A Bibliography of Publications about *PVM (Parallel Virtual Machine)* and *MPI (Message Passing Interface)*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

15 March 2019
Version 3.191

Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0 [ICC02]. 1 [ICC02, LRQ01, VDL+15].

$\$19.95 [Ano95b]. 2
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19]. $\$24.95
[Ano95c]. $\$27.50 [Ano96a]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12]. $\$35
[Ano00a, Ano00b]. $\$35.00
[Ano99a, Ano99c, Ano99b, Ano99d]. 3
[KA13]. $\$60 [Ano00a, Ano00b]. 3 [PBC+01].

A [ARYT17]. α [JMdVG+17]. $Ax = b$

[BG95]. D [UZC+12]. H^2/H^∞ [GWC95]. k
[She95, TK16]. M^3 [JSH+05]. PVM+
[Wil94]. N
[IHM05, Per99, Rol08b, SP99, SRK+12].
SU(3) [BW12]. τ [RGDM15, RGDM16].
XY [KO14].

-**body** [IHM05, Per99, SP99, SRK+12]. -D
[DYN+06, SS99, SH14, Bha98, ES11, KHS01, NSM12]. -**Dimensional** [LRQ01].
-Lop [RGDM15, RGDM16]. -**Means**
[TK16]. -**Queens** [Rol08b]. -set [She95].
-stable [JMdVG+17].

. [Wil94].

/Fortran [TBG+02]. /many [KSG13].
/OpenMP [VDL+15].

1 [HMKV94, SOHL+98]. 10-Gigabit
[HeC05]. 100 [Str94]. 10th [DLO03, IEE96e].
'11 [ACM11]. 11th [IEE97b, KKD04]. '12
[Hol12]. 128-processor [LL01]. 12th
[DKD05, Bil95]. 13th
[Ano95d, MTW07, DSZ94]. 14th
[SL94a]. 15th
[CHD07, CHD09]. 15-18
[SL94a]. 16th
[DKD05]. 17th
[DKD07]. 18th
[CDND11]. 1990
[ACM90]. 1991
[DE91, EJL92, IEE91]. 1992
[KG93, R+92, VW92]. 1993
[Ano94c, GGK+93, IEE93a, IEE93e, JPT94, MMH93]. 1994 [Ano94a, Ano94e, DZ94, DT94, GN95, GT94, HK95, IEE94h, PSB+94, SPE95, SPH95, VV95]. 1995
[ACM95a, ACM96a, AGH+95, BH95, Gq95, Ham95a, IEE95b, IEE95a, IEE95d, IEE95h, IEE95i, JB96, NM95, Nar95, Ten95, UCM95, ZL96]. 1996 [ACM96b, Abr96, Bo97, ERS96, IEE96f, IEE96e, IEE96i, Ree96]. 1998 [ACM98b]. 1999 [ACM99]. 19th
[TBD12, IEE05]. 1st [Abr96, BR95a, CGB+10, Kum94, Van95, Fer92]. 2 [AKL99, BCAD06, BHS+02, BMPZ94a, CwC+11, CD96, DPD08, FST98a, FST98b, GF03, GHHL+96, GT01, GLT98, GLT99, GLT99b, GLT99c, HGMW12, J0n96, LC97, LKS04, MS02a, MKO4, P500a, SS99, SSL97, TRH00, VAT95, bT01a]. 2-D [BMPZ94a]. 2.0
[BO01, LPD+11, LW97, Mat00b, N3M12]. 2.2 [HRR+11]. 2.5 [KS96]. 2000 [ACM00, CLBS17, LL01, LKS04, N0U05, ZSN01]. 2001 [ACM01, Old02]. 2003
[ACM03, AS14, DON06, OL05]. 2004
[ACM04]. 2005 [ACM05, DKD07]. 2006
[ACM06a, MTW07]. 2007 [SM07]. 2008
2012 [Hol12, TB14]. 2015 [IS16]. 21st
[IEE95a]. 25nm [Ano93a]. 26th
[Ano93a, SL94a]. 27th [Ano94h]. 28th
[BL96]. 2D [ZZZ+15]. 2D-DWT [ZZZ+15].
2nd [FK95, IEE93c, NAG05, YMM97].

3 [Bri95, Che10, GBH14, GBH18, GPL+96, GT12, Gro12, HDT+15]. 3-D [Bri95]. 3.0
[Ano97, Bra97, BRM02, BRM03, DBB+16, KaM10, OP10]. 3.06 [Ano03]. 3.1 [WCC12].
3.4 [Gel97, GPK97]. 3.X [KS96]. 3000
[HWM02]. 33rd [ACM95a]. 37th [ACM96a].
3D [GAP97, Gra97, LO96]. 3D-Fall [Gra97].
3rd [ACM06b, CZG+08, Ano95a, IEE96a].

4 [An03, HRZ97, KSSH99, N0U05, SD13, SBT04]. 4.0 [DSG15, JCP15, dOSMM+16].
4.5 [CBB96]. 43 [UZC+12]. 45-degree
[CT13]. 48th [IEE94e]. 4th
[BD97, Ed08, FF95, USE00]. 5 [TRH00]. 512 [RBB97]. 5th
[AD98, Cha05, IEE94a, MdSC09].

600 [LSK04]. 6000 [AL93, NMW93]. 64
[dCZG06]. 64-bit [Wilk03]. 6th [ACR94, DLM99, GT94, PW95, SHM+10, Sin93].
7th [ACM95a, CGK+11, DKP00, GN95, PB+95].

857 [SMSW06]. 897 [HWS92]. 8th
[CMR12, CD01].

90 [Ben95, SM03]. 9076 [Bri95]. 91
[BG91, EJL92, IEE91]. 92
[Sie92a, Sie92b, VW92]. 93 [Ano93g, GIK+93, GH+93, IEE93a, IEE93e].
9320 [FS93]. 9320 [Gle00]. 94
[BS94, DW94, GT94, IEE94b, IEE94h, PSB+94, SPE95, WPH94, dGJM94]. 947
[LTDD14]. 95
[ACM95b, AH95, BH95, CL+95, CJS95, DM96, FF95, HAM95b, IEE95a, Lev95, NM95, Van95, Ano98, FD97, KaM10].
95/NT [FD97]. 96
[ACM96b, ACM96c, BDLS96, BFM96, CH96, IEE96g, IEE96e, IEE96d, LHHM96, Li96, Sil96, Was96, YH96]. '97 [ACM97a]. 978 [Che10, SD13]. 978-0-12-415933-4 [SD13]. 978-0-13-138768-3 [Che10]. 981 [Riz17]. 9th [IEE95f, Kra02, YH96].

AIMS [Yan94]. Air [AKK+94, BZ97, MPD04, MSML10, BTC+17, SH94, Syd94]. airspace [TCP15]. Aix [GA96, Ano01a]. Aix-les-Bains [GA96]. Al [Ano95b]. Alamos [Old02]. Albuquerque [IEE91, IEE95d]. ALDY [GS96]. ALE [HAA+11]. Algebra [BDT08, CDD+13, Coo95b, IS16, MGMH97, Neu94, van97, BKvH+14, Cal94, Coo95a, PMZM16, dCH93]. Algebraic [CGPR98, Lev95]. Algorithm [ACMR14, BST+13, BP99, BT01b, DYN+06, FJBB+00, HA10, HD02b, ITT02, MW98, PKD95, PB12, RDMB99, SAS01, Sch96a, SWH15, ART17, AAAA16, AD95, BB95, BAV08, BCM+16, CCU95, CT13, CSW99, GGL+08, GKK09, GP95, HWS09, IM95, KY10, KWEF18, Kan12, KBP16, KN17, Kon15, KRC17, LYZ13, MM92, MLVS16, MK00, NB96, NA99, OKW95, OMK09, PGBF+07, PSLT99, Ram07, RJC95, RAGJ95, Sch96b, SSA11, Sur95a, TNIB17, Was95a, YULMTS+17, ZSK15, ZWL+17, dH94, van93, HWS99, LTDD14, Riz17, SLSW06]. Algorithm-based [PKD95]. Algorithm-Dependant [BP99]. algorithmic [RJDH14]. Algorithms [ACM95b, ATC94, ADRCT98, ASA97, CCS97, DAL18, DAK98, DK06, FB94, GAMR00, GK10, HO14, HHK94, IEE96d, KK92a, LH9M96, L96, LAD16, MTSS94, MGMH97, MBS15, Nar95, Pet97, PBK00, SG15, VRS00, AK99, AL92, BH9J6, BMS+17, BID95, DDLM95, FR95, FP92, GWC95, HLI17, HPLT99, HKOO11, HS95b, Jou94, JRM+94, KL95, KRG13, LFL11, LN+12, MTK16, MJG+12, NP12, OBS95, PP16, Pan95b, PBK99, PD11, PCS95, RHG+96, SPE95, Sur95b, TSZC94, WCVR96, YLZ13]. alias [SOA11]. alias-free [SOA11]. aligned [AGIS94]. Aligners [SMM+16]. Alignment [dOSMM+16, AMHC11]. all-port [RJMC93]. All-to-All [LZD+17, LZD+18, Traa0b]. Allocation [AGS97, BS01, DGG+12, RFRH96]. alloy [TG94]. ALM [PZ12]. Altera [RGB+17, TK16]. Alternative [EM94, SWHP05, Traa12a, EKTB99]. ALWAN [HB96a, HB96b, MSB97]. Amazon [ZLZ+11]. AMBER [VM95]. American [Ara95]. AMIP [Gat95]. Among [CCHW03]. AMPI [CCHW03]. Amplified [EZBA16]. AMR [NLRO07]. AN2 [HBT95]. analogue [WWZ+96]. analyses [ANS95]. Analysis [BHW+17, BR02, BG+102, BBC+00, BDL98, CGLD01, EML00, FK01, FJK+17, Hol12, JF95, KL94, KNT02, KRG13, LCK11, MK17, MLD10, NAV+96, NMS+14, Ost94, PZ12, PGB+05, SPL+12, SBR95, SN01, TFGM02, Whi04, WM01, BB93, BBDH14, BB+15, Che99, DSGS17, EPP+07, GR95, GFB+14, GKS+11, GE95, GE96, GT07, JB96, LC07, LLG12, LL16, LH912, MM94, MM96, MLA+14, MJPB16, Pat93, PHJM11, PGAB+07, SDSCP13, iSYS12, SS94, SDJ17, SPH95, Sh94, Si96, SWL+01, SSG95, TMC09, TW12, TFGZ12, Uhl95a, Uhl95b, VM94, YCL14]. Analytical [BHW+12, HK09, JS13, KN17]. Analyzer [JJPL17, KKM15]. Analyzers [Ano01a]. Analyzing [BRU05, DF17, FM09, HG12, HCF05, PFG97]. anasslich [Ano94c]. Anatomy [KWEF18]. Andrew [Ano99c, Ano99d]. animal [LM99]. anisotropic [LLB+16, SSB+16, YSV+16]. 'Annai [CEF+95]. Annapolis [IEE96c]. Annealing [FH97]. Anney [VV92]. Anniversary [Ano92, Ano93f]. annotated [GHH99]. Annotation [MGA+17]. announcement [WRMR19]. Announcements [Ano98]. Annual [ACM95b, Ano93b, Ano94h, IEE95b, USE90, Van95, Y+93, ACM95a, Eng90, IEE94e, IEE95l]. Ant [ITT02]. ante [Ano03].
antenna [DSOF11]. Anthony [Ano95c, Ano00b]. Antonio [Ano95d, IEE95g, IEE97c]. Any [Gro02a, Mar07]. AP [PBC+01, SMTW96]. AP/ [SMTW96]. AP1000 [SH96, IM94, SWJ95]. AP3000 [TD99]. API [DM98, LPD+11]. APIs [WCS+13]. APOLLO [Sta95b]. APOLLO-II [Sta95b]. Appendix [Ano01a]. Appendixes [Ano01a]. APPL [AB93b, AB93a]. Application [AKE00, BSN95, BgDs09, BS07, BFM97, BBH+15, Cha02, CRGM14, DFMD94, FDG97a, FDG97b, FSC+11, GI98, HT08, JFY00, JCH+08, KNT02, LD01, LMRG14, Mal01, MTSS94, MBB+12, NSLV16, NS16, PSSS01, Rzx17, SBF+04, ST02a, SCL97, UT02, Zz04, ABC+00, ADMV05, ADR+05, BvdB94, BFLJ99, BL97, Bmps03, CBYG18, CRM14, CRGM16, EPMJ09, FMFM15, GWVP+14, HTJ+16, HZ96, KME09, LSG12, LCMG17, LBB+19, MMW96, MM03, MLA+14, MVWL+10, NMW93, RBAI17, Rol08b, SM12, SCJH19, SSS99, SFSV13, SL00, TCP15, Wor96, ZZZ+15, CG99a]. application-centric [SFSV13]. Application-Level [CRGM14, LMRG14, SBF+04, SCL07, Bmps03, CRM14, CRGM16, LCMG17, LBB+19]. Applications [APJ+16, AGS97, Ano89, Ano96c, AZG17, BCLN97, Ben18, BHV12, BBH+06, BRU05, BFMJ96b, BFBJW01, CGS15, CBL10, CGLD01, Cha05, CjNW95, CRGM14, Cot98, CTK00, Cot04, Cza02, Cza03, DW02, DLM+17, DER01, DHK97, DGF97, DGMJ93, EV01, EML00, FLD98, FD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GK10, HMK09, Hus98, IEE95l, ITT02, Jes93b, Jlpl17, KB98, KBS04, KGK+03, KKP01, KKK02b, Kuh98, Lafi01, LAdS+15, LRG14, LKCCW07, LMRG14, dLR04, MSOGR01, MS02a, Mar02, Mat01b, MAB05, MC98, MG15, MANR09, PSM+14, Rei01, RPM+08, RBB15, RRBL01, SPL+12, SG12, SPM+18, SC04, SSB+17, TTSY00, TFGM02, VdS00, VY02, Vos03, WA96a, WC09, Wis96a, WSN99, WBH97, WM01, dGJM94, ACH+11, ACJ12, Ano93a, Ano94f, Ano03, ARA95, ARN95, AGM906]. applications [BKH+13, BR04, BDV03, BAG17, BMF96, BFMJ96a, CGK+16, CBGS+15, CDMS15, CLSP07, CBM+08, CIJ+10, CFPS95, CCHW03, CCM+06, DZ98a, Dsz94, D+95, DCH02, EKTB99, EGH99, EDSV09, FE17, FNSW99, FCS+12, Fin04, Fin95, FF95, GRB15, Gs02, GH12, GJMM18, GS96, GHH+93, HZ99, HAJK01, JC17, JPRB94, LMG17, LCMG17, LBB+19, LZYH19, LS08, MA09, MBKM12, ML04, MSCM15, MS95b, NSBR07, NCB+12, NFG+10, PK05, PTL+16, Rab99, RS95, RGGP+18, SLM14, SRE95, SBF+12, SD17, SG12, SG05, SLG95, SB01, SD16, TMC09, TBB12, TPLY18, Vc02, Wis96b, Wal92, WT13, WMP14, XLW+09, Yz14, ZLZ+11, BP93, TDBEE11, ATC94]. Applied [FGRD01, HC06, KaM10, GFIS+18, HMKV94, MM92, NF94, PGK+10, DMW96, Was96]. Approach [AZG17, BHM94, BJ93, BHNW01, CRGM14, CD98, DLM+17, FFPS03, GCB12, HD00, KBA02, KKO2a, KmWH10, LGM00, Mar06, PP01, Pet00a, Pet00b, RGD13, Ros13, TJPF12, BK11, Bis04, BRC+17, CLY16, CD99, CRGM16, DNM96, EO15, FMS15, HDB+13, JS13, KPL+12, KSSS07, KJEM12, LSG12, MG05, MS99b, NEM17, OW92, SVC+11, SEC15, TWFO09, W009]. Approaches [JCH+08, Ney00, SWHP05, SM02, BFLL99, CB01, PS00b]. Approximate [Huc96, MM02, GGC+07, GG09, MM03]. Approximation [SLJ+14, SJLM14]. April [ANS95, AH95, Ano93h, Ano94h, CH96, DR94, GH94, Ham95a, IEE92, IEE93b, IEE95f, IEE96e, IEE97b, IE05, LCHS96, MC94, Nar95, Sie94, SW91, Ten95]. APS
[GT94]. AQsort [LTS16]. AQUAgpusph [CP15]. arbitrary [HP11]. ARCH [Ada97, Ada98]. architectural [GGC+07]. Architecture [BG94a, CGC+11, CLOL18, ERKG01, EM02, FD97, Fu98, HRZ97, IEE97c, ITK00, LSZL02, PT01, PS01b, SM9+16, SC04, WKP11, YTH+12, BBC99, BG94c, CSM+96, CS96, DiN96, FHC+95, HK90, MRH+96, PWD+12, SWY94, SSGF00, Squ03, SP11, WCC+07, YAJG+15, YEG+13, ZWZ+95]. architecture-independent [DiN96]. Architectures [ACM95b, BDT08, BFG+10, CHPP01, HD02a, HD02b, HHM96, Li96, LHH+17, LAD16, MS02b, MTSS94, MGS00, NO02b, Nar95, PZ12, TSCaM12, YKW+18, BDP+10, BN00, BBCR99, BG94c, CSPM+96, CS96, DiN96, FHC+95, HK90, MRH+96, PWD+12, SWY94, SSGF00, Squ03, SP11, WCC+07, YAJG+15, YEG+13, ZWZ+95]. architectural [BG94a, CGC+11, CLOL18, EBKG01, EM02, FD97, Fu98, HRZ97, IEE97c, ITK00, LSZL02, PT01, PS01b, SM9+16, SC04, WKP11, YTH+12, BBC99, BG94c, CSM+96, CS96, DiN96, FHC+95, HK90, MRH+96, PWD+12, SWY94, SSGF00, Squ03, SP11, WCC+07, YAJG+15, YEG+13, ZWZ+95]. architecture-independent [DiN96]. Architectures [ACM95b, BDT08, BFG+10, CHPP01, HD02a, HD02b, HHK94, IEE96d, KDT+12, LHHM96, Li96, LZH+17, LAD16, MS02b, MTSS94, MGS00, NO02b, Nar95, PZ12, TSCaM12, YKW+18, BDP+10, BN00, BKML95, CLM+95, CDZ+98, DM93, DZZY94, GDC15, GP95, Hos12, LCL+12, LDJK13, MLMC04, NO02a, PY95, RFH+95, RMMN+12, SPL99, TDG13, TSCZ94, Uhl95a, VDL+15, WST95, dAMC11]. Area [CDHL95, Fis01, BH+12, FGT96, FGG+98, KIB+99, Qu95]. area-based [Qu95]. arising [ARvW03]. Aristotle [SV14]. Arithmetic [Any98, JPT14, Sur95a]. Arithmetics [HD00]. Arizona [IEE95b, JB96]. ARM [MGL+17]. Array [DDPR97, HD02b, LTS16, WG17, CCM12, DK13, HSE+17, JKN+13, Ott93, TOC18, Wal02]. arrays [HCL05, RBS94]. Arrival [FPY08, MLVS16]. art [LF93b]. artifact [ZZZ+15]. Artificial [BP93]. ARTUR [FJBB+00]. ARVO [BH+12]. ARVO-CL [BH+12]. ary [Pan95a]. Ascona [DR94]. Ashes [Thr99]. ASL [FGRT00]. ASME [LF+93a]. aspects [CG99a]. Assembly [PGF18, TD15]. Assessing [LMG17, dLR04, MABG96, TSCaM12, CMV+94]. Assessment [Mat01b, TAH+01, Boi97, LH98]. Assignment [Cza13, CK99]. assist [Kik93]. Assisted [GTH96, GM13, MBB13]. Astro [CC17]. Astronomical [JB96, SP95]. asymmetric [GCN+10]. asynchronization [FGS+19]. Asynchronous [Ada97, Cav93, Cz95a, CDP99, HE02, SP9+18, BBDD14, BC+09, CZ95b, DDYM99, Sch99]. Athapascan [CP98]. Atlanta [AGH+95, Ara95, USE00, UCW95]. ATM [GFV99, HBT95, Jon96, LHD+94, LHD+95]. Atmosphere [BS93]. Atmospheric [HK93, KHS19, RSB95]. atom [MGG05]. Atomic [LRT07, LAFA15, SYF96, DS13, Hin11, SY95, XF95]. atoms [JLS+14]. Attacks [PV97, GHD12]. attempt [GM18]. Attraction [GB06]. audio [BJ13]. August [ATC94, Agr95a, BFMR96, DMW96, GT94, HAM95b, IEE94g, IEE95k, IEE95l, IEE96f, LF+93a, Ost94, PSB+94, PGB+95, Ree96, VV95, Was96]. Austin [IEE94b]. Australasian [Bil95]. Australia [GN95, Nar95, AC19, BI95]. Australian [AC19, GN95]. Austria [Bos96, BH95, Kra02, TBD12, Vol93]. Austrian [Fer92, FK95]. Austrian-Hungarian [Fer92, FK95]. Auto [CC17, DWM12, DBLG11, PSB+19, RDLQ12, WG17, FE17, SH14, TWFO09]. Auto-Generation [CC17, DWM12]. auto-parallelization [TWFO09]. Auto-scoping [RDLQ12]. Auto-tuned [PSB+19]. Auto-Tuning [WG17, DBLG11, FE17, SH14]. AutoLink [GMPD98]. AutoMap [GMPD98]. Automata [Car07, BBK+94]. Automated [BMPS03, MVY95, LLG12, RFR96, Yan94]. Automatic [BVML12, BBH+08, BGK08, BHK+06, CBL10, Cza03, DW02, EML98, EML00, FAFD15, FM11, GKF13, HZ99, JFY00, JJJ+03, JPL17, KOI01, KHS12, MGA+17, NCB+17, OWS95, Rab99, RGD13, SZ11, SR96, SSB+17, TJP12, WC15, WM01, APBCF16, AMuHIK15, AGG+95, BR04, BBRS08, CHKK15, CDM6, CPR+95, HZ96, LME09, LF93b, WMP14, ZHK06, FVD00]. Automatically
MMH99, Ste94, WT11, CE00, WT12.

Benificial [CB00]. benefit [SBG ++12]. Benefits [LB16, PS+14, SIRP17].

Benutzerprofile [Wi94].

Benutztreffens [Ano94c]. Beowulf [CMM03, Ste00, UP01].

Beowulf-Class [Ste00]. Berlin [PW95].

Benutzerbreitsystemkern [Sei99].

Benutzertreens [Ano94c].

Beowulf [CMM03, Ste00, UP01].

Berlin [PW95].

Bessel [KT10].

Betriebssystemkern [Sei99].

Better [Str94].

Between [AAB ++17, BS07, ASS ++17, AKE00, BID95, GFV99, JAT97, LDCZ97, MSP93].

Betterly [IEE93f].

Beverly [IEE93f].

Beyond [Gei93a, GKPS97, Gei98, Gro12, Oh14, Gei93b, LSG12, Sch93, SHM ++10].

Biconjugate [GFPG12]. bidirectional [HE15].

Big [CLOL18, GTS ++15, LK14, VPS17, ASS ++17, Str94].

Biharmonic [RB01].

Bill [Ano99c, Ano99d].

billion [KTJT03].

Billions [MRB17].

binary [CG93, EPP ++17, SGS95, TCBV10].

binary-level [EPP ++17].

binary-splitting [TCBV10].

Binary [CLL03, Coo95b, MG97, Coo95a].

Biology [BBH12].

Biological [CNM11, VBB18, BA06].

Biomolecular [BCGL97, PZKK02]. BIP [CDP99, Tou00].

BIP-Myrinet [Tou00].

BIP/Myrinet [CDP99].

bit [HLO ++16, Wil93].

bit-parallel [HLO ++16].

bitonic [PSH11].

Black [FSXZ14, Kha13, van93].

BLACS [DSW96, DS96a, Wal95].

BLAS [Add01, ARvW03, FMFM15].

BLASTP [LSMW11].

Blaze [PWPD19].

Blaze-Task [PWPD19].

Block [DDPR97, SMM ++16, WO95, ZB97, ADDR95, DR18, GP95, HKMCS94, HC08, WO96].

Block-Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96].

block-tridiagonal [DR18].

Blocking [FH98, BCT ++08, HKT ++12, Nak03, HTA08].

Blood [Pat93].

Blue [KMH ++14, AAC ++05, BGH ++05, EFR ++05, LM13, MV17, MSW ++05].

blurred [Wil94].

BMCC [CC99].

bodies [AGIS94, LHLK10].

Body [RB01, RTRG ++07, IHM05, NS16, Per99, SP99, SRK ++12, ADB94].

BOF [Mat00a].

Boltzmann [OTK15, CGK ++16, MS95, Pri14, SJK ++17a, SJK ++17b].

Bonn [MTWD06].

Book [Ano95b, Ano95c, Ano96a, Ano99c, Ano99d, Ano00a, Ano00b, Che10, Mar06, Nag05, Per97, SD13, Vog13, Vre04, YMG97].

books [YM97, Nov95].

Boosting [LRG14, SFO95].

Bottleneck [MWG97].

Boulevard [ACM99].

Bound [ASA97, MBKM12, ADMV05].

boundaries [KGB ++09]. boundary [PTT94, SBQZ14, SP11, SD99].

boundary-value [SP11]. bounded [MDSAS ++18, PADS ++17].

BowMapCL [NTR16].

Box [JR13, JPP95].

Box-counting [JR13].

brackets [GSMK17].

Braga [IEE96g].

Branch [ASA97, ADMV05].

Breaking [OS97].

breast [Str94].

Brest [IEE94c].

Bristol [MC94].

British [IEE95e, IEE95a].

Broadband [OIS ++06, CLLASPDP99].

Broadcast [PSM ++14, YSP ++05, MTK16].

Broadcasts [SE02].

Brownian [SKM15].

Bruijn [PGF18].

Brussels [LCHS96].

BSGP [HZG08].

BSP [Mar06, Bis04, GRRM99, Mar09, Röhl00].

BSP2OMP [Mar09].

BT [WT11, WT12].

Budapest [FK95, KKD04].

Buffer [SEF ++16, Tsu07].

buffers [MR6].

Build [HRS09].

Building [FD04, Gei01, Gro02a, LBD ++96, LVP04, WADC99, Am95, HS95b, MSL12, PW95, Sur95b, Kos95b].

Bulk [Cer99, DLRR99, HZG08, TNIB17].

bulk-synchronous [HZG08].

Burrows [NTR16].

Burst [SEF ++16].

BUS [IT99].

BUSTER [XWZS96].

Butterfly [ST17].

Butterfly-Patterned [ST17].
[BL95]. Charm [ZHK06]. Charts [DSS00]. Check [MC17, LCC+03]. checkerboard [BW12]. Checking [CGZQ13, Gro00, HKM09, LCC+03, Ma5SAS+18, PAdS+17, RAS16, SMAC08, YYW+12]. Checkpoint [SSB+05, SBF+04, CRM14, ZWZ05, ZHK06, BDB+13]. checkpoint-based [CRM14, ZHK06]. Checkpoint-on-Failure [BDB+13]. Checkpoint-Recovery [SBF+04]. Checkpoint/Restart [SSB+05]. Checkpointing [DCH02, LMRG14, SSB+05, TSS00b, BMPS03, BCH+08, CG96, LCMG17, LBB+19, PKD95, SSCC95, Ste96]. chemical [NMW93]. Chemistry [AKK+94, BR95a, DMW96, SSGF00]. Chemkin [Ano97, Bra97]. CHEMPI [RR01]. Chicago [CGKM11]. China [CGZ+08, IEE97a, LHHM96, Li96]. Chip [Jes93b, URKG12, TDG13, dCZG06]. Cholesky [DG95, LC97b]. Chromosome [BM97, dOSMM+16]. Chromosome-Wide [dOSMM+16]. CICADA [MK94]. Circuit [WPC07, BJ95]. Circuits [GJN97]. Circular [Tsu07]. Circulation [GAM+02, Nes10, RSBT95]. CIS [AH00]. citation [Squ03]. City [Ho12]. civil [PW95]. CL [BHW+12, BBH+15, LW95]. CL-PVM [LW95]. CL_ARRAY [ZT17]. clarified [WBBD15]. CLAS [DZDR95]. Class [DFN12, Ste00, Dem96, MSL96, RFH+95]. Classes [DeP03, GG09, Ott93]. classic [HL17]. Classical [BCGL97]. Classification [SNN+19, TPLY18]. clauses [WC15]. Clemson [ACM95a]. Client [Ano93f, FSL98, KS97, kLCCW07, Mat01b, Sch93, Sto98, Vis95]. Client-Agent-Server [Mat01b]. Client-Server [FSL98, Sto98, Vis95]. Client-Side [kLCCW07]. Clock [NB96]. clocks [TPLY18]. CLOMP [BGdS09]. clone [ZWL+17]. Closer [HCV16]. Closure [CGPR98, KH15, PPR01]. Cloud [SIS17, URGK12, ZLZ+11, ZLP17, GF18+18, GHZ12, GWVP+14]. Cluster [AUR01, BKGS02, BL95, BM97, CRE99, CMM03, HD02a, ES11, GGGC99, Gei94, Gei00, GSN+01, GT01, GC05, HD02b, IGTK00, IHH03, KS96, KS01, KHS01, LR01, MFTB95, MM01, NO02b, OF00, PFG97, RB01, RT06, RLL01, SCR92, SHH01, SHTS01, ST02a, TOTH99, Trä02b, YCA18, bT01a, AL93, BLP93, BALU95, BTC+17, BD95, CCF+94, Coo93, ED94, Gk97, GMU95, Heb93, KEGM10, KO14, Kom15, LC07, Liu95, MW93, MM03, NO02a, PDY14, RJDH14, SS94, SR95, ST02b, SLS96, SY95, SSN94, Tho94, THM+94, Tsu95, UH96, YWO95, ZLZ+11, MS04]. cluster-based [SLS96]. Cluster-enabled [SHH01]. clustered [KHB+99]. Clustering [BBH12, HA10, RJ95, GGL+08, YCL14]. Clusters [MS04]. Clusters [AH00, AHHP17, BDH+95, BDH+97, BWV+12, CLOL18, CSC96, DK06, GDM18, GMdMBD+07, GSY+13, HPP02, HSMW94, HVA+16, Hus00, JNL+15, LC97a, LH95, LV04, MS98, MFP03, Pan14, PKB01, PT01, PS00a, Pus95, Re01, dOSMM+16, SFG98, Slv99, Ste00, Tou00, UP01, WLN03, WT12, YWCF15, YKI+96, AB95, ALR94, ADB94, ABG+96, ADMV05, BWT96, BDV03, Bru95, CRE01, EKTB99, GBB95, HCL05, Hus99, JKH08, Jon96, JR10, JRM+94, KLY03, KLY05, KSL+12, KJEM12, LBD+96, Lee12, LLC13, LL95, LKYS04, NMW93, NN95, PS07, PRS+14, PM95, PR94c, PRS16, PL96, RCFS96, RGDM16, Slo05, SC96a, SL95, TFZZ12, WLN06, WLYC12, YS08, YL09, YHI11, YWCC11, ZHS99, dCH93]. CM [SBG+02]. CMMD [Har94, Har95]. CMPI [GHZ12]. CMS [FMS15]. CNF [IKM+01, IKM+02]. CO [ACM01, AHHP17, GDM18, HJ98, PSB+19, TOC18, Wal02]. co-array [TOC18, Wal02]. Co-designing [AHHP17].

Coarse [ADRCT98, IOK00, KOI01, LGM00, NIO+02, NIO+03, Heb93, RJC95].

Coarse-Grain [IOK00]. coarse-grained [Heb93, RJC95]. coarsening [PSLT99].

Coast [IS16]. Coastal [GAM+02].

CoCheck [MS96b, Ste96]. Code [AHP01, And98, BCGL97, CB00, CP97, CCK12, CCBPGA15, DDL00, DZDR95, HE02, Kam10, KAMAMA17, LD01, MS02b, MM07, PBC+01, RGD13, SM03, STA95, STA95, TGBS05, AMS02b, MM07, KAMAMA17, KHS01, LD01, MS02b, MM07, PBC+01, RGD13, SM03, SZBS95a, Sta95b, TGBS05, AMS04, ADB94, AFST95, BCAD06, BADCO7, BW12, Bha98, Bri95, Cout93, DLR94, EZBA16, FFMM15, GSKM17, Heb93, IMJ+05, JL18, KPL+12, KH10, MGS+15, MRH+96, MWO95, PKE+10, PSK+10, RP95, SZBS95b, SK00, SFLD15, SWSW06, TMBD96, VBLvdG08, VDL+15, Wor96, YL09].

codebooks [PMM95]. Codes [FAFD15, JFY00, SWH15, HTJ+16, HWS09, HASnPO0, JPP95, KBG+09, LRW01, Mal01, OLG+16, WB96].

Coding [Huh94, Huh95b, SCC96].

Collapse [PYKWy95]. Collecting [BMR01].

Collection [LTRA02, DH95, MGC+15].

collection-oriented [MGC+15].

Collections [JFRGF12]. Collective [BIL99, BIC05, CCA00, FVD00, FCLG07, FPP08, GLB00, GMdMBD+07, Hus99, KH96, MIG+12, PGBA+05, SG15, TRG05, VFD02, WRA02, HS12, HMS+19, HG12, HWW97, KH9+99, KHB94, KMH+14, MBB13, Pan95b, PGBF+07, PGBA+07, RJMC93, SCB14, SCB15, SSS99, TD99, Tra12a, TFZZ12].

Collectives [CSW12, SwL99, ZHA12]. Collector [GTS+15, WK08a, WK08c, WK08b].

College [AGH+95, ANO94h]. Collision [QRMG96, Sta95b, ART17, FFFC99, LHLK10]. Colectiv [MKW11]. Colony [ITT02]. Colorado [R+92, IEE05]. Colt [WN10].

Columbia [SBB+95, IEE95a, EFS05, MAB05]. column [HSP+13]. column-stores [HSP+13].

COMA [GB96]. Combined [CBH94, TJPF12]. Combining [DP94, RB98, SCB14, Sh96a, SMAC08, YPAE09, BOR99, Sch96b]. comes [ANO94f].

Coming [HK95]. Commands [OLG01].

comments [STR94]. commerce [ANO94f]. commercial [ANO93a]. commodity [GGL+08].

Common [HEH98, DK13, WLR05]. Communicating [FUM+96b, GMDP98, FK96a].

Communication [ABF+17, BCG+10, BIL99, BIC05, DCPJ12, DZYY94, EM02, FST98a, FJK+17, FGT97, FBNS01, GFD03, GF8+03, GGS99, GFV99, GLB00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KBG16, LRT07, LC93, LCVDA94a, MH01, MMH98, MR96, NIT00, PLK+04, RK01, RRRGM97, RST06, SWHP05, SCP97, SGH12, SGB+02, SJ02, ST02b, SGL+00, SKH96, Sun12, TRG05, TGT05, TRH00, Tra02b, UMK97, WBBH97, XH96, YC98, ZSG12, FH98, BHJ96, BVML12, BHH+13b, BS94, BMG07, CAHG+17, CGL+93, Dem96, DWM12, DCPJ14, DGB+14, DBB+16, DS90b, GKB97, GM13, Gra97, GL94, GB94, HB96a, HWX+13, HUS99, HWW97, KH96, KB01, KY0L, KYL05, KBH+99, LR06b, LFL11, MLAV10, MUM99, MAB96, OGM+16, Pan95b, Par93, PKG+10, PM95, PKE+10, PSK+10, PS00b, SH14, SC95].

communication [FGK+10]. communication-based [PGK+10]. Communication-buffers [MR96].

Communication/Computation [HIP02].

Communications [BPS01, CP98, CDH95, CDH+95, FVD00, FST98b, GT01, GBS+07, GMdMBD+07, IEE95b, IEE95e, LHZH17].
12

LZH18, MB00, VFD02, YTH+12, bT01a, ADLL03a, ADLL03b, CDP99, HS12, KBHA94, MBBD13, McR92, MN91, MS99c, RGDML16, SCB14, SCB15, TD99, WLYC12.

Communicators [DFK90, FDF93, GFD95, GFD97, FKS96, GJMM18, KH96, MJG12].

Community [ACM04].

Como [BHW97, FCP91].

COMOPS [Luo99].

Compact [Uhl94, Uhl95b, Wor96].

Compactly [KLR16].

Comparative [KB98, PSK08, SN01, AGR+95b, ED94, YCL14].

Comparing [BF01, Fin97, GBR94, HC10, KB97, LCW+03, Mat94, Mat95, Ney00, OP10, OF00, PJP01, Pok96, RBB97a, SS01, SHH94b, VS00, Wal02, ZBl92, Ahm97, AB93b, BLP93, BID95, GMU95, Har94, Har95, JS13, KDSO12, KO6, MSP93, Ols95, PS07, PSHL11, Pri14, SdM10, SYR+09, SWS+12, SHH94a, TOC18, TSZC94].

comparison-based [PSHL11].

Comparisons [GGS99, PGC02, CLYC16].

Compass [PWD+12].

Compatible [MM14, LBH12, OH10].

Compon [IE93a].

CoMPI [FSC+11, FCS+12].

Compilation [FSSD17, HKMCS94, LRBG15, SBW91, Coe94, FM90, PGS+13, SHM+12].

Compile [GB94, TSY99, JE95].

Compile-time [GB94].

Compile/run-time [TSY99].

compiled [KYL03, KLY07].

Compiler [Ano98, Dan12, IOK00, KSS00, KHS01, MB12, Mar09, MKW11, SSE12, SS01, TJPF12, TBG+02, TGS05, BAG17, HEHC09, LME09, LHC+07, LLCD15, MA09, MüH03, PP16, RKBA+13, SHH01, THH+05].

