Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0
[ICC02]. 1 [ICC02, LRQ01, VDL+15]. 19.95 [Ano95b]. 2
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19]. 24.95
[Ano95c]. 27.50 [Ano96a]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12]. 35
[Ano00a, Ano00b]. 35.00
[Ano99a, Ano99c, Ano99b, Ano99d]. 60
[KA13]. 860 [Ano00a, Ano00b]. 3 [PBC+01].
$A [ARYT17]. \alpha [JMdVG+17]. Ax=b$

[BG95]. $D [UZC+12]. H^2/H^\infty [GWC95]. k$
[She95, TK16]. $M^3 [JSH+05]. PVM^+$
[Wil94]. N
[IHM05, Per99, Rol08b, SP99, SRK+12].
SU(3) [BW12]. \tau [RGDM15, RGDML16].
XY [KO14].

- based [Rót19]. - body
[IHM05, Per99, SP99, SRK+12]. - D
[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. - Dimensional [LRQ01].
-Lop [RGDM15, RGDML16]. - Means
[TK16]. - Queens [Rol08b]. - set [She95].
- stable [JMdVG+17].
/Fortran [TBG +02]. /many [KSG13].
/OpenMP [VDL +15].

1 [HMVK94, SOHL +98]. 10-Gigabit
[HeF05]. 100 [Str94]. 10th [DLO03, IEE96e].
'11 [ACM11]. 11th [IEE97b, KKD04]. '12
[Hol12]. 128-processor [LL01]. 12th
[DKD05, Bi95]. 13th
[Ano95d, MTWD06, PSB +94]. 14th
[CHD07, CHD09]. 15-18 [SL94a]. 15th
[IEE95i, LKD08]. 16th [RWD09]. 17th
[KGRD10, MC94]. 18-21 [DKD07]. 18th
[DE91, EJL92, IEE91]. 1992
[KG93, R +92, VW92]. 1993
[Ano94c, GGK +93, IEE93a, IEE93e,
JPT94, MMH93]. 1994 [Ano94a, Ano94e,
DSZ94, DT94, GN95, GT94, HK95, IEE94h,
PSB +94, SPE95, SPH95, VV95]. 1995
[ACM95a, ACM96a, AGH +95, BH95, Gat95,
Ham95a, IEE95b, IEE95a, IEE95d, IEE95h,
IEE95i, JB96, NM95, Nar95, Ten95, UCW95,
ZL96]. 1996 [ACM96b, Abr96, Boi97,
ERS96, IEE96f, IEE96e, IEE96i, Ree96].
[TBD12, IEE05]. 1st [Abr96, BR95a,
CGB +10, Kum94, Van95, Fer92].

2 [AKL99, BCAD06, BHS +02, BMPZ94a,
CwCW +11, CD96, DPS80, FST98a,
FST98b, GFD03, GGHL +96, GT01,
GHL +98, GLT99, GLT00b, GLT00a,
HGWM12, Jon96, LC97b, LSK04, MS92a,
MK04, PS00a, SS99, SSL97, TRH00, VAT95,
bT01a]. 2-D [BMPZ94a]. 2.0
[BO01, LPD +11, LW97, Mat00b, NS12].
2.2 [HRR +11]. 2.X [KS96]. 2000 [ACM00,
CLBS17, LL01, LSK04, NU05, ZSnH01].
2001 [ACM01, Old02]. 2003
[ACM03, AS14, Don06, OL05]. 2004
[ACM04]. 2005 [ACM05, DLO03]. 2006
[ACM06a, MTW07]. 2007 [SM07]. 2008
2012 [Hol12, TB14]. 2015 [IS16]. 21st
[IEE95a]. 25nm [Ano03]. 26th
[Ano93a, SL94a]. 27th [Ano94h]. 28th
[ZL96]. 2D [ZS9 +15]. 2D-DWT [ZS9 +15].
2nd [FK95, IEE93c, Nag05, YM97].

3 [Bri95, Che10, GBH14, GBH18, GPL +96,
GLT12, Gro12, HDT +15]. 3-D [Bri95]. 3.0
[Ano97, Bra97, BMR02, BRM03, DBB +16,
KaM10, OP10]. 3.06 [Ano03]. 3.1 [WCC12].
3.4 [Gei97, GKH97]. 3.X [KS96]. 3000
[HWM02]. 33rd [ACM95a]. 37th [ACM95a].
3D [GAP97, Gra97, LO96]. 3D-Fall [Gra97].
3rd [ACM96b, CZG +08, Ano95a, IEE96a].

4 [Ano03, HRZ97, KSHS01, NU05, SD13,
SBT04]. 4.0 [DSG17, JCP15, dOS1 +16].
4.5 [CBY18]. 43 [UCZ +12]. 45-degree
[CT13]. 48th [IEE94e]. 4th
[BDW97, EdS08, FF95, USE00].

5 [TRH00]. 512 [RB97c]. 5th
[AD98, Cha05, IEE94a, MdSC09].

600 [LSK04]. 6000 [AL93, NMW93]. 64
[dCZG06]. 64-bit [Wil93]. 6th [ACB94,
DLM99, GT94, PW95, SHM +10, Sin93].

7th [ACM95b, CGKM11, DKP00, GN95,
PBG +95]. 857 [SMSW06]. 897 [HWS09]. 8th
[CMR12, CD01].

90 [Ben95, SM03]. 9076 [Bri95]. '91
[BG91, EJL92, IEE91]. '92
[Sie92a, Sie92b, VW92]. '93 [Ano93g,
GGK +93, GHH +93, IEE93a, IEE93e].
93SC08 [FS93]. 93SC041 [Gle93]. '94
[BS94, DW94, GT94, IEE94b, IEE94h,
PSB +94, SPE95, WPH94, dGJM94]. 947
[LTDD14]. '95
[ACM95b, AH95, BH95, CLM +95, CJNW95,
DMW96, FF95, HAM95b, IEE95l, Lev95,
NM95, Van95, Ano98, FD97, KaM10].
Aachen [Ano93a, GHH+93]. Abortable [CAWL17]. Abstract [MKW11, Wei94, BG94b, HTA08]. Abstract [SW12, YWTC15]. Abstracts [IS16]. ACC [APJ+16]. accelerometer [SdM10, TBB12]. Accelerated [AB13, EADT19, KA13, SCSL12, CGK+16, CP15, DCD+14, HTJ+16, KM10, PGdCJ+18, PTMF18, Sai10, iSYS12, SKM15, ZWL+17, ARYT17]. Accelerating [GM18, HF14a, HF14b, HKOO11, JKL09, JKL10, JLS+14, JNL+15, LSSZ15, LSVMW08, LSMW11, LAFAL, SCJIH19, TMP16, TS12b, UZC+12, YEG+13, vdLJR11, HWX+13]. Acceleration [CGBS+15, RVKP19, TK16, CBYG18, CLBS17, HE13, MGS+15, PRS16, SWS+12]. Accelerator [APJ+16, CLA+19, SSAS12, YCA18, KL15]. Accelerator-Aware [APJ+16]. Accelerator-bound [CLA+19]. Accelerators [AKL16, AC17, NTR16, SHM+10, TCM18, KHBS19, MSZG17, UGT09]. Access [Bri10, HDT+15, IFA+16, JPL17, LB98, SGH12, WTR03, CLA+19, CG99b, GBH14, GBH18, HGMW12, LOHA01, MN91, SFL+94]. accesses [TGL02]. accessible [BHW+12]. Accident [Smi93a, SBR95]. According [LG00]. ACCT [FV00d]. Accumulated [KS15b]. Accumulative [IH04]. Accurate [HD00, MLA+14, RSPM98]. Accurately [BGdS09]. achievable [HMS+19]. Achieving [CBPP02, Gro01a, KKLL11, RH01]. ACM [ACM90, ACM95a, ACM95b, ACM97b, ACM98b, ACM04, ACM05, IEE02]. ACM/IEEE [ACM97b, ACM98b, ACM05]. ACO [Tsu12]. ACPC [Bos96, Vol93]. Across [NE98, AL96, CZ95b]. ACSCI [Van95]. action [Hol95]. Active [CSAGR98, Pla02, SKH96]. Activities [MS97, CMV+94]. activity [Vet02]. Ad [IBC+10, ITT02]. Ad-Hoc [IBC+10]. Ada [Ano95b, NMC95]. Adaptable [SPH+18, BCM+16]. Adaptation [WST95]. Adapted [Uhl95a]. Adapting [VFD02]. Adaptive [Ano94b, BCMR00, BKdSH01, Bir94, COK+94, FSC+11, HWX+13, KK98, KT02, LFL11, MKC+12, MBES94, MRB17, MAGR01, OKW95, Ran05, RA09, SHM+12, SGZ00, ST99, Sta95a, TMW17, ZSG12, BDP+10, CLSP07, DLR94, EZBA16, EASS95, IDS16, LCL+12, SLGZ99, TCBV10, Was95a, Wil94, FSC+11]. Adaptive-ComPI [FSC+11]. Adas [HHC+18]. Adding [CB00, GRV01, PSM+14]. Address [SS01, DO96]. addresses [CGL+93]. ADDT [SR96]. ADI [Sch01]. adjacent [Kan12]. adjoint [RMN+12]. Adjusting [GSHL02]. ADOL [BGK08]. ADOL-C [BGK08]. adoption [CMV+94]. Adsmith [LKL96]. Advanced [Ano98, Ano00a, D+95, Gei96, Gei97, GLT99, GLT00b, GLT00a, GLT12, KG93, SSAS12, TC94, Ben95, DMK19]. Advances [Bha93, BHH+08, CHD07, CNDN11, KGRD10, KKD03, KKD04, KKD05, LKD08, LK10, MTWD06, RW09, TDB12, AD08, BC14, BDW97, CD01, DKD05, DLM99, DKP00, DLO03, HPS+12, Kra02, HPS+13, IEE97a]. Advection [ACK+94, CT94a, TC94, CT94b]. Advection-Chemistry [ACK+94]. Aerospace [MAB05]. Affine [DMB16]. Affinity [ETWaM12, AGG+95, NAAL01]. Affordable [Rol94]. again [Har94]. against
[GHD12]. Age
[MdSc09, Ano94f, GJLT11, HK95]. A G E B
[SAS01]. Agent
[Mat01b, MCB05, ZWZ+95]. agent-based
[MCB05], agents [KBA02]. Aging
[LRBG15]. Aging-Aware [LRBG15].
Al I M S [Yan94]. Air [AKK+94, BZ97,
MPD04, MSML10, B T C +17, SH94, Synd94].
airspace [TCP15]. Aix [GA96, Ano91a].
Aix-le-s-Bains [GA96]. AI
[An95b, NMC95]. Alamos [Old02].
Albuquerque [I E E 91, I E E 95d]. ALDY
[GS96]. A L E [HAA+11]. Algebra
[BDT08, CDD+13, Coo95b, DGH+19, IS16,
MGMH97, Neu94, van97, BKvH+14, Cal94,
Coo95a, PMZM16, dCH93]. Algebraic
[CGPR98, Lev95]. Algorithm
[ACMR14, BST+13, BP99, BT01b, DYN+06,
FJBB+00, HA10, HD02b, ITT02, MW98,
PK95, PB12, RDMB99, Röt19, SAS01,
Sch96a, SLMW10, SWH15, Sta95b, TK16,
WHD05, ART17, AAA16, ARL+94,
AD95, BB95a, BA95a, BY12, BCM+16,
CC95, CTV13, CSW99, GM94, GCN+13,
GGL+08, GKK90, GP95, HWS99, IM95,
JR13, KDSO12, KY10, KWEF18, Kan12,
KB16, KN17, KO14, Komi15, KRC17,
LYP19, LYZ13, MM92, MIVS16, MK00,
NB96, NAO99, OKW95, OMK90, PGBF+07,
PST99, Ram07, RAG95, Sch96b,
SOA11, Sur95a, TNB17, Was95a,
YULMTS+17, ZKS15, ZWL+17, dH94, van93,
HWS99, LTDD14, Riz17, Spe19, SWM06].
Algorithm-based [PKD95].
Algorithm-Dependant [BP99].
algorithmic [RJDH14]. Algorithms
[ACM95b, ATC94, ADRT98, ASA07,
CCSM97, DALD18, DAK98, D06, FB94,
GAMR00, GK10, HO14, HK94, IEE96d,
KK02a, LHMM96, Li96, LAD16, MTSS94,
MGMH97, MBS15, Nar95, Pet97, PBK00,
SG15, VRS00, AK99, AL92, BBJH96, BMS+17,
BID95, DDLM95, FR95, FP92, GWC95,
HL17, HPLT99, HKOO11, HS95b, Jou94,
JRM+94, KL95, KRG13, LFL11, LNW+12,
MTK16, MJG+12, NP12, Ols95, PP16,
Pan95b, PBK99, PD11, PCS94, RHG+96,
SPE95, Sur95b, TSC94, WCVR96, YL13].
alias [SOA11]. alias-free [SOA11]. aligned
[AGIS94]. Aligners [SMM+16]. Alignment
[dOSSM+16, AMHC11]. all-port
[RJMC93]. All-to-All
[LZH17, LSH18, Trä02b]. Allocation
[AGS97, BS01, DGG+12, RFR96]. alloy
[TG94]. ALM [PZ12]. Altera
[RGB+18, TK16]. Alternative
[EM94, SWPH05, Trä12a, EKT19].
ALWAN [HB96a, HB96b, MSB97].
Amazon [ZL+11]. AMBER [SI95].
AMBER4 [VM95]. American [Ara95].
AMIP [Gat95]. Among [CB16]. AMPI
[HK06]. AMPLIC [CCHW03]. amplified
[EZB16]. AMR [NRH07]. AN2 [HT95].
analogue [WWZ+96]. analyses [ANS95].
Analysis
[BHW+17, BR02, BGG+02, BBC+00, BDL98,
CGLD01, CLA+19, EML00, FK01, FJK+17,
Hol12, JF95, KL94, KNT02, KRG13, LCK11,
MK17, MCLD01, NAW+96, NMS+14, Ost94,
PZ12, PGAB+05, SPL+12, SB95, SN01,
TFGM02, Whi04, WM01, BB93, BBH14,
BBH+15, Che99, DSG17, EPP+17, GR95,
GFB+14, GKS+11, GE95, GE96, GT07,
JB96, LC07, LL12, LL16, LBH12,
MBM+94, MMW96, MLA+14, MJPB16,
Pat93, PHJ11, PGAB+07, SSCP13,
sISY12, SS94, SDJ17, SPF95, Shi94, Sil96,
SWL+01, SSG95, TMC09, TW12, TFZ12,
Uhl95a, Uhl95c, VM94, YLC14]. analytical
[BHW+12, HK90, JS13, KN17]. Analyzer
[JJPL17, KKM15]. Analyzers [Ano1a].
Analyzing
[BRU05, DF17, FM09, HG12, HCF05, PFG97].
anasslich [Ano94c]. Anatomy [KWEF18].
Andrew [Ano99c, Ano99d]. animal [LM99].
anisotropic [LBB+16, SB+16, YSV16].
’Annai [CEF+95]. Annapolis [IWE96c].
Annealing [FH97]. Anney [VW92].
Anniversary [Ano92, Ano93f]. annotated [GGH99]. Annotation [MGA+17]. announcement [WRMR19].

Announcements [Ano98]. Annual [ACM95b, Ano93b, Ano94b, IEE95b, USE00, Van95, Y+93, ACM95a, Eng00, IEE94e, IEE95l]. Ant [IT02], ante [Ano03].

antenna [DSOF11]. Anthony [Ano95c, Ano00b]. Antonio [Ano95d, IEE95g, IEE97c]. Any [Gro02a, Mar07]. AP [PBC+01, SMTW96]. AP/ [SMTW96]. AP1000 [SH96, IM94, SWJ95]. AP3000 [TD99].

API [DM98, LPD+11]. APIs [WCS+13]. APOLLO [Sta95b]. APOLLO-II [Sta95b].

Appendix [Ano01a]. Appendixes [Ano01a]. APPL [AB93b, AB93a].

Application [AKE00, BSN95, BGD09, BS07, BFM97, BBH+15, Cha02, CRGM14, DFM94, FGD97a, FGD97b, FSC+11, GB98, HT08, JFY00, JCH+08, KNT02, LD01, LMRG14, Mal01, MTSS94, MBB+12, DSLV16, NS16, PSS901, Riz17, SBF+04, ST02a, SCL97, UTY02, ZZ04, ABC+00, ADM05, ADR+05, BvdB94, BFL99, BL97, BMP03, CBYG18, CRM14, CRGM16, EPM99, FMFM15, GWVP+14, HTJ+16, HZ96, KME09, LG12, LCMG17, LBB+19, MMW96, MM03, MLA+14, MVWL+10, NMV93, RBAI17, Rol08b, SM12, SCJH19, SSS99, SFSV13, SL00, TCP15, Wor96, ZZ9+15, CG99a].

application-centric [SFSV13]. Application-Level [CRGM14, LMRG14, SBF+04, SCL97, BMP03, CRM14, CRGM16, LCMG17, LBB+19].

Applications [APJ+16, AGS97, Ano89, Ano96c, AZG17, BCL97, Ben18, BHV12, BBH+06, BRU05, BFM96b, BFBW01, CGS15, CBL10, CGLD01, Cha05, CJNW95, CRGM14, Cot98, CTK00, Cot04, Cza02, Cza03, DW02, DLM+17, DERC01, DHK97, DGF97, DGMJ93, EV01, EML00, FLN98, FD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GK10, HMK90, Hsu98, IEE95I, ITT02, Jsr93b, JPL17, KB98, KBS04, KGG+03, KK01, KK02b, Kuh98, La01, LAO+15, LWSB19, LRG14, LCCW07, LdSB19, LMRG14, dLR04, MSOS01, MS02a, Mat01b, MAB05, MC98, MG15, MANR09, PSN+14, Rei01, RPM+08, RBB15, RBB01, SPL+12, SG12, SPH+18, SC04, SSB+17, TTS00, TFGM02, VdS00, VY02, Vos03, Waj96a, WC09, Wis96a, WSN99, WKBH97, WM01, dGJ94, ACH+11, ACJ12, Ano93a, Ano94f, Ano03, Ara95].

applications [Arn95, AGMJ06, BKH+13, BR04, BDV03, BAG17, BFM96, BFMT96a, CGK+16, CBG+15, CDMS15, CLSP07, CBM+08, CIJ+10, CFPS95, CWW03, CCM+06, DZ98a, DSZ94, D+95, DCH02, EKTB99, EGH99, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHD12, GMMM18, GS96, GHH+03, HZ99, HAJK01, JC17, JPTE94, LMG17, LCMG17, LBB+19, LHZ919, LSO8, MA09, MBKM12, MLC04, MS0092, MS96b, NS97, NCB+12, NFG+10, PK05, PTL+16, Rab99, RS95, RGGP+18, SGL14, SPE95, SBG+12, SDJ17, SGH12, SG95, SB01, SD16, TMC09, TBB12, TPLY18, Vet02, Wis96b, Wol92, WT13, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDB06, ATC94].

Applied [FGRD01, HC06, KaM10, GFIS+18, HMKV94, MM92, NF94, PGK+10, DMW96, Wiz96]. Approach [AZG17, BHM94, BJ93, BHNW01, CRGM14, CD98, DLM+17, FP03, GCBL12, HD00, KBA02, KK02a, KmWH10, LG00, Mar06, PR01, Pet00a, Pet00b, RGD03, Ros13, TJPF12, BK11, Bis04, BTC+17, CLYC16, CD99, CRGM16, DiN96, EO15, FMS15, HDB+13, JS13, KPL+12, KSS07, KJEM12, LSG12, MGG05, MS99b, NEM17, OW92, SVC+11, SEC15, TWFO09, WO09].

Approaches [JCH+04, Ney00, SWHP05, SM02, BFL99, CB11, PS006].
Approximate
[Hu96, MM02, GGC+07, GG09, MM03].
Approximation [SLJ+14, SJLM14].
April [ANS95, AH95, Ano93b, Ano94h, CH96,
DR94, GH94, Ham95a, IEE92, IE93b,
IE95f, IEE96c, IEE97b, IEE95, LCHS96,
MC94, Nar95, Sie94, SW91, Ten95].
APS [GT94]. AQsort [LTS16]. AQUAgpusph [CP15].
arbitrary [HP11]. ARCH [Ada97, Ada98].
Architecture [BG94a, CGC+11, CLOL18,
EBKGO1, EM02, FD97, Fuj08, HRZ97,
IEE97c, ITKTK0, LSZL02, PT01, PS01b,
SMM+16, SC04, SYL19, WKP11, YTH+12,
BBCR99, BG94c, Cspm+96, CS96,
CBIGL19, DiN96, FHC+95, HK09, MRH+96,
PWD+12, SWYC94, SSGF00, SQu03, SP11,
WCC+07, YAJG+15, YEG+13, ZWZ+95].
arbitrary-independent [DiN96].
Architectures [ACM95b, BDT08, BFG+10, CHP901,
HDO2a, HD02b, HHK94, IEE96d, KDT+12,
LHLM96, Li96, LHZH17, LAD16, MS02b,
MTS994, MCS00, NO02b, Nar95, PZ12,
TSCAm12, YK+18, ZTD19, BDP+10,
BN00, BKML95, CLM+95, CDZ+98, DM93,
DZZY94, GDC15, GP95, Hos12, LCL+12,
LDJK13, MLC04, NO02a, PY95, RFH+95,
RMMN+12, SPL99, TDG13, TSCZ94,
UHl95a, VDL+15, WST95, dlAMC11].
Area [CDHL95, Fis01, BH+12, FG976,
FGG+98, KBH+99, Qu95]. area-based [Qu95]. arising [ArW03]. Aristotle [FSV14].
Arithmetic [Ano93b, JPT14, Sur95a]. Arithmetics [HD00].
Arizona [IEE95b, Jh096]. ARM [MGL+17].
Array [DDPR97, HD02b,
LTS16, Wg17, CCM12, DK13, HSE+17,
JKN+13, Ott93, TOC18, Val02]. arrays
[HCL05, RBS94]. Arrival
[FPY08, MLVS16]. art [LF93b]. artifact
[ZZZ+15]. Artificial [BPG94]. ARTUR
[FJBB+00]. ARVO [BH+12]. ARVO-CL
[BHW+12]. ary [Pan95a]. Ascona [DR94].
Ashes [Thr99]. ASL [FGRT00]. ASME
[LF+93a]. aspects [CG99a]. Assembly
[PGF18, TPD15]. Assessing [LMG17,
dLR04, MABG96, TSCaM12, CMV+94].
Assessment
[Mat01b, TA+10, Boi97, LH98].
Assignment [Cza13, CK99]. assist [Kik93].
Assisted [GTH96, GM13, MBBD13].
Assessment [CC17]. Astronomical [JB96, SPH95].
asymmetric [GCN+10]. asynchronized
[FSG19a, FSG19b]. Asynchronous
[Ada97, Cav93, CZ95a, CD99, HE02,
SPH+18, BBDH14, BCK+99, CZ95b,
DDY99, Sch99]. Athapascan [CP98].
Atlanta [AGH+95, Ara95, USE00, UCW95].
ATM
[GFV99, HBT95, Jon96, LHD+94, LHD+95].
Atmosphere [BS93], Atmospheric
[HK93, KHBS19, RSBT95]. atom [MG05].
Atomic [LRT07, LAFA15, SY96, DS13,
HIN11, SY95, XF95]. atomic [BDW16].
atoms [JLS+14]. Attacks [PV97, GH12].
attempt [GM18]. Attraction [GB96].
audio [BJ13]. Augmented [GFJT19].
August [ATC94, Agr95a, BFM96,
DMW96, GT94, HAM95b, EIE94g, EIE95k,
IEE951, IEE96f, LF+93a, OSt94, PSB+94,
PB+95, Re69, VV95, Was96]. Aurora
[LdSB19]. Austin [EE94b]. Australasian
[Bil95]. Australia
[GN95, Nar95, ACDR94, Bil95]. Australian
[ACDR94, GN95]. Austria
[Bos96, BH95, Kra92, TDB12, Vol93].
Austrian [Fer92, FK95].
Austrian-Hungarian [Fer92, FK95]. Auto
[CC17, DWM12, DBLG11, PSB+19,
RDLQ12, WG17, FE17, SH14, TWF009].
Auto-Generation [CC17, DWM12].
auto-parallelization [TWF009].
Auto-scoping [RDLQ12]. Auto-tuned
[PSB+19]. Auto-Tuning
[WG17, DBLG11, FE17, SH14]. AutoLink
[GMPD98]. AutoMap [GMPD98].
Automata [Car07, BBK+94]. Automated
Automatic [BMPS03, MVY95, LLG12, RFRH96, Yan94].

Automatically [WBSC17], automation [Ano93a].

Aviation [Ano93a, Ano93a].

Autotuning [BAG17].

Auxiliary [STMK97].

Avoidance [CRGM14].

Award [Str94].

Awareness [HK09, VGS14].

Aware [APJ+16, BHP+03, Ben18, EGR15, GFIS+18, HVA+16, LRBG15, MJB15, Pan14, ZLP17, CLA+19, CGH+14, FA18, GH12, HJJYC10, HG12, JKN+13, KBG16, MBBD13, MSCM15, SHM+12, SPK+12, WRSY16].

Aware [APJ+16, BHP+03, Ben18, EGR15, GFIS+18, HVA+16, LRBG15, MJB15, Pan14, ZLP17, CLA+19, CGH+14, FA18, GH12, HJJYC10, HG12, JKN+13, KBG16, MBBD13, MSCM15, SHM+12, SPK+12, WRSY16].
behaviour [EPM99]. Beijing [CZG98, LHMM96, Li96]. Beitrag [Ano94c]. Belgium [LCHS96], Benard [TVV96]. Benchmark [BWV+12, DS16, HC10, Luo99, Miölo02, MBB+12, RSPM98, RTH00, SGJ+03, Tra1+2, UTYO2, Ano03, BKML95, DWM12, DIF95, DJS96, Miölo3, MvWL+10, PHJM11, Reu01, RST02, Wör96, YSWY14]. Benchmarking [GC05, HCA16, LCY96, MMU99, MCO00, WRA02, RST02].

Benchmark [CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TS03, WAS95b, ZShH01, CDD+96, MMH99, Ste94, WT11, CE00, WT12]. Beneficial [CB00]. benefit [SBG+12]. Benefits [LB16, PSM+14, SRP17].

Benutzerprofile [Wil94]. Benutzerzwecke [Ano94c]. Beowulf [CMM03, Ste00, UP01]. Beowulf-Class [Ste00]. Berlin [PW95]. Bessel [KT10].

Betriebssystemkern [Sei99]. Better [Str94]. Between [AAB+17, BS07, ASS+17, AKE00, BID95, GFV99, JAT97, LDCZ97, MSP93]. Beverly [IEE93f]. Beyond [Gei93a, GKS97, Gei98, Gro12, Olu14, Gei93b, LSG12, Sch93, SHM*10].

Biconjugate [GFPG12], bidirectional [HE15]. Big [CLOL18, GTS+15, LK14, VPS17, ASS+17, Str94]. Biharmonic [RB01]. Bill [Ano98c, Ano99d]. billion [KTJ03]. Billions [MRB17]. binary [CG93, EPP+17, SGS95, TCBV10].

binary-level [EPP+17], binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Coo95a]. Bindings [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biology [SYL19].

Biomolecular [BCGL97, PZKK02]. BIP [CDP99, Tou00]. BIP-Myrinet [Tou00]. BIP/Myrinet [CDP99].

BLAS [Add01, ARW03, FMF15]. BLASTP [LSW11]. Blaze [PWPD19]. Blaze-Tasks [PWPD19]. Block [DGS97, SMM+16, WO95, ZB97, ADDR95, DR18, GP95, HKMCS94, HC08, LYP19, WO96].

Block-Cyclic [DGS97, WO95, HKMCS94, HC08, WO96]. block-tridiagonal [DR18]. Blocking [FH98, BCH+08, HKT+12, Nak03, HTA08].

Blood [Pat93]. Blue [KMH+14, AAC+05, BGH+05, EFR+05, LM13, MV17, MSW+05]. blurred [Wil94]. BMMC [CC99]. bodies [AGIS94, LHLK10]. Body [RB01, RTRG+07, HLM05, NS16, Per99, SP99, SRK+12, ADB94]. BOF [Mat00a].

Boltzmann [OTK15, CGK+16, MS95, Pri14, SJK+17a, SJK+17b]. Bonn [MTW06]. Book [Ano95b, Ano95c, Ano95d, Ano99a, Ano99b, Ano99c, Ano99d, Ano00a, Ano00b, Che10, Mar06, Nag05, NMC95, Per97, SD13, Vog13, Vre04, YM97].

books [YM97, Nov95]. Boosting [LRG14, SO95]. Bose [KLM+19]. Boston [IEE94e]. Both [BGD12, KP96].

Bottleneck [MWG97]. bottlenecks [DSG17, JKH08]. Boulevard [ACM99].

Bound [ASA97, CLA+19, MBKM12, ADMV05].

boundaries [KGB+19]. boundary [PTT94, SBQZ14, SP11, SD99].

boundary-value [SP11]. bounded [MDAS+18, PadS+17]. BowMapCL [NTR16]. Box [JR13, JPP95].

Box-counting [JR13]. brackets [GSMK17].

Braga [IEE96c]. Branch [ASA97, ADMV05]. Breaking [OS97].

breast [Str94]. Brest [IEE94e]. Bridge [VDL+15]. Bridges [DS00].

Bridging [ACM04, AAB+17, ASS+17]. Bringing [FKK96]. Brisbane [ACD94, Nar95].
BWV+12, CLOL18, CSC96, DK06, GDM18, GmdMBD+07, GSY+13, HPP02, HSMW94, HVA+16, Hsu00, JNL+15, LC97a, LH95, LVP04, MS98, MFP03, Pan14, PKB01, PT01, PS00a, Pus95, Rei01, dOSMM+16, SFG98, SvL99, Ste00, Tou00, UP01, WLNL03, WT12, YWCF15, YK1+96, AB95, ALR94, ADB94, ABG+96, ADMV05, BWT96, BDV03, Bru95, CRE01, EKTB99, GB95, HCL05, Hus99, JKKH08, Jon96, JR10, JRM+94, KYL03, KYL05, KSL+12, KJEM12, LBD+96, Lee12, LLC13, LL95, LKYS04, NMW93, NN95, PS07, PRS+14, PM95, PR94c, PRS16, PL96, RCFS96, RGDML16, SlO05, SC96a, SL95, LKYS99, dCh93]. CM [SBG02]. CMMD [Har94, Har95]. CMPI [GHZ12]. CMS [FMS15]. CNF [IKM+01, IKM+02]. CO [AC01, AHHP17, GDM18, HJ98, PSB+19, TOC18, Wa02]. Co-array [Toc18, Wa02]. Co-designing [AHHP17]. Co-execution [PSB+19]. Co-Expression [GDM18]. Co-processed [HJ98]. Coarray [GBR15, YBMCB14]. Coarrays [SMB15]. Coarse [ADRCT98, IOK00, KOI01, LGM00, NIO+02, NIO+03, Heb93, RJ99]. Coarse-Grain [IOK00]. coarse-grained [Heb93, RJ99]. Coarsening [PSLT09]. Coast [IS16]. Coastal [GAM+02]. CoCheck [MS96b, Ste96]. Code [AHP01, Ana98, BCGL97, CB00, CP97, CCK12, CCBPGA15, DDL00, DZDR95, HE02, KAMAMA17, KHS01, LD01, MS02h, MM07, PBC+01, RGB13, SM03, SZB95a, Sta95b, TGSB95, AMS94, ADB94, AFST95, BCAD06, BADC07, BW12, Bha98, BVI07, CDR94, EZBA16, FMMF15, GSMK17, Heb93, IJM+05, JL18, KPL+12, KH10, MG5+15, MRH+96, MWO95, PKE+10, PKS+10, RP95, SZBS95b, SK00, SFLD15, SMSW06, TBD96, VBLvdG08, VDL+15, Wor96, YL09]. codebooks [PMM95]. Codes [FAFD15, JFY00, SWH15, HTJ+16, HWS09, HASaP00, JPP95, KBG+09, LRW01, Mal01, OLQ+16, WB96]. Coding [Uhl94, Uhl95b, SCC96]. Coefficients [MW98, ARYT17]. cognitive [PWD+12]. Coherence [MM07]. Coherent [SS01]. Collaborative [DCPJ12, DCPJ14]. Collapse [FKYW95]. Collecting [BMR01]. Collection [LTRA02, DH95, MGC+15]. collection-oriented [MGC+15]. Collections [JGFRF12]. Collective [BIL99, BIC05, CAA00, FVD00, FCLG07, FP08, GLB00, GmdMBD+07, Hsu99, KH96, MJG+12, PGAB+05, SG15, TRG05, VFD02, WRA02, FA18, HS12, HMS+19, HG12, HWW97, KBB+99, KBHA94, KMH+14, MBBD13, Pan95b, PGBF+07, PGAB+07, RJC95, SCB14, SCB15, SS99, TD99, Tra12a, TFZZ12]. Collectives [CSW12, SVL99, Zah12]. Collector [GTS+15, WK08a, WK08c, WK08b]. College [AGH+95, ANo94]. Collision [QRMG96, Sta95b, ART17, FFFC99, LHLK10]. Collocative [MKW11]. Colony [ITT02]. Colorado [R+92, IEE05]. Colt [WN10]. Columbia [IEE95a, IEE95e, MAB05]. column [HSP+13]. column-stores [HSP+13]. COMA [GB96]. Combined [CBHH94, TJPF12]. Combining [DP94, Rab98, SCB14, Sch96a, SMAC08, YPAE09, Bor99, Sch96b]. comes [Ano94]. Coming [HK95]. Commands [OLG01]. comments [Str94]. commerce [Ano94]. commercial [Ano93]. commodity [GGL+08]. Common [HEH98, DK13, WL05]. Communicating [FXX+96b, GDP98, FXX96a]. Communication [ABF+17, BCG+10, BIL99, BIC05, DCPJ12, DZYY94, EM02, FST98a, FJK+17, FGKT97, FBSN01, GFD03, GFB+03, GOS99, GFV99, GLB00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KGB16, LRT07, LC93, LCVD94a, MH01, MMH98, MR96].
Nit00, PLK+04, RK01, RRAGM97, RsT06, SWHP05, SCP97, SGH12, SBG+02, SJ02, ST02b, SGL+00, SKH96, Sun12, TRG05, TG105, TRH00, Trä02b, UMK97, WBH97, XH96, YC98, ZSG12, FH98, BHL96, BVML12, BBH+13b, BS94, BMG07, CAHT17, CGL+93, Dem96, DWM12, DCPJ14, DGB+14, DGB+16, DS96b, GKB+97, GM13, Gra97, GL94, GB94, HB96a, HWX+13, Hus99, HWW97, KH96, KB01, KLY03, KLY05, KLB06, LFL11, MLA10, MMU99, MABG96, OGM+16, Pan05b, Par93, PGK+10, PSK+10, PS00b, SH14, SC95].

communication [TG09, Tra12a, Vet02, Wu99, WMP14].

communication-based [PGK+10].

Communication-buvers [MR96].

Communication/Computation [HIP02].

Communications [BPS01, CP98, CDH+95, FVD00, GBS+07, GM+MBD+07, IEE95b, IE95e, LZH17, LZH18, MB00, VFD02, YTH+12, bT01a, ADL03a, ADL03b, CD97, FA18, HS12, KBH94, MBBD13, McR92, MN91, MS99c, RGDML16, SCB14, SCB15, TD99, WLYC12].

Communicators [DFKS01, GFD03, GFD05, FKS96, GJMM18, KH96, MJG+12].

communities [ACM04].

Community [FMT+01].

COMOPS [Luo99].

Compact [Uhl94, Uhl95b, Wor96].

compaction [V+03+14, WK08a, WK08b, WK08c].

Compactly [KLR16].

Comparative [KB98, PS08, SN01, AGR+95b, ED94, YCL14].

Comparing [BF01, Fin97, GB15, HVSH95, ICC02, LKJ03, ORA12, SS95, WBSC17].

Comparison [BvdB94, BS07, HC10, KMB97, LCV+03, Mat94, Mat95, Ney00, OP10, OF00, PPJ01, Pok96, RS93, RBB+97a, SS01, SHH94b, VS00, Wa102, ZBd12, Ahm97, AB93b, BLP93, BID95, GMU95, Har94, Har95, JS13, KDSO12, KC06, MSP93, Ols95, PS07, PSHL11, Pri14, SdM10, SYR+09, SWS+12, SHH94a, TOC18, TSZC94].

comparison-based [PSHL11].

Comparisons [GGS09, PGC02, CLY16].

Compass [PWD+12].

Compatible [MM14, LBH12, OIH10].

Compcon [IEE93a].

 compares [Ano96b].

CoMPI [FSC+11, FCS+12].

Compilation [FSS17, HKMCS94, LRBD15, RVP19, SBW91, Cie94, FM90, PGS+13, SHM+12].

Compile [GB94, TSY99, JE95].

Compile-time [GB94].

Compile/run [TSY99].

Compile/run-time [TSY99].

compiled [KLY03, KLY05].

Compiler [Ano98, Dan12, IOK00, KSS00, KSHS01, MB12, Mar09, MKW11, SSE12, SKS01, TJP12, TBF+02, TGB05, BAG17, HEH09, LME99, LHC+07, LLCD15, MA09, Miu03, PP16, RKBA+13, SHH01, THH+05].

Compilers [An01a, CFF+94, LZ97, MKV+01, SBT04, SS96, Hos12, PBC+05, ZT17].

Compiling [DMB16, Hos12, CGK11].

Complete [Ed97, GHL+98, Nag05, Ferr7, SOHL+98, YMY7, An09a, An09c, An09b, An09d, PRS+14, SOHL+96].

Completed [PTT94].

Complex [BCG97, GMPD98, MB15].

Complexity [NSS12].

component [HLP10, KRRS11, Sqo03].

Components [BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01].

Composable [MLG18].

Composed [We94].

Composing [PHA10].

composite [MALM95, YPA94].

Compositing [GPC+17].

Composition [CTK00, Cot04, DLB07, FC05, KHI5, CFP96].

compound [LLC13, SAP16].

comprehensive [RST02].

Compression [FSC+11, KBS04, VPS17, AAA16, HE15, UH96, Wu99].

compression-based [AAA16].

COMPASAC [IEE95].

Compton [BCD96].

Computation [BKGS02, B+05, Cer99, DSM94, DSS00, EMO+93, ESM+94, Fer10, FF95, GSS91b, HIP02, IEE94a, IEE96c, KS15b, Mar06,
MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SMOE93, WTH17, ACM97a, ABDP15, Bis04, BALU95, Bos96, BHKR95, CL93, CMH99, CKP+93, DZZY94, HLM+17, HK94, KB01, KHBS19, KJJ+16, LG93, Lev95, MLAV10, Neu94, NZZ94, NCKB12, PF95, PKE+10, Roh00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07.

computation-communication [SH14].

Computational
[ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SYL19, SN01, TDBEE11, TGEM09, WPH94, Whi04, AGJM06, BvdB94, BDG+92c, BR95a, HVSCI11, KBG+09, PBK99, RBB15, SPE95, SZBS95b, STT96, Str94, VDL+95, BR95a, CCHW03, R+92, SL94a, WPH94].

Computationally [DFN12].

Computations
[AGH+95, ACGR97, CGU12, CGPR98, IH04, PBK00, PMvdG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, GRTZ10, JWB96, Str94].

Compute
[DBK+09, KKLL11, VLMPS+18, ZLZ+11].

computed [FWS+17, SSS99].

Computer
[ACM06a, Ano94a, GTH96, IEE95i, IEE96h, IEE97c, IS16, KCR+17, Neu94, Old02, PSB+95, ST02a, Sun12, Ten95, URK92, YTH+12, BN00, BS94, BKM95, BFM96, Cal94, CLM+95, GRTZ10, JWB96, Str94].

