A Bibliography of Publications about \textit{PVM (Parallel Virtual Machine)} and \textit{MPI (Message Passing Interface)}

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 April 2021
Version 3.249

\textbf{Title word cross-reference}

+ [BDV03, Cha02, HDB13, Lee12]. \textbf{0}
[ICC02]. \textbf{1}
[ICC02, LRQ01, VDL15]. \textbf{19.95}
[Ano95b]. \textbf{2}
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19]. \textbf{24.95}
[Ano95c]. \textbf{27.50}
[Ano96a]. \textbf{3}
[And98, BCL00, BAS13, CP15, DYN06, EFR05, GCN13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SC19, TPD15, WR01, YSL12]. \textbf{35}
[Ano00a, Ano00b]. \textbf{35.00}
[Ano99a, Ano99c, Ano99b, Ano99d]. \textbf{35}
[KA13]. \textbf{860}
[Ano00a, Ano00b]. \textbf{3}
[PBC01].
A [ARYT17]. \textbf{\alpha}
[JMvG+17]. \textbf{\alpha} = \textbf{b}
[BG95]. \textbf{D}
[UZC12]. \textbf{H^2/H^\infty}
[GWC95]. \textbf{hp}
[BCM+16]. \textbf{k}
[She95, TK16]. \leftrightarrow [GRW19].
\textbf{M^3} [JSH05]. \textbf{PVM} [Wil94]. \textbf{N}
[IHM05, Per99, Rol08b, SP99, SRK12]. \textbf{P_N}
[OGM19]. \textbf{P_{N-2}} [OGM19]. \textbf{SU(3)} [BW12].
\tau [RGDM15, RGDM16]. \textbf{XY} [KO14].
* [MMAH20].
\textbf{-based} [Rót19]. \textbf{-body}
[IHM05, Per99, SP99, SRK12]. \textbf{-D}
[DYN06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. \textbf{-Dimensional} [LRQ01].
\textbf{-Lop} [RGDM15, RGDM16]. \textbf{-Means}
[TK16]. \textbf{-Queens} [Rol08b]. \textbf{-set} [She95].
\textbf{-stable} [JMvG+17].
. [Wil94].
\textbf{/Fortran} [TBG02]. \textbf{/many} [KSG13].
\textbf{/MPI} [BKK20]. \textbf{/OpenMP} [VDL15].
00 [RV00].

1 [HMKV94, SOHL+98]. 1/Pascal
[GDS+20]. 10-Gigabit [HeF05]. 100 [Str94].
1007 [AEW+20]. 100k [SC19]. 1012
[CWL+20]. 10th [DLO03, IEE96c]. '11
[ACM11]. 11th [IEE97b, KKD04]. '12
[Hol12]. 128-processor [LL01].

13th [Ano95d, SL94a]. 14th
[ChD07, RV00, ChD09]. 15-18
[SL94a]. 15th [IEE95i, LKD08]. 16th [RWD09].
17th [KGRD10, MC94]. 18-21
[DKD07]. 18th [CDND11].

1990 [ACM90]. 1991
[DE91, EJL92, IEE91]. 1992
[KG93, R+92, VW92]. 1993
[Ano94c, GGK+93, IEE93a, IEE93c, JPT94, MMH93]. 1994
[Ano94a, Ano94e, DSZ94, DT94, GN95, GT94, HK95, IEE94h, PSB+94, SPE95, SPH95, VV95]. 1995
[ACM95a, ACM96a, AGH+95, BH95, GJT95, Ham95a, IEE95b, IEE95a, IEE95d, IEE95h, IEE95i, JB96, NM95, Nar95, Ten95, UCM95, ZL96]. 1996
[ACM96b, Abr96, Boi97, ERS96, IEE96f, IEE96e, IEE96e, Ree96]. 1997
[ACM98b]. 1999 [ACM99].

19th
[TBD12, IEE05]. 1st [Abr96, BR95a, CGB+10, Kum94, Van95, Fer92].

2 [AKL99, BCAD06, BHS+02, BMPZ94a, CwCW+11, CD96, DSPD08, FST98a, FST98b, GFD03, GGHL+96, GT91, GHL+98, GLT99, GLT99, GLT99a, HGMW12, Jou96, LC97b, LSK04, MS02a, MK04, PS00a, SS99, SSL97, TRH00, VAT95, b701a]. 2-D [BMPZ94a]. 2.0
[BO01, LPD+11, LW97, Mat00b, NSM12].

2.2 [HRR+11]. 2.X [KS96].

2000 [ACM00, CLBS17, LL01, LSK04, NU05, RV00, ZShn01]. 2001 [ACM01, Oid02]. 2003 [ACM03, AS14, Don06, OL05]. 2004 [ACM04]. 2005 [ACM05, DLO07].

[GT19]. 21st [IEE95a]. 25nm [Ano03]. 26th [Ano93a, SL94a]. 27th [Ano94h]. 28th
[SL96]. 2D [TPV20, ZZZ+15]. 2D-DWT
[ZZZ+15]. 2nd
[FK95, IEE93c, Nag05, YM97].

3 [Bri95, Che10, FCS+19, GBH14, GBH18, GPL+96, GLT12, Gro12, HDT+15]. 3-D
[Bri95]. 3.0 [Ano97, Bra97, BMR02, BRM03, DBB+16, KaM10, OP10]. 3.06 [Ano03]. 3.1
[ACM06a]. 3D [GAP97, Gra97, LO96].

3D-Fall [Gra97]. 3rd
[ACM06b, CZG+08, Ano95a, IEE96a].

4 [Ano03, HRZ97, KSHS01, NU05, SD13, SBT04]. 4.0 [DSGS17, JCP15, dOSMM+16]. 4.5
[CBY918, TMT+20]. 43 [UZC+12]. 45-degree [CT13]. 48th [IEE94e]. 4th
[BDW97, EdS08, FF95, USE00].

5 [TRH00]. 512 [RBB97c]. 5th
[AD98, Cha05, IEE94a, MiSC09].

600 [LSK04]. 6000 [AL93, NMW93]. 64
[dCZG06]. 64-bit [Wii93]. 6th [ACDR94, DLM99, GT94, PW95, SHM+10, Sin93].

7th [ACM95b, CGKM11, DKP00, GN95, PBG+95].

857 [SMSW06]. 897 [HWS09]. 8th
[CMM12, CD01].

90 [Ben95, SM03]. 9076 [Bri95]. 91
[BG91, EJL92, IEE91]. 92
[Sie92a, Sie92b, VW92]. 93 [Ano93g, GGK+93, GHH+93, IEE93a, IEE93c]. 93SC038 [FS93]. 93SC041 [Gle93]. 94
[BS94, DW94, GT94, IEE94b, IEE94h, PSB+94, SPE95, WPH94, dGM94]. 947
[LTDD14]. 95
Aachen [Ano93a, GHH+93]. Abortable [CAWL17]. Abortable-locking [CAWL17].
Abstract [MKW11, Wel94, BG94b, HTA08].
Abstraction [DSU20, SW12, YWTC15].
Abstractions [RHM+17]. Abstracts [IS16].
ACC [APJ+16]. accelerate [SDM10, TBB12, VGP+19]. Accelerated [AB13, EADT19, KA13, NRdA20, SCSL12, VZT+19, BMS19, CGK+16, CP15, DCD+14, HTJ+16, JCP+20, KM10, PGdCJ+18, PTMF18, Sai10, iSYS12, SKM15, ZWL+17, ARYT17]. Accelerating [BBC+19, Dab19, GM18, HF14a, HF14b, HKO011, JKLK10, JLS+14, JNL+15, LSSZ15, LSVMW08, LSMW11, LAFA15, PSV19, SCJH19, TMP16, TS12b, UZC+12, YEG+13, vdLIJR11, HWX+13]. Acceleration [CGBS+15, GDEBC20, RVK19, TK16, WTS10, CBYG18, CLBS17, CBS18, HE13, MGS+15, MPS20, OGM+19, PRS16, RVK18, SWS+12]. Accelerator [APJ+16, CLA+19, SSAS12, SXM+18, YCA18, KL15, WHMO19]. Accelerator-Aware [APJ+16]. Accelerator-bound [CLA+19].
Accelerators [AKL16, AC17, NTR16, STH+10, CMC+18, TL19, KHS19, MSZG17, UGT09, vdP17]. Access [Bri10, HDT+15, IFA+16, JJPL17, LB98, SGH12, WTR03, CLA+19, CG99b, GBH14, GBH18, HGMW12, LOHA01, MN91, SFL+94]. Accesses [CVPS19, TGL02]. accessible [BHW+12].
Accident [Smi93a, SBR95]. According [LGM00]. ACCT [FVD00]. Accumulated [KS15b]. Accumulative [IH04]. accuracy [SSH+19]. accuracy-aware [SSH+19]. Accurate [HD00a, MLA+14, RSPM98, HD00a, LZC+20]. Accurately [BGdS09]. achievable [HMS+19]. Achieving [CBPP02, Gro01a, KKL11, RH01]. ACM [ACM90, ACM95a, ACM95b, ACM95b, ACM98b, ACM04, ACM05, IEEE02]. ACM/IEEE [ACM97b, ACM98b, ACM05].
ACO [Tsu12]. ACPC [Bos96, Vol93].
Across [NE98, AL96, CZ95b, KW20].
ACSCI [Van95]. action [Hol95]. Active [CSAGR98, Pla02, SKH96]. Activities [MSS97, CMV+94]. activity [Vet02]. Ad [IBC+10, ITT02]. Ad-Hoc [IBC+10]. Ada [Ton96, KP96, Ton96]. Adam [Ano95b, NMC95]. Adaptable [SPH+18, BCM+16]. Adaptation [WST95].
Adapted [Uhl95a]. Adapting [VFD02].
Adaptive [Ano94b, BCRM10, BKdSH01, Bir94, CCK+94, FLS20, FSC+11, HWX+13, KK98, KT02, LFL11, LYGG20, MCK+12, MBES94, MRB17, MAGR01, OKW95, Ran05, RA09, SHM+12, SGZ00, SS09, STY99, Sta95a, TMW17, ZSG12, BD+10, CLSP07, DLR94, EZBA16, EASS95, IDS16, KTXP21, LCL+12, SLG99, TCBV10, Was95a, Will94, FSC+11]. Adaptive-CoMPI [FSC+11]. Adaptive-Length [FLS20]. Adas [HHC+18]. Adding [CB00, GRV01, PSM+14]. Address [SS01, DO96]. addresses [CGL+93].
ADDT [SR96]. ADI [Sch01]. adjacent [Kan12]. adjoint [RMNM+12]. Adjusting [GSHL02]. Adjustment [DSCL05]. ADOL [BGK08]. ADOL-C [BGK08]. adoption [CMV+94]. Adsmith [LKL96]. Advanced [Ano98, Ano99a, D+95, Gei96, Gei97, GLT09, GLT09, GLT09, GLT09, KG93, SSAS12, TG94, Ben95, DMIK19]. Advances
[Bha93, BBH+08, CHD07, CDN11, KGRD10, KKDv03, KKD04, KKD05, LKD08, LK10, MTWD06, RW09, TDB12, AD08, BC14, BDW97, CD01, DKD05, DLM99, DPD00, DLO03, HPS+12, Kra02, HPS+13, IEE97a]. Advection
[AKK+94, CT94a, TC94, CT94b]. Advection-Chemistry
[AKK+94]. Advisor
[GVF+18]. Aerospace
[MAB05]. AES
[HMKG19]. Affine
[DMB16]. Affinity
[ETWaM12, AGG+95, NAAL01, vdP17]. Affordable
[Rol94]. Against
[GHD12]. Age
[MdSC09, Ano94f, GJLT11, HK95]. AGEB
[SAS01]. Agent
[Mat01b, MCB05, ZWZ+95]. agent-based
[MCB05]. agents
[KBA02]. Affordables
[Har94]. Against
[Har94]. Aggregation
[KLH+20]. Aging
[LRBG15]. Aging-Aware
[LRBG15]. AIMS
[Yan94]. Air
[AKK+94, BZ97, MPD04, MSML10, BTC+17, SH94, SYd94]. airspace
[TCP15]. Aix
[GA96, Ano95a, Aix-les-Bains
[GA96]. Al
[Ano95b, NMC95]. Alamos
[Old92]. Albuquerque
[IEE91, IEE95d]. Alchemist
[GRW+19]. ALDY
[GS96]. ALE
[HAA+11]. Algebra
[BDT08, CDD+13, Coo95b, DGH+19, IS16, MGMH97, Nen94, van97, BkVh14, Cal94, Coo95a, LRLG19, PMZM16, VLCm20, dCH93]. Algebraic
[CGPR98, Lev95]. Algorithm
[AEW+20, ACMR14, BST+13, BP99, BT01b, DYN+06, FJBB+00, HA10, H002b, ITT02, MW98, PKD95, PB12, RDMB99, Rönt91, SAS01, Sch96a, SLMW10, SWH15, Sta95b, TK16, WHD05, ZHS10, ART17, AAAA16, ARL+94, AD05, BBC+19, BB95a, BAV08, BY12, BCM+16, CCU95, CT13, CSW99, GM94, GCN+13, GGL+08, GKK09, GP95, HWS09, IM95, JR13, KDS012, KY10, KWEF18, Kan12, KBP16, KN17, KO14, Kom15, KRC17, LYP19, LYZ13, MM92, MLVS16, MK00, NB96, NA09, OKW95, OGM+19, OMKV9, PGBF+07, PSLT99, Ram07, RJC95, RAG95, Sch96b, SOA11, SOYHDD19, Sur95a, TjinB17, TSCS14, TGKL19, Was95a, YULM+17, ZSK15, ZWL+17, dh94, van93, AEW+20, CWL+20, HWS09, LTDD14, Riz17, Spe19, SMSW06]. Algorithm-based
[PKD95]. Algorithm-Dependant
[BP99]. Algorithmic
[Stp20, DHS11, RJDH14]. Algorithms
[ACM95b, ATC94, ADRTC98, ABG20, ASA97, CDT05, CCSD97, DK20, DALD18, DAK98, DK06, FB94, GAMR00, GK10, HO14, HHHK94, IEE96d, KTAB+19, KK02a, LHMM96, L96, LAD16, MTS94, MGMH97, MBS15, Nar95, Pet97, PBK00, SG15, SGS+21, VRS00, AK99, AL92, BJJ96, BMS+17, BID95, DDLM95, FR95, FP92, GWC95, HL17, HPLT99, HK0011, HS95b, J94, JRM+94, KL95, KRG13, LFL11, LNW+12, LRLG19, MT16, MJG+12, NP12, Ols95, PP16, Pan95b, PBK99, PD11, PCS94, RSG+96, SPE95, Sur95b, TSZCR9, WCVm96, YLZ13]. alias
[SOA11]. alias-free
[SOA11]. aligned
[AGIS94]. Aligners
[SMM+16]. Alignment
[dOSMM+16, AMHC11]. all-port
[RJMC93]. All-to-All
[LZB17, LZB18, Trä02b]. Allgather
[KTAB+19]. Allgatherv
[KTAB+19]. Allocation
[AGS97, BS01, DGG+12, RFH96, SPNB14]. alloy
[TG94]. ALM
[IZ21]. alpha
[WLW20]. Altera
[RGB+18, TK16]. Alternative
[EM94, SWHP05, Trä02a, EKTB09]. ALWAN
[HB96a, HB96b, MSB97]. Amazon
[ZL+11]. AMBER
[SL95]. AMBER4
[VM95]. American
[Ara95]. AMIP
[Gat95]. Among
[CB16]. AMPI
[ZH00]. AMPIC
[CCHW03]. amplified
[EZBA16]. AMR
[LRH07, TK19]. AMRVAC
[KTXP21, TK19]. AN2
[HT95]. analogue
[WWZ+96]. analyses
[AN95]. Analysis
[BHH9+17, BR02, BG+02, BBC+00,
BDL98, CGLD01, CLA+19, EML00, FK01, FJK+17, Hol12, JF95, KL94, KNT02, KRG13, LCK11, MK17, MCLD01, NA+96, NMS+14, Ost94, PZ12, PGAB+05, SPL+12, SBR95, SGL+20, SN01, TFGM02, Whi04, WM01, BB03, BBHD14, BBH+15, Che99, DGS17, EPP+17, GR95, GFB+14, GSN+00, GKS+11, GE95, GE96, GT07, JB96, JLG07, LLG12, LRLG19, LL16, MBH+94, MM03, MLA+14, MJBP16, Pat03, PHJM11, PSV19, PGAB+07, SiSCP13, iSYS12, SS94, SDJ17, SPH95, Shi94, Si96, SWL+01, SSG95, TMC09, TW12, TFFZ12, Uh95a, Uhl95c, VM94, YCL14]. analytic [THDS19].
analytical [BHW+12, HK09, JS13, KN17].
analyzers [MMAH20]. Analyzer [JJPL17, KKM15]. Analyzers [Ano01a]. Analyzing [BRU05, DF17, FM09, HG12, HcF05, PFG97, RPS19]. anasslich [Ano94c]. Anatomy [KWEF18]. Andrew [Ano99c, Ano99d]. animal [LM99]. anisotropic [LBB+16, SSB+16, YVSM+16]. anaiing [WHMO19, FH97]. Anncy [VW92]. Anniversary [Ano92, Ano93]. annotated [GGH99]. Annotation [MGA+17]. announcement [WRMR19]. Announcements [Ano98]. Annual [ACM95b, Ano93b, Ano94h, IE95b, USE00, VAN95, Y+03, ACM95a, ENG00, IE94e, IE95]. Ant [ITT02]. ante [Ano03]. antenna [DSOF11]. Anthony [Ano95c, Ano90b]. Antonio [Ano95d, IE95g, IE97c]. Any [Gro02a, Mar07]. AP [PBC+01, SMTW96]. AP/Linux [SMTW96]. AP1000 [SH96, IM94, SWJ95]. AP3000 [TD99]. Apache [GRW+19]. API [DM98, LPD+11]. APIs [WCS+13]. APOLLO [Sta95b]. APOLLO-II [Sta95b]. Appendix [Ano01a]. Appendices [Ano01a]. APPL [AB93b, AB93a]. Application [AKE00, BSN95, BDG09, BS07, BFM97, BBH+15, Cha02, CRGM14, DFMD94, FDG97a, FDG97b, FSC+11, GB98, HT08, IADB19, JFY00, JCH+08, KNT02, LD01, LMRG14, Mal01, MTSS94, MBB+12, NSL16, NS16, PSS01, Riz17, SFB+04, ST02a, SCL97, UT02, WYZ+19, ZZ04, ABC+00, ADMV05, ADR+05, BvdB94, BFL99, BL97, BBC+99, BPS93, CBY18, CRM14, CRGM16, EPML99, FMF15, GV+18, GWVP+14, HTJ+16, HZ96, KME09, LS1G19, LFS+19, LCMG17, LBB+19, MM96, MM03, MLA+14, MvWL+10, NM93, RBAI17, RLo08b, SM12, SCJH19, SS99, SFVS13, SL00, TCP15, Wor96, ZZ+15, CG99a, PGPCK21]. application-centric [SFSV13]. Application-Level [CRGM14, LMRG14, SFB+04, SCL97, BPS93, CRM14, CRGM16, LCMG17, LBB+19]. Applications [APJ+16, AGS97, Ano89, Ano96c, AZG17, BCLN97, Ben18, BHV12, BBH+06, BRU05, BFMT96b, BFMT96b, BFBW01, CGS15, CCL10, CGLD01, CBB+20, CBB+21, Cha05, CJNW95, CRGM14, Cot98, CTK00, Cot94, Cza02, Cza03, DW02, DLM+17, DER0C, DHK97, DG97, DGML93, EV01, ELM00, FLD08, FD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GK10, HM09, HDW21, Hus98, IEE951, ITT02, Jes93b, JJJ017, KB98, KBS04, KGK+03, KSB+20, KKP01, KKL02, Kuh98, La01, LAD+15, LWSB19, LRG14, kLCW07, LBB+21, LdSB19, LMRG14, dLR04, MSOGR01, SMO2a, Mar02, Mat01b, MAB05, MC98, MG15, MAN09, NFK98, PSM+14, Rei01, RPM+08, RBB15, RRLB01, SPL+12, SdR+21, SGL2, SPH+18, SC04, SPB+17, SSB+17, TTSY00, TFGM02, Vd00, VY02, Vos03, Wd96, WC09, WZM17, WJA+19, WS96a, WSN99]. Applications [WBH97, WM01, dGJM94, AC07, AC9+11, ACJ12, Ano93a, Ano94f, Ano93, ARA95, Arn95, ASB18, AGM06, BKH+13, BR04,
BDV03, BAG17, BFM96, BFMT96a, CGK+16, CGBS+15, CDMS15, CLSP07, CBMZ+08, C1J+10, CPFS95, CCHW03, CCM+06, DZ98a, DSZ94, DFPT19, D+95, DCH02, EKTB99, EGH99, ED5V09, FE17a, FE17b, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GH12, GJMM18, GS96, GSM+00, GHI+93, HD00a, HZ99, HAJK01, JC17, JPT94, KC19, KSC+19, LRG+16, LMG17, LCMG17, LBB+19, LGM+20, LTH19, LS08, MA09, MBKM12, MLC04, MS06b, NSBR07, NCB+12, NFG+10, PK05, PTL+16, Rab99, RS95, RGGP+18, SJLM14, SPE95, SGB+12, SDJ17, SGH12, SG05, SPBR20, SIC+19, SLG95, SB01, SD16, SRS+19, TMC09, TBB12, TPLY18, Veto2, Wis96b, Wol92, WT13, WMP14, XLW+09, YZ14].

Applications [ZLZ+11, BP93, TDBEE11, ATC94].

Applied [FGRD01, HC06, KaM10, GFIS+18, HMKV94, MM92, MPS20, NF94, PGK+10, DMW96, Was96]. Applying [GSM+00]. Approach [AZG17, BHM94, B93, BHNW01, CRGM14, CD98, DLM+17, FPFP03, GCB12, HMKG19, HD00b, KBA02, KK02a, KmWH10, LMG00, Mar06, PPR01, Pet00a, Pet00b, RG03, Ros13, SdR+21, TJPF12, BK11, Bis04, BTC+17, CLYC16, CDP99, CRGM16, D9N9, EO15, FMS15, HBD+13, JS13, KPL+12, KSS07, KJEM12, LSG12, MGG05, MS99b, NEM17, OHG19, OW92, SVC+11, SEC15, TWFO09, VGP+19, W099, YW21]. Approaches [JCH+08, Ney00, SWHP05, SM02, AKB+19, BFL99, CB11, PS00b]. ApproxHPVM [SSH+19]. Approximate [FLS20, Huc96, MM02, GGC+07, GG09, MM03]. Approximation [SLJ+14, SJLM14]. April [ANS95, AH95, Ano93h, Ano94h, CH96, DR94, GH94, Ham95a, IEE92, IEE93b, IEE95f, IEE96e, IEE97b, IEE05, LCHS96, MC94, Nar95, Sie94, SW91, Ten95]. APS [GT94]. AQsort [LTS16]. AQUAgpusph [CP15]. arbitrary [HP11]. ARCH [Ada97, Ada98]. Architectural [GGC+07]. Architecture [BG94a, CGC+11, CLOL18, EBK10, EM02, FDG19, FG94, CSM+96, CS96, CBIGL19, D9N9, FH+95, H1G16, HK09, MMDA19, MRH+96, PWD+12, SWYC94, SSGF00, Squ03, SP11, WCC+07, YÁJG+15, YEG+13, ZW+95].

Architecture-independent [DiN96]. Architectures [ACM95b, BDT08, BBD+20, BFG+10, CHPP01, HD02a, HD02b, HHK94, IEE96d, KDT+12, LHH96, Li96, LTH17, LAD16, MS02b, MTS94, MCS00, NO02b, Nar95, PZ12, SXMX+18, TSCM12, WYZ+19, YKW+18, ZT19, BDP+10, BN00, BKML95, CLM+95, CDZ+98, DM93, DZY94, GDC15, GP95, HHS18, H102, LCL+12, LDJ13, MLC04, NO02a, PY95, RFH+95, RNM+12, SPL99, TDG13, TSCZ94, Uhl95a, VDL+15, WST95, dAM11]. Area [CDHL95, Fis01, BHW+12, FGT96, FGG+98, KHB+99, Qu95]. area-based [Qu95]. arising [Arv03]. Aristotle [FSSV+14]. Arithmetic [Ano98, JPT14, Sur95a]. Arithmeticities [HD00b, HD00a]. Arizona [IEE95b, J9B9]. ARM [AFGR18, MGL+17]. ARM-based [AFGR18]. Array [DDPR97, HD02b, LTS16, MK19, WG17, CMM12, DK13, HSE+17, JKN+13, Ott93, TOC18, Wa102]. arrays [HCL05, RBS94]. Arrival [FPY08, MLVS16]. art [LF93b]. artifact [ZZZ+15]. Artificial [BPF94]. ARTUR [FJBB+00]. ARVO [BHW+12]. ARVO-CL [BHW+12]. ary [Pan95a]. Ascona [DR94]. Ashes [Thr99]. ASL [FGRT00]. ASME [LF+93a]. aspects [CG99a]. Assembly [PGF18, TP15]. Assessing [LMG17, dLR04, MABG96, TSCAM12, CMV+94].
BARRACUDA [EPP+17].

Barrier [CLdJ+15, SDB+16, YLZ13].

Based [Ada97, AHD12, AAB+17, ABG20, AP96, BHW+17, BDG+91b, BDG+20, BoF000, CAM12, CGC+02, CLO18, CLP+99, CDPM03, DW02, DLLLZ19, DZZ20, DBK+09, FSC+11, FC05, For95, FSL98, Gsxx, GFJ19, HF14a, HF14b, HM01, Hus00, KLR16, LSZ02, LZH18, kl11, LWP04, LAF15, MDM17, MGF+17, MHH98, MZLS20, NSLV16, NE01, NHT02, NPS12, PPT96a, PCY14, PFG97, PSSS01, RDMB99, SPL+12, SM03, Smi93a, ST02b, ST97, SJK+17a, SJK+17b, TJS+15, TD98, WTT17, WC09, WZHZ16, WJG+21, Wis96a, WM01, WJB14, YG96, YTH+12, ZHS20, ZWJK05, AKB+19, Ada98, AASB08, AAAA16, AVA+16, Ano03, AGRF18, BLPP13, BDG+92a, BLV18, BCH+03, Bri95, BFMT96a, CwCW+11, CC10, CPM+18, CKwWH16, CRM14, CXB+12, DX96, FE17a, FE17b, FFB99, FJZ+14, FNSW99, FSTG99, FLPG18, FFFC99, FWS+17, GS91a, GS92, GKS+11].

Based [Gra97, Gra99, GFG12, HDZ+20, HZ94, HWX+13, IM95, ITT99, JCP+20, JL18, JKM+17, KLV15, KPL+12, KSC+19, KPNM16, LV12, LRW01, LKL96, LNW+12, LSC+20, LGG16, LMM+15, MYB16, MMO+16, MKP+96, MCB05, MT96, MS99a, MS99b, MAH19, MFPP03, NRdA+20, Neu94, NHT06, OLG+16, OP98, PARB14, PES99, PPT96b, PK05, PS19a, PAdS+17, PGK+10, PSH11, PK+10, PSLT99, Qu95, Rag96, Rot19, STP+19, SJLM14, SS09, SG05, SSS99, SZ11, SPBR20, SVC+11, SXM+18, SLS96, SKB+14, Sto98, Str18, StP0, Str96, SLN+12, SPNB14, TBB12, TSCS14, TGKL19, TY14, TDB96, TWF009, TMP101, VLCM+20, WMH019, WO09, WFO14, WTS19, WGG+19, WIs96b, WSC99, YC98, YL09, YWC11, YSL+12, ZAFAM16, ZLP17, ZHK06, ZZG+14, ZWZ+95, vHKS94, BFM96b, FH97, KSJ95, WAS95b, FO94, GK97].

Based [KSJ96, PY95, Sut96, TSC94, ZPLS96].

Basel [Ano94i].

Basic [PGC02, BKvH+14, BR94].

Basierte

Basis [OMK09, RB01].

Batch [VLMP+18].

Batch [BP93].

Bayesian

[CBS18, Fer10].

BC [IEE95].

BCS [FPF03].

BCS-MPI [FPF03].

Beach [IEE93b].

beam [OII10, RCF96].

bearings [NT94].

Beguelin

[Ano95b, NMC95].

Behavior [BFM97].

DeF03, Ros13, LLG12, PPF99, YMY11].

behaviour [EPML99].

Beijing

[CZG+08, LHH96, Li96].

Beitrag [Ano94e].

Belgium [LCH96], belts [NS20].

Benard [TV96].

Benchmark

[BWV+12, DS16, HC10, Lu99, Mü02, MBB+12, RSPM98, RTH00, SGJ+03, Trä12b, UTY02, Ano03, BKML95, DWM12, DH95, DSH96, Mü03, MyWL+10, PHJM11, PSH+20, Re01, RST02, Wor96, YSW14].

Benchmarking [GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02].

Benchmarks

[CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TS03, WAS95b, ZSha01, CDD+96, MM99, Ste94, WT11, CE00, WT12].

Beneficial [CB00].

benefit [SBG+12].

Benefits [LB16, PSM+14, SIRP17].

Benutzerprofile [Wil94].

Benutztrefens [Ano94c].

Beowulf [CMM03, Ste00, UP01].

Beowulf-Cluster

[Ste00].

Berlin [PW95].

Bessel [KT10].

bet [GT19].

Betriebsystemkern [Sei99].

Better [Str94].

Between

[AAB+17, BS07, ASS+17, AKE00, BID95, GVF99, JAT97, LDC97, MSP93].

Beverly [IEE93f].

Beyond [Gei93a, FKPS97, Gei98, G90, LBB+21, Olu14, Gei93b, LSG12, Sch93, SC19, SM+10].

Biconjugate

[GFPG12].

bidirectional [HE15].

Big

[CLM18, GTS+15, LK14, VPS17, ASS+17,
Biharmonic [RB01]. Bill [Ano99c, Ano99d]. billion [KTJT03].

Billions [MRB17]. binary [CG93, EPP+17, SGS95, TCBV10]. binary-level [EPP+17]. binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Coo95a]. Biomutations [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biology [SYL19].

Biomolecular [BCG97, PZKK02]. binary [CDP99, Tou00]. binary-level [EPP+17]. binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Coo95a]. Biomutations [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biology [SYL19].

Biomolecular [BCG97, PZKK02]. binary [CDP99, Tou00]. binary-level [EPP+17]. binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Coo95a]. Biomutations [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biology [SYL19].

Biomolecular [BCG97, PZKK02]. binary [CDP99, Tou00]. binary-level [EPP+17]. binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Coo95a]. Biomutations [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biology [SYL19].

Biomolecular [BCG97, PZKK02]. binary [CDP99, Tou00]. binary-level [EPP+17]. binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Coo95a]. Biomutations [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biology [SYL19].

Biomolecular [BCG97, PZKK02]. binary [CDP99, Tou00]. binary-level [EPP+17]. binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Coo95a]. Biomutations [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biology [SYL19].
Characteristic [OMK09]. Characteristic [BLW98, JL18]. Characterization [AJC +20, KB98, LCY19, LPJ98, MM07, Wor96]. Characterizing [BCM11, BGdS90, FLP18, GScFM13, OdSSP12]. Charge [BL95]. Charm [ZH06]. Charts [DSS90]. Chebyshev [Rot19]. Check [MC17, LCC +03]. checkboard [BW12]. Checking [CGZQ13, Gro00, HMK09, LCC +03, MdSAS +18, PAD +17, RAS16, SMAC08, YYW +12]. Checkpoint [AKB +19, SSB +05, SBF +04, CRM14, ZWZ05, ZHK06, BDB +13]. checkpoint-based [CRM14, ZHK06]. Checkpoint-on-Failure [BDB +13]. Checkpoint-Recovery [SBF +04]. Checkpoint/Restart [SSB +05, AKB +19]. Checkpointing [DCH02, LMRG14, SSB +05, TSS00b, BMP03, BCH +08, CG96, LCMG17, LBB +19, PKD95, SSCC95, Ste96]. Chemical [NMW93]. ChemIO [NFK98]. Chemistry [AK +94, NFK98, BR95a, DMW96, SSGF00]. Chemkin [Ano97, Bra97]. CHEMPL [RR01]. Chicago [CGKM11]. China [CGZ +08, IEE97a, LHHM96, Li96]. Chip [Jes93b, URRK12, WYZ +19, TGD13, dCZG06, MYK19]. Cholesky [DG95, LC97b]. Chromosome [BM97, dOSMM +16]. Chromosome-Wide [dOSMM +16]. CICADA [MK94]. Cilk [Stp18]. Circuit [WPC07, B95]. Circuits [GJN97]. Circular [Tsu07]. Circulation [GAM +02, Nes10, RSBT95]. CIS [AH00]. citation [Suq03]. City [Hoi12]. civil [PW95]. CL [BHW +12, BHB +15, LW95]. CL-PVM [LV95]. CL-ARRAY [ZT17]. clarified [WBB15]. CLAS [DZDR95]. Class [AIGR18, DFN12, Rot19, Ste00, Den96, MSL96, RFH +95]. Classes [DeP03, GG09, Ott93]. classic [HL17]. Classical [BCGL97]. Classification [SNN +19, TPLY18]. clauses [WC15]. Clemson [ACM95a]. Client [Ano93f, FSL98, KS97, kLCCW07, Mat01b, HI16, Sch93, Sto98, Vis95]. Client-Agent-Server [Mat01b]. Client-Server [FLS98, Sto98, Vis95]. Client-Side [kLCCW07]. Client/Server [Ano93f, Sch93]. climate [Str94]. CLIPS [Ano95a, Ano95c]. clMAGMA [CDD +13]. clock [NB96]. clocks [TPLY18]. CLOMP [BGdS09]. clone [ZW +17]. Closer [HC16]. Closure [CGPR98, KH15, PPR01]. Cloud [HC17, LSB +18, SIS17, URRK12, ZLZ +11, ZLP17, GFIS +18, GHZ12, GWVP +14, KSC +19]. cloud-based [KSC +19]. Cluster [AUR01, BKGS02, BL95, BM97, CRE99, CMM03, HD02a, ES11, GGGC99, Ge94, Ge00, GSN +01, GT01, GC05, HD02b, ITKT00, ID94, KHK03, KS96, KS01, KHS01, LR01, MFTB95, MM01, NO02b, OF00, PPG97, RB01, RS06, RL01, SCR92, SHHI01, SHT01, ST02a, TOTH99, Trö02b, YCA18, bT01a, AL93, BL93, BALU95, BTC +17, BID95, CCF +94, Cou93, ED94, GKS97, GMR95, He93, KEGM10, K014, Kom15, LC07, Lnu95, MW93, MM03, NO02a, PDY14, RJDH14, SS94, SR95, ST02b, SLS96, SY95, SSN94, Th04, THM +94, Tsu95, UH96, YWO95, ZLZ +11, MS04]. cluster-based [SLS96]. Cluster-enabled [SHHI01]. clustered [KHEB +99]. Clustering [BBH12, HA10, RJ95, GGL +08, YCL14]. Clusters [MS04]. Clusters [AH00, AHHP17, ALC +20, BDH +95, BDH +97, BBV +12, CDT05, CLOL18, CSC96, DK06, GDM18, GMdMB +07, GSY +13, HPP02, HSMW94, HVA +16, HCH7, HWS00, JNL +15, LC97a, LH95, LVF04, LHCW05, MS98, MFPP03, Pan14, PKB01, PT01, PS00a, Pus95, Rei01, dOSMM +16, SFG98, SL99, Ste00, Tou00, UP01, WNLN03, WT12, YWCF15, YKI +96, AB95, AL94, ADB94, ABG +96, ADMV05, BWT96, BDV03, Bru95,
CRE01, EKTB99, GBF95, HCL05, Hus99, JKHK08, Jon96, JR10, JRM+94, KLY03, KLYL05, KSL+12, KJEM12, LBD+96, Lec12, LLC13, LL95, LKYS04, NM93, NN95, PS07, PRS+14, PM95, PR94c, PRS16, PL96, RCFS96, RGDML16, SPBR20, Slo05, SC96a, SL95, TFZZ12, WLN06, WLYC12, YST08, YL09, YHL11, YWC11, ZHS99, dCH93.

Co-Scheduling [SNN+19]. Coarray [GBR15, YBMBC14]. coarrays [SMC15, SC19]. Coarse [ADRC98, IOK00, KOI01, LGM00, NIO+02, NIO+03, HDZ+20, He93, RJC95]. Coarse-Grain [IOK00]. coarse-grained [HDZ+20, He93, RJC95]. coarsening [PSLT99]. Coast [IS16]. Coastal [GAM+02]. CoCheck [MS96b, Ste96]. Code [AHP01, And98, BCGL97, CB00, CP97, CCK12, CCBP15, DDL00, DZD95, HE02, KaM10, KAMAMA17, KHS01, LD01, MMD98, MS92b, MM07, PBC+01, RGD13, SM03, SZBS95a, Sta95b, TGB95, AMS94, ADB94, AFST95, BCAD06, BADC07, BW12, Bia98, Bri95, Con93, DLR94, EZBA16, FMFM15, GSMK17, He93, IJM+05, JL18, KPL+12, KH91, MGS+15, MRH+96, MWO95, PKE+10, PKS+10, RP95, RVKP18, SBS95b, SK00, SFLD15, SWS06, TBD96, VBLvdG08, VDL+15, WLYL20, Wot96, YL09, ZT20]. codebooks [PMM95]. Codes [FADF15, JFY00, SWH15, HTJ+16, HWS09, HASnP00, JPP95, KBG+09, LRW01, Mlo01, OLG+16, WB96]. Coding [FLS20, Uhl94, Uhl95b, SCC96]. Coefficients [MW98, ARYT17]. cognitive [PWD+12]. Coherence [MM07]. Coherent [SS01]. Collaborative [DCPJ12, MZLS20, DCPJ14]. Collapse [PKY95]. Collecting [BMR01].

Collection [LTRA02, DH95, MGC+15]. collection-oriented [MGC+15].

Collections [JFGRF12]. Collective [BIL99, BIC05, CA00, FVD00, FCLG07, FPY08, GLB00, GMMD+07, Hus99, KH96, KLB+20, MJG+12, PGB+05, SG15, TRG05, VFD02, WRA02, FA18, HS12, HMS+19, HG12, HWW97, KHB+99, KBH94, KMH+14, MBBD13, Pan95b, PGBF+07, PGBA+07, RJM93, SCB14, SCB15, SS99, TD99, Tra12a, TFZZ12].

Collectives [CSW12, SvL99, DJJ+19, Zah12]. Collector [GTS+15, WK08a, WK08c, WK08b].

College [AGH+95, Ano94h]. Collision [QRM96, Sta95b, ART17, FFFC99, LHLK10]. Collocative [MKW11]. Colony [ITT02]. Colorado [R+92, IEE05]. Colt [WN10].

Columbia [IEE95a, IEE95e, MAB05]. column [HSP+13]. column-stores [HSP+13].

COMA [GB96]. Combined [CBH94, TJP92]. Combining [DP94, LSM+18, PQR18, Rab98, SCB14, Sch96a, SMAC08, YPAE09, Bor99, Sch96b]. comes [Ano94f]. Coming [HK95].

Commands [OLG01], comments [St94], commerce [Ano94f], commercial [Ano93b].

commodity [GGL+08]. Common [HEH98, DK13, WLR05]. Communicating [FKK+96b, GMDP98, FKK96a].

Communication [ABF+17, AJC+20, BCG+10, BL99, BIC05, DCPJ12, DZY94, EM02, FST98a, FJK+17, FGKT97, FBSN01, GFD03, GFB+03, GGS99, GKD+18, GFV99, GLB00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KBG16, LRT07, LC93, LBB+21, LCVD94a, MH01, MHH98, MR96, Nit00, PLK+04, RK01, RRAGM97, RST06, SWHP05, SCP97, SGH12, SBG+02].
communication

communication-avoiding [GKD +18].

communication-based [PGK +10].

Communication-buffers [MR96].

Communication/Computation [HIP02].

Communications [BPS01, CP98, CDHL95, CDH +95, FVD00, FST98b, GT01, GBS +07, GMdMBD +07, IEE95b, IEE95e, LZH17, LZH18, MB00, VFD02, YTH +12, bT01a, ADLL03a, ADLL03b, BBW19, CDP99, FA18, HS12, KBH94a, MBBD13, MeR92, MN91, MS99c, RGDM16, SCB14, SCB15, TD99, WLYC12].

Communicators [DFKS01, GFD03, GFD05, FKS96, GJMM18, KH96, MJG +12].

communities [ACM04].

Communication [BHW +17, FCP +01].

Como [CLM +95].

COMOPS [Luo99].

Compact [Uhl94, Uhl95b, Wor96].

compaction [VSW +13, WK08a, WK08b, WK08c].

Compactly [KLR16].

Comparative [KB98, PSK08, SN01, AGR +95b, ED94, YCL14].

Comparing [BF01, DSU20, Fin97, GBR15, HVSH95, ICC02, LKJ03, ORA12, SSG95, JLG05, WBSC17].

Comparison [BvdB94, BS07, HC10, KBM97, LCW +03, Mat94, Mat95, Ney00, OP10, OF00, PPJ01, Pok96, RS93, RBB97a, SS01, SR98, SHH94b, VS00, Wal02, ZBd12, Ahm97, AB93b, BLP93, BID95, EVMP20, dFdOSR +19, GMU95, Har94, Har95, JS13, KDSO12, KNH +18, KC06, MSP93, Ols95, PS07, PSHL11, Pri14, sdm10, SYR +09, SWS +12, SHH94a, TOC18, TSCZ94].

comparison-based [PSHL11].

Comparisons [GGS99, PGC02, CLYC16].

Compass [PWD +12].

Compatible [MM14, LBH12, OIH10].

Compcon [IEE93a].

CoMPI [FSC +11, FCS +12].

Compilation [FSSD17, HKMCS94, LRBG15, RKVP19, SBW91, Coe94, FM90, PGS +13, PG18, SH +12].

Compile [GB94, TSY99, JE95].

Compile-time [GB94].

Compile/run [TSY99].

Compiled [KYL03, KYL05].

Compiler [Ano98, Dan12, IK00, KSS01, MB12, Mar90, MKW11, SSE12, SKS01, TJPF12, TBG +02, TGBS05, BAG17, HEHC09, LME09, LHC +07, LLD15, MA09, Mül03, PP16, RKBA +13, SHH01, SSH +19, THH +05, TMT +20].

Compilers [Ano01a, CFF +94, LZ97, MKV +01, SBT04, SS96, Hos12, PGB +95, ZT17].

Compiling [DMB16, Hos12, CGK11].

Complete [BdS07, GHH +98, Nag05, Per97, SOHL +98, YME97, Ano99a, Ano99c, Ano99b, Ano99d, PRS +14, SOHL +96].

Completed [PTT94].

Complex [BCGL97, GMPD98, MBS15, SOYHD19, ZT20].

Complexity [NPS12].

component [HLF10, KRKS11, Squ03].

Components [ABG20, BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, GKD +18, LRW01].

Composable [MLGW18].

Composed [Wei94].

Composing [PHA10, RHM +17].

composite [MALM95, YPA94].

Compositing [GPC +17].

Composition [CTK00, Cot04, DLB07, FC05, KH15, CFP96, SOYHD19].

compound [LCC13, SAP16].

Comprehensive [MZLS20, RST02].

compressible [HHS19].

Compression [BKK20, FSC +11, KBS04, VPS17, AAAA16, HE15, UH96, Wu99].

compression-based
ZHS99, ZKRA14, ACM98a, Kon00, PW95, Per96, SCR92, TEGM99, NMC95, Ano95b.

