A Bibliography of Publications about *PVM (Parallel Virtual Machine)* and *MPI (Message Passing Interface)*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

28 September 2018
Version 3.179

Title word cross-reference

+ [BDV03, Cha02, HDB13, Lee12], 0 [ICC02]. 1 [ICC02, LRQ01, VDL15].
$\$19.95 [Ano95b]. 2 [Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17].
$\$24.95 [Ano95c]. $\$27.50 [Ano96a]. 3 [And98, BCL00, BAS13, CP15, DYN06, EFR05, GCN13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL12].
$\$35 [Ano00a, Ano00b].
$\$35.00 [Ano99a, Ano99c, Ano99b, Ano99d]. 3D [KA13].
$\$60 [Ano00a, Ano00b]. 3 [PBC01].
A [ARYT17]. α [JMdVG17]. Ar = b [BG95].
D [UZC12]. $H^2/H\infty$ [GWC95]. k [She95, TK16]. M^3 [JSH05]. PVM+ [Wil94]. N [IHM05, Per99, Rol08b, SP99, SRK12]. SU(3) [BW12]. τ [RGDM15, RGDM16]. XY [KO14].

-body [IHM05, Per99, SP99, SRK12]. -D [DYN06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. -Dimensional [LRQ01].
-Lop [RGDM15, RGDM16]. -Means [TK16]. -Queens [Rol08b]. -set [She95].
-stable [JMdVG17].

/Fortran [TBG02]. /many [KSG13].
/OpenMP [VDL15].
[SH96, IM94, SWJ95]. **AP3000** [TD99].

API [DM98, LPD+91]. **APIs** [WCS+13].

APOLLO [Sta95b]. **APOLLO-II** [Sta95b].

Appendix [Ano01a]. **Appendixes** [Ano01a]. **APPL** [AB93b, AB93a].

Application [AKE00, BSN95, BGdS09, BS07, BFM97, BBH+15, Cha02, CRGM14, DFMD94, FCD97a, FCD97b, FSC+11, GB98, HT08, JFY00, JCH+08, KNT02, LD01, LMRG14, Mal01, MTS994, MBB+12, NSLV16, NS16, PSSS01, Riz17, SBF+04, ST02a, SCL97, UTY02, ZZ04, ABC+00, ADMV05, ADR+05, BvdB94, BFLL99, BL97, BMP03, CBG18, CRM14, CRGM16, EPML99, FMF15, GWVP+14, HTJ+16, HZ96, KME09, LSG12, LCMG17, MMW96, MM03, MLA+14, MvWL+10, NMW93, Ral08b, SM12, SSS99, SFSV13, SL00, TCP15, Wor96, ZZZ+15, CG99a].

APPLICATION-CENTRIC [SFSV13]. **APPLICATION-LEVEL** [CRGM14, LMRG14, SBF+04, SCL97, BMP03, CRM14, CRGM16, LCMG17].

Applications [AFE00, BHV12, BR04, BDV03, BAG17, BF96, BFMT96a, CGK+16, CGBS+15, CDMS15, CLSP07, CBM+08, CIJ+10, CFPS95, CCHW03, CCM+06, DZ98a, DSZ94, D+95, DCH02, EKTB99, EG999, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHD12, GJMM18, GS96, GH9+93, HZ99, HAJK01, JC17, JPT94, LMG17, LCMG17, LHZY19, LS08, MA09, MBKM12, MLC04, MSC15, MS96b, NSBR07, NCB+12, NFG+10, PK05, PTL+16, Rab99, RS95, SJJ14, SPE95, SBG+12, SDJ17, SGH12, SG05, SLG95, SB01, SD16, TMC09, TBB12, TPLY18, Vet02, Wis96b, Wof92, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94].

Applied [BR94, BDV03, BAG17, BF96, BFMT96a, CGK+16, CGBS+15, CDMS15, CLSP07, CBM+08, CIJ+10, CFPS95, CCHW03, CCM+06, DZ98a, DSZ94, D+95, DCH02, EKTB99, EG999, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHD12, GJMM18, GS96, GH9+93, HZ99, HAJK01, JC17, JPT94, LMG17, LCMG17, LHZY19, LS08, MA09, MBKM12, MLC04, MSC15, MS96b, NSBR07, NCB+12, NFG+10, PK05, PTL+16, Rab99, RS95, SJJ14, SPE95, SBG+12, SDJ17, SGH12, SG05, SLG95, SB01, SD16, TMC09, TBB12, TPLY18, Vet02, Wis96b, Wof92, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94].

Approach [AZG17, BHM94, BJ93, BHNW01, CRGM14, CD98, DLM+17, FF03, GCB12, HD00, KBA02, KK02a, LM00, Mar06, PP01, Pet00a, Pet00b, RGD13, Ros13, TFP12, BK11, Bis04, BTC+17, CLY16, CDP99, CRGM16, DI96, EO15, FMS15, HDB+13, JS13, KPL+12, KSS07, KJEM12, LG12, MGG05, MS99b, NEM17, OW92, SVC+11, SEC15, TWFO09, W009].

Approaches [JCH+08, Ney00, SWHP05, SM02, BFLL99, CB11, PS00b].

Approximate [Huc96, MM02, GGC+07, GGG09, MM03].

Approximation [SLJ+14, SJL14].

April [ANS95, AH95, Ano93g, Ano94h, CH96, DR94, GH94, Ham95a, IE92, IE93b, IE95f, IE96e, IE97b, IE05, LCH96, MC94, Nar95, Sie94, SW91, Ten95].

APS [GT94].

AQUAGpusph [CP15].

ARBITRARY [HP11].

ARCH [Ada97, Ada98].

ARCHITECTURAL [GGC+07].

Architecture [BG94a, CGC+11, EBK01, EM02, FD97, Fu08, HR97, IE97c, ITK00, LSZL02, PT01, PS01b, SMM+16, SC04, WKP11, YTH+12, BBCR99, BG94c, CSPM+96].
architecture-independent [DiN96].

Architectures [ACM95b, BDT08, BFG +10, CHPP01, HD02a, HD02b, HHHK94, IEE96d, KDT +12, LHMM96, Li96, LZH17, LAD16, MS02b, MTSS94, MCS00, NO02b, Nar95, PZ12, TScAM12, YKW +18, BDP +10, BN00, BKML95, CLM +95, CDZ +98, DM93, DZZY94, GDC15, GP95, Hos12, LCL +12, LDJK13, MLC04, NO02a, PY95, RFH +95, RMMN +12, SPL99, TDG13, Tsz94, Uhl95a, VDL +15, WST95, dLAMC11]. Area [CDHL95, Fis01, BHW +12, FGT96, FGG +98, KBH +99, Qu95]. area-based [Qu95]. arising [ARvW03]. Aristotle [FSV14]. Arithmetic [Ano98, JPT14, Sur95a]. Arithmetics [HD00]. Arizona [IEE95b, JB96]. ARM [MGL +17]. Array [DDPR97, HD02b, WGI7, CCM12, DK13, HSE +17, JKN +13, Ott93, WAI02]. arrays [HCL05, RBS94]. Arrivals [FPY08, MIvS16]. art [LF93a]. artifact [ZZZ +15]. Artificial [BPG94]. ARTUR [FJB +00]. ARVO [BH +12]. ARVO-CL [BH +12]. ary [Pan95a]. Ascona [DR94]. Ashes [Thr99]. ASL [FGRT00]. ASME [LF +93a]. aspects [CG99a]. Assembly [PGF18, TPDI5]. Assessing [LMG17, dLR04, MABG96, TScAM12, CMV +94]. Assessment [Mat01b, TAH +01, Boi97, LH98]. Assignment [Cza13, CK99]. assist [Kik93]. Assisted [GTH96, GM13, MBBD13]. Astro [CC17]. Astronomical [JB96, SH95]. asymmetric [GCN +10]. Asynchronous [Ada97, Cav93, CZ95a, CDP99, HE02, SPH +18, BBDH14, BCK +09, CZ95b, DDDY99, Sch99]. Athetapecan [CP98]. Atlanta [AGH +95, Ara95, USE00, UCW95]. ATM [GFV99, HBT95, Jon96, LHD +94, LHD +95].

Atmosphere [BS93]. Atmospheric [HK93, RSBT95]. atom [MGG05]. Atomic [LRT07, LAFAB95, SYF96, DS13, Hin11, SY95, XF95]. atomics [BDW16]. atoms [JLS +14]. Attacks [PV97, GHD12]. attempt [GM18]. Attraction [GB96]. audio [BJ13]. August [ATB04, Agr95a, BFMQR96, DWM96, GT94, HAM95b, IEE94g, IEE95k, IEE95f, IEE96f, LF +93a, Ost94, PSB +94, PdG +95, Ree96, VV95, Was96]. Austin [IEE94b]. Australasian [Bi95]. Australia [GN95, Nar95, ACDR94, Bi95]. Austrian [BPG94]. ARVO [BHW +12]. ARVO-CL [BHW +12]. Austrischen [Pui95]. Austria [Bos96, BH95, Kra02, TBD12, Vol93]. Austrian [Fer92, FK95]. Austrian-Hungarian [Fer92, FK95]. Auto [CC17, DWM12, DDBL11, RDQL12, WGI7, FE17, SH14, TWFO09]. Auto-Generation [CC17, DWM12]. auto-parallelization [TWFO09]. Auto-scoping [RDQL12]. Auto-Tuning [WGI7, DDBL11, FE17, SH14]. AutoLink [GMPD98]. AutoMap [GMPD98]. Automata [Car07, BBK +94]. Automated [BMP03, MYY95, LLG12, RFRH96, Yan94]. Automatic [BVML12, BBH +08, BGK08, BHK +06, CBL10, Cza03, DW02, EML98, EML00, FADF15, FM11, GKF13, HZ99, JFY00, JJJ +03, JPL17, KOI10, KHS12, MGA +17, NCS +17, OWSA95, Rab99, RGD13, SZ11, SR96, SSB +17, TJFP12, WC15, WM01, APBeF16, AMuHK15, AGG +95, BR04, BHR08, CHK15, CdGM96, CPR +95, HZ96, LME09, LF93b, WMP14, ZHK06, FVD00]. Automatically [WBSC17]. automation [Ano93a]. automotive [Ano93a]. Autotuning [BAG17]. Auxiliary [STMK97]. Available [Bak98, BF98]. Avoidance [CRGMA14]. AVTP [FHC +95]. award [Str94]. Awards [Str94]. Aware [APJ +16, BHP +03, EGR15, HVA +16, LRBG15, MJB15, Pan14, ZLP17, CGH +14, GHZ12, HJYC10, HG12, JKN +13, KBG16, KEE95].
MBBD13, MSMC15, SHM+12, SPK+12, WRSY16]. awareness [HK09, VGS14].
AXAF [NH95].

B [Ano01a]. Back [BIC+10]. Backend [IOK00]. backtracking [PGdCJ+18].
Backup [Gua16]. Bains [GA96]. Balance [HE02]. balanced [EZBA16].
Balance [BKdSH01, DBA97, DI02, DLA92, MM02, PT01, Pus95, ST97, Wal01a, Bir94, BS05, DZ96, DLR94, DvqLVS94, DR95, FMBM96, FH97, Hum95, JH97, MM03, NP94, SGS95, SY95]. Balatonfured [DKP00].

Balls [BBH+15]. Baltimore [IEE02, SPH95]. Bamboo [NCB+12]. banded [DG95]. Bandwidth [NE01, RK01].
Bangalore [Kum94, PBPT95]. Barcelona [ACM95b, AH95, IEE95f].
BARRACUDA [EPP+17]. Barrier [CLdJ+15, SDB+16, YLZ13].
Based [Ada97, AHD+17, AP96, BHV+17, BDG+91b, BoFBV00, CAM12, CGC+92, CLP+99, CDPM03, DW02, DBK+99, FSC+11, FC05, For95, FSLS98, GSSx, HF14a, HF14b, HM01, Hus00, KLR16, LSLZ02, LZH18, lkl11, LWP04, LAF15, MDM17, MGL+17, MMH98, NISL16, NE01, NHT02, NPS12, PPT96a, PCY14, PFG97, PSSS01, RDMB99, SPL+12, SM03, Smi93a, ST02b, ST97, SJK*17a, SJK+17b, TSH+15, TD98, WTTH17, WC09, WZH16, Wis96a, WM01, WJB14, YG96, YTH+12, ZWJK05, Ada98, AASB08, AAAA16, AVA+16, Ano93, BLPP13, BDG+92a, BCH+03, Br95, BFTMT96a, CwCW+11, CC10, CkmWH16, CRM14, CXB+12, DXB96, FE17, FFB99, FJZ+14, FNSW99, FSTG99, FFFC99, FWS+17, GSS91a, GS92, GKS+11, Gra97, Gra09, GFGF12, HZ94, HWX+13, IM95, ITT99, JL18, JKM+17, KLV15, KPL+12, KPNM16, LV12, LRW01].
Based [LKL96, LNW+12, LGG16, LMM+15, MYB16, MNO+17, MCK+96, MCB05, MT96, MS99a, MS99b, MFP03, Neu94, NHT06, OLG+16, OP98, PARB14, PES99, PPT96b, PK05, PAdS+17, PGK+10, PSHL11, PKD95, PSK+10, PSLT99, Qu95, Rag96, SJLM14, SS09, SG05, SSS99, SZ11, SVC+11, SLS96, SKB+14, Sto98, Str+12, TBR12, TY14, TDB96, TWFO09, TMPJ01, WO09, WFTO14, Wis96b, WCSS99, YC98, YL09, YWC11, YSL+12, ZAFAM16, ZLP17, ZHK06, ZZG+14, ZWZ+95, vKKS94, BFMT96b, FH97, KSSJ95, WAS95b, FO94, GK97, KSJ96, PY95, Sut96, TSC94, ZPLS96]. Basel [Ano94i]. Basic [PGC02, BKvH+14, BR94].
basierte [Gra97]. Basis [OMK09, RB01].

Bath [BP93]. Bayesian [Kem10]. BC [IEE95b].
Benchmarks [CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TSB03, WAS95b, ZSMH01, CDD+96, MMH99, Ste94, WT11, CE00, WT12].
Benchmarking [GC05, HCA16, LCY96, MM99, MCM00, WRA02, RST02].

Benchmarks [CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TSB03, WAS95b, ZSMH01, CDD+96, MMH99, Ste94, WT11, CE00, WT12].
Beneficial [CB00], benefit [SBG+12].
Benefits [LB16, PSM+14, SIRP17].
Benutzerprofi [Wil94].

Benutzertreffens [Ano94b]. Beowulf [CMM03, Ste00, UP01]. Beowulf-Class [Ste00].
Berlin [PW95]. Bessel [KT10].
Betriebssystemkern [Sei99]. Better [Str94].
Between [AAB+17, BS07, ASS+17, AKE00, BID95, GMF98, JAT97, LDCZ97, MSP93]. Beverly
Beyond [GEI93f]. Beyond [GEI93a, GKPS97, GEI98, Gro12, Olu14, GEI93b, LSG12, Sch93, SHM+10].

Biconjugate [FGP12]. Biconjugate [GFPG12]. bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [RB01]. Bi-Directional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [GFPG12]. Bidirectional [HE15]. Big [GTS+15, LK14, VPS17, ASS+17, Str94].
Checkpointing [DCH02, LMRG14, SSB+05, TSS00b, BMPS03, BCH+08, CG96, LCMG17, PKD95, SSCC95, Ste96].
chemical [NMW93, Chemistry [AKK+94, BR95a, DMW96, SSGF00].
Chemkin [Ano97, Bra97]. CHEMPI [RR01]. Chicago [CGKM11]. China [CZG+08, IEE97a, LHHM96, Li96]. Chip [Jes93b, URKG12, TDG13, dCZG06].
Cholesky [DG95, LC97b]. Chromosome [BM97, dOSMM+16]. Chromosome-Wide [dOSMM+16]. CICADA [MK94].
Circuit [WPC07, BJ95]. Circuits [GJN97]. Circular [Tsu07]. Circulation [GAM+02, Nes10, RSBT95]. CIS [AH00].
citation [Squ03]. City [Hol12]. civil [PW95]. CL [BHW+12, BBH+15, LW95]. CL-PVM [LW95]. CL ARRAY [ZT17].
clarified [WBBD15]. CLAS [DZDR95]. Class [DFN12, Ste00, Dem96, MSL96, RFH+95]. Classes [DeP03, GG09, Ott93].
classic [HL17]. Classical [BCGL97]. classification [TPLY18]. clauses [WC15]. Clemson [ACM95a]. Client [Ano93c, FSLS98, KS97, kLCCW07, Mat01b, Sch93, Sto98, Vis95].
Client-Agent-Server [Mat01b]. Client-Server [FSLS98, Sto98, Vis95]. Client-Side [kLCCW07]. Client/Server [Ano93c, Sch93].
climate [Str94]. CLIPS [Ano95a, Ano95e]. cIMAGMA [CDD+13]. clock [NB96]. clocks [TPLY18]. CLOMP [BGdS09].
do [ZWL+17]. Closer [HCZ16]. Closure [CGPR98, KH15, PPR01]. Cloud [SIS17, URKG12, ZL+11, ZLP17, GHZ12, GWVP+14]. Cluster [AUR01, BKGS02, BL95, BM97, CRE99, CMM03, HD02a, ES11, GG09, Gei94, Gei00, GS+01, GT01, GC05, HD02b, ITKT00, ID94, KKH03, KS96, KSO1, KHS01, LR01, MFTB95, MM01, NO02b, OF00, PFG97, RB01, RST06, ROLL01, SCR92, SHH01, SHT01, ST02a, TOTH99, Trä02b, bT01a, AL93, BLP93, BALU95, BTC+17, BID95, CCF+94, Cou93, ED94, GKY7, GMU95, Heb93, KEGM10, KO14, Kom15, LC07, Liu95, MW93, MM03, NO02a, PDY14, RJDH14, SS94, SR95, ST02b, SLS96, SY95, SSN94, Tho94, THM+94, Tso95, UH96, YWO95, ZL+11, MS04].
classifier-based [LS96]. Cluster-enabled [SHHI01]. clustered [KHB+99]. Clustering [BBH12, HA10, RJC95, GGL+08, YCL14].
Clustern [MS04]. Clusters [AH00, AHHP17, BDH+95, BDH+97, BW+12, CSC96, DK06, GMdMBD+07, GSY+13, HPP02, HSMW94, HVA+16, Hus00, JNL+15, LC97a, LH95, LVP04, MS98, MFPP03, Pan14, PKB01, PT01, PS00a, Psu95, Rei01, dOSMM+16, SFG98, SvL99, Ste00, Tou00, UP01, WLN03, WT12, YWC15, YK+96, AB95, ALR94, ADB94, ABG+96, ADMV05, BWT96, BD03, Bru95, CRE01, EKTB99, GBF95, HCL05, Hus99, JKH08, Jon96, JTR+94, KLY03, KLY05, KSL+12, KJEM12, LBD+96, Lee12, LLL13, LL95, LKS04, NMW93, NN95, PS07, PRS+14, PM95, PR94c, PRS16, PL96, RCFS96, RGDML16, Slo05, SC96a, SL95, TFZZ12, WLN06, WLYC12, YST08, YL09, YHL11, YWC11, ZHS99, dCH93].
CM [SBG+02]. CMMD [Har94, Har95]. CMPI [GHZ12]. CMS [FMS15]. CNF [IKM+01, IKM+02]. CO [ACM01, AHHP17, JH98, Wal02].
Coarse [ADRCT98, IOK00, KIO10, LGM00, NIO+02, NIO+03, Heb93, RJC95]. Coarse-Grain [IOK00]. coarse-grained [Heb93, RJC95]. coarsening [PSLT99].
Coast [IS16]. Coastal [GAM+02]. CoCheck [MS96b, Ste96]. Code [AH01, Ano98, BCGL97, CB00, CP97, CCK12, CBBGA15, DDL00, DZDR95, HE02, KaM10, KAMAMA17, KHS01, LD01, MS02b, MM07, PBC+01, RGD13, SM03].
SZBS95a, Sta95b, TGBS05, AMS94, ADB94, AFST95, BCA06, BACD07, BW12, Bha98, Bri95, Cot93, DLR94, EZBA16, FMFM15, GSMK17, Heh93, IJM+05, JL18, KPL+12, KH10, MGS+15, MRH+96, MWO95, PKE+10, PSK+10, RP95, SZBS95b, SK00, SFLD15, SMSW06, TDB96, VBLvdG08, VDL+15, Wor96, YL09]. codebooks [PMM95]. Codes [FAFD15, JFY00, SWH15, HTJ+16, HWS09, HASnP90, JPP95, KBG+09, LRW01, Mal01, OLG+16, WB96]. Coding [Uhl94, Uhl95b, SCC96]. Coecients [MW98, ARYT17]. cognitive [PWD+12]. Coherence [MM07]. Coherent [SS01]. Collaborative [DCPJ12, DCPJ14]. Collapse [PKYW95]. Collecting [BMR01]. Collection [LTRA02, DH95, MGC+15]. collection-oriented [MGC+15]. Collections [JFGRF12]. Collective [BIL99, BIC05, CCA00, FVD00, FCLG07, FPY08, GLB00, GMDMBD+07, Hus99, KIH6, MJG+12, PGAB+05, SG15, TRG05, VFD02, WRA02, HS12, HG12, HWW97, KHB+99, KBHA94, KMH+14, MBBD13, Pan95b, PGBF+07, PGAB+07, RJMC93, SCB14, SCB15, SS99, TD99, Trå12a, TFZ12]. Collectives [CSW12, SvL99, Zak12]. Collector [GTS+15, WK08a, WK08e, WK08b]. College [AGH+95, Ano94b]. Collision [QRM96, Sta95b, ART17, FFFC99, LHLK10]. Collocative [MKW11]. Colony [ITT02]. Colorado [R+92, IEE05]. Colt [WN10]. Columbia [IEE95a, IEE95c, MAB05]. column [HSP+13]. column-stores [HSP+13]. COMA [GB96]. Combined [CBHH94, TJPF12]. Combining [DP94, Rab98, SCB14, Sch96a, SMAC08, YPAEO9, Bor99, Sch96b]. comes [Ano94f]. Coming [HK95]. Commands [OLC01]. comments [Str94]. commerce [Ano94f]. commercial [Ano93g]. commodity [GGL+08]. Common [HEH98, DK13, WLR05]. Communicating [FKK+96a, GMPD98, FKK96a]. Communication [ABF+17, BCG+10, BIL99, BIC05, DCPJ12, DZZY94, EM02, FST98a, FKJ+17, FGK97, FBSN01, GFD03, GFB+03, GGS99, GFV99, GLB00, GC05, HB96b, HC10, HDB+12, HC06, HP02, KB98, KV98, KBG16, LRT07, LC93, LCVD94a, MH01, MMH98, MR96, NIT00, PLK+04, RK01, RRAGM97, RsT06, SWHP05, SSCP97, SG12, SBG+02, SJ02, ST02b, SGL+00, SKH96, Sun12, TRG05, TGT05, TRH00, Trå02b, UMK97, WBH97, XH96, YC98, ZSG12, FH98, BH96, BVML12, BBH+13b, BS94, BMG07, CAHT17, CGL+93, Dem96, DWM12, DCPJ14, DGB+14, DSB+16, DS96b, GKH97, GM13, Gra97, GL94, GB94, HB96a, HWX+13, Has99, HWW97, KH96, KB01, KNY03, KLY05, KHB+99, LRO6b, LFL11, MLAV10, MMU99, MABG96, OGM+16, Pan95b, Par93, PGK+10, PM95, PKE+10, PSK+10, PS00b, SH14, SC95]. communication [TG09, Trå12a, Vet02, Wu99, WMP14]. communication-based [PGK+10]. Communication-buffers [MR96]. Communication/Computation [HIP02]. Communications [BPS01, CP98, CDHL95, CDH+95, FVD00, FST98b, GT01, GBS+07, GMDMBD+07, IEE95b, IEE95e, LZB17, LHZ18, MB00, VFD02, YTH+12, bT01a, ADL03a, ADL03b, CDP99, HS12, KBHA94, MBBD13, McR92, MN91, MS99c, RGDM16, SCB14, SCB15, TD99, WLYC12]. Communicators [DFK99, GFD03, GFD05, FKS96, GJMM18, KH96, MJG+12]. communities [ACM04]. Community [BHW+17, FCP+01]. Como [CLM+95]. COMOPS [Luo99]. Compact [Uhl94, Uhl95b, Wor96]. compaction [VS+13, WKO8a, WKO8b, WKO8c]. Compactly [KLR16]. Comparative [KB98, PSK08, SN01, AGH+95b, ED94, YCL14].
Comparing [BF01, Fin97, GBR15, HVSH95, ICC02, LKJ03, ORA12, SSG95, WSBC17].
Comparison [BvdB94, BS07, HC10, KMB97, LCW+03, Mat94, Mat95, Ney00, OP10, OF00, PPJ01, Pok96, RS93, RBB97a, SS01, SHH94b, VS05, Wal02, ZBd12, Ahm97, AB93b, BL93, BID95, GUM95, Har94, Har95, JS13, KDS01, KC06, MSP93, Ols95, PS07, PSHL11, Pri14, SdM10, SYR+09, SWS+12, SHH94a, TSHC94].
comparison-based [PSHL11].
Comparisons [GGS99, PGC02, CLYC16].
 Compilers [Ano01a, CFF+94, LZ97, MKV+01, SBT04, SS96, Hos12, PBG+95, ZT17]. Compiling [DBM16, Hos12, CGK11]. Complete [BD07, GHL+98, Nag05, Per97, SOH+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, PRS+14, SOH+96]. Completed [PTT94]. Complex [BCGL97, GMPD08, MBS15]. Complexity [NPS12]. component [HL10, KRKS11, Squ03]. Components [BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01]. Composable [MLGW18]. Composed [Wel94]. Composing [PHA10]. composite [MALM95, YPA94]. Compositing [GPC+17]. Composition [CTK00, Cot04, DLB07, FC05, KH15, CFP96]. compound [LLC13, SAP16]. comprehensive [RST02]. Compression [FSC+11, KBS04, VPS17, AAAA16, HE15, UH96, WFS09]. compression-based [AAA16]. Compton [BCD96]. Computation [BKG02, B+05, Cer99, DSB00, EMO+93, ESM+94, Fer10, FF95, GS91b, HIP02, IEE94a, IEE96c, KS15b, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SM09, WTT17, ACM97a, ABDP15, Bis04, BALU95, Bos96, BHKR95, C93, CMH99, FJ+93, DZYY94, HLM+17, HK94, KB01, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZZ94, NCKB12, PF05, PKE+10, Röhn00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07]. computation-communication [SH14]. Computation [ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SBS95a, SM07, SN01, TDBEE11, TSEG09, WH94, WHI04, AGM06, BvdB94, BG+92c, BR95a, HVSC11, KBG+09, PBK99, RBB15, SPE95, SBS95b, STT96, Str94, VDL+15, BR95a, CCHW03, R+92, SL94a, WHH94]. Computationally [DFN12]. Computations [AGH+95, ACGR97, CGU12, CGPR98, IH04, PBK00, PMvdG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGD92, HJYC10, KD13, MRRP11, MR96, Smi93b, SAP16, TS12b]. Compute [DBK+09, KKL11, ZLZ+11]. computed [FWS+17, SSS99]. Computer [ACM06a, Ano94a, GT969, IEE95l, IE96h, IE97c, IS16, KCR+17, Neu94, Old02, PSB+94, ST02a, Sum12, Ten95, URKG12, YTH+12, BN00, BS94, BKML95, BF96, Cal94, CLM+95, GRTZ10, JW96, Str94]. Computer-Assisted [GTH96]. Computers [Ano89, BP99, BCL00, DGM93, FFP03, GC05, IEE95b, IEE95e, ITKT00, LF+93a, MFTB95, PSZÉ00, SP+10, SS96, BvdB94, B93, BBK+94, DLR94, Duv92, ESB13,
GBF95, KOS$^{+95a}$, LR06a, MMB$^{+94}$, NF94, POL99, PBK99, Wal94a, Wal94b.

Computing
[ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACDR94, AIM97, BJ93, BBG$^{+95}$, BDG$^{+93a}$, BGR97a, BL95, BCP$^{+97}$, BRST94, BDH$^{+95}$, BDH$^{+97}$, BHNW91, BBH12, CZ95a, CGB$^{+10}$, CLL03, CNCl0, Cze16, DDS$^{+94}$, DERC01, DPP01, DKN$^{+92}$, DGM93, DT94, FTB00, Fer98b, FGKT97, Fos98, GLN$^{+08}$, GS92, Gei93a, GBD$^{+94}$, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hol12, HT01, IEE92, IEE93d, IEE93e, IEE94g, IEE95c, IEE95k, IEE95i, IEE96a, IEE96f, IFI95, KK02a, KS97, LCK11, LRG14, LC93, LR01, Lus00, dlFMBoFM02, ME17, MMH93, Nar95, OL05, PR94b, Ree96, R592, SPS95, Sil96, SM07, Sin93, SW91, USE95, USE00, VW92, Vol93, WPH94, Y593, YH96, ACM94, ACM95a, ACM95b, ANS95, Ano93g, Ano94e, Ano94h, Ano03, ADDR95].

computing
[AMV94, BP94, BDG$^{+92a}$, BDG$^{+94}$, BKML95, Bru95, BW$^{+12}$, CZ95b, Cz96, CHK15, DLRR99, DK08, DW94, D$^{+95}$, DMW96, DE91, EKTB99, EJL92, FBD01a, FGRD01, FO94, FS95, Fer98a, FS98, FME$^{+12}$, FH$^{+95}$, GGGC99, GS02, GS91a, GS93, Gei93b, Gei94, GH94, GL97, HP95, HW11, HH14, HPY$^{+93}$, HS95a, HH95, mH12, IEE97a, IM95, JPO12, JY95, JMM$^{+11}$, JPET94, KO14, Kos95b, KSSS07, LV12, LH98, LCHS96, LHD$^{+94}$, LHD$^{+95}$, LM13, Ma94, MZ93, Mal95, Mar07, PGS$^{+13}$, PKB06, Pen95, PGK$^{+10}$, PTT94, PB95, PV01, PWD$^{+12}$, RBS94, RJDH14, Sch93, SGS95, SM00, SST96, St94, SP11, Sun94b, SGM94, Sun95, SD99, TJD09, TKP15, TDB00, Tho94, TSS98, VM94, Vis95, Was96, YULMTS$^{+17}$, YLC16, YSL$^{+12}$, Zem94, ZWL13, ZGC94, ZHS99, ZKRA14, ACM98a, Kon00].

Computing
[PW95, Per96, SCR92, TGEM09, Ano95b].

Concept [Kam10, LTR00, SB95].

Concern [Ano94i].

Concurrency
[AML90, ACM94, ACM96b, ACM96c, ACM97b, ACM98b, ACM04, Abr96, ATC94, AGH$^{+95}$, Ano89, Ano93f, Ano94a, Ano94e, Ano94i, ACDR94, BBG$^{+95}$, B$^{+95}$, Boi97, Bos96, BFM96, BH95, CGB$^{+10}$, CH96, DSM94, DKS94, DMR97, DSM92, ERS95, ERS96, EIL92, FF95, Gat95, GN95, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE92, IEE94f, IEE95b, IEE95a, IEE95i, IEE95l, IEE95j, IEE96a, IEE96d, IEE96h, IEE96i, IEE96o, LCK11, LF$^{+93a}$, MMH93, Nar95, OL05, PR94b, Ree96, R$^{+92}$, SPE95, Sili96, SM07, Sin93, SW91, USE95, USE00, VW92, Vol93, WPH94, Y$^{+93}$, YH96, ACM94, ACM95a, ACM96b, ANS95, Ano93b, Ano93c, Ano95a, BR95a, Bil95, BDL96, DR94, Eng00, GH94, JPET94, LCHS96, Mal95, PW95, Van95, ZL96, ACM94, Ano94g, IEE95b, KDV93].

Configurable [IEE94d, PKB$^{+16}$, BB94].

configurations [PTL$^{+16}$]. conflict [TCP15].

conformational [MK94].

Congress [CJNW95, GHH$^{+95}$, PSB$^{+94}$, BH95, dGJM94].

Congressi [GT94].

Conjugate [BG95, GFPG12, MM92, Ols95].

Connected [BT91b, KRKS11, OF00, Pet01].

Connectivity [Whi94].

Conquer [CTK01, Cza02, Cza03]. conscious [ZA14].

consistency [WBSC17, YYW$^{+12}$].
CNM11, CLYC16, CBM+08, CSV12, CB11, Cza13, DCD+14, DS13, DR18, DARG13, DLV16, DWL+10, DWL+12, DM12, EPP+17, ER12, FJZ+14, Fer10, FMFM15, FFM11, FWS+17, Fuji08, GDC15, GSFM13, GLN+08, GML+16, GFP12, GWVP+14, GRTZ10, HE13, HJBB14, HVA+16, HLM+17, HD11, HLP10, HP11, HLP11, Hog13, HF14a, HF14b, HKOO11, HT08, HLO+16, JL18, JK10, JC17, JLS+14, JFGRF12, KRKS11, KD12, KAMAMA17, Kha13, KS13, KmWH10, KVGH11, KME09, KO14, KH15, KD13, KA13, Lam09, LRG14, LGKQ10, LL12, LSSZ15, LBH12, LSVMW08, LSWM11, LAD16, LBB+16, LYSS+16, LYZ13, MMO+16, MR17, MSML10, MdSAS+18, MGL+17, MM14, NSL16, NS16, NBGS08, OH10, ORA12, PGS+13.

CUDA [PRS+14, PHMJ11, PaDS+17, PGdCJ18, PSHL11, PTMF18, PRS16, RBA17, Ros13, SSK10, iSYS12, SD17, STK08, SSO9, Seg10, SKM15, SP11, SR11, SKJ+17a, SJK+17b, TNIB17, TVCB18, TS12b, TA14, TCP15, Tsn12, UZC+12, WG17, WJ12, WMRR17, WWFT11, WJB14, XLL13, YULMTS+17, YHL11, YZ14, YMY11, ZSK15, ZAFAM16, ZZG+14, ZBD12, ZLS+15, ZZS+15, dAMCN11, dAMCFN12, vdLJR11, Che10, SD13, VOG13].

CUMULVS [GKP97]. CURAND [Ano12]. Current [Bak98, GFD05, IFI95, BDG+93b, FK94, FHP+95]. Curse [OS97].

Cyclops [dCZG06]. Cyclops-64 [dCZG06].

D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Bri95, BMPZ94a, BAS13, CGU12, CP15, EFR+05, ES11, GCN+13, HF14a, HF14b, JR10, KRKS11, KO14, KD13, KHS01, KLR16, MK94, MSZG17, NSM12, TP15, WMRR17, WR01, YSL+12, vHKS94].

D-CICADA [MK94]. DAC [Cza02, Cza03]. Daemon [LB98]. Dagum [Stp02]. d’Aix [GA96]. d’Aix-Marlioz [GA96]. Dallas [ACM00, IEE95l]. Dame [IEE96i].

damping [YFA94]. DAMPVM [Cza02, Cza03]. DAMPVM/DAC [Cza02, Cza03]. DAMS [CD94]. Dangers [BCP+97].