Computer-Assisted [GTH96].

Computers
[Ano89, BP99, BCL00, DDP+19, DGM93, FFP03, GC05, IEE95b, IEE95e, ITKT00, LF+93a, MFTB95, PSZE00, SPM+10, SS96, BvdB94, BB93, BBK+94, DLR94, Duv92, ES83, GBF95, KOS+95a, LR06a, MMB+94, NF94, POL99, PBK99, Wal94a, Wal94b].

Computing
[ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACDR94, AIM97, BJ93, BBG+95, BDG+93a, BGR97a, BL95, BCP+97, BRST94, BDH+95, BDH+97, BHNW01, BBH12, CZ95a, CGB+10, CLL03, CLOL18, CNC10, Cze16, DDS+94, DERCO1, DPP01, DKM+92, DGM93, DT94, FTVB00, Fer98b, FGKT97, Fos98, FS93, GLN+98, GS92, Gei93a, GBD+94, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hol12, HT01, IEE92, IEE93d, IEE93c, IEE94g, IEE95c, IEE95k, IEE95i, IEE96a, IE96f, IFI95, KK02a, KS97, LCK11, LG94, LC93, LR01, Lus00, dFMBdFM02, ME17, Mat94, Mat95, MS04, Nov95, PKW95, PR94b, PWP09, SHTS01, SCIL12, Sin93, SSSS97, Ste00, SGS10, SW91, Sun90a, Sun90b, Sun92, Sun93, Sun94a, Ten95, VV92, WN10, YH96, YG96, ZL17, ACGdT02, ARY17, AL92, AH95, ASCS95, Ano93h, Ano94e].

computing
[Ano94h, Ano03, ADDR95, AMV94, BPG94, BDG+92a, BDG+94, BKML95, Bru95, BHW+12, CZ95b, CZ96, CHKK15, DLR99, DK08, DW94, D+95, DMW96, DE91, EKTB99, EJL92, FBD01a, FGRD10, FO94, FS95, Fer98a, FS98, FME+12, FHC+95, GGCC99, GS02, GS91a, GS93, Gei93b, Gei94, GH94, GkLyCy97, HP05, HW11, HH14, HPY+93, HS95a, HH95, mH12, IEE97a, IM95, GOP12, JY95, JIM+11, JPT94, KO14, Kos95b, KSSS07, LV12, LH98, LCHS96, LCH+94, LCH+95, LM13, Maf94, MZK93, Mal95, Mar07, PG+13, PKB96, Pen95, PGK+10, PTT94, PGB+95, PN01, PWD+12, RBS94, RJDH14, Sch93, SGS95, SMS00, STT96, Sti94, SP11, Sun94b, SGDM94, Sun95, Swa01, SD09, TJ09, TKP15, TDB00, Tho94, TSS98, VM94, Vis95, Was96, YULMTS+17, YL12, Zem94, ZW13, ZGC94].

computing
[ZHS99, ZKRA14, ACM98a, Kon00, PW95, Per96, SCR92, TGEM09, NMC95, Ano95b].

Concept
[KaM10, LTR00, SB95].

concern
[Ano94i].

Concurrency
[ME17, NPS12, DGB+14, PTG13].

Concurrent
[Ano89, BDG+91b, BRS92, BHV12, BKH+13,
Correlated [MM07], corruption [FME+12], Coscheduling [GRV01, SGHL01], Cosenza [KG93], cosmological [BADC07, Sa10], Cost [KS15b, RLL01, GKH97, GWVP+14, Wu99], costs [GB94], Cots [HHIC+18], counters [KVGH11], counting [Rab99], County [ACM98b], Coupled [MBS15, SS01, SBR95, Gra97], Coupling [BS93, KR09, SB95, WB96], course [STT96], CoW [KMG99], CPPvm [Gor01], CPS [Mat94], CPU [BB18, CLOL18, DF17, JR13, KSL+12, Lee12, LRG14, LLC13, LFL11, OFA+15, PDI14, PHO+15, Pr14, SB+17], CPU-MIC [BB18], CPU/GPU [KSL+12, Lee12, LLC13, OFA+15, SSB+17], CPU/multi [SAP16], CPUs [KH12, LNK+15, ON12, SFSV13, YSWY14], CPVM [CRT99], Crack [BDW97], cranial [NAJ99], CRANIUM [MBES94], Crash [LCVD94a], Crash-simulation [LCVD94b], Crashworthiness [LCVD94a], Crawler [Wal01a], Cray [BL94, GHRM99, MP95, Sch96a, Sch96b, ABG+96, AZ95, AFST95, CCM97, LKJ03, LSK04, MWO95, Gedd93, RB97c, SWS+12, SCC95], CRAY-T3D [Sch96a, Sch96b], CRAY-T3E [Che99], Creation [Hat98, MFC98, PS00a], Crew [GHL97], CRI [MSCW95], CRI-MAP [MSCW95], Critical [DSGS17, SLN+12, SDJ17], Critical-blame [DSGS17], critical-path [SDJ17], cross [JR13], cross-platform [JR13], Crossbar [ZL17], cryptanalysis [BSN95], Cryptographic [PV97, ABDP15], cryptosystem [WLC07], CS [FST98a, FST98b, Jon96], CS-2 [FST98a, FST98b], CS/2 [Jon96], CT [DYN+06, NAJ99], CT-scans [NAJ99], cube [Pau95a], Cubes [DERC01], CUDA [Pri14, AMuHK15, AAAA16, ACMZR11, AC17, Ano12, BHS18, BY12, BTC+17, BAG17, BSH15, BBH12, CAM12, CGU12, CNM11, CLYC16, CBM+08, CSV12, CFF19, CB11, Cza13, DCD+14, DS13, DR18, DARG13, DLLZ19, DLV16, DWL+10, DWL+12, DM12, EADT19, EPP+17, ER12, FJZ+14, Fer10, FMFM15, FFM11, FWS+17, Fujo08, GDC15, GScFM13, GLN+08, GML+16, GFPG12, GWVP+14, GRTZ10, HE13, HJBB14, HVA+16, HLM+17, HD11, HLP10, HP11, HLP11, Hog13, HF14a, HF14b, HKOO11, HT08, HLO+16, JL18, JK10, JCL+14, JFGRF12, KRKS11, KHBS19, KD12, KAMAMA17, Kha13, KS13, KVGHI11, KME09, KO14, KH15, KD13, KA13, Lan09, LRG14, LGKQ10, LLG12, LSSZ15, LBH12, LSVMW08, LSWM11, LAD16, LBB+16, LYSS+16, LYP19, LYZ13, MMO+16, MR12, MSML01, MSAS+18, MGL+17, MM14, NSLV16, NS16], CUDA [NBGS08, OII10, ORA12, PGS+13, PRS+14, PHJM11, PadS+17, PGdCJ+18, PSHL11, PTFM18, PRS16, RBA17, Ros13, SSE12, SK40, SYIS12, SDJ17, STK08, SOS09, Seg10, SSLMW10, SKM15, SP11, SR11, SJK+17a, SJK+17b, TNI17, TVCB18, TS12b, TA14, TCP15, Ts12, UZC+12, VLMP+18, WGG+19, WGI17, WJ12, WMR17, WRM19, WWFT11, WJB14, XFL13, YULMTS+17, YHL11, YHZ14, YMYI11, ZSK15, ZAFAM16, ZZG+14, ZBi12, ZLS+15, ZZZ+15, dAMC11, dAMCFN12, vdLJ11, Che10, SD13, Vog13], CUDA-Aware [HVA+16], CUDA-Based [DLLZ19, AAAA16, WGG+19], CUDA-BLASTP [LSMW11], CUDA-C [YULMTS+17], CUDA-compatible [LBH12], CUDA-Enabled [LSMW11, SSLMW10, SDJ17, KHBS19, SR11, ZLS+15], CUDA-NP [YZ14], CUDA-quicksort [MMO+16], CUDA-sharing [PRS+14], CUDA-streams [TVCB18], CUDA-to-OpenCL [GScFM13], CUDA-MPI [LYSS+16], cudaBayesreg [Fer10], CUDA-EASY [Sai10], CUDAAlign [SdM10, dOSMM+16], CUDA [KMM15].
CUDA™ [SM12], culling [LHLK10].
CUMODP [HLM+17]. CUMULVS [GKP97]. CURAND [Ano12]. Current [Bak98, GFD05, IFI95, BDG+93b, FK94, FHP+95]. Curse [OS97]. Curve [Ré19].
cuThomasVBatch [VLMP+18]. CVL [Ha94]. Cybernetics [IEE95a]. cycles [PL96]. Cyclic [DDPR97, WO95, HKMCS94, HC08, BK94, FHP+95].
Cyclops [Har94]. Cybersystems [IEE95a]. cycles [PL96]. Cyclic [DDPR97, WO95, HKMCS94, HC08, BK94, FHP+95].
Cyclops-64 [dCZG06]. D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Br95, BMPZ94a, BAS13, CUG12, CP15, EFR+05, ES11, GNC+13, HF14a, HF14b, JR10, KRKS11, KO14, KDI13, KHS01, KLR16, MK94, MSZG17, NSM12, TP15, WMRR17, WMRR19, WR01, YSL+12, vHKS94]. D-CICADA [MK94].
DAC [Cza02, Cza03]. DAMPVM [Cza02, Cza03]. DAMPVM/DAC [Cza02, Cza03]. DAMS [CD98]. Dangers [BCP+97]. DaRel [KN95]. Data [AJF16, BMRO1, BCG+10, BGD12, CKmWH16, CLOL18, DERC01, DiN96, EGR15, EASS95, GTS+15, GB98, GMPD98, Gua16, HA10, HB96b, HC06, JDB+14, KA13, LK14, LDJK13, MV17, Man10, MK17, ME17, MGA+17, MJB15, NJ01, NPP+00b, NPP+00c, NA01, NLRH07, PCY14, Re10, SG12, SPK96, SSLMW10, SR96, Str12, TSH+15, WO95, We19, ZDRO1, ZG95b, AB95, ASS+17, AGG+95, BK11, Ben95, BR12, BID95, CFKL00, CGK11, CGL+93, DRUC12, EP96, FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPOJ12, KN95, KJJ+16, KR913, LOHA01, LF+93a, LL16, MA09, MMB+94, MMM13, MR96, NCB+12, NCB+17, NPP+00a, OPP00, PDIY14, RJMC93, SJLM14, SSS99, SPH95, SK92, TW12, WO96, WLK+18, YCL14, YWO95, ZJWHO18, ZRQA11].
data-centered [JPOJ12]. Data-Driven [ME17, NCB+12, NCB+17].
Data-Intensive [Re101]. Data-Parallel [AJF16, GB98, CKmWH16, SP96, CGL+93, FKK+96b, MMB+94, MR96, SK92].
data-parallelism [BR12].
data-privatization [KRG13].
Data-Structures [GMPD98]. Databank [FCP+01]. Database [AR01, BFZ97, EK97, MWG97, MM14, PPT96a, MN91, PPT96b, PPT96c, PMZM16].
Databases [RGB+18, BA06, Bos96, ZWL13]. Dataflow [DT17, CSPM+96].
Datasets [DLLZ19, VPS17, KBG+09]. Datatype [Gro00, SWHP05, KHS12]. Datatypes [JDB+14, RTH00, SG12, Tha98, CAHT17, THRZ99].
dave [Stp02]. David [Ano96a, Ano99a, Ano99b, Nag05].
DawnCC [MGA+17]. DAWNING [HWM02]. DAWNING-3000 [HWM02].
Day [IS16]. dbx [NE98, NE01]. DC [B+05, IEE94h, IEE95k]. DCE [Sch93, FLD96, RS93, Sch93]. DDL [FB97].
Deadlock [LZC+02, SG12, HPS+12, HPS+13].
Deadlocks [FJK+17]. Debugger [WCS99].
Debugger [HM01, NE01, CH94, CG99b, MT96, XWZS96]. Debuggers [Ano01a].
Debugging [BDGS93, GKP96, KK901, KV98, Mor95, NE98, WIS97, ZLL+12, BL97, BS96a, DKF93, HLOC96, KCD+97, MLA+14].
December [Bil95, Eng90, HKH94, IEE96a, Kmo04, NM95, PBPT95, Y+93].
Decimation [PCY14]. Declarative [EADT19]. decoder [MC17].
Decomposition [BJS97, CP97, EGH+14, KDHZ18, DBV01, ETV04, OMK09, SHHC18].
decompositions [NZZ94], deconstruction [TCP15], Dedicated [WLN03, Hus99, WLN06], Deep [AHHP17, SEC15], Deferred [Spe19], Defined [Gua16], Defining [GAML01], Deformable [STK08], Deforming [GAP97], degree [CT13], degrees [KTJT03], Delegation [YTH+12], Delegation-Based [YTH+12], Delft [DSZ94], Delivering [Hus98], Delphi [ACGdT02], Demand [CTK00], Denmark [DW94, DMW96, Was96], Dense [AKL16, BDT08, CDD+13, Fuj08, PMvdG+13, ZBd12, BRR99], Densities [MW98], Density [BL95, MC17, CBHH94, ZWHS95], Denver [ACM01, IEE05, R+92], Dependable [GM95], Dependant [BP99], Dependence [LAdS+15], Dependency [PPR01], Dependent [DFA+09, HOU14, MFTB95, DM12, LBB+16, LYSS+16, ÔN12, SSB+16, TVV96, YPA94, YSVM+16, YSMA+17], DEPICT [HM01], Deploying [FKP01, CLASPDP99], depth [SSS99], Derivation [GB98], Derived [JDB+14, RTH00, SWHP05, Tha98, CAHT17, Jou94, THRZ99], Descent [Sch01], description [TKP15], descriptors [LNW+12], Design [AS92, AAC+05, Ano1b, ACD+09, BCD+15, BBH+13b, BS96b, BMR02, BRM03, CLP+99, ETWam12, FD02a, FA18, FFP03, GG09, HWM02, JSH+05, KVGH11, kLCC+06, kL11, IVP04, Man94, MMSW02, NPS12, OFA+15, Pan14, PLK+04, PCSV94, SBG+02, SWYC94, SSL97, SPK+12, Sun12, THM+94, USE94, VGRS16, BR91, CARB10, CSS95, DS96b, FD02b, GL94, GkLyc97, KA95, LC07, MAS06, OA17, PGK+10, PTW99, SL94b, Sep93, Sil96, SSD+94, SWL+01, Wal94a, Wal94b], design-pattern [MAS06], designed [BHS15], Designing [GKZ12, LAD16, SWHP05, SH14, WYLC12, ZLP17, AHHP17, DSOF11, Pan95b], Designs [HVA+16, AAAA16, MC17, Shi94], desktop [Mar07], Detailed [DLV16, RSPM98, BTC+17, LR06b], detect [Str94], Detecting [AGG+95, PPJ01, ZRQA11], Detection [BHW+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KSI14, SG12, ZDD97, BBH+15, DKF94a, HDDG09, HGMW12, HPS+12, HPS+13, LZC+02, RAGJ95, TCP15, TDG13, TWF009, WTP014, YULM+17], Detector [DZDR95], Determination [LAFA15], Determine [BP99], Deterministic [CFMR95, DK02, ZLL+12], Develop [PD98], Developer [IEE96i], developers [Str94], Developing [BFZ97, CCM97, Cot98, DDLM95, Reu03], Development [AC17, Ano01a, BDG+91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TDBEE11, ARvW03, ABC+00, BL97, BDG+92a, DSZ94, DHP97, KCD+97, LLC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99], Developments [Mat00a], device [KKLL11, LS10, SBQZ14, YWTC15], Devices [GJN97, ZJDW18], DFB [WWZ+96], DFN [RS93], DFN-RPC [RS93], Diagnosis [AP96, LAdS+15], diagnostic [RSBT95], dictionary [LSSZ15], Diego [Has95, LF+93a, NM95], Difference [UZC+12, GFGP12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94], Differences [AKE00, LDC297], Different [AIM97, GL97b, JCH+08, Ney00, Rab98, RBB97a, BN00, PY95], Differential [MFTB95, Riz17, JK10, NF94, RBB15, SP11], Differentiating [Cer99], Differentiation [BBH+08, BGK08, CdGM96], Diffusion [HF14a, HF14b, MW98, CEGR97, DM93, MM92], Digest [IEE93a, IEE95c], Digit [DALD18, LAD16], Digital [KLR16, CLJ+10], Dijon [YH96], Dimemas [GLB00], Dimensional
[Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK+17a, SJK+17b, AL93, KT02, LSSZ15, Ol595, PR94c, Ram07, RG18].

Dimensions [SAS01, Ano93h, HP11], Diophantine [ZTD19]. dipolar [LBB+16, LYSS+16]. DIPORSI [GGCG001]. DipSystem [SPL99].

Dimensions [SAS01, Ano93h, HP11].

Dimensions [SAS01, Ano93h, HP11].
Ano99b, NMC95, Nag05. dOpenCL [KSG13]. Double [FKKC96, PT94]. down [Str94]. Downloadable [Ano98]. DP [Arn95, KLR+15]. DPVM [IHvA+00]. draft [DHHW93b, GL92]. Draw [ST17]. Dresden [MdSC09]. Driven [AIM97, IWSG19, ME17, PCY14, FSG19a, FSG19b, Hin11, NCB+12, NCB+17, Qui95, SiS17, TWF09, WTF014]. Dror [Stp02]. Dual [GWVP+14]. drugs [Str94]. Dual-Level [BBC+00, GAM+02, DK02]. Dual-dictionary [LSSZ15]. Dual-Scanline [CT13]. Dust [dLFMBdFM02]. DVFS [PTL+16]. DWT [ZZZ+15]. Dyn [WLNL03, WLNL06]. Dynamic [ACGR97, AGS97, AUR01, CGLD01, CKuWH16, CML04, CK99, CTk01, DMB16, DBa97, DFMD94, FMBM96, FD00, GFD03, GFD05, GVD01, GCB12, GMPD98, GL95a, KFL05, MK17, NPF+00c, NLRH07, PK98, PLK+04, PT01, PGdCJ+18, Ran05, SPH+18, Smi93b, SY95, TS12a, VdS00, Vet02, WAl01a, WIl94, YST08, ZEl95, DDLM95, EO15, FIHF97, FCS+12, FKLB08, JC17, MSMC15, NSBR07, NF94, OKW95, RBAI17, RC95, SCB14, SCB15, SKK+12, SKK+14, WRSY16, YPA94, DvdLV94, FCS+12]. dynamically [SSS99]. DynamicPVM [DvdLV94]. Dynamics [BST+13, BCGL97, DR97, JFYY00, KBM97, dLFMBdFM02, MH01, OLS97, SSB95a, SA93, TDBE11, TGEM09, YWCFC15, ZB94, ALR94, ABG+96, AGMJ06, BvdB94, BHS18, BvdSd95, BBK+94, BMPZ94b, BMPZ94a, CC00b, FHSO99, HVSC11, JAT97, JMS14, KAF96, KPK13, KRK13, LSVMW08, OKM12, PARB14, PBK99, RBB15, SPE95, SZBS95b, SKM15, TC94, WPH94]. Dynamische [WIl94]. dynamite [IvdLH+00, IHvA+00]. Dynamite/DPVM [IHvA+00]. dynamo [Hol95]. DynSel [CKuWH16].

E-scale [Gua16]. EA [Ben18]. each [Ano00a, Ano00b]. Early [CD96, LV12, SLG95, EFR+05, KJA+93]. Earth [KJT03, Nak03, Nak05a, Nak05b, UTY02]. Earthquake [UZC+12, KJT03, KME09]. Easily [PKB01]. East [IS16]. Easy [HCA16, TDG13, MJPB16, SBF94]. EasyGrid [BR04]. EASYPVM [Saa94]. ECMWF [HK93, HK95]. ed [Nag05]. EDEM [TS]}. Edge. edition [ZDD97, Gra97, RAGJ95]. editors [AM07, GSA08]. education [ACM06a]. EDV [Ano94c]. EDV-Benutzertrennung [Ano94c]. Edward [Che10]. Effect [DK06]. Effective [MLAV10, RK01, TMC09, Tsu95, Cza13, JH97, KS15a]. Effects [SSE12]. efficacy [GScFM13]. Efficiency [KS96, MTU+15, CZ96, MUMU99, RS95]. Efficient [ADT14, Att96, BHW+17, BGBP01, BCK+09, BHLHS+95, BFG+10, BGID12, Bna95, BDH+95, BDH+97, BMPZ94b, CAWL17, CFP96, DZ98a, DGG+12, FHP94a, FHP94b, HBT95, HKT+12, HT08, HC06, HLO+16, KGR+03, KD13, LAD16, MDM17, MB12, MRB17, NBK99, PG+13, RJM93, RRBL01, TGBS05, WSN99, WWFT11, YPZC95, ZWHS95, BfDA94, BHW+12, CGH+14, FM90, FNSW99, FHB+13, HCL05, KVGH11, LKL96, LA06, Pan95b, PRS+14, RR01, SOA11, TDG13, YLC16, dCZG06, CRD99, THRZ99]. Efficiently [CC99, CCM+06, PHA10]. effortless [ITT99]. eigenproblem [BV99, GG99]. eigensolvers [DR18]. Eigenvalue [DK98, BSC99, THM+94]. Eighth [ERS95, Sie94, IEE96b]. Eilean [CSS95]. einem [BL94]. Einfluß [Gra97].
Einführung [MS04]. Einstein [ARYT17], [KLM*19]. Einstein-ARYT17, [ARYT17]. Ejector [CCBPGA15], elastic [PTG13], elasticity [PTT94]. Elastodynamic [MAIVA14], electric [RALU95, Ano03]. electrical [Sil96], electroabsorption [WWW*96]. electromagnetic [DSOF11, NZZ94, OMK09, WGG*19]. electromagnetics [OGM*16]. electric [BALU95, Ano03], electrical [Sil96]. electroabsorption [WWZ*96], electromagnetic [DSOF11, NZZ94, OMK09, WGG*19], electromagnetics [OGM*16]. electron [ART17, JL18]. electron-molecule [ART17]. Electronic [GJN97]. electron-soft [Sil96]. electrostatic [VDL*15]. Element [KK19, MS02b, OD01, OMK09, SM02, VRS00, BB93, BCM*16, Gra09, HMVK94, KME09, KEGM10, MGS*15, Nak05a, Nak05b, PTT94, TOC18]. Elemental [PMvdG*13]. elements [KB13]. Eliminating [DSG17], elimination [ACMZR11]. elision [CLdJ*15]. elliptic [AGIS94, PR94c]. ELLPACK [BBH12, MKP*96]. ELLPACK-R [BBH12]. Else [Gei00]. elucidation [MK94]. Embedded [TCM18, YGH*14, ACJ12, CGKI11, NEM17, TMW17, WCS*13]. Embedding [Ser97]. Embodiment [RNMN*12]. Emission [Pat93, EZBA16]. emphasis [Bos96]. EMPICH [MS96a], eMPI [MS96a], eMPI/eMPICH [MS96a], Empirical [SS94, YV02]. Employing [AGMJ06, LB16], emulation [MS99b]. emulator [LTLC94]. enable [SPK*12]. Enabled [Fos98, GSY*13, LSMW11, Fan14, SSSLMW10, ZL17, ZLP17, DS13, GLM*08, HJBB14, KHBS19, KTF03, RA09, SHHI01, SR11, ZLS*15]. Enabling [APBeF16, BGG*15, CLSP07, DGB*14, GBI14, GBH18, HJYC10, NPS12, TY14, ZPI06, BR04, MA09, SHHC18]. encapsulation [DRUC12]. encoding [AAAA16, PGBF*07, SM12], endpoint [LLH*14], endpoints [DGB*14]. energies [TKP15]. Energy [BPG94, EGR15, KFL05, RBAI17, VW92, FKL08, KN17, PTL*16, TDG13]. Energy-Aware [EGR15]. energy-efficient [TDG13]. Engine [WAI01a, NPP*00a, WAI01b, WGG*19]. Engineering [Ano98, BPG94, BP93, EGH*14, IEE96b, KAM10, LSB15, LFS*19, MS02a, MBS14, NAG05, SMO7, STR94, DMW96, IEE94c, PW95, RMS*18, Sil96, LFS*19]. engineers [HW11]. Engines [SLJ*14, HSW*12, SHM*12]. EngineTM [OIS*06].English [Wil94]. Enhance [AR01]. Enhanced [Ano98, CDHL95, CDH*15]. Enhancements [BDG*95, BCKP00, DM95b, DM95a]. Enhancing [BFIM99, FSC*11, HSM*19]. Ensembles [Cot97, Cot98, BY12, FH97]. Ensemble-Based [FH97]. ENSOLV [AMS94]. Entwicklungs [Sei99]. Environment [BDGS93, BFG*10, BFM97, BGL00, CHPP01, CTK01, DLB07, DI02, DHHW92, DHHW93a, DL00, FTVB00, FWR*15, GJN97, GL97a, HRS90, KBA02, KKK03, KDL*19b, KVH97, LC93, Lus00, MS09R01, MM02, MFG*15, MSS97, NJO1, Ong02, Rol94, SDN99, SGL*00, SGHL01, TTP97, WAI96, ABG*16, BDG*19b, BDG*94, BK96, BT96, CEF*95]. CLASPD99, DZ96, DL10, DHHW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL*96, GkLyCY97, H94, IJM*05, IvdlH*00. KCD*27, Koth93, KDL*19a, Kos05b, MFSS94, ML94, MSL12, MK97, NP94, PES99, PVKE01, PQ07, RNP13, SSKF95, Sch93, SPK96, SBF94, SWYC94, Skj93, SSG95, TJD09, Tho94, WCC*07, WL96b, WLC07, ZPLS96]. Environmental [ANS95]. Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GFB*03, LAFO1, MAO94, Mat95, MFC98,
PS01a, RB01, SHH94b, SSSS97, SCL00, TAH+01, ACCGd02, ARL+94, ALR94, ADD95, AMV94, Bon96, BFM99, CDH+94, CK99, DR94, DR95, EO15, HS93, HV95, LC07, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96.

Environments-the [CDH+94], EPS [GT94], EPS-APS [GT94], Epstein [BL95], Epstein-Nesbet [BL95]. Equations [ES11, LZ97, SAS01, VRS00, DM12, LBB+16, LYSS+16, MS95, NP94, ÖN12, Ol95, Pri14, iSYS12, SSB+16, YSVM+16, YSMA+17]. Equations [And98, BG95, GKL0, Huc96, LLY93, MFTB95, ORA12, ZB97, BHW+12, Che99, IM95, Jk10, Joun94, MM11, NF94, RB95, SP11, SMSW06, ZZG+14, dH94].

Equivalencing [LLG12]. Errors [ABB+10, CZG+08, CGK11, Ed08].

Espoo [RWD90]. ESPRIT [CDH+94].

Estimation [GK10, AMHC11, CUC95, GB94, JMDVG+17, KS13, ZWHS95].

Estuarine [LRQ01]. Ethernet [CC00a, Fin97, HeF05, KY03, KY05, OF09, PFG97]. EU [An03].

Eugene [MCdS+08]. Euler [DLR94, IDD94].

Euler/Navier [DLR94, IDD94]. EURO [HAM95b, BFM96, HAM95b, BFM96].

Euro-Par [BFM96, HAM95b, BFM96].

Euro-Par [BFM96, HAM95b, BFM96].

Euro-Par [BFM96, HAM95b, BFM96].

Euro-MPI [CDND11, KGRD10, TBD12, TB14].

EUROPE [LCHS96, Ano92, Ano93f, Ano93g, Ano94g, Tou96].

European [AD98, Ano94i, BR95a, BDL96, BCO0, BDPW97, CJD90, CJD90, CD91, CDND11, DKD95, DLM99, DKP00, DLO03, KGRD10, Kra02, KKD04, LKD08, MTW06, RWD09, TBD12, WPH94, DHK97].

EuroPVM [BDLS96, OL05, DKD07, MTW07].

EUROPVMMPI [OL05, DKD07, MTW07].

EuroPVM [OL05, DKD07, MTW07].

EUROSIM [BBH95, DSK94, BH95].

Eurospace-Ada-Europe [Tou96].

Evaluate [MW98]. Evaluating [BW+12, FVL15, FST98a, GFD03, GFD05, GCGG01, GB96, HWW97, LH95, SSSS97, ZSNH01, GFM13, LTL94, TG09, ZL+11].

Evaluation [ATM01, BF98, BIC+10, BFM97, BEM+10, BB18, CL+99, DI02, FST98b, FSSD17, Han98, JCH+08, KS96, KKL0, KSS00, LGCH99, LNK+15, LZZ97, kLL11, LVP04, MHI91, MGC12, NNNO00, OTK15, OM96, Pan14, Par93, RB01, SWHP05, SPC97, SEP+16, SBF+04, SM02, Sou01, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TTSY00, UM97, VY02, AB13, BBG+14, BBH...13a, BMG07, CB11, DBB+16, HPR+95, HAS00, HPS95, IM94, JC17, JMDVG+17, LV12, LN+12, MK+96, MM03, MT96, MHH99, NN95, PSK08, RLD013, SL94b, SW+12, SWYC94, SFSV13, TSP95, THR+94, TMP01, Wor96, YWO95, YS93, ZHK06].

Evaluations [MM14]. Event [KKV01, NSL16, TSH+15, WM01, WMC+18, FSG91a, FSG91b].

Event-Based [NSL16].

Event-driven [FSG91a, FSG91b].

Everything [CCM+06].

everything-shared [CCM+06].

Evolution [Mat01a, PS01a, RB95, SSL97, SGDM94, GS93, SSD+94].

Evolutionary [B+05, DSM94, Rag96].

Evolving [Bad16, ER12, MdB09].

Ewing [An09c, An09c, An09d, An09a, An09b].

EWOMP’99 [BC00]. Exact [dOSMM+15].

Example [Ch10, SK10, NB96, Pat03].

Exascale [Bad16, LV12, LSG12].

Exception [FMSG17]. exchange [MM13, Pan95a].

excluded [BHW+12].

executeable [WMP14].

Execution [AHD12, BME02, DT17, FC05, FM09, GR07, KGK+03, MK17, Mar05, MFG+08, MAGR01, Ney00, STY99, SAP16, EPML99].
Mor95, PSB+19, SMAC08, TNIB17, TSY99, TSY00, UGT09. Executions [GAML01].

Exhibition [HS95a, GH94, LCHS96].
Existing [CB00]. EXOCHI [WCC+07].
Expand [CGC+02]. Expanding [LA02].
expected [CAHT17]. Experience [BCP+97, BT96, CP98, PS01a, Tou00, AMS94, CARB10, KJA+93, RSC+15].
Experiences [AHPO1, BFZ97, CMV+94, CLASPD99, GLN+08, GS91a, GSI97, GB96, GL95d, ITT02, JR10, KS97, Mar02, TGM09, ZPLS96, ZKRA14, AL92, CCF+94, Sch94, SGDM94, BDG+93b].

Experiment [Luo99]. Experimental [BIL99, BIC05, BB18, EGC02, Ser97, UMK97].

Explicitly [Mai12, SYR+09]. exploit [ZPI06].

Explicit [BHV12, GFPG12, BB18, EGC02, Ser97, UMK97].

Facilitate [PKB06]. Facilitating [MC99, ZLL+12, ESB13]. Facilities [MMH98, MN91]. Facility [KG96, SHTS01, KZCS96, LHCT96].

Expression [GDM18, KH15, Sur95a]. Expressive [Tra12a, YLC16].

Fat-tree [Zah12]. Fast [Ben01, BHS+02, BDA+18, BBH12, CS14, DMM19, DFN12, EM02, HOG13, HOL95, JFGRF12, JMdVG+17, KK19, LYIP19, PSHL11, PR94c, PBC+01, RB01, SE02, SS09, STY99, SR11, TPLY18, UP01, WTR03, LAN09, LCL+12, NYNT12, TDG13, YULMTS+17, YLZ13, YBZL03, ZA14, AAB+17, DBLG11, PFFG97]. Faster [Tsu12, ZG95a, ZG96]. Fast [Zah12].

Fat-tree [Zah12]. FATCOP [CF01]. Fault [BBC+02, BHC+03, BHK+06, CF01, CFDL01, FBD01a, FBVD02, FD02a, FD04, GFB+03, GKP97, GJR09, G16, IEE95c, JSH+05, LMRG14, LNLE00, LRR04, MSF00, RPM+08, TS12a, WC09, Wil93, BHC+08, BD01b, BD02b, HG12, LMG17, LS08, PKD95, SG05, ZHK06, FD00].

Fault-Management [GJR09].

Fault-Tolerant [BHK+06, FD04, GFB+03, }
[Ano97, Ben95, Bra97, GBR15, TOC18, AC17, Ano98, AS14, BW12, DZ98b, Don06, GML+16, HE13, HH14, HZ99, KaM10, Kuh98, KLM+19, LC97b, LCC+03, MWO95, iSYS12, SM03, SMCH15, TBG+02, Wal02, YBMCB14, YSVM+16, YSMA+17, vHKS94].

Fortran/PVM [MWO95]. Forum [Str94].

Forward [RNM+12, BDB+13]. forwarding [CXB+12]. foster [SM12].

Foundation [Gei01]. four [GSMK17, MGG05]. four-atom [MGG05].

four-particle [GSMK17]. Fourier [DBLG11, BCM+16]. *Fourteenth [IEE95b]*.

Fourth [Ano89, IEE93d, IEE96c, Sie92a, Sie92b, Ano94i, IEE96g]. FPGA [MTU+15, PWP+16, PGF18, RGB+18, WTTH17].

FPGA-Platform [WTTH17]. FPGA-Forum [MTO16, BCM+16].

full [CFF19]. full-orbit [CFF19]. Fully [GA96, ZL17, SSB+16].

Function [AGS97, Bri02, MCB+17, R6t19, RB01, SW12, HE15, JMDVG+17, KRC17]. Functional [ACM90, AFJ16, CNM11, NW98, SER97, CBHH94, EP96, HSE+17, SFLD15, WZWS08]. functionality [BFM99].

Functions [BKG97, Brü12, Hat98, MDM17, CDMG96, HWX+13, PNV01].

Fundamentals [Wal96a]. fused [TW12].

Fusion [FHK01, FMMF15, PKE+10]. fusions [FFM11]. Futhark [HSE+17].

Future [Dar01, IEE93d, Mat00a, BDG+95]. FK94, FHP+95, Gei94, Sui18]. Futures [Kuh98]. fuzzing [LLCD15].

Fuzzy [MDM17, TVCB18].

G [OPM06]. G2 [Cot04, KTF03, OPM06].

GA [Ara95]. GAIN [ARYT17].

GAIN-MPI [ARYT17]. Gains [CMM03].

Galerkin [KK19]. Gallipoli [Ano93b].

GAMMA [CC00a]. Gap [AAB+17, ASS+17]. Garbage [GTS+15].

Gas [BMS94b, BBK+94, BMS94a]. gather [MTK16].

gauge [BW12]. Gauss [BG95, LM99, Ols95].

GCell [SHH94a, SHH94b]. GECCO [B+15]. Geist [Ano95b, NCM95]. gem5 [PHO+15].

gem5-gpu [PHO+15]. Gemini [SWS+12].

gems [Fer04, mH12, Ngu08, PF05]. Gene [GD918, PCS94, AAC+05, BGH+05].

EFR+05, KMH+14, LM13, MV17, MSW+05].

gene-finding [PCS94]. Gene/L [AAC+05, BGH+05, EFR+05, MSW+05].

Gene/Q [KMH+14, LM13, MV17].

General [Che10, IH04, MW98, SK10, SZBS95a, Sun94a, ABDP15, ADLL03a, ADLL03b, CRB+08, FLD96, KPKM16, PF05, RSBT95, SZBS95b, SMSSW06, YPA94].

General-Purpose [Che10, SK10, ABDP15, CBM+08, KPKM16, PF05]. Generalized [DFK91, FK99, BSC99, SD99, van93].

Generating [AZG17, CGL+93, ER12, [AGS97, Bri02, MCB+17, R6t19, RB01, SW12, HE15, JMDVG+17, KRC17]. Functional [ACM90, AFJ16, CNM11, NW98, SER97, CBHH94, EP96, HSE+17, SFLD15, WZWS08]. functionality [BFM99].

Functions [BKG97, Brü12, Hat98, MDM17, CDMG96, HWX+13, PNV01].

Fundamentals [Wal96a]. fused [TW12].

Fusion [FHK01, FMMF15, PKE+10]. fusions [FFM11]. Futhark [HSE+17].

Future [Dar01, IEE93d, Mat00a, BDG+95]. FK94, FHP+95, Gei94, Sui18]. Futures [Kuh98]. fuzzing [LLCD15].

Fuzzy [MDM17, TVCB18].

G [OPM06]. G2 [Cot04, KTF03, OPM06].

GA [Ara95]. GAIN [ARYT17].

GAIN-MPI [ARYT17]. Gains [CMM03].

Galerkin [KK19]. Gallipoli [Ano93b].

GAMMA [CC00a]. Gap [AAB+17, ASS+17]. Garbage [GTS+15].

Gas [BMS94b, BBK+94, BMS94a]. gather [MTK16].

gauge [BW12]. Gauss [BG95, LM99, Ols95].

GCell [SHH94a, SHH94b]. GECCO [B+15]. Geist [Ano95b, NCM95]. gem5 [PHO+15].

gem5-gpu [PHO+15]. Gemini [SWS+12].

gems [Fer04, mH12, Ngu08, PF05]. Gene [GD918, PCS94, AAC+05, BGH+05].

EFR+05, KMH+14, LM13, MV17, MSW+05].

gene-finding [PCS94]. Gene/L [AAC+05, BGH+05, EFR+05, MSW+05].

Gene/Q [KMH+14, LM13, MV17].

General [Che10, IH04, MW98, SK10, SZBS95a, Sun94a, ABDP15, ADLL03a, ADLL03b, CRB+08, FLD96, KPKM16, PF05, RSBT95, SZBS95b, SMSSW06, YPA94].

General-Purpose [Che10, SK10, ABDP15, CBM+08, KPKM16, PF05]. Generalized [DFK91, FK99, BSC99, SD99, van93].

Generating [AZG17, CGL+93, ER12,
Gradient
[DDL00].

Grain
[AZG17, IOK00, KOI01, MJPB16, NIO+02, NIO+03, BK11, JCP15, KW14, SFL+94].

Grained
[ADRCT98, BBG+10, LGM00, TCM18, YSS+17, Heb93, LZHY19, RJC95].

Grammatica
[RBB17].

Grand
[DGMJ93, Ten95, BDG+92c].

Graph
[BHW+17, DW02, MM14, NPS12, PPR01, STV97, HLP10, HKOO11, PP16, PD11].

Graph-Based
[NPS12].

Graph-Partitioning
[STV97].

Graphic
[HJBB14].

Graphics
[KS15b, LSVMW08, LSMW11, SLJ+14, SSSLMW10, vdLJ11, ABDP15, BHS18, CBM+08, DBLG11, Fer04, GKL95, HTA08, HSW+12, KFA96, KY10, KME09, LHLK10, MSZG17, PF05, SHM+12, SR11, WWFT11, ZLS+15, SSLMW10, GKL95].

Graphs
[LGM00, OP10, PGF18, EP96, MC99, MJPB16].

Gravitational
[ZSK15, KM10].

Greece
[CD01, CND11, SM07, TG94].

green
[PTL+16].

Grenoble
[JPTE94].

Grid
[AB93a, CGB+10, CLL03, DPP01, Fos98, KT02, Lf01, Liv00, MRB17, PLK+04, Rei01, TGM09, AB03b, Eng00, GLM+08, KRKS11, WYLC12, AASB08, BR04, CCHW03, DKD08, FC05, GB+03, GL02, KTF03, KGK+03, KSSS07, LC07, LS08, NSBR07, RPM+08, RTSG+07, SHTS01].

