A Bibliography of Publications about \textit{PVM (Parallel Virtual Machine)} and \textit{MPI (Message Passing Interface)}

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

29 January 2019
Version 3.185

\textbf{Title word cross-reference}

+ [BDV03, Cha02, HDB+13, Lee12]. 0
[ICC02]. 1 [ICC02, LRQ01, VDL+15].
19.95 [Ano95b]. 2
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19]. 24.95
[Ano95c]. 27.50 [Ano96a]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12]. 35
[An00a, An00b]. 35.00
[KA13]. 80 [An00a, An00b]. 3 [PBC+01].
A [ARYT17]. α [JMdvG+17]. $Ax = b$

[BG95]. D [UZC+12], H^2/H^∞ [GWC95]. k
[She95, TK16]. M^3 [JSH+05]. PVM$^+$
[Wil94]. N
[IHM05, Per99, Rol08b, SP99, SRK+12].
$SU(3)$ [BW12]. τ [RGDM15, RGDM16].
XY [KO14].

-\textbf{body} [IHM05, Per99, SP99, SRK+12]. -D
[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. -\textbf{Dimensional} [LRQ01].
-\textbf{Lop} [RGDM15, RGDM16]. -\textbf{Means}
[TK16]. -\textbf{Queens} [Rol08b]. -\textbf{set} [She95].
-\textbf{stable} [JMdvG+17].

. [Wil94].

/\textbf{Fortran} [TBG+02]. /\textbf{many} [KSG13].
/OpenMP [VDL+15].

Across [NE98, AL96, CZ95b]. \textit{ACSCI} [Van95]. \textbf{Active} [CSAGR98, Pla02, SKH96]. \textbf{Activities} [MS97, CMV'+94]. \textit{activity} [Vet02]. \textbf{Ad} [IBC'+10, ITT02]. \textbf{Ad-Hoc} [IBC'+10]. \textbf{Ada} [Ton96, KP96, Ton96]. \textbf{Adam} [Ano95b]. \textbf{Adaptable} [SPH'+18, BCM'+16]. \textbf{Adaptation} [WST95]. \textbf{Adapted} [Uhl95a]. \textbf{Adapting} [VFD02]. \textbf{Adaptive} [Ano94b, BCMR00, BKdSH01, Bir94, CKO'+94, FSC'+11, HWX'+13, KK98, KT02, LFL11, MKC'+12, MBES94, MRB17, MAGR01, OKW95, Ran05, RA90, SHM'+12, SZG00, SS09, STY99, Sta95a, TMW17, ZSG12, BDP'+10, CLSP07, DLR94, EZBA16, EASS95, IDS16, LCL'+12, SLGZ99, TCBV10, Was95a, Wi94, FSC'+11]. \textbf{Adaptive-CoMPI} [FSC'+11]. \textbf{Adas} [HNC'+18]. \textbf{Adding} [CB00, GRV01, PSM'+14]. \textbf{Address} [SS01, DO96]. \textbf{addresses} [CGL'+93]. \textbf{ADDT} [SR96]. \textbf{ADI} [Sch01]. \textbf{adjacent} [Kan12]. \textbf{adjust [RMNN+12]. \textbf{Adjusting} [GSNL02]. \textbf{ADOL} [BK08]. \textbf{ADOL-C} [BK08]. \textbf{adoption} [CMV'+94]. \textbf{Adsmith} [LKL96]. \textbf{Advanced} [Ano98, Ano00a, D'95, Gei96, Gei97, GLT99, GLT00b, GLT00a, GLT12, KG93, SSAS12, TG94, Ben95]. \textbf{Advances} [Bha93, BBH+08, CHD07, CDND11, KGRD10, KKD04, LKD08, LK10, MTDW06, RWD09, TBD12, AD98, BC14, BDW97, CD01, DDK05, DLM99, DKP00, DLO03, HPS'+12, Kra02, HPS'+13, IEE97a]. \textbf{Advection} [AKK'+94, CT94a, TC94, CT94b]. \textbf{Advection-Chemistry} [AKK'+94]. \textbf{Aerospace} [MAB05]. \textbf{Affine} [DINM+12]. \textbf{Affinity} [ETWaM12, AGG'+95, NAAL01]. \textbf{Affordable} [Ro94]. \textbf{against} [GH12]. \textbf{Age} [MDS09, Ano94f, GLJT11, HK95]. \textbf{AGEB} [SAS01]. \textbf{Agent} [Mat01b, MCB05, ZWZ'+95]. \textbf{agent-based} [MCA05]. \textbf{agents} [KBA02]. \textbf{Aging} [LRB15]. \textbf{Aging-Aware} [LRB15].
AIMS [Yan94]. Air [AKK+94, BZ97, MPD04, MSML10, BTC+17, SH94, Syd94]. airspace [TCP15]. Aix [GA96, Ano01a]. Aix-les-Bains [GA96]. Al [Ano95b]. Alamos [Old02]. Albuquerque [IEE91, IEE95d]. ALDY [GS96]. ALE [HAA+11]. Algebra [BDT08, CDD+13, Coo95b, IS16, MGMH97, Neu94, van97, BKvH+14, Cal94, Coo95a, PMZM16, dCH93]. Algebraic [CGPR98, Lev95]. Algorithm [ACMR14, BST+13, BP99, BT01b, DYN+06, FJBB+00, HA10, HD02b, ITT02, MW98, PKD95, PB12, RMDB99, SASO1, Sch96a, SWH15, Sta95b, TK16, WHDB05, ART17, AAAA16, ARL+94, AD95, BB95, BAV08, BY12, BCM+16, CUC95, CT13, CSW99, GM94, GCN+13, GKL+09, GP95, HWS09, IM95, JR13, KDS01, KY10, KWEF18, Kan12, KBP16, KN17, KO14, Kom15, KRC17, LYZ13, MM92, MLVS16, MK00, NB96, NA99, OKW95, OMK09, PGBF+07, PSLT99, Ram07, RJC95, RAGJ95, Sch96b, SOA11, Sur95a, TNB17, Was95a, YULMTS+17, ZSK15, ZWL+17, dH94, van93, HWS90, LTDD14, Riz17, SMSW06]. Algorithm-based [PKD95]. Algorithm-Dependant [BP99]. algorithmic [RJDH14]. Algorithms [ACM95b, ATC94, ADRCT98, ASA97, CCSM97, DADL81, DAK89, DK06, FB94, GAMR00, GK10, HO14, HHK94, IEE96d, KK02a, LHM96, L96, LAD16, MTSS94, MGMH97, MBS15, Nar95, Pet97, PBK00, SG15, VRS00, AK99, AL92, BHJ96, BMS+17, BID95, DDLM95, FR95, FP92, GWC95, H1L1, HPLT99, HKOO11, HS95b, J0u94, JRM+94, KL95, KRG13, LFL11, LNW+12, MTK16, MJG+12, NP12, Ols95, PP16, Pan95b, PBK99, PD11, PCS94, RHG+96, SPE95, Sur95b, TSZC94, WCVR96, YLZ13]. alias [SOA11]. alias-free [SOA11]. aligned [AGIS94]. Aligners [SM+16]. Alignment [dOSMM+16, AMHC11]. all-port [RJMC93]. All-to-All [LZH17, LZH18, Träö2b]. Allocation [AGS97, BS01, DGG+12, RFHR96]. alloy [TG94]. ALM [PZ12]. Altera [RGB+18, TK16]. Alternative [EM94, SWH05, Träö12a, EKTB99]. ALWAN [HB96a, HB96b, MSB97]. Amazon [SL+11]. AMBER [SL95]. AMBER4 [VM95]. American [Ara95]. AMIP [Gat95]. Among [CB16]. AMPI [ZH06]. AN2 [HBT95]. analogue [WWZ+96]. analyses [ANS95]. Analysis [BHW+17, BR02, BGG+02, BBC+17, BD98, CGLD01, EML00, FJ01, FJK+17, Hol12, J9F5, KL94, KN02, KR93, L1C91, MK17, M1C01, NA+96, NS+14, OS94, PZ12, PGAB+05, SPL+12, SBR95, SN01, TFGM02, W04, WM01, BB93, BBH14, BBH+15, C979, DIDG17, EPP+17, GR95, GFB+14, GKS+11, GE95, GE96, GT07, JB96, LC07, LLG12, LL16, LBH12, MB+94, MM96, MLA+14, MJ9B16, Pat93, PHJM11, PGAB+07, SCSCP13, 9S94, SS94, SDJ17, SPF95, Sh94, SL96, SWL+01, SSG95, T0C99, TW12, TFZI12, UH95a, UH95c, VM94, YC1L4]. analytical [BHW+12, HK09, JS13, KN17]. Analyzer [JJPL17, KKM15]. Analyzers [Ano01a]. Analyzing [BRU05, DF17, FM09, HG12, HcF05, PFG97]. anasslich [Ano94c]. Anatomy [KWEF18]. Andrew [Ano99c, Ano99d]. animal [LM99]. anisotropic [LB+16, SS+16, YSVM+16]. 'Annai [CEF+95]. Annapolis [IEE96c]. Annealing [FH97]. Annecy [VW92]. Anniversary [Ano92, Ano93f]. annotated [GGH99]. Annotation [MGA+17]. announcement [WRMR19]. Announcements [Ano98]. Annual [ACM95b, Ano93b, Ano94h, IEE95b, USE95, Van95, Y+93, ACM95a, Eng00, IEE94e, IEE95]. Ant [ITT02]. ante [Ano03].
antenna [DSOF11]. Anthony [Ano95c, Ano00b]. Antonio [Ano95d, IEE95g, IEE97c]. Any [Gro02a, Mar07]. AP [PBC01, SMTW96]. AP/ [SMTW96]. AP1000 [SH96, IM94, SWJ95]. AP3000 [TD99]. API [DM98, LPD11]. APIs [WCS13]. APOLLO [Sta95b]. APOLLO-II [Sta95b]. Appendix [Ano01a]. Appendixes [Ano01a]. APPL [AB93b, AB93a]. Application [AKE00, BSN95, BGdS09, BS07, BFM97, BBI+15, Cha02, CRGM14, DFMD94, FDG97a, FDG97b, FSC11, GB98, HT08, JFY00, JCH+08, KNT02, LD01, LMRG14, Mal01, MTSS94, MBB12, NSLV16, NS16, PSSS01, Ritz17, SBF+04, ST02a, SCL97, UT02, ABC+00, ADMV05, ADR+05, BvdB94, BFL99, BL97, BMPS03, CBYG18, CRM14, CRGM16, EPML99, FMFM15, GWVP+14, HTJ+16, HZ96, KME09, LSG12, LCMG17, MMW96, MM03, MLA+14, MvWL+10, NMW93, RBA17, Rol+08b, SM12, SCJH19, SSS99, SFSV13, SL00, TCP15, Wor96, ZZZ+15, CG99a]. application-centric [SFSV13]. Application-Level [CRMG14, LMRG14, SBF+04, SCL97, BMPS03, CRM14, CRGM16, LCMG17]. Applications [APJ+16, AGS97, Ano89, Ano96c, AGZ17, BCLN97, Ben18, BHV12, BBI+06, BRU05, BFMT96b, BF5BW01, CGS15, CBL10, CGLD01, Cha05, CJNW95, CRGM14, Cot08, CTK00, Cot04, Cza02, Cza03, DW02, DLM+17, DERC01, DHK97, DGFG97, DGMJ93, EV01, EML00, FLD98, FD00, FGRD01, Fer92, FK95, Fin00, FO05, FM09, GKP97, GK10, HM909, Hus98, IEE951, ITT02, Jes93b, JLP17, KB98, KBS04, KGK+03, KKP01, KIK02b, Kuh98, La01, LAdS+15, LRG14, LKCCW07, LMRG14, dLRO4, MSOGR01, MS02a, Mar02, Mat01b, MAB05, MC98, MG15, MANR09, PSM+14, Rei01, RPM+08, RBB15, RRBL01, SPL+12, SG12, SPH+18, SC04, SSB+17, TTSY00, TFGM02, VdS00, VY02, Vos03, Wa96a, WC09, Wis96a, WSN99, WBNH97, WM01, dGJM94, ACH+11, ACJ12, Ano93a, Ano94f, Ano03, Ara95, Arn95, AGM06]. applications [BKHH+13, BR04, BDV03, BAG17, BFM96, BFM96a, CGK+16, CBGS+15, CDMS15, CLSP07, CBM+08, CJ+10, CFP09, CCHW03, CCM+06, CSW69, D+95, DCH02, EKT99, EGH99, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHD12, GMJM18, GS96, GHH+93, HZ90, HAJK01, JC17, JPT94, LGM17, LCMG17, LZYH19, LS08, MA09, MBKM12, MLC04, MSM15, MS96b, NSR7, NC+12, NFG+10, PK05, PTL+16, Rab99, RS95, RGGP+18, SJLM14, SPE95, SBG+12, SDJ17, SHG12, SG05, SLCG95, SB01, SD16, TMC09, TBB12, TPLY18, Vet02, Wis96b, Wa92, WM14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94]. Applied [FGRD01, HC06, KaMa10, GF+18, HMKV94, MM92, NF94, PGK+10, DMW96, Was96]. Approach [AZG17, BMH94, BJ93, BHNW01, CRGM14, CD98, DLM+17, FFP03, GCBL12, HD00, KBA02, KK02a, KmWH10, LGM00, Ma06, PPR01, Pet00a, Pet00b, RGD13, Ros13, TJPF12, BK11, Bis04, BTC+17, CLY16, CDP99, CRGM16, DN96, EO15, FMS15, HDB+13, JS13, KPL+12, KSSS07, KJEM12, LSG12, MGG05, MS99b, NEM17, OW92, SVC+11, SEC15, TWFO09, WO09]. Approaches [JCH+08, Ney00, SWHP05, SM02, BFL99, CB11, PS00b]. Approximate [Hue96, MM02, GGC+07, GG09, MM03]. Approximation [SLJ+14, SJLM14]. April [ANS95, AH95, Ano93h, Ano94h, CH96, DR94, GH94, Ham95a, IEE92, IEE93b, IEE95f, IEE96e, IEE97b, IE05, LCHS96, MC94, Nar95, Sie94, SW91, Ten95]. APS
[WBSC17]. automation [Ano93a].
automotive [Ano93a, Ano93a].
Autotuning [BAG17]. Auxiliary
[STMK97]. Available [Bak98, BF98].
Avoidance [CRGM14]. AVTP [FHC+95].
award [Str94]. Awards [Str94]. Aware
[APJ+16, BHP+03, Ben18, EGR15,
GFIS+18, HVA+16, LRBG15, MJB15,
Pan14, ZLP17, CGH+14, GHZ12, HJYC10,
HG12, JKN+13, KGB16, MBBD13,
MSMC15, SHM+12, SPK+12, WRSY16].
awareness [HK09, VGS14]. AXAF [NH95].

B [Ano01a]. Back [BIC+10]. Backend
[IOK00]. backtracking [PGdCJ+18].
Backup [Gua16]. Bains [GA96]. Balance
[HE02]. balanced [EZA16]. Balancing
[BKdSH01, DBA97, DI02, DK06, GCBL12,
MM02, PT01, Pus95, ST97, Wal01a, Bir94,
BS05, DZ96, DLR94, Dvlvs94, DR95,
FMBM96, FH97, Hum95, JH97, MM03,
NP94, SGS95, SY95]. Balatonfured
[DKP00]. balls [BBH+15]. Baltimore
[IEE02, SPH95]. Bamboo [NCB+12].
banded [DG95]. Bandwidth [NE01, RK01].
Bangalore [Kum94, PBPT95]. Barbara
[ACM95b, AH95, IEE95f]. Barcelona
[DLM99]. BARRACUDA [EPP+17].
Barrier [CLdJ+15, SDB+16, YLZ13].
Based
[Ada97, AHD12, AAB+17, AP96, BHW+17,
BDG+91b, BoFBW00, CAM12, CGC+02,
CLOL18, CLF+99, CPFDM03, DW02,
DBK+09, FSC+11, FC05, For95, FSLS98,
GSxx, HF14a, HF14b, HM01, Hus00, KLR16,
LSLZ02, LZH18, KlL1, LWP04, LAF15,
MDMI7, MGL+17, MMH98, NSL16, NE01,
NHT02, NPS12, PPT96a, PCY14, PFG97,
PSSS01, RDBM09, SPL+12, SM03, Smi93a,
ST02b, ST97, SJK+17a, SJK+17b, THS+15,
TD98, WTTT17, WC09, WZH16, Wis96a,
WM01, WJB14, YG96, YTH+12, ZWJK05,
Ada98, AASB08, AAAA16, AVA+16, Ano03,
BLPP13, BDG+92a, BCH+03, Bri95,
BFMT96a, CwCW+11, CC10, CKmWH16,
CRM14, CXB+12, DX96, FE17, FFB99,
FJZ+14, FNSW99, FSTG99, FLPG18,
FFFC99, FWS+17, GS91a, GS92, GKS+11,
Gra97, Gra09, GFGP12, HZ94, HWX+13,
IM95, ITT99, JLM+17, KLV15,
KLP+12, KPNM16]. based
[LV12, LRF01, LKL96, LNW+12, LGG16,
LM+15, MYB16, MMO+16, MKP+96,
MGB05, MTT96, MS99a, MS99b, MFPP03,
Nev94, NHT06, OLG+16, OP98, PARB14,
PES99, PPT96b, PK05, PAdS+17, PGK+10,
PSHL11, PKDK95, PSK+10, PSLT99, Qu95,
Rag96, SLM14, SS09, SG05, SSS99, SZ11,
SVC+11, SSL96, SKB+14, Sto98, Str96,
SLN+12, TBB12, TY14, TBD96, TWFO09,
TMPJ01, WO09, WTF014, Wis96b, WCS99,
YC98, YL09, YWC11, YSL+12, ZAFAM16,
ZLP17, ZHK06, ZZZ+14, ZWZ+95, vHKS94,
BFMT96b, FH97, KSJ95, WAS95b, FO94,
GK97, KSJ96, PY95, Sut96, TSSC94,
ZPLS96]. Basel [Ano94]. Basic
[PGC02, BKvH+14, BR94]. basierte
[Gra97]. Basis [OMK09, RB01]. Bath
[BP93]. Bayesian [Fer10]. BC [IEE95].
BCS [FFP03]. BCS-MPI [FFP03]. be
[CB00]. Beach [IEE93]. beam
[OIH10, RFC95]. bearings [NF94].
Beguelin [Ano95]. Behavior [BFM97,
DCP03, Rost13, LLG12, PPF99, YMY11].
behaviour [EPML99]. Beijing
[CSS+08, LLHM96, Li96]. Beitrag
[Ano94c]. Belgium [LCH95]. Benard
[TVV96]. Benchmark
[BWV+12, DS16, HC10, Lss99, M102,
MBB+12, RSPM98, RTH00, SGI+03,
Tr12b, UTY02, Ano03, BKM95, DWM12,
D95, DHS96, Mlo3, MWL+10, PH JM11,
Roe1, RST02, War96, YSYW14].
Benchmarking [GC05, HCA16, LCY96,
MMU99, MCM05, WRA02, RST02].
Benchmarks
[CRes99, KS96, KAC02, MM07, NA01, RK01,
TSB02, TSB03, WAS95b, ZSNH01, CDD+96,
Benevolent [CB00]. Benefit [SBG+12]. Benefits [LB16, PSM+14, SIRP17].

Benefits-profile [Wil94].

Benefiziertreffens [Ano94c]. Beowulf [CMM03, Ste00, UP01]. Beowulf-Class [Ste00]. Berlin [PW95]. Bessel [KT10]. Betriebssystemkern [Sei99]. Better [Str94]. Between [AA0+17, BS07, ASS+17, AKE00, BID95, GFV99, JAT97, LDC97, MSP93]. Beverly [IEE93f]. Beyond [Gei93a, GKPS97, Gei98, Gro12, OhU14, Gei93b, LSG12, Sch93, SHM+10].

Biconjugate [GFPG12]. bidirectional [HE15]. Big [CLO18, GTS+15, LIK14, VPS17, ASS+17, Str94]. Biharmonic [RB01]. Bill [Ano99c, Ano99d]. billion [KTJ03]. Billions [MRB17]. binary [CG03, EPP+17, SGS95, TCBV10].

binary-level [EPP+17]. binary-splitting [TCBV10]. Binding [CL00, Coo95b, MG97, Coo95a]. Bindings [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biomolecular [BCGL97, PZKK02]. BIP [CDP99, Tou00].

BLASTP [LSMW11]. Blaze [PWPD19]. Blaze-Tasks [PWPD19]. Block [DDPR97, SMM+16, WO95, ZB97, ADDR95, DR18, GP95, HKMCS94, HC08, WO96].

Block-Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96]. block-tridiagonal [DR18]. Blocking [FH98, BCI+08, HKT+12, NAK03, HTA08]. Blood [Pat93]. Blue [KMH+14, AAC+05, BGH+05, EFR+05, LM13, MV17, MSW+05].

blurred [Wil94]. BMC [CC99]. bodies [AGIS94, LHLK10]. Body [RB01, RTRG+07, IHM05, NS16, Per99, SP99, SRK+12, ADB94]. BOF [Mat00a].

Boltzmann [OTK15, CGK+16, MS95, Pri14, SJK+17a, SJK+17b]. Bonn [MTW06]. Book [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, Che10, Mar06, Nag05, Per97, SD13, VOG13, Vre04, YM97].

books [YM97, Nov95]. Boosting [LRG14, SOF95]. Boston [IEE94e]. Both [BD12, KP96].

Bottleneck [MWG97]. bottlenecks [DSG17, JKH08]. Boulevard [ACM99]. Bound [ASA07, MBKM12, ADMV05]. boundaries [KGB+09]. boundary [PTT94, SBQZ14, SP11, SD99].

boundary-value [SP11]. bounded [MDSAS+18, PAD+17]. BowMapCL [NTR16]. Box [JR13, JPP95].

Box-counting [JR13]. brackets [GSMK17].

Braga [IEE96g]. Branch [ASA07, ADMV05]. Breaking [OS97].

breast [Str94]. Brest [IEE94e]. Bridge [VDL+15]. Bridges [DSS00]. Bridging [ACM04, AAB+17, ASS+17].

Bringing [FKKC96]. Brisbane [ACDR94, Nar95]. Bristol [MC94]. British [IEE95a, IEE95e].

Broadband [OIS+06, CLASPDP99]. Broadcast [PSM+14, YSP+05, MTK16].

Broadcasts [SE02]. Brownian [SKM15].

Bruijn [PG18]. Brussels [LCHS96]. BSGP [HZG08].

BSP [Mar06, BIS04, GRMR99, Mar09, ROH00].

BSP2OMP [Mar09]. BT [WT11, WT12].

Budapest [FK95, KKD04]. Buffer [SEF+16, TSN07]. buffers [MR96]. Build [HRS197].

Building [FD04, Gei01, Gro02a, LBD+96, LVP04, WAD99, AM95, HS95b].

M12, PW95, Sur95b, Kos95b].

Bulk [Cer99, DLRR99, HZG08, TNIB17].

bulk-synchronous [HZG08]. Burrows [NTR16]. Burst [SEF+16]. BUS [ITT99].

BUSTER [XWZ99]. Butterfly [ST17].

Butterfly-Patterned [ST17].
Charm [ZHK06]. Charts [DSS00]. Check [MC17, LCC]+03. checkerboard [BW12]. Checking [CGZQ13, Gro00, HMK09, LCC]+03, MdSAS+18, PAdS+17, RAS16, SMAC08, YYW+12. Checkpoint [SSB+05, SBF+04, CRM14, ZWZ05, ZHK06, BDB+13]. checkpoint-based [CRM14, ZHK06]. Checkpoint-on-Failure [BDB+13]. Checkpoint-Recovery [SBF+04]. Checkpoint/Restart [SSB+05]. Checkpointing [DCH02, LMRG14, SSB+05, TSS00b, BMPS03, BCH+08, CG96, LCMG17, PKD95, SSCC95, Ste96]. chemical [NMW93]. Chemistry [AKK94, BR95a, DMW96, SSGF00]. Chemkin [Ano97, Bra97]. CHEMPI [RR01]. Chicago [CGKM11]. China [CGZ+08, IEE97a, LHHM96, Li96]. Chip [Jes93b, URKG12, TDG13, dCZG06]. Cholesky [DG95, LC97b]. Chromosome [BM97, dOSMM+16]. Chromosome-Wide [dOSMM+16]. CICADA [MK94]. Circuit [WPC07, Bj95]. Circuits [GJN97]. Circular [Tsu07]. Circulation [GAM+02, Nes10, RSBT95]. CIS [AH00]. citation [Squ03]. City [Ho12]. civil [PW95]. CL [BHW+12, BBH+15, LW95]. CL-PVM [LW95]. CLARRAY [ZT17]. clarified [WBBD15]. CLAS [DZDR95]. Class [DFN12, Ste00, Dem96, MSL96, RFH+95]. Classes [DeP03, GG09, Ott93]. classic [HL17]. Classical [BCLG97]. Classification [SNN+19, TPLY18]. clauses [WC15]. Clemson [ACM95a]. Client [Ano93f, FSLS98, KS97, kLCCW07, Mat01b, Sch93, Sto98, Vis95]. Client-Agent-Server [Mat01b]. Client/Server [FSLS98, Sto98, Vis95]. Client-Side [kLCCW07]. Client/Server [Ano93f, Sch93]. climate [Str94]. CLIPS [Ano95a, Ano95e]. cMAGMA [CDD+13]. clock [NB96]. clocks [TPLY18]. CLOMP [BGdS09]. clone [ZWL+17]. Closer [HCZ16]. Closure [CGPR98, KH15, PPR01]. Cloud [SIS17, URKG12, ZLZ+11, ZLP17, GFIS+18, GHZ12, GWVP+14]. Cluster [AUR01, BKG02, BL95, BM97, CRE99, CMM03, HD02a, ES11, GGGC99, Gei94, Gei00, GSN+01, GT01, GC05, HD02b, ITKT00, ID94, KHH03, KS96, KS01, KHS01, LR01, MFTB95, MM01, NO02b, OF00, PFG97, RB01, ST06, RLL01, SCR92, SHHI01, SHT01, ST02a, TOTH99, Trä02b, YCA18, bT01a, AL93, BL9P3, BALU95, BTC+17, BID95, CCF+94, Cou93, ED94, GKF97, GmU95, Heb93, KEGM10, KO14, Kom15, LC07, Liu95, MW93, MM03, NO02a, PDY14, RJDH14, SS94, SR95, ST02b, SLS96, SY95, SSN94, Tho94, THM+94, Tsu95, UH96, YWO95, ZLZ+11, MS04]. cluster-based [SLS96]. Cluster-enabled [SHHI01]. clustered [KHB+99]. Clustering [BBH12, HA10, RJC95, GGL+08, YCL14]. Clusters [MS04]. Clusters [AH00, AHHP17, BDH+95, BDH+97, BFW+12, CLOL18, CSC96, DK06, GDM18, GMdMBD+07, GSY+13, HPP02, HSWM94, HVA+16, Hus00, JNL+15, LCG97a, LI95, LPV04, MS98, MFPP03, Pan14, PKB01, PT01, PUS00a, Pus95, Rei01, dOSMM+16, SFG98, Svl99, Ste00, Tou00, UP01, WLN03, WT12, YWCF15, YKI+96, AB95, ALR94, ADB94, ABG+96, ADMV05, BWT96, BDV03, Br95, CRe01, EKTB99, GFB95, HCL05, Hus09, JJKHK08, Jon96, JR10, JRM+94, KLY03, KLY05, KSL+12, KJEM12, LBD+96, Lec12, LLC13, LL95, LKYS04, NMW93, NN95, PS07, PRS+14, PM95, PR94c, PRS16, PL96, RCF096, RGDM16, Slo05, SC96a, SL95, TFZZ12, WLN06, WLYC12, YST08, YL09, YHL11, YWC11, ZHS99, dCH93]. CM [SBB+02]. CMMD [Har94, Har95]. CMPI [GHZ12]. CMS [FMS15]. CNF [IKM+01, IKM+02]. CO [ACM01, AHHP17, GDM18, HJ98, PSB+19, TOC18, Wal02]. co-array [TOC18, Wal02]. Co-designing [AHHP17].
co-execution [PSB+19]. Co-Expression
[GBR98, YMBMCB14]. Co-arrays
[SMCH15].
Coarse [ADRC98, IOK00, KOI01, LGM00,
NIO+02, NIO+03, Heb93, RJC95].
Coarse-Grain [IOK00], coarse-grained
[Heb93, RJC95]. coarsening [PSLT99].
Coast [IS16]. Coastal [GAM+02].
CoCheck [MS96b, Ste96]. Code
[AHP01, And98, BCGL97, CB00, CP97,
CC12, CCBPGA15, DDL00, DZDR95,
HE02, KaM10, KAMAMA17, KH01, LD01,
MS02b, MM07, PBC+01, RGD13, SM03,
SZBS95a, Sta95b, TGB95, AMS94, ADB94,
AF95, BCAD06, BADC07, BW12, Bha98,
Br95, Cott93, DLR94, EZBA16, FFM15,
GSMK17, Heb93, JIM+05, JL18, KPL+12,
KH10, MGS+15, MRH+96, MW095,
PKE+10, PSK+10, RP95, SZBS95b, SK00,
SFLD15, SMSG06, TB06, VBLG08,
VDL+15, Wor96, YL09]. codebooks
[PMM05]. Codes [FAD15, JFY00, SWH15,
HTJ+16, HWS09, HASnP00, JPP95,
KBG+09, LRW01, Mal01, OL+16, WB96].
Coding [UhI94, UhI95b, SCC96].
Coefficients [MW98, ARY17]. cognitive
[PWD+12]. Coherence [MM07]. Coherent
[SS01]. Collaborative [DCPF12, DCPF14].
Collapse [PKY95]. Collecting [BMR01].
Collection [LTRA02, DH95, MGC+15].
collection-oriented [MGC+15].
Collections [JGFR12]. Collective
[BIL99, BIC05, CCA00, FVD00, FCLG07,
FPY08, GLB00, GMMDMB+07, Hus99,
KH96, MIG+12, PGAB+05, SG15, TRG05,
VD02, WRA02, HS12, HMS+19, HG12,
HW07, KH93, KBHA94, KMH+14,
MBBD13, Pan95b, PGBF+07, PGAB+07,
RJMC93, SCB94, SCB15, SS99, TD99,
TräI2a, TFZ12]. Collectives
[CSW12, SlL99, Zah12]. Collector
[GS+15, WK08a, WK08e, WK08b].
College [AGH+95, Ano94h]. Collision
[QRM96, Sta95b, ART17, FFFC99,
LHLK10]. Collocative [MKW11]. Colony
[ITT02]. Colorado [R+92, IEE05]. Colt
[WN10]. Columbia
[IEE95a, IEE95e, MAB05]. column
[HSP+13]. column-stores [HSP+13].
COMA [GB96]. Combined
[CBHH94, TJPF12]. Combining
[DP94, Rab98, SCB14, Sch96a, SMAC08,
YPAE09, Bor99, Sch96b]. comes [Ano96].
Coming [HK05]. Commands [OLG01].
comments [Str94]. commerce [Ano96].
commercial [Ano93a]. commodity
[GGL+]. Common
[HEH98, DK13, WL10]. Communicating
[FFK+96b, GMPD98, FFK96a].
Communication
[ABF+17, BCG+19, BIL99, BIC05, DCPF12,
DZYY94, EM02, FST98a, FJ+17, FGK07,
FBSN01, GFD03, GFB+03, GGS99, GFV99,
GL00, GC05, HB96b, HC01, HDB+12,
HC06, HIP02, KB98, KV98, KBG16, LRT07,
LC93, LCVD94a, MH01, MM98, MR96,
Nnt00, PLK+04, RK01, RRGM97, RS06,
SWHP05, SCP97, SGH12, SBG+02, SJ02,
ST02b, SGL+00, SKH96, Sum12, TRG05,
TGT05, TRH00, TräI2a, UMK97, WBH97,
XH96, YC98, ZSG12, FH98, BJ96,
BVML12, BBH+13b, BS94, BMG07,
CAHT17, CGL+93, Dem96, DWM12,
DCPF14, DGB+14, DBB+16, DS96b, GK97,
G913, Gra97, GL94, GB94, HB96a,
HWX+13, Hus99, HWW97, KH96, KB01,
KYL03, KYL05, KH93, LR06b, LFL11,
MLAV10, MMU99, MAB96, OGM+16,
Pan95b, Par93, PKG+10, PM95, PKE+10,
PSK+10, PS00b, SH14, SC95].
communication
[TG09, TräI2a, Vet02, Wu99, WMP14].
communication-based [PGK+10].
Communication-buffers [MR96].
Communication/Computation [HIP02].
Communications [BPS01, CP98, CDH95,
CD+95, FVD00, FST98b, GT01, GBS+07,
GMMDMB+07, IEE95b, IEE95e, LHZ17,
Communicators [DFKS01, GFD03, GFD05, FKS96, GJMM18, KH96, MJG12].

communities [ACM04].

Community [BHW17, FCP01]. Como [CLM95].

COMOPS [Luo99].

Compact [Uhl94, Uhl95b, Wor96]. compaction [VSW+13, WK08a, WK08b, WK08c].

Compactly [KLR16]. Comparative [KB98, PSK08, SN01, AGR+95b, ED94, YCL14].

Comparing [BF01, Fin97, GBR15, ICC02, LKJ03, ORA12, SS95, WBSC17].

Comparison [BvdB94, BS07, HC10, KBM97, LCW+03, Mat94, Mat95, Ney00, OP10, OF00, PPJ01, Pok96, RBB97a, SS01, SHH94b, VS00, Wal02, Zbd12, Ahm97, AB93b, BLP93, BID95, GMU95, Har94, Har95, JS13, KDSO12, KC06, MSP93, Ols95, PS07, PSHL11, Pri14, SdM10, SYR+09, SWS+12, SHH94a, TOC18, TSZC94].

comparision-based [PSHL11].

Comparisons [GGS99, PGC02, CLYC16].

Compile/run-time [TSY99]. compiled [KYL03, KLY05]. Compiler [Ano98, Dan12, IOK00, KSS00, KSSH01, MB12, Mar09, MKW11, SSE12, SKS01, TJFP12, TBG+02, TGBS05, BAG17, HEHC09, LME09, LHC+07, LLC15, MA09, Miül03, PP16, RKBA+13, SHHI01, THH+05].

Compilers [Ano01a, CFF+94, LZ97, MKV+01, SBT04, SS96, Hos12, PBG+95, ZT17]. Compiling [DMB16, Hos12, CGK11]. Complete [Bds07, GHL+98, Nag05, Per97, SOHL+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, PRS+14, SOHL+96]. Completed [PTT94]. Complex [BCGL97, GMPD98, MBS15]. Complexity [NPS12]. component [HLP10, KRKS11, Squ03]. Components [BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01]. Composable [MLGW18].

Composed [We94]. Composing [PHA10]. composite [MALM95, YPA94].

Compositing [GPC+11]. Composition [CTK00, Cot04, DLB07, FC05, KH15, CFP96]. compound [LLC13, SAP16].

comprehensive [RST02]. Compression [FSC+11, KB04, VPS17, AAAA16, HE15, UH96, Wu99]. compression-based [AAA16]. COMPSAC [IEE95].

Compton [BCD96]. Computation [BKGS02, B+05, Cer99, DSM94, DSS00, EMO*93, ESM*94, Fer10, FF95, GS91b, HIP02, IEE94a, IEE96c, KS15, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SME93, WTH17, ACM97a, ABDP15, Bis04, BALU95, Bos96, BHKR95, CL93, CMH99, CKP+93, DZZY94, HLM+17, HK94, KB01, KHSB19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZZ94, NCKB12, PF05, PKE+10, Röh00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational [ALR94, CMM03, DFMD94, JFY90, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEE11, TEGM09, WPH94, Whi04, AGM06, Bvbd94, BDG+92c, BR95a, HVSC11, KBG+93, DZZY94, HLM+17, HK94, KB01, KHSB19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZZ94, NCKB12, PF05, PKE+10, Röh00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07].

computationally [DFN12].