Compilers [Ano01a, CFF+94, LZ97, MKV+01, SBT04, SS96, Hos12, PBG+95, ZT17].

Compiling [DMB16, Hos12, CGK11].

Complete [Bds07, GHL+98, Nag05, Per07, SOH+98, YM97, Ano99a, Ano99c, Ano99d, PRS+14, SOH+96].

Completed [PTT94].

Complex [BCGL97, GMPD98, MBS15].

Complexity [NPS12].

component [HLP10, KRKS11, Squ03].

Components [BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01].

Composable [MLGW18].

Composed [We94].

Comparing [PHA10].

composite [MALM95, YPA94].

Compositing [GCP+17].

Comparison [CTK00, Cot04, DLB07, FC05, KH15, CFP96].

compound [LLC13, SAP16].

comprehensive [RST02].

Compression [FSC+11, KB04, VPS17, AAAA16, HE15, UH96, Wu99].

compression-based [AAA16].

COMPSAC [IE95].

Compton [BCD96].

Computation [BKGS02, B+05, Cer99, DMS94, DSS00, EMO+93, ESM+94, Fer10, FF95, GS91, HIP02, IEE94a, IEE96c, KS15b, Mar06, MR12, MSp95, Nag05, PPR01, Sie92a, Sie92b, SMOE93, WTH17, ACM97a, ABP15, Bsl04, BALU95, Bos96, BHKR95, CL93, CMH99, CKB+93, DZZY94, HLM+17, HK94, KB01, KHBS19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZ94, NCKB12, PF05, PK+10, Rsh00, Shi94, SH14, TBB12, TP15, TW12, Vo93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational [ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEE11, TEGM09, WPH94, Wti04, AGMJ06, Bvd94, BDG+92c, BR95a, HVSC11, KBG+93, DZZY94, HLM+17, HK94, KB01, KHBS19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZ94, NCKB12, PF05, PK+10, Rsh00, Shi94, SH14, TBB12, TP15, TW12, Vo93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational [ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEE11, TEGM09, WPH94, Wti04, AGMJ06, Bvd94, BDG+92c, BR95a, HVSC11, KBG+93, DZZY94, HLM+17, HK94, KB01, KHBS19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZ94, NCKB12, PF05, PK+10, Rsh00, Shi94, SH14, TBB12, TP15, TW12, Vo93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational [ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEE11, TEGM09, WPH94, Wti04, AGMJ06, Bvd94, BDG+92c, BR95a, HVSC11, KBG+93, DZZY94, HLM+17, HK94, KB01, KHBS19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZ94, NCKB12, PF05, PK+10, Rsh00, Shi94, SH14, TBB12, TP15, TW12, Vo93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational [ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEE11, TEGM09, WPH94, Wti04, AGMJ06, Bvd94, BDG+92c, BR95a, HVSC11, KBG+93, DZZY94, HLM+17, HK94, KB01, KHBS19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZ94, NCKB12, PF05, PK+10, Rsh00, Shi94, SH14, TBB12, TP15, TW12, Vo93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational [ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEE11, TEGM09, WPH94, Wti04, AGMJ06, Bvd94, BDG+92c, BR95a, HVSC11, KBG+93, DZZY94, HLM+17, HK94, KB01, KHBS19, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZ94, NCKB12, PF05, PK+10, Rsh00, Shi94, SH14, TBB12, TP15, TW12, Vo93, Wan97, Was96, SM07].
MRRP11, MR96, Smi93b, SAP16, TS12b].

Compute [DBK+09, KKLL11, ZLZ+11].

computed [FWS+17, SSS99]. **Computer** [ACM06a, Ano94a, GTH96, IEE95i, IEE96h, IEE97c, IS16, KCR+17, Neu94, Old02, PSB+94, ST02a, Sum12, Ten95, URKG12, YTH+12, BN00, BKML95, BFM96, Cal94, CLM+95, GRTZ10, JWB96, Str94].

Computer-Assisted [GTH96]. **Computers** [Ano89, BP99, BCL00, DGMJ93, FFP03, GC05, IEE95b, IEE95e, ITKT00, LF+93a, MFTB95, PSZ+99, SPM+10, SS96, BvdB94, BB93, BBK+94, DLR94, Duv92, ESB13, GBF95, KOS+95a, LR06a, MMB+94, NF94, POL99, PBK99, Wal94a, Wal94b].

Computing [ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACDR94, AIM97, BJ93, BBG+95, BBG+93a, BGR97a, BL95, BHN97, CGB+10, CLOL18, CN10, Cze16, DDS+94, DERC01, DKD07, DW94, DMW96, DE91, EKTB99, EJL92, FBD01a, FGRD01, FO94, FS95, Fer98a, FS98, FME+12, FHC+95, GGGC99, GS02, GS91a, GS93, Gei93b, Gei94, GH94, GkLYCY97, HP05, HW11, HH14, HPY+93, HS95a, HK95, mH12, IEE97a, IM95, IPOJ12, JY95, JIM+11, JPT94, KO14, Kos95b, KSSS07, LV12, LH98, LCHS96, LHD+94, LHD+95, LM13, Mat94, MZK93, Mal95, Mar07, PGS+13, PKB06, Pen95, PGK+10, PTT94, PG9+95, PN90, PWD+12, RBS94, RJDH14, Sch93, SGS95, SMS00, ST96, Sti94, SP+11, Sun94b, SGM94, Sun95, Swa01, SD99, TJD90, TKP15, TDB00, Thu94, TSS98, VM94, Vis95, Was06, YULM+17, YLC16, YSL+12, Zen94, ZWL13, ZG094, ZHS99].

computing [ZKRA14, ACM98a, Kon00, PW95, Per96, SCR92, TEGM09, Ano95b].

Concept [KaM10, LTR00, SB95]. **concern** [Ano94]. **Concurrency** [ME17, NPS12, DGB+14, PTG13].

Concurrent [Ano89, BDG+91b, BR92, BH12, BKH+13, DG95, GS91b, GS92, GSSx, Gre94, HS93, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LPD+11, NP12, RGDML16, RCG95, Sun94b, SGM94, Wal94a, Wal94b, WK08a, WK08b, WK08c, ZWZ+95].

condensed [MC99]. **Condition** [GK10]. **Condor** [CF01, PL96]. **conduction** [iSYS12]. **Cone** [RCFS96, OH10].

Conference [ACM90, ACM93, ACM96b, ACM96c, ACM97b, ACM98b, ACM04, Abr96, ATC94, AGH+95, Ano89, Ano93g, Ano94a, Ano94e, Ano94i, ACDR94, BB95, B+95, Boi97, BS96, BFM96, BH95, CGB+10, CH96, DSM94, DSS94, DSD07, DKM+92, ERS95, ERS96, EJL92, FF95, Gat95, G95, GT94, Ham95a, HAM95b, H96, HS95a, HS94, Hol12, IEE92, IEE94f, IEE95a, IEE95e, IE95i, IE95l, IE96a, IE96d, IE96h, IE96i, IE974, LCK11, LF+93a, MM93, Nar95, OL05, PR94b, Ree96, R+92, SPE95, Sil96, SM07, Sin93, SW91, USE95, USE00, VW92, Vol93, WPH94, Y+93, YH96, ACM95a, ACM05, ACM06b, ANS95.
Ano93b, Ano93c, Ano95a, BR95a, Bil95, BDL96, DR94, Eng00, GH94, JPE94, LCH96, Mal95, PW95, Van95, ZL96, ACM94, Ano94g, IE95b, KKD03.

Configurable [IEE94d, PBT6, BB94].

configurations [PTL+16], conflict [TCP15], conformational [MK94].

Congress [CJNW95, GHH+93, PSB+94, BH95, dGJM94].

Connected [KPNM16].

Contract-based [KPNM16].

Connected [BT01b, KRKS11, OF00, Pet01].

Connectivity [Whi94].

Connectivity [BG95, GFPG12, MM92, Ols95].

Conjugate [BB95, dGJM94].

Congressi [KSSS07].

Contrasts [TA14].

Context [DGG12, DR18, MdSAS+18, OLG+16, PAdS+17, SCB15].

context-bounded [MdSAS+18, PAdS+17].

Contexts [CS14].

Continual [NS16].

Continuous [TA14].

Contract [KPNM16].

Contract-based [KPNM16].

Contract [KPNM16].

contrarian [KSSS07].

Contrasts [GG99].

Control [FLD98, FM09, IEE94e, MSS97, MBKM12, SFL+94, SHPT00].

controller [GWC95].

connexion [CEGS07, TV996].

Convention [ACM98b, ACM99, ACM00, Hol12, IEE94b].

Convex [GCN+13].

convolutions [DZZY94].

Cooke [SD13].

Cooperation [Wis01, Str94].

Cooperative [DGF97, DiN96, HRS97, kLCCW07, Pet00a, Pet00b, JKN+13, SHLM14].

Coordinate [OP98], coordinated [BCH+08].

COORDINATION [CH96, KAH6, FKK96a, CH96].

copies [RS19].

Copley [IEE94e].

Copperhead [CGK11].

Coprocessor [BB18].

Copy [SWHP05].

copying [SH96].

CORBA [DPP01, Fin97, LRW01].

Core [ABB+10, Bri10, CZG+08, LZH+17, SOH+98, TCM18, YGH+14, YTH+12, ACMZ11, BBG+14, BL99, FHB+13, HTA08, JR13, JHM+11, JR10, KSG13, LLCD15, LHL+14, MBBD13, PZ12, SFSV13, SVC+11, TFZ12, VDL+15, WCC+07, WYLC12, dCZG06, MMH98, Nag05, Ano99a, Ano99b].

Cores [BBG+11, DT17, BMS+17, WO09].

Corfu [SM07].

correct [DM93].

correction [BCD96, FME+12].

Corrections [BL95].

Correctness [HMK09].

Correlated [M07].

corruption [FME+12].

Coscheduling [GRV01, SGLH01].

Cosenza [KG93], cosmological [BADC07, Sai10].

Cost [KS15b, LLL01, GKH+14, Wu99].

Costs [GB94].

Cots [HHC+18].

count [KVGH11].

counters [Rah99].

counting [JR13].

County [ACM98b].

Coupled [MBS15, S01, SBR95, Gra97].

Coupling [BS93, KRG9, SB95, WB96].

course [STT96].

CoW [KMG99].

CPPvm [Gör01].

CPS [Mat94].

CPU [BB18, CLO18, DF17, JR13, KSL+12, Lee12, LG14, LL13, LFL11, OFA+15, PDY14, Pri14, SSB+17].

CPU-MIC [BB18].

CPU/GPU [KSL+12, Lee12, LL13, OFA+15, SSB+17].

CPU/multi [SAP08].

CPUs [KSS12, LNW+14, SFSV13, YSWY14].

CPVM [CG96].

Cracow [BDSW97].

cranial [NAJ99].

CRANII [MBES94].

Crash [LCVD94b].

Crash-simulation [LCVD94b].

crashworthiness [LCVD94a].

Crawler [Wal01a].

Cray [BL94, GRRM99, MP95, S96a, Sch96a, ABG+96, AZ95, APST95, CSM97, LJK04, MWO95, Oed93, RBB97c, SWS+12, SCC95].

CRAY-T3D...
[Sch96a, Sch96b]. **CRAY-T3E** [Che99].

Creation [Hat98, MFC98, PS00a]. **Crew** [GHL97]. **CRI** [MSCW95]. **CRI-MAP** [MSCW95]. **Critical** [DSGS17, SLN+12, SDJ17]. **Critical-blame** [DSGS17]. **critical-path** [SDJ17]. **cross** [JR13]. **cross-platform** [JR13].

cryptanalysis [BSN95]. **Cryptographic** [PV97, ABDP15]. **cryptosystem** [WLC07]. **CS** [FST98a, FST98b, Jon96]. **CS-2** [FST98a, FST98b]. **CS/2** [Jon96]. **CT** [DYN+06, NAJ99]. **CT-scans** [NAJ99].

cube [Pan95a]. **Cubes** [DERC01]. **CUDA** [Pri14, AMuHK15, AAA16, ACMZR11, AC17, Ano12, BHS18, BY12, BTC+17, BAG17, BSH15, BBH12, CAM12, CGU12, CMM11, CLYC16, CBM+08, CSV12, CFF19, CB11, Cza13, DCD+14, DS13, DR18, DARG13, DLV16, DWL+10, DWL+12, DM12, EADT19, EPP+17, ER12, FJZ+14, Fer10, FMF15, FFM11, FWS+17, Fuj08, GDC15, GSFcF13, GLN+08, GML+16, GFPG12, GWVP+14, GRTZ10, HE13, HJBB14, HVA+16, HLM+17, HD11, HLP10, HP11, HLP11, Hog13, HF14a, HF14b, HKOO11, HT08, HLO+16, JL18, JK10, JC17, JLS+14, JFGRF12, KRKS11, KHS19, KD12, KAMAMA17, Kha13, KS13, KVGH11, KME09, KO14, KH15, KD13, KA13, Lan09, LRG14, LGKQ10, LLG12, LSSZ15, LBH12, LSVW08, LSMW11, LAD16, LBB+16, LYSS+16, LYZ13, MMO+16, MR12, MSMML10, MsDAS+18, MGL+17, MM14, NSLV16, NS16, NBGS08, OIH10]. **CUDA** [ORA12, PGS+13, PRS+14, PHJM11, PaD+17, PGScCJ+18, PSHL11, PTMF18, PRS16, RBAl17, Ros13, SSE12, SK10, iSYS12, SDJ17, STK08, SS09, Seg10, SKM15, SP11, SR11, SJK+17a, SJK+17b, TNIB17, TVCB18, TS12b, TA14, TCP15, Tsu12, UZC+12, WGG+19, WG17, WJ12, WMRR17, WMR19, WWFT11, WBJ14, XXL13, YULM+17, YHL11, YZ14, YMYI11, ZSK15, ZAFAM16, ZZG+14, ZBD12, ZLS+15, ZZZ+15, dIAMC11, dIAMCFN12, vdLJR11, Che10, SD13, VOG13].

CUDA-Aware [HVA+16]. **CUDA-based** [AAA16, WGG+19]. **CUDA-BLASTP** [LSMW11]. **CUDA-C** [YULM+17]. **CUDA-compatible** [LBH12]. **CUDA-Enabled** [LSMW11, DS13, KHS19, SR11, ZLS+15]. **CUDA-NP** [YZ14]. **CUDA-quicksort** [MNO+16]. **CUDA-sharing** [PRS+14]. **CUDA-streams** [TVCB18]. **CUDA-to-OpenCL** [GSF-cF13]. **CUDA/MPI** [LYSS+16]. **cudaBayesreg** [Fer10]. **CUDA-EASY** [Sai10]. **CUDAAlign** [SMd10, dOSM+16]. **CUDAAs** [KMM15]. **CUDA²** [SM12]. **culling** [LHLK10]. **CUMODP** [HLM*17]. **CUMULVS** [GKP97]. **CURAND** [Ano12]. **Current** [Bak98, GFD05, IF195, BDG+93b, FK94, FHP+95]. **Curse** [OS97]. **Customization** [GSP+13]. **cut** [CG99a, CXB+12].

cut-through [CXB+12]. **CVL** [Har94]. **Cybernetics** [IEE95a]. **cycles** [PL96].

Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96]. **Cyclops** [dCZG06]. **Cyclops-64** [dCZG06].

D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Bri95, BMP29a, BAS13, CGU12, CP15, EFR+05, ES11, GCM+13, HF14a, HF14b, JR10, KRKS11, KO14, KD13, KHS01, KLR16, MK94, MSZG17, NSM12, TP15, WMRR17, WMR19, WRR01, YSL+12, vHKS94]. **D-CICADA** [MK94]. **DAC** [Cza02, Cza03]. **Daemon** [LB98]. **Dagum** [Stp02]. **d`Aix** [GA96].

d’Aix-Marlioz **d’Aix-Marlioz** [GA96]. **Dallas** [ACM00, IEE95]. **Dane** [IEE96].

damping [YPA94]. **DAMPVM** [Cza02, Cza03]. **DAMPVM/DAC** [Cza02, Cza03]. **DAMS** [CD98]. **Dangers** [BCC+97]. **DaReL** [KN95]. **Data** [AJF16, BMRO1, BCG+10, BGD12, CKmWH16, CLOL18, DERC01, DiN96,
Man94, MMSW02, NPS12, OFA+15, Pan14, PLK+04, PCS94, SBG+02, SWYC94, SSL97, SPK+12, Sun12, THM+94, USE94, VGRS16, BR91, CARB10, CSS95, DS96b, FDO2b, GL94, GlkLyC97, KA95, LC07, MAS06, OA17, PGK+10, PTW99, SL94b, Sep93, SII96, SSD+94, SWL+01, Wal94a, Wal94b.
design-pattern [MAS06]. designed [BSH15]. Designing [GKZ12, LAD16, SWHP05, SH14, WYLC12, ZLP17, AHHP17, DSOF11, Pan95b]. Designs [HVA+16, AAAA16, MC17, Shi94]. desktop [Mar07]. Detailed [DLV16, RSPM98, BTC+17, LR06b].
detect [Str94]. Detecting [AGG+95, PPJ01, ZRQA11]. Detection [BSH15, CSW97, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KSJ14, SG12, ZDD97, DMMV97, EML98, FME+12, HHC+18, KSJ14, SG12, ZDD97, DMMV97, EML98, FME+12, HHC+18, KSJ14, SG12, ZDD97]. Detector [DZDR95]. Determination [LAFA15]. Determine [BP99]. Deterministic [CFMR95, DK02, ZLL+12]. Develop [PD98]. Developer [IEE96i]. developers [Str94]. Developing [BF97, CCS97, Cot98, DDL95, Reu03].
development [AC17, Ano01a, BDG+91b, BR95c, CHP901, Chaf02, Cot97, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TDBEE11, Arv003, ABC+90, BL97, BDG+92a, DS949, DHP97, KCD+97, LLC+13, MMW96, PES99, SM12, TBB12, ZL96, Sei99]. Developments [Mat00a]. device [KKLL11, LS10, SBQZ14, YWTC15]. Devices [GJN97, ZJWD18]. DFB [WWZ+96]. DFN [RS93]. DFN-RPC [RS93]. Diagnosis [AP96, LAd+15].
diagnostic [RSBT95]. dictionary [LSSZ15]. Diego [Has95, LF+93a, NM95]. Difference [UZC+12, GFGP12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94]. Differences [AKE00, LDCZ97]. Different [AIM97, GL97b, JCH+08, Nee00, Rab98, RBB97a, BN00, PY95]. Differential [MFTB95, Riz17, JK10, NF94, RBB15, SP11]. Differentiating [Car99]. Differentiation [BBH+08, BGK08, CdGM96]. Diffusion [BF94a, HF14b, MW98, CECS07, DM93, MM92]. Digest [IEE93a, IEE95c]. Digit [DAL18, LAD16]. Digital [KLR16, CIJ+10]. Dijon [YH96]. Dimensions [GLB00]. Dimensional [Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK+17a, SJK+17b, AL93, KT02, LSSZ15, Ole95, PR94c, Ram07, RG18].
directional [BDG+93b]. Directions [IF95, FK94, FHP+95, Sun96]. directive [LV12, NO02a, YL09]. directive-based [LV12, YL09]. directive/MPI [NO02a].
Directives [BBG+01, BKO00, CCBPGA15, JFY00, LOHA01, VGS14]. directory [JCP15]. Discovering [FJK+17]. discovery [BK11, GWVP+14]. Discrete [ST17, WMC+18]. Discrete-Event [WMC+18]. diskless [PKD95]. Disks [diFMBDfFM02]. Dispersion [RSV+05]. Displacement [BJS97, PSS01].
Dissemination [GL97a]. Distance [MR12]. Distances [LAFA15]. Distributed [AGS97, Ano95e, BMS+17, BME02, BGR97a, BL95, Bha93, BJR95, BRST94, BT01b, BHKR95, CGB+10, CLL03, CSW97, CC99, DMB16, DBA97, DFMD94, DGF97, DHHW92, DHHW93a, EMO+93, ESM+94, FH95, Fan98, FTBV00, FK01, Fos98, FS93, FFFC99, GGCM99, GGCGO01, GCGS98, GCBM97, GWC95, GM95, HJ98, HC10, HRS97, IEE93d, IEE93c, IEE94d, IEE94g, IEE95h, IEE95i, IEE95g, IEE96c, IEE96g, IEE96f, IEO05, JML01, KBA02.
distributed [Ano94e, Arn95, ADMV05, BSC99, BB95, Bir94, BMPZ94a, CBPP02, CH94, CEF95, CBHH94, CLLASPDP99, CPR99, DLR94, DR94, DHHW93b, DR95, EGH95, FB97, FS95, FS98, FHC95, FHB93, GBR97, GCN10, GKK09, GlkCy97, GP95, HPY93, HHA95, IEE97a, JWB96, KN95, KSG13, KJJ16, KDL95a, LR06b, LFS93a, LFS93b, LH98, LKL96, Liu95, Maf94, MVTP96, Man98, MLC04, NA01, OLG16, PK05, POL99, Par93, PR94c, RAG95, RHF95, SSH08, SHHI01, SL94b, Sch93, SPL94, SSC96, SPL99, Smi93b, SD99, TSP95, THM94, Uhi95a, VM94, VB99, Vet02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YLC16, YW905, YX95, YPZC95, YZPC95, ZL96, ZGC94, ZHS99, Pet01].
distributed-data [FB97].
Distributed-Memory [CSW97, CC99, KN95, SSH08].
distributed-shared [ADMV05].
Distributing [AL92].
Distribution [HB96b, MB13, NPP00a, NM99a, NA01, STH96, AGG+95, CSW99, GS96, HB96a, JmDVG+17, KRC17, NPP+00a, Rjmc93, Wil94].
Distributions [ST17, WO95, HKMC94, WO96, vHKS94].
Divergence [SDSCP13, VSW+13].
diversity [EO15].
Divide [CTK01, Cza02, Cza03].
Divide-and-Conquer [CTK01, Cza02, Cza03].
DMMP [BB93].
DMPI [HWM02, ZLL+12].
DNA [PGF18].
DNAml [CDZ+98].
DNMR [SR11].
docking [ESB13, ZWL13].
Document [MHK16, AD95].
Documentation [BDG+xx].
Documents [Ano98].
does [KC94].
dog [LK14].
Domain [BMR01, CP97, EGH14, kl11, ETV94, HE13, Nk93, NZ94, Ou14, OMK09, Ran07, SHHC18, VM94].
Domains [GA96].
Dongarra [Ano95b, Ano96a, Ano99a, Ano99b, Nk95, ARB95].
dOpenCL [KSG13].
Double [FKKC96, PTT94].
down [Str94].
Downloadable [Ano98].
DP [Arn95, KLR+15].
DPVM [IHvA+00].
draft [DHHW93b, GL92].
Draw [ST17].
Dresden [MdSC09].
Driven [AIM97, ME17, PCY14, FSG19, Hin11, Nk+12, Nk+17, Qu95, SIS17, TWF09, WFT014].
Dror [Stp02].
drug [GWVP+14].
drugs [Str94].
DSIR [LTR00, RTL99].
DSM [KBVP07].
DSMC [JL18].
DSMPI [SSC96, SSC97].
DTM [PS07].
DTS [BHKR95].
Dual [BBC+00, GAM+02, Dk92, CT13, LSSZ15].
dual-dictionary [LSSZ15].
Dual-Level [BBC+00, GAM+02, Dk92].
dual-scanline [CT13].
Dublin [LK08].
During [DeP03].
Dust [dFMbdFM02].
DVFS [PTL+16].
DWT [ZZZ+15].
Dyn [WLNL03, WLNL06].
Dyn-MPI [WLNL03, WLNL06].
Dynamic [ACGR97, AGS97, AU91, CGLD01, CknWh16, CML04, CK99, CTK01, DMB16, DBA97, DFMD94, FM96, Fd00, GFD03, GFD05, GRV01, GCBL12, GMPD98, GL95a, KFL05, MK17, NPP00c, NLRH07, PK98, PLK04, PT01, PGdCJ18, Ran05, SPH+18, Smi93b, SY95, TS12a, Vs00, Vet02, Wal01a, Wi94, YST08, Zel95, DDLM95, EO15, FH97, FCS+12, FKLB08, JC17, MSMC15, NSB97, NF94, OKW95, RBA17, RCG95, SCB14, SCB15, SK+12, SKB+14, WRSY16, YPA94, DvdLVS94, FCS+12].
dynamically [SSS99].
DynamicPVM [DvdLVS94].
Dynamics [BST+13, BCGL97, DR97, JFY00, KBM97, dFMbdFM02, MH01, OS97, SZBS95a,
GBH14, GBH18, HJYC10, NPS12, TY14, ZPI06, BR04, MA09, SHHC18.

encapsulation [DRUC12], encoding [AAA16, PGBF+07, SM12], endpoint [LLH+14], endpoints [DBG+14], energies [TKP15]. Energy [BPG94, EGR15, KFL05, RBAI17, WV92, FKL08, KN17, PTL+16, TDG13].

Energy-Aware [EGR15]. energy-efficient [TDG13]. Engine [Wal01a, NPP+00a, Wal01b, WGG+19]. Energies [SLJ+14, HSW+12, SHM+12]. Engine TM [OIS+06]. English [Wil94]. Enhance [AR01]. Enhanced [Ano98, CDHL95, CDH+95, FMSG17, KY10, PLR+02, Saa94, BR95b, FE17].

enhancement [ARL+94, Boi97]. Enhancements [BDG+95, BCKP00, DM95b, DM95a].

Enhancing [BFIM99, FSC+11, HMS+19, MVT96, MSMC15, OFA+15]. Ensemble [Cot97, Cot98, BY12, FH97].

Ensemble-Based [FH97]. ENSOLV [AMS94]. Entwicklung [Sei99].

Environment [BDGS93, BFG+10, BFM97, BGL00, CHPP01, CTK01, DLB07, DI02, DHHH92, DHWW93a, DDL00, FTV00, FWR+95, GJN97, GL97a, HRSA97, KBA02, KKH03, KDL+95b, KVH97, LC93, Lus00, MSQGR01, MM92, MFG+08, MSS97, NJ01, Ong02, Rol94, SDN99, SGL+00, SGHL01, TTP97, WL96a, ABG+96, BDG+92b, BDG+94, BK96, BT96, CEF+95, CLLASPDP99, DZ96, DL10, DHWW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL+96, GkLyCY97, HZ94, IJM+05, IvdLB+00, KCD+97, Kat93, KDL+95a, Kos95b, KFSS94, wL94, MSL12, MK97, NP94, PES99, PVKE01, PQ07, RNP913, SSKF95, Sch93, SPK96, SBF+94, SWYC94, Skj93, SSG95, TJD09, Tho94, WCC+07, WL96b, WLC07, ZPLS96].

environmental [ANS95]. Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GFB+03, Lai91, Mat94, Mat95, MFC98, PS01a, RB01, SHH94b, SSSS97, SCL00, TAH+01, ACGdT02, ARL+94, ALR94, ADDR95, AMV94, Bon96, BFIM99, CDH+94, CK99, DR95, EO15, HS93, HVSH95, LC07, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96].

evironments-the [CDH+94]. EPS [GT94]. EPS-APS [GT94]. Epstein [BL95]. Epstein-Nesbit [BL95]. Equation [ES11, LZ97, SAS01, VRS00, DM12, LBB+16, LYS+16, MS95, NP94, ON12, Ol95, Pi14, iSYS12, SS+16, YSM+16, YSMA+17].

Equations [Ano98, BG95, GI10, Huc96, LLY93, MFTB95, ORA12, ZB97, BHW+12, Che99, IM95, JK10, Jon94, MM11, NF94, RBB15, SP11, SMSW06, ZZG+14, dH94].

Equi [LTRA02]. Equi-Join [LTRA02]. equivalencing [LLG12]. Era [ABB+10, CZG+08, CGKM11, EdS08].

Erratum [Ano01b, HFB94, Wal94b]. Error [DFC+07, HPS+12, HPS+13]. Errors [FCLG07, SD16]. Erweiterung [GBR97].

ESA [Wli94]. ESBMC [MdSAS+18].

ESBMC-GPU [MdSAS+18]. Espoo [RWD09]. ESPRIT [CDH+94]. Estimation [GI10, AMHC11, CCU95, GB94, JMdvG+17, KS13, ZWh95]. Estuarine [LRQ01].

Ethernet [CC00a, Fin97, HcF05, KLY03, KLY05, OF00, PFG97]. EU [Ano03]. Eugene [MCdS+08]. Euler [DLR94, IDD94]. Euler/Navier [DLR94, IDD94]. EURO [HAM95b, BFMR96, HAM95b, BFMR96].

Euro-Par [BFMR96, HAM95b, BFMR96]. Euromicro [IEE95h, IEE96g]. EuroMPI [CDND11, KGRD10, TBD12, TB14].

EUROPE [LCHS96, Ano92, Ano93f, ...]
Ano93g, Ano94g, Tou96]. **European** [AD98, Ano94i, BR95a, BDL96, BC00, BDW97, CHD97, CHD09, CD01, CDN01, DK05, DLM99, DKP00, DLO03, KGRD10, Kra02, KKD04, LKD08, MTD06, RWD09, TB012, WPH94, DHHK97]. **EuroPVM** [BDLS96, OL05, DK07, MTW07]. **EUROPVM/mpi** [OL05, DK07, MTW07]. **EuroPVMMPI** [KKD04, LKD08, MTW07]. **Eurosime** [BH95, DSZ94, BH95]. **Eurospace** [Tou96]. **Eurospace-Ada-Europe** [Tou96]. **Evaluate** [MW98]. **Evaluating** [BWV+12, FVLS15, FSV15, GB96, HWW97, LH95, SSSS97, ZStH01, GScFM13, GB96, HWW97, LH95, SSSS97, ZStH01, GScFM13, LTLC94, TG09, ZLZ+1]. **Evaluation** [ATM01, BF98, BIC+10, BFM97, BEG+10, BB18, CLP+99, DI02, FST98b, FSSD17, Han98, JCH+08, KS96, KK02b, KSS00, LGCH99, LNK+15, LZ97, KL11, LV04, MH01, MGC12, NNON00, OTK15, OM96, PB93, RB01, SWHP05, SCP97, SEF+16, SBF+04, SM02, Sou01, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TTSY00, UM97, VY02, AB13, BBG+14, BBH+13a, BMG07, CB11, DDB+16, HPR+95, HASnP00, HPS95, IM94, JEle+17, JMDV+12, LV12, LNW+12, MKP+96, MM03, MT96, MMH99, NN95, PK08, RLFDs13, SL94b, SWS+12, SWY94, SFSV13, TSP95, THM+94, TMP01, WRO96, YWO95, YS93, ZHK06]. **Evaluations** [MM14]. **Event** [KKV01, NSLV16, THS+15, WM01, WMC+18, FSG19]. **Event-Based** [NSLV16]. **Event-Driven** [FSG19]. **Everything** [CCM+06]. **Everything-Shared** [CCM+06]. **Evolution** [Mat01a, PS01a, RBB17, SSL07, SGDM94, GS93, SSD+94]. **Evolutionary** [B+05, DSM94, Rag96]. **Evolving** [Bad16, ER12, MDSC09]. **Ewing** [Ano95c, Ano99e, Ano99d, Ano90a, Ano00b]. **EWOMP’99** [BC00]. **Exact** [DOSMM+16]. **Example** [Che10, SK10, NB96, Pat93]. **Exascale** [Bad16, LV12, LSG12]. **Exception** [FMSG17]. **exchange** [MM13, Pan95a]. **excluded** [BWV+12]. **executable** [WPH94, DHK97]. **Evaluated** [WPH94, DHK97]. **Evaluating** [BWV+12, FVLS15, FSV15, GB96, HWW97, LH95, SSSS97, ZStH01, GScFM13, GB96, HWW97, LH95, SSSS97, ZStH01, GScFM13, LTLC94, TG09, ZLZ+1]. **Evaluation** [ATM01, BF98, BIC+10, BFM97, BEG+10, BB18, CLP+99, DI02, FST98b, FSSD17, Han98, JCH+08, KS96, KK02b, KSS00, LGCH99, LNK+15, LZ97, KL11, LV04, MH01, MGC12, NNON00, OTK15, OM96, PB93, RB01, SWHP05, SCP97, SEF+16, SBF+04, SM02, Sou01, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TTSY00, UM97, VY02, AB13, BBG+14, BBH+13a, BMG07, CB11, DDB+16, HPR+95, HASnP00, HPS95, IM94, JEle+17, JMDV+12, LV12, LNW+12, MKP+96, MM03, MT96, MMH99, NN95, PK08, RLFDs13, SL94b, SWS+12, SWY94, SFSV13, TSP95, THM+94, TMP01, WRO96, YWO95, YS93, ZHK06]. **Evaluations** [MM14]. **Event** [KKV01, NSLV16, THS+15, WM01, WMC+18, FSG19]. **Event-Based** [NSLV16]. **Event-Driven** [FSG19]. **Everything** [CCM+06]. **Everything-Shared** [CCM+06]. **Evolution** [Mat01a, PS01a, RBB17, SSL07, SGDM94, GS93, SSD+94]. **Evolutionary** [B+05, DSM94, Rag96]. **Evolving** [Bad16, ER12, MDSC09]. **Ewing** [Ano95c, Ano99e, Ano99d, Ano90a, Ano00b]. **EWOMP’99** [BC00]. **Exact** [DOSMM+16]. **Example** [Che10, SK10, NB96, Pat93]. **Exascale** [Bad16, LV12, LSG12]. **Exception** [FMSG17]. **exchange** [MM13, Pan95a]. **excluded** [BWV+12]. **executable** [WPH94, DHK97]. **Evaluated** [WPH94, DHK97]. **Evaluating** [BWV+12, FVLS15, FSV15, GB96, HWW97, LH95, SSSS97, ZStH01, GScFM13, GB96, HWW97, LH95, SSSS97, ZStH01, GScFM13, LTLC94, TG09, ZLZ+1]. **Evaluation** [ATM01, BF98, BIC+10, BFM97, BEG+10, BB18, CLP+99, DI02, FST98b, FSSD17, Han98, JCH+08, KS96, KK02b, KSS00, LGCH99, LNK+15, LZ97, KL11, LV04, MH01, MGC12, NNON00, OTK15, OM96, PB93, RB01, SWHP05, SCP97, SEF+16, SBF+04, SM02, Sou01, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TTSY00, UM97, VY02, AB13, BBG+14, BBH+13a, BMG07, CB11, DDB+16, HPR+95, HASnP00, HPS95, IM94, JEle+17, JMDV+12, LV12, LNW+12, MKP+96, MM03, MT96, MMH99, NN95, PK08, RLFDs13, SL94b, SWS+12, SWY94, SFSV13, TSP95, THM+94, TMP01, WRO96, YWO95, YS93, ZHK06]. **Evaluations** [MM14]. **Event** [KKV01, NSLV16, THS+15, WM01, WMC+18, FSG19]. **Event-Based** [NSLV16]. **Event-Driven** [FSG19]. **Everything** [CCM+06]. **Everything-Shared** [CCM+06]. **Evolution** [Mat01a, PS01a, RBB17, SSL07, SGDM94, GS93, SSD+94]. **Evolutionary** [B+05, DSM94, Rag96]. **Evolving** [Bad16, ER12, MDSC09]. **Ewing** [Ano95c, Ano99e, Ano99d, Ano90a, Ano00b]. **EWOMP’99** [BC00]. **Exact** [DOSMM+16]. **Example** [Che10, SK10, NB96, Pat93].
Extended [BR02, HTA08, SS99].
Extending [ABB+10, BCC+00a, BCC+00b, BDB+13, CS96, CG99a, KDT+12, LMRG14, Mar03, OFA+15, RGDM16, SDV+95, TMT96, CG96, GGHL+96]. Extensible [BL97, GS94].

Extensions [Fis01, GOM+01, GHLL+98, HVA+16, HE15, DPSD08, HP05, Kat93, Ano99c, Ano99d].
Extent-Based [kL11].

extent [HMKV94].
exterior [BBB+94].

Extraction [CBL10, HLO+16, dAT17].

Extreme [MdSC09, ZKRA14].

Extreme-scale [ZKRA14]. eyes [Str94].

Facilities [MMH98, MN91]. Facility [KG96, SHTS01, KZCS96, LHCT96].

Facet- [BB18]. factorization [AZ95, BsvdG91, BR92, DG95, KBP16, WLC07].

Factorizations [TD98, LC97b].

Fall [Gro97]. false [JE95]. family [AVA+16].

farming [Str94]. Fast [Ben01, BHS+02, BDA+18, BBH12, CS14, DFN12, EM02, Hog13, JFGR12, JmdV+17, PShL11, PR94c, PBC+01, RB01, SE02, SS99, STY99, SR11, TPL18, UP01, Wtro03, Lan09, LCL+12, NYNT12, TDG13, YULMT17, YLZ13, YBZL03, ZA14, AAB+17, D BG11, PFG97]. Faster [Szu12, ZG95a, ZG96]. Fat [Zah12].

Fat-tree [Zah12]. FATCOP [CF01]. Fault [BBC+02, BHC+03, BHK+06, CF01, CFDL01, FBDO1a, FBVD02, FD02a, FD04, GFB+03, GKP97, GJR90, GL04, Gua16, IEE95c, JSH+05, LMRG14, LNLE00, dLR04, MSF00, RPM+08, TS12a, WCO9, Wili93, BHC+08, FBDO1b, FD02b, HG12, LMG17, LS08, PKD95, SG05, ZHK06, FD00].

Fault-Management [GJR90]. Fault-Tolerant [BHK+06, FD04, GFB+03, IEE95c, JSH+05, LMG17, LS08]. Faults [LAdS+15]. FCRC [ACM96b]. FD [And98].