Grid-Adaptive
[KT02].

Grid-Enabled
[Fos98, GLM+08, KTF03].

Grids
[NO02b, ACH+11, CC10, KBG+09, NO02a, NB96, BBH+06, GR07, Ram07, SN01].

GROMACS
[BvdSvD95].

Gropp
[An95c, An99c, An90a, An00b].

Gross
[LBB+16, LYSS+16, SSB+16, YSV+16, YSMA+17].

Ground
[HHTH99, NS16].

Group
[AD98, An98, Ara95, ACDR94, CHD07, CHD09, CD01, CDN11, DKD05, DLM99, DKP00, GN95, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RWD09, TBD12, UMK97, BDW97, DLO03, MMU99].
Helios [SPK96]. Helmholtz [HMKV94].
Helps [Stp02]. HeNCE
[BDG+92a, BDG+92b, BDG+93a, BDG+94].
Hénon [JPT14]. Herzliya [IEE96a].
HeSSE [MRV00]. Heterogeneous
[ABB+10, BDG+93a, BDGS93, BL95, BCP+97, BG97b, BCPK00, CMMR12, CLOL18, CB17, DGM93, DGM93, FDG97a, FDG97b, FLD98, Fos98, G91b, GDM17, IEE93f, KRO9, KCR+17, LC93, MRV00, MM01, MM02, NTR16, PD98, PHO+15, RVKP19, SMS00, SGS10, TQDL01, VLO+08, ACGR02, ADBR94, ADDR95, AMV94, BDG+92c, BDG+94, BALU95, BRR99, BAG17, CCM12, CFS95, FMBM96, GKO12, GCP+10, GKF913, HK94, KSG13, KSL+12, Kos95b, LCL+12, LR06a, Lee12, Mai12, MSL12, MM03, N94, NEM17, Pen95, PSE+19, RCF96, SCJH919, SK93, Sn93b, Sn94b, Sn95, TBB12, TMW17, TK15, TGD13, VB99, WCC+07, YST08, YSL+12, ZJDW18]. HeteroMPI
[LR06a, VLO+08]. Heuristic
[BHM96, STV97, WH94]. HI
[ERS96, HS94, IEE96e, ACM97a]. HICSS
[ERS96, MM93]. HICSS-26 [MM93].
HICSS-29 [ERS96]. hiCUDA [HA11].
Hierarchical
[BMR01, FBSN10, HA10, HL17, MALM95, RR02, ADMV05, BDV03, GJM18, OKM12, YPZC95]. hierarchies
[SY+99]. High
[AC97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, BPG94, BRST94, BS07, BDA+18, CDD+13, CNM11, CDHL95, CS14, DPP01, DLD00, DE91, FGKT97, GS12, GH99, GBS+07, GLDS96, HVA+16, HA11, Hol12, IEE92, IEE93e, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IF95, JMJ+11, Kha13, KMK16, KE10, KHM15, LH01, LCK11, LC97a, LKL+03, LH12, LWP04, MW98, MPD04, ME17, MAB05, NU05, OI910, OLG01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SSLW10, SCS12, SJ02, Slo05, SV+11, SSS97, Ton00, Tsu07, VW92, WN10, YCL14, YWCF15, YSP+05, AH95, Ano03, BAC07, Ber96, BW96, BID95, CHKK15, CB17, DL10, Duv92, EZBA16, ESB13, FME+12, GS02, GGC+07, GL96, GL97c, HDDG09, HW11, HOS12, KPB16, KMD09, Lan09, LBD+96, MSL12, MSZG17, NS91, NFG+10, Old02, OGM+16].
High [PGS+13, PGK+10, PF05, PTW99, Re03, RJ14, SG14, SFL015, ZK15, ZW13, dAT17, CDH+95, DZ98a, D+95, DE91, GH94, HS95a, KD12, LCHS96, LC97b, SSH08, Ten95]. High-Dimensional
[MC98]. High-Level
[CS14, DDL00, HA11, Hos12, SG14, SFL015].
High-order [KEG10, KME09, OGM+16].
High-Performance
[ACM98a, FGKT97, IEE97c, LkLC+03, OL901, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCS12, WN10, GLDS96, OHI10, SVC+11, An03, ESB13, FME+12, GL96, GL97c, HDDG09, KB16, LBD+96, Old02, PGS+13, PGK+10, PF05, Re03, RJ14, SFL015, ZK15, HS95a, GH94, LCHS96, SSH08].
High-Precision
[Kha13]. High-Quality
[BDA+18]. High-Scalability
[BS10].
High-Speed
[CDHL95, KMK16, AH95, BW96, CDH+95]. High-Throughput
[SSLW10, ESB13]. Higher
[MYB16, KB13, wL94]. higher-level
[wL94].
Higher-order
[MYB16]. Highly
[MM95, PV97, TMP16, CARB10, GBH14, GBH18, VM95]. highly-scalable
[GBH14]. Hills [IEE93f]. HiNet
[AH95]. HIRLAM
[Bro95, HE92, KOS+95]. histogramming
[KRC17]. History
[OWS95]. Hitachi
[An03, NON00, TSB02, TSB03]. HLA
[RTRG+07]. Hoare
[KI17]. Hoc
[IBC+10, ITT02]. Högskolan
[Eng09]. Hole
[Kha13]. holistic
[TWF009]. Homomorphisms
[RG18]. homotopy
[GWC95, SM5W06, XY15]. Honolulu
[IEE96c]. honor
[Str94]. Host
[An095e, LLRS02]. Host-Parasite
[LLRS02]. HOTB
[SMK17]. Hotel
[IEE94e]. Hotel-Copley [IEE94e]. Hough [YULMST+17]. house [ZLZ+11]. Houston [ACM06a, Ano95a, Cha95, DKM+92, Y+93]. HP [CGB+10, BCM+16]. HPC [ASS+17, CBGS+15, GDC15, GKK90, LCVD94b, OLG+16, PRS+14, RGPP+18, ZLP17]. HPC2002 [Ano03]. HPCN [LCHS96]. HPF [BP98, BF01, BID95, Bri00, BDV03, CM98, CDD+96, Coe94, FKK+96b, FKK96a, LZ97, OP98, OPP00, SM02, Str94]. HPF-MPI [BP98]. HPL [Lee12]. HPVM [BCKP00, CLP+99]. HPVM-Based [CLP+99]. hull [GCN+13]. Hungarian [Fer92, FK95, LYIP19]. Hungary [DKP00, KKD04, VV95, FK95]. hunting [JPP95]. Husky [YLC16]. Hess [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. Huss-Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d]. Hybrid [BBG+10, BBH+06, BB18, CGC+11, CNM11, Cha02, DR97, GPC+17, HVSC11, IDS16, KS15a, KLR+15, LLRS02, LRG14, MS02b, NO02b, PZ12, SSB+16, VPS17, WT12, YHL11, YPAE09, YTH+12, ADR+05, BBG+14, CSPM+96, FMS15, GÁVRRL17, GKK90, HDB+13, JR10, JMS14, KN17, KRG13, KJEM12, LCL13, LLH+14, MLAV0, MRPP11, NO02a, Nak05a, Nak05b, PARB14, PHJM11, SDJ17, SVC+11, WT11, WLYC12, WLYC12, WT13, WYC11, ZWL13]. hybrid-core [BBG+14]. Hybridizing [LSG12]. HYDRA_MPI [PBC+01]. Hyper [CSW99, SBT04, TBG+02, ZAT+07]. Hyper-Rectangle [CSW99]. Hyper-Threading [SBT04, TBG+02, ZAT+07]. hypercube [HS95b, Sur95b]. Hypercubes [Ano89, RJMC93, She95]. Hypercubic [HP11]. hyperelastic [OKW95]. hypersonic [BTC+17]. Hyperspectral [VLO+08]. I-SPAN [LHHM96, Li96]. I-WAY [FGT96]. I/O [Bo96, CFF+96, DRUC12, IUI01, IB10, LkLC+03, kLCC+06, MV17, MC18, MG12, MG15, PSH08, PLR02, RK01, SBQZ14, Tha98, Tsu07, WSN99, ZJDW18]. IASTED [Ham95a]. IBM [AL93, Ano93, BBA+94, BGBP01, BR95c, BR95b, Bri95, CE00, CMD93, FHPS94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, HMKV94, Heb03, JF95, KB98, KAC02, KHS01, KMH+14, LC97b, MP95, MW93, MABG96, NMW93, WZWS08, XH96]. IBM-SP1 [FHPS94b]. ICA [IEE96d]. ICAPP [Nar95]. ICCMSE [SM07]. ICIP [IEE94b]. ICPP [Agr95a]. ID [DGG+12]. Idaho [Str94]. Ideas [IEE95d]. identification [HPLT99]. identity [KIN7]. IEEE [ACM97b, ACM98b, ACM04, ACM05, Bha93, IEE94e, IEE94g, IEE95b, IEE95a, IEE95k, IEE95g, IEE96b, IEE96f, IEE96d, IEE02, Nar95]. IEEE/ACM [ACM04]. IFIP [Boa97, DR94, PSB+94]. IFS [AHP01]. Igniting [AHC03]. II [DE91, GE95, HS94, BPS01, BW+12, EM00b, GÁVRL17, Sta95b]. III [BP94, BP93, DSM94, GE96, Has95, OKW95, SSGF00]. ILDJIT [CARB10]. I’ll [Har94]. Illumination [STK08, ZWHS95]. ILU [ABF+17]. ILU-preconditioned [ABF+17]. im [Gra97]. Image [DYN+06, FJBB+00, GA96, GPC+17, KBA02, KS01, LSZL02, MC18, NJO1, PRL02, RRBL01, WNI10, ARL+94, DZZY94, GDC15, JC96, KKL11, RKBA+13, SLS96, UH96, Wu99, YULMST+17, YPZC95, YZPC95, dAT17]. Imagery [GGCM99, GCGC01, GCGS98, GGGC99]. Images [Uhl94, Uhl95b, VLO+08, NAJ99]. Imaging [NH95, Has95, LM13, Pat93]. imbalances [MLVS16]. IMEC [ZL17]. immunodominance [ZWL+17]. Impact [ADL03a, ADL03b, BRU05, Bri12, TSS00a, WHDB05, DO96, FSV14, SHHC18]. impacts [Str94]. Implement
29

Implementation [AB93a, Akl99, BGG+15, BGBP01, BPS01, BG95, BHP+03, BBS99, Ben01, BP98, BCD+15, Bjo95, BS97, BIC+10, BMR02, BRM03, BMS94b, BMG07, BDA+18, CGC+02, CFMR95, DYN+06, DAK98, EFR+05, ES11, FH97, FD04, FHSO99, FSXZ14, FJBB+00, FHPS94a, FHPS94b, FHP94, FSLS98, GBH99, GB98, GB5+07, Gro02a, HPP02, HRZ97, HKT+12, Huc96, HHA95, HAA+11, IBC+10, ITT02, IM94, JSS+15, JSH+05, LSL02, LTRA02, LZ97, LWP04, MS02b, MW98, MN91, MT96, MRH+96, NSS12, NNON00, ODK+15, OLG01, Pan14, PLK+04, PS00a, Pet97, PBK99, PTH+01a, PTH+01b, PB12, RDMB99, RG18, RSV+05, SH94, SBF+04, SBB+02, Ser97, SSS96, SWJ95, SYF96, Sum12, Sur95a, TOT99, TBC+02, TRH00, TMP01, USE94, VT97, WH94, WPC07, YGH+14, YWO95, ZZG+14, ACGdT02, AS92].

Implementations [AKK+94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG+10, FB94, Gro02b, kLCC+06, LCW+03, Mar02, ORA12, Sap97, TSCaM12, TMG09, VSO0, WT12, ZDD97, CLSP07, ER12, ED94, GML+16, ICC02, KWEF18, MKP+96, NN95, Pri14, RLFDs13, WLK+18, WT11, YCL14]. implemented

Implementing [BBDH14, EP96]. Implementing

Implementor [GL95b]. Implicit

Importance-Driven [PCY14]. Improve

Improved [Träö2b, MMO+16, dIAMCFN12]. improvements [DPDS08]. Improving [CGZQ13, DG96, DCPJ12, DCPJ14].

Incompressible [BCM+16, Lou95, RM99, TS12b].

Incorporating [LM94, LYZI13, TKP15]. Incremental [dOSMM+16]. Indefinite

Industrial

Index [DALD18, LAD16]. Index-Digit

Indexing [LTR00]. India

Indexers/Crawler [Wal01a]. Indexing

Indexers [Wal01a]. Indexing

LTER00.

India

[CBM+10, IE96a, Kum94, PBPT95]. indicator [FSV14]. Industrial

[BPMM97, DHK97, ALR94, ABCI95a, ABCI95b, BT96, EKTB99, Was96, Kon00].
industries [Ano93a]. Industry
[DM98, Ano94f]. Industry-Standard
[DM98]. inefficiency [HGMW12]. Inertial
[Str97]. Infer [VB18]. Inference
[LAdS15, TVCR18]. Infiniband
[SWHP05, LCW10, LVP04, LW04, PK05,
PRS16, SPK12, ZLP17].
InfiniBand-based [PK05]. inflation
[OdBSSP12]. influence [Gra97].
Information [Ano98, CGB10, Ano93c,
CG99b, MMR99, WADC99, PSB94].
infrastructure [GFIS18, WLR05].
influence [Gra97].
Information-based [PK05]. infrastructure
[GWVP14]. Initial
[LLH14, VDL15, AL96, LSR95].
Initiation [SSB05]. initiatives [Sun95].
initio [SSGF00, SEC15]. Injection
[RRAFM97, SAL17]. Inn [IEE93c].
Innovation [ACM03]. Input
[CFH12, SHM12, JWB96]. input-aware
[SHM12]. Input-Output
[CFH12]. Input/output [JWB96].
Insight [IEE02]. Inspection
[BPMN97, DLLZ19]. inspired
[NEM17, TDB00]. instances
[RBAI17, ZLZ11]. Institute
[Old02, TG94]. Instrumentation
[MVY95, Yan94]. Insurance [PZ12].
Integer [ASA97, CF01, WLC07, ZC10,
BHJ96, KVGH11]. Integrate
[BL10]. Integrand [CC10].
integral [HK04]. Integrals
[FBSN01, NS16]. Integrates
[GLRS01]. Integrated
[CFDL01, DGMS93, HKN01, KSV01,
WL96a, DF17, HK10, KW14, VDL15,
WWZ96, WL96b, XWZ96]. Integrating
[BCLN97, CM98, Fin00, JFP01, KJA93,
KAHS96, wL94]. Interface
[Ano96c, Ano03, CBIGL19, DSGS17, MP95,
OTK15, URGK12, VDL15, YSMA17].
Intelligence [BPG94]. intelligent
[IEE95a, ZYW15].
Intensive
[Rei01, BFLL99, BKML95, SL94a]. Inter
[KFL05, LAFA15, FKL08, LFL11, RS19,
SDB16]. Inter-Atomic [LAFA15].
Inter-Node
[KFL05, FKL08, LFL11, RS19].
inter-workgroup [SDB16]. Interaction
[DMMV97, GFV99, NSLV16, Sou01].
interactions [PARB14]. Interactive
[Coo95b, KAP13, KNE98, RTRG07,
ST08, Coo95a, IJM05].
Intercommunication [TMP16].
Interconnect
[BRU12, SJ02, BWT96, SW12, TBD96].
Interconnected [Has00]. Interconnecting
[MC98]. Interconnection
[MANR09, SB95, AVA16]. Interconnects
[RA09]. Interface [Ano93d, Ano01b,
BCF99, BDH97, CD07, Cer99, CGH94,
CDND11, DFKS01, DHHW92, DHHW93a,
DBK09, FKKC96, FSL98, Gle93, GLS94,
GL95c, GLS96, GLT00b, HDB12,
HRS97, KS95, KGRD10, KKV03,
KDD04, LLL08, LL16, LW97, MI98,
MS98, MS99, MBES94, MWS02,
MTW06, PS01b, RWD09, SSL07, TBD00,
TW01, TBD12, WD96, Wer95, YHL01,
Ada98, AD98, Ano93c, Ano94d, BBB94,
BBC99, Bru95, BDW97, BR94, CFKL00,
CFF16, CD01, CG99b, DKD05, DBB16,
DS96b, DLM99, DKP00, DLO03, HPY93,
HRR93, KOB01, KSJ96, KBHA94, Kra02,
NS91, Pie94, PR94a, RMS18, SL94a,
SWJ95, SDV95, VM95, Wal94a, Wal94b,
ZWL13, ZKRA14, AMHC11, BC14,
BBH06, BRU05, BDH95, Cot04, DDK08,
Di96, FKS96, GFT96, FGG98,
GGHL96, GLS99, GLT00a, GL04].
Interface [Han98, IBC10, KTF03, KKD05,
LKL0, MSL96, RRFH96, SWH05, SLG95,
SWL10, TGT05, YGH14, Ano95c,
Ano00a, Ano00b]. InterfaceArchitecture
[Seit99]. Interfaces
[MGC12, Wit16, RJD14, T12a].
Interfacing [Lus00, PL96]. interference [ZJDW18]. Intermediate [SML17]. internal [BBH+15]. International [ACM94, ACM96b, ANS95, AB96, ATC94, AGH+95, Ano93a, Ano94a, Ano94e, BPG94, Bos96, BFMR96, Cha05, CZG+08, CGKM11, CMMR12, CH96, DSM94, DW94, EV01, EdS08, ERS95, ERS96, EJL92, Gat95, GA96, GTh94, Ham96a, HAM95b, HS95a, HS94, Hol12, IEE93c, IEE93b, IEE94d, IEE94g, IEE95a, IEE95b, IEE95e, IEE95f, IEE95l, IEE96a, IEE96c, IEE96d, IEE97b, IEE97c, IEE05, Kum94, LCK11, LF+93a, Lev95, LHMM96, Li96, MMH93, MCdS+08, MdSC09, Nar95, Ost94, PW95, PBG+95, PBPT95, Ree96, R+92, SHM+10, Sie94, Sil96, SM07, Tou96, VV92, Vol93, Vos03, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPT94, LCHS96, Mal95, ZL96, Ano93b, HHK94, Sch93].

Internet [NE98]. Interoperabilität [GBR97]. Interoperability [BoFBW00, Don96, PL96, GBR97]. Interoperable [Rab98, ML12, YBMCB14].

Interoperability [FD97a, FD97b, FLD98]. Interpolants [RB01]. interpolation [AS13].

Interpretative [MKW11]. Interpreted [CNC10].

interprocess [SC95]. interprocessor [DS96b]. interrupts [CB+12, SH96].

Intervals [DM17]. intra [GM13, VSW+13]. intra-node [GM13].

introduction [BP90]. Introduction [JMK+17, TBS12].

Introduction [Ano96b, AM07, Che10, Cze16, DOS95, GSA08, HW11, Mar02, Mat00b, SK10, VP90].

Invasive [URKG12]. Inverse [Hue96, BV99, GGC+07, GG09, Wan02].

Inversion [ACMR14, Kan12].

Investigating [GMdMBD+07, Ros13]. investigation [PHW+13]. Invisible [Wis97]. Invited [Gei93a]. IO [AH01, BIC+10, CFC+96, DFL90, FWK96, FSLS98, LRT07, LGG16, PSK98, PTH+11a, PTH+11b, SW12, Sto98, TGL02, ZZ04]. IO/GPFS [PTH+11a]. IOMMU [YWC15]. IOV [YWC15, ZLP17]. IP [CCA00]. IPCP [SC95]. IPPs [IEE96c]. IR [ZJDW18].

Ireland [LKD08]. IRREGULAR [FR95, BMR01, Cza02, Cza03, BL99, HAsP00, LOHA01, MR96, NP12]. irregularly [FR95, Smi93b]. ISA [Wit16].

ISCA [Ano94c, YH96]. Ischia [ACM06b]. Iserver [SHH94a, SHH94b].

Iservative [SHH94a, SHH94b]. Ischia [ACM06b].

Iserver-Occam [SHH94a, SHH94b]. Ischia [ACM06b].

Iserver-Occam [SHH94a, SHH94b]. Ischia [ACM06b].

Isotope [SHH94a, SHH94b]. Ischia [ACM06b].

Israel [DS94, IEE96h]. Israeli [IEE96h].

ISSAC [Lev95]. ISSSTA [Ost94]. Issue [AM07, BDB+13, BC00, GSA08, MPI98, CH09, DK07, Mar02, Old02]. Issues [BDT08, FD02a, KG+03, MW98, Pan95b, PS01b, ZDD97, ARvW03, EGH99, FD02b, HHA95, PBK99].

Italy [CMR12, CH96, DK05, DK07, D+95, DLO03, HS95a, IEE95b, KG93, OL05, ACM06b, Ano93b, CLM+95, DR94, SI96].

Iteration [HF14a, HF14b]. iterations [Lou95, YST08]. iterative [CCS97, DK96, NO02b, Nak03, SC04, ADDR95, EDVS90, LSR95, MGG05, NO02a, Nak05a, Nak05b, OMK09, dh94].

Ithaca [PB+95, Ree96]. IV [SPH95]. IWOMP [CZG+08, CGKM11, CMMR12, EdS08, MCdS+08, MdSC09, SHM+10]. IWPP [Kum94, PBPT95]. IWPP-94 [Kum94, PBPT95]. IWWP [Kum94]. IX [R+92].

Jack [Ano95b, Ano96a, Ano99a, Ano99b, Nag05, NMC95]. Jacobi [BBDH14, CGU12, LM99]. JaMP [KBV07]. January [ERS96, GE96, HS94].
Languages
[CFF+94, FMSG17, FSSD17, CH96, Mar05, Olu14, SWS+12, PBB+95, SRS96], LANs [Fin97]. LAPACK [Add01, ARvW03]. LaPerm [WRSY16]. LAPI [BGPB01]. Laplace [ACMR14]. Large [AKE00, BHW+17, BZ97, BJS99, BHNW01, CGC+11, DALD18, FFP03, Hue96, JGFRF12, LLY93, MKC+12, MFP03, PCY14, Röt19, RGB+18, SGJ+03, SM03, SvL99, TGM09, WMC+18, WT12, ZWJK05, AASB08, AMS94, BCA+06, BA06, BCH+08, Che99, CCHKW03, DZZY94, FME+12, GG99, IM95, JLS+14, KEGM10, Kos95b, KA95, LS10, MLA+14, NFG+10, PTL+16, PD11, RMNM+12, SC96a, TBB12, TOC18, WT11, WT13, ZWL13, ZA14]. Large-Scale [AKE00, BHW+17, BZ97, FFP03, MFP03, SM03, WMC+18, WT12, BJS99, SvL99, AASB08, BCH+08, Che99, FME+12, LS10, MLA+14, PD11, RMNM+12, WT11, WT13, ZA14]. Large-sized [JLS+14]. Larger [NB96]. Large-Scale [LAdS+15]. laser [EZBA16, WWZ+96]. Lastverteilung [Wil94]. Latency [Jes93a, Jon96, KBHA94, NC+12, NC+17, TB96]. latency-tolerant [NCB+12, NC+17].

Lattice
[BBK+94, BMS94b, HLP11, SJK+17a, SJK+17b, BW12, BMS94a, CGK+16, GM18, Sa10, SV+11, BLPPP13, OTK15]. launches [An03]. Layer [CSAGR98, HEH98, FKK96a, PTT94, dIAMC11, dIAMCFN12]. layered [DiN96]. Layering [Hus01]. layers [KC04]. Layout [WG17, BGH+05, HP11, LDJK13, Str12]. Lazy [TCB10]. Leaks [DL16]. Learned [GKPS97, MWO95]. Learning [AHHP17, Gro01b, FE17, KWFE18, LSSZ15, SEC15, TWFO09, WO09, WTFO14]. learning-based [FE17]. Least [PWP+16, VRS00, DK13]. Least-Squares [VRS00]. Lecture [Gei93a]. Lederman [An096a, An099a, An099c, An099b, An099d, Nag05]. Leeds [Abr96]. legacy [BR04, LP00, LRW01]. Lemon [DRUC12]. Lengths [GSHL02]. LEO [CCBPAGA15]. Leonardo [Sp02]. Lessons [MWO95]. Level [AELGE16, BGG+15, BBC+00, CS14, CRGM14, DHWH92, DHWH93a, DDL00, GS91b, GAM+02, HAI11, HKT+12, DK02, KCP+94b, KOW97, LVP04, LMRG14, NPP+00c, SHM+10, SBF+04, TS12a, TW01, XF95, BMS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, WJ04, LCMG17, LBB+19, LM13, MALM95, NS91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZW05, ZZZ+15, BH. . .13a]. Leveraging [HDB+12, NPP+00c, SHML14, LFL11]. LIB [NPP+00d]. libefp [KS15a]. libOMP [BGD12]. Libraries [BHLs+95, BWV+12, CGZQ13, DARG13, GFD05, IE94f, IE95j, MLGW18, MM14, ARvW03, BCM11, BfDA94, CRD99, GS94, PS07, Skj93, SBD94, SS95, DHK97].

Library [AKL16, Ad97, Boo01, BLW98, Coo95b, DHP97, EM02, FH01, For95, GBF+03, GSI97, Gro02a, HB96b, ITK100, JPT14, KGB16, OD01, PKL+04, PS01a, RR02, Rö19, Saa94, SBG+02, Sta95b, SKH96, TD98, UTY02, WN10, YKL17, ZC10, Ada98, AMHC11, Arn95, CSS95, CGG10, Coo95a, DRUC12, DXB96, FJ97, Fan98, FKK+96b, GDC15, GLM+08, GL94, HB96a, HLM+17, Har94, Har95, JKM+17, JC96, KS15a, KN95, LR06a, MSL96, PKB06, PS00b, RFH+95, SSSC96, SH96, ZT17, CC95, McD96, Sum12]. Life [PZ12, Str94]. Lifting [vdlLJR11]. Lightweight [CkmWH16, DTL17, FLB+05, KMK16, TCM18, FS95, Ott93]. Like [BST+13, BKO00, CGJ+00, KOB01, VG514, CSS95]. Likelihoods [MSCW95]. LIME [DRUC12]. Limits [GB96, MBKM12]. Linda [Mat94, KS96, MSP93, BL93, CSS95].
Linda-like [CSS95].

Linear [ASA97, BDT08, BG95, CDD+13, DGH+19, Gao03, Huc96, LLY93, LZ97, MGMH97, MSB97, YKW+18, ZTD19, van97, BSN95, BKvH+14, BAV08, BRR99, CEGS07, DR18, Gra99, GFGPG12, Jou94, MW98, MM11, OKW95, SMW06, dCH93, dH94].

Linear-scaling [Gao03].

Lines [NE01, YULMTS+17].

Link [BGR97b, SJ02].

Linked [WJ12].

Linkoping [FF95].

LINPACK [JNL+15].

Linux [Sei99, SMTW96, USE00, SSSS97, Ano01a, GSN+01, MK04, OF00, PS07, PKB01, RT06, Sei99, SLO05, SGL+00, YL90].

lin [Kra02].

Linid [FHSO99].

Liquid [DSS00, JLS+14].

Lisbon [IEE93d].

LISP [ACM90].

List [Tra98, WJ12].

Lithe [PHA10].

Lithography [RDM99].

Liverpool [AD98].

LIVM [SML17].

Load [Ano94b, BKdSH01, BS05, DI02, DR95, DK06, GCBL12, HE02, MM02, NFK94, PT01, Pus95, SGS95, ST97, Wal01a, Bir94, CKO+94, DZ96, DLR94, DvdlV94, EZBA16, FMBM96, FH07, GS96, Hum95, JH97, MM03, SCL97, SY95, Wi94].

load-balanced [EZBA16].

Local [BSG00, CDHL95, CCM97, IKM+01, LBB+19, AMHC11, BY12, CGL+93, FSV14, IKM+02, LHD+94, LHD+95].

Locality [MJBJ15, ZLP17, BHR808, HJY910, RKBA+13, WR516].

Locality-Aware [MJBJ15, HJY911].

localization [HC08].

Locally [BHS+02].

Locating [PNOV01].

Lock [ALB+18].

Lockheed [SH94].

Locking [KL11, CAWL17, PGK+10].

Logging [BCH+03, LBB+19].

Logic [KI17, B95, KMC96, KMC97, POL99].

logical [TPLL18].

LogP [CKP+93].

London [EJL92, Ano93b, Ano94f].

Look [HCZ16].

lookup [BJ13].

Loop [DMB16, SHM+10, TJPF12, SHLM14, WYLC12, WLYC12, YST08, YWC11].

Loops [AHD12, CLA+19, LOHA01].

Loosely [Ada97].

Low-Bandwidth [NE01].

Low-Cost [LLL01, G97].

Low-Density [RLL01, G97].

Low-Dimensional [MC17].

Low-Life [Str94].

low-overhead [ZRQA11].

LPVM [ZG98].

LS [BCAD06, BADC07].

LU [AZ59, BRS92, BB18, LC97].

Lugano [GT94].

Luminous [KNT02].

Lumsdaine [Ano99c, Ano99d].

Lusk [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

Lustre [DL10].

Luther [ACM99].

Lyngby [DW94, DFMW96, Was96].

Lyon [BFM96, FR95].

M [PBC+01].

M-SPH [PBC+01].

M6A [EM00a].

M6B [EM00b].

MA [Ano95b, Ano95c, Ano96a, Ano99a, Ano99b, Ano99c, Ano99d, Ano00a, Ano00b].

Machine [AS92, AGIS94, BJ93, BS93, CHD07, D+91, FE17, Fis01, GBD+94, Gre94, KNT02, KDD93, KDD04, LKD08, MTWD06, N95, NC95, PA93, PE96, R96, R9W09, TY14, JS00, WE94, AD98, AL92, Ano95b, BR91, BDG+91a, BCP94, Bir94, BDLS96, BDW97, CARB10, CLM+95, Cav93, Cha96, Che99, CD01, CCO06, DM93, DDK05, DL99, DKP00, DLO03, FM90, KW18, KMC97, Kra92, LG93, MN91, MRH+96, NB96, Sch94, SK92, SCD96, SL00, TMCB18, TM12, TWFO09, W009, WFO14, ARL+94, BFG94, JPP95, KDD05, LK10, QRG95, SSSS96].

machine-learning [TWFO09].

machine-learning-based [WFO14].

Machines [BP99, BZ97, BCC+00a, BT01b, DR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCSL12, ZWJK05, BCA+06, BSC99.
SSG95, Sti94, TSZC94, VM95, Wal94a, Wal94b, ZKRA14, ZA14, AMHC11, BC14, BBH+06, BRU05, BDH+95, Cot04, DKS08, Din96, FK596, FGT96, FGG+98, GGHL+96, GLDS96, GLT99, GLL99, GLT00a, GL04, Han98, IBC+10, KTF03, KKD05, LK10, MTSS94, MSL96, PS01b, RRFH96, SWHP05, SLG95, SWL+01, TGT05, TDB00, Wer95, YGH+14.

Message-Passing [Ano93d, Att96, Cot97, Cot98, DHHW92, DDL00, GLS94, GL95c, GLT00b, MPI98, PBK00, Pok96, RRBL01, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvdSvD95, CDZ+98, GL92, Hem96, KJA+93, LR06a, LBD+96, wL94, LMM+15, PS00b, SSG95, Sti94, DiN96, GGHL+96, Han98, RRFH96, SLG95, Wer95, YGH+14].

Message-Passing-Interface [Wer95].

Message-Passing [Sei99].

Messages [KBS04, SKH96].

Messaging [HEH98, KC94].

Meta [BCLN97, FBD01a, FGRD01].

Meta-Applications [BCLN97].

Meta-computing [FBD01a, FGRD01].

Metacomputer [OS97].

Metacomputing [Fin00, MS99b, FBV00].

MetaHaskell [Ma12].

metaheuristics [ZSK15].

metal [JLS+14].

MetaMP [OW92].

metaprogramming [Ma12].

meteorological [RSBT95].

Meteorology [HK93, HK95].

Method [ACMR14, BP99, BJS97, CGU12, DAD19, FCLG07, GS97, HC06, KMK16, OKM09, Riz17, TSS90a, ARYT17, BBD94, BCM+16, DSOF11, ET94, GFIS+18, HE13, HMKV94, HJB94, HPLT99, JMS14, KS15a, KD12, LCL+12, Nak05b, NS16, PTT94, Pri14, Qu95, SHHC18, TKP15, YBZL03, dIAMCFN12, AAB+17, OTK15].

Methodologies [Sun94b].

Methodology [MOL05, WTTH17, HPR+95, LM94, WMP14].

Methods [BCMR00, CMK00, DFN12, EGH+14, FGKT97, GFFG12, KLR+15, kL11, NA01, Sch01, SM07, TDBEE11, Whi04, ZB97, CEGS07, DF17, D+95, Gra09, Has95, LSR95, MM11, Nak05a, PGK+10, R+92, SL94a, SGS95].

Metric [SNN+19].

Metrics [DW02, PARB14].

Metropolis [HJB14].

Mexico [IEE91, Sie94].

MGCG [TSS00a].

MGF [GLM+08].

MIAOW [BGG+15].

MIC [BG92, CCPGA15].

MICE [BK96].

Micro [Ano03, BWV+12, SGH12, YSWY14].

Micro-applications [SGH12].

Micro-Benchmark [BWV+12, YSWY14].

microbenchmark [BO01].

Microcoded [PWP+16].

microtask [OIS+06].

MIDAS [BFZ97].

Middleware [AUR01, CLL03, CC10].

Middlewares [DPP01].

Midpoint [JML14].

Migol [LS07].

Migratable [KOW97].

Migrating [VSRC94, VSRC95, IvdlH+00, KBG+09].

Migration [Ano94b, CCK+95, CLL03, CML04, CCPGA15, CTK01, NPP+00c, NLRH07, Oth94, OS97, ST97, AMBG93, BBGL96, CKO+94, CRM14, CRGM16, CK99, DDM99, HZ99, LCV94b, LM13, QHCC17, RRFH96, SSS99, SCL97, Ste96].

Milan [HS95a].

Million [LHLK10].

Millions [BBG+11].

MIMD [Bvd94, BB93, BCL00, Uhl95a, WST95].

MIMD/DMMP [BB93].

MiMPI [GCC99].

mini [SCJH19].

mini-application [SCJH19].

MINIME [DS16].

MINIME-GPU [DS16].

minimization [POL99].

Minimum [KA95, Wu99, NKB12].

mining [MA09].

minisweep [SCJH19].

Mississippi [IEE94f, IEE95f].

Mixing [CP98, GAP97, CBYG18].

Mitigation [OdSSP12].

Mitigation [BBH...13a].

Mitsubishi [Ano03].

mittels [Wil94].

Mixed [ASA97, BFG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01].

Mixed-Mode [BEG+10].

Mixing [CP98, GAP97, CBYG18].

mixture [EO15].

MK [NS91].

mm_par2.0 [OKM12].

MN [Ano94b].

Mob [STV97].

Mobile [ITT02].

Mode [BGK08, Bri02, BEG+10, LRT07].
Model [AP96, BGG+94, BD97, CKmWH16, Cha02, CZ98, Dar01, DSA09, FSXZ14, FBSN01, GLB00, GLR01, HLP11, KD12, LWZ18, LGG16, LA02, LRQ01, MKW11, NLS16, NO02b, Ran05, RSV+05, RRBL01, SPM+10, SB95, SPH+18, THN00, VT97, Wal01a, YCA18, AL93, BSC99, Bir94, BG94b, BDV03, CMV+94, CL93, CKP+93, ED94, GKO12, GCN+10, GkLyCY97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, KOS+95a, KSL+12, KLV15, LR06b, LA06, LLH+14, Mar05, MdSAS+18, MSZG17, MGC+15, NO02a, Nak05a, PAD5+17, RAS16, RGDM16, RG95, Sch93, SH94, Sch99, SMAC08, Str94, VBLvdG08, Vis95, Wan02, WC15, WLK+18, WYLC12, YX95, TA14].

Model-Based [AP96, LGG16].

Modeling [ACM96a, ACM96b, ATM01, BS07, CSC96, CDM93, FST98a, GAM+92, MOL05, NM95, RGDM15, Rot19, SEF+16, TD99, VFD02, WMC+18, XH96, BDP+10, Bi09, BB95b, JLI18, KM10, KME09, KEGM10, LZYH19, MS99a, WT13, XXL13, YMYI11].

Modelling [FST98b, GC05, Ham95a, KDL+95b, BJS99, HT99, KDL+95a, MSML10, QC17].

Models [AKK+94, BS93, BZ97, CMK00, Cer99, CNM11, DK06, EMO+93, ESM+94, GJN97, PFP89, SS01, SME93, SYL19, Whi04, BB95a, CH96, Duv92, KO14, LV12, MCB05, Nes10, RSB95, RBA17, SYR+09, Wal00, WBSC17].

moderate [Uhl95a].

Modern [AHHP17, DARG13, KDT+12, LNK+15, SM07, HH14, PMZ+16].

modes [WZWS08].

Modified [Riz17, GP95, KD12].

Modular

CT02, HPP02, FWS+17, HLM+17.

modulator [WWZ+96].

modulator/DFB [WWZ+96].

Module [Ano98].

Modules [AKK+94, DS96b].

modules-design [DS96b].

Molecular [ABG+96, BST+13, BCGL07, BL95, BS07, DR97, Dl02, KMB97, LAFA15, MH01, SA93, YWCF15, ZB94, BvdSvD95, BBK+94, BMPZ94b, BMPZ94a, CC00b, DCD+14, FHS099, JAT97, JMS14, KFA96, KRG13, LSVMW08, OKM12, PARB14, SL95, ZWL13].

molecule [ART17].

Møller [BL95, KN17].

Monitor [SGL+00].

Monitoring [AH00, BCLN97, Beg93b, BFM96, BFMT96b, CD98, DBK+99, GSN+01, LY93, LW97, MVW97, MY95, SGL+00, UP01, Wis98, Wis01, YAM94, Beg92, Beg93c, Beg93a, BB94, BS96a, BB96a, FLB+05, LC07].

Monodomain [ORA12].

Monte [HJBB14, RP95, WH96, ADRCT98, AK99, DAK98, NLS16, RR00, SK00, SKM15, ZZ04].

Monterey [Ano89, Gat95, USE94].

Montpellier [DE91].

Montreal [Lev95].

MOPS [GJN97].

motif [FMS15].

motors [SKM15].

movement [MV17].

Moving [HAA+11, LSG12].

MPEG [GKL95, KFA96].

MPEG-4 [NU05].

MPI [ARYT17, AD98, Ano95c, Ano95a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, BDW97, CD07, CD90, CD01, CDN11, DKD05, DLM99, DKP00, DLO03, GRB97, GEW98, IEE96i, JMS14, KGRD10, Kra02, KKD04, LKD08, MTWD06, Nag05, Par07, PS01b, RWD09, RVRG12, ST02a, TDB00, TBD12, Vre04, WSN99, YM97, ST02b, AGCD02, Ada97, Ada98, ACH+11, APF+16, AASB08, ART17, ATM01, ACHP97, AK99, ABP+17, AHP01, ACMZ11, ALW+15, ALB+18, ADL10a, ADL10b, And98, FH98, AVA+16, Ano93e, Ano94d, Ano98, Ano01a, Ano03, AKE00, AKL99, AJF16, AIM97, ADR+05, AHHP17, BAd16, BV99, BCM00, Bak98, BF08, BCFK99, BB+10, BCG+10, BBG+11, BGBP01, BBS99, BBG+14, BA06, BC1006, BADC07, BGR97a, BKGS02, Ben01, BW12, BVH12, BKH+13, BL99, BIC05, BP98].

