A Bibliography of Publications about \textit{PVM (Parallel Virtual Machine)} and \textit{MPI (Message Passing Interface)}

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

28 October 2019
Version 3.213

Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lec12]. 0 [ICC02]. 1 [ICC02, LRQ01, VDL+15].
$\text{\$19.95}$ [Ano95b]. 2 [Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19].
$\text{\$24.95}$ [Ano95c]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SC19, SH14, TPD15, WR01, YSL+12].
$\text{\$35}$ [Ano00a, Ano00b].
$\text{\$35.00}$ [Ano99a, Ano99c, Ano99b, Ano99d]. 3D [KA13].
$\text{\$60}$ [Ano00a, Ano00b]. 3 [PBC+01].
A [ARYT17]. α [JMdVG+17]. $Ax = b$ [BG95]. D [UZC+12]. H^2/H^∞ [GWC95]. k [She95, TK16]. \leftrightarrow [GRW+19]. M^3 [JSH+05].
PVM$^+$ [Wil94]. N [IHM05, Per99, Rol08b, SP99, SRK+12]. P_N [OGM+19]. P_{N-2} [OGM+19]. SU(3) [BW12]. τ [RGDM15, RGDM16]. XY [KO14].

-based [Rét19]. -body [IHM05, Per99, SP99, SRK+12]. -D [DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. -Dimensional [LRQ01].

. [Wil94].
/Fortran [TBG+02]. /many [KSG13]. /OpenMP [VDL+15].

1 [HMKV94, SOHL+98]. 10-Gigabit [HeF05]. 100 [Str94]. 100k [SC19]. 10th [DLO03, IEE96e]. 11th [IEE97b, KKD04]. 12th [Hol12].
128-processor [LL01].

2 [AKL99, BCAD06, BHS+02, BMPZ94a, CwCW+11, CD96, DPD08, FST98a, FST98b, GFD03, GGHL+96, GT01, GHLL+98, GLT99, GLT00a, GLT00b, HGMW12, Jou96, LC97b, LSK04, MS02a, MKO4, PS00a, SS99, SSL97, TRH00, VAT95, bT91a]. 2-0 [BDW97, EdS08, FF95, USE00].

3 [BT95, C14, Che10, FCS+19, GBH18, GPL+96, GLUT12, Gro12, HDT+15]. 3-D [BH95]. 3.0 [Ano97, Bra97, BMR02, BRM03, DBB+16, KaM10, OP10]. 3.06 [Ano03]. 3.D [ACM04]. 3.4 [Gei97, GKS97]. 3.X [KS96].

4 [Ano03, HRZ97, KSHS01, NU05, SD13, SBT04]. 4.0 [DSGS17, JCP15, dOSMM+16]. 4.5 [CBYG18]. 43 [UCZ+12]. 45-degree [CT13]. 48th [IEE94e]. 4th [BDW97, EdS08, FF95, USE00].

5 [TRH00]. 512 [RBB97c]. 5th [AD98, Cha05, IEE94a, LHC00]. 600 [LSK04]. 6000 [AL93, NMW93]. 64 [dCZG06]. 64-bit [Wil93]. 6th [ACDR94, DLM99, GT94, PW95, SHM+10, Sin93].

7th [ACM95b, CGKM11, DKP00, GN95, PBB+95].

857 [SMSW06]. 897 [HWS09]. 8th [CMR12, CD01].

90 [Ben95, SM03]. 9076 [BT95]. '91 [BG91, EJL92, IEE91]. '92 [Sie92a, Sie92b, VW92]. '93 [Ano93g, GGK+93, GHH+93, IEE93a, IEE93e]. 93SC038 [FS93]. 93SC041 [Gle93]. '94 [BS94, DW94, GT94, IEE94b, IEE94h, PSB+94, SPE95, WPH94, dGJM94]. 947 [LTD13]. '95 [ACM95b, AH95, BH95, CLM+95, CJN95].
Advection-Chemistry [AKK+94].
Advisor [GVF+18]. Aerospace [MAB05].
Affine [DBM16]. Affinity
[ETWAM12, AGG+95, NAAL01, vdP17].
Affordable [Rol94]. again [Har94]. against
[GHD12]. Age
[MDSC09, Ano94f, GJLT11, HK95]. AGBE
[SAS01]. Agent
[Mat01b, MCB05, ZWZ+95]. agent-based
[MCB05]. agents [KBA02]. Aging
[LRBG15]. Aging-Aware [LRBG15].
AIMS [Yan94]. Air
[AKK+94, BZ97, MPD04, MSML10, BTC+17, SH94, SYd94].
airspace [TCP15]. Aix
[GA96, Ano01a]. Aix-les-Bains
[GA96]. Al
[Ano95b, NMC95]. Alamos [Old02].
Albuquerque [IEE91, IEE95d]. Alchemist
[GRW+19]. ALDY [GS96]. ALE [HAA+11].
Algebra
[BDT08, CDD+13, Coo95b, DGH+19, IS16, MGMH97, Neu94, van97, BKvH+14, Cal94, Coo95a, LRLG19, PMZM16, dCH93].
Algebraic [CGPR98, Lev95]. Algorithm
[ACMR14, BST+13, BP99, BT01b, DYN+06, FJBb+00, HA10, HD02b, ITT02, MW98, PKd95, PB12, RDMB99, Rö919, SAS01, Sch96a, SSLMW10, SWH15, Sta95b, TK16, WHDB05, ART17, AAAA16, ARL+94, Ad95, BBC+19, BB95a, BAV08, BY12, BCM+16, CUC95, CT13, CSW99, GM94, GCN+13, GGL+08, GKK09, GP95, HWS09, IM95, JR13, KDSO12, KY10, KWEF18, Kan12, KBP16, KN17, KOM14, Kom15, KRC17, LYIP19, LYZ13, MM92, MLVS16, MK00, NB96, NAJ99, OKW95, OGM+19, OKM09, PGBF+07, PSLT99, Ram07, RJc95, RAGJ95, Sch96b, SOA11, Sur95a, TNI17, TGGK19,Was95a, YULMTS+17, ZSK15, ZWL+17, DfH94, van93, HWS09, LTDD14, Riz17, Spe19, SMSW06].
Algorithm-based [PKd95].
Algorithm-Dependant [BP99].
algorithmic [HHSM19, RJDH14].
Algorithms [ACM95b, ATC94, ADRCT98, ASA97, CCSM97, DALD18, DAK98, DK06, FB94, GAMR00, GKL0, HO14, HHK94, IEE96d, KTB+19, KK02a, LHHM96, Li96, LAD16, MTSS94, MGMH97, MB85, Nar95, Pet97, PBK00, SG15, VRS00, AK99, AL92, BHJ96, BMS+17, BID95, DDLM95, FR95, FP92, GWC95, HL17, HPLT99, HK0011, HS95b, Jou94, JRM+94, KL95, KRG13, LFL11, LNW+12, LRLG19, MK16, MJG+12, NP12, Ols95, PP16, Pan95b, PBK99, PD11, PCS94, RHG+96, SPE95, Sur95b, TSZC94, WCVR96, YLZ13]. alias
[SOA11]. alias-free [SOA11]. aligned
[AGIS94]. Aligners [SMM+16]. Alignment
[GRW+19, AMHC11]. all-port
[RJMC93]. All-to-All
[LZH17, LZH18, Trö02]. Allgather
[KTAB+19]. Allgatherv [KTAB+19].
Allocation
[AGS97, BS01, DGG+12, RFRH96]. alloy
[UTG94]. ALM [PZ12]. Altera
[RGB+18, TK16]. Alternative
[EM94, SWH05, Trö12a, EKTB99]. ALWAN
[HB96a, HB96b, MSB97]. Amazon
[ZLZ+11]. AMBER [SL95].
AMBER4 [VM95]. American [Ara95].
AMIP [Gat95]. Among [CB16]. AMPI
[ZHk06]. AMPIC [CCHW03]. amplified
[EZBA16]. AMR [NLRH07]. AN2 [HBT95].
analogue [WWZ+96]. analyses [ANS95].
Analysis
[BHW+17, BR20, BGG+02, BBC+00, BDL98, CGLD01, CAL+19, EML00, FK01, FJK+17, Hol12, JF95, KL94, KNT02, KRG13, LCK11, MK17, MCLD01, NAW+96, NMS+14, Ost94, PZ12, PGAB+05, SPL+12, SB95, Sn01, TFGM02, Whi04, WM01, BB93, BBH14, BBH+15, Che99, DSGS17, EVP+17, GR95, GFB+14, GSM+00, GKS+11, GE95, GE96, GT07, JB96, JLG05, LC07, LLG12, LRLG19, LL16, LBH12, MBM+94, MMW96, MLA+14, MJPB16, Pat93, PHJM11, PSV19, PGAB+07, SdSCP13, SYs12, SS94, SDJ17, SPH95, Shi94, Sil96, SWL+01, SSG95]
analytic [THDS19].

analytical [BHW+12, HK09, JS13, KN17].

Analyzer [JJPL17, KKM15]. Analyzers [Ano01a]. Analyzing [BRU05, DF17, FM09, HG12, HeF05, PFG97, RPS19]. anasslich [Ano94c]. Anatomy [KWEF18]. Andrew [Ano99c, Ano99d].

Applications [Ano98]. Annual [ACM95b, Ano93b, Ano94h, IEE95b, USE00, Van95, Y+93, ACM95a, Eng00, IEE94e, IEE95l]. Ant [ITT02]. ante [Ano03]. antenna [DSOF11].

Applications [APJ+16, AGS97, Ano89, Ano96c, AZG17, BCLN97, Ben18, BHV12, BBH+06, BRU05, BFM97b, BFBW01, CGS15, CBL10, CGLD01, Cha05, CNW95, CRGM14, Cot98, CTK00, Cot04, Cza02, Cza03, DW02, DLM+17, DERC01, DHK97, DG97, DGMJ93, EV01, EML00, FL98, FD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GK10, HMK90, Hus98, IEE95l, ITT02, JHS93b, JJPL17, KB98, KBS04, KGK+03, KPK01, KK02b, Kuh98, La01, LAdS+15, LWSB19, LRG14, kLCCW07, LdB91, LMRG14, dLR04, MSOG01, MS02a, Mar02, Mat01b, MAB05, MC98, MG15, MAN09, PSM+14, Rei01, RPM+08, RBB15, RBL01, SPL+12, SG12, SPH+18, SC04, SPB+17, SSB+17, TTSY00, TFGM02, VdS00, VY02, Vos03, Wal96a, WC09, WZM17, WJA+19, Wis96a, WSN99, WBH97, WM01, dGJM94, AC07, ACH+11, AC12, Ano93a]. applications [Ano94f, Ano03, Ara95, Arn95, ASB18, AGMJ06, BKH+13, BR04, BDV03, BAG17, BF96, BFM97a, CGK+16, CB95+15, CDM15, CLSP07, CBM+08, CIJ+10, CFPS95, CCHW03, CCM+06, D298a, DSZ94, DPFT19, D95+, DCH02, EKTB99, EGH99, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHD12, GJMM18, GS96, GSM+00, GH+93, HZ99, HAJK01, JC17, JPTE94, LM17, LCM17, LBB+19, LZHY19, LS08, MA09, MKBM12, MLC04, MS96b, NBSB07, NC2+12, NFG+10, PK05, PTL+16, Rab09, RS95, RGPG+18, SJLM14, SPE95, SBG+12, SD17, SGH12, SG05, SIC+19, SL95, SB01, SD16, SRS+19, TMC09, TBB12, TPLY18, Vot02, Wis96b, Wd02, WT13, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94].
Applying [GSM00]. Approach [AZG17, BHM94, BJ93, BHNW01, CRGM14, CD98, DLM+17, FFP03, GCB12, HD00, KBA02, KK02a, KmWH10, LGM00, Mar06, PPR01, Pet00a, Pet00b, RGD13, Ros13, TJPF12, BK11, Bis04, BTC+17, CLYC16, CDF99, CRGM16, DiN96, EO15, FMS15, HDB+13, JS13, KPL+12, KSSS07, KJEM12, LSG12, MGG05, MS99b, NEM17, OHG19, OW92, SVC+11, SEC15, TWFO09, VGP+19, WO09]. Approximate [Huc96, MM02, GGC+07, GG09, MM03]. Approximation [SLJ+14, SJLM14]. April [ANS95, AH95, Ano93h, Ano94h, CH96, DR94, GH94, Ham95a, IEE92, IEE93b, IEE95f, IEE96e, IEE97b, IEE05, LCHS96, MC94, Nar95, Sie94, SW91, Ten95]. APS [GT94]. AQsort [LTS16]. AQUAgpusph [CP15]. arbitrary [HP11]. ARCH [Ada97, Ada98]. architectural [GCC+07].

Architecture [BG94a, CGC+11, CLOL18, EBKG01, EM02, FD97, Fuj08, HRZ97, IEE97c, ITK10, LSLZ12, PT01, PS01b, SMM+16, SC04, SYL19, WP11, YTH+12, BCR99, BG94e, CSPM+96, CS96, CBIGL19, Din96, FHC+95, HK90, MMDA19, MRH+96, PWd+12, SWYC94, SSGF00, Squ03, SP11, WCC+07, YAJG+15, YEG+13, ZWZ+95]. architecture-independent [Din96].

Architectures [ACM95b, BDT08, BFG+10, CHPP01, HD02a, HD02b, HHK94, IEE96d, KDT+12, LHHM96, L96, LZH17, LAD16, MS02b, MTSS94, MCS00, NO02b, Nar95, PZ12, SMMX+18, TSCaM12, YK+18, ZTD19, BDP+10, BN00, BKML95, CLM+95, CDZ+98, DM93, DZZY94, GDC15, GP95, HHS18, Hos12, LCL+12, LDJK13, MLC04, NO02a, PY95, RFH+95, RMMN+12, SPL99, TDG13, TSZC94, Uh95a, VDL+15, WST95, dlAMC11]. Area [CDHL95, Fis01, BHW+12, FGT96, FGG+98, KHB+99, Qu95]. area-based [Qu95]. arising [ARvW03]. Aristotle [FSV14]. Arithmetic [Ano98, JPT14, Sur95a]. Arithmetic [HD00]. Arizona [IEE95b, JB96]. ARM [AFGR18, MGL+17]. ARM-based [AFGR18]. Array [DDPR97, HD02b, LTS16, WG17, CCM12, DK13, HSE+17, JKN+13, Ott93, TOC18, Wal02]. arrays [HCL05, RBS94]. Arrival [FPY08, MLVS16]. art [LF93b]. Artificial [BPG94]. ARTUR [FJBB+00]. ARVO [BHW+12]. ARVO-CL [BHW+12]. ary [Pan95a]. Ascona [DR94]. Ashes [Thr99]. ASL [FGRT00]. ASME [LF+93a]. aspects [CG99a]. Assembly [PGF18, TP15]. Assessing [LMG17, dLR04, MABG96, TSCaM12, CMV+94]. Assessment [Mat01b, TAH+01, B097, LH98]. Assignment [Cza13, CK99]. assist [Kik93]. Assisted [GTH96, GM13, MM13]. Astro [CC17]. Astronomical [JB96, SPH95]. asymmetric [GCN+10]. asynchronization [FSG19a, FSG19b]. Asynchronous [Ada97, Cav93, CZ95a, CDP99, HE02, SPH+18, BDH14, BCK+09, CZ95b, DDYM99, RSC+19, Sch99]. Athapascan [CP98]. Atlanta [AGH+95, Ara95, USE00, UCW95]. ATM [GFV99, HBT95, Jon96, LHD+94, LHD+95]. Atmosphere [BS93]. Atmospheric [HK93, KBBS19, RSBT95]. atom [MGG05]. Atomic [LRT07, LAFA15, SYF96, DS13, Hin11, SY95, XF95]. atoms [JLS+14]. Attacks [PV97, GHD12]. attempt [GM18]. Attraction [GB96]. audio [BJ13]. Augmented [GJT91]. August [ATC94, AG95a, BFM90, DMW96, GT94, HAM95b, IE94g, IE95k, IE95i, IE96f, LF+93a, Las94, PSB+94, PBG+95, Re96, V95, Was96]. Aurora [LdSB19]. Austin [IEE94b]. Australasian
Australia [GN95, Nar95, ACDR94, Bil95]. Australian [ACDR94, GN95].

Austria [ACCD94, GN95].

Australian [ACDR94, GN95].

Austrian [Bos96, BH95, Kra02, TBD12, Voig93].

Austrian-Hungarian [Bos96, BH95, Kra02, TBD12, Vol93].

Auto [CC17, DWM12, DBLG11, PSB+19, DwdLV94, DR95, FMBM96, FH97, Hum95, JH97, MM03, NP94, SGS95, SY95].

Auto-Generation [CC17, DWM12].

Auto-link [GMPD98].

AutoMap [GMPD98].

Automata [Car07, BBK+94, SC19].

Automated [BMPS03, MVL95, RKP18, LLG12, RFRH96, Yan94].

Automatic [BBML12, BBK+94, CL08, BHK+06, CBL01, Cza03, DW02, EML98, EML00, FAFD15, FM11, GKF13, HZ99, JFY00, JYY+03, JJPL17, KOI01, KHS12, MB18, MGA+17, NCB+17, OWSA95, Rab99, RGD13, SZ11, SR96, SSB+17, TJ1F12, WC15, WM01, APBcF16, AMuHK15, AGG+95, BR04, BRHS08, CHK15, CdaMN96, CPR+95, HZ96, LME09, LF93b, WMP14, ZH10, FV00].

Automatically [VZT+19, WBSC17].

Automation [Ano93a].

Automotive [Ano93a, Ano93a].

Autotuning [BAG17].

Auxiliary [STMK97].

Available [Bak98, BF98].

Avoidance [CRGM14].

avoiding [GDG+18].

AVTP [FHC+95].

Award [Str94].

Awards [Str94].

Aware [APJ+16, BHP+03, Ben18, EGR15, GFI+18, HVA+16, LRBG15, MJ01, Pan14, ZLP17, BLVB18, CLA+19, CGH+14, FA18, GHZ12, HJYC10, HG12, JKN+13, KBG16, MBBD13, MSMC15, SHM+12, SPK+12, WSRY16].

Awareness [HK09, VGS14].

AXAF [NH95].

AXC [CBIGL19].

Backup [Gua16].

Bains [GA96].

Balance [HE02].

Balanced [EZBA16].

Balancing [BkdsH01, DBA97, DI02, DK06, FSG19a, GCBL12, MM02, PT01, Ps95, ST97, Wal01a, Bir94, BS05, DZ96, DLR94, DwDV94, DR95, FMBM96, FH97, Hum95, JH97, MM03, NP94, SGS95, SY95].

Balatonfured [DKP00].

Baltimore [IEE02, SP95].

Bamboo [NCB+12].

band [DG95].

Bandwidth [NE01, RK01].

Bangalore [Kum94, PBPT95].

Barbara [ACM95b, AH95, IEE95f].

Barcelona [DLM99].

BARRACUDA [EPP+17].

Barrier [CLD+15, SDB+16, Y213].

Based [Ada97, AHD12, AAB+17, AP96, BHW+17, BDG+91b, BoFBW00, CAM12, CG+02, CL18, CLP+99, CDPM03, DW02, DLLZ19, DBK+09, FSC+11, FC05, For95, FSL98, GSSx, GFJT19, HF14a, HF14b, HM01, Hus90, KLR16, LSLZ02, LZH18, KL11, LWP04, LAFA15, MDM17, MGL+17, MM98, HLSV16, NE01, NHT02, NPS12, PPT96a, PCY14, PFG07, PSSS01, RDMB99, SPL+12, SM03, Snit93a, ST02b, ST97, SJK+17a, SJK+17b, THS+15, TD98, W18TH, WC09, WZH16,Was96a, WM01, WJB14, YG96, YTH+12, ZWJK05, AKB+19, Ada98, AASB08, AAAA16, AVA+16, Ano93, AFGR18, BLPP13, BDG+92a, BLVB18, BCH+93, Bt95, BFMT96a, CwCW+11, CC10, CPM+18, CKM11, CRM14, CXX+12, DBX96, FE17, FBBF99, FJZ+14, FNSW99, FSTG99, FLPG18, FFFC99, FWS+17, GS91a, GS92, GKS+11, Gra97, Gra99, GFPG12, HZ94, HWX+13, IM95, ITT99].

based [JL18, JKM+17, KLV15, KPL+12, KPNM16, LV12, LW01, LKL96, LNW+12, LG16, LMM+15, MYB16, MM+16, MKP+96, MCB05, MT96, MS99a, MS99b, MFPP03, Neu94, NHT06, OLG+16, OP98, PARB14, PES99, PPT96b, PK05, PS19, PaD+17, PGK+10, PSHL11, PKD95, PSK+10].
PSLT99, Qu95, Rag96, Röt19, STP+19, SJLM14, SS09, SG05, SSS99, SZ11, SVC+11, SXM+18, SLS96, SKB+14, Sto98, Stp18, Str96, SLN+12, TBB12, TGKL19, TY14, TBR96, TWFO09, TMPJ01, WHMO19, WO09, WTOF14, WTS19, WGG+19, Wis96b, WCS99, YC98, YL09, YWC11, YSL+12, ZAFAM16, ZLP17, ZHK06, ZZG+14, ZWZ+95, vHS94, BFMT96b, FH97, KSJ95, WAS95b, FO94, GK97, KSJ96, PY95, Sut96, TSSC94, ZPLS96. Basel [Ano94i].

Bayesian [Ber10], BC [IEE95i], BCS [FFP03], BCS-MPI [FFP03], be [CB00].

Basis [OIH10, RCFS96].

Bath [BP93].

Bayesian [Fer10].

BC [IEE95i].

Behavior [BFM97, DeP03, Ros13, LLG12, PPF89, YMYI11].

behavior [EPML99].

Belgium [LCHS96].

Benach [TV99].

Benchmark [BBV+12, DS16, HC10, Luo99, Müller02, MM+12, RSPM98, RTH00, SGJ+03, Trai12b, UTY02, Ano03, BKM195, DWM12, DH95, DHS96, Müller03, MVWL+10, PHJ11, Reu01, RST02, Wor96, YSWY14].

Benchmarking [CC05, HCA16, LCH96, MMU99, MCS00, WRA02, RST02].

Benchmarks [CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TSB03, WAS95b, ZH01, CDD+96, MHH99, Ste94, WT11, CEO0, WT12].

Beneficial [CB00].

Benefits [LB16, PSM+14, SIR17].

Benutzerprofile [Wil94].

Benutzerfreundlich [Ano94c].

Beowulf [CC00, Ste00, UP01].

Beowulf-Class [Ste00].

Berlin [PW95].

Bessels [KT10].

best [GT19].

Betriebssystemkern [Sei99].

Better [Str94].

Between [AAB+17, BS07, ASS+17, AK00, BID95, GFV99, JAT97, LDC97, MSP93]. Beverly [IEE93f]. Beyond [Gei93a, GKPS97, Gei98, Gro12, Olu14, Gei93b, LSG12, Sch93, SHM+10].

Biconjugate [GFPG12].

bi-directional [HE15].

Big [CLO15, GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [RB01].

Bill [Ano99c, Ano99d].

billion [KTJT03].

Bilions [MRB17].

binary [GT19].

Betriebssystemkern [Sei99].

Better [Str94].
clock [NB96]. clocks [TPLY18]. CLOMP [BGaS09]. clone [ZWL+17]. Closer [HCF16]. Closure [CGPR98, KH15, PPR01]. Cloud [SIS17, URGK12, ZLZ+11, ZLP17, GFIS+18, GHZ12, GWVP+14]. Cluster [AUR01, BKGS02, BL95, BM97, CREE99, CMM03, HD02a, ES11, GGCG99, Gei94, Gei00, GSN+01, GT01, GC05, HD02b, ITKT100, IDD94, KKH03, KS96, KS01, KHS1, LR10, MFBT95, MM01, NO02b, OF00, PFG97, RB01, RST06, RLL10, SCR92, SHH10, SHTS01, ST02a, TOTH99, Tra02b, YCA18, kT01a, AL93, BLP93, BAL95, BCT+17, BID95, CCF+94, Coo93, ED94, GKY97, GMU95, Heb93, KEGM10, KO14, Kom15, LC07, Miu95, MW93, MM03, NO02a, PDI14, RJHD14, SS94, SR95, ST02b, SLS96, SY95, SS94, Tho94, THM+94, Tsu95, UH96, YWO95, ZLZ+11, MS04].

cluster-based [SLS96]. Cluster-enabled [SHH10]. clustered [KHB+99]. Clustering [BBH12, HA10, RJC95, GGL+08, YCL14]. Clustern [MS04]. Clusters [AH90, AHH97, BDH+95, BDH+97, BWV+12, CLOL18, CSC96, DK06, GDM18, GMDMB+07, GSY+13, HPP02, HSMW94, HVA+16, Hus00, JNL+15, LC97a, LH95, LVP04, LHCW05, MS98, MFPFP03, Pan14, PKB01, PTO1, PSS0a, Pus95, Rei01, DOSM+16, SFG98, Svl99, Ste00, Tso00, UPO1, WNL03, WT12, YWCF15, YKI+96, AB95, ALR94, ADB94, ABG+96, ADMV05, BWT96, BDV03, Bru95, CRE01, KTB99, GBF95, HCL05, Hus99, JKH08, Jou01, JR10, JRM+94, KLY03, KLY05, KSL+12, KJEM12, LBD+96, Lee12, LLC13, LL95, LKYS04, NWM03, NN95, PS07, PRS+14, PM95, PR94c, PSS16, PSL0, RCFS96, RGDML16, Slo05, SC96a, SL95, TFZZ12, WNL06, WLYC12, YST08, YL09, YHL11, YWC11, ZHS99, dCH93]. CM [SBG+02]. CMMD [Har94, Har95]. CMPI [GHZ12]. CMS [FMS15]. CNF [IKM+01, IKM+02]. CO [ACM01, AHH97, GDM18, HJ98, PSB+19, TOC18, Wal02]. co-array [TOC18, Wal02]. Co-designing [AHHP17]. co-execution [PSB+19]. Co-Expression [GDM18]. Co-processed [HJ98]. Coarray [GBR15, YMB14]. coarrays [SMCH15, SC19]. Coarse [ADCT98, IO00, KO10, LGM00, NO+02, He93, RJ95].

Coarse-Grain [IO00]. coarse-grained [He93, RJ95]. coarsening [PSLT99].

Coarse-Grain [IO00]. coarse-grained [He93, RJ95]. coarsening [PSLT99].

Coast [AB95]. Coastal [GDB95, YBMCB14].

CoCheck [MS96b, Ste96]. Code [AHP01, And98, BCGL97, CB00, CP97, CCK12, CCBPG15, DDL00, DZDR95, HE02, KaM10, KAMAMA17, KHS01, LD01, MS02b, MM07, PBC+01, RGD13, SM03, SZBS95a, Sta95b, ADB94, AFST95, BCAD06, BACD07, BW12, BHA98, Bre95, Coo93, DLR94, EZBA16, FMFM15, GSKM17, Heb93, IJM+05, JL18, KLE+12, KH10, MGS+15, MRH+96, MWO95, PKE+10, PS+10, RP95, RVKP18, SZBS95b, SK00, SFLD15, SMSW06, TDB96, VBLvdG08, VDL+15, Wor96, YL09].

codebooks [PMM95]. Codes [FAFD15, JFY00, SWH15, HTJ+16, HWS09, HASnP00, KBG+09, LRW01, Mal01, OLG+16, WB96].

Coding [Uhl94, Uhl95b, SCC96]. Coecients [MW98, ARYT17]. cognitive [PWB+12].

Coherence [MM07]. Coherent [SS01].

Collaborative [DCCJ12, DCPJ14]. Collapse [PKYW95]. Collecting [BMR01].

Collection [LTRA02, DH95, MGC+15].

collection-oriented [MGC+15].

Collections [JFR91]. Collective [BIL99, BIC05, CCA00, FVD00, FCLG07, FPY08, GLB00, GMDMB+07, Hus99, KH96, MJG+12, PGAB+05, SG15, TRG05, VFD02, WRA02, FA18, HS12, HMS+19, HG12, HWW97, KHB+99, KBBH94, KMM+14, MMBD13, Pan95b, PGB+07, PGAB+07, RJMC93, SCB14, SCB15, SS99, TD99, Tra12a, TFZZ12].

Collectives
[CSW12, SvL99, DJJ+19, Zah12]. Collector
[GTS+15, WK08a, WK08c, WK08b].
College
[AGH+95, Ano94f]. Collision
[QRMG96, Sta95b, ART17, FFFC99,
LHLK10]. Collocative [MKW11]. Colony
[ITT02]. Colorado [R+92, IEE05]. Colt
[WN10]. Columbia
[IEE95a, IEE95e, MAB05]. column
[HSP+13]. column-stores [HSP+13].
COMA
[GB96]. Combined
[CBHH94, TJPW12]. Combinig
[DP94, LSM+18, PQR18, Rab98, SCB14,
Sch96a, SMAC08, YPAE09, Bor99, Sch96b].
comes [Ano94f]. Coming [HK95].
Commands [OLG01]. comments [Str94].
commer [Ano94f]. commercial [Ano93b].
commerce [GGL+08]. Common
[HEH98, DK13, WLR05]. Communicating
[FFK+96b, GMPD98, FKK96a].
Communication
[ABF+17, BCG+10, BIL99, BIC05, DCPJ12,
DZZY94, EM02, FST98a, FJK+17, FGKT97,
FBSN01, GFD03, GFB+03, GSG99,
GKD+18, GFV99, GLB00, GC05, HB96b,
HC10, HDB+12, HC06, HIP02, KB98, KV98,
KBG16, LRT07, LC93, LVCD94a, MH01,
MM98, MR96, NM00, PLK+04, RK01,
RRGMO7, RT06, SWHP05, SCP97,
SH12, SBC+02, SJ02, ST02b, SGL+00,
SKH96, Sun12, TRG05, TGT05, TRH00,
Trö02b, UMK97, WBH97, XH96, YC98,
ZSG12, AC07, FH98, BHJ96, BVML12,
BBH+13b, BS94, BMG07, CAHT17,
CL+93, Dem96, DWM12, DCPJ14,
DGB+14, DDB+16, DS96b, GKB97, GM13,
Gra07, GL94, GB94, HB96a, HWX+13,
Hus99, HWW97, KH96, KB01, KLY03,
KL05, KHB+99, LRO6b, LFL11, MLAV10,
MUM99, MABG96, OGM+16, Pan95b, Par93,
PGK+10, PM95, PKE+10, PK+10, PS00b].
communication [SH14, SC95, TG09,
TGLK19, Trä12a, Vet02, Wu99, WMP14].
Communication-avoiding [GKD+18].
communication-based [PGK+10].
Communication-buffers [MR96].
Communication/Computation [HIP02].
Communications
[BPS01, CP98, CDH95, CDH+95, FVD00,
FST98b, GT01, GBS+07, GMdBMB+07,
IEE95b, IEE95e, LHZ17, LHZ18, MB00,
VFD02, YTH+12, bT01a, ADL03a,
ADLL03b, BBW19, CDP99, FA18, HS12,
KBHA94, MBBD13, MrR92, MN01, MS99c,
RSGDL16, SCB14, SCB15, TD99, WLYC12].
Communicators [DFKGS01, GFD03,
GFD05, FKS96, GMM18, HK96, MJG+12].
communities [ACM04]. Community
[BHW+17, FCP+01]. Como [CLM+95].
COMOPS [Luo99]. Compact
[Uhl94, Uhl95b, Wor96]. compaction
[VSW+13, WK08a, WK08b, WK08c].
Compactly [KLR16]. Comparative [KB98,
PSK08, SNO1, ARG+95b, ED94, YC14].
Comparing
[BF01, Fin97, GBR15, HVSH95, ICC02,
LKJ03, ORA12, SGS95, JLG05, WBSC17].
Comparison
[BvdB94, BS07, HC10,
KBM97, LCW+03, Mat94, Mat95, Ney00,
OP10, OF00, PPJ01, Pk96, RS93, RB97a,
SS01, SHH94b, VS00, Wai02, ZBd12,
Ahm97, AB93b, BLP93, BID95,
dFOSR+19, GMU95, Har94, Har95, JS13,
KDS012, KH+18, KC06, MSP93, OS95,
PS07, PSH11, Pri14, SM10, SYR+09,
SWS+12, SHH94a, TOC18, TSSC94].
comparison-based [PSH11].
Comparisons
[GGS99, PG02, CLY16].
Compass
[PWD+12]. Compatible
[MM14, LBH12, OH10]. Compon
[IEE93a]. compete [Ano96a]. CoMPI
[FSC+11, FCS+12]. Compilation
[FSS17, HKMC94, LRGB15, RVK19,
SVW91, Coe94, FM90, PGS+13, SHM+12].
Compile
[GB94, TSY99, JE95].
Compile-time [GB94]. Compile/run
[TSY99]. Compile/run-time [TSY99].
compiled [KLY03, KLY05]. Compiler
[Ano98, Dan12, IOK00, KSS00, KSHS01,
MB12, Mar09, MKW11, SSE12, SKS01, TJPFI2, TBG+02, TGBS05, BAG17, HEHCO9, LME09, LHC+07, LLC15, MA09, Müi03, PP16, RKBA+13, SHH10, THH+05.

Compilers
[Ano01a, CFF+94, LZ97, MKV+01, SBT04, SS96, HS012, PBG+95, ZT17]. Compiling
[DMB16, HS012, CGK11]. Complete
[BD07, GHL+98, NAG05, Per97, SOHL+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, PRS+14, SOHL+96]. Completed [PTT94].

Complex [BCGL97, GMPD98, MBS15].

Complexity [NPS12]. component
[HL10, KRKS11, Squ03]. Components
[BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, GKD+18, LRW01]. Composable
[MLGW18]. Composed [We94].

Composing [PHA10]. composite
[MALM95, YPA94]. Compositing
[GPC+17]. Composition [CTK00, Cot04, DBL07, FC05, KH15, CFP96]. compound
[LLC13, SAP16]. comprehensive [RST02]. compressible
[HHFM19]. Compression
[FSC+11, KBS04, VPS17, AAAA16, HE15, UH96, Wu99]. compression-based
[AAA16]. COMPSAC [IEE95].

Computation
[BCD96]. Computation
[BKGS02, B+05, Cer99, DMS94, DSS00, EMO+93, ESM+94, ERF10, FG95, GS91b, HIP02, IEE94a, IEE96c, KS15b, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SMEO93, VZT+19, WTT17, ACM97a, AC07, ABDP15, Bis04, BALU95, Bos96, BHKR95, CL93, CMH99, CKP+93, Dab19, DZY94, HLM+17, HK94, KB01, KHS919, KJJ+16, KG93, Lev95, MLAV10, Neu94, NZ994, NCKB12, PFO5, PKE+10, Röh00, Shi94, SH14, TBB12, TDP15, TW12, Vol93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational
[ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SYL19, SN01, TDBEE11, TGEM09, WPH94, Wh04, AGMJ06, Bvdb94, BDG+92c, BR95a, HVSC11, KBG+09, PBK99, RBB15, SPE95, SZBS95b, STT96, Str94, VDL+15, BR95a, CCHW03, R+92, SL94a, WPH94].

Computationally [DFN12].

Computations
[AGH+95, ACGR97, CGU12, CGPR98, IH04, PBK00, PMvdG+13, WJ12, AN95, AASB98, BL99, CG93, DMW96, EGDK92, HJYC10, KD13, MRRP11, MR96, Smi93b, SAP16, TS12b]. Compute
[DBK+09, LSM+18, KKLI11, OHG19, VLMP+18, ZL+11].

Computer-intensive [LSM+18]. computed
[FWS+17, SSS90]. Computer
[ACM06a, Ano94a, GTH96, IEE951, IEE96a, IEE97c, IS16, KCR+17, Neu94, Old02, PB+94, ST02a, Sum12, Ten95, URG92, YTH+12, BN00, BS94, BKML95, BFM96, Cal94, CLM+95, GRZT90, JW96, Str94].

Computer-Assisted [GTH96]. Computers
[Ano89, BP99, BCL00, DDP+19, DGMJ93, FFP03, GC05, IE95b, IE95e, ITK00, LF+93a, MFTB95, PSZ+00, SP+10, SS96, BvdB94, BB93, BBK+94, DLR94, Duv92, ES13, GBF95, KOS+95a, LR06a, MMB+94, NF94, POL99, PBK99, Wal94a, Wal94b].

Computing
[ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, AJYH18, ACD94].

AIM97, BJ93, BBG+95, BDG+93a, BGR97a, BL95, BCP+97, BRST94, BDH+95, BDH+97, BHNW01, BBH12, CZ95a, CGB+10, CL03, CLO18, CNC10, Czec16, DDS+94, DERC01, DPP+12, DGM93, DT94, FTVB00, Fer98b, FGKT97, Fors98, FS93, GLN+08, GS92, Gei93a, GBD+94, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hol12, HT01, IEE92, IEE93d, IEE93c, IEE94g, IEE95c, IEE95f, IEE95a, IEE96f, IIF95, KK02a, KS97, LK11, LRG14, LC93, LR01, Lus00, dfMFD11F02, ME17, Mat94, Mat95, MS04, Nov95, PKY95, PR94b, PWDP19, SHTS01, SCSL12, Sin93, SSS97, Ste00, SGS10, SW91, Sun90a, Sun90b.
Sun92, Sun93, Sun94a, Ten95, VV95, VW92, WN10, YH96, YG96, ZL17, ZL18, ACGdT02, ARTY17, AL92, AH95, ASCS95, Ano93h].

computing
[Ano94e, Ano94h, Ano03, ADDR95, AMV94, BPG94, BDG+92a, BDG+94, BKML95, Bru95, BHW+12, CZ95b, CZ96, CHKK15, DLRR99, DKM08, D95, DMW96, DE91, EKTB99, EJL92, FBD01a, FGRD01, FO94, FS95, Fer98a, FS98, FME+12, FHC+95, GGGC99, GS02, GS91a, GS93, Gei93b, Gei94, GH94, GkLyC97, HP05, HW11, HH14, HY+93, HS95a, HH95, mH12, IEE97a, IM95, JPOJ12, JY95, JMM+11, JPTE94, KO14, Kos95b, KSSS07, L12, LH98, LCHS96, LHD+94, LHD+95, LM13, Maf94, MKZ93, Ma95, Mar07, PGS+13, PKB06, Pen95, PKG+10, PTT94, PB+95, PNV01, PWD+12, RBS94, RJDH14, Sch93, SGS95, SMS00, STTT96, St94, SP11, Sun94b, SgDM94, Sun95, Swa01, SD99, TJ90, TKP15, TDB00, Tho94, TSS98, VM94, Vis95, Was96, YULMTS+17, YLC16, YSL+12, Zen94].

computing
[ZW13, ZGC94, ZHS99, ZKRA14, ACM98a, Kon00, PW95, Per96, SCR92, TGEM09, NM95, Ano95b].

Concept
[KaM10, LTR00, SB95]. concern [Ano94i].

Concurrent
[ME17, NPS12, DGB+14, PTG13].

Concurrent
[Ano89, BDG+91b, BR92, BHV12, BKH+13, DG95, GS91b, GS92, GSxx, Grc94, H93, SPB+17, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LP+11, NP12, RGDML16, RCG95, Sun94b, SGDM94, Wal94a, Wal94b, WK08a, WK08b, WK08c, ZWZ+95]. condensates [KLM+19]. condensed [MC99]. Condition [GK10].

Condor
[CF01, PL96]. conduction [iSYS12].

Conference
[AC90, ACM94, ACM96b, ACM96c, ACM97b, ACM98b, ACM04, Abr96, ATC94, AGH+95, Ano89, Ano93g, Ano94a, Ano94e, Ano94i, ACDR94, BBG+95, B95, Boi97, Bos96, BFMR96, BH95, CGB+10, CH96, DSM94, DSZ94, DKD07, DKB+92, ERS95, ERS96, EJL92, FF95, Gat95, G95, GT94, Ham95a, Ham95b, HS95a, HS94, Hol12, IEE92, IEE94f, IEE95b, IEE95a, IEE95e, IEE95i, IEE95j, IEE96a, IEE96d, IEE96h, IEE96i, IEE92, LCK11, LF+93a, MWH93, Nar95, OL05, PR94b, Ree96, R+92, SPE95, Si96, SM07, Sin93, SW91, USE95, USE00, VW92, Vo93, WPH94, Y93, YH96, ACM95a, ACM05, ACM06b, ANS95, Ano93b, Ano93c, Ano95a, BR95a, Bil95, BDLS96, DR94, Eng90, GH94, JPT94, LCHS96, Mal95, PW95, Van95, ZL96, ACM94, Ano94g, IEE95b, KKD94].

Configurable
[IEE94d, PKB+16, BB94].

configurations
[PTL+16]. conflict [TCP15].

conformational
[MK94].

Congress
[CJNW95, GHH+93, PSB+94, BH95, dGJM94]. Congressi [GT94].

Conjugate
[BG95, GFGP12, MM92, Ols95].

Connected
[BT01b, KRRS11, OF00, Pet01, GKD+18].