Concept [KaM10, LTR00, SB95]. concern [Ano94i].

Concurrency [ME17, NPS12, DGB+14, EBB+20, PTG13].

Concurrent [Ano89, BDG+91b, BRS92, BHV12, BKH+13, DG95, GS91b, GS92, GŚx, Gre94, HS93, SNN+20, SPB+17, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LPD+11, NP12, RGDM16, RCC95, Sun94b, SGDM94, Wal94a, Wal94b, WK08a, WK08b, WK08c, ZWZ+95].

Condensates [KLM+19]. condensed [MC99].

Condition [GK10]. Conditional [JCP+20, SGS+21, CBS18]. conditions [STA20].

Conductor [CF01, PL96].

Conduction [iSYS12].

Cone [RCFS96, OIH10]. Conference [ACM90, ACM94, ACM96b, ACM96c, ACM97b, ACM98b, ACM98c, Abr96, ATC94, AGH+95, Ano89, Ano93a, Ano93c, Ano94b, ACM94, ACDF94, BBG+95, B+95, Bos96, BFMNR96, BH95, CGB+99, CH96, DSM94, DSZ94, DKD07, DKM+92, ERS95, ERS96, EJL92, FF95, Gat95, GN95, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE92, IEE94c, IEE95b, IEE95a, IEE95e, IEE95i, IEE95l, IEE96a, IEE96d, IEE96h, IEE96i, IEE92, LCK11, LF+93a, MM93, Nar95, OL05, PR94b, Re96, R+92, SPE95, Sli96, SM07, Sin93, SW91, USE95, USE00, VW92, Vol93, WPH94, Y+93, YH96, ACM95a, ACM95, ACM06b, ANS95, Ano93b, Ano93e, Ano95a, BR95a, BL95, BDL96, DR94, Eng00, GH94, JPT94, LCHS96, Mal95, PW95, RVO0, Van95, ZL96, ACM94, Ano94g, IEE95b, KKDVO3].

Configurable [IEE94d, MKY9, PKB+16, BB94].

configurations [PTL+16]. conflict [TCP15]. conformational [MK94].

Congress [CJNW95, GHH+93, PSB+94, BH95, dGJM94]. Congressi [GT94].

Conjugate [BG95, GFPG12, MM92, Ols95]. Connected [ABG20, BT01b, KRKS11, OF00, Pet01, GKD+18]. Connectivity [Whi94]. Conquer [CTK01, Cza02, Cza03].

conscious [ZA14]. Considerations [CIPCH9, FA18]. Considers [WYZ+19].

consistency [DPFT19, WBC17, YYW+12]. Consistent [TGT10, CG96, CG99a].

Console [PES99]. Consortium [BRST94].

Conflicted [DP94, EM94]. Constructing [DM93].

construction [ART17]. Constructor [MYK19].

Constructs [KDT+12, PGC02, BKH+13, BN00].

consumer [ACJ12]. Contact [Nak03].

CONTAIN [SBR95]. containers [Str12, ZT17]. content [GFB+14].

Contention [ALB+18, ALW+15, DSG17, SSD+20, Zah12].

Context [DDG+12, ZL18, DR18, EVMP20, MdSAS+18, OLG+16, PadS+17, SCB15].

context-bound [MdSAS+18, PadS+17].

Contexts [CS14]. Contiguous [KLH+20, WTR03]. continual [NS16].

continuation [VY15]. Continuous [TA14].

Contour [GFJ19]. Contract [KPNM16].

Contract-based [KPNM16]. contrarian [KSSS07]. Contrasts [GGS99]. Control [FLD98, FM09, IEE94e, MSS97, CMZ99, MBK12, MH18, OHI19, RRJ+20, SFL+94, SHPT00]. control-flow [MH18].

Controlled [DSU20]. controller [GWC95].

convection [BB95b, CEGS07, TVV96].

Convention [ACM98b, ACM99, ACM00, Hol12, IEE94b].

Converse [BK96]. Conversion [ZG95b].

convex [GCN+13]. Convolution [ADGA20, WTS19]. convolutions [DZZY94]. Cook [SD13]. Cooperation [Wis01, Str94]. Cooperative [DGF97, DiN96, HRSA97, kLCCW07, Pet00a, Pet00b, JKN+13, SHLM14].

Coordinate [OP98]. coordinated [BCH+08]. COORDINATION

Copy [RS19], Copley [IEE94c]. Copperhead [CG96]. Coproduction [CH96, KAHS96, FKK96a, CH96].

Coprocessor [BB18]. Copy [SWHP05]. copying [SI96].

Core [ABB+10, Bri10, CZG+08, LZH+08, SOHL+08, TCM18, YGH+14, YTH+12, ACMZR11, AV18, BBC+19, BBG+14, BL99, FHB+13, HTA08, JR13, JMM+11, JR10, KSG13, LLCD15, LLH+14, MBBD13, PZ12, SFSV13, SVC+11, TFZL12, VDL+15, WCC+07, WYLC12, dCZG06, MMH98, Nag05, Ano99a, Ano99b].

Cores [BBG+11, DT17, BMS+17, DJ1+19, SC19, WO09]. Corfu [SM07]. correct [DM93]. Correction [SLLMW10, BCD96, FME+12].

Corrections [BL95, DLL20, Spec19]. Correctness [HMK09]. Correlated [MM07]. corruption [FME+12].

Coscheduling [GRV01, SGHL01]. Cosenza [KG93]. cosmological [BADC07, Sai10].

counting [JR13]. County [ACM98b].

Coupled [MBS15, SS01, SBR95, Gra97, TK19].

Coupling [BS93, KR09, SB95, WB96].

course [STT96]. Coverage [GSY21].

Covering [MYK19]. CoW [KMG99].

CPPvm [Göör1]. CPS [Mat94]. CPU [BB18, CLO18, DF17, EBB+20, JR13, KSL+12, Lee12, LRG14, LLCD13, LFL11, OPA+15, PDL14, PHO+15, Pri14, SDR+21, SPB+17, SSB+17].

CPU-MIC [BB18].

CPU/GPU [EBB+20, KSL+12, Lee12, LLCD13, OPA+15, SSB+17]. CPU/multi [SAP16]. CPUs [ASB18, KH12, LNK+15, ON12, SFSV13, SYWY14].

CPVM [CG96].

Cracow [BDW97]. cranial [NAJ99].

CRANIUM [MBES94]. Crash [LCVD94b]. Crash-simulation [LCVD94b].

Crashworthiness [LCVD94a]. Crawler [Wal01a]. Cray [BL94, GRRM99, MP95, Sch96a, Sch96b, ABG+96, AZ95, AFST95, BBW19, CCSM97, LKJ03, LSK04, MWO95, Oed93, RBB97c, SWS+12, SCC95].

CRAY-T3D [Sch96a, Sch96b].

CRAY-T3E [Che99]. CRC [Edd18].

Creation [Hat98, MFC98, PS00a]. Crew [GHL97]. CRI [MSCW95]. CRIP-MAP [MSCW95]. Critical [DSG17, SLD+12, KSC+19, SDJ17].

cryptosystem [WLC07].

CS [FST98a, FST98b, Jor96]. CS-2 [FST98a, FST98b]. CS/2 [Jor96]. CT [DYN+06, NAJ99]. CT-scan [NAJ99].

cube [Pan95a]. Cubes [DERC01]. CUDA [DLL20, Pri14, AMuHK15, AMKM20, AAAA16, ACMZR11, AC17, Ano12, ASB18, BHS18, BY12, BTC+17, BAG17, BSH15, BBH12, CAM12, CGU12, CNM11, CLYC16, CBM+08, CSV12, CFF19, CB11, Cza13, DCD+14, DSU20, DS13, DR18, DARG13, DLL20, DL16, DWL+10, DWL+12, DM12, Edd18, EADB17, EPP+17, ER12, FJZ+14, Fer10, FFMM15, FFM11, FWS+17, Fu08, GDC15, GScFM13, GLN+08, GML+16, GDEB120, GFPG12, GWVP+14, GRTZ10, HE13, HJBB14, HVA+16, HLM+17, HD11, HLP10, HP11, HLP11, Hug13, HF14a, HF14b, HOO11, HT08, HLO+16, JRG21, JSL+10, JK10, JC17, JLS+14, JGRF12, KRKSI11, KHSB19, KD12, KAMAMA17, Kha13, KS13, KC19, KSC+19, KVGH11, KME09, KO14, KHS15, KD13, KA13, Lan09, LRG14, LGKQ10, LLG12, LSSZ15, LBH12, LSM08, LSW11, LAD16, LBB+16, LYSS+16, LYIP19].

CUDA [LYZ13, MMR+16, MV20, MMR12, Mat16, MSMD10, MDSAS+18, MGL+17, MM14, NSLV16, NS20, NS16, NBGS08,
OIH10, ORA12, OHG19, PGS⁺13, PRS⁺14, PGD18, PHJM11, Pad⁺17, PgdCJ⁺18, PSHL11, PSH⁺20, PTMF18, PSV19, PRS16, RBW⁺20, RBAI17, Ros⁺17, SSE12, STA20, SK10, iJS12, SDJ17, STK08, SS09, Seg10, SSLMW10, SKM15, Sp11, Sp20, SR11, SJK⁺17a, SJK⁺17b, TNIB17, TVCB18, TS12b, TA14, TPC15, Tsu12, UZC⁺12, VLMPS⁺18, WGG⁺19, WG17, WJ12, WMRR17, WRR19, WWFT11, WJB14, XLL13, YULMTS⁺17, YHL11, YZ14, YW21, YMY11, ZJS20, ZSK15, ZAFAM16, ZG⁺14, Zbd12, ZLS⁺15, ZZZ⁺15, dIAMCFN12, dlAMC11, dlAMCFN12, vdLJR11, Che10, SD13, Vog13].

D [And98, DYN⁺06, SSS99, SH14, VDL⁺15, Bha98, BCL00, Bri95, BMPZ94a, BAS13, CGU12, CP15, EFR⁺05, ES11, GCN⁺13, HF14a, HF14b, JR10, KRKS11, KO14, KD13, KHS01, KLR16, MK94, MSZG17, NSM12, SC19, TP15, WMRR17, WRMR19, WR01, YSL⁺12, vHKS94].

D-CICADA [MK94]. DAC [Cza02, Cza03]. Daemon [LB98]. DAG [SGL⁺20]. Dagum [Sp02]. d’Aix [GA96]. d’Aix-Marlioz [GA96]. Dallas [ACM00, IEE95]. Dame [IEE96, PG18]. damping [YPA94]. DAMPVM [Cza02, Cza03]. DAMPVM/DAC [Cza02, Cza03]. DAMS [CD98]. Dangers [BCP⁺97]. DaReL [KN95]. Data [AJF16, BMR01, BCG⁺10, BKK20, BGD12, CknWh16, CLOL18, DK20, DER01, Dn96, EGR15, Ed18, EASS95, FLS20, GTS⁺15, GSYT21, GB08, GMPD98, Gua16, HA10, HB96b, HC06, IADB19, JDB⁺14, KA13, KL14, LSC⁺18, LHC05, LDJK13, LBB⁺21, MV17, Man01, MK17, ME17, Mat16, MGA⁺17, MJB15, N01, NPP⁺00b, NPP⁺00c, NA01, NLRH07, PCY14, Re01, SGH12, SPK96, SSLMW10, SR96, Str12, TSH⁺15, TPK⁺19, WO95, We94, ZDR01, ZG95b, Zho21, AB95, ASS⁺17, AGG⁺95, BK11, Ben95, BR12, BJD95, CFK01, CGK11, CGL⁺93, DRUE12, EP96, FB97, Fan98, FLSV15, FME⁺12, FKK⁺96b, FWS⁺17, GE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPOJ12, KN95, KJ⁺16, KRG13, LOHA01, LF⁺93a, LL16, LW20, MA09, MMB⁺94, MMM13, MR96, NCB⁺12, NCB⁺17, NPP⁺00a, OPP00, PDY14].

Data [PG18, RJMC93, SJLM14, SS09, SPH95, SK92, TW12, TGKL19, WO96, WLK⁺18, YCL14, YWO95, ZJDW18, ZRQA11]. Data- [LSM⁺18]. data-centered [JPOJ12]. Data-Driven [ME17, NCB⁺12, NCB⁺17]. Data-Intensive [LBB⁺21, Re01].

Cyclops [dCZG06]. Cyclops-64 [dCZG06].
Designs
[HVA+16, SM19, AAAA16, MC17, Shi94].
desktop [Mar07]. Detailed
[DLV16, RSPM98, BTC+17, LR06b]. detect
[DPFT19, Str94]. Detecting
[AGG+95, PPJ01, ZRQA11]. Detection
[BHW+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KSJ14, SG12, ZDD97, BBH+15, DKF94a, HDDG09, HGMW12, HPS+12, HPS+13, LZX+02, RAGJ95, TCP15, TDG13, TWFO09, WTFO14, YULMTS+17]. Detector
[DZDR95, PGD18]. Determination
[LAFA15]. Determine
[BP99]. Deterministic
[CFMR95, DK02, ZLL+12, MV20]. Develop
[PD98]. Developer
[IEE96i]. developers
[Str94]. Developing
[BF97, CCJS97, Cot98, DDL95, Reu03]. Development
[AC17, Ano01a, BDG+91b, BR95c, CHL97, Cha02, Cot97, Cza92, DeP93, PS01a, SK00, SB01, TBD96, TD13, ARvW03, ABC+00, BL97, BDG+92a, DSS94, DHP97, KCD+97, LLC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99]. Developments
[Mat00a]. device
[KKLL11, LS10, SBQZ14, YWTC15]. Devices
[GNJ97, RVK+18, ZJDS18]. DFB
[WWZ+96]. DFN [RS93]. DFN-RPC
[RS93]. DG [MV20]. DG-MOSFETs
[MV20]. DGX [GDS+20]. DGX-1
[GDS+20]. DGX-1/Pascal [GDS+20]. Diagnosis
[AP96, LA+95]. diagnostic
[RST95]. dictionary [LSSZ15]. Diego
[Has95, LF+93a, NM95]. Difference
[UCZ+12, GFP912, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94]. Differences
[AKE00, LDCZ97]. Different
[AIM97, DSU20, GL97b, JCH+08, Ney00, Rab98, RBB97a, BN00, PY95]. Differential
[MFTB95, Riz17, JK10, MPS20, NF94, RBB15, SP11]. Differentiating
[Cer99]. Differentiation
[BBH+08, BK08, CDM96, HHS19]. Diffusion
[HF14a, HF14b, MW98, CEGS07, DM93, MM92]. Digest
[IEE93a, IEE95c]. Digit
[DAL18, LAD16]. Digital
[KLR16, CLI+10]. Dijon
[YH96]. Dimemas
[GLB00]. Dimensional
[Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK+17a, SJK+17b, AL93, KT02, LSSZ15, Ols95, PR94c, Ram07, RG18]. Dimensions
[CW+20, SAS01, Ano93h, HP11, LZX+20]. Diophantine
[ZTD19]. dipolar
[LBB+16, LYSS+16]. DIPORSI
[GCGCO01]. DipSystem
[SPL99]. Direct
[Bri10, GPC+17, LB98, WJB14, BCM+16, Gra09, HWS90, MM11, SWH15]. direction
[BDG+93b]. Directions
[FI95, FK94, FPH+95, Sun96]. directive
[CMP+18, LV12, N002a, YL09]. directive-based
[CMP+18, LV12, YL09]. directive/mpi
[NO02a]. Directives
[AAB+16, BBG+99, BBG+01, BKO00, CCB15, JFY00, BC19b, LOHA01, VGS14]. directory
[JCP15]. discharges
[LZX+20]. Disciplined
[LWA15]. Discontinuous
[CF19, KK19]. Discovering
[FK+17]. discovery
[ASA19, BK11, GWVP+14]. Discrete
[ST17, WMC+18, YW21]. Discrete-Event
[WMC+18]. diskless
[PKD95]. Disks
[DI15a, DI15b]. Dispersion
[RSV+05]. Displacement
[BJ97, PSS01]. Dissemination
[GL97a]. Distance
[MR12]. Distances
[LAF15]. Distributed
[AGS97, Ano95c, BMS+17, BME02, BGR97a, BL95, Bha93, B95, BRST94, BT01b, BHKR95, CGB+10, CL03, CWW97, CC99, DMB16, DBA07, DFMD94, DGF97, DHHW92, DHWW93a, EMO+93, ESM+94, FH95, Fan98, FTVB00, FK01, Fos98, F93, FFC99, GCGM99, GCGO01, GCGS98, GCB97, GWC95, GM95, HJ98, HC10, HRSA97, IEE93d, IEE93e, IEE94d, IEE94g, IEE95h, IEE95k, IEE95i, IEE95j, IEE96b,
IEE96g, IEE96f, IEE05, JML01, KBA02, KP96, KDL+95b, KL95, KK02b, KSHS01, LC93, LHD+94, LHD+95, MC18, MZK93, MB12, MFTB95, MSCW95, Mat95, MBE03, NSBR07, NZ94, NH95, Pen95, PKYW95, Pet00a, Pet00b, PTT94, PMM94, PKB90, PD98, PMvdG+13, RGD97, Sch94, SA93, SMEOE93, SW91, Sun90a, Sun90b, SPNB14, TSS00b, THN00, Wih93, WO97, WCSS99, YH96, ZDD97, ZDR01, AMBG93.

distributed
[AGR+95b, AB95, Ano94e, Arn95, ADMV05, BSC99, BB95a, Bir94, BMPZ94a, CBPP02, CH94, CEF+95, CBHH94, CLLSAPD99, CPR+95, CK99, DLR94, DR94, DHWH93b, DR95, EGH99, FB97, FS95, FS98, FHC+95, FHB+13, GBR97, GCN+10, GKK90, GkLyCY97, GP95, HPY+93, HHA95, IEE97a, JWB96, KN95, KSG13, KJJ+16, KDL+95a, LR06b, LFS93a, LFS93b, LH98, LKL96, Liu95, LYIP19, LGMDra+19, Ma94, MVT96, Man98, MLCO4, NAJ99, OLG+16, PK05, POL99, Par93, PR94c, RBW+20, RAG95, RFH+95, SSH08, SHH01, SL94b, Shr93, SFL+94, SSC96, SPL99, Smi93b, SD99, THDS91, TSP95, THM+94, Uhl95a, VM94, VB99, Vet02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YLC16, YW095, YX95, YPZC95, YZPC95, ZL96, ZGC94, ZHS99, Pet01].
distributed-data [FB97].

Distributed-Memory
[CWS97, CC99, KN95, SSH08].
distributed-shared [ADMV05].

Distributing [AL92]. Distribution
[HB96b, LHCW05, MBJ15, NPP+00b, NPP+00c, NA01, SR96, AGG+95, C5W99, GS96, HB96a, JMdVC+17, KRC17, NPP+00a, RJMC93, Wil94].

Distributions
[ST17, W095, HKMC94, WO96, vHKS94].

Divergence [SdSCP13, LW20, VSW+13].

Divergent [WJA+19]. diversity [EO15].

Divide [CTK01, Cza02, Cza03].

Divide-and-Conquer
[CTK01, Cza02, Cza03]. DMMP [BB93].

DMPI [HWM02, ZLL+12]. DNA
[dFdoSR+19, PGF18]. DNAml [CDZ+98].
DNMR [SR11]. do [JLG05]. dOCAL
[RBW+20]. docking
[ESB13, IPG+18, VGP+19, ZWL13].

Document [MHSK16, AD95].

Documentation [BDG+xx]. Documents
[Ano98]. does [KC94]. dog [LK14].

Domain
[BMR01, CP97, EGH+14, KDHZ18, kl11, ETV94, HE13, Neli93, NZZ94, Olu14, OMK09, Ram07, SHHC18, VM94].

Domaine [GA96]. Domains [KR09].

Dongarra [Ano95b, Ano96a, Ano99a, Ano99b, NC95, Nag05]. dOpenCL
[KSG13]. Double [FKKC96, PTT94]. down
[Str94]. Downloadable [Ano98]. DP
[Arn95, KLR+15]. DPVM [HVa+00].

DQN [PS19a]. DQN-based [PS19a]. draft
[DHWH93b, GL92]. Draw [ST17]. Dresden
[MdSC09]. Driven [AIM97, LWSB19, ME17, PCY14, FSG19a, FSG19b, Hin11, NCB+12, NCB+17, Qu95, SIS17, TWFO09, WTF014].

Dror [Stp02]. drug [GWVP+14]. drugs
[Str94]. DSIR [LTR00, RTL99]. DSM
[KBVP07]. DSMC [JL18]. DSMPI
[SSC96, SSC97]. DTM [PS07]. DTS
[BHKR95]. Dual
[BBC+00, GAM+02, DK02, CT13, LSS15].

dual-dictionary [LSS15]. Dual-Level
[BBC+00, GAM+02, DK02]. dual-scanline
[CT13]. Dublin [LK08]. During [DeP03].

Dust [dlFMddFM02]. DVFS [PTL+16].

DWT [ZZZ+15]. Dyn [WLN03, WLN06].

Dynamic
[ACGR97, AGS97, AUR01, BBD+20, CGLD01, CKmWH16, CML04, CK99, CTK01, DMB16, DBA97, DMDD94, FMABA96, FD00, GFD03, GFD05, GRV01, GCBL12, GMPD98, GL95a, KFL05, MK17, NPP+00b, NLRH07, PK98, PLK+04, PT01, PGdC+18, Ran05, SPH+18, Smi93b, SY95, TS12a, TPK+19, VdS00, Vet02, Wal01a,
Wil94, YST08, Zel95, DDLM95, EO15, FH97, FCS+12, FKLBo8, JC17, MSMC15, NSBR07, NF94, OKW95, PGD18, PSH+20, RBA117, RCG95, SCB14, SCB15, SKK+12, SKB+14, WRSY16, YPA94, DvdLVS94, FCS+12].

Dynamically [HDW21, SSS99]. DynamicPVM [DvdLVS94]. Dynamics [BST+13, BCGL97, DR97, JFY00, KBM97, dLMdF90, MH01, OS97, SZBS95a, SA93, TDBEE11, TGM09, YWC15, ZB94, ALR94, ABG+96, AGM06, BvdB94, BHS18, BvdSdD95, BBK+94, BMPZ94b, BMPZ94a, CC00b, FHS99, HHS18, HVSC11, JAT97, JMS14, KFA96, KPK13, KRG13, LSVMW08, NS20, OKM12, PARB14, PBK99, PIR+20, RBB15, SPE95, SZBS95b, SKM15, TG94, WPH94].

Dynamische [Wil94]. dynamite [IvdLH+00, IHvA+00]. Dynamite/DPVM [IHvA+00]. dynamo [Hol95]. DySel [CKmWH16].

E-scale [Gua16]. EA [Ben18]. each [Ano00a, Ano00b]. Early [CD96, LV12, SL95, EFR+05, HHK+19, KJA+93]. Earth [KTJT03, Nak03, Nak05a, Nak05b, UT02].

Earthquake [UZC+12, KTJT03, KME09]. Easily [PKB01]. East [IS16]. Easy [HCA16, TDG13, MJBP16, SBF94].

EasyGrid [BR04]. EASYPVM [Saa94]. ECMWF [HK93, HK95]. ed [Nag05].

EDEM [Ts95]. Edge [ZDD97, Gra97, RAG95]. edition [Ano99a, Ano99b, Ano00b]. Editor [GT19].

Editors [AM07, GSA08]. EDP [SdR+21]. education [ACM06a]. EDV [Ano94c].

EDV-Benutzertreffens [Ano94c]. Edward [Che10]. Effect [DK06, LFS+19]. Effective [MLA10, RK01, SN+20, TMC09, Tsu95, BC19b, Cza13, JH97, KS15a]. Effects [SSE12]. efficacy [GScFM13]. Efficiency [KS96, MTU+15, CZ96, MMT99, RS95].

Efficient [ADT14, At96, BW+17, BGBP01, BCK+99, HLS+95, BFG+10, BGD12, Brn95, BDH+95, BDH+97, BMPZ94b, CVPS19, CAWL17, CFP96, DZ98a, DGG+12, FHP91a, FHP94b, FCS+19, GGZ+20, HBT95, HKT+12, HT08, HCO6, HLO+16, KGK+03, KD13, LSB+18, LHCW05, LAD16, MDM17, MB12, MR17, NBB19, OWO98, PGS+13, RJJMC93, RRBL01, RSC+19, SPB+17, SOYHDD19, TGBS05, WQK920, WSN99, WWFT11, YPCZ95, YT20, ZWHS95, ZLWW20, ZT20, BMD94, BW+12, CHG+14, FM90, FNSW99, FH+13, HCL05, KVGH11, LML+19, LKL96, LZC+20, LA06, MMD19, Pan99b, PRS+14, PSH+20, PGPC1K, RR01, STA20, SOA11, TFD15, TDG13, YLC16, dCZG06, CRD99, THR99].

Efficiently [CC99, CCM+06, PHA10]. effortless [ITiT99]. eigenproblem [BV99, GG99]. eigensolvers [Dr18].

Eigenvalue [DAK98, BSC99, THM+94].

Eighth [ERS95, Sie94, IEE96b]. Eilean [CSS95]. einem [BL94]. Einfl"{u}ss [Gra97].

Einf"{u}hrung [MS04]. Einstein [ARYT17, KLM+19]. Einstein- [ARYT17].

Elektro [CCBPGA15]. elec

elastic [PGT13]. elesticity [PTT94].

Elastodynamic [MAIVH14]. electric [BALU95, Ano03].

Electrical [Sil96]. electroabsoption [WWZ+6]. electromagnetic [DSOF11, NZZ94, OMK09, WGG+19].

Electromagnetics [OGM+16]. electron [ART17, JL18]. electron-molecule [ART17].

Electronic [GJN97]. Electromagnetic [IEE95d]. Electrosot [Sil96].

electrostatic VDL+15].

Element [DK20, KK19, MMD98, MS02b, OD01, OMK09, RHM+17, SM02, VRS00, BB93, BCM+16, Gra09, HMKV94, KME09, KEGM10, MSG+15, Nak05a, Nak05b, PTT94, PSV19, TOC18].

Elemental [PMvdG+13]. elements [KB13].

Eliminating [DSG17]. elimination [ACMZR11]. elision [CLD+15]. elliptic [AGIS94, PR94c]. ELLPACK [BBH12, MMK+96]. ELLPACK-R
Embedded

[TCM18, WZM17, YGH†+14, ACJ12, CGK11, NEM17, TMW17, WCS+13].

Embedding [FS97, SML17, SML19, MS96a].

Embedding [Ser97]. Emerging

[WJA†+19, RMMN†+12]. Emission

[Pat93, EZBA16]. emphasis [Bos96]. eMPI

[MS96a]. eMPI/eMPICH [MS96a].

eMPICH [MS96a]. Empirical

[SS94, VV02]. Employing

[AGM06, GV†+18, LB16]. emulation

[MS99b]. emulator [T TLC94]. enable

[SPK†+12]. Enabled [Fos98, GSY†+13,

LSMW11, Pan14, SSLMW10, ZL17, ZLP17,

DS13, GLM†+08, HJBB14, KHBS19, KTF03,

PSV19, RA09, SHHI01, SR11, ZLS†+15].

Enabling

[APBcF16, BGG†+15, CLSP07, DGB†+14,

GBH14, GBH18, HJY†+19, NPS12, TY14,

ZIP06, BR04, MA09, SHHC18, WDR†+19].

encapsulation [DUE12]. encoding

[AAA†+16, PGBF†+07, SM12]. endpoint

[LH†+14]. endpoints [DGB†+14]. energies

[TKP15]. Energy

[BPG94, CBB†+20, CBB†+21, EGR15, KFL05,

LML†+19, RBA17, SPB†+17, VV92,

FKLB08, KN17, LRLG19, PTL†+16, TDG13].

Energy-Aware [ERG15].

Energy-Efficient

[SPB†+17, LML†+19, TDG13]. Engine

[Wal01a, NPP†+00a, Wal01b, WGG†+19].

Engineering

[An098, BPG94, BPP93, EGH†+14, IEE96b,

Kam10, LSB15, LF†+93a, M02a, MBS15,

Nag05, SM07, Str94, DMW96, IE94c,

PW95, RMS†+18, SII96, LF†+93a]. engineers

[HW11]. Engines

[SLJ†+14, HSW†+12, SHM†+12]. EngineTM

[OIS†+06]. English [Wil94]. Enhance

[AR01]. Enhanced [An098, CDHL95,

CDH†+95, FMSG17, KY10, PLR02, Saa94,

BR95b, FE17a, FE17b, TSCS14].

enhancement [ARL†+94, Boi97].

Enhancements

[BDG†+95, BCKP00, DM95b, DM95a].

Enhancing

[BFIM99, CMZ99, FSC†+11, HMS†+19,

IPG†+18, MTPV96, MSMC15, OFA†+15].

Ensemble [Cot97, Cot98, BY12, FH97].

Ensemble-Based [FH97]. ENSOLV

[AMS94]. Entwicklung [Sei99].

Environment [BDGS93, BFG†+10, BFM97,

BGL00, CHP01, CTK1, DLB07, DI02,

DHHW92, DHHW93a, DDL00, FTVB00,

FWR†+95, GJN97, GL97a, HRSA97, KBA02,

KHH03, KDL†+95b, KVV97, LC93, Lus00,

MSOGR01, MM02, MFG†+08, MSS97, NJ01,

Ong02, Rol94, SDN99, SGL†+00, SGL001,

TTP97, WL96a, ASA19, ABG†+96,

BGD†+92b, BGD†+94, BK96, BT96, CEF†+95,

CLLAPDP99, DZ96, DL10, DHHW93b,

EASS95, FMBP96, FB95, Fan98, Fra95,

GBR97, GG999, GPL†+96, GlkC97,

HZ94, IJM†+05, IvdLH†+00, KCD†+97, KAt93,

KDL†+95a, Kos95b, KFSS94, WL94, MSL12,

MK97, NP94, PES99, PVKE01, PQ07,

RNP013, SSKF95, Sch93, SPK96, SBF94,

SWYC94, Skj93, SSG95, TJ09, TSCS14,

Tho94, WCC†+07, WL96b, WLC07, ZPLS96].

environmental [AMS95]. Environments

[An095e, An001a, BAK98, BF98, DT94,

GFB†+03, Laf01, Mat94, Mat95, MFC98,

PS01a, RB01, SHH94b, SSS97, SCL00,

TAH†+01, ACGD02, ARL†+94, ALR94,

ADDR95, AMV94, Bon96, BFIM99,

CDH†+94, CK99, DR94, DR95, EO15, HS93,

HVHS95, LC07, LGMDRA†+19, MSP93, SS94,

SHH94a, SAP16, TSS98, VB99, YS93, ZL96].

environments-the [CDH†+94]. EPS

[GT94]. EPS-APS [GT94]. Epstein [BL95].

Epstein-Nesbet [BL95]. Equation

[ES11, LZ97, SAS01, VRS00, DM12, LBB†+16,

LYS†+16, MS95, NP94, ON12, OLS95, PRI14,

SYS12, SSB†+16, YSM†+16, YSMA†+17].

Equations

[An098, BG95, GKH96, LLY93,

MFTB95, ORA12, ZBH97, BW†+12, Che99,
IM95, JK10, Jou94, MPS20, MM11, NF94, RBB15, SP11, SMSW06, ZZG+14, dH94.
Equi [LTRA02]. Equi-Join [LTRA02]. equivalencing [LLG12]. Era
[ABB†+10, CZG+08, CGKM11, Eds08].
Erratum [Ano01b, HF14b, Wal94b]. Error
[DFC†+07, SSLMW10, HPS+12, HPS+13].
Errors [FCLG07, DPFT19, SD16].
Experiences [AHR01, BFZ07, CMV04, CLASD09, GLN08, GS91a, GS97, GB96, GL95d, ITT02, JR10, KS97, MarO, TGM09, ZPL96, ZKRA14, AL92, CCF04, Sch94, SGDM94, BDG93b].

Experiment [Luo99]. Experimental [BIL99, BIC05, BB18, EGC02, Ser97, ZB97, RHG97, BPMN97, Coe94, LGM00, OS97, RR00, UMK97].

Exploration [AMuHK15, MZLS20, OFA]. Explicit [BHV12, GFPG12, SGHL01, KW20, LC97b].

Explicitly [Mai12, SYR09]. Exploitation [GGL08, GAM02, BK11, GAM00].

Exploiting [Add01, AML09, Bri10, FDL08, HEHC90, KFL05, LWKA15, NAAL01, VGP19, Nob08, THH05].

Experience [AMuHK15, MZLS20, OFA09, ABDP15, GE95, GE96, PDY14].

Explorations [BGG98]. Exploring [CPM06, FFA06, IMS16, LGMDRA19, MBKM12, MTU15].

Exposing [SD16].

Expression [IEE95d, LF03a]. EXPRESS [KS96, Ahm97, FK94, LH95, SHH94a, SHH94b].

Expression [BN12, GDM18, KH15, Sur95a].

Expressions [VZT19, SLFL15].

expressive [TÎ¹2a, YLC16]. Extend [DFA09]. Extended [BR02, Ròt19, HTA08, SS99].

Extending [ABB0, BCC0, BCD0, BBD0, CS96, CG96, KDT12, LMRG14, Mar03, OFA0, RDML16, SDV06, TMTP06, CG96, GGH19, KSC05, LRG06].

Extensible [BL97, GS94]. Extension [AELGE16, BGR97a, CASGR98, VAT95, Hum95, JH97, SC95, ZT17, GBR97].

Extensions [FIS01, GOM03, GHLL98, HVA0, HE15, DPSD08, HP05, Kat93, VLM0, Ano99c, Ano99d].

Extraction [CBL10, HLO16, dAT17]. Extreme [MDSC09, ZKRA14].

Extreme-scale [ZKRA14]. eyes [Str94].

F [FHPS94b, FHP09]. F90 [DP94]. Fabric [ZL17, ZL18]. face [HDD09]. Faces [Gro12]. facilitate [PKB06].

Facilitating [MC99, ZLL06, ESB13]. Facilities [MMH98, MN91].

Facility [KG96, SHS10]. KZCS96, LHCT96].

Factorisation [BB18]. Factorization [OPJ19, AZ95, BSvdG91, BRS09, DG05, KRP16, WL10].

Factorizations [TD98, LC97b]. Fail [LFS92, LFS93a, LFS93b]. Fail-safe [LFS92, LFS93a, LFS93b].

Failure [BBH03, CRG14, SRS06, BHH06, CGH08, BDB13].

failure-aware [CGH14]. failures [JS13].

Fault [KLR16]. Fail [Gra97]. false [JE95]. family [AVA16].

Farming [Str94]. Fast [AGDA20, Ben01, BHS02, BDA18, BBH12, CS14, DMM19, DFM12, EM02, HMK19, Hog13, Hol95, JFGR12, JMDV17, KIK19, LYP19, PSH11, PR94e, PBC01, RB01, SE02, SS99, STY99, SR11, TPLY18, UP01, WTR03, Lan09, LCL04, NYNT12, STA20, TDG13, YLMT19, YLZ19, YBZL03, ZA14, AAB17, DBL11, PFG97].

Faster [TS12, ZG05a, ZG96]. Fat [Zah12].

Fat-tree [Zah12]. FATCOP [CF01]. Fault [BB02, BHC03, BHK05, CF01, CFDL01, FDB01a, FB02, FD02a, FD04, GFP03, GKP97, GJR09, GL04, Gua16, IEE95c, JSH05, LMR14, LMG08, LNLE00, dLR04, MSF00, RPM08, TS12a, WC09, Wil93, BCH03, FBD01b, FD02b, HG12, LRG16, LMG17, LS08, PKD95, SG05, WDR19, ZHK06, FD00].

Fault-Management [GJR09]. fault-tolerance [WDR19].

Fault-Tolerant [BBH03, FD04, GFP03, IEE95c, JSH05, LMG17, LS08]. Faults
[LAdS+15]. **FCRC** [ACM96b]. **FD** [And98]. **FD-TD** [And98]. **FDDI** [LC93]. **FDTD** [DSOF11, VM94, WGG19]. **Fe** [Old02, RV00, BJS99]. **feasibility** [KBG16]. **Feature** [Qu95, GDEBC20, ZWL17]. **Feature-driven** [Qu95]. **Features** [GLT99, GLT00a, GLT12, KAHS96, Ano00a, CMZ99, CRD99, IMS16, WKS96, ZKRA14, dAT17]. **February** [Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97c]. **FEM** [EVMP20, GEW98]. **FEM-Systeme** [GEW98]. **Fermi** [SP11, WKP11]. **fermions** [GM18]. **FETI** [KLR15]. **few** [NS16]. **few-body** [NS16]. **Feynman** [NS16]. **FFT** [DMK19, DALD18, GB98, KNT02, Goe02, TKP15]. **fields** [BALU95, RSBT95]. **Fifth** [DK20, DFN12, KK19, MMD98, MS02b, MAIVAH14, OD01, OMK09, Pri14, RHM17, SM02, UCZ12, VM94, VRS00, BB93, Gra09, GFPG12, HE13, HMKV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, PSV19, Ram07, TOC18]. **Fine-Grain** [AZG17, JCP15, SFL+94, TC18, YSS+17, BK11, KW14, LHZY19]. **Fine-Grained** [AZG17, JCP15, SFL+94, BK11, KW14]. **Fine-Grained** [BBG+10, MBH18, YSS+17, LHZY19]. **Finite** [DK20, DFN12, KK99, MMD98, MS02b, MAIVAH14, OD01, OMK09, Pri14, RHM17, SM02, UCZ12, VM94, VRS00, BB93, Gra09, GFPG12, HE13, HMKV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, PSV19, Ram07, TOC18]. **finite-difference** [UCZ12, VM94, HE13, NZZ94, Ram07]. **finite-element** [MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b]. **Finland** [RWD09]. **Fire** [JML01, SJ02]. **Firedrake** [RHM17]. **First** [AGH95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kum94, Nar95, PBPT95, SSP+94, USE94, AH95, BS94, GM18, MMDA19, PTMF18, PBPT95]. **Fix** [DLV16]. **fixed** [PSV19]. **fixed-grid** [PSV19]. **FLAME** [VBLvdG08]. **flat** [Nak05b]. **Flattening** [THRZ99]. **flavors** [GM18]. **FlexCL** [LWZ18]. **Flexible** [CS14, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAM+00, HC08]. **Flink** [KWEF18]. **FlinkCL** [CLOL18]. **flip** [KO14, Kom15]. **Floating** [LWSB19]. **Flow-Based** [BHW+17]. **flows** [GAP97, BCM+16, BTC+17, Heb93, LLG12]. **flowshop** [CB11]. **Fluid** [DFMD94, GAP97, JFYO00, SBZ95a, TDBEE11, TGGM09, ALR94, ATL+12, AGM06, BvdB94, BHS18, Bi95, HVSC11, MMR11, PBB99, SPE95, SBZ95b, WPH94]. **fluid-particulate** [ATL+12]. **flows** [H94, W96]. **Flux** [QRMG96, QRG95]. **Fly** [WMC+18, KSJ14, THRZ99, BCAD06, BADC07]. **FM** [LC97a]. **FMA** [LO96]. **Focus** [Cia98, CFF19]. **foolish** [Rol08a]. **Footprint** [CBB+20, TS12b]. **force** [Goe02]. **forcing** [JRG21]. **Forecast** [AHP01]. **forecasting** [Bjo95, KOS+95a]. **Forest** [JML01, NCKB12]. **ForestGOMP** [BFG+10]. **Foreword** [CHD09]. **FORGE** [WCVR96]. **Fork** [BGD12, SML17, SML19]. **Fork-Join** [BGD12, SML17, SML19]. **form** [NCB+12, NCB+17]. **Formal** [BG94a, BdS07, GKS+11, GB98, LPD+11, PGK+10, VVD+09, BG94c, SZ11].
Gene/Q [KMH+14, LM13, MV17].
General [AJYH18, Che10, IH04, MW98, SK10, SZBS95a, Sun94a, TPV20, ABDP15, ADLL03a, ADLL03b, CBM+08, FLD96, KPNM16, PF05, RBST95, SSD+20, SZBS95b, SMSW07, YPA94].
General-Purpose [AJYH18, Che10, SK10, ABDP15, CBM+08, KPNM16, PF05].
generalised [TGS+20]. Generalized [DFKS01, FKS96, BSC99, SD99, van93].
Generating [AZG17, CGL+93, ER12, IJM+05, PKB+16, SFLD15].
Generation [AB03a, CC17, FAFD15, Gei98, GTH96, GSYT21, HT08, JFY00, LTD14, RG13, SSB+17, TGBS05, VPS17, AB93b, CPGK17, CPR+95, DCD+14, DWM12, KHS12, KPL+12, KH10, MMDA19, SP11, TGK19, WKS96, WMP14, ZKRA14].
generalisation [WK08a, WK08b, WK08c]. generative [MAS06].
generator [Lan09, Stp20, TNB17, YL09]. generators [CCS19].
Generic [ARS89, AKL99, GB98, BAS13, GM13, ZT17].
Genetic [FTV00, MTSS94, MSCP95, PB12, TGK19, WKS96, Wal01a, WHD05, AB13, BB95a, FSTG99, HPLT99, RJC95, Wal01b, B+05].
genetics [LM99].
genomic [SD10]. genomics [CJP19].
GeoComputation [Abr96, Abr96].
GeoFEM [NO02b, NO02a, Nak03].
geomechanics [BJS99].
Geometric [DDP+19, TK19, VGP+19]. geometrical [FMS15].
Geometry [STK08, Hol95, STT96]. geophysical [Has95].
Georeferencing [CCGS98].
Georgia [USE00, UCW95].
German [EGH99, GBR97, Gra97, GEW98, Sei99, Wer95].
Germany [BDSL96, GH94, KGRD10, MTWD06, MdSZC09, PSB+94, Sch93, Ton96, Ano93a, BPG94, Cal94, GHHT+93, WPH94].
Gesellschaft [ANO94c]. get [Str94].
Getting [NO08].
GF100 [WKP11].
GgHull [GCN+13].
GHz [Ano03].
Gibbs [TKP15].
Gigabit [CC00a, HcFO5, EGH99, OF00].
Giganet [GT01, Trä02b, bTO1a].
GIS [CFPS95, CSM97]. Give [DZ98b]. glass [JRG21].
Glenda [SBF94, Bic95].
Global [BSG00, DSS00, Pan95a, Ros13, SHTS01, STK08, SWH15, TTP97, HWS09, HCL05, HEHC09, LF+93a, Str94, Wan02, YLZ13, Zah12, ZWH95].
Globally [BHS+02].
GLUE [Rab98]. GMRES [dH94].
Gmunden [Vol93]. GNU [YSMA+17].
go [KC94].
good [Mat03].
Göttingen [ANO94c].
GP [LRB15].
GP-GPU [LRB15].
GPPS [AP01, BIC+10, PTH+10a, PTH+10b].
GPGPU [AAB+16, ASB18, BGG+15, CVPS19, CPM+18, HA11, HCZ16, JKN+13, LME09, LDJK13, LCY19, LYS13, MBK12, PTG13, TWLL19, TY14, YZ14, YEG+13].
GPGPUs [CS19, JgDVG+17, LSB15].
gprMax [WGG+19].
gprof [CGL11].
GPU [Che10, KA13, SPB+17, AKL16, ADGA20, AHRP17, BD+10, BR12, BCD+12, BCD+15, BDD+20, BTC+17, BMS19, BWV+12, BBH12, CLOL18, CBYG18, CCBFGA15, D5U20, DF17, DS16, DK13, DLADL18, DSOF11, DWL+10, DWL+12, EB+20, ER12, FA18, Fer04, FFM11, FSS17, GCN+13, HVA+16, HSE+17, HDW1, HK09, HK10, HZG08, mH12, JDB+14, JLS+14, JR13, JNL+15, JJPL17, JPT14, KDSO12, Kha13, KSL+12, KPL+12, KI17, KPNM16, KEGM10, KO14, KNH+18, KMM15, LWSB19, LV12, Lee12, LRG14, LCLC13, LML+19, LW20, LAD16, LYG220, MNO+16, MPS20, MdSAS+18, MGL+17, NRD+20, Ngu0, NMS+14, NSM12, OFA+15, Pan14, PDY14, PGdCI+18, PF05, PSB19b, Pri14, RSC+15, RS19, RMNN+12, Sai10, SK10, SD10, dSOMM+16, SYS12, SS09, SNN+19, SSD+20, SCSL12, SIRP17, SAP16, SYL19, SD16, SSB+17, SKM15, SKB+14, SG14].
GPU [TBB12, TS12b, TMT+20, TPV20, VZ+19, V19, WZM17, WJA+19, WGG+19, WKP11, WY+19, YULMTS+17,
YHL11, YCL14, YSS+17, YSS+19, ZJHS20, ZRQA11, ZZZ+14, ARYT17, PHO+15).