Feature [Qu95, ZWL+17]. Feature-driven [Qu95]. Features [GLT99, GLT00b, GLT00a, GLT12, KAHS96, Ano00a, CRD99, WKS96, ZKRA14, dAT17].

February [Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97c].

February [Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97c]. FEM [GEW98].

Feynman [NS16]. FFT [DAL18, GB98, JKM+17, NSM12, SH14, WJB14].

FFT-Based [WJB14]. FFTs [EFR+05].

FFTW [KT10]. FHP [BKS94a]. Field [KNT02, Goe02, TKP15].

fields [BALU95, RSBT95]. Fifth [DKM+92, HK93, IEE96f, SM07, IEE95c].

filamentary [YPA94]. File [BIC+10, CGC+02, LRT07, KLCW07, kL11, PLR02, RK01, TSS00b, Tsu07, Wtro03, DL10, LL95, SBQZ14, iSYS12]. File-I [PLR02, RK01]. File-I/O [PLR02, RK01].

film [SL00]. filter [BY12, CUC95]. Finding [FCLG07, GAVR17, PCS94]. Fine [AZG17, BBG+10, JCP15, SFL+94, TCM18, YSS+17, BK11, KW14, LZHY19].

Fine-Grain [AZG17, JCP15, SFL+94, BK11, KW14].

Fine-Grained [BBG+10, TCM18, YSS+17, LZHY19].

Finite [DFN12, MS02b, MAIVAH14, OD01, OMK09, Pri14, SM02, UZC+12, VM94, VRS00, BB93, Gra99, GFP12, HE13].
GPGPU [BGG+15, HA11, HCZ16, JKN+13, LME09, LDJK13, LYZ13, MBKM12, PTG13, TY14, YZ14, YEG+13].

GPGPUs [JMdVG+17, LSB15]. gprMax [WGG+19]. gprof [GJLT11].

GPU [Che10, KA13, AKL16, AHHP17, BDP+10, BR12, BCD+12, BCD+15, BTC+17, BWV+12, BBH12, CLOL18, CBYG18, CCBPGA15, DF17, DS16, DK13, DALD18, DSOF11, DWL+10, DWL+12, ER12, Fer04, FFM11, FSSD17, GCN+13, HVA+16, HSE+17, HK09, HK10, HZG08, mH12, JDB+14, JLS+14, JR13, JNL+15, JJPL17, JPT14, KDSO12, Kha13, KSL+12, KPL+12, KI17, KPNM16, KEGM10, KO14, KMM15, LV12, Lec12, LRG14, LRC13, LAD16, MMO+16, MdSAS+18, MGL+17, Ngu08, NMS+14, NSM12, OFA+15, Pan14, PDIY14, PGdCJ+18, PF05, Pri14, RSC+15, RS19, RMMN+12, Sai10, SK10, SDM10, dOSMM+16, JSYS12, SS09, SNN+19, SCSL12, SIRP17, SAP16, SD16, SSB+17, SMK15, SKB+14, SG14, TBB12, TS12b, WGG+19, WKPI11, YULMTS+17, YHL11, YCL14, YSS+17, ZRQA11, ZZZG+14, ARYT+17].

GPU-Accelerated [KA13, SCSL12, PGdCJ+18]. GPU-Aware [Pan14].

GPU-based [MMO+16, SS09].

GPU-code [EZBA16].

GPU-programming [HSE+17].

GPU-Resident [JDB+14].

GPUDirect [OGM+16, YWCF15].

GPUmp [VC10].

GPUpe [IFA+16].

GUIs [BY12, BDA+18, DS13, DS16, GML+16, GFPG12, GPC+17, GM18, HTJ+16, HLP10, HP11, HLP11, Hos12, IFA+16, JKM+17, JAK17, KGB+09, KKM15, KKL11, KVGH11, LBH12, LRBG15, MA09, ÖN12, OIH10, PP16, PB12, SHL14, SDB+16, SKK+12, Tsu12, VY15, WRSY16, WJ12, WJB14, YLZ13, YSWY14, ZC10, ZZZ+15].

gpuPHASE [WMRR17, WMRR19].

GPUVerity [BCD+12].

GQ [RFG+00].

GRACE [YKI+96, ZRQA11].

Grades [TBB12, TS12b, WGG+19, YWCF15].

GPump [ZC10].

GPUS [IFA+16].

GDG+ [JAK17, BDD+18].

Graf [RFG+00].

GRACE [YKI+96, ZRQA11].

GRADLE [HAL98, ZRQA11].

Grades [TBB12, TS12b, WGG+19].

Graph [BHZ+17, DOL04, ZRQA11].

Graph-Based [NPS12].

Graph-Partitioning [STV97].

Graphical [BDG+91b, DDL00, BHZ+17, DOL04].

Graphics [KS15b, LSVMW08, LSMW11, SLJ+14, vdLJR11, ABDP15, BHZ14, CBM+08, DLBL11, Fer04, GKL95, HTA08, HSW+12, KAF96, KY10, KME09, LHLK10, MSZG17, PF05, SHM+12, SS09].

Graphs [LAG00, OP10, PGF18, EP96, MC99, MJPB16].

Gravitational [ZSK15, KM10].

Greece [CD01, CDND11, SM07, TG94].

green [PTL+16].

Grenoble [JPTE94].

Gropp [BvdSvD95].

Gromacs [BvdSvD95].

GROPP [BvdSvD95].

Group
groups [WPL95]. Groups [GOM+01].

Grover [LYZ13]. Growth [PKYW95, BB95].

GTS [PKE+10]. Gui [AM07, GSA08].

GUI [VGS14]. GUI-awareness [VGS14].

Guide [Ano12, D+91, GBD+94, Lad04, Nov95, Per96, Ano95b, BDG+91a, McK94].

Guideline [Tra12b]. Guidelines [TGT10].

GVirtuS [MGL+17].

Hack [DLV16]. Hague [Ano93f]. Halide [RKBA+13].

Hamiltonian [ART17]. Handling [DFC+07, FMSG17, LSB15, LGM00, RC97, FFFC99, LNW+12, THRZ99]. Hands [KmWH10]. Hands-on [KmWH10].

Harbor [BBC+00]. Hardware [BGG+15, BWW+12, Brii12, BCKP00, CDPM03, DW02, EADT19, GJMM18, HSP+13, LSMW11, MFC98, PSM+14, PKB+16, vdLJR11, ER12, GGL+08, PMZM16, Rab99, SGB+12, SH94, SWS+12, YÄJG+15, ZLS+15]. Hardware-Based [CDPM03]. Hardware-oblivious [HSP+13].

harmonic [GSMK17]. Harness [EBKG01, MS99b, PL96, FBD01a, FBD01b, FBVD02, FD02a, FD02b, MSF00, Get98].

Harrogate [CJNW95]. Hartree [CBHH94].

HASEonGPU [EZBA16]. Haskell [WO97].

Hate [Dan12]. Hawaii [ERS95, ERS96, HS94, MMH93, ZL96].

HCA [KBG16]. HDL [Kad93, KMK16].

HDMR [KD12]. Heading [Sch99]. Heat [SAS01, NP94, iSYS12]. Hector

[rFRRH96, RRG+99].

Heijen [Van95]. held

[AGH+95, GA96, JB96, KG93, MMH93, Old02, R+92, SPH95, TG94].

Helios [SPK96]. Helmholtz [HMKV94]. Helps

[Sp02]. HeNCE [BDG+92a, BDG+92b, BDG+93a, BDG+94].

Hénon [JPT14]. Herzliya [IEE96h].

HeSSE [MRV00]. Heterogeneous [ABB+10, BDG+93a, BDG+93b, BL95, BCP+97, BGR97b, BCKP00, CMMR12, CLOL18, CLBS17, DGS93, DGMJ93, FDG97a, FDG97b, FLD98, Fon98, GS91b, GDDM17, IEE93f, KR09, KCR+17, LC93, MRV00, MM01, MM02, NTR16, PD98, SMS00, SGS10, TQDL01, VLO+08, ACGdT02, ADB94, ADDR95, AMV94, BDG+92c, BDG+94, BALU95, BRR99, BAG17, CCM12, CFPS95, FBM96, GZK12, GCN+10, GKC+13, HK94, KSG13, KSL+12, Kos95b, LCL+12, LR06a, Lec12, Mai12, MSL12, MM03, NP94, NEM17, Pen95, PSB+19, RFCS96, SJCH19, Sk93, Smi93b, Sun94b, Sun95, TBB12, TMW17, TPK15, TDG13, VB99, WCC+07, YST08, YSL+12, ZJDF18].

HeteroMPI [LR06a, VLO+08]. Heuristic [BHM96, STV97, WH94]. HI [ERS96, HS94, IEE96e, ACM97a].

HICSS [ERS96, MMH93]. HICSS-26 [MMH93].

HICSS-29 [ERS96]. hicCUDA [HA11].

Hierarchical [BMR01, FBSN01, HA10, H17, MALM95, RR02, ADMV05, BDV03, GJMM18, OKM12, YPZC95]. hierarchies [SYR+09]. High [ACM97b, ACM98a, ACM98b, ACM00, ACM10, ACM04, BPG94, BRST94, BS07, BDA+18, CDD+13, CNM11, CDHL95, CS14, DPP01, DDL00, DE91, FGKT97, SHD02, GBH99, GBS+07, GLDS96, HVA+16, HA11, Hol12, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IF95, JMM+11, Kha13, KMK16, KEGM10, KH15, La01, LCK11, LC97a, LkLC+03, LBH12, LWP04, MW98, MPD04, ME17, MAB05, N05, OI010, OLG01, PKB01, PR04b, PTH+01b, Rab98, RH01, SPM+10, SCSL12, SJ02, SL05, SVA+11, SSS97, Tsu00, Tsu07, VW92, WN10, YCL14, YWCF15, YSP+05, AH95,...
An03, BADC07, Ber96, BWT96, BID95, CHKK15, CBYG18, DL10, Duv92, EZBA16, ESB13, FME+12, GS02, GGC+07, GL96, GL97c, HDDD99, HW11, Hos12, KBP16, KME09, Lan09, LBD+96, MSZG17, NS91, NFG+10, Old02, OGM+16, PGS+13.

High [PGK+10, PF05, PTW99, Reu03, RJDH14, SG14, SFLD15, ZSK15, ZWL13, dat17, CDH+95, DZ98b, D+95, DE91, GH94, HS95a, KD12, LCHS96, LC97b, SSH08, Ten95].

High-Dimensional [MW98]. High-Level [CS14, DDL00, HA11, Hos12, SG14, SFLD15].

High-order [KEGM10, KME09, OGM+16].

High-Performance [ACM98a, FGKT97, IEE97c, LkLC+03, OLG01, FKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCSSL2, WN10, GLDS96, OH10, SVC+11, An03, ESB13, FME+12, GL96, GL97c, HDDD99, KBP16, LBD+96, Old02, PGS+13, PGK+10, PF05, Reu03, RJDH14, SFLD15, ZSK15, HS95a, GH94, LCHS96, SSH08].

High-Precision [Kha13].

High-Quality [BDA+18]. High-Scalability [BS07].

High-Speed [CDHL95, KMK16, AH95, BWT96, CDH+95]. high-throughput [ESB13]. Higher [MYB16, KB13, wL94].

higher-order [wL94].

Highly [MM05, PV97, TPM16, CARB10, GBH14, GBH18, VM95].

highly-scalable [GBH14].

HiNet [AH95].

HiRLAM [Bjo95, HE02, KOS+95a]. histogramming [KRC17].

History [OWSA95]. Hitachi [An03, NON00, TSB02, TSB03]. HLA [RTRG+07]. Hoare [KI17].

Hoc [IBC+10, ITT02]. Högskolan [Eng00]. Hole [Kha13].

holistic [TWFO09].

Homomorphisms [BG18]. homotopy [GWC95, SMSW06, VY15]. Honolulu [IEE96e].

honor [Str94]. Host [An09e, LLRS02]. Hot-Parasite [LLRS02]. HOTB [GSMK17]. Hotel [IEE94e].

Hotel-Copley [IEE94e]. Hough [YULMTS+17].

house [ZLZ+11]. Houston [ACM06a, Ano95a, Cha05, DKM+92, Y+93].

HP [CGB+10, BCM+16]. HPC [ASS+17, CGBS+15, GDC15, GKK09, LCVD94b, OLG+16, PRS+14, RGGP+18, ZLP17].

HPC2002 [Ano03]. HPCN [LCHS96].

HPF [BP98, BF01, BID95, Bri00, BVDV03, CM98, CDD+96, Coe94, FKK+96b, FKKC96, FKK96a, LZZ97, OP98, OPP00, SM02, Str94].

HPF-MPI [BP98]. HPL [Lee12].

HPVM [BCKP00, CLP+99]. HPVM-Based [CLP+99].

hull [GCN+13]. Hungarian [Fer92, FK95].

Hungary [DKP00, KKD04, VV95, FK95].

hunting [JPP95].

Husky [YLC16].

Huss [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

Huss-Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

Hybrid [BBG+10, BBH+16, BB18].

CGC+11, CNM11, Cha02, DR97, GPC+17, HVSC11, IDS16, KSL15, KLR+15, LLRS02, LRG14, MS02b, NO02b, PZ12, SSB+16, VPS17, WT12, YHL11, YPA09, YTH+12, ADR+05, BB14, CSPM+96, FMS15, GÁVRR17, GKK09, HDB+13, JR10, JMS14, KN17, KRG13, KJEM12, LLC13, LHH+14, MLAV10, MRRP11, NO02a, Nak05a, Nak05b, PAR14, PHJM11, SDJ17, SVC+11, WT11, WLYC12, WLYC12, WT13, YWC11, ZWL13].

hybrid-core [BBG+14].

Hybridizing [LSG12]. HYDRA_MPI [PBC+01].

Hyper [CSW99, SBT04, TBG+02, ZAT+07].

Hyper-Rectangle [CSW99].

Hyper-Threading [SBT04, TBG+02, ZAT+07].

hypercube [HS95b, Sur95b].

Hypercubes [Ano89, RJMC93, She95].

Hypercubic [HP11].

hypersonic [BTC+17].

Hyperspectral [VLO+08].

I-SPAN [LHHM96, Li96].

I-WAY [FGT96].
I/O [Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLC+03, klLCC+06, MV17, MC18, MG12, MG15, PSK08, PLR02, RK01, SBQZ14, Tha98, Tsu07, WSN99, ZJDW18].

IASTED [Ham95a]. IBM
[AL93, Ano03, BBB+94, BGBP01, BR95c, BR95b, Bri95, CE00, CDM93, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, HMKV94, Heb93, JF95, KB98, KAC02, KMH+14, LC97b, MP95, MW93, MABG96, NMW93, WZWS08, XH96]. IBM-SP1 [FHPS94b].

IDA [IEE96d]. ICAPP [Nar95]. ICCMSE [SM07]. ICAP [IEE94b]. ICPP [Agr95a]. ID [DGG+12]. Idaho [Str94]. IBM-SP1 [FHPS94b].

IFIP [Boi97, DR94, PSB+94]. IFS [AH00]. Igniting [ACM93].

III [DE91, GE95, HS94, BPS01, BW+12, EM00b, GAVRRL17, Sta95b].

III [BP94, BP93, DSM94, GE96, Has95, OKW95, SSGF00]. ILDJIT [CARB10]. I'll [Har94]. Illumination [HPLT99]. identity [HPLT99].

ILU [ABF+17]. ILU-preconditioned [ABF+17]. in [Gra97]. Image [DY96].

ILU [ABF+17]. ILU-preconditioned [ABF+17]. in [Gra97]. Image [DY96].

Image [DY96].

Imagery
[GGCM99, GGCG01, GGGS98, GGGC99].

Images [Uhl94, Uhl95b, VLO+08, NAJ99].

Imaging [NH95, Has95, LM13, Pat93].

imbalances [MLVS16].

immunodominance [ZWL+17].

Impact [ADLL03a, ADLL03b, BR05, Bri12, TSS00a, WHDB05, DO96, FSV14, SHHC18].

impacts [Str94]. Implement
[GM95, PPT96c]. Implementation [AB93a, AKL99, BGG+15, BGBP01, BPS01, BG95, BHP+03, BBS99, Ben01, BP98, BCD+15, Bjo95, BJS97, BIC+10, BMR02, BRM03, BMS94b, BMG07, BDA+18, CGC+02, CFMR95, DYN+06, DAK08, EFR+05, ES11, FH97, FD04, FHS99, FSXZ14, FJBB+00, FHPS94a, FHPS94b, FHP+94, FSL98, GB99, GB98, GBS+07, Gro02a, HPP02, HRZ97, HKT+12, Huc96, HHA95, HAA+11, IBC+10, ITT02, IM94, JSS+15, JSH+05, LSZL02, LTRA02, LZ97, LWP04, MS02b, MW98, MN91, MT96, MRH+96, NSS12, NNON00, OTK15, OLG01, Pan14, PLK+04, PS00a, Pet97, PBK90, PTH+01a, PTH+01b, PB12, RDMB99, RG18, RSV+05, SH94, SBF+04, SBG+02, Ser97, SCC96, SSC97, SZBS95a, SWJ95, SYF96, Sum12, Sur95a, TOTH99, TBG+02, TRH00, TMPJ01, USE94, VT97, WH94, WPC07, YGH+14, YWO95, ZZG+14, ACgD02, AS92].

implementation
[AAA16, AAC+05, ADLL03a, ADLL03b, AB93b, BR91, BvdSvD95, BR95b, Ber96, BBCR99, BK96, BCK+09, BS01, BS05, Bor99, BR999, BS96b, BDV03, Bri95, BB00, BAS13, CDZ98, CEGS07, CG99a, CdmG96, CBH94, CD96, DSW96, D96a, DL10, DBB+16, DSOF11, DM12, FFB99, FWNK96, FT96, FG99+08, GCC99, GG99, GG99. GAVRRL17, GL92, GL94, GL96, GLDS96, GL97c, Gt07, GkLyC97, HTB95, HCl05, HS95b, ITT99, IvdLH+00, JRM+94, JC96, KY10, KTF03, KBVP07, KL95, KVGH11, KB13, Lee12, LC07, LO96, MIMO+16, Man94, MAIVAH14, MS95, MSZG17, ÖN12, OKW95, OA17, OGM+16, PHJM11, PR94a, PTW99, PCS94, Ram07, RRFH96, Sep93, SZBS95b, SCL97, Sto98, SNM10, Sur95b, Swa01, SL95, TKP15, TPD15, TS12b, TA14, TCP15, Tsu95, TV96, VD1+15].

implementation
[VGRS16, VM95, Was95a, WMR17, WMR19, YPA94, ZLS+15, dH94, dIAMCFN12, van93].

Implementations
Kernel-independent [YBZL03]. Kernel-Level [HKT+12].

Kernels
[BCD+15, KI17, KAC02, Pet01, Ros13, SSB+17, ARS89, BCD+12, FSV14, FVL15, FFM11, KKM15, PTG13, PGS+13, TBB12].

Kerr [Kha13]. key [LF+93a]. kind [SP11].

Kinect [KPK13]. kinetic [JL18]. Kinematics [LD01, BTC+17]. King [ACM99].

Kingdom [Boi97]. Kirchhoff [SS99].

Klagenfurt [Bos96]. Knapack [ICC02].

Klassen [GM13]. knowledge [FNS99]

Kremer [MRW+17]. Kronecker [LNW+12]. KSIX [AUR01]. KSR1 [BL94].

KU [IM94]. Kungl [Eng00]. Kyoto [IFI95, SPE95, IFI95].

L [AAC+05, BGH+05, EFR+05, MSW+05].

LA-MPI [YP+05]. Lab [Str94]. Labeling [PP90, KRK91]. Labelling [HL90].

Laboratory [JY95]. Lafayette [EV01, Eds08]. Lagrangian [CT94a, CT94b, RSV+05, TC94].

Laheny [Ano98]. Lake [Hol12]. LAM [OF00, RsT06, SSB+05, Svu03, Swa01, ZW05].

LAM/MPI
[OF00, RsT06, SSB+05, Svu03, ZW05].

Lambda [PQ07]. lambda-calculus [PQ07].

LAMGAC [MOGR01, MS02a]. Lamport [TLP18].

LAN [CCU95, CDS+95, MOGR01, MTSS94, TSCZ94, ZGC94].

LAN-based [TSCZ94]. LAN-Message [MTSS94].

LANclos [GP95, Sch96a, Sch96b].

Landing [dCGZ06]. Landsat

Lane [HHC+18].

Languages [ACM96a, NM95, PD98, TA14, WLR05, Ben95, CGK11, Hos12, Nob08, RKBA+13, Röh00].

Languages [CFF+94, FMSG17, FSSD17, CH96, Mar05, Ohu14, SWS+12, PBG+95, SS96].

LANS [Fin97]. LAPACK [Add01, ArvW03].

LaPerm [WRSY16]. LAP [BGPS01].

Laplace [ACMR14]. Large
[AKE00, BHW+17, BZ97, BJS99, BHNW01, CGC+11, DALD18, FFP03, Huc96, JFGRF12, LLY93, MBC+12, MFPP03, PCY14, RGB+18, SGJ+03, SM03, SvL99, TGEM09, WMC+18, WT12, ZWJK05, AASB08, AMS94, BA06, BCH+08, Che99, CCHW03, DZZY94, FME+12, GG99, IM95, JLS+14, KEG10, Kos95b, KA95, LS10, MLA+14, NFG+10, PT+16, PD11, RMNN+12, SC96a, TBB12, TOC18, WT11, WT13, ZWL13, ZA14].

Large-Scale
[AKE00, BHW+17, BZ97, FFP03, MFPP03, SM03, WMC+18, WT12, BJS99, SvL99, AASB08, BCB+08, Che99, FME+12, LS10, MLA+14, PD11, RMNN+12, WT11, WT13, ZA14].

large-sized [JLS+14]. Larger
[NB96].

LargeScale [LAd+15]. laser
[EZBA16, WWZ+96].

Lastverteilung [Wli94]. Latency [Jes93a, Jon96, KBHA94, NCB+12, NCB+17, TBD99].

latency-tolerant [NCB+12, NCB+17].

Lattice
[BBK+94, BMS94b, HLP11, SJK+17a, SJK+17b, BW12, BMS94a, CGK+16, GM18, Sai10, SVE+11, BLPPP13, OTK15]. launches
[Ano03].

Layer [CSA97, HEH98]. FK96a, PT94, dIAMC11, dIAMCFN12].

layered [DiN96].

Layering [Hus01]. layers
[KC94].

Layout
[WG17, BGH+05, HP11, LDJK13, Str12].

Lazy [TCBV10]. Leaks [DLV16]. Learned
[GKPS97, MM95]. Learning
[AHHP17, Gro01b, FE17, KWF18, LSSZ15, SEC15, TWFO09, WO09, WFT14].

learning-based [FE17]. Least
[PWP+16, VRS00, DK13]. Least-Squares
[VRS00]. Lecture [Ge93a]. Lederman
[Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

Leeds [Abr96]. legacy
[Dan12]. **Low** [BGG+15, GGS99, Jon96, MC17, NE01, RLL01, Str94, GK97, KBHA94, LZYH19, TBD96, ZRQA11]. **Low-Bandwidth** [NE01]. **Low-Cost** [MC17]. **Low-Density** [BGG+15, GGS99]. **Low-life** [Str94]. **low-overhead** [ZRQA11]. **LPVM** [ZG98]. **LSS** [BCAD06, BADC07]. **LU** [AZ95, BRS92, BB18, LC97b]. **Lugano** [GT94]. **Luminous** [KNT02]. **Lumsdaine** [Ano99c, Ano99d]. **Lusk** [Ano95c, Ano99c, Ano00a, Ano00b]. **Lustre** [DL10]. **Luther** [ACM99]. **Lyngby** [DW94, DMW96, Was96]. **Lyon** [BFMR96, FR95].

M [PBC+01]. **M-SPH** [PBC+01]. **M6A** [EM00a]. **M6B** [EM00b]. **MA** [Ano95b, Ano95c, Ano96a, Ano99a, Ano99b, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b].

Machine

[AS92, AGIS94, BJ93, BS93, CHD07, D+91, FE17, Fis01, GBD+94, Gre94, KNT02, KKDV03, KKD04, LKD08, MTWD06, Nov95, Pot96, Per96, RWD09, TY14, VS00, We94, AD98, AL92, Ano95b, Br91, BDG+91a, BPC94, Bir94, BDL96, BWD97, CARB10, CLM+95, Cav93, Cha96, Che99, CD01, CC00b, DM93, DKD05, DL99, DKP00, DLO03, FM90, KEWF18, KMC97, Kra02, LG93, MN91, MRH+96, NB96, Sch94, SK92, SCC96, SL00, TVCB18, TW12, TWFO09, WO09, WTF014, ARL+94, BG94b, JPP95, KKD05, LK10, QR06, SS99].

machine-learning [TWFO09].

machine-learning-based [TWFO14].

Machines

[BP99, BZ97, BCC+00a, BT01b, DR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCSL12, ZWJK05, BCA+06, BSC99, BCC+00b, DDS+94, DCH02, GKZ12, KN95, PRS16, SL94b, TST99, TSTY00, WPL95, ZWL13, Gei01, YC98]. **made** [MJPB16].

MAFFT [ZLS+15].

[Y+93, PKE+10]. Magnetic [Y+93].

Magnetism [Y+93].

magnetized [ZFF19].

Magnetohydrodynamic

[KT02, WWFT11]. **Magnetostatic** [BB93].

MagPle [KHB+99]. **Main** [Tou96].

Maintaining [PKB01]. **maintenance** [ZDR04, ZDR01]. **major** [WLK+18].

Makes [ZG95b, Str94].

Malleable

[EDSV09, MSMC15]. **Manamo** [WZWS08].

Man [IEE95a]. **Manageable** [PKB01].

Managed [KCR+17, LB16, SYR+09].

Management

[AJ97, ALB+18, AUR01, BGR97b, BGL00, EK97, FDC97a, FDC97b, GJR09, PPT96a, PSS0a, SIS17, STY99, THS+15, ARS89, DZ96, DF17, FLD96, GJMM18, GL95a, JCP15, LF+93a, PPT96b, PPT96c, YWTC15].

manager [Sep93].

managers [FLD96].

Managing [FLD98, FGK97, Liv00, NPS12, Obe96].

Manchek [Ano95b]. **Manipulation** [KKV01].

Manual

[CSW12, NSL16, Reu01].

Many

[DT17, LHZ17, LLCD15, RB01, TCM18, YTH+12, ACMZR11, VDL+15, dCZG06].

Many-Core

[LHZ17, TCM18, YTH+12, LLCD15, ACMZR11, KSG13, MBBd13, dCZG06].

Many-Cores [DT17].

Manycore [MJB15, KGB+09].

Map

[JPT14, FFMM11, FJBB+00, MSCW95].

MAPA [JJPL17].

MapReduce

[EADT19, JS13, MMM13, PD11, WZH16].

Maps [BM97, KRC17].

Marc [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

March

[ACM95a, ACM06a, Ano89, Ano93c, Cal94, DM+92, IE93f, IE94d, IE95b, IE97a].

Marine [LLRS02]. **market** [LF+93a].
Markov [BBH12, FK01]. Marlioz [GA96]. marshaling [CFKL00]. MARTE [RGD13]. Martin [ACM99]. Maryland
[IEE96c, SPH95]. MASA [SMM16]. MasPar [ARL94]. Massachusetts
[IEE94e]. masses [Cla98]. Massive
[Sie92a, MALM95, OLG16]. Massively
[BJ93, BS18, BBH12, DSZ94, IEE94a, IEE96c, KHS91, KnWH10, Oed93, Sie92b, Sta95b, CS96, DR94, HVSC11, KN17, LCL12, MYB16, RBB17, SRK12, DSZ94]. massively-parallel [MYB16]. Master
[WH98, EML00, LTR00, HP05]. master-slave [HP05].
Master-Workerproblem [WH98]. Master/Slave [LTR00]. Master/Worker
[EML00]. Matching [GGC07, KMM15, KS01, MM02, OWS95, WH94, FLPG18, MM03, Qu95, YPZ95, YZPC95].
Materials [Y93, SSP94]. mathematical
[VR97, Has95]. Mathematics
[Whi04, ANS95]. MATLAB
[BKG02, Whi04, Ano97, Bra97, ZZG14].
MATLAB-MPI [BKG02]. MatlabMPI
[KA04, Kep05]. MATOG [WG17].
matices [DR18, GG99, GSKM17, Kan12].
Matrix [AKL16, BSvdG91, Cha96, DS13, Fuj08, GKH10, PMvdG13, TDQLO1, TD98, ART17, CMH99, ER12, FAF16, FJZ14, KPB16, PKD05, TPD15, XLL13].
 Matrix-Vector
[AKL16, DS13, Fuj08, XLL13]. Maui
[ACM97a]. Max [Ano94c].
Max-Planck-Gesellschaft [Ano94c].
Maximal [BDA18]. maximisation
[CCU95]. maximum [HKOO11]. Maxwell
[An98]. May [ACM96b, ACM06b, AGH15, BR95a, BS94, Cha05, DT94, Ed908, Gat95, HS95a, IEE95e, IEE95d, IE95i, PR94b, SPE95, SW91, SS96, Van95].
Maydan [Stp02]. MBGF [MMH99]. MCA
[WCS13]. McDonald [Stp02]. MCHF
[SYP96]. McLean [IEE94a, Sie92a, Sie92b].
MCNP [MW93, McK94, WH96]. MD
[IEE02, TMPJ01]. mdb [DKF94a]. MDE
[RGD13]. Means [TK16]. Measurement
[BFBW01, BFM99, KRS99, Shi94, TMC90].
Measurements [HV+00, EFR05, GL99].
MECCA [AC17]. mechanics
[BJ93, MG90, SL95]. Mechanism
[CGLD01, KSV01, MH01, TH951, TSS00b, Tra92a, HWX13, SIR17, ZRQA11, ZA14].
Mechanisms
[Wal01a, CGBS15, Ott93, TMTP96]. Mechatronic
[KDL15, KDL95a]. meEDA
[VAT95]. mEDA-2 [VAT95]. media
[EZBA16, MAHVA14]. Medicine
[GA96]. MEDINA [AC17]. medium
[WNL06]. medium-scale [WNL06]. Meeting
[AD98, Ano93f, CDO7, CD01, CDN11, DLD05, DLM99, DP00, DL003, GA96, KGRD10, Kra92, KD04, LKD08, MC94, MTWD06, RD09, TBD12, BDW97, JB96, PH95, AN092, CHD99]. megabase
[SDM10]. Melko [FST98a, FST98b, Jon96].
Melia [WZ86]. Mellon
[IEE94d]. Membership [MDM17]. membrane
[FHS099]. Memory
[Att96, BME02, BW12, Bri10, BD07, BT01b, CLOL18, CSW97, CC99, DM98, DMB16, DR97, DHHW92, DHHW93a, EADT19, FB94, GCBM97, GB96, GSN10, GLRS01, HC10, HDB12, HDT15, HT01, JPL17, KB98, KS13, KSHS01, LSO15, Lu09, MB12, MRB17, MBE03, MCH98, MCDS08, Miil02, NPP00d, PBK00, Pok96, PMvdG13, Ros13, STY99, ST02b, SW91, THR99, VS00, VT97, ARS89, ABCI95a, ABCI95b, ADMV05, BCA06, BVM12, BSC99, BMG07, CBPP02, Cha95, Cha96, CBHH94, CRM14, CC00b, DF17, DLFR94, DBVF01, DS96b, DHHW93b, DPZ97, EV01, F5V14, FHB+13, GCN10, GBH14, GB1H09, GKK09, GL96, GL97c, GP95, HSP13, HGMW12, HDB13, HK09, JC17, JE95, KN95, KJA+93, KC06, LKL96, LCM04, NAJ99, NAAL01, OLG16, PK05, PS00b, RS19, RGDM15].
memory [SSH08, SHHI01, SL94b, SBG+12, SYR+09, SFL+94, SSC96, SPL99, SD16, TSY99, TSY00, Uhl95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WK08c, WBSC17, WMRR17, WRMR19, XY95, LBD+96, GKH97, SG05]. Memory-Based [MMH98]. Memory-Efficient [MRB17].

memory-level [HK93]. Memory/Message [ST02b]. MemTo [GSN+01]. Menon [Stp02]. Mesh [HAA+11, MRB17, Ran05, BAS13, CLSP07, Cou93, GBR15, IDS16]. mesh-particle [BAS13]. Mesbes [MRB17, TPD15]. Message [Ano93d, AKL99, Att96, BZ97, BCH+03, BBG+01, BDH+97, BGR97b, BFM97, CHD07, Cer99, CGQ13, CGH94, Cot97, Cot98, CTK00, CDND11, DFKS01, DHHW92, DHHW93a, DLL00, FKKC96, Fos98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLT00b, Hem94, KGRD10, KS97, KS01, KKV03, KKD04, LKD08, Luo09, MI08, MP95, MS98, MRS94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, RC97, RRBL01, RWD09, RFG+00, SAL+17, ST02b, TBB12, WD96, Wer95, Wis97, YHGL91, ZWL13, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAG+05, Ano93c, Ano94d, Ano95c, Ano00a, Ano00b, BBG+14, BL97, BvSDv95, BvD95, Bru95, BDW07, BFM09, CGJ+00, CDZ+98, CRD99, CD01, CG99b, DKF03, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DP00, DLO03, FKK49, GL92, HP95], message [HPY+93, Hem96, KJA+98, Kra02, LR06a, LBD+96, wL94, LCY96, LMM+15, LBB+19, LC97b, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SWJ95, SD+95, SZ99, SSG95, Sti94, TSSC94, VM95, Wal94a, Wal94b, ZKRA14, ZA14, AMHC11, BC14, BBH+06, BRU05, BDH+95, Cot04, DKO08, DNI96, FKS96, FGT96, FGG+98, GGH+96, GLDS96, GLT99, GL99, GLT00a, GL04, Han98, IBC+10, KTF03, KKD05, LK10, MTSS94, MSL96, PS01b, RRFH96, SWHP05, SLG95, SWL+10, TGT05, TDB00, Wer95, YGH+14].

Message-Passing [Ano93d, Att96, Cot97, Cot98, DHHW92, DLL00, GLS94, GL95c, GLT00b, MI08, PBK00, Pok96, RRBL01, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvSDv95, CDZ+98, GL92, Hem96, KJA+93, LR06a, LBD+96, wL94, LMM+15, PS00b, SG95, Sti94, DI96, GGH+96, Han98, RRFFH96, SLG95, Wer95, YGH+14]. Message-Passing-Interface [Wer95]. MessagePassing [Sei99]. Messages [KBS04, SK9H6]. Messaging [HEH98, KC94]. Meta [BCLN97, BFD01a, FGRD01]. Meta-Applications [BCLN97].

Meta-computing [FBD01a, FGRD01].

Metacomputer [OS97]. Metacomputing [Fin00, MS00, MS99b, FVBD02].

MetaHaskell [Mai12]. metaheuristics [ZSK15]. metal [JLS+14]. MetaMP [OW92]. metaprogramming [Mai12]. meteorological [RBS95]. Meteorology [HK93, HK95]. Method [ACMR14, BP99, BJS97, CGU12, FCLG07, GSI97, HC06, KMK16, OMK99, Riz17, TSS00a, ARYT17, BBDH14, BCM+16, DSOF11, ETV94, GFIS+18, HE13, HMK94, HJJB14, HPLT99, JMS14, KS15a, KD12, LCL+12, Nak05b, NS16, PTT94, Pri14, Qu95, SHHC18, TPK15, YBZL03, dAMCFN12, AAB+17, OKTL15].

Methodologies [Sun94b]. Methodology [MOL05, WTT17, HPR+95, LM94, WMP14]. Methods [BCMR00, CMK00, DFN12, EGH+14, FGKT97, GFGP12, KLR+15, kL11, NA01, Sch01, SM07, TDDBE11, Wei04, ZB97, CEGS07, DF17, D+95, Gra09, Has95, LSR95, MM11, Nak05a, PGK+10, R+92, SL94a, SGS95]. Metric [SNN+19]. Metrics [DW02, PARB14].

