGloria:1994:TAS
A. de Gloria, M. R. Jane, and D. Marini, editors.
REFERENCES

DEN ACMHEX. ISSN 1019-7168.

REFERENCES

REFERENCES

REFERENCES

[DLP00] J. J. Dongarra, Peter Kacsuk, and Norbert Podhorszki, editors. Recent advances in parallel virtual machine and message
REFERENCES

Dickens:2010:HP1

delaAsuncion:2011:SOL

delaAsuncion:2012:MC1

Desai:2007:CEM

Marcos:2002:DDP
REFERENCES

Deng:2019:CBV

Deng:2020:CCB

Degomme:2017:SMA

Dongarra:1999:RAP

DeKeyser:1994:RTL

Lu:2004:AFS

DeSande:1999:NBS

DiPietro:2016:CLD

Despons:1993:CCP

Davies:1995:NSP

Davies:1995:NPE

REFERENCES

Dagum:1998:OIS

Dziubak:2012:OOI

Dathathri:2016:CAL
Roshan Dathathri, Ravi Teja Mullapudi, and Uday Bondhugula. Compiling affine loop nests for a dynamic scheduling runtime on shared and distributed memory.

Dalcin:2019:FPM

DiMartino:1997:IPD

Dongarra:1996:APC
Jack J. Dongarra, Kay Madis- sen, and Jerzy Wasniewski, editors. *Applied parallel computing: computations in physics, chemistry, and engineering science: second international workshop, PARA ’95*, Lyngby, Den-

Dinda:1996:PIA

Donev:2006:ICF

Sandes:2016:CIS

Dongarra:1995:IMS

Dongarra:1996:MPS

DeRoeck:1994:CFP

Y. H. De Roeck and R. E. Plessix. Combining F90
REFERENCES

REFERENCES

Dowaji:1995:LBS

DiMartino:1997:MDH

Davina:2018:MCP

Deuzeman:2012:LMP

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES

Hoang-Vu Dang and Bertil Schmidt. CUDA-enabled sparse matrix-vector multiplication on GPUs using

Deniz:2016:MGM

Delmas:2022:MGI

Duran:2005:RAP

Dietrich:2017:CBA

Davidor:1994:PPS
[DSM94] Yuval Davidor, Hans-Paul Schwefel, and Reinhard Manner, editors. Parallel problem solving from nature — PPSN III: International Conference on Evolutionary Computation, the Third Conference on Parallel Problem Solving from Nature, Jerusalem, Israel,

Dohi:2011:GIO

Domokos:2000:PRC

Daleiden:2020:GPP

Deshpande:1996:MIBa

Dekker:1994:MPP

REFERENCES

Dantas:1996:ILB

Dantas:1998:ESM

Delves:1998:HPF

Dragovitsch:1995:PPS

Dykes:1994:CCP

Edmonds:2019:HAS
Edjlali:1995:DPP

Eichenberger:2020:HCG

Elwasif:2001:AMT

Eppstein:1994:CSP

Eddelbuettel:2018:BRN

Eigenmann:2008:ONE

ElMaghraoui:2009:MIM

Eleftheriou:2005:SFF

El-Ghazawi:2002:UPP

Eppstein:1992:PGC

Eickermann:1999:PID
REFERENCES

Erhel:2014:DDM

[EGH+14]

Ebrahimirad:2015:EAS

[EGR15]

Eberl:1999:PCP

[EKTB99]

Elamvazuthi:1994:OPA
C. Elamvazuthi and G. A. Manson. Occam, PVM and the alternative construct. In Miles and Chalmers [MC94],
REFERENCES

Eigenmann:2000:TMPa

Eigenmann:2000:TMPb

Espenica:2002:PPA

Espinosa:1998:ADP

Espinosa:2000:APA

Ewing:1993:DCW

Engquist:2000:SVG
Björn Engquist, editor. Simulation and visualization on
REFERENCES

Emani:2015:CDM

Ebner:1996:TFP

Espinosa:1999:REB

Eizenberg:2017:BBL

ElZein:2012:GOC

El-Rewini:1995:PTE

El-Reini:1996:PTN

Ewedafe:2011:PID

Ellingson:2013:SNU

Ewing:1994:DCW

Escag:1994:PMD

Eichenberger:2012:DOT

Eigenmann:2001:OSM

Eichstadt:2020:CSM

Elis:2020:QNG

Eckert:2016:HAL

REFERENCES

Faraji:2018:DCG

Fabeiro:2016:WPP

Fabeiro:2015:AGO

Fang:1998:DDL

Freeman:1994:SMM

Fang:1995:PMS

Fang:1996:SPP

Fang:1997:MDD

Niandong Fang and Helmar Burkhart.

[Floros:2005:TGS] Evangelos Floros and Yian-

Graham Fagg and Jack Dongarra. PVMPi: An integration of PVM and
MPI systems. *Calcula-
teurs Parallèles*, 8(2):151–
166, 1996. CODEN ????
ISSN 1260-3198. URL
http://www.netlib.org/
utk/papers/pvmpi/paper.
html; http://www.netlib.
org/utk/papers/pvmpi/pvmpi.
ps; http://www.netlib.
org/utk/people/JackDongarra/
pdf/pvmpi.pdf.

[Fischer:1997:AAP]
Markus Fischer and Jack
Dongarra. Another architec-
ture: PVM on Windows 95/
NT. In ????, editor, *Concur-
tent Computing Conference,
Atlanta, GA, March 10–11,
1994*, page ?? ??, ???,
netlib.org/utk/people/
JackDongarra/PAPERS/nt-
paper.ps; http://www.
netlib.org/utk/people/
JackDongarra/pdf/nt-paper.
pdf.

[Fagg:2000:FMF]
Graham E. Fagg and Jack J.
Dongarra. FT-MPI: Fault
Tolerant MPI, supporting
dynamic applications in a
dynamic world. *Lecture
Notes in Computer Sci-
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/
biba/1908/19080346.htm;
http://link.springer-

[Fagg:2002:HFTa]
Graham E. Fagg and Jack J.
Dongarra. HARNESS fault
tolerant MPI design, usage
and performance issues. Tech-
nical report ???, University of Ten-
nessee, Knoxville, Knoxville,
TN 37996, USA, 2002.
URL http://www.netlib.
org/netlib/utk/people/
JackDongarra/PAPERS/ft-
mpi-fgcs-grid-se.pdf.

[Fagg:2002:HFTb]
Graham E. Fagg and Jack J.
Dongarra. HARNESS fault
tolerant MPI design, usage
and performance issues. *Future Generation
Computer Systems*, 18(8):
CODEN FGSEVI. ISSN
0167-739X (print), 1872-
7115 (electronic).

[Fagg:2004:BUF]
Graham E. Fagg and Jack J.
Dongarra. Building and us-
ing a fault-tolerant MPI im-
plementation. *The Interna-
tional Journal of High Per-
formance Computing Ap-
plications*, 18(3):353–361,
Fall 2004. CODEN IHPCFL.
ISSN 1094-3420 (print),
1741-2846 (electronic).
URL http://hpc.
REFERENCES

sagepub.com/content/18/3/353.full.pdf+html.

[FDG97a] G. Fagg, J. Dongarra, and A. Geist. Heterogeneous MPI application interop-
eration and process management under PVMPI. Technical report CS-97-
???, University of Ten-
netlib.org/utk/papers/ pvmmpi97.ps; http://
www.netlib.org/utk/people/
JackDongarra/pdf/pvmmpi97.
pdf.

[FDG97b] G. E. Fagg, J. J. Don-
garra, and A. Geist. Het-
eroogeneous MPI application interoperation and process management under PVMPI. Lecture Notes in Computer
0302-9743 (print), 1611-3349 (electronic).

[FDG19] Thomas Faict, Erik H.
D’Hollander, and Bart
Goossens. Mapping a
guided image filter on the
HARP reconfigurable archi-
tecture using OpenCL. Al-
gorithms (Basel), 12(8), Au-
 gust 2019. CODEN AL-
GOCH. ISSN 1999-4893
www.mdpi.com/1999-4893/
12/8/149.

[Fer92] S. Ferenczi, editor. 1st
Austrian-Hungarian Work-
shop on Transporter Ap-
lications. Proceedings. Hun-
garian Acad.of Sci, Bu-
dapest, Hungary, 1992. ISBN ???? LCCN ????.

[Ferr98a] Adam Ferrari. JPVM:
network parallel comput-

Ferrari:1998:JNPa

Fernando:2004:GGP

FerreiradaSilva:2010:PBC

Fritzson:1995:PPA

Fava:1999:MPI

Frugoli:1999:DCH

G. Frugoli, A. Fava, E. Fava, and G. Conte. Distributed collision handling

Kurt Ferreira, Ryan E. Grant, Michael J. Levenhagen, Scott Levy, and Taylor Groves. Hardware MPI message matching: Insights into MPI matching behav-

REFERENCES

Andre:1998:BVN

Friedley:2013:OPE

Franke:1994:MMP

Franke:1995:AAV

Field:2001:RTF

Franke:1995:MIS

REFERENCES

REFERENCES

Computer Society Press Order Number: RS00126.