GPU-Accelerated
[KA13, SCSL12, PGdCJ+18]. GPU-Aware
[Pan14, FA18]. GPU-based
[MMO+16, SS09]. GPU-code [EZBA16].

GPU-Job [PS19b]. GPU-programming
[HSE+17]. GPU-Resident [JDB+14].

GPUDirect [OGM+16, YWCF15]. GPUPrime [IFA+16]. GPUs
[AJYH18, ABG20, BLVB18, BY12, BC19b, BDA+18, CJP19, CPGK17, DS13, DS16, GNP19, GML+16, GFPG12, GPC+17, GM18, HTJ+16, HLP10, HP11, HLP11, Hos12, IFA+16, JKM+17, KGB+09, KKM15, KLL11, KC19, KVGH11, KW20, LWKA15, LBH12, LRBG15, MA09, MSZG17, MA14, AN12, OIH10, PP16, PSV19, PB12, SHLM14, SNN+20, SDB+16, SKK+12, TPK+19, Tsu12, VLMPS+18, VY15, WRSY16, WQKH20, WJ12, WJB14, YLZ13, YSWY14, ZLWW20, ZC10, Zho21, ZZZ+15].

gpuSPHASE [WMRR17, WRMR19]. GPUVerify [BCD+12]. GQ [RFG+00].

gQoS [LYGG20]. graded [PSV19]. Gradient
[BG05, GFPG12, KN17, MM92, OLs95].

Grain
[AZG17, IOK00, KOI01, MJPB16, NIO+02, NIO+03, BK11, JCP15, KW14, SFL+94].

Grained
[ADRCT98, BBG+10, LGM00, TCM18, YSS+17, HDZ+20, He93, LHY19, RJC95].

GRAM [HDW21]. Grammatical [RBB17].

Grand
[DGMJ93, TN95, BGD+92].

Graph
[BHW+17, CDT05, DW02, MM14, NPS12, PPR01, STV97, Zho21, HLP10, HKOO11, MAMA20, PP16, PD11].

Graph-Based [NPS12].

Graph-Partitioning [STV97].

Graphics
[KS15b, LSVMW08, LSWM11, SLJ+14, SSLM10, vdlJ11, ABP15, BHS18, CBM+08, DBLG11, Fer04, GKL95, HTA08, HSW+12, KFA96, KY10, KME09, LHLK10, MSZG17, PF05, SHM+12, SR11, WWT11, ZLS+15, MSML10].

graphics-scalable [GKL95]. Graphite [MMR92]. Graphs
[LG00, OP10, PGF18, VZT+19, EP96, MC99, MJPB16].

Gravitational
[ZSK15, KM10]. Greece
[CD01, CDND11, SM07, TG94]. Green
[PTL+16, LWKA15]. Grenoble
[JPTE94].

Grid
[AB93a, CGB+10, CLLO3, DP01, FOS98, KT02, LA01, Liv00, MRB17, PLK+04, Rei01, TGM09, AMK20, AB93b, Eng00, GLM+08, KRKS11, KTXP21, PSV19, WYL12, AASB08, BR04, CCHW03, DOK8, FC05, GFB+03, GL02, KTF03, KGK+03, KSSS07, LC07, LS08, NSBR07, RPM+08, RTRG+07, SHTS01].

Grid-Adaptive [KT02, KTXP21]. Grid-Enabled [FOS98, GLM+08, KTF03].

Grids
[NO02b, ACH+11, CC10, KBG+09, NO02a, NB96, TK19, BBH+06, GR07, Ram07, SN01].

GROMACS [BvdSvD95]. Gropp
[Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

Gross [LBB+16, LYSS+16, SSS+16, YSV+16, YSMA+17].

Groundwater
[MMD98, AFST95, EGD92]. Group
[AD98, ANO98, ara95, ACDR94, CHD07, CHD09, CD01, CDND11, DOK05, DLM99, DKP00, GN95, KGRD10, KTXP21, PSV19, WYL12, AASB08, BR04, CCHW03, DOK8, FC05, GFB+03, GL02, KTF03, KGK+03, KSSS07, LC07, LS08, NSBR07, RPM+08, RTRG+07, SHTS01].

Growth
[PKYW95, BB95a]. GTS [PKE+10]. Guest
[AM07, GSA08, GT19]. GUI [VGS14].

GUI-awareness [VGS14]. guidance
[SDJ17]. Guide
[AN12, D+91, GBD+94, LD04, NOV95].
NMC95, Per96, Ano95b, BDG+91a, McK94.
Guided [FDG19]. Guideline [Tră12b].
Guidelines [TGT10]. GVirtuS [MGL+17].

Hamburg [PSB+94]. Hamiltonian [ART17]. Handling
[DFC+07, FMSG17, LSB15, LGM00, RC97, FFFC99, LNW+12, THRZ99]. Hands
[KnWH10]. Hands-on [KnWH10]. Harbor [BBC+00]. Hardware
[BGG+15, BWW+12, Brü12, BCKP00, CDPM03, DAD19, GJMM18, HSP+13, LSWM11, MFC98, PSM+14, PKB+16, SSLMW10, vdLJR11, ER12, GGL+08, PM2M16, Rab99, SBG+12, SH94, SWS+12, YAG+15, ZLS+15].
Hardware-Based [CDPM03]. Hardware-oblivious [HSP+13]. harmonic
[GSMK17]. Harness
[EBK901, MSH+96, PL96, FDD01a, FDD01b, FBVD02, FD02a, FD02b, MSF00, Gei98].
HARP [FDG19]. Harrogate [CJNW95].
Hartrie
[CBH994, MMDA19]. HASEngGPU [EZBA16]. Haskell [WO97].
Hate [Dan12]. Hawaii
[ERS95, ERS96, HSF94, MSH+93, ZL96]. HCA
[KBC16]. HDL [Kath93, KMK16].
HDMR [KD12]. Heading [Sch99]. Heaps
[GFTJ19]. Heat [SAS01, NP94, iSYS12].
Hector
[RRH96, RRG+99]. Heijen
[Van95]. held [AGH+95, GA96, JB96, KG93, MMH93, Old02, R+92, SP+95, TC94].
Helios [SPP96]. Helmholtz
[HMKV94].
Helps
[Stp02]. HeNCE
[BDD+92a, BDD+92b, BDG+93a, BDG+94].
Hénon
[JPT14]. Herzliya
[IEE96a].
HeSSE
[MRV00]. Heterogeneous
[ABB+10, BDG+93a, BDGS93, BL95, BCP+97, BGR97b, BCKP00, CMMR12, CLBO18, CLBS17, DGM93, DGMJ93, FDG97a, FDG97b, FLDO8, Fos89, GS91b, GDDM17, IEE93f, KR09, KCR+17, LC93, LSB+18, MRV00, MM01, MM02, NTR16, OPJ+19, PD98, PHS+15, RVK99, SM91, SMS00, SGS10, TQDL01, VLO+08, ACGd02, ADR94, ADDR95, AMV94, BDG+92c, BDG+94, BALU95, BR999, BAG17, CCM12, CP9895, FMBM96, GKH+12, GCN+10, GDEBC20, GCF13, HHS+18, HK94, ICG+18, KSL+12, Kos95b, KSS+18, LCL+12, LR06a, Lec12, Mai12, MSL12, MM03, NIP94, NE17, Pen95, PSB+19, RVCS96, RVP918, SCJH19, Skj93, Smb93, Sun94b, Sun95, TBB12, TMW17, TPS13, VBP99, VGP+19, WCC+07, YST08, YSL+12, ZJDK18].
HeteroMPI
[LR06a, VLO+08]. Heuristic
[BHM96, STV97, WH94]. HI
[ERS96, HSF94, IEE96b, ACM97a]. HICSS
[ERS96, MSH+93]. HICSS-26
[MMH93]. HICSS-29
[ERS96]. hiCUDA
[HA11]. Hierarchical
[BMR01, FBS01, HA10, HL17, MR18, MALM95, RR13, ADMV15, BDV03, GJMM18, OKM12, YPZC95].
Hierarchies
[SYR+09]. High
[ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, AJ+20, BPG94, BRST94, BS07, BDA+18, CDD+13, CNO11, CDH95, CWL+20, CS14, DPP01, DDL00, DE91, FGKT97, GSHL02, GBH99, GBS+07, GLDS96, HMKG19, HVA+16, HAI1, Hol12, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IF195, JMM+11, KLH+20, Kha13, KMK16, KEGM10, KH15, La901, LCK11, LC97a, LKLC+03, LML+19, LBH12, LWP04, MW98, MPD04, ME17, MAB05, NF98, NU05, OPJ+19, OHI10, OLG01, PKB94, PR94b, PTH+01b, Rab98, RH01, SPM+10, SSLMW10, SCSL12, SJ02, Slo05, SVC+11, SSN97, Tso00, Tso07, W912, WN10, YCL14, YWF15, YSP+05, Zho21, AH95, Ano03, BADC07, Ber96, BWT96, BID95, CHKK15, CBG98, DL10, Dux92, EZBA16, EVMP20, ESB13, FME+12, GSO2, GGC+07, GL96, GL97c, HADD90, HW11,
MPI

LBD

Hos12, KBP16, KME09]. high [Lan09, LBD+96, MSL12, MSZG17, NS91, NFG+10, Old02, OGM+16, PGS+13, PGK+10, PF05, PTW99, RBW+20, Reu03, RJDH14, SG14, SFLD15, ZSK15, ZWL13, dAT17, CDH+95, DZ98b, D+95, DE91, GH94, HS95a, KD12, LCHS96, LC97b, SSH08, Ten95].

High-Dimensional [MW98].

High-Level

[CS14, DDL00, HA11, Hos12, RBW+20, SG14, SFLD15].

High-order

[KEGM10, EVMP20, KME09, OGM+16].

High-Performance

[ACM98a, AJC+20, FGKT97, IEE97c, LkLC+03, OPJ+19, OLG01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCSL12, WN10, GLDS96, LML+19, OH10, SVC+11, Ano03, ESB13, FME+12, GL96, GL97c, HDDG09, KBP16, LBD+96, Old02, PGS+13, PGK+10, PF05, Reu03, RJDH14, SFLD15, ZSK15, HS95a, GH94, LCHS96, SSH08].

High-Precision [Kha13].

High-Quality

[BS07].

High-Speed

[CDHL95, KMK16, AH95, BWT96, CDH+95].

High-Throughput

[HMKG19, SSLMW10, ESB13]. Higher-order

[MYB16, KB13, wL94].

higher-level [wL94].

Higher-order

[MYB16].

Highly

[MM95, PV97, TMP16, CARB10, GBH14, GBH18, JCP+20, PSH+20, VM95].

highly-efficient [PSH+20].

highly-scalable [GBH14, Hills [IEE93f], HiNet [AH95]].

HIRLAM [Bjo95, HE02, KOS+95a].

histogramming [KRC17].

History

[OWSA95].

Hitachi

[An03, NN00, TSB02, TSB03].

HLA

[RTGR+07].

Hoare [K17].

Hoc

[IBC+10, ITT02].

Högskolan [Eng00].

Hole

[Kha13].

holistic [TWFO09].

Homomorphisms [RG18].

homotopy

[GWC95, SMSW06, VY15].

Honolulu

[IEE96e].

honor [Str94].

Host

[An09a, LLRS02].

Host-Parasite

[LLRS02].

HOTB [GSMK17].

Hotel

[IEE94e].

Hotel-Copley [IEE94e].

Hough

[YULMTS+17].

house [ZLZ+11].

Houston

[ACM06a, An95a, Cha05, DNM+92, Y+93].

HP [CGB+10].

HPC

[ASS+17, CGBS+15, GDC15, GKK90, LCVD94b, MAAH20, OLG+16, PRS+14, RGGP+18, VGP+19, WDR+19, ZLP17].

HPC2002 [Ano03].

HPCN [LCHS96].

HPF

[BP98, BF01, BID95, Bri00, BDV03, CM98, CDD+96, Coe94, FKK+96b, FKCC96, FKK96a, LZ97, OP98, OPP00, SM02, Str94].

HPF-MPI [BP98].

HPL [Lec12].

HPVM

[BCKP00, CLP+99, KSS+18].

HPVM-Based [CLP+99].

hull [GCN+13].

human [VLSPL19].

Hungarian

[Fer92, FK95, LYIP19].

Hungary

[DPK00, KKD04, VV95, FK95].

Hunting

[JPP95].

Husky [YLC16].

Huss [An96a, An99a, An99b, An99d, Nag05].

Huss-Lederman

Hybrid

[BBG+10, BBH+06, BB18].

CIC+11, CNM11, Cha02, DR97, EBB+20, GPC+17, HVSCI1, IDS16, KS15a, KLR+15, KSB+20, LLRS02, LRG14, MS02b, MV20, MYK19, NO02b, PZ12, SSB+16, VPS17, WT12, YHL11, YPAE09, YTH+12, AC07, ADR+05, BBG+14, CSPM+96, FMS15, GáVRRRL17, GKK90, HDZ+20, HDP+13, JR10, JMS14, KN17, KR13, KJEM12, LLC13, LLH+14, MLAV10, MRRP11, NO02a, Nak05a, Nak05b, PARB14, PHJM11, SDJ17, SVC+11, THDS19, WT11, WYLC12, WLYC12, WT13, YWC11, YW21, ZWL13].

hybrid-core [BBG+14].

Hybridizing

[LSG12].

HYDRA_MPI [PBC+01].

Hyper

[CW99, STB04, TBG+02, ZAT+07].

Hyper-Rectangle

[CW99].

Hyper-Threading

[STB04, TBG+02, ZAT+07].

hyperbolic [PGPCK21].

hypercube [HS95b, Sur95b].

Hypercubes

[An98, RJMC93, Sh95].

Hypercubic [HP11].

hyperelastic

[OKW95].

hypersonic [BTC+17].
Hyperspectral [VLO+08].

I-SPAN [LHHM96, Li96]. I-WAY [FGT96].
I/O [Bos96, CFF+96, DRUE12, IRU01, IBC+10, KIH+20, KLLC+03, kLCC+06, LPJ98, MMD08, MV17, MC18, MGC12, MG15, NFK98, OWO98, PSK08, PLR02, RK01, SBQZ14, SR98, Tha98, Tsu07, WSN99, ZJDW18]. IASTED [Ham95a].
IBM [AL93, An03, BBBW99, ZJDW18]. IEE02, Nar95].
Bha93, IEE94e, IEE94g, IEE95b, IEE95a, [ACM97b, ACM98b, ACM95].
IBMN-SP1 [FHPS94b]. ICA [IEE96d]. ICAPP [Nar95]. ICCMSE [SM07]. ICIP [IEE94b]. ICAPP [AHP01].
Idaho [Str94]. Ideas [IEE95d].
identification [HPLT99]. identity [KN17].
IEEE [ACM97b, ACM98b, ACM95]. ACM04, ACM05, Bha93, IEE94e, IEE94g, IEE95b, IEE95a, IEE95k, IEE95g, IEE96b, IEE96f, IEE96d, IEE02, Nar95]. IEEE/ACM [ACM04].
IFIP [Boi97, BR94, PSB+94]. IFIS [AHPP01].
Ignoting [ACM03]. II [DE91, GE95, HS94, BPS01, BWW+12, EM00b, GAVR17, Sta95b]. III [BPG94, BP93, DSM94, GE96, Has95, OKW95, SSGF00]. ILDJIT [CARB10]. I’ll [Har94]. Illumination [STK08, ZWHS95].
ILU [ABF+17]. ILU-preconditioned [ABF+17]. Im [Gra97]. Image [DYN+06, FDG91, FLS20, FJBB+00, GA96, GPC+17, KBA02, KS01, LSLZ02, MC18, NJ01, PLR02, RRLB01, WN10, WYZ+19, ARL+94, ASB18, DZZY94, GDC15, JC96, KKLL11, RKBa+13, SLS96, UH96, Wu99, YULMTS+17, YPZC95, YPZC95, dAT17, SBB20]. Imagery [GGCM99, GGG001, GCGS98, GGGC99].
Images [Uhi94, Uhi95b, VLO+98, NAJ99].
Imaging [NH95, Has95, LM13, Pat93].
imbalances [MLVS16]. IMEC [ZL17].
immunodominance [ZWL+17]. Impact [ADL03a, ADL03b, BRU05, Brü12, TSS00a, WHDB05, DO96, FSV14, SHHC18].
impacts [Str94]. Implement [GM95, Gro19, PPT96c]. Implementation [AB93a, AKL99, BGG+15, BGBP01, BPS01, BG95, BHP+03, BB99, Ben01, BR98, BCD+15, Bjo95, BJS97, BIC+10, BM02, BRM03, BMS94b, BG07, BDA+18, CGC+02, CFMR95, DYN+06, DAK98, EFR+05, ES11, FH97, FD04, FH09b, FSH09, FSXZ14, FJBB+00, FHPS94a, FHPS94b, FHP+94, FSL98, GBH99, GB98, GBS+07, Gro02a, HPP02, HMKG19, HRZ97, HKT+12, Huc96, HHA95, HAA+11, IBC+10, ITT02, IM94, JSS+15, JSH+05, LSLZ02, LTR02, L297, LW04, LWCW05, MS02b, MW98, MN91, MT96, MRH+96, NSS12, NN00, OTR15, OL01, Pan14, PLK+04, PSS00a, Pet97, PBK99, PTH+01a, PTH+01b, PB12, RDMB99, RG18, RSV+05, SH94, SBF+04, SBG+02, Ser97, SCC96, SSC97, SZBS95a, SWJ95, SYF96, Sum12, Sur95a, TOZH99, TGB+02, TRH00, TMP01, USE94, VT97, WH94, WPC07, YGH+14, YWO95, ZZG+14].
implementation [ACGd02, AS92, AAAA16, AAC+05, ADL03a, ADL03b, AB93b, BR91, BvdSV95, BR95b, Ber96, BCR99, BK96, BCK+09, BS01, BS95, Bor99, BRR99, BS96b, BD03, Bri95, BB00, BAS13, CDZ+98, CEGS07, CG99a, CgGM96, CBH94, CD96, DSW96, DS96a, DL10, DBO+16, DSOF11, DM12, FFB99, FWNK96, FGT96, FGG+98, FCS+19, GCC99, GG99, Golf98, GÁVRL17, GL92, GL94, GL66, GLDS96, GL7c, GT07, GKLyC97, HB97, HCL05, HS95b, ITT99, IvdLH+00, JMR+94, JC96, KY10, KTF03, KBVP07, KL95, KVGH11, KNH+18, KB13, Lee12, LC07, LYIP19, LO96, MDO+16, Man94, MV20, MAI7A14, M595, MSZG17, ON12, OKW95, OA17, OGM+16, PHJ11, PR94a, PGPD21, PTW99, PCS94, Ram07,
RRFH96, Sep93, SZBS95b, SCL97, SBB20, Sto98, SNMP10, Sur95b, Swa01, SL95, TSCS14, implementation [TKP15, TPD15, TS12b, TA14, TCP15, Tsu95, TVV96, VDL+15, VGRS16, VM95, Was95a, WMRR17, WRMR19, YPA94, ZLS+15, dH94, dAMCFN12, van93].

Implementations [AKK+94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG+10, FB94, Gro02b, kLCC+06, LCW+03, Mar02, ORA12, Sap97, TSCaM12, TGEM09, VDL+15, VGRS16, VM95, Was96a, EKTB99, Was96, Kon00].

Implementing [BBDH14, EP96, VLCM+20].

Implementor [GL95b].

Implicit [LHCW05, MS02b, NA01, SGHL01, Bjo95, EVMP20, TSP95, WADC99].

Importance [BCG+10, PCY14].

Importance-Driven [PCY14].

Improved [Trä02b, MMO+16, dAMCFN12].

improvements [DPSD08].

Improving [CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KLS+19, KH12, KW02, KB98, MK97, PTG13, RSC+15, SM12, SPBR20, SCL00, X95, C96, JKN+13].

In-Memory [Zhao21].

in-house [ZLZ+11].

In-Memory [CLOL18, ZL17, CRN14, HSP+13].

In-Place [LTS16, HSE+17, PSHL11].

Including [BBW+12, GLT12].

incompressible [BCM+16, Lou95, RM99, TS12b, TGS+20].

Incorporating [LM94, LZY13, TSP15].

Incremental [dOSSM+16].

Indefinite [YKW+18].

Independent [BCL00, BRU05, BDA+18, CSW12, CBS18, CDMS15, DiN96, MV17, YBZL03].

Index [DALD18, LAD16].

Index-Digit [DALD18, LAD16].

Indexers [Wall01a].

Indexers/Crawler [Wall01a].

Indexing [LTR00].

India [CGB+10, IEE96a, Kum94, PBPT95].

indicator [FSV14].

Industrial [BPMN97, DHK97, ALR94, ABC195a, ABC195b, BT96, EKTB99, Was96, Kon00].

industries [Ano93a].

Industry [DM98, Ano94f].

Industry-Standard [DM98].

inefficiency [HM12].

Inertial [Str97].

Infer [VBB18].

Inference [BBD+20, LAdS+15, TVCB18].

Inference-Based [BBD+20].

InfiniBand [LCW+03, LPV04, LPW04, PK05, PRS16, SP+12, ZLP17, SWHP05].

InfiniBand-based [PK05].

inflation [OdSSP12].

influence [Gra97].

influencing [KSC+19].

Information [Ano98, CGB+10, Ano93c, CG99b, Gro19, IMS16, MMR99, WADC99, PSB+94].

infrastructure [GF18, WLR05].

infrastructures [GWVP+14].

Initial [LLH+14, VDL+15, AL96, LR95].

Initiated [SSB+05].

initiatives [Sun95].

initio [SGF00, SEC15].

Injection [RRAGM97, SAL+17].

Inn [IEE93c].

Innovation [ACM03].

Input [CFF+94, CPKG17, SHM+12, JWB96].

input-aware [SHM+12].

Input/Output [CFF+94].

Input/output [JWB96].

Insight [IEE02].

Inspection [BPMN97, DLLZ19, DLLZ20].

inspired [NEM17, TDB00].

instances [RBAI17, ZLZ+11].

Institute [Old02, TWW94].

Instrumentation [MV95, Yan94].

Insurance [PZ12].

Integer [ASA97, CF01, WLC07, ZC10, BHJ96, KVGH11].

InteGrade [CC10].

integral [HK94].

Integrals [FBSN01, NS16].

Integrate [GLRS01].

Integrate [CFLD01, DGMS01, HKN+01, KS01, WL96a, DF17, HK10, KW14, VDL+15].
Integrating [BCLN97, CM98, Fin00, GJP01, KJA+93, KAIS96, wL94, STP+19, WFO14, TWF009]. Integration [CGC+11, CSW97, FD96, FB94, MAIVAH14, Sei99, AL96, CSW99, KB13, RMS+18, RBB15, STA20].

Integrator [Per99, SP99]. Intel [Ano96c, Ano03, CBIGL19, DSGS17, GDS+20, MP95, OTR15, UKRG12, VDL+15, YSMA+17].

Intelligence [BPG94].

Intel [Ano96c, Ano96d, CH96, CHK97, CSW97, DA97, GDS+20, MMDA19, OTK15, URKG12, VDL+15, YSMA+17].

Intensities [ARYT17].

Intensive [LBB+21, Rei01, BFLL99, BKML95, LSM+18, SL94a].

Inter [KFL05, LAFA15, FKL08, LFL11, RS19, SDB+16]. Inter-Atomic [LAFA15].

Inter-Node [KFL05, FKL08, LFL11, RS19].

Inter-workgroup [SDB+16]. Interaction [DMMV97, GFV99, NSLV16, Sou01].

Interactions [PARB14].

Interactive [Coo95b, KPK13, KA13, NE98, RTRG+07, STK08, Coo95a, IJM+05].

Intercommunication [TMP16].

Interconnect

[Brü12, SJ02, BWT96, SWS+12, TBD96].

Interconnected [Hus00]. Interconnecting [MC98].

Interconnection [MANR09, SB95, AVA+16]. Interconnects [AJC+20, RA09].

Interfacing [Lus00, PL96]. interference [ZJDW18].

Interoperant [Rab98, MSL12, YBMBC14].

Interoperable [GRB97]. Interoperability [BoFBW00, Don06, PLR02, SIC+19, CPM+18, GBR97].

Interoperability [Rab98, MSL12, YBMBC14].

Interposition [GSM+00].
Interpreted [FSSD17].
Interpretive [CNC10]. interprocess [SC95], interprocessor [DS96b].
interrupts [CXB+12, SH96]. Intervals [MDM17]. Intra
intrinsics [Stp18]. Introduzione [VP00].
Introducing [JKM+17, TBS12]. Introduction [Ano96b, AM07, Che10, Cze16, DOSW95, GSA08, HW11, Mar02, Mat08b, SK10, GT19, VP00].
Intuitive [SdR+21]. Invariant [BBD+20]. Invasive [URKG12]. inventory [OHG19].
Inverse [Huc96, BV99, GGC+07, GG09, Wan02]. Inversion [ACMR14, Kan12].
Irregularly [FR95, Smi93b]. ISA [Wit16].
ISB [Che10, SD13]. ISBN-13 [Che10].
ISCA [Ano94c, YH96]. Ischia [ACM06b].
Server [SHH94a, SHH94b].
Server-Occam [SHH94a, SHH94b]. Ising [AL93, KO14]. Isolating [Lus00].
IsoSurface [PCY14]. ISPAN [HHK94]. Israel [DSM94, IEE96h]. Israeli [IEE96h].
ISSAC [Lev95]. ISSTA [Ost94]. Issue [AM07, BDB13, BC00, GSA08, MP198a, MPI98b, BC19a, CHD09, DKD07, GT19, Mar02, Old02]. Issues [BDT08, FD02a, KGK+03, MW98, Pan95b, PS01b, ZDD97, ARvW03, EGH99, FD02b, HHA95, PBK99].
Italy [CMMR12, CH96, DKO05, DKO07, D+95, DLO03, HS95a, IEE95h, KG93, OL05, ACM06b, Ano93b, CLM+95, DRO94, SL96].
Iteration [HF14a, HF14b, OHG19].
iterations [Lou95, YST08]. Iterative [CCSM97, DK06, NO02b, Nak03, SC04, ADDR95, EDSV09, LS95, MGG05, NO02a, Nak05a, Nak05b, OM90, dH94].
Ithaca [PBG+95, Ree96]. IV [SPH95]. IWOMP [CGZ+08, CGKM11, CMMR12, Eds08, McRo+08, McSD09, SM+10]. IWPP [Kum94, PBPT95]. IWPP-94 [Kum94, PBPT95]. IWWP [Kum94]. IX [R+92].
Jack [Ano95b, Ano96a, Ano99a, Ano99b, Nag05, NMC95].
Jacobi [BBDH14, CGU12, LM99]. JaMP [KBVP07]. January [ERS96, GE96, HS94, IEE95h, IEE96g, MMH93, USE95].
Janus [GJP01].
Japan [SHM+10, SPE95, HHK94, IFI95]. Jason [Che10].
Java [ACM98a, Ano97, BCFK99, BDY99, Bra97, BK00, BKO00, CGJ+00, CFK100, CL03, DeP03, Fer98b, Fer98a, GGS99, MM99, USE95].
Java-based [WCS99]. Java-MPI [GGS99].
Java/CORBA [LRW01]. JavaNOW [TDB00].
Jaypee [CGB+10]. Jeff [Stp02].
Jersey [Bla93]. Jerusalem [DSM94].
Jiang [Ano95b, NMC95]. JMI [GDEBC20].
Job [KSC+19, NSS12, PS19b]. Jobs [GSCH02, OPM06, WDR+19, ZA14]. Join
[BGD12, LTRA02, SML17, BMS+17, SML19, She95].
Joint [GT94, Ano03, YHGL01, Ano93c]. JOMP [BK00].
Jose [ACM97a, GE95, GE96].
JPEG [CLBS17, NU05]. JPT [BDY99].
JPVM [Fer98b, Fer98a, LGCH99]. Jr
[ACM99]. Juggler [BLV18].
July [ACM95b, ACM97a, Boi97, EV01, GA96].
TOC18, WT11, WT13, ZWL13, ZA14, large-message [AMC19]. Large-Scale [AKE00, BHw17, BZ97, CBB+20, FFP03, HC17, MFPP03, SM03, WMC+18, WT12, BKK20, BJS99, SvlL99, AASB08, BCH+08, Che99, FME+12, IPG+18, LS10, MLA+14, PD11, RMNM+12, SIC+19, WT11, WT13, ZA14]. large-sized [JLS+14]. Larger [NB96], LargeScale [LAdS+15]. Laser [EZBA16, WWZ+96]. LASs [VLCM+20]. Lastverteilung [Wil94]. Latency [Jes93a, Jon96, KBHA94, NCB+12, NCB+17, TBD96]. latency-tolerant [NCB+12, NCB+17]. Lattice [BBK+94, BMS94b, HLP11, SJK+17a, SJK+17b, BW12, BM94a, CGK+16, GM18, Sai10, STA20, SVC+11, BLPP13, OTK15]. launches [Ano03]. Layer [CSAGR98, HEH98, FKK96a, PTT94, dlAMC11, dlAMCFN12]. layered [DiN96]. Layering [Hus01]. Layers [VZT+19, KC94]. Layout [WG17, BGH+05, HP11, LDJK13, Str12]. Lazy [TCBV10]. Leaks [DLV16]. Learned [GKS97, MWO95]. Learning [AHHP17, AJC+20, GDS+20, Gro01b, TWWL19, ZJHS20, AMC+19, FE17a, FE17b, KWF18, LSS15, SEC15, TWFO09, WO09, WTFO14]. learning-based [FE17a, FE17b]. Least [PWP+16, VRS00, DK13]. Least-Squares [VRS00]. Lecture [Gei93a]. Lederman [An096a, An099a, An099c, An099b, An099d, Nag05]. Leeds [Abr96]. legacy [BR04, LP00, LRW01]. Lemon [DRUE12]. Length [FLS20], Lengths [GSHL02], LEO [CCBPGA15], Leonardo [Sp02]. Lessons [MWO95]. Level [AELGE16, BGG+15, BBC+00, CS14, CRMG14, DHHW92, DHHW93a, DDL00, GS91b, GAM+02, HA11, HKT+12, DK02, KCP+94b, KOW97, LVP04, LMRG14, NPP+00c, SHM+10, SBF+04, TS12a, TW01, XF95, BMP03, CAWL17, CRM14, CRMG16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, LRG+16, wL94, LCY19, LCMG17, LBB+19, LM13, MALM95, NS91, Nak05b, RBW+20, STY99, SCL19, SFLD15, WDR+19, YZ14, ZWZ05, ZZ7+15, BBH+. . . 13a]. levels [AML+99]. Leveraging [BBW19, HDB+12, NPP+00c, SHLM14, LFL11]. LibFib4 [Stp20]. LIB [NPP+00d]. libefp [KS15a]. LibOMP [BGD12]. Libraries [BHLS+95, BWV+12, CGZQ13, DARG13, GFD05, IEE94f, IEE95j, MG18, MM14, ARvW03, BCM11, BDFA94, CRD99, GS94, PS07, Skj93, SDB94, SSG95, DHK97]. Library [AKL16, Ada97, Boo01, BLW98, CBB+20, CBB+21, Coo95b, DHP97, EM02, FH01, For95, GFB+03, GS97, Gro02a, HB96b, ITK00, JPT14, KBG16, OD01, PLK+04, PS01a, RR02, Röt19, Saa94, SBG+02, Sta95b, SKH96, TD98, UT02, WN10, YKLD17, ZC10, Ad98, AMHC11, Arn95, CSS95, CGG10, CCS19, Coo95a, DRUE12, DSB96, FB97, Fan98, FKK+96b, GDC15, GLM+08, GL94, HB96a, HLM+17, Har94, Har95, JKM+17, JC96, KS15a, KN95, LR06a, MSL96, PKB06, PS00b, RFH+95, SSC96, SH96, TK19, VLCM+20, ZT17, CC95, McD96, Sun12]. Life [PZ12, Str94]. Lifting [vdLJR11]. Lightweight [CKmWH16, DT17, FLB+05, KMK16, TCM18, FS95, Ott93]. Like [BST+13, BK00, BKO00, CGJ+00, HY20, KOB01, VGS14, CSS95]. Likelihoods [MSCW95]. LIME [DRUE12]. Limits [GB96, MBKM12]. Linda [KS96, MSP93, BLP93, CSS95, Gal97, Mat94, Mat95, TDB00]. Linda-like [CSS95]. Line [BoFBW00, CGS15, Wa89, Bor99]. Linear [ASA97, BDT08, BG95, CDD+13, DGH+19, Gao03, Huc96, LLY93, LZ97, MB18, MGMH97, MSB97, YKW+18, ZTD19, van97, BS95, Bkvh+14, BA08, BRR99, CEGR07, DR18, Gra09, GFP012, Jou94, LRLG19, MW98, MM11, OKW95, SCC96, SMSW06, VLCM+20, dCH93, dH94].
Linear-scaling [Gao03]. linearization [MH18]. Lines [NE01, YULMTS+17]. Link [BGR97b, SJ02]. Linked [WJ12].

Linköping [FF95]. LINPACK [JNL+15].

Linux [Sei99, USE00, SSSS97, Ano01a, GSN+01, MK04, OF00, PS07, PkB01, RdT06, Sei99, SMTW96, Sto05, SGL+00, YL09]. Linz [Kra02]. lipid [FHSO99]. Liquid [DSS00, JLS+14, ZL18]. Lisbon [IEE93d]. LISP [ACM90]. List [Tra98, WJ12]. Lithe [PHA10]. Lithography [RDMB99]. Liverpool [AD98]. LLVM [SML17, SML19].

Load [Ano94b, BKdSH01, BS05, DI02, DR95, DK06, GCBL12, IKS+20, MM02, NP94, PT01, Pus95, SGS95, ST97, Wal01a, Bir94, CKO+94, DZ96, DLR94, DvdLVS94, EZBA16, FMBM96, FH97, GS96, Hum95, MH97, MM03, SCL97, SY95, Wil94]. load-balanced [EZBA16]. Local [BSG00, CDHL95, CCSM97, IKM+01, LBB+19, AMHC11, BY12, CGL+93, FSV14, IKM+02, LHD+94, LHD+95, RRJ+20].

Logging [BCH+03, LBB+19]. Logic [KL17, BJ95, KMC96, KMC97, POL99]. Logical [SR98, TPLY18]. LogP [CKP+93].

M [PBC+01]. M-SPH [PBC+01]. M6A [EM00a]. M6B [EM00b]. MA [Ano95b, Ano95c, Ano96a, Ano99a, Ano99b, Ano99d, Ano00a, Ano00b].

Machine [AS92, AGIS94, BJ93, BS93, CHD07, D+91, FE17a, FE17b, Fis01, GBD+94, Gre94, JCP+20, KNT02, KKDV03, KK04, LK08, MTWD06, Nov95, NMC95, Pat93, Per96, RWD09, TY14, VSO0, We94, AD98, AL92, Ano95b, BR91, BDG+91a, BPC94, Bir94, BDLS96, BDW97, CARB10, CLM+95, Cav93, Cha96, Che99, CD01, CCO06, DM93, DKL05, DLM99, DP00, DLO03, FM90, KWF08, KMC97, KSS+18, Kral02, LG93, MN91, MHR+96, NB96, Sch94, SK92, SCC96, SL00, TVCB18, TW12, TwF009, WO09, WTSF14, ARL+94, BG94b, JPP95, KKD05, LK10, QRG95, SSS96].