Metropolis [HJBB14]. Mexico [IEE91, Sie94]. MGCG [TSS00a]. MGF [GLM+08]. MIAOW [BGG+15]. MIC
MICE [BK96]. Micro-applications [SGH12]. Micro-Benchmark [BWV+12, YSWY14]. Microbenchmark [BO01]. Microcoded [PWP+16]. Microtask [OIS+06]. MIDAS [BFZ97]. Middleware [AUR01, CLL03, CC10]. Middlewares [DPP01]. Midpoint [JMS14]. Miguol [LHLK10]. Migratable [KOW97]. Migrating [VRSC94, VSRC95, IvdlH+00, KBG+09]. Migration [Ano94b, CCK+95, CLL03, CML04, CCBPGA15, CTK01, NPP+00c, NLRH07, Ott94, OS97, ST97, AMBG93, BBGL96, CK99, DGYM99, HZ99, LCVD94b, LM13, QHCC17, RRFH96, SSS99, SCL97, Ste96]. Milan [HS95a]. million [LHLK10]. Millions [BBG+11]. MIMD [BvdB94, BB93, BCL00, Uhl95a, WST95]. MIMD/DMMP [BB93]. MiMPI [GCC99]. mini [SCJH19]. mini-application [SCJH19]. MINIME [DS16]. MINIME-GPU [DS16]. minimization [POL99]. Minimum [KA95, Wu99, NCKB12]. mining [MA09]. minisweep [SCJH19]. Mississippi [IEE94f, IEE95j, IEE94f, IEE95j]. mitigating [OdSSP12]. Mitigation [BBH...13a]. Mitsubishi [Ano03]. mittels [Wi94]. Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01]. Mixed-Mode [BEG+10]. Mixing [CP98, GAP97, CBY18]. mixture [EO15]. MK [NS91]. mm_par2.0 [OKM12]. MN [Ano94h]. Mob [STV97]. Mobile [ITT02]. Mode [BGK08, Bri02, BEG+10, LRT07, SB01, YX95]. Model [AP96, BGC+02, Ba92, CKmWH16, Cha02, CGZ+08, Dar01, DFA+09, FSXZ14, FBNS01, GLB00, GLRS01, HLP11, KD12, LZW18, LGG16, LA02, LRQ01, MKW11, NSL16, NO02a, Ran05, RSV+05, RRBL01, SPM+10, SB95, SPH+18, THN00, VT97, Wal01a, YCA18, AL93, BSC99, Bir94, BG94b, BDV03, CMV+94, CL93, CKP+93, ED94, GKDZ12, GCN+10, GkLyC97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, KOS+95a, KSL+12, KL15, LR06b, LA06, LLH+14, Mar05, MsSAS+18, MSZG17, MGC+15, NO02a, Nak05a, PAdS+17, RA16, RGDMIL6, RCC95, Sch93, SH94, Sch99, SMAC08, Str94, VBLvdG08, Vis95, Wan02, WC15, WLK+18, WYL12, YXX95, TA14]. Model-Based [AP96, LGG16]. Modeling [ACM96a, ATM01, BS07, CSC96, CDM93, FST98a, GAM+02, MLO05, NM95, RGDM15, SEF+16, TD99, VFD02, WMC+18, XH96, BDP+10, Bi95, JL18, KM10, KME09, KEGM10, LZY91, MS99a, WT13, XLL13, YMY11]. Modelling [FST98b, Goc05, Ham95a, KDL+95b, BJ99, HTTH99, KDL+95a, MSML10, QHCC17]. Models [AKK+94, BS93, BZ97, CMK00, Cer99, CNM11, DK06, EM0+93, ESM+94, GIN97, PFP99, SS01, SME92, WH04, BB95, CH96, Duv92, KO14, LV12, MCB05, Nes10, RSBT95, RBAI7, SYR+09, Wal00, WBSC17]. moderate [Uhl95a]. Modern [AHHP17, DARG13, KDT+12, HK14, MN16]. modes [WZWS08]. Modified [Riz17, GP95, KD12]. Modular [CT02, HPP02, FWS+17, HLM+17]. modulator [WWZ+96]. modulator/DFB [WWZ+96]. Module [Ano98]. Modules [AKK+94, DS96b]. modules-design [DS96b]. Molecular [ABC+96, BST+13, BCGL97, BL95, BS07, DR97, DI02, KMB97, LAFA15, MH01, SA93, YWCF15, ZB94, BvdSvD95, BBK+94, BPZ94b, BPZ94a, C008b, CC+14, FHS099, JAT97, JMS14, KFA96, KRG13, LSVMW08, OKM12, PARB14, SL95, ZWL13]. molecule [ART17]. Möller [BL95, KN17]. Monito [SGL+00]. Monitoring [AH00, BLN97, Beg93b, BM96, BFTM96b, CD98, DBK+09, GS+01, LY93, LW97, MWG97, MVY95, SGL+00, UP01,
Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a, BB94, BS96a, BFMT96a, FLB+05, LC07.

Monodomain [ORA12]. Monte [HJBB14, RP95, WH96, ADRCT98, AK99, DAK08, NSLV16, RR00, SK00, SKM15, ZO04].

Montevey [Ano89, Gat95, USE94].

HGMW12, HMK09, HPS+12, HPS+13, Hin11, HRR+11, HDB+12, HDB+13, HDT+15, HKN+01, HMS+19, HLOC96, HKT+12, HVSC11, HWX+13, HM01, HCA16, HG12, HeF05, Hus98, Hus00, Hus01, HWW97, IDS16, IRU01, ITKT00, ICC02, JL18, JF95, JDB+14, Jes93b, JM+11, JS13, JNL+15, Jor96, JR10, JST+05, KB01, KFA96, KS15a.

MPI

[KPW05, KW14, KWEF18, KD12, Kan12, KFL05, KB98, KK02a, KL94, KYL03, KY05, KSJ95, KSJ96, KN17, KBS04, KGK+03, KHB+99, KMB97, KLR+15, KR09, KMG99, KEGM10, KRC17, KV98, KAC02, KC06, KBG16, KMH+14, KRG13, LK14, LAdS+15, LLRS02, LTTD14, LGM00, LRT07, LC97a, LR06b, LTRA02, Lee12, LZ97, LRV01, LRD+11, LCC13, LZH17, LZH18, kLCC+06, kLCW07, kL11, LFL11, LS10, LCY96, LCV+03, LPV04, LGG16, LYS+16, LB96, LMG17, LCMI17, LBB+19, LNLE00, LO96, dLR04, LZHY19, LS08, LL01, LZC+02, LKJ03, LCC+03, LKYS04, LSK04, LLH+14, MBBD13, MMR99, MS02a, MS02b, MV17, MC18, MTK16, Man01, Man98, MK17, MTLV16, MLA+10, MKP+96, MSMC15, MS12, MH01, MSL96, MS96a, MC98, MGG05, MAS06, MM02, MM03, MOL05, MSON00, MANR09, MRRP11, MG97].

MPI

[MIM13, MTW07, MK04, MCLD01, MMH98, MMH99, MS09c, MB00, MvWL+10, NAW+96, NO02b, NO02a, Nak05a, Nak05b, NSBR07, NE98, NE01, Nes10, NSS12, NH95, NBC+12, NBC+17, NAJ99, NW98, Nto0, NHT02, NHT06, NF+10, NN95, OMF96, OLG+16, OKM12, OIS+06, OD01, OF00, Ong02, OP98, OL05, OGM+16, OMK09, Pac97, PARB14, Pan14, PK98, PES99, PLK+04, PSK08, PDY14, PS00a, PS01a, PNHM11, PTL+16, Per99, PZ12, PGK+10, PFG97, PFL02, PGAB+05, PGBF+07, PGAB+07, Pia02, PD11, PSSS01, PSK+10, PTH+01a, PTH+01b, PS00b, PTW99, Qb12, Qui03, Rab98, Rab99, RDMB99, RR01, Ram07, RBST95, RMS+18, Ran05, RA09, RAS16, RCFS96, RBB97a, RBB97b, RBB97c, RSPM08, RT00, RH01, Reu01, RST02, Reu03, RGDM15, RDGM16, RGGP+18, RPM13].

MPI

[RPM+08, Roi00, Ro08b, RsT06, RFRH96, RRG+99, RTRG+07, SE02, SCB14, SCB15, SP+10, SSB+05, Sap97, SSB+16, SJD17, SGH12, SBF+04, SCJH19, SW12, SGB+02, SG05, Ser97, SS01, SWS+12, SG12, STY99, SM02, SM03, SPH+18, SP99, SZ11, SC04, SSC96, SS99, SZBS95a, SZBS95b, SDN99, SL90, SJ02, SWJ95, SMTW96, SH06, SDB94, SLG95, SDV+95, SPH96, Slo05, SVC+11, SK00, SB01, SOHL+96, SOHL+98, Snu18, SSHC18, SSL97, Squ03, Ste96, ST97, St08, SU96, Str96, Sum12, SN01, Swa01, TOTH99, TAH+01, TSY99, TSY00, TKP15, Tha98, TGL01, TG09, TLY18, TW01, TD99, TOC18, Tra98, THRZ99, TRH00, Tra02b, Tra02a, TGT10, Tra12a, Tra12b, TJP01, TFGM02, Tsu07, TFZZ12, UTY02, URKG12, VF02, VS00, VPS17, VSRC94, VSRC95, VGRS16, Vs00, VPO0].

MPI

[VVD+09, WH96, Wal95, WO95, Wal96a, WD96, WO96, Wal01b, Wal00, WC09, WLNL03, WLNL06, Wer95, WST95, Whi04, WR05, WZW+96, Wis98, WB96, WM01, WACD99, Wer96, WR02, WCS99, WT11, WLYC12, WT12, WL1C12, WT13, WM14, XH96, XLW+09, YM97, YL09, YHL11, YW11, YCL14, YBMCB14, YPAE09, YTH+12, YSP+05, Zal12, ZZ04, ZL+12, ZW05, ZLP17, ZLDW18, ZLL+12, ZZ95, ZS01, ZKRA14, ZA14, bT01a, dAMCFN12, KH96, Mar06, YM97, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

MPI-2

[SOHL+98].

MPI-2

[Ano99c, Ano99d, Ano00a, AKL99, BAC06, BHS+02, CwCW+11, CD96, DPD08, GFPD03, GGHG+96, GT01, GHH+98, GLT99, GLT00b, GLT00a, HGMW12, LS04, MS02a, MK04, PS00a, SS99, SSL97,
TRH00, bT01a, BADC07. **MPI-3** [GBH14, GBH18, GLT12, HDT+15].
MPI-ACC [APJ+t16]. **MPI-Based** [Ada97, FSC+t11, RDMB99, SM03, Ada98, AVA+t16, GKS+t11, Gra97, LRW01, OLG+t16, OP98, SZ11, TMPJ01]. **MPI-basierte** [Gra97]. **MPI-benchmark** [Reu01].
MPI-CHECK [LCC+t03]. **MPI-CUDA** [DR18, diAMCF12]. **MPI-DDL** [FB97].
MPI-Dephi [ACGd92]. **MPI-driven** [Hin11]. **MPI-F** [FHP94, FHP94]. **MPI-FM** [LC97a]. **MPI-FT** [LNLE00].
MPI-GLUE [Rab98]. **MPI-Hybrid** [CGC+t11]. **MPI-I** [RU01, Tsu07].
MPI-I/O [RU01, Tsu07].
MPI-interoperable [YBMCB14]. **MPI-IO** [BIC+t10, CGC+t02, CFF+t96, DL10, FWNK96, FSLS98, LRT07, LLG16, PSK08, PTH+t01a, SW12, St098, TGL20, Z040].
MPI-IO/GPFS [PTH+t01a]. **MPI-LAPI** [BBP91]. **MPI-Level** [LV94]. **MPI-like** [CG+t00]. **MPI-only** [LS10].
MPI-OpenCL [JNL+t15]. **MPI-OpenMP** [MS02b]. **MPI-parallelized** [KMG99].
MPI-Performance-Aware-Reallocation [GF+9+t8]. **MPI-StarT** [Hus98]. **MPI-The** [An99c, An99d]. **MPI-thread** [IDS16].
MPI-Umgebung [GBR97]. **MPI/CUDA** [PJH91]. **MPI/GAMMA** [CC99a].
MPI/GPU [EZBA16]. **MPI/GPU-code** [EZBA16]. **MPI/MBCF** [MMH99].
MPI/OpenACC [OG+t16].
MPI/OpenMP [ADR+t05, GAVRL97, HKN+t01, JR10, KS51a, KN17, KLR+t15, KRG13, LLRS02, PZ12, SB01, WT11, WT12, WT13].
MPI/PVM [ES11]. **MPI/RT** [SK+t04]. **MPI/RT-1.1** [SK+t04]. **MPI/SMPs** [MLAV10]. **MPI1** [St094]. **MPI2** [MI098, Wal96b].
MPI2007 [MyWL+t10]. **MPI_Allgather** [GMdMBD+t07]. **MPI_Connect** [FGROD01]. **MPICH** [BBC+t02, BCT+t03, BHK+t06, Cot98, Cot04, GL97a, KTF03, LKIJ03, OMP06, OF00, RFG+t00, RSIT06, SBG+t02, TRG05].
MPICH-CM [SBG+t02]. **MPICH-G2** [Cot04, KTF03, OMP06]. **MPICH-GQ** [RF9+t00]. **MPICH-V** [BBC+t02, BHK+t06].
MPICH-V2 [BCT+t03]. **MPICH+** [BM07, Gro02b, ZSG12]. **MPIConnect** [FLD98]. **mpicroscope** [Tr9+t2b].
MPIGeneNet [GDM18]. **mpiJava** [BCFK99]. **MPINE** [Sou01]. **MPIPOV** [FFB99]. **MPIIT** [HPR02]. **MPIWiz** [XLW+t9]. **MPJ** [CG+t00]. **MPL** [XH96].
MPI0 [CRD99]. **MPP** [CDJ95, DOSW96, GBR97]. **MPP-Systeme** [GBR97]. **MPPs** [BGR97a, RBB97a].
MPSoC [KKJ+t08, KI+t00, PSM+t14]. **MPSoCs** [MB12, NEM17]. **MPVM** [CCK+t95]. **MRI** [LSSZ+t15]. **MRO** [MJM13]. **MRO-MPI** [MJM13]. **Multi** [Ada98, ABB+t10, Bri10, BCKP00, CAWL17, CCG+t08, DWL+t10, EKBG01, FKSX14, HD02b, HR97, JCH+t08, JNL+t15, KBA02, KT02, LTS16, ML13, MLGW18, MG15, MB00, NMS+t14, PZ12, RG18, RR02, Smi93a, ST02a, ST02b, SS+t17, WBH97, YGH+t14, ACMZR11, AGM60, BCK+t09, DCH02, DWL+t12, Fin94, Fin95, FH9+t13, HTA08, HE15, JR13, JMM+t11, JR10, KSG13, KLV15, KO14, Kom15, LSG12, LS10, LLL+t14, MALM95, NIS12, SCB15, SFSV13, SVC+t11, SAP16, Str12, TS12b, TFZZ12, WCC+t07, WO09, WADC99, WL12C12, ZAFAM16, ZW9+t95, ZZZ+t15, SAP16, SG14].
multi- [ACMRZ11, KSG13]. **multi-/many-core** [KSG13].
multi-accelerator [KLV15]. **multi-agent** [ZW9+t95]. **Multi-agents** [KBA02].
Multi-Array [LTS16]. **Multi-cluster** [ST02b, KO14, KOM15]. **Multi-Core** [ABB+t10, Bri10, CCG+t08, YGH+t14, PZ12, FH9+t13, HTA08, JR13, JMM+t11, JR10, LLL+t14, SFSV13, SVC+t11, TFZZ12, WCC+t07, WL12C12]. **multi-cores** [WO09].
multi-CPU [SAP16].
multi-CPU/multi-GPU [SAP16].
NAG [DHP97, For95, McD96]. NAMD [PZKK02]. Naming [MSF00]. Nancy [BR95a]. NanosCompiler [GAM+00]. Narrow [YSS+17]. NAS [CRE99, CE00, CCF+94, CDD+96, KS96, KAC02, MMH99, WAS95b, WT11, WT12]. NASA [MAB05]. NASLU [PIJJM11]. National [Str94, BRST94]. Native [SZ99]. NATO [KG93, TG94]. NATUG [Ara95]. NATUG-7 [Ara95]. nature [DSM94]. Navier [Che99, DLR94, HSMW94, IDD94, Lou95, SCC95]. NB [BG91]. NC [Agr95a, SL94a]. NCS [AL92]. nCUBE2 [BL94]. Near [PKYW95]. Nearest [DI02]. Nearest-Neighbor [DI02]. Nebelung [MFG+08]. NEC [GPL+96, HRZ97, TRH00]. Necessary [NPP+00b]. Neighbor [DI02]. neighborhood [HS12]. Nek5000 [MGS+15]. Nekbone [GML+16]. Nemesis [BMG07]. Nesbet [BL95]. Nested [AHD12, BR12, BS01, DLRR99, GLP+00, HB10, MMS07, TSSY00, aMST07, AGMJ06, BS05, HSE+17, THH+05, YZ14]. Nets [DMB16]. Net [CNM11, NE98, NE01, PES99]. Net-Console [PES99]. Net-dbx [NE08, NE01]. netCDF [LkLC+03]. Netherlands [DSZ94, Ano93f, Van95]. Nets [Sou01, Str94]. Network [ACM98a, AR01, BG+91b, BDG+94a, BCKP00, CZ95a, CDHL95, CSC96, DM95b, DM95a, DBA97, DFM94, DGM93, DGM93, EK97, Fer98b, Fis01, G91b, GS92, Gei93a, Gsxx, Hus98, ITT02, LB98, LH95, MSCW95, MANR99, OF00, OWSA95, TW01, AL92, AH95, AVA+16, BDG+92a, BDG+92c, BDG+94, BSvdG91, B95, Bon96, BBK+94, BD95, BFM96, Coe94, CLLASPD99, Fer98a, GS91a, Gei93b, G97, GHZ12, HBT95, HK94, HH95, IM95, KMC96, KMC97, KA95, LH98, LH+94, LHD+95, MK94, MRH+96, POL99, PR94c, PTW99, Rag96, SEC15, SPK+12, TSS98, YS93, ZPLS96, GK97]. Network-Balancing [DBA97]. Network-Based [BDG+91b, GS92, BDG+92a, IM95]. Network-Specific [DM95b, DM95a]. network-topology-aware [SPK+12]. Networking [FGKT97, GB+94, Nov95, Per96, Ano95b, BMP94b, BM94a, BMP94a, GM94, HS93, RR+99]. Networking [ACM97b, ACM98a, ACM00, ACM01, ACM04, Hol12, LCK11, CXB+12, GH94, HS95a, ITT99, LCHS96, MZK93]. Networks [CSV12, CDM93, DDPR97, GF99, G18, GH97, HH94, HLCZ00, HIP02, LH96, Li96, LH98, MBES94, QMGR00, SG15, TQDL01, Tou00, VLO+08, VBB18, WAS95b, WMC+18, BK11, BR92, CZ95b, CFPS95, DG95, DZ98a, Jo94, LR06a, LTHC94, LHD+94, LHD+95, NFG+10, Pan95a, TD00, ZGN94]. Neural [AGH+95, CAM12, CSV12, QMGR00, Str94, GkLyC97, Rag96]. Neurocomputing [PSZ90]. neutrino [KHBS19]. Neutron [LD01, RS97, VRS90, WR01, MM92]. Nevada [Ano94e]. never [Har94]. Neville [ACMZR11]. Newport [IEE93b]. News [Ano97, Ano03, Bra97, ESB13, KS15a, Str94]. Newton [ZB97]. Next [GKPS97, Gei98, Gei01, VPS17, SP11, ZKRA14]. Next-Generation [VPS17, ZKRA14]. NFS [CGC+02]. NHPDCC [BRST94]. NIC [MFPP03]. NIC-based [MFPP03]. Nice [ACM90]. nineteenth [IEE95]. Ninth [ERS96, R+92]. NIST [SNMP10]. Nitzberg [Ano99c, Ano99d]. NLP [VB99]. NM [IEE95d, Old02]. NoC [HWX+13]. NoC-based [HWX+13]. Node [HRZ97, KFL05, FKL08, GM13, JR10, LFL11, RS19, Zab12]. Nodes [BBC+02, BCh+03, DB+09, JNL+15, MKC+12]. Noise [SAL+17]. Non [BCG+10, CCSM97, Gua16, HTA08, MW98, Man01, WLNL03, WTR03, FH98, BCh+08, OKW95, OM90, TVCB18, WLNL6].
Non-blocking [HTA08, FH98, BCH+08].
Non-Contiguous [WTR03].
Non-Data-Communication [BCG+10].
non-dedicated [WLNL06]. non-iterative [OMK09]. Non-linear [MW98, OKW95].
Non-Local [CCSM97]. Non-persistent [Man01]. non-singleton [WLNL06].
Non-stop [Gua16]. nonaligned [AGIS94].
Noncontiguous [JDB+14, TGL02]. Nondeterminacy [DKF93].
nondeterminism [Obe96]. Nondeterministic [KSV01, CRD99].
Nonlinear [Nak03, Was95a, ZB97, CEG507, Jou94]. nonnegative [KBP16].
North [CJNW95]. Note [BR02, SGHL01]. Notre [IEE96i].
novel [DDYM99, GKK09, MLVS16, MSL12]. November [ACM99c, ACM97b, ACM98b].
ACM99, ACM00, ACM01, ACM03, ACM04, ACM05, Ano94c, ACDRF94, BDW97, GN95.
HK95, Hol12, IEE91, IEE93e, IEE94b, IEE94h, IEE94i, LCK11, USE94].
novice [CGG10]. Novices [Stp02]. NOW's [SLGZ99]. NP [YZ14]. NPACI [PKB01].
NPB [EGC02]. NR [Gua16]. NR-MPI [Gua16]. NSGA
[GÁVRR17]. NSW [GN95]. NT [Ano01a, Bak98, BF98, CLP+99, FD97, GGGC99, PS0a, SFC98, TAH+01].
NTRUEncryp [KY10]. NTUG [FF95]. Nuclear [BPG94, GA96]. nuclei [NS16].
NUMA [BCC+00a, BCC+00b, BFG+10, CAWL17, GTS+15, MKC+12, MJB15, OPW+12, SLN+12, TSCAM12, ZLP17].
NumaGic [GTS+15]. Number [BP99, HT08, WHDB05, CBYG18, Lan09].
Numeric [MLGW18]. Numerical [ACMR14, BS93, BCP+97, CSW97, DHK97, DHP97, FK01, For95, FB94, HH14, Hua98, IF95, KM10, Kha13, McD96, NHT02, PKYW95, TDBEE11, YKLD17, AL92, Boi97, BCM+16, CSW99, FP92, GS94, JK10, KB13, Noh08, NHT06, Pri14, SMAC08, SU96].
Numerically [BKML95, BFLL99]. nur [BL94]. Nutzung [GEW98]. NVIDIA
[KME09, Seg10, XXL13, KKM15, Lan09]. NVRAM [MC18]. NX [Pie94, PR94a].
NY [IEE96f, PBG+95, Reo96, SS96].
O [Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLC+03, kLCC+06, MV17, MC18, MG12, MG15, Psk98, PLR02, RK01, SBQZ14, Tha98, Tso17, WSN99, ZJDW18].
O2000 [CML04]. O2WebCL [CHKK15].
Oberammergau [BPG94]. Object
[Ada97, BCFK99, CFKL00, FMSG17, MSL96, PD98, SWL+01, YHGL01, YX95, Ada98, BR91, DM12, LKL96, OKM12, RFH+95, SL94b, TDG13]. object-based
[LKL96]. Object-Oriented
[BCFK99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. Objects
[KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZPLS96]. Oblivious
[LZH17, LZH18, UALK17, HSP+13].
observations [ZKRA14]. observed
[CAHT17]. Occam [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. Ocean
[BS93, GAM+02, Bic95, Mal01, Nes10, Sch99, Wal00]. Oceans [IEE94c, IEE94c].
OCOptimiz [FAFD15]. OCM
[BoFBW00]. OCM-Based [BoFBW00].
October [Ano93f, Ano94e, Ano94i, Ara95, BPG94, Bha93, BDLS96, CHD07, CGB+10, DSH94, DLO03, DE91, FK95, GGG+93, IE94f, IE95a, IE95g, IE95j, IE96b, IE96c, IF95, Jb96, Kba02, Old02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vol93]. octree [JL18].
Octree-based [JL18]. ODE
[Ano97, Bra97]. ODEs [Pet97]. OdinMP [BB00].
OdinMP/CCp [BB00]. Off [CGS15].
Off-Line [CGS15]. Offering [EK97].
Official [Ano98]. Offload [BRU05].
Offloading [MGA+17, DSGS17, KBG16].
Oft [Rol08a]. Oil [FSZX14, ZAFAM16].
OKs [Ano03]. old [LK14]. OMB [BWV+12]. OMB-GPU [BWV+12]. OMIS [LW97]. Omni [KSS00, KSHS01]. OmniRPC [SHTS01]. OMP [SGJ+03]. OMP2001 [TSB03]. OMP2012 [MBB+12]. OMPi [ACH+11, OM96]. OmpSs [ABF+17, FSB+19, YAJG+15]. on-chip [TDG13]. On-Demand [CTK00]. On-Line [BoFBW00, Wis98]. On-the-fly [KSJ14]. ONC [RS93]. One [BPS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, GBH18, LSK04, MS99c, Ols95, PGK+10, dIAMC11]. one-dimensional [Ols95]. one-layer [dIAMC11]. One-Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, LSK04, MS99c, Ols95, PGK+10]. only [LS10, Squ03]. Ontario [GGK+93]. onto [OFA+15]. OOMPI [ML96]. OOPS [RFH+95]. OPAL [CwCW+11, NW98]. OPAL-MPI [NW98]. opaque [SOA11]. Open [BGG+15, KDL+95b, WGG+19, AVA+16, KDL+95a, Nob08, GBS+07, VGRK16]. Open-Source [BGG+15, AVA+16, Nob08]. OpenACC [CGK+16, CC00a, BCC+00b, BGK08, BGG+02, BS01, BS05, BBC+00, Bra97, Bri00, BDV03, Bs07, Bgds09, BFG+10, BGD12, BC00, BS07, BB00, BR00, BO01, BEG+10, BB18, CRE99, CE00, Car07, CB00, BDV03, BdS07, BGdS09, BFG+10, BGD12, BC00, BS07, BB00, BR00, BO01, BEG+10, BB18, CRE99, CE00, Car07, CB00, CGLD01, CC00b, CBPP02, Cha02, CM05, CGKM11, CMMR12, Cla98, CBYG18, CCM+06, CCBPA15, CC00b, DM98, DW02, DBVF01, DSGS17, HD02a, DFC+07, DFA+09, ETWaM12, EM00a, EM00b, EV01, Es08, FGR00, FMSG17, FSG19]. OpenACC-based [KLV15]. OpenCL [ABDPF15, APBcF16, AB13, BLPP13, BDW16, BN12, BHW+12, BBH+15, BAS13, CDD+13, CP15, CLOL18, CIJ+10, CHKK15, CCK12, CS14, CLBS17, DARG13, Di14, DWL+10, DWL+12, FADF15, FLMR17, FE17, FSV14, FVLS15, GSfFM13, GDDM17, HD11, HE15, HHC+18, JSS+15, JKM+17, JR13, JNL+15, JMvDG+17, KKM15, KH12, KM10, KKL11, KSL+12, KJJ+16, KB13, KP13, Lec12, LNK+15, LWZ18, LL16, LAF1A15, MC17, MAIWA14, MTU+15, MSZG17, MHSK16, ON12, OTK15, ORA12, PCY14, PHW+13, PSB+19, PB12, RG18, RGD13, RBB15, RGB+18, RBB17, SFSV13, SAP16, SSB+17, SG14, SFLD15, SGS10, Str12, THS+15, TK16, TMW17, TKP15, TY14, WTT17, WZH16, YSWY14, YWTC15, YSL+12, ZWL+17, ZT17, dAT17]. OpenCL-accelerated [ZWL+17]. OpenCL-Based [CLOL18, WTT17, WZH16, JKM+17]. OpenCL-to-WebCL [CHKK15]. OpenCL-to-WebCL [CHKK15]. OpenMP [Cha05, CZG+08, CGKM11, CMRR12, EV01, JMS14, MdSc09, SHM+10, Vs03, OKM12, ST02a, ST02b, Add01, ARvW03, ABC+00, AH12, AAB+17, AELGE16, ACMZK11, ATL+12, ADT14, ACJ12, Ano97, Ano01a, Ano03, AK00, AD MV05, ADR+05, AGM06, AM07, ACD+09, ADD+10, BST+13, BR02, BHP+03, BME02, Ben18, BN00, BF01, BBDH14, BWV+12, BCC+00a, BCC+00b, BGK08, BGG+02, BS01, BS05, BBC+00, Brg97, Br90, BDV03, BdS07, Bgds09, BFG+10, BGD12, BC00, BS07, BB00, BR00, BO01, BEG+10, BB18, CRE99, CE00, Car07, CB00, CGLD01, CDD+01, CLYC16, CM98, CHP01, CBPP02, Cha02, CM05, CGKM11, CMRR12, Cla98, CBYG18, CCM+06, CCBPA15, CC00b, DM98, DW02, DBVF01, DSGS17, HD02a, DFC+07, DFA+09, ETWaM12, EM00a, EM00b, EV01, Es08, FGR00, FMSG17, FSG19]. OpenMP [FSXZ14, FM09, GSA08, GJP01, GSKM17, GG09, Goe02, GÁVRL17, GAM+00, GAML01, GOM+01, GAM+02, Gra09, HPP02, HP05, HDDD09, HA10, HO14, HD02b, HMK09, HAsn00, HKN+01, HAJK01, HVSC11, HLCZ00, HT01, HCL05, HEHC09, HJYC10, HAA+11, IJM+05, ICC02, IOK00, ITT02, JCP15, JHK08, JPOJ12, JFY00, JHY+03, JCH+08, JIM+11, JRL, KB01, KS15a, KOB01, KaM10, KOI01, KN17, KKH03, KT02, KSJ14.
KLR$^{+15}$, KBVP07, KBG$^{+09}$, KKV01, KT10, KH15, KAC02, KC06, Kuh98, KPO00, KRG13, KSS00, KSHS01, KJEM12, LOHA01, LP00, LLRS02, LTB16, LD01, LME09, LLC13, LHC$^{+7}$, LNW$^{+12}$, LYSS$^{+16}$, LA02, LA06, LMRG14, LHZ98, LL01, LLH$^{+14}$, MKC$^{+12}$, MS02b, Mal01, MM07, MB12, Mar02, Mar03, MLC04, Mar05, Mar09, MBB06, Mat00a, Mat00b, Mat01a, Mat03, MGG05, MGC12].

OpenMP [MG15, MM11, MFG$^{+08}$, MKV$^{+01}$, MBE03, MRRP11, MMSW02, MKW11, MM14, MMS07, MJB15, MJPB16, MCD$^{+08}$, MI01, MI02, MI03, MBB$^{+12}$, NO02b, Nak05a, NIO$^{+02}$, NIO$^{+03}$, NEM17, NPP$^{+00b}$, NPP$^{+00c}$, NPP$^{+00a}$, NPP$^{+00d}$, NAAL01, NA01, NNO00, NOb08, NU05, NHT02, NHT06, OOS$^{+08}$, OP10, OPW$^{+12}$, PARB14, PP01, PVKE01, PK05, PZ12, PCG02, PKE$^{+10}$, Qiu03, Ran05, RDLQ12, RLVRGP12, RBA05, SSE12, SSB$^{+16}$, SHT01, SHTS01, SKS01, SLGZ99, SGS00, SPL$^{+12}$, SHT00, SSAS12, SK00, SB01, Sp02, TCM18, TBS12, TS12a, TSB02, TT010, TSS00a, TSCaM12, TJPF12, Thr09, TBG$^{+02}$, THH$^{+05}$, TGBS05, VDL$^{+15}$, VPS17, VGS14, Vos03, Vre04, Val00, Val02, Van02, WCC12, WC15, WC07, WT11, WYL12, WT12, WLC12, WT13, YKw$^{+18}$, YHLL1, YWC11, YCL14, YKL17, YPAE09, YSM$^{+16}$, YSMA$^{+17}$, YYW$^{+12}$].

OpenMP [YCA18, ZAT$^{+07}$, ZSNH01, aMST07, dCZG06, RM99, SSGF00, WCS$^{+13}$].

OpenMP* [KDT$^{+12}$]. OpenMP-based [LNC$^{+12}$]. OpenMP-like [BK000, KOB01, VGS14].

OpenMP-oriented [MLC04].

OpenMP-style [JPOJ12]. OpenMP/MP [BEG$^{+10}$, HMK09, LLC13, LYSS$^{+16}$, MG05, NO02b, Nak05a, SSB$^{+16}$, SK00].

OpenSHMEM [HVA$^{+16}$]. OpenTuner [BAG17]. OpenUH [HEHC09, LHC$^{+07}$].

Operating [MMH98, RG97, USE94].

Optimal [BP99, GAMR00, ZGN94, BB95, ER12, PQ07, PTL$^{+16}$, Sur95a].

Optimizations [NSLV16, SSE12, iSYS12, TSS00a, BVML12, HEHC09, LL16, MV17].

Options [RR00]. Orange [ACM98b]. orbit [CFF19, SSN94]. Order [BL95, DFN12, LHZ18, KN17, KME09, KEGM10, KB13, MYB16, OGM$^{+16}$. ordering [Zah12]. ordinary [NF94, RB15, SP11]. Oregon [ACM99, IE93e, SW91]. Organization [BPC94, JFGF12]. Oriented [Ada97, BCFK99, FMSG17, MSL96, PD98, YHGL01, Ada98, BR91, DM12, MGC$^{+15}$, OKM12, RFH$^{+95}$, SLW$^{+01}$, MLC04].

operational [KOS$^{+95a}$].

Operators [NHT02, NHT06].

opportunistic [CC10]. Opportunities [LB16]. optical [MRH$^{+96}$].

Optimization [BSG00, BHNW01, DBA97, Goe02, HS12, Hs00, ITT02, KGK$^{+03}$, KMH$^{+14}$, MC17, MBS15, Mui01, NIO$^{+02}$, NIO$^{+03}$, PSS01, SM03, Sl09, SWH15, TRG05, WTH17, WJ12, Cou93, DOS01, FCS$^{+12}$, HWS09, HK12, LME09, LDKJ13, MALM95, PP16, PPM95, SKSO1, SD17, Str12, TMW17, TFZ012, VSW$^{+13}$, Was96, XLL13].
parallel-programming [KKJ+08].
parallel/distributed [FHC+95, Wan97].
parallele [GEW98].
Parallelisation [SJK+17a, SJK+17b, WCVR96, LF93b].
Parallelism [CGC+11, EdS08, Ek97, FKKC96, GLP00, GAM+02, GPC+17, DHK97, DW94, EJL92, FF95, FR95, GN95, JPTE94, JPP95, KKD05, Kum94, LkLC03, Mal95, MKP+96, OKW95, PQ07, QRG95, SSSS96, SPE95, Stp02, TDBEE11, TGEM09, Vol93, Vre04, WN10, YC98, ZPLS96, ZDR01, ZHS99].
Parallelization [AL93, And98, AIM97, BCCM11, BS07, CRE99, CP97, Cot93, Cza03, ETV94, HA10, JR10, Kik93, KLR+15, LP00, OD01, Pok96, QMRG00, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZWS08, WR01, aMST07, AGMJ06, BW12, BDY99, BJ99, CDD+96, Gao03, Goe02, ID36, IJM+05, JLI18, JYJ+03, JMS14, KS15a, KD12, KRG13, MCB05, MG00, Nes10, NEM17, OLG+16, TWFO09, VBLvdG08].
Parallelized [FBSN01, OMK09, KMG99, OKM12].
parallelizer [BHR808].
Parallelizing [BST+13, Car07, GGH99, IOK00, IKM+01, IKM+02, SR95, ZZ95, AMS94, BY12].
Parallelldatorcentrum [Eng00].
Parallizing [LRQ01].
Parameter [HPLT99, JMDI+17].
Parameters [GFV99, BAG17].
Parametric [LLG12, Pat93].
Paramid [Ste94].
Paraperm [LTDD14].
Paraprox [SJML14].
Parasite [LLRS02].
paravirtualization [SBZQ14].
ParCo93 [JPTE94].
PARCOACH [SCB14].
PARCS [LD01].
Paris [CHD07, Har94, Har95].
Parity [MC17].
Paris [HVSH95, RS95, SHH94a, SHH94b].
Park [SL94a, IEE93c].
PARKBENCH [DHS96, DH95].
PARMACS [GR95, HZ96, HZ99].
PARMACS-to-MPI [HZ96].
ParNSS [HSMW94].
PARRAY [CCM12].
parsing [Sur95a].
Parsytec [SHH94a, SHH94b].
part [VSR95, EM00a, EM00b, GK10].
Partial [Derc01, DLV16, FSSD17, KKO2b, MK17, MFTB95, OM96, ST17].
partially [CdGM96].
Particle [GS97, KHS01, NSL16, ZZ04, BAS13, CFF19, FF99, GSKM17, KPK13, RFH+95, VDL+15].
particle-based [FF99].
particle-in-cell [VDL+15].
particle-mesh [BAS13].
particulate [ATL+12].
Partitionierung [Gra97].
Partitioning [CTK01, KL11, STV97, CT13, Cha96, Gra97, GKF13, YST08].
partners [Str94].
Pasadena [IEE95c].
PASCO [ACM97a].
passage [PTMF18].
Passing [AMHC11, Ano93d, AKL99, Att96, BZ97, BC14, BBH+06, BBG+01, BRU05, BDH+95, BDH+97, BFR97, BM97, CDD07, Cer99, CGH94, Cot97, Cot98, CTK00, Cot04, CDND11, DFKS01, DK08, DIH92, DIH93a, DDL00, FF96, FGT96, Fos98, FGG+98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLDS96, GL99, GLS99, GLT00b, GLT00a, GL04, IBC+10, KTFO3, KGR10, KS97, KSV01, KKD03, KKD04, KKD05, LKD08, LK10, Luo99, MPI98, MTSS94, MS98].
MSL96, MBES94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, PS01b, RRBL01, RWD09, RFG+00, SWHP05, SWL+01, ST02b, TGT05, TDB00, TBD12, WD96, Wer95, Wis97, YHGL01, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93c, Ano94d, Ano95c, Ano00a, Ano00b, BL97, BvdSvD95, Bjo95, Bru95, BDW97.

passing

[BFIM99, CGJ+00, CDZ+98, CRD99, CD01, DKF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FK94, FHB+13, GL92, HP05, HPY+93, Hem96, KJA+93, Kra02, LR06a, LBD+96, wL94, LCY96, LMM+15, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SWJ95, SDV96, SG96, SRC96, ST02b, TGT05, TDB00, TBD12, WD96, Wer95, Wis97, YHGL01, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93c, Ano94d, Ano95c, Ano00a, Ano00b, BL97, BvdSvD95, Bjo95, Bru95, BDW97.

Past

[Dar01].

Path

[CGPR98, GAMR00, SDJ17, SLN+12, Zel95].

Path-based

[SLN+12].

