A Bibliography of Publications about *PVM* (*Parallel Virtual Machine*) and *MPI* (*Message Passing Interface*)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 October 2019
Version 3.209

Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0
[ICC02]. 1 [ICC02, LRQ01, VDL+15].

19.95 [Ano95b]. 2
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19]. 24.95
[Ano95c]. 27.50 [Ano96a]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12]. 35
[An000a, An000b]. 35.00
[An009a, An009c, An009b, An009d]. 3D
[KA13]. 60 [An000a, An000b]. 3 [PBC+01].
A [ARYT17]. α [JMdVG+17]. $Ax = b$

[BG95]. D [UZC+12], H^2/H^∞ [GWC95]. k
[She95, TK16]. \leftrightarrow [GRW+19]. M^3 [JSH+05].

PVM [Wil94]. N
[HM05, Per99, Rol08b, SP99, SRK+12]. P_N
[OGM+19]. P_{N-2} [OGM+19]. $SU(3)$ [BW12].
τ [RGDM15, RGDM16]. XY [KO14].

- based [Rét19]. -body
[HM05, Per99, SP99, SRK+12]. -D
[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. -Dimensional [LRQ01].

- Lop [RGDM15, RGDM16]. -Means
[TK16]. -Queens [Rol08b]. -set [She95].

- stable [JMdVG+17].

. [Wil94].
1 [HKMV94, SOHL+98]. 10-Gigabit
[HeF05]. 100 [Str94]. 10th [DLO03, IEE96e].
'11 [ACM11]. 11th [IEE97b, KKD04]. '12
Hol12. 128-processor [LL01]. 12th
DKD05, Bi95. 13th
[An95d, MTWD06, PSB+94]. 14th
[CH07, CHD09]. 15-18 [SL94a]. 15th
[IEE95i, LKD08]. 16th [RWD09]. 17th
[GRD10, MC94]. 18-21 [DKD07]. 18th
DE91, EJL92, IEE91. 1992
[KG93, R+92, VW92]. 1993
[An94c, GGK+93, IEE93a, IEE93e,
JPT94, MMH93]. 1994 [An94a, An94e,
DS94, DT94, GN95, GT94, HK95, IEE94h,
PSB+94, SPE95, SPH95, TV95]. 1995
[ACM95a, ACM96a, AGH+95, BH95, GA95,
Ham95a, IE95b, IE95a, IE95d, IE95h,
IE95i, JB96, NM95, Nar95, Tes95, UCW95,
ZL96]. 1996 [ACM96b, Abr96, Boa97,
ERS96, IEE96f, IEE96e, IEE96i, R96c].
[TBD12, IEE05]. 1st [Ar96, BR95a,
CGB+10, Kuma94, Van95, Fer92].
2 [AKL99, BCAD06, BHS+02, BMPZ94a,
CwCW+11, CD96, DPD90, FST98a,
FST98b, GFD03, GGHL+96, GT01,
GLH+98, GL97, GLT00b, GLT00a,
HGW12, Jon96, LC97b, LSK04, MS02a,
MK04, PS00a, SS99, SSL97, TRH00, VAT95,
bT01a]. 2-D [BMPZ94a]. 2.0
[BO01, LPD+11, LWP97, Mat00b, NSM12].
2.2 [HRR+11]. 2.0 [KS96]. 2000 [ACM00,
CLBS17, LL01, LSK04, N005, ZS9H01].
2001 [ACM01, Odc02]. 2003
[ACM03, AS14, Dn06, O05]. 2004
[AC04]. 2005 [AC05, DK07]. 2006
[AC06a, MTW07]. 2007 [SM07]. 2008
2012 [Hol12, TB14]. 2015 [IS16]. 21st
[IEE95a]. 25nm [An95o]. 26th
[An93a, SL94a]. 27th [An94h]. 28th
[ZL96]. 2D [ZZZ+15]. 2D-DWT [ZZZ+15].
2nd [FK95, IEE93c, Nag95, YM97].
3 [BR95, C96, GBH14, GBH18, GPL+96,
GLT12, Gro12, HDT+15]. 3-D [Bri95].
3.0 [An97, Bra97, BMR01, BRM05, DDB+16,
Ka10, OP10]. 3.06 [An93]. 3.1 [WCC12].
3.4 [Ge97, GKS97]. 3.X [KS96]. 3000
[HWM02]. 33rd [ACM95a]. 37th [ACM96a].
3D [GAP97, Gra97, LO96]. 3D-Fall [Gra97].
3rd [ACM96b, CZG+08, An95a, IEE96a].
4 [An93a, H97, KSHS01, NU05, SD13,
SBT04]. 4.0 [DSG91, JCP95, dOSM+16].
4.5 [CBY98]. 43 [U9C+12]. 45-degree
[CT93]. 48th [IEE94e]. 4th
[BDW97, ED98, FF95, USE00]. 5
[TRH00]. 512 [RBB97]. 5th
[AD98, Cha95, IEE94a, MDS09].
600 [LSK04]. 6000 [AL93, NM93]. 64
[dC9G06]. 64-bit [W93]. 6th [ACDR94,
DLM99, GT94, PW95, SHM+10, Sin93].
7th [ACM95b, CGK11, DKP00, GN95,
PBG+95].
857 [SMSW96]. 897 [HWS99]. 8th
[CMRR12]. 12 [C01].
9 [Ben95, SM03]. 9076 [Br95]. '91
[BG91, EJL92, IEE91]. '92
[Se92a, Se92b, VW92]. '93 [An93a,
GGK+93, GH93, IEE93a, IEE93e].
93SC038 [FS93]. 93SC041 [Gle93]. '94
[BS94, DW94, GT94, IEE94b, IEE94h,
PSB+94, SPE95, WPH94, dGJM94]. 947
[LTD94]. '95
[ACM95b, AH95, BH95, CLM+95, CJNW95,
DMW96, FF95, HAM95b, IEE95d, Lev95,
NM95, Van95, An98, FD97, Ka10].
Affine [DMB16].

Aerospace [MAB05].

Advections [AKK+94, CT94a, TC94, CT94b].

Advection-Chemistry [AKK+94].

Advances [Bha93, BBH+08, CHD07, CDN11, KGRD10, KKD04, KK93, SSAS12, TG94, Ben95, DMK19].

Adopt [ANo94b, BCMR00, BKdSH01, Bir94, KO+94, FSC+11, HWX+13, KK98, KT02, LFL11, MKC+12, MBES94, MRB17, OKR95, Ram05, RA09, ShM+12, SGZ00, STH99, Sta95a, TMW17, ZSG12, DFP+10, DLSR94, EZBA16, EASS95, IDS16, LCL+12, SGLZ99, TCBV10, Was95a, WII94, FSC+11].

Adaptive-CoMPI [FSC+11].

Adas [HHC+18].

Adding [CBP02, Gro01a, KLKL11, RH01]. ACM [ACM90, ACM95a, ACM95b, ACM97b, ACM98b, ACM04, ACM05, IEE02]. ACM/IEEE [ACM97b, ACM98b, ACM05]. ACO [Tsu12]. ACPC [Bos96, Vol93].

Adaptable [APJ+16]. accelerate [StM10, TBB12, VGP+19]. Accelerated [AB13, EADT19, KA13, SCSL12, VZT+19, CGK+16, CP15, DCD+14, HJ+16, KM10, PGdC+18, PTMF18, SAI10, iSYS12, SLM15, ZWL+17, ARY+17].

Accelerating [BBC+19, Dab19, GM18, HF14a, HF14b, HKO011, JK10, JLS+14, JNL+15, LSSZ15, LSVMW08, LSMW11, LAF15, PSV19, SCJH19, TMP16, TS12b, UZC+12, YEG+13, vdLJR11, HWX+13]. Acceleration [CGBS+15, RYK19, TK16, CBYG18, CLBS17, HE13, MGS+15, OGM+19, PRS16, SWS+12].

Adaptable-Aware [APJ+16]. Accelerator-Aware [APJ+16]. Accelerator-bound [CLA+19].

Adaptable [APJ+16].

Address [SS01, DO96]. addresses [CGL+93]. ADDT [SR96]. ADI [Sch01]. adjacent [Kan12]. adjacent [RMN+12]. Adjusting [GSHL02]. Adjustment [DSC105]. ADOL [BGK08]. ADOL-C [BGK08]. adoption [CMV+94].

Advisor [GVF+18]. Ane [DMB16].

Aerospace [MAB05].

Advections [AKK+94, CT94a, TC94, CT94b].

Advection-Chemistry [AKK+94].

Advisor [GVF+18].
anisotropic [LBB+16, SSB+16, YSM+16].
ibernai [CEF+95]. Annapolis [IEE96c].
annealing [WHM019, FB97]. Anney
[VW92]. Anniversary [Ano92, Ano93].
american [GGH99]. Annotation
[MAJ+17]. announcement [WRMR19].
Announcements [Ano98]. Annual
[ACM95b, Ano93b, Ano94h, IEE95b, USE00, Van95, Y+93, ACM95a, Eng00, IEE94e, IEE95j]. Ant [ITT02], ante [Ano03].
antenna [DSOF11]. Anthony [Ano95c, Ano00b]. Antonio
[Ano95d, IEEE95g, IEE97c]. Any
[Gro02a, Mar97]. AP [FBC+01, SMTW96].
AP [SMTW96]. AP1000
[SH96, IM94, SWJ95]. AP3000 [TD99].
Apache [GRW+99]. API [DM08, LPD+11].
APIs [WCS+13]. APOLLO [Sta95b].
APOLLO-II [Sta95b]. Appendix
[Ano01a]. Appendixes [Ano01a]. APPL
[AB93b, AB93a]. Application
[AKE00, BSN95, BGds09, BS07, BFM97, BBI+15, Cha02, CRGM14, DFMD94, FDDG97a, FDDG97b, FSC+11, GB98, HT08, IADB91, JFPY00, JCH+08, KNT02, LD01, LMRG14, Mal01, MTSS94, MBB+12, NSV16, NS16, PSYOU0, Riz17, SBF+04, ST09a, SCL97, UT02, ZZ04, ABC+00, ADMV05, ADR+05, BvdB94, BFLL99, BBL97, BBC+99, BPM03, CBYG18, CRM14, CRGM16, EMPI09, FMF15, GVF+18, GWVP+14, HTJ+16, HZ96, KME09, LSG12, LCMG17, LBB+19, MMW96, MM03, MLA+14, MWL+10, NMW93, RBA117, Rol08b, SM12, SCJH19, SSS09, SFSV13, SL00, TCP15, Wor96, ZZ+15, CG99a].
application-centric [SFSV13].
Application-Level [CRGM14, LMRG14, SBF+04, SCL97, BPM03, CRM14, CRGM16, LCMG17, LBB+19].
Applications
[APJ+16, AGS97, Ano89, Ano96c, AZG17, BCLN97, Ben18, BHV12, BBH+06, BRU05, BFDT96b, BFBS01, CGS15, CBL10, CGLD01, Cha05, CJNW95, CRGM14, Cot98, CTK00, Cot04, Cza02, Cza03, DW02, DLM+17, DERC01, DHK97, DGF97, DGMJ93, EV01, EML00, FLD98, FD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GK10, HKM90, Hus98, IEE951, ITT02, Jes93b, JJPL17, KB98, KBS04, KGK+03, KKK01, KKK02b, Kuk98, Lf01, LA+15, LWSB19, LRG14, LCW17, LdSB19, LMRG14, dLR04, NSOG10, MS02a, Mor02, Mat01b, MAB05, MC98, MG15, MANR09, PSM+14, Req01, RPM+08, RBB15, RRBL01, SPL+12, SG12, SPH+18, SC04, SSB+17, TTS00, TFGM02, VdS00, VY02, Vos03, Wal96a, WC09, WJA+19, Wis96a, WSNN99, WBHB97, WM10, dGMJ94, AC07, ACH+11, ACJ+12, Ano93a, Ano94f].
applications [Ano03, Ara95, Aru95, ASB18, AGM10, BKH+13, BR04, BV03, BAG17, BFM96, BFMT96a, CGK+16, CGS+15, CDMS15, CLSP07, CBM+08, CIJ+10, CFPS95, CHW03, CCM+06, DZ98a, DSZ94, D+95, DCH02, EKT99, EGH99, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GB15, GS02, GHD12, GJMM18, GS96, GSM+00, GH+93, HZ99, HAJK01, JC17, JPTET94, LG17, LGGM17, LBB+19, LZHY19, LS08, MA09, MBKM12, MLC04, MSMC15, MS96b, NSBR07, NBC+12, NFG+10, PK05, PTL+16, Rab99, RS95, RGPG+18, SLJ14, SPE95, SBG+12, SDJ17, SG12, SO5, SIC+19, SLG95, SB01, SD16, TMC09, TBB12, TLY18, Vot02, Wis96b, Wol92, WT13, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94].
Applied [FGRD01, HC06, KaM10, GFIS+18, HMKV94, MM92, NF94, PGK+10, DMW96, Was96]. Applying [GSM+00]. Approach
[AZG17, BHM94, BJ03, BHNW01, CRGM14, CD98, DLM+17, FFP03, GCBL12, HD00, KBA02, KK02a, KMH10, LG00, Mar06,
PPR01, Pet00a, Pet00b, RGD13, Ros13, TJPF12, BK11, Bis04, BTC+17, CLYC16, CDP99, CRGM16, DiN96, EO15, FMS15, HDB+13, JS13, KPL+12, KSSS07, KJEM12, LSG12, MGG05, MS99b, NEM17, OHG19, OW92, SVC+11, SEC15, TWFO09, VGP+17, CLYC16.

Approaches [JCH+08, Ney00, SWHP05, SM02, BFLL99, CB11, PS00b].} Approxi-} mation [Huc96, MM02, GGC+07, GG09, MM03]. Approximation [SLJ+14, SJLM14]. April [ANS95, AH95, Ano93h, Ano94h, CH96, DR94, GH94, Ham95a, IEE92, IEE93b, IEE95f, IEE96e, IEE97b, IEE05, LCHS96, MC94, Nar95, Sie94, SW91, Ten95]. APS [GT94]. AQsort [LTS16]. AQUAgpusph [CP15]. arbitrary [HP11]. ARCH [Ada97, Ada98]. architectural [GGC+07]. Architecture [BG94a, CGC+11, CLOL18, EBK601, EM92, FD97, Fuj98, HRZ97, IEE97e, ITK60, LSZL02, PT01, PS01b, SMM+16, SC04, SYL19, WK611, YTH+12, BBCR99, BG94c, CSPM+96, C696, CBIG19, DiN96, FHC+95, HK69, MMDA99, MRH+96, PWD+12, SWYC94, SSGF00, Squ03, SP11, WCC+07, YAJG+15, YEG+13, ZW+95]. architecture-independent [DiN96].

Architectures [ACM95b, BDT08, BFG+10, CHPP01, HD02a, HD02b, HHK64, IEE96d, KDT+12, LHMH66, L96, LSH17, LAD6, MS02b, MTSS94, MCS00, NO02b, Nar95, PZ12, TSCM12, KYW+18, ZTD91, BDP+10, BN00, BKML95, CLM+95, CDZ+98, DM93, DZZY94, GD15, GP95, HHS18, Hoi12, LCL+12, LDJK13, MLC04, NO02a, PY95, RFH+95, RMNM+12, SPL99, TDG13, TSCZ94, UH95a, VDL+15, WST95, dLAMC11]. Area [CDHL95, Fis01, BH+99, FGT96, FG9+98, KHH+99, Qu95]. area-based [Qu95]. arising [ARW03]. Aristotle [FSV14]. Arithmetic [Ano98, JPT14, Sur95a]. Arithmetics [HD00]. Arizona [IEE95b, JB96]. ARM [AFGR18, MGL+17]. ARM-based [AFGR18]. Array [DDPR97, HD02b, LTS6, WG17, CCM12, DK13, HSE+17, JKN+13, Ott93, TOC18, WAl2]. arrays [HCL05, RBS94]. Arrival [FPY98, MLVS16]. art [LF93b]. artifact [ZZZ+15]. Artificial [BPG94]. ARTUR [FJBB+00]. ARVO [BH+12]. ARVO-CL [BH+12]. ary [Pan95a]. Ascona [DR94]. Ashes [Thr99]. ASL [FGRT00]. ASME [LF+93a]. aspects [CG99a]. Assembly [PGF18, TPD15]. Assessment [LMG17, dLR04, MABG96, TSCA12, CMV+94]. Assessment [Mat01b, TAH+01, Boi97, LH98]. Assignment [Cza13, CK99]. assist [Kik93]. Assisted [GTH96, GM13, MBBBD13]. Astro [CC17]. Astronomical [JB96, SPH95]. asymmetric [GCN+10]. asynchronization [FGS919a, FSG19b]. Asynchronous [Ada97, Cav93, CZ95a, CDP99, HE02, SPH+18, BBDH14, BCK+99, CZ95b, DDYM99, Sch99]. Athapaskan [CP98]. Atlantic [AGH+95, Ara95, USE90, UCW95]. ATM [GFV99, HBT95, Jon96, LHD+94, LHD+95]. Atmosphere [BS93]. Atmospheric [HK93, KHSB91, RSTB95]. atom [MGG05]. Atomic [LRT07, LAF15, SY96, DS13, Hin11, SY95, FX95]. atomics [BDW16]. atoms [JLS+14]. Attacks [PV97, GHD12]. attempt [GM18]. Attraction [GB96]. audio [BJ13]. Augmented [GFJ19]. August [ATC94, Agr95a, BFMR96]. DMW96, GT94, HAM95b, IEE94g, IEE95k, IEE95l, IEE96f, LF9+93a, Ost94, PSB+94, PBC+95, Re96, VV95, Was96]. Aurora [LdSB19]. Austin [IEE94b]. Australasian [Bil95]. Australia [GN95, Nar95, ACDR94, Bil95]. Australian [ACD94, GN95]. Austria [B96, BH95, Kra02, TSB12, Vol93]. Austrian [Fer92, FK95]. Austrian-Hungarian [Fer92, FK95]. Auto
Auto-Generation [CC17, DWM12]. Auto-parallelization [TWFO09].
Auto-scoping [RDLQ12]. Auto-tuned [PSB19]. Auto-Tuning [WG17, DNLG11, FE17, SH14].
Auto-Link [GMPD98]. AutoMap [GMPD98].
Automata [Car07, BBK+94]. Automated [BMPS03, LLG12, RFHR96, Yan94].
Automatic [BVML12, BBH+08, BGK08, BHK+06, CBL10, Cza03, DW02, EML98, EML00, FAFD15, FFM11, GKKF13, HZ99, JFY00, JY+03, JJPL17, KOI01, KHS12, MGA+17, NCGB+17, OWSA95, Rab99, RGD13, SZ11, SR96, SSB+17, TJPF12, WC15, WM01, APBeF16, AmuHK15, AGG+95, BR04, BHRS08, CHK15, CdGM96, CPR+95, HZ96, LME09, LF93b, WMP14, ZHK06, VD00].
Automatically [VZT+19, WBSC17].
Automatic [BMPS03, MVY95, LLG12, RFRH96, Yan94].
Automatically [VZT+19, WBSC17].
Automation [Ano93a].
Automotive [Ano93a, Ano93a].
Autotuning [BAG17]. Auxiliary [STMK97]. Available [Bak98, BF98].
Avoidance [CGRM14]. AVTP [FHC+95].
award [Str94]. Awards [Str94]. Aware [APJ+16, BHP+03, Ben18, EGR15, GF1+18, HVA+16, LRBG15, MJ15, Pan14, ZLP17, CLA+19, CGH+14, FA18, GHZ12, HJYC10, HG12, LME09, LF93b, WMP14, ZHK06, VD00].
awareness [HK09, VGS14]. AXAF [NH95]. AXC [CBIGL19].

B [Ano01a]. Back [BIC+10]. Backend [IOK00]. backtracking [PdCi+18].
Backup [Gua16]. Bains [GA96]. Balance [HE02]. balanced [EZBA16]. Balancing [BKdS10, DBA17, DI02, DK06, FSG19a, GCBL12, MM02, PT01, Pus95, ST97, Wad01a, Bir94, BS05, DZ96, DLR94, DvdLVS94, DR95, FMBM96, FH97, Hum95, JH97, MM03, NP94, SGS95, SY95].
Balatonfured [DKP00]. balls [BBH+15].

Baltimore [IEE02, SPH95]. Bamboo [NCB+12]. banded [DG95]. Bandwidth [NE01, RK01].
Bangalore [Kum94, PBPT95]. Barbara [ACM95b, AH95, IEE95f].
Barcelona [DLM99]. BARRACUDA [EPP+17].
Barrier [CLdJ+15, SDB+16, YLZ13].
Based [Ada97, AHD12, AAB+17, AP96, BHW+17, BDG+91b, BoFHW00, CAM12, CGC+02, CLOL18, CLP+99, CPDM03, DW02, DLLZ19, DBK+09, FSC+11, FC05, For95, FSL98, GSxx, GJFT19, HF14a, HF14b, HM01, HR00, KL16, LSL02, LHZ18, KL11, LWP04, LAFA15, MDM17, MGL+17, MMH98, NSLV16, NE01, NHT02, NPS12, PPT96a, PCY14, PFG97, PSSS01, RDMB99, SPL+12, SM03, Sml93a, ST02b, ST97, SJK+17a, SJK+17b, TSH+15, TD98, WTTTH17, WC09, WZH16, Wis96a, WM01, WJB14, YG96, YTH+12, ZWJK05, Ada98, AASB08, AAAA16, AV+16, Ano03, AGFR18, BLP13, BDG+92a, BCP+03, BCP+05, BF96, FE17, FF99, FJZ+14, FWS99, FSTG99, FLPG18, FFC99, FWS+17, GS91a, GS92, KGS+11, Gra07, Gra09, GFP12, HZ94, HWX+13, IM95, ITT99, JLB+18].
Based [JKM+17, KL15, KPL+12, KPNM16, LV12, LRW01, LKL96, LNW+12, LLG16, LMM+15, MYB16, MNO+16, MKP+96, MCB05, MT96, MS99a, MS99b, MFPP03, Neu04, NHT06, OLG+16, OP98, PARB14, PES99, PPT96b, PK05, PS19, Pad+17, PGK+10, PSHL11, PKD95, PSH+10, PLT98, QA95, Rag96, RSt19, SLJ14, SS09, SG05, SSS99, SZ11, SVC+11, SLS96, SKB+14, St098, St189, SLN+12, TBB12, TY14, TBD96, TWFO09, TQ11, WHMO19, WO09, WTFO14, WGG+19, Wis96b, WCS99, YC98, YL09, YWC11, YSL+12, ZAFAM16, ZLP17, ZHK06, ZZG+14, ZWN+95, vHS94, BFMT96b.
Basel \[\text{Ano94i}\]. Basic \[\text{PGC02, BKvH}+14, \text{BR94}\]. basierte \[\text{Gra97}\]. Basis \[\text{OMK09, RB01}\]. batch \[\text{VLMPS}+18\]. Bath \[\text{BP93}\]. Bayesian \[\text{FFP03}, \text{BCS-MPI} \] \[\text{FFP03}\]. be \[\text{CB00}\]. Beach \[\text{IEE93b}\]. beam \[\text{OIH10, RCFS96}\]. bearings \[\text{NF94}\]. Beguelin \[\text{Ano95b, NMC95}\]. Behavior \[\text{BFM97, DeP03, Ros13, LLG12, PPF89, YMYI11}\]. behaviour \[\text{EPML99}\]. Beijing \[\text{CZG}+08, \text{LHHM96, Li96}\]. Beiträge \[\text{Ano94c}\]. Belgium \[\text{LCHS96}\]. Benard \[\text{TVV96}\]. Benchmark \[\text{BBW}+12, \text{DS16, HC10, Luo99, Müi02, MBB}+12, \text{RSPM98, RTH00, SGJ}+03, \text{Trä12b, UTY02, Ano03, BKML95, DWM12, DH95, DHS96, Müi03, MvWL}+10, \text{PHJM11, Reu01, RST02, Wor96, YSWY14}\]. Benchmarking \[\text{GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02}\]. Benchmarks \[\text{CRE99, KS96, KAC02, MM07, NA01, RK01, TS02, TS03, WAS95b, ZShH01, CDD}+96, \text{MMH99, Ste94, WT11, CE00, WT12}\]. Beneficial \[\text{CB00}\]. benefit \[\text{SBG}+12\]. Benefits \[\text{LB16, PSM}+14, \text{SIRP17}\]. Benutzerprofile \[\text{Wil94}\]. Benutzertreffens \[\text{Ano94c}\]. Beowulf \[\text{CMM03, Ste00, UP01}\]. Beowulf-Class \[\text{Ste00}\]. Berlin \[\text{PW95}\]. Bessel \[\text{KT10}\]. Betriebssystemkern \[\text{Sei99}\]. Better \[\text{Str94}\]. Between \[\text{AAP}+17, \text{BS07, ASS}+17, \text{AKE00, BD95, GFV99, JAT97, LDCZ97, MSP03}\]. Beverly \[\text{IEE93f}\]. Beyond \[\text{Gei93a, GKP597, Gei98, Gro12, Ohu14, Gei93h, LGS12, Sch93, SHM}+10\]. Biconjugate \[\text{GFPG12}\]. bidirectional \[\text{HE15}\]. Big \[\text{CLOL18, GTS}+15, \text{LK14, VPS17, ASS}+17, \text{Str94}\]. Biharmonic \[\text{RB01}\]. Bill \[\text{Ano99c, Ano99d}\]. billion \[\text{KTJT03}\]. Billions \[\text{MRB17}\]. binary \[\text{CG93, EPP}+17, \text{SGS95, TCBV10}\]. binary-level \[\text{EPP}+17\]. binary-splitting \[\text{TCBV10}\]. Binding \[\text{CLL03, Coo95b, MG97, Coo95a}\]. Bindings \[\text{Ano98, VGRS16}\]. Bioinformatics \[\text{BBH12}\]. Biological \[\text{CNM11, VBB18, BA06}\]. Biology \[\text{SYL19}\]. Biomolecular \[\text{BCGL97, PZKK02}\]. BIP \[\text{CDP99, Tout00}\]. BIP-Myrinet \[\text{Tout00}\]. BIP/Myrinet \[\text{CDP99}\]. bit \[\text{HLO}+16, \text{Wii93}\]. bit-parallel \[\text{HLO}+16\]. bitonic \[\text{PSHL11}\]. Black \[\text{FSXZ14, Kha13, van93}\]. BLACS \[\text{DSW96, DS96a, Wal95}\]. blame \[\text{DSGS17}\]. BLAS \[\text{Add01, ARvW03, FMFM15}\]. BLASTP \[\text{LSMW11}\]. Blaze \[\text{PWPD19}\]. Blaze-Tasks \[\text{PWPD19}\]. Block \[\text{DDPR97, SMM}+16, \text{WO95, ZB97, ADDR95, DR18, GP95, HKMC94, HC08, LYIP19, WO96}\]. Block-Cyclic \[\text{DDPR97, WO95, HKMC94, HC08, WO96}\]. block-tridiagonal \[\text{DR18}\]. Blocking \[\text{FH98, BCh}+08, \text{HKT}+12, \text{Nak03, HTA08}\]. Blood \[\text{Pat93}\]. Blue \[\text{KMH}+14, \text{AAC}+05, \text{BGH}+05, \text{EFR}+05, \text{LM13, MV17, MSW}+05\]. blurred \[\text{Wii94}\]. BMC/MM \[\text{CC99}\]. bodies \[\text{AGIS94, LHLK10}\]. Body \[\text{RB01, RTRG}+07, \text{IHM05, NS16, Per99, SP99, SRK}+12, \text{ADAB94}\]. BOF \[\text{Mat00a}\]. Boltzmann \[\text{OTK15, CGK}+16, \text{MS95, Pri14, SJK}+17a, \text{SJK}+17b\]. bond \[\text{THDS19}\]. bond-order \[\text{THDS19}\]. Bonn \[\text{MTWD06}\]. Book \[\text{Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, An00a, An00b, Che10, Mar06, Nag05, NMC95, Per97, SD13, Vog13, Vre04, YM97}\]. books \[\text{YM97, Nov95}\]. Boosting \[\text{LRG14, SFO95}\]. Bose \[\text{KLM}+19\]. Boston \[\text{IEE94e}\]. Both \[\text{BGD12, KP96, LSM}+18\]. Bottleneck \[\text{MWG97}\]. bottlenecks \[\text{DSG17, JKHK08}\]. Boulevard \[\text{ACM99}\]. Bound \[\text{ASA97, CLA}+19, \text{MBKM12, ADMV05}\]. boundaries \[\text{KGB}+09\]. boundary \[\text{PTT94, SBQZ14, SP11, SD99}\].
boundary-value [SP11]. bounded
MdSAS+18, PAoS+17. BowMapCL
NTR16. Box [JR13, JPP95].
Box-counting [JR13], brackets [GSMK17].
Braga [IIE96g]. Branch
ASA97, ADMV05. Breaking [OS97].
breast [Str94b]. Bridge
VDL+15. Bridges [DSS09]. Bridging
ACM04, AAB+17, ASS+17. Bringing
FKK96. Bristol [ACDR94, Nar95].
BristOL [MC94]. British [IEE95a, IEE95e].
Broadband [OIS+06, CLASPD99].
Broadcast [PSM+14, YSP+05, MTK16].
Broadcasts [SEF02]. Brownian [SKM15].
Bruijn [PGF18]. Brussels [LCHS96].
BSP [HIT06]. BSP
[Mar06, Bis04, GRRM99, Mar09, Röh00].
BSP2OMP [Mar09]. BT [WT11, WT12].
Budapest [FK95, KKD04]. Buffer
[SEF+16, Tsu07]. buffers [MR96]. Build
[HRSA97]. Building [FD04, Gei01, Gro02a,
LBD+06, LVP04, WADC99, Arn95, HS95b,
MSL12, PW95, Sur95b, Kos95b]. Bulk
[Ser99, DLR99, HZG08, TNIB17].
bulk-synchronous [HIT06]. Burrows
[NTR16]. Burst [SEF+16]. BUS [ITT99].
BUSTER [XWZ96]. Butterfly [ST17].
Butterfly-Patterned [ST17].
boundary-value [SP11]. bounded
MdSAS+18, PAoS+17. BowMapCL
NTR16. Box [JR13, JPP95].
Box-counting [JR13], brackets [GSMK17].
Braga [IIE96g]. Branch
ASA97, ADMV05. Breaking [OS97].
breast [Str94b]. Bridge
VDL+15. Bridges [DSS09]. Bridging
ACM04, AAB+17, ASS+17. Bringing
FKK96. Bristol [ACDR94, Nar95].
BristOL [MC94]. British [IEE95a, IEE95e].
Broadband [OIS+06, CLASPD99].
Broadcast [PSM+14, YSP+05, MTK16].
Broadcasts [SEF02]. Brownian [SKM15].
Bruijn [PGF18]. Brussels [LCHS96].
BSP [HIT06]. BSP
[Mar06, Bis04, GRRM99, Mar09, Röh00].
BSP2OMP [Mar09]. BT [WT11, WT12].
Budapest [FK95, KKD04]. Buffer
[SEF+16, Tsu07]. buffers [MR96]. Build
[HRSA97]. Building [FD04, Gei01, Gro02a,
LBD+06, LVP04, WADC99, Arn95, HS95b,
MSL12, PW95, Sur95b, Kos95b]. Bulk
[Ser99, DLR99, HZG08, TNIB17].
bulk-synchronous [HIT06]. Burrows
[NTR16]. Burst [SEF+16]. BUS [ITT99].
BUSTER [XWZ96]. Butterfly [ST17].
Butterfly-Patterned [ST17].
GK97, GMU95, Heb93, KEGM10, KO14, Kom15, LC07, Liu95, MW93, MM03, NO02a, PDY14, RJDH14, SS94, SR95, ST02b, SLS06, SY95, SSN94, Tho94, THM+94, Tsu95, UH96, YWO95, ZLZ+11, MS04].

cluster-based [SLS96]. Cluster-enabled [SHHI01]. Clustering [BBH12, HA10, RJC95, GGL+08, YCL14].

Clusters [MS04]. Clustern [MS04].

Cluster-enabled [SHHI01]. Clustered [KHB+99]. Clustering [BBH12, HA10, RJC95, GGL+08, YCL14].

Clustern [MS04]. Clusters [AH00, AHHP17, BDH+95, BDH+97, BWV+12, CLOL18, CSC96, DK06, GDM18, GMdMBD+07, GSY+13, HPPP02, HSMW94, HVA+16, HNu00, JNL+15, LC97a, LH95, LVP04, LHCW05, MS98, MFPP03, Pan14, PKB01, PT01, PS00a, Fsu95, Rei01, dOSSM+16, SFG98, Svi99, Ste00, Tou00, UP01, WLNL03, WT12, YWCF15, YKT+96, AB95, ALR94, ADB94, ABG+96, ADMV05, BWT96, BVO3, Bru95, CRE01, EKTB99, GB95, HCl05, Hus99, JHKL08, Jnu96, JRTC01, JYKL03, KLYL+94, KLJ05, KSL+12, KJEM12, LBD+96, LEC12, LLL13, LLY, LKYS04, NMW93, NN95, PS07, PRS+14, PM95, PR94c, PRS16, PL06, RCFS96, RGDML16, Slo05, SC96a, SL95, TFZS12, WLNL06, WLYC12, YST08, YL09, YHL11, YWC11, ZHS99, dCH93]. CM [SBG+02].

CMMD [Har94, Har95]. CMPI [GHZ12]. CMS [FMS15]. CNF [IKM+01, IKM+02].

Coarse [ADRC798, IOK00, KII01, LGM00, NIO+02, NIO+03, Heb93, RJ9C95].

Coarse-Grain [IOK00]. coarse-grained [Heb93, RJC95]. coarseening [PSLT99]. Coastal [IS16]. Coastal [GAM+02].

CoCheck [MS96b, Ste96]. Code [AHP01, And98, BCG197, CB00, CP97, CCK12, CCBPGA15, DDL00, DZDR95, HE02, KaMi10, KAMAMA17, KHS01, LD01, MS02b, MM07, PBC+01, RGD13, SM03, SZBS95a, Sta95b, TGBS05, AMS94, ADB94, AFST95, BCAD06, BADC07, BW12, Bha98, Bri95, Cou93, DLR94, EZBA16, FMFM15, GSMK17, Heb93, IJM+05, JL18, KPL+12, KH10, MGS+15, MRH+96, MWO95, PKE+10, PSK+10, RP95, SZBS95b, Sk00, SFLD15, SMSW06, TDB96, VBLvdG08, VDL+15, Wor96, YL09].

codebooks [PMM95]. Codes [FAD15, JFY00, SWH15, HTJ+16, HWS09, HAx00, PJP95, KBG+09, LRW01, Mal01, OLG+16, WB96]. Coding [Uhl94, Uhl95b, SCC96].

Coefficients [MW98, ARY+17]. cognitive [PWR+12]. Coherence [MM07]. Coherent [SS01]. Collaborative [DCPJ12, DCPJ14].

Collapse [PKYW95]. Collecting [BMR01]. Collection [LRTA02, DH95, MGC+15].

collection-oriented [MGC+15].

Collections [JFRG12]. Collective [BIL99, BIC05, CCA00, FVD00, FCLG07, FPY08, GLB00, GMdMBD+07, Hus99, KH96, MJG+12, PGAB+05, SG15, TRG05, VFD02, WRA02, FA18, HS12, HMS+19, HG12, HWW97, KHB+99, KBHA94, KMM+14, MBBD13, Pan95b, PGBF+07, PGAB+07, RJMC93, SCB14, SCB15, SS99, TD99, Trä12a, TFZS12]. Collectives [CS12, SVL99, DJ+19, Zah12].

Collector [GTS+15, WK08a, WK08c, WK08b].

College [AGH+95, Ano94b]. Collision [QRMG96, Sta95b, ART17, FFFC99, LHLK10]. Collocative [MKW11]. Colony [ITT02]. Colorado [R+92, IEE05]. Colt [WN10].

Columbia [IEE95a, IEE95e, MAB05].

column [HSP+13].

collection-stores [HSP+13].

COMA [GB96].

Combined [CBH94, TJPF12]. Combining [DP94, LST+18, RAB98, SCB14, Sch96a, SMAC08, YPAE09, Bor09, Sch96b].

comes [Ana94f].