Computations [AGH*95, AGCR97, CGU12, CGPR98, IH04, PBK00, PMvdG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGDK92, HJYC10, KD13,
MRRP11, MR96, Smi93b, SAP16, TS12b. Compute [DBK+09, KKL+11, ZLZ+11]. computed [FWS+17, SSS99]. Computer [ACM06a, Ano94a, GTH96, IEE95i, IEE96h, IEE97c, IS16, KCR+17, Neurf4, Old02, PSB+94, ST02a, Sum12, Ten95, URKG12, YTH+12, BN09, BS94, BKML95, BFM96, Cal94, CLM+95, GRTZ10, JWB96, Str94]. Computer-Assisted [GTH96]. Computers [Ano89, BP99, BCL00, DGMJ93, FFP03, GC05, IEE95b, IEE95e, ITKT00, LF+93a, MFTB95, PSZ E00, SPM+10, SS96, BvdB94, BB93, BBK+94, DLR94, Duv92, ESB13, GFB95, KOS+95a, LRO6a, MMB+94, NF94, POL99, PBK99, Wal94a, Wal94b]. Computing [ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACDR94, AIM97, BJ93, BBG+95, BBG+93a, BGR97a, BL95, BCP+97, BRST94, BDH+95, BDH+97, BHWN01, BBH12, C95a, CBG+10, CLL03, COL18, CNC10, Cze16, DDS+94, DERC01, DPP01, DKM+92, DGMS93, DT94, FTVB00, Fer98b, FGKT97, Fos98, FS93, GLN+08, G92, Gei93a, GBD+94, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hol12, HT01, IEE92, IEE93d, IEE93c, IEE94g, IEE95c, IEE95k, IEE95i, IEE96a, IEE96f, IFi95, KKO2a, KS97, LCK11, LRG14, LC93, LR01, Lus00, dFMBldlFM02, ME17, Mat94, Mat95, MS04, Nov95, PKW95, PR94b, PWPD19, SHTS01, SCSL12, Sin93, SSS97, Ste00, SGS10, SW91, Sin90a, Sun90b, Sun92, Sun93, Sun94a, Ten95, VV95, VW92, WN10, Y96, YC96, AGCdT02, ARY17, AL92, AH95, ASCS95, Ano93h, Ano94e, Ano94h]."
[Sch96a, Sch96b]. **CRAY-T3E** [Che99].
D [And98, DY+16, SSS09, SH14, VDL+15, Bha98, BCL00, Bri95, BMP29a, BAS13, CGU12, CP15, EFR+05, ES11, GCN+13, HF14a, HF14b, JBI5, KRKS11, KO14, KD13, KHS01, LRM+15, WMRR17, WR10, YSL+12, vHKS94]. D-CICADA [MK94]. DAC [Cao02, Cao03]. Daemon [MB02]. Dagum [Stp02]. DampVM/DAC [Cao02, Cao03]. DAMPS [CD98]. Dangers [ACP+97]. DaRel [KN95]. Data [AJF16, BMR01, BGD+10, BGD12, CKnWH16, COL18, DERC01, Din96].
EGR15, EASS95, GTS+15, GB98, GMPD98, Gua16, HA10, HB96b, HC06, JDB+14, KA13, LK14, LDJK13, MV17, Man01, MK17, ME17, MGA+17, MJB15, NJ01, NFP+00b, NFP+00c, NA01, NLRH07, PCY14, Rei01, SGH12, SPK96, SR96, Str12, THS+15, WO95, Wel94, ZDR01, ZG95b, AB95, AS9+17, AG9+95, BK11, Beu95, BR12, BID95, CFKL00, CGK11, CGL+93, DRUC12, EP96, FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPOJ12, KJJ+16, KRG13, LOHA01, LF93a, LL16, MA09, MB99, MMM13, MR96, NCB+12, NCB+17, NPP+00a, OPP00, PDY14, RJM93, SJLM14, SS999, SPH95, SK92, TW12, WO96, WLK+18, YCL14, YWO95, ZRQA11.

data-centered [JPOJ12].
data-Driven [ME17, NCB+12, NCB+17].
Data-Intensive [Rei01].
Data-Parallel [AJF16, GB98, CKmWH16, SPK96, CGL+93, FKK+96b, MMB+94, MR96, SK92].
data-parallelism [BR12].
data-privatization [KRG13].
Data-Structures [GMPD98].
Databank [FCP+01].
Database [AR01, BFZ97, EK97, MWG97, MM14, PPT96a, MN91, PPT96b, PPT96c, PMZM16].
Databases [RGB+18, BA06, Bos96, ZWL13].
Dataflow [DT17, CSPM+96].
Datasets [VPS17, KGB+09].
Datatype [Gro00, SWHP05, KHS12].
Datatypes [JDB+14, RTH00, SGH12, Tha98, CAHT17, THRZ99].
Dave [Stp02].
David [Ano96a, Ano99a, Ano99b, Nag05].
DawnCC [MGA+17].
DAWNING [HWM02].
DAWNING-3000 [HWM02].
Day [IS16].
dlx [NE98, NE01].
DC [B+05, IEE94b, IEE95k].
DCE [Sch93, FLD96, RS93, Sch93].
DDL [FB97].
Deadlock [LZC+02, SG12, HPS+12, HPS+13].
Deadlocks [FJK+17].
Debugger [WCS99].

Debugger [HM01, NE01, CH94, CG99b, MT96, XWZS96].

Debuggers [Ano01a].

Debugging [BDGS93, GKP96, KKV01, KV98, Mor95, NE98, Wis97, ZLL+12, BL97, BS96a, DKF93, HLOC96, KCD97, MLA+14].

December [Bil95, Eng00, HHK94, IEE96a, KHS12, NM95, PBPT95, Y+93].

Decimation [PCY14].

decoder [MC17].

Decomposition [BJS97, CP97, EGH+14, DBVF01, ET94, OM90, SHHC18].

decompositions [NZ94].

deconfliction [TCP15].

Dedicated [WLN03, Hus99, WLN06].

Deep [AHHP17, SEC15].

Defined [GAML01].

Deformable [STK08].

Deforming [GAP97].
degree [CT13].
degrees [KTJT03].

Delegation [YTH+12].

Delegation-Based [YTH+12].

Delft [DSZ94].

Delivering [Hus98].

Delphi [ACGd02].

Demand [CTK00].

Denmark [DW94, DM96, Was96].

Dense [AKL16, BDT08, CDD+13, Fuj08, Hog13, PMvdG+13, ZBd12, BRR99].

Densities [MW98].

Density [BL95, MC17, CBHH94, ZWH95].

Denver [ACM01, IEE05, R+92].

Dependable [GM95].

Dependant [BP99].

Dependence [LAdS+15].

Dependency [PPR01].

Dependent [DFA+09, HO14, MFTB95, DM12, LBB+16, LY+16, ON12, SSB+16, TV96, YPA94, YSM+16, YSMA+17].

DEPICT [HM01].

Deploying [PBK01, CLLASPDP99].

depth [SSS99].

Derivation [GB98].

Derived [JDB+14, RTH00, SWHP05, Tha98, CAHT17, Jou94, THRZ99].

Descent [Sch01].

description [TKP15].

descriptors [LNW+12].

Design [AS92].

Derived [AS92, AAC+05, Ano01b, ACD+09, BCD+15, BBH+13b, BS96b, BMR02, BRM03, CLP+99, ETW12, FD02a, FFP03, G09, HW96, JSH+05, KV96, kLCC+06, kL11, LVP04, Man94, MMSW02, NPS12, OFA+15, Pan14,
PLK⁺04, PCS94, SBG⁺02, SWY94, SSL97, SPK⁺12, Sun12, THM⁺94, USE94, VGRS16, BRC91, CARB10, CSS95, DS96b, FDO2b, GL94, GkLyCY97, KA95, LC07, MAS06, OA17, PGK⁺10, PTW99, SL94b, Sep93, SL96, SSD⁺94, SWL⁺01, Wal94a, Wal94b.

design-pattern [MAS06]. designed [BSH15]. Designing [GKZ12, LAD16, SWHP05, SH14, WYL12, ZLP17, AHH17, DSOF11, Pan95b]. Designs [HVA⁺16, AAAA16, MC17, Shi94]. desktop [Mar07]. Detailed [DLV16, RSPM98, BTC⁺17, LR06b]. detect [Str94]. Detecting [AGG⁺95, PPJ01, ZQA11]. Detection [BHWH⁺17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME⁺12, HCH⁺18, KJS14, SG12, ZDD97, BBH⁺15, DKK94a, HDG90, HGMW12, HPS⁺12, HPS⁺13, LZZ⁺02, RAGJ95, TCP15, TGD13, TWF099, WFO14, YUL08⁺17]. Detector [DZDR95]. Determination [LAFA15]. Determine [BP99]. Deterministic [CFMR95, DK02, ZLL⁺12]. Develop [PD08]. Developer [IEE96i]. developers [Str94]. Developing [BFZ97, CCSSM97, Cot98, DDLM95, Reu03]. Development [AC17, An01a, BDG⁺91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TDREE11, ARvW03, ABC⁺00, BL97, BDG⁺92a, DSS94, DPH97, KCD⁺97, LLC13, MMW96, PES99, SM12, TBB12, ZLL06, Se99]. Developments [Mat00a]. device [KKL01, LS10, SBQZ14, YWTCC15]. Devices [GNJ97, ZBDW18]. DFβ [WWZ⁺96]. DFβ [RS93]. Diagnosis [AP96, LA⁺15]. diagnostic [RSBT95]. dictionary [LSSZ15]. Diego [Has95, LF⁺93a, NM95]. Difference [UCZ⁺12, GFP12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94]. Differences [AKE00, LDCZ97]. Different [AIM97, GL97b, JCH⁺08, Ney00, Rab98, RBB97a, BN00, PY95]. Differential [MFTB95, Riz17, JK10, NF94, RBB15, SP11]. Differentiating [Cer99]. Differentiation [BBH⁺08, BSGK08, GdGM96]. Diffusion [HF14a, HF14b, MW98, CE9S07, DM93, MM92]. Digest [IEE93a, IEE95c]. Digit [DALD18, LAD16]. Digital [KLR16, CJ10⁺]. Dijon [YH96]. Dimemas [GLB00]. Dimensional [Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK⁺17a, SJK⁺17b, AL93, KT02, LSS15, 0lbs, PR94c, Ram07, RG18]. Dimensions [SAS01, An03a, HP11]. dipolar [LBB⁺16, LYSS⁺16]. DIPORSI [GGCG01]. DipSystem [Spl99]. Direct [Bri10, GPC⁺17, LB98, WJB14, BCM⁺16, Gra09, HWS09, MM11, SWH15]. direction [BDG⁺93b]. Directions [FI95, FK94, FHP⁺95, Sun96]. directive [LI12, NO02a, YL09]. directive-based [LI12, YL09]. directive/MPI [NO02a]. Directives [BBG⁺01, BK00, CCBPA15, JFY00, LOHA01, VG014]. directory [JCP15]. Discovering [FJK⁺17]. discovery [BK11, GWVP⁺14]. Discrete [ST17]. diskless [PKD95]. Disks [dfFM/BdfFM02]. Dispersion [RS⁺05]. Displacement [BJS97, PSSS01]. Dissemination [GL97a]. Distance [MR12]. Distances [LAFA15]. Distributed [AG97, An95c, BMS⁺17, BME02, BGR97a, BL95, Bha93, B95, BRST94, BT01b, BHKR95, CGB⁺10, CLL03, CSW97, C99, DMB16, DAB87, DFM94, DFG97, DHHW92, DHHW93a, EMO⁺93, ESM⁺94, FH95, Fan98, FTVB00, FK01, FoS98, FS93, FFF99, GCCM99, GCGO01, GCGS08, GCBM97, GWC95, GM95, HJ98, HC10, HRSA97, IEE93d, IEE93e, IEE94d, IEE94g, IEE95h, IEE95k, IEE95i, IEE95j, IEE96b, IEE96g, IEE96f, IEE05, JML01, KBA02, KP96, KDL⁺95b, KL95, KK02b, KSHS01, LC93, LHD⁺94, LHD⁺95, MC18, MZK93,
MB12, MFTB95, MSCW95, Mat95, MBE03, NSBR07, NZZ94, NH95, Pen95, PKYW95, Pet00a, Pet00b, PTT94, PMM95, PBK00, PD98, PmvdG+13, RGD97, Sch94, SA93, SMOE93, SW91, Sun90a, TSS00, THN00, Will93, WO97, WCS99, YH96, ZDD97, ZDR01, AMBG93, AGR+95b, AB95].

distributed
[Ano94e, Arn95, ADMV05, BSC99, BB95, Bir94, BMPZ94a, CBPP02, CH94, CEF+95, CBHH94, CLLASPDP99, CPR+95, CK99, DLR94, DR94, DHHW93b, DR95, EGH99, FB97, FS95, FS98, FHC+95, FHB+13, GBR97, GCN+10, GKK09, GkLyCY97, GP95, HPY+93, HHA95, IEE97a, JW96, KN95, KSG+13, KJJ+16, KDL+95a, LR60b, LFS93a, LFS93b, LH98, LKL96, Liu95, Maf94, MVT69, Man98, MLC04, NA99, OLG+16, PK05, POL99, Par93, PR94c, RAGC95, RFH+95, SSH08, SHH01, SL94b, Sch93, SFL+94, SSC96, SPL99, Smi93b, SD99, TSP95, THM+94, Uhl95a, VM94, VB99, Vet02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YLC16, YW90, YX95, YPZC95, YZPC95, ZL96, ZGC94, ZHS99, Pet01].
distributed-data [FB97].

Distributed-Memory
[CSW97, CCF99, KN95, SHH08].
distributed-shared [ADMV05].

Distributing [AL92]. Distribution
[HB69a, MB15, NNP+00b, NNP+00c, NA01, SR96, AGG+95, CSW99, GS96, HB96a, JMDIVG+17, KRC17, NNP+00a, RJMC93, Will94].

Distributions
[ST17, WO95, HKMCS94, WO96, vHKS94].

Divergence
[SdS813, vSW+13].
diversity [EO15].

Divide
[CTK01, Cza02, Cza03].

Divide-and-Conquer
[CTK01, Cza02, Cza03].

DMMP [BB93].

DMPI [HWM02, ZL+12]. DNA [PGF18].

DNAml [CDZ+98]. DNMR [SR11].

docking [ESB13, ZWL13]. Document
[MSMK16, AD95]. Documentation

[BDG±xx]. Documents [Ano98]. does

[KC94]. dog [LK14]. Domain

[BMR01, CP97, EGH+14, kll11, ET94, HE13, NEL93, NZZ94, Olu14, OKM09, Rmn07, SHHC18, VM94]. Domaine [GA96]. Domains [KR09]. Dongarra
[Ano95b, Ano96a, Ano99a, Ano99b, Nof95]. dOpenCL [KSG13]. Double

[FHKC96, PTT94]. down [Str94].

Downloadable [Ano98]. DP
[Arn95, KLR+15]. DPVM [HvA+00].
draft [DHHW93b, GL92]. Draw [ST17].

Dresden [MD99]. Driven
[AIM97, ME17, PCY14, Hin11, NCB+12, NCB+17, Qtu95, SIS17, TWFO09, WTO14].

Dror [Str02]. drug [GWVP+14]. drugs
[Str94]. DSIR [LTR00, RTL99]. DSM
[KBP07]. DSMC [JL18]. DMPI
[SSC96, SSC97]. DTM [PS07]. DTS
[BHCR95]. Dual

[BBC+00, GAM+02, DK02, CT13, LSS15].
dual-dictionary [LSZ+15]. Dual-Level

[BBC+00, GAM+02, DK02].
dual-scantime [CT13].

Dublin [LKDO8]. During [DeP03].

Dust [dFMBdlFM02]. DVFS [PTL+16].

DWT [ZZZ+15]. Dyn [WLNL03, WLNL06].

Dyn-MPI [WLNL03, WLNL06]. Dynamic
[ACGR97, AGS97, AUR01, CGLD01, CKmWH16, CML04, CK99, CTOK1, DMB16, DB098, DFMD94, FMBM96, FD00, GFD03, GFD05, GRV01, GCBL12, GMDP98, GL95a, KFL05, MK17, NNP+00c, NLRH07, PK98, PLK+04, PT01, PGdCJ+18, Ran05, SPH+18, Smi93b, SY95, TS12a, VdS00, Vet02, Wal01a, Will94, YJTT98, Ze95, DDLM95, EO15, FH97, FCS+12, FKL08, JC17, MSMD15, NSBR07, NF94, OKW95, RBA17, RCC95, SCB14, SCB15, SKK+12, SKB+14, WRSL16, YPA94, DvDLS94, FCS+12].
dynamically [SSS99]. DynamicPVM
[DvDLS94].

Dynamics
[BST+13, BCGL97, DR17, JFY00, KMB97, dFMBdlFM02, MH01, OS97, SBD95a, SA93, TDBEE11, TEG09, YWCF15, ZB94,
ALR94, ABG*+96, AGMJ06, BvdB94, BHS18, BvDSvD95, BBK*+94, BMPZ94b, BMPZ94a, CC00b, FHS099, HVSC11, JAT97, JMS14, KFA96, KPK13, KRG13, LSVMW08, OKM12, PARR14, PBK99, RBB15, SPE95, SZBS95b, SKM15, TG94, WPH94.

Dynamische [Wil94]. dynamite
[vdH*+00, IHvA*+00]. Dynamite/DPVM [IHvA*+00]. DySel [KmWH16].

E-scale [Gua16]. EA [Ben18], each [Ano00a, Ano00b]. Early [CD96, LV12, SLG95, EFR*+05, KJA*+93].

Earth [KTJT03, Nak03, Nak05a, Nak05b, UTY02]. Earthquake [UZC*+12, KTJT03, KME09].

Easily [PKB01]. East [IS16]. Easy [HCA16, TDG13, MJPB16, SBF94].

EasyGrid [BR04]. EASYPVM [Saa94].

ECMWF [HK93, HK95]. ed [Nag05].

EDEM [Tsu95]. Edge [ZDD97, Gra97, RAGJ95]. edition [Ano99a, Ano99b, Ano00b]. Editors [AM07, GSA08]. education [ACM06a].

EDV [Ano94c]. EDV-Benutzertreffens [Ano94c]. Edward [Che10]. Effect [DK06].

Effective [MLAV10, RK01, TMC09, Tsu95, Cza13, JH97, KS15a]. Effects [SSE12].

efficacy [GSfCM13]. Efficiency [KS96, MTU*+15, CZ96, MMU99, RS95].

Efficient [ADT14, Att96, BWH*+17].

BGBP01, BCK*+09, BHALS*+95, BFG*+10, BGD12, Brt95, BDH*+95, BDH*+97, BMPZ94b, CAWL17, CF96, DZ98a, DGG*+12, FHPS94a, FHPS94b, HBT95, HKT*+12, HT08, HCO6, HLO*+16, KGK*+03, KD13, LAD16, MDM17, MB12, MRB17, NKB99, PGS*+13, RJMC93, RRBL01, TGBS05, WSN99, WWFT11, YPZC95, ZWHS95, BdDA94, BW*+12, CGH*+14, FM90, FNSW99, FHB*+13, HCL05, KVGH11, LKL96, LA06, Pan95b, PRS*+14, RR01, SOA11, TPD15, TDG13, YLC16, dCZG06, CRD99, THRZ99].

Efficiently [CC99, CCM*+06, PHA10]. effortless [ITT99]. eigenproblem [BV99, GG99].

eigensolvers [DR18]. Eigenvalue [DAK98, BSC99, THM*+94]. Eighth [ERS95, Sie94, IEE96b]. Eilean [CSS95].

einem [BL94]. Einfluß [Gra97].

Einführung [MS04]. Einstein [ARYT17].

Einstein- [ARYT17]. Ejector [CCBGPA15]. elastic [PTG13]. elasticity [PTT94].

Elastodynamic [MAIVA14].

electric [BALU95, Ano03]. electrical [Sill96].

electroabsorption [WWZ*+96]. electromagnetic [DSOF11, NZ94, OKM90].

electromagnetics [OGM*+16]. electron [ART17, JL18]. electron-molecule [ART17].

Electronic [GJN97]. Electronics [IEE95d].

Electrosoft [Sill96]. electrostatic [VDL*+15].

Element [M02b, OD01]. OMK09. SM02, VRS00, BB93, BCM*+16, Gra90, HMKV94, KME09, KEGM10, MGS*+15, Nak05a, Nak05b, PTT94, TOC18.

Elemental [PMvdG*+13]. elements [KB13].

Eliminating [DSG17]. elimination [ACMZR11]. elision [CLIJ*+15].

elliptic [AGIS94, PR94e]. ELLPACK [BBH12, MKP*+96]. ELLPACK-R [BBH12].

Else [Ge00]. elucidation [MK94].

Embedded [TMC18, YGH*+14, ACJ12]. CGK11, NEM17, TMW17, WCM*+13.

Embedding [FS97, SML17, MS06a].

Embodiment [Ser97]. emerging [RMN*+12]. Emisson [Pat93, EZA016].

emphasis [Bos96]. eMPI [MS06a].

eMPI/eMPICH [MS06a]. eMPICH [MS06a].

Empirical [SS94, VY02].

Employing [AGMJ06, LB16]. emulation [MS99b]. emulator [LTC94].

enable [SPK*+12]. Enabled [Fos98, GSY*+13, LSWM11, Pan14, ZLP17].

DS13, GLM*+08, HJB14, KHSB19, KTF03, RA09, SHH01, SR11, ZLS*+15].

Enabling [APBeF16, BGG*+15, CLSP07, DGB*+14].

GBH14, GBH18, HJYC10, NPS12, TY14.
encapsulation [DRUC12], encoding [AAAA16, PGFB+07, SM12], endpoint [LLH+14], endpoints [DBG+14], energies [TKP15]. Energy [BPG94, EGR15, KFL05, RBAI17, VW92, FKLBO8, KN17, PTL+16, TDG13]. Energy-Aware [EGR15]. energy-efficient [TDG13]. Engine [Wal01a, NPP+00a, Wal01b]. Engineering [Ano98, BPG94, BP93, EGH+14, IEE96h, KAM10, LSB15, LF+93a, MS02a, MBS15, Nag05, SM07, Str94, DMW96, IEE94c, PW95, RMS+98, Sil96, LF+93a]. engineers [HW11]. Engines [SLJ+14, HSW+12, SHM+12]. Engine TM [OIS+06]. English [Wil94]. Enhance [AR01]. Enhanced [Ano98, CDHL95, CDH+95, FMSG17, KY10, PRL02, Saa94, BR95b, FE17]. enhancement [ARL+94, Boi97]. Enhancements [BDG+95, BCKP00, DM95b, DM95a]. Engineers [SLJ+14, HSW+12, SHM+12]. Environment [BDGS93, BFG+10, BFM97, BGL00, CHP01, CT01, DLB07, DI02, DHHW92, DHWH93a, DPLL00, FTVB00, FWR+95, GJN97, GL97a, HRSA97, KBA02, KKH03, KDL+95b, KVH97, LC93, Lus90, MSOR01, MM2, MFG+08, MSS97, NJ01, Ong02, Rol94, SDN99, SGL+00, SGHL01, TTP97, WL96a, ABG+96, BDG+92b, BDG+94, BK96, BT96, CEF+95, CLLASPDP99, DZ96, DL10, DHHW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL+96, GkLyC97, HZ94, IJM+05, IvdLH+00, KCD+97, Kat93, KDL+95a, Kos95b, KFSS94, WL94, MSL12, MK97, NP94, PES99, PVKE01, PQ07, RNPM13, SSKF95, Sch93, SPK96, SBF94, SWYC94, Skj93, SSG95, TJ09, Tho94, WCC+07, WL96b, WLC07, ZPLS96]. environmental [ANS95]. Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GFB+03, Laf01, Mat94, Mat95, MFC98, PS01a, RB01, SHH94b, SSSS97, SCL00, TAH+01, ACGdT02, ARL+94, ALR94, ADDR95, AMV94, Bon96, BFM99, CDH+94, CK99, DR94, DR95, EO15, HS93, HVSH95, LC07, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96]. environments-the [CDH+94]. EPS [GT94]. EPS-APS [GT94]. Epstein [BL95]. Epstein-Nesbet [BL95]. Equi [LTRA02]. Equi-Join [LTRA02]. equivalencing [LLG12]. Era [ABB+10, CZG+08, CGK11, EdS08]. Erratum [Ano01b, HF14b, Wal94b]. Error [DFC+07, HPS+12, HPS+13]. Errors [FCLG07, SD16]. Erweiterung [GBR97]. ESA [Whi94]. ESBMC [MdSAS+18]. ESBMC-GPU [MdSAS+18]. Espoo [RWD09]. ESPRIT [CDH+94]. Estimation [GK10, AMHC11, CCU95, GB04, JMDVG+17, KS13, ZWH95]. Estuarine [LRQ01]. Ethernet [CC00a, Fin97, HF05, KLY03, KYL05, OF00, PPG97]. EU [Ano03]. Eugene [MCdS+08]. Euler [DLR94, IDD94]. Euler/Navier [DLR94, IDD94]. EURO [HMM95b, BFMR96, HAM95b, BFMR96]. Euro-Par [BFMR96, HAM95b, BFMR96]. Euromicro [IEE95a, IEE96g]. EuroMPI [CDND11, KGRD10, TBD12, TB14]. EUROPE [LCHS96, Ano92, Ano93f, Ano93g, Ano94g, Tou96]. European [AD98, Ano94i, BR95a, BDLS96, BC00].
BDW97, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, KGRD10, Kra02, KKD04, LKD08, MTWD06, RWD09, TBD12, WPH94, DHK97. **EuroPVM** [BDLS96, OL05, DKD07, MTW07]. **EUROPVM/mpi** [OL05, DKD07, MTW07]. **EuroPVM/mpi** [KKD05, DLM99, DKP00, DLO03, KGRD10, Kra02, KKD04, LKD08, MTWD06, RWD09, TBD12, WPH94, DHK97]. **EuroPVM** [BDLS96, OL05, DKD07, MTW07]. **EUROPVM/mpi** [OL05, DKD07, MTW07]. **EuroPVM/mpi** [KKD05, DLM99, DKP00, DLO03, KGRD10, Kra02, KKD04, LKD08, MTWD06, RWD09, TBD12, WPH94, DHK97]. **EuroPVM** [BDLS96, OL05, DKD07, MTW07].

Evaluate [MW98]. **Evaluating** [BWV+12, FVLS15, FST98a, GFD03, GFD05, GCGG001, GB96, HWW97, LH95, SS89, ZShH01, GscFM13, JTL99, TG09, ZLZ+11]. **Evaluation** [ATM01, BF98, BIC+10, BFM97, BEG+10, BB18, CLP+99, DI02, FST98b, FSSD17, Han98, JCH+08, KS96, KK02b, KSS00, LGCH99, LNK+15, LZ97, L11, LVP04, MH01, MGC12, NNON00, OTK15, OM96, Pan14, Par93, RB01, SWHP95, SCP97, SEF+16, SBF+04, SM02, Sout01, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TTSY00, UM97, VY02, AB13, BBG+14, BBH...13a, BMG07, CB11, DBB+16, HPR+95, HA5nP00, HPS95, IM94, J17, JMDVG+17, LV12, LNW+12, MKP+96, MM03, MT96, MM99, NN95, PSK08, RLFs13, SL94b, SWS+12, SWYC94, SFSV13, TSP95, THM+94, TMP01, Wor96, YWO95, YS93, ZHK06].

Evaluations [MM14]. **Event** [KKV01, NSL16, THS+15, WM01]. **Event-Based** [NSL16]. **everything** [CCM+06]. **everything-shared** [CCM+06].

Evolution [Mat01a, PS01a, RBB17, SSL97, SGDM94, GS93, SSD+94]. **Evolutionary** [B+05, DSM94, Ragg96]. **Evolving** [Bad16, ER12, MdcSc09]. **Ewing** [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

Ewomp’99 [BC00]. **Exact** [Dosmm+16]. **Example** [Che10, SK10, NB06, Pat93]. **Exascale** [Bad16, LV12, LSG12]. **Exception** [FmsG17]. **exchange** [MM13, Pan95a]. **executable** [Wmp14]. **Execution** [Ahd12, Bme02, DT17, FC05, FM09, GR07, KGK+03, MK17, Mar05, MFG+08, Magr01, Ney00, STY99, SAP16, EPML99, Mor95, PSB+19, SMAC08, Tnb17, TS19, TS00, UGT09]. **Executions** [Gaml01]. **Evaluating** [Cb00]. **EuroCHI** [Wcc+07]. **Expand** [CGC+02]. **Expanding** [La02].

Experiment [Luo99]. **Experimental** [Bil99, Bic05, BB18, EGC02, Ser97, Um97]. **Experiments** [Bpmn97, Coe94, LGM00, Os97, RR00, Zb97, RHG+96, HAJK01]. **Expert** [Bpg94]. **Experts** [Eat15]. **ExpEther** [Nms+14]. **Explicit** [Bhv12, Gfpg12, Scg12, Lc97b]. **Explicitly** [Ma12, Syr+09]. **exploit** [Zp06]. **Exploitation** [Ggl+08, Gam+02, Ik11]. **Exploit** [Bil99, Bic05, BB18, EGC02, Ser97, Um97]. **Exploiting** [Add01, Bri10, Fklb08, Hehc09, Fkl05, Naal01, Nob08, Thh+05]. **Exploration** [AmuHK15, Ofa+15, Aبد15, Ge95, Ge96, Pdy14]. **Explorations** [Bgg+15]. **Exploring** [Ifa+16, Mbk12, Mt+15]. **Expose** [SAL+17]. **Exposing** [SD16]. **Exposition** [Iee95d, LF+93a]. **EXPRESS** [Ks96, Ahmn97, Fk94, Lh95, Shh94a, Shh94b]. **Expression** [Bn12, Gdm18, Kh15, Sur95a]. **expressions** [Sfd15]. **expressive** [Tria12, Ylc16]. **Extend** [Dfa+09]. **Extended** [Br02, HaTa08, Ss99]. **Extending** [Adb+10, Bcc+00a, Bcc+00b, Bdb+13, Cs96, Cg99a, Kdt+12, Lmr14].
Mar03, OFA+15, RGDM16, SDV+95, TMT96, CG96, GGHL+96]. Extensible [BL97, GS94].

Extensions [Fel01, GOM+01, GHLL+98, HVA+16, HE15, DPSD08, HP05, Kt93, Ano99c, Ano99d].

Ext [KL11]. Extent-Based [KL11].

exterior [HMKV94]. external [BBB+94].

Extraction [CB10, HLO+16, dAT17].

Extreme [MdSC09, ZKRA14].

Extreme-scale [ZKRA14]. eyes [Str94].

Factorisation [BB18]. factorization [AZ95, BSvdG91, BR92, DC95, KBP16, WLC07]. Factorizations [TD98, LC97b].

farming [Str94].

Fast [Ben01, BHS+02, BDA+18, BBH12, CS14, DFN12, EM02, Hoge13, JGFR12, JMDV+17, FSHL11, PRL94c, PRC+01, RB01, SE02, SS09, STY99, SR11, TPLY18, UP01, WTR03, Lan09, LCL+12, NYNT12, TDG13, YULMTS+17, YLZ13, YZBL03, ZA14, AAB+17, DLBL11, PFG97]. Faster [Tsu12, ZG95a, ZG96]. Fat [Zah12].

Fat-tree [Zah12]. FATCOP [CF01]. Fault [BBC+02, BCH+03, BHK+06, CF01, CFDL01, FBD01a, FBD02, FD02a, FD04, GFB+03, GKP97, GJR09, GL04, Gua16, IEE95c, JSH+05, LMRG14, LNL00, dLR04, MSF00, RPM+08, TS12a, WC09, W193, BCH+08, FBD01b, FD02b, HG12, LMG17, LS08, PKD95, SG05, ZHK06, FD00].

Fault-Management [GJR09].

Fault-Tolerant [BH+06, FD04, FGB+03, IEE95c, JSH+05, LMG17, LS08].

Facts [LAdS+15].

FCRC [ACM96b]. FD [And98].

FD-TD [And98]. FDDI [LC93]. FDTD [DSOF11, VM94].

Fe [Odk02, BJS99]. feasibility [KBG16]. Feature [Qu95, ZWL+17]. Feature-driven [Qu95].

Features [GLT99, GLT00b, GLT00a, GLT12, KAH96, Ano00a, CRD99, WKS96, ZKRA14, dAT17].

February [Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97c]. FEM [GEW98].

Feynman [NS16]. FFT [DAL18, GB98, JKM+17, NS12, SH14, WJB14].

FFT-Based [WJ14]. FFTs [EFR+05].

FFTW [KT10]. FHP [BMS94a]. Field [KNT02, Goec02, TKP15]. fields [BAN95, RSB95]. Fifth [DKM+92, HK93, IEE96f, SM07, IEE95c].

filamentary [YPA94]. File [BIC+10, CGC+02, LRT07, KLCCW07, KL11, PLR02, RK01, TS00b, Tsu07, WTR03, DL10, LL95, SBQZ14, isYS12].

File-I [PLR02, RK01]. File-I/O [PLR02, RK01].

film [SL00]. filter [BY12, CCU95]. Finding [FCL07, GAV017, PC94]. Fine [AZ17, BBG+10, JCP15, SFL+94, TCM18, YSS+17, BK11, KW14, LZY19].

Fine-Grain [AZ17, JCP15, SFL+94, BK11, KW14].

Fine-Grained [BBG+10, TCM18, YSS+17, LZY19].

Finite [DFN12, MS02b, MAI14, OD01, OMK09, Pri14, SM02, UZC+12, VM94, VR500, BB93, Gra09, GFG12, HE13, HMK74, KME09, KE0010, KB13, Nak05a, Nak05b, NZZ94, NB96, Ram07, TOC18].

Finite-Difference [BBG+10, TCM18, YSS+17, LZY19].
Finite-Element [MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b]. Finland
[RWD09]. Fire [JML01, SJ02]. First [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gai95, HAM95b, Knu94, Kar95, PBFT95, SSP+94, USE94, AH95, B94, GM18, PTMF18, PBPT95]. Fix
[DLV16]. FLAME [VBLvdG08]. flat [Nak05b]. Flattening [THRZ99]. flavors [GM18]. FlexCL [LWZ18]. Flexibility [KK02b]. Flexible
[CS14, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAM+00, HC08]. Flink
[KWEF18]. FlinkCL [CLOL18]. flip [KO14, Kom15]. Florida [ACM98b]. Flow
[BHW+17, BGD12, CGZQ13, CCBPAG15, FM09, MK17, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTHD99, JAT97, LL16, MBKM12, Ol95, PTT94, RM99, SCC95, SU96, TS12b, TOC18]. Flow-Based
[BHW+17]. Flows [GAP97, BCM+16, BTC+17, Heb93, LLG12]. flowshop [CB11]. Fluid [DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TGEM09, ALR94, ATL+12, AGMJ06, BVdB94, BSH18, BI95, HVSC11, MRRP11, PBK99, SPE95, SZBS95b, WH94]. fluid-particulate [ATL+12]. fluids [HK94, WB96]. Flux
[QRM96, QRG95]. fly [KSJ14, THRZ99, BCAD06, BADC07, FM
[LC97a]. FMA [LO96]. Fock [CBHH94]. Focus [Chia98, CFF19]. foolish [Roh08a]. footprint [TS12b]. force [Goe02]. Forecast
[AHP01]. forecasting [Bjo95, KOS+95a]. Forest [JML01, NCKB12]. ForestGOMP
[BFC+10]. Foreword [CHD09]. FORGE
[WCV96b]. Fork [BVdB12, SML17]. Fork-Join [BDG12, SML17]. form [NCB+12, NCB+17]. Formal
[BG94a, BS07, GKS+11, GB98, LPD+11, PGK+10, VVD+09, BG94c, SZ11]. Formalizing [FGRT00]. Format
[BBH12, MDM17]. Forschung [Ano94c]. Fortran [Ano97, Ben95, Bra97, GBR15, TOC18, AC17, Ano98, AS14, BW12, DZ98b, Dem06, GML+16, HE13, HH14, HZ99, KaM10, Kuh98, LC97b, LCC+03, MWO95, iSYS12, SM03, SMCH15, TBG+02, Wal02, YBMCB14, YSM+16, YSMA+17, vHKS94]. Fortran/PVM [MWO95]. Forum [Str94]. Forward
[RMNM+12, BDB+13]. forwarding [CBX+12]. foster [SM12]. Foundation [Gri01]. four
[GSMK17, MGG05]. four-atom [MGG05]. four-particle [GSMK17]. Fourier
[DBLG11, BCM+16]. Fourteenth [IEE95b]. Fourth [Ano89, IEE93d, IEE95k, Sie92a, Sie92b, Ano94i, IEE96g]. FPGA
[MTU+15, PWP+16, PGF18, RGB+18, WTH17]. FPGA-Platform [WTTH17]. FPGAs
[LWZ18, MC17, OPA+15, PGS+13, WZHZ16, Ro00]. fractal [Wu99]. fragment [KS15a]. fragments [OA17]. Framework
[Ben18, DGMS93, FC05, GGG001, GR07, GDDM17, MGL+17, NCS13, PWP19, PMvG+13, SSB+05, SAS12, Sun90a, Sun90b, WHZ16, Ano93c, BA06, BR04, BAG17, EFR+05, FLR17, GM13, KKM15, KKJ+16, KKJ+08, KHL09, LGG16, LCMG17, LS08, PTL+16, RSC+15, SL00, TDB00, YLC16, YWTC15, ZT17, dAT17]. Frameworks
[OP10, ASS+17, KDSO12]. France
[ACM90, BR95a, BFMR96, CHD07, DE91, FR95, JPTE94, MCD+08, VW92, YH96, GA96, IEE94c]. Francisco
[BBCG+95, IEE93a, IEE94g]. Frankfurt
[Tou96]. Frankfurt/Main
[Tou96]. Fredericton
[BG91]. Free
[PKYW95, CP15, SAO11, Zah12]. freedom
[KTJT03]. Frequency [IEE94c]. friendly
[SVC+11]. Frontiers
[ACM06b, IEE94a, IEE96c, Sie92a, Sie92b, Sie92a]. Frontiers'95
[IEE94a]. Frontiers'96
[IEE96c]. FSI [HAA+11]. FT
[FD00, LNLE00]. FT-MPI
[FD00]. Fujitsu
[Ano98, AKL99, BHS+02, SWJ95, SH96].