machine-learning [TWF009]. machine-learning-based [WTF014]. Machines [BP99, BZ97, BCC+00a, BT01b, CDT05, DR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCL12, ZWJK05, BCA+06, BSC99, BCC+00b, BB19, BB95b, DDS+94, DCH02, GKS12, Hol95, KN95, PRS16, SL94b, TSY99, TSY00, WPL95, ZWL13]. made
Max-Planck-Gesellschaft [Ano94c].
Maximal [BDA+18]. maximisation [CCU95]. Maximizing [PIR+20].
maximum [HKOO11]. Maxwell [And98].
May [ACM96b, ACM06b, AGH+95, BR95a, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95e, IEE95d, IE94b, RV00, SPE95, SW91, SS96, Van95]. Maydan [Stp02].
MBCF [MMH99]. MCA [WCS+13].
McDonald [Stp02]. MCHF [SY96].
MCNP [MW93, McK94, WH96]. MD [IEE02, TMPJ01]. mdb [DKF94a].
Mechanics [Bil95, MGG05, SL95]. Mechanism [CGLD01, KSV01, MH01, THS+15, TSS00b, Tra02a, HW+13, SRP17, ZRQA11, ZA14].
Mechanisms [Wal01a, CGB+15, Ott93, TMM96].
Mechatronic [KDL+95a].
mEDA [VAT95]. mEDA-2 [VAT95].
media [EZBA16, MAIVAH14]. Medical [WYZ+19]. Medicine [GA96]. MEDINA [AC17].
medium [CW+20, WLN06]. medium-scale [WLN06]. Meeting [AD98, Ano93f, CH07, CD01, CDND11, DDK05, DLM99, DPK00, DLO03, GA96, KGRD10, Kra02, KKD04, MCN94, MTW06, RWD09, TDB12, BW97, JB96, SPP95, Ano92, CH09]. megabase [SdM10]. Melko [FST98a, FST98b, Jon96].
Melia [WZH+16]. Mellon [IE94d].
Membership [BMS19, MDM17].
membrane [FHS999]. Memory [ADG20, Att96, BHE02, BW+12, Bri10, BS07, BTO1b, CVPS99, CTO05, CLOL18, CLA+19, CSW97, CC99, DM98, DMB16, DR97, DHH92, DHH93a, EADT19, FB94, GGZ+20, GCBM97, GB96, GS+01, GSHL02, GLRS01, HIC10, HBD+12, HDT+15, HT01, JJPL17, KB98, KS13, KB98, KS13, KSHS01, LSB15, LWKA15, LML+19, Luo99, MB12, MRB17, MIE03, MMH98, MCD+08, Ml02, NPP+00d, PBK00, POK96, PMvG+13, Ros13, STY99, ST02b, SW91, Thr99, VS00, VT97, WJA+19, ZL17, ZL18, ARS89, ABC195a, ABC195b, ADMV05, BCA+06, BVML12, BSC99, BMG07, CBPP02, Cha05, CJoF08, Cha96, CBH94, CRM14, CCO0b, DF17, DLHR94, DBF01, DFPT19, DS96b, DHH93b, DPF97, EVM20, EO1, FSV14, FHO+13, GCH+10, GBH14, GBH18, GKK09, GL96, GL97c, GP95, HSP+13, HGMW12, HBD+13, HK09, JC17, JE95].
memory [KN95, KJA+93, KC06, LKL96, LEC04, NAJ99, NAAL01, OLG+16, PK05, PS06b, RS19, RGD15, SH08, SHH01, SL94b, SBG+12, SYR+09, SFL+94, SSC96, SPL99, SD16, SPN14, TSY99, TSY00, TDHS19, TSCS14, UHL95a, VSo03, Wa94a, Wa94b, WPL95, WK08a, WK08b, WK08c, WBSC17, WMRR17, WRMR19, YX95, LBD+96, GK97, SG05].
Memory-access-aware [CLA+19].
Memory-Based [MMH98]. memory-constrained [TSCS14].
Memory-Divergent [WJA+19].
Memory-Efficient [GGZ+20, MRB17].
memory-level [HK99]. Memory-Oriented [ZL18]. Memory/Message [ST02b].
MemTo [GSN+10]. Menon [Stp02]. Mesh [DDP+19, HAA+11, MRB17, Ran05, BAS13, CLSP07, Cot93, GBR15, HDZ+20, IDS16].
mesh-oriented [HDZ+20]. mesh-particle [BAS13]. Meshes [MRB17, TP15].
Mesoscopic [VT19]. Message [Ano93d, AKL99, Att96, BC19a, BZ97, B+03, BBG+99, BBG+01, BD+97, BGR97b, BFM97, CHD07, Cer99, CGZQ13, CGH94, Cot97, Cot98, CTK00, CDND11, DFK01, DHH92, DHH93a, DDL01, FKKC96, Fos98, FB94, GR07, GB96, Gle93, GLRS01, GL94, GL95c, GLT00b, Hem94, KGRD10, KS97, KV01, KKD03, KKD04, LDO08, Luo99, MPI98a, MPI98b, MP95].
MS98, MBES94, MG97, MTWD06, MSS97, NW98, PKB00, Pok96, RC97, RRBL01, RWD09, RFG+00, SAL+17, ST02b, TBD12, WD96, Wer95, Wis97, YHQL01, ZWL13, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93e, Ano94d, Ano95c, Ano00a, Ano00b, AMC+19, BBG+14, BL97, BvdSvD95, Bjo95, Bmu95, BDW97, BFIM99, CGJ+00, CDZ+98, CRD99, CD1, CG99b, DFK93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00. **message** [DLO03, FK94, GL92, HP05, HPY+93, Hem96, KJA+93, Kra02, LR06a, LBD+96, wL94, LFS+19, LCY96, LMM+15, LBB+19, LC97b, NS91, PS07, PBK06, Pie94, PR94a, PS00b, Sei99, SWJ95, SDV+95, SZ99, SSG95, Sti94, TSZC94, VM95, Wal94a, Wal94b, ZKRA14, ZA14, AMHC11, BC14, BBH+96, BR05, BDH+95, Cot04, DKD08, DiN96, FKS96, FGT96, FGG+98, GGH+96, GLDS96, GLT99, GLS99, GLT00a, GL04, Han98, IBC+10, KTF03, KKD05, LK10, MTSS94, MSL96, PS01b, RRHF96, SWHP05, SLG95, SLW+01, TGT05, TDB00, Wer95, YGH+14]. **Message-Passing** [Ano93d, Att96, Cot97, Cot98, DHHW92, DDL00, GLS94, GL95c, GLT00b, MP98a, MP98b, PBK00, Pok96, RRBL01, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvdSvD95, CDZ+98, GL92, Hem96, KJA+03, LR06a, LBD+96, wL94, LMM+15, PS00b, SSG95, Sti94, DiN96, GGH+96, Han98, RRF96, SLG95, Wer95, YGH+14]. **Message-Passing-Interface** [Wer95]. **MessagePassing** [Sei99]. **Messages** [KBS04, SKH96]. **Messaging** [HEH98, KC94]. **Meta** [BCLN97, FBD01a, FGRD01]. **Meta-Applications** [BCLN97]. **Meta-computing** [FBD01a, FGRD01]. **Metacomputer** [OS97]. **Metacomputing** [Fin00, MSF00, MS99b, FBVD02]. **Metagenomics** [LSM+18]. **MetaHaskell** [Mai12]. **metaheuristics** [ZSK15]. **metal** [JLS+14]. **MetaMP** [OW92]. **metaprogramming** [Mai12]. **meteorological** [RSBT95]. **Meteorology** [HK93, HK95]. **Method** [ADGA20, ACMR14, BP99, BJS97, CGU12, DAD19, FCLG07, GSI97, HC06, KMK16, OMK09, RH+17, Riz17, STA20, TSS00a, ARY17, BBHD14, BCM+16, DSOF11, ETF94, GFIS+18, HE13, HMKV94, HJBB14, HPLT99, JMS14, KS15a, KD12, LCL+12, MMDA19, Nak05b, NS16, PTT94, PGPCK21, Pri14, Qa95, SHHC18, TKP15, YBL03, dAMCFN12, AAB+17, OTK15]. **Methodologies** [Sun94b]. **Methodology** [MOL05, WTTH17, HPR+95, LM94, WMP14]. **Methods** [BCMR00, CMK00, DFN12, EGH+14, FGKT97, FGPG12, KLR+15, kL11, NA01, Sch01, SM07, TDBBE11, Whi04, ZB97, CECS07, DF17, D+95, Gra09, Has95, KW20, LSR95, MM11, Nak05a, PK+10, PGPCK21, R+92, SL94a, SGS95]. **Metric** [SNN+19]. **Metrics** [DW02, PARB14]. **Metropolis** [HJBB14]. **Mexico** [IEE91, RV00, Stie94]. **MGCG** [TSS00a]. **MGF** [GLM+08]. **MIAOW** [BBG+15]. **MIC** [BB18, CCBPGA15, LCY19]. **MICE** [BK96]. **Micro** [Ano03, BWV+12, SGH12, YSWY14]. **Micro-applications** [SGH12]. **Micro-Benchmark** [BWV+12, YSWY14]. **microbenchmark** [BO01]. **Microcoded** [PWP+16]. **Microtask** [OIS+06]. **MIDAS** [BFZ97]. **Middleware** [AUR01, CL03, CC10, RPS19]. **Middlewares** [DP01]. **Midpoint** [JMS14]. **Migol** [LS08]. **Migratable** [KOW97]. **Migrating** [VSRC94, VSRC95, IvdLH+00, KBG+09]. **Migration** [Ano94b, CCK+95, CL03, CML04, CCBPGA15, CT01, NPF+00c, NLH07, Ott94, OS97, PS19b, ST97, AMBG93, BBGL96, CKO+94, CRM14, CRGM16].
CK99, DDMY99, HZ99, LCVD94b, LM13, QHCC17, RRFH96, SS99, SCL97, Ste96. Milan [HS95a]. million [LHLG10]. Millions [BBG+11]. MIMD [BvdB94, BB93, BCL00, Uhl95a, WST95]. MIMD/MMP [BB93]. MiMPI [GCC99]. mini [SCJH19]. mini-application [SCJH19]. MINIME [DS16]. MINIME-GPU [DS16]. minimization [POL99]. Minimum [KA95, Wu99, GKD+18, NCKB12]. Mining [BBD+20, MA09]. minisweep [SCJH19]. Mississippi [IEE94f, IEE94j, IEE95j]. mitigating [OdSSP12]. Mitigation [BBH...13a]. Mitsubishi [Ano03]. mittels [Wil94]. Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01]. Mixed-Mode [BEG+10]. Mixing [CP98, GAP97, HDW21, CBYG18]. mixture [EO15]. MK [NS91]. MLP [Ano94h]. Mob [STV97]. Mobile [ITT02, TWLL19]. Mode [BGK08, Bri02, BEG+10, LRT07, HHS19, SB01, YX95]. Model [AP96, BGG+02, BdS07, CKmWH16, Cha02, CZh+08, Dar01, DFA+09, FSXZ14, FBSN01, GLB00, GLRS01, HLP11, KD12, LWKA15, LWZ18, LGG16, LPJ98, LA02, LRQ01, MKW11, NSLV16, NOO2b, Ran05, RSV+05, RRBL01, SPM+10, SB95, SPH+18, THN00, VT97, Wal01a, WYZ+19, YCA18, AL93, BSC99, Bir94, BG94b, BDV03, CMV+94, CL93, CKP+93, ED94, GKZ12, GCN+10, GkLyCY97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, HY20, KOS+95a, KSL+12, KLV15, LR06b, LA06, LHL+14, Mar05, MAAH20, MdSAS+18, MSZG17, MGG+15, NOO2a, Nak05a, PAD+17, PQR18, RAS16, RGDM16, RCG95, Sch93, SH94, Sch99, SMAC08, Str94, VBVLvdG08, Vis95, Wan02, WC15, WLK+18, WYLC12, YX95, TA14]. Model-Based [AP96, LGG16]. Modeling [ACM96a, ATM01, BS07, COE20, CSC96, CDM93, FST98a, GAM+02, MOL05, MZLS20, NM95, RGDM15, RÖ+19, SEF+16, TD09, VFD02, WJA+19, WMC+18, XH96, AC07, BDP+10, Bic95, BB95b, JL18, KM10, KME09, KEGM10, LZYH19, MS99a, WT13, XXL13, YMY11]. Modelling [FST98b, GC05, Han95a, KDL+95b, BJ899, HTHD99, KDL+95a, MSML10, QHCC17]. Models [AKK+94, BS93, BZ97, CMK00, Cer99, CMN11, DK06, EMO+93, ESM+94, GN97, PPF89, SS01, SM93, SYL19, Whi04, BB95a, CPM+18, CH96, CBS18, Du92, EVMP20, KO14, LV12, MCB05, Nes10, RBST95, RAII17, STP+19, SYR+09, Wal00, WBC17]. moderate [Uhl95a]. Modern [AHHP17, DARG13, KDT+12, LNK+15, SM07, HH14, PMZ16]. modernization [WLyr20]. modes [WZWS08]. Modified [Riz17, GP95, KD12]. Modular [CT02, HPP02, FWS+17, HLM+17]. modulator [WWZ+96]. modulator/DFB [WWZ+96]. Module [Ano98]. Modules [AKK+94, DS96b]. modules-design [DS96b]. Molecular [ABG+96, BST+13, BCGL97, BL95, BS07, DR97, DI02, KBM97, LAF15, MH01, SA93, YWCF15, BZ94, BvdSvD95, BBK+94, BMPZ94, BMPZ94a, CC00b, DCD+14, Dab19, FHSO99, HHS18, JAT97, JMS14, KFA96, KRG13, LSVMW08, OKM12, PARB14, PIR+20, SL95, VGP+19, ZWL13]. molecule [ART17]. Møller [BL95, KN17]. MONC [BBW19]. Monito [SGL+00]. Monitor [KRS99, Whi94]. Monitoring [AH00, BCLN97, Beg93b, BFM96, BFM96b, CD98, DBK+09, GSN+01, IADB19, LY93, LW97, MWG97, MVY95, SGL+00, UP01, Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a, BB94, BS96a, BFMT96a, FLB+05, LC07]. Monodomain [ORA12]. Monona [ZL18]. Monte [HBB14, RP95, WH96, ADRC98, AK99, DAK98, NSLV16, RR00, SK00,
SKM15, ZZ04. Monterey [Ano89, Gat95, USE94]. Montpelier [DE91]. Montréal [Lev95]. MOPS [GJS97]. Morehouse [AGH+95]. Morgan [SD13]. Morphable [ZL17], morphology [VLSP19]. Morton [LZH18]. MOSFETs [MV20]. MOSIX [BBGL96], motif [FMS15]. motors [SKM15]. movement [MV17, PG18]. Moving [HAA+11, LSG12]. MPE [GKL95, KFA96]. MPEG [NU05]. MPEG-4 [NU05]. MPI [ARYT17, AD98, Ano95c, Ano99a, Ano99b, Ano99d, Ano00a, Ano00b, BDW97, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, GBR97, GEW98, IEE96i, JMS14, KGRD10, Kra02, KKD04, LKD08, MTWD06, Nag95, Per97, PS01b, RWD09, RLVRGP12, ST02a, TDB00, TDB12, Vre04, WS99, YM97, ST02b, AGCD02, AKB+19, Ada97, Ada98, AC07, ACH+11, APJ+16, AAS08, ART17, ATM01, ACCR97, AK09, ARB+17, AHP01, ACMZR11, ALW+15, ALB+18, ADLL03a, ADLL03b, And98, FH98, AVA+16, Ano93e, Ano94d, Ano98, Ano01a, Ano03, AKE00, AKL99, AJF16, AIM97, AD+05, AHHP17, AMC+19, Bad16, BV99, BCMR00, Bak98, BF98, BCFK99, BBG+10, BCG+10, BBG+11, BKK20, GBBP01, BBS99, BBG+14, BA06, BCD06, BADC07, BGR97a, BKG02S, Ben01, BW12, BVH12, BKH+13. MPI [BIL99, BIC05, BP98, BF01, BCR99, BBBD14, BK96, BKdHS01, Bha98, BIDA94, BHLSt+95, BHS+02, Bis04, BBH1...13a, BBH+13b, BBDB+13, BIC+10, BR04, BCN+16, BTC+17, BM00, Boo01, BCB+02, BCH+03, BHK+06, BCC+99, BBC+00, BS96b, BMR02, Bri02, BRM03, Bri10, BPM03, BS07, BBW19, BLD98, Bru95, BDI+95, BDH+97, Bri12, BLW98, BFWB01, BEG+10, BCH+08, BWV+12, CCG+02, CWS12, CGC+11, CwCW+11, CRE99, CE00, CRE01, CC10, CP98, CAHT17, CGJ+00, CKFL00, CSS95, CGBS+15, CGG10, CB00, CDMS15, CGS15, CBL10, CBB+20, CBB+21, Cha02, CEGS07, CDP99, CCA00, CFDLO1, CLL03, CGZQ13, CC17, CSAGR98, CNC10, CC00a, CGH94, CCGS17, CFFR95, CDD+96, Coo95a, Coo95b, CFF+96, CRGM14, CRM14, CRGM16, CC99, CT02, CD96, CG99b, DPS05, DPSD08, DMK19, Dan12, DSG17]. MPI [DZ96, DZ98a, DR18, DK20, DW02, DLM+17, DZZ98b, Dem96, DPP01, DJJ+19, DLB07, DSW96, DS96a, DRUE12, DK07, Di02, DL10, DCPJ12, DCPJ14, DPFT19, DAK98, DGG+12, DGB+14, DDB+16, HD02a, DXX96, DOSW95, DC02, DBK+09, EZBA16, EGH99, EDVS09, ES11, FH97, FD96, FGD97a, FGD97b, FLD98, F000, FBD01a, FBD01b, FGRD01, FBYD02, FD02a, FD02b, FD04, FCLG07, F95, FB96, FB97, Fan98, FPY08, FA18, FFB99, FNSW99, FTBVO0, FPFP03, FLPG18, FMS15, FHK01, FKH02, FSC+11, FCS+12, Fin97, Fin94, Fin95, FWNK96, Fin00, FLB+05, FC05, FST98a, FST98b, FJK+17, FKK+96b, FKK96a, FCT96, Fos98, FHPS94a, FHPS94b, FHP+94, FHP+95, Fra95, FWR+95, FKL07, FBSN01, FLS98, FCS1+9, GB97, GF03, GDFD05, GDC15, GV1F+18, GGCC99, GGCM99, Gao03, GGGZ+20, GBR15, GCGS98, GC99, GCB112]. MPI [GGHL+96, Gei00, GR07, GGL+08, GJR09, GSI97, GB14, GB18, GSS99, GR95, GLB00, GRW+19, Gle93, GM13, GMMM18, GT01, GBH99, GFS+18, GHZ12, GSYT21, GAVRRL17, GRRM99, GAMR00, GKS+11, GB98, GMP98, GPL+96, Gra97, GEW98, GBS+07, GLM+08, GL92, GL94, GL94, GL95a, GL95b, GKL95, GL95c, GL96, GLDS96, GL97c, GL97b, GHL+98, GL99, GLT99, GL99, Gro00, GLT00b, GLT00a, Gro01a, Gro01, Gro02a, GL92, Gro02b, GT07, GLT12, Gro12, Gro19, GPC+17, GC05, GSY+13, Gua16, HJ98, HC10, Har94, Har95, HL17, Hat98, HO14, HD02b, HDZ+20, HE02, Hem94, HZ96, Hem96, HRZ97, HZ99,
 MPI-3
[FCS+19, GBH14, GBH18, GLT12, HDT+15].
 MPI-ACC [APJ+16].
 MPI-AMVRAC [KTXP21, TK19].
 MPI-Based [Ada97, FSC+11, RDMB99, SM03, Ada98, AVA+16, GKS+11, Gra97, LRW01, LZC+20, OLG+16, OP08, SZ11, TSCS14, TMP101].
 MPI-basierte [Gra97].
 MPI-benchmark [Ren01].
 MPI-CHECK [LCC+03].
 MPI-CUDA [DR18, YW21, diAMCFN12].
 MPI-DDL [FB97].
 MPI-Delphi [ACGdT02].
 MPI-driven [Hin11].
 MPI-F [FPHS94b, FH+94].
 MPI-FM [LC97a].
 MPI-FT [LNLE00].
 MPI-GLUE [Rab98].
 MPI-GPU [TPV20].
 MPI-Hybrid [CGC+11].
 MPI-I [IRU01, Tsu07].
 MPI-I/O [IRU01, Tsu07].
 MPI-interoperable [YBMCB14].
 MPI-IO [BIC+10, CGC+02, CFF+96, DL10, FWNK96, FSLS98, LRT07, LGG16, PSK08, PTH+01a, SW12, ST09, TGL20, ZZO4].
 MPI-IO/GFPS [PTH+01a].
 MPI-LAPI [BGBP01].
 MPI-Level [LV04].
 MPI-like [CG+10].
 MPI-only [LS10].
 MPI-OpenCL [JNL+15].
 MPI-OpenMP [MS02b].
 MPI-Parallel [DK20].
 MPI-parallelized [KMG99].
 MPI-Performance-Aware-Reallocation [GFIS+18].
 MPI-StarT [Hus98].
 MPI-The [Ano99c, Ano99d].
 MPI-thread [IDS16].
 MPI-Umgebung [GBR97].
 MPI/CUDA [PHJM11].
 MPI/GAMMA [CC00a].
 MPI/GPU [EZBA16].
 MPI/GPU-code [EZBA16].
 MPI/MBCF [MMH99].
 MPI/OpenACC [OGM+16].
 MPI/OpenMP
[ADR+05, GAVRRL17, HDZ+20, HKN+01, JLG05, JR10, KS15a, KN17, KLR+15, KRG13, LLRS02, MDMA19, PZ12, SB01, WT11, WT12, WT13].
 MPI/PVM [ES11].
 MPI/RT [SKD+04].
 MPI/RT-1.1 [SKD+04].
 MPI/SMPs [MLA10].
 MPI1 [Sti94].
 MPI2 [MPI98a, MPI98b, W96b].
 MPI2007 [MvWL+10].
 MPI_Allgather [GmdMBD+07].
 MPI_BARRIER [FGRD01].
 MPI_Loop [GVF+18, HHK+19].
 MPICH [BBC+02, BACH+03, BKH+06, C098, Cot04, GL97a, KTF03, LKJ03, OPM06, OF00, RFG+00, RsT06, SBG+02, TRG05].
 MPIICH-CM [SBG+02].
 MPIICH-G2 [Cot04, KTF03, OPM06].
 MPIICH-GQ [RFG+00].
 MPIICH-V [BBC+02, BKH+06].
 MPIICH-V2 [BCH+03].
 MPIICH2 [Bog07, Gro02b, ZSG12].
 MPICheck [FDL98].
 mpicroscope [Tra12b].
 MPIConeNet [GDM18].
 mpiJava [BCFK99].
 MPIINE [S001].
 MPIPOV [FF99].
 MPIIT [HIP02].
 MPIWiz [XLW+09].
 MPJ [CGJ+00].
 MPL [XH96].
 MPL0* [CRD99].
 MPP [CDJ95, DOSW96, GBR97].
 MPP-Systeme [GBR97].
 MPPs [BRG97a, RBB97a].
 MPPSoC [KKJ+08, KHI0, PSM+14].
 MPPSoCs [MB12, NEM17, SPB+17].
 MPVM [CCK+95].
 MRI [LSSZ15].
 MRO [M13].
 MRO-MPI [M13].
 Multi [Ada98, ABB+10, BRI10, BCPK00, CAWL17, CZE+08, COE20, DK20, DWL+10, EBKG01, FSXZ14, HD02b, HRZ97, JCH+08, JNL+15, KBA02, KT02, LTS16, LCY19, LM13, MLGW18, MG15, MB00, NMS+14, PZ12, RG18, RR02, S209a, ST02a, ST02b, SSB+17, TPV20, WBBH07, YGH+14, ZL18, ACMZ11, AGJM16, BBC+19, BCK+09, DCH02, DWL+12, Fin94, Fin95, FHB+13, HTA08, HE15, JR13, JMM+11, JR10, KSG13, KLV15, KO14, Kom15, LSG12, LS10, LLH+14, MALM95, NSM12, SCB15, SFSV13, SVE+11, SAP16, STR12, TS12b, TFZZ12, VLSPL19, WCC+07, W009, WADC99, WYLC12, ZAFAM16, ZWZ+95].
ZZZ+15, SAP16, SG14]. multi-
[ACMR11, BBC+19, KSG13].
multi-/many-core [KSG13].
multi-accelerator [KLV15]. multi-agent
[ZWZ+95]. Multi-agents [KBA02].
Multi-Array [LTS16]. Multi-cluster
[ST02b, KO14, Kom15]. Multi-Context
[ZL18]. Multi-Core [ABB+10, Bri10,
CZG+08, YGH+14, PZ12, FHB+13, HTA08,
JR13, JMM+11, JR10, LLH+14, SFSV13,
SVC+11, TFZZ12, WCC+07, WYLC12].
multi-cores [WO09]. multi-CPU [SAP16].
multi-CPU/multi-GPU [SAP16].
Multi-Dimensional [HD02b, KT02, RG18].
multi-endpoint [LLH+14]. Multi-GPU
[JNL+15, NMS+14, NSM12, TS12b, SAP16,
SG14]. multi-kernel [SAP16]. Multi-level
[CAWL17, LCY19, LM13, HE15, MALM95,
ZZZ+15]. multi-morphology [VLSPL19].
Multi-Network [BCKP00]. Multi-Node
[HRZ97]. multi-petaflops [LSG12].
multi-programming [WADC99]. Multi-protocol
[MB00]. Multi-Resolution [TVP20]. Multi-Stage
[FSXZ14]. Multi-threaded
[MG15, Ada98, EBKG01, SCB15].
Multi-threading [MLGW18].
multi-valued [Str12]. Multi-Vectors
[DK20]. Multi-versioned [SSB+17].
multi-zenal [Fin94, Fin95]. Multi-Zone
[JCH+08, AGMJ06]. Multiblock
[IDD94, DLR94]. Multicast
[CCA00, CDPM03, ZGN94]. Multicasting
[SE02, multicenter [CwCW+11].
MultiCL [APBeF16]. multicomputer
[SWJ95, TD99]. multicomputers
[HWW97, Yan94, YX95]. Multiconference
[Ten95]. Multicore
[BDT08, CGC+11, CB16, DS16, DGH+19,
GDM18, KDT+12, LNK+15, WT12,
YKW+18, ASB18, CLYC16, GJLT11,
HWX+13, JPOJ12, KN17, LS10, MBBD13,
MM11, Nob08, OPW+12, PDY14, QB12,
RGDML16, WCS+13, WT11, WLYC12,
WT13, YHL11, YWC11, dLANC11].
multicore/many [MBBD13].
multicore/many-core [MBBD13].
Multicores [GDDM17, UGT09].
multidestination [Pan95a].
multidimensional
[CSW99, DMK19, PDY14, ZT17].
multidisciplinary [Fin94, Fin95].
multifold [PIR+20]. multifrontal [IM95].
Multigrain [AZG17, IOK00]. Multigrid
[BCMR00, AGIS94, HIM05, Lou95, Mic93,
Mic95, PSLT99, RM99, Sta95a, TK19,
ZZG+14]. Multigroup [QRG95, QRMG96].
Multilevel [JLG05, PSS01, BAY08,
ETV94, GAM+00, JYY+03]. multimedia
[GFB+14]. multimethod [FGT96].
Multiobjective [RIVRG12].
Multiparadigm [FS98]. Multiphase
[SPH+18]. Multiphysics [NPS12].
Multiplatform [SMM+16]. Multiple
[BSG00, CB16, FGKT97, FBS01, JPT14,
JSH+05, KMM15, LTR00, NTR16, Pet01,
TS12, ZC10, Zhao21, AML+09, ESB13,
GM18, KGB+09, KKL11, SHHC18].
Multiple-Precision [ZC10, JPT14].
multiplication [AKL16, DS13, Fuj08,
TQDL01, FAF16, FJZ+14, XXL13].
Multipole [AAB+17, LCL+12, YBZL03].
Multiported [SG15]. Multiprocessing
[MW93, VGS14]. Multiprocessor
[Pet97, ABCJ95a, ABCJ95b, ADMV05].
MultiProcessors
[BDV03, CC99, HPP02, NPP+04, SBW91,
SS01, Tra98, JE95, KCO6, SYR+09, AGIS94].
multiprogrammed [TSY99].
Multiprogramming [BHP+03].
Multiprotocol [BHK+06]. Multirail
[LVP04]. multiscale [CwCW+11].
MG15, NFK98, OWO98, PSK08, PLR02, RK01, SBQZ14, SR98, Tha98, Tsn07, WSN99, ZJDW18. **O2000** [CML04].

O2WebCL [CHKK15]. **Oberammergau** [BPG94]. **Object** [Ada97, BCFK99, CFKL00, FMSG17, MSL96, PD98, SWL+01, YHGL01, YX95, Ada98, BR91, DM12, LKL96, OKM12, RFH+95, SL94b, TDG13]. **object-based** [LKL96]. **Object-Oriented** [BCFK99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. **Objects** [KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZPLS96]. **Oblivious** [LZH17, LZH18, UALK17, UALK19, HSP].

observations [ZKRA14]. **observed** [CAHT17]. **Occam** [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. **Ocean** [BS93, GAM94, SHH94a, SHH94b]. **octree** [JL18]. **octree-based** [JL18]. **ODE** [Ano97, Bra97]. **ODEs** [Pet97]. **Odin** [BoFBW00]. **OdinMP** [BoFBW00].

OdinMP/CCp [BoFBW00]. **Off** [CGS15]. **Off-Line** [CGS15]. **Offering** [EK97]. **Official** [Ano98]. **Offload** [BRU05].

Offloading [MGA+17, DSGS17, KBG16, TMT+20]. **off** [Rol08a]. **Oil** [FSXZ14, ZAFAM16]. **OKs** [Ano03]. **old** [LK14]. **OMB** [BWV+12].

OMB-GPU [BWV+12]. **OMIS** [LW97]. **Omni** [KSS00, KSSH01]. **OmniRCP** [SHTS01]. **OMP** [SGJ+03]. **OMP2001** [TSB03]. **OMP2012** [MBB+12]. **OMPI** [ACH+11, OM96]. **OmpSS** [ABF+17, PSB+19, VLCM+20, YÁJG+15].

On-Chip [WYZ+19, TDG13]. **On-Demand** [CTK00, LSB+18]. **On-GPU** [LW20]. **On-Line** [BoFBW00, Wis98]. **On-the-fly** [KJSJ14]. **ONC** [RS93]. **One** [BPS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DPFT19, DBB+16, GBH18, KW20, LSK04, MS99c, Obs95, PGK+10, dAMC11]. **one-dimensional** [Ols95]. **one-layer** [dAMC11]. **One-Sided** [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DPFT19, DBB+16, LSK04, MS99c, PGK+10]. **one-step** [KW20]. **only** [LS10, Squ03].

Ontario [GGK+93]. **onto** [OFA+15]. **OOMPI** [MSL96]. **OOPS** [RFH95]. **OPAL** [CwCW+11, NW98]. **OPAL-MPI** [NW98]. **opaque** [SOA11]. **Open** [BGG+15, KDL+95b, WGG+19, AVA+16, KDL+95a, Nob08, GBS+07, VGRS16].

Open-Source [BGG+15, AVA+16, Nob08]. **OpenACC** [CGK+16, CCBPGA15, GML+16, GM18, HTJ+16, HY20, JCP15, KDHZ18, KLV15, Kom15, LB16, LSG12, MGS+15, OGM+19, OGM+16, QHCC17, RLFdS13, SCJH19, Stp20, VGP+19, WLK+18, EVMP20]. **OpenACC-based** [KLV15]. **OpenACC-like** [HY20]. **OpenCL** [ABDP15, APBeF16, ASAK19, AB13, BLPP13, BBC+19, BDW16, BN12, BHW+12, BBH+15, BAS13, CJP19, CDD+13, CP15, CLOL18, C1J+10, CHKK15, CCS19, CCK12, CS14, CLBS17, CBIGL19, CBS18, DARG13, Di14, DWL+10, DWL+12, FAFD15, FLMR17, FDG19, FE17a, FE17b, FSV14, FVL515, dFdosR+19, GScFM13, GDDM17, HHS18, HD11, HE15, HHC+18, JSS+15, JCP+20, JKM+17, JR13, JNL+15, JMDVG+17, KKM15, KH12, KM10, KKL11, KSL+12, KJJ+16, KNH+18, KB13, KP13, Lee12, LWKA15, LNK+15, LWZ18, LL16, LAFA15, MC17, MAIVA14, MU+15, MSZG17, MZLS20, MHSK16, ON12, OTK15, ORA12, PS19a, PCY14, PHW+13, PSB+19,
PSH²⁰, PB¹², RG¹⁸, RWW²⁰, RVK²⁰, RG³¹, RBD¹⁵, RGB²⁰, RRR²⁰, RBB¹⁷, SFSV³¹, SPB²⁺¹⁷, SAP₁⁶, SXM⁺¹⁸, SSB⁺¹⁷, SG₁⁴, SFDL¹⁵, SG₁⁰, Str₁², THS⁺¹⁵, TK₁⁶, TMW₁⁷, TKP₁⁵.

OpenCL
[TY¹⁴, TL¹⁹, WTTH₁⁷, WHMO₁⁹, WZH₂⁶, WTS₁⁹, WQKH₂⁰, YSYW₁⁴, YWT₁⁵, YSL⁺¹², ZWL⁺¹⁷, ZT₁⁷, dAT₁⁷].

OpenCL-accelerated [ZWL⁺¹⁷].

OpenCL-Based
[CLØL₁⁸, MZLS₂⁰, WTTH₁⁷, WZH₂⁶, JKM⁺¹⁷, SXMX⁺¹⁸, WHMO₁⁹].

OpenCL-to-WebCL [CHKK₁⁵].

OpenCL-written [KNH⁺¹⁸]. openFabrics [FCS⁺¹⁹]. OpenFOAM [TGS⁺²⁰].

OpenGL [Ano₉₈, LHZ₉₇, ORA₁₂, Röt₁⁹].

OpenHLMP [Röt₁⁹]. OpenHMPPP
[AAB⁺¹⁶]. openMosix [Slø₅]. OpenMP
[Cha₀₅, CZG⁺⁰₈, CGKM₁₁, CMMR₁₂, EV₀¹, JMS₁⁴, MdB₀⁹, SHM⁺¹⁰, Vos₀₃, OKM₁₂, ST₀₂₉a, ST₀₂₉b, Add₀₁, ARV₀₃, ABC⁺⁰₀, AC₀⁷, AHD₁₂, AAB⁺¹⁷, AELGE₁₆, ACMZR₁₁, ATL⁺¹², ADT₁⁴, ACJ₁₂, Ano₉₇, Ano₀₁₉b, Ano₀₃, AKE₀⁰, ADMV₀⁵, ADR⁺⁰₅, ASB₁₈, AML⁺⁹⁹, AGMJ₀⁶, AM₀⁷, ACD⁺⁰⁹, ABB⁺¹⁰, BST⁺¹₃, BR₀², BHP⁺⁰₃, BME₀⁶, Ben₁⁸, BN₀⁰, BF₀₁, BBHD₁₄, BW⁺¹₂, BCC⁺⁰₀₉a, BCC⁺⁰₀₉b, BGK₀⁸, BGG⁺², BS₀₁, BS₀⁵, BBC⁺⁰⁹, BBC⁺⁰₀, Bra₀⁹, Brio₀₀, BDV₀³, Bds₀⁷, BGdS₀⁹, BFG⁺¹⁰, BGD₁², BC₀⁰, BSO₇, BB₀⁰, BCI⁹b, BK₀⁰, BK₀⁰, BO₀₁, BEG⁺¹₀, BB₁₈, CRE₉⁹, CE₀⁰, Car₀⁷, CB₀₀, CGDL₁⁰, CDK⁺¹, CLYC₁⁶, CM₀⁹, CMI⁹⁹, CHPP₀₁, CBPP₀, Cha₀², CM₀⁵, CjvdP₀⁸, CGKM₁₁, CMMR₁₂, CLA⁺¹⁹, Cla₀⁸, CBYG₁⁸, CCM⁺⁰₆, CCBPGA₁⁵, CC₀⁰b, CF₁⁹, Dab₁⁹, DM₉₈, DW₀₂, DBVF₀₁, DSGS₁⁷].

OpenMP
[HD₀₂a, DGH⁺¹⁹, DFC⁺⁰⁷, DFA⁺⁰⁹, ET WaM₁₂, EBB⁺²⁰, EM₀⁰a, EM₀⁰b, EV₀¹, EdS₀⁸, FGRT₀⁰, FMSG₁⁷, FSG₁⁹a, FSG₁⁹b, FSXZ₁⁴, FM₀⁹, GSA₀⁸, GP₀ⁱ, GSKM₁⁷, GG₀⁹, Goe₀₂, GÁVRRL₁⁷, GSM⁺⁰₀, GAM⁺⁰⁰, GAML₀¹, GOM⁺⁰¹, GAM⁺²⁰, Gra₀⁹, HPP₀², HP₀⁵, HDDL₀⁹, HA₁⁰, HO₁⁴, HD₀²b, HDZ⁺²⁰, HMK₀⁹, HASn₀⁰, HKN⁺⁰¹, HAJK₀¹, HVSC₁¹, HLCZ₀⁰, HT₀¹, HCL₀⁵, HEHC₀⁹, IIJC₁⁰, HHSM₁⁹, HAA⁺¹¹, IIJM⁺⁰⁵, ICC₀², IOK₀⁰, ITO₁², JCP₁⁵, JKH₀⁸, JPOJ₁², FJY₀⁰, JJJ⁺⁰₃, JCH⁺⁰⁸, JMJ⁺¹¹, JLG₀⁵, JRR₁⁰, KB₀¹, KS₁⁵a, KBO₁, KaM₀¹, KO₁⁰, KN₁⁷, KKH₀₃, KT₀₂, KSJ₁⁴, KLR⁺¹⁵, KBP₀⁷, KBG⁺⁰⁹, KSB⁺²⁰, KKV₀¹, KT₁⁰, KH₁⁵, KAC₀₂, KCM₀₆, Kuh₀₈, KPO₀₀, KLM⁺¹⁹, KRG₁₃, KSS₀₀, KSH₀¹, KJEM₁², LOH₀¹, LP₀⁰, LLRS₀², LTS₁⁶, LD₀⁰, LME₀⁹, LLC₁₃, LHC⁺⁰⁷, LNW⁺¹², LRLG₁₉, LHWC₀⁵, LYS⁺¹⁶, LA₀², LA₀⁶].

OpenMP
[LDsB₁⁹, LMRG₁⁴, LHZ₀⁹, LLH⁺¹⁴, MKC⁺¹², MS₂⁰b, M₉₀¹, MV₂⁰, MM₀⁷, MB₁₂, Mar₀², Mar₀₃, MLC₀⁴, Mar₀₅, Mar₀⁹, MPD₀⁴, MCB₀⁵, Mat₀⁰a, Mat₀⁰b, Mat₀¹a, Mat₀₃, MGG₀⁵, MG₀₉, MG₁₂, MG₁⁵, MM₁₁, MFG⁺⁰⁸, MKV⁺⁰¹, MBE₀³, MR₉P₁¹, MM₀₉₁⁹, MMSW₂⁰, MKW₁₁, MM₁₄, MMS₀⁷, MB₁₅, MJBP₁₆, MCDs⁺⁰₈, Mån₀¹, Mål₀², Mål₀³, MBB⁺₁², NO₀²b, Nako₀⁵a, NIO⁺⁰₉, NEM₁⁷, NPP⁺⁰⁰b, NPP⁺⁰⁰c, NPP⁺⁰⁰d, NAL₀₁, NAO₁, NNO₁₀, Nob₀₈, N₀⁵, NHT₀², NHTD₀⁶, OO₅⁺⁰⁸, OP₁₀, OPW⁺¹², PAR₉₄, PP₀₁, PVK₀¹, PK₀⁵, PZ₁₂, PQR₁⁸, PGO₂, PKE⁺¹⁰, Qu₀³, Ram₀⁵, RDLQ₁², RLVRGP₁₂, RBAA₀⁵, SSE₁², SSB⁺¹⁶, SHH₀¹, SHT₀¹, SK₀¹, SLG₀⁹, SG₀², SPL⁺¹₂, Sdr⁺²¹, SHEPT₀⁰, SSA₁², SK₀⁰, SB₁², Stp₀³, Stp₂₀, Stp₁⁸, Stp₂₀, SGL⁺²₀, SGS⁺²¹, TCM₁⁸, TBS₁₂, TS₁²a].

OpenMP
[TS₀²b, TTS₀⁰, TSS₀⁰a, THDS₁⁹, TSCₐM₁₂, TJPF₁₂, Thr₉⁹, TB₉⁺₁², THH⁺⁰⁵, TGBS₀⁵, TMT⁺²⁰, VLSPL₁⁹, VLC₉⁺²⁰, VDL⁺¹⁵, VPS₁⁷, VGS₁⁴, VGP⁺¹⁹, Vos₀₃, Vre₀⁴, Wal₀⁰, Wal₀²,
Wan02, WCC12, WC15, WJG+21, WMK+19, WPC07, WLYL20, WT11, WYLC12, WT12, WLYC12, WT13, YKW+18, YHL11, YWC11, YCL14, YKLD17, YPAE09, YSVM+16, YSMA+17, YYW+12, YCA18, ZAT+07, ZT20, ZShH01, aMST07, dCZG06, vdP17, RM99, SSGF00, WCS13, EVMP20.

OpenMP* [KDT+12]. OpenMP-based [LNW+12]. OpenMP-like [BK00, BK00, KOB01, VGS+14]. OpenMP-oriented [MLC04]. OpenMP-parallel [HHSM19]. OpenMP-style [JPOJ12]. OpenMP/MPI [BEG+10, HMK09, LLC13, LYSS+16, MGG05, NO02b, Nak05a, SSB+16, SK00]. OpenSHMEM [HVA+16]. OpenTuner [BAG17]. OpenUH [HEHC09, LHC+07]. Operating [MMH98, RGD97, TL19, USE94, Wil93, ARS89, Sei99]. operational [KOS+95a]. Operations [BIL99, BIC05, CCA00, FCLG07, FPY08, GFD05, GLB00, PSM+14, PGAB+05, TRG05, TGT05, WRA02, ZLWW20, BMG07, DS13, HMS+19, IDS16, KHB+99, KMH+14, PGAB+07, PKD95, SS99, TFZ+12]. Operators [DK20, KK19, NHT02, NHT06]. opportunistic [CC10]. Opportunities [LB16]. optical [MRH+96]. Optimal [BP99, GAMR00, ZG94, BB95a, ER12, P07, PTL+16, Sur95a]. optimiertes [Sei99]. optimisation [AMuHK15]. Optimising [Boo01, FKH02]. Optimistic [SCL00, CB+12, PY95]. Optimization [AEW+20, BSG00, BNH01, DABA97, Goe02, HS12, Hsu00, ITT02, KGK+03, KMH+14, LCY19, LdSB19, MC17, MBS15, Mül01, NIO+02, NIO+03, PSSS01, SM03, SlL09, SWH15, TRG05, WTH+17, WJ12, AMK+20, BMS19, Cou93, DSOF11, FCS+12, HWS09, HDZ+20, KHS12, LME09, LDK+13, MALM+95, PP16, PS19a, PMM95, SSK01, SDJ17, Stp20, Str12, TMW17, TMT+20, TFZ+12, VSW+13, Was96, XLL13]. Optimizations [NSLV16, SSE12, SYS12, TSS00a, BVML12, HeHC09, LL16, MV+17, SH+19]. Optimize [SlR+21, BBW19, GFV+18, GFIS+18, WLYC12]. Optimized [AKL16, ABG20, AMC+19, Bri02, FADF15, MAIVAH14, PM95, PTH+01a, THS+15, THDS19, WJB14, BKvH+14, EBB+20, MMM13, Sei99]. optimizer [BHR+08, Rag96]. Optimizing [BHG+05, CB+12, FMFM15, KKP01, MBE03, MZLS20, NSZS13, OM96, SSAS12, TGL02, TGT05, GS02, LHC+07, RKBA+13]. Options [RR00]. Orange [ACM98b]. orbit [CFF19, SSN94]. Order [BL95, DFN12, LZH18, EVMP+20, KMB17, KME09, KEGM10, KB13, MYB16, OGM+16, THDS19]. ordering [Zah12]. ordinary [NF94, RBB15, SP11]. Oregon [ACM99, IEE93e, SW91]. Organization [BPC94, JFGRF12]. Oriented [Ada97, BCFK99, FMS+17, LYGG20, MSL96, PD98, YHGL01, ZL18, Ada98, BR91, CJP+19, CBIGL19, DM12, HDZ+20, MGC+15, OKM12, RFH+95, SWL+01, MLC04]. Origin [LL01, LSK04, ZShH01]. Original [Bri00, MH01]. original [RNPM13]. Orlando [ACM98b]. Orleans [IEE96b, USE95]. ORNL [Bor99]. OSCAR [IK00, Sl05]. oscillations [KHB+19]. oscillator [BJ13, GSMK+17]. OSDI [USE94]. OSF [Sch93]. OSWALD [RGB+18]. Other [OP10]. OtOt [DKF94b]. Otto [Ano96a, Ano99a, Ano99b, Nag05]. out-of-core [BL99]. Output [CFF+94, HE02, JW96]. Outstanding [LSB15]. Overcoming [JHK+08]. Overhauling [BDW16]. Overhead [BR02, FST98a, XH96, CRGM16, KC94, KRS99, LZYH91, ZRQA11]. Overheads [BCC+10, BGdS09, BCM11, SS94]. Overlap [ADGA20, BRU05, DCPJ12, DCPJ14, MLAV10, PPS08, SH14]. Overlap-and-Save [ADGA20]. Overlapped [ADGA20]. Overlapping
overlay [KB01, kLCC+06, PKE+10, BBH+15, DIJ+19, MMM13]. *overlay-based [CXB+12].* oversubscription [KC19].

Overview [CFF+96, Gre95, GL95c, Zo93, GHZ12, GPL+06, HHK+19, Wer95]. *OWL [JKN+13]. Ownership [FHB+13]. Oxford [Boi97].

P [CAM12, WHDB05]. **P-RnaPredict** [WHDB05]. **P03M** [BJ93]. **P2P** [GR07, GGL+08, GJR09, RS19, SBG+02]. **P2P-MPI** [GGL+08, GJR09]. **P4** [KS96, Mat94, Mat95]. **P** [CAM12, WHDB05]. **P-RnaPredict** [WHDB05]. **P03M** [BJ93]. **P2P** [GR07, GGL+08, GJR09, RS19, SBG+02]. **P2P-MPI** [GGL+08, GJR09]. **P4** [KS96, Mat94, Mat95]. **P** [CAM12, WHDB05]. **P-RnaPredict** [WHDB05]. **P03M** [BJ93]. **P2P** [GR07, GGL+08, GJR09, RS19, SBG+02]. **P2P-MPI** [GGL+08, GJR09]. **P4** [KS96, Mat94, Mat95]. **P** [CAM12, WHDB05]. **P-RnaPredict** [WHDB05]. **P03M** [BJ93]. **P2P** [GR07, GGL+08, GJR09, RS19, SBG+02]. **P2P-MPI** [GGL+08, GJR09]. **P4** [KS96, Mat94, Mat95]. **P** [CAM12, WHDB05]. **P-RnaPredict** [WHDB05]. **P03M** [BJ93]. **P2P** [GR07, GGL+08, GJR09, RS19, SBG+02]. **P2P-MPI** [GGL+08, GJR09]. **P4** [KS96, Mat94, Mat95]. **P** [CAM12, WHDB05]. **P-RnaPredict** [WHDB05]. **P03M** [BJ93]. **P2P** [GR07, GGL+08, GJR09, RS19, SBG+02]. **P2P-MPI** [GGL+08, GJR09]. **P4** [KS96, Mat94, Mat95]. **P** [CAM12, WHDB05]. **P-RnaPredict** [WHDB05]. **P03M** [BJ93]. **P2P** [GR07, GGL+08, GJR09, RS19, SBG+02]. **P2P-MPI** [GGL+08, GJR09]. **P4** [KS96, Mat94, Mat95]. **P** [CAM12, WHDB05]. **P-RnaPredict** [WHDB05]. **P03M** [BJ93]. **P2P** [GR07, GGL+08, GJR09, RS19, SBG+02]. **P2P-MPI** [GGL+08, GJR09]. **P4** [KS96, Mat94, Mat95]. **P** [CAM12, WHDB05]. **P-RnaPredict** [WHDB05]. **P03M** [BJ93]. **P2P** [GR07, GGL+08, GJR09, RS19, SBG+02]. **P2P-MPI** [GGL+08, GJR09]. **P4** [KS96, Mat94, Mat95].
ZT20, ZWL+17, dH94, ARL+94, Ano94c, Ano94f, ACDR94, BDL96, BS94, BG94b, Bos96, CC95, Cza13, DSM94, DHK97, DW94, Edd18, EJL92, FR95. Parallel
[FF95, GN95, JPTE94, JPP95, KKD05, Kum94, LK10, LkLC+03, Ma95, MKP+96, OKW95, PQ07, QRG95, SSSS96, SPE95, Stp02, TDBEE11, TGE99, Vol93, Vre04, WN10, YC98, ZPLS96, ZDR01, ZHS99].
parallel-programming [KKJ+08]. parallel/distributed [FHC+95, Wan97]. parallele [GEW98]. Parallelisation [SJK+17a, SJK+17b, WCVR96, LF93b]. Parallelism [CGC+11, EdS08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, KT02, Mar03, MGA+17, MMS07, MdSC99, RBA05, SHM+10, SML17, SML91, SGZ00, SGL+20, TCMA18, TTSV00, TPK+19, Th99, YPAE09, ATL+12, AMI+99, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, HY20, JC17, JPOJ12, Kos95b, MMAH20, OPP00, RKBA+13, SLGZ99, SHPT00, THD+05, TWF009, W009, WTR014, WRSY16, YZ14, PGdCJ+18]. Parallelization [AL93, And98, AAB+16, AIM97, BCM11, BS07, CRE09, CP97, Coup93, CF19, Cza03, ETY94, HA10, JR10, Kik93, KLR+15, LP00, MB18, OD01, Pok96, QMRG00, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZWS08, WR01, amST07, AGM06, BW12, BDY99, BJS99, CDD+96, FSG19a, Gao03, Go02, IDS16, IJM+05, JL18, JYJ+03, JMS14, KS15a, K12, KRG13, MCB05, MGG05, MMDA19, Nes10, NEM17, OLG+16, Stp18, TWF009, VBlvdG08, ZT20]. Parallelized [FBSN01, OMK99, KMG99, OKM12]. parallelizer [BHRS08]. Parallelizing [BST+13, Car07, GGH99, IOK00, IKM+01, IKM+02, SR95, ZZ95, AMS94, BY12]. Parallelldatorcentrum [Eng00].
GLT00a, GL04, IBC+10, KTF03, KGRD10, K97, KSV10, KKD04, KK05, LKD08, LK10, Luo99, MPI98a, MPI98b, MTSS94, MS98, MSL96, MES94, MG97, MTWD06, MSS97, NW98, PK00, Pok96, PS01b, RRBL01, RWD09, RFG+00, SWHP05, SWL+01, ST02b, TGT05, TBD00, TBD12, WD96, Wer95, Wis97, YHGL01, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93e, Ano94d, Ano95c, Ano00a, Ano00b, BL97, BvdSvD95, passing [Bjo95, Bru95, BDW97, BFIM99, CGJ+00, CDZ98, CRD99, CD01, DKF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FK94, FHB+13, GL92, HP05, HPY+93, Hem96, KJA+93, Kra02, LR06a, LBD+96, wL94, LCY96, LMM+15, LC97b, MP95, NS91, PS07, PKB06, Pio94, PR94a, PS00b, Se99, SWJ95, SDV+95, SZ99, SSG95, St94, TSC94, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, DiN96, GHHL+96, Han98, Her94, Hem94, RRFH96, SLG95, Wer95, YGH+14]. Past [Dar01].