Commands [OLG01].

comments [Str94]. commerce [Ana94f].

commercial [Ana93h].
commodity [GGL+08]. Common
[HEH98, DK13, WLR05]. Communicating
[FKK+96b, GMPD98, FKK96a].
Communication
[ABF+17, BCG+10, BIL99, BIC05, DCPJ12,
DZZY94, EM02, FST98a, FJK+17, FGKT97,
FBSN01, GFD03, GFB+03, GGS99, GFV99,
GL900, GC05, HB96b, HC10, HDB+12,
HC06, HIP02, KB98, KV98, KGB+16, LRT07,
LC93, LCVD94a, MH01, MMH98, MR96,
Nic00, PLK+04, RK01, RRAGM97, RsT06,
SHP05, SCP97, SGH12, SBG+02, SJ02,
ST02b, SGL+00, SKH96, Sum12, TRG05,
TG05, TRH00, Trä02b, UMK97, WBI97,
XH96, YC98, ZSG12, AC07, FH98, BHJ96,
BVML12, BBH+13b, BS94, BMG07,
CAHT17, CGL+93, Dem96, DWM12,
DCPJ14, DGB+14, DDB+16, DS96b, G97,
GM13, Gra07, GL94, GB94, HB96a,
HWX+13, Hus99, HWW97, KH96, KB01,
KLY03, KLY+99, LR06b, LFL11,
MLAV10, MMU99, MABG96, OGM+16,
Pan95b, Par93, PGK+10, PM95, PKE+10,
PSK+10, PS00b, SH14]. communication
[SC95, TG09, Trä02b, Ve02, Wi99, WMP14].
communication-based [PGK+10].
Communication-buffers [MR96].
Communication/Computation [HIP02].
Communications
[BPS01, CP98, CDHL95, CDH+95, FVD00,
FST98b, GT01, GBS+07, GMdMBD+07,
IEEE95b, IEE95c, LZH17, LHZ18, MB00,
VF02, YTH+12, bT01a, ADL03a,
ADLL03b, BBW19, CDP96, FA18, HS12,
KBH94, MBBD13, McR92, MN91, MS99c,
RGDMGL16, SCB14, SCB15, TD09, WLYC12].
Communicators [DFKS01, GFD03,
GFD96, FKS96, GJMML18, KH96, MJG+12].
communities [ACM04]. Community
[BHW+17, FCP+01]. Como [CLM+95].
COMOPS [Luo99]. Compact
[Uhl94, Uhl95b, Wor96]. compaction
[VSW+13, WK08a, WK08b, WK08c].
Compactly [KLR16]. Comparative [KB98,
PSK98, SN01, AGR+95b, ED94, YCL14].
Comparing
[BF01, Fin97, GBR15, HVSH95, ICC02,
LKJ03, ORA12, SSG95, JLG05, WBSC17].
Comparison [BvdB94, BS07, HC10,
KBM97, LCW+03, Mat94, Mat95, Ney00,
OP10, OF00, PPJ01, Pok96, RS93, RBB97a,
SS01, SHH94b, VS00, Wall02, ZBD12,
Ahm97, AB93b, BLP93, BID95,
dFdOSR+19, GUM95, Har94, Har95, JS13,
KDSO12, KNH+18, KC06, MSP93, Ols95,
Ps07, PSHL11, Pri14, SdM10, SYR+09,
SWS+12, SHH94a, TOC18, TSZC94].
comparison-based [PSHL11].
Comparisons [GGS99, PGC02, CLYC16].
Compass [PWD+12]. Compatible
[MM14, LBH12, OIH10]. Compcon
[IEE93a]. compete [Ano96a]. CoMPI
[FSC+11, FCS+12]. Compilation
[FSSD17, HKMC94, LRBG15, RVKP19,
SBW91, Coe94, FM90, PG+13, SHM+12].
Compile [GB94, TSY99, JG95].
Compile-time [GB94]. Compile/run
[TSY99]. Compile/run-time [TSY99].
compiled [KYL03, KYL05]. Compiler
[Ano98, Dan12, IOK00, KSS00, KSHS01,
MB12, Mar09, MKW11, SSE12, SKS01,
TJFP12, TBG+02, TGBS05, BAG17,
HEHC09, LMO21, LHC+07, LLCD15, MA09,
Mü03, PP16, RKBA+13, SHH01, THR+05].
Compilers
[Ano01a, CFF+94, LZ97, MKV+01, SBT4,
SS96, Hos12, PBB+95, ZT17]. Compiling
[DMB16, Hos12, CGK11]. Complete
[BdS07, GHL+98, Nag05, Per97, SOHL+98,
YK97, Ano99a, Ano99c, Ano99b, Ano99d,
PRS+14, SOHL+96]. Completed [PTT94].
Complex [BCGL97, GMPD98, MB98].
Complexity [NPS12]. component
[HLP10, KKRS11, Squ03]. Components
[BT01b, CT02, Fin00, Gro02a, Lus00, Wis01,
LRW01]. Composable [MLGW18].
Composed [We94]. Composing [PHA10].
composite [MAlM95, YPA94].
Compositing [GPC+17]. Composition [CTK00, Cot04, DLB07, FC05, KH15, CFP96]. Compound [LLC13, SAP16]. Comprehensive [RST02], compressible [HHSM19]. Compression [FSC+11, KBS04, VPS17, AAAA16, HE15, UH96, Wu99]. Compression-based [AAAA16]. COMPSAC [IEE95]. Compton [BCD96]. Computation [BKGS02, B+05, Cer99, DSM94, DSS00, EMO+93, ESM+94, Fer10, FF95, GS91b, HIP02, IEE94a, IEE96c, KS15b, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SMOE93, VZT+19, WTT17, ACM97a, AC07, ABDP15, Bis04, BALU95, Bos86, BHKR95, CL93, CMH99, CFP96, Dab19, DZZY94, HLM+17, HK94, KB01, KHBS19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZZ94, NCKB12, PF05, PKE+10, Rölo0, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07]. Computation-communication [SH14]. Computational [ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SYL19, SN01, TDBEE11, TGEM09, WPH94, Whi04, AGMJ06, BvdB94, BDG+92c, BR95a, HVC11, KGB+09, PBK99, RBB15, SPE95, SZBS95b, STT96, Str94, VDH+15, BR95a, CCHW03, R+92, SL94a, WPH94]. Computationally [DFN12]. Computations [AGH+95, ACRG97, CGU12, CGPR98, HI04, PBK90, PMvdG+13, WJ12, ANS95, AASB08, BL99, CG93, DM96, EGD92, HJYC10, KD13, MRRP11, MR96, Smi93b, SAP16, TS12b]. Compute [DBK+09, LSM+18, KK1L11, OHG19, VLMPS+18, ZLZ+11]. Computing-communicative [LSM+18]. Computer [FWS+17, SSS99]. Computer [ACM06a, Ano94a, GTH96, IEE95l, IEE96h, IE997c, IS16, KCR+17, Neu94, Old02, PSB+94, ST02a, Sum12, Ten95, URKG12, YTH+12, BN00, BS94, BKML95, BFM96, Cal94, CLM+95, GRTZ10, JWB96, Str94]. Computer-Assisted [GTH96]. Computers [Ano89, BP99, BCL00, DDP+91, DCMJ93, FF903, GC05, IEE95b, IEE95c, ITKT00, LF+93a, MFT95, PZEO0, SPM+10, SC96, BvdB94, BB93, BBK+94, DLR94, Duv92, ES13, GBF95, KOS+95a, LR06a, MM+94, NF94, POL99, PBK99, Wa94a, Wa94b]. Computing [ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACRD94, AIM97, BJ93, BBG+95, BDG+93a, BGR97a, BL95, BCP+97, BRST94, BDH+95, BDH+97, BH9W10, BBH12, CS95a, CGB+10, CL03, CLO18, CNC10, Cze16, DDS+94, DERC01, DPP01, DM+92, DCM93, DT94, FTV900, Fer98b, FGKT97, Fos98, FS93, GLN+08, GS92, Gei93a, GBD+94, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hol12, HT91, IEE92, IEE93d, IEE93c, IEE94g, IEE95c, IEE95k, IEE96a, IEE96f, IFF95, KKK02a, KS97, LCK11, LRC94, LC93, LR01, Lus00, dILMBdIFM02, ME17, Mat94, Mat95, MS04, Nov95, PKYW95, PR94b, PWP19, SHTS01, SCSL12, SN93, SSS97, Ste00, SGS10, SW91, Sun90a, Sun90b, Sun92, Sun93, Sun94a, Ten95, VV95, VV92, WN10, YH96, YG96, ZL17, AC94T02, ARY717, AL92, AH95, ASC95, Ano93h, Ano94e]. computing [Ano94h, Ano03, ADDR95, AM94, BP94, BDG+92a, BDG+94, BKML95, Bru95, BHW+12, CZ95b, CZ96, CHKK15, DLRR99, DKK08, DW94, D+95, DM96, DE91, EKTB99, EJL92, FBD01a, FGRD01, FO94, FS95, Fer98a, FS98, FME+12, FHC+95, GGCC99, GS02, GS91a, GS93, Gei93b, Gei94, GH94, GlkLY97, HP05, HW11, HH14, HYP+93, HS95a, HH95, mH12, IEE97a, IM95, JPO11J2, JY95, JIM+11, JP94E94, KO14, Kos95b, KSSS07, LV12, LH98, LCHS96, LHD+94, LHD+95, LM13, Ma94, MZK93, Ma95, Mar07, PGS+13, PKB06, Pen95, PGK+10, PTT94, PGK+95,
computing

Concurrent

Configurable

configurations

content

contention

continuous

coordinate

coordinates

control

controllers

controller

connection

connected

construction

constructing

constructs

contract

contract-based

contracts

context

context-bounded

contextual

considerations

consistent

consistent

connected

connection

constructing

construction

constructs

contract

contract-based

contract

contracts

context

contextual

considerations

consistent

connected

connection

constructing

construction

constructs

contract

contract-based

contract

contracts

context

contextual

considerations

consistent

connected

connection

constructing

construction

constructs

contract

contract-based

contract

contracts

contention

continuous

contract

contract-based

contracts

contextual

considerations

consistent

connected

connection

constructing

construction

constructs

contract

contract-based

contract

contracts

context

contextual

considerations

consistent

connected

connection

constructing

construction

constructs

contract

contract-based

contract

contracts

context

contextual

considerations

consistent

connected

connection

constructing

construction

constructs

contract

contract-based

contract

contracts

context

contextual

considerations

consistent

connected

connection

constructing

construction

constructs
[CGK11]. Coprocessor [BB18]. Copy [SWHP05]. copying [SH96]. CORBA [DPP01, Fin97, LRW01]. Core [ABB+10, Bri10, CZG+08, LHZ17, SOHL+98, TCM18, YGH+14, YTH+12, ACMZR11, BBC+19, BBG+14, BL99, FHB+13, HTA08, JR13, JIM+11, JR10, KSG13, LLC15, LLH+14, MBBD13, PZ12, SFV13, SVC+11, TFZZ12, VDL+15, WCC+07, WYLC12, dCZG06, MMH98, Nag05, Ano99a, Ano99b].

Cores [BBG+11, DT17, BMS+17, DJJ+19, WO09].

Corfu [SM07]. correct [DM93].

Correction [SSLMW10, BCD96, FME+12].

Corrections [BL95, Spe19]. Correctness [HMK09]. Correlated [MM07]. corruption [FME+12]. Coscheduling [GRV01, SGHL01].

Cost [KS15b, RLL01, GK97, GWVP+14, Wu99].

CPS [Mat94]. CPU [BB18, CLOL18, DF17, JR13, KSL+12, Lec12, LRG14, LLC13, LLF11, OFA+15, PDY14, PHO+15, Pri14, SSB+17].

CPU-MIC [BB18]. CPU/GPU [KSL+12, Lec12, LLC13, OFA+15, SSB+17].

CPU/multi [ASB16]. CPUs [ASB18, KH12, LNK+15, ON12, SFV13, YSWY14].

Crashworthiness [LCV94a]. Crawler [Wol01a].

Cray [BL94, GRRM99, MP95, Sch96a, Sch96b, ABG+96, AZ95, AFST95, BBW19, CCM97, LKJ03, LSK04, MWO95, Oed93, RBB97c, SWS+12, SCC95].

Cray-T3D [Sch96a, Sch96b].

Cray-T3E [Che99]. Creation [Hat98, MFC98, PS00a]. Crew [GHL97].

CRI [MSCW95]. CRI-MAP [MSCW95].

Critical [DSGS17, SLN+12, SDJ17]. Critical-blame [DSGS17].

Critical-path [SDJ17]. cross [JR13]. cross-platform [JR13].

Crossbar [ZL17]. cryptanalysis [BSN95].

Cryptographic [FV97, ABDP15].

Cryptosystem [WL07].

CS [FST98a, FST98b, Jon96].

CS-2 [Jon96]. CT [DYN+06, NAJ99].

CT-scans [NAJ99].

Cube [Pan95a]. Cubes [DERC01]. CUDA [Pri14, AMuHK15, AAAA16, ACMZR11, AC17, Ano12, ASB18, BHS18, BY12, BTC+17, BAG17, BSH15, BBH12, CAM12, CGU12, CNM11, CLY16, CBM+08, CSV12, CFF19, CB11, Cza13, DCD+14, DS13, DR18, DARG13, DLL19, DLV16, DWL+10, DWL+12, DM12, EAD19, EPP+17, ER12, FJZ+14, Fer10, FMM15, FFM11, FWS+17, Fu08, GCC15, GcF13, GLN+08, GML+16, GFP12, GWVP+14, GRT10, HE13, HJBB14, HVA+16, HLM+17, HD11, HLP10, HP11, HLP11, Hug13, HF14a, HF14b, Hko011, HT08, HLO+16, JL18, JK10, JC17, JLS+14, JF12, KKS11, KHS19, KD12, KAMA17, Kha13, KS13, KVGH11, KME09, KO14, KH15, KD13, KA13, Lab09, LRG14, LGK10, LLG12, LSS15, LHB12, LSVMW08, LSMW11, LAD16, LBB+16, LY18, LY19, LY1Z13, MNO+16, MR12, MSML10, MdSAS+18, MGL+17, MM14, NSLV16].

CUDA [NS16, NBG08, OIH10, OR12, OHG09, PGS+13, PRS+14, PHJ11, PAd+17, PGdCJ+18, PSH1L1, PTMF18, PVS19, PRS16, RBA17, Ros13, SSE12, SK10, iSYS12, SDJ17, STK08, SS09, SEG10, SLMW10, SKM15, SP11, SN11, SRS+17a, SRS+17b, TNB17, TVCB18, TS12b, TA14, TCP15, Tsu12, UZC+12, VLMP18+18, WGG+19, WG17, WJ12, WMRR17, WMR19, WWFT11, WJB14, XVL13, YULMTS+17, YHL11, YZ14, YMY11].
ZSK15, ZAFAM16, ZGZ+14, ZBd12, ZLS+15, ZZZ+15, dAMC11, dAMCFN12, vDJR11, Che10, SD13, Vog13.

CUDA-Aware [HVA+16]. CUDA-Based [DLLZ19, AAA16, WGG+19].

CUDA-EASY [Sai10]. CUDAAlign [SdM10, dOSMM+16]. CUDAAs [KMM15]. CUDA(TM) [SM12]. culling [LHLK10].

CUMODP [HLM+17]. CUMULVS [GKP97]. CURAND [Ano12]. Current [Bak98, GFD05, IFI95, BDG+93b, FK94, FHP+95]. Curse [OS97].

cuThomasVBatch [VLMP+18]. CVL [Har94]. Cybernetics [IEE95a]. cycles [PL96]. Cyclic [DDPR97, WO95, HKMC94, HC08, WO96].

Cyclops [dCZG06]. Cyclops-64 [dCZG06].

D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Bri95, BMPZ94a, BAS13, CGU12, CP15, EFR+05, ES11, GCN+13, HF14a, HF14b, JR10, KRKS11, K014, KD13, KHS01, KLR16, MK94, MSZG17, NSM12, TPDP15, WMRR17, WMR19, WR01, YSL+12, vHK94].

D-CICADA [MK94]. DAC [Cza02, Cza03]. Daemon [LB98]. Dagum [Stp02, dAix]. dAix-Marlioz [GA96].

dAix-Marlioz [GA96]. Damp [ACM00, IEE95]. Dame [IEE96].

damping [YPA94]. DampVPM [Cza02, Cza03]. DampVPM/DAC [Cza02, Cza03]. DAMS [CD98]. Dangers [BCP+97]. DaRel [KN95]. Data [AJF16, BMR01, BCG+10, BGD12, CkmWH16, CLOL18, DERC01, DN96, EGR15, EASS95, GTS+15, GB98, GMPD98, Gua16, HA10, HB96b, HC06, IADB19, JDB+14, KA13, LK14, LSM+18, LHCW05, LDJK13, MV17, Man01, MK17, ME17, MGA+17, MJB15, NJ01, NPP+06b, NPP+06c, NA01, NLRH07, PCY14, Rei01, SGH12, SPK96, SSLMW10, SR96, Str12, THS+15, WO95, We94, ZDR01, ZG95b, AB95, ASS+17, AGG+95, BK11, Ben95, BR12, BID95, CFKL00, CGK11, CGL+93, DRUE12, EP96, FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPOJ12, KN95, KJ+16, KR13, LOHA01, LF+93a, LL16, MA09, MMB+94, MDM13, MR96, NCB+12, NCB+17, NPP+06a, OPPO00, PDY14, RJMC93, SJLM14, SSS99, SPH95, SK92, TW12, WO96, WLK+18, YCL14, YWO95].

data [ZJWD18, ZRQA11]. data-centered [LSM+18].

data-centered [LSM+18].

Data-intensive [Rei01]. Data-Driven [ME17, NCB+12, NCB+17].

Data-Intensive [Rei01]. Data-Parallel [AJF16, GB98, CkmWH16, SPK96, CGL+93, FKK+96b, MMB+94, MR96, SK92].

data-parallelism [BR12].

data-privatization [KRG13].

Data-Structures [GMPD98]. Databank [FCP+01]. Database [AR01, BFZ97, EK97, MWG97, MM14, PPT96a, MN91, PPT96b, PPT96c, PMZM16].

Databases [RGB+18, BA06, Bos96, ZWL13]. Dataflow [DT17, CSM+96]. Datasets [DLLZ19, VPS17, KGB+09]. Datatype [Gro00, SWHP05, KHS12]. Datatypes [JDB+14, RTH00, SGH12, Tha98, CAHT17, THRZ99]. Dave [Stp02]. David [Ano96a, Ano99a, Ano99b, Nag05].

DawnCC [MGA+17]. DAWNING [HWM02]. DAWNING-3000 [HWM02].

Day [IS16]. dbx [NE98, NE01]. DC
DCE
[Sch93, FLD96, RS93, Sch93]. DDL [FB97].

Deadlock
[LZC+02, SG12, HPS+12, HPS+13].

Deadlocks [FKJ+17]. Debugger [WCS99].

Debugger [HM01, NE01, CH94, CG99b, MT96, XWZ96]. Debuggers [Ano01a].

Debugging [BDGS93, GKP96, KKV01, KV98, Mor95, NE98, Wis97, ZLL+12, BL97, BS96a, DKf93, HLOC96, KCD+97, MLA+14].

December [Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, PBPT95, Y+93].

Decimation [PCY14].

Declarative [EADT19].

decoder [MC17].

Decomposition
[BJS97, CP97, EGH+14, KDHZ18, DBVF01, ETV94, OMK09, SHHC18].

decompositions [NZZ94].

declaration [TKP15].

Deferred [Spe19].

Defined [Gua16].

Defining [GAML01].

Deformable [STK08].

Deforming [GAP97].

degree [CT13].

degrees [KTJT03].

Delegation [YTH+12].

Delegation-Based [YTH+12].

Delft [DS294].

Delivering [Hus98].

Delphi [ACD+02].

Demand [CTK00].

Denmark [DW94, DMW96, Was96].

Dense [AKL16, BDT08, CDD+13, Fuj08, Hog13, PMvdG+13, ZBd12, BRR99, LRLG19].

Densities [MW98].

Density [BL95, MC17, CBHH94, ZWHS95].

Denver [ACM01, IEE05, R+92].

Dependable [GM95].

Dependent [BP99].

Dependence [LAdS+15].

Dependency [PPR01].

Dependent [DFA+09, H014, MFTB95, DMI2, LBB+16, LYSS+16, ŐN12, SSB+16, TVV96, YPA94, YSV+16, YSMA+17].

DEPICT [HM01].

Deploying [PKB01, CLLASPD099].

depth [SSS99].

Derivation [GB98].

Derived [JDB+14, RTH00, SWHP05, Tha98, CAHT17, Jou94, THRZ99].

Descent [Sch01].

description [TKP15].

descriptors [LNW+12].

Design [AS92, AAC+05, Ano01b, ACD+09, BCD+15, BBH+13b, BS96b, BRM02, BMR03, CLP+99, ETWam12, FD02a, FA18, FFP03, GG09, HWM02, JSH+05, KVGH11, kLCC+06, kL11, LPF04, Man94, MMSW02, NPS12, OFA+15, Pa14, PLK+04, PSH94, SBG+02, SWYC94, SSL97, SPK+12, Sun12, THM+94, USE94, VGRS16, BR91, CARB10, CSS95, DS96b, FD02b, GL94, GLoCV97, KA95, LC07, MAS06, OA17, PGK+10, PTW99, SL94b, Sep93, Sil96, SSD+94, SWL+01, WHMO19, Wal94a, Wal94b].

design-pattern [MAS06].

designed [BSH15].

Designing [GKZ12, LAD16, SWHP05, SH14, WYLC12, ZLP17, AHHP17, DSOF11, Pan95b].

Designs [HVA+16, AAAA16, MC17, Shi94].

desktop [Mar07].

Detailed [DLV16, RSPM98, BTC+17, LR06b].

detect [Str94].

Detecting [AGG+95, PPJ01, ZRQA11].

Detection [BHW+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FM+12, HHC+18, KJS14, SG12, ZDD97, BBH+15, DFK94a, HDDG09, HGMW12, HPS+12, HPS+13, LZC+02, RAG095, TCP15, TDG13, TWF009, WFT014, YULMTS+17].

Detector [DZDR95].

Determination [LAFA15].

Determine [BP99].

Deterministic [CFMR95, DK02, ZLL+12].

Develop [PD98].

Developer [IEE96i].

developers [Str94].

Developing [BFZ97, CCSM97, Cot98, DDL95, Reo03].

Development [AC17, Ano01a, BGD+91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TDBEE11, ARvW03, ABC+00, BL97, BGD+92a, DSZ94, DHP97, KCD+97, LLC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99].

Developments [Mat00a].

device
[KKLL11, LS10, SBQZ14, YWTC15].

Devices [GJN97, ZJDW18].

DFB [WWZ+96].

DFN [RS93].

DFN-RPC [RS93].

Diagnosis [AP96, LAdS+15].

diagnostic [RSBT95].

dictionary [LSSZ15].

Diego [Has95, LF+93a, NM95].

Difference [UZ+12, GFGF12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94].

Diagnosis [AP96, LAdS+15].

diagnostic [RSBT95].

dictionary [LSSZ15].

Diego [Has95, LF+93a, NM95].

Difference [UZ+12, GFGF12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94].

Diagnosis [AP96, LAdS+15].

diagnostic [RSBT95].

dictionary [LSSZ15].

Diagnosis [AP96, LAdS+15].

diagnostic [RSBT95].

dictionary [LSSZ15].
Distributions [ST17, WO95, HKMC94, WO96, vHKS94].
Divergence [SDSCP13, VSW13].
Divergent [WA+19], diversity [EO15].
Divide [CTK01, Cza02, Cza03].
Divide-and-Conquer [CTK01, Cza02, Cza03].
DMMP [BB93].
DMPI [HWM02, ZLL12].
DNA [dFdOSR+19, PGF18].
DNAml [CDZ98].
DNMR [SR11].
do [JLG05].
docking [ESB13, VGP19, ZWL13].
Document [MHSK16, AD95].
Documentation [BDG+xx].
Documents [Ano98].
does [KC94].
dog [LK14].
Domain [BMR01, CP97, EGH+14, KDHZ18, kL11, ETV94, HE13, Nel93, NZZ94, Olu14, OMK09, Ram07, SHHC18, VM94].
Domaine [GA96].
Domains [KR09].
Dongarra [Ano95b, Ano96a, Ano99a, Ano99b, NMC95, Nag05].
dOpenCL [KSG13].
Double [FKKC96, PTT94].
down [Str94].
Downloadable [Ano98].
DP [Arn95, KLR+15].
DPVM [IHvA+00].
DQN [PS19].
DQN-based [PS19].
draft [DHHW93b, GL92].
Draw [ST17].
Dresden [MdSC90].
Driven [AIM97, LWSB19, ME17, PCY14, FSG19a, FSG19b, Hin11, NLRH07, PK98, PLK+04, PT01, PGdCJ+18, Ran05, SY95, TS12a, VdS00, Vet02, Wal01a, Wil94, YST08, Zel95, DDLM95, EO15, FH97, FCS+12, FKL08, JC17, MSMC15, NSBR07, NF94, OKW95, RBAI17, RCG95, SCB14, SCB15, SKK+12, SKB+14, WRSY16, YPA94, DvdLV94, FCS+12].
dynamically [SSS99].
DynamicPVM [DvdLV94].
Dynamics [BTT+13, BCGL97, DR97, JFY00, KMBM97, dIFMBdFM02, MH01, OS97, SZBS95a, SA93, TDBEE11, TGM09, YWCF15, ZB94, ALR94, ABG+96, AGMJ06, BvdB94, BHS18, BvdSvD95, BBK+94, BMPZ94b, BMPZ94a, CC00b, FHS099, HHS18, HVSC11, JAT97, JMS14, KFA96, KPK13, KRG13, LSWMV08, OKML12, PARB14, PBK99, RBB15, SPE95, SZBS95b, SKM15, TG94, WPH94].
Dynamische [Wil94].
dynamite [IvdLH+00, IHvA+00].
Dynamite/DPVM [IHvA+00].
dynamo [Hol95].
DySel [CKmWH16].
E-scale [Gua16].
EA [Ben18].
each [Ano00a, Ano00b].
Early [CD96, ILV12, SLG95, EFR+05, KJA+93].
Earth [KTJ03, Nak03, Nak05a, Nak05b, UTY02].
Earthquake [UZC+12, KTJ03, KME09].
Easily [PKB01].
East [IS16].
Easy [HCA16, TDG13, MJPB16, SBF94].
EasyGrid [BR04].
EASYPVM [Saa94].
ECMWF [HK93, HK95].
ed [Nag05].
EDEM [Tsu95].
Edge [ZDD97, Gra97, RAGJ95].
edition [Ano99a, Ano99b, Ano00b].
Editors [AM07, GSA08].
education [ACM06a].
EDV [Ano94c].
EDV-Benutzertreffens [Ano94c].
Edward [Che10].
Effect [DK06].
Effective [MLAV10, RKO1, TMC09, Tsu95, Cza13, JH97, KS15a].
Effects [SSE12].

Efficacy [GScFM13]. Efficiency
KS96, MTU+15, CZ96, MMU99, RS95].
Efficient [ADT14, At96, BHW+17,
BGBP01, BCK+09, BHL+15, BFG+10,
BGD12, Bru95, BDH+95, BDH+97,
BMPZ94b, CAWL17, CFP96, DZ96a,
DGG+12, FHP894a, FHP894b, HBT95,
HKT+12, HT08, HC06, HLO+16, KGK+03,
KD13, LHCW05, LAD16, MDM17, MB12,
MBR17, NMB99, PG5+13, RMMC93,
RRBL01, TGBS05, WSN99, WWFT11,
YPZC95, ZWHS95, BgA94, BHW+12,
CGH+14, FM90, FNSW99, FHB+13, HCL05,
KVGH11, LKL96, LMDA19, Pan95b,
PRS+14, RR01, SOA11, TPD15, TDG13,
YL16, dCG06, CRD99, THRZ99].
Efficiently [CC99, CCM+06, PHA10].
effortless [ITT99].
eigenproblem [BV99, GG99].
eigensolvers [DR18].
Eigenvalue [DAK98, BSC99, THM94].
Eighth [ERS95, Sie94, IEE96b].
eilean [CSS95].
einem [BL94].
Ein
nu [Gra97].
Einfuhrung [MS04].
Einstein [ARYT17, KLM+19].
Einstein- [ARYT17].
Ejector [CCBPGA15].
estatic [PTV94].
estasticity [PTT94].
estodynamic [MAIVA14].
estric [BAL95, Ano04].
estrical [Sil96].
estroabsorption [WWZ+96].
estromagnetic [DSOF11, NZZ94, OMK90, WGG+19].
estromagnetics [OGM+16].
estron [ART17, Jl18].
estron:molecule [ART17].
estronic [GJN97].
estronics [IEE95].
estrosof [Sil96].
estrostactic [VDL+15].
estment [KK9, MS2b, OD01, OMK90, SM02,
VRS00, BB93, BCM+16, Grad, HMKV94,
KMI09, KEGM10, MGS+15, Nak05a,
Nak05b, PPT94, PSV19, TOC18].
estmental [PMvdG+13].
estments [KB13].
Eliminating [DSC17].
elimation [ACMZR11].
elision [CLD+15].
ellptic
AGIS94, PR94c].
ELLPACK
BBH12, MKP+96].
ELLPACK-R
BBH12].
Else [Gei00].
elucidation [MK94].
Embedded [TCM18, YGH+14, ACJ12,
CGK11, NEM17, TM17, WSC+13].
Embedding [FS97, SML17, MS96a].
Embodying [Ser97].
Emerging
WJA+19, RNMN+12].
Emission
Pat93, EZBA16].
emphasis [Bos96].
emPI
MS96a].
emPI/eMPI
MS96a].
emPI
MS96a].
Empirical
SS94, VY02].
Employing
AGM06, GVF+18, LB16].
emulation
MS99b].
emulator [LTLC94].
enable
[DS13, GLM08, HJBB14, KHBS19, KTF03,
PSV19, RA09, SHHI01, SR11, ZLS+15].
Enabling
[APbcF16, BGG+15, CLSP07,
DGB+14, GBH14, GBH18, HJYC10, NPS12,
TY14, ZP106, BR04, MA09, SHHC18].
encapsulation [DRUE12],
encoding
AAA16, PGBF+07, SM12].
endpoint
[LLH14].
endpoints [DGB+14].
energies
TKP15].
Energy
[BP94, EGR15, KFL05, RBAI17, VW92,
FKLB08, KN17, LRLG19, PTL+16, TDG13].
Energy-Aware [EGR15].
energy-efficient
[TDG13].
Engine
[Wal01a, NPP+00a, Wal01b, WGG+19].
Engineering
[Ano98, BPG94, BP93, EGH+14, IEE96b,
KaM10, LSB15, LF+93a, MS92a, MBS15,
Nag05, SM07, Str94, DMW96, IEE94c,
PW95, RMS+18, Sil96, LF+93a].
enineers
[HW11].
Engines
[SLJ+14, HSW+12, SHM+12].
Engine
[OIS+06].
English
[Wil94].
Enhance
[AR01].
Enhanced
[Ano98, CDH95, CDH+95, FMSG17, KY10,
PLR02, Saa94, BR95b, FE17].
enhancement [ARL+94, Bo97].
Enhancements
[BDG+95, BCKP00, DM95b, DM95a].
Enhancing
[BFM99, CMZ99, FSC+11,
HMS+19, MTP96, MS15, OFA+15].
Evaluations [KNH +18, MM14]. Event
[KKV01, NSL16, TSH’S15, WM01, WMc’18, FSG19a, FSG19b]. Event-Based
[NSL16]. event-driven [FSG19a, FSG19b]. everything [CCM’06]. everything-shared
[CCM’06]. Evolution [Mat01a, PS01a, RBB17, SSL97, SGDM94, GS93, SSD’94]. Evolutionary
[B05, DSM94, Rag96]. Evolving [Bad16, ER12, MdSC09]. Ewing
[Ano95c, Ano99c, Ano99d, Ano00a, Ano00b]. EWOMP’99 [BC00]. Exact [DOSMM’16].
Example [Che10, SK10, NB96, Pat93]. Exascale [Bad16, LV12, LSG12, RPS19]. Exception
[FGS19a, FG19b]. exchanged [WMP14]. Execution [AHD12, BME02, DT17, FC05, FM09,
GR07, KGK’03, MK17, Mar05, MFG’08, MAGR01, Ncy00, STY199, SAP16, EPML99,
Mor95, PSB’19, SMAC08, TNB17, TSY99, TSY00, UGT09]. Executions [GAML01].
Exhibition [HS95a, GH94, LCHS96]. Existing [CB00]. EXOCHI [WCC’07]. Expand
[CBC+’17]. Expanding [LA02]. expected [CAHT17]. Experience
[BCP’97, BT96, CP98, PS01a, Tou00, AMS94, CARB10, KJA’93, RSC’15]. Experiences
[AHP01, BF97, CMV’94, CLASPD99, GLN’08, GSA91, GSI97, GB96, GL96d, ITT02,
JR10, KS97, Mar02, TGM09, ZPL96, ZKRA14, AL92, CCF’94, Sch94, SGDM94, BDG’93b].
Experiment [Luo09]. Experimental
[BIL99, BIC05, BB18, EGC02, Ser97, UMK97]. Experiments
[BPMN97, Coe94, LGM00, OS97, RR00, ZB97, RHG’96, HAJK01]. Expert
[BPG94]. experts [EO15]. ExpEther
[NMS’14]. Explicit
[BHV12, GFG12, SGHL01, LC97b]. Explicitly
[Ma12, SYR’09]. exploit [ZP106]. Exploitation
[GGL’08, GAM’02, BK11, GAM’00]. Exploiting [Add01, AML’99, Br10,
FKLB08, HEHC09, KFL05, NAAL01, VGP’19, Nob08, THH’05]. Exploration
[AMuH15, OFA’15, ABDP15, GE95, GE96, PDY14]. Explorations [BGG’15]. Exploring
[CPM’18, IFA’16, MBKM12, MTU’15]. Expose
[SAL’17]. Exposing [SD16]. Exposition [IEE95d, LF’93a]. EXPRESS
[KS96, Ahm97, FK94, LH95, SHH94a, SHH94b]. Expression
[BN12, GDM18, KH15, Sur95a]. Expressions
[VZT’19, SFLD15]. expressive [Tra12a, YLC16]. Extend
[DFA’09]. Extended
[BR02, Röt19, HTA08, SS99]. Extending
[ABB’10, BCC’00a, BCC’00b, BDB’13, CS96, CG99a, KDT’12, LMRG14, Mar03,
OFA’15, RGML16, SDV’95, TMTP96, CG96, GGHL’96]. Extensible
[BL97, GS94]. Extension
[AELGE16, BGR97a, CSAGR98, VAT95, Hum95, JH97, SC95, ZT17, GBR97]. Extensions
[Fis01, GOM’01, GLL’08, HVA’16, HE15, DPSD08, HP05, Kat93, Ano99c, Ano99d]. Extent
[kL11]. Extent-Based [kL11]. exterior [HMK94]. external [BBB’94]. Extraction
[CBL10, HLO’16, dAT17]. Extreme
[MdSC09, ZKRA14]. eyes [Str94].

F [FHPS94b, FHP’94]. F90 [DP94]. Fabric
[HLZ17]. face [HDDG09]. Faces [Gro12]. facilitate [PKB06]. Facilitating
[MCC99, ZLL’12, ESB13]. Facilities
[MMH98, MN91]. Facility
[KG96, SHTS01, KZCS96, LHCT96]. Factorisation
[BB18]. factorization
[AZ95, BSvdG91, BR892, DC95, KBP16].
Factorizations [TD98, LC97b]. Fail [LFS92, LFS93a, LFS93b]. Fail-safe [LFS93a, LFS93b]. Failure [BBH+92, 13a, CRGM14, BBH+13b, CGH+14, BDB+13]. failure-aware [CGH+14]. failures [JS13]. Faithful [KLR16]. Fall [Gra97]. false [JE95]. family [AVA+16]. farming [Str94]. Fast [Ben01, BHS+02, BDA+18, BBH12, CS14, DMK19, DFN12, EM02, Hog13, Ho95, JFGR12, JMG+17, KK19, LYIP19, PSL+11, PR94c, PBC+01, RB01, SE02, SS09, STY99, SR11, TPLY18, UP01, WTR03, Lan09, LCL+12, NYNT12, TDG13, YULM+17, YLZ+13, YBZL03, ZA14, AAB+17, DBLG11, PFG97]. Faster [Tsu12, ZG95a, ZG96]. Fast [Zah12]. Fat-tree [Zah12]. FATCOP [CF01]. Fault [BBC92, BCU+02, BHK+06, CF01, CFDL01, FBD01a, FBD02, FD02a, FD04, GFB+03, GKP97, GJR09, GL04, Gua16, IEE95c, JS9+05, LMRC14, LNLE00, DLR04, MS00, RPM+08, TS12a, WC09, W83, B8+08, FBD01b, FD02b, HG12, LMG17, LS08, PKD05, SG05, ZHK06, FD00]. Fault-Management [GJR09]. Fault-Tolerant [BHK+06, FD04, GFB+03, IEE95c, JS9+05, LMG17, LS08]. Faults [LAd+15]. FCRC [ACM96b]. FD [And08]. FF-TD [And08]. FDDI [LC93]. FDTD [DSOF11, VM94, WGG+19]. Fe [Old02, BJS99]. feasibility [KBG16]. Feature [Qu95, ZWL+17]. Feature-driven [Qu95]. Features [GLT99, GLT00b, GLT00a, GLT12, KAH96, An009a, CMZ99, CRD99, WKS96, ZKRA14, DAT17]. February [An95, GE95, GEG96, IEE93a, IEE94a, IEE97c]. FEM [GEW98]. FEM-Systeme [GEW98]. Fermi [SP11, WPK11]. fermions [GM18]. FETI [KLR+15]. few [NS16]. Few-body [NS16]. Feynman [NS16]. FFT [DMK19, DALD18, GB98, JKM+17, DSM12, SH14, WJB14]. FFT-Based [WJB14]. FFTs [EFR+05]. FFTW [KT10]. FHP [BMS94a]. Fibonacci [GFJT19]. Field [KNT02, Goe92, TPK15]. fields [BALU95, RSBT95]. Fifth [DKM+92, HK93, IEE96f, SM07, IEE95c]. filamentary [YPA94]. Fil [BIC+10, CGC+02, LRT07, KLCC07, KL11, PLR02, RK01, TSS00b, Tsu07, WTR03, D10, LL95, SBQZ14, iSYS12]. File [PLR02, RK01]. File-I/O [PLR02, RK01]. film [SL00]. filter [BY12, CCU95]. Finding [FCLG07, GÄRRL17, PCS94]. Fine [AZG17, BBG+10, JCP15, SFL+94, TCM18, YSS+17, BK11, KW14, LZHY19]. Fine-Grain [AZG17, JCP15, SFL+94, BK11, KW14]. Fine-Grained [BBG+10, TCM18, YSS+17, LZHY19]. Finite [DFN12, KK19, MS02b, MAIVAH14, OD01, OMK09, Pr14, SM02, UZC+12, VM94, VRS00, BB93, Gra09, FFFG12, HE13, HKMV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, PSV19, Ram07, TOC18]. Finite-Difference [UZC+12, VM94, HE13, NZZ94, Ram07]. Finite-Element [MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b]. Finland [RWD09]. Fire [JML01, SJ02]. First [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kum94, Nar95, PPB95, SS0+94, USE94, AH95, BS94, GM18, MMDA19, PTMF18, PB97]. Fix [DLV16]. fixed [PSV19]. fixed-grid [PSV19]. FLAME [VBLvdG08]. flat [Nak05b]. Flattening [THR99]. flavors [GM18]. FlexCL [LZW18]. Flexibility [KK02b]. Flexible [CS14, GR95, GB9+07, SHPT00, CARB10, DGB+14, GAM+00, HCO8]. Flink [KWEF18]. FlinkCL [CLOL18]. flip [KO14, KOM15]. Floating [LWSB19]. Floating-Point [LWSB19]. Florida [ACM98b]. Flow [BHW+17, BGD12, CGZQ13, CCBPGA15, FM09, MK17, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTHD99, HHS19].
Flow-Based [BHW17]. Flows [GAP97, BCM+16, BTC+17, Heb93, LLG12].
flowshop [CB11]. Fluid [DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TGEM09, ALR94, ATL+12, AGM06, BvdB94, BHS18, Bi95, HVSC11, MRRP11, PBK99, SPE95, SZBS95b, WPH94]. fluid-particulate [ATL+12]. fluids [HK94, WB96]. Flux [QRMG96, QRG95]. Fly [WMC+18, KSJ14, THRZ99, BCAD06, BADC07]. FM [LC97a].
FMA [LO96]. Fock [MDA19, CBHH94]. Focus [Cia08, CFF19]. foolish [Rol08a]. footprint [TS12b]. force [Goe02]. Forecast [AHP01]. forecasting [Bjo95, KOS+95a]. Forest [JML01, NCKB12]. ForestGOMP [BFG+10]. Foreword [CHD09]. FORGE [VCWR96]. Fork [BGD12, SML17]. Fork-Join [BGD12, SML17]. form [NCB+12, NCB+17]. Formal [BG94a, Bds07, GKS+11, GB98, LPD+11, PGK+10, VVD+09, BG94c, SZ11]. Formalizing [FGRT00]. Format [BBH12, MDM17, CBIGL19]. Forschung [Ano94c]. Fortran [Ano97, Ben95, Bra97, GBR15, TOC18, AC17, Ano98, AS14, BW12, DZ98b, Don06, GML+16, HE13, HH14, HZ99, Kuh98, KLM+19, LC97b, LCC+03, MW095, iSYS12, SM03, SMCH15, TBSG+02, Wal02, YBMCB14, YSVM+16, YSM+17, vHKS94]. Fortran/PVM [MW095]. Forum [Str94]. Forward [RMNM+12, BDB+13]. forwarding [CBX+12]. foster [SM12]. Foundation [Gei01]. four [GSM17, MGG05]. four-atom [MGG05]. four-particle [GSM17]. Fourier [DBLG11, BCM+16]. Fourteenth [IEE95b]. Fourth [Ano89, IEE93d, IEE95k, Sie92a, Sie92b, Ano94i, IEE96g]. FPGA [KNH+18, MTU+15, PWP+16, PGF18, RGB+18, WTHH17, WHMO19]. FPGA-Platform [WTHH17]. FPGAs [LWZ18, MC17, OFA+15, PGS+13, WZH16, Röhr00]. fractal [Wu99]. fragment [KS15a]. fragments [OA17]. Framework [Ben18, DGS93, FC05, GGGC001, GR07, GDMD17, MGL+17, NSZS13, PWP19, PMvdG+13, SSB+05, SSAS12, Sun90a, Sun90b, WZH16, Ano93c, BA06, BR04, BAG17, EFR+05, FLMR17, GM13, KKM15, KJJ+16, KKK+08, KHH0, LME09, LGG16, LCMG17, LS08, PTL+16, RSC+15, SL00, TDB00, YLC16, YWT15, Z17].

