A Bibliography of Publications about \textit{PVM (Parallel Virtual Machine)} and \textit{MPI (Message Passing Interface)}

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
21 October 2019
Version 3.212

\begin{titlewordcrossreference}

$+$ [BDV03, Cha02, HDB+13, Lee12]. 0
[ICC02]. 1 [ICC02, LRQ01, VDL+15].
$\$19.95 [Ano95b]. 2
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19]. $\$24.95
[Ano95c]. $\$27.50 [Ano96a]. 3
[And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SC19, SH14, TPD15, WR01, YSL+12]. $\$35 [Ano00a, Ano00b]. $\$35.00
[Ano99a, Ano99c, Ano99d]. 3D
[KA13]. $\$60 [Ano00a, Ano00b]. 3 [PBC+01].
A [ARYT17]. α [JMdVG+17]. $Ax = b$
[BG95]. D [UZC+12]. H^2/H^∞ [GWC95]. k
[She95, TK16]. \leftrightarrow [GRW+19]. M^3 [JSH+05].
\textbf{PVM+} [Wil94]. N
[HM05, Per99, Rol08b, SP99, SRK+12]. P_N
[OGM+19]. P_{N-2} [OGM+19]. SU(3) [BW12]. τ [RGDM15, RGDM16]. XY [KO14].

\textbf{-based} [R{\textsc{t}}+19]. \textbf{-body}
[HM05, Per99, SP99, SRK+12]. \textbf{-D}
[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. \textbf{-Dimensional} [LRQ01].
\textbf{-Lop} [RGDM15, RGDM16]. \textbf{-Means}
[TK16]. \textbf{-Queens} [Rol08b]. \textbf{-set} [She95].
\textbf{-stable} [JMdVG+17].

\end{titlewordcrossreference}
/Fortran [TBG+02], /many [KSG13].
/OpenMP [VDL+15].

1 [HMKV94, SOHL+98]. 10-Gigabit [HeF05]. 100 [Str94]. 100k [SC19]. 10th [DLO03, IEE96e]. ’11 [ACM11]. 11th [IEE97b, KKD04]. ’12 [Hol12].

2 [AKL99, BCAD06, BHS+02, BMPZ94a, CwCW+11, CD96, DPS08, FST98a, FST98b, GFD03, GGHL+96, GT01, GLL+98, GLT99, GLT00b, GLT00a, HGMW12, Jon96, LC97b, LSK04, MS02a, MK04, PS00a, SS99, SSL97, TRH00, VAT95, bT01a]. 2-D [BMPZ94a]. 2.0 [BO01, LPD+11, LW97, Mat00b, NSM12]. 2.2 [HRR+11]. 2.X [KS96]. 2000 [ACM00, CLBS17, LI01, LSK04, N05, ZStH01]. 2001 [ACM01, Old02]. 2003 [ACM03, AS14, D06, OL05]. 2004 [ACM04]. 2005 [ACM05, DKD07]. 2006 [ACM06a, MTW07]. 2007 [SM07]. 2008 [SMCH15]. 2010 [CGB+10]. 2011 [LCK11].

26th [Ano93a, SL94a]. 27th [Ano94h]. 28th [SL96]. 2D [ZZZ+15]. 2D-DWT [ZZZ+15].

2nd [FK95, IEE93c, Nag05, YM97].

3 [Bri95, Che10, FCS+19, GBH14, GBH18, GPL+96, GLT12, Gro12, HDT+15]. 3-D [BD95]. 3.0 [Ano97, Bra97, BRM03, DBB+16, KaM10, OP10]. 3.06 [Ano03]. 3.1 [WCC12]. 3.4 [Gei97, GKS97]. 3.X [KS96]. 3000 [HW02]. 33rd [ACM95a]. 37th [ACM06a]. 3D [GAP97, Gra97, LO96].

3D-Fall [Gr07]. 3rd [ACM96b, CGZ+08, Ano95a, IEE96a].

4 [Ano03, HRZ97, KSH01, NU05, SD13, SBT04]. 4.0 [DSGS17, JCP15, dOSMM+16]. 4.5 [CBY98]. 43 [UZC+12]. 45-degree [CT13]. 48th [IEE94e]. 4th [BDW97, EdS08, FF95, USE00]. 5 [TRH00]. 512 [RBB97c]. 5th [AD98, Cha05, IEE94a, MdSC09].

600 [LSK04]. 6000 [AL93, NMW93]. 64 [dCZG06]. 64-bit [Wil93]. 6th [ACDR94, DLM99, GT94, PW95, SHM+10, Sin93]. 7th [ACM95b, CGKM11, DPK00, GN95, PGB+95]. 857 [SMSGW06]. 897 [HWS90]. 8th [CMMR12, CD01].

90 [Ben95, SM03]. 9076 [Bri95]. ’91 [BG91, EJL92, IEE91]. ’92 [Sie92a, Sie92b, VW92]. ’93 [Ano93g, GGK+93, GHH+93, IEE93a, IEE93c]. 93SC038 [FS93]. 93SC041 [Gle93]. ’94 [BS94, DW94, GT94, IEE94b, IEE94h, PSB+94, SPE95, WPH94, dGJM94]. 947 [LTDD14]. ’95 [ACM95b, AH95, BH95, CLM+95, CJNW95].

2
Accelerator-Aware [APJ + 16].

9th ACM [ACM96b, ACM96c, BDLS96, BFMR96, CH96, IEE96, EIE96e, IEE96d, LHHM96, Li96, Sil96, Was96, YH96]. '97 [ACM97a].

978 [Che10, SD13]. 978-0-12-15933-4 [SD13]. 978-0-13-138768-3 [Che10]. 981 [Riz17]. 997 [Spe19]. 9th IEE95f, Kra02, YH96.

Aachen [Ano93a, GHH + 93]. Abortable [CAWL17]. Abortable-locking [CAWL17].

Abstract [MKW11, Wei94, BG94b, HTA08].

Abstraction [SW12, YWTC15]. Abstracts [IS16]. ACC [APJ + 16]. accelerate [SDM10, TBB12, VGP + 19]. Accelerated [AB13, EADT19, KA13, SCSL12, VZT + 19, CGK + 16, CP15, DCD + 14, HTJ + 16, KM10, PGdCI + 18, PTMF18, Sai01, iSYS12, SKM15, ZWL + 17, ARY17]. Accelerating [BBC + 19, Dab19, GM18, HF14a, HF14b, HKOO11, JK10, JLS + 14, JNL + 15, LSSZ15, LSVMW08, LSMW11, LAFAl5, FSV19, SCJH19, TMP16, TS12b, UZC + 12, YEG + 13, vdLJR11, HWX + 13]. Acceleration [CBGS + 15, RVKP19, TK16, CBYG18, CLBS17, HE13, MGSA + 15, OGM + 19, PRS16, RVKP18, SWS + 12]. Accelerator [APJ + 16, CLA + 19, SSAS12, SXMX + 18, YCA18, KL15, WHM019].

Accelerator-Aware [APJ + 16].

Accelerator-bound [CLA + 19].

Accelerators [AKL16, AC17, NTR16, SHM + 10, TCM18, KHBS19, MSZG17, UGT09, vdP17].

Access [Bri10, HDT + 15, IFA + 16, JJPL17, LB08, SGH12, WTR03, CLA + 19, CG99b, GBH14, GBH18, HGMW12, LOHA01, MN91, SFL + 94]. accesses [TGL02]. accessible [BHW + 12].

Accident [Smr93a, SBR95].

According [LGM00]. ACCT [FVD00].

Accumulated [KS15b]. Accumulative [IH04].

[HDO0, MLA + 14, RSPM98]. Accurately [BGdS09]. achievable [HMS + 19].

Achieving [CBPP02, Gro01a, KLRL11, RH01].

ACM [ACM90, ACM95a, ACM95b, ACM97b, ACM98b, ACM94, ACM05, IEE02].

ACM/IEEE [ACM97b, ACM98b, ACM05].

ACO [Tsu12]. ACPC [Bos96, Vol93].

Across [NE98, AL96, CZ95b].

ACSCI [Van95]. action [Hol95]. Active [CSAGR98, Pla02, SKH96]. Activities [MSS97, CMV + 94]. activity [Vet02].

Ad [IBC + 10, ITT02]. Ad-Hoc [IBC + 10]. Ada [Tou96, KP96, Tou96]. Adam [Ano95b, NMC95].

Adaptable [SPH + 18, BCM + 16].

Adaptation [WST95].

Adapted [Uhl95a].

Adapting [VFD02].

Adaptive [Ano94b, BCMR00, BDdSH01, Bir94, KCOq + 94, FSC + 11, HWX + 13, KK98, KT02, LFL11, MKC + 12, MBES94, MR17, MAGR01, OKW95, Ran05, RA09, SHM + 12, SGZ00, SS09, STY99, Sta95a, TM17, ZSG12, BDP + 10, CLSP07, DLR94, EZBA16, EASS95, IDS16, LCL + 12, SLGZ99, TCBV10, Was95a, Wk94, FSC + 11].

Adaptive-CoMPI [FSC + 11].

Adas [HHC + 18].

Adding [CB00, GRV01, PSM + 14].

Address [SS01, DO96]. addresses [CGL + 93].

ADDT [SR96].

ADI [Sch01].

adjacent [Kan12].

adjoint [RMNM + 12].

Adjusting [GSHL02].

Adjustment [DSL05].

ADOL [BGK08].

ADOL-C [BGK08].

Adoption [CMV + 94].

Adsmith [LKL96].

Advanced [Ano98, Ano00a, D + 95, Gc96, Ge97, GLT99, GLT00b, GLT00a, GLT12, KG93, SSAS12, TC94, Ben95, DMK19].

Advances [Bha93, BBH + 08, CD07, CDND11, KGRD10, KKV03, KKD04, KKD05, LKD08, LK01, MTWD06, RWD09, TBS12, AD08, BC14, BDW97, CD01, DKD05, DLM99, DKP00, DL003, HPS + 12, Kra02, HPS + 13, IEE97a].

Advection [AKK + 94, CT94a, TC94, CT94b].
Advection-Chemistry [AKK+94].
Advisor [GVF+18]. Aerospace [MAB05].
Affine [DBM16]. Affinity
[ETWAm12, AGG+95, NAAL01, vdP17],
Affordable [Rol94]. again [Har94]. against
[GHID12]. Age
[MdcS09, Ano94f, GJLT11, HK95]. AGBE
[SAS01]. Agent
[Mat01b, MCB05, ZWZ+95]. agent-based
[MCB05]. agents [KBA02]. Aging
[L RBG15]. Aging-Aware [LRBG15].
AIMS [Yan94]. Air
[AKK+94, BZ97, MPD04, MSML10, BTC+17, SH94, Syd94],
airspace [TCP15]. Aix
[GA96, Ano01a]. Aix-les-Bains [GA96].
Al
[Ano95b, NMC95]. Alamos [Old02].
Albuquerque [IEE91, IEE95d]. Alchemist
[GRW+19]. ALDY [GS96]. ALE [HAA+11].
Algebra
[BDT08, CDD+13, Coo95b, DGH+19, IS16,
MGMH97, Neu94, van97, BKvH+14, Cal94,
Cco95a, LRLG19, PMZM16, dCH93].
Algebraic [CGPR98, Lev95]. Algorithm
[ACMR14, BST+13, BP99, BT01b, DYN+06,
FJBB+00, HA10, HD02b, ITT02, MW98,
PKd95, PB12, RDMB99, Rôl91, SAS01,
Sch96a, SLSMW10, SWH15, Sta95b, TK16,
WHdB05, ART17, AAAA16, ARL+94,
AD95, BBC+19, BB95a, BAV08, BY12,
BCM+16, CUC95, CT13, CSW99, GM94,
GCC+13, GGL+08, GKK09, GP95, HWS09,
IM95, JR13, KDS012, KY10, KWEF18,
Kan12, KBP16, KN17, KO14, Kon15,
KRC17, LYIP19, LYZ13, MM92, MLVS16,
MK00, NB96, NAJ99, OKW95, OGM+19,
OMK09, PGFB+07, PSLT99, Ram07,
RJC95, RAGJ95, Sch96b, SOA11, Sur95a,
TNIB17, TGGKL19, Was95a, YULMTS+17,
ZSK15, ZWL+17, dh94, van93, HWS09,
LTDD14, Riz17, Spe19, SWSW06].
Algorithm-based [PKd95].
Algorithm-Dependant [BP99].
algorithmic [HHSM19, RJDH14].
Algorithms [ACM95b, ATC94, ADRCT98,
ASA97, CCSM97, DALD18, DAK98, DK06,
FB94, GARM00, GK10, HO14, HHK94,
IEE96d, KTB+19, KK02a, LHHHM96, Li96,
LAD16, MTSS94, MGMH97, MB815, Nar95,
Pet97, PBK00, SG15, VRS00, AK99, AL92,
BJ96, BMS+17, BID95, DDLM95, FR95,
FP92, GWC95, HL17, HPLT99, HKOO11,
HS95b, Jou94, JRM+94, KL95, KRG13,
LFL11, LNW+12, LRLG19, MTK16,
MJG+12, NP12, Ols95, PP16, Pan95b,
PBK99, PD11, PCS94, RHG+96, SPE95,
Sur95b, TSZC94, WCVR96, YLZ13]. alias
[Soa11]. alias-free [SOA11]. aligned
[AGIS94]. Aligners [SMM+16]. Alignment
[OSMM+16, AMHC11]. all-port
[RJMC93]. All-to-All
[LZH17, LZH18, Trâ02b]. Allgather
[KTB+19]. Allgatherv [KTAB+19].
Allocation
[AGS97, BS01, DGG+12, RFRH96]. alloy
[TG94]. ALM [PZ12]. Altera
[RGB+18, TK16]. Alternative
[EM94, SWHP05, Trâ12a, EKTB99].
ALWAN [HB96a, HB96b, MSB97].
Amazon [ZLZ+11]. AMBER [SL95].
AMBER4 [VM95]. American [Ara95].
AMIP [Gat95]. Among [CB16]. AMPI
[ZHk06]. AMPIC [CCHW03]. amplified
[EZBA16]. AMR [LHR07]. AN2 [HBT95].
analogue [WW+96]. analyses [ANS95].
Analysis
[BHW+17, BR02, BGG+02, BBC+00, BDL98,
CGLD01, CLA+19, EML00, FK01, FJK+17,
Hol12, JF95, KL94, KNT01, KRG13, LCK11,
MK17, MCLD01, NAW+96, NMS+14, Ost94,
PZ12, PGAB+05, SPL+12, SBR95, Sn01,
TFGM02, Whi04, WM01, BB93, BBH14,
BBH+15, Che99, DSGS17, EPP+17, GR95,
FGB+14, GSM+00, GKS+11, GE95, GE96,
GT07, JB96, JGL05, LC07, LLG12,
LRLG19, LL16, LBH12, MMB+94, MMW96,
MLA+14, MJPB16, Pat93, PHJM11, PSV19,
PGAB+07, DSCP13, iSYS12, SS94, SDJ17,
SPH95, Sh94, Si696, SWL+01, SSG95,
analytic [THDS19].

analytical [BHW+12, HK09, JS13, KN17].

Analyzer [JJPL17, KKM15]. Analyzers [Ano01a]. Analyzing [BRU05, DF17, FM09, HG12, HeF05, PFG97, RPS19]. anasslich [Ano94c]. Anatomy [KWEF18].

Annealing [WHMO19, FH97]. Annecy [VW92]. Anniversary [Ano92, Ano93f].

annotated [GGH99]. Annotation [MGA+17]. Announcement [WRMR19].

Applications [Ano94f, Ano03, Ara95, Arn95, ASB18, AGMJ06, BKH+13, BR04, BDV03, BAG17, BFM96, BFMT96a, CGK+16, CGBS+15, CDMS15, CLSP07, CMM+06, D298a, DSZ94, DPF19, D+95, DCH02, EKTB99, EGHH99, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHD12, GJMM18, GS96, GSM+00, GHH+93, HZ99, HAJK01, JC17, JPTE94, LMG17, LCM17, LBB+19, LZHY19, LS08, MA09, MKBM12, MLC04, MSMC15, MS96b, NSBR07, NCB+12, NFG+10, PK05, PT+16, Rab99, RS95, RGPG+18, SjlM14, SPE95, SBG+12, SDJ17, SGH12, SG05, SIC+19, SLG95, SB01, SD16, SRS+19, TMC09, TBB12, TPLY18, Vet02, Wis96b, Wol92, WT13, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94]. Applied [FGRD01,}

TMC09, TW12, TFZZ12, Uhl95a, Uhl95c, VM94, YCL14]. analytic [THDS19].

analytical [BHW+12, HK09, JS13, KN17].

'Annai [CEF+95]. Annapolis [IEE96c]. Annealing [WHMO19, FH97]. Annecy [VW92]. Anniversary [Ano92, Ano93f].

annotated [GGH99]. Annotation [MGA+17]. Announcement [WRMR19].

Applications [Ano94f, Ano03, Ara95, Arn95, ASB18, AGMJ06, BKH+13, BR04, BDV03, BAG17, BFM96, BFMT96a, CGK+16, CGBS+15, CDMS15, CLSP07, CMM+06, D298a, DSZ94, DPF19, D+95, DCH02, EKTB99, EGHH99, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHD12, GJMM18, GS96, GSM+00, GHH+93, HZ99, HAJK01, JC17, JPTE94, LMG17, LCM17, LBB+19, LZHY19, LS08, MA09, MKBM12, MLC04, MSMC15, MS96b, NSBR07, NCB+12, NFG+10, PK05, PT+16, Rab99, RS95, RGPG+18, SjlM14, SPE95, SBG+12, SDJ17, SGH12, SG05, SIC+19, SLG95, SB01, SD16, SRS+19, TMC09, TBB12, TPLY18, Vet02, Wis96b, Wol92, WT13, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94]. Applied [FGRD01,
HC06, KaM10, GFIS+18, HMKV94, MM92, NF94, PGK+10, DMW96, Was96). Applying [GSM+00]. Approach [AZG17, BHM94, BJ93, BHNW01, CRGM14, CD98, DLM+17, FFP03, GCL12, HD00, KBA02, KK02a, KmWH10, LGM00, Mar06, PPR01, Pet00a, Pet00b, RGD13, Ros13, TJPFI2, BK11, Bis04, BTC+17, CLYC16, CDF99, CRGM16, Din96, EO15, FMS15, HDB+13, JS13, KLS+19, NL92, NEM17, OHG19, OW92, SVC+11, SEC15, TWF09, VGP+19, WO09]. Approaches [JCH+08, Ney00, SWHP05, SM02, AKB+19, BFLL99, CB11, PS00b]. Approximate [Huc96, MM02, GGC07, GG09, MM03]. Approximation [SLJ+14, SJLM14]. April [ANS95, AH95, Ano93h, Ano94h, CH96, DR94, GH94, Ham95a, IEE92, IEE93b, IEE95f, IEE96e, IEE97b, IEE05, LCHS96, MC94, Nar95, Sie94, SW91, Ten95]. APS [GT94]. AQsort [LTS16]. AQUAgpusph [CP15]. arbitrary [HP11]. ARCH [Ada97, Ada98]. architectural [GCC+07].

Architecture

[BG94a, CGC+11, CLOL18, EBK01, EM02, FD97, Fuj08, HRZ97, IEE97c, ITK00, LSLZ02, PT01, PS01b, SMM+16, SC04, SYL19, WKPI1, YTH+12, BCR99, BG94c, CSPM+96, CS96, CBGL19, DMP96, FCH+95, HK90, MMDA19, MRH+96, PWD+12, SWYC94, SSGF00, Sgu03, SP11, WCC+07, YAJG+15, YEG+13, ZWZ+95]. architecture-independent [DIN96].

Architectures [ACM95b, BTD08, BFG+10, CHP01, HD02a, HK94, IEE96d, KDT+12, LHHM96, L96, LZH17, LAD16, MS02h, MTSS94, MSCP00, NO02b, Nar95, PZ12, SXMX+18, TSCaM12, YKW+18, ZTD19, BDP+10, BN00, BKML95, CLM+95, CDZ+98, DM93, DZZY94, GDC15, GP95, HHS18, Hos12, LCL+12, LDJK13, MLC04, NO02a, PY95, RFH+95, RMMN+12, SPL99, TDG13, TSZC94, Uhl95a, VDL+15, WST95, dIAMC11]. Area [CDHL95, Fis01, BHW+12, FTG96, FGG+98, KHB+99, Qu95]. area-based [Qu95]. arising [ARvW03]. Aristotle [FSV14]. Arithmetic [Ane98, JPT14, Sur95a].

Arithmetic [HD00]. Arizona [IEE95b, JB96]. ARM [AFGR18, MGL+17]. ARM-based [AFGR18]. Array [DDPR97, HD02b, LTS16, WGL17, CCM12, DK13, HSE+17, JKN+13, Ot93, TOC18, Wal02]. arrays [HCL05, BRS94]. Arrival [FPY08, MLVS16]. art [LF93b]. Artificial [BPC94]. ARTUR [FBLL99]. ARVO [BHW+12]. ARVO-CL [BHW+12]. ary [Pan95a]. Ascona [DR94].

Asches [Thr99]. ASL [FGRT00]. ASME [LF+93a]. aspects [CG99a]. Assembly [PGF18, TP15]. Assessing [LMG17, dLR04, MABG96, TSCaM12, CMV+94]. Assessment [Mat01b, TAH+01, Boi97, LH98]. Assignments [Cza13, CK99]. assist [Kik93].

Atlanta [AGH+95, Ara95, USE00, UCW95]. ATM [GFV99, HBT95, Jon96, LHD+94, LHD+95]. Atmosphere [BS93]. Atmospheric [HK93, KBH91, RSBT95]. atom [MGG05].

Atomic [LRT07, LAFA15, SYF96, DS13, Hin11, SY95, XF95]. atoms [BDW16].

atoms [JLS+14]. Attacks [PV97, GHD12]. attempt [GM18]. Attraction [GB96].

audio [BJ13]. Augmented [GFJT19].

August [ATC94, Agr95a, BFMR96, DMW96, GT94, HAM95b, IEE94g, IEE95k, IEE95i, IEE96f, LF+93a, Ot94, PSSB+94, PBG+95, Ree96, VV95, Was96]. Aurora [LdB19]. Austin [IEE94b]. Australasian
Australia [GN95, Nar95, ACDR94, Bil95], Australian [ACDR94, GN95]. Austria [Bos96, BH95, Kra02, TBD12, Vol93]. Austrian [Fer92, FK95]. Austrian-Hungarian [Fer92, FK95]. Auto [CC17, DWM12,DBG11,PSB+19, RDLQ12, WG17, FE17, SH14, TWFO09]. Auto-Generation [CC17, DWM12]. Auto-parallelization [TWFO09]. Auto-scoping [RDLQ12]. Auto-tuned [PSB+19]. Auto-Link [GMPD98]. AutoMap [GMPD98]. Automata [Car07, BBK+94, SC19]. Automated [BMPS03, MYY95, RKKP18, LLG12, RFRH96, Yan94]. Automatic [BVM12, BBH+08, BBK+06, CBL10, Cza03, DW02, EML98, EM00, FAFD15, FM11, GKF13, HZ99, JFY00, JIY99, JJPL17, KHO12, MB18, MGA+17, NCB+17, OWSA95, RA99, RGD13, SZ11, SR96, SSB+17, TJPF12, WC15, WM01, APBeF16, AMuHK15, AGG+95, BR04, BRH08, CHK15, CdGM96, CTP+95, HZ06, LEM09, LF93b, WMP14, ZHK06, FVD00]. Automatically [VZT+19, WBSC17]. automotive [Ano93a, Ano93b]. Autotuning [BAG17]. Auxiliary [STMK97]. Available [Bak98, BF98]. Avoidance [CRGM14]. avoiding [GBK+18]. AVTP [FHC+95]. award [Str94]. Awards [Str94]. Aware [APJ+16, BHP+03, Ben18, EGR15, GFIS+18, HVA+16, LRBG15, MJB15, Pan14, ZLP17, BLVB18, CLA+19, CGH+14, FA18, GHZ12, HJYC10, HG12, JK+13, KGB16, MBBD13, MSMC15, SHM+12, SKP+12, WRSY16]. awareness [HK99, VGS14]. AXAF [NH95]. AXC [CBIGL19]. B [Ano01a]. Back [BIC+10]. Backend [IOK00]. backtracking [PGdCJ+18]. Backup [Gua16]. Bains [GA96]. Balance [HE02]. balanced [EZBA16]. Balancing [BkdSH01, DBA97, DII02, DK06, FSG19a, GCB12, MM02, PT01, Pus95, ST97, Wal01a, Bji94, BS05, DZ96, DL09, DvddLVS94, DR95, FMBM96, FH97, Hum95, JH97, MM03, NP94, SGS95, SY95]. Balatonfured [DKP00]. balls [BBH+15]. Baltimore [IEE02, SPH95]. Bamboo [NCB+12]. banded [DG95]. Bandwidth [NE01, RK01]. Bangalore [Kum94, PBPT95]. Barbara [ACM95b, AH95, IEE95f]. Barcelona [DLM99]. BARRACUDA [EPF+17]. Barrier [CLD+15, SDB+16, YLZ13]. Based [Ada97, AHD12, AAB+17, AP96, BHW+17, BDG+91b, BoFBW00, CAM12, CGC+02, CLOL18, CLP+99, CDPM03, DW02, DLLZ19, DBK+09, FSC+11, FC05, For95, FSL98, GSxx, GFJT19, HF14a, HF14b, HM01, Hsu00, KLR16, LSL02, LZH18, KL11, LW04, LAFA15, MDM17, MGL+17, MMH98, N5L16, NE01, NHT02, NPS12, PPT06a, PCT07, PSSS01, RMDM99, SPL+12, SM03, SM93a, ST02b, ST97, SJK+17a, SJK+17b, THS+15, TD98, WTTTH17, WC09, WZH16, Wis96a, WM01, WJB14, YG96, YTH+12, ZWJK05, AKB+19, Aha98, AASB08, AAAA16, AVA+16, Ano03, AFG18, BLP13, BDG+92a, BLVB18, BOC+03, Br95, BFM196a, Cww+11, CC10, CPM+18, CKnWH16, CRM14, CXX+12, DXX96, FE17, FFFB99, FJZ+14, FNSW98, FSTG99, FLPG18, FFFC99, FWS+17, G591a, G592, GKS+11, Gra97, Gra97, GFPG12, HZ94, HWX+13, IM95, ITT99]. based [JL18, JKM+17, KL15, KPL+12, KPNM16, LV12, LRW01, LKL96, LNW+12, LGG16, LMM+15, MYB16, MMO+16, MKP+96, MCB05, MT96, MS99a, MS99b, MFPP03, Neu94, NHT06, OLQ+16, OP98, PARB14, PES99, PPT96b, PK05, PS19, PAdS+17, DG+10, FSH11, PKD95, PSK+10].
PSLT99, Qu95, Rag96, Röt19, STP+19, SJLM14, SS09, SG05, SSS99, SZ11, SVC+11, SXMX+18, SLS96, SKB+14, Sto98, Stp18, Str96, SLN+12, TBB12, TGKL19, TY14, TBR96, TWFO09, TMPJ01, WHMO19, WO09, WTOF14, WGG+19, Wis96b, WCS99, YC98, YL09, YWC11, YSL+12, ZAFAM16, ZLP17, ZHK06, ZZG+14, ZWW95, vHKS94, BFM196b, FH97, KSJ95, WAS95b, FO94, GK97, KSJ96, PY95, Sut96, TSZC94, ZPL896. Basel [Ano94i]. Basel [Ano94i].

Basic [PGC02, BKvH+14, BR94].

BaSierte [Gra97].

Basis [OMK09, RB01].

Batch [VLMPS+18]. Bath [BP93].

Bayesian [CB00].

Bayesian [CB00].

Beach [IEE93b].

Beam [OIH10, RCFS96].

Bearings [NF94].

Beguelin [Ano95b, NMC95].

Behavior [BFM97, DeP03, Ros13, LLG12, PPF89, YMYI11].

Behavior [BFM97, DeP03, Ros13, LLG12, PPF89, YMYI11].

Behar [OIH10, RCFS96].

Bench [BP93].

Bench [BP93].

Benchmarks [CRE99, KAC02, MM07, NA01, RK01, TSB02, TSB03, WAS95b, ZsnH01, CDD+96, MMH99, Ste94, WT11, CEO00, WT12].

Benchmarking [GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02].

Benchmarking [GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02].

Benefits [LB16, PSM+14, SRIP17].

Benutzerprofile [WI94].

Benutzertreffen [Ano94c].

Beowulf [CMM03, Ste00, UP01].

Beowulf-Class [Ste00].

Berlin [PW95].

Best [GT19].

Betriebssystemkern [Sei99].

Better [Str94].

Between [AAB+17, BS07, ASS+17, AKE00, BID95, GFV99, JAT97, LDCZ97, MSP93].

Beverly [IEE93f].

Beyond [Gei93a, GKPS97, Gei98, Gro12, Ohu14, Gei93b, LSG12, Sch93, SC19, SHM+10].

Biconjugate [GFPG12].

Bidirectional [HE15].

Big [CLOL18, GTS+15, LK14, VPS17, ASS+17, Str94].

Biharmonic [RB01].

Bill [Ano99a, Ano99d].

Billions [MRB17].

Binary [CG93, EPP+17, SGS95, TCBV10].

Binary-level [EPP+17].

Binary-splitting [TCBV10].

Binding [CLL03, Coo95b, MG97, Coo95a].

Bioinformatics [PB12].

Biological [CNM11, VBB18, BA06].

Biology [SYL19].

Biomolecular [BCGL97, PZKK02].

BIP [CDP99, Tou00].

BIP/Myrinet [CDP99].

Bit [HLO+16, Wi93].

Bit-parallel [HLO+16].

Bitonic [PShL11].

Black [FSXZ14, Kha13, van93].

BLACS [DSW96, DS96a, Wal95].

Blame [DGS17].

BLAS [Add01, ARvW03, FMFM15].

BLASTP [LSMW11].

Blaze [PWPD19].

Blaze-Tasks [PWPD19].

Block [DDPR97, SMM+16, WO95, ZBB, ADDR95, DR18, GP95, HKMCS94, HC08, LYP19, WO96].

Block-Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96].

Block-triangular [DR18].

Blocking [FH98, BCH+08, HKT+12, Nak03, HTA08, STP+19, TGKL19].

Blood [Pat93].

Blue [KMH+14, AAC+05, BGH+05, EFR+05, LM13, MV17, MSW+05].

Blocked [Wil94].

BMMC [CC99].

Bodies [AGIS94, LHLK10].

Body [RB01, RTRG+07, IHM05, NS16, Per99, SP99, SRK+12, ADB94].

BOF [Mat00a].

Boltzmann [OTK15, CGK+16, MS95, Pri14, SJK+17a, SJK+17b].

Bond [THDS19].

Bond-order [THDS19].

Bonn [MTWD06].

Book [Ano95b, Ano95c, Ano96a, Ano99a, Ano99b, Ano99d, Ano00a, Ano00b, Che10, Mar06, Nag05].