Freeh:2008:JTD

Foster:1996:GCM

Ferreira:2021:EMR

Florez:2005:LMM

Fagg:1996:TGR

Fagg:1998:MMH

Fachada:2017:CCF

REFERENCES

Ferreira:2018:CMM

Fan:2020:ALC

Feeley:1990:PVM

Furlinger:2009:CAE

Fabero:1996:DLB

Fiala:2012:DCS

REFERENCES

REFERENCES

[Fumero:2017:JTG] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach. Just-in-time GPU compilation for interpreted languages with partial eval-
REFERENCES

Folino:1998:EMC

Folino:1998:PEM

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP

Fernandez:2000:DCE

REFERENCES

REFERENCES

(Please provide the full content of the references page.)
REFERENCES

David L. González-Álvarez, Miguel A. Vega-Rodríguez, and Álvaro Rubio-Largo. A hybrid MPI/OpenMP parallel implementation of
REFERENCES

Robert Gerstenberger, Maciej Besta, and Torsten
REFERENCES

Gerstenberger:2018:EHS

Gabriel:1997:EMU

Edgar Gabriel, Thomas Beisel, and Michael Resch. Erweiterung einer MPI-Umgebung zur Interoperabilität verteilter MPP-Systeme. (German) [Extension of an MPI environment for interoperability with distributed MPI systems]. Studienarbeit ange wandte Informatik RUS 37, Rechenzentrum Universität Stuttgart, Stuttgart, Germany, 1997.

Garain:2015:CCF

Graham:2007:OMH

Grove:2005:CBP

REFERENCES

issn=0920-8542&volume=34&issue=2&spage=201.

Garcia:2012:DLB

Garcia-Salcines:1997:PRR

Garcia:1999:MMI

Garcia-Consuegra:1998:DGR

Gelado:2010:ADS

Gao:2013:GGA

Geist:1993:PTW

Galizia:2015:MCL

Ghose:2017:FOT

Gonzalez-Dominguez:2020:CJA

Gonzalez-Dominguez:2018:MPC

Gonzalez-Dominguez:2022:MDP

Nitin A. Gawande, Jeff A. Daily, Charles Siegel, Nathan R. Tallent, and Abhinav Vishnu.

G. A. Geist. Cluster computing: the wave of the future? In Dongarra and Wasniewski [DW94],
REFERENCES

Geist:1996:APP

Geist:1997:ACP

Geist:1998:HNG

Geist:2000:PMW

Gerbessiotis:2018:SIS

Grabowsky:1998:NMP

Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprint-
REFERENCES

Reihe des Chemnitzer SFB 393 Sonderforschungsbereich Numerische Simulation auf Massiv Parallelen Rechnern 97,08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998. [GFD03]

Gabriel:2003:FTC

Gabriel:2003:EPM

Gabriel:2005:EDC

Gomez-Folgar:2018:MPA

F. Gomez-Folgar, G. Indalecio, N. Seoane, T. F. Pena, and A. J. Garcia-
References

Gueunet:2019:TBA

Gravvanis:2012:SFD

Giordano:1999:IBP

Garzon:1999:PIE

Giannoutakis:2009:DIP

Giannoutakis:2007:MHP

K. M. Giannoutakis, G. A. Gravvanis, B. Clayton, A. Patil, T. Enright, and

Gallud:2001:EDF

Gallud:1999:DPR

Gallud:1999:CCU

Godlevsky:1999:PSA

Geist:1996:MEM

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). VEE ’12 conference proceedings.

[GJMM18] Brice Goglin, Emmanuel Jeannot, Farouk Mansouri, and Guillaume Mercier. Hardware topology management in MPI applications through hierarchical com-

Grecki:1997:MPE

Gernaud:2009:FMP

Gillett:1997:UMC

Granat:2010:PSS

Grasso:2013:APS

[GCF] Ivan Grasso, Klaus Kofler,

Gianinazzi:2018:CAP

Granat:2009:NPQ

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

Geist:1997:CPF

REFERENCES

Gropp:1995:MMI

Gropp:1995:EIS

Gropp:1996:HPM

Gropp:1997:WPM

Gropp:1997:HPM

Gropp:1997:SMC

Gropp:1999:RMM

Gropp:2002:MG

Gupta:2018:ALQ

Ghazimirsaeed:2020:CAM

Gong:2016:NPG

Goujon:1998:AAT

Guan:1995:SCC

Gu:2007:IPC

GMA20

GM18

GMdMBD+07
REFERENCES

190–195. CODEN PSPDF8.
95TH8052.

[GR97] Lothar Grabowsky. MPI-basierte Koppelrandkommunikation und Einfluss der Partitionierung im 3D-Fall. (German) [MPI-based coupled edge communication and influence of partitioning in 3D-Fall].
Preprint-Reihe des Chemnitzer SFB 393 97,17, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1997.
13 pp.

Gravvanis:2009:OBP

CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic). URL
http://link.springer-ny.com/link/service/series/0558/bibs/1908/19080160.htm;

Grengbondai:1994:CPU

Greenfield:1995:OPS

J. Greenfield. An overview of the PVM software system. In IEEE [IEE95d], pages 17–23. ISBN ???? LCCN ????

Gropp:2000:RCD

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL
http://link.springer-ny.com/link/service/series/0558/bibs/2228/22280081.htm;

Gropp:2001:CSA

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL
http://link.springer-ny.com/link/service/series/0558/bibs/2131/21310007.htm;

Gropp:2001:LSM

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL
http://link.springer-ny.com/link/service/series/0558/bibs/2228/22280081.htm;
REFERENCES

REFERENCES

W. Gropp and B. Smith. Scalable, extensible, and portable numerical libraries.
Gold:1996:UAL

Geist:19xx:NBC

G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

Garg:2002:TOA

Gao:2008:GEI

Gardner:2013:CCE

Gine:2002:ALT

Francisco Giné, Francesc Solsona, Porfidio Hernández, and Emilio Luque. Adjusting the lengths of time slices when scheduling PVM jobs with high memory requirements. Lecture Notes in Computer Science, 2474: 156–??, 2002. CODEN LNCSD9. ISSN 0302-9743
REFERENCES

Gerlach:1997:ECS

Gonzalez:2000:AIT

Germanas:2017:HUP

Gu:2013:PCI

Zheng Gu, Matthew Small, Xin Yuan, Aniruddha Marathe, and David K. Lowenthal. Protocol customization for improving MPI performance on RDMA-enabled clusters. International Jour-
Gong:2021:TDG

Gruber:1994:PJE

Golbiewski:2001:MOS

Gropp:2007:TSM

Gropp:2019:GEI

Gennart:1996:CAG

B. A. Gennart, J. Tarraga Gimenez, and R. D. Hersch. Computer-assisted generation of PVM/C++ pro-

REFERENCES

Han:2011:HHL

Hussain:2011:PIA

Hoeflinger:2001:PSP

Hamza:1995:PII

Haridi:1995:EPP
Hansen:1998:EMP

Hardwick:1994:PVL

Hardwick:1995:PVL

Hassanzadeh:1995:MMG

Hisley:2000:PPE

Hatazaki:1998:RRS

Hachler:1996:IAC

Haechler:1996:IAC

Hausner:1995:EIP

Huang:2006:ECS

Huang:2008:FPM

Hamid:2010:CMB

REFERENCES

[Han:2017:SLS]

[Hunold:2016:RMB]

[Hashmi:2020:FXZ]

[Hurwitz:2005:AMP]

[Huang:2005:TME]

[Hu:2016:CLG]

REFERENCES

269

[Hadi:2013:CFA] Mohammed F. Hadi and

Havran:2015:EBT

Huang:2009:EGO

Hempel:1994:MSM

Hempel:1996:SMM

Holmen:2014:ASI

John K. Holmen and David L. Foster. Accelerating sin...
Hahne:2021:APP

Hermanns:2012:SDM

Haghi:2022:RSH

Pouya Haghi, Anqi Guo, Qingqing Xiong, Chen Yang, Tong Geng, Justin T. Broaddus, Ryan Marshall, Derek Schafer, Anthony Skjellum, and Martin C. Herbordt. Reconfigurable switches for high perfor-

Hong:1995:PNP

HH95

Hanson:2014:NCM

HH14

Huckelheim:2022:SSA

HH22

Hui:1995:SPS

HH95

Huang:2018:ACO

HH14

Horiguchi:1994:ISP

REFERENCES

[HK94] P. Henriksen and R. Keunings. Parallel computation of the flow of in-
REFERENCES

Hoffmann:1995:CAP

HK95

Hong:2009:AMG

HK09

Hong:2010:IGP

HK10

Hiranandani:1994:CTB

HKMCS94

Hoeflinger:2001:IPV

HKN+01

Hong:2011:ACG

Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating CUDA graph algo-

Hung:2016:EBP

Hong:1996:RDM

Hawick:2010:PGC

Hawick:2011:RLS

Huband:2001:DTB

Hilbrich:2009:MCC

REFERENCES

Hajihassani:2019:FAI

Hakula:1994:FEM

Holmes:2019:PPE

Haynes:2014:MOA

Hogg:2013:FDT

Hollerbach:1995:FDA

REFERENCES

IEEE catalog number 95CH35784.

REFERENCES

[HS12] Torsten Hoefer and Timo Schneider. Optimization principles for collective...
neighborhood communications. In Hollingsworth [Hol12], pages 98:1–98:??

Henriksen:2017:FPF

Haeuser:1994:RNS

Halbiniak:2021:EOH

Heimel:2013:HOP

Hormati:2012:SPS

Hu:2001:PCC
REFERENCES

//link.springer-ny.com/ link/service/series/0558/ bibs/2073/20731137.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/2073/20731137.
pdf.

Howes:2008:U

www.loc.gov/catdir/toc/ ecip0720/2007023985.html

Ha:2008:NBP

28, December 2008. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hluchy:1999:GWF

L. Hluchy, V. D. Tran, L. Halada, and M. Dobrucky. Ground water flow modelling in PVM. In Dongarra et al. [DLM99], pages 450–460. ISBN 3-540-
66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA76.58 [Hum95]
E973 1999.

Huckle:1996:PIS

Humphres:1995:LBE

Husbands:1998:MSD

Parry J. Husbands. MPI-

StarT: Delivering network
performance to numerical applications. In ACM [ACM98b], page ??