Pathway

[CNM11].

PATOP

[BFBW01].

Pattern

[CSW12, CC17, JJPL17, RDMB99, MAS06, SJLM14].

Pattern-based

[SJLM14].

Pattern-Independent

[CSW12].

Patterened

[ST17].

Patterns

[DMMV97, FPY08, KB98, PKB+16, RRAGM07, SGH12, DZZY94, GÁVRL17, HGWM12, PM95, PSK+10].

PC

[AH00, EKTB99, KS01, LKYS04, RLL01, Ste00, WLYC12, YST08, YL09, MMB+94].

PC-Cluster

[RLL01].

PCAT

[ACDR94, GN95].

PCAT-93

[ACDR94].

PCAT-94

[GN95].

PCG

[BJS97].

PCI

[GK97].

PCI-based

[GK97].

PCRCW

[BS94].

PCs

[CRE99].

PCSC

[LM94].

PCTE

[HZ94].

PCTRAN

[KHS01].

PDCS

[VH96].

PDE

[GBR15, NHT02, NHT06, NPS12].

PDES

[FT01, SCL00, SCL01, HO14, HHA95].

PDGC

[CGB+10].

PDP

[IEE96g].

Peer

[GR07].

Peer-to-Peer

[GR07].

PELCR

[PQ07].

PEMPI

[FB95].

PEMPIs

[MOL05].

Pennsylvania

[ACM96b, IEE94d].

pentadiagonal

[Kan12].

Pentium

[Ano03].

Pentium(R)

[SBT04].

PENTRAN

[KHS01].

people

[ASC95, Ano94i].

per-triangle

[SOA11].

perception

[CLM+95].

perceptual

[WPL95].

Performance

[ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, ATM01, AR01, Ano01a, Ano01b, ADR+05, Bak98, BBGL96, Ben18, BN00, BBDH14, BGG+02, BY12, BRM03, BRST94, BS07, BDL98, BCKP00, BHMN91, BFM96, BFBW01, BEC+10, CGK+16, CDD+13, CRE99, CDJ95, CGLD01, CNM11, Che99, CSC96, CCBGA15, DPSD08, DM95b, DZ98b, DPF01, DWL+10, DBK+09, EG9H99, EGC02, EML98, EML00, FD02a, FGR00, FCP+01, FSC+11, FST98b, FGK97, GFD03, GKP96, GGS99, GBB99, GFIS+18, GRR99, GBS+07, GC05, GMdMBD+07, GSY+13, HVA+16, HKN+01, Hol12, HF14a, HF14b, HPS95, Hsu08, IEE92, IEE93c, IEE94g, IEE95k, IEE96f, IEE97c, IF95, IR01, HVA+00, JSS+15, JC17, JCH+08, JS13, KDS012, KaM10, KL94, KH12, KBM97, KKP01, KH15, KC06, KK02b, KHS01, KSS00, Laa01].

Performance

[LAdS+15, LCK11, LC97a, LB98, LGCH99, LNK+15, LH98, LC93, LkLC+03, LW218, LW+12, LS10, LC+03, LP04, LW04, LDCZ97, LH199, LC97b, LKYS04, MBB+94, MKP+96, MPD04, ME17, MGH97, MG12, MM02, MM03, MOL05, MS99a, MHC94b, MWS02, MK04, MCLL01, MHH99, MM14, MMS07, NSL16, NW93, NPP+00d, NMS+14, NN95, OIK15, OF00, OL0G01, PAR14, PKB01, PHJ11, PZ12, PR94b, PFG97, PGAB+05, PGAB+07, PG002, PY95, PTH+01b, PS01b, QHC17, QB12, RaB98, RBB97a, RBB97c, RH01, RRAGM97, RS013, RS06, SGJ+03, SPM+10, SLJ+14, SWHP05, SCP97, SEF+16, SPL+12, SCL12, SM02,
SM03, SSC97, SJ02, SSSS97, SC96b, SKH96, SJK+17a, SJK+17b, TSBO2, TSB03, TTSY00, Ten95, Tha98, TBG+02, TGT10, Tra12b, TFGM02, TFZZ12, VFD02, VY02, WN10, WAS95b, WM01, WT11, WT12.

Performance
[WT13, XF95, XH96, XKL13, YC98, Yan94, YWC11, YS93, YWCF15, ZLGS99, ZJK05, ZH06, ZSnH01, ADBP15, Ahm97, ADLL03a, ADLL03b, Ano03, AFST95, BDP+10, Ber96, BDV03, BFM96, BFM+96a, BFIM99, CRE01, CAHT17, CLYC16, CBPP02, CBMC08, CHKK15, DM95a, DL10, DO96, DWL+10, DE91, DUv92, EFR+05, ESM13, FA01, FD02b, FE17, FS14, FME+12, Fin97, G4C+07, G9K7, GR96, GH94, GML+16, GL96, GLDS96, GL97c, GL99, GWVP+14, HDDG09, HW01, HASn00, HAJK01, HMO+19, HK10, HSVC11, HHA95, HG12, HcF05, JKKH08, JMJ+11, JKN+13, KBP16, KKKM15, KS13, LB96, LC94, LC97, LBH12, LCR96, LB06, LL01, LJK03, LSK04, MC17, MP95, MSO15, MSW+05, MSL12, MABC96, MHC94a, MSZG17, MJPB16, MGC+15, NU05, NFG+10, OII01, Old02, PG8+13, PHW+13, PKG+10].

performance
[PF05, PMZM16, PTW09, Rab99, RMS+18, Reu03, RGD15, RJD14, Sep93, SFO95, SW95, Sl05, TEE+11, SK00, SFLD15, TMC09, TSP95, TG09, TM14, VDL15, Wor96, YCL14, ZSK15, ZW13, dAT17, HS95a, GH04, LCHS96, SSH08].

performance-aware [MSMC15].

Performance-based [YWC11].

Performance-Portable
[JSS+15, DWL+10, DWL+12, FAF16].

performance-prediction [BDV03].

performance/cost [GWVP+14].

Performances [GFV99, DS06b, IM94].

Performing [CC99].

Peridynamic [MSZG17].

Periscopes [LLG16].

Permutations [CC99, LTDD14].

Persistent [Man01, SG12, HMS+19].

Persistent-Sets [SG12].

Personal [SSS97].

perspective [Sni18].

Perturbation [KN17].

Perverse [Rol08a].

PES [MK94].

Pessimistic [BCH+03].

Petaflops [LSG12].

Petascale [CGKM11, CBG18, ZWL13, Gei01].

Petersburg [Mal95].

Petro[410].

Petri [CNM11].

PFSLib [LL95].

PGAS [SWS+12, SJK+17a, SJK+17b].

Phase-field [TPK15].

Philo [BB18, DSGS17, MTK16, OTK15].

Philadelphia [ACM96b].

PHOENICS [SZBS95b, SZBS95a].

Phoenix [ACM03, IEE95b, Ten95].

Photo [JFGRF12].

Phylogenetic [MR12, LBH12].

Physics [GT94, KH15, VW92, WBH97, ANS95, BPG94, DMW96].

PIC [BDV03, HT1+16, JL18].

Picos [YAJG+15].

Pilot [OS97, CCG10].

PINEAPL [DHK97].

Pinhole [NH95].

Pipe [MTU+15].

Pipeline [GAMR00].

Pipelined [GAML01].

Pipelines [MAGR01, FWS+17, RKBA+13].

pippelining [MM11].

Pisa [SI96].

Pitaevskii [LBB+16, LYSS+16, SSB+16].

Pittsburgh [ACM96c, ACM04, Ham95a, IEE94d].

Place [HMS+19, Zel95].

Plant [FO94].

PLAPACK [van97].

PLASMA [ZL18, YKL17].

Plasmagranulesforsenforschung [BL94].

Plasmas [CFF19].

Platform [BKGS02, BB18, NO02b, PFG18, WTTH17, BSH15, CB11, Cza13, DWL+10, DWL+12, HTJ+16, HHA95, JR13, NO02a, XW13, YSL+12].

Platforms [AIM97, HD00, JML01, ZB97, GGC+07, GFB+14, MBBD13, TPK15, TS12b].

Pless [BL95, KN17].

PLIERS [MMR99].
plug [MS99b], plug-in [MS99b], plume [JL18], plus [HDB+13], PMAc [PTL+16], PMD [Che99], PML [Ram07], PMPIO [FWNK96], PMPIO-a [FWNK96], pocl [JSS+15], Point [GBS+07], HC10, KV98, ADL03a, ADL03b, Point-to-Point [GBS+07], HC10, KV98, ADL03a, ADL03b, Pointers [LRT07], Poisson [BP98, WJ14], Poland [BDW97], Polder [OS97], Policies [CML04, PZ12], policy [MMM13], Polling [DCPJ12, Pla02, DCPJ14, SH96], Pollutant [RSV+05], Pollution [AKK+94, BZ97, AMS94, BHRS08, LPD+11, McK94, Pan95b, VVD+09], Practice [ACM11, GN95], Practice-driven [ACM11, GN95], precinct [ACM11, GN95], Pre [AC17], Pre-processor [AC17], Precedence [EGR15], Precedence-Constrained [EGR15], Precise [FJK+17], Precision [Ano98, Kha13, ZC10, JPT14], Preconditioning [GFPG12, ABF+17, MM92], Preconditioner [BBS99, FSXZ14], Preconditioners [Hae96], Preconditioning [Nak03, GGC+07], predictability [GRRM99], Predicting [RAGM97], Prediction [MOL05, WHDB05, ZJK05, ADR+05, BDV03, CMV+94, HHA95, RA17, SEC15, SC96b, SSN94, Was95a, ZAT+07], Predictive [FJK+17], Preemptive [BBH+13], Wit16, ABC+00, Post-failure [BBH+13], Post-ISA [Wit16], Poster [JPL17, LZH17], POSYBL [Mat94], Potential [EGC02, Gro01a, KS15a], Potts [KO14], POV [FFB99], POV-Ray [FFB99], Power [LWZ18, LB96, EZBA16, FO94, HK10, Nel93, Bri95], Powered [NE98], PP [IEE96d], PPARD [PPT96b, PPT96a, PPT96c], PPARD/PVM [PPT96b, PPT96c], PPPE [CDH+94], PPSN [DSM94], Practical [BHJ96, BCP+07, CZG+08, RHG+96, TGBS+05, AMS94, BHRSO8, LPD+11, McK94, Pan95b, VVD+09], Practice [ACM11, GN95], Praktische [MS04], Pre [AC17], Pre-processor [AC17], Precedence [EGR15], Precedence-Constrained [EGR15], Precise [FJK+17], Precision [Ano98, Kha13, ZC10, JPT14], Preconditioned [GFPG12, ABF+17, MM92], Preconditioner [BBS99, FSXZ14], Preconditioners [Hae96], Preconditioning [Nak03, GGC+07], predictability [GRRM99], Predicting [RAGM97], Prediction [MOL05, WHDB05, ZJK05, ADR+05, BDV03, CMV+94, HHA95, RA17, SEC15, SC96b, SSN94, Was95a, ZAT+07], Predictive [FJK+17], Preemptive [BBH+13], BBGL96], Preface [DKD07, OL05], Prefetching [BIC+10], Prefix [WJ12, DK13, MBY16], Preliminary [BF98, Wal01a, WLK+18, RJC95, RLD+13, SWS+12], PREMER [VBB18], Preprocessors [Ano01a], prescription [MR+96], Present [Dar01], presented [ACM90], preservation [IEE94c], Preserving [RNPM13], Press [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b], Pricing [RR00], Primitives [DDL00, FST98a, ADLP15, CIJ+10].

private [Str94]. privatization [KRG13].

Probabilistic [LAdS+15]. Probability [QRMG96, Sta95b]. Problem

[BSH15, DALD18, DAK98, GAMR00, ICC02, Lee96, MTS94, RLVRGP12, ZSnH01, AB93b, DSM94, GM94, GKF13, HMKV94, IHH05, MM92, SL00, SP11, Cza13].

Problems

[ASA97, BHM94, BHM96, BPMN97, CGPR98, EML98, HAA+11, DK02, MBS15, Nak03, Riz17, AL96, CEGS07, FR95, SC96a, SL00, SP11, Cza13].

Problems

[ASA97, BHM94, BHM96, BPMN97, CGPR98, EML98, HAA+11, DK02, MBS15, Nak03, Riz17, AL96, CEGS07, FR95, SC96a, SL00, SP11, Cza13].
Productivity [BS07, KaM10, Wit16].
products [Ano97, Bra97]. profile [TWF009, WFT014]. profile-driven [TWF009, WFT014]. profiler [AS92]. profiles [Wi94]. profiling [GPL+96, LZYH19, Rab99, Vete02].

Program [Ano96d, Ab93a, BMS94b, CHPP01, Cot97, EML98, MM95, MK17, MRV00, Ney00, PS01b, TSY00, THN00, UTY02, CDZ+98, JF95, LP00, LCC13, OMK12, PPP89, SAI10, TNI17, TMPJ01, ZL96]. programación [VP00]. Programmable [OA17]. Program code [BL94]. Programmer [Gua16, Wit16]. programmers [CGG10].

Programming [ACM90, Ada97, ACGR97, ASA97, ACJ12, Ano96b, BBG+10, BLP93, BHV12, BF01, BBG+10, BK000, CMK00, CDK+01, CKWH16, Cha02, CZG+08, CF01, Cza03, DM98, DAR13, DDL00, DK06, DWL+10, EM00a, EM00b, FTVB00, FW+95, GLRS01, GLS94, GLS99, HA11, HDB+12, HDT+15, KKH03, Kep05, KP96, KMWH10, KVH97, Lad04, LAL1, LLRS02, MS0GR01, Mat94, Mat95, MCD+88, NO02b, SPM+10, SK01, SS01, SNN98, SHH94b, ST20a, ST02b, SG010, Spt02, TTP97, VT97, Vre04, Wal01a, Wal02, W097, YM97, YHGL10, YCA18, ACGd01, AMvH15, Ano95c, Ano00b, AB13, BJ13, BCA+06, BB94, BS96a, BKH+13, CLYC16, Cha05, CEF+95, CDDH+94, CGH+14, DWL+12, Dun92, EASS95, EV01, FSG19, FB95, FB96, Fan98, FSTG99, F04, Fra95, F0H+13, FF95, GZK12, GE96, GBH14, GBH18].

programming [GRTZ10, HTA08, HS93, HZ94, HDB+13, HVSH95, HSW+12, HZG08, KDS012, KOB01, KSG13, KSL+12, KLV15, KPNM16, KFSS94, KKK+08, LV12, LFS93a, LFS93b, LH98, LPD+11, LLH+14, MMB+94, MTVP96, MSP93, MC99, MGC+15, NO02a, NK05a, NYNT12, NBGS08, OIS+06, Oh14, OW92, Pac97, PVKE01, PF05, Q03, RJDH14, iSYS12, SSKF95, SYR+09, Seg10, SPK96, SBF94, SPL99, SHH94a, SD99, VP00, Vos03, Wal01b, Wan02, WCC+07, WADC99, WYLC12, WLYC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE+17, Che10, SD13].

Programs [AJF16, Beg93b, BKSH01, BGK08, BGG+02, BDL98, BGLO0, CSW12, CRE99, CHPP01, CD98, DLB07, DMMV97, Di14, FJK02, FJK+17, GR07, GTH96, GL04, GC05, HC10, HKN+01, HM01, KFL05, KL94, KSJ14, KKV01, KS01, Mar09, MVY95, MOL05, MBE03, MKW11, MCLD01, MJ15, NSZS15, NE98, NE01, NPP+00d, OM96, P00, RH01, RFG+00, SGZ00, SB+04, SR96, TGBS05, We14, Wis97, ZL+12, Beg92, Beg93c, Beg93a, BCK+09, BMP03, RE01, CLEJ+15, CGL+93, CH94, CRM14, CF06, DKF93, DFK94b, EP06, E+17, FLB+05, FKL08, GG09, GRMM09, GSK+11, GB94, HD11, HZ96, HLOC96, HEH09, KCD+97, KS13, KO14, Kom15, LGK10, LLG12, LL16, LBB+16, LYY+16, LMM+15, LZC+02, LCC+03, MT96, M6S18, Mor95, NBK99, Obe96, OdSSP12, PES99, PAdS+17, RAS16].

Programs [Reu03, RRG+00, SSB+16, SKS01, SMC08, SZ11, SR95, SY95, SC96b, TM17, THH+05, UGT09, VVD+09, YSVM+16, YSM+17, YYY+12, ZJW18, Z11].

Progress [BR05, LAAS15, SPH+18, MLA+14, MC94]. Progress-Dependence [LAAS15]. Project [BHK+06, BH15, DHH97, MRV00, ABC+00, CD+94].

proteins [BHW+12, BBH+15, FMS15].
Protocol [CAWL17, GSY+13, kL11, LMM+15, RA09, XF95, BDB+13, CwCW+11, DDYM99, MN91, MB00, ZPI06].

Protocol-based [LMM+15]. Protocols [BCH+08, DM93, LH98]. Protoplanetary [dIFMBdIFM02]. Prototype [Ano01b, FHP+94, MMSW02, BK96, CCF+94, KYL03, KYL05]. prover [Sut96].

Provide [Add01, LMRG14]. Provides [Ano98, Ne193]. Providing [GKP97, Zai12].

Proving [MS96b]. PRS [UCW95].

Pseudospectra [BKGS02].

pseudospectral [Bri95, MRRP91].

PSPVM [BWT96]. Pthread [ZAT+07].

Pthreads [AS14, TS12b]. PTX [SYS12].

Public [Str94, GWVP+96, Ne193, RST02].

Public-private [Str94]. Puma [BS96b]. purely [HSE+17]. Purpose

[BDT08, Ch110, SZBS95a, Sun94a, ADP15, CMB+08, KPNM16, PF05, SK10, SZBS95b]. PVaniM [BCLN97, TS98]. PVFS [IRU01].

PVM [AD98, BL94, BDL96, BDW97, CHD07, CHD09, CD01, DKD05, DLM99, DKL00, DLO03, Kka02, KKD04, LKD08, Mc96, MTW96, RWD09, WI94, AJ97, Akm97, AS92, AGCR97, ADCT98, AL92, AG+95b, AB95, ASA97, AL96, ARL+94, AKK+94, AP96, Ano94b, Ano95e, Ano96b, An96c, ABCI95a, ABCI95b, ABG+96, AGL96, AB95b, AB93a, ADMV05, BSN95, BLP93, BFL99, BBGL96, BG95, BS93, BDG+91a, BDG+92b, Beg92, BDG+93b, BDG+93a, Beg93b, Beg93c, Beg93a, BDG+95, BS96a, BDG+xx, BL95, BR95b, Ber96, BJS97, BT96, BW96, BG94a, B96, BG94b, BG94c, Bor99, BCD96, BRR99, BFZ97, BID95, BMS94b, BFM96, BFS96a, BMFT96b, CMV+94, CP97, CD95, CKO+94, CCK+95, CSPM+96, C95a, CGPR98, CG93, CDHL95, CDH+95, CF91, CZ96, CS96, CG96, CG99a].

PVM [CSC96, CDGM96, CPR+95, CT94a, CT94b, CPF96, CT02, CD98, CTK01, DG95, DK94a, DDYM99, DM95b, DM95a, DP94, DMM97, DGF97, DFN12, D+91, DGMS93, DGM93, DHP97, DPZ97, EP96, EM94, EGD92, ED94, EM02, EML98, EML00, ES11, EMO+93, ESM+94, EK97, FMBM96, FD96, FL96, FH95, FSH99, FO94, FSTG99, FJBB+00, Fin97, FD97, FS97, For95, FS93, GRV01, Ga97, GCBM97, GS91a, GS91b, GS92, GS93, Ge93a, Ge93b, GDB+93, GBD+94, Ge96, GKP96, Ge97, GKP97, Ge98, GSxx, Ge100, Ge101, GTH96, GB96, GM95, GSHL02, GFV99, GG99, GG96, GOr01, GHL97, Gre95, Gre94, GL97b, GM95, GlLy97, HB96a, HB96b, HSMW94, HJ98, Har94, Har95, HBT95, HPS+96, Hem96, HEH98, HT9799, HVSH95, HH95, HRS97, Huc96, Hum95, HS95b]. PVM [IT99, IvdLH+00, ID94, IKM+01, IKM+02, JAT97, JH97, JML01, JW96, JC96, KBA02, K93, KK98, KP96, KBM97, KDL+95a, KDL+95b, KG96, KCP+94a, KCP+94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAHS96, KK02b, LGM00, LB98, LSZL02, LHCT96, wL94, LFS92, LFS93a, LFS93b, LH95, LC93, LY93, LYY93, LW95, LHZ97, LKC96, LDC97, MW98, Man94, MVTP96, Man01, MP95, dIFMBdIFM02, MTTS94, MFTP95, MSCW95, MSP93, Mat94, Mat95, MMU99, Mat01b, MRV00, MK97, McK94, MC98, MFC98, MVY95, MS96b, Mic93, Mic95, MT96, MS99a, MS99b, MH94a, MH94b, MRH+96, MS95, MC99, MWO95, Ne93, NP94, Neu94, NBK99, Nee00, NB96, NA99, Nov95, Obe96, Ols95, OPP00, Ott94, OWSA95, PPR01, PK98, PPT96b, PPT96a, PPT96c, POL99, PT01, PKYW95]. PVM [Per96, Pet97, PTT94, Pla02, PV01, PD98, PY95, PL96, Pus95, QRG95, QRM96, Qu95, QMG00, RRO0, RS95, Rag96, RS95, RHG+96, RRAGM97, Rol94, RGD97, Saa94, SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98,
SGS95, SSS99, SPK96, Sep93, Sev98, Shi94, SA93, SR96, SHH94a, SHH94b, Smi93a, SBR95, SC96a, STH97, SME93, SGL+00, SGHL01, SCL97, SSSS97, Sta95b, SY95, SYF96, SC96b, Str94, SKH96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SGM94, Sun96, STMK97, SN01, SCL00, Sur95b, Sur96, SL95, STM96, TC94, TDB96, TD98, Tsu95, Uhl94, Uhl95b, UH96, UMK97, VSRC94, VSRC95, VB99, VAT95, WKS96, WH94, WCV96, WAS95b, WO97, Wis96a, WL96a, Wis96b, WL96b, WCS99, Wu99, WLC07, XWZS96, XF95, YG96, YKI+96, ZPLS96.

PVM [ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, ZG98, Zol93, van93, Ano95b].
PVM-AMBER [SL95].
PVM-Based [WAS95b, FO94, PY95, Sut96, ZPLS96, LSZL02, TD98].
PVM-GRACE [YKI+96].
PVM-Implementation [BJJS97, Huc96].
PVM-RPC [KS97].
PVM/C [GTH96].
PVM/MPI [AD98, BDW97, CHD07, CHD09, CD01, DKD05, DLM99, DKP90, DLO03, Kra02, KKD04, LKD08, MTW96, RWD09, AGCR97, SN01].
PVM3 [IM94].
PVM3/AP1000 [IM94].
PVMaple [Pet00a, Pet00b, Pet01].
PVMe [BR95c, BR95b].
PVMGeant [DZDR95].
PVMP [FD06, FDG97a, FDG97b].
PyCUDA [KPL+12].
PyOpenCL [KPL+12].
Python [BL97, DPS05, DPSD08, Di 14, GFB+14, SS08].
PyTrilinos [SS08].

Q [KMH+14, LM13, MV17].
QAPs [Tsu12].
QCD [BLPP13, GM18, SVC+11].
QCG [ACH+11].
QCG-OMPI [ACH+11].
QCMPI [TJD09].
QR [GKK09, LC97b].
QSATS [Hin11].
Quadratic [Cza13].
Quadrics [YSP+05, LCW+03].
quadtree [HS95b, PGBF+07, SCC96, Sur95b].
qualitative [BLP93].
Quality [Boi97, BDA+18, RFG+00, WHDB05, Ano94i, Lan09, Boi97].
Quality-of-Service [RFG+00].
Quantifying [AKE00, LDCZ97].
quantitative [BLP93, BBH+15].
quantization [HE15].
Quantum [BCGL97, BCL00, GRTZ10, Hin11, MGG05, NM93, SK00, SSSF00, TJD09].
Quasi [DDY99, Pla02, ZB97].
Quasi-asynchronous [DDY99].
Quasi-Newton [ZB97].
Queens [Rol08b].
Queensland [ACDR94].
Query [AR01].
Quest [MWG97].
Queue [NSS12, CG99b, PTL+16, Sep93, ZA14].
queues [Man98].
quicksort [MMO+16, MMO16].

R [BBH12, JPO12, LR01].
R&D [Str94].
R&D-100 [Str94].
Race [CF95, KSJ14, DKF94a].
Races [PPJ01, SAL+17, DKK94b, LLG12, ZRQA11, EPP+17].
Radial [RB01, KRC17].
Radiance [GCBM97, KMG99, RC97].
radiation [SCJH19].
Radiology [GA96].
Rajeev [An00a].
Raleigh [Agr95a].
Ramesh [Sp02].
Random [HT08, LTDD14, Lan09].
Randomized [Tra98].
Range [KBM97, MH01, BMPZ94a, PARB14, She95].
rang-join [She95].
Rank [Hat98].
Ranking [Tra98].
Rapid [FWS+17].
RASC [YCL14].
rate [BB+14, YPA94].
rational [BBH+13b].
Ray [CG93, DP94, KGB+09, FWS+17, SGS95, FFB99].
Ray-Tracking [DP94].
Rayleigh [TVV96].
Rayleigh-Benard [TVV96].
rCUDA [PRS16, RSC+15, RS19, SIRP17].
RDMA [GYS+13, LW04, Pan14, RA09].
RDMA-Based [LW04].
RDMA-Enabled [GYS+13, Pan14, RA09].
Re [MCP17].
Re-Vectorization [MCP17].
Reaching [BHS+02].
Reaction [HF14a, HF14b].
Reactive [BCL00, He93].
reactor [ANS95].
readability [SM12].
Reading [HK95].
Ready [Bri02, DZ98b].
Ready-Mode [Bri02].
Real [LHL910, NSLV16, Tho94, UP01, YGH+14, Ano94f].

S [Hin11].
Select [Hin11].
Selection [Hin11].
Selection-sort [SIF+15].
Semi [Bri02].
Semi-automated [Bri02].
Semi-supervised [Bri02].
Semi-supervised-learning [Bri02].
Sensitivity [Lac99].
Separate [Lac99].
Separate-and-merge [Lac99].
Separate-merge [Lac99].
Sephist [Lac99].
Sewell [Lac99].
Sewell-Blum [Lac99].
Fer04, FLB+05, JR10, ZWZ+95, SKD+04].

Real-Time [BP01, YGH+14, LHLK10, Fer04, ZWZ+95, SKD+04]. Real-World [NLV16]. Realistic

[MYI11, ZSnH01, CKP+03]. Reality [ACM96a, AN93f, NM95, W16]. realizing

Rechnen [AN94c, BL94, MS04].

Recognition [CC17]. recomputation [KKBA+13]. Reconfigurable

[MF98, SP+10]. Reconfiguration [CS14, SMCM15].

Reconstruction [BM97, DYN+06, GA96, LSSZ15, OH10, RAGJ95]. Record

[UK17, CRD99]. Record&Replay [KSV01]. record/replay [CRD99].

Recovery [SBF+04, BBH+13b, BDB+13, LFS93a, LFS93b, SSCC95, ZWZ05].

Rectangle [CSW99]. rectified [WLBD15].

Recurrences [ACGR97]. Recursive

[DS00, PWP+16]. Red [van93].

redesign [HL17]. Redistribution

[DDPR97, HC06, WO95, WO96, HC08, KN95]. Reduce [PSM+14]. Reduced

[SW12]. Reducing

[CRG16, JE95, BCM11]. Reduction

[FKH02, MFPP03, SG12, HL17, Je93a, MLVS16, Pan95a, PQ07].

Reductions [PWP19]. Redundancy [TS12a].

redundant [KJ+16]. Reference

[GHLL+98, NAG05, SOH+98, YM97, AN09a, AN09c, AN09b, AN09d, SOH+96, Per97, AN96a].

Refinement

[MRB17, Ran05, CLSP07, DLR94]. regions

[LFL11]. regression [RBA17]. Regular

[HL11, NHT02, NHT06]. Reims

[MC80]. RELAP5 [SBR95], related

[SD16]. Relating [EPML99], relation

[DO96, Hen96]. Relationship [Dan12]. relativistic [BHS18]. relaxation [OKW95].

Reliability [CGZQ13]. Reliable

[SE02, ARn95]. Remark [SWH15].

remedies [ALW+15]. Remo [IEE95h].

Remote

[BM10, HDT+15, IFA+16, OCY+15, Ts07, WBBD15, AGLv96, FHC+95, GH14, GBH18, HGMW12, RSC+15, SIRP17, SH96].

Remote-Scope [OCY+15, WBBD15].

Remotely [GCGM99, GGCG01, GCGS98, VLO+08, GGCS99]. Remoting [MGL+17]. removal

[ZZZ+15]. Removing [ZDW18].

Rendering

[GCBM97, LNZL02, SU96, UCW95].

Rendezvous [RA09]. Reordering [Hat98].

Reparsification [KG09]. Repeated

[WH94, SHI94]. Replacement [GHD12].

Replay [CFMR95, HLOC96, UALK17, CRD99, MT96, NBK99, XLW+09].

replay-based [MT96]. Replication

[WC09, KJ+16, ZDW18].

Replication-Based [WC09]. Report

[DS09]. Reports [AN09a, ACM11].

Representation

[BM10, K512, MDM17, SML17, CCM12]. reproduce [AV+16]. Reproducible

[GL99, HCA16, XLW+09]. Requirements

[CDG99, GT07, Ber96, KBG16, LCVD94a].

Research [AN96d, BR02, MC94, SL94a, SGH10, Ah95, BPG94, LP00, Oed93].

Reservoir

[OWSA95, ZAFAM16, ZZ95, AN09d].

Resident [DB+14]. Resilient

[CGH+14, Gu16, LCMG17, LG17, LBB+16, MLVS16]. Resolution

[MA05, Str94, BAD07, KN17].

Resolving [ST97]. Resource

[BRG97b, BSH15, KIK98, SIS17, YSS+17, DZ96, FLD96, NEM17, ZA14]. resource-conscious [ZA14].

resource-restricted [NEM17]. Resources

[LSB15, NAW+96, Kos95b, R+92].

Response [BBC+00]. Restart

[SSB+05, LM17]. restarted [dH94].

Restoration [FJBB+00]. Restore [Gu16].

restricted [NEM17]. Restructuring

[KAMAMA17]. Results
MMRP11, PWD+12, SPK+12, Trä12a].

ScalAPACK [BV99, BRR99, DHP97].

Scale [AKE00, BHW+17, BZ97, BHNW01, FFP03, MFPP03, SM03, TGEM09, WMC+18, WT12, AASB08, BCA+06, BJS99, BCH+08, Che99, DZZY94, FME+12, Gua16, Kos95b, LS10, MLA+14, PTL+16, PD11, RMNN+12, SvL99, TBB12, WLNLO6, WT11, WT13, ZKRA14, ZA14, Ben18].

SCALE-EA [Ben18], SCALA [TFGM02].

Scaling [CC17, KFL05, SLJ+14, FKLBO8, Ga03, LFL11, PDY14]. scan

[AAA16, YLZ13], scanline [CT13], scans

[NAJ99], SCASH [SHH01], SCATCI [ART17], scatter [BCD96, MTK16].

Scattering [BCL00, NZZ94, OMK99]. SCF [MM95]. schedule [NAAL01]. scheduler

[ADDR95, TCBV10, WRSY16]. schedulers

[NP12]. Scheduling [BBH+06, BSH15, CML04, DMB16, EGR15, GDM17, GSHL02, GHL97, HC06, JW96, MB15, NI0+03, TJEP12, APB+16, DZ98a, JKN+13, LHCT96, MKM12, NSBR07, OPW+12, Smi93b, SKK+12, SKB+14, WYL12, WLYC12, YWC11].

Scheme [CTK01, NLLE00, MW98, SBF+04, BBGL96, Bjo95, MRRP11, OKM12, SCC96, YPZ95, FM90].

Schemes

[PPJ01, WYLC12, WLYC12, ZAT+07].

Schmidt [CBY18]. School [VV95].

Schrödinger [DM12, ON12]. SCI

[FS97, HEH98, HUS00, RR01, ZHS99].

SCIDLE [ABG96, AGLV96].

SCIDLE-PMV [ABG96]. Science

[EGH+14, IEE95d, MM93, MD02, SM07, ACM06a, DMW06, HK93].

Sciences

[ERS96, H94, ZL96, ERS95]. Scientific

[AGH95, APJ+16, BGG+95, DMK+92, DT94, Gat95, GL97a, HJ98, KK02a, LkLC+03, Mar06, Nag05, Sin93, SSB+17, VY02, WN10, Bis04, DW94, SBG+12, TBB12, WT13, Ano97, Bra97]. scientists

[HW11, Str94].

SciPAL [KH15]. SCIPVM [ZHS99].

[OCH+15, BDB+13, WBB15].

Scoping

[RLDLQ12, WC15].

Scottsdale [IE95b].

Scratchpad [JAK17, MB12].

Scripting

[Ong02, KPL+12, Nob08]. scripting-based

[KPL+12].

SCTP [KPW05, ZIP06].

SDK [TK16].

SDSM [CCM+06].

Seamless

[KK92a].

Search

[BSH15, Cza13, IKM+01, Wal01b, FMS15, IKM+02, Wal01a, ZSK15, CB11].

Searches

[BSS00].

Searching

[JPT14, MM01, BA06, Wal01b].

Seattle

[ACM05, BS94, LCK11, Ost94].

Second

[Ano00b, BL95, DT94, DE91, IE94d, IE96d, IE96i, LHM16, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFM96, DMW96, FR95, KN17, Li96].

Second-Order

[BL95, KN17].

Secondary

[WHDB05, SEC15, ZA+07].

Seconding

[Ano93b, DKD08]. segment

[FIJ+14].

segment-based

[FIJ+14]. Segmentation

[KB02, AD95, CC95].

Seidel

[BG95, L99, Os95]. seismic

[AMBG93, CL95, KEGM10, LM13, QHCC17, RMNN+12, SSS99, WCR96].

Seismograms

[DFP94]. Select

[KKD03].

Selected

[DH96, MTW07, OL05, TB14, CHD09, Cha05, DKD07, JC17]. selecting

[PTL+16].

Selection

[CKMWH16, SnN+19, PGBF+07, WKS96, ZW+17].

Selecting

[Nak03].

Self

[NS12, SLJ+14, TGT10, VFD02, NSBR07, WYL12, WLYC12, YWC11].

Self-Consistent

[TGT10]. self-scheduling

[NSBR07, WYLC12, WLYC12, YWC11].

Self-Submitting

[NS12].

Self-Tuning

[SLJ+14].

Semantic

[EADT19, MTU+15, DKF94a, OA17].

Semantically

[MKW11].

semantics

[RNP13].

Semaphores

[TP07].

Semi

[CT94a, Bjo95, PKT99, TC94, CT94b].

semi-coarsening

[PSL99].

semi-implicit

[Bjo95].

Semi-Lagrangian

[CT94a, TC94, CT94b].

Semiconductor

[GN97, Ano03, LS10].

Seminar
Send [GPC’17]. Sender [BCH+03]. Senser [GGCM99, GGCG001, GCGS98, VLO+08, GGCC99]. sensitive [GKCF13]. Sensitivity [dLR04]. Separable [Ben01, CdGM96]. September

[Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CLM+95, CHD07, CNW95, CD01, CDND11, DKD05, DKD07, DLM99, DKP00, DL003, EJL92, FK95, FR95, GH+93, IEE93d, IEE94c, JPTE94, KGRD10, Kra02, KKD04, LKD08, Mal95, MTWD06, OL05, PSB+94, RWD09, SPH95, SM07, TBD12, VV95, VW92, WPH94, YH96].

Sequence [GMU95, SMM+16, AMHC11, TSZC94]. sequences [GAVRRL17, SdM10]. Sequencing [VPS17]. Sequential [EK97, RPM+08, GGH99, SR95, TNIB17, TSZC94]. Serial [SWH15, HPS+96, HWS09]. serialization [CFKL00]. Serialized [KH10]. Sefielles [BL94]. Series [Nag05, BR94]. Server [Ano93f, FSLS98, KS97, Mat01b, Sch93, Sto98, Vis95]. Servers [CGC+02, SIS17, GK97]. Service [RFC+00, LS08, SPK+12]. Services [FC05, AAC+05, ZKRA14]. Session [NYNT12, ZL96]. Set [BDA+18, SW12, WL96a, Ano00a, Ano00b, She95, WL96b]. Sets [SG12, CGL+93]. setting [GL95a]. Setup [NSLV16]. Seventh [BBG+95, HS94, IEE93b, IEE95g, IEE96h, Eng90, Y+93]. several [GBR15]. SGI [Che99, CML04, KMG99, LB96, LL01, LK03, LSK04, TW12, ZSh01].

SGI/CRAY [Che99]. SGI/CRAY-T3E [Che99]. shadow [SOA11], shallow [dIAMC11, dIAMCF112]. Shane [SD13]. Shanghai [IEE97a]. SHARE

[AAn92, Ano93f, Ano94g]. Shared [BCA+06, BME02, Bri10, DM98, DMB16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HTO1, KB98, KSHS01, LRT07, Luo99, MBE03, MCD+08, Mül02, NPP+00d, PKBK00, Pok96, PS00b, Ros13, SS01, STY99, STO2b, Thr99, VS00, VT97, ABCI95a, ABCI95b, ADMV05, BMG07, CBPP02, Cha96, CCM+06, CS00b, DBVF01, DS96b, DPZ97, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JE95, KJA+93, KC06, LKL96, MLC04, PK05, RGD15, SHHI01, SL94b, SFL+94, SSC96, TSY99, TSY00, Vos03, WMRR17, WRRM19, YWW95, YX95, Cha05].