C [Gal97, Pri14, SM12, SSL97, TBG+02, VDL+15, Vre04, BGK08, BB00, CNC10, CCHW03, DARG13, Don06, FLMR17, FHK01, GTH96, GSI97, Gör01, KK02a, KPO00, KLM+19, LYSS+16, MHSK16, Qui03, Röt19, SSB+17, SC95, TNIB17, UZC+12, YULMTS+17, YSVM+16, ZT17]. C# [WLR05]. C-to-CUDA [UZC+12]. C/C [SM12, KPO00]. C11 [BDW16]. C2CU [TNIB17]. CA [ACM95b, Ano89, BBG+95]. Cache [LZH17, LZH18, MC18, MM07, NIO+02, NIO+03, SS01, SVC+11]. Cache-Coherent [SS01]. cache-friendly [SVC+11]. Cache-Oblivious [LZH17, LZH18]. Caches [LB16]. Caching [KLCW07, D096, WMRR17, WRMR19]. CAE [KDL+95a, KDL+95b]. CAF [GBR15, Mar05]. Caffe [AHP17]. calculating [EZBA16, KD12]. Calculation [GDM18, QRM96, GSKM17, KN17, MM95, NS16, SR11]. Calculations [RB01, Sta95b, ART17, Hol95, WH96]. calculus [PQ07]. Calif [IEE93f]. California [ACM97b, Gat95, IEE93a, NM95, USE94, AH95, GE95, GE96, Has95, IEE93b, IEE93f, IEE94g, IEE95c, IEE95f, LF+93a]. Call [DW02, MCP17]. Call-Graph [DW02]. Calls [FHKO1, ALGv96]. CALPHAD [TKP15]. Cambridge [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. CAMeL [KDL+95a, KDL+95b]. CAMeL/PVM [KDL+95a, KDL+95b]. CAMP [CLM+95]. Can [Gro02a, SBG+12]. Canada [BG91, GKG+93, IEE95a, IEE95i, VOS03, IEE95e, Levy95]. Cancellation [TBS12]. cancer [Str94]. Cancun [Sie94]. CAP [GTH96, MGMH97]. CAP-Specified [GMMH97]. Capabilities [Gei97, CG99a]. capability [BBH+13b]. capable [KYL03]. capacity [RCG95]. Capture [DW02]. Capturing [FM09]. card [SR11]. Cardiac [ORA12]. cards [KY10, KME09]. Carlo [ADRCT98, AK99, DAK98, HJBB14, NSLV16, RR00, RP95, SK00, SKM15, WH96, ZZ04]. Carnegie [IEE94d]. Carolina
clock [NB96]. clocks [TPLY18]. CLOMP
[BGaS09]. clone [ZWL+17]. Closer
[HCZ16]. Closure [CPGR98, KH15, PPR01].
Cloud [SIS17, URKG12, ZLZ+11, ZLP17,
GFIS+18, GHZ12, GWVP+14]. Cluster
[AUR01, BKGS02, BL95, BM97, CRE99,
CMM03, HD02a, ES11, GGCG99, Gei94,
Gei00, GSN+01, GT01, GC05, HD02b,
ITKT00, IDD94, KKH03, KS96, KS01,
KHS01, LR01, MTF95, MM01, NO02b,
OF00, PFG97, Rb01, RsT06, RLL01, SCR92,
SHHI01, SHT01, ST02a, TOTH99, Trä02b,
YCA18, bT01a, AL93, BPL93, BALU95,
BTR+17, BID95, CCF+94, Cou93, ED94,
GK97, GMU95, Heb93, KEGM10, KO14,
Kom15, LC07, Liu95, MW93, MM03, NO02a,
PDY14, RJDH14, SS94, SR95, ST02b,
SLS96, SY95, SNN94, Tho94, THM+94,
Ts95, UH96, YWW95, ZLZ+11, MS04].
cluster-based [SLS96]. Cluster-enabled
[SHHI01]. clustered [KHB+99]. Clustering
[BBH12, HA10, RJC95, GGL+08, YCL14].
Clustern [MS04]. Clusters
[AH00, AHHP17, BDH+95, BDH+97,
BVW+12, CLOL18, CSC96, DK06, GDM18,
GMdMBD+07, GSY+13, HPP02, HSMW94,
HVA+16, Hus00, JNL+15, LC97a, LH95,
LVP04, LHCW05, MS98, MPFP03, Pan14,
PKB01, PT01, PS00a, Push05, Reo10,
dSMM+16, SF98, Sl99, Ste00, Tou00,
UPO1, WLN03, WT12, YWCF15, YKI+96,
AB95, ALR94, ADB94, ABG+96, ADMV05,
BWT96, BDV03, Bru95, CRE10, EKT99,
GBF95, HCL05, Hus99, JKKH08, Jou96,
JR10, JRM+94, KYO13, KYO15, KSL+12,
KJEM12, LBD+96, Lee12, LL13, LL95,
LKYS04, NMW93, NN95, PS07, PRS+14,
PM95, PR94c, PRS16, PL06, RCFS96,
RGMFL16, Slo05, SC96a, SL95, TFZZ12,
WLN06, WLYC12, YST08, YL09, YHL11,
YWC11, ZHS09, dCH93]. CM [SBG+02],
CMMD [Har94, Har95]. CMPI
[GHZ12]. CMS [FMS15]. CNF [IKM+01, IKN+02].
CO [ACM01, AHHP17, GDM18, HJ98,
PSB+19, TOC18, Wal02]. co-array
[TOC18, Wal02]. Co-designing [AHHP17].
co-execution [PSB+19]. Co-Expression
[GDM18]. Co-processed [HJ98]. Coarray
[GBR15, YBMCB14]. coarrays
[SMCH15, SC19]. Coarse
[ADRCT98, IOK00, KHO1, LGM00,
NIO+02, NIO+03, Heb93, RJ95].
Coarse-Grain [IOK00]. coarse-grained
[Heb93, RJ95]. coarsening [PSL19].
Coast [IS16]. Coastal [GAM+02].
CoCheck [MS96b, Ste96]. Code
[AH01, And98, BCGL97, CB00, CP97,
CCK12, CCBPGA15, DDL00, DZDR95,
HE02, KaM10, KAMAMA17, KHS01, LD01,
MS02b, MM07, PBC+01, RGD13, SM03,
SZBS95a, Stat95b, TGBS05, AMS94, ADB94,
AFST95, BCAD06, BADC07, BW12, Bha98,
Bri95, Cou93, DLR94, EZBA16, FMFM15,
GSMK17, He93, IJM+05, JL18, KPL+12,
KH10, MGS+15, MRH+96, MWO95,
PK+10, PSK+10, RP95, RVK018,
SZBS95b, SK00, SFLD15, SMSW06, TBD96,
VLVdG08, VDL+15, Wor96, YL09].
Codebooks [PMM95]. Codes
[FAFD15, JFY00, SWH15, HWS09,
HASnP00, KBG+09, LRW01, Mal01,
OLG+16, WB96]. Coding
[Uhl94, Uhl95b, SCC96]. Coefficients
[MW98, AYRT17]. cognitive [PWD+12],
Coherence [MM07]. Coherent [SS01].
Collaborative [DCP12, DCP14].
Collapse [PKYW95]. Collecting [BMR01].
Collection [LTRA02, DH95, MGC+15].
collection-oriented [MGC+15].
Collection [JFGF12]. Collective
[BIL99, BIC05, CAA00, FVDO0, FCLG07,
FPY08, GLB00, GMdMBD+07, Hus99,
KH96, MJG+12, PGB+05, SG15, TRG05,
VFD02, WRA02, FA18, HS12, HMK+19,
HG12, HWW97, KHB+99, KBHA94,
KMH+14, MBBD13, Pan99b, PGBF+07,
PGB+07, RJMC93, SCB14, SCB15, SS99,
TD99, Trä12a, TFZZ12]. Collectives
MB12, Mar09, MKW11, SSE12, SKS01, TJPF12, TBG+02, TGBS05, BAG17, HEHC09, LME09, LHC+07, LLCD15, MA09, MüI03, PP16, RKBA+13, SHII01, THH+05.

Compilers
[Ano01a, CFF+94, LZ97, MKV+01, SBT04, SS96, Hos12, PBG+95, ZT17]. Compiling
[DBM16, Hos12, CGK11]. Complete
[Bds07, GHL+98, Nag05, Per97, SOHL+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, PRS+14, SOHL+96]. Completed [PTT94].

Complexity [NPS12]. component
[HLK10, KRKS11, Squ03]. Components
[BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, GKD+18, LRW01]. Composable
[MLGW18]. Composed [We94].

Composing [PHA10]. composite
[MALM95, YPA94]. Composing
[GPC+17]. Composition
[CTK00, Cot04, DLB07, FC05, Kh41, CFP96]. compound
[LLC13, SAP16]. comprehensive [RST02].

compressible [HHSM19]. Compression
[FSC+11, KBS04, VPS17, AAAA16, HE15, UH96, Wu99]. compression-based
[AAA16]. COMPSAC [IEE95].

Compton [BCD96]. Computation
[BKGS02, B+05, Cer99, DSM94, DSS00, EMO+93, ESM+94, Fer10, FF95, GS91b, HIP02, IEE94a, IEE96c, KS15b, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SMO93, VZT+19, WTHTH17, ACM97a, AC07, ABDP15, Bis04, BALU95, Bos96, BHKR95, CL93, CMH99, CPK+93, Dab19, DZZY94, HLM+17, HK94, KB01, KBHS91, KJ+16, KG93, Lev95, M1AV10, Neu94, NZ94, NCKB12, PF05, PKE+10, Röll00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational
[ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SYL19, SN01, TDBEE11, TGE09, WPH94, Whi04, AGM06, BvdB94, BDG+92c, BR95a, HVSC11, KBG+09, PBK99, RBB15, SPE95, SZBS95b, STH96, Str94, VDL+15, BR95a, CCHW03, R+92, SL94a, WPH94].

Computationally [DFN12].

Computations
[AGH+95, ACGR97, CGU12, CGPR98, IH04, PBK00, PMvDG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGDK92, HJYC10, KD13, MRRP11, MR96, SM93b, SAP16, TS12b].

Compute
[DBK+09, LSM+18, KKL11, OHTG19, VLMP+18, ZLZ+11].

Computer-intensive [LSM+18]. computed
[FWS+17, SS99].

Computer
[AC06a, Ano94a, GTH96, IEE95i, IEE96b, IEE97c, IS16, KCR+17, Neu94, Old02, GS91b, STR+10, SU96, BNN96, BNN+96, CMH99, CPK+93, Dab19, DZZY94, HLM+17, HK94, KB01, KBHS91, KJ+16, KG93, Lev95, M1AV10, Neu94, NZ94, NCKB12, PF05, PKE+10, Röll00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational
[ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SYL19, SN01, TDBEE11, TGE09, WPH94, Whi04, AGM06, BvdB94, BDG+92c, BR95a, HVSC11, KBG+09, PBK99, RBB15, SPE95, SZBS95b, STH96, Str94, VDL+15, BR95a, CCHW03, R+92, SL94a, WPH94].

Computationally [DFN12].

Computations
[AGH+95, ACGR97, CGU12, CGPR98, IH04, PBK00, PMvDG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGDK92, HJYC10, KD13, MRRP11, MR96, SM93b, SAP16, TS12b].

Compute
[DBK+09, LSM+18, KKL11, OHTG19, VLMP+18, ZLZ+11].

Computer-intensive [LSM+18]. computed
[FWS+17, SS99].

Computer
[AC06a, Ano94a, GTH96, IEE95i, IEE96b, IEE97c, IS16, KCR+17, Neu94, Old02, GS91b, STR+10, SU96, BNN96, BNN+96, CMH99, CPK+93, Dab19, DZZY94, HLM+17, HK94, KB01, KBHS91, KJ+16, KG93, Lev95, M1AV10, Neu94, NZ94, NCKB12, PF05, PKE+10, Röll00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational
[ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SYL19, SN01, TDBEE11, TGE09, WPH94, Whi04, AGM06, BvdB94, BDG+92c, BR95a, HVSC11, KBG+09, PBK99, RBB15, SPE95, SZBS95b, STH96, Str94, VDL+15, BR95a, CCHW03, R+92, SL94a, WPH94].

Computationally [DFN12].

Computations
[AGH+95, ACGR97, CGU12, CGPR98, IH04, PBK00, PMvDG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGDK92, HJYC10, KD13, MRRP11, MR96, SM93b, SAP16, TS12b].

Compute
[DBK+09, LSM+18, KKL11, OHTG19, VLMP+18, ZLZ+11].

Computer-intensive [LSM+18]. computed
[FWS+17, SS99].

Computer
[AC06a, Ano94a, GTH96, IEE95i, IEE96b, IEE97c, IS16, KCR+17, Neu94, Old02, GS91b, STR+10, SU96, BNN96, BNN+96, CMH99, CPK+93, Dab19, DZZY94, HLM+17, HK94, KB01, KBHS91, KJ+16, KG93, Lev95, M1AV10, Neu94, NZ94, NCKB12, PF05, PKE+10, Röll00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07].

computation-communication [SH14].
Sun92, Sun93, Sun94a, Ten95, VV95, VW92, WN10, YH96, YG96, ZL17, ZL18, AGdT02, ARYT17, AL92, AH95, ASCS95, Ano93h].

computing
[Ano94e, Ano94b, Ano03, ADDR95, AMV94, BPG94, BDG+92a, BDG+94, BKML95, Bru95, BHW+12, CZ95b, CZ96, CHKK15, DLR99, DKM08, DW94, D+95, DMW96, DE91, EKTB99, EJL92, FBD01a, FGRD01, FO94, FS95, Fer98a, FS98, FME+12, FHC+95, GGGC99, GS02, GS91a, GS93, Gei93b, Gei94, GH94, GLyC97, HP05, HW11, HH14, HPY+93, HS95a, HH95, mH12, IEE97a, IM95, JPOJ12, JY95, JIM+11, JPTE94, KO14, Kos95b, KSSS07, LV12, LH98, LCH96, LHD+94, LHD+95, LM13, Maf94, MZK93, Mal95, Mar07, PGS+13, PKB06, Pen95, PKG+10, PTT94, PBG+95, PNV01, PWD+12, RBS94, RJDH14, Sch93, SGS95, SMS00, STT96, Sti94, SP11, Sun94b, SGDM94, Sun95, Swa01, SD99, TJ90, TKP15, TDB00, Tho94, TSS98, VM94, Vis95, Was96, YULMTS+17, YLC16, YSL+12, Zem94].

computing
[ZWL13, ZGC94, ZHS99, ZKRA14, ACM98a, Kon00, PW95, Per96, SCR92, TGM90, NMC95, Ano95b].

Concept
[KaM10, LTR00, SB95].

Concurrent
[Ano94i], Concurrency
[ME17, NPS12, DGB+14, PTG13].

Connected
[BT01b, KRKS11, OF00, Pet01, GK+18].

Connectivity
[Whi94].

Conquer
[CTK01, Cza02, Cza03], conscious
[ZA14].

Considerations
[CJP19, FA18].

Connect
[DPFT19, WSC17, YYW+12].

Consistent
[TGT10, CG96, CG99a].

Construct
[DM93].

Constructing
[ART17].

Constructs
[KDT+12, PG90, BKH+13, BN00].

consumer
[ACJ12].

CONTAIN
[SB95].

containers
[Str12, ZT17].

content
[GB+14].

Contention
[ALB+18, ALW+15, DSG17, Zal12].

Context
[DGG+12, ZL18, DR18, MdSAS+18, OLG+16, PAD+17, SCB15].

contex bounded
[MdSAS+18, PAD+17].

Contexts
[CS14].

Contiguous
[WTR03].

continual
[NS16].

continuation
[VT15].
Contrasts [GGS99]. Control [FLD98, FM09, IEE94e, MSS97, CMZ99, MBKM12, MH18, OHG19, SFL+94, SHPT00].
control-flow [MH18]. controller [GWC95]. convection [BB95b, CEGS07, TVV96].
Convection [ACM98b, ACM99, ACM00, Hol12, IEE94b]. Convex [GCN95].
Conversion [BB95b, CEGS07, TVV96]. Correctness [MM07].
Correct [BL99, Spe19]. Correctness [HMK09]. Correlated [MM07]. corruption [FME+12].
Coscheduling [GRV01, SGLH01]. Cosema [KBH93].
cosmological [BAD07, Sai10]. Cost [KS15b, RLL01, GKH17, GWV+14, WU99].
counting [JR13]. County [ACM98b].
Coupled [MBS15, SS01, SBR95, Gra97].
Coupling [BS93, KR09, SB95, WB96]. course [STT96]. CoW [KMG99]. CPPvm [Gör01]. CPS [Mat94]. CPU
[BB18, CLOL18, DF17, JR13, KSL+12, Lee12, LRG14, LLC13, LFL+11, OFA+15, PDIY14, PHO+15, Pri14, SPB+17, SSB+17].
CPU-MIC [BB18]. CPU/GPU
[KB12, Lee12, LLC13, OFA+15, SSB+17]. CPU/multi [SAP16]. CPUs [ASB18, HK12, LNK+15, ONL12, SFSV13, YSWY14].
[LCVD94b]. Crash-simulation [LCVD94b].
crashworthiness [LCVD94a]. Crawler [Wal01a]. Cray [BL94, GRRM99, MP95, Sch96a, Sch96b, ABG+96, AZ95, AFST95, BBW19, CSM97, LKJ03, LSK04, MV095, Oed93, RBB97c, SWS+12, SCC95].
CRAZY-T3D [Sch96a, Sch96b]. CRAZY-T3E [Che99]. Creation [Hat98, MF98, PS00a]. Crew [GHL97].
CRI [MSCW95]. CRI-MAP [MSCW95].
Critical [DSG17, SLN+12, SDJ17].
cryptanalysis [BSN95]. Cryptographic [PV07, ABP15].
cryptosystem [WLC07]. CS
[FST98a, FST98b, Jon96]. CS-2
[FST98a, FST98b]. CS/2 [Jon96]. CT
[DYN+06, Naj99]. CT-scans [Naj99].
cube [Pan95a]. Cubes [DERC01]. CUDA
[Pr14, AMuHK15, AAAA16, ACMZ11, AC17, Ano12, ASB18, BS99, BY12, BTC+17, BAG17, BSH15, BBH12, CAM12, CGU12, CNM11, CLY16, CBM+08, CSV12, CFF19, CB11, Cza13, DCP+14, DS13, DR18, DARG13, DLL19, DLV16, DWL+10, DWL+12, DM12, EADT19, ESS+17, ER12, FJZ+14, Fer10, FMFM15, FFM11, FWS+17, Fu08, GDC15, GScFM13, GLN+08, GML+16, GPPG12, GWV+14, GRTZ10, HE13, HJBB14, HYA+16, HLM+17, HD11, HLP10, HP11, HLP11, HOG13, HF14a,
HF14b, HKOO11, HT08, HLO+16, JKL18, JK10, JC17, JLS+14, JFGRF12, KRKS11,
KHBS19, KD12, KAMAMA17, Kha13, KSI13,
KVGH11, KME09, KRO14, KB15,
KID13, Lan09, LRG14, LGKQ10, LLG12,
LSSZ15, LBH12, LSVMW08, LSMW11,
LAD16, LBB+16, LYS+16, LYIP19,
LYZ13, MMO+16, MR12, MSML10, MdSAS+18,
MGL+17, MM14, MMO+16, MGL+17,
MM14, MMO+16, MGL+17, MM14,
MGL+17, MM14, NSLV16]. CUDA
[NS16, NBS08, OHL010, ORA12, OHI19,
PGS+13, PRS+14, PG18, PHJM11,
PAoTS+17, PGcDJ+18, PShl11, PTMF18,
PSV19, PRS16, RBAL17, Ros13, SFE12,
SK10, ISY12, SDJ17, STK08, SSO9,
SGL010, SSL10, SKM15, SP11, SR11, SJK+17a, SJK+17b,
TNIB17, TVCB18, TS12b, TA14,
TCP15, Tsu12, UZC+12, VLMS+18,
WGG+19, W17, WJ12, WrMRR17,
WRRM19, WFWT11, WJB14, XUL13,
YULMTS+17, YHL11, YZ14, YMY11,
ZSK15, ZAFAM16, ZZG+14, Zbd12,
ZLS+15, ZZZ+15, dlAMC11, dlAMCFN12,
vdLJR11, Che10, SD13, VOG13]. CUDA-Aware [HVA+16]. CUDA-Based
[DLL19, AAAA16, WGG+19]. CUDA-BLASTP [LSMW11]. CUDA-C
[YULMTS+17]. CUDA-compatible
[LH12]. CUDA-Enabled
[LSMW11, SSL10, SSI13, KHBS19,
PSV19, SR11, ZLS+15]. CUDA-NP [YZ14]. CUDA-quicksort
[MM0+16]. CUDA-sharing [PRS+14]. CUDA-streams [TVCB18].
CUDA-to-OpenCL [GSFM13]. CUDA/mpi [LYSS+16]. cudaBayesreg
[fer10]. CUDAEasy [Sai10]. CUDAalign
[Sai10, dOSSM+16]. CUDAs [KMM15].
CUDA TM [SM12]. culling [HLK10]. CUMODP [HLM+17]. CUMULVS
[GKP97]. CURAND [Ano12]. CURD
[PGD18]. Current [Bak98, GFD05, IFI95,
BDG+93b, Fk94, FHP+95]. Curve [OS97].
Curve [Rot19]. Customization [GSY+13].
cut [CG99a, CXB+12]. cut-through
[CBX+12]. cuThomasBatch [VLMS+18].
cuThomasVBatch [VLMS+18]. cuts
[GD+18]. CVL [Har94]. Cybernetics
[IEE95a]. cycles [PL96]. Cyclic
[DDPR97, WO95, HCMC94, HO8, WO96]. Cyclops [dCZG06]. Cyclops-64 [dCZG06].
D [And98, DYN+06, SSS99, SH14, VDL+15,
Bha98, BCL00, Bri95, BMPZ94a, BAS13,
CGU12, CP15, EFR+05, ES11, GCN+13,
HF14a, HF14b, JR10, KRKS11, KO14,
KD13, KHS01, KLR16, MK94, MSZG17,
NSM12, SC19, TP15, WMRR17,
WRMRR19, WR01, YSL+12, YHK94]. D-CICADA [MK94]. DAC [Cza02, Cza03].
Daemon [LB98]. Dagum [Sp02]. d'Aix
[GA96]. d'Aix-Marlioz [GA96]. Dallas
[ACM00, IEE95]. Dame [IEE96]. damp[ing [YPA94]. DAMPVM
[Cza02, Cza03]. DAMPVM/DAC
[Cza02, Cza03]. DAMS [CD98]. Dangers
[BCE+97]. DaReL [KN95]. Data [AIF16,
BMR01, BCG+10, BD12, CKmWH16,
CLOT18, DERC01, DIn96, EGR15, EASS95,
GTS+15, GB89, GMPD98, Gn16, HA10,
HB96b, HC06, JABV19, JDB+14, KA13,
Lk14, LSM+18, LHCL05, LDJK13, MV17,
Man01, MK17, ME17, MGA+17, MJ15,
NJ01, NPP+00b, NPP+00c, NA01, NLRH07,
PCY14, Re01, SGH12, SPK06, SSLMW10,
SR96, Str12, THS+15, WO95, Wb94,
ZDLR01, ZG95b, AB95, ASS+17, AGG+95,
BK11, Ben95, BR12, BID95, C FileSystem10,
CGK11, CGL+93, DRUE12, EP90, FB97,
Fan98, FVLS15, FME+12, FKK+96b,
FWST+17, GE95, GE96, HB96a, HC08, JB96,
JCP15, JE95, JPOJ12, KN95, KJ+16,
KRG13, LOHA01, LF+93a, LL16, MA09,
MDB+94, MMD+13, MR96, NCB+12,
NCPB+17, NPP+00a, OPP00, PDY14,
RJMC93, SIAL14, SSS99, SPH95, SK92,
TW12, TKGL19, WO96, WLK+18, YCL14]. data [YWO95, ZJDS18, ZRQA11]. Data-
[LSM+18]. data-centered [JPOJ12].
Data-Driven [ME17, NCB+12, NCB+17].
Data-Intensive [Rei01]. Data-Parallel
[AJF16, GB98, CKnWH16, SPK96, CGL+93,
FKK+96b, MMB+94, MR96, SK92].
data-parallelism [BR12].
data-privatization [KRG13].
Data-Structures [GMPD98]. Databank
[FCP+01]. Database [AR01, BFZ97, EK97,
MWG97, MM14, PPT96a, MN91, PPT96b,
PPT96c, PMZM16]. Databases
[RGB+18, BA06, Bos96, ZWL13]. Data
[DT17, CSPM+96]. Datasets
[DLLZ19, VPS17, KGB+09]. Datatype
[Gro00, SWHP05, KHS12]. Datatypes
[JDB+14, RTH00, SGGH12, CAHT17,
THRZ99]. Dave [Stp02]. David
[Ano96a, Ano99a, Ano99b, Nag05].
DawnCC [MGA+17]. DAWNING
[HWM02]. DAWNING-3000 [HWM02].
Day [IS16]. dbx [NE98, NE01]. DC
[B+05, IEE94h, IEE95k]. DCE
[Sch93, FL96, RS93, Sch93]. DDL
[FB97]. Deadlock
[LZC+02, SG12, HPS+12, HPS+13].
Deadlocks [FJK+17]. Debugger [WCS99].
Debugger [HM01, NE01, CH94, CG99b,
MT96, XWZ96]. Debuggers [Ano01a].
Debugging
[BDGS93, GKP96, KV98, Mor95,
NE98, Wis97, ZLL+12, BL97, BS96a,
DKF93, HLO96, KCD+97, MLA+14].
December [Bil95, Eng00, HHK94, IEE96a,
Kum94, NM95, PBPT95, Y+93].
Decimation [PCY14]. Declarative
[EADT19]. decoder [MC17].
Decomposition
[BJS97, CP97, EG9H+14, KDH918, DBVF01,
ETV94, OMK99, SSHC18].
decompositions [NZ94]. deconfliction
[TCP15]. Dedicated [WLNO3, DJJ+19,
Hus99, RSC+19, WLNO6]. Deep
[AHHP17, AMC+19, SEC15]. Deferred
[Spe19]. Defined [Gua16]. Defining
[GAML01]. Deformable [STK08].
Deforming [GAP97]. degree [CT13].
degrees [KTJT03]. Delegation [YTH+12].
Delegation-Based [YTH+12]. Delft
[DSZ94]. Delivering [Has98]. Delphi
[ACGdT02]. Demand [CTK00]. Denmark
[DW94, DM96, Was96]. Dense
[AKL16, BCT98, CDD+13, Fuj08, Hog13,
PMvdG+13, ZBl12, BRR99, LRLG19].
Densities [MW98]. Density
[BL95, MC17, CBHH94, ZWHS95]. Denver
[ACM01, IEE05, R+92]. Dependable
[GM95]. Dependant [BP99]. Dependence
[LaDS+15, BLVB18]. dependence-aware
[BLVB18]. Dependency [PPR01].
Dependent [DFA+09, HO14, MFTB95,
DM12, LBB+16, LYSS+16, ON12, SSB+16,
TVV96, YPA94, YSVM+16, YSMA+17].
DEPICT [HM01]. Deploying
[PKB01, CLASPDP99]. depth [SSS99].
Derivation [GB98]. Derived
[JDB+14, RTH00, SWHP05, Tha98,
CAHT17, Jou94, THRZ99]. Descent
[Sch01]. description [TKP15]. descriptors
[LNW+12]. Design
[AS92, AAC+05, Ano01b, ACD+15, BCD+15,
BBH+13, BS96b, BMR02, BRM03, CL+99,
ETWaM12, FD02a, FA18, FFP03, GG09,
HWM02, JSH+05, KVGH11, kLCC+06,
kl11, LVP04, Man94, MMSW02, NPS12,
OFA+15, Pan14, PLK+04, PCS94, SBG+02,
SWYC94, SSL97, SPK+12, Sum12, THM+94,
USE94, VGRS16, BR91, CARB10, CSS95,
DS96b, FD02b, GL94, GkLyCY97, KA95,
LC07, MAS06, OA17, PGK+10, PTW99,
RSC+19, SL94b, Sep93, SL96, SSD+94,
SWL+01, WH90, WAl94a, WAl94b].
design-pattern [MAS06]. designed
[BHS9]. Designing
[GKZ12, OLED91, SWLC12, ZLP17, AHPP17, DSO11, Pan95].
Designs [HVA+16, AAAA16, MC17, Shi94].
desktop [Mar07]. Detailed
[DLV16, RSPM98, BTC+17, LR06b]. detect
[DPPT19, Str94]. Detecting
[AGG+95, PPJ01, ZRQA11]. Detection [BHW+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KJ14, SG12, ZDD97, BBH+15, DKF94a, HDDG09, HGMW12, HPS+12, HPS+13, LZE+02, RAGJ95, TCP15, TDG13, TWFO09, WYUMS+17].

Detector [DZDR95, PGD18].

Determination [LAF15]. Determine [BP99].

Deterministic [CFMR95, DZ02, ZLL+12]. Develop [PD98]. Developer [IEE96i]. developers [Str94]. Developing [BFZ97, CCSM97, Cot98, DDLM95, Reu03]. Development [AC17, Ano01a, BDG+91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DePo3, FS01a, SK00, SB01, TBD96, TDBEE11, ARvW03, ABC+00, BL97, BDG+92a, DSZ94, DHP97, KCD+97, LCC+13, MMW96, PES99, SM12, TBB12, ZL96, Sc099]. Developments [Mat00a].

Device [KKL11, LS10, SBQZ14, YWTC15].

Devices [GNJ97, RVKP18, ZJ1D18]. DFB [WWZ+96]. DFN [RS93]. DFN-RPC [RS93].

Diagnostic [RSBT95]. dictionary [LSSZ15].

Diego [Has95, LF+93a, NM95]. Difference [UZC+12, GCFG12, HE13, NZ94, NB96, Pri14, Ram07, Str94, VM94]. Differences [AKE00, LDCZ97].

Different [AIM97, GL97b, JCH+08, Nee00, Rab98, RBB97a, BN00, PY95].

Differentiation [MFTB95, Riz17, JK10, NF94, RBB15, SP11].

Differentiating [Cer99].

Diffusion [CF14a, HFL14b, MW98, CEGS07, DM13, MM92]. Digest [IEE93a, IEE95c].

Digit [DALD18, LAD16].

Digital [KLR16, CJ+10].

Dijon [YH96]. Dimemas [GLB00].

Dimensional [Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK+17a, SJK+17b, AL93, KT02, LSSZ15, Ols95, PR94c, Ram07, RG18].

Dimensions [SAS01, Ano93h, HP11].

Directions [FI95, FK94, HFP+95, SM96]. directive [CPM+18, LV12, NO02a, YL09].

directive-based [CPM+18, LV12, YL09]. directive/mpi [NO02a]. Directives [BBG+99, BBG+01, BK00, CCBPA15, JFY00, BC19b, LOHA01, VGS14].

directory [JCP15]. Discontinuous [KK19].

Discovering [FJK+17]. discovery [ASAK19, BK11, GWVP+14]. Discrete [ST17, WMC+18]. Discrete-Event [WMC+18].

diskless [PKD95]. Disks [dIFMBdIFM02]. Disperse [RSVM+05].

Displacement [BJS97, PSSS01].

Dissemination [GL97a]. Distance [MR12].