Huse:1999:CCD

Huse:2000:MOS

Huse:2001:LST

Hamidouche:2016:CAO

Houzeaux:2011:HMO

Hoekstra:1995:CPP

Hager:2011:IHP

Huang:2002:DDD

He:2009:AVS

Hwang:1997:EMC

Hwang:2021:LBI

REFERENCES

Huang:2013:ACM

Huang:2020:POL

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP

Hou:2008:BBS

Izadpanah:2019:PAP

Ramin Izadpanah, Ben-

IEEE:1994:PIF

IEEE:1994:PSP

IEEE:1994:PTI

IEEE:1994:PSW

IEEE:1995:IIC

IEEE:1995:CPI

IEEE:1995:DPT

IEEE:1995:ISE

IEEE:1995:IPR

IEEE:1995:PEW

[IEE96b] IEEE, editor. *Eighth IEEE Symposium on Parallel and
IEEE:1996:FSS

IEEE:1996:PF1

IEEE:1996:PSI

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1997:PIP

IEEE:1997:TIS

IEEE:2002:STI

IEEE:2005:IPD

Iida:2016:GET

IHM05

Izaguirre:2005:PMS

IHM05

IFIP:1995:KWC

Iwasaki:2004:NPS

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Iskra:2000:PMD

K. A. Iskra, Z. W. Hendrikse, G. D. van Albada, B. J. Overeinder, and P. M. A. Sloot. Performance measurements on Dynamite/DPVM. *Lecture Notes in Computer...
REFERENCES

Ierotheou:2005:GOC

Iwama:2001:PLS

Iwashita:1994:IPE

Ingle:1995:MAS

Islam:2016:EMT

Tanzima Islam, Kathryn Mohror, and Martin Schulz. Exploring the MPI tool information interface: features and capabilities. The
Ishizaka:2000:CGT

Ilie:2016:AEC

Satake:2012:OGA

Shin ichi Satake, Hajime Yoshimori, and Takayuki Suzuki. Optimizations of a GPU accelerated heat conduction equation by a programming of CUDA Fortran from an analysis of a PTX file. Computer Physics...
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL http://
www.sciencedirect.com/science/article/pii/S0010465512002068

Imamura:2000:ASM

Toshiyuki Imamura, Yuichi Tsujita, Hiroshi Koide, and Hiroshi Takemiya. An ar-
chitecture of Stampi: MPI library on a cluster of parallel computers. Lecture
Notes in Computer Science, 1908:200–??, 2000. CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349 (electronic). URL http://
link.springer-ny.com/link/service/series/0558/bibs/1908/19080200.htm;

Ishihara:1999:VBS

S. Ishihara, S. Tani, and A. Takahara. Virtual BUS: a simple implementation of an effortless networking system based on PVM. In Dongarra et al. [DLM99], pages 461–468. ISBN 3-540-
66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA76.58
E973 1999.

Islam:2002:IAC

Mohammad Towhidul Islam, Parimala Thulasiraman, and Ruppa K. Thulasiraman. Im-
plementation of ant colony optimization algorithm for mobile ad hoc network applications: OpenMP ex-
2002. CODEN ????. ISSN 1097-2803.

Iskra:2000:IDE

K. A. Iskra, F. van der Linden, Z. W. Hendrikse, B. J. Overeinder, G. D. van Al-
tronic).

Jatala:2017:SSG

Vishwesh Jatala, Jayvant Anantpur, and Aney Karkare. Scratchpad sharing in GPUs.
ACM Transactions on Architecture and Code Optimi-

Jabbarzadeh:1997:PSS

A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner. Parallel simulation of shear
flow of polymers between structured walls by molecular dynamics simulation on

Jacoby:1996:ADA

Juhasz:1996:PIP

Jarzabek:2017:PEU

Jin:2008:PEM

Jaeger:2015:FGD

Jin:2000:AGO

Jin:2011:HPC

Jo:2017:PMA

Jin:2003:AMP

Januszewski:2010:ANS

Jeun:2008:OPB

Jan:2017:ITF

Jog:2013:OCT

Jani:2022:HST

Jambunathan:2018:COB

References

Jost:2005:WMP

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

Jung:2014:MCM
REFERENCES

September 2014. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Joubert:1994:PCT

Jost:2010:EUH

Judd:1994:PIV

Jin:2013:PCU
REFERENCES

www.sciencedirect.com/science/article/pii/S0167739X13000290

Jung:2005:DIM

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M^3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jaaskelainen:2015:PPP

Ju:1996:SPT

Jin:1995:LTP

Kumar:1995:MWD

Kepner:2004:M

Kumar:2013:GAI

Krawezik:2002:SOV

Kapinos:2010:PPP

Khan:2017:RCS

Kanal:2012:PAI

REFERENCES

Yacine Kabir and A. Belhadj-Aissa. Distributed image segmentation system by a multi-agents approach (under PVM environment). Lec-

[Ke:2004:RCM] Jian Ke, Martin Burtscher, and Evan Speight. Runtime compression of MPI messages to improve the perfor-

[Klemm:2007:JIO]

[Karamcheti:1994:SOM]

[Krawezik:2006:PCM]

[Knap:2019:PEU]

[Kacsuk:1997:GDD]

[Konuru:1994:ULP]

R. Konuru, J. Casas,
REFERENCES

Konuru:1994:UPP

Krotselidis:2017:HMR

Kanal:2012:MMC

Krotkiewski:2013:ESC

Kang:2018:PRS

Klingebiel:1995:COD

Klingebiel:1995:CPO

Klingebiel:1995:CPO

Kakimoto:2012:PCG

Kepner:2005:PPM

Koitzka:2016:NGA
Kale:1996:PMD

Kappiah:2005:JTD

Kramer-Fuhrmann:1994:TGP

Kowalik:1993:SPC

Kohl:1996:PTF

Kainz:2009:RCM

Keller:2003:TEE

[Kha13] Gaurav Khanna. High-precision numerical simulations on a CUDA GPU:

Kikuchi:1993:PAS

Kranz:1993:IMP

Kwon:2012:HAO

Kim:2016:DOF

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Kranzlmuller:2005:RAP

Kranzlmuller:2003:RAP

Kee:2003:POP

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

REFERENCES

Konstantinou:2001:TTO

Kobler:2001:DOP

Karrels:1994:PAM

Kofakis:1995:DPI

Liao:2011:DEM

Liao:2006:SDI

Wei keng Liao, Kenin Coloma, Alok Choudhary, Lee Ward, Eric Russell, and Neil Pundit. Scalable design and implementations for MPI parallel overlapping I/O. IEEE Transactions on Parallel and Dis-
Liao:2007:CCS

Kang:2020:IMC

Kumar:2019:FOP

Klawonn:2015:HMO

Kutyniok:2016:SFD

REFERENCES

Khanna:2010:NMG

Komatitsch:2009:PHO

Koholka:1999:MPR

Kormicki:1997:PLS

Kormicki:1996:PLS

Koholka:1999:MPR
Kumar:2014:OMC

Kobayashi:2016:HSV

Kouzinopoulos:2015:MSM

Kirk:2010:PMP

Kahns:1995:DPD

Katouda:2017:MOH

Kono:2018:EOW

Kasprzyk:2002:APV

Komura:2014:CPG

Kambites:2001:OLI

Kasahara:2001:ACG

Klockner:2012:PPS

Kolesnichenko:2016:CBG

Kuhn:2000:OVT

Kamal:2005:SVT

Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????.

Klemm:2021:OAH

Klimach:2009:PCH

Parallel CFD 2007 was held in Antalya, Turkey, from May 21 to 24, 2007.

Kranzlmuller:2002:RAP

[102x681] REFERENCES

[102x681] 326

[177x646] 1439-7358. LCCN ???? URL
http://link.springer.com/content/pdf/10.1007/978-3-540-92744-0_42. Parallel CFD 2007 was held in Antalya, Turkey, from May 21 to 24, 2007.

Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunaseth:2013:ASD

Kalentev:2011:CCL

Kranzlmuller:1999:MOM

Kotsis:1996:EEP

Krantz:1997:CSC

Krawczyk:2001:PIM

Kim:2013:MPE

Kaliman:2015:SNU

Kovanen:2015:TAC

Klinkenberg:2020:CRL
Jannis Klinkenberg, Philipp Samfass, Michael Bader, Christian Terboven, and Matthias S. Müller. CHAMELEON: Reactive load balancing for hybrid MPI + OpenMP task-parallel applications.
REFERENCES

Knight:2019:TES

Kegel:2013:DTU

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

REFERENCES

Kranzlmuller:2001:IRM

Keppens:2002:OPM

Koval:2010:USB

Kang:2019:SAM

Karonis:2003:MGG

Komatitsch:2003:BDF

Keppens:2021:MAP

Kuhn:1998:FFW

Kumar:1994:PPI

Kranzlmueller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

Korch:2020:IIE

Kamburugamuve:2018:AML

Kamal:2010:EIN

Karwande:2003:CMC

Karwande:2005:MPC

Amit Karwande, Xin Yuan, and David K. Lowenthal. An MPI prototype for compiled communication on Ethernet switched clusters. Journal of Parallel and Distributed Computing, 65(10):
REFERENCES

Krantz:1996:RFP

[1123–1133, October 2005. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Lopez:2002:ESM

Lopez:2006:ESM

Ladd:2004:GPP

Lobeiras:2016:DEI

Laguna:2015:DPF

Laforenza:2001:PHP

Domenico Laforenza. Programming high performance applications in grid environments. *Lecture Notes*

Loos:1996:MPS

Lavi:1998:IPD

Lashgar:2016:ESM

Loncar:2016:CPS

Losada:2019:LRR

Liu:2021:BMN

Lawton:1996:BHP

Larrea:2020:EPM

REFERENCES

Ling:2012:HPP

Lewis:1993:PCP

Lauria:1997:MFH

Luecke:1997:HPF

Li:2007:DIV

Luecke:2003:MCT

Glenn Luecke, Hua Chen, James Coyle, Jim Hoekstra, Marina Kraeva, and Yan Zou. MPI-CHECK: a tool for checking Fortran 90 MPI programs. *Concurrency and Computation:*
REFERENCES