DaReL [KN95]. Data [AJP16, BMR01, BCG+10, BGD12, CKmWH16, DERCO1, DiN96, EGR15, EASS95, GTS+15, GB98, GMPD98, Gua16, HA10, HB96b, HC06, JDB+14, KAl3, LK14, LDJK13, MV17, Man01, ME17, MGA+17, MJB15, NJ01, NPP+00b, NPP+00c, NA01, NLRH07, PCY14, Re01, SGH12, SPK96, SR96, Str12, THS+15, WO95, Wei94, ZDR01, ZG95b, AB95, ASS+17, AGG+95, BK11, Ben95, BR12, BID95, CFFK10, CGK11, CGL+93, DRUC12, EP96, FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPO12, KN95, KJJ+16, KRG13, LOHA01, LF93a, LL16, MA09, MMB+94, MMM13, MR96, NCB+12, NCB+17, NPP+00a, OPP00, PDY14, RJMCC93, SJML14, SSS99, SPH95, SK92, TW12, WO96, YCL14, YWO95, ZJMD18, ZRQA11].

data-centered [JPO12]. Data-Driven
[ME17, NCB+12, NCB+17].
Data-Intensive [Rei01]. **Data-Parallel** [AJF16, GB98, CKW916, SPK96, CGL+93, FKK+96b, MM+94, MR96, SK92].
data-parallelism [BR12].
data-privatization [KRG13].
Data-Structures [GMPD98].
Databank [FCP+01].
Database [AR01, BFZ97, EK97, MWG97, MM14, PPT96a, MN91, PPT96b, PPT96c, PMZM16]. databases [BA06, Bos96, ZWL13].
Dataflow [DT17, CSPM+96].
Datasets [VPS17, KGB+09].
Datatype [Gro00, SWHP05, KHS12].**Datatypes** [JDB+14, RTH00, SGH12, Tha98, CAHT17, THRZ99].
Dave [Stp02].
David [Ano96a, Ano99a, Ano99b, Nag05].
DawnCC [MGA+17].
DAWNING [HWM02].
DAWNING-3000 [HWM02].
Day [IS16].
dbx [NE98, NE01].
DC [B+05, IEE94h, IEE95k].
DCE [Sch93, FLD96, RS93, Sch93].
DDL [FB97].
Deadlock
[LZC+02, SG12, HPS+12, HPS+13].
Deadlocks [FJK+17].
Debbuger [WCS99].
Debugger [HM01, NE01, CH94, CG99b, MT96, XWZ96].
Debuggers [Ano01a].
Debugging
[BDGS93, GKP96, KKVo1, KV98, Mor95, NE98, Wis97, ZLL+12, BL97, BS96a, DFK93, HLOC96, KCD+97, MLA+14].
December [Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, PBPT95, Y+93].
Decimation [PCY14].
decoder [MC17].
Decomposition
[BJS97, CP97, EGH+14, DBVF01, ET94, OMK09, SSCH18].
decompositions [NZZ94].
deconfliction [TCP15]. DEDICATED
[WLNL03, Hus99, WLNL06].
Deep
[AHP17, SEC15].
Defined [Gua16].
Defining [GAML01].
Deformable [STK08].
Deforming [GAP97].
degree [CT13].
degrees [KTJ03].
Delegation [YTH+12].
Delegation-Based [YTH+12].
Delft [DSZ94].
Delivering [Hus98].
Delphi
[ACGdT02].
Demand [CTK00].
Denmark
[DW94, DMW96, Was96].
Dense
[AKL16, BDT08, CDD+13, Fuj08, Hog13, PMvdG+13, ZBd12, BRR99].
Densities
[MW98].
Density
[BL95, MC17, CBHH94, ZWHS95].
Denver
[ACM01, IEE05, R+92].
Dependable
[GM95].
Dependant [BP99].
Dependence
[LAaS+15].
Dependency [PPR01].
Dependent
[DFA+09, HO14, MFTB95, DM12, LBB+16, LYSS+16, ON12, SSB+16, TVV96, YPA94, YSM+16, YSMA+17].
DEPICT [HM01].
Deploying
[PKB01, CLASDPDP99].
depth [SSS99].
Derivation [GB98].
Derived
[JDB+14, RTH00, SWHP05, Tha98, CAHT17, Jou94, THRZ99].
Descent
[Sch01].
description [TKP15].
descriptors [LNW+12].
Design
[AS92, AAC+05, Ano01b, AC+09, BCD+15, BBH+13b, BS96b, BMR02, BRM03, CLP+99, ETW912, FD02a, FFP03, GG09, HW02, JSH+05, KVG11, kLCC+06, kL11, LVP04, Mau94, MMW02, NP914, OAF+15, Pan14, PLK+04, PCS94, SBG+02, SWYC94, SSL97, SPK+12, Sum12, THM+94, USE94, VGRS16, BR91, CAR01, CSS95, DS06, FD02b, GL94, GlL97, KA95, LC07, MAS06, OA17, PGK+10, PTW99, SL94b, Sep93, Sif06, SSD+94, SWL+01, Wal94a, Wal94b].
design-pattern [MAS06].
designed [BSH15].
Designing
[AGG+95, PJP01, ZRQA11].
Designs
[HA+16, AAAA16, MC17, Shi94].
desktop [Mar07].
Detached
[DLV16, RSPM98, BTC+17, LR06b].
detect [Str94].
Detecting
[AGG+95, PJP01, ZRQA11].
Detection
[BHW+17, CWS12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KSJ14, SG12, ZDD97, BBH+15, DFK94a, HDDG09, HGMW12, HPS+12, HPS+13,
LZC\(^{+02}\), RAGJ95, TCP15, TDG13, TWF009, WTF014, YULMTS\(^{+17}\).

Detector [DZDR95]. **Determination** [LAFAI5]. **Determine** [BP99].

Deterministic [CFMR95, DK02, ZLL\(^{+12}\)]. **Develop** [PD98]. **Developer** [IEE96i].

Developers [Str94]. **Developing** [BFZ97, CCSM97, Cot98, DDLM95, Reu03].

Development [AC17, Ano01a, BDG\(^{+91b}\), BR95c, CHPP01, Cha02, Cot07, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TBDEE11, ArvW03, ABC\(^{+00}\), BL97, BDG\(^{+92a}\), DSZ94, DHP97, KCD\(^{+97}\), LCC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99]. **Developments** [Mat00a].

device [KKLL11, LS10, SBQZ14, YWTC15].

Devices [GJN97, ZJDW18].

DFB [WWZ\(^{+96}\)].

DFN [RS93].

DFN-RPC [RS93].

Diagnosis [AP96, LAdS\(^{+15}\)].

diagnostic [RSBT95]. **dictionary** [LSSZ15].

Diego [Has95, LF\(^{+93a}\), NM95]. **Difference** [UZC\(^{+12}\), GFPG12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94].

Differences [AKE00, LDCZ97]. **Different** [AIM97, GL97b, JCH\(^{+08}\), Ney00, Rab98, RBB97a, BN00, PY95].

Differential [MFTB95, Riz17, JK10, NF94, RBB15, SP11].

Differentiating [Cer99]. **Differentiation** [BBH\(^{+08}\), BGK08, CdGM06].

Diffusion [HF14a, HF14b, MW98, CEGS07, DM93, MM92]. **Digest** [IEE93a, IEE95c].

Digit [DALD18, LAD16]. **Digital** [KLR16, C1J\(^{+10}\)].

Dijon [YH96]. **Dimemas** [GLB00].

Dimensional [Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK\(^{+17a}\), SJK\(^{+17b}\), AL93, KT02, LSSZ15, Ols95, PR94c, Ram07, RG18].

Dimensions [SAS01, Ano93g, HI11].

dipolar [LBB\(^{+16}\), LYSS\(^{+16}\)]. **DIPORSI** [GGCC001].

DipSystem [SPL99]. **Direct** [Bri10, GPC\(^{+17}\), LB98, WJB14, BCM\(^{+16}\), Gra09, HWS09, MM11, SWH15].

direction [BDG\(^{+93b}\)]. **Directions** [IFI95, FK94, FHP\(^{+95}\), Sun96]. **directive** [LV12, NOO2a, YL09]. **directive-based** [LV12, YL09].

Directives [BBG\(^{+01}\), BK000, CCRPG15, JFY00, LOHA01, VGS14]. **directory** [JCP15].

Discovering [FFJ\(^{+17}\)]. **discovery** [BK11, GWVP\(^{+14}\)].

Discrete [ST17].

diskless [PKD95]. **Disks** [dFMBdFM02].

Dispersion [RSV\(^{+05}\)]. **Displacement** [BSJ97, PSS01].

Dissemination [GL97a].

Distance [MR12]. **Distances** [LAFAI5].

Distributed [AGS97, Ano95e, BMS\(^{+17}\), BME02, BGR97a, BL95, Bha93, BJ95, BRT94, BT01b, BHK95, CGB\(^{+10}\), CLL03, CSW97, CC99, DMB16, DBA97, DFM94, DGF97, DHHW92, DHHW93a, EMO\(^{+93}\), ESM\(^{+94}\), FH95, Fan98, FTB00, FK01, Fos98, FS93, FFFC99, GGM99, GCC001, GCGS98, GCB97, GWC95, GM95, HJ98, HC10, HRS97, IEE93d, IEE93c, IEE94d, IEE94g, IEE95b, IEE95g, IEE95k, IEE95g, IEE96b, IEE96g, IEE96f, IEE05, JML01, KBA02, KP96, KDL\(^{+95b}\), KL95, KK02b, KSHS01, LC93, LHD\(^{+94}\), LHD\(^{+95}\), MZK93, MB12, MFTB95, MSCW95, Mat95, MBE03, NSBR07, NZZ94, NH95, Pen95, PKYW95, Pet00a, Pet00b, PTT94, PPM95, PBK00, PD98, PMvdG\(^{+13}\), RGD97, Sch94, SA93, SMOE93, SW91, Sun90a, Sun90b, TSS00b, THN00, WI93, WO97, WCS99, YH96, ZDD97, ZDR01, AMBG93, AGR\(^{+95b}\), AB95, Ano94c].

distributed [Arn95, ADM05, BSC99, BB95, Bir94, BMPZ94a, CBPP02, CH94, CEF\(^{+95}\), CBHH94, CLASPD99, CPR\(^{+95}\), CK99, DLR94, DR94, DHHW93b, DR95, EGH99, FB97, FS95, FSH\(^{+95}\), FHB\(^{+13}\), GBR97, GCN\(^{+10}\), GKK90, GkLyCY97, GP95, HPY\(^{+93}\), HHA95, IEE97a, JWB96, KN95, KSG13, KJ\(^{+16}\), KDL\(^{+95a}\), LR06b, LFS93a, LFS93b, LH98, LKL96, Liu95, Ma94, MVT96, Man98, MLC04, NA999, OLG\(^{+16}\), PK05, POL99, Par93, PR94c, PR94e, PR94f, PR94g].
RAGJ95, RFH+95, SSH08, SHHI01, SL94b, Sch93, SFL+94, SSC96, SPL99, Smi93b, SD99, TSP95, THM+94, Uhl95a, VM94, VB99, Vet02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YL96, YW095, YX95, YPZ95, YZFC95, ZL96, ZGC94, ZHS99, Pet01.

distributed-data [FB97].

Distributed-Memory
-CSW97, CC99, KN95, SSH08.

distributed-shared [ADMV05].

Distributing [AL92].

Distribution
-HB96b, MBJ15, NPP+00b, NPP+00c,
NA01, SR96, AGG+95, CSW99, GS96,
HB96a, JMvG+17, KRC17, NPP+00a,
RJMC93, Wil94.

Distributions
-ST17, WO95, HMC984, WO96, vHKS94.

Divergence [SaSCP13, VS+13].

diversity [EO15].

Divide [CTK01, Cza02, Cza03].

Divide-and-Conquer
-CTK01, Cza02, Cza03.

DMMP [BB93].

DMP1 [HWM02, ZLI+12].

DNAml [CDZ+98].

DNMR [SR11].

docking [ESB13, ZWL13].

Document
-[MHSS16, AD95].

Documentation
-[BG+xx].

Documents [Ano98].

does [KB94].

dog [LK14].

Domain
-[BM01, CP97, EGH+14, kL11, ETV94,
HE13, Ne93, NZZ94, Olu14, OMK09,
Ram07, SHHC18, VM94].

Domaine [GA96].

Domains
-[KR09].

Dongarra
-[Ano95b, Ano96a, Ano99a, Ano99b, Nag05].

doOpenCL [KS913].

Double
-[FKK96, PT94].

down [Str94].

Downloadable [Ano98].

DP
-[Arn95, KLR+15].

DPVM [HVaA+00].

draft [DHWW93, GL92].

draw [ST17].

Dresden
-[MdSC09].

Driven
-[AIM97, ME17, PCY14, Hin11, NCB+12,
NCF+17, Qnt95, SIS17, TWFO09, WTO14].

Dror [Str02].

drug [GWV+14].

drugs [Str94].

DSIR [LRT90, RTL99].

DSM
-[KBVP07].

DSMC [JL18].

DSMPI
-[SSC96, SSC97].

DTM [P507].

DTS
-[BH95].

Dual
-[BBC+00, GAM+02, DK02, CT13, LSSZ15].

dual-dictionary [LSZ15].

Dual-Level
-[BBC+00, GAM+02, DK02].

dual-scanline
-[CT13].

Dublin [LKD08].

During [DeP03].

Dust [dFMdFm02].

DVFS [P+16].

DWT [ZZZ+15].

Dyn [WLNL03, WLNL06].

Dyn-MPI [WLNL03, WLNL06].

Dynamic
-[ACGR97, AGS97, AUR01, CLGD01,
CkmWH16, CML04, CK99, CTK01, DMB16,
DA97, DFMD94, FMBM96, FDO0, GFD03,
GFD05, GRV01, GCBL12, GMPD98, GL95a,
KFL05, NPP+00c, NLRH07, PK98, PLK+04,
PT01, PGDC1+18, Ram05, SPH+18, Smi93b,
SY95, TS12a, VdS00, Vet02, Wal01a, Wil94,
YST08, Zel95, DDLM95, EO15, FHH97,
FCS+12, FKL08, J17, MSM15,
NSBR07, NF94, OKW95, RBA17, RCG95,
SCB14, SCB15, SKK+12, SKB+14,
WRS16, YPA94, DvdLVS94, FCS+12].

dynamically [SS99].

DynamicPVM
-[DvdLVS94].

Dynamics
-[BST+13, BCGL97, DR97, JFY00, KBM97,
dFMdFm02, MH01, OS97, SNS95a,
SA93, TDBEE11, TEG09, WFC15, ZB94,
ALR94, ABG96, JG96, BvdB94, BHS18,
BvdD95, BBK+94, BMTD94b, BMTD94a,
CC00b, FHSO99, HVC11, JAT97, JMS14,
KAF96, KPK93, KRG13, LSVW10,
OKM12, PARB14, PBB99, SPE95,
SZBS95b, SKM15, TGR94, WPH94].

Dynamische [Wil94].

dynamite
-[LvdLH+00, IHV+a00].

Dynamite/DPVM
-[IHV+a00].

DySel [CkmWH16].

E-scale [Gua16].

each [Ano00a, Ano00b].

Early
-[CD96, LV12, SLG95, EFR+05, KJA+93].

Earth
-[KTJT03, Nak03, Nak05a, Nak05b, UT02].

Earthquake
-[UZC+12, KTJT03, KME09].

Easily
-[PKB01].

East [IS16].

Easy
-[HCA16, TDG13, MJPB16, SBF94].

EasyGrid [BR04].

EASYPVM [Saa94].
ECMWF [HK93, HK95]. ed [Nag05].
EDEM [Tsu95]. Edge
[ZDD97, Gra97, RAGJ95]. edition
[Ano99a, Ano99b, Ano00b]. Editors
[AM07, GSA08]. education [ACM06a].
EDV [Ano94c]. EDV-Benutzertreffens
[Ano94c]. Edward [Che10]. Effect [DK06].
Effective [MLAV10, RR01, TMC09, Tsu95, Cza13, JH97, KS15a]. Effects [SSE12].
efficiency [GScFM13]. Efficiency
[KS06, MTU+15, CZ96, MMU99, RS95].
Efficient [ADT14, Att96, BHIW+17, BGBP01, BCK+09, BHLs+95, BFG+10, BGD12, Bnu95, BHD+97, BMPZ94b, CAWL17, CFP96, DZ98a, DGG+12, FHP94a, FHP94b, HBT95, HKT+12, HTO8, HLO+16, KGG+03, KD13, LAD16, MDM17, MB12, MRB17, NKB99, PGS+13, RJMC93, RRBL01, TGBS05, WSN99, WWFT11, YPZC95, ZWHS95, BfDA94, BHIW+12, CGH+14, FM90, FNSW99, FHB+13, HCL05, KVGH11, LKL96, LA06, Pan95b, PRS+14, RR01, SOA11, TPf15, TDG13, YLC96, dCZG06, CRD99, THRZ99]. Efficiently [CC99, CCM+06, PHA10]. effortless [ITT99]. eigenproblem [BV99, GG99].
eigensolvers [DR18]. Eigenvalue [DAK98, BSC99, THM+94]. Eighth [ERS95, Sie94, IEE96b]. Eilean [CSS95].
einem [BL94]. Einfluß [Gra97].
Einführung [MS04]. Einstein [ARYT17].
Einstein- [ARYT17]. Ejector
[CBP9A15]. elastic [PTG13]. elasticity
[PTT94]. Elastodynamic [MAIVAH14].
electric [BALU95, Ano03]. electrical
[Sil96]. electroabsorption [WWZ+96]. electromagnetic
[DSOF11, NZZ94, OMK09]. electromagnetics [OGM+16]. electron
[ART17, JL18]. electron-molecule
[ART17]. Electronic [GJN97]. Electronics
[IEE95d]. Electrosoft [Sil96]. electrostatic
[VDL+15]. Element [MS02b, OD01, OMK09, SM02, VRS00, BB93, BCM+16, Gra09, HMKV94, KME09, KEGM10, MGS+15, Nak05a, Nak05b, PTT94].
Elemental [PMdG+13]. elements [KB13].
Eliminating [DSG17]. elimination
[ACMZR11]. elision [CLdJ+15]. elliptic
[AGIS94, PR94c]. ELLPACK
[BBH12, MKP+96]. ELLPACK-R
[BBH12]. Else [Gei00]. elucidation [MK94].
Embedded [TMC18, YGHI+14, ACJ12, CGK11, NEM17, TMW17, WCT+13].
Embedding [FS97, SML17, MS06a].
Embodying [Ser97]. emerging
[RMNN+12]. Emission [Pat93, EZBA16].
emphasis [Bos96]. eMPI [MS96a].
eMPI/eMPICH [MS96a]. eMPICH
[MS96a]. Empirical [SS94, VY02].
Employing [AGM06, LB16]. emulation
[MS09b]. emulator [LTLC94]. enable
[SPK+12]. Enabled
[Fos98, GSY+13, LSMW11, Pan14, ZLP17, DS13, GLM+08, HJBB14, KTF03, RA09, SHH101, SR11, ZLS+15]. Enabling
[APbC16, BGR+15, CLSP07, DGB+14, GBH14, GBH18, HJYC10, NPS12, TY14, ZP106, BR04, MA09, SHHC18].
encapsulation [DRUC12]. encoding
[AAAA16, PGBF+07, SM12]. endpoint
[LLH+14]. endpoints [DGB+14]. energies
[TK15]. Energy
[BPG94, EGR15, KFL05, RBA17, VW92, FKL108, KN17, PTL+16, TDG13].
Energy-Aware [EGR15]. energy-efficient
[TDG13]. Engine
[Wal01a, NPP+00a, Wal01b]. Engineering
[Ano98, BPG94, BP93, EGH+14, IIE96h, KaM10, LSB15, LF+93a, MS02a, MBS15, Nag05, SM07, Str94, DMW96, IIE94c, PW95, SiL96, LF+93a]. engineers [HW11].
Engines [SLJ+14, HSW+12, SHM+12].
Engine [OIS+06]. English
[Wil94]. Enhance [AR01]. Enhanced
[Ano98, CDHL95, CDH+95, FMSG17, KY10, PLR02, Saa94, BR95b, FE17].
enhancement [ARL94, Boi97].
Enhancements [BDG95, BCKP00, DM95b, DM95a].
Enhancing [BFIM99, FSC+11, MVTP96, MMC15, OFA+15]. Ensemble [Cot97, Cot98, BY12, FH97].
Ensemble-Based [FH97]. ENSOLV [AMS94]. Entwicklung [Sei99].
Environment [BDGS93, BFG+10, BFM97, BGL00, CHP01, CTK01, DLB07, DI02, DHHW92, DHHW93a, DDL00, FTVB00, FWR+95, GJN97, GL97a, HRSA97, KBA02, KKH03, KDL+95b, KVI97, LC93, Lus00, MSOR01, MM02, MFG+08, MSS97, NJ01, Ong02, Rol94, SDN99, SGL+00, SGHL01, TTP97, WL96a, ABG+96, BDG+92b, BDG+94, BK96, BT96, CEF+95, CLLASPDP99, DZ96, DL10, DHHW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL+96, GkLyCY97, HZ94, IJM+05, IvdlLI+00, KCD+97, Kat93, KDL+95a, Kos95b, KFSS94, wL94, MSL12, MK97, NP94, PES99, PVKE01, PQ97, RNPM13, SSKF95, Sch93, SPK96, SBF94, SWYC94, Skj93, SSG95, TJ99, Tho94, WCC+07, WL96b, WLC07, ZL96].
Environmental [ANS95]. Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GFB+07, Laf01, Mat94, Mat95, MFC98, PS01a, RB01, SHH94b, SSS97, SCL00, TAH+01, ACCd902, ARL+94, ALR94, ADDR95, AMV94, Bon96, BFIM99, CDH+94, CK99, DR94, DR95, EO15, HS93, HVSH95, LC07, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96].
environments-the [CDH+94]. EPS [GT94]. EPS-APS [GT94]. Epstein [BL95]. Epstein-Nesbet [BL95].
Equation [ES11, LZ97, SAS01, VRS00, DM12, LBB+16, LYSS+16, MS95, NP94, ÖN12, Ol95, Pri14, iSYS12, SSB+16, YSVM+16, YSMA+17]. Equations [And98, BG95, GK10, Huc96, LLY93, MFTP95, ORA12, ZB97, BHW+12, Che99, IM95, JK10, Jou94, MM11, NF94, RBB15, SP11, SMSW06, ZZG+14, dH94]. Equi [LTRA02]. Equi-Join [LTRA02]. equivalencing [LLG12]. Era [ABB+10, CZG+08, CGKM11, EdS08].
ESBMC-GPU [MdSAS+18]. Espoo [RWD09]. ESPRIT [CDH+94]. Estimation [GK10, AMHC11, CCK95, GB94, JMDVG+17, KS13, ZWHS95]. Estuarine [LRQ01]. Ethernet [CC00a, Fin97, HcF05, KLY03, KLY05, OF00, PFG97]. EU [Ano03]. Eugene [MCdS+08]. Euler [DLR94, IDD94]. Euler/Navier [DLR94, IDD94]. EURO [HBM95b, BMFR96, HBM95b, BMFR96].
Euro-Par [BMFR96, HAM95b, BMFR96]. Euromatic [IEE95b, IEE96g]. EuroMPI [CDND11, KGRD10, TBD12, TB14]. EUROPE [LCHS96, Ano92, Ano93e, Ano93f, Ano94g, Tou96].
European [AD98, Ano94i, BR95a, BDL96, BC00, BDW97, CHD07, CD01, CDN11, DKD05, DLM99, DKP00, DLO03, KGRD10, Kra02, KKD04, KLD08, MTW06, RWD09, TBD12, WPH94, DHH97]. EuroPVM [BDLS96, OL05, DKD07, MTW07].
EUROPVM/MPI [OL05, DKD07, MTW07]. EuroPVMMP [KKD03]. EUROSIM [BH95, DSZ94, BH95]. Eurospace [Tou96]. europespace-Ada-Europe [Tou96].
Evaluate [MW98]. Evaluating [BVW+12, FVLS15, FST98a, GFD03, GFD05, GGCG01, GB96, HWW97, LH95, SSS97, ZSnH01, FS-FM13, TLTC94, TG09, ZL+11]. Evaluation [ATM01, BF98, BIC+10, BM97, BEG+10, CLP+99, DI02, FST98b, FSSD17, Han98, JCH+08, KS96, KK02b, KSS00, LGCH99, LNK+15, LZ97, kl11, LVP04, MH01,
MGC12, NON00, OTK15, OM96, Pan14,
Par93, RB01, SWHP05, SCP97, SEF+16, SBF+04, SM92, Sou01, SJK+17a, SJK+17b, TOH99, TSB02, TSB03, TTS00, UMK97, VY02, AB13, BBG+14, BBH\ldots13a, BMG07, CB11, DBB+16, HRP+95, HASKP00, HPS95, IM94, JC17, JMDVG+17, LV12, LN+12, MKP+96, MM93, MT96, MHH99, N95, P95S08, RLF+93, SL94b, SWC94, SF95, SFS95, TSP95, THM+94, TMPJ01, Wor96, YWO95, YS93, ZHK06.

Evaluations [MM+14]. **Event** [KKV01, N8L016, TSH+15, WM01].

Event-Based [N8L16]. **everything** [CCM+06]. **everything-shared** [CCM+06].

Evolution [W94, PS01a, RBB17, SSL97, SGM94, GS93, SSM+94]. **Evolutionary** [B+5, DSM94, Rag96]. **Evolving** [Bad16, ER12, MdS90]. **Ewing** [A95c, Ano99c, Ano99d, Ano00a, Ano00b].

EWOMP'99 [BC00]. **Exact** [DOSMM+16]. **Example** [Ch10, N96, Pat93, SK10].

Exascale [Bad16, LV12, LS92].

Exception [FMSG17]. **exchange** [MM93, Pan95a]. **excluded** [BHW+12].

executeable [WMP+14]. **Execution** [AHD92, BME02, DT17, FC95, FM90, GR97, KKG+03, Mar95, MFG+08, MAGR01, Ney00, STY99, SAP16, EPM99, Mor95, SAC98, TNI97, TSY99, TSY00, UGT99].

Executions [GAML01]. **Exhibition** [H95a, GH94, LCHS96]. **Existing** [CB90].

EXOCHI [WCC+07]. **Expand** [CGC+02].

Expanding [LA02]. **expected** [CAHT17].

Experience [B97T, B99, CP98, PS01a, Tou00, AM94, CAR90, KA+93, RSC+15].

Experiences [AHP01, BFZ97, CMV+94, CLLASDPD99, GLN+08, GS91a, GS97, GB96, GL95d, ITT92, JR10, KS97, Mar02, TGEM09, ZPLS96, ZKRA14, AL92, CCF+94, Sch94, SGM94, BDG+93b].

Experiment [Luo99]. **Experimental** [BIL99, BIC05, EGC02, Ser97, UMK97].

Experiments [BPM97, Cec94, LGM00, OS97, RR00, ZB97, RHG+96, HAJK01].

Expert [BPG04]. **experts** [EO15].

ExpEther [NMS+14]. **Explicit** [BHV12, GFG17, SHL01, LC97b].

Explicitly [Mai12, SYR+09]. **exploit** [ZP07].

Exploitation [GGL+08, GAM+02, BK11, GAM+00].

Exploiting [Add01, BRI10, FKL08, HEH09, KFL05, NAA01, Nob08, THH+05]. **Exploration** [AMuHK15, OFA+15, ABDP15, GE95, GE96, PDY14]. **Explorations** [BGG+15].

Exploring [IFA+16, MBK12, MTT+15].

Expose [SAL+17]. **Exposing** [SD96].

Exposition [IEE95d, LF+93a]. **EXPRESS** [KS96, Ahs97, FK94, LH95, SHH94a, SHH94b]. **Expression** [BN12, KH15, SUR95a]. **expressions** [SFLD15]. **expressive** [Tai12a, YLC16].

Extend [DFA+09]. **Extended** [BR02, HTA08, SS99].

Extending [ABB+10, BCC+00a, BCC+00b, BDD+13, CS96, CG99a, KDT+12, LMRG14, Mar03, OFA+15, RGDML16, SDV+95, TMMTP96, CG96, GGH+96].

Extensible [BL97, GS94]. **Extension** [AELGE16, BGR97a, CSAG98, VAT95, Hum95, JH97, SG14, SC95, ZT17, GBR97].

Extensions [Fis01, GOM+01, GHL+98, HVA+16, HE15, DPD08, HP05, Kat93, Ano99c, Ano99d].

Extent [KL11]. **Extent-Based** [KL11].

exterior [HMKV94]. **external** [BBB+94].

Extraction [CBL10, LHO+16, datAT17].

Extreme [MdS90, ZKRA14].

Extreme-scale [ZKRA14].

eyes [Str94].

F [FHP94b, FHP+94]. **F90** [DP94]. **face** [HDDG09]. **Faces** [Gro12]. **facilitate** [PKB06].

Facilitating [MD99, ZL+12, ES13]. **Facilities** [MM98, MN91].

Facility [KG96, SHT91, KZCS96, LHCT96].