G [OPM06]. G2 [Cot04, KTF03, OPM06]. GA [Ara95]. GAIN [ARYT17]. GAIN-MPI [ARYT17]. Gains [CMM03]. Gallipoli [Ano93b]. GAMMA [CC00a]. Gap [AB93a, ASS+17]. Garbage [GS96b]. Gas [MTK16]. gauge [BW12]. Gauss [BG95, LM99, Ols95]. GCell [SHH94a, SHH94b]. GECCO [B+05]. Geist [Ano95b]. Gemini [SWS+12]. gems [Fer04, nH12, Ngu08, PF05]. Gene [GDM18, PCS94, AAC+05, BGH+05, EFR+05, KMH+14, LM13, MV17, MSW+05]. gene-finding [PCS94]. Gene/L [AAC+05, BGH+05, EFR+05, MSW+05]. Gene/Q [KMH+14, LM13, MV17]. General [Che10, IH04, MW98, SK10, SZBS95a, Sun94a, ABDP15, ADLL03a, ADLL03b, CBM+08, FLD96, KPNM16, PF05, RSBT95, SZBS95b, SSMW06, YPA94]. General-Purpose [Che10, SK10, ABDP15, CBM+08, KPNM16, PF05]. Generalized [DFK01, FKS96, BSC99, SD99, van93]. Generating [AZG17, CGL+93, ER12, IJM+05, PKB+16, SFLD15]. Generation [AB93a, CC17, FAFD15, Gei98, GTH96, HT08, JFY00, LTDD14, RGD13, SSB+17, TGBS05, VPS17, AB93b, CPR+95, DCD+14, DWM12, KHS12, KPL+12, KH10, SP11, WKS96, WMP14, ZKRA14]. generational [WK08a, WK08b, WK08c]. generative [MAS06]. generator [Lan09, TNB17, YL09]. Generic [ARS89, AKL99, GB98, BAS13, GM13, ZT17]. Genetic [FTV00, MTSS94, MSCW95, PB12, WKS96, Wal01a, WHD05, AB13, BB95, FSTG09, HPLT99, RJC95, Wal01b, B+05]. genetics [LM99]. Geneva [IEE97b]. genomic [SDM10]. GeoComputation [Abr96, Abr96]. GeoFEM [NO02b, NO02a, Nak03]. geomechanics [BJS99]. geometrical [FMS15]. Geometry [STK08, STT96]. geophysical [Has95]. Georeferencing [GCC98]. Georgia [USE00, UCW95]. German [EGH99, GBR97, Gra97, GEW98, Sni99, Wer95]. Germany [BDLS96, GH94, KGRD10, MTWD06, MdsC09, PSB+94, Sch93, Tou96, Ano93a, BPG94, Cal94, GHH+93, WPH94]. Gesellschaft [Ano94c]. get [Str94]. Getting [Nob08]. GF100 [WK11]. gHull [GCN+13]. GHz [Ano03]. Gibbs [TKP15]. Gigabit [CC00a, HcF05, EGH09, OF00]. Giganet [GT01, Tra02b, bT01a]. GIS [CFPS95, CSM97]. Give [DZ98b]. Glenda [GCC98]. Global [BSG00, DSS00, Pan95a, Ros13, SHTS01, STK08, SWH15, TTP97, HWS09, HCL05, HEH09, LF+93a, Str94, Wn02, YLZ13, Zah12, ZWHS95]. Globally [BHS+02]. GLUE [Rab98]. GMRES [dH94]. Gmunden [Vol93]. GNU [YSMA+17]. go [KC94]. good [Mat03]. Göttingen [Ano94c]. GP [LRBG15]. GP-GPUs [LRBG15]. GPFS [AHP01, BIC+10, PTH+01a, PTH+01b]. GP-GPU [BG+15, HA11, HCZ16, JKN+13, LME09, LDJK13, LYZ13, MBKM12, PTG13, TY14, YZ14, W+13].
GPGPUs [JMvdVG+17, LSBL15]. gprof [GJLT11]. GPU [Che10, KA13, AKL16, AHHP17, BDp+10, BR12, BCD+12, BCD+15,BTC+17, BWV+12, BBH12, CLOL18, CBYG18, CCBPGA15, DF17, DS16, DK13, Dald18, DSOF11, DWL+10, DWL+12, ER12, Fer04, FFM11, FSSD17, GCN+13, HVA+16, HSE+17, HK09, HK10, HZG08, mHi12, JDB+14, JLS+14, JR13, JNL+15, JPL+17, JPT14, KDSO12, Kha13, KSL+12, KPL+12, KI17, KPNM16, KEGM10, KO14, KMM15, LV12, Lee12, LRG14, LLC13, LAD16, MMO+16, MdSAS+18, MGL+17, Ngu08, NMS+14, NMS12, OFA+15, Pan14, PDY14, PGdCJ+18, PF05, Pri14, RSC+15, RMNM+12, Sai10, SK10, SdM10, dOSMM+16, iSYS12, SS09, SNN+19, SCSL12, SIRP17, SAP16, SD16, SSB+17, SKM15, SKB+14, SG14, TBB12, TS12b, WKPI1, YULMTS+17, YHL11, YCL14, YSS+17, ZRQA11, ZZG+14, ARYT17].

GPU-Accelerated [KA13, SCSL12, PGdCJ+18]. GPU-Aware [Pan14]. GPU-based [MMO+16, SS09]. GPU-code [EZBA16]. GPU-programming [HSE+17]. GPU-Resident [JDB+14]. GPUDirect [OGM+16, YWCF15]. GPUMP [ZC10]. GPUReach [IFA+16]. GPUs [BY12, BDA+18, DS13, DS16, GML+16, GFPG12, GPC+17, GM18, HTJ+16, HLP10, HP11, HLP11, Hos12, IFA+16, JKM+17, JAK17, KGB+09, KKM15, KKL11, KVGH11, LBH12, LRBG15, MA09, ÔN12, OIH10, PP16, PB12, SHLM14, SDB+16, SKK+12, Tsu12, VY15, WRSY16, WJ12, WJB14, YLZI13, YSWY14, ZC10, ZZZ+15]. gpuSPHASE [WMRR17, WRMR19]. GpuVerify [BCD+12]. GQ [RFG+00]. GRACE [YKI+96, ZRQA11]. GRADE [DDL00]. Gradient [BG95, GFPG12, KN17, MM92, Ols95]. Grain [AZG17, IOK00, KOI01, MJPB16, NIO+02, NIO+03, BK11, JCP15, KW14, SFL+94].

Grained [ADRCT98, BBG+10, DS13, DS16, GML+16, GFPG12, GPC+17, GM18, HTJ+16, HLP10, HP11, HLP11, Hos12, IFA+16, JKM+17, JAK17, KGB+09, KKM15, KKL11, KVGH11, LBH12, LRBG15, MA09, ÔN12, OIH10, PP16, PB12, SHLM14, SDB+16, SKK+12, Tsu12, VY15, WRSY16, WJ12, WJB14, YLZI13, YSWY14, ZC10, ZZZ+15].

Graph [BHWM+17, BW02, MM14, NPS12, PPR01, STV97, HLP10, HKOO11, PP16, PD11]. Graph-Based [NPS12]. Graph-Partitioning [STV97]. Graphic [HJBB14]. Graphical [BDG+91b, DDL00, BDG+92a, KFSS94, SSF95, VDL+15]. Graphs [LS15b, LSVMW08, LSW11, SLJ+14, vdLJR11, ABDP15, BHS18, CBM+08, DBLG11, Fer04, GKL95, HTA08, HSW+12, KFA96, KY10, KME09, LHLK10, MSZG17, PF05, SHM+12, SR11, WWFT11, ZLS+15, MSML10].

Graphs [LGM00, OP10, PGF18, EP96, MC99, MJPB16]. Gravitational [ZK15, KM10]. Greece [CD01, CDND11, SM07, TG94]. green [PTL+16]. Grenoble [JPTE94]. Grid [AB93a, CGB+10, CL03, DPP01, Fos98, KT02, Lai01, Liv00, MB17, PLK+04, Rei01, TGEM09, AB93b, Eng00, GLM+08, KRKS11, WYL12, AASB08, BR04, CCHW03, DKD08, FC05, GFB+03, GL02, KTF03, KGK+03, KSSS07, LC07, LS08, NSB07, RPM+08, RTRG+07, SHTS01].

Grid-Adaptive [KT02]. Grid-Enabled [Kos98, GLM+08, KTF03]. Grids [NO02b, NBS99, CC10, KGB+09, NO02a, NB96, BBH+06, GR07, Ram07, SN01]. GROMACS [BvdSvD95]. Gropp [Ano05c, Ano99c, Ano09d, Ano00a, Ano00b]. Gross [LBB+16, LYS+16, SSB+16, YSV+16, YSMA+17]. Groundwater [AFST95, EGDK92]. Groove [AD98, Ano98, Ara95, ACDR94, CHD07, CHD09, CD01, CDN11, DDK05, DLM99, DPK00, GN95, KGRD10, Kra02, KKD04, LBB+18].
grouping [WPL95]. **Groups** [GOM+01].
Grover [LYZ13]. **Growth** [PKYW95, BB95]. **GTS** [PKE+10]. Guest [AM07, GSA08]. **GUI** [VGS14].
GUI-awareness [VGS14]. guidance [SDJ17].
Guide [Ano12, D+91, GBD+94, Lad04, Nov95, Per96, Ano95b, BDG+91a, McK94].
Guideline [Tra12b]. Guidelines [TGT10].
GVirtuS [MGL+17].
Hack [DLV16]. **Hague** [Ano93f]. Halide [RKBA+13]. **Hamburg** [PSB+94].
Hamiltonian [ART17]. Handling [DFC+07, FMSG17, LSB15, LGM00, RC97, FFFC99, LNW+12, THRZ99].
Hands [KmWH10]. Hands-on [KmWH10].
Harbor [BBC+00]. Hardware [BGG+15, BWW+12, Bri12, BCKP00, CDPM03, DWO2, GMJM18, HSP+13, LSMW11, MFC98, PSM+14, PKB+16, vdLJR11, ER12, GGL+08, PMZM16, Rab99, SBG+12, SH94, SWS+12, YAJG+15, ZLS+15].
Hardware-Based [CDPM03].
Hardware-oblivious [HSP+13]. harmonic [GSMK17]. Harness [EBKG01, MS99b, PL96, FBD01a, FBD01b, FBVD02, FD02a, FD02b, MSF00, Gei98].
Harrogate [CJNW95]. Hartree [CBHH94]. HASEonGPU [EZBA16]. Haskell [WO97].
Hate [Dan12]. Hawaii [ERS95, ERS96, HS94, MMH93, ZL96].
HCA [KBC16]. **HDL** [Kat93, KMK16].
HDMR [KD12]. Heading [Sch99]. Heat [SAS01, NP94, iSYS12]. Hector [RFRH96, RRG+99]. Heijen [Van95]. held [AGH+95, GA96, JB96, KG93, MMH93, Old02, R+92, SPH95, TG94]. Helios [SPK96]. Helmholz [HMKV94]. Helps [Stp02]. HeNCE [BDG+92a, BDG+92b, BDG+93a, BDG+94]. Hénon [JPT14]. Herzliya [IEE96h].
HeSSE [MRV00]. **Heterogeneous** [ABB+10, BDG+93a, BDGS93, BL95, BCP+97, BGR97b, BCKP00, CMMR12, COL18, CLBS17, DGM93, DGM93, FDC97a, FDC97b, FL98, FS98, GS91b, GDDM17, IEE93f, KR09, KCR+17, LC93, MRV00, MM01, MM02, NTR16, PDA98, SMS00, SGS10, TQDL01, VLO+08, AC10, ADB94, ADNR95, AM94, BDG+92c, BDG+94, BALU95, BRR99, BAG+17, CCM12, CFPS95, FM96, GZ12, GCN+10, GKF13, HK94, KSG13, KSL+12, Kos95b, LCL+12, LR06a, Lee12, Mai12, MSL2, MM03, NP94, NE97, Pen95, PSB+19, RCFS96, SCJH19, SK93, SM93b, Sun94b, Sun95, TBB12, TM17, TKP15, TDG13, VB99, WCC+07, YST08, YSL+12, ZJWD18].
HeteroMPI [LR06a, VLO+08]. Heuristic [BHM96, STV97, WH94]. HI [ERS96, HS94, IEE96e, ACM97a]. **HICSS** [ERS96, MMH93]. **HICSS-26** [MMH93], **HICSS-29** [ERS96]. hiCUDA [HA11]. Hierarchical [BMR01, FBSN01, HA10, HL17, MALM95, RR02, ADMV05, BDV03, GJMM18, OKM12, YPZC95]. hierarchies [SY+09]. High [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, BPG94, BRST94, BS07, BDA+18, CDD+13, CMN11, CDHL95, CS14, DPP01, DL00, DE91, FKG10, GH02, GBH99, GBS+07, GLDS96, HVA+16, HA11, HO12, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IFF95, JJM+11, Kha13, KMK16, KEGM10, KH15, La91, LCK11, LC97a, LkLC+03, LH92, LWP04, MW98, MPD04, ME17, MAB05, NU05, OIH10, OLG01, PKB01, PRH04, PTH+01b, Rab98, RH01, SPM+10, SCCL12, SJ02, Slo05, SVC+11, SSSS97, T0u00, T0u07, VW92, WN10, YCL14, YWC15, YSF+05, AH95, Ano03, BAC07, Ber96, BWT96, BD95, CH95, CH95, CYGB18, DL10, Du92, EZBA16, ESB13, FME+12, GSO2, GCC+07, GL96.
GL97c, HDDG09, HW11, Hos12, KBP16, KME09, Lan09, LBD+96, MSL12, MSZG17, NS91, NFG+10, Old02, OGM+16, PGS+13].

High
[PGK+10, PF05, PTW99, Reu03, RJDH14, SG14, SFLD15, ZSK15, ZWL13, dAT17, CDH+95, DZ98b, D+95, DE91, GH94, HS95a, KD12, LCHS96, LC97b, SSH08, Ten95].

High-Dimensional [MW98]. High-Level
[CS14, DDL00, HA11, Hos12, SG14, SFLD15].

High-order
[KEGM10, KME09, OGM+16].

High-Performance
[ACM98a, FGKT97, IEE97c, LkLC03, OLG01, PKB01, PR94b, PTH+01b, Rab98, RH01, SP+10, SCSL12, WN10, GLDS96, OIH10, SVC+11, Ano03, ESB13, FME+12, GL96, GL97c, HDDG09, KBP16, LBD+96, Old02, PGS+13, PGK+10, PF05, Reu03, RJDH14, SFLD15, ZSK15, HS95a, GH94, LCHS96, SSH08].

High-Precision [Kha13]. High-Quality
[BDA+18].

High-Speed
[CDHL95, MKM16, AH95, BWT96, CDH+95]. High-throughput
[ESB13]. Higher
[MYB16, KB13, wL94]. higher-level [wL94]. Higher-order
[MYB16]. Highly
[MM95, PV97, TMP16, CARB10, GBH14, GBH18, VM95].

Highly-scalable
[GBH14]. Hills
[IEE93f]. HiNet
[AH95]. HIRLAM
[Bj05, HE02, KOS+95a]. histogramming
[KRC17]. History
[OWSA95]. Hitachi
[Ano03, NNON00, TSB02, TSB03]. HLA
[KTRG+07]. Hoare
[KI17]. Högskolan
[Eng00]. Hole
[Kha13]. holistic
[TWFO09].

Homomorphisms
[RG18]. homotopy
[GWC95, SMSW06, VY15]. Honolulu
[IEE96e]. honor
[Str94]. Host
[Ano95c, LLRS02]. Host-Parasite
[LLRS02]. HOTB
[GSMK17]. Hotel
[IEE94e]. Hotel-Copley
[IEE94e]. Hough
[YULMTS+17]. house
[ZLZ+11]. Houston
[ACM06a, Ano95a, Cha05, DkM+92, Y+93]. HP
[CGB+10, BCM+16]. HPC
[ASS+17, CGBS+15, GDC+15, GKK09, LCVD94b, OLG+16, PRS+14, RGGP+18, ZLP17].

HPC2002
[Ano03]. HPCN
[LCHS96]. HPF
[BP98, BF01, B1D95, Bri00, BDV03, CM98, CDD+96, Coe94, FKK+96b, FKK96, FKK96a, LZ97, OF98, OPP00, SM02, Str94].

HPF-MPI
[BP98]. HPL
[Lee12].

HPVM
[BCKP00, CLP+99]. Hungarian
[FC92, FK95]. Hungary
[DKP00, KKD95, FK95]. hunting
[JPP95]. Husky
[YLC16]. Huss
[Ano96a, Ano99a, Ano99c, Ano99b, Ano99d]. Huss-Lederman
[Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

Hybrid
[BBG+10, BBH+96, BBV98, CGC+11, CNM11, Cha02, D97, GPC+17, HVSC11, IDS16, KS15a, KLR+15, LLRS02, LRG14, MS02b, NO02b, PZ12, SSB+16, VPS17, WT12, YHL11, YPAA09, YTH+12, ADR+05, BBG+14, CSPM+96, FMS15, GÁVRRL17, GKK09, HDB+13, JR10, JMS14, KN17, KRG13, KJEM12, LLC13, LH+14, MLAV10, MRRP11, NO02a, Nak05a, Nak05b, PARB14, PHJM11, SDJ17, SVC+11, WT11, WYLC12, WYLC12, YWC11, ZWL13].

Hybrid-core
[BBG+14].

Hybridizing
[LSG12]. HYDRA_MPI
[PBC+01]. Hyper
[CSW99, SBTO4, TB+02, ZAT+07].

Hyper-Rectangle
[CSW99]. Hyper-Threading
[SBTO4, TBG+02, ZAT+07]. hypercube
[HS95b, Sur95b]. Hypercubes
[Ano89, RJMC93, She95]. Hypercubic
[HP11]. hyperelastic
[OKW95]. hypersonic
[BTC+17]. Hyperspectral
[VLO+08].

I-SPAN
[LHHM96, Li96]. I-WAY
[FGT96]. I/O
[Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLC+03, kLCC+06, MV17, MC18, MGC12, MG15, PSK08, PR02, RK01,
SBQZ14, Tha98, Tsu07, WSN99, ZJDW18.
Iasted [Ham05], IBM
[AL93, Ano00, B36+94, BGBP01, BR95c,
BR95b, Brl95, CE00, CD09, FHPS94b,
FHP+94, FHP+95, Fpr95, FWR+95, GL95d,
HSM94, HMKV94, Heb93, JF95, KB98,
KAC02, KHS01, KMH+14, LC97b, MP95,
MW93, MAB96, NM93, WZWS08,
XH96].
IBM-SP1 [FHPS94b].
Ica [IEE96d], ICAPP [Nar95], ICAPP
[SM97], ICIP [IEE94b].
IcAPP [Agr95a].
ID [DGG12].
Idaho [Str94].
Ideas [IEE95d].
Identification [HPLT99].
IEEE [ACM97b, ACM98b, ACM04, ACM05,
Bha93, IEE94e, IEE94g, IEE95b, IEE95a,
IEE95k, IEE95g, IE96b, IE96f, IE96d,
IE02, Nar95].
IEEE/ACM [ACM04].
IFIP [Boi97, DR94, PB94].
IFS [AHF90].
Igniting [ACM03].
II [DE91, GE95, HS94, BPS01, BWW+12,
EM00b, GAVRRL17, Sta95b].
III [BPG94, BP93, DSM94, GE96, Has95,
OKW95, SSGF00].
ILDJIT [CARB10].
I’ll [Har94].
Illumination [STK08, ZW95].
ILU [ABF+17].
ILU-preconditioned
[ABF+17].
in [Gra97].
Image [DYN+06, FJBB+00, GA96, GPC+17, KBA02, KS01,
LSZL02, MC18, NJ01, PLR02, RBR01,
WN10, ARL+94, DZZY94, GDC15, JC96,
KKL11, RKBA+13, LS96, UH96, Wu99,
YULMTS+17, YPZ95, YZPC95, dAT17].
Imagery
[GG99, GGG00, GCGS98, GGG99].
Images [Uhl94, Uhl95b, VLO+08, NA95].
Imaging [NH95, Has95, LM13, Pat93].
imbalances [MLVS16].
immunodominance [ZWL+17].
Impact
[ADL03a, ADL03b, Brl05, Bri12,
TSS00a, WHDB05, DO96, FSV14, SHIC18].
impacts [Str94].
Implement
[GM95, PPT96c].
Implementation [AB93a,
AKL99, BGG+15, BGBP01, BPS01, BR95,
BHP+03, BBS99, Bns01, BP98, BCD+15,
Bjo95, BJ97, BIC+10, BM02, BM94,
BM94b, BMG07, BDA+18, CGC+02,
CFMR5, DYN+06, DAK89, EFR+05, ES11,
FH97, FD04, FHS09, FSSX14, FJBB+00,
FHP94a, FHP94b, FHP+94, FSLS98,
GBH99, GB98, GB98+07, Gr02a, HPP02,
HRZ97, HKT+12, Huc96, HHA95, HAA+11,
IBC+10, ITT02, IM94, JSS+15, JSH+05,
LS20, LTRA02, LZ97, LW04, MS20,
MW98, MN91, MT96, MRH+96, NSS12,
NN00, OKT15, OL01, Pan14, PLK+04,
PS00a, Pet97, PBK99, PTH+01a, PTH+01b,
PB12, RDM09, RG18, RSV+05, SH94,
SFB+04, SGB+02, Ser97, SBC96, SSC97,
SZ95a, SW95, SYF96, Sun12, Sur95a,
TOTH99, TBG+02, TRH01, TJP01,
USE94, VT97, WH94, WPC07, YGGH+14,
YY95, ZZG+14, AGdT02, AS92].
implementation
[AAA16, AAC+05, ADDL03a, ADDL03b,
AB93b, BR91, BvdV95, BR95b, Ber96,
BB90, BK90, B99, B99b, BDV03, Bri95, BB00,
BAS13, CDZ+98, CEOS07, CG99a, CdG99c,
CBHH94, CD96, DSW96, DS96a, DL10,
DBB+16, DSO11, DM12, FFB99, FW96,
FGT96, FGG+98, GCC99, GG99, GG99,
GAVRRL17, GL92, GL94, GL96, GLDS96,
GL97c, GT07, GkLYC97, HBT95, HCL05,
HS95b, ITT99, IvdLH+00, JRM+04, JC96,
KY10, KTF03, KBVP07, KL95, KVGH11,
KB13, LCB12, LC07, LQ96, MMO+16,
Man94, MAI49A, MS95, MSZG17, ON12,
OKW95, O17, OGM+16, PHJM11, PR94a,
PTW99, PCS94, Ram07, RRF96, Sep93,
SZ95b, SLC97, St098, SNMP10, Sur95b,
SL95, TPK15, TPD15, TS12b, TA14,
TCP15, Tsu95, TV96, VDL+15, VGRS16].
implementation
[VM95, Was9a, WMRR17, WMR19,
YPA94, ZLS+15, dh94, dLAMC12h, van93].
Implementations
[AKK+94, Ano01a, ACM14, AJF16, BM00,
BS07, BEG+10, FB94, Gro02b, kLCC+06,
LCW+03, Mar02, ORA12, Sap97, TSCM12,
TSCM12]
TGEM09, VS00, WT12, ZDD97, CLSP07, ER12, ED94, GML+16, ICC02, KWEF18, MKP+96, NN95, Pri14, RLFSdS13, WLK+18, WT11, YCL14. \textbf{implemented} [BBDH14, EP96]. \textbf{Implementing} [DPZ97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MMH98, MS99c, MSB97, SSC96, SS99, SMTW96, SGHL01, SCC95, Tra02a, Wi93, BWT96, LHZ97, YX95]. \textbf{Implementor} [GL95b]. \textbf{Implicit} [MS02b, NA01, SGHL01, Bjo95, TSP95, WADC99]. \textbf{Importance} [BCG+10, PCY14]. \textbf{Importance-Driven} [PCY14]. \textbf{Improve} [KBS04, SKH96, Tha98, GKL97, RHG+96]. \textbf{Improved} [Tra02b, MMO+16, dIAMCFN12]. \textbf{improvements} [DPSD08]. \textbf{Improving} [CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SM12, SCL00, XF95, CZ96, JKN+13]. \textbf{in-house} [ZLZ+11]. \textbf{In-Memory} [CLOL18, CRM14, HSP+13]. \textbf{In-Place} [LTS16, HSE+17, FSHL11]. \textbf{Including} [BWW+12, GLT12]. \textbf{incompressible} [BCM+16, Lou95, RM99, TS12b]. \textbf{Incorporating} [LM94, LYZ13, TKP15]. \textbf{Incremental} [dOSMM+16]. \textbf{Indefinite} [YKW+18]. \textbf{Independent} [BCLN97, CM98, Fin00, GJP01, KJA+93, KAHS96, wL94, WTO014, TWFO09]. \textbf{Integrate} [GLRS01]. \textbf{Integrated} [CFDL01, DGMS93, HKN+01, KSV01, WL96a, DF17, HK10, KW14, VDL+15, WWZ+96, WL96b, XWS99]. \textbf{Integrating} [BCLN97, CM98, Fin00, GJP01, KJA+93, KAHS96, wL94, WTP014, TWFO09]. \textbf{Integration} [CGC+11, CSW97, FD96, FB94, MAIVAH14, Sei99, AL96, CSW99, KB13, RMS+18, RBB15]. \textbf{Integrator} [Per99, SP99]. \textbf{Intel} [Ano96c, Ano03, DSGS17, MP95, OTK15, URKG12, VDL+15, YSMA+17]. \textbf{Intelligence} [BPG94]. \textbf{intelligent} [IEE95a, ZWZ+95]. \textbf{Intel(R)} [TBG+02, SBT04]. \textbf{INtensities} [ARYT17]. \textbf{Intensive} [Rei01, BFLL99, BKML95, SL94a]. \textbf{Inter} [KFL05, LAFA15, FKLB08, LFL11, SDB+16]. \textbf{Inter-Atomic} [LAFA15]. \textbf{Inter-Node} [KFL05, FKLB08, LFL11].

\textbf{InfiniBand-based} [PK05]. \textbf{inflation} [OdSSP12]. \textbf{influence} [Gra97]. \textbf{Information} [Ano98, CGB+10, Ano93c, CG99b, MMR99, WADC99, PSB+94]. \textbf{infrastructure} [GFIS+18, WLR05]. \textbf{infrastructures} [GWVP+14]. \textbf{Initial} [LLH+14, VDL+15, AL96, LSR95]. \textbf{Initiated} [SSB+05, initiatives] [Sun95]. \textbf{initio} [SGGF00, SEC15]. \textbf{Injec}
tion [RRAGM97, SAL+17]. \textbf{Insight} [IEE02]. \textbf{Inspection} [BPMN97]. \textbf{inspired} [NEM17, TDB00]. \textbf{instances} [RBAI17, ZLZ+11]. \textbf{Institute} [Old02, TG94]. \textbf{Instrumentation} [MVF95, Yan94]. \textbf{Insurance} [PZ12]. \textbf{Integer} [ASA97, CF01, WCL07, ZC10, BHJ96, KVGHI11]. \textbf{InteGrade} [CC10]. \textbf{integral} [HK94]. \textbf{Integrals} [FBSN01, NS16]. \textbf{Integrate} [GLRS01]. \textbf{Integrated} [CFDL01, DGMS93, HKN+01, KSV01, WL96a, DF17, HK10, KW14, VDL+15, WWZ+96, WL96b, XWS99]. \textbf{Integrating} [BCLN97, CM98, Fin00, GJP01, KJA+93, KAHS96, wL94, WTP014, TWFO09]. \textbf{Integration} [CGC+11, CSW97, FD96, FB94, MAIVAH14, Sei99, AL96, CSW99, KB13, RMS+18, RBB15]. \textbf{Integrator} [Per99, SP99]. \textbf{Intel} [Ano96c, Ano03, DSGS17, MP95, OTK15, URKG12, VDL+15, YSMA+17]. \textbf{Intelligence} [BPG94]. \textbf{intelligent} [IEE95a, ZWZ+95]. \textbf{Intel(R)} [TBG+02, SBT04]. \textbf{INtensities} [ARYT17]. \textbf{Intensive} [Rei01, BFLL99, BKML95, SL94a]. \textbf{Inter} [KFL05, LAFA15, FKLB08, LFL11, SDB+16]. \textbf{Inter-Atomic} [LAFA15]. \textbf{Inter-Node} [KFL05, FKLB08, LFL11].
inter-workgroup [SDB+16]. Interaction [DMMV97, GFV99, NSLV16, Sou01].
interactions [PARB14]. Interactive [Coo95b, KPK13, KA13, NE98, RTRG+07, STK08, Coo95a, LJM+05].
Intercommunication [TMP16].
Interconnect [Bri12, SJ02, BWT96, SWS+12, TBD96].
Interconnected [Hus00]. Interconnecting [MC98].
Interconnects [MANR09, SB95, AVA+16]. Interconnects [RA09]. Interface [Ano93d, Ano01b, BCFK99, BDH+97, CHD07, Cer99, CGH94, CDND11, DFKS01, DHHW92, DHHW93a, DBK+09, FKKC96, FSLS98, Gle93, GLS94, GL95c, GLDS96, GLT00b, HDB+12, HRSA97, KS95, KGRD10, KKDVO3, KKD04, LKD08, LkLC+03, LW97, MP98, MS98, MSS98, MBES94, MMSW02, MTWD06, PS01b, RWD90, SSL97, TDB00, TW01, TBD12, WD96, Wer95, YHGL01, Ada98, AD98, Ano93c, Ano94d, BBB99, BBCR99, Bru95, BDW97, BR94, CFKL00, CFF+96, CD01, CG99b, DDK05, DKB+16, DS96b, DLM99, DKP00, DLO03, HPY+93, HRR+11, KOB01, KS96, KBHA94, Kra02, NS91, Pie94, PR94a, RMS+18, SL94a, SW95, SDV+95, VM95, Wa94a, Wal94b, ZWL13, ZKRA14, AMHC11, BC14, BBI+06, BRU05, BDH+95, Cot04, DDK08, DIn96, FKS96, FG96, FCG+98, GGHIL+96, GLT99, GLS99, GLT00a, GL04]. Interface [Han98, IBC+10, KTF03, KKD05, LK10, MSL96, RRHF96, SWHP05, SL95, SWL+01, TGT05, YGH+14, Ano95c, Ano90a, Ano00b]. InterfaceArchitecture [Sei99]. Interfaces [MGC12, Wit16, RJDH14, Trä12a].
Interfacings [Lus00, PL96]. interference [ZJDW18]. Intermediate [SML17].
internal [BBH+15]. International [ACM94, ACM96b, ANS95, Abr+96, ATC94, AGH+95, Ano93a, Ano94a, Ano94e, BPG94, Bos96, BFMR96, Cha05, CZG+08, CGKM11, CMMR12, CGB+10, CH96, DSM94, DW94, EV01, Eds08, ERS95, ERS96, EJL92, Gat95, GA96, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE93c, IEE93b, IEE94d, IEE94g, IEE95b, IEE95c, IEE95a, IEE95k, IEE95i, IEE95f, IEE95l, IEE96a, IEE96f, IEE96e, IEE96d, IEE97b, IEE97c, IEE05, Kum94, LCK11, LF+93a, Lev95, LHHM96, Ll96, MMH93, MCdS+08, MdSC09, Nar95, Ost94, PW95, PBG+95, PBPT95, Re96, R+92, SHM+10, Sie94, Sil96, SM07, Tou96, VW92, Vol93, Vos03, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPT94, LCHS96, Mal95, ZL96, Ano93b, HHK94, Sch93].
Internet [NE98]. Interoperabilität [CHR97]. Interoperability [BoF97, Don06, PLR02, GBR97].
Interoperable [Rab98, MSL12, YBMC14]. Interoperation [FDG97a, FDG97b, FL98]. Interpolants [RB01]. interpolation [BAS13].
Interpretative [MKW11]. Interpreted [FSSD17]. Interpretive [CNC10].
interprocess [SC95]. interprocessor [DS96b]. interrupts [CXB+12, SH96].
Intervals [MDM17]. intra [GM13, VSW+13]. intra-node [GM13].
intra-warp [VSW+13]. Introducción [VP00]. Introducing [JKM+17, TBS12].
Introduction [Ano96b, AM07, Che10, Cze16, DOSW95, GSA08, HW11, Mar02, Mat00b, SK10, VP00].
Invasive [URK12]. Inverse [Huc96, BV99, GGC+07, GG09, Wan02].
Inversion [ACMR14, Kan12].
Investigating [GMdMBD+07, Ros13]. investigation [PHW+13]. Invisible [Wis97]. Invited [Ge93a]. IO [AH01, BIC+10, CGC+02, CFF+96, DL10, FGRD01, FWNK96, FSLS98, LRT07, LGG16, PSK08, PTH+01a, PTH+01b, SW12, Sto98, TGL02, ZZ04]. IO/GPFS [PTH+01a]. IOMMU [YWC15]. IOV
SSB+17, ARS89, BCD+12, FSV14, FVLS15, FFM11, KKM15, PTG13, PGS+13, TBB12.
Kerr [Kha13]. key [LF+93a]. kind [SP11].
Kingdom [Boi97]. Kirchhoff [SSS99].
Klagenfurt [Bos96]. Knapsack [ICC02].
KNEM [GM13]. knowledge [FNSW99].
Koppelrandkommunikation [Gra97]. Kpi [EML00].
KPN2GPU [BK11]. KPP [AC17].
Kremlin [GJT11]. Kronecker [LNW+12]. KSIX [AUR01]. KSR1 [BL94].
KU [IM94]. Kungl [Eng00]. Kyoto [IF95, SPE95, IF95].

L [AAC95, BGH05, EFR+05, MSW05].
LA-MPI [YP+05]. Lab [Str94]. Labeling [PP01, KRKS11]. labelling [HLP10].
laboratory [JY95]. Lafayette [EV01, Ed18].
Lagrangian [CT94a, CT94b, RSV+05, TC94].
Lahey [Ano98a]. Lake [Hol12]. LAM
[OP00, RST06, SSB+05, Squ03, ZWZ05].
LAM/MPI [OP00, RST06, SSB+05, Squ03, ZWZ05].
lambda [PQ07]. lambda-calculus [PQ07].
LAMGAC [MSOR1, MSa2a]. Lamport
[TPLY18]. LAN [CCU95, CDH+05].
MSOR1, TSZC94, ZGC94].
LAN-based [TSZC94]. LAN-Message
[MTSS94]. Lanczos [GP95, Sch96a, Sch96b].
Landing [dCZG06]. Landsat
[GGCM99, GGCS98]. Landsat-TM
[GGCM99, GGCS98]. Lane [HHC+18].
Language [ACM96a, NM95, PD98, TA14].
WLR05, Ben95, CGK11, Hos12, Nob08,
RKBA+13, Rob00]. Languages
[CF+94, FMSG17, FSSD17, CH96, Mar05].
Ohu14, SWS+12, PGB+95, SS96]. LANs
[Fin97]. LAPACK [Add01, Arv03].
LaPerm [WRSY16]. LAPI [BGBP01].
Laplace [ACMR14]. Large
[AKE00, BHW+17, BZ97, BJS99, BHNW01].
CGC+11, DALD18, FFP03, Huc96,
JFGRF12, LLY93, MKC+12, MFPP03.
PCV14, RGB+18, SGP+03, SM03, SvL99,
TGEM09, WT12, ZWJ10, AASB08.
AMS94, BCA+06, BA06, BCH+08, Che99,
CCHW03, DZZY94, FME+12, GG99, IM95,
JLS+14, KEGM10, Kos95b, KA95, LS10,
MLA+14, NFG+10, PTL+16, PD11,
RMNM+12, SC96a, TBB12, TO1C18, WT11,
ZW13, ZA14]. Large-Scale
[AKE00, BHW+17, BZ97, FFP03, MFPP03].
SM03, WT12, BJS99, SvL99, AASB08.
BCH+08, Che99, FME+12, LS10, MLA+14,
PD11, RMNM+12, WT11, ZA14].
large-sized [JLS+14]. Larger [NB96].
Large-Scale [LAd+15]. laser
[EZBA16, WWZ+96]. Lastverteilung
[Wil94]. Latency [Jes93a, Jon96, KBHA94].
NCB+12, NCB+17, TBD96].
latency-tolerant [NCB+12, NCB+17].

Lattice
[BBK94, BMS94b, HLP11, SJK+17a].
SJK+17b, BW12, BMS94a, CGK+16, GM18.
Sai10, SVC+11, BLP13, OTH15]. launches
[Ano03]. Layer [CSAG98, HEH98].
FKK96a, PTT94, dAMC11, dAMCF12].
layered [Di96]. Layering [Hus01]. layers
[KC94]. Layout
[WG17, BZH+05, HP11, LDJK13, Str12].
Lazy [TCB10]. Leaks [DLV16]. Learned
[GKPS97, MWO95]. Learning
[AHH17, Gro01b, FE17, KWEF18, LSSZ15].
SEC15, TWFO09, WO09, WFO14].
learning-based [FE17]. Least
[PWP96, VRS00, DK13]. Least-Squares
[VR00]. Lecture [Ge93a]. Lederman
[Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].
Nag05]. Leeds [Abr96]. legacy
[BR04, LP00, LRW01]. Lemon [DRUC12].
Lengths [GSHL02]. LEO [CCBPA15].
Leonardo [Stp02]. Lessons [MWO95].
Level [AELGE16, BGG+15, BBC+00, CS14,
CRGM14, DHHW92, DHHW93a, DDL00, GS91b, GAM92, HKT92, DK02, KCP94a, KOW97, LVP04, LMRG94, NPP94c, SHM94, SBF94, TS12a, TW01, XF95, BMPS93, CAWL17, CRGM14, CRGM16, EPP94, GGS99, HE95, HK90, Hos92, KCP94a, wL94, LMCG97, LM93, MALM95, NS91, Nak95b, STY99, SCL97, SG14, SFLD94, DR18, Gra99, GFP94, Jou94, MW98, MM94, OKW95, SCC96, SMSW96, dCH93, dH94. **Linear-scaling** [Gao03]. Lines [NE01, YULMTS17]. Link [BGR97b, SJ02]. **Linked** [WJ12]. Linköping [FF95]. **LINPACK** [JNL95].

Linux

[Sc99, SMTW96, USE00, SSS97, Ano91a, GSN90, MK04, FO00, PS07, PKB91, RS06, Sc99, Sl05, SGL900, YL90]. Linz [Kra02]. lipid [FHS99]. Liquid [DS00, JLS94]. Lisbon [HE93a]. LISP [AC90]. List [Tr98, W12]. Lithic [PHA10]. Lithography [RDM99].