Connectivity
[Whi94].**Conquer**
[CTK01, Cza02, Cza03]. conscious [ZA14].

Considerations
[CJPC19, FA18].

consistency
[DPFT19, WBS17, YY+12].

Consistent
[TGT10, CG96, CG99a].

Console
[PES99].

** Consortium**
[BRST94].

Constrained
[BHS15, EGR15].

Construct
[DP94, EM94]. Constructing [DM93].

construction
[ART17]. Constructs
[KDT+12, PGC02, BKH+13, BN00].

consumer
[AC12].

Contact
[Nak03].

CONTAIN
[SB95]. containers [Str12, ZT17].

content
[GFB+14].

Contention
[ALB+18, ALW+15, DSG17, Zab12].

Context
[DGG+12, ZL18, DR18, MdSAS+18, OLG+16, PAD+17, SCB15]. context-bounded [MdSAS+18, PAD+17].

Contexts
[CS14]. Contiguou [WTR03].

continual
[NS16].

continuation
[TV15].
HF14b, HKOO11, HT08, HLO+16, JLI8, JIK10, JC17, JLS+14, JFGRF12, KRKS11, KHBS19, KD12, KAMAMA17, Kha13, KS13, KVGH11, KME09, KO14, KH15, KD13, LA13, LAN99, LRG14, LGKQ10, LLG12, LSSZ15, LBH12, LSVMW08, LSMW11, LAD16, LBB+16, LY+16, LYIP19, LYZ13, MMO+16, MR12, MSML10, MDAS+18, MGL+17, MM14, NSLV16, CUDA [NS16, NBGS08, OIH10, ORA12, OHG19, PGS+13, PRS+14, PGD18, PHJM11, PAD+17, PGdCJ+18, PSHL11, PTMF18, PSV19, PRS16, RBAl7, Ros13, SSE12, SK10, SYSl2, SD17, STK08, SS09, Seg10, SSLMW10, SKM15, SP11, SR11, SJK+17a, SJK+17b, TNIB17, TVCB18, TS12b, TA14, TCP15, Tsd12, UZC+12, VLMPs+18, WGG+19, WG17, WJ12, WMRR17, WRM19, WWF11, WJB14, XLI13, YULMTs+17, YHL11, YZ14, YMY11, ZAK15, ZAFAM16, ZZG+14, ZBd12, ZLS+15, ZZZ+15, diAMC11, diAMCFN12, vdLJR11, che10, SD13, Vog13, CUDA-Aware [HVA+16]. CUDA-Based [DLLZ19, AAAA16, WGG+19]. CUDA-BLASTP [LSMW11]. CUDA-C [YULMTs+17], CUDA-Compatible [LBH12]. CUDA-Enabled [LSMW11, SSLMW10, DS13, KHBS19, PSV19, SR11, ZLS+15], CUDA-NP [YZ14], CUDA-Quicksort [MMO+16], CUDA-Sharing [PRS+14], CUDA-Streams [TVCB18], CUDA-to-OpenCL [GSCFM13]. CUDA/MPI [LYS+16], cudaBayesreg [Fel10]. CUDA-Easy [Sai10]. CUDAAlign [SdM10, dOSMM+16]. CUDAAs [KMM15]. CUDA-TM [SM12], Culling [HLK10]. CUMODP [HLM+17]. CUMULVS [GKP97]. CURAND [Aro12]. CURD [PGD18]. Current [Bak98, GFD05, IF195, BDG+93b, FK94, FHP+95]. Curse [OS97]. Curve [Rot19]. Customization [GSY+13], cut [CG99a, CXB+12]. cut-through [CXB+12], cuThomasBatch [VLMPs+18], cuThomasVBatch [VLMPs+18]. Cuts [GKD+18], CVL [Har94]. Cybernetics [IEE95], Cycles [PL96]. Cyclic [DDPR97, W095, HKMC94, H08, W096]. Cyclops [dCZG06], Cyclops-64 [dCZG06]. D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Bri95, Bmpz94a, BAS13, CGU12, CP15, EFR+05, ES11, GCN+13, HF14a, HF14b, JR10, KRKS11, KO14, KD13, KHS01, KLR16, MK94, MSZ17, NSM12, SC19, TP15, WMRR17, WRMR19, WR01, YSL+12, yHKS94], D-CICADA [MK94], DAC [Cza02, Cza03], Daemon [LB98], Dagum [Stp02], d’Aix [GA96], d’Aix-Marlioz [GA96], Dallas [ACM00, IEE95], Dame [IEE96]. Damping [YPA94], DAPVM [Cza02, Cza03], DAPVM/DAC [Cza02, Cza03], DAMS [CD98], Dangers [BGP+97], DaReL [KN95], Data [AJF16, BMR01, BCG+10, BGD12, CkMWH16, CLOL18, DERC01, Dn96, EGR15, EASS95, GTS+15, GB98, GMPD98, Gua16, HA10, HB96b, Hc06, IADB19, JDB+14, KA13, LK14, LSM+18, LHCW05, LDJK13, MV17, Man01, MK17, ME17, MGA+17, MJB15, NJ01, NPP+00b, NPP+00c, NA01, NLRH07, PC1Y, Rei01, Sgh12, SPK06, SSMW10, SR96, Str12, TBS+15, W095, We94], ZDR01, ZG95b, AB95, ASS+17, AG+95, BK11, Ben95, BR12, BD95, CFKL00, CGK11, CGL+93, DRUE12, EP96, FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GE95, GE96, HB96a, HC08, JB96, JC15, JE95, JPOJ12, KN95, KJ+16, KRG13, LOHA01, LF+93a, LL16, MA09, MMB+94, MM13, MR96, NCB+12, NCB+17, NPP+00a, OPP00, PDY14, RJMC93, SJLM14, SSS99, SPH95, SK92, TW12, TGKIL19, W096, WLK+18, YCL14], Data [YWO95, ZJDW18, ZRQA11], Data-Layer [LSM+18], Data-Centered [JPOJ12].
Data-Driven [ME17, NCB+12, NCB+17].
Data-Intensive [Rei01]. Data-Parallel [AJF16, GB98, CKnWH16, SPI96, CGL+93, FKK+96b, MMH+94, MR96, SK92].
data-parallelism [BR12].
data-privatization [KRG13].
Data-Structures [GMPD98].
Databank [FCP+01].
Database [AR01, BFZ97, EK97, MWC97, MM14, PTP96a, MN91, PTP96b, PPT96c, PMZM16].
Databases [RGB+18, BA06, Bos96, ZWL13].
Data
[DT17, CSPM+96].
Datasets [DLLZ19, VPS17, KGB+09].
Datatype [Gro00, SWHP05].
Datatypes [JDB+14, RTH00, BBH+13, ZBd12, BRR99, LRLG19].
Dave [Stp02].
David [Ano96a, Ano99a, Ano99b, Nag05].
DawnCC [MGA+17].
DAWNING [HWM02].
DAWNING-3000 [HWM02].
Day [IS16].
DBX [NE98, NE01].
DCE [Sch93, FLD96, RS93, Sch93].
DDL [FB97].
Deadlock [LZC+02, SG12, HPS+12, HPS+13].
Deadlocks [FJK+17].
Debugger [WCS99].
Debugger [HM01, NE01, CH94, CG99b, MT96, XWS96].
Debuggers [Ano01a].
Debugging [BDS93, GKP96, KKV01, KV98, Mor95, NE98, Wis97, ZLL+12, BL97, BS96a, DKF93, HLOC96, KCD+97, MLA+14].
December [Bil95, Eng00, HHK94, IEE96a, Kumi94, NM95, PBPT95, Y+93].
Decimation [PCY14].
Declarative
[EADT19].
decoder [MC17].
Decomposition
[BJS97, CP97, EGH+14, KDHZ18, DBVF01, ETV94, OMK09, SHHC18].
decompositions [NZ94]. deconfliction
[TCP15].
Dedicated
[WLNO3, DJJ+19, Hus99, RSC+19, WLNNL06].
Deep
[AHHP17, AMC+19, SEC15].
Deferred
[Spe19].
Defined
[Gua16].
Defining
[GAML01].
Deformable
[STK08].
Deforming
[GAP97].
degree [CT13].
degrees [KTJT03].
Delegation
[YTH+12].
Delegation-Based
[YTH+12].
Delft
[DSZ94].
Delivering
[Hus98].
Delphi
[ACGdT02].
Demand
[CTK00].
Denmark
[DW94, DMW96, Was96].
Dense
[AKL16, BDT08, CDD+13, Fuji93, PMvdG+13, ZBd12, BRR99, LRLG19].
Densities
[MW98].
Density
[BL95, MC17, CBHH94, ZWSH95].
Denver
[ACM01, IEE05, R+92].
Dependable
[GM95].
Dependent
[BP99].
Dependence
[LAD+15, BLVB18].
dependence-aware
[BLVB18].
Dependency
[PPR01].
Dependent
[DFA+09, HO14, MFTB95, DM12, LBB+16, LYS+16, ON12, SSB+16, TVV96, YPA94, YSV+16, YSM+17].
DEPICT
[HM01].
Deploying
[PKB01, CLASPDP99].
depth
[SSS99].
Derivation
[GB98].
Derived
[JDB+14, RTH00, SWHP05, Tha98, CAHT17, Jnou94, THZ99].
Descent
[Sch01].
description
[TKP15].
descriptors
[LNW+12].
Design
[AS92, AAC+05, ANO01b, ACD+15, BBH+13, BS96b, BMR02, BRM03, CL+99, ETWAM12, F00a, FA18, FFP03, GG09, HWM02, JSH+05, KVG11, KLCC+06, KL11, LVF04, Man94, MMSW02, NPS12, OFA+15, PAn14, PLK+04, PCS94, SBB+02, SWCY94, SSL97, SPK+12, Sun12, THM+94, USE94, VGRS16, BR91, CARB10, CSS95, DS96b, FA02b, GL94, GkLyCY97, KA95, LC07, MAS06, OA17, PGK+10, PTW99, RSC+19, SL94b, Sep93, SII96, SSD+94, SWL+01, WHM019, WAl94a, WAl94b].
design-pattern
[MAS06].
designed
[BSH15].
Designing
[GHK12, LAD16, SWHP05, SH14, WYLC12, ZLP17, AHHPP17, DSOF11, Pan95b].
Designs
[HVA+16, AAAA16, MC17, Shi94].
desktop
[Mar07].
Detailed
[DLV16, RSPM98, BTC+17, LR06b].
Detect
d[DPFT19, Str94].
Detecting
[AGG+95, PPJ01, ZRQA11]. Detection
[BBH+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KJS14, SG12, ZDD97, BBH+15, DKF94a, HDG09, HGMW12, HPS+12, HPS+13, LNC+02, RAGJ95, TCP15, TGD13, TWF009, WLF014, YULM+17].

Detecting
[BHW+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KJS14, SG12, ZDD97, BBH+15, DKF94a, HDG09, HGMW12, HPS+12, HPS+13, LNC+02, RAGJ95, TCP15, TGD13, TWF009, WLF014, YULM+17].

Detection
[CFMR95, DK02, ZLL+12].

Deterministic
[CFMR95, DK02, ZLL+12].

Determine
[BP99].

Deterministic
[CFMR95, DK02, ZLL+12].

Determine
[CFMR95, DK02, ZLL+12].

Developer
[IEE96i].

Developers
[Str94].

Developing
[BFZ97, CCSM97, Cot98, DDLM95, Reu03].

Development
[AC17, Ano01a, BDG+91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DePo3, FS01a, SK00, SB01, TBD96, TDBEE11, ARvW03, ABC+00, BL97, BB97, FMB97, KCD+97, LLC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99].

Developments
[Mat00a].

Device
[KKLL11, LS10, SBQZ14, YWTC15].

Devices
[GGN97, RVKP18, ZJDW18].

DFB
[WWZ+96].

DFN
[RS93].

DIF
[RS93].

diagnostic
[RSBT95].

dictionary
[LSZ15].

Diego
[Has95, LF+93a, NM95].

dierence
[UZC+12, GFPG12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94].

dierences
[AKE00, LDC097].

different
[IDF+10, GPC+17, LB98, WJB14, BCM+16, Gra09, HWS09, MM11, SWH15].

discernable
[CFMR95, DK02, ZLL+12].

discerning
[BBH+17, BGK08, CdGM96, HHSM19].

diffusion
[HF14a, HF14b, MW98, CEOS07, DM03, MM92].

digest
[IEE93a, IEE95c].

dimensional
[GL00].

dimensional
[Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK+17a, SJK+17b, AL93, KT02, LSSZ15, Ols95, PR94c, Ram07, RG18].

dimensions
[SAS01, Ano93h, HP11].

dimensional
[Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK+17a, SJK+17b, AL93, KT02, LSSZ15, Ols95, PR94c, Ram07, RG18].

dimensionality
[GR97].

dimensionally
[GR97].

dimensionality
Bir94, BMPZ94a, CBPP02, CH94, CEF +95, CBHH94, CLLASPD99, CPR +95, CK99, DLR94, DR94, DHHW93b, DR95, EGH99, FB97, FS95, FS98, FHC +95, FHB +13, GBR97, GCN +10, GKK90, GkLyCY97, GP95, HPY +93, HHA95, IEE97a, JWB96, KN95, KSG13, KJJ +16, KDL +95a, LR06b, LFS93a, LFS93b, LH98, LKL96, Liu95, LYP19, LGmdRA +19, Ma94, MVTP96, Man98, MLC04, NAJ99, OLG +16, PK05, POL99, Par93, PR94c, RAGJ95, RFH +95, SSH08, SHHI01, SL94b, Sch93, SFL +94, SSC96, SPL99, Smi93b, SD99, THDS19, TSP95, THM +94, Uhl95a, VM94, VB99, Vet02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YLC16, YW905, YX95, YPZC95, ZL96, ZGC94, ZHS99, Pet01.
distributed-data [FB97].

Distributed-Memory
[CSW97, CC99, KN95, SSH08].
distributed-shared [ADMV05].

Distributing [AL92]. Distribution
[HB96b, LHCW05, MBJ15, NPP +00b, NPP +00c, NA01, SR96, AGG +95, CSW99, GS96, HB96a, JMDVG +17, KRC17, NPP +00a, RJMC93, Wil94].
Distributions
[ST17, WO95, HKMC94, WO96, vHS94].

Divergence
[SdS13, VSW +13].

Divergent [WJA +19]. diversity [EO15].

Divide [CTK01, Cza02, Cza03].

Divide-and-Conquer
[CTK01, Cza02, Cza03]. DMMP [BB93].

DMP1 [HWM02, ZLI +12]. DNA
d[dFDS +19, PGF18]. DNAml [CDZ +98].

DNMR [SR11]. do [JLG0]. docking
[ESB13, VGP +19, ZWL13].

Document
[MHKS16, AD95]. Documentation
[BDG +xx].

Documents [Ano98]. does
[KC94].
dog [LKI4]. Domain
[BMR01, CP97, EGH +14, KDZ18, KL11, ETV94, HE13, Nel93, NZZ94, Olu14, OMK09, Ran07, SHHC18, VM94].

Domaine [GA96]. Domains [KR09].

Dongarra [Ano95b, Ano96a, Ano99b, Ano99c, NMC95, Nag05]. dOpenCL
[KG13]. Double [FKC96, PTT94]. down
[Str94]. Downloadable [Ano98]. DP
[Arn95, KLR +15]. DPVM [HV +00].

DQN [PS19]. DQN-based [PS19]. draft
[DHHW93b, GL92]. Draw [ST17]. Dresden
[MdS09]. Driven [AIM97, LWSB19, ME17, PCY14, FSG19a, FSG19b, Htn11, NCB +12, NCB +17, Qn95, SIS17, TWF009, WFO14].

Dror [Stp02]. drug [GVWP +14]. drugs
[Str94]. DSIR [LTR0, RTL99]. DSM
[KBP07]. DSMC [JL18]. DSMPI
[SSC96, SSC97]. DTM [PS07]. DTS
[BH95].

Dual
[BBC +00, GAM +02, DK02, CT13, LSSZ15].
dual-dictionary [LSSZ15]. Dual-Level
[BBC +00, GAM +02, DK02]. dual-scanline
[CT13]. Dublin [LKD08]. During [DeP03].

Dust
[dlFMBdFM02]. DVFS [PTL +16].

DWT [ZZZ +15]. Dyn [WLN03, WLN06].

Dyn-MPI [WLN03, WLN06]. Dynamic
[ACG97, AGS97, AUR01, CGLD01, CKmWH16, CML04, CK99, CTK01, DMB16, DBA97, DFMD94, FMBM96, FD00, GFD03, GFD05, GRV01, GCBL12, GMPD98, GL95a, KFL05, MK17, NPP +00c, NLRH07, PK98, PLK +04, PT01, PGdC18, Ran05, SPH +18, Smi93b, SY95, TS12a, VdS00, Vet02, Wal01a, Wil94, YST08, Zel95, DDLM95, EO15, FH97, FSC +12, FKLB08, JC17, MSMC15, NSBR07, NF95, OKW95, PCD +18, RBAI17, RCG95, SCB14, SCB15, SK +12, SKB +14, WRSY16, YPA19, DvdLVS94, FCS +12].
dynamically [SSS99]. DynamicPVM
[DvdLVS94].

Drafts
[BST +13, BCGL97, DR97, JFY00, KBM97, dFMBdFM02, MH01, OS97, SZBS95a, SA93, TDBEE11, TGEM09, YWCF15, ZB94, ALR94, ABG +96, AGMJ06, BvdB94, BHS18, BvdSdD95, BBK +94, BMPZ94b, BMPZ94a, CC00b, FHS099, HHS18, HVSC11, JAT97, JMS14, KFA96, KPK13, KRG13, LSVMW08, OKM12, PARB14, PBK99, RBB15, SPE95, SZBS95b, SM15, TG94, WPH94].
Dynamische [Wil94]. dynamite
[ldHL+00, HvA+00]. Dynamite/DPVM
[HvA+00]. dynamo [Hol95]. DySel
[CKmWH16].

E-scale [Gua16]. EA [Ben18]. each
[Ano00a, Ano00b]. Early [CD96, LV12,
SL95, EFR+05, HHA+99, JKA+93]. Earth
[KTJT03, Nak03, Nak05a, Nak05b, UTY02].
Earthquake [UZC+12, KTJT03, KME09].
Easily [PKB01]. East [IS16]. Easy
[HCA16, TDG13, MJPB16, SBF94].
EasyGrid [BR04]. EASYPVM [Saa94].
ECMWF [HK93, HK95]. ed [Nag05].
EDM [Ts95]. Edge
[ZDD97, Gra97, RAG95]. edition
[Ano99a, Ano99b, Ano00b]. editor [GT19].
Editors [AM07, GSA08]. education
[ACM06a]. EDV [Ano94c].
EDV-Benutzertreffen [Ano94c]. Edward
[Che10]. Effect [DK06, LFS+19]. Effective
[MLAV10, RK01, TMC09, Tsu95, BC19b,
Cza13, JH97, KS15a]. Effects [SSE12].
efficacy [GScFM13]. Efficiency
[KS96, MTU+15, CZ96, MMe99, RS95].
Efficient [ADT14, Att96, BHW+17,
BGP90, BCK+95, BHLS+95, BFG+10,
BGD12, Brn95, BDH+99, BDH+97,
BMP94b, CAWL17, CFP96, DZ98a,
DG+12, FHPS94a, FHPS94b, FCS+19,
HBT95, HKT+12, HT08, HC06, HLO+16,
KGK+03, KD13, LHCW05, LA16,
MMD17, MB12, MRB17, NK99, PSG+13,
RMJC93, RRB01, RSP+19, SPB+17,
TGB95, WSN99, WWFT11, YPZC95,
ZWS95, BDA94, BHW+12, CGH+14,
FM90, FNSW99, FH+13, HCL05,
KVHG11, LKL96, LA06, MMDA19, Pan95b,
PR+14, RR01, SOA11, TPD15, TDG13,
YLD16, dCZG06, CRD99, THRZ99].
Efficiently [CC99, CCM+06, PHA10].
effortless [TT99]. eigenproblem
[BV99, GG99]. eigen solvers [DR18].
Eigenvalue [DAK98, BSC99, THM+94].

Eighth [ERS95, Sse94, IEE96b]. Eileen
[CS95]. einem [BL94]. Einführung [Gra97].
Einführung [MS04]. Einstein
[ARYT17, KLM+19]. Einstein- [ARYT17].
Ejector [CCBGPA15]. elastic [PTG13].
elasticity [PTT94]. Elastodynamic
[MAIVAH14]. electric [BALU95, Ano03].
electrical [Sil96]. electroabsorption
[WWZ+96]. electromagnetic
[DSOF11, NZZ94, OKM99, WGG+19].
electromagnetics [OGM+16]. electron
[ART17, JL18]. electron-molecule
[ART17]. Electronic [GJN97]. Electronics
[IEE95d]. Electrosoft [Sil96]. electrostatic
[VDL+15]. Element
[KK19, MS02b, OD01, OM99, SM02,
VRS00, BB93, BCM+16, Gra90, HMKV94,
KME09, KEGM10, MG+15, NK05a,
NK05b, PTT94, PSV19, TOC18].
Elemental [PMvDG+13]. elements [KB13].
Eliminating [DSG17]. elimination
[ACMZR11]. elision [CLJ+15]. elliptic
[AGIS94, PR94c]. ELLPACK
[BBH12, MKP+96]. ELLPACK-R
[BBH12]. Else [Gei00]. elucidation [MK94].
Embedded
[TCM18, WZM17, YGH+14, ACJ12, CGK11,
NEM17, TMW17, WCG+13]. Embedding
[FS07, SML17, MS96a]. Embedding
[Ser97]. Emerging [WJA+19, RNM+12].
Emission [Pat93, EZBA16]. emphasis
[Bo96]. eMPI [MS96a]. eMPI/eMPICH
[MS96a]. eMPICH [MS96a]. Empirical
[SS94, VY02]. Employing
[AGM06, GVF+18, LB16]. emulation
[MS99b]. emulator [LTL94]. enable
[SPK+12]. Enabled [FS98, GSY+13,
LSMW11, Pan14, SSLMW10, ZL17, ZLP17,
DS13, GLM+08, HJB14, KHS19, KTF03,
PSV19, RAO9, SHH01, SR11, ZLS+15].
Enabling [APBcF16, BGG+15, CLSP07,
DGB+14, GH14, GBH18, HJYC10, NPS12,
TY14, ZPI06, BR04, MA09, SHHC18].
encapsulation [DRUE12]. encoding
endpoint [LLH+14]. endpoints [DBG+14]. energies [TKP15]. Energy [BPG94, EGR15, KFL05, RBAI17, SPB+17, VW92, FKLB08, KN17, LRLG19, PTL+16, TDG13].

Energy-Aware [EGR15]. Energy-Efficient [SPB+17, TDG13].

Engine [Wal01a, NPP+00a, Wal01b, WGG+19].

Engineering [Ano98, BPG94, BP93, EGH+14, IEE96h, KaM10, LSB15, MS02a, MBS15, Nag05, SM07, Str94, DMW96, IE94c, PW95, RMS+18, Sil96, LF+93a]. engineers [HW11]. Engines [SLJ+14, HSV+12, SHM+12]. Engine T M [OIS+06]. English [Wil94]. Enhance [AR01]. Enhanced [Ano98, CDHL95, CDH+95, FMSG17, KY10, PLR02, Saa94, BR95b, FE17]. enhancement [ARL+94, Boi97]. Enhancements [BDG+95, BCKP00, DM95b, DM95a].

Ensemble [Cot97, Cot98, BY12, FH97]. Ensemble-Based [FH97]. ENSOLV [AMS94]. Entwicklung [Sei99]. Environment [BDGS93, BFG+10, BFM97, BGL00, CHPP01, CTK01, DLB07, DI02, DHH+92, DHH93a, DLDL00, FTPB00, FWR+95, GJN97, GL97a, HRSA97, KBA02, KKK03, KDL+95b, KVH97, LC93, Las00, MSOGR01, MM02, MFG+98, MSS97, NJ01, Ong02, Ro94, SDN99, SGL+00, SGHL01, TTP97, WL96a, ASAK19, ABG+96, BDG+92b, BDG+94, BK96, BT96, CEF+95, CLLASPD99, DZ96, DL10, DHHW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL+96, GlkLcy97, HZ94, IJM+05, IvdlH+00, KCD+97, Kat93, KDL+95a, Kos95b, KFSS94, wL94, MSL12, MK97, NP94, PES99, PVKE01, PQ07, RNPM13, SSKF95, Sch93, SPK96, SBF94, SWYC94, Skj93, SSG95, TJ90, Tho94, WCC+07, WL96b, WLC07, ZPLS96].

environmental [ANS95]. Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GFB+03, Laf01, Mat94, Mat95, MFC98, PS01a, RB01, SHH94b, SSSS97, SCL00, TAH+01, ACGdT02, ARL+94, ALR94, ADDR95, AMV94, Bon96, BFM99, CDH+94, CK99, DR94, DR95, EO15, HS93, HV95, LC07, LGmdra+19, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96].

Erratum [Ano01b, HF14b, Wal94b]. Error [DFC+07, SLMW10, HPS+12, HPS+13].

Errors [FCLG07, DPFT19, SD16].

Erweiterung [GBR97]. ESA [Whi94].

Estimation [GK10, WZM17, AMHC11, CCI95, GB94, JMdvG+17, KS13, ZWHS95].

Estuarine [LRQ01]. Ethernet [CC00a, Fin97, HCF05, KLYL03, KLY05, OF00, PFG97]. EU [Ano03].

Eugene [MCDs+08]. Euler [DLR94, IDD94].

Euler/Navier [DLR94, IDD94]. EURO [HAMB95, BFM96, HAMB95, BFM96].

Euro-Par [BFMR96, HAMB95, BFM96].

Euromicro [IEE95a, IEE95b]. EuroMPI [CDND11, KGRD10, TBD12, GT19, TB14].

EuroMPI/USA [GT19]. EUROPE [LCHS96, Ano92, Ano93f, Ano93g, Ano94g, SWYC94, Skj93, SSG95, TJ90, Tho94, WCC+07, WL96b, WLC07, ZPLS96].
Tou96]. **European**
[AD98, Ano94i, BR95a, BDLS96, BC00, BDW97, CHD07, CHD09, CD01, CNDD11, DKS95, DLK99, DKP00, DLO03, KGRD10, Kna02, KKD04, KLO08, LDW09, TBD12, WPH94, DKH97]. **EuroPVM**
[BDLS96, OL05, DKD07, MTW07].
EUROPVM/MPI
[OL05, DKD07, MTW07].
EuroPVMMPI
[KKDV03].
EUROSIM
[BH95, DSZ94, BH95].
Eurospace
[Tou96].
Eurospace-Ada-Europe
[Tou96].
Evaluate
[MW98].
Evaluating
[BWV+97, FVLS15, FST99a, GFD03, GFD05, GGCG01, GB96, HW97, LH95, SSSS97, ZSNH01, GSCFM13, LTL9C4, TG99, ZLZ+11].
Evaluation
[ATM01, BF98, BIC+10, BMF97, BEG+10, BB18, CLP+99, DIO2, FST98b, FSSD17, Han98, JCH+08, KS96, KK19, KK02b, KSS00, LGCH99, LNK+15, LZ97, KL11, LVP04, MHI01, MGC12, NNNO00, OTK15, Om96, Pan14, Par93, RB01, SWHP05, SCP97, SBF+16, SF9+04, SM02, Sou01, SJK+17a, SJK+17b, TOTT99, TSB02, TSB03, TTSY00, UM97, VY02, AB13, BBG+14, BBH+13a, BMG07, CB11, DDB+16, HPR+95, HKH+19, HSN900, HPS95, IM94, JC17, JMDV+17, LV12, LNW+12, MDP+96, MN03, MT96, MMD99, NN95, PSK08, RLFD16, SL04b, SW+12, SWYC94, SFS913, TSP95, THM+94, TMP01, Wor96, YW965, YS93, ZH06].
Evaluations
[KNH+18, MM14].
Event
[KKV01, NLI16, THS+15, WLM01, WMC+18, FSG19a, FSG19b].
Event-Based
[LSV16].
events
[HKH+19].
everything
[CCM+06].
everything-shared
[CCM+06].
Evolution
[Mat01a, PS01a, RBB17, SSL97, SGDM94, GS93, SSD+94].
Evolutionary
[B+05, DSM94, Rag96].
Evolving
[Bad16, ER12, McD90].
Ewing
[Ano95c, Ano99e, Ano99d, Ano00a, Ano00b].
EWOMP’99
[BC00].
Exact
[dOSMM+16].
examine
[LFS+19].
Example
[Che10, SK10, NB96, Pat93].
Exascale
[BAD16, LV12, LSG12, RPS19].
Exception
[FMSG17].
exchange
[MMM13, Pan95a].
executable
[WMP14].
Execution
[AHD12, BME02, DT17, FC05, FM09, GR07, KJK10, Mar05, MFG+08, MAGR01, Ney00, STY99, SAP16, BLBV18, EPM99, Mor95, PSB+19, SMAC08, TN15, TSY99, TSY00, UGT09].
Executions
[GAML01].
Event
[KKV01, NSLV16, THS+15, WM01, WMC+18, FSG19a, FSG19b].
Event-Based
[NSLV16].
event-driven
[FSG19a, FSG19b].
events
[HHK+19].
everything
[CCM+06].
Evolution
[Mat01a, PS01a, RBB17, SSL97, SGDM94, GS93, SSD+94].
Evolutionary
[B+05, DSM94, Rag96].
Evolving
[Bad16, ER12, McD90].
Ewing
[Ano95c, Ano99e, Ano99d, Ano00a, Ano00b].
EWOMP’99
[BC00].
Exact
[dOSMM+16].
examine
[LFS+19].
Example
[Che10, SK10, NB96, Pat93].
Exascale
[BAD16, LV12, LSG12, RPS19].
Exception
[FMSG17].
exchange
[MMM13, Pan95a].
executable
[WMP14].
Execution
[AHD12, BME02, DT17, FC05, FM09, GR07, KJK10, Mar05, MFG+08, MAGR01, Ney00, STY99, SAP16, BLBV18, EPM99, Mor95, PSB+19, SMAC08, TN15, TSY99, TSY00, UGT09].
Executions
[GAML01].
Event
[KKV01, NSLV16, THS+15, WM01, WMC+18, FSG19a, FSG19b].
Event-Based
[NSLV16].
event-driven
[FSG19a, FSG19b].
events
[HHK+19].
everything
[CCM+06].
everything-shared
[CCM+06].
Evolution
[Mat01a, PS01a, RBB17, SSL97, SGDM94, GS93, SSD+94].
Evolutionary
[B+05, DSM94, Rag96].
Evolving
[Bad16, ER12, McD90].
Ewing
[Ano95c, Ano99e, Ano99d, Ano00a, Ano00b].
Fine-Grained
[BBG+10, TCM18, YSS+17, LZHY19].

Finite
[DFN12, KK19, MS02b, MAIVAH14, OD01, OKM09, Pri14, SM02, UZC+12, VM94, VRS00, BB93, Gra09, FGGP12, HE13, HMKV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, PSSV19, Ram07, TOC18]. Finite-Difference
[UZC+12, VM94, HE13, NZZ94, Ram07]. Finite-Element
[MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b].

Finland
[RWD09]. Fire
[JML01, SJ02]. First
[AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kum94, Nar95, PBPT95, SSP+94, USE94, AH95, BS94, GM18, MMDA19, PTMF18, PBPT95]. Fix
[DLV16]. fixed
[PSV19]. fixed-grid
[PSV19]. FLAME
[VBLvdG08]. at
[Nak05b]. Flattening
[THRZ99]. flavors
[GM18]. FlexCL
[LWZ18]. Flexibility
[KK02b]. Flexible
[CS14, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAM+00, HC08].

Floating-Point
[LWSB19]. Florida
[ACM98b]. Flow
[BHW+17, BGD12, CGZQ13, CCBPAGA15, FM09, MK17, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTHD99, HHSMA19, JAT97, LL16, MBKM12, MH18, Ols95, PTT94, RM99, SCC95, SU96, TS12b, TOC18].

Flow-Based
[BHW+17]. Flows
[GAP97, BCM+16, BCT+17, Heb93, LLG12]. flowshop
[CB11]. Fluid
[DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TEGM09, ALR94, ATL+12, AGJM06, BVDB94, BHS18, BI95, HVSC11, MRRP11, PBK99, SPE95, SZBS95b, WPH94]. fluid-particulate
[ATL+12]. fluids
[HK94, WB96]. Flux
[QRMG96, QRG95]. Fly
[WMC+18, KSJ14, THRZ99, BCAD06, BADC07]. FM
[LC97a]. FMA
[LO96]. Fock
[MMDA19, CBH94]. Focus
[Cla98, CFF19]. foolish
[Rol08a]. footprint
[TS12b]. force
[Goe02]. Forecast
[AHP01]. forecasting
[Bjo95, KOS+95a]. Forest
[JML01, NCKB12]. ForestGOMP
[BFG+10]. Foreword
[CHD09]. FORGE
[WCVR96]. Fork
[BDG12, SML17]. Fork-Join
[BGD12, SML17]. form
[NCB+12, NBC+17]. Formal
[BG94a, BBH12, BB93, KME09, KEGM10, Nak05a, Nak05b].

France
Francisco
[BBG95, IEE93a, IEE94g].
Frankfurt
[Tou96].
Frankfurt/Main
[Tou96].
Fredericton
[BG91].
Free
[KK19, PKYW95, CP15, SOA11, Zah12].
freedom
[KJT03].
friendly
[SVC+11].
Frontiers
[ACM90, AJF16, CNM11, NW98, Ser92a, Sie92b, Sie92a].
Frontiers’95
[IEE94a].
Frontiers’96
[IEE96c].
FSI
[HAA+11].
FT
[FD00, LNLE00, WTS19].
FT-MPI
[FD00].
Fujitsu
[Ano98, AKL99, BHS+02, SWJ95, SH96].
full
[CF19].
full-orbit
[CF19].
Fully
[GA96, ZL17, SSB+16].
Function
[AGS97, Bri02, HHS18, MCP17, Rot19, RB01, SW12, HE15, JMDV+17, KRC17].
Functional
[ACM00, AJF16, CNM11, NW98, Ser97, CBKH94, EP96, HSE+17, SFLD15, WZWS08].
functionality
[BFIM99].
functionally
[PSV19].
Functions
[BKGS02, Bru12, Hat98, MDM17, CGJM96, HWX+13, PNV01].
Fundamentals
[Wal96a].
fused
[TW12].
Fusion
[FHK01, FMFM15, PKE+10].
fusions
[FFM11].
Futhark
[HSE+17].
Future
[Dar01, IEE93d, Mat00a, BDG+93b, FK94, FHP+95, Gei98, RPS19, Sni18].
Futures
[Kuh98].
fuzzing
[LLCD15].
G
[OPM06].
G2
[Cat04, KTF03, OPM06].
GA
[Ara95].
GAIN
[ARYT17].
GAIN-MPI
[ARYT17].
Gains
[CMM03].
Galerkin
[KK19].
Gallipoli
[Ano93b].
GAMMA
[CC00a].
Gap
[AAB+17].
Garbage
[GTS+15].
Gas
[BMS94b, BBK+94, BMS94a].
GASPI
[SIC+19].
gather
[MTK16].
gauge
[BW12].
Gauss
[BM95, LM99, Obs95].
GCell
[SHH94a, SHH94b].
GECCO
[B+05].
Geist
[Ano95b, NMC95].
gem5
[PHO+15].
gem5-gpu
[PHO+15].
Gemini
[SWS+12].
gems
[Far04, mH12, Ngu08, PF05].
Gene
[GDM18, PCS94, AAC+05, BHG+05, EF+05, KMH+14, LM13, MV17, MSW+05].
gene-finding
[PCS94].
Gene/L
[AAC+05, BHG+05, EF+05, MSW+05].
Gene/Q
[KMH+14, LM13, MV17].
General
[AJYH18, Che10, IH04, MW98, SK10, SZBS95a, Sun94a, ABDP15, ADLL03a, ADLL03b, CBM+08, FLD96, KPNM16, PF05, RSBT95, SZBS95b, SMSW06, YPA94].
General-Purpose
[AJYH18, Che10, SK10, ABDP15, CBM+08, KPNM16, PF05].
Generalized
[DFKS01, FKS96, BSC99, SD99, van93].
Generating
[AZG17, CGL+93, ER12, IJM+05, PKB+16, SFLD15].
Generation
[AB93a, CC17, FADF15, Gei98, GTH96, HT08, JFY00, LTDD14, RG13, SSB+17, TGBS05, VPS17, AB93b, CPR+95, DCD+14, DWM12, KHS12, KPL+12, KH10, MMDA19, SP11, TGKL19, WKS96, WMP14, ZKRA14].
genерational
[WK08a, WK08b, WK08c].
genenerative
[MAS06].
generator
[Lan09, TNIB17, YL09].
generators
[CCS19].
Generic
[ARS89, AKL99, GB98, BAS13, GM13, ZT17].
Genetic
[FTV00, MTSS94, MSCW95, PB12, TGKL19, WKS96, Wal01a, WHDB05, AB13, BB95a, FSTG99, HLP109, RJC95, Wal01b, B+05].
genetics
[LM99].
Geneva
[IEE97b].
genomic
[SdM10].
genomics
[CJPC19].
GeoComputation
[Abr96, Abr96].
GeoFEM
[NO02a, Nak03].
geomechanics
[BJS99].
Geometric
[DGP+19, VGP+19].
geometrical
[FMS15].
Geometry
[STK08, Ho95, STT96].
geophysical
[Has95].
Georeferencing
[GCG98].
Germany
[USE00, UCW95].
German
[EGH99, BR97, Gra97, GEW98, SLO99, Wer95].
Germany
[BDS96, GH94, KGRD10, MTWD06, MdSC09, PSB+94, Sch93, Tou96, Ano93a,
Gravitational [ZSK15, KM10]. Greece [CD01, CDND11, SM07, TG94]. green [PTL +16]. Grenoble [JPTE94]. Grid [AB93a, CB9+10, CLL03, DPP01, Fos98, KT02, Lai01, Liv00, MRB17, PLK +04, Rei01, TGEM09, AB93b, Eng00, GLM +08, KRKS11, PSH19, WYLC12, AASB08, BR04, CCHW03, DKD08, FC05, GFU +03, GL02, KTF03, KGK +03, KSSS07, LC07, LSO8, NBR07, RPM +08, RTRG +07, SHTS01].
Grid-Adaptive [KT02]. Grid-Enabled [Fos98, GLM +08, KTF03]. Grids [NO02b, ACH +11, CC10, KBG -09, NO02a, NB96, BBH +06, GR07, Ram07, SN01].
GROMACS [BvdSvD95]. Gropp [Ano95c, Ano99c, Ano00a, Ano00b]. Gross [LBB +16, LYSS +16, SSB +16, YSVM +16, YSMA +17]. Ground [HTHD99, NS16].
groundwater [FAST95, EGD92]. Group [AD98, Ano98, ARA+95, ACDR94, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, GG95, KGRD10, KRA02, KKD04, LKD08, MC94, MTWD06, RWD09, TBD12, UMK97, BDW97, DLF03, MMU99].
grouping [WPL95]. Groups [GOM +01].
GUI-awareness [VGS14]. guidance [SDJ17].
Guide [Ano12, D +91, GBD +94, LAD04, Nov95, NMC95, Per96, Ano95b, BG +91a, McK94].
Guideline [Tat +12]. Guidelines [TG10].
GVirtuS [MGL +17].
Hamburg [PSB +94]. Hamiltonian [ART17]. Handling [DFC +07, FMSG17, LS15, LGM00, RC97, FFFC99, LN +12, THRZ99]. Hands [KmWH10]. Hands-on [KmWH10].
Harbor [BBC +00]. Hardware [BGG +15, BWW +12, Brun12, BCP00, CDP03, DW02, EADT19, GM18, HSP +13, LSMW11, MFC98, PSM +14, PKB +16, SSLM10, vdLJR11, ER12, GGL +08, PMZM16, Ra99, SGB +12, SH94, SWS +12, YAJG +15, ZLS +15].
Hardware-Based [CDP03].
Hardware-oblivious [HSP +13]. harmonic [GSMK17]. Harness [EBK01, MS99b, PL96, FBD01a, FBD01b, FBVD02, FD02a, FD02b, SMF00, Ge98].
Harrogate [CJNW95]. Hartree [CBH94, MMDA19]. HASEonGPU [EZBA16]. Haskell [WO97]. Hate [Dan12].
Hawaii [ERS95, ERS96, HS94, MHH93, ZL96]. HCA [KBG16]. HDL [Kat93, KM16].
HDMR [KD12]. Heading [Sch99]. Heaps [GFJT19]. Heat [SAS90, NP94, iSYS12].
Hector [RFHR96, RRG +99]. Heijen [Van95]. held [AGH +95, GA96, JB96, KG93, MHH93, Old92, R +92, SP95, T93].
Helios [SP96]. Helmholtz [HMKV94].
Helps [Spt02]. HeNCE [BDG +92a, BDG +92b, BG +93a, BG +94].
Hénon [JPT14]. Herzliya [IEEE96].
HeSE [MRV00]. Heterogeneous [ABB +10, BDG +93a, BDG93, BL95, BCP +97, BGR97b, BCP00, CMMR12, CLO18, CLS17, DGS93, DGMJ93, FDG97a, FDG97b, FL98, Fos98, GS91b, GDDM17, IEEE93f, KR09, KCR +17, LC93, MRV00, MM01, MM02, NTR16, PD98, PH +15, RVP19, SMS00, SGS10, TQDL01, VLO +08, ACGeT02, ADB94, ADDR95, AMV94, BDG +92c, BDG +94. BALU95, BRR99, BAG17, CCM12, CFPS95, FMBM96, GJKZ12, GCN +10, GCF13, HHS18, HK94, KSG13, KSL +12, Kos95b, KSS +18, LCL +12, LR06a, Lee12, Mal12, MSL12, MM03, NP94, NEM17, Pen95, PSB +19, RCF96, RVP18, SCJH19, Skj93,
Smi93b, Sun94b, Sun95, TBB12, TMW17, TKP15, TGD13, VB99, VGP+19, WCC+07, YST08, YSL+12, ZJDW18. **HeteroMPI** [LR06a, VLO+08]. **Heuristic** [BHM96, STV97, WH94]. **HI** [ERS96, HS94, IEE96e, ACM97a]. **HICSS** [ERS96, MMH93]. **HICSS-26** [MMH93]. **HICSS-29** [ERS96]. **HiCUDA** [HA11]. **Hierarchical** [BMR01, FBSN01, HA10, HL17, MB18, MALM95, RR02, ADMV05, BDV03, GJMM18, GJMM18, ZSK15, HS95a, GH94, LCHS96, SSH98]. **hierarchies** [SYR+09]. **High** [ACM97b, ACM08a, ACM08b, ACM00, ACM01, ACM04, BPG94, BRST94, BS07, BDA+18, CDD+13, CNM11, CDHL95, CS14, DPP01, DLD00, DE91, FGK97, GSHL02, GH99, GBS+07, GLDS96, HVA+16, HA11, Hol12, IE92, IE93c, IE94g, IE95k, IE96a, IE96f, IEE97c, IF95, JMM+11, Kha13, KMK16, KEGM10, KH15, Lahn01, LC91, LC97a, LkLC+03, LBH12, LWP03, MW98, MPD04, ME17, MAB05, NNO00, TSB02, TSB03, WYCF15, YSP+05]. **High-Dimensional** [PGS+13, PGK+10, PF05, PTW99, Reu03, RJDH14, SG14, SFLD15, ZSK15, ZWL13, dAT17, D298b, D95e, DE91, GH94, HS95a, KD12, LCHS96, LC97b, SSH08, Ten95]. **High-Dimensional** [MW98]. **High-Level** [CS14, DLD00, HA11, Hos12, SG14, SFLD15]. **High-order** [KEGM10, KME09, OGM+16]. **High-Performance** [ACM98a, FGK97, IE97c, LkJLC+03, OLG01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCSL12, WN10, GLDS96, OIHM10, SVC+11, Ano03, ESB13, FME+12, GL96, GL97c, HADD09, KBP16, LBD+96, Old02, PG9+13, PGK+10, PF95, Reu03, RJDH14, SFLD15, ZSK15, HS95a, GH94, LCHS96, SSH08]. **High-Precision** [Kha13]. **High-Quality** [BS07]. **High-Speed** [CDHL95, KMK16, AH95, BWT96, CDH+95]. **High-Throughput** [SSLMW10, ESB13]. **Higher** [MYB16, KB13, wL94]. **Higher-level** [wL94]. **Higher-order** [MYB16]. **Highly** [MM95, PV97, TMP16, CARB10, GBH14, GBH18, VM95]. **highly-scalable** [GBH14]. **Highs** [IEE93f]. **High-Scalability** [BS07]. **High-Throughput** [SSLMW10, ESB13]. **Hills** [IEE93f]. **Homomorphisms** [RG18]. **homotopy** [GWC95, SMSW06, VY15]. **Honolulu** [IEE96e]. **Honorable** [Str94]. **Host** [Ano95e, LLRS02]. **Host-Parasite** [LLRS02]. **HOTB** [GSMK17]. **Hotel** [IEE94e]. **Hotel-Copley** [IEE94e]. **Hough** [YULMTS+17]. **House** [ZLZ+11]. **Houston** [ACM06a, Ano95a, Cha05, DKM+92, Y+93]. **HP** [CGB+10, BCM+16]. **HPC** [ASS+17, CGBS+15, GKK90, LCVD94b, OL+16, PRS+14, RGGP+18, VGP+19, ZLP17]. **HPC2002** [Ano03]. **HPCN** [LCHS96]. **HPF** [BP98, BF01, BID95, Bri00, BDV03, CM98, CDD+96, Coe94, FFK+96b, FK99a, L973, OP98, OOP00, SM02, Str94]. **HPF-MPI** [BP98]. **HPL** [Lee12]. **HPVM** [BCKP00, CLP+99, KSS+18]. **HPVM-Based** [CLP+99]. **hull** [GCN+13]. **human** [VLSP19]. **Hungarian** [Fer92, FK95, LYIP19]. **Hungary** [DKP00, KKD04, VV95, FK93]. **hunting** [JPP95]. **Husky** [YLC16]. **Huss** [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].
Huss-Lederman
[Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

Hybrid [BBG+10, BBH+06, BB18, CGC+11, CNM11, Cha02, DR97, GPC+17, HVSC11, IDS16, KS15a, KLR+15, LLRS02, LRG14, MS02b, NO02b, PZ12, SSB+16, VPS17, WT12, YHL11, YPAE09, YTH+12, AC07, ADR+05, BBG+14, CSPM+96, FMS15, GAVRRL17, GKK09, HDB+13, JR10, JMS14, KN17, KRG13, KJEM12, LLC13, LLIH+14, MLAV10, MRRP11, NO02a, Nak05a, Nak05b, PARB14, PHJM11, SDFJ17, SVC+11, THDS19, WT11, WYLIC12, WLYIC12, WT13, YWC11, ZWL13].

hybrid-core [BBG+14].