Shared-Memory

[DP00, HDB+12, NPP+00d, Pok96, Thr99, PS00b, ABCI95a, ABCI95b, BMG07, GL96, GL97c, KJA+93, PK05, TSY00]. Sharing [Att96, CML04, CB16, DiN96, JAK17, KK98, JE95, Ott93, PRS+14]. shear [JAT97]. ShearLab [KLR16]. Shearlets [KLR16]. SHMEM [BBH14, Hos01, LSK04, Sch96a, Sch96b, SS01]. Short [KBM97, MH01, BMPZ94a, PARB14]. Short-Range [KBM97, MH01, BMPZ94a, PARB14]. shorter [NB96]. Showcase [USE00]. SHPCC [IEE92]. SHPCC-92 [IEE92]. SIAM [BBG+95, DKM+92, Sin93]. Side [KCCW07]. Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, MB00, TGT05, TRH00, ZSG12, bTO1a, BM00, DDB+16, GBH18, LSK04, MS99c, PGK+10, GBH14]. SIGCSE [ACM06a]. Signal [IEE95c]. signals [Uhl95c]. Signatures [Gro00]. significance [AMHC11]. silent [FME+12]. silicon [Ano03, Goe02]. SIMD [BvDB94, HS95b, KDT+12, LL16, Sur95b, VSW+13]. Simple [MSF00, Mü01, SC04, ITR99, JHH07, Nes10, PNV01]. simulate [Heh93]. Simulated [BHM94, BHM96, FH97, RSBT95]. Simulating

[DLM+17, KDL+95b, KDL+95a, NFG+10]. Simulation [CDMS15, CCBL15, DMMV97, DZDR95, GSI97, GM95, GJN97, Ham95a, JML01, KBM97, KMK16, LLRS02, MFTB95, MPD04, MANR09, PCY14, PKYW95, PZZK02, RR00, RDMB99,
Simulation-Based [ZWJK05].
Simulations [CGS15, CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG07, SM02, YPAE09, ADT14, ABG+96, BHS18, BADC07, CFF19, GM18, Hin11, JMS14, LS10, LSVMW08, RMNM12, SU96, TOC18, WWFT11].
Simulator [CAM12, MRV00, UTY02, WPC07, AMV94, MB00, PWD12, WZWS08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b].
Simulators [SB95, AVA16]. Singapore [IEE96d]. Single [BM00, HF14a, HF14b, MB00, URKG12, AGIS94, KKL11].
Single-Chip [URKG12]. Single-sided [BM00]. single/multigrid [AGIS94]. singleton [TVCB18]. Sinks [JPT14]. Sites [Ano98]. Sixth [HK95, IEE96c, MMH93, SW91]. size [GKCF13]. sized [JLS+14]. Sizes [DALD18, ZSnH01]. SKaMPI [KRS99, RSFM98, RH01, Reu01, RST02, Reu03].
SkelCL [SG14]. Skeleton [GB98, IH04, RDH14]. Skeletons [Ser97].
Skjellum [Ano95c, Ano00b]. Slack [KFL05, FKL10B]. SLAE [ADRT08, AK99]. Slave [LTR00, HP05].
SLEPC [DR18]. SLICC [KBHA94]. Slices [GSHL02]. Slim [WMC+18]. Small [HLP11, TS12b, Ano94b]. small-footprint [TS12b]. Small-World [HLP11]. Smith [KDS012, RGB+95]. Smithsoninan [Str94]. smoking [YSL+12]. SMP [Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMDMBD+07, HD02b, Hus00, HIP02, JKHKO8, KOI01, KKH03, KMG99, KAC02, NOO2b, NOZ02a, ST02a, TOTH99, Tra02b, YWC11, bT01a].
socket [LS10]. Softshell [SKK+12]. Software [Ano94i, BME02, BPG94, BDG+xx, CZ95b, ESB13, FFP03, GFB95, Gre95, HPR+95, HPS94, HHA95, IEE95i, IEE96h, IFT95, KS15a, K94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, Sil96, Swa01, TDBEE11, VdS00, Ws01, Wn02, Ano97, BSC99, Boi97, Bra97, BR94, CMV+94, CBPP02, DPZ97, Hum95, H97, J979, JM94, MK94, Neu94, OId02, PHA10, PK05, PKG+10, RAS16, SHH01, Sch94, Sei99, SPH95, Str94, WGG+19, ZGN94, Ano94i, KG93, Sil96]. Software-Managed [LB16]. Solan [CGB+10]. Solaris [Ano01a]. solidification [JLS+14]. solids [Hin11]. Solution [DWL+10, FBSN01, HO14, MC18, RPM+08, SEF+16, Tsu00, VRS00, DWL+12, IM95, JK10, LSR95, MAL95, ON12, P5R+14, SC96a]. solutions [AGIS94, LMG17]. Solve [Hog13, Riz17, BAV08, Che99, GGGC99]. Solver [Ben01, BP98, CF01, HSMW94, IDD94, LZ97, SJK+17a, SJK+17b, WJB14, YKW+18, AMS94, CP15, CFF19, DM12, JR10, LM99, Lon95, OGM+16, RM99, SRK+12, SCC95, THM+94, ZZG+14].
Solvers [DFN12, DALD18, GK10, MSB97, NOO2b, Nak03, NHT02, NLRH07, QRMG96, RS97, WR01, ABF+17, ADLL03a, ADLL03b, ADDR95, BR99, CL93, DR18, MKP+96, MS95, NOO2a, Nak05a, Nak05b, NHT06, PR94c, QRG95, SHH08]. Solving
[ADRCT98, BHM94, BHM96, BV99, BG95, BDG+92, BSH15, DALD18, GFG12, Huc96, LLY93, MS02a, NF94, SAS01, SP11, SD99, BB95, DSM94, HHA95, LBB+16, LYSS+16, MM11, SBB+16, SMSW06, YSVM+16, YSMA+17]. SOM [GkLyCY97]. Some [BDT08, Múi01, Pet97, AL92, NN95, RSBT95]. Sopron [V95]. Sorrento [DKD95, DKD97]. Source [KS12]. Source-Code-Correlated [MM07]. Southeast [ACM95a]. Sowing [GL97a]. SP [BBG01, CE00, HMKV94, LC97b, WT11, WT12]. SP-1 [HMKV94]. SP-2 [LC95]. SP1 [BR95c, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, MP95]. SP1/SP2 [FHP+95, Fra95, FWR+95]. SP2 [BR95b, FHP+95, Fra95, FWR+95, HWW97, JF95, KB98, KH01, MABG96, XH96]. SPAA [ACM95b]. Space [CML04, CB16, H014, MS00, OFA+15, SAS01, SS01, TA14, SRK+12]. Space-Sharing [CML04]. Space-Time [HO14, SRK+12]. SPAI [BB99]. Spain [DM99]. SPAN [LHHM96, L96]. Spanish [VP00]. spanning [NCKB12]. Spark [KWEF18]. Sparse [AZ95, BBH12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADL03a, ADL03b, ER12, FJZ+14, GG99, Gra09, NHT06, XXL13]. SPEC [ANO03, MVW10, MBB+12, NA01, SGJ+03, TSB03]. Special [AM07, BDT08, BDB+13, BC00, CHD09, DKD07, DKD08, GSA08, MIP98, B95, Mar02, PN01, Ren01, Old02]. Specific [DM95b, DM95a, Olu14]. Specification [BG94a, Bds07, MGC12, MHSK16, BG94c, LD+11]. Specifications [OFA+15, WMP14]. Specified [GMGH97]. specifying [LPD+11]. specimen [Rol08b]. SPECT [BCD96]. spectator [MYI11]. Spectra [Str97, SR11]. Spectral [MW98, BCM+16, MSG+15]. spectral/hp [BCM+16]. Speculation [AEG16, SHLM14]. Speculative [RA09, DOSMM+16]. Speed [CDHL95, Tou00, AH95, AN03, BWT96, BID95, KMK16, CD++95]. Speeding [CSV12]. Speedup [VPS17, SP15, OLG+16, BPC+01, WMRR17, WMR19]. Sphere [CT94a, CT94b]. spheric [KT10]. SPICE3 [WPC07]. Spiking [CAM12]. Spin [HL01, KO14, K15]. splitting [TCBV10]. SPMD [BST+13, Dar01, KAC02, Wal00, Wal02]. SPMD-Like [BST+13]. Spokane [IEE93c]. Sponge [HSW+12]. spontaneous [EZB16]. Spring [AN04g, IEE93a]. SPTHEO [Sut96]. SPY [SSS95]. Squares [PWP+16, VRS00]. SR [YWCF15, ZLP17]. SR-JOV [YWCF15]. SR8000 [NNN00, TSB02, TSB03]. SS7 [LTL04]. SSGM [HPS+96]. SSS [MMH98]. SSS-CORE [MMH98]. St [Mal01]. Stability [DS800]. stable [JMDVG+17]. Stage [FSXZ14]. staggered [SM18]. Stampi [ITKT00]. Standard [DM98, GSI97, GLP+00, GL95c, Hem94, MIP98, NH95, SKD+04, SG10, Wer95, YKLD17, Ano94d, BBD+13, Bos99, Cla98, CG99b, DHHW93b, DOSW96, FB95, GK97, GL92, Hem94, Sti94, VM95, Wal94a, Wal94b, WD96, Ano97, Bra97, CG94, DOSW95, GLDS96]. Standards [FKKC96, Thr09]. Star [CDM93, Coo95a, Coo95b]. STAR/MPI [Coo95a, Coo95b]. Start [Gro02b, Hus98]. Startup [PS07]. State [ACM11, IEE94f, IEE95j, Wis96a, Wis96b, BTC+17, LF93b]. state-to-state [BTC+17]. states [NS16]. Static [NIO02, NIO03, RLRGP12, SCB15, SCB14]. Static/dynamic [SCB15]. Statics [TG94, TG94]. Stationary [MWW98].
Statistical [LR01, SNMP10, AMHC11, KKM15, Röh00, SL94a, Vet02]. Status [Bak98, DZ98b, GL95c, BDG+93b, FHP+95, Hem96, Sun96], stealing [TCBV10], Steepest [Sch01], Steering [GKP97, PK98]. Stencil [CGU12, WTT17, KD13, TBB12], stencil-based [TBB12], stop [Kos95b, ZG98]. Stereo [ZBd12, Qu95]. Steve [Ano96a, Ano99a, Ano99b, Nag05]. Steven [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. Still [HCA16]. Stochastic [DK02, LLRS02, MW98, PTMF18, RSV+05, JK10]. Stockholm [Eng00, HAM95b]. Stokes [Chc99, DLR94, HSMW94, IDD94, Lou95, PTT94, SCC95, ZZG+14]. stop [Gua16, LMG17]. stop-and-restart [LMG17]. Storage [ACM04, Hol12, LCK11, HP11, NFG+10, RGGR+18, ZJDW18]. stores [HSP+13]. straight [YULMTS+17]. Strategies [MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, T SZC94, VB99]. Strategy [AIM97, DIO2, Hat98, VPS17, ZB94, ZSG12, DKF94b, DR95, MLS12]. strayed [Rol08a]. stream [HSW+12, UGT09]. Streamline [CGC+11]. streams [TVCB18]. StreamScan [YLZ13]. Strength [Kon00]. String [KMM15, MM02, MM03], striped [KDS012]. Strongly [GAP97, ZZG+14]. Structural [PSS01]. Structure [CBL10, LAF15, SYF96, WHDB05, EPM99, SEC15, SY95, ZAT+07]. Structured [FB96, Mar06, MRB17, NLHR07, Ran05, Bis04, CLSP07, FR95, GBR15, JAT97, SMI93b]. Structures [GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. studies [DHP97]. Study [AIM97, BF01, BHLs+95, DARG13, EGC02, FPY08, GL97a, HHIC+18, KCR+17, LSB15, MM02, NSLV16, NA01, PK05, RRBL01, SCL01, TG94, AGR+95b, BJ13, BFD94, BJS99, BY12, Bri00, CBM+08, DXB96, ED94, FO94, JR13, KBG16, LPP+11, LLH+14, MS96b, PSK08, PGK+10, PSHL11, RSBT95, RJC95, TPD15, Wal01b, WLK+18, ZSK15]. Stuttgart [KGRD10, WPH94]. style [JPO12], sub [MJG+12]. sub-communicators [MJG+12]. subcircuit [HLO+16]. subdomain [CEG07]. subdomains [SHHC18]. subgroup [XHL+09]. Submitting [NSS12]. Subrange [Str97]. Subroutine [San94]. subsystem [BMG07, MABG96]. Subsystems [STMK97]. Subtle [SAL+17]. Success [Gro01b, LF+93a]. Successes [Gro01a]. Successful [Gro12]. suffix [DK13]. Suitability [Mat01b]. suitable [MAS06]. Suite [ACMR14, AKE00, BWV+12, MBB+12, Riz17, Ano03, BO01, MvWL+10, TG09, YSWY14, SNMP10]. Suites [MCS00, SJJ+03]. summation [HIM05]. Sums [ST17, MYB16]. SUN [BM00, SJ02, WSN99]. Sunderam [Ano95b]. Super [Gua16, XY95]. Super-Object [XY95]. Supercomputer [Ano93a, CLP+99, Str94, AAC+05, BGH+05, EFR+05, GL96, GL97c, KMH+14, NMS12, Ste94, G91b, MAB05]. Supercomputers [BP93, BDG+92e, EKTB99, KN17, WT11, WT13]. Supercomputing [ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93e, IEE94h, Liu95, Sch94, ACM94, ACM96c, Ano93g, BG91]. superlattice [Pri14]. superscalar [ACJ12]. Supersonic [CCBPA15]. Support [Ano98, BBG+10, BFW01, CFF+94, DMMV97, FGRD01, GRV01, GOM+01, HRS97, LM14, MK04, OP98, PSM+14, RR02, SDN99, SBT04, TW01, Wis98, Wis01, YSP+05, BBI...13a, BL99, CC10, CZ95b, DLR94, Hos12, Ma94, RS19, TSY99, TSY00, TY14, WK08a, WK08b, WK08c, YAJG+15]. Supported [KLR16, CDD+96]. Supporting [FD00, FMSG17, FSG19, GAML01, Gua16, MMS07, OOS+08, WLNL03, WLNL06].
WCS99, YWCF15, FLD96, GAM+00.

Supports [AELGE16, CCL03, DGMS93].

suppression [WWZ+96]. Surface
[KS15b, PKYW95, BHW+12, DCD+14, RAGJ95, TSP95]. Survey [Sap97]. Survive

Swendsen [KO14, Kom15]. Switch [SCL01, TBD96]. Switched [LC93, KYL03, KYL05]. SWITCHES [DT17]. Switzerland
[GT94, Ano94i, IEE97b]. SX [HRZ97, TRH00]. SX-4 [HRZ97]. SX-5 [TRH00]. Sydney [Bil95]. Sylvester [GK10]. Sylvester-Type [K10].

Symbolic [CCK12, Coo95b, Ste06, YYY*12, ACM97a, BHKR95, Coo95a, Lev95, LGGQ10, LLG12, SMAC08]. Symmetric
[BDV03, MDM17, YKW+18, BAV08, DCH02, GG95]. Symmetric [BDV03, MDM17, YKW+18, BAV08, DCH02, GG95].

Symposium [ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94e, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IEO5, LHH94, MIN95, Ost94, SL94a, SIE94, SIE92a, SIE92b, Ten95, Ton96, USE94, UCWQ5, ACM97a, ACM96a, Ano93a, Ano94h, Lev95, Old92]. synchronisation [SDB+16].

Synchronization [LA02, OCY+15, TGT05, BMG07, LA06, TMTP96, YLZ13]. Synchronizing [VT97]. Synchronous [Ada97, BJ13, Cer99, DLRR99, HZG08].

Syracuse [IEE96f]. SYSMO [MM95].

System [Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BFZ97, BGD12, CAM12, CGC+02, DBA97, DALD18, ERS95, ERS96, EK97, FBDO1a, FBVD02, FFP03, FIS01, Gal97, GCBM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, KBA02, LLRS02, LTR00, LLY93, Maf94, MRV00, MM02, MSF00, MMH08, MMS07, MMH93, NPP+004, NMS+14, Oed93, PPT96a, RGD97, SGI+03, SSB+05, SCP97, SA93, ST02b, Sun93, TSS00b, Tso07, UP01, Wil93, ARS89, AS92, BL94, Bri95, BBH+15, DL10, FNSW99, FK94, GS91a, GS93, GS96, GMU95, GkLY97, HDDG09, Hum95, HSB+10, ICTT99, JH97, JLS+14, KWK93, LBQ+96, LKL90, LL95, MA09, MIR99, MM+94, MA06, MM11, MS99b, MALK95, NA99, PPT96b, PPT96c, PK05, RJDH14, RTL99, SHHI01, SL94b, Sei99, SP97]. system [SGDM94, Sun96, Sur95b, VSC94, VSRC95, WCC+07, WZWS08, YPZC95, YZPQ95, ZL96, ZPS96, ZW+95, dCZG06, AL93, NMW93, Yan94]. System-Initiated [SSB+05]. system-on-a-chip [dCZG06]. System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [AAB+17, Ano94b, Att96, BCGL97, BGBP01, BME02, BPG94, Bha93, CDJ95, CAVL17, CFF+94, CSW97, CINW95, Coo95b, EADT19, FD96, FGK79, Fos98, Gu16, HRS97, IEE93d, IEE94d, IEE95a, IEE96b, KG93, KP96, KDL+95b, KCR+17, KS97, LY93, LW97, MWG97, MBE03, MJ15, MBL+12, SM03, SGS10, SS96, TPM16, THN00, USE94, YGH+14, YH96, ZB97, dGJM94, AGR+95b, ACM911, AT+12, Ano94e, BBB+94, BAV08, CTO+94, CLYG16, CBPP02, Coo95a, CPR+95, DF17, DR94, DBVF01, DvLVS04, FHR+13, GBR97, GCN+10, GEW98, GKK90, GKF13, Gra09, GPG12, GH+93, HAA95, IM95, JB96, JM+11, KS13, KHB+00, KL65, KDL+95a, KFSS94, LR06b, LH98, LC9D94b, LLH+14, MSL12, MW10+10, Old02, OPW+12, Pan95b, Par93, PSB+19, QB12, SKSF05, SCJ19, SPH95, SVC+11, SM93b, SG14, SMSW06]. systems [SLN+12, Sun94b, TBB12, TMW17,
TVCB18, TSP95, WCS+13, WWZ+96, WADC99, WYLC12, ZL96, ZGC94, dH94, dIAMC11, dIAMCFN12, JWB96.

System software [Sei99], systolic [BSC99],

T3D
[AZ95, AFST95, CCSM97, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95].

T3E [BBS99, Boo01, Che99, GRRM99, LSK04, RBB97c]. **T3E-512** [RBB97c]. **T3E-600** [LSK04]. **T9000** [BR94]. **Tabi** [BJ13]. **Tabu** [BSH15, Cza13, CB11]. Tags [Wis97]. **Tails** [Kha13]. **tak**s [GDB+93]. **Talbot** [ACMR14, Riz17]. **Tapir** [SML17]. **targeting** [JKM+17]. **Task** [AHD12, AAB+17, FKKC96, GDDM17, GPC+17, IOK00, KOI01, LHCT96, Mar03, MJB15, NIO+02, NIO+03, NSSZ13, NJ01, OP10, OS97, SGZ00, SPL+12, TBS12, TS12a, YKW+18, APB+F16, ABF+17, BGH+05, GKF13, OdSSP12, OPW+12, OPP00, RRFH96, RFRH96, SKB+14, WC15]. **Task-Based** [AHD12, AAB+17, SPL+12, SKB+14].

Task-Overlapped [GPC+17].

Task-Parallel
[NSZS13, APBcF16, ABF+17]. **Taskers** [FLD96]. **Tasking** [DA+09, KaM10, SHM+10, TCM18, TScM12, WC15]. **Tasks** [ACD+09, DT17, DFA+09, JW96, OP98, PWPD19, RR02, RDLQ12, YSS+17, BS01, DDYM99, DR95, FKK+96b, FKK96a, IvdlLH+00, PKE+10, PWPD19]. **TAU** [MMS07, RMS+18]. **taxonomy** [SPH96].

TBSCM [BP89]. **TC2** [Boi97]. **TC2/WG2.5** [Boi97]. **TCGMSG** [GB96, Mat94, Mat95]. **TCP** [KPW05]. **TD** [And98]. **Teaching** [MK00, JY95, MK97, PKB06]. **Technical** [Ano93c, Ano98, MC94, USE95, ACM06a, Sni18]. **Technique** [BCD+15, HC06, HAA+11, MK17, HC08, Nes10, RBB17, MAIVAH14]. **Techniques** [CP97, GS02, MUL01, SAL+17, SPL+12, TGBS05, Ws01, BPG94, Fer04, FCS+12, HKMCS94, JKN+13, KBG+09, NFG+10, PF05, SKS01, WST95]. **technologies** [Mal95]. **Technology** [ANO97, Bra97, CGB+10, CSV12, Dan12, GN95, HS94, PWP+16, SBT04, TBG+02, Ano93a, Ano93c, D+95, DM12, IEE94c, NS16, ZAT+07]. **Tekniska** [Eng00]. **Telegraphic** [ES11]. **TELMAT** [BR94]. **temperature** [Hin11]. **Template** [GS97, PKB06]. **Templates** [BN12, KH15]. **Tennessee** [PR94b]. **terabyte** [KTJT03]. **Terabytes** [IEE02]. **teraflps** [KTJT03]. **Terms** [KD12]. **Tessellation** [SS09]. **Test** [SNMP10, TG09, AAAA16, CPR+95, GL92]. **Testbed** [Mat01b, EGH99, PY95]. **Testing** [CCK12, DFK94b, Ost94, Vs00, CMV+94, DFK93]. **Testsuite** [WC12]. **Texas** [ACM06a, IEE94b, IEE951, IEE95g, IEE97c, Y+93]. **Text** [LTR00, MM01, RLL01, RTL99]. **Textbook** [Ano98]. **textural** [WK96]. **texture** [HE15]. **TFETI** [SHHC18]. **TH** [CFDL01]. **TH-MPI** [CFDL01]. **Thakur** [Ano00a]. **Their** [Bri12, GOM+01, RG18, GS95]. **theorem** [Su96]. **Theory** [GK10, BW12, CBH+94]. **Thera** [CD01]. **Think** [HCA16]. **Third** [BBP94, Bos96, DSM94, GA96, IEE94g, SII96, Was96, BDLS96, Ma95, IEE97c]. **Thirty** [Y+93]. **Thirty-seventh** [Y+93]. **Thousands** [PZKK02, BMS+17]. **Thread** [AELG16, BB18, ETWaM12, GOM+01, GT07, Nit00, Pla02, ST99, HK09, IDS16, JKN+13, SPH96, SLN+12, YZ14]. **Thread-Level** [AELG16, HK09, YZ14]. **Thread-Safe** [Pla02]. **Thread-safety** [GT07]. **Threaded** [BBG+10, MG15, Ada98, EBK01, SCB15, SVC+11, TSY99, TSY00]. **threaded-MPI** [SVC+11]. **Threading** [BH12, MLGW18, SBT04, TBG+02, KPO00, KRG13, QB12, ZAT+07]. **Threads** [CP98, LD01, Lee06, BS01, MVTP96, ALW+15]. **Three**
[Car07, GA96, Nak05b, Ram07, SAS01, GSMK17, LSSZ15, Mar05, PR94c]. Three-
[GA96, GSMK17, Three-Dimensional
[GA96, LSSZ15, PR94c]. Three-level
[Nak05b]. Throughput
[Tsu07, ESB13, PP16]. Tightly [SS01].

Tightly-Coupled [SS01]. Tilewise
[KS15b]. Time [BCL00, FHK01, FSSD17, GSHL02, GOM+01, HO14, KFL05, MFTB95, OP98, SCL01, SS96, TSP95, UP01, YGI+14, AL96, CDMS15, DLR94, DM12, Fer04, FLB+05, FKLB08, GB94, HE13, JE95, KC94, KFL+12, LHLK10, LBB+16, LYSS+16, LM13, MMW96, NZZ94, ON12, OdSSP12, PTMF18, QHCC17, Ram07, SBW91, SS+16, SK92, SRK+12, TSY99, Tho94, TVV96, TCBV10, Uhl95c, VM94, YSVM+16, YSMA+17, ZWZ+95, SKD+04].

Time-dependent
[DM12, LBB+16, ON12, SSB+16, YSVM+16, YSMA+17].

Time-domain
[HE13, NZZ94, Ram07, VM94].

Time-independent
[CDMS15].

time-varying
[Uhl95c].
times
[MLV16, NB96, SSS99].
timing
[Ols95].
tips
[Fer04].

TLM [SC96a].

TM
[GGCM99, GCGS98, KHS01].

TN
[DT94, BR94].

TOD [GPC+17].

TOD-Tree [GPC+17].

today [IEE94c].

Toepplitz
[BV99, BAY08].

Tolerance
[GP97, GL04, LMGR14, LNLE00, RPM+08, TS12a, WC09, Wi93, SG05, ZHK06].

Tolerant
[BBC+02, BHC+06, BKF+06, CF01, CFDL01, FD00, FBD01a, FBVD02, FD02a, FDO4, GFB+03, IEE95c, JSH+05, MS00, BCH+08, FBD01b, FDO2b, HG12, LMG17, LSO8, NCB+12, NCB+17, PKD95].

Tomographic
[Pat93].

tomography
[FWS+17, RCFS96].
tomorrow [IEE94c].

Tool
[Ano01b, Beg93b, BFMT96b, DW02, GSN+01, KAMA17, KSJ14, KKPO1, LMRR14, MMSW02, MK04, NE98, SR96, SGL+00, Tra12b, VBB18, WL96a, AGG+95, BDP+10, Beg92, Beg93c, Beg93a, BDY99, BFMT96a, BHW+12, CPR+95, DKF94a, FSTG99, HPR+95, HD11, LCC+03, MdSAS+18, RMS+18, TSS98, WL96b, WL96b].

Tool-Set [WL96a].

Toolbox
[Ano97, Bra97].

Toolkit
[IEE94c].

Tools
[ABC+00, BDL+91b, BDL+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB10, STMK97, Vos03, Wanst, AAN+16, BDL+92a, BFIM99, Fan98, GBF95, LH98, MS+05, MHC94a, ZL96].

Tools-supported
[CDD+96].

Top
[AHP01, Gal97, Has01, Man01, PTH+01b, Ser97, BBCR99, PTH+01a, SSC96, SCL97, CCHW03].

TOP-C
[CCHW03].

Topo
[JKM+17].

topologies
[BCM+16, MK00].

Topology
[DK06, Hat98, HM10, Tra02a, GJMM18, HRR+11, MBBD13, SPK+12].

Topology-aware
[MBBD13].

Topology-Based
[HM01].

TOPPER
[KKP01].

Toronto
[GGK+93, Vos03].

Torus
[SG15].

Townsend
[DT94].

TPVM
[FS95, FS98].

Trace
[Ney00, FLPG18].

trace-based
[FLPG18].

Traceback
[OSMM+16].

Tracefiles
[FCP+01].

Traces
[CC17, MANK09, WM01, CDMS15, DWM12].

Tracking
[CGLD01, DP94, KG96, CG93, Mor95, SGS95].

Tracking
[GAP97, HD02b].

Trading
[BHM94, BHM96].

traffic
[Zah12].

Training
[CSV12].

Transactional
[BWW+12, MFO+08, SBG+12].

Transactions
[BWW+12].

Transfer
[BKGS02].

Transfers
[THS+15].

Transform
[YULMTS+17, KT10, DBLG11].

Transformation
[EP96, NSZS13, GSMK17, HZ96, TSY00].

transformations
[IE95, TG94].

transformed
[BY12].

Transforming
[PSK+10].

Transforms
[ACMR14, KLR16, HP11, Uhl95c, Zem94].

Transient
[SIS17].

transistor
[Ano03].

transistors
[Ano03].

Transition
[MKV00].
Transitive [CGPR98, PPR01]. Translating [Mar09, NCB+12]. Translation [DDL00, SSE12, HCL05, LME09, NCB+17]. Translator [KMK16, UZC+12, CHKK15, GScFM13]. transmitters [WWZ+96]. Transparent [CCK+95, IFA+16, NPP+00c, SLGZ99, LFS93a, LFS93b, LFL11, NPP+00a, SOA11]. Transparently [CB16]. Transport [KHS01, RS97, VRS00, WR01, ZZ04, Pri14, SH94, SCJH19, WH96]. Transporter [Fer92]. transpose [Bha98]. Transposition [HD02b]. Transputer [Ara95, ACN94, CJNW95, FK95, FF95, GN95, GHH+93, MC94, dGJM94, ZPLS96, Ara95, CJNW95, GHH+93, dGJM94]. Transputers [ACN94, AGR+95b, dCH93]. Transteach [Ste94]. trap [LBB+16, SSB+16, YSV+16]. TRAPPER [KFSS94, SSF95]. travel [SS99]. travel-times [SS99]. traveling [GM94]. traversing [BDG+92b]. TreadMarks [LDCZ97]. Tree [GPC+17, AD94, AB13, BCAD06, CG93, SGS95, Zah12]. Trees [CDM03]. Trends [Duv92, IEE93d, MBS15, JPTE94, SGDM94, Sun96]. Triangle [SL94a, SOA11]. Triangular [Hog13, MRB17]. tricks [Fer04, LK14]. Tridiagonal [DALD18, DR18]. Triplet [RJDH14]. Trivandrum [IEE93a, Troy]. Truncated [ZB97]. truncating [Ram07]. TSMC [Ano03]. TSUBAME [NSM12]. Tsukuba [SHM+10]. TTIG [RRB01]. Tucson [JB96]. tuned [PSB+19]. Tuning [Ben18, Cza02, Cza03, NPP+00d, SLJ+14, WG17, DBL11, FE17, LGG16, SH14, Yan94, FVD00]. tuple [MYB16]. tuple-based [MYB16]. Turbulence [Str97, MRRP11, Str96]. turbulent [BCM+16, CBYG18]. Tutorial [EM00a, EM00b, GBG+94, GLT00b, Nov95, Per96, Ano95b]. TV [CJ1+10]. Twenty [ERS95, ERS96, HS94, IEE95c, MMH93]. Twenty-Eighth [ERS95]. Twenty-fifth [IEE95c]. Twenty-Ninth [ERS96]. Twenty-Seventh [HS94]. Twenty-Sixth [MMH93]. Two [CM08, STY99, SJK+17a, SJK+17b, YM97, AGR+95b, AL93, ADLL03a, ADLL03b, CB11, ED94, HAJK01, MSP93, dAMCFN12]. Two-Dimensional [SJK+17a, SJK+17b, AL93]. two-layer [dAMCFN12]. Two-level [STY99]. two-phase [ED94]. TX [ACM00, Cha05, DCM+92, Ano95a, Ano95d]. Type [GK10, MS97, FVLS15, GFP12]. Types [Wei94, NYNT12]. typo [OA17].

Ham95a, Hol12, IEE95b, IEE95d, IEE96f, IEE96e, IEE96i, MCD9+08, Old02, PBG+95, Re06, Sin93, Ten95, ACM95b, ACM97b, Agr95a, An90b, B+95, DCM9+92, HS94, IEE94e, IEE95k, IE02, SL94a, SS96, USE94, USE95, USE00. Use [FD02a, FCL07, FD02b, FVLS15]. Use [FJBB+00, Gro02a, HK93, HK95, MB12, PSZÉ999, Shi94, AB95, GEW98]. USENIX [USE94, USE95]. User [AD98, ACDR94, BDG91a, CHD07, CD01, CDN911, DKD05, D+91, DHHW92, DHHW93a, DLM99, DKP00, D+91, DHHW93a, KCP94b, KOW97, NPP00c, XF95, ZW05, KCP94a, BBB...13a], Users [Ara95, CHD09]. uses [SH96]. Using [AR01, ADRC6098, AHP01, And98, AP96, Ano95c, AKE00, AZG17, AB93a, BST+13, BPN979, BG95, BS93, BKGS02, BM97, Bon96, BBC900, BBH12, CGC9+11, CRE99, CMM93, CP97, CSP9+96, CCI7, Che99, CCM97, CD93, CCHW03, CRG94, CT94a, CCB98, D98, DeP93, DAR13, DAK98, DGM93, EM02, EMO9+93, ESM9+94, EK97, FAF915, FD04, FT9800, FS93, GCG99, GCG98, GTH96, GM95, GKL97, GMP98, GHL97, GNJ97, GL594, GLT99, GLS99, GLO0b, GL00a, HB96b, HS97, HJ98, HLP11, HT08, HRS07, HT01, IK900, ID94, IKM9+01, JFGRF12, JPP95, KB98, KO01, KKV01, K95, KA13, LLRS02, LTR00, LRT07, LTRA02, LY93, LLY93, LZ97, LAFA15, MK17, MTSS94, MPD04, M+91, MSC95, MAN909, MB9+12, MSB97, NO02b, NIO9+02, NIO9+03, Neu94, NH95, NA01]. Using [OM96, OCY9+15, OWS95, PWP9+16, PK98, PPT96c, POL99, PT01, Per99, Pet97, PBK00, PD98, PGF18, Pus95, QRM96, QMG90, RRR03, RRBL01, RLR012, RLR01, RR9+99, SAS01, Sve98, SS912, SP99, SA93, Smi93a, SBR95, ST979, SME93, Sta95b, ST17, SH96, SCL01, SJK9+17b, TS01a, TS02, TSB03, TK16, TBB92, Th98, Tra98, Ts07, VLO9+08, W95, Wai01a, WJ12, WLR05, Wis97, Wis01, WMC9+18, WLYC12, YKW9+18, ZBd12, van97, vdLJR11, AMHC11, AK99, ABF9+17, AL96, ADT14, ABG+96, AB93b, AIS94, AGG+95, BV99, BFL099, BSC99, BDG9+92c, Bic95, Bis04, BCM+16, BTC+17, BCD96, BID95, BAG17, BSH95, BMG07, CG93, CMB9+95, CBY98, CdG96, CS14, CLB97, CT94a, CC09, DG95, DS13, DRUC12, DOS01, DCO2, DM12, EGD92, FB96, FSV14, FSC9+1]. using [Fin94, Fin95, FHC9+95, FWS9+17, GGG99, GSM97, GO90, Goe02, GFB9+14, GM95, GM8, GRTZ10, HB96a, HDS09, HTJ9+16, HP11, HPS9+96, HPL99, HAsn99, HLO9+16, HAA+11, ILM9+05, IM95, IKM9+02, JL18, JF95, JHKK08, JLS9+14, JYY9+03, JMN9+11, JPT14, JR10, JMDV9+17, KFA96, KRK91, KY10, Kat93, KJ9+16, KO99, KMK16, KME09, KMC96, KMC97, KRC97, KMM95, KDK13, KPK13, LP00, LSG9, LSS9+15, LC996, LSVW08, LCMG17, LO96, MMR99, MP95, Mar06, MSM915, MBA05, McK94, MM11, Mic93, Mic95, MRH+96, MM93, MSML10, MS95, MM14, MC99, MV9+10, NO02a, Nah05a, NZZ9+99, N96, NA99, N005, OKM12, OIH95, Ols95, Pat93, PYY14, PGCD9+18, PN01, PKE9+10, QRG95, RJC95, RAS16, RCFS96, RBAI17, RM99, RCG95, SHLM9, SD10, SLGZ99, SGS95, SS99, SSMS997]. using [SOA11, SVC+11, SSGF00, SFLD15, SS94, SU96, SP11, TC94, TPLY18, Tsu95, Uhl94, Uhl95b, UH96, VM94, VB99, VGS14, VM95,
REFERENCES

BSvdG91, BRS92, BALU95, BWT96, CCU95, DG95, ED94, GBF95, Heb93, JRM+94, LL95, NMW93, NN95, PM95, PL96, RBS94, RCFS96, SC96a, SSN94, SL95, THM+94, Tsu95, UH96, YWO95, ZHS99, MS04.

workstation-cluster [Heb93].
Workstation-Cluster [MS04].

Workstations
[AR01, BL94, BL95, BM97, BDH+95, BDH+97, BMS94b, DDPR97, EK97, GS91b, HIP02, IDD94, Liu95, LHZ98, MSCW95, MM01, OWSA95, PFG97, TQDL01, VLO+08, AL93, BJ95, BID95, Bru95, BMPZ94b, BMS94a, BMPZ94a, CCF+94, Coe94, DZ98a, DOSW96, GM94, GMU95, HK94, Hus99, KMC96, KMC97, KA95, MK94, MM03, RRG+99, SF095, SR95, TDB00, dCH93].

World [CMMR12, CJNW95, FD00, GHH+93, HLP11, MC94, NSLV16, PSB+94, Wit16, dGJM94, GDB+93, JR10].

wormhole [Pan95a, Pan95b, RJMC93, ZGN94].

wormhole-routed [Pan95b, RJMC93, ZGN94].

worms [Pan95a].

WoTUG [MC94].

WPVM [ASCS95, BPMN97].

Wrapper [AS14].

Write [BIC10].

Write-Back [BIC10].

Writing [FAF16, SDB94, FNSW99].

Written [KaM10].

WWW [KSJ95, KSJ96].

X [Bad16, FWS+17].

X-ray [FWS+17].

X10 [CGH+14].

X11 [GKL95].

x86 [MGL+17].

Xab [Beg92, Beg93b, Beg93c, Beg93a].

Xen [PRS16].