Path [CGPR98, GSYT21, GAMR00, SDJ17, SLN+12, Zel95]. path-based [SLN+12]. Pathway [CNM11]. PATOP [BFBW01]. Pattern [CSW12, CC17, JPL17, RDMB99, MAS06, SJLM14]. pattern-based [SLJ14]. Pattern-Independent [CSW12]. Patterned [ST17]. Patterns [DMMV97, FPY08, KB08, MS05, PKB+16, RRAGM97, SGH12, SR98, DZZY94, GAVRR+17, HGMW12, LGMdRA+19, PM95, PSK+10].

PC [AH00, CDT05, EKTB99, KS01, LKYS04, RLL01, Ste00, WLYC12, YST08, YL90, ZJHS20, MMB+94]. PC-Cluster [RLL01].

PDGC [CBG+10]. PDP [IEE96g]. Peer [GR07]. Peer-to-Peer [GR07]. PELCR [PQ07]. PEMPI [FB95]. PEMPIs [MOL05]. Pennsylvania [ACM96b, IEE94d]. Pentadiagonal [GNN19, Kan12]. Pentium [Ano03]. Pentium(R) [SBT04]. PENTRAN [KHS01]. people [ASC95, Ano94i]. per-triangle [SA11]. perception [CLM+95]. perceptual [WPL95], perform [CBIGL19]. Performance [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, ACM07, ATM01, AR01, Ano01a, Ano01b, ADR+05, AJC+20, Bak98, BBGL96, Ben18, BN00, BBDH14, BGG+02, BY12, BRM03, BRST94, BS07, BD98, BCKP00, BHNW91, BFMT96b, BFWB01, BEG+10, CGK+16, CVPS19, CDD+13, CRE99, CD95, CGLD01, CBB+21, CNM11, Che99, COE20, CSC96, CBPG15, DPD08, DM95b, DW02, DZ98b, DPP01, DWL+10, DBK+09, EGH99, ECG02, EML98, EML00, FD02a, FGT00, FCP+01, FSC+11, FST98b, FGT97, GFD03, GKP96, GGS99, GBH99, GFIS+18, GRRM99, GBS+07, GC05, GMdMB+07, GSV+13, HVA+16, HKN+01, Hol12, HF14a, HF14b, HPS95, Hus98, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IF95, IRU01, IHHa+00, IADB19, JSS+15, JC17, JCH+08, JS13, JLG05, KDS012, KA10, KL94, KH12, KBS04, KBM97, KC19].

Performance [KKP01, KH15, KOC06, KK02b, KHS01, KS00, LAf01, LAD+15, LWSB19, LCK11, LC97a, LB98, LGCH99, LNK+15, LH98, LC93, LKLC+03, LWZ18, LNW+12, LRLG19, LS10, LWC+03, LVP04, LWP04, LDCZ97, LZHY19, LC97b, LKYS04, MMB+94, MKP+96, MPD04, ME17, MGD97, MGC12, MM02, MM03, MOL05, MS09a, MCH94b, MMSW02, MK04, MCLD01,
Performance [Tha98, TBG02, TGT10, Trä12b, TFGM02, TFZZ12, VF02, VY02, WZM17, WQKH20, WN10, WAS95b, WM01, WT11, WT12, WT13, WYZ19, XF95, XH96, XLI13, YC98, Yan94, YWC11, YS93, YWCF15, YSP10, ZLGS99, ZWJK05, ZHK06, Zho21, ZSnH01, ABDP15, Ahm97, ADLL03a, ADLL03b, Ano03, AFST95, BDP10, AHM97, ADLL03a, ADLL03b, Ano03, AFST95, BDP10, Bet96, BDV03, BFM96, BFT96a, BFIM99, CRE01, CAHT17, CLYC16, CBPP02, CBM10, CHKK15, DM95a, DL10, DO95, D95, DWL12, DE91, Duv92, EFR10, ES13, FAF16, FE17a, FE17b, FS14, FME12, Fin97, GVF18, GS02, GCC10, GK79, GR95, GHZ12, GML16, GSM10, GL96, GLDS96, GL97c, GL99, GWVP14, HDDG09, HW11, HASn90, HAJK01, H95, HK08, HSVC11, HHA95, HG12, HcF05, JKKH08, JIM11, JKN13, KBP16, KKM15, KS13, KSC19, LBD96, LTL94, LFS19, LC07, LML19, LBH12, LCY96, LB96].

Performance [LL01, LKJ03, LSK04, MC17, MP95, MSC15, MSW10, MSL12, MABG96, MHC94a, MSZG17, MJPB16, MGC15, NU05, NFG10, OIH10, Old12, PGS13, PS19a, PHV13, PKG10, PFO5, PMZM16, PTW99, Rab99, RMS18, RPS19, Reu03, RG15, RJDH14, Sep93, SF95, SPBR20, SWJ95, Sl05, SVC11, SK00, SFLD15, TMC09, TSP95, TG09, THM19, VDL15, Wor96, YCL14, ZSK15, ZWL13, dAT17, HS95a, GH94, LCHS96, SSH08].

Performance-aware [MSMC15].

Performance-based [YWC11].

Performance-Driven [LWSB19].

Performance-Neutral [CBB21].

Performance-Portable [JSS15, DWL12, FAF16].

Performance-prediction [BDV03].

Performance/cost [GWVP14].

Performance/power [RPS19].

Performances [GFV99, DS96b, IM94].

Performing [CC99].

Peridynamic [MSZG17].

Periscope [LGG16].

Perishable [OHG19].

Permutations [CC99, LTDD14].

Persistent [Man01, SG12, H95].

Persistent-Sets [SG12].

Personalized [SSS97, personalized [BHJ96].

perspective [Sui18].

perturbation [KN17].

Perverse [Rol08a].

Pessimistic [BCH19].

Petaflops [LSG12].

Petascale

Performance [LL01, LKJ03, LSK04, MC17, MP95, MSC15, MSW10, MSL12, MABG96, MHC94a, MSZG17, MJPB16, MGC15, NU05, NFG10, OIH10, Old12, PGS13, PS19a, PHV13, PKG10, PFO5, PMZM16, PTW99, Rab99, RMS18, RPS19, Reu03, RG15, RJDH14, Sep93, SF95, SPBR20, SWJ95, Sl05, SVC11, SK00, SFLD15, TMC09, TSP95, TG09, THM19, VDL15, Wor96, YCL14, ZSK15, ZWL13, dAT17, HS95a, GH94, LCHS96, SSH08].

Performance-aware [MSMC15].

Performance-based [YWC11].

Performance-Driven [LWSB19].

Performance-Neutral [CBB21].

Performance-Portable [JSS15, DWL12, FAF16].

Performance-prediction [BDV03].

Performance/cost [GWVP14].

Performance/power [RPS19].

Performances [GFV99, DS96b, IM94].

Performing [CC99].

Peridynamic [MSZG17].

Periscope [LGG16].

Perishable [OHG19].

Permutations [CC99, LTDD14].

Persistent [Man01, SG12, H95].

Persistent-Sets [SG12].

Personalized [SSS97, personalized [BHJ96].

perspective [Sui18].

perturbation [KN17].

Perverse [Rol08a].

Pessimistic [BCH19].

Petaflops [LSG12].

Petascale

Performance [LL01, LKJ03, LSK04, MC17, MP95, MSC15, MSW10, MSL12, MABG96, MHC94a, MSZG17, MJPB16, MGC15, NU05, NFG10, OIH10, Old12, PGS13, PS19a, PHV13, PKG10, PFO5, PMZM16, PTW99, Rab99, RMS18, RPS19, Reu03, RG15, RJDH14, Sep93, SF95, SPBR20, SWJ95, Sl05, SVC11, SK00, SFLD15, TMC09, TSP95, TG09, THM19, VDL15, Wor96, YCL14, ZSK15, ZWL13, dAT17, HS95a, GH94, LCHS96, SSH08].
YSVM+16, YSMA+17. Pittsburgh
[ACM96c, ACM04, Ham95a, IEE94d]. Place
[IEE94e, LTS16, BCK+09, HSE+17, PSHL11].
placement [DJJ+19, SLN+12, SPK+12].
Planck [Ano94c]. Planning [GAMR00],
Planning [HMS+19, Ze95]. plant [FO94].
PLAPACK [van97]. plasma
[JL18, DGH+19, YKL17].
Plasmafusionsforschung [BL94]. plasmas
[CFF19]. Platform
[BKGS02, BB18, NO02b, PGF18, WTTH17,
BSH15, CB11, Cza13, DWL+10, DWL+12,
HTJ+16, HHA+95, JR13, KSC+19, NO02a,
XXL13, YSL+12]. Platforms
[AIM97, CO20, HD00b, JML01, OPJ+19,
RVKP19, ZB97, BBC+19, GGC+07,
GFBo+14, MBB13, TKP15, TS12b].
Plesset [BL95, KN17]. PLEIERS [MMR99],
plug [MS99b]. plug-int [MS99b]. plume
[JL18]. plus [HDB95, Stp18]. PMaC
[PTL+16]. PMD [Che99]. PML [Ram07].
PMPIO [FWNK96]. PMPIO-a
[FANK96]. POCI-a [FANK96]. Point
[GBS+07, HC10, KV98, LWSB19, ADL03a,
ADL03b]. Point-to-Point [GBS+07,
HC10, KV98, ADL03a, ADL03b].
Pointers [LRT07]. Poisson [BP98, WJB14].
Poland [BDW97]. Polder [OS97]. Policies
[CML04, PZ12, OHG91]. policy [MMM13].
Polling [DCP12]. Pla02, CDP14, SH06.
Pollutant [RSV+05]. Pollution [AKK+94,
BZ97, MPD04, MSML10, SH94, Syd94].
POLSYS_GL [SMW06].
polygonization [TSP95]. polygons [CT13].
polyhedral [BHR08, KGB+09]. polymers
[JA97]. Polynomial
[VY15, HLM+17, SMW06]. port
[CCHW93, Har94, RJMC93]. Portability
[KaM10, RS95, Rh01, ABDP15, CGK+16,
FE17a, FE17b, HHS18, MGc+15, PHW+13,
QHCC17, Reu03]. Portable
[Ano95c, Ano00b, BHL02, BHS+95,
CDH+94, DHK97, Di 14, FCLG07, FSLS98,
GS94, GL97a, GL99, JSS+15, LNLE00,
Man98, MKV+01, MG97, PPT96a, PBC+01,
SSCC95, SDB+16, St94, Tra98, WSC+13,
YBMC14, YT20, An95, BCK+09, BDIA94,
B000, BL99, BAS13, CvdP08, CH94,
CEF+95, DWL+10, DWL+12, FAF16,
FWNK96, GR95, GL94, GS94, GLDS96,
HTJ+16, HZ94, HSW+12, J9C6, KN95,
LFS93a, LFS93b, LHC+07, MMB+94,
PPT96b, PPT96c, PMZM16, S+19,
SFLD15, Sto98, VM95]. portal [AASB08].
portals [BS96b, BMRL02, BRM03].
Portfolio [SIS17]. Portfolio-driven
[SIS17]. Porting [Ano96c, BSC99, BLW98,
EM02, Har94, Har95, HASP00, KG+03,
KME09, SR96, YKLD17, dCH93, BvB94,
HD11, MWO95, ZPL96]. Portland
[ACM99, ANS95, EEE93e, SW91]. Portugal
[IEE93d, IEE96g]. Positron [Pat93].
POSIX [LD01]. Post
[BBH+13, It616, ABC+00]. Post-failure
[BBH+13]. Post-ISA [Wit16]. Poster
[JLPL17, LK17]. POSYBL [Mat94].
Potential [EGC09, Gro91a, KS15a].
potentials [HDS19]. Potts [KOE14]. POV
[LWZ18, LB96, EZBA16, FO94, HK10,
Ne93, RPS19, SM19, Br95]. Powered
[NE98]. PP [IEE96d]. PPARDB
[PPT96b, PPT96a, PPT96c].
PPARDB/PVM [PPT96b, PPT96c].
PPPE [CDH+94]. PPSN [DSM94].
Practical
[BH96, BCP+97, CZG+98, RHG+96,
TGBS05, AMS94, BRHS08, LPD+11,
McK94, Pau95b, VVD+09, WSL+19].
Practice [ACM11, GN95]. Praktische
[MS94]. Pre [AC17]. Pre-processor
[AC17]. Precedence [EGR15].
Precedence-Constrained [EGR15].
Precise [FJ+17]. Precision
[Ano98, Kha13, ZC10, JPT14]. Precisions
[HDW21]. Preconditioned
[FPZ12, ABF+17, MM92].
Preconditioner [BBS99, FSXZ14].
Preconditioners [Huc96].
Preconditioning [Nak03, GGC+07].
predictability [GRRM99]. Predicting [RRAGM97].
Prediction [MOL05, WHDB05, ZWJK05, ADR+05, BDV03, CMV+94, HHA95, RBA17, SEC15, SC96b, SSN94, Was95a, ZAT+07].
Predictive [FJK+17]. Preemptive [BBH+06, BBGL96].
Preface [DKD07, OL05].
Prefetching [BIC+10, KC19].
Prefix [WJ12, DK13, MYB16]. Preliminary [WJ12, DK13, MYB16].
Preliminary [BF98, Wal01a, WLK+18, RJC95, RLFdS13, SWS+12]. PREMER [VBB18].
Preprocessors [Ano01a]. prescription [MRH+96]. Present [Dar01]. presented [ACM90].
preservation [IEE94c]. Preserving [RNPM13]. Press [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, Edd18].
Pricing [RR00].
Primitives [DDL00, FST98a, ZLWW20, ABDP15, CIJ+10, STP+19]. Princeton [Bha93].
principles [BSC99, HS12, SSP+94].
printing [YM97]. priority [DR95, Man98].
Prism [SDN99]. private [Str94].
privatization [KRG13]. Probabilistic [LAdS+15]. Probability [QRMG96, Sta95b].
Problem [BHH15, DALD18, DAK98, GAMR00, ICC02, Lee06, MTSS94, RLVRGP12, ZSNh01, ABB3b, DMS94, GM94, GKF13, HMKV94, HII05, MM92, RRJ+20, SL00, SP11, TCS14, Zax13]. Problems [ASA97, BHM94, BHM96, BMR01, BPMN97, CGPR98, EML08, HAA+11, DK02, LSM+18, MBS15, Nak03, Riz17, AL96, CEGS07, FR95, JRG21, LSR95, NZZ94, OMK09, SC96a, SD99, TGS+20].
procedure [AGLvd96].
Proceedings [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM04, ACDR94, CJNW95, GN95, Hol12, IEE93f, IEE95d, IEE02, KG93, LCK11, MC94, RV00, R+92, SM07, Ten95, TG94, dGJM94, ACM96b, Ano94e, Ano94i, BPG94, Boi97, BH95, CLM+95, DSZ94, DE91, EJL92, FF95, GHJ+93, HK95, HHH94, IEE94a, IEE94b, IEE94c, IEE95b, IEE95f, IEE95a, IEE97c, IEE05, JPTF99, Kum94, LF+93a, Li96, PSB+94, PBPT95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM05, ACM06b, ACM06a, ATC94, Agr95a, AGH+95, AH95, Ano89, Ano92, Ano94a, BBG+95, Bha93, CHD07, CZG+08, CGKM11, CMRMR12, CGB+10, CNDD11, DKM+92, DT94, DLO03, EV01, Eds08, ERS95, ERS96, Fer92, FK95, Gat95, GGK+93, GA96, GT94, Ham95a, HS94, HK93, IEE91, IEE92, IEE93d, IEE93c, IEE93b, IEE93e, IEE94e, IEE94d, IEE94f, IEE94h, IEE94g, IEE95b].
Proceedings [IEE95k, IEE95i, IEE95f, IEE95i, IEE95g, IEE95j, IEE96g, IEE96e, IEE96d, IEE96h, KGRD10, LKD08, MTWD06, MMH93, MdS+08, MdSC09, Ost94, PR94b, Ree96, RWD09, SCH9+10, Sie94, TBD12, USE94, USE95, USE00, VW92, Vos03, Y+93, YH96, AD98, BG91, BDLS96, BS94, Bos96, BFMR96, BDW97, CH96, CD01, DSM94, DKD05, DW94, DMW96, DLM99, DKP00, Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97a, Kra02, KKD04, LCHS96, Mal95, PBG+95, Sch93, Tou96, WV95, Vol93, Was96].
Proceedings. [Ano93f, Ano94g, IEE96i, IEE97b, LHHM96].
Process [AUR01, BGL00, CLL03, DeP03, DK06, FDG97a, FDG97b, FLD98, FPY08, KCP+94b, KOW97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HG12, JLS+14, KCP+94a, MLVS16, MK00, SHHC18, Ste96].
Process-Management [BGL00].
processed [HJ98].
Processes [CB16, MW98, Pet00a, Pet00b, FS95, GFIS+18, SOYHDD19, SPK+12].
Processing [ATC94, Agr95a, AR01, BBG+95, DKM+92, GCCM99, GCCGO01, HJBB14, IEE93b,
IEE93f, IEE95e, IEE95h, IEE95f, IEE95g, IEE96b, IEE96g, IEE96d, IEE97b, IEE95, IOK00, JDB+14, KO101, KS15b, LSVMW08, MLGW18, MC18, MSML10, Nar95, NH95, NJ01, OW098, PLR02, PD98, RRee96, RRBL01, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, ASB18, BJ13, BHS18, BFMR96, CFPS95, CLASPDP99, DS94, FWS+17, GDC15, GGGC99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kum94, LHLK10, LG93, PSB+94, PBPT95, RKB+13, Röhl00, RCG95, SSS99, SLS96, VDL+15, Wol92, WWFT11.

Processor [HC06, Oed93, Ott94, PWP+16, RR02, Smi93a, SBT04, UALK17, UALK19, ABDP15, AC17, DJJ+19, DCH02, HC08, LL01, MMDA19, OIS+06, RNPM13].

Processor-Oblivious [UALK17, UALK19].

Processors [AJ97, Bri10, DDP+19, HK93, HK95, KmWH10, MJB15, OLG01, PZKK02, AV18, BBG+14, CBM+08, DBLG11, HTA08, HWX+13]. Producing [HAJK01].

Product [CMH99, ER12, SMSW06].

Production [IADB19, CLdJ+15, SL00].

Productive [LV12].

Productivity [BS07, DSU20, KaM10, Wit16].

Products [Ano97, Bra97].

Profile [TWF009, WTH014].

Profile-driven [TWF009, WTH014].

Profiler [AS92].

Profiles [Wil94].

Profiling [AJC+20, GPL+96, LZYH19, Rab99, Vet02].

Profitability [CLA+19].

Program [Ano96d, AB93a, BMS94b, CHPP01, Cot97, EML98, MM95, MK17, MRV00, Ney00, PS01b, TSY00, THNO0, UTY02, CDZ+98, JF95, LP00, LLC13, OKM12, PFP89, Sa10, TNIB17, TMPJ01, ZL96].

programación [VP00]. Programmable [OA17].

Programmable [BL94].

Programmer [Gua16, Wit16]. programmers [CGG10].

Programming [ACM90, Ada97, ACGR97, ASA97, ACJ12, Ano96b, BBG+10, BLP93, BHV12, BF01, BBG+99, BBG+01, BKO00, CMK00, CDK+01, CKmWH16, Cha02, CZG+08, CF01, Cza03, DM98, DSU20, DARG13, DL00, DK06, DLW+10, EM00a, EM00b, FTVB00, FWR+95, GLRS01, GLS94, GLS99, HA11, HDB+12, HDT+15, KKH03, Kep05, KP96, KmWH10, KVH97, Lad04, Lao01, LLRS02, MSOR01, Mat94, Mat95, MSM05, MCIS+08, NO02b, SP+10, SK10, SS01, SDN99, SHH94b, ST02a, ST02b, SGS10, Sp02, TTP97, VTH97, Vre04, Wal01a, Wal02, WO97, YM97, YHGL01, YCA18, ACGr02, AmuHK15, Ano95c, Ano00b, AB13, BJ13, BCA+06, BB94, BS96a, BKH+13, CPM+18, CLYC16, Cha05, CJvdP08, CEF+95, CDH+94, CGH+14, DLW+12, Duv92, EASS95, EVMP20, EV01, FSG19b, FB95, FB96, Fun98, FSTG99, Fer04, Fra95].

programming [FHB+13, FF95, GKR12, Ge96, GBH14, GBH18, GRTZ10, HTA08, HS93, HDZ+20, HZ94, HDB+13, HSVH95, HSW+12, HZG08, HY20, KDSO12, KOB01, KSG13, KSL+12, KLV15, KPNM16, KFSS94, KKJ+08, LV12, LFS93a, LFS93b, LH98, LPD+11, LLH+14, MMB+94, MVTP96, MSP93, MC99, MGC+15, NO02a, Nak05a, NYNT12, NBGS08, OIS+06, Ohu14, OW92, Pac97, PVKE01, PF05, Qui03, RBW+20, RJDH14, STP+19, iSYS12, SSKF95, SYR+09, Seg10, SPK96, SBF94, SPL99, SHH94a, SD09, VP00, Vos03, Wal01b, Wan02, WCC+07, WADC99, WYLC12, WYLC12, YHL11, YWC11, YXX5, YZ93, ZGC94, DR94, HSE+17, Che10, SD13].

Programs [AJF16, Beg93b, BKdSH01, BGK08, BGG+02, BDL98, BGL00, CSW12, CRE09, CHPP01, CD98, DLB07, DMMV97, DI14, FKH02, FJK+17, GR07, GTH96, GSYT21, GL04, GC05, HC10, KHN+01, HM01, JLGR05, KFL05, KL94, KJS14, KKV01, KSVO1, Mar09, MYY95, MOL05, MBE03, MKW11, MCLD01, MJB15, MNS03, NE98, NE01, NPP+00d, OM96, PPJ01, RH01, RFG+00, SGZ00, SBF+04, SR96, TGBS05, Wel94].
Wis97, ZLL+12, Beg92, Beg93c, Beg93a, BCR+09, BMS03, CRE01, CDLDj+15, CGL+93, CH94, CRM14, CPF96, DKF93, DKF94b, EP96, EPP+17, FSG9a, FLB+05, FKL08, GGH99, GRRM99, GKS+11, GB94, HD11, HZ96, HLOC96, HEHCO9, KCD+97, KS13, KO14, Kom15, KLM+19, LGKQ10, LLG12, LBB+16, LYSS+16, LMM+15, LZC+02, LCC+03, MT96, MSAS+18, Mor95, NBK99, Obe96, OdSSP12.

programs [PES99, PAdS+17, RAS16, Reu03, RRG+99, SSB+16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THH+05, TGL19, UGT09, VVD+09, YSVM+16, YSMA+17, YYW+12, ZJDW19, ZRQ11]. Progress [BRU05, LAdS+15, SPH+18, DJJ+19, MLA+14, RSC+19, MC94].

Progress-Dependence [LAdS+15].

Project [BHK+06, BSH15, DHK97, MRV00, ABC+00, CDH+94]. Promise [Ano93f].

Promotion [OCY+15, WBBD15].

Propagation [EMO+93, ESM+94, JML01, SMOE93, ASA919, KEHM10, RMNM+12]. proper [TGS+20]. Properties [FGR+00, JL18, MS96b, SP+94]. Proposal [DHHW92, DHHW93a, DFC+07, DFA+09, ZK14]. Proposals [Wal96b]. protected [CHD12]. Protein [RGB+18, GÁVRL17, SEC15, ZAT+07]. proteins [BH+12, BBH+15, FMS15].

Protocol [CAWL17, GSY+13, KLL11, LMM+15, RA09, XF95, BBD+13, CwCW+11, DDYM99, MN91, MB00, ZP106].

Provide [Add01, LMRG14]. Provides [Ano98, Nel93]. Providing [GKP97, Zah12].

Proving [MS96b]. PRS [UCW95]. pruned [dFdOSR+19]. Pruning

Pthread [ZAT+07]. Pthreads [AS14, TS12b]. Public [Str94, GWVP+14, Nel93, RST02].

Public-private [Str94]. Pulsar [WTS19]. pulse [ASA19]. Puma [BS96b]. purely [HSE+17]. Purpose [AJYH18, BDT08, Che10, SZBS95a, Sun94a, ABDP15, CBM+08, KPNM16, PF05, SK10, SSD+20, SZBS95b]. PVaniM [BLCN97, TSS98]. PVFS [IRU01]. PVM [AD98, BL94, BDL96, BDW97, CHD07, CHD90, CD01, DKO05, DL09, DK00, DLO03, KKO04, LCD98, MC96, MTW98, NW90, AJ97, AHH97, AS92, ACGR97, ADCT98, AL92, AGR+95, ASA97, AL96, ARL+94, AKK+94, AP96, Ano94b, Ano95e, Ano96b, Ano96c, ABC195a, ABC195b, ABG+96, AGLv96, AB93b, AB93a, ADMV05, BSN95, BLP93, BFFL99, BBGL96, BG95, BS93, BDG+91a, BDG+92b, BE92, BDG+93b, BDG+93a, BE93b, BE93c, BE93a, BDG+95, BS96a, BDG+95b, BS95, BR95b, BBR96, BRS97, BT96, BWT96, BG94a, BG94b, BG94c, BMR99, BCD96, BRR99, BFZ97, BID95, BMS94b, BFM96, BFMT96a, BFMT96b, CMV+94, CP97, CD95, CK0+94, CCK+95, CSPM+96, C295a, CGP98, CG93, CDHL95, CDH+95, CF01, CZ96, CS96, CG96, CG99a]. PVM [CSC96, CDP93, CDG96, CPR+95, CT94a, CT94b, CFP96, CT94, CD98, CTK01, DG95, DKF94a, DDYM99, DM95b, DM95a, DP94, DMMV97, DG97, DFN12, D+91, DG9M93, DGJM93, DHP97, DPZ97, EP96, EM94, EGDK92, ED94, EM02, EML98, EML00, ES11, EMO+93, ESM+94, EK97, FMM99, FD96, FLD96, FH95, FSH09, FO94.
FSTG99, FJBB+00, Fin97, FD97, FS97, For95, FS93, GRV01, Gal97, GCBM07, GS91a, GS91b, GS92, GS93, Gei93a, Gei93b, GDB+93, GBD+94, Gei96, GKP96, Gei97, GKP97, Gei98, GSxx, Gei00, Gei01, GTH96, GB96, GM95, GSHL02, GFV99, GG99, GS96, G¨or01, GHL97, Gre95, Gre94, GL97b, GMU95, GiiLyC97, HB96a, HB96b, HSMW94, HI98, Har94, Har95, HBT95, HPS+96, Hem96, HEH98, HTHD99, HVSH95, HH95, HRSA97, Huc96, Hum95, HS95b].

PVM [ITT99, IvdLH+00, IDD94, IKM+01, IKM+02, JAT97, JH97, JML01, JW96, JC96, KBA02, Kat93, KK98, KP96, KBM97, KDL+95a, KDL+95b, KG96, KCP+94a, KCP+94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAHS96, KL95, LC93, LY93, LW95, LHZ97, LKL96, LDC97, MW98, Man94, MVT96, Man01, MP95, dlfMBdFM02, MTS94, MTFB95, MSCW95, MSP93, Mat94, Mat95, MMU99, Mat01b, MRV00, MK97, Mc94, MFC98, MV95, MS96b, Me93, Mi95, MT96, MS99a, MS99b, MHC94a, MHC94b, MRH+96, MS95, MC99, MWO95, Ne93, NP94, Neu94, NKB99, Ney00, NB96, NAJ99, Nov95, Obe96, Ols95, OPP00, Ott94, OWS95, PPR01, PK98, PPT96b, PPT96a, PPT96c, POL99, PT01, PKYW95].

PVM [Per96, Pet97, PTT94, PGPCK21, Pla02, PV01, PD98, PY95, PL96, Pus95, QRG95, QRGM96, Qu95, QMGR00, RR93, Rag96, RS95, RHL+96, RAGGM97, Rol94, RGD97, Saa94, SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98, SG95, SSH99, SPK96, Sep93, Sev98, Sh94, SA93, SR96, SSH94a, SHH94b, Sm93a, SBR95, SC96a, ST96, SMOE93, SGL+00, SGHL01, SCL97, SSH97, Sta95b, SY95, SYF96, SC96b, Str94, SK96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SGDM94, Sun96, STMK97, SN01, SCL00, Surf95b, Surf96, Sl95, TMT96, TC94, TBD96, TD98, Ts95, Uhl94, Uhl95b, UH96, UK97, VSR94, VSR95, VB99, VAT95, WK96, WH94, WCV96, WAS95b, WO97, Wis96a, WL96a, Wis98, Wis96b, WL96b, WCS99, Wu99, WLC07, XWZ96, XF95, YG96, YK+96].

PVM [ZPLS96, ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, ZG98, Zoll93, van93, NMC95, An95b].

PVM-AMBER [SL95].

PVM-Based [WAS95b, FO94, PY95, Sut96, ZPLS96, LSZL02, TD98].

PVM-GRACE [YKI+96].

PVM-Implementation [BJ97, Huc96].

PVM-RPC [KS97].

PVM/C [GTH96].

PVM/OMPI [AD98, BDW97, CHD07, CHD09, DLM99, DKP00, DLO03, Kra02, KKD04, LKD08, RWD09, ACR97, SN01].

PVM3 [IM94].

PVM3/AP1000 [IM94].

PVMa [Pet00a, Pet00b, Pet01].

PVMe [BR95c, BR95b].

PVMaple [DZDR95].

PVMPI [FD96, FD97a, FD97b].

PyCUDA [KPL+12].

PyOpenCL [KPL+12].

pySDC [Spe19].

pySDC-Prototyping [Spe19].

Python [BL97, DPS05, DPSD08, Di14, GFB+14, SSH08].

PyTrilinos [SSH08].

Q [KMH+14, LM13, MV17], QAPs [Ts12].

QCD [BLPP13, GM18, SVC+11], QCQG [ACH+11].

QCG-OMPI [ACH+11].

QCMPI [TJD09].

QNSTOP [AEW+20].

QoS [LYGG20].

QoS-Oriented [LYGG20].

QR [GKK09, LC97b].

QATS [Hin11].

QSW_MPI [MW21].

Quadric [Cza13].

Quadrics [YST+05, LCW+03], quadtree [HS95b, PGBF+07, SCC96, Sur95b, TK19].

quadtree/octree [TK19].

quantitative [BLP93].

Quality [Boi97, BDA+18].

Quantifying [AKE00, LDC97, TPK+19].

quantitative [BLP93, BBH+15].

quantization [HE15].

Quantum [BCGL97, BCL00, GRTZ10, Hin11, MW21, MGG05].
Quasi [AEW+20, DDYM99, Pla02, ZB97].

Quasi-asynchronous [DDYM99].

Quasi-Newton [AEW+20, ZB97].

Queens [Rol08b].

Queensland [ACDR94].

Query [AR01].

Quest [MWG97].

Queue [NSS12, CG99b, PTL+16, Sep93, ZA14].

Queueing [COE20].

queues [Man98].

quicksort [MMO+16, MMO+16].

R [Edd18, BBH12, JPOJ12, LR01, Mat16].

R&D [Str94].

R&D-100 [Str94].

Race [CFMR95, KSSJ14, DFK94a, PGD18].

Races [PPJ01, SAL+17, DFK94b, LLG12, ZRQA11, EPP+17].

Radial [RB01, KRC17].

Radiance [GCBM97, KMG99, RC97].

radiation [NS20, SCJH19].

Radiology [GA96].

Rajeev [Ano00a].

Raleigh [Agr95a].

Ramesh [Stp02].

Random [HT08, LTDD14, CCS19, Lan09].

Randomized [DSU20, Tra98].

Range [KBM97, MH01, BMPZ94a, PARB14, She95].

range-join [She95].

Rank [Hat98, ZLWW20].

Ranking [Tra98].

Rapid [FWS+17].

RASC [YCL14].

rate [BBG+14, YPA94].

rationale [BBH+13b].

Raton [Edd18].

Ray [CG93, DP94, KGB+09, FWS+17, SG95, FFB99].

Ray-Tracing [DP94].

Rayleigh-Benard [TV96].

Rayleigh-Brink [TV96].

rdCUDA [CPM+18, IPG+18, PRS16, PS19b, PIR+20, RSC+15, RPS19, RS19, SIRP17, SPBR20].

RDMA [GSY+13, LW04, Pan14, RA09].

RDMA-Based [LWP04].

RDMA-Enabled [GSY+13, Pan14, RA09].

Re [MCP17].

Re-Vectorization [MCP17].

Reaching [BHS+02].

Reaction [HF14a, HF14b].

Reactive [BCL00, KSB+20, Heb93].

reactor [ANS95].

Read [SSLMW10].

readability [SM12].

Reading [HK95].

Ready [Bri02, DZ98b].

Ready-Mode [Bri02].

Read [ASB18, LHLK10, NEVL16, SM19, SGL+20, TWLL19, Tho94, UP01, YGH+14, Ano94f, Fer04, FLB+05, JR10, ZWZ+95, SKD+04].

Real-Time [SLG+20, TWLL19, UP01, YGH+14, ASB18, LHLK10, SM19, Fer04, ZWZ+95, SKD+04].

Real-World [NSLV16].

Realistic [YMYH01, ZShH01, CKP+93].

Recaf [ACM96a, Ano93f, NM95, WIT16].

realizing [YZ14].

Reallocation [GFIS+18].

rebooting [GJLT11].

Receive [Bri02].

Receiver [ZG95b].

receptor [ESB13].

Rechnen [Ano94c, BL94, MS04].

Recognition [CC17].

computations [RKBA+13].

Reconfigurable [FDG19, MFC98, SPM+10, ZL18, NYNT12, RRJ+20].

Reconfiguration [CS14, SMMC15].

Reconstruction [BM97, DYN+06, GA96, LSSZ15, OIH10, RAGJ95].

Record [UALK17, UALK19, CRD99].

Record&Replay [KSV01].

record/replay [CRD99].

Recovery [SBF+04, BBH+13b, BDB+13, LFS93a, LFS93b, SSCC95, SRS+19, ZWZ05].

Rectangle [CSW99].

rectified [WBBD15].

Recurrences [ACGR97, MB18].

Recursive [DSS00, PWP+16, SM19, SD99].

Red [van93].

redesign [HL17].

Redistribution [DDPR97, HC06, WC95, WC96, HC08, KN95].

Reduce [CBH+20, SPM+14].

Reduced [SW12].

Reducing [AV18, CRGM16, JE95, BCM11].

Reduction [DAD19, FKH02, MFPP03, SG12, HL17, Jes93a, MLVS16, Pan95a, PQ07].

Redundancy [TS12a].

redundant [KJJ16].

Reference [GHLL+98, Nag05, SOHL+98, YM97, Ano99a, Ano99c, Ano99d, Ano99e, SOHL+96, Per97, Ano96a].

Refinement [MRB17, Ran05, CLSP07, DLR94].

region [SPNB14].

region-based [SPNB14].

regions [LFL11].

Registration [WYZ19].

recession [RBA17].

Regular [HLP11, NHT02, NHT06].

Reims
RELAP5 [SBR95]. related [SD16].
Relating [EPML99]. relation [DO96, Hem96]. Relationship [Dan12].
relativistic [BHS18]. relaxation [OKW95].
Reliability [CGZQ13]. Reliable [SE02, Arn95]. remapping [LW20].
Remark [SWH15]. remedies [ALW+15].
reproduce [AVA+16]. reproducibility [HD00a]. Reproducible [GL99, HCA16, XLW+09]. Requests [KLH+20]. Requirements [GSHL02, GT07, LPJ98, Ber96, KBG16, LCVD94a].
Research [Ano96d, BR02, MC94, SL94a, SGHL01, Ara95, BPG94, LP00, Oed93].
Reservoir [KDHZ18, OWSA95, ZAFAM16, ZZ95, Ano95d]. Resident [JBB+14].
ring [ZZZ+15]. RISC [AL93, NMW93, BSvdG91]. RMA [BBW19, FCS+19, SPH+18]. RNA [WHDB05]. RnaPredict [WHDB05].
[Add01, Sch96a, LSK04, Sch96b, VLMPs+18].

Routing [BHM94, BHM96, MTSS94, MBES94, WH94, BS94, Zah12]. **RPC** [KZCS96, KS97, RS93, SHTS01]. **RPVM** [CMM03, LR01]. **RS** [BGBP01, Con93, Heb93, MW93]. **RS/6000** [BGBP01]. **RS/6000** [CDM93]. **RSA** [WLC07]. **RT** [KAMAMA17]. **RT-CUDA** [KAMAMA17]. **RTL** [BGG+15]. **RUBIS** [BR94]. **Ruby** [Ong02]. **rules** [SFID15]. **Run** [CBB+20, CBB+21, DLR94, DGMJ93, FHK01, GOM+01, OP98, SBW91, SPB+17, SS96, KPL+12, RRG+99, Str94, TCVB10].

Run-Time [CBB+20, CBB+21, FHK01, GOM+01, OP98, SPB+17, SS96, DLR94, SBW91, KPL+12, TSY99, TCVB10].

Running [BZ07, CCM+06, YKI+96, CRE01, ZLZ+11].

Runtime [AB+17, BGD12, CFF+94, DMB16, DT17, DCSL05, Gro00, KB04, KCR+17, NPP+00d, PG18, SDr+21, TJFP12, YSS+19, ZLP+17, AKB+19, ALW+15, BL99, BR94, EPP+17, EO15, HPS+12, HPS+13, KW14, LRLG19, LLH+14, MA09, NPP+00a, TSY00, YAJ+15]. **Runtime-compilation** [PG18]. **Runtimes** [AHHP17]. **Russia** [Mal95]. **RWA** [RLVRGP12].

S [AHHP17, Rö00]. **S-Caffe** [AHHP17]. **S-language** [Rö00]. **S1** [GLT00b]. **S3D** [LSG12]. **SAEO** [GTYT21]. **Safe** [Pla02, GCC99, LFS92, LFS93a, LFS93b, NYNT12]. **Safety** [CLA+19, GT07]. **salesman** [GM94]. **Salt** [H012]. **sampling** [CBS18, SOYHDD19, WLYL20]. **San** [ACM97b, Ano95d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IEE95b, IEE95g, IEE97c, LF+93a, NM95]. **Sanders** [Che10].

Sandy [VDL+15]. **Santa** [ACM95b, AH95, IEE95f, Old02, RV00]. **Santorini** [CD01, CDND11].

Santorini/Thera [CD01]. **Saphir** [Ano99c, Ano99d]. **SAR** [AB95]. **Satellite** [Uhl94, Uhl95b, SSN94]. **Satisfiability** [IKM+01, IKM+02]. **saturated** [TOC18].

Saturday [B+05]. **Saturday-Wednesday** [B+05]. **Save** [ADGA20, KFL05, FKL08]. **Saving** [CBB+21]. **SBS** [MSB97, WWZ+96]. **SBS-Type** [MSB97]. **SC** [K11]. **SC2000** [ACM00]. **SC2001** [ACM01]. **SC2002** [IEE02]. **SC2003** [ACM03]. **SC97** [ACM97b, ACM97b]. **SC98** [ACM97b, ACM97b]. **SCC** [KPL]. **Scalability** [Ben18, BS07, FSC+11, KBS04, LL01, LKYS04, LSK04, VLSPL19]. **Scalable** [Add01, AHHP17, BHW+17, BBC+02, BHNW01, BGL00, CGB15, CDPM03, EFR+05, GFB+14, GSS94, HC17, HGMW12, IEE92, IEE94f, IEE95j, IBC+10, KTB+19, KK98, LTS16, kLC+06, MFPP03, NBS98, NPP+00d, NCKB12, NSM12, OL01, PPJ01, Pr94b, PBK00, SD17, SBF+04, Sk93, SS96, TPD15, TVP20, UP01, VBLvdG08, VY02, ZLGS99, ZL18, BBB+94, Bri95, CLSP07, FWS+17, GBH14, GBH18, GM13, GKL95, HRR+11, HAJK01, KRC17, KRG13, L99, LTL94, MMB+94, MRRP11, PWD+12, SPK+12, Tri12a]. **ScaLAPACK** [BV99, BRR99, DH97].

Scale [A00, AFR18, BHW+17, BZ97, BHNW01, CBB+20, FF03, HC17, MFPP03, SM03, TEGM09, WMC+18, WT12, AAS08, BK20, BCA+06, BJS99, BCH+08, Che99, DZZY94, FME+12, Gua16, IEG+18, Kos95b, LS10, MLA+14, PTL+16, PD11, RMNM+12, SIC+19, Svl99, TBB12, WLN06, WT11, WT13, ZKRA14, ZA14, Ben18].

SCALE-EA [Ben18]. **Scale-Out** [AFGR18].

Scale-Up [AFGR18]. **SCALEA** [TFGM02].

Scaling [CC17, GDS+20, KFL05, SLJ+14, FKL08, Gao03, LFL11, PDY14]. **scans** [AAA16, YLZ13]. **scanline** [CT13]. **scans** [NAJ99]. **SCASH** [SHH01]. **SCATCI** [ART17]. **scatter** [BCD96, MK16].