Hybridizing [LSG12].

HYDRA_MPI [PBC+01].

Hyper [CSW99, SBT04, TBG+02, ZAT+07].

Hyper-Rectangle [CSW99].

Hyper-Threading [SBT04, TBG+02, ZAT+07].

hypercube [HS95b, Sur95b].

Hypercubes [Ano89, RJMC93, She95].

Hypercubic [HP11].

hyperelastic [OKW95].

hypersonic [BTC+17].

Hyperspectral [VLO+08].

I-SPAN [LHHM96, Li96].

I-WAY [FGT96].

I/O [Bos96, CFF+96, DRUE12, IRU01, IBC+10, LkLC+03, kLCC+06, MV17, MC18, MGC12, MG15, PSK08, PLR02, RK01, SBJQ14, Tha98, Tso07, WSN99, ZJDW18].

I-SPAN [Ham95a].

IBM [AL93, Ano03, BBB+94, BGBP01, BR95c, BR95b, BRT95, CE00, CDM93, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, HMKV94, Heb93, JF95, KB98, KAC02, KHS01, KMH+14, LC97b, MP95, MW93, MAB96, NMW93, WZWS08, XH96].

IBM-SP1 [FHP94b].

ICA [IEE96d].

ICAPP [Nar95].

ICCMSE [SM07].

ICIP [IEE94b].

ICPP [Agr95a].

ID [DGG+12].

Idaho [Str94].

Ideas [IEE95d].

identification [HPLT99].

identity [KN17].

IEEE [ACM97b, ACM98b, ACM04, ACM05, Bha93, IEEE94e, IEEE94g, IEEE95b, IEEE95a, IEEE95k, IEEE95g, IEEE96b, IEEE96f, IEEE96d, IEEE02, Nar95].

IEEE/ACM [ACM04].

IFIP [Boi97, DR94, PSB+94].

IFS [AHP01].

Igniting [ACM03].

II [DE91, GE95, HS94, BPS01, BWW+12, EM00b, GAVRRL17, Sta95b].

III [BPG94, BB93, DSA94, GE96, Has95, OKW95, SSGF00].

ILDJIT [CARB10].

I'll [Har94].

Illumination [STK08, ZWHS95].

IIA [ACM97b, ACM98b, ACM04, ACM05, Bha93, IEEE94e, IEEE94g, IEEE95b, IEEE95a, IEEE95k, IEEE95g, IEEE96b, IEEE96f, IEEE96d, IEEE02, Nar95].

IEEE/ACM [ACM04].

IBM-SP1 [FHP94b].

ICMP [Agr95a].

ICPP [Agr95a].

IBM [AL93, Ano03, BBB+94, BGBP01, BR95c, BR95b, BRT95, CE00, CDM93, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, HMKV94, Heb93, JF95, KB98, KAC02, KHS01, KMH+14, LC97b, MP95, MW93, MAB96, NMW93, WZWS08, XH96].
SBG+02, Ser97, SCC96, SSC97, SZBS95a, SWJ95, SYF96, Sum12, Sur95a, TOTH99, TBG+02, TRH00, TMPJ01, USE94, VT97, WH94, WPC07, YGH+14, YWO95, ZZG+14, ACGdT02, AS92]. **implementation** [AAAA16, AAC+05, ADLL03a, ADLL03b, AB93b, BR91, BvdSvD95, BR95b, Ber96, BCCR99, BK96, BCK+09, BS01, BS05, Bor99, BRD99, BS96b, BDV03, Bri95, BB00, BAS13, CDZ+98, CEGS07, CG99a, CdGM96, CBHH94, CD96, DSW96, DS96a, DL10, DBB+16, DSOF11, DM12, FFB99, FWNK96, FGT96, FGG+98, FCS+19, GCC99, GG99, GG09, GÁVRL17, GL92, GL94, GL96, GLDS96, GL97c, GT07, GkLyC97, HBT95, HCL05, HS95b, ITT99, InvLH+00, JRM+94, JC96, KY10, KTF03, KBVP07, KL95, KVGH11, KNH+18, KB13, Leci12, LC07, LYP19, LO96, MMS+16, Man94, MAIVAH14, MS95, MSZG17, ON12, OKW95, OA17, OGM+16, PHJM11, PR94a, PTW99, PCS94, Ram07, RRHF96, Sep93, SZBS95b, SCL97, Sto98, SNMP10, Sur95b, Swa01, SL95, TKP15, TP15, TS12b, TA14, TCP15, Tsu95]. **implementation** [TVV96, VDL+15, VGRS16, VM95, Was95a, WMRR17, WRMR19, YPA94, ZLS+15, dH94, dlAMCFN12, van93].

Implementations [AKK+94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG+10, FB94, Gro02b, klCC+06, LCW+03, Mar02, OARA12, Sap97, TSCaM12, TGEM09, VS00, WT12, ZDD97, CLSP07, ER12, ED94, GML+16, ICCO2, KWEF18, MKP+96, NN95, Pri14, RLFdS13, WLK+18, WT11, YCL14]. **implemented** [BBDH14, EP96]. **Implementing** [DPZ97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MMH98, MS99c, MSB97, SSC96, SS99, SMTW96, SGHL01, SCC95, Tra02a, Wil93, BWT96, LHZ97, YX95]. **Implementor** [GL95b]. **Implicit** [LHCW05, MS02b, NA01, SGHL01, Bjo95, TSP95, WADC99]. **Importance** [BCG+10, PCY14]. **Importance-Driven** [PCY14]. **Improve** [KBS04, SKH96, Tha98, GK97, RHG+96]. **Improved** [Tra02b, MMO+16, dIAMCFN12]. **improvements** [DPSD08]. **Improving** [CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SM12, SLO0, XF95, CZ96, JKN+13]. **in-house** [ZL+11]. **In-Memory** [CLOL18, ZL17, CRM14, HSP+13]. **In-Place** [LTS16, HSE+17, PSHL11]. **Including** [BWW+12, GLT12]. **incompressible** [BCM+16, Lou95, RM99, TS12b]. **Incorporating** [LM94, LYZ13, TKP15]. **Incremental** [dOSMM+16]. **Indefinite** [YK+18]. **Independent** [BCL00, BRU05, BDA+18, CSW12, CDMS15, Dn96, MV17, YBZL03]. **Index** [DALD18, LAD16]. **Index-Digit** [DALD18, LAD16]. **Indexes** [Wal01a]. **Indexers/Crawler** [Wal01a]. **Indexing** [LTR00]. **India** [CGB+10, IEE96a, Pr94, PBPT95]. **indicator** [FSV14]. **Industrial** [BPMN97, DHK97, ALR94, ABCI95a, ABCI95b, BT96, EKTB99, Was96, Kon00]. **industries** [Ano93a]. **Industry** [DM98, Ano94f]. **Industry-Standard** [DM98]. **inefficiency** [HGMW12]. **Inertial** [Str97]. **Infer** [VBB18]. **Inference** [LAD+15, TVCB18]. **Infiniband** [SWHP05, LCW+03, LVP04, LWP04, PK05, PRS16, SPK+12, ZLP17]. **InfiniBand-based** [PK05]. **inflation** [OdSSP12]. **influence** [Gra97]. **Information** [Ano98, CGB+10, Ano93c, CG99b, Gro19, MMR99, WADC99, PSB+94]. **infrastructure** [GFIS+18]. **infrastructure** [GWVP+14]. **Initial** [LLH+14, VDL+15, AL96, LSR95]. **Initiated** [SSB+05]. **initiatives** [Sun95].
initio [SSGF00, SEC15]. Injection [RRAGM97, SAL +17]. Inn [IEE93c].
Innovation [ACM03]. Input [CFF +94, SHM +12, JWB96]. input-aware [SHM +12]. Input-Output [CFF +94].
Input/output [JWB96]. Insight [IEE02]. Inspection [BPMN97, DLLZ19]. inspired [NEM17, TDB00].
Institute [Old02, TG94]. Instrumentation [MVY95, Yan94]. Insurance [PZ12].
Integer [ASA97, CF01, WLC07, ZC10, BHJ96, KVGH11]. InteGrade [CC10].
Integrate [GLRS01]. Integrated [CFDL01, DGMS93, HKN +01, KSV01, WL96a, DF17, HK10, KW14, VDL96b, WWZ +96, WL96b, XWZ96]. Integrating [BCLN97, CM98, Fin00, GJP01, KJA +93, KAH96, wL94, STP +19, WFT014, TWF009]. Integration [CGC +11, CSW97, FD96, FB94, MAIVAH14, Sei99, AL96, CSW99, KB13, RMS +18, RBB15].
Integrator [Per99, SP99]. Intel [Ano96c, Ano03, CBIGL19, DSGS17, MP95, OTK15, URK912, VDL +15, WWZ +96, WL96b, XWZ96].
Intelligence [BPG94]. intelligent [IEE95a, ZWZ +95]. Intel(R) [TBG +02, MMDA19, SBT04].
InTensities [ARYT17]. Intensive [Rei01, BFL199, BKM95, LSM +18, SL94a].
Inter [KFL05, LAFA15, FKL08, LFL11, RS19, SDB +16]. Inter-Atomic [LAFA15].
Inter-Node [KFL05, FKL08, LFL11, RS19].
inter-workgroup [SDB +16]. Interaction [DMMV97, GFV99, NSLV16, Sou01].
interactions [PARB14]. Interactive [Coo95b, KPK13, KA13, NE98, RTRG +07, STK08, Coo95a, IJM +05].
Intercommunication [TMP16]. Interconnect [Bri12, SJO2, BWT96, SWS +12, TBD96].
Interconnected [Hus00]. Interconnecting [MC98]. Interconnection [MANR09, SB95, AYA +16]. Interconnects [RA09]. Interface [Ano93d, Ano01b, BCFK99, BC19a, BDH +97, CHD07, Cer99, CGH94, CDND11, DFSA01, DHHW92, DHHW93a, DBK +09, FKK96, FSLS98, Gle93, GLS94, GL95c, GLDS96, GLTO0b, HDB +12, HRS97, KSJ95, KGRD10, KKKV03, KKD04, LKD08, LkLC +03, LW97, MP198, MS98, MSS98, MBES94, MMSW02, MTW06, PS01b, RWD09, SSL97, TBD00, TW01, TBD12, WD96, Wer95, YHGL01, Ada98, AD98, Ano93e, Ano94d, BB8 +94, BBCR99, Br95, BD97, BK00, BR94, CFSK00, CFF +96, CD01, CG99b, DKD05, DDB +16, DS69b, DLM99, DPK00, DLO03, GRW +19, HPR93, HK9 +19, HRR +11, KOB01, KSJ96, KB94a, Kra02, NS91, Pie94, PR94a, RMS +18, SL94a, SWJ95, SDV +95, V95, Wal94a, Wal94b, ZW113, ZKRA14, AMHC11, BC14, BB +06, BRU05, BDH +95, Co04, DKD08, D1996, FK96, FGT96, FGG +98, GGH +96].
Interface [GLT99, GLS99, GLTO0a, GL04, Han98, IBC +10, KTF03, KK9D05, LK10, MSL96, RRF96, SWP05, SLC95, SW +01, TGT05, YGH +14, Ano95c, Ano00a, Ano00b].
InterfaceArchitecture [Sei99]. Interfaces [MGC12, Wit16, FCS +19, RJDH14, TrA12a].
Interfacing [Lus00, PL96]. interference [ZJWD18]. Intergroup [KTAB +19].
Intermediate [SML17]. internal [BBH +15].
International [ACM94, ACM96b, ANS95, Abr96, ATC94, AGH +95, Ano93a, Ano94a, Ano94e, BPG94, Bos96, BM9+96, Cha05, CZG +08, CGKM11, CMMR12, CGB +10, CH96, DSM94, DW94, EV01, Eds08, ERS95, ERS96, EJL92, GY95, GA96, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE93c, IEE93b, IEE94d, IEE94g, IEE95b, IEE95c, IEE95a, IEE95k, IEE95i, IEE95f, IEE95l, IEE96a, IEE96f, IEE96e, IEE96d, IEE97b, IEE97c, IEE05, Kum94, LCK11,
LF+93a, Lev95, LHHM96, Li96, MMH93, MCdS+98, MdSC09, Nar95, Ost94, PW95, PBG+95, PBPT95, Ree96, R*92, SHM+10, Sie94, Sil96, SM07, Ton96, VW92, Vol93, Vos93, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPTE94, LCHS96, Ma95, ZL96, An93b, HHK94, Sch93.

Introduction [An96b, AM07, Che10, Cze16, DOSW95, NSA08, HW11, Ma02, Mat00b, SK10, GT19, VP00]. Invasive [URKG12]. inventory [OHG19]. Inverse [Huc96, BV99, GGC*07, GG09, Wan02]. Inversion [ACMR14, Kan12].

Investigating [GMDMBD+07, Ros13]. investigation [PHW+13]. Invisible [Wis97]. Invited [Gel93a]. IO [AHP01, BIC+10, CGC+02, AFF+96, DIL10, FGRD01, FWNK96, FSL98, LRT07, LGG16, PSH98, PTH+01a, PTH*01b, SW12, St98, TGL02, ZF04]. IO/GPFS [PTH*01a]. IOMMU [YWC15]. IOV [YWC15, ZL017]. IPC [ICA00]. IPCC [SC95]. IPPS [IEE96e]. IR [ZJW18].

Irishland [LKD08]. IRREGULAR [FR95, BMR01, Cza02, Cza03, BL99, HASn00, LOHA01, MR96, NP12]. irregularly [FR95, SM93b]. ISA [Wit16]. ISBN [Che10, SD13]. ISBN-13 [Che10]. ISCA [An94e, YH96]. Ischia [ACM06b]. Isserver [SHH94a, SHH94b]. Isserver-Occam [SHH94a, SHH94b]. Ising [AL93, KO14]. Isolating [Lus00]. Isosurface [PCY14]. IS Span [HHK94]. Israel [DSM94, IEE96h]. Israeli [IEE96h]. ISSAC [Lev95]. ISSTA [Ost94]. Issue [AM07, BDB+13, BC00, GSA08, MPI98, BC19a, CHD09, DKD07, GT19, Mar02, Old02]. Issues [BDTO, FDO2a, KGK+03, MW98, Pan95b, PSL01b, ZDD97, ARV03, EGH99, FD02b, HHA95, PBK99]. Italy [CMMR12, CH96, DKD05, DKD07, D*95, DLO03, HSS95, IEH59, KG93, OL05, ACM06b, An93b, CLM+95, DR94, SI96].

Iteration [HF14a, HF14b, OHR91]. iterations [Lou95, YST08]. Iterative [CCSM97, DK06, NO2b, NO3, SC04, ADDR95, EDSV09, LSS95, MGG05, NO2a, NO3a, OM09, DH94]. Ithaca [PBG+95, Ree96]. IV [SPH95]. IWOMP [CZG+08, CGKM11, CMMR12, Ed008, MCD+08, MDSC09, SHM+10]. IWPP [Kum94, PBPT95]. IWPP-94 [Kum94, PBPT95]. IWWP [Kum94]. IX [R+92].

Jersey [Bha93], Jerusalem [DSM94].
Jiang [Ano95b, NMC95]. Job [NSS12].
Jobs [GSHL02, OPM06, ZA14]. Join
[BGD12, LTRA02, SML17, BMS+17, She95].
Joint [GT94, Ano03, YHGL01, Ano03c].
JOMP [BK00]. Jose
[ACM97b, GE95, GE96]. JPEG
[CLBS17, NU05]. JPT [BDY99]. JPVM
[Fer99b, Fer98a, LGCH99]. Jr [ACM99].
Juggler [BLV18]. July
[ACM95b, ACM97a, Boi97, EV01, GA96,
Has95, IEE93c, IEE96i, Lev95, PW95, TG94].
Jumpshot [ZLS99]. June
[ACM90, Ano94f, B+05, BG91, CZG+08,
CGKM11, CMMR12, DSZ94, DW94, D+95,
IEE94e, IEE95c, IEE95i, IEE96d, IEE96h,
KG93, LIHM96, L96, MdCS+08, MdSC09,
R+92, SL94a, SHM+10, TG94, Vos03].
Jupiter [Str94]. Just
[FKLB08, FSSD17, KFL05, FK94].
Just-In-Time [FSSD17, FKLBO8]. JVMP
[DeP03].
k-ary [Pan95a]. Kalman [BY12].
Kanazawa [HHK94]. Kandrot [Che10].
Karlsruhe [Cal94, Sch93]. Karlsruhe
[Reu01]. Katsevich [DY+06]. Kaufmann
[SD13]. KBLAS [AKL16]. Keele [Ano93c].
KENO [RP95]. KENO-Va [RP95]. Kernel
[CKmWH16, CFDL01, EBK99, HKT+12,
MBBD13, PWP+16, SN+99, TY14,
FMF15, GM13, MMW96, PSB+19, SAP16,
YBZL03, AKL99]. Kernel-assisted
[MBBD13, GM13]. Kernel-based
[CKmWH16, TY14]. kernel-independent
[YBZL03]. Kernel-Level [HKT+12].
Kernels [BCh+15, KI17, KAC02, Pet01,
Ros13, SS+17, VZT+19, ARS99, BCD+12,
FSV14, FVLS15, FFMI1, KKM15, PTG13,
PGS+13, TBB12]. Kerr [Kha13]. key
[LF+93a]. kind [SP11]. Kinect [KPK13].
kinetic [JL18]. Kinetics [LD01, BTC+17].
King [ACM99]. Kingdom [Boi97].
Kirchhoff [SSS99]. Klagenfurt [Bos96].
Knapsack [ICC02]. KNEM [GM13].
knowledge [FNSW99]. knowledge-based
[FNSW99]. Knoxville [PR94b]. Kohr
[Stp02]. Kolmogorov [Str97]. KOP3D
[KR09]. Koppelrandkommunikation
[Gr97]. Kpi [EML00]. KPN2GPU [BK11].
KPP [AC17]. Kremlin [GLT11].
Kronecker [LW+12]. KSIX [AUR01].
KSR1 [BL94]. KU [IM94]. Kungl [Eng00].
Kyoto [IF95, SPE95, IF95].
L [AAC+05, BGH+05, EFR+05, MSW+05].
LA-MPI [YSP+05]. Lab [Str94]. Labeling
[PPJ01, KRKS11]. labelling [HLP10].
laboratory [JY95]. Lafayette
[EV01, EdS08]. Lagrangian
[CT94a, CT94b, RSV+05, TC94]. Lahey
[Ano98]. Lake [Hol12]. LAM [OF00, RsT06,
SSB+05, Squ03, Swa01, ZWZ05].
LAM/mpi
[OF00, RsT06, SSB+05, Squ03, ZWZ05].
lambda [PQ07]. lambda-calculus [PQ07].
LAMGAC [MS09G1, MS02a]. Lamport
[TPLY18]. LAN [CCU95, CDH+95,
MSORG01, MTSS94, TSZ94, ZG94].
LAN-based [TSZ94]. LAN-Message
[MTSS94]. Lanczos [GP95, Sch96a, Sch96b].
Landing [dcZG06]. Landsat
[GGCM99, GGCS98]. Landsat-TM
[GGCM99, GGCS98]. Lane [HHC+18].
Language [ACM96a, NM95, PD98, Sp18,
TA14, WLR05, Ben95, CGK11, Hos12,
Nob08, RKB+13, Rob00].
Language-based [Sp18]. Languages
[CCF+94, FMSG17, FSSD17, CH96, Mar05,
Ohu14, SWS+12, PBG+95, SS96].
LANs [Fin97]. LAPACK [Addo1, ARvW03].
LaPerm [WRSY16]. LAPI [BG01].
Laplace [ACMR14]. Large [AKE00,
BHW+17, BZ97, BJS99, BHNW01, CGC+11,
DALD18, FPFP03, Huc96, JFGRF12, LLY93,
MKC+12, FPP03, PCY14, Rdt19,
RGB+18, SGJ+03, SM03, SvL99, TEG09,
WMC+18, WT12, ZWJK05, AASB08,
large-message [AMC+19]. \textbf{Large-Scale} [AKE00, BWH+17, BZ97, FPFP03, MFPP03, SM03, WMC+18, WT12, BJS99, Sv1999, ASB08, BCH+08, Che99, FME+12, LS10, MLA+14, PD11, RMM+12, SIC+19, SC96a, TBB12, TOC18, WT11, WT13, ZWL13, ZA14].

\textbf{Larger} [NB96]. \textbf{LargeScale} [LAdS+15]. laser [EZBA16, WWZ+96]. \textbf{Lastverteilung} [Wil94]. \textbf{Latency} [Jes93a, Jon96, KBHA94, NC+12, NC+17, TB96].

\textbf{latency-tolerant} [NC+12, NC+17]. \textbf{Lattice} [BBK+94, BMS94b, HLP11, SJK+17a, SJK+17b, BW12, BMS94a, CGK+16, GM18, Sai10, SVE+11, BLPP13, OTK15]. launches [An003]. \textbf{Layer} [CSAG98, HEH98, FKK96a, PTT94, dlAMC11, dlAMCFN12].

\textbf{layered} [DiN96]. \textbf{Layering} [Hus01]. \textbf{Layers} [VZT+19, KC94]. \textbf{Layout} [WG17, BGH+05, HP11, LDJK13, Str12].

\textbf{Lazy} [TCBV10]. \textbf{Leaks} [DLV16]. \textbf{Learned} [GKPS97, MWO95]. \textbf{Learning} [AHHP17, Gro01b, AMC+19, FE17, KWF18, LSSZ15, SEC15, TWFO09, WO99, WFT014].

\textbf{learning-based} [FE17]. \textbf{Least} [PWP+16, VRS00, DK13]. \textbf{Least-Squares} [VRS00]. \textbf{Lecture} [Gei93a]. \textbf{Lederman} [An96a, An99a, An99c, An99b, An99d, NAg05]. \textbf{Leeds} [Abr96]. \textbf{legacy} [BR04, LP00, LRW01]. \textbf{Lemon} [DRUE12].

\textbf{Lengths} [GSHL02]. \textbf{LEO} [CCBPGA15]. \textbf{Leonardo} [Stp02]. \textbf{Lessons} [MWO95].

\textbf{Level} [AELGE16, BGG+15, BBC+00, CS14, CRGM14, DHHW92, DHHW93a, DLL00, GS91b, GAM+02, HA11, HKT+12, DK02, KCP+94a, KOW97, LVP04, LMRG14, NPP+00c, SHM+10, SBF+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HKO9, Hos12, KCP+94a, ML94, LCMG17, LBB+19, LM13, MALM95, NS91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBB...13a]. levels [AML+99].

\textbf{Leveraging} [BBW19, HDB+12, NPP+00c, SMLM14, LFL11]. \textbf{LIB} [NPP+00d]. \textbf{libomp} [KS15a]. \textbf{LibOmp} [BGD12]. \textbf{Libraries} [BHL+95, BW+12, CGZQ13, DARG13, GFD05, IEE94f, IEE95j, MLGW18, MM14, ARvW03, BCM11, BDIA94, CRD99, GS94, PS07, SK93, SDB94, SSG95, DHHK97].

\textbf{Library} [AKL16, Ada97, Boo01, BLW98, Coo95b, DHP97, EM02, FHK01, For95, GFB+03, GSI97, Gro02a, HB96b, IKT00, JPT14, KBG16, OD01, PLK+04, PS01a, RR02, Röt19, Saa94, SBG+02, Sta95b, SK96, TD98, UTY02, WN10, YKDL17, ZC10, Ada98, AMHC11, Arn95, CSS95, CGG10, CCS19, Coo95a, DREUE12, DXB06, FB97, Fan98, FKK+96b, GDC15, GLM+08, GL94, HB96a, HLM+17, Har94, Har95, JKM+17, JC96, KS15a, KN95, LR06a, MSL96, PKB06, PS00b, RFI+95, SSC96, SH96, ZT17, CC95, Mc969, Sum12]. \textbf{Life} [PZ12, Str94]. \textbf{Lifting} [vdLJR11].

\textbf{Lightweight} [KmnWH16, DT17, FLB+05, KMK16, TCM18, FS95, Ott93]. \textbf{Like} [BST+13, BK00, BK000, CGJ+00, KOB01, VG14, CSS95]. \textbf{Likelihoods} [MSCW95].

\textbf{LIME} [DRUE12]. \textbf{Limits} [GB96, MBKM12]. \textbf{Linda} [Mat94, KS96, MSP93, BLP93, CSS95, Gal97, Mat95, TDB00]. \textbf{Linda-like} [CSS95].

\textbf{Line} [BoFBW00, CGS15, Wis98, Bor99]. \textbf{Linear} [ASA97, BDT08, BG95, CDD+13, DHG+19, Gao03, Hu96, LLY93, LZ97, MB18, MGMH97, MSB97, YKW+18, ZTD19, van97, BSN95, BkVH+14, BAV08, BRR99, CEGS07, DR18, Gra09, GPFP12, Jou94, LRLG19, MW98, MM11, OKW95, SCC96, SMSW06, dCH93, dH94].

\textbf{Linear-scaling} [Gao03]. \textbf{Linearization} [MH18]. \textbf{Lines} [NE01, YULMTS+17]. \textbf{Link}
MagPIe [KHB+99]. Main [Tour96].
Maintaining [PKB01]. maintenance [ZDR04, ZDR01]. major [WLK+18]. Makes [ZG95b, Str94]. Malleable
[EDSV09, MSMC15]. Mambo [WZWS08]. Man [IEE95a]. Manageable [PKB01].
Management [KCR+17, LB16, SYR+09].
Manchek [Ano95b, NMC95]. Manipulation [KKV01]. Mantle [BB95b].
Manual [CSW12, NSLV16, Reu01]. Many [DT17, LZH17, LLCD15, RB01, SXMX+18, TCM18, YTH+12, ACMZR11, AV18, BBC+19, VDL+15, dCZG06].
Many-Accelerator [SXMX+18].
Many-Core [LZH17, TCM18, YTH+12, LLCD15, ACMZR11, AV18, BBC+19, KSG13, MBBD13, dCZG06]. Many-Cores [DT17]. Manycore [MJB15, DJJ+19, KGB+09]. Map [JPT14, FFM11, FJBB+00, MSCW95].
MAPA [JJPL17]. Maple [Pet00a, Pet00b, Pet01]. Mapping [BB18, DDP+19, GAMR00, HC06, NTR16, RRBL01, SPB+17, TSZC94, W009, ASA91, DDL95, EO15, GFI9+18, HC08, TWF009, WCS+13, WTDFO14, WK08a, WK08c, dCZG06, WK08b]. MapReduce [EADT19, JS13, MMM13, PD11, WZHZ16].
Maps [BM07, KRC17]. Marc [Ano96a, Ano99a, Ano99c, Ano09b, Ano99d, Nag05].
March [ACM95a, ACM06a, Ano89, Ano93c, Cal94, DKM+92, IEE93f, IEE94d, IEE95b, IEE97a].
Marine [LLRS02]. market [LF+93a].
Markov [BBH12, FK01]. Marlioz [GA96]. marshaling [CFKL00]. MARTE [RGD13].
Massachusetts [IEE94e]. masses [Cla98].
Massive [Sie92a, MALM95, OLG+16]. Massively [B393, BHS18, DSZ94, IEE94a, IEE96c, KHSB19, KMM15, KS01, MM02, OWSA95, WH94, FLPG18, LFS+19, MM03, Qu95, YPZC95, YZPC95].
Massively-parallel [MYB16]. Master [FH98, EML00, LTR00, HP05].
master-slave [HP05].
Master-Workerproblem [FH98]. Master/Slave [LTR00]. Master/Worker [EML00].
Matching [GGC+07, KMM15, KS01, MM02, OWSA95, WH94, FLPG18, LFS+19, MM03, Qu95, YPZC95, YZPC95].
Materials [Y+93, PSV19, SP+94].
Mathematical [VZT+19, Was97, Has95].
Mathematics [Whi04, ANS95].
MATLAB [BKGS02, Whi04, Ano97, Bra97, ZZG+14].
MATLAB-MPI [BKGS02]. MatlabMPI [KA04, Kep05].
MATOG [WG17].
matrices [DR18, GG99, GSMK17, Kan12].
Matrix [AKL16, BSvdG91, Cha96, DS13, Fuj08, GK10, KK91, PMvdG+13, TQDL01, TD98, ART17, CMH99, ER12, FAF16, FZJ+14, KBP16, PKD95, TPD15, XXL13].
Matrix-Free [KK19]. Matrix-Vector [AKL16, DS13, Fuj08, XXL13].
Maui [ACM10]. Max [Ano94c].
Max-Planck-Gesellschaft [Ano94c].
Maximal [BDA+18]. maximisation [CCU95]. maximum [HKOO11].
Maxwell [And98]. May [ACM96b, ACM06b, AGH+95, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95e, IEH95i, PR94b, SPE95, SW91, SS96, Van95].
Maydan [Stp02]. MBCF [MMH99]. MCA [WCS+13].
McDonald [Stp02]. MCHF [SYF96].
McLean [IEE94a, Sie92a, Sie92b].
MCNP [MW93, McK94, WH96].
MD
[IEE02, TMPJ01]. mdb [DKF94a]. MDE [RGD13]. Means [TK16]. Measurement [BFBW01, BFIM99, KRS99, Shi94, TMC09]. Measurements [HVNa00, EFR+05, GL99]. MECCA [AC17]. mechanics [Bi95, MGG05, SL95]. Mechanism [CGLD01, KSV01, HX+15, TSS00b, Tra02a, HWX+13, SIRP17, ZRQA11, ZA14].

Mechanisms [Wai01a, CGBS+15, Ott93, TMTP96]. Mechatronic [KDL+95b, KDL+95a]. mEDA [VAT95]. mEDA-2 [VAT95]. media [EZBA16, MAIVA14]. Medicine [GA96]. MEDINA [AC17]. medium [WLNL06]. medium-scale [WLNL06]. Meeting [AD98, Ano93f, CHD07, CD01, CDND11, DKG05, DPK00, DLO03, GA96, KG10, KR02, KKD04, LKD08, MC94, MTW06, RW09, TDB12, BDW97, JB98, SP95, Ano92, CH09]. megabase [SdM10]. Meiko [FST98a, FST98b, Jon96]. Melia [WZH16]. Mellon [IEE94d]. Membership [MDM17]. membrane [FHSO99]. Memory [Att96, BME02, BW+12, BRI90, BSS07, BT01b, CLOL18, CLA+19, CWS97, CC99, DM98, DMB16, DR97, DHHW92, DHHW93a, EADT19, FB94, GCBM97, GB96, GSN+01, GSHL02, GLRS01, HC10, HDB+12, HDT+15, HT01, JPL17, KB98, KS13, KSSH01, LSB15, Loo99, MB12, MRB17, MEE03, MHH98, MCDS+08, MI92, NPP+00d, PK00, PK06, PMwg+13, Ros13, STY99, ST02b, SW91, Thr99, VS00, VT97, WJA+19, ZL17, ZL18, ARS89, ABC95a, ABC95b, ADMV05, BCA+06, BVM12, BSC99, BMG07, CBPP02, Cha05, CjvdP08, Cha96, CBHH94, CR14, CCO0b, DF17, DLR94, DBF01, DPFT19, DS96b, DHHW93b, DPZ97, EV01, FSV14, FHB+13, GCN+10, GBH14, GBH18, GKK09, GL96, GL97c, GP95, HSP+13, HGMW12, HDB+13, HK09, JC17, JE95, KN95, KJA+93, KCO6, LKL96, MLC04, NAJ99, NAAL01].

memory [OLG+16, PK05, PS00b, RS19, RGD15, SSH08, SHH01, SL94b, SBY+12, SYR+09, SFL+94, SSC96, SPL99, SD16, TSY99, TSY00, THDS19, Uhl95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WO8c, WC13, WMRR17, WMRR19, YX95, LBD+96, GKG7, SG05]. Memory-access-aware [CLA+19]. Memory-Based [MMH98]. Memory-Divergent [WA+19]. Memory-Efficient [MRB17]. memory-level [HK09]. Memory-Oriented [ZL18]. Memory/Message [ST02b]. MemTo [GSM+01]. Menon [Stp02]. Mesh [DDP+19, HAA+11, MRB17, Ran05, BAS13, CLSP07, Cou93, GBR15, IS16]. mesh-particle [BAS13]. Meshes [MRB17, TP15]. Message [Ano93d, AKL99, Att96, BC91a, BZ97, CBA+03, BBG+99, BBG+01, BDH+97, BGR97b, BFM97, CD07, Cer99, CGZQ13, CH94, Cot97, Cot98, CT00, CDND11, DFKS01, DHHW92, DHHW93a, DLL00, FKKC96, Fos98, FB94, G07, GB96, Gie93, GLRS01, GLS94, GL95c, GLT00, Hem94, KGRD10, KS07, KSV01, KOKD03, KKD04, LD08, Loo99, MPI98, MP95, MS98, MBES94, MG97, MTW06, MS97, NW98, PK00, PK96, RC97, RR01, RW09, RFG+00, SAL+17, ST02b, TB12, WD96, Wer95, Wis97, YHGL01, ZL13, ZG95a, ZG96, ZDL+12, Ada98, AD98, AAC+05, An93e, An94d, An95c, An96a, An96b. AMc+19, BBG+14, BL97, BvdS95, Bjo95, Bru95, BDW97, BFIM99, CGJ+00, CDZ+98, CRD99, CD01, CG99b, DFK93, DMM93, DKD05, DS96b, DHHW93b, DOS96, DLM99, DKP00, DLO03]. message [FK94, GL92, HP05, HYP+93, Hem96, KJA+93, KTA02, LR06a, LBD+96, W94, LFS+19, LCY96, LMM+15, LBB+19, LC97b, NS91, PS07, PKB06, Ple94, PR94a, PS00b, Sda99, SWJ95, SDV+95, SZ99, SS9G, ST04, TSZC94, VM95, Wal94a, Wal94b, ZKRA14,
ZA14, AMHC11, BC14, BBH+06, BRU05, BDD+95, Cot04, DDK08, DiN96, FKS96, FGTV96, FGG+98, GGHL+96, GLDS96, GLT99, GLS99, GLUT00a, GL04, Han98, IBC+10, KTF03, KK05, LT01, MTSS94, MLS96, P01b, RRH96, SWHP05, SLG95, SWL+01, TGT05, TDB00, Wer95, YGH+14.

Message-Passing [Ano93d, Att96, Cot97, Cot98, DHHW92, DDL00, GLS94, GL95c, GLT00b, MPI98, PBK00, Pok96, RRBL01, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvdSvD95, CDZ+98, GL92, Hem96, KJA+93, LR06a, LBD+96, wL94, LMM+15, PS00b, SSG95, Sti94, DiN96, GGHL+96, Han98, RRFH96, SLG95, Wer95, YGH+14].

Message-Passing-Interface [Wer95].

MessagePassing [Sei99].

Messages [KBS04, SKH96].

Messaging [HEH98, KC94].

Meta [BCLN97, FBD01a, FGRD01].

Meta-Applications [BCLN97].

MetaHaskell [Mai12].

Metal [JLS+14].

Metaheuristics [ZSK15].

Metal [JLS+14].

MetaAMP [OW92].

metaprogramming [Mai12].

meteo [BCLN97].