Li:2022:CDC

Liddell:1996:HPC

Lashuk:2012:MPA

Losada:2017:RMA

Nuria Losada, Iván Cores, María J. Martí, and Patricia González. Resilient MPI applications using an application-level checkpointing framework and ULFM. *The Journal of Supercomputing*, 73(1):100–113, Jan-
Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

Liu:1996:BMP

Liu:2019:MML

Lee:2001:APT

REFERENCES

Lu:1997:QPD

Liu:2013:DLO

Lorenzon:2019:ASO

Lee:2006:PT

Lee:2012:SMO

Levelt:1995:IIS

REFERENCES

Levy:2020:UVA

Loyot:1993:VVM

Lee:1999:PEJ

Liu:2016:MBM

Li:2010:SVC

Lassous:2000:HGA

Isabelle Guérin Lassous, Jens Gustedt, and Michel Morvan. Handling graphs according to a coarse grained approach: Experiments with PVM and MPI. *Lecture Notes in Computer Science*, 1908:72–??, 2000. [LGG16]
Losada:2020:FTM [LH98]

Lopez-Gomez:2019:ESP [LHC+07]

Liao:2007:OOP [LHC+07]

Lee:1996:TSF [LHC+07]
[Liu:2005:EIO]

[LHCW05]

[LHD+94]

[LHLK10]

[LHZ97]

[Lu:1998:ONW]
Honghui Lu, Y. Charlie Hu, and Willy Zwaenepoel. OpenMP on networks of

Liang:2020:AMD

Li:1996:SIS

Liu:1995:WCD

Livny:2000:MYW

Lastovetsky:2010:RAP

LaSalle:2014:MBD

REFERENCES

[Li:2019:TBH] Bing Li, Mengjie Mao, Xiaoxiao Liu, Tao Liu, Zihao Liu, Wujie Wen, Yiran Chen, and Hai (Helen) Li. Thread batching for high-performance energy-efficient

REFERENCES

REFERENCES

Lastovetsky:2006:HTM

Le:2006:DMC

Lotfi:2015:AAC

Lee:2014:BCA

Laguna:2016:EEU

Lima:2019:PEA
REFERENCES

Han Lin, Zhichao Su, Xiandong Meng, Xu Jin, Zhong Wang, Wenting Han, Hong An, Mengxian Chi, and Zheng Wu. Combining Hadoop with MPI to solve metagenomics problems that are both data-

[Liu:2011:CBA]

[Liu:2008:AMD]

[Lazzarino:2002:PBP]

REFERENCES

[LYIP19] Paulo A. C. Lopes, Satyendra Singh Yadav, Aleksan-

Loncar:2016:OOM

Lu:2013:WGA

Luecke:2002:DDM

Lin:2020:EAM

Li:2017:PCO

Li:2018:COM

Lu:2019:PMM

Liao:2020:DCS

Ma:2009:CRS

REFERENCES

Mavriplis:2005:HRAa

Miguel:1996:APN

Maffeis:1994:SSD

Moreno:2001:AEP

Mainland:2012:EHM

Molero-Armenta:2014:OOI

Malyshkin:1995:PCT

[Mal95] Victor Malyshkin, editor. Parallel computing technologies: third international con-

Malfetti:2001:AOW

Mirvis:1995:HML

CODEN CPSCDO. ISSN 0273-4508.

Mans:1998:PDP

Manis:2001:PNP

Miguel-Alonso:2009:INS

Marowka:2002:ISI

Marowka:2003:EOT

Marowka:2005:EMT

Marowka:2006:BRP

Marowka:2007:PCD

Marowka:2009:BCT

Mehta:2006:MSG

[MAS06] Paras Mehta, José Nelson Amaral, and Duane Szafron. Is MPI suitable for a generative design-pattern system?

Mattson:1994:PEP

Mattson:1995:PEP

Mattson:2000:BOF

Mattson:2000:IO

Mattson:2001:EO

Matuszek:2001:APS

Mattson:2003:HGO

Matloff:2016:PCD

Mourao:2000:SSC

Marongiu:2012:OCE

Maleki:2018:AHP

Margolin:2021:TBF

REFERENCES

Muller:2012:SOA

Min:2003:OOP

McKenzie:1994:CIM

Malits:2012:ELG

Mehl:2015:RTC

Miles:1994:PTO

Medeiros:1998:IPM

Morrison:1999:FPP

Maier:2017:OLD

Malinowski:2018:SIP

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

McKinney:1994:PGU

Moore:2001:RPA

REFERENCES

Moreira:2017:FCR

McRae:1992:VC

Mierendorff:2000:WMB

Marin:2017:ERF

Monteiro:2018:EGC

Muller:2009:EOA

Matthias S. Müller, Bronis R. de Supinski, and Barbara M. Chapman, editors. *Evolving OpenMP in an Age of Extreme Parallelism: 5th International Workshop on OpenMP, IWOMP 2009* Dresden, Germany, June 3–

Matheou:2017:DDC

Megson:1998:CRH

Milovanovic:2008:NEE

Moody:2003:SNB

Martin:1995:DPC

REFERENCES

Mintchev:1997:TPM

Mehta:2015:MTP

Mendonca:2017:DAA

Muralidharan:2015:COP

Medvedev:2005:OMA

REFERENCES

/Montella:2017:VCB

/Mazzariol:1997:PCS

/Markidis:2015:OAN

/Matthey:2001:EMO

/Hwu:2012:GCG

/Moll:2018:PCF

Simon Moll and Sebastian Hack. Partial control-flow linearization. *ACM SIG-
REFERENCES

Muller:2021:MAE

Miller:1994:PPP

Muller:2021:MAE

Muller:1994:PPP

MHC94a

MHC94b

Munshi:2016:OCS

Muller:2021:MAE

Muller:2021:MAE

Muller:2021:MAE

Michielse:1995:PMU

Munshi:2016:OCS

Munshi:2016:OCS

Munshi:2016:OCS

Muddukrishna:2015:LAT

Mittal:2012:CAS

Muddukrishna:2016:GGO

Matyska:1994:DCS

McDonald:1997:IPT

McDonald:2000:TPA

Mohror:2004:PTS

Manwade:2017:DFA

Maheo:2012:AOL

Munch:2021:HDE

Markus:1996:PEM

Meyer:2022:DFA

Min:2001:PCO

Mokbel:2011:ASR

[MKW11] Mohammed F. Mokbel,

[MLC04]

[Mitra:2014:AAP]

[MLAV10]

[Marowka:2004:OOA]

[MLGW18]

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2001:TSH

Michailidis:2002:PSL

Michailidis:2003:PEL

Marathe:2007:SCC

Jaydeep Marathe and Frank Mueller. Source-code-correlated cache coherence characterization of OpenMP

Vladimir Mironov, Alexander Moskovsky, Michael

REFERENCES

REFERENCES

Mena:2020:GAS

Meyer:2021:IBH

Mo:1996:IOP

J. Mo, F. Romelfanger, R. J. Hanisch, D. Redding, S. Sirlin, and A. Boden. Implementation of an optical prescription retrieval code using PVM (parallel virtual machine) in a mixed architec-

Martins:2012:PDC

Meister:2017:PME

Mininni:2011:HMO

Mazzocca:2000:TPP

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

Mierendorf:1999:PMB

H. Mierendorff and H. Schwamborn. Performance modeling based on PVM. In Dongarra et al. [DLM99], pages 75–82. ISBN 3-540-66549-8
REFERENCES

383

Molnár:2010:APM

Macías:2001:PPA

Martorell:2005:BGP

REFERENCES

[BMJ+06] Bernd Mohr, Jesper Larsson Träff, Joachim Worringer,
References

Müller:2001:SSO

Müller:2002:SMB

Müller:2003:OCB

Malakar:2017:DMO

Mantas:2020:HOC

José M. Mantas and Francesco Vecil. Hybrid OpenMP-CUDA parallel implementation of a deterministic solver for ultrashort DG-MOSFETs. The Interna-
REFERENCES

REFERENCES

Manegold:1997:QBM

Morton:1995:LLP

Maleki:2016:HOT

Mercan:2019:CCH

Ma:2021:CSB

Maly:1993:DCP

Mu:2020:OOB
Jiadong Mu, Wei Zhang, Hao Liang, and Sharad Sinha. Optimizing OpenCL-based CNN design on FPGA with comprehensive design space exploration and collaborative performance modeling. ACM Transactions on Reconfigurable Technol-
Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

Nagle:2005:BRM

Nicolescu:1999:PWA

Nakajima:2003:PIS

REFERENCES

[NB96] C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ?? LCCN ???

Nguyen:2012:BTM

Nguyen:2017:ATM

Nobari:2012:SPM

Neophytou:1998:NDJ

Neophytou:2001:NDW

Nelson:1993:PPP

Neugebauer:2017:PAR

[NEM17] Olaf Neugebauer, Michael Engel, and Peter Marwedel. A parallelization approach

REFERENCES

Nguyen:2008:GG
Hubert Nguyen, editor.