Locality

Locking

Logical

[RGDML16, RGDM15]. **Louisiana** [USE95, IEE96b]. Love [Dan12]. Love-Hate [Dan12]. Low [BG94]. Low-Bandwidth [NE01]. Low-Cost
Low-Density [MC17].
Low-Level [BGG+15, GGS99].
Low-life [Str94].
LOW [ZRQA11].
LU [AZ95, BRS92, BB18, LC97].
Lugano [GT94].
Luminous [KNT02].
Lumsdaine [Ano99c, Ano99d].
Lusk [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].
Lustre [DL10].
Luther [ACM99].
Lyngby [DW94, DMW96, Was96].
Lyon [BFMR96, FR95].
M [PBC+01].
M-SPH [PBC+01].
M6A [EM00a].
M6B [EM00b].
Machine [AS92, AGIS94, BJ93, BS93, CHD+91, FE17, Fis01, GB-D+94, Gre94, KNT02, KKKV03, KKD04, LKD08, MTWD06, Nov95, Patrick93, Per96, RW09, TY14, VS00, Wel94, AD98, AL92, Ano95b, BR91, BDG+91a, BPC94, Bir94, BDSL96, BDW97, CARB10, CML+95, Cav93, Cha96, Che99, CD01, CC00b, DM93, DDK05, DLM99, DKP00, DLO03, FM90, KWEF18, KMC97, Kr902, LG93, MN91, MRH+96, NB96, Sch94, SK92, SCC96, SL00, TVCB18, TW12, TWF009, WO09, WLF014, ARL+94, BG94b, JPP95, KKD05, DKL10, QRG95, SSSS96].
machine-learning [TWF009].
machine-learning-based [TWF014].
Machines [BP99, BZ97, BCC+00a, BT01b, DBR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCSL12, ZWJK05, BCA+06, BSC99, BCC+00b, DDS+94, DCH02, GZK12, KN95, PRS16, SL94b, TSY99, TSY00, WPL95, ZWL13, Gei91, YC98].
MAFFT [ZLS+15].
Magnetic [Y+93, PKE+10].
Magnetism [Y+93].
magnetized [CFF19].
Magnetohydrodynamic [KT02, WWFT11].
Magnetostatic [BB93].
MagPIe [KHB+99].
Main [Tou96].
Maintaining [PKB01].
maintenance [ZDR04, ZDR01].
major [WLK+18].
Makes [ZG95b, Str94].
Malleable [EDSV09, SMSC15].
Mambo [WZWS08].
Man [IEE95a].
Manageable [PKB01].
Managed [KCR+17, LB16, SYR+09].
Management [AJ97, ALB+18, AUR01, BGR97b, BGL00, EK97, FGD97a, FGD97b, GJR09, PPT96a, PSS0a, SI17, STY99, THS+15, ARS89, DZ06, DF17, FLD96, GMIM18, GL95a, JCP15, LF+93a, PPT96b, PPT96c, YWT15].
manager [Sep93].
managers [FLD96].
Managing [BPG98, FGKT97, vivo0, NPS12, Ob96].
Manchek [Ano95b].
Manipulation [KKV01].
Manual [CSW12, NLIV16, Re01].
Many [DT17, LH97, LLCD15, RB01, TCM18, YTH+12, ACMZ11, VDL+15, dCZG06].
Many-Cores [DT17].
Manycore [MJB15, KGB+09].
Map [JPT14, FM11, FJB+00, MSCW95].
MAPA [JPL17].
MapReduce [JS13, MMM13, PD11, WZH16].
Maps [BM07, KRC17].
Marc [Ano96a, Ano99a, Ano99c, Ano99d, Nao05].
March [ACM95a, ACM06a, Ano89, Ano93c, Cal94, DCM+92, IE93, IE94, IE95b, IE97a].
Marine [LLRS02].
market [LF+93a].
Markov [BBHH12, PPS01].
Marliz [GA96].
marching [CFK10].
MARTE [RGD13].
Martin [ACM99].
Maryland [IE96c, SP95].
MASA [SMM+16].
MasPar [ARL+94].
Massachusetts
Memory-Based [MMH98].
Memory-Efficient [MRB17].

memory-level [HK09]. Memory/Message [ST02b]. MemTo [GSN+01]. Menon [Stp02]. Mesh [HAA+11, MRB17, Ran05, BAS13, CLSP07, Cou93, GBR15, IDS16].

mesh-particle [BAS13]. Meshes [MRB17, TPD15]. Message [Ano93d, AKB99, Att96, BZ97, BCH+03, BBG+01, BHH97, BGR97b, BFM97, CHD07, CER99, CGZQ13, CGH94, Cot97, Cot98, CTK00, CDND11, DFKS01, DHHW92, DHHW93a, DDL00, FKKC96, Fos98, FB94, GR07, GB96, Gw03, GLRS01, GLS94, GL95c, GLT00b, Hem94, KGRD10, KS97, KSV01, KKKD03, KKKD04, LKD08, Luo99, MPI98, MP95, MS98, MBES94, MG97, MTWD06, MSS97, NW98, PKK00, Pok96, RC97, RRBL01, RDDW09, RFG+00, SAL+17, ST02b, TDB12, WDF95, Wis97, YHGL01, ZWL13, ZG95a, ZG96, ZLL+12, Ada98, AD99, AAC+05, Ano93c, Ano94d, Ano95c, An00a, Ano00b, BBG+14, BL97, BvdSv95, Bjo95, Br95, BDW97, BFIM99, CGJ+00, CDZ+98, CRD99, CD01, CG99b, DKF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FKK94, GL92, HP05].

message [HPY+93, Hem96, KJA+93, Kna02, LR06a, LBD+96, wL94, LCY96, LLM+15, LC97b, NS91, PS97, PKB06, Pie94, PR94a, PS00b, Sei99, SWJ95, SDV+95, SZ99, SSG95, Sti94, TSSZ94, VM95, Wal94a, Wal94b, ZKRA14, ZA14, AMHC11, BC14, BBH+06, BRU05, BDD+95, Cot04, DDK08, Din96, FKS96, FGT96, FGG+98, GGHL+96, GLDS96, GLT99, GL99, GLTO0a, GL04, Han98, IBC+10, KTF03, KKD05, LK10, MTSS94, MSL96, PS01b, RRFH96, SWHP05, SLG95, SWL+01, TGT05, TDB00, Wer95, YGH+14].

Message-Passing [Ano93d, Att96, Cot97, Cot98, DHHW92, DDL00, GLS94, GL95c, GLT00b, MP98, PKK00, Pok96, RRBL01, AAC+05, Ano94d, Ano95c, An00a, Ano00b, BvdSv95, CDZ+98, GL92, Hem96, KJA+93, LR06a, LBD+96, wL94, LLM+15, PS00b, SSG95, Sti94, Din96, GGHL+96, Han98, RRFH96, SLG95, Wer95, YGH+14].

MetaHaskell [Mai12]. metaheuristics [ZSK15]. metal [JLS+14]. MetaMP [OW92]. metaprogramming [Mai12]. meteorological [RSBT95]. Meteorology [HK93, HK95]. Method [ACMR14, BP99, BJS97, CGU12, FCLG07, GSI97, HC06, KMK16, OMK09, Riz17, TSS00a, ARYT17, BBDH14, BCM+16, DSOF11, ETV94, GFIS+18, HE13, HMKV94, HJBB14, HPLT99, JMS14, KS15a, KD12, LCL+12, Nak05b, NS16, PTT94, Pri14, Qu95, SHH18, TKP15, YBZL03, dAMCFN12, AAB+17, OTK15].

Methodologies [Sun94b]. Methodology [MOL05, WTT17, HPR+95, LM94, WMP14]. Methods [BCM00, CMK00, DFN12, EGH+14, FGKT97, GFPG12, KLR+15, KL11, NA01, Sch01, SOM07, TDBEE11, Whi04, ZB97, CEOS07, DF17, D+95, Gra09, Has95, LSR95, MM11, Nak05a, PGK+10, R+92, SL94a, SGS95]. Metric [SNN+19]. Metrics [DW02, PAR14].

Micro-Benchmark [BW+12, YSWY14], microbenchmark [BO01]. Microcoded [PWP+16]. microtask [OIS+06]. MIDAS
Middleware
[DPP01, AUR01, CLL03, CC10]. Migratable
[KOW97, VSRC94, VSRC95, IvdLH00, KBG09]. Migration
[AN94b, CCK+95, CLL03, CML04, CCBPGA15, CTK01, NPP00c, NLRH07, Ott94, OS97, ST97, AMBC93, BBGL96, CKO+94, CRM14, CRGM16, CK99, DDM99, HZ99, LCVD94b, LM13, QHCC17, RRFH96, SS99, SCL97, Ste96]. Milan [HS95a, million [LHLK10]].
Millions [BBG+11]. MIMD
[BvdB94, BB93, BCL00, Uhl95a, WST95]. MIMD/DMMP [BB93]. MiMPI
[GCC99]. mini [SCJH19].
mini-application [SCJH19]. MINIME
[DS16]. MINIME-GPU [DS16].
minimization [POL99]. Minimum
[KA95, Wu99, NCKB12]. mining [MA09].
minisweep [SCJH19]. Mississippi
[IEE94f, IEE95j, IEE94f, IEE95j].
militating [OdSSP12]. Mitigation
[BBH...13a]. Mitsubishi [AN03]. mittels
[Wil94]. Mixed [AS97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01].
Mixed-Mode [BEG+10]. Mixing
[CP98, GAP97, CBY18]. mixture [EO15].
MK [NS91]. mm_par2.0 [OKM12]. MN
[AN94h]. Mob [STV97]. Mobile [ITT02].
Mode [BGK08, Bri02, BEG+10, LRT07, SB01, YX95]. Model
[AP96, BGG+02, Bsd07, CKmWH16, Cha02, CZG+08, Dar01, DFA+99, FSXZ14, FBSN01, GLB00, GLR501, HLP11, KD12, LWZ18, LGG16, LA02, LQ01, MKW11, NSLV16, NOO2b, Ran05, RSVP+05, RRBL01, SPM+10, SB95, SPH+18, THN00, VTT97, Val01a, YCA18, AL93, BSC99, Bir94, BG94b, BDD03, CMV+94, CL93, CKP+93, ED94, GZK12, GGC+10, GlkLi97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, KOS+95a, KSL+12, KLV15, LR06b, LA06, LLH+14, Mar05, MdSAS+18, MSZG17, MGC+15, NOO2a, NAK05a, PAdS+17, RAS16, RGDML16, RCG95, Sch93, SH94, Sch99, SMAC08, Str94, VBLvG08, Vis95, Wan02, WC15, WLK+18, WYLC12, YX95, TA14]. Model-Based [AP96, LGG16]. Modeling
[ACM96a, ATM01, BS07, CSC96, CMD93, FST98a, GAM+02, MOL05, NM95, RGD15, SEF+16, TD99, VFD02, XH96, BDP+10, Bic95, JL18, KM10, KEM09, KEGM10, LZYH19, MS99a, XLL13, YMY11].
Modelling
[FST98b, GC05, Ham95a, KDL+95b, BJS99, HTHD99, KDL+95a, MSML10, QHCC17]. Models
[AKK+94, BS93, BZ97, CMK00, Cer99, CNM11, DK06, EMO+93, ESM+94, GJN97, PPF89, SS01, SMO93, Whi04, BB95, CH96, Duv92, KO14, LIV12, MCB05, Nes10, RBT95, RBA17, SYR+09, WAL00, WBSC17]. moderate [Uhl95a]. Modern
[AHP17, DARG13, KDT+12, LNK+15, SM07, HH14, PMZ16]. modes [WZW08].
Modified [Riz17, GP95, KD12]. Modular
[CT02, HPP02, FWS+17, HLS+17]. modulator [WWZ+96]. modulator/DFB
[WWZ+96]. Module [AN08]. Modules
[AKK+94, DS96b]. modules-design
[DS96b]. Molecular
[ABC+96, BST+13, BCG97, BL95, BS07, DR97, DI02, KMB97, LAFA15, MH01, SA93, YWC15, ZB94, BvdDv95, BBK+94, BMPZ94b, BMPZ94a, CC00b, DCD+14, FHS09, JAT97, JMS14, KFA96, KRG13, LSVW08, OKM12, PARB14, SL95, ZWL13]. molecule [ART17].
Moller [BL95, KN17]. Monitor
[SGL+00]. Monitor
[KRS99, Whi94]. Monitoring
[AH00, BCLN97, Beg93b, BMF96, BFTM96b, CD98, DBK+96, GSN+12, LY93, LW97, MFW97, MVY95, SGL+00, UP01, Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a, BB94, BS96a, BFTM96a, FLB+05, LC07]. Monodomain [ORA12]. Monte
[HHB14, RP95, WH96, ADRC98, AK99, DAK98, NSLV16, RR00, SK00, SKM15, ZZ04]. Monterey
[AN08, Gat95, USE94].
Montpellier [DE91]. Montréal [Lev95].
MOPS [GJN97]. Morehouse [AGH+95].
Morgan [SD13]. Morton [LZH18].
MOSIX [BBGL96, moti] [FMS15].
motors [SKM15]. movement [MV17].
Moving [HA+11, LSG12]. MPEG [GKL95, KFA96]. MPEG [NU05].
MPEG-4 [NU05]. MPI [ARYT17, AD98, Ano94c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, BDW97, CHD07, CHD09, CD01, CNDN11, DKD05, DLM99, DKP00, DLO03, GBR07, GEW98, IEE96i, JMS14, KGRD10, Kra02, KKD04, LKD08, MTWD06, Nag05, Per97, PS01b, RWD09, RLVG12, ST02a, TDB00, TBD12, Vre04, WSN99, YMI97, ST02b, AGCDT02, Ada97, Ada98, ACH+11, APJ+16, AASB08, ART17, ATM01, ACRG97, AK99, ABF+17, AHP01, ACMZ11, ALW+15, ALB+18, ADL03a, ADL03b, And98, FH98, AVA+16, Ano93e, Ano94d, Ano98, Ano01a, Ano03, AKE00, AKL99, AJF16, AIM97, ADR+05, AHHP17, Bad16, BV99, BCMR00, Bak98, BF98, BCJK99, BBG+10, BCC+10, BBG+11, BBGP01, BBS99, BBG+14, BA06, BCAD06, BADC07, BGR97a, BKGS02, Ben01, BW12, BHV12, BKH+13, BIL99, BIC05, BP98].
MPI [BF01, BBCR99, BBHD14, BK96, BKAS01, Bha98, BfDA94, B HLS+95, BHS+02, Bis04, BHI...13a, BHI+13b, BDD+13, BIC+10, BR04, BCM+16, BTC+17, BM00, Boo01, BBC+02, BCH+03, BHK+06, BBC+00, BS96b, BMRO2, Bri02, BMM03, BMPS03, BS07, BDL98, Bru95, BDH+95, Bri97, Bru12, BLW99, BBFW01, BFF+10, BCH+08, BWV+12, CGC+02, CSW12, CGC+11, CwCW+11, CRE09, CEE00, CRE01, CC10, CP98, CAH17, CGJ+00, CFKL00, CSS95, CGGB+15, CGG10, CB00, CDMS15, CGS15, CBL10, Cha02, CESG07, CDP99, CCA00, CFDL01, CML03, CGZQ13, CC17, CSAK98, CCA01, CC00a, CGH94, CSSM97, CFMR95, CDD+96, Coo95a, Coo95b, CFF+96, CRGM14, CRM14, CRGM16, CC99, CT02, CD96, CG99b, DPS05, DPSD08, Dan12, DSG17, DZ96, DZ98a, DR18, DW02, DLM+17, DZ98b, Dem96, DPP01].
MPI [DLB07, DS96, DS96a, DRUC12, DKD07, Dl02, DL10, DCPJ12, DCPJ14, DA19, DGG+12, DGB+14, DBB+16, HD02a, DXB96, DOSW95, DCHO2, DBK+09, EZA16, EGH99, EDSV09, ES11, FH97, FD96, FDG97a, FDG97b, FLD98, FD00, FBD01a, FBD01b, FGRD01, FBVD02, FD02a, FD02b, FD04, FCLG07, FB05, FB96, FB97, Fan98, FPY08, FFB99, FNSW99, FTVB00, FFP03, FLPG18, FMS15, FHK01, FHK02, FSC+11, FCS+12, Fin97, Fin94, Fin95, FWNK96, Finn00, FLB+05, FC05, FST98a, FST98b, FJ+17, FKK+96b, FKK96a, GTF96, Fos98, FHPS94a, FHPS94b, FHP+94, FHP+95, Fra95, FWR+95, FKL08, FBSN01, FSL08, GBR97, GFD03, GDF05, GDC15, GGGC99, GGC09, Gao03, GBR15, GCG98, GCC99, GCBL12, GGLH+96, Gei00, GR07, GGL+08, GJR09, GSD97, GBD14, GBH18, GGS99, GR95, GLB00, Gle93, GM13, GJM118].
MPI [GT01, GBH09, GFIF+18, GHZ12, GAVRR17, GRRM99, GAM00, GKS+11, GB98, GMPD98, GPL+96, Gra97, GEW98, GBS+07, GLM+08, GL92, GL94, GL94, GL95a, GL95b, GL95c, GL96, GLDS96, GL97c, GL97b, GHL+98, GL99, GLT99, GLS99, Gro00, GLTO0b, GLTO0a, Gro01a, Gro01b, Gro02a, Gro02b, GT07, GLT12, Gro12, GPC+17, GC05, GSY+13, Gu16, HJ98, HC10, Har94, Har95, HL17, Hat98, HO14, HD02b, HE02, Hem94, HZ96, Hem96, HRZ97, HZ99, HEH98, HGMW12, HM00, HPS+12, HPS+13, Hin11, HRR+11, HDB+12, HDB+13, HDT+15, HKN+01, HMS+19, HLOC96, HKT+12, HVSC11, HWX+13, HM01, HCA16, HGI12, HCF05, Hus98, Hus00, Hus01, HWW07, IDS16, IRU01, ITKT09, IIC02,
JL18, JF95, JDB^+14, Jes93b, JMJ^+11, JS13, JNL^+15, Jon96, JR10, JSH^+05, KB01, KFA96, KS15a]. **MPI**

[KPWO5, KW14, KFWE18, KD12, Kan12, KFL05, KB98, KK02a, KL94, KYLO3, KYL05, KSJ95, KSJ96, KN17, KBS04, KGK^+03, KBH^+99, KMB97, KLR^+15, KR09, KM99, KEMG10, KRC17, KV98, KAC02, KC06, KBG16, KMH^+14, KRG13, LK14, LAdS^+15, LLR02, LLTD14, LGM00, LRT07, LC97a, LR06b, LTRA02, Les12, LZ97, LFW01, LPD^+11, LCC31, LZH17, LZH18, kLCC^+06, kLCCW07, kL11, LFL11, LS10, LCY96, LCW^+03, LPV04, LWP04, LGG16, LYSS^+16, LB96, LMG17, LCMG17, LNE00, LO96, dLR04, LZYH19, LS08, LL01, LZC^+02, LKJ03, LCC^+03, LKYS04, LSK04, LLH^+14, MBBD13, MMR99, MS02a, MS02b, MV17, MC18, MK16, Man01, Man98, MK17, MVL96, MLAV10, MKP^+96, MSCMC15, MSL12, MH01, MSL96, MS96a, MC98, MGG05, MAS06, MM02, MM03, MOL05, MCS00, MANR09, MRRP11, MG97, MIMM13]. **MPI** [MTW07, MK04, MCL01, MIMH98, MHH99, MS99c, MB00, MvWL^+10, NAW^+96, NO02b, NO02a, Nak05a, Nak05b, NSR07, NE98, NE01, Nes10, NSS12, NH95, NCB^+12, NCB^+17, NA99, NW98, Nit00, NHT02, NHT06, NFG^+10, NN95, OM96, OLG^+16, OKM12, OIS^+06, OD01, OF00, Ong02, OP98, OL05, OGM^+16, OMK09, Pac97, PARB14, Pan14, PK98, PES99, PLK^+04, PS08, PDY14, PS00a, PS01a, PHJM11, PTL^+16, PRR9, PZ12, PKG^+10, PFG97, PLR02, PGAB^+05, PGBF^+07, Pla02, PD11, PSS01, PSK^+10, PTH^+01a, PTH^+01b, PS00b, PTW99, QB12, Qu03, Rab98, Rab99, RDMI99, RR01, Ran07, RSBT95, RMS^+18, Ran05, RA09, RAS16, RCFS96, RBB97a, RBB97b, RBB97c, RSPM98, RTH00, RH01, Ren01, RST02, Ren03, RGD15, RGDM16, RGGP^+18, RNP13, RPM^+08]. **MPI** [Röhl00, Rol08b, RsT06, RFRH96, RRG^+99, RTRG^+07, SE02, SCB14, SCB15, SPM^+10, SSB^+05, Sap97, SSB^+16, SDJ17, SGH12, SBF^+04, SCJH19, SW12, SSB^+02, SG05, Ser97, SS01, SWS^+12, SG12, STY99, SM02, SM03, SPH^+18, SP99, SZ11, SC04, SSC96, SS99, SZBS95a, SZBS95b, SDN99, SvL99, SJ02, SWJ95, SMT96, SH96, SDB94, SLG95, SDV^+95, SPH96, Slo05, SVC^+11, SK00, SB01, SOHL^+96, SOHL^+98, Sn18, SHHC18, SSSL97, Ssu03, Ste96, ST97, Sto98, SU96, Str69, Sum12, SN01, TOTH99, TAH^+01, TSY99, TSY00, TKP15, Tha98, TGL02, TG90, TLY18, TW01, TD99, TOC18, Tra98, THR^+99, TRH00, Trä02b, Trä02a, GTG10, Trä12a, Trä12b, TMP01, TFGM02, Tso07, TFZZ12, UTY02, URKG12, VF02, VS00, VPS17, VSR94, VSR95, VGRS16, VdS00, VP00, VVD^+09, WH96, Wal95]. **MPI** [WO95, Wal96a, WD96, WO96, Wal01a, Wal01b, Wal00, WC09, WLNL03, WLNL06, Wer95, WST95, Wti04, WLR05, WWZ^+96, Wis98, WB96, WM01, WADC99, Wor96, WRA02, WSC99, WT11, WYLC12, WT12, WLYC12, WMP14, XH96, XLW^+09, YM97, YL09, YHL11, YWC11, YCL14, YMBM94, YPA09, YTH^+12, YSP^+05, Zahi, ZZ04, ZLZ^+11, ZW05, ZLP17, ZJDW18, ZLL^+12, ZZ95, ZSnH14, ZRA14, ZTA1, bT01a, diAMCF12, KH96, Mar06, YMY1, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d]. **MPI-1**

[SOHL^+98]. **MPI-2**

[Ano99c, Ano99d, Ano00a, AKL99, BCAD06, BHS^+02, CwCW^+11, CD96, DPS08, GFD03, GGHI96, GT01, GHH^+98, GLT99, GLT00b, GLT00a, HGMW12, LSK04, MS02a, MK04, PS00a, SS99, SSL97, TRH00, bT01a, BADC07]. **MPI-3**

[GBH14, GBH18, GLT12, HDT^+15]. **MPI-ACC**

[APJ^+16]. **MPI-Based**

[Ada97, FSC^+11, RDMB99, SM03, Ada98, Ava^+16, GKS^+11, Gra97, LRW01, OLG^+16, OP98, SZ11, TMP01]. **MPI-basierte**

[Gr97]. **MPI-benchmark** [Ren01].
MPI-CHECK [LCC+03], MPI-CUDA [DR18, dIAMCFN12], MPI-DDL [FB97].

MPI-Delphi [ACGdT02], MPI-driven [Hin11].

MPI-F [FHP+94], MPI-FT [NLN00].

MPI-GLUE [Rab98], MPI-Hybrid [CGC+11].

MPI-I [IRU01, Tsu07].

MPI-I/O [IRU01, Tsu07].

MPI-Interoperable [YBMCB14].

MPI-IO [BIC+10, CGC+02, CFF+96, DL10, FWNK96, FSL98, LLG16, PSK08, PTH+01a, SW12, St08, TGL02, ZO04].

MPI-IO/GPFS [PTH+01a], MPI-LAPI [BGBP01].

MPI-Level [LVP04].

MPI-like [CGJ+00].

MPI-only [LS10].

MPI-OpenCL [JNL+15], MPI-OpenMP [MS02b].

MPI-parallelized [KMG99].

MPI-Performance-Aware-Reallocation [GFIS+18].

MPI-StopT [Hus98].

MPI-The [Ano99c, Ano99d].

MPI-Umgebung [GR97].

MPI/CUDA [JMM11].

MPI/GAMMA [CC00a].

MPI/GPU [EZBA16].

MPI/GPU-code [EZBA16].

MPI/MBCF [MMH99].

MPI/OpenACC [OGM+16].

MPI/OpenMP [ADR+05, GÁVRL17, HKN+01, JR10, KS15a, KN17, KLR+15, KRG13, LLRS02, PZ12, SB01, WT12].

MPI/PVM [ES11].

MPI/RT [SKD+04].

MPI/RT-1.1 [SKD+04].

MPI/SMPBs [MLAV10].

MPI1 [St94].

MPI2 [MP98, Wa06].

MPI2007 [MVW+10].

MPI_Allgather [GMDMBD+07].

MPI_Connect [FRD01].

MPICH

[BB+02b, BKK+06, Cot98, Cot04, GL97a, KTF03, LKJ03, OPM06, OF00, RE06, RST06, SBG+02, TRG05].

MPICH-CM [SBG+02].

MPICH-G2 [Cot04, KTF03, OPM06].

MPICH-GQ [RFG+00].

MPICH-V [BB+02b, BHK+06].

MPICH-V2 [BCH+03].

MPICH2 [BMG07, Gro02b, ZSG12].

MPIConnect [FLD98].

mpiicroscope [Trå12b].

MPIGeneNet [GDM18].

mpiJava [BCF99].

MPINE [Sot01].

MPIPOV [FB99].

MPI-IP [HI02].

MPIWiz [XLW+09].

MPI [CGJ+00].

MPI+ [CRD99].

MPP [CDJ95, DSW96, GBR97].

MPII-Systeme [GBR97].

MPiSs [BG97a, RB97a].

MPISoC [KK+08, KH10, PSM+14].

MPISoCs [MB12, NEM17].

MPIVM [CCK+95].

MRI [LSS15].

MRO [MMM13].

MRO-MPI [MMM13].

Multi [Ada98, ABB+10, BRI01, CAWL17, CZG+08, DWL+10, EBGK01, FSX14, HD02b, HRZ07, JCH+08, JNL+15, KBA02, KTO2, LTS16, LM13, MLGW18, MG15, MB00, NMS+14, PZ12, RG18, RR02, SMI93a, ST02a, ST02b, SSB+17, WBH97, YGH+14, ACMZR11, AGM06, BCK+09, DCH02, DWL+12, Fin94, Fin95, FHB+13, HTA08, HE15, JR13, JJM+11, JR10, KSG13, KLV15, KO14, Kom15, LSG12, LS10, LHH+14, MALM95, NSM12, SC515, SFSV13, SVC+11, SAP16, Str12, TS12b, TFZZ12, WCC+07, WW09, WADC99, WYLC12, ZAF16, ZWZ+95, ZZZ+15, SAP16, SG14].

multi- [ACMZR11, KSG13].

multi- [AK15].

multi-accelerator [KLV+15].

multi-agent [ZWZ+95].

multi-agents [KBA02].

Multi-Array [LTS16].

Multi-cluster [ST02b, KO14, Kom15].

Multi-Core [ABB+10, Bri10, BCKP00, CAWL17, CZG+08, DWL+10, EBGK01, FSX14, HD02b, HRZ07, JCH+08, JNL+15, KBA02, KTO2, LTS16, LM13, MLGW18, MG15, MB00, NMS+14, PZ12, RG18, RR02, SMI93a, ST02a, ST02b, SSB+17, WBH97, YGH+14, ACMZR11, AGM06, BCK+09, DCH02, DWL+12, Fin94, Fin95, FHB+13, HTA08, HE15, JR13, JJM+11, JR10, KSG13, KLV15, KO14, Kom15, LSG12, LS10, LHH+14, MALM95, NSM12, SC515, SFSV13, SVC+11, SAP16, Str12, TS12b, TFZZ12, WCC+07, WW09, WADC99, WYLC12, ZAF16, ZWZ+95, ZZZ+15, SAP16, SG14].

multi-CPU [SAP16].

multi-CPU/multi-GPU [SAP16].

Multi-Dimensional [HD02b, KTO2, RG18].

multi-endpoint [LHH+14].

Multi-GPU [JNL+15, NMS+14, NSM12, TS12b, SAP16, SG14].

multi-kernel [SAP16].

Multi-level [CAWL17, LM13, HE15, MALM95, ZZZ+15].

Multi-Network [BCKP00].

Multi-Node [HRZ97].

multi-petaflops [LSG12].
Multi-phase [ZAFAM16]. Multi-Physics [WBH97]. multi-place [BCK+09].
Multi-platform [DWL+10, DWL+12]. Multi-Processing [MLGW18].
Multi-Processor [RR02, Smi93a, DCH02]. multi-programming [WADC99].
Multi-protocol [MB00]. multi-socket [LS10]. Multi-Stage [FSXZ14].
Multi-Threaded [MG15, Ada98, EBG10, SCB15]. Multi-Threaded [MLGW18].
Multi-Zone [JCH+08, AGM06]. Multiblock [IDD94, DLR94]. Multicast [CCA00, CDPM03, ZGN94]. Multicasting [SE02]. multicenter [CwCW+11].
MultiCL [APBCF16]: multicomputer [SWJ95, TD99]. multicomputers [HWW97, Yan94, YX95]. Multiconference [Ten95]. Multicore [BDT08, CGC+11, CB16, DS16, GDM18, KDT+12, LNK+15, WT12, YKW+18, CLYC16, GJLT11, HWX+13, JPOJ12, KN17, LS10, MBBD13, MM11, Nob08, OPW+12, PDY14, QBI2, RGDML16, WCS+13, WT11, WLYC12, YHL11, YWCC11, diAMC11].
multi-core/many [MBBD13]. multicore/many-core [MBBD13]. Multicores [GDDM17, UGT09].
multidestination [Pan95a]. multidimensional [CSW99, PDY14, ZT17]. multidisciplinary [Fin94, Fin95]. multifrontal [IM95]. Multigrain [AZG17, IOK00]. Multigrid
[BCM80, AGIS94, IHM05, Lou95, Mic93, Mic95, PSL199, RM99, Sta95a, ZZG+14]. Multigroup [QRG95, QRMG96].
Multilevel [PSSS01, BAV08, ETY94, GAM+00, JJY+03]. multimedia [GBF+14]. multimethod
[FGT96]. Multiobjective [RLVRGP12]. Multiparamdigm [FS98]. Multiphase
[SPH+18]. Multiphysics [NPS12]. Multiplatform [SM+16]. Multiple
[BSG00, CB16, FGTK97, FBSN01, JPT14, JSH+05, KMM15, LTD0, NTR16, Pet01, Tsu12, ZC10, ES13, GM18, KGB+09, KKL11, SHHC18]. Multi-Phase
[ZC10, JPT14]. Multiplication [AKL16, DS13, Fu08, TQDL01, FAF16, FJZ+14, XKL13]. Multipole
[AAB+17, LCL+12, YBZL03]. Multiported [SG15]. Multiprocessing [MW93, VGS14].
Multiprocessor [Pet97, ABCI95a, ABCI95b, ADMV05].
MultiProcessors [BDV03, CC99, HPP02, NPP+004, SBW91, SS01, Tra98, JE95, KC06, SYR+09, AGIS94].
multiprogrammed [TSY99]. Multiprogramming [BHP+03].
Multiprotocol [BHK+06]. Multirail [LVP04]. multiscale [CwCW+11].
multiservice [CLLAPD99]. multisource [ZDR04]. multistage [ZGN94]. Multistart [Cza13].
multitasking [FH95].
multithread [GCC99, SWYC94, ZG98].
multithread-safe [GCC99]. Multithreaded [ALB+18, AZG17, DGG+12, PS01b, RBA05, TGBS05, WJ12, DSG17, TMC09, TG09, WCC+07].
Multithreading [BBG+10, ZWL13]. Munich
[BDLS96, GH94]. Mushy [Wit16].
MUST [HPS+12, HPS+13]. mutual
[She95]. MVAPICH [RMS+18]. MVICH
[FO00]. Myocardial [Pat93]. Myrinet
[GBH99, CDP99, JSH+05, LCW+03, PTW99, Tout00].

n [Pan95a, ADB94, RTRG+07]. N-body
[ADB94, RTRG+07]. n-cube [Pan95a].
NAG [DHP97, For95, Mcd96]. NAMD
[PZKK02]. Naming [MSF00]. Nancy
[BR95a]. NanosCompiler [GAM+00].
Narrow [YSS+17]. NAS
[CRE99, CE00, CCCF+94, CDD+96, KS96, KAC02, MMH99, WAS95b, WT11, WT12].
NASA [MAB05]. NASLU [PHJM11].
Non-singleton [TVCB18].
Non-stop [Gua16]. nonaligned [AGIS94].
Non-contiguous [JDB+14, TGL02].
Nondeterminacy [DKF93]. nondeterminism [Obe96].
Nondeterministic [KSV01, CRD99].
Nonlinear [Nak03, Was95a, ZB97, CEGS07, Jou94].
nonnegative [KBP16].
nonsymmetric [dH94].
Nordic [FF95].
Norfolk [Sin93].
normalized [Gra09].
North [CJNW95].
Note [BR02, SGHL01]. Notre [IEE96i].
novel [DDYM99, GKK09, MSL12].
November [ACM96c, ACM97b, ACM98a, ACM99, ACM00, ACM01, ACM03, ACM04, ACM05, Ano94c, ACER94, BDW97, GUA95, HK95, Hol12, IEE91, IEE93e, IEE94h, IEE94i, IEE94k, LCK11, USE94].
Observe [CGG10].
Observations [ZKRA14].
Ocean [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b].
Oceans [IEE94c, IEE94c].
Octree [LZL17, LZL18, UALKI7, HSP+13].
October [Ano93f, Ano94e, Ano94i, Ara95, BPG94, Bha93, BDLS96, CHD07, CGB+10, DSM94, DLO03, DE91, GGK+93, IEE94f, IEE95a, IEE95g, IEE95j, IEE96b, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vou93].
O&M [Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLC+03, kLCC+06, MV17, MC18, MG12, MG15, PSS08, PLR02, RK01, SBQ14, Tha98, Tsu07, WSN99, ZJDW18].
O2000 [CML04].
O2WebCL [CHKK15].
Oberammergau [BPG94].
Object [Ada97, BCFK99, CKL00, FMSG17, MSL96, PD98, SWL+01, YHL01, YX95, Ada98, BR91, DM12, LK16, OKM12, RFF+95, SL94b, TDG13].
Object-Oriented [DKF93].
Object-Oriented [JDB+14, TGL02].
Object-Oriented [DKF93].
Objects [KH15, Man01, MFC98, HS93, SOAI1, SC95, YWO95, ZPL96].
Oblivious [LZH17, LZH18, UALKI7, HSP+13].
ODEs [Pet97].
OdeMP [BB00].
OdeMP/CCP [BB00].
OffLine [CGS15].
Off-Line [CGS15].
Offering [EK97].
Official [Ano98].
Offload [BRU05].
Offloading [MGA+17, DSGS17, KGB16].
Oil [FSXZ14, ZAFAM16].
OKs [Ano03]. old [LK14].
OMB [BWV+12].
OMB-GPU [BWV+12].
OMIS [LW97].
Omni [KSS00, KSSH01].
OmniRPC [SHTS01].
OMP [SGJ+03].
OMP2001 [TSB03].
OMP2012 [MBB+12].
OMPI [ACH+11, OM96].
OmpSs [ABF+17, PSB+19, YAJG+15].
on-chip
[TDG13]. On-Demand [CTK00]. On-Line
[BoFBW00, Wis98]. On-the-fly [KSJ14].
ONC [RS93]. One
[BPSo1, GFo03, Gfo05, GBH14, GT01,
HDB+12, LRT07, MH01, TGT05, TR00,
ZSG12, bT01a, DBB+16, GBH18, LSK04,
MS99c, Ols95, PGK+10, dIAMC11].
one-dimensional [Ols95]. one-layer
[dIAMC11]. One-Sided
[BPSo1, GFo03, Gfo05, GT01, HDB+12,
LRT07, MH01, TGT05, TR00, ZSG12,
bT01a, DBB+16, LSK04, MS99c, PGK+10].
only [LS10, Squ03]. Ontario [GGK+93].
onto [OFA+15]. OOMPI [MSL96]. OOPS
[RFH+95]. OPAL [CwCW+11, NW98].
OPEN-MPI [NW98]. opaque [SOA11].
Open [BGG+15, KDL+95b, AVA+16,
KDL+95a, GBS+07, VGRS11].
Open-Source [BGG+15, AVA+16, NOb08].
OpenACC [CGK+16, CCBPGA15,
GML+16, GM18, HTJ+16, JCP15, KLV15,
Kom15, LB16, LSG12, MGS+16, QHG17,
RFLdS13, SCJH19, WKL+18].
OpenACC-based [KLV15]. OpenCL
[ABDP15, APBF16, AB13, BLPP13,
BDW16, BN12, BHW+12, BBH+15, BAS13,
CDD+13, CP15, CLOL18, CJ+10, CHKK15,
CCK12, CS14, CLBS17, DARG13, Di 14,
DWL+12, DFW+15, FLMR17, FE17,
FVS14, FVLS15, GSeFM13, GDDM17,
HD11, HE15, HHC+18, JSS+15, JKM+17,
JR13, JNL+15, JMDVG+17, KK15, KH12,
KM10, KKL11, KSL+12, KJJ+16, KB13,
KPK13, Lee12, LNK+15, LWZ18, LL16,
LAFA15, MC17, MAIVA14, MIV+15,
MSZG17, MSHNK16, ON12, OTK15, ORA12,
PCY14, PHV+13, PSB+19, PBL2, RG18,
RGG13, RBB15, RGB18, RBB17, FSF13,
SAP16, SSB+17, SG14, SFLD15, SGS10,
Str12, THS+15, TK16, TMW17, TKP15,
TY14, WTTH17, WZH16, YSWY14,
YWT15, YSL+12, ZWL+17, ZT17, dAT17].
OpenCL-accelerated [ZWL+17].
OpenCL-Based

[CLOL18, WTTH17, WZH16, JKM+17].
OpenCL-to-WebCL [CHKK15]. OpenGL
[ANO98, LHZ97, ORA12]. openMosix
[Slo05]. OpenMP
[Cha05, CZG+08, CGKM11, CMR12,
EVO1, JMS14, MDS09, SM+10, V0303,
OKM12, ST02a, ST02b, ADd01, ARw03,
ABC+00, AHD12, AAB+17, AELE16,
ACMR11, ATL+12, ADT+14, ACJ12,
An07, An01b, AN03, AK00, ADMV05,
A0R+05, AGMR06, AM07, ACD+09,
ABB+10, BA+13, BR02, BHP+03, BME02,
Ben18, BN00, BF01, BBDH14, BWV+12,
BCC+00a, BCC+00b, BGK08, BGG+02,
BS01, BS05, BBC+00, Bra97, Bri00, BDV03,
BS07, BB00, BKO00, B001, BEG+10, BB18,
CRE99, CE00, Car07, CB00, CGLD11,
CDK+01, CYLC16, CM98, CHPP01,
CBPP12, Cha02, CM05, CGKM11,
CMMR12, Cla98, CYB18, CCM+06,
CCBPGA15, CC00b, DM98, DW02,
DBVF01, DSGS17, HD02a, DFC+07,
DFA+09, ETWAm12, Em00a, Em00b, EV01,
Ed08, FGR10, FMSG17, FSXZ14].
OpenMP
[FM09, GSA08, GP01, GSM17, GG09,
Goe02, GAVR17, GAN+00, GAML01,
GOM+01, GAM+02, Gra09, HPP02, HP05,
HDDG09, HA10, HO14, HD02b, HMK09,
HASp00, HKN+01, HAJK01, HVSC11,
HLCC00, HT01, HCL05, HEHC09, HJYC10,
HAA+11, LM+05, ICC02, IOK00, ITT02,
JCP15, JKH08, POJ12, JFY00, JFY+03,
JCH+08, JMM+11, JRO10, KB01, KS15a,
KBO01, KAM10, KO101, KN17, KKH03,
KT02, KSJ14, KLR+15, KBVP07, KBG+09,
KKV01, KTV10, K15H, KAC02, KC06,
Kuh98, KPO00, KR031, KSS00, KSHS01,
KJEM12, LOH01, LP00, LRS02, LTS16,
LD01, LME09, LLC13, LHC+07, LN+12,
LYS+16, LA02, LA06, LMRG14, LHZ98,
LL1, LLH+14, MKC+12, MS02b, MAL01,
MM07, MB12, MAR02, MAR03, MLC04, MAR05,
out-of-core [BL99]. Output [CFF94, HE92, JW96]. Outstanding [LSB95]. Overcoming [JKHK08].

parabolized [SCC95]. ParADE [KKH03]. Paradigm [HIP02]. Paradigms [BGI12, CM98, HD02a, HD02b]. Paradyn [MHC94a, MHC94b]. Paragon [An96c, HWW97, MP95, PR94a]. Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC11, AGH+95, AS92, ADRC98, AK99, AMBG93, ASA97, AL96, AP96, An95b, ACMR14, AB93a, ALF16, BMH94, BJ93, BBG+95, BCGL97, BFL99, BP99, BG95, BS93, BDG+91a, BKGS92, Ben01, BP98, Bha93, Bic95, BKG08, Bis04, BALU95, BCL00, BSG00, BBC+00, BBG+01, BFZ97, BLD98, BDH+95, BDH+97, BT01b, BMS94b, BMP94a, BFM97, BK000, BBH12, BGL00, CGC+02, CHD07, Cer99, CDZ+98, CUC95, CDK+01, Cha02, CGB+10, CNC10, CFF+94, CSW97, CMH99, CFPS95, CCM97, Coo95b, CT94a, CT94b, C000b, Cz0c, DMSM94, DERC01, DYN96, DK13, Di14, Di02, DSS00, D+91, DMR+92, DGM93, DT94, DZDR95, DK06, EKTB99, EIR95, EM00a, E00b, EG092, EJL92, ES11, FGRD01, FHS99, FJBB+00, FFP03, Fer98b, FHK01, Fis01, For95, FP92].