MGL+17, Ngu08, NMS+14, NSM12, OFA+15, Pan14, PDY14, PGdCJ+18, PF05, Pri14, RSC+15, RSR9, RMNM+12, Sa10, SK10, SM10, dOSSM+16, iSYS12, SS09, SNN+19, SCSL12, SIRP17, SAP16, SYL19, SD16, SSB+17, SKM15, SKB+14, SG14, TBB12, TS12b, VZT+19, WJA+19, WGG+19, WLP11, YULMTS+17, YHL11, YCL14, YSS+17, ZRQA11, ZZG+14, ARYT17, PHO+15]. GPU-Accelerated [KA13, SCSL12, PGdCJ+18]. GPU-Aware [Pan14, FA18]. GPU-based [MMO+16, SS09]. GPU-code [EZBA16]. GPU-Resident [JDB+14]. GPU-Direct [OGM+16, YWCF15]. GPUMixer [LWSB19]. GPUMP [ZC10]. GPUpc [IFA+16]. GPUs [BY12, BDA+18, DS13, DS16, GML+16, GFPG12, GPC+17, GM18, HTJ+16, HP11, HLPI11, Hose12], IFA+16, JKM+17, KGB+09, KKM15, KLLL11, KVGH11, LBH12, LRBG15, MA09, ONI12, OHI10, PP16, PSV19, PB12, SHLM14, SDB+16, SKK+12, Tsu12, VLMPS+18, VY15, WRSY16, WJ12, WJB14, YLZ13, YSWY14, ZC10, ZZZ+15]. gpuSPHASE [WMRR17, WRMR19]. GPUVerify [BCD+99]. GQ [RFG+00]. GRACE [YKI+96, ZRQA11]. GRADE [DDL00]. graded [PSV19]. Gradient [BG95, GFPG12, KN17, MM92, Ols95]. Grain [AZG17, IOK00, KO01, MJPB16, NIO+02, NIO+03, BK11, JCPI15, KW14, SFL+94]. Grained [ADRCT98, BBG+10, LGM00, TCM18, YSS+17, Heb93, LZHY19, RJC95]. Grammatical [RBB17]. Grand [DGJ93, Ten95, BDG+92c]. Graph [BHW+17, DW02, MM14, NPS12, PPR01, STV97, HLPI10, HK0011, PP16, PD11]. Graph-Based [NPS12]. Graph-Partitioning [STV97]. Graphic [HBB+14]. Graphical [BDG+91b, DDL00, BDG+92a, KCD+97, KFSS94, SSKF95, VDL+15]. Graphics [KS15b, LSVWM08, LSWM11, SLJ+14, SLMW10, vLJR11, ABDP15, BHS18, CBM+08, DBLG11, Fer04, GKL95, HTA08, HSW+12, KFA96, KY10, KMEO9, LHLK10, MSZG17, PF05, SHM+12, SR11, WWFT11, ZLS+15, MSML10]. graphics-scalable [GKL95]. Graphs [LGM00, OP10, PGF18, VZT+19, EP96, MC99, MJPB16]. Gravitational [ZSK15, KM10]. Greece [CD01, CDND11, SM07, TG94]. green [PTL+16]. Grenoble [JTE94]. Grid [AB93a, CGB+10, CLLO13, DPP01, Fo98, KT02, Lai01, Liv00, MRB17, PLK+04, Rei01, TEG09, AB93b, Eng00, GLM+08, KRKS11, PSV19, WLYC12, AASB08, BR04, CCHW03, DKD08, FC05, GBF+03, GL02, KTF03, KGK+03, KSS07, LC07, LS08, NSBR07, RPM+08, RTRG+07, SHST01]. Grid-Adaptive [KT02]. Grid-Enabled [Fo98, GLM+08, KTF03]. Grids [NO02b, ACH+11, CC10, KGB+09, NO02a, NB96, BBH+06, GR07, Ram07, SN01]. GROMACS [BvdSvD95]. Gropp [An95c, An99c, An00a, An00b]. Gross [LBB+16, LYS+16, SSB+16, YSV+16, YSM+17]. Ground [HHT99, NS16]. groundwater [AFST95, EGDK92]. Group [AD98, An98, Ara95, ACDR94, CHD07, CHD09, CDND11, DKD05, DLM99, DPK00, GN95, KGRD10, Kra02, KKD04, LKD08, MC94, MTW06, RWD09, TBD12, UKM97, BDW97, DLO03, MM99]. grouping [WPL95]. Groups [GOM+01]. Grover [LYZ13]. Growth [PKYW95, BB95a]. GTS [PKE+10]. Guest [AM07, GSA08]. GUI [VG14]. GUI-awareness [VGS14]. guidance [SDJ17]. Guide [An12, D+91, GBD+94, Ladi04, Nov95, NMC95, Per96, An95b, BDG+91a, McK94]. Guideline [Tra12b]. Guidelines [TGT10]. GVirtuS [MGL+17].
[DFC+07, FMSG17, LSB15, LGM00, RC97, FFFC99, LN+12, THRZ99]. Hands [KnsWH10]. Hands-on [KnsWH10]. Harbor [BBC+00]. Hardware
[BGG+15, BWW+12, Bru12, BCP00, CDPM03, DW02, EADT19, GJMM18, HSP+13, LSMW11, MFC98, PSM+14, PKB+16, SLMW10, vdLJR11, ER12, GGL+08, PMZM16, Ra99, SBG+12, SH94, SW+12, YAJG+15, ZLS+15]. Hardware-Based [CDPM03]. Hardware-oblivious [HSP+13]. harmonic [GSMK17]. Harness
[EBKG01, MS99b, PL96, FBD01a, FBD01b, FBVD02, FD02a, FD02b, MSF00, Gei98]. Harrogate [CJNW95]. Hartree
[SPK96]. HASEonGPU [EZBA16]. Haskell [WO97]. Hate [Dan12]. Hawaii
[ERS96, ERS94, MM93, ZL96]. HCA [KBC+16]. HDL [Kat93, KMK16]. HDMR [KD12]. Heading [Sch99]. Heaps
[GJTT19]. Heat [SAS01, NP94, iSY12]. Hector [RFHR96, RRG+99]. Heijen [Vn95]. held [AGH+95, GA96, JB96, KG93, MM93, Old92, R+92, SH95, TG94]. Helios [SPK96]. Helmholtz [HMKV94]. Helps [Stp02]. HeNCE
[BDG+92a, BDG+92b, BDG+93a, BDG+94]. Hénon [JPT14]. Herzliya [IEE96h]. HeSSE [MRV00]. Heterogeneous
[ABB+10, BDG+93a, BDG93c, BL95, BCP+07, BGR97b, BCP00, CMMR12, CLoL18, CLBS17, DGS93, DGMJ93, FDG97a, FDG97b, FLD98, Fos98, GS91b, GDDM17, IEE93f, KR90, KCR+17, LC93, MRV00, MM01, MM02, NTR16, PD98, PHO+15, RVKP19, SMS00, SGS10, TQDL01, VLO+08, ACGdT02, ADB94, ADDR95, AMV94, BDG+92c, BDG+94, BALU95, BRR99, BAV71, CCM12, CPFS95, FMBM96, GKDZ12, GCN+10, GCKF13, HHS18, HK94, KSTG13, KSL+12, Kos95b, LCL+12, LR06a, Lec12, Mah12, MSL2, MM03, NP94, NEM17, Pea95, PSB+19, RCF96, SCJH19, Skj93, Sot93b, Sn94b, Sn95, TBB12, TMW17, TPK15, TDG13, VBP99, VGP+19, WCC+07, YST08, YSL+12, ZJDW18]. HeteroMPI [LR06a, VLO+08]. Heuristic
[BHM96, STV97, WH94]. HI
[ERS96, HST94, ACM97a]. HICSS
[ERS96, MM93]. HICSS-26 [MM93]. HICSS-29 [ERS96]. hiCUDA [HA11]. Hierarchical [BMR01, FBS01, HA10, HL17, MALM95, RR02, ADIV05, BDV03, GJMM18, OKM12, YPZ95]. hierarchies
[SYP+99]. High
[ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, BPG94, BRST94, BS07, BDA+18, CDD+13, CNM11, CDHL05, CS14, DPP01, DDL00, DE91, FGKT07, GSHL02, GBH99, GBS+07, GLDS96, HVA+16, HA11, Hol12, IEE92, IEE93c, IE94g, IE95k, IEE96a, IEE96f, IE97c, IF95, JIM+11, Kha13, KMK16, KEGM10, KH15, La901, LCK11, LC97a, LkLC+03, LBH12, LW04, MW98, MPD04, ME17, MAB05, NU05, OIH10, OLG01, PKB01, PR04b, PTH+01b, Ra98, RHO1, SPM+10, SLMW10, SCL12, SJ02, Sko05, SVC+11, SSSS07, Ton00, Tns07, VW92, WN01, YCL14, YWFC15, YSP+05, AH95, Ano03, BADC07, Ber96, BWT96, BID95, CHKK15, CBYG18, DL10, Duv92, EZBA16, ES13, FME+12, GS02, GGC+07, GL96, GL97c, HDDG09, HW11, Hos12, KPB16, KME09, Lan09, LBD+96, MSL12, MSZG17, NS91, NFG+10, Old02, OGM+16]. high
[PGS+13, PGK+10, PF05, PTW99, Renu03, RJDH14, SG14, SFLD15, ZSK15, ZWL13, dAT17, CDH+95, DZ98b, D+95, DE91, GH94, HS95a, KDD12, LCHS96, LC97b, SSH08, Ten95]. High-Dimensional
[MW98]. High-Level
[CS14, DDL00, HA11, Hos12, SG14, SFLD15].

High-order [KEGM10, KME09, OGM+16].

High-Performance [ACM98a, FGKT97, IEE097c, LkLC+03, OL01, PKB01, PR94b, PTH+01b, Rah98, RH01, SPM+10, SCSL12, WN10, GLDS96, OIH10, SVC+11, Ano03, ESB13, FME+12, GL96, GL97c, HDDG09, KB16, LBD+96, Old02, PGS+13, PKG+10, PF05, Re03, RJDH14, SFLD15, ZSK15, HS95a, GH94, LCHS96, SSH08].

High-Precision [Kha13].

High-Quality [BDA+18].

High-Scalability [BS07].

High-Speed [CDHL95, KMK16, AH95, BWT96, CDH95].

High-Throughput [SSLMW10, ESB13].

Higher [MYB16, KB13, wL94].

higher-level [wL94].

Higher-order [MYB16].

Highly [MM95, PV97, TMP16, CARB10, GBH14, GBH18, VM95].

Highly-scalable [GBH14].

Hills [IEE93f].

HiNet [AH95].

HIRLAM [Bjo95, HE02, KOS+95a].

histogramming [KRC17].

History [OWSA95].

Hitachi [Ano03, NNON00, TSB02, TSB03].

HLA [RTRG+07].

Hoare [KI17].

Hoc [IBC+10, IIT02].

Högskolan [Eng00].

Hole [Kha13].

holistic [TWFO09].

Homomorphisms [RG18].

homotopy [GWC95, SMSW06, VY15].

Honolulu [IEE96e].

honor [Str94].

Host [Ano95c, LLRS02].

Host-Parasite [LLRS02].

HOTB [GSM17].

Hotel [IEE94e].

Hotel-Copley [IEE94e].

Hough [YULMTS+17].

house [ZLZ+11].

Houston [ACM06a, Ano95a, Cha05, DKM+92, Y+93].

HP [CBG+10, BCM+16].

HPC [ASS+17, CGBS+15, GDC15, GKK09, LCVD94b, OLG+16, PSS+14, RGGP+18, VGE+19, ZLP17].

HPC2002 [Ano03].

HPCN [LCHS96].

HPF [BP98, BF01, BID95, Br00, BDV03, CM98, CDD+96, Coe94, FKK+96b, FKKC96, FKK96a, L927, OP98, OPP00, SM02, Str94].

HPF-MPI [BP98].

HPL [Lee12].

HPVM [BCKP00, CLP+99].

HPVM-Based [CLP+99].

Hull [GCN+13].

Hungarian [Fer92, FK95, LYIP19].

Hungary [DKP00, KKD04, VV95].

Hunting [JPP95].

Husky [YLC16].

Huss [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

Huss-Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

Hybrid [BBG+10, BBH+06, B18, CGC+11, CNM11, Cha02, DR97, GPC+17, HVSC11, IDS16, KSL95a, KLR+15, LRRS02, LG14, MS02b, NO02b, PZ12, SSB+16, VPS17, W12, YH11, YPAE09, YTH+12, AC07, ADK+05, BBG+14, CSPM+96, FMS15, GÅVR17, GKK09, HDB+13, JR10, JMS14, KN17, KRG13, KJEM12, LC13, LLH+14, MLAY10, MRRP11, NO02a, Nak05a, Nak05b, PARB14, PHJM11, SDJ17, SVE+11, THDS19, WT11, WLYC12, WT13, YWC11, ZWL13].

hybrid-core [BBG+14].

Hybridizing [LSG12].

HYDRA_MPI [PBC+01].

Hyper [CSW99, SBT04, TBG+02, ZAT+07].

Hyper-Rectangle [CSW99].

Hyper-Threading [SBT04, TBG+02, ZAT+07].

hypercube [HS95b, Sur95b].

Hypercubes [Ano89, RJMC93, She95].

Hypercubic [HP11].

hyperelastic [OKW95].

hypersonic [BTC+17].

Hyperspectral [VLO+08].

I-SPAN [LHHM96, Li96].

I-WAY [FGT96].

I/O [Bos96, CFF+96, DRUE12, IRU01, IBC+10, LkLC+03, kLCC+96, MV17, MC18, MG12, MG15, PSK08, PLR02, RK01, SBQZ14, Th98, Tsu07, WSN99, ZJDW18].

LASTED [Ham95a].

IBM [AL93, Ano03, BBB+94, BGBP01, BR95c, BR95b, B95b, Br95, CE00, CM93, F95b, F95, F95, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSWM94, HMKV94, Heb93, JF95, KB98, KAC02, KS01, KMH+14, LC97b, MP95, MW93, MABG96, NMW93, WZWS08, XH96].

IBM-SP1 [FHP94b].

ICA
STK08, Coo95a, IJM+05.

Interconnection [TMP16].

Interconnect

[Briü12, SJ02, BWT96, SWS+12, TBD96],

Interconnected [Hus00], **Interconnecting** [MC98]. **Interconnection** [MANR09, SB95, AVA+16]. **Interconnects** [RA90]. **Interface** [Ano93d, Ano01b, BCFK99, BDH+97, CHD07, Cer99, CGH94, CNDN11, DFKS01, DHHW92, DHHW93a, DBK+09, FKKC96, FSL98, Gle93, GLS94, GL95c, GLDS96, GLT00b, HDB+12, HRS97, KSJ95, KGRD10, KKD04, LDLK08, LkLC+03, LW97, MPI98, MS98, MSS98, MBES94, MMSW02, MTWD06, PLS01b, RWD09, SGL97, TDB00, T01, TBD12, WD96, Wer95, YHGL01, Ad98, AD98, Ano93e, Ano94d, BBB+94, BBR95, Bru95, BDW97, BK00, BR94, CFKL00, CF+96, CD01, CG99b, DKD05, DBB+16, DSN96b, DL99, DPK00, DLO03, GRW+19, HPY+93, HRR+11, KOB01, KSJ96, KBHA94, Kra02, NS91, Pie94, PR94a, RMS+18, SL94a, SW95, SD+95, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, AMHC11, BCH+07, BR05, BDH+95, Cot04, DKD08, DiN96, FKS96, FGT96, FGG+98, GGHL+96, GLT99, GL95d].

Interface [GLT00a, GL04, Han98, IBC+10, KTF03, KKD05, LK01, MSL96, RRF96, SWHP05, SL95, SWL+01, TGT05, YGH+14, Ano95c, Ano00a, Ano00b].

InterfaceArchitecture [Sci99]. **Interfaces** [MGC12, Wit16, RJJDH14, Trl12a].

Interfacing [Lus09, PL96]. **interference** [ZJDW18]. **Intermediate** [SML17].

internal [BB+15]. **International**

[ACM94, ACM96b, ANS95, Abr96, ATC94, AGH+95, Ano93a, Ano94a, Ano94e, BPG94, Bos96, BFM96, Cha05, CZG+08, CGKM11, CMMR12, CGB+10, CH96, DSM94, DW94, Ev01, EdS08, ERS95, ERS05, EJL92, Gat95, GA96, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE93c, IEE93b, IEE94d, IEE94g, IEE95b, IEE95c, IEE95a, IEE95k, IEE95i, IEE95f, IEE95l, IEE96a, IEE96f, IEE96e, IEE96d, IEE97b, IEE97c, IEE95, Kum94, LCK11, LF+93a, Lev95, LHHM96, Li96, MMH93, MCdS+08, MdSC09, Nar95, Ost94, PW95, PBC+95, PBP95, Rec96, R+92, SHM+10, Sie94, SIl96, Sm07, Tou96, VV92, Vol93, Vos03, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPT94, LCHS96, Mal95, ZL96, Ano93b, HKH94, Sch93].

Internet [NE98]. **Interoperabilität** [GBR97]. **Interoperability** [BoFBW00, Don06, PLR02, SIC+19, CPM+18, GBR97].

Interoperable [Rab98, MSL12, YBM14].

Interoperation [FDG97a, FDG97b, FL98]. **Interpolants** [RB01]. **interpolation** [BAS13].

interposition [GSM+99]. **Interpretative** [MKW11]. **Interpreted** [FSSD17].

Interpretive [CN10]. **interprocess** [SC95]. **interprocessor** [DS06b].

interrupts [CB+12, SH96]. **Intervals** [MDM17].

intra [GM13, VSW+13].

intra-node [GM13]. **intra-warp** [VSW+13].

intrinsics [Stp18].**Introducción** [VP00].

Introducing [JKM+17, TBS12].

Introduction

[An96b, AM07, Che10, Cze16, DOSW95, GSA08, HW11, Mar02, Mat00b, SK10, VP00].

Invasive [URKG12]. **inventory** [OHG19].

Inverse

[Huc96, BV99, GGC+07, GG09, Wan02].

Inversion [ACMR14, Kan12].

Investigating [GMdMBD+07, Ros13].

investigation [PHW+13]. **Invisible** [Wis97]. **Invited** [Ge93a].

IO [AHP01, BIC+10, CGC+02, CPF+96, DL10, FGRD01, FWN96, FSL98, LRT07, LGG16, PK08, PTH+01a, PTH+01b, SW12, Sto98, TGL02, ZZ94]. **IO/GPFS** [PHT+01a]. **IOMMU** [YWCF15].

IOV [YWCF15, ZLP17]. **IP** [CCA00]. **IPCC** [SC95]. **IPPS** [IEE96c]. **IR** [ZJDW18].
kinec [JL18]. Knox [ACM99]. Kingdom [Boi97].
Kirchoff [SSS99]. Klagenfurt [Bos96].
Knapsack [ICC02]. KNEM [GM13].
knowledge [FNSW99]. knowledge-based [FNSW99].
Knoxville [PR94b]. Kohr [Stp02]. Kolmogorov [Str97]. KOP3D
[KR09]. Koppelrandkommunikation [Gra97]. Kpi [EML00]. KPN2GPU
Kronecker [LNW+12]. KSIX [AUR01].
KSR1 [BLJ4]. KU [IM94]. Kungl [Eng00].
Kyoto [IF195]. SPE95, IFI95).

L [AAC+05, BGH+05, EFR+05, MSW+05].
LA-MPI [YSP+05]. Lab [Str94]. Labeling
[PPJ01, KRKS11]. labelling [HL10].
laboratory [JY95]. Lafayette
[EV01, EdS08]. Lagrangian
[CT94a, CT94b, RSV94, TBB12]. Lahey
[Ano98]. Lake [Hol12]. LAM
[OF00, RsT06, SSB+05, SQu03, SWa11, ZWZ05].

LAM/MPI
[OF00, RsT06, SSB+05, SQu03, ZWZ05].
lambda [PQ07]. lambda-calculus [PQ07].
LAMGAC [MSOGR01, MS02a]. Lamport
[TPLY18]. LAN [CCU95, CDH+95, MSOGR01, MTSS94, TCS94, ZGC94].
LAN-based [TSZC94]. LAN-Message
[MTSS94]. Lanccos [GP95, Sch96a, Sch96b].
Landng [dCG06]. Landsat
[GGCM99, GCG98]. Landsat-TM
[GGCM99, GCG98]. Lane [HH+17].
Language [ACM96a, NM95, PD98, Stp18, TA14, WLR05, Ben95, CGK11, Hos12, Nob08, RBKA+13, RSt00].
Language-based [Stp18]. Languages
[CF+94, FSMG17, FSSD17, CH96, Mar05, Ohu14, SWS+12, PBB+95, SS96].
LANs [Fin97]. LAPACK [Ad01, ARV03].
LaPerm [WRSY16]. LAPI [GBP01].
Laplace [ACMR14]. Large

[AKE00, BHW+17, BZ97, BJS99, BHNW01, CGC+11, DALD18, FFP03, Huc96, JFGRF12, LLY93, MHC+12, MFP03, PCY14, Röt19, RGB+18, SGI+03, SM03, SLL99, TGM09, WMC+18, WT12, ZWJK05, AASB08, AMS94, BCA+06, BA06, BCH+08, Che99, CCHV03, DZY94, FME+12, GG99, IM95, JLS+14, KEGM10, Kos95b, KA95, LS10, MLA+14, NFG+10, PTL+16, PD11, RMNM+12, SIC+19, SC96a, TBB12, TOC18, WT11, WT13, ZWLI].
large-sized [JLS+14]. Larger [NB96].
LargeScale [LA+16]. laser
[EZBA16, WWZ+96]. Lastverteilung
[Wil94]. Latency [Jes93a, Jon96, KBHA94, NCB+12, NCB+17, TBB96],
latency-tolerant [NCB+12, NCB+17].
Lattice
[BBK+94, BMS94b, HLP11, SJK+17a, SJK+17b, BW12, BMS94a, CGK+16, GM18, SAI10, SVC+11, BLPP13, OTK15]. launches
[Ano03]. Layer [CSAG98, HEH98, FKK96a, PRTT94, dALM11, dALMCF94].
layered [DiN96]. Layering [Hus01]. Layers
[VZT+19, KC94]. Layout
[WG17, BGM+05, HP11, LDJK13, Str12].
Lazy [TCB10]. Leaks [DL16]. Learned
[GRK97, MWO95]. Learning
[AHHP17, Gro01b, FE17, KWEF18, LSSZ15, MD12, NFG18, RMNM+12, SIC+19, WT11, WT13, ZA14].
learning-based [FE17]. Least
[PPW+16, VR00, DK13]. Least-Squares
[VR00]. Lecture [Ge93a]. Lederman
[An96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. Leeds [Abr96]. legacy
[BR04, LP00, LRW01]. Lemon [DRUE12].
Lengths [GSHL02]. LEO [CBGA15].
Leonardo [Stp02]. Lessons [MWO95].
Level [AELE16, BGG+15, BBC+00, CS14,
CRGM14, DHHW92, DHHW93a, DDL00, GS91b, GAM+02, HA11, HKT+12, DK02, KCP+94b, KOW97, LVP04, LMRG14, NPP+00c, SHM+10, SBF+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LBB+19, LM13, MALM95, NS91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBH...13a]. levels [AML+99].

Leveraging [BBW19, HDB+97, Mat95, TDB00].

[Mat94, KS96, MSP93, CSS95, Gal97, Mat95, TDB00]. Linda-like [CSS95].

Line [BoBF00, CGS15, Wis98, Bor99].

Linear [ASA97, BDT08, BG95, CDD+13, DGH+19, Gao03, Hu96, LLY93, LZ97, MGH97, MSB97, YKW+18, ZTD19, van97, BSN95, BKvH+14, BAV08, BRR99, CEGS07, DR18, Gra09, GFP12, Jou94, LRLG19, MW98, MM11, OKW95, SCC96, SMSW06, dCH93, dH94]. Linear-scaling [Gao03]. Lines [NE01, YULMTS+17].

Link [BGR97b, SJ02]. Linked [WJ12].

Linköping [FF95]. LINPACK [JNL+15].

Linux

[Sei99, SMTW96, USE00, SSSS97, Ano01a, GSN+01, MK04, OF00, PS07, PKB01, RSt06, Sei99, Slo05, SGL+00, YL09]. Linz [Kra02]. lipid [FHS099]. Liquid [DSS00, JLS+14]. Lisbon [IEE93d]. LISP [ACM90]. List [Tra98, WJ12]. Lithe [PHA10]. Lithography [RDMB99].

Liverpool [AD98]. LLVM [SML17]. Load

[Ano94b, BKdH01, BS05, DI02, DR95, DK06, GCBL12, HE02, MM02, NP94, PT01, Pus95, SGS95, ST97, Wal01a, Bir94, COK+94, DZ96, DLR94, DvdlVS94, EZBA16, FMBM96, FH97, GS96, Hum95, JH97, MM03, SCL97, SY95, Wi94].

load-balanced [EZBA16]. Local

[BSG00, CDHL95, CCSM97, IKM+01, LBB+19, AMHC11, BY12, CGL+93, FSV14, IKM+02, LHD+94, LHD+95].

Locality

[MJB15, ZLP17, BHR08, CMZ99, HJYC10, RKB+13, WRSY16]. Locality-Aware

[MJB15, HJYC10]. localization [HC08].

Locally [BHS+02]. Locating [PNV01].

Lock [ALB+18]. Lockheart [Str94].

Locking [klL11, CAWL17, PGK+10].

Logging [BCH+03, LBB+19]. Logic

[KI17, BJ95, KMC96, KMC97, POL99]. logical [TPLY18]. LogP [CKP+93].

London [EJL92, Ano03h, Ano04f]. long [dFdOSR+19]. Look [HCZ16].

lookup [BJ13]. Loop

[DMB16, SHM+10, TJFP12, SHLM14, WYLC12, WLYC12, YST08, YWC11].

Loops

[AHD12, CLA+19, DSCL05, LOHA01].

Loosely [Ada97].

Lop

[RGDM16, RGDM15]. Louisiana

[USE95, IEE96b]. Love [Dan12]. Love-Hate
Low [BGG+15, GGS99, Jon96, MC17, NE01, RLL01, Str94, GK97, KBHA94, LZHY19, TBD96, ZRQA11].

Low-Bandwidth [NE01]. Low-Cost [RLL01, GK97]. Low-Density [MC17].

Low-Level [BGG+15, GGS99]. Low-life [Str94]. Low-overhead [ZRQA11].

LPVM [ZG98]. LSS [BCAD06, BADC07]. LU [AZ95, BRS92, BB18, LC97b]. Lugano [GT94]. Luminous [KNT02].

Lumsdaine [Ano99c, Ano99d]. Lusk [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

Lustre [DL10], Luther [ACM99], Lyngby [DW94, DMW96, Was96].

Lyon [BFMR96, FR95].

M [PBC+01]. M-SPH [PBC+01]. M6A [EM00a]. M6B [EM00b]. MA
[Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b].

Machine [AS92, AGIS94, BJ93, BS93, CHD07, D+91, FE17, Fis01, GBD+94, Gre94, KNT02, KKD06, LKD08, MTWD06, Nov95, NMC95, Pat93, Per96, RWD09, TY14, VS00, Web94, AD98, AL92, Ano95b, BR91, BG+91a, BPC94, Bir94, BDSL96, BDW97, CARB10, CLM+95, Cav93, Cha96, Che99, CD01, CC00b, DM93, DKK05, DLM99, DPK00, DLO03, FM90, KWF18, KMC97, Kra02, LG93, MN91, MRH+96, NB96, Sch04, SK92, SCC96, SL00, TVCB18, TW12, TWFO09, WO09, WTF014, ARL+94, BG94b, JPP95, KKD05, LK10, QRG95, SSSS96]. machine-learning [TWFO09]. machine-learning-based [TWFO14]. Machines [BP99, BZ97, BCC+00a, BTO1b, DR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCSL12, ZWJK05, BCA+06, BSC99, BCC+00b, BBW19, BB95b, DSS+94, DCH02, GKFZ12, Hol95, KN95, PRS16, SL94b, TSY99, TSY00, WPL95, ZWL13, Gei01, YC98].

made [MJPB16]. MAFFT [ZLS+15].

Magnetic [Y+93, PKE+10]. Magnetism [Y+93]. magnetized [CFF19].

Magnetohydrodynamic [KT02, WWFT11]. Magnetostatic [BB93].

MagPie [KHB+99], Main [Ton96].

Maintaining [PKB01]. maintenance [ZR04, ZR01]. major [WLK+18]. makes [ZG95b, Str94]. Malleable
[EDSV09, SMC05]. Mambo [WZWS08].

Man [IE95a]. Manageable [PKB01].

Managed [KCR+17], LB16, SYR+09].

Management [AJ97, ALB+18, AUR01, BGR97b, BGL00, EK97, FDL97a, FDL97b, GJR09, PPT96a, PS00a, SIS17, STY99, THS+15, ARS89, DZ96, DF17, DLF96, GJM18, GL95a, JCP15, LF+93a, PPT96b, PPT96c, YWT15]. manager [Sep93].

managers [FLD96]. Managing [FLD98, FGK97, Liv00, NPS12, Obe96].

Mancheck [Ano95b, NMC95].

Manipulation [KKV01].

Manuel [CSW12, NSLV16, Rev01].

Many [DT17, LHZ17, LLCD15, RB01, TCM18, YTH+12, ACMZ11, BBC+19, VDL+15, dCZ06]. Many-Core [LHZ17, TCM18, YTH+12, LLCD15, ACMZ11, BBC+19, KSG13, MBBD13, dCZ06]. Many-Cores [DT17].

Manycore
[MJB15, DJJ+19, KGB+09]. Map
[JPT14, FFM11, FJBB+00, MSCW95].

MAPA [JJPL17]. Maple
[Pet00a, Pet00b, Pet01]. Mapping
[BB18, DDP+19, GAMR00, HC06, NTR16, RRL01, TSZ94, WO09, ASAK19, DDL95, EO15, GF18, HC08, TWFO09, WCS+13, WTF014, WK08a, WK08c, dCZ06, WK08b]. MapReduce
[EADT19, JS13, MMM13, PD11, WZH16].

Maps [BM97, KRC17].

March [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nao95].

March
[ACM95a, ACM06a, Ano89, Ano93c, Cal94, DKM+92, IEE93f, IEE94d, IEE95b, IEE97a].

Marine [LLRS02].

Market [LF+93a].

Markov [BBH12, FK01].

Marlloz [GA96].
marshaling [CFKL00]. MARTE [RGD13]. Martin [ACM99]. Maryland
[IEE96c, SPH95]. MASA
d[dFdOSR+19, SMM+16]. MASA-OpenCL
d[dFdOSR+19]. MasPar [ARL+94].
Massachusetts [IEE94e]. masses [Cl98].
Massive [Sie92a, MALM95, OLG+16].
Massively
[BJ93, BHS18, DSZ94, IEE94a, IEE96c, KHBS19, KmWH10, Oed93, Sie92b, Sta95b, CS96, HVSC11, KHBS19, KmWH10, Oed93, Sie92b, Sta95b, CS96, HVSC11, Kn17, LCL+12, MYB16, RBB17, SRK+12, DSZ94].
massively-parallel [MYB16]. Master
[EF98, EML00, LTR00, HP05].
master-slave [HP05].
Master-Workerproblem [EF98].
Master/Slave [LTR00]. Master/Worker
[EML00]. Matching [GCC+07, KMM+15, KS+01, MM+02, OWSA95, WH94, FLP18, MM+03, Q+95, YPZC95, YZPC95].
Materials [Y+93, P+91, SSP+94].
Mathematical
[VZ+19, WH96].
Mathematics
[Whi04, ANS95]. MATLAB
[BR94, Whi94, Ano97, Bra97, ZZG+14].
MATLAB-MPI [BKGS02]. MatlabMPI
[KA04, Kep05]. MATOG [WG17].
matrices
[DR18, GG99, GSMK17, Kan12].
Matrix
[AKL16, BSvdG91, Cha96, DS13, F+08, GK10, KM+09, PMvdG+13, TDQL01, TD98, ART17, CMH99, ER12, FAF16, FJZ+14, KBP16, PKD95, TP15, X+13].
Matrix-Free
[KK19]. Matrix-Vector
[AKL16, DS13, F+08, X+13].
Maui
[ACM97a]. Max [An94c].
Max-Planck-Gesellschaft
[An94c].
Maximal
[BDA+18]. maximisation
[CCU95]. maximum
[HKOO11].
Maxwell
[An98].
May
[ACM96b, ACM96b, AGH+95, BR95a, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95e, IEE95d, IEE95j, PR94b, SPE95, SW91, SS96, Van95].
Maydan
[Stp02]. MBCF
[MMH99]. MCA
[W+13].
McDonald
[Stp02]. MCHF
[S+96].
McLean
[IEE94a, Sie91a, Sie92b].
MCNP
[MW93, McK94, WH96]. MD
[IEE02, TJP+01]. mdb
[DFK94a]. MDE
[RGD13]. Means
[TK16]. Measurement
[BFBW01, BFIM99, KRS99, Shi94, TMC99].
Measurements
[HV+A+00, EFR+05, GL99].
MECCA
[AC17]. mechanics
[B+95, MGG05, SL95].
Mechanism
[CGD01, KSV+01, M+93, TSS+00b, Tr+02a, WH+13, SRP17, ZR+11, ZA14].
Mechanisms
[W+01a, CGBS+13, M+93].
Mechatronic
[KDL+95b, KDL+95a].
mEDA
[VAT95]. mEDA-2
[VAT95].
media
[ESB16, MAI+01]. Medicine
[GA96]. MEDINA
[AC17]. medium
[WLNL06]. medium-scale
[WLNL06].
Meeting
[AD98, Ano93f, CHD97, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, GS96, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RW90, TBD12, BW97, JB96, SPH95, Ano92, CHD99].
megabase
[SDM10]. Meiko
[FST98a, FST98b, Jon96].
Melia
[WZH16]. Mellon
[IEE94d].
Membership
[MDM17]. membrane
[FSN99].
Memory
[Att96, BEM02, BW+12, Bri10, B+07, CR01b, CLOL18, CLA+19, CSW97, CC99, DM98, DMB16, DR97, DHHW92, DHHW93a, EADT19, FB94, GCBM97, GB96, GSN+01, GSHL02, GLRS01, HC10, HDB+12, HDT+15, HT10, JJP+17, KB98, KS13, KSHS01, LSB15, Luo99, MB12, MRB17, MBE03, MMH98, MCD+08, MI+02, NPP+00d, PBK00, POK96, PMvdG+13, Ros13, STY+99, ST02b, SW91, Thr99, VS00, VT97, WJA+19, ZL17, ARS89, ABC95a, ABC95b, ADM05, BCA+06, BVML12, BCS99, BMG07, CBPF02, Cha05, CJvdP08, Cha96, CBH94, CRM14, CC00b, DF17, DL94, DBVF01, DSH96, DHHW93b, DPZ97, EV01, FSV14, FHB+13, GCN+10, GBH14, GBH18, GKK09, GL96, GL97c, GP95, HSB+13, GM12, HDB+13, HK09, JC17, JJE95, KJ+93, KOC6, LKL96, MCO4, NAJ99, NAAL01, OLG+16, PK05].
memory [PS00b, RS19, RGDM15, SSH08, SHH101, SL94b, SBG+12, SYR+09, SFL+94, SSC96, SPL99, SD16, TSY99, TSY00, THDS19, Uhl95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WK08c, WBSC17, WMRR17, WRM19, WY95, LBD+96, GKH97, SG05]. Memory-access-aware [CLA+19]. Memory-Based [MMH98]. Memory-Divergent [WJA+19]. Memory-Ecient [MRB17]. memory-level [HK09]. Memory/Message [ST02b]. MemTo [GSN+01]. Menon [Stp02]. Mesh [DDP+19, HAA+11, MRB17, Ran05, BAS13, CLSP07, Cou93, GBR15, IDS16]. mesh-particle [BAS13]. Meshes [MRB17, TPD15]. Message [Ano93d, AKL99, Att96, BZ97, BCC+03, BBG+99, BBG+01, BDH+97, BGR97b, BFM97, CHD07, Cer99, CGZQ13, GCS94, Cot97, Cot98, CTK00, CDND11, DFKS01, DHHW92, DHHW93a, DHHW93b, DL00, FK96, Fos98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL5c, GLT00b, Hen94, KR0D10, KS97, KSV01, KKD03, KKD04, LKD08, Luo99, MP98, MP95, MS98, MBES94, MG97, MTW06, MSS97, NW98, PBBK, P0k06, RC97, RRBL01, RRGL01, RWD09, RGF+00, SAL+17, ST+02b, TBB96, W95, W97, YHL01, ZWL13, ZG95a, ZG96, ZLL+12, Ada08, AD98, AAC+05, Ano93c, Ano94d, Ano95c, Ano00a, Ano00b, BBG+14, BL97, BvdSvD95, Bjo95, Bru95, BVD97, BFM99, CGJ+00, CDZ+98, CR99, CDO1, CG99a, DK93, DM93, DKO5, DS96b, DHHW93b, DOSW96, DLM99, DKO00, DLO03, FK94, GL92]. message [HP05, HPY+93, Hem96, KJA+93, Kra02, LR06a, LBD+96, WL94, LCY96, LLM+15, LBB+19, LCC97b, NS91, PS07, PK98, Pie94, PR94a, PS00b, Sei99, SW95, SDV+95, SZ99, SSC95, Sth94, TSC94, VM95, Wal94a, Wal94b, ZKRA14, ZA14, AMHC11, BC14, BBH+06, BRU05, BDH+95, Cot04, DKD08, DIn96, FKS96, FGT96, FGG+98, GGHL+96, GLDS96, GLT99, GLS99, GLT00a, GL04, Han98, IBC+10, KTF03, KK05, LK10, MTS94, MSL96, PS01b, RRFH96, SWHP05, SGL95, SWL+01, TGT05, TDB00, W059, YGH+14]. Message-Passing [Ano93d, Att96, Cot97, Cot98, DHHW92, DDL00, GLS94, GLS96, GLT00b, MP98, PBK00, Pok96, RRBL01, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvdSvD95, CDZ+98, GL92, Hen96, KJA+93, LR06a, LBD+96, WL94, LMM+15, PS00b, SSC95, Sth94, DIn96, GGHL+96, Han98, RRFH96, SGL95, W95, W97, YGH+14]. Message-Passing-Interface [W95]. MessagePassing [Sei99]. Messages [KB05, SKH96]. Messaging [HEH98, KC94]. Meta [BCLN97, FBD01a, FGRD01]. Meta-Applications [BCLN97]. Meta-computing [FBD01a, FGRD01]. Metacomputer [OS97]. Metacomputing [Fin00, MSF00, MS99b, FBVD02]. Metagenomics [LSM+18]. MetaHaskell [Ma12]. metaheuristics [ZSK15]. metal [JLS+14]. MetaMP [OW92]. metaprogramming [Ma12]. meteorological [RSBT95]. Meteorology [HK93, HK95]. Method [ACMR14, BP99, BJS97, CGU12, DAD19, FCL07, GS97, HC06, KMM16, OMK09, Riz17, TSS00a, ARY17, BBDH14, BCM+16, DSO11, ETF94, GFS+18, HE13, HMKV94, HJBB14, HPLT99, JMS14, KS15a, KD12, LCL+12, MMA19, Nak05b, NS16, PTT94, Pri14, Qu95, SHHC18, TKP15, YBLZ03, dLAMCF12, AAB+17, OTK15]. Methodologies [Sun94b]. Methodology [MOL05, WTTH17, HPR+95, LM94, WMP14]. Methods [BCMR00, CMK00, DFN12, EGH+14, FGT97, GFPG12, KLR+15, kLL11, NA01, Sch01, SM07, TBD011, WH04, ZB97, CGS07, DF17, D+95, Gra09, Has95, LSR95, MM11, Nak05a,
PGK+10, R+92, SL94a, SGS95. Metric [SNN+19]. Metrics [DV02, PARB14].
Metropolis [HJB14]. Mexico [IEE91, Sie94]. MGCG [TSS00a]. MGF [GTM+08]. MIAOW [BBG+15]. MIC [BB18, CCBPGA15]. MICE [BK96]. Micro [Ano03, BWV+12, SGH12, YSWY14]. Micro-applications [SGH12]. Micro-Benchmark [BWV+12, YSWY14]. microbenchmark [BO01]. Microcoded [PWP+16]. microtask [OIS+06]. MIDAS [BF97]. Middleware [AUR01, CLL03, CC10, RPS19]. Middlewares [DPP01]. Midpoint [JMS14]. Milan [HS95a]. million [LHLK10]. Millions [BBG+11]. MIMD [BvdB94, BB93, BCL00, Uhl95a, WST95]. MIMD/MM [BB93]. MiMPI [GCC99]. mini [SCJH19]. mini-application [SCJH19]. MINIME [DS16]. MINIME-GPU [DS16]. minimization [POL99]. Minimum [KA95, Wu99, NCKB12]. mining [MA09]. minisweep [SCJH19]. Mississippi [IEE94f, IEE95]. Mitigating [OdSSP12]. Mitigation [BBH...13]. Mitsubishi [Ano03]. mittels [Wil94]. Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01]. Mixed-Mode [BEG+10]. MinModel [BEG+10, MM\textsubscript{par2.0} [OKM12]. MN [Ano94h]. Mob [STV97]. Mobile [ITT02]. Mode [BGK08, Bri02, BEG+10, LRT07, HHS19, SB01, YX95]. Model [AP96, BGG+02, BD07, CKnWH16, Cha02, CZG+08, Dar01, DFA+09, FSXZ14, FBSN01, GLB00, GLRS01, HLP11, KD12, LWZ18, LGG16, LA02, LRQ01, MKW11, NSLV16, NO02b, Rau05, RSV+05, RRRL01, SPM+10, SB95, SFD+18, THN00, VT97, Wal01a, YCA18, AL93, BSC99, Bir94, GB94b, BD03, CMV+94, CL93, CKP+93, ED94, GKDZ12, GCM+10, GKlyCy97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, KOS+95a, KSL+12, KLV15, LR06b, LA06, LLH+14, Mar05, MDSAS+18, MSZG17, MGC+15, NO02a, Nak05a, PAd+17, RAS16, RGDM16, RCG95, Sch93, SH94, Sch99, SMAC08, Str94, VBLvdG08, Vis95, Wan02, WC15, WLK+18, WYLC12, YX95, TA14]. Model-Based [AP96, LGG16]. Modeling [ACM96a, ATM01, BS07, CSC96, CDM93, FFST98a, GAM+02, MOL05, NM95, RDGM15, Röt09, SEF+16, TD09, VFD02, WJA+19, WMC+18, XH96, AC07, BDP+10, Bi95, BB95b, JL18, KM10, KME09, KEGM10, LZYH19, MS99a, WT13, XXL13, YMYI11]. Modelling [FFST98b, GC05, Ham95a, KDL+18, ML90, NKCC17]. Models [AKK+94, BS93, BZ97, CMM93, FST98a, GAM+02, MOL05, NM95, RDGM15, Röt09, SEF+16, TD99, VFD02, WJA+19, WMC+18, XH96, AC07, BDP+10, Bi95, BB95b, JL18, KM10, KME09, KEGM10, LZYH19, MS99a, WT13, XXL13, YMYI11]. moderating [Uhl95a]. Modern [AHHP17, DARG13, KDT+12, LNK+15, SM07, HH14, PMZM16]. modes [WZWS08]. Modified [Riz17, GF95, KD12]. Modular [CT02, HPP02, FWS+17, HLM+17]. modulator [WWZ+96]. modulator/DFB [WWZ+96]. Module [Ano98]. Modules [AKK+94, DS96b]. modules [DS96b]. Molecular [ABG+96, BST+13, BCGL97, BL95, BS07, DR97, DI02, KBM97, LAFA15, MH01, SA93, YWCF15, ZB94].
BvdSvD95, BBK^+94, BMPZ94b, BMPZ94a, CC00b, DCD^+14, Dab19, FHS099, HHS18, JAT97, JMS14, KFA96, KRG13, LSVW08, OKM12, PARB14, SL95, VGP^+19, ZWL13. molecule [ART17].