Nguyen:1995:SPI

Norden:2002:OVM

Nakano:2002:SCG
Nakano:2003:SCG

Nitsche:2000:TCM

Norden:2007:DDM

Nadeau:1995:SVR

Kengo Nakajima and Hiroshi Okuda. Parallel iterative solvers for unstructured grids using a directive/MPI hybrid programming model

Nikolopoulos:2000:TRD

Nikolopoulos:2000:DDN

Nikolopoulos:2000:LTD

Notz:2012:GBS

Naranjo:2020:ASC

Nagaraj:1991:MHL

Naumenko:2016:ACT

Nadal:2020:NSG

Nascimento:2007:DDS

Nadal-Serrano:2016:PSC
Jose M. Nadal-Serrano and Marisa Lopez-Vallejo. A performance study of CUDA UVM versus manual optimizations in a real-world setup: Application to a Monte Carlo wave-particle event-based interaction model. *IEEE Transactions on Parallel and
REFERENCES

Nukada:2012:SMG

NSS12

Nandivada:2013:TFO

Nogueira:2016:BBW

Norcen:2005:HPJ

Nitsche:1998:FMP

Nguyen:2021:EMA

Ng:2012:STT

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Felicja Okulicka-Dluzewska. Parallelization of finite element package by MPI library. *Lecture Notes in Computer Science*, 2131:
REFERENCES

Hong Ong and Paul A. Farrell. Performance comparison of LAM/MPI, MPICH, and MVICH on a Linux cluster connected by a Gigabit Ethernet network. In USENIX [USE00], page ??

<references>

</references>
REFERENCES

REFERENCES

ODowd:2006:WGM

[OPJ+19] Olivier:2012:OTS

[OPW+12] Oh:2019:HPT
Oliveira:2012:CCO

Overeinder:1997:BCD

Ostrand:1994:PIS

Obrecht:2015:PEO

Otto:1993:PAC

Otto:1994:PVM

Otto:1992:MAP

S. W. Otto and M. Wolfe. The MetaMP approach to

REFERENCES

[Par93] Parsons:1993:EDC

[Patterson:1993:PPE]

[PBG+95] Pingali:1995:LCP
REFERENCES

[PD98] Agostino Poggi and Giulio Destri. Using PVM to develop a distributed object-

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1996:RPP

Pernice:1997:BRM

Pereira:1999:PBI

Perepu:2021:OIP

Pavan Kumar Perepu. OpenMP implementation of paral-

Matt Pharr and Randima Fernando, editors. *GPU gems 2: programming techniques for high-performance graphics and general-purpose computation*, volume 2 of *GPU gems*. Addison-Wes-
REFERENCES

Piernas:1997:APM

Prabhu:2018:DRC

Prabhakar:2002:PCB

Papakonstantinou:2013:ECC Alexendros Papakonstanti-
nou, Karthik Gururaj,
John A. Stratton, Deming
Chen, Jason Cong, and Wen-
Mei W. Hwu. Efficient com-
ilation of CUDA kernels for
high-performance comput-
ing on FPGAs. ACM Trans-
actions on Embedded Com-
puting Systems, 13(2):25:1–
25:??, September 2013. CO-
DEN ???. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

Pan:2010:CPS

Heidi Pan, Benjamin Hind-
man, and Krste Asanović.
Composing parallel soft-
ware efficiently with Litho.
ACM SIGPLAN Notices,
CODEN SINODQ, ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

Pennycook:2011:PAH

S. J. Pennycook, S. D. Ham-
mond, S. A. Jarvis, and G. R.
Mudalige. Performance anal-
ysis of a hybrid MPI/CUDA imple-
mentation of the NASLU bench-
mark. ACM SIGMETRICS
Performance Evaluation Re-
view, 38(4):23–29, March
2011. CODEN ???. ISSN
0163-5999 (print), 1557-9484
(electronic).

Protze:2022:MDT

Joachim Protze, Marc-
André Hermanns, Matthias S.

Müller, Van Man Nguyen,
Julien Jaeger, Emmanuelle
Saillard, Patrick Carribault,
and Denis Barthou. MPI de-
tach — towards automatic
asynchronous local comple-
tion. Parallel Comput-
ing, 109(??):??, March 2022.
CODEN PACOEJ. ISSN
0167-8191 (print), 1872-7336
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167819121001022

Power:2015:GGH

Jason Power, Joel Hestness,
Marc S. Orr, Mark D. Hill,
and David A. Wood. gem5-
gpu: A heterogeneous CPU–
GPU simulator. IEEE Com-
puter Architecture Letters,
14(1):34–36, January/June
2015. CODEN ???. ISSN
1556-6056 (print), 1556-6064
(electronic).

Pennycook:2013:IPP

S. J. Pennycook, S. D. Ham-
mond, S. A. Wright, J. A.
Herdman, I. Miller, and
S. A. Jarvis. An investiga-
tion of the performance porta-
bility of OpenCL. Journal of
Parallel and Distri-
buted Computing, 73(11):
CODEN JPDCER. ISSN
0743-7315 (print), 1096-0848
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0743731512001669

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

[PKYW95] U. Periyathamby, B. C. Khoo, K. S. Yeo, and Q. X. Wang. A numerical simula-

tion of the growth and collapse of vapour cavity near a free surface on distributed computing through PVM. In Bilger [Bil95], pages 815–818. ISBN 0-86934-034-4. LCCN ????

Pruyne:1996:ICP

Plachetka:2002:QTS

Park:2004:DID

V. P. Plagianakos, N. K. Nousis, and M. N. Vrahatis. Locating and computing in parallel all the sim-

Papakostas:1996:PSP

Papakostas:1996:PPP

Papakostas:1996:UPI

Pedicini:2007:PPE

Pinho:2018:CTM

Pierce:1994:PIN

Pierce:1994:PSH

REFERENCES

Pozo:1994:FTE

Priimak:2014:FDN

Proficz:2021:AGA

Pino:2021:RTI

Pena:2014:CEC

Prades:2016:CAX

[Javier Prades, Carlos Reaño, and Federico Silla. CUDA acceleration for Xen virtual machines in InfiniBand clusters with rCUDA. ACM SIGPLAN Notices, 51(8):}
REFERENCES

35:1–35:??, August 2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[PS00b] Nirved Pandey and G. K.
REFERENCES

Park:2019:DBO

Prades:2019:GJM

Pehrson:1994:IPP

Petrovic:2020:BSH

Perez:2019:ATO

Peters:2011:FPC

Patrick:2008:CEO

Preissl:2010:TMS

Prieto:1999:PRM

Peng:2014:BAH

Plunkett:2001:AMD

Prost:2001:THP

Peraza:2016:PGQ

Pierro:2018:SFP

Phan-Thien:1994:CDL

Prylli:1999:DHP

Puskas:1995:LBW

Peinado:1997:HPC

Park:2001:PPE

Pahl:1995:CCB

Preissl:2012:CSS

Pang:2016:MKR

Pirkelbauer:2019:BTF

REFERENCES

CODEN ?? ?? ISSN 1544-3566 (print), 1544-3973 (electronic).

REFERENCES

Quoy:2000:PNN

Qaddouri:1995:MFS

Qaddouri:1996:CPC

Qu:1995:FAS

Quinn:2003:PPC

Russell:1992:CMW

References

Jarno Rantakokko. A dynamic MPI-OpenMP model for structured adaptive mesh

F. Reale, F. Bocchino, and S. Sciortino. Parallel computing on Unix workstation

[Ree96] A. Reeves, editor. Proceedings of the 1996 International Conference on Challenges for Parallel Process-
REFERENCES

[434]

Reinefeld:2001:CDI

[Reu01]

[Reu03]

[RFH96]

[RFH+95]

[RF+00]

[RFH+96]

Roy:2000:MGQ

[RFH+95]

[RFH+96]

Reyners:1995:OOO

Reussner:2001:SSK

Rasch:2018:MDH

Rucci:2018:OOS

Rodrigues:2013:MAA

Rico-Gallego:2015:ILM

Rico-Gallego:2016:EIL
REFERENCES

Christopher Rodrigues, Thomas Jablin, Abdul Dakkak, and Wen-Mei Hwu. Triolet: a programming system that unifies algorithmic skeleton interfaces for high-performance cluster comput-

Rolf Rabenseifner and Alice E. Koniges. Effective communication and file-I/O bandwidth benchmarks. *Lecture Notes in Computer*
Ragan-Kelley:2013:HLC

Reyes:2013:PEO

Rungsawang:2001:LCP

Rubio-Largo:2012:UMO

Roe:1999:PMI

REFERENCES

439

Rietmann:2012:FAS

Ramesh:2018:MPE

Rodrigues:2013:POM

Rohrl:2000:PPS

Rolfe:1994:PAP

Rolfe:2008:PFO

Rolfe:2008:SMA

Rosen:2013:PVA

Roth:2019:AOC

Ramon:1995:PKV

Rodriguez:2008:FTS

Reano:2019:APP

Rabaea:2000:EPM

Rageb:2001:CEM

Rauber:2002:LSH

Roda:1997:PPI

Roig:2001:EMM

Robinson:1996:TMI

Russ:1999:UHR

[RRG+99] Samuel H. Russ, Jonathan Robinson, Matt Gleeson,
REFERENCES

Carlos Reaño and Federico Silla. Redesigning the rCUDA communication

Raskovalov:2022:AMD

Rambu:1995:DSS

Reano:2015:IUE

Ruhela:2019:EDM

Reussner:1998:SDA

Reussner:2002:SCB
Ralf Reussner, Peter Sanders, and Jesper Larsson Träff. SKaMPI: a comprehensive benchmark for public benchmarking of MPI. *Science...*
Rozman:2006:CPL

Roberti:2005:PIL

Reussner:2000:BMD

Rungsawang:1999:PDT

Rundo:2021:CPM

REFERENCES

REFERENCES

Saphir:1997:SMI

Soldado:2016:ECM

Sahimi:2001:AAS

Mohd Salleh Sahimi, Norma Alias, and Elankovan Sundararajan. The AGEB algorithm for solving the heat equation in three space dimensions and its parallelization using PVM. Lecture Notes in Computer Science, 2073:918–??, 2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http:
REFERENCES

//link.springer-ny.com/
link/service/series/0558/1
bibs/2073/20730918.htm;
http://link.springer-
ny.com/link/service/series/1
0558/papers/2073/20730918.
pdf.