Parallel [FB94, FS93, FF95, GCBM97, GLN08, GB+94, GKP97, GR07, GI97, GSMK17, GDM18, GB98, GHL97, GK10, GFG12, GJ97, Gre94, GL97a, GL97b, GlvyCy97, HJ98, HLP10, HO14, HK94, HK95, HK94, HHT01, HAA+11, IEE93b, IEE94a, IEE94f, IEE95b, IEE95f, IEE95g, IEE95j, IEE96b, IEE96c, IEE96g, IEE96e, IEE96d, IE97b, IE05, ITKT00, IBC+10, IOK00, IDD04, IH04, IHM05, JAT97, JML01, Jou94, JRM94, KF96, Kan12, KK92a, KO10, KNT02, Kat93, KBS04, Kep05, Kn910, KR09, Kon00, KKP01, KMC96, KMC97, KS96, KKV96, KD04, KS01, KV97, KS01, Kuh98, KGB16, Kum94, L104, LTDD14, LTR00, LDK08, LSL02, LTRA02, LHMM96, L96, LZ97, LHZ97, LKK96, LSS96, Lus00, MS0G91, MS02b, MM92, MC18, MWG97, dIFMBdlFM02, Mar06, Mar07]. Parallel [MFTB95, MSCP95, Mat94, Mat95, MBS15, MGC12, MG15, MR917, MM11, Mic93, Mic95, MTW06, MCLD01, MS95].
MCdS+08, MBB+12, MSB97, NO02b, NO02a, Nak03, Nak05a, Nak05b, NSZS13, Nar95, NSS12, NAJ99, NJ01, Nov95, Oed93, OP10, OLG01, Ong02, Ott93, OWSA95, Pac97, PPT96a, PVKE01, Pat93, PSZE00, PV97, Per99, Per96, PLR02, PWPD19, PKB+16, PBC+01, PBC+01, PBC+01, PBC+01, Qiu03, RR00, RDMB99, RBS94, Rec96, RS95, RC97, RSV+05, Röö00, Roj94, RWD09, RLT99, RLL01, SCF97, SPE95, SGZ00, Sch01, Sch96a, Sch96b, Seg10, Ser97, Sev98, She95, SM03, SP99, Sie94, Sie92a, Sie92b, Sin93, STV97, SWH15, Sou01, Sta95b, Ste94, SSN94, SGS10, Str96, Str97, Str94, SNMP10, Sun90a, Sun90b, Sun94a, Syd94, TMP16, TSS00b, TTP97, TC94, TCP15.

Parallel
[TQDL01, THN00, TDBEE11, Tsu07, TVV96, Uhl94, Uhl95b, UH96, UCW95, VLO+08, VRS00, VB99, WH96, Wa01a, We04, WAS95b, WHD05, WO97, WSN99, WTR03, WT12, YHL01, YH96, YPA94, YG96, YTH+12, YZC95, YSL+12, ZB94, ZZ04, ZDR04, ZWJ05, ZAT+07, ZLS+15, ZZZ+15, ZGC94, ZB97, van97, ACM97a, ARvW03, APBeF16, ART17, AAAA16, AD98, AL92, AFB+17, ASC95, ADT14, AD95, AC92, An93b, An95c, An00b, ADB94, ADD95, AB93b, AFST95, AB93, AGS94, ADMV05, BHJ96, BBB+94, BB91, BA06, BHS18, BB95, BCAD06, BB93, BDG+92b, BB94, BPC94, Ben95, BvdLVS99, BKH+13, BAV08, BN00, Bir94, BCM+16, BM95, Bos96, BFFR96, BID95, Bru95, BDW97, BSH15, CARB10, CL93, CGK11, Cav93, CLdJ+15, CLSP07, CT13, CLY16, CKW16, Cha05]. parallel
[Cha96, CGL+93, CEFS07, CH94, CZ96, Che99, CIL+10, CS96, CSW99, Cla98, CEF+95, CDD+96, CdGM96, CBHH94, Coo95a, CCHW03, CLASLDP99, CFF+96, CPR+95, CD01, CDH+94, CKP+94, CB11, DK93, DKF94b, DR18, DLR94, DLR99, DDS+94, DR94, DSB94, DM03, DRUC12, DBVF01, DK05, DvdLVS94, DXB96, DMW96, DLM99, DP00, DLO03, Duv92, DZYY94, EASS95, EV01, FB96, FFB99, FM90, FO94, FSTG99, Fer98a, FMS15, FCS+12, FKK+96b, FFMI11, FHC+95, GG99, GCN+10, GGL+08, GFB95, GG09, GFB+14, GÄVRRL17, GKS+11, GEW98, GKK90, GKF13, Gra99, GP95, HAM95b, HPY+93, HWS90, Heb93, HPS+96, HZ94, HZ99, HPLT99, HDB+13, HYS95, H95, HLOC96, HSV11, HLO+16, IE97a, IM95, JW96, JC17, JY95, JMM+11, JC96, JMDVG+17, KCD+97, KBHS19, KOB01, KBB16]. parallel [KN17, KOS+95a, KL95, Kos95b, KRC17, KG03, KFFS94, Kra02, KKF+08, KL90, LCM+12, LH98, LS10, LCVD94a, LMM+15, Lor95, LG93, LM93, LC97b, LSR95, MMA99, MYB16, MBM+94, MZK93, MM95, Mar05, MSP93, MK00, MN91, MHC94a, MRRP11, MLA95, MLA+14, MRH+96, MHH99, Mor95, MC99, MR96, MvWL+10, NSB07, Neu94, NB06, NBGS89, NC012, NF49, OdSSP12, Ols95, Olu14, OW92, PAA10, PPT96b, PPT96c, PKB06, PBC+95, PV01, PBK99, PPF89, PY95, PBPT95, PSL95, PCS94, Ram07, RJ95, RBB15, RO89, RBB17, SJLM14, SM12, SK95, SH94, Sch94, Sch99, SPK96, SFW94, SWC94, SK92, SCC96, SL00, MAC08, S211, SPL99, SMS00, SVC+11, Sm93b, STT96, SH14, SRK+12, SL96, Sta95a, St94, SMSW06, Sun95, Sur95a, Sut96, SL95, TJD09]. parallel
[TDB00, TMB01, Uh95a, Uh95c, VM95, Vis95, Vos03, Wan97, Was96, Was95a, WK08a, WK08b, WK08c, Wo92, WT11, WYLC12, WLYC12, WM14, YLM+17, YHL11, YZC11, YZC11, YZC11, ZL96, ZWHS95, ZAFAM16, ZWL13, ZD18, ZWL+17, dH94, ARL+94, An94c, An94f, ACD+94, BDLS96, BS94, BC94b, Bos96, CC95, Cza13, DSM94, DHO97, DW94, EJL92, FR95, FF95, GN95, JPE94, JPP95, JKH05, Kum94, LK10, LK+03, Mal95, MKP+96, OKW95, PQ207, QRG95, SSS96,
parallel-programming [KKJ +08].

distributed [FHC +95, Wan97].

paralleles [BL94].

Parallelisation [SJk +17a, SJk +17b, WCVR96, LF93b].

Parallelism

parallel/distributed [FHC +95, Wan97].

Parallelisation [AL93, And98, AIM97, BCM11, BS07, CRE99, CP97, Cou93, Cza03, ETV94, HA10, JR10, Kik93, KLR +15, LP00, OD01, Pok96, QMGR00, Rag96, RP95, RM99, RS97, SAS01, WPI95, WZWS08, WR01, aMST07, AGMJ06, BW12, BDY99, BJS99, CDD +96, Gao03, Goe02, IDS16, LJM +05, JL18, JYJ +03, JMS14, KS15a, KD12, KRG13, MCB05, MGG05, Nes10, NEM17, OLG +16, TWFO09, VBLvdG08].

Parallelized

Parallelizercentrum [Eng00].

Parallizing [LRQ01].

Parallel Parame

Parameter [LLG12, Pat93].

Parametric

Paravirtualization

Parco93 [JPTE94].

Parco93 [SCB14].

Parcs

Partitioning

Passing

Passage

Parsimonious
Pollution [AKK+94, BZ97, MPD04, MSML10, SH94, Syd94].

POLSYS_GL [SMSW06].

polygonization [TSP95], polygons [CT13], polyhedral [BHR508, KGB+96, MPD04, MSML10, SH94, Syd94].

POLSYS GLP [SMSW06].

decoration [YV15, HLM+17, SMSW06].

port [CCHW03, Har94, RJMC93]. Portability [KaM10, RS95, ABDF15, CGK+16, FZ17, MGC+15, PHW+13, QHCC17, Reu03].

Portable [Ano95c, Ano00b, BHV12, BHLS+95, CDH+94, DHK97, Di 14, FCLG07, FSLS98, GLS94, GL97a, GLS99, JSS+15, LNLE00, Man98, MKV+01, MG97, PPT96a, PBC+01, SCCS95, SDB+16, StH94, Tra98, WCH+13, YBMCB14, Arn95, BCK+09, BiDA94, BB00, BL99, BAS13, CH94, CEF+95, DOV+10, DLL+12, FAF16, FWK96, GR95, GL94, GLS96, HTJ+16, IZ94, HSW+12, JF96, KN95, LFS9a, LFS93a, LFC93, LHF+07, MMB+94, PPT96b, PPT96c, PMZM16, SFLD15, StO98, VM95]. portal [AASB08].

portals [BS96b, BMRO02, BRM03].

Portfolio [IS17]. Portfolio-driven [IS17]. Porting [Ano96c, BSC99, BLW98, EM02, Har94, Har95, HASP00, KGK+03, KME09, SR96, YKLD17, DCH93, Bvd94, HD11, MWO95, ZPLS96].

Practical [BHJ96, BCP+97, CZG+08, RHG+96, TGBS05, AMS94, BHR508, LPD+11, MeK94, Pan95b, VVD+09].

Practice [AC11, GN95]. praktische [MS04]. Pre [AC17], Pre-processor [AC17].

precedence [EGR15].

precedence-Constrained [EGR15].

precise [FJK+17], Precision [Ano98, Kha13, ZC10, JPT14].

Preconditioned [GFPG12, ABF+17, MM92].

Preconditioner [BSS99, FSXZ14].

Preconditioners [Huc96].

preconditioning [GFPG12, ABF+17, MM92].

predictability [GRM99]. Predicting [RRAGM97].

prediction [MOL05, WHDB05, ZWJK05, AD+05, BDV03, CMV+94, HA95, RAI017, SEC15, SC96b, SNN94, Wad95a, ZA+07].

predictive [FJK+17].

preferences [BBH+06, BBGL96].

Preface [DKD07, OL05]. Prefetching [BIC+10].

Prefix [WJ12, DK13, MYB16].

preliminary [BF98, Wad01a, WL+18, RJC95, RLC93, SWS+12].

Predictive [BBS99, FSXZ14].

prediction [GRM99].

Prentice [BBS99].

prescription [MRH+96].

present [Dar01].

presented [ACM90].

preservation [GRM99].

Press [Dar01].

presenting [YM97].

preserving [EGR15].

principles [BSC99, HS12, SSP+94].

printing [YM97].

priority [DR95, Man98]. Prism [SD99].

private [Str94]. privatization [KRG13].

Probabilistic [LAE+15]. Probability [QRM96, Sta95b]. Problem [BSH15, DALD18, DAK98, GAMR00, ICC02, Lee06, MTSS94, RLRG02, ZSnH01, AB93b, DSM94, GM94, GKF13, HMKV94, IHO05, MIM92, SL00, SP11, Cza13].

Problems [ASA97, BHM94, BMH96, BMRO01, BPMN97].
CGPR98, EML98, HAA+1, DK02, MBS15, Nak03, Riz17, AL96, CEGS07, FR95, LSR95, NZZ94, OMK09, SC96a, SD99]. procedure [AGLv96]. Proceedings [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM98a, ACD94, CJNW95, GN95, Hol12, IEE93f, IEE95d, IEE02, KG93, LCK11, MC94, R+92, SM07, Ten95, TG94, dGJM94, ACM96b, Ano94e, Ano94i, BPG94, Boi97, BH95, CLK+95, DSN94, DE91, EJL92, FF95, GHH+93, HK95, HK94, IEE94a, IEE94b, IEE94c, IEE95b, IE95e, IE96a, IE97c, IEE05, JPT94, Kum94, LF+93a, Li96, PSB+94, PBPT95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM95b, ACM96a, AT94C, Agr95a, AGH+95, AH95, Ano89, Ano92, Ano94a, BBG+95, Bh93a, CHD07, CGZ+98, CGKM11, CMMR12, CD+10, CSDN11, DKN+92, DT94, DLO03, EdS08, ERS95, ERS96, Fer92, FK95, GKK+93, GA96, GT94, Ham95a, H95, HK93, IEE91, IEE92, IEE93d, IEE93c, IEE93b, IEE93e, IEE94e, IEE94d, IEE94f, IEE94h, IEE94g, IE95h, IE95k]. Proceedings [IEE95i, IEE95f, IEE95g, IEE95j, IEE96a, IEE96c, IEE96e, IEE96d, IEE96b, KGRD10, LKD08, MMH93, MTWD06, PBBG95, Bha93, CHD07, CGZ+98, CGKM11, CMMR12, CD+10, CSDN11, DKN+92, DT94, DLO03, EdS08, ERS95, ERS96, Fer92, FK95, GKK+93, GA96, GT94, Ham95a, H95, HK93, IEE91, IEE92, IEE93d, IEE93c, IEE93b, IEE93e, IEE94e, IEE94d, IEE94f, IEE94h, IEE94g, IE95h, IE95k].

Process [AUR01, BGL00, CLL03, DeP03, DK06, FGD97a, FGD97b, FLD98, FP08, KCP+94b, KOW97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HG12, JLS+14, KCP+94a, MLS16, MK00, SHHC18, Ste96]. Processor [BGL00]. Processed [HJ98]. Processes [AT94C, Agr95a, AR01, BBG+95, DKN+92, GCM99, GGCV01, HJBB14, IE93b, IE93f, IE95e, IE95h, IE95f, IE95g, IE96b, IE96g, IE96c, IE96d, IE97b, IE05, IOK00, JDB+14, KO101, KS15b, LSVM08, MLGW18, MC18, MSML10, Nar95, NH95, NJ01, PLR02, PD98, Rec96, RRBl01, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, BJ13, BHS18, BMF96, CPF95, CCLSAP09, DS94, FWS+17, GDC15, GGCC99, Gre94, HAM95b, HPS+96, J96, Kat93, Kum94, LHLK10, LG93, PSB+94, PP95, RKBA+13, R90h0, RCC95, SSS99, SLS96, VDL+15, Wol92, WWFT11]. Processor-Oblivious [UALK17]. Processors [AJ97, Btri10, HK93, HK95, KMWH10, MJB15, OLG01, PZKK02, BBG+95, CBM+08, DCLG11, HTA08, HXW+13]. Producing [HAK01]. product [CMH99, ER12, SMSW06]. production [C1dJ+15, SL00]. productive [LV12]. Productivity [BS07, KaM10, W16]. products [Ano97, Bra97]. profile [TWF009, WFT014]. profile-driven [TWF009, WFT014]. profiler [AS92]. profiles [Wl94]. profiling [GPL+96, LHZY19, Rab99, Vet02]. Program [Ano96d, AB93a, BMS94b, CHP01, Cot97, EML98, MM95, MK17, MRV00, Ney00, P01, TSY00, TH00, UT02, CDZ+98, JF95, LP00, LLC13, OKM12, PPF89, Sai10, TNIB17, TMPJ01, ZL96]. programación
Programmable [OA17].
Programmcode [BL94].
Programmer [Gua16, Wit16]. programmers [CGG10].
Programming
[ACM90, Ada97, ACGR97, ASA97, ACJ12, Ano96b, BBG⁺10, BLP93, BHV12, BF01, BBZ⁺01, BK000, CMK00, CDK⁺01, CKnWh16, Cha02, CZG⁺08, CF01, Cza03, DM98, DAR13, DDL00, DK06, DWL⁺10, EM00a, EM00b, FTVB00, FWR⁺95, GLRS01, GLS94, GLS99, HA11, HDB⁺12, HDT⁺15, KKH03, Kep05, KP96, KnWH10, KVH97, Lad04, La01, LRRS02, MSOG01, Mat94, Mat95, MCdS⁺08, NO02b, SP⁺10, SK10, SS01, SDN99, SHH94b, ST02a, ST02b, SGS10, Stp02, TTP97, VT97, Vre04, Wal01a, Wal02, WO97, YM97, YHGL01, YCA18, ACGrT02, AMuHK15, Ano95c, Ano00b, AB13, BJ13, BCA⁺06, BB94, BS96a, BKH⁺13, CLY16, CEF⁺95, CDH⁺94, CGH⁺14, DWL⁺12, DuV92, EASS95, EV01, FB95, FB06, Fan98, FSTG99, Fer04, Fra95, FHB⁺13, FF95, GHD12, Gei96, GBH14, GBH18, GRTZ10].
programming
[HTA08, HS93, HZ94, HDB⁺13, HVSH95, HSW⁺12, HZG08, KDSO12, KOB01, KSG13, KSL⁺12, KL15, KPNM16, KFFS94, KKJ⁺08, LV12, LFS93a, LFS93b, LH98, LP⁺11, LLH⁺14, MMB⁺94, MVT96, MSP93, MC99, MGC⁺15, NO02a, Nak05a, NYNT12, NBGS08, OIS⁺06, Ohi14, OW92, Pac07, PVKE01, PF05, Qui03, RJDH14, iSYS12, SSKF95, SYR⁺09, Seg10, SPK96, SBF94, SPL99, SHH94a, SD99, VP00, Vos03, Wal01b, Wau02, WCC⁺07, WADC99, WYLC12, WLYC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE⁺17, Che10, SD13].
Programs
[AJF16, Beg93b, BkDSh01, BGK08, BGG⁺02, BDL98, BGL00, CSW12, CRE99, CHPP01, CD98, DLB07, DMMV97, DI14, FKKH02, FJK⁺17, GR07, GTH96, GL04, GC05, HC10, HKN⁺01, HM01, KFL05, KL94, KSJ14, KKV01, KSV01, Mar09, MVY95, MOL05, MBE03, MKW11, MCLD01, MJBJ15, NSZS13, NE98, NE01, NPP⁺00d, OM96, PPJ01, RH01, RFG⁺00, SGZ00, SBF⁺04, SR96, TGBS05, Wel94, Wis97, ZLL⁺12, Beg92, Beg93c, Beg93a, BCK⁺09, BPMS03, CRE01, CLg1⁺15, CGL⁺93, CH94, CRM14, CFP96, DKF93, DKF94b, EP96, EPP⁺17, FLB⁺05, FKL08, GGH99, GRRM99, GKS⁺11, GB94, HD11, HZ96, HLOC96, HEHC09, KCD⁺97, KS13, KO14, Kom15, LGKQ10, LLG12, LL16, LBB⁺16, LYSS⁺16, LMM⁺15, LZC⁺02, LCC⁺03, MT96, MdSAs⁺18, Mor95, NBK99, Ob96, OdSSSP12, PES99, PAdS⁺17, RAS16].
progress
[Reu03, RRG⁺99, SSB⁺16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THH⁺05, UTT09, VVD⁺09, YSVM⁺16, YSMA⁺17, YWW⁺12, ZJMW18, ZQQA11].
Progress [BRU05, LAdS⁺15, SPH⁺18, MLA⁺14, MC94]. Progress-Dependence [LAdS⁺15].
Project [BHK⁺06, BSH15, DHK97, MRV00, ABC⁺00, CDH⁺94].
Promise [Ano93f].
Promotion [OCY⁺15, WBB15].
Propagation [EMO⁺93, ESM⁺94, JML01, SMOE93, KEGM10, RMNM⁺12].
Properties [FGRT00, JL18, MS96b, SPS⁺04].
Proposal [DHHW92, DHHW93a, DFC⁺07, DFA⁺09, ZKRA14].
Proposals [Wal96b].
protected [GH12].
Protein
[RGB⁺18, GAVRRL17, SEC15, ZAT⁺07].
proteins [BHWP⁺12, BBH⁺15, FSM15].
Protocol [CAWL17, GSY⁺13, KL11, LMM⁺15, RA09, XF95, BDB⁺13, CwCW⁺11, DDM99, MN91, MB00, ZP106].
Protocol-based [LMM⁺15].
Protocols [BCH⁺08, DM93, LH98].
Protoplanetary [dLFMBdFM02].
Prototype [An01b, FHP⁺94, MMSW02, BK96, CCF⁺94, KY03, KY05].
prover [Sut96].
Provide [Add01, LMRG14].
Provides [Ano98, Ne93].
Providing [GKP97, Zah12].
Proving [MS96b].
PRS [UCW95].
Pruning [SMM+16]. PS [AMV94]. Pseudo [Wal01a, Lan09]. Pseudo-search [Wal01a]. Pseudorandom [WHDB05]. Pseudospectra [BKGS02]. pseudospectral [Bri95, MRRP11]. PSPVM [BWT96]. Pthread [ZAT+07]. Pthreads [AS14, TS12b]. PTX [iSYS12]. Public [Str94, GWVP+14, Nel93, RST02]. Public-private [Str94]. Puma [BS96b]. purely [HSE+17]. Purpose [BDT08, Che10, Str94, GWVP+14, Nel93, RST02]. PVaniM [BCLN97, TSS98]. PVFS [IRU01]. PVM [AD98, BL94, BDLS96, BDW97, CHD07, CHD09, CD01, DLM99, DML00, Kra02, KKD04, LKD08, McD96, MTWD06, RWD09, Wil94, Ahn97, AS92, ACGR97, ADRCT98, AL92, AGR+95b, AS97, AL96, ARL+94, AKK+94, AP96, Ano94b, Ano95e, Ano96b, Ano96c, ABC95a, ABC95b, ABC95c, AGLv96, BBR99, BF97, BID95, BM94b, BFM96, BFMT96a, CMV+94, CP97, CDJ95, CKO+94, CCK+95, CSPM96, CZ95a, GPGR98, CG93, CD95, CDH95, CDH+95, CF91, CF96, CG96, CG96b, PVM [CSC96, CDM93, CdGM96, CPR+95, CT94a, CT94b, CFP96, CT02, CD98, CTK01, DG95, DFK94a, DMY99, DM95b, DM95a, DP94, DMMV97, DGF97, DFN12, D+91, DGM93, DGM93a, DHP97, DPZ97, EP96, EM94, EGDK92, ED94, EM02, EML98, EML00, ES11, EMO+93, ESM+94, EE97, FMBM96, FD96, FL96, FH95, FHS099, FO94, FSTG99, FJBB+00, Fin97, FD97, FS97, For95, FS93, GRV01, Gal97, GCBM97, GS91a, GS91b, GS92, GS93, Gei93a, Gei93b, GDB+93, GBD+94, Gei96, GKP96, Ge97, GKS97, Gei98, GXX, Gei00, Gei01, GTH96, GB96, GM95, GM95b, GFV99, GGH99, GS96, Gö91, GHL97, Gre95, Gre94, GL97b, GMU95, GLuCY97, HB96a, HB96b, HSMW94, HJ98, Har94, Har95, HBT95, HPS+96, Hem96, HEH98, HTHD99, HVSH95, HH95, HRSA97, Hu96, Hum95, HS95b]. PVM [ITT99, IvdLH+00, IDD94, IKM+01, IKM+02, JAT97, JY97, JML01, JW96, JC96, KBA02, Kat93, KK98, KP96, KMB97, KDL+95a, KDL+95b, KG96, KCP+94a, KCP+94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAHS96, KX92b, LGM00, LB98, LSZL02, LHCT96, wL94, LFS92, LFS93a, LFS93b, LH95, LC93, LY93, LYL93, LW95, LHZ97, LKL96, LDC97, MW98, Man94, MTV96, Man95, MP95, dFMBdF902, MTSS94, MFTB95, MSCW95, MSP93, Mat94, Mat95, MU99, Mat95, MR95, MS96, MS96b, Mic93, Mic95, MT96, MS99a, MS99b, MH94a, MH94b, MRH+96, MS95, MC99, MWO95, Nel93, NP94, Neu94, NBK99, Ney00, NB96, NA99, Nov95, Ob96, Ols95, OPP00, Ott94, OWSA95, PPR01, PK98, PPT96b, PPT96a, PPT96c, POL99, PTO1, PKYW95]. PVM [Per96, Pet97, PTT94, Pla02, PN01, PD98, PY95, PL96, Pus95, QRG95, QRMC96, Qu95, QMGR90, RR00, RS93, Rag96, RS95, RHG+96, RRAG97, Rol94, RGD97, Saa94, SAS01, Sch94, Sch96a, Sch96b, SB95, SF98, SGS95, SS99, SPK96, Sep93, Sev98, Sh94, SA93, SR96, SHH94a, SHH94b, Sm93a, SBR95, SC96a, STT96, SMOE93, SGL+00, SGHL01, SCL97, SSS97, Sta95b, SY95, SYF96, SC96b, Str94, SIK96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SGD93, Sun96, STMK97, SN01, SCL00, Sun95b, Sut96, SL95, TMTP96, TC94, TBD96, TD98, Tsa95, Uhl94, Uhl95b, UH96, UMK97, VSRC94, VSRC95, VB99, YAT95, WK96, WH94, WCV96, WAS95b, WO97,
Wis96a, WL96a, Wis98, Wis96b, WL96b, WC99, Wu99, WLC07, XWZ96, XF95, YG96, YKI96, ZPL96a. PVM [ZP106, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, Zol93, van93, Ano95b]. PVM-AMBER [SL95], PVM-Based [WAS95b, FO94, PY95, Sut96, ZPL96, LSZL02, TD98]. PVM-GRACE [YKI96]. PVM-AMBER [ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, Zol93, van93, Ano95b]. PVM-Based [WAS95b, FO94, PY95, Sut96, ZPL96a, LSZL02, TD98]. PVM-GRACE [YKI96]. PVM-Implementation [BJS97, Huc96]. PVM-RPC [KS97]. PVM/C [GTH96]. PVM/MPI [AD98, BDW97, CHD07, CHD09, CD01, DKD05, DLM99, DKP00, DLO03, Kra02, KKD04, LKD08, MTWD06, RWD09, ACGR97, SN01]. PVM3 [IM94]. PVM3/AP1000 [IM94]. PVMaple [Pet00a, Pet00b, Pet01]. PVMe [BR95c, BR95b]. PVMGeant [DZDR95]. PVM-AMBER [ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, Zol93, van93, Ano95b]. PVM-Based [WAS95b, FO94, PY95, Sut96, ZPL96a, LSZL02, TD98]. PVM-GRACE [YKI96]. PVM-AMBER [ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, Zol93, van93, Ano95b]. PVM-Based [WAS95b, FO94, PY95, Sut96, ZPL96a, LSZL02, TD98]. PVM-GRACE [YKI96]. PVM-AMBER [ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, Zol93, van93, Ano95b]. PVM-Based [WAS95b, FO94, PY95, Sut96, ZPL96a, LSZL02, TD98]. PVM-GRACE [YKI96].
Reconfigurable [RKBA+13].
Reconstruction [BM97, DYNT+06, GA96, LSSZ15, OIH10, RAGJ95].
Record [UALK17, CRD99]. Record&Replay [KSV01].
Recovery [SBF+04, BBH+13b, BDB+13, LFS93a, LFS93b, SCSC95, ZW05].
Rectangle [CSW99]. rectified [WBBD15].
Reduction [CRGM16, JE95, BCM11]. Reduction [FKH02, MFPP03, SG12, HL17, JES93a, MLVS16, Pan95a, P07].
Reduction [PWP19]. Redundancy [TS12a].
Redundant [KJ+16]. Reference [GHLL+98, Nag05, SOHL+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, SOHL+96, Per97, Ano96a].
Refinement [MRB17, Ran05, CLSP07, DLR94]. regions [LFL11].
Regression [RBA17]. Regular [HLP11, NHT02, NHT06]. Reims [MCdS+08].
Relationship [DAN12]. relativistic [BHS14]. relaxation [OKW95].
Reliability [CGZQ13]. Reliable [SE02, Arn95]. Remark [SWH15].
Remedies [ALW+15]. Remo [IEE95h].
Remote [BMR01, HDT+15, IFA+16, OCM+15, Tsu07, WBBB15, AGLv96, FHC+95, GBH14, GBH18, HGMW12, RSC+15, SIRP17, SH96].
Remote-Scope [OCY+15, WBBB15].
Remotely [GgCM99, GgCG001, GCgS98, VLO+08, GGGC99]. Remoting [MGL+17].
Removal [ZZZ+15]. Removing [ZJDW18].
Rendering [GCBM97, LSZL02, SU96, UCW95].
Rendezvous [RA09]. Reordering [Hat98].
Rep arallelization [KBG+09]. Repeated [WH94, Shi94]. Replacement [GHD12].
Replay [CFMR95, HLOC96, UALK17, CRD99, MT96, NBK99, XW+09].
replay-based [MT96]. Replication [WC09, KJ+16, ZJDW18].
Representation [BMRO1, KD12, MDM17, SML17, CCM12].
reproduce [AVA+16]. Reproducible [GL99, HCA16, XW+09]. Requirements [GSBH02, GT07, Ber96, KGB16, LCVD94a].
Research [Ano96d, BR02, MC94, SL94a, SGHL01, Ara95, BPG94, LP00, Oed93].
Reservoir [OWSA95, ZAFAM16, ZO95, Ano95d].
Resident [JDB+14]. Resilient [CGH+14, Gua16, LCMG17, LMG17, MLVS16].
Resolution [MAB05, Str94, BADC07, KN17].
Resolving [Str97]. Resource [BGR97b, BSH15, KK98, SIS17, YSS+17, DZ96, FLD96, NEM17, ZA14].
resource-conscious [ZA14].
resource-restricted [NEM17]. Resources [LSB15, NAW+96, Kos95b, R+92].
Response [BBC+00]. Restart [SSB+05, LMG17]. restarted [dH94].
Restoration [FJB+00]. Restore [Gua16].
restricted [NEM17]. Restructuring [KAMAMA17].
Results [BIL99, BIC05, HSMW94, Wll01a, BR95c, DHS96, VDL+15]. retargetable [KKJ+08].
rethinking [GJLT11]. Retrieval [RL01, MMR99, MRH+96, RTL09].
reusable [LTLC94]. reuse [BVML12, LM94, NAAL01]. Reverse [BGK08, LSB15, LM13, QHCC17]. Review [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, BDL98, Che10, Mar06, MCLD01, Nag05, Per96, Per97, SD13, Vre04, Stp02, Vog13]. Reviews
Gao03, LFL11, PDY14. scan [AAA16, YLZ13]. scans [NAJ99]. SCASH [SHH10], SCATCI [ART17]. scatter [BCD96, MTK16]. Scattering [BCL00, NZ94, OMK09]. SCF [MM95]. schedule [NAAL01]. scheduler [ADDR95, TCBV10, WRSY16]. schedulers [NP12]. Scheduling [BBH*06, BSH15, CML04, DMB16, EGR15, GDDM17, GSHL02, GHL97, JW96, MJ15, NIO+02, NIO*03, TJPF12, APBcF16, DZ98a, JKN+13, LHCT96, MBKM12, NSBR07, OPW+12, Smi93b, SKK+14, SKB+14, WYL012, WLYC12, YWC11]. Scheme [CTK01, LNLE00, MW98, SBF*04, BBGL96, Bjo95, ORP11, OKM12, SCC96, YPZ95, FM90]. Schemes [PPJ01, WYL12, WLYC12, ZAT+07]. Schmidt [CBYG18]. School [VV95]. Schrödinger [DM12, ON12]. Schrodinger [DM12, ON12]. SCI [FS97, HEH98, HUS00, RR01, ZHS99]. SCIDDLE [ABG+96, AGLv96]. SCIDDLE-PVM [ABG+96]. SCIDDLE-PVM [ABG+96]. Science [EGH+14, IEE95d, MHH93, OBL02, SM07, ACM06a, DWM96, HK93]. Sciences [ERS96, HS94, ZL96, ERS95]. Scientific [AGH+95, APJ+16, BBG*95, DKM+92, DT94, Gat95, GL97a, HJ98, KK02a, LkLC*03, Mar06, Nag05, Sin93, SSB+17, VY02, WN10, Bis04, DW94, SBG+12, TBB12, Ano97, Br97]. scientists [HW91, Str94]. SciPAL [KH15]. SCIPVM [ZHS99]. Scope [OCY+15, BB9B+13, WBB915]. scoping [RLD12, WC15]. Scotsdale [IEE95b]. Scratchpad [JAK17, MB12]. Scripting [Ong02, KPL+12, Nob08]. scripting-based [KPL+12]. SCTP [KPW05, ZP06]. SDK [TK16]. SDSM [CCM+06]. Seamless [KK02a]. Search [BSH15, Cza13, IKM*01, Wal01b, FMS15, IKM*02, Wal01a, ZSK15, CB11]. Searches [BSG00]. Searching [JPT14, MM01, BA06, Wal01b]. Seattle [ACM05, BS94, LCK11, Ost94]. Second [An00b, BL95, DT94, DE91, IEE94d, IEE96d, IEE96i, LHLM96, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFM96, DWM96, FR95, KN17, Li96]. Second-Order [BL95, KN17]. Secondary [WHDB05, SEC15, ZAT+07]. section [Ano93b, DKD08]. segment [FJZ+14]. segment-based [FJZ+14]. Segmentation [KBA02, AD95, CUC95]. Seidel [BG95, LM99, Ols95]. seismic [AMBG93, KL95, KEGM10, LM13, QHCC17, RMNN*12, SSS99, WCVR96]. Seismograms [DP94]. Select [KDKV03]. Selected [DHS96, MTW07, OL05, TB14, CHD09, Cha05, DKD07, JC17]. selecting [PTL+16]. Selection [CKmWH16, SN19, PGB+07, WKS96, ZW+17]. Selective [Nak03]. Self [NSS12, SLJ+14, TGT10, VFD02, NSBR07, WYL012, WLYC12, YWC11]. Self-Consistent [TGT10]. self-scheduling [NSBR07, WYL012, WLYC12, YWC11]. Self-Submitting [NSS12]. Self-Tuning [SLJ+14]. Semantic [MTU+15, DFK94a, OA17]. Semantically [MKW11]. semantics [RNPM13]. Semaphore [TT97]. Semi [CT94a, Bjo95, PSLT99, TC94, CT94b]. semi-coarsening [PSLT99]. semi-implicit [Bjo95]. Semi-Lagrangian [CT94a, TC94, CT94b]. Semiconductor [GJN97, Ano93a, LS10]. Seminar [Ano94f, Ano93h]. Send [GPC+17]. Sender [BCH+03]. Sensed [GGCM99, GGCG01, GCGS98, VLO+08, GGCG99]. sensitive [GKCF13]. Sensitivity [dLR04]. Separable [Ben01, CgDM96]. September [Abo96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BHK95, CLM*95, CHD07, CJNW95, CD01, CDN11, DK05, DK07, DLM99, DKP00, DLO03, EJL92, FK95, FR95, GHH+93, IEE93d, IEE94c, JPT94, KGRD10, KRA02, KKD04, LKD08, MAL95, ...]
MTWD06, OL05, PSB+94, RWD09, SPH95, SM07, TBD12, VV95, VW92, WPH94, YH96.