factorization [AZ95, BSGt91, BRS92].
DG95, KBP16, WLC07]. Factorizations [TD98, LC97b]. Failure [LFS92, LFS93a, LFS93b]. Fail-safe [LFS92, LFS93a, LFS93b]. Failure [BBH...13a, CRGM14, BBH+13b, CGH+14, BBD+13]. failure-aware [CGH+14]. failures [JS13]. Faulty [KLR16]. Fall [Gra97]. false [JE95]. family [AVA+16]. farming [Str94]. Fast [Ben01, BHS+02, BBH12, CS14, DFN12, EM02, Hog13, JFGRF12, JMdVG+17, PSHL11, PR94c, PBC+01, RB01, SE02, SS09, STY99, SR11, TPLY18, UP01, WTR03, Lan09, LCL+12, NYNT12, TDG13, YULMTS+17, YLZ13, YBZL03, ZA14, AAB+17, DBLG11, PFG97]. Faster [Tsu12, ZG95a, ZG96]. Fat [Zah12]. Fat-tree [Zah12]. FATCOP [CF01]. Fault [BBC+02, BCH+03, BHK+06, CF01, CFDLO1, FBD01a, FBVD02, FD02a, FD04, GFB+03, GKP97, GJR09, GL04, Gua16, IEE95c, JSH+05, LMRG14, LNLE00, dLR04, MSE00, RPM+08, TS12a, WC09, Wi93, BCH+08, FBD01b, FD02b, HG12, LMG17, LS08, PKD05, SG05, ZHK06, FD00]. Fault-management [GJR09]. Fault-tolerant [BHK+06, FD04, GFB+03, IEE95c, JSH+05, LMRG17, LS08]. Faults [LAdS+15]. FCRC [ACM96b]. FD [And08]. FD-TD [And08]. FDDI [LC93]. FDTD [DSOF11, VM94]. Fe [Old02, BJS99]. feasability [KBG16]. Feature [Qu95, ZWL+17]. Feature-driven [Qu95]. Features [GLT99, GLT00b, GLT00a, GLT12, KAHS96, Ano00a, CRD99, WKS96, ZKRA14, dAT17]. February [Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97c]. FEM [GEW98]. FEM-Systeme [GEW98]. Fermi [SP11, WKP11]. fermions [GM18]. FETI [KLR+15]. few [NS16]. few-body [NS16]. Feynman [NS16]. FFT [DALD18, GB98, JKM+17, NMS12, SH14, WJB14]. FFT-Based [WJB14]. FFTs [EFR+05]. FFTW [KT10]. FHP [BMS94a]. Field [KNT02, Goe02, TKP15]. fields [BALU95, RSBT95]. Fifth [DKM+92, HK93, IEE96f, SM07, IEE95c]. filamentary [YPA94]. File [BIC+10, CGC+02, LRT07, kLCCW07, kL11, PLR02, RK01, TSS00b, Tsu07, WTR03, DL10, LL95, SBQZ14, iSYS12]. File-I [PLR02, RK01]. File-I/O [PLR02, RK01]. film [SL00]. filter [BY12, CCU95]. Finding [FCLG07, GAVRRL17, PCS94]. Fine [AZG17, BBG+10, JCP15, SFL+94, TCM18, YSS+17, BK11, KW14, LZHY19]. Fine-Grain [AZG17, JCP15, SFL+94, BK11, KW14]. Fine-Grained [BBG+10, TCM18, YSS+17, LZHY19]. Finite [DFN12, MS02b, MAIVAH14, OD01, OMK09, Pri14, SM02, UZC+12, VM94, VRS00, BB93, Gra09, GFGF12, HE13, HMKV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, Ram07]. Finite-Difference [UZC+12, VM94, HE13, NZZ94, Ram07]. Finite-Element [MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b]. Finland [RWD09]. Fire [JML01, SJ02]. First [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kum94, Nar95, PBPT95, SSP+94, USE94, AH95, BS94, GM18, PTMF18, PBPT95]. Fix [DL16]. FLAME [VBLvdG08]. flat [Nak05b]. Flattening [THRZ99]. flavors [GM18]. Flexibility [KK02b]. Flexible [CS14, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAM+00, HC08]. Flink [KWEF18]. flip [KO14, Kom15]. Florida [ACM98b]. Flow [BHW+17, BGD12, CGZQ13, CCBPGA15, FM09, Pat93, AMS94, AFST95, EP06, ED94, HK94, HTFD09, JAT97, LL16, MBKM12, Ols95, PTT94, RM99, SCC95, SU96, TS12b]. Flow-Based [BHW+17]. Flows [GAP97, BCM+16, BTC+17, Heb93, LLG12]. Flowshop [CB11]. Fluid [DFMD94, GAP97,
[SHH94a, SHH94b]. GECCO [B+05]. Geist [Ano95b]. Gemini [SWS+12]. gms [Fer04, nHi12, Ngu08, PF05]. gene [PCS94, AAC+05, BGH+05, EFR+05, KMH+14, LM13, MV17, MSW+05]. gene-finding [PCS94]. Gene/L [AAC+05, BGH+05, EFR+05, MSW+05]. Gene/Q [KMH+14, LM13, MV17]. General [Che10, IH04, MW98, PCS94, BGH+05, EFR+05, MSW+05]. General-Purpose [Che10, ABDP15, CBM+08, KPNM16, PF05, SK10]. Generalized [DFKS01, FKS96, BSC99, SD99, van93]. Generating [AZG17, CGL+93, ER12, IJM+05, PKB+16, SFLD15]. Generation [AB93a, CC17, FAFD15, Gei98, GTH96, HT08, IJM+05, PKB+16, SFLD15]. Generational [WK08a, WK08b, WK08c]. generative [MA806]. generator [Lan09, TNIB17, YL09]. Generic [ARS89, AKL99, GB98, BAS13, GM13, ZT17]. Genetic [FTVB00, MTSS94, MSCW95, PB12, WKS96, Wal01a, WHD05, AB13, BB95, FSTG99, HPLT99, RJC95, Wal01b, B+05]. genetics [LM99]. Geneva [IEE97b]. genomics [SD10]. GeoComputation [Abr96, Abr96]. GeoFEM [NO02b, NO02a, Nak03]. geomechanics [BJ99]. geometrical [FMS15]. Geometry [STK08, STT96]. geophysical [Has95]. Georeferring [GCC98]. Georgia [USE00, UCW95]. German [EGH99, GBR97, Gra97, GEW98, Sie99, Wer95]. Germany [BDLS96, GH94, KGRD10, MTWD06, MdSC09, PSB+94, Sch93, Tou96, Ano93a, BPG94, Cal94, GHH+93, WPH94]. Gesellschaft [Ano94c]. get [Str94]. Getting [Nob08]. GF100 [WKP11]. gHull [GCN+13]. GHz [Ano03]. Gibbs [TKP15]. Gigabit [CC00a, HcF05, EGH99, OF00]. Giganet [GT01, Trä02b, bT01a]. GIS [CFPS95, CCM97]. Give [DZ08b]. Glenda [SBB94, Bie95]. Global [BSG00, DSS00, Pan95a, Ros13, SHTS01, STK08, SWH15, TTP97, HWS09, HCL05, HEH09, LF+93a, Str94, Wan02, YL13, Zah12, ZWHS95]. Globally [BHS+02]. GLUE [Rab98]. GMRES [dH94]. Gmunden [Vol93]. GEOFEM [NO02b, NO02a, Nak03]. geomechanics [BJS99]. geometrical [FMS15]. Geometry [STK08, STT96]. geophysical [Has95]. geometric [BJS99]. geomechanics [BJS99]. geometrical [FMS15]. Geometry [STK08, STT96]. geophysical [Has95]. Georeferring [GCC98]. Georgia [USE00, UCW95]. German [EGH99, GBR97, Gra97, GEW98, Sie99, Wer95]. Germany [BDLS96, GH94, KGRD10, MTWD06, MdSC09, PSB+94, Sch93, Tou96, Ano93a, BPG94, Cal94, GHH+93, WPH94]. Gesellschaft [Ano94c]. get [Str94]. Getting [Nob08]. GF100 [WKP11]. gHull [GCN+13]. GHz [Ano03]. Gibbs [TKP15]. Gigabit [CC00a, HcF05, EGH99, OF00]. Giganet [GT01, Trä02b, bT01a]. GIS [CFPS95, CCM97]. Give [DZ08b]. Glenda [SBB94, Bie95]. Global [BSG00, DSS00, Pan95a, Ros13, SHTS01, STK08, SWH15, TTP97, HWS09, HCL05, HEH09, LF+93a, Str94, Wan02, YL13, Zah12, ZWHS95]. Globally [BHS+02]. GLUE [Rab98]. GMRES [dH94]. Gmunden [Vol93]. GEOFEM [NO02b, NO02a, Nak03]. geomechanics [BJS99]. geometrical [FMS15]. Geometry [STK08, STT96]. geophysical [Has95]. Georeferring [GCC98]. Georgia [USE00, UCW95]. German [EGH99, GBR97, Gra97, GEW98, Sie99, Wer95]. Germany [BDLS96, GH94, KGRD10, MTWD06, MdSC09, PSB+94, Sch93, Tou96, Ano93a, BPG94, Cal94, GHH+93, WPH94]. Gesellschaft [Ano94c]. get [Str94]. Getting [Nob08]. GF100 [WKP11]. gHull [GCN+13]. GHz [Ano03]. Gibbs [TKP15]. Gigabit [CC00a, HcF05, EGH99, OF00]. Giganet [GT01, Trä02b, bT01a]. GIS [CFPS95, CCM97]. Give [DZ08b]. Glenda [SBB94, Bie95]. Global [BSG00, DSS00, Pan95a, Ros13, SHTS01, STK08, SWH15, TTP97, HWS09, HCL05, HEH09, LF+93a, Str94, Wan02, YL13, Zah12, ZWHS95]. Globally [BHS+02]. GLUE [Rab98]. GMRES [dH94]. Gmunden [Vol93]. GEOFEM [NO02b, NO02a, Nak03]. geomechanics [BJS99]. geometrical [FMS15]. Geometry [STK08, STT96]. geophysical [Has95]. Georeferring [GCC98]. Georgia [USE00, UCW95]. German [EGH99, GBR97, Gra97, GEW98, Sie99, Wer95]. Germany [BDLS96, GH94, KGRD10, MTWD06, MdSC09, PSB+94, Sch93, Tou96, Ano93a, BPG94, Cal94, GHH+93, WPH94]. Gesellschaft [Ano94c]. get [Str94].
GPU-Resident [JDB+14]. GPUDirect [OGM+16, YWCF15], GPUMP [ZC10]. GPUrpc [IFA+16]. GPUs [BY12, DS13, DS16, GML+16, GFPG12, GPC+17, GM18, HJT+16, HLP10, HP11, HLP11, Hs12, IFA+16, JKM+17, JAK17, KGB+09, KKMI5, KKLH11, KVGH11, LBH12, LRBC15, MA09, ON12, OH10, PP16, PB12, SHLMI4, SDB+16, SKK+12, Ts12, VY15, WRSY16, WJ12, WJB14, YLZ13, YSWY14, ZC10, ZZZ+15].
gpuSPHASE [WMRR17]. GPUVerify [BCD+12]. GQ [RFG+00]. GRACE [YKI+96, ZRQA+11]. GRADE [DDL00].
Gradient [BG95, GFPG12, KN17, MM92, Ols95]. Grain [AZG17, IOK00, MJPB16, NIO+02, NIO+03, BK11, JCP15, KW14, SFL+94]. Grained [ADRCT98, BBG+10, LGM00, TCM18, YSS+17, Heb93, LZHY19, RJ95]. Grammatical [RBB17]. Grand [DGMG93, Ten95, BG+92c]. Graph [BHW+17, DW02, MM14, NPS12, PRP01, STV97, HLP10, HKOO11, PP16, PD11].
Graph-Based [NPS12]. Graph-Partitioning [STV97]. Graphical [HJBB14]. Graphical [BG+91b, DDL00, BG+92a, KCD+97, KFSS94, SSKF95, VDL+15]. Graphics [KS15b, LSVW10, LSW+11, SLL+14, vdLJR11, ABDP15, BHS18, CBM+08, DLIB11, Fer04, GKL95, ITA08, HSW+12, KFA96, KY10, KME09, LHLK10, MSZG17, PF95, SMH+12, SR11, WWFT11, ZLS+15, MSML10]. graphics-scalable [GKL95].
Graphs [LGM00, OP10, PGF18, EP96, MC99, MJPB16]. Gravitational [ZSK15, KM10]. Greece [CD01, CDND11, SM07, TG94]. green [PTL+16]. Grenoble [JPTE94]. Grid [AB93a, CGB+10, CLL03, DPP01, Fos98, KT02, La01, Liv00, MRB17, PLK+04, Rei01, TCGM09, AB93b, Eng00, GLM+08, KRKS11, WYLC12, AASB08, BR04, CCHW03, DKD08, FC05, GFB+03, GL02, KTF03, KGB+03, KSSS07, LC07, LS80, NSBR07, RPM+08, RTRG+07, SHTS01].
Grid-Adaptive [KT02]. Grid-Enabled [Fos98, GLM+08, KTF03]. Grids [NO02b, ACH+11, CC10, KGB+09, NO02a, NB96, BBH+06, GR07, Ram07, SN10].
GROMACS [BvdSvD95]. Gropp [An09c, An09d, An09a, An00b]. Gross [LBB+16, LSY+16, SS+16, YSV+16, YSM+17]. Ground [HTHD99, NS16]. groundwater [AFST95, EGD92]. Group [AD98, An09a, Ara95, ACDR94, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, GN95, KGRD10, Krah02, KKD04, LKDO8, MC94, MTWD06, RWD09, TBD12, UMK97, BDW97, DLO03, MMU99]. grouping [WPL95]. Groups [GOM+01].
GUI-awareness [VGS14]. guidance [SDJ17]. Guide [An012, D+91, GBD+94, Lad04, Nov95, Per96, An09a, BDG+91a, McK94].
Guideline [Tra012]. Guidelines [TGT10]. GVirtuS [MGL+17].
Hamiltonian [ART17]. Handling [DFC+07, FMSG17, LSB15, LGM00, RC97, FFFC99, LNW+12, THRZ99]. hands [KmWH10]. hands-on [KmWH10]. Harbor [BBC+00]. Hardware [BGG+15, BWW+12, Brui12, BCKP00, CDPM03, DW02, GJMM18, HSP+13, LSW+11, MFC98, PSM+14, PKB+16, vdLR11, ER12, GGL+08, PMZM16, Rah99, SBG+12, SH94, SWS+12, YAJG+15, ZLS+15]. Hardware-Based [CDPM03]. Hardware-oblivious [HSP+13]. harmonic
Harness [EBKG01, MS99b, PL96, FBDO1a, FBDO1b, FBVD02, FD02a, FD02b, MSF00, Gei98].
Harrogate [CJNW95].
Hartree [CBHH94].
HASEonGPU [EZBA16].
Haskell [WO97].
Hate [Dan12].
Hawaii [ERS95, ERS96, H5994, MMH93, ZL96].
HCA [KBG16].
HDL [Kat93, KMK16].
HDMR [KD12].
Heading [Sch99].
Heat [SAS01, NP94, iSYS12].
Hector [RFRH96, RRG99].
Heijen [Van95].
held [AGH95, GA96, JB96, KG93, MMH93, Old02, R92, SPH95, TG94].
Helios [SPK96].
Helmholtz [HMKV94].
Helps [Stp02].
HeNCE [BDG92a, BDG92b, BDG93a, BDG94].
Henon [JPT14].
Herzliya [IEE96h].
HeSSE [MRV00].
Heterogeneous [ABB+10, BDG93a, BDG93b, BL95, BCP+07, BGR97b, BCKP00, CMM12, DGM93, DGM93, F97a, F97b, FLD98, F98, G91b, GDDM17, IEE93f, KR09, KCR+17, L93, MRV00, MM01, MM02, NTR16, P98, S900, SGS10, TQDL01, VLO+08, ACGdT02, ADB94, ADDR95, AMV94, BDG92c, BDG94, BALU95, BRR99, BAG17, MCC12, CFP95, FMBM96, G912, GCN+10, G9CF13, HK94, K9G13, KSL+12, K95b, LCL+12, L906a, Lce12, Mali12, MLS12, MM03, NP94, NEM17, P95, RFC986, S93, Sm97b, Sun94b, S94, TBB12, TMW17, TPK15, TGD13, VB99, WCC+07, YST08, Y9L+12, ZJWD18].
HeteroMPI [LR06a, VLO+08].
Heuristic [BHM96, STV97, WH94].
HI [ERS96, H5994, IEE96e, ACM97a].
HICSS [ERS96, MMH93].
HICSS-26 [MMH93].
HICSS-29 [ERS96].
HiCUDA [HA11].
Hierarchical [BMR01, FBSN01, HA10, HL17, MALM95, RR02, ADVM95, BDV93, GJM18, OKM12, Y9Z95].
Hierarchies [SYR+99].
High [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, BPG94, BRST94, BS07, CDD+13, CNM11, CD9H95, CS14, DPP91, DDL00, DE91, FGK97, GSHL92, GBH99, G9S07, GLDS96, HVA+16, HA11, Hol12, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IFI95, JIM+11, K1a13, KMK16, KEGM10, KH15, Lf01, LCK11, LC97a, LkLC+03, LBH12, LWP04, MW98, MPD04, ME17, MAB95, NU05, OIH10, OL99, P9B01, PR94b, P9+01b, Rab98, RH01, SPM+10, SCSL12, SJ02, S10, SVC+11, SSS99, Ton00, Tsn07, VW92, WN10, YLC14, Y9CF15, Y9+05, AH95, A03, BACD07, Ber96, BWT96, B19D, CHKK15, CB918, DL10, Duy92, E9B16, ESB13, F9ME+12, G92, G9C+07, G9L6, G9L7c, H9D90, HW11, H12, KBP16, K9E09, Lam09, LBD96, MLS12, M92ZG17, NS91, N9+10, Old02, OGM+16, PGS+13].
High-Dimensional [MW98].
High-Level [CS14, DDL00, HA11, Hos12, SG14, SFLD15].
High-order [KEGM10, KME09, OGM+16].
High-Performance [ACM99a, FGK97, IEE97c, LkLC+03, OL99, P9B01, PR94b, P9+01b, Rab98, RH01, SPM+10, SCSL12, WN10, GLDS96, OIH10, SVC+11, A03, ESB13, F9ME+12, G9L6, G9L7c, H9D90, KBP16, LBD96, Old02, PGS+13, P9K+10, P9F05, Ret03, RJDH14, SG14, SFLD15, ZSK15, ZWL13, DAT17, CD9+15, D98b, D95, DE91, GH94, HS95a, KD12, LCHS96, L97b, SSH08, Ten95].
High-Precision [Kha13].
High-Scalability [BS07].
High-Speed [CD9H95, KMK16, AH95, BWT96, CD9+15].
high-throughput [ESB13].
Higher [MYB16, KB13, wL94].
higher-level [wL94].
Higher-order [MYB16].
Highly [MM95, PV97, TMP16, CARB10, GBH14, GBH18, VM95].
highly-scalable [GBH14].
Hills [IEE93f].
HiNet [AH95].
HIRLAM [Bjo95, HE02, KOS+95a].
histogramming
[KRC17]. History [OWSA95]. Hitachi
[Ano03, NNON00, TSB02, TSB03]. HLA
[RTRG+07]. Hoare [Ki17]. Hoc
[ITC+10, ITO2]. Högskolan [Eng00]. Hole
[Kha13]. holistic [TWFO09].
Homomorphisms [RG18]. homotopy
[GWC95, SMSW06, VY15]. Honolulu
[EE96e]. honor [Str94]. Host
[Ano95e, LLRS02]. Host-Parasite
[LLRS02]. HOTB [GSMK17].
Hotel [IEE94e]. Hotel-Copley [IEE94e].
Hough [YULMTS+17]. house [ZLZ+11].
Houston [ACM06a, Ano95a, Cha05, DKK+92, Y+93].
HP [CGB+10, BCM+16]. HPC
[ASS+17, CBG+15, GDC15, GKK90,
LCVD94b, OLG+16, PRS+14, ZLP17].
HPC2002 [Ano03]. HPNC [LCHS96].
HPF
[BP98, BF01, BID95, Bri00, BDV03, CM98,
CDD+96, Coe94, FKK+96b, FKKC96,
FKK96a, LZ97, OP98, OPP00, SM02,
Str94]. HPF-MPI [BP98]. HPL [Lee12].
HPVM
[BCKP00, CLP+99]. HPVM-Based
[CLP+99]. hull [GCN+13]. Hungarian
[Fer92, FK95]. Hungary
[DKP00, KKDO4, VV95, FK95]. hunting
[JPP95]. Husky [YLC16]. Huss [Ano96a,
Ano99a, Ano99c, Ano99b, Ano99d, Nag05].
Huss-Lederman
[Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].
Hybrid
[BBG+10, BBH+06, CGC+11, CNM11,
Cha02, DR97, GPC+17, HSVSC11, IDS16,
KS15a, KLR+15, LLRS02, LRG14, MS02b,
NOO02, PZ12, SSB+16, VPS17, WT12,
YH11, YPAE09, YTH+12, ADR+05,
BBG+14, CSPM+96, FMS15, GÄVRRL17,
GKK09, HDB+13, JR10, JMS14, KN17,
KL+13, KJEM12, LLC+13, LLH+14,
MLAV10, MRRP11, NOO2a, Nak05a, Nak05b,
PARB14, PHJM11, SDJ17, SVC+11, WT11,
WYL12, WLYC12, YWC11, ZWL13].
hybrid-core [BBG+14]. Hybridizing
[LSG12]. HYDRA_MPI [PBC+01]. Hyper
[CSW99, SBT04, TBG+02, ZAT+07].
Hyper-Rectangle [CSW99].
Hyper-Threading
[SBT04, TBG+02, ZAT+07]. hypercube
[HS95b, Sur95b]. Hypercubes
[Ano89, RJMC93, She95]. Hypercubic
[HP11]. hyperelastic [OKW95].
hypersonic [BTC+17]. Hyperspectral
[VLO+08].
I-SPAN [LHHM96, Li96]. I-WAY [FGT96].
I/O [Bos96, CFF+96, DRUC12, IRU01,
ITC+10, LkLC+03, kLCC+06, MV17,
MG12, MG15, PSK08, PLR02, RK01,
SBQZ14, Tha98, Tsu07, WSN99, ZJDW18].
IASTED [Ham95a]. IBM
[AL93, Ano03, BBB+94, BGBP01, BR95c,
BR95b, Bri95, CDE94, FHP+94, FHP+95, Fra95,
FWR+95, GL95d, HSMW94, HMKV94, Heb93, JF95,
KB98, KAC02, KHS01, KMH+14, LC97b, MP95,
MW93, MAB96, NMW93, WZWS08,
XH96]. IBM-SP1 [FHS94b]. ICA
[IEE96d]. ICAPP [Nar95]. ICCMSE
[S07]. ICIP [IEE94b]. ICPP [Agr95a]. ID
[DGG+12]. Idaho [Str94]. Ideas [IEE95d].
identification [HPLT99]. identity [KN17].
IEEE [ACM97b, ACM98b, ACM04, ACM05,
Bha93, IEE94e, IEE95g, IEE95a, IEE95k,
IEE95g, IEE96b, IEE96f, IEE96d,
IEE02, Nar95]. IEEE/ACM [ACM04].
IFIP [Boi97, DR94, PSB+94]. IFS [AH01].
Igniting [ACM03]. II
[DE91, GE95, HS94, BPS01, BW+12,
EM00b, GÄVRRL17, Sta95b]. III
[BPG94, BP93, DSM94, GE96, Has95,
OKW95, SSGF00]. ILDJIT [CARB10]. I'll
[Har94]. Illumination [STK08, ZWH95].
ILU [ABF+17]. ILU-preconditioned
[ABF+17]. im [Gra97]. Image [DYN+06,
FBB+00, GA96, GPC+17, KBA02, KS01,
LSZL02, NJO1, PLR02, RRBL01, WN10,
ARL+94, DZY94, GDC15, JC96, KKL11,
RKBA+13, SLS96, UH96, Wn99].
YULMTS+17, YPZC95, YZPC95, dAT17.

Imagery
[GGCM99, GGCGO01, GCGS98, GGGC99].

Images [Uhl94, Uhl95b, VLO+98, NAJ99].

Imaging [NH95, Has95, LM13, Pat93].

Imbalances [MLVS16].

Immunodominance [ZWL+17].

Impact [ADLL03a, ADLL03b, BRU95, Brui12, TSS01a, WHDB05, DO96, FSV14, SHHC18].

Implement [GM95, PPT96c].

Implementation [AB93a, AKL99, BGG+15, BG95, BPS01, BG95, BHP+03, BBS99, Ben01, BP98, BCD+15, Bjo95, BS97, BIC+10, BMR02, BMR03, BMS94b, BMG07, CGC+02, CMFR95, DYN+06, DAK98, EFR+05, ES11, FH97, FD04, FHS099, FSSX14, FBJB+00, FHP+94, FHP+94b, FHP94b, FHP94b, FH+94, FSLS98, GBH99, GB98, GBS+07, Gro92a, HPP02, HR97, HKT+12, Huc96, HAA+11, IBC+10, ITTO, IM94, JSS+15, JSH+05, LSL02, LTRO, LZ97, LWP04, MS02b, MW98, MN91, MT96, MRH+96, NSS12, NNON00, OTK15, OL01, Pan14, PLK+04, PS00a, Pet97, PB99, PTH+01a, PTH+01b, PB12, RDB99, RG18, RSV+05, SH94, SBF+04, SJB+02, Ser97, SCC96, SSS97, SZBS95a, SWJ95, SYF96, Sum12, Sur95a, TOT99, TBG+02, TR90, TMJ01, USE94, VT97, WH94, WPC07, YGH+14, YWO95, ZZG+14, ACGdT02, AS92, AAAA16].

implementation [AAC+05, ADLL03a, ADLL03b, AB93b, BB91, BvdSv95, BR95b, Ber96, BCR99, BK96, BCK+09, BS01, BS05, Bor99, BRR99, BS96b, BDV03, Brui95, BB00, BAS13, CDZ+98, CECS07, CG99a, CDGM96, CBH94, CD06, DS96, DSN9a, DL10, DSB+16, DOSF11, DM12, FFB99, FWNK96, FGT96, FGG+98, GCC99, GG99, GG09, GAVRRL17, GL92, GL94, GL96, GLDS96, GL97c, GT07, GkLyC97, HBT95, HCL05, HS95b, ITTT99, IvdlH+00, JRM+94, JC96, KY10, KTF03, KBVP07, KLI95, KVGH11, KB13, Lec12, LC07, LO96, MMO+16, Man94, MAIVAH14, MS95, MSZG17, ONI12, OKW95, OA17, OGM+16, PHJM11, PR94a, PTW99, PCS94, Ram07, RRFH96, Seq93, SBS95b, SCL97, Stq98, SNMP10, Su95b, SL95, TKP15, TP15, TS12b, TA14, TCP15, Tsu95, TVV96, VDL+15, VGRS16, VM95].

implementation [Was95a, WMIR17, YPA94, ZLS+15, dH94, dIAMCFN12, van93].

Implementations [AKK+94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG+10, FB94, Gro02b, kLCC+06, LCW+03, Mar02, ORA12, Sap97, TScMa12, TGEM09, VS00, WT12, ZDD97, CLSP07, ER12, ED04, GML+16, ICC02, KW18, MKP+96, NN95, Pri14, RLF013, WT11, YCL14].

implemented [BBH14, EP96].

Implementing [DPZ97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MHI98, MS99c, MSB97, SSS96, SS99, SMTW96, SGLH01, SCC95, Tra02a, Wi93, BWT96, LHZ97, YX95].

Implementor [GL95b].

Implicit [MS02b, NA01, SGLH01, Bjo95, TSP95, WADC99].

Importance [BCG+10, PC14].

Importance-Driven [PCY14].

Improve [KBS04, SKH96, Tha98, GK97, RHG+96].

Improved [Tra02b, MMO+16, dIAMCFN12].

improvements [DPS08].

Improving [CGZ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SM12, SCL00, XF95, CZ96, JKN+13].

in-house [ZLZ+11].

In-memory [CRM14, HSP+13].

in-place [HSE+17, PS11].

Including [BBW+12, GLT12].

incompressible [BCM+16, Lou95, RM99, TS12b].

Incorporating [LM94, LYZ13, TKP15].

Incremental [dOSMM+16].

Indefinite [YKW+18].

Independent [BCL00, BRU05, CSW12, CMDS09, DNN06, MV17, YBZL03].

Index [DLD18, LAD16].

Indexers [Wal01a].
Indexers/Crawler [Wal01a]. Indexing [LTR00]. India
[CGB†+10, IEE96a, Kum94, PBPT95].
indicator [FSV14]. Industrial
[BPMN97, DHK97, ALR94, ABC195a,
ABC195b, BT96, EKT99, Was96, Kun00].
industries [Ano93a]. Industry
[DM98, Ano94f]. Industry-Standard
[DM98]. inefficiency [HGMW12]. Inertial
[Str97]. Inference [Lad+15, TVCB18].
Infiniband [SWHP05, LCW†+03, LVP04,
LWP04, PK05, PRS16, SPK†+12, ZLP17].
InfiniBand-based [PK05]. inflation
[OdSSP12]. influence [Gra97].
Information [Ano98, CGB†+10, Ano93c,
CG99b, MMR99, WAD99, PSB†+94].
Infrastructure [WLR05]. infrastructures
[GWVP†+14]. Initial
[LLH†+14, VDL†+15, AL96, LSR95].
Initiated [SSB†+05]. initiatives [Sun95].
inito [SSGF00, SEC15]. Injection
[RRAGM97, SAL†+17]. Inn [IEE93c].
Innovation [ACM03]. Input
[CFF†+94, SHM†+12, JWBB96]. input-aware
[SHM†+12]. Input-Output [CFF†+94].
Input/output [JWBB96]. Insight [IEE02].
Inspection [BPMN97]. inspired
[NEM17, TDB00]. instances
[RBAI17, ZLZ†+11]. Institute
[Old02, TG94]. Instrumentation
[MMV95, Yan94]. Insurance [PZ12].
Integer [ASA97, CF01, WLC07, ZC10,
BH96, KVGH11]. IntegRate [CC10].
integral [HK94]. Integrals [FBSN01, NS16].
Integrate [GLRS01]. Integrated
[CFFDL01, DGM93, HKN†+01, KSV01,
WL96a, DF17, HK10, KW14, VDL†+15,
WWZ†+96, WL96b, WWZ96]. Integrating
[BCLN97, CM98, Fin00, GJF01, KIA†+93,
KAI96, WL94, WTFO14, TWFO09].
Integration
[CGC†+11, CSW97, FD96, FB94, MAIVAH14,
Se99, AL96, CSW99, KB13, RBB15].
Integrator [Per99, SP99]. Intel
[Ano96c, Ano03, DSGS17, MP95, OTK15,
URKG12, VDL†+15, YSMA†+17].
Intelligence [BPG94]. intelligent
[IEE95a, ZWZ†+95]. Intel(R)
[TBG†+02, SBT04]. Intensities [ARYT17].
Intensive
[Rei01, BFL99, BKML95, SL94a]. Inter
[KFL05, LAFA15, FKL08, LFL11, SDB†+16].
Inter-Atomic [LAFA15]. Inter-Node
[KFL05, FKL08, LFL11].
inter-workgroup [SDB†+16]. Interaction
[DMMV97, GFV99, NSLV16, Sou01].
interactions [PARB14]. Interactive
[Coo95b, KPK13, KA13, NE98, RTRG†+07,
STK08, Coo95a, IJM†+05].
Intercommunication [TMP16].
Interconnect
[Bri12, SJ02, WT96, SWS†+12, TBD96].
Interconnected [Hus00]. Interconnecting
[MC98]. Interconnection
[MAMR09, SB95, AVA†+16]. Interconnects
[RA09]. Interface
[Ano01b, BCFK99, BDH†+97, CHD07, Cer99,
CGH94, CDND11, DFKS01, DHHW92,
DHHW93a, DBK†+09, FKKC96, FSL98,
Gle93, GLS94, GL95c, GLDS96, GLT06b,
HDB†+12, HRS97, KS95, KGRD10,
KDV93, KKH94, LKH95, LKLC†+03, LW97,
MPI98, MS98, MS98, MSB94, MMSW02,
MTW06, PS01b, RW09, SSL97, TDB00,
TW01, TBD12, WD96, Wer95, YHGL10,
Ada98, AD98, Ano93d, Ano94d, BBB†+94,
BBCR99, Bru95, BDW97, BR94, CFKL00,
CFF†+96, CD01, CG99b, KD95, DDB†+16,
DS96b, DLM99, DKP00, DLO03, HYP†+93,
HRR†+11, KBO91, KSH96, KHA94, Kra02,
NS91, Pie94, PR04a, SL94a, SWJ95,
SDV†+95, VM95, Wal94a, Wal94b, ZWL13,
ZKRA14, AHMC11, BC14, BBH†+06, BRU05,
BDH†+95, Cot04, DKD08, Din96, FKS96,
FGT96, FGG†+98, GL98, GLT96, GLS99,
GLTS00, GL04, Han98, IBC†+10].
Interface [KTF03, KKD05, LK10, MSL96,
RRFH96, SWHP05, SLG95, SWL†+01].
TGT05, YGH+14, Ano95c, Ano00a, Ano00b.

Interface Architecture [Sei99]. Interfaces [MGC12, Wit16, RJDH14, Trä12a].

Interfacing [Lus00, PL96], interference [ZJDW18]. Intermediate [SML17].

internal [BBH+15]. International [ACM94, ACM96b, ANS95, Abr96, ATC94, AGH+95, Ano93a, Ano94a, BPG94, Bos96, BFMR96, Cha05, CZG+08, CGKM11, CMMR12, CGB+10, CH96, DSM94, DW94, EV01, EdS08, ERS95, ERS96, EJL92, Gt95, GA96, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE93c, IEE93b, IEE94d, IE94g, IE95b, IEE95c, IEE95a, IEE95k, IEE95i, IEE95f, IEE95i, IEE96a, IEE96f, IEE96e, IEE96d, IEE97b, IEE97c, IEO5, Kum94, LCK11, LF+93a, Lev95, LHM96, Li96, MHH93, MCD+08, MdSC09, Nar95, Ost94, PW95, PBG+95, PBPT95, Ree96, R+92, SHM+10, Sie94, SIl96, SM07, Tm96, VV92, Vo93, Vos03, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPT94, LCHS96, Mal95, ZL96, Ano93b, HHH94, Sch93.

Internet [NE98]. Interoperabilität [GBR97]. Interoperability [BoFBW00, Don06, PLR02, GBR97]. Interoperable [Rab98, MSL12, YBMC14].

Interoperation [FDG97a, FDG97b, FL998]. Interpolants [RB01]. interpolation [BAS13].

Interpretative [MKW11]. Interpreted [FSSD17]. Interpretive [CNC10].

interprocess [SC95]. interprocessor [DS96b]. interrupts [CXB+12, SH96].

Intervals [MDM17]. intra [GM13, VSW+13]. intra-node [GM13].

inter-warp [VSW+13]. Introducción [VP00]. Introducing [JKM+17, TBS12].

Introduction [Ano96b, AM07, Che10, Cze16, DOSW95, GSA08, HW11, Mar02, Mat00b, SK10, VP00].

Invasive [URKG12]. Inverse [Huc96, BV99, GGC+07, GG09, Wan02].

Irregular [FR95, BMR01, Cza02, Cza03, BL99, HASnP00, LOHA01, MR96, NP12]. irregularly [FR95, Smi93b]. ISA [Wit16].

Ischia [ACM06b]. Isser [SHH94a, SHH94b].

Isoler-Occam [SHH94a, SHH94b]. Ising [AL93, KO14]. Isolating [Lus00].

Isosurface [FCY14], ISPN [HHK94].

Israel [DSM94, IEE96b]. Israeli [IEE96b].

ISSAC [Lev95]. ISSTA [Ost94]. Issue [AM07, BDB+13, BC00, GSA08, MPI98, CHD09, DKD07, Mar02, Old02]. Issues [BDT08, FD02a, KGK+03, MW98, Pan95b, PS01b, ZDD97, ARvW03, EGH99, FD02b, HHA95, PBK99].

Italy [CMMR12, CH96, DKD05, DKD07, D+95, DLO03, HS95a, IEE95b, KG93, OL05, ACM06b, Ano93b, CLM+95, DR94, Si96].

Iteration [HF14a, HF14b]. iterations [Lou95, YST08]. Iterative [CCSM97, DK06, NO02b, Nak03, SC04, ADDR95, EDSV90, LRS95, MCG05, NO02a, Nak05a, Nak05b, OMK09, dH94]. Ithaca [PBG+95, Ree96]. IV [SPH95]. IWOMP [CGZ+08, CGKM11, CMMR12, EdS08, MCD+08, MdSC09, SM+10]. IWPP [Kum94, PBPT95]. IWPP-94 [Kum94, PBPT95]. IWPP [Kum94]. IX [R+92].

Jack
Languages

[GGCM99, GCGS98]. Lane [HHC+18]. Language [ACM96a, NM95, PD98, TA14, WLR05, Ben95, CGK11, Hos12, Nob08, RKB+13, Röh00]. Languages

[CFF+94, FMSG17, FSSD17, CH96, Mar05, Ohu14, SWS+12, PBB+95, SS96]. LANS

[Fin97]. LAPACK [Add01, ARvW03]. LaPerm [WRSY16]. LAPI [BGBP01]. Laplace [ACMR14]. Large [AKE00, BHW+17, BZ97, BS99, BHNW01, CGC+11, DALD18, FFP03, Huc96, JFGRF12, LLY93, KA95, KLS10, MLA+14, NFG+10, PTL+16, PD11, RNMN+12, SC96a, TBB12, WT11, ZWL13, ZA14]. Large-Scale

[AKE00, BHW+17, BZ97, BS99, BHNW01, CGC+11, DALD18, FFP03, Huc96, JFGRF12, LLY93, KA95, KLS10, MLA+14, NFG+10, PTL+16, PD11, RNMN+12, SC96a, TBB12, WT11, ZWL13, ZA14]. Large-Scale

[AKE00, BHW+17, BZ97, BS99, BHNW01, CGC+11, DALD18, FFP03, Huc96, JFGRF12, LLY93, KA95, KLS10, MLA+14, NFG+10, PTL+16, PD11, RNMN+12, SC96a, TBB12, WT11, ZWL13, ZA14]. Larger [NB96]. LargeScale [LAadS+15]. laser

[EZBA16, WWZ+96]. Lastverteilung

[Wil94]. Latency [Jes93a, Jon96, KBHA94, NCB+12, NCB+17, TBD96]. latency-tolerant [NCB+12, NCB+17]. Lattice

[BBK+94, BMS94b, HLP11, SJK+17a, SJK+17b, BW12, BMS94a, CGK+16, GM18, Sai10, SVC+11, BLPP13, OTK15]. launches [Ano03]. Layer [CSAG98, HEH98, FKK96a, PTT94, diAMC11, diAMCFN12]. layered [DiN96]. Layering [Hus01]. layers [KC94]. Layout

[WG17, BGH+05, HP11, LDJK13, Str12]. Lazy [TCBV10]. Leaks [DIV16]. Learned [GKPS97, MWO95]. Learning

[AHHP17, Gro01b, FE17, KWEF18, LSSZ15, SEC15, TWF009, WO09, WFT014]. learning-based [FE17]. Least

[PWP+16, VRS00, DK13]. Least-Squares [VRS00]. Lecture [Gei93a]. Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. Leeds [Abr96]. legacy

[BR04, LP00, LRW01]. Lemon [DRUC12]. Lengths [GSHL02]. LEO [CCBPGA15]. Leonardo [Stp02]. Lessons [MWO95]. Level [AELE16, BGG+15, BBC+00, CS14, CRGM14, DHHW92, DHHW93a, DDL00, G91b, GAM+02, HA11, HKT+12, DK02, KCP+94b, KOW97, LVP04, LMRG14, NPP+00c, SHM+10, SBF+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LM13, MALM95, NS91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBH...13a]. Leveraging

[HDB+12, NPP+00c, SHLM14, LFL11]. LIB [NPP+00d]. libefp [KS15a]. libOMP

[BGD12]. Libraries

[BHLS+95, BWV+12, CGQZ13, DARG13, GFD05, IEE94f, IEE95j, MLGW18, MM14, ARvW03, BCM11, BIDA94, CRD99, GS94, PS07, Skj93, SDB94, SSG95, DHH97]. Library

[AKL16, Ada97, Boo01, BLW98, Coo95b, DHP97, EM02, FHK01, For95, GFB+03, GS97, Gro02a, HB96b, ITK100, JPT14, KBG16, OD01, PLK+04, PS01a, RR02, Saa94, SBG+02, Sta95b, SKI96, TD98, UT0Y2, WN10, YKLD17, ZC10, Ada98, AMHC11, Arr95, CS95, Coo95a, CRUC12, DXB96, FBF97, Fan98, FF+96b, GDC15, GLM+08, GL94, HB96a, HLI+17, Har94, Har95, JKM+17, JC96, KS15a, KN95, LR06a, MSL96, PKB06, PS00b, RFF+95, SSSC96, SH96, ZTL17, CC95, McD96, Sun12]. Life

[PZ12, Str12]. Lifting [vdLJR11]. Lightweight

[CKmWH16, DT17, FLB+05, KMK16, TCM18, FS95, Ott93]. Like

[BST+13, BK000, CGJ+00, KOB01, VGS14, CSS95]. Likelihoods

[MSCW95]. LIME

[DRUC12]. Limits [GB96, MBKM12].
Linda [Mat94, KS96, MSP93, BLP93, CSS95, Gal97, Mat95, TDB00]. Linda-like [CSS95].

Line [BoFBW00, CGS15, Wis98, Bor99]. Linear [ASA97, BDT08, BG95, CDD+13, Gao03, Huc96, LL93, LZ97, MGMH97, MSB97, YKW+18, van07, BNS95, BkvH+14, BAV08, BRR99, CEGS07, DR18, Gra09, GFGP12, Jou94, MW98, MM11, OKW95, SCC96, SMSW06, dCH93, dH94]. Linear-scaling [Gao03]. Lines [NE01, YULMTS+17]. Link [BGR97b, SJ02]. Linked [WJ12].

Linköping [FF95]. LINPACK [JNL+15].

Linux [Sei99, SMTW96, USE00, SSSS97, Ano01a, GSN+01, MK04, OF00, PS07, PKB01, RSt06, Sei99, Slo05, SGL+00, YL09]. Linz [Kra02]. Lipid [FHSO99]. Liquid [DSS00, JLS+14]. Lisbon [IEE93d]. LISP [ACM90]. List [Tra98, WJ12]. Lithe [PHA10]. Lithography [RDMB99].

Liverpool [AD98]. LLVM [SML17]. Load [Ano94b, BKdSH01, BS05, DI02, DR95, DK06, GCBL12, HE02, MM02, NP94, PT01, Pus95, SGS95, ST97, Wal01a, Bir94, CKO+94, DZ96, DLR94, DvdLV94, EZA16, FMBM96, FH97, GS96, Hum95, JH97, MM03, SCL97, SY95, Wi94]. load-balanced [EZA16]. Local [BSG00, CDHL95, CCSM97, IKM+01, AMHC11, BY12, CGL+93, FSV14, IKM+02, LHD+94, LHD+95]. Locality [MJB15, ZLP17, BHR08, HJYC10, RKBA+13, WRSY16]. Locality-Aware [MJB15, HJYC10]. localization [HC08]. Locally [BHS+02]. Locating [PNV01].

Lusk [An05c, An09c, An09d, An00a, An00b]. Lustre [DL10]. Luther [ACM99]. Lyngby [DW94, DM96, Was96]. Lyon [BFR95].

M [PBC+01]. M-SPH [PBC+01]. M6A [EM00a]. M6B [EM00b]. MA [An95b, An95c, An96a, An99a, An99b, An99d, An00a, An00b]. Machine [AS92, AGIS94, BJ93, BS93, CD19, D+91, FE17, Fis01, GBD+94, Gre94, KNT02, KKD03, KDD04, KDL08, MTW06, Nov95, Pat93, Per96, RWD09, TY14, VS06, W94, AD98, AL92, An095b, BR91, BDG+91a, BPC94, Bir94, BDL96, BWD97, CARB10, CLM+95, Cav93, Cha96, Che99, CD01, CC00b, DM93, DDK05, DL99, DPK00, DLO03, FM90, KWEF18, KMC97, Kra02, LG93, MN91, MRH+96, NB96, Sch94, SK92, SCC96, SLO0, TBCB9, TW12, WFO09, W009, WFT014, ARL+94, BG94b, JPP05, KKK05, LK10, QRG95, SSSS96].

machine-learning [TWF09]. machine-learning-based [TWF14].

Machines [BP99, BZ97, BCC+00a, BT01b, DR97, EGR15, GB96, GST+15, HC10, MGL+17, STY99, SCSL12, ZWJK05, BCA+06, BSSC99, Xinglin14].
BCC+00b, DDS+94, DCH02, GKT12, KN95, PRS16, SL94b, TSY99, TSY00, WPL95, ZWL13, Gt01, YC98, made [MJPB16].