Meteorology [HK93, HK95].

Method [ACMR14, BP99, BJS97, CGU12, DAD91, FCLG07, GS97, HC06, KMK16, OMGK99, Riz17, TSS08a, ARTY17, BDBH14, BCM+16, DSOF11, ETV94, GFIS+18, HE13, HKV94, HJBB14, HPTL99, JMS14, KS15a, KDI2, LCL+12, MMDA19, Nak05b, NS16, PTT94, Pri14, Qu95, SHHC18, TKP15, YBZL03, dIAMCFN12, AAB+17, OKT15].

Methodologies [Sun94b].

Methodology [MOL05, WTT017, HPR+95, LM94, WMP14].

Methods [BCM10R, CMK00, DFN12, EGH+14, FGKT97, GFPG12, KLR+15, KLI11, NA01, Sch01, SM07, TDBEE11, W014, ZB97, CEGS07, DF17, D+95, Gra09, Has95, LSR95, MM11, Nak05a, PGK+10, R+92, SL94a, SGS95].

Metric [SN+19].

Metrics [DW02, PARB14].

Metropolis [HJBB14].

Mexico [IEE91, Sie94].

MGC [TS900a].

MGF [GLM+08].

MIAOW [BGG+15].

MIC [BB18, CCBPGA15].

MICE [BK96].

Micro [Ano03, BWV+12, SGH12, YSWY14].

Micro-applications [SGH12].

Micro-Benchmark [BWV+12, YSWY14].

Microbenchmark [BO01].

Microcoded [PWP+16].

Microwork [OIS+06].

MIDAS [BFZ97].

Middleware [AUR01, CLL03, CC10, RPS19].

Millions [BBG+11].

MIMD [BvdB94, BB93, BCL00, Uhl95a, WST95].

MIMD/DMMP [BB93].

MiniMPI [GCC99].

Mini-applications [SCJ19].

MINIME [DS16].

MINIME-GPU [DS16].

minimization [POL99].

Minimum [KA95, Wu99, GKD+18, NCKB12].

mining [MA09].

minisweep [SCJ19].

Mississippi [IEE94f, IEE95j, IEE94f, IEE95j].

mitigating [OdSSP12].

Mitigation [BBH+13a].

Mitsubishi [Ano03].

mittels [Wil94].

Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01].

Mixed-Mode [BEG+10].

Mixing [CP98, GAP97, CBYG18].

mixture [EO15].

MK [NS91].

MLP [JLG05].

nn_par2.0 [OKM12].

MN [Ano94b].

Mob [SVT97].

Mobile [ITT02].

Mode [BGK08, BR02].
BEG$^+$10, LRT07, HHSM19, SB01, YX95).

Model
[AP96, BGG$^+$02, BdS07, CKmWH16, Cha02, C7G$^+$08, Dar01, DFA$^+$09, FSXZ14, FBSN01, GLB00, GLRS01, HPL11, KD12, LWZ18, LGG16, LA02, LRQ01, MWK11, NSLV16, NO02b, Rau05, RSV$^+$05, RRBL01, SPM$^+$10, S95, SPH$^+$18, THN00, VT97, Wal01a, YCA18, AL93, BSC99, Bir94, BG94b, BDV03, CMV$^+$94, CL93, CKP$^+$93, ED94, G7K12, G7CN$^+$10, G7LyCY97, G7WVP$^+$14, GRTZ10, HPLT99, HK09, HK10, KOS$^+$95a, KSL$^+$12, KL15, LR06b, LA06, LLLH$^+$14, Mar05, Ms6SAS$^+$18, MSZG17, MGC$^+$15, N002a, Nak05a, PAdS$^+$17, PQR18, Ras16, RGDML16, RCG95, Sch93, SH94, Sch99, SMAC08, Str94, V7BlvdG08, Vis95, Wan02, WC15, WL1K$^+$18, WYLC12, YX95, TA14].

Model-Based [AP96, LGG16].

Modeling [ACM96a, ATM01, BS07, CSC96, CDM93, FST98a, GAM$^+$02, MOL05, NM95, RGDM15, Ros19, SEF$^+$16, TD99, VFD02, WJA$^+$19, WMC$^+$18, XH96, AC07, BDP$^+$10, Bid95, BB5b, JL18, KM10, KME09, KEGM10, L2HY19, MS98a, WT13, XXL13, YMY11].

Modelling [FST98b, GC05, Ham95a, KDL$^+$95b, BJ99, HTHD99, KDL$^+$95a, MSZM10, QHCC17].

Models [AKK$^+$94, BS93, BZ97, CMK00, Cer99, CNM11, DK06, EMO$^+$03, ESM$^+$94, GJN97, PPF89, SS01, SMOE93, SYL19, Whi04, BB95a, CPM$^+$18, CH96, Dfu92, KO14, LV12, MCB05, Nes10, RSB795, RB117, STP$^+$19, SYR$^+$99, Wal00, WBC17].

moderate [Uhl95a]. Modern
[AHHP17, DARG13, KDT$^+$12, LNK$^+$15, SM07, HH14, PMZM16]. modes [WZS08].

Modified [Riz17, GP95, KD12]. Modular
[CT02, HPP02, FWS$^+$17, HLM$^+$17].

modulator [WWZ$^+$96]. modulator/DFB [WWZ$^+$96]. Module [An98]. Modules [AKK$^+$94, DS96b]. modules-design [DS96b]. Molecular [ABG$^+$96, BST$^+$13, BCGL97, BL95, BS07, DR97, DI02, KBM97, LAF15, MH01, SA93, YWCF15, ZB94, BvdSvD95, BBK$^+$94, BMPZ94b, BMPZ94a, CC00b, DCD$^+$14, Dai91, FH99, HHS18, JAT97, JMS14, KFA96, KRG13, LSVM90, OK12, PAR14, SL95, VGP$^+$19, ZWL13].

molecule [ART17]. Moller [BL95, KN17].

MONC [BBW19]. Monito [SGL$^+$00].

Monitor [KRS99, Whi94]. Monitoring
[AH00, BCLN97, Beg93b, BFM06, BM796b, CD98, DBK$^+$09, GSN$^+$01, IADB19, LY93, LW07, MW797, MVY95, SGL$^+$00, UP01, Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a, BB94, BS8a, BFMT96a, FLB$^+$05, LC07].

Monodomain [ORA12]. Monona [ZL18].

Monte [HJBB14, RP95, WH96, ADRT98, AK99, DAK98, NSLV16, RR00, SK00, SKM15, ZZ04]. Monterey
[An98, Gat95, USE94]. Montpellier
[DE91]. Montréal [Ley95]. MOPS
[GJN97]. Morehouse [AGH$^+$95]. Morgan
[SD13]. Morphable [ZL17]. morphology [VLSL19]. Morton [LZH18]. MOSIX
[BBGL96]. motif [FMS15]. motors
[SKM15]. movement [MV17]. Moving
[HAA$^+$11, LSG12]. MPE [GKL95, KFA96]. MPEG
[NU05]. MPEG-4 [NU05]. MPI
[ARYT17, AD98, An95c, An99a, An99c, An99b, An99d, An00a, An00b, BDW97, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, GBR97, GEW98, IEE96i, JMS14, KGRD10, Kra02, KKD04, LKD08, MTWD06, Nag05, Per97, PS01b, RWD09, RLVRGP12, ST02a, TDB00, TBD12, Vre04, WSN99, YW97, ST02b, ACGdT02, AKB$^+$19, Ada07, Ada98, AC07, ACH$^+$11, APJ$^+$16, AAS08, ART17, ATM01, ACRG97, AK99, ABF$^+$17, AHP01, ACIMZR11, ALW$^+$15, ALB$^+$18, ADLO3a, ADLO3b, And98, FH98, AVA$^+$16, An93c, An94d, An98, An01a, An03, AKE00, AKL99, AJF16, AIM97, ADR$^+$05, AHHP17, AMC$^+$19, Bad16, BV99, BCMR00, Bak98, BF98, BCYK99, BBD$^+$10, BCG$^+$10.
MM03, MOL05, MCS00, MANR09, MRRP11, MG97, MMDA19, MMM13, MTW07, MK04, MCLD01, MMH98, MMH99, MS99c, MB00, MvWL+10, NAW+96, NOO2b, NO02a, Nak05a, Nak05b, NSBR07, NE08, NE01, Nes10, NSS12, NH95, NCB+12, NCB+17, NAJ99, NW98, Nit00, NIT06, NFL+10, NN95, OM96, OL+16, OKM12, OSI+06, OD01, OF00, Ong02, OP98, OL05, OGM+16, OMK09, Pac97, PARB14, Pan14, PK08, PES99, PLK+04, PS08, PDY14, PS00a, PS01a, PHJM11, PTL+16, Per99, PZ12, PGK+10, PFG97, PLR02, PGA+B05, PGBF+07, PGAB+07, Pla02, PD11, PSS01, PSK+10, PTH+01a, PTH+01b, PS00b, PT99, QB12, Qui03, Rab98, Rab99, RDBM99, RR01, Ram07, RSB95]. **MPI**

[RMS+18, Ran05, RA99, RAS16, RCFS96, RBB97a, RBB97b, RBB97c, RSPM98, RTH00, RH01, Reu01, RST02, Reu03, RGD15, RGDML16, RRGP+18, RNP13, RPM+08, Rö00, Rol08b, RsT06, RSC+19, RFRH96, RRG+99, RTRG+07, SE02, SCB14, SCB15, STP+19, SPM+10, SSB+05, Sap97, SB+16, SDJ17, SGH12, SBE+04, SCJH19, SW12, SGB+02, SG05, Ser97, SS01, SWS+12, SG12, STY99, SM02, SM03, SC19, SPH+18, SP99, SZ11, SC04, SSC96, SS99, SIC+19, SZBS95a, SZBS95b, SDN99, SvL99, SJ02, SWJ95, SMTW96, SH96, SDB04, SLG95, SDV+95, SPH96, Slo05, SVC+11, SK00, SB01, SOHL+96, SOHL+98, Sn18, SHHC18, SSL97, Squ03, Ste96, ST97, Sto98, SU96, Str96, SRS+19, Sum12, Sn01, Swa01, TOTH99, TAH+01, TSY99, TSY00, THDS19, TK15, Tha98, TGL02, TGO9, TGLK19].

MPI [TPLY18, TW01, TD99, TOC18, Tra98, THRZ99, TRH00, Trä02b, Trä02a, TGT10, Trä12a, Trä12b, TMP01, TFGM02, Tsu07, TFZZ12, UTY02, URK12, VFD02, VLSP19, VS00, VPS17, VSRC94, VSRC95, VGRS16, VdS00, VP00, VVD+09, WH96, Wal95, WO95, Wal96a, WD96, WO96, Wal01a, Wal01b, Wal00, WC09, WLNI03, WNL06, Wer95, WST95, Whi04, WLR05, WWZ+96, Wis98, WB96, WM01, WADC99, Wor96, WRA02, WCS99, WT11, WYL12, WT12, WLYC12, WT13, WMP14, XH96, XLW+09, YM97, YL09, YHL11, WYC11, YCL14, YMBMC14, YPAE09, YTH+12, YSP+05, Zai12, ZZ04, ZLZ+11, ZW05, ZLP17, ZJDS98, ZL+12, ZZ95, ZSNH01, ZKRA14, ZA14, bT01a, dAMCF12, KI96, Mar06, YM97, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d]. **MPI-1** [SOHL+98].

MPI-2 [Ano99c, Ano99d, Ano00a, AKL99, BCAD06, BHS+02, CwC+11, CD06, DPS08, GGF03, GGHL+96, GT01, GHLL+98, GLT99, GLT00b, GLT00a, HGMW12, LSK04, MS02a, MK04, PS00a, SS99, SSL97, TRH00, bT01a, BADC07].

MPI-3

[FCS+19, GBH14, GBH18, GLT12, HDT+15]. **MPI-ACC** [APJ+16]. **MPI-Based**

[Ada97, FSC+11, RDM99, SM03, Ada98, AWA+16, GKS+11, Gra97, LRW01, OLG+16, OP98, SZ11, TJP10]. **MPI-basierte**

[Gr97]. **MPI-benchmark** [Reu01]. **MPI-CHECK** [LC+03]. **MPI-CUDA**

[DR18, dAMCF12]. **MPI-DDL** [FB97]. **MPI-Delphi** [ACCD10]. **MPI-driven**

[Hin11]. **MPI-F** [FHP99b, FHP99c]. **MPI-FM** [LC07a]. **MPI-FT** [LNLE00]. **MPI-GLUE** [Rab98]. **MPI-Hybrid**

[CXC+11]. **MPI-I** [IRU01, Tsu07]. **MPI-I/O** [IRU01, Tsu07].

MPI-interoperable [YMBMC14]. **MPI-IO**

[BIC+10, CCC+02, CFC+96, DL10, FWNK96, FLS98, LRT07, LGG16, PSK03, PTH+02a, SW12, Sto98, TGL02, ZZ04].

MPI-IO/GPFS [PTH+02]. **MPI-LAPI** [BG9701]. **MPI-Level** [LVP04]. **MPI-like**

[CGJ+00]. **MPI-only** [LS10].

MPI-OpenCL [JNL+15]. **MPI-OpenMP** [MS02b]. **MPI-parallelized** [KMG99].

MPI-Performance-Aware-Reallocation [GFIS+18]. **MPI-StarT** [Hus98]. **MPI-The**

[Ano99c, Ano99d]. **MPI-thread** [IDS16].

MPI-FT [ACGdT02].

MPI-I/O [IRU01, Tsu07].

MPI-interoperable [YMBMC14]. **MPI-IO** [BIC+10, CCC+02, CFC+96, DL10, FWNK96, FLS98, LRT07, LGG16, PSK03, PTH+02a, SW12, Sto98, TGL02, ZZ04]. **MPI-IO/GPFS** [PTH+02]. **MPI-LAPI** [BG9701]. **MPI-Level** [LVP04]. **MPI-like** [CGJ+00]. **MPI-only** [LS10]. **MPI-OpenCL** [JNL+15]. **MPI-OpenMP** [MS02b]. **MPI-parallelized** [KMG99]. **MPI-Performance-Aware-Reallocation** [GFIS+18]. **MPI-StarT** [Hus98]. **MPI-The** [Ano99c, Ano99d]. **MPI-thread** [IDS16].
MPI-Umgebung [GBR97]. MPI/CUDA [PHJM11]. MPI/GAMMA [CC00a].
MPI/GPU [EZBA16]. MPI/GPU-code [EZBA16]. MPI/MBCF [MMH99].
MPI/OpenACC [OGM16].
MPI/OpenMP [ADR05, GAUVRL17, HKN01, JLG05, JR10, KS15a, KN17, KLR15, KRG13, LLRSO2, MMADA19, PZ12, SB01, WT11, WT12, WT13].
MPI/PVM [ES11]. MPI/RT [SKD04]. MPI/RT-1.1 [SKD04]. MPI/SMPSSs [MLAV10].
MPI_Allgather [GmMBD07]. MPI_Connect [GRD01].
MPI_L [GVF18, HHK19]. MPICH [BBC02, BCH03, BHK06, Cota98, Cota04, GL97a, KTF03, LJK03, OMP06, OF00, RFG00, RST06, SBB02, TRG05].
MPICH-CM [SBG02]. MPICH-G2 [Cota04, KTF03, OMP06].
MPICH-GQ [RFG00]. MPICH-V [BBC02, BHK06].
MPICH-V2 [BBC03]. MPICH2 [BMG07, Gro02b, ZSG12].
MPIConnect [FLD98]. mpicroscope [Trä12b].
MPSGeneNet [GDM18]. mpJava [BCFK99].
MPINE [Sot01]. MPIPOV [FFB99]. MPIT [HIP02]. MPIWiz [XLW09].
MPJ [CGJ00]. MPL [XH96].
MPL0* [CRD99]. MPP [CDJ95, DOSW96, GBR97].
MPP-Systeme [GBR97]. MPPs [BGR97a, RBB97a].
MPSsc [KKJ08, KHL10, PSM14].
MPSscSs [MB12, NEM17, SPB17].
MPVM [CCK95]. MRE [LSSZ15]. MRO [MIM13].
MRO-MPI [MIM13]. Multi [Ada98, ABB10, Bri10, BCKP00, CAWL17, CZG08, DWH10, EBKG01, FSXZ14, HD02b, HRZ97, JCH08, JNL15, KBA02, KTO2, LTS16, LM13, MLGW18, MG15, MB00, NMS14, PZ12, RG18, RR02, Smi93a, STo2a, STo2b, SSB17, WB987, YGH11, ZL18, ACMZ011, AGM106, BCC19, BCK10, DCH02, DWL12, Fin94, Fin95, FHB13, HTA08, HE15, JR13, JMM11, JR10, KSG13, KLV15, KO14, Kom15, LSG12, LS10, LLH14, MALM95, NSM12, SCB15, SFSV13, SVC11, SAP16, Str12, TS12b, TFZ12, VLSPL19, WCC07, WO09, WADC99, WLYL12, ZAFAM16, ZWZ15, ZZZ15, SAP16, OG14].
multi- [ACMZR11, BBC19, KSG13].
multi-/many-core [KSG13].
multi-accelerator [KLV15]. multi-agent [ZWZ15].
multi-agents [KBA02].
Multi-Array [LTS16]. Multi-cluster [ST02b, KO14, Kom15].
Multi-Context [ZL18]. Multi-Core [ABB10, Bri10, CZG08, YGH14, PZ12, FHB13, HTA08, JR13, JMM11, JR10, LLH14, SFSV13, SVC11, TFFZ12, WCC07, WLYL12].
Multi-Dimensional [HD02b, KT02, RG18]. multi-endpoint [LLH14].
Multi-GPU [JNL15, NMS14, NSM12, TS12b, SAP16, SG14].
multi-kernel [SAP16].
Multi-level [CAWL17, LM13, HE15, MALM95, ZZZ15].
multi-morphology [VLSPL19].
Multi-Network [BCKP00].
Multi-Node [HRZ97]. multi-petaflops [LSG12].
multi-phase [ZAFAM16].
Multi-Physics [WBH97]. multi-place [BCC09].
Multi-platform [DWH10, DWL12].
Multi-Processing [MLGW18].
Multi-Processor [RR02, Smi93a, DCH02].
multi-programming [WADC99].

Multi-protocol [MB10]. multi-socket [LS01]. Multi-Stage [FSXZ14].
Multi-Threading [MG15, Ada98, EBKG01, SCB15].

Multi-Threading [MLGW18]. multi-valued [Str12]. multi-versioned [SSB17].
multi-zonal [Fin94, Fin95].
Multi-Zone [JCH08, AGM106].
Multiblock [IDD94, DLR94]. Multicast [CCA00, CDFM03, ZGN94].
Multicasting [SE02].
multicenter [CwCW11].
MultiCL [APBeF16]. multicomputer
Multicomputers [SWJ95, TD99].

Multiconference [Ten95].

Multicore [BDT08, CGC, CB16, DSH, DGH, GDM, KDT, LNK, WT12, YKW, ASB, CLYC, GJLT, HWX, JPO, KN, LS10, MBBD, MM, Nob, OPW, QB12, RDML, WCS, WT11, WLYC, WT13, YHL, YWC, diAMC].

Multicore/many-core [MBBD13].

Multicores [GDDM17, UGT09].

Multidestination [Pan95a].

Multidimensional [CSW99, DMK, PDY, ZT].

Multidisciplinary [Fin94, Fin95].

Multifrontal [IM95].

Multigrain [AZG17, IOK].

Multigrid [BCM, AGI, IHI, Lou, Mic, Mic, PSL, RM, Sta, ZZG].

Multigroup [QRG, QRM].

Multilevel [JLG, PSSS, BAV, ETV, GAM, JY].

Multimedia [GFB].

Multimethod [FGT].

Multiobjective [RLVRGP].

Multiparadigm [FS].

Multiphase [SPI].

Multiphysics [NPS].

Multiprocessor [SG15].

Multiprocessing [Mw, VGS].

MultiPro [Pet, ABCI, ABCI, ADMV].

MultiProcessors [BDV, CCP, HPP, NPP, SBW, SS, Tra, JE95, JC06, SYR, AGIS].

Multiprogrammed [TSY].

Multiprogramming [BHP].

Multiprotocol [BHK].

Multirail [LPV].

Multiservice [CLLASPDP].

Multisource [ZDR].

Multistage [ZGN].

Multithreading [BBG, ZWL].

Munich [BDLS, GH].

Mushy [Wit].

MUST [HPS, HPS].

Mutual [She].

MVAPICH [RMS].

MVICH [OF].

Myocardial [Pat].

Myrinet [GBH].

n [Pan, ADB, RTRG].

N-body [ADB, RTRG].

NAG [DHP, For, MC].

NAME [PZ].

Naming [MSF].

Nancy [BR].

NanosCompiler [GAM].

Narrow [YSS].

NAS [CRE, CE, CCF, CDD, K, MMH, WAS, WT, WT].

NASL [PH].

NATIVE [Ara].

NATUG [KG, TG].

NATUG-7 [Ara].

Necessary [NPPb].

Needed [Gei].

Neighbor [DI].

Neighborhood [HS].

Nekbone [GML].

Nemensis [BMG].

Nesbet [BL].

Nested [AHD, BR, BS, DLRR].

nCUBE2 [BL].

Near [PKYW].

Nearest [DI].

Nebulung [MFG].

NEC [GPL].

Necessary [NPP].

Needed [Gei].

Neighbor [DI].

Neighborhood [HS].

Nekbone [GML].

Nemensis [BMG].

Nesbet [BL].

Nested [AHD, BR, BS, DLRR].
DSCL05, GLP +00, HA10, MMS07, TTTSY00, ZLP17, aMST07, AGMJ06, BS05, HSE +17, THH +05, YZ14, JLG05. Nesting [BBC+99]. Nest [DMB16]. Net [CNM11, NE98, NE01, PES99]. Net-Console [PES99]. Net-dbx [NE98, NE01]. NetCDF [LkLC03]. Netherlands [DSZ94, Ano93f, Van95]. Nets [Sou01, Str94]. Network [ACM98a, AR01, BDG+91b, BDG+93a, BCKP00, CZ95a, CDHL95, CSC96, DM95b, DM95a, DBA97, DFMD94, DGMS93, DGMJ93, EK07, Fer98b, Fis01, GS91b, GS92, Gei93a, GSxx, Hus98, ITT02, LB98, LH95, MSCW95, MANR09, OF00, OWSA95, TW01, VZT+19, AL92, AH95, AYA+16, BDG+92a, BDG+92c, BDG+94, BSvdG91, B99, Bon96, BBK+94, BID95, BF96, Coe94, CLLASPD99, Fer98a, GS91a, Gei93b, GK97, GHZ12, HBT95, HK94, HH95, IM95, KMC96, KM97, KA95, LH98, LHD+94, LHD+95, MK94, MRH+96, POL99, PR94c, PT99, Rag96, SEC15, SPK+12, TSS98, YS93, ZPLS96, GK97]. Network-Balancing [DBA97]. Network-Based [BDG+91b, GS92, BDG+92a, IM95]. Network-Specific [DM95b, DM95a]. network-topology-aware [SPK+12]. Networked [FGKT97, GB+94, Nov95, NMC95, Per96, Ano95b, BMPZ94b, BMS94a, BMPZ94a, GM94, HS93, RRG+99]. Networking [ACM97b, ACM95b, ACM00, ACM01, Hol12, LKC11, CXY+12, GH94, HS95a, ITT99, LCHS96, MZK93]. Networks [CSV12, CDM93, DD+19, DDPR97, GFV99, GDM18, GHL97, HH94, HLCZ00, HIP02, LHHM96, Li96, LH98, MBS94, QMG00, SG15, TQDL01, Tou00, VLO+08, VB18, WAS95b, WMC+18, BK11, BRS92, CZ95b, CFPS95, DG95, DZ98a, J94, LR06a, LTL94, LHD+94, LHD+95, NFG+10, Pan95a, TDB00, ZGN94]. Neural [AGH+95, CAM12, CSV12, QMGR00, Str94, GkLyC97, Rag96]. Neurocomputing [PSZÉ00]. neutrino [KHBS19]. Neutron [LD01, RS97, VRS00, WR01, MM92]. Nevada [Ano94c]. never [Har94]. Neville [ACMZ11]. Newport [IEE93b]. News [Ano97, Ano03, Bra97, ESB12, KS15a, Str94]. Newton [ZB97]. Next [GKPS97, Gei98, Gei01, VPS17, VZT+19, SP11, ZKRA14, vdP17]. Next-Generation [VPS17, ZKRA14]. NFS [CGC+02]. NHPDCC [BRST94]. NIC [MFPP03]. NIC-based [MFPP03]. Nice [ACM90]. nineteenth [IEE95]. Ninth [ERS96, R+92]. NIST [SNMP10]. Nitzberg [Ano99c, Ano99d]. NLP [VB99]. NM [IEE95d, Old02]. NoC [HWX+13]. NoC-based [HWX+13]. Node [HR97, KFL05, FKL08, GM13, Gro91, JR10, LFL11, RS19, Zah12]. Nodes [BBC+02, B+03, B+09, JNL+15, MKC+12, VGP+19]. Noise [SAL+17]. Non [BCG+10, CCSM97, Gua16, HTA08, MW98, Man01, WLNL03, WTR03, FH98, BCH+08, OKW95, OM90, STP+19, TVC18, WLNL06]. Non-blocking [HTA08, HF98, BCH+08, STP+19]. Non-Contiguous [WTR03]. Non-Data-Communication [BCG+10]. non-dedicated [WLNL06]. non-iterative [OMK09]. Non-linear [MW98, OKW95]. Non-Local [CCSM97]. Non-persistent [Man01]. non-singleton [TVCB18]. Non-stop [G98]. nonaligned [AGIS94]. nonblocking [DJ+19]. Noncontiguous [JDB+14, TGL02]. Nondeterminacy [DF93]. nondeterminism [Ob96]. Nondeterministic [KSV01, CRD99]. Nonlinear [Nak03, Was95a, ZB97, CE07, Jou94]. nonnegative [KB16]. nonsymmetric [dH94]. Nordic [FF95]. Norfolk [S93]. normalized [Gra09]. North [CNJW95]. Note [BR02, SGHL01]. Notre [IEE96i].
novel [DDYM99, GKK09, MLVS16, MSL12]. November [ACM96c, ACM97b, ACM98b, ACM99, ACM00, ACM01, ACM03, ACM04, ACM05, Ano94c, ACRD94, BDW97, GN95, HK95, Hol12, IEE91, IEE93e, IEE94h, IEE94h, IEE02, LCK11, USE94]. novice [CGG10]. Novices [Stp02]. NOWs [SLGZ99]. NP [YZ14]. NPACI [PKB01]. NPB [EGC02]. NR [Gu16]. NR-MPI [Gu16]. NSGA [Gua16]. NT [Ano01a, Bak98, CLP99, FD97, GGGC99, PS00a, SFG98, TAH01]. NTRUEncrypt [KY10]. NTUG [FF95]. Nuclear [BPG94, GA96]. nuclei [NS16]. NUMA [BCC00a, BCC00b, BFG10, CAWL17, GTS15, MCK12, MJ15, OPW12, SLN12, TSCA12, ZLP17]. NumaGiC [GTS15]. Number [BP99, HT08, WHDB05, CCL17, CBY18, Lan09]. Numeric [MLGW18]. Numerical [ACMR14, BS93, BCP97, CSW97, DHK97, DHP97, FK01, For95, FB94, HHI4, Hol95, Hus98, IFT95, KM10, Kha13, McD96, NHT02, PKYW95, TDBEE11, YKL17, AL92, Bo97, BCM16, CSW99, FP92, GS94, JK10, KB13, Nob98, NHT06, Pr14, SMAC08, SU96]. Numerically [BKML95, BFL1999]. nur [BL94]. Nutzung [GEW98]. NVIDIA [KME90, Seg10, VLMP18, XXL13, KKM15, Lan09]. NVRAM [MC18]. NX [Pie94, PR94a]. NY [IEE96f, PR94a]. O [Bos96, CFF19, DRUE12, IRU01, IBC10, LkLC06, MV17, MC18, MGC12, MG15, PS80, PR02, RK01, SBQ14, Tha98, Tsu07, WSN99, ZJDW18]. O2000 [CML04]. O2WebCL [CHKK15]. Oberammergau [BPG94]. Object [Ada97, BCFK99, CFKL00, FSMG17, MSL96, PD98, SLW91, YHGL01, YX95, Ada98, BR91, DM12, LKL96, OKM12, RFH95, SL94b, TDG13]. object-based [LKL96]. Object-Oriented [BCFK99, PD98, SWL10, Ada98, DM12, OKM12, RFH95]. Objects [KH15, MFC98, HS93, SOA11, SC95, YWO95, ZPLS96]. Oblivious [LZH17, LHZ18, UALK17, HSP13]. observations [ZKRA14]. observed [CAHT17]. Oceans [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. Ocean [BS93, GAM20, Bic95, Mal01, Nes10, Sch99, Wal00]. OCLoptimizer [FAFD15]. OCM [BoFBW00]. OCM-Based [BoFBW00]. October [Ano93f, Ano94i, Ano94i, Ano94e, BPG94, Bha93, BDL96, CHD07, CGB10, DSM94, DLO03, DE91, FK95, GGC93, IEE94f, IEE95a, IEE95b, IEE96c, IFJ95, JB96, Kra02, Old02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vol93]. octree [JL18]. octree-based [JL18]. ODE [Ano97, Bra97]. ODEs [Pet97]. OdinMP [BB00]. OdinMP/CCp [BB00]. Off [CGS15]. Off-Line [CGS15]. Offering [EK97]. Official [Ano98]. Offload [BRU05]. Offloading [MGA17, DS16, KB16]. of [Role8a]. Oil [FSXZ14, ZAMF16]. OKs [Ano98]. old [LK14]. OMB [BWV12]. OMB-GPU [BWV12]. OMIS [LW97]. Omni [KSS00, KSH01]. OmniRPC [SHTS01]. OPT [SGJ03]. OMP2001 [TSB03]. OMP2012 [MBB12].OMPI [ACH11, OM96]. OpenMP [ABF17, PSB19, YAJG15]. on-chip [TDG13]. On-Demand [CTK00]. On-Line [BoFBWo0, Wis08]. On-the-fly [KS94]. ONC [RS93]. One [BPS01, GF03, GF05, GBH14, GT01, HDB12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DPFT19, DDB16, GBH18, LSK04, MS99c, Obs95, PGK10, dMAC11]. one-dimensional [Ols95]. one-layer [dMAC11]. One-Sided [BPS01, GF03, GF05, GT01, HDB12, LRT07, MH01,
TGT05, TRH00, ZSG12, bTO1a, DPFT19, DDB+16, LSK04, MS99c, PGK+10. only [LS10, Squ03]. Ontario [GGK+93]. onto [OFA+15]. OOMPI [MSL96]. OOPS [RFH+95]. OPAL [CwCW+11, NW98]. OPAL-MPI [NW98]. opaque [SOA11].

Open
[BGG+15, KDL+95b, WGG+19, AVA+16, KDL+95a, Nob08, GBS+07, VGRS16]. OpenACC [CGK+16, CCBPGA15, GML+16, GM18, HTJ+16, JCP15, KDHZ18, KLV15, Kom15, LB16, LSG12, MGS+15, OGM+19, OGM+16, QHCC17, RLFdS13, SCJH19, VGP+19, WLK+18]. OpenACC-based [KLV15].

OpenACC [ABDP15, APBcF16, ASAK19, AB13, BLPP13, BBC+19, BDW16, BN12, BHW+12, BBI+15, BAS13, CJPC19, CDD+13, CP15, CLOL18, CIJ+10, CHKK15, CCS19, CCK12, CS14, CLBS17, CBIGL19, DARG13, Di 14, DWL+10, DWL+12, FADF15, FLMR17, FE17, FSV14, FVLS15, dFdORS+19, GScFM13, GDMM17, HHS18, HD11, HE15, HHC+18, JSS+15, JKM+17, JR13, JNL+15, JMDVG+17, KKM15, KH12, KM10, KKL11, KSL+12, KJJ+16, KNH+18, KB13, KPK13, Lee12, LNK+15, LSG12, MGS+15, OGM+19, OGM+16, QHCC17, RLFdS13, SCJH19, VGP+19, WLK+18]. OpenACC-written [KNH+18]. openFabrics [FCS+19]. OpenGL
[Ano98, LHZ97, ORA12, Ró719]. OpenGL-Ró719. openMoxis [Slo05]. OpenMP [Cha05, CZG+08, CGKM11, CMMR12, EV01, JMS14, MdSC09, SHM+10, Vos03, OKM12, ST02a, ST02b, Add01, ARvW03, ABC+00, AC07, AHID12, AAB+17, AELGE16, ACMZR11, AT+12, ADT14, AJC12, Ano97, Ana01b, Ana03, AKE00, ADMV05, ADR+05, ASB18, AML+99, AGMI06, AM07, ACD+09, ABB+10, BST+13, BR02, BHP+03, BMF02, Ben18, BN00, BF01, BBDH14, BWV+12, BCC+00a, BCC+00b, BGK08, BGG+02, BS01, BS05, BBC+99, BBC+00, Br97, Bri00, BV03, BSd07, BGsd09, BFG+10, BGD12, BC00, BS07, BB00, BC196, BK00, BKK00, B001, BEG+10, BI18, CRE99, CEO1, Car07, CB00, CGLD01, CDK+01, CLYM16, CM09, CMZ99, CHPP01, CBPP01, Cha02, CM05, CkJdP08, CGKM11, CMRR12, CLA+19, Cla98, CyGy18, CCM+06, CCBPGA15, CC00b, Dab19, DM98, DW02, DBVF01, DGS17, HD02a].

OpenMP [DGH+19, DFA+07, DFA+09, ETWaM12, EM00a, EM00b, EV01, EdS08, FGRT00, FMSG17, FSG19a, FSG19b, FSZ14, FM09, GSA08, GP01, GSKM17, GG09, Goe02, GÁVRL17, GJM+00, GAML01, GOM+01, GAM+02, Gra09, HPP02, HP05, HDDD09, HA10, HO14, HD02b, HMK09, HAsn00, HKN+01, HAJK01, HVSC11, HLCZ00, HT01, HLC50, HEHC09, HIYC10, HHS19, HA+11, IMM+05, ICC02, IOK00, ITT02, JCP15, JKHK08, JPOJ12, JFY00, JJY+03, JCH+08, JHM+11, JLG05, JR10, KB01, KS15a, KO01, K01, KN17, KKH03, KT02, KJ14, KLR+15, KBVP07, KBG+09, KV01, KT01, KH15, KAC02, KC06, Kuh98, KPO00, KLM+19, KR13, KSS00, KSH01, KJEM12, LOHA01, LP00, LLRS02, LTS16, LD01, LME09, LLC13, LHC+07, LNW+12, LRLG19, LHCW05, LYSS+16, LA02, LA06,
LdSB19, LMRG14, LHZ98, LL01., OpenMP [LLH+14, MKC+12, MS02b, Mal01, MM07, MB12, Mar02, Mar03, MLC04, Mar05, Mar09, MPD04, MCB05, Mat00a, Mat00b, Mat01a, Mat03, MGG05, MGC12, MG15, MM11, MFG+08, MKV+01, MBE03, MRRP11, MMDA19, MMSW02, MKW11, MM14, MM07, MJ15, MJPB16, MCD+08, Mii10, Mii02, Mii03, MBB+12, NO02b, Nak05a, NIO+02, NIO+03, NEM17, NPP+00b, NPP+00c, NPP+00a, NPP+00d, NAAL01, NA01, NNON00, Nob08, NU05, NHT02, NHT06, OOS+08, OP10, OPW+12, PARB14, PPJ01, PVKE01, PK05, PZ12, PQR18, PG02, PKE+10, Qui03, Ran05, RDLQ12, RLVRGP12, RAA05, SSE12, SS+16, SHH10, SHT01, SK01, SLGZ99, SGG00, SPL+12, SHPT00, SSAS12, SK00, SB01, Stp02, Stp18, TCM18, TBS12, TS12a, TS02, TSS00T, TSS00a, THDS19, TScA12, TJPF12, Thr99, TBG+05, TGB+05, TGBS05]. OpenMP [VLSPL19, VDL+15, VPS17, VGS14, VGP+19, Vos03, Vre94, Wal00, Wal02, Wan02, WCC12, WC15, WMK+19, WPC07, WT11, WYL12, WT12, WLYC12, WT13, YKW+18, YHL11, YWC11, YKL14, YKLD17, YPAE09, YSMV+16, YSMA+17, YYW+12, YCA18, ZAT+07, ZSnH01, aMST07, dCZG06, vdP17, RM09, SSGF00, WCSS+13]. OpenMP* [KDT+12]. OpenMP-based [LNW+12].

OpenMP-like [BK00, BK00, KOB01, VGS14].

OpenMP-oriented [MLC04].

OpenMP-parallel [HHS19].

OpenMP-style [JPOJ12]. OpenMP/MPI [BEG+10, HMK09, LCL13, LYSS+16, MGG05, NO02b, Nak05a, SSB+16, SK00].

OpenSHMEM [HVA+16]. OpenTuner [BAG17]. OpenUH [HEHC09, LHC+07].

Operating [MMH98, RG097, USE94, Wil93, ARS89, Sei99]. operational [KOS+95a]. Operations [BIL99, BIC05, CCA00, FCLG07, FPY08, GFD05, GLB00, PSM+14, PGAB+05, TRG05, TGT05, WRA02, BMG07, DS13, HMS+19, IDS16, KMB+15, KMP+14, PGAB+07, PK095, SS99, TFZ912].

Operators [KK19, NHT02, NHT06]. opportunistic [CC10]. Opportunities [LB16]. optical [MRH+96]. Optimal [BP99, GAMR00, ZGN94, BB95a, ER12, PG07, PTL+16, Sur95a]. optimiertes [Sei99]. optimisation [AMuHK15].

Optimising [Boo01, FKH02]. Optimistic [SCL00, CXB+12, PY95]. Optimization [BSG00, BHNW01, DBA97, Goe02, HS12, Hus00, ITT02, KGK+03, KMB+15, LdSB19, MC17, MBS15, Mii01, NIO+02, NIO+03, PSSS01, SM03, Svl99, SWH15, TRG05, WTTH17, WJ12, Con93, DSO11, FCS+12, HWS09, KHS12, LMA13, MALM95, PP16, PS19, PPM95, SK01, SJP17, Str12, TMW17, TFZ912, VSW+13, Was96, XXL13].

Optimizations [NSLV16, SSE12, iSYS12, TSS00a, BVML12, HEHC09, LL16, MV17].

Optimize [BBW19, GV+18, GFS+18, WLYC12].

Optimized [AKL16, AMC+19, Bri02, FAFD15, MAIVA14, PM95, PTH+01a, THS+15, THDS19, WJB14, Bkhv+14, MMM13, Sei99]. optimizer [BHRS08, Rag96].

Optimizing [BGH+05, CXB+12, FMF15, KKP01, MBE03, NSZS13, OM96, SASS12, TGL02, TG05, GS02, LHC+07, RKBA+13].

Options [RR00]. Orange [ACM98b]. orbit [CF19, SSN94]. Order [BL95, DFN12, LZH18, KN17, KME09, KEGM10, KB13, MYB16, OGM+16, THDS19]. ordering [Zah12]. ordinary [NF04, RBB15, SP11].

Oregon [ACM99, IEE93e, SW01].

Organization [BPC94, JFGRF12]. Oriented [Ada97, BCFK99, FMSG17, MSL96, PD98, YHGL01, ZL18, Ada98, BR91, CJP19, CBIG19, DM12, MGC+15, OKM12, RFH+95, SWL+01, MLC04].

Origin [LL01, LSK04, ZSnH01].

Operating [MMH98, RG097, USE94, Wil93, ARS89, Sei99]. operational [KOS+95a].

Optimization [BSG00, BHNW01, DBA97, Goe02, HS12, Hus00, ITT02, KGK+03, KMB+15, LdSB19, MC17, MBS15, Mii01, NIO+02, NIO+03, PSSS01, SM03, Svl99, SWH15, TRG05, WTTH17, WJ12, Con93, DSO11, FCS+12, HWS09, KHS12, LMA13, MALM95, PP16, PS19, PPM95, SK01, SJP17, Str12, TMW17, TFZ912, VSW+13, Was96, XXL13].

Optimizations [NSLV16, SSE12, iSYS12, TSS00a, BVML12, HEHC09, LL16, MV17].

Optimize [BBW19, GV+18, GFS+18, WLYC12].

Optimized [AKL16, AMC+19, Bri02, FAFD15, MAIVA14, PM95, PTH+01a, THS+15, THDS19, WJB14, Bkhv+14, MMM13, Sei99]. optimizer [BHRS08, Rag96].

Optimizing [BGH+05, CXB+12, FMF15, KKP01, MBE03, NSZS13, OM96, SASS12, TGL02, TG05, GS02, LHC+07, RKBA+13].