Monitor [KRS99, Whi94].

MONC [BBW19]. Monitor [SGL^+00].

Monitoring [AH00, BCLN97, Beg93b, BFM96, BFMT96b, CD98, DBK^+09, GSN^+01, IADB19, LY93, LW97, MCG97, MV95, SGL^+00, UP01, Wis98, Wis10, Beg92, Beg93c, Beg93a, BB94, BS96a, BFMT96a, LC07].

Monodomain [ORA12].

Monte [HJBB14, RP95, WH96, ADRCT98, AK99, DAK98, NSLV16, RR00, SK00, SKM15, ZZ04].

Monte [Ano89, Gatl95, USE94].

Montpellier [DE91].

Montreal [Lev95].

MOPS [GJN97].

Morehouse [AGH^+95].

Morgan [SD13].

Morphable [ZL17].

Morton [LZH18].

MOSIX [BBGL96].

motif [FMS15].

movements [MV17].

movement [HAA^+11, LSG12].

MPEG [GKL95, KFA96].

MPEG-4 [NU05].

MPI [ARYT17, AD98, Ano95c, Ano99a, Ano99c, Ano99b, Ano99d, An00a, Ano06b, BDW97, CHD07, CHD09, CD01, CDN11, DKD05, DLM99, DPK00, DLO03, GBR07, GEW98, IE961, JMS14, KGRD10, Koa02, KKD04, LKD08, MTWD06, Nag05, Per97, PS01b, RWD09, RLVRGP12, ST02a, TD080, TDB012, Vr04, WS99, YM97, ST02b, ACgT02, Ada97, Ada98, AC07, ACH^+11, APJ^+16, AASB08, ART17, ATM01, ACGR97, AK99, ABF^+17, AHP01, ACMR11, ALW^+15, ALB^+18, ADL03a, ADL03b, Anda98, FH98, AVA^+16, Ano93e, Ano94d, Ano98, Ano01a, Ano03, AKE01, AKL99, AJF16, AIM97, ADR^+05, AHHP17, Bad16, BV99, BCMR00, Bak98, BF98, BCfK99, BBG^+10, BCG^+10, BBG^+11, BGBP01, BBS99, BBG^+14, BA06, BCAD06, BADC07, BGR97a, BKS02, Ben01, BW12, BHV12, BKH^+13, BIL99, BIC05].

MPI [BP98, BF01, BCR99, BDD14, BK96, BkDHS01, Bha98, BDA94, BHL5^+95, BHS^+02, Bis04, BBH...13a, BBH^+13b, BB^+13, BIC^+10, BR04, BCM^+16, BCTR^+17, BM00, Boo01, BBC^+02, BCH^+03, BHK^+06, BBC^+99, BBC^+00, BS96b, BMR02, Bri02, BRM03, Bri10, BMP03, BS07, BBW9, BDL98, Br95, BDH^+95, BDH^+97, Brl12, BLW98, BFV01, BGE^+10, BCH^+08, BWV^+12, CGC^+02, CSW12, CGC^+11, CwCW^+11, CRE99, CE00, CRE01, CC10, CP98, CAHT17, CGJ^+00, CFSK00, CSS95, CGBS^+15, CGG10, CB00, CDMS15, CGS15, CBL10, Cha02, CEGS07, CD09, CCA00, CFDL01, CL03, CQZ13, CC17, CSAGR98, CNC10, CC00a, CGH94, CSSM97, CFMR95, CDD^+96, Coo95a, Coo95b, CFF^+96, CRMG14, CRM14, CRGM16, CC99, CT02, CD96, CG99b, DPO5, DPD08, DMK19, Dan12, DSG17, DZ96, DZ98a, DR18, DW02, DLM^+17].

MPI [DZ98b, Dem96, DPP01, DJJ^+19, DLB07, DSW96, DS96a, DRUE12, DKD07, DI02, DL10, DCPJ12, DCPJ14, DAK98, DGG^+12, DGB^+14, DBG^+16, HD02a, DXB96, DOSW95, DCH02, DK09, EZB16, EGH99, EDSV09, ES11, FH97, FD96, FDG97a, FDG97b, FL98, FD00, FBD01a, FBD01b, FGRD01, FBVD02, FD02a, FD02b, FD04, FCLG07, FB95, FB96, FDI98, FP97, FA18, FF99, FSN99, FTB98, FFP03, FLPG18, FMS15, FH01, FHK01, FSC^+11, FSC^+11, Fin97, Fin94, Fin95, FWNK96, Fin00, FLB^+05, FC05, FST98a, FST98b, FJ^+17, FKK^+96b, FKK96a, FG97, Fos98, FHPS04, HPS94b, HPS^+94, HPS^+95, FRA95, FWR^+95, FKL08, FBSN01, FL98, GBR97, GFD03, GFD05, GDC15, GV^+18, GGC99, GGC09, GA01, GBR15, GC98, GCC99, GCC12, GCG15^+96, Gei00, ROC7, GGL^+08, GJR09, GS97, GBH14, GBH18].

MPI [GGS99, GR95, GLB00, GR^+19, Gle93, ...
XH96, XLW+09, YM97, YL09, YHL11, YWC11, YCL14, YBMCB14, YPAE09, YTH+12, YSP+05, Zah12, ZZ04, ZLZ+11, ZWZ05, ZLP17, ZJDW18, ZLL+12, ZZ95, ZSNH01, ZKRA14, ZA14, bT01a, dlAMCFN12, KH96, Mar06, YM97, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d. MPI-1 [Sohl+98]. MPI-2 [Ano99c, Ano99d, Ano00a, AKL99, BCAD06, BHS+02, CwCW+11, CD96, DPSD08, GFD03, GGHL+96, GT01, GHHL+98, GLT99, GLT00b, GLT00a, HGMW12, LSK04, MS02a, MK04, PS00a, SS99, SSL97, TRH00, bT01a, BADC07]. MPI-3 [GBH14, GBH18, GLT12, HDF+15]. MPI-ACC [APJ+16]. MPI-Based [Ada97, FSC+11, RDMB99, SM03, Ada98, AVA+16, GKS+11, Gra97, LRW01, OLG+16, OP98, SZ11, TMPJ01]. MPI-basierte [Gra97]. MPI-benchmark [Reu01]. MPI-CHECK [LCC]. MPI-CUDA [DR18, dlAMCFN12]. MPI-Delphi [ACGdT02]. MPI-EL T2 [FB97]. MPI-FT [FLD98]. MPI-I/O [IRU01, Sou01]. MPI-IO [BCC+10, CGC+02, CFF+96, DL10, FWK06, FSL98, LRT07, LGG16, PSK08, PTH+01a, SW12, Sto98, TGL02, ZZ04]. MPI-IO/GPFS [PTH+01a]. MPI-LAPI [BGBP01]. MPI-Level [LVP04]. MPI-like [CG+00]. MPI-only [LS10]. MPI-OpenCL [JNL+15]. MPI-OpenMP [MS02b]. MPI-parallelized [KMG99]. MPI-Performance-Aware-Reallocation [GFIS+18]. MPI-StarT [Has98]. MPI-The [Ano99c, Ano99d]. MPI-thread [IDS16]. MPI-Umgebung [GBR97]. MPI/CUDA [PHJM11]. MPI/GAMMA [CC00a]. MPI/GPU [EZBA16]. MPI/GPU-code [EZBA16]. MPI/MBCF [MMH99]. MPI/OpenACC [OGM+16]. MPI/OpenMP [ADR+05, GAVRRL17, HKN+01, JLG05, JR10, KS15a, KN17, KLR+15, KRG13, LLRS02, MMDDA19, PZ12, SB01, WT11, WT12, WT13]. MPI/PVM [ES11]. MPI/RT [SKD+04]. MPI/RT-1.1 [SKD+04]. MPI/SMPSs [MLAV10]. MPI/MPICH [Hus98]. MPI/MPICH-CM [SBG+02]. MPI/MPICH-G2 [Co04, KTF03, OPM06]. MPI/MPICH-GQ [RFG+00]. MPI/MPICH-V [BBC+02, BHK+06]. MPI/MPICH-V2 [BCH+03]. MPI/PVM [BMG07, Gro02b, ZSG12]. MPI/Performance-Aware-Reallocation [GFIS+18]. MPI/StarT [Has98]. MPI-The [Ano99c, Ano99d]. MPI-thread [IDS16]. MPI-Umgebung [GBR97]. MPI/CUDA [PHJM11]. MPI/GAMMA [CC00a]. MPI/GPU [EZBA16]. MPI/GPU-code [EZBA16]. MPI/MBCF [MMH99]. MPI/OpenACC [OGM+16]. MPI/OpenMP [ADR+05, GAVRRL17, HKN+01, JLG05, JR10, KS15a, KN17, KLR+15, KRG13, LLRS02, MMDDA19, PZ12, SB01, WT11, WT12, WT13]. MPI/PVM [ES11]. MPI/RT [SKD+04]. MPI/RT-1.1 [SKD+04]. MPI/SMPSs [MLAV10]. MPI/MPICH [Hus98]. MPI/MPICH-CM [SBG+02]. MPI/MPICH-G2 [Co04, KTF03, OPM06]. MPI/MPICH-GQ [RFG+00]. MPI/MPICH-V [BBC+02, BHK+06]. MPI/MPICH-V2 [BCH+03]. MPI/PVM [BMG07, Gro02b, ZSG12]. MPI/Performance-Aware-Reallocation [GFIS+18]. MPI/StarT [Has98]. MPI-The [Ano99c, Ano99d]. MPI-thread [IDS16]. MPI-Umgebung [GBR97]. MPI/CUDA [PHJM11]. MPI/GAMMA [CC00a]. MPI/GPU [EZBA16]. MPI/GPU-code [EZBA16]. MPI/MBCF [MMH99]. MPI/OpenACC [OGM+16]. MPI/OpenMP [ADR+05, GAVRRL17, HKN+01, JLG05, JR10, KS15a, KN17, KLR+15, KRG13, LLRS02, MMDDA19, PZ12, SB01, WT11, WT12, WT13]. MPI/PVM [ES11]. MPI/RT [SKD+04]. MPI/RT-1.1 [SKD+04]. MPI/SMPSs [MLAV10]. MPI/MPICH [Hus98]. MPI/MPICH-CM [SBG+02]. MPI/MPICH-G2 [Co04, KTF03, OPM06]. MPI/MPICH-GQ [RFG+00]. MPI/MPICH-V [BBC+02, BHK+06]. MPI/MPICH-V2 [BCH+03]. MPI/PVM [BMG07, Gro02b, ZSG12]. MPI/Performance-Aware-Reallocation [GFIS+18]. MPI/StarT [Has98]. MPI-The [Ano99c, Ano99d]. MPI-thread [IDS16]. MPI-Umgebung [GBR97]. MPI/CUDA [PHJM11]. MPI/GAMMA [CC00a]. MPI/GPU [EZBA16]. MPI/GPU-code [EZBA16]. MPI/MBCF [MMH99].
multithread [GCC99, SWYC94, ZG98].
multithread-safe [GCC99].
Multithreaded [ALB+18, AZG17, DGC+12, PS01b, RBA05, TGBS05, WJ12, DSG17, TMC09, TG09, WCC+07].
Multithreading [BBG+10, ZWL13].
Munich [BDLS96, GH94], Mushy [Wit16].
MUST [HPS+12, HPS+13], mutual [She95].
MVAPICH [RMS+18]. MVICH [OF00]. Myocardial [Pat93]. Myrinet [GBH99, CDP99, JSH+05, LCW+03, PTW99, T0u00].
n [Pan95a, ADB94, RTRG+07], N-body [ADB94, RTRG+07]. n-cube [Pan95a].
NAG [DHP97, For95, McD96]. NAMD [PZKK02]. Naming [M00]. Nancy [BR95a]. NanosCompiler [GAM+00].
Narrow [YSS+17]. NAS [CRE99, CE00, CCF+94, CDD+96, KS96, KAC02, MMH99, WAS95b, WT11, WT12].
NASA [MAB05], NASLU [PHIJM11]. National [Str94, BRST94]. Native [SZ99].
NATO [KG93, TG94]. NATUG [Ara95]. NATUG-7 [Ara95]. nature [DSM94].
Nearest-Neighbor [DI02]. Nebelung [MFG+08]. NEC [GPL+96, HRZ97, TRH00]. Necessary [NPP+00b]. Needed [Gei00]. Neighbor [DI02]. neighborhood [HS12]. Nek5000 [MG+S+15, OGM+19]. Nekbone [GML+16].
Nemesis [BMG07]. Nesbet [BL95].
Nested [AHD12, BR12, BS01, DLR99, DSC10, GLP+00, HA10, MMS07, TSSY00, ZLP17, aMST07, AGJM06, BS05, HSE+17, THH+05, YZ14, JLG05]. Nesting [BBC+99]. NesTs [DMB16]. Net [CNM11, NE98, NE01, PES99].
Net-Console [PES99]. Net-dbx [NE98, NE01]. NetCDF [LkLC+03].
Netherlands [DSZ94, Ano93f, Van95]. Nets [Sou01, Str94]. Network [ACM98a, AR01, BDG+91b, BDG+93a, BCKP00, CZ95a, CDH95, CSC96, DM95b, DM95a, DBA97, DFMD94, DGM+93, DGM93, EK97, Fer98b, Fis01, GS91b, GS92, Gie93a, GSxx, Hus98, IIT02, LB98, LH95, MCMC95, MANR09, OF00, OWAS95, TW01, VZT+19, AL92, AH95, AVA+16, BDG+92a, BDG+92c, BDG+94, BSvdG91, BJ95, Bon96, BBK+94, BID95, BF96, Co94, CLASPDP99, Fer98a, GS91a, Gie93b, GKH7, HZ12, HBT95, HK94, HH95, IM95, KMC96, KMC97, KA95, LH98, LHD+94, LHD+95, MK94, MRH+96, POL99, PR94c, PTW99, Rag96, SEC15, SPK+12, TSS98, YS93, ZPLS96, GKH97].
Network-Balancing [DBA97].
Network-Based [BDG+91b, GS92, BDG+92a, IM95].
Network-Specific [DM95b, DM95a]. network-topology-aware [SPK+12].
Networked [FGKT97, GBD+94, Nov95, NMC95, Per96, Ano95b, BMPZ94b, BMS94a, BMPZ94a, GM94, HS93, RRG+99].
Networking [ACM97b, ACM98b, ACM00, ACM01, ACM04, Hol12, LCK11, CXB+12, GH94, HS95a, ITT99, LCHS96, MZK93].
Networks [CSV12, CDM93, DDP+19, DDPR97, GFV99, GDM18, GLH97, HMK94, HLCZ00, HIP02, LHHM96, L95, LH98, MBES94, QMR900, SG15, TQDL01, Tou00, VLO+08, VBB18, WAS95b, WMC+18, BK11, BR92, CZ95b, CFPS95, DG95, DZ98a, Jou94, LR06a, LTL94, LHD+94, LHD+95, NFG+10, Pan95a, TDB00, ZGN94]. Neural [AGH+95, CAM12, CSV12, QMR900, Str94, GkLyC97, Rag96].
Neurocomputing [PSZEO].
nutrino [KHBS19]. Neutron [LD01, RS97, VR500, WR01, MM92].
Nevada [Ano94e]. never [Har94].
Neville [ACMZR11]. Newport [IEE93b]. News [Ano97, An03, Bra97, ESB13, KS15a, Str94].
Newton [ZB97]. Next
[GBK97, Gei98, Gei01, VPS17, VZT+19, SP11, ZKRA14, vdP17]. NExt-Generation
[VPS17, ZKRA14]. NFS [CGC+02].
NHPDCC [BRST94]. NIC [MFPP03].
NIC-based [MFPP03]. Nice [ACM90].
nineteenth [IEE95i]. Ninth [ERS96, R+92].
NIST [SNMP10]. Nitzberg
[Ano99c, Ano99d]. NLP [VB99].
NM [IEE95d, Old02]. NoC
[HWX+13]. NoC-based
[HWX+13]. Node
[HRZ97, KFL05, FKL08, GM13, JR10, LFL11, RS19, ZAh12]. Nodes
[BBC+02, BCH+03, DBK+16, JLN+15, MKC+12, VGP+19]. Noise [SAL+17]. Non
[BGC+10, CCSM97, Gua16, HTA08, MW98, Man01, WLN03, WTR03, FH98, BCH+08, OKW95, OMK09, TVC18, WLN06].
Non-blocking [HTA08, FH98, BCH+08]. Non-Contiguous
[WTR03].
Non-Data-Communication [BGC+10].
non-dedicated [OMK09]. Non-linear [MW98, OKW95].
Non-Local [CCSM97]. Non-persistent
[Man01]. non-singleton [TVC18].
Non-stop [Gua16]. nonaligned [AGIS94].
nonblocking [DJJ+19]. Noncontiguous
[JDB+14, TGI02]. Nondeterminacy
[DKF93]. nondeterminism [Obe96].
Nondeterministic [KSV01, CRD99].
Nonlinear
[Nak03, Was95a, ZB97, CEGS07, Jon94].
nonnegative [KBF+16]. nonsymmetric
d[H94]. Nordic [FF95]. Norfolk [Sin93].
normalized [Gra09]. North [CJN95].
Note [BR02, SGHL01]. Notre [IEE96].
novel [DDYM99, GKK09, MLVS16, SML12].
November [ACM96e, ACM97b, ACM98b, ACM99, ACM00, ACM01, ACM03, ACM04, ACM05, Ano94e, ACNR94, BDW97, GN95, HK95, Hol12, IEE91, IEE93e, IEE94b, IEE94h, IEE95, LCK11, USE94]. novice
[CGG10]. Novices [Stp02]. NOWs
[SLGZ99]. NP [YZ14]. NPACI [PKB01].
NPB [EGC02]. NR [Gua16]. NR-MPI
[Gua16]. NRC [LD01]. NSGA
[GAVRL17]. NSW [GKB95]. NT
[Ano01a, Bak98, BF98, CLP+99, FD97, GGGG99, PS00a, SFG98, TAH+01].
NTRUEncrypt [KY10]. NTUG [FF95]. Nuclear
[BP94, GA96]. nuclei [NS16].
NUMA [BCC+00a, BCC+00b, BFG+10, CAW17, GTS+15, MKC+12, MBK05, MBM+12, SNL+12, TSCM12, ZLP17].
NumaGiC [GTS+15]. Number [BP99, HT08, WHDB05, CCS19, CBYG18, Lan09].
Numeric [MLGW18]. Numerical
[ACMR14, BS93, BCPK97, CSW97, DHP97, DHP97, FK01, For95, FB94, HH14, Hol95, Hus98, IFI95, KM10, Kha13, MDrD96, NHT02, PKY95, TDBE11, YKL17, AL92, B197, BCM+16, CSW99, FP92, GS94, JK10, KB13, Nho89, NHT06, Pri14, SMAC08, SU96].
Numerically [BKML95, FLL99]. nur
[BL94]. Nutzung [GEW98]. NVIDIA
[KME09, Seg10, VLMPS+18, XXL13, KKM15, Lan09]. NVRAM [MC18]. NX
[Pie94, PR94a]. NY
[IEE96f, PB95+95, Ree96, SS96].
O [Bos96, CFF+96, DRUE12, IRU01, IBC+10, LkLC+03, kLC+06, MV17, MC18, MGC12, MG15, PGLO8, PLR02, RK01, SBQZ14, Tha98, Tsu97, WSN99, ZJDW18].
O2000 [CML04]. O2WebCL [CHH15].
Oberammergau [BP94]. Object
[Ada97, BCFF99, CFKL01, FMSG17, MS96, PD98, SWL+01, YHGL01, XY95, Ada98, BR91, BM12, KLM96, OKM12, RFH+95, SL94b, TDG13]. object-based
[LKL96]. Object-Oriented
[BCFF99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. Objects
[KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZP99]. Oblivious
[HZH17, LHZH18, UALK17, HSP+13]. observations [ZKRA14]. observed
[CAHT17]. Occam [ACR94, GN95, MC94].
EM94, SHH94a, SHH94b. Ocean [BS93, GAM+02, Bic95, Mal01, Nes10, Sch99, Wal00]. Oceans [IEE94e, IEE94c]. OCController [FAFD15], OCM [BoFBW00]. OCM-Based [BoFBW00].

October [Ano93f, Ano94e, Ano94i, Ara95, BPG94, Bha93, BDL96, CHD07, CGB+10, DSN94, DLO03, DE91, FK95, GPK+93, IEE94e, IEE95a, IEE95b, IEE95j, IEE96b, IEE96c, IF95, JB96, Kra02, Old02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UFW95, Vai93]. octree [JL18].

octree-based [JL18]. ODE [Ano97, Bra97].

ODEs [Pet97]. OdinMP [BB00].

OdinMP/OCP [BB00]. Off [CGS15].

Off-Line [CGS15]. Offering [EK97].

Official [Ano98]. Offload [BR05].

Offloading [MSZG17, MHSK16, ON12, OTK15, ORA12, ADT14, Vos03, EV01, JMS14, MdSC09, SHM17, ZWL16, JKM18, OGM18, HTJ+16, JCP15, KDH18, KL15, Kom15, LB16, LGS12, MGS+15, OGM+19, OGM+16, QHCC17, RLFD13, SCJ19, VG9+19, WLK+18].

OpenACC [CGK+16, CBBGA15, GML+16, GM18, HTJ+16, JCP15, KDH18, KL15, Kom15, LB16, LGS12, MGS+15, OGM+19, OGM+16, QHCC17, RLFD13, SCJ19, VG9+19, WLK+18].

OpenACC-based [KL15]. OpenCL [ABDP15, APBCF16, ASAK19, AB13, BLPP13, BBC+19, BDW16, BN12, BW+12, BBH+15, BAS13, CDD+13, CP15, CLO18, CJ+10, CHK15, CCS19, CCK12, CS14, CLBS17, CBGL19, DARG13, Di 14, DWL+12, DW+12, FAFD15, FLMR17, FE17, FSV14, FVLS15, dFdDSR+19, GScFM13, GDDM17, HHS18, HD11, HE15, HHC+18, JSS+15, JKM+17, JR13, JNL+15, JMDVG+17, KKM15, KH12, KM10, KKKL11, KSL+12, KJ+16, KNH+18, KB13, KPK13, Lee12, LNK+15, LWZ18, LL16, LAFA15, MC17, MAIAH14, MTU+15, MSZG17, MHSK16, ON12, OTK15, ORA12, PS19, PCY14, PHW+13, PSB+19, PB12, RG18, RVKP19, RGD13, RBB15, RGB+18, RBB17, SFSV13, SAP16, SSB+17, SG14, SFL15, SGS10, Str12, THS+15, TK16, TMW17, TKP15, TY14, WTH17, WHMO19, WZHZ16, YSWY14, YWCT15, YSL+12, ZWL+17, ZTT+17, dAT17].

OpenCL-accelerated [ZWL+17].

OpenCL-Based [CLO18, WTTH17, WZHZ16, JKM+17, WHMO19].

OpenCL-to-WebCL [CHK15].

OpenCL-written [KNH+18]. OpenGL [Ano98, LH297, ORA12, Röt19]. OpenGL-Röt19. openMosix [Sl05]. OpenMP [Cha05, CZG+08, CGMK11, CMMR12, EV01, JMS14, Msc09, SHM+10, Vos03, OKM12, ST02a, ST02b, Add01, ARvW03, ABC+00, AC07, AHD21, AAB+17, AELGE16, ACMZ11, ATL+12, ADT14, ACJ12, Ano97, Ano01b, Ano03, AKE00, ADMV05, AD+05, ASB18, AML+99, AGMJ06, AM07, ACD+09, ABB+10, ACD+10].
Optimization [BSG00, BHNW01, DBA97, Goe02, HS12, Hus00, ITT02, KGK+03, KMH+14, LdSB19, MC17, MBS15, Miö10, NIO+02, NIO+03, PSSS01, SM03, SvL99, SWH15, TRG05, WTTH17, WJ12, Cou93, DSOF11, FCS+12, HWS09, KHS12, LME09, LDJK13, MALM95, PG16, PS19, PMM95, SKS01, SDJ17, Str12, TMW17, TFZZ12, Was96, XXL13].

Optimizations [NSLV16, SSE12, iSYS12, BVML12, HE02, JWB96].

optimize [BBW19, GVF+18, GFIS+18, WLYC12].

Optimized [AKL16, Bri02, FADF15, MAIVA14, PM95, PTH+01a, THS+15, THDS19, WJB14, BKvH+14, MMM13, Sei99].

optimizer [BHRS08, Rag96].

Optimizing [BGH+05, CXB+12, FMFM15, KKP01, MBE03, NSZS13, OM96, SSAS12, TGL02, TGT05, GS02, LHC+07, RKBA+13].

Options [RR00].

Orange [ACM98b].

orbit [CFF19, SSN94].

Order [BL95, DFN12, LZH18, KN17, KME90, KEGM10, KB13, MYB16, OGM+16, THDS19]. ordering [Zah12].

ordinary [NF94, RBB15, SP11].

Oregon [ACM99, IEE93f, SW91].

Organization [BPC94, JFFGR12].

Oriented [Ada97, BCFK99, FMSG17, MSL96, PD98, YHGL01, Ada98, BR91, CBIGL19, DM12, MGC+15, OKM12, RFH+95, SWL+01, MLC04]. Origin [LL01, LSK04, ZSNH01].

Origin2000 [Bri00, MH01]. original [RPN13].

Orlando [ACM98b].

Orleans [IEE96b, USE95].

ORNL [Bor96].

OSCAR [IK000, Slo95]. oscillations [KHBS19]. oscillator [BJ13, GSMK17].

OSDI [USE94].

OSF [Sc93].

OSWALD [RGB+18].

Other [OP10].

Otto [DKF94b].

out-of-core [BL99].

Output [CFF+94, HE02, JW96].

Outstanding [LSB15].

Overcoming [JKHK08].

Overhauling [BDW16].

Overhead [BR02, FST98a, XH96, CRGM16, KC94, KRS99, LZHY+19, ZRQA11].

Overheads [BCG+10, BGD09, BCM11, SS94].

Overlap [BRU05, DCP12, DCP14, MLAV10, Pko80, SH14].

Overlapped [GPC+17].

Overlapping [KB01, kLC+06, PKE+10, BBH+15, DJJ+19, MMM13].

overlaid [CXB+12].

overlay-based [CXB+12].

Overview [CFF+96, Gre95, GL95c, Zol93, GHZ12, GPL+96, Wer95].

OWL [JKN+13].

Ownership [FHB+13].

Oxford [Bao97].

P [CAM12, WHDB05].

P-RnaPredict [WHDB05].

P03M [Bj93].

P2P [GR07, GGL+08, GJR09, RS19, SBG+02].

P2P-MPI [GGL+08, GJR09].

PACX [FGRD01, KR09, RBB97b].

PACX-MPI [KR09, RBB97b].

Page [CML04, NPP+00c].

Pagoda [YSS+17].

pairwise [AMHC11].

Palazzo [GT94].

PALLAS [KVH97].

Papers [BDB+13, OL05, TB14, ACM90, CHD09, DKD07, IEE93a, IE95c, KKD03, MTW07, Old02, AnO93g, Cha05].

PARA [DW94, DMW96, Was96, CD96].

parabolized [SCC95].

ParaCells [SYL19].

ParADE [KKH03].

Paradigm [HIP02].

Paradigms [BGD12, CM98, HD02a, HD02b].

Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC94a, AMHC94b].
Paravirtualization [SBQZ14]. ParCo93 [JPT94]. PARCOACH [SCB14]. PARCS [LD01]. Paris [CHD07, Har94, Har95]. Parity [MC17]. Parix [HSV95, RS95, SHH94a, SHH94b]. Park [SL94a, IEE93c]. PARKBENCH [DHS96, DH95]. PARMACS [GR95, HZ96, HZ99]. PARMACS-to-MPI [HZ96]. ParNNS [HSMW94]. PARRAY [CCM12]. parsing [Sur95a]. Parsytec [SHH94a, SHH94b]. part [VSR95, EM00a, EM00b, GKI0]. Partial [DERC01, DIT16, FSSD17, KK02b, MK17, MFTB95, OM96, ST17]. partially [CdGM96]. Particle [GSI97, KHS01, NSLV16, ZZ00, BAS13, CFF19, FFFC99, GSMK17, KPK13, RFH95, VDL15]. particle-based [FFFC99]. particle-in-cell [VDL15]. particle-mesh [BAS13]. particulate [ATL12]. Partition [DAD19, PS19]. Partitionierung [Gra97]. Partitioning [CTK01, DAD19, kL11, STV97, CT13, Cha96, Gra97, GKF13, YST08]. partners [Str94]. Pasadena [IEE95c]. PASCO [ACM97a]. passage [PTMF18]. Passing [AMHC11, Ano93d, AKL99, Att96, BZ97, BC14, BBH96, BB99, BB91, BRU05, BDH95, BDH97, BGR97b, BM97, CHD07, Cot99, CGH94, Cot97, Cot98, CTK00, Cot04, CDND11, DFK01, DDK08, DHHW92, DHHW93a, DDL00, FKKC96, FKS96, FGT96, Fos98, FGG98, FB94, GR07, GB96, Glc93, GLRS01, GLS94, GL95c, GLDS96, GL99, GLS99, GLT00b, GLT00a, GL04, IBC10, KTF03, KGKD10, KS97, KSV01, KKFV03, KKD04, KKD05, LKD08, LK10, LMO99, MP98, MTSS94, MS98, ML96, MBES94, MG97, MTWD06, MSS97, NW98, PBK00, PBK96, PS01b, RRRB01, RWD09, RFG98, SWH05, SWL10, ST02b, TG05, TDB00, TDB12, WD96, Wer95, Wis97, YHGL01, ZG95a, ZG96, ZLL12, Ada98, AD98, AAC10, AA93e, AO94d, AO95c, Ano00a, Ano00b, BL97, BvdS95, Bjo95, Bru95]. passing [BDW97, BFIM99, CGJ10, CDZ98, CRD99, CD01, DK93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DPK00, DLO03, F94, FH93, GL92, HP95, HPY93, Hem96, KJ93, Kra02, LR06a, LBD96, L94, I96, LMM15, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SW95, SDV15, SZ99, SSG95, St94, Tsz94, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, DiN96, GGHL96, Han98, Hem94, RFC96, SLG95, Wer95, YGH14]. Past [Dar01]. Path [CGPR98, GAMR00, SDJ17, SLN12, Ze95]. path-based [SLN12]. Pathway [CNM11]. PATOP [BFBW01]. Pattern [CSW12, CC17, JPL17, RDDB99, MAS06, SJLM14]. pattern-based [SJLM14]. Pattern-Independent [CSW12]. Patterned [ST17]. Patterns [DMMV97, FPY08, KB98, MSM05, P16, RRAGM97, SGH12, DZ94, GAVR17, HGMW12, PM95, PSK10]. PC [AH00, EKTB99, KS01, KS97, LKYS04, RLL01, Ste00, WLYC12, YST08, YL09, MMB19]. PC-Cluster [RLL01]. PCAT [ACDR94, GN95]. PCAT94 [GN95]. PCG [BS97]. PCI [GK97]. PCI-based [GK97]. PCRC [BS94]. PCs [CRE99]. PCSC [LM94]. PCTE [HZ94]. PCTRAN [KHS01]. PDCS [YH96]. PDE [GBR15, NHT02, NHT06, NPS12]. PDES [PT01, SCL00, SCL01, H014, HA95]. PDGC [CG910]. PDP [IEE96g]. Peer [GR07]. Peer-to-Peer [GR07]. PELCR [PQ07]. PEMPI [FB95]. PEMPIs [MOL05]. Pennsylvania [ACM96b, IEE94d]. pentadiagonal [Kan12]. Pentium [Ano03]. Pentium(R) [SBT04]. PENTRAN [KHS01]. people [ASC95, Ano94i]. per-triangle [SOA11].
perception [CLM+95], perceptual [WPL95], perform [CBIGL19].

Performance
[ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, AC07, ATM01, AR01, Ano01a, Ano01b, ADR+05, Bak98, BBGL96, Ben18, BN00, BBDH14, BGG+02, BY12, BRM03, BRST94, BS07, BDL98, BCKP00, BHNW01, BFMT96b, BFBW01, BEG+10, CGK, CGL01, CN11, Che99, CSC96, CBBPGA15, DPSD08, DM95b, DW02, DZ98b, DPP01, DWL+10, DBK+09, EGH99, EGC02, EML08, EML00, FD02a, FGRT00, FCP+01, FSC+11, FST98b, FGK79, GFD03, GKP96, GGS99, GBH99, GFIS+18, GRRM99, GBST+07, GSY+13, HVA+16, HKN+10, Hol12, HFI14a, HFI14b, HPS95, Hus98, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IFI95, IRU01, HV+A+00, IADB19, JSS+15, JC17, JCH+08, JS13, JLG95, KDS012, KaM10, KL94, KH12, KBS04, KB97, KKP01, KH15, KC06, KK02b, KHS01].