MAFFT [ZLS+15]. Magnetic [Y+93, PKE+10]. Magnetism [Y+93].

Magnetohydrodynamic [KT02, WWFT11]. Magnetostatic [BB93].

MAGPIE [KHB+99]. Main [Tou96].

Maintaining [PKB01]. maintenance [ZDR04, ZDR01]. Makes [ZG95b, Str94].

Malleable [EDSV09, MSMC15]. Mambo [WZWS08]. Man [IEE95a]. Manageable [PKB01]. Managed [KCR+17, LB16, SYR+09]. Management [AJ97, AUR01, BGR97b, BGL00, EK97, FDG97a, FDG97b, GJR09, PPT96a, PS00a, SIS17, STY99, THS+15, ARS89, DZ96, DF17, FL96, GJMM18, GL95a, JCP15, LF+93a, PPT96b, PPT96c, YWTc15].

manager [Sep93]. managers [FLD96].

Managing [FLD98, FGT97, Liv00, NPS12, Obe96]. Manchek [Ano95b]. Manipulation [KKV01]. Manual [CSW12, NSL16, Ren01]. Many [DT17, LHZ17, LCC15, RBO1, TCM18, YTH+12, ACMZR11, VDL+15, dCZG06].

Many-Core [LHZ17, TCM18, YTH+12, LCC15, ACMZR11, KSG13, MBBD13, dCZG06].

Many-Cores [DT17]. Manycore [MJB15, KGB+09]. Map [JPT14, FFM11, FJB+00, MSCW95].

MAPA [JJPL17]. Maple [Pet00a, Pet00b, Pet01]. Mapping [GAMR00, HC06, NTR16, RRL101, TSZC94, WO09, DDLM95, EO15, HCO8, TWF009, WCS+13, WFT014, WK08a, WK08c, dCZG06, WK08b]. MapReduce [JS13, MMM13, PD11, WZHZ16]. Maps [BM97, KRC17]. March [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

March [ACM95a, ACM06a, Ano89, Ano93c, Cal94, DKM+92, IE93f, IE94d, IE95b, IE97a]. Marine [LLRS02]. market [LF+93a].

Markov [BBH12, FKO1]. Marlioz [GA96].

marshaling [CFKL00]. MARTE [RGE13].

Martin [ACM99]. Maryland [IEE96c, SPF95]. MASA [SMM+16].

MasPar [ARL+94]. Massachusetts [IEE94e]. masses [Cla98].

Massively [BJ93, BHS18, BBH12, DSZ94, IEE94a, IE96c, Oed93, Sie92b, Sta95b, CS96, DR94, HVSC11, KN17, KmWH10, LCL+12, MYB16, RBB17, SRK+12, DSZ94].

massively-parallel [MYB16]. Master [FH98, EML00, LTR00, HP05].

master-slave [HP05].

Master-Workerproblem [FH98]. Master/Slave [LTR00]. Master/Worker [EML00].

Matching [GGC+00, KS91, MM02, OWSA95, WH94, MM03, Qu95, YPZC95].

Materials [Y+93, SSP+94]. mathematical [Wan97, Has95]. Mathematics [Wan97, ANS95].

MATLAB [BKGS02, ZLD+15, Ano97, Bra97, ZZG+14].

MATLAB-MPI [BKGS02]. MatlabMPI [KA04, Kep05].

MATOG [WG17].

matrices [DT18, GG99, GSMK17, Kan12].

Matrix [AK16, BSvdG91, Cha96, DSZ94, Fu08, GJ10, PMvdG+13, TQDL01, TD08, ART17, CM99, ER12, FAF16, FJZ+14, KBP16, PKD95, TPD15, XXL13].

Matrix-Vector [AK16, DS13, Fu08, XXL13].

Maui [ACM97a]. Max [Ano94c].

Max-Planck-Gesellschaft [Ano94c].

maximisation [CCU95]. maximum [HKOO11].

Maxwell [And98]. May [ACM96b, ACM06b, AGH+95, BR95a, BS94, Cha05, DT94, Eds08, Gat95, HS05a, Iee95e, Iee95d, Iee95i, PR94b, SPE95, SW91, SS96, Van95].

Maydan [Stp02]. MBCF [MMH99].

MCA [WCS+13].

McDonald [Stp02]. MCHF [SYF96].

McLean [IEE94a, Sie92a, Sie92b].

MCNP 34
Measurements [BFBW01, BFIM99, KRS99, Shi94, TMC09].

Mechanism [BG96, MTWD06, RWD09, TBD12, BDW97, JB96, SPH95, Ano92, CHD09].

Mechanisms [Wal01a, CGBS+15, Ott93, TMT096].

Mechatronic [KDL+95b, KDL+95a].

mEDA [VAT95], mEDA-2 [VAT95].

media [EZBA16, MAIVAH14].

Memory [WLNL06].

Meeting [AD98, Ano93e, CHD07, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, GA96, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RWD09, TBD12, BDW97, JB96, SPH95, Ano92, CHD09].

Medicine [GA96].

MEDINA [AC17].

medium [WLNL06].

medium-scale [WLNL06].

Message [FHK09].

Memory [Att96, BME02, BW+12, Bri10, BdS07, BT01b, CSW97, CC99, DM98, DMB16, DR97, DHHW92, DHHW93a, FB94, GCBM97, GB96, GSN+01, GSHL02, GLRS01, HC10, HDB+12, HDT+15, HT01, JPL17, KB98, KS13, KSSH01, LSH15, Luo99, MB12, MRB17, MBE03, MMH98, MCDS+08, Miil02, NPP+00d, PBK00, Pok96, PMvdG+13, Ros13, STY99, ST02b, SW91, Thr99, VS00, VT97, ARS89, ABC95a, ABC95b, ADM05, BCA+06, BVML12, BSC99, BMG07, CBP02, Cha05, Cha96, CBHH94, CRM14, CC00b, DF17, DLR94, DBVF01, DS96b, DHHW93b, DPZ97, EV01, FSV14, FHB+13, GCN+10, GBH14, GBH18, GKK09, GL96, GL97c, GP95, HSP+13, HGMW12, HDB+13, HK09, JC17, JE95, KN95, KJA+93, KC06, LKL96, MLC04, NAJ99, NAAL01, OLG+16, PK05, PS00b, RGDM15, SSH08, SHHI01, SL94b].

memory [SBG+12, SYR+09, SFL+94, SSC96, SPL99, SD16, TSY99, TSY00, Uh95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WK08c, WBS17, WMRR17, YX95, LBD+96, GK97, SG05].

Memory-Based [MMH98].

Memory-Efficient [MRB17].

memory-level [HK09].

Memory/Message [ST02b].

MenTo [GSN+01].

Menon [Stp02].

Mesh [HAA+11, MRB17, Ran05, BAS13, CLSP07, Cou93, GBR15, IDS16].

mesh-particle [BAS13].

Meshes [MRB17, TP015].

Message [AKL99, Ait96, BZ97, BCH+03, BBG+01, BDH+97, BGR97b, BFM97, CHD07, Cer99, CGZQ13, CHG94, Cot97, Cot98, CTK00, CDN11, DFKS01, DHHW92, DHHW93a, DDL00, FKKC96, Fos98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLUT00b, Hem94, KGRD10, KS97, KSV01, KKD04, KKD05, LK98, Lte99, MP198, MP95, MS98, MEB94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, RC97, RRBD01, RWD90, RFG+00, SAL+17, ST02b, TBD12, WD96, Wer95, Wis97, YHGL01, ZWL13, ZG95a, ZG96, ZLL+12, Ada08, AD98, AAC+05, Ano93d, Ano94d, Ano95c, Ano00a, Ano00b, BBG+14, BL97, BvSdV95, Bjo95, Bru95, BDW97, BFIM99, CGJ+00, CDZ+98, CRD99, CD01, CG99b, DKF93, DM93, DK05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FK94, GL92, HP05, HPY+93].

message [Hem96, KJA+93, Kra02, LR06a, BDH+96, wL94, LCY96, LMM+15, LC97b, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SWJ95, SDV+95, SZ99, SSG95, Sti94, TSZC94, VM95, Wal94a, Wal94b, ZK14, ZA14, AMHC11, BC14, BBH+06, BRU05, BDH+95, Cot04, D KD08, DiN96, FKS96, FG97, FGC+98, GGH+96, GLDS96, GLUT99, GLS99, GLUT00a, GL04, Han98, IBC+10, KTF03, KKD05, HK10, MTS94, MSL96, PS01b, RRFH96, SWHP05, SLG95].
SWL+01, TGT05, TDB00, Wer95, YGH+14. Message-Passing [Att96, Cot97, Cot98, DHH92, DDL00, GLS94, GL95c, GLT00b, MPI98, PBK00, Pok96, RRBL01, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvdSvD95, CDZ+98, GL92, Hem96, KJA+93, LR06a, LBD+96, wL94, LMM+15, PSS06, SSG95, Sti94, DiN06, GGHL+96, Han98, RFHF96, SLG95, Wer95, YGH+14]. Message-Passing-Interface [Wer95]. Message-Passing [Sei99]. Messages [KBS04, SKH96]. Messaging [HEH98, KC94]. Meta [BCLN97, FBD01a, FGRD01]. Meta-computing [OS97]. Meta-applications [SGH12]. Micro-Benchmark [BWV+12, YSWY14]. microbenchmark [BO01]. Microcoded [PWP+16]. microtask [OIS+06]. MIDAS [BFZ97]. Middleware [AUR0l, CLL03, CC10]. Middlewares [DPP01]. Midpoint [JMS14]. Migol [LS08]. Migratable [KOW97]. Migrating [VBRC94, VSR95, IvdlH+00, KBG+09]. Migration [Ano94b, CCK+95, CLL03, CML04, CCBPGA15, CTK01, NPP+00c, NLRH07, Ott94, OS97, ST97, AMBG93, BBGL96, CKO+94, CRM14, CRGM16, CK99, DDYM99, HZ99, LCVD94b, LM13, QHCC17, RRHF96, SSS99, SCL97, Ste96]. Milan [HS95a]. million [LHLK10]. Millions [BBG+11]. MIMD [BvdB94, BB93, BCL00, WST95]. MIMD/MMP [BB93]. MiMPI [GCC99]. MINIME [DS16]. MINIME-GPU [DS16]. minimization [POL99]. Minimum [KA95, Wu99, NCKB12]. mining [MA09]. Mississippi [IEE94f, IEE95j, IEE94f, IEE95j]. mitigating [ODSP12]. Mitigation [BBH+13a]. Mitsubishi [Ano03]. mittels [Wil94]. Mixed [ASA97, BGE+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01]. Mixed-Mode [BEG+10]. Mixing [CP98, GAp97, CBYG18]. mixture [EO15]. MK [NS91]. mm_par2.0 [OKM12]. MN [Ano94b]. Mob [STV97]. Mobile [TT02]. Mode [BGK08, Bri02, BEG+10, LRT07, SB01, YX95]. Model [AP96, BGG+02, BdS07, CKmWH16, Cha02, CZG+08, Dar01, DFA+09, FSX14, FBSN01, GLBO0, GLRS01, HLP11, KD12, LG16, LA02, LRQ01, MKW11, NSLV16, NO02b, Ran05, RSV+05, RRBL01, SPM+10, SB95, SPH+18, THN00, VT97, Wal01a, AL93, BSC09, Bir94, BG94b, BDV03, CMV+94, CL93, CKB+93, ED94, GkLyCY97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, KOS+95a, KSL+12, KL15, LR06b, LA06, LLH+14, Mar05, MdSAS+18, MSZG17,
MGC +15, NO02a, Nak05a, PADs+17,
RAS16, RGDM16, RC95, Sch93, SH94,
SCH99, SMAC08, Str94, VBLvdG08, Vis95,
Wan02, WCI5, WYLC12, YX95, TA14].

Model-Based [AP96, LGG16], Modeling
[ACM96a, ATM01, BS07, CSC96, CDM93,
FST98a, GAG+02, MOL05, NM95, RGD15,
SEF+16, TD99, VFD02, XL96, BD9+10,
Be95, J18, K10, KEM09, KEG10,
LZY19, MS99a, XNL13, YMY11].

Modelling [FST98b, GC05, Ham95a, KDL+95b,
KJ18, KM10, KME09, KEG10,
LZHY19, MS99a, XNL13, YMY11].

Models [AKK+94, BS93, BZ97, CMK00,
Cer99, CNM11, DK06, EMO+93, ESM+94,
GJN97, PPF89, SS01, SME03, Whi04,
BB95, CH96, Duv92, KB95, BS07, DR97,
DI02, KB95, LAFA15, MH01, SA93, YWCF15,
BvdSvD95, BBK+94, BMPZ94b, BMPZ94a,
CC00b, DCD+14, FHS09, JAT97, JMS14,
KFA96, KRG13, LSVMW08, OKM12,
PARB14, SL95, ZWL13].

Moderate [Uhl95a].

Modern [AHHP17, DARG13, KDT+12, LNK+15,
SM07, HH14, PMZ16].

Models [AKK+94, BS93, BZ97, CMK00,
Cer99, CNM11, DK06, EMO+93, ESM+94,
GJN97, PPF89, SS01, SME03, Whi04,
BB95, CH96, Duv92, KB95, BS07, DR97,
DI02, KB95, LAFA15, MH01, SA93, YWCF15,
BvdSvD95, BBK+94, BMPZ94b, BMPZ94a,
CC00b, DCD+14, FHS09, JAT97, JMS14,
KFA96, KRG13, LSVMW08, OKM12,
PARB14, SL95, ZWL13].

Model [CT02, HPP02, FWS+17, HLM+17].

Modulator [WWZ+96].

Modular [WWZ+96].

Module [Ano98].

Modules [AKK+94, DS96b].

Molecular [ABB+96, BST+13,
BCGL97, BL95, BS07, DR97, D102, KMB97,
LAFA15, MH01, SA93, YWCF15, Z94b,
BvdSvD95, BBK+94, BMPZ94b, BMPZ94a,
CC00b, DCD+14, FHS09, JAT97, JMS14,
KFA96, KRG13, LSVMW08, OKM12,
PARB14, SL95, ZWL13].

Molecule [ART17].

Monitor [BL95, KN17].

Monitoring [AH00, BCLN97, Beg93b, BFM96,
BFMT96b, CD98, DBK+09, GSN+01, LY93,
LW97, MWG97, MVY95, SGL+00, UP01,
Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a,
BB94, BS96a, BFMT96a, FLB+05, LC07].

Monodomain [ORA12].

Monte [HJB914, RP95, WH96, ADRTC98, AK99, DAK08,
NSL16, RR00, SK00, SKM15, ZZ04].

Monterey [Ano89, Gat95, USE94].

Montpellier [DE91].

Montréal [Lev95].

MOPS [GJ97].

Morehouse [AGH+95].

Morgan [SD13].

Morton [LZH18].

MOSIX [BBG+96, BST+13,
BCGL97, BL95, BS07, DR97, D102, KMB97,
LAFA15, MH01, SA93, YWCF15, Z94b,
BvdSvD95, BBK+94, BMPZ94b, BMPZ94a,
CC00b, DCD+14, FHS09, JAT97, JMS14,
KFA96, KRG13, LSVMW08, OKM12,
PARB14, SL95, ZWL13].
CRGM16, CC99, CT02, CD96, CG99b, DPS05, DPSD08, Dan12, DSG17, DZ96, DZ98a, DR18, DW02, DLM+17, DZ98b, Dem96, DPP01, DLB07, DSW96. **MPI** [DS96a, DRUC12, DKD07, DI02, DL10, DCPJ12, DCPJ14, DAK98, DGG+12, DGB+14, DDB+16, HD02a, DXB96, DOSW95, DCH02, DBK+09, EZBA16, EGH99, EDSV09, ES11, FH97, FD96, FDG97a, FDG97b, FLD98, FD00, FBD01a, FBD01b, FGRD01, FBVD02, FD02a, FD02b, FD04, FCLG07, FB95, FB96, FB97, Fan98, FPY08, FFB99, FNSW99, FTVB00, FFP03, FMS15, FHK01, FKH02, FSC+11, FCS+12, Fin97, Fin94, Fin95, FWNK96, Fin00, FLB+05, FC05, FST98a, FST98b, FJK+17, FKK+96b, FKK96a, FGT96, Fos98, FHP94a, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, FKL08, FBSN01, FSL98, GB97, GFD03, GFD05, GDC15, GGGC99, GGC99, GCLB12, GGH+96, Gei00, GR07, GGL+08, GJR09, GSH17, GBH14, GBH18, GGS99, GR95, GLB00, Gle93, GM13, GJMM18, GT01, GBH99, GHZ12. **MPI** [GAVRRL17, GRRM99, GAMR00, GKS+11, GB98, GMP98, GPL+96, Gra97, GEW98, GBS+07, GLM+08, GL92, GL94, GL96, GL5a, GL5b, GL95c, GL96, GLDS96, GL97c, GHL+98, GL99, GLT99, GLS99, Gro00, GLO00, GLT00b, GLO0a, Gro01a, Gro01b, Gro02a, GL02, Gro02b, GT07, GGT12, Gro12, GPC+17, GC05, GSY+13, Gua16, HJ98, HC10, Har94, Har95, HLM+17, Hat98, HO14, HD02b, HE02, Hem94, HZ96, Hem96, HRZ97, HZ90, HEH98, HGMW12, HMK09, HPS+12, HPS+13, Hin11, HRR+11, HDB+12, HDB+13, HDT+15, HKN+01, HLOC96, HKT+12, HVSC11, HWX+13, HM01, HCA16, HG12, HcF05, Hus98, Hus00, Hus01, HWW97, IDS16, IRR01, ITK00, ICC02, JL18, JF95, JDB+14, Jes93b, JMM+11, JS13, JNL+15, Jon96, JSJ+05, KB01, KFA96, KS15a, KPW05, KW14, KWEF18, KD12, Kan12]. **MPI** [KFL05, KB08, KKO2a, KL94, KLY+03, KLY05, KSJ95, KSJ96, KN17, KBS04, KGK+03, KHB+99, KMB97, KLR+15, KR09, KMG99, KEGM10, KRC17, KY98, KAC02, KCO6, KBG16, KM+14, KR+13, LA+15, LLRS02, LTFD14, LGM00, LRT07, LC97a, LR06b, LTRA02, Luc12, LZ97, LRW01, LPD+11, LCC13, LHZ17, LHZ18, kLCC+06, kLCCW07, kL11, LFL11, LS10, LC9Y6, LCW+03, LVP04, LW04, LG16, LYSS+16, LB96, LMG17, LCMG17, LNLE00, LQ96, dLRO4, LZYH19, LS08, LL01, LZC+02, LJK03, LCC+03, LKYS04, LSK04, LLH+14, MBBD13, MMR99, MS02a, MS02b, MV17, MTK16, Man01, Man98, MLVS16, MLAV10, MKP+96, MSMC15, MSL2, MH01, MSL6, MS96a, MC98, MGG05, MAS06, MM02, MOL05, MCS0, MANR09, MRRP11, MG97, MMM13, MTW07, MK04, MCLD01, MMH98, MHH99, MS90c, MB00]. **MPI** [MvWL+10, NAW+96, NO02b, NO02a, Nak05a, Nak05b, NSBR07, NE98, NE01, Nes10, NSS12, NH95, NCB+12, NCB+17, NAJ99, NW98, Nitt00, NHT02, NHT06, NFG+10, NN95, OM96, OLG+16, OKM12, OIS+06, OD01, OF00, Ong02, OP98, OL05, OGM+16, OMK09, Pac97, PARB14, Pan14, PK98, PES99, PLK+04, PKS08, PDI14, PS00a, PS01a, PHJMN11, PTL+16, Per99, PZ12, PGK+10, PFG97, PLR02, PGAB+05, PGBF+07, PGAB+07, Pla02, PD11, PSSS01, PS0+10, PTH+01a, PTH+01b, PS00b, PTW99, QB12, Qiu03, Rab98, Rab99, RDMB99, RR01, Ram07, RSST95, Ram05, RA09, RAS16, RCFS96, RBB97a, RBB97b, RBB97c, RSPM08, RTH00, RHO1, Ret01, RST02, Ret03, RGDM15, RGDML16, RNPM13, RPM+08, Röho0, Rol08b, RsT06, RFRH96, RRG+99, RTRG+07, SE02, SCH14, SCB15]. **MPI** [SPM+10, SSB+05, Sap97, SSB+16, SDJ17, SGH12, SBF+04, SW12, SBB+02, SG05,
Multi-protocol [MB00]. multi-socket [LS10]. Multi-Stage [FSXZ14].
Multi-Threaded [MG15, Ada98, EBKG01, SCB15]. Multi-Threaded [MLGW18].
Multi-Zone [JCH+08, AGMJ06]. Multiblock [IDD94, DLR94]. Multicast [CCA00, CDFM03, ZGN94]. Multicasting [SE02]. multicenter [CwCW+11].
MultiCL [APbF16]. multicomputer [SWJ95, TD99]. multicomputers [HWW97, Yan94, YX95]. Multiconference [Ten95]. Multicore [BRT08, CGC+11, CB16, DS16, KDT+12, LNK+15, WT12, YKW+18, CLYC16, GJLT11, HWX+13, JPOJ12, KN17, LS10, MBBD13, MM11, Nob08, OPW+12, PDY14, QB12, RGDML16, WCS+13, WT11, WLYC12, YHL11, YWC11, dAMC11].
multicore/many-core [MBBD13].
multicore/many-core [MBBD13].
Multicores [GDDM17, UGT09].
multidestination [Pan95a].
multidimensional [CSW99, PDY14, ZT17].
multidisciplinary [Fin94, Fin95].
multifrontal [IM95]. Multigrain [AZG17, IOK00]. Multigrid
[BCMR00, AGIS94, IHH05, Lon95, Mic93, Mic95, PSLT99, RMM99, Sta95a, ZZG+14].
Multigroup [QRG95, QRMG96]. Multilevel
[PRESS01, BAV08, ETV94, GAM+00, JJY+03].
multimedia [GBF+14].
multimethod [FGT96]. Multiobjective [RLRGP12].
Multiparam [FS98]. Multiphase [SPH+18]. Multifysics [NPS12].
Multiphysical [SMM+16]. Multiple [BSG00, CB16, FGK97, FBSN01, JPT14, JSH+05, LTR00, NTR16, PET01, TST12, ZC10, ESB13, GM18, KGB+09, KKL11, SHHC18].
Multiple-Precision [ZC10, JPT14].
Multiplication [AKL16, DS13, Fuj08].
Multiprogramming
multiprogrammed
Multiprocessor
Multiprotocol
[BHK, ADB94, RTRG, SS91, Tra98, JE95, KC06, SYR+99, AGIS94].
multithreaded [TSY+99].
Multiprocessing
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].
MultiProcessors
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].
MultiProgrammers
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].

Nearest-Neighbor
[DI02].
Nearest-Neighbor [DI02].

MultiProcessors
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].

MultiProgrammers
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].

Network-Based
[BDG+91b, GS92, BDG+92a, IM95].
Network-Specific
[DM95a, DM95b].
network-topology-aware [SPK+12].

Networked
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].

Networks
[CSV12, CDM93, DDPR97, GFV99, GHL97, HHK94, HLCZ00, HIP02, LHHM96, L96].

Nets
[Sou01, Str94].

Net
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].

Necessary
[GPL+96, HRZ97, TRH00].

Neighbor
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].

Nets
[Sou01, Str94].

Net
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].

Network
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].

Nets
[Sou01, Str94].

Net
[BV03, CC99, HIP02, NPP+04d, SBW91, SSt91, Tra98, JE95, KC06, SYR+99, AGIS94].
Ada98, BR91, DM12, LKL96, OKM12, RFH+95, SL94b, TDG13. object-based [LKL96]. Object-Oriented [BCFK99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. Objects [KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZPLS96]. Oblivious [LZH17, LZH18, UALK17, HSP+13]. observations [ZKRA14]. observed [CAHT17]. Occam [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. Ocean [BS93, GAM+02, Bic95, Mal01, Nes10, Sch99, Wal00]. Oceans [IEE94c, IEE94c]. OCLoptimizer [FAFD15]. OCM [BoFBW00]. OCM-Based [BoFBW00]. October [Ano93c, Ano94e, Ano94i, Ara95, BPG94, Bha93, CHD07, CGB+10, DSM94, DLO03, DE91, FK95, GGK+93, IEE94f, IEE95a, IEE95j, IEE96b, IEE96c, IF95, JB96, Kra02, Old02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vd93]. octree [JL18]. octree-based [JL18]. ODE [Ano97, Bra97]. ODEs [Pett97]. OdinMP [BB00]. OdinMP/CCp [BB00]. Off [CGS15]. Off-Line [CGS15]. Offering [EK97]. Official [Ano98]. Offload [BRU05]. Offloading [MGA+17, DSGS17, KBG16]. oft [Rol08a]. Oil [FSXZ14, ZAFAM16]. OKs [Ano03]. old [LK14]. OMB [BWV+12]. OMB-GPU [BWV+12]. OMIS [LW97]. Omni [KSS00, KSHS01]. OmnirPC [SHTS01]. OMP [SGJ+03]. OMP2001 [TSB03]. OMP2012 [MBB+12]. OMPi [ACH+11, OM96]. OmpSs [ABF+17, UNJG+15]. on-chip [TDG13]. On-Demand [CTK00]. On-Line [BoFBW00, Wis98]. On-the-fly [KSJ14]. ONC [RS93]. One [BPS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, GBH18, LSK04, MS99c, Ols95, PGK+10, dAMC11]. one-dimensional [Ols95]. one-layer [dAMC11]. One-Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, LSK04, MS99c, PGK+10, only [LS10, Squ03]. Ontario [GGK+93]. onto [OFA+15]. OOMPI [MSL96]. OOPS [RFH+95]. OPAL [CwCW+11, NW98]. OPAL-MPI [NW98]. opaque [SOA11]. Open [BBG+15, KDL+95b, AVA+16, KDL+95a, Nob08, GBS+07, VGRS16]. Open-Source [BBG+15, AVA+16, Nob08]. OpenACC [CGK+16, CCBPGA15, GML+16, GM18, HTJ+16, JCP15, KL15, Kom15, LB16, LSG12, MGS+15, OGM+16, QHCC17, RLFDs13]. OpenACC-based [KL15]. OpenGL [ABDP15, APBC16, AB13, BLPP13, BDW16, BN12, BH+12, BHH+15, BAS13, CDD+13, CP15, CIJ+10, CHKK15, CCK12, CS14, DARG13, DI 14, DVL+10, DWL+12, FAD15, FLMR17, FE17, FSV14, FVLs15, GScFM13, GDDM17, HD11, HE15, HHC+18, JSS+15, JKM+17, JR13, JNL+15, JMDVG+17, KKM15, KH12, KM10, KKLL11, KSL+12, KJJ+16, KB13, KPK13, Lee12, LNK+15, LL16, LAFA15, MC17, MAIVAH14, MTU+15, MSZG17, MHSK16, ON12, OTK15, ORA12, PCY14, PHW+13, PB12, RG18, RGD13, RBB15, RBB17, SFSV13, SAP16, SSB+17, SG14, SFDL15, SG10, Str12, THS+15, TK16, TMW17, TKP15, TY14, WTTH17, WZHZ16, YSWY14, YWTc15, YSL+12, ZWL+17, 2T17, daT17]. OpenCL-accelerated [ZWL+17]. OpenCL-Based [WTTH17, WZHZ16, JKM+17]. OpenCL-to-WebCL [CHK05]. OpenGL [Ano98, LHZ97, ORA12]. openMosix [Slo05]. OpenMP [Cha05, CGZ+08, CGK11, CMMR12, EV01, JMS14, MdSC09, SHM+10, Vos03, OKM12, ST02a, ST02b, Add01, ArWV03, ABC+00, AHD12, AAB+17, AELGE16, ACRMZ11, ATL+12, ADT14, AC12, Ano97,
KHS12, LME09, LDJK13, MALM95, PP16, PMM95, SKS01, SDJ17, Str12, TMW17, TFFZ12, VSW+13, Was96, XLL13.

Optimizations [NSLV16, SSE12, iSYS12, TSS00a,BVML12, HEHC09, LL16, MV17].

optimize [WLYC12]. Optimized [AKL16, Br02, FADF15, MAI雅H14, PM95, PTH+01a, THS+15, WJB14, BKvH+14, MMM13, Sei99]. optimizer [BHRs08, Rag96]. Optimizing [BGH+05, CXB+12, FMFM15, KKP01, MBE03, NSZS13, OM96, SSAS12, TGL02, TGT05, GS02, LHC+07, RKBA+13].

Options [RR00]. Orange [ACM98b]. orbit [SSN94]. Order [BL95, DFN12, LZH18, KN17, KME09, KEGM10, KB13, MYB16, OG+16].

Origin [LL01, LSK04, ZShH01]. Origin2000 [Br00, MH01]. original [RNPM13]. Orlando [ACM98b]. Orleans [IEE96b, USE95]. ORNL [Bor99]. OSCAR [JK00, SLo05]. oscillator [BJ13, GSMK17]. OSDI [USE94]. OFS [Sch93]. Other [OP10]. OtOT [DKF94b]. Otto [Ano96a, Ano99a, Ano99b, Nag95].

out-of-core [BL99]. Output [CFF+96, HE02, JWB96]. Outstanding [LB15]. Overcoming [JKHK08].

Ownership [FHB+13]. Oxford [Boi97].

P [CAM12, WHDB05]. P-RnaPredict [WHDB05]. P03M [BJ93]. P2P [GR07, GGL+08, GJR09, SBG+02]. P2P-MPI [GGL+08, GJR09]. P4 [KS96, Mat94, Mat95].

Pablo [ACM04, Ham95a, ACM96c]. PA [ACM99, IEE93e, SW91]. Package [BS93, KCP+94b, KOW97, LW95, OD01, SYF96, van97, BHW+12, BBH+15, CwC+11, Gao03, KCP+94a, LFS93a, LFS93b, SL95].

Packets [Uhl94, Uhl95b]. PacT [Ma95]. PaCT-95 [Ma95]. PACX [FGRD01, KR09, RBB97b]. PACX-MPI [KR09, RBB97b]. Page [CML04, NPP+00]. pages [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Pagoda [YSS+17]. pairwise [AMHC11]. Palazzo [GT94]. PALLAS [KVH97]. Papers [BBD+13, OL05, TB14, ACM90, CHD09, DKD07, IEE93a, IEE95c, KKD03, MTW07, Old02, Ano93f, Cha05]. PARA [DW94, DM96, Was96, CD96].

parabolized [SCC95]. ParADE [KKH03]. Paradigm [HIP02]. Paradigms [BGD12, CM98, HD02a, HD02b]. Paradyn [MHC94b, MHC94d]. Paragon [Ano96c, HWW97, MP95, PR94a]. Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHc11, AGH+95, AS92, ADRC08, AK99, AMBG93, AS97, AL96, AP96, Ano95b, ACM14, AB93a, AJF16, BHM94, BJ93, BBG+95, BCGL97, BFL99, BPP99, BG95, BS93, BDG+91a, BKGS02, Ben01, BP98, Bha93, Bic95, BGK08, Bis04, BALU95, BCL00, BSG00, BBC+00, BBG+01, BFZ97, BDL98, BDH+95, BDH+97, BT01b, BMS94b, BMPZ94a, BFM97, BKO00, BBH12, BGL00, CGC+02,
CHD07, Cer99, CDZ+98, CCU95, CDK+01, Cha02, CGB+10, CNC10, CFF+94, CSW97, CMH99, CFPS95, CCSJ97, Coo95b, CT94a, CT94b, CC00b, Cze16, DSM94, DERC01, DYN+06, DK13, DI 14, DIO02, DSS00, D+91, DTM+92, DGMJ93, DT94, DZDR95, DK06, EKTB99, EGR15, EM00a, EM00b, EGDK92, EJL92, ES11, FGRD01, FHSO99, FJBB00, FFP03, Fer98b, FHK01, Fis01, For95, FP92].

Parallel [FB94, FS93, FF95, GCBM97, GLN+08, GBD+94, GKP97, GR07, GSI97, GSMK17, GB98, GHL97, GkLyCY97, HJ98, HLP10, HO14, HK94, HK93, HHK94, HT01, HAA+11, IEE93b, IEE94a, IEE95h, IEE95f, IEE95j, IEE95g, IEE96b, IEE97b, IEE05, IKT00, IOK00, IDD94, IMM05, IAT97, JML01, Jou94, JRM94, KFA96, Kan12, KK02a, KOI01, KNT02, Kat93, KBS04, Kep05, KRO9, Koo00, KKP01, KMC96, KMC97, KS96, KDVK03, KKD04, KS01, KVH97, KHS01, Kuhl98, KGB16, Kurn94, Lad04, LTRD14, LTR00, LKD08, LSZL02, LTR02, LG95, LSHM96, L99, L297, LH297, kLCC+06, LO96, Lu90, MSOGR01, MS02b, MM92, MWG96, dfFMbIFM02, Mar06, Mar07, MFTB95, MSCW95, Mat94].

Parallel [Mat95, MBS15, MG15, MRB17, MM11, Mic93, Mic95, MTWD06, MCLD01, MS95, MCD+98, MBB+12, MSB97, NO02b, NO02a, Nak03, Nak05a, Nak05b, NSZS13, Nar95, NSS12, NAJ99, NJ01, Nov95, Oed93, OP10, 1OGL01, Ong02, Ott93, OWSA95, Pac97, PPT96a, PVKE01, Pat93, PSZE00, PV97, Per99, Per00, PLR02, PKB+16, PRC+01, Qui03, ROR0, RDMB99, RBS94, Ree96, RS95, RC97, RSV+05, Rö00, Ro04, RWD09, RTL99, RLO01, SCP97, SPE95, SGZ00, Sch01, Sch06a, Sch96b, Seg10, Ser97, Sev98, She95, SM03, SP99, Sie94, Sie92a, Sie92b, Sin93, STV97, SWH15, Sou01, Sta95b, Ste94, SSN94, SGS10, Str96, Str97, Str94, SNMP10, Sun90a, Sun90b, Sun94a, Syd94, TMP16, TSS00b, TTP97, TC94, TCP15, TQDL01, THN00, TDBE11].

Parallel [Tsu07, TVV96, Uhl94, Uhl95b, UH96, UCW95, VLO+08, VRS00, VB09, VH96, Wal01a, We94, WAS95b, WHDB00, WO07, WS99, WTR03, WT12, YM97, YHL01, YH96, YPA94, YG96, YTH+12, YZPC95, YSL+12, ZB94, Z004, ZDR00, ZWJK05, ZAT+07, ZLS+15, ZGC94, ZB97, van97, ACM97a, ARvW03, APBcF16, ART17, AAAA16, AD98, AL92, ABF+17, ASCS95, ADT14, AD95, ACJ12, Ano93g, Ano95c, Ano00b, ADB94, ADDR95, AB93b, AFST95, AB13, AGIS94, ADMV05, BH96, BBB+94, BR91, BA06, BHS18, BB95, BCAD06, BB03, BDG+92b, BB94, BPC94, Ben95, BvdSv95, BKH+13, BAV08, BN00, Bir94, BCM+16, BKML95, Bos96, BFMR96, B95, Bri95, Bru95, BDW97, BSH15, CARB10, CL93, CGK11, Cav93, CLdJ+15, CLSP07, CT13, CLYC16, CKmWH16, Cha05, Cha96, CGL+93, CEGS07, CH94].