MPI
NAJ99, NW98, Nt00, NHT02, NHT06, NFG+10, NN95, 0M96, OLG+16, OKM12, OIS+06, ODF01, OF00, Ong92, OPP98, OL95, OGM+16, OMK09, Pac97, PARB14, Pan14, PK98, PES99, PLK+04, PS90, PDY14, PS00a, PS01a, PHJM11, P1L+16, Per99, PZ12, PGK+10, PF97, PR290, PGB+05, PGB+F7, PGB97, Pia02, PD11, PSS01, PSK+10, PTH+01a, PS90b, PTW99, Q103, Rab98, Rab99, RD999, RR01, Ram07, RS0795, RMS+18, Ran05, RA09, RSA16, RCS96, RBB97a, RBB97b, RBB97c, RSM98, RT00, RH01, Reu01, RST02, Reu03, RD015, RG016. MPI [RRGP+18, RNPM13, RPR1+08, ROH00, Roll89, RS06, RRH96, RRG+99, RTRG+07, SE02, SC04, SP05, SR97, SS01, SW+12, SW12, SBB+02, S05, St97, S01, SWS+12, SG12, STY99, SM02, SM03, SPH+18, SP09, Z11, SC04, SSC96, SS99, SZBS95a, SZBS95b, SDN99, SvL99, SJ02, SW09, SMTW96, SH96, SDB94, SL95, SDV+95, SPH96, S05, SVC+11, SK00, SB01, SOHL+96, SOHL+98, Sni18, SSHC18, SSL97, Sqq03, St96, ST97, St098, SU96, Str96, Sum12, SN01, S0a1, T0TH99, TAH+01, TSY99, TSY00, TK0P15, Th098, TGL02, TG09, TPLY18, TW01, TD99, TO18, Tr098, TRH00, Tr09b, Tra02a, TGT10, Trä12a, Trä12b, T0JP01, TFGM02, Ts07, TFZ12, UT02, URKG12, VF202, VS00, VPS17, VSR94, VSR95, VG9516. MPI [VsS00, VP00, VVD+09, WH96, W095, W196a, WD96, W096, Wa01a, Wa01b, Wa00, WC09, WL030, WL06, We95, WST95, W0i04, WL05, WWZ+96, Wis98, W06, WM01, WADC99, W096, WRA02, WCS99, WT11, WYLC12, WT12, WLYC12, WT13, WMP14, XH96, XLH+96, YM97, YL09, YHL11, YWC11, YCL14, YBM96, YPAE09, YTH+12, YSP+05, Z0h12, Z004, ZLZ+11, ZWZ05, ZLP17, ZJDW18, ZLL+12, ZZ95, ZSNH01, ZKRA14, ZA14, bT01a, dIAMCF12, KH96, Mar96, YM97, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d]. MPI-1 [SOLH+18]. MPI-2 [Ano99c, Ano99d, A0000a, AKL99, BCAD06, BHS+02, CwCW+11, CD96, DPD08, GF03, GGH+96, GT01, GHL+98, GLT99, GLT06, GLT00a, HGMW12, LS04, MS02a, MK04, PS90a, SS99, SSL97, TR00, bT01a, BADC07]. MPI-3 [GBH14, GBH18, GT12, HDT+15]. MPI-ACC [AP17+16]. MPI-Benchmark [Rae97, FSC+11, RD999, SM03, Ad89, AVA+16, GKS+11, Gra97, LR01, OLG+16, OP98, ZS11, T0JP01]. MPI-basierte [Gra97]. MPI-check [LCC+03]. MPI-DDL [Ano99c, Ano99d, AKL99, BCAD06, BHS+02, CwCW+11, CD96, DPD08, GF03, GGH+96, GT01, GHL+98, GLT99, GLT06, GLT00a, HGMW12, LS04, MS02a, MK04, PS90a, SS99, SSL97, TR00, bT01a, BADC07]. MPI-CHECK [LCC+03]. MPI-CUDA [DR18, dIAMCF12]. MPI-DDL [FB97]. MPI-Delphi [ACG07102]. MPI-driven [Hin11]. MPI-F [FHP94b, FHP+94]. MPI-FM [CM97a]. MPI-FT [NL00]. MPI-GLUE [Rae98]. MPI-Hybrid [CG6+11]. MPI-H [IR01, Ts07]. MPI-I/O [IR01, Ts07]. MPI-interoperable [YBM96, YBM97]. MPI-IO [BIC+10, CGG+02, CFF+96, DL10, FWN96, FSLS98, LRT07, LGG16, PS90a, PTH+01a, SW12, ST98, TGL02, Z004]. MPI-IO/GPFS [PTH+01a]. MPI-LAPI [BG98]. MPI-Level [LVP04]. MPI-like [CGJ+00]. MPI-only [LS10]. MPI-OpenCL [JNL+15]. MPI-OpenMP [MS02b]. MPI-parallelized [KMG99]. MPI-Performance-Aware-Reallocation [GF+18]. MPI-Start [Hus98]. MPI-The [Ano99c, Ano99d]. MPI-thread [IDS6]. MPI-Umgebung [GBR97]. MPI/CUDA [PHJM11]. MPI/GAMMA [CC00a]. MPI/GPU [EZBA16]. MPI/GPU-code [EZBA16]. MPI/MBCF [MM99]. MPI/OpenACC [OGM+16]. MPI/OpenMP [ADR+05, GAVR17, HKN+01, JR10, KS15a, KN17, KRG13, LLRS02,
PZ12, SB01, WT11, WT12, WT13.
MPI/PVM [ES11]. MPI/RT [SKD+04].
MPI/RT-1.1 [SKD+04]. MPI/SMPSSs
[MLAV10]. MPI1 [Sti94]. MPI2
[MPI98, Wal96b]. MPI2007 [MvWL+10].
MPI_Allgather [GmdMBD+07].
MPI_Connect [FGRD01]. MPICHI
[BBC+02, BCH+03, BHK+06, Cot98, Cot04,
GL97a, KTF03, LKJ03, OPM06, OF00,
RFG+00, RT06, SBG+02, TRG05].
MPICH-CM [SBG+02]. MPICH-G2
[Cot04, KTF03, OPM06]. MPICH-GQ
[RFG+00]. MPICH-V [BBC+02, BHK+06].
MPICH-V2 [BCH+03]. MPICH2
[BMG07, Gro02b, ZSG12]. MPICCon
[FLD98]. mpicroscope [Trä12b].
MPIGeneNet [GDM18]. mpiJava
[BCFK99]. MPINE [Sou01]. MPIPOV
[FFB99]. MPIIT [HIP02]. MPIWiz
[XLW+09]. MPJ [CGJ+00]. MPL [XH96].
MPL0* [CRD99]. MPP
[CDJ95, DOSW96, GBR97]. MPP-Systeme
[GBR97]. MPPs [BGR97a, RBB97a].
MPSoC [KJJ+08, KH10, PSM+14].
MPSoCs [MB12, NEM17]. MPVM
[CCK+95]. MRI [LSSZ15]. MRO
[MMM13]. MRO-MPI [MIMM13]. Multi
[Ada98, ABB+10, Bri10, BCKP00, CAWL17,
CGZ+08, DWL+10, EBK01, FSXZ14,
HD02b, HRZ97, JCH+08, JNL+15, KBA02,
KT02, LTS16, LM13, MLGW18, MG15,
MB00, NMS+14, PZ12, RG18, RR02, Smi93a,
ST02a, ST02b, SSB+17, WBH97, YGH+14,
ACMZR11, AGMJO6, BCK+09, DCH02,
DWL+12, Fin94, Fin95, FHB+13, HTA08,
HE15, JR13, JMJ+11, JR10, KSG13, KL15,
KO14, LSG12, LS10, LHL+14, MALM95, NSM12,
SCB15, SFSV13. SVC+11, SAP16, Str12, TS12b, TFZZ12,
WCC+07, WO09, WADCC99, WYLW12,
ZAFAM16, WZW+95, ZZZ+15, SAP16, SG14].
multi- [ACMZR11, KSG13].
multi-/many-core [KSG13].
multi-agent [WZZ+95]. Multi-agents [KBA02].
Multi-Array [LTS16]. Multi-cluster
[ST02b, KO14, Kom15]. Multi-Core
[ABB+10, Bri10, CGZ+08, YGH+14, PZ12,
FHB+13, HTA08, JR13, JMJ+11, JR10,
LHL+14, SFSV13, SVC+11, TFZZ12,
WCC+07, WYLW12]. multi-cores [WO09].
multi-CPU [SAP16].
multi-CPU/multi-GPU [SAP16].
Multi-Dimensional [HD02b, KT02, RG18].
multi-endpoint [LHL+14]. Multi-GPU
[JNL+15, NMS+14, NSM12, TS12b, SAP16,
SG14]. multi-kernel [SAP16]. Multi-level
[CAWL17, LM13, HE15, MALM95, ZZZ+15].
Multi-Network [BCKF00]. Multi-Node
[HRZ97]. multi-petaflops [LSG12].
multi-phase [ZAFAM16]. Multi-Physics
[WBH97]. multi-place [BCK+09].
multi-platform [DWL+10, DWL+12].
multi-Processing [MLGW18].
multi-Processor [RR02, Smi93a, DCH02].
multi-programming [WADC99].
Multi-protocol [MB00]. multi-socket
[LS10]. Multi-Stage [FSXZ14].
Multi-Threaded
[MG15, Ada98, EBKGO1, SCB15].
Multi-Threaded [MLGW18].
multi-valued [Str12]. Multi-versioned
[SSB+17]. multi-zenional [Fin94, Fin95].
Multi-Zone [JCH+08, AGMJO6].
Multiblock [IDD94, DLR94]. Multicast
[CCA00, CDPM03, ZGN94]. Multicasting
[SE02]. multicenter [CwCW+11].
MultiCL [APBcF16]. multicomputer
[SWJ95, TD99]. multicomputers
[WJWW97, Yan94, YX95]. Multiconference
[Ten95]. Multicore
[BMD08, CGC+11, CB16, DSG+16, DGH+19,
GDM18, KDT+12, LNK+15, WT12,
YKW+18, CLYC16, GJL11, HWX+13,
JPOJ12, KN17, LS10, MBDQ13, MM11,
Nob08, OPW+12, PDY14, QBY12, RGMD16,
WCS+13, WLYC12, WT13, YHL11,
YWC11, dLAMCI11]. multicore/many
multicore/many-core
multidestination [Pan95a],
multidimensional [CSW99, DMK19, PDY14, ZT17],
multidisciplinary [Fin94, Fin95],
multifrontal [IB95], Multigrain [AZG17, IOK00],
multigrid [BCMR00, AGIS94, IHM05, Lou95, Mic93, Mic95, PSLT99, RM99, Sta95a, ZZG14],
Multigroup [QRG95, QRMG96],
multilevel [PSSS01, BAV08, ETV94, GAM+00, JJY03],
multimedia [GFB+14], multimethod [FGT96],
multiobjective [RLVRGP12],
multiparadigm [FS98], Multiphase [SPH+18].
multiprocessor [Pet97, ABCI95a, ABCI95b, ADMV05],
multithreaded [ALB+18, AZG17, DGG+12, PS01b, RBAA05, TGBS05, WJ12, DSG17, TMC09, TG09, WCC+07],
multithreading [BBG+10, ZWL13].

Munich [BDLS96, GH94], Mushy [Wit16],
MUST [HPS+12, HPS+13], mutual [She95],
MVAPICH [RMS+18], MVICH [OF00], Myocardial [Pat93], Myrinet [GBH99, CDP99, JSH+05, LCW+03, PTW99, Tout00].
n [Pan95a, ADB94, RTRG+07]. N-body [ADB94, RTRG+07], n-cube [Pan95a].
NAG [DHP97, For95, Mc96]. NAMD [PZKK02], Naming [MSF00].
Nancy [BR95a]. NanosCompiler [GM+00].
Narrow [YSS+17]. NAS [CRE99, CE00, CCF+94, CDD+96, KS96, KAC02, MMH99, WAS95b, WT11, WT12].
NASA [MAB05]. NASLU [PHJM11].
National [Str94, BRST94]. Native [S299].
NATO [KG93, TG94]. NATUG [Ara95].
NATUG-7 [Ara95]. nature [DSM94].
Navier [Che99, DLR94, HSM94, IDD94, Lou95, SCC95]. NB [BG91].
NC [Agr95a, SL94a]. NCS [AL92]. nCUBE2 [BL94]. Near [FKYW95]. Nearest-Neighbor [DI02].
Nebelung [MFG+08]. NEC [GPL+96, HRZ97, TRH00]. Necessary [NPP+00b]. Needed [Gei00]. Neighbor [DI02], neighborhood [HS12]. Nek5000 [MG+S+15]. Nemesis [BMG07].
Nesbet [BL95]. Nested [AHD12, BR12, BS01, DLR99, GLP00, HA10, MMS07, TSS00, ZLP17, aMST07, AGM06, BS05, HSE+07, THH+05, YZ14].
Nests [DMB16]. Net [CNM11, NE98, NE01, PES99].
Net-Console [PES99]. Net-dbx [NE98, NE01]. netCDF [LkLC+03].
Netherlands [DSZ94, Ano93f, Van95]. Nets [Sou01, Str94]. Network [ACM98a, AR01, BDG+91b, BDG+93a, BCKP00, C295a, CDHL95, CSC96, DM95b, DM95a, DBA97, DFM94, DGM93].
DGM93, EK97, Fer98b, Fis01, GS91b.
Network-Balancing [DBA97].

Network-Based [BDG +91b, GS92, BDG +92a, IM95].

Network-Specific [DM95b, DM95a].

network-topology-aware [SPK +12].

Networked [FGKT97, GBD +94, Nov95, NMC95, Per96, Ano95b, BMPZ94b, BMS94a, BMPZ94a, GM94, HS93, RRG +99].

Networking [ACM97b, ACM98b, ACM00, ACM01, ACM04, Hol12, LCK11, CXB +12, GH94, HS95a, ITT99, LCHS96, MZK93].

Networks [CSV12, CDM93, DDP +19, DDPR97, GFV99, GDM18, GHL97, HHK94, HLCZ00, HIP02, LHHM96, L96, LH98, MBES94, QMG00, SG15, TQDL01, Tou00, VLO +08, VBB18, WAS95b, WMC +18, BK11, BRS92, CZ95b, CFP95, DG95, DZ97a, Jou94, LR06a, LTLC94, LHD +94, LHD +95, NFG +10, Pan95a, TDB00, ZGN94]. Neural [AGH +95, CAM12, CSV12, QMG00, Str94, GKLyC97, Rag96].

Neurocomputing [PSZÊ00]. neutrino [KBHS19]. Neutron [LD01, RS97, VRS00, WRO1, MM92].

Nevada [Ano94c]. never [Har94]. Neville [ACMZ11].

Newport [IEE93b]. News [Ano97, Ano03, Bra97, ESB13, KS15a, Str94].

Newton [ZB97]. Next [GKPS97, Gei98, Geio1, VPS17, SP11, ZKRA14].

NoC-based [HWX +13]. Node [HRZ97, KFL05, FKLB08, GM13, JR10, LFL11, RS19, Zahn]. Nodes [BBC +02, BCHO +09, JNL +15, MKC +12].

Noise [SAL +17]. Non [BCG +10, CCSM97, Gau16, HTA08, MW98, Man01, WLN03, WTR03, FH98, BCHO +08, OKW95, OKM90, TVCB18, WLN06]. Non-blocking [HTA08, FH98, BCHO +08]. Non-Contiguous [WTR03].

Non-Data-Communication [BCG +10]. non-dedicated [WLN06]. non-iterative [OMK90]. Non-linear [MW98, OKW95].

Non-Local [CCSM97]. Non-persistent [Man01]. non-singleton [TVCB18].

Non-stop [Gau16]. nonaligned [AGIS94]. Noncontiguous [JDB +14, TGL02].

Nondeterminacy [DKF93]. nondeterminism [Obe96].

Nondeterministic [KSV01, CRD99].

Nonlinear [Nak03, Was95a, ZB97, CECS07, Jou94]. nonnegative [KBP16].

nonsymmetric [dH94].

Nordic [FF95].

Norfolk [Sin93].

normalized [Gra09]. North [CJNW95].

Note [BR02, SGHL01]. Notre [IEE96].

novel [DDYM99, GKK09, MLVS16, MSL12].

November [ACM96c, ACM97b, ACM98b, ACM99, ACM00, ACM01, ACM03, ACM04, ACM05, Ano94c, ACDR94, BDW97, GN95, HK95, Hol12, IEE91, IEE93c, IEE94b, IEE94h, IEE02, LCK11, USE94].

novice [CGG10]. Novices [Stp02]. NOWs [SLGZ99].

NP [NYZ14].

NPACI [PKB01].

NPB [ECC02]. NR [Gau16]. NR-MPI [Gau16].

NRC [LD01]. NSGA [GÅVRRL17].

NSW [GN95]. NT [Ano01a, Bak98, BF98, CLP +99, FD97, GGCC99, PS00a, SFG98, TAH +01].

NTRUEncrypt [KY10]. NTUG [FF95]. Nuclear [BPG94, GA96].

nuclei [NS16].
NUMA [BCC+00a, BCC+00b, BFG+10, CAWL17, GTS+15, MCK+12, MJB15, OPW+12, SLN+12, TSCaM12, ZLP17].

NumaGiC [GTS+15].

Number [BP99, HT08, WHDB05, CBYG18, Lan09].

Numeric [MLGW18].

Numerical [ACMR14, BS93, BCP+97, CSW97, DHK97, DHP97, FK01, For95, FFB94, HH14, Hol95, Hus98, IF95, KM10, McN96, NHT02, PKY95, TDBE11, YKLD17, AL92, Boi97, BCM+16, CSW99, FP92, GS94, JK10, KB13, Nob08, NHT06, Pri14, SMAC08, SU96].

Numerically [BKML95, BFLL99].

O [Bos96, CFF+96, DRUC12, IEC96f, PBG+95, Ree96, SS96].

Octree [JL18].

Octree-Based [XXL13].

October [Ano93f, Ano94e, Ano94i, Ara95, BPG94, Bha93, DD94, DLO03, DE91, FK95, GA92, GSH94, GSH95, GSH96, GSH97, IEE94f, IEE95a, IEE95b, IEE95c, IFI95, JB96, Kra02, Old02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vol93].

OCLoptimizer [FAFD15].

OCM [BoFBW00].

OCM-Based [BoFBW00].

Object [Ada97, BCFK99, CFKL00, FMSG17, MSL96, PD98, SWL+01, YHLG01, YX95, Ada98, BR91, DM12, LK96, OKM12, OLS95, SL49b, TDG13].

Object-Based [LK96].

Object-Oriented [LK96].

Objects [LK96].

Observations [LK96].

On-Chip [ana03].

On-Demand [CTK00].

On-Line [BoFBW00].

Open [BPS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TG05, TRH00, ZSG12, bT01a, DBB+16, GBH18, LSK04, MS99c, Ols95, PGK+10, diAMC11].

One-Dimensional [Ols95].

One-Layer [Ols95].

Open-Source [BS93].

OpenACC [CGK+16, CCBPGA15, GML+16, GM18, HTJ+16, JCP15, KDHZ18, KL15, Kom15, LB16, LSG12, MGS+15, OGM+16, QHCC17, RLFdS13, SCJI19, WILK+18].
OpenACC-based [KLV15]. OpenCL
[ABDP15, APBrF16, AB13, BLPP13, BDW16, BN12, BHW+12, BHB+15, BAS13, CDD+13, CP15, CLOL18, CJ+i10, CHKK15, CCK12, CS14, CLBS17, CBBGL19, DARG13, Di 14, DWL+10, DWL+12, FAFD15, FLMR17, FE17, FS14, FVLS15, GSFcm13, GDDM17, HD11, HE15, HHC+18, JMK+17, JR13, JNL+15, JMdVG+17, KKM15, KH12, KM10, KKL11, KSL+12, KB13, KPK13, Lee12, LNK+15, LWZ18, LL16, LAFA15, MC17, MAIvAH14, MTU+15, MSZhG17, MHShK16, ON12, OTK15, ORA12, PCY14, PHV+13, PSB+19, PB12, RG18, RVKP19, RGD13, RBB15, RGB+18, RBB17, SFSV13, SAP16, SSB+17, SG14, SFLD15, SG10, Str12, THS+15, TK16, TMW17, TKP15, TY14, WTTtH17, WZHTZ16, YSWY17, YWTC15, YSL+12, ZWL+17, dAT17].

OpenCL-accelerated [ZWL+17]. OpenCL-Based [CLOL18, WTTH17, WZHZ16, JKM+17].

OpenCL-to-WebCL [CHKK15]. OpenGL
[Ano98, LHZ97, ORA12, Röt19]. OpenMP
[Cha05, CZG+08, CGKM11, CMMR12, EV01, JMS14, MsDS09, SHM+10, Vos03, OKM12, ST02a, ST02b, Add01, ARW03, ABC+00, AHD12, AAB+17, AELEG16, ACMzR11, ATL+12, ADT14, ACJ12, Ano07, Ano01b, Ano03, AKE00, ADMV05, ADR+05, AGMj06, AM07, ACD+09, ABB+10, BST+13, BR02, BHP+03, BME02, Ben18, BN00, BF01, BBHD14, BWV+12, BCC+00a, BCC+00b, BGK08, BGG+02, BS01, BS05, BBC+00, Bra97, Bri00, BDV03, BdS07, BGDS09, BFG+10, BGD12, BC00, BS07, BB00, BKO00, BO01, BEG+10, BB18, CRE99, CE00, Car07, CB00, CGLD01, CDK+01, CLYLC16, CM08, CHPP01, CBPP02, Cha02, CM05, CGKM11, CMMR12, CLA+19, Cla98, CBYG18, CCM+06, CCBPGA15, CC00b, DM98, DW02, DBVF01, DSGS17, HD02a, DGH+19, DFC+07, DFA+09, ETWAM12, EM00a, EM00b, EV01, EsD08, FGRt00]. OpenMP
[FMSG17, FSG19a, FSG19b, FSXZ14, FM09, GSA08, GJP01, GSNK17, GGO9, Goe02, GÀVrRL17, GAM+00, GAML01, GOM+01, GAM+02, Gra09, HFP+02, HPO5, HDDG09, HA10, HO14, HD02b, HMK09, HAuP00, HKN+01, HAKK10, HVSNC11, HLCZ00, HT01, HCL05, HEHC09, HJYC10, HAA+11, LIM+05, ICC02, IOK00, ITT02, JCP15, JKHK08, JPOJ12, JFY00, JIV+03, JCtH+08, JML+11, JR10, KB01, KS15a, KOB01, KaM10, KOI01, KN17, KK03, KT02, KSJ14, KLR+15, KBVP07, KBG+09, KKV01, KT10, KH15, KAC02, KC06, Kuh98, KPO00, KLM+19, KRG13, KSS00, KSSH01, KJEM12, LOHA01, LP00, LLRS02, LTS16, LD01, LME09, LLC13, LHC+07, LW+12, LYY+16, LA02, LA06, LdSB19, LMdR14, LHZK98, LL01, LLH+14, MK+12, MS02b, Mal01, MM07, MB12, Mar02, Mar03, MLC04, Mar05, Mar09, MDP04, MCB05, Mat00a].

OpenMP [Mat00b, Mat0a1, Mat03, MGG05, MGc12, MG15, MM11, MFG+08, MKV+01, MEE03, MRRP11, MMS02, MKW11, MM14, MMS07, MBJ15, MJPB16, MCdS+08, Mui01, Mui02, Mii03, MBA+12, NO02b, Nak05a, NIO+02, NIO+03, NEM17, NPP+00b, NPP+00c, NPP+00d, NAL01, NA01, NN000, No808, NU05, NHT02, NIT06, OOS+08, OP10, OPW+12, PARB14, PPJ01, PVKE01, PK05, FZ12, PG02, PKE+10, Qui03, Rau05, RDLq12, RLVGpR12, RBAA05, SSE12, SBB+16, SHH01, SHT01, SK01, SLGZ99, SGZ00, spl+12, SHPT00, SSAS12, SK00, SB01, Sp02, TCM18, TBS12, TS12a, TS12, TTSY00, TSS00a, TSCm12, TJFP12, Thr99, TBB+02, THH+05, TGBS05, VDL+15, VPS17, VGS14, Vos03, Vre04, Wal00, Wal02, Wau02, WCC12, WC15, WPC07, WT11, WYLC12, WT12, WLYC12, WT13, YKW+18, YHLL11, YWC11, YCL14].
OpenMP [YKLD17, YPAE09, YSVM+16, YSMA+17, YYW+12, YCA18, ZAT+07, ZSnH01, aMST07, dCZG06, RM99, SSGF00, WCS+13]. OpenMP* [KDT+12].
OpenMP-based [LNW+12]. OpenMP-like [BKO00, KOB01, VGS14]. OpenMP-oriented [MLC04]. OpenMP-style [JPOJ12]. OpenMP/MPI [BEG+10, HMK09, LLC13, LYSS+16, MGG05, NO02b, Nak05a, SSB+16, SK00]. OpenSHMEM [HVA+16]. OpenTuner [BAG17]. OpenUH [HEHC09, LHC+07]. Operating [MMH98, RGD97, USE94, Wil93, ARS89, Sei99]. operational [KOS+95a]. Operations [BIL99, BIC05, CCA00, FCLG07, FPY08, GFD05, GLB00, PSM+14, PGAB+05, TRG05, TGT05, WRA02, BM07, DS13, HMS+19, IDS16, KHB+99, KM+14, PGAB+07, PKD95, SS99, TFZZ12].
Operators [KK19, NHT02, NHT06]. opportunistic [CC10]. Opportunities [LB16]. optical [MRH+96]. Optimal [BP99, GAMR00, ZGN94, BB95a, ER12, PQL+16, Sur95a]. optimiertes [Sei99]. optimisation [AMuHK15]. Optimising [Boo01, FKH02]. Optimistic [SCL00, CXB+12, PY95]. Optimization [BSG00, BHNW01, DBC07, Gec02, HS12, Hur93, ITT02, KGK+03, KMH+14, LdSB19, MC17, MBS15, Mü01, NIO+02, NIO+03, PSSS01, SM03, Sc199, SWH15, TRG05, WTT+17, WJ12, Cun93, DSOF+11, FCS+12, HWS09, KHS12, LME09, LDK+13, MAL+95, PP16, PMM95, SSK01, SDJ17, Str12, TMW17, TFZZ12, VSW+13, Was96, XXL+13].
Pablo-based
Package [BS93, KCP+94b, KOW97, LW95, OD01, SYF96, van97, BHW+12, BBH+15, CwCW+11, Gao03, KCP+94a, LFS93a, LFS93b, SL95]. Packet [MBES94]. Packets [Uhl94, Uhl95b]. PaCT [Mal95]. PaCT-95 [Mal95]. PACX [FGRD01, KR09, RB97b]. PACX-MPI [KR09, RB97b]. Page [CML04, NPP+00c]. pages [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Pagoda [YSS+17]. pairwise [AMHC11]. Palazzo [GT94]. PALLAS [KVH97]. Papers [BDB+13, OL05, TB14, ACM90, CHD09, DKD07, IEE93a, IEE95c, KKDV03, MTW07, Old02, Ano93g, Cha05]. PARA [DW94, DMW96, Was96, CD96]. parabolized [SCC95]. Paracells [SYL19]. ParADE [KKH03]. Paradigm [HIP02]. Paradigms [BGD12, CM98, HD02a, HD02b]. Paradyn [MHC94a, MHC94b]. Paragon [Ano96c, HW997, MP95, PR94a]. Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC11, AGH+95, AS92, ADRCT98, AK99, AMBG93, ASA97, AL96, Ano95b, ACMR14, AB93a, AJF16, BMH94, B93, BBG+95, BCGL97, BFLLO9, BP99, BC95, BS93, BS93D, BG+91a, BKGS02, Ben01, BP98, Bha93, Bie95, BGK08, Bis04, BALU95, BCL00, BSC00, BBG+00, BBG+01, BFZ97, BD98, BDH+95, BDH+97, BT01b, BMS94b, BMPZ94a, BMF97, BKO00, BB12, BGL00, CC+02, CHD07, Cer99, CDZ+98, CUC95, CDK+01, Cha02, CGB+10, CN10, CFF+94, CSW07, CMH99, CFP99, CSSM97, Coo95b, CT94a, CT94b, CCO0b, Cze16, DSM94, DER01, DYN+06, DK13, DDP+19, Di14, Di02, DAD19, DSS00, D+91, DGM93, DT94, DGH+19, DZDR95, DK06, EKT99, EGR15, EM00a, EM00b, EGD92, EJL92, ES11, FGRD01, FHSO99, FJBB+00, FFP03, Fer98b, FHK01]. Parallel [Fis01, For95, FP92, FB94, FS93, FF95, GCBM97, GLN+08, GBD+94, GKP97, GR07, GSI97, GSKM17, GDM18, GB98, GHL97, GK10, GFGP12, GJN97, Gre94, GLS94, GL97a, GL999, GLKLy97, HJ98, HLP10, HO14, HK94, HK93, HK95, HHK94, HT01, HAA++11, EIE93b, IEE94a, IEE94f, IEE95b, IEE95f, IE95f, IE96b, IEE96c, IEE96g, IE96e, IEE96d, 1EE97b, IEE05, IITK70, IBC+10, IOK00, IDD94, IH04, IHN05, JAT97, JML01, JON94, JRM+94, KFA96, Kan12, KDHZ18, KKO2a, KO10, KNT02, Kat93, KBS04, Kep05, KmWH10, KR09, Kon00, KKP01, KMC96, KMC97, K956, KKD04, KDS01, KVVH97, KHS01, Kuh98, KBG16, Kurn94, Lad04, LTDD14, LTR00, LD08, LSZL02, LTRA02, LMH96, L96, LZ97, LZ979, klCC+06, LO96, Lsu00, MSOR01, MS02b, MM92, MC18]. Parallel [MW97, dIFMBdFM02, Mar06, Mar07, MFTB95, MSC95, Mat94, Mat95, MBS15, MG12, MG15, MRB17, MM11, Mic93, Mic95, MT95, MCLD01, MS95, MCD+98, MBB+12, MS97, NO02b, NO02a, Nak03, Nak05a, Nak05b, NSZS13, Nar95, NSS12, NA19, NJO1, Nov95, NMC95, Oed93, OP10, OLG01, Ong02, Ott93, OWSA95, Pac97, PPT96a, PVK01, Pat93, PSZÉ00, PV97, Per99, Per96, PLR02, PWP91, PKB+16, PBC+01, Qui03, RR90, RDM99, RBS94, Ree96, RS95, RC97, RSV+05, Röh00, Rol94, RWD90, RTL99, RLL01, SCP97, SPE95, SGZ00, Sch01, Sch96a, Sch96b, Seg10, Ser97, Sev98, She95, SLSLW10, SM03, SP99, Sie94, Sie92a, Sie92b, Sin93, ST97, SWH15, Sou01, Sta95a, Ste94, SSN94, GSR10, Str96, Str97, Str94, SNMP10, Sun90a, Sun90b, Sun94a]. Parallel [Syd94, TMP16, TSS00b, TPP97, TC94, TCP15, TQD01, THN00, TDBEE11, Tsu07, TVV96, Uhl94, Uhl95b, UH96, UCW95, VLO+08, VR00, VB99, WH96, Wal01a, Wel94, WAS95b, WHDB05, WO97,
WSN99, WMC+18, WTR03, WT12, YM97, YHGL01, YH96, YPA94, YG96, YTH+12, YZFC95, YSL+12, ZTD19, ZB94, ZZ04, ZDR04, ZWKJ05, ZAT+07, ZL5+15, ZZZ+15, ZGC94, ZB97, van97, ACM97a, ArvW03, APbcF16, ART17, AAAA16, AD98, AL92, ABF+17, ASCS95, ADT14, AD95, ACJ12, Ano93h, Ano95c, Ano00b, ADB94, ADDR95, AB93b, AFST95, AB13, AGIS94, ADMV05, BH96, BBB+94, BR91, BA06, BH95a, BCAD06, BB93, BDG+92b, BB94, BPC94, Ben95, BvdSvD95, BKH+13, BAV08, BN00, Bir94, BCM+16, BKML95, Bos96, BFMR96, BID95, Bri95, Bru95, BDW97, BSH15, BB95b, BJK95, Bos95a, Sut96, Swa01, SL95, TJ90, TDB00, TMFJ01, Uhl95a, Uhl95c, VM95, Vis95, Vos93, Wan97, Was96, Was95a, WK08a, WK08b, WK08c, Wol92, WT11, WYL12, WLYC12, WMPI14, YULM15+17, YHL11, YWC11, YBZL03, YW+12, ZL96, ZWHS95, ZAFAM16, ZWL13, ZJDW18, ZW+17, dH94, ARL+94, Ano94e, Ano94f, ACDR94, BDLS94, BS94, CC95, Cza13, DSM94, DHK97, DW94, EJJ92, FR95, FF95, G95, GPR95, JPOJ12, Kos95b, OPP00, RKPA+13, SLGZ99, SHPT00, SLH+05, TF9009, WO09, WTS01, WRSP16, YZ14, PGdC18].

parallel [CL93, CGK11, Cav93, CLdJ+15, CLSP07, CT13, CLYC16, CkmWH16, Cha05, Cha96, CGL+93, CE07, CH94, CZ96, Che99, CJ+10, CS96, CSW99, Cla98, CEF+95, CDD+96, CDGM96, CBHH94, Coo95a, CCHW03, CLLASPDP99, CF+96, CPR+95, CD01, CDH+94, CKB+93, CB11, DDK93, DFK94, DFL94, DLR94, DLRR99, DDS+94, DR94, DZ94, DM93, DRUC12, DBVF01, DKD05, DvdLS94, DX96, DMW96, DLM99, DPK00, DLO03, Duv92, DZZ94, EASS95, EV01, FB96, FFB99, FM90, FSTG99, Fer98a, FMS15, FCS+12, FKK+96, FFM11, FCH+95, GG99, GCN+10, GGL+08, GBF95, GG09, GBF+14, GÁVRL17, GKS+11, GE98, GKK99, GKF13, Gra99, GP95, HAM95b, HPM+93, HWS09, Heb93, HPS+96, HZ94, HZ99, HPLT99, HBD+13, HV95, HHH95, HLOC96, HVSC11, HLO+16].

parallel [IEE97a, IM95, JWB96, JC17, JY95, JMM+11, JY95, JY95, JMM+11, JC96, JMDV+17, KCD+07, KHS19, KOB01, KRPB16, KNY+95a, KL95, Kos95b, KRC17, KG93, KFSS94, Kra02, KKK+08, KH10, LM99, LCL+12, LH98, LS10, LCVD94a, LMM+15, Lou95, LG93, LM13, LL95, LC97b, LSR95, MMR99, MYB16, MM+94, MZK93, MM95, Mar05, MSP93, MK00, MN91, MHC94a, MRRP11, MALM95, MLA+14, MRH+96, MHH99, Mor95, MR96, MV+94, NSB97, Neu94, NB96, NBS98, NCKB12, NF94, Ods12, Ols95, Ots14, OW92, PAA10, PPT96b, PPT96, PKB06, PBB+95, PNV01, PBB99, PPF89, PY95, PPFT95, PSL19, PCS94, Ram07, RJC95, RB15, Rol08b, RB17, SLM12, SSK95, SH94, Sch94, Sch99, SP96, SBF94, SWC94, SK92, SCC96, SL00, SMA08, SZ11, SPL9, SMS00, SVC+11].

parallel-programming [KKJ+08].

Parallel/distributed [FHC+95, Wan97].

Parallelle [GE98].

Parallelisation [SJK+17a, SJK+17b, WCV96, LF93b].

Parallelism [CGC+11, EdS08, EK97, FKKC96, GLP+00, G+02, GPC+17, DK02, KT02, Mar03, MGA+17, MVS97, MdS09, RBA05, SHM+10, SML17, SZG00, TCM18, TSSY00, Thr99, YPAE09, ATL+12, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, JC17, JPOJ12, Kos95b, OPP00, RKB+13, SLGZ99, SHPT00, THH+05, TF9009, WO09, WTS01, WRSP16, YZ14, PGdC18].
Parallelization
[AL93, And98, AIM97, BCM11, BS07, CRE99, CP97, Cou93, Cza03, ET94, HA10, JR10, Kik93, KL+15, LP00, OD01, Pok96, QMGR00, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZWS08, WR01, aMST07, AGM96, BW12, BDY99, BJS99, CDD96, FSG19a, Gao03, Goe02, IDS16, IJM05, JL18, JJY03, JMS14, KS15a, KD12, KRG13, MCB05, MGG05, Nes10, NEM17, OLG+16, TWFO09, VBLvdG08].

Parallelized
[FBSN01, OMK99, KMG99, OKM12].

Parallelizer
[BHRS08].

Parallelizing
[BST+13, Car07, GGH99, IOK00, IKM01, IKM02, SR95, ZZ95, AMS94, BY12].

Parallelldatorcentrum
[Eng00].

Parallizing
[LRQ01].

Parameter
[HPLT99, JMdVG17].

Parameterized
[CT13].

Parameters
[GFV99, BAG17].

Parametric
[LLG12, Pat93].

Paramid
[Ste94].

Paraperm
[LTDD14].

Paraprox
[SJLM14].

Parasite
[SL94a, IEE93c].

PARKBENCH
[DHS96, DH95].

PARMACS
[GR95, HZ96, HZ99].

PARMACS-to-MPI
[HZ96].

ParNSS
[HSMW94].

PARRAY
[CCM12].

Parsing
[Sur95a].

Parsytec
[SHH94a, SHH94b].

Part
[VSR95, EM00a, EM00b, GK10].

Partial
[DERC01, DLV16, FSSD17, KK02b, MK17, MFTB95, OM96, ST17].

Partially
[CdGM96].

Particle
[GS97, KHS01, NSL16, ZZ04, BAS13, CFF19, FFFC99, GSMK17, KPK13, RFH+95, VDL+15].

Particle-based
[FFFC99].

Particle-in-cell
[VDL+15].

Particle-mesh
[BAS13].

Particulate
[ATL+12].

Partition
[DAD19].

Partitionierung
[Gra97].

Partitioning
[CTK01, DAD19, KL11, STV97, CT13, Cha96, Gra97, GKCF13, YST08].

Partners
[Str94].

Pasadena
[IEE95c].

PASCO
[ACM97a].

Passage
[PTMF18].

Passing
[AMHC11, Ano93d, AKL99, Att96, BZ97, BC14, BBH+06, BBG+01, BRU05, BDH+95, BDH+97, BGR97b, BFM97, CHD07, Cer99, CSH94, Cot97, Cot98, CT00, Cot04, CND11, DFKS01, DKD08, DHHW92, DHHW93a, DLD00, FGG+98, FB94, GR07, GB96, Gle93, GLS01, GLS94, GL95c, GLDS96, GLT99, GLS99, GLT00b, GLT00a, GL04, IBC+10, KTF03, KGRD10, KS97, KSV01, KKD03, KKD04, KKD05, KLD08, LK10, Luo99, MPI98, MTSS94, MS98, MSL96, MBS94, MG97, MTWD06, MSS97, NW98, PKBO, Pok96, PS01b, RBRL01, RWD9, RFG+90, SWHP05, SWL+01, ST02b, TGT05, TDB00, TDB12, WD96, Wer95, Wis97, YHGL01, ZG95a, ZG96, ZL+12, Ada98, AD98, AAC+05, Ano93e, Ano94d, Ano95c, Ano00a, Ano00b, BL97, BvdSvD95, Bjo95, Bru95, BDW97].

Passing
[BFIM99, CGJ00, CDZ98, CRD99, CD01, DFK93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FK94, FHB+13, GL92, HP05, HPY+93, Hem96, KJA+93, Kra02, LR06a, LBD+96, wL94, LC97, LMM+15, LC97b, MP95, NS91, PS07, PKBO, Pie94, PR94a, PS06b, Sei99, SWJ95, SDV+95, SZ99, SS95, St94, TSZC94, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, DNF96, GGHL+96, Han98, Hem94, RRHF96, SLG95, Wer95, YGH+14].