Performance [KSS00, La01, LAD+15, LWSB19, LCK11, LC79a, LB98, LGCH99, LNK+15, LH98, LC93, LC+03, LWZ18, LNW+12, LRLG19, LS01, LCW+03, LPV04, LWP04, LC297, LZHY19, LC97b, LKY04, MMB+94, MKP+96, MPD04, ME17, MGH97, MGCl12, MM02, MM03, MOL05, MS99a, MHC94b, MMSW02, MK04, MCLD01, MMH99, MM14, MMS07, NSLV16, NMW93, NPP+00d, NMS+14, NN95, OTK15, OF00, OLG01, PARB14, PKB01, PHJM11, PZ12, PR94b, PF97, PGAB+05, PGAB+07, PGCC02, PY95, PTH+01b, PS01b, QHCC17, QB12, Rab98, RBB97a, RBB97c, RH01, RRAGM97, RBO13, RS06, SGM+03, SPM+10, SLJ+14, SWHP05, SCP97, SEE+16, SPL+12, SCSL12, SM02, SM03, SSC97, SJ02, SSSS97, SC96b, SKH96, SJK+17a, SJK+17b, TSB02, TSB03, TTSY00, Ten95, Tha98, TBG+02, TG10, Tr12b, TFGM02, TFZZ12, VFD02, VY02].

Performance [WN10, WAS95b, WM01, WT11, WT12, WT13, XF95, XH96, XXL13, YC98, Yn94, YWC11, YS93, YWCF15, YSP+05, ZLGS99, ZWJK05, ZHK06, ZSN01, ABDP15, Ahm97, ADL03a, ADL03b, Ano03, AFST95, BDP+10, Ber96, BDV03, BMF96, BMFT96a, BMFT99, CRE01, CAHT17, CLYC16, CBPP02, CBM+08, CHKK15, DM95a, DL10, DO96, D+95, DWL+12, DE91, Duv92, EFR+05, ES13, FAF16, FD02b, FE17, FSV14, FME+12, Fin97, GV+18, GS02, GGC+07, GK97, GR95, GHZ12, GML+16, GSM+00, GL96, GLDS96, GL97c, GL99, GWVP+14, HDDG09, HW11, HAS900, HAJK01, HMS+19, HK10, HVSC11, HHA95, HG12, HC05, JKH08, JIM+11, JKN+13, KBB16, KKM15, KS13, LBD+96, LTL94, LC07, LBH12, LCY96, LB96, LO11, LKJ03, LK04, MC17, MP95, MSMC15, MSW+05, MSL12, MABG96, MHC94a, MSZG17, MJPB16, MGC+15, NU05]. performance [NFG+10, OIH10, Old02, PGS+13, PS19, PHW+13, PKG+10, PF05, PMZM16, PTW99, Rab99, RMS+18, RPS19, Reu03, RGD15, RHD14, Sep93, SF095, SWJ95, SLo05, VSC+11, SK00, SFLD15, TMC09, TSP95, TG09, TMH+94, VDL+15, Wor96, YCL14, ZSK15, ZWL13, dat17, HS95a, GH94, LCHS96, SSH08].

Persistent-Sets [SG12]. Personal [SSS97], personalized [BHJ96]. perspective [Sni18], perturbation [KN17].

Perverse [SSSS97]. Persistent-Sets [SG12].

Petascale
[CGKM11, CBYG18, ZWL13, Gei01]. Petersburg [Mal95]. Petri [CMM11].

PFSLib [LL95]. PGAS [SWS+12, SJK+17]. Phase [CBL10, ED94, TG94, ZAFAM16].

Phase-field [TKP15]. PHAT [BBC19]. Phi
[BB18, CB19, DSGS17, MTK16, OTK15]. Philadelphia [ACM96b]. PhiTM [MMDA19]. PHOENICS [SZBS95b, SZBS95a]. Phoenix
[ACM93, IEE95b, Ten95]. Photonic
[JFGRF12]. Phylogenetic
[MR12, LBH12]. Phylogenetic
[ACM96b, ACM04, Ham95a, IEE94d]. Place
[IEE94e, LTS16, BCK+09, PSHL11]. placement
[DDJ+19, SLN+12, SPK+12].

Planck [Ano94c]. Planing [GAMR00]. Planning
[HMS+19, Zel95]. plant
[F094]. PLAPACK [van97]. plasma
[JL18, DGH+19, YKLD17].

Plasmafusionsforschung [BL94]. plasmasm [CFF19]. Platform
[BKGS02, BB18, NOO2b, PGF18, WTT17, BHS15, CB11, Cza13, DWL+10, DWL+12, HTJ+16, HHA95, JR13, NOO2a, XXL13, YSL+12].

Platforms [AIM97, HD00, JML01, RVKP19, ZB97, BBC+19, GGC+07, GFB+14, MBBD13, TPK15, TS12b]. Plessset [BL95, KN17]. PLIERS [MMR99].

plug [MS99b], plug-in [MS99b], plume
[HL18], plus [HDB+13, Stp18], PMAc
[PTL+16]. PMD [Che99], PML [Ram07].

PMPIO [FWN96]. PMPIO-a [FWN96]. poci [JSS+15]. Point
[GBS+07, HC10, KV98, LWBS91, ADLL03a, ADLL03b]. Point-to-Point
[GBS+07, HC10, KV98, ADLL03a, ADLL03b].

Pointers [LRT07]. Poisson
[BP98, WJB14]. Poland
[BDW97]. Polder
[OS97]. Policies
[CML04, PZ12, OHG19]. policy
[MMM13]. Polling
[DCPJ12, Pla02, DCPJ14, SH96].

Pollutant
[RSV+05]. Pollution
[AKK+94, BZ97, MPD04, MSML10, SH94, Syd94].

POLSYS_GLPS [SMSW06]. polygonization
[TSP95]. polygons [CT13]. polyhedral
[BHRS08, KGB+94]. polymers
[JAT97]. Polynomial
[VY15, HLM+17, SMSW06]. port
[CCHW03, Har94, RJMC93]. Portability
[KA10, RS95, RH01, ADP95, CGK+96, FE17, HHS18, MGC+15, PHW+13, QHCC17, Reu03]. Portable
[Ano94c, Ano00b, BHV12, BHL+95].

CDH+94, DHK97, Di 14, FCLG07, FSLS98, GLS94, GL97a, GLS99, JSS+15, LNLE00, Man98, MKV+01, MG97, PPT96a, PBC+01, SSSC95, SDB+16, Sti94, Tra98, WSC'13, YBCM14, An95, BCK+09, BB00, BL99, BAS13, CJvdP08, CH94, CEF+95, DWL+10, DWL+12, FAH16, FWN96, GR95, GL94, GSV94, GLDS96, HTJ+16, HZ94, HSW+12, JC96, KN95, LFS93a, LFS93b, LHC+07, MB+04, PPT96b, PPT96c, PMZM16, SFLD15, Sto98, VM95].

portal
[AASB08]. portals
[BS96b, BM02, BRM03]. Portfolio
[SIS17]. Portfolio-driven
[SIS17]. Porting
[Ano94c, BSC99, BLW98, EM02, Har94, Har95, HASn00, KGK+03, KME09, SR96, YKLD17, dCH93, BvdBR4, HD11, MWO95, ZPL96].

Portland
Portugal [ACM99, ANS95, IEE93e, SW91]. Positron [Pat93].

Port [ACM96b, IEE96d]. Post-ISA [Wit16], Poster [JJPL17, LZH17]. POSYBL [Mat94]. Potential [BGS02, Gro91a, KS15a].

Pre [AC17]. Pre-processor [AC17]. Precedence [EGR15]. Precedence-Constrained [EGR15].

Precise [FJK+17]. Precision [Ano98, Kha93, ZC10, JPT14].

Preconditioned [GFPG12, ABF+17, MM92]. Preconditioner [BBS99, FSXZ14]. Preconditioners [Huc96]. Preconditioning [Nak03, GGC+07].

predictability [GRRM99]. Predicting [RRAGM97]. Prediction [MOL05, WHDB05, ZWJK05, ADR+05, BVD05, CMV+94, HHA95, RBA17].

precondition [MRH96]. Present [Dar01]. presented [ACM90]. preservation [IEE94c]. Preserving [RNPM13]. Press [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Pricing [RR00].

Primitives [DDL00, FST98a, ABDF15, CIJ+10]. Princeton [Bha93].

private [Str94]. privatization [KRG13]. Probabilistic [LaD+15]. Probability [QRMG96, Sta95b].

Problem [BSH15, DALD18, DAK98, GAMR00, ICC02, Lee06, MTSS94, RLVRGP12, ZSH91, AB93b, DSM94, GM94, GKC13, HMKV94, HMM94, MM92, SL00, SP11, Cza13].

Problems [ASA97, BHM94, BG96, BMR01, BPMN97, CGPR98, EML98, HAA+11, DK02, LSM+18, MBS15, Nak03, Riz17, AL96, CEOS07, FR95, LSR95, NZZ94, OMK09, SC96a, SD99].

procedure [AGL+96]. Proceedings [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM04, ACDR94, CJNW95, GN95, Hol12, IIE93f, IIE95d, IEE02, KG93, LCK11, MC94, R+92, SM07, Ten95, TG94, dGJM94, ACM96b, Ano94e, Ano94i, BPG94, Boi97, BHI95, CML+95, DSH94, DE91, EJL92, FF95, GHH+93, HK95, HHHK94, IE94a, IE94b, IE94c, IE95b, IE95c, IE95a, IE95c, IPE95, JPE94, KUM94, LF+93a, Lli96, PSB+94, PBP95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM95, ACM06b, ACM06a, ATC94, AGT95a, AH95, Ano98, Ano99, Ano94a, BBG+95, Bha93, CHD03, CML+98, CKM11, CMIR12, CGRD12, CDN11, DM+92, DT94, DLO+03, EV01, EdS08, ERS95, ERS96, FER92, FK95, GAT95, GKK+93, GA96, GT94, HAM95, HS94, HK93, IE91, IE92, IE93d, IE93c, IE93a, IE93e, IE94e, IE94d, IE94f, IE94h, IE94g, IE95h, IE95k].

Proceedings [IE95i, IE95f, IE95i, IE95g, IE95j, IE96g, IE96f, IE96e, IE96d, IE96h,
KGRD10, LKD08, MTWD06, MMH93, McDS+08, MdSC09, OSt94, PR94b, Ree96, RWD09, SCR92, SHIM+10, Sie94, TBD12, USE94, USE95, USE00, VW92, Vos03, Y+93, YH96, AD98, BC91, BDL96, BS94, Bos96, BFM96, BDW97, CH96, CD01, DSM94, DK05, DW94, DMW96, DLM99, DKP00, Eng00, FR95, GH94, HAM95b, H95a, IEE96c, IEE97a, Kra02, KOK4, LCHS96, Mal95, MBG+08, MCD95, MDSC09, Ost94, PR94b, Production [CMH99, ER12, SMSW06]. Production [IADB19, CLdJ+15, SL00]. productive [LV12]. Productivity [BS07, KaM10, Wit16]. products [Ano97, Bra97]. profile [TWFO09, WTOF14]. profile-driven [TWFO09, WTOF14]. profiler [AS92]. profiles [Wil94]. profiling [GPL+96, LZHY19, Ra99, Vet02]. Profitability [CLA+19]. Program [Ano96d, AB93a, BMS94b, CHPP01, Cot97, EML98, MM95, MK17, MRV00, Ney00, PS01b, TSY00, THN00, UT02, CDZ+98, JD95, LP00, LLC13, OKM12, PFP99, Sa10, TNIB17, TMPJ01, ZL96]. programación [VP00]. Programmable [OA17]. Programmcode [BL94]. Programmer [Gua16, Wit16]. programmers [CGG10]. Programming [ACM90, Ada97, ACG97, ASA97, ACJ12, An96b, BBG+10, BLP93, BHV12, BFO1, BBG+99, BBG+01, BK000, CMK00, CDK+01, CKnWH16, Cha02, CZG+08, CF01, Cza03, DM98, DARG13, DDL00, DK06, DWL+10, EM00a, EM00b, FTVB00, FWR+95, GRLS01, GLS94, GLS99, HA11, HDB+12, HDT+15, KKK03, Kep05, KP96, KmWH10, KV97, Lad04, La01, LRLRS02, MSOG99, Mat94, Mat95, MSMS05, MGcS+08, NO02b, SPM+10, SK10, SS01, SDN99, SH94b, ST02a, ST02b, SG91, Stp02, TTP97, VT97, Vre04, Wald01, Wald02, W097, YM97, YHGL01, YCA18, ACGd10, AMuHK15, An95c, An006, AB13, BJ13, BCA+06, BB94, BS96a, BKH+13, CPM+18, CLY16, Cha05, CJvdP80, CEF+95, CDM+94, CGH+14, DWL+12, Dv92, EASS95, EV01, FSG19b, FB95, FB96, Fan98, FSTG99, Fer04, Fra95, FHB+13, FF95]. programming [GKZ12, Get96, GBH14, GBH18, GRTZ10, HTO08, HS93, HZ94, HDB+13, HVSH95,
Programs
[AJF16, Beg93b, BKdS90, BGK98, BBDL98, BLG00, CWS12, CRE99, CHPP01, CD98, DLB07, DMM97, Di 14, FKO2, FJK17, GRO7, GTH96, GL04, GC05, HC10, HKN01, HM01, JLG05, KFL94, KSJ14, KKVV01, KSV01, Mar09, MVY95, MOL05, MBE03, MKW11, MLD01, MJB15, NSZS13, NE98, NE01, NPP004, OM96, PPJ01, RH01, RFG100, SGZ00, SBF04, SR96, TGBS05, We94, Wis97, ZLL12, Beg92, Beg93c, Beg93a, BCK11, BMP03, CRE01, CLdJ15, CGL93, CH04, CRM14, CFP96, DKF93, DFK94b, EP96, EPP17, FSG19a, FLB05, FKL08, GGHH99, GRR99, GKS11, GB94, HD11, HZ96, HLOC96, HEHC09, KCD97, KS13, KO14, KOM15, KLM19, LGQK01, LLG12, LL16, LBB16, LYS16, LMM15, LZX02, LCC03, MT96, MtSAS18, Mor95, NKB99, Ob96, ODSSP12, PSS99].

Programs
[PA9S17, RAS16, REN03, RRG99, SSB16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THH10, UGT09, VVD09, YSVM16, YSMA17, YY02, ZJDW18, ZRQA11].

Progress
[BRU05, LAdS15, SPH18, DJJ19, MLA14, MCG94].

Progress-Dependence
[LAdS15].

Project
[BHK06, BSH15, DHH97, MRV00, ABC00, CDH94].

Promise
[Ano93f].

Promotion
[OCY15, WBB15].

Propagating
[EMO93, ESM94, JML01, SMOE93, ASA91, KEGM10, RMNM12].

Properties
[FGRT00, JL98, MS96b, SSP94].

Proposal
[DHH92, DHH93a, DFC07, DFA09, ZKRA14].

Proposals
[Wal96b].

Protected
[GH12].

Protein
[RGB18, GAVR17, SEC15, ZAT07].

Proteins
[BHW12, BB15, FMS15].

Protocol
[CAW17, GSY13, KL11, LMM15, RA09, XF95, DBB13, CwCw11, DDMN99, MN91, MB00, ZIP06].

Protocol-based
[LMM15].

Protocols
[BCH08, DMR93, LH98].

Protoplanetary
[DFMBdFM02].

Prototype
[Ano01b, FHP94, MMSW02, BK96, CCF94, KYL03, KYL05].

Prototyping
[Spe19].

Prove
[Sut96].

Provides
[Add01, LMRG14].

Providing
[GKP97, Zah12].

Proving
[MS96b].

Pruning
[SAM95].

Pseudo
[Wal01a, Lan09].

Pseudo-search
[Wal01a].

Pseudorandom
[WHDB05].

Pseudospectra
[BKGS02].

Pseudospectral
[Bri95, MRIP11].

PSVM
[BWT96].

Pthread
[ZAT07].

Pthreads
[AS14, TS12b].

PTX
[SIS12].

Public
[Str94, GWVP14, Ne93, RST02].

Public-private
[Str94].

Pulse
[ASA91].

Puma
[BS96].

Plyra
[HSE17].

Purpose
[BDT08, Che10, SZBS95a, Smn94a, ABDP15, CBM08, KPNM16, PS05, SK10, SZBS95b].

PVM
[BCL97, TSS98].

PVFS
[IRU01].

PVVM
[AD98, BL94, BDL96, BDW97, CHD07, CHD09, C01, DKD05, DLM99, DKP00, DLO03, Kraf02, KKD04, LKDO8, McD96, MTW06, RWD09, Wi94, AJ97, Ahn97, AS92, ACGR97, ADRCT98, AL92, AG+95b, AB95, ASA97, AL96, ARL94, AK+94, AP96, Ano94b, Ano95c, Ano96b, Ano96c, ABCI95a, ABC195b, ABG96, AGLV96, AB93b, AB93a, ADMV05, BSN95, BLP93, BFL199, BSBG96, BG95, BS93].
Q [KMH+14, LM13, MV17]. QAPs [Tsu12].
QCD [BLPP13, GM18, SVC+11]. QCG
QCMPI [TJD09]. QR [GKK09, LC97b].
QSATS [Hin11]. Quadratic [Cza13].
Quadrics [YSF+05, LCW+03]. quadtree
[HS95b, PGBF+07, SCC96, Sur95b].
qualitative [BLP93]. Quality
[Boi97, BDA+18, RFG+00, WHDB05,
Ano94i, Lan09, Boi97]. Quality-of-Service
[RFG+00]. Quantifying [AKe00, LDCZ97].
quantitative [BLP93, BBH+15].
quantization [HE15]. Quantum
[BCGL97, BCL00, GRTZ10, Hin11, GMMG05,
NMW93, SK00, SSGF00, TJD09, WHMO19].
Quasi [DDYM99, Pla02, ZBo97]. Quasi-
[Pla02]. Quasi-asynchronous [DDYM99].
Quasi-Newton [ZB97]. Queens [Rol08h].
Queensland [ACDR94]. Query [AR01].
Quest [MWG97]. Queue
[NSS12, Cg99b, PTL+16, Sep93, ZA14].
queues [Man98]. quicksort
[MIMO+16, MIMO+16].
R [BBH12, JPOJ12, LR01]. R&D [Str94].
R&D-100 [Str94]. Race
[CFMR95, KSJ14, DKF94a]. Races
[PPJ01, SAL+17, DKF94b, LLG12,
ZROA11, EPP+17]. Radial [RB01, KRC17].
Radiance [GCBM97, KMG99, RC97].
radiation [SCJH19]. Radiology [GA96].
Rajeev [Ano00a]. Raleigh [Agr95a].
Ramesh [Stp02]. Random
[HT08, LTDD14, CCS19, Lan09].
Randomized [Tra98]. Range
[KBM97, MH01, BMPZ94a, PARB14, She95].
rang-join [She95]. Rank [Hat98].
Ranking [Tra98]. Rapid [FWS+17].
RASC [YCL14]. rate [BBG+14, YPA94].
rationale [BBH+13b]. Ray [CG93, DP94,
KGB+09, FWS+17, SG95, FFB99].
Ray-Tracing [DP94]. Rayleigh [TVV96].
Rayleigh-Bevard [TVV96]. rCUDA
[CPM+18, PRS16, RSC+15, RPS19, RS19,
SIRP17]. RDMA
[GSY+13, LWP04, Pan14, RA09].
RDMA-Based [LWP04].
RDMA-Enabled [GSY+13, Pan14, RA09].
Re [MCP17]. Re-Vectorization [MCP17].
Reaching [BHS+02]. Reaction
[HF14a, HF14b]. Reactive [BCL00, Heb93].
reactor [ANS95]. Read [SSLMW10].
readability [SM12]. Reading [HK95].
Ready [Bri02, DZ98b]. Ready-Mode
[Bri02]. Real [ASB18, LHLK10, NSLV16,
Th094, UP01, YGH+14, Ano94f, Fer04,
FLB+05, JR10, ZWZ+95, SKD+04].
Real-Time [UP01, YGH+14, ASB18,
LHLK10, Fer04, ZWZ+95, SKD+04].
Real-World [NSLV16]. Realistic
[YM111, ZSnH01, CKP+93]. Reality
[ACM96a, Ano93f, NM95, Wit16]. realizing
[ZY14]. Reallocation [GFIS+18].
rebooting [GLTL11]. Receive [Bri02].
Receiver [GZ95b]. receptor [ESB13].
Rechner [Ano94c, BL94, MS04].
Recognition [CC17]. recomputation
[RKBA+13]. Reconfigurable
[MFC98, SPM+10, NYT12].
Reconfiguration [CS14, MSMC15].
Reconstruction [BM97, DYN+06, GA96,
LSSZ15, OH10, RAG95]. Record
[UALK17, CRD99]. Record&Replay
[KSV01]. record/replay [CRD99].
Recovery [SBF+04, BBH+13b, BDB+13,
LFS93a, LFS93b, SSC95, ZWZ05].
Rectangle [CSW99]. rectified [WBBD15].
Recurrances [ACGR97]. Recursive
[DSS90, PWP+16, SD99]. Red [van93].
redesign [HL17]. Redistribution
[DDPR97, HC06, WO95, WO96, HC08,
KN95]. Reduce [PSM+14]. Reduced
[SW12]. Reducing
[CRG16, JE95, BCA11]. Reduction
[DAD19, FKH02, MFPP03, SG12, HL17,
Jes93a, MLVS16, Pan95a, PQ07].
Reductions [PWP19]. Redundancy
[TS12a]. redundent [KJ+16]. Reference

Remote [BMR01, HDT+15, IFA+16, OCY+15, Tsu07, WBBD15, AGLv96, CPM+18, FHC+95, GBH14, GBH18, HGMW12, RSC+15, SIRP17, SH96]. Remote-Scope [OCY+15, WBBD15]. Remotely [GGCM99, GGCG01, GCGS98, VLO+08, GGGC99]. Remoting [MGL17].

Representation [BMR01, KD12, MDM17, SML17, CCM12]. reproduce [AVA+16]. Reproducible [GL99, HCA16, XLW+09]. Requirements [GSHL02, GT07, Ber96, KBG16, LCVD94a].

Research [Ano96d, BR02, MC94, SL94a, SGHL01, Ara95, BPG94, LP00, Oed93]. Reservoir [KDHZ18, OWSA95, ZAFAM16, ZZ95, Ano95d]. Resident [JDB+14].

Resilient [CGH+14, Gua16, LCMG17, LMG17, LBB+19, MLVS16]. Resistive [ZL17]. Resolution [MAB05, Str94, BADC07, KN17].

Resolving [Str97]. Resource [BGR97b, BSH15, KK98, SIS17, YSS+17, DZ96, FLD96, NEM17, ZA14]. resource-conscious [ZA14]. resource-restricted [NEM17]. Resources [LSB15, NAY+96, Kos95b, R+92].

Response [BBC+00]. Restart [SSB+05, LMG17]. restarted [dH94]. Restoration [FJB+00]. Restore [Gua16].

restricted [NEM17]. Restructuring [KAMAMA17]. Results [BIL99, BIC05, HSMW94, Wal01a, BR95c, DHS96, VDL+15]. retargetable [KKJ+08].

Reverse-mode [HHSM19]. Review [Ano95a, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano00a, Ano00b, BDL98, Che10, Mar06, MCLD01, Nag05, NMC95, Per96, Per97, SD13, Vro04, Stp02, Vog13].

RnAPredict [WHDB05]. Robert [Ano95b, NMC95]. robotic [ZWZ+95].

Robust [Att96, GR07, PSLT99]. Rocks [PKB01, Slo05]. Roe [dAMCFN12]. Rohit [Stp02]. rollback [LBB+19], rolling [NF94].

Rome [CMKR12]. Roothaan [MMDA19]. roots [PNV01]. rotating [KLM+19]. routed [Pan95b, RJMC93, ZGN94]. routers [Jes93a]. Routines [Add01, Sch96a, LSK04, Sch96b, VLMPS+18].

Routing [BHM94, BHM96, MTSS94].

Running [BZ97, CCM+06, YKI+96, CRE01, ZLZ+11].

Runtime [AAB+17, BGD12, CFF+94, DMB16, DT17, DSC05, Gro00, KB04, KCR+17, NPP+00d, TXF12, ZLP12, ALW+15, BL99, BR94, EPP+17, EO15, HPS+12, HPS+13, KW14, LRLG19, LLL+14, MA09, NPP+00a, TSY00, YÅJG+15]. Runtimes [AHHP17].

Russia [Mal95]. RWA [RtVRGP12].

S [AHHP17, Röhr00]. S-Caffe [AHHP17]. S-language [Röhr00]. S1 [GLT00b]. S3D [LSG12]. Safe [Pla02, GCC99, LFS92, LFS93a, LFS93b, NYNT12]. Safety [CLA+19, GT07]. salesman [GM94]. Salt [Hol12]. San [ACM97b, Ano95d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IEE95b, IEE97c, LF+93a, NM95]. Sanders [Che10]. Sandy [VDL+15]. Santa [ACM95b, AH95, IEE95f, Old02]. Santorini [CD01, CND11]. Santorini-Thera [CD01]. Saphir [Ano99c, Ano99d]. SAR [AB95]. Satellite [Uhl94, Uhl95b, SS94]. Satisfiability [IKM+01, IKM95]. saturated [TOC18]. Saturday [B+05].

Scalability [Ben18, BS97, FSC+11, KBS04, LL01, LKYS04, LSK04]. Scalable [Add01, AHHP17, BHH+17, BBC+17, BHHN01, BGL00, CGS15, CDPM03, EFR+05, GBF+14, GH94, HGMW12, IEE92, IEE94f, IEE95j, IBC+10, KK98, LTS16, kLCC+06, MFPP03, NBGS08, NPP+00d, NCKB12, NSL+12, OLG01, PP+01, PR94b, PBK00, SDJ17, SBF+04, Skj93, SS96, TPD15, UP01, VBlvdG08, VY02, ZLGS99, BBB+94, Bri95, CLS07, FWS+17, GBH14, GBH18, GM13, GKL95, HRR+11, HAJK01, KRC17, KRG13, LM99, LTLC94, MB+94, MRRP11, PWD+12, SKP+12, Trå12a].

ScALAPACK [BV99, BRR99, DHP97].

Scale [AHE00, AHE18, BHH+17, BS97, BHHN01, FFP03, MFPP03, SM03, TEG09, WM+18, WT12, AAS08, BCA+06, JSS09, BCH+08, Che99, DZ94, FME+12, Gua16, Kos95b, LSL+14, PTL+16, PD11, RMNM+12, SIC+19, SL09, TBB12, WLNL06, WT11, WT13, ZKRA14, ZA14, Ben18].

SCALE-EA [Ben18].

Scale-Out [AFGR18]. Scale-Up [AFGR18].

SCALEA [TFGM02]. Scaling [CC17, KFL05, SLJ+14, FKLB08, Gao03, LFL11, PDY14]. scan [AAA16, YLZ13].

Scattering [BCL00, NZZ94, OMK99]. SCF [MM95].

schedule [NAA01]. scheduler [ADDR95, TCBV10, WRS16]. schedulers [NP12]. Scheduling [BHH+06, BSH15, CML04, DMB16, EGR15, GDDM17, GSHL02, GHL97, HC06, JW96, MJB15, NIO+02, NIO+03, TPF12, APBc16, DZ98a, JKN+13, LH96, MBKM12, NSBR07, OPW+12, SM+93, STK+12, SKB+14, WYLC12, WLYC12, YWC11].

Scheme [CTK01, LNL00, MW98, SBF+04].
BBGL96, Bjo95, MRRP11, OKM12, SCC96, YPZ95, FM90). Schemes [PPJ01, WYL912, WLYC12, ZAT+07]. Schmidt [CBY18]. School [VV95]. Schrödinger [DM12, ON12]. SCI [FS97, HEH98, HuS00, RR01, ZHS99]. SCIDDLE [ABG+96, AGLv96]. SCIDDLE-PVM [ABG+96]. Science [EGH+14, IEE95d, MM93, Old02, SM07, ACM06a, DMW96, HK93]. Sch佖 [ERS96, HS94, ZL96, ERS95]. Scientists [AGH+95, APJ+16, BBG+95, DKM+92, DT94, Gat95, GL97a, HJ98, KK02a, LWSB19, LkLC+03, Mar06, Sin93, SSB+17, VY02, WN10, Bis04, DW94, SBG+12, SIC+19, TBB12, WT13, Ano97, Bra97]. Scripting [Ong02, KPL+12, Nob08]. Scripting-based [KPL+12]. SCTP [KPW05, ZPl06]. SDK [TK16]. SDSM [CCM+06]. Seamless [KK02a, LdsB19]. Search [BSH15, Cza13, IMM+01, Wal01b, FMS15, IMK+02, Wal01a, ZSK15, CB11]. Searches [BSG00]. Searching [JPT14, MM01, BA06, Wal01b]. Seattle [ACM05, BS94, LCK11, Ost94]. Second [Ano00b, BL95, DT94, DE91, IE94d, IEE96d, IEE96i, LHMM96, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFM96, DMW96, FR95, KN17, Li96]. Second-Order [BL95, KN17]. Secondary [WHDB05, SEC15, ZAT+07]. section [Ano03b, DK08]. segment [FJZ+14]. segment-based [FJZ+14]. Segmentation [KBA02, AD95, CCU95]. Seidel [BG95, LM99, Ols95]. seismic [AMBG93, KL95, KEGM10, LM13, QHCC17, RMN+12, SSS99, WCVR96]. Seismograms [DP94]. Select [KKDV03]. Selected [DHS96, MTW07, OL05, TB14, CHD09, Cha05, DK07, JC17]. selecting [PTL+16]. Selection [CKmWH16, SNN+19, PGBF+07, WKS96, ZWL+17]. Selective [Nak03]. Self [NSS12, SL1+14, TGT10, VFD02, NSBR07, WYLC12, WLYC12, YWC11]. Self-Consistent [TGT10]. self-scheduling [NSBR07, WYLC12, WLYC12, YWC11]. Self-Submitting [NSS12]. Self-Tuning [SL1+14]. Semantic [EADT19, MTU+15, DKF94a, OA17]. Semantically [MKW11]. semantics [RNPM13]. Semaphores [TTP97]. Semi [CT94a, Bjo95, PSL19, TC94, CT94b]. semi-coarsening [PSST99]. semi-implicit [Bjo95]. Semi-Lagrangian [CT94a, TC94, CT94b]. Semiconductor [GJN97, Ano03, LS10]. September [Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CLM+95, CHD07, CJD95, CD01, CDND11, DK05, DKD07, DLM99, DKP00, DLO03, EJL92, FFR95, FR95, GHT+93, IEE93d, IE94c, JPT94, KGRD10, Kru02, KKD04, LKD08, Mal95, MTW06, OL05, PSB+94, RWD09, SFR95, SM07, TBB12, VY95, WV92, WPH94, YH96]. Sequence [GMU95, SMM+16, AMHC11, TSZC94]. sequences [dFdO919, GAVRRL17, SdM10]. Sequencing [VPS17]. Sequential [EK97, RPM+08, GHH99, SR95, TN1B17, TSZC94]. Serial [SWH15, HPS+96, HWS09]. serialization [CFKL00]. Serialized [KH10]. Serielles [BL94]. Series [Nag05, BR94]. Server [Ano93, AFG18, FSLS98, KS97, Mat01b, Sch93, Ste98, Vis95]. Server-Class [AFGR18]. Servers [CGC+02, SIS17, GK97]. Service
[RFG⁺00, LS08, SPK⁺12]. Services
[FC05, AAC⁺05, ZKRA14]. Session
[NYNT12, ZL96]. Set [BDA⁺18, SW12, WŁ96a, Ano00a, Ano00b, She95,WL96b].
Sets [SG12, CGL⁺93]. setting [GL95a].
Setup [NSLV16]. Seventh [BBG⁺95, HS94, IEE93b, IEE95g, IEE96h, Eng00, Y⁺93].
several [GBR15]. SGI
[Che99, CML04, KM99, LB96, LL01, LK03, LSK04, TW12, ZSuH01].
SGI/CRAY [Che99]. SGI/CRAY-T3E [Che99]. shadow [SOA11].
Shallow [dlAMC11, dlAMCFN12]. Shane [SD13].
Shanghai [IEE97a]. SHARE
[Ano92, Ano93f, Ano94g]. Shared
[BCA⁺06, BME02, Bri10, DM98, DMB16, FH92, FB94, GB96, GLRS01, HC10, HDB⁺12, HT01, KB98, KSHS01, LRT07, Luo09, MBE03, Mcds⁺08, Müller02, NPP⁺00d, PBK00, PK96b, PS00b, Ros13, SS01, STY99, ST02b, Thr99, VS00, VT97, ABC95a, ABC95b, ADM05, BMG07, CBPP02, CjvdP08, Cha96, CCM⁺06, CC00b, DBVF01, D99b, DPZ97, EV01, GCN⁺10, GL96, GL97c, HS93, HDB⁺13, J95, KJA⁺93, KL96, ML904, PK05, RGD15, SHH01, SL94b, SFL⁺94, SSS96, TS99, TS00, TH19, Vs03, WM1R17, WRMR19, WY95, X95, Cha05].

Shared-Memory
[DM98, HDB⁺12, NPP⁺00d, PK96, THR99, PS00b, ABC95a, ABC95b, BMG07, GL96, GL97c, KJA⁺93, PK05, shear [JAT97]. ShearLab [KLR16]. Shearlet [KLR16]. SHEM
[BBDH14, Hś01, LSK04, Sch96a, Sch96b, SS01]. Short [KBM97, MH01, SLMW10, BMPZ94a, PARB14]. Short-Range [KBM97, MH01, BMPZ94a, PARB14].
Shaper [USE00]. SHPCC [IEE92].

SHPCC-92 [IEE92]. SIAM
[BBG⁺95, DKM⁺92, Sin93]. Side
[kLCCW07]. Sided
[BP90, GFD03, GFD05, GT01, HDB⁺12, LRT07, MH01, MB00, TGT05, TRH00, ZSG12, bT01a, BM00, DBB⁺16, GBH18, LSK04, SS99c, PGK⁺10, GBH14]. SIGCSE
[ACMο6a]. Signal [IEE95e]. signals
[Ulm95c]. Signatures [Gro00]. significance
[AMHC11]. silent [FME⁺12]. silicon
[Ano03, Goe02]. SIMD
[BvdB94, HS95b, KDT⁺12, LL16, Sur95b, VSW⁺13, WMK⁺19, vdP17]. Simple
[MSF00, Müller01, SC04, ITT99, JH97, Nes10, PNV01]. simulate [Heb93]. Simulated
[BHM94, BHM96, FH97, RSBT95].