Parallel [CZ96, Che99, CIJ+10, CS96, CSW99, Cla98, CEF+95, CDD+96, CdGM96, CBHH94, Coo95a, CCHW03, CLASPD99, CFF+96, CPR+95, CD91, CD9+14, CKP+93, CB11, DFK93, DF94b, DR18, DLR94, DLR99, DDS+94, DR94, DSZ94, DM93, DRUC12, DBV01, DKD05, DvdLV94, DXB96, DMW96, DLM99, DP00, DLO03, Duv92, DZZY94, EASS95, EV01, FB96, FFB99, FM90, F094, FSTG99, Fer98a, FSM15, FCS+12, FKK+96b, FM11, FHC+95, GG09, GCN+10, GGL+08, GBF95, GG09, GFB+14, GÁVRR17, GKS+11, GEW98, GKK09, GKF13, Gra09, GP95, HAM95b, HPY+93, HWS09, Heb93, HPS+96, HZ94, HZ99, HPLT99, HDB+13, HVSH95, HH95, HLOC96, HVSC11, HLO+16, IEE97a, IM95, JWB96, JC17, JY95, JMJ+11, JC96,
parallel [KRC17, KG93, KFSS94, Kra02, KKJ+08, KH10, LM99, LCL+12, LH98, LS10, LCVD94a, LMM+15, Lou95, LG93, LM13, LL95, LC97b, LSR95, MMR99, MyB16, MBK+94, MKZ93, MM95, Mar05, MSP93, MK00, MN91, MHC94a, MRRP11, MALM95, MLA+14, MRH+96, MM99, Mor95, MC99, MR96, MVWL+10, NSBR07, Neu94, NB96, NG89, NCKB12, NF94, OdSSP12, Olh95, Olu14, OW92, PHA10, PPT96b, PPT96c, PKB99, PPF89, PY95, PBPT95, PSLT99, PCS94, Ram07, RJC95, RBB15, Rol08b, RBB17, SJLM14, SM12, SKF95, SH94, Sch94, Sch94, SPK96, SBF94, SWYC94, SK92, SCC96, SL00, SMAC08, SZ11, SPL99, SMS00, SVE+11, Smh93b, ST96, SH14, SRK+12, SLS96, Sta95a, Ste94, SMSW06, Sun95, Sur95a, Sun95, SL95, TJD09, TDB96, TMAP01, Uhl95a, Uhl95c].

parallel-programming [VM95, Vis95, Vis95, Wan97, Was96, Was95a, WK08a, WK08b, WK08c, Woi92, WT11, WYL12, WYL12, WMP14, YULMTS+17, YHL11, YW11, YBZL03, YYY+12, ZL96, ZWHS95, ZAFAM16, ZWL13, ZJDW18, ZWL+17, dHR94, ARL+94, Ano94e, Ano94f, ACDR94, BDL96, BS94, BG94b, Bos96, CC95, Cza13, DMM94, DHH97, DW94, EJL92, FR95, FF95, GN95, JPJE94, JPP95, KKD05, KMM94, LK10, LKLC+03, Ma95, MKP+96, OKW95, PQ07, QRG95, SSS99, SPE95, Stp02, TDB11E, TGM09, Vol93, Vre04, WN10, YC98, ZLPS96, ZDR01, ZHS99].

parallel/distributed [FHC+95, Wan97].

parallelle [GEW98].

Parallelisation [SJK+17a, SJK+17b, WCVR96, LF93b].

Parallelism [CGC+11, EdS08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, KT02, Mar03, MGA+17, MSS07, Mdc90, RBA95, SHM+10, SML17, SGZ00, TCM18, TTSY00, Thr99, YPAE99, ATL+12, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK90, JC17, JPOJ12, Kos95b, OPP00, RKB+13, SLGZ99, SHPT00, THH+05, TWF09, W009, WTFO14, WRSY16, YZ14, PGdCJ+18].

Parallelization [AL93, And98, AIM97, BCCM11, BS07, CRE99, CP97, Cot93, Cza03, ETV94, HA10, JR10, Kik93, KLR+15, LP00, O01, Pok96, QMGR99, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZWS08, WR01, aMST07, AGM96, BW12, BDY99, BJS99, CDD+96, Gao03, Goe02, IDS16, IJM+05, JL18, JY+03, JMS14, KS15a, KD12, KRG13, MCB05, MGG05, N10, NEM17, OLG+16, TWF09, VBL96G08].

Parallelized [FBSN01, OMK09, KMG99, OKM12].

parallelizer [BHR08].

Parallelizing [BST+13, Car07, GGH99, IOK00, IKM+01, IKM+02, SR95, ZZ95, AMS94, BY12].

Parallelldatorcentrum [Eng00].

Parameterized [HPT99, JMDVG+17].

parameter [PT99, JMDVG+17].

Parameters [GFV99, BAG17].

Paramedic [LLG12, Pat93].

Paramid [Ste94].

Parameters [GFV99, BAG17].

Parametric [LLG12, Pat93].

Parameter [HPLT99].

Parallelization [CT13].

Parallel [DHS96, DH95].

PARMACS [GR95, HZ96, HZ99].

PARMACS-to-MPI [HZ96].

Paravirtualization [SBQZ14].

ParCo93 [JPJE94].

PARCOACH [SCB14].

PARCS [LD01].

Paris [CHD07, Har94, Har95].

Parity [MC17].

Parity [HVSH95, RS95, SHH94, SHH94b].

Park [SL94a, IEE93c].

PARKBENCH [DHS96, DH95].

PARMACS [GR95, HZ96, HZ99].

PARMACS-to-MPI [HZ96].

ParNS [HSW94].

PARRAY [CM12].

parsing [Sur95a].

Parsytec [SHH94a, SHH94b].

Partial [VSRC95, EM00a, EM00b, GK10].

Partial [DERC01, DLV16, FSSD17, K02b, MFT95, O096, ST17].

Partially
Particle [GSI97, KHS01, NSLV16, ZZ04, BAS13, FFFC99, GSMK17, KPK13, RFH°95, VDL°15]. particle-based [FFFC99]. Particle-in-cell [VDL°15].
particle-mesh [BAS13], particulate [ATL°12]. Partitioning [Gra97].
Partitioning [CTK01, kL11, STV97, CT13, Cha96, Gra97, GKCF13, YST08]. partners [Str94]. Pasadena [IEE95c. PASCO [ACM97a].
passage [PTMF18]. Passing [AMHC11, AKL99, Att96, BZ97, BC14, BBH°06, BBG°01, BRU05, BDH°95, BDH°97, BGR97b, BFM97, CHD07, Cer99, CGH94, Cot97, Cot98, CTK00, Cot04, CDND11, DFKS01, DKD08, DHHW92, DHHW93a, DLM00, FKKC96, FKS96, FGT96, Fos98, FGG°98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLDS96, GLT99, GLS99, GLT00a, GL04, IBC°10, KTF03, KGRD10, KS97, KSV01, KKD04, KKD05, LKD08, LK10, Luo99, MP98, MTSS94, MS98, MSL96, MBES94, MG97, MTWD06, MSL97, NW98, PBK00, Pok96, PS01b, RRBL10, RWD09, RFG°00, SWHP05, SWL°01, ST02b, TG05, TDB00, TDB12, WD96, Wer95, Wis97, YHL01, ZG95a, ZG96, ZLL°12, Ada98, AD98, AAC°05, Ano93d, Ano94d, Ano95c, Ano90a, Ano90b, BL07, BvSvD95, Bjo95, Brn95, BDW97, BFIM99], passing [CGJ°00, CDZ°08, CRD99, CD01, DFK93, DM93, DMD05, DS96b, DHHW93b, DOW96, DLM99, DKP00, DLO03, FK94, FHB°13, GL92, HP05, HPY°93, Hem96, KJA°93, Koa02, LR06a, LBD°96, WL94, LCY96, LMM°15, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sci99, SW95, SDV°95, SZ95, SSG95, ST94, TSC94, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, DiN96, GGH°96, Han98, Hem94, RRFH96, SGL95, Wer95, YGH°14]. Past [Dar01]. Path [CGPR98, GAMR00, SDJ17, SLN°12, Zel95]. path-based [SLN°12]. Pathway [CNM11],
PATOP [BFBW01]. Pattern [CSW12, CC17, JJPL17, RDMB99, MAS06, SJLM14]. pattern-based [SJLM14].
Pattern-Independent [CSW12]. Patterned [ST17]. Patterns [DMMV97, FPY08, KB98, PKB°16, RRAGM97, SGH12, DZZY94, GÁVRL17, HGMW12, PM95, PSK°10]. PC [AH00, EKT89, KS01, LKYS04, RLL01, Ste00, WLYC12, YST08, YL09, MMB°94].
PC-Cluster [RLL01]. PCAT [ACDR94, GN95]. PCAT-93 [ACDR94].
[BS94]. PCs [CRE99]. PCSC [LM94].
PCTE [HZ94]. PCTRAN [KHS01]. PCDS [YH96]. PDE [GR15, NHT02, NHT06, NPS12].
PDES [PT01, SCL00, SCL01, H014, HH95].
PDGC [CGB°10]. PDP [IEE96g]. Peer [GR07]. Peer-to-Peer [GR07]. PELCR
[PQ07]. PEMPI [FB95]. PEMPIs
[MOL05]. Pennsylvania [ACM96b, IEE94d]. pen-diagonal [Kan12]. Pentium [Ano03]. Pentium(R)
[SBT04]. PENTRAN [KHS01]. people [ASCS95, Ano94i]. per-triangle [SOA11].
perception [CLM°15]. perceptual
[WPL95]. Performance
[ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, AT01, AR01, Ano01a, Ano01b, ADR°05, Bak98, BBGL96, BN00, BBH94, BGG°02, BY12, BRM03, BRST94, BS07, BDL98, BCP00, BHNW01, BFM196, BFW01, BEG°10, CGK°16, CDD°13, CRE99, CD95, GGLD01, CNM11, Che99, CSC96, CCBPA15, DPD08, DM95b, DW02, DZ98b, DPP01, DWL°10, DBK°09, EGH99, EG02, EML98, EML00, FDO2a, GFR00, FCP°01, FSC°11, FST98b, FKG97, FGD03, GKP96, GGS99, GBH99, GRRM99, GBS°07, GC05, GMDMD°07, GSY°13, HVA°16, HKN°01, Hol12, HF14a, HF14b, HPS95, Hus98, IEE92,
pipelining [MM11]. Pisa [Sil96].

Pitaevskii [LBB+16, LYSS+16, SSB+16, YSVM+16, YSMA+17]. Pittsburgh
[ACM96c, ACM04, Ham95a, IEE94d]. Place [IEE94e, BCK+99, HSE+17, PSHL11].

placement [SLN+12, SPK+12]. Planck
[Zel95]. Planing [GAMR00]. planning
[FO94]. PLAPACK [van97].

plasma [JL18, YKLD17]. Plasmafusionsforschung [BL94].

Plates [IEE94e, BCK+09, HSE+17, PSHL11]. placement [SLN+12, SPK+12].

Planck [Ano94c]. Planing [GAMR00]. planning
[FO94]. PLAPACK [van97].

platform [BKGS02, NO02b, PGF18, WTTH17, BSH15, CB11, Cza13, DWL+10, DWL+12, HTJ+16, HHA95, JR13, NO02a, XXL13, YSL+12].

Platforms [AIM97, HD00, JML01, ZB97, GGC+07, GFB+14, MBBD13, TKP15, TS12b].

Plesset [BL95, KN17]. PLIERS [MMR99].

plug [MS99b]. plug-in [MS99b]. plug-in [MS99b].

plume [JL18]. plus [HDB+13].

PMaC [PTL+16].

PMD [Che99]. PML [Ram07]. PMPIO
[FWNK96]. PMPIO-a [FWNK96]. pocl
[JSS+15]. Point [GBS+07, HC10, KV98, ADL03a, ADL03b]. Point-to-Point
[GBS+07, HC10, KV98, ADL03a, ADL03b]. Pointers [LRT07].

Point [GBS+07, HC10, KV98, ADL03a, ADL03b]. Point-to-Point
[GBS+07, HC10, KV98, ADL03a, ADL03b]. Pointers [LRT07]. Poisson
[BP98, WJB14]. Poland [BDW97]. Polder
[OS97]. Policies [CML04, PZ12]. policy
[MM03]. Polling
[DCP02, Pla02, DCP14, SH96]. Pollutant
[RSV+05]. Pollution
[AKK+94, BZ97, MPD04, MSML10, SH94, Syd94].

POLSYS_GLPL [SMSW06].

polygonization [TSP95]. polygons [CT13].

polyhedral [BHR08, KGB+09]. polymers
[JAT97]. Polynomial
[BY15, HLM+17, SMSW06]. port
[CCHW03, Har94, RLMC93]. Portability
[KaM10, RS95, RH01, ABDP15, CGK+16, FE17, MGC+15, PHW+13, QHCC17, Reu03].

Portable
[Ano95c, Ano00b, BHV12, BHL+95, CD+94, DHH97, Di 14, FCLG07, FSLS98, GLS94, GL97a, GL99, JSS+15, LNLE00, Man98, MKV+01, MG97, PPT96a, PBC+01, SSC+95, SDB+16, Sti94, Tria98, WCS+13, YMBCB14, An95, BCK+09, BfDA94, BB00, BL99, BAS13, CH94, CEF+95, DWL+10, DWL+12, FAF16, FWNK96, GR95, GL94, GS94, GLDS96, HTJ+16, HZ94, HSW+12, JC96, KN95, LFS93a, LFS93b, LHC+07, MMB+94, PPT96b, PPT96c, PMZ+16, SFLD15, Sto98, VM95]. portal [AASB08].

portals [BS96b, BMRO2, BRM03].

Portfolios [SIS17]. Portfolio-driven
[SIS17]. Porting [Ano96c, BSC99, BLW98, EM02, Har94, Har95, HASn00, KKG+03, KME09, SR96, YKLD17, dCH93, BvdB94, H11, MNO95, ZPSL96]. Portland
[ACM99, ANS95, IEE93e, SW91]. Portugal
[IEE93d, IEE96g]. Positron [Pat93].

POIX [LD01]. Post
[BBH+13b, Wit16, ABC+00]. Post-failure
[BBH+13b]. Post-ISA [Wit16]. Poster
[JJPL17, LZH17]. POSYBL [Mat94].

Potential [EGC02, Gru01a, KS15a]. Potts
[JSS+15].

POV [FFB99]. POY-Ray [FFB99].

Power
[LB96, EZBA16, FO94, HK10, NL93, BRI95].

Powered [NE98]. PP [IEE96d]. PPARDB
[PPT96b, PPT96a, PPT96c].

PPARD/PVM [PPT96b, PPT96c]. PPSPE
[CDH+94]. PSSN [DSM94].

Practical
[BJH96, BCP+97, CGZ+08, RHG+96, TGBS05, AMS94, BHR08, LPD+11, MCK94, Pan95b, VVD+09].

Practice [ACM11, GN95]. Praktische
[MS04]. Pre [AC17]. Pre-processor
[AC17]. Precedence [EGR15].

Precedence-Constrained [EGR15].

Precise [FJ+17]. Precision
[Ano98, Kha13, ZC10, JPT14].

Preconditioned
[GFPG12, ABC+17, MM92].

Preconditioner [BS99, FSXZ14].

Preconditioners [Huc96].

Preconditioning [Nak03, GGC+07]. predictability [GRM99]. Predicting
[RRAGM97]. Prediction
[MOL05, WHDB05, ZWJK05, ADR+05, BDV03, CMV+94, HHA95, RBAI17, SEC15, SC96b, SSN94, Was95a, ZAT+07],
Predictive [FJK+17]. Preemptive
[BBH+06, BBGL96]. Preface
[DKD07, OL05]. Prefetching [BIC+10].
Prefix [WJ12, DK13, MYB16].
Preliminary
[BF98, Wal01a, RJ95, LRFdS13, SWS+12].
Preprocessors [Ano01a]. prescription
[MRH+96]. Present [Dar01]. presented
[ACM90]. preservation [IEE94c].
Preserving [RNPM13]. Press
[Ano95b, Ano95c, Ano96a, Ano9a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Pricing
[RR00]. Primitives
[DDL00, FST98a, ABDP15, CIJ+10].
Princeton [Bha93]. principles
[BSC99, HS12, SSP+94]. printing [YM97].
priority [DR95, Man98]. Prism [SDN99].
private [Str94]. privatization [KRG13].
Probabilistic [LAdS+15]. Probability
[QRMG96, St95b]. Problem
[BHH15, DALD18, DAK98, GM00, ICO02, Lee06, MTSS94, RLVRG92, ZSN01, AB93b, DSM94, GM94, GKF13, HMK94, IHH95, MM92, SLO0, SP11, Cza13].
Problems
[ASA97, BMH94, BMH96, BMR01, BPMN97, CGPR98, EML98, HAA+11, DDK02, MBS15, Nak03, Riz17, AL96, CEGS07, FR95, LSR95, NZZ94, OMK09, SC96a, SD99]. procedure
[AGLv96]. Proceedings
[ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM04, ACD94, CJNIW95, GN95, Hol12, IEE93f, IEE95d, IEE02, KG93, LCK11, MC94, R+92, SMO7, Ten95, TG94, dGM94, ACM96b, Ano94e, Ano94i, BPG94, Bori97, BH95, CLM+95, DSZ94, DE91, EJL92, FF95, GH9+93, HK95, HHK94, IEE94a, IEE94b, IEE94c, IEE95b, IEE95c, IEE96a, IEE97c, IEE05, JPT94, Kum94, LF+73a, Li96, PSB+94, PBPT95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM95b, ACM96b, ACM96a, AT94, Agr95a, AGH9+95, AH95, Ano89, Ano92, Ano94a, BBG+95, Bha93, CHD07, CZG+98, CGKM11, CMRR12, CGB+10, CDN11, DM+92, DT94, DLO03, EV01, Ed98, ERS95, ERS96, Fer92, FK95, Gait95, GG9+93, GA96, GT94, Ham95a, HS94, HK93, IEE91, IEE92, IEE93d, IEE93c, IEE93b, IEE94c, IEE94d, IEE94f, IEE94h, IEE94g, IEE95h, IEE95k].
Proceedings
[IEE92, IEE95f, IEE95l, IEE96g, IEE96f, IEE96d, IEE96h, KGRD10, LK90, MTDW06, MHH93, MCD9+98, MDCS09, Ost94, PR94b, Ree96, RWD90, SCR92, SH+9+10, Sie94, TBD12, USE94, USE95, USE00, VW92, Vos03, Y+93, YH96, AD98, BG91, BDL96, BS94, Bos96, BMF96, BVD97, CH96, CD01, DSM94, DK05, DW94, DMW96, DLM99, DKP00, Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97a, Kra02, KKD04, LCHS96, Mal95, PBC+95, Sch93, Tou96, VV95, Vol93, Was96].
Proceedings.
[Ano93e, Ano94g, IEE96i, IEE97b, LHHM96]. Process
[AUR01, BGG10, CLL03, De03, DK06, FDC97a, FDC97b, FLD98, FP98, KCP9+4b, KOW97, PSS0a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HG12, JLS9+14, KCP9+4a, MLVS16, MK00, SHHC18, Ste96].
Process-Management
[BGL00]. processed [HJ98]. Processes
[CB16, MW98, Pet00a, Pet00b, FS95, SPK+12].
Processing
[AT94, Agr95a, AR01, BBG+95, DM+92, GGM99, GCGG01, HJBB14, IEE93b, IEE93f, IEE95e, IEE95h, IEE9f, IEE95g, IEE95h, IEE96b, IEE96d, IEE96e, IEE96f, IEE97b, IEE05, IOK00, JDB+14, KI01, KS15b, LSVWM08, MLGW18, MSML10, NW95, NJS01, PLR02, PD98, Ree96, RRBL01, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95,
Ano94f, BJ13, BHS18, BFMR96, CFPS95, CLLASPDP99, DSZ94, FWS+17, GDC15, GGGC99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kum94, LHLK10, LG93, PSB+94, PBPT95, RKBA+13, Röhr00, RCGR95, SSS99, SLS96, VDL+15, Wol92, WWFT11.

Processor

[HC06, Oed93, Ott94, PWP+16, RR02, Smi93a, SBT04, UALK17, ABDP15, AC17, DCH02, HAM95b, HPS+96, JC96, Kat93, Kum94, LHLK10, LG93, PSB+94, PBPT95, RKBA+13, Röhr00, RCGR95, SSS99, SLS96, VDL+15, Wol92, WWFT11].

Processor-Oblivious [UALK17].

Processors

[AJ97, Bri10, HK93, HK95, MJB15, OLG01, PZKK02, BBG+14, CM+08, DBLG11, HTA08, HWX+13, KNWH10].

Producing

[HAJK01].

product

[CMH99, ER12, SMSW06].

productive

[ALdJ+15, SL00].

Producing

[CMH99, ER12, SMSW06].

products

[CMH99, ER12, SMSW06].

productivity

[BZ07, KA10, WIT16].

Program

[Ano96d, AB93a, BMS94b, CHPP01, Cot97, EM98, MM95, MRV00, Ney00, PS01b, TS00, THN00, UTY02, CDZ+98, JF95, LP00, LCL13, OKM12, PPF89, Sai10, TNI17, TMPJ01, ZL96].

programming

[HZ94, HDB+13, HVS95, HSW+12, HZ08, KOSD12, KOB13, KSL+12, KLV15, KPNM16, KS94, KJJ+08, LIV12, LFS93a, LFS93b, LH98, LPD+11, LL14+14, MMB+94, MTV96, MSP93, MC99, MGC+15, NO02a, Nak05a, NYNT12, NBGS08, OS+06, Olu14, OW92, Pac97, PVKE01, PF05, Qui03, RJDH14, SK10, iSYS12, SSK95, SYR+09, Seg10, SP96, SBF94, SPL99, SHH94a, SD90, VPO0, Vos03, Wal01b, Wan02, WCC+07, WADC99, WYLC12, WLYC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE+17, Che10, SD13].

Programs

[AJF16, Beg93b, BKdSH01, BGK08, BBG+02, BDL98, BGL00, CSW12, CRE99, CHP01, CD98, DLB07, DMMV97, Di14, FKH02, FJK+17, GR07, GTH96, GL04, GC05, HC10, HKN+01, HM01, KFL05, KL94, KSJ14, KKJ+08, LV12, LFS93, LFS93b, LH98, LPD+11, LL14+14, MMB+94, MTV96, MSP93, MC99, MGC+15, NO02a, Nak05a, NYNT12, NBGS08, OS+06, Olu14, OW92, Pac97, PVKE01, PF05, Qui03, RJDH14, SK10, iSYS12, SSK95, SYR+09, Seg10, SP96, SBF94, SPL99, SHH94a, SD90, VPO0, Vos03, Wal01b, Wan02, WCC+07, WADC99, WYLC12, WLYC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE+17, Che10, SD13].
[Reu03, RRG+99, SS+16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, TTH+05, UGT09, VVD+09, YSVM+16, YSMA+17, ZJZD18, ZRQA11].

Progress [BRU05, LAdS+15, SP+18, MLA+14, MC94]. **Progress-Dependence** [LAdS+15]. **Project** [BH+06, BSH15, DHK97, MRV00, ABC+00, CDH+94].

Promise [Ano93e]. **Promotion** [OC+15, WBBD15]. **Propagation** [EM+93, ESM+94, JML+01, SMOE93, KEG+10, RM+12]. **Properties** [FGRT00, JL18, MS96b, SSP+94]. **Proposal** [DHHW92, DHHW93a, DFC+07, DFA+09, ZKRA14].

Proposals [Wal96b]. **Protected** [GHD12]. **protein** [GAVRRL17, SEC15, ZAT+07]. **proteins** [BHW+12, FMS15].

Protocol [CAWL17, GSY+13, LMM+15, RA09, XF95, DBB+13, CwCW+11, DDYM99, MN+91, MB00, ZP106]. **Protocol-based** [LMM+15]. **Protocols** [BCH+08, DM93, LH98].

Protoplanetary [dFMdBdFM02]. **Prototype** [Ano01b, FHP+94, MMSW02, BK96, CCF+94, KYL03, KLF95]. **prover** [Sut96].

Provide [Add01, LMRG14]. **Provides** [Ano98, Nel93]. **Providing** [GKP97, Zah12]. **Proving** [MS96b]. **PRS** [UCW97].

Pruning [SM+16]. **PS** [AMV94]. **Pseudo** [Wal01a, Lun09]. **Pseudo-search** [Wal01a].

Pseudorandom [WHDB05]. **Pseudospectra** [BKGS02]. **pseudospectral** [Br95, MRRP11].

PSPVM [BWT96]. **Pthread** [ZAT+07]. **Pthreads** [AS14, TS12b]. **PTX** [iSYS12].

Public [Str94, GWVP+14, NL93, RST02]. **Public-private** [Str94]. **Puna** [BS96b].

purely [HSE+17]. **Purpose** [BDT08, Che10, SZBS95a, Sun94a, ABDP15, CBM+08, KPNM16, PF05, SK10, SZBS95b].

PVaniM [BCLN97, TSS98]. **PVFS** [IRU01].

PVM [AD98, BL94, BDLS96, BDW97, CHD07, CHD09, CDO1, DKO05, DLM99, DPK00, DLO03, KRA02, KKD04, LKD08, McD96, MTW06, RWD09, Wil94, AJ97, Ahm97, AS92, ACR+97, ADRC+98, AL92, AGR+95b, AB95, ASA97, AL96, ARL+94, AKK+94, AP96, Ano94b, Ano95e, Ano96b, Ano96c, ABC195a, ABC195b, ABG+96, AGl+96, AB93b, AB93a, ADMV05, BSN95, BLP93, BFL99, BBGL96, BG95, BS93, BDG+91a, BDG+92b, Beg92, BDG+93b, BDG+93a, Beg93b, Beg93a, BDG+95, BS96a, BDG+xx, BL95, BR95b, Ber96, BS97, BT96, BWT96, BG94a, Bon96, BG94b, BG94c, Bor99, BCD96, BRR99, BFZ97, BID95, BSM94b, BF96, BFMT96a, BFMT96b, CM+94, CP97, CDJ95, CKO+94, CCK+95, CSPM+96, C95a, CGPR98, CG93, CDH95, CDH+95, CF91, CS96, CS96, CG99a].

PVM [CSC96, CDGM96, CPR+95, CT94a, CT94b, CF96, CT02, CD98, CTK01, DG95, DKF94a, DDYM99, DM95b, DM95a, DP94, DMM97, DG97, DFN12, D+91, DGSM93, DGMJ93, DHP97, DPZ97, EP96, EM94, EGD92, ED94, EM02, EML98, EML00, ES11, EMO+93, ESM+94, EK97, FBM96, FD96, FLD96, FH95, FHS099, FO94, FST99, FJBB+00, Fin97, FD97, FS97, For95, FS93, GRV01, GAl97, GCBM97, GS19a, GS91b, GS92, GS93, G19a, G19b, GBD+93, GBD+94, Ge96, GKP96, Ge97, GKPS97, Ge98, GSxx, Ge00, Ge01, GTH96, GB96, GM95, GSHL02, GF99, GGH99, GS96, GHer01, GH9L97, Gre95, Gre94, GL97b, GM95, GkLyCy97, HB96a, H96b, HSMW94, HJ98, Har94, Har95, HBT95, HPS+96, Hm96, HEH98, HTHD99, HVSH95, HH95, HRSA97, Huc96, Hum95, HS95b].

PVFS [ITTT99, Inv8L+00, IDD94, IKM+01, IKM+02, JAT97, JH97, JML01, JW96, J99, KBA02, Kat93, KKK96, KP96, KMB97, KDL+95a, KDL+95b, KG96, KCP+94a, KCP+94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAK596, KKK02b, LGM00, LB98, LSZL92, LHCT96, L94, LFS92.
LFS93a, LFS93b, LH95, LC93, LY93, LLY93, LW95, LHZ97, LKL96, LDCZ97, MW98, Man94, MVTP96, Man01, MP95, dfFMBlFM02, MTS99, MFTB95, MSCW95, MSP93, Mat94, Mat95, MMU99, Mat01b, MRV00, MK97, McK94, MC98, MFC98, MVY95, MS96b, Mix93, Mix95, MT96, MS99a, MS99b, MHC94a, MHC94b, MRH+96, MS95, MC99, MWO95, Ne93, NP94, Neu94, NBK99, Ney00, NB96, NAJ99, Nov95, Obe96, Ols95, OPP00, Ott94, OWSA95, PPR01, PK98, PPT96b, PPT96a, PPT96c, POL99, PT01, PKYW95.
PVM [Per96, Pet97, PTT94, Pla02, PNV01, PD98, PY95, PL96, Pu95, QRG95, QRMG96, Qu95, QMRG00, RR00, RS93, Rag96, RS95, RHG+96, RRAGM97, Rol94, RG97, Saa94, SAS01, Sch94, Sch94a, Sch96b, SB95, SFG98, SGS95, SSS99, SPK96, Sep93, Sev98, Shi94, SA93, SR96, SHH94a, SHH94b, Smi93a, SBR95, SC96a, SST96, SMOE93, SGL+90, SGHL01, SCL97, SSSS97, Sta95b, SY95, SYF96, SC96b, Sr94, SKH96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SGDM94, Sun96, STMK97, SN01, SCL00, Sur95b, Sut96, SL95, TMTP96, TC94, TBD96, TD98, Tsu95, Uhl94, Uhl95b, UH96, UM97, VSRC94, VSRC95, VB99, VAT95, WK96, WH94, WCV96, WAS95b, WO97, Wis96a, WL96a, Wis98, Wis96b, WL96b, WC99, Wu99, WLC07, XWZS96, XF95, YG96, YK+96, ZPS996. PVM [ZP06, ZB94, Zen94, ZDR01, ZG95a, ZG95b, ZG96, ZG98, Zol93, van93, Ano95b]. PVM-AMBER [SL95]. PVM-Based [WAS95b, FO94, PY95, Sut96, ZPS996, LSZL02, TD98]. PVM-GRACE [YK+96]. PVM-Implementation [BJ97, Huc96]. PVM-RPC [KS97]. PVM/C [GTH96]. PVM/mpi [AD98, BDW97, CHD07, CHD09, CD01, DKK05, DLM99, DKP00, DLO03, Kra02, KKD04, LKD08, MTW06, RWD09, ACRG97, SN01]. PVM3 [IM94]. PVM3/AP1000 [IM94]. PVMAPle [Pet00a, Pet00b, Pet01]. PVMe [BR95c, BR95b]. PVMPGeant [DZC95]. PVMPI [FD96, FDG97a, FDG97b]. PyCUDA [KPL+12]. PyOpenCL [KPL+12]. Python [BL97, DPO95, DPO98, Di14, GFB+14, SSH08]. PyTrilinos [SSH08].

R [BBH12, JPO12, LR01]. R&D [Str94]. R&D-100 [Str94]. Race [CFMR95, KSJ14, DFK94a]. Races [PPJ01, SAL+17, DFK94b, LLG12, ZRQA11, EPP+17]. Radial [RB01, KRC17]. Radiance [GC97, KMG99, RC97]. Radiology [GA96]. Rajeev [Ano00a]. Raleigh [Agr95a]. Ramesh [Stp02]. Random [HT08, LT08, Lan09]. Randomized [TMS98]. Range [KBM97, MH01, BMPZ94a, PARB14, She95]. range-join [She95]. Rank [Hat98].
Ranking [Tra98]. Rapid [FWS+17].
RASC [YCL14]. rate [BBG+14, YPA04]. rationale [BBH+13b]. Ray [CG93, DP94, KGB+09, FWS+17, SGS95, FFB99].
Ray-Tracing [DP94]. Rayleigh [TVV96].
Rayleigh-Benard [TVV96]. rCUDA [FR16, RSC+15, SIRP17]. RDMA [GSY+13, LWP04, Pan14, RA09].
RDMA-Based [LWP04]. RDMA-Enabled [GSY+13, Pan14, RA09].
Re [MCP17]. Re-Vectorization [MCP17].
Reaching [BHS+02]. Reaction [HF14a, HF14b].
Receivers [ZG95b]. Receptor [ESB13].
Rechts [Ano94c, BL94, MS04].
Recognition [CC17]. recomputation [RKBA+13]. Reconfigurable [MFC98, SPM+10, NYNT12].
Reconfiguration [CS14, SMCM15].
Reconstruction [BM97, DY+06, GA96, LSSZ15, OIH10, RAGJ95]. Record [ULK17, CRD99]. Record&Replay [KSV01].
record/replay [CRD99]. Recovery [SFB+04, BBH+13b, BDB+13, LFS93a, LFS93b, SSSC95, ZW05].
Rectangle [CSW99]. rectified [WBBD15].
Rectifications [ACGR97]. Recursive [DSS00, PWP+16, SD99]. Red [van39].
redesign [HL17]. Redistribute [DDPR97, HC06, WO95, WO96, HC08, KN95]. Reduce [PSM+14]. Reduced [SW12].
Reducing [CRGM16, JE95, BCM11]. Reduction [FKH02, MFPP03, SG12, HL17, Jes93a, MLVS16, Pan95a, PQ97]. Redundancy [TS12a]. redundant [KKJ+16].
Reference [GHLL+98, Nag05, SOHL+98, YM97].
Ano99a, Ano99c, Ano99d, SOHL+96, Per97, Ano96a].
Refinement [MBR17, Ram05, CLSP07, DLR94]. regions [LFL11]. regression [RBA17].
Relationship [Dan12]. relativistic [BHS18]. relaxation [OKW95]. Reliability [CGZQ13]. Reliable [SE02, Ar95].
Remark [SWH15]. remedies [ALW+15]. Remo [IEE95b].
Remote [BMR01, HDT+15, IFA+16, OCY+15, Ts07, WBBD15, AGLv95, FHC+95, GBH14, GBH18, HGMW12, RSC+15, SIRP17, SH96].
Remote-Scope [OCY+15, WBBD15].
Remotely [GGCM99, GGC501, GCGS98, VLO+08, GGGC99]. Remoting [MGL+17].
removal [ZZZ+15]. Removing [ZJDW18].
Rendering [GCBM97, LSZL02, SU96, UCW95].
Rendezvous [RA09]. Reordering [Hat98]. Reparallelization [KBG+09]. Repeated [WH94, Shi94].
Replacement [GHG12].
Replay [CFMR95, HLOC96, UALK17, CRD99, MT96, NBK99, XLW+09].
replay-based [MT96]. Replication [WC09, KJ+16, ZJDW18].
Representation [BMR01, KDI2, MDH17, SML17, CCM12]. reproduce [AVA+16]. Reproducible [GL99, HCA16, XLW+09].
Requirements [GSHL02, GT07, Ber96, KBG16, LCVD94a].
Research [Ano96d, BR02, MDH17, SML94a, SGHL01, Ara95, BPG94, LP00, Oed93].
Reservoir [OWSA95, ZAFAM16, ZZ95, Ano95d].
Scalability [BS07, FSC’11, KBS04, LL01, LKYS04, LSK04]. Scalable
[Add01, AHHP17, BHW’17, BBC’02, BHNW01, BGL00, CGS15, CDPM03, EFR’05, GFB’14, GS94, HGMW12, IEE92, IEE94f, IEE95j, IBC’10, KK98, kLCC’06, MFP03, NBS08, NPP’00d, NCKB12, NSM12, OLG01, PPJ01, PR94b, PBK00, SDJ17, SBF’04, Skj93, SSS96, TPD15, UP01, VBLvdG08, VY02, ZLGS99, BBB’94, Bri95, CLSP07, FWS’17, GKL95, HRR’11, HAJK01, KRC17, KRG13, LM99, LTLc94, MBB’94, MRRP11, PWD’12, SPK’12, Träl2a]. ScalAPACK [BV99, BRR99, DHP97]. Scale
[AKE00, BHW’17, BZ97, BHNW01, FFP03, MFP03, SM03, TGM09, WT12, AASB08, BCA’06, BJS99, BCH’08, Che99, DZZY94, FME’12, Gua16, Kos95b, LS10, MLA’14, PTL’16, PD11, RMNM’12, SvL99, TBB12, WLN06, WT11, ZKRA14, ZA14]. SCALEA [TFGM02]. Scaling
[CC17, KFL05, SLJ’14, FKLb08, Gao03, LF11, PDY14]. scan [AAA16, YLZ13]. scanline [CT13]. scans [NAJ99]. SCASH [SHHI01]. SCATCI [ART17]. scatter
[BCD96, MTK16]. Scattering
[BP99, NZ94, OMK09]. SCF [MM95]. schedule [NAAL01]. scheduler
[ADD95, TCBV10, WRSY16]. schedulers
[NP12]. Scheduling
[BBH’06, BSH15, CML04, DMB16, EGR15, GDDM17, GSH20, GHL97, HC06, JW96, MBB’15, NIO’02, NIO’03, TJPF12, APbC16, DZ98a, JKN’13, LHCT96, MBKM12, NSR07, OPW’12, Sml93b, SKK’12, SKB’14, WYLc12, WLYC12, YWCC11]. Scheme
[CTK01, LNLE00, MJW98, SBF’04, BBGL96, Bj095, MRRP11, OKM12, SCC96, YPZ95, FM90]. Schemes
[PPJ01, WYLc12, WLYC12, ZAT’07]. Schmidt
[CBYG18]. School
[VV95]. Schrödinger
[DM12, ÖN12]. SCI
[FS97, HEH98, Hus00, RR01, ZHS99]. SCIDDE [ABG’96, AGLv96]. SCIDDE-PVM [ABG’96]. Science
[EGH’14, IEE95d, MMB93, Old02, SM07, ACM06a, DMW96, HK93]. Sciences
[EKS96, HS94, ZL96, EKS95]. Scientific
[AGH’95, APJ’16, BBG’95, D KM’92, DT94, G8t95, GL97a, HJ98, KO2a, LkLC’03, Mar06, Nang05, Sin93, SSS’17, VY02, W1n0, Bis04, DWH94, SBG’12, TBB12, Ano97, Bra97]. scientists
[HW11, Str94]. SciPAL
[KH15]. SCIPVM
[ZHS99]. Scope
[OCY’15, BBD’13, WBBD15]. scoping
[RDLQ12, WC15]. Scottsdale
[IEE95b]. Scratchpad
[JAK17, MB12]. Scripting
[Ong02, KPL’12, Nob08]. scripting-based
[KPL’12]. SCTP
[KPW05, ZP106]. SDK
[TK16]. SDSM [CCM’06]. Seamless
[KK02a]. Search
[BSH15, Cza13, IKM’01, Wal01b, FMS15, IKM’02, Wal01a, ZSK15, CB11]. Searches
[BSG00]. Searching
[JPT14, MM01, BA06, Wal01b]. Seattle
[ACM05, BS94, LCK11, Ost94]. Second
[Ano00b, BL95, DT94, DE91, IEE94d, IEE96d, IEE96i, LHHM96, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFM96, DMW96, FR95, KN17, Li96]. Second-Order
[BL95, KN17]. Secondary
[WHDB05, SEC15, ZAT’07]. section
[Ano93b, DKD08]. segment
[FFZ’14]. segment-based
[FFZ’14]. Segmentation
[KBA02, AD95, CCU95]. Seidel
[BG95, LM99, Ols95]. seismic
[AMBG93, KL95, KEGM10, LM13, QHCC17, RMNM’12, SSS99, WCVR96]. Seismograms
[DP94]. Select
[KDV03]. Selected
[DHS96, MTW07, OL05, TB14, CHD09, Cha05, DKD07, JC17]. selecting
[PTL’16]. Selection
[CTkWH16, PGBF’07, WKS96, ZWL’17]. Selective
[Nak03]. Self
Self-Consistent [TGT10]. self-scheduling [NSBR07, WYLC12, WLYC12, YWC11].
Self-Submitting [NS12]. Self-Tuning [SLJ+14].
Semantic [MTU+15, DKF94a, OA17]. Semantically [MKW11]. semantics [RNPM13].
Semi-Lagrangian [CT94a, TC94, CT94b]. Semiconductor [GJN97, Ano03, LS10].
Seminar [Ano94f, Ano93g]. Send [GPC+17]. Sender [BCH+03]. Sensing [GGCM99, GGCGO01, GCGS98, VLO+08, GGGC99]. sensitive [GKCF13]. Sensitivity [dLR04]. Separable [Ben01, CdGM96].
September [Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CLM+95, CHD07, CJNW95, CD01, CDND11, DKD05, DKD07, DLM99, DKP00, DL003, EJL92, FK95, FR95, GH9+93, IEE93d, IEE94c, JPTE94, KGRD10, Kra02, KKD04, LKD08, Mal95, MTWD06, OL05, PSB+94, RWD09, SPH95, SM07, TBD12, VV95, VW92, WPH94, YH96].
Sequence [GMU95, SM+96, AMHC11, TSZC94]. sequences [GAVRRL17, SD10]. Sequencing [VPS17]. Sequential [EK97, RPM+08, GGH99, SR95, TN1B17, TSZC94]. Serial [SWH15, HPS+96, HWS09]. serialization [CFKL00]. Serialized [KH10]. Serielles [BL94]. Series [Nag05, BR94].
Server [Ano93e, FSL98, KS97, Mat01b, Sch93, Sto98, Vis95]. Servers [CGC+02, SIS17, GKD07]. Service [RFG+00, LS08, SPK+12]. Services [FC05, AAC+05, ZKRA14]. Session [NYNT12, ZL96]. Set [SW12, WL96a, Ano00a, Ano00b, She95, WL96b]. Sets [SG12, CGL+93]. setting [GL95a]. Setup [NSLV16]. Seventh [BBG+95, HS94, IEE93b, IEE95g, IEE96h, Eng00, Y+93]. several [GBR15]. SGI [Che99, CML04, KMG99, LB96, LL01, LJK03, LSK04, TW12, ZShh01]. SG1/CRAY [Che99]. SGI/CRAY-T3E [Che99]. shadow [SOA11]. shallow [dAMC11, dAMCFN12]. Shane [SD13].
Shanghai [IEE97a]. SHARE [Ano92, Ano93e, Ano94g]. Shared [BAC+06, BME02, Bri10, DM98, DMB16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HT01, KB98, KSHS01, LRT07, Lu09, MBE03, MCd8+08, Ml02, NPP+00d, PBK00, Pok96, PS00b, Ros13, SS01, STY99, ST02b, Thr99, VS00, VT97, ABCI95a, ABCI95b, ADMV05, BMG07, CBPP02, Cha96, CCM+06, CCO0b, DBVF01, DS96b, DPZ97, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JE95, KJ9+93, KOC0, LKL96, ML04, PK05, RGDM15, SHHI01, SL94b, SFL+94, SSGC96, TSY99, TSY00, Vos03, WMRR17, YW905, YX95, Cha05].
Shared-Memory [DM98, HDB+12, NPP+00d, Pok96, Thr99, PS00b, ABCI95a, ABCI95b, ADMV05, BMG07, GL96, GL97c, KJ9+93, PK05, TSY00]. Sharing [Att96, CML04, CB16, DNN96, JAK17, KK98, JE95, Ott93, PRS+14]. shear [JAT97].
ShearLab [KLR16]. Shearlet [KLR16]. Shearlets [KLR16]. SHMEM [BBDH14, Hus01, LSK04, Sch96a, Sch96b, SS01]. Short [KBM97, MH01, BMPZ94a, PARB14]. Short-Range [KBM97, MH01, BMPZ94a, PARB14].
shorter [NB96]. Showcase [USE00]. SHPCC [IEE92]. SHPCC-92 [IEE92]. SIAM [BBG+95, DCM+92, S93]. Side [LCCW07]. Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, MB00, TGT05, TRH00, ZSG12, bT01a, BM00, DDB+16, GBH18, LSK04, MS99c, PGK+10, GBH14]. SIGCSE [ACM06a]. Signal [IEE95c]. signals [Uhl95c]. Signatures [Gro00]. significance
simulated [Heb93]. Simulated-Based [ZWJK05]. Simulations [CGS15, CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KTO2, Kha13, NH95, RTRG+07, SM02, YPAE09, ADT14, ABG+96, BHS18, BADC07, GM18, Hin11, JMS14, LS10, LSVMW08, RMNM+02, SU96, WWFT11].