Options [RR00]. Orange [ACM98b]. orbit [CF19, SSN94]. Order [BL95, DFN12, LZH18, KN17, KME09, KEGM10, KB13, MYB16, OGM+16, THDS19]. ordering [Zah12]. ordinary [NF04, RBB15, SP11].

Oregon [ACM99, IEE93e, SW01].

Organization [BPC94, JFGRF12]. Oriented [Ada97, BCFK99, FMSG17, MSL96, PD98, YHGL01, ZL18, Ada98, BR91, CJP19, CBIG19, DM12, MGC+15, OKM12, RFH+95, SWL+01, MLC04].

Origin [LL01, LSK04, ZSnH01].

Overlap [BR05, DCPJ12, DCPJ14, MLAV10, PSK08, SH14]. Overlapped [GPC+17].

Overlapping [KB01, kLCC+96, PKE+10, BBH+15, DJJ+19, MM13]. overlay [CXB+12]. overlay-based [CXB+12].

Overview [CFF+96, Gre95, GL95c, Zo93, GHZ12, GPL+96, HKH+19, Wer95].

Ownership [FHL+13]. Oxford [Boi97].

P [CAM12, WHDB05]. P-RnaPredict [WHDB05]. P03M [BJ93]. P2P [GR07, GGL+08, GJR09, RS19, SBG+02].

P2P-MPI [GGL+08, GJR09], P 4 [KS96, Mat94, Mat95]. PA [ACM04, Ham95a, ACM96c]. Pablo [BFMT96a, BFMT96b]. Pablo-based [BFMT96a, BFMT96b]. Pacific [IEE95c].

Package [BS93, KCP+94b, KOW97, LW95, OD01, SYF96, van97, BHW+92, BBH+15, CwCW+11, Gao03, KCP+94a, LFS93a, LFS93b, SL95]. Packet [MBES94]. Packets [Uhl94, Uhl95b]. PaCT [Mal95]. PaCT-95 [Mal95]. PACX [FGRD01, KR09, RBB97b].

PACX-MPI [KR09, RBB97b]. Page [CML04, NPP+00c]. pages [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Pagoda [YSS+17]. pairwise [AMHC11]. Palazzo [GT94]. PALLAS [KVH97]. Papers [BDB+13, OL05, TB14, ACM90, CHD09, DKD07, GT19, IEE93a, IEE95c, KKD03, MTW07, Old02, Ano93g, Cha05]. PARA [DW94, DMW96, Was96, CD96].

parabolized [SCC95]. ParaCells [SYL19].

ParADE [KKH03]. Paradigm [HIP02].

Paradigms [BGD12, CM98, HD02a, HD02b]. Paradyn [MHC94a, MHC94b]. Paragon [Ano96c, HWW97, MP95, PR94a]. Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC11, AGH+95, AS92, ADRTC98, AK99, AMBG93, ASA97, AL96, AP96, Ano95b, ACMR14, AB93a, AJF16, BHM94, BJ93, BBG+95, BCGL97, BFL99, BP99, BG95, BS93, BDG+91a, BKGS02, Ben01, BP98, Bha93, Bic95, BGK08, Bis04, BALU95, BCL00, BS00, BBG+99, BBC+00, BBG+01, BFZ97, BDL98, BDD+95, BDH+07, BT01b, BMS94b, BMPZ94a, BMF97, BKO00, BB12, BGL00, CGC+02, CHD07, Cee99, CDZ+98, CUC95, CDK+01, Cha02, CGB+10, CNC10, CFF+94, CSW97, CMH99, CPF95, CSM97, Coo95b, CT94a, CT94b, CC00b, Cze16, DSM94, DERC01, DYN+06, DK13, DDP+19, Di14, DI02, DAD19, DSS00, D+91, DKM+92, DGM93, DT94, DGH+99, DZDR95, DK06, DSC05, EKT09, EGR15, EM00a, EM00b, EGDK92, EJJ92, ES11, FGRD01, FHSO99, FJBB+00, FPP03].

Parallel [Fer98b, FHK01, dFOSR+19, Fis01, For95, FP92, FB94, FS93, FF95, GCBM97, GLN+08, GB+94, GKP97, GR07, GSH97, GSMK17, GDM18, GBP98, GHL97, GK10, GFP12, GJN97, Gre94, GL94, GL97a, GLS99, GlkLyc97, HJ98, HLP10, HO14, HK94, HK93, HK95, HHK94, HT01, HAA+11, IEE93b, IEE94a, IEE94f, IEE95h, IEE95f, IEE95g, IEE95j, IEE96b, IEE96c, IEE96g, IEE96e, IEE96d, IEE97b, IEE05, ITK90, IBC+10, IOK00, IDD94, IH04, IHM05, JAT97, JML01, JLG05, JON94, JRM+94, KFA96, Kan12, KDHZ18, KK02a,
KOI01, KNT02, Kat93, KBS04, Kep05, KmWH10, KR09, Kon00, KPK01, KMC96, KMC97, KS96, KKDV03, KKD04, KS01, KVV97, KHS01, Kuh98, KBG16, Kum94, Lad04, LTTD14, LTR00, LKD08, LSZL02, LTRA02, LHMM96, Li96, LZ97, LHZ97, kLCC +06, LO96, Lus90]. Parallel
[MSOGRO1, MS02b, MM92, MC18, MWG97, dLFMBdlFM02, Mar06, Mar07, MFTB95, MSCW95, Mat94, Mat95, MSM05, MBS15, MGC12, MG15, MRB17, MM11, Mic93, Mic95, MTWD06, MCLD01, MS95, MCdS +08, MBB +12, MSB97, NO02b, NO02a, Nak03, Nak05a, Nak05b, NSZS13, Nar95, NSS12, NAJ99, NJ01, Nov95, NMC95, Oed93, OP10, OLG01, On02, Ott93, OWSA95, Pac97, PPT96a, PVKE01, Pat93, PSZE00, PV97, Per99, Per96, PLR02, PWPD19, PKB +16, PBC +01, Quo3, RR00, RMB99, RBS94, Ree96, RS95, RC97, RSV +05, Rh600, Rol94, RWD09, RTL99, RLL01, SCP97, SPE95, SGZ00, Sch01, Sch96a, Sch96b, Seg10, Ser97, Sev98, She95, SSLMMW10, SM03, SP99, Sie94, Sie92a, Sie92b, Sin93, STV97, SWH15, Sou01, Sta95b, Ste94, SSN94, SG010, Str96, Str97]. Parallel
[Str94, SNMP10, Sun90a, Sun90b, Sun94a, Syd94, TMP16, TSS00b, TTP97, TC94, TCP15, TQDL01, THN00, TDBEE11, Tsu07, TVV96, Uh94h, Uh95b, Uh96, UCW95, VLO +08, VRS00, VB99, WH96, Wal01a, Wel94, WAS95b, WDBD05, WO97, WS99, WMC +18, WTR03, WT12, YM97, YHGL01, YH96, YPA94, YG96, YTH +12, YZPC95, YSL +12, ZTD19, ZB94, ZZ04, ZDR04, ZWJK05, ZAT +07, ZLS +15, ZZZ +15, ZG94, ZB97, van97, ACM97a, ARV903, APBcF16, ART17, AAAA16, AD98, AL92, ABF +17, ASCS95, ADT14, AD95, ACJ12, Ano93h, Ano95c, Ano00b, AD9B4, AV18, ADD9R5, AB93b, AFST95, AB13, AGIS94, ADMV05, ASB18, BHJ96, BB +94, BR91, BA06, BHS18, BB95a, BCAD06, BB93, BDG +92b, BB94, BPC94, Ben95, BvdSvD95, BKH +13, BAV08, BN00, BIR94, BCM +16, BKM95, Bos96, BFMR96]. Parallel
[MSOGR95, Bri95, Bru95, BDW97, BSH15, BB95b, CARB10, CL93, CGK11, Cav93, CLDJ +15, CLS07, CT13, CLYC16, CKWH96, Cha05, CJvdP08, Cha96, CGL +93, CECS07, CH94, CZ96, Che99, CJ +10, CS96, CS99, CCS19, Cla98, CEF +95, CDD +96, CdGM96, CBHH94, Coo95a, CCHW03, CLASPDP99, CFF +96, CPR +95, CD01, CDH +94, CKP +93, CB11, DMK19, DKF93, DKF94b, DR18, DLB94, DLRR99, DDS +94, DR94, DZH94, DM93, DREU12, DBBF01, DKD05, DvdLVS94, DXB96, DMW96, DLM99, DKP00, DLO03, Duv92, DZZY94, EASS95, EV01, FJ96, FF99, FM90, FO94, FSTG99, Fer98a, FMS15, FSC +12, FKK +96b, FM11, FHC +95, GG99, GCN +10, GGL +08, GFB95, GKD +18, GG09, GFB +14, GÁVRL17, GSM +00, GKS +11, GEW98, GKK90, GKF13a, Gra09, GP95, HHS18, HAM95b, HPY +93, HWS09]. Parallel
[He93, HPS +96, HZ94, HZ99, HPLT99, HDS +13, HVSH95, Hol95, HH95, HLOC96, HVSC11, HSHM19, HLO +16, IEE97a, IM95, JWB96, JC17, JY95, JMM +11, JC96, JMDVG +17, KCD +97, KHBS19, KOB01, KBP16, KN17, KO5 +95a, KL95, Kos95b, KSS +18, KRC17, KG93, KFSS94, Kra02, KKK +08, KTH10, LM99, LCL +12, LH98, LS01, LCVD94a, LGmDrA +19, LMM +15, Lou95, LG93, LM13, LL95, LC97b, LSR95, MMR99, MYB16, MMB +94, MZK93, MM95, MvWL99, MVR99, MK00, MN91, MHC94a, MRRP11, MALM95, MLA +14, MRH +96, MMH99, Mor95, MC99, MR96, MVVL +10, NSBR07, Neu94, NB96, NBGS08, NCKB12, NF94, OsSSP12, Ols95, Olu14, OW92, PHA10, PPT96b, PPT96c, PKB06, PBG +95, PNN01, PBK99, PPF89, PY95, PBPT95, PSLT99, PCS94, Ram07, RJC95, RBB15, Rol08b, RBB17, SJLM14]. Parallel
[SM12, SSKF95, SH94, Sch94, Sch99, SPK96,
SBF94, SWYC94, SK92, SCC96, SL00, SMAC08, SZ11, SPL99, SMS00, SVC+11, Smi93b, STT96, SH14, SRK+12, SLS96, Sta95a, Sti94, SMSW06, Sun95, Sur95a, Sur96, Swa01, SL95, TJD09, THDS19, TDB00, TGKL19, TMPJ01, Uhl99a, Uhl95c, Was96, Was95a, WK08a, WK08b, Wk08c, Wol92, WT11, WYLCl2, WLYC12, WMP14, YULTM+17, YHL11, YWC11, YBZL03, YYW+12, ZL06, ZWHS95, ZAFAM16, ZWL13, ZJWD18, ZWL+17, Pai93, STT96, SH14, SRK11, SLS96, Sta95a, Sti94, SMSW06, Sun95, Sur95a, Sur96, Swa01, SL95, TJD09, THDS19, TDB00, TGKL19, TMPJ01, Uhl95a, Uhl95c, Was96, Was95a, WK08a, WK08b, Wk08c, Wol92, WT11, WYLCl2, WLYC12, WMP14, YULTM+17, YHL11, YWC11, YBZL03, YYW+12, ZL06, ZWHS95, ZAFAM16, ZWL13, ZJWD18, ZWL+17, dH94, ARL94, Ano94e, Ano94f, ACDR94, BDLS96, BS94, BG94b, Bos99a, BCh99a, BCh99b, CC95, Cza13, DSM94, DHK97, DW94, EJL92, FR95, FF95, GN95, JPT94, JPP95, KKD05, Kum94, LK10, LkLC03, Mal95, MKP96, OKW95, PQ07, QRG95, SSSS96, SPE95, Stp02, TDBEE11, TGM90, Vre04, WN10, YC98].

Parallel [ZPLS96, ZDR91, ZHS99].

parallel-programming [KKJ08].

parallel/distributed [FHC95, Wan97].

parallelisation [GEW98].

parallel [HS96, H95].

Parallelism [SJ94, SJ95b].

Parallelisation [SJ94, SJ95b].

Parallel [CGC91, EdS08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, K92, Mar03, MGA+17, MMS07, DSc09, RBA05, SHM+10, SML17, SGZ00, TCM18, TSY00, Th99, YPA90, AT9+12, AML+99, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, J91, JPT97, Kos95b, OPP00, RKB+13, SLG99, SHPT00, THH+05, TFW009, W909, WFT014, WRSY16, YZ14, PGdCJ+18].

Parallelization [AL03, And98, AIM97, BCM11, BS07, CRE99, CP97, C93, Cza03, ET94, HA10, J91, Kik93, KLR+15, LP00, MB18, OD01, P96, QMR00, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZWS08, WR01, aMST07, AGMJ06, BW12, BDY99, BJS99, CDD+96, FSG19a, Gao03, Goe02, IDS16, IJM+05, JL18, JJY+03, JMS14, KS15a, KD12, KRG13, MCB05, MGG95, MMAD19, N10, NEM17, OLG+16, Sp18, TWF009, VBLvdG08].

Parallelized [FBS01, OMK09, KMG99, OKM12].

parallelizer [BHRS08].

Parallelism [BST+13, Car07, GGH99, IO900, IKM+01, IM+02, SR95, ZZ95, AMS94, BY12].

Parallellatorcentrum [Eng00].

Parallizing [LRQ01].

parameter [HPLT99, JMDV+17].

parameterized [CT13].

Parameters [GFV99, BAG17].

Parametric [LLG12, Pat93].

Parallels [BL94].

Parallelism [CGC91, EdS08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, K92, Mar03, MGA+17, MMS07, DSc09, RBA05, SHM+10, SML17, SGZ00, TCM18, TSY00, Th99, YPA90, AT9+12, AML+99, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, J91, JPT97, Kos95b, OPP00, RKB+13, SLG99, SHPT00, THH+05, TFW009, W909, WFT014, WRSY16, YZ14, PGdCJ+18].

Parallelisation [SJ94, SJ95b].

Parallelism [CGC91, EdS08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, K92, Mar03, MGA+17, MMS07, DSc09, RBA05, SHM+10, SML17, SGZ00, TCM18, TSY00, Th99, YPA90, AT9+12, AML+99, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, J91, JPT97, Kos95b, OPP00, RKB+13, SLG99, SHPT00, THH+05, TFW009, W909, WFT014, WRSY16, YZ14, PGdCJ+18].

Parallelisation [SJ94, SJ95b].

Parallel [CGC91, EdS08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, K92, Mar03, MGA+17, MMS07, DSc09, RBA05, SHM+10, SML17, SGZ00, TCM18, TSY00, Th99, YPA90, AT9+12, AML+99, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, J91, JPT97, Kos95b, OPP00, RKB+13, SLG99, SHPT00, THH+05, TFW009, W909, WFT014, WRSY16, YZ14, PGdCJ+18].

Parallelization [AL03, And98, AIM97, BCM11, BS07, CRE99, CP97, C93, Cza03, ET94, HA10, J91, Kik93, KLR+15, LP00, MB18, OD01, P96, QMR00, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZWS08, WR01, aMST07, AGMJ06, BW12, BDY99, BJS99, CDD+96, FSG19a, Gao03, Goe02, IDS16, IJM+05, JL18, JJY+03, JMS14, KS15a, KD12, KRG13, MCB05, MGG95, MMAD19, N10, NEM17, OLG+16, Sp18, TWF009, VBLvdG08].

Parallelized [FBS01, OMK09, KMG99, OKM12].

Parallelizer [BHRS08].

Parallelism [BST+13, Car07, GGH99, IO900, IKM+01, IM+02, SR95, ZZ95, AMS94, BY12].

Parallels [BL94].

Parallels [BL94].

Parallel [HS96, H95].

PARMACS [GR95, HZ96, HZ99].

PARMACS-to-MPI [H96].

ParNSS [HSMW94].

PARRAY [CCM12].

Parsytec [SHH94a, SHH94b].

Par [SL94a, IEE93c].

Paradise [LLG12, Pat93].

Paradigm [LLG12, Pat93].

Parsytec [SHH94a, SHH94b].

Par [SL94a, IEE93c].

PARRAY [CCM12].

Passing [AMHC11, Ano93d, AKL99, Att96, BC19a, BZ97, BC14, BBH+06, BBG+99, BBG+01, BRU05, BDH+95, BDH+97].
BGR97b, BFM97, CHD07, Cer99, CGH94, Cot97, Cot98, CTK00, Cot04, CDND11, DFKS01, DKD08, DHHW92, DHHW93a, DDL00, FKKC96, FKS96, FGT96, Fos98, FGG98, FB94, GR07, GB96, Gie93, GLRS01, GLS94, GLS95c, GLDS96, GLT99, GLS99, GLT00b, GLT00a, GL04, IBC+10, KTF03, KGRD10, KS97, KSV01, KKD03, KKD04, KKD05, LKD08, LK10, Luo99, MP98, MTSS94, MS98, SML96, MBES94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, PS01b, RRBL01, RWD09, RFG+00, SWHP05, SWL+01, ST02b, TGT05, TDB00, TDB12, WD96, Wer95, Wis97, YHGL01, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93e, Ano94d, Ano95c, Ano00a, Ano00b, BL97, BvdSv95, Bjo95 passing [Bru95, BDW97, BFM99, CGJ+00, CDZ+98, CR99, CD01, DF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FK94, FHB+13, GL92, HP05, HPY+93, Hem96, KJA+93, Kra92, LR06a, LBD+96, wL94, LCY96, LMM+15, LC97b, MP95, NS91, PS07, PKB06, Pl94, PR94a, PS00b, Sei99, SWJ95, SDV+95, SZ99, SSS95, St94, TSZ94, V95, Wal94a, Wal94b, ZW13, ZKR14, DiN96, GGHL+96, Han98, Hem94, RRHF96, SLG95, Wer95, YGH+14]. Past [Dar01].

Path [CGPR98, GAMR00, SDJ17, SLN+12, Zel95].

Path-based [SLN+12]. Pathway [CNM11].

PATOP [BFBW01]. Pattern [CSW12, CC17, JJPL17, RDMB99, MAS06, SLM14].

pattern-based [SJM14].

Pattern-Independent [CSW12].

Patterned [ST17]. Patterns [DMMV97, FPY08, KB98, MS05, PKB+16, RRAGM97, SG12, DZZY94, GÁVRL17, HGMW12, LGMdR+19, PM95, PSK+10].

PC [AH00, EKTB99, KS01, LKYS04, RLL01, Ste00, WLYC12, YST08, YL09, MMB+94].

PC-Cluster [RLL01]. PCAT [ACDR94, GN95]. PCAT-93 [ACDR94].

PCTE [HZ94]. PCTRAK [KHS01]. PDCS [YH96]. PDE [GBR15, NHT02, NHT06, NPS12]. PDES [PT01, SCL01, SCL04, H014, HHA95].

PDGC [CGB+10]. PDP [IEE96g]. Peer [GR07]. Peer-to-Peer [GR07]. PECLR [PQ07]. PEMPI [FB95]. PEMPIs [MOL05]. Pennsylvania [ACM96b, IEE94d].

Performance [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, AC07, ATM01, AR01, An01a, An01b, ADR+05, Bak98, BBGL96, Ben18, BN00, BBDH14, BGG+02, BY12, BRM03, BRST94, BS07, BD98, BCKP00, BHNW01, BFMT96b, BFBR01, BEG+10, CGK+16, CDD+13, CRE99, CDJ95, CGLD01, CNM11, Che99, CSC96, CCBPA15, DMD08, DM95b, DW02, DZ98b, DPP01, DLW+10, DBK+09, EGH99, EGC02, EML98, EML00, FDO02a, FGT00, FCP+01, FSC+11, FST98b, FGKT97. GFD03, GKP96, GGS99, GBH99, GFS+18, GRRM99, GBS+07, GC50, GMdMB+07, GSY+13, HVA+16, HKN+01, Hol12, HF14a, HF14b, HPS95, Hus98, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE97c, IF995, IRR01, H+00, IADB19, JSS+15, JC17, JC+08, JS13, JL05, KDS01, KaM10, KL94, KH12, KBS04, KMB97, KKP01, KH15, KC06, KK02b, KHS01].

Performance [KSS00, LA01, LA+15, LWSB19, LCK11, LC97a, LB98, LGCH99, LN+15, LH98, LC93, LkLC+03, LWZ18, LN+12, LRLG19, LS10, LCW+03, IVP04, IVP14].
LWP04, LDCZ97, LZHY19, LC97b, LKYS04, MMB+94, MKP+96, MPD04, ME17, MGHM97, MGC12, MM02, MM03, MOL05, MS99a, MHC94b, MMSW02, MK04, MCLD01, MM99, MM14, MMS07, NSLV16, NW93, NPP+00d, NMS+14, NN95, OTK15, OF00, OLG01, PARB1, PK01, PJHM11, PZ12, PR94b, PFG97, PGAB+05, PGAB+07, PGCO2, PY95, PTH+01b, PS01b, QHC17, QB12, Rab98, RBB97a, RBB97c, RH01, RRAGM97, Ros13, RsT06, SGI+03, SPM+10, SLJ+14, SWHP05, SCP97, SEF+16, SPL+12, SCSL12, SM02, SM03, SSO97, SJ02, SSSS97, SC96b, SKH96, SJ+17a, SJK+17b, TSB02, TSB03, TTSY00, Ten95, Tha98, TGB+02, TGT10, Tră12b, TF1G92, TFZZ12, VFD02, VY02.

Performance [WZM17, WN10, WAS95b, Tra12b, TFGM02, TFZZ12, VFD02, VY02].

YWCF15, YSP, XXL13, YC98, Yan94, YWC11, YS93, YWCF15, YSP+05, ZLGS99, ZWJK05, ZHK06, ZSnH01, ARDP15, Ahm97, ADLL03a, ADLL03b, Ano03, AFST95, BDP+10, Ber96, BDV03, BFM96, BMFT96a, BFIM99, CRE01, CAHT17, CLYC16, CBPP02, CBM+08, CHKK15, DM95a, DL10, DO96, D+95, DWL+12, DE91, Dux92, EFR+05, ESB13, FAF16, FDD02, FE17, FSV14, FME+12, Fin97, GVT+18, GS02, GCC+07, GKF97, GR95, GHZ12, GML+16, GSM+00, GL96, GLDS96, GL97c, GL99, GWVP+14, HDDG09, HW11, Hasu00, HAJK01, HMS+19, HK10, HSVN11, HHA95, HG12, HeFo5, JHK09, JNM+11, JKN+13, KBP16, KKM15, KS13, LB+96, LTLC94, LFS+19, LC07, LBH12, LCY96, LB06, LL01, LKJ03, LSK04, MC17, MP95, MPCM15, MS+05, MSL12, MBA06, MHC94a, MSZG17, MJPB16, MGC+15.

Performance [NU05, NFG+10, OH110, Old02, PGs+13, PS19, PH+13, PG+10, PF05, PMZM16, PTV99, Rab99, RMS+18, RPS19, Reu03, RGD15, RJDH14, Sep93, SFO95, SWJ95, Slo05, SVC+11, SK00, SFLD15, TMC09, TSP95, TG90, THM+94, VDL+15, Wor96, YCL14, ZSK15, ZWL13, dAT17, HS95a, GH94, LCHS96, SSH08]. performance-aware [MSMC15], Performance-based [YWC11], Performance-Driven [LWSB19], Performance-Portable [JSS+15, DWL+10, DWL+12, FAF16], performance-prediction [BDV03], performance/cost [GWVP+14], performance/power [RPS19], Performances [GFV99, DS96b, IM94].

Performing [CC99], Peridynamic [MSZG17], Periscope [LG16], perishable [OGH19], Permutations [CC99, LTDD14], Persistent [Man01, SG12, HSM+19], Persistent-Sets [SG12], Personal [SSSS97], personalized [BHJ96], perspective [Sni18], perturbation [KN17], Perverse [Rol80a], PES [MK94], Pessimistic [BCH+03], petaflaps [LSG12], Petascale [CGK11, CBGY18, ZWL13, Glo01], Petersburg [Mal95], Petri [CMM11], PFSLib [LL95], PGAS [SWS+12, SJK+17a, SJK+17b], Phase [CBL10, ED94, TKP15, TG94, ZAFAM16], phase-field [TPK15], PHAT [BBC+19], Phi [BB18, CBGL19, DSGS17, MKT16, OTK15], Philadelphia [ACM96b], PhiTM [MMDA19], PHOENICS [SZBS95b, SZBS95a], Phoenix [ACM03, IEE95b, Ten95], Photo [JFGF12], Phylogenetic [MR12, LBH12], Physical [BM97, GJN97, GWVP+14], Physics [GT94, KH15, VV92, WBH97, ANS95, BPG94, DMW96], PIC [BDV03, HTJ+16, JL18], Picos [YÁJG+15], Pilot [OS97, CGG10], PINEAPL [DHK97], Pinhole [NH95], Pipe [MTU+15], Pipeline [GAMR00], Pipelined [GAML01], Pipelines [MAGR01, FWS+17, RKBA+13], pipelining [MM11], Pisa [Sil96].

Plasmafusionsforschung [BL94]. plasmas [CFF19]. Platform [BKG02, BB18, NO02b, PGF18, WTT17, BSH15, CB11, Cza13, DWL+10, DWL+12, HTJ+16, HHA95, JR13, NO02a, XLL13, YSL+12].

Platforms [AIM97, HD00, JML01, RVK19, ZB97, BBC+19, GCC+07, GFB+14, MBD13, TKP15, TS12b].

Pointers [LRT07]. Poisson [BP98, WJB14].

Poland [BDW97]. Polder [OS97]. Policies [CML04, PZ12, OHG19]. policy [MMM13].

Polling [DCP12, Pla02, DCP14, SH96].

Pollutant [RSV+05]. Pollution [AKK+94, BZ97, MPD04, MSML10, SH94, Syd94].

POLSYS_GLp [SMSW06].

Polygonization [TSP95]. polygons [CT13].

polyhedral [BHR07, KGB+09]. polymers [JAT97].

Polynomial [VY15, HLM+17, SMSW06]. port [CCH03, Har94, RJMC93].

Portability [KaM10, RS95, RH01, ABDP15, CGK+16, FE17, HHS18, MGC+15, PHW+13, QHC17, Reu03]. Portable [Ano95c, Ano00b, BHV12, BHL+95, CDH+94, DHK97, Di 14, FCL07, FLS08, GLS94, GL97a, GL99, JSS+15, LNLE00, Man98, MKV+01, MG97, PPT96a, PBC+01, SSC95, SBD+16, S194, T198, WCSS+13, YBMB14, An95, BCK+09, BFD94, BB00, BL99, BAS13, CJvdP08, CH94, CEI+95, DWL+10, DWL+12, FAF16, FWNK96, GR95, GL94, GS94, GLDS96, HTJ+16, HZ94, HSW+12, JCG96, KN95, LFS93a, LFS93b, LHC+07, MM+94, PPT96b, PPT96c, PMZ19, SLFL15, Sto98, VM95].

portal [AAS08]. portals [BS96b, BMR03]. Portfolio [SIS17]. Portfolio-driven [SIS17]. Porting [Ano96c, BSC99, BLW98, EM02, Har94, Har95, HASnP00, KCM+03, KMO9, SR95, YKL17, dCH93, BvdB94, HD11, MWO95, ZPLS96].

Portland [ACM99, ANS95, IEE93e, SW91]. Portugal [IEE93d, IEE96g]. Positron [Pat93].

POSIX [LD01]. Post [BBH+13b, Wit16, ABC+00]. Post-failure [BBH+13b]. Post-ISA [Wit16]. Poster [JPL17, LHZ17]. POSYBL [Mat94].

PPARDB/PVM [PPT96b, PPT96c]. PPPE [CDH+94]. PPSS [DSM94].

Practical [BJH96, BCP+97, CZG+08, RHG+96, TGBS05, AMS94, BHR08, LPD+11, MeK94, Pan95b, VVD+09].

Practice [ACM11, GN95]. Praktische [MS04]. Pre [AC17]. Pre-processor [AC17]. Precedence [EGR15].

Precedence-Constrained [EGR15].

Precise [FK+17]. Precision [Ano98, Kha13, ZC10, JPT14].

Preconditioned [GFPG12, ABF+17, MM92].

Preconditioner [BBS99, FSXZ14].

Preconditioners [Huc96].
Preconditioning [Nak03, GGC+07].
predictability [GRRM09]. Predicting [RRAGM97].

Predictive [FJK+17]. Preemptive [BBH+06, BBGL96].
Preface [DKD07, OL05]. Prefetching [BIC+10].
Prefix [WJ12, DK13, MYB16]. Preliminary [BF98, Wal01a, WLK+18, RJC95, RLFdS13, SWS+12].
PREMER [VBB18]. Preprocessors [Ano01a].
prescription [MRH+96]. Present [Dar01].
presented [ACM90]. preservation [IEE94c]. Preserving [RNPM13].
Primitives [DDL00, FST98a, ABDP15, CIJ+10, STP+19].
Princeton [Bha93]. principles [BSC99, HS12, SSP+94].
printing [YM97]. priority [DR95, Man98].
Prism [SDN99]. private [Str94].
privatization [KRG13]. Probabilistic [LAdS+15].
Probability [QRM96, Sta95b]. Problem [BSH15, DALD18, DAK98, GAMR00, ICC02, Lee06, MTSS94, RLVRGP12, ZSnH01, AB93b, DSM94, GM94, GKF13, HMKV94, IHH05, MM92, SL00, SP+12, Cza13].

Problems [ASA97, BHM94, BHM96, BM01, BPMN97, CGRPR98, EML98, HAA+11, DK02, LSM+18, MBS15, Nak03, Riz17, AL96, CEGS07, FR95, LSR95, NZZ94, OMK90, SC96a, SD99].
procedure [AGLv96]. Proceded [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM04, ACRD95, CJNW95, GN95, Hol12, IEE93f, IEE95d, IEE02, KG93, LCK11, MC94, R+92, SM07, Ten95, TG94, dGJM94, ACM96b, An094e, An094i, BPG94, Bo97, BH95, CLM+95, DSZ94, DE91, EJL92, FF95, GHH+93, HK95, HHK94, IEE94a, IEE94b, IEE94c, IEE95b, IEE95c, IEE96a, IEE97c, IEE05, JPTE94, Kum94, LF+93a, Li96, PSB+94, PBPT95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM05, ACM06b, ACM06a, ATC94, Agr95a, AGH+95, AH95, An094, An094a, BBG+95, Bha93, CHD07, CZG+08, CGKM11, CMMR12, CGB+10, CDND11, DCM+92, DT94, DLO03, EV01, EdS08, ERS95, ERS96, Fer92, FK95, Gat95, GGK+93, GA96, GT94, Ham95a, HS94, HK93, IHE91, IHE92, IEE93d, IEE93c, IEE93b, IEE93e, IEE94d, IEE94f, IEE94h, IEE94g, IEE95h, IEE95k].
Proceedings [IEE95i, IEE95f, IEE95j, IEE95g, IEE95j, IEE96g, IEE96e, IEE96d, IEE96b, KGRD10, LKD08, MTWD06, MMH93, MCdS+08, MdSC09, Ost94, PR94b, Ree96, RWD09, SCR92, SHM+10, Sie94, TBD12, USE94, USE95, USE00, VW92, Vos03, Y+93, YH96, AD98, BG91, BDL96, BS94, Bos96, BFMR96, BDW97, CH96, CD01, DSM94, DDKD05, DW94, DMW96, DLM99, DPK00, Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97a, Kra02, KKD04, LCH93, Ma95, PBG+95, Sch93, Tou96, VV95, Vol93, Was96].
Process [An93f, An94g, IEE96h, IEE97a, LHHM96].

Process [AUR01, BGL00, CLL03, DeP03, DK06, FDG97a, FDG97b, FD98, FP080, KCP+94b, KOW97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HG12, JLS+14, KCP+94a, MLVS16, MK00, SHHC18, Ste96].
Process-Management [BGL00].
processed [HJ98]. Processes [CB16, MW98, Pet00a, Pet00b, FS95, GFIS+18, SPK+12].
Processing [ATC94, Agr95a, AR01, BBG+95, DCM+92, GGC+99, GGC+00, HHB+14, IEE93b, IEE93f, IEE95e, IEE95h, IEE95f, IEE95g, IEE96b, IEE96e, IEE96d, IEE97b, IEE95, IOK00, JDB+14, K0101, KS15b, LSVMW08, MLGW18, MC18, MSML10,
Nar95, NH95, NJ01, PLR02, PD98, Ree96, RRBL01, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, ASB18, BJ13, BHS18, BFMR96, CFPS95, CLLASPD99, DSZ94, FWS+17, GDC15, GGGC99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kum94, LHLK10, LG93, PSB+94, PPBT95, RKB+13, Rv00, RC99, SSS99, SLS96, VDL+15, Wol92, WWFT11.

Processor [HC06, Oed93, Ott94, PWP+16, RR02, Smi93a, SBT04, UALK17, ABDP15, AC17, DJJ19, DCH02, HCA8, LL01, MMDA19, OIS+06, RNPM13].

Processor-Oblivious [UALK17].

Processors [AJ97, Bri10, DDP+19, HK93, HK95, KmWH10, MJB15, OLG01, PZKK02, AV18, BBG+14, CBM+08, DDBG11, HTA08, HWX+13]. Producing [HAKJ01].

Producing [HAJK01].

Productivity [BS07, KaM10, Wit16].

Program [Ano96d, AB93a, BMS94b, CHPP01, Cot97, EML98, MM95, MK17, MRV00, Ney00, PS01b, TSY00, THN00, UTY02, CDZ+98, JF95, LP00, LLC13, OKM12, PPF89, Sai10, TN1B17, TMPJ01, ZL96]. programación [VP00]. Programmable [OA17].

Programmcode [BL94]. Programmer [Gua16, Wit16]. programmers [CGG10].

Programming [ACM90, Ada97, AGCR97, ASA97, ACJ12, Ano96b, BBG+10, BL93, BVH12, BF01, BBG+99, BBG+01, BK000, CMK00, CDK+01, CKmWH16, Cha02, CZG+08, CF01, Cza03, DM98, DARG13, LL00, DK06, DWL+10, EM00a, EM00b, FTB00, FWR+95, GLRS01, GLS94, GLS99, HA11, HDB+12, HDT+15, KKH03, Kep05, KP96, KmWH10, KV97, Lad04, La901, LLRS02, MSOR01, Mat94, Mat95, MSM05, MCIS+08, NO02b, SPM+10, SK10, SS01, SD99, SHH94b, ST02a, ST02b, SGS10, Stp02, TTP97, VT97, Vre04, Wal01a, Wal02, WO97, YM97, YHLK01, YCA18, ACGdT02, AMuK15, Ano00c, AB13, BJ13, BCA+06, BB94, BS96a, BKH+13, CPM+18, CLYC16, Cha05, CJvdP08, CE+95, CDH+94, CGH+14, DL+12, Duv92, EASS95, EV01, FSG99b, FB95, FB96, Fan98, FSTG99, Fer04, Fra95, FHB+13, FF95].

programming [GKZ12, Gei96, GBH14, GBH18, GRTZ10, HTA08, HS93, HZ94, HDB+13, HSVH95, HSW+14, HZG08, KDS012, KOB1, KSG13, KSL+12, KVL15, KPNM16, KFS94, KKK+08, LV12, LFS93a, LFS93b, LH98, LPD+11, LLH+14, MM+94, MVT96, MSP93, MC99, MGC+15, NO02a, Nak05a, NYNT12, NBGS08, OIS+06, Ohi14, OW92, Pac97, PVK10, PF05, Qui03, RJ1D14, STP+19, iSYS12, SSKF95, SYR+09, Seg10, SPK96, SBF94, SRL99, SHH94a, SD99, VP00, Vos3, Wang01b, Wan02, WCC+07, WAD09, WYLC12, WYLC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE+17, Che10, SD13].

Programs [AJF16, Beg93b, BKdSH01, BCGK08, BGG+02, DL98, BGL00, CWW12, CRE99, CHPP01, CD98, DLB07, DMM97, D+14, FKH02, FJ+17, GR07, GTH96, GL04, GC05, HC01, HKN+01, HM01, JLG05, KFL05, KL94, KS14, KKV01, KS10, L09, MVY95, MLO05, MBE03, MKW11, MCLD01, MJB15, NSZS13, NE98, NE01, NPP+00d, OMS96, PPJ01, RH01, RFG+00, SGO0, SBF+04, SR96, TGB00, Wel94, Wis97, ZLL+12, Beg92, Beg93c, Beg93a, BCK+09, BMS03, CRE01, CLi15, CGL+93, CH94, CRM14, CFP96, DFK93, DFK94b, EP96, EPP+17, FSG99a, FLB+05, FKB00, GGH99, GRRM99, GKS+11, GB94,
HD11, HZ96, HLOC96, HEHC09, KCD+97, KS13, KO14, Kom15, KLM+99, LGKQ10, LLG12, LL16, LBB+16, LYSS+16, LMM+15, LZC+02, LCC+03, MT96, MsSAS+18, Mor95, NBK99, Ohe96, OdSSP12, PES99.

Programs [PAdS+17, RAS16, Reu03, RRG+99, SSB+16, SSV10, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THH+05, TGD919, UGT09, VVD+09, YSVM+16, YSY+12, ZJDW18, ZRQA11].

Progress [BRU05, LAdS+15, SPH+18, DFA+09, ZKRA14].

Progress-Dependence [LAdS+15].

Project [BHK+06, BSH15, DHK97, MRV00, ABC+00, CDH+94].

Promise [Ano93f].

Promotion [OCY+15, WBBD15].

Propagation [EMO+93, ESM+94, JML01, SMOE93, ASAK19, KEGM10, RMNN+12].

Properties [FGRT00, JL18, MS96b, SSP+94].

Proposal [DHHW92, DHHW93a, DFC+07, DFA+09, ZKRA14].

Proposals [Wal96b].

Protected [GHD12].

Protein [RGB+18, GÁVRR+17, SEC15, ZAT+07].

Proteins [BHW+12, BBH+15, FMS15].

Protocol [CAWL17, GS+13, JK11, LMM+15, RA99, XF95, BDB+13, CwCW+11, DDM99, MN91, MB00, ZPI+06].

Protocol-based [LMM+15].

Protocols [BCH+08, DM93, LH98].

Protoplanetary [dIFMBdF+02].

Prototype [Ano01b, FHP+94, MMSW2, BK96, CCF+94, KLYL03, KLYL05].

Prototyping [SXMX+18, Spe19].

Provide [Add01, LMRG14].

Provides [Ano98, Nel93].

Providing [GKP97, Zahn12].

Proving [MS96b].

PRS [UCW95].

Pruned [dIFM+98, GPD+97, Zahn12].

Pruning [PMM+16].

PS [AMV94].

Pseudo [Wal01a, Lan09].

Pseudo-search [Wal01a].

Pseudorandom [WHDB05].

Pseudospectra [BKGS02].

Pseudospectral [Bri95, MRRP11].

PSPVM [BWT96].

Pthread [ZAT+07].

Pthreads [AS14, TS12b].
HPS+96, Hem96, HEH98, HTHD99, HVSH95, HH95, HRSA97, Huc96, Hum95, HS95b.

PVM [ITT99, IvdlH+00, IDD94, IKM+01, IKM+02, JAT97, JH97, JML01, JW96, JC96, KBA02, Kat93, KK98, KP96, KMB97, KDL+95a, KDL+95b, KG96, KCP+94a, KCP+94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAHS96, KK02b, LG90, LH98, LSZL02, LHCT96, wL94, LFS92, LFS93a, LFS93b, LH95, LHZ97, LKL96, LDCZ97, MV98, Man94, MVTP96, Man01, MP95, dIpmBdIpm02, MTSS97, MFTB95, MSP93, Mat94, Mat95, MMU99, Mat01b, MRV00, MK97, MK98, MC98, MF9C8, MV95, MS96b, Mic93, Mic95, MT96, MS99a, MS99b, MH9C4a, MH9C4b, MRH+96, MS95, MC99, MWO95, Ne93, NP94, Ne94, NKK94, NKK95, NS96, NA99, Nov95, Ob96, OS95, OP90, Ott94, OWS95, PPR01, PK98, PPT96b, PPT96a, PPT96c, POL99, PT01, PKYW95].

PVM [Per96, Pet97, PTT94, Pla02, PN90, PD98, PY95, PL96, Pus95, QR9G5, QRMG96, Qu95, QMG90, RR90, RS93, Rag96, RS95, RHG+96, RRAGM97, Rol94, RGD97, Saa94, SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98, SGS95, SSS99, SP96, Sep93, Sev98, Shi94, SA93, SR96, SHH94a, SHH94b, Smi94, SBR95, SC96a, STT96, SMOE93, SGL+90, SGH91, SCL97, SSS97, Sta95b, SY95, SY96, SC96b, Str94, SKH96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SGD94, Sun96, STM97, SN01, SCL00, Sur95b, Sut96, SL95, TM96, TC94, TD96, TD98, Tsu95, Uhl94, Uhl95b, UH96, UM97, VSR94, VSR95, VB99, VAT95, WKS96, WH94, WCSR96, WSA95b, WO97, Wis96a, WI96a, Wis98, Wis96b, WI96b, WCSS99, Wn99, WLC07, XWZ96, XF95, YG96, YKI+96, ZPL9S96].