Distances [LAF15]. Distributed [AGS97, Ano95e, BMS+17, BME02, BGR97a, BL95, Bha93, BJ95, BRST94, BT01b, BHKR95, CGB+10, CL03, CSW97, CC99, DMB16, DBA97, DMD94, DGF97, DHHW92, DHHW93a, EMO+93, ESM+94, FH95, Fan98, FTB00, FK01, Fos98, FS93, FFFC99, GGC99, GCGG001, GCCS98, GCBM97, GWC95, GM95, HJ98, HC10, HRS97, IEE93d, IEE93e, IEE94d, IEE94g, IEE95h, IEE95i, IEE95j, IEE95k, IEE95l, IEE96b, IEE96g, IEE96f, IEE96i, IE05, JML01, KBA02, KP96, KDL+95b, KL95, KK02b, KSHS01, LC93, LHD+94, LHD+95, MC18, MKZ93, MB12, MFTB95, MSCW95, Mat95, MBE03, NSBR07, NZ94, NH95, Pen95, PKYW95, Pet99, Pet00b, PTT94, PVM95, PBM00, PD98, PMvdG+13, RGD97, Sch94, SA93, SMOE93, SW91, Sun90a, Sun90b, TSS00b, TH90, Wl93, WC97, WSC99, YH96, ZDD97, ZDR01, AMBG93, AG+95b, AB95]. distributed

[Ano94e, Ar95, ADMV05, BSC99, BB95a,
Bir94, BMPZ94a, CBPP02, CH94, CEF+95, CBHH94, CILASPDP99, CPR+95, CK99, DLR94, DR94, DHHW93b, DR95, EGH99, FB97, FS95, FS98, FHC+95, FHB+13, GBR97, GCN+10, GKK90, GkLyCY97, GP95, HPY+93, HHA95, IEE97a, JWB96, KN95, KSG13, KJJ+16, KDL+95a, LR06b, LFS93a, LFS93b, LH98, LKL96, Liu95, LYP19, LGmDRA+19, Ma94, MVTP96, Man98, MLC04, NAJ99, OLG+16, PK05, POL99, Par93, PR94c, RAGJ95, RFH+95, SSH08, SHHI01, SL94b, Sch93, SFL+94, SSC96, SPL99, Smi93b, SD99, THDS19, TSP95, THM+94, Uh95a, VM94, VB99, Vet02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YLC16, YW909, YX95, YPZC95, ZL96, ZGC94, Pet01.

distributed-data [FB97].

Distributed-Memory [CSW97, CC99, KN95, SSH08].

distributed-shared [ADMV05].

distributed-memory [FB97].

Distributing [AL92]. Distribution [HB96b, LHCW05, MBJ15, NPP+00b, NPP+00c, NA01, SR96, AG+95, CSW99, GS96, HB96a, JMDV+17, KRC17, NPP+00a, RJMC93, Wi94].

Distributions [ST17, WO95, HKMC94, WO96, vHK94].

Divergence [SDSCP13, V13].

Divergent [WJA+19]. diversity [EO15].

Divide [CTK01, Cza02, Cza03].

Divide-and-Conquer [CTK01, Cza02, Cza03].

DDMP [BB93].

DMPI [HWM02, ZLL+12]. DNA [dFOSR+19, PG18]. DNAml [CDZ+98].

DNMR [SR11]. do [JLG00].

docking [ESB13, VGP+19, ZWL13]. Document [MHSK16, AD95].

Documentation [BDD+xx]. Documents [An98]. does [KC94], dog [LK14]. Domain [BMR01, CP97, EGH+14, KDHZ18, kL11, ETV94, HE13, Nel93, NZZ94, Oh14, OMK90, Ran07, SHHC18, VM94].

Domaine [GA96]. Domains [KR09].

down [Str94]. Downloadable [An98].

DQF [Arn95, KLR+15]. DPVM [HvA+00].

DQN [PS19]. DQN-based [PS19].

draft [DHHW93b, GL92]. Draw [ST17]. Dresden [MDSC09]. Driven [AIM97, IWSB19, ME17, PCY14, FSG19a, FSG19b, Hin11, NBC+12, NBC+17, Qu95, SIS17, TWF09, WTF014].

Dror [Stp02]. drug [GWVP+14]. drugs [Str94].

DSIR [LTR00, RTL99]. DSM [KBVP07].

dSMC [JL18]. DSMP [SSC96, SSC97].

DTM [PS07]. DTS [BHKK95].

Dual [BBC+00, GAM+02, DK02, CT13, LSSZ15].

dual-dictionary [LSSZ15].

dual-Level [BBC+00, GAM+02, DK02]. dual-scanline [CT13]. Dublin [KLD08]. During [DeP03].

Dust [dFMBdF02]. DVFS [PTL+16].

DWT [ZZZ+15]. Dyn [WLN03, WLN06].

Dyn-MPI [WLN03, WLN06]. Dynamic [ACGR97, AG97, AUR01, CGLD01, CknWH16, CML04, CK99, CTK01, DBM16, DBA97, DFMD94, FMMD96, FD00, GFD03, GFD05, GRV01, GCB12, GMPD98, GL95a, KFL05, MK17, NPP+00c, NLRH07, PK98, PLK+04, PT01, PGdCJ+18, Ran05, SP+18, Smi93b, SY95, TS12a, Vd00, Vet02, Wal01a, Wil94, YST08, Zel95, DDL95, EO15, FH97, FCS+12, FKL08, JC17, MMS15, NBR07, NF95, OKW95, PGB18, RAII17, RCG95, SCB14, SCB15, SKK+12, SKB+14, WRSY16, YPA94, DvdlVS94, FCS+12].

dynamically [SSS99].

DynamicPVM [DvdlVS94].

DyMedPVM [DvdlVS94].

DyPVM [DvdlVS94].

DynPVM [DvdlVS94].

DynamicPVM [DvdlVS94].

Dyn-PVM [DvdlVS94].

Dyn-PVM [DvdlVS94].

DynPVM [DvdlVS94].

Dyn-PVM [DvdlVS94].

Dyn-PVM [DvdlVS94].

Dyn-PVM [DvdlVS94].

Dyn-PVM [DvdlVS94].

Dyn-PVM [DvdlVS94].
Dynamische [Wil94], dynamite
[IvdLH94, IHvA94]. Dynamite/DPVM
[IHvA94]. dynamo [Hol95]. DySel
[CKmWH16].

E-scale [Gua16]. EA [Ben18]. each
[Ano00, Ano00b]. Early [CD96, LV12,
SLG95, EFU+95, HHK+99, KJA+93]. Earth
[KTJT03, Nak03, Nak05, Nak05b, UTY02].
Earthquake [UZC12, KTJT03, KME09].
Easily [PKB01]. East [IS16]. Easy
[HCA16, TGD13, MJPB16, SBF94].
EasyGrid [BR04]. EASYPVM [Saa94].
ECMWF [HK93, HK95]. ed [Nag05].
EDEM [Tsu95]. Edge
[ZDD97, Gra97, RAG95]. edition
[Ano99, Ano99b, Ano00b]. editor [GT19].
Editors [AM07, GSA08]. education
[ACM06a]. EDV [Ano94c].
EDV-Benutzertreffen [Ano94c]. Edward
[Che10]. Effect [DK06, LFS+19]. Effective
[MLAV10, RK01, TMC09, Tsu95, BC19b,
Cza13, JH97, KS15a]. Effects [SSE12].
efficacy [GScFM13]. Efficiency
[KS96, MTU+19, CZ96, MMU99, RS95].
Efficient [ADT14, Att96, BHW+17,
BGBP01, BCK+95, BHLS+95, BFH+10,
BGD12, Bru95, BDH+95, BDH+97,
BMPZ94b, CALW17, CF96, DZ08a,
DG+12, FHP94a, FHP94b, FCS+19,
HBT95, HKT+12, HT08, HCO6, HLO+16,
KGK+03, KD13, LHCW05, LAD16,
MDM17, MB12, MRB17, NBK99, PBS+13,
RMJC93, RRB101, RSC+19, SPB+17,
TGBS05, WSN99, WWFT11, YPZC95,
ZWHS95, BfDA94, BHW+12, CGH+14,
FM90, FNSW99, FH+13, HCL05,
KVGH11, LKL96, LA06, MMDA19, Pan95b,
PRS+14, RR01, SOA11, TPD15, TGD13,
YLC16, dCZG06, CRD99, THRZ99].
Efficiently [CC99, CCM+06, PHA10].
effortless [ITT99]. eigenproblem
[BV99, GG99]. eigen solvers [DR18].
Eigenvalue [DAK98, BSC99, THM+94].

Eighth [ERS95, Sie94, IEE96b]. Eilean
[CS95]. einem [BL94]. Einführung
[MS04]. Einstein
[ARYT17, KLMU19]. Einstein-
[ARYT17]. Ejector [CCBPGA15].
elastic [PTG13].
elasticity [PTT94]. Elastodynamic
[MAIVAH14]. electric [BALU95, Ano03].
electrical [Sil96]. electroabsorption
[WWZ96]. electromagnetic
[DSOF11, NZZ94, OMK09, WGG+19].
electromagnetics [OMG16]. electron
[ART17, JLY18]. electron-molecule
[ART17]. Electronic [GJH97]. Electronics
[IEE95d]. Electrosoft [Sil96]. electrostatic
[VDL+15]. Element
[KK19, MS02b, OD01, OMK09, SM02,
VRS00, BB93, BCM+16, Gra09, HMKV94,
KEM09, KEGM10, MG+15, Nak05a,
Nak05b, PTT94, PSV19, TOC18].
Elemental [PMvdG13]. elements [KB13].
Eliminating [DSG17]. elimination
[ACMZR11]. elision [CLJL+15]. elliptic
[AGIS94, PR94c]. ELLPACK
[BBH12, MKP+96]. ELLPACK-R
[BBH12]. Else [Gei00]. elucidation [MK94].
Embedded
[TCM18, WZM17, YGH+14, ACJ12, CG11,
NEM17, TMW17, WLS+13]. Embedding
[FS07, SML17, MS96a]. Embedding
[Ser97]. Emerging [WJA19, RMNM+12].
Emission [Pat93, EZBA16]. emphasis
[Bos96]. eMPI [MS96a]. eMPI/eMPI
[MS96a]. eMPICH [MS96a]. Empirical
[SS94, VY02]. Employing
[AGMJ06, GVF18, LB16]. emulation
[MS99b]. emulator [LTLC94]. enable
[SPK+12]. Enabled [Fos98, GSY13,
LSMW11, Pan14, SSLMW10, ZIL17, ZLP17,
DS13, GLM+08, HJBB14, KHSB19, KTF03,
PSV19, RA09, SHAI91, SR11, ZLS+15].
Enabling [APBcF16, BGG+15, CLSP07,
DGB+14, GBH14, GBH18, HJYC10, NPS12,
TY14, ZPI06, BR04, MA09, SHHC18].
encapsulation [DRUE12]. encoding
European
[AD98, Ano94i, BR95a, BDLS96, BC00, BDW97, CHD07, CHD09, CD01, CDND11, DKO05, DLM99, DPK00, DLO03, KGRD10, Kra02, KKD04, LKD08, RWD09, TBD12, WPH94, DHK97]. EuroPVM
[BDLS96, OL05, DKD07, MTW07].
EUROPVM/ MPI
[OL05, DKD07, MTW07].
EUROPV MMPI
[KKDV03].
EUROSIM
[BH95, DSZ94, BH95].
Eurospace
[Tou96].
Eurospace-Ada-Europe
[Tou96].
Evaluate
[MW98]. Evaluating
[BBV+98, FVLS15, FST98a, GFD03, GD05, GGG001, GB96, HW97, LH95, SSSS97, ZSH01, GScFM13, LTL94, TG09, ZLZ+11]. Evaluation
[ATM01, BF98, BIC+10, BFM97, BEG+10, BB18, CLP+99, DIO2, FST98b, FSSD17, Han98, JCH+08, KS96, KK19, KK02b, KSS00, LGCH99, LNK+15, LZ97, kL11, LVP04, MHO1, MGC12, NNON00, OTK15, OM96, Par+93, RB01, SWHP05, SCP97, SEF+16, SBF+04, SM02, Sou01, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TTSY00, UMK97, VY02, AB13, BBG+14, BBH+13a, BMG07, CB11, DBO+16, HPR+95, HSK+19, HASn00, HPS95, IM94, JC17, JMDV+17, LV12, LN9+12, MHP+96, MIO3, MT96, MMH99, NN95, PPK08, RLFdS13, SL04b, SWS+12, SWYC94, SFVS13, TSP95, THM+94, TFP01, WOR96, YW95, YS93, ZHK06]. Evaluations
[KNH+18, MM14]. Event
[KKV01, NSL16, THS+15, WM01, WMC+18, FSG19a, FSG19b]. Event-Based
[NSL16], event-driven
[FSG19a, FSG19b]. events
[HHK+19]. everything
[CCM+06]. everything-shared
[CCM+06]. Evolution
[Mat01a, PS01a, RBB17, SSL97, SGG00, G93, SSD+94]. Evolutionary
[B+05, DSM94, Rag96]. Evolving
[Bad16, ER12, MdSC09]. Ewing
[Ano95c, Ano99c, Ano99d, Ano00a, Ano00b]. EWOMP’99
[BC00]. Exact
[dOSMM+16]. examine
[LFS+19]. Example
[Che10, SK10, NB96, Pat93]. Exascale
[Bad16, LV12, LS12, RPS19]. Exception
[ESPM17]. exchange
[MML13, Pan95a]. excluded
[BHW+12]. executable
[WMB14]. Execution
[AHD12, BME02, DT17, FC05, FM90, GR07, KGK+03, MK17, Mar+05, MFG+08, MAKR01, Ney00, STY99, SAP16, BLV18, EPL99, Mor95, PSB+19, SMAC08, TNB17, TSY99, TSY00, UGT09]. Executions
[GAML01]. Exhibition
[HS95a, GH94, LCH96]. Existing
[CBO0]. EXOCHE
[WCC+07]. Expand
[CCG+02]. Expanding
[LA02]. expected
[CAH17]. Experience
[BCP+97, BT96, CP98, PHS01a, Tou00, AMS94, BC19b, CARB10, KJA+93, RSC+15]. Experiences
[AP01, BFZ97, CMV+94, CLASLPDP99, GLN+08, GS91a, G97, GB96, GL95d, ITT02, JR10, KS97, Mar02, TEGM09, ZPL96, ZKRA14, AL92, CCF+94, Sch94, SGD94, BDG+93b]. Experiment
[Luo99]. Experimental
[BIL99, BIC05, BB18, EGC02, Ser97, UMK97]. Experiments
[BPM97, Coe94, LGM00, OS97, RR00, ZB97, RHG+96, HAJK01]. Expert
[BPG94]. experts
[E015]. ExpEther
[NMS+14]. Explicit
[BHV12, GFG12, SGHL01, LCP97]. Explicitly
[Mail2, SYR+09]. exploit
[ZP106]. Exploitation
[GGL+08, GAM+02, BK11, GAM+00]. Exploiting
[Add01, AML+99, BRI10, FKLB08, HEHC09, KFL05, NAAL01, VGP+19, Nob08, THH+05]. Exploration
[AmuHK15, OVA+15, ABPP15, GE95, GE96, PDY14]. Explorations
[BGG+15]. Exploring
[CPM+18, IFA+16, LGMDA+19, MBKM12, MTU+15]. Expose
[SAL+17]. Exposing
[SD16]. Exposition
[IEE95d, LF+93a]. EXPRESS
[KS96, AHM97, FK94, LH95, SHH94a, SHH94b]. Expression
Expressions [VZT+19, SFLD15].
expressive [Trä12a, YLC16]. Extend [DFA+09]. Extended [BR02, Röt19, HTA08, SS99]. Extending [ABB+10, BCC+00a, BCC+00b, BDB+13, CS96, CG99a, KDT+12, LMRG14, Mar03, OFA+15, RGDMI16, SDV+95, TMT96, CG96, GGH+96]. Extensible [BL07, GS94]. Extension [AELGE16, BCH-93, CS99, CG96, GGHL 96].

Facilitating [Gro12]. Fast [FCLG07, GAVRRL17, PCS94]. Finding [FCLG07, GAVRRL17, PCS94]. Fine-grain [SL00]. File [FY94b, FHP+94]. Fabric [ZT17, ZL18]. face [HDD09]. Faces [Gro12]. facilitate [PKB06]. Facilitating [MC99, ZL12, ESB13]. Facilities [MHH08, MN91]. Facility [KG96, SHT01, KZCS96, LHCT96]. Factorization [Bl98]. factorization [AZ95, BSvdG91, BR92, DG95, KBP16, WLC07]. Factorizations [TD98, LC97b]. Fail [LF92, LF93a, LFS93b]. Fail-safe [LF92, LFS93a, LFS93b]. Failure [BBH...]. Fast [Ben01, BBS+02, BDA+18, BBH12, CS14, DMK19, DFN12, EM02, HOG13, HOB95, JFGR12, JMDV+17, KK19, LYP19, PSN11, PR94c, PBC+01, RB01, SE02, SS09, STY99, SR11, TPLY18, UP01, WTR03, LAN09, LCL+12, NYNT12, TDG13, YUML+17, YLZ13, YBZL03, ZA14, AAB+17, DBLG11, PFG97]. Faster [TS12, ZG95a, ZG96]. Fat [Zah12]. Fat-tree [Zah12]. FATCOP [CF01]. Fault [BBC+02, BCK+03, BHK+06, CPO1, CFDL01, FBDO1a, FBVD02, FD02a, FD04, GFB+03, GKP97, GJ10, GL04, GM95, JH+05, LMRG14, LNE00, DLR04, MS00, RPM+08, TS12a, WCO9, WL93, BCK+08, FBDO1b, FD02b, HG12, LMG17, LS08, PKD95, SG05, ZHIK06, FD00].

February [AN09, GE95, GE96, IEE93a, IEE94a, IEE97c]. FEM [GE98].

filamentary [YPA94]. File [BIC+10, CGC+02, LRT07, KLLC07, KL11, PL02, RK01, TSS00b, TSU07, WTR03, DL10, LL95, SBQZ14, iSYS12]. Fine [PL02, RK01]. Fine-I/O [PL02, RK01]. film [SL00]. filter [BY12, CC95]. Finding [FCLG07, GÄRRL17, PCS94]. Fine [AZG17, BBG+10, JCP15, SFL+94, TCM18, YSS+17, BK11, KW14, LZY19]. Fine-Grain [AZG17, JCP15, SFL+94, BK11, KW14].
Fine-Grained [BBG+10, TCM18, YSS+17, LZHY19].
Finite [DFN12, KK19, MS02b, MAIVAH14, OD01, OKM09, Pri14, SM02, UZC+12, VM94, VRS00, BB93, Gra09, GFPG12, HE13, HMKV94, KME09, KEGM10, KB13, NAK05a, Nak05b, NZZ94, NB96, PSSV19, Ram07, TOC18]. Finite-Difference [UZC+12, VM94, HE13, NZZ94, Ram07]. Finite-Element [MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b]. Finland [RWD09]. Fire [JML01, SJ02]. First [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kum94, Nar95, PBPT95, SSP+94, USE94, AH95, BS94, GM18, MMDA19, PTFM18, PBPT95]. Fix [DLV16]. FlexCL [LWZ18]. Flexibility [KK02b]. Flink [KWEF18]. FlinkCL [CLOL18]. Floating-Point [LWSB19]. Florida [ACM98b]. Flow [BHWM17, BGD12, CGZQ13, CBPGM15, FM09, MK17, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTDH99, HHS919, JAT97, LL16, MBKM12, MH18, Ols95, PTT94, RM99, SCC95, SU96, TS12b, TOC18]. Flow-Based [BHWM17]. Flows [GAP97, BCM+16, BTC+17, Heb93, LLG12]. Flowshop [CB11]. Fluid [DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TEGM09, AL91, AT12, AGM06, BvB94, BHS18, BI95, HVSC11, MRRP11, PB99, SPE95, SZBS95b, WPH94]. fluid-particulate [AT12]. fluids [HK94, BB96]. Flux [QRMG96, QRG95]. Fly [WMC+18, KS14, THRH99, BCAD06, BADC07]. FM [LC97a]. FMA [LO96]. Fock [MMDA19, CBHH94]. Focus [Cla98, CFF19]. foolish [Rol08a]. footprint [TS12b]. force [Goe02]. Forecast [AHP01]. forecasting [Bjo95, KOS+95a]. Forest [JML01, NCKB12]. ForestGOMP [BFG+10]. Foreword [CHD09]. FORGE [WCVR96]. Fork [BGD12, SML17]. Fork-Join [BDG12, SML17]. form [NCB+12, NCB+17]. formalizing [FGRT00]. Formal [BBH12, MDM17, CBGL19]. Forschung [Ano94c]. Fortran [Ano97, Ben95, Bra97, GRB15, TOC18, AC17, Ano98, AS14, BW12, BC19, DZ98b, Don96, GML+16, HE13, HH14, HZ99, KM10, Kuh98, KLM+19, LC97b, LCC+03, MW95, SYSY92, SM03, SMCH15, SC19, TGB+02, Wai02, YBMGB14, YSVA+16, YSMA+17, vHKS94]. Fortran/PVM [MW95]. Forum [Str94]. Forward [RNMN+12, BBD+13]. forwarding [CBX+12]. foster [SM12]. Foundation [Gei01]. four [GSMK17, MGG05]. four-atom [MGG05]. four-particle [GSMK17]. Fourier [DBLG11, BCM+16]. Fourteenth [IEE95b]. Fourth [Ano89, IEE93d, IEE95k, Sie92a, Sie92b, Ano94i, IEE96g]. FPGA [KNH+18, MTU+15, PWP+16, PGF18, RGB+18, WTTH17, WHMO19]. FPGA-Platform [WTTH17]. FPGAs [CJPC19, LWZ18, MC17, OFA+15, PGS+13, WZHZ16, Roh00]. fractal [Wu99]. fragment [KS15a]. fragments [OA17]. Framework [Ben18, DGM93, FC05, GGGG01, GR07, GDDM17, MGL+17, NSZS13, PWP919, PMvdG+13, SSS+05, SSAS12, Sun90a, Sun90b, WZHZ16, Ano93e, BA06, BLVB18, BR04, BAG17, EFR+05, FLMR17, GM13, KKM15, KJJ+16, KJJ+08, KH10, LME90, LGG16, LCMG17, LS08, PTL+16, RSC+15, SL00, TDB00, YLC16, YWTmb15, ZT17, dAT17]. Frameworks [OP10, ASS+17, KDSO12]. France [ACM90, BR95a, BFM96, CHD07, DE91,
FR95, JPTE94, MCD+98, VW92, YH96, GA96, IEE94c. Francisco
[BBG+95, IEE93a, IEE94g]. Frankfurt
[Ton96]. Frankfurt/Main [Ton96].
Fredericton [BG91]. Free
[KK19, PKYW95, CP15, SOA11, Zah12].
freedom [KTJT03]. Frequency [IEE94e].
friendly [SVC+11]. Frontiers [ACM06b, IEE94a, IEE96c, Sie92a, Sie92b, Sie92a].
Frontiers’95 [IEE94a]. Frontiers’96
[IEE96c]. FSI [HAA+11]. FT
[FD00, LNLE00]. FT-MPI [FD00]. Fujitsu
[Ano98, AKL99, BHS+02, SWJ95, SH96].
full [CFF19]. full-orbit [CFF19]. Fully
[GA96, ZL17, SSB16]. Function
[AGS97, Bri02, HHS18, MCP17, Rót19, RB01, SW12, HE15, JMdVG+17, KRC17].
Functional [ACM90, AJF16, CNM11, NW98, Ser97, CBH94, EP96, HSE+17, SFLD15, WZWS08]. functionality
[BFM09]. functionally [PSV19].
Functions [BKGS02, Bri12, Hat98, MDM17, CdGM06, HWX+13, PN01].
Fundamentals [Wal96a]. fused [TW12].
Fusion [FHK01, FMF15, PKE+10].
fusions [FFM11]. Futhark [HSE+17].
Future [Dar01, IEE93d, Mat00a, BDG+93b, FK94, FHP+95, Ge94, RPS19, Sni18].
Futures [Kul98]. fuzzing [LLCD15].
Fuzzy [MDM17, TVC18].

G [OPM06]. G2 [Cot04, KTF03, OPM06].
GA [Ara95]. GAIN [ARYT17].
GAIN-MPI [ARYT17]. Gains [CMM03].
Galerkin [KK19]. Gallipoli [Ano93b].
GAMMA [CC00a]. Gap
[AAB+17, ASS+17]. Garbage [GTS+15].
Gas [BMS94b, BBK+94, BMS94a]. GASPI
[SIC+19]. gather [MTK16]. gauge [BW12].
Gauss [BG95, LM99, Ols95]. GCel
[SHH94a, SHH94b]. GECCO [B+05]. Geist
[Ano95b, NMC95]. gem5 [PHO+15].
gem5-gpu [PHO+15]. Gemini [SWS+12].
gems [Fer04, mH12, Ngu08, PF05]. Gene
[GDM18, PCS94, AAC+05, BGH+05, EFR+05, KMH+14, LM13, MV17, MSW+05].
genefinding [PCS94]. Gene/L
[AAC+05, BGH+05, EFR+05, MSW+05].
Gene/Q [KMH+14, LM13, MV17].

General
[Che10, IH04, MW98, SK10, SZB95a, Sun94a, ABDP15, ADL03a, ADL03b, CBM+08, FLD96, KPNM16, PF05, RSBT95, SZBS95b, SMSW06, YPA94].
General-Purpose [Che10, SK10, ABDP15, CBM+08, KPNM16, PF05]. Generalized
[DFKS01, FKS96, BSC99, SD99, van93].
Generating [AZG17, CGL+93, ER12, LJM+05, PKB+16, SFLD15].
Generation
[AB93a, CC17, FAFD15, Ge98, GTH96, HT08, JFY00, LTTD14, RGD13, SSB+17, TGBS05, VPS17, AB93b, CPR+95, DCD+14, DWM12, KHS12, KPL+12, KH10, MMDA19, SP11, TGLK19, WKS96, WMP14, ZKRA14].
generational [WK08a, WK08b, WK08c].
generative [MAS96]. generator
[LAN09, TNIB17, YL09]. generators
[CCS19]. Generic [ARS99, AKL99, GB98, BAS13, GM13, ZT17].
Genetic [FTVB00, MTS94, MSCW95, PB12, TGK19, WKS96, Wal01a, WHDB05, AB13, BB95a, FSTG99, HPLT99, RCJ95, WS01b, B+05].
genetics [LM99]. Geneva [IEE97b].
genomic [StD10]. genomics [CJP19].
GeoComputation
[Abr96, Abr96].
GeoFEM [NO02b, NO02a, Nak03].
geomechanics [BJS99]. Geometric
[DDP+19, VGP+19]. geometrical [FMS15].
Geometry [STK08, Ho95, STT96].
geophysical [Has95]. Georeferencing
[GCGS98]. Georgia [USE00, UCW05].
German [EGH99, GBR97, Gra97, GEW98, Sei99, Wer95].
Germany [BDLS96, GH94, KGRD10, MTWD06, MdSC09, PSB+94, Sch93, Tou96, Ano93a, BPG94, Cal94, GHH+93, WP94].

Gesellschaft [Ano94c]. get [Str94].
Getting [Nob08]. GF100 [WKP11]. gHull
[GCN+13]. GHz [Ano03]. Gibbs [TPK15].
Gigabit [CC00a, HcF05, EGH99, OF00].
Giganet [GT01, Tri⁰2b, bT01a]. GIS
[CFPS95, CCSV97]. Give [DZ98b]. Glenda
[SBF94, BiC95]. Global [SBG00, DSS00].
Pan95a, Ros13, SHTS01, STK08, SWH15,
TPP97, HWS09, HCL05, HEH09, LF²93a,
Str94, Wan02, YLZ13, Zah12, ZWH59.
Globally [BHS⁺02]. GLUE [Rab98].
GMRES [dH94]. Gmunden [Vol93]. GNU
[YSM⁺17]. go [KC94]. good [Mat03].
Göttingen [Ano94c]. GPU [LRBG15].
GP-GPUs [LRBG15]. GPFS
[AHP01, BIC⁺10, PTH⁺01a, PTH⁺01b].
GPGPU
[ASB18, BGG⁺15, CPM⁺18, HA11, HCZ16,
JKN⁺13, LME09, LDJK13, LZY13,
MBKM12, PTG13, TY14, YZ14, YEG⁺13].
GPGPUs [MdMG⁺17, LS15]. gprof
[WGG⁺19]. gprof [GJLT11]. GPU [Che10,
KA13, SPB⁺17, AKL16, AHP017, BDP⁺10,
BR12, BCD⁺12, BCD⁺15, BTC⁺17,
BWV⁺12, BBH12, CLOL18, CBY18,
CCBPGA15, DF17, DS16, DK13, DALD18,
DSOF11, DWL⁺10, DWL⁺12, ER12, FA18,
Fer04, FFM11, FSSD17, GCN⁺13, HVA⁺16,
HSE⁺17, HK09, HK10, HZG08, mh12,
JDB⁺14, JLS⁺14, JR13, JNL⁺15, JJL17,
JPT14, KDSO12, Kha13, KSL⁺12, KPL⁺12,
KI17, KPN16, KEGM10, KO14, KNH⁺18,
KMM15, LWSB19, LV12, Lee12, LRG14,
LLC13, LAD16, MMO⁺16, MdSAS⁺18,
MGL⁺17, Ngo08, NMS⁺14, NS12,
OFA⁺15, Pan14, PDI14, PGdCJ⁺18, PF05,
Pri14, RSC⁺15, RS19, RNNM⁺12, Sai10,
SK10, SmM10, dOSMM⁺16, ISYS12, SS09,
SN⁺19, SCSL12, SIRP17, SAP16, SYL19,
SD16, SSB⁺17, SKM15, SBK⁺14, SG14,
TB12, TS12b, VZT⁺19, WM17, WJA⁺19,
WGG⁺19, WP111, YULMTS⁺17, YHL11,
YCL14, YSS⁺17, ZRQA11, ZZG⁺14]. GPU
[ARYT17, PHO⁺15]. GPU-Accelerated
[KA13, SCSL12, PGdCJ⁺18]. GPU-Aware
[Pan14, FA18]. GPU-based
[MMO⁺16, SS09]. GPU-code [EZBA16].
GPU-programming [HSE⁺17].
GPU-Resident [JDB⁺14]. GPUDirect
[OGM⁺16, YWCF15]. GPUMixer
[LSWSB19]. GPUMP [ZC10]. GPUpc
[IFA⁺16]. GPUs
[BLV18, BY12, BC19b, BDA⁺18, CJP19,
DS13, DS16, GML⁺16, GPFG12, GPC⁺17,
GM18, HTJ⁺16, HLP10, HP11, HLP11,
Host2, IFA⁺16, JKM⁺17, JAK17, KGB⁺09,
KMM15, KKL11, KVGH11, LBH12,
LRBG15, MA09, ON12, OH10, PP16,
PSV19, PB12, SHLM14, SDB⁺16, SKK⁺12,
Tsu12, VLMPS⁺18, VY15, WRSV16, WJ12,
WBJ14, YLZ13, YSWY14, ZC10, ZZG⁺15].
gpuPHASE [WMRR17, WRMR19].
GPUVerify [BCD⁺12]. GQ [RFG⁺00].
GRADE [YKI⁺96, ZRQA11]. GRADE
[DDL00]. graded [PSV19]. Gradient
[BG95, GFPG12, KN17, MM92, Ols95].
Grain
[AZG17, IOK00, KOI01, MJBP16, NIO⁺02,
NIO⁺03, BK11, JCP15, KW14, SFL⁺94].
Grained
[ADRCT98, BBG⁺10, LGM00, TCM18, YSS⁺17,
Heb93, LZHY19, RJC95].
Grammatical
[RBB17]. Grand
[DMJ93, Ten95, BDG⁺92]. Graph
[BHW⁺17, DW02, MM14, NPS12, PP01,
STV97, HLP10, HK011, PP16, PD11].
Graph-Based
[NPS12]. Graph-Partitioning
[STV97]. Graphic
[HHJB14]. Graphical
[BDG⁺91b, DDL00, BDG⁺92a, KCD⁺97,
KFSS94, SKF95, VDL⁺15]. Graphics
[KS15b, LSVW08, LSW11, SLJ⁺14,
SSLMW10, vdLJR11, ABDP15, BH18,
CBM⁺08, DBLG11, Fer04, GKL95, HTA08,
HSW⁺12, KFA96, KY10, KME09, LHLK10,
MSZG17, PF05, SHM⁺12, SR11, WWFT11,
ZLS⁺15, MSML10]. graphics-scalable
[GKL95]. Graphs
[LGMO0, OF10, PGF18, VZT⁺19, EP96, MC99, MJBP16].
Gravitational
[ZSK15, KM10]. Greece
[CD01, CDND11, SM07, TG94]. green
[PTL16]. Grenoble [JPTE94]. Grid
[AB93a, CGB10, CLL03, DPP01, Fos98, KT01, La01, Lvo0, MRB17, PLK14, Rei01, TEGM09, AB93b, Eng90, GLM11, KRKS11, PVS19, WYLC12, AASB08, BR04, CCH03, DKD05, Fos98, GL02, KTF03, KGG10, KSS07, LC07, LS08, NSBR08, RPM10, RTRG10, SHTS01].