Scattering [BCL00, NZZ94, OKM09]. **SCF**
MM95. schedule [NAAL01]. scheduler [ADDR95, TCBV10, WRSY16]. schedulers [AV18, NP12]. Scheduling [BBH+06, BSH15, CML04, DMB16, EGR15, GDM17, GSHL02, GHL97, HC06, JW96, MJB15, NIO+02, NIO+03, SM19, SNN+20, SGL+20, TJPFI2, WJG+21, APBcF16, DZ98a, HC17, JKN+13, KSC+19, LHCT96, MBKM12, NSBR07, OPW+12, Smi93b, SKK+12, SKB+14, WYLCl2, WLYC12, WYC11]. Scheme [CTK01, LNLE00, MW98, SBF+04, BBG96, Bjo95, MRRP11, OKM12, SCC96, YPZC95, FM90]. Schemes [HC17, PPJ01, MPS20, WYLCl2, WLYC12, WYC11]. Schmidt [CBYG18]. School [VV95]. Schrödinger [DM12, ON12]. SCI [FS97, HEH98, Hus00, RR01, ZHS99]. SCIDDLE [ABG+96, AGLv96]. SCIDDLE-PVM [ABG+96]. Science [Edd18, BGG+02, LWSB19, LKLC+03, Mar06, Nag05, Sin93, SSB+17, VY02, Biso4, DW94, SBG+12, SIC+19, TBB12, WT13, Ano97, Bras97]. Scientists [HW11, Str94]. SciPAL [KH15]. SCIPVM [ZHS99]. Scope [OL+15, BDB+13, WBBD15]. scavenging [RDLQ12, WC15]. Scratches [JAK17, MB12]. Scratchpad [JAK17, MB12]. Scripting [Ong02, KPL+12, Nob08]. scripting-based [KPL+12]. SCTP [KPW05, ZP106]. SDK [TK16]. SDDS [CCM+06]. Sea [LPJ98]. Seamless [KK02a, LD19]. Search [BSS01, Cza13, IKM+01, Wal01a, WTS19, FMS15, IKM+02, RRJ+20, Wal01a, ZSK15, CB11]. Searches [BSG00]. Searching [JPT14, MM01, BA06, Wal01b]. Seattle [ACM05, BS94, LCK11, Ost94]. Second [Ano00b, BL95, DTM94, DE91, IEE94d, IEE96d, IEE96i, LHHM96, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFRM96, DMW96, FR95, KN17, Li96]. Second-Order [BL95, KN17]. Secondary [WHDB05, SEC15, ZAT+07]. section [Ano93b, DKD08]. segment [FJZ+14]. segment-based [FJZ+14]. Segmentation [KBA02, AD95, CCE19]. Seidel [BG95, LM99, Os95]. Semiconductor [GJN97, AM05, LS10]. Seminar [GJN97, Ana03, LS10]. Send [GPC+17]. Sender [BBH+03]. Sensed [GGC95, GGC001, GSGS98, VLO+08, GGGC99]. sensitive [GKCF13]. Sensitivity [dLR04]. Separable [Ben01, CdGM06]. September [Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CL+95, CHD07, CJNW95, CD01, CDDN11, DKD05, DKD07, DLM99, DKP00, DLO03, EJL92, FK95, FR95, GHH+93, IEE93d, IEE94c, JPT94, KGRD10, Kna02, KKD04, LKD08, Mal95, MTWD06, OL05, PSB+94, RWD09, SPH95, SM07, TDB12, VV95, VW92, WPH94, YH96].
Sequence [GMU95, SMM+16, AMHC11, TSZC94].
sequences [dFdOSR+19, GÁVRR17, SDM10].
Sequencing [VPS17]. Sequential [EK97, RPM+08, GGH99, SR95, TNIB17, TSZC94].
Serial [SWH15, HPS+96, HWS09].
serialization [CFKL00]. Serialized [KH10].
Serialles [BL94]. Series [Nag05, BR94].
Server [Ano93f, AFGR18, FSLS98, KS97, Mat01b, Sch93, St09, Vis95].
Server-Class [AFGR18]. serverless [NRdA+20].
Servers [CGC+02, SIS17, GK97]. Service [RFG+00, LS08, SPK+12]. Services [FC05, LSB+18, AAC+05, ZKRA14].
Session [NYNT12, ZL96]. Set [BDA+18, SW12, WL96a, Ano00a, Ano00b, PSH+20, She95, WL96b].
sets [SG12, CLG+93]. setting [GL95a]. Setup [NSLV16].
Seventh [BBG+95, HS94, IE93b, IEE96h, Eng00, Y+93]. several [GBR15]. SGI [Che99, CML04, KMG99, LB96, LL01, LKJ03, LSK04, TW12, ZS+H01].
SGI/CRAY [Che99]. SGI/CRAY-T3E [Che99]. shadow [SOA11]. shallow [STA20, dAMC11, dAMCFN12]. Shane [SD13]. Shanghai [IEE92]. SHARE [Ano92, Ano93f, Ano94].
Shared [ADG+20, BCA+06, BME02, Bri10, CDT05, DM98, DMB16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HT01, KB98, KSH01, LRT07, L+99, MBE03, MCs+08, Mül02, NPP+00d, PBK00, Pok96, PSS00b, Ros11, SS01, Sty99, ST02b, Thr99, VS00, VT97, ABC95a, ABC95b, ADM05, BMG07, CBPP02, CJvdP08, Cha96, CCM+06, CC00b, DBV01, DS96b, DPZ97, EVMP20, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JE95, KJA+93, KC06, LKL96, MLC04, PK05, RGDM15, SHH10, SL94b, SFL+94, SSC96, TSY99, TSY00, THDS19, Vos03, WLYL20, WMRR17, WRMR19, YWO95, YX95, Cha05].
Shared-Memory [DM98, HDB+12, NPP+00d, Pok96, Thr99, PSS00b, ABC95a, ABC95b, BMG07, EVMP20, GL96, GL97c, KJA+93, PK05, TSY00].
shared/distributed [THDS19]. Sharing [Att96, CML04, CB16, DiN96, JAK17, KK98, LYGG20, JE95, Ott93, PRS+14].
shar {JAT97}. shearLab [KL16].
Shearlet [KL16]. Shearlets [KL16].
Shef [LPJ09]. SHMEM [BBDH14, Hus01, LSK04, Sch96a, Sch96b, SS01]. Short [KBM97, MH01, SSLM10, BMPZ94a, PARB14]. Short-Range [KBM97, MH01, BMPZ94a, PARB14].
Short-Read [SSLM10]. shorter [NB96].
Showcase [USE00]. SHPCC [IEE92], SHPCC-92 [IEE92]. SIAM [BBG+95, DKM+92, Sin93]. Side [LLCCW07]. Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, MB00, TGT05, TRH00, ZSG12, W+01a, BM00, DPFT19, DBB+16, GBH18, LSK04, MS99c, PGK+10, GBH14].
SICGSE [ACM06a]. Signal [IEE95e]. signals [Uhl95c]. Signatures [Groc00].
significance [AMHC11]. silent [FME+12].
silicon [Ano03, Goe02, ZL18].
Silicon-Monona [ZL18]. SIMD [BvdB94, HS95b, KDT+12, LL16, Sur95b, VSW+13, WMK+19, vP17]. Simple [MSF00, Mül01, SC04, BC19b, ITT09, JH97, Nes10, PGPCK21, PV01]. simulate [Heb93]. Simulated [BHM94, BHM96, FH97, RSBT95].
Simulating [DLM+17, KDL+95b, KDL+95a, NFG+10].
Simulation [CDMS15, CCBP15], DMMV97, DZDR95, GSI97, GM95, GJN97, Ham95a, JML01, KDZH18, KBM07, KMK16, LLRS02, MFT95, MP04, MANR09, PCT14, PKYW95, PZK02, RR00, RDMB99, SAS12, SXM+18, Str97, Ten95, UZC+12, V+19, WMC+18, ZO4, ZWJK05, dAMC11, ASAK19, Ano95d].
ADR, BJ95, BCM+16, BH95, BMPZ94b, CwCW+11, CSPM+96, DSOF11, FHSO99, FO94, FLPG18, FFFC99, GRTZ10, JPG+18, JAT97, JLS+14, KTJT03, KNH+18, KMC96, KMC97, LFS+19, LCVD94b, LCVD94a, LYZ13, MMW96, MW21, MALM95, NS20, NB96, NF94, OKM12, PARB14, PY95, RHF*+95, SWYC94, SSP+94, SKM15, Str96, Syd94, Tho94, WHMO19, WGG+19, YPA94, YEG+13, YSL+12, Eng00.

Simulation-Based [ZWJK05].

Simulations [CGS15, CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG+07, SM02, YPAE09, ADT14, ABG+96, BHS18, BADC07, CFF19, GM18, Hin11, JMS14, LS10, LSVMW08, RMNM+12, SU96, THDS19, TOC18, VLSPL19, WWFT11].

Simulation [CAM12, MRV00, PHO*+15, UTY02, WPC07, AMV94, LS10, LZC+20, PWD+12, WZW08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b].

Simulators [SB95, AVA+16].

Singapore [IEE96d].

Single [BM00, HF14a, HF14b, MB00, URKG12, WZM17, AGIS94, KKL11].

Single-Chip [URKG12].

Single-sided [BM00].

Single-Threaded [WZM17].

Single/multigrid [AGIS94].

singleton [TVCB18].

Sinks [JPT14].

Sites [Ano98].

Sixth [HK95, IEE96c, MMH93, SW91].

Size [WQKHF0, YT20, GKFCH13].

sized [JLS+14].

Sizes [DADL18, ZSnH01].

SKaMPI [KR99, RSPM98, RH01, Rei01, RST02, Rei03].

SkelCL [SG14].

Skeleton [GB98, HI04, RJDH14].

Skeletons [Ser97].

Skew [GGZ+20].

Skew-Tolerant [GGZ+20].

Skjellum [Ano95c, Ano00b].

Slack [CBB+20, KFL05, FKL08].

SLAE [ADRCT98, AK99].

SLAS [VLCP+20].

Slave [LTR00, HP05].

SLEPC [DR18].

SLICC [KBHA94].

Slices [GS102].

Slim [WMC+18].

Small [HLP11, TS12b, Ano94b].

small-footprint [TS12b].

Small-World [HLP11].

Smith [KDSO12, RGB+18].

Smithsonian [Str94].

smoking [YSL+12].

SMP [Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMdMBD+07, HD02b, Hsu00, HIP02, JKH08, KOI01, KKH03, KM99, KAC02, NO02b, NO02a, ST02a, TOTH99, Trä02b, YWC11, bT01a].

SMPckpt [DCH02].

SMP [Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMdMBD+07, HD02b, Hsu00, HIP02, JKH08, KOI01, KKH03, KM99, KAC02, NO02b, NO02a, ST02a, TOTH99, Trä02b, YWC11, bT01a].

SMPckpt [DCH02].

SMP [Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMdMBD+07, HD02b, Hsu00, HIP02, JKH08, KOI01, KKH03, KM99, KAC02, NO02b, NO02a, ST02a, TOTH99, Trä02b, YWC11, bT01a].

Software [Ano94i, BKK20, BME02, BPG94, BG+xx, C959b, DGH+19, ESB13, FFP03, GFB95, Gre95, HPR+95, HS94, HHA95, IEE95l, IEEM96, IF95, KS15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, Sii96, Swa01, TDBEE11, VdS00, Wis01, WOl92, Ano97, BSC99, Bo97, Br97, BR94, CMV+94, CBPP02, DPZ97, Hum95, JH97, JB96, LM94, MK94, Nvu94, Oki02, PHA10, Pk05, PG+10, RA16, Hii01, Sch94, Sic99, SH95, SSD+20, Str94, WGG+19, ZGN94, Ano94i, KG93, Sii96].

Software-Managed [LB16].

Solan [CGB+10].

Solarais [Ano01a].

solidification [JLS+14].

Soils [Hin11].

Solution [DWH+10, FBSN01, HO14, MC18, RPM+08, SEF+16, Tst12, VRSS00, DWL+12, LM95, JD10, GM+20, LSR95, MALM95, ON12, PRS+14, SC96a].

solutions [AGIS94, LGM17].

Solve [Hog13, LSM+18, Riz17, BA08, Che99, GGGC99, TCS14].

Solver [Ben01, BP98, CF01, CF19, HSMW94, ID94, LZ97, SJK+17a, SJ+17b, TPV20, WJB14, YKW+18, AMS94, CP15, CFF19, DM12, GNP19, HDZ+20, HISSM19, JR10, LM99, Lou95, MV20, OGM+16, RM99, STA20, SRK+12, SCC95, THM+14, ZZG+14].
Solvers [DFN12, DALD18, GK10, MSB97, NOO2b, Nak03, NHT02, NLRH07, QRMG96, RS97, WR01, ABF+17, ADL03a, ADL03b, ADDR95, BRR99, CL93, DR18, EVMP20, MKP+96, MS95, NOO2a, Nak05a, Nak05b, NHT06, PGPC-K21, PR94c, QRG95, SSH08].

Solving [ADRCT98, BMH94, BMH96, BV99, BG95, BDG+92c, BSH15, DALD18, DAD19, GFPG12, Huc96, LLY93, MS02a, NF94, SAS01, SP11, SD99, ZTD19, BB95a, DSM94, HHA95, LBB+16, LYSS+16, MM11, SSB+16, YSWS06, YSM+16, YSMA+17].

Source [BG9+15, MM07, AC17, AVA+16, NC+17, Nob08, PSK+10, WGG+19].

Source-Code-Correlated [MM07]. Source-to-source [AC17]. Sources [ZDR01, KMO10]. South [ACM95a].

southeast [ACM95a]. Sowing [GL97a]. SP [BMBP01, CE00, HMKV94, LC97b, WT11, WT12]. SP-1 [HMKV94]. SP-2 [LC97b].

SP1 [BR95c, FHP94b, FHP9+4, FHP+95, Fra95, FWR+95, GL95d, HSMW94, MP95].

SP1/SP2 [FHP9+4, Fra95, FWR+95]. SP2 [BR95b, FHP+95, Fra95, FWR+95, HW9W97, JF99, KB98, KHS01, MABG96, XH96].

SPAA [ACM95b]. Space [CML04, CB16, HO14, MSF00, MZLS20, OFA+15, SAS01, SS01, TA14, SRK+12].

spanning [NCKB12]. Spark [GRW+19, KWEF18]. Sparse [AZ95, BBH12, CWL+20, DS13, DK20, Huc96, NHT02, TD98, ZB97, AK99, ADL03a, ADL03b, ER12, FJZ+14, GG99, Gra09, NHT06, XL13]. SPEC [Ano03, MvWL+10, MBB+12, NA01, SGJ+03, TSB03]. Special [AM07, BDT08, BC19a, BDB+13, BC00, CHD09, DKD07, DKO8, GSA08, GT19, MPI98a, MPI98b, NHT06, PRN01, Ren01, BKB02].

spectral/ [BCM+16]. spectrum [NS20].

Speculation [AELGE16, SHL21]. Speculative [RA09, dOSM16]. Speed [CDH95, Tou00, AH95, Ano03, BWT96, BID95, KMK16, CDH+95]. Speeding [CSV12]. Speedup [VPS17]. SPH [CP15, OLG+16, PBC+01, WMRR17, WMR19].

Sphere [CT94a, CT94b]. spherical [Ho95, KT10]. SPICE3 [WPC07]. Spiking [CAM12]. Spin [HLP11, JRG21, KO14, Kom15]. spin-glass [JRG21]. splitting [MPS20, TCBV10].

SPMD [BST+13, Dar01, KAC02, Wal00, Wal02].

SPMD-Like [BST+13]. SpMV [CBIGL19]. Spokane [IEE93c]. Sponge [HSW+12]. spontaneous [EZBA16]. spreading [SOYHD19]. Spring [Ano94g, IEE93a].

SPTH [Sut96]. SPY [SSG95]. Squares [PWP+16, VRS03]. SR [YWCF15, ZLP17].

SR-IOV [YWCF15]. SR8000 [NN00, TS02, TS03]. SRP [BBC+19].

Stampi [ITK00]. stamping [DPFT19]. Standard [DM98, GS197, GLP+00, GL95c, HCM94, MPI98a, MPI98b, NH95, SKD+04, SGS10, Wer95, YKLD17, Ano94d, BDB+13, BHB99, Cla98, CG99b, DHHW93b, DOSW96].
FB95, GK97, GL92, Hem96, Sti94, VM95, Wal94a, Wal94b, WD96, Ano97, Bra97, CGH94, DOSW95, GLDS96. \textbf{Standards} [FKKC96, Thr99]. \textbf{Star} [CDM93, Coo95a, Coo95b]. \textbf{STAR/MP} [Coo95a, Coo95b]. \textbf{Start} [CDM93, Coo95a, Coo95b]. \textbf{STAR/MPI} [FKKC96, Thr99]. \textbf{Star} [CGH94, DOSW95, GLDS96]. Wal94a, Wal94b, WD96, Ano97, Bra97, CGH94, DOSW95, GLDS96. \textbf{Still} [Bak98, DZ98b, GL95c, BDG93b, FHP95, Hem96, Sun96]. \textbf{stealing} [TCBV10]. \textbf{Steepest} [Sch01]. \textbf{Steering} [GKK97, PK98]. \textbf{Stencil} [CGU12, WTTH17, KD13, TBB12]. \textbf{steiner-based} [TBB12]. \textbf{step} [KW20, Kos95b, ZG98, vdP17]. \textbf{steps} [KW20]. \textbf{Stere} [ZBd12, Qu95]. \textbf{Steve} [Ano96a, Ano99a, Ano99b, Nag05]. \textbf{Steven} [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. \textbf{Still} [HCA16]. \textbf{Stochastic} [AEW01, DK02, LLRS02, MW98, PTFM18, RSV+05, JK10, MW21]. \textbf{Stockholm} [Bak98, HAM95b]. \textbf{Stokes} [Che99, DLR94, HSMW94, ID94, Lou95, PTT94, SCD95, ZG914]. \textbf{stop} [Gua16, LMG17]. \textbf{stop-and-restart} [LMG17]. \textbf{Storage} [ACM04, FL820, Hol12, LCK11, HP11, NFG+10, RGGP+18, ZJWD18]. \textbf{stores} [HSP+13]. \textbf{straight} [YULMTS+17]. \textbf{Strategies} [CF19, MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, SIC+19, TZZC94, VB99]. \textbf{Strategy} [AIM97, DI02, Hat98, VPS17, ZB94, ZS12, DFK94b, DR95, MLS12, PSV19]. \textbf{strayed} [Rol08a]. \textbf{stream} [HSS+12, LGMDA+19, UGT09]. \textbf{streamer} [LZC+20]. \textbf{Streaming} [IADB19]. \textbf{Streamline} [CGC+11]. \textbf{streams} [TCBV18]. \textbf{StreamScan} [YLZ13]. \textbf{Strength} [Kon00]. \textbf{String} [KMM15, MM02, MM03]. \textbf{striped} [KDSO12]. \textbf{Strongly} [GAP97, ZZG+14]. \textbf{Structural} [PSSS01]. \textbf{Structure} [CBL10, LAFA15, SYF96, WHDB05, ZHS02, EPM09, SECI5, SY95, ZAT+07]. \textbf{Structured} [FB96, HDZ+20, Mar06, MRB17, NLR07, Ran05, AMKM20, Bis04, CLSP07, FR95, GBR15, JAT97, SM93b]. \textbf{Structures} [DK20, GMP98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. \textbf{studies} [DHP97]. \textbf{Study} [AIM97, AFGR18, BF01, BHL5+95, DARG13, DDJ+19, EGC02, FPY08, GL97a, HHC+18, KCR+17, LSB15, MMD98, MM02, CSL16, NA01, PK05, RRL11, SCL01, TG94, AGR95b, AML99, BJ13, BDA94, BJ999, BY12, Bri00, CBM98, DXY96, ED94, FQ94, HI16, IPG+18, JR13, JLG95, KBG16, LPM+11, LLD1+14, M69b, NS03, PSK08, PGK9+10, PSHL11, RSBT95, RJC95, RR+20, TPD15, W1001b, WLK18, ZSK15]. \textbf{Stuttgart} [KGRD10, WPH94]. \textbf{style} [JPOJ12]. \textbf{sub} [MJG+12]. \textbf{sub-communicators} [MJG+12]. \textbf{subcircuit} [HLO+16]. \textbf{subdomain} [CEGS07]. \textbf{subdomains} [SHHC18]. \textbf{subgroup} [XLW+09]. \textbf{Submitters} [NSS12]. \textbf{Subrange} [Str97]. \textbf{Subroutine} [Saa94]. \textbf{subroutines} [CH93]. \textbf{Subset} [CW+20]. \textbf{subsurface} [ED94]. \textbf{Subsystem} [CVPS19, BMG07, MABG96]. \textbf{Subsystems} [STMK97]. \textbf{Subtle} [SAI+17]. \textbf{Success} [Gro01b, LF93a]. \textbf{Successes} [Gro01a]. \textbf{Successful} [Gro12]. \textbf{suffix} [DK13]. \textbf{Suitability} [Mat01b]. \textbf{suitable} [MAS06]. \textbf{Suite} [ACM14, AKE00, BWV+12, MB9+12, Riz17, Ano03, BO01, MW9+10, TG09, YSWY14, SNMP10]. \textbf{Suites} [MCS00, SGI+03]. \textbf{summation} [IHM05]. \textbf{Summit} [BC19b]. \textbf{Sums} [ST17, MYB16]. \textbf{SUN} [BM00, SJ02, WSN99]. \textbf{Sunderam} [Ano95b, NMC95]. \textbf{Super} [Gua16, YX95]. \textbf{Super-Object} [YX95]. \textbf{Supercomputer} [Ano93a, CLP99, Str94, AAC+05, BGH+05].
EFR*05, GL96, GL97c, KMH*14, NSM12, Ste94, GS91b, MAB05. Supercomputers [BP93, BDG*92c, EKTB99, KN17, WT11, WT13]. Supercomputing [ACM96b, ACM04, ACM05, BDG*91b, GGZ*20, HK93, IEE91, IEE93c, IEE94h, RV00, Liu95, Sch94, ACM94, ACM96c, Ano93c, BG91].

superlattice [Pri14]. Supernode [CS19]. superscalar [ACJ12]. Supersonic [CCBPGA15]. Support [Ano98, BBG*10, BFW01, CFF*94, DMMV97, FGRD01, GRV01, GOM*01, HRSA97, LMRG14, MK04, OP98, PSM*14, RR02, SDN99, SBT04, TW01, Wis98, Wis01, YSP*05, ZL18, BBH...13a, BL99, CC10, CZ95b, DLR94, Hos12, Mat94, RS19, TSY99, TSY00, TY14, WK08a, WK08b, WK08c, YÁJG*15]. Supported [KLR16, CDD*96].

Supporting [FD00, FMSG17, FSG19b, GAML01, Gua16, MMS07, OOS*08, SGL*20, WLNL03, WLNL06, WCSS99, YWCF15, FLD96, GAM*00]. Supports [AELGE16, CLL03, DGM93]. suppression [WWZ*96]. Surface [KS15b, PKYW95, Rót19, BHW*12, DCD*14, RAGJ95, TSP95]. surfaces [Dab19]. Survey [Sap97]. Survive [ABB*10]. sustainable [CGBS*15]. SVD [CMH99]. Swan [HD11]. Swapping [SC04, BBW19]. Sweden [Eng00, HAM95b, FF95]. Swendsen [KO14, Kom15]. Switch [SCL01, TBDB96, KSC*19]. Switched [LC93, KYL03, KYL05]. SWITCHES [DT17]. Switzerland [GT94, Ano94i, IEE97b]. SX [HRZ97, TRH00]. SX-4 [HRZ97]. SX-5 [TRH00]. Sydney [Bil95]. Sylvester [GK10]. Sylvester-Type [GK10].

Symbolic [CCK12, Coo95b, Ste00, YYW*12, ACM97a, BHKR95, Coo95a, Lev95, LGKQ10, LLG12, SMAC08]. Symmetric [BDV03, MDM17, YKW*18, BAV08, DCH02, GG99]. Symposium [ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94e, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IE97b, IE97c, IEE05, LHHM96, Li96, NM9, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tou96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94b, Lev95, Old02]. synchronisation [SDB*16].

Synchronisation [LA02, OCY*15, TGT05, BMG07, LA06, SPNB14, TMTP96, YLZ13].

Synchronizing [VT97]. Synchronous [Ada97, BJ13, Cer99, DLRR99, HZG08, SRS*19]. Synergia [SSAS12]. Synergistic [UGT09]. Synthesis [CS14, GWC95]. synthesized [MC17]. Synthesizer [DS16]. Synthesizing [AJF16, NP12]. Synthetic [CC17, DP94]. Syracuse [IEE96f]. SYSMO [MM95]. System [Ada97, AJ97, AH00, BG95, BDG*xx, BL95, BFZ97, BG1D2, CAM12, CGC*02, DGA97, DALD18, ERS95, ERS96, EK97, FBD01a, FBV02, FFP03, Fis01, Gal97, GBCM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, IADB19, KBA02, LRR02, LTR00, LLY93, Mat94, MRV00, MM02, MSF00, MMH98, MMS07, MM93, NPP*00d, NMS*14, Oed93, PPT96a, RGD97, SG*03, SSB*05, SCP97, SA93, ST02b, Sun93, TSS00b, Tsz07, U01, W193, YSS*19, ARS99, AS92, AL92, BB94, Bri95, BBH*15, DL10, DPFF19, FNSW99, FK94, GS91a, GS93, GS96, GMU95, GkLYC97, HDDG09, Hum95, HS95b, IBCC*10, ITT99, JJ97, JLS*14, KW14, Kik93, LBD*96, LKL96, LL95, MA09, MMR99, MMB*94, MAS06, MM11, MS99b, MAL95, MAH02, NA99, PPT96b, PPT96c, PK05, RJDH14, RT99]. system [SHHI01, SL94b, Sei99, SPL99, SGDM94, Sm96, Sur95b, VSR94, VSR95, WCC*07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, ZWZ*95, dCZG06, AL93, NMW93, Yan94].

System-Initiated [SSB*05].
[GBR97, GEW98]. Systems
ABB17, Ano94b, Att96, BCGL97,
BGBP01, BME02, BPG94, Bha93, CDJ95,
CAWL17, COE20, CFF94, CSW97,
CJNW95, Coo95b, DAD19, EADT19, FD96,
FGKT97, Fos98, GGZ20, Gua16, HC17,
HRSA97, IEE93d, IEE94d, IEE95i,
IEE96b, KKH03, KP96, KDL95b, KCR17,
KSB7, LY93, LBB21, LW97, MWG97,
MBE03, MBJ15, MBB12, SM03, SGS10,
SGL21, SS96, TMP16, TWW19, TIN00,
TL19, UES94, WJG21, YGH14, VH96,
ZTD19, ZB97, dGJM94, AG95b,
ACMR11, ATL2, Ano94e, BBB94,
BAV08, CKO94, CLYC16, CBPP02,
Coo95a, CPR95, DF17, DR94, DBVF01,
DvdLVS94, FHB13, GBR97, GCN10,
GDBE20, GEW98, GKK90, GKF13,
Gra09, GFG12, GH93, HAA95, IP97,
IM95, JB96, JMJ11, KSG13, KKB19,
KL15, KDL95a, KFSS94, LR06b, LH98,
LRUL19, LCVD94b, LGM20, LL94,
MS12, MvWL10. systems
[Old02, OPW12, Pan95b, Par93, PSB19,
PGPCK21, QB12, RPS19, SSKF95, SCJ19,
SPH95, SVC11, SMM93b, SG14,
SLN21, Sun94b, TBB12, TMW17, TCVC18,
TSP95, VLMPS18, WSC13, WZ96,
WACD99, WYLC12, ZL96, ZGC94, dH94,
dIAMC11, diAMCFN12, JW96].
Systemsoftware [Sei99]. systolic [BSC99].

T3D
[AZ95, AFST95, CCSM97, HW97, MP95,
MWO95, Oed93, Sch96a, Sch96b, SCC95].
T3E [BBS99, Boo01, Che99, GRRM99,
LSK04, RB97]. T3E-512 [RBB97].
T3E-600 [LSK04]. T9000 [BR94].
table [BJ13]. Tabu [BSH15, Cza13, CB11]. Tags
[Wis97]. Tails [Kha13]. takes [GDB93].
Talbot [ACMR14, Riz17]. Tapir
[SML17, SML19]. Targeting

[BC19b, JKM17, RVKP18]. Task
[AHD12, AAB17, FKKC96, GDDM17,
GPC17, GFJT19, IOK00, KI101, KSB20,
LHC79, Mar03, MJB15, NIO02, NIO03,
NSZ13, NJO1, OP10, OS97, SGZ00,
SPL12, SGS12, TBS12, TS12a, WJG21,
YKW18, ABF17, BLYB18,
BGH05, GKF13, GrSP12, OPW12,
OP00, RRF96, RRRF96, STP19,
SKB14, WC15, WDR19]. Task-Based
[AHD12, AAB17, GFJT19, SPL12,
BLVB18, STP19, SKB14]. task-level
[WDR19]. Task-Overlapped [GPC17].
Task-Parallel
[KSB20, NSZ13, ABF16, ABF17].

Taskers [FLD96]. Tasking
[DFA09, KaM10, SHM10, TCM18,
TSCM12, VLSPL19, WC15, vdP17].
tasklet [PQR18]. Tasks
[ACD09, DDP19, DT17, DPA09, JW96,
OP98, PWPD19, RR02, RDQ12, SGL20,
WJG21, YSS17, YSS19, BSO1,
DDY99, DR95, EBB20, FKK96b,
FKK96a, IvdLH00, PKE10, PWPD19].
TAU [MMS99, RMS18]. taxonomy
[SPH96]. TBB [Stp18]. TBS [BP98].
TC2 [Boi97]. TC2/WG2.5 [Boi97].
TCCGMSG [BG96, Mat94, Mat95]. TCP
[KPW05]. TD [And98]. Teaching
[MK00, JY95, MK97, PKB06]. Technical
[Ano93c, Ano98, MC94, USE95, ACM96a,
Sni18]. Technique
[BMD15, HC06, HAA11, MK17, HC08,
Nes10, RB17, MAI91]. Techniques
[CP97, GS12, Miö10, SAL17, SPL12,
TBG95, Wis01, AMKM20, BPG94, Fer04,
FCS12, GSM00, HKM094, JKN13,
KBG09, NFG10, PF05, SK01, WST95].
technologies [Mal95]. Technology
[Ano97, Bra97, CGB10, CSV12, Dan12,
GN95, HS94, PWP16, STB04, TBG02,
An093a, An093c, D95, DM12, IEE94c,
NS16, ZAT07]. Tekniska [Eng00].
Telegraphic [ES11]. TELMAT [BR94].
temperature [Hin11]. Template
[GS97, PKB06]. Templates [BN12, KH15].
Tennessee [PR94b]. Tensor
[BKK20, ZLWW20]. terabyte [KTJT03].
Terabytes [IEE02]. Teraflops [KTJT03].
Terms [KD12]. Tessellation [SS09]. Test
[GSYT21, SNMP10, TG09, AAAA16,
CPKG17, CPR+95, GL92, TKKL19].
test-input [CPKG17]. Testbed
[Mat01b, EG99, PY95]. Testing
[CDT05, CCK12, DKF94b, DLLZ19,
DLLZ20, Ost94, VdS00, CMV+94, DFK93].
Testsuite [WCC12]. Texas [ACM06a, IEE94b, IEE95l, IEE95g, IEE97c, Y+93].
Text [LTR00, MM01, RLL01, RTL99].
Textbook [Ano98]. Textural
[WKS96]. Texture
[HE15]. TFETI
[SHHC18]. TH
[CFDL01]. TH-MPI
[CFDL01]. Thakur
[Ano00a]. Their
[Bri¨u2, GOM+01, RG18, GSMK17].
theorem [Sut96]. Theory
[GK10, BW12, CBHH94]. Thera
[CD01]. Think [HCA16]. Third
[BPG94, Bos96, DSM94, GA96, IEE94g, Si96, Was96, BDL96, Mal95, IEE97c].
Thirty [Y+93]. Thirty-seventh [Y+93].
Thousands [PZKK02, BMS+17]. Thread
[AELEG16, BB18, ETWA12, GOM+01,
GT07, LML+19, Nit00, Pla02, STY99,
SPB+17, AKB+19, HK09, IDS16, JKN+13,
LW20, SPH96, SLN+12, YZ14].
thread-based [AKB+19]. thread-data
[LW20]. Thread-Level
[AELEG16, HK09, YZ14]. Thread-Safe
[Pla02]. Thread-safety [GT07]. Threaded
[BBG+10, MG15, WZM17, Adh98, EBKG01,
SCB15, SVC+11, TSY99, TSY00].
threadless-MPI [SVC+11]. Threading
[BHV12, MLGW18, SBT04, TBG+02,
WMK+19, KPO00, KRG13, QB12, ZAT+07].
Threads [CP98, LD01, Lee06, SDR+21,
BS01, DJJ+19, MVT96, ALW+15]. Three
[Car07, GA96, Nak05b, Ram07, SAS01,
GSMK17, LSSZ15, LZC+20, Mar05, PR94c].
three- [GSMK17]. Three-Dimensional
[GA96, LSSZ15, PR94c]. Three-level
[Nak05b]. Throughput [HMKG19,
SSLMW10, Tsto07, CJPC19, ESZ13, PP16].
throughput-oriented [CJPC19]. Thrust
[DSU20]. Tied [WJG+21]. Tightly
[SS01]. Tightly-Coupled
[SS01]. Tilewise
[KS15b]. tiling
[KW20]. Thread
[BCL00, CBB+20, CBB+21, DLLZ19,
DLLZ20, FHK01, FSSD17, GSHL02,
GOM+01, HO14, KFL05, MFTB95, OP98,
SPB+17, SGL+20, SCL01, SS96, TWLL19,
TSP95, UP01, YGH+14, AL06, ASB18,
CDMS15, DLR94, DPFT19, DM12, Fer04,
FLB+05, FKL08, GB94, HE13, JE95,
KC94, KPL+12, KSC+19, KW20, LHLK10,
LBB+16, LYSS+16, LM13, MMW96, NZ94,
ON12, OsdSP12, PTMF18, QHCC17,
Ram07, SBBW91, SS96, TWLL19, TSP95,
Uhl95c, VM94, YSVM+16, YSMA+17,
ZWZ+95, SKD+04]. time-critical
[KSC+19]. time-dependent
[DM12, LBB+16, LYSS+16, ON12, SS96, YSVM+16, YSMA+17]. time-domain
[HE13, NZZ94, Ram07, VM94].
time-independent [CDMS15].
time-stamping [DPFT19]. Time-Varying
[DLLZ19, DLLZ20, Uhl95c]. times
[MLVS16, NB96, SSS99]. timing [OlS95].
tips [Fer04]. TLM [SC96a]. TM
[GGCM99, GCGS98, KHS01]. TN
[DT94, BR94]. TOD [GPC+17]. TOD-Tree
[GPC+17]. today [IEE94c]. Toepplitz
[BV99, BA08]. Tolerance
[GKP97, GL04, LMRG14, LNL00,
RPM+08, TS12a, WC09, WFL93, LRG+16,
LGM+20, SG05, WDR+19, ZHK06].
Tolerant
[BBC+02, BCH+03, BKK+06, CF01,
CFDL01, FD00, FD01a, FBV02, FD02a,
FD04, GFB+03, GGG+20, IEE95c, JSS+05,
MSF00, BCH+08, FDB01b, FDB02b, HG12,
LMG17, LS08, NCB+12, NCB+17, PKD95].
Tomographic [Pat93]. tomography [FWS+17, RCF96c]. tomorrow [IEE94c].
Tool [Ano01b, Beg93b, BFMT96b, DW02, GSN+01, KAMA17, KJS14, KKH01, LMRG14, MMSW02, MK04, NE98, SR96, SGL+00, Triä12b, VBB18, WL96a, AGG+95, BDP+10, Beg92, Beg93a, BDY99, BFMT96a, BHW+94, CPR+95, DFK94a, FSTG99, HPR+95, HD11, IMS16, LCC+03, MdSAS+18, RMS+18, TSS98, WL96b, WL96b]. Tool-Set [WL96a]. Toolbox [Ano97, Bra97]. Toolkit [Ano12, KTXP21, LC07, LLC13, SLS96, PSH+20]. Tools [ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, D94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vos03, Wan97, AMKM20, AVA+16, BDG+92a, BFM99, Fan98, GBF95, LH98, MSW+05, MHNC94a, ZL96].
Tools-supported [CDD+96]. Top [AHP01, Gal97, Hus01, Man01, PTH+01b, Scre97, BCBR99, PTH+01a, SSC96, SCL97, CCHW03]. TOP-C [CCHW03]. TopPe [JKM+17]. topologies [BCM+16, Gro19, MK00]. Topology [DK06, Hat98, HM01, Tra02a, GJM18, HRR+11, MBBD13, SPK+12]. topology-aware [MBBD13]. Topology-Based [HM01]. TOPPER [KKP01]. Toronto [GGK+93, Vos03].
Transient [SIS17]. transistor [Ano03]. transistors [Ano03]. Transition [MRV00]. Transitive [CGPR98, PPR01]. Translating [Mar09, NCB+12]. Translation [DDL00, SSE12, HCL05, LME09, NCB+17].
Translator [KMK16, UZC+12, CHKK15, GSCFM13]. transmitters [WWZ+96]. Transparent [CCK+95, IFA+16, NPP+00c, RVK19, SLG99, LFS93a, LFS93b, LFL11, NPP+00a, SOA11]. Transparently [CB16]. Transport [KHS01, MMD98, RS97, VRS00, WR01, ZZ04, P14, SH94, SCJH19, WH96]. Transporter [Fer92]. transpose [Bha98]. Transposition [HD02b]. Transputer [Ara95, ACD94, CKNW95, FK95, FF95, GN95, GHK+93, MC94, dGJM94, ZPL96, Ara95, CKNW95, GHK+93, dGJM94].
Transputers [ACD94, AGR+95b, dCH93]. Transtech [Ste94]. trap [LBB+16, SSB+16, YSV+16]. TRAPPER [KFSS94, SSKF95]. travel [SSS99].
travel-times [SSS99]. traveling [GM94]. traversing [BDG+92b]. TreadMarks [LCDZ97]. Tree [DAD19, GPC+17, ADB94, AB13, BCAD06, CG93, SGS95, Zah12].
Triangular [Hog13, MRB17]. triangulated [Dab19]. Triangulation [CWL+20]. tricks [Fre04, LK14]. Tridiagonal [DALD18, DAD19, DR18, VLMPS+18].
Triolet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97]. truncating [Ram07]. TSMC [Ano03].
TSUBAME [NSM12]. Tsukuba [SHM+10]. tsunami [KNH+18]. TTIG [RRBL01].
Tubal [ZLWW20, ZLWW20]. Tubal-Rank [ZLWW20]. Tucker [BKK20, OPJ+19].
TuckerMPI [BKK20]. Tucson [JB96].
tuned [PSB+19, VLCM+20]. Tuning
[Str97, MRRP11, Str96].
turbulence [BCM+16, CBYG18, NS20].
Turbulence
[Myb16].
Turbulent
[BCM+16, CBYG18, NS20].
Tutorial
[EM00a, EM00b, GBD+94, GLT00b, Nov95, NMC95, Per96, Ano95b].
TV
[CIJ+10].
Twenty
[ERS95, ERS96, HS94, IEE95c, MMH93].
Twenty-Eighth [ERS95].
Twenty-fifth [IEE95c].
Twenty-Ninth [ERS96].
Twenty-Seventh [HS94].
Twenty-Sixth [MMH93].
Two
[CM98, STY99, SJK+17a, SJK+17b, YM97, Agr+95b, AL93, ADLO3a, ADLI3b, CB11, ED94, HAJK01, MSP93, diAMCFN12].
Two-Dimensional
[SJK+17a, SJK+17b, AL93].
two-layer
[diAMCFN12].
Two-level
[STY99].
two-phase
[ED94].
TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].
Type
[GG1, MSB97, FVLs15, GFGF12].
Types
[We94, NYNT12].
Usage
[FD02a, FCLG07, FD02b, FVLS15, PIR+20].
Use
[FJBB+00, Gro02a, HK93, HK95, MB12, PSZÉ0, Sh94, AB95, GEW98].
USENX
[USE94, USE95].
User
[AD98, ACDR94, BDG+91a, CHD07, CD01, CDND11, DKG05, D+91, DHHW92, DHHW93a, DLM99, DPK00, DLO03, FCLG07, GB+94, GN95, GRD10, KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MTWD06, NPP+00c, Nov95, NMC95, Per96, RWD09, TBD12, XF95, ZWZ05, Ano95b, BBB+94, BDW97, KCP+94a, LRG+16, RSC+15, Reu01, Wil94, BBH...13a].
User-Level
[DHHW92, DHHW93a, KCP+94b, KOW97, NPP+00c, XF95, ZWZ05, KCP+94a,
Users [Ara95, CHD09]. *uses* [SH96]. Using [AR01, ADRC798, AHP01, And98, AP96, Ano95e, AKE00, AZG17, AB93a, BST+13, BPMN97, BG95, BS93, BKGS02, BM97, Bon96, BBC+00, BBH12, CGC+11, CRE99, CM03, CP97, CSPM+96, CJvdP08, CC17, Che99, COE20, CCSM97, CDM93, CCHW03, CRGM14, CT94a, CBPAGA15, CD98, DeP09, DARG13, DAK98, DGMJ93, DGH+19, EM02, EMO+93, ESM+94, EK97, FADF15, FD04, FDM19, FTVB00, FS93, GCGS99, GCGS98, GTH96, GM95, GK97, GS96, GSYT21, GMPD08, GHL97, GJN97, GLS94, GLT99, GLT00b, GLT00a, Gro19, HB96b, HSMW94, HJ98, HLP11, HD00a, HT08, HSLA97, HT01, IOK00, IDD94, IKM+01, JFGRF12, JPP95, KB98, KOI01, KKV01, KS96, KA13, LLRS02, LRT07, LTRA02, LFS+19, LY93, LLY93, LZ97, LSH+18, LFA15, MK17, MTSS94, MPD04, MR12, MSCW95, MANR09]. Using [MBB+12, MSB97, NO02b, NIO+02, NIO+03, Neuf94, NH95, NA01, OMK96, OWSA95, PWP+16, PK98, PDT96c, POL99, PT01, Pe99, Pet97, PBK00, PD98, PFG18, Pus95, QRM96, QMGR00, RR00, Reu03, RRBL01, RVLRGP12, RLL01, RRG+99, SAS01, Sec98, SSAS12, SP99, SA93, Sm93a, SBR95, STV97, SMOE93, St95b, ST17, SKH96, SCL01, SJ+17a, SJK+17b, TS12a, TSB02, TSB03, TK16, TBB12, Th98, Tst98, Tst07, VLO+08, WO95, Wlt01, WLS12, WLR05, Wlt97, Wst01, WM+18, WLYC12, YKW+18, Zbd12, van97, vdLJR11, vdP17, AMHC11, ASAK19, AK99, ABF+17, AL96, ADT14, ABG+96, AB93b, AGIS94, AGG+95, BV99, BBC+19, BFL99, BSC99, BDG+92c, Bi95, Bse04, BCM+16, BTC+17, BCD96, BID95, BAG17, BSH15, BMG07, CJC19, CMP+18, CG93, CBM+08, CBY18]. using [CdGM96, CS14, CLBS17, CT94b, CC00b, DG95, DMK19, DS13, DRUE12, DSOF11, DCH02, DM12, EGD92, FB96, FSV14, FSC+11, Fin94, Fin95, FHC+95, FW+17, GGGC99, GSMK17, GG09, Goe02, FGB+14, GM95, GM18, GRTZ10, HB96a, HDDL90, HTJ+16, HP11, HPS+96, HPLT99, HASn00, HL95, HLM+16, HAA+11, IJM+05, IM95, IKM+02, JL18, JF95, JKH08, JLS+14, JYY+03, JYM+11, JPT14, JR10, JMDV+17, KFA96, KRKS11, KY10, Kat93, KJJ+16, KR09, KMK16, KME09, KMC96, KMC97, KRC17, KMM15, KDD13, KPK13, LP00, LSG12, LSS15, LCY96, LSVM08, LCMG17, LO96, MM10, MP95, Mar06, SMC15, MAB05, Mc94, MM11, Mic93, Mic95, MRH+96, MM13, MSML10, MS95, MM14, MC99, MvWL+10, NO02a, Nak05a, NZZ94, NB96, NAJ99, NU05, OKM12, OIH10, Ols95, OH19]. using [Pat93, PDY14, PGdCJ+18, PV19, PNV01, PKE+10, QRG95, RJ95, RAS16, RCF596, RBA17, RM99, RCG95, SHL14, Sm10, SLG99, SGS95, SS99, SMS00, SOA11, SVC+11, SSF00, SBB20, SOY19, SFLD15, SSN94, SU96, SP11, Stp18, Stp20, TC94, TPLY18, Tst95, Uh94, Uh95b, Uh96, V94, VB99, VGS14, VM95, W096, W01b, WCS+13, WCVR96, WST95, WMRR17, WMR19, WADC99, W96, WYL12, XF95, YLM17, YWC11, YWCF15, YCA18, ZWS95, ZSK15, ZAT+07, Z95, An95c, An00a, An00b]. UT [Hol12]. UTE [JF95]. Utilising [SC96a]. Utilities [CC95]. UV2 [TW12]. UVM [NSLV16].