PVM [TZ90, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, ZG98, Zol93, van93, NMC95, Ano95b].

PVM-AMBER [SL95].

PVM-Based [WAG95b, FO94, PY95, SAT96, ZPL9S96, LSL92, TD98].

PVM-GRACE [YKI+96].

PVM-Implementation [BJS97, Huc96].

PVM-RPC [KS97].

PVM/C [GTH96].

PVM/mpi [AD98, BDW97, CHD07, CHD09, CD91, DLM99, DLP90, KKD04, LKD08, MTK96, NAG97, AG97, SN01].

PVMP [FD96, FDG97a, FDG97b].

PyCUDA [KPL+12].

PyOpenCL [KPL+12].

pySDC [Spe19].

pySDC-Prototyping [Spe19].

Python [BL97, DPS95, DPD98, Di14, GFB+14, SSH08].

PyTrilinos [SSH08].

Q [KMH+14, LM13, MV17].

QAPs [Tsu12].

QCD [BLPP13, GM18, SVC+11].

QCG [ACH+11].

QCG-OMPI [ACH+11].

QC MPI [TJD09].

QR [GKK90, LC97b].

QSATS [Hi11].

Quadratic [Cza13].

Quadracics [YS9+05, LCW+03].

quadtree [HS95b, PGBF+07, SCC96, SV95b].

qualified [BLP93].

Quality [Boi97, BDA+18, RFG+00, WDD95, Ano94i, Lan09, Boi97].

Quality-of-Service [RFG+00].

Quantifying [AKE00, LDCZ97].

quantitative [BL93, BBH+15].

quantization [HE15].

Quantum [BCGL97, BCL00, GRTZ10, HIN11, MGG05, NMW93, SK00, SSGF00, TJD09, WHMO19].

Quasi [DDMY99, Pla02, ZB97].

Quasi-asynchronous [DDMY99].

Quasi-Newton [ZB97].

Queens [RPL08].

Queensland [ACD94].

Query [AR01].

Quest [MWG97].

Queue [NSS12, CG99b, PTL+16, Sep93, ZA14].

queues [Man98].

quicksort [MMO+16, MMO+16].

R [BBH12, JPOJ12, LR01].

R&D [Str94].

R&D-100 [Str94].

Race
[CFMR95, KSJ14, DKF94a, PGD18]. Races [PPJ01, SAL+]17, DKF94b, LLG12, ZRAQ11, EPP+]17. Radial [RB01, KRC17].
Radiance [GCBM97, KMG99, RC97].
radiation [SCJH19]. Radiology [GA96].
Rajeev [A990a]. Raleigh [Agr95a].
Ramesh [Stp02]. Random
[HT08, LTTD14, CCS19, Lan09].
Randomized [Tra98]. Range
[KBM97, MH01, BMPZ94a, PARB14, She95].
range-join [She95]. Rank [Hat98].
RASC [YCL14]. rate [BBG+]14, YPA94].
racionale [BBH+]13b. Ray [CG93, DP94, KGB+09, FWS+]17, SGS95, FFB99].
Ray-Tracing [DP94]. Rayleigh [TVV96].
Rayleigh-Benard [TVV96]. rCUDA
[CPM+]18, PRS16, RSC+]15, RPS19, RS19, SIRP17].
RDMA [GSY+]13, LWP04, Pan14, RA90].
RDMA-Based [LWP04].
RDMA-Enabled [GSY+]13, Pan14, RA90].
Re [MCP17]. Re-Vectorization [MCP17].
Reaching [BHS+]02. Reaction
[HF14a, HF14b]. Reactive [BCL00, Heb93].
reactor [ANS95]. Read [SSLMW10].
readability [SM12]. Reading [HK95].
Ready [Bri02, DZ09b]. Ready-Mode
[Bri02]. Real [ASB18, LHLK10, NSLV16, Tho94, UP01, YGH+]14, Ano94f, Fer04,
FLB+]05, JR10, ZWZ+]95, SKD+]04].
Real-World [NSLV16]. Realistic
[YMY11, ZShH01, CKP+]03]. Reality
[ACM96a, Ano93f, NM95, Wit16]. realizing
rebooting [GJTL11]. Receive [Bri02].
Receiver [ZG95b]. receptor [ESB13].
Rechnen [Ano94c, BL94, MS04].
Recognition [CC17]. recomputation
[RKBA+]13. Reconfigurable
[MFC98, SPM+]10, ZL18, NYNT12].
Reconfiguration [CS14, MSMC15].

Reconstruction [BM97, DYN+]06, GA96, LSSZ15, OIH10, RAGJ95]. Record
[UALK17, CRD99]. Record&Replay
[KSV01]. record/replay [CRD99].
Recovery [SBF+]04, BBH+]13b, BDB+]13, LFS93a, LFS93b, SSC95, SRS+]19, ZWZ05].
Rectangle [CSW99]. rectified [WBB15].
Recurrences [ACGR97, MB18]. Recursive
[DSS00, PWP+]16, SD99]. Red [van93].
redesign [HL17]. Redistribution
[DDPR97, HC06, WO95, WO96, HC08, KN95]. Reduce [PSM+]14. Reduced
[SW12]. Reducing
[AV18, CRGM16, JE95, BCM11].
Reduction
[DAD19, FKH02, MFPP03, SG12, HL17,
Jes93a, MLVS16, Pan95a, PQ07].
Reductions [PWP19]. Redundancy
[TS12a]. redundant [KJJ+]16]. Reference
[GHLL+]98, Nag05, SOHL+]98, YM97,
Ano99a, Ano99c, Ano99d, SOHL+]96, Per97, Ano96a]. Refinement
[MRB17, Ran05, CLSP07, DLR94]. regions
[LFL11]. regression [RBA17]. Regular
[HLPL1, NHT02, NHT06]. Reims
[MCdS+]08]. RELAP5 [SBR95]. related
[SD16]. Relating [EPML99]. relation
[DO96, Hem96]. Relationship [Dan12].
relativistic [BHS18]. relaxation [OKW95].
Reliability [CGZQ13]. Reliable
[SE02, Arn95]. Remark [SW15].
remedies [ALW+]15. Remo [IEE95h].
Remote [BMR01, HDT+]15, IFA+]16,
OCY+]15, Tso7, WBB15, AGLV96,
CPM+]18, FHC+]95, GBH14, GBH18,
HGM12, RSC+]15, IRP17, SH96].
Remote-Scope [OCY+]15, WBB15].
Remotely [GCGM99, GGC99]. GCGS98,
removal [ZZZ+]15. Removing [ZJWD18].
Rendering
[DLLZ19, GCBM97, LSZL02, SU96, UCW95].
Rendezvous [RA09]. Reordering [Hat98].
Reparallelization [KBG+]09]. Repeated

[58]
Replacement [GHD12].

Replay [CFMR95, HLOCG96, UALK17, CRD99, MT96, NDK99, XLW+09].

replay-based [MT96]. Replication [WC09, KJJ+16, ZJDW18].

Representation [BMR01, KD12, SML17, CCM12]. reproduce [AVA+16]. Reproducible [GL99, HCA16, XLW+09]. Requirements [GSHL02, GT07, Ber96, KBG16, LCVD94a].

Research [Ano96d, BR95c, DHS96, VDL+15]. retargetable [KKJ+08]. rethinking [GJLT11]. Retrieval [JDB+14].

Resilient [CGH+14, Gua16, LMCG17, LMG17, LBB+19, MLVS16]. Resistive [ZL17]. Resolution [MAB01, Str94, BADC07, KN17].

Resolving [GMM16]. Resource [BGR97b, BSH15, KK98, SIS17, YSS+17, DZ96, FLD96, NEM17, ZA14].

resource-conscious [ZA14]. resource-restricted [NEM17]. Resources [LSB15, NAW+96, Kos95b, RSC+19, R+92].

Response [BBC+00]. Restart [SSB+05, AKB+19, LMG17]. restarted [dH94]. Restoration [FJSB+00]. Restore [Gua16]. restricted [NEM17].

Restructuring [KAMAMA17]. Results [BIL99, BIC05, HSMW94, Wal01a, BR95c, DVS96, VDL+16]. retargetable [KKJ+08].

[BKG08, HHSM19, LBS15, LM13, QHCC17]. Reverse-mode [HSSM19]. Review [Ano95b, Ano95c, Ano96a, Ano99a, Ano99b, Ano99d, Ano00a, Ano00b, BDL98, Che10, Mar06, MCLD01, Nag05, NMC95, Per96, Per97, SD13, Vre04, Stp02, Vog13].

Reviews [Ano97, Bra97, YM97]. Revised
Runtimes [AHHP17]. Russia [Mal95].
RWA [RLVRGP12].

S [AHHP17, Röh00]. S-Caffe [AHHP17].
S-language [Röh00]. S1 [GLT00b]. S3D [LSG12]. Safe [Pla02, GCC99, LFS92, LFS93a, LFS93b, NYNT12]. Safety [CLA+19, GT07]. salesman [GM94]. Salt [Hol12].
San [ACM97b, Ano95d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IEE95b, IEE95e, IF93a, NM95].
Sanders [Che10]. Sandy [VDL+15]. Santa [ACM95b, AH95, IEE95f, Old02]. Santorini [CD01, CDND11]. Santorini/Thera [CD01].
Saphir [Ano99c, Ano99d]. SAR [AB95]. Satellite [Uhl94, Uhl95b, SSN94].
Satisfiability [IKM+01, IKM+02]. saturated [TOC18]. Saturday [B+05].
Saturday-Wednesday [B+05]. Save [KFL05, FKL08]. SBS [MSB97, WWZ+96].
SBS-Type [MSB97]. SC'11 [LCK11].
Scalability [Ben18, BS07, FSC+11, KBS04, LL01, LKYS04, LSK04, VLSP19]. Scalable [Add01, AHHP17, BHW+17, BBC+02, BHNW01, BGL00, CG5D03, EFR+05, GFB+14, GS94, HGMW12, IEE92, IEE94f, IEE95j, IBC+10, KTAB+19, KK98, LTS16, kLCC+06, MFPP03, NBGS08, NPP+00d, NCKB12, NSM12, OL5G01, PPJ01, PR94b, PBK00, SDJ17, SBF+04, Skj93, SS96, TPD15, UP01, VBLvdG08, VY92, ZLGS99, ZL18, BBB+94, Bri95, CLSP07, FWS+17, GBH14, GBH18, GM13, GKL95, HRR+11, HAJK01, KRC17, KRG13, LM99, LTLC94, MMB+94, MRRP11, PWD+12, SPK+12, Trä12a]. ScaLAPACK [BV99, BRR99, DHP97].
Scale [AKE00, AFGR18, BHW+17, BZ97, BHNW01, FFP03, MFPP03, SM03, TGM09, WMC+18, WT12, AASB08, BCA+06, BJS99, BCH+08, Che99, DZZY94, FME+12, Gua16, Kos95b, LS10, MLA+14, PTL+16, PD11, RMNM+12, SIC+19, SvL99, TBB12, WLNLO6, WT11, WT13, ZKRA14, ZA14, Ben18]. SCALE-EA [Ben18].
Scale-Out [AFGR18]. Scale-Up [AFGR18]. SCALEA [TFGM02]. Scaling [CC17, KFL05, SLJ+14, FKL08, Gao03, LFL11, PDY14]. scan [AAAA16, YLZ13].
scanline [CT13]. scans [NA199]. SCASH [SHHH01]. SCATCI [ART17]. scatter [BCD96, MTK16]. Scattering [BCL00, NZZ94, OMK99]. SCF [MM95].
schedule [NAAL01]. scheduler [ADDR95, TCBV10, WRSY16]. schedulers [AV18, NP12]. Scheduling [BBH+06, BSH15, CML04, DMB16, EGR15, GDDM17, GSHL02, GHL97, HC06, JW96, MBJ15, NIO+02, NIO+03, TJP12, APfC16, DZ98a, JKN+13, LHCT96, MBKM12, NSBR07, OPW+12, Smi93b, SKK+12, SKB+14, WYLC12, WYLC12, WYCC11].
Scheme [CTK01, LNLE00, MW98, SBF+04, BBGL96, Bjo95, MRRP11, OKM12, SCC96, YPZC95, FM90].
Schemes [PPJ01, WYLC12, WYLC12, ZAT+07].
Schmidt [CBY18]. School [VV95].
Schrödinger [DM12, ON12]. SCI [FS07, HEH98, Hus00, RR01, ZHS99].
SCIDDE [ABG+96, AGL19].
SCIDDE-PVM [ABG+96]. Science [EGH+14, IEE95d, MM93, Old02, SM07, ACM06a, DMW96, HK93].
Sciences [ERS96, HS94, ZL96, ERS95]. Scientific [AGH+95, APJ+16, BBG+95, DDM92, DT94, Gat95, GL97a, HJ98, KK02a, LWSB19, LkLC+03, Mar06, Nan05, Sin93, SSB+17, VV92, WN10, Bis04, DW94, SBG+12, SIC+19, TBB12, WT13, Ano97, Bra97].
scientists [HW11, Str94]. SciPAL [KH15].
SCIPVM [ZHS99]. Scope [OCY+15, BDB+13, WBD15]. scoping [RDLQ12, WC15]. Scottsdale [IEE95b].
Scratchpad [JAK17, MB12]. Scripting
[Ong02, KPL+12, Nob08]. scripting-based
[KPL+12]. SCTP [KWP05, ZP06]. SDK
[Tk16]. SDSM [CCM+06]. Seamless
[KK02a, LdSB19]. Search
[Bsh15, Cza13, IkM+01, Wal01b, Wts19,
FMs15, IkM+02, Wal01a, Zsk15, CB11].
Searches [BSG00]. Searching
[JpT14, Mm01, Ba06, Wal01b]. Seattle
[ACM05, BS94, Lck11, Ost94]. Second
[An00b, Bl95, DTr94, De91, IEE94d,
IEE96d, IEE96i, Lhhm96, Tou96, Vol93,
Wph94, AcM97a, An99a, An099b,
BfMr96, DmW96, Fr95, Kn17, Li96].
Second-Order [Bl95, Kn17]. Secondary
[Whd05, Sc15, Zat+07]. section
[An93b, Dk08]. segment [Fjz+14],
segment-based [Fjz+14]. Segmentation
[Kb02a, Ad95, Ccu95]. Seidel
[Bg95, Lm99, Ol95]. seismic
[AmB93, Kl95, Keg10, Lm13,
Qhcc17, Rmn14+12, Ss09, Wcvr96].
Seismograms [Dp94]. Select [Kkd03].
Selected [Dhs96, MtW07, Ol05, Tb14,
Chd09, Cha05, Dkd07, Jc17]. selecting
[Pt16+16]. Selection [KmnWh16, Snn+19,
PgBf+07, Wks96, Zwl+17]. Selective
[Nak03]. Self
[NsS12, Slj+14, Tgt10, Vfd02, Nsb07,
Wylc12, Wlyc12, Wyc11].
Self-Consistent [Tgt10]. self-scheduling
[Nsb07, Wylc12, Wlyc12, Wyc11].
Self-Submitting [NsS12]. Self-Tuning
[Slj+14]. Semantic
[EadT19, MtU+15, Dkf94a, Oa17].
Semantically [Mkw11]. semantics
[Rnmp13]. Semaphores [TtP97]. Semi
[CT94a, Bjo95, PsLt99, Tc94, Ct94b].
semi-coarsening [PsLt99]. semi-implicit
[Bj05]. Semi-Lagrangian
[CT94a, TC94, CT94b]. Semiconductor
[GjN97, An003, Ls10]. Seminar
[An94f, An93h]. Send [Gpc+17]. Sender
[Bch+03]. Sensed [GgcM99, GgcG001,
GcGs98, Vlo+08, GgcC99]. sensitive
[GkCf13]. Sensitivity [dlr04]. Separable
[Ben01, CdmG96]. September
[Abv96, Ad98, An93a, An93b, An95a,
Bos96, Bp93, Bh95, Clm+95, ChD07,
CjnW95, Cd01, CndN11, Dkd05, Dkd07,
Dlm99, Dkp00, Dlo03, Ejl92, Fk95,
Fr95, Ghh+93, Iee93d, Iee94c, Jpte94,
Kgrd10, Krr02, Kkd04, Lkd08, M015,
Mttwd06, Ol05, Psb+94, Rw09, Spf95,
Sm07, Tbd12, Vv95, Vw92, Wph94, Yh96].
Sequence
[Gmu95, Smm+16, Amh11, Tszc94].
sequences
[dFOSR+19, GavrRl17, Sdm10].
Sequencing [VpS17]. Sequential [Ek97,
Rpm+08, Ggh99, Sr95, Tnb17, Tszc94].
Serial [Swh15, Hps+96, Hws09].
serialization [CfKl00]. Serialized [Kh10].
Series [Bl94]. Series [Nag05, Br94].
Server [An93f, Afgf18, FlsL98, Ks97,
Mat01b, Sch93, Sto98, Vis95]. Server-Class
[Afgf18]. Servers
[CGC+02, Sis17, Gk97]. Service
[Rfg+00, Ls08, Spk+12]. Services
[Fc05, Aac+05, ZkrA14]. Session
[Nynt12, Zl96]. Set [Bda+18, Sw12,
Wl96a, An00a, An00b, She95, Wl96b].
Sets [Sgl12, Cgl+93]. setting [Gl95a].
Setup [NsL16]. Seventh [Bbg+95, Hs94,
Iee93b, Iee95g, Iee96h, Eng00, Y93].
several [Gbr15]. Sgi
[Che99, Cml04, Kmg99, Lb96, Ll01,
LkJ03, Lsk04, Tw12, ZsnH01].
Sgi/Cray [Che99]. Sgi/Cray-T3e
[Che99]. Shadow [SoA11]. Shallow
[dAMc11, dAMcFn12]. Shane [SD13].
Shanghai [IEEE97a]. Share
[An92, An93f, An94g]. Shared
[Bca+06, Bme10, Br10, Dm98, Dmb16,
Fkh02, Fb94, Gb96, GlrS01, Hc10,
Hdb+12, Hto1, Kb98, KshS01, Lrt07,
Lu09, Mbe03, McDs+08, Mi102, Npp+00d,
Pbk00, Pok96, Ps00b, Ros13, Sso1, Sty99,
St02b, Th99, Vs00, Vt97, Abc195a,
ABCI95b, ADMV05, BMG07, CBPP02, CjvdP08, Cha96, CCM°06, CC°0b, DBVF01, DS96b, DPZ97, EV01, GCN°10, GL96, GL97c, HS93, HDB°13, JE95, KJA°93, KC06, LKL96, MLC04, PK05, RGDM15, SHH01, SL94b, SFL°94, SSC96, TS99, TSY°00, THDS19, Vos03, WMRR17, WRMR19, YWO95, YX95, Cha05.

Shared-Memory

[DM98, HDB°12, NPP°00d, Pok96, Thr99, PS00b, ABCI95a, ABCI95b, BMG07, GL96, GL97c, KJA°93, PK05, TSY°00].

shared/distributed

[THDS19].

shear

[Att96, CML04, CB16, DiN96, JAK17, KK98, JE95, Ott93, PRS°14].

shearLab

[KL16].

Shearlets

[KLR16].

SHMEM

[BBDH14, Hus01, LSK04, Sch96a, Sch96b, SS01].

Short

[KBM97, MH01, SSLMW10, BMPZ94b, PARB14].

Short-Range

[KBM97, MH01, BMPZ94b, PARB14].

Short-Read

[SSLMW10].

Showcase

[USE00].

SHPCC

[IEE92].

SHPCC-92

[IEE92].

SIAM

[BBG°95, DKM°92, Sin93].

Side

[kLCWW07].

Sided

[BPS01, GFD03, GFD05, GT01, HDB°12, LRT07, MH01, MB00, TGT05, TRH00, ZSG12, bT01a, BM00, DPF19, DB°16, GB18, LSK04, MS99c, PGK°10, GB18].

SIGCSE

[ACM06a].

Signal

[IEE95e].

signals

[Uhl95c].

Signatures

[Gro00].

significance

[AMHC11].

silent

[FME°12].

silicon

[Ano03, Goe02, ZL18].

Silicon-Monona

[ZL18].

SIMD

[BvdB94, HS95b, KDT°12, LL16, Ser95b, VSW°13, WMK°19, vdP17].

Simple

[MSF00, M101, SC04, BC19b, ITT99, JH97, Nes01, PN01].

simulate

[Heb93].

Simulated

[BHM94, BHM96, FH97, RSBT95].

Simulating

[DLM°17, KDL°95b, KDL°95a, NFG°10].

Simulation

[CDMS15, CCBPGA15, DMMV97, DZDR95, GIS97, GM95, GJN97, Ham95a, JML01, KDHZ18, KBM97, KMK16, LLRS02, MFTB95, MPD04, MANR09, PCY14, PKYW95, PZKK02, RR00, RDMB99, SSAS12, SXMX°18, Str97, Ten95, UZC°12, WMC°18, ZZ04, ZWJK05, dIAMC11, ASA91, Ano95d, AD°05, BJ95, BCM°16, BH95, BMPZ94b, CwCW°11, CSPM°96, DSOF11, FHSO99, FO94, FLP18, FFFC99, GRTZ10, JAT97, JLS°14, KTJT03, KNH°18, KMC96, KMC97, LFS°19, LCVD94b, LCVD94a, LYZ13, MMW96, MALM95, NB96, NF94, OKM12, PARB14, PR95, RFH°95, SWYC94, SSP°94, SKM15, Str96, Syd94, Tho94, WHMO19, WGG°19, YPA94, YEG°13, YSL°12, Eng00].

Simulation-Based

[ZWJK05].

Simulations

[CGS15, CNM11, DFMD94, DJ02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG°07, SM02, YPAE09, ADT14, ABG°96, BHS18, BAC07, CFF19, GM18, Hm11, JMS14, LS10, LSVMW08, RMNM°12, SU96, THDS19, TOC18, VLSPL19, WWFT11].

Simulator

[CAM12, MRV00, PHO°15, UT02, WPC07, AMY02, LS10, PW0°12, WZWS08, ZAFAM16, ZZ95, KTJT03, NS05, Nak05a, Nak05b].

Simulators

[SBB95, AVA°16].

Singapore

[IEE96d].

Single

[BM00, HF14a, HF14b, MB00, URKG12, WZM17, AGS04, KKL07].

Single-Chip

[URKG12].

Single-sided

[BM00].

Single-Threaded

[WZM17].

single/multigrid

[AGS04].

singleton

[TVC18].

Sinks

[JPT14].

Sites

[Ano98].

Sixth

[HK95, IEE96c, MMH93, SW91].

size

[GKCF13].

Sizes

[DALD18, ZSnH01].

SKaMPI

[KS99].

SLAE

[KFL05, FKLB08].
Slave [LTR00, HP05].
SLEPc [DR18].
SLICC [KBHA94].
Slices [GSHL02].
Slim [WMC+18].
Small [HLP11, TS12b, Ano94h].
small-footprint [TS12h].
Small-World [HLP11].
Smith [KDSO12, RGB+18].
Smithsonian [Str94].
smoking [YSL+12].
SMP
[Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMDBD+07, HD02b, Hu00, HIP02, JKH08, KIO10, KKH03, KMG99, KAM02, NO02b, N002, ST02a, TOTH99, Trå02b, YWC11, bT01a].
SMPCkpt [DCH02].
SMPI [DLM+17].
SMPs [HLCZ00, NU05, SwL99].
SMPSs [MLAV10].
SMPSuperscalar [GCBL12].
SMT [PAdS+17].
SMT-based [PAdS+17].
snake [JPP95].
snake-in-the-box [JPP95].
Snir [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].
SnuCL [Lee12].
soccer [YMYI11].
socket [Gro19, LS10].
SoCs [AFG18].
Soft [AJYH18].
Softshell [SKK+12].
Software
[A94, BME02, BPG94, BDP+xx, C295b, DGH+99, ESB13, FFP03, GFB95, Gre95, HPR+95, H95, IRA95, IEE951, IEE96h, IF95, KS15a, KC94, KAMAM17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, SI96, Swa01, TDBEE11, Vs00, Wis01, Wol92, An97, BCS99, Bo97, Bra97, BR94, CMV+94, CBPP02, DP97, Hum95, Ji97, JB96, LM94, MK94, Neu94, Ol02, PHA10, PK05, PGK+10, RAS16, SHH10, Sch94, Seif99, SP95, Str94, WGG+19, ZGN94, An94i, KM93, SI96].
Software-Managed [LB16].
Solana [CGB+10].
Solaris [An01a].
solidification [JL+14].
solids [Hin11].
Solution
[DWL+10, FBSN01, HO14, MC18, RPM+08, SEP+16, Tsu12, VR50, DWL+12, IM95, JK10, LSR95, MAL95, ON12, PRS+14, SC96a].
solutions
[AGIS94, LMG17].
Solve [Hog13, LSM+18, Riz17, BAV08, Che99, GGG99].
Solver
[Ben01, BP98, CF01, HSMW94, ID94, L297, SJK+17a, SJK+17b, WJB14, YKW+18, AMS94, CP15, CFF19, DM12, HSHM19, JR10, LM99, Lou95, OGM+16, RM99, SRK+12, SCC95, THM+94, ZGG+14].
Solvers
[DFN12, DALD18, G10, MSB97, NO022, Nak03, NHT02, NLH07, QRMG96, RS97, WR01, ACF+17, ADLL03a, ADLL03b, ADDR95, BR99, CL93, DR18, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94c, QRG95, SSH08].
Solving
[ADRCT98, BHM94, BHM96, B99, BDG+92c, BSH15, DAD18, DAD19, GFG12, Hu96, LLY93, MS02a, NF94, SAS01, SP11, SD99, ZTD19, BB95a, DSN94, HAA95, LBB+16, LYSS+16, MM11, SSB+16, SMIS06, YSVM+16, YSM+17].
SOM
[GkLyC97].
Some
[BDT08, Mul01, Pet97, AL92, NN95, RSBT95].
Sopron [VV95].
Sorrento [DKD05, DKD07].
sort
[KVGH11, PSHL11].
Sorting
[ELT16, BHJ96, PSHL11].
Sound [SG12].
Source
[BGG+15, MM07, AC17, AVA+16, NCB+17, Noah08, P9+10, WG+19].
Source-Code-Correlated [MM07].
source-to-source [AC17].
Sources
[ZDR01, KM10].
South [ACM95a].
southeast [ACM95a].
Sowing [GL97a].
SP
[BGBP01, CE00, HMKV94, LC97b, WT11, WT12].
SP-1 [HMKV94].
SP-2 [LC97b].
SP1 [BR95c, FPH94b, FPH+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, MP95].
SP1/SP2 [FPH+95, Fra95, FWR+95].
Space
[ACM95b].
Space
[CML04, CB16, HO14, MSF00, OFA+15, SAS01, SS01, TA14, SRK+12].
Space-Sharing [CML04].
Spaces [RtB19].
SPAI
[BBS99].
Spain [DL99].
SPAN
[LHMM96, Li96].
Spanish [VP00].
spanning [NCKB12].
Spark
[GRW+19, KWEF18].
Sparse
[AN95, BBH12, DS13, Hu96, NHT02, TD98, ZB97, AK99, ADLL03a, ADLL03b, ER12,
Structural [PSS01]. Structure
[CBL10, LAFA15, SYF96, WHDB05, EPM09, SEC15, SY95, ZAT+07].

Structured [FB96, Mar06, MRB17, NLRH07, Ran05, Bis04, CLSP07, FR95, GBR15, JAT97, Sni93b]. Structures
[GMP98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. studies [DHP97]. Study
[AIM97, AFGR18, BF01, BHTS+95, DARG13, DJJ+19, EGC02, FPY08, GL97a, HHC+18, KCR+17, LSB15, MM02, NSLV16, NA01, PK05, RRBL01, SCL01, TG94, AGR+95b, AML+99, BJ13, BIDA94, BJS99, BY12, Bri00, CBM+08, DBX96, ED94, FO94, JR13, JLG05, KBG16, LPD+11, LLH+14, MS96b, PK08, PGK+10, PSHL11, RSBT95, RJC95, TPD15, WAl01b, WLK+18, ZSK15].

Stuttgart [KGRD10, WPH94]. style
[JPOJ12].

Sub [MJG+12].

Sub-communicators [MJG+12].

Subcircuit [HLO+16]. subdomain
[CAGS07]. subdomains [SHHC18].

Subgroup [XLW+09]. Submitting [NSS12].

Subrange [Str97]. Subroutine [Saa94].

Subroutines [dCH93]. subsurface [ED94].

Subsystem [BMG07, MA096].

Subsystems [STMK97]. Subtle [SAL+17].

Success [Gro01b, LF+93a]. Successes [Gro01a]. Successful [Gro12]. suffix
[DK13]. Suitability [Mat01b]. suitable
[MAS06].

Suite [ACMR14, AKE00].

BVW+12, MBB+12, Rix17, Ano03, BO01, MVWL+10, TG09, YSWY14, SNMP10].

Suites [MC90, SG+03]. summation
[IHM05]. Summit [BC19b]. Sums
[ST17, MYB16].

SUN
[BM00, SJ02, WSN99].

Sunderam
[Ano95b, NM95].

Super [GUA16, YX95].

Super-Object [YX95].

Supercomputer
[Ano93a, CLP+99, Str94, AAC+05, BGH+05, EFR+05, GL96, GL97c, KMH+14, NSM12, Ste94, GS91b, MAB05]. Supercomputers
[BP93, BDG+92c, EKTB99, KN17, WT11, WT13]. Supercomputing
[ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93e, IEE94b, LRU95, Sch94, ACM94, ACM96c, Ano93e, BG91]. superlattice [Pri14]. superscalar [ACJ12].

Supersonic
[CCBPAGA15]. Support
[Ano98, BBG+10, BFW01, CFF+94, DMMV97, FGRD01, GVO1, GOM+01, HRSA97, LMRG14, MK04, OP98, PSM+14, RR02, SDN99, SBT04, TW01, Wis98, Wis01, YSP+05, ZL18, BBH...13a, BL99, CC10, CZ95b, DLR94, Hos12, Maf94, RS19, TSY99, TSY00, TY14, WKO8a, WKO8b, WKO8c, YAJG+15]. Supported [KLR16, CDD+96].

Supporting
[FD00, FMSG17, FSN91b, GAM01, GUA16, MMS07, OOS+08, WNL03, WNL06, WSC99, YWCF15, FLD96, GAM+00].

Supports
[AELGE16, CL03, DGM93]. suppression [WWZ+96]. Surface
[BS15b, PKYW95, R6149, BHW+12, DCD+14, RAGJ95, TSP95]. surfaces
[Dab19]. Survey [Sap97]. Survive
[ABB+10]. sustainable [CGB+15]. SVD
[CMH99]. Swan [HD11]. Swapping
[SC04, BBW19]. Sweden
[Eng00, HAM95b, FF95]. Swendsen
[K014, Kom15]. Switch [SCL01, TBD96]. Switched
[LH3, KLY03, KLY05].

SWITCHES [DT17]. Switzerland
[GT94, Ano94i, IEE97b].

SX
[HRZ97, TRH00]. SX-4 [HRZ97]. SX-5
[TRH00].

Sydney
[Bil95].

Sylvester
[GK10]. Sylvesterm-Type
[GK10].

Symbolic
[CC12, Coo95b, Ste00, YY+W+12, ACM97a, BHKR95, Coo95a, Lev95, LGQ10, LLGL12, SMAC08]. Symmetric
[BDO03, MDM17, YKW+18, BAV08, DCH02, GG99]. Symposium
[ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94e, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IEE05, LHHM96, L96, NM95, OS94, SL94a, Sie94, Sie92a,
Synchronization [ADB+97, BBS+99, CCG+97, DHH96, EK97, FGD01a, FSG08, Gly94, HWW97, KCR+17, LFW95, MBF95, MSL12, NIO+02, NGK07, OCK97, OpM08, PlT03, RFRH96, SKB+12, TBP18, YKL11].
Synchronization [ADB+97, BBS+99, CCG+97, DHH96, EK97, FGD01a, FSG08, Gly94, HWW97, KCR+17, LFW95, MBF95, MSL12, NIO+02, NGK07, OCK97, OpM08, PlT03, RFRH96, SKB+12, TBP18, YKL11].
Synchronization [ADB+97, BBS+99, CCG+97, DHH96, EK97, FGD01a, FSG08, Gly94, HWW97, KCR+17, LFW95, MBF95, MSL12, NIO+02, NGK07, OCK97, OpM08, PlT03, RFRH96, SKB+12, TBP18, YKL11].
Synchronization [ADB+97, BBS+99, CCG+97, DHH96, EK97, FGD01a, FSG08, Gly94, HWW97, KCR+17, LFW95, MBF95, MSL12, NIO+02, NGK07, OCK97, OpM08, PlT03, RFRH96, SKB+12, TBP18, YKL11].
Synchronization [ADB+97, BBS+99, CCG+97, DHH96, EK97, FGD01a, FSG08, Gly94, HWW97, KCR+17, LFW95, MBF95, MSL12, NIO+02, NGK07, OCK97, OpM08, PlT03, RFRH96, SKB+12, TBP18, YKL11].
[AHD12, AAB+17, GFJT19, SPL+12, BLV18, STP+19, SKB+14].

Task-Overlapped [GPC+17].

Task-Parallel

[NSZS13, APBcF16, ABF+17]. **Taskers** [FLD96].

Tasking [DFA+09, KaM10, SHM+10, TCM18, TSaCaM12, VLSPL19, WC15, vdP17].

tasklet [PQR18]. **Tasks**

[ACD+09, DDP+19, DT17, DFA+09, JW96, OP98, PWPD19, RR02, RDLQ12, YSS+17, BS01, DDYM09, DR95, FKK+96b, FKK96a, IvdLH+00, PKE+10, PWPD19]. **TAU** [MMS07, RMS+18].

taxonomy [SPH96].

TBB [Stp18]. **TBSCM** [BP98]. **TC2** [Boi97]. **TC2/WG2.5** [Boi97].

TCGMSG [GB94, Mat94, Mat95]. **TCP** [KPW05].

TD [And98].

Teaching [MK00, JY95, MK97, PKB06]. **Technical** [Ano93c, Ano98, MC94, USE95, ACM06a, Sni18].

Technique [BCD+15, HC06, HAA+11, MK17, HC08, Nes10, RBB17, MAIVAH14]. **Techniques** [Mal95].

Technology [Ano97, Bra97, CGB+10, CSV12, Dan12, GN95, HS94, PWP+16, STB04, TCG+02, Ano93a, Ano93c, D+95, DM12, IEE94c, NS16, ZAT+07]. **Tekniska** [Eng00].

Telegraphic [ES11]. **TELMAT** [BR94].

temperature [Hin11]. **Template** [GS97, PKB06]. **Templates** [BN12, KH15]. **Tennessee** [PR94b].

terabyte [KTJT03]. **Terabytes** [IEE02].

**tera
ops** [KTJT03].

Terms [KD12].

Tessellation [SS01].

Test [SNMP10, TG09, AAAA16, CPR+95, GL92, TGKL19].

Testbed [Mat06b, EGH99, PY95]. **Testing**

[CK12, DFK94b, DLLZ19, OS+94, VdS00, CMV+94, DFK93]. **Testsuite** [WCC12].

Texas [ACM06a, IEE94b, IEE95, IEE97c, Y+93]. **Text**

[LTR00, MM01, RLL01, RT99]. **Textbook** [Ano98]. **textural** [WKS96].

texture [HE15]. **TFETI** [SHHC18]. **TH** [CFDL01]. **TH-MPI** [CFDL01]. **Thakur** [Ana00a].

Their [BRu12, GOM+01, RG18, GSMK17].

theorem [Sut96]. **Theory** [GK10, BW12, CBHH94].

Thera [CD01].

Think [HCA16]. **Third** [BPG94, Bos96, DSM94, GA96, IEE94g, Sif96, Was96, BDL96, Mal95, IEE97c].

Thirty [Y+93]. **Thirty-seventh** [Y+93].

Thousands [PKZ02, BMS+17]. **Thread** [AELGE16, BB18, ETWa12, GOM+01, GT07, Nito00, Pla02, STY99, SPB+17, AKB+19, HK09, IDS16, JKN+13, SPH96, SLN+12, YZ14].

thread-based [AKB+19]. **Thread-Level** [AELGE16, HK09, YZ14].

Thread-Safe [Pla02]. **Thread-safety** [GT07].

Threaded [BBG+10, MG15, WZM17, Ada98, EBKG01, SCB15, SVC+11, TSY99, TSY00].

threaded-MPI [SVC+11]. **Threading**

[BHV12, MLGW18, STB04, TCG+02, WMK+19, KPO00, KRG13, QB12, ZAT+07].

Threads [CP98, LD01, Lee06, BS01, DJJ+19, MVP96, ALW+15].

Three [Car07, GA96, Nak05b, Ram07, SAS01, GSK+17, LSSZ15, Mar05, PR94c].

Three-Dimensional [GA96, LSSZ15, PR94c]. **Three-level** [Nak05b].

Throughput [SSLW10, Tsu07, CJPC19, ESB13, PP16].

throughput-oriented [CJPC19].

Tightly [SS01]. **Tightly-Coupled** [SS01].

Tiled [KS15b].

Time [BCL00, DLLZ19, FHK01, FSD17, GSH02, GOM+01, HO14, KFL05, MFTP95, OP98, SPB+17, SCL01, SSK+96, TSP95, UP01, YG+14, AL96, ASB18, CDMS15, DLR94, DPFT19, DM12, Fer04, FLB+05, FKLBO8, GB94, HE13, JE95, KC94, KPL+12, LHLK10, LBB+16, LYSS+16, LM13, MMW96, NZZ94, ON12, OdSSP12, PTMF18, QHCC17, Ram07,
GN95, GHH+93, MC94, dGJM94, ZPLS96, Ara95, CJNW95, GHH+93, dGJM94.

Transputers [ACDR94, AGR+95b, dCH93].

Transtech [Ste94]. trap [LBB+16, SSB+16, YSVM+16], TRAPPER [KFSS94, SSKF95]. travel [SSS99].

transport [LBB+16, SSB+16, YSVM+16]. TRAPPER [KFSS94, SSKF95]. travel [SSS99].

travel-times [SSS99]. traveling [GM94].

traversing [BDG+92b]. TreadMarks [LDCZ97]. Tree [DAD19, GPC+17, ADB94, AB13, BCAD06, CG93, SGS95, Zah12].

Trees [CDPM03, GFJT19]. Trends [Duv92, IEE93d, MBS15, JPTE94, SGDM94, Sun96].

Triangle [SL94a, SOA11]. Triangular [Hog13, MRB17]. triangulated [Dab19].

tricks [Fer04, LK14]. Tridiagonal [DALD18, DAD19, DR18, VLMPS+18].

Triolet [RJDH14]. Trivandrum [IEE96a].

Troy [SS96]. Truncated [ZB97].

truncating [Ram07]. TSMC [Ano03].

TSUBAME [NSM12]. Tsukuba [SHM+10].

tsunami [KNH+18]. TV [CJ+10].

Twenty [ERS95, ERS96, HS94, IEE95c, MMH93]. Twenty-Eighth [ERS95]. Twenty-fifth [IEE95c]. Twenty-Ninth [ERS96].

Twenty-Seventh [HS94]. Twenty-Sixth [MMH93]. Two [CM98, STY99, SJK+17a, SJK+17b, YM97, AGR+95b, AL93, ADLL03a, ADLL03b, CB11, ED94, HAJK01, MSP93, dAMCFN12].

Two-Dimensional [SJK+17a, SJK+17b, AL93]. two-layer [dAMCFN12]. Two-level [STY99].

two-phase [ED94]. TX [ACM00, Cha05, DKM+92, Ano95a, Ano95d].

Types [Wel94, NYNT12]. typy [OA17].

UML [RGD13]. UML/MARTE [RGD13].

Unify [VSR94, VSR95].

unifying [CCM12]. Unintended [SAL+17].

unit [VDL+15, MSML10]. United [Boi97].

Units [KS15b, LSMW08, ABPD15, BHS18, LHLK10, WWFT11, HJB14].

Universal [LW97, DDL95]. University [CGB+10, IEE94d, IEE95j, R+92]. Unix [OLG01, RBS94]. Unleashing [TCM18].

unscharfer [Wil94].

UNSTRUCTURED [AB93a, NO02b, SM02, SM03, AB93b, NO02a, TPD15]. unveils [Ano03]. UPC [EGC02, MTK16, Mar05, SJK+17a, SJK+17b]. Update [KT10, GSMK17].

Updates [ESB13, KS15a, ZDR01, HSE+17]. UPD [NPP+00d]. ups [Ano03].

Usage [FD02a, FCLG07, FD02b, FVLS15]. Use [FJBB+00, Gro02a, HK93, HK95, MB12, PSZEO0, Shi94, AB95, GEW98].

USENIX [USE94, USE95]. User
Value-based [vHKS94].