Schuster:1995:CSM

G. Schuster and F. Breit-
enecker. Coupling simula-
tors with the model intercon-
nection concept and PVM.
In Breitenecker and Husins-
ky [BH95], pages 321–326.
ISBN 0-444-82241-0. LCCN

Smith:2001:DMM

Lorna Smith and Mark
Bull. Development of mixed
mode MPI/OpenMP applica-
tions. Scientific Program-
ing, 9(2–3):83–98, Spring–
Summer 2001. CODEN
SCIPEV. ISSN 1058-9244
(print), 1875-919X (elec-
tronic). URL http://
iospress.metapress.com/
app/home/contribution.
asp%3Fwasp=7pab6ggbaf8vzg991rwy%26referrer=parent%26backto=
issue%26C3%2C1%38journal%2C1%2C9%3Blinkingpublicationsresults%2C1.

Spiliotis:2020:PII

Iraklis M. Spiliotis, Michael P.
Bekakos, and Yiannis S.
Boutalis. Parallel implemen-
tation of the Image Block Representation
using OpenMP. Journal of Parallel and Dis-
tributed Computing, 137
(?):134–147, March 2020.
CODEN JPDCER. ISSN
0743-7315 (print), 1096-0848
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0743731519307622

Seyfarth:1994:GEE

B. R. Seyfarth, J. L. Bick-
ham, and M. R. Fernan-
dez. Glenda: an environ-
ment for easy parallel pro-
gramming. In Pierce and
Regnier [PR94b], pages 637–
641. ISBN 0-8186-5680-
8, 0-8186-5681-6. LCCN
QA76.58.S32 1994. IEEE
catalog no. 94TH0637-9.

Schulz:2004:IES

Martin Schulz, Greg Bron-
evetsky, Rohit Fernan-
des, Daniel Marques, Kes-
hav Pingali, and Paul
Stodghill. Implementation
and evaluation of a scalable
application-level check-
point-recovery scheme for
MPI programs. In ACM
[ACM04], page 38. ISBN 0-
7695-2153-3. LCCN ????

Selikhov:2002:MCC

Anton Selikhov, George
Bosilca, Cécile Germain,
Gilles Fedak, and Franck
Cappello. MPICH-CM: a
communication library de-
sign for a P2P MPI imple-
mentation. Lecture Notes
in Computer Science, 2474:
323–??, 2002. CODEN
REFERENCES

Schindewolf;2012:WSA

Skjellum;2020:FSI

Sojoodi;2021:IGG

Sani;2014:PDF

Smith;1995:CRC

Smith;2004:SIP

Kevin B. Smith, Aart J. C. Bik, and Xinmin Tian. Support for the Intel(R) Pentium(R) 4 processor with hyper-threading technology in Intel(R) 8.0 compilers. Intel Technology Journal, 8(1):19–31, February 2004. ISSN
REFERENCES

Saltz:1991:MRT

Stubbs:1995:ICE

Smith:1996:UWC

Steed:1996:PPP

Sievert:2004:SMP

Shterenlikht:2019:MVF

Saillard:2014:PCS

Saltz:1991:MRT

Stubbs:1995:ICE

Smith:1996:UWC

Steed:1996:PPP

Sievert:2004:SMP

Shterenlikht:2019:MVF

Saillard:2014:PCS

[Sch96b] J. Schuele. Parallel Lanczos algorithm on a CRAY-

Schuele:1999:HAP

Schevtschenko:2001:PAS

Searles:2019:MOA

[SCJH19] Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez. MPI + OpenACC: Accelerating radiation transport mini-application, min-

Song:1997:ALL

[SCJH19] Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez. MPI + OpenACC: Accelerating radiation transport mini-application, mini-

Suppi:2000:IO

[SCJH19] Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez. MPI + OpenACC: Accelerating radiation transport mini-application, min-

Suppi:2001:PCS

[SCJH19] Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez. MPI + OpenACC: Accelerating radiation transport mini-application, min-
REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/bibs/2131/21310327.htm;

Santos:1997:ECP

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

SCRI:1992:PWC

Shi:2012:VGA

Szeberenyi:1999:SGB

SM-D:2013:BRC

Sorensen:2016:EER

REFERENCES

Skjellum:1994:WLM

Sorensen:2016:PIW

Schmitt:2017:SCP

Sandes:2010:CUG

Sistare:1999:MSP

[SDN99] Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??

Schwarzrock:2021:RN1

Sampaio:2013:DA

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Skjellum:1995:EMP

Sack:2002:FMB

Spencer:2015:DLN

Schenck:2016:EPM

Segovia:2010:PPN

Seifert:1999:ESI
REFERENCES

REFERENCES

Shen:2013:ACE

Selikhov:2005:CMB

Sharma:2012:SRP

Steuwer:2014:SHL

Sack:2015:CAM

Sunderam:1994:PCC
Schneider:2012:MAC

Solsona:2001:IEI

Saito:2003:LSP

Solsona:2000:MCM

Sun:2020:RTS

J. Sun, N. Guan, F. Li, H. Gao, C. Shi, and W. Yi. Real-time scheduling and analysis of OpenMP DAG

Sekharan:1995:LBM

Stone:2010:OPP

Sun:2021:ACW

Scherer:2000:APO

Schmidt:1994:IAP

Sitsky:1996:MLW

D. Sitsky and E. Hayashi. An MPI library which uses polling, interrupts and remote copying for the Fujitsu AP1000+. In Li et al. [LHHM96], pages 43–

REFERENCES

1058-9244 (print), 1875-919X (electronic). URL http://iospress.metapress.com/app/home/contribution.asp?ref=7pab6qgabf8v91rwy26referrer=parent%26backto=issue%2c2c11%3Bjournal%2c2c1%3Blinkingpublicationresults2c1%2c2c1.

Sato:2001:OGR

Mitsuhisa Sato, Motonari Hirano, Yoshio Tanaka, and Satoshi Sekiguchi. Om-
niRPC: a Grid RPC facility for cluster and global com-
puting in OpenMP. Lecture Notes in Computer Sci-
ence, 2104:130–??, 2001. CODEN LNCS09. ISSN
0302-9743 (print), 1611-3349 (electronic). URL http:
//link.springer-ny.com/link/service/series/0558/bibs/2104/21040130.htm;

Simmendinger:2019:ISG

Christian Simmendinger, Roman Iakymchuk, Luis Ce-
bamanos, Dana Akhmetova, Valeria Bartsch, Tiberiu Rotaru, Mirko Rahn, Er-
win Laure, and Stefano Markidis. Interoperability strategies for GASPI and
MPI in large-scale scientific applications. The International Journal of High Per-
1, 2019. CODEN IH-
PCFL. ISSN 1094-3420 (print), 1741-2846 (elec-
tronic). URL https:/

Siegel:1992:FFS

H. J. Siegel, editor. Frontiers '92, the Fourth Symposium on the Frontiers of Massive Parallel Computation, October
Street, Suite 300, Silver Spring, MD 20910, USA, 1992. ISBN 0-8186-2772-
7. LCCN QA76.58.S95 1992. IEEE catalog no. 92CH3185-
6.

Siegel:1992:FSF

Street, Suite 300, Silver Spring, MD 20910, USA, 1992.
catalog number 92CH3185-6.

Siegal:1994:PEI

Howard Jay Siegal, editor. Proceedings / Eighth International Parallel Processing Symposium, April 26–
29, 1994, Cancun, Mexico. IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1994.
REFERENCES

Silvester:1996:SEE

Sincovec:1993:SCP

Silla:2017:BRG

Sharma:2017:PDR

Sistare:2002:UHP

Szo:2017:PET
Szoke:2017:PET

Samadi:2014:PPB

Shen:1992:VTD

Smith:2000:DPM

Sanders:2010:CEI

Steinberger:2014:WTB

Skjellum:2004:RTM

[SKD+04] Anthony Skjellum, Arkady Kanevsky, Yoginder S. Dan-
REFERENCES

[SKS01] Skjellum:1993:SLH

[Satoh:2001:COT]

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV

Skjellum:1995:EAM

Scherer:1999:TAP
Samadi:2014:SPS

Su:2012:CPB

Sloan:2005:HPL

Squyres:1996:CBP

Shires:2002:EHM

Shires:2003:OPF

REFERENCES

[Smi93a] K. A. Smith. Multi-processor based accident

REFERENCES

3108. URL http://www3.interscience.wiley.com/cgi-bin/abstract/76000189/

Su:2006:APP

Sitsky:1996:IMU

Sunderam:2001:CAP

Snir:2018:FMT

Suciu:2010:PIN

Shekofteh:2019:MSG

Snir:1996:MCR

Snir:1998:MCR

Sintorn:2011:EAF

SousaPinto:2001:PEI

St-Onge:2019:ESS

Sidonio:1999:PBI

Stpiczynski:2011:SKB

Singh:2017:EER

Silla:2020:IPP

Satofuka:1995:PCF

N. Satofuka, Jacques Periaux, and Akin Ecer, ed-

[A] Speck:2019:APP

[Sener:1996:DPP]

[Subramoni:2012:DSI]
REFERENCES

Silva:1999:DPP

Schmidl:2012:PAT

Saldana:2010:MPM

Symeonidou:2014:DRB

Squyres:2003:CAL

Sivaraman:1995:PSP

H. Sivaraman and C. S. Raghavendra. Parallelizing sequential programs to a cluster of workstations. In Agrawal [Agr95a], pages 38–

Sivaraman:1996:AAD

Five volumes.