Simulator [CAM12, MRV00, UTY02, WPC07, AMV94, LS10, PWD+12, WZWS08, ZAFAM16, ZZ95, KTJ03, Nak03, Nak05a, Nak05b].

Simulators [SB95, AV+16]. Singapore [IEE96d]. Single [BM00, HF14a, HF14b, MB00, URKG12, AGIS94, KKL11]. Single-Chip [URKG12]. Single-sided [BM00]. single/multigrid [AGIS94]. singleton [TVCB18]. Sinks [JPT14]. Sites [Ano98]. Sixth [HK95, IEE96c, MMH93, SW91]. size [GKCF13]. sized [JLS+14]. Sizes [DALD18, ZSnH01]. SKaMPI [KRS99, RSPM98, RH01, Reu01, RST02, Reu03]. SkeiCL [SG14]. Skeleton [GB98, IH04, RJDH14]. Skeletons [Ser97]. Skjellum [Ano95c, Ano00b]. Slack [KFL05, FKL08]. SLAE [ADRCT98, AK99]. Slave [LTR00, HP05]. SLEPe [DR18]. SLICC [KBHA94]. Slices [GSDL02]. Small [HLPI1, TS12b, Ano94h]. small-footprint [TS12b]. Small-World [HLP11]. Smith [KDS012]. Smithsonian [Str94]. smoking [YS+12]. SMP [Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMDMB+07, HD02b, Hus00, HPI02, JOK01, KKH03, KMAC02, NO02b, NO02a, ST02a, TOT09, Tra02b, YWC11, bT01a]. SPCMkpt [DCH02]. SMPI [DLM17]. SMPs [HLCZ00, SU05, SVL99]. SMPS [MLAV10]. SMPSuperscalar [GCBL12]. SMT [PAdS+17]. SMT-based [PAdS+17]. snake [JPP95]. snake-in-the-box [JPP95]. Snir [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. SnuCL [Lee12]. soccer [YMYI11]. socket [LS10]. Softshell [KKK12]. Software [Ano94i, BME02, BPG94, BDG+xx, CZ95b, ESB13, FFP03, GBF95, GRe95, HPR+95, HS94, HHA95, IEE95i, IEE96h, IFF95, KSI15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, Si96, TDBEE11, VdS00, WSt01, Wol02, Ano97, BSC99, Boi97, Bra97, BR94, CMV+94, CBPP02, DPZ97, Hum95, JH97, JB96, LM94, MK94, Neu94, Old02, PHA10, PK05, PGK+10, RA16, SHH01, Sch29, SEI99, SPM95, Str94, ZGN94, Ano94i, KG93, Si96]. Software-Managed [LB16]. Solan [CGB10]. Solaris [Ano01a]. solidification [JLS+14]. solids [Hin11]. Solution [DWL+10, FBSN01, HO14, RPM+08, SEF]16, Tsu12, VR00, DWL+12, IM95, JK10, LSR95, MAM95, ON12, PRS+14, SC96a]. solutions [AGIS94, LMG17]. Solve [Hog13, Riz17, BAV08, Che99, GGGC99].
Solver [Ben01, BP98, CF01, HSMW94, IDD94, LZ97, SKJ+17a, SKJ+17b, WJB14, YKW+18, AMS94, CP15, DM12, JR10, LM99, Lou95, OGM+16, RM99, SRK+12, SCC95, THM+94, ZZG+14]. Solvers
[DFN12, DALD18, GK10, MSB97, NO02b, Nak03, NHT02, NLRH07, QRMG96, RS97, WR01, ABF+17, ADL03a, ADL03b, ADDR95, BRR99, CL93, DR18, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94c, QRG95, SSH08]. Solving
[ADRCT98, BHM94, BH95, BDG+92c, BSH15, DALD18, GFPG12, Huc96, LLY93, MS02a, NFF94, SAS01, SP11, SD99, BB95, DSM94, HHA95, LBB+16, LYSS+16, MM11, SSB+16, SMSW06, YSVM+16, YSMA+17]. SOM [GkLyCY97]. Some
[BDT08, Mül01, Pet97, AL92, NN95, RS95]. Sopron [V95]. Sorento
[DKD05, DKD07]. sort [KVGH11, PSHL11]. sorting
[BHJ96, PSHL11]. Sound [SG12]. Source
[BGG+15, MM07, AC17, AVA+16, NCB+17, Nob08, PSHK+10]. Source-Code-Correlated [MM07]. source-to-source [AC17]. Sources
[ZDR01, KM10]. South [AC95]. southeast [AC95]. Sowing [GL97a]. SP
[BGBP01, CE00, HMKV94, LC97b, WT11, WT12]. SP-1 [HMKV94]. SP-2 [LC97b]. SP1 [BR95c, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, MP95]. SP1/SP2 [FHP+95, Fra95, FWR+95]. SP2 [BR95b, FHP+95, Fra95, FWR+95, HWW97, JF95, KB98, KHS01, MABG96, XH96]. SPA [AC95]. Space
[CML04, CB16, H014, MSF00, OFA+15, SAS01, SA14, SRK+12]. Space-Sharing [CML04]. Space-Time
[H014, SRK+12]. SPAl [BBS99]. Spain
[DLM99]. SPAN [LHMH96, LL96]. Spanish
[VP00]. spanning [NCKB12]. Spark
[KWE18]. Sparse
[AZ95, BBH12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADL03a, ADL03b, ER12, FJZ+14, GG99, Gra09, NHT06, XLL13]. SPEC
[An03, MVW10, MB+12, NA01, SGJ+03, TS03]. Special
[AM07, BDT08, BDB+13, BC00, CHD09, DKD07, DKD08, GSA08, MPI98, Bos96, Mar02, PNV01, Reu01, Old02]. Specific
[DM95b, DM95a, OHu14]. Specification
[BG94a, BD07, MGC12, MHSK16, BG94c, LPD+11]. Specifications
[OFA+15, WMP14]. Specified [MGH97]. specifying
[LPD+11]. specimen [Rol98b]. SPECT
[BCD96]. spectator [YMY11]. Spectra
[Str97, SR11]. Spectral
[MW98, BCM+16, MGS+15]. spectral/hp
BCM+16]. Speculation
[AELGE16, SML14]. Speculative
[RA09, dOSMM+16]. Speed
[CDHL95, Tou00, AH95, Ano03, BWT96, BID95, KMK16, CDH95]. Speeding
[CSV12]. Speedup
[VPS17]. SPH
[CP15, OLG+16, PBC+01, WMR17]. Sphere
[CT94a, CT94b]. spherical [KT10]. SPICE3 [WPC07]. Spiking
[CAM12]. Spin
[HL11, KO14, Kom15]. splitting
[TCB10]. SPMD
[BST+13, Dar01, KAC02, Wal00, Wal02]. SPMD-Like
[BST+13]. Spokane [IEE93c]. Sponge
[HSW+12]. spontaneous
[EZBA16]. Spring [Ano94g, IEE93a]. SPTHEO
[Sut96]. SPY
[SSG95]. Squares
[PWP+16, VR800]. SR
[YWCF15, ZLP17]. SR-IOV
[YWCF15]. SR8000
[NNON00, TS02B, TS03]. SS7
[LTLC94]. SSGM
[HPS+96]. SSS [MMM98]. SSS-CORE
[MMM98]. St [Mal95]. Stability
[DS800]. stable [JMvVG+17]. Stage
[FSXZ14]. staggered [GM18]. Stampi
[ITK10]. Standard
[DM98, GSH97, GLP+00, GL95c, Hem94, MPI98, NH95, SKD+04, SGS10, Wer95, YKLD17, Ano94d, BB+13, Bor99, Cla98, CG99b, DHHW93b, DOSW96, FB95, GKG97, GL92, Hem96, Sti94, VM95, Wal94a, Wal94b, WD96, Ano97, Bra97, CGH94,
DOSW95, GLDS96. Standards
[FKKC96, Th99]. Star
[CDM93, Coo95a, Coo95b]. STAR/mpi
[Coo95a, Coo95b]. Start
[PS07]. Startup
[Coo95a, Coo95b]. Star
[CDM93, Coo95a, Coo95b]. Static/dynamic [SCB15].
Static [TG94, TG94]. Static/[Psi94].
Static [TG94, TG94]. Stationary [MW98].
Statistical [LR01, SNMP10, AMHC11, 12, GD91b, MjG94, PSSS01].
Still [HCA16]. Streamline
[BM94, SHR95, ZG98]. Steering
[BMG07, MABG96]. Subsets
[Bak98, DZ98b, GL95c, BM94]. Substructuring
[Arr93a, CLP93, ARR95, BG91].
Suspension
[BMG90, BM94, SGG91, ANG91, BSB91, CH91, EKTB99, KN17, WT11].
Strain [Kon99]. String
[MM02, MM93]. Striped
[Pre97, ZZG93]. Structural [PSSS01].
Structure [CBL10, LAFA15, SY96, WHDB95, EPM99, Sec15, SY95, ZAT+07].
Structured [FB96, MA96, MRB17, NLR90, Ran95, Bis04, CLSP07, FR95, GBR15, JAT97, Smi93b]. Structures
[GPMD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. Studies [DHP97]. Study
[AIM97, BF01, BHL95, DARG13, EGC02, FPY08, GL97a, HHC+18, KCR+17, LSB15, MM02, NSLV16, NA01, PK05, RRBL01, SCL01, TG94, AGR+95b, BJ13, BMI94, BJ95, BY12, Brl00, CBM+08, DXB96, ED94, FO94, JR13, KBG16, LPD+11, LLH+14, MS96b, PK08, PGK+10, PSHL11, RSBT95, RJ95, TP95, Wal01b, ZSK15].
Stuttgart [KGRD10, WPH94]. Style
[JPOJ12]. Sub [MjG+12].
Sub-Communicators [MjG+12].
Subcircuit [HLO+16]. Subdomain
[CEGS07]. Subdomains [HHC18].
Subgroup [XLW99]. Submitting [NSS12].
Subrange [Str97]. Subroutine [San94].
Subroutines [dCH93]. Subsurface [ED94].
Subsystem [BMW97, MABG96].
Subsystems [STM97]. Subtle [SAL+17].
Success [Gro91b, LF+93a]. Successes
[Gro14a, Successful [Gro12]. Suffix
[DK13]. Suitability [Mat01b]. Suitable
[MAS06]. Suite [ACMR14, AKE00, BWV+12, MBB+12, RJ17]. Ano03, BO01, MvWL+10, TG09, SWSY14, SNMP10].
Suites [MCS00, SGJ+03]. Summation
[IHM05]. Sums [ST17, MYB16]. SUN
[BM00, SJ02, WSN99]. Sunderam
[Ano95b]. Super [Gua16, YX95].
Super-Object [YX95]. Supercomputer
[Ano93a, CLP+99, Str94, AAC+05, BGH+05, EFR+05, GL96, GL97c, KMH+14, NSM12, Ste94, GS91b, MAB05].
Supercomputers
[BP93, BDG+92c, EKTB99, KN17, WT11].
Supercomputing
[ACM96b, ACM04, ACM05, BDG+91b, HK93, IE99, IE99c, IE94h, Lin95, Sch94, ACM94, ACM96c, Ano93f, BG91].
Superlattice [Pri14]. Superscalar [ACJ12].
Supersonic [CCBM94]. Support
[Ano98, BBG+10, BFBW01, CFF+94, DMMV97, FGRD01, GRV01, GOM+01, HRSA97, LMRG14, MK04, OP98, PSM+14, RBB95, YPA94].
Supported \[KLR16, CDD +96\].

Supporting \[FD00, FMSG17, GAML01, Gua16, MMS07, OOS +08, WLNL03, WLNL06, WCSS99, YWCF15, FLD96, GAM +00\]. Supports \[AELGE16, CLL03, DGMS93\].

Suppression \[WWZ +96\].

Surface \[KS15b, PKYW95, BHW +12, DCD +14, RAGJ95, TSP95\].

Survey \[Sap97\]. Survive \[ABB +10\]. sustainable \[CGBS +15\]. SVD \[CMH99\].

Swan \[HD11\]. Swapping \[SC04\]. Sweden \[Eng00, HAM95b, FF95\].

Swendsen \[KO14, Kom15\]. Switch \[SCL01, TBD96\]. Switched \[LC93, KYL03, KYL05\]. SWITCHES \[DT17\]. Switzerland \[GT94, Ano94i, IEE97b\].

SX \[HRZ97, TRH00\]. SX-4 \[HRZ97\]. SX-5 \[TRH00\]. SYDNEY \[BI95\]. Sylvester \[GK10\]. Sylvester-Type \[GK10\].

Symbolic \[CCK12, Coo95b, Ste90\]. YYW +12, ACM97a, BHKR95, Coo95a, Lev95, LGKQ10, LLG12, SMAC08.

Symmetric \[BDV03, MDM17, YKW +18, BAV08, DCH02, GG99\]. Symposium \[ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE94a, IEE94e, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96c, IEE97b, IEE97c, IEE05, LHHM96, L196, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Ton96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94h, Lev95, Old02\]. synchronisation \[SDB +16\].

Synchronization \[LA02, OCY +15, TGT05, BMG07, LA06, TMT96, YLZ13\].

Synchronizing \[VT97\]. Synchronous \[Ada97, BJ13, Cer99, DLRR99, HZG08\].

Synergy \[SSAS12\]. Synergistic \[UGT09\].

Synthesis \[CS14, GWC95\]. synthesized \[MC17\]. Synthesizer \[DS16\]. Synthesizing \[AJF16, NP12\]. Synthetic \[CC17, DP94\].

Syracuse \[IEE96f\]. SYSMO \[MM95\].

System \[Ada97, AJ97, AH00, BG95, BDG +xx, BL95, BFZ97, BGD12, CAM12, CGC +02, DBA97, DALD18, ERS95, ERS96, EK97, FBD01a, FBV02, FFP03, Fis01, Gal97, GCBM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, KBA02, LLRS02, LTY93, Mak94, MRV00, MM02, MM06, MMH98, MM07, MMH93, NPP +00, NMS +14, Oed93, PPT96a, RGD97, SGJ +03, SSB +05, SCP97, SA93, ST02b, Sun93, TSS00b, Tsu07, UP01, Wil93, ARS89, AS02, AL92, BB94, Bri95, BBH +15, DL10, FNSW99, FK94, GS91a, GS93, GS96, GMU95, Glv97, HIDD90, Hum95, HS95b, IBC +10, IIT99, JH97, JLS +14, KW14, Kik93, LBD +96, LL96, LL95, MA09, MMR99, MM +94, MAS06, MM11, MS99b, MAM05, NAJ99, PPT96b, PPT96c, PK05, RJDH14, RTL09, SHHI01, SL94b, Sc199, SPL99\]. system \[SGDM94, Sun96, Sur95b, VSRC94, VSRC95, WCC +07, WZWS08, YPZC95, YZPC95, ZL96, ZPL96, ZWZ +95, dCZG06, AL93, NMW93, Yan94\]. System-Initiated \[SSB +05\]. system-on-a-chip \[dCZG06\].

System/6000 \[AL93, NMW93\]. Systeme \[GBR97, GEW98\]. Systems \[AAB +17, Ano94b, Att96, BCGL97, BGBP01, BME02, BPC94, Bha93, CDJ95, CAWL17, CFT +94, CSW97, CJNW95, Coo95b, FD96, FGKT97, Fos98, Gua16, HRS97, IEE93d, IEE94d, IEE95a, IEE95i, IEE96b, IEE96d, IEE96f, IEE97b, IEE97c, IEE05, LHHM96, L196, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Ton96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94h, Lev95, Old02\].

synchronization \[SDB +16\].

Synchronization \[LA02, OCY +15, TGT05, BMG07, LA06, TMT96, YLZ13\].
KSG13, KHB+99, KLV15, KDL+95a, KFSS94, LR06b, LH98, LCVD94b, LLH+14, MSL12, MvWL+10, Ol92, OPW+12, Pan95b, Par93, QBl92, SSKF95, SP95, SVC+11, Smi93b, SG14, SMSW06, SLN+12, Sm94b, TBB12. systems [TMW17, TVCB18, TSP95, WCS+13, WWZ+96, WADC99, WYL+12, Z96, ZGC94, dH94, dAMC+11, dAMCFN+12, JWB96].

System software [Sei99]. systolic [BSC99].

T3D [AZ95, AFST95, CCSM97, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95].

T3E [BBS99, B001, Che99, GRRM99, LSK04, RB97c].

T3E-600 [LSK04].

T3E-600 [LSK04].

T3E-512 [RBB97c].

T9000 [BR94].

Table [BJ13].

Tabu [BSH15, Cza13, CB11].

Tags [Wis97].

Talbot [ACMR14, Riz17].

Tapir [SML17].

Task-Based [AHD12, AAB+17, FKKC96, GDDM17, GPC+17, IOK00, KO11, LHCT96, Mar03, MJB15, NIO+02, NIO+03, NSZS13, Nj01, OP10, OS97, SGZ00, SPL+12, TBS12, TS12a, YKW+18, ABF16, ABF+17, BGH+05, GKF13, OdSSP12, OPW+12, OPP00, RRPH96, RFRPH96, SKB+14, WC15].

Task-Overlapped [AHD12, AAB+17, SPL+12, SKB+14].

Task-Parallel [NSZS13, APBcF+16, ABF+17].

Tasks [FLD96].

Tasking [DFA+09, KaM10, SHM+10, TCM18, TScAM12, WC15].

Tasks [ACD+09, DT17, DFA+09, JW96, OP98, RR02, RDLQ12, YSS+17, BSO1, DDYM99, DR95, FKK+06b, FKK96a, InvLH+00, PKE+10].

TAU [MMS07].

taxonomy [SPH96].

TBSCM [BP98], TC2 [Boi97].

TC2/WG2.5 [Boi97].

TCGMSG [GB96, Mat94, Mat95].

TCP [KPW05].

TD [And98].

Teaching [MK00, JY95, MK97, PKB06].

Technical [Ano93c, Ano98, MC94, USE95, ACM06a, Sni18].

Technique [BCD+15, HC06, HAA+11, HC08, Nes10, RBB17, MAI14].

Techniques [CP97, GS02, Mi01, SAL+17, SPL+12, TGBS05, Wis01, BPG94, Fer04, FCS+12, HKMC94, JKN+13, KBG+09, NFG+10, PF05, SKS01, W19].

Technologies [Ma95].

Technology [Ano97, Bra97, CGB+10, CSV12, Dan12, GN95, HS94, PWP+16, SBTO4, TBG+02, Ano93a, Ano93c, D+95, DM12, IEE94c, NS16, ZAT+07].

Tekniska [Eng90].

Telegraphic [ES11].

TELMAT [BR94].

temperature [Hin11].

Template [GS97, PKB06].

Templates [BN12, KH15].

Tennessee [PR94b].

terabyte [KTJT03].

terabytes [IEE02].

teraflops [KTJT03].

Terms [KD12].

Tessellation [SS09].

Test [SNMP10, TG09, AAAA16, CPR+95, GL92].

Testbed [Mat01b, EGH99, PY95].

Testing [CCK12, DFK94b, Ost94, ViS00, CMV+94, DFK93].

Testsuite [WCC12].

Texas [ACM06a, IEE94b, IEE95g, IEE97c, Y93].

Text [LTR00, MM01, RLL01, RTL99].

Textbook [Ano98].

textual [WKS96].

texture [HE15].

TFETI [SHHC18].

TH [CFD10].

TH-MPI [CFD10].

Thakur [Ano00a].

Their [Bru12, GOM+01, RG18, GSMK17].

theorem [Lat96].

Theory [GK10, BW12, CBBH94].

Thera [CD01].

Think [HCA16].

Third [BPG94, Bos96, DMS94, GA96, IEE94g, Si96, Was96, BDL96, Ma95, IEE97c].

Thirty [Y93].

Thirty-seventh [Y93].

Thousands [PZKK02, BMS+17].

Thread [AELGE16, ETWAM12, GOM+01, GT07, Nit00, Pla02, STY99, HK09, IDS16, JKN+13, SP96, SLN+12, YZ14].

Thread-Level [AELGE16, HK09, YZ14].

Thread-Safe [Pla02].

Thread-safety [GT07].

Threaded [BGG+10, MG15, Ada98, EBG10, SCS15, SVC+11, TSY99, TSY00].
threaded-MPI [SVC+11]. Threading
[BHV12, MLGW18, SBT04, TBG+02, KPO00, KRG13, QB12, ZAT+07]. Threads
[CP98, LD01, Lee06, BS01, MVTP96, ALW+15]. Three
[Car07, GA96, Nak05b, Ram07, SAS01, GSMK17, LSSZ15, Mar05, PR94c]. three-
[GSMK17]. Three-Dimensional
[GA96, LSSZ15, PR94c]. Three-level
[Nak05b]. Throughput
[Tsu07, ESB13, PP16]. Tightly [SS01]. Tightly-Coupled [SS01]. Tilewise
[KS15b]. Time [BCL00, FH01, FSSD17, GSHL02, GOM+01, HO14, KFL05, MFTB95, OP98, SCL01, SS96, TSP95, UP01, YGH+14, AL96, CDMS15, DLR94, DM12, Fer04, FLB+05, FKLB08, GB94, HE13, JE95, KC94, KPL+12, LHLK10, LBB+16, LYSS+16, LM13, MMW96, NZZ94, ON12, OdSSP12, PTMF18, QQHC17, Ram07, SBW91, SS+16, SK92, SRK+12, TSY99, Th94, TV96, TCBV10, Uhl95c, VM94, YSVM+16, YSMA+17, ZWZ+95, SKD+04].
time-dependent
[DM12, LBB+16, LYSS+16, ON12, SBB+16, YSVM+16, YSMA+17]. time-domain
[HE13, NZZ94, Ram07, VM94]. time-independent [CDMS15].
time-varying [Uhl95c]. times
[MLV16, NB96, SSS99]. timing [Ols95]. tips
[Fre04]. TLM [SC96a]. TM
[GGC99, GC98, KHS01]. TN
[DT94, BR94]. TOT [GCP+17]. TOT-Tree
[GCP+17]. today [IEE94c]. Toepplitz
[BY97, BAV08]. Tolerance
[GKP97, GL04, LMRG14, LNLE00, RPM+08, TS12a, WC09, Wl93, SG05, ZHK06].
Tolerant [BBC+02, BCH+03, BHK+06, CF01, CFDL01, FD00, FBD01a, FBVD02, FD02a, FD04, GFB+03, IEEE95c, JSH+05, MSF00, BCH+08, FBD01b, FBD02b, HG12, LMG17, LS08, NCB+12, NCB+17, PKD95]. Tomographic [Pat93]. tomography
[FWS+17, RCF96]. tomorrow [IEE94c]. Tool
[Ano01b, Beg93b, BFM96b, DW02, GSN+01, KAMAMA17, KJS14, KKP01, LMRG14, MMSW02, MK04, NE98, SR96, SGL+00, Tra12b, WL96a, AGG+95, BDP+10, Beg92, Beg93c, Beg93a, BDY99, BFM96a, BW+12, CPR+95, DFK94a, FSTG99, HPR+95, HD11, LCC+03, MdSAS+18, TSS98, WL96b, WL96b]. Tool-Set [WL96a]. Toolbox
[Ano97, Bra97]. Toolkit
[Ano12, LC07, LLC13, SLS96]. Tools
[ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vos03, W97, AVA+16, BDG+92a, BFIM99, Fan98, GBF95, LH98, MSW+05, MHC94a, ZL96].
Tools-supported [CDD+96]. Top
[APH01, Gal97, Hus01, Man01, PTH+01b, Ser97, BBCR99, PTH+01a, SCC96, SCL97, CCHW03]. TOP-C [CC96]. ToPe
[JKM+17]. topologies [BCM+16, MK00]. Topology
[DK06, Hat98, HM01, Tra02a, GJMM18, HRR+11, MBBD13, SPK+12].
topology-aware [MBBD13]. Topology-Based [HM01]. TOPPER
[KKP01]. Toronto [GGK+93, VOS03].
Torus [SG15]. Townsend [DT94]. TPVM
[FS95, FS98]. Trace [Ney00]. Traceback
[dOSSM+16]. Tracefiles [FCP+01]. Traces
[CC17, MANR09, WM01, CDMS15, DWM12]. Tracing
[CGLD01, DP94, KG96, CG93, Mor95, SGS95]. Tracking
[GAP97, HD02b]. Trading
[BHM94, BHM96]. traffic [Zah12].
Training [CSV12]. Transactional
[BBW+12, MFG+08, SBG+12].
Transactions [BBW+12]. Transfer
[BKGS02]. Transfers [THS+15].
Transform [YULMTS+17, KT10, DLBLG11]. Transformation
[EP96, NSZS13, GSMK17, HZ96, TSY00]. transformations [JE95, TG94].
transformed [BY12]. Transforming
[PSK+10]. Transforms
[ACMR14, KLR16, HP11, Uhl95c, Zem94].
Transient [SIS17]. transistor [Ano03].
transistors [Ano03]. Transition [MRV00].
Transitive [CGPR98, PRP01]. Translating
[Mar09, NCB+12]. Translation
[DDL00, SSE12, HCL05, LEM09, NCB+17].
Translator
[KMK16, UZC16, GScFM13].
transmitters [WWZ+96]. Transparent
[CCK+95, IFA+16, NPP+00c, SLGZ99,
LFS93a, LFS93b, LFL11, NPP+00a, SOA11].
Transparently [CB16]. Transport
[KHS01, RS97, VRS00, WR01, ZO04, Pri14,
SH94, WH96]. Transporter [Per92].
transpose [Bha98]. Transposition
[HD02b]. Transputer
[Ara95, ACDR94, CJNW95, FK95, FF95,
GN95, GHH+93, MC94, dGJM94, ZPLS96,
Ara95, CJNW95, GHH+93, dGJM94].
Transputers [ACDR94, AGR+95b, dCH93].
Transtech [Ste94]. trap
[LBB+16, SSB+16, YSVM+16]. TRAPPER
[KFSS94, SKF95]. travel [SSS99].
travel-times [SSS99]. traveling [GM94].
traversing [BDG+92b]. TreadMarks
[LDCZ97]. Tree [GPC+17, ADB94, AB13,
BCAD06, CG93, SGS95, Zah12]. Trees
[CDPM03]. Trends [Duv92, IEE93d,
MBS15, JPTE94, SGDM94, Sm94a].
Triangle [SL94a, SOA11]. Triangular
[Hog13, MRB17]. tricks [Fer04, LK14].
Tridiagonal [DALD18, DR18]. Triolet
[RJDH14]. Trivandrum [IEE96a]. Troy
[SS96]. Truncated [ZB97]. truncating
[Ram07]. TSMC [Ano03]. TSUBAME
[NSM12]. Tsukuba [SHM+10]. TTIG
[RRB01]. Tucson [JB96]. Tuning [Cza02,
Cza03, NPP+00d, SLJ+14, WG17, DBLG11,
FE17, LGG16, SH14, Yan94, FVD00]. tuple
[MYB16]. tuple-based [MYB16].
Turbulence [Str97, MRRP11, Str96].
turbulent [BCM+16, CBYG18]. Tutorial
[EM00a, EM00b, GBD+94, GLT00b, Nov95,
Per96, Ano95b]. TV [CIJ+10]. Twenty
[ERS95, ERS96, HS94, IEE95c, MMH93].
Twenty-Eighth [ERS95]. Twenty-fifth
[IEE95c]. Twenty-Ninth [ERS96].
Twenty-Seventh [HS94]. Twenty-Sixth
[MMH93]. Two [CM98, STY99, SJK+17a,
SJK+17b, YMT97, AG+95b, AL93,
ADLL03a, ADLL03b, CB11, ED94, HAJK01,
MSP93, dAMCFN12]. Two-Dimensional
[SJK+17a, SJK+17b, AL93]. two-layer
[dAMCFN12]. Two-level [STY99].
two-phase [ED94]. TX
[ACM00, Chat95, DKM+92, Ano95a, Ano95d].
Type [GBK10, MSB97, FVLS15, GFPG12].
Types [We94, NYNT12]. typy [OA17].