Vapour [IEE95a, IEE95i]. Variation [ACM96a, AS92, ARL+94, BJ93, BP99, BS93, BG94b, CHD07, D+91, EGR15, Fis01, GBD+94, Gei01, Gre94, ITT99, JPP95, KNT02, KKD03, KKD04, KKD05, LKD08, LK10, MTWD06, NM95, Nov95, NMC95, Pat93, Per96, QR95, RWD09, SSS99, Sei99, SCS12, SXM+18, TY14, Tsz07, We94, YC98, ARS89, AD98, AL92, Ano95b, BR91, BDG+91a, BPC94, BBC99, Bir94, BDL96, BCM+16, BFM96, BDW97, BB95b, CARB10, Cava93, Cha96, CD01, CXB+12, DDS+94, DM93, DKD05, DLM96, DPK90, DLO03, DPZ97, ESB13, FM90, Ho95, KMC97, KSS+18, Kra02, LG93, MN91, MHR+96, NB96, PRS16, Sch94, SK92, SCC96, SL00, WK08a, WK08b, WK08c, AGIS94, Sei99].

virtual-time [SK92]. Virtualization [FC05, MGL+17, Ott94, YSS+17, ZLP17, CPM+18, RSC+15, SIRP17]. Virtualized [EGR15, YWCF15, RNP13]. viruses [Str94]. viscoelastic [HK94, MAIVAH14]. viscosity [ZZG+14]. viscous

Viscous [HK94, MAIVAH14]. viscosity [ZZG+14]. viscous [RM99]. VSIP [HPS95].

Vision [KCR+17, JRM+94]. VISPAT [HPS95].

Visualization [BDGS93, GKP96, GKP97, HJ98, KA13, MVY95, NAW+96, PK98, PCY14, Wis96a, ZLGS99, Bor99, Eng00, FHC+95, HPS95, KAF96, TSS99, WST95, Wis96b].

Volumes [GAP97, SOA11]. Volumetric
[KA13, CLBS17, KGB+09]. Voodoo
[PMZM16]. VOOM [BR91]. VORD
[KSJ14]. VR [DBA97], VRML
[ACM96a, NM95, KSJ95, KSJ96].
VRML-Based [KSJ95, KSJ96]. vs [FH98,
AFGR18, BCh+08, Luo99, Nak05b, SC19].
VTC [NU05]. VTDIRECT95
[HWS09, SWH15]. VxWorks
[YGH+14]. WA [ACM05, LCK11]. Wailea
[ERS96, HS94, MMH93]. Waknaghat
[CGB+10]. Walker
[Ano96a, Ano99a, Ano99b, Nag05]. wall
[NB96]. wall-clock [NB96]. walls [JAT97].
WAMM [BCLN97]. Wang [KO14, Kom15].
Warehousing [DERC01]. Warp
[SCL01, HKOO11, MMW96, VSW+13].
WARPED [MMW96]. WARPmemory
[SF095]. Washington [B+05, BS94,
IEE93c, IEE94h, IEE95k, Ost94], watching
[JLC90]. water
[HHTD99, R+92, dIAMC11, dIAMCFN12].
Waterman [KDSO12, RGB+18]. watershed
[NAJ99]. Wave
[BBC+00, EMO+93, ESM+94, NSL16,
SMOE93, Ge94, KM10, KEGM10, Mal01,
NB96, RMNM+12]. Wave-Particle
[NSL16]. Waveform [LSR95]. Wavelet
[UH94, UH95b, Zem94, vdLJ91, UH95a,
UH95c]. Way [Vog13, FG96]. ways
[CZ96]. weak [SD16]. Weather
[AHP01, HE02, Bjo95, KOS+95a, Mal01].
web
[CHHK15, AASB08, NE01, PES99, Wai01b].
Web-Based [NE01, PES99]. WebCL
[CHHK15]. WebCom [OPM06].
WebCom-G [OPM06]. Wednesday
[B+05]. Weicheng
[Ano95b, NMC95]. weight
[KA95]. welcomes [Str94]. West
[E01, EdS08]. Westin [IEE94e]. We've
[GKPS97]. WG10.3 [DR94]. WG2.5
[Boi97]. Wheeler [NTR16]. where [KC94].
which [SH96]. Whippletree [SKB+14].
Wide
[FGG+98, dOSMM+16, FG96, KHB+99].
Wide-area [FGG+98, FG96]. WIEN
[Gao03]. Will [CB00]. William
[Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].
Williamsburg [IEE92]. Win32 [MS98].
windows
[QB12, RGG+18, Ano01a, CLP+99, FD97,
GGGC99, PS01a, SFG98, SSSS97, TAH+01].
Windows95 [SSSS96]. Winona [Ano94h].
wireless [Bon96]. wissenschaftliche
[MS04]. wissenschaftliches [Ano94c].
without [BW12, Pla02, RSC+19, YLZ13].
WLAN [MSOR01]. WMPI [BPS01,
MS98, MSS98, MS99c, PS01a, SMS00].
WOMPAT [Ch05, EV01, Vos03].
Woollongong [GN95]. Work
[HRSA97, Pet00a, Pet00b, OdSSP12, TCBV10].
work-stealing [TCBV10]. Worker
[ELM00, YG96]. Worker-Based [YG96].
Workerproblem [FH98]. Workflow
[LYZ13]. Workforce [Liv00]. workgroup
[SDB+16]. Working
[Ano98, B0i97, MCS00, Pet01, DR94].
Workload
[AGS97, DBVF01, PS19]. Workloads
[AFGR18, CC17, LWZ18, APBcF16,
AVA+16, AMC+19, CJPC19, SKB+14].
WorkPlace [Ano97, Bra97]. workqueueing
[VBLvdG08]. Workshop [ACM98, AGR95a,
BPC94, Bha93, BC00, Cha05, CZG+08,
CGKM11, CMMR12, DW94, DT94, EV01,
EdS08, Fer92, FK95, FF95, HK93, HK95,
IEE93d, IEE93f, IEE94d, IEE95h, IEE96g,
IFI95, KG93, Kuh98, Kum94, MddC09,
PBG+95, PBPT95, SC92, Shim+10, Sch93,
Vos03, Was96, AH95, BS94, Cal94, D+95,
DMW96, FR95, GL95b, IEE93f].
Workshops [MCD+08]. Workstation
[GHL97, HSMW94, KS96, LC97a, MFTB95,
Pus95, YK+96, A95, ALR94, BLP93,
BSvdG91, BRS92, BALU95, BWT96, CCU95,
DG95, ED94, GFB95, Heb93, JRM+94,
LL95, NMW93, NN95, PM95, PL96, RBS94,
REFERENCES

workstation-cluster [Heb93].
Workstation-Clusters [MS04].

Workstations
[AR01, BL94, BL95, BM97, BDH95, BDH97, BMS94b, DDPR97, EK97, GS91b, HIP02, ID94, Liu95, LHZ98, MSCW95, MM01, OWSA95, PFG97, TQDL01, VLO08, AL93, BJ95, BID95, Bru95, BMPZ94b, BMS94a, BMPZ94a, CCF94, Coe94, DZ98a, DOSW96, GM94, GMU95, HK94, Hus99, KMC96, KMC97, KA95, MK94, MM03, RRG99, SFO95, SR95, TDB00, dCH93].

World [CMMR12, CJNW95, FD00, GHH93, HLP11, MC94, NSLV16, PSB94, Wit16, dGJM94, GDR93, JR10].
Worlds [Rab98].
wormhole [Pan95a, Pan95b, RJMC93, ZGN94].
wormhole-routed [Pan95b, RJMC93, ZGN94].
worms [Pan95a].
WoTUG [MC94].
WoTUG-17 [MC94].
WPVM [ASCS95, BPMN97].
Wrapper [AS14].
Wrapping [LRW01].
Write [BIC10].
Write-Back [BIC10].
Writing [FWS17].
Written [KaM10, KNH18].
WWW [KSJ95, KSJ96].

X [Bad16, FWS17].
X-ray [FWS17].
X10 [CGH14].
X11 [GKL95].
x86 [MGL17].
Xab [Beg92, Beg93b, Beg93c, Beg93a].
Xen [PRS16].
Xeon [CBIGL19, DSGS17, MMMDA19, OTK15, BB18, MTK16].
XPVM [KG96].
XXI [EGH14].

YLC [Gal97].
YMP [BL94].
Yorkshire [CJNW95].

Zero [SWHP05, Hin11].
Zero-Copy [SWHP05].
ZEUS [FF95].
Zipcode [WL94, SSD94].
Zonal [Fin94, Fin95].
Zone [AAC05]
[JCH08, AGMJ06].
Zum [Wer95].

[GBR97, Sei99].

References

AlQuraishi:2016:CBP
ISSN 1744-5760 (print), 1744-5779 (electronic).

Agullo:2017:BGB

Almasi:2005:DIM
G. Almasi, C. Archer, J. G. Castaños, J. A. Gunnels,

Akzhalova:2008:WPL

Arth:1993:PIU

Arthur:1993:CUA

Aloisio:1995:UPW

Augusto:2013:APG

Ayguade:2010:EOS

Adhianto:2000:TOA

Appiani:1995:PSI

Appiani:1995:PSM

Agosta:2015:OPP

Aliaga:2017:CTP

Arbenz:1996:MDS

Abrahart:1996:GIC

Adhianto:2007:PMC

Alvanos:2017:PMM

Ayguade:2009:DOT

Arnold:1994:PCT

Acacio:2002:MDM

Alexandro:1997:PMC

Agullo:2011:QOM

Andersch:2012:PPE

ACM:1990:PAC

REFERENCES

[ACM97a] ACM, editor. PASCO '97. Proceedings of the second international symposium on parallel symbolic computa-
REFERENCES

REFERENCES

ACM:2001:SHP

ACM:2003:SII

ACM:2004:SHP

ACM:2005:PAI

ACM:2006:PST

ACM:2006:PCC

ACM:2011:SSP

Antonelli:2014:ATS

Alonso:2011:NEM

Ancona:1995:PAD

Alexandrov:1998:RAP

Adamo:1997:A00

Adamo:1998:MTO

REFERENCES

Antonuccio-Delogu:1994:PTN

Addison:2001:EOP

Arioli:1995:PSB

Amestoy:2003:IIMa

Amestoy:2003:IIMb

Aversa:2005:HDS

Rocco Aversa, Beniamino Di Martino, Nicola Mazzaocca, and Salvatore Venticinque. A hierarchical distributed-shared memory

[Aldea:2016:OES]

[Alexandrov:1998:CGP]

[Amitkar:2014:EPC]

[Ashby:1995:PPG]

S. F. Ashby, R. D. Falgout, S. G. Smith, and A. F. B.

REFERENCES

[AGR+95b]

[AGS97]

Ammar Ahmad Awan, Khaleed Hamidouche, Jahanzeb Maqbool Hashmi, and Dhabaleswar K. Panda. S-Caffe: Co-designing MPI runtimes and Caffe for scalable deep learning on modern GPU clusters. ACM SIGPLAN Notices, 52(8):193–205, Au-
Ahmad:1997:EVP

Allsopp:2001:EUM

Aversa:1997:MDP

Aguilar:1997:PMS

Aubrey-Jones:2016:SMI

AlKadi:2018:GPC

REFERENCES

5:??, March 2018. CODEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

Brian Armstrong, Seon Wook Kim, and Rudolf Eigenmann. Quantifying differences between OpenMP and MPI using a large-scale application suite. Lecture Notes in Computer Science, 1940:482–??, 2000.

Ahmad Abdelfattah, David Keyes, and Hatem Ltaief. KBLAS: an optimized library for dense matrix-vector multiplication on GPU accelerators. ACM Transactions on Mathematics.
REFERENCES

Alfano:1992:DNA

M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92], page ?? ISBN ???. LCCN ???. Proceedings available via anonymous ftp from ftp.scri.fsu.edu in directory pub/parallel-workshop.92.

Altevogt:1993:PTD

Alt:1996:PIA

Amer:2018:LCM

Alund:1994:CFD

Amer:2015:MRC

REFERENCES

[Ayguade:2007:SIO]

[Almasi:1993:PDS]

[Awan:2019:OLM]

[Agrawal:2011:PPS]

[Ayguade:1999:EML]

[Amato:1994:PEP]
anMey:2007:NPO

Al-Mouhamed:2015:EO

Andersson:1998:PFT

Anonymous:1989:PFC

Anonymous:1992:PSE

Anonymous:1993:ATA

Aversa:1994:PSH

REFERENCES

REFERENCES

8186-6606-4. ISSN 1063-9535. LCCN QA76.5.S894 1994. IEEE catalog number 94CH34819.

Anonymous:1994:PPC

Anonymous:1994:PSE

Anonymous:1994:SCC

Anonymous:1994:SQC

Anonymous:1995:CCS
Anonymous:1995:BRPb

Anonymous:1995:BRPb

Anonymous:1995:RSS

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In *3rd CLIPS conference — September 1994, Houston, TX* [Ano95a], pages 203–211. ISBN ???? LCCN ????.

Anonymous:1996:BRMh

Anonymous:1996:IPP

Anonymous. An introduction to PVM programming. World-Wide Web,

[Ano98] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum*, 17(3):1–2, December 1998. CODEN ????. ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMb

Anonymous:1999:BRMg

Anonymous:2000:BRUd

Anonymous:2000:BRUe

Anonymous: 2001: AAL

Anonymous: 2001: EDP

Anonymous: 2003: MNIC

Anonymous: 2012: CTC

ANS: 1995: MCR

Anglano: 1996: PMB

REFERENCES

Alonso:1997:PBB

Al-Shorman:2019:UPP

Aydin:2018:RTP

Alves:1995:WPC

Anderson:2017:BGB

Agrawal:1994:PIC
REFERENCES

Amit Amritkar, Danesh Tafti, Rui Liu, Rick Kufrin, and Barbara Chapman.

Francisco J. Andújar, Juan A. Villar, Francisco J. Alfaro, José L. Sánchez, and Jesús Escudero-Sahuquillo. An open-source family of tools to reproduce MPI-based workloads in interconnection network simulators. *The
Asenjo:1995:SLF

Arteaga:2017:GFG

Bacter:2006:MFP

Bader:2016:EMT

Becciani:2007:FMH

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal/Conference Details</th>
</tr>
</thead>
</table>

REFERENCES

Barak:1996:PPM

Bouteiller:2006:HPS

Bustamam:2012:FPM

Bland:2013:EUL

Bland:2013:PFR

Busa:2015:CCO

Brown:2019:LMR

Boryczko:1994:LGA

Barnard:1999:MIS

Brorsson:2000:SIE

Mats Brorsson and Barbara Chapman. Special issue:
<table>
<thead>
<tr>
<th>Reference</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BC19b] Reuben D. Budiardja and</td>
<td></td>
</tr>
<tr>
<td>Barton:2006:SMP</td>
<td></td>
</tr>
</tbody>
</table>

tronic). URL http://hpc.sagepub.com/content/24/1/5.full.pdf+html.

Bartaglia:1997:IPW

Bhattacharjee:2011:PLC

Bolis:2016:APA

Baiardi:2000:AMM

Blackford:1997:PEN

REFERENCES

[Beguelin:1993:VDH] Adam Beguelin, Jack Dongarra, Al Geist, and V. Sunder-
REFERENCES

REFERENCES

[SINODQ] ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

-bronevetsky:2007:CFS-

-baboulin:2008:SID-

-briguglio:2003:PPM-

-bubak:1997:RAP-

-batty:2016:OSA-

-beyls:1999:JJP-

[BDY99] K. Beyls, E. D’Hollander,

Beguelin:1992:XTM

Beguelin:1993:XTMb

Beguelin:1993:XAT

Beguelin:1993:XTMa

Bull:2010:PEM

Benkner:1995:VFA

Bencheva:2001:MPI

REFERENCES

[BFG+10] François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André Wacrenier,

Baraglia:1999:PAN

Bubak:1996:MPP

Bubak:1996:PBP

Bouge:1996:EPP

REFERENCES

[120]

Banikazemi:2001:MLE
Mohammad Banikazemi, Rama K. Govindaraju, Robert Blackmore, and Dha-
baleswar K. Panda. MPI-
LAPI: An efficient im-
plementation of MPI for
IBM RS/6000 SP systems.
IEEE Transactions on Par-
allel and Distributed Sys-
tems, 12(10):1081–1093, Oc-
tober 2001. CODEN ITD-
SEO. ISSN 1045-9219
(print), 1558-2183 (elec-
tronic). URL http:
//dlib.
computer.org/td/books/
td2001/pdf/l1081.pdf;
http://www.computer.org/
 tpds/td2001/l1081abs.htm.

Broquedis:2012:LEO
François Broquedis, Thierry
Gautier, and Vincent Dan-
jean. libOMP, an efficient
OpenMP runtime system for
both fork-join and data flow
paradigms. Lecture Notes
in Computer Science, 7312:
102–115, 2012. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/10.
1007/978-3-642-30961-8_8/.

Bronevetsky:2009:CAC
Greg Bronevetsky, John
Gyllenhaal, and Bronis R.
de Supinski. CLOMP:
Accurately characterizing
OpenMP application over-
heads. International Jour-
nal of Parallel Programming,
CODEN IJPPED. ISSN
0885-7458 (print), 1573-7640
(electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
37&issue=3&spage=250.

Blanco:2002:PMA
V. Blanco, L. García, J. A.
González, C. Rodríguez, and
G. Rodríguez. A perform-
ce model for the analysis
of OpenMP programs. Par-
allel and Distributed Com-
puting Practices, 5(2):139–
151, June 2002. CODEN
??. ISSN 1097-2803.

Balasubramanian:2015:EGL
Raghuraman Balasubrama-
nian, Vinay Gangadhar, Zil-
jiang Guo, Chen-Han Ho,
Cherin Joseph, Jaikrishnan
Menon, Mario Paulo Dru-
mund, Robin Paul, Sharath
Prasad, Pradip Valathol,
and Karthikeyan Sankar-
alingam. Enabling GPGPU
low-level hardware explo-
rations with MIAOW: an
open-source RTL implemen-
tation of a GPGPU. ACM
Transactions on Architec-
ture and Code Optimiza-
tion, 12(2):21:1–21:??, July
2015. CODEN ??. ISSN
1544-3566 (print), 1544-3973
(electronic).
REFERENCES

REFERENCES

Bhargava:1993:PIW

Bhanot:1998:DTM

Bader:1996:PPA

Bouteiller:2006:MVP

Bubek:1995:DSC

Bischof:1995:CSM

Bachem:1994:PCT

REFERENCES

[124]

Berk:2012:PET

Busa:2012:ACO

Bae:2017:SEF

Bickham:1995:POM

Bernaschi:2005:ERA

Blas:2010:IEF

[ACM95a]
REFERENCES

IHPCFL. ISSN 1094-3420 (print), 1741-2846 (electronic). URL http://hpc.sagepub.com/content/24/1/78.full.pdf+html.

[BJ95] L. Boianov and I. Jelly. Distributed logic circuit simulation on a network of work-

Barkati:2013:SPA

Bjorge:1995:ISS

Blaheta:1997:PIP

Blaheta:1999:LFM

Bhandarkar:1996:MPM

Bull:2000:JOL

Balevic:2011:KAD

REFERENCES

Bhandarkar:2001:ALB

Bekas:2002:PCP

Boryczko:1995:NIC

Bull:2000:PPJ

Beaugnon:2014:VV

[BvKH+14] Ulysse Beaugnon, Alexey Kravets, Sven van Haastregt, Riyadh Baghdadi, David Tweed, Javed Absar, and Anton Lokhmatov. VOBRA: a vehi-
REFERENCES

Belviranli:2018:JDA

Bubak:1998:PCL

Bhandarkar:1997:CRP

Booth:2000:SSM

Basumallik:2002:TOE

Buntinas:2007:IES

REFERENCES

REFERENCES

REFERENCES

References

Berthou:1998:PHM

Barbosa:1999:ADM

Beletsky:1994:OPV

Becks:1994:NCT

Barbosa:1997:EUW

Baptista:2001:IOS

REFERENCES

Ron Brightwell, Rolf Riesen, and Keith D. Underwood. Analyzing the impact of overlap, offload, and independent progress for Message Passing Interface applications. *The International Journal of High Per-
REFERENCES

Blikberg:2005:LBO

Brown:2007:HSP

Bassomo:1999:PGE

Bolton:2000:MPL

Bukata:2015:SRC

Bakhtiarie:1995:APL

REFERENCES

to linear cryptanalysis. In Gray and Naghdy [GN95], pages 278–279. ISBN ????
LCCN ????.

REFERENCES

Francis George C. Cabarle, Henry Adorna, and Miguel A. Martínez. A spiking neural P system simulator based
REFERENCES

REFERENCES

Creec:2016:TSS

Cooper:1994:CHF

Coronado-Barrientos:2019:ANF

Casas:2010:APD

Chapman:2002:APU

REFERENCES

Gene Cooperman, Henri

REFERENCES

[Cao:2013:CHP] Chongxiao Cao, Jack Dongarra, Peng Du, Mark Gates, Piotr Luszczek, and Stanimire Tomov. cIMAGMA: High performance dense linear algebra with OpenCL. LAPACK Working Note 275, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA,

Conforti:1996:PIA

Cownie:1994:PPP

Chang:1995:EPCa

Cowan:1995:PPP

Casanova:1995:PPM

Chandra:2001:PPO

REFERENCES

Colombet:1993:SMI

Casanova:2015:SMA

Cotronis:2011:RAM

Chaussumier:1999:ACM

Coll:2003:SHB

Ceron:1998:PID

C. Ceron, J. Dopazo, E. L. Zapata, J. M. Carazo, and O. Trelles. Parallel implementation of DNAml pro-

Cappello:2000:MVM

Clemencon:1995:AEP

Chau:2007:MIP

Cerin:1999:DMP

Chen:2001:FFT

Chen:2001:TMK

REFERENCES

Choudhary:1994:LCR

Carpenter:2000:OSM

Corbett:1996:OMP

Clemencon:1995:IRD

Cotronis:1996:ECP

Clauser:2019:FFO

REFERENCES

REFERENCES

[Carpenter:2000:MML]

[Catanzaro:2011:CCE]

[Calore:2016:PPA]

[Chapman:2011:OPE]

[Chatterjee:1993:GLA]

[Caubet:2001:DTM]
Jordi Caubet, Judit Gimenez.
REFERENCES

Paolo Ciancarini and Chris Hankin, editors. *Coordination languages and models: First International Confer-

REFERENCES

Cappello:2009:FSI

Chergui:1999:UPP

Cheng:2010:BRBb

Cho:2015:OAO

Chapman:2001:PDE

REFERENCES

Cho:2010:OPP

Cook:1995:TAS

Cadenelli:2019:CUO

Chapman:2008:UOP

Czarnul:1999:DAP

Chang:2016:DLD

REFERENCES

Casas:1994:ALM

Culler:1993:LTR

Castro-Leon:1993:MCP

Clark:1998:FOP

Chikin:2019:MAA

Cornelis:2017:HAV

Chabbi:2015:BEP

Chen:2003:GMD

Corbacho-Lozano:1999:EDD

Chien:1999:DEH

Cantoni:1995:CCA

Chen:2018:FOB

Performance Fortran, and POSIX threads.

Corbalan:2004:PMD

Carson:2003:CGU

Chapman:2012:OHW

Campanai:1994:EAS

Chapman:1999:EOF

Chou:2010:CMI

Yu-Cheng Chou, Stephen S.
REFERENCES

Chalkidis:2011:HPH

Coelho:1994:EHC

Cooperman:1995:SBP

Cooperman:1995:SMB

Cotronis:1997:MPP

Cotronis:1998:DMP

Cotronis:2004:CMP

REFERENCES

REFERENCES

Cappello:1999:PNB

Cappello:2001:UPS

Cores:2014:FAM

Cores:2016:ROM

Cores:2014:MAL

Ciampolini:1996:EPM

REFERENCES

13–23, May 1996. CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).

Ciegis:1999:HDA

Cote:1999:PSA

Cote:1999:PSL

Cotronis:2002:MMP

Chang:2013:PDS

REFERENCES

Cotronis:2000:CMP

Czarnul:2001:DPD

Cao:2011:OMM

Cui:2012:OOB

Cavender:1995:APN

Cavender:1995:SSA

C6295 1995. IEEE catalog number 95CB35838.

Chengqing:1996:WIP

Czarnul:2002:DTI

Czarnul:2003:PTA

Czapinski:2013:EPM

Czech:2016:IPC

Chapman:2008:PPM

REFERENCES

[Dongarra:1991:UGP]

[Dongarra:1995:HPC]

[Daberdaku:2019:ACT]

Danalis:2012:MCT

Darema:2001:SMP

Demidov:2013:PCO

deAndrade:2017:OFH

Demuynck:1997:DOD

Dinan:2016:IEM
Dursun:2009:MPM

Dotsenko:2011:ATF

DiMartino:2001:WDS

DAgostino:2014:CAM

daCunha:1993:PLA

Dow:2002:CMA

REFERENCES

Didelot:2012:IMC

Didelot:2014:IMC

DelCuvillo:2006:LOC

Dozsa:2000:THL

Decker:1995:TDU

Deveci:2019:GMT

REFERENCES

ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Dongarra:1997:BCA

Dean:1994:CPV

Dan:1999:QAM

Durand:1991:HPC

Demaine:1996:FCC

DePasquale:2003:UJU

[DeP03] C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. Cmg, 2(??):821–832, 2003. CODEN ????.

Dehne:2001:CPD

REFERENCES

[DFMD94] Manish Deshpande, Jinzhang Feng, Charles L. Merkle, and

Diaz:2012:CCF

DAmbra:1995:CBC

Dinan:2014:ECC

Dinapoli:1997:DCA

Dinan:2012:EMC

Dongarra:2019:PPL

Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Panruo Wu, Ichitaro Yamazaki, Asim Yarkhan, Maksims Abalenkovs, Negin Bagherpour, Sven Hammarling,

daCunha:1994:PIR

Dongarra:1993:IPF

Dongarra:1992:PUL

Dongarra:1993:DSM

Derakhshan:1997:PEP

Dongarra:1997:CSD

Dongarra:1996:SRP

DiPierro:2014:PPP

DiSerio:2002:ENN

DiNucci:1996:CDS

Denis:2019:SPT

Karniadakis:2002:DLP

Drosinos:2006:EPT

Deo:2013:PSA

DiMartino:2005:RAP

Beniamino Di Martino, Dieter Kranzlmüller, and J. J. Dongarra, editors. Recent advances in parallel virtual machine and message passing interface: 12th European
REFERENCES

REFERENCES

Dongarra:2000:RAP

Dickens:2010:HPI

delaAsuncion:2011:SOL

delaAsuncion:2012:MCI

Desai:2007:CEM

REFERENCES

[DLV16] DeKeyser:1994:RTL

[DM93] Lu:2004:AFS

[DM95a] DeSande:1999:NBS

Davies:1995:NPE

REFERENCES

Dagum:1998:OIS

Dziubak:2012:OOI

Dathathri:2016:CAL
Roshan Dathathri, Ravi Teja Mullapudi, and Uday Bondhugula. Compiling affine loop nests for a dynamic scheduling runtime on shared and distributed memory.

Dalcin:2019:FPM

DiMartino:1997:IPD

Dongarra:1996:APC
Jack J. Dongarra, Kay Madsen, and Jerzy Wasniewski, editors. Applied parallel computing: computations in physics, chemistry, and engineering science: second international workshop, PARA ’95, Lyngby, Den-

K. M. (Karsten M.) Decker and R. M. (Rene M.) Rehmann, editors. Programming environments for massively parallel distributed systems: working conference of the IFIP WG10.3,
REFERENCES

Hoang-Vu Dang and Bertil Schmidt. CUDA-enabled sparse matrix-vector multiplication on GPUs using

Keisuke Dohi, Yuichiro Shibata, Kiyoshi Oguri, and Takafumi Fujimoto. GPU implementation and opti-

Domokos:2000:PRC

Deshpande:1996:MIBa

Dekker:1994:MPP

Dongarra:1994:PSW

Dongastos:2017:SLR

Duval:1992:TPP

REFERENCES

REFERENCES

REFERENCES

137, Summer 1995. CODEN IJSCFG. ISSN 1078-3482.

REFERENCES

Erhel:2014:DDM

Ebrahimirad:2015:EAS

Evans:1992:PCP

Exbrayat:1997:OPS

Eberl:1999:PCP

Elamvazuthi:1994:OPA

Eigenmann:2000:TMPa

Eigenmann:2000:TMPb

Espenica:2002:PPA

Espinosa:2000:ADP

Espenica:2002:APA

Ewing:1993:DCW

Engquist:2000:SVG

Emani:2015:CDM

Eizenberg:2017:BBL

ElZein:2012:GOC

REFERENCES

REFERENCES

Eichenberger:2012:DOT

Eigenmann:2001:OSM

Faraji:2018:DCG

Fabeiro:2016:WPP

REFERENCES

Fagg:2001:HFT

[FBVD01b]

Fagg:2002:FTM

Friedel:2001:HMC

[FBSN01]

Floros:2005:TGS

[FC05]

Falzone:2007:PMF

[FCLG07]

Fagg:2000:FMF

Fagg:2004:BUF

Fagg:2002:HFTa

Fagg:2002:HFTb

[FDG97b] G. E. Fagg, J. J. Dongarra, and A. Geist. Heterogeneous MPI application interoperation and process management under PVMPI.
REFERENCES

REFERENCES

[Fritzson:1995:PPA]
Peter Fritzson and Leif Finno, editors. Parallel programming and applications: proceedings of the Workshop on Parallel Programming and Computation (ZEUS '95) and the 4th Nordic Transputer Conference (NTUG '95): Linköping, Sweden. IOS Press, Postal Drawer 10558, Burke, VA 2209-0558, USA, 1995. ISBN 90-5199-229-7 (IOS Press), 4-274-90056-8 (Ohmsha). LCCN ????.

[Fava:1999:MPI]

[Fragoli:1999:DCH]

[Fousek:2011:AFC]

[Fernandez:2003:BMN]

[Foster:1998:WAI]
REFERENCES

[FHP+94] H. Franke, P. Hochschild, P. Pattnaik, J.-P. Frost, and M. Snir. MPI-F: an MPI prototype implementation on IBM SP1. In Dongarra and

Fin:1997:CPM

FHSO99

Fineberg:1995:IMM

Fineberg:1994:IMM

Fin:1997:CPM

REFERENCES

Fink:2000:IMC

Fischer:2001:SAN

Fernandez:2000:UPM

Forejt:2017:PPA

Feng:2014:SBS

Flower:1994:EJM

Jon Flower and Adam Ko-

REFERENCES

Foster:1996:DSB

Frezh:2008:JTD

Fagg:1996:TGR

Fagg:1998:MMH

Fachada:2017:CCF

Nuno Fachada, Vitor V. Lopes, Rui C. Martins,
REFERENCES

and Agostinho C. Rosa.

cf4ocl: a C framework for
OpenCL. Science of Com-
puter Programming, 143(??):
9–19, September 1, 2017.
CODEN SCPGD4. ISSN
0167-6423 (print), 1872-7964
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167642317300540

Ferreira:2018:CMM

[FLPG18] Kurt B. Ferreira, Scott
Levy, Kevin Pedretti, and
Ryan E. Grant. Character-
izing MPI matching via
trace-based simulation. Par-
allel Computing, 77(??):57–
83, September 2018. CO-
DEN PACOEJ. ISSN
0167-8191 (print), 1872-7336
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167819118301467

Feeley:1990:PVM

[FM90] Marc Feeley and James S.
Miller. A parallel vir-
tual machine for efficient
Scheme compilation. In ACM
[ACM90], pages 119–130.
LCCN QA 76.73 L23 A24
acm.org/pubs/citations/
proceedings/lfp/91556/
p119-feeley/. ACM order
no. 552900.

Furlinger:2009:CAE

[FM09] Karl Furlinger and Shirley
Moore. Capturing and an-
alyzing the execution con-
trol flow of OpenMP appli-
cations. International Jour-
nal of Parallel Programming,
CODEN IJPPED. ISSN
0885-7458 (print), 1573-7640
(electronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
37&issue=3&page=266.

Fiala:2012:DCS

David Fiala, Frank Mueller,
Christian Engelmann, Rolf
Riesen, Kurt Ferreira, and
Ron Brightwell. Detection and
 correction of silent data
corruption for large-
scale high-performance com-
puting. In Hollingsworth
[Hol12], pages 78:1–78:??
ISBN 1-4673-0846-8. URL
http://conferences.computer.
org/sc/2012/papers/1000a046.

Filipovic:2015:OCC

Jiří Filipovic, Matúš Madzin,
Jan Fousek, and Ludek
Matyska. Optimizing CUDA
code by kernel fusion: appli-
cation on BLAS. The
REFERENCES

REFERENCES

Freeman:1992:PNA

Faraj:2008:SPA

Ferreira:1995:PAI

Franke:1995:MPEa

Fritscher:1993:PDC

Ferrari:1995:TDC

Fischer:1997:ESP

Ferrari:1998:MDC

[FS98] Adam Ferrari and V. S. Sunderam. Multiparadigm

Folino:1998:EMC

Folino:1998:PEM

Fernandez:1999:PGP

Feng:2014:MSP

Fernandez:2000:DCE

REFERENCES

REFERENCES

[GBH14] Robert Gerstenberger, Maciej Besta, and Torsten Hoeffer. Enabling highly scalable remote memory access programming with MPI-
Gabriel:1997:EMU

Edgar Gabriel, Thomas Beisel, and Michael Resch. Erweiterung einer MPI-Umgebung zur Interoperabilität verteilter MPP-Systeme. (German) [Extension of an MPI environment for interoperability with distributed MPI systems]. Studienarbeit ange wandte Informatik RUS 37, Rechenzentrum Universität Stuttgart, Stuttgart, Germany, 1997.

Garain:2015:CCF

Graham:2007:OMH

Grove:2005:CBP

Garcia:2012:DLB

REFERENCES

1007/978-3-642-30397-5_2/.

GarciaSalcines:1997:PRR

Garcia:1999:MMI

Garcia-Consuegra:1998:DGR

Gelado:2010:ADS

Gao:2013:GGA

Geist:1993:PTW

Galizia:2015:MCL

Antonella Galizia, Daniele D’Agostino, and Andrea Clematis. An MPI–CUDA library for image process-

Geist:1993:PBN

Geist:1994:CCW

Geist:1996:APP

Geist:1997:ACP

Geist:1998:HNG

Geist:2000:PMW

Geist:2001:BFN

REFERENCES

[GEW98] Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprint-Reihe des Chemnitzer SFB 393 Sonderforschungsbereich Numerische Simulation auf Massiv Parallel Rechnern 97,08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998.

Gomez-Folgar:2018:MPA

Gueunet:2019:TBA

Gravvanis:2012:SFD

Giordano:1999:IBP

Garzon:1999:PIE

Giannoutakis:2009:DIP

1532-0626 (print), 1532-0634 (electronic).

Giannoutakis:2007:MHP

Gallud:2001:EDF

Gallud:1999:DPR

Gallud:1999:CCU

Godlevsky:1999:PSA

REFERENCES

REFERENCES

REFERENCES

Gianinazzi:2018:CAP
Lukas Gianinazzi, Pavel Kalvoda, Alessandro De Palma, Maciej Besta, and Torsten Hoe

Granat:2009:NPQ

Gropp:1995:MGX

Gianinazzi:2018:CAP

Geist:1996:VDP

Geist:1997:CPF

Gianinazzi:2018:CAP
REFERENCES

Gopalakrishnan:2011:FAM

Garland:2012:DUP

Gropp:1992:TIM

Gropp:1994:MCL

Gropp:1995:DPM

Gropp:1995:IMM

Gropp:1995:MMI

W. Gropp and E. Lusk. The MPI message-passing interface standard: Overview and status. In Dongarra et al. [D+95], pages 265–270. ISBN 0-444-82163-
REFERENCES

5. ISSN 0927-5452. LCCN QA76.88.H55 1995.

Gropp:2004:FTM

Girona:2000:VDC

Gropp:1996:HPP

Glendinning:1993:MMP

Gregoretti:2008:MGE

Garland:2008:PCE

0272-1732 (print), 1937-4143 (electronic).

Gonzalez:2000:TSN

Gonzalez:2001:MIM

Gropp:1999:UMP

Gropp:1999:UMA

Gropp:1999:UMA

REFERENCES

Sourendu Gupta and Pushan Majumdar. Accelerating lattice QCD simulations with 2 flavors of staggered fermions on multiple GPUs using OpenACC — a first attempt. *Computer Physics*

REFERENCES

Goedecker:2002:OPF

Gonzalez:2001:OET

Guarracino:1995:PMB

Grosset:2017:TTT

Govindan:1996:OMP

V. Govindan, Y. Park, X. Li, S. Crear, and O. Johnson. An overview of a MPI profiling environment for the NEC Cenju-3. In IEEE [IEE96b], pages 185–188. ISBN 0-8186-
REFERENCES

7533-0. LCCN QA76.642 M67 1996.

Gillich:1995:FPP

Genaud:2007:PMP

Grabowsky:1997:MBK
Lothar Grabowsky. MPI-basierte Koppelrandkomunikation und Einfluß der Partitionierung im 3D-Fall. (German) [MPI-based coupled edge communication and influence of partitioning in 3D-Fall]. Preprint-Reihe des Chemnitzer SFB 393 97,17, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1997. 13 pp.

Gravvanis:2009:OBP

Grengbondai:1994:CPU

Greenfield:1995:OPS

Gropp:2000:RCD
REFERENCES

REFERENCES

[102x582] springer.com/chapter/10.1007/978-3-642-33518-1_1/.

G. A. Geist and V. S. Sunderam. Experiences with network based concurrent computing on the
REFERENCES

G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

Guang R. Gao, Mitsuhisa Sato, and Eduard Ayguadé. Guest Editors introduction:

D. Germanas, A. Stepsys, S. Mickevicius, and R. K. Kalinauskas. HOTB update: Parallel code for calculation of three- and four-particle harmonic oscillator transformation brack-

REFERENCES

Guerrero:2014:PCM

Hadjidoukas:2010:NOP

Han:2011:HHL

Hussain:2011:PIA

Hoeffer:2001:PSP

Hamza:1995:PII

[HASnP00] Dixie Hisley, Gagan Agrawal, Punyam Satya-narayana, and Lori Pollock. Porting and performance eval-

REFERENCES

Hamid:2010:CMB

Hunold:2016:RMB

Hurwitz:2005:AMP

Huang:2005:TME

Hu:2016:CLG

He:2000:PAA

[HDB+12] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, and Brian Barrett. Leveraging MPI’s one-sided communication inter-

[Hoe12] Torsten Hoefler, James Dinan, Rajeev Thakur,

Heikonen:2002:ILB

Hadi:2013:CFA

Hebekher:1993:CPC

Herland:1998:CML

Huang:2009:EGO

Lei Huang, Deepak Easempati, Marcus W. Hervey, and Barbara Chapman. Exploiting global optimizations for OpenMP programs in the OpenUH compiler.
REFERENCES

Hempel:1994:MSM

Hempel:1996:SMM

Holmen:2014:ASI

Holmen:2014:EAS

Hursey:2012:AF

Hermanns:2012:SDM

REFERENCES

Huang:2018:ACO

Horiguchi:1994:ISP

Hermanns:2019:MEI

Hanson:2014:NCM

Hui:1995:SPS

Huang:1995:PNP

Horiguchi:1994:ISP

Hermanns:2019:MEI

Hui:1995:SPS

Huang:1995:PNP
REFERENCES

[HJBB14] Clifford Hall, Weixiao Ji, and Estela Błaisten-Barojas. The Metropolis Monte Carlo method with CUDA enabled Graphic Processing

Huang:2010:ELA

Hoffmann:1993:PFE

Hofmann:1995:CAP

Hong:2009:AMG

Hong:2010:IGP

REFERENCES

REFERENCES

REFERENCES

[Hollerbach:1995:FDA] Rainer Hollerbach. Fast dy-

[Hollingsworth:2012:SPI]

[Hosking:2012:CHL]

[Hadjidoukas:2005:OEM]

[Hawick:2011:HSL]

[Hidalgo:1999:MMP]

[Hadjidoukas:2002:MOI]
REFERENCES

2002. CODEN ???? ISSN 1097-2803.

Hariri:1995:STE

Hondroudakis:1995:PEV

Heckathorn:1996:SSP

Hilbrich:2013:MRE

Hilbrich:2013:MRE

Hariri:1993:MPI

Hoefler:2011:SPT

Torsten Hoefler, Rolf Rabenseifner, Hubert Ritzdorf, Bronis R. de Supinski, Rajeev Thakur, and Jesper Larsson Träff. The scal-

Hoyos-Rivera:1997:UPB

Hempel:1997:IMN

Hartley:1993:CPS

Hesham:1994:PTS

Hertzberger:1995:HPM

Hungenahally:1995:PIQ

A. Hungenahally and A. Suresh. PVM implementation of quadtree building algorithms on SIMD hypercube system. *IEEE International Conference on Algorithms and Architectures for Par-
REFERENCES

Hoefler:2012:OPC

Henriksen:2017:FPF

Haeuser:1994:RNS

Heimel:2013:HOP

Hormati:2012:SPS

Hu:2001:PCC
REFERENCES

Howes:2008:U

Ha:2008:NBP

Hluchy:1999:GWF

Humphres:1995:LBE

Husbands:1998:MSD

Huckle:1996:PIS

Hariri:2016:PPA

REFERENCES

[Huse:1999:CCD]

[Huse:2000:MOS]

[Huse:2001:LST]

[Hamidouche:2016:CAO]

[Houzeaux:2011:HMO]
REFERENCES

[Libo Huang, Zhiying Wang, Nong Xiao, Yongwen Wang, and Qiang Dou. Adaptive communication mechanism for accelerating MPI functions in NoC-based multicore processors. ACM Transactions on Architecture and Code Optimization, 10(3):18:1–18:??, September 2013. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).]
REFERENCES

IEEE:1993:PSI

IEEE:1993:PIS

IEEE:1993:PFW

IEEE:1993:PSP

IEEE:1993:WHP

IEEE:1994:FSF

REFERENCES

REFERENCES

IEEE:1995:PFI

IEEE:1995:PNA

IEEE:1996:ICH

IEEE:1996:EIS

IEEE:1996:FSS

REFERENCES

IEEE:1997:APD

IEEE:1997:PPIP

IEEE:1997:TIPS

IEEE:2002:STI

IEEE:2005:IPD

Iida:2016:GET

Yuki Iida, Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, and Shinpei Kato. GPUrpc: Exploring transparent access to remote GPUs. ACM Transactions on Embedded Com-

[IFA+16]

IFIP:1995:KWC

[IFI95]
http://www.nsc.liu.se/~boein/ifip/kyoto/workshop-info/proceedings/.