Past
[Dar01].

Path
[CGPR98, GAMR00, SDJ17, SLN+12, Zd95].

Path-based
[SLN+12].

Pathway
[CNM11].

PATOP
[BFBW01].

Pattern
[CSW12, CC17, JJPL17, RDMB99, MAS06, SJLM14].

Pattern-based
[SJLM14].

Pattern-Independent
[CSW12].

Patterned
[SJLM14].

Patterns
[DMMV97, FPY08, KB98, PKB+16].
RRAGM97, SGH12, DZZY94, GÁVRRRL17, HGMW12, PM95, PSK^+10. PC
[AH00, EKTB99, KS01, LKYS04, RLL01, Ste00, WLYC12, YST08, YL09, MMB^+94],
PC-Cluster [RLL01]. PCAT
[ACDR94, GN95]. PCAT-93 [ACDR94]. PCAT-94 [GN95]. PCI [BJS97]. PCI
PCTE [HZ94]. PCTRAN [KHS01]. PDCS
[YM96]. PDE
[GBR15, NHT02, NHT06, NPS12]. PDES
[PT01, SCL00, SCL01, HO14, HHA95]. PDGC
[CBG^+10]. PDP [IEE96g]. Peer
[GR07]. Peer-to-Peer [GR07]. PELCR
[PQ07]. PEMPI [FB95]. PEMPIs
[MOL95]. Pennsylvania
[ACM96b, IEE94d]. pentadiagonal
[Kan12]. Pentium
[Ano03]. Pentium(R)
[SBT04]. PENTTRAN [KHS01]. people
[ASC95, Ano94i]. per-triangle [SQA11].
perception
[CLM^+95]. perceptual
[WPL95]. perform [CBGL19].
Performance
[ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, AT01, AR01, Ano01a, Ano01b, ADR^+5, Bak98, BBGL96, Ben18, BN00, BBDH14, BGG^+2, BY12, BRM03, BRST94, BS07, BDL08, BCPK00, BHNW01, BFM96b, BFBW01, BEG^+9, CGK^+16, CDD^+9, CFE99, CDJ95, CGLD01, CNM11, Che99, CSC96, CCBPGA15, DPSD08, DM95b, DW02, DZ98b, DFP01, DWL^+9, DBK^+9, EGH99, EGC02, EML98, EML00, FD02a, FGR00, FCP^+0, FSC^+11, FST98b, FGK72, GFD03, GKP96, GGS99, GBH99, GFI^+9, GRRMM99, GBS^+9, GC05, GMdMBD^+9, GSY^+13, HVA^+16, HKN^+01, Hol12, HF14a, HF14b, HPS95, Hus98, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IF195, IUR01, IHA^+00, ISS^+15, JC17, JCH^+9, JS13, KDS012, KaM10, KL94, KH12, KBS94, KMB97, KKP01, KH15, KC06, KK02b, KHS01, KSS00, LaF01].
Performance
[LAdS^+15, LWLSB19, LCK11, LC97a, LB98, LCG97, LNI^+15, LH98, LC93, LkLc^+03, LZW18, LN^+12, LS10, LCW^+03, LVP04, LDP04, LDCZ97, LZHY19, LC97b, LKYS04, MMB^+94, MKP^+96, MPD04, ME17, MGMM97, MGc12, MM02, MM03, MOL05, MS99a, MHC94b, MMSW02, MK04, MCLD01, MM99, MM14, MMS97, NM93, NMP^+00d, NMS^+14, NN95, OTK15, OF00, OLG01, PABR14, PKB01, PHJM11, PZ12, PR94b, PFG97, PGB^+9, PGB^+7, PGC02, PY95, PTH^+01b, PS01b, QHC17, QB12, Rab98, RBB97a, RBB97c, RH01, RRAGM97, Ros13, RS06, SGJ^+9, SPM^+9, SLJ^+14, SWHP05, SCP97, SEF^+6, SPL^+12, SC612, SM02, SM03, SSC97, SJ02, SSS97, SC96b, SKH96, SJK^+17a, SJK^+17b, TSB02, TSB03, TTSY00, Tny95, Tga98, Tgg^+02, TGT01, Tr12b, TFGM02, TFZ12, VFD02, VY02, WN10, WAS95b, WM01, WT11].
Performance
[WT12, WT13, XF95, XH96, XXL13, YC98, Yan94, YWC11, YWC15, YSP^+05, ZLGS99, ZWJ95, ZHK06, ZSnH01, ABDP15, Ahm97, ADL03a, ADL03b, Ano03, AFST95, BDP^+10, Ber96, BDV03, BF96, BFM96a, BFM96b, BFM99, CRE01, CAHT17, CLYC16, CBPP02, CBM^+08, CHKK15, DM95a, DL10, DO96, D^+95, DWL^+12, DE91, Duv92, EFR^+05, ES13, FAF16, FD02b, FE17, FSV14, FME^+12, Fin97, GSO2, GGC^+07, GK97, GR95, GHZ12, GML^+16, GL96, GLDS96, GL97c, GL99, GWVP^+14, HDDG09, HW11, HASnP00, HAJK01, HMS^+19, HK10, HVSC11, HHA95, HG12, HFC05, JKH98, JMM^+11, JKN^+13, KBP16, KMM15, KS13, LBD^+96, LTL94, LC07, LH12, LCV96, LB96, LL01, LJK03, LSK04, MC17, MP95, MSMC15, MSW^+05, MSL2, MABG96, MHC94a, MSZG17, MJBP16, MGC^+15, NU05, NFG^+10, OIH10, Old02, PG5^+13, PHW^+13, PKG^+10].
SSCC95, SDB+16, St94, Tra98, WCS+13, YBM+14, Ar95, BCK+99, BDIA94, BB00, BL99, BAS13, CH94, CEF+95, DWL+10, DWL+12, FAF16, FWNK96, GR95, GL94, GS94, GLDS96, HTJ+16, HZ94, HSU+12, JC96, KN95, LFS93a, LFS93b, LHC+07, MMB+94, PPT96b, PPT96c, PMZM16, SFLD15, Sto98, VM95. portal [AASB08]. portals [BS96b, BM02, BRM03].

Portfolio [SIS17]. Portfolio-driven [SIS17]. Portfolio [SIS17]. Porting [Ano96c, BSC99, BLW98, E02, Har94, Har95, HASnP00, KGK+03, KME09, SR96, YKLd17, dCH93, BvdB94, HD11, MWO95, ZP96].

Portland [ACM99, ANS95, IEE93e, SW91]. Portugal [IEE93d, IEE96g]. Positron [Pat93].

Power [IEE96d]. PP [IEE96d]. PPARDB/PVM [PPT96b, PPT96c]. PPARDB [PPT96b, PPT96a, PPT96c]. PPPE [CDH+04]. PSSN [DSM94].

Practical [HL96, BCP+07, C7Z+08, RHG+96, TGBS05, AMS94, BHR808, LPD+11, McK94, Pan95b, VVD+09].

Precise [FJK+17]. Precision [An95, Kha13, ZC10, JPT14].

Preconditioned [GFP91, ABF+17, MM92]. Preconditioner [BBS99, FSXZ14]. Preconditioners [Huc96].

AB13, BJ13, BCA, BCM, BB94, BS96a, BKH, CLYC16, Cha05, CEF, CDH, CGH, DLW, Duv92, EASS95, F601, FSG19b, FB95, FB96, Fan98, FSTC99, Fr94, Fra95, FHB, FF95, G12, Ge96, GBH, GBH.

programming [GRTZ10, HTA08, HS93, HZ94, HDB, HVSH95, HSW, HZO, KDSO12, K0BO1, KSG13, KSL, KLV, KPNM16, KFSS94, KJ, LV12, LFSS93a, LFSS93b, LH98, LPH, LLI, LMB, MVTP96, MSP93, MCG, MGCH, MO02a, Nak05a, NYNT12, NBGS08, OIS, Olu14, OW92, Pac97, PKVE01, P905, Qui03, RJDH14, iSY, KRF95, SY, Seg10, SPK96, SFB, SPL, SHH94a, SD99, VP00, Vos03, Wal01b, Wan02, WCC, WADC, WYLC12, WYLC12, YHL11, YWC1, YY95, YS93, ZGC94, DR9, HSE, CHe10, SD13.

Programs [AJF16, BBG93b, BKdSH01, BGK08, BBG, BB0, BDL98, BGL00, CSW12, CRE99, CHPF99, CD98, DLB07, DMMV97, Di14, FKH02, FJK, G07, GTH96, GL04, GC05, HC10, HKN01, HM01, KFL05, KLR14, KKV01, KS, Mar09, MVL95, MOL05, MBE03, MKW11, MCLD01, MJB15, MSZS13, NE98, NE01, NPP004, OM96, PPJ01, RH01, RFG, SGZ0, SFB, SR96, TGBS05, Wal94, Wis97, ZL12, BBG92, BBG93c, BBG93a, BCK90, BMS03, CRE01, CldJ15, CGL, CH94, CRM14, CFP96, DFK93, DKF94b, EP96, EPP17, FS19a, FLB05, FKB08, GGH99, GRRM99, GKS, GB94, HD11, HZ96, HLO9, HEHC09, KCD197, KS13, K014, Kom15, KLM19, LGKQ10, LLG12, LLB16, LLYS16, LMM15, LZZ12, LCC03, MT96, Mias18, Mor95, NKB99, Ob96, Osdd12, PSH99.

programs [PA9517, RAS16, Ren03, RRG, SS2, SSKS01, SMAC08, SZ11, SR9, SY95, SC96b, TMW17, THH05, UGT09, VVD09, YSV16, YSM17, YYW12, ZJWD18, ZRQA11].

Properties [BR95, LAdS15, SPH18, MLA14, MC94]. Progress-Dependence [LAdS15].

Promotion [OCY, WBBD15].

Propagation [EMO93, ESM94, JML01, SMO03, KE010, RMN12].

Proteins [BRG18, GAVR17, SEC15, ZAT07].

Proteolysis [BHW92, DHH93a, DFC07, DFA09, ZKR14].

Protocol-based [LMM15].

Protocol [CAW17, GSY13, kl11, LMM15, RA09, XF95, BDB13, CcWc11, DDYM99, MN91, MB00, ZPI06].

Quadrotor [AdF96b, BRU05, LAdS02, KYL03, KYL05].

Prototyping [Spe19].

Provide [Add01, LMRG14].

Provides [An98, N93].

Providing [GKP97, ZAH12].

Proving [MS96b].

Protocol [BCH08, DM93, L98].

Pseudo [Wal01a, Lan09].

Pseudo-search [Wal01a].

Pseudorandom [WHDB05].

Pseudospectra [BKGS02].

Pseudospectral [Bri95, MRRP11].

PSPVM [BWT96].

Pthread [ZAT07].

Pthreads [AS14, TS12b].

Ptx [SIS12].

Public [Str94, GWW14, Ne93, RST02].

Public-private [Str94].

Puma [BS96b].

Purely [HSE17].

Purpose [BDT08, Che10, SZBS95a, Sun49a, ABDP15, CBM08, KPNM16, PF05, SK10, SZBS95b].

PvF [BCLN97, TSS98].

PVM [Ad98, BL94, BDLS96, BDW97].

PVM [Ad98, BL94, BDLS96, BDW97, CHD07, CHD09, CD01, D05, DLM99, DKPO00, DLO03, Kra02, KKD04, LKD08, LKD08, PVM].
McD96, MTWD06, RWD09, Wil94, AJ97, Ahm97, AS92, ACG97, ADRCT98, AL92,
AGR+95b, AB95, ASA97, AL96, ARL+94, AKK+94, AP96, Ano94b, Ano95c, Ano96b,
Ano96c, ABCI95a, ABCI95b, ABG+96, AGLv96, AB93b, AB93a, ADMV05, BSN95,
BLP93, BFL99, BBGL96, BG93, BS93, BDG+91a, BDG+92b, Beg92, BDG+93b,
Beg93b, Beg93c, BDG+95b, BS96a, BDG+xx, BL95, BR95b, Ber96, BJ97, BT96, BG94a,
Bon96, BG94b, BG94c, Bor99, BCD96, BRR99, BZ97, BID95, BMS94b, BF96,
BFMT96a, BFMT96b, CMV+94, CP97, CDJ95, CKO+94, CCK+95, CSPM+96,
CZ95a, CGPR98, CG93, CDHL95, CDH+95, CF01, CO96, CS96, CG99a, PVM
[CSC96, CDM93, CdGM96, CPR+95, CT94a, CT94b, CFP96, CT02, CD98, CT901, DG95,
DK94a, DYM99, DM95b, DM95a, DP94, DMMV97, DGF97, DFN12, D+91, DGM93,
DMJ93, DPH97, DPZ97, EP96, FMBM96, FD96, FLD96, FH95, FHSO99, FO94,
FSTG99, FJBB+00, Fin97, FD97, FS97, For95, FS93, GRV01, Gal97, GBM97,
GS91a, GS91b, GS92, GS93, Gei93a, Gei93b, GDB+93, GBG+94, Gei96, GKP96, Gei97,
GK97, Gei98, GSxx, Gei00, Gei01, GTH96, GB96, GM95, GSHL02, GF99,
GGH99, GS96, Gor01, GHL97, Gre95, Gre94, GL97b, GMU95, GlLyC97, HB96a, HB96b,
HSMW94, HJ98, Har94, Har95, HBT95, HPS+96, Hem96, HE989, HTH99, HVSH95,
HH95, HRS97, Hu96, Hum95, HS95b]. PVM
[ITT99, IvdLH+00, IDD94, IKM+01, IKM+02, JAT97, JH97, JML01, JW96, JC96,
KRA02, Kat93, KK98, KP96, KB97, KDL+95a, KDL+95b, KG96, KCP+94a,
KCP+94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAH98, KK92b, LGM90,
LB98, LSLZ02, LHCT96, wL94, LF92, LFS93a, LFS93b, LH95, LC93, LY93, LLY93,
LW95, LHZ97, LKL96, LDCZ97, MW98, Man94, MVTP96, Man01, MP95,
dFMBdFM02, MTS94, MFTB95, MSCW95, MSP93, Mat94, Mat95, MM99,
Mat01b, MRV00, MK97, MK94, MC98, MFC98, MVY95, MS96b, Mic93, Mic95,
MT96, MS99a, MS99b, MH94a, MH94b, MRH+96, MS95, MC99, MW95, Nel93,
NP94, Neu94, NBK99, Ney00, NB96, NAJ99, Nov95, Ob96, Ols95, OPP00, Ott94,
OWSA95, PPR91, PK98, PPT96b, PPT96a, PPT96c, POL99, PTK97, WK95]. PVM
[Per96, Pet97, PTT94, Pla02, PV01, PD98, PY95, PL96, Pus95, QRG95, QRM96,
Qu95, QM900, RR00, RS93, Rag96, RS95, RHG+96, RRAG97, Rol94, RGD97, Saa94,
SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98, SG95, SSS99, SP96, Sep93, Se98, Shi94,
SA93, SR96, SH94a, SH94b, Si93a, SBR95, SC96a, ST96, SMOE93, SGL+00,
SGHL01, SGL97, SSS97, Sta95b, SY95, SY96, SC96b, Str94, SK96, Sm90a,
Sun90b, Sun92, Sun93, Sun94a, SGDM94, Sun96, STM97, SN01, SCL00, Sur95b,
Sut96, SL95, TMTP96, TC94, TBD96, TD98, Tsu95, UH94, UH95b, UH96,
UMK97, VSRC94, VSRC95, VB99, VAT95, WKS96, WH94, WCVR96, WAS95b, WO97,
Wis96a, WL96a, Wis98, Wis96b, WL96b, WCS99, Wg99, WLC07, XWS96, XF95,
YG96, YKI+96, ZPL96]. PVM
[ZIP96, ZB94, Zen94, ZDR91, ZG95a, ZG95b, ZG96, ZG98, Zo93, van93, NMC95, Ano95b].
PVM-AMBER [SL95]. PVM-Based
[WAS95b, FO94, PY95, Sut96, ZPL96, LSZL02, TD98]. PVM-GRACE [YKI+96].
PVM-Implementation [BJS97, Huc96]. PVM-RPC [KS97]. PVM/C [GTH96].
PVM/MPI [AD98, BDW97, CHD07, CHD09, CD01, DKD05, DLM99, DKP00,
DLO03, Kr02, KKD04, LKD08, MTWD06, RWD09, ACG97, SN01]. PVM3 [IM94].
PVM3/AP1000 [IM94]. PVMapple
[Pet00a, Pet00b, Pet01]. PVMe
[SW12]. Reducing
[CRGM16, JE95, BCM11]. Reduction
[DAD19, FKH02, MFPP03, SG12, HL17, Jes93a, MLVS16, Pan95a, PQ07].
Reductions [PWPD19]. Redundancy
[TS12a]. redundant [KJJ+16]. Reference
[GHLL+98, Nag05, SOHL+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, SOHL+96, Per97, Ano96a]. Refinement
[MRB17, Ran05, CLSP07, DLR94]. regions
[LFL11]. regression [RBA17]. Regular
[HLP11, NHT02, NHT06]. Reims
[MCdS08]. RELAP5 [SBR95]. related
[SE02, Ano95]. Remark [SWH15].
remedies [ALW+15]. Remo [IEE95h].
Remote
[BMR01, HDT+15, IFA+16, OCY+15, Tsu07, WBBD15, AGL96, FHC+95, GBH14, GBH18, HGMW12, RSC+15, SIRP17, SH96]. Remote-Scope [OCY+15, WBBD15].
Remotely [GGCM99, GGC01, GCGS98, VLO+08, GGGC99]. Remoting [MGL+17].
removal [ZZZ+15]. Removing [ZJDW18].
Rendering
[DLLZ19, GCBM97, LSZL02, SU96, UCW95]. Rendezvous [RA09]. Reordering [Hat98].
Reparcellization [KBG+09]. Repeated
[WH94, Shi94]. Replacement [GHD12].
Replay [CFMR95, HLOC96, UALK17, CRD99, MT96, NBK99, XLW+09]. replay-based [MT96]. Replication
[WC09, KJJ+16, ZJDW18].
Replication-Based [WC09]. Report
[DZ98b]. Reports [Ano98, ACM11].
Representation
[BMR01, KD12, MDM17, SML17, CCM12]. reproduce [AVA+16]. Reproducible
[GL99, HCA16, XLW+09]. Requirements
[GSHL02, GT07, Ber96, KBG16, LCVD94a]. Research [Ano96d, BR02, MC94, SL94a, SGHL01, Ara95, BPG94, LP00, Oed93]. Reservoir [KDHZ18, OWSA95, ZAFAM16, ZZ95, Ano95d]. Resident [JDB+14].
Resilient [CGH+14, Gua16, LCMG17, LMG17, LBB+19, MLVS16]. Resistive
[ZL17]. Resolution
[MAB05, Str94, BADC07, KN17].
Resolving [Str97]. Resource
[BGR97b, BSH15, KK98, SIS17, YSS+17, DZ96, FLD96, NEM17, ZA14].
resource-conscious [ZA14]. resource-restricted [NZ17]. Resources
[LSB15, NAW+96, Kos95b, R+92].
Response [BBC+00]. Restart
[SSB+05, LMG17]. restarted [dH94].
Restoration [FJBB+00]. Restore [Gua16].
restricted [NEM17]. Restructuring
[KAMAMA17]. Results
[BIL99, BIC05, HSMW94, Wal01a, BR95c, DHS96, VDL+15]. retargetable [KKJ+08].
rethinking [GJLT11]. Retrieval
[RL01, MMR99, MRH+96, RTL99].
reusable [LTC+94]. reuse
[BVML12, LM94, NAA10]. Reverse
[BGK08, LSB15, LM13, QHCC17]. Review
[Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Anoo0a, Anoo0b, BDL98, Che10, Mar06, MCLD01, Nag05, NMC95, Per96, Per97, SD13, Vre04, Stp02, Vorg13].
Reviews [Ano97, Bra97, YMM97]. Revised
[Cha05]. Revision [MHSK16]. rewrite
[SFLD15]. REYES [LSZL02]. RFSA
[SW12]. Rhine [Cal94]. Rhodes [TG94].
Right [ZG95b]. Rim [IEE95e]. ring
[ZZZ+15]. RISC
[AL93, NMW93, BSvdG91]. RNA
[SPH+18]. RNA [WHDB05]. RnaPredict
[WHDB05]. Robert [Ano95b, NMC95]. robotic [ZWZ+95]. Robust
[Att96, GR07, PSLT99]. Rocks
[PKB01, Slo05]. Roe [dIAMCFN12]. Rohit
[Stp02]. rollback [LBB+19]. rolling [NF94].
Rome [CMMR12]. roots [PNV01].
rotating [KLM+19], routed
[Pan95b, RJMC93, ZGN94], routers
[Jes93a], Routines
[Add01, Sch96a, LSK04, Sch96b, VLMP8+18],
Routing [BHM94, BHM96, MTSS94, MBES94, WH94, BS94, Zalh12], RPC
[KZCS96, KS97, RS93, SHTS01], RVM
[CMM03, LR01], RS
[BGBP01, Cou93, Heb93, MW93], RS/
[Cou93, Heb93, MW93], RS/6000
[BGBP01], RS6000 [CDM93], RSA
[WLC07], RT [KAMAMA17], RT-1.1
[SKD+04], RT-CUDA [KAMAMA17],
RTI [BGG+15], RUBIS [BR94], Ruby
[Ong02], rules [SFLD15], Run [DLR94, DGMJ93, FHK01, GOM+01, OP98, SBW91, SS96, KPL+12, RRG+99, Str94, TCBV10],
Run-Time [FHK01, GOM+01, OP98, SS96, DLLR94, SBW91, KPL+12, TSY99, TCBV10],
Running [BZ97, CCM+06, YK+96, CRE01, ZLZ+11],
Runtime [AAB+17, BDG12, CFF+94, DMB16, DT17, Gro00, KBS04, KCR+17, NPP+00d, TJPF12, ZLP17, ALW+15, BL99, BR94, EPP+17, EO15, HPS+12, HPS+13, KW14, LLH+14, MA09, NPP+00a, TSY00, YAJ+15],
Runtimes [AHHP17], Russia [Mal95],
RWA [RLVRGP12],
S [AHHP17, Röh00], S-Caffe [AHHP17],
S-language [Röh00], S1 [GLT00b], S3D [LSG12], Safe [Plat02, GCC99, LFS92, LFS93a, LFS93b, NYNT12], Safety [CLA+19, GT07], salesman [GM94]. Salt
[Hol12], San [ACM97b, Ano95d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IEE95h, IEE95g, IEE97c, LF+93a, NM95], Sanders [Che10], Sandy [VDL+15], Santa
[ACM95b, AH95, IEE95f, Old02], Santorini
[CD01, CNDN11], Santorini/Thera
[CD01], Saphir [Ano99c, Ano99d], SAR
[AB95], Satellite [Uhl94, Uhl95b, SNN94], Satisfiability [IKM+01, IKM+02], saturated [TOC18], Saturday [B+05],
Saturday-Wednesday [B+05], Save
[KFL05, FKB08], SBS [MSB97, WWZ+96],
SBS-Type [MSB97], SC11 [LCK11],
SC2000 [ACM00], SC2001 [ACM01],
SC2002 [IEE02], SC2003 [ACM03], SC97
[ACM97b, ACM97b], SC98
[ACM98b, ACM98b], SC*99 [ACM99],
Scalability [Ben18, BS07, FSC98]
[ACM98b, ACM98b], SCA'99, SCA98
[ACM97b, ACM97b], SC2000
[ACM00], SBS-Type
[ADD95, BHS95, LFS93a, LFS93b, NYNT12],
SBS-Type
[ADD95, BHS95, LFS93a, LFS93b, NYNT12],
Scheduling
[CC17, KFL05, SLJ+14, FKB08, Gaoo3, LFL11, PD14], scan
[AAA16, YLZ13], scramble [CT13], scans
[NA93], SCASH [SHHI01], SCATCI
[ART17], scatter [BCD96, MTK16],
Scattering [BCL00, NZ94, OKM09], SCF
[MM95], schedule [NAAL01], scheduler
[ADDR95, TCBV10, WRSY16], schedulers
[NP12], Scheduling
[BHH+06, BSH15, CML04, DMB16, EGR15, GDM17, GSHL02, GH97, HCO6, JW96, MBM15, NIO+02, NIO+03, TJPF12, APB+F16, DZ98a, JKN+13, LHCT96, MBM12,
NSBR07, OPW⁺12, Smi93b, SKK⁺12, SKB⁺14, WYLCl2, WLYC12, YWC11.
Scheme [CTK01, LNLE00, MW98, SBF⁺04, BBGL96, Bjo95, MRRP11, OKM12, SCC96, YPZC95, FM90].
Schemes [PPJ01, WYLCl2, WLYC12, ZAT⁺07].
Schmidt [CBYG18].
Schrödinger [DM12, ÔN12].
Sciences [PPJ01, WYLC12, WLYC12, ZAT⁺07].
Schmidt [CBYG18].
School [VV95].
Schrodinger [DM12, ON12].
SCI [FS97, HEH98, Hus00, RR01, ZHS99].
SCIDDLE [ABG⁺96, AGLv96].
SCIDDLE-PVM [ABG⁺96].
Science [EGH⁺14, IEE95d, MMH93, Old02, SM07, ACM06a, DMW96, HK93].
Sciences [ERS96, HS94, ZL96, ERS95].
Scientific [AGH⁺95, APJ⁺16, BBG⁺95, DKM⁺92, DT94, Gat95, GL97a, HJ98, KK02a, LWSB19, LkLC⁺03, Mar06, Nag05, Sin93, SSB⁺17, VY02, WN10, Bis04, DW94, SBG⁺12, TBB12, WT13, Ano97, Bra97].
scientists [HW11, Str94].
SciPAL [KH15].
SCIPVM [ZHS99].
Scope [OCY⁺15, BDB⁺13, WBBD15].
scoping [RDLQ12, WC15].
Scratchpad [JAK17, MB12].
Scripting [Ong02, KPL⁺12, Nob08].
scripting-based [KPL⁺12].
SCTP [KPW05, ZPI06].
SDK [TK16].
SDSM [CCM⁺06].
Seamless [KK02a, LdSB19].
Search [BSH15, Cza13, IKM⁺01, Wal01b, FMS15, IKM⁺02, Wal01a, ZSK15, CB11].
Searches [BSG00].
Searching [JPT14, MM01, BA06, Wal01b].
Seattle [ACM05, BS94, LCK11, Ost94].
Second [Ano00b, BL95, DT94, DE91, IEE94d, IEE96d, IEE96i, LHHM96, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFMR96, DMW96, FR95, KN17, Li96].
Second-Order [BL95, KN17].
Secondary [WHDB05, SEC15, ZAT⁺07].
section [Ano93b, DKD08].
segment [FJZ⁺14].
segment-based [FJZ⁺14].
Segmentation [KBA02, AD95, CCU95].
Seidel [BG95, LM99, Ols95].
seismic [AMBG93, KL95, KEGM10, LM13, QHCC17, RMNM⁺12, SSS99, WCVR96].
Seismograms [DP94].
Select [KKD03].
Selected [DHS96, MTW07, OL05, TB14, CHD09, Cha05, DKD07, JC17].
selecting [PTL⁺16].
Selection [CKmWH16, SNN⁺19, PGBF⁺07, WKS96, ZWL⁺17].
Selective [Nak03].
Self [NSS12, SLJ⁺14, TGT10, VFD02, NSBR07, WYLCl2, WLYC12, YWC11].
Self-Consistent [TGT10].
scheduling [NSS07, WYLCl2, WLYC12, YWC11].
Self-Submitting [NSS12].
Self-Tuning [SLJ⁺14].
Semantic [EADT19, MTU⁺15, DKF94a, OA17].
Semantically [MKW11].
semantics [RNPM13].
Semaphores [TTP97].
Semi [CT94a, Bjo95, PSLT99, TC94, CT94b].
semi-coarsening [PSLT99].
semi-implicit [Bjo95].
Semi-Lagrangian [CT94a, TC94, CT94b].
Semiconductor [GJN97, Ano03, LS10].
Seminar [Ano94f, Ano93b].
Send [GPC⁺17].
Sender [BCH⁺03].
Sensed [GGCM99, GGCGO01, GGS98, VLO⁺08, GGC99].
sensitive [GKF13].
Sensitivity [dLR04].
Separable [Ben01, CdGM96].
September [Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CLM⁺95, DKP00, DLO03, EJL92, FK95, FR95, GHH⁺93, IEE93d, IEE94c, JPTE94, KGRD10, Kra02, KK02a, LKW08, MA95, MTW06, OL05, PSB⁺94, RWD09, SPH95, SM07, TBD12, VY02, VN92, WP94, YH96].
Sequence [GUM95, SMM⁺16, AMHC11, TSZC94].
sequences [GÁVRR17, SDM10].
Sequencing [VPS17].
Sequential [EK97, RPM⁺08, GGH99, SR95, TNIB17, TSZC94].
Serial [SWH15, HPS⁺96, HWS09].
serialization [CFKL00].
Serialized [KH10].
Serielles [BL94].
Series [Nag05, BR94].
Server [Ano93f, FSL98, KS97, Mat01b, Scho93, Sto98, Vis95].
Servers
[CGC*02, SIS17, GK97]. Service
[RFG*00, LS08, SPK+12]. Services
[FC05, AAC+05, ZKR14]. Session
[NYNT12, ZL06]. Set [BDA+18, SW12, WL96a, Ano00a, Ano00b, She95, WL96b].
Sets [SG12, CGL+93]. setting [GL95a].
Setup [NSLV16].

Sixth [BBG+95, HS94, IEE93b, IEE95g, IEE96h, Eng00, Y+93].
several [GBR15].
SGI
[Che99, CML04, KMG99, LB96, LL01, LKJ03, LSK04, TW12, ZSnH01].
SGI/CRAY
[Che99].
SGI/CRAY-T3E
[Che99].
shadow
[SOA11]. shallow
[dlAMC11, dlAMCFN12]. Shane [SD13].
Shanghai [IEE97a]. SHARE
[Ano92, Ano93f, Ano94g]. Shared
[BCA+06, BME02, Bri10, DM98, DMB16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HT01, KB98, KSHS01, LRT07, Lu09, MB03, Mcd+08, Mü02, NPP+00d, PBK00, PK06, PS00b, Ros13, SS01, STY99, ST02b, Thr99, VS00, VT97, ABCI95a, ABCI95b, ADMV05, BMG07, CBFP02, Cha96, CM+06, CC00b, DBVF01, DS96b, DP97, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JE95, KJA+93, KC06, LKL96, MLC04, PK05, RGD15, SHHI01, SL94b, SFL+94, SSC96, TSY99, TSY00, Vos03, WM17, WRMR19, YWVO95, YX95, Cha05].

Shared-Memory
[DM98, HDB+12, NPP+00d, PK06, Thr99, PS00b, ABCI95a, ABCI95b, BMG07, GL96, GL97c, KJA+93, PK05, TSY00]. Sharing
[Att96, CML04, CB15, Dn96, JAK17, KK98, JE95, Ott93, PRS+14]. shear
[JAT97].
ShearLab [KLR16]. Shearlets [KLR16]. SHMEM
[BBDH14, Hus01, LSK40, Sch96a, Sch96b, SS01]. Short [KBM97, MH01, SSLMW10, BMPZ94a, PARB14].
Short-Range
[KBM97, MH01, BMPZ94a, PARB14].
Short-Read [SSLMW10]. shorter [NB96].
Showcase [USE00].
SHPCC [IEE92].

SHPCC-92 [IEE92]. SIAM
[BBG+95, DCM+92, Sin93]. Side
[KLCCW07]. Sided
[BP01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, MB00, TGT05, TRH00, ZSG12, bTO1a, BM00, DHB+16, GHB18, LSK04, MS99c, PGK+12, GHB14]. SIGCSE
[ACM06a]. Signal [IEE95c]. signals
[Uhl95c]. Signatures [Gro00]. significance
[AMHC11]. silent [FME+12]. silicon
[Ano03, Goe02]. SIMD
[BvdB94, HS95b, KDT+12, LL16, Sur95b, VSW+13]. Simple
[MS00, Mü01, SC04, ITT99, JH97, Nen10, PN01]. simulate [Heb93]. Simulated
[BHM94, BMM96, FH97, RSBT95].

Simulating
[DSL+17, KDL+95b, KDL+95a, NF9+10]. Simulation
[CDMS15, CCBPGA15, DMMV97, DZDR95, GSI97, GM95, GJN97, Ham95a, JML01, KDH18, KMK16, LKRS02, MFB95, MPD04, MANR09, PC14, PKYW95, PZK02, RR00, RMD99, SSAS12, Str97, Ten95, UZC+12, WMC+18, ZZ94, ZWMK05, dIAMC11, Ano95d, ADR+05, BJ95, BCM+16, BH95, BMPZ94b, CwCW+11, CSPM+96, DSOF11, FHSO99, FO94, FLPG18, FFFC99, GRTZ10, JAT97, JLS+14, KJT03, KMC96, KMC97, LCVD94b, LCVD94a, LYZ13, MMW96, MALM95, NFD99, OKM12, PARB14, PY95, RFH+95, SWYC94, SSP+94, SKM15, Str96, Syd94, Tho94, WGG+19, YPA94, YE+13, YSL+12, Zhe99]. Simulation-Based
[ZWK05].
Simulations
[CGS15, CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG+07, SM02, YPAE09, ADT14, ABG+96, BHS18, BADC07, CFF19, GM18, Hin11, JMS14, LS10, LSVMW08, RMN+12, SU96, TOC18, WWFT11].
Simulator
[CAM12, MRV00, PHO+15, UTY02, WPC07, AMV94, LS10, PWD+12, WZSW08, ZAFAM16, ZZ95, KJT03, Nak03, Nak05a, Nak05b]. Simulators
[SB95, AVA^+16]. Singapore [IEE96d].
Single [BM00, HF14a, HF14b, MB00, URKG12, Single-sided [BM00]. single/multigrid [AGIS94], singleton [TVCB18]. Sinks [JPT14]. Sites [Ano98].
Sixth [HK95, IEE96c, MMH93, SW91]. size [GKCF13], sized [JLS^+14]. Sizes [DALD18, ZSh01]. SKaMPI [KRS99, RSPM98, RH01, Reu01, RST02, Reu03].
SkeCl [SG14]. Skeleton [GB98, IH04, RJDH14]. Skeletons [Ser97]. Skjellum [Ano95c, Ano00b]. Slack [KFL05, FKLB08]. SLAE [ADRCT98, AK99]. Slave [LTR00, HP05].
SLEPe [DR18]. SLICC [KBHA94]. Slices [GSHL02]. Slim [WMC^+18]. Small [HLP11, TS2b, Ano94h]. small-footprint [LS10]. Small-World [HK95, IEE96c, MMH93, SW91].
SMPs [HLCZ00, NU05, SvL99]. SMPS [MLAV10]. SMPSuperscalar [GCBL12]. SMT [PAdS^+17]. SMT-based [PAdS^+17].
SMPs [MLAV10]. SMPSuperscalar [GCBL12]. SMT [PAdS^+17]. SMT-based [PAdS^+17].
snake [JPP95]. snake-in-the-box [JPP95].
Software [Ano94i, BME02, BPG94, BDG^+xx, CZ95b, DGH^+19, ESB13, FFP03, GBF95, Gre95, HPR^+95, HS94, HHA95, IEE95i, IEE96h, IFI95, KS15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, Si96, Swa01, TDBEE11, VdS00, Wis01, Wof92, Ano97, BSC99, Bo97, Bra97, BR94, CMV^+94, CBPP02, DPZ97, Hum95, JH97, JB96, LM94, MK94, Nen94, Old02, PHA10, PK05, PGK^+10, RAS16, SHH01, Sch94, Sci99, SPH95, Str94, WGG^+19, ZGN94, Ano94i, KG93, Si96]. Software-Managed [LB16]. Solar [Ano01a].
Solving [URL95, HO14, MC18, RPM^+98, SEF^+16, TSu12, VRS00, DWL^+12, IM95, JK10, LSR95, MALM95, ON12, PRS^+14, SC96a]. solutions [AGIS94, LMG17]. Solve [Hog13, Riz17, BAV08, Che99, GGGC99].
Solver [Ben01, BP98, CF01, HSMW94, IDD94, LZ97, SJK^+17a, SJK^+17b, WBJ14, YKW^+18, AMS94, CP15, CFF19, DM12, JR10, LM99, Lon95, OGM^+16, RM99, SRK^+12, SCC95, THM^+94, ZZG^+14].
Solver [DFN12, DALD18, GK10, MS97, NO02b, NK90, NLRH07, QRMC96, RS97, WR01, AFB^+17, ADL03a, ADL03b, ADDR95, BR99, CL03, DR18, MKP^+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94c, QRG95, SSS08]. Solving [ADRCT98, BHM94, BHM96, BV99, BG95, BDG^+92c, BSH15, DALD18, DAD19, GFP12, Huc96, LZ97, SJK^+17a, SJK^+17b, WJB14, YKW^+18, AMS94, CP15, CFF19, DM12, JR10, LM99, Lon95, OGM^+16, RM99, SRK^+12, SCC95, THM^+94, ZZG^+14].
SMPs [MLAV10]. SMPSuperscalar [GCBL12]. SMT [PAdS^+17]. SMT-based [PAdS^+17].
[BR95b, FHP+95, Fra95, FWR+95, HWW97, JF95, KB98, KHS01, MABG96, XH96].

SPAA [ACM95b]. Space
[CML04, CB16, HO14, MSF00, OFA+15, SAS01, SS01, TA14, SRK+12].

Space-Sharing [CML04]. Space-Time
[HO14, SRK+12]. Spaces [Röt19]. SPAC
[BBS99]. **Spain** [DM99]. **SPAN**
[LHHM96, Li96]. **Spanish** [VP00].

spanning [NCKB12]. **Spark** [KWEF18].

Sparse
[AZ05, BBH12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADLL03a, ADLL03b, ER12, FJZ+14, GG99, Gra09, NHT06, XXL13].

SPEC [Ano03, MvWL+10, MBB+12, NA01, SGJ+03, TSB03]. Special
[AM07, BDT08, BDB+13, BC00, CHD09, DKD07, DLD08, GSA08, MPI98, Bos96, Mar02, PNV01, Reu01, Olu02]. Specific
[DM95b, DM95a, Olu14]. **Specification**
[BG94a, BfS07, MGC12, MHSK16, BG94c, LPD+11]. **Specifications**
[OFA+15, WMP14]. **Specified** [MGM97].
specifying [LPD+11]. specimen [Röt08b].

SPECT [BCD96]. spectro [YMY11].

Spectra [St97, SR11]. **Spectral**
[MW98, Spe19, BCM+16, MGS+15].

spectral/lp [BCM+16]. Speculation
[AELGE16, SHLM14]. Speculative
[RA09, dOSSM+16]. **Speed**
[CDHL95, Tou00, AH95, Ano03, BWT96, BID95, KMK16, CDH+95]. Speeding
[CSV12]. **Speedup** [VPS17]. **SPH**
[CP15, OLG+16, PBC+01, WMRR17, WMR19].

Sphere [CT94a, CT94b]. spherical
[Hol95, KT10]. **SPICE3** [WPC07]. Spiking
[CAM12]. **Spin** [HLP11, KO14, Kom15].

splitting [TCBV10]. **SPMD**
[BST+13, Dar01, KAC02, Wal00, Wal02].

SPMD-Like [BST+13]. **SpMV** [CBIGL19].