Xeon [DSGS17, OTK15, BB18, MTK16].

XPVM [KG96].

XXI [EGH+14].

YL C [Gal97].

YMP [BL94].

Yorkshire [CJNW95].

Zero [SWHP05, Hin11].

Zero-Copy [SWHP05].

ZEUS [FF95].

Zipcode [wL94, SSD+94].

zonal [Fin94, Fin95].

Zone [JCH+08, AGMJ06].

zum [Wer95].

zur [GBR97, Sei99].

References

AlQuraishi:2016:CBP

Agullo:2017:BGB

Almasi:2005:DIM

Akzhalaeva:2008:WPL

Arthur:1993:CUA

Arthur:1993:PIU

Aloisio:1995:UPW

Augusto:2013:APG

REFERENCES

REFERENCES

REFERENCES

acm.org/pubs/contents/proceedings/supercomputing/181181/.

REFERENCES

[ACM99]

ACM:1998:A

[ACM98a]

ACM:1998:SHP

[ACM98b]

ACM:1999:SPO

[ACM99]

ACM:2000:SHP

[ACM00]

ACM:2001:SHP

Alonso:2011:NEM

Ancona:1995:PAD

Alexandrov:1998:RAP

Adamo:1997:AOO

Adamo:1998:MTO

Antonuccio-Delogu:1994:PTN

V. Antonuccio-Delogu and U. Becciani. A parallel tree

Addison:2001:EOP

Arioli:1995:PSB

Aversa:2005:HDS

Aversa:2005:PPT

Alexandro:1998:CGP

Amritkar:2014:EPC

Aldea:2016:OES

Ashby:1995:PPG

Ayguade:1995:DUA

Aityan:1995:PFI

S. K. Aityan, L. T. Grujic, R. J. Hathaway, G. S. Ladde, N. Medhin, and M. Sambandham, editors. *Proceedings of the First International Conference on Neural, Parallel and Scientific Computations held at...*
REFERENCES

Averbuch:1994:PES

Arbenz:1996:SRP

Ayguade:2006:ENO

Agrawal:1995:PIW

Almeida:1995:CST

Alfaro:1997:FDW

REFERENCES

REFERENCES

Aversa:1997:MDP

Aguilar:1997:PMS

Aubrey-Jones:2016:SMI

Alexandrov:1999:PMC

Armstrong:2000:QDB

Andersen:1994:PIA

B. S. Andersen, P. Kaae, C. Keable, W. Owczarz, J. Wasniewski, and Z. Zlatev. PVM implementations of advection-chemistry modules of air pollution mod-

Asai:1999:MIF

Abdelfattah:2016:KOL

Alfano:1992:DNA

M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92], page ?? ISBN ?? LCCN ?? Proceedingss available via anonymous ftp from ftp.scri.fsu.edu in directory pub/parallel-workshop.92.

Altevogt:1993:PTD

Alt:1996:PIA

Amer:2018:LCM

Dieter an Mey, Samuel Sarholz, and Christian Terboven. Nested paralleliza-

Al-Mouhamed:2015:EAO

Aversa:1994:PSH

Andersson:1998:PFT

Anonymous:1989:PFC

Anonymous:1992:PSE

Anonymous:1993:ATA

Anonymous:1993:ISA

Anonymous, editor. *International section: Annual conference — September 1993, Gallipoli, Italy,*

Anonymous:1993:JFI

Anonymous:1993:MPI

Anonymous:1993:MMP

Anonymous:1993:SEC

Anonymous:1993:CDP

Anonymous:1993:PSE

Anonymous:1994:ICS

Anonymous:1994:ALM

REFERENCES

Anonymous. Using PVM to host CLIPS in distributed environments. In 3rd *CLIPS* conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ???? LCCN ????

Anonymous:1996:PPA

Anonymous:1996:RP

Anonymous:1997:TNR

Anonymous:1998:ANO

[Ano98] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ???. ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMa

Anonymous:1999:BRMf

Anonymous:1999:BRMb

Anonymous:2000:BRUd

Anonymous:2000:BRUe

Anonymous:2001:AAL

Anonymous:2001:EDP

Anonymous:2001:MNIc

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

Aji:2016:MEA

Aji:2016:MAA

AlHaddad:2001:UNW

Arabnia:1995:TRA

Altas:1994:NIE

Arnow:1995:DLB

D. M. Arnow. DP: a library for building portable,

Abrossimov:1989:GVM

Al-Refaie:2017:PAH

Al-Salman:1992:DIP

Awile:2014:PWF

Alonso:1997:PBB

J. L. Alonso, H. Schmidt, and V. N. Alexandrov. Parallel branch and bound algorithms for integer and mixed

Alves:1995:WPC

Anderson:2017:BGB

Agrawal:1994:PIC

Al-Tawil:2001:PME

REFERENCES

\[\text{Attiya:1996:ERS} \]

\[\text{Angskun:2001:DPM} \]

\[\text{Andujar:2016:OSF} \]

\[\text{Asenjo:1995:SLF} \]

\[\text{Arteaga:2017:GFG} \]

\[\text{Beyer:2005:GEC} \]

Battre:2006:MFP

Bader:2016:EMT

Becciani:2007:FMH

Brue1:2017:ACC

Baker:1998:MNC

Blaszczyk:1995:PCE

Buyukkececi:2013:POI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

102

Busa:2015:CCO

Busa:2015:CCO

Brorsson:2000:SIE

Blas:2014:RAM

[Barnard:1999:MIS]

Boryczko:1999:LGA

[BBS99] Stephen T. Barnard, Luis M. Bernardo, and Horst D. Simon. An MPI implementation of the SPAI preconditioner on the T3E.

Barnard:1999:MIS

[BCA+06] Christopher Barton, C’Cín Cascaval, George Almási,
REFERENCES

Becciani:2006:FMP

Bouchard:1996:FCS

Betts:2012:GVG

Betts:2015:DIV

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul Thomson, and John Wickerson. The design and implementation of a verification technique for GPU kernels. *ACM Transactions on Programming Languages and Systems*, 37(3):10:1–10:??, June 2015. CODEN ATPSDT. ISSN
REFERENCES

0164-0925 (print), 1558-4593 (electronic).

REFERENCES

105

Bruno:2000:PEH

Bolloni:2000:TIQ

Baraglia:1997:IPW

Bhattacharjee:2011:PLC

Bolis:2016:APA

REFERENCES

[Beguelin:1991:GDT] Adam Beguelin, Jack J. Dongarra, A. Geist, Robert Manchek, and V. S. Sun-

[Beguelin:1992:HGD]

[Beguelin:1992:PHT]

[Beguelin:1992:SCG]

[Beguelin:1993:PHT]

[Beguelin:1993:PEC]

[Beguelin:1994:HHN]
REFERENCES

[BDG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, ???? 19xx.

REFERENCES

Baghsorkhi:2010:APM

Bronevetsky:2007:CFS

Marian Bubak, J. J. Dongarra, and Jerzy Wasniewski, editors. Recent advances in parallel virtual machine and message passing interface: 4th European PVM/mpi user’s group meeting Cracow, Poland, November 3–5, 1997: proceedings, volume 1332 of Lecture Notes in Computer Science. Springer-Ver-

REFERENCES

Benkner:1995:VFA

Bencheva:2001:MPI

Benedict:2018:SES

Bernaschi:1996:RHP

Baker:1998:MNP

Berthou:2001:COH

Bubak:2001:PMS

[BFIM99] M. Bubak, W. Funika, K. Iskra, and R. Maruszewski. Enhancing the functional-
REFERENCES

[BG94b] E. Borger and U. Glasser. An abstract model of the Parallel Virtual Machine...
REFERENCES

[BGG+02] V. Blanco, L. García, J. A. González, C. Rodríguez, and G. Rodríguez. A performance model for the analysis of OpenMP programs. Par-
REFERENCES

Balasubramanian:2015:EGL

Bhanot:2005:OTL

Bischof:2008:PRM

Butler:2000:SPM

Beisel:1997:EMD

REFERENCES

116

(print), 1611-3349 (electronic).

Brune:1997:HMP

Breitenecker:1995:ESC

Bhanot:1998:DTM

Bader:1996:PPA

Bouteiller:2006:MVP

Bubek:1995:DSC

T. Bubeck, M. Hiller, W. Kuchlin, and W. Rosenstiel. Distributed symbolic computation with
REFERENCES

Bischof:1995:CSM

Bachem:1994:PCT

Bachem:1996:STH

Brunst:2001:POL

Barekas:2003:MAO

Bondhugula:2008:PAP

Bisseling:2002:FMF

[Georg Bielfling, Hans-Christian Hoppe, Alexander Supalov, Pierre Lagier, and Jean La-
REFERENCES

Bazo:2018:MPS

Busa:2012:ACO

Bae:2017:SEF

Bickham:1995:POM
J. L. Bickham. Parallel ocean modeling using Glenda. In ACM [ACM95a], 1007/978-3-642-31500-8_9/.

Berk:2012:PET

Bic:1995:POM
J. L. Bickham. Parallel ocean modeling using Glenda. In ACM [ACM95a], 1007/978-3-642-31500-8_9/.
REFERENCES

119

Rob H. Bisseling. *Parallel scientific computation: a structured approach us-
REFERENCES

REFERENCES

[BK00] J. Mark Bull, Mark E. Kambites, and Jan Obdrzal...

Beaugnon:2014:VVO

Ballico:1994:PSP

Bendrider:1995:SME

Beazley:1997:EMP

Bubak:1999:TPR

Baraglia:1993:PWC

REFERENCES

[102x681]124
[182x645]Bronevetsky:2003:AAL
[218x645]

[Bubak:1994:PDS]

[Bubak:1994:EMD]

[Baiardi:2001:CRD]

[Brightwell:2002:DIM]

[Bubak:1994:FLG]
Bubak:1994:IPL

Barthels:2017:DJA

Berrendorf:2000:PCO

Bawidamann:2012:ETO

Bull:2001:MSO

Bubak:2000:IOB
Boisvert:1997:QNS

Bonnet:1996:UPW

Booth:2001:OML

Borkowski:1999:LVC

Boszormenyi:1996:PCT

Brebbia:1993:ASE

Berthou:1998:PHM

Barbosa:1999:ADM

Beletsky:1994:OPV

Becks:1994:NCT

Barbosa:1997:EUW

Baptista:2001:IOS

REFERENCES

Balou:1991:DIV

Burrer:1994:RRB

Bernardi:1995:CCE

Bernaschi:1995:DRP

Bane:2002:EOA

Bernaschi:1995:PEI
Boeres:2004:ETF

Bergstrom:2012:NDP

Briscolini:1995:PID

Brieger:2000:HOO

Brightwell:2002:RMR

REFERENCES

[Ron Brightwell, Rolf Riesen, and Keith D. Underwood. Analyzing the impact of overlap, offload, and independent progress for Message Passing Interface applications. The International Journal of High Per-

REFERENCES

[Blikberg:2005:LBO]

[Brown:2007:HSP]

[Bassomo:1999:PGE]

[Bolton:2000:MPL]

[Bukata:2015:SRC]

[Bakhtiar:1995:APL]
S. Bakhtiar and R. Safavi-Naini. Application of PVM
to linear cryptanalysis. In
Gray and Naghdy [GN95],
pages 278–279. ISBN ????
LCCN ????

Bai:2013:SLA

Mingze Bai, Shixin Sun, Hong Tang, Yusheng Dou,
and Glenn V. Lo. An SPMD-
like algorithm for paralleliz-
ing molecular dynamics using
OpenMP. Computing in Science and Engineer-
August 2013. CODEN
CSENFA. ISSN 1521-9615
(print), 1558-366X (elec-
tronic).

Benzoni:1991:MFR

A. Benzoni, V. S. Sunderam,
and R. van de Guij
Matrix factorization on a RISC
workstation network. In Du-
rand and El Dabaghi [DE91],
pages 207–218. ISBN 0-444-
89224-9. LCCN QA75.5.I585

Blaszczyk:1996:EPI

A. Blaszczyk and C. Trini-
tis. Experience with PVM
in an industrial environ-
ment. In Bode et al. [BDLS96],
pages 174–??

[BT96]

ISSN 3-540-61779-5. ISBN
0302-9743 (print), 1611-
3349 (electronic). LCCN
QA76.58.E975 1996.

biewski:2001:MOS

Maciej Go biewski and Jes-
per Larsson Träff. MPI-
2 one-sided communications
on a Giganet SMP cluster.
Lecture Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http:
//link.springer-ny.com/
bibs/2131/21310016.htm;
http://link.springer-

Bu:2001:PAC

Libor Bu and Pavel Tvrdık.
A parallel algorithm for con-
nected components on dis-
tributed memory machines.
Lecture Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http:
//link.springer-ny.com/
bibs/2131/21310280.htm;
http://link.springer-

Bonelli:2017:MCA

Francesco Bonelli, Michele
Tuttafesta, Gianpiero Coloma,
Luigi Cutrone, and Giuseppe
Pascazio. An MPI–CUDA
approach for hypersonic
flows with detailed state-
to-state air kinetics using
a GPU cluster. Computer
Physics Communications,
219(??):178–195,
REFERENCES

Francis George C. Cabarle, Henry Adorna, and Miguel A. Martinez. A spiking neural P system simulator based
REFERENCES

Carabajal:2007:PTD

[Car07]

Campanoni:2010:HFP

[CARB10]

Cavender:1993:APV

Chabbi:2017:EAL

[CAWL17]

Cartwright:2000:AOE

[CB00]

Czapinski:2011:TST

REFERENCES

Chapple:1995:PUL

Cormen:1999:PBP

Ciaccio:2000:GMG

Couturier:2000:PMD

Cardoso:2010:MSO

Chen:2017:AA

Jian Chen and Russell M. Clapp. Astro: Auto-generation of synthetic

Chen:2000:MCO

Couder-Castaneda:2015:PCM

Castagnera:1994:NEP

Cooperman:2003:UTC

Casas:1995:MMT

Jeremy Casas, Dan L. Clark, Ravi Konuru, Steve W. Otto, Robert M. Prouty, and Jonathan Walpole. MPVM: a migration transparent version of PVM. Computing

REFERENCES

REFERENCES

Chang:1995:EPCb

Chang:1995:EPCa

Casanova:1995:PPM

Chandra:2001:PPO

Colombet:1993:SMI

Casanova:2015:SMA

Cotronis:2011:RAM

Yiannis Cotronis, Anthony

Chaussumier:1999:ACM

Coll:2003:SHB

Ceron:1998:PID

Cappello:2000:MVM

Clemencon:1995:AEP

C. Clemencon, A. Endo, J. Fritscher, A. Muller, R. Ruhl, and B. J. N. Wylie. The 'annai' environment for portable distributed programming. In El-Rewini and Shriver [ERS95], pages
REFERENCES

Chen:2001:TMK

Choudhary:1994:LCR

Corbett:1996:OMP

REFERENCES

[Clematis:1996:CEP] A. Clematis and V. Gianuzzi. CPVM — extending...
REFERENCES

REFERENCES

//link.springer.de/link/service/series/0558/papers/2474/24740306.pdf. [CGH+14]

Camp:2011:SIU

Carter:2010:PLN

Clarke:1994:MMP

Cunningham:2014:RXE

Carpenter:2000:MML

Catanzaro:2011:CCE

1523-2867 (print), 1558-1160 (electronic). PPoPP ’11 Conference proceedings.

Calore:2016:PPA

Chapman:2011:OPE

Chatterjee:1993:GLA

Caubet:2001:DTM

Chan:1998:PCT

Casanova:2015:TMS

Cecilia:2012:CSC

Chen:2013:IRM

Cheng:1994:PDP

Ciancarini:1996:CLM

Charny:1996:MPV

Chapman:2002:PAD

Barbara Chapman. Par-

Chapman:2005:SMP

Cappello:2007:RAP

Cappello:2009:FSI

Chergui:1999:UPP

J. Chergui. Using PMD
REFERENCES

151

to parallel solve large-scale Navier-Stokes equations.
performance analysis on SGI/CRAY-T3E machine.
In Dongarra et al. [DLM99], pages 341–348.
ISSN 0302-9743 (print), 1611-3349 (electronic).
LCCN QA76.58 E973 1999.

Cheng:2010:BRBb

Jie Cheng. Book review: CUDA by Example: An Introduction to
General-Purpose GPU Programming, by Jason Sanders
CODEN ????? ISSN 1895-1767.
See [SK10].

Cho:2010:OPP

S. M. Cho, D. W. Im, O. Y. Jang, H. J. Song, B. D.
Paulovicks, V. Sheinin, and H. Yeo. OpenCL and paral-
lel primitives for digital TV applications. IBM Journal of
CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556
(electronic).

Cook:1995:TAS

B. M. Cook, M. R. Jane, P. Nixon, and P. M. Welch, editors.
Transputer Applications and Systems ’95. Pro-
ceedings of the 1995 World Transputer Congress, 4–6
September 1995, Harrogate, North Yorkshire, UK. IOS
Press, Postal Drawer 10558,

Czarnul:1999:DAP

Chang:2016:DLD

Casas:1994:ALM

Culler:1993:LTR

Castro-Leon:1993:MCP

Clark:1998:FOP

Cornelis:2017:HAV

[CLBS17] Jan G. Cornelis, Jan Lemeire, Tim Bruylants, and Peter Schelkens. Heterogeneous acceleration of volumetric JPEG 2000 using OpenCL. *The International Journal of High Per-
153

REFERENCES

Chandra:2007:ESP

Chang:2016:APC

Chapman:1998:OHI

Chapman:2005:O

Claver:1999:PCS

Cahir:2000:PMM

Margaret Cahir, Robert Moench, and Alice E. Koniges. Programming models and methods. In Koniges [Kon00], chapter 3, pages 27–54. ISBN 1-55860-540-1. LCCN QA76.58
REFERENCES

155

Corbalan:2004:PMD

Carson:2003:CGU

Chapman:2012:OHW

Campanai:1994:EAS

Chou:2010:CMI

Chalkidis:2011:HPH

Georgios Chalkidis, Masao Nagasaki, and Satoru Miyano.
REFERENCES

Carvalho:1997:PCC

Carissimi:1998:AEM

Cercos-Pita:2015:ANF

ChassindeKergommeaux:1999:MER

Cappello:1999:PNB

Cappello:2001:UPS

REFERENCES

(Cores:2014:FAM)

(Cores:2016:ROM)

(Cores:2014:MAL)

(Ciampolini:1996:EPM)

(Coole:2014:FFH)

(Chetlur:1998:ALE)

(Clement:1996:NPM)

REFERENCES

1007/978-3-642-32820-6_5/.

REFERENCES

divide-and-conquer applications in DAMPVM/DAC.
The International Journal of
High Performance Computing Applications, 17(1):77–
93, Spring 2003. CODEN
HPCFL. ISSN 1094-3420
(print), 1741-2846 (elec-

tronic).

[Cza13] Michal Czapinski. An ef-
effective Parallel Multistart
Tabu Search for Quadratic
Assignment Problem on
CUDA platform. Journal of Parallel and Dis-

tributed Computing, 73(11):
CODEN JPDCER. ISSN
0743-7315 (print), 1096-0848
(electronic). URL
http://

[Chapman:2008:PPM] Barbara Chapman, Weimi-
ing Zheng, Guang R. Gao,
Mitsuhisa Sato, Eduard
Ayguadé, and Dongsheng
Wang, editors. A Prac-
tical Programming Model for
the Multi-Core Era: 3rd

International Workshop on
OpenMP, IWOMP 2007,
Beijing, China, June 3–7,
2007 Proceedings, volume
4935 of Lecture Notes in
Computer Science. Springer-

Verlag, Berlin, Germany /
Heidelberg, Germany / Lon-
don, UK / etc., 2008. CO-
DEN LNCSD9. ISBN 3-
540-69302-5 (print), 3-540-
69303-3 (e-book). ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
???? URL
http://

[Chapman:2008:PPM]

Users’ Guide to PVM Par-

allel Virtual Machine. Oak
Ridge National Laboratory,
Knoxville, TN, USA, July

[Dongarra:1995:HPC] J. J. Dongarra et al., edi-
tors. High performance com-

puting: technology, meth-
ods, and applications (Ad-
anced workshop, June 1994,
Cetraro, Italy), volume 10
of Advances in Parallel
Computing. Elsevier, Am-
sterdam, The Netherlands,
1995. ISBN 0-444-82163-
5. ISSN 0927-5452. LCCN

[Ivanov:1998:IMC] I. Dimov, V. Alexandrov,
and A. Karaivanova. Im-

[Chapman:2008:PPM]

Dieguez:2018:SLP

Danalis:2012:MCT

Demidov:2013:PCO

deAndrade:2017:OFH

Demuynck:1997:DOD

K. Demuynck, J. Broeck-

daCunha:1993:PLA

Dow:2002:CMA

Didelot:2012:IMC

Didelot:2014:IMC

delCuvillo:2006:LOC

Dozsa:2000:THL

REFERENCES

[DeP03] C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. Cmg, 2(??):821–832, 2003. CODEN ????

Manish Deshpande, Jinzhang Feng, Charles L. Merkle, and Ashish Deshpande. Application of a distributed network in computational fluid dynamic simulations. *The
REFERENCES

DiNapoli:1997:DCA

DiNapoli:2012:CCF

Dinan:2012:EMC

DiNapoli:1997:DCA

Dinan:2014:ECC

Din:2012:CCF

DìG}:2012:CCF
REFERENCES

[DHK97] M. Derakhshan, S. Hammarling, and A. Krommer. PINEAPL: a European project on Parallel In-
REFERENCES

REFERENCES

REFERENCES

[dAMC11] Marc de la Asunción,
REFERENCES

Augustin Degomme, Arnaud Legrand, George S.

Dongarra:2003:RAP

DeKeyser:1994:RTL

Lu:2004:AFS

DeSande:1999:NBS

DiPietro:2016:CLD

Despons:1993:CCP

Davies:1995:NSP

Davies:1995:NPE

Dagum:1998:OIS

Dziubak:2012:OOI

Dathathri:2016:CAL

DiMartino:1997:IPD

REFERENCES

0302-9743 (print), 1611-3349 (electronic).

[Dongarra:1996:APC] Jack J. Dongarra, Kay Mad-

sen, and Jerzy Wasniewski, editors. *Applied parallel

computing: computations in physics, chemistry, and

engineering science: second international workshop,

PARA ’95, Lyngby, Denmark, August 21–24, 1995:

proceedings*, volume 1041 of Lecture Notes in Com-

puter Science. Springer-Verlag, Berlin, Germany / Hei-

delberg, Germany / London, UK / etc., 1996. ISBN 3-540-

60902-4. ISSN 0302-9743 (print), 1611-3349 (elec-

mance impact of address relation caching. In Zywa-

mski and Sinharoy [SS96], pages 213–226. ISBN 0-7923-9635-

[Donev:2006:ICF] Aleksander Donev. Interop-

erability with C in Fortran 2003. *ACM Fortran Forum*,

25(1):8–12, April 2006. ISSN 1061-7264 (print), 1931-1311

(electronic).

[Sandes:2016:CIS] Edans Flavius de Oliveira Sandes,

Guillermo Miranda, Xavier Martorell, Eduard Ayguade,

George Teodoru, and Alba Cristina Magalhaes Melo.

CUDAAlign 4.0: Incremental speculative traceback for ex-

act chromosome-wide alignment in GPU clusters. *IEEE

Transactions on Parallel and Distributed Systems*, 27(10):

2838–2850, October 2016. CODEN ITDSEO. ISSN

/www.computer.org/csdl/trans/td/2016/10/07374729-

abs.html.

David Walker. An introduction to the MPI Standard. Technical re-

port CS-95-274, University of Tennessee, Knoxville,

Knoxville, TN 37996, USA, January 1995. URL

ps; http://www.netlib.org/utk/papers/intro-mpi/

intro-mpi.html; http://www.netlib.org/utk/people/

JackDongarra/pdf/ut-cs-95-274.pdf. Appears in

CACM [DOSW96].

Walker. A message passing standard for MPP and

workstations. *Communications of the ACM*, 39(7):

[DeRoeck:1994:CFP]

[Denis:2001:THP]

[Dalcin:2005:MP]

[Dalcin:2008:MPP]

[Dou:1997:ISV]

[Decker:1994:PEM]
REFERENCES

[Dowaji:1995:LBS]

[DiMartino:1997:MDH]

[Davina:2018:MCP]

[Deuzeman:2012:LMP]

[DS96a]

[Djordjevic:1996:ICI]

[Dang:2013:CES]
Hoang-Vu Dang and Bertil Schmidt. CUDA-enabled sparse matrix-vector multiplication on GPUs using...

[DMS04]

Deniz:2016:MGM

[DS16]

Dang:2017:ECB

[DSG17]

Dietrich:2017:CBA

[DSGS17]
REFERENCES

REFERENCES

REFERENCES

[DZZY94] S. G. Dykes, Xiaodong Zhang, Yan Zhou, and

REFERENCES

El-Maghraoui:2009:MIM

Eleftheriou:2005:SFF

El-Ghazawi:2002:UPP

Eppstein:1992:PGC

Eickermann:1999:PID

REFERENCES

REFERENCES

pages 56–68. ISBN 90-5199-163-0. LCCN ????

Eigenmann:2000:TMPa

Eigenmann:2000:TMPb

Espenica:2002:PPA

Espinoza:1998:ADP

Espinoza:2000:APA

Ewing:1993:DCW

Engquist:2000:SVG

Björn Engquist, editor. Simulation and visualization on

Emani:2015:CDM

Ebner:1996:TFP

Espinosa:1999:REB

Eizenberg:2017:BBL

ElZein:2012:GOC

El Rewini:1995:PTT

Alexandre E. Eichenberger, Christian Terbven, Michael Wong, and Dieter an Mey. The design of OpenMP thread affinity. Lecture
REFERENCES

4. xx + 195 pp. LCCN ???? Also published as dissertation of the University of Basel.

Freeman:1994:SMM

Fang:1995:PMS

Fang:1996:SPP

Fang:1997:MDD

Fagg:2001:FTM

Fagg:2001:HFT

REFERENCES

[Friedel:2001:HMC]

[Fagg:2002:FTM]

[Floros:2005:TGS]

[Falzone:2007:PMF]

[Ferschweiler:2001:CDP]

Graham E. Fagg and Jack J.
REFERENCES

Fagg:2004:BUF

Fagg:1997:HMAa

Fagg:1997:HMAAb

Falch:2017:RAM

Ferenczi:1992:AHW

Ferrari:1998:JNPb

REFERENCES

REFERENCES

Fousek:2011:AFC

Fernandez:2003:BMN

Foster:1998:WAI

Foster:1997:MMC

Fagg:2001:PIS
REFERENCES

Fahringer:2000:FOP

Foster:1996:MIW

Fan:1995:DMP

[FH95] W. C. Fan and J. A. Halbleib, Sr. Distributed multitasking ITS with PVM.

Transactions of the American Nuclear Society, 72(????):146–147, 1995. CODEN TANSAO. ISSN 0003-018X.

Fachat:1997:IEB

Andre:1998:BVN

Friedley:2013:OPE

Andrew Friedley, Torsten Hoefer, Greg Bronevetsky, Andrew Lumsdaine, and Ching-Chen Ma. Ownership passing: efficient distributed memory programming on multi-core systems.
REFERENCES

Franke:1995:AAV

Field:2001:RTF

Franke:1994:MMP

Franke:1995:MIS

Franke:1994:EIM

Franke:1994:MEI

Fang:1999:PMD

Zhiwu Fang, A. D. J. Haymet, Wataru Shinoda,

Fineberg:1994:IMM

Fineberg:1995:IMM

Fin:1997:CPM

Fink:2000:IMC

Fischer:2001:SAN

Fernandez:2000:UPM

Gustavo J. Fernández, Julio Jacobo-Berlles, Patricia Borenstejn, Marisa Bauzá, and Marta Mejail. Use of PVM for MAP image restoration:
REFERENCES

REFERENCES

Field:2002:OSR

Foster:1996:MCL

Foster:1996:CDT

Foster:1996:DSB

Freeh:2008:JTD

Foster:1996:GCM

Karl Furlinger and Shirley Moore. Capturing and analyzing the execution con-
REFERENCES

[FNSW99] D. Ferenc, J. Nabrzyski, M. Stroinski, and P. Wierzejewski. Visual MPI, a knowledge-based system for writing efficient MPI ap-

Fuerle:1998:IPC

Fumero:2017:JTG

Folino:1998:EMC

Folino:1998:PEM

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP

[FSXZ14] Chunsheng Feng, Shi Shu, Jinchao Xu, and Chen-Song Zhang. A multi-stage preconditioner for the black oil model and its OpenMP implementation. In Erhel et al. [EGH+14], pages
Fernandez:2000:DCE

Fujimoto:2008:DMV

Fagg:2000:AAC

Fang:2015:EVD

Fineberg:1996:PPI

Franke:1995:MPEeb

Hubertus Franke, C. Eric

REFERENCES

REFERENCES

LCCN SIO 1 WO326 v.92.

Gonzalez-Alvarez:2017:HMO

David L. González-Álvarez, Miguel A. Vega-Rodríguez, and Álvaro Rubio-Largo.
A hybrid MPI/OpenMP parallel implementation of NSGA-II for finding patterns in protein sequences.

Gupta:1994:CTE

M. Gupta and P. Banerjee.
Compile-time estimation of communication costs of programs.

Ghosh:1996:ELM

K. Ghosh and S. Breit.
Evaluating the limits of message passing via the shared attraction memory on CC-
COMA machines: Experiences with TCGMSG and PVM.

Gorlatch:1998:GMI

Sergei Gorlatch and Holger Bischof.
A generic MPI implementation for a data-parallel skeleton: Formal derivation and application to FFT.

Geist:1994:PPV

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidyalingam S. Sunderam.

Gentzsch:1995:STP

W. Gentzsch, U. Block, and F. Ferstl.
Software tools for parallel computers and workstation clusters.

Golebiewski:1999:HP1

M. Golebiewski, M. Baum, and R. Hempel.
High performance implementation of

Gerstenberger:2014:EHS

Gerstenberger:2018:EHS

Gabriel:1997:EMU

Edgar Gabriel, Thomas Beisel, and Michael Resch. Erweiterung einer MPI-Umgebung zur Interoperabilität verteilter MPP-Systeme. (German) [Extension of an MPI environment for interoperability with distributed MPI systems]. Studienarbeit angewandte Informatik RUS 37, Rechenzentrum Universität Stuttgart, Stuttgart, Germany, 1997.

Garain:2015:CCF

Graham:2007:OMH

Grove:2005:CBP

D. A. Grove and P. D. Coddington. Communication benchmarking and

Garcia:2012:DLB

GarciaSalcines:1997:PRR

Garcia:1999:MMI

Garcia-Consuegra:1998:DGR

Gelado:2010:ADS

Gao:2013:GGA
Mingcen Gao, Thanh-Tung Cao, Ashwin Nanjappa,

Geist:1993:PTW

Galizia:2015:MCL

Ghose:2017:FOT

Gonzalez-Dominguez:2018:MPC

Grinstein:1995:VDE

Grinstein:1996:VDE

Georges G. Grinstein and
REFERENCES

Geist:1993:ILP

Geist:1993:PBN

Geist:1994:CCW

Geist:1996:APP

Geist:1997:ACP

Geist:1998:HNG

Geist:2000:PMW

Al Geist. PVM and MPI: What else is needed for cluster computing? Lecture Notes in Computer Science, 1908:1–??, 2000. CODEN LNCSD9. ISSN
Geist:2001:BFN

Grabowsky:1998:NMP

Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprint-Reihe des Chnnitzer SFB 393 Sonderforschungsbereich NumerischeSimulation auf Massiv Parallelen Rechnern 97.08; RA-TR 02-97, Universität Chnnitz-Zwickau, Chnnitz, Germany, 1998.

Gabriel:2003:FTC

Gabriel:2003:EPM

Edgar Gabriel, Graham E. Fagg, and Jack Dongarra. Evaluating the performance

Giannoutakis:2007:MHP

Giannoutakis:2009:DIP

Giannoutakis:2007:MHP

Gallud:1999:CCU

Gallud:2001:EDF

Gallud:1999:CCU

Gallud:1999:DPR

Gallud:1999:CCU

[GGS99] Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

References

Ghosh:2012:RAA

Grebe:1993:TAS

Goumopoulos:1997:PCS

Gropp:1998:MCR

Gong:2012:OCN

Garcia:2011:KRR

REFERENCES

469, June 2011. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Robert Granat and Bo Kagstrom. Parallel solvers for Sylvester-type matrix equations with

Grasso:2013:APS

Granat:2009:NPQ

Gropp:1995:MGX

Guan:1997:PD1

Geist:1996:VDP

Geist:1997:CPF

REFERENCES

[Geist:1997:BPW]

[Gopalakrishnan:2011:FAM]

[Garland:2012:DUP]

[Gropp:1992:TIM]

REFERENCES

[GL02] William Gropp and Ewing Lusk. MPI on the Grid. Lecture Notes in Computer
REFERENCES

Gropp:2004:FTM

Girona:2000:VDC

Gropp:1996:HPP

Glendinning:1993:MMP

Gregoretti:2008:MGE

Garland:2008:PCE
Michael Garland, Scott Le Grand, John Nickolls,

Gonzalez:2000:TSN

Gonzalez:2001:MIM

Gropp:1994:UMP

Gropp:1999:UMP

Gropp:1999:UMA

William Gropp, Ewing Lusk, and Rajeev Thakur. *Using MPI-2: Advanced Features of the Message Pass-

William Gropp, Ewing Lusk, and Rajeev Thakur.

William Gropp, Ewing Lusk, and Rajeev S. Thakur.

William Gropp, Ewing Lusk, and Rajeev Thakur.

id=APCPCS0009630000002000052000012&
amp;idtype=cvips.

REFERENCES

REFERENCES

REFERENCES

Gonzalez:1999:PPM

Gutierrez:2010:QCS

Geist:1991:ENB

Geist:1991:PSS

Geist:1992:NBC

REFERENCES

Suo Guang. NR-MPI: A non-stop and fault resilient MPI supporting programmer defined data backup and restore for E-scale super computing systems. Supercomputing Frontiers and Innovations, 3(1):4–21, 2016. CODEN ????. ISSN
REFERENCES

Ge:1995:DHA

Guerrero:2014:PCM

Hadjidoukas:2010:NOP

Han:2011:HHL

Hussain:2011:PIA

Hoefinger:2001:PSP

REFERENCES

REFERENCES

Hisley:2000:PPE

Hatazaki:1998:RRS

Hachler:1996:IAC

Hausner:1995:EIP

Huang:2006:ECS

REFERENCES

[HCZ16] Liang Hu, Xilong Che, and

He:2000:PAA

Ding:2002:MOP

He:2002:MOP

Harvey:2011:STP

Hoeffer:2012:LMO

Hoeffer:2013:MMN

Hadjidoukas:2009:HPF

Hoefler:2015:RMA

Heikonen:2002:ILB

Hadi:2013:CFA

Havran:2015:EBT

Hebekker:1993:CPC

Herland:1998:CML

Huang:2009:EGO

Hempel:1994:MSM

Hempel:1996:SMM

Holmen:2014:ASI

Holmen:2014:EAS

Hursey:2012:AFA

REFERENCES

Geerd-R. Hoffmann and Tuomo Kauranne, editors. *Proceedings of the Fifth ECMWF Workshop on the Use of Parallel Processors in Meteorology. Parallel Supercomputing in Atmospheric
REFERENCES

Henriksen:1994:PCF

Homann:1995:CAP

Hong:2009:AMG

Hong:2010:IGP

Hiranandani:1994:CTB

Hoefflinger:2001:IPV
REFERENCES

```latex


[Hung:2016:EBP] Che-Lun Hung, Chun-Yuan Lin, Chia-Shin Ou, Yuan-Hong Tseng, Po-Yen Hung,
```

Hong:1996:RDM

Hawick:2010:PGC

Hawick:2011:RLS

Hilbrich:2009:MCC

Hakula:1994:FEM

Holmes:2019:PPE

Haynes:2014:MOA

Hogg:2013:FDT

Hollingsworth:2012:SPI

Hosking:2012:CHL

Hadjidoukas:2005:OEM

P. E. Hadjidoukas and T. S. Papatheodorou. OpenMP

REFERENCES

[HRR+11] Torsten Hoe

Hesham:1994:PTS

Hertzberger:1995:HPM

Hungenahally:1995:PIQ

Hoefer:2012:OPC

Henriksen:2017:FPF

Haeuser:1994:RNS

J. Haueuer, M. Spel, J. Muyllaert, and R. D. Williams. Results for the Navier–Stokes solver ParNSS on workstation clusters and
REFERENCES

Heimel:2013:HOP

Hormati:2012:SPS

Hu:2001:PCC

Howes:2008:U

Ha:2008:NBP

Hluchy:1999:GWF

Hariri:2016:PPA

F. Hariri, T. M. Tran, A. Jocksch, E. Lanti,
REFERENCES

[Hus98] Parry J. Husbands. MPI-StarT: Delivering network performance to numerical applications. In ACM [ACM98b], page ??

Houzeaux:2011:HMO

Hager:2011:IHP

Huang:2002:DDD

REFERENCES

He:2009:AVS

Hwang:1997:EMC

Hwang:2013:ACM

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP
Hou:2008:BBS

Isaila:2010:SMP

Isabel:2002:CMO

Issman:1994:PME

Ibanez:2016:HMT

IEEE:1991:PSA

IEEE:1992:PSH

IEEE, editor. *Proceedings / Scalable High Per-

REFERENCES

IEEE:1995:CPI

IEEE:1995:IIC
REFERENCES

1995. IEEE catalog no. 95CH35751.

REFERENCES

IEEE:1995:PIC

IEEE:1995:PSP

IEEE:1995:PFI

IEEE:1996:ICH

IEEE:1996:EIS
IEEE:1996:FSS

IEEE:1996:PIS

IEEE:1996:PFE

IEEE:1996:PII

IEEE:1996:PFI
REFERENCES

1. LCCN QA76.58 E97 1996. IEEE order number PR07376.

[IEE96h]

[IEE96i]

[IEE97a]

[IEE97b]

[IEE97c]

[IEE02]
IEEE:2005:IPD

Iida:2016:GET

Izaguirre:2005:PMS

Iskra:2000:PMD

http://www.nsc.liu.se/~boein/ifip/kyoto/workshop-info/proceedings/.