V [JB96, BCB+02, BHK+06]. **V2** [BCH03]. **VA** [Sin93, RP95]. **Vacancy** [HD02b]. **Vaidy** [An95b, NMC95]. Validation [BDV03, GLB00, WCC12, CMV+94, SC14, SCB15]. **Value** [vHKS94, AL96, LSR95, OHC19, SP11, SD99]. **Value-based** [vHKS94]. valued [Str12]. VAMPIR [BHNW01, NAW+96].
[ACM96a, NM95, KSJ95, KSJ96].

VRML-Based [KSJ95, KSJ96]. vs [FH98, AFGR18, BCH+08, IPG+18, Luo99, Nak05b, SC19]. **VTC** [NU05].

VTDIRECT95 [HWS09, SWH15].

VxWorks [YGH+14].

WA [ACM05, LCK11]. Wailea [ERS96, HS94, MMH93]. **Waknaghat** [CGB+10]. **Walker** [An96a, An99a, An99b, Nag05]. walls [MW21]. **wall** [NB96]. wall-clock [NB96].

walls [JAT97]. **WAMM** [BCLN97]. **Wang** [KO14, Kom15]. **Warehousing** [DERC01].

Warp [SCL01, HKOO11, MMW96, VSW+13].

WARPED [MMW96]. **WARPMemory** [SF095]. Washington [B+05, BS94, IEE93c, IEE94h, IEE95k, Ost94]. **watching** [JLG99]. water [HTHD99, R+92, STA20, dAMC11, dAMCFN12]. **Waterman** [KDSO12, RGB+18]. watershed [NAJ99].

Wave [BBC+99, EMO+93, ESM+94, NSLV16, SMOE93, Gei94, KM10, KEGM10, Mal01, NS20, NB96, RMNM+12].

Wave-Particle [SLV16]. **Waveform** [LSR95]. **Wavelet** [Uhl94, Uhl95b, Zem94, vdLJR11, Uhl95a, Uhl95c]. **Way** [Vog13, WDR+19, GT96]. ways [CZ96].

WCRT [SGS+11]. weak [SD16]. **Weather** [AHP01, HE02, Bjo95, KOS+95a, Mal01].

web [CHKK15, AASB08, NE01, PES99, Wal01b]. **Web-Based** [NE01, PES99]. **WebCL** [CHKK15]. **WebCom** [OPM06].

WebCom-G [OPM06]. **Wednesday** [B+05]. **Weicheng** [An95b, NMC95].

weight [KA95]. **welcomes** [Str94]. **West** [EV01, EdS08]. Westin [IEE94c]. We’ve [GKPS97]. **WG10.3** [DR94]. **WG2.5** [Boi97]. Wheeler [NTR16]. where [KC94].

which [SH96]. Whippetree [SKB+14]. whistler [NS20]. **Wide**

[FGG98, dOSMM+16, FGT96, KHB+99].

Wide-area [FGG98, FGT96]. **WIEN** [Gao03]. Will [CB90]. William [An95c, An99c, An99d, An99a, An00b].

Williamsburg [IEE92]. **Win32** [MS98]. windows [QB12, RGG+18, An99a, CLP+99, FD97, GGGC99, PS01a, SFG98, SSS97, TAH+01].

Windows95 [SS96]. Winona [An94h]. wireless [Bon96]. wissenschaftliche [MS94]. wissenschaftliches [An94c].

within [WDR+19]. without [BW12, Pla02, RSC+19, YLZ13]. **WLAN** [MSOR01]. **WMPI** [BPS01, MS98, MSS98, MS99c, PS01a, SMS00]. **WOMPAT** [Cha05, EV01, Vos03]. **Woollongong** [GNN95]. Work [HRSA97, Pet09a, Pet09b, WQKH20, OdS02, TCBV10].

Work-Group [WQKH20]. work-stealing [TCBV10]. Worker [EML00, YG96].

Worker-Based [YG96]. Workerproblem [FH98]. Workflow [LYZ13]. workflows [WDR+19]. Workforce [Liv00].

Workgroup [YT20, SDB+16]. Working [An98, Boi97, MCS00, Pet01, DR94].

Workload [AGS97, DBVF01, PS99a].

Workloads [AJC+20, AFGR18, CC17, LW18, APBeF16, AVA+16, AMC+19, CJPC19, GDS+20, JCP+20, SKB+14].

WorkPlace [An97, Bra97]. workqueuing [VBLvG08]. **Workshop** [ACM98a, Agr95a, BCP94, Bha93, BC00, Cha05, CZG+08, CGKM11, CMMR12, DW94, DT94, EV01, EdS08, Fer92, FK95, FF95, HK93, HK95, IEE93d, IEE93f, IEE94d, IEE95h, IEE96g, IFI95, KG93, Kuh98, Kum94, MdSC99, PBR+95, PBPT95, SCR92, SHM+10, Sch93, Vos03, Was96, AH95, BS94, Cal94, D+95, DMW96, FR95, GL95b, IEE93f].

Workshops [MCdS+08]. **Workstation** [GHL97, HSMW94, KS96, LC97a, MFTB95, Pus95, YKI+96, AB95, ALR94, BLP93, BSvdG91, BRS92, BALU95, BWT96, CUC95, DG95, ED94, GBF95, He93, JRM+94, LL95, NMW93, NN95, PM95, PL96, RBS94].
REFERENCES

RCFS96, SC96a, SSN94, SL95, THM94+, Tsu95, UH96, YWO95, ZHS99, MS04.

workstation-cluster [Heb93].
Workstation-Clusters [MS04].

Workstations
[AR01, BL94, BL95, BM97, BDH95+, BDH97, BMS94b, DDPR97, EK97, GS91b, HIP92, ID94, Liu95, LHZ98, MSCW95, MM01, OWSA95, DFG97, TQDL01, VLO08, AL93, BJ95, BID95, Bru95, BMPZ94b, BMS94a, BMPZ94a, CCF94, Coe94, DZ98a, DOS96, GM94, GMU95, HK94, Hus99, KMC96, KMC97, KA95, MK94, MM03, RRG99, SFO95, SR95, TDB00, dCH93].

World [CMMR12, CJNW95, FD00, GHH93, HLP11, MC94, NSLV16, PSB94, Wit16, dGJM94, GDB93, JR10]. Worlds [Rab98]. wormhole [Pan95a, Pan95b, RJMC93, ZGN94]. wormhole-routed [Pan95b, RJMC93, ZGN94]. worms [Pan95a]. WoTUG [MC94]. WoTUG-17 [MC94]. WPVM [ASCS95, BPMN97]. Wrapper [AS14]. Wrapping [LRW01].
Write [BIC10]. Write-Back [BIC10].
Writing [FAF16, SDB94, FNSW99]. Written [KaM10, KNH18]. WWW [KSJ95, KSJ96].

X [Bad16, FWS17, MMAH20]. X-ray [FWS17]. X10 [CGH14]. X11 [GKL95]. x86 [MGL17]. Xab [Beg92, Beg93b, Beg93c, Beg93a]. Xen [PRS16]. Xeon [CBIG19, DSGS17, MM2A, OTFK15, BB18, MTK16]. XPVM [KG96]. XXI [EGH14].

YLC [Gal97]. YMP [BL94]. Yorkshire [CJNW95].

Zero [SWHP05, Hin11]. Zero-Copy [AAB16]

References

AlQuraishi:2016:CBP

Andion:2016:LAA

Agullo:2017:BGB

Emmanuel Agullo, Olivier Aumage, Berenger Bramas, Olivier Coulaud, and Samuel Pitoiset. Bridging

Almasi:2005:DIM

Akzhalova:2008:WPL

Arthur:1993:PIU

Arthur:1993:CUA

Aloisio:1995:UPW

G. Aloisio and M. A. Bochicchio. The use of PVM with workstation clusters for distributed SAR data processing. In Hertzberger and Serazzi [HS95a], pages 570–581. ISBN 3-540-59393-4. ISSN
REFERENCES

Augusto:2013:APG

Ayguade:2010:EOS

Adhianto:2000:TOA

Appiani:1995:PSI

Appiani:1995:PSM
REFERENCES

REFERENCES

Alvanos:2017:PMM

Ayguade:2009:DOT

Arnold:1994:PCT

Acacio:2002:MDM

Alexandrov:1997:PMC

Agullo:2011:QOM

369. April 2011. CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).

REFERENCES

References

Adamo:1997:AOO

Adamo:1998:MTO

Antonuccio-Delogu:1994:PTN

Addison:2001:EOP

Arioli:1995:PSB

Adamek:2020:GFC

Karel Adámek, Sofia Dimoudi, Mike Giles, and Wesley Armour. GPU fast convolution via the overlap-and-save method in shared memory. *ACM Transactions on Architecture and
REFERENCES

Amestoy:2003:IIMa

Amestoy:2003:IIMb

Aversa:2005:HDS

Alexandrov:1998:CGP

Amritkar:2014:EPC
Amit Amritkar, Surya Deb, and Danesh Tafti. Efficient parallel CFD-DEM simulations using OpenMP. Journal of Computational Physics, 256(??):501–519,
January 1, 2014. CO-
DEN JCTPAH. ISSN
0021-9991 (print), 1090-2716
(electronic). URL http://
/www.sciencedirect.com/
science/article/pii/S0021999113006128

banez, Diego R. Llano
co, and Arturo Gonzalez-Esc
ribano. An OpenMP exten
sion that supports thread-level spec
ulation. IEEE Transac
tions on Parallel and Dis
tributed Systems, 27(1):78–
91, January 2016. CO-
DEN ITDSEO. ISSN
1045-9219 (print), 1558-2183
(electronic). URL http:
//www.computer.org/csdl/
trans/td/2016/01/07014262-
abs.html.

[Amos:2020:AQQ] Brandon D. Amos, David R.
Easterling, Layne T. Wat
sion, William I. Thacker,
Brent S. Castle, and Michael W.
Trosset. Algorithm 1007:
QNSTOP — quasi-Newton
algorithm for stochastic op
timization. ACM Transac
tions on Mathematical Soft
ware, 46(2):17:1–17:20, June
2020. CODEN ACMSCU.
ISSN 0098-3500 (print),
1557-7295 (electronic). URL
https://dl.acm.org/doi/
abs/10.1145/3374219.

[Azimi:2018:SVS] Reza Azimi, Tyler Fox,
Wendy Gonzalez, and Sheriel
Reda. Scale-out vs scale-
up: A study of ARM-based
SoCs on server-class work
loads. ACM Transactions on
Modeling and Performance
Evaluation of Computing
systems (TOMPECs), 3
(4):18:1–18:??, September
2018. CODEN ?? ?? ISSN
2376-3639. URL https:
//dl.acm.org/citation.
cfm?id=3232162.

S. G. Smith, and A. F. B.
Tompson. The parallel per
fomance of a groundwater
flow code on the Cray T3D. In Bailey et al.
[BBG+95], pages 131–136.

M. Girones, J. Labarta,
J. Torres, and M. Valero.
Detecting and using affinity
in an automatic data distri
bution tool. In Pingali
et al. [PBG+95], pages 61–
75. ISBN 3-540-58868-X.
LCCN QA76.58 .W656 1994.

R. J. Hathaway, G. S. Ladde,
N. Medhin, and M. Sam
bandham, editors. Proceed
ings of the First Inter
national Conference on
Neural, Parallel and Sci
tific Computations held at

Averbuch:1994:PES

Arbenz:1996:SRP

Ayguade:2006:ENO

Agrawal:1995:PIW

Almeida:1995:CST

Alfaro:1997:FDW

REFERENCES

Alnuweiri:1995:PHF

Astalos:2000:CMS

Agathos:2012:TBE

Awan:2017:CCD

Ahmad:1997:EVP

Allsopp:2001:EUM

Aversa:1997:MDP

Aguilar:1997:PMS

Awan:2020:CPC

Aubrey-Jones:2016:SMI

AlKadi:2018:GPC

Alexandrov:1999:PMC

REFERENCES

Adam:2019:CRA

Armstrong:2000:QDB

Andersen:1994:PIA

Asai:1999:MIF

Abdelfattah:2016:KOL

Alfano:1992:DNA

M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92],...

REFERENCES

REFERENCES

Anonymous:1993:ISA

Anonymous:1993:JFI

Anonymous:1993:MPI

Anonymous:1993:MMP

Anonymous:1993:PSE

Anonymous:1993:SEC

Anonymous:1993:CDP

Anonymous:1994:ICS

Anonymous:1994:ALM
Anonymous:1994:FWR

Anonymous:1994:MMP

Anonymous:1994:PDC

Anonymous:1994:SQC

Anonymous:1995:CCS

Anonymous, editor. 3rd CLIPS conference — September 1994, Houston, TX, NASA Publications N N95-19625-647, N95-19747-768.
Anonymous:1995:BRPb

Anonymous:1995:IPP
Anonymous. An introduction to PVM programming. World-Wide Web,
REFERENCES

[Ano98] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ????. ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMb

Anonymous:2000:BRUd

Anonymous:2000:BRUe

REFERENCES

Anonymous: 2001: AAL

Anonymous: 2001: EDP

Anonymous: 2003: MNIc

Anonymous: 2012: CTC

ANS: 1995: MCR

Anglano: 1996: PMB

Aji:2016:MEA

Aji:2016:MAA

AlHaddad:2001:UNW

Arabnia:1995:TRA

Altas:1994:NIE

REFERENCES

Alonso:1997:PBB

Al-Shorman:2019:UPP

Aydin:2018:RTP

Alves:1995:WPC

Anderson:2017:BGB

Agrawal:1994:PIC

Amritkar:2012:OPF

Al-Tawil:2001:PME

Attiya:1996:ERS

Angskun:2001:DPM

Arif:2018:RBP

Andújar:2016:OSF

[AVA+16] Francisco J. Andújar, Juan A. Villar, Francisco J. Alfaro, José L. Sánchez, and Jesús Escudero-Sahuquillo. An open-source family of tools to reproduce MPI-based workloads in interconnection network simulators. The
REFERENCES

Asenjo:1995:SLF

Arteaga:2017:GFG

Beyer:2005:GEC

Battre:2006:MFP

Bader:2016:EMT

Becciani:2007:FMH

Beaumont:1995:DPG

Bunge:1995:MCM

Brunschen:2000:OCP

Bala:1994:IEU

Bova:1999:NOM

REFERENCES

REFERENCES

[Barrett:2014:EMM]

[Barak:1996:PPM]

[Bouteiller:2006:HPS]

[Bischof:2008:AAD]

REFERENCES

[Brown:2019:LMR] Nick Brown, Michael Barendford, and Michèle Weiland. Leveraging MPI RMA to optimize halo-swapping

Brorsson:2000:SIE

Blas:2014:RAM

Balaji:2019:SIM

Budiardja:2019:TGO

Barton:2006:SMP

REFERENCES

Balaji:2010:IND

Bala:1997:PVQ

Bouteiller:2003:MVF

Bikshandi:2009:EP1

REFERENCES

REFERENCES

link/service/series/0558/bibs/1908/19080080.htm;

Blackford:1997:PEN

Burtscher:2018:HQP

Beguelin:1991:UGP

Beguelin:1991:GDT

REFERENCES

REFERENCES

Beguelin:19xx:PSS

[BDG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, ????. 19xx.

Beguelin:1993:VDH

Bruck:1995:EMPb

Bruck:1997:EMP

Browne:1998:RPA

Bode:1996:PVM

REFERENCES

Baghsorkhi:2010:APM

Bronevetsky:2007:CFS

Baboulin:2008:SID

Briguglio:2003:PPM

Bubak:1997:RAP

Batty:2016:OSA

REFERENCES

Beyls:1999:JJP

Beguelin:1992:XTM

Beguelin:1993:XTMb

Beguelin:1993:XAT

Beguelin:1993:XTMa

Bull:2010:PEM

Benkner:1995:VFA

Bencheva:2001:MPI
REFERENCES

REFERENCES

Broquedis:2010:FEO

Bubak:1996:MPP

Bubak:1999:EPP

Bouge:1996:EPP

Barbour:1995:PIG

Banikazemi:2001:MLE

Broquedis:2012:LEO

Bronevetsky:2009:CAC

Blanco:2002:PMA

Balasubramanian:2015:EGL

Raghuraman Balasubramanian, Vinay Gangadhar, Ziljiang Guo, Chen-Han Ho, Cherin Joseph, Jaikrishnan Menon, Mario Paulo Drumond, Robin Paul, Sharath Prasad, Pradip Valathol, and Karthikeyan Sankaralingam. Enabling GPGPU
low-level hardware explo-

[lowlevelhardwareexplo-
orations with MIAOW: an
open-source RTL implemen-
tation of a GPGPU. ACM
Transactions on Architec-
ture and Code Optimiza-
tion, 12(2):21:1–21:??, July
2015. CODEN ???. ISSN
1544-3566 (print), 1544-3973
(electronic).

Bhanot:2005:OTL
G. Bhanot, A. Gara, P. Hei-
delberger, E. Lawless, J. C.
Sexton, and R. Walkup.
Optimizing task layout on
the Blue Gene/L supercom-
puter. IBM Journal of Re-
search and Development, 49
CODEN IBMJAE. ISSN
0018-8646 (print), 2151-8556
(electronic). URL http://
www.research.ibm.com/
journal/rd/492/bhanot.pdf.

Bischof:2008:PRM
Christian Bischof, Niels
Guertler, and Andreas
Kowarz. Parallel reverse
mode automatic differen-
tiation for OpenMP pro-
grams with ADOL-C. In
Bischof et al. [BBH+08],
pages 163–173. CO-
DEN LNCSA6. ISBN 3-
540-68935-4 (print), 3-540-
68942-7 (e-book). ISSN
1439-7358. LCCN QA304
link.springer.com/content/
pdf/10.1007/978-3-540-
68942-3_15.

Butler:2000:SPM
Ralph Butler, William
Gropp, and Ewing Lusk.
A scalable process-manage-
ment environment for parallel
programs. Lecture Notes in
Computer Science, 1908:
168–??, 2000. CODEN
LNCSD9. ISSN 0302-
9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/
bibs/1908/19080168.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080168..
pdf.

Beisel:1997:EMD
T. Beisel, E. Gabriel, and
M. Resch. An extension
to MPI for distributed com-
puting on MPPs. Lecture
Notes in Computer Science,
1332:75–82, 1997. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
tronic).

Brune:1997:HMP
Matthias Brune, Jörn Gehring,
and Alexander Reinheld.
Heterogeneous message pas-
sing and a link to resource
management. The Journal of
Supercomputing, 11
CODEN JOSUED. ISSN
0920-8542 (print), 1573-0484
REFERENCES

REFERENCES

REFERENCES

Bazow:2018:MPS

Berka:2012:PET

Busa:2012:ACO

Bae:2017:SEF

Bickham:1995:POM

Bernaschi:2005:ERA
REFERENCES

0129-6264 (print), 1793-642X (electronic).

REFERENCES

REFERENCES

REFERENCES

Baraglia:1993:PWC

Bach:2013:LQB

Belviranli:2018:JDA

Bubak:1998:PCL

Bhandarkar:1997:CRP

Booth:2000:SSM

Basumallik:2002:TOE

Ayon Basumallik, Seung-Jai Min, and Rudolf Eigenmann. Towards OpenMP execution on software distributed shared memory sys-

[BMPZ94a]

[BMP97]

[BMPS03]

[Bubak:1994:PDS]

[Bubak:1994:EMD]

REFERENCES

[Brightwell:2002:DIM]

[Bubak:1994:FLG]

[Bubak:1994:IPL]

[Boschetti:2019:MOD]

[Barthels:2017:DJA]

[Berrendorf:2000:PCO]
REFERENCES

ID=76500355&PLACEBO=IE.
pdf.

REFERENCES

Borkowski:1999:LVC

Boszormenyi:1996:PCT

Berthou:1998:PHM

Barbosa:1999:ADM

Beletsky:1994:OPV

Becks:1994:NCT

Barbosa:1997:EUW

Baptista:2001:IOS

Balou:1991:DIV

Burrer:1994:RRB

C. Burrer and P. Remy. RUBIS: a runtime basic interface software on TELMAT T9000 TN series. In de Gloria et al. [dGJM94], pages 63–78. ISBN ???? LCCN ????

Bernardi:1995:CCE

Bernaschi:1995:PEI

M. Bernaschi and G. Richelli. PVMe: an enhanced implementation of PVM for

REFERENCES

REFERENCES

Benzoni:1992:CLF
A. Benzoni, G. Richelli, and V. S. Sunderam. Concurrent
LU factorization on work-
station networks. In Evans
et al. [EJL92], pages 159–

Briley:1994:NNH
W. R. Briley, D. S. Reese,
A. Skjellum, and L. H.
Turcotte. NHPDCC: The
National High Performance
Distributed Computing Con-
sortium. In IEEE [IEE94f],
pages 2–9. ISBN 0-8186-
4980-1. LCCN QA76.58.S34
1993.

Bruck:1995:EMPa
Jehoshua Bruck. Efficient
message passing interface
(MPI) for parallel comput-
ing on clusters of work-
stations. Research report
RJ 9925 (87305), IBM T.
J. Watson Research Cen-
ter, Yorktown Heights, NY,
USA, 1995. 31 pp.

Brightwell:2005:AIO
Ron Brightwell, Rolf Riesen,
and Keith D. Underwood.
Analyzing the impact of overlap, offload, and in-
dependent progress for Mes-
sage Passing Interface ap-
lications. The Interna-
tional Journal of High Per-
formance Computing Applica-
tions, 19(2):103–117, Summer
2005. CODEN IHPCFL. ISSN 1094-3420
(print), 1741-2846 (elec-
sagepub.com/content/19/
2/103.full.pdf+html.

Brüning:2012:MFT
Ulrich Brüning. MPI func-
tions and their impact on in-
terconnect hardware. Le-
cure Notes in Computer Sci-
ence, 7490:10, 2012. CO-
DEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer.com/accesspage/
chapter/10.1007/978-3-
642-33518-1_2.

Barth:1993:CNM
N. H. Barth and S. L. Smith.
Coupling numerical models of
the atmosphere and ocean
using the parallel virtual ma-
chine (PVM) package. In
Sincovec [Sin93], pages 71–
LCCN QA 76.58 S55 1993.
Two volumes.

Bolding:1994:PCR
Kevin Bolding and Lawrence
Snyder, editors. Parallel
computer routing and com-
munication: first interna-
tional workshop, PCRCW
'94, Seattle, Washington,
USA, May 16–18, 1994: pro-
cedings, number 853 in
Lecture Notes in Com-
puter Science. Springer-Ver-

Beguelin:1996:TMD

Brightwell:1996:DIM

Blikberg:2001:NPA

Blikberg:2005:LBO

Brown:2007:HSP

Bassomo:1999:PGE

REFERENCES

[BT01a] Maciej Go biewski and Jesper Larsson Träff. MPI-2 one-sided communications

Bu:2001:PAC

Bonelli:2017:MCA

Badia:1999:SIT

Baltas:1994:CPC

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

Bihari:2012:CIT

Blattner:2012:PSC
REFERENCES

Bendtsen:1997:RLS

Carpen-Amarie:2017:EOC

Calmet:1994:RWC

Carbarle:2012:SNP

Carbajal:2007:PTD

Campanoni:2010:HFP

Cavender:1993:APV
REFERENCES

tonio, TX, USA, 1993. vi + 228 pp.

Chabbi:2017:EAL

Cartwright:2000:AOE

Czarapinski:2011:TST

Creech:2016:TSS

Cesarini:2020:CSR

Cesarini:2021:CRT

REFERENCES

Cooper:1994:CHF

Coronado-Barrientos:2019:ANF

Casas:2010:APD

Chapman:2002:APU

Cowles:2018:ISB

REFERENCES

Clay:2018:GAP

Chapple:1995:PUL

Cormen:1999:PBP

Ciaccio:2000:GMG

Couturier:2000:PMD

151

www.sciencedirect.com/science/article/pii/S0010465599004324

Chen:2017:AAG

Chen:2000:MCO

Couder-Castaneda:2015:PCM

Castagnera:1994:NEP

Cooperman:2003:UTC

Casas:1995:MMT

Collingbourne:2012:STO

Costa:2006:ROA

Chen:2012:PUA

Ciglaric:2019:OLP

Clematis:1997:DNL

A. Clematis, A. Coda, M. Spagnuolo, and M. Mineter. Developing non-local iterative parallel algorithms for GIS on Cray T3D using MPI. *Lecture Notes in
REFERENCES

Chamaret:1995:PFE

Coulaud:1996:EIP

Cunha:1998:MPP

Cotronis:2001:RAP

Clemencon:1996:THM

Cao:2013:CHP
Chongxiao Cao, Jack Dongarra, Peng Du, Mark Gates, Piotr Luszczek, and Stanimire Tomov. cMAGMA: High performance dense linear algebra with OpenCL. LAPACK Working Note 275, Department of Computer Science, University

Conforti:1996:PIA

Chownie:1994:PPP

Chang:1995:EPCa

Casanova:1995:PPM

Chandra:2001:PPO

REFERENCES

[CDM93]

[CDMS15]

[CDND11]

[CDPM03]

[CDPM03]

[ACM03]

[CDP99]

[CDP99]

[CDP99]

[CDP99]

[CDP99]

[CDP99]

[CDP99]

[CDP99] Albert Chan, Frank Dehne, and Ryan Taylor. CGM-

Ceron:1998:PID

Cappello:2000:MVM

Chau:2007:MIP

[Cerin:1999:DMP]

Chen:2001:FFT

Clemence:1995:AEP

REFERENCES

Carter:2010:PLN

Clarke:1994:MMP

Cunningham:2014:RXE

Carpenter:2000:MML

Catanzaro:2011:CCE

Calore:2016:PPA

REFERENCES

[Cha05] Barbara M. Chapman, editor. Shared memory parallel programming with OpenMP: 5th International Workshop
REFERENCES

REFERENCES

Cho:2015:OAO

Chapman:2001:PDE

Cho:2010:OPP

Cook:1995:TAS

Cadenelli:2019:CUO

Chapman:2008:UOP

Czarnul:1999:DAP

Chang:2016:DLD

Casas:1994:ALM

Culler:1993:LTR

Castro-Leon:1993:MCP

Clark:1998:FOP

David Clark. Focus: OpenMP: a parallel standard for the masses. IEEE Concurrency, 6(1):10–12,
REFERENCES

Chikin:2019:MAA

Chen:2003:GMD

Corbacho-Lozano:1999:EDD

Cantoni:1995:CCA

[CLM95] Virginio Cantoni, L. Lombardi, M. Mosconi, M. Savini, and A. Setti, editors. CAMP ’95, *computer architectures for machine percep-
REFERENCES

Chen:2018:FOB

Chien:1999:DEH

Chandra:2007:ESP

Chang:2016:APC

Chapman:1998:OHI

REFERENCES

[CMR12] Chapman:2012:OHW

Campanai:1994:EAS

Chapman:1999:EOF

Chou:2010:CMI

Chalkidis:2011:HPH

Coelho:1994:EHC

Cho:2020:PMP

Cooperman:1995:SBP

G. Cooperman. STAR/MP: binding a parallel library to

Cooperman:1995:SMB

Cootonis:1997:MPP

Cootonis:1998:DMP

Cootonis:2004:CMP

Coussement:1993:PMO

Cotronis:1997:MPP

Carissimi:1998:AEM

Cercos-Pita:2015:ANF

J. L. Cercos-Pita. AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL. *Computer Physics...*

Celik:2017:BET

Castello:2018:EIR

Corno:1995:PTA

Chassin de Kerommeaux:1999:MER

Cappello:1999:PNB

Cappello:2001:UPS

M. Chetlur, G. D. Sharma, N. Abu-Ghazaleh, and

Candel:2019:EMC

Cao:2011:OMM

Chang:2020:ADI

Cui:2012:OOB

Cavender:1995:APN

REFERENCES

176

Cavender:1995:SSA

Chengqing:1996:WIP

Czarnul:2002:DTI

Czarnul:2003:PTA

Czapiński:2013:EPM

Czech:2016:IPC

Chapman:2008:PPM

REFERENCES

[Dieuguez:2018:SLP] Adrián Pérez Diéguez, Margarita Amor, Jacobo Lobeiras, and Ramón Doallo. Solving large problem sizes of index-digit algorithms on GPU:
REFERENCES

Danalis:2012:MCT

Danalis:2012:MCT

Darema:2001:SMP

Demidov:2013:PCO

Demuynck:1997:DOD

DeAndrade:2017:OFH

Demuyck:1997:DOD

Dinan:2016:IEM

James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. An

Dursun:2009:MPM

Dotsenko:2011:ATF

DiMartino:2001:WDS

DAgostino:2014:CAM

daCunha:1993:PLA

Dow:2002:CMA

Didelot:2012:IMC

Didelot:2014:IMC

delCuvillo:2006:LOC

Didelot:2012:IMC

Didelot:2014:IMC

Decker:1995:TDU

Deveci:2019:GMT

Dongarra:1997:BCA

Dean:1994:CPV

Dan:1999:QAM

Durand:1991:HPC

Demaine:1996:FCC

DePasquale:2003:UJU

[DeP03] C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. *Cmg*, 2(??):821–832, 2003. CODEN ????.

Dehne:2001:CPD

[DERC01] Frank Dehne, Todd Eavis, and Andrew Rau-Chaplin. Computing partial data cubes for parallel data ware-

Dashti:2017:AMM

Duran:2009:PEO

Figueiredo:2019:MOP

Demaine:2001:GCM
E. D. Demaine, I. Foster, C. Kesselman, and M. Snir. Generalized communicators in the message passing in-
REFERENCES

James Dinan, David Goodell, William Gropp, Rajeev Thakur, and Pavan Balaji. Efficient multi-threaded context ID allocation in MPI. *Lecture Notes in Computer Science,

REFERENCES

DiSerio:2002:ENN

DiNucci:1996:CDS

Denis:2019:SPT

Drosinos:2006:EPT

Deo:2013:PSA

Mrinal Deo and Sean Keely.

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Damodaran-Kamal:1994:MSR

Damodaran-Kamal:1994:TRP

Dongarra:2000:RAP

Dongarra:1992:PFS

Dickens:2010:HPI

delaAsuncion:2011:SOL
[dlAMC11] Marc de la Asunción, José M. Mantas, and Manuel J. Castro. Simulation of one-layer shallow water systems on multicore and CUDA architectures. The Journal of
REFERENCES

Marcos:2002:DDP

Marcos:2002:DDP

Marcos:2002:DDP

Marcos:2002:DDP

Marcos:2002:DDP

Marcos:2002:DDP

Marcos:2002:DDP

Marcos:2002:DDP
REFERENCES

REFERENCES

DeSande:1999:NBS

DiPietro:2016:CLD

Despons:1993:CCP

Davies:1995:NPE

Dagum:1998:OIS

Dziubak:2012:OOI

Dongarra:1995:IMS

Dongarra:1996:MPS

DeRoeck:1994:CFP

Diep:2019:TSS

Denis:2001:THP

REFERENCES

Dalcin:2005:MP

Dalcin:2008:MPP

Dou:1997:ISV

Decker:1994:PEM

Dowaji:1995:LBS

DiMartino:1997:MDH

REFERENCES

REFERENCES

[Dang:2017:ECB]

[Dietrich:2017:CBA]

[Davidor:1994:PPS]

[Dohi:2011:GIO]

[Domokos:2000:PRC]

[Daleiden:2020:GPP]
Patrick Daleiden, Andreas

REFERENCES

Deshpande:1996:MIBa

Dekker:1994:MPP

Dongarra:1994:PSW

Jack J. Dongarra and Bernard Tourancheau, editors. *Proceedings of the Second Workshop on Environ-

Diavastos:2017:SLR

Duv:1992:TPP

D. Duval. Trends in parallel programming models for high performance computers. In Ferenczi [Fer92], page 33. ISBN ???. LCCN ???

Dikken:1994:DDL

REFERENCES

1994. IEEE catalog no. 94CH34819.

Eadmonds:2019:HAS

Edjlali:1995:DPP

Eichenberger:2020:HCG

Edwasif:2001:AMT

Eppstein:1994:CSP

Eddelbuettel:2018:BRN

Eigenmann:2008:ONE

ElMaghraoui:2009:MIM

Eleftheriou:2005:SFF

El-Ghazawi:2002:UPP

Eppstein:1992:PGC

REFERENCES

Eickermann:1999:PID

Erhel:2014:DDM

Ebrahimirad:2015:EAS

Evans:1992:PCP

Exbrayat:1997:OPS

REFERENCES

REFERENCES

Faraji:2018:DCG

Fabeiro:2016:WPP

Fabeiro:2015:AGO

Fang:1998:DDL

Freeman:1994:SMM

Fang:1995:PMS

Fang:1996:SPP

N. Fang and H. Burkhart. Structured parallel programming using MPI. In Lidell et al. [LCHS96], pages
REFERENCES

Fang:1997:MDD

Fagg:2001:FTM

Friedel:2001:HMC

REFERENCES

REFERENCES

www.sciencedirect.com/science/article/pii/S0167819118303843

[Fd96] Graham Fagg and Jack Dongarra. PVMPI: An integration of PVM and MPI systems. Calculat-

www.sciencedirect.com/science/article/pii/S0167819112000371

[Fd04] Graham E. Fagg and Jack J. Dongarra. Building and using a fault-tolerant MPI implementation. The International Journal of High Per-

[Fd96] Graham Fagg and Jack Dongarra. PVMPI: An integration of PVM and MPI systems. Calculat-

www.sciencedirect.com/science/article/pii/S0167819112000371

[Fd04] Graham E. Fagg and Jack J. Dongarra. Building and using a fault-tolerant MPI implementation. The International Journal of High Per-

[Fd96] Graham Fagg and Jack Dongarra. PVMPI: An integration of PVM and MPI systems. Calculat-

www.sciencedirect.com/science/article/pii/S0167819112000371

[Fd04] Graham E. Fagg and Jack J. Dongarra. Building and using a fault-tolerant MPI implementation. The International Journal of High Per-

Fagg:1997:HMAa

Fagg:1997:HMAAb

Faict:2019:MGI

Falch:2017:MLB

Falch:2017:RAM

Ferenczi:1992:AHW

S. Ferenczi, editor. 1st Austrian-Hungarian Workshop on Transporter Applications. Proceedings. Hungarian Acad.of Sci, Bu-
REFERENCES

Fagg:2001:PIS

Fahringer:2000:FOP

Foster:1996:MIW

Fan:1995:DMP

Fachat:1997:IEB

Andre:1998:BVN

André Fachat and Karl Heinz Hoffmann. Blocking vs. non-blocking communication under MPI on a master-worker problem. Preprint-Reihe des Chemnitzer SFB 393 Sonderforschungsbereich Numerische Simulation auf Massiv parallelen Rechnern 98,18, Universität
REFERENCES

Chemnitz-Zwickau, Chemnitz, Germany, 1998.

Friedley:2013:OPE

Franke:1995:AAV

Franke:1995:MIS

Franke:1994:EIM

Franke:1994:MMP

Field:2001:RTF

Field:2001:RTF

Franke:1994:MIS
REFERENCES

Fernandez:2000:UPM

Forejt:2017:PPA

Feng:2014:SBS

Flower:1994:EJM

Ferenczi:1995:PAH

Szabolcs Ferenczi and Peter Kacsuk, editors. *Proceedings of the 2nd Austrian-Hungarian Workshop on Transputer Applications: September 29–October 1, 1994, Budapest, Hungary*. Hungarian Academy of Sciences, Central Research Institute for Physics, Budapest,
REFERENCES

REFERENCES

Foster:1996:GCM

Florez:2005:LMM

Fagg:1996:TGR

Fagg:1998:MMH

Fachada:2017:CCF

Ferreira:2018:CMM

Fan:2020:ALC
Q. Fan, D. J. Lilja, and S. S. Sapatnekar. Adaptive-

Fan:2017:SEE

Ferenc:1999:VMK

Femminella:1994:PBP

Ford:1995:NNN

Foster:1998:GEM

Freeman:1992:PNA

Faraj:2008:SPA

FPY08 Ahmad Faraj, Pitch Patarasuk, and Xin Yuan. A study
REFERENCES

Ferreira:1995:PAI

Frischer:1993:PDC

Frischer:1995:TDC

Franke:1995:MPEa

Frischer:1997:ESP

Frischer:1998:MDC

Filgueira:2011:ACE

Rosa Filgueira, David E. Singh, Jesús Carretero, Alejandro Calderón, and Félix García. Adaptive-CoMPI:

Fan:2019:BPA

Fan:2019:SAO

Fuerle:1998:IPC

Fumero:2017:JTG

Folino:1998:EMC

Folino:1998:PEM

REFERENCES

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP

Fernandez:2000:DCE

Fujimoto:2008:DMV

Fagg:2000:AAC
Graham E. Fagg, Sathish S. Vadhiyar, and Jack J. Dongarra. ACCT: Automatic Collective Commu-
Fang:2015:EVD

Fineberg:1996:PPI

Franke:1995:MPEb

Grangeat:1996:PTI

Galibert:1997:YCL

O. Galibert. *YLCL, A C++ Linda system on top of*

[GB98] Sergei Gorlatch and Holger Bischof. A generic MPI implementation for a

[GBR97] Edgar Gabriel, Thomas Beisel, and Michael Resch. Erweiterung einer MPI-Umgebung zur Interoperabilität verteilter MPP-Systeme. (German) [Extension of an MPI environment for interoperability...]

REFERENCES

with distributed MPI systems]. Studienarbeit ange-
wendte Informatik RUS 37, Rechenzentrum Universität

Garain:2015:CCF

[GBR15] Sudip Garain, Dinshaw S. Balsara, and John Reid. Comparing Coarray For-
tran (CAF) with MPI for several structured mesh
PDE applications. *Journal of Computational Physics*,
297(??):237–253, September 15, 2015. CODEN
JCTPAH. ISSN 0021-9991 (print), 1090-2716 (elec-
science/article/pii/S002199911500354X.

Graham:2007:OMH

[GBS+07] Richard L. Graham, Brian W. Barrett, Galen M. Ship-
man, Timothy S. Woodall, and George Bosilca. Open
MPI: a high performance, flexible implementation of
MPI point-to-point communications. *Parallel Pro-
PPLTEE. ISSN 0129-6264 (print), 1793-642X (elec-
tronic).

Grove:2005:CBP

[GC05] D. A. Grove and P. D. Coddington. Communication benchmarking and
performance modelling of [GCC99]

MPI programs on cluster computers. *The Journal
CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484
1007/978-3-642-30397-5_2/.

Garcia:2012:DLB

[Marta Garcia, Julita Corbalan, Rosa Maria Badia, and Jesus Labarta. A dy-
namic load balancing approach with SMPSuper-
scalar and MPI. *Lecture Notes in Computer Science*,
7174:10–23, 2012. CODEN LNCS-D9. ISSN 0302-9743
springer.com/chapter/10.1007/978-3-642-30397-5_2/.

GarciaSalcines:1997:PRR

E. Garcia Salcines, G. Cer-
ruela Garcia, J. I. Ben-
avides Benitez, and F. Muñoz
Garcia. Parallel rendering of radiance on distributed
memory system by PVM. *Lecture Notes in Computer
0302-9743 (print), 1611-3349 (electronic).

Garcia:1999:MMI

F. Garcia, A. Calderon, and

Garcia-Consuegra:1998:DGR

Gelado:2010:ADS

Gao:2013:GGA

Geist:1993:PTW

Galizia:2015:MCL

Gonzalez-Dominguez:2020:CJA

Gonzalez-Dominguez:2018:MPC

Gawande:2020:SDL

Grinstein:1995:VDE

Grinstein:1996:VDE

REFERENCES

[Gei93a]

[Gei93b]

[Gei94]

[Gei96]

[Gei97]

[Gei98]

[Gei00]

[Gei01]
G. Al Geist. Building a foundation for the next PVM: Petascale Virtual Machines.

REFERENCES

REFERENCES

[GGH99] A. Godlevsky, M. Gazak,

Geist:1996:MEM

Gawman:1993:PCT

Genaud:2008:EPC

Getov:1999:MJM

Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

Gao:2020:MES

Gentzsch:1994:HPC

Wolfgang Gentzsch and Uwe Harms, editors. High-performance computing and networking: international

Ghosh:2012:RAA

Grebe:1993:TAS

Goumopoulos:1997:PCS

Gropp:1998:MCR

Gong:2012:OCN

REFERENCES

Garcia:2011:KRR

Goglin:2018:HTM

Gerlach:2001:IOJ

Genaud:2009:FMP

Grecki:1997:MPE

Gillett:1997:UMC

Granat:2010:PSS

Granat:2009:NPQ

Grasso:2013:APS

Gianinazzi:2018:CAP

Gropp:1995:MGX

Guan:1997:PDI

REFERENCES

Geist:1996:VDP

Geist:1997:CPF

Geist:1997:BPW

Gopalakrishnan:2011:FAM

Garland:2012:DUP

Gropp:1992:TIM

Gropp:1994:MCL

Gropp:1999:RMM

Gropp:2002:MG

Gropp:2004:FTM

Girona:2000:VDC

Gropp:1996:HPP

Glendinning:1993:MMP
I. Glendinning. 93SC041 the MPI message passing
REFERENCES 243

REFERENCES

REFERENCES

REFERENCES

Guarracino:1995:PMB

Grosset:2017:TTT

Govindan:1996:OMP

Gillich:1995:FPP

Genaud:2007:PMP

Grabowsky:1997:MBK
Lothar Grabowsky. MPI-basierte Koppelrandkommunikation und Einfluß der Partitionierung im 3D-Fall. (German) [MPI-based coupled edge communication and influence of partitioning in 3D-Fall]. Preprint-Reihe des Chemnitzer SFB 393 97.17, Universität Chemnitz-Zwickau,
REFERENCES

Grengbondai:1994:CPU

Greenfield:1995:OPS

J. Greenfield. An overview of the PVM software system. In IEEE [IEE95d], pages 17–23. ISBN ???? LCCN ????.

Gropp:2000:RCD

Gropp:2001:CSA

Gropp:2001:LSM

Gravvanis:2009:OBP

Gropp:1997:OBP

Gropp:2000:RCD
REFERENCES

REFERENCES

Gold:1996:UAL

Geist:19xx:NBC

Garg:2002:TOA

Gao:2008:GEI
[GSA08] Guang R. Gao, Mitsuhisa Sato, and Eduard Ayguadé. Guest Editors introduction:

Gardner:2013:CCE

Gine:2002:ALT
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.springer.de/link/service/series/0558/bibs/2474/24740156.htm; http:
REFERENCES

Gerlach:1997:ECS

Gonzalez:2000:AIT

Germanas:2017:HUP

Gine:2001:MMM

Gu:2013:PCI

Gong:2021:TDG

Gropp:2007:TSM

Gropp:2019:GEI

Gennart:1996:CAG

REFERENCES

Gidra:2015:NGC

Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen. Nu-
maGiC: a garbage collector for big data on big NUMA machines. ACM
CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Guang:2016:NMN

Suo Guang. NR-MPI: A non-stop and fault resilient MPI supporting program-
er defined data backup and restore for E-scale super computing systems. Super-
computing Frontiers and Innovations, 3(1):4–21, ????. 2016. CODEN ????
ISSN 2409-6008 (print), 2313-8734 (electronic). URL http://
superfri.org/superfri/
article/view/89.