Simitci:1998:CLP

Szalay:2011:FCD

Speck:2012:MST

Sultana:2019:FRB

Schmidt:1994:EAO

Szymanski:1996:LCR

REFERENCES

Satarić:2016:HOM

Sotomayor:2017:ACG

Spiliotis:2021:PCD

Silva:1996:IDS

Silva:1997:IPD

Silva:1995:PCR

Schmitt:2018:RHG

Shi:2010:PAE

Stone:1994:PSO
REFERENCES

Schuchart:2021:CBC

Shelton:1994:FPS

Sen:1999:PBD

Santana:1996:PVM

Souza:1997:EPH

Stellner:1997:LBB

Smyk:2002:AMM

Adam Smyk and Marek Tudruj. Application of

Smyk:2002:OMP

ST02b

Steele:2017:UBP

ST17

Salinas:2020:FEI

STA20

Stephens:1994:PBT

R. Stephens. Parallel benchmarks on the Transtech
Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???? LCCN ????

[Str94] Dale C. Strok. In the news: Jupiter impacts: Resolution makes a big difference. supercomputer farming down under. HPF Forum welcomes comments. Smithsonian Awards honor computational scientists. low-life computer viruses. PVM developers get R&D-100 award. the eyes have it. neural nets detect breast cancer. better cars through cooperation. parallel version of global climate model. Lockheed to run Idaho National

Strietzel:1996:PTS

Strietzel:1997:PTS

Strzodka:2012:DLO

Soch:1996:PCG

Soch:1997:PGP

Shen:1999:ATL

Stone:1996:RNF

Sumimoto:2012:MCL

Shinji Sumimoto. The MPI Communication Library for the K computer: Its design
REFERENCES

Sunderam:1990:PFPa

V. S. Sunderam. PVM: a framework for parallel distributed computing. Technical Report ORNL/TM-11375, Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA, February 1990. See also [Sun90b].

Sunderam:1990:PFPb

Sunderam:1992:CCP

Sunderam:1993:PCC

V. Sunderam. The PVM concurrent computing system. In Anonymous [Ano93h], pages 20–84. ISBN ???. LCCN ???.

Sunderam:1994:GPP

V. Sunderam. General purpose parallel computing with PVM. In Anonymous [Ano94f], pages 185–198. ISBN ???. LCCN ???.

Sunderam:1994:MSH

Sunderam:1995:RIH

V. Sunderam. Recent initiatives in heterogeneous parallel computing. In Gray and Naghdy [GN95], pages 1–16. ISBN ???. LCCN ???.

Sunderam:1996:PSS

Suresh:1995:IOP

H. Suresh. Implementation of an optimal par-

[Suresh:1995:PIQ]

[Sut96]

[SvL99]
Steve Sistare, Rolf van de Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

[SvL99]
Steve Sistare, Rolf van de Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

[SVC+11]

[SvL99]
Steve Sistare, Rolf van de Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??
REFERENCES

Shan:2012:PEH

Shee:1994:DMA

Sotiriou-Xanthopoulos:2018:OBV

Stathopoulos:1995:DLB

Sydow:1994:PSA

Stathopoulos:1996:PIM
REFERENCES

Song:2019:PGA

Schneider:2009:CPM

Stankovic:1999:NVJ

Siegel:2011:AFV

Simunovic:1995:MIP

Simunovic:1995:MIP

Thompson:2014:CIC

REFERENCES

3349 (electronic). LCCN ???? URL http://www.springerlink.com/content/978-3-642-33518-1.

Tian:2002:IOC

Tahan:2012:ITC

Thomas:1994:PSA

Tzannes:2010:LBS

Tagliavini:2018:UFG

Thompson:2015:PCI
Tourino:1998:PBL

Tourino:1999:MMC

Thiruvathukal:2000:JNW

Tromeur-Dervout:2011:PCF

Totoni:2013:EFE

REFERENCES

Tuncer:2009:PCF

Tian:2019:GAB

Thakur:2002:ONA

Tsiolakis:2020:NPG

Vasileios Tsiolakis, Matteo Giacomini, Ruben Sevilla, Carsten Othmer, and Antonio Huerta. Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in OpenFOAM. *Computer Physics Communications*, 249(??):Article 107013, April
REFERENCES

Thakur:2005:OSO

Traff:2010:SCM

Traff:2020:SIS

Tian:2005:CEN

Xinmin Tian, Jay P. Hoeflinger, Grant Haab, Yen-Kuang Chen, Milind Girkar, and Sanjiv Shah. A compiler for exploiting nested parallelism in OpenMP pro-

Thakur:1998:CUM

Teijeiro:2019:OPS

Trefftz:1994:DPE

Traf:2021:MCC

Tran:2000:PPM

Thomsen:1994:RTS

Throop:1999:SOS

Traeff:1999:FFE

J. L. Traeff, R. Hempel, H. Ritzdoﬁf, and F. Zimmermann. Flattening on the ﬂy: Efﬁcient handling

Takizawa:2015:ODT

Tabakin:2009:QPE

Thoman:2012:AOL

Tennyson:2015:MOI

P. Gerald Tennyson, G. M. Karthik, and G. Phanikumar.

E. Tiotto, B. Mahjour, W. Tsang, X. Xue, T. Islam, and W. Chen. OpenMP 4.5 compiler optimization for GPU offloading. *IBM Jour-
REFERENCES

inal of Research and Development, 64(3/4):14:1–14:11,
May/July 2020. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

[Theodoropoulos:1996:ESP]
synchronization PVM mechanisms. In Bode et al. [BDLS96], pages 315–??
ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN
QA76.58.E975 1996.

[Taylor:2017:A00]
OpenCL programs on embedded heterogeneous systems. ACM SIGPLAN
Notices, 52(4):11–20, May 2017. CODEN SINODQ. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160 (electronic).

[Takahashi:1999:IEM]
T. Takahashi, F. O’Carroll, H. Tezuka, and A. Hori. Implementation and evaluation
of MPI on an SMP cluster. Lecture Notes in Computer Science, 1586:1178–??,
1999. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Toussaint:1996:AES]
Marcel Toussaint, editor. Ada in Europe: Second International Eurospace-Ada-
Europe Symposium, Frankfurt/Main, Germany, October 2–6, 1995: proceedings,
number 1031 in Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1996.
ISBN 3-540-60757-9. ISSN
1532-0626 (print), 1532-0634 (electronic).

Fred Thomas Tracy, Thomas C. Oppe, and Maureen K. Corcoran. A comparison of
MPI and co-array FORTRAN for large finite element variably saturated flow
www.scpe.org/index.php/
scpe/article/view/1468.

T. Takafuji, Koji Nakano, Yasuaki Ito, and Jacir Bordim. C2CU: a
CUDA-C program generator for bulk execution of a
sequential algorithm. Concurrency and Computation:
Practice and Experience, 29 (17), September 10, 2017.
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-0634 (electronic).

Fred Thomas Tracy, Thomas C. Oppe, and Maureen K. Corcoran. A comparison of
MPI and co-array FORTRAN for large finite element variably saturated flow
www.scpe.org/index.php/
scpe/article/view/1468.

Marcel Toussaint, editor. Ada in Europe: Second International Eurospace-Ada-
Europe Symposium, Frankfurt/Main, Germany, October 2–6, 1995: proceedings,
number 1031 in Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1996.
ISBN 3-540-60757-9. ISSN
REFERENCES

Tourancheau:2000:HSN

Thebault:2015:SEI

Tang:2019:QDL

Turchetto:2020:GDS

Tinetti:2001:HNW
Fernando Tinetti, Antonio Quijano, Armando De Giusti, and Emilio Luque. Heterogeneous networks of workstations and the parallel matrix multiplication.
REFERENCES

References

Terboven:2012:AOT

Teixido:2014:MBI

Tanaka:2021:NRP

Ten:1995:TPE

Topol:1998:PTV

Brad Topol, John T. Stasko, and Vaidy Sunderam. PVaniM.
REFERENCES

Tatebe:2000:IOO

Tavora:2000:DCM

Tsunekawa:1995:EIE

Tsujita:2007:RMP

Tsutsui:2012:AMG

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>
REFERENCES

[Uhl94] A. Uhl. Parallel compact coding of satellite images with wavelet packets using PVM. In Kumar [Kum94], pages 382–387. ISBN 0-07-
REFERENCES

[Uhl:1995:AWA]

[Uhl:1995:PCC]

[Uhl:1995:VPW]

[Uminski:1997:EEP]

[UUSENIX:1994:PFU]

USENIX:1994:PFU
REFERENCES

REFERENCES

REFERENCES

ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

[VGS14] Vikas, Nasser Giacaman,
and Oliver Sinnen. Multipro-
processing with GUI-awareness
using OpenMP-like direc-
tives in Java. *Parallel Com-
puting*, 40(2):69–89, Febru-
ary 2014. CODEN PA-
COEJ. ISSN 0167-8191
(print), 1872-7336 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167819113001439

vonHanxleden:1994:VDF

R. von Hanxleden, K. Kennedy,
and J. Soltz. Value-
based distributions in For-
tran D. In Gentzsch
and Harms [GH94], pages
434–440. ISBN 0-387-
57981-8 (New York), 3-540-
57981-8 (Berlin). LCCN
QA76.88.I57 1994. DM96.00.
Two volumes.

Viswanathan:1995:PCM

Kishore Viswanathan. A
parallel client-server model
for distributed computing.
M.s. thesis, Department
of Computer Science, Mis-
sissippi State University,
Starkville, MS, USA, 1995.
vii + 79 pp.

Valero-Lara:2020:SFA

Pedro Valero-Lara, Sandra
Catalán, Xavier Martorell,
Tetsuzo Usui, and Jesús
Labarta. sLASs: a fully
automatic auto-tuned lin-
ear algebra library based on
OpenMP extensions imple-
mented in OmpSs (LASs li-
brary). *Journal of Parallel
and Distributed Computing*,
CODEN JPDCER. ISSN
0743-7315 (print), 1096-0848
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0743731519303417

Valero-Lara:2018:CCC

Pedro Valero-Lara, Ivan
Martínez-Pérez, Raül Sir-
vent, Xavier Martorell, and
Antonio J. Peña. cuThomas-
Batch and cuThomasV-
Batch, CUDA routines to
compute batch of tridiag-
onal systems on NVIDIA
GPUs. *Concurrency and
Computation: Practice and
Experience*, 30(24):e4909:1–
e4909:??, December 25,
2018. CODEN CCPEBO.
ISSN 1532-0626 (print),
1532-0634 (electronic).