Ierotheou:2005:GOC

Iwama:2001:PLS

Iwama:2002:PLS

Ingle:1995:MAS

Ishizaka:2000:CGT

REFERENCES

REFERENCES

Islam:2002:IAC

Iskra:2000:IDE

Jatala:2017:SSG

Jabbarzadeh:1997:PSS

Jacoby:1996:ADA

Juhasz:1996:PIP

Z. Juhasz and D. Crookes. A PVM implementation of a portable parallel image processing library. In Bode et al. [BDLS96], pages 188–?? ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-
REFERENCES

Jarzabek:2017:PEU

Jin:2008:PEM

Jaeger:2015:FGD

Jenkins:2014:PMD

Jeremiassen:1995:RFS

Jesshope:1993:LRV

C. Jesshope. Latency reduction in VLSI routers. *Parallel Processing Letters*, 3
REFERENCES

Jeshope:1993:MCA

Jann:1995:AMP

Jann:2012:FOL

Johnson:1997:SYE

Jin:2011:HPC

REFERENCES

Jo:2017:PMA

Jin:2003:AMP

Januszewski:2010:ANS

Jan:2017:ITF

Jog:2013:OCT
Jambunathan:2018:COB

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

Jung:2014:MCM

REFERENCES

Jo:2015:ALM

Jones:1996:LLM

Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:PCT

Juric:1995:UPV

Joldes:2014:SSH

Jou:2012:OSP

Lei Jiang, Pragneshkumar B. Patel, George Ostrovichov, and Ferdinand Jamitzky. OpenMP-style parallelism in data-centered multicore computing with R.

Joubert:1994:PAL

Jiang:2012:OSP

REFERENCES

Krone:1996:ICF

Kapinos:2010:PPP

Khan:2017:RCS

Kanal:2012:PAI

Katamneni:1993:PPE

Karlsson:1998:CCC

Kaiser:2001:OCC

Kruzel:2013:VOI

Klemm:2009:RTM

Kulkarni:2016:HAP

Knies:1994:SLL

A. D. Knies, F. R. Barriuso, W. J. Harrold, and G. B.

Klingebiel:1995:COD

Klemm:2012:EOV

Kakimoto:2012:PCG

Kepner:2005:PPM

[KFA96] R. P. Kale, M. E. Fleharty,

Kielmann:1999:MMC

Kallenborn:2019:MPC

Kucukboyaci:2001:PPT

Kjolstad:2012:ADG

Kojima:2017:HLG

REFERENCES

3:??, April 2017. CODEN ????? ISSN 1529-3785 (print), 1557-945X (electronic).

[Kikuchi:1993:PAS]

[Kranz:1993:IMP]

[Kwon:2012:HAO]

[Kim:2016:DOF]

[Kemelmakher:1998:SAR]

[Karniadakis:2002:PSC]
Krysztop:2002:IFP

Kranzlmuller:2004:RAP

Kranzlmuller:2005:RAP

Kranzlmuller:2003:RAP

Kee:2003:POP

[KKH03] Yang-Suk Kee, Jin-Soo Kim, and Soonhoi Ha. ParADE: An OpenMP programming

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO

Kobler:2001:DOP

Karrels:1994:PAM

Kofakis:1995:DPI

Liao:2006:SDI

Liao:2007:CCS

Klawonn:2015:HMO

[KKM10] Dimitri Komatitsch, David Michéa, and Gordon Erlebacher. Porting a high-order finite-element earthquake modeling applica-

Koholka:1999:MPR

Kumar:2014:OMC

Kobayashi:2016:HSV

Kouzinopoulos:2015:MSM

Kirk:2010:PMP

Kalns:1995:DPD

Katouda:2017:MOH

Kasprzyk:2002:APV

Komura:2014:CPG

Kambites:2001:OLI

Kasahara:2001:ACG

Komura:2015:OPS

Koniges:2000:ISP

Kauranne:1995:OHM

Koski:1995:STL

Konuru:1997:MUL

Kermarrec:1996:PDS

Y. Kermarrec and L. Pautet. Programming distributed systems with both Ada 95 and PVM. In Toussaint [Tou96], pages 206–216. ISBN 3-540-60757-9. ISSN 0302-9743 (print), 1611-

Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????

Parallel CFD 2007 was held in Antalya, Turkey, from May 21 to 24, 2007.
Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunaseth:2013:ASD

Kalen tev:2011:CCL

Kranzlmueller:1999:MOM

Kotsis:1996:EEP

REFERENCES

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

Kim:2014:VVF

Kim:2012:OUP

Kusano:2000:PEO

REFERENCES

Kurzyniec:2007:UCA

Kranzlmuller:2001:IRM

Keppens:2002:OPM

Koval:2010:USB

Karonis:2003:MGG
Komatitsch:2003:BDF

Kuhn:1998:FFW

Kumar:1994:PPI

Kranzlmueller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

F. C. García López and N. L. Frías Arrocha. An efficient synchronization model for OpenMP. *Journal of Parallel and Distributed Computing*,
REFERENCES

Ladd:2004:GPP

Lobeiras:2016:DEI

Laguna:2015:DPF

Lorenz:2015:AMS

Laforenza:2001:PHP

Nuria Losada, George Bosilca, Aurélien Bouteiller, Patricia González, and María J. Martín. Local rollback for resilient MPI applications with application-level checkpointing and message logging. *Future Generation Computer Systems*, 91(??):450–464, February 2019. CODEN FGSEVI. ISSN 0167-
REFERENCES

REFERENCES

Nuria Losada, Iván Cores, María J. Martín, and Patricia González. Resilient MPI applications using an application-level checkpointing framework and ULFM. *The Journal of Supercomputing*, 73(1):100–113, Jan-
January 2017. CODEN JSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

Liu:1996:BMP

Lee:2001:APT

Lu:1997:QPD

Honghui Lu, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. Quantifying the performance differences between PVM and TreadMarks. Journal of Parallel and Distributed Computing,
REFERENCES

[LF93b] J. M. Levesque and R. Fried-

Lim:2011:ATC

Leon:1992:FP

Leon:1993:FPP

Leon:1993:FPP

Liu:2016:MBM

REFERENCES

Mengjou Lin, Jehwei Hsieh, D. H. C. Du, J. P. Thomas,

REFERENCES

Li:1993:SLL

Loh:1994:ISR

Larsen:1999:SPG

Lu:2013:MLP

Lee:2009:OGC

Losada:2017:ARV

Lopez:2015:PBV
REFERENCES

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Losada:2014:EAL

Lee:2015:OPE

Lima:2012:PEO

Lu:1996:PIF

Labarta:2001:NOD

REFERENCES

Spring–Summer 2001. CODEN SCIPHEV. ISSN 1058-9244 (print), 1875-919X (electronic). URL http://iospress.metapress.com/app/home/contribution.asp?Fwasp=7pb6qgba8vxg991rwy26referrer=parent%26backto=issue%2c10%2c11%3bjournal%2c1%2c9%3blinkingpublicationresults%2c1%2c1.

Landman:2000:PLR

Le:2006:DMC

[LS10] Paul T. Lin and John N. Shadid. Towards large-scale
REFERENCES

Jiansen Li, Jianqi Sun, Ying Song, and Jun Zhao. Ac-
REFERENCES

REFERENCES

Liu:2004:BMI

Liu:2004:HPR

Liang:2018:FMP

Li:1993:MSU

Ludwig:1997:OUI

Loncar:2016:OOM

Ma:2009:CRS

Mavriplis:2005:HRAa

Miguel:1996:APN

Maffeis:1994:SSD

Moreno:2001:AEP

Mainland:2012:EHM

REFERENCES

interiscience.wiley.com/
cgi-bin/abstract?ID=5373;
http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=5373&PLACEBO=IE.pdf.

link/service/series/0558/bibs/2131/21310091.htm;

openurl.asp?genre=article&

html.

[Ma:2013:KAT] Teng Ma, George Bosilca, Aurelien Bouteiller, and

REFERENCES

REFERENCES

Mueller:2008:OSM

McKinney:1994:PGU

Moore:2001:RPA

Shirley Moore, David Cronk, Kevin London, and Jack Dongarra.

McRae:1992:VC

Mierendorf:2000:WMB

REFERENCES

Milovanovic:2008:NEE

Moody:2003:SNB

Martin:1995:DPC

Mintchev:1997:TPM

Mehta:2015:MTP

Mendonca:2017:DAA

REFERENCES

Mehta:2012:SPE

Muralidharan:2015:COP

Medvedev:2005:OMA

Montella:2017:VCB

Mazzariol:1997:PCS

Markidis:2015:OAN

Stefano Markidis, Jing
REFERENCES

Matthey:2001:EMO

Hwu:2012:GCG

Munshi:2016:OCS

Michielse:1993:PMU

REFERENCES

[MK00] Chris McDonald and Kamran Kazemi. Teaching parallel algorithm with process

Mohror:2004:PTS

Manwade:2017:DFA

Maheo:2012:AOL

Markus:1996:PEM

Min:2001:PCO

Mokbel:2011:ASR

REFERENCES

[Mitra:2014:AAP]

[Marjanovic:2010:ECC]

[Marowka:2004:OOA]

[Malakhov:2018:CMT]

[Marendic:2016:NMR]

[Majumdar:1992:PPC]
A. Majumdar and W. R. Martin. Parallel preconditioned conjugate gradient algorithm applied to neutron

[MM11] Panagiotis D. Michailidis

Morishima:2014:PEG

Malony:1994:PAP

Mudge:1993:PTS

Morimoto:1998:IMM

Morimoto:1999:PEM

Mohamed:2013:MMM

Hisham Mohamed and Stéphane Marchand-Maillet. MRO-

Manca:2016:CQI

MacFarlane:1999:PPI

Morris:2007:SNO

Mohr:2002:DPP

Matuszek:1999:BPG

REFERENCES

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

Mierendorff:1999:PMB

Migliardi:1999:PEH

Mourao:1999:IMO

MS95

MS96a

MS96b

MS98

MS99a

MS99b

MS99c
REFERENCES

REFERENCES 339

[Matrone:1993:LPC] A. Matrone, P. Schiano, and V. Puoti. LINDA and PVM: a comparison between two environments for par-

[Mysliwiec:1997:CAM]

[Martorell:2005:BGP]

[Mossaiby:2017:OIH]

[Miei:1996:IER]

[Mallon:2016:MUB]
REFERENCES

Muller:2003:OCB

Malakar:2017:DMO

Mehra:1995:AIM

McKinney:1993:MMI

REFERENCES

Nagle:2005:BRM

Nicolescu:1999:PWA

Nakajima:2003:PIS

Nakajima:2005:TLH

Narashimhan:1995:IIF

V. L. Narashimhan, editor. *ICAPP 95. IEEE First International Conference on Algorithms and Architectures for Parallel Process-
REFERENCES

[NB96] C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ?? LCCN ???.

[NCKB12] Sadegh Nobari, Thanh-Tung

Neophytou:1998:NDJ

Neophytou:2001:NDW

Nelson:1993:PPP

Neugebauer:2017:PAR

Nesterov:2010:SPT

Neun:1994:UPB

REFERENCES

link/service/series/0558/1
bibs/2331/23310681.htm;
http://link.springer-ny.com/link/service/series/
0558/papers/2331/23310681.pdf.

http://link.springer-ny.com/link/service/series/
0558/papers/2327/23270479.pdf.

http://link.springer-ny.com/link/service/series/
0558/papers/1908/19080145.pdf.

[NJ01] Cristina Nicolescu and Pieter Jonker. A data and task parallel image processing environment. Lec-
REFERENCES

[349]

[NNON00] Yasumori Nishitani, Kiyoshi Negishi, Hiroshi Ohta, and Eiji Nunohiro. Implementation and evaluation of OpenMP for Hitachi

[NNON00] Yasumori Nishitani, Kiyoshi Negishi, Hiroshi Ohta, and Eiji Nunohiro. Implementation and evaluation of OpenMP for Hitachi

REFERENCES

Wilfried Oed. The Cray Research massively parallel processor system CRAY
REFERENCES

Ong:2000:PCL

Owaida:2015:EDS

Otten:2016:MOI

Okitsu:2010:HPC

Ohara:2006:MMP

Oh:2012:MOO

Kwang Jin Oh, Ji Hoon Kang, and Hun Joo Myung. mm.par2.0: An object-oriented molecular dynam-

Oakley:1995:ADR

Orlando:2005:PSP

Oldehoeft:2002:SIS

Ong:2001:SUC

Oger:2016:DMM

G. Oger, D. Le Touzé, D. Guibert, M. de Leffe, J. Biddiscombe, J. Soumagne, and J.-G. Picci-
REFERENCES

Emil Ong. MPI Ruby: Scripting in a parallel

OBrien:2008:SOC

Orlando:1998:MBR

Olivier:2010:COO

ODowd:2006:WGM

Orlando:2000:MDT

Olivier:2012:OTS

Stephen L. Olivier, Allan K. Porterfield, Kyle B. Wheeler, Michael Spiegel,

Oliveira:2012:CCO

Overeinder:1997:BCD

Otto:1994:PVM

S. W. Otto. Processor virtualization and migration for

Otto:1992:MAP

Otto:1992:MAP

Ouenes:1995:PRA

Pacheco:1997:PPM

Pereira:2017:SBC

Panda:1995:GRW

Panda:1995:IDE

Parsons:1993:EDC

Pal:2014:PMH

Patterson:1993:PPE

Puzniakowski:2012:TOI

[PB12] Tadeusz Puźniakowski and Marek A. Bednarczyk. Towards an OpenCL imple-

Pringle:2001:TPF

Pingali:1995:LCP

Plazek:1999:IIC

Plazek:2000:SCC

Puthukattukaran:1994:DIP

Peng:2014:IDI

Poggi:1998:UPD

REFERENCES

SODM. ISSN 0164-1212 (print), 1873-1228 (electronic).

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD
REFERENCES

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Pjesivac-Grbovic:2005:PAM

Pjesivac-Grbovic:2007:PAM

Pjesivac-Grbovic:2007:MCA

Prabhakar:2002:PCB

Pesson:2018:GAB

Poirier:2018:DAB

Carl Poirier, Benoît Gosselin, and Paul Fortier. DNA assembly with de Bruijn graphs using an FPGA platform. IEEE/ACM Transac-
REFERENCES

Pervez:2010:FMA

Papakonstantinou:2013:ECC

Pan:2010:CPS

Pennycook:2011:PAH

Pennycook:2013:IPP

Pierce:1994:NMP
REFERENCES

480, April 1994. CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

Papadopoulos:1998:DVS

Park:2005:SOA

Papadopoulos:2001:NRC

Paul:2006:TLF

Prabhakar:2016:GCH

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

Pruyne:1996:ICP

Plachetka:2002:QTS

Park:2004:DID

Piriyakumar:2002:EFI

Pfenning:1995:OCP

Piscaglia:1995:DOC

Poulson:2013:ENF

Plagianakos:2001:LCP

Pokorny:1996:CMP

Parrilla:1999:UPD
[L. Parrilla, J. Ortega, and A. Lloris. Using PVM for

Pai:2016:CTO

Poplawski:1989:MPP

Park:2001:CSL

Papourtzis:2001:PCT

Papakostas:1996:PSP

Papakostas:1996:PPP

N. Papakostas, G. Papakonstantinou, and F. Tsanakas. PPARDB/PVM: a portable PVM based parallel database management system. In
REFERENCES

Papakostas:1996:UPI

Pedicini:2007:PPE

Pierce:1994:PIN

Pierce:1994:PSH

Pozo:1994:FTE

Priimak:2014:FDN

Pena:2014:CEC

Prades:2016:CAX

Pedroso:2000:MPC

Protopopov:2000:SMC

Pedroso:2001:WLE

REFERENCES

REFERENCES

REFERENCES

Notes in Computer Science, 1908:313–??, 2000. [PTH+01a]

Arnold N. Pears and Nicola Thong. A dynamic load balancing architecture for PDES using PVM on clusters. Lecture Notes in Computer Science, 2131:166–??, 2001. [PTH+01b]
REFERENCES

James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé. NAMD:

Qi2012:PWM

QHCC2017:PPR

QRMG96

Qu:1995:FAS

Quinn:2003:PPC

Russell:1992:CMW

Rashti:2009:SAM

Rabenseifner:1998:MG1

Rabenseifner:1999:APM

REFERENCES

REFERENCES

CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

REFERENCES

[Reinhard:1997:MHP]

[RC97]

[Reimann:1996:CBT]

[RCFS96]

[Ross:1995:DCM]

[RCG95]

[Reeves:1996:PIC]

[Rei01]

[Royuela:2012:ASO]

[RDLQ12]

[RDMB99]

[Reinefeld:2001:CDI]

REFERENCES

Reussner:2001:SSK

Reussner:2003:USD

Roy:2000:MGQ

Reynders:1995:OOO

Russ:1996:HAT

Rasch:2018:MDH

Rucci:2018:OOS

Rough:1997:PRD

Rodrigues:2013:MAA

Rico-Gallego:2015:ILM

Rico-Gallego:2016:EIL

Rivas-Gomez:2018:MWS

Rabenseifner:2001:ECF

Ragan-Kelley:2013:HLC

Rungsawang:2001:LCP

Rubio-Largo:2012:U MO

Reyes:2013:PEO

Roe:1999:PMI

[RM99] Kevin Roe and Piyush

Timothy J. Rolfe. Perverse and foolish oft I strayed. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 40(2): 52–55, June 2008. CO-

Rolfe:2008:SMA

Rosen:2013:PVA

Ramon:1995:PKV

Rodriguez:2008:FTS

Rabaea:2000:EPM

Rageb:2001:CEM

Khaled Rageb and Wolfgang Rehm. CHEMPI: efficient MPI for VIA/SCI. Preprint-Reihe des Chemnitzer SFB 393, Technische Universität
REFERENCES

Rozman:2006:CPL

Robert:2005:PIL

Reussner:2000:BMD

Rungsawang:1999:PDT

Rycerz:2007:IBS

REFERENCES

sagepub.com/content/21/2/210.full.pdf+html.

Ropo:2009:RAP

Saarinen:1994:EES

Sainio:2010:CGA

Sato:2017:NIT

Saphir:1997:SMI

Soldado:2016:ECM

Fábio Soldado, Fernando Alexandre, and Hervé Paulino.

Selikhov:2002:MCC

Schindewolf:2012:WSA

Sani:2014:PDF

Smith:1995:CR

Smith:2004:SIP

Saltz:1991:MRT

Stubbs:1995:ICE

S. S. Stubbs and D. L. Carver. IPC+++: a C++ extension for interpersonal communication with objects. In IEEE [IEE95l], pages
REFERENCES

Smith:1996:UWC

Steed:1996:PPP

Sievert:2004:SMP

Saillard:2014:PCS

Saillard:2015:SDV

Stagg:1995:IPN

Shyu:1996:ILQ

Shyong Jian Shyu, H. K.-C. Chang, and K.-C. Chou.

Schill:1993:DOD

Schneenman:1994:DSS

Schuele:1996:PLA

Schuele:1996:PLA

Schuele:1999:HAP

Schevtchenko:2001:PAS

REFERENCES

Shi:2012:VGA

Szeberenyi:1999:SGB

SM-D:2013:BRC

Sorensen:2016:EER

Sorensen:2016:PIW

Schmitt:2017:SCP

Felix Schmitt, Robert Dietrich, and Guido Juckeland. Scalable critical-path analysis and optimization guid-

Schenck:2016:EPM

Segovia:2010:PPN

Seifert:1999:ESI

Sept:1993:DIP

Serot:1997:EPF

Sevenich:1998:PPU

Scott:1998:PWN

Schoinas:1994:FGA

Steuwer:2015:GPP

Siegelin:1995:BPW

Shen:2013:ACE

Selikhov:2005:CMB

REFERENCES

Steuwer:2014:SHL

Sack:2015:CAM

Sunderam:1994:PCC

Schneider:2012:MAC

Solsona:2001:IEI

Saito:2003:LSP
Hideki Saito, Greg Gaertner, Wesley Jones, Rudolf Eigenmann, Hidetoshi Iwashita, Ron Lieberman, Matthijs van Waveren, and Brian Whitney. Large system per-

Solsona:2000:MCM

Scherer:2000:APO

REFERENCES

REFERENCES

Shah:2000:FCS

Sato:2001:OGR

Siegel:1992:FFS

Siegel:1992:FSF

Siegel:1994:PEI

REFERENCES

[SJK+17b] Máté Szőke, Tamás István...

Samadi:2014:PPB [SJLM14]

Shen:1992:VTD [SK92]

Smith:2000:DPM [SK00]

Sanders:2010:CEI [SK10]

Steinberger:2014:WTB [SKB+14]

Skjellum:2004:RTM [SKD+04]

Anthony Skjellum, Arkady Kanevsky, Yoginder S. Dandass, Jerrell Watts, Steve Paavola, Dennis Cottel,
REFERENCES

Subramaniam:1996:CLU

Skjellum:1993:SLH

Steinberger:2012:SDS

Spiechowicz:2015:GAM

Satoh:2001:COT

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shy:2000:APV

Skjellum:1995:EAM

Scherer:1999:TAP

Simos:2007:CMS

Santos:2012:ICC

Siegel:2008:CSE

Shterenlikht:2015:FC

Smith:1993:MBA

Smith:1993:DSI

Schardl:2017:TEF

Sandes:2016:MMA

Sochacki:1993:DCW

Silva:2000:HPC

Su:2006:APP

Sitsky:1996:IMU

REFERENCES

0-8186-7533-0. LCCN QA76.642 .M67 1996.

REFERENCES

Snir:1996:MCR

Snir:1998:MCR

SousaPinto:2001:PEI

Sidonio:1999:PBI

Stpiczynski:2011:SKB

Satofuka:1995:PCF

Shaw:1995:ADA

Skjellum:1996:TTM

Si:2018:DAA

Sener:1996:DPP

Subramoni:2012:DSI

Silva:1999:DPP

Schmidl:2012:PA

Saldana:2010:MPM

Sivaraman:1995:PSP

Sivaraman:1996:AAD

Szalay:2011:FCD

Speck:2012:MST

Schmidt:1994:EAO

Szymanski:1996:LCR

Silva:1999:IME

Shan:2012:OAA

Sankaran:2005:LMC

Sotomayor:2017:ACG

Sotomayor:2017:ACG

Satarić:2016:HOM

Sotomayor:2017:ACG

Silva:1996:IDS

Silva:1997:IPD

Silva:1995:PCR

Silva:1995:PCR
REFERENCES

[SSL97] J. M. Squyres, B. Saphir, and A. Lumsdaine. The design and evolution of the

Stone:1994:PSO

Shelton:1994:FPS

Sen:1999:PBD

Santana:1996:PVM

Souza:1997:EPH

Stellner:1997:LBB

R. Stephens. Parallel benchmarks on the Transtech Pyramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???? LCCN ????

Sterling:2000:SCB

Still:1994:PPC

Schmitz:2008:IIG

Sunderam:1997:TAS

Stockinger:1998:VPC

Stpiczynski:2002:PPO

Strok:1994:NJI

[Dale C. Strok. In the news: Jupiter impacts: Resolution makes a big difference. supercomputer farming down under. HPF Forum]
welcomes comments. Smithsonian Awards honor computational scientists. low-life computer viruses, PVM developers get R&D-100 award. the eyes have it. neural nets detect breast cancer. better cars through cooperation. parallel version of global climate model. Lockheed to run Idaho National Engineering Lab. public-private partners: new drugs, new software. IEEE Computational Science & Engineering, 1(3):88–90, Fall 1994. CODEN ISCEE4. ISSN 1070-9924 (print), 1558-190X (electronic).

References

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Sehrish:2012:RFS] Saba Sehrish and Jun Wang. Reduced Function Set Ab-
REFERENCES

straction (RFSA) for MPI-
IO. The Journal of Super-

[Swa01] Christopher A. Swann. Software for parallel comput-
ing: the LAM implementa-
tion of MPI. Journal of Ap-
plied Econometrics, 16(2):
CODEN JAECET. ISSN 0883-7252 (print), 1099-1255 (electronic).

[Sosonkina:2015:RAV] Masha Sosonkina, Layne T. Watson, and Jian He. Remark on algorithm 897: VT-
DIRECT95: Serial and par-
allel codes for the global optimization algorithm DI-
CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [HWS09].

[Santhanaraman:2005:DZC] Gopalakrishnan Santhanaraman, Jiesheng Wu, Wei Huang, and Dhabaleswar K. Panda. Designing zero-
copy Message Passing Inter-
face derived datatype com-
unication over infiniband:
sagepub.com/content/19/2/129.full.pdf+html.

computer. Australian Com-

lore, Andrew Lumsdaine, Jeffrey M. Squyres, and Brian McCandless. Object-
oriented analysis and design of the Message Passing Inter-
interscience.wiley.com/cgi-bin/abstract/78502300/
REFERENCES

Shan:2012:PEH

Shee:1994:DMA

Stathopoulos:1995:DLB

Sydow:1994:PSA

Stathopoulos:1996:PIM

Schneider:2009:CPM

Stankovic:1999:NVJ
N. Stankovic and K. Zhang. Native versus Java message passing. In Dongarra

RAW TEXT

[TBB12] Jian Tao, Marek Blazewicz, and Steven R. Brandt. Using GPU’s to accelerate stencil-based computation kernels for the development of large...
REFERENCES

Touhaﬁ:1996:DPC

Traﬀ:2012:RAM

Touhaﬁ:1996:DPC

Tian:2002:IOC

Tahan:2012:ITC

Thomas:1994:PSA

REFERENCES

REFERENCES

ID=76000187&PLACEBO=IE.
pdf.

[TZ12] Bibo Tu, Jianping Fan, Jianfeng Zhan, and Xiaofang Zhao. Performance analysis and optimization of MPI collective operations on multi-core clusters. The Journal of Supercomputing,
REFERENCES

REFERENCES

THORS:2019:SOS

Tabakin:2009:QPE

REFERENCES

REFERENCES

tronic). URL http://www3.interscience.wiley.com/cgi-bin/abstract/84002438
START; http://www3.interscience.wiley.com/cgi-bin/fulltext?ID=84002438&PLACEBO=IE.

Marcel Toussaint, editor. Ada in Europe: Second International Eurospace-AdaEurope Symposium, Frankfurt/Main, Germany, October 2–6, 1995: proceedings, number 1031 in Lecture Notes in Computer Science. Springer-Verlag,
REFERENCES

Berlin, Germany / Hei-
delberg, Germany / Lon-
don, UK / etc., 1996.
ISBN 3-540-60757-9. ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
QA76.73.A35157 1995.

Tourancheau:2000:HSN

Bernard Tourancheau. High
speed networks for clusters,
the BIP-Myrinet experience.
Lecture Notes in Computer
CODEN LNCS/9D. ISSN
0302-9743 (print), 1611-3349
(electronic). URL
http://link.springer-ny.com/
link/service/series/0558/1
bibb/1908/1908009.htm;
http://link.springer-
ny.com/link/service/series/1
0558/papers/1908/1908009.
pdf.

Thebault:2015:SEI

Loïc Thébault, Eric Petit,
and Quang Dinh. Scal-
able and efficient implement-
tation of 3D unstructured
meshes computation: a case
study on matrix assembly.
ACM SIGPLAN Notices, 50
(8):120–129, August 2015.
CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

Tong:2018:FCM

Zhou Tong, Scott Pakin,
Michael Lang, and Xin
Yuan. Fast classification of
MPI applications using Lam-
port’s logical clocks. Jour-
nal of Parallel and Dis-
tributed Computing, 120
(??):77–88, October 2018.
CODEN JPDCER. ISSN
0743-7315 (print), 1096-0848
(electronic). URL
http://link.springer-
ny.com/science/article/pii/S074373151830340X.

Tinetti:2001:HNW

Fernando Tinetti, Anto-
nio Quijano, Armando De
Giusti, and Emilio Luque.
Heterogeneous networks of
workstations and the par-
allel matrix multiplication.
Lecture Notes in Computer
CODEN LNCS/9D. ISSN
0302-9743 (print), 1611-3349
(electronic). URL
http://link.springer-ny.com/
link/service/series/0558/1
bib/2131/21310296.htm;
http://link.springer-
ny.com/link/service/series/1
0558/papers/2131/21310296.
pdf.

Traeff:1998:PRL

J. L. Traeff. Portable
randomized list ranking on
multiprocessors using MPI.
Lecture Notes in Computer
CODEN LNCS/9D. ISSN
0302-9743 (print), 1611-3349
(electronic).

Traff:2002:IMP

Jesper Larsson Traff. Im-

[TS12a] Oussama Tahan and Mohamed Shawky. Using dynamic task level redundancy for OpenMP fault

Thibault:2012:AIF

Takahashi:2002:PEH

Terboven:2012:AOT

Tsutsui:2012:AMG

Tang:1999:CR

Tang:2000:PTR

Trelles-Salazar:1994:MSS

Theodoropoulos:1997:GSP

Tanaka:2000:PEO

Yoshizumi Tanaka, Kenjiro Taura, Mitsuhisa Sato, and Akinori Yonezawa. Performance evaluation of
REFERENCES

REFERENCES

REFERENCES

USENIX:2000:PAL

Uehara:2002:MBP

Unat:2012:AFD

vanderPas:1993:PIG

VanKatwijk:1995:AAC

vandeGeijn:1997:UPP

Vlassov:1995:MEP

Vazquez:1999:PNS

Villaverde:2018:PTI

VanZee:2008:SPF

Vapirev:2015:IRC

vanderLaan:2011:AWL

Vetter:2000:DST

REFERENCES

Vetter:2002:DSP

Vadhiyar:2002:PMS

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

vonHanxleden:1994:VDF

Viswanathan:1995:PCM

Valencia:2008:PPR

David Valencia, Alexey Lastovetsky, Maureen O’Flynn, Antonio Plaza, and Javier Plaza. Parallel processing of remotely sensed hyperspectral images on hetero-

Varadarajan:1994:FDT

Vincent:1995:HPP

Vogel:2013:BWC

Volkert:1993:PCS

Voss:2003:OSM

450

REFERENCES

VidalMacia:2000:IPM

Vargas-Perez:2017:HMO

Vrenios:2004:PPC

Varin:2000:PAL

VanVoorst:2000:CMI
REFERENCES

[Wan97] Paul S. Wang. Tools for para-

Wang:2002:OPG

[Wan02]

Wasniowski:1995:NAP

[Was95a]

White:1995:PNP

[WAS95b]

Wolf:1996:CFS

Wickerson:2015:RSP

[WBBD15]

Wolf:1997:CMP

Wolf:1999:NCF

Wong:2000:OPK

Wickerson:2017:ACM

Walters:2009:RBF

Wang:2015:AST

Wang:2007:EAP

Wang:2012:OVT

Wu:1999:JBD

Wang:2013:PMO

Wedemeijer:1996:Psa

Walker:1996:MsM

Welch:1994:PVm

Werner:1995:Ump

Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.

Weber:2017:Mal

Warren:2019:Cbg

REFERENCES

P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ???.

R. White. VCMON — the VM/ESA Connectivity Monitor. In Anonymous [Ano94g], pages 783–792. ISBN ???? LCCN ????

Wismueller:1996:SBV

Wismueller:1996:SBV

Wismueller:1997:DMP

Wismueller:1998:LMS

Wismueller:2001:UMT

Wischel:2016:PPW

Wu:2014:OFB

Wu:2014:OFB

[WJB14] Jing Wu, Joseph JaJa, and Elias Balaras. An optimized FFT-based direct Poisson solver on CUDA.

REFERENCES

Walker:1995:RBD

Walker:1996:RBC

Winstanley:1997:PDP

Wang:2009:MPM

Wolbers:1992:SPP

Worley:1996:MPE

Weng:2007:OIS
505, October 2007. CO-
DEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640
electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
35&issue=5&page=493.

Wagner:1994:CFD
S. (Siegfried) Wagner, J. (Jacques)
Periaux, and E. H. (Ernst-
Heinrich) Hirschel, editors.
Computational fluid dynam-
ics ’94: proceedings of the
Second European Computa-
tional Fluid Dynamics
Conference, 5–8 September
1994, Stuttgart, Germany.
Wiley, New York, NY, USA,

Wang:1995:PPG
Cho-Li Wang, V. K. Prasanna,
and Young Won Lim. Par-
allelization of perceptual
grouping on distributed
memory machines. In Can-
toni et al. [CLM+95], pages
323–330. ISBN 0-8186-7134-
3. LCCN QA76.9.A73W675
95TB8093.

Wu:2001:PCS
Guang Jun Wu and Robert
Roy. Parallelization of char-
acteristics solvers for 3D
neutron transport. Lec-
ture Notes in Computer Sci-
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http:
//link.springer.de/link/
service/series/0558/
bibs/2131/24740271.htm;
http://link.springer-de/link/
service/series/0558/papers/
2474/24740271.pdf.

Worsch:2002:BCM
Thomas Worsch, Ralf Reuss-
ner, and Werner Augustin.
On benchmarking collective
MPI operations. Lecture Notes in Computer Sci-
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http:/
//link.springer-de/link/
service/series/0558/bibs/
2474/24740271.htm;
http://link.springer-de/link/
service/series/0558/papers/
2474/24740271.pdf.

Winkler:2019:GSM
Daniel Winkler, Massoud
Rezavand, Michael Meister,
and Wolfgang Rauch. gpuS-
PHASE — a shared mem-
ory caching implementation
for 2D SPH using CUDA
(new version announce-
ment). Computer Physics
Communications, 235(??):
CODEN CPHCBZ. ISSN
0010-4655 (print), 1879-2944
(electronic). URL http:/
//www.sciencedirect.com/
science/article/pii/S0010465518303126.

REFERENCES

Worringen:2003:FPN

Waidyasooriya:2017:OBF

Wu:1999:MCC

P.-Y. Wu. Minimum communication cost fractal im-

Wong:2011:EMS

Wilson:1996:SMS

Wu:2012:DPL

Chao-Chin Wu, Chao-Tung Yang, Kuan-Chou Lai, and Po-Hsun Chiu. Designing

[XWZ96] Jianxin Xiong, Dingxing Wang, Weimin Zheng, and Meiming Shen. BUSTER: an integrated debugger for PVM. In IEEE

Xu:2013:PMO

Yelon:1993:PTS

Yazdanpanah:2015:PHR

Yang:2014:PMI

Ying:2003:NPK

Lexing Ying, George Biros, Denis Zorin, and Harper
REFERENCES

Yalamanchilli:1998:CPJ

Yviquel:2018:CPU

Yang:2014:HPD

Yu:2013:AGA

Yoon:1996:WBP

REFERENCES

[Yang:2014:IMP]

[Yetongnon:1996:PII]

[Yero:2001:JOO]

[Yuasa:1996:RPG]

[Asim YarKhan, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra. Porting the PLASMA numerical library to the OpenMP standard. International Jour-]

Erdal Yilmaz, Eray Molla, Cansin Yildiz, and Veysi Isler. Realistic modeling of spectator behavior for soccer videogames...

Yi:1994:PID

Yilmaz:2009:HPC

You:1995:EIM

You:1993:EIM

You:1995:EIM

You:1995:EIM

Yuan:2012:PCS

YSMA+17

[Luis E. Young-S., Paulsamy Muruganandam, Sadhan K. Adhikari, Vladimir Loncar, Dusan Vudragovic, and Antun Balaz. OpenMP...

Yu:2005:HPB

Yeh:2017:PFG

Yang:2008:DPL

Young-S:2016:OFP

Yan:2014:OMB

REFERENCES

[YWTC15] Yi-Ping You, Hen-Jung Wu, Yeh-Ning Tsai, and Yen-Ting Chao. VirtCL: a framework for OpenCL de-

Yong:1995:SOM

YYW

Yang:2014:CNR

You:1995:PIM

Zounmevo:2014:FRC

Zaza:2016:CBP

Zahawi:2012:FTR

Zhong:2007:PPS

Zdetsis:1994:PMD

Zilli:1997:TBN

Zh:2012:CDS

Zhao:2010:GMP
Zhang:1997:DED

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

Zemla:1994:WTC

Zhou:1995:FMP

Zhou:1995:RMR

Honbo Zhou and Al Geist. “receiver makes right” data

Zhou:1996:FMP

Zhou:1998:LST

Zielinski:1994:PPS

Zu:1994:OSM

Zheng:2006:PEA

Zoraja:1999:SPD

Zhang:2018:IRP

Zounmevo:2014:ESC

Zaki:1999:TSP

Zhou:2012:DFD
Zhang:2017:DLN

Zhu:2015:PIM

Zhai:2011:CVH

Zollweg:1993:OP

J. A. Zollweg. Overview of PVM. In Anonymous [Ano93f], pages 981–986. ISBN ???? ISSN 0254-6213. LCCN ????.

Zarrelli:2006:EPE

Zambonelli:1996:EPP

Zheng:2011:GLO

(print), 1558-1160 (electronic). PPoPP ’11 Conference proceedings.

Zhao:2012:ASO

Zarrabi:2015:GSA

Zoltani:2001:EPO

Zouaoui:2017:CNG

Zoreski:1995:EPG

Zheng:2005:SBP

Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad, and Laxmikant V. Kalé. Simulation-based performance prediction for large