Grid-Adaptive [KT02]. Grid-Enabled [Fos98, GLM10, KTF03]. Grids [NO02b, ACH11, CC10, KBG09, NO02a, NB06, BBH07, GR07, Ram07, SN01].

GROMACS [BvdSvD95]. Gropp [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b]. Grover [LYZ13]. Growth [PKYW95, BB95a].

Ground [HTHD99, NS16]. groundwater [AFST95, EGDK92].

grouping [WPL95]. Groups [GOM10].

grouping [WPL95]. Groups [GOM10].

Grover [LYZ13]. Growth [PKYW95, BB95a].

Ground [HTHD99, NS16].

GUI-awareness [VGS14].

guidance [SDJ17].

Guideline [Trä12b]. Guidelines [TGT10].

GVirtuS [MGL17].

Hack [DLV16]. Hadoop [LSM18]. Hague [Ano93f]. Halide [RKBA13].

hypothesis [BBW19].

Harburg [PSB14]. Hamiltonian [ART17]. Handling [DFC17, FMSG17, LSB15, LGM00, RC97, FFFC99, LNW12, THRZ99]. Hands [KmWH10]. Hands-on [KmWH10].

Harbor [BBC18]. Hardware [BGG15, BWW12, Bri12, BCKP00, CDP03, DW02, EADT19, GJMM18, HSP13, LSWM11, MFC98, PSM14, PKB16, SSLMW10, vLJ11, ER12, GGL10, PMZM16, RB99, SBG12, SH94, SWS12, YÄGER15, ZLS15].

Hardware-Based [CDP03]. Hardware-oblivious [HSP13]. harmonic [GSM17].

Harness [EBK01, MS99b, PL96, FBD01a, FBD01b, FBVD02, FD02a, FD02b, MSF00, Ge98].

Harrogate [CJNW95]. Hartree [CBH04, MMDA19].

HASEonGPU [EZBA16]. Haskell [WO97]. Hate [Dan12].

Hawaii [ERS95, ERS96, HS94, MM93, ZL96].

HCA [KBG16]. HDL [Kat93, KMK16].

HDMR [KD12]. Heading [Sch99]. Heaps [GFT19].

Heat [SAS01, NP94, iSYS12].

Hector [RFRH96, RRG99]. Heijen [Van95]. held [AGH15, GA96, JB96, KG93, MM93, Old02, R92, SPH95, TG94].

Helios [SPK96]. Helmholz [HMK19].

Helps [Stp02]. HeNCE [BDG15].

HeSSE [MRV00]. Heterogeneous

[ABB10, BDG13, BDG13, BL95, BCP17, BGR97b, BCKP00, CMMR12, CLOL18, CLBS17, DGM09, DGM13, FGD97a, FGD97b, FLD98, Fos98, GS91b, GDD18, IEE93f, KR09, KCR17, LC93, MRV00, MM01, MM02, NTR16, PD98, PH15, RVK19, SMS00, SGS10, TQDL01, VLO10, ACGdT02, ADB19, ADDR15, AMV94, BDG19, BHP15, BRR99, BAG17, CCM12, CFP19, FBM09, GKC12, GCC10, GKC13, HHS18, HK94, KSG13, KSL12, Kos95b, KSS18, LCL12, LR06a, Lee12, Mai12, MSL12, MM03, NP04, NEM17, PEN95, PDB19, RCF19, RVK18, SCJH19, Skj93, Smi93b, Sun94b, Sun95, TBB12, TMW17, TKP15, TG13, VB99, VGP19, WCC17, YST00, YSL12, ZJDW18].

HeteroMPI
[LR06a, VLO+08]. Heuristic
[BHM96, STV97, WH94]. HI
ERS96, H94, IEE96e, ACM97a]. HICSS
ERS96, MHH93]. HICSS-26 [MHH93].
HICSS-29 [ERS96]. hicCUDA [HA11].
Hierarchical [BMR01, FBSN01, HA10,
HL17, MB18, MALM95, RR02, ADMV05,
BDV03, GJMM18, OKM12, YPZC95].
hierarchies [SYR+09]. High
[ACM97b, ACM98a, ACM98b, ACM00,
ACM01, ACM04, BPG94, BRST94, BS07,
BDA+18, CDD+13, CNM11, CDHL95, CS14,
DPP01, DDL00, DE91, FGKT97, GSHL02,
GBH99, GBS+07, GLDS96, HVA+16, HA11,
Hol12, IEE92, IE93c, IEE94g, IEE95k,
IEE96a, IEE96f, IEE97c, IEE98e, IJL95,
Kha13, KMK16, KEGM10, KH15, Lafi1,
LC97a, LkLC+03, LbH12, LPF04,
MBH98, MPD04, ME17, MAA05, NDU05,
OHH01, OLG01, PKB01, PR94b, PTH+01b,
Rab98, RH01, SPM+10, SSSLW10, SCSL12,
SLO05, SUC+11, SS967, Tio00, Tso07,
VW92, WN10, YLC14, YWCF15, YSP+05,
AH95, Ano03, BACD07, B696, BWT96,
BD95, CHKK15, CBG18, DH10, Duv92,
EZBA16, ES01, FME+12, GS02, GGC+07,
GL96, GL97c, HDG909, HW11, Hos12,
KBP16, KME09, La09, LB+96, MLS12,
MSZG17, NS91, NFG+10, Old02, OGM+16].

High [PGS+13, PGK+10, PF05, PTW99,
Reu03, RJDH14, SG14, SFLD15, ZSK15,
ZWL13, dAT17, CDH+95, DZ98b, D+95,
DE91, GH94, HS95a, KD12, LCHS96,
LC97b, SSH08, Ten95]. High-Dimensional
[MW98]. High-Level
[CS14, DDL00, HA11, Hos12, SG14, SFLD15].
High-order [KEGM10, KME09, OGM+16].

High-Performance [ACM98a, FGKT97,
IEE97c, LkLC+03, OL01, PNB01, PR94b,
PTH+01b, Rab98, RH01, SPM+10, SCSL12,
W10, GLDS96, OHH01, SUC+11, Ano03,
ES01, FME+12, GL96, GL97c, HHG909,
KBP16, LB+96, Old02, PGS+13, PGK+10,
PF05, Reu03, RJDH14, SFLD15, ZSK15,
HS95a, GH94, LCHS96, SSH08].
High-Precision [Kha13]. High-Quality
[BDA+18]. High-Scalability [BS07].
High-Speed [CDHL95, KMK16, AH95,
BWT96, CDH+95]. High-Throughput
[SSLW10, ESBB13]. Higher
[MYB16, KB13, wL94]. higher-level [wL94].
High-order [MYB16]. Highly
[MM95, PV97, TMM16, CARB10, GBH95,
GBH18, VM95]. highly-scalable [GBH14].
Hills [IEE93f]. HiNet [AH95].
HIRLAM [Bjo95, HE02, K1O95].
Histogramming [KRC17]. History
[OWSA95]. Hitachi
[Ano03, NN00, TSB02, TSB03]. HLA
[RT04+07]. Hoca [KI17]. Hoca
[IBC+10, ITT02]. Hösgskolan [Eng00]. Hole
[Are13]. holistic [TWFO09].
Holomorphic [R18]. homotopy
[GWC95, SMSW06, VT15]. Honolulu
[IEE96e]. honor [Str94]. Host
[Ano95e, LLRS02]. Host-Parasite
[LLRS02]. HOTB [GSMK17]. Hotel
[IEE94e]. Hotel-Copley [IEE94e]. Hough
[YULMTS+17]. house [IZL+11]. Houston
[ACM06a, Ano95a, Ch05, DKM+92, Y+93].
HP [CBG+10, BCM+16]. HPC
[ASS+17, CGBS+15, GDC15, GKK909,
LCV94b, OLG+16, PR14, RGGP+18,
VGP+19, ZLP17]. HPC02 [An03].

HPCN [LCHS96]. HPF
[BP98, BF01, BID95, Bri00, BDV03, CM98,
CDD+96, Coe94, FKK+96, FKK96a, LZ97,
OP98, OPP00, SMP2, Str94]. HPF-MPI
[BP98]. HPL [Lee12]. HPVM
[BCP00, CLP+99, KSS+18].
HPVM-Based [CLP+99]. hull [GCN+13].
human [VLSPL19]. Hungarian
[Far92, FK95, LIP91]. Hungary
[DKP00, KKD04, VV95, FK95]. hunting
[JPP95]. Husky [YCL16]. Huss
[Ano96a, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

Huss-Lederman
[Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

Hybrid [BBG+10, BBH+06, BB18,
GC+11, CNM11, Cha02, DR97, GPC+17, HVSC11, IDS16, KS15a, KLR+15, LLRS02, LG14, MS02b, NO02b, PZ12, SSB+16, VPS17, WT12, YHL11, YPAE09, YTH+12, AC07, ADR+05, BBG+14, CSPM+96, FMS15, GAVRRL17, GKK09, HDB+13, JR10, JMS14, KN17, KRG13, KJEM12, LLC13, LLI+14, MLAV10, MRRP11, NO02a, Nak05a, Nak05b, PARB14, PHJM11, SDJ17, SVC+11, THDS19, WT11, WYLC12, WLYC12, WT13, YWC11, ZWL13.

I-SPAN [LHHM96, Li96]. I-WAY [FGT96]. I/O [Bos96, CFF96, DRUE12, IRU01, IBC+10, LkLC+03, kLCC+06, MC18, MGC12, MG15, PSK08, PLR02, RK01, SBQZ14, Tha98, Tsv07, WSN99, ZJDW18]. IASTED [Ham95a]. IBM [AL93, Ano03, BBB+94, BGBP01, BR95c, BR95b, Bri95, CE00, CDM93, FHP94b, FHP+94, FHP+95, Fra95, FWQ+95, GL95d, HSMW94, HMKV94, Heb93, JF95, KB98, KAC02, KHS01, KMH+14, LC97b, MP95, MW93, MABG96, NMW93, WZWS08, XH96]. IBM-SP1 [FHP94b]. ICA [IEE96d]. ICAPP [Nar95]. ICCMSE [SM97]. ICIP [IEE94b]. ICPP [Agr95a]. ID [DGG12]. Idaho [Str94]. Ideas [IEE95d]. identification [HPLT99]. identity [KN17]. IEEE [ACM97b, ACM98b, ACM04, ACM05, Bha93, IEE94e, IEE94g, IEE95b, IEE95a, IEE95k, IEE95g, IEE96b, IEE96f, IEE96d, IEE02, Nar95]. IEEE/ACM [ACM04].

IFIP [Boi97, DR94, PSB+94]. IFS [AHP01]. Igniting [ACM03]. II [DE91, GE95, HS94, BPS01, BW+12, EM00b, GAVRRL17, Sta95b]. III [BPG94, BP93, DSBM94, GE96, HAS95, OKW95, SSGF00]. ILDJIT [CARB10]. I’ll [Har94]. Illumination [STK08, ZWH95]. ILU [ABF17]. ILU-preconditioned [ABF17]. im [Gra97]. Image [GGCM99, GGCG00, GCGS98, GGGC99]. Images [Uhl94, Uhl95b, VLO08, NAJ99]. Imaging [NH95, HS95, LM13, Pat93]. imbalances [MLVS16]. IMEC [ZL17]. immunodominance [ZWL17]. Impact [ADLL03a, ADLL03b, BRU05, Bru12, TSS00a, WHDB05, DO06, FSV14, SHHC18]. impacts [Str94]. Implement [GM95, Gro19, PPT96c]. Implementation [AB93a, AKL99, BGG15, BGBP01, BPS01, BG95, BHP+03, BBS99, Ben01, BP98, BCD+15, Bjo95, BJS97, BJC+10, BMR02, BRM03, BMS94b, BMG07, BDA+18, CFC+02, CFMR95, DYN+06, DAK98, EFR+05, ES11, FH97, FD04, FHS99, FSXZ14, FJBB+00, FHPS94a, FHPS94b, FHP+94, FHP+95, Fra95, FWQ+95, GL95d, HSMW94, HMKV94, Heb93, JF95, KB98, KAC02, KHS01, KMH+14, LC97b, MP95, MW93, MABG96, NMW93, WZWS08, XH96].
WH94, WPC07, YGH+14, YWO95, ZZG+14, ACGdT02, AS92]. **Implementation**
AAA16, AAC+05, ADLL03a, ADLL03b, AB93b, BR91, BvdSvD95, BR95b, Ber96, BCCR99, BK96, BCK+09, BS01, BS05, Bor99, BRR99, BS96b, BDV03, Bri95, BB00, BAS13, CDZ+98, CECS07, CG99a, CdGM96, CBHH94, CD96, DSW96, DS96a, DL10, DDB+16, DSOF11, DM12, FFB99, FWNK96, FG+98, FCS+19, GCC99, GG99, GG09, GÁVRL17, GL92, GL94, GLDS96, GL97c, GT07, GkLyCY97, HBT95, HCL05, HS95b, ITT99, IvdLH+00, JRM+04, JC96, KY10, KTF03, KBVP07, KL95, KVGH11, KNH+18, KB13, Lee12, LC07, LYI919, LO96, MMD+16, Man94, MAIVAH14, MS95, MSZG17, ON12, OKW95, OA17, OGM+16, PHJ11, PR94a, PTW99, PCS94, Ram07, RRFH96, Sep93, SZBS95b, SCL97, Sto98, SNMP10, Sur95b, Swa01, SL95, TKP15, TPD15, TS12b, TA14, TCP15, Tsu95]. **Implementation**
TVV96, VDL+15, VGRS16, VM95, Was95a, WMRR17, WRMR19, YPA94, ZLS+15, dh94, diAMCFN12, van93].

Implementations
[AKK+94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG+10, BF94, Gro02b, kLCC+06, LCW+03, Mar02, ORA12, Sap97, TSCM12, TGE09, VSO0, WT12, ZDD97, CLS07, ER12, ED94, GML+16, ICC02, KWE18, MKP+96, NN95, Pri14, RLFs13, WLK+18, WT11, YCL14]. **implemented**
[BBDH14, EP96]. **Implementing**
[DP97, Fin04, Fin95, GL95b, HB96a, HB96b, LRT07, MMH98, MS99c, MSB97, SSC96, SS99, SMTW96, SGHL01, SCC95, Tra02a, Wi93, BWT96, LHZ97, YX95].

Implementor [GL95b]. **Implicit**
[LHCW05, MS02b, NA01, SGHL01, Bjo95, TSP95, WADC99]. **Importance**
[BCG+10, PCY14]. **Importance-Driven**
[PCY14]. **Improve**
[KBS04, SKH96, Tha98, GK97, RHG+96]. **Improved**
[Trä02b, MMO+16, diAMCFN12]. **Improvements**
[DPSD08]. **Improving**
[CGZQ13, DZ96, DCPJ12, DCPJ14, GSV+13, HE02, IRU01, KH12, KKR02b, LB98, MK97, PTG13, RSC+15, SM12, SCL00, XF95, CZ96, JK+13]. **in-house**
[DLZ+11]. **In-Memory**
[CLOL18, ZL17, CRM14, HSP+13]. **In-Place**
[LT16, HSE+17, PSHL11]. **Including**
[BWW+12, GLT12]. **incompressible**
[BCM+16, Lou95, RM99, TS12b]. **Incorporating**
[LM94, LYZ13, TP15]. **Incremental**
[dOSMM+16]. **Indefinite**
[YK+18]. **Independent**
[BCL00, BRU05, BDA+18, CSW12, CDMS15, DiN96, MV17, YBLZ03]. **Index**
[DALD18, LAL16]. **Index-Digit**
[DALD18, LAL16]. **Indexers**
[Wal01a]. **Indexers/Crawler**
[Wal01a]. **Indexing**
[LTR00]. **India**
[CGB+10, IE96a, Kum94, PBPT95]. **indicator**
[FSV14]. **Industrial**
[BPMN97, DHK97, ALR94, ABCI95a, ABCI95b, BT96, EKTB99, Was96, Kon00]. **industries**
[Ano93a]. **Industry**
[DM98, Ano94f]. **Industry-Standard**
[DM98]. **inefficiency**
[HMW12]. **Inertial**
[Str97]. **Infer**
[VBB18]. **Inference**
[LAdS+15, TVCB18]. **Infiniband**
[SHWP05, LCW+03, LVP04, LWP04, PK05, PRS16, SPK+12, ZLP17]. **Infiniband-based**
[PK05]. **inflation**
[OdSSP12]. **influence**
[Gra97]. **Information**
[Ano98, CGB+10, Ano93c, CG99b, Gro19, MMM99, WADC99, PSB+94]. **infrastructure**
[GFIS+18, WLR05]. **infrastructures**
[GWVP+14]. **Initial**
[LLH+14, VDL+15, AL96, LSR95]. **Initiated**
[SSB+05]. **initiatives**
[Sun95]. **Initio**
[SSGF00, SEC15]. **Injection**
[RRAGM97, SAL+17]. **Inn**
[IE93c]. **Innovation**
[ACM03]. **Input**
input-aware [SHM+12]. Input-Output [CF+94]. Input/output [JWB96]. Inspect [BPMN97, DLLZ19], inspired [NEM17, TBD00]. instances [RBAI17, ZLZ+11]. Institute [Old02, TG94]. Instrumentation [MVY95, Yan94]. Insurance [PZ12]. Integer [ASA97, CF01, WLC07, ZC10, BHJ96, KVGH11]. Integrate [GLRS01]. Integrated [CFDL01, DGMS93, HKN+01, KSV01, WL96a, DF17, HK10, KW14, VDL+15, WWZ+96, WL96b, XWZ+96]. Integrating [BCLN97, CM98, Fin00, GJP01, KJA+93, KAHS96, WL94, STP+19, WFTO14, TWFO09]. Integration [CGC+11, CSW97, FD96, FB94, MAIVAH14, Sei99, AL96, CSW99, KB13, RMS+18, RBB15]. Interface [GLT99, GLS99, GLT00a, GL04, Han98, IBC+10, KTF03, KKD05, LK10, MSL96, RRFH96, SWHP05, SL95, SWL+01, TGT05, YGH+14, Ano95c, Ano96b, Ano00b]. InterfaceArchitecture [Sei99]. Interfaces [MGC12, Wit16, FCS+19, RJDH14, Trâl2a]. Interfacing [Lus00, PL96]. interference [ZJDW18]. Intergroup [KTAB+19]. Intermediate [BCFK99, BC19a, BDH+97, CHD07, Cer99, CGH94, CDN11, DFKS01, DHWH92, DHWH93a, DBK+09, FFKC96, FSLS98, Gle93, GLS94, GL95c, GLDS96, GLT00b, HDB+12, HRSA97, KS95, KGRD10, KKDv03, KKD04, LKD08, LkLC+03, LW97, MP98, MS98, MS98, MBS94, MMSW02, MTW06, PS01b, RW09, SSL97, TBD00, TW01, TBD12, WD96, Wer95, YHGL01, Ada98, AD98, Ano93e, Ano94d, BB+94, BBCR99, Bru95, BDW97, BK00, BR94, CFKL00, CFF+96, CD01, CG99b, DKD05, DBB+16, DS96b, DLM99, DPK00, DLO03, GRW+19, HPY+93, HHK+19, HRR+11, KOB01, KSJ96, KBHA94, Kra02, NS91, Pie94, PR94a, RMS+18, SL94a, SW95, SDV+95, VM95, WaI94a, WaI94b, ZW13, ZKRA14, AMHC11, BC14, BBH+06, BRU05, BDH+95, C0t04, DDK08, DiN96, FKS96, FGT96, FGG+98, GGHL+96]. Interconnect [BRU12, SJ02, BWT96, SWS+12, TBD96]. Interconnected [Hus00]. Interconnecting [MC98]. Interconnection [MANR09, SB95, AVA+16]. Interconnects [RA09]. Interface [Ano93d, Ano01b, BCFK99, BC19a, BDH+97, CHD07, Cer99, CGH94, CDN11, DFKS01, DHWH92, DHWH93a, DBK+09, FFKC96, FSLS98, Gle93, GLS94, GL95c, GLDS96, GLT00b, HDB+12, HRSA97, KS95, KGRD10, KKDv03, KKD04, LKD08, LkLC+03, LW97, MP98, MS98, MS98, MBS94, MMSW02, MTW06, PS01b, RW09, SSL97, TBD00, TW01, TBD12, WD96, Wer95, YHGL01, Ada98, AD98, Ano93e, Ano94d, BB+94, BBCR99, Bru95, BDW97, BK00, BR94, CFKL00, CFF+96, CD01, CG99b, DKD05, DBB+16, DS96b, DLM99, DPK00, DLO03, GRW+19, HPY+93, HHK+19, HRR+11, KOB01, KSJ96, KBHA94, Kra02, NS91, Pie94, PR94a, RMS+18, SL94a, SW95, SDV+95, VM95, WaI94a, WaI94b, ZW13, ZKRA14, AMHC11, BC14, BBH+06, BRU05, BDH+95, C0t04, DDK08, DiN96, FKS96, FGT96, FGG+98, GGHL+96]. Interface [GLT99, GLS99, GLT00a, GL04, Han98, IBC+10, KTF03, KKD05, LK10, MSL96, RRFH96, SWHP05, SL95, SWL+01, TGT05, YGH+14, Ano95c, Ano96b, Ano00b]. InterfaceArchitecture [Sei99]. Interfaces [MGC12, Wit16, FCS+19, RJDH14, Trâl2a]. Interfacing [Lus00, PL96]. interference [ZJDW18]. Intergroup [KTAB+19]. Intermediate [SML17]. internal [BBH+15]. International [ACM94, ACM96b, ANS95, Abr96, ATC94, AGH+95, Ano93a, Ano94a, Ano94e, BPG94, Bos96, BFMR96, Cha05, CZG+08, CGKM11, CMMR12, CGB+10, CH96, DSM94, DW94, EV01, EdS08, ERS95, ERS96, EIJ92, Gat95, GA96, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE93c, IEE93b, IEE94d, IEE94g, IEE95b, IEE95c, IEE95a, IEE95k, IEE95i, IEE95f, IEE95l, IEE96a, IEE96f, IEE96d, IEE97b, IEE97c, IEE05, Kum94, LCK11, LF+93a, Lev95, LHHM96, Lih96, MMH93, MCdS+08, MdSC09, Nar95, Ost94, PW95, PBF+95, PBP95, Ree96, R+92, SHM+10,
Sie94, Sil96, SM07, Tou96, VW92, Vo93, Vos03, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPT94, LCHS96, Mal95, ZL96, Ano93b, HHK94, Sch93, \textit{Internet} [NE98]. Interoperabilität [GBR97]. Interoperability [BoFBW00, Don06, PLR02, SIC++19, CPM+18, GBR97]. Interoperable [Rab98, MSL12, YBMCB14].

Inversion [ACMR14, Kan12]. Investigating [GMdMBD+07, Ros13]. investigation [PHW+13]. Invisible [Wis97]. Invited [Gei93a]. IO [AHP01, BIC+10, CGC+02, CFF+96, DL10, FGRD01, FWNK96, FSL98, LRT07, LGG16, PSK08, PTH+01a, PTH+01b, SW12, Sto98, TGL02, ZZ04]. IO/GPFS [PTH+01a]. IOMMU [YWC15]. IOV [YWC15, ZLP17]. IP [CCAO00]. IPCC [SC95]. IPPS [IEE96e]. IR [ZJDW18].

Ireland [LKD08]. IRREGULAR [FR95, BMR01, Cza02, Cza03, BL99, HASnP00, LOHA01, MR96, NP12]. irregularly [FR95, Smi93b]. ISA [Wit16]. ISBN [Che10, SD13]. ISBN-13 [Che10]. ISCA [Ano94e, YH96]. Ischia [ACM06b]. Iserver [SHH94a, SHH94b]. Iserver-OcCam [SHH94a, SHH94b]. Ising [AL93, KO14]. Isolating [Lus00]. Isosurface [PCY14]. ISPAN [HHK94]. Israel [DSM94, IEE96h]. Israeli [IEE96a]. ISSAC [Lev95]. ISSN [Ost94]. Issue [AM07, BDB+13, BC00, GSA08, MPI98, BC19a, CHD09, DKO07, GT19, Mar02, Old02]. Issues [BDT08, FD02a, KGK+03, MW98, Pan95b, PS01b, ZDD97, ArvW03, EGH99, FD02b, HHA95, PBK99]. Italy [CMMR12, CH96, DKO05, DKO07, D+95, DLO03, HS95a, IEE95b, KG93, OL05, ACM06b, Ano93b, CLM+95, DR95, Si96].

Iteration [HF14a, HF14b, OGH19]. iterations [Lou95, YST08]. Iterative [CCSM97, DK06, NO02b, N003, SC04, ADDR95, EDSV09, LSR95, MGG05, NO02a, N003a, NO03b, OMK09, dH94]. Ithaca [PBG+95, Ree96]. IV [SPH95]. IWOMP [CGZ+08, CGK11, CMMR12, Eds08, MCD+08, MDC+09, SHM+10]. IWPP [Kum94, PBPT95]. IWPP-94 [Kum94, PBPT95]. IWPP [Kum94]. IX [R+92].

Jack [Ano95b, Ano96a, Ano99a, Ano99b, Nag05, NMC95]. Jacobi [BBDH14, CGU12, LM99]. Janus [KBVP07]. January [ERS96, GE96, HS94, IEE95b, IEE96g, MM93, USE95]. Janus [GPJ01]. Japan [SHM+10, SPE95, HHK94, IFI95]. Jason [Che10]. Java [ACM98a, Ano97, BCFK99, BDY99, Bra97, BK00, BKO00, CGJ+99, CFK10, CLO03, DeP03, Fer98b, Fer98a, GSS99, KOB01, KBVP07, LRW01, MSS98, MG97, NE98, RAS16, SMS00, SZ99, TDB00, VGRS16, VGS14, WN10, WSC99, YC98, YHGL01].

large-message [AMC+19]. Large-Scale [AKE00, BWH+17, BZ97, FFPO3, MFPP03, SM03, WMC+18, WT12, BJS99, Svl99, AASB08, BCH+08, Che99, FME+12, LS10, MLA+14, PD11, RMMN+12, SIC+19, SC96a, TBB12, TOC18, WT11, WT13, ZWL13, ZA14].

large-sized [JLS+14].

Larger [NB96].

LargeScale [LAdS+15].

laser [EZBA16, WWZ+96].

Lastverteilung [Wil94].

Latency [Jes93a, Jon96, KBHA94, NCB+12, NCB+17, TBD96].

delay-tolerant [NCB+12, NCB+17].

Lattice [BBK+94, BMS94b, HLP11, SJK+17a, SJK+17b, BW12, BMS94a, CGK+16, GM18, Sai10, SVC+11, BLPP13, OTK15].

Launches [Ano03].

Layer [CSAGR98, HEH98, FK96a, BLPP13, dAMC11, dAMCFN12].

layered [DN96].

Layering [Hus01].

Layers [VZT+19, KC94].

Layout [WG17, BH+05, HP11, LDJK13, Str12].

Lazy [TCBV10].

Leaks [DLV16].

Learned [AKL16, Ada97, Boo01, BLW98, Coo95b, DHP97, For95, Gao03, Huc96, LZ97, MB18, MGMH97, MSB97, OKW+18, ZTD19, van97, BSN95, BKvH+14, BAV08, BRR99, CEGS07, DR18, Gra09, GFPG12, Jou94, LRLG19, MW98, MM11, OKW95, SCC96, SMSW06, dCH93, dH94].

Leather-based [FE17].

Least [PWP+16, VRS00, DK13].

Least-Squares [VRS00].

Lecture [Gei93a].

Lederman [Ano09a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

Leeds [Abr96].

legacy [BR04, LP00, LRW01].

Lemon [DRUE12].

Lengths [GSHL02].

LEO [CCBPGA15].

Leonardo [Stp02].

Lessons [MWO95].

Level [AELGE16, BGG+15, BBC+00, CS14, CRGM14, DHHW92, DHWW93a, DDL00, GS91b, GAM+02, HA11, HKT+12, DK02, KCP+94b, KOW97, LVP04, LMRG14, NPP+00c, SHM+10, SBF+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LBB+19, LM13, MALM95, NS91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BHH...13a].

levels [AML+99].

Leveraging [BBW19, HDB+12, NPP+00c, SHLM14, LFL11].

Lib [NPP+00d].

Libefp [KS15a].

Library [AKL16, Ada97, Boo01, BLW98, Coo95b, DHP97, EM02, HK01, For95, GFF+03, GS97, Gro02a, HB96b, ITK00, JPT14, KBG16, OD01, PLK+04, PS01a, RR02, Röt91, Saa94, SBG+02, Sta95b, SKH96, TD98, UT02, WN10, YKLD17, ZC10, Ada98, AMHC11, Arn95, CS95, CGG10, CCS19, Coo95a, DRUE12, DXB96, FB97, Fan98, FKK+96b, GDC15, GLM+08, GL94, HB96a, HLM+17, Har94, Har95, JKM+17, JC96, KS15a, KN95, LR06a, MSL96, PKB06, PS00b, RFH+95, SSC96, SH96, ZT17, CC95, McD96, Sun12].

Life [PZ12, Str94].

Lifting [vdLJR11].

Lightweight [CKmWH16, DT17, FLB+05, KMK16, TCM18, FS95, Ott93].

Like [BST+13, BK00, BK00, CGJ+00, KOB01, VGS14, CSS95].

Likelihoods [MSCW95].

LIME [DRUE12].

Limits [GB96, MBKM12].

Linda [Mat94, KS96, MSP93, BLP93, CSS95, Gal97, Mat95, TDB00].

Linda-like [CSS95].

Line [BoFBW00, CGS15, Wis98, Bor99].

Linear [ASA97, BD08, BG95, CDD+13, DGH+19, Gao03, Huc96, LLY93, LZ97, MB18, MGMH97, MSB97, YKW+18, ZTD19, van97, BSN95, BKH+14, BAV08, BRR99, CEGS07, DR18, Gra09, GFPG12, Jou94, LRLG19, MW98, MM11, OKW95, SCC96, SMSW06, dCH93, dH94].

Linear-scaling [Gao03].

linearization [MH18].

Lines [NE01, YULMTS+17].

Link [BGR97b, SJ02].

Linked [WJ12].

Linköping [FF95].

LINPACK [JNL+15].