Spokane [IEE93c]. **Sponge** [HSW+12].

spontaneous [EZBA16]. Spring
[Ano94g, IEE93a]. **SPTHEO** [Su96]. **SPY**
[SSG95]. **Squares** [PWP+16, VRS00]. **SR**
[YWCF15, ZLP17]. **SR-IOV** [YWCF15].

SR8000 [NNON00, TSB02, TSB03]. **SS**
[LTLC94]. **SSGM** [HPS+96]. **SSS**
[MMH98]. **SSS-CORE** [MMH98]. **St**
[Mal95]. **Stability** [DSSS00]. **stable**
[JMdVG+17]. **Stage** [FSSZ14]. staggered
[GM18]. **Stampi** [ITKT00]. **Standard**
[DM98, GS97, GLP+00, GL5c, Hem94, MI98, NH5, SKD+04, SG10, Wer95, YKL17, Ano94d, BDB+13, Bor99, Cla98, CG99b, DHHW93b, DOSW96, FBR95, GK97, GL92, Hem96, Sti94, VM95, Wal94a, Wal94b, WD96, Ano97, Bra97, CGH94, DOSW95, GLDS96]. **Standards**
[FKKC96, Thr99]. **Star**
[CDM93, Coo95a, Coo95b]. **STAR/MPI**
[Coo95a, Coo95b]. **Start** [Gro02b, Hus98].

Startup [PS07]. **State** [ACM11, IEE94f, IEE95j, Wis96a, Wis96b, BCT+17, LF93b].

state-to-state [BTC+17]. states [NS16].

Static [NIO+02, NIO+03]. **RLVRGP12**
[SCB15, SCB14]. **Static/dynamic** [SCB15].

Statics [TG94, TG94]. **Stationary** [MW98].

Statistical [LR01, SNMP10, AMHC11, KKM15, Räh00, SL94a, Vet02]. **Status**
[Bak98, DZ98b, GL95c, BDG+93b, FHP+95, Hem96, Sun96]. **stealing** [TCBV10].

Steepest [Sch01]. **Steering** [GKP97, PK98].

Stenci [CGU12, WTH17, KD13, TBB12].

stencil-based [TBB12]. step
[Kos95b, ZG98]. **Stereo** [ZBD12, Qu95].

Steve [Ano96a, Ano99a, Ano99b, Nag05].

Steven [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. **Still** [HCA16]. **Stochastic**
[DK02, LLRS02, MW98, PTFM18, RSV+05, JK10]. **Stockholm** [Eng00, HAM95b].

Stokes [Che99, DLR94, HSMW94, IDD94, Lou95, PTT94, SCC95, ZZG+14]. **stop**
[Gua16, LMG17]. **stop-and-restart**
[LMG17]. **Storage** [ACM04, Hol12, LCK11, HP11, NFG+10, RGGP+18, ZJDW18].

stores [HSP+13]. **straight** [YULM17].

Strategies
[MM02, BVML12, CG99a, DBVF01, MM03].
OPW+12, PSK08, TSZC94, VB99].
Strategy [AIM97, DI02, Hat98, VPS17, ZB94, ZSG12, DKF94b, DR95, MSL12].
strayed [Rol08a]. stream
[HSW+12, UGT09]. Streamline [CGC+11]. streams [TVCB18]. StreamScan [YLZ13].
Strength [Kon00]. String
[KMM15, MM02, MM03]. striped [KDSO12]. Strongly [GAP97, ZZG+14].
Structural [PSSS01]. Structure
[CBL10, LAFA15, SYF96, WHDB05, EPML99, SEC15, SY95, ZAT+07].
Structured [FB96, Mar06, MRB17, NLRH07, Ran05, Bis04, CLSP07, FR95, GBR15, JAT97, Sni93b]. Structures
[GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. studies [DHP97]. Study
[AIM97, BF01, BHLS+95, DARG13, EGC02, FPY08, GL97a, HHC+18, KCR+17, LSB15, MM02, NSLV16, NA01, PK05, RRBL01, SCL01, TG94, AGR+95b, BJ13, BDA94, BJ99, BY12, Br00, CBM+08, DX96, ED94, FO94, JR13, KBG16, LPD+11, LLH+14, MS96b, PSK08, PGK+10, PSHL11, RSHT95, RJC95, TPD15, Wal01b, WLK+18, ZSK15]. Stuttgart
[KGRD10, WPH94]. style [JPOJ12]. sub [MJJ+12].
sub-communicators [MJG+12]. subcircuit [HLO+16]. subdomain [CEGS07]. subdomains [SHHC18].
subgroup [XLW+09]. Submitting [NSS12].
Subrange [Str97]. Subroutine [Saa94].
subroutines [dCH93]. subsurface [ED94].
system [BMG07, MABG96]. Subsystems [STMK97]. Subtle [SAL+17].
Success [Gro01b, LF+93a]. Successes [Gro01a]. Successful [Gro12]. suffix
[DK13]. Suitability [Mat01b]. suitable [MAS06].
Suite [ACMR14, AKE00, BWV+12, MBB+12, Riz17, Ano03, BO01, MvWL+10, TG99, YSWY14, SNMP10].
Suites [MCS00, SGJ+03]. summation
[IHM05]. Sums [ST17, MYB16]. SUN
[BM00, SJ02, WSN99]. Sunderam
[Ano95b, NMC95]. Super [Gua16, YX95].
Super-Object [YX95]. Supercomputer
[Ano93a, CLP+99, Str94, AAC+05, BGH+05, EFR+05, GL96, GL97c, KMH+14, NSM12, Ste94, GS91b, MAB05]. Supercomputers
[BP93, BDG+92c, EKTB99, KN17, WT11, WT13]. Supercomputing
[ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93e, IEE94h, Liu95, Sch94, ACM94, ACM96c, Ano93g, BG91].
superlattice [Pri14]. superscalar [ACJ12].
Supersonic [CCBPGA15]. Support
[Ano98, BBG+10, BFW01, CFF+94, DMMV97, FGRD01, GRV01, GOM+01, HRSA97, LMRG14, MK04, OP98, PSM+14, RR02, SDN99, SBTO4, TW01, Wis98, Wis01, YSP+05, BBH...13a, BL99, CC10, CZ95b, DLR94, Hos12, Mat94, RS19, TSY99, TSY00, TY14, WK08a, WK08b, WK08c, YAJG+15].
Supported [KLR16, CDD+96].
Supporting
[FD00, FMSG17, FSG19b, GAML01, Gua16, MMS07, OOS+08, WLN03, WLN06, WCS99, YWCF15, FL06, GAM+00]. Supports [AELEG16, CLL03, DGMS93]. suppression [WWZ+96]. Surface
[KS15b, PKYW95, R619, BHW+12, DCD+14, RAGJ95, TSP95]. Survey
[Sap97]. Survive [ABB+10]. sustainable
Swapping [SC04]. Sweden
[Eng00, HAM95b, FF95]. Swendsen
[KO14, Kom15]. Switch
[SC01, TBD96].
Switched [LC93, KYL03, KYL05].
SWITCHES [DT17]. Switzerland
[GT94, Ano94i, IEE97b]. SX
[HRZ97, TRH00]. SX-4 [HRZ97]. SX-5 [TRH00]. Sydney
[Bil95]. Sylvester
[GK10]. Sylvester-Type [GK10].
Symbolic [CCK12, Coo95b, Ste00, YYW+12, ACM97a, BHKR95, Coo95a, Lev95, LGQ10, LLG12, SMAC08].
Symmetric [BDV03, MDM17, YKW+18, BAV08, DCH02, GG99]. Symposium
[ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94e, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IE05, LHHM96, Li96, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tou96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94h, Lev95, Old92]. synchronization [SDB+16].
Synchronization [LA02, OCY+15, TGT05, BMG07, LA06, TMTP96, YLZ13].
Synchronizing [VT97]. Synchronous [Ada97, BJ13, Cer99, DLRR99, HZG08].
Synergia [SSAS12]. Synergistic [UGT09].
Synthesis [CS14, GWC95]. synthesized [MC17]. Synthesizer [DS16]. Synthesizing [AJF16, NP12].
Synthetic [CC17, DP94].
Syracuse [IEE96f]. SYSTEMO [MM95].
System [Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BF297, BGD12, CAM12, CCG+02, DBA97, DADL18, ERS95, EKE97, EKB95, FBVD02, FFP03, Fis01, Gal97, GCBM97, GSF91b, GSSx, GM95, GvR95, HS94, KBA02, LLRS02, LTR00, LLY93, Ma94, MRV00, MM02, MSF00, MMH98, MMS07, MMH93, NPP+00d, NMS+14, Oed93, PPT96a, RGD97, SGJ+03, SSB+05, SCP97, SA93, ST02b, Sun93, TSS00b, Tsum97, UP01, Wil93, ARS89, AS92, AL92, BB94, Br95, BBRH+15, DL10, FNS99, FK94, GS91a, GS93, GS96, GMU95, GLCy97, HDDD90, Hum95, HS95b, IBC+10, ITT99, JH97, JLS+14, KW14, Kik93, LBD+96, LKL96, LL95, MA09, MMR99, MMB+94, MAS06, MM11, MS99b, MALM95, NA99, PPT96b, PPT96c, PK08, RJDH14, RTH99, SHHIO1, SL94b, Sei99, SPL99]. system [SGDM94, Sm96, Sn95b, VSRC94, VSRC95, WCC+07, WZWS08, YPZC95, YZPC95, ZL96, ZPS96, ZWZ+95, dCZG06, AL93, NMW93, Yan94]. System-Initiated [SSB+05]. system-on-a-chip [dCZG06].
System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [AAB+17, Ano94b, Att96, BCGL97, BGFP01, BME02, BP94, Bha93, CDJ95, CAWL17, CFF+94, CSW97, CINW95, Co095b, DAD19, EADT19, FD96, FGKT97, Fos98, Gua16, HRS97, IEE93d, IEE94d, IEE95a, IEE95i, IEE96h, KKH03, KP96, KDL+95b, KCR+17, KST97, LY93, LW97, MW97, MBE03, MB+12, SM03, SGS10, SS96, TMP16, TH00, USE94, YGH+14, YH96, ZTD19, ZB97, dGJM94, AGR+95b, ACMZR11, ATL+12, Ano94e, BB+B+94, BAV08, COK+94, CLY16, CBPP02, Coo95a, CPR+95, DF17, DR94, DBFV01, DdLV94, FHB+13, GBR97, GCN+10, GEW98, GKK90, GKF13, Gra09, GFG12, GHH+93, HIA95, IM95, JB96, JMM+11, KSG13, KHB+99, KL15, KDL+95a, KHF394, LR06b, LH98, LCVD94b, LLH+14, MLS12, MvW+10, Old92, OPW+12, Pau93b, PSB+19, QB12, SSF95, SCJ97, SPH95, SVC+11, Sni93b]. systems [SG14, SMSW06, SLN+12, Sun94b, TBB12, TMW17, TVCB18, TSP95, VLMP+18, WSC+13, WWZ+96, WADC99, WYLC12, ZL96, ZG94, dH94, dAMC11, dAMCN12, JWB96]. Systemsoftware [Sei99]. systolic [BSC99].
T3D [AZ95, AFST95, CCSR97, HWW97, MP95, MWW95, Oed93, Sch96a, Sch96b, SC95].
Talbot [ACMR14, Riz17]. Tapir [SML17]. targeting [JKM+17]. Task [AHD12, AAB+17, FKK96, GDDM17, GPC+17, GFJT19, IOK00, KOI01, LHCT96, Mar03, MJB15, NO+02, NO+03, NSZS13, NJ01, OP10, OS97, SG200, SPL+12, TBS12, TS12a, YKW+18, APBcF16, ABF+17,
BGH+05, GKCF13, OdSSP12, OPW+12, OPP00, RRFH96, RRFH96, SKB+14, WC15.

Task-Based [AHD12, AAB+17, GFJT19, SPL+12, SKB+14]. Task-Overlapped [GPC+17]. Task-Parallel
[NSZS13, APBeF16, ABF+17]. Taskers
[FLD96]. Tasking [DFA+09, KaM10, SHM+10, TCM18, TSCaM12, WC15]. Tasks
[ACD+09, DDP+19, DT17, DFA+09, JW96, OP98, PWD19, RR02, RDLQ12, YSS+17, BS01, DDYM09, DR95, FFH96b, FKK96a, IvdLH+00, PKE+10, PWPD19]. TAU
[MMS07, RMS+18]. taxonomy [SPH96].

TBSCM [BP98]. TC2 [Boi97]. TC2/WG2.5 [Boi97]. TCGMSG
[GB96, Mat94, Mat95]. TCP [KPW05]. TD [And98]. Teaching
[MK00, JY95, MK97, PKB06]. Technical
[Ano99c, Ano98, MC94, USE95, ACM06a, Sni18]. Technique
[BCC+15, HC06, HAA+11, MK17, HC08, Nes10, RB17, MAIVAH14].

Techniques
[CP97, GS02, Mül01, SAL+17, SPL+12, TGS95, Wis01, BPC94, Fer04, FC5+12, HKMC94, JKN+13, KGB+09, NFG+10, PF05, SKS01, WST95]. technologies
[Mal95]. Technology
[Ano97, Bra97, CG8+10, CSV12, Dan12, GN95, HS94, PWP+16, SBT04, TBC+02, Ano93a, Ano93c, D+95, DM12, IE994c, NS16, ZAT+07]. Tekniska [Eng00].

Telegraphic [ES11]. TELM At [BR94].

temperature [Hin11]. Template
[GS97, PKB06]. Templates [BN12, KH15].

Tennessee [PR94b]. terabyte [KJT03].

Terabytes [IE98]. teraflops [KJT03].

Terms [KD12]. Tessellation [SS09]. Test
[SNMP10, TG09, AAAA16, CPR+95, GL92].

Testbed [Mat01b, EQH99, PY95]. Testing
[CK12, DFK94b, DLLZ19, Ost94, VdS00, CMV+94, DFK93]. Testsuite [WC12].

Texas [ACM06a, IE94b, IE951, IE95g, IE97c, Y+93]. Text
[LTR00, MM01, RLL01, RTL99]. Textbook
[Ano98]. textural [WKS96]. texture
[HE15]. TFETI [SHHC18]. TH
[CFDL01]. TH-MPI [CFDL01]. Thakur [Ano08a].

Their [Briii2, GOM+01, RG18, GSMK17].

theorem [Sut96]. Theory
[GM10, BW12, CBH94]. Thera [CD01].

Think [HCA16]. Third
[BPG94, Bos96, DSM94, GA96, IEE94g, Sil96, Was96, BDL96, Mal95, IEE97c].

Thirty [Y+93]. Thirty-seventh [Y+93].

Thousands [PZK92, BMS+17]. Thread
[AELGE16, BB18, ETWaM12, GOM
GT07, Nit00, Pla02, STY99, HK09, IDS16, JKN+13, SPH96, SLN+12, YZ14].

Thread-Level [AELGE16, HK09, YZ14].

Thread-Safe [Pla02]. Thread-safety
[GT07]. Threaded [BBG+10, MG15, Ada98, EBGK01, SCB15, SVC+11, TSY99, TSY00].

threaded-MPI [SVC+11]. Threading
[BHV12, MLGW18, SBT04, TBG+02, KPO00, KRG13, QB12, ZAT+07]. Threads
[CP98, LD01, Lee06, BS01, MTVP96, ALW+15]. Three
[Car07, GA96, Nak05b, Ram07, SAS01, GSMK17, LSSZ15, Mar05, PR94c].

Three-Dimensional [GSMK17].

Three-level
[Nak05b]. Throughput
[SSLMW10, Tsy07, ESB13, PP16]. Tightly
[SS01]. Tightly-Coupled [SS01]. Tilewise
[KS15b]. Time
[BCL00, DLLZ19, FHK01, FSSD17, GHS92, GOM+01, HO14, KFL05, MFTB95, OP98, SCL01, SS96, TSP95, UP01, YGH+14, AL96, CDSM15, DLR94, DM12, Fer04, FLM05, FKL08, GB94, HE13, JE95, KC94, KPL+12, LHLK10, LBB+16, LYSS+16, LM13, MM96, NZ94, ON12, OdSSP12, PTMF18, QHCC17, Ram07, SBW91, SSB+16, SK92, SRK+12, TSY99, Tho94, TVV96, TCBV10, Uhl95c, VM94, YSV+16, YSMA+17, ZW+95, SKD+04].

time-dependent
[DM12, LBB+16, LYSS+16, ON12, SSS+16, YSV+16, YSMA+17]. time-domain
[HE13, NZZ94, Ram07, VM94].
time-independent [CDMS15].
Time-Varying [DLLZ19, Uh195c]. times
[MLVS16, NB96, SSS99]. timing [Ols95].
tips [Fer04]. TLM [SC96a]. TM
[GGCM99, GCGS98, KHS01]. TN
[DT94, BR94]. TOD [GPC+17]. TOD-Tree
[GPC+17]. today [IEE94c]. Toeplitz
[BV99, BAV08]. Tolerance
[GGK97, GL04, LMRG14, LNLE00, RPM+08,
TS12a, WC09, Wil93, SG05, ZHK06].
Tolerant [BBC+02, BCH+03, BHK+06,
CF01, CFDL01, FDO0, FD01a, FBVD02,
FD02a, FD04, GFB+03, IEE95c, JSH+05,
MSF00, BCH+08, FDO0b, FD02b, HG12,
LMG17, LS08, NCB+12, NCB+17, PKD95].
Tomographic [Pat93]. tomography
[FWS+17, RCFS96]. tomorrow [IEE94c].
Tool [Aob01b, Beg93b, BFMT96b, DW02,
GSP+01, KAMAMA17, KSJ14, KPK01,
LMRG14, MMSW02, MK04, NE98, SR96,
SGL+00, Trä12b, VBB18, WL96a, AGG+95,
BDP+10, Beg92, Beg93c, Beg93a, BDY99,
BFMT96a, BHW+12, CPR+05, DKF94a,
FSTG99, HPR+95, HD11, LCC+03,
MdSAS+18, RMM+18, TSS98, WL96b,
WL96b]. Tool-Set [WL96a]. Toolbox
[Ano97, Bra97]. Toolkit
[Ano12, LC07, LLC13, SL96]. Tools
[ABC+00, BDG+91b, BDG+93a, BS96a,
BDDL98, BoFBW00, Cha05, CDD+96, DT94,
EV01, GMPD98, MHC94b, MCLD01,
PKB01, STMK97, Vos03, Wan97, AVA+16,
BDG+92a, BFIM99, Fan98, GFB95, LH98,
MSW+05, MHC94a, ZL96].
Tools-supported [CDD+96]. Top
[AHP01, Gal97, Hus01, Man01, PTH+01b,
Ser97, BBCR99, PTH+01a, SSC96, SCL97,
CCHW03]. TOP-C [CHW03]. ToPe
[JKM+17]. topologies [BCM+16, MK00].
Topology [DK06, Hat98, HM01, Tra02a,
GJM18, HRR+11, MBBD13, SPK+12].
topology-aware [MBBD13].
Topology-Based [HM01]. TOPPER
[KKP01]. Toronto [GGK+93, Vos03].
Torus [DDP+19, SG15]. Townsend [DT94].
TPVM [FS95, FS98]. Trace
[Ne00, FLPG18], trace-based [FLPG18].
Traceback [dOSS+16]. Tracefiles
[FCP+01]. Traces [CC17, MANR09, WM01,
CDMS15, DWM12]. Tracking [CGLD01,
DP94, KG96, CG93, Mor95, SG95].
Tracking [GAP+97, HD02b]. Trading
[BHM94, BHM96]. traffic [Zai12].
Training [CSV12]. Transactional
[BWW+12, MFC+08, SBG+12].
Transactions [BWW+12]. Transfer
[BKG02]. Transfers [THS+15].
Transform [YULMTS+17, KI10, DBLG11].
Transformation [CLA+19, EP96, NSZS13,
GSMK17, HZ96, TSY00]. transformations
[JE95, TG94]. transformed [BY12].
Transforming [PSK+10]. Transforms
[ACMR14, KLR16, IIE95c, JSH05].
Transformer [Ano97]. transistors [Ano03].
Transition [MBR00]. Transitive
[CGPR98, PPR01]. Translating
[Mar09, NCB+12]. Translation
[DLDL00, SSE12, HCL05, LME09, NCB+17].
Translator [KMK16, UZC+12, CHKK15, GSCFM13].
transmitters [WWZ+96]. Transparent
[CCK+95, IFA+16, NPP+00c, RVPK919,
SLGZ99, LFS93a, LFS93b, LFL11,
NPP+00a, SOA11]. Transparently [CB16].
Transport [KHS01, RS97, VRS00, WR01,
Z04, Pri14, SH94, SCJH19, WH96].
Transporter [Fer92], transpose [Bha98].
Transposition [HD02b]. Transputer
[Ara95, ACDF94, CJN95, FK95, FF95,
GN95, GH7+93, MC94, dGJ94, ZPLS96,
Ara95, CJN95, GH7+93, dGJ94].
Transputers [ACDF94, AG+95b, dCH93].
Transtech [Ste94]. trap
[LBB+16, SSB+16, YSV+16]. TRANSPARENT
[KFSS94, SKF95]. travel [SS99].
travel-times [SS99]. traveling [GM94].
traversing [BDG+92b]. TreadMarks
Trees [CDPM03, GFJT19]. Trends [Duv92, IE93d, MSB15, JPT94, SGDM94, Sun96].

Triangle [SL94a, SOA11]. Triangular [Hog13, MRB17]. tricks [Fer04, LK14].

Triolet [RJDH14]. Trivandrum [IEE96a].

Troy [SS96]. Truncated [ZB97]. truncating [Ram07]. TSMC [Ano03].

TSUBAME [NSM12]. Tsukuba [SHM+10]. TTIG [RRBL01]. Tucson [JB96].

tuned [PSB+19]. Tuning [Ben18, Cza02, Cza03, LWSB19, NPP+00d, SLJ+14, WG17, DBLG11, LGG16, SH14, Yan94, FVD00].

Turbulence [Str97, MRRP11]. turbulent [BCM+16, CBY1G8]. Tutorial [EM00a, EMO0b, GB+94, GLT00b, Nov95, NMC95, Per96, Ano95b]. TV [CLJ+10].

Twenty [ERS95, ERS96, HS94, IEE95c, MMH93]. Twenty-Eighth [ERS95]. Twenty-fifth [IEE95c]. Twenty-Ninth [ERS96].

Twenty-Seventh [HS94]. Twenty-Sixth [MMH93]. Two [CM08, STY99, SJK+17a, SJK+17b, YM97, AGR+95b, AL93, ADL03a, ADL03b, CB11, ED94, HAJK01, MSP93, dIAMCFN12]. Two-Dimensional [SJK+17a, SJK+17b, AL93]. two-layer [dIAMCFN12]. Two-level [STY99].

two-phase [ED94]. TX [ACM00, Cha05, DKM+92, Ano95a, Ano95d].

Type [GK10, MSB97, FVLS15, GFG12]. Types [We194, NYNT12]. typy [OA17].

unifying [CCM12]. Unintended [SAL+17].

unit [VL+15, SMML10]. United [Boi97].

Units [KS15b, LSVW08, ABPD15, BHS18, LHLK10, WWFT11, HJBB14].

Universal [LW97, DDLM95]. University [CGB+10, IEE94d, IEE95j, R+92]. Unix [OLG01, BRS94]. Unleashing [TCM18].

unscharfer [Wil94]. Unstructured [AB93a, NO02b, SM02, AB93b, NO02a, TP15]. unveils [Ano03]. UPC [EGC02, MTK16, Mar05, SJK+17a, SJK+17b]. Update [KT10, GSK17].

Updates [ESB13, KS15a, ZDR01, HSE+17].

UPM [NPP+00d]. ups [Ano03]. USA [ACM96b, ACM98b, ACM00, ACM06a, AGH+95, BBG+95, BS94, Cha05, CGKM11, DT94, E01, Eid08, ERS96, G07, H12, IEE95b, IEE96, IEE96e, IEE96i, MCDS+08, Old04, O05, Rec06, Sin93, Ten95, ACM95b, ACM97b, Agr95a, Ano89, Hy93, H94, E09e, IEE94e, IEE95k, IEE02, Ost94, SL94d, SS96, USE94, USE95, USE00]. Used [FD02a, FCLG07, FD02b, FVLS15]. Use [FBB+00, Gro02a, H93, H95, MB12, P03, Sh00, Ab95, GW98].

USENIX [USE94, USE95]. User [AD98, ACDF94, BDG+91a, CHD07, CD01, CDND11, DDK05, D+91, DHHW92, DHHW93a, DLM99, DPK00, DLO03, FCLG07, GBD+94, Gn95, KGRD10, KCP+94b, KOW94, Kra02, KDD04, LKH08, MC94, MTW06, NPP+90c, Nov95, NMC95, Per96, RWD09, TB12, FQ95, ZW205, Ano95b, BB+94, DWD97, KCP+94a, KCP+94b].
69

[PKYW95]. **Variable** [Ano98, ZZG+14].

Variables [FKH02]. **variably** [TOC18].

Various [LH95]. **Varying** [DLLZ19, Uhl95c].

VCMON [Whi94].

vCUDA [SCSL12]. **Vector** [AKL16, DS13, Fuj08, KTD+12, LL16, Uhl95c, ER12, FVLS15, FJZ+14, GL96, GL97c, Har94, Har95, HE15, PMZM16, XXL13].

Vectorization [IKM+01, MCP17, IKM+02].

Vectorized [KB13].

vectors [AAAA16].

Vegas [Ano94e].

Vehicle [BHM94, BHM96, WH94, BKvH+14].

Vendor [Rab98, Bor99].

Venice [DLO03, OL05].

venture [Ano03].

Verification [BCG15, RAS16, Trä12b, LMM+15, SZ11, VVD+09]. **verified** [WBBD15].

verify [MdSAS+18, SMAC08].

Verilog [Kat93, KMK16].

verifier [BCD+12, LGKQ10].

verify [MdSAS+18, SMAC08].

Virtual [ACM96a, AS92, ARL+94, BJ93, BP99, BS93, BG94b, CHD07, D+91, EGR15, Fis01, Pat93, Per96, QRG95, RWD90, SSSS96, Sci99, SCSL12, TY14, Tsu07, Wel94, YC98, ARS89, AD98, AL92, Ano95b, BR91, BGD+91a, BPC94, BBC99, Bir94, BDLS96, BCM+16, BFM96, BDW97, BB95b, CARB10, Cav93, Cha96, CD01, CXB+12, DDS+94, DM93, DKD05, DLM99, DKP00, DLO03, DPZ97, ESB13, FM90, Hol95, KMC97, Kraf02, LG93, MN91, MRH+96, NB96, PRS16, Sch94, SK92, SCC96, SL00, WK08a, WK08b, WK08c, AGIS94, Sei99].

virtual-time [SK92].

Virtualization [FC05, MGL+17, Ott94, YSS+17, ZLP17, RSC+15, SIRP17].

Virtualized [EGR15, YWCF15, RNPM13].

viruses [Str94].

viscoelastic [HK94, MAIVAH14].

viscosity [ZZG+14].

viscous [RM99].

Vision [KCR+17, JRM+94].

VISPAT [HPS95].

Visual [BPMN97, FNSW99, PDY14, Ros13, ACGdT02, LC07, GE95, GE96].

Visualization [BDGS93, GKP96, GKP97, HJ98, KA13, MV95, NAW+96, PK98, CY14, Wis96a, ZLGS99, Bor99, Eng00, FHC+95, HPS95, KFA96, TSS98, WST95, Wis96b].

Visualizer [HKN+01].

VLSI [Jes93a].

VM [GHD12, McR92, Whi94].

VMPP [LG93].

VOLBA [BKvH+14].

Vol [ATC94, HS94, Nag05].

Volatile [BBC+02, B+03].

Voltage [KFL05, FKLB08].

Volume [Ano99a, Ano99c, Ano99d, DLLZ19, DFN12, GHL+98, SOHL+98, BW+12, WST95].

Volumes [GAP97, SOA11].

Volumetric [KA13, CLBS17, KGB+09].

Voodoo [PMZM16].

VOOM [BR91].

VORD [KSJ14].

VR [DBA97].

VRML [ACM96a, NM95, KSJ95, KSJ96].

VRML-Based [KSJ95, KSJ96].

Vs [FH98, BCH+08, Lu09, Nak05b].

VTC [NU05].

VTDIRECT95 [HSW09, SWH15].

VxWorks [YGH+14].
WA [ACM05, LCK11]. Wailea [ERS96, HS94, MMH93]. Waknaghat [CGB+10]. Walker [Ano96a, Ano99a, Ano99b, Nag05]. wall [NB96]. wall-clock [NB96]. walls [JAT97]. WAMM [BCLN97]. Wang [KO14, Kom15]. Warehousing [DERC01]. Warp [SCL01, HKOO11, MMW96, VSW+13]. WARPED [MMW96]. WARPmemory [SFO95]. Washington [B+05, BS94, IEE93c, IEE94h, IEE95k, Ost94]. water [HTHD99, R+92, dlAMC11, dlAMCFN12]. Washington [B05, BS94, IEE93c, IEE94h, IEE95k, Ost94]. Waterman [KDSO12, RGB+18]. watershed [NAJ99]. Wave [BBC+00, EMO+93, ESM+94, NSLVI6, SMEOE39, Gie94, KM10, KEGM10, Mal01, NB96, RMMN+12]. Wave-Particle [NSLVI6]. Waveform [LSR95]. Wavelet [Uhl94, Uhl95b, Zem94, vLJR11, Uhl95a, Uhl95c]. Way [Vog13, FGT96]. ways [CZ06]. weak [SD16]. Weather [AHP01, HE02, Bjo95, KOS+95a, Mal01]. web [CHKK15, AASB08, NE01, PES99, Wal01b]. Web-Based [NE01, PES99]. WebCL [CHKK15]. WebCom [OPM06]. WebCom-G [OPM06]. Wednesday [B+05]. Weicheng [Ano95b, NMC95], weight [KA95], welcomes [Str94]. West [EV01, Ed508]. Westin [IEE91c]. We’re [GKPS97]. WG10.3 [DR94]. WG2.5 [Boi97]. Wheeler [NTR16]. where [KC94]. which [SH96]. Whippetree [SKB+14]. Wide [FGG+98, dOSMM+16, FGTLK, KB+99]. Wide-area [FGG+98, FGTLK]. WIEN [Gao03]. Will [CB00]. William [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b]. Williamsburg [IEE92]. Win32 [MS98]. windows [QB12, RGGP+18, Ano01a, CLP+99, FD97, GGCC99, PS01a, SFG98, SSSS97, TA+01]. Windows95 [SSSS96]. Winona [Ano94h]. wireless [Bon96]. wissenschaftliche [MS04]. wissenschaftliches [Ano94c]. without [BW12, Pla02, YLZ13]. WLAN [MSOGR91]. WMPI [BPS01, MS98]. WSSS98, MS99c, PS01a, SMS00]. WOMPAT [Cha05, EV01, Vos03]. Woollongong [GN95]. Work [HRSA97, Pet00a, Pet00b, OdSSP12, TCBV10]. work-stealing [TCBV10]. Worker [EML00, YG96]. Worker-Based [YG96]. Workerproblem [FH98]. Workflow [LYZ13]. Workforce [Liv00]. workgroup [DB+18]. Working [Ano98, Boi97, MCS00, Pet01, DR94]. Workload [AGS97, DBVF01]. Workshops [CC17, LWZ18, APBF16, AVA+16, SKB+14]. WorkPlace [Ano97, Bra97]. workqueuing [VLvdG08]. Workshop [ACM98a, Agra95b, BPG94, Bha93, BC00, Cha05, CZG+08, CGKM11, CMMR12, DW94, DT94, EV01, Ed508, Fer92, FF95, FF95, HK93, HK95, IEE93d, IEE93f, IEE94d, IEE95h, IEE96g, IF95, KG93, Kuh98, Kuh98, KM94, MdSS09, PBPT95, PBPT95, SHM+10, Sch93, Vos03, Was96, AH95, BS94, Cal94, D+95, DMW96, FR95, GL95b, IEE93]. Workshops [MCdS+08]. Workstation [GH97, HSMW94, KS96, LC97a, MFTB95, Pus95, YKI+96, AB95, ALR94, BL93, BSvdG91, BRS92, BALU95, BWT96, CUCU95, DG95, ED49, GFB95, Heb93, JRM+94, LL95, NMW93, NN95, PM95, PL96, RBS94, RCFS96, SC96a, SS99, SL95, THM+94, Tsu95, UH95, YWO95, ZHS99, MS04]. workstation-cluster [Heb93]. Workstation-Clusters [MS04]. Workstations [AR01, BL94, BL95, BM97, BDD+95, BDH+97, BMS94b, DDPR97, EK97, GS91b, HIP02, IIA94, Liu95, LH98, MSCW95, MM01, OWSA95, PFG97, TQDL01, VLO+08, AL93, BJ95, BID95, Bir95, BMPZ94b, BMS94a, BMPZ94a, CCF+94, Coe94, DZ98a, DOSW96, GM94, GMU95, HK94, Hax99, KMC96, KMC97, KA95, MK94, MM03].
REFERENCES

RRG+99, SFO95, SR95, TDB00, dCH93.
World [CMMR12, CJNW95, FD00, GHH+93, HLP11, MC94, NSLV16, PSB+94, Wit16, dGJM94, GDB+93, JR10]. Worlds [Rab98]. wormhole
[Pan95a, Pan95b, RJMC93, ZGN94].

wormhole-routed
[Pan95b, RJMC93, ZGN94]. worms
[Pan95a]. WoTUG [MC94]. WoTUG-17 [MC94]. WPVM [ASCS95, BPMN97]. Wrapping [AS14]. Wrapping [LRW01].
Write [BIC+10]. Write-Back [BIC+10].
Writing [FAF16, SDB94, FNSW99].
Written [KaM10]. WWW [KSJ95, KSJ96].

X [Bad16, FWS+17]. X-ray [FWS+17]. X10 [CGH+14]. XI1 [GKL95], x86 [MGL+17]. Xab
[Beg92, Beg93b, Beg93c, Beg93a]. Xen
[PRS16]. Xeon
[CBIGL19, DSGS17, OTK15, BB18, MTK16]. XPVM [KG96]. XXI [EGH+14].

YLC [Gal97]. YMP [BL94]. Yorkshire
[CJNW95].

Zero [SWHP05, Hin11]. Zero-Copy
[SWHP05]. ZEUS [FF95]. Zipcode [wL94, SSD+94]. zonal [Fin94, Fin95]. Zone [AAC+05]
[JCH+08, AGMJ06]. zum [Wer95]. zur
[GBR97, Sei99].

References

AlQuraishi:2016:CBP

Agullo:2017:BGB

Almasi:2005:DIM
Akzhalov:2008:WPL

Arthur:1993:PIU

Arthur:1993:CUA

Aloisio:1995:UPW

Augusto:2013:APG

Ayguade:2010:EOS

Eduard Ayguadé, Rosa M. Badia, Pieter Bellesia, Daniel Cabrera, Alejandro Duran Roger Ferrer, Marc González, Francisco Igual, Daniel Jiménez-González, Jesús Labarta, Luis Martinell, Xavier Martorell, Rafael Mayo, Josep M. Pérez, Judit Planas, and En-

José I. Aliaga, María Barreda, Goran Flegar, Matthias Bollhöfer, and Enrique S. Quintana-Ortí. Communication in task-parallel ILU-preconditioned CG solvers using MPI + OmpSs. *Concurrency and Computation: Practice and
Arb:1996:MDS

[ABG+96]

Abrahart:1996:GIC

[Abr96]

Alvanos:2017:PMM

[AC17]

Ayguade:2009:DOT

[ACGdT02]

Arnold:1994:PCT

[ACDR94]

Acacio:2002:MDM

REFERENCES

ACM:1996:SVR

ACM:1996:FCP

ACM:1996:SCP

ACM:1997:PPS

ACM:1997:SHP

ACM:1998:AWJ

ACM:1998:SHP

ACM:1999:SPO

ACM:2000:SHP

ACM:2001:SHP

ACM:2003:SI

[Add01] Cliff Addison. Exploiting OpenMP to provide scalable SMP BLAS and
REFERENCES

V. Alexandrov, F. Dehne,

REFERENCES

Astalos:2000:CMS

Agathos:2012:TBE

Awan:2017:CCD

Ahmad:1997:EVP

Allsopp:2001:EUM

Aversa:1997:MDP

Aguilar:1997:PMS

Aubrey-Jones:2016:SMI

Alexandrova:1999:PMC

Armstrong:2000:QDB

Andersen:1994:PIA

Asai:1999:MIF

Noboru Asai, Thomas Kentemich, and Pierre Lagier. MPI-2 implementation on a Fujitsu Generic Message
References

Passing Kernel. In ACM [ACM99], page ??

Abdelfattah:2016:KOL

Alfano:1992:DNA
M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92], page ?? ISBN ?? LCCN ???: Proceedings available via anonymous ftp from ftp.scri.fsu.edu in directory pub/parallel-workshop.92.

Altevogt:1993:PTD

Amer:2018:LCM

Alund:1994:CFD

[AMuHK15] Mayez Al-Mouhamed and

Aversa:1994:PSH

Andersson:1998:PFT

Anonymous:1989:PFC

Anonymous:1992:PSE

Anonymous:1993:ATA

Anonymous:1993:ISA

Anonymous:1993:JFI

Anonymous:1993:CDP

Anonymous:1994:ALM

Anonymous:1994:FWR
REFERENCES

REFERENCES

[Ano97]

[Ano98]
Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN ???. ISSN 1061-7264 (print), 1931-1311 (electronic).

[Ano99a]

[Ano99b]

[Ano99c]
REFERENCES

[Ano99d]

[Ano00a]

[Ano01a]

Anonymous:2001:EDP

Anonymous:2003:MNIc

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

Aji:2016:MEA

Aji:2016:MAA

AlHaddad:2001:UNW

Arabnia:1995:TRA

Altas:1994:NIE

Arnow:1995:DLB

Abrossimov:1989:GVM

Al-Refaie:2017:PAH

Al-Refaie:2017:PCT

Al-Salman:1992:DIP

Awile:2014:PWF

Alonso:1997:PBB

Alves:1995:WPC

[Angskun2001] Thara Angskun, Putchong Uthayopas, and Arnon Rungsawang. Dynamic process management in KSIX cluster middleware. Lec-
REFERENCES

Andujar:2016:OSF

Asenjo:1995:SLF

Arteaga:2017:GFG

Beyer:2005:GEC

Battre:2006:MFP

Bader:2016:EMT

David A. Bader. Evolving MPI+X toward exascale. Computer, 49(8):10, August 2016. CODEN CPTRB4. ISSN 0018-9162
REFERENCES

REFERENCES

[BBB+94] V. Bala, J. Bruck, R. Bryant, R. Cypher, and P. De Jong. The IBM external user inter-
REFERENCES

[BB+C+00]

[BBDH14]

[BBG+95]
REFERENCES

[BH...13a]

[BH...13b]

[BH...13c]

Bustamam:2012:FPM

[BH...13d]

Bland:2013:PFR

[BH...13e]

Busa:2015:CCO

Ján Busa, Jr., Ján Busa,

Boryczko:1994:LGA

Barnard:1999:MIS

Blas:2014:RAM

Barton:2006:SMP

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Becciani:2006:FMP

Bouchard:1996:F

Birsak:2000:EONa

Birsak:2000:EONb

Betts:2012:GV

Betts:2015:DIV

Baker:1999:MOO

M. Baker, B. Carpenter, G. Fox, and Sung Hoon Koo. mpiJava: An object-oriented
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Balaji:2010:IND]

[Balaji:1997:PVQ]

[Bottailler:2003:MVF]

[Buntnas:2008:BVN]

REFERENCES

282, April 2009. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Bruno:2000:PEH

Bolloni:2000:TIQ

Baraglia:1997:IPW

Bhattacharjee:2011:PLC

Bolis:2016:APA

Baiardi:2000:AMM

Fabrizio Baiardi, Sarah Chiti, Paolo Mori, and Laura Ricci. Adaptive multigrid methods in MPI. Le-
REFERENCES

REFERENCES

Beguelin:1992:HGD

Beguelin:1992:PHT

Beguelin:1992:SCG

Beguelin:1993:PHT

Beguelin:1993:PEC

Beguelin:1994:HHN

Beguelin:1995:REP

Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek, and Vaidy Sunderam. Recent enhancements to PVM. International Journal of Supercom-
REFERENCES

Beguelin:19xx:PSS

[BDG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, 19xx.