Simulating
[DLM⁺17, KDL⁺95b, KDL⁺95a, NFG⁺10]. Simulation
[CDMS15, CCBPGA15, DMMV97, DZDR95, GSI97, GM95, JML01, LDH18, KKB97, KM16, LLSR02, MFB05, MPD04, AN09, PCY14, PKYW95, PZK00, RR00, RDMB99, SSAS12, Str97, Ten95, UZC⁺12, WMC⁺18, ZZ04, ZWJK05, dAMC11, ASAK19, An95d, ADR⁺05, B95, BCM⁺16, BH95, BMPZ94b, CwCW⁺11, CSPM⁺96, SOF11, FS099, FO94, FLPG18, FFFC99, GRTZ10, JAT97, JLS⁺14, KJT03, KNH⁺18, KMC96, KMC97, LCVD94b, LCVD94a, LYZ13, MMW96, MALM95, NB96, NF94, OKM12, PARB14, PY95, RFH⁺95, SWY94, SSP⁺94, SKM15, Str96, Tho94, WHMO19, WGG⁺19, YPA94, YEG⁺13, YSL⁺12, Eng00]. Simulation-Based
[ZWJK05]. Simulations
[CGS15, CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG⁺07, SM02, YPA09, ADT14, ABG⁺96, BHS18, BADC07, CFF99, GM18, Hin11, JMS14, LS10, LSWMV08, RMN⁺12, SU96, THDS19, TOC18, WWFT11]. Simulator
[CAM12, MRV00, PHO⁺15, ZF18].
Simulators [SB95, AVA+16, Singapore [IEE96d]. Single [BM00, HF14a, HF14b, MB00, URKG12, AGIS94, KKLL11]. Single-Chip [URKG12]. Single-sided [BM00]. single/multigrid [AGIS94]. singleton [TVCB18]. Sinks [JPT14]. Sites [Ano98]. Sixth [HK95, IEE96c, MMH93, SW91]. size [GKCF13]. sized [JLS+14]. Sizes [DALD18, ZSnH01]. SKaMPI [KRS99, RSPM98, RH01, Reu01, RST02, Reu03]. SkelCL [SG14]. Skeleton [GB98, IH04, RJDH14]. Skeletons [Ser97]. Skjellum [Ano95c, Ano00b]. Slack [KFL05, FKL08]. SLAE [ADRCT98, AK99]. Slave [LTR00, HP05]. SMPCkpt [DCH02]. SMPI [DK94, DLM+17]. SMPs [HLCZ00, NU05, SvL99]. SMPSs [MLAV10]. SMPSuperscalar [GBCL12]. SMT [PAdS+17]. SMT-based [PAdS+17]. snake [JPP95]. snake-in-the-box [JPP95]. Snir [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. SnuCL [Lee12]. soccer [MYM11]. socket [LS10]. SoCs [AFGR18]. Softshell [SKK+12]. Software [Ano94i, BME02, BP94, BG+xx, CZ95b, DGH+19, ESB13, FF03, GBF95, Gre95, HPR+95, HS94, HHA95, IEE95l, IEE96h, IFT95, KS15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, SI96, Swa01, TDBEE11, VdS00, Wis01, Wol92, Ano97, BSC99, Boi97, Bra97, BR94, CMV+94, CBPP02, DPZ97, Hum95, JH97, JB96, LM94, MK94, Neu94, Okd02, PHA10, PK05, PGK+10, RAS16, SHH101, Sch94, Sci99, SPH95, Str94, WGG+19, ZGN94, Ano94i, KG93, Sil96]. Software-Managed [LB16]. Solan [CGB+10]. Solaris [Ano01a]. solidification [JLS+14]. solids [Hin11]. Solution [DWL+10, FBSN01, HO14, MC18, RPM+08, SEF+16, Tsu12, VRS00, DWL+12, IM95, JK10, LSR95, MALM95, ON12, PRS+14, SC96a]. solutions [AGIS94, LMG17]. Solve [Hog13, LSM+18, Riz17, BA08, Che99, GGGC99]. Solver [Ben01, BP98, CF01, HSMW94, IDD94, LZ97, SJK+17a, SJK+17b, WJB14, YKW+18, AMS94, CP15, CFF19, DM12, HHS19, JR10, LM99, Lou95, OGM+16, RM99, SRK+12, SCC95, THM+94, ZZG+14]. Solvers [DFN12, DALD18, CK10, MSB97, NO02b, Nak03, NHT02, NLRH07, QRMG96, RS97, WR01, AFB+17, ADLL03a, ADLL03b, ADDR95, BRR99, CL93, DR18, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94c, QRG95, SSM08]. SOM [GkLyCY97]. Some [BDT08, Mül01, Pet97, AL92, NN95, RSBT95]. Sopron [VV95]. Sorrento [DKD05, DKD07]. sort [KVGH11, PSHL11]. Sorting [LT16, BHJ96, PSHL11]. Sound [SG12]. Source [BBG+15, MM07, AC17, AVA+16, NCB+17, Nob08, PSS+10, WGG+19]. Source-Code-Correlated [MM07]. source-to-source [AC17]. Sources [ZDR01, KM10]. South [ACM95a]. southeast [ACM95a]. Sowing [GL97a]. SP [BGBP01, CE00, HMKV94, LC97b, WT11, WT12]. SP-1 [HMKV94]. SP-2 [LC97b].
SP1 [BR95c, FHP94b, FHP95, Fra95, FWR95, GL95d, HSMW94, MP95].
SP1/SP2 [FHP95, Fra95, FWR95]. **SP2** [BR95b, FHP95, Fra95, FWR95, HWW97, JF95, KB98, KHS01, MABG96, XH96].
SPAA [ACM95b]. Space [CML04, CB16, HO14, MSF00, OFA+15, SAS01, SS01, TA14, SRK+12].
Space-Sharing [CML04]. Space-Time [HO14, SRK+12]. Spaces [Ró19]. **SPAI** [BB99]. Spain [DLM99]. **SPAN** [LHHM96, Li96]. Spanish [VP00].
spatial [NCKB12]. Spark [GRW+19, KWEF18]. Sparse [AZ95, BBH12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADLL03a, ADLL03b, ER12, FJZ+14, GG99, Gra09, NHT06, XLL13].
SPEC [Ano03, MvWL+10, MBB+12, NA01, SGJ+03, TSB03]. Special [AM07, BDT08, BDB+13, BC00, CHD09, DKD07, DKD08, GSA08, MPI98, Bos96, Mar02, PNV01, Ren01, Oh02]. Specific [DM95b, DM95a, Oh14].
Specification [BG94a, BdS07, MGc12, MHSK16, BG94c, LPD+11].
Specifications [OFA+15, WMP14]. Specified [MGMH97]. specifying [LPD+11]. specimen [Rol08b].
SPECT [BCD96]. spectator [YMY11].
Spectra [Str97, SR11]. **Spectral** [MW98, Spe19, BCM+16, MGS+15].
spectral/hp [BCM+16]. **Speculation** [AELE16, SLM14]. Speculative [RA09, dOSMM+16]. Speed [CDHL95, Tou00, AH95, Ano03, BWT96, BID95, MKMJ16, CDH+95].
Speeding [CSV12]. Speedup [VPS17]. **SPH** [CP15, OLG+16, PBC+01, WMRR17, WMR19].
Sphere [CT94a, CT94b]. spherical [Hol95, KT10]. **SPICE3** [WPC07]. Spiking [CAM12]. **Spin** [HLP11, KO14, Kom15].
splitting [TCB10]. **SPMD** [BST+13, Dar01, KAC02, Wal00, Wal02]. **SPMD-Like** [BST+13]. SpMV [CBIGL19].
Spokane [IEE93c]. **Sponge** [HSW+12].
spontaneous [EZBA16]. Spring [An94a, IEE93a]. **SPTHEO** [SUt96]. **SPY** [SSG95]. Squares [PWP+16, VR00]. SR [YWC15, ZLP17]. **SR-IOV** [YWC15], **SR8000** [NNON00, TSB02, TSB03]. **SRP** [BBC+19]. **SS7** [LTLC94]. **SSGM** [HPS96]. **SSS** [MMH98]. **SSS-CORE** [MMH98]. St [Mal95]. Stability [DS00].
stable [JMVD+17]. Stage [FSXZ14]. staggered [GM18]. Stampi [ITKT00].
Standard [DM98, GSI97, GLP+00, GL95c, Hem94, MPI98, NH95, SKD+04, SGS10, Wer95, YKLD17, Ano94d, BDB+13, Bor99, Cla98, CGB99, DHHW93b, DOW96, FB95, GKH97, GL92, Hem96, St94, VM95, Wal94, Wal94d, WD96, Ano97, Bra97, CGH94, DOW95, GLDS96]. Standards [FKKC96, Thr99]. **Star** [CDM93, Coo95a, Coo95b]. **STAR/mpi** [Coo95a, Coo95b]. **Start** [Gro02b, Hus98].
Startup [PS07]. State [ACM11, IEE94f, IEE95j, Wis96a, Wis96b, BCT+17, LF93b].
state-to-state [BTC+17]. states [NS16].
Static [NIO+02, NIO+03, RLVRGP12, SCB15, SCB14]. **Static/dynamic** [SCB15].
Statics [TG94, TG94]. **Stationary** [MW98].
Statistical [LR01, SNM10, AMHC11, KKMM15, Rö00, SL94a, Vet02]. **Status** [Bak98, DZ98b, GL95c, BDG+93b, FHP+95, Hem96, Sun96]. **stealing** [TCB10].
Steepest [Sch01]. **Steering** [GKP97, PK98].
Stencil [CGU12, WTH17, KD13, TBB12].
stencil-based [TBB12]. step [Kos95b, ZG98, vdp17]. **Stereo** [ZBd12, Qu95]. **Steve** [An96a, An99a, An99b, Nag05]. **Steven** [An96a, An99a, An99c, An99b, An99d, Nag05]. **Still** [HCA16]. **Stochastic** [DK02, LLR02, MW98, PTMF18, RSV+05, JK10].
Stockholm [Eng00, HAM95b]. **Stokes** [Che99, DLR94, HSMW94, ID94, Lou95, PTT94, SCC95, ZG+14]. stop [Gun16, LMG17]. **stop-and-restart** [LMG17]. **Storage** [ACM04, Hol12, LCK11].
HP11, NFG+10, RGGP+18, ZJDW18.
stores [HSP+13]. straight [YULMTS+17].
Strategies
[MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, SIC+19, TSZC94, VB99].
Strategy
[AIM97, DI02, Hat98, VPS17, ZB94, ZSG12, DKF94b, DR95, MSL12, PSV19]. strayed
[Rol08a]. stream [HSW+12, UGT09].
Streaming [IADB19]. Streamline
[CGC+11]. streams [TVCB18].
StreamScan [YLZ13]. Strength
[Kon00].
String [KMM15, MM02, MM03]. striped
[KDSO12]. Strongly
[GAP97, ZZG+14].
Structural [PSSS01]. Structure
[CBL10, LAFA15, SYF96, WHDB05, EPM99, SEC19, SY95, ZAT+08].
Structured [FB96, Mar06, MRB17, NLRH07, Ran05, Bis04, CLSP07, FR95, GBR15, JAT97, SMI93b].
Structures
[GMP98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. studies [DHP97].
Study
[AIM97, AFGR18, BF01, BHS+95, DARG13, DII+19, EGC02, FPY08, GL97a, HHC+18, KCR+17, LSB15, MM02, NSLV16, NA01, PK05, RRBL01, SCL01, TC94, AGR+95b, AML+99, BJ13, BD04, BJS99, BY12, Bri00, CBM+08, DXB96, ED94, FO94, JR13, JLG05, KBG16, LD+14, MS96b, PSK08, PGK+10, PSHL11, RSBT95, RJ95, TP95, WAB91, WLK+18, ZSK15].
Stuttgart [KGRD10, WPH94]. style
[JPOJ12]. sub [MJG+12].
sub-communicators [MJG+12].
subcircuit [HLO+16]. subdomain
[CEGS07]. subdomains [SHH+15].
subgroup [XLW+99]. Submitting [NSS12].
Subrange [Str97]. Subroutine [Saa94].
subroutines [dCH93]. subsurface [ED94].
subsystem [BMG07, MABG96].
Subsystems [STMK97]. Subtle [SAL+17].
Success [Gro01b, LF+93a].
Successes [Gro01a]. Successful [Gro12]. suffix
[DK13]. Suitability [Mat01b]. suitable
[TRH00]. Sydney [Bil95]. Sylvester [GK10]. Sylvester-Type [GK10]. Symbolic [CCK12, Coo95b, Ste00, YYW+12, ACM97a, BHKR95, Coo95a, Lev95, LGKQ10, LLG12, SMAC08]. Symmetric [BDV03, MDM17, YKW+18, BAV08, DCH02, GG99]. Symmetric-Type [GK10]. Symbolic-Type [CCK12, Coo95b, Ste00, YYW+12, ACM97a, BHKR95, Coo95a, Lev95, LGKQ10, LLG12, SMAC08].

Symposium [ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94e, IEE94g, IEE95k, IEE95v, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IE05, LHHM96, Li96, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tou96, USE94, UCW95, ACM97a, ACM06a, Ano94b, Ano94h, Lev95, Old02]. Synchronisation [SDB+16]. Synchronization [LA02, OCY+15, TGT05, BMG07, LA06, TMTP96, YLZ13]. Synchronizing [VT97]. Synchronous [Ada97, BJ13, Cer99, DLRR99, HZG08]. Synergia [SSAS12]. Synergistic [UGT09]. Synthesis [CS14, GWC95]. synthesized [MC17]. Synthesizer [DS16]. Synthesizing [AJF16, NP12]. Synthetic [CC17, DP94].

Syracuse [IEE96f]. SYSMO [MM95].

System [Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BFZ97, BG12, CAM12, CGC+02, DBA07, DALD18, ERS95, ERS96, EK97, FBD01a, FBVD02, FF03, Fis01, Gal97, GCBM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, IADB19, KBA02, LLRS02, LTR00, LLY93, Ma94, MRV00, MM02, MSF00, MM98, MMS07, MM93, NPP+00d, NMS+14, Oed93, PPT96a, RGD97, SG+03, SS+05, SCP97, SA93, ST02b, Sun93, TSS00b, Tsu07, UP01, Wil93, ARS89, AS92, AL92, BB94, Bri95, BB+15, DL10, FNSW99, FK94, GS91a, GS93, GSxx, GM95, GkLyCY97, HDGG09, Hum95, HS95b, IBC+10, ITT99, JH97, JLS+14, KW14, Kik93, LBD+96, LKL96, LL95, MA09, MMR99, MMB+94, MAS06, MM11, MS99b, MALM95, NAJ99, PPT96b, PPT96c, PK05, RJDH14, RTL99, SHHI01, SL94b, Sei99]. system [SPL99, SGDM94, Sun96, Sur95b, VSRC94, VSRC95, RCC+07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, 2WZ+95, dCZG06, AL93, NMW93, Yan94]. System-Initiated [SSB+05]. system-on-a-chip [dCZG06]. System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [SHHI01, SL94b, Sei99]. Systems-Initiated [SSB+05]. system-initiated [SDB+16]. system-on-a-chip [dCZG06].

System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [SHHI01, SL94b, Sei99]. Systems-Initiated [SSB+05]. system-initiated [SDB+16]. system-on-a-chip [dCZG06].

S2000 [AL93, NMW93]. Système [BG91, BB01, CGC97, CM95, CM96, DCH02, GG99].

Systèmes [SPL99, SGDM94, Sun96, Sur95b, VSRC94, VSRC95, RCC+07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, 2WZ+95, dCZG06, AL93, NMW93, Yan94]. System-Initiated [SSB+05]. system-on-a-chip [dCZG06]. System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [SHHI01, SL94b, Sei99]. Systems-Initiated [SSB+05]. system-initiated [SDB+16]. system-on-a-chip [dCZG06].

T3D [AZ95, AFST95, CCMS97, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95]. T3E [BBS99, Boo01, Che99, GRRM99, LSK04, RBB97c]. T3E-512 [RBB97c]. T3E-600 [LSK04]. T9000 [BR94]. table [BJ13]. Tabu [BCH15, Cza13, CB11]. Tags
Tails [Kha13]. Takes [GDB+93]. Talbot [ACMR14, Riz17]. Tapir [SML17]. Targeting [JKM+17]. Task [AHD12, AAB+17, FKK96, GDM17, GPC+17, GFJ19, IOK00, KOI10, LHCT96, Mar03, MJBJ15, NIO+02, NIO+03, NSZS13, NJ01, OP97, SGZ00, SPL+12, TBS12, TS12a, YKW+18, APB+F16, ABF+17, BGH+05, GKF13, OδSP12, OPW+12, OP00, RRFH96, RFRH96, SKB+14, WC15]. Task-Based [AHD12, AAB+17, GFJ19, SPL+12, SKB+14]. Task-Overlapped [GPC+17]. Task-Parallel [NSZS13, APBcF16, ABF+17]. Taskers [FLD96]. Tasks [DFA+09, KaM10, SHM+10, TCM18, TSCaM12, WC15, vdP17]. Tasks [ACD+09, DFP+19, DT17, DFA+09, JW96, OP98, PWP19, RR02, RDLQ12, YSS+17, BS01, DDMY99, DR95, FKK+96b, FKK96a, IvdLH+00, PKE+10, PWP19]. Tasking [MMS07, RMS+18]. Taxonomy [SPh96]. TBB [Stp18]. TBSGM [BP08]. TC2 [Boi97]. TC2/WG2.5 [Boi97]. TC2MSG [GB96, Mat94, Mat95]. TCP [KPW05]. TD [And98]. Teaching [MK00, JY95, MK97, PKB06]. Technical [Ano93c, Ano98, MC94, USE95, ACM06a, Snii8]. Technique [BCD+15, HC06, HAA+11, MK17, HC08, Nes10, RBB17, MAIVA14]. Techniques [CP97, GSO2, MöI01, SAL+17, SPL+12, TGBS05, Wis01, BPG94, Fer04, RCS+12, GSM+00, HKMC94, JKN+13, KBG+09, NFG+10, POF5, SKS01, WST95]. Technologies [Mal95]. Technology [Ano97, Bra97, CGB+10, CSV12, Dan12, GN95, HS94, PWP+16, STB04, TBG+02, Ano93a, Ano93c, D+95, DM12, IEE94e, NS16, ZAT+07]. Tekniska [Eng00]. Telegraphic [ES11]. TELMAT [BR94]. Temperature [Hin11]. Template [GS97, PKB06]. Templates [BN12, KH15]. Tennessee [PR94b]. Terabyte [KTJT03]. Terabytes [IEE02, teraflops [KTJT03]. Terms [KD12]. Tessellation [SS09]. Test [SNMP10, TG09, AAAA16, CPR+95, GL92]. Testbed [Mat01b, EGH99, PY95]. Testing [CCK12, DKF94b, DLLZ19, Ost94, VdS00, CMV+94, DFK93]. Testsuite [WCC12]. Texas [ACM06a, IEE94b, IEE95l, IEE97c, Y+93]. Text [LTR00, MM01, RLL01, RTL99]. Textbook [Ano98]. Textual [KWS96]. Texture [HE15]. TFETI [SHHC18]. TH [CFDL01]. TH-MPI [CFDL01]. Thakur [Ano00a]. Their [Bru12, GOM+01, RG18, GSMK17]. Theorem [Sut96]. Theory [GK10, BW12, CBH94]. Thera [CD01]. Think [HCA16]. Third [BPG94, Bos96, DSM94, GA96, IEE94g, SIi96, Was96, BDL96, Mal95, IEE97c]. Thirty [Y+93]. Thirty-seventh [Y+93]. Thousands [PZKK02, BMS+09]. Thread [AELGE16, BB18, ETW99, GOM+01, GT07, Nit00, Pla02, STY99, HK09, IDS16, JKN+13, SPH96, SLN+12, YZ14]. Thread-Level [AELGE16, HK09, YZ14]. Thread-Safe [Pla02]. Thread-safety [GT07]. Threaded [BBG+10, MG15, Ada98, EBG01, SCB15, SVC+11, TSY99, TSY00]. threaded-MPI [SVC+11]. Threading [BHV12, MLGW18, STB04, TBG+02, WMK+19, KPO00, KRi13, QB12, ZAT+07]. Threads [CP98, LD01, Lee06, BS01, DJJ+19, MVT96, ALW+15]. Three [Car07, GA96, Nao05b, Ram07, SAS01, GSMK17, LSSZ15, Mar05, PR94c]. Three-dimensional [GAM96, LSSZ15, PR94c]. Three-level [Nao05b]. Throughput [SSLW10, Tso07, ESB13, PP16]. Tightly [SS01]. Tightly-Coupled [SS01]. Tilewise [KS15b]. Time [BCL00, DLLZ19, FHK01, FSSD17, GSHL02, GOM+01, HO14, KFL05, MFTB95, OP98, SCL01, SS96, TSP95, UP01, YGH+14, AL96, ASB18, CDMS15, DLRR94, DM12, Fer04, FLB+05, FKLB08, GB94, HE13, JE95].
KC94, KPL+12, LHLK10, LBB+16,
LYSS+16, LM13, MMW96, NZZ94, ŌN12,
OdSSP12, PTMF18, QC1HCC17, Ran07,
SBW91, SSB+16, SK92, SRK+12, TSY99,
Tho94, TVV96, TCBV10, Uhl95c, VM94,
YSVM+16, YSM+17, ZWZ+95, SKD+04.

time-dependent
[DM12, LBB+16, LYSS+16, ŌN12, SSB+16,
YSVM+16, YSM+17].
time-domain
[HE13, NZZ94, Ram07, VM94].
time-independent [CDMS15].
Time-Varying [DLLZ19, Uhl95c].
times
[MLVS16, NB96, SSS99].
timing [Ols95].
tips [Fer04].
TLM [SC96a].
TM
[GGCM99, GC1GS98, KHS01].
TN
[DT94, BR94].
TOD [GPC+17].
TOD-Tree [GPC+17].
today [IEE94c].
Toepitz
[BV99, BA08].
Tolerance
[GKP97, RL04, LMRG14, LNLE00, RPM+08,
TSI2a, WC09, Wil03, SG05, ZHK06].
Tolerant
[BBC+02, BCH+03, BHK+06,
CF01, CFDL01, FD00, FDB01a, FBVD02,
FD02a, FD04, GFB+03, IEE95c, JSH+05,
MSF00, BCH+08, FDB01b, FD02b, HG12,
LMG17, LS08, NCB+12, NCB+17, PKD95].

Tomographic [Pat93].
tomography
[FWS+17, RCF96].
tomorrow [IEE94c].
Tool
[An001b, Beg93b, BMFT96b, DW02,
GSM+01, KAMAMA17, KJS14, KKP01,
LMRG14, MMSW02, MK04, NE98, SR96,
SGL+00, Tri12b, VBB18, WL96a, AGG+95,
BDP+10, Beg92, Beg93e, Beg93a, BDY99,
BMFT96a, BW+12, CPR+95, DFK94a,
FSTG99, HPR+95, HD11, LCC+03,
MdSAS+18, RMS+18, TSS98, WL96b,
WL96b].
Tool-Set [WL96a].
Toolbox
[An07, Bra97].
Toolkit
[An012, LC07, LL13, SL96].
Tools
[ABC+00, BDG+91, BDG+93, BG96a,
BDL98, BoFBW00, Cha05, CDDL96, DT94,
EV01, GMPD98, MHC94b, MCLD01,
PKB01, STMK97, Vos03, Wan97, AVA+16,
BDG+92a, BF1M99, Fan98, GFB95, LH98,
MSW+05, MHC94a, ZL96].

Tools-supported [CDD+96].
Top
[AHP01, Gal97, Hus01, Man01, PTH+01b,
Ser97, BCBR99, PTH+01a, SSC96, SCL97,
CCHW03].
TOP-C [CCHW03].
ToPe
[JKM+17].
topologies
[BCM+16, MK00].
Topology
[DK06, Hat98, HM01, Tra02a,
GJMM18, HRR+11, MBBD13, SPK+12].
topology-aware [MBBD13].

Topology-Based [HM01].
TOPPER
[KKP01].
Toronto
[GGCGS98, KHS01].

Tower
[DDD10, SSE12, HCL05, LME09, NCB+17].

Tools
[An03].

Trace
[Ne90, FLP18].
trace-based [FLPG18].

Traceback
[dOSMM+16].

Tracefiles
[FCP+01].
Traces
[CC17, MANR09, WM01,
CDMS15, DWM12].

Tracing
[CGLD01, DP94, KG96, CG93, Mor95, SGS95].

Tracking
[GAP97, HD02b].
trading
[IEE94c].

Traffic
[HH94].

Traffic-based
[ACMR14, KLR16, HP11,
Uhl95c, Zem94].

Transient
[BGS02].

Transistor
[An003].

Transition
[MACV00].

Transitive
[CB16].

Translating
[Mar09, NCB+12].

Translation
[DDL00, SSE12, HCL05, LME09, NCB+17].

Translator
[KM16, UZC+12, CHK15, GScF13].
transmit
[WWZ+96].

Transmitter
[CCK+95, IF+16, NPP+00c, RVKP19,
SLZ99, LFS93a, LFS93b, LF11,
NPP+00a, SOA11].

Transmptly
[CB16].

Transport
[KH01, RS97, VRS00, WR01,
ZZ04, Pri14, SH94, SCJH19, WH96].

Transporter
[Bha98].

transpose
[Bha98].

Transposition
[HD02b].
Transputers [ACDR94, AGR+95b, dCH93].
Transtech [Ste94, trap
[LBB+16, SSB+16, YSVM+16]. TRAPPER
[KFSS94, SSKF95]. travel [SSS99].
travel-times [SSS99]. traveling [GM94].
traversing [BDG+92b]. TreadMarks
[LDCZ97]. Tree [DAD19, GPC+17, ADB94,
AB13, BCAD06, CG93, SGS95, Zah12].
Trees [CDPM03, GFJT19]. Trends
[Duv92, IEE93d, MBS15, JPTE94, SGDM94, Sun96].
Triangle [SL94a, SA11]. Triangular
[Hog13, MRB17]. triangulated [Dab19].
tricks [Fer04, LK14]. Tridiagonal
[DALD18, DAD19, DR18, VLMPS+18].
Triolo [RJDH14]. Trivandrum [IEE96a].
Troy [SS96]. truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].
TSUBAME [NS12]. Tsukuba [SHM+10].
traversing [BDG+92b]. TreadMarks
[LDCZ97]. Tree [DAD19, GPC+17, ADB94,
AB13, BCAD06, CG93, SGS95, Zah12].
Trees [CDPM03, GFJT19]. Trends
[Duv92, IEE93d, MBS15, JPTE94, SGDM94, Sun96].
Triangle [SL94a, SA11]. Triangular
[Hog13, MRB17]. triangulated [Dab19].
tricks [Fer04, LK14]. Tridiagonal
[DALD18, DAD19, DR18, VLMPS+18].
Triolo [RJDH14]. Trivandrum [IEE96a].
Troy [SS96]. truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].
TSUBAME [NS12]. Tsukuba [SHM+10].
traversing [BDG+92b]. TreadMarks
[LDCZ97]. Tree [DAD19, GPC+17, ADB94,
AB13, BCAD06, CG93, SGS95, Zah12].
Trees [CDPM03, GFJT19]. Trends
[Duv92, IEE93d, MBS15, JPTE94, SGDM94, Sun96].
Triangle [SL94a, SA11]. Triangular
[Hog13, MRB17]. triangulated [Dab19].
tricks [Fer04, LK14]. Tridiagonal
[DALD18, DAD19, DR18, VLMPS+18].
Triolo [RJDH14]. Trivandrum [IEE96a].
Troy [SS96]. truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].
TSUBAME [NS12]. Tsukuba [SHM+10].

Tricks [Fer04, LK14]. Tridiagonal
[DALD18, DAD19, DR18, VLMPS+18].
Triolo [RJDH14]. Trivandrum [IEE96a].
Troy [SS96]. truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].
TSUBAME [NS12]. Tsukuba [SHM+10].

Two [ERS95, ERS96, HS94, IEE95c, MMH93].
Twenty-Eighth [ERS95]. Twenty-fifth
[IEE95c]. Twenty-Ninth [ERS96].
Twenty-Sept [MMH93]. Two [CM98, STY99, SJK+17a, SJK+17b, YM97, AGR+95b, AL93,
ADLI03a, ADLL03b, CB11, ED94, HAJK01,
MSP93, dIAMCFN12]. Two-Dimensional
[SJK+17a, SJK+17b, AL93]. Two-layer
[dIAMCFN12]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].

Two-Phase [SJK+17a, SJK+17b, AL93]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].

Two-Phase [SJK+17a, SJK+17b, AL93]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].

Two-Phase [SJK+17a, SJK+17b, AL93]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].

Two-Phase [SJK+17a, SJK+17b, AL93]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].

Two-Phase [SJK+17a, SJK+17b, AL93]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].

Two-Phase [SJK+17a, SJK+17b, AL93]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].

Two-Phase [SJK+17a, SJK+17b, AL93]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].

Two-Phase [SJK+17a, SJK+17b, AL93]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Cha05, DKM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].
[USE94, USE95]. **User**

[AD98, ACDR94, BDG+91a, CHD07, CD01, CDND11, DKD05, D*91, DHHW02, DHHW93a, DLM99, DKP00, DLO03, FCLG07, GBD+94, GN95, KGRD10, KCP+94b, KOW97, Kra02, KK04, LKD08, MC94, MTWD06, NPP+00c, Nov95, NC95, Per96, RWD09, TBD12, XF95, ZWZ05, Ano95b, BBB+94, BDW97, KCP+94a, RSC+15, Reu01, Wil94, BBH:::13a].

User-Level [DHHW92, DHHW93a, KOW97, NPP+00c, XF95, ZWZ05, KCP+94a, BBH:::13a].

Users [Ara95, CHD09].

uses [SH96].

Using [AR01, ADRCT98, AHP01, And98, AP96, Ano95b, AKE00, AZG17, AB93a, BST+13, BPMN97, BG95, BS93, BKG02, BM97, Bon96, BBC+00, BBH12, CGC+11, CRE99, CMI03, CP97, CSPM+96, CjvdP08, CC17, Che99, CCM97, CDM93, CCHW03, CRGM14, CT94a, CCBPGA15, CD98, DeP03, DARG13, DAK98, DGJM93, DGH+19, EM02, ESM+93, ESM+94, EK97, FAFD15, FD04, FTVB00, FS93, GGCM99, GCGS98, GT99, GM95, G97, GS96, GMPD98, GHL97, GN97, GL94, GLT99, GLS99, GLT00b, GLT00a, HB96b, HSMW94, H9j8, HLP11, HT08, HRS97, HT01, IO0K, ID94, IKM+01, JFGRF12, JPP95, KB98, KOI01, KKV01, KS96, KA13, LLRS02, LTR00, LRT07, LTRA02, LY93, LLY93, LZ97, LAF97, MK17, MT95, MPM04, MR12, MSCW95, MR97, MB97, MS97, NO02b, NIO+02, NIO+03, Neu94].

Using [NH95, NA01, OM96, OCY+15, OWSA95, PW98, PPT96c, POL99, PT01, Per99, Pet97, PBK00, PD98, PGF18, Pus95, QRMG96, QMGR0, RR00, Re03, RRL01, RLVRGP12, RLL01, RRG+99, SAS01, Sev98, SSAS12, SP99, SA93, Sni93a, SBR95, STV97, SMOE93, Sta95b, ST17, SKH96, SCL01, SJK+17a, SJK+17b, TS12a, TS02, TS03, TK16, TBB12, Th98, Tra98, Tsu07, VLO+08, WO95, Wal01a, WJ12, WLR05, Wis97, Wis01, WMC+18, WLYC12, YKW+18, ZBd12, van97, vdLJR91, vdP17, AMHC11, ASAK19, AK99, ABF+17, AL96, ADT14, ABG+96, AB93b, AGIS94, AGG+95, BV99, BCF99, BCF92c, Bec95, Bi04, BCM+16, BCF+17, BCD96, BFD95, BAG17, BSH15, BMG07, CPM+18, CG93, CBM+08, CBYG18, CDGM96, CS14, CLBS17, CT94b, C00b, DG95, DMK19, DS13]. **using** [DRUE12, DOSF11, DCH02, DM12, EGDK92, FB96, FSV14, FSC+11, Fin94, Fin95, FHC+95, FWS+17, GGCG99, GSKM17, G909, Go02, GFB+14, GMU95, GM18, GRTZ10, HB96a, HDDD90, HTJ+16, HP11, HPS+96, HPLT99, HASn00, Hol95, HLO+16, HAA+11, JIM+05, IM95, IM+02, JL18, JF95, JKOH8, JLS+14, JPY+03, JIM+11, JPT14, JR10, JMDVG+17, KFA96, KRKS11, KY10, Kat93, KJ+16, KR09, KM16, KME99, KMC96, KMC97, KRC17, KMM15, KD13, KPK13, LP00, LS12, LSSZ15, LCY96, LSVW08, LCMG17, LO96, MMR99, MP95, Mar06, MCMC15, MAB05, McK94, MM11, Mic93, Mic95, MRH+96, MMM13, MSML10, MS95, MM14, MC99, MW1+10, NO02a, Nak05a, NZZ94, NB96, NAJ99, NU05, OKM12, OIH10, Ols95, OHG19, Pat93, PDY14, PGdCJ+18, PSV19, PNOV1, PKE+10, QRG95]. **using** [RJC95, RAS16, RCF96, RBA17, RM99, RCG95, SHLM14, SDM10, SLGZ99, SG95, S999, S900, SIA11, SVC+11, SSGF00, SFLD15, SS94, SU96, SP11, Sp18, TC94, TPLY18, Tsu95, UH94, UH95b, UH96, VM94, VB99, VGS14, VM95, WO96, Wal01b, WSC+13, WCVR96, WST95, WMRR17, WMR19, WADC99, W96, WYLC12, XF95, YULMTS+17, YWC11, YWC15, YCA18, ZWH95, ZSK15, ZAT+07, ZZ95, Ano95c, Ano00a, Ano00b].

UT [Hol12]. **UTE** [JF95]. **Utilising** [SC96a]. **Utilities** [CC95]. **UV2** [TW12]. **UVM** [NSLV16].
V [JB96, BBC+02, BHK+06]. V2 [BCH+03]. VA [Sin93, RP95]. Vacancy [HD02b].
Vaidy [Ano95b, NMC95]. Validation [BDV03, GLB00, WCC12, CMV+94, SCB14, SCB15]. Value [vHKS94, AL96, LSR95, OHG19, SP11, SD99]. Value-based [vHKS94]. valued [Str12]. VAMPIR [BHNW01, NAW+96].
[SCSL12]. Vector [AKL16, DS13, Fuj08, KDT+12, LL16, Uhl95c, ER12, FVLS15, FJ+14, GL96, GL97c, Har94, Har95, HE15, PM2M16, XXL13]. Vectorization [IKM+01, MCP17, IKM+02, Str12]. Vectorized [KB13]. vectors [AAAA16]. Vegas [Ano94c]. Vehicle
verteilter [GBR97]. VGRIDSG [AB93a]. VIA [Sei99, FKKC96, BHW+12, CGZQ13, DS96b, FLPG18, GB06, Hos12, HCL05, LAdS+15, LSSZ15, NPP+00c, QHCC17, SLJ+14, Sti94, VBLvdG08, YPZC95, ZJGW18, ZLL+12, EM02, RR01]. VIA/SCI [RR01]. viable [Ano03]. Victoria [IEE95e]. Video [KSJ95, KSJ96]. videogames [YMYI]. Vienna [BH95, TBD12, Ben95]. View [ZDR01, ZDR04]. ViMPIOS [Sto98]. VinaMPI [ESB13]. ViPIOS [Sto98]. Virginia [JEE92, JEE94a, Sie92a, Sie92b]. VirtCL [YWTC15]. Virtual
[ACM96a, AS92, ARL+94, BJ93, BP99, BS93, BG94b, CHD07, D+91, EGR15, Fis01, GBD+94, Gie01, Gre94, JPP95, KNT02, KKD03, KKD04, KKD05, LKD08, LK10, MTW06, NM95, Nov95, NMC95, Pat93, Per96, QRG95, RWD09, SSSS, Sei99, SCSL12, TY14, Tsu07, Wel94, YC98, ARS89, AL92, Ano95b, BR91, BDG+91a, BHC94, BHC99, Bir94, BDL96, BCM+16, BFM96, BHW97, BB95b, CARB10, Cav93, Cha96, CD01, CXB+12, DDS+94, DM93, DKD05, DLM99, DKP00, DLO03, DFZ97, ESB13, FM90, Hol95, KMC97, Kra02, LG93, MN91, MRH+96, NB96, PRS16, Sch94, SK92, SCC96, SL00, WK08a, WK08b, WK08c, AGIS94, Sei99]. virtual-time [SK92]. Virtualization [FC05, MGL+17, Ott94, YSS+17, ZLP17, CPM+18, RSC+15, SIRP17]. Virtualized [EGR15, YWCF15, RNP13]. viruses [Str94]. viscoelastic [HK94, MAIVAH14]. viscosity [ZZG+14]. viscous [RM99]. Vision [KCR+17, JRM+94]. VISPAT [HPS95]. Visual
[BBC+02, BCH+03]. Voltage [KFL05, FKL08]. Volume [Ano99a, Ano99c, Ano99b, Ano99d, DLLZ19, DFN12, GHLL+98, SOHL+98, BHW+12, WST95].
Volumes [GAP97, SOA11]. Volumetric [KA13, CLBS17, KGB+09]. Voodoo [PMZM16]. VOOM [BR91]. VORD [KSJ14]. VR [DBA97]. VRML [ACM96a, NM95, KSJ95, KSJ96]. VRML-Based [KSJ95, KSJ96]; vs [FH98, AFGR18, BCH+08, Luo99, Nak05b]. VTC [NU05]. VTDIRECT95 [HWS09, SWH15]. VxWorks [YGH+14]. Varying [ACM05, LCK11]. Wailea [ERS96, HS94, MMH93]. Vaknaghat [CGB+10]. Walker [Ano96a, Ano99a, Ano99b, Nag05]. Vamp [NB96]. wall-clock [NB96]. walls [JAT97]. VAMM [BCLN97]. Wang [KO14, Kom15]. Warehousing [DERC01]. Warp [SB10, HKO011, MMW96, VSW+13]. WARPED [MMW96]. WARPmemory [SF905]. Washington [B+05, BS94, IEE93c, IEE94h, IEE95k, OSt94]. watching [JLG05]. water [HTHD99, R+92, dAMC11, dAMCFN12]. Waterman [KDSO12, RGB+18]. Watzek [NAJ99]. Wave [BBC+00, EMO93, ESM+94, NSLV16, SMOE93, Ge94, KM10, KEGM10, Ma01, NB96, RMNM+12]. Wave-Particle [NSLV16]. Waveform [LSR95]. Wavelet [UH94, UH95b, ZEM94, VdLR11, UH95a, UH95c]. Way [Vog13, FT96]. ways [CZ96], weak [SD16]. Weather [AHP01, HE02, Bjo95, KOS+95a, Ma01]. web [CHKK15, AASB08, NE01, PES99, Wal01b]. Web-Based [NE01, PES99]. WebCL [CHKK15]. WebCom [OPM06]. WebCom-G [OPM06]. Wednesday [B+05]. Weicheng [Ano95b, NMC95]. weight [KA95]. welcomes [Str94]. West [EV01, EdS08]. Westin [IEE94e]. We've [GKP97]. WG10.3 [DR94]. WG2.5 [Boi97]. Wheeler [NTR16]. where [KC94]. which [SH96]. Whippetree [SKB+14]. Wide [FGG+98, DOSMM+16, FT96, KHB+99]. Wide-area [FGG+98, FT96]. WIEN [Gao03]. Will [CB00]. Williamsburg [IEE92]. Win32 [MS98]. windows [QB12, RG+18, ANO99, FG+97, GGGC99, PS01a, SFG98, SSSS97, TAHI01]. Windows95 [SSSS96]. Winona [Ano94h]. wireless [Bon96]. Wissenschaftliche [MS04]. Wissenschaftliches [Ano94c]. without [BW12, P lat2, YLS13], WLAN [MSOR01], WMPI [BPSt01, MS98, MS99, MS99c, PS01a, SMS00]. WOMPAT [Cha05, Ev01, V03]. Woolfong [GN95]. Work [HRSA97, Pet00a, Pet00b, OsS12, TCBV10]. work-stealing [TCBV10]. Worker [EML00, YG96]. Worker-Based [YG96]. Work in progress [FB98]. Workflow [LYZ13]. Workforce [Livol]. Workgroup [SDB+16]. Working [Ano98, Boi97, MCS00, Pet01, DR94]. Workload [AGS97, DBVF01, PS19]. Workloads [AFGR18, CC17, LWZ18, APBcF16, AVA+16, SKB+14]. Workplace [Ano97, Bra97]. Workqueuing [VLvdG08]. Workshop [ACM98a, Aprg95a, BPG94, Bha93, BC00, Cha05, CGZ+08, CGKM11, CMMR12, DW94, DT94, EV01, ED08, Fer92, FK95, FF95, HK93, HK95, IE93d, IE93f, IE94d, IE95h, IE96g, IFI95, KG93, Kuh98, Kum94, Msc90, PBG+95, PBPT95, SCR92, SHM+10, Sch93, V03, Was96, AH95, BS94, Cal94, D+95, DMW96, FR95, GL95a, IEE93f]. Workshops [MCdS+08]. Workstation [GHL97, HSMW94, KS96, LC97a, MFTB95, Psu95, YK+96, AB95, ALR94, BLP93, BsvdG91, BRs92, BALU95, BW+96, CCU95, DGG95, ED94, GBF95, Heb93, JRM+94, LL95, NWM93, NNN95, PM95, PL96, RBS94, RCFS96, SC96a, SSN94, SL95, THM+94, Tsu95, UH96, YWO95, ZHS99, MS04].
workstation-cluster [Heb93].
Workstation-Cluster [MS04].
Workstations
[AR01, BL94, BL95, BM97, BDH+95, BDH+97, BMS94b, DDPR97, EK97, GS91b, HIP02, IDD94, Liu95, LHZ98, MSCW95, MM01, OWSA95, FFG97, TQDL01, VLO+08, AL93, BJ95, BID95, Bru95, BMPZ94b, BMS94a, BMPZ94a, CCF+94, Coe94, DZ98a, DOSW96, GM94, GMU95, HK94, Hus99, KMC96, KMC97, KA95, MK94, MM03, RRG+99, SFO95, SR95, TDB00, dCH93].
World [CMMR12, CJNW95, FD00, GHH+93, HLPI1, MC94, NSLV16, PSB+94, Wit16, dGJM94, GDB+93, JR10]. Worlds
[Rab98]. wormhole
[Pan95a, Pan95b, RJMC93, ZGN94]. wormhole-routed
[Pan95b, RJMC93, ZGN94]. worms
[Pan95a]. WoTUG [MC94]. WoTUG-17
[MC94]. WPVM [ASCS95, BPMN97]. Wrapping
[AS14]. Wrapping [LRW01]. Write
[BIC+10]. Write-Back [BIC+10].
Writing [FAF16, SDB94, FNSW99].
Written [KaM10, KNH+18]. WWW
[KSJ95, KSJ96].