Linux
[Sei99, SMTW96, USE00, SSSS97, Ano01a,
GSM +01, MK04, OF00, PS07, PKB01,
RsT06, Sei99, Slo05, SGL +00, YL09]. Linz
[Kra02]. lipid [FHS09]. Liquid
[DSS00, JLS +14, ZL18]. Lisbon [IEE93d].
LISP [ACM90]. List [Tra98, WJ12]. Lithe
[PHA10]. Lithography [RDM99].
Liverpool [AD98]. LLVM [SML17]. Load
[Ano94b, BKdSH01, BS05, DI02, DR95,
DK60, GCB12, HE02, MM02, NP94, PT01,
Pns5, SGS95, ST97, Wal01a, Bir94,
CKO +94, DZ96, DLR94, DvdLVS94,
EZBA16, FMBM96, FH97, GS96, Hum95,
JH97, MM03, SCL97, SY95, Wil94].
load-balanced [EZBA16]. Local
[BSG00, CDHL95, CCSM97, IKM +01,
LLB +19, AMHC11, BY12, CGL +93, CM99,
HJYC10, KKA +13, WR5Y16]. Locality-Aware
[MJ95, HJYC10]. localization [HC08].
Locally [BHS +02]. Locating [PNV01].
Lock [ALB +18]. Lockheed [Str94].
Locking [kL11, CAW17, PKG +10].
Logging [BCH +03, LBB +19]. Logic
[KI17, BJ95, KMC96, KMC97, POL99].
logical [TPLY18]. LogP [CKP +93].
London [EJ92, Ano93b, Ano94f]. long
[dF00SR +19]. Look [HC16]. lookup
[BJ13]. Loop
[DM61, SHM +10, TJP12, AV18, SHLM14,
WYLC12, WLYC12, YST08, YWC11].
Loops
[AHD12, CLA +19, DSCL05, LOH01].
Loosely [Ada97]. Lop
[RGDML16, RGDM15]. Louisiana
[USE95, IEE96b]. Love [Dan12]. Love-Hate
[Dan12]. Low [BGG +15, GGS99, Jon96,
MC17, NE01, RLL01, Str94, GKL97,
KBHA94, LZHY19, TBD96, ZRQA11].
Low-Bandwidth [NE01]. Low-Cost
[RLL01, GKL97]. Low-Density [MC17].
Low-Level [BGG +15, GGS99]. Low-life
[Str94]. low-overhead [ZLA]. LPVM
[ZG98]. LSS [BCAD06, BADC07]. LU
[AZ95, BRS92, BB18, LC97b]. Lugano
[GT94]. Luminous [KNT02]. Lumsdaine
[Ano99c, Ano99d]. Lusk
[Ano95c, Ano99c, Ano00a, Ano00b].
Lustre [DL10]. Luther [ACM99]. Lyngby
[DW94, DMW96, Was96]. Lyon
[BFM96, FR95].
M [PBC +01]. M-SPH [PBC +01]. M6A
[EM00a]. M6B [EM00b]. MA
[Ano95b, Ano95c, Ano96a, Ano99a, Ano99b,
Ano99d, Ano00a, Ano00b]. Machine
[AS92, AGIS94, BJ93, BS93,
CHD07, 0.91, FE17, Fis01, GBD +94,
Gre94, KNT02, KKD03, KKD04, KKD08,
MTWD06, Nov95, NMC95, Pat96, Per96,
RWD09, TY14, VS00, Wei94, AD98, AL92,
Ano95b, BR91, BDG +91a, BPC94, Bir94,
BDLS96, BDW97, CARB10, CLM +95,
Cav93, Cha96, Che99, CD01, CC00b, DM93,
DK05, DLM99, DKP00, DLO03, FM90,
KWEF18, KMC97, KSS +18, Kra02, LG93,
MN91, MRH +96, NB96, Sch94, SK92,
SCC96, SL00, TVC18, TW12, TWFO09,
W009, WTO14, ARL +94, BG94b, JPP95,
KKD05, LK10, QRG95, SSSS96].
machine-learning [WTOF09].
machine-learning-based [WTOF14].
Machines [BP99, BZ97, BCC +00a, BT01b,
DR97, EGR10, GB96, GTS +15, HC10.
MGL +17, ST99, SCSL12, ZWJ05,
BGA +06, BSG99, BCC +00b, BBW19,
BB95b, DDS +94, DCH02, GKRZ12, Hol95,
KN95, PRLS16, SL94b, TSY99, TSY00,
WPL95, ZWL13, Gc01, YC98]. made
[MJPB16]. MAFFT [ZLS +15]. Magnetic
[Y +93, PKE +10]. Magnetism [Y +93].
magnetized [CF019].
Magnetohydrodynamic
[KT02, WWFT11]. Magnetostatic [BB93].
MagPle [KBH +99]. Main [Tou96].
maintaining [PKB01]. maintenance
[ZDR04, ZDR01]. major [WLK +18]. Makes
Malleable [ZG95b, Str94]. Mambo [WZWS08]. Man [IEE95a]. Manageable [PKB01]. Managed [KCR +17, LB16, SYR +09]. Management [AJ97, ALB +18, AUR01, BGR97b, BGL00, EK97, FDG97a, FDG97b, GJR09, PPT96a, PS00a, SIS17, SY99, TMS +15, ARS89, DZ96, DF17, FLD96, GJM18, GL95a, JCP15, LF +93a, PPT96b, PPT96c, YWTC15]. manager [Sep93]. managers [FLD96]. Managing [FLD98, FGKT97, Liv00, NPS12, Obe96]. Manchek [Ano95b, NMC95]. Manipulation [KKV01]. Mantle [BB95b]. Manual [CSW12, NSLV16, Reu01]. Many [DT17, LZH17, LLC15, RB01, SXM +18, TCM18, YTH +12, ACMR11, AV18, BBC +19, VDL +15, dCZG06]. Many-Accelerator [SXM +18]. Many-Core [LZH17, TCM18, YTH +12, LLC15, ACMR11, AV18, BBC +19, KSG13, MBBD13, dCZG06]. Many-Cores [DT17]. Manycore [MJ15, DJJ +19, KGB +09]. Map [JPT14, FFM11, FJBB +00, MSCW95]. MAPA [JPL17]. Maple [Pet00a, Pet00b, Pet01]. Mapping [BB18, DDP +19, GAMR00, HC06, NTR16, RRL01, SPB +17, TSZ94, WO09]. ASAK19, DDLM95, EO15, GFST +18, HC08, TWF009, WCSS +13, WTK08a, WK08c, dCZG06, WK08b]. MapReduce [EADT19, JS13, MMM13, PD11, WZH16]. Maps [BM97, KRC17]. Marc [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. March [ACM95a, ACM06a, Ano89, Ano93c, Cal94, DKM +92, IEE93f, IEE94d, IEE95b, IEE97a]. Marine [LRL02], market [LF +93a]. Markov [BBH12, FK01]. Mariloz [GA96]. marshaling [CFKL00], MARTE [RGD13]. Martin [ACM99]. Maryland [IEE96c, SPH95]. MASA [dFDSR +19, SMM +16]. MASA-OpenCL [dFDSR +19]. MasPar [ARL +94]. Massachusetts [IEE94e]. masses [Cla98]. Massive [Sie92a, MALM95, OL +16]. Massively [BJ93, BHS18, BSZ94, IEE94a, IEE96c, KHBS19, KmWH10, Oed93, Sie92b, Sta95b, CS96, DR94, HYSC11, KN17, LCL +12, MYB16, RBB17, SRK +12, DSZ94]. massively-parallel [MYB16]. Master [FH98, EML00, LTR00, HP05]. master-slave [HP05]. Master-Workerproblem [FH98]. Master/Slave [LTR00]. Master/Worker [EML00]. Matching [GGC +07, KMM15, KS01, MM02, OWSA95, WH94, FLPG18, LFS +19, MM03, Qu95, YPZC95, YZPC95]. Materials [Y +93, PPS +94]. Mathematical [VZT +19, Wan97, Has95]. Mathematics [Whi04, ANS95]. MATLAB [BKGS02]. MatlabMPI [KA04, Kep05]. MATOG [WG17]. matrices [DR18, GG99, GSK17, Kan12]. Matrix [AKL16, BSvdG91, Cha96, DS13, Fu08, GK10, KK19, PMvdG +13, TQDL01, TD98, ART17, CMH99, EHR12, FAF16, FJZ +14, KPB16, PKD95, TPD15, XXL13]. Matrix-Free [KK19]. Matrix-Vector [AKL16, DS13, Fu08, XXL13]. Maui [ACM97a]. Max [Ano94c]. Max-Planck-Gesellschaft [Ano94c]. Maximal [BDA +18]. maximisation [CCU95]. maximum [HKO01]. Maxwell [And98]. May [ACM96b, ACM06b], AGH +95, BR95a, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95e, IEE95i, IEE95j, PR94b, SPE95, SW91, SS96, Van95]. Maydan [Stp02]. MBCF [MMH99]. MCA [WCS +13]. McDonald [Stp02]. MCHF [SYF96]. McLean [IEE94a, Sie92a, Sie92b]. MCNP [MW93, MK94, WH96]. MD [IEE02, TJP01]. mdb [DFK94a]. MDE [RGD13]. Means [TK16]. Measurement [BFW01, BFIM99, KRS99, Shin94, TMC09].
Measurements [IHvA +00, EFR +05, GL99].
MECCA [AC17]. mechanics [Bil95, MGG05, SL95]. Mechanism [CGLD01, KSV01, MH01, THS +15, TSS00b, Tra02a, HWX +13, SIRP17, ZRQA11, ZA14].
Mechanisms [Wal01a, CGBS +15, Ott93, TMT96].
Mechatronic [BD1995b, KDL +95a].
MeDA [VAT95]. mEDA-2 [VAT95]. media [EZBA16, MAIVAH14]. Medicine [GA96]. MEDINA [AC17]. medium [WLNL06]. medium-scale [WLNL06].
Meeting [AD98, Ano93f, CHD07, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, GA96, KGRD10, Kra02, KKD04, LKD08, MC94, MTTW06, RWD09, TBD12, BDW97, JB96, SPH95, Ano92, CHD09].
mech-based [SDm10]. Meiko [FST98a, FST98b, Jon96].
Melia [WZHZ16]. Mellon [IEE94d]. Membership [MDM17].
Memory [Att96, BME02, BW +12, Bri10, BS07, BT01b, CLOL18, CLA +19, CSW97, CC99, DM98, DMB16, DR97, DHHW92, DHHW93a, EADT19, FB94, GB96, GC96, GSHLO2, GLRS01, HC10, HBB +12, HDT +15, HT01, JPL17, KB98, KS13, KSHS01, LSB15, Loo99, MB12, MRB17, MBE03, MMH98, MCDs +08, Mii02, NPP +00d, PBK00, Pok96, PMvdG +13, Ros13, SYT99, ST02b, SW91, Thg99, VSO0, VT97, WJA +19, ZL17, ZL18, ARS89, ABC95a, ABC95b, ADMV05, BCA +06, BML12, BSC99, BMG07, CBPP02, Cha05, CjvdP08, Cha96, CBHH94, CRM14, CC00b, DF17, DLR94, DBVF01, DPF19, DS96b, DHHW93b, DP297, EV01, FS14, FHB +13, GCL +10, GBH14, GBH8, GKK09, GL96, GL97c, GP95, HSP +13, HGMW12, HDB +13, HK09, JCL7, JNE5, KN95, KAJ +93, KC06, LKL96, MLC04, NAJ99, NAAL01].
memory [OLG +16, PK05, PS00b, RS19, RGD015, SSH08, SHH01, SL94b, SBB +12, SYR +09, SFL +94, SSC96, SPL99, SD16, TSY99, TSY00, THDS19, Uhl95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WK08c, WBS17, WMRR17, WMR19, YX95, LBD +96, GKK7, SG05].
Memory-access-aware [CLA +19].
Memory-Based [MMH98]. Memory-Divergent [WJA +19]. Memory-Efficient [MRB17].
memory-level [HK09]. Memory-Oriented [ZL18]. Memory/Message [ST02b].
MemTo [GSS +01]. MemTo [ST98a, ST98b, Jon96].
Melia [WZHZ16]. MemTo [EE94d].
Membership [MDM17].
Memory [Att96, BME02, BW +12, Bri10, BS07, BT01b, CLOL18, CLA +19, CSW97, CC99, DM98, DMB16, DR97, DHHW92, DHHW93a, EADT19, FB94, GB96, GC96, GSHLO2, GLRS01, HC10, HBB +12, HDT +15, HT01, JPL17, KB98, KS13, KSHS01, LSB15, Loo99, MB12, MRB17, MBE03, MMH98, MCDs +08, Mii02, NPP +00d, PBK00, Pok96, PMvdG +13, Ros13, SYT99, ST02b, SW91, Thg99, VSO0, VT97, WJA +19, ZL17, ZL18, ARS89, ABC95a, ABC95b, ADMV05, BCA +06, BML12, BSC99, BMG07, CBPP02, Cha05, CjvdP08, Cha96, CBHH94, CRM14, CC00b, DF17, DLR94, DBVF01, DPF19, DS96b, DHHW93b, DP297, EV01, FS14, FHB +13, GCL +10, GBH14, GBH8, GKK09, GL96, GL97c, GP95, HSP +13, HGMW12, HDB +13, HK09, JCL7, JNE5, KN95, KAJ +93, KC06, LKL96, MLC04, NAJ99, NAAL01].
Message [AD98, Ano93f, CHD07, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, GA96, KGRD10, Kra02, KKD04, LKD08, MC94, MTTW06, RWD09, TBD12, BDW97, JB96, SPH95, Ano92, CHD09].
message [FB94, GR97, LB97, LC97b, LSB15, Loo99, MB12, MRB17, MBE03, MMH98, MCDs +08, Mii02, NPP +00d, PBK00, Pok96, PMvdG +13, Ros13, SYT99, ST02b, SW91, Thg99, VSO0, VT97, WJA +19, ZL17, ZL18, ARS89, ABC95a, ABC95b, ADMV05, BCA +06, BML12, BSC99, BMG07, CBPP02, Cha05, CjvdP08, Cha96, CBHH94, CRM14, CC00b, DF17, DLR94, DBVF01, DPF19, DS96b, DHHW93b, DP297, EV01, FS14, FHB +13, GCL +10, GBH14, GBH8, GKK09, GL96, GL97c, GP95, HSP +13, HGMW12, HDB +13, HK09, JCL7, JNE5, KN95, KAJ +93, KC06, LKL96, MLC04, NAJ99, NAAL01].
memory [OLG +16, PK05, PS00b, RS19, RGD015, SSH08, SHH01, SL94b, SBB +12, SYR +09, SFL +94, SSC96, SPL99, SD16, TSY99, TSY00, THDS19, Uhl95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WK08c, WBS17, WMRR17, WMR19, YX95, LBD +96, GKK7, SG05].
Model-Based [AP96, LGG16].

Modeling [ACM96a, ATM01, BS07, CSC96, CDM93, FST98a, GAM02, MOL05, NM95, RGDM15, Rot19, SEF16, TD99, VFD02, WJA19, WMC18, XH96, AC07, BDP10, JL18, KM10, KME09, KEGM10, LZHY19, MS99a, WT13, XXL13, YMYI11].

Modelling [FST98b, GC05, Ham95a, KDL95a, MSML10, QCJC17].

Models [AKK94, BS93, BZ97, CMK00, Cer99, CNM11, DK06, EMO93, ESM94, GJN97, PPF89, SS01, SMOE93, SYL919, BB95a, CH96, AC07, BDF10, BB95b, JL18, KMI09, KME10, LV12, MCB05, Nes10, RSBT95, RAII17, STP19, SYR90, Wal00, WB12, WSB17].

moderate [Uhl95a].

Modern [AHHP17, DARG13, KDT12, LNK15, SM07, HH14, PMZM16].

modes [WZWS08].

Modified [Riz17, GP95, KD12].

Modulator [CT02, HPP02, FWS17, HLM17].

modulator [WWZ96].

modulator/DFB [WWZ96].

Module [Ano98].

Modules [AKK94, DS96b].

modules-design [DS96b].

Molecular [ABC96, BST13, BCGL97, BL95, BS07, DR97, DI02, KBM97, LFAA15, MH01, SA93, YWCF15, ZB94, BvdSvD95, BBK94, BMPZ94b, BMPZ94a, CC00b, DCD14, Dab19, FHS09, HHS18, JAT97, MSA14, KF96, KRG13, LSVMW08, OKM12, PAB14, SL95, VGP19, ZWL13].

molecule [ART17].

Moller [BI95, KN17].

MONC [BBW99].

Monito [SGL70].

Monitor [KRS99, WH94].

Monitoring [AH00, BCLN97, Beg93b, BFM96, BMF16b, CD98, DBK09, GSN01, IADB19, LY93, LW97, MWM97, MVY95, SGL10, UP01, Wis98, Wis01, YN94, Beg92, Beg93a, BB94, BS96a, BMF16a, FLB10, LC07].

Monodomain [ORA12].

Monona [ZL18].

Monte [HJBB14, RF95, WH96, ADRC98, AK99, DAK98, NLSM16, RR00, SK00, SKM15, ZZ04].

Monterey [Ano89, GA95, USE94].

Montpellier [DE91].

Montréal [Lev95].

MOPS [GJN97].

Morehouse [AGH95].

Morgan [SD13].

Morphable [ZL17].

morphology [VLSPL19].

Morton [LZH18].

MOSIX [BBGL96].

motif [FMS15].

motitors [SKM15].

movement [MV17].

Moving [HAA11, LSG12].

MPE [GKL95, KFA96].

MPEG [NU05].

MPEG-4 [NU05].

MPI [ARYT17, AD98, Ano95a, Ano99a, Ano99c, Ano99b, Ano00a, Ano00b, BWD97, CHD07, CHD09, CD01, CNDN11, DKD05, DLM99, DPK00, DLO03, GB07, GEW98, IEE96i, JMS14, KGRD10, Kra02, KKD04, LKD08, MTW06, Nag05, Pe07, PS01b, RW09, ROVGRP12, ST02a, TDB00, TBD12, Vre04, WSN99, YM97, ST02b, ACGrD02, AKB19, Ada07, Ada08, AC07, ACH11, APJ16, AASB08, ART17, ATM01, AG97, AK99, ABF17, AH01, ACMZR11, ALW15, ALB18, ADL03a, ADL03b, And98, FH98, AVA16, Ano93e, Ano94d, Ano98, Ano01a, Ano03, AKE00, AKL99, AJF16, AIM97, ADR105, AHH17, AMC19, Bad16, BV99, BCMR00, Bak98, BF98, BC99, BB010, BCG10, BBG11, BGBP01, BBS99, BBG14, BA06, BCD06, BADC07, BGR07a, BKGS02, Ben01, BW12, BV12, BKH13, BIL99].
MPI

[BIC05, BP98, BF01, BCCR99, BBDH14, BK96, BKdsH01, Bha98, BiDA94, BHS^+95, BHS^+02, Bis04, BBH...13a, BBH^+13b, BDB^+13, BIC^+10, BR04, BCM^+16, BTC^+17, BM00, Boo01, BBC^+02, BCH^+03, BHK^+06, BBC^+99, BBC^+00, BS96b, BMR02, Bri02, BRM03, Bri10, BMPS03, BS07, BBW19, BD98, Bru95, BDH^+95, BDH^+97, Bri12, BHW98, BFBW01, BFR99, BGL^+08, GL29, GL94, GL95a, GL95b, GLK95, GL95c, GL96, GLDS96, GL97c, GL97b, GLH^+98, GL99, GLT99, GLS95, Gro00, GLT00b, GLT00a, Gro01a, Gro01b, Gro02a, GL02, Gro02b, GT07, GL12, Gro19, GPC^+17, GC05, GSY^+13, Gua16, H98, Hc10, Har94, Har95, HL17, Hat98, HO14, HD02b, HE02, Hen94, H96, Hen96, HR97, H99, HEH98, HGMW12, HMK99, HPS^+12, HPS^+13, Hin11, HRR^+11, HDB^+12, HDB^+13, HDT^+15, HKN^+01, HMS^+19, HLOC96, HKT^+12, HV5C11, HW^+13, HM01, HCA16, HG12, HcF05, Hus98, Hus00, Hus01, HWW97, IDS16, IRU01, ITK00, ICC02].

MPI

[DW02, DLM^+17, DZ98b, Dem96, DPP01, DJJ^+19, DLB07, DSW96, DS96a, DRUE12, DKD07, DB02, DL10, DCPJ12, DCPJ14, DPFT19, DAK98, DGG^+12, DGB^+14, DDB^+16, HD02a, DXB96, DSW95, DCH02, DBK^+09, EZBA16, EGH99, EDS09, ES11, FH97, FD96, FGD97a, FGD97b, FLD98, FD00, FBD01a, FBD01b, FGRD01, FBVD02, FD02a, FD02b, FD04, FCLG07, FB95, FB96, FGH97, Fon98, FP98, FA18, FFB99, FNSW99, FTVB00, FFP03, FLPG18, FSM15, FHK01, FKH02, FSC^+11, FCS^+12, Fly97, Fon94, Fon95, FWNK96, Fin00, FBL^+05, FC05, FST98a, FST98b, FJK^+17, FKK^+96b, FKK96a, FG97, Fos98, FHPS94a, FHPS94b, FHP^+94, FHP^+95, Fru95, FWR^+95, FKB08, FBSS01, FLS98, FCS^+19, GBR07, GFD03, GFD05, GDC15, GV^+18, GGGC99, GGCM99, Gao03, GB15, GCC98, GCC99, GGB12, GGH^+96, Ge000, GR07, GGL^+08, GJR09].

MPI

[GS97, GBH14, GBH18, GGS99, GR95, GLB00, GR^+19, Gle93, GM13, GJM18, GT01, GBH99, GFIS^+18, GHZ12, GÁVRR17, GRRM99, GMAR00, GKS^+11, GB98, GMPD98, GPL^+96, Gra97, GEW98, GBS^+07, GLM^+08, GL29, GL94, GLS94, GL95a, GL95b, GLK95, GL95c, GL96, GLDS96, GL97c, GL97b, GLH^+98, GL99, GLT99, GLS95, Gro00, GLT00b, GLT00a, Gro01a, Gro01b, Gro02a, GL02, Gro02b, GT07, GL12, Gro19, GPC^+17, GC05, GSY^+13, Gu16, H98, Hc10, Har94, Har95, HL17, Hat98, HO14, HD02b, HE02, Hen94, H96, Hen96, HR97, H99, HEH98, HGMW12, HMK99, HPS^+12, HPS^+13, Hin11, HRR^+11, HDB^+12, HDB^+13, HDT^+15, HKN^+01, HMS^+19, HLOC96, HKT^+12, HV5C11, HW^+13, HM01, HCA16, HG12, HcF05, Hus98, Hus00, Hus01, HWW97, IDS16, IRU01, ITK00, ICC02].

MPI

[DW02, DLM^+17, DZ98b, Dem96, DPP01, DJJ^+19, DLB07, DSW96, DS96a, DRUE12, DKD07, DB02, DL10, DCPJ12, DCPJ14, DPFT19, DAK98, DGG^+12, DGB^+14, DDB^+16, HD02a, DXB96, DSW95, DCH02, DBK^+09, EZBA16, EGH99, EDS09, ES11, FH97, FD96, FGD97a, FGD97b, FLD98, FD00, FBD01a, FBD01b, FGRD01, FBVD02, FD02a, FD02b, FD04, FCLG07, FB95, FB96, FGH97, Fon98, FP98, FA18, FFB99, FNSW99, FTVB00, FFP03, FLPG18, FSM15, FHK01, FKH02, FSC^+11, FCS^+12, Fly97, Fon94, Fon95, FWNK96, Fin00, FBL^+05, FC05, FST98a, FST98b, FJK^+17, FKK^+96b, FKK96a, FG97, Fos98, FHPS94a, FHPS94b, FHP^+94, FHP^+95, Fru95, FWR^+95, FKB08, FBSS01, FLS98, FCS^+19, GBR07, GFD03, GFD05, GDC15, GV^+18, GGGC99, GGCM99, Gao03, GB15, GCC98, GCC99, GGB12, GGH^+96, Ge000, GR07, GGL^+08, GJR09].
MvWL+10, NAW+96, NO02b, NO02a, Nak05a, Nak05b, NSBR07, NE98, NE01, Nes10, NISS12, NH95, NCB+12, NCB+17, NAJ99, NW98, Nit00, NHT02, NHT06, NFG+10, NN95, OM96, OLG+16, OKM12, OIS+06, OD01, OF00, Ong02, OP98, OL05, OGM+16, OMK09, Pac97, PARB14, Pan14, PK98, PES99, PLK+04, PSK08, PDY14, PS00a, PS01a, PHJM11, PTL+16, Perf99, PZ12, PKG+10, PFG97, PLR02, PGAB+05, PGBF+07, PGAB+07, Pla02, PD11, PSSS01, PS00b, PTH+01a, PTH+01b, PS00b, Ptw99, Qbl12, Rab98, Rab99, RDMB99, RR01, Ram07, RSRT95].

MPI [RMS+18, Ran05, RA09, RAS16, RCFS96, RBB97a, RBB97b, RBB97c, RSPM98, RTH00, RH01, Ruo01, RST02, Ruo03, RGDM15, RGDM16, RGGP+18, RNP13, RPM+08, Rö00, Rol08b, RS06, RSC+19, RFRH96, RGC+99, RTRG+07, SE02, SCB14, SCB15, SPM+10, SSB+05, Sap07, SSB+16, SDJ17, Sgh12, SFB+04, SCJH19, SW12, SBG+02, SG05, Ser97, Sso1, SWS+12, SG12, STY99, SM02, SM03, SC19, SPH+18, SP09, SZ11, SC04, SSC96, SS99, SIC+19, SZBS95a, SZBS95b, SDN99, SvL99, SJ02, SW9j5, SntW96, SH96, SDB94, SLG95, SDV+95, SP9h6, SlO5, SVC+11, SK00, SB01, SOH+96, SOH+98, Sn18, SHHC18, SSL07, Squ03, Ste97, Sto98, SU96, Str96, SRS+19, Sum12, Sn01, Swa01, TOTH99, TAH+01, Tsy99, Tsy00, ThDS19, Tkp15, Th98, TgL02, TG09, TgLk19].

MPI [TPLY18, TD99, TOC18, Tra98, ThrZ99, TRH00, Tra02, Tra02a, Tgt10, Tra12a, Tra12b, Tmpl01, Tfgm02, Tsu07, TffZ22, Uty02, UARG12, VF0D0, VlSPL19, VSO0, VPS17, VRSC94, VRSC95, VGRS16, VdS00, Vp00, VVd+09, WH96, Whl95, WO95, Wal96a, WD96, WO96, Wal01a, Wal01b, Wal00, WC09, Wln03, Wln10, Wer95, Wst95, Wh04, WLR05, WWZ+96, Wis98, WB96, WM01, WADC99, Wor96, Wra02, Wcs99, WT11, Wylc12, WT12, Wlyc12, WT13, Wmp14, Xh96, Xlw+09, Ym97, Yl09, Yhl11, Ywc11, Ycl14, YRmcb14, Ypae09, Yth+12, Ysp+05, Zal12, Zz04, Zlz+11, ZwZ05, Zlp17, ZjdW18, Zll+12, Zz95, ZsnH01, Zkra14, Zal12, bT01a, dlAmcf12, Kh96, Mar06, Ym97, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

MPI-1 [SoHl+98].

MPI-2 [Ano99c, Ano99d, Ano00a, AkL99, BCAD06, Bhs+02, CwCW+11, Cd96, Dps08, Gfd03, Ggh+96, Gt01, Ghh+98, Glt9, Glt00b, Glt00a, HgMw12, Lsk04, Ms02a, Mk04, Ps00a, Ss99, Ssl07, Trh00, bT01a, Badc07].

MPI-3 [Fcs+19, Gbh14, Gbh18, Glt12, Hdt+15].

MPI-ACC [Apj+16].

MPI-Based [Ada97, Fsc+19, Gbh14, Gbh18, Glt12, Hdt+15].

MPI-CHECK [Lcc+03].

MPI-CUDA [Dr18, DlAmcf12].

MPI-DDL [FB97].

MPI-Delphi [AcGdT02].

MPI-driven [Hin11].

MPI-F [Fhps94b, Fhp+94].

MPI-FT [Lnf+00].

MPI-Glue [Rab98].

MPI-Hybrid [Cgc+11].

MPI-I [Ir01, Tsu07].

MPI-I/O [Ir01, Tsu07].

MPI-Interoperable [Ybmbc14].

MPI-Io [Bic+10, Cgc+02, Cff+96, Dl10, Fwnk96, Fsls98, Lrt07, Lgg16, Ps08, Pth+01a, Sw12, Sto98, TgL02, Zz04].

MPI-Io/Gpfs [Pth+01a].

MPI-Lapi [Bgp01].

MPI-Level [Lv04].

MPI-Like [Cgj+00].

MPI-Only [Ls10].

MPI-Opencl [Jnl+15].

MPI-OpenMP [Ms02b].

MPI-Paralleled [Kmg99].

MPI-Performance-Aware-Reallocation [Gfis+18].

MPI-StarT [Hus98].

MPI-The [Ano99c, Ano99d].

MPI-Thread [Ids16].

MPI-Umgebung [Gbr97].

MPI/Cuda [PhjH11].

MPI/Gamma [Ccc00a].

MPI/GPU [EzbA16].

MPI/Gpu-Code

44

[BBC+99]. Nests [DMB16]. Net
[CNM11, NE98, NE01, PES99].

Net-Console [PES99]. Net-dbx
[NE98, NE01]. netCDF [LkLC+03].

Netherlands [DSZ94, Ano93f, Van95]. Nets
[Sou01, Str94]. Network
[ACM98a, AR01, BDG+91b, BDG+93a,
BCKP00, CZ95a, CDHL95, CSC96, DM95b,
DM95a, DBA97, DFMD94, DGM93,
DGMJ93, EK97, Fis98a, Fis01, GS91b,
GS92, Gei93a, GSxx, ITT02, LB98,
LH95, MSCW95, MANR09, OF00, OWSA95,
TW01, VZT+19, AL92, AH95, AVA+16,
BDG+92a, BDG+92e, BSvdG91,
BJ95, Bon96, BBK+94, BID95, BFM96,
Coe94, CLLASPDP99, Fis98a, GS91a,
Gei93b, GM94, HS93, KMC97, KA95,
LB98, LHD+94, LHD+95, MKC+12,
MKC+14, MRH+96, POL99, PR94c,
PT99, Rag96, SEC15, SPK+12, TSS98,
YS93, ZPLS96, GK97]. Network-Balancing
[DBA97].

Network-Based
[BDG+91b, GS92, BDG+92a, IM95].

Network-Specific [DM95b, DM95a].

network-topology-aware [SPK+12].

Networked [FGKT97, GBD+94, Nov95,
NMC95, Per96, Ano95b, BID95,
BMPZ94b, BM94a, BMPZ94a, GM94,
HS93, RR+99]. Networking
[ACM97b, ACM98b, ACM00,
ACM04, ACM05, Hol12, LCK11,
CJNW95, Cun95, DM95b, DM95a,
DG95, DZ98a, LHL95, LHD+94,
LHD+95, MKC+12, MRH+96,
POL99, PR94c, PT99, Rag96,
SEC15, SPK+12, TSS98, YS93,
ZPLS96, GK97]. Network-Balancing
[DBA97].

Non-blocking
[HTA08, FH98, BID+98, STP+19].

Non-Contiguous [WTR03].

Non-Data-Communication
[BCG+10]. Non-dedicated [WLN06].

Non-Local [CCSM97]. Non-iterative
[OMK09]. Non-linear [MW98, OKW95].

Non-local [CCSM97]. Non-persistent
[Man01]. Non-singleton [TVCB18].

Non-stop [Gua16]. nonaligned [AGIS94].

Non-contiguous [JDB+14, TGL02].

Non-determinacy
[DKF93]. nondeterminism [Obe96].

Nondeterministic [KSV01, CRD99].

Nonlinear
[Car93, ZB97, CEGS07, Jou94].

Nonnegative [KBP16]. nonsymmetric
[dH94]. Nordic [FF95]. Norfolk [Sin93].

Normalized [Gra09]. North [CNW95].

Note [BR02, SGHL01]. Notre [IEE96i].

Novel [DDYM99, GKK99, MVS16, MSL12].