Beguelin:1993:VDH

Bruck:1995:EMPb

Bruck:1997:EMP

Browne:1998:RPA

Bode:1996:PVM

Arndt Bode, Jack Dongarra, T. Ludwig, and V. Sunderam, editors. Parallel virtual machine, EuroPVM ’96: third European PVM conference, Munich, Germany, October 7–9, 1996: proceedings, volume 1156 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / Lon-
REFERENCES

REFERENCES

CODEN SINODQ, ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

[Bencheva:2001:MPI]

[Benedict:2018:SES]

[Bernaschi:1996:RHP]

[Berthou:2001:COH]

[Bubak:2001:PMS]

Bischof:1994:CSM

Broquedis:2010:FEO

Bubak:1999:MPP

Baraglia:1999:PAN

Bubak:1996:EFP

Bubak:1997:EPA

Bouge:1996:EPP

REFERENCES

L43 no.1123-1124. Two volumes.

REFERENCES

Barbour:1995:PIG

Banikazemi:2001:MLE

Broquedis:2012:LEO

Bronevetsky:2009:CAC

Blanco:2002:PMA

Balasubramanian:2015:EGL
Raghuraman Balasubramanian, Vinay Gangadhar, Ziliang Guo, Chen-Han Ho,

Bhanot:2005:OTL

Bischof:2008:PRM

Butler:2000:SPM

Beisel:1997:EMD

Brune:1997:HMP

Matthias Brune, Jörn Gehring, and Alexander Reinefeld. Heterogeneous message passing and a link to resource

Breitenecker:1995:ESC

Bhargava:1993:PIW

Bhanot:1998:DTM

Bader:1996:PPA

Bouteiller:2006:MVP

Bubek:1995:DSC

Bischof:1995:CSM

C. Bischof, S. Huss-Lederman, Xiaobai Sun, A. Tsao, and

REFERENCES

REFERENCES

Baiardi:1993:PVM

Boianov:1995:DLC

Barkati:2013:SPA

Bjorge:1995:ISS

Blaheta:1997:PIP

Blaheta:1999:LFM

Bhandarkar:1996:MPM

Balevic:2011:KAD

REFERENCES

122

CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Bhandarkar:2001:ALB

Bekas:2002:PCP

Berka:2013:CPC

Boryczko:1995:NIC

Bull:2000:PPJ

Beaugnon:2014:VVO

Ulysse Beaugnon, Alexey Kravets, Sven van Haas-
tregt, Riyadh Baghdadi, David Tweed, Javed Ab-
sar, and Anton Lokhmotov. VOBLA: a vehi-
cle for optimized basic linear algebra. *ACM SIG-
PLAN Notices*, 49(5):115–124, May 2014. CODEN
SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),
1558-1160 (electronic).

[Ballico:1994:PSP]
M. Ballico and H. Lederer. Plasmafusionsforschung: Se-
rielles und paralleles Rech-
nen mit nur einem Pro-
grammcode auf Cray YMP,
nCUBE2, Workstations mit
PVM und KSR1. In Anony-
mous [Ano94c], pages 232–
234. ISBN ????? ISSN 0341-
7778. LCCN Q180.55.E4

[Bendrider:1995:SME]
M. Bendrider and J.-M.
Leclercq. Second-order
Møller–Plesset and Epstein-
Nesbet corrections to the
molecular charge density: Di-
tributed computing on a clus-
ter of heterogeneous
workstations with the PVM
system. In Bernardi and
Rivail [BR95a], pages 73–
?? ISBN 1-56396-457-
.0. ISSN 0094-243X (print),
1551-7616 (electronic), 1935-
0465. LCCN QD39.3.E46

[Beazley:1997:EMP]
D. M. Beazley and P. S.
Lomdahl. Extensible mes-
sage passing application
development and debug-
ging with Python. In IEEE
[IEE97b], pages 650–655.
ISBN 0-8186-7793-
.7. LCCN QA76.58 .I56
1997. IEEE catalog number
97TB100107. IEEE Com-
puter Society Press order
number PR07792.

[Bubak:1999:TPR]
M. Bubak and P. Luszczek.
Towards portable runtime
support for irregular and
out-of-core computations. In
Dongarra et al. [DLM99],
pages 59–66. ISBN 3-540-
66549-8 (softcover). ISSN
0094-243X (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

[Baraglia:1993:PW]
R. Baraglia, D. Laforenza,
and R. Perego. Program-
ming a workstation clus-
ter with PVM and Linda: a
qualitative and quantita-
tive comparison. In Anony-
mous [Ano93b], pages 101–
114. ISBN ????? LCCN ???.

[Bach:2013:LQB]
Matthias Bach, Volker Lin-
denstruth, Owe Philipsen,
and Christopher Pinke. Latt-
ice QCD based on OpenCL.
*Computer Physics Com-
 munications*, 184(9):2042–
2052, September 2013. CO-
DEN CPHCBZ. ISSN
0010-4655 (print), 1879-2944
REFERENCES

REFERENCES

125

Bubak:1994:PDS

Bubak:1994:EMD

Baiardi:2001:CRD

Brightwell:2002:DIM

Bubak:1994:FLG

Bubak:1994:IPL

REFERENCES

Barthels:2017:DJA

Berrendorf:2000:PCO

Bawidamann:2012:ETO

1007/978-3-642-31500-8_8/.

Bull:2001:MSO

Bubak:2000:IOB

Boisvert:1997:QNS

REFERENCES

Bonnet:1996:UPW

Booth:2001:OML

Borkowski:1999:LVC

Boszormenyi:1996:PCT

Brebbia:1993:ASE

Berthou:1998:PHM

Barbosa:1999:ADM

J. Barbosa and A. Padilha.

Beletsky:1994:OPV

Becks:1994:NCT

Baptista:2001:IOS

Balou:1991:DIV

REFERENCES

[B Burrer:1994:RRB]
C. Burrer and P. Remy. RU-BIS: a runtime basic interface software on TELMAT T9000 TN series. In de Gloria et al. [dGJM94], pages 63–78. ISBN ???? LCCN ????

[B Burrer:1994:RRB]

[B Bane:2002:EOA]

[B Boeres:2004:ETF]
REFERENCES

1532-0626 (print), 1532-0634 (electronic).

Bergstrom:2012:NDP

Bramley:1997:TNR

Briscolini:1995:PID

Brieger:2000:HOO

Brightwell:2002:RMR

Brightwell:2010:EDA

Ron Brightwell. Exploiting direct access shared memory for MPI on multi-core processors. The Interna-

Ulrich Brüning. MPI functions and their impact on in-
terconnect hardware. Lecture Notes in Computer Science, 7490:10, 2012. CO-
DEN LNCS949. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://
link.springer.com/accesspage/chapter/10.1007/978-3-
642-33518-1_2.

[BS93] N. H. Barth and S. L. Smith. Coupling numerical models of the atmosphere and ocean using the parallel virtual ma-
chine (PVM) package. In Sincovec [Sin93], pages 71–

[BS94] Kevin Bolding and Lawrence Snyder, editors. Parallel computer routing and commu-
nication: first international workshop, PCRCW ’94, Seattle, Washington, USA, May 16–18, 1994: proceedings, number 853 in Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, Germany / Hei-
delberg, Germany / London, UK / etc., 1994. ISBN 3-540-

[BS96a] A. Beguelin and V. Sunderam. Tools for monitoring, debugging, and pro-
gramming in PVM. In Bode et al. [BDLS96], pages 7–13. ISBN 3-540-61779-5. ISSN

[Blikberg:2001:NPA] Ragnhild Blikberg and Tor Srevik. Nested parallelism: Allocation of threads to tasks and OpenMP implementa-
DEN SCIPEV. ISSN 1058-
9244 (print), 1875-919X (electronic). URL http://
iospress.metapress.com/app/home/contribution.
asp%3Fwasp=7pab6qgbaf8vxf91rvy%26referrer=parent%26backto=
issue%2C11%2C11%3Bjournal%2C1%2C9%3Blinkingpublicationresults%2C1
2C1%2C21.

0167-8191 (print), 1872-7336 (electronic).
REFERENCES

REFERENCES

August 2013. CODEN CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic).

[Benzoni:1991:MFR]

[Blaszczyk:1996:EPI]

[biewski:2001:MOS]

[BT01b]

[BT96]

[Bonelli:2017:MCA]

[Badia:1999:SIT]
J. M. Badia and A. M. Vidal. Solving the inverse Toeplitz eigenproblem using ScaLAPACK and MPI. In Dongarra et al. [DLM99],
Baltas:1994:CPC

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

Blum:1996:PIP

Bureddy:2012:OGM

Bihari:2012:CIT

Blattner:2012:PSC

Cabarle:2012:SNP

Carpen-Amarie:2017:EOC

Calmet:1994:RWC

Carbarle:2012:SNP

Carbayal:2007:PTD

[Car07] Santiago Garcia Carbayal. Parallelizing three dimensional cellular automata

Campanoni:2010:HFP

Cavender:1993:APV

Chabbi:2017:EAL

Cartwright:2000:AOE

Czapinski:2011:TST

Creecy:2016:TSS

Cooper:1994:CHF

M. D. Cooper, N. A. Burton, R. J. Hall, and I. H.

M. P. Clay, D. Buaria, P. K. Yeung, and T. Gotoh. GPU acceleration of a petascale application for turbulent mixing at

Chapple:1995:PUL

Cormen:1999:PBP

Ciaccio:2000:GMG

Couturier:2000:PMD

Cardoso:2010:MSO

Chen:2017:AAG

Jian Chen and Russell M. Clapp. Astro: Auto-generation of synthetic

Chen:2000:MCO

Couder-Castaneda:2015:PCM

Castagnera:1994:NEP

Cooperman:2003:UTC

Casas:1995:MMT

Jeremy Casas, Dan L. Clark, Ravi Komuru, Steve W. Otto, Robert M. Prouty, and Jonathan Walpole. MPVM: a migration transparent version of PVM. *Computing*
REFERENCES

Collingbourne:2012:STO

Costa:2006:ROA

Chen:2012:PUA

Clematis:1997:DNL

Chamaret:1995:PFE

Coulaud:1996:EIP

Cunha:1998:MPP

REFERENCES

REFERENCES

Chang:1995:EPCb

Chang:1995:EPCa

Casanova:1995:PPM

Chandra:2001:PPO

Colombet:1993:SMI

Casanova:2015:SMA

Cotronis:2011:RAM

[CDND11] Yiannis Cotronis, Anthony
REFERENCES

Chaussumier:1999:ACM

Coll:2003:SHB

Ceron:1998:PID

Cappello:2000:MVM

Clemencon:1995:AEP

REFERENCES

REFERENCES

Clematis:1999:EPC

Cownie:1999:SID

Chaudhuri:2010:PIC

Carretero:2015:AMM

Calderon:2002:IMI

REFERENCES

REFERENCES

1523-2867 (print), 1558-1160 (electronic). PPoPP ’11 Conference proceedings.

Calore:2016:PPA

Chapman:2011:OPE

Chatterjee:1993:GLA

Caubet:2001:DTM

Chan:1998:PCT

Casanova:2015:TMS

Cecilia:2012:CSC

Chen:2013:IRM

Cheng:1994:PDP

Ciancarini:1996:CLM

Charny:1996:MPV

Chapman:2002:PAD
Barbara Chapman. Par-

Chapman:2005:SMP

Cappello:2007:RAP

Cappello:2009:FSI

Chergui:1999:UPP

J. Chergui. Using PMD
to parallel solve large-scale Navier-Stokes equations.
performance analysis on SGI/CRAY-T3E machine.
In Dongarra et al. [DLM99],
ISSN 0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

Cheng:2010:BRBb

Cho:2010:OPP

Cook:1995:TAS

Chapman:2001:PDE

Cook:1995:TAS

[Czarnul:1999:DAP]

[Chang:2016:DLD]

[Casas:1994:ALM]

[Culler:1993:LTR]

[Castro-Leon:1993:MCP]

[Clark:1998:FOP]

[Chikin:2019:MAA]

Artem Chikin, Taylor Lloyd, José Nelson Amaral, Ettore Tiotto, and Muhammad Usman. Memory-access-aware safety and profitability analysis for transformation of accelerator-bound

Cen Chen, Kenli Li, Aijia Ouyang, and Keqin Li. FlinkCL: An OpenCL-based in-memory comput-

[CMH99] J. M. Claver, M. Mollar, and V. Hernandez. Paral-
REFERENCES

REFERENCES

Chou:2010:CMI

Chalkidis:2011:HPH

Coelho:1994:EHC

Cotronis:1997:MPP

Cotronis:1998:DMP

Cotronis:2004:CMP
REFERENCES

F. Cappello, O. Richard, and D. Etiemble. Performance of the NAS benchmarks on a cluster of SMP PCs using a parallelization of the MPI programs with OpenMP. *Lecture Notes in Computer...
Cappello:2001:UPS

Cores:2014:FAM

Cores:2016:ROM

Cores:2014:MAL

Ciampolini:1996:EPM

Coole:2014:FFH
REFERENCES

REFERENCES

REFERENCES

Czarnul:2003:PTA

Czapinski:2013:EPM

Czech:2016:IPC

Chapman:2008:PPM

Dongarra:1991:UGP

Dongarra:1995:HPC

J. J. Dongarra et al., editors. High performance computing: technology, meth-

Dieguez:2019:TPR

Dimov:1998:IMC

Dieguez:2018:SLP

Danis:2012:MCT

Darema:2001:SMP

Demidov:2013:PCO
Denis Demidov, Karsten Ahnert, Karl Rupp, and Peter

[DiMartino:2001:WDS] Beniamino Di Martino,

D Agostino:2014:CAM

[DCPJ14]

Dowell:2002:CMA

Didelot:2012:IMC

Didelot:2014:IMC

delCuvillo:2006:LOC
Juan del Cuvillo, Weirong Zhu, and Guang Gao. Land-
ing OpenMP on Cyclops-
64: an efficient mapping of OpenMP to a many-
core system-on-a-chip. In ACM [ACM06b], pages 41–

Dozsa:2000:THL
Gábor Dózsa, Dánél Drótos,
and Róbert Lovas. Transla-
tion of a high-level graphi-
cal code to message-passing
primitives in the GRADE
programming environment.
Lecture Notes in Computer
CODEN LNCSKD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http:
//link.springer-ny.com/
link/service/series/0558/
bibs/1908/19080258.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080258.
pdf.

Decker:1995:TDU
T. Decker, R. Diekmann,
R. Luling, and B. Monien.
Towards developing univer-
sal dynamic mapping algo-
rithms. In IEEE [IEE95g],
pages 456–459. ISBN 0-8186-
7195-5. LCCN QA 76.58 I42
1995. IEEE catalog number
95TB8131.

Deveci:2019:GMT
M. Deveci, K. D. Devine,
K. Pedretti, M. A. Taylor,
S. Rajamanickam, and
Ü. V. Çatalyürek. Geometric
mapping of tasks to pro-
cessors on parallel com-
puters with mesh or torus
networks. IEEE Transactions
on Parallel and Distributed
Systems, 30(9):2018–2032,
September 2019. CODEN
ITDSEO. ISSN 1045-9219
(print), 1558-2183 (elec-
tronic).

Dongarra:1997:BCA
J. J. Dongarra, F. Desprez,
A. Petitet, and C. Rand-
riamaro. Block-cyclic ar-
ray redistribution on net-
works of workstations. Lecture
Notes in Computer Science,
CODEN LNCSKD9. ISSN
0302-9743 (print), 1611-3349
(electronic).

Dean:1994:CPV
C. E. Dean, R. C. Denny,
P. C. Stephenson, G. J.
Milne, and E. Pantos. Com-
puting with parallel vir-
tual machines. Journal de
physique. IV, Colloque, 4
(C9):C9/445–448, November
1994. CODEN JPICEI.
ISSN 1155-4339.

Dan:1999:QAM
Pei Dan, Wang Dong-
sheng, Zhang Youhui, and

Durand:1991:HPC

Demaine:1996:FCC

DePasquale:2003:UJU

C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. *Cmg*, 2(??):821–832, 2003. CODEN ????

Dehne:2001:CPD

Dashti:2017:AMM

Duran:2009:PEO

REFERENCES

Duran:2007:PEH

Demaine:2001:GCM

Deshpande:1994:ADN

Diaz:2012:CCF

DAmbra:1995:CBC

Dinan:2014:ECC
REFERENCES

daCunha:1994:PIR

Dongarra:1995:PBC

Dongarra:1992:PUL

Dongarra:1993:DSM

Dongarra:1997:PEP

Dongarra:1997:CSD

REFERENCES

Dongarra:1996:SRP

DiNucci:1996:CDS

Karniadakis:2002:DLP

Drosinos:2006:EPT

DiSerio:2002:ENN

DiPierro:2014:PPP

DiSerio:2002:ENN
REFERENCES

issn=0920-8542&volume=35&issue=1&spage=65.

Deo:2013:PSA

DiMartino:2005:RAP

DiMartino:2007:SIS

DiMartino:2008:SSG

Damodaran-Kamal:1993:NTD

Damodaran-Kamal:1994:MSR

[DKF94a] S. K. Damodaran-Kamal and J. M. Francioni. mdb: a semantic race detection tool for PVM. In Pierce and Reg-
REFERENCES

Marc de la Asunciön, José M. Mantas, Manuel J.

Desai:2007:CEM

Marcos:2002:DDP

Deng:2019:CBV

Dongarra:1999:RAP

Degomme:2017:SMA

Augustin Degomme, Arnaud Legrand, George S. Markomanolis, Martin Quinson, Mark Stillwell, and Frederic Suter. Simulating MPI applications: The SMPI approach. *IEEE Transactions on Parallel and

Dongarra:2003:RAP

DeKeyser:1994:RTL

CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

Lu:2004:AFS

DeSande:1999:NBS

DiPietro:2016:CLD

Despons:1993:CCP

In Grebe et al. [GHH+93], pages 465–480. ISBN 90-5199-140-1. LCCN ????

[Davies:1995:NSP]

[Davies:1995:NPE]

[Dagum:1998:OIS]

[Dathathri:2016:CAL]

[Dalcin:2019:FPM]

[Dziubak:2012:OOI]

REFERENCES

REFERENCES

REFERENCES

[Dohi:2011:GIO] Keisuke Dohi, Yuichiro Shibata, Kiyoshi Oguri, and Takafumi Fujimoto. GPU implementation and opti-

Domokos:2000:PRC

Deshpande:1996:MIBa

Dekker:1994:MPP

Dongarra:1994:PSW

Diavastos:2017:SLR

Duval:1992:TPP

[D. Duval. Trends in parallel programming models for high performance computers. In Ferenczi [Fer92],]
page 33. ISBN ???? LCCN ????

Deshpande:2012:AGC

Dong:1996:SPL

Deng:2006:PIK

Dantas:1996:ILB

Dantas:1998:ESM

Delves:1998:HPF

Dragovitsch:1995:PPS

REFERENCES

137, Summer 1995. CODEN IJSCFG. ISSN 1078-3482.

Elamvazuthi:1994:OPA

Eigennmann:2000:TMPa

Eigennmann:2000:TMPb

Espenica:2002:PPA

Espinosa:1998:ADP

Espinosa:2000:APA

Ewing:1993:DCW

REFERENCES

1063-9535. LCCN QA76.5 S96 1993.

Engquist:2000:SVG

Emani:2015:CDM

Ebner:1996:TFP

R. Ebner and A. Pfaffinger. Transformation of functional programs into data flow graphs implemented with PVM. In Bode et al. [BDLS96], pages 251–271. ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-

Espinosa:1999:REB

Eizenberg:2017:BBL

ElZein:2012:GOC

REFERENCES

REFERENCES

1994. CODEN COSEEO. ISSN 0956-0521.

Eichenberger:2012:DOT

Eigenmann:2001:OSM

Eckert:2016:HAL

Faraji:2018:DCG

Fabeiro:2016:WPP
REFERENCES

Fabeiro:2015:AGO

Fang:1998:DDL

Fang:1996:SPP

Fang:1997:MDD

Fang:1995:PMS

Fagg:2001:FTM

REFERENCES

REFERENCES

Ferschweiler:2001:CDP

Filgueira:2012:DCD

Fagg:1996:PIP

Fischer:1997:AAP

Fagg:2000:FMF

REFERENCES

REFERENCES

DEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

REFERENCES

REFERENCES

links/doi/10.1006/jpdc.1996.1266/production;
ref.

REFERENCES

Andre:1998:BVN

Friedley:2013:OPE

Franke:1995:AAV

Franke:1995:MIS

Field:2001:RTF

Frank:1994:MMP

Frank:1995:MIS
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Computer Society Press Order Number: RS00126.

Freeh:2008:JTD

Foster:1996:GCM

Florez:2005:LMM

Fagg:1996:TGR

Foster:1998:MMH

Fachada:2017:CCF

Ferreira:2018:CMM

Kurt B. Ferreira, Scott Levy, Kevin Pedretti, and Ryan E. Grant. Characterizing MPI matching via trace-based simulation. *Parallel Computing*, 77(??):57–
References

204

[FM90]

[Furlinger:2009:CAE]

[FMBM96]

[Fiala:2012:DCS]

[Filipovic:2015:OCC]

[Ferretti:2015:MCH]
Marco Ferretti, Mirto Musci, and Luigi Santangelo. MPI–CMS: a hybrid parallel approach to geometrical motif search in proteins. Concurrency and Computation: Practice and Experience,
REFERENCES

Fan:2017:SEE

Ferenc:1999:VMK

Femminella:1994:PBP

For95

Foster:1998:GEM

Freeman:1992:PNA

Faraj:2008:SPA
Ahmad Faraj, Pitch Patarasuk, and Xin Yuan. A study

Fan:2019:BPA

Fan:2019:SAO

Fuerle:1998:IPC

Fumero:2017:JTG

Folino:1998:EMC

Folino:1998:PEM

REFERENCES

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP

Fujimoto:2008:DMV

Fagg:2000:AA
Graham E. Fagg, Sathish S. Vadhiyar, and Jack J. Dongarra. ACCT: Automatic Collective Commu-
Fang:2015:EVD

Fineberg:1996:PPI

Franke:1995:MPEb

Frost:2017:RDP

Grangeat:1996:PTI

REFERENCES

Gonzalez:2000:NSF [GAML01]

Gonzalez:2000:PAM [GAMR00]

Gonzalez:2002:DLP [GAM+02]
REFERENCEs

0558/papers/1908/19080104.pdf.

Gao:2003:LSP

Galaktionov:1997:MST

Gates:1995:PFI

Gonzalez-Alvarez:2017:HMO

Gupta:1994:CTE

Ghosh:1996:ELM

Gorlatch:1998:GMI

Sergei Gorlatch and Holger Bischof. A generic MPI implementation for a

Geist:1994:PPV

Gentzsch:1995:STP

Golebiewski:1999:HPI

Gerstenberger:2014:EHS

Gerstenberger:2018:EHS

Gabriel:1997:EMU

Edgar Gabriel, Thomas Beisel, and Michael Resch. Erweiterung einer MPI-Umgebung zur Interoperabilität vertreterter MPP-Systeme. (German) [Extension of an MPI environment for interoperability...](#)
REFERENCES

with distributed MPI systems]. Studienarbeit ange-
wendte Informatik RUS 37, Rechenzentrum Universität

Sudip Garain, Dinshaw S. Balsara, and John Reid. Comparing Coarray Fortran (CAF) with MPI for several structured mesh
PDE applications. *Journal of Computational Physics*,
297(??):237–253, September 15, 2015. CODEN
JCTPAH. ISSN 0021-9991 (print), 1090-2716
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S002199911500354X.

Richard L. Graham, Brian W. Barrett, Galen M. Ship-
man, Timothy S. Woodall, and George Bosilca. Open
MPI: a high performance, flexible implementation of
MPI point-to-point communications. *Parallel Pro-
PPLTEE. ISSN 0129-6264 (print), 1793-642X
(electronic).

D. A. Grove and P. D. Coddingston. Communication benchmarking and
performance modelling of MPI programs on cluster
201–217, November 2005. CODEN JOSUED. ISSN
0920-8542 (print), 1573-0484
(electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0920-8542&volume=
34&issue=2&spage=201.

Marta Garcia, Julita Corbalan, Rosa Maria Badia,
and Jesus Labarta. A dynamic load balancing approach
with SMP Super-
scalar and MPI. *Lecture
Notes in Computer Science*,
7174:10–23, 2012. CODEN
LNCSDE. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/10.1007/978-3-642-30397-5_
2/.

E. Garcia Salcines, G. Cer-
ruela Garcia, J. I. Benav-
dez Benitez, and F. Muñoz
Garcia. Parallel rendering of radiance on distributed
memory system by PVM. *Lecture Notes in Compu-
LNCSDE. ISSN 0302-9743 (print), 1611-3349
(electronic).

F. Garcia, A. Calderon, and
REFERENCES

Garcia-Consuegra:1998:DGR

Gelado:2010:ADS

Gao:2013:GGA

Geist:1993:PTW

Galizia:2015:MCL

Ghose:2017:FOT

Anirban Ghose, Lokesh Dokara, Soumyajit Dey, and Pabitra Mitra. A framework for OpenCL task scheduling on heterogeneous multicores.
REFERENCES

Parallel Processing Letters, 27(3–4):1750008, 2017. **Coden PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).**

Gonzalez-Dominguez:2018:MPC

Grinstein:1995:VDE

Grinstein:1996:VDE

Geist:1993:ILP

Geist:1993:PBN

Geist:1994:CCW

G. A. Geist. Cluster computing: the wave of the future? In Dongarra

Geist:1996:APP

Geist:1997:ACP

Geist:1998:HNG

Geist:2000:PMW

Geist:2001:BFN

Grabowsky:1998:NMP

Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprint-Reihe des Chemnitzer SFB 393 Sonderforschungsbereich NumerischeSimulation auf Massiv Parallelten Rechnern 97,08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998.

Gabriel:2003:FTC

Edgar Gabriel, Graham E. [GFB+03]

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>
REFERENCES

Gallud:2001:EDF

Gallud:1999:DPR

Gallud:1999:CCU

Godlevsky:1999:PSA

Geist:1996:MEM

Gawman:1993:PCT
Ann Gawman, W. Morven Gentleman, E. Kidd, Per-
REFERENCES

[GGH+93] Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

Gropp:1998:MCR

Gong:2012:OCN

Garcia:2011:KRR

Goglin:2018:HTM

Grecski:1997:MPE

REFERENCES

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

Geist:1997:CPF

Geist:1997:BPW

Gopalakrishnan:2011:FAM

Garland:2012:DUP
Michael Garland, Manjunath Kudlur, and Yili Zheng. Designing a unified programming model

REFERENCES

REFERENCES

amp;idtype=cvips.

REFERENCES

Gorzig:2001:CCP

Guarracino:1995:PMB

Grosset:2017:TTT

Govindan:1996:OMP

Gillich:1995:FPP

Genaud:2007:PMP

Grabowsky:1997:MBK

[Gra97] Lothar Grabowsky. MPI-basierte Koppelrandkom-
Munikation und Einfluss der Partitionierung im 3D-Fall. (German) [MPI-based coupled edge communication and influence of partitioning in 3D-Fall]. Preprint-Reihe des Chemnitzer SFB 393 97.17, Universitaet Chemnitz-Zwickau, Chemnitz, Germany, 1997. 13 pp.

Gravvanis:2009:OBP

Grengbondai:1994:CPU

Greenfield:1995:OPS

J. Greenfield. An overview of the PVM software system. In IEEE [IEE95d], pages 17–23. ISBN ???? LCCN ????

Gropp:2000:RCD

Gropp:2001:CSA

Gropp:2001:LSM

REFERENCES

Gropp:2002:BLC

Gropp:2002:MNS

Gonzalez:1999:PPM

Gutierrez:2010:QCS

Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

Garg:2002:TOA

Gao:2008:GEI

Gerlac:1997:ECS

Gardner:2013:CCE

Germanas:2017:HUP

Gine:2001:MMM

Gu:2013:PCI

Gruber:1994:PJE

Golbiewski:2001:MOS

REFERENCES

[HA10] Panagiotis E. Hadjidoukas and Laurent Amsaleg. Nested OpenMP parallelization of a hierarchical data cluster-
REFERENCES

Hansen:1998:EMP

Hardwick:1994:PVL

Hardwick:1995:PVL

Hassanzadeh:1995:MMG

Hisley:2000:PPE

Hatazaki:1998:RRS

Hachler:1996:IA

Haechler:1996:IA

Hausner:1995:EIP

Huang:2006:ECS

Huang:2008:FPM

Hamid:2010:CMB

REFERENCES

Hunold:2016:RMB

Hurwitz:2005:AMP

Huang:2005:TME

Hu:2016:CLG

He:2000:PAA

Ding:2002:MOP

He:2002:MOP

[HCL05] CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

[HD02a] CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

[HD02b] CODEN ???? ISSN 0167-8191 (print), 1872-7336 (electronic).
Harvey:2011:STP

Hadjidoukas:2009:HPF

Hoefer:2012:LMO

Hoefer:2013:MMN

Hoefer:2015:RMA

Heikonen:2002:ILB

REFERENCES

Hadi:2013:CFA

Havran:2015:EBT

Hebek:1993:CPC

Herland:1998:CML

Huang:2009:EGO

Hempel:1994:MSM

Hempel:1996:SMM

R. Hempel. The status of the MPI message-passing standard and its relation
REFERENCES

Holmen:2014:ASI

Holmen:2014:EAS

Hursey:2012:AF

Hermanns:2012:SDM

Hong:1995:PNP

Hanson:2014:NCM

REFERENCES

Haimes:1998:UPM

Hall:2014:MMC

Huang:2010:ELA

Hoffmann:1993:PFE

Henriksen:1994:PCF

Hoffmann:1995:CAP

Hong:2009:AMG

[HK09] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture with memory-level and thread-level parallelism awareness.
REFERENCES

Hong:2010:IGP

Hiranandani:1994:CTB

Hoeflinger:2001:IPV

Hong:2011:ACG

Hori:2012:EKL

Hasanov:2017:HRC

Khalid Hasanov and Alexey Lastovetsky. Hierarchical re-

REFERENCES

Huband:2001:DTB

Hilbrich:2009:MCC

Hakula:1994:FEM

Holmes:2019:PPE

Haynes:2014:MOA

Ronald D. Haynes and Benjamin W. Ong. MPI/OpenMP algorithms for the parallel space-time solution of time dependent PDEs. In Erhel et al. [EGH+14], pages 179–187. ISBN 3-319-05788-X (paperback), 3-319-05789-8 (e-book). ISSN 1439-7358 (print), 2197-7100
Hogg:2013:FDT

Hollerbach:1995:FDA

Hollingsworth:2012:SPI

Hosking:2012:CHL

Hadjidoukas:2005:OEM

Hawick:2011:HSL

Hidalgo:1999:MMP

J. I. Hidalgo, M. Prieto, J. Lanchares, and F. Tirado. A method for model param-
eter identification using parallel genetic algorithms. In
Dongarra et al. [DLM99], pages 291–298. ISBN 3-540-
66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349

Hadjidoukas:2002:MOI
Panagiotis E. Hadjidoukas, Eleftherios D. Polychronopou-
los, and Theodore S. Patheodorou. A modular OpenMP imple-
mentation for clusters of multipro-
cessors. *Parallel and Dis-
tributed Computing Prac-
tices*, 5(2):153–168, June
2002. CODEN ???? ISSN
1097-2803.

Haririri:1995:STE
S. Hariri, Sung-Yong Park, R. Reddy, M. Subraman-
yan, R. Yadav, G. C. Fox, and M. Parashar. Software tool eval-
uation methodology. In IEEE [IEE95i], pages 3–10.
ISBN 0-8186-7025-8. LCCN ???? IEEE catalog number
95CH35784.

Hondroudakis:1995:PEV
A. Hondroudakis, R. Proc-
ter, and K. Shaamugam. Performance evaluation and
visualization with VISPAT. In Malyskhiš [Mal95], pages
180–185. ISBN 3-540-60222-4. ISSN 0302-9743
(print), 1611-3349 (elec-
tronic). LCCN QA76.58.I547
1995.

Heckathorn:1996:SSP
H. Heckathorn, B. Popp,
W. Smith, D. Conklin, D. A.
Newman, and F. Wieland. SSGM: from serial to parallel
processing using PVM. *Pro-
ceedings of the SPIE — The
International Society for Opt-
ical Engineering*, 2741:267–
277, ????. 1996. CODEN
PSISDG. ISSN 0277-786X
(print), 1996-756X (elec-
tronic).

Hilbrich:2012:MRE
Tobias Hilbrich, Joachim
Protze, Martin Schulz, Bron-
is R. de Supinski, and Mat-
thias S. M"uller. MPI runtime error detection
with MUST: advances in
deadlock detection. In Holl-
ingsworth [Hol12], pages
30:1–30:?? ISBN 1-
4673-0804-8. URL http:
//conferences.computer.
org/sc/2012/papers/1000a010.
pdf

Hilbrich:2013:MRE
Tobias Hilbrich, Joachim
Protze, Martin Schulz, Bron-
is R. de Supinski, and Mat-
thias S. M"uller. MPI runtime error detection with
MUST: Advances in dead-
lock detection. *Scientific
Programming*, 21(3–4):109–
121, ????. 2013. CODEN
SCIEPV. ISSN 1058-9244
(print), 1875-919X (elec-
tronic).
REFERENCES

Hariri:1993:MPI

Hoefler:2011:SPT

Hoyos-Rivera:1997:UPB

Hertzbeger:1995:HPM

Bob Hertzberger and Giuseppe Serazzi, editors. High-Performance computing and networking: International Conference and Exhibition, Milan, Italy, May 3–5, 1995:
REFERENCES

Hungenahally:1995:PIQ

Hoefer:2012:OPC

Henriksten:2017:FPF

Haeuser:1994:RNS

Heimel:2013:HOP

Hormati:2012:SPS

REFERENCES

Hu:2001:PCC

Howes:2008:U

Ha:2008:NBP

Hluchy:1999:GWF

Hariri:2016:PPA

Huckle:1996:PIS

Humphres: 1995: LBE

Husbands: 1998: MSD

Huse: 1999: CCD

Huse: 2000: MOS

Huse: 2001: LST

Hamidouche: 2016: CAO

Houzeaux: 2011: HMO

G. Houzeaux, M. Vázquez,

Hoekstra:1995:CPP

Hager:2011:IHP

Huang:2002:DDD

He:2009:AVS

Hwang:1997:EMC

REFERENCES

[Huang:2013:ACM]

[Hellberg:1994:PPP]

[Hempel:1996:APT]

[Isaila:2010:SMP]
REFERENCES

Isabel:2002:CMO

Issman:1994:PME

Ibanez:2016:HMT

IEEE:1991:PSA

IEEE:1992:PSH

IEEE:1993:DPC

IEEE:1993:PSI

[IEE93b] IEEE, editor. Proceedings / Seventh International
IEEE:1993:PIS

IEEE:1993:WHP

IEEE:1994:WHP
REFERENCES

REFERENCES

IEEE:1995:PSI

IEEE:1995:PIC

IEEE:1995:PFI

IEEE:1995:PNA

IEEE:1996:EIS

IEEE:1996:FSS
IEEE:1996:PIS

IEEE:1996:PFE

IEEE:1996:PII

IEEE:1996:PSI

IEEE:1996:PSM

17??, November 2016. CODEN ????. ISSN 1539-9087 (print), 1558-3465 (electronic).

IFIP:1995:KWC

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Iskra:2000:PMD

Ierotheou:2005:GOC

Iwama:2001:PLS

[KIHvA01] Kazuo Iwama, Daisuke Kawai, Shuichi Miyazaki, Yasuo Okabe, and Jun...

Iwama:2002:PLS

Iwashita:1994:IPE

Ilroy:2001:IMP

REFERENCES

Jatala:2017:SSG

Jabbarzadeh:1997:PSS

Jacoby:1996:ADA

Juhasz:1996:PIP

Jarzabek:2017:PEU

Jin:2008:PEM
Jaeger:2015:FGD

Jenkins:2014:PMD

Jeremiassen:1995:RFS

Jesshope:1993:LRV

Jesshope:1993:MCA

Jann:1995:AMP

Johnson:2012:FOL

Tim Johnson, Pierre Fite-Georgel, Rahul Raguram, and Jan-Michael Frahm. Fast organization of large photo collections using CUDA. *Lecture Notes in

Jin:2000:AGO

Jin:2011:HPC

Jin:2003:AMP

Jackson:1997:SYE

Jo:2017:PMA

References

Julian-Moreno:2017:FPA

Jorba:2001:SFF

Jou:2015:ALM

Jones:1996:LLM
Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

[Jiang:2012:OSP]

[Juric:1995:UPV]

[Joldes:2014:SSH]

[Jost:2010:EUH]

Judd:1994:PIV

Jin:2013:PCU

Jung:2005:DIM

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M^3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jaaskelainen:2015:PPP

Ju:1996:SPT

Jain:1996:IOP

Jin:1995:LTP

Lan Jin and Lan Yang. A laboratory for teaching parallel computing on parallel

Kumar:1995:MWD

Kepner:2004:M

Kumar:2013:GAI

Krawezik:2002:SOV

Krone:1996:ICF

Kapinos:2010:PPP

REFERENCES

REFERENCES

[KBP16] Ramakrishnan Kannan, Grey Ballard, and Haesun Park. A high-performance parallel algorithm for nonneg-
ative matrix factorization.

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic).

Ke:2004:RCM

KBS04

Jian Ke, Martin Burtscher,
and Evan Speight. Runtime
compression of MPI mes-
gages to improve the per-
formance and scalability of par-
allel applications. In ACM
[ACM04], page 59. ISBN 0-
7695-2153-3. LCCN ????.

Klemm:2007:JIO

KBVP07

Michael Klemm, Matthias
Bezold, Ronald Veldema,
and Michael Philippsen.
JaMP: an implementation of
OpenMP for a Java DSM.
Concurrency and Compu-
tation: Practice and Exper-
ience, 19(18):2333–2352, De-
cember 25, 2007. CODEN
CCPEBO. ISSN 1532-0626
(print), 1532-0634 (elec-
tronic).

Karamcheti:1994:SOM

KC94

Vijay Karamcheti and An-
drew A. Chien. Software
overhead in messaging lay-
ers: where does the time
go? ACM SIGPLAN No-
tices, 29(11):51–60, No-
ember 1994. CODEN SINODQ.
ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160
(electronic). URL http://
www.acm.org:80/pubs/
citations/proceedings/
asplos/195473/p51-karamcheti/.

Krawezik:2006:PCM

Géraud Krawezik and Franck
Cappello. Performance com-
parison of MPI and OpenMP
on shared memory multi-
processors. Concurrency
and Computation: Practice
and Experience, 18(1):29–
61, January 2006. CODEN
CCPEBO. ISSN 1532-0626
(print), 1532-0634 (elec-
tronic).

Kacsuk:1997:GDD

KCD+97

Peter Kacsuk, Jose C.
Cunha, Gabor Dozsa, Joao
Lourenco, Tibor Fadgyas,
and Tiago Antao. A graph-
ical development and de-
bugging environment for
parallel programs. Parallel
Computing, 22(13):1747–
CODEN PACEQJ. ISSN
0167-8191 (print), 1872-7336
(electronic). URL http://
www.elsevier.com/cgi-
-bin/cas/tree/store/parco/
cas_sub/browse/browse.
cgi?year=1997&volume=22&
issue=13&aid=1126.