X [Bad16, FWS+17]. X-ray [FWS+17].
X10 [CGH+14]. X11 [GKL95]. x86
[MGL+17]. Xab
[Beg92, Beg93b, Beg93c, Beg93a]. Xen
[FRS16]. Xeon [CBIGL19, DSGS17, MMADA19, OTK15, BB18, MTK16]. XPVM
[KG96]. XXI [EGH+14].

YLC [Gal97]. YMP [BL94]. Yorkshire
[CJNW95].

Zero [SWHP05, Hin11]. Zero-Copy
[SWHP05]. ZEUS [FF95]. Zipcode [WL94, AAC+05]
SSD+94]. zonal [Fin94, Fin95]. Zone
[JCH+08, AGMJ06]. zum [Wer95]. zur
[GBR97, Sei99].

References

AlQuraishi:2016:CBP

Agullo:2017:BGB

Almasi:2005:DIM
G. Almási, C. Archer, J. G. Castaños, J. A. Gunnels, C. C. Erway, P. Heidelberger, X. Martorell, J. E. Moreira, K. Pinnow, J. Rat-

[AB93b]

Akzhalaova:2008:WPL

[AASB08]

Arth:1993:CUA

[AB93a]

Aloisio:1995:UPW

[AB95]

Augusto:2013:APG

Ayguade:2010:EOS

Adhianto:2000:TOA

Agosta:2015:OPP

Appiani:1995:PSI

Appiani:1995:PSM

Aliaga:2017:CTP

Arbenz:1996:MDS

Abrahart:1996:GIC

Adhianto:2007:PMC

Alvanos:2017:PMM

Ayguade:2009:DOT

Arnold:1994:PCT
[ACDR94] D. Arnold, R. Christie,
REFERENCES

Acacio:2002:MDM

ACGdT02

Alexandro:1997:PMC

ACGR97

Agullo:2011:QOM

ACM:1990:PA

ACM90

Andersch:2012:PPE

ACJ12

Andersch:2012:PPE

ACM:1990:PA

ACM90

Andersch:2012:PPE

ACM:1990:PA

ACM:1994:CPI

ACM:1995:PAS

ACM:1995:SAA

ACM:1996:SVR

ACM:1996:FCP

ACM:1996:SCP

ACM:1997:PPS

REFERENCES

REFERENCES

[ADLL03a] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Xiaoey S. Li. Impact of the implementation of MPI point-to-point communications on the performance of two general sparse solvers. Report TR/PA/03/14 and RR-4372 and LBNL-48968 and RT/APO/01/4, CERFACS, Toulouse, France, 2003. ???.

[ADMV05] Rocco Aversa, Beniamino Di Martino, Nicola Mazzocca, and Salvatore Venticinque. A hierarchical distributed-shared memory

[Aversa:2005:PPT]

[Alexandrov:1998:CGP]

[Azimi:2018:SVS]

REFERENCES

Ayguade:1995:DUA

Aityan:1995:PFI

Averbuch:1994:PES

Arbenz:1996:SRP

Ayguade:2006:ENO

Agrawal:1995:PIW

REFERENCES

Almeida:1995:CST

Alfaro:1997:FDW

Alnuweiri:1995:PHF

Astalos:2000:CMS

Agathos:2012:TBE

Awan:2017:CCD

Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi, and Dhabaleswar K. Panda. S-Caffe: Co-designing MPI runtimes and Caffe for scalable deep learning on modern GPU clusters. ACM SIGPLAN Notices, 52(8):193–205, Au-
Ahmad:1997:EVP

Allsopp:2001:EUM

Aversa:1997:MDP

Aguilar:1997:PMS

Aubrey-Jones:2016:SMI

Alexandrov:1999:PMC

REFERENCES

REFERENCES

[AMHC11] Ankit Agrawal, Sanchit Misra, Daniel Honbo, and

Ayguade:1999:EML

Amato:1994:PEP

anMey:2007:NPO

Al-Mouhamed:2015:EAO

Aversa:1994:PSH

Andersson:1998:PFT

U. Andersson. Parallelization of a 3D FD-TD code for the Maxwell equations using MPI. Lecture Notes in
REFERENCES

Anonymous:1989:PFC

[Ano89]

Anonymous:1992:PSE

[Ano92]

Anonymous:1993:ATA

[Ano93a]

Anonymous:1993:ISA

[Ano93b]

Anonymous:1993:JFI

[Ano93c]

Anonymous:1993:MMP

[Ano93d]

Anonymous:1993:MPI

[Ano93e]

Anonymous:1993:PSE
REFERENCES

[Ano94f] Anonymous, editor. Parallel processing comes of age: real applications from industry and commerce: Seminar...
REFERENCES

Anon:1994:PSE

Anon:1994:SCC

Anon:1994:SQC

Anon:1995:CCS

Anonymous:1995:BRPb

Anonymous:1995:BRU

Anonymous:1995:RSS

Anonymous, editor. Reservoir simulation: 13th Symposium — February 1995,
Anonymous:1995:UPH

San Antonio, TX, Papers — Society of Petroleum Engineers of AIME. Society of Petroleum Engineers, Richardson, TX, USA, 1995. ISBN ???? LCCN ????

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In 3rd CLIPS conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ???? LCCN ????

Anonymous:1996:BRMh

Anonymous:1996:IPP

Anonymous:1996:PPA

Anonymous:1996:RP

Anonymous:1997:TNR

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from

Anonymous:1999:BRMa

Anonymous:1999:BRMf

Anonymous:2000:BRUd

Anonymous:2001:AAL

Anonymous:2001:EDP

Anonymous:2003:MNIc

Anonymous. Micro news: IBM ups the ante in silicon transistor speed; new benchmark suite based on high-performance computing applications, MPI and OpenMP [SPEC HPC2002]; EU OKs Hitachi, Mitsubishi

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

Aji:2016:MEA

Aji:2016:MAA

AlHaddad:2001:UNW

Mohammed Al Haddad and Jerome Robinson. Using a network of workstations to enhance database query processing performance. *Lecture Notes in Computer Sci-
REFERENCES

Arabnia:1995:TRA

Altas:1994:NIE

Abrossimov:1989:GVM

Al-Refaie:2017:PAH

Addison:2003:OIA

REFERENCES

Al-Refaie:2017:PCT

Al-Salman:1992:DIP

Awile:2014:PWF

Alonso:1997:PBB

Al-Shorman:2019:UPP

Aydin:2018:RTP

Alves:1995:WPC

Thara Angskun, Putchong Uthayopas, and Arnon

Andújar:2016:OSF

Asenjo:1995:SLF

Beyer:2005:GEC

Battre:2006:MFP

Bader:2016:EMT

[Bad16] David A. Bader. Evolving MPI+X toward exas-

Becciani:2007:FMH

Bruel:2017:ACC

Baker:1998:MNC

Blaszczyk:1995:PCE

Buyukkececi:2013:POI

Bernabeu:2008:MPA

REFERENCES

Bedrosian:1993:MFA

Beguelin:1994:CMS

Beaumont:1995:DPG

Bunge:1995:MCM

Brunschen:2000:OCP

Bylina:2018:EEO

References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOIs/URLs</th>
</tr>
</thead>
</table>
Brown:2019:LMR

Brorsson:2000:SIE

Blas:2014:RAM

Barton:2006:SMP

Becciani:2006:FMP

REFERENCES

Baraglia:1997:IPW

Bhattacharjee:2011:PLC

Bolis:2016:APA

Baiardi:2000:AMM

Blackford:1997:PEN

acm.org/pubs/citations/journals/toms/1997-23-2/p133-blackford/

REFERENCES

REFERENCES

Bruck:1997:EMP

Browne:1998:RPA

Bode:1996:PVM

Baghsorkhi:2010:APM

Bronevetsky:2007:CFS

Beguelin:1993:XTMb

Beguelin:1993:XAT

Beguelin:1993:XTMa

Bull:2010:PEM

Benkner:1995:VFA

Bencheva:2001:MPI

Benedict:2018:SES

REFERENCES

REFERENCES

openurl.asp?genre=article&
issn=0885-7458&volume=
38&issue=5&page=418.

REFERENCES

Broquedis:2012:LEO

Bronevetsky:2009:CAC

Balasubramanian:2015:EGL

Bhanot:2005:OTL

REFERENCES

Bischof:2008:PRM

Butler:2000:SPM

Beisel:1997:EMD

Brune:1997:HMP

Breitenecker:1995:ESC

REFERENCES

REFERENCES

1996. CODEN DAMADU. ISSN 0166-218X (print), 1872-6771 (electronic).

[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral parallelizer and locality optimizer. *ACM SIG-

REFERENCES

REFERENCES

Bekas:2002:PCP

Berk:2013:CPC

Boryczko:1995:NIC

Bull:2000:PPJ

Beaunon:2014:VVO

REFERENCES

Bubak:1998:PCL

Bendrider:1995:SME

Beazley:1997:EMP

Bubak:1999:TPR

Baraglia:1993:PWC

Bach:2013:LQB

REFERENCES

Bhandarkar:1997:CRP

Booth:2000:SSM

Basumallik:2002:TOE

Buntinas:2003:IES

Bronevetsky:2003:AAL

Bubak:1994:PDS

M. Bubak, J. Mosciniski, M. Pogoda, and W. Zdechlikiewicz. Parallel distributed 2-D short-range molecular dynamics on net-
REFERENCES

Bubak:1994:EMD

Bubak:1994:FLG

Bubak:1994:IPL

Barthels:2017:DJA

Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten Hoeffer. Distributed join algorithms on thousands of

Booth:2001:OML

Borkowski:1999:LVC

Boszormenyi:1996:PCT

Brebbia:1993:ASE

Berthou:1998:PHM

Barbosa:1999:ADM

REFERENCES

Beletsky:1994:OPV

Becks:1994:NCT

Barbosa:1997:EUW

Baptista:2001:IOS

Balou:1991:DIV

Burrer:1994:RRB

C. Burrer and P. Remy. RUBIS: a runtime basic interface software on TELMAT T9000 TN series. In de Gloria et al. [dGJM94], pages 63–78. ISBN ???? LCCN ????.
Bernardi:1995:CCE

Bernaschi:1995:PEI

Bernaschi:1995:DRP

Bane:2002:EOA

Boeres:2004:ETF

Bergstrom:2012:NDP

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Barth:1993:CNM

Bolding:1994:PCR

Beguelin:1996:TMD

Brightwell:1996:DIM

Blikberg:2001:NPA

Blikberg:2005:LBO

Brown:2007:HSP
Russell Brown and Ilya Shaparov. High-scalability parallelization of a molecular modeling application:
REFERENCES

REFERENCES

[Benzoni:1991:MFR]

[Blaszczyk:1996:EPI]

[biewski:2001:MOS]

[Bu:2001:PAC]

[Bonelli:2017:MCA]

[Badia:1999:SIT]
REFERENCES

[Baltas:1994:CPC]

[Berendsen:1995:GMP]

[Baskaran:2012:ACO]

[Berg:2012:FCL]

[Blum:1996:PIP]

[Bureddy:2012:OGM]

[Bihari:2012:CIT]
Barna L. Bihari, Michael Wong, Amy Wang, Bronis R.

[Car07] Santiago Garcia Carbajal. Parallelizing three dimensional cellular automata with OpenMP. Parallel Processing Letters, 17(4):349–361, December 2007. CODEN PPLTEE. ISSN 0129-
REFERENCES

6264 (print), 1793-642X (electronic).

theory: a distributed memory parallel implementation.
Journal of molecular structure. Theochem, 121:97–107,
December 1994. CODEN THEODJ. ISSN 0166-1280
(print), 1872-7999 (electronic).

Coronado-Barrientos:2019:ANF

[CBIGL19] E. Coronado-Barrientos,
G. Indalecio, and A. Garcia-
Loureiro. AXC: a new
format to perform the
SpMV oriented to Intel
Xeon Phi architecture in
OpenCL. Concurrency and
Computation: Practice and
Experience, 31(1):e4864:1–
e4864:??, January 10, 2019.
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).

Casas:2010:APD

[CBL10] Marc Casas, Rosa M. Badia,
and Jesús Labarta. Automatic phase detection and
structure extraction of MPI applications. The Interna-
tional Journal of High Performance Computing
CODEN IHPCFL. ISSN 1094-3420
(print), 1741-2846 (electronic). URL
http://hpc.
sagepub.com/content/24/
3/335.full.pdf+html.

Che:2008:PSG

[CBM+08] Shuai Che, Michael Boyer,
Jiayuan Meng, David Tar-
jan, Jeremy W. Sheaffer,
and Kevin Skadron. A perfor-
man study of general-
purpose applications on
graphics processors using
CUDA. Journal of Par-
allel and Distributed Com-
puting, 68(10):1370–1380,
October 2008. CODEN
JPDCER. ISSN 0743-7315
(print), 1096-0848 (elec-
tronic).

Chapman:2002:APU

[B. Chapman, F. Bregier,
P. Patil, and A. Prabhakar.
Achieving performance under OpenMP on ccNUMA
and software distributed shared memory systems.
Concurrency and Compu-
tation: Practice and Ex-
perience, 14(8-9):713–739,
July/August 2002. CODEN
CCPEBO. ISSN 1532-0626
(print), 1532-0634 (elec-
tronic). URL
http://www3.
interscience.wiley.com/
cgi-bin/abstract/95016122/
START;
http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=95016122{\&}PLACEBO=
IE.pdf.

Clay:2018:GAP

[M. P. Clay, D. Buaria,
P. K. Yeung, and T. Go-
toh. GPU acceleration of a petascale application
for turbulent mixing at high Schmidt number us-
ing OpenMP 4.5. Computer
Physics Communications,
REFERENCES

Chapple:1995:PUL

Cormen:1999:PBP

Couturier:2000:PMD

Cardoso:2010:MSO

Chen:2017:AAG

Jian Chen and Russell M. Clapp. Astro: Autogeneration of synthetic traces using scaling pattern recognition for MPI

REFERENCES

171–216, Spring 1995. CODEN CMSYE2. ISSN 0895-6340.

Collingbourne:2012:STO

Costa:2006:ROA

Chen:2012:PUA

Ciglaric:2019:OLP

Clematis:1997:DNL

Chamaret:1995:PFE

Coulaud:1996:EIP

Cunha:1998:MPP

Cotronis:2001:RAP

Clemencon:1996:THM

Cao:2013:CHP

Conforti:1996:PIA

REFERENCES

REFERENCES

[Cotronis:2011:RAM]

[CDP99]

[Chaussumier:1999:ACM]

[Coll:2003:SHB]

[Cappello:2000:MVM]
Clemencon:1995:AEP

Chau:2007:MIP

Cerin:1999:DMP

Chen:2001:TMK

Choudhary:1994:LCR

Choudhary:1994:LCR

Corbett:1996:OMP

Corbett:1996:OMP

Choudhary:1994:LCR

Corbett:1996:OMP

P. Corbett, D. Feitelson,
REFERENCES

Clauser:2019:FFO

Cotronis:1996:ECP

Clematis:1995:PPH

Chandrasekharan:1993:RTB

N. Chandrasekharan and V. Goel. Ray tracing and binary tree computations using PVM. In Mudge et al. [MMH93], pages 104–105 (vol. 2). ISBN 0-8186-3230-
5. LCCN ???? Four volumes. IEEE catalog number 93TH0501-7.

[Cali02] Alejandro Calderón, Félix García, Jesús Carretero, Jose M. Pérez, and Javier Fernández. An implementation of MPI-IO on expand: a parallel file system based on NFS servers. Lecture Notes in Computer
REFERENCES

Camp:2011:SIU

Carter:2010:PLN

Clarke:1994:MMP

Cunningham:2014:RXE

Carpenter:2000:MML

Catanzaro:2011:CCE

Calore:2016:PPA

Chapman:2011:OPE

Chatterjee:1993:GLA

Caubet:2001:DTM

Chan:1998:PCT

[K. J. Chan, A. M. Gibbons, M. Pias, and W. Ry}
REFERENCES

Toward more scalable offline simulations of MPI applications.
CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

[CASANOVA:2015:TMS]

[CGU12] José María Cecilia, José Manuel García, and Manuel Ujaldón.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer.com/chapter/10.1007/978-3-642-28151-8_17/.

[Cecilia:2012:CSC]

[CGZQ13] Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin.
Improving the reliability of MPI libraries via message flow checking.
CODEN ITDSEO. ISSN 1045-9219.

[Chen:2013:IRM]

A portable debugger for parallel and distributed programs.
In IEEE [IEE94h], pages 723–732. ISBN 0-8186-6607-2, 0-8186-6605-6,
0-8186-6606-4. ISSN 1063-9535. LCCN QA76.5 .S894 1994. IEEE catalog number 94CH34819.

[Cheng:1994:PDP]

[CH96] Paolo Ciancarini and Chris Hankin, editors.
Coordination languages and models: First International Conference COORDINATION ’96,
Cesena, Italy, April 15–17, 1996: proceedings, number 1061 in Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1996.
LCCN QA76.58.I52 1996.

[Ciancarini:1996:CLM]

[Cha96] B. Charny.
Matrix partitioning on a virtual shared memory parallel machine.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Chergui:1999:UPP

Cheng:2010:BRBb

Cho:2010:OPP

Cook:1995:TAS

Clark:1998:FOP

Chabbi:2019:MAA

Chen:2003:GMD

Cornelis:2017:HAV

Corbacho-Lozano:1999:EDD

Cantoni:1995:CCA

Chen:2018:FOB

Chien:1999:DEH

Chandra:2007:ESP

Chang:2016:APC

REFERENCES

Campanai:1994:EAS

Chapman:1999:EOF

Chalkidis:2011:HPH

Coelho:1994:EHC

Cooperman:1995:SBP

G. Cooperman. STAR/MPI: binding a parallel library to interactive symbolic algebra systems. In Levelt [Lev95], pages 126–132. ISBN 0-
REFERENCES

Gene Cooperman. STAR/MP: Binding a parallel library to interactive symbolic algebra systems. In Leve

sagepub.com/content/18/3/327.full.pdf+html.

L. M. R. Carvalho and J. M. L. M. Palma. Parallelization of a CFD code using PVM and domain decom-

J. L. Cercos-Pita. AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL. Computer Physics Communications, 192(??):295–312, July 2015. CODEN CPHCBZ. ISSN

REFERENCES

13–23, May 1996. CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).

Cavenaghi:1996:UPS

Carreira:1995:DEL

Chevitarese:2012:STN

Ciegis:1997:NID

Ciegis:1999:HDA

Calotoiu:2012:PID

Cote:1994:PSA

REFERENCES

Chang:2013:PDS

Cao:2011:OMM

Chao Cao, Yun wen Chen, Yuning Wu, Erik Deumens, and Hai-Ping Cheng. OPAL:
REFERENCES

Cui:2012:OOB

Cui:2012:OOB

Cavender:1995:APN

Chengqing:1996:WIP

Czarnul:2002:DTI

Czarnul:2003:PTA

Czapinski:2013:EPM

Czech:2016:IPC

Chapman:2008:PPM

Dongarra:1991:UGP

Dongarra:1995:HPC

Daberdaku:2019:ACT

REFERENCES

REFERENCES

Didelot:2012:IMC

Didelot:2014:IMC

delCuvillo:2006:LOC
REFERENCES

[DeP03] C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. Comp. 2(??):821–832, 2003. CODEN ????

Figueiredo:2019:MOP

Demaine:2001:GCM

Deshpande:1994:ADN

Diaz:2012:CCF

DAmbral:1995:CBC

Dinan:2014:ECC
James Dinan, Ryan E. Grant, Pavan Balaji, David Goodell, Douglas Miller, Marc Snir, and Rajeev Thakur. Enabling communication concurrency through flexible MPI endpoints. *The International Journal of
REFERENCES

DiNapoli:1997:DCA

Dinan:2012:EMC

Dongarra:2019:PPL

deGloria:1994:TAS

Dongarra:1993:UPR

Dongarra:1993:IPF

Jack Dongarra, G. A. Geist, Robert Manchek, and V. S. Sunderam. Integrated PVM framework supports heterogeneous network computing. Computers in Physics, 7
REFERENCES

[dH94]

[DHHW93b]

[DHHW92]

[DHP97]
REFERENCES

[176]

[DK02] Suchuan Dong and George Em. Karniadakis. Dual-level parallelism for deterministic and stochastic CFD prob-

[DiSerio:2002:ENN]

[Denis:2019:SPT]

[Karniadakis:2002:DLP]
REFERENCE

REFERENCES

0167-739X (print), 1872-7115 (electronic).

Damodaran-Kamal:1993:NTD

Damodaran-Kamal:1994:MSR

Damodaran-Kamal:1994:TRP

Dongarra:1992:PFS

Dongarra:2000:RAP

Dickens:2010:HP1

REFERENCES

REFERENCES

[DMB16] Roshan Dathathri, Ravi Teja Mullapudi, and Uday Bondhugula. Compiling affine loop nests for a dynamic scheduling runtime on shared and distributed memory.
REFERENCES

[DMW96] Jack J. Dongarra, Kay Mad-sen, and Jerzy Wasniewski, editors. Applied parallel computing: computations in physics, chemistry, and engineering science: second international workshop, PARA ’95, Lyngby, Den-

[Don06] Edans Flavius de Oliveira Sandes, Guillermo Miranda, Xavier Martorell, Eduard Ayguade, George Teodor, and Alba Cristina Magalhaes Melo. CUDAalign 4.0: Incremental speculative traceback for exact chromosome-wide alignment in GPU clusters. IEEE Transactions on Parallel and Distributed Systems, 27(10):2838–2850, October 2016. CODEN ITDSEO. ISSN
REFERENCES

[DPSD08] Lisandro Dalcín, Rodrigo Paz, Mario Storti, and Jorge
REFERENCES

184

Dou:1997:ISV

Decker:1994:PEM

Dowaji:1995:LBS

DiMartino:1997:MDH

Davina:2018:MCP

Deuzeman:2012:LMP

REFERENCES

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES

Deniz:2016:MGM

Duran:2005:RAP

Dang:2017:ECB

Dietrich:2017:CBA

REFERENCES

/ww.sciedirect.com/science/article/pii/S0164121215002940

REFERENCES

[DWL+10] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson,
and Jack Dongarra. From CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming. LAPACK Working Note 228, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, September 6, 2010. URL http://www.netlib.org/lapack/lawsppdf/lawn228.pdf. UTCS-10-656.

Du:2012:COT

Deshpande:2012:AGC

Dong:1996:SPL

Deng:2006:PIK

Dantas:1996:ILB

Dantas:1998:ESM

REFERENCES

Delves:1998:HPF

Dragovitsch:1995:PPS

Dykes:1994:CCP

Edmonds:2019:HAS

Edjlali:1995:DPP

Elwasif:2001:AMT

[ED94] M. J. Eppstein and D. E. Dougherty. A comparative study of PVM work-

REFERENCES

References

2. Exbrayat:1997:OPS

3. Eberl:1999:PCP

5. Eigenmann:2000:TMPa

Espinosa:2000:APA

Ewing:1993:DCW

Engquist:2000:SVG

Emani:2015:CDM

Ebner:1996:TFP

Espinosa:1999:REB

REFERENCES

REFERENCES

REFERENCES

Faraji:2018:DCG

Fabeiro:2016:WPP

Fabeiro:2015:AGO

Fang:1998:DDL

Freeman:1994:SMM

Fang:1995:PMS

Fang:1996:SPP

REFERENCES

Floros:2005:TGS

Falzone:2007:PMF

Ferschweiler:2001:CDP

Filgueira:2012:DCD

Fagg:1996:PIP
REFERENCES

Fagg:1997:HMAb

Falch:2017:RAM

Ferrari:1998:JNPb

Ferrari:1998:JNPa

Fernando:2004:GGP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
References

Fan:1995:DMP

Fachat:1997:IEB

Andre:1998:BVN

Friedley:2013:OPE

Franke:1995:AA

Field:2001:RTF

REFERENCES

[Franke:1994:MMP]

[Franke:1995:MIS]

[Franke:1994:EIM]

[Franke:1994:MEI]

[Fang:1999:PMD]

[Fin94]

[Fin95]
Samuel A. Fineberg. Implementing multidisciplinary and multi-zonal applications using MPI. *Frontiers of*
REFERENCES

Fink:2000:IMC

Fischer:2001:SAN

Fernandez:2000:UPM

Forejt:2017:PPA

REFERENCES

(Feng) 2014: SBS

(Flower) 1994: EJM

(Ferenczi) 1995: PAH

(Fischer) 2001: DNM

(Field) 2002: OSR

REFERENCES

REFERENCES

Filipovic:2015:OCC

Ferretti:2015:MCH

Fan:2017:SEE

Ferenc:1999:VMK

Femminella:1994:PBP

Ford:1995:NNN

[For95] Brian Ford. The new NAG numerical PVM library (or A new parallel numerical library based on PVM). In IFIP Working Group 2.5 [IFI95], page ?? ISBN ?? LCCN
REFERENCES

Foster:1998:GEM

Freeman:1992:PNA

Faraj:2008:SPA

Ferreira:1995:PAI

Franke:1995:MPEa

Fritscher:1993:PDC

Ferrari:1995:TDC

REFERENCES

REFERENCES

REFERENCES

Gonzalez:2000:PAM

Gao:2003:LSP

Galaktionov:1997:MST

Gates:1995:PFI

Gonzalez-Alvarez:2017:HMO

Gupta:1994:CTE

Ghosh:1996:ELM

Gorlatch:1998:GMI

Geist:1994:PPV

Gentzsch:1995:STP

Golebiewski:1999:HPI

Gerstenberger:2014:EHS

Robert Gerstenberger, Maciej Besta, and Torsten Hoeßler. Enabling highly-scalable remote memory access programming with MPI-3 One Sided. *Scientific
References

Gerstenberger:2018:EHS

Gabriel:1997:EMU

Edgar Gabriel, Thomas Beisel, and Michael Resch. Erweiterung einer MPI-Umgebung zur Interoperabilität verteilter MPP-Systeme. (German) [Extension of an MPI environment for interoperability with distributed MPI systems]. Studienarbeit ange wandte Informatik RUS 37, Rechenzentrum Universität Stuttgart, Stuttgart, Germany, 1997.

Garain:2015:CCF

Graham:2007:OMH

Grove:2005:CBP

REFERENCES

REFERENCES

G. Al Geist. Building a foundation for the next PVM: Petascale Virtual Machines.
REFERENCES

[GEW98] Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprintreihe des Chemnitzer SFB 393 Sonderforschungsbereich Numerische Simulation auf Massiv Parallel Rechnern 97,08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998.

Gabriel:2005:EDC

Gomez-Folgar:2018:MPA

Gueunet:2019:TBA

Gravvanis:2012:SFD

Giordano:1999:IBP

Garzon:1999:PIE

[GGH99] A. Godlevsky, M. Gazak,

Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??.

REFERENCES

Ghosh:2012:RAA

Grebe:1993:TAS

Goumopoulos:1997:PCS

Gropp:1998:MCR

Gong:2012:OCN

Garcia:2011:KRR

Robert Granat and Bo Kagstrom. Parallel solvers for Sylvester-type matrix equations with applications in condition estimation, Part I: Theory and algorithms. *ACM Transactions on Mathematics-

Grasso:2013:APS

Granat:2009:NPQ

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

Geist:1997:CPF

Geist:1997:BPW

G. A. Geist, J. A. Kohl, P. M. Papadopoulos, and
REFERENCES

Gopalakrishnan:2011:FAM

Garland:2012:DUP

Gropp:1994:MCL

Gropp:1995:DPM

Gropp:1995:IMM

Gropp:1995:MMI

W. Gropp and E. Lusk. The MPI message-passing interface standard: Overview and status. In Dongarra et al. [D+95], pages 265–270. ISBN 0-444-82163-
REFERENCES

5. ISSN 0927-5452. LCCN QA76.88.H55 1995.

Gropp:1995:EIS

Gropp:1996:HPM

Gropp:1997:SMC

Gropp:1997:WPM

Gropp:1999:RMM

Gropp:2002:MG

REFERENCES

0272-1732 (print), 1937-4143 (electronic).

REFERENCES

REFERENCES

7533-0. LCCN QA76.642 M67 1996.

Gillich:1995:FPP

Genaud:2007:PMP

Grabowsky:1997:MBK

Lothar Grabowsky. MPI-basierte Koppelrandkommunikation und Einfluss der Partitionierung im 3DFall. (German) [MPI-based coupled edge communication and influence of partitioning in 3D-Fall]. Preprint-Reihe des Chemnitzer SFB 393 97,17, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1997. 13 pp.

Gravvanis:2009:OBP

Grengbondai:1994:CPU

Greenfield:1995:OPS

J. Greenfield. An overview of the PVM software system. In IEEE [IEE95d], pages 17–23. ISBN ???? LCCN ????

Gropp:2000:RCD

REFERENCES

Gropp:2002:BLC

Gropp:2002:MNS

Gropp:2012:MBW

Gonzalez:1999:PPM

Gutierrez:2010:QCS

Gaito:2001:ADC

Gittens:2019+AAS

Geist:1991:ENB

Geist:1991:PSS

G. A. Geist and V. S. Sunderam. The PVM system: Supercomputer level concurrent computation on a heterogeneous network of workstations. In Stout and Wolfe [SW91], pages 258–
REFERENCES

Gardner:2013:CCE

Gine:2002:ALT

Gerlach:1997:ECS

Gonzalez:2000:AIT

Germanas:2017:HUP

REFERENCES

1156:259–269, ???. 1996. CODEN LNCS09. ISSN 0302-9743 (print), 1611-3349 (electronic).

Gidra:2015:NGC

Guang:2016:NMN

Gallardo:2018:EMM

Ge:1995:DHA

Guerrero:2014:PCM

Hadjidoukas:2010:NOP

REFERENCES

208, June 2010. CODEN PPLTEE. ISSN 0129-6264
(print), 1793-642X (electronic).

[HA11] Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: High-level GPGPU
programming. IEEE Transactions on Parallel and Distributed Systems, 22(1):78–
90, January 2011. CODEN ITDSEO. ISSN 1045-9219
(print), 1558-2183 (electronic).

[Hussain:2011:PIA] Masroor Hussain, Muhammad Abid, Mushtaq Ahmad, Ashfaq Khokhar, and Arif
Masud. A parallel implementation of ALE moving mesh technique for FSI
717–745, December 2011. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640

[HAJK01] Jay Hoeflinger, Prasad Alavilli, Thomas Jackson, and Bob Kuhn. Producing scalable
performance with OpenMP: Experiments with two CFD applications. Parallel

1995.

processing: First International EURO PAR Conference, Stockholm, Sweden,
August 29–31, 1995: proceedings, number 966 in Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
QA76.58.I553 1995.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hadi:2013:CFA

Havran:2015:EBT

Hebek:1993:CPC

Herland:1998:CML

Huang:2009:EGO

Hempel:1994:MSM

Hempel:1996:SMM
R. Hempel. The status of the MPI message-passing standard and its relation
REFERENCES

REFERENCES

LCCN QA76.73.F25 H367 2013.

REFERENCES

REFERENCES

Hong:2011:ACG

Hori:2012:EKL

Hasanov:2017:HRC

Hu:2000:ONS

Haque:2017:CCL

Hung:2016:EBP

REFERENCES

4326–4338, November 2016. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Hong:1996:RDM

Hawick:2010:PGC

Hawick:2011:RLS

Huband:2001:DTB

Hilbrich:2009:MCC

Hakula:1994:FEM

H. Hakula, J. Malinen, P. Kallberg, and P. Valve. The finite element method applied to the exterior Helmholtz problem on the IBM SP-1. In Dongarra and Wasniewski [DW94],

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PLDI ’12 proceedings.

Hadjidoukas:2005:OEM

Hawick:2011:HSL

Hidalgo:1999:MMP

Hadjidoukas:2002:MOI

Hariri:1995:STE

Hondroudakis:1995:PEV

Heckathorn:1996:SSP

REFERENCES

Haeuser:1994:RNS

Heimel:2013:HOP

Hormati:2012:SPS

Hu:2001:PCC

Howes:2008:U

Ha:2008:NBP

Hluchy:1999:GWF
REFERENCES

[Huse:2001:LST] Lars Paul Huse. Layering SHMEM on top of MPI.
REFERENCES

Hamidouche:2016:CAO

Houzeaux:2011:HMO

Hookestra:1995:CPP

Hager:2011:IHP

Huang:2002:DDD

He:2009:AVS

Hwang:1997:EMC

Huang:2013:ACM

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP

IEEE:1991:PSA

IEEE:1992:PSH

IEEE:1993:DPC

IEEE:1993:PSI

IEEE:1993:PIS

IEEE:1993:PFW
IEEE:1993:PSP

IEEE:1993:WHP

IEEE:1994:FSP

IEEE:1994:IPN

IEEE:1994:OOE

IEEE:1995:PEW

IEEE:1995:PIC

IEEE:1995:PSP

IEEE:1995:PFI

IEEE:1995:PNA

IEEE:1996:ICH
REFERENCES

IEEE:1996:EIS

IEEE:1996:FSS

IEEE:1996:PIS

IEEE:1996:PPI

IEEE:1996:PFE

IEEE:1996:PSI

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1997:TIS

IEEE:2002:STI

IEEE:2005:IPD

Iida:2016:GET

IFI95

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Jesús A. Izaguirre, Scott S. Hampton, and Thierry Matthey. Parallel multigrid summation for the N-body
REFERENCES

Ishizaka:2000:CGT

Ilie:2016:AEC

Satake:2012:OGA

Imamura:2000:ASM

REFERENCES

Jesshope:1993:LR

Jesshope:1993:MCA

Jann:1995:AMP

Johnson:2012:FOL

Jin:2000:AGO

Jackson:1997:SYE

Jog:2013:OCT

Jambunathan:2018:COB

Jost:2005:WMP

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

(Ohmsha). ISSN 0925-4986. LCCN ????

Joldes:2014:SSH

Joubert:1994:PCT

Jost:2010:EUIH

Jimenez:2013:BCA

Judd:1994:PIV

Jin:2013:PCU

REFERENCES

Jung:2005:DIM

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M^3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ???.

Jaaskelainen:2015:PPP

Ju:1996:SPT

Jin:1995:LTP

Kumar:1995:MWD

Kepner:2004:M

Kumar:2013:GAI

Krawezik:2002:SOV

Krone:1996:ICF

Kanal:2012:PAI

REFERENCES

Katamneni:1993:PPE

Karlsson:1998:CCC

Kaiser:2001:OCC

Kruzel:2013:VOI

Kabir:2002:DIS

Klemm:2009:RTM

[Michael Klemm, Matthias Bezold, Stefan Gabriel,

Kulkarni:2016:HAP

Knies:1994:SLL

Kitowski:1997:CPM

Kannan:2016:HPP

Ke:2004:RCM

Klemm:2007:JIO

Kanal:2012:MMC

Krotkiewski:2013:ESC

Kang:2018:PRS

Klingebiel:1995:COD

Klingebiel:1995:CPO

Kakimoto:2012:PCG

Klemm:2012:EOV

Komatitsch:2010:HOF

Kepner:2005:PPM

Kale:1996:PMD

Kappiah:2005:JTD

Kramer-Fuhrmann:1994:TGP

Kowalik:1993:SPC

[KH10] Seongnam Kwon and Soon-hoi Ha. Serialized parallel code generation framework

[KH10] Seongnam Kwon and Soon-hoi Ha. Serialized parallel code generation framework

Khanna:2013:HPN

Kielmann:1999:MMC

Kallenborn:2019:MPC

www.sciencedirect.com/science/article/pii/S0010465518302790

Kucukboyaci:2001:PPT

Kjolstad:2012:ADG

Kojima:2017:HLG

Kikuchi:1993:PAS

Kranz:1993:IMP

Kwon:2012:HAO

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Krysztop:2002:IFP

Kronbichler:2019:FMF

Kranzlmuller:2004:RAP

Dieter Kranzlmüller, Péter Kacsuk, and Jack J. Dongarra, editors. *Recent Advances in Parallel Virtual Machine and Message Passing Interface: 11th Eu-
REFERENCES

Kranzlmüller:2005:RAP

Kranzlmüller:2003:RAP

Kee:2003:POP

Kwon:2008:RPP

Kim:2011:ASC

Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a sin-

Liao:2011:DEM

Liao:2006:SDI

Liao:2007:CCS

Kumar:2019:FOP

Klawonn:2015:HMO

Kutyniok:2016:SFD

REFERENCES

Kono:2018:EOV

Kasprzyk:2002:APV

Komura:2014:CPG

Kambites:2001:OLI

Kasahara:2001:ACG

Komura:2015:OPS

Koniges:2000:ISP

Kauranne:1995:OHM

Konuru:1997:MUL

Kermarrec:1996:PDS

Y. Kermarrec and L. Pautet. Programming distributed systems with both Ada 95 and PVM. In Toussaint [Tou96], pages 206–216. ISBN 3-540-60757-9. ISSN 0302-9743 (print), 1611-
Kuckuk:2013:IPD

Klockner:2012:PPS

Kolesnichenko:2016:CBG

Kuhn:2000:OVT

Kamal:2005:SVT

Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????

Klimach:2009:PCH

Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunaseth:2013:ASD

Kalen tev:2011:CCL

Kranzlmuller:1999:MOM

Kotsis:1996:EEP

REFERENCES

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

Kusano:2000:PEO

Kim:2014:VVF

Kim:2012:OUP

REFERENCES

Kurzyniec:2007:UCA

Kranzlmuller:2001:IRM

Keppens:2002:OPM

Koval:2010:USB

Karonis:2003:MGG

Komatitsch:2003:BDF

Kuhn:1998:FFW

Kumar:1994:PPI

Kranzlmueller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

Kamburugamuve:2018:AML

Kamal:2010:EIN

Kranutz:1996:RFP

Lopez:2002:ESM

Lopez:2006:ESM

Karwande:2005:MPC

Ladd:2004:GPP

Lobéiras:2016:DEI

Lorenz:2015:AMS

[Nuria Losada, George Bosilca, Aurélien Bouteiller, Patricia González, and María J. Martín. Local rollback for resilient MPI applications with application-level checkpointing and message logging. Future Generation Computer Systems, 91(??):450–464, February 2019. CODEN FGSEVI. ISSN 0167-
Laughton:1996:BHP

Ling:2012:HPP

Lewis:1993:PCP

Luecke:1997:HPF

Li:2007:DIV

[LC07] Kuan-Ching Li and Hsun-Chang Chang. The design and implementation of visual performance monitoring and analysis toolkit for cluster and Grid environments. The
REFERENCES

Luecke:2003:MCT

Liddell:1996:HPC

Lathrop:2011:SPI

Lashuk:2012:MP

Losada:2017:RMA

Nuria Losada, Iván Cores, María J. Martín, and Patricia González. Resilient MPI applications using an application-level checkpointing framework and ULFM. The Journal of Supercomputing, 73(1):100–113, Jan-
REFERENCES

January 2017. CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

Liu:1996:BMP

Lee:2001:APT

Lu:1997:QPD
[LDCZ97] Honghui Lu, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. Quantifying the performance differences between PVM and TreadMarks. Journal of Parallel and Distributed Computing,
REFERENCES

Levesque:1993:SAA

Lim:2011:ATC

Leon:1993:FPA

Leon:1993:FPP

Loyot:1993:VVM

Lee:1999:PEJ

REFERENCES

REFERENCES

Lu:1998:ONW

Li:1996:SIS

Liu:1995:WCD

Livny:2000:MYW

Lastovetsky:2010:RAP

LaSalle:2014:MBD

Lastovetsky:2008:RAP
Alexey Lastovetsky, Tahar

URL http://www.springerlink.com/content/978-3-540-87475-1.