November [ACM96, ACM97, ACM98b,
ACM99, ACM00, ACM01, ACM03, ACM04,
ACM05, Ano94c, ACDR94, BDW97, GN95, HK95, Hol12, IEE91, IEE93e, IEE94b, IEE94h, IEEO02, LCK11, USE94. novice [CGG10]. Novices [Stp02]. NOWs [SLGZ99]. NP [YZ14]. NPACI [PKB01]. NPB [EGC02]. NR [Gua16]. NR-MPI [Gua16]. NRC [LD01]. NSGA [GAVRLL17]. NSW [GN95]. NT [Ano01a, Bak98, BF98, CLP99, FD97, GGGC99, PS00a, SFG98, TAH01]. NTRUEncrypt [KY10]. NTUG [FF95]. Nuclear [BPG94, GA96]. nuclei [NS16]. NUMA [BCC99a, BCC99b, BFG99, CAWL17, GTS95, MKC95, MJB15, OPW95, SLN95, TSCaM12, ZLP17]. Numagic [GTS95]. Number [BP99, HT08, WHD95, CCS19, CBYG18, Lan09]. Numeric [MLGW18]. Numerical [ACMR14, BS93, BCP+97, CWW97, DHH97, FPK91, For95, FB94, HH94, Hoo95, Hus98, IF95, KM10, Kha13, MD96, HT02, PKW95, TDBEE11, YKD17, AL92, Bo97, BCM96, CWW99, FP92, GS94, JK10, KB13, No98, NHT06, Pri14, SMAC08, SU96]. Numerically [BKML95, FLL99]. nur [BL94]. Nutzung [GEW98]. NVIDIA [KME90, Seg10, VLMPS98, XXL13, KKM15, Lan09]. NVRAM [MC18]. NX [Pie94, PR94a]. NY [IEE96f, PBG95, Rec96, SS96].

O [Bos96, CFF96, DRUE12, IRU01, IBC97, LKLC93, kLCC96, MV17, MC18, MGC12, MG15, PSK08, PLR02, RK01, SBQ24, Tha98, Tsu07, WSN99, ZJD18].

O2000 [CML04]. O2WebCL [CHKK15]. Oberammergau [BPG94]. Object [Ada97, BCFK99, CFKL00, FMSG17, MSL96, PD98, SWL01, YHGL01, YX95, Ada98, BR91, DM12, LK96, OKM12, RFH95, SL94b, TG13]. object-based [LK96]. Object-Oriented [BCFK99, PD98, SWL01, Ada98, DM12, OKM12, RFH95]. Objects [KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZPLS96]. Oblivious [LZH17, LZH18, UALK17, HSP13]. observations [ZKRA14], observed [CAHT17]. Occam [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. Ocean [BS93, GAM95, Bi95, Ma01, Nes10, Sch99, Wa00]. Oceans [IEE94c, IEE94e].

OCOptimiser [AFD15]. OCM [BoFBW00]. OCM-Based [BoFBW00]. October [Ano93f, Ano94e, Ano94i, Ara95, BPG94, Bha93, BDL96, CHD07, CGB10, DMS94, DLO03, DE91, FK95, GSK93, IEE94f, IEE95a, IEE95b, IEE95g, IEE96a, IEE96c, IF95, JB96, Kha02, DL02, OLO5, Sch93, Sie92a, Sie92b, Ti96, USE00, UC95, Vo93]. octree [JL18].

octree-based [JL18]. ODE [Ano97, Bra97]. ODEs [Pet97]. OdinMP [BB00]. OdinMP/CCp [BB00]. Off [CGS15].

Offloading [MGA+, DS17, KBG16]. off [Roll08a]. Oil [FSX14, ZAF16].

OKs [Ano03]. old [LK14]. OMB [BW12]. OMB-GPU [BW12]. OMIS [LW97]. Omni [KSS00, KSH01].

OmniRPC [SHT01]. OMP [SGJ03].

OMP2001 [TB03]. OMP2012 [MBB12].

OMPI [ACH11, O96]. OmpSs [ABF17, PSB19, YÅG15]. on-chip [TDG13]. On-Demand [CTK00]. On-Line [BoFBW00, Wis98]. On-the-fly [KSJ14].

ONC [R93]. One [BPS01, GFD03, GFS05, GBH20, GT01, HDB12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DPFT19, DBB16, GBH18, LSK04, M99c, OL05, PGK10, dlAMIC11].

one-dimensional [Ols95] one-layer [diAMIC11]. One-Sided [BPS01, GFD03, GFD05, GT01, HDB12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DPFT19, DBB16, LSK04, M99c, PGK10], only [LS10, Squ03]. Ontario [GK93]. onto

Open
[BGG+15, KDL’95b, WGG’19, AVA’16, KDL’95a, Nob08, GBS’07, VGRS16].

Open-Source [BGG+15, AVA’16, Nob08].

OpenACC [CGK’16, CCBPGA15, GML’16, GM18, HTJ’16, JCP15, KDHZ18, KLV15, Kom15, LB16, LSG12, MGS’15, OGM19, OGM’16, QHCC17, RLFdS13, SCJH19, VGP19, WKL’18].

OpenACC-based [KLV15].

OpenCL [ABB+19, ASAK19, AB13, BLPP13, BBC’19, BDW16, BN12, BHW’12, BHH’15, BAS13, CJPC19, CDD’13, CP15, CLO18, CJJ’10, CHKK15, CCS19, CCK12, CS14, CLBS17, CBHL19, DARG13, DI14, DWL’10, DWL’12, FADF15, FLMR17, FE17, FSV14, FVL15, dfDrS19, GScF113, GDM17, HS18, HD11, HE15, HH’18, JSS’15, JKJ’17, JR13, JNL’15, JMDV’17, KKM15, KH12, KM10, KKLL11, KSL’12, KJJ’16, KNH’18, KB13, KPK13, Lee12, LNK’15, LWZ18, LL16, LFAA15, MC17, MAIWA14, MTS’15, MSZG17, MHSK16, W12, OKT15, ORA12, PS19, PCH’13, PSB’19, PB12, RG18, RVPK18, RVPK19, RGD13, RBB15, RGB’18, RBB17, SFSV13, SBP’17, SAP16, SXMX’18, SSB’17, SG14, SFD15, SG10, Str12, THS’15, TKA16, TMW17, TKP15, TY14, WTT’17, WM019, WZH16, YSW14, YWT15, YSL’12, ZWL’17].

OpenCL [ZT17, dAT17].

OpenCL-accelerated [ZWL’17].

OpenCL-Based [CLO18, WTT17, WZH16, JKM’17, SXMX’18, WM019].

OpenCL-to-WebCL [CHKK15].

OpenCL-written [KKN’18]. openFabrics [FCS’19].

OpenGL
[Ano98, LH97, OR12, Röt19].

OpenGL-write [Cha05, CZG’08, CGKM11, CMMR12, EV01, JMS14, MDSC09, SHM’10, Vos03, OKM12, ST02a, ST02b, Add01, ARVW03, ABC’00, AC07, AH12, AAB’17, AELGE16, ACMZ11, ATL’12, ADT14, AC12, Ano97, Ano11b, Ano03, AK00, ADMV05, ADR’05, ASB18, AML’99, AGJM06, AM07, ACD’09, ABB’10, BST’13, BR02, BHP’03, BME02, Ben18, BN00, BO01, BDH14, BW’12, BCC’00a, BCC’00b, BK08, BG’02, BS01, BS05, BBC’99, BBC’00, Bra97, Br00, BD03, BD07, BS09, BFG’10, BGD12, BC00, BO07, BC19b, BK00, BK00, BO01, BEG’10, BB18, CRE99, CE00, Car07, CB00, CGL10, CDA’01, CLY16, CM98, CMZ99, CHP’01, CBPP02, Cha02, CM05, CvdP08, CGKM11, CMMR12, CLA’19, Cha98, CYG18, CC’06, CCBPA15, CC00b, Dab19, DM98, DW02, DBF01, DS17, HD02a].

OpenMP
[DGH’19, DFC’07, DFA’09, ETW012, EM00a, EM00b, EV01, Ed08, FGR01, FSMG17, FSF19a, FSF19b, FSX14, FM09, GSA08, GP01, GMSK17, GG09, Goe02, GAVR17, GSM’00, GAMA’00, GAML01, GOM’01, GAM’02, Gra09, HPP02, HP05, HDG09, HA10, HO14, HD02b, HMK09, HAS00, HK01, HA01, HVSC11, HLC00, HT10, HCL05, HEH09, HHYC09, HHS09, HAA’11, IJM’05, ICC02, IK00, ITT02, JCP15, JK08, JPO12, JFY00, JYY’03, JC’08, JMJ’11, JLG05, JR10, KB01, KS15a, KOB01, KAO10, KOI10, KN17, KKH03, KTO02, KSJ14, KLR’15, KBVP07, KBG’09, KSV10, KT10, KH15, KAC02, KC06, Kuk98, KPO00, KLM’19, KRG13, KSS00, KSH10, KJEM12, LOHA01, LP00, LRRS02, LTS16, LD01, LME09, LSC13, LHC’07, LNW’12, LRL19, LHCW05, LYX’16, LA02, LA06, LD19, LMRG14, LH198, LL01].

OpenMP [LLH’14, MRC’12, MS01b, Mal01, MM07, MB12, Mar02, Mar03,
MLC04, Mar05, Mar09, MPD04, MCB05, Mat00a, Mat00b, Mat01a, Mat03, MGG05,
MG12, MG15, MM11, MFG+08, MKV+01, MBE03, MRRP11, MMDA19, MMSW02,
MKW11, MM14, MSM07, MJB15, MJPB16, MCDs+08, MÜl01, MÜl02, Mül03, MBB+12,
NO02b, NAK03a, NIO+02, NIO+03, NEM17, NPP+00b, NPP+00c, NPP+00d, NAAL01, NA01, NNON00, NO08, NU05,
NHT02, NHT06, OOS+08, OP10, OPW+12, PARB14, PPJ01, PVKE01, PK05, PZ12,
PGC02, PKE+10, Qui03, Ran05, RDLQ12, RLVQG12, RBAA05, SEE12, SSB+16,
SHH01, SHTS01, SLSK09, SGZ00, SPL+12, SHPT00, SSA012, SK00, SB01, Stp02, Stp18, TCM18, TBS12, TS12a,
TBS02, TTSY00, TSS00a, THDS19, TSCaM12, TJP12, Thr99, TBG+02, THT+05, TGBS05, VOLSPL19]. OpenMP
[VDL+15, VPS17, VGS14, VGP+15, VOS14, Vre04, WAL00, WAL02, WAO02, WCC12,
WC15, WMC+19, WPC07, WT11, WVL1C12, WT12, WLYC12, WT13, YKV+18, YHL11,
YWC11, YCL14, YKL1D17, YPAE09, YSM+16, YSM+17, YWY+12, YCA18,
ZAT+07, ZSOr01, aMST07, dCZG06, vDP17, RM09, SSGF00, WCS+13]. OpenMP*
[KDT+12]. OpenMP-based [LNW+12].
OpenMP-like [BK00, BKO00, KOB01, VGS14].
OpenMP-oriented [MLC04].
OpenMP-parallel [HHS01].
OpenMP-style [JPOJ12]. OpenMP/MPI [BEG+10, HMK09, LL13, LSS+16,
MGG05, NO02b, Nak05a, SSB+16, SK00].
OpenSHMEM [HVA+16]. OpenTuner [BAG17]. OpenUH [HEHC09, LHC+07].
Operating [MMH98, RG97, USE94, WIL93, ARS89, SIE99]. operational
[KOS+95a]. Operations [BIL99, BIC05, CCA00, FCLG07, FPY08,
GFD05, GLO00, PSM+14, PGAB+05, TRG05, TGT05, WRA02, BMG07, DS13,
HMS+19, IDS16, KHB+99, KMH+14, PGAB+07, PKD95, SS99, TFZZ12].
Operators [KK19, NHT02, NHT06].
opportunist [CC10]. Opportunities
[LB16]. optical [MRH+96]. Optimal
[BPO99, GAM00, ZGN94, BB95a, ERI12, PQL07, PTL+16, SU99a]. optimiertes
[SIE99]. optimisation [AMUK15].
Optimising [Boo01, FKH02]. Optimistic
[SCL00, CXB+12, PY95]. Optimization
[BG00, BHNW01, DBA97, GOC02, HS12, Hus00, ITT02, KGK+03, KMH+14, LiS1B9,
MC17, MBS15, MI01, NIO+02, NIO+03, PSSS01, SM03, SVL99, SWH15, TRG05,
WTTH17, WJ12, CO93, DSO11, FCS+12, HWS09, KHS12, LMD90, LDJ13, MALM95,
PP16, PS91, PPM95, SK01, SDJ17, STR12, TMW17, TFZZ12, VWZ+13, Was96, XLL13].
Optimizations [NSL16, SSE12, iSYS12, TSS00a, BVML12, HEHC09, LL16, MV17].
optimize [BBW19, GVF+18, GFI+18, WLYC12].
Optimized [AKL16, AMC+19, BRI02, FAFD15, MAIVH14, PM95, PTH+01a,
TSS+15, THDS19, WJB14, BKvH+14, MMM13, SIE99]. optimizer
[AKL16, AMC+19, BRI02, FAFD15, MAIVH14, PM95, PTH+01a,
THS+15, THDS19, WJB14, BKvH+14, MMM13, SIE99]. optimizer
[BHRS08, RAG96]. Optimizing
[BG+05, CXB+12, FMF15, KKP01, MBE03, NSZS13, OM96, SSA012, TGL02,
TGT05, GSO2, LHC+07, RKBA+13]. Options [RR00]. Orange [ACM09b]. orbit
[CC19, SNN94]. Order [BL95, DFN12, LZH18, KN17, KME09, KEGM10, KB13,
MYB16, OGM+16, THDS19]. ordering [ZHA12]. ordinary [NF94, RBB15, SP11].
Oregon [ACM099, IEE93e, SW01].
Organization [BPC94, JFGRF12].
Oriental [Ada97, BCFK99, FMSG17,
MSL96, PD98, YHGL01, ZL18, Ada98, BR91, CJPC19, CBGL19, DM12, MGC+15,
OKM12, RFH+95, SWL+01, MLC04]. Origin [LL01, LSK04, ZSOr01].
Origin2000 [BRI00, MH01]. original
[RNP13]. Orlando [ACM09b]. Orleans
[IEE96b, USE95]. ORNL [BOR99]. OSCAR
oscillations [KHBS19]. oscillator [BJ13, GSMK17]. OSDI [USE94].
OSF [Sch93]. OSWALD [RGB+18]. Other [OP10]. OtOt [DKF94b]. Otto
[Ano96a, Ano99a, Ano99b, Nag05].
out-of-core [BL99]. Output
[CFH+94, HE02, JW96]. Outstanding
[LSB15]. Overcoming [JKHK08].
Overhauling [BDW16]. Overseas
[BR02, FST98a, XH96, CRGM16, KC94,
KR98, LHY91, ZRQA11]. Overseas
[BCG+10, BGS09, BCM11, SS94].
Overlap [BRU05, DCPJ12, DCPJ14, MLAV10,
PSK08, SH14]. Overlapped [GPC+17].
Overlapping [KB01, kLCC+06, PKE+10,
BBH+15, DJJ+19, MMM13]. overlay
[CXB+12]. overlay-based [CXB+12].
Overview [CFH+96, Gre95, GL95c, Zol93,
GHZ12, GPL+96, HHK+99, Wer95].
OWL [JKN+13]. Ownership
[FHB+13]. Oxford
[Boi97].

P [CAM12, WHDB05]. P-RnaPredict
[WHDB05]. P03M [BJ93]. P2P
[GR07, GGL+08, GJR09, RS19, SBG+02].
P2P-MPI [GGL+08, GJR09]. P4
[KS06, Mat94, Mat95]. PA
[AC04, Ham95a, ACM96c]. Pablo
[BFMT96a, BFMT96b]. Pablo-based
[BFMT96a, BFMT96b]. Pacific [IEE95e].
Package [BS93, KCP+94a, KOW97,
LOD01, SYF96, van97, BHW+12, BBH+15,
Ccw+11, Gao03, KCP+94a, LFS93a,
LFS93b, SL95]. Packet [MBES94]. Packets
[Uhl94, Uhi95b]. PaCT [Ma95]. PaCT-95
[Ma95]. PACX [FGRD01, KR09, RBB97b].
PACX-MPI [KR09, RBB97b]. Page
[CML04, NPP+00c]. pages
[Ano95b, Ano95c, Ano96a, Ano99a, Ano99c,
Ano99b, Ano99d, Ano99e, Ano99f]. Pagoda
[YSS+17]. pairwise [AMHC11]. Palazzo
[GT94]. PALLAS [KVH97]. Papers
[BDB+13, OL05, TB14, ACM90, CHD09,
DKD07, GT19, IEE93a, IEE95c, KKD03,
MTW07, Old02, Ano93g, Cha05]. PARA
[DW94, DMW96, Was96, CD96].
paralyzed [SCC95]. ParaCells [SYL19].
ParADE [KKH03]. Paradigm
[HIP02]. Paradigms
[BGD12, CM98, HD02a, HD02b]. Parodyn
[MHC94a, MHC94b]. Paragon
[Ano96c, HW97, MP95, PR94a]. Parallel
[ACM95b, Ada97, ATC94, Agr95a, AMHC11,
AGH+95, AS92, ADRCT98, AK99, AMBG93,
ASA97, AL96, AP96, Ano95b, ACM14,
AB93a, AJF16, BHM94, BJ93, BBG+95,
BCGL97, BFL99, BP99, BG95, BS93,
BDG+91a, BKGS92, Ben01, BP98, Bha93,
Bic95, BKG08, Bis04, BALU95, BCL00,
BS00, BBG+99, BBC+00, BBG+01,
BF97, BL98, BBH+95, BBH+97, BT01b,
BMS94b, BMPZ94a, BM97, BK00,
BBH12, BGL00, CGC+02, CHD07, Cer99,
CDZ+98, CUC95, CDK+01, Cha02, CGB+10,
CNC10, CFF+94, CSW97, CMH99, CFPS95,
CCSM97, Coo95b, CT94a, CT94b, CC00b,
CZ91, DSM94, DERC01, DYN+06, DK13,
DDP+19, Di 14, Di02, DAD19, DSS00,
D+91, DNM+92, DGM93, DT94, DGH+99,
DZDR95, DK06, DSC05, EKTB99, EGR15,
EM00a, EM00b, EGDK2, EJL92, ES11,
FGRD01, FHS09, FJBB+00, FP03].
Parallel [Her98b, FHK01, dfDOSR+19,
Fis01, For95, FP92, FB94, FS93, FF95,
GCBM97, GLN+08, GBD+94, GPK97,
GR07, GS09, GSKM17, GDM18, GB98,
GHL97, GK10, GFGP12, GJN97, Gre94,
GL94, GL97a, GL97b, GlkLY97, HJ98,
HLP10, HO14, HK94, HK93, HK95, HH94,
HT01, HAA+11, IE93b, IE94a, IE94f,
IE95h, IE95f, IE95g, IE95j, IE96b,
IE96c, IE96g, IE96e, IE97b, IE97c,
IE98, IITK00, IBC+10, IOK00, IDD94,
IH04, IHM05, JAT97, JML01, JLG05, Jou94,
JRM+94, KFA96, Kan12, KDHZ18, KK02a,
KO101, KNT02, Kat93, KBS04, Kep05,
KmWH10, KR09, Kon00, KKP01, KMC96,
KMC97, KS96, KKD03, KKD04, KS01,
Kvh97, Khs01, Kuh98, KBg16, Kum94,
Lad04, LttD14, Ltr00, Lkd08, LszL02,
Ltra02, Lhhm96, Li96, Lz97, Lhz97,
Klcc+06, Lq96, Lus00. Parallel
[MsoGr01, Ms02b, Mm92, MwG97,
DfMBdFM02, Mar06, Mar07, MftB95,
MsCw95, Mat94, Mat95, MsM05, MsB15,
MgC12, Mg15, MrB17, Mm11, Mic93,
Mic95, MtWd06, McdL01, Ms95,
McdS+08, MBb+12, MsB97, N002b,
N002a, Nak03, Nak05a, Nak05b, Nszs13,
Nar95, Nss12, NaJ99, Nj01, Nov95,
Nmc95, Oed93, Op10, Olg01, Ong02,
Ott93, OwsA95, Pac97, Ppt96a, PvkE01,
Pat93, PszÉ00, Pvh97, Per99, Per96, Plr02,
PwpD19, Pkb+16, Pbc+01, Qu03, Rr00,
RdmB99, Rsb94, Re69, Rs95, Rc97,
Rsv+15, Rb90, Rr94, RwD09, RtL99,
Rll01, Scp97, Srp95, Scz00, Sch01,
Sch96a, Sch96b, Seg10, Sev97, Sev95,
SslmW10, Sm03, Sp99, Sie94, Sie92a,
Sie92b, Sin93, Stv97, Swh15, Sou01,
Sta95b, Ste94, Ssn94, Sgs10, Str96, Str97. Parallel
[Str94, Snmp10, Sun90a, Sun90b,
Sun94a, Syd94, Tmp16, Tss00b, Ttp97,
Tc94,Tcp15, TqDl01, Thn00, TdbE11,
Tsu07, TvV96, Uhl94, Uhl95b, Uhl96,
Ucw95, Vlo+08, Vrs00, Vb99, Wh06,
Wala01, We94, Was95b, Whd05, W097,
Wsn99, Wmc+18, Wtr03, Wt12, Ym97,
Yhl01, Yh06, Ypa94, Yg96, Yth+12,
Yzpc95, Ysl+12, Ztd19, Zb94, Zz04,
Zdr04, ZWjk05, ZAt+07, ZLs+15,
Zzz+15, Zgc94, Zb97, van97, AcM97a,
Arvw03, ApBcF16, Art17, AaaA16,
Ad98, Al92, AbF+17, Asc95, Adt14,
Ad95, Acj12, Ano93h, Ano95e, Ano00b,
Adb94, Av18, Addr95, Ab93b, AfT95,
Ab13, Agis94, Admv05, Asb18, Bj96,
Bbb+94, Br91, Ba06, Bhs18, Bb95a,
Bcad06, Bb93, Bdg+92b, Bb94, Bpc94,
Ben95, BvdSd95, Bkh+13, Bavo8, Bn00,
Bir94, Bcm+16, BkmL95, Bos96, BfMr96]. Parallel
[BID95, Br95, Brt95, BdW97,
Bsh15, Bb95b, CArb10, Cl93, Cgk11,
Cav93, ClDj+15, ClSp07, Ct13, ClYc16,
CkWh16, Cha05, Cjvd08, Cha96,
Cgl+93, Cegs07, Ch94, Cz96, Che99,
Clj+10, Cs96, Csw99, Ccs19, Cla08,
Cef+95, Cdd+96, CdGm96, Cbhh94,
Coo95a, Chw03, ClLasPdF99, Cff+96,
CrP+95, Cd01, CdH+94, Ckf+93, Cb11,
Dmk19, Dkf93, Dkf94b, Dr18, Dlb94,
Dlr99, DsS+94, Dr94, Dsz94, Dm93,
Drue12, DvBF01, DkD05, DvdlV94,
Db96, DmW96, Dlm99, Dkp00, Dlo03,
Du02, DzzY94, Eass95, Ev01, Fb96,
FbF99, Fm90, F094, Fstg09, Fer98a,
Fms15, Fcs+12, Fkk+96b, FfM11,
Fhc+95, Gg99, Gcn+10, Ggl+08, Gbf95,
Gkd+18, Gg09, Gfb+14, GÁvR17,
Gsm+00, Gks+11, Gew98, Gkk09,
GkF13, Gra09, Gp95, Hhs18, Ham95b,
HpY+93, Hws09]. Parallel
[He93, Hps+96, Hz94, Hz99, Hplt99,
Hdb+13, HvsH95, H05, H95, HloC96,
HvsC11, HhsM9, Hlo+16, Iee97a, Im95,
Jwb96, Jc17, Jy95, Jjm+11, Jc96,
JmdV+17, Kcd+97, Khbs19, Kbo01,
Kbp16, Kn17, Koso+95a, Kl95, Kos95b,
Kss+18, Krc17, Kg93, KfF94, Kra02,
Kkj+08, Kh10, Lm99, Lcl+12, Lh98,
Ls10, Lcvd94a, Lgmdr+19, Lmm+15,
Lou95, Lg93, Lm13, Ll95, Lc97b, Lsr95,
Mmr99, Myb16, Mmb+94, Mzk93, Mm95,
Mar05,Msp93, Mko0, Mn91, Mhc94a,
Mrrp11, Malm95, Mla+14, Mrh+96,
Mmh99, Mor95, M99, Mr96, MrwL+10,
NsrB07, Neu94,Nb96, NbgS08, NckB12,
Nf94, OdSsp12, Ols95, Olu14, Ow92,
Pha10, Ppt96b, Ppt96c, Pktb06, PbG+95,
Pn01, Pbk09, Ppf98, Py95, PbPtp95,
PslT99, Pcs94, Ram07, Rjc95, Rbb15,
Rlo08b, Rbb17, Slm14]. Parallel
[Sm12, SskF95, Sh94, Sch94, Sch99, Spk96,
Sbf94, Swyc94, Sk92, ScC96, Sl00,
Smac08, Sz11, Spl99, Sm00, Svc+11,
Sm93b, Stt96, Sh14, Srk+12, SlS96,
Sta95a, Sti94, SMSW06, Sun95, Sur95a, Sut96, Swa01, SL95, TJ90, THDS91, TDB00, TGLK19, TMPJ01, Uhl95a, Uhl95c, VM95, Vis95, Vos03, Wan97, Was96, Was95a, WK08a, WK08b, WK08c, Wol92, WT11, WYLC12, WLYC12, WMP14, YULMTS+17, YHL11, YWC11, YBZL03, YYW+12, ZL96, ZWHS95, ZAFAM16, ZWL13, ZJDL18, ZWL+17, dH94, Ano94e, Ano94f, ACDR94, BDLS96, BS94, BG94b, Bos96, CC95, Cza13, DSM94, DHK97, DW94, EJL92, FR95, FF95, GN95, JPTE94, JPP95, KKD05, Kum94, LkLC03, Mal95, MKP96, OKW95, PQ07, QRG95, SSSS96, SPE95, Stp02, TDBEE11, TGEM09, Vol93, Vre04, WN10, YC98.

Parallel [ZPLS96, ZDR01, ZHS99].
Parallel-programming [KKJ+08].
Parallel/distributed [FHC95, Wan97].
Parallelisation [SJK+17a, SJK+17b, WCVR96, LF93b].
Parallelism [CGC+11, EdS08, EK97, FKCC96, GLP+00, GAM+02, GPC+17, DK02, KT02, Mar03, MGA+17, MMS07, MdSC09, RBA05, SHM+10, SML17, SGZ00, TCM18, TSY00, Thr99, YPAE09, ATL+12, AML+99, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, JC17, JPOJ12, Kos95b, OPP00, RKBA+13, SLGZ99, SHPT00, THH+05, TWFO09, WO09, WFO14, WRSY16, Y14, PGdCJ+18].
Parallelisation [SJJK+17a, SJK+17b, WCVR96, LF93b].
Parallelized [FBSN01, OMK09, KMG99, OKM12].
Parallelizer [BHRS08]. Parallelizing [BST+13, Car07, GGH99, IOK00, IKM+01, IKM+02, SR95, ZZ95, AMS94, BY12]. Parallelldatorcentrum [Eng00].
Parallellizing [LRQ01]. parameter [HPLT99, JMdVG+17]. parameterized [CT13]. Parameters [GFV99, BAG17].
Parity [MC17]. Park [HVSH95, RS95, SHH94a, SHH94b]. Park [SL94a, IEE93c]. PARKBENCH [DHS96, DH95]. PARMACS [GR95, HZ96, HZ99]. PARMACS-to-MPI [HZ96]. ParNSS [HSW94]. PARRAY [CCM12]. parsing [Sur95a]. Parsytec [SLL94a, SLL94b]. part [VSRC95, EM00a, EM00b, GK10]. Partial [DERC01, DLV16, FSSD17, KK02b, MK17, MFTB95, MH18, OM96, ST17]. partially [CdGM96]. Particle [GS97, KHS01, NSLV16, ZO04, BAS13, CFF19, FFFC99, GSMK17, KPK13, RH+95, VDL+15].
Partitioning [CTK01, DAD19, KL11, SPB+17, ST97, CT13, Cha96, Gra97, GKCF13, YST08]. partners [Str94]. Pasadena [IEE95c].
PASCO [ACM97a]. passage [PTMF18].
Passing [AMHC11, Ano93d, ABL99, Att96, BC19a, BS97, BC14, BB+06, BBG+99, BBG+01, BRU05, BBH+95, BBH+97, BGR97b, BFM97, CHD07, Cer99, CGH94, Cot97, Cot98, CTK00, Cot04, CDN11, DFK01, DKD08, DHHW92, DHHW93a,
DDL00, FKKC96, FKS96, FGT96, Fos98, FGG+98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLDS96, GLT99, GLS99, GLT00b, GLT00a, GL04, IBC+10, KTF03, KGRD10, KS97, KVD03, KKD04, KKD05, LKD08, LK10, Luo99, MPI98, MTSS94, MS98, MSL96, MBES94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, PS01b, RRBL01, RWD09, RFG00, SWHP05, SWL+01, ST02b, TGT05, TDB00, TBD12, WD96, Wis97, YHGL01, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93e, Ano94d, Ano95c, Ano00a, Ano00b, BL97, BvdSvD95, Bjo95, passing [Bru95, BDW97, BFIM99, CGJ00, CDZ98, CRD99, CD01, DKF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FK94, FHB13, GL92, HP05, HPY+93, Hem96, KJA+93, Kra02, LR06a, LBD96, wL94, LCY96, LMM+15, LC97b, MP95, N91, PS07, Pd06, Pic94, PR94a, PS00b, Sei99, SWJ95, SDV+95, SZ99, SSSG95, S694, TSZC94, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, Di96, GGLH+96, Han98, Hem94, RRFH96, SLG95, Wer95, YHG+14]. Past [Dar01].

Path [CGPR98, GAMR00, SDJ17, SLN+12, Zel95].

path-based [SLN+12]. Pathway [CNM11].

PATOP [BFBW01]. Pattern [CSW12, CC17, JJPL17, RDMB99, MAS06, SJLM14].

pattern-based [SJLM14].

Pattern-Independent [CSW12].

Patterned [ST17]. Patterns [DMMV97, FPY08, KB98, MMS05, PKB+16, RRAGM97, SGH12, DZZY94, GÁVRL17, HGMW12, LGmdR+19, PM95, PSK+10].

PC [AH00, EKTB99, KS01, LKYS04, RLL1, Ste00, WLYC12, YST08, YL09, MMB+94].

PC-Cluster [RLL01]. PCAT [ACDR94, GN95]. PCAT-93 [ACDR94].

PCTE [HJ94]. PCTRAN [KHS01]. PDCS [YH96]. PDE [GBR15, NHT02, NHT06, NPS12]. PDES [PT01, SCL00, SCL01, HO14, HHA95].

Performance [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, AC07, ATM01, AR01, Ano01a, Ano01b, ADR+05, Bak98, BBGL96, Ben18, BN00, BBHD14, BGG+02, BY12, BRM03, BRST94, BS07, BDL98, BCKP00, BHNW01, BFM96b, BFBW1, BFG+10, CGK+16, CDD+13, CRE99, CDJ95, CGLD01, CNM11, Che99, CSC96, CCBPGA15, DPSD08, DM95b, DW02, DZ98b, DPP01, DWL+10, DBK+09, EG999, EGC02, EML98, EML00, FD02a, FGT00, FCP+01, FSC+11, FST98b, FGT97, GFD03, GKP96, GGS99, GBH99, GFIT+18, GRRM99, GB+S+07, GC05, GmdMBD+07, GS+13, HVA+16, HKN+01, Hol12, HF14a, HF14b, HPS95, Hus98, IE92, IE93c, IE94g, IE95k, IE96a, IE96f, IE97c, IF195, IRU01, Hiv+A+00, IADB19, JSS+15, JC17, JCH+08, JS13, JLG05, KDS012, KaM10, KL94, KH12, KBS04, KBM97, KKP01, KH15, KC06, KK02b, KHS01].