Konuru:1994:ULP

KCP+94a

R. Konuru, J. Casas,
R. Prouty, S. Otto, and
J. Walpole. A user-level pro-
cess package for PVM. In
Pierce and Regnier [PR94b],
REFERENCES

[Kotselidis:2017:HMR]

[Kotselidis:2017:HMR]

[Kotselidis:2017:HMR]

[KD13]

[Kang:2018:PRS]

[Klingebiel:1995:COD]

[Klingebiel:1995:COD]

[Klingebiel:1995:COD]

[KDL{95a}]

Klingebiel:1995:CPO

Kakimoto:2012:PCG

Klemm:2012:EOV

Komatitsch:2010:HOF

Kepner:2005:PPM

Kale:1996:PMD

Kappiah:2005:JTD

Nandini Kappiah, Vincent W. Freeh, and David K. Lowenthal. Just in time dynamic voltage scaling: Exploiting inter-node slack to
save energy in MPI programs. In ACM [ACM05], page 33. ISBN 1-59593-061-2. LCCN ????.

Kramer-Fuhrmann:1994:TGP

Kowalik:1993:SPC

Kohl:1996:PTF

Kainz:2009:RCM

Keller:2003:TEE

Keller:2010:RAM

REFERENCES

Kafura:1996:CCC

Kwon:2010:SPC

Karrenberg:2012:IPO

Kramer:2015:SET

Khanna:2013:HPN

Kielmann:1999:MMC

Thilo Kielmann, Rutger F. H. Hofman, Henri E.

Kallenborn:2019:MPC

Kucukboyaci:2001:PPT

Kjolstad:2012:ADG

Kojima:2017:HLG

Kikuchi:1993:PAS

Kronbichler:2019:FMF

Kranzlmuller:2004:RAP

Kranzlmuller:2005:RAP

Kranzlmuller:2003:RAP

Kee:2003:POP

Yang-Suk Kee, Jin-Soo Kim,

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO

Kobler:2001:DOP

Karrels:1994:PAM

Kofakis:1995:DPI

Liao:2011:DEM

Kumar:2019:FOP

Maciek Kornicki, Ausif Mahmood, and Bradley S. Carlson. Parallel logic simulation on a network of workstations using parallel virtual machine. *ACM Transactions on Design Automation of Electronic Sys-
Komatitsch:2009:PHO

Koholk:1999:MPR

Kumar:2014:OMC

Kobayashi:2016:HSV

Kouzinopoulos:2015:MSM

Kirk:2010:PMP

David B. Kirk and Wen mei
REFERENCES

(electronic). URL http://
www3.interscience.wiley.com/cgi-bin/abstract/84503220/
START; http://www3.interscience.wiley.com/cgi-bin/fulltext?
ID=84503220&PLACEBO=IE.
pdf.

Kasahara:2001:ACG

Hironori Kasahara, Motoki Obata, and Kazuhisa Ishizaka. Automatic coarse
grain task parallel processing on SMP using OpenMP. Lecture Notes in Computer
Science, 2017:189–??, 2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349

Komura:2015:OPS

Yukihiro Komura. OpenACC programs of the Swendsen–Wang multi-cluster
spin flip algorithm. Computer Physics Communications, 197(??):298–303, De-
cember 2015. CODEN CPSCCBZ. ISSN 0010-4655
(print), 1879-2944 (electronic). URL http://

Koniges:2000:ISP

Alice E. Koniges, editor. Industrial Strength Parallel
Computing. Morgan Kauf-
mann Publishers, Los Altos,
CA 94022, USA, 2000. ISBN
1-55860-540-1. xxv + 597
pp. LCCN QA76.58 .1483
2000.

Kauranne:1995:OHM

T. Kauranne, J. Oimonen,
S. Saarinen, O. Serimaa, and
J. Hietanniemi. The opera-
tional HIRLAM 2 model on
parallel computers (weather
forecasting). In Hoffmann
and Kreitz [HK95], pages

Koski:1995:STL

Kimmo Koski. A step to-
wards large scale parallelism:
Building a parallel comput-
ing environment from het-
erogeneous resources. Future
Generation Computer Sys-
tems, 11(4–5):491–498, Au-
gust 1995. CODEN FG-
SEVI. ISSN 0167-739X
(print), 1872-7115 (elec-
tronic).

Konuru:1997:MUL

Ravi B. Konuru, Steve W.
Otto, and Jonathan Walpole.
A migratable user-level pro-
cess package for PVM. Jour-
nal of Parallel and Dis-
tributed Computing, 40(1):
CODEN JPDCER. ISSN
0743-7315 (print), 1096-0848
(electronic). URL http:
Kermarrec:1996:PDS

Kuckuk:2013:IPD

Klockner:2012:PPS

Kolesnichenko:2016:CBG

Kuhn:2000:OVT

Kamal:2005:SVT

REFERENCES

Kotsis:1996:EEP

Krantz:1997:CSC

Krawczyk:2001:PIM

Kim:2013:MPE

Kaliman:2015:SNU

Kovanen:2015:TAC

Kegel:2013:DTU

[102x681] REFERENCES

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

Kim:2014:VVF

Kim:2012:OUP

REFERENCES

Kusano:2000:PEO

Kurzyniec:2007:UCA

Kranzlmüller:2001:IRM

Keppens:2002:OPM

Koval:2010:USB
Peter Koval and J. D. Talman. Update of spherical Bessel transform: FFTW and OpenMP. Computer Physics Communications.
Karonis:2003:MGG

Komatitsch:2003:BDF

Kolonias:2011:DIE

Kuhn:1998:FFW

Kuhn:1998:FFW

Kranzlmueller:1998:DPP

Kolonias:2011:DIE
REFERENCES

REFERENCES

Lopez:2002:ESM

Lopez:2006:ESM

Ladd:2004:GPP

Lobeiras:2016:DEI

Laguna:2015:DPF

Laforenza:2001:PHP

Lorenz:2015:AMS

Langdon:2009:FHQ

Loos:1996:MPS

Lavi:1998:IPD

Lashgar:2016:ESM

Loncar:2016:CPS

Losada:2019:LRR

Lawton:1996:BHP

Ling:2012:HPP

Lewis:1993:PCP

Lauria:1997:MFH

[LCL12] Ilya Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan-Anh Nguyen, Rahul Sampath, Aashay Shringarpure, Richard Vuduc, Lexing Ying, Denis Zorin, and George Biros. A mas-

Losada:2017:RMA

Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

Liu:1996:BMP

Lee:2001:APT

D. J. Lee and T. J. Downar. The application of POSIX threads and OpenMP to the U.S. NRC neutron kinetics code PARCS. *Lecture Notes in Computer Science*, 2104:90–??, 2001. CODEN LNCSD9. ISSN
Lu:1997:QPD

Liu:2013:DLO

Lorenzon:2019:ASO

Lee:2006:PT

Lee:2012:SMO

Levelt:1995:IIS

REFERENCES

REFERENCES

Loyot:1993:VVM

Lee:1999:PEJ

Liu:2016:MBM

Li:2010:SVC

Lassous:2000:HGA

Leung:1995:EPE

Leung:1998:PAN

REFERENCES

REFERENCES

Lastovetsky:2008:RAP

Luecke:2003:CPM

Liang:1996:AEO

Li:2003:PNH

Luecke:2004:PSM

REFERENCES

Luo:2014:ISM

Langlais:2002:SSM

Li:1993:SLL

Loh:1994:ISR

Larsen:1999:SPG

Lu:2013:MLP

Lee:2009:OGC

[Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: a compiler framework for auto-

Losada:2017:ARV

Losada:2015:EAL

Losada:2012:PEO

Lee:2015:OPE

Louca:2000:MFP

Lima:2012:PEO

[LNW+12] Antonio M. Lima, Marco

REFERENCES

3631. URL http://CRAN.R-project.org/doc/Rnews/.

Lastovetsky:2006:HTM

Le:2006:DMC

Lotfi:2015:AAC

Lee:2014:BCA

Luo:2001:PDE

Latham:2007:IMI

REFERENCES

2004. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Liu:2011:CBA

Liu:2008:AMD

Lumsdaine:1995:WIM

Li:2015:AMR

Lazzarino:2002:PBP

Daniel Langr, Pavel Tvrdík, Tomás Dytrych, and Jerry P. Draayer. Algorithm 947: Paraperm — parallel generation of random permutations with MPI. *ACM...
REFERENCES

Laohawee:2000:PDT

Langr:2016:ASM

Lusk:2000:IIC

Li:1995:CPP

Ludwig:1997:OUI

Liu:2004:HPR

Laguna:2019:GPD

Ignacio Laguna, Paul C. Wood, Ranvijay Singh, and

Liang:2018:FMP

Li:1993:MSU

Lopes:2019:FBD

Loncar:2016:OOM

Lu:2013:WGA

Li:1997:EHC

Luecke:2002:DDM

Li:2017:PCO

Luecke:2002:DDM

LZ97

Luecke:2002:DDM

LZC+02

Ma:2009:CRS

Wenjing Ma and Gagan Agrawal. A compiler and runtime system for enabling data mining applications on GPUs. *ACM SIG-

REFERENCES

Mavriplis:2005:HRAa

Miguel:1996:APN

Maffais:1994:SSD

Moreno:2001:AEP

Mainland:2012:EHM

Molero-Armenta:2014:OOI

REFERENCES

G. Manis. Persistent and non-persistent data objects on top of PVM and MPI. Lecture Notes in Computer Science, 2131:91–??, 2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http:
Miguel-Alonso:2009:INS

Marowka:2002:ISI

Marowka:2003:EOT

Marowka:2005:EMT

Marowka:2006:BRP

Marowka:2007:PCD

Marowka:2009:BCT

[MBE03] Seung-Jai Min, Ayon Ba-

REFERENCES

Morrison:1999:FPP

Maier:2017:OLD

Malinowski:2018:SIP

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

REFERENCES

Moody:2003:SNB

Martin:1995:DPC

Mintchev:1997:TPM

Mehta:2015:MTP

Mendonca:2017:DAA

Mehta:2012:SPE

[Matthey:2001:EMO] T. Matthey and J. P. Hansen. Evaluation of MPI’s one-sided communication mechanism for short-

Hwu:2012:GCG

[mH12]

[MHC94a]

[Mulliner:1993:PMU]

[Mic93]

[Muddukrishna:2015:LA]

[Ananya Muddukrishna, Peter A. Jonsson, and Mats Borsson. Locality-aware task scheduling and data distribution for OpenMP programs on NUMA systems and manycore processors. *Scientific Programming*, 2015(??):981759:1–]

[MJB15]
REFERENCES

[102x681] REFERENCES
[102x681] 333
[177x646] 981759:16, ???, 2015. CO-
[177x634] DEN SCIPEV. ISSN 1058-
[177x622] 9244 (print), 1875-919X
[177x598] www.hindawi.com/journals/
[177x586] sp/2015/981759/.

[Mittal:2012:CAS]
Anshul Mittal, Nikhil Jain, Thomas George, Yogish Sab-
harwal, and Sameer Kumar. Collective algorithms for
sub-communicators. ACM SIGPLAN Notices, 47(8):
315–316, August 2012. CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). PPOPP ’12 confer-
ence proceedings.

[Muddukrishna:2016:GGO]
Ananya Muddukrishna, Peter A. Jonsson, Artur
Podobas, and Mats Bros-
son. Grain graphs: OpenMP
performance analysis made
easy. ACM SIGPLAN No-
tices, 51(8):28:1–28:??,
August 2016. CODEN SIN-
ODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

[Matyska:1994:DCS]
Luděk Matyska and Jaroslav Koča. D-CICADA: a soft-
ware for conformational PES
elucidation on network of
workstations. Journal of
Computational Chemistry,
15(9):937–946, September
1994. CODEN JCCHDD.

[McDonald:1997:IPT]
Chris McDonald and Kam-
ran Kazemi. Improving
the PVM teaching envi-
ronment. SIGCSE Bul-
etin (ACM Special Inter-
est Group on Computer Sci-
ence Education), 29(1):219–
223, March 1997. CODEN
SIGSD3. ISSN 0097-8418
(print), 2331-3927 (elec-
tronic).

[McDonald:2000:TPA]
Chris McDonald and Kam-
ran Kazemi. Teaching par-
allel algorithm with process
topologies. SIGCSE Bul-
etin (ACM Special Inter-
est Group on Computer Sci-
ence Education), 32(1):70–
74, March 2000. CODEN
SIGSD3. ISSN 0097-8418
(print), 2331-3927 (elec-
tronic).

[Mohror:2004:PTS]
Kathryn Mohror and Karen L.
Karavanic. Performance tool
support for MPI-2 on Linux.
In ACM [ACM04], page 28.
???

[Manwade:2017:DFA]
Karveer B. Manwade and
Dinesh B. Kulkarni. Data
flow analysis of MPI pro-
gram using dynamic anal-
ysis technique with partial

Maheo:2012:AOL

Markus:1996:PEM

Min:2001:PCO

Mokbel:2011:ASR

Mitra:2014:AAP

Marjanovic:2010:ECC

Marowka:2004:OOA

Malakhover:2018:CMT

Marendic:2016:NMR

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2001:TSH

Panagiotis D. Michailidis and Konstantinos G. Margaritis. Text searching on a heterogeneous cluster of workstations. *Lecture Notes in Computer Sci-

Shin Morishima and Hiroki Matsutani. Performance evaluations of graph database using CUDA and OpenMP compatible libraries. *ACM SIGARCH*
REFERENCES

Malony:1994:PAP

Mudge:1993:PTS

Morimoto:1998:IMM

[MMH98] K. Morimoto, T. Matsumoto, and K. Hiraki. Implementing MPI with the memory-based communication facilities on the SSSCORE operating system.

Morimoto:1999:PEM

Mohamed:2013:MMM

Manca:2016:CQI

MacFarlane:1999:PPI

Morris:2007:SNO

Mohr:2002:DPP

Matuszek:1999:BPG

Martin:1996:WTW

Meleshchuk:1991:IPP

S. B. Meleshchuk and A. N. Nedumov. Implementation of a protocol for parallel database access with virtual machine communications facilities. *Programmirovanie*, 17(1):35–42, Jan-

Midorikawa:2005:PNM

Mork:1995:DPP

Manke:1995:MPP

Martin:2004:HPA

MPIForum:1998:SIM

Muller:1996:CDI

Martins:2012:PDC

REFERENCES

[MS96a] T. P. McMahon and A. Skjellum. eMPI/eMPICH: embedding MPI. In IEEE...
REFERENCES

Menden:1996:PPP

Marinho:1998:WMP

Mierendorff:1999:PMB

Migliardi:1999:PEH

Mourao:1999:IMO

Macias:2002:SEA

Mahinthakumar:2002:HMO

[MS02b] G. Mahinthakumar and F. Saied. A hybrid MPI-OpenMP implementation of an implicit finite-element code on parallel architectures. The International Journal of High Performance Computing Applications...
Mertens:2004:CCP

Mysliwiec:1997:IPS

Matise:1995:PCG

Migliardi:2000:SFT

McCandless:1996:OOM

Massetto:2012:NSB

Martorell:2005:BGP

Mossaiby:2017:OIH

Miei:1996:IER

Mallon:2016:MUB

Marin:1994:GAL

Momeni:2015:EEO

REFERENCES

[MV17] Preeti Malakar and Venkatram Vishwanath. Data movement optimizations for...
independent MPI I/O on
the Blue Gene/Q. Parallel
www.sciencedirect.com/
science/article/pii/S016781911630062X.

Manis:1996:EPT

PVM with threads in distributed programming. In Liddell et al. [LCHS96], pages 1013–?? ISBN 3-540-

Muller:2010:SMA

MPI2007 — an application benchmark suite for parallel

Mehra:1995:AIM

instrumentation, monitoring and visualization of PVM
programs. In Bailey et al. [BBG+95], pages 832–837.

Mamontov:1998:AES

[MW98] Y. V. Mamontov and M. Willander. An algo-
rithm to evaluate spectral densities of high-dimensional
stationary diffusion stochastic processes with non-linear
coefficients: The general scheme and issues on imple-
mentation with PVM. Lecture Notes in Computer Sci-
0302-9743 (print), 1611-3349 (electronic).

Manegold:1997:QBM

CODEN LNCSDD. ISSN 0302-9743 (print), 1611-3349 (electronic).
REFERENCES

[NAG] C. Nicolescu, B. Albers, and
REFERENCES

[NB96] C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine
REFERENCES

(PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ???? LCCN ????.

Nickolls:2008:SPP

Neyman:1999:ERP

Nguyen:2012:BTM

Nguyen:2017:ATM

Nobari:2012:SPM

Neophytou:1998:NDJ

Neophytou:2001:NDW

Nelson:1993:PPP

Neugebauer:2017:PAR

Nesterov:2010:SPT

Neun:1994:UPB

Neyman:2000:CDA

Nordling:1994:SOD

P. Nordling and P. Fritzson. Solving ordinary differential equations on parallel computers — applied to dynamic rolling bearings simulation. In Dongarra and Wasniewski [DW94], pages 397–415. ISBN 3-

REFERENCES

Nakano:2003:SCG

Nitsche:2000:TCM

Norden:2007:DDM
REFERENCES

issn=0885-7458&volume=35&issue=5&spage=477.

Nadeau:1995:SVR

Novotny:1995:BRA

Nomura:2014:PAM

Nanayakkara:1993:PIR

Nupairoj:1995:PES

Nishitani:2000:IEO

Notz:2012:GBS

Nagaraj:1991:MHL

Naumenko:2016:ACT

Nadal-Serrano:2016:PSC

Nukada:2012:SMG

Nauberger:2012:MIS

Nandivada:2013:TFO

Nogueira:2016:BBW

Norcen:2005:HPJ

Nitsche:1998:FMP

Ng:2012:STT

Nguyen:1994:DCE

S. T. Nguyen, B. J. Zook, and Xiaodong Zhang. Distributed computation of electromagnetic scattering problems using finite-

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Olivier:2012:CMW

Oed:1993:CRM

REFERENCES

Ong:2000:PCL

Owaida:2015:EDS

Otten:2016:MOI
Matthew Otten, Jing Gong, Azamat Mametjanov, Aaron Vose, John Levesque, Paul Fischer, and Misun Min. An MPI/OpenACC implementation of a high-order electromagnetics solver with GPU Direct communication. The International Journal of

Okitsu:2010:HPC

Ohara:2006:MMP

Oh:2012:MOO
Kwang Jin Oh, Ji Hoon Kang, and Hun Joo Myung. mm_par2.0: An object-oriented molecular dynamics simulation program parallelized using a hierarchical scheme with MPI and OPENMP. Computer Physics Commun-
REFERENCES

REFERENCES

CODEN CPHCBZ. ISSN [OMK09]
www.sciencedirect.com/
science/article/pii/S0010465515003070.

Olszewski:1995:TCC

Luke Olszewski. A timing comparison of the con-
jugate gradient and Gauss–Seidel parallel algorithms in
a one-dimensional flow equation using PVM. In ACM

Olukotun:2014:BPP

Kunle Olukotun. Beyond parallel programming with
domain specific languages. ACM SIGPLAN Notices, 49
CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic).

Ogawa:1996:OOM

Hirotaka Ogawa and Satoshi Matsuoka. OMPI: Optimiz-
ing MPI programs using partial evaluation. In ACM
[ACM96c], page ?? ISBN 0-89791-854-1. LCCN QA
76.88 S8573 1996. URL [Ong02]
http://www.supercomp.org/
sc96/proceedings/SC96PROC/
Ogawa/index.htm. ACM
Order Number: 415962,
IEEE Computer Society
Press Order Number: RS00126.

Ozgun:2009:PCB

Ozlem Ozgun, Raj Mittra, and Mustafa Kuzuoglu. Par-
allelized characteristic basis finite element method
(CBFEM–MPI) — a non-
iterative domain decompo-
sition algorithm for electro-
magnetic scattering prob-
lems. Journal of Com-
putational Physics, 228(6):
2225–2238, April 1, 2009.
CODEN JCTPAH. ISSN
0021-9991 (print), 1090-2716
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0021999108006293.

OBroin:2012:OIS

Cathal Ó Broin and L. A. A.
Nikolopoulos. An OpenCL
implementation for the solu-
tion of the time-dependent
Schrödinger equation on
GPUs and CPUs. Computer Physics Communications, 183(10):2071–2080,
October 2012. CODEN
CPHCBZ. ISSN 0010-4655
(print), 1879-2944 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0010465512001774.

Ong:2002:MRS

Emil Ong. MPI Ruby: Scripting in a parallel
environment. Computing in Science and Engi-
neering, 4(4):78–82, July/
August 2002. CODEN
CSENFA. ISSN 1521-9615
OBrien:2008:SOC

Orlando:1998:MBR

Olivier:2010:COO

Orlando:2000:MDT

Olivier:2012:OTS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Publisher</th>
<th>ISBN</th>
<th>LCCN</th>
<th>IEEE catalog no.</th>
<th>Pages</th>
<th>Volume</th>
<th>Issue</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Pal:2014:PMH

Patterson:1993:PPE

Puzniakowski:2012:TOI

Pringle:2001:TPF

Pingali:1995:LCP

REFERENCES

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1996:RPP

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

REFERENCES

Pjesivac-Grbovic:2005:PAM

Pjesivac-Grbovic:2007:PAM

Pjesivac-Grbovic:2007:MCA

Prabhakar:2002:PCB

Pessoa:2018:GAB

Poirier:2018:DAB

Pierce:1994:NMP

Papadopoulos:1998:DVS

Park:2005:SOA

Papadopoulos:2001:NRC

Paul:2006:TLF

Prabhakar:2016:GCH

Plank:1995:ADC

J. S. Plank, Youngbae Kim, and J. J. Dongarra.

Parrilia:1999:UPD

Pai:2016:CTO

Poplawski:1989:MPP

Park:2001:CSL

Pagourtzis:2001:PCT

Papakostas:1996:PSP

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Papakostas:1996:PPP

Papakostas:1996:UPI

Priimak:2014:FDN

Dmitri Priimak. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA)

Protopopov:2001:MMP

Pande:2007:SCM

Pehrson:1994:IPP

Perez:2019:A

Peters:2011:FPC

Hagen Peters, Ole Schulz-Hildebrandt, and Norbert

Patrick:2008:CEO

Preissl:2010:TMS

Prieto:1999:PRM

Peng:2014:BAH

Plunkett:2001:AMD

Payrits:2000:UPC

Pears:2001:DLB

Pai:2013:IGC

Prost:2001:MIG

Prost:2001:THP

Peraza:2016:PGQ

Joshua Peraza, Ananta Ti-

Pierro:2018:SFP

Phan-Thien:1994:CDL

Prylli:1999:DHP

Puskas:1995:LBW

Peinado:1997:HPC

Park:2001:PPE

Pahl:1995:CCB

Preissl:2012:CSS

Pang:2016:MKR

Pirkelbauer:2019:BTF

Prasad:1995:PPB

Perla:2012:PAH

Phillips:2002:NBS

Qiu:2012:PWM

Qawasmeh:2017:PPR

Qaddouri:1995:MFS

Qaddouri:1996:CPC

Quo:2000:PNN
Qu:1995:FAS

Quinn:2003:PPC

Russell:1992:CMW

Rashti:2009:SAM

Rabenseifner:1998:MGI

Rabenseifner:1999:APM

[Rab99] R. Rabenseifner. Automatic profiling of MPI applications with hardware
REFERENCES

Rufai:2005:MPO

Rejitha:2017:EPC

Resch:1997:CMP

Resch:1997:PM

Resch:1997:PMC

Rodriguez:2015:OPI

Russo:2017:MPG

REFERENCES

Reinefeld:2001:CDI

Reussner:2001:SSK

Reussner:2003:USD

Roy:2000:MGQ

Reynders:1995:OOO

Russ:1996:HAT

Rasch:2018:MDH

Ari Rasch and Sergei Gorlatch. Multi-dimensional ho-

[Rivas-Gomez:2018:MWS] Sergio Rivas-Gomez, Roberto Gioiosa, Ivy Bo Peng, Gokcen Kestor, Sai Narasimhamurthy, Erwin Laure, and Stefano Markidis. MPI windows on storage for HPC appli-

Reussner:2001:APP

Roda:1996:PEI

Rizzardi:2017:ATS

Ratha:1995:CUC

Rodrigues:2014:TPS

Robinson:1993:ECD

D. F. Robinson, D. Judd, P. K. McKinely, and B. H. C. Cheng. Efficient collective data distribution in all-

Rabenseifner:2001:ECF

Ragan-Kelley:2013:HLC

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Reyes:2013:PEO

Rungsawang:2001:LCP

Rubio-Largo:2012:UMO

Timothy J. Rolfe. Perverse and foolish oft

Rageb:2001:CEM

Rauber:2002:LSH

Roda:1997:PPI

Roig:2001:EMM

Robinson:1996:TMI

Russ:1999:UHR

Samuel H. Russ, Jonathan Robinson, Matt Gleeson, Brad Meyers, Laxman Rajagopalan, and Chun-Heong Tan. Using Hector to run MPI programs over net-
REFERENCES

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

Roy:1997:PNT

Reano:2019:SIN

Rambu:1995:DSS

Reano:2015:IUE

REFERENCES

REFERENCES

[Sainio:2010:CGA] J. Sainio. CUDA EASY—a GPU accelerated cos-

REFERENCES

issue%2C3%2C11%3Bjournal%2C1%2C9%3Blinkingpublicationresults%2C1%2C21.

Seyfarth:1994:GEE

Schulz:2004:IES

Selikhov:2002:MCC

Schindewolf:2012:WSA

Sani:2014:PDF

Smith:1995:CR
K. A. Smith, A. J. Baratta, and G. E. Robinson. Coupled RELAP5 and CONTAI N accident analysis using PVM. Nuclear safety,
REFERENCES

Scheule:1999:HAP

Schevtschenko:2001:PAS

Searles:2019:MOA

Song:1997:ALL

Suppi:2000:IOP

Suppi:2001:PCS

Remo Suppi, Fernando Cores, and Emilio Luque. PDES: a case study using the switch time warp.
REFERENCES

Santos:1997:ECP

SCR92

Shi:2012:VGA

Szeberenyi:1999:SGB

SM-D:2013:BR

Sorensen:2016:EER

REFERENCES

Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??

REFERENCES

Serot:1997:EPF

Sevenich:1998:PPU

Scott:1998:PWN

Schoinas:1994:FGA

Steuwer:2015:GPP

Siegelin:1995:BPW

Shen:2013:ACE

REFERENCES

Selikhov:2005:CMB

Sharma:2012:SRP

Steuwer:2014:SHL

Sack:2015:CAM

Sunderam:1994:PCC

Schneider:2012:MAC
Timo Schneider, Robert Gerstenberger, and Torsten Hoefler. Micro-applications for communication data access patterns and MPI datatypes. Lecture Notes in Computer Science, 7490: 121–131, 2012. CODEN LNCS9. ISSN 0302-9743
REFERENCES

Stone:2010:OPP

Scherer:2000:APO

Schmidt:1994:IAP

Sitsky:1996:MLW

Song:2014:DAT

Shen:1995:PSM

Sloot:1994:CIO
REFERENCES

Sloot:1994:CIP

Sojka:2018:IEM

Sato:2001:CEO

Shing:1994:UPC

Samadi:2014:LGU

Sato:2010:BLL

Mitsuhisa Sato, Toshihiro Hanawa, Matthias S. Müller, Barbara M. Chapman, and Bronis R. de Supinski, ed-

IEEE catalog no. 92CH3185-6.

Siegel:1992:FSF

Siegel:1994:PEI

Silvester:1996:SEE

Sincovec:1993:SCP

Silla:2017:BRG

Sharma:2017:PDR

REFERENCES

REFERENCES

REFERENCES

Ber 2012. CODEN AT-GRDF. ISSN 0730-0301 (print), 1557-7368 (electronic).

Spiechowicz:2015:GAM

Satoh:2001:COT

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV

REFERENCES

Skjellum:1995:EAM

Scherer:1999:TAP

Samadi:2014:SPS

Su:2012:CPB

Sloan:2005:HPL

Squyres:1996:CBP

REFERENCES

Shires:2002:EHM

Shires:2003:OPF

Simos:2007:CMS

REFERENCES

CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Shterenlikht:2015:FC

Smith:1993:MBA

Smith:1993:DSI

Schardl:2017:TEF

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Sandes:2016:MMA

Sochacki:1993:DCW

Silva:2000:HPC
Luís Moura Silva, Paulo Martins, and João Gabriel Silva. Heterogeneous parallel computing using Java and WMPI. Concurrency: practice and experience, 12(11):1077–1091, September 2000. CO-
REFERENCES

DEN CPEXEI. ISSN 1040-3108. URL http://www3.interscience.wiley.com/cgi-bin/abstract/76000189

Su:2006:APP

Sitsky:1996:IMU

Sunderam:2001:CAP

Sri:2018:FMT

Suciu:2010:PIN
Shekofteh:2019:MSG

Sintorn:2011:EAF

Snir:1996:MCR

SousaPinto:2001:PEI

Snir:1998:MCR

Sidonio:1999:PBI

Stpiczynski:2011:SKB

Satofuka:1995:PCF

Speck:2019:APP

Shaw:1995:ADA

Skjellum:1996:TTM

Si:2018:DAA

REFERENCES

Sener:1996:DPP

Subramoni:2012:DSI

Silva:1999:DPP

Schmidl:2012:PA

Saldana:2010:MPM

Squyres:2003:CAL

Sivaraman:1995:PSP

Sivaraman:1996:AAD

Szalay:2011:FCD

Speck:2012:MST

Schmidt:1994:EAO

Szymanski:1996:LCR

Silva:1999:IME

Shan:2001:CMS

[SS01] Hongzhang Shan and Jaswinder Pal Singh. A comparison of MPI, SHMEM and cache-coherent shared address space programming models on a
REFERENCES

Sankaran:2005:LMC

Sotomayor:2017:ACG
Rafael Sotomayor, Luis Miguel Sanchez, Javier Garcia Blas, Javier Fernandez, and

Silva:1996:IDS

Silva:1997:IPD

Silva:1995:PCR

Skjellum:1994:DEZ

Sabne:2012:ECO

Stellner:1995:CMP

Sosa:2000:IQC

C. P. Sosa, G. Scalmani, R. Gomperts, and M. J. Frisch. Ab initio quantum...

Sala:2008:PHP

Schafers:1995:TGP

Squyres:1997:DEM

Shi:2010:PAE

Stone:1994:PSO

Shelton:1994:FPS

W. A. Shelton, G. M. Stocks, F. J. Pinski, R. G. Jordan, Y. Liu, L. Qui, J. B.
REFERENCES

Sen:1999:PBD

Sen:1999:AMM

Santana:1996:PVM

Stellner:1997:LBB

Smyk:2002:AMM

Smyk:2002:OMP

Adam Smyk and Marek Tudruj. OpenMP / mpi programming in a multi-cluster
system based on shared memory/message passing communication. Lecture Notes in Computer Science, 2326:241–??, 2002. [Ste94]

References

Schmitz:2008:IIG

Sunderam:1997:TAS

Stockinger:1998:VPC

Stpiczynski:2002:PPO
[Stp02] Przemyslaw Stpiczynski. Parallel Programming in OpenMP helps novices: a

Strietzel:1996:PTS
[Str96] M. Strietzel. Parallel turbulence simulation based on MPI. In Liddell et al.
REFERENCES

Strietzel:1997:PTS

Strzodka:2012:DLO

Soch:1996:PCG

Soch:1997:PGP

Shen:1999:ATL

Stone:1996:RNF

Sumimoto:2012:MCL

Sunderam:1990:PFPa

V. S. Sunderam. PVM: a framework for parallel distributed computing. Technical Report ORNL/TM-
11375, Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA, February 1990. See also [Sun90b].

Sunderam:1990:PPFb

Sunderam:1992:CCP

Sunderam:1993:PCC

[V. Sunderam. The PVM concurrent computing system. In Anonymous [Ano93b], pages 20–84. ISBN ?? LCCN ???.]

Sunderam:1994:GPP

[V. Sunderam. General purpose parallel computing with PVM. In Anonymous [Ano94f], pages 185–198. ISBN ?? LCCN ???.]

Sunderam:1994:MSH

Sunderam:1995:RIH

Sunderam:1996:PSS

Suresh:1995:IOP

Suresh:1995:PIQ

[H. Suresh. PVM implementation of quadtree building algorithms on SIMD]
REFERENCES

- Suttner:1996:SPB

- Smelyanskiy:2011:HPL

- Sistare:1999:OMC
 Steve Sistare, Rolf van de Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], [SWH15] page ??

- Stout:1991:SDM

- Sehrish:2012:RFS

- Swann:2001:SPC

- Sosonkina:2015:RAV
 Masha Sosonkina, Layne T. Watson, and Jian He. Re-

Santhanaraman:2005:DZC

Sitsky:1995:IPM

Skjellum:2001:OOA

Shan:2012:PEH

Shee:1994:DMA

Jang Chung Shee, Chao Chin Wu, Lin Wen You, and
REFERENCES

Stathopoulos:1995:DLB

Sydow:1994:Psa

Stathopoulos:1996:PIM

Song:2019:PGA

Schneider:2009:CPM

Stankovic:1999:NVJ

Siegel:2011:AFV

Stephen F. Siegel and Timothy K. Zirkel. Automatic
formal verification of MPI-based parallel programs.

\textbf{Simmunovic:1995:MIP} \hfill \textbf{Takahashi:2001:AME}

\textbf{Traf\r{f}:2014:SPE} \hfill \textbf{Tao:2012:UGA}

REFERENCES

REFERENCES

REFERENCES

Proceedings of the twentieth meeting, Parallel CFD 2008, held May 19-22, 2008 in Lyon, France.

Patrice E. A. Turchi and An-

REFERENCES

REFERENCES

REFERENCES

Tang:2016:AKM

Tennyson:2015:MOI

Tallon:2009:EPM

Tampouratzis:2016:AIH

Trobec:2001:IEM
REFERENCES

REFERENCES

the BIP-Myrinet experience. *Lecture Notes in Computer Science*, 1908:9–??, 2000. [TQDL01]

Tinetti:2001:HNW

Thebault:2015:SEI

Tong:2018:FCM

Trae:1998:PRL

Traff:2002:IMP

Jesper Larsson Träff. Improved MPI all-to-all com-

Thibault:2012:AIF

Takahashi:2002:PEH

Takahashi:2003:PEH

Terboven:2012:AOT

Ten:1995:TPE

Takahashi:2002:PEH
REFERENCES

[Shigeyoshi Tsutsui:2012:AMG] Shigeyoshi Tsutsui. ACO on multiple GPUs with CUDA for faster solution
REFERENCES

Tang:1999:CR

Tang:2000:PTR

Trelles-Salazar:1994:MSS

Theodoropoulos:1997:GSP

Tanaka:2000:PEO

REFERENCES

Uehara:2002:MBP

VanKatwijk:1995:AAC

VandeGeijn:1997:UPP

Vlassov:1995:MEP

Vazquez:1999:PNS

G. E. Vazquez and N. B. Brignole. Parallel NLP strategies using PVM on heterogeneous distributed environments. In Dongarra et al. [DLM99], pages 533–
REFERENCES

REFERENCES

453

Vadhiyar:2002:PMS

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

vonHanxleden:1994:VDF

Viswanathan:1995:PCM

Valero-Lara:2018:CCC

REFERENCES

VidalMacia:2000:IPM

Vargas-Perez:2017:HMO

Vrenios:2004:PPC

Varin:2000:PAL

VanVoorst:2000:CMI

Brian Van Voorst and Steven

REFERENCES

0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Verkerk:1992:PIC

Vetter:2002:EPE

Verschelde:2015:PHC

Wong:1999:BMM

Walker:1994:DSM

Walker:1994:EDS

Walker:1995:MVB

D. W. Walker. An MPI version of the BLACS. In

Walker:1996:MFA

Walker:1996:MP

Wallcraft:2000:SOV

Wallcraft:2002:CCA

REFERENCES

White:1995:PNP

White:1995:PNP

Wang:2013:PMO

Wedemeijer:1996:PSA

Walker:1996:MSM

Welch:1994:PVM

Werner:1995:UMP

Jörg Werner. Übersicht zum Message-Passing-Interface Standard, MPI. (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.

Weber:2017:MAL

Warren:2019:CBG

Craig Warren, Antonios Giannopoulos, Alan Gray, Iraklis Giannakis, Alan Patterson, Laura Wetter, and Andre Hamrah. A CUDA-based GPU engine

R. White. VCMON — the VM/ESA Connectivity Monitor. In Anonymous [Ano94g], pages 783–792. ISBN ????. LCCN ????.

Wismueller:1996:SBV

Wismueller:1996:SBV

Wismueller:1997:DMP

Wismueller:1998:LMS

Wismueller:2001:UMT

Witchel:2016:PPW

Wei:2012:OLL

REFERENCES

Wismueller:1996:TSI

Wismueller:1996:TSI

Wu:2007:IFR

Wolfe:2018:ODM

Weatherly:2003:DMS

Weatherly:2006:DMS

Willcock:2005:UMC

[WLR05] Jeremiah Willcock, Andrew Lumsdaine, and Arch Robison. Using MPI with C# and the Common Language Infrastructure. Concurrency and Computation: Pract-

Wendykier:2010:PCH

Walk:er:1995:RBD

Walk:er:1996:RBC

Winstanley:1997:PDP

Wang:2009:MPM

Wolbers:1992:SPP

Worley:1996:MPE

REFERENCES

Weng:2007:OIS

Wagner:1994:CFD

Wang:1995:PPG

Wu:2001:PCS

Worsch:2002:BCM

Winkler:2019:GSM

[Daniel Winkler, Massoud Rezavand, Michael Meister, and Wolfgang Rauch. gpuPHASE — a shared memory caching implementation for 2D SPH using CUDA]

REFERENCES

REFERENCES

1996. CODEN ELLEAK. ISSN 0013-5194 (print), 1350-911X (electronic).

REFERENCES

REFERENCES

Ying:2003:NPK

Yalamanchilli:1998:CPJ

Yviquel:2018:CPU

Yang:2014:HPD

Yu:2013:AGA

Yoon:1996:WBP

D.-K. Yoon and J.-L. Gaudiot. Worker-based parallel

[Xang:2014:IMP]

[YH96]

[Yero:2001:JOO]

[Yang:2011:HCO]

[Yuasa:1996:RPG]

YarKhan:2017:PPN

Yamazaki:2018:SIL

Yang:2016:HTM

Yang:2013:SFS

Yalamov:1997:BRT

REFERENCES

[Yilmaz:2011:RMS]

[Yi:1994:PID]

[YPA94]

[YPZC95]

[Young:1993:PEN]

[YSL+12]

[Yan:2014:OMB] Xin Yan, Xiaohua Shi, Lina
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zhang:1997:DED

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

Zemla:1994:WTC

Zhou:1995:FMP

Zhou:1995:RMR

Zhou:1996:FMP

Zhou:1998:LST

Zielinski:1994:PPS

Zu:1994:OSM

Zheng:2006:PEA

Zoraja:1999:SPD

Zhang:2018:IRP

Zounmevo:2014:ESC

Zaky:1996:PDT

Zha:2017:IFM

Zaki:1999:TSP

Zhou:2012:DFD

Zhang:2017:DLN

Zhu:2015:PIM

Zhai:2011:CVH

Zollweg:1993:OP

Zarrelli:2006:EPE

Zambonelli:1996:EPP

REFERENCES

1996. IEEE order number PR07376.

REFERENCES

Zh:1995:PRS

Zey:2004:AMI

Zheng:2014:IMS

Zhu:2015:PML