Sequence
[GMU95, SM+16, AMHC11, TSZC94], sequences [GÁVRR17, SdM10].

Sequencing [VPS17]. Sequential [EK97, RPM+08, GG[H99, SR95, TNIB17, TSZC94].

Serial [SWH15, HPS+96, HWS09]. serialization [CFKL00]. Serialized [KH10]. Serielles [BL94]. Series [Nag05, BR94]. Server [Ano93f, FSLS98, KS97, Mat01b, Sch93, Sto98, Vis95]. Servers [CGC+02, SIS17, GK97]. Service [RFG+00, LS08, SPK+12]. Services [FC05, AAC+05, ZKRA14]. Session [NYNT12, ZL96]. Set [BDA+18, SW12, WL96a, Ano00a, She95, WL96b]. Sets [SG12, CGL+93]. setting [GL95a]. Setup [NSLV16]. Seventh [BBG+95, HS94, IEE93b, IEE95g, IEE96h, Eng00, Y+93]. several [GBR15]. SGI [Che99, CML04, KMG99, LB96, LL01, LKJ03, LS04, TW12, ZSaH01].

SGI/CRAY [Che99]. SGI/CRAY-T3E [Che99]. shadow [SOA11]. shallow [dIAMC11, dIAMCFN12]. Shane [SD13].

Shanghai [IEE97a]. SHARE [Ano92, Ano93f, Ano94g]. Shared [BAC+06, BME02, Bri10, DM98, DBG16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HT01, KB98, KSH01, LRT07, Luo99, MBE03, MCD+08, Müi02, NPP+00d, PBK00, Pok96, Ps00b, Ros13, SS01, STY99, ST02b, Thr99, VSO0, VTF97, ABC95a, ABC95b, ADMV05, BMG07, CBP02, Cha96, CCM+06, CC00b, DBVF01, DS96b, DPZ97, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JE95, KJA+93, KC06, LKL96, MLK04, PK05, RGD15, SHH01, SL94b, SFL+94, SSC96, TSY99, TSY00, Vos03, WMRR17, WRMR19, YWO95, YX95, Cha05].

Shared-Memory
[DM98, HDB+12, NPP+00d, Pok96, Thr99, PS00b, ABC95a, ABC95b, BMG07, GL96, GL97c, KJA+93, PK05, TSY00]. Sharing [Att96, CML04, CB16, DiN96, JAK17, KK98, JE95, Ott93, PRS+14], shear [JAT97].

ShearLab [KLR16]. Shearlet [KLR16]. SHMEM [BBD14, HS01, LSK04, Sch96a, Sch96b, S801]. Short [KBM97, MH01, BMPZ94a, PARB14].

Short-Range [KBM97, MH01, BMPZ94a, PARB14].

Shorter [NB96]. Showcase [USE00]. SHPCC [IEE92]. SHPCC-92 [IEE92].

SIAM [BBG+95, DKM+92, Sin93]. Side [kLCCW07]. Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, MB00, TGT05, TRH90, ZSO12, bT01a, BM00, DBG16, GBH18, LS04, MS99c, PGK+10, GBH14]. SIGCSE [ACM06a]. Signal [IEE95c]. Signatures [Gro00]. significance [AMHC11]. silent [FME+12]. silicon [Ano03, Goe02]. SIMD [BvdB94, HS95b, KDT+12, LL16, Sur95b, VSW+13]. Simple [MSF00, Miü01, SC04, ITT99, JH97, Nes10, PNV01]. simulate [Heb93]. Simulated [BHM94, BH96, FH97, RSTB95].

Simulating [DLM+17, KDL+95b, KDL+95a, NFG+10].

Simulation [CDMS15, CCBPGA15, DMMV97, DZDR95, GSI97, GM95, GJN97, Ham95a, JML01, KKM97, KMK16, LLRS02, MFTB95, MP04, MANR90, PCY14, PKYW95, PZKK02, RR00, RDMB99, SSAS12, Str97, Ten95, UZC+12, ZZ04, ZWJ90, dIAMC11, Ano95d, ADR+05, BJ95, BCM+16, BH95, BMPZ94b, CwCW+11, CSM+96, DSOF11, FHSO99, FO94, FLPG18, FFFC99, GRTZ10, JAT97, JLS+14, KTJT03, KMC96, KMC97, LCVD94b, LCVD94a, LYZ13, MMW96, MALM95, NB96, NF94, OKM12, PARB14, PY95, RFH+95, SWYC94, SPS+94, SM15, Str96, Syd94, Tho94, YPA94, YEG+13, YSL+12, Eng00]. Simulation-Based
Simulations
[XWJK05]. Simulations
[CGS15, CNM11, DFM09, DIO2, GAP97, HLP11, HFI14a, HFI14b, KT02, Kha13, NH95, RTRG+07, SM02, YPAE09, AD014, ABG+96, BHS18, BAD07, CFF19, GM18, Hn11, JMS14, LS10, LSVMW08, RMNM+12, U96, TOC18, WWFT11].

Simulator
[CA112, MRV00, UT02, WPC07, AMV94, LS10, PWD+12, WZS08, ZAFAM16, ZZ95, KTJ03, Nak03, Nak05a, Nak05b]. Simulators [SB05, AVA+16]. Singapore [IEE96d]. Single [BM00, HFI14a, HFI14b, MB00, URK12, AGIS94, KKLI11]. Single-Chip [URK12]. Single-sided [BM00]. single/multigrid [AGIS94].

singleton [TVCB18]. Sinks [JPT14]. Sites [Ano98]. Sixth

HK95, IEE96c, MMH93, SW91]. size

[GKCF13]. sized [JLS+14]. Sizes

[DAL18, ZSH01]. SKalMPI [KRS99, RSPM98, RH01, Reu01, RST02, Reu03].

Skeleton [SM91]. Skeleton [JPT14]. Sites [Ano98]. Sixth

HK95, IEE96c, MMH93, SW91]. size

[GKCF13]. sized [JLS+14]. Sizes

[DAL18, ZSH01]. SKalMPI [KRS99, RSPM98, RH01, Reu01, RST02, Reu03].

Skeletons [YMY11]. socket [LS10]. Softshell

[SKK+12]. Software

[Ano94i, BME02, BPG94, BDG+xx, C95b, ESB13, FFP03, GFB95, Gre95, HPR+95, HS94, HHA95, IEE95l, IEE96h, IEF95, KSI15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, Sil96, TDBEE11, VdS00, W092, Ano97, B4C99, Boi97, Bra97, BR94, CMV+94, CBPP02, DP97, Hum95, JH97, JB96, LM94, MK94, Neu94, Old02, PAH10, PK05, PGK+10, RAS16, SHHI01, Sch94, Sei99, SPP95, Str94, ZGN94, Ano94i, KG93, Sil96].

Software-Managed [LB16]. Solan

[CGB+10]. Solaris [Ano01a]. solidification [JLS+14]. solids [Hn11]. Solution

[DWL+10, FBS01, HO14, MC18, RPM+08, SER+16, Tsu12, VR50, DWil+12, IM95, JK10, LSR95, MAL95, ON12, PRS+14, SC96a]. solutions [AGIS94, LGM17]. Solve

[Hog13, Riz17, BAV08, Che99, GGGC99]. Solver

[Ben01, BF98, CFO1, HSMW94, IDD94, LZ97, SJK+17a, SJK+17b, WJB14, YK+18, AMS94, CP15, CF19, DM12, JR10, LMF99, L95, OGM+16, RM99, SRK+12, SCC95, THM+94, ZG+14].

Solvers [DFN12, DAL18, GK10, MS97, N002b, N903, NHT02, NLH07, QRMG96, R97, WR01, AFB+17, ADL03a, ADL03b, ADDR95, BR99, CL93, DR18, MKP+96, MS95, N002a, N905a, N905b, NHT06, PR94c, QRG95, SSH08]. Solving

[ADRT98, BHM94, BMH96, BV99, BG95, BDG+92c, BSH15, DAL18, GFFG12, Huc96, LLY93, MS02a, N94, SAS01, SP11, SD99, BB95, DMY4, HHA95, LBB+16, LYS+16, MM11, SSB+16, SMSW06, YSM+16, YMAS+17]. SOM [GKLy97].

Some [BDT08, M101, P97, AL92, NN95, RBST95]. Sopron [VV95]. Sorrento

[DKD05, DKD07]. sort [KVGH11, PSHL11]. Sorting

[LTS16, BJ96, PSHL11]. Sound

[SG12]. Source [BGG+15, MM07, AC17, AVA+16, NCB+17, N080, PSK+10].
[LMG17]. Storage [ACM04, Hol12, LCK11, HP11, NFG+10, RGGP+18, ZJDW18]. stores [HSP+13]. straight [YULMTS+17].

Strategies
[MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, TSZC94, VB99]. Strategy [ADM97, DI02, Hat98, VPS17, ZB94, ZSG12, DKF94b, DR95, MSL12]. strayed [Rol08a]. stream
[HSW+12, UGT09]. Streamline [GCG+11]. streams [TVCB18], StreamScan [YLZ13].

Strength [Kon00]. String [KMM15, MM02, MM03]. striped [KDSO12]. Strongly [GAP97, ZZG+14].

Structural
[CBL10, LAFA15, SYF96, WHDB05, EPM19, SEC15, SY95, ZAT+07].

Structured [FB96, Mar06, MRB17, NLHR07, Ran05, Bis04, CLSP07, FR95, GBR15, JAT97, Smi93b]. Structures
[GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. studies [DHP97]. Study
[AIM97, BF01, BHL+95, DARG13, EGC02, FPY08, GL79a, HHC+18, KCR+17, LSB15, MM02, NSL16, NA01, PK05, RRB10, SCL01, TG94, AGR+95b, BJ13, BDA94, BJ99, BY12, Br00, CBM+08, DXB96, ED94, F094, JR13, KBG16, LPD+11, LLH+14, MS96b, PSK08, PK+10, PSHL11, RSBT95, RJC95, TDP15, Wal01b, WLK+18, ZSK15]. Stuttgart [KGRD10, WPH94].

style [JPO12]. sub [MJG+12].

sub-communicators [MJG+12].

subcircuit [HLO+16]. subdomain [CEGS07]. subdomains [SHHC18].

subgroup [XLW+09]. Submitting [NSS12].

Subrange [Str97]. Subroutine [Saa94].

subroutines [dCH93], subsurface [ED94]. subsystem [BMG07, MAB96].

Subsystems [STMK97]. Subtle [SAL+17].

Success [Gro01b, LF+93a]. Successes [Gro01a]. Successful [Gro12]. suffix

[DK13]. Suitability [Mat01b], suitable [MAS06]. Suite [ACMR14, AKE00, BWV+12, MBB+12, Riz17, Ano03, BO01, MvWL+10, TG09, YSW14, SNMP10].

Suites [MC500, SJG+03]. summation [IHM05]. Sums [ST17, MYB16]. SUN
[BMM00, SJ02, WSSN99]. Sunnderan [Ano95b]. Super [Gua16, YX95].

Super-Object [YX95]. Supercomputer
[Ano93a, CLP+99, Str94, AAC+05, BHH+05, EFR+05, GL96, GL97c, KMH+14, NMM12, Ste94, GS91b, MAB05]. Supercomputers
[BP93, BDG+92c], EKTBB99, KN17, WT11].

Supercomputing
[AC96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93e, IEE94h, Lin95, Sch94, ACM94, ACM96c, Ano93g, BG91].

superlattice [Pri14]. superscalar [ACJ12].

Supersonic [CCBPA15]. Support
[Ano98, BBG+10, BFBW01, CFF+94, DMMV97, FGRD01, GRV01, GOM+01, HRSV97, LMRG14, MK04, OP98, PSM+14, RR02, SDN99, SBT04, TW01, Wis98, Wis01, YSP+95, BBH...].

Survey [Sap97]. Survive [ABB+10].

sustainable [CGBS+15]. SVD [CMH99].

Swan [HD11]. Swapping [SC04]. Sweden
[Eng00, HAM95b, FF95]. Swendsen
[KO14, Kom15]. Switch [SCL01, TBD96].

Switched [LC93, KYL03, KLY05].

SWITCHES [DT17]. Switzerland
[GT94, Ano94i, IEE97b]. SX
[HRZ97, TRH00]. SX-4 [HRZ97]. SX-5
Sydney [Bil95], Sylvester [GK10], Sylvester-Type [GK10], Symbolic [CKC12, Coo95b, Ste900], YYW+12, ACM97a, BHK95, Coo95a, Lev95, LGKQ10, LLG12, SMAC08.

Symmetric [BDV03, MDM17, YKW+18, BAY08, DCH02, GG99], Symposium [ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94c, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IEE05, LHHM96, Li96, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tou96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94h, Lev95, Old02]. synchronisation [SDB+16].

Synchronization [LA02, OCY+15, TGT05, BMG07, LA06, TMTP96, YLZ13].

Synchronizing [VT97]. Synchronous [Ada97, BJ13, Cer99, DLRR99, HZG08].

Synergia [SSA92]. Synergistic [UGT09].

Synthesis [CS14, GWC95]. synthesized [MC17]. Synthesizer [DS16]. Synthesizing [AJF16, NP12]. Synthetic [CC17, DP94].

Syracuse [IEE96f], SYSMO [MM95].

System [Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BF97, BGD12, CAM12, CCG+02, DBA07, DALD18, ERS95, ERS96, EK97, FBD01a, FBVD02, FFP03, Fis01, Gal97, GCBM97, GS01b, GS02, GSxx, GM95, Gre95, HS94, KBA02, LLRS02, LTR00, LLY93, Maf94, MRV00, MM02, MSF00, MMH98, MSS07, MMH93, NPP+00d, NMS+14, Oed93, PPT96a, RGD97, SGJ+03, SSB+05, SCP97, SA93, ST02b, Sun93, TSS00b, Tsu07, UP01, Wils93, ARS89, AS92, AL92, BB94, Bri95, BHH+15, DL10, FNSW99, FK94, GS91a, GS93, GS96, GMU95, GlLY97, HGDG99, Hum95, H95b, IBC+10, ITT99, JH97, JLS+14, KW14, Kik93, LB9+96, LKL96, LL95, MA09, MMR99, MMB+94, MAS05, MM11, MS99b, MALM95, NAJ99, PPT96b, PPT96c, PK05, RJDH14, RTL99, SHHI01, SL94b, Sei99, SPL99]. system [SGDM94, Sun96, Sur95b, VSRC94, VSRC95, WCC+07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, ZWZ+95, dCZG06, AL93, NMW93, Yan94]. System-Initiated [SSB+05]. system-on-a-chip [dCZG06].

System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [AAB+17, Ano94b, Att96, BCGL97, BGBP01, BME02, BPG94, Bha93, CDJ95, CAWL17, CFF+94, CSW97, CJNW95, Coo95b, FD96, FGKT97, Fos98, Gua16, HRS97, IEE93d, IEE94d, IEE95a, IEE95i, IEE96b, KKH03, KP96, KDL+95b, KCR+17, KS97, LY93, LW97, MWG97, MB03, MJB15, MBB+12, SM03, SGS10, SS96, T16, THN00, USE94, YGH+14, YH96, ZB97, dGJM94, AGR+95b, ACMZ11, ATL+12, Ano94e, BBB+94, BAV08, CKO+94, CLY16, CBPP02, Coo95a, CPR+95, DF17, DR94, DBVF01, DvdLVS94, FHB+13, GBR97, GCM+10, GEW98, GKK09, GKF13, Gra09, GFPG12, GH9+93, HHA95, IM95, JB96, JMJ+11, KSG13, KHB+99, KLV15, KDL+95a, KFSS94, LR06b, LH98, LCVD94b, LH+14, MSL12, MvW+10, Oed02, OPW+12, Pan95b, Par93, PSB+19, QB12, SSKF95, SCJH19, SP95, SVC+11, Smi93b, SG14, SMSW06, SLN+12]. systems [Sun94b, TBB12, TMW17, TVCB18, TSP95, WCS+13, WWZ+96, WADC99, WYLC12, ZL96, ZGC94, dh94, dLAMC11, dLAMCF12, JW96]. Systemsoftware [Sei97]. systolic [BSC99].

T3D [AZ95, AFST95, CCMS97, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95].

T3E [BBS99, Boo01, Che99, GRRM99, LSK04, RBB97c]. T3E-512 [RBB97c].

Talbot [ACMR14, Riz17]. Tapir [SML17].
targeting [JKM+17]. Task
[ADH12, AAB+17, FKKC96, GDDM17,
GPC+17, IOK00, KOI01, LHCTR96, Mar03,
MJB15, NIO+02, NIO+03, NSZS13, NJ01,
OP10, OS97, SGZ00, SPL+12, TBS12, TS12a,
YKW+18, APBeF16, ABF+17, BGH+05,
GKFC13, OdSSP12, OPW+12, OPP00,
RRFH96, RFRH96, SKB+14, WC15].
Task-Based
[ADH12, AAB+17, SPL+12, SKB+14].
Task-Overlapped [GPC+17].
Task-Parallel
[NSZS13, APBeF16, ABF+17].
Taskers [FLD96].
Tasking [DFA+09, KaM10,
SHM+10, TCM18, TSCam12, WC15].
Tasks
[ACD+09, DT17, DFA+09, JW96, OP98,
PWPD19, RR02, RDLQ12, YSS+17, BS01,
DDYM99, DR95, FKK96b, FKK96a,
IvlDH+00, PKE+10, PWPD19].
TAU
[MMS07, RMS+18].
taxonomy [SPH96].
TBSCM [BP98].
TC2 [Boi97].
TCGMSG
[GB96, Mat94, Mat95].
TCP [KPW05].
TD [And98].
Teaching
[MK00, JY95, MK97, PKB06].
Technical
[Ano93c, Ano98, MC94, USE95, ACM06a,
SM18].
Technique
[BCD+15, HC06, HAA+11, MK17, HC08,
Nes10, RBB17, MAIVAH14].
Techniques
[CP97, GS02, Mi101, SAL+17, SPL+12,
TGBS05, Wis01, BPC94, Fer04, FCS+12,
HKMCS94, JKN+13, KBG+09, NFG+10,
PF05, SKS01, WST95].
technologies [Ma15].
Technology
[Ano97, Bra97, CGB+10, CSV12, Dan12,
GN95, HS94, PWP+16, SBT04, TBG+02,
Ano93a, Ano93c, D+95, DM12, IEE94c,
NS16, ZAT+07].
Tekniska [Eng00].
Telegraphic [ES11].
TELMAT [BR94].
temperature [Hin11].
Template
[GS97, PKB06].
Templates [BN12, KH15].
Tennessee [PR94b].
terabyte [KTTJ03].
Terabytes [IEE02].
teraflops [KTTJ03].
Terms [KD12].
Tessellation [SS09].
Test
[SNMP10, TG09, AAAA16, CPR+95, GL92].
Testbed [Mat01b, EGH99, PY95].
Testing
[CCK12, DFK94b, Ost94, VdS00, CMV+94,
DKF93].
Testsuite [WCC12].
Texas
[ACM06a, IEE94b, IEE95l, IEE95g, IEE97c,
Y+93].
Text
[LTR00, MM01, RLL01, RTL99].
Textbook
[Ano98].
textual [WKS96].
texture
[HE15].
TFETI [SHHC18].
TH [CFDL01].
TH-MPI [CFDL01].
Thakur [Ano00a].
Their [Bru12, GOM+01, RG18, GSMK17].
theorem
[Sut96].
Theory
[GK10, BW12, CBH94].
Thera [CD01].
Think
[HCA16].
Third
[BP94, Bos96, DCM94, GA96, IEE94g,
SM19, Was96, BDL96, Mal95, IEE97c].
Thirty
[Y+93].
Thirty-seventh
[Y+93].
Thousands
[PZKK02, BMS+17].
Thread
[AELGE16, BB18, ETWam12, GOM+01,
GT07, Nit00, Pla02, STY99, HK09, IDS16,
JKN+13, SPH96, SLN+12, YZ14].
Thread-Level
[AELGE16, HK09, YZ14].
Thread-Safe
[Pla02].
Thread-safety
[GT07].
Threaded
[BBG+10, MG15, Ada98,
EBK01, SCB15, SVC+11, TSY99, TSY00].
threaded-MPI
[SVC+11].
Threading
[BHV12, MLGW18, SBT04, TBG+02,
KPO00, KRG13, QB12, ZAT+07].
Threads
[CP98, LD01, Lee06, BS01, MVTP96,
ALW+15].
Three
[Car07, GA96, Nak05b, Ram07, SAS01,
GSMK17, LSSZ15, Mar05, PR94c].
three-Dimensional
[GSMK17].
Three-Dimensional
[GA96, LSSZ15, PR94c].
Three-level
[Nak05b].
Throughput
[Tsu07, ESB13, PP16].
Tightly
[SS09].
Tightly-Coupled
[SS09].
Tilewise
[KS15b].
Time
[BL00, FHK01, FSSD17,
GSHL02, GOM+01, HO14, KFL05,
MFTB95, OP98, SCL01, SS96, TSP95, UP01,
YGH+14, AL96, CDMS15, DLR94, DM12,
Fer04, FLB+05, FKL08, GB94, HE13,
JE95, KC94, KPL+12, LHLK10, LBB+16,
LYSS+16, LM13, MMW96, NZZ94, ON12,
SBW91, SSB16, SK92, SRK+12, TSY99, Tho94, TV96, TCBV10, Uhl95c, VMD4, YSVM+16, YSMA+17, ZWZ+95, SKD+04.
time-dependent
[DM12, LBB+16, LYSS+16, ON12, SSB+16, YSVM+16, YSMA+17]. time-domain
[HE13, NZZ94, Ram07, VM94].
time-independent [CDMS15],
time-varying [Uhl95c].
times [MLVS16, NB96, SSS99].
time [Ols95].
tips [Fer04]. TLM [SC96a].
TTM [GGCM99, GCGS98, KHS01].
TN [DT94, BR94].
TOD [GPC+17]. TOD-Tool
[GPC+17]. today [IEE94c].
Topsplit [BV99, BAY08].
Tolerance
[GKP97, GL04, LMRG14, LNLE00, RPM+08, TS12a, WC09, WIl93, SG05, ZHK06].
Tolerant [BCC+02, BCH+03, BHK+06, CF01, CFDL01, FD00, FBDo1a, FBVD02, FD02a, FD04, GBF+03, IEE09c, JSH+05, MSF00, BCH+08, FBDo1b, FDD02b, HG12, LMG17, LS08, NCB+12, NCB+17, PKD95].
Tomographic [Pat93]. tomography
[FWS+17, RCF96].
tomorrow [IEE94c].
Tool [An01b, Beg93b, BFMT96b, DW02, GSN+01, KAMAMA17, KSJ14, KKP01, LMRG14, MMSW02, MK04, NE98, SR96, SGL+00, Tra12b, VBB18, WL96a, AGG+95, BDP+10, Beg92, Beg93c, Beg93a, BDY99, BFMT96a, BHU+12, CPR+95, DFR94a, FSTG99, HPR+95, HD11, LCC+03, MiSAS+18, RMS+18, TSS98, WL96b, WL96b].
Tool-Set [WL96a].
Toolbox
[An97, Bra97].
Toolkit
[An12, LC07, LC13, SL96]. Tools
[ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, VOS03, Wan97, AVA+16, BDG+92a, BF1M99, Fan98, GFB95, LH98, MSW+05, MHC94a, ZL96].
Tools-supported [CDD+96]. Top
[AHP01, Gal97, Hsu01, Man01, PTH+01b, Ser97, BBCR99, PTH+01a, SSC96, SCL97, CCHW03].
TOP-C [CCHW03]. ToPe
[JKM+17]. topologies [BCM+16, MK00].
Topology [DK06, Hat98, HM01, Tra02a, GJMM18, HRR+11, MBBD13, SPK+12].
topology-aware [MBBD13].
Topology-Based [HM01]. TOPPER
[KKP01].
Toronto [GFK+93, Vos03].
Torus [SG15].
Townsend [DT94]. TPVM
[FS95, FS98].
Trace [Ney00, FLP18].
trace-based [FLPG18]. Traceback
[dOSMM+16].
Traces [CC17, MAN09, WM01, CDMS15, DWM12].
Tracing
[CGLD01, DP94, KG96, CKG93, Morr95, SG95].
Tracking
[GAP97, HD02b].
Trading
[BHM94, BM96].
traffic [Zah12].
Training [CSV12].
Transactional
[BW+12, MFG+08, SBC+12].
Transactions
[BW+12].
Transfer
[BKGS02].
Transfers [THS+15].
Transform
[YUL95, KT10, DBLG11].
Transformation
[EP96, NSZ13, GSK97, HZ96, TSY00].
transformations
[JE95, TG94].
transformed
[BY12].
Transforming
[PSK+10].
Transforms
[ACMR14, KLR16, HP11, Uhl95c, Zem94].
Transient
[SIS17].
transistor
[An03].
transistors
[An03].
Transition
[MVR00].
Transitive
[CGPR98, PPR01].
Translating
[Mar09, NCB+12].
Translation
[DDL00, SJE12, HCL05, LME09, NCB+17].
Translator
[KMK16, UZ+12, CHK94, GScFM13].
transmitters
[WWZ+96].
Transparent
[CPK+95, IFA+16, NPP+00c, SLZ99, LFS93a, LFS93b, LFL11, NPP+00a, SOA11].
Transparently
[CB16].
Transport
[KHS01, RS97, VRS00, WR01, ZZ04, Pri14, SH94, SCJ919, WH96].
Transporter
[Far92].
transpose
[Bha98].
Transposition
[HD02b].
Transputer
[Ara95, ACDR94, CJNIW95, FK95, FF95].
GN95, GHH*93, MC94, dGJM94, ZPLS96, Ara95, CJNW95, GHH*93, dGJM94.

Transputers [ACDR94, AGR+95b, dCH93].

Transtech [Ste94], trap
[LLB+16, SSB+16, YSVM+16], TRAPPER
[KFSS94, SSKF95], travel [SSS99].

travel-times [SSS99], traveling [GM94],
traversing [BDG+92b], TreadMarks
[LDCZ97].

Tree [GPC+17, ADB94, AB13, BCAD06, CG93, SG95, Zah12], Trees
[CDPM03].

Trends [Duv92, IEE93d, GM94].

TSUBAME [ACD98, ACDR94, BDG+91a, CHD07, CD01, CDN11, DKD05, D*91, DHWW92, DHHW93a, DLM99, DP00, DLO03, FCLG07, GBD+94, GN95, KGRD10, MBS15, JPTE94, SGDM94, Sun96].

Two [MMH93].

Two-level [dlAMCFN12].

dlAMCFN12].

Two-Dimensional [SSJ+17a, SJ+17b, AL93], two-layer
[dIAMCFN12].

Two-level [STY99].

Type [KGB96, MSB97, FVL915, GFPG12].

Types [Wel94, NYNT12].

typy [OA17].

U.S. [LD01].

U.S.A [Ano94c]. Überblick
KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MTWD06, NPP+00c, Nov95, Per96, RWD09, TBD12, XF95, ZWZ05, Ano95b, BBB+94, BDW97, KCP+94a, RSC+15, Reu01, W194, BBI...13a. User-Level [DHHW92, DHHW93a, KCP+94b, KOW97, NPP+00c, XF95, ZWZ05, KCP+94a, BBB...13a. Users [Ara95, CHD09]. uses [SH96]. Using [AR01, ADRCT98, AHP01, And98, AP96, Ano95c, AKE00, AZG17, AB93a, BST+13, BPN97, BG95, BS93, BKGS02, BM97, Bon96, BBC+00, BBH12, CGC+11, CRE09, CMO03, CP97, CSPM+96, CC17, Che09, CCMS97, CDM93, CCHW03, CRGM14, CT94a, CCBPGA15, CD98, DeP03, DARG13, DAK98, DGMJ93, EM02, RRBL01, RLVRGP12, RLL01, RRR+99, SAS01, Sev98, SSAS12, SP99, SA93, Smi93a, SBR95, STV97, SMOE93, SA95b, ST17, SKH96, SCL01, SJK+17a, SJK+17b, TS12a, TS12b, TS03, TK16, TBB12, Tha98, Tra98, Tsu07, VLO+08, WO95, WO1a, WAJ12, WLR05, Wis97, Wis01, WLYC12, YKW+16, ZBd12, van97, vdLJR11, AMHC11, AK99, ABF+17, AL96, ADT14, ABG+96, AB93b, AGIS94, AGG+95, BV99, BFL99, BSC99, BDG+92c, Bic95, Bis04, BCM+16, BTC+17, BCD96, BID95, BAG17, BSH15, BMG07, CG93, CBM+08, CBYG18, CdGM96, CS14, CLBS17, CT94b, CCO0b, DG95, DS13, DRUC12, DSOF11, DCHO2, DM12, EGD92, FB96, FSV14, FSC+11, Fin94]. using [Fin95, FHC+95, FWS+17, GGGC99, GSMK17, GG09, Go92, GFB+14, GMU95, GM18, GRTZ10, HB95a, HDDG09, HTJ+16, HP11, HPS+96, HPLT99, HAso00, HLO+16, HAA+11, IM+05, IM95, IKM+02, JL18, JF95, JKH08, JLS+14, JYY+03, JIM+11, JPT14, JR10, JMDVG+17, KFA96, KRKS11, KY10, Kat93, KJJ+16, KR90, KMK16, KME09, KMC96, KMC97, KRC17, KMM15, KD13, KPK13, LP00, LSG12, LSSZ15, LCY96, LSVMW08, LCMG17, LO96, MMR99, MP95, Mar06, MSMC15, MAB05, McKh94, MM11, Mic93, Mic95, MRH+96, MMM13, MSML10, MS95, MM14, MC99, MvWL+10, N002a, N002b, NZZ94, NB96, NAJ99, NU05, OKM12, OIH10, Ols95, Pat93, PDY14, PGdCI+18, PV01, PKE+10, QR95, RJC95, RAS16, RCFS96, RBAI17, RM99, RCG95, SLMH14, SLSo10, SLGZ99, SGS95, SSS99, SMS00, SOA11]. using [SCV+11, SSGF00, SLFD15, SSN94, SU96, SP11, TC94, TPLY18, Tsu95, Uh94, Uh95b, Uh96, VM94, VB99, VGS14, VM95, WO96, Walo1b, WCS+13, WCR96, WST95, WMRR17, WRMR19, WADC99, Wor96, WYLC12, XF95, YULMTS+17, YWC11, YWCF15, YCA18, ZWS95, ZSK15, ZAT+07, ZZ95, Ano95c, An00a, An00b]. UT [Hol12]. UTE [JF95]. Utilising [SC96a]. Utilities [CC95]. UV2 [TW12]. UVM [NSLV16].

V [JB96, BBC+02, BHK+06]. V2 [BCH+03]. VA [Sin93, RP95]. Vacancy [HD02b]. Vaidy [Ano95b]. Validation [BDV03]. GLB00, WCC12, CMV+94, SCB14, SCB15]. Value [vHKS94, AL96, LSR95, SP11, SD99].
Value-based [vHKS94], valued [Str12].
VAMPiR [BHNW01, NAW+96].
Vancouver [IEE95a, IEE95i]. Vapour [PKYW95]. Variable [Ano98, ZZG+14].
Variables [FKH02]. Varily [TOC18]. Various [LH95]. varying [Uhl95c].
VCMON [Whi94], vCUDA [SCSL12]. Vector [AKL16, DS13, Fuj08, KDT+12,
LL16, Uhl95c, ER12, FVLS15, FJZ+14, GL96, GL97c, Har94, Har95, HE15,
PMZM16, XLL13]. Vectorization [IKM+01, MCP17, IKM+02]. Vectorized [KB13].
Vendor [Rab98, Bor99]. Venice [DLO03, OL05]. venture [Ano03].
Verification [BCD+15, RAS16, Trä12b, LMM+15, SZ11, VVD+09]. verified
[WBBD15]. verifier [BCD+12, LGKQ10]. verify [MdSAS+18, SMAC08].
Verilog [Kat93, KMK16]. Versatile [KSJ14]. Version [BCGL97, CCK+95, MHSK16,
Bjo95, BHW+12, BBH+15, Man94, Str94, Wal95, WRMR19]. versioned [SSB+17].
Versions [Ano98]. Versus [RTRG+07, Ahm97, CE00, KPWO5, KAC02, KPO00,
LMG17, LC97b, MFT95, NLSV16, NHT02, NHT06, RSR95, SZ99, Wal00, ZLL+11].
verteilter [GBR97]. VGRIDSG [AB93a].
VIA [Sie99, FKKC96, BHW+12, CGYZQ13, DS96b, FLPG18, GB96, Hos12, HCL05,
LAdS+15, LSSZ15, NFP+00c, QHCC17, SLJ+14, St94, VBLvdGO8, YPZC95,
ZJDW18, ZLL+12, EM02, RR01]. VIA/SCI [RR01]. viable [Ano03]. Victoria [IEE95e].
Video [KSJ95, KSJ96]. videogames [YMY11]. Vienna [BH95, TBD12, Ben95].
View [ZDR01, ZDR04]. ViMPIOs [Sto98]. VinaMPI [ESB13]. ViPios [Sto98].
Virginia [IEE92, IEE94a, Sie92a, Sie92b]. VirtCL [YWT15]. Virtual [ACM96a,
AS92, ARL+94, BJ93, BP99, BS93, BG94b, CHD07, D+91, EGR15, Fis01, GBD+94,
Gei01, Gre94, ITT99, JPP95, KNT02, KKD03, KKD05, LKD08, LK10,
MTWD06, NM95, Nov95, Pat93, Per96, QRG95, RWD09, SSS96, Sei99, SCSL12,
TY14, Tsu07, Wel94, YC98, ARS89, AD98, AL92, Ano95b, BR91, BDG+91a, BPC94,
BBCR99, Bir94, BDLS96, BCM+16, BFM96, BDW97, CARB10, Cav93, Cha96, CD01,
CXB+12, DDS+94, DM93, DKD05, DLM99, DPK00, DLO03, DPZ97, ESB13, FM90,
KMC97, Kra02, LG93, MN91, MRH+96, NB96, PRS16, Sch94, SK92, SCC96, SL00,
WK08a, WK08b, WK08c, AGIS94, Sei99]. virtual-time [SK92]. Virtualization
[FC05, MGL+17, Ott94, YSS+17, ZLP17, RSC+15, IRS17]. Virtualized
[ERG15, YWCF15, RNP13]. viruses [St94]. viscoelastic [HK94, MAVAH14].
viscosity [ZZG+14]. viscous [RM99]. Vision [KCR+17, JRM+94]. VISPAT
[HPS95]. Visual
[BPMN97, FNSW99, PDY14, Ros13, ACGdT02, LC07, GE95, GE96].
Visualization [BDGS93, GKP96, GKP97, HJ98, KA13, MVY95, NAW+96, PK98, PCY14, Wis96a,
ZLGS99, Bor99, Eng00, FHC+95, HPS95, KFA96, TSS98, WST95, Wis96b].
Visualizer [HKN+01]. VLSI [Jes93a]. VM
[GHD12, McR92, Whi94]. VM-protected
[GHD12]. VM/ESA [Whi94]. VMPP
[LG93]. VOBLA [BKvH+14]. Vol
[ATC94, HS94, Nag05]. Volatile
[BBC+02, BHC+03]. Voltage
[KFL05, FKLB08]. Volume
[Ano99a, Ano99c, Ano99b, Ano99d, DFN12,
GHL+98, SOHL+98, BHW+12, WST95]. Volumes
[GA97, SOA11]. Volumetric
[KA13, CLBS17, KGB+09]. Voodoo
[PMZM16]. VOOM [BR91]. VORD
[KSJ14]. VR [DBA97]. VRML
[ACM96a, NM95, KSJ95, KSJ96]. VRML-based
[KSJ95, KSJ96]. vs
[FH98, BHC+08, Lu99, Nak05b]. VTC
References

AlQuraishi:2016:CBP

Agullo:2017:BGB

Almasi:2005:DIM

Akzhalov:2008:WPL

Arthur:1993:PIU

Aloisio:1995:UPW

Augusto:2013:APG

Ayguade:2010:EOS

[ABB+10] Eduard Ayguadé, Rosa M. Badia, Pieter Bellens, Daniel Cabrera, Alejandro Duran Roger Ferrer, Marc González, Francisco Igual, Daniel Jiménez-González, Jesús Labarta, Luis Martínell, Xavier Martorell, Rafael Mayo, Josep M.

Adhianto:2000:TOA

Appiani:1995:PSM

Appiani:1995:PSM

Agosta:2015:OPP

Aliaga:2017:CTP

José I. Aliaga, María Barreda, Goran Flegar, Matthias Bollhöfer, and Enrique S. Quintana-Ortí. Communication in task-parallel ILU-preconditioned CG solvers using MPI + OmpSs. *Concurrency and Computation: Practice and
Arbennz:1996:MDS

Abrahart:1996:GIC

Alvanos:2017:PMM

Ayguade:2009:DOT

Arnold:1994:PCT

Acacio:2002:MDM

REFERENCES

REFERENCES

References

[Add01] Cliff Addison. Exploiting OpenMP to provide scalable SMP BLAS and

V. Alexandrov, F. Dehne,

Amritkar:2014:EPC

Aldea:2016:OES

Ashby:1995:PPG

Ayguade:1995:DUA

Aityan:1995:PFI

Averbuch:1994:PES

A. Averbuch, E. Gabber, S. Itzikowitz, and B. Shoham. On the parallel elliptic single/multigrid

REFERENCES

Astalos:2000:CMS

Agathos:2012:TBE

Awan:2017:CCD

Ahmad:1997:EVP

Allsopp:2001:EUM

Aversa:1997:MDP

driven parallelization strategy for different computing platforms: a case study.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Aguilar:1997:PMS

A processors management system for PVM.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Aubrey-Jones:2016:SMI

[AJF16] Tristan Aubrey-Jones and Bernd Fischer.
Synthesizing MPI implementations from functional data-parallel programs.
CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Alexandrov:1999:PMC

Parallel Monte Carlo algorithms for sparse SLAE using MPI. In Dongarra et al. [DLM99], pages 283–290.
LCCN QA76.58 E973 1999.