[LkLC+03]

[LKJ03]

[LKYS04]

[Li:2003:PNH]

[Luecke:2004:PSM]

Larsen:1999:SPG

Luo:2013:MLP

Lee:2009:OGC

Losada:2017:ARV

Lopez:2015:PBV

Losada:2014:EAL

Lee:2015:OPE

Louca:2000:MFP

Lima:2012:PEO

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic). URL http://

[LO96] E. J.-L. Lu and D. I. Okunbor. Parallel implementation of 3D FMA using MPI. In

iospress.metapress.com/app/home/contribution.

project.org/doc/Rnews/.

[LR06a] Alexey Lastovetsky and Ravi Reddy. HeteroMPI: Towards a message-passing library for heterogeneous networks of computers. Jour-
REFERENCES

[Latham:2007:IMI] Robert Latham, Robert Ross, and Rajeev Thakur. Implementing MPI-IO atomic...

Li:2001:WMB

Luckow:2008:MFT

Lin:2010:TLS

Lashgar:2015:CSR

Levesque:2012:HEA

Luecke:2004:PSS

Lin:2018:CHM

Liu:2011:CBA

Lumsdaine:1995:WIM

Li:2015:AMR

Liu:2008:AMD
Lazzarino:2002:PBP

Langr:2014:APP

Laohawe:2000:PDT

Lee:2002:IPC

Lazar:1994:SRE

REFERENCES

[LW97] T. Ludwig and R. Wisemuelle. OMIS 2.0 — a

Liu:2004:HPR

Laguna:2019:GPD

Liang:2018:FMP

Li:1993:MSU

Lopes:2019:FBD

Loncar:2016:OOM

Vladimir Loncar, Luis E. Young-S., Srdjan Skrbić, Paulsamy Muruganandam, Sadhan K. Adhikari, and Antun Balaz. OpenMP,

Lu:2013:WGA

Luecke:2002:DDM

Li:2017:PCO

Li:2018:COM

Shigang Li, Yunquan Zhang, and Torsten Hoefer. Cache-oblivious MPI all-to-all communications based on Morton order. *IEEE Transactions on Parallel and Distributed Systems*, 29(3):542–
REFERENCES

Miguel:1996:APN

Maffei:1994:SSD

Moreno:2001:AEP

Mainland:2012:EHM

Molero-Armenta:2014:OOI

Malyshkin:1995:PCT

Malfetti:2001:AO

Mirvis:1995:HML

Manchek:1994:DIP

REFERENCES

Marowka:2007:PCD

Marowka:2009:BCT

Mehta:2006:MSG

Mattson:1994:PEP

Mattson:1995:PEP

Mattson:2000:BOF

Mattson:2000:IO
REFERENCES

Matson:2001:EO

Matuszek:2001:APS

Marongiu:2012:OCE

Mattson:2003:HGO

Mourao:2000:SSC

Marongiu:2012:OCE

Muller:2012:SOA

REFERENCES

Ma:2013:KA

Min:2003:OOP
getfile/4773/33/5/abstract.htm; http://ipsapp007.kluweronline.com/content/1

Mehl:2015:RTC
REFERENCES

2015. ISBN 3-319-22996-6, 3-319-22997-4 (e-book). 317
(est.) pp. LCCN QA71-
90; TA329. URL http://
www.springerlink.com/
content/978-3-319-22997-
3.

Miles:1994:PTO

Roger Miles and Alan
Chalmers, editors. Progress
in Transputer and occam Re-
search, WoTUG-17 Proceed-
ings of the 17th World occam
and Transputer User Group
Technical Meeting, April 10–
13, 1994, Bristol, UK, vol-
ume 38 of Transputer and
Occam Engineering Series.
IOS Press, Postal Drawer
10558, Burke, VA 2209-0558,
USA, 1994. ISBN 90-5199-
163-0. LCCN ????

Medeiros:1998:IPM

P. D. Medeiros and J. C.
Cunha. Interconnecting
PVM and MPI applications.
Lecture Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic).

Morrison:1999:FPP

J. P. Morrison and R. W.
Connolly. Facilitating par-
allel programming in PVM
using condensed graphs. In
Dongarra et al. [DLM99],
pages 181–188. ISBN 3-540-
66549-8 (softcover). ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

Maier:2017:OLD

Andrew J. Maier and
Bruce F. Cockburn. Op-
timization of low-density
parity check decoder perfor-
ance for OpenCL de-
signs synthesized to FPGAs.
Journal of Parallel and Dis-
tributed Computing, 107(?):;
CODEN JPDCE. ISSN
0743-7315 (print), 1096-0848
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0743731517301004.

Malinowski:2018:SIP

Artur Malinowski and Pawel
Czarnul. A solution to image
processing with parallel
MPI I/O and distributed
NVRAM cache. Scalable
Computing: Practice and
Experience, 19(1):1–14, ????
2018. CODEN ???. ISSN
1895-1767. URL https://
www.scpe.org/index.php/
scpe/article/view/1389.

Massaioli:2005:OPA

Federico Massaioli, Filippo
Castiglione, and Massimo
Bernaschi. OpenMP par-
allelization of agent-based
models. Parallel Computing,
31(10–12):1066–1081, Octo-
ber/December 2005. CO-
DEN PACOEJ. ISSN
0167-8191 (print), 1872-7336
(electronic).
REFERENCES

McDonald:1996:NNP

Mueller:2008:OSM

McK94

Moore:2001:RPA

Moreira:2017:FCR

McRae:1992:VC

Mierendorf:2000:WMB

Hermann Mierendorff, Kläre Cassirer, and Helmut Schwamborn.

Marin:2017:ERF

Monteiro:2018:EGC

Matheou:2017:DDC

Muller:2009:EOA

Megson:1998:CRH

Milovanovic:2008:NEE

Moody:2003:SNB

Martin:1995:DPC

Mintchev:1997:TPM

Mehta:2015:MTP

Mendonça:2017:DAA

Mehta:2012:SPE

Muralidharan:2015:COP

Medvedev:2005:OMA

Montella:2017:VCB

Mazzariol:1997:PCS

REFERENCES

McDonald:2000:TPA

Mohror:2004:PTS

Manwade:2017:DFA

Maheo:2012:AOL

Markus:1996:PEM

Min:2001:PCO

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2002:PSL

Michailidis:2003:PEL

Marathe:2007:SCC
Jaydeep Marathe and Frank Mueller. Source-code correlated cache coherence characterization of OpenMP

Michailidis:2011:PDM

Morishima:2014:PEG

Mironov:2019:EMO

Mudge:1993:PTS

REFERENCES

Bernd Mohr, Allen D. Mal-

Matuszek:1999:BPG

Martin:1996:WTW

Midorikawa:2005:PNM

Mork:1995:DPP

REFERENCES

Manke:1995:MPP

Martin:2004:HPA

MPIForum:1998:SIM

Muller:1996:CDI

Martins:2012:PDC

Meister:2017:PME

Mo:1996:IOP

REFERENCES

Mininni:2011:HMO

Mazzo:2000:TPP

Mazzeo:2001:TPP

Menden:1996:PPP

Marinho:1998:WMP

Mierendorff:1999:PMB

H. Mierendorff and H. Schwamborn. Performance modeling based on PVM. In Dongarra et al. [DLM99], pages 75–82. ISBN 3-540-66549-8 (softcover). ISSN 0302-9743
REFERENCES

Migliardi:1999:PEH

Mourao:1999:IMO

Macias:2002:SEA

Mahinthakumar:2002:HMO

Mertens:2004:CCP

Mysliwiec:1997:IPS

Molnar:2010:APM

Macias:2001:PPA

Matrone:1993:LPC

Mysliwiec:1997:CAM

Martins:1998:JIW

Martorell:2005:BGP

Mossaiby:2017:OIH

Miei:1996:IER

Mallon:2016:MUB

Momeni:2015:EEO

Mohr:2007:SPE

Mohr:2006:RAP

Bernd Mohr, Jesper Larsson Träff, Joachim Worringen,

MVTP96 G. Manis, C. Voliotis, P. Tsanakas, and G. Papakonstantinou. Enhancing PVM with threads in distributed programming. In Liddell et al. [LCHS96],
Muller:2010:SMA

Mehra:1995:AIM

Morton:1995:LLP

Maleki:2016:HOT

Sepideh Maleki, Annie Yang, and Martin Burtscher.

Maly:1993:DCP

Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

Nagle:2005:BRM

Nicolescu:1999:PW

Nakajima:2003:PIS

Kengo Nakajima. Parallel iterative solvers of GeoFEM with selective blocking preconditioning for nonlinear contact problems on

[NBG08] C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ???. LCCN ???.

Neophyto: 2001:NDW

Neophyto: 1998:NDJ

Neophyto: 1998:NDJ
Nelson:1993:PPP

Neugebauer:2017:PAR

Nesterov:2010:SPT

Neun:1994:UPB

Neyman:2000:CDA

Nordling:1994:SOD

Nunez:2010:NTS

REFERENCES

Novotny:1995:BRA

Nupairoj:1995:PES

Nishitani:2000:IEO

Nakajima:2002:PIEb

REFERENCES

Naumenko:2016:ACT

Nascimento:2007:DDS

Nadal-Serrano:2016:PSC

Nukada:2012:SMG

Neuberger:2012:MIS

Nandivada:2013:TFO

V. Krishna Nandivada, Jun Shirako, Jisheng Zhao, and

REFERENCES

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Oed:1993:CRM

Ong:2000:PCL

Owaida:2015:EDS

Muhsen Owaida, Gabriel Falcao, Joao Andrade, Christos Antonopoulos, Nikolaos Bellas, Madhura Purnaprajna, David Novo, Geor-

REFERENCES

Oh:2012:MOO

Oakley:1995:ADR

Orlando:2005:PSP

Oldehoeft:2002:SIS

Ong:2001:SUC

References

Ong:2002:MRS

OBrien:2008:SOC

Olivier:2010:COO

ODowd:2006:WGM

Orlando:2000:MDT

OP98
S. Orlando and R. Perego. An MPI-based run-time sup-

Olivier:2012:OTS

Oliveira:2012:CCO

Overeinder:1997:BCD

Ostrand:1994:PIS

Obrecht:2015:PEO

Otto:1993:PAC

Otto:1994:PVM

Otto:1992:MAP

Ouenes:1995:PRA

Pacheco:1997:PPM

Pereira:2017:SBC

Panda:1995:GRW

Panda:1995:IDE

Panda:2014:GAM

REFERENCES

www.computer.org/csdl/
trans/td/2014/10/06587715-
abs.html.

[Par93] I. Parsons. Evaluation of distributed communication sys-
tems. In Gawman et al.
[GGK+93], pages 956–970
vol.2. ISBN ???? LCCN
QA76.76.S64 C378 1993 v.1-
2. Two volumes.

Agarwala, Soumyendu Raha,
and Baidurya Bhattacharya.
Performance metrics in a hy-
broid MPI–OpenMP based
molecular dynamics simulation
with short-range inter-
actions. Journal of Par-
allel and Distributed Com-
puting, 74(3):2203–2214,
March 2014. CODEN JPD-
CER. ISSN 0743-7315
(print), 1096-0848 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0743731513002505.

[Pat93] Christopher S. Patterson.
Parametric positron emis-
tion tomographic imaging
using parallel virtual ma-
chine: with an example us-
ing myocardial blood flow
analysis. M.s. thesis, Univer-
sity of Tennessee, Knoxville,
Knoxville, TN 37996, USA,

[PBU12] Tadeusz Puźniakowski and
Marek A. Bednarczyk. To-
wards an OpenCL imple-
mentation of ‘genetic algo-
rithms’ on GPUs. Lecture
Notes in Computer Science,
CODEN LNCS9D. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer.com/chapter/1
10.1007/978-3-642-25261-
7_15/.

[PBC+01] Gavin J. Pringle, Steven P.
Booth, Hugh M. P. Couch-
man, Frazer R. Pearce, and
Alan D. Simpson. To-
wards a portable, fast par-
allel AP3M-SPH code: HY-
DRA_MPI. Lecture Notes
in Computer Science, 2131:
360–??, 2001. CODEN
LNCS9D. ISSN 0302-
9743 (print), 1611-3349
(electronic). URL http:
//link.springer-ny.com/
l ink/service/series/0558/
ibbis/2131/21310360.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/2131/21310360.
dp.

[PBG+95] K. Pingali, U. Banerjee,
D. Gelernter, A. Nico-
lau, and D. Padua, edi-
tors. Languages and com-
piers for parallel computing:
7th International Workshop,

Plazek:1999:IIC

Plazek:2000:SCC

Prasanna:1995:FIP

Puthukattukaran:1994:DIP

Peng:2014:IDI

Poggi:1998:UPD

Agostino Poggi and Giulio Destri. Using PVM to develop a distributed object-

Plimpton:2011:MML

Pawlizcek:2014:VED

Pennington:1995:DHC

Pernice:1996:RPP

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

A. Papagapiou, P. Evripidou, and G. Samaras.
REFERENCES

J. Piernas, A. Flores, and J. M. Garcia. Analyzing the performance of MPI.

Petcu:1997:ISM

Petcu:2000:PDAa

Petcu:2000:PDAb

Piernas:1997:APM

Pharr:2005:GGP

Pjesivac-Grbovic:2005:PAM

Pjesivac-Grbovic:2007:PAM

Pjesivac-Grbovic:2007:MCA

Prabhakar:2002:PCB

Pessoa:2018:GAB

Poirier:2018:DAB

Carl Poirier, Benoît Gosselin, and Paul Fortier. DNA

Pierce:1994:NMP

Papadopoulos:1998:DVS

Park:2005:SOA

Papadopoulos:2001:NRC

Paul:2006:TLF

Prabhakar:2016:GCH

REFERENCES

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

Pruyne:1996:ICP

Plachetka:2002:QTS

Park:2004:DID

REFERENCES

Piriyakumar:2002:EFI

Pfenning:1995:OCP

Piscaglia:1995:DOC

Poulson:2013:ENF

Pirk:2016:VVA

Plagianakos:2001:LCP

Pokorny:1996:CMP

Parrilia:1999:UPD

Pai:2016:CTO

Poplawski:1989:MPP

Park:2001:CSL

Pagourtzis:2001:PCT

REFERENCES

Priimak:2014:FDN

Pena:2014:CEC

Prades:2016:CAX

Javier Prades, Carlos Reaño, and Federico Silla. CUDA acceleration for Xen virtual machines in InfiniBand clusters with rCUDA. *ACM SIGPLAN Notices*, 51(8):

Pedroso:2000:MPC

Protopopov:2000:SMC

REFERENCES

8, 0-444-81989-4. ISSN 0926-5473. LCCN QA75.5.I3785 1994. Three volumes.

Perez:2019:ATO

Peters:2011:FPC

Patrick:2008:CEO

Preissl:2010:TMS

Prieto:1999:PRM

Peng:2014:BAH

DEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

Plunkett:2001:AMD

Pikle:2019:AFE

Pears:2001:DLB

Pai:2013:IGC
REFERENCES

2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

[102x681] 388

Puskas:1995:LBW

Peinado:1997:HPC

Park:2001:PPE

Pahl:1995:CCB

Preissl:2012:CSS

Pang:2016:MKR

Pirkelbauer:2019:BTF

Prasad:1995:PPB

Qiu:2012:P

Qawasmeh:2017:PPR

REFERENCES

REFERENCES

Royuela:2012:ASO

Radhakrishna:1999:MBP

Reeves:1996:PIC

Reinefeld:2001:CDI

Reussner:2001:SSK

Reussner:2003:USD

Roy:2000:MGQ

Alain J. Roy, Ian Foster, William Gropp, Nicholas

A. Wendell O. Rodrigues, Frédéric Guyomarcl’, and Jean-Luc Dekeyser. An MDE approach for automatic code generation...

Rico-Gallego:2015:ILM

Rico-Gallego:2016:EIL

Rivas-Gomez:2018:MWS

Reussner:2001:APP

Roda:1996:PEI

Rizzardi:2017:ATS

Mariarosaria Rizzardi. Algorithm 981: Talbot Suite

Ratha:1995:CUC

Rodrigues:2014:TPS

Robinson:1993:ECD

Rabenseifner:2001:ECF

Ragan-Kelley:2013:HLC

Reyes:2013:PEO
Ruymán Reyes, Iván López, Juan J. Fumero, and Fran-

[Roth:2019:AOC] Ágoston Róth. Algorithm 992: An OpenGL- and C++-based function library for curve and surface modeling in a large class of ex-

[Rauber:2002:LSH] Thomas Rauber and Gudula Rünger. Library sup-

Roda:1997:PPI

Roig:2001:EMM

Robinson:1996:TMI

Russ:1999:UHR

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

A. Reinefeld and V. Sch-
REFERENCES

Roy:1997:PNT

Reano:2015:IUE

Roy:1997:PNT

Reano:2015:IUE

Reano:2019:SIN

Reussner:1998:SDA

Rambu:1995:DSS

Reussner:2002:SCB

Heinrich Riebler, Gavin Vaz, Tobias Kenter, and Christian Plessl. Transparent

Ropo:2009:RAP

Saarinen:1994:EES

Sainio:2010:CGA

Sato:2017:NIT

Saphir:1997:SMI

References

NHSE Review, 2(1):??, November 1997.

for MPI programs. In ACM [ACM04], page 38. ISBN 0-7695-2153-3. LCCN ????

Selikhov:2002:MCC

Schindewolf:2012:WSA

Sani:2014:PDF

Smith:1995:CR

Smith:2004:SIP

Saltz:1991:MRT

REFERENCES

Shyu:1996:ILQ

Schill:1993:DOD

Schneemann:1994:DSS

Schuele:1996:PLA

Schuele:1996:PLA

Schuele:1999:HAP

Schevtschenko:2001:PAS

REFERENCES

Searles:2019:MOA

Song:1997:ALL

Suppi:2000:IOP

Suppi:2001:PCS

Santos:1997:ECP
REFERENCES

Schmitt:2017:SCP

Sandes:2010:CUG

Sistare:1999:MSP

Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??.

Sampaio:2013:DA

Skjellum:1995:EMP

Sack:2002:FMB

Spencer:2015:DLN

Matt Spencer, Jesse Eickholt, and Jianlin Cheng. A deep learning network approach to ab initio protein secondary structure prediction. *IEEE/ACM Transactions on Computational Bi-
REFERENCES

Schenck:2016:EPM

Segovia:2010:PPN

Seifert:1999:ESI

Sept:1993:DIP

Serot:1997:EPF

Sevenich:1998:PPU

Scott:1998:PWN

REFERENCES

0302-9743 (print), 1611-3349 (electronic).

Steuwer:2014:SHL

Sac:2015:CAM

Sunderam:1994:PCC

Schneider:2012:MAC

Solsona:2001:IEI

Saito:2003:LSP

Hideki Saito, Greg Gaertner, Wesley Jones, Rudolf Eigenmann, Hidetoshi Iwashita,

Radim Sojka, David Horák, Václav Hapla, and Martin Cermák. The impact of enabling multiple subdomains per MPI process in the TFETI domain decomposition method. Applied Mathematics and Com-
REFERENCES

Sato:2001:CEO

Shing:1994:UPC

Samadi:2012:AIA

Samadi:2014:LGU

REFERENCES

Shah:2000:FCS

Sato:2001:OGR

IEEE Computer Society
Press, 1109 Spring Street,
Suite 300, Silver Spring,
MD 20910, USA, 1992.
ISBN 0-8186-2772-7. LCCN
QA76.58.S95 1992. IEEE
catalog number 92CH3185-
6.

[Sie94] Howard Jay Siegal, editor.
Proceedings / Eighth Inter-
national Parallel Process-
ing Symposium, April 26-
29, 1994, Cancun, Mex-
ico. IEEE Computer Society
Press, 1109 Spring Street,
Suite 300, Silver Spring,
MD 20910, USA, 1994.
ISBN 0-8186-5602-6. LCCN
QA76.58.I58 1994. IEEE
catalog no. 94CH34819.

[Sil96] P. P. Silvester, editor. Software
to electrical engineering
analysis and design: Third
International Conference on Software for Elec-
trical Engineering Analy-
sis and Design, Electrosoft
'96, Pisa, Italy. Computational Mechanics Publica-
tions, Boston, MA, USA, 1996.
ISBN 1-85312-395-1. LCCN
TK5.159 1996.

SIAM Conference on Par-
allel Processing for Sci-
entific Computing (6th: 1993:
Norfolk, VA, USA). Soci-
ey for Industrial and Ap-
plicated Mathematics, Philadel-
phia, PA, USA, 1993. ISBN
0-89871-315-3. LCCN QA
76.58 S55 1993. Two vol-
umes.

[SIRP17] Federico Silla, Sergio Iserte,
Carlos Reaño, and Javier
Prades. On the benefits of
the remote GPU virtual-
ization mechanism: The rCUDA case. Concurrency
and Computation: Prac-
tice and Experience, 29(13),
July 10, 2017. CODEN CC-
PEBO. ISSN 1532-0626 (print), 1532-0634 (elec-
tronic).

[SIS17] Prateek Sharma, David Ir-
win, and Prashant Shenoy.
Portfolio-driven resource
management for transient
cloud servers. Proceedings
of the ACM on Measurement
and Analysis of Computing
Systems (POMACS), 1(1):
5:1–5:??, June 2017. CO-
DEN ????. ISSN 2476-1249.
URL http://dl.acm.org/
citation.cfm?id=3084442.

[SJ02] Steven J. Sistare and Chris-
topher J. Jackson. Ultra-
high performance commu-
nication with MPI and the Sun
Fire(TM) link interconnect.
In IEEE [IEE02], page ??
ISBN 0-7695-1524-X. LCCN
???? URL http://www.sc-

Steinberger:2014:WTB

Skjellum:2004:RTM

Subramaniam:1996:CLU

Skjellum:1993:SLH

Steinberger:2012:SDS

Spiechowicz:2015:GAM

REFERENCES

Satoh:2001:COT

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV

Skjellum:1995:EAM

Anthony Skjellum, Ewing Lusk, and William Gropp. Early applications in the

Scherer:1999:TAP

Samadi:2014:SPS

Su:2012:CPB

Sloan:2005:HPL

Squyres:1996:CBP

Shires:2002:EHM

D. Shires and R. Mohan. An evaluation of HPF and

Shires:2003:OPF

Simos:2007:CMS

Santos:2012:ICC

Siegel:2008:CSE

Shterenlikht:2015:FC
REFERENCES

2015. CODEN ???. ISSN 1061-7264 (print), 1931-1311 (electronic).

REFERENCES

427

REFERENCES

[Stp:2011:SKB] Przemysław Stpiczynski and Joanna Potiopa. Solving a kind of boundary-value problem for ordinary differential equations using Fermi — the next gen-

Satofuka:1995:PCF

Speck:2019:APP

Shaw:1995:ADA

Skjellum:1996:TTM

Si:2018:D

Sener:1996:DPP

C. Sener, Y. Paker, and A. Kiper. Data-parallel programming on Helios, parallel environment and PVM.
In Yetongnon and Hariri [YH96], pages 2–?? ISBN ?? LCCN ???.

Subramoni:2012:DSI

Silva:1999:DPP

Schmidl:2012:PAT

Saldana:2010:MPM

Squyres:2003:CAL

Sivaraman:1995:PSP

REFERENCES

REFERENCES

Schwarz:2009:GFG

Shan:2012:OAA

Sankaran:2005:LMC

Sataric:2016:HOM

Sotomayor:2017:ACG
REFERENCES

Silva:1996:IDS

Silva:1997:IPD

Silva:1997:IPD

Silva:1995:PCR

Sen:1999:PBD

Stellner:1997:LBB

Santana:1996:PVM

Smyk:2002:AMM

Smyk:2002:OMP

REFERENCES

bibs/2326/23260241.htm;

Steele:2017:UBP

Stals:1995:AMP

Stankovski:1995:MPA

Stephens:1994:PBT

R. Stephens. Parallel benchmarks on the Transtech Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???? LCCN ????

Stellner:1996:CCP

Sterling:2000:SCB

Still:1994:PPC

Schmitz:2008:IIG

Arne Schmitz, Markus Tavenrath, and Leif Kobbelt.

Sunderam:1997:TAS

Stockinger:1998:VPC

Stpiczynski:2002:PPO

Stpiczynski:2018:LBV

Strok:1994:NJI

REFERENCES

REFERENCES

Sunderam:1990:PFPa

[V. S. Sunderam. PVM: a framework for parallel distributed computing. Technical Report ORNL/TM-11375, Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA, February 1990. See also [Sun90b].]

Sunderam:1990:PFPb

Sunderam:1992:CCP

Sunderam:1993:PCC

[V. Sunderam. The PVM concurrent computing system. In Anonymous [Ano93h], pages 20–84. ISBN ???. LCCN ???.]

Sunderam:1994:GPP

Sunderam:1994:MSH

Sunderam:1995:RIH

Sunderam:1996:PSS

Suresh:1995:IOP

Sunderam:1995:RIH
REFERENCES

[SvL99] Steve Sistare, Rolf vandeVaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??.
REFERENCES

REFERENCES

Siegel:2011:AFV

Simmunovic:1995:MIP

Simmunovic:1995:MIP

Thompson:2014:CIC

Takeda:2001:AME

Traff:2014:SPE

Tao:2012:UGA

REFERENCES

(TBCV10) Alexandros Tzannes, George Caragea, Rajeev Barua, and Uzi Vishkin. Lazy binary-splitting: a run-time adaptive work-stealing scheduler. ACM SIGPLAN Notices,

Damien Tromeur-Dervout, Gunther Brenner, David R. Emerson, and Jocelyne Erhel, editors. *Parallel Computational Fluid Dynamics 2011*.

Turchi:1994:SDA

Thakur:2009:TSE

Tian:2005:PCT

Tuncer:2009:PCF

Thakur:2002:ONA
REFERENCES

[Tian:2005:CEN]

[Teijeiro:2019:OPS]

[TTeijeiro:2019:OPS]

[Tian:2005:CEN]

[Teijeiro:2019:OPS]

[Tian:2005:CEN]

[Tian:2005:CEN]
REFERENCES

[TMPJ01] R. Trobec, M.Šterk, M. Praprot-

Theodoropoulos:1996:ESP

Taylor:2017:AOO

Takahashi:1999:IEM

Takahusi:2017:CCC

Tracy:2018:CMC

[TRH00] Jesper Larsson Trå, Hubert Ritzdorf, and Rolf Hempel. The implementation of MPI-2 one-sided communication for the NEC SX-5. In ACM [ACM00], pages 45–

Tahan:2012:UDT

Thibault:2012:AIF

Takahashi:2003:PEH

Takahashi:2002:PEH

Terboven:2012:AOT

Christian Terboven, Dirk Schmidl, Tim Cramer, and Dieter an Mey. Assessing OpenMP tasking implementations on NUMA ar...
REFERENCES

S. V. Ten, V. V. Savchenko, and A. A. Pasko. Time performance evaluation of implicit surface polygonization on distributed systems. In [GN95], pages 183–193. ISBN ???. LCCN ???.

Tsujita:2007:RMP

Tsutsui:2012:AMG

Tang:2000:PTR

Trelles-Salazar:1994:MSS

Theodoropoulos:1997:GSP

Tanaka:2000:PEO

Tellez-Velazquez:2018:CSI

Twerda:1996:PIT

Tourancheau:2001:SMN

Thorson:2012:SUF

Tournavitis:2009:THA

Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F. P. O’Boyle. Towards a holistic approach to auto-parallelization: inte-

[Uhl95a] A. Uhl. Adapted wavelet analysis on moderate par-

REFERENCES

USENIX:2000:PAL

Uehara:2002:MBP

Uehara:2002:MBP

VanKatwijk:1995:AAC

vandeGeijn:1997:UPP

REFERENCES

Vlassov:1995:MEP

Vazquez:1999:PNS

Villaverde:2018:PTI

VanZee:2008:SPF

Vapirev:2015:IRC

vanderLaan:2011:AWL

vanderPas:2017:UON

Ruud van der Pas. U-
REFERENCES

REFERENCES

von Hanxleden:1994:VDF

Viswanathan:1995:PCM

Valero-Lara:2018:CCC

Valencia:2008:PPR

Varadarajan:1994:FDT

Vincent:1995:HPP

REFERENCES

Vogel:2013:BWC

Volkert:1993:PCS

Voss:2003:OSM

VidalMacia:2000:IPM

Vargas-Perez:2017:HMO

REFERENCES

trans/td/2017/10/07895161-abs.html.

[Vaidya:2013:SDO] Aniruddha S. Vaidya, Anahita Shayesteh, Dong Hyuk Woo, Roy Saharoy, and Mani Az-

[Vasilache:2019:NAL] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,

Wallcraft:2000:SOV

Wallcraft:2002:CCA

Walker:2001:DLB

Walker:2001:SEC

Wang:1997:TPD

Wang:2002:OPG

Wasniowski:1995:NAP

White:1995:PNP

Wasniewski:1996:APC

Wolf:1996:CFS

White:1995:PNP

Wasniewski:1996:APC

Wolf:1996:CFS

Wickerson:2015:RSP

Wolf:1997:CMP

Wickerson:2017:ACM

Wedemeijer:1996:PSA

H. Wedemeijer, H. L. H. Cox, D. J. Verschuur, and I. L. Ritsema. Parall

lication of seismic algorithms using PVM and FORGE. In Liddell et al. [LCHS96],

Walker:1996:MSM

D. W. Walker and J. J. Dongarra. MPI: a stand

dard message passing interface. *Supercomputer*, 12(1):

66, January 1996. CODEN SPCOEL. ISSN 0168-7875.

Welch:1994:PVM

L. R. Welch. A parallel virtual machine for pro

249–261, November 1994. CODEN ITCOBA. ISSN 0018-9340 (print), 1557-9956

(electronic).

Werner:1995:UMP

Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI. (German)

[Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau,

Chemnitz, Germany, 1995. 35 pp.

Weber:2017:MAL

28:1–28:??, September 2017. CODEN ????. ISSN 1544-3566 (print), 1544-3973

(electronic).

Warren:2019:CBG

Wark:1994:PIR

P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ?????
REFERENCES

Wagner:1996:PMM

Parallel MCNP Monte Carlo transport calculations with MPI. Transactions of the American Nuclear Society, 75(??):338–339, 1996. CODEN TANSAO. ISSN 0003-018X.

Wiese:2005:IPN

White:1994:VV

White:2004:CMM

Waidyasooriya:2019:OBD

Wilkinson:1993:IFT

Wilhelms:1994:DAL

REFERENCES

Wu:2014:OFB

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wittenbrink:2011:FGG

Wagner:1996:GSG

Lehman:1994:IZP

Li Wei Lehman. Integrating zipcode and PVM: towards a higher-level message-passing environment. Technical report MSSU-EIRS-ERC 94-2, Engineering Research
Center for Computational Field Simulation, Mississippi State University, Starkville, MS, USA, 1994. 7 pp.

Wismueller:1996:TSI

Wismueller:1996:TSI

Wu:2007:IFR

Wolfe:2018:ODM

[WLK+18] Michael Wolfe, Seyong Lee, Jungwon Kim, Xiaonian Tian, Rengan Xu, Barbara Chapman, and Sunita Chandrasekaran. The Ope-

Wolfe:2018:ODM

Weatherly:2003:DMS

Weatherly:2006:DMS

Willcock:2005:UMC

[WLR05] Jeremiah Willcock, Andrew

Wu:2012:UHM

Wolfe:2018:MLS

Wende:2019:OVT

Wu:2014:MAG

Xing Wu, Frank Mueller, and Scott Pakin. A methodology for automatic generation of executable communication specifications from parallel MPI applications. *ACM Transactions on Par-

Worley:1996:MPE

Weng:2007:OIS

Wagner:1994:CFD

Wang:1995:PPG

Wu:2001:PCS

Worsch:2002:BCM

[Winkler:2019:GSM]

[Wang:2016:LLA]

[WRSY16]
Len Wisniewski, Brad Smisloff, and Nils Nieuwejaar. Sun MPI I/O: Efficient I/O for parallel applications. In ACM [ACM99], page ??

[Wu:2011:PCH]

[Wu:2012:PCH]
org/content/55/2/154.full.pdf+html.

Wu:2013:PMH

Waidyasooriya:2017:OBF

Wu:1999:MCC

Wong:2011:EMS

Hon-Cheng Wong, Un-Hong Wong, Xueshang Feng, and Zesheng Tang. Efficient magnetohydrodynamic simulations on graphics processing units with CUDA. *Computer Physics Communications*, 182(10):2132–
REFERENCES

SBS and MPI suppression in analogue systems with integrated electroabsorption modulator/DFB laser trans-
mitters. Electronics Letters, 32(16):1502–1504, ???. 1996. CODEN ELLEAK. ISSN 0013-5194 (print),
1350-911X (electronic).

[WWZS08] Kun Wang, Yu Zhang, Huayong Wang, and Xiaowei Shen. Parallelization of IBM Mambro system simulator
0163-5980 (print), 1943-586X (electronic).

[XH96] Zhiwei Xu and Kai Hwang. Modeling communication overhead: MPI and MPL performance on the IBM

Wilson:1996:SMS

[WZWS08] Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei Zhang. Melia: A MapReduce framework on OpenCL-
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic). URL https://

Wang:2008:PIM

[WZHZ16] Kun Wang, Yu Zhang, Huayong Wang, and Xiaowei Shen. Parallelization of IBM Mambro system simulator
0163-5980 (print), 1943-586X (electronic).

[XH96] Zhiwei Xu and Kai Hwang. Modeling communication overhead: MPI and MPL performance on the IBM

Wang:2016:MMF

[WZHZ16] Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei
Zhang. Melia: A MapReduce framework on OpenCL-
based FPGAs. IEEE Transactions on Parallel and Distributed Systems, 27(12):
3547–3560, December 2016. CODEN ITDSEO. ISSN

Wang:2008:PIM

[WZWS08] Kun Wang, Yu Zhang, Huayong Wang, and Xiaowei Shen. Parallelization of IBM Mambro system simulator
0163-5980 (print), 1943-586X (electronic).

[XH96] Zhiwei Xu and Kai Hwang. Modeling communication overhead: MPI and MPL performance on the IBM
SP2. IEEE parallel and distributed technology: systems and applications, 4(1):
9–24, Spring 1996. CODEN

Wang:2016:MMF

[WZHZ16] Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei
Zhang. Melia: A MapReduce framework on OpenCL-
based FPGAs. IEEE Transactions on Parallel and Distributed Systems, 27(12):
3547–3560, December 2016. CODEN ITDSEO. ISSN

Wang:2008:PIM

[WZWS08] Kun Wang, Yu Zhang, Huayong Wang, and Xiaowei Shen. Parallelization of IBM Mambro system simulator
0163-5980 (print), 1943-586X (electronic).

[XH96] Zhiwei Xu and Kai Hwang. Modeling communication overhead: MPI and MPL performance on the IBM
SP2. IEEE parallel and distributed technology: systems and applications, 4(1):
9–24, Spring 1996. CODEN

Wang:2016:MMF

[WZHZ16] Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei
Zhang. Melia: A MapReduce framework on OpenCL-
based FPGAs. IEEE Transactions on Parallel and Distributed Systems, 27(12):
3547–3560, December 2016. CODEN ITDSEO. ISSN
REFERENCES

IPDTEX. ISSN 1063-6552 (print), 1558-1861 (electronic).

Yu:2013:AGA

Yo:1996:WBP

Yetongnon:1996:PII

Yero:2001:JOO

Yang:2011:HCO

Yuasa:1996:RPG

YarKhan:2017:PPN

Yamazaki:2018:SIL

Yang:2009:DBM

Yang:2016:HTM

Yan:2013:SFS

Yalamov:1997:BRT

Yilmaz:2011:RMS

Yi:1994:PID

Yilmaz:2009:HPC

You:1995:EIM

Young:1993:PEN

Yuan:2012:PCS

Young-S:2017:OGI

Yu:2005:HPB

Yeh:2017:PFG

Yang:2008:DPL

Young-S:2016:OFP

Luis E. Young-S., Dusan Vu-

Yan:2014:OMB

Yoshinaga:2012:DBM

Yam-Uicab:2017:FHT

Yang:2011:PBP

Younge:2015:SHP

Andrew J. Younge, John Paul Walters, Stephen P. Crago, and Geoffrey C. Fox. Supporting high performance molecular dynamics in virtualized clusters using IOMMU, SR-IOV, and GPUDirect.

REFERENCES

[YW95]

[YYW12]

[YWTC15]

[YZ14]

[YZPC95]

[ZA14]
Judicael A. Zounmevo and Ahmad Afsahi. A fast and

Zaza:2016:CBP

Zahavi:2012:FTR

Zhong:2007:PPS

Zdetsis:1994:PMD

Zilli:1997:TBN

Zhu:2012:CDS

Ke Zhu, Matthias Butenuth, and Pablo d’Angelo. Comparison of dense stereo using CUDA. *Lecture Notes
REFERENCES

Zhao:2010:GMP

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

REFERENCES

Zemla:1994:WTC

Zhou:1995:FMP

Zhou:1995:RMR

Zhou:1996:FMP

Zielinski:1994:PPS

Zu:1994:OSM

REFERENCES

[ZL17] Yue Zha and Jing Li. IMEC: A fully morphable

Zaki:1999:TSP

Zhou:2012:DFD

Zhang:2017:DLN

Zhu:2015:PIM

Zhai:2011:CVH

Zollweg:1993:OP

Zarrelli:2006:EPE

Zambonelli:1996:EPP

Zheng:2011:GLO

Zhao:2012:ASO

Zarrabi:2015:GSA

Zoltani:2001:EPO

Zouaoui:2017:CNG

Zaitsev:2019:SLD

Zareski:1995:EPG

Zheng:2005:SBP

Zhang:2013:MPI

Zhu:2017:OAP

Huming Zhu, Yanfei Wu, Pei Li, Peng Zhang, Zhe Ji, and Maoguo Gong. An OpenCL-accelerated parallel immunodominance clone selection

Zhu:1995:RTC

Zhang:2005:ULC

Zhuang:1995:PRS

Zeyao:2004:AMI

Zheng:2014:IMS

Zhu:2015:PML