Valencia:2008:PPR

David Valencia, Alexey Las-
tovetskyy, Maureen O’Flynn,
Antonio Plaza, and Javier
Plaza. Parallel processing of
remotely sensed hyperspectral images on hetero-
genous networks of work-
stations using HeteroMPI.
The *International Journal
of High Performance Com-
puting Applications*, 22(4):
CODEN IHPCFL. ISSN
1094-3420 (print), 1741-
2846 (electronic). URL
http://hpc.sagepub.com/

VLO+08

Pedro Valero-Lara, Ivan
Martínez-Pérez, Raül Sir-
vent, Xavier Martorell, and
Antonio J. Peña. cuThomas-
Batch and cuThomasV-
Batch, CUDA routines to
compute batch of tridiag-
onal systems on NVIDIA
GPUs. *Concurrency and
Computation: Practice and
Experience*, 30(24):e4909:1–
e4909:??, December 25,
2018. CODEN CCPEBO.
ISSN 1532-0626 (print),
1532-0634 (electronic).

Valencia:2008:PPR

David Valencia, Alexey Las-
tovetskyy, Maureen O’Flynn,
Antonio Plaza, and Javier
Plaza. Parallel processing of
remotely sensed hyperspectral images on hetero-
genous networks of work-
stations using HeteroMPI.
The *International Journal
of High Performance Com-
puting Applications*, 22(4):
CODEN IHPCFL. ISSN
1094-3420 (print), 1741-
2846 (electronic). URL
http://hpc.sagepub.com/
Valero-Lara:2019:MTS

Varadarajan:1994:FDT

Vincent:1995:HPP

Vogel:2013:BWC

Volkert:1993:PCS

Voss:2003:OSM

REFERENCES

[VS00] Brian Van Voorst and Steven

[Vaughan:1994:MPM]

[Vaidya:2013:SDO]

[Vlassov:1997:SSM]

[Vu:2019:FMT]

[Vandoni:1995:CSC]

REFERENCES

515

9083-069-7. CERN report 95-01.

Vo:2009:FVP

Verkerk:1992:PIC

Vetter:2002:EPE

Verschelde:2015:PHC

Vasilache:2019:NAL

Wong:1999:BMM

Walker:1994:DSM

[Wal94a] David W. Walker. The design of a standard mes-

Walker:2001:SEC

Wallcraft:2002:CCA

Wang:1997:TPD

Wang:2002:OPG

Wasniowski:1995:NAP

White:1995:PNP

Wasniewski:1996:APC

Jerzy Wasniewski, editor. Applied parallel computing:

Wolf:1996:CFS

Wickerson:2015:RSP

Walters:2009:RBF

Wang:2015:AST

Wolf:1997:CMP

Wolf:1997:MPM

Wickerson:2017:ACM

Walters:2009:RBF

Wang:2015:AST

Wang:2007:EAP
Perry H. Wang, Jamison D. Collins, Gautham N.

White:1994:VVC

White:2004:CMM

Waidyasooriya:2019:OBD

Wilkinson:1993:IFT

Wilhelms:1994:DAL

Wismuller:1996:SBV

Wismuller:1996:SBV

R. Wismuller. State based visualization of PVM applications. In Bode et al. [BDLS96]. ISBN 3-540-61779-5. ISSN 0302-9743
Wismueller:1997:DMP

Wismueller:1998:LMS

Wismueller:2001:UMT

Witchel:2016:PPW

Wei:2012:OLL

Wang:2019:MEM

Wu:2014:OFB

Wang:2021:PBS

Wegiel:2008:MCVc

White:2020:OPP

Wittenbrink:2011:FGG

T. Wagner, C. Kuebbeck, and C. Schittko. Genetic selection and generation of textural features
REFERENCES

with PVM. In Bode et al. [BDLS96], pages 305–?? ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA76.58.E975 1996.

[Lehman:1994:IZP]
Lehman:1994:IZP

[Wismueller:1996:TSI]
Wismueller:1996:TSI

[Wismueller:1996:TSI]
Wismueller:1996:TSI

[Wu:2007:IFR]
Wu:2007:IFR

[Wolfe:2018:ODM]
Wolfe:2018:ODM

[WNL03]
WNL03

[Weatherly:2006:DMS]
Weatherly:2006:DMS

[WLNL06] D. Brent Weatherly, David K.
REFERENCES

Willcock:2005:UMC

Wu:2012:UHM

Weng:2020:CMS

Wolf:2001:APA

Wolfe:2018:MLS

Noah Wolfe, Misbah Mubarak, Christopher D. Carothers, Robert B. Ross, and Philip H. Carns. Modeling large-scale slim fly networks using parallel discrete-event simulation. *ACM Transactions on Modeling and
Wende:2019:OVT

Wu:2014:MAG

Winkler:2017:GSM

Wendykier:2010:PCH

Walker:1995:RBD

Walker:1996:RBC

REFERENCES

interScience.wiley.com/cgi-bin/abstract?ID=23305

Wang:2020:EPE

Wu:2001:PCS

Worsch:2002:BCM

Winkler:2019:GSM

Wang:2016:LLA

Wisniewski:1999:SME

Len Wisniewski, Brad Smisloff, and Nils Nieuwejaar. Sun MPI I/O: Efficient I/O for parallel applications. In ACM [ACM99], page ??.
West:1995:AVV

Wu:2011:PCH

Wu:2012:PCH

Wu:2013:PMH

Wang:2014:IPD

Worringen:2003:FPN

Wang:2019:FBA

Waidyasooriya:2017:OBF

Wu:1999:MCC

Wong:2011:EMS

Wilson:1996:SMS

Wang:2021:PBD

Shao-Chung Wang, Lin-Ya Yu, Li-An Her, Yuan-Shin Hwang, and Jenq-Kuen Lee. Pointer-based divergence analysis for OpenCL

Wang:2008:PIM

Xu:1995:IPP

Xu:1996:MCO

Xue:2009:MSR

Xue:2021:IFG

Xue:2021:MGP

Xiong:1996:BID

Jianxin Xiong, Dingxing Wang, Weimin Zheng, and Meiming Shen. BUSTER: an integrated debugger

[YBZL03] Lexing Ying, George Biros, Denis Zorin, and Harper Ying:2003:NPK

Yalamanchilli:1998:CPJ

Yviquel:2018:CPU

Yang:2014:HPD

Yu:2013:AGA

Yoon:1996:WBP

Yang:2014:IMP

Yetongnon:1996:PII

Yero:2001:JOO

Yang:2011:HCO

Yuasa:1996:RPG

YarKhan:2017:PPN

Asim YarKhan, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra. Porting the PLASMA numerical library to the OpenMP standard. International Jour-

Erdal Yilmaz, Eray Molla, Cansin Yildiz, and Veysi Isler. Realistic modeling of spectator behavior for soccer videogames...

Yang:2021:SSG

Yi:1994:PID

REFERENCES

Yang:2011:PBP

Younge:2015:SHP

Yonezawa:1995:IED

You:2015:VFO

Yong:1995:SOM

Yu:2012:SCC

Yang:2014:CNR

You:1995:PIM

Zounmevo:2014:FRC

Zaza:2016:CBP

Zahavi:2012:FTR

Zhong:2007:PPS

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

Zemla:1994:WTC

Zhou:1995:FMP

Zhou:1995:RMR

Zhou:1996:FMP

Zhou:1998:LST

Zielinski:1994:PPS

Zu:1994:OSM

Zhao:2022:SGM

Zhou:2020:CHM

Zheng:2006:PEA

Zhou:2021:HPG

Zoraja:1999:SPD

Zhang:2018:IRP

Zarebavani:2020:CCB

Zounmevo:2014:ESC

Zaky:1996:PDT

Amr Zaky and Ted Lewis, editors. Program development tools and environments for parallel and distributed systems: Session; 28th Hawaii international conference on system sciences — 1995, volume 2 of Kluwer International Se-

Zha:2017:IFM

Zha:2018:LSM

Zaki:1999:TSP

Zhou:2012:DFD

Zhang:2017:DLN

REFERENCES

Zhang:2020:CTE

Zhai:2011:CVH

Zollweg:1993:OP

Zarrelli:2006:EPE

Zambonelli:1996:EPP

Zheng:2011:GLO

Zhao:2012:ASO

[ZSG12] Xin Zhao, Gopalakrishnan Santhanaraman, and William Gropp. Adaptive strategy for one-sided communication in MPICH2. *Lecture Notes in Computer*

Zijie Zhu, Yongxian Wang, and Xinghua Cheng. Parallel optimization of three-dimensional wedge-shaped...
REFERENCES

Zareski:1995:EPG

Zareski:1995:EPG

ZWHS95

Zhang:2013:MPI

Zhu:2017:OAP

Zhang:2021:IRP

[Jingrong Zhang, Zhihao Wang, Zhiyong Liu, and Fa Zhang. Improve the resolution and parallel performance of the three-dimensional refine algorithm in RELION using CUDA and MPI. *IEEE/ACM Transactions on Computation-
REFERENCES

Zhu:1995:RTC

Zhang:2005:ULC

Zhuang:1995:PRS

Zeyao:2004:AMI

Zheng:2014:IMS

Zhu:2015:PML

[ZWZ+95]
Zhu:1995:RTC

[ZZG+14]
Zhang:2005:ULC

[ZZZ+15]
Zhu:2015:PML
(print), 1532-0634 (electronic).