Iwasaki:2004:NPS

[IH04]

Izaguirre:2005:PMS

[IHM05]

Iwama:2001:PLS

[KIHvA00]

Ierotheou:2005:GOC

[IJM+05]

Iwama:2001:PLS

[KIHvA00]
Kazuo Iwama, Daisuke Kawai, Shuichi Miyazaki,

Iwama:2002:PLS

Iwashita:1994:IPE

Ingle:1995:MAS

Ishizaka:2000:CGT

Ilroy:2001:IMP

Ilie:2016:AEC

Satake:2012:OGA

Imamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IAC

Performance evaluation of a multi-zone application in different OpenMP approaches. *In-...

Jaeger:2015:FGD

Jenkins:2014:PMD

Jann:1995:AMP

Johnson:2012:FOL
Tim Johnson, Pierre Fite-Georgel, Rahul Raguram, and Jan-Michael Frahm. Fast organization of large photo collections using

Jin:2011:HPC

REFERENCES

REFERENCES

Jones:1996:LLM

[Jon96] Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:PAL

Jiang:2012:OSP

Juric:1995:UPV

Joldes:2014:SSH

Joubert:1994:PCT

Jost:2010:EHU

REFERENCES

Jimenez:2013:BCA

Judd:1994:PIV

Jin:2013:PCU

Jung:2005:DIM

Hyungsung Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jussila:2015:PPP

Ju:1996:SPT

Jain:1996:IOP

Ravi Jain, John Werth, and James C. Browne, edi-

Jin:1995:LTP

KA95

Kepner:2004:M

KAC02

Krone:1996:ICF

O. Krone, M. Aguilar, B. Hirsbrunner, and V. Sunderam. Integrating coordination features in PVM. In Ciancarini and Hankin [CH96], pages 432–435. ISBN 3-540-61052-9. ISSN 0302-9743 (print), 1611-
Kapinos:2010:PPP

Khan:2017:RCS

Katamneni:1993:PPE

Karlsson:1998:CCC

Kaiser:2001:OCC
app/home/contribution.asp?wasp=7ab86fba89x91rwy%26referrer=parent%26backto=
issue%2C2%2C1%3Bjournal%2C1
2C1%2C2%3Blinkingpublicationresults%2C1
2C1%2C1.

Kruzel:2013:VOI

Kabir:2002:DIS

Klemm:2009:RTM

Kulkarni:2016:HAP

Knies:1994:SLL

Kitowski:1997:CPM
J. Kitowski, K. Boryczko, and J. Moscinski. Compari-

Kannan:2016:HPP

Ke:2004:RCM

Klemm:2007:JIO

Karamcheti:1994:SOM

Krawezik:2006:PCM

Kacsuk:1997:GDD

REFERENCES

Konuru:1994:ULP

Konuru:1994:UPP

Kotselidis:2017:HMR

Kanal:2012:MMC

Krotkiewski:2013:ESC

Kang:2018:PRS

[Zhijiang Kang, Ze Deng, Wei Han, and Dongmei Zhang. Parallel reservoir simulation with OpenACC and domain decomposition. Algorithms (Basel), 11(12), December 2018. CODEN ALGOCH. ISSN 1999-4893 (electronic).]
REFERENCES

Klingebiel:1995:COD

Klingebiel:1995:CPO

Kakimoto:2012:PCG

Komatitsch:2010:HOF

Kepner:2005:PPM

Kale:1996:PMD

[KFA96] R. P. Kale, M. E. Fleharty,

Kappiah:2005:JTD

Kramer-Fuhrmann:1994:TGP

Kowalik:1993:SPC

Kohl:1996:PTF

Kainz:2009:RCM

Keller:2003:TEE

REFERENCES

Keller:2010:RAM

Kafura:1996:CCC

Kwon:2010:SPC

Karrenberg:2012:IPO

Kramer:2015:SET

Khanna:2013:HPN
Gaurav Khanna. High-precision numerical simulations on a CUDA GPU: Kerr black hole tails. Journal of Scientific Comput-
REFERENCES

Kielmann:1999:MMC

Kallenborn:2019:MPC

Kucukboyaci:2001:PPT

Kjolstad:2012:ADG

Kojima:2017:HLG

REFERENCES

3:??, April 2017. CODEN ???? ISSN 1529-3785 (print), 1557-945X (electronic).

Kwon:2012:HAO

Kim:2016:DOF

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Dieter Kranzlmüller, Peter Kacsuk, Jack Dongarra, and Jens Volkert. Recent advances in parallel virtual machine and message passing...

Kee:2003:POP

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO

Kobler:2001:DOP

Karrels:1994:PAM

Kofakis:1995:DPI

Liao:2011:DEM

Liao:2006:SDI

Liao:2007:CCS

der Plan catalog number 96TB100088.

Kormicki:1997:PLS

Komatitsch:2009:PHO

Koholk:1999:MPR

Kumar:2014:OMC

Kobayashi:2016:HSV

Kouzinopoulos:2015:MSM

[Kirk:2010:PMP]

[Kalns:1995:DPD]

[Katouda:2017:MOH]

[Kono:2018:EO]

[Kasprzyk:2002:APV]

[Komura:2014:CPG]

Yukihiro Komura and Yu-taka Okabe. CUDA pro-

REFERENCES

Kuhn:2000:OVT

Kamal:2005:SVT

Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????

Klimach:2009:PCH

Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunaseth:2013:ASD

Kalen:2011:CCL

Kranzlm:1999:MOM

Krots:1996:EEP

Krawczyk:2001:PIM

Kim:2013:MPE

REFERENCES

[KSV01] Dieter Kranzlmüller, Christian Schaubschläger, and Jens Volkert. An integrated record&replay mech-

Dimitri Komatitsch, Seiji Tsuboi, Chen Ji, and Jeroen Tromp. A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. In ACM [ACM03], page ?? ISBN 1-58113-695-

Kuhn:1998:FFW

Kumar:1994:PPI

Kranzlmueller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

Kamburugamuve:2018:AML
Supun Kamburugamuve, Pulasthi Wickramasinghe, Saliya Ekanayake, and Geoffrey C. Fox. Anatomy
REFERENCES

Lobeiras:2016:DEI

Laguna:2015:DPF

Laforenza:2001:PHP

REFERENCES

Loos:1996:MPS

Lavi:1998:IPD

[R. Lavi and A. Barak. Improving the PVM daemon network performance by direct network access. Lecture Notes in Computer Science, 1497:44–??, 1998. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).]

Lashgar:2016:ESM

Loncar:2016:CPS

REFERENCES

[Luecke:2003:MCT] Glenn Luecke, Hua Chen,

REFERENCES

REFERENCES

automatic parallelisation. In Anonymous [Ano93g], pages 95–107. ISBN ???? LCCN ????

Lim:2011:ATC

Leon:1993:FPP

Leon:1993:FPA

Leon:1993:FPP

Levy:2019:USE

Loyot:1993:VVM

Lee:1999:PEJ

Bu-Sung Lee, Yan Gu, Wentong Cai, and Alfred Heng. Performance evaluation of
Liu:2016:MBM

Li:2010:SVC

Lassous:2000:HGA

Lpez-Gomez:2019:ESP

Leung:1995:EPE

Leung:1998:PAN

REFERENCES

Liao:2007:OOP

Lee:1996:TSF

Liu:2005:EIO

Lin:1995:DNC

Li:1996:PSI

Lin:2010:RTC

Fuchang Liu, Takahiro Harada, Young-Joon Lee, and Young J. Kim. Real-time collision culling of a million bodies on graphics processing units. *ACM Transactions on Graphics*, 29
REFERENCES

Li:1997:PIO

Liu:1995:WCD

Livny:2000:MYW

Lastovetsky:2010:RAP

LaSalle:2014:MBD

Lastovetsky:2008:RAP

Luecke:2003:CPM

Liang:1996:AEO

Li:2003:PNH

Luecke:2004:PSM
Glenn R. Luecke, Marina Kraeva, Jing Yuan, and

Ludwig:1995:PPF

Luecke:2001:SPO

Lin:2016:VDF

Lidbury:2015:MCC

Li:2012:PFA

Peng Li, Guodong Li, and Ganesh Gopalakrishnan. Parametric flows: auto-

Luo:2014:ISM

Langlais:2002:SSM

Li:1993:SLL

Loh:1994:ISR

B. C. Loh and G. A. Manson. Incorporating software reuse into the PCSC methodology. In de Gloria et al. [dGJM94], pages 929–941. ISBN ??? LCCN ???

Larsen:1999:SPG

Lu:2013:MLP

REFERENCES

Lee:2009:OGC

Losada:2014:EAL

Losada:2017:ARV

Lopéz:2015:PBV

Louca:2000:MFP

REFERENCES

[LSM+18] Han Lin, Zhichao Su, Xiandong Meng, Xu Jin, Zhong Wang, Wenting Han, Hong An, Mengxian Chi, and Zheng Wu. Combining Hadoop with MPI to solve metagenomics problems that are both data- and compute-intensive. International Journal of Parallel Programming, 46(4):762–775, August 2018. CODEN IJPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

REFERENCES

Li:1995:CPP

Ludwig:1997:OUI

Liu:2004:HPR

Liang:2018:FMP

Li:1993:MSU

Lopes:2019:FBD

Paulo A. C. Lopes, Satyendra Singh Yadav, Aleksandar Ilic, and Sarat Kumar Patra. Fast block distributed CUDA implementation of the Hungarian al-

Shigang Li, Yunquan Zhang, and Torsten Hoefler. Poster: Cache-oblivious MPI all-to-all communications on many-core architectures. [Li:2017:PCO]
REFERENCES

Li:2018:COM

Lu:2019:PMM

Ma:2009:CRS

Mavriplis:2005:HRAa

Miguel:1996:APN

Maffeis:1994:SSD

REFERENCES

Moreno:2001:AEP

Mainland:2012:EHM

Malfetti:2001:AOW

Molero-Armenta:2014:OOI

Malyshkin:1995:PCT

Mirvis:1995:HML

[MALM95] Y. Mirvis, F. Abdi, B. Lajevardi, and P. Murthy. Hi-

Marowka:2005:EMT

Marowka:2006:BRP

Marowka:2007:PCD

Marowka:2009:BCT

Mehta:2006:MSG

Mattson:1994:PEP

Mattson:1995:PEP

Mattson:2000:BOF

Tim Mattson. BOF: OpenMP and its future developments. In ACM [ACM00], page 106. URL
REFERENCES

Mattson:2000:IO

Mattson:2001:EO

Matuszek:2001:APS

Mourao:2000:SSC

Marongiu:2012:OCE
Andrea Marongiu and Luca Benini. An OpenMP compiler for efficient use of distributed scratchpad memory in MPSoCs. IEEE Trans-

Maleki:2018:AHP

Maleki:2018:AHP

Muller:2012:SOA

Muller:2012:SOA

Ma:2013:KAT

Ma:2013:KAT

Min:2003:OOP

Min:2003:OOP

McKenzie:1994:CIM

REFERENCES

Malinowski:2018:SIP

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

McKinney:1994:PGU

Moore:2001:RPA

REFERENCES

Moreira:2017:FCR

McRae:1992:VC

Mierendorf:2000:WMB

Marin:2017:ERF

Monteiro:2018:EGC

Muller:2009:EOA
Matthias S. Müller, Bronis R. de Supinski, and Barbara M. Chapman, editors. *Evolving OpenMP in an Age of Extreme Parallelism*:
5th International Workshop on OpenMP, IWOMP 2009

Matheou:2017:DDC

Megson:1998:CRH

Milovanovic:2008:NEE

Moody:2003:SNB

Martin:1995:DPC

I. Martin, J. C. Fabero, F. Tirado, and A. Bautista. Distributed parallel computers versus PVM on a workstation cluster in the simulation of time dependent partial differential equations. In

Montella:2017:VCB

Mazzariol:1997:PCS

Markidis:2015:OAN

Matthey:2001:EMO

Hwu:2012:GCG

Moll:2018:PCF

Simon Moll and Sebastian Hack. Partial control-flow linearization. *ACM SIG-

REFERENCES

REFERENCES

1007/978-3-642-30961-8_20/

Markus:1996:PEM

Min:2001:PCO

Mokbel:2011:ASR

Mitra:2014:AAP

Marjanovic:2010:ECC

Marowka:2004:OOA

Ami Marowka, Zhenying Liu, and Barbara Chapman. OpenMP-oriented applications for distributed shared memory architectures. Concurrency and Computation:
REFERENCES

Malakov:2018:CMT

Marendic:2016:NMR

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2001:TSH

Michailidis:2002:PSL

Panagiotis D. Michailidis and Konstantinos G. Margaritis. A performance study of load balancing strategies for approximate string matching on an MPI heterogeneous system environment. *Lecture Notes in
REFERENCES

REFERENCES

T. P. McMahon and A. Skjellum. eMPI/eMPICH: embedding MPI. In IEEE
REFERENCES

Menden:1996:PPP

Marinho:1998:WMP

Mierendorf:1999:PMB

Migliardi:1999:PEH

Mourao:1999:IMO

Macias:2002:SEA

Mahinthakumar:2002:HMO

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Martins:1998:JIW

Martorell:2005:BGP

Mossaiby:2017:OIH

Mie:1996:IER

Mallon:2016:MUB

Marin:1994:GAL

F. J. Marin, O. Trelles-Salazar, and F. Sandoval. Genetic algorithms on LAN-Message passing architectures using PVM: Application to the routing problem. In Davidor et al. [DSM94], pages 534–545 (or 534–543??). ISBN 3-540-58484-6. ISSN 0302-9743 (print), 1611-3349 (elec-

REFERENCES

Muller:2003:OCB

Malakar:2017:DMO

Manis:1996:EPT

Muller:2010:SMA

Mehra:1995:AIM

McKinney:1993:MMI

Mamontov:1998:AES

Manegold:1997:QBM

Morton:1995:LLP

Maleki:2016:HOT

Maly:1993:DCP

Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

Nagle:2005:BRM
REFERENCES

Nordling:1994:SOD

Nunez:2010:NTS

Nguyen:2008:GG

Nguyen:1995:SPI

Norden:2002:OVM

Norden:2006:OVM

CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).

REFERENCES

[NNON00] Yasunori Nishitani, Kiyoshi Negishi, Hiroshi Ohta, and

Nishitani:2000:IEO

REFERENCES

Notz:2012:GBS

Nagaraj:1991:MHL

Naumenko:2016:ACT

Nukada:2012:SMG

Akira Nukada, Kento Sato, and Satoshi Matsuoka. Scalable multi-GPU 3-D FFT
REFERENCES

Neuberger:2012:MIS

Nandivada:2013:TFO

Nogueira:2016:BBW

Norcen:2005:HPJ

Nitsche:1998:FMP

Ng:2012:STT

tronic). HEART ’12 conference proceedings.

Nguyen:1994:DCE

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Olivier:2012:CMW

REFERENCES

Oed:1993:CRM

Ong:2000:PCL

Owaida:2015:EDS

Otten:2016:MOI

Otero:2019:OAA

Ortega:2019:CAC

Okitsu:2010:HPC

Ohara:2006:MMP

Oh:2012:MOO

Oakley:1995:ADR

Orlando:2005:PSP

Oldehoef:2002:SIS

Rod Oldehoeft, editor. Special issue on software for high-performance systems: papers from the symposium...

REFERENCES

[OP10] Stephen L. Olivier and Jan F. Prins. Comparison of OpenMP 3.0 and other task parallel frameworks on unbalanced task graphs. *International Journal of Par-

ODowd:2006:WGM

Orlando:2000:MDT

Oliveira:2012:CCO

Overeinder:1997:BCD

Ostrand:1994:PIS

REFERENCES

REFERENCES

(press), 1532-0634 (electronic).

Panda:1995:GRW

Pan95a D. K. Panda. Global reduction in wormhole k-ary n-cube networks with multi-
destination exchange worms. In IEEE [IEE95f], pages 652–659. ISBN 0-8186-7074-
6. LCCN QA 76.58 I56 1995. IEEE catalog no. 95TH8052.

Panda:1995:IDE

Pan95b D. K. Panda. Issues in designing efficient and practical algorithms for collect-
ive communication on wormhole-routed systems. In Agrawal [Agr95a], pages 8–

Panda:2014:GAM

Pan14 Dhabaleswar K. Panda. GPU-aware MPI on RDMA-
enabled clusters: Design, implementation and eval-
uation. IEEE Transactions on Parallel and Dis-
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic). URL http://
www.computer.org/csdl/ trans/td/2014/10/06587715- [PB12]
abs.html.

Parsons:1993:EDC

Par93 I. Parsons. Evaluation of distributed communication sys-
tems. In Gawman et al. [GGK+93], pages 956–970
vol.2. ISBN ???. LCCN QA76.76.S64 C378 1993 v.1-
2. Two volumes.

Pal:2014:PMH

PARB14 Anirban Pal, Abhishek Agarwala, Soumyendu Raha,
and Baidurya Bhattacharya. Performance metrics in a hybrid MPI-OpenMP based
molecular dynamics simulation with short-range inter-
actions. Journal of Parallel and Distributed Computing, 74(3):2203–2214,
March 2014. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).
URL http://www.sciencedirect.com/
science/article/pii/S0743731513002505.

Patterson:1993:PPE

Pat93 Christopher S. Patterson. Parametric positron emission tomographic imaging
using parallel virtual machine: with an example using myocardial blood flow
analysis. M.s. thesis, University of Tennessee, Knoxville,

Puzniakowski:2012:TOI

PB12 Tadeusz Puźniakowski and Marek A. Bednarczyk. Towards an OpenCL implement-
REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.springer.com/chapter/10.1007/978-3-642-25261-7_15/. [PBC+01]

Pringle:2001:TPF

Pingali:1995:LCP

[PBG+95]

Plazek:1999:IIC

Plazek:2000:SCC

Prasanna:1995:FIP

Viktor K. Prasanna, V. P. Bhatkar, L. M. Patnaik, and S. K. Tripathi, editors. First IWPP parallel processing: proceedings of the First International
REFERENCES

Puthukattukaran:1994:DIP

Peng:2014:IDI

Poggi:1998:UPD

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1996:RPP

REFERENCES

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

Petcu:1997:ISM

PETCU:1997:ISM

Petcu:2000:PDAa

PETCU:2000:PDAa

Petcu:2000:PDAb

PETCU:2000:PDAb

REFERENCES

Petcu:2001:WMM

Pharr:2005:GGP

Piernas:1997:APM

Pjesivac-Grbovic:2005:PAM

Pjesivac-Grbovic:2007:MCA

Prabhakar:2002:PCB

Achal Prabhakar, Vladimir Getov, and Barbara Chapman. Performance comparisons of basic OpenMP

Peng:2018:CDC

Pessoa:2018:GAB

Poirier:2018:DAB

Pervez:2010:FMA

Papakonstantinou:2013:ECC

Park:2005:SOA
REFERENCES

Papadopoulos:2001:NRC

Paul:2006:TLF

Prabhakar:2016:GCH

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

U. Periyathamby, B. C. Khoo, K. S. Yeo, and Q. X. Wang. A numerical simulation of the growth and collapse of vapour cavity near a free surface on distributed

Pruyne:1996:ICP

Plachetka:2002:QTS

Park:2004:DID

Piriyakumar:2002:EFI

Pfenning:1995:OCP

Piscaglia:1995:DOC

P. Piscaglia, B. Macq, and
REFERENCES

[PQ07] Marco Pedicini and Francesco Quaglia. PELCR: Paral-

Pinho:2018:CTM

Pierce:20194:PIN

Pierce:1994:PSH

Pozo:1994:FTE

Priimak:2014:FDN

Peña:2014:CEC

Prades:2016:CAX

Pedroso:2000:MPC

Protopopov:2000:SMC

Pandey:2007:SCM

Park:2019:DBO

Pehrson:1994:IPP

Perez:2019:A

Peters:2011:FPC

Christina M. Patrick, Seung-Woo Son, and Mahmut Kan-demir. Comparative eva-
uation of overlap strategies with study of I/O overlap in MPI-IO. *Operating
(print), 1943-586X (electronic).

Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. de Supinski, and
Daniel J. Quinlan. Transforming MPI source code based on communication
CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).

M. Prieto, R. Santiago, I. M. Llorente, and F. Tirado. A parallel robust multigrid
algorithm based on semi-coarsening. In Dongarra et al. [DLM99], pages 307–316.
LCCN QA76.58 E973 1999.

Yuanxi Peng, Manuel Saldaña, Christopher A. Madill, Xiaofeng Zou, and Paul Chow.
Benefits of adding hardware support for broadcast and reduce operations in
MP-SoC applications. *ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS)*, 7(3):17:1–17:??, August 2014. CODEN ???. ISSN 1936-7406
(print), 1936-7414 (electronic).

Craig L. Plunkett, Alfred G. Striz, and J. Sobieszczanski-Sobieski. Application of
MPI in displacement based multilevel structural optimization. *Lecture Notes
in Computer Science*, 2131:335–??, 2001. CODEN LNCS09. ISSN 0302-9743
link/service/series/0558/1
bibs/2131/21310335.htm; http://link.springer-
ny.com/link/service/series/0
558/papers/2131/21310335.
pdf.

Nileshchandra K. Pikle, Shailesh R. Sathe, and Arvind Y. Vyawahare. Ac-
celerating the finite element analysis of functionally

Payrits:2000:UPC

Pears:2001:DLB

Prost:2001:MIG

Prost:2001:THP

PERAZA:2016:PGQ

PIERRO:2018:SFP

PHAN-THIEN:1994:CDL

PRYLLI:1999:DHP

PUSKAS:1995:LBW

PEINADO:1997:HPC

PARK:2001:PPE

Insung Park, Michael J. Voss, Seon Wook Kim, and Rudolf Eigenmann. Parallel
REFERENCES

Pahl:1995:CCB

Preissl:2012:CSS

Pang:2016:MKR

Pirkelbauer:2019:BTF

Prasad:1995:PPB

Perla:2012:PAH

Phillips:2002:NBS

Qiu:2012:PWM

Qawasmeh:2017:PPR

Quoy:2000:PNN

Qaddouri:1995:MFS

Qaddouri:1996:CPC

Qu:1995:FAS

Quinn:2003:PPC

Russell:1992:CMW

Rashti:2009:SAM

Rabenseifner:1998:MG1

[Rab98] R. Rabenseifner. MPI-GLUE: Interoperable high-performance MPI combining different vendor’s MPI worlds. *Lecture Notes in
REFERENCES

Rabenseifner:1999:APM

Ragg:1996:PEN

Ratha:1995:DED

Roussos:2001:BMB

Rantakokko:2005:DMO

Rehman:2016:VMJ

Ramadan:2007:TDM

Ram07

REFERENCES

[Ree96] A. Reeves, editor. *Proceedings of the 1996 International Conference on Challenges for Parallel Process-
REFERENCES

 REFERENCES

Rivas-Gomez:2018:MWS

Rizzardi:2017:ATS

Ratha:1995:CUC

Rodrigues:2014:TPS

REFERENCES

REFERENCES

Roe:1999:PMI

Rietmann:2012:FAS

Ramesh:2018:MPE

Rodrigues:2013:POM

Rohrl:2000:PPS
Rolfe:1994:PAP

Rolfe:2008:PF

Rolfe:2008:SMA

Rosen:2013:PVA

Roth:2019:AOC

Ramon:1995:PKV

Rodriguez:2008:FTS

REFERENCES

Reano:2019:APP

Rabaea:2000:EPM

Rageb:2001:CEM

Rauber:2002:LSH

Roda:1997:PPI

Roig:2001:EMM
REFERENCES

Robinson:1996:TMI

Russ:1999:UHR

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

Roy:1997:PNT

Reano:2019:SIN

acceleration for heterogeneous platforms with compilation to OpenCL. *ACM Transactions on Architecture and Code Optimization*, 16(2):14:1–14:??, May 2019. CODEN ????? ISSN 1544-3566 (print), 1544-3973 (electronic).

Ropo:2009:RAP

Simonsen:1993:DMD

Saito:2017:NIT

Saphir:1997:SMI

REFERENCES

NHSE Review, 2(1):??, November 1997.

for MPI programs. In ACM [ACM04], page 38. ISBN 0-7695-2153-3. LCCN ????

Selikhov:2002:MCC

[SBG+02]

Schindewolf:2012:WSA

[SBG+12]

Sani:2014:PDF

[SBQZ14]

Smith:1995:CRC

Smith:2004:SIP

Saltz:1991:MRT

REFERENCES

REFERENCES

J. Schuele. Heading for an asynchronous parallel ocean model. In Dongarra et al.
REFERENCES

Schevtschenko:2001:PAS

Searles:2019:MOA

Song:1997:ALL

Suppi:2000:IOP

Suppi:2001:PCS

REFERENCES

Santos:1997:ECP

SCRI:1992:PWC

Shi:2012:VGA

Szeberenyi:1999:SGB

SM-D:2013:BRC

Sorensen:2016:EER

Skjellum:1994:WLM

REFERENCES

Sorensen:2016:PIW

Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh Gopalakrishnan, and Zvonimir Rakamaric.

Schmitt:2017:SCP

Felix Schmitt, Robert Dietrich, and Guido Juckeland.

Sandes:2010:CUG

Edans Flavius O. Sandes and Alba Cristina M. A. de Melo.

Sistare:1999:MSP

Steve Sistare, Erica Dorenkamp, and Nick Nevin.
MPI support in the Prism programming environment. In ACM [ACM99], page ??.

Sampaio:2013:DA

Diogo Sampaio, Rafael Martins de Souza, Sylvain Collange, and Fernando Magno Quintão Pereira.

Skjellum:1995:EMP

A. Skjellum, N. E. Doss, K. Viswanathan, A. Chowdappa, and P. V. Bangalore.

Sack:2002:FMB

Paul Sack and Anne C. Elster.
Spencer:2015:DLN

Schenck:2016:EPM

Segovia:2010:PPN

Seifert:1999:ESI

Sept:1993:DIP

Serot:1997:EPF

Sevenich:1998:PPU

Richard Sevenich. Parallel processing using PVM.
REFERENCES

Scott:1998:PWN

Schoinas:1994:FGA

Steuwer:2015:GPP

Siegelin:1995:BPW

Shen:2013:ACE

Selikhov:2005:CMB

References

Saito:2003:LSP

Sekharan:1995:LBM

Solsona:2000:MCM

Stone:2010:OPP

Scherer:2000:APO

[SGZ00] Alex Scherer, Thomas Gross, and Willy Zwaenepoel.

M. Schmidt and R. Hanisch.

D. Sitsky and E. Hayashi.

Sukhyun Song and Jeffrey K. Hollingsworth.

H. Shen.

P. M. A. Sloot, A. G. Hoekstra, and L. O. Hertberger.

P. M. A. Sloot, A. G. Hoekstra, and L. O. Hertberger.
REFERENCES

Samadi:2012:AIA

Shah:2000:FCS

Sato:2001:OGR

Simmendinger:2019:ISG

Siegel:1992:FFS

REFERENCES

Siegel:1992:FSF

[Sil96]

Sinovec:1993:SCP

Silla:2017:BRG

Sharma:2017:PDR

REFERENCES

URL http://dl.acm.org/citation.cfm?id=3084442.

Sistare:2002:UHP

Szo:2017:PET

Samadi:2014:PPB

Shen:1992:VTD

Smith:2000:DPM

REFERENCES

ID=76500350&PLACEBO=IE.

Sanders:2010:CEI

[SK10]

Steinberger:2014:WTB

[SKB+14]

Skjellum:2004:RTM

[SKH96]

Subramaniam:1996:CLU

[SKK+12]

Skjellum:1993:SLH

[Skj93]

Steinberger:2012:SDS

Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswiesner, Michael Kenzel, and Dieter Schmalstieg. Softshell: dynamic

Spiechowicz:2015:GAM

Satoh:2001:COT

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV

Shyong-Jian Shyu and B. M. T. Lin. An application of parallel virtual machine

Skjellum:1995:EAM

Scherer:1999:TAP

Samadi:2014:SPS

Su:2012:CPB

Sloan:2005:HPL

Squyres:1996:CBP

Shires:2002:EHM

Shires:2003:OPF

Simos:2007:CMS

Santos:2012:ICC

Siegel:2008:CSE

[SMAC08] Stephen F. Siegel, Anastasia Mironova, George S. Avrunin, and Lori A. Clarke.

Shterenlikht:2015:FC

Smith:1993:MBA

Smith:1993:DSI

Schochaki:1993:DCW

Schardl:2017:TEF

Sandes:2016:MMA

Shekofteh:2019:MSG

Sintorn:2011:EAF

Snir:1998:MCR

SousaPinto:2001:PEI

REFERENCES

Skjellum:1996:TTM

Si:2018:DAA

Sener:1996:DPP

Subramoni:2012:DSI

Silva:1999:DPP

Schmidl:2012:PAT

Schmidt:1994:EAO

Szymanski:1996:LCR

Silva:1999:IME

Shan:2001:CMS

Schwarz:2009:GFG

Shan:2012:OAA

REFERENCES

REFERENCES

Skjellum:1994:DEZ

Sabne:2012:ECO

Stellner:1995:CMP

Sosa:2000:IQC

Sala:2008:PHP

Schafers:1995:TGP

Squyres:1997:DEM

J. M. Squyres, B. Saphir, and A. Lumsdaine. The design and evolution of the

Shi:2010:PAE

Stone:1994:PSO

Shelton:1994:FPS

Sen:1999:PBD

Santana:1996:PVM

Souza:1997:EPH

P. S. Souza, L. J. Senger, M. J. Santana, and R. C.

[Sta95b] Z. Stankovski. A massively parallel algorithm for the collision probability calculations in the APOLLO-II code using the PVM library. In ANS [ANS95], pages 1573–1583. ISBN 0-89448-
REFERENCES

Stephens:1994:PBT

R. Stephens. Parallel benchmarks on the Transtech Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???.

Stellner:1996:CCP

Sterling:2000:SCB

Still:1994:PPC

Schmitz:2008:IIG

Sunderam:1997:TAS

Stockinger:1998:VPC

Stpiczynski:2002:PPO

Przemyslaw Stpiczynski. Parallel Programming in OpenMP helps novices: a

Stpiczynski:2018:LBV

Przemysław Stpiczynski.

Sala:2019:IBN

Strietzel:1994:NJI

Strietzel:1996:PTS

Strietzel:1997:PTS

REFERENCES

V. S. Sunderam. PVM: a framework for parallel distributed computing. Technical Report ORNL/TM-11375, Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA, February 1990. See also [Sun90b].

REFERENCES

cember 1990. CODEN CPEXEI. ISSN 1040-3108.

See also the earlier technical report [Sun90a].

Sunderam:1992:CCP

Sunderam:1993:PCC

Sunderam:1994:GPP

Sunderam:1994:MSH

Sunderam:1995:RIH

Sunderam:1996:PSS

Suresh:1995:IOP

Suresh:1995:PIQ

Suttner:1996:SPB

[Sut96] C. B. Suttner. SPTHEO—a PVM-based parallel theorem prover. Lecture Notes in Computer Science,
REFERENCES

Steve Sistare, Rolf van de Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

Gopalakrishnan Santhanaraman, Jiesheng Wu, Wei
REFERENCES

Sitsky:1995:IPM

Skjellum:2001:OOA

Shan:2012:PEH

Shee:1994:DMA

Sotiriou-Xanthopoulos:2018:OBV

Efstathios Sotiriou-Xanthopoulos, Leonard Masing, Sotirios Xydis, Kostas Siozios, Jürgen Becker, and Dimitrios Soudris. OpenCL-based virtual prototyping and simulation of

Stathopoulos:1995:DLB

Sydow:1994:PSA

Stathopoulos:1996:PIM

Song:2019:PGA

Schneider:2009:CPM

Stankovic:1999:NVJ

REFERENCES

Siegel:2011:AFV

Simmunovic:1995:MIP

Simmunovic:1995:MIP

Thompson:2014:CIC

Takeda:2001:AME

Traff:2014:SPE

Tao:2012:UGA

REFERENCES

(TCBV10) Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi Vishkin. Lazy binary-splitting: a run-time adaptive work-stealing scheduler. ACM SIGPLAN Notices,
REFERENCES

REFERENCES

REFERENCES

Thakur:2002:ONA

Thakur:1998:CUM

Teijeiro:2019:OPS

Tian:2005:CEN

[Xinmin Tian, Jay P. Hoeffinger, Grant Haab, Yen-Kuang Chen, Milind Girkar, and Sanjiv Shah. A com-

Trefftz:1994:DPE

Tran:2000:PPM

Thomsen:1994:RTS

Throop:1999:SOS

Traeff:1999:FFE

Takizawa:2015:ODT

Hiroyuki Takizawa, Shoichi Hirasawa, Makoto Sugawara, Isaac Gelado, Hiroyaki Kobayashi, and Wen

Tabakin:2009:QPE

Thoman:2012:AOL

Tang:2016:AKM

Tennyson:2015:MOI

Tallen:2009:EPM

REFERENCES

[TOC18] pdf.
REFERENCES

REFERENCES

CODEN LNCSDE. ISSN 0302-9743 (print), 1611-3349 (electronic).

Traff:1998:PRL

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Traff:2002:IMP

Traff:2002:IMA

CODEN LNCSDE. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Trä12a]

Traff:2012:AUE

CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

Traff:2012:MTM

CODEN LNCSDE. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer.com/chapter/10.1007/978-3-642-33518-1_15/.

Thakur:2005:OCC

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication operations in MPICH. The International Journal of High Performance Computing

REFERENCES

REFERENCES

ny.com/link/service/series/0558/papers/1908/19080137.pdf.

Theodoropoulos:1997:GSP

Tanaka:2000:PEO

Tellez-Velazquez:2018:CSI

Twerda:1996:PIT

Tourancheau:2001:SMN

Thorson:2012:SUF

Greg Thorson and Michael Woodacre. SGI UV2: a fused computation and data analysis machine. In

REFERENCES

REFERENCES

 USENIX:1995:PUT

 USENIX:2000:P

 Uehara:2002:MBP

 Unat:2012:AFD

 VanderPas:1993:PIG

 VanKatwijk:1995:AAC

REFERENCES

Oscar Vega-Gisbert, Jose E. Roman, and Jeffrey M. Squyres. Design and implementation of Java bindings in Open MPI. *Parallel Computing*, 59(??):1–20, November 2016. CODEN PACOEJ. ISSN
Vikas:2014:MGA

REFERENCES

REFERENCES

REFERENCES

0558/papers/1800/18000847.pdf.

Vaughan:1994:MPM

Vaughan:1995:MPM

Vaidya:2013:SDO

Vlassov:1997:SSM

Vandoni:1995:CSC

Vo:2009:FVP

Verkerk:1992:PIC

Vetter:2002:EPE

Verschelde:2015:PHC

Vasilache:2019:NAL

Wong:1999:BMM

Walker:1994:DSM

Walker:1994:EDS

REFERENCES

0167-8191 (print), 1872-7336 (electronic). See [Wal94a].

[Walker:1995:MVB]

[Walker:1996:MFA]

[Walker:1996:MP]

[Wallcraft:2000:SOV]

[Walker:2001:DLB]

[Wallcraft:2002:CCA]
Alan J. Wallcraft. A comparison of Co-Array Fortran and OpenMP Fortran for SPMD programming. The
REFERENCES

[Wickerson:2015:RSP] John Wickerson, Mark Batty, Bradford M. Beckmann, and Alastair F. Donaldson. Remote-scope pro-

REFERENCES

Emmett Witchel. Programmer productivity in a world

Wei:2012:OLL

Wang:2019:MEM

Wu:2014:OFB

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wegiel:2008:MCVc

Wittenbrink:2011:FGG

Craig M. Wittenbrink, Emmett Kilgarriff, and Arjun Prabhu. Fermi GF100 GPU
REFERENCES

Wagner:1996:GSG

Lehman:1994:IZP

Wismuller:1996:TSI

Wu:2007:IFR

Wolfe:2018:ODM

Weatherly:2003:DMS
D. Brent Weatherly, David K. Lowenthal, Mario Nakazawa, and Franklin Lowenthal. Dyn-MPI: Supporting MPI
REFERENCES

REFERENCES

Wende:2019:OVT

Wu:2014:MAG

Winkler:2017:GSM

Wendykier:2010:PCH

Walk:1995:RBD

Walker:1996:RBC

[Winstanley:1997:PDP]

[Wang:2009:MPM]

[Wolbers:1992:SPP]

[Worley:1996:MPE]

[Wagner:1994:CFD]

REFERENCES

[Wu:2011:PCH] Xingfu Wu and Valerie Taylor. Performance charac-

Wu:2012:PCH

Wu:2013:PMH

Wang:2014:IPD

Worringen:2003:FPN

Wang:2019:FBA

acm.org/ft_gateway.cfm?id=3268933.

Waidyasooriya:2017:OBF

Wu:1999:MCC

Wong:2011:EMS

Wilson:1996:SMS

Wu:2012:DPL

Wang:2016:MMF

Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei Zhang. Melia: A MapRe-

Xu:2013:PMO

Yelon:1993:PTS

Yazdanpanah:2015:PHR

Yan:1994:PTA

Yang:2014:PMI

Ying:2003:NPK

REFERENCES

[YGH+14] Xu Yang, Deyuan Guo, Hu He, Haijing Tang, and Yanjun Zhang. An implementation of Message-

[Yetongnon:1996:PII]

[YH96]

[Yetongnon:1996:PII]

[Yero:2001:JOO]

[Yuasa:1996:RPG]

REFERENCES

[Yamazaki:2018:SIL]

[YL09]

[Yang:2016:HTM]

[Yan:2013:SFS]

[Yalamov:1997:BRT]

[Yilmaz:2011:RMS]
REFERENCES

Yu:2005:HPB

Yeh:2017:PFG

Yang:2008:DPL

Yoshinaga:2012:DBM

Yam-Uicab:2017:FHT

Yang:2011:PBP

Younge:2015:SHP

Yonezawa:1995:IED

You:2015:VFO

REFERENCES

Yong:1995:SOM

Yu:2012:SCC

Yang:2014:CNR

You:1995:PIM

Zounmevo:2014:FRC

Zaza:2016:CBP

Zahavi:2012:FTR

Eitan Zahavi. Fat-tree routing and node ordering pro-
REFERENCES

Zhong:2007:PPS [ZAT+07]

Zdetsis:1994:PMD [ZB94]

Zilli:1997:TBN [ZB97]

Part Number: CFP10355-CDR.

REFERENCES

Zhang:1997:DED

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

Zemla:1994:WTC

Zhou:1995:FMP

Zhou:1995:RMR

1995. IEEE catalog no. 95CH35751.

Zhou:1996:FMP

Zhou:1998:LST

Zielinski:1994:PPS

Zu:1994:OSM

Zheng:2006:PEA

Zoraja:1999:SPD

Zhang:2018:IRP

Zounmevo:2014:ESC

Zha:2017:IFM

Zha:2018:LSM

Zaki:1999:TSP

REFERENCES

J. A. Zollweg. Overview of PVM. In Anonymous [Ano93f], pages 981–986. ISBN ???. ISSN 0254-6213. LCCN ???.

F. Zambonelli, M. Pugassi, L. Leonardi, and

Zheng:2011:GLO

Zhao:2012:ASO

Zarrabi:2015:GSA

Zoltani:2001:EPO

Zouaoui:2017:CNG

Zaitsev:2019:SLD

D. Zaitsev, S. Tomov, and
REFERENCES

Zareski:1995:EPG

Zheng:2005:SBP

ZWL13

Zhu:2017:OAP

Zhu:1995:RTC

REFERENCES