[Wer95]. UK [Abrt96, AD98, EJL92, HK95,
BP93, CJNW95, MC94]. UKMO [RSBT95].
ULFM [LCMG17]. Ultra [SJ02].
Ultra-High [SJ02]. Ultrafast
[KRC17, FWS+17]. Umgebung [GBR97].
UML [RGD13]. UML/MARTE [RGD13].
Umpire [VdS00]. Unbalanced [OP10].
Uncertainty [MB815]. Understand
[DeP03]. Understanding [CRE01]. Unibus
[KSS07]. UNICOM [Ano93g]. unified
[GKZ12, JC17, KSL13, KSSS07].
under [RJDH14]. uniform [KSG13]. uniformly
[Tra12a]. Unify [VSR94, VSR95].
unifying [CCM12]. Unintended [SAL+17].
unit [VDL+15, MSML10]. United [Boi97].
Units [KS15b, LSVW08, ABD15,
BHS18, LHLK10, WWFT11, HJBB14].
Universal [LW97, DDLM95]. University
[CGB+10, IEE94d, IEE95c]. R+92. Unix
[OLG01, RBS94]. Unleashing [TCM18].
unscharfer [Wil94]. Unstructured
[AB93a, NO02b, SM02, SM03, AB93b,
NO02a, TP15]. unveils [Ano03]. UPC
[EGC02, MTK16, Mar05, SJK+17a,
SJK+17b]. Update [KT10, GSKM17].
Updates [ESB13, KS15a, ZDR01, HSE+17].
UPM [NPP+00d]. ups [Ano03]. USA
[ACM96b, ACM98b, ACM00, ACM06a, AGH†+95, BBG†+95, BS94, Cha05, CGKM11, DT94, EV01, Eds08, ERS96, Gat95, Ham95a, Hol12, IEE95b, IE95d, IE96f, IE96e, IEE96i, MC41*+08, Old02, PBG†+95, Rec96, Sin93, Ten95, ACM95b, ACM97b, Agr95a, Ano89, B+05, DKM†+92, HS94, IEE94e, IEE95k, IEE02, Ost94, SL94a, SS96, USE94, USE95, USE96, USE97, USE99]. Usage [FD02a, FCLG07, FD02b, FVLS15]. Use [FJBB+00, Gro02a, HK93, HK95, MB12, PSZÉ00, Shi94, AB95, GEW98]. USENIX [USE94, USE95]. User [AD98, ACDR94, BDG†+91a, CHD07, CD01, CDND11, DKD05, D+91, DHHW92, DHHW93a, DLM99, DKP00, DLO03, FCLG07, GBD†+94, GN95, KGRD10, KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MTW06, NPP†+00c, Nov95, Per96, RWD09, TBD12, Tha98, Tra98, Tsu07, VLO†+08, WO95, Wa10a, WJ12, WLR05, Wis97, Wis01, WLYC12, YKW†+18, ZBd12, van97, vdLR11, AMHC11, AK99, ABF†+17, AL96, ADT14, ABG†+96, AB93b, AGS94, AGG†+95, BV99, BFLL99, BSC99, BBH†+92c, Bic95, Bis04, BCM†+16, BTC†+17, BCD96, BID95, BAG17, BSH15, BMG07, CG93, CBM†+08, CBY18, CdGM96, CS14, CT94b, CC00b, DG95, DS13, DRUC12, DSOF11, DCH02, DM12, EGDK92, FB96, FSV14, FSC†+11, Fin94, Fin95, FHC†+95]. using [FWS†+17, GGGC99, GSMK17, GO09, Goe02, GMB†+14, GMU95, GM18, GRTZ10, HB96a, HDSG09, HTJ†+16, HP11, HPS†+96, HPLR99, HASnP00, HLO†+16, HAA†+11, IJM†+05, IM95, IKM†+02, JL18, JF95, JKK08, JLS†+14, JMM†+11, JPT14, JR10, JMDVG†+17, KFA96, KRR11, KY10, KMK16, KME09, KNC96, KMC97, KRC17, KD13, KPK13, LP00, LSG12, LSSZ15, LCY96, LSVW08, LCM17, LO96, MRR99, MP95, Mar06, MBC15, MAB05, MeK94, MM11, Mic93, Mic95, MRH†+96, MMS13, MSML01, MS95, MM14, MC99, MvWL†+10, NO02a, Nak05a, NZ94, NB96, NAK99, NU05, OKM12, OIH10, Ols95, Pat93, PDY14, PGC18, PN01, PKE†+10, QRG95, RJC95, RAS16, RCFS06, RBA17, RM99, RCG95, SHLM14, SlM10, SLGZ99, SGS95, SSS99, SMS00, SOA11, SVC†+11, SSGF00, SFLD15]. using [SSN94, SU96, SP11, TC94, TPLY18, Tsz95, Uhl94, Uhl95b, UH96, VM94, VB99, VGS14,...]
[LG93]. **VOBLA** [BKvH+14]. Vol
[ATC94, HS94, Nag05]. Volatile
[BBC+02, BCH+03]. Voltage
[KFL05, FKL10]. Volume
[Ano99a, Ano99c, Ano99b, Ano99d, DFN12, GHLL+98, SOHL+98, BHW+12, WST95]. Volumes
[GAP97, SOA11]. Volumetric
[KA13, KGB+09]. Voodoo
[BPMZ16]. VOOM
[BR91]. VORD
[KSJ14]. VR
[DBA97]. VRML
[ACM96a, NM95, KS95, KS96]. VRML-Based
[KSJ95, KSJ96]. vs
[FH98, BCH+08, Luo99, Nak05b]. VTC
[NU05]. VTDIRECT95
[HWS09, SWH15]. VxWorks
[YGH+14].

WA [ACM05, LCK11]. Wailea
[ERS96, HS94, MMH93]. Waknaghat
[CGB+10]. Walker
[Ano96a, Ano99a, Ano99b, Nag05]. wall
[NB96]. wall-clock
[KFL05, SOA11]. walls
[JAT97]. WAMM
[BCLN97], Wang
[KO14, Kom15]. Warehousing
[DERC01]. Warp
[SCL01, HKO011, MMW96, VSW+13].

WARPED [MMW96]. **WARP**memory
[SF095]. Washington
[B+05, BS94, IE93c, IE94h, IE95x, Ost94]. water
[HHTH99, R+92, diAMC11, dlAMCFN12].

Waterman [KDS012]. watersheds
[NAJ99].

Wave [BBC+00, EMO+93, ESM+94, NSLV16, SMEO93, Gci94, KM10, KEGM10, Mal01, NB96, RMNM+12]. **Wave-Particle**
[NSLV16]. **Waveform** [LSR95]. Wavelet
[Uhl94, Uhl95b, Zem94, vdLJR11, Uhl95a, Uhl95c]. Way
[Vog13, FG97]. ways
[CZ96]. weak
[SD16]. Weather
[AHP01, HE02, Bjo95, KOS+95a, Mal01].

web
[CHKK15, AAS80, NE01, PES99, Wal01b].

Web-Based
[NE01, PES99]. WebCL
[CHKK15]. WebCom
[OPM06].

WebCom-G
[OPM06]. **Wednesday** [B+05].

Weicheng [Ano95b]. weight
[KA95]. welcomes
[Str94]. West
[EV01, EdS08].

Westin
[IE94e]. We’ve
[GBK97].

WG10.3 [DR94]. **WG2.5** [Boi97]. Wheeler
[NTR16]. where
[KC94]. which
[SH96].

Whippetree
[SKB+014]. Wide
[FGG+98, DOSMM+16, FGT96, KHB+99].

Wide-area
[FGG+98, FGT96]. **WIEN**
[GAo03]. Will
[CB00]. William
[Ano95c, Ano99c, Ano99d, Ano00a, Ano00b]. Williamsburg
[IE92]. Win32
[MS98].

windows
[QB12, Ano01a, CLP+99, FD97, GGGC99, PS01a, SFG98, SSSS97, TAH+01].

Windows95
[SSSS96]. Winona
[Ano94h]. wireless
[Bon96]. wissenschaftliche
[MS04]. wissenschaftliches
[Ano94c].

without
[BW12, Pla02, YLZ13]. WLAN
[MSOGR01]. **WMP** [BPS01, MS98, MSS98, MS99c, PS01a, SMS00]. WOMPAT
[Cha05, EV01, Vos03]. Woollongong
[GN95]. Work
[HS94, Pet00a, Pet00b, OdSSP12, TCB10]. work-stealing
[TCB10]. Worker
[EML00, YG96].

Worker-Based
[YG96]. Workerproblem
[FH98]. Workflow
[LYZ13]. Workforce
[Liv00]. workgroup
[DB+16]. Working
[Ano98, Boi97, MCS00, Pet01, DR94].

Workload
[AGS97, DBVF01]. Workloads
[CC17, APBcF16, AVA+16, SKB+14].

WorkPlace
[Ano97, Bra97]. workqueuing
[VLvdG08]. Workshop
[ACM98a, Agr95a, BPG94, Bha93, BC00, Cha05, CZG+08, CGKM11, CMMR12, DW94, DT94, EV01, EdS08, Fer92, FK95, FF95, HK93, HK95, IE93d, IE93f, IE94d, IE95a, IE96g, IFI95, KG93, Kuh98, Kumu94, MdSC09, PBG+95, PBPT95, SCR92, SHM+10, SCH93, Vos03, Was96, AH95, BS94, Cal94, D+95, DMW96, FR95, GL95b, IE93f].

Workshops
[CDD+10]. Workstation
[GHJ97, HSMW94, KS96, LC97a, MFTB95, Pus95, YK+96, AB95, ALR94, BLP93, BSvdG91, BRS92, BALU95, BWT96, CCU95, DG95, ED94, GBF95, Heb93, JRM+94, LL95, NW93, NN95, PM95, PL96, RBS94, RCF96, SC96a, SSN94, SL95, THM+94].
REFERENCES

Tsu95, UH96, YWO95, ZHS99, MS04].

workstation-cluster [Heb93].

Workstation-Clustern [MS04].

Workstations
[AR01, BL94, BL95, BM97, BDH+95, BDH+97, BMS94b, DDPR97, EK97, GS91b, HIP92, ID94, Liu95, LHZ98, MSCW95, MM90, OWSA95, FFG97, TQDL01, VLO+08, AL93, BJ95, BID95, Bru95, BEMP94b, BMS94a, BMPZ94a, CCF+94, Coe94, DZ98a, DOSW96, GM94, GMU95, HK94, Hsu99, KMC96, KMC97, KAV95, MK94, MM03, RRG+99, SFO95, SR95, TDB00, dCH93].

Worlds [CMMR12, CJNW95, FD00, GHH+93, HLP11, MC94, NSLV16, PSB+94, Wit16, dGJM94, GDB+93, JR10]. Worlds [Rab98].

wormhole [Pan95a, Pan95b, RMC93, ZGN94].

wormhole-routed [Pan95b, RMC93, ZGN94].

worms [Pan95a].

WoTUG [MC94], WoTUG-17 [MC94].

WPVM [ASC95, BPM97].

Wrapper [AS14].

Write [BIC10].

Writing [FAP16, SDB94, FNS99].

Written [KaM10].

WWW [KSJ95, KSJ96].

X [Bad16, FWS17].

X-ray [FWS17].

X10 [CGH+14].

X11 [GKL95].

x86 [MGL+17].

Xab [Beg92, Beg93b, Beg93c, Beg93a].

Xen [FRS16].

Xeon [DGS17, OTK15, MTK16].

XPVM [KG96].

XXI [EGB+14].

YLJ [Gal97].

YMP [BL94].

Yorkshire [CJNW95].

Zero [SWHP05, Hin11].

Zero-Copy [SWHP05].

ZEUS [FF95].

Zipcode [WL94, SSD+94].

zonal [Fin94, Fin95].

Zone [AAC+05]

[JCH+08, AGMJ06].

zum [Wer95].

zur [GBR97, Sei99].

References

G. Almaías, C. Archer, J. G. Castaños, J. A. Gunnels, C. C. Erway, P. Heidelberger, X. Martorell, J. E. Moreira, K. Pinnaw, J. Rat-
Arth
er:1993:PIU

Akzhalova:2008:WPL

Aloisio:1995:UPW

Augusto:2013:APG

REFERENCES

Acacio:2002:MDM

Andersch:2012:PPE

ACM:1990:PAC

ACM:1994:CPI

Agullo:2011:QOM

REFERENCES

REFERENCES

REFERENCES

ACM:2003:SII

76

ACM:2004:SHP

ACM:2005:PAI

ACMR14

REFERENCES

[V. Antonuccio-Delogu and U. Becciani. A parallel tree N-body code for heterogeneous clusters. In Dongarra and Wasniewski [DW94],]
Addison:2001:EOP

Arioli:1995:PSB

Amestoy:2003:IIMa

Aversa:2005:HDS

Aversa:2005:PPT

Rocco Aversa, Beniamino Di Martino, Massimiliano Rak, Salvatore Venticinque, and Umberto Villano. Performance prediction through...

REFERENCES

Averbuch:1994:PES

Arbenz:1996:SRP

Ayguade:2006:ENO

Agrawal:1995:PIW

Almeida:1995:CST

Alfaro:1997:FDW
REFERENCES

REFERENCES

Aversa:1997:MDP

Aguilar:1997:PMS

Aubrey-Jones:2016:SMI

Alexandrov:1999:PMC

Armstrong:2000:QDB

Andersen:1994:PIA
B. S. Andersen, P. Kaae, C. Keable, W. Owczarz, J. Wasniewski, and Z. Zlatev. PVM implementations of advection-chemistry modules of air pollution mod-

Asai:1999:MIF

Abdelfattah:2016:KOL

Alfano:1992:DNA

[M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92], page ?? ISBN ?? LCCN ?? Proceedings available via anonymous ftp from ftp.scri.fsu.edu]

in directory pub/parallel-workshop.92.

Altevogt:1993:PTD

Alt:1996:PIA

Alund:1994:CFD

Amer:2015:MRC

Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan

Ayguade:2007:SIO

Almasi:1993:PDS

Agrawal:2011:PPS

Amato:1994:PEP

anMey:2007:NPO

Al-Mouhamed:2015:EAO

Mayez Al-Mouhamed and Ayaz ul Hassan Khan. Exploration of automatic optimisation for CUDA

Aversa:1994:PSH

Andersson:1998:PFT

Anonymous:1989:PFC

Anonymous:1992:PSE

Anonymous:1993:ATA

Anonymous:1993:ISA

Anonymous:1993:JFI

Anonymous:1993:MMP

Anonymous:1993:PSE

Anonymous:1993:SEC

Anonymous:1993:CDP

Anonymous:1993:ICS

Anonymous:1994:ALM

Anonymous:1994:FWR

Anonymous:1994:MMP

Anonymous:1994:PDC

Anonymous, editor. Parallel and distributed comput-
REFERENCES

Anonymous:1994:PPC

Anonymous:1994:PSE

Anonymous:1994:SCC

Anonymous:1994:SQC

Anonymous:1995:CCS

Anonymous:1995:BRPb

Anonymous:1995:BRU

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ???? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMa

Anonymous:1999:BRMb

Anonymous:1999:BRMf

Anonymous:1999:BRMg

REFERENCES

[Anonymous:2000:BRUd]

[Anonymous:2001:AAL]

[Anonymous:2001:EDP]

Anonymous:2003:MNIc

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

Aji:2016:MEA

Aji:2016:MAA

REFERENCES

Addison:2003:OIA

Al-Refaie:2017:PCT

Al-Salman:1992:DIP

Awile:2014:PWF

Alonso:1997:PBB

Alves:1995:WPC

Anderson:2017:BGB
REFERENCES

April 2017. CODEN ????
ISSN 2150-8097.

[ATC94] Dharma P. Agrawal, K. C.
(Kuo Chung) Tai, and Jagdish Chandra, editors. Proceedings of the 1994 Interna-
tional Conference on Parallel Processing, August 15–19, 1994. Vol 3: Algorithms and applica-

Asenjo:1995:SLF

Arteaga:2017:GFG

Bayer:2005:GEC

Battre:2006:MFP

Bader:2016:EMT

Becciani:2007:FMH

REFERENCES

Beguelin:1994:CMS

Beaumont:1995:DPG

Brunschen:2000:OCP

Bala:1994:IEU

Bova:2000:DLP

Bosilca:2002:MVT

Bertozzi:1999:MIT

[BBCR99] M. Bertozzi, F. Boselli, G. Conte, and M. Reggiani. An MPI implementation on the top of the vir-

[BBG+11] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Torsten Hoeffer, Sameer Kumar, Ewing Lusk,
REFERENCES

[Barrett:2014:EMM]

[BBH+08]

[BBH12]

[Bischof:2008:AAD]

[Bustamam:2012:FPM]

Alhadi Bustamam, Kevin Burrage, and Nicholas A. Hamilton. Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse for-

Bland:2013:EUL

Bland:2013:PFR

Busa:2015:CCO

Boryczko:1994:LGA

Barnard:1999:MIS

REFERENCES

a fault tolerant MPI for volatile nodes based on pes-
simistic sender based mes-
www.sc-conference.org/
sc2003/inter_cal/inter_
cal_detail.php?eventid=
10696#1; http://www.sc-
conference.org/sc2003/
paperpdfs/pap209.pdf.

[BCH+08] Darius Buntinas, Camille Coti, Thomas Herault,
Pierre Lemarinier, Laurence Pilard, Ala Rezmerita, Eric Rodriguez, and Franck Cappello. Blocking vs. non-
blocking coordinated check-
pointing for large-scale fault
tolerant MPI protocols. Fu-
ture Generation Computer
Systems, 24(1):73–84, January 2008. CODEN FG-
SEVI. ISSN 0167-739X (print), 1872-7115 (elec-
tronic).

[BCL00] Alessandro Bolloni, Stefano Crocchiatti, and An-
tonio Laganà. Time inde-
pendent 3D quantum reactive scattering on MIMD parallel computers. Lecture Notes in Computer Sci-
ence, 1908:338–??, 2000. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http:
//link.springer-ny.com/
link/service/series/0558/
bibs/1908/19080338.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080338.
pdf.

[BCLN97] R. Baraglia, M. Cosso,
D. Laforenza, and M. Nicosia.
Integrating PVaniM into
WAMM for monitoring meta-applications. Lecture
REFERENCES

REFERENCES

REFERENCES

Bubak:1997:RAP

[BDW97]

Beguelin:1992:XTM

Beguelin:1993:XTMb

Beguelin:1993:XAT

Adam Beguelin. Xab: a tool for monitoring PVM programs. Research paper CMU-CS-93-164, School of
REFERENCES

REFERENCES

REFERENCES

[BG94a] E. Boerger and U. Glaesser. A formal specification of

[BG94a] E. Boerger and U. Glaesser. A formal specification of
REFERENCES

112

REFERENCES

[113]

Blanco:2002:PMA

Balasubramanian:2015:EGL

Bhanot:2005:OTL

Bischof:2008:PRM

Butler:2000:SPM

REFERENCES

[BHK+06] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello. MPICH-V project: a multiprotocol automatic fault-tolerant MPI. The International Journal...
REFERENCES

Bubec:1995:DSC

Bischof:1995:CSM

Bachem:1994:PCT

Bachem:1996:STH

Brunst:2001:POL

Barekas:2003:MAO

Bondhugula:2008:PAP

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A

Bisseling:2002:FMF

Bazow:2018:MPS

Berka:2012:PET

Busa:2012:ACO

Bae:2017:SEF

Seung-Hee Bae, Daniel Halperin, Jevin D. West, Martin Rosvall, and Bill Howe. Scalable and efficient flow-based community detection for large-scale graph
REFERENCES

Umesh V. Biradar. Adaptive distributed load balancing model for parallel virtual machine. Master of science
in computer science, Department of Computer Science, College of Engineering, Lamar University, Beaumont, TX, USA, 1994. viii + 44 pp.

REFERENCES

Bhandarkar:1996:MPM

Balevic:2011:KAD

Bhandarkar:2001:ALB

Bekas:2002:PCP

Berka:2013:CPC

Boryczko:1995:NIC
I. Boryczko, J. Kitowski, J. Moscinski, and A. Leszczyński.

M. Bubak and P. Luszczek. Towards portable runtime support for irregular and out-of-core computations. In Dongarra et al. [DLM99], pages 59–66. ISBN 3-540-
REFERENCES

REFERENCES

Buntinas:2007:IES

Bronevetsky:2003:AAL

Bubak:1994:EMD

Baiardi:2001:CRD

Brightwell:2002:DIM

REFERENCES

Bubak:1994:FLG

Bubak:1994:IPL

Barthels:2017:DJA

Berrendorf:2000:PCO

Bawidamann:2012:ETO

Bull:2001:MSO

Bubak:2000:IOB

REFERENCES

[Boi97:QNS] [Bon96] [Boo01]

Borkowski:1999:LVC

Boszormenyi:1996:PCT

REFERENCES

REFERENCES

[BR95b] pdf.

REFERENCES

link/service/series/0558/
bibs/2400/24000162.htm;

Boeres:2004:ETF

Bergstrom:2012:NDP

Brieger:2000:HOO

Briscolini:1995:PID

Bramley:1997:TNR

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
| [BS01] | Ragnhild Blikberg and Tor Sorevik. Nested parallelism: Allocation of threads to the future.

Blikberg:2005:LBO

Brown:2007:HSP

Bassomo:1999:PGE

Bolton:2000:MPL

Bukata:2015:SRC

Libor Bukata, Premysl Sucha, and Zdenek Hanzálek. Solving the resource constrained project scheduling problem using the parallel tabu search designed for

[Bakhtiari:1995:APL]

[Bai:2013:SLA]

[Benzoni:1991:MFR]

[Blaszczzyk:1996:EPI]

[biewski:2001:MOS]

[Bu:2001:PAC]
REFERENCES

Bonelli:2017:MCA

Badia:1999:SIT

Baltas:1994:CPC

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

REFERENCES

REFERENCES

Calmet:1994:RWC

Cabarle:2012:SNP

Carbajal:2007:PTD

Campanoni:2010:HFP

Cavender:1993:APV

Chabbi:2017:EAL

Cartwright:2000:AOE

REFERENCES

REFERENCES

[CHW03] Gene Cooperman, Henri

Casas:1995:MMT

Collingbourne:2012:STO

Costa:2006:ROA

Chen:2012:PUA

Clematis:1997:DNL

Chamaret:1995:PFE

REFERENCES

REFERENCES

Cownie:1994:PPP

Chang:1995:EPCb

Chang:1995:EPCA

Casanova:1995:PPM

Chandra:2001:PPO

Colombet:1993:SMI
REFERENCES

Cappello:2000:MVM

Clemencon:1995:AEP

Chau:2007:MIP

Cerin:1999:DMP

Chen:2001:FFT

Chen:2001:TMK

Choudhary:1994:LCR
Alok Choudhary, Ian Foster, Geoffrey Fox, Ken Kennedy, Carl Kesselman, Charles Koelbel, Joel Saltz, and Marc Snir. Languages, compilers, and runtime systems

REFERENCES

REFERENCES

(2011:SIU)

(CGG10)

(CJG+00)

(CGK+11)
REFERENCES

Chatterjee:1993:GLA

Caubet:2001:DTM

Chan:1998:PCT

K. J. Chan, A. M. Gibbons, M. Pias, and W. Rytter. On the PVM computations of transitive closure
and algebraic path problems.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Casanova:2015:TMS
Henri Casanova, Anshul Gupta, and Frédéric Suter.
Toward more scalable offline simulations of MPI applications.
CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

Cecilia:2012:CSC
José María Cecilia, José Manuel García, and Manuel Ujaldón.
CUDA 2D stencil computations for the Jacobi method.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer.com/chapter/10.1007/978-3-642-28151-8_17/.

Chen:2013:IRM
Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin.
Improving the reliability of MPI libraries via message flow checking.
CODEN ITDSEO. ISSN 1045-9219.

Cheng:1994:PDP
D. Cheng and R. Hood. A portable debugger for parallel and distributed programs.
ISSN 1063-9535. LCCN QA76.5 .S894 1994. IEEE catalog number 94CH34819.

Ciancarini:1996:CLM
Paolo Ciancarini and Chris Hankin, editors.
LCCN QA76.58.I52 1996.

Charny:1996:MPV
B. Charny. Matrix partitioning on a virtual shared memory parallel machine.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

REFERENCES

Chergui:1999:UPP

Cheng:2010:BRBb

Cho:2010:OPP

Chapman:2001:PDE

Cho:2015:OAO

[Czarnul:1999:DAP]

[Chang:2016:DLD]

[Casas:1994:ALM]

[Culler:1993:LTR]

[Castro-Leon:1993:MCP]

[Clark:1998:FOP]

[Chabbi:2015:BEP]
Milind Chabbi, Wim Lavrijsen, Wibe de Jong, Koushik
REFERENCES

Chang:2016:APC

Chapman:1998:OHI

Chapman:2005:O

Claver:1999:PCS

Cahir:2000:PMM

Corbalan:2004:PMD

REFERENCES

G. Cooperman. STAR/MPI: binding a parallel library to interactive symbolic algebra

G. Coussement. Parallelization of a mesh optimization code on a RS/6000 cluster. In Anonymous [Ano93e], pages 185–212. ISBN ???. ISSN 0254-6213. LCCN ???.

J. L. Cercos-Pita. AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL. Computer Physics

Cores:2014:MAL

Ciampolini:1996:EPM

Coole:2014:FFH

Chetlur:1998:ALE

Clement:1996:NPM

Cavenaghi:1996:UPS

Carreira:1995:DEL

J. Carreira, L. Silva, and
REFERENCES

Chevitarese:2012:STN

Ciegis:1997:NID

Ciegis:1999:HDA

Calotoiu:2012:PID

Cote:1994:PSA

Cote:1994:PSL

Cotronis:2002:MMP

Yiannis Cotronis and Zacharias Tsiatsoulis. Modular MPI and PVM components. *Lecture Notes in Computer Sci-
REFERENCES

Chang:2013:PDS

Cotronis:2000:CMP

Czarnul:2001:DPD

Cao:2011:OMM

Cui:2012:OOB

Zheng Cui, Lei Xia, Patrick G. Bridges, Peter A. Dinda, and John R. Lange. Optimizing overlay-based virtual networking through optimistic interrupts and cut-through forwarding. In Hollingsworth [Hol12], pages
REFERENCES

REFERENCES

LCCN QA76.58.C975 2016.

Anthony Danalis. MPI and compiler technology: a love-hate relationship. *Lecture Notes in Computer Science,*
REFERENCES

[Hikmet Dursun, Kevin J. Barker, Darren J. Kerbyson, Scott Pakin, Richard Sey-

Sylvain Didelot, Patrick Carribault, Marc Pérache,

Didelot:2014:IMC

delCuvillo:2006:LOC

Dozsa:2000:THL

Decker:1995:TDU

Dongarra:1997:BCA

Dean:1994:CPV
REFERENCES

[Dan:1999:QAM]

[DDYM99]

[DE91]

[Dem96]
C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. *Cmg*, 2(??):821–832, 2003. CODEN ???.

[DERC01]

[DF17]

[DF17]

[DFA++09]

REFERENCES

[DGB+14] James Dinan, Ryan E. Grant, Pavan Balaji, David Goodell, Douglas Miller, Marc Snir, and Rajeev

DiNapoli:1997:DCA

Dinan:2012:EMC

deGloria:1994:TAS

A. de Gloria, M. R. Jane, and D. Marini, editors.

Dongarra:1993:UPR

Dongarra:1993:IPF

daCunha:1994:PIR

REFERENCES

DEN ACMHEX. ISSN 1019-7168.

REFERENCES 168

DiPierro:2014:PPP

DiSerio:2002:ENN

DiNucci:1996:CDS

Karniadakis:2002:DLP

Drosinos:2006:EPT

Deo:2013:PSA

REFERENCES

DiMartino:2005:RAP

DiMartino:2007:SIS

DiMartino:2008:SSG

Damodaran-Kamal:1993:NTD

Damodaran-Kamal:1994:MSR

Damodaran-Kamal:1994:TRP

REFERENCES

5948. LCCN QA76.76.T48

Dongarra:1992:PFS

Dongarra:2000:RAP

delaAsuncion:2011:SOL

delaAsuncion:2012:MCI

Dickens:2010:HPI

REFERENCES

Desai:2007:CEM

Marcos:2002:DDP

Degomme:2017:SMA

Dongarra:1999:RAP

Dongarra:2003:RAP

DeKeyser:1994:RTL

Lu:2004:AFS

DeSande:1999:NBS

DiPietro:2016:CLD

Despons:1993:CCP

Davies:1995:NSP

Davies:1995:NPE

Dagum:1998:OIS

Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for

REFERENCES

REFERENCES

[DR18] A. Lamas Daviña and J. E. Roman. MPI-CUDA parallel linear solvers for block-

/ww.sciencedirect.com/
science/article/pii/S0167819117301874.

Deuzeman:2012:LMP

/ww.sciencedirect.com/
science/article/pii/S0010465512000318.

Deshpande:1996:MIIBb

Djordjevic:1996:ICI

Dang:2013:CES

/ww.sciencedirect.com/
science/article/pii/S0167819113001178.

Deniz:2016:MGM

Dang:2017:ECB

/ww.sciencedirect.com/
science/article/pii/S0167819117301187.
REFERENCES

REFERENCES

Du:2010:COT

Deshpande:2012:AGC

Dong:1996:SPL

Deng:2006:PIK

Dantas:1996:ILB

M. A. R. Dantas and E. J. Zaluska. Improving load

REFERENCES

Eppstein:1994:CSP

Eigenmann:2008:ONE

ElMaghraoui:2009:MIM

Eleftheriou:2005:SFF

El-Ghazawi:2002:UPP

Eppstein:1992:PGC

[M. J. Eppstein, Joseph F. Guarnaccia, David Emery Dougherty, and Robert S. Kerr. Parallel groundwater computations using PVM. In

Eickermann:1999:PID

Erhel:2014:DDM

Jocelyne Erhel, Martin J. Gander, Laurence Halpern, Géraldine Pichot, Taoufik Sassi, and Olof Widlund, editors. Domain Decomposition Methods in Science and Engineering XXI, volume 98 of Lecture Notes in Com-
REFERENCES

[EML00] Antonio Espinosa, Tomas Margalef, and Emilio Luque. Automatic performance analysis of master/worker PVM

ElZein:2012:GOC

El-Rewini:1995:PTE

El-Rewini:1996:PTN

Hesham El-Rewini and Bruce D. Shriver, editors. *Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences (HICSS-29): Wailea*, [ESM+94]

Ewedafe:2011:PID

Ellingson:2013:SNU

Ewing:1994:DCW

Richard E. Ewing, Robert C.
REFERENCES

Escaig:1994:PMD

Eichenberger:2012:DOT

Eigenmann:2001:OSM

Eckert:2016:HAL

Fabeiro:2016:WPP

[JFAB16] Jorge F. Fabeiro, Diego Andrade, and Basilio B.
REFERENCES

Fabeiro:2015:AGO

Fang:1998:DDL

Fang:1996:SPP

Fang:1997:MDD

Fagg:2001:FTM

Graham E. Fagg, Antonin Bukovsky, and Jack J. Dongarra. Fault tolerant MPI for the HARNESS meta-

Ferschweiler:2001:CDP

Filgueira:2012:DCD

Fagg:1996:PIP

Fischer:1997:AAP

Fagg:2000:FMF

Graham E. Fagg and Jack J. Dongarra. FT-MPI: Fault Tolerant MPI, supporting

Fagg:2002:HFTa

Fagg:2002:HFTb

Fagg:1997:HMAa

Fagg:2004:BUF

REFERENCES

[FF95] Peter Fritzson and Leif Finno, editors. *Parallel programming and applications: proceedings of the Workshop on Paral-
REFERENCES

lel Programming and Computation (ZEUS '95) and the 4th Nordic Transputer Conference (NTUG '95): Linköping, Sweden. IOS Press, Postal Drawer 10558, Burke, VA 2209-0558, USA, 1995. ISBN 90-5199-229-7 (IOS Press), 4-274-90056-8 (Ohmsha). LCCN ????

Foster:1997:MMC

Ian Foster, Jonathan Geisler, Carl Kesselman, and Steven Tuecke. Managing multi-

REFERENCES

Andre:1998:BVN

Friedley:2013:OPE

Franke:1994:MMP

Franke:1995:AAC

Franke:1995:MIS

REFERENCES

Frank:1994:EIM

Frank:1994:MEI

Fang:1999:PMD

Fineberg:1994:IMM

Fineberg:1995:IMM

Fin:1997:CPM

Fink:2000:IMC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fan:2017:SEE

Ferenc:1999:VMK

Femminella:1994:PBP

Ford:1995:NNN

Foster:1998:GEM

Freeman:1992:PNA

Faraj:2008:SPA

REFERENCES

Ferreira:1995:PAI

Franke:1995:MPEa

Fritscher:1993:PDC

Ferrari:1995:TDC

Fischer:1997:ESP

Ferrari:1998:MDC

Filgueira:2011:ACE
REFERENCES

Fuerle:1998:IPC

Fumero:2017:JTG

Folino:1998:EMC

Folino:1998:PEM

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP
Chunsheng Feng, Shi Shu, Jinchao Xu, and Chen-Song Zhang. A multi-stage preconditioner for the black

Fernandez:2000:DCE

Fujimoto:2008:DMV

Fagg:2000:AAC

Fang:2015:EVD

Fineberg:1996:PPI

REFERENCES

Gonzalez:2000:PAM]

Gates:1995:PFI]

Gonzalez-Alvarez:2017:HMO

Gupta:1994:CTE

Ghosh:1996:ELM

Gorlatch:1998:GMI

Geist:1994:PPV

Gentzsch:1995:STP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

REFERENCES

Gao:2013:GGA

Geist:1993:PTW

Galizia:2015:MCL

Ghose:2017:FOT

Grinstein:1995:VDE

Grinstein:1996:VDE

REFERENCES

L43 no.1123-1124. Two volumes.

REFERENCES

USA, 1993. ISBN 90-5199-140-1. LCCN ???

Goumopoulos:1997:PCS

Gropp:1998:MCR

Gong:2012:OCN

Garcia:2011:KRR

Goglin:2018:HTM

Grecki:1997:MPE

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Gerlach:2001:IOJ

Genaud:2009:FMP

Gillett:1997:UMC

Granat:2010:PSS

Grasso:2013:APS

Granat:2009:NPQ

Robert Granat, Bo Kågström, and Daniel Kressner. A novel parallel QR algorithm for hybrid distributed mem-

Gropp:1997:SMC

Gropp:1997:WPM

Gropp:1997:HPM

Gropp:1999:RMM

Gropp:2002:MG

Gropp:2004:FTM

Girona:2000:VDC

[GLB00] Sergi Girona, Jesús Labarta, and Rosa M. Badia. Validation of dimemas communication model for MPI

Gropp:1996:HPP

Garland:2008:PCE

Gonzalez:2000:TSN

Gregoretti:2008:MGE

[GLRS01] J. A. González, C. León,
C. Rodríguez, and F. Sande.

REFERENCES

Gong:2016:NPG

Goujon:1998:AAT

Guan:1995:SCC

Gray:1995:PCT

Goedecker:2002:OPF

Gonzalez:2001:OET

REFERENCES

224

bibbs/2017/20170324.htm;
http://link.springer-
ny.com/link/service/series/0558/papers/2017/20170324.
pdf.

Lothar Grabowsky. MPI-basierte Koppelrandkomunikation und Einfluß der Partitionierung im 3D-Fall. (German) [MPI-based coupled edge communication and influence of partitioning in 3D-Fall]. Preprint-Reihe des Chemnitzer SFB 393 97,17, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1997. 13 pp.

J. Greenfield. An overview of the PVM software system. In IEEE [IEE95d], pages 17–23. ISBN ???? LCCN ????

ing from the success of MPI.

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/bibs/2228/22280081.htm;

Gropp:2002:BLC

William Gropp. Building library components that can use any MPI implementation.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer.de/link/service/series/0558/bibs/2474/24740280.htm;

Gropp:2002:MNS

William Gropp. MPICH2: a new start for MPI implementations.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer.de/link/service/series/0558/bibs/2474/24740007.htm;

Gonzalez:1999:PPM

Gutierrez:2010:QCS

CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944
REFERENCES

[GSx] G. A. Geist and V. S. Sunderam. Network based con-
REFERENCES

current computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

Garg:2002:TOA

Gao:2008:GEI

Gerlach:1997:ECS

Martinez:2013:CCE

REFERENCES

Gropp:2007:TSM

Gennart:1996:CAG

Gidra:2015:NGC

Guerrero:2014:PCM

Hadjidoukas:2010:NOP

Han:2011:HHL

Hussain:2011:PIA

Hoefflinger:2001:PSP

Hamza:1995:PII

Haridi:1995:EPP

Seif Haridi, Khayri Ali, and Peter Magnusson, editors. EURO-PAR ’95 parallel processing: First International EURO PAR Conference, Stockholm, Sweden, August 29–31, 1995: proceedings, number 966 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany / Hei-

Hansen:1998:EMP

Hardwick:1994:PVL

Hardwick:1995:PVL

Hassanzadeh:1995:MMG

Hisley:2000:PPE

Hatazaki:1998:RRS

T. Hatazaki. Rank reordering strategy for MPI

[Hachler:1996:IA]

[Haechler:1996:IA]

[Hausner:1995:EIP]

[Huang:2006:ECS]

[Huang:2008:FPM]

Hamid:2010:CMB
Nor Asilah Wati Abdul Hamid and Paul Coddington. Comparison of MPI benchmark programs on shared memory and distributed memory machines
REFERENCES

Harvey:2011:STP

Hadjidoukas:2009:HPF

Hoefer:2012:LMO

Hoefer:2013:MMN

Hoefer:2015:RMA

Heikonen:2002:ILB

Jussi Heikonen and Kalle Eerola. Improving load bal-

Lei Huang, Deepak Eachempati, Marcus W. Hervey, and Barbara Chapman. Exploiting global optimizations for OpenMP programs in the OpenUH compiler. ACM SIGPLAN Notices, 44(4):289--290, April 2009. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

[HH95] Lin Hong and Chen Huaping. PVM and network parallel computing. Mini-Micro Systems, 16(2):53–58,
REFERENCES

February 1995. CODEN XWJXEH. ISSN 1000-1220.