Armstrong:2000:QDB

[AKE00] Brian Armstrong, Seon Wook Kim, and Rudolf Eigenmann.
Quantifying differences between OpenMP and MPI using a large-scale application suite.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Andersen:1994:PIA

[AKK+94] B. S. Andersen, P. Kaae, C. Keable, W. Owczarz,
J. Wasniewski, and Z. Zlatev.
PVM implementations of advection-chemistry modules of air pollution models. In Dongarra and Wasniewski [DW94], pages 11–16.

Asai:1999:MIF

MPI-2 implementation on a Fujitsu Generic Message
REFERENCES

Passing Kernel. In ACM [ACM99], page ??

REFERENCES

Amer:2015:MRC

Ayguade:2007:SIO

Almasi:1993:PDS

Agrawal:2011:PPS

Amato:1994:PEP

anMey:2007:NPO

Al-Mouhamed:2015:EAO

Mayez Al-Mouhamed and

Aversa:1994:PSH

Andersson:1998:PFT

Anonymous:1992:PSE

Anonymous:1993:ATA

Anonymous:1993:ISA

Anonymous:1993:JFI

Anonymous:1993:CDP

Anonymous:1993:MPI

Anonymous:1993:MMP

Anonymous:1993:PSE

Anonymous:1993:SEC
REFERENCES

REFERENCES

Anonymous:1999:BRMg

Anonymous:2000:BRUe

Anonymous:2001:AAL

Anonymous:2001:EDP

Anonymous:2003:MNIc

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

Aji:2016:MEA

REFERENCES

Aji:2016:MAA

AlHaddad:2001:UNW

Arabnia:1995:TRA

Altas:1994:NIE

Arnow:1995:DLB

Abrossimov:1989:GVM

Al-Refaie:2017:PAH

Addison:2003:OIA

Al-Refaie:2017:PCT

Al-Salman:1992:DIP

Awile:2014:PWF

Alonso:1997:PBB

Alves:1995:WPC

REFERENCES

Andujar:2016:OSF

Asenjo:1995:SLF

Arteaga:2017:GFG

Beyer:2005:GEC

Battre:2006:MFP

Bader:2016:EMT
REFERENCES

Bedrosian:1993:MFA

Beguelin:1994:CMS

Beaumont:1995:DPG

Brunschen:2000:OCP

Bylina:2018:EEO

Bala:1994:IEU

Bova:2000:DLP

Steve W. Bova, Clay P. Breshears, Christine E. Cuicchi, Zeki Demirbilek, and Henry A. Gabb. Dual-level

Bosilca:2002:MVT

Bertozzi:1999:MIT

Bethune:2014:PAA

Bailey:1995:PSS

Bova:2001:PPM

CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic). URL http://
computer.org/cise/cs2001/
c5022abs.htm; http://
dlib.computer.org/cs/
books/cs2001/pdf/c5022.
pdf.

sagepub.com/content/24/
1/49.full.pdf+html.

sagepub.com/content/20/
1/77.full.pdf+html.
Bischof:2008:AAD

Bustamam:2012:FPM

Bland:2013:EUL

Bland:2013:PFR

Busa:2015:CCO

REFERENCES

Bircsak:2000:EONa

Bircsak:2000:EONb

Bouchard:1996:FCS

Betts:2012:GVG

Betts:2015:DIV

Baker:1999:MOO

Balaji:2010:IND

Pavan Balaji, Anthony Chan, William Gropp, Ra-

[BCGL97] Bala:1997:PVQ

[BCH+03] Bouteiller:2003:MVF

[BCH+08] Buntinas:2008:BVN

[BCKP00] Bruno:2000:PEH

REFERENCES

Blackford:1997:PEN

Burtser:2018:HQP

Bland:2013:SIP

Beguelin:1991:UGP

Beguelin:1991:GDT

Beguelin:1992:HGD
A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, R. Wade, and
REFERENCES

[BG]+92a

[BG]+92b

[BG]+92c

[BG]+93b

[BG]+93a

[BG]+95
REFERENCES

and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, ????. 19xx.

Beguelin:1993:VDH

Bruck:1995:EMPb

Bruck:1997:EMP

Browne:1998:RPA

Bode:1996:PVM

Baghsorkhi:2010:APM

[Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel,
REFERENCES

Bronevetsky:2007:CFS

[BrS07]

Baboulin:2003:PPM

[BDT08]

Bubak:1997:RAP

Batt:2016:OSA

REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

REFERENCES

[Bubak:1996:PBP]

[Bubak:1996:PPM]

[Bozas:1997:PED]

[Bhavsar:1991:SSJ]

[Boerger:1994:FSP]

[Borger:1994:AMP]

[BG91]

[BG94b]

[BG94c]

[BG94a]

[BFZ97]

low-level hardware explo-
rations with MIAOW: an
open-source RTL implement-
tion of a GPGPU. ACM
Transactions on Architec-
ture and Code Optimiza-
tion, 12(2):21:1–21:??, July
2015. CODEN ???? ISSN
1544-3566 (print), 1544-3973
(electronic).

[BGL00]

G. Bhanot, A. Gara, P. Hei-
delberger, E. Lawless, J. C.
Sexton, and R. Walkup.
Optimizing task layout on
the Blue Gene/L supercom-
puter. IBM Journal of Re-
search and Development, 49
CODEN IBMJAE. ISSN
0018-8646 (print), 2151-8556
(electronic). URL http://
www.research.ibm.com/
journal/rd/492/bhanot.
pdf.

[BGL00]

Christian Bischof, Niels
Guetler, and Andreas
Kowarz. Parallel reverse
mode automatic differen-
tiation for OpenMP pro-
grams with ADOL-C. In
Bischof et al. [BBH+08],
pages 163–173. CO-
DEN LNCSA6. ISBN 3-
540-68935-4 (print), 3-540-
68942-7 (e-book). ISSN
1439-7358. LCCN QA304
link.springer.com/content/
pdf/10.1007/978-3-540-
68942-3_15.

[BGL00]

Ralph Butler, William
Gropp, and Ewing Lusk. A
scalable process-management
environment for parallel pro-
grams. Lecture Notes in
Computer Science, 1908:
168–??, 2000. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/1
bibs/1908/19080168.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080168.
pdf.

[BGL00]

T. Beisel, E. Gabriel, and
M. Resch. An extension
to MPI for distributed com-
puting on MPPs. Lecture
Notes in Computer Science,
1332:75–82, 1997. CODEN
LNCSA6. ISBN 3-540-90841-
X (print), 3-540-90839-3
(e-book). ISSN 1439-7358.
LCCN QA304 J58 2008.
URL http://link.

[BGL00]

Matthias Brune, Jörn Gehring,
and Alexander Reinefeld.
Heterogeneous message pass-
ing and a link to resource
management. The Journal of
Supercomputing, 11
CODEN JOSUED. ISSN
0920-8542 (print), 1573-0484

[BGL00]
REFERENCES

REFERENCES

REFERENCES

service/series/0558/papers/2474/24740401.pdf.

REFERENCES

0129-6264 (print), 1793-642X (electronic).

Blas:2010:IEF

Branca:1995:CBH

Bilger:1995:AFM

Bernaschi:1999:ERA

Biradar:1994:ADL

Bisseling:2004:PSC

REFERENCES

Baiardi:1993:PVM

Boianov:1995:DLC

Barkati:2013:SPA

Bjorge:1995:ISS

Blaheta:1997:PIP

Blaheta:1999:LFM

Bhandarkar:1996:MPM

Balevic:2011:KAD

REFERENCES

Bhandarkar:2001:ALB

Bekas:2002:PCP

Berka:2013:CPC

Boryczko:1995:NIC

Bull:2000:PPJ

Beaugnon:2014:VVO
Ulysse Beaugnon, Alexey Kravets, Sven van Haas-
tregt, Riyadh Baghdadi, David Tweed, Javed Ab-
sar, and Anton Lokhmo-
tov. VOBLA: a vehi-
cle for optimized basic lin-
ear algebra. ACM SIG-
PLAN Notices, 49(5):115–124, May 2014. CODEN
SINODQ, ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Plasmafusionsforschung: Se-
rielles und paralleles Rech-
nen mit nur einem Pro-
grammcode auf Cray YMP,
nCUBE2, Workstations mit
PVM und KSR1. In Anony-
mous [Ano94c], pages 232–
234. ISBN ???. ISSN 0341-
7778. LCCN Q180.55.E4

Leclercq. Second-order
Møller-Plesset and Epstein-
Nesbet corrections to the
molecular charge density:
Distributed computing on
a cluster of heterogeneous
workstations with the PVM
system. In Bernardi and
Rivail [BR95a], pages 73–
??. ISBN 1-56396-457-
0. ISSN 0094-243X (print),
1551-7616 (electronic), 1935-
0465. LCCN QD39.3.E46

Lomdahl. Extensible mes-
 sage passing application
development and debug-
ging with Python. In IEEE
[IEE97b], pages 650–655.
ISBN 0-8186-7793-
7. LCCN QA76.58 .I56
1997. IEEE catalog number
97TB100107. IEEE Com-
puter Society Press order
number PR07792.

Towards portable runtime
support for irregular and
out-of-core computations. In
Dongarra et al. [DLM99],
pages 59–66. ISBN 3-540-
66549-8 (softcover). ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

and R. Perego. Program-
ming a workstation clus-
ter with PVM and Linda:
a qualitative and quantita-
tive comparison. In Anony-
mous [Ano93b], pages 101–
114. ISBN ???. LCCN ???

[Bach:2013:LQB] Matthias Bach, Volker Lin-
denstruth, Owe Philipson,
and Christopher Pinke. Latt-
tice QCD based on OpenCL.
Computer Physics Com-
munications, 184(9):2042–
2052, September 2013. CO-
DEN CPHCBZ. ISSN
0010-4655 (print), 1879-2944
Bubak:1998:PCL

Bhandarkar:1997:CRP

Booth:2000:SSM

Basumallik:2002:TOE

Buntinas:2003:AAL

Bronevetsky:2003:AAL

REFERENCES

124

Bubak:1994:PDS

Bubak:1994:EMD

Baiardi:2001:CRD

Brightwell:2002:DIM

Bubak:1994:FLG

Bubak:1994:IPL

Barthels:2017:DJA

Berrendorf:2000:PCO

Bawidamann:2012:ETO

Bull:2001:MSO

Bubak:2000:IOB

Boisvert:1997:QNS
REFERENCES

Bonnet:1996:UPW

Booth:2001:OML

Borkowski:1999:LVC

Boszormenyi:1996:PCT

Brebbia:1993:ASE

Berthou:1998:PHM

Barbosa:1999:ADM

J. Barbosa and A. Padilha.

Beletsky:1994:OPV

Becks:1994:NCT

Barbosa:1997:EUW

Baptista:2001:IOS

Balou:1991:DIV

REFERENCES

[Burrer:1994:RRB]
C. Burrer and P. Remy. RU-BIS: a runtime basic interface software on TELMAT T9000 TN series. In de Gloria et al. [dGJM94], pages 63–78. ISBN ???? LCCN ????

[Bernardi:1995:CCE]

[Bernaschi:1995:PEI]

[Bernaschi:1995:DRP]

[Bane:2002:EOA]

[Boeres:2004:ETF]
REFERENCES

1532-0626 (print), 1532-0634 (electronic).

[Brightwell:2010:EDA] Ron Brightwell. Exploiting direct access shared memory for MPI on multi-core processors. The Interna-
REFERENCES

Ulrich Brüning. MPI functions and their impact on in-
REFERENCES

Barth:1993:CNM

Bolding:1994:PCR

Beguelin:1996:TMD

Blikberg:2001:NPA

Blikberg:2005:LBO
Brown:2007:HSP

Bassomo:1999:PGE

Bolton:2000:MPL

Bukata:2015:SRC

Bakhtiari:1995:APL

Bai:2013:SLA
August 2013. CODEN CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic).

Benzoni:1991:MFR

Blaszczyk:1996:EPI

biewski:2001:MOS

Bu:2001:PA

Bonelli:2017:MCA

Badia:1999:SIT

J. M. Badia and A. M. Vidal. Solving the inverse Toeplitz eigenproblem using ScaLAPACK and MPI. In Dongarra et al. [DLM99],...
REFERENCES

REFERENCES

[Car07] Santiago García Carbajal. Parallelizing three dimensional cellular automata
REFERENCES

M. D. Cooper, N. A. Burton, R. J. Hall, and I. H.

Casas:2010:APD

Che:2008:PSG

Chapman:2002:APU

Clay:2018:GAP

Chapple:1995:PUL

REFERENCES

138

[CCA00] Hsiang Ann Chen, Yvette O.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cerin:1999:DMP

Chen:2001:FFT

Chen:2001:TMK

Choudhary:1994:LCR

Corbett:1996:OMP

Clauser:2019:FFO
Carpenter:2000:OSM

Clemencon:1995:IRD

Cotronis:1996:ECP

Clematis:1995:PPH

Chandrasekharan:1993:RTB

Clematis:1996:CEP

Clematis:1999:EPC
A. Clematis and V. Gianuzzi. Extending PVM with consistent cut capabilities: Application aspects and implementation strategies. In Dongarra et al. [DLM99], pages 101–108. ISBN 3-540-66549-8 (soft-

REFERENCES

REFERENCES

CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Chapman:2011:OPE

Chatterjee:1993:GLA

Casanov:2015:TMS
Cecilia:2012:CSC

Chen:2013:IRM

Cheng:1994:PDP

Ciancarini:1996:CLM

Charny:1996:MPV

Chapman:2002:PAD

Jie Cheng. Book review: *CUDA by Example: An Introduction to General-Purpose GPU Pro-

See [SK10].

REFERENCES

Chen:2003:GMD

Corbacho-Lozano:1999:EDD

Chen:2018:FOB

Chien:1999:DEH

REFERENCES

REFERENCES

Carson:2003:CGU

Chapman:2012:OHW

Campanai:1994:EAS

Chou:2010:CMI

Chalkidis:2011:HPH

REFERENCES

Coelho:1994:EHC

Cooperman:1995:SBP

Cooperman:1995:SMB

Coussement:1993:PMO

Cotronis:1997:MPP

Cotronis:1998:DMP

Cotronis:2004:CMP

Coussement:1993:PMO

Carvalho:1997:PCC

Iván Cores, Gabriel Rodríguez, Patricia González, and María J. Martín. Failure avoidance in MPI applications using an application-

[C14]

[Cores:2016:ROM]

[CSC96]

[Ciampolini:1996:EPM]

[Clement:1996:NPM]

Cavenaghi:1996:UPS

Carreira:1995:DEL

Chevitarese:2012:STN

Ciegos:1997:NID

Ciegos:1999:HDA

Calotoiu:2012:PID

Cote:1994:PSA

[J. Cote and S. J. Thomas. Parallel semi-Lagrangian advection on the sphere using PVM. In Pierce and Regnier [PR94b], pages 470–477.]
REFERENCES

Cote:1994:PSL

Cotronis:2002:MMP

Chang:2013:PDS

Cotronis:2000:_CMP

Czarnul:2001:DPD

Cao:2011:OMM

Chao Cao, Yun wen Chen, Yuning Wu, Erik Deumens, and Hai-Ping Cheng. OPAL:
REFERENCES

Dieguez:2018:SLP

Danalis:2012:MCT

Darema:2001:SMP

Demidov:2013:PCO

deAndrade:2017:OFH

Demuyck:1997:DOD

REFERENCES

stations. In Grebe et al. [GHH+93], pages 660–667. ISBN 90-5199-140-1. LCCN ????

REFERENCES

1995. IEEE catalog number 95TB8131.

REFERENCES

REFERENCES

Dongarra:1993:IPF

daCunha:1994:PIR

Dongarra:1995:PBC

Dongarra:1992:PUL

Dongarra:1993:DSM

Dongarra:1993:PUM

Derakhshan:1997:PEP

Dongarra:1997:CSD

REFERENCES

[Dongarra:1996:SRP]

[DiN96]

[Karniadakis:2002:DLP]

[DroSerio:2002:ENN]

Nikolaos Drosinos and Nectarios Koziris. The effect of process topology and load balancing on parallel programming models.

Deo:2013:PSA

DiMartino:2005:RAP

DiMartino:2007:SIS

DiMartino:2008:SSG

Damodaran-Kamal:1993:NTD

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Damodaran-Kamal:1994:MSR

Damodaran-Kamal:1994:TRP

Dongarra:1992:PFS

Dongarra:2000:RAP

Dickens:2010:HPI

delaAsuncion:2011:SOL

Marc de la Asunción, José M. Mantas, and Manuel J. Castro. Simulation of one-layer shallow water systems on multicore and CUDA architectures. *The Journal of*
REFERENCES

Marcos:2002:DDP

Dongarra:1999:RAP

Degomme:2017:SMA
Augustin Degomme, Arnaud Legrand, George S. Markomanolis, Martin Quinnson, Mark Stillwell, and Frederic Suter. Simulating MPI applications: The

[DLR04]

Dongarra:2003:RAP

[DLRR99]

DeSande:1999:NBS

[DLV16]

DiPietro:2016:CLD

[DM93]

Despons:1993:CCP

R. Despons and T. Munteanu. Constructing correct protocols for a diffusion virtual
machine in message passing parallel architectures. In Grebe et al. [GHH+93], pages 465–480. ISBN 90-5199-140-1. LCCN ????

Dongarra:1996:APC

Dinda:1996:PIA

Donev:2006:ICF

Sandes:2016:CIS

Dongarra:1995:IMS

Dongarra:1996:MPS

REFERENCES

REFERENCES

Deshpande:1996:MIBa

Dekker:1994:MPP

Dongarra:1994:PSW

Diavastos:2017:SLR

Duval:1992:TPP

D. Duval. Trends in parallel programming models for high performance computers. In Ferenczi [Fer92], page 33. ISBN ???. LCCN ???.

Dikken:1994:DDL

Dong:1996:SPL

Deng:2006:PIK

Dantas:1996:ILB

Dantas:1998:ESM

Dragovitsch:1995:PPS

Dykes:1994:CCP

Delves:1998:HPF

Dragovitsch:1998:HPF
REFERENCES

1994. IEEE catalog no. 94CH34819.

Edjlali:1995:DPP

Elwasif:2001:AMT

Eppstein:1994:CSP

Eigenmann:2008:ONE

ElMaghraoui:2009:MIM

Eleftheriou:2005:SFF

M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward, and R. S. Germain. Scalable framework for 3D FFTs on the Blue Gene/L

El-Ghazawi:2002:UPP

Eppstein:1992:PGC

Eickermann:1999:PID

Erhel:2014:DDM
Ebrahimirad:2015:EAS

Evans:1992:PCP

Exbrayat:1997:OPS

Eberl:1999:PCP

Elamvazuthi:1994:OPA

Eigenmann:2000:TMPa

Eigenmann:2000:TMPb

Espenica:2002:PPA

Roberto Espenica and Pedro Medeiros. Porting PVM to
the VIA architecture using a fast communication library.

Espinosa:1998:ADP

Espinosa:2000:APA

Ewing:1993:DCW

Engquist:2000:SVG

Emani:2015:CDM

REFERENCES

187

REFERENCES

Eckert:2016:HAL

Fabeiro:2015:AGO

Fabeiro:2016:WPP

Fang:1998:DDL

Freeman:1994:SMM

Fang:1995:PMS
Niandong Fang and H. Burkhart. PEMPI — from MPI stan-
standard to programming environment. In IEEE [IEE95],
pages 31–38. ISBN 0-8186-
6895-4. LCCN QA76.58 .S34
1994.

[Fang:1996:SPP]
N. Fang and H. Burkhart.
Structured parallel programming
using MPI. In Liddell et al. [LCHS96], pages
840–847. ISBN 3-540-6142-
8 (paperback). LCCN
QA76.88 .H52 1996.

[Fang:1997:MDD]
Niandong Fang and Hel-
mar Burkhart. MPI-
DDL: a distributed-data li-
brary for MPI. Future
Generation Computer Sys-
tems, 12(5):407–419, April
1, 1997. CODEN
FGSEVI. ISSN 0167-739X
(print), 1872-7115 (elec-
elsevier.com/nej-ng/10/
19/19/27/17/23/abstract.
.html.

[FBD01b]
Graham E. Fagg, Antonin
Bukovsky, and Jack J. Don-
garra. HARNESS and fault
tolerant MPI. Parallel Com-
puting, 27(11):1479–1495,
October 2001. CODEN
PA-COEJ. ISSN 0167-8191
(print), 1872-7336 (elec-
elsevier.com/nej-ng/10/
35/21/47/41/32/abstract.
.html; http://www.elsevier.
nl/nej-ng/10/35/21/47/
41/32/article.pdf; http://
www.netlib.org/utk/people/
JackDongarra/PAPERS/harness-
ftmpi-pc.pdf.

[Friedel:2001:HMC]
Peter Friedel, Jörg Bergmann,
Stephan Seidl, and Wolf-
gang E. Nagel. An hierar-
chical MPI communication
model for the parallelized so-
lution of multiple integrals.
Lecture Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/
bibs/2110/21100474.htm;
http://link.springer-ny.com/
link/service/series/0558/
papers/2110/21100474.
.pdf.
REFERENCES

[GFD96] Graham Fagg and Jack
Dongarra. PV MPI: An integration of PVM and MPI systems. *Calculat-

Fischer:1997:AAP

Fagg:2000:FMF

Fagg:2002:HFTa

Fagg:2002:HFTb

Fagg:2004:BUF

REFERENCES

[FDG97a] G. Fagg, J. Dongarra, and A. Geist. Heterogeneous MPI application interop-
eration and process management under PV MPI. Technical report CS-97-???, University of Ten-

[FDG97b] G. E. Fagg, J. J. Dongarra, and A. Geist. Heterogeneous MPI application interop-

DEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

REFERENCES

[FFP03] Juan Fernandez, Eitan Frachtenberg, and Fabrizio Petrini. BCS-MPI: a new approach in the system software design for
www.sc-conference.org/sc2003/inter_cal/inter_cal_detail.php?eventid=10716#1; http://www.sc-

Foster:1998:WAI

[FGG+98] Ian Foster, Jonathan Geisler, William Gropp, Nicholas Karonis, Ewing Lusk, George
Thiruvathukal, and Steven Tuecke. Wide-area implementation of the Message Passing Interface. Parallel Computing, 24(12–

Foster:1997:MMC

[FGKT97] Ian Foster, Jonathan Geisler, Carl Kesselman, and Steven Tuecke. Managing multiple communication meth-
ref.

Fagg:2001:PIS

[GFRD01] Graham E. Fagg, Edgar Gabriel, Michael Resch, and Jack J. Dongarra. Parallel IO support for meta-

Fahringer:2000:FOP

[FGRT00] Thomas Fahringer, Michael Gerndt, Graham Riley, and Jesper Larsson Träff. Formalizing OpenMP performance
properties with ASL. Lecture Notes in Computer Science, 1940:428–??, 2000. CODEN LNCSDA. ISSN 0302-9743 (print), 1611-3349
REFERENCES

bibs/1940/19400428.htm;
http://link.springer-

Foster:1996:MIW

Fan:1995:DMP

Fachat:1997:IEB

Andre:1998:BVN

Friedley:2013:OPE

Franke:1995:AA

REFERENCES

Fineberg:1995:IMM

Fin:1997:CPM

Fink:2000:IMC

Fischer:2001:SAN

Fernandez:2000:UPM

Forejt:2017:PPA

Vojtěch Forejt, Saurabh

Feng:2014:SBS

Ferenczi:1995:PAH

Fischer:2001:DNM

Field:2002:OSR

REFERENCES

Taskers and general resource
managers: PVM supporting DCE process manage-
ment. In Bode et al. [BDLS96], pages 180–??
ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-

Fagg:1998:MMH
[FLD98]
G. E. Fagg, K. S. London, and J. J. Dongarra. MPI-
Connect: Managing heterogeneous MPI applications
interoperation and process control. Lecture Notes in
Computer Science, 1497:93–??, 1998. CODEN LNCSDF.
ISSN 0302-9743 (print), 1611-3349 (electronic).

Fachada:2017:CCF
[FLMR17]
Nuno Fachada, Vitor V. Lopes, Rui C. Martins,
and Agostinho C. Rosa. cf4ocl: a C framework for
OpenCL. Science of Computer Programming, 143(??):
9–19, September 1, 2017. CODEN SCPGD4. ISSN
0167-6423 (print), 1872-7964 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167642317300540.

Ferreira:2018:CMM
[FLPG18]
Kurt B. Ferreira, Scott Levy, Kevin Pedretti, and
Ryan E. Grant. Characterizing MPI matching via
trace-based simulation. Parallel Computing, 77(??):57–
83, September 2018. CODEN PACOEJ. ISSN
0167-8191 (print), 1872-7336 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167819118301467.

Feeley:1990:PVM
[FM90]
Marc Feeley and James S. Miller. A parallel vir-
tual machine for efficient Scheme compilation. In
acm.org/pubs/citations/
proceedings/lfp/91556/
p119-feeley/. ACM order
no. 552900.

Furlinger:2009:CAE
[FM09]
Karl Furlinger and Shirley Moore. Capturing and an-
alyzing the execution control flow of OpenMP appli-
cations. International Journal of Parallel Programming,
37(3):266–276, June 2009. CODEN IJPPE5. ISSN
0885-7458 (print), 1573-7640 (electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
37&issue=3&page=266.
REFERENCES

REFERENCES

0165-6074 (print), 1878-7061 (electronic).

Ford:1995:NNN

Foster:1998:GEM

Freeman:1992:PNA

Faraj:2008:SPA

Ferreira:1995:PAI

Franke:1995:MPEa

Fritscher:1993:PDC

[FS93] J. F. Fritscher and F. Sukup. 93SC038 parallel distributed computing using PVM. In Anonymous [Ano93a], pages...
REFERENCES

Ferrari:1995:TDC

Fischer:1997:ESP

Ferrari:1998:MDC

Filgueira:2011:ACE

Fuerle:1998:IPC

Fumero:2017:JTG

Folino:1998:EMC

G. Folino, G. Spezzano, and D. Talia. Evaluating and modeling communica-

Fagg:2000:AAC

Fang:2015:EVD

Fineberg:1996:PPI

Franke:1995:MPEb

Frust:2017:RDP

Grangeat:1996:PTI

Pierre Grangeat and Jean-Louis Amans, editors. *Proceedings of the Third Inter-
REFERENCES

Galibert:1997:YCL

Gonzalez:2000:NSF

Gonzalez:2001:DSP

Gonzalez:2000:PAM

Daniel González, Francisco Almeida, Luz Ma-

Gorlatch:1998:GMI

Geist:1994:PPV

Gentzsch:1995:STP

Golebiewski:1999:HPI

Gerstenberger:2014:EHS

Gerstenberger:2018:EHS

REFERENCES

[GarciaSalcines:1997:PRR] E. Garcia Salcines, G. Cer-

REFERENCES

[102x681]REFERENCES
[102x681]212
[177x646]JCAMDI. ISSN 0377-0427
[177x634](print), 1879-1778 (electronic). URL http://
[177x610]www.sciencedirect.com/
[177x598]science/article/pii/S0377042714002374

[Ghose:2017:FOT]

[Gonzalez-Dominguez:2018:MPC]

[Grinstein:1996:VDE]

[Geist:1993:ILP]

[Geist:1993:PBN]
G. A. Geist. PVM 3 beyond network computing. In
REFERENCES

Geist:1994:CCW

Geist:1996:APP

Geist:1997:ACP

Geist:1998:HNG

Geist:2000:PMW

Geist:2001:BFN

Grabowsky:1998:NMP

Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for paral-

Gabriel:2003:FTC

Gabriel:2003:EPM

Gabriel:2005:EDC

Gomez-Folgar:2018:MPA

F. Gomez-Folgar, G. Indalecio, N. Seoane, T. F.

Gravvanis:2012:SFD

Giordano:1999:IBP

Garzon:1999:PIE

Giannoutakis:2009:DIP

Giannoutakis:2007:MHP

REFERENCES

Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

REFERENCES

Gropp:1998:MCR

Gong:2012:OCN

Garcia:2011:KRR

Goglin:2018:HTM

Grecki:1997:MPE

Gerlach:2001:IOJ

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

Geist:1997:CPF

Geist:1997:BPW

Gopalakrishnan:2011:FAM

Garland:2012:DUP

Gropp:1992:TIM

Gropp:1994:MCL

Gropp:1995:DPM

Gropp:1995:IMM

Gropp:1995:MMI

Gropp:1995:EIS

Gropp:1996:HPM

Gropp:1997:SMC

REFERENCES

[Goujon:1998:AAT]

[GMPD98]

[Guan:1995:SCC]

[Goedecker:2002:OPF]

[Gonzalez:2001:OET]

[Gorzig:2001:CCP]

Stefan Görzig. CPPvm — C++ and PVM. *Lecture Notes in Computer*

Guarracino:1995:PMB

Grosset:2017:TTT

Govindan:1996:OMP

Gillich:1995:FPP

Genaud:2007:PMP

Grabowsky:1997:MBK

Lothar Grabowsky. MPI-basierte Koppelrandkommunikation und Einfluss der Partitionierung im 3D-Fall. (German) [MPI-based coupled edge communication and influence of

REFERENCES

229

Gropp:2002:BLC

Gropp:2002:MNS

Gropp:2012:MBW

Gonzalez:1999:PPM

Gutierrez:2010:QCS

Gaito:2001:ADC

A. Gaito, M. Rak, and U. Villano. Adding dynamic coscheduling support to PVM. Lecture Notes in Computer Science, 2131:106–??, 2001. CODEN LNCSD9. ISSN
REFERENCES

[GS91a]

[GS91b]

[GS92]

[GS93]

[GS94]

[GS96]

[GSxx]
G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.
Garg:2002:TOA

Gao:2008:GEI

Gardner:2013:CCE

Gine:2002:AL

Gerlach:1997:ECS

Germanas:2017:HUP

D. Germanas, A. Stepsys, S. Mickevicius, and R. K. Kalinauskas. HOTB update: Parallel code for calculation of three- and four-

Gennart:1996:CAG

Gidra:2015:NGC

Guang:2016:NMN

Ge:1995:DHA

Guerrero:2014:PCM

Hadjidoukas:2010:NOP

REFERENCES

[Han98] Per Brinch Hansen. An evaluation of the Message-
Passing Interface. *ACM SIGPLAN Notices*, 33(3): 65–72, March 1998. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). The author criticizes MPI, and remarks “MPI... lacks the elegance and security that can only be checked by a parallel programming language.”

Hardwick:1994:PVL

Hardwick:1995:PVL

Hassanzadeh:1995:MMG

Hisley:2000:PPE

Hatazaki:1998:RRS

Hachler:1996:IA

G. Hachler and H. Burkhart. Implementing the ALWAN
communication and data
distribution library using
PVM. In Bode et al.
[BDLS96], pages 243–250.
ISBN 3-540-61779-5. ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
QA76.58.E975 1996.

Haechler:1996:IAC

Implementing the ALWAN
communication and data dis-
tribution library using PVM.
Lecture Notes in Computer
Science, 1156:243–??, ???.
ISSN 0302-9743 (print),
1611-3349 (electronic).

Haasner:1995:EIP

[HBT95] M. Hausner, M. Burrows,
and C. A. Thekkath. Ef-
ficient implementation of
PVM on the AN2 ATM
network. In Hertzberger
and Serazzi [HS95a], pages
562–569. ISBN 3-540-
59393-4. ISSN 0302-9743
(print), 1611-3349 (elec-
tronic). LCCN QA76.88 .I57
1995.

Huang:2006:ECS

[HC06] Jih-Woei Huang and Chih-
Ping Chu. An efficient
communication scheduling
method for the processor
mapping technique applied
data redistribution. The
Journal of Supercomput-
ing, 37(3):297–318, September
2006. CODEN JOSUED.
ISSN 0920-8542
(print), 1573-0484 (elec-
tronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0920-8542&volume=
37&issue=3&spage=297.

Huang:2008:FPM

[HCO8] Jih-Woei Huang and Chih-
Ping Chu. A flexible pro-
cessor mapping technique to-
ward data localization for
block-cyclic data redistrib-
ution. The Journal of
Supercomputing, 45(2):151–
172, August 2008. CO-
DEN JOSUED. ISSN
0920-8542 (print), 1573-0484
(electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0920-8542&volume=
45&issue=2&spage=151.

Hamid:2010:CMB

[HC10] Nor Asilah Wati Abdul
Hamid and Paul Codding-
ton. Comparison of MPI
benchmark programs on
shared memory and dis-
tributed memory machines
(point-to-point communica-
tion). The International
Journal of High Perform-
ance Computing Applica-
tions, 24(4):469–483, No-
ember 2010. CODEN IH-
PCFL. ISSN 1094-3420
(print), 1741-2846 (elec-
sagepub.com/content/24/
4/469.full.pdf+html.
Hunold:2016:RMB

Hurwitz:2005:AMP

Huang:2005:TME

Hu:2016:CLG

He:2000:PAA

Ding:2002:MOP

He:2002:MOP

Harvey:2011:STP

[M. J. Harvey and G. De Fabritiis. Swan: a tool for

Hoefer:2012:LMO

Hoefer:2013:MMN

Hadjidoukas:2009:HPF

Hoefer:2015:RMA

Heikonen:2002:ILB

R. Hempel. The status of the MPI message-passing standard and its relation to PVM. In Bode et al. [BDLS96], pages 14–21. ISBN 3-540-61779-5. ISSN
REFERENCES

REFERENCES

LCCN QA76.73.F25 H367 2013.

Hui:1995:SPS

Huang:2018:ACO

Horiguchi:1994:ISP

Hinde:2011:QMD

Huttunen:2002:MCC

Haines:1998:UPM

R. Haines and K. E. Jordan. Using PVM and

REFERENCES

CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

REFERENCES

Hogg:2013:FDT

Hollingsworth:2012:SPI

Hosking:2012:CHL

Hadjidoukas:2002:MOI

Panagiotis E. Hadjidoukas, Eleftherios D. Polychronopoulos, and Theodore S. Papatheodorou. A modular OpenMP implementation for clusters of multiprocessors. *Parallel and Dist-

Hawick:2011:HSL

Hidalgo:1999:MMP

REFERENCES

Hariri:1995:STE

Hondroudakis:1995:PEV

Heckathorn:1996:SSP

Hilbrich:2012:MRE

Hilbrich:2013:MRE

Hariri:1993:MPI

REFERENCES

Hoefer:2011:SPT

Hoyos-Rivera:1997:UPB

Hempel:1997:IMN

Hartley:1993:CPS

Hesham:1994:PTS

Hertzberger:1995:HPM

REFERENCES

Hoefler:2012:OPC

Henriksen:2017:FPF

Hormati:2012:SPS

Hu:2001:PCC

REFERENCES

Howes:2008:U

Ha:2008:NBP

Hluchy:1999:GWF

Hariri:2016:PPA

Huckle:1996:PIS

Humphres:1995:LBE

Husbands:1998:MSD

Parry J. Husbands. MPI-StarT: Delivering network performance to numerical applications. In ACM [ACM98b], page ??
REFERENCES

Huse:1999:CCD

Huse:2000:MOS

Huse:2001:LST

Hamidouche:2016:CAO

Houzeaux:2011:HMO
REFERENCES

held May 19–22, 2008 in Lyon, France.

A. G. Hoekstra, F. Van der Linden, P. M. A. Sloot, and
L. O. Hertzberger. Comparing the Parix and PVM
parallel programming environments. In Fritzson and
Finno [FF95], pages 288–292. ISBN 90-5199-229-7
(IOS Press), 4-274-90056-8
(Ohmsa). LCCN ???

Georg Hager and Gerhard
Wellein. Introduction to
high performance comput-
ing for scientists and engi-
ners, volume 7 of Chap-
man and Hall/CRC computa-
tional science series. CRC
Press, 2000 N.W. Corpo-
rate Blvd., Boca Raton,
FL 33431-9868, USA, 2011.
ISBN 1-4398-1192-X. xxv +
330 + 4 pp. LCCN QA76.88
.H34 2011.

Wei Huang, Zhe Wang, and
Jie Ma. Design of DMP
on DAWNING-3000. Le-
cure Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http:/
//link.springer.de/link/
service/series/0558/bibs/|
2474/24740314.htm; http:
//link.springer.de/link/
REFERENCES

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP

Hou:2008:BBS

Isaila:2010:SMP

Isabel:2002:CMO

Issman:1994:PME

E. Issman, G. Degrez, and J. De Keyser. A paral-

REFERENCES

REFERENCES

[IEEE:1995:IIC]

[IEEE:1995:CPI]

[IEEE:1995:DPT]

[IEEE:1995:ISE]

[IEEE:1995:IPR]

REFERENCES

IEEE:1996:PII

IEEE:1996:PFI

IEEE:1996:PFE

IEEE:1996:PSI

IEEE:1996:PSM

IEEE:1997:APD

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Iskra:2000:PMD

Ierotheou:2005:GOC

Iwama:2001:PLS

Iwama:2002:PLS

Iwashita:1994:IPE

Ingle:1995:MAS

Ishizaka:2000:CGT

Ilroy:2001:IMP

Ilie:2016:AEC

Satake:2012:OGA

Imamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IA

Iskra:2000:IDE

Jatala:2017:SSG

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

Jabbarzadeh:1997:PSS

Jacoby:1996:ADA

Juhasz:1996:PIP

Z. Juhasz and D. Crookes. A PVM implementation of a portable parallel image processing library. In Bode et al. [BDLS96], pages 188–??.