Performance [KSS00, LaF01, LAdS+15, LWSB19, LCK11, LC97a, LB98, LGCH99, LNK+15, LH98, LC93, LkLC+03, LWZ18, LN+12, LRLG19, LS10, LC+03, LVP04, LWP04, LDCZ97, LHZY19, LC97b, LKYS04, MMB+94, MKP+96, MPD04, ME17, MGMH97, MGC12, MM02, MM03, MOL05,
MS99a, MHC94b, MMSW02, MK04, MCLD01, MMH99, MM14, MMS07, NSL16, NMW93, NPP+00d, NMS’14, NN95, OTK15, OF00, OLG01, PARB14, PKB01, PHJM11, PZ12, PR94b, PFG97, PGAB+05, PGAB+07, PGC02, PY95, PTH+01b, PS01b, QHCC17, QB12, Rab98, RBB97a, RBB97c, RH01, RRAGM97, Ros13, RST06, SGJ+03, SPM+10, SLJ+14, SWHP05, SCP97, SEF+16, SPL+12, SCSL12, SM02, SM03, SSC97, SJ02, SSSS97, SC96b, SKH96, SJK+17a, SJK+17b, TSB02, TSB03, TTSY00, Ten95, TBC+02, TGT10, Trä12b, TFGM02, TFZZ12, VFD02, VY02.

Performance [WZM17, WN10, WAS95b, WM01, WT11, WT12, WT13, XF95, XH96, XLL13, YC98, Yan94, YWC11, YS93, YWCF15, ZLGS99, ZWJK05, ZHK06, ZSnH01, ABDP15, Ahm97, ADLL03a, ADLL03b, Ano03, AFST95, BDP+10, Ber96, BDF97, BFM96, BFM96a, BFM99, CRE01, CAHT17, CLYC16, CBPP02, CBM+08, CHKK15, DM95a, DL10, DO96, D+95, DWL+12, DE91, Duv92, EFR+05, ESB13, FAF16, FD02b, FE17, FSV14, FME+12, Fin97, GV+18, GS02, GGC+07, GK97, GR95, GHZ12, GML+16, GSM+00, GL96, GLDS96, GL97c, GL99, GWVP+14, HDDG09, HW11, HASnP00, HAJK01, HMS+19, HK10, HSVC11, HHA95, HGI2, HeF05, JKKH08, JIM+11, JKN+13, KBB16, KKM15, KS13, LBD+96, LTLC94, LFS+19, LC07, LB12, LC96, LB96, LL01, LK03, LKS04, MC17, MP95, MSWC15, MSW+05, MSL12, MABG96, MHC94a, MSZG17, MJPB16, MGC+15].

performance [NU05, NFG+01, OIH10, Old02, PGs+13, PS91, PHW+13, PGK+10, PF05, PMZM16, PTW99, Rab98, RMS+18, RPS19, Reu03, RGDM15, RJDH14, Sep93, SFO95, SWJ95, SL05, SVE+11, SK00, SFLD15, TMC09, TSP95, TG99, THM+94, VDL+15, Wor96, YCL14, ZSK15, ZWL13, dAT17, HS95a, GH94, LCHS96, SSH08].

performance-aware [MSMC15].
Performance-based [YWC11].
Performance-Driven [LWSB19].
Performance-Portable [JSS+15, DWL+10, DWL+12, FAF16].

performance-prediction [BDV03].
performance/cost [GWVP+14].
performance/power [RPS19].
Performances [NSLV16, NPP+00d, NMS+14, NN95].
Performing [CC99].
Periscope [LGG16].
perishable [OHG19].
Permutations [CC99, LTDD14].
Persistent [Man01, SG12, HMS+19].
Persistent-Sets [SG12].
Personal [SSSS97].
personalized [BHJ96].
perspective [Sni18].
perturbation [KN17].
Peverse [Rol08a].
Pessimistic [BCH+03].

Petascale

Petascale [CGKM11, CBYG18, ZWL13, Gei01].

Phi [BB18, CBIGL19, DSG17, MTK16, OTK15].

Philadelphia [ACM96b]. Phi TM [MMDA19]. PHOENICS [SZBS95b, SZBS95a].
Phoenix [ACM03, IEE95b, Ten95].

Photo [JFGRF12].
Phylogenetic [MR12, LBH12].
Physical [BM97, GJN97, GWVP+14].
Physics [GT94, KH15, VW92, WBH97, ANS95, BPG94, DMW96].

PICO [BDV03, HTJ+16, JL18].
Picos [YÁJG+15].

Pilot [OS97, CGG10].
PINEAPL [DHK97].

Pinhole [NH95].
Pipe [MTU+15].
Pipeline [GAMR00].
Pipelined [GAML01].

Pipelines [MAGR01, FWS+17, RKBA+13].

pipelining [MM11].
Pisa [Sil96].

Pitaevskii [LBB+16, LYSS+16, SSB+16, YSVM+16, YSMA+17].

Pittsburgh [ACM96c, ACM04, Ham95a, IEE94d].

Place
[IEE94e, LTS16, BCK+09, HSE+17, PSHL11].
placement [DJJ+19, SLN+12, SPK+12].
Planck [Ano94c]. Planing [GAMR00].
Planning [HMS+19, Zei95]. plant [FO94],
PLAPACK [van97]. plasmas
[YL18, DGH+19, YKLD17].
Plasmas [BL94]. plasmas
[CF19F]. Platform [BKGS02, BB18, NO02b, PGF18, WTH17, BSH15, CB11,
Cza13, DWL+10, DWL+12, HTJ+16,
HHA95, Jr13, NO02a, XCL13, YSL+12].
Platforms [AIM97, HD00, JML01,
RVPK19, Z9B7, BCB+19, GCC+07,
GFB+14, MBBD13, TKP15, TS12b].
Pleset [BL95, KN17]. PLEs [MMR99],
plug [MS99b]. plug-in [MS99b]. plume
[JL18]. plus [HDB+13, Stp18]. PMaC
[PTL+16]. PMD [Che99]. PML [Ram07].
PMPIO [FWNK96]. PMPIO-a
[FWNK96]. poci [JSS+15]. Point
[GBS+07, HC10, KV98, LWSB19, ADL03a,
ADL03b]. Point-to-Point [GBS+07,
HC10, KV98, ADL03a, ADL03b].
Pointers [LR107]. Poisson [BP98, WJB14].
Poland [BDW97]. Polder [OS97]. Policies
[CML04, PZ12, OHG19]. policy [MM13].
Polling [DCP10, P102, DCP14, SH96].
Pollutant [RSV+05]. Pollution [AKK+94,
BZ97, MDP04, MSML10, SH94, Syd94].
POLSYS_GLp
[SWM06te].
polyonization [TSP95]. polygons [CT13].
polyheiral [BHR08, KGB+09]. polymers
[AT97]. Polynomial
[VY15, HLM+17, SMW06]. port
[CCHW03, Har94, RJMC93]. Portability
[KaM10, RS95, RH01, ABDP15, CGK+16,
FE17, HHS18, MG+15, PHW+13,
QHCC17, Re03]. Portable
[Ano95c, Ano01b, BHV12, HLS95,
CDH+94, DHH97, DI 14, FCL07, FSLS09,
GLS94, GL97a, GLS99, JSS+15, LNL00,
Man98, MKV+01, MG97, PPT96a, BPC+01,
SSCC95, SDB+16, St94, Tra98, WCG+13,
YBMCB14, Arn95, BCK+09, BaDA94, BB00,
BL99, BAS13, CJvdP08, CH94, CEF+95,
DWL+10, DWL+12, FAF16, FWNK96,
GR95, GL94, GS94, GLDS96, HTJ+16,
HZ94, HSW+12, J9C6, KN95, LFS93a,
LFS93b, LHC+07, MMB+94, PPT96b,
PPT96c, PMZM16, SFLD15, Sto98, VM95].
portal [AASB08]. portals
[BS96b, BMR02, BRM03]. Portfolio
[SIS17]. Portfolio-driven [SIS17]. Porting
[Ano96c, BSC99, BL98, EM02, Har94,
Har95, HASn00, KGG+03, KME09, SR96,
YKLD17, dCH93, BvdB94, HD11, MWO95,
ZPL96]. Portland
[ACM09, ANS95, IEE93e, SW91]. Portugal
[IEE93d, IEE96g]. Postion [Pat93].
POSIX [LD01]. Post
[BBH+13b, Wit16, ABC+00]. Post-failure
[BBH+13b]. Post-ISA [Wit16]. Poster
[JPL17, LZH17]. POSYBL [Mat94].
Potential [GEC02, Gro01a, KS15a].
potentials [THDS19]. Potts [KO14]. POV
[FFB99]. POVRay [FFB99]. Power
[LWZ18, LB96, EZBA16, FO94, HK10,
Nel93, RPS19, Bri95]. Powered [NE98]. PP
[IEE96d]. PPARDB
[PPT96b, PPT96a, PPT96c].
PPARDB/PVM [PPT96b, PPT96c].
PPPE [CDH+94]. PPSN [DSM94].
Practical [BH96, BCP+07, CZG+08,
RHG+96, TGBS05, AMS94, BHR08,
LPD+11, Mc94, Paa95b, VVD+09].
Practice [ACM11, GN95]. Praktische
[MS04]. Pre [AC17]. Pre-processor
[AC17]. Precedence [EGR15].
Precedence-Constrained [EGR15].
Precise [FJK+17]. Precision
[Ano98, Kha13, ZC10, JPT14].
Preconditioned
[GFPG12, ABF+17, MM92].
Preconditioner [BSS99, FSXZ14].
Preconditions [Hue96].
Preconditioning [Nak03, GCG+07].
predictability [GRM99]. Predicting
[RRAGM97]. Prediction
Predictive [FJK+17]. Preemptive [BBH+06, BBGL96]. Preface [DKD07, OL05]. Prefetching [BIC+10]. Prefix [WJ12, DK13, MYB16]. Preliminary [BF98, Wal01a, WLK+18, RJC95, RLFdS13, SWS+12]. PREMER [VBB18]. Preprocessors [Ano01a]. prescription [MRH+96]. Present [Dar01]. presented [ACM90]. preservation [IEE94c]. Preserving [RNPM13]. Press [Ano95b, Ano96c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Pricing [RR00]. Primitives [DDL00, FST98a, ABDP15, CIJ+10, STP+19]. Princeton [Bha93]. principles [BSC99, HS12, SSP+94]. printing [YM97]. priority [DR95, Man98]. Prism [SDN99]. private [Str94]. privatization [KRG13]. Probabilistic [LAdS+15]. Probability [QRMG96, Sta95b]. Problem [BSH15, DALD18, DAK98, GAMR00, ICC02, Lee06, MTS99a, RLVRGp12, ZSnH01, AB93b, DSM94, GM94, GKF13, HMKV94, IJM05, MM92, SL00, SP11, Cza13]. Problems [ASA97, BHM94, BMH96, BMR01, BPMN97, CGPR98, EML98, HAA+11, DK02, LSM+18, MBS15, Nak03, Riz17, ALJ5, CE0S7, FR95, LSR95, NZZ94, OMK09, SC96a, SD99]. procedure [AGL+96]. Proceedings [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM04, ACD094, CJNW95, GN95, Hol12, IE93f, IE95d, IE902, KG93, LCK11, MC94, R+92, SM07, Ten95, TG94, dGJM94, ACM96b, Ano94e, Ano94i, BPG94, Bohl97, BH95, CLM+95, DSG94, DE91, EJL92, FF95, GH+93, HK95, HKHK94, IE94a, IE94b, IE94e, IE95b, IE95e, IE96a, IE97c, IE905, JPT94, Kum94, LF+93a, Li96, PS+94, PBPT95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM05, ACM06b, ACM06a, ATC94, Agr95a, AGH+95, AH95, Ano89, Ano92, Ano94a, BBG+95, Bha93, CHD07, CZG+98, CGKM11, CMTR12, CGB+10, CDND11, DKM+92, DT94, DLO03, EV01, EdS08, ERS95, ERS96, Fet92, FK95, Gat95, GJK+93, GA96, GT94, Ham95a, HS94, HK93, IEE91, IEE92, IEE93d, IEE93c, IEE93b, IEE93e, IEE94e, IEE94d, IEE94f, IEE94h, IEE94g, IEE95h, IEE95k]. Proceedings [IEE95i, IEE95f, IEE95i, IEE95g, IEE95j, IEE96g, IEE96f, IEE96e, IEE96d, IEE96b, KGRD10, LKDO8, MTWD06, MMH93, MCdS+08, MiSC09, Ost94, PR94b, Ree96, RWD09, SCR92, SM+90, Sie94, TBD12, USE94, USE95, USE00, VV92, Vos03, Y+93, YH96, AD98, BG91, BDL96, BS94, Bos96, BFM96, BDW97, CH96, CD01, DSM94, DKD05, DW94, DWM96, DLM99, DPK00, Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97a, Kra02, KKD04, LCHS96, Mal95, PBG+95, Sch93, Tou96, VV95, Vol93, Was96]. Proceedings. [Ano93f, Ano94g, IEE96j, IEE97b, LHH96]. Process [AUR01, BGL00, CL03, DeP03, DK06, FGG97a, FGG97b, FLD98, FPY08, KCP+94b, KOW97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HG12, JLS+14, KCP+94a, MI016, MK00, SHIC18, Ste96]. Process-Management [BGL00]. processed [HJ98]. Processes [CB16, MW98, Pet00a, Pet00b, FS95, GFIS+18, SPK+12]. Processing [ATC94, Agr95a, AR01, BBG+95, DKM+92, GCMM99, GCMM01, HOBB14, IEE93b, IEE93f, IEE95e, IEE95b, IEE95f, IEE95g, IEE96b, IEE96g, IEE96e, IEE97b, IEE05, IOK00, JDB+14, KO101, KS15b, LSWM08, MLG18, MC18, MSML10, Nar95, NH95, NJ01, PLR02, PD98, Ree96, RRBL01, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, ASB18,
BJ13, BHS18, BFMR96, CFPS95, CLLASPDP99, DSZ94, FWS+17, GDC15, GGGC99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kum94, LHLK10, LG93, PSB+94, PBPT95, RKB+13, Röd00, RC95, SSS99, SLS96, VDL+15, Wol92, WWFT11.

Processor [HC06, Oed93, Ott94, PWP+16, RR02, Sni93a, SBT04, UALK17, ABDP15, AC17, DJJ+19, DCH02, HCO8, LL01, MMDA19, OIS+06, RNPM13].

Processor-Oblivious [UALK17].

Processors [AJ07, Bri10, DDP+19, HK93, HK95, KWH10, MJ15, OLG01, PZK02, AV18, BBG+14, CBM+08, DBL11, HTA08, HWX+13]. Producing [HAJK01]. product [CM99, ER12, SMW06]. Production [IADB19, CLdJ+15, SL00]. productive [LV12].

Productivity [BS07, KaM10, Wit16]. products [An097, Bra97]. profile [TWF009, WFT014]. profile-driven [TWF009, WFT014]. profiler [AS92].

profiles [Wi94]. profiling [GPL+96, LHZY+91, Ra99, Vet02].

Profitability [CLA+19]. Program [An096d, AB93a, BM94b, CHP01, Cot97, EML98, MM95, MK17, MRV00, Ney00, PS01b, TSY00, THN00, UT02, CDZ+98, JF95, LP00, LCS13, OKM12, PFP99, Sali0, TNIB17, TMPJ01, ZL96]. programación [VP00]. Programmable [OA17].

Programmable [BL94]. Programmer [Gua16, Wit16]. programmers [CGG10].

Programming [ACM90, Ada97, ACGR97, ASA97, ACJ12, Ano96b, BBG+10, BL93, BHV12, BFO1, BBG+99, BBG+01, BKO00, CMK00, CDK+01, CKWH16, Cha02, CZG+98, CF01, Cza03, DM98, DARG13, DDL00, DK06, DWL+10, EM00a, EM00b, FTB00, FWR+95, GLRS01, GLS94, GLS99, HA11, HDB+12, HDT+15, KKH03, Kep05, KP96, KWH10, KKH79, Ld04, Ldf01, LLRS02, MSOR01, Mat94, Mat95, MSM05, McdS+08, NO02b, SP+10, SIK01, SSO1, SDN99, SHH94b, ST02a, ST02b, SG10, Stp02, TTP97, VT97, Vre04, Wal01a, Wal02, WQ97, YM97, YHGL01, YCA18, AGd02, AMu95, An095c, An000b, AB13, BJ13, BCA+06, BB94, BS96a, BKH+13, CPM+18, CLY16, Cha05, CJvd08, CEF+95, CDH+94, CGH+14, DHL+12, Dv92, EAS95, EV01, FSG19b, FB95, FB96, Fan98, FSTG99, Fer04, Fra95, FH+13, FF95].

programming [GKZ12, Get96, GBH14, GBH18, GRTZ10, HTO08, HS93, HZ94, HDB+13, HSV05, HZ08, KDS012, KO10, KSG13, KSL+12, KL1V5, KPNM16, KS94, KKJ+08, IV12, LF93a, LF93b, L93, LPD+11, LHL+14, MMB+94, MVTP96, MSP93, MM99, MG+15, NO02a, Naka05a, NYNT12, NBG08, OIS+06, Oh04, OW92, Pac97, PVKE01, PF05, Qui03, RDH14, STP+19, iSYS12, SSKF95, SYR+09, Seg10, SPK96, SBF94, SPL99, SHH94a, SD09, VP00, Vos03, Wal01b, Wan02, WCC+07, WAD99, WYL12, WYL12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE+17, CH10, SD13].

Programs [AJF16, Beg93b, BKS01, BGO8, BGG+02, DL98, BLO00, CSW12, CRE99, CHP01, CD98, DLB07, DMMV97, Di14, FKH02, FJK+17, GR07, CTH96, GL04, GC05, HC10, HK+01, HM01, JLG05, KFL05, KL94, KJS14, KK01, KSV01, M909, MVY95, MOL05, MBE03, MKW11, MCDL01, MJ15, NSZ13, NE98, NO01, NPP+00d, OM96, PPJ01, RH01, RFG+00, SGZ00, SBF+04, SR96, TGB05, Wel94, Wis97, ZL+12, Beg92, Beg93e, Beg93a, BCK+09, BMS03, CRE01, CLdJ+15, CGL+93, CH94, CRM14, CPF96, DFK93, DFK94b, EP06, EP+17, FSG19a, FLB+05, FKL08, GGH99, GRRM99, GKS+11, GB94, HD11, HZ96, HLOC96, HEHC09, KCD+97, KS13, KO14, Kom15, KLM+19, LGK10, LLG12, LLB+16, LYSS+16, LMM+15,
LZC+02, LCC+03, MT96, MdSAS+18, Mor95, NBK99, Obe96, OdSSP12, PES99].

Programs [PAdS+17, RAS16, Ren03, RRG+99, SSB+16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THH+05, TGKL19, UGT09, VVD+09, YSV+16, YSM+17, YY+12, ZJZW18, ZRQA11].

Progress [BRU05, LAdS+15, SPH+18, DJJ+19, MLA+14, RSC+19, MC94].

Progress-Dependence [LAdS+15].

Project [BHK+06, BSH15, DHK07, MRV00, ABC+00, CDH+94]. **Promise** [Ano93f].

Promotion [OCY+15, WBB15].

Propagator [EMO+93, ESM+94, JML01, SMOE93, ASAK19, KEGM10, RMNM+12].

Properties [FGRT00, JL18, MS96b, SSP+94]. **Proposal** [DHHW93a, DFC+07, DFA+09, ZKRA14]. **Proposals** [Wal96b]. **protected** [GHD12].

Protein [RGB+18, GAVR17, SEC15, ZAT+07]. **proteins** [BHW+12, BBH+15, FMS15].

Protocol [CWL17, GSY+13, kL11, LMM+15, RA99, XF95, BDB+13, CwCW+11, DMY99, MN91, MB00, ZPI06].

Protocol-based [LMM+15]. **Protocols** [BCH+08, DM93, LH98]. **Protoplanetary** [dIFMDbIFM02]. **Prototype** [Ano01b, FHP+94, MMSW02, BK96, CCF+94, KY03, KYL05]. **Prototyping** [SXM+18, Spe19]. **prover** [Sut96].

Provide [Add01, LMRG14]. **Provides** [Ano98, Nel93]. **Providing** [GKP97, Zal12]. **Proving** [MS96b]. **PRS** [UCW95]. **pruned** [dFORS+19]. **Pruning** [SMM+16]. **PS** [AMV94]. **Pseudo** [Wal01a, Lan09].

Pseudo-search [Wal01a]. **Pseudorandom** [WHD05]. **Pseudospectra** [BKG02].

pseudospectral [Bri95, MRRP11].

PSPVM [BWT96]. **Pthread** [ZAT+07].

Pthreads [AS14, TS12a]. **PTX** [iSYS12].

Public [Str94, GWVP+14, Nel93, RST02].

Public-private [Str94]. **pulse** [ASAK19].

Puma [BS96b]. **purely** [HSE+17]. **Purpose** [BDT08, Che10, SZBS95a, Sun94a, ABDP15, CBM+08, KPNM16, PF05, SK10, SZBS95b].

PVaniM [BCLN97, TSS98]. **PVFS** [IRU01].

PVM [AD08, BL94, BDLS96, BDM97, CHD07, CHD09, CD01, DKD05, DLM99, DPK00, DLO03, Kra02, KKD04, LKD08, McD96, MTWD96, RWD90, Wi94, AJ97, Ahn97, AS92, ACGP97, ADRCT98, AL92, AGR+95b, AB95, ASA97, AL96, ARL+94, AKK+94, AP96, Ano94b, Ano95e, Ano96b, Ano96c, ABC19a, ABD19b, ABG+96, AGLv96, AB93b, AB93a, ADMV05, BSN95, BL93, BFL99, BBGL96, BG95, BS93, BDG+91a, BDG+92b, Beg92, BDG+93b, BDG+93a, Beg93b, Beg93c, Beg93a, BDG+95, BS96a, BDG+95, BL95, BR95b, BS96a, BS96b, BS96c, BS96d, BS96e, BS96f, BS96g, BS96h, BS96i, BS96j, BS96k, BS96l, BS96m, BS96n, BS96o, BS96p, BS96q, BS96r, BS96s, BS96t, BS96u, BS96v, BS96w, BS96x, BS96y, BS96z, BS96].

PV [CSC96, CDG96, CP+95, CT94a, CT94b, CPF96, CT02, CD98, CT901, DG95, DKF94a, DDYM99, DM95b, DM95a, DP94, DMMV97, DGF97, DFN12, D+1, DMS93, DGMJ93, DHP97, DPZ97, EP96, EM94, EGKD92, E94, EM92, EML98, EMLO0, ES11, EMO+93, ESM+94, EK97, FMB96, FD96, FL96, FH95, FHS09, FO94, FSTG99, FJBB+00, Fin97, FD97, FS97, For95, FS93, GRV01, Gal97, GCBM97, GS91a, GS91b, GS92, GS93, Gei93a, Gei93b, GDB+93, GBD+94, Gei96, GKP96, Gei97, GKS97, Gei98, Gx, Gei00, Gei01, GTH96, GB96, GM95, GSHL02, GFV99, GGH99, GS96, Gör01, GHL97, Gre95, Gre94, GL97b, GMU95, GKL/CY97, HB96a, HB96b, HSMW94, HJ98, Har94, Har95, HBT95, HPS+96, Hem96, HEH98, HT99, HVSH95, HH95, HRS97, Huc96, Hum95, HS95b].

PVM [TTT99, IvdLH+00, IDD94, IKM+01, IKM+02, JAT97, JH97, JML01, JW96, JC96,
KBA02, Kat93, KK98, KP96, KBM97, KDL+95a, KDL+95b, KG96, KCP+94a, KCP+94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAHS96, KK02b, LGM00, LB98, LSLZ02, LHCT96, wL94, LFS92, LFS93a, LFS93b, LH95, LC93, LY93, LLY93, LW95, LHZ97, LKL96, LDCZ97, MW98, Man94, MVT96, Man01, MP95, dFMBdFM02, MTSS94, MFTB95, MSCW95, MSP93, Mat94, Mat95, MMU99, Mat01b, MRV00, MK97, Mck94, MC98, MFC98, MLY95, MS96b, Mic93, Mic95, MT96, MS99a, MS99b, MHC94a, MHC94b, MRH+96, MS95, MC99, MWO95, Ne93, NP94, Neu94, NKB97, Ney00, NB96, NAJ99, Nov95, Obe96, Ols95, OPF00, Ott94, OWS95, PPR01, PK98, PPT96b, PPT96a, PPT96c, POL99, PT91, PKY95. **PVM** [Per96, Pet97, PTT94, Pla02, PNV01, PD98, PY95, PL96, Pu95, QRG95, QRM96, Q95, QMR90, RR90, RS93, Rag96, RS95, RHG+96, RRAG97, Rol94, RGD97, Saa94, SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98, SGS95, SSS99, SPK96, Sep93, Sev98, Shi94, SA93, SR96, SHi94a, SHi94b, Sm93a, SBR95, SC96a, STT96, SMOE93, SGL+00, SGLH01, SCL97, SSS97, Sta95b, SY95, SYF96, SC96b, Str94, SKH96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SDG94, Sun96, STMK97, SN01, SCL00, Sur95b, Sut96, SL95, TAC94, TCD96, TDB06, TD98, Tsa95, Uhl94, Uh95, UH96, UKM97, VSR94, VSR95, VB99, VAT95, WK98, WH94, WCV96, WAS95b, WO97, Wis96a, WL96a, Wis98, Wis96b, WL96b, WCS99, Wu99, WLC07, XWS96, XF95, Y96, YK1+96, ZPLS96]. **PVM** [ZP106, Z94, Zem94, ZDR01, Z95a, ZG95b, ZG96, ZG98, Zol93, van93, NMC95, Ano95b]. **PVM-AMBER** [SL95]. **PVM-Based** [WAS95b, FO94, PY95, Sut96, ZPLS96, LSLZ02, TD98]. **PVM-GRACE** [YKI+96]. **PVM-Implementation** [BJS97, Huc96]. **PVM-RPC** [KS97]. **PVM/C** [GTH96]. **PVM/MPI** [AD98, BDW97, CHD07, CHD09, CD01, DKO05, DLM99, DPK00, DLO03, Kra02, KKD04, LKD08, MTW00, RWD09, ACR97, SN01]. **PVM3** [IM94]. **PVM3/AP1000** [IM94]. **PVM** [Pet90a, Pet90b, Pet91]. **PVM** [BR95c, BR95b]. **PVM** [DZGR95]. **PVMPI** [FD96, FDG97a, FDG97b]. **PyCUDA** [KPL+12]. **PyOpenCL** [KPL+12]. **pySDC** [Spe19]. **PVM** [Per96, Pet97, PTT94, Pla02, PNV01, PD98, PY95, PL96, Pu95, QRG95, QRM96, Q95, QMR90, RR90, RS93, Rag96, RS95, RHG+96, RRAG97, Rol94, RGD97, Saa94, SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98, SGS95, SSS99, SPK96, Sep93, Sev98, Shi94, SA93, SR96, SHi94a, SHi94b, Sm93a, SBR95, SC96a, STT96, SMOE93, SGL+00, SGLH01, SCL97, SSS97, Sta95b, SY95, SYF96, SC96b, Str94, SKH96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SDG94, Sun96, STMK97, SN01, SCL00, Sur95b, Sut96, SL95, TAC94, TCD96, TDB06, TD98, Tsa95, Uhl94, Uh95, UH96, UKM97, VSR94, VSR95, VB99, VAT95, WK98, WH94, WCV96, WAS95b, WO97, Wis96a, WL96a, Wis98, Wis96b, WL96b, WCS99, Wu99, WLC07, XWS96, XF95, Y96, YK1+96, ZPLS96]. **PVM** [ZP106, Z94, Zem94, ZDR01, Z95a, ZG95b, ZG96, ZG98, Zol93, van93, NMC95, Ano95b]. **PVM-AMBER** [SL95]. **PVM-Based** [WAS95b, FO94, PY95, Sut96, ZPLS96, LSLZ02, TD98]. **PVM-GRACE** [YKI+96]. **PVM-Implementation** [BJS97, Huc96]. **PVM-RPC** [KS97]. **PVM/C** [GTH96]. **PVM/MPI** [AD98, BDW97, CHD07, CHD09, CD01, DKO05, DLM99, DPK00, DLO03, Kra02, KKD04, LKD08, MTW00, RWD09, ACR97, SN01]. **PVM3** [IM94]. **PVM3/AP1000** [IM94]. **PVM** [Pet90a, Pet90b, Pet91]. **PVM** [BR95c, BR95b]. **PVM** [DZGR95]. **PVMPI** [FD96, FDG97a, FDG97b]. **PyCUDA** [KPL+12]. **PyOpenCL** [KPL+12]. **pySDC** [Spe19]. **PVM** [Per96, Pet97, PTT94, Pla02, PNV01, PD98, PY95, PL96, Pu95, QRG95, QRM96, Q95, QMR90, RR90, RS93, Rag96, RS95, RHG+96, RRAG97, Rol94, RGD97, Saa94, SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98, SGS95, SSS99, SPK96, Sep93, Sev98, Shi94, SA93, SR96, SHi94a, SHi94b, Sm93a, SBR95, SC96a, STT96, SMOE93, SGL+00, SGLH01, SCL97, SSS97, Sta95b, SY95, SYF96, SC96b, Str94, SKH96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SDG94, Sun96, STMK97, SN01, SCL00, Sur95b, Sut96, SL95, TAC94, TCD96, TDB06, TD98, Tsa95, Uhl94, Uh95, UH96, UKM97, VSR94, VSR95, VB99, VAT95, WK98, WH94, WCV96, WAS95b, WO97, Wis96a, WL96a, Wis98, Wis96b, WL96b, WCS99, Wu99, WLC07, XWS96, XF95, Y96, YK1+96, ZPLS96]. **PVM** [ZP106, Z94, Zem94, ZDR01, Z95a, ZG95b, ZG96, ZG98, Zol93, van93, NMC95, Ano95b]. **PVM-AMBER** [SL95]. **PVM-Based** [WAS95b, FO94, PY95, Sut96, ZPLS96, LSLZ02, TD98]. **PVM-GRACE** [YKI+96]. **PVM-Implementation** [BJS97, Huc96]. **PVM-RPC** [KS97]. **PVM/C** [GTH96].
Reproduction-Based [WC09]. Reproducible [GL99, HCA16, XLW+09]. Requirements [GSHL02, GT07, Ber96, KBB+16, LCVD94a].
Research [Ano96d, BR02, MC94, SL94a, SGHL01, Ara95, BPG94, LP00, Oed93].
Reservoir [KDHZ18, OWSA95, ZAFAM16, ZZ95, Ano95d]. Resident [JDB+14].
Resilient [CGH+14, Gua16, LCMG17, LGM17, LBB+19, MLVS16]. Resilient [ZL17].
Resolution [MAB05, Str94, BADC07, KN17]. Resolving [Str97]. Resource-conscious [ZA14].
resource-restricted [NEM17]. Resources [LSB15, NAW+96, Kos95b, RSC+19, R+92].
Response [BBC+00]. Restart [SSB+05, AKB+19, LGM17]. Restarted [dH94]. Restoration [FJB+00]. Restore [Gua16].
Restructuring [KAMAMA17]. Results [BIL99, BIC05, HSMW94, Wal01a, BR95c, DH96, FLD96, NEM17, ZA14].
Reverse-mode [HHSM19]. Review [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, BDL98, Che10, Mar06, MCLD01, Nag05, NMC95, Per96, Per97, SD13, Vre04, Stp02, Vog13].