REFERENCES

Haimes:1998:UPM

Hall:2014:MMC

Huang:2010:ELA
Lei Huang, Haoqiang Jin, Liqi Yi, and Barbara Chapman. Enabling locality-aware computations in OpenMP.

Hoffmann:1993:PFE

Henriksen:1994:PCF

Hoffmann:1995:CAP
REFERENCES

Atsushi Hori, Toyouhis Kameyama, Yuichi Tsujita, Mitaro Namiki, and Yutaka Ishikawa. An efficient kernel-level blocking MPI implementation. *Lecture Notes

[Hasanov:2017:HRC]

[Hu:2000:ONS]

[Haque:2017:CCL]

[Hung:2016:EBP]

[Hong:1996:RDM]

[Hawick:2010:PGC]
Hawick:2011:RLS

Huband:2001:DTB

Hilbrich:2009:MCC

Hakula:1994:FEM

Haynes:2014:MOA

REFERENCES

[Hogg:2013:FDT]

[Hollingsworth:2012:SPI]

[Hosking:2012:CHL]

[Hadjidoukas:2005:OEM]

[Hawick:2011:HSL]

[Hidalgo:1999:MMP]

[Hadjidoukas:2002:MOI]
REFERENCES

2002. CODEN ????. ISSN 1097-2803.

[HRR+11] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, Rajeev Thakur, and Jesper Larsson Träff. The scal-

Hoyos-Rivera:1997:UPB

Hempel:1997:IMN

Hartley:1993:CPS

Hesham:1994:PTS

Hertzberger:1995:HPM

Hungenahally:1995:PIQ

A. Hungenahally and A. Suresh. PVM implementation of quadtree building algorithms on SIMD hypercube system. *IEEE International Conference on Algorithms and Architectures for Par-
REFERENCES

[HS12]

[HSE+17]

[HSMW94]

Heimel:2013:HOP

Hormati:2012:SPS

Hu:2001:PCC

Huse:1999:CCD

Huse:2000:MOS

Huse:2001:LST

Hamidouche:2016:CAO

Houzeaux:2011:HMO

REFERENCES

Hoekstra:1995:CPP

Hager:2011:IHP

Huang:2002:DDD

He:2009:AVS

Hwang:1997:EMC

Huang:2013:ACM

REFERENCES

HK94 | 250

HK94 | 250

HK94 | 250

REFERENCES

IEEE, editor. *Proceedings, Supercomputing ’94: Washington, DC, November*

IEEE:1995:IIC

IEEE:1995:CPI

IEEE:1995:DPT

IEEE:1995:ISE

IEEE:1995:IPR

REFERENCES

IEEE:1996:PII

IEEE:1996:PFI

IEEE:1996:PFE

IEEE:1996:PSI

IEEE:1996:PSM

IEEE:1997:APD

REFERENCES

http://www.nsc.liu.se/~boein/ifip/kyoto/workshop-info/proceedings/

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Iskra:2000:PMD

Ierotheou:2005:GOC

Iwama:2001:PLS

Iwama:2002:PLS

Iwashita:1994:IPE

Ingle:1995:MAS

Ishizaka:2000:CGT

Ilroy:2001:IMP

Ilie:2016:AEC

REFERENCES

Satak:2012:OGA

Imamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IAC

Iskra:2000:IDE

Jatala:2017:SSG

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

Jabbarzadeh:1997:PSS

Jacoby:1996:ADA

Juhasz:1996:PIP

Z. Juhasz and D. Crookes. A PVM implementation of a portable parallel image processing library. In Bode et al. [BDLS96], pages 188–??.

Jin:2008:PEM

Jaeger:2015:FGD

Julien Jaeger, Patrick Carribault, and Marc Pérache. Fine-grain data manage-

Jenkins:2014:PMD

Jenkinson:1995:RFS

Jesshope:1993:LRR

Jesshope:1993:MCA

Jann:1995:AMP

Johnson:2012:FOL

Jin:2000:AGO

Haoqiang Jin, Michael Frunkin, and Jerry Yan. Automatic generation of OpenMP directives and its

Jackson:1997:SYE

Jin:2011:HPC

Januszewski:2010:ANS

Jo:2017:PMA

Jin:2003:AMP

Jeun:2008:OPB

Jan:2017:ITF

Jog:2013:OCT

Jam:2018:COB

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

Jung:2014:MCM

Jones:1996:LLM

Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:P

Jiang:2012:OSP

Lei Jiang, Pragneshkumar B. Patel, George Ostrouchov, and Ferdinand Jamitzky. OpenMP-style parallelism in data-centered multicore computing with R.
REFERENCES

Juric:1995:UPV

Joldes:2014:SSH

Joubert:1994:PCT

Jost:2010:EUH

Jimenez:2013:BCA

Judd:1994:PIV

REFERENCES

7872 O7 I34 1994. IEEE catalog no. 94CH3446-2.

Jin:2013:PCU

Jung:2005:DIM

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jaaskelainen:2015:PPP

Ju:1996:SPT

Jain:1996:IOP

Jin:1995:LTP

Kumar:1995:MWD

S. Kumar and H. Adeli. Minimum weight design of large structures on a network of workstations. *Microcomputers in Civil Engineering*, ?????
REFERENCES

Kepner:2004:M

Kumar:2013:GAI

Krawezik:2002:SOV

Krone:1996:ICF

Kapinos:2010:PPP

Khan:2017:RCS
Kanal:2012:PAI

Katamneni:1993:PPE

Karlsson:1998:CCC

Kaiser:2001:OCC

Kruzel:2013:VOI

Kabir:2002:DIS

Klemm:2009:RTM

Kulkarni:2016:HAP

Knies:1994:SLL

Kitowski:1997:CPM

Kannan:2016:HPP

Ke:2004:RCM

Klemm:2007:JIO

Karamcheti:1994:SOM

Krawezik:2006:PCM

Kacsuk:1997:GDD

Konuru:1994:ULP

Konuru:1994:UPP

Kotselidis:2017:HMR

Kanal:2012:MMC

Krotkiewski:2013:ESC

Klingebiel:1995:CPO

Klingebiel:1995:COD

Kakimoto:2012:PCG

Klemm:2012:EOV

Komatitsch:2010:HOF

Kepner:2005:PPM

Kale:1996:PMD

Kappiah:2005:JTD

Kramer-Fuhrmann:1994:TGP

Kowalik:1993:SPC

 REFERENCES

Kohl:1996:PTF

Kainz:2009:RCM

Keller:2003:TEE

Keller:2010:RAM

Kafura:1996:CCC

Kwon:2010:SPC

Seongnam Kwon and Soon-hoi Ha. Serialized parallel code generation framework

[276]

Karrenberg:2012:IPO

[H12]

KHB+99

[KH15]

[KHS01]

M. Kemelmakher and O. Kremien. Scalable and adaptive resource sharing in PVM. *Lecture Notes in Computer Sci-
REFERENCES

REFERENCES

Kranzlmuller:2003:RAP

Kee:2003:POP

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO
Dimitris Konstantinou, Nectarios Koziris, and George Papakonstantinou. TOPPER: a tool for optimizing the performance of par-

Kobler:2001:DOP

Karrels:1994:PAM

Kofakis:1995:DPI

Liao:2011:DEM

Liao:2006:SDI

Liao:2007:CCS

Wei keng Liao, Kenin Coloma, Alok Choudhary, and Lee Ward. Cooperative client-side file caching

Klawonn:2015:HMO

Kutyniok:2016:SFD

Kim:2015:OBU

Khanna:2010:NMG

Kormicki:1996:PLS

Kormicki:1997:PLS

[KMC97] Maciek Kormicki, Ausif Mahmood, and Bradley S.

cusses GPU floating-point considerations.

Kalns:1995:DPD

Katouda:2017:MOH

Kasprzyk:2002:APV

Komura:2014:CPG

Kambites:2001:OLI

Kasahara:2001:ACG

Hironori Kasahara, Mo-

Komura:2015:OPS

Komiges:2000:ISP

Kauranne:1995:OHM

Kom:1995:OHM

Kauranne:1997:OHM

REFERENCES

Kermarrec:1996:PDS

Kuckuk:2013:IPD

Klockner:2012:PPS

Kolesnichenko:2016:CBG

Kuhn:2000:OVT

Kamal:2005:SVT

[KPW05] Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????.

Klimach:2009:PCH

Parallel CFD 2007 was held in Antalya, Turkey, from May 21 to 24, 2007.

Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunaseth:2013:ASD

Kalen tev:2011:CCL

Kranzlmuller:1999:MOM

Kotsis:1996:EEP

REFERENCES

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

Kim:2014:VVF

Kim:2012:OUP

Kusano:2000:PEO
REFERENCES

Kurzyniec:2007:UCA

Kranzlmüller:2001:IRM

Keppens:2002:OPM

Koval:2010:USB

Karonis:2003:MGG

Nicholas T. Karonis, Brian Toonen, and Ian Foster. MPICH-G2: a Grid-enabled implementation of the Meso-

Komatitsch:2003:BDF

Kuhn:1998:FFW

Kumar:1994:PPI

Kranzlmuller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

REFERENCES

Kamal:2014:IFG

Kamburugamuve:2018:AML

Kamal:2010:EIN

Kamburugamuve:2003:CMC

Kamburugamuve:2018:AML

Kamal:2014:IFG

Kamburugamuve:2018:AML

Kamal:2010:EIN

Karwande:2005:MPC

Krantz:1996:RFP

Lopez:2002:ESM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic). URL http://

[102x681]csdl.computer.org/csdl/

abs.html.

[177x646]Langdon:2009:FHQ

W. B. Langdon. A fast high quality pseudo random number generator

LCCN ???? URL http://

www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/gp-code/
random-numbers/cuda_park-
miller.tar.gz.

[Loos:1996:MPS]

LCCN QA76.642 .M67 1996.

[LB98]

CODEN LNCS1D9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Lashgar:2016:ESM]

3639 (print), 2376-3647 (electronic). URL http://

dl.acm.org/citation.

cfm?id=2798724.

[Loncar:2016:CPS]

www.sciencedirect.com/

science/article/pii/S0010465515004361.

[Lawton:1996:BHP]

J. V. Lawton, J. J. Brosnan, M. P. Doyle, S. D. O. Rior
dain, and T. G. Reddin.

Ling:2012:HPP

Lewis:1993:PCP

Luecke:1997:HPF

Li:2007:DIV

Lauria:1997:MFH

Luecke:2003:MCT

Liddell:1996:HPC

Lashuk:2012:MPA

Losada:2017:RMA

Lonsdale:1994:CRP

Lathrop:2011:SPI

REFERENCES

Lonsdale:1994:CMH

Liu:2003:PCM

Lu:1997:QPD

Liu:2013:DLO

Lee:2006:PT

Lee:2012:SMO

Levesque:1993:SAA

Lim:2011:ATC

REFERENCES

Leon:1992:FP

Leon:1993:FPA

Leon:1993:FPP

Loyot:1993:VVM

Lee:1999:PEJ

Liu:2016:MBM

Li:2010:SVC
Guodong Li, Ganesh Gopalakrishnan, Robert M. Kirby, and Dan Quinlan. A symbolic verifier for CUDA programs. ACM SIGPLAN Notices, 45(5):357–358, May 2010. CODEN SINODQ. ISSN 0362-1340 (print),
REFERENCES

[102x681] 1523-2867 (print), 1558-1160 (electronic).

[LH95] Leung:1995:EPE

REFERENCES

Li:1996:PSI

Li:1996:SIS

Lu:1998:ONW

Li:2010:RTC

Li:1996:PSI

Li:1996:SIS

Li:1997:PIO

[Liu95] Xiaomao Liu. Workstations cluster for distributed supercomputing. Mini-Micro Sys-
Livny:2000:MYW

Lastovetsky:2010:RAP

Lastovetsky:2008:RAP

LaSalle:2014:MBD

Luecke:2003:CPM

REFERENCES

ISSN 1532-0626 (print), 1532-0634 (electronic).

Liang:1996:AEO

Li:2003:PNH

Luecke:2001:SPO

Luecke:2004:PSM

Ludwig:1995:PPF

Luecke:2001:SPO

Lin:2016:VDF

[LLY93] Q. Li, J.-C. Liu, and T. G. Yip. Solving large linear equations using PVM sys-
REFERENCES

[Losada:2014:EAL] N. Losada, M. J. Martín, G. Rodríguez, and P. González. Extending an application-level checkpointing tool to provide fault tolerance sup-

level checkpointing tool to provide fault tolerance sup-

Lee:2015:OPE

Lu:1996:PIF

Labarta:2001:NOD

Lima:2012:PEO

Loo:2000:MFP

Louca:2000:MFP

Lou:2000:MFP

Labarta:2001:NOD

Lima:2012:PEO

Lee:2015:OPE

Lu:1996:PIF

REFERENCES

Lou:1995:PIN

Landman:2000:PLR

Li:2011:FSM

Lotfi:2015:AAC

Lee:2014:BCA
Changmin Lee, Won Woo Ro, and Jean-Luc Gaudiot. Boosting CUDA ap-

REFERENCES

Liu:2008:AMD

Lazzarino:2002:PBP

Langr:2014:APP

Lazar:1994:SRE

Laohawee:2000:PDT

Lee:2002:IPC

[Nung Kion Lee, David Taniar, J. Wenny Rahayu, and Mafruz Zaman Ashrafi]

Ludwig:1997:OUI

Liu:2004:HPR

Li:1993:MSU

Loncar:2016:OOM

Lu:2013:WGA

Li:1997:EHC

Computer Society Press order number RS00160.

Malfetti:2001:AOW

Mans:1998:PDP

Manis:2001:PNP

Miguel-Alonso:2009:INS

[Mat94] T. G. Mattson. Programming environments for parallel computing: a comparison of CPS, linda, P4, PVM,
REFERENCES

Mourao:2000:SSC

Marongiu:2012:OCE

Muller:2012:SOA

Ma:2013:KA

Min:2003:OOP

REFERENCES

getfile/4773/33/5/fulltext.pdf.

McKenzie:1994:CIM

Malits:2012:ELG

Mehl:2015:RTC

Miles:1994:PTO

Medeiros:1998:IPM

Morrison:1999:FPP

Maier:2017:OLD

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

McKinney:1994:PGU

Moore:2001:RPA
Moreira:2017:FCR

McRae:1992:VC

Mierendorff:2000:WMB

Muller:2009:EOA

Matthias S. Müller, Bronis R. de Supinski, and Barbara M. Chapman, editors. *Evolving OpenMP in an Age of Extreme Parallelism*:
REFERENCES

[MFTB95] I. Martin, J. C. Fabero, F. Tirado, and A. Bautista. Distributed parallel computers versus PVM on a workstation cluster in the simulation of time dependent partial differential equations. In

Montella:2017:VCB

Mazzariol:1997:PCS

Markidis:2015:OAN

Matthey:2001:EMO

Hwu:2012:GCG

Miller:1994:PPP
B. P. Miller, J. K. Hollingsworth, and M. D. Callaghan. The Paradyn parallel performance tools and PVM. In
REFERENCES

Miller:1994:PPT

Munshi:2016:OCS

Michielse:1993:PMU

Muddukrishna:2015:LAT

Mittal:2012:CAS

Muddukrishna:2016:GGO

Mokbel:2011:ASR

Mitra:2014:AAP

Marjanovic:2010:ECC

Marowka:2004:OOA

Malakhov:2018:CMT

Marendic:2016:NMR

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2001:TSH

Michailidis:2002:PSL

Michailidis:2003:PEL

REFERENCES

Morimoto:1999:PEM

Mohamed:2013:MMM

Manca:2016:CQI

MacFarlane:1999:PPI

Morris:2007:SNO

Mohr:2002:DPP

REFERENCES

[1007/978-3-642-31927-3_15/]

Meister:2017:PME

Mazzo:2000:TPP

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

Mierendorf:1999:PMB

Migliardi:1999:PEH

REFERENCES

[MSF00] Mauro Migliardi, Vaidy Sunderam, and Arrigo Frisiani.

McCandless:1996:OOM

Massetto:2012:NSB

Martin:2015:EPM

Molnar:2010:APM

Macias:2001:PPA

REFERENCES

Matrone:1993:LPC

Mysliwiec:1997:CAM

Martins:1998:JIW

Martorell:2005:BGP

Mossaiby:2017:OIH

Miei:1996:IER
REFERENCES

July 1996. CODEN JS-GRD5. ISSN 0387-5806.

Mallon:2016:MUB

Marin:1994:GAL

Momeni:2015:EEO

Muller:2001:SSO

[Muller:2002:SMB]

[Muller:2003:OCB]

[Malakar:2017:DMO]

[Manis:1996:EPT]

[Muller:2010:SMA]

[Mehra:1995:AIM]
P. Mehra, B. Van Voorst, and J. Yan. Automated instrumentation, monitoring and visualization of PVM...

McKinney:1993:MMI

Mamontov:1998:AES

Manegold:1997:QBM

Morton:1995:LLP

Maleki:2016:HOT

Maly:1993:DCP

Nikolopoulos:2001:SID

Dimitrios S. Nikolopoulos and Eduard Ayguadé. A study of implicit data distribution methods for OpenMP using the SPEC benchmarks. *Lecture Notes in
REFERENCES

Nikolopoulos:2001:EMA

Nagle:2005:BRM

Nicolescu:1999:PWA

Nakajima:2003:PIS

Nakajima:2005:PIS

Nakajima:2005:TLH
[Nak05b] Kengo Nakajima. Three-
REFERENCES

[NB96] C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2-?? ISBN ???? LCCN ????.

Nguyen:2017:ATM

Nobari:2012:SPM

Neophytou:1998:NDJ

Neophytou:2001:NDW

Nelson:1993:PPP

Neugebauer:2017:PAR

Nesterov:2010:SPT

[Nes10] Oleksandr Nesterov. A sim-

Nicolescu:2001:DTP

Norden:2007:DDM

Nomura:2014:PAM

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Nanayakkara:1993:PIR

CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).
Nupairoj:1995:PES

Nishitani:2000:IEO

Nakajima:2002:PISa

Nakajima:2002:PISb

Noble:2008:GMY

REFERENCES

Notz:2012:GBS

Nagaraj:1991:MHL

Naumenko:2016:ACT

Nascimento:2007:DDS

Nadal-Serrano:2016:PSC
Jose M. Nadal-Serrano and Marisa Lopez-Vallejo. A performance study of CUDA UVM versus manual optimizations in a real-world setup: Application to a Monte Carlo wave-particle event-based interac-
REFERENCES

Nukada:2012:SMG

Neuberger:2012:MIS

Nandivada:2013:TFO

Nogueira:2016:BBW

Norcen:2005:HPJ

Nitsche:1998:FMP
REFERENCES

Ng:2012:STT

[NYNT12]

Nguyen:1994:DCE

[Obe96]

[OCY+15]

[OD01]

[OA17]

[OLG01] Emil Ong, Ewing Lusk, and William Gropp. Scalable Unix commands for parallel processors: a high-

Oger:2016:DMM

Olszewski:1995:TCC

Olszewski:1995:TCC

Ogawa:1996:OOM

Olszewski:1995:TCC

Ozgun:2009:PCB

Otto:1993:PAC

Otto:1994:PVM

Otto:1992:MAP

Ouenes:1995:PRA

Pacheco:1997:PPM

Pereira:2017:SBC

Panda:1995:GRW

Panda:1995:IDE

D. K. Panda. Issues in designing efficient and practical algorithms for collective communication on wormhole-routed systems. In Agrawal [Agr95a], pages 8–

Panda:2014:GAM

Parsons:1993:EDC

Pal:2014:PMH

Patterson:1993:PPE

Puzniakowski:2012:TOI

Pringle:2001:TPF

REFERENCES

[PCY14] Yi Peng, Li Chen, and Jun-

Poggi:1998:UPD

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1996:RPP

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

Petcu:1997:ISM

Petcu:2000:PDAb

Petcu:2001:WMM

Petcu:2000:PDAa

Pharr:2005:GGP

[PF05] Matt Pharr and Randima Fernando, editors. *GPU gems 2: programming techniques for high-performance graphics and general-purpose computation*, volume 2 of *GPU gems*. Addison-Wes-

Piernas:1997:APM

Pjesivac-Grbovic:2005:PAM

Pjesivac-Grbovic:2007:MCA

Prabhakar:2002:PCB

Pessoa:2018:GAB

Poirier:2018:DAB

Pervez:2010:FMA

Papakonstantinou:2013:ECC

Pan:2010:CPS

Pennycook:2011:PAH

Pennycook:2013:IPP

S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A.

Pierce:1994:NMP

Papadopoulos:1998:DVS

Park:2005:SOA

Papadopoulos:2001:NRC

Paul:2006:TLF

Prabhakar:2016:GCH

REFERENCES

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

Pruyne:1996:ICP

Plachetka:2002:QTS

Park:2004:DID

REFERENCES

Pokorny:1996:CMP

Parrilia:1999:UPD

Pai:2016:CTO

Poplawski:1989:MPP

Park:2001:CSL

Pagourtzis:2001:PCT

REFERENCES

REFERENCES

Pedroso:2001:WLE

Protopopov:2001:MMP

Pandey:2007:SCM

Pehrson:1994:IPP

Peters:2011:FPC

Pears:2001:DLB

Pai:2013:IGC

Prost:2001:MIG

Prost:2001:THP

Peraza:2016:PGQ
Joshua Peraza, Ananta Tiwari, Michael Laurenzano, Laura Carrington, and Allan Snavely. PMaC’s green queue: a framework for selecting energy optimal

Pierro:2018:SFP

Phan-Thien:1994:CDL

Prylli:1999:DHP

Puskas:1995:LBW

Peinado:1997:HPC

Park:2001:PPE

Qiu:2012:PWM

Qawasmehe:2017:PPR

Quoy:2000:PNN

Quaddouri:1995:MFS

Quaddouri:1996:CPC

Qu:1995:FAS

Quinn:2003:PPC

REFERENCES

Russell:1992:CMW

Rashti:2009:SAM

Rabenseifner:1998:MG1

Rabenseifner:1999:APM

Ragg:1996:PEN

REFERENCES

REFERENCES

Resch:1997:CMP

Resch:1997:PM

Resch:1997:PMC

Rodriguez:2015:OPI

Russo:2017:MPG

Reale:1994:PCU

Reinhard:1997:MHP

REFERENCES

Reimann:1996:CBT

Ross:1995:DCM

Royuela:2012:ASO

Radhakrishna:1999:MBP

Reeves:1996:PIC

Reussner:2001:SSK

Ralf H. Reussner. SKaMPI:

Reussner:2003:USD

Roy:2000:MGQ

Reynders:1995:OOO

Russ:1996:HAT

Rasch:2018:MDH

Rough:1997:PRD

REFERENCES

Rodrigues:2013:MAA

Rico-Gallego:2015:ILM

Rico-Gallego:2016:EIL

Rizzardi:2017:ATS

Reussner:2001:APP

Roda:1996:PEI

Rizzardi:2017:ATS

REFERENCES

Rungsawang:2001:LCP

[RLL01]

Rubio-Largo:2012:UMO

[RLVRGP12]

Rietmann:2012:FAS

[RMPN12]

Rodrigues:2013:POM

[RNPM13]

Roe:1999:PMI

Rohrl:2000:PPS

Rolfe:1994:PAP

Rolfe:2008:PFO

Rolfe:2008:SMA

Rosen:2013:PVA

Ramon:1995:PKV

Rodriguez:2008:FTS

Rabaea:2000:EPM

Rageb:2001:CEM

Rauber:2002:LSH

Roda:1997:PPI

Roig:2001:EMM

Robinson:1996:TMI

Russ:1999:UHR
Samuel H. Russ, Jonathan Robinson, Matt Gleeson,
REFERENCES

REFERENCES

0302-9743 (print), 1611-3349 (electronic).

Reussner:2002:SCB

Rozman:2006:CPL

Roberti:2005:PIL

Reussner:2000:BMD

Rungsawang:1999:PDT

Ryczew:2007:IBS

REFERENCES

[SBF+04] Martin Schulz, Greg Bronlevetsky, Rohit Fernand-

REFERENCES

[Schetvtschenko01] I. V. Schetvtschenko. A parallel ADI and steepest descent methods. Lec-
REFERENCES

REFERENCES

[SDN99] Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??

REFERENCES

Segovia:2010:PPN

Seifert:1999:ESI

Sept:1993:DIP

Serot:1997:EPF

Sevenich:1998:PPU

Scott:1998:PWN

Schoinas:1994:FEGA
REFERENCES

Solsona:2000:MCM

Stone:2010:OPP

Schmidt:1994:IAP

Mitsuhisa Sato, Hiroshi Harada, Atsushi Hasegawa, and Yutaka Ishikawa. Cluster-enabled OpenMP: An OpenMP

Shing:1994:UPC

Samadi:2014:LGU

Sato:2010:BLL

Samadi:2012:AIA

Shah:2000:FCS

Sanjiv Shah, Grant Haab, Paul Petersen, and Joe Throop. Flexible control structures for parallelism in OpenMP. Concurrency: practice and ex-
REFERENCES

REFERENCES

Sincovec:1993:SCP

Silla:2017:BRG

Sharma:2017:PDR

Sistare:2002:UHP

Szo:2017:PET

Szo:2017:PET
REFERENCES

Samadi:2014:PPB

Shen:1992:VTD

Smith:2000:DPM

Sanders:2010:CEI

Steinberger:2014:WTB

Skjellum:2004:RTM
Subramaniam:1996:CLU

Skjellum:1993:SLH

Steinberger:2012:SDS

Spiechowicz:2015:GAM

Satoh:2001:COT

Sall:1994:CIS

J. Sall and A. Lehman, editors. *Computational intensive statistical methods: 26th
REFERENCES

Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Scott Mahlke, and Amir Hormati. Scaling performance via self-tuning approximation for graphics engines. ACM Transactions on
REFERENCES

Su:2012:CPB

Sloan:2005:HPL

Squyres:1996:CBP

Shires:2002:EHM

Shires:2003:OPF

Simos:2007:CMS

Theodore E. Simos and George Maroulis, editors. Computation in Modern Science and Engineering: Proceedings of the [Fifth]
REFERENCES

Santos:2012:ICC

Siegel:2008:CSE

Shterenlikht:2015:FC

Smith:1993:MBA

Smith:1993:DSI

Schardl:2017:TEF

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Sandes:2016:MMA

Sochacki:1993:DCW

Silva:2000:HPC

Su:2006:APP

Sitsky:1996:IMU

Sunderam:2001:CAP

Snir:2018:FMT

Snir:1996:MCR

Snir:1998:MCR

Suciu:2010:PIN

Suciu:2011:EAF

SousaPinto:2001:PEI

Sidonio:1999:PBI

Stpiczynski:2011:SKB

Satofuka:1995:PCF

Shaw:1995:AD

Skjellum:1996:TTM

REFERENCES

Subramoni:2012:DSI

Schmidl:2012:PAT

REFERENCES

CODEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

G. Stellner, M. Schumann, and M. Girnghuber. Comparing message-passing li-
REFERENCES

Sosa:2000:IQC

Sala:2008:PHP

Schafers:1995:TGP

Squyres:1997:DEM

Stone:1994:PSO

Shelton:1994:FPS

R. Stephens. Parallel benchmarks on the Transtech Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???? LCCN ????

Arne Schmitz, Markus Tavenrath, and Leif Kobbelt.

Sunderam:1997:STA

Stockinger:1998:VPC

Stpiczynski:2002:PPO

Strok:1994:NJ1

Strietzel:1996:PTS

Strietzel:1997:PTS
M. Strietzel. Parallel turbulence simulation: Resolving the inertial subrange of Kolmogorov’s spectra. Lecture Notes in Computer Sci-
REFERENCES

V. S. Sunderam. PVM: a framework for parallel distributed computing. Technical Report ORNL/TM-11375, Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA, February 1990. See also [Sun90b].
Sunderam:1990:PFPb

Sunderam:1992:CCP

Sunderam:1993:PCC

[V. Sunderam. The PVM concurrent computing system. In Anonymous [Ano93g], pages 20–84. ISBN ???. LCCN ???.]

Sunderam:1994:GPP

Sunderam:1994:MSH

[V. S. Sunderam. Methodologies and systems for heterogeneous concurrent computing. In Joubert et al. [JPTE94], pages 29–45.]

Sunderam:1995:RIH

Sunderam:1996:PSS

Suresh:1995:IOP

Suresh:1995:PIQ

REFERENCES
Two volumes. IEEE catalog no. 95TH0682-5.

[Sitsky:1995:IPM]

[Shan:2012:PEH]

[Shee:1994:DMA]

[Shee:1994:DMA]

[Stathopoulos:1995:DLB]
REFERENCES

Takeda:2001:AME

Traf:2014:SPE

Tao:2012:UGA

Touha:1996:DPC

Traf:2012:RAM

URL http://
REFERENCES

Tourino:1998:PBL

Tourino:1999:MMC

Thiruvathukal:2000:JNW

Tromeur-Dervout:2011:PCF

Totoni:2013:EFE

Ehsan Totoni, Mert Dikmen, and María Jesús Garzarán. Easy, fast, and energy-efficient object detection on heterogeneous on-chip architectures. ACM Transactions on Architecture and Code Optimization, 10(4):45:1–45:??, December 2013. CODEN ???? ISSN
REFERENCES

1544-3566 (print), 1544-3973 (electronic).

[TGBS05] Xinmin Tian, Milind Girkar, Aart Bik, and Hideki Saito. Practical compiler tech-

[TGL02]

[TGEM09]

[Thakur:2002:ONA]

[TGT05]

[TGEM09]

[TGT10]
REFERENCES

Thakur:1998:CUM

Tian:2005:CEN

Trettz:1994:DPE

Thomsen:1994:RTS

Throop:1999:SOS

Tran:2000:PPM

Tallen:2009:EPM
Nathan R. Tallent and John M. Mellor-Crummey.
Effective performance measurement and analysis of multithreaded applications.
CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Tampouratzis:2016:AIH
Nikolaos Tampouratzis, Pavlos M. Mattheakis, and Ioannis Papaefstathiou.
Accelerating intercommunication in highly parallel systems.
CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

Trobec:2001:IEM
R. Trobec, M.Šterk, M. Praprotnik, and D. Janežič.
Implementation and evaluation of MPI-based parallel MD program.
CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic).

Theodoropoulos:1996:ESP
Extending synchronization PVM mechanisms. In Bode et al. [BDLS96], pages 315–??
ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-3349 (electronic).
LCCN QA76.58.E975 1996.

Taylor:2017:A00
Adaptive optimization for OpenCL programs on embedded heterogeneous systems.
CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Takafuji:2017:CCC
Daisuke Takafuji, Koji Nakano, Yasuaki Ito, and Jacir Bordim.
C2CU: a CUDA-C program generator for bulk execution of a sequential algorithm.
*Con-
currency and Computation: Practice and Experience, 29 (17), September 10, 2017. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

[TQDL01] Fernando Tinetti, Antonio Quijano, Armando De Giusti, and Emilio Luque.

[TRG05] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication operations...

link/service/series/0558/1 bibs/1908/19080137.htm;

Tsunekawa:1995:EIE

Tsujita:2007:RMP

Tsutsui:2012:AMG

1007/978-3-642-32964-7_18/.

Tang:1999:CRT

Tang:2000:PTR

Trelles-Salazar:1994:MSS
O. Trelles-Salazar, E. L. Zapata, and J.-M. Carazo. Mapping strategies for sequential sequence comparison algorithms on LAN-

Two volumes.

Theodoropoulos:1997:GSP

Tanaka:2000:PEO

Tellez-Velazquez:2018:CSI

Twerda:1996:PIT

Tourancheau:2001:SMN

Thorson:2012:SUF

Greg Thorson and Michael Woodacre. SGI UV2:
REFERENCES

[UH96] A. Uhl and J. Hammerle. Parallel image compression on a workstation cluster using PVM. In Bode et al. [BDLS96], pages 301–?? ISBN 3-540-61779-5. ISSN
REFERENCES

REFERENCES

USENIX:1994:PFU

USENIX:1995:PUT

USENIX:2000:P

Uehara:2002:MBP

Uehara:2002:MBP

vanderPas:1993:PIG

VanKatwijk:1995:AA

REFERENCES

Vetter:2000:DST

Vetter:2002:DSP

Vadhiyar:2002:PMS

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

vonHanxleden:1994:VDF

Viswanathan:1995:PCM

[Vis95] Kishore Viswanathan. A parallel client-server model for distributed computing. M.s. thesis, Department of Computer Science, Mississippi State University,

REFERENCES

VidalMacia:2000:IPM

Vargas-Perez:2017:HMO

Vrenios:2004:PPC

Varin:2000:PAM

VanVoorst:2000:CMI

Vaughan:1994:MPM

Vaughan:1995:MPM

Vaidy:2013:SDO

Vlassov:1997:SSM

Vandoni:1995:CSC

Vo:2009:FVP

Anh Vo, Sarvani Vakkalanka, Michael DeLisi, Ganesh Gopalakrishnan, Robert M. Kirby, and Rajeev Thakur.

Verkerk:1992:PIC

Vetter:2002:EPE

Verschelde:2015:PHC

Wong:1999:BMM

Walker:1994:DSM

Walker:1994:EDS

REFERENCES

0167-8191 (print), 1872-7336 (electronic). See [Wal94a].

Alan J. Wallcraft. A comparison of Co-Array Fortran and OpenMP Fortran for SPMD programming. The
REFERENCES

[Wickerson:2015:RSP] John Wickerson, Mark Batty, Bradford M. Beckmann, and Alastair F. Donaldson. Remote-scope pro-

Wolf:1997:CMP

Wickerson:2017:ACM

Walters:2009:RBF

Wang:2015:AST

Wang:2007:EAP

Wang:2012:OVT

Wark:1994:PIR

Wagner:1996:PMM

Wiese:2005:IPN

White:1994:VVC

White:2004:CMM

Wilkinson:1993:IFT

Wilhelms:1994:DAL

Wismueller:1996:SBV

REFERENCES

REFERENCES

0302-9743 (print), 1611-3349 (electronic).

Winstanley:1997:PDP

Wang:2009:MPM

Wolbers:1992:SPP

Worley:1996:MPE

Weng:2007:OIS

Wagner:1994:CFD

Wang:1995:PPG

Worsch:2002:BCM

Wang:2016:LLA

West:1995:AVV

Wu:2011:PCH

Wu:2012:PCH

Wisniewski:1999:SME

Wang:2014:IPD

Worringen:2003:FPN

Waidyasooriya:2017:OBF

Wu:1999:MCC

Wong:2011:EMS

REFERENCES

[XLW+09] Ruini Xue, Xuezhe Liu, Ming Wu, Zhenyu Guo,
REFERENCES

Xiong:1996:BID

Xu:2013:PMO

Yel:1993:PTS

Yan:1994:PTA

IEEE catalog no. 94TH0607-2.

Yang:2014:PMI

Yang:2014:HPD

Yu:2013:AGA

Yo:2014:WBP

Yamazaki:2018:SIL

Yang:2009:DBM

Yang:2016:HTM

Yilmaz:2011:RMS
Erdal Yilmaz, Eray Molla, Cansin Yildiz, and Veysi Isler. Realistic model-
REFERENCES

You:1995:EIM

Young:1993:PEN

Yuan:2012:PCS

Young-S:2017:OGI
Luis E. Young-S., Paulsamy Muruganandam, Sadhan K.

You:1995:EIM

[YPZC95]

[YPA94]

[YPAE09]

REFERENCES

Yu:2005:HPB

Yu:2017:PFG

Yang:2008:DPL

Yan:2014:OMB

Xin Yan, Xiaohua Shi, Lina Wang, and Haiyan Yang. An OpenCL micro-benchmark suite for GPUs and CPUs.
Yoshinaga:2012:DBM

Yam-Uicab:2017:FHT

Yam-Uicab:2017:FHT

Yang:2011:PBP

Younge:2015:SHP

Yonezawa:1995:IED

REFERENCES

REFERENCES

IEEE Computer Society Order Number E4108. BMS Part Number: CFP10355-CDR.

REFERENCES

[ZHC94] K. Zielinski, M. Gajacki, and G. Czajkowski. Parallel programming systems for LAN distributed computing. In IEEE [IEE94b],
Zhang:2018:IRP

Zounmevo:2014:ESC

Zaki:1999:TSP

Zhou:2012:DFD

REFERENCES

Zhao:2012:ASO

Zarrabi:2015:GSA

Zoltani:2001:EPO

Zouaoui:2017:CNG

Zareski:1995:EPG

Zheng:2005:SBP

Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad,

Zhang:2013:MPI

Zhu:2017:OAP