Jin:2008:PEM

Jarzabek:2017:PEU

Jacoby:1996:ADA

Juhasz:1996:PIP

Z. Juhasz and D. Crookes. A PVM implementation of a portable parallel image processing library. In Bode et al. [BDLS96], pages 188–??.

Jin:2008:PEM

Jenkins:2014:PMD

Jeremiassen:1995:RFS

Jesshope:1993:MCA

Jann:1995:AMP

Johnson:2012:FOL

Jin:2000:AGO

[JFY00] Haoqiang Jin, Michael Frunkin, and Jerry Yan. Automatic generation of OpenMP directives and its

REFERENCES

Jeun:2008:OPB

Jan:2017:ITF

Jog:2013:OCT

Jambunathan:2018:COB

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

Jung:2014:MCM

Jo:2015:ALM

Jones:1996:LLM

Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:P AL

Jiang:2012:OSP

Lei Jiang, Pragneshkumar B. Patel, George Ostrouchov, and Ferdinand Jamitzky. OpenMP-style parallelism in data-centered multicore computing with R.
REFERENCES

Juric:1995:UPV

Joldes:2014:SSH

Joubert:1994:PCT

Jost:2010:EUH

Jimenez:2013:BCA

Judd:1994:PIV

REFERENCES

7872 O7 I34 1994. IEEE catalog no. 94CH3446-2.

Jin:2013:PCU

Jung:2005:DIM

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jaaskelainen:2015:PPP

Ju:1996:SPT

Jain:1996:IOp

Jin:1995:LTP

Kumar:1995:MWD

S. Kumar and H. Adeli. Minimum weight design of large structures on a network of workstations. *Microcomputers in Civil Engineering,
REFERENCES

REFERENCES

Kanal:2012:PAI

Katamneni:1993:PPE

Karlsson:1998:CCC

Kaiser:2001:OCC

Kruzel:2013:VOI

Kabir:2002:DIS

Klemm:2007:JIO

Karamcheti:1994:SOM

Krawezik:2006:PCM

Kacsuk:1997:GDD

Konuru:1994:UPP

Konuru:1994:ULP

Kotselidis:2017:HMR

Kanal:2012:MMC

Krotkiewski:2013:ESC

Klingebiel:1995:COD

Klingebiel:1995:CPO

Kakimoto:2012:PCG

Klemm:2012:EOV

Komatitsch:2010:HOF

Kepner:2005:PPM

Kowalik:1993:SPC

REFERENCES

Kohl:1996:PTF

Kainz:2009:RCM

Keller:2003:TEE

Keller:2010:RAM

Kafura:1996:CCC

Kwon:2010:SPC

Seongnam Kwon and Soonhoi Ha. Serialized parallel code generation framework
Karrenberg:2012:IPO

Kramer:2015:SET

Khanna:2013:HPN

Kielmann:1999:MMC

Kallenborn:2019:MPC

REFERENCES

www.sciencedirect.com/science/article/pii/S0010465518302790

[KKJ16] Junghyun Kim, Gangwon

See the full text for detailed references.

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Krysztop:2002:IFP

Kranzlmuller:2004:RAP

REFERENCES

openurl.asp?genre=issue&
issn=0302-9743&volume=
3241; http://www.springerlink.
com/openurl.asp?genre=
volume&id=doi:10.1007/
b100820.

Kranzlmuller:2005:RAP

[KKD05] Dieter Kranzlmüller, Peter
Kacsuk, and Jack Dongarra.
Recent advances in Parallel Virtual Machine and
Message Passing Interface. The International Journal of
101, Summer 2005. CODEN IHPCL. ISSN 1094-3420
sagepub.com/content/19/2/99.full.pdf+html.

Kranzlmuller:2003:RAP

[KKDV03] Dieter Kranzlmüller, Peter
Kacsuk, Jack Dongarra, and

Kee:2003:POP

[KKH03] Yang-Suk Kee, Jin-Soo Kim,
and Soonhoi Ha. ParADE: An OpenMP programming
environment for SMP cluster systems. In ACM [ACM03],
page ?? ISBN 1-58113-695-
1. LCCN ???. URL http://
www.sc-conference.org/
scc2003/inter_cal/inter_cal_detail.php?eventid=
10708#0; http://www.sc-
conference.org/sc2003/
paperpdfs/pap130.pdf.

Kwon:2008:RPP

[KKJ+08] Seongnam Kwon, Yongjoo
Kim, Woo-Chul Jeun, Soon-
hoi Ha, and Yunheung Paek.

Kim:2011:ASC

[KKLL11] Jungwon Kim, Honggyu
Kim, Joo Hwan Lee, and
Jaemin Lee. Achieving a single compute device image in OpenCL for multiple GPUs. ACM SIGPLAN Notices, 46

Karami:2015:SPA

[KKM15] Ali Karami, Farshad Khunjush,
and Seyyed Ali Mirsoleimani. A statistical per-

Konstantinou:2001:TTO

Kobler:2001:DOP

Kofakis:1995:DPI

Liao:2011:DEM

Liao:2006:SDI

Wei keng Liao, Kenin Coloma, Alok Choudhary,

REFERENCES

Kouzinopoulos:2015:MSM

Kirk:2010:PMP

Kalns:1995:DPD

Katouda:2017:MOH

Kasprzyk:2002:APV

Komura:2014:CPG

Yukihiro Komura and Yutaka Okabe. CUDA programs for the GPU com-

Kambites:2001:OLI

Kasahara:2001:ACG

Komura:2015:OPS

Koniges:2000:ISP

Kauranne:1995:OHM

Koski:1995:STL

Konuru:1997:MUL

Kermarrec:1996:PDS

Kuckuk:2013:IPD

Klockner:2012:PPS

Kolesnichenko:2016:CBG

REFERENCES

Kuhn:2000:OVT

Kamal:2005:SVT

Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????

Klimach:2009:PCH

Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunaseth:2013:ASD

REFERENCES

Kalen:tev:2011:CCL

Klanzlmuell:er:1999:MOM

Knotsis:1996:EEP

Krants:1997:CSC

Krawczy:yk:2001:PIM

Kim:13:MPE

Kaliman:2015:SNU

Kovanen:2015:TAC

Kegel:2013:DTU

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

Keppens:2002:OPM

Koval:2010:USB

Karonis:2003:MGG

Komatitsch:2003:BDF

Kuhn:1998:FFW

Kumar:1994:PP1

REFERENCES

Kranzlmueller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

Kamburugamuve:2018:AML

Kamal:2010:EIN

Karwande:2003:CMC

Laforenza:2001:PHP

Lorenz:2015:AMS

Langdon:2009:FHQ

Loos:1996:MPS

Lavi:1998:IPD

Lashgar:2016:ESM

Ahmad Lashgar and Amiral Baniasadi. Employing software-managed caches

Loncar:2016:CPS

Ling:2012:HPP

Lawton:1996:BHP

Lewis:1993:PCP

REFERENCES

Luecke:1997:HPF

Li:2007:DIV

Luecke:2003:MCT

[LC03] Glenn Luecke, Hua Chen, James Coyle, Jim Hoekstra, Marina Kraeva, and Yan Zou. MPI-CHECK: a tool for checking Fortran 90 MPI programs. Concurrency and Computation:

Liddell:1996:HPC

Lathrop:2011:SPI

Lashuk:2012:MPA

Ilya Lashuk, Aparna Chandramowlishwaran, Harper
REFERENCES

Losada:2017:RMA

Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

Liu:1996:BMP

Lee:2001:APT

D. J. Lee and T. J. Downar. The application of POSIX threads and OpenMP to the U.S. NRC neutron ki-
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http:
//link.springer-ny.com/
link/service/series/0558/
bibs/2104/21040090.htm;
http://link.springer-

[LDCK97] Honghui Lu, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. Quantifying
the performance differences between PVM and TreadMarks. Journal of Parallel and
Distributed Computing, 43(2):65–78, June 15, 1997. CODEN JPDCER. ISSN
ref.

[LDJK13] Jun Liu, Wei Ding, Ohyoung Jang, and Mahmut Kandemir. Data layout optimization
for GPGPU architectures. ACM SIGPLAN Notices, 48(8):283–
284, August 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867

DEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

[Lee:2012:SMO] Jaejin Lee. SnuCL and an MPI + OpenCL implementation of HPL on heteroge-
neous CPU/GPU clusters. In ????, editor, ATIP ’12: Proceedings of the ATIP/A*
CRC Workshop on Accelerator Technologies for High-Performance Computing: Does Asia Lead the
LCCN ?? ??

[Lev95] A. H. M. Levelt, editor. ISSAC ’95: International symposium on symbolic and
algebraic computation — July 10–12, 1995, Montréal, Canada, ISSAC — Proceed-
76.95 159 1995.
La:1993:EDM

Levesque:1993:SAA

Leon:1992:FP

Leon:1993:FPA

Leon:1993:FPP

Loyot:1993:VVM
IEEE catalog no. 93TH0513-2.

REFERENCES

Lee:1996:TSF

Lin:1994:DNC

Lin:1995:DNC

Liu:1996:PSI

Liu:2010:RTC

Li:1997:PIO

Lu:1998:ONW

Li:1996:SIS

Liu:1995:WCD

Livny:2000:MYW

Lastovetsky:2010:RAP

LaSalle:2014:MBD

Losada:2017:ARV

Lopez:2015:PBV

Losada:2014:EAL

Lee:2015:OPE

Louca:2000:MFP

Lima:2012:PEO

Le:2006:DMC

Lotfi:2015:AAC

Lee:2014:BCA

Luo:2001:PDE

Latham:2007:IMI

Li:2001:WMB

[LRW01] Maozhen Li, Omer F. Rana, and David W. Walker. Wrapping MPI-based legacy codes as Java/CORBA com-

enabled graphics hardware.

Lumsdaine:1995:WIM

Li:2015:AMR

Liu:2008:AMD

Lazzarino:2002:PBP

Langr:2014:APP

Lazar:1994:SRE

A. A. Lazar, K. H. Tseng, Koon Seng Lim, and W. Choe.

Laohawee:2000:PDT

Lee:2002:IPC

Luo:1999:SMV

Lusk:2000:IIC

REFERENCE 314

Lee:2012:EED

Liu:2004:BMI

Liu:2004:HPR

Liang:2018:FMP

Ludwig:1997:OUI

Li:1995:CPP

Liu:2004:HPR
REFERENCES

Li:1993:MSU

Loncar:2016:OOM

Lu:2013:WGA

Li:1997:EHC

Loncar:2016:OOM

Luecke:2002:DDM

Li:2017:PCO

Shigang Li, Yunquan Zhang, and Torsten Hoefler. Poster: Cache-oblivious MPI all-to-all communications on many-core architectures.
Li:2018:COM

Lu:2019:PMM

Ma:2009:CRS

Mavriplis:2005:HRAa

Miguel:1996:APN

Maffeis:1994:SSD

Moreno:2001:AEP

Mainland:2012:EHM

Molero-Armenta:2014:OOI

Malyshkin:1995:PCT

Malfetti:2001:AO

Paolo Malfetti. Application of OpenMP to weather, wave and ocean codes. *Scientific Programming*, 9(2–3):99–107, Spring–Summer 2001. CODEN SCIPEV. ISSN 1058-9244 (print), 1875-919X (electronic). URL http://iospress.metapress.com/app/home/contribution.asp?%3Fwasp=7pab6qgbaf8vxg991rwy%26referrer=parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%26parent%26backto=%26linkingpublicationresults%26parent%26backto=%26issue%26parent%26backto=%26journal%

[Manchek:1994:DIP]

[Mans:1998:PDP]

[Manis:2001:PNP]

[Miguel-Alonso:2009:INS]

[Marowka:2002:ISI]

[Marowka:2003:EOT]

[Mat00a] Tim Mattson. BOF: OpenMP and its future developments. In ACM [ACM00], page 106. URL

Mattson:2000:IO

Mattson:2001:EO

Matuszek:2001:APS

Mattson:2003:HGO

Mourao:2000:SSC

Marongiu:2012:OCE

[MB12] Andrea Marongiu and Luca Benini. An OpenMP compiler for efficient use of distributed scratchpad memory in MPSoCs. IEEE Trans-
Muller:2012:SOA

Ma:2013:KAT

Min:2003:OOP

McKenzie:1994:CIM

Malits:2012:ELG

Mehl:2015:RTC

Miles:1994:PTO

Medeiros:1998:IPM

Morrison:1999:FPP

Maier:2017:OLD

Malinowski:2018:SIP

Artur Malinowski and Pawel Czarnul. A solution to image processing with parallel MPI I/O and distributed NVRAM cache. *Scalable Computing: Practice and
REFERENCES

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

McKinney:1994:PGU

Moore:2001:RPA

Moreira:2017:FCR
Rubens E. A. Moreira, Sylvain Collange, and Fernando

Matheou:2017:DDC

Megson:1998:CRH

Milovanovic:2008:NEE

Moody:2003:SNB

Martin:1995:DPC

Mintchev:1997:TPM

REFERENCES

[MGL+17] Raffaele Montella, Giulio Giunta, Giuliano Laccetti, Marco Lapegna, Carlo Palmieri, Carmine Ferraro, Valentina Pelliccia, Cheol-Ho Hong, Ivor Spence, and Dimitrios S. Nikolopoulos. On the virtualization of CUDA based GPU remot-

Mazzariol:1997:PCS

Markidis:2015:OAN

Matthey:2001:EMO

Hwu:2012:GCG

Miller:1994:PPP

Miller:1994:PPT

REFERENCES

REFERENCES

ISSN 0192-8651 (print), 1096-987X (electronic).

Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eigenmann. Portable compilers for OpenMP. *Lecture Notes in Computer
Mokbel:2011:ASR

Mitra:2014:AAP

Marjanovic:2010:ECC

Marowka:2004:OOA

Malakhov:2018:CMT

Marathe:2007:SCC

Michailidis:2011:PDM

Morishima:2014:PEG

Malony:1994:PAP

Mudge:1993:PTS

Morimoto:1998:IMM

K. Morimoto, T. Matsumoto, and K. Hiraki. Implementing MPI with the memory-based communication facilities on the SSSCORE operating system.
REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Morimoto:1999:PEM

Mohamed:2013:MMM

Manca:2016:CQI

MacFarlane:1999:PPI

Morris:2007:SNO

Mohr:2002:DPP

REFERENCES

REFERENCES

[MS95]

[MRV00]

[Mazzocca:2000:TPP]

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL: http://link.springer-ny.com/link/service/series/0558/
biba/2131/21310158.htm; http://link.springer-ny.com/link/service/series/
0558/papers/2131/21310158.pdf.

Matrone:1993:LPC

Mysliwiec:1997:CAM

Martins:1998:JIW

Martorell:2005:BGP

Mossaiby:2017:OIH

Miei:1996:IER

[MT96] T. Miei and N. Takahashi. Implementation and evaluation of a replay-based debugger for PVM programs. Transactions of the Infor-
REFERENCES

Mallon:2016:MUB

Marin:1994:GAL

Momeni:2015:EEO

Mohr:2007:SPE

Mohr:2006:RAP

Muller:2001:SSO

Matthias Müller. Some simple OpenMP optimization techniques. *Lecture

McKinney:1993:MMI

Mamontov:1998:AES

Manegold:1997:QBM

Morton:1995:LLP

Maleki:2016:HOT

Maly:1993:DCP

Nikolopoulos:2001:SID

Dimitrios S. Nikolopoulos and Eduard Ayguadé. A study of implicit data distribution methods for OpenMP using the SPEC benchmarks. Lecture Notes in
REFERENCES

Nikolopoulos:2001:EMA

Nagle:2005:BRM

Nicolescu:1999:PWA

Nakajima:2005:PIS

Nakajima:2005:TLH

[NB96] C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ???? LCCN ????.

Nguyen:2017:ATM

Nobari:2012:SPM

Neophytou:1998:NDJ

Neophytou:2001:NDW

Nelson:1993:PPP

Neugebauer:2017:PAR

Nesterov:2010:SPT

[Nes10] Oleksandr Nesterov. A sim-

REFERENCES

Nicolescu:2001:DTP

Norden:2007:DDM

Nadeau:1995:SVR

Nomura:2014:P

Nanayakkara:1993:PIR

Nupairoj:1995:PES

Nishitani:2000:IEO

Nakajima:2002:PISa

Nakajima:2002:PISb

Noble:2008:GMY

REFERENCES

los, Theodore S. Papatheodorou, Constantine D. Polychronopoulos, Jesús Labarta, and Eduard Ayguadé.

[NS16] Nadal-Serrano:2016:PSC

Jose M. Nadal-Serrano and Marisa Lopez-Vallejo. A performance study of CUDA UVM versus manual optimizations in a real-world setup: Application to a Monte Carlo wave-particle event-based interac-
REFERENCES

REFERENCES

Ng:2012:STT

Nguyen:1994:DCE

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Olivier:2012:CMW

Oed:1993:CRM

Ong:2000:PCL

Owaida:2015:EDS

Otten:2016:MOI

Okitsu:2010:HPC

REFERENCES

[Oh:2012:MOO]

[Oakley:1995:ADR]

[Orlando:2005:PSP]

[Oldehoeft:2002:SIS]

[Ong:2001:SUC]
Emil Ong, Ewing Lusk, and William Gropp. Scalable Unix commands for parallel processors: a high-

[OLG01] Emil Ong, Ewing Lusk, and William Gropp. Scalable Unix commands for parallel processors: a high-

[OLG01] Emil Ong, Ewing Lusk, and William Gropp. Scalable Unix commands for parallel processors: a high-

Oger:2016:DMM

Olukotun:2014:BPP

Ogawa:1996:OOM

Ozgun:2009:PCB

OBroin:2012:OIS

Ong:2002:MRS

OBrien:2008:SOC

ODowd:2006:WGM

Oliveir:2010:COO

REFERENCES

Otto:1993:PAC

Otto:1994:PVM

Otto:1992:MAP

Ouenes:1995:PRA

Pacheco:1997:PPM

Pereira:2017:SBC

Panda:1995:GRW

Panda:1995:IDE
D. K. Panda. Issues in designing efficient and practical algorithms for collective communication on wormhole-routed systems. In Agrawal [Agr95a], pages 8–

Pingali:1995:LCP

Plazek:1999:IIC

Plazek:2000:SCC

Prasanna:1995:FIP

Puthukattukaran:1994:DIP

Peng:2014:IDI

Yi Peng, Li Chen, and Jun-

Pereira:1999:PBI

Papagapiou:1999:NWD

Petcu:1997:ISM

Petcu:2000:PDAa

Petcu:2000:PDAb

Petcu:2001:WMM

Pharr:2005:GGP

Matt Pharr and Randima Fernando, editors. GPU gems 2: programming techniques for high-performance graphics and general-purpose computation, volume 2 of GPU gems. Addison-Wes-

Piernas:1997:APM

Piernas:1997:APM

Piernas:1997:APM

Pjesivac-Grbovic:2005:PAM

Pjesivac-Grbovic:2005:PAM

Pjesivac-Grbovic:2007:PAM

Prabhakar:2002:PCB

Pessoa:2018:GAB

Tiago Carneiro Pessoa, Jan Gmys, Francisco Heron de Carvalho Júnior, Nouredine Melab, and Daniel Tuyttens. GPU-accelerated backtracking using CUDA

Poirier:2018:DAB

Pervez:2010:FMA

Papakonstantinou:2013:ECC

Pan:2010:CPS

Pennycook:2011:PAH

Pennycook:2013:IPP

S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A.

Pierce:1994:NMP

Papadopoulos:1998:DVS

Park:2005:SOA

Papadopoulos:2001:NRC

Paul:2006:TLF

Prabhakar:2016:GCH

REFERENCES

 Pokorny:1996:CMP

 Parrilia:1999:UPD

 Pai:2016:CTO

 Poplawski:1989:MPP

 Park:2001:CSL

 Pagourtzis:2001:PCT

REFERENCES

Pedroso:2001:WLE

Protopopov:2001:MMP

Pandey:2007:SCM

Pehrson:1994:IPP

Perez:2019:ATO

REFERENCES

Peters:2011:FPC

Patrick:2008:CEO

Preissl:2010:TMS

Prieto:1999:PRM

Peng:2014:BAH

Plunkett:2001:AMD
REFERENCES

Insung Park, Michael J. Voss, Seon Wook Kim, and Rudolf Eigenmann. Parallel

Pahl:1995:CCB

Preissl:2012:CSS

Pang:2016:MKR

Pirkelbauer:2019:BTF

Prasad:1995:PPB

Perla:2012:PAH

Phillips:2002:NBS

Qiu:2012:PWM

Qawasmeh:2017:PPR

Quoy:2000:PNN

Qaddouri:1995:MFS

Qaddouri:1996:CPC

Qu:1995:FAS

Quinn:2003:PPC

Rashti:2009:SAM

Russell:1992:CMW

Rabenseifner:1998:MG1

[Rab98] R. Rabenseifner. MPI-GLUE: Interoperable high-performance MPI combining different vendor’s MPI worlds. *Lecture Notes in
REFERENCES

Rabenseifner:1999:APM

Ragg:1996:PEN

Ratha:1995:DED

Ramadan:2007:TDM

Omar Ramadan. Three dimensional MPI parallel im-

Rantakokko:2005:DMO

Rehman:2016:VMJ

Waqas Ur Rehman, Muhammad Sohaib Ayub, and Ju-
naid Haroon Siddiqui. Verifi-
cation of MPI Java programs using software model check-
ing. ACM SIGPLAN Notices, 51(8):55:1–55:??, Au-
gust 2016. CODEN SIN-
ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Roussos:2001:BMB

Rufai:2005:MPO

Rejitha:2017:EPC

Resch:1997:PM

Resch:1997:PMC

Rodriguez:2015:OPI

Russo:2017:MPG

Reale:1994:PCU

Reinhard:1997:MHP

Reimann:1996:CBT

Ross:1995:DCM

Royuela:2012:ASO

Radhakrishna:1999:MBP

Reeves:1996:PIC

A. Reeves, editor. *Proceedings of the 1996 International Conference on Challenges for Parallel Process*
REFERENCES

Reinefeld:2001:CDI

Reussner:2001:SSK

Reussner:2003:USD

Roy:2000:MGQ

Reynders:1995:OOO

Russ:1996:HAT
Rasch:2018:MDH

Rucci:2018:OOS

Rough:1997:PRD

Rodrigues:2013:MAA

Rico-Gallego:2015:ILM

Rico-Gallego:2016:EIL

Rivas-Gomez:2018:MWS

Reussner:2001:APP

Rizzardi:2017:ATS

Ratha:1995:CUC

Rodrigues:2014:TPS

REFERENCES

[Robinson:1993:ECD]

[Rabenseifner:2001:ECF]

[Ragan-Kelley:2013:HLC]

[Reyes:2013:PEO]

[Rungsawang:2001:LCP]

[Rubio-Largo:2012:UMO]
Álvaro Rubio-Largo, Miguel A. Vega-Rodriguez, and Juan A.

REFERENCES

Rolfe:1994:PAP

Rolfe:2008:PFO

Rolfe:2008:SMA

Rosen:2013:PVA

CGODY. ISSN 0167-7055 (print), 1467-8659 (electronic).

Ramon:1995:PKV

Rodriguez:2008:FTS

Rabaea:2000:EPM

[RR00] Adrian Rabaea and Monica Rabaea. Experiments with parallel Monte Carlo simulation for pricing options using PVM. Lecture Notes in Computer Science, 1908:330–??, 2000. CODEN LNCSD9. ISSN
REFERENCES

REFERENCES

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

Roy:1997:PNT

Rambu:1995:DSS

Reano:2015:IUE

Reussner:1998:SDA

Reussner:2002:SCB

Ralf Reussner, Peter Sanders, and Jesper Larsson Träff. SKaMPI: a comprehensive

Rozman:2006:CPL

Roberti:2005:PIL

Reussner:2000:BMD

Rungsawang:1999:PDT

Rycerz:2007:IBS

Katarzyna Rycz, Alfredo Tirado-Ramos, Alessia Guadanlis, Simon F. Portegies Zwart, Marij Bubak, and Peter M. A. Sloot. Interactive N-body simulations on the Grid: HLA versus MPI. *The International Journal of High Performance Comput-
REFERENCES

Simonsen:1993:DMD

REFERENCES

Soldado:2016:ECM

Sahimi:2001:AAS

Seyfarth:1994:GEE

Schulz:2004:IES
for MPI programs. In ACM [ACM04], page 38. ISBN 0-7695-2153-3. LCCN ???

Selikhov:2002:MCC

Schindewolf:2012:WSA

Sani:2014:PDF

Smith:1995:CR

Smith:2004:SIP

Saltz:1991:MRT

REFERENCES

Stubbs:1995:ICE

Smith:1996:UWC

Sweed:1996:PPP

Sievert:2004:SMP

Saillard:2014:PCS

Saillard:2015:SDV

Stagg:1995:IPN

REFERENCES

Shyu:1996:ILQ

Schill:1993:DOD

Schneeman:1994:DSS

Schuele:1996:PLA

Schuele:1999:HAP

Schevtschenko:2001:PASS

REFERENCES

REFERENCES

REFERENCES

[SE02] Matt Spencer, Jesse Eickholt, and Jianlin Cheng. A deep learning network approach to ab initio protein secondary structure prediction. *IEEE/ACM Transactions on Computational Bi-
References

Schenck:2016:EPM

Segovia:2010:PPN

Seifert:1999:ESI

Sept:1993:DIP

Serot:1997:EPF

Sevenich:1998:PPU

Scott:1998:PWN

REFERENCES

Steuwer:2014:SHL

Sack:2015:CAM

Sunderam:1994:PCC

Schneider:2012:MAC

Solsona:2001:IEI

Saito:2003:LSP
[SGJ+03] Hideki Saito, Greg Gaertner, Wesley Jones, Rudolf Eigemmann, Hidetoshi Iwashita,

Schmidt:1994:IAP

Sitsky:1996:MLW

Song:2014:DAT

Shen:1995:PSM

Sloot:1994:CIO

Sloot:1994:CIP

Sojka:2018:IEM

Radim Sojka, David Horák, Václav Hapla, and Martin Cermák. The impact of enabling multiple subdomains per MPI process in the TFETI domain decomposition method. Applied Mathematics and Com-
Sato:2001:CEO

Sato:2010:BLL

Shing:1994:UPC

Samadi:2012:AIA

Samadi:2014:LGU

REFERENCES

Shah:2000:FCS

Sato:2001:OGR

Siegel:1992:FFS

Siegel:1992:FSF

Siegel:1994:PEI

Silla:2017:BRG

Sharma:2017:PDR

Sistare:2002:UHP

Szo:2017:PET

Szoke:2017:PET

Samadi:2014:PPB

Shen:1992:VTD

Smith:2000:DPM

Sanders:2010:CEI

Steinberger:2014:WTB

Skjellum:2004:RTM

[SKD+04] Anthony Skjellum, Arkady Kanevsky, Yoginder S. Dan-
REFERENCES

Subramaniam:1996:CLU

Skjellum:1993:SLH

Steinberger:2012:SDS

Spiechowicz:2015:GAM

Satoh:2001:COT

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV

Skjellum:1995:EAM

Scherer:1999:TAP
REFERENCES

REFERENCES

com/content/getfile/5189/44/4/abstract.htm; http://ipsapp009.kluweronline.com/content/getfile/5189/44/4/fulltext.pdf.

REFERENCES

Schar:2017:TEF

Sand:2016:MMA

Socha:1993:DCW

Silv:2000:HPC

Su:2006:APP

Sits:1996:IMU

REFERENCES

0-8186-7533-0. LCCN QA76.642 .M67 1996.

[Sudderam:2001:CAP]

[Shekofteh:2019:MSG]

[Sintorn:2011:EAF]
REFERENCES

Snir:1996:MCR

Snir:1998:MCR

SousaPinto:2001:PEI

Sidonio:1999:PBI

Stpiczynski:2011:SKB

Satofuka:1995:PCF

Shaw:1995:ADA

Skjellum:1996:TTM

Si:2018:DAA

Sener:1996:DPP

Subramoni:2012:DSI

Silva:1999:DPP

REFERENCES

Schmidl:2012:PA

Saldana:2010:MPM

Sivaraman:1995:PSP

Sivaraman:1996:AAD

Szalay:2011:FCD

Speck:2012:MST

Schmidt:1994:EAO

Szymanski:1996:LCR

Silva:1999:IME

Shan:2001:CMS

Schwarz:2009:GFG

Shan:2012:OAA

REFERENCES

Sankaran:2005:LMC

Sotomayor:2017:ACG

Silva:1996:IDS

Silva:1997:IPD

Silva:1995:PCR

REFERENCES

Skjellum:1994:DEZ

Sabne:2012:ECO

Stellner:1995:CMP

Sosa:2000:IQC

Sala:2008:PHP

Schafers:1995:TGP

Squyres:1997:DEM

[SSL97] J. M. Squyres, B. Saphir, and A. Lumsdaine. The design and evolution of the

Stone:1994:PSO

Shelton:1994:FPS

Sen:1999:PBD

Santana:1996:PVM

Souza:1997:EPH

Stellner:1997:LBB

Smyk:2002:AMM

Smyk:2002:OMP

Steele:2017:UBP

Stals:1995:AMP

Stankovski:1995:MPA

Stephens:1994:PBT

R. Stephens. Parallel benchmarks on the Transtech Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???? LCCN ????

Stellner:1996:CCP

Sterling:2000:SCB

Still:1994:PPC

Schmitz:2008:IIG

Sunderam:1997:TAS

Stockinger:1998:VPC

Stpiczynski:2002:PPO

Strok:1994:NJI

Dale C. Strok. In the news: Jupiter impacts: Resolution makes a big difference. supercomputer farming down under. HPF Forum
welcomes comments. Smithsonian Awards honor computational scientists. low-life computer viruses. PVM developers get R&D-100 award. the eyes have it. neural nets detect breast cancer. better cars through cooperation. parallel version of global climate model. Lockheed to run Idaho National Engineering Lab. public-private partners: new drugs, new software. IEEE Computational Science & Engineering, 1(3):88–90, Fall 1994. CODEN ISCEE4. ISSN 1070-9924 (print), 1558-190X (electronic).

Strietzel:1996:PTS

Strietzel:1997:PTS

Strzodka:2012:DLO

Soch:1996:PCG

Soch:1997:PGP

Shen:1999:ATL

REFERENCES

Stone:1996:RNF

Sumimoto:2012:MCL

Sunderam:1992:CCP

Sunderam:1993:PCC

V. Sunderam. The PVM concurrent computing system. In Anonymous [Ano93h], pages 20–84. ISBN ?? LCCN ???.

Sunderam:1994:GPP

V. Sunderam. General purpose parallel computing with PVM. In Anonymous [Ano94f], pages 185–198. ISBN ?? LCCN ???.

Sunderam:1994:MSH

Sunderam:1995:RIH

V. S. Sunderam. Recent initiatives in heterogeneous parallel computing. In Gray and Naghdy [GN95], pages 1–16. ISBN ?? LCCN ???.
Sunderam:1996:PSS

Sun96]

Suresh:1995:IOP

Sur95a]

Suresh:1995:PIQ

Sur95b]

Smelyanskiy:2011:HPL

SVC+11]

Sistare:1999:OMC

[Steve Sistare, Rolf van-de-Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

SvL99]

Stout:1991:SDM

SW91]

Suh:2012:RFS

[Saba Sehrish and Jun Wang. Reduced Function Set Ab-

Santhanaraman:2005:DZC

[SWS+12] Hongzhang Shan, Nicholas J. Wright, John Shalf, Katherine Yelick, Marcus Wagner, and Nathan Wichmann. A

References

Stephen F. Siegel and Timothy K. Zirkel. Automatic

Tagliavini:2018:UFG

Thompson:2015:PCI

Tourino:1998:PBL

Tourino:1999:MMC

Thiruvathukal:2000:JNW

Tromeur-Dervout:2011:PCF

Totoni:2013:EFE

Tentner:1995:HPC

Truong:2002:PAM

Tu:2012:PAO

Turchi:1994:SDA

Patrice E. A. Turchi and An-
REFERENCES

[Thakur:2009:TSE]

[Tian:2005:PCT]

[TGEM09]

[Thakur:2002:ONA]

REFERENCES

Thakur:2005:OSO

Tian:2005:CEN

Trentz:1994:DPE

Tran:2000:PPM
REFERENCES

bibs/1908/19080250.htm;

REFERENCES

REFERENCES

Tourancheau:2000:HSN

Thebault:2015:SEI

Tong:2018:FCM

Tinetti:2001:HNW

Traeff:1998:PRL

Traff:2002:IMP

REFERENCES

1007/978-3-642-28293-5_3/.

Thibault:2012:AIF

Takahashi:2002:PEH

Takahashi:2003:PEH

Terboven:2012:AOT

Ten:1995:TPE

S. V. Ten, V. V. Savchenko, and A. A. Pasko. Time performance evaluation of implicit surface polygonization on distributed systems. In Gray and Naghdy [GN95],
pages 183–193. ISBN ????
LCCN ???

Topol:1998:PTV

Tatebe:2000:IOO

Tavora:2000:DCM

Tsunekawa:1995:EIE

Tsujita:2007:RMP

Tsutsui:2012:AMG

Shigeyoshi Tsutsui. ACO

REFERENCES

REFERENCES

SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

REFERENCES

Uhl:1995:VPW

Uminski:1997:EEP

Uthayopas:2001:FSR

Urena:2012:IMI

USENIX:1994:PFU

USENIX:1995:PUT

USENIX:2000:P

REFERENCES

REFERENCES

[240–250, June 2002. CODEN ????, ISSN 0163-5999 (print), 1557-9484 (electronic).]

Varadarajan:1994:FDT

Vincent:1995:HPP

Vogel:2013:BWC

Volkert:1993:PCS

Voss:2003:OSM

VidalMacia:2000:IPM

[VP00] Antonio Vidal Maciá and

Vargas-Perez:2017:HMO

Vrenios:2004:PPC

Varin:2000:PAL

VanVoorst:2000:CMI

REFERENCES

Vetter:2002:EPE

Verschelde:2015:PHC

Wong:1999:BMM

Walker:1994:DSM

Walker:1994:EDS

Walker:1995:MVB

Walker:1996:MFA

REFERENCES

REFERENCES

REFERENCES

[Wang:2013:PMO]

[Wedemeijer:1996:PSA]

[Walker:1996:MSM]

[Welch:1994:PVM]

[Werner:1995:UMP]
Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.

[Webber:2017:MAL]

[Wark:1994:PIR]
P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ???.

[Wagner:1996:PMM]
J. C. Wagner and A. Haghighat. Parallel MCNP Monte Carlo transport calculations with MPI. *Transactions of the American Nuclear Society*,
REFERENCES

75(??):338–339, 1996. CODEN TANSAO. ISSN 0003-018X.

[Wil93] Timothy James Wilkinson. Implementing Fault Toler-

using invisible message tags.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Wismueller:1998:LMS

Wismueller:2001:UMT

Witchel:2016:PPW

Wei:2012:OLL

Wu:2014:OFB

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Michal Wegiel and Chandra Krintz. The Mapping Col-

2):??, January/March 2007. CODEN CSSEEI. ISSN 0267-6192.

Winstanley:1997:PDP

Wang:2009:MPM

Wolbers:1992:SPP

Worley:1996:MPE

Wagner:1994:CFD

Wang:2007:OIS

Wagner:1995:PPG

REFERENCES

Len Wisniewski, Brad Smislof, and Nils Nieuwejaar. Sun MPI I/O: Efficient I/O for parallel applications. In ACM [ACM99], page ??

Xingfu Wu and Valerie Taylor. Performance charac-

Wu:2012:PCH

Wang:2014:IPD

Worringen:2003:FPN

Waidyasooriya:2017:OBF

Wu:1999:MCC

P.-Y. Wu. Minimum communication cost fractal image compression on PVM. In Dongarra et al. [DLM99], pages 434–441. ISBN 3-540-66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349
REFERENCES

REFERENCES

Yan:1994:PTA

Yang:2014:PMI

Ying:2003:NPK

Yalamanchilli:1998:CPJ

Yviquel:2018:CPU

Yang:2014:HPD

Luobin Yang, Steve C. Chiu, and Wei-Keng Liao. High

Yu:2013:AGA

Yoon:1996:WBP

Yero:2001:JOO

REFERENCES

REFERENCES

2016. CODEN ???? ISSN 2150-8097.

REFERENCES

[Young-S:2017:OGI] Chao-Tung Yang, Wen-Chung Shih, and Shian-Shyong Tseng. Dynamic partitioning of loop iter-

REFERENCES

Younge:2015:SHP

Yonezawa:1995:IED

You:2015:VFO

You:1995:PIM

Zounmevo:2014:FRC

Zaza:2016:CBP

Zahavi:2012:FTR

Zhong:2007:PPS

Zdetsis:1994:PMD

Zilli:1997:TBN

G. Zilli and L. Bergamaschi. Truncated block Newton and quasi-Newton methods for sparse systems of

Zhao:2010:GMP

Zhang:2004:PMV

Zhang:2001:PPV

Zhang:1997:DED

Zhu:2012:CDS

Zhao:2010:GMP

REFERENCES

REFERENCES

[ZL96] Amr Zaky and Ted Lewis, editors. Program development tools and environments for parallel and distributed systems: Session; 28th Hawaii international conference on system sci-
REFERENCES

Zaki:1999:TSP

Zhou:2012:DFD

Zhang:2017:DLN

Zhu:2015:PIM

Zhai:2011:CVH

Zollweg:1993:OP

Zouaoui:2017:CNG

Zareski:1995:EPG

Zheng:2005:SBP

Zhang:2013:MPI

Zhu:2017:OAP

Zhu:1995:RTC

Miaoliang Zhu, Chunming Wu, Youjun Zhang, Yi Jin, and Jie Li. A real-time and concurrent intel-
REFERENCES