Gallardo:2018:EMM

Esthela Gallardo, Jérôme Vienne, Leonardo Fialho, Patricia Teller, and James
Browne. Employing MPLT in MPI advisor to optimize application performance.
The International Journal of High Performance Computing Applications, 32(6):
882–896, November 1, 2018.

Ge:1995:DHA

Yuzhen Ge, L. T. Watson, and E. G. Collins, Jr. Distributed homotopy algorithms for H^2/H^∞

Guerrero:2014:PCM

Gines D. Guerrero, Richard M. Wallace, José L. Vázquez-Poletti, José M. Cecilia,
José M. García, Daniel Motos, and Horacio Pérez-Sánchez. A performance/
cost model for a CUDA drug discovery application on physical and public cloud
infrastructures. Concurrency and Computation: Practice and Experience, 26
(10):1787–1798, July 2014. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634
(electronic).

Hadjidoukas:2010:NOP

Panagiotis E. Hadjidoukas and Laurent Amsaleg. Nested OpenMP parallelization of
208, June 2010. CODEN PPLTEE. ISSN 0129-6264
REFERENCES

Han:2011:HHL

Hussain:2011:PIA

Hoeflinger:2001:PSP

Hamza:1995:PII

Haridi:1995:EPP

Hansen:1998:EMP
Per Brinch Hansen. An evaluation of the Message-
Passing Interface. *ACM SIGPLAN Notices*, 33(3): 65–72, March 1998. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). The author criticizes MPI, and remarks “MPI … lack[s] the elegance and security that can only by checked by a parallel programming language.”.

Hardwick:1994:PVL

Hardwick:1995:PVL

Hassanzadeh:1995:MMG

Hisley:2000:PPE

Hatazaki:1998:RRS

Hachler:1996:IAC

G. Hachler and H. Burkhart. Implementing the ALWAN

REFERENCES

Han:2017:SLS

Hunold:2016:RMB

Hurwitz:2005:AMP

Huang:2005:TME

Hu:2016:CLG

He:2000:UAA

He:2000:PAA

REFERENCES

[Hoefer:2012:LMO] Torsten Hoeffer, James Dinan, Darius Buntinas, Pavan Balaji, and Brian Barrett. Leveraging MPI’s one-sided communication inter-

[Hoefer:2015:RMA] Torsten Hoefer, James Dinan, Rajeev Thakur,

Vlastimil Havran and Petr Egert. Extensions to bidirectional texture function compression with multilevel vector quantization in OpenCL. *Computers and Graphics*, 48(??):1–10, May 2015. CODEN COGRD2. ISSN
REFERENCES

REFERENCES

IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://link.springer.com/content/pdf/10.1007/s10766-014-0305-x.pdf. See [HF14a].

Hursey:2012:AFA

Hermanns:2012:SDM

Hong:1995:PNP

Hanson:2014:NCM

Hui:1995:SPS

Huang:2018:ACO

Hermanns:2019:MEI

Halver:2018:FPM

Huckelheim:2019:RMA

Haque:2016:ACV

Hinde:2011:QMD

Robert J. Hinde. QSATS: MPI-driven quantum simulations of atomic solids at zero temperature. *Com-

Huttunen:2002:MCC

Haimes:1998:UPM

Hall:2014:MMC

Huang:2010:ELA

Hoffmann:1993:PFE

Henriksen:1994:PCF

P. Henriksen and R. Keunings. Parallel computation of the flow of in-

Hoffmann:1995:CAP

Hoffmann:1995:CAP

Hiranandani:1994:CTB

Hoeflinger:2001:IPV

Hong:2010:IGP

Hong:2011:ACG

Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating CUDA graph algo-

[HKMCS94]

[HK+01]

[HKO011]

REFERENCES

Hong:1996:RDM

Hawick:2010:PGC

Hawick:2011:RLS

Hilbrich:2009:MCC

Hajihassani:2019:FAI

Huband:2001:DTB

REFERENCES

Hosking:2012:CHL

Hadjidoukas:2005:OEM

Hawick:2011:HSL

Hidalgo:1999:MMP

Hadjidoukas:2002:MOI

Hariri:1995:STE

Hondroudakis:1995:PEV

Heckathorn:1996:SSP

Hilbrich:2012:MRE

Hilbrich:2013:MRE

Hariri:1993:MPI

Hoeffer:2011:SPT

Hoyos-Rivera:1997:UPB

Hempel:1997:IMN

[HRZ97] R. Hempel, H. Ritzdorf, and F. Zimmermann. Implement-
REFERENCES

[Hartley:1993:CPS]

[Hesham:1994:PTS]

[Hertzberger:1995:HPM]

[Hungenahally:1995:PIQ]

[Hoefler:2012:OPC]

[Henriksen:2017:FPF]
Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea. Futhark: purely functional GPU-programming with nested parallelism and in-place array updates. ACM SIG-
REFERENCES

PLAN Notices, 52(6):556–571, June 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Haeuser:1994:RNS

Heimel:2013:HOP

Hormati:2012:SPS

Hu:2001:PCC

Howes:2008:U

Ha:2008:NBP

REFERENCES

[]

[Hluchy:1999:GWF]

[Humphres:1995:LBE]

[Hariri:2016:PPA]

[Huckle:1996:PIS]

[Husbands:1998:MSD]

[Huse:1999:CCD]

[Huse:2000:MOS]
REFERENCES

Huse:2001:LST

Hamidouche:2016:CAO

Houzeaux:2011:HMO

Hooekstra:1995:CPP

Hager:2011:IHP
REFERENCES

[HZ96] R. Hempel and F. Zim-

[IADB19] E. Issman, G. Degrez, and J. De Keyser. A paral-

Ibanez:2016:HMT

IEEE:1991:PSA

IEEE:1992:PSH

IEEE:1993:DPC

IEEE:1993:PSI

IEEE:1993:PIS

REFERENCES

IEEE:1995:PIC

IEEE:1995:PFI

IEEE:1996:ICH

IEEE:1996:EIS

IEEE:1996:PIS

REFERENCES

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Ierotheou:2005:GOC

Iwama:2001:PLS

Iwama:2002:PLS

Iwashita:1994:IPE

Ingle:1995:MAS

Islam:2016:EMT

Ishizaka:2000:CGT

Imbernon:2018:ELS

Ilroy:2001:IMP

Ilie:2016:AEC

Satake:2012:OGA

Inamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IAC

Mohammad Towhidul Islam, Parimala Thulasiraman, and Ruppa K. Thulasiram. Implementation of ant colony...

REFERENCES

Jin:2008:PEM

Jaeger:2015:FGD

Jaksic:2020:HPF

Jenkins:2014:PMD

Jeremiassen:1995:RFS
T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on shared memory multiprocessors through compile time data transformations. ACM SIGPLAN Notices, 30(8):179–188, August 1995. CODEN SIN-

Haoqiang Jin, Dennis Jespersen, Piyush Mehrotra, Rupak Biswas, Lei Huang,

Jo:2017:PMA

Jin:2003:AMP

Januszewski:2010:ANS

Jeun:2008:OPB

Jan:2017:ITF

Jog:2013:OCT

Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer,
and Chita R. Das. OWL: co-operative thread array aware

Jambunathan:2018:COB

Jost:2005:WMP

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

REFERENCES

bibas/2131/21310386.htm;
http://link.springer-

[JMS14] Jaewoon Jung, Takaharu Mori, and Yuji Sugita. Mid-
point cell method for hybrid (MPI + OpenMP) parallelization of molecu-
1072, May 30, 2014. CODEN JCCHDD. ISSN 0192-8651 (print), 1096-987X (elec-
tronic).

ating LINPACK with MPI-OpenCL on clusters of multi-GPU nodes. IEEE Transac-
www.computer.org/csdl/trans/td/2015/07/06846313-
abs.html.

[Jon96] Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Com-
puter Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

[Jou94] A. Joubert. Parallel algorithms for linear and nonlinear equations derived from

Joubert:1994:PCT

Jost:2010:EUH

Jimenez:2013:BCA

Jalowiecki:2021:BFS

Judd:1994:PIV

Jin:2013:PCU

REFERENCES

Jung:2005:DIM

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M^3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jaaskelainen:2015:PPP

Ju:1996:SPT

Jain:1996:IOP

Jin:1995:LTP

Kumar:1995:MWD

Kepner:2004:M

Kumar:2013:GAI

Krawezik:2002:SOV

Kapinos:2010:PPP

Khan:2017:RCS

Kanal:2012:PAI

M. E. Kanal. Parallel algorithm on inversion for adjacent pentadiagonal matrices with MPI. *The Journal*

Katamneni:1993:PPE

[Sreevenu Katamneni. Parallel processing extensions to Verilog HDL using the PVM environment. M.s.e.e. thesis, Department of Electrical Engineering, University of Alabama, Tuscaloosa, AL, USA, 1993. viii + 108 pp.]

Karlsson:1998:CCC

Kaiser:2001:OCC

Kruzel:2013:VOI

Kabir:2002:DIS

Klemm:2009:RTM

Kulkarni:2016:HAP

Knies:1994:SLL

Klemm:2007:JIO

Kitowski:1997:CPM

Kannan:2016:HPP

Ke:2004:RCM

Klemm:2007:JIO

Kakimoto:2012:PCG

Klemm:2012:EOV

Komatitsch:2010:HOF

Kepner:2005:PPM

Kale:1996:PMD

Kappiah:2005:JTD

Kramer-Fuhrmann:1994:TGP

O. Kramer-Fuhrmann, L. Schafers, and C. Scheidler. TRAPPER — a graphical programming environment for parallel systems. In Becks

Kowalik:1993:SPC

Kohl:1996:PTF

Kainz:2009:RCM

Keller:2003:TEE

Keller:2010:RAM

Kafura:1996:CCC

Kwon:2010:SPC

Karrenberg:2012:IPO

Kramer:2015:SET

Khanna:2013:HPN

Kielmann:1999:MMC

REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). [KK02a]

Kwon:2012:HAO

Kim:2016:DOF

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Krysztop:2002:IFP

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO

Kobler:2001:DOP

Karrels:1994:PAM

Kofakis:1995:DPI

Liao:2011:DEM

Liao:2006:SDI

Kofakis:1995:DPI

Liao:2007:CCS

Kang:2020:IMC

Kumar:2019:FOP

[Ramavarmarajakishorummarunarun

Klawonn:2015:HMO

Kutyniok:2016:SFD

Kim:2015:OBU

Klawonn:2015:HMO

Kutyniok:2016:SFD

Khomich:2010:NMG

Kormicki:1997:PLS

Khomich:2010:NMG

Komatitsch:2009:PHO

Koholka:1999:MPR

Kumar:2014:OMC

Kobayashi:2016:HSV

Kouzinopoulos:2015:MSM

Kambites:2001:OLI

Kasahara:2001:ACG

Koniges:2000:ISP

Kauranne:1995:OHM

Koski:1995:STL

Kimmo Koski. A step towards large scale parallelism: Building a parallel computing environment from heterogeneous resources. *Future
REFERENCES

Konuru:1997:MUL

Kermarrec:1996:PDS

Kuckuk:2013:IPD

Klockner:2012:PPS

Kolesnichenko:2016:CBG

Kuhn:2000:OVT

REFERENCES

Kamal:2005:SVT
Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????

Klimach:2009:PCH

Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunaseth:2013:ASD

Kalentev:2011:CCL
Oleksandr Kalentev, Abha

Kranzlmueller:1999:MOM

Kotsis:1996:EEP

Krantz:1997:CSC

Krawczyk:2001:PIM

Kim:2013:MPE

Kaliman:2015:SNU

REFERENCES

Kovanen:2015:TAC

Klinkenberg:2020:CRL

Knight:2019:TES

Kegel:2013:DTU

Kusano:2001:OOC
Katkere:1995:VBW

Katkere:1996:VWI

Kim:2012:OUP

Kusano:2000:PEO

Kotsifakou:2018:HHP

Kurzyniec:2007:UCA

Kranzlmüller:2001:IRM

Koval:2010:USB

Kang:2019:SAM

REFERENCES

[102x681] REFERENCES

Karonis:2003:MGG

Komatitsch:2003:BDF

Keppens:2021:MAP

Kuhn:1998:FFW

Kumar:1994:PP1

Kranzlmueller:1998:DPP

Kolonias:2011:DIE

Vasileios Kolonias, Artemios G. Voyiatzis, George Goulas,

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

Korch:2020:ILE

Kamburugamuve:2018:AML

Kamal:2010:EIN

Karwande:2003:CMC

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Karwande:2005:MPC

Krantz:1996:RFP

Lopez:2002:ESM

Lopez:2006:ESM

Ladd:2004:GPP

Lobeiras:2016:DEI

Laguna:2015:DPF

REFERENCES

Laforenza:2001:PHP

[Daf01]

Lorentz:2015:AMS

[LAFA15]

Langdon:2009:FHQ

Loos:1996:MPS

Lavi:1998:IPD

[R. Lavi and A. Barak. Improving the PVM daemon network performance by direct network access. Lecture Notes in Computer Science, 1497:44–??, 1998. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).]

Lashgar:2016:ESM

[Ahmad Lashgar and Amirali Baniasadi. Employing software-managed caches]
References

Loncar:2016:CPS

Losada:2019:LRR

Liu:2021:BMN

Lawton:1996:BHP

Ling:2012:HPP

Cheng Ling, Khaled Benkrid, and Tsuyoshi Hamada. High performance phylogenetic analysis on CUDA-

REFERENCES

Jaejin Lee. SnuCL and an MPI + OpenCL implementation of HPL on heterogeneous CPU/GPU clusters.

REFERENCES

REFERENCES

REFERENCES

Liu:2010:RTC

Li:1997:PIO

Liu:1995:WCD

Livny:2000:MYW

Lu:1998:ONW

Li:1996:SIS
Lastovetsky:2010:RAP

LaSalle:2014:MBD

Lastovetsky:2008:RAP

Luecke:2003:CPM

Liang:1996:AEO

Li:2003:PNH

Luecke:2001:SPO

Luecke:2004:PSM

Lin:2016:VDF

Ludwig:1995:PPF

Lue:2013:COM

M. Larsen and P. Madsen. A scalable paral-

Lu:2013:MLP

Lee:2009:OGC

Losada:2017:ARV

Li:2019:TBH

Lopez:2015:PBV

Losada:2014:EAL

[N. Losada, M. J. Martín, G. Rodríguez, and P. González. Extending an application-level checkpointing tool to...

REFERENCES

Lou:1995:PIN

Landman:2000:PLR

Li:2011:FSM

Lockey:1998:CRM

Lastovetsky:2006:HTM

Le:2006:DMC

REFERENCES

0167-739X (print), 1872-7115 (electronic).

Lotfi:2015:AAC

Lee:2014:BCA

Laguna:2016:EEU

Lima:2019:PEA

Luo:2001:PDE

Latham:2007:IMI
Robert Latham, Robert Ross, and Rajeev Thakur.

Li:2001:WMB

Luckow:2008:MFT

Lin:2010:TLS

Lashgar:2015:CSR

Li:2018:CER

REFERENCES

Levesque:2012:HEA

Luecke:2004:PSS

Lin:2018:CHM

Liu:2011:CBA

Lumsdaine:1995:WIM

Li:2015:AMR

REFERENCES

Liu:2008:AMD

Lazzarino:2002:PBP

Langr:2014:APP

Lazar:1994:SRE

Laohawee:2000:PDT

Lee:2002:IPC

Nung Kion Lee, David Taniar, J. Wenny Rahayu, and Mafruz Zaman Ashrafi.

Li:1995:CPP

Ludwig:1997:OUI

Lin:2020:GTD

Lee:2015:GCE

Liu:2004:HPR

Laguna:2019:GPD

REFERENCES

Liang:2018:FMP

Li:1993:MSU

Lu:2020:GQO

Lopes:2019:FBD

Loncar:2016:OOM

Lu:2013:WGA

Li:1997:EHC

Konming Gary Li and

REFERENCES

Maffeis:1994:SSD

Ma:2009:CRS

Mavriplis:2005:HRAa

Miguel:1996:APN

Molero-Armenta:2014:OOI
M. Molero-Armenta, Ursula Iturra-Viveros, S. Apari-

Malyshkin:1995:PCT

Malfetti:2001:AOW

Mirvis:1995:HML

Manchek:1994:DIP

Mans:1998:PDP

Manis:2001:PNP

Miguel-Alonso:2009:INS

Marowka:2003:EOT

Marowka:2005:EMT

Marowka:2006:BRP

Marowka:2007:PCD

Marowka:2009:BCT

Mehta:2006:MSG

Mattson:1994:PEP

Mattson:1995:PEP

Mattson:2000:BOF

Mattson:2000:IO

Mattson:2001:EO

REFERENCES

REFERENCES

(1558-1160 (electronic).

REFERENCES

Mehl:2015:RTC

Miles:1994:PTO

Medeiros:1998:IPM

Morrison:1999:FPP

Maier:2017:OLD

Malinowski:2018:SIP

REFERENCES

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

McKinney:1994:PGU

Moore:2001:RPA

Moreira:2017:FCR

Rubens E. A. Moreira, Sylvain Collange, and Fernando Magno Quintão Pereira. Function call re-vectorization. ACM SIGPLAN Notices, 52
REFERENCES

McRae:1992:VC

Mierendorff:2000:WMB

Marin:2017:ERF

Monteiro:2018:EGC

Muller:2009:EOA

REFERENCES

Mehta:2015:MTP

Mendonça:2017:DAA

Mehta:2012:SPE

Muralidharan:2015:COP

Medvedev:2005:OMA

Montella:2017:VCB

Raffaele Montella, Giulio Giunta, Giuliano Laccetti, Marco Lapegna, Carlo Palmieri, Carmine Ferraro, Valentina Pelliccia, Cheol-Ho Hong, Ivor Spence, and Dimitrios S. Nikolopoulos. On the virtualization of CUDA based GPU remot-
Mazzariol:1997:PCS

Markidis:2015:OAN

Matthey:2001:EMO

Hwu:2012:GCG

Moll:2018:PCF

Miller:1994:PPP

Miller:1994:PPT

Munshi:2016:OCS

OpenCL/specs/opencl-2.0-openc1c.pdf.

Michielse:1993:PMU

Michielse:1995:PMU

Muddukrishna:2015:LAT

Mittal:2012:CAS

Muddukrishna:2016:GGO

Matyska:1994:DCS

McDonald:1997:IPT

McDonald:2000:TPA

Mohror:2004:PTS

Manwade:2017:DFA

Maheo:2012:AOL

Markus:1996:PEM

REFERENCES

REFERENCES

Marendic:2016:NMR

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2001:TSH

Michailidis:2002:PSL

REFERENCES

MACKAY:1998:SPF

MIRONOV:2019:EMO

MUDGE:1993:PTS

MORIMOTO:1998:IMM

MORIMOTO:1999:PEM

MOHAMED:2013:MMM
Hisham Mohamed and Stéphane Marchand-Maillet. MRO-MPI: MapReduce overlapping using MPI and an opti-

Manca:2016:CQI

MacFarlane:1999:PPI

Morris:2007:SNO

Mohr:2002:DPP

Matuszek:1999:BPG

Martin:1996:WTW

D. E. Martin, T. J. McBrayer, and P. A. Wilsey. WARPED:

REFERENCES

MPIForum:1998:SIM

Mena:2020:GAS

Muller:1996:CDI

Marsins:2012:PDC

Meister:2017:PME

Mo:1996:IOP

Mininni:2011:HMO

Mazzocca:2000:TPP

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

Mierendorff:1999:PMB

REFERENCES

Migliardi:1999:PEH

Mourao:1999:IMO

Macias:2002:SEA

Mahinthakumar:2002:HMO

Mertens:2004:CCP

Mysliwiec:1997:IPS

Matise:1995:PCG

[SCW95] T. C. Matise, M. D. Schroeder, D. M. Chiarulli,

Molnár:2010:APM

Macías:2001:PPA

Matrone:1993:LPC

Mysliwiec:1997:CAM

Martins:1998:JIW

Martorell:2005:BGP

Bernd Mohr, Jesper Larsson Träff, Joachim Worringen, and Jack Dongarra, editors. Recent Advances in Parallel Virtual Machine and
REFERENCES

Manegold:1997:QBM

Morton:1995:LLP

[Don Morton, Kefei Wang, and David O. Ogbe. Lessons learned in porting Fortran/PVM code to the Cray T3D. IEEE parallel and distributed technology: systems and applications, 3(1):4–11, Spring 1995. CODEN IPDTEX. ISSN 1063-6552 (print), 1558-1861 (electronic).]

Maleki:2016:HOT

Mercan:2019:CCH

Maly:1993:DCP

Mu:2020:OOB

Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

Nagle:2005:BRM

Nicolescu:1999:PWA

Nakajima:2003:PIS

Nakajima:2005:PIS

Nakajima:2005:TLH
Kengo Nakajima. Three-level hybrid vs. flat MPI on the Earth Simulator: Parallel iterative solvers for
References

[NB96] C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ???? LCCN ????

[NCB+17] Tan Nguyen, Pietro Cicotti, Eric Bylaska, Dan

Neophytou:2001:NDW

Kengo Nakajima and Hiroshi Okuda. Parallel iterative solvers for un-

[NPP+00b] Dimitrios S. Nikolopoulos, Theodore S. Papathanodorou, Constantine D. Polychronopoulos, Jesus Labarta, and Eduard Ayguade. Is data distribution necessary in OpenMP? In ACM [ACM00], page 68. URL

REFERENCES

Nikolopoulos:2000:LTD

Nikolopoulos:2000:ULR

Notz:2012:GBS

Naranjo:2020:ASC

Nagaraj:1991:MHL

U. Nagaraj and U. S. Shukla. MK: a high level interface for

Naumenko:2016:ACT

Nadal-Serrano:2016:PSC

Nascimento:2007:DDS

Nadal:2020:NSG

Nukada:2012:SMG

Neuberger:2012:MIS

John M. Neuberger, Nándor

Nandivada:2013:TFO

Nogueira:2016:BBW

Norcen:2005:HPJ

Nitsche:1998:FMP

Ng:2012:STT

Nguyen:1994:DCE

S. T. Nguyen, B. J. Zook, and Xiaodong Zhang. Distributed computation of electromagnetic scattering problems using finite-

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Olivier:2012:CMW

Oed:1993:CRM

REFERENCES

Yusuke Okitsu, Fumihiko Ino, and Kenichi Hagiwara. High-performance

REFERENCES

ISSN 0920-8542 (print), 1573-0484 (electronic).

REFERENCES

REFERENCES

REFERENCES

Pereira:2017:SBC

Panda:1995:GRW

Panda:1995:IDE

Panda:2014:PMH

Patterson:1993:PPE

Christopher S. Patterson. Parametric positron emission tomographic imaging using parallel virtual machine: with an example using myocardial blood flow

Puzniakowski:2012:TOI

Pringle:2001:TPF

Pingali:1995:LCP

Plazek:1999:IIC

Plazek:2000:SCC

REFERENCES

R. L. Pennington. Distributed and heterogeneous
Papagapiou:1999:NWD

Pernice:1996:RPP

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

Pernice:1996:RPP

Pernice:1997:BRM

Pereira:1999:PBI
REFERENCES

Petcu:2001:WMM

Pharr:2005:GGP

Pjesivac-Grbovic:2007:PAM

REFERENCES

Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and

Pennycook:2013:IPP

[PHW13]

Pierce:1994:NMP

[Pie94]

Prades:2020:MRU

[PIR20]

Papadopoulos:1998:DVS

[PK98]

Park:2005:SOA

[PK05]

Papadopoulos:2001:NRC

[PKB01]
REFERENCES

Paul:2006:TLF

Prabhakar:2016:GCH

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

Pruyne:1996:ICP

Plachetka:2002:QTS
Tomas Plachetka. (quasi-) thread-safe PVM and (quasi-) thread-safe MPI without active polling. Lec-
REFERENCES

Pfenning:1995:OCP

Piscaglia:1995:DOC

Poulson:2013:ENF

REFERENCES

Pirk:2016:VVA

Plagianakos:2001:LCP

Pokorny:1996:CMP

Parrilia:1999:UPD

Pai:2016:CTO

Poplawski:1989:MPP

Park:2001:CSL

REFERENCES

[P94a] P. Pierce and G. Regnier. The Paragon imple-
REFERENCES

Pierce:1994:PSH

PR94b

Pozo:1994:FTE

PR94c

Priimak:2014:FDN

Pri14
Pedroso:2000:MPC
Hernâni Pedroso and João Gabriel Silva. MPI-2 process creation & management imple-

Protopopov:2000:SMC

Pedroso:2001:WLE

Protopopov:2001:MMP

Pandey:2007:SCM

REFERENCES

Park:2019:DBO

Prades:2019:GJM

Pehrson:1994:IPP

Perez:2019:ATO

Petrovic:2020:BSH

Peters:2011:FPC
Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. Fast in-place,
<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>408</th>
</tr>
</thead>
</table>
REFERENCES

Pikle:2019:AFE

Payrits:2000:UPC

Pears:2001:DLB

Pai:2013:IGC

Prost:2001:MIG

Prost:2001:THP

[PTH+01b] Jean-Pierre Prost, Richard Treumann, Richard Hedges, Alice Koniges, and Alison White. Towards a high-

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Patrick:2001:PPE

Insung Park, Michael J. Voss, Seon Wook Kim, and Rudolf Eigenmann. Parallel
programming environment for OpenMP. Scientific Pro-
gramming, 9(2–3):143–161, Spring–Summer 2001. CO-
DEN SCIPEV. ISSN 1058-9244 (print), 1875-919X
.asp?lasp=7pab6gbaf8v/x9g91rwy/26referrer=parent%26backto=
issue%2c2c%2c11%38journal%2c21%2c9%3blingkpublicationresults%2c21%2c1.

Pahl:1995:CCB

Peter Jan Pahl and Heinrich Werner, editors. Computing in civil and building
engineering: 6th International conference — July 1995,
Berlin, Computing in Civil and Building Engineering
v.1-2. Two volumes.

Preissl:2012:CSS

Robert Preissl, Theodore M. Wong, Pallab Datta, My-
oron Flickner, Raghavendra Singh, Steven K. Esser,
William P. Risk, Horst D. Simon, and Dharmendra S.
Modha. Compass: a scalable simulator for an architecture
for cognitive computing. In Hollingsworth [Hol12],
pages 54:1–54:?? ISBN 1-
.org/sc/2012/papers/1000a085.pdf.

Pang:2016:MKR

Yeyong Pang, Shaojun Wang, Yu Peng, Xiyuan Peng, Nicholas J. Fraser, and
Philip H. W. Leong. A microcoded kernel recursive
least squares processor using FPGA technology. ACM
Transactions on Reconfig-
urable Technology and Systems (TRETS), 10(1):5:1–
5:??, December 2016. CO-
DEN ????? ISSN 1936-7406
(print), 1936-7414 (elec-
tronic).

Pirkelbauer:2019:BTF

Peter Pirkelbauer, Amalee Wilson, Christina Peterson, and Damian Dechev. Blaze-
Tasks: a framework for computing parallel reductions
over tasks. ACM Trans-
actions on Architecture and
Code Optimization, 15(4):
CODEN ????? ISSN
1544-3566 (print), 1544-3973
(electronic).

Prasad:1995:PPB

S. K. Prasad and K. M.
Yu. Performance of a PVM-

[Ham95a] Hamza

[PZKK02] Phillips:2002:NBS

[QB12] Qiu:2012:PWM

[QHCC17] Qawasmeh:2017:PPR

[QMGR00] Quoy:2000:PNN

A. Qaddouri, R. Roy, and B. Goulard. Multigroup flux...

Qaddouri:1996:CPC

Qu:1995:FAS

Quinn:2003:PPC

Rashti:2009:SAM

REFERENCES

Rabenseifner:1998:MGI

Rabenseifner:1999:APM

Ragg:1996:PEN

Ratha:1995:DED

Ramadan:2007:TDM

Rantakokko:2005:DMO

Rehman:2016:VMJ

Roussos:2001:BMB

[RB01] George Roussos and B. J. C. Baxter. Biharmonic many

REFERENCES

[RFH+95] John V. W. Reynders, David W. Forslund, Paul J.

Rico-Gallego:2016:EIL

Rivas-Gomez:2018:MWS

Reussner:2001:APP

Roda:1996:PEI

Rathgeber:2017:FAF
REFERENCES

REFERENCES

Reyes:2013:PEO

Rungsawang:2001:LCP

Rubio-Largo:2012:UMO

Roe:1999:PMI

Rietmann:2012:FAS

CGFODY. ISSN 0167-7055 (print), 1467-8659 (electronic).

Rageb:2001:CEM Khaled Rageb and Wolfgang
REFERENCES

Rauber:2002:LSH

Roda:1997:PPI

Roig:2001:EMM

Robinson:1996:TMI

Russ:1999:UHR

Russek:2020:SLC

Paweł Russek, Paweł Russek, Ernest Jamro, Agnieszka

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

Roy:1997:PNT

Reano:2019:SIN

Rambu:1995:DSS

Reano:2015:IUE

REFERENCES

Ruhela:2019:EDM

Reussner:1998:SDA

Reussner:2002:SCB

Reussner:2000:BMD

Rozman:2006:CPL

Roberti:2005:PIL
REFERENCES

REFERENCES

REFERENCES

Saltz:1991:MRT

Stubb:1995:ICE

Smith:1996:UWC

Steed:1996:PPP

Sievert:2004:SMP

Shterenlikht:2019:MVF

Saillard:2014:PCS

REFERENCES

Santos:1997:ECP

SCRI:1992:PWC

Shi:2012:VGA

Szeberenyi:1999:SGB

SM-D:2013:BRC

Sorensen:2016:EER

[SDM10] Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??.
REFERENCES}

REFERENCES

REFERENCES

Shen:2013:ACE

Selikhov:2005:CMB

Sharma:2012:SRP

Steuwer:2014:SHL

Sack:2015:CAM

Sunderam:1994:PCC

REFERENCES

Schneider:2012:MAC

Solsona:2001:IEI

Saito:2003:LSP

Solsona:2000:MCM

Sun:2020:RTS

J. Sun, N. Guan, F. Li, H. Gao, C. Shi, and W. Yi. Real-time scheduling and analysis of OpenMP DAG.

D. Sitsky and E. Hayashi. An MPI library which uses polling, interrupts and remote copying for the Fujitsu AP1000+. In Li et al. [LHHM96], pages 43–
REFERENCES

Shing:1994:UPC

Samadi:2014:LGU

Sato:2010:BLL

Samadi:2012:AIA

Shah:2000:FCS

Sato:2001:OGR

Simmendinger:2019:ISG

Siegel:1992:FFS

Siegel:1992:FSF

Siegal:1994:PEI

REFERENCES

Silvester:1996:SEE

Sincovec:1993:SCP

Silla:2017:BRG

Sistare:2002:UHP

Szo:2017:PET

Sharma:2017:PDR

Szoke:2017:PET

Samadi:2014:PPB

Shen:1992:VTD

Smith:2000:DPM

Sanders:2010:CEI

Steinberger:2014:WTB

Skjellum:2004:RTM

[SKD+04] Anthony Skjellum, Arkady Kanevsky, Yoginder S. Dan-

Subramaniam:1996:CLU

Skjellum:1993:SLH

Steinberger:2012:SDS

Spiechowicz:2015:GAM

Satoh:2001:COT

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV

Skjellum:1995:EAM

Scherer:1999:TAP
acm.org/pubs/citations/proceedings/ppopp/301104/p96-scherer/.

REFERENCES

Simos:2007:CMS

Santos:2012:ICC

Shea:2019:HSD

Siegel:2008:CSE

Shterenlikht:2015:FC

Smith:1993:MBA
K. A. Smith. Multi-processor based accident

REFERENCES

Silva:1999:DPP

Schmidl:2012:PAT

Saldana:2010:MPM

Symeonidou:2014:DRB

Squyres:2003:CAL

Sivaraman:1995:PSP
H. Sivaraman and C. S. Raghavendra. Parallelizing sequential programs to a cluster of workstations. In Agrawal [Agr95a], pages 38–

REFERENCES

Satarić:2016:HOM

Sotomayor:2017:ACG

Silva:1996:IDS

Silva:1997:IPD

Silva:1995:PCR

Skjellum:1994:DEZ

Shen:2020:GPC

L. Stals. Adaptive multi-
REFERENCES

Stankovski:1995:MPA

Salinas:2020:FEI

Stephens:1994:PBT

R. Stephens. Parallel benchmarks on the Transtech Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???? LCCN ????

Still:1994:PPC

Schmitz:2008:IIG

Arne Schmitz, Markus Tavenrath, and Leif Kobbelt. Illumination: Interactive global illumination for deformable geometry in CUDA.
REFERENCES

Sunderam:1997:TAS

Stockinger:1998:VPC

Stpiczynski:2002:PPO

Stpiczynski:2018:LBV

Stpiczynski:2020:ALB

REFERENCES

V. S. Sunderam. Recent initiatives in heterogeneous parallel computing. In Gray and Naghdy [GN95], pages 1–16. ISBN ???? LCCN ????.

Two volumes. IEEE catalog no. 95TH0682-5.

Steve Sistare, Rolf van-de-Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

Anthony Skjellum, Diane G. Wooley, Ziyang Lu, Michael Wolf, Purushotham V. Bangalore, Andrew Lumsdaine, Jeffrey M. Squyres, and Brian McCandless. Object-oriented analysis and design
REFERENCES

Shan:2012:PEH

Shee:1994:DMA

Sotiriou-Xanthopoulos:2018:OBV

Stathopoulos:1995:DLB

Sydow:1994:PSA

Stathopoulos:1996:PIM

Andreas Stathopoulos, Anders B. Ynnerman, and

Song:2019:PGA

Schneider:2009:CPM

Stankovic:1999:NVJ

Siegel:2011:AFV

Simunovic:1995:MIP

Simunovic:1995:MIP

Thompson:2014:CIC

Elizabeth A. Thompson and Timothy R. Anderson. A

Tian:2002:IOC

Tahan:2012:ITC

Thomas:1994:PSA

Tzannes:2010:LBS

Tagliavini:2018:UFG

Thompson:2015:PCI

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDG13</td>
<td>Easy, fast, and energy-efficient object detection on heterogeneous on-chip architectures.</td>
<td>Ehsan Totoni, Mert Dikmen, and María Jesús Garzarán.</td>
<td>ACM Transactions on Architecture and Code Optimization, 10(4):45:1–45:??, December 2013. CODEN ????. ISSN ???.</td>
</tr>
</tbody>
</table>
REFERENCES

Tuncer:2009:PCF

Tian:2019:GAB

Thakur:2002:ONA

Tsiolakis:2020:NPG

Vasileios Tsiolakis, Matteo Giacomini, Ruben Sevilla, Carsten Othmer, and Antonio Huerta. Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in OpenFOAM. *Computer Physics Communications*, 249(??):Article 107013, April
REFERENCES

Rajeev S. Thakur. A case for using MPI’s derived datatypes to improve I/O performance. In ACM [ACM98b], page ??

C. Trefftz, C. C. Huang, P. K. McKinley, T. Y. Li, and Z. Zeng. Design and performance evaluation of a distributed eigenvalue solver

Tran:2000:PPM

Takizawa:2015:ODT

Tabakin:2009:QPE

Frank Tabakin and Bruno Juliá-Díaz. QCMPi: a par-

REFERENCES

Tang:2019:QDL

Tong:2018:FCM

Turchetto:2020:GDS

Tinetti:2001:HNW

Traeff:1998:PRL

Traff:2002:IMP
Jesper Larsson Traff. Implementing the MPI process topology mechanism. In IEEE [IEE02], page ?? ISBN 0-7695-1524-X. LCCN

Thibault:2012:AIF

Takahashi:2002:PEH

Takahashi:2003:PEH

Terboven:2012:AOT

Teixido:2014:MBI

Ivan Teixidó, Francesc Sebé, Josep Conde, and Francesc Solsona. MPI-based imple-

Tsujita:2007:RMP

Tsutsui:2012:AMG

Tang:1999:CRT

Tang:2000:PTR

Trelles-Salazar:1994:MSS

Theodoropoulos:1997:GSP

Tanaka:2000:PEO

Tellez-Velazquez:2018:CSI

Twerda:1996:PIT

Tourancheau:2001:SMN

Thorson:2012:SUF

Tournavitis:2009:THA

Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F. P. O’Boyle. Towards a holistic approach

Tang:2019:MNT

Tien:2014:EOS

Utterback:2017:POR

Utterback:2019:POR

Utterback:2019:POR

Uselton:1995:PRS

Udupa:2009:SES

Abhishek Udupa, R. Govindarajan, and Matthew J. Thathathaveetil. Synergistic execution of stream pro-

[vanderPas:1993:PIG] R. van der Pas. The PVM implementation of a

[VanKatwijk:1995:AAC]

[Van95]

[vandeGeijn:1997:UPP]

[VAT95]

[Vazquez:1999:PNS]

[Villaverde:2018:PTI]

[VanZee:2008:SPF]

A. Vapirev, J. Deca, G. Lapenta, S. Markidis, I. Hur, and J.-

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

VonHanxleden:1994:VDF

Viswanathan:1995:PCM

Valero-Lara:2020:SFA

Valero-Lara:2018:CCC

Pedro Valero-Lara, Ivan Martínez-Pérez, Raúl Sirvent, Xavier Martorell, and Antonio J. Peña. cuThomas-Batch and cuThomasV-Batch, CUDA routines to

Valencia:2008:PPR

Valero-Lara:2019:MTS

Varadarajan:1994:FDT

Vincent:1995:HPP

Vogel:2013:BWC

Volkert:1993:PCS

REFERENCES

Voss:2003:OSM

Voss:2003:OSM

VidalMacia:2000:IPM

VidalMacia:2000:IPM

Vargas-Perez:2017:HMO

Vargas-Perez:2017:HMO

Vrenios:2004:PPC

REFERENCES

Vu:2019:FMT

Vandoni:1995:CSC

Vo:2009:FVP

Verkerk:1992:PIC

Vettter:2002:EPE

Verschelde:2015:PHC

Vasilache:2019:NAL

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary Devito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert
REFERENCES

[Wong:1999:BMM]

[Wal94b]

[Walker:1999:EDS]

[Wal96a]

[Wallcraft:2000:SOV]
Alan J. Wallcraft. SPMD OpenMP versus MPI for

R. A. Wasniowski. Nonlinear adaptive prediction al-

Coupling fluids and structures codes on MPI. In IEEE [IEE96], pages 130–137. ISBN 0-8186-7533-0.
LCCN QA76.642 .M67 1996.

虞niewski:1996:APC

REFERENCES

REFERENCES

Wark:1994:PIR

White:1994:VVC

White:2004:CMM

Waidyasooriya:2019:OBD

Wilkinson:1993:IFT

Wismueller:1996:SBV

Wismueller:1996:SBV

Wismueller:1997:DMP

Wismueller:1998:LMS

Wismueller:2001:UMT

Witchel:2016:PPW

Wei:2012:OLL

[Wei12] Zheng Wei and Joseph Jaja. Optimization of linked
list prefix computations on multithreaded GPUs using CUDA. *Parallel Processing Letters*, 22(4):1250012, December 2012. CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

REFERENCES

[WOP95] David W. Walker and Steve W. Otto. Redistribu-
REFERENCES

507

Walker:1996:RBC

Winstanley:1997:PDP

Wang:2009:MPM

Wolbers:1992:SPP

Worley:1996:MPE

Weng:2007:OIS

Wagner:1994:CFD

[The references are displayed in the order they appear in the text. The references are formatted using LaTeX for clear and consistent presentation.]
REFERENCES

Wang:1995:PPG

Wang:2020:EPE

Wu:2001:PCS

Worsch:2002:BCM

Winkler:2019:GSM

Wang:2016:LLA

Wisniewski:1999:SME

West:1995:AVV

Wu:2012:PCH

Wu:2013:PMH

Wang:2014:IPD

Worringen:2003:FPN

Wang:2019:FBA

Waidyasooriya:2017:OBF

Wu:1999:MCC

Wong:2011:EMS

Wilson:1996:SMS
G. C. Wilson, T. H. Wood, J. L. Zyskind, J. W. Sulhoff,

Wu:2012:DPL

Wang:2016:MMF

Wang:2017:CEG

Wang:2008:PIM

REFERENCES

REFERENCES

Yang:2014:HPD

Yang:2014:IMP

Yu:2013:AGA

Yu:2013:AGA

Yoon:1996:WBP

YG96

REFERENCES

Yang:2011:HCO

Yuasa:1996:RPG

YarKhan:2017:PPN

Yamazaki:2018:SIL

Yang:2009:DBM

Yang:2016:HTM
Fan Yang, Jinfeng Li, and James Cheng. Husky: towards a more efficient and

Yan:2013:SFS

Yalamov:1997:BRT

Yilmaz:2009:HPC

You:1995:EIM

J. You, E. Pissaloux, W. P. Zhu, and H. A. Cohen. Efﬁ-

Young:1993:PEN

YS93

Yuan:2012:PCS

YSL+12

Yeh:2017:PFG

YSS+17

REFERENCES

Notices, 50(8):161–172, August 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Yong:1995:SOM

Yu:2012:SCC

Yang:2014:CNR

You:1995:PIM

Zounmevo:2014:FRC

Zaza:2016:CBP
Zahavi:2012:FTR

Zhong:2007:PPS

Zdetsis:1994:PMD

Zilli:1997:TBN

Zhu:2012:CDS

Zhao:2010:GMP

Zhang:1997:DED

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

Zemla:1994:WTC

Zhou:1995:FMP

Zhou:1995:RMR

Honbo Zhou and Al Geist. “receiver makes right” data

[ZHS99] Ivan Zoraja, Hermann Hollwagner, and Vaidy Sunderam. SCIPVM: Paral-

Zhang:2018:IRP

Zarebavani:2020:CCB

Zounmevo:2014:ESC

Zaky:1996:PDT

Zha:2017:IFM

Yue Zha and Jing Li. IMEC: A fully morphable in-memory computing fabric enabled by resistive crossbar. *IEEE Computer Architecture...*
Zha:2018:LSM

Zaki:1999:TSP

Zhou:2012:DFD

Zhang:2017:DLN

Zhu:2015:PIM

Zhang:2020:CTE

T. Zhang, X. Liu, X. Wang, and A. Walid. cuTensor-Tubal: Efficient primitives for tubal-rank tensor learning operations on GPUs. *IEEE Transactions on Par-
ISSN 1045-9219 (print), 1558-2183 (electronic).

Zhai:2011:CVH

Zollweg:1993:OP

Zarrelli:2006:EPE

Zambonelli:1996:EPP

Zheng:2011:GLO

Zhao:2012:ASO

Zarrabi:2015:GSA

Zoltani:2001:EPO

Zouaoui:2017:CNG

Zhou:2020:EOP

Zaitsev:2019:SLD

Zareski:1995:EPG

Zheng:2005:SBP

Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad,
and Laxmi Kant V. Kalé.
Simulation-based performance prediction for large parallel machines.

Zhang:2013:MPI

Xiaohua Zhang, Sergio E. Wong, and Felice C. Lightstone. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines.
CODEN JCCCHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

Zhu:2017:OAP

CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Miaoliang Zhu, Chunming Wu, Youjun Zhang, Yi Jin, and Jie Li. A real-time and concurrent intelligent robotic system based on multi-agent architecture.
CODEN GTONE8. ISSN 1002-0470.

Youhui Zhang, Dongsheng Wong, and Weimin Zheng. User-level checkpoint and recovery for LAM/MPI.
CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

LCCN QA76.58 .S34 1994.

Mo Zeyao and Huang Zhengfeng. Application of MPI-IO in parallel particle transport Monte–Carlo simulation.
CODEN PAAPEC. ISSN 1063-
Zheng:2014:IMS

Zhu:2015:PML