Right [ZG95b]. Rim [IEE95e]. ring [ZZZ+15]. RISC [AL93, NMW93, BSvdG91]. RMA [BBW19, FSC+19, SPH+18]. RNA [WHDB05]. RnaPredict [WHDB05].
Robert [Ano95b, NMC95]. robotic [ZWZ+95]. Robust [Att96, GR07, PSLT99].
Routing [BHM94, BHM96, MTSS94, MBES94, WH94, BS94, Zah12]. RPC [KZCS96, KS97, RS93, SHTS01]. RPVM [CMM03, LR01].
RS [BGBP01, Con93, Heb93, MW93]. RS/ [Con93, Heb93, MW93]. RS/6000 [BGBP01]. RS6000 [CDM93]. RSA [WLC07]. RT [KAMAMA17]. RT-1.1 [SKD+04]. RT-CUDA [KAMAMA17].
Runtime [AAB+17, BGD12, CFF+94, DMB16, DT17, DSCL05, Gro00, KBS04, KCR+17, NPP+00d, TJPF12, ZLP17, AKB+19, ALW+15, BL99, BR94, EPP+17, EO15, HPS+12, HPS+13, KW14, LRLG19, LLH+14, MA09, NPP+00a, TSY00, YAJG+15].
Runtimes [AHHP17]. Russia [Mal95]. RWA [RLVRGP12].
S [AHHP17, Röh00]. S-Caffe [AHHP17].
[BSH15, Cza13, IKM+01, Wal01b, FMS15, IKM+02, Wal01a, ZSK15, CB11]. Searches [BSG00]. Searching [JPT14, MM01, BA06, Wal01b]. Seattle [ACM05, BS94, LCK11, Ost94]. Second [Ano00a, BL95, DT94, DE91, IEE94d, IEE96i, LHHM96, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFM96, DMW96, FR95, KN17, Li96].

Second-Order [BL95, KN17]. Secondary [WHDB05, SEC15, ZAT+07]. Secondary section [Ano93b, DKD08]. Secondary segment [FJZ+14]. Secondary-segment [FJZ+14]. Secondary-segment-based [FJZ+14]. Segmentation [KBA02, AD95, CCU95]. Seidel [BG95, LM99, Ols95]. Seismic [AMBG93, KL95, KEGM10, LM13, QHCC17, RMMN+12, SSS99, WCVR96]. Seismograms [DP94]. Select [KKDV03]. Selected [DHS96, OL05, TB14, RH09, GL96a, Ano00a, Ano00b, She95, WL96b].

Self [NSS12, SLJ+14, TGT10, VFD02, NSBR07, WYLc12, WLYC12, WYCC11]. Self-Consistent [TGT10]. self-scheduling [NSBR07, WYLc12, WLYC12, WYCC11]. Self-Submitting [NSS12]. Self-Tuning [SLJ+14]. Semantic [EADT19, MTU+15, DF94a, OA17]. Semantically [MKW11]. semantics [RNPM13]. Semaphore [TTF97]. Semi [CT94a, Bj95, PS9T99, TC94, CT94b]. semi-coarsening [PSLT99]. semi-implicit [Bj95]. Semi-Lagrangian [CT94a, TC94, CT94b]. Semiconductor [GJN97, Ano03, LS10]. Seminar [Ano94f, Ano93h]. Send [GPC+17]. Sender [BCH+03]. Sensed [GGCM99, GCGG001, GCGS98, VLO+08, GGGC99]. sensitive [GKCF13]. Sensitivity [dLR04]. Separable [Ben01, CdGM96]. September [Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CLM+95, CHD07, CJNW95, CD01, CDND11, DKD05, DKD07, DLM99, DKP00, DLO03, EJL92, FK95, FR95, GHH+93, IEE93d, IEE94c, JPT94, KGRD10, Kru02, KKD04, LKD08, Mal95, MTW06, OL05, PSF+94, RWD09, SPH95, SM07, TBD12, VV95, VW92, WPH94, YH96].

Sequence [GMU95, SMM+16, AMHC11, TSZC94]. sequences [dFdOSR+19, GÁVRR17, SdM10]. Sequencing [VPS17]. Sequential [EK97, RPM+08, GGH99, SR95, TNIB17, TSZC94]. Serial [SWH15, HPS+96, HW909]. serialization [CFKL00]. Serialized [KH10]. Series [Nag05, BR94]. Server [Ano93f, AFG18, FLS98, KS97, Mat01b, Sch93, Sto98, Vis95]. Server-Class [AFGR18]. Servers [CGC+02, SIS17, GKH7]. Service [RFG+00, LS08, SPK+12]. Services [FC05, AAC+05, ZKRA14]. Session [NYNT12, ZL96]. Set [BDA+18, SW12, WL96a, Ano00a, Ano00b, She95, WL96b]. Sets [SG12, CGL+93]. setting [GL95a]. Setup [NSL16]. Seventh [BBG+95, HS94, IEE93b, IEE95g, IEE96h, Eng00, Y+93]. several [BR15]. SGI [Che99, CML04, KMG99, LB96, LL01, LK03, LSK04, TW12, ZSh01].

SGI/CRAY [Che99]. SGI/CRAY-T3E [Che99]. shadow [SOA11]. shallow [dLAMC11, dLAMCF12]. Shane [SD13]. Shanghai [IEE97a]. SHARE [Ano92, Ano93f, Ano94g]. Shared [BCA+06, BME02, Bri10, DM98, DMB16, FKH02, FB94, GB96, GLR03, HC10, HDN+12, HT01, KB98, KSS01, LRT07, Luo09, MBE03, MCD+S+08, Müll02, NPP+00d, PBK00, PK96, PS00b, Ros13, SS01, STY99, ST02b, Thr99, VS00, VT97, ABC195a, ABC195b, ADMV05, BMG07, CBPP02, CvdP08, Cha96, CCM+S+06, CC00b, DBVF01, DS96b, DP97, EV01, GCN+10, GL96, GL97c, HS93, HDN+S+13, JE95].
KJA^+93, KC06, LKL96, MLC04, PK05,
RGDM15, SHHI01, SL94b, SFL^+94, SSC96,
TSY99, TSY00, THDS19, Vos03, WMRR17,
WRMR19, YWO95, YX95, Cha05.

Shared-Memory

[DM98, HDB^+12, NPP^+00d, Pok96, Thr99,
PS00b, ABC195a, ABC195b, BMG07, GL96,
GL97c, KJA^+93, PK05, TSY00].

shared/distributed [THDS19]. **Sharing**

[Att96, CML04, CB16, DiN96, JAK17,
KK98, JE95, Ott93, PRS^+14]. **shear**

[JAT97]. **ShearLab** [KLR16]. **Shearlet**

[KLR16]. **SHMEM** [BBDH14, Hus01, LSK04, Sch96a, Sch96b,
SS01]. **Short** [KBM97, MH01, SSLMW10,
BMPZ94a, PARB14]. **Short-Range**

[KBM97, MH01, BMPZ94a, PARB14]. **Short-Read**

[SSLMW10]. **shorter** [NB96]. **Showcase**

[USE00]. **SHPCC** [IEE92]. **SHPCC-92** [IEE92].

SiAM [BBG^+95, DKM^+92, Sin93]. **Side**

[kLCCW07]. **Sided**

[BPS01, GFD03, GFD05, GT01, HDB^+12,
LRT07, MH01, MB00, TGT05, TRH00,
ZSG12, bT01a, BM00, DPFT19, DDB^+16,
GBH18, LSK04, MS99c, PGK^+10, GBH14].

SIGCSE [ACM06a]. **Signal** [IEE95e].

signals [Uhl95c]. **Signatures** [Gro00].

significance [AMHC11]. **silent** [FME^+12]. **silicon**

[Ano03, Goe02, ZL18]. **Silicon-Monona** [ZL18].

SIMD [BvdB94, HS95b, KDT^+12, LL16, Sur95b,
VSW^+13, WMK^+19, vdP17]. **Simple**

[MSF00, Mli01, SC04, BC19b, ITT99,
JH97, Nes10, PN01]. **simulate** [Heb93].

Simulated

[BHM94, BHM96, FH97, RSBT95].

Simulating

[DLM^+17, KDL^+95b, KDE^+95a, NFG^+10].

Simulation

[CDMS15, CCBPGA15, DMMV97, DZDR95,
GSI97, GM95, GJN97, Ham95a, JML01,
KDHZ18, KBM97, KMK16, LLRS02,
MFTB95, MPD04, MANR09, PCY14,
PKYW95, PZKK02, RR00, RDMB99,
SSAS12, SXXM^+18, Str97, Ten95, UZC^+12,
WMC^+18, ZZ04, ZWJK05, dlAMC11,
ASAK19, Ano95d, ADR^+05, BJ95, BCM^+16,
BH95, BPMZ94b, CwCW^+11, CSPM^+96,
DSOF11, FHS99, FO94, FLPG18, FFFC99,
GRTZ10, JAT97, JLS^+14, KJDT03,
KMN^+18, KMC96, KMC97, LFS^+19,
LCVD94b, LCVD94a, LYZ13, MMW96,
MALM95, NB96, NF94, OKM12, PARB14,
PY95, RFH^+95, SWYC94, SSP^+94, SKM15,
Str96, Syd94, Tho94, WHMO19, WGG^+19,
YP94, YEG^+13, YSL^+12, Eng00].

Simulation-Based [ZWJK05].

Simulations [CGS15, CNM11, DFMD94,
Di02, GAP97, HLP11, HF14a, HF14b, KT02,
Kha13, NH95, RTRG^+07, SM02, YPAE09,
ADT14, ABG^+96, BHS18, BADC07, CFF19,
GM18, Hln11, JMS14, LS10, LSVMW08,
RMNM^+12, SU96, THDS19, TOC18,
VLSPL19, WWFT11]. **Simulator** [CAM12,
MRV00, PHO^+15, UTY02, WPC07, AMV94,
LS10, PWD^+12, WZWS08, ZAFAM16, ZZ95,
KTJT03, Nak03, Nak05a, Nak05b].

Simulators [SB95, AUA^+16]. **Singapore**

[IEE96d]. **Single**

[BM00, HF14a, HF14b, MB00, URKG12,
WZM17, AGIS94, KKL11]. **Single-Chip**

[URKG12]. **Single-sided** [BM00].

Single-Threaded [WZM17]. **single/multigrid** [AGIS94]. **singleton**

[TVCB18]. **Sinks** [JPT14]. **Sites** [Ano98].

Sixth [HK95, IEE96e, MMH93, SW91]. **size**

[GKCF13]. **sized** [JLS^+14]. **Sizes**

[DALD18, ZSNh01]. **SKaMPI** [KRS99,
RSPM98, RH01, Reu01, RST02, Reu03].

SkelCL [SG14]. **Skeleton**

[GB98, IH04, RJHD14]. **Skeletons** [Ser97].

Skjellum [Ano95c, Ano00b]. **Slack**

[KFL05, FKLB08]. **SLEA**

[ADRCT98, AK99]. **Slave** [LTR00, HP05].

SLEPC [DR18]. **SLICC** [KBHA94]. **Slices**

[GSHEL02]. **Slim** [WMC^+18]. **Small**

[HLP11, TS12b, Ano94h]. **small-footprint**
Small-World [HLP11]. Smith [KDSO12, RGB+18]. Smithsonian [Str94].

SMP
[Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMdMBD+07, HD02b, Hus00, HIP02, JKKH08, KOI01, KKH03, KMG99, KAC02, NO02b, NO02a, ST02a, TOTTH99, Tr02b, YWVC11, bT01a].

SMPCkpt [DCH02]. SMPI [DLM+17].

SMPs
[HLCZ00, NU05, SvL99]. SMPSs
[MLAV10]. SMPSuperscalar
[GCBL12].

SMT
[PAdS+17]. SMT-based
[PAdS+17].

snake
[JPP95]. snake-in-the-box
[JPP95].

Snir
[An096a, An099a, An099c, An099b, An099d, Nag05]. SnuCL
[Lec12]. soccer
[YMY111].

socket
[Gro919, LS10]. SoCs
[AFG18]. Softshell
[SKK+12]. Software
[An94i, BME02, BPG94, BDG+92x, CZ95b, DGH+19, ESB13, FF003, GBF95, Gre95, HPR+95, HSA95, IEE951, IEE96h, IF095, KS15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, SI96, Swa01, TDBEE11, VdS00, Wis01, Wol92, An097, BSC99, Boi97, Bra97, BR94, CMV+94, CBPP02, DPZ97, Hum95, JH97, JB96, LM94, MK94, Neu94, Old02, PHA10, PK05, PKG+10, RAS16, SHH01, Sch94, Sei99, SPH95, Str94, WGG+19, ZGN94, An094i, KG93, SI96]. Software-Managed
[LB16].

Solan
[CGB+10]. Solans
[An091a]. solidification
[JLS+14]. solids
[Han11].

Solution
[DWL+10, FBSN01, HO14, MC18, RPM+08, SEF+16, Tsz12, VR031, DWL+12, IM95, JK10, LSR95, MALM95, ON12, PRS+14, SC96a]. solutions
[AGIS94, LMG17]. Solve
[Hog13, LSM+18, Riz17, BAV08, Che99, GGGC99]. Solver
[Ben01, BP98, CF01, HSMW94, IDD94, L97, SJK+17a, SJK+17b, WJB14, YKW+18, AMS94, CP15, CFF19, DM12, HHS19, JR10, LM99, Lou95, OGM+16, RM99, SRK+12, SCC95, THM+94, ZZG+14].

Solvers
[DFN12, DLAD18, GK10, MSB97, NO02b, Nak03, NHT02, NLRH07, QRMG96, RS97, WR01, ABF+17, ADL03a, ADL03b, ADDR95, BRR99, CL93, DR18, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94c, QRG95, SSH08]. Solving
[ADRCT98, BHM94, BV99, BG95, BDG+92c, BSH15, DADL18, DAD19, GFFG12, Huc96, LLY93, MS02a, NF94, SAS01, SP11, SD99, ZTD19, BB95a, DSM94, HHA95, LBB+16, LYSS+16, MM11, SSB+16, SMSW06, YSVM+16, YSMA+17]. SOM
[GkLyCY97]. Some
[BTD08, Mü101, Pet97, AL92, NN95, RSTBT95]. Sorpron
[VV95].

Sorento
[DKD05, DKD07]. sort
[KVGHH11, PSHL11]. Sorting
[LTS16, BHJ96, PSHL11]. Sound
[SG12].

Source
[BGG+15, MM07, AC17, AVA+16, NCB+17, Nob08, PSK+10, WGG+19].

Source-Code-Correlated
[MM07]. source-to-source
[AC17]. Sources
[ZDR01, KM10]. South
[ACM95a].

southeast
[ACM95a]. Sowing
[GL17a]. SP
[BBGP01, CE00, HMKV94, LC97b, WT11, WT12]. SP-1
[HMKV94]. SP-2
[LC97b].

SP1
[BR95c, FHPS94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, MP95].

SP2
[BR95b, FHP+95, Fra95, FWR+95, HW97, JF95, KB98, KHS01, MABG96, XH96].

SPAA
[ACM95b]. Space
[CML04, CB16, HO14, MSF00, OFA+15, SAS01, SSO1, TA14, SRK+12]. Space-Sharing
[CML04]. Space-Time
[HO14, SRK+12]. Spaces
[Röt19]. SPAI
[BB99]. Spain
[DL99]. SPAN
[LHHM96, Li96]. Spanish
[VP00]. spanning
[NCKB12]. Spark
[GRW+19, KWEF18]. Sparse
[AZ95, BHB12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADL03a, ADL03b, ER12, FJZ+14, GG99, Gra09, NHT06, XXL13]. SPEC
[An03, MrVL+10, MM+12, NA01, SGJ+03, TSB03]. Special
[AM07, BDT08, BC19a, BDB+13, BC00, CHD09, DKD07, DKD08, GSA08, GT19,
MPI98, Bos96, Mar02, PNV01, Reu01, Old02].
Specific [DM95b, DM95a, Olu14].
Specification [BG94a, BdS07, MGC12, MHSK16, BG94c, LPD+11].
Specifications [OFA+15, WMP14]. Specified [GMH97].
specifying [LPD+11]. specimen [Rol08b].
SPECT [BCD96]. spectator [YMYI11].
Spectra [Str97, SR11]. Spectral [MW98, Spe19, BCM+16, MGS+15].
spectral/hp [BCM+16]. Speculation [AELGE16, SHLM14].
Speculative [RA09, dOSM+16]. Speed [CDHL95, Tou00, AH95, BWT96, BID95, MKM16, CDH+95]. Speeding [CSV12]. Speedup [VPS17]. SPH [CP15, OLG+16, PBC+01, WMRR17, WMR19].
Sphere [CT94a, CT94b]. spherical [Hol95, KT10]. SPICE3 [WPC07]. Spiking [CAM12]. Spin [HLP11, KO14, Kom15].
splitting [TCBV10]. SPMD [BST+13, Dar01, KAC02, Wal00, Wal02].
SPMD-Like [BST+13]. SpMV [CBIGL19]. Spokane [IEE93c]. Sponge [HSW+12].
SR8000 [NNON00, TSB02, TSB03]. SRP [BBC+19]. SS7 [LTLC94]. SSGM [HPS+96]. SSS [MMH98]. SSS-CORE [MMH08]. St [Ma95]. Stability [DSS00].
stable [JMdVG+17]. Stage [FSXZ14]. stages [SRS+19]. staggered [GM18].
Stampl [ITKT00]. stamping [DPFT19].
Standard [DM98, GIS97, GLP+00, GL95c, Hem94, MP98, NH95, SKD+04, SGS10, Wer95, YKL17, Ano94d, BDB+13, Bor99, Cla98, CG99b, DHHW93b, DOSW96, FB95, GKL97, GL92, Hem96, Sti94, VM95, Wal94a, Wal94b, WD96, Ano97, Bra97, CGH94, DOSW95, GLDS96]. Standards [FKKC96, Th99]. Star [CDM93, Coo95a, Coo95b]. STAR/MPI [Coo95a, Coo95b]. Start [Gro02b, Hus98].
Startup [PS07]. State [ACM11, IEE94f, IEE95j, Wis96a, Wis96b, BCT+17, LF93b].
state-to-state [BTC+17]. states [NS16]. Static [NIO+02, NIO+03, RLRVGP12, SCB15, SCB14]. Static/dynamic [SCB15].
Statics [TG94, TG94]. Stationary [MW98].
Statistical [LR01, SNMP10, AMHC11, KKM15, Roh00, SL94a, Vet02]. Status [Bak98, DZ98b, GL95c, BDFG+93b, FHP+95, Hem96, Sun96]. stealing [TCBV10].
Steepest [Sch01]. Steering [GK97, PK98].
Stencil [CGU12, WTT17, KD13, TBB12].
stencil-based [TBB12]. step [RT95b, ZG98, dP17]. Stereo [Bd12, Qu95].
Steve [Ano96a, Ano99a, Ano99b, Nag05]. Steven [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].
Still [HCA16]. Stochastic [DK02, LRRS02, MW98, PTMF18, RSV+05, JK10].
Stockholm [Eng00, HAM95b]. Stokes [Che99, DLR94, HSMW94, ID94, Lou95, PTT94, SCC95, ZG+14].
stop [Gu16, LMG17]. stop-and-restart [LMG17].
Storage [ACM04, Hol12, LCK11, HP11, NFG+10, RGGP+18, ZWD18].
stores [HSP+13]. straight [YULMTS+17].
Strategies [MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSM08, SIC+19, TSZC94, VB99].
Strategy [AIM97, DI02, Hat98, VPS17, ZH94, ZG12, DKF94b, DR95, MSL12, PSV19]. strayed [Rol08a]. stream [HSW+12, LGMDRA+19, UGT09].
Streaming [IADB19]. Streamline [CGC+11]. streams [TCBV18].
StreamScan [YLZ13]. Strength [Kun00].
String [KMM15, MM02, MM03].
stripped [KDS012].
Strongly [GAP97, ZZG+14].
Structural [PSS01]. Structure [CBL10, LAF15, SYF96, WHDB05, EPML99, SEC15, SY95, ZAT+07].
Structured [FB96, Mar06, MRB17, NLRH07, Ran05, Bis04, CLSP07, FR95].
GBR15, JAT97, Sni93b. **Structures**

[GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. **Studies** [DHP97]. **Study**

[AIM97, AFGR18, BF01, BHLS+95, DARG13, DJJ+19, EGC02, FPY08, GL97a, HHC+18, KCR+17, LSB15, MM02, NSLV16, NA01, PK05, RRBL01, SCL01, TG94, AGR+95b, AML+99, BJ13, BfDA94, BJS99, BY12, Br900, CBM+08, DX96, ED94, FO94, JR13, JLGO5, KGB16, LPD+11, LLH+14, MS96b, PSK08, PGK+10, PSHL11, RSBT95, RJC95, TPDI5, Wal01b, WLK+18, ZSK15]. **Stuttgart** [KGRD10, WPZH94]. **Style**

[JP0112]. **Sub** [MJG+12].

Sub-communicators [MJG+12].

Subcircuit [HLO+16].

Subdomain [CEGS07].

Subdomains [SHHC18].

Subgroup [XLW90]. **Submitting** [NSS12].

Subrange [Str97].

Subroutines [dCH93].

Subsurface [ED94].

Subsystem [BMG07, MAB96].

Subsystems [STMK97]. **Subtle** [SAL+17].

Success [Gro01a]. **Successful** [Gro12].

Suffix [DK13].

Suitability [Mat01b]. **Suitable** [MAS06].

Suite [ACMR14, AKE00, BWV+12, BB9+12, RIz17, Ana03, BO01, MvWL+10, TG09, YSWY14, SNMP10].

Suites [CMCS00, SJC+03]. **Summation** [IHMF05]. **Summit** [BC19b]. **Sums**

[ST17, MYB16]. **SUN**

[BM00, SJ02, WS99].

Sunderam [An95b, NMC95].

Super [Gua16, XY95].

Super-Object [XY95].

Supercomputer

[An93a, CLP+99, Str94, AAC+95, BGH+05, EFR+05, GL96, GL97c, KMH+14, NSM12, Ste94, GS91b, MAB05].

Supercomputers

[BP93, BDG+92c, EKTB99, KN17, WT11, WT13].

Supercomputing

[ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE01, IEE93e, IEE94h, Lii95, Sch94, ACM94, ACM96c, Ana93g, BG91].

superlattice [Pri14].

superscalar [ACJ12].

Supersonic [CCBPGA15]. **Support**

[An98, BBG+10, BFBW01, CFF+94, DMMV97, FGRD01, GRYV1, GM+00, HRS97, LMRG14, MK04, OP98, PSM+14, RR02, SDN99, SBT04, TW01, Wis98, Wis01, YSP+05, ZL18, BBH...13a, BL99, CC10, CZ95b, DLR94, HS12, Ma94, RS19, TSY99, TSY00, TY14, WK08a, WK08b, WK08c, YAJG+15]. **Supported** [KLR16, CDD+96].

Supporting

[FD00, FMSG17, FSG19b, GAML01, Gua16, MMS07, OOS+08, WLNL03, WLNL06, WCS99, YWCF15, FLN06, GAM+00].

Supports [AELE16, CLL03, DGC93].

suppression [WWZ+96]. **Surface**

[KS15b, PKY95, Röt19, BHW+12, DCD+14, RAG95, TSP95]. **surfaces**

[Dab19].

Survey [Saps97]. **Survive**

[ABB+10]. **sustainable** [CBG+15].

SVD

[CMBH99]. **Swan** [HD11].

Swapping

[SC04, BBW19].

Sweden

[Eno90, HAM95b, FF95].

Swendsen

[KO14, Kom15]. **Switch** [SCL01, TBD96].

Switched [LC93, KYL03, KYL05].

SWITCHES [DT17]. **Switzerland**

[GT94, An94i, IEE97b].

SX

[HRZ97, TRH00]. **SX-4** [HRZ97]. **SX-5**

[TRH00]. **Sydney** [Bil95]. **Sylvester**

[GG91]. **Sylvester-Type**

[GG91].

Symbolic

[CCK12, Coo95b, Ste00, YYW+12, ACM97a, BHKR95, Coo95a, Lev95, LKQ10, LLG12, SAMA08].

Symmetric

[BDV03, MDM17, YKW+18, BAV08, DCH02, GGG99].

Symposium

[ACM95b, ACM96a, An94a, An95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94e, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IEE05, LHHM96, Li96, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tou96, USE94, UCW95, ACM97a, ACM06a, Ana93a, Ana94h, Lev95, Old02].

synchronisation [SDB+16].

Synchronization

[LA02, OCY+15, TGT05, BMG07, LA06, TMTP96, YLZ13].

Synthesizing [AJF16, NP12]. Synthetic [CC17, DP94]. Syracuse [IEE96f]. SYSMO [MM95]. System [Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BF97, BGD12, CAM12, CGC+02, DAA97, DALD18, ERS95, ERS96, EK97, FBD01a, FVD02, FP03, Fis01, Gal97, GCBM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, IAD91, KBA02, LLR02, LTR00, LLY93, MAF94, MRV00, MM02, MSF00, MMH98, MMS07, MMH93, NPP+00d, NMS+14, Oed93, PPT96a, RGD97, SG+03, SCP97, SA93, ST02b, Sun93, TSS00b, Tst07, UP01, WIL93, ARS99, AS92, AL92, BB94, BRI95, BBH+15, DL10, DFPT19, FNSW99, FK94, GS91a, GS93, GS96, GMU95, GkLGCY97, HDDG90, Hum95, HS95b, IBC+10, ITT99, JH97, JLS+14, KW14, Kik93, LBD+96, LKL96, LL95, MA09, MMR99, MMB+94, MAS06, MM11, MS99b, MALM95, NA99, PPT96b, PPT96c, PK05, RJDH14, RLT99, SHHIO1, SL94b]. system [Sei99, SPL99, SGDM94, Sun96, Sur95b, VSR9C, VSR95, WCC+07, WZWS08, YPZC95, YPZC95, ZL96, ZPLS96, ZWZ+95, dCZG06, AL93, NMW93, Yan94].

System-Initiated [SSB+05]. system-on-a-chip [dCZG06].

System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [AAB+17, Ano94b, Att96, BCGL97, BBP01, BME02, BPG94, Bha93, CDJ95, CAVL17, CFF+94, CS97, C JW95, Coo95b, DAD19, EADT19, FIO06, FGKT97, Fos98, Gua16, HRS97, IE93d, IE94d, IE95a, IEE96i, KKK93, KP96, KDL+95b, KCR+17, KS97, LY93, LW97, MWW97, MBE03, MJB15, MBB+12, SM03, SGS10, SS96, TMP16, THN00, USE94, YGH+14, YH96, ZTD19, ZB97, dGJM94, AGR+95b, ACMZ91, ATL+12, Ano94c, BB+94, BAV08, CCO+94, CLYC16, CBPP02, Coo95a, CPR+95, DF17, DR94, DBVF01, DvdLVS94, FHB+13, GBR97, GNC+10, GE98, GKK90, GKF93, Gra09, GFP12, GHH+93, HHA95, IM95, JB96, JJM+11, KSG13, KB+99, KLV5, KDL+95a, KFS94, LRO6b, LH98, LRLG91, LCVD94b, LLH+14, MSL12, MvWL+10, Old02, OPW+12, Pan95b, Par93, PSB+19, QBI2, RPS19, SSKF95, SCJH19, SPH95].

Systems [SVC+11, Smi93b, SG14, SMW06, SLN+12, Sun94b, TBB12, TMW17, TVCB18, TSP95, VLMP8+18, WCSS+13, WZW+96, WADC99, WYLC12, ZL96, ZGC94, dH94, dIAMC11, diAMCFN12, JW96]. Systemsoftware [Sei99]. systolicic [BSC99].

T3D [AZ95, AFST95, CCMS97, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95].

T3E [BB999, Boo01, Che99, GRRM99, LSK04, RBS97c]. T3E-512 [RB97c].

Talbot [ACMR14, Riz17]. Tapir [SML17].

Targeting [BC19b, JK+17, RVKP18].

Task [AHD12, AAB+17, FKKC96, GDDM17, GPC+17, GFJT19, IOK00, KOI01, LHCHT96, Mar03, MJB15, NIO+02, NIO+03, NSZS13, NJ01, OP10, OS97, SG200, SPL+12, TBS12, TS12a, YKW+18, APBcF16, ABF+17, BLVB18, BGH+05, GKF13, OdS99, OPW+12, OPP00, RFH96, RFH96, STP+19, SKB+14, WC15]. Task-Based [AHD12, AAB+17, GFJT19, SPL+12, BLVB18, STP+19, SKB+14].

Task-Overlapped [GPC17]. Task-Parallel [NSZS13, APBcF16, ABF+17]. Taskers
[FLD96]. Tasking
[DAF+09, KaM10, SHM+10, TCM18, TSCaM12, VLSPL19, WC15, vDP17]. Tasks
[ACD+09, DDP+19, DT17, DFA+09, JW96, OP98, PWPD19, RR02, RDLQ12, YSS+17, BS01, DMY99, DR95, FKK+96b, FKK96a, IvDL+00, FKE+10, PWPD19]. TAU
[MMS07, RMS+18]. taxonomy [SPH96].

TBB [Stp18]. TBSCM [BP98]. TC2 [Boi97]. TC2/WG2.5 [Boi97]. TCGMSG [GB96, Mat94, Mat95]. TCP [KPW05]. TD [And98].

Teaching
[MK00, JY95, MK97, PKB06]. Technical
[Ano93c, Ano98, MC94, USE95, ACM06a, Sni18]. Technique
[BCD+15, HC06, HAA+11, MK17, HC08, Nes10, RBB17, MAIVAH14]. Techniques
[CP97, GS02, SAL+17, SPL+12, TGBS05, Wis01, BPG94, Fer04, FCS+12, GSM+00, HKMC94, JKN+13, KBB+09, NFG+10, PF05, SKS01, WST95].
technologies [Mal95]. Technology
[Ano97, Bra97, CGB+10, CSV12, Dan12, GJ95, H94, PWP+16, SBT04, TBG+02, Ano93a, Ano93c, D+95, DM12, IEE94e, NS16, ZAT+07]. Tekniska
[Eng00]. Telegraphic
[ES11]. TELMAT [BR94].
temperature [Hin11]. Template
[HS97, PKB06]. Templates [BN12, KH15]. Tennessee
[PR94b]. Terabyte
[IEE02]. teraflops [KTJ03].

Terms [KD12]. Tessellation
[SS09]. Test
[SNMP10, TG09, AAAA16, CPR+95, GL92, TGKL19]. Testbed
[Mat01b, EGH99, PY95]. Testing
[CCK12, DFK94b, DLLZ19, Ost94, Vs00, CMV+94, DFK93]. Testsuite
[WCC12]. Texas
[ACM06a, IEE94b, IEE95l, IEE95g, IEE97c, Y+93].

Text
[LTR00, MM01, RLL01, RTL99]. Textbook
[Ano98]. textural [WKS96]. texture
[HE15]. TFETI [SHHC18]. TH [CFDL01].

TH-MPI [CFDL01]. Thakur [Ano00a].

Their [Bri12, GOM+01, RG18, GSMK17].

theorem [Sut96]. Theory
[GIK10, BW12, CBHH94]. Thera
[CD01]. Think
[HCA16]. Third
[BP94, Bos96, DSM94, GA96, IEE94g, Si96, Was96, BDLS96, Mla95, IEE97c]. Thirty
[Y+93]. Thirty-seventh
[Y+93]. Thousands
[PZKK02, BMS+17]. Thread
[AELGE16, BB18, ETWaM12, GOM+01, GT07, Ntt00, PT02, STY99, SPB+17, AKB+19, HK09, IDS16, JKN+13, SPH96, SLN+12, YZ14].

Thread-based
[AKB+19]. Thread-Level
[AELGE16, HK09, YZ14]. Thread-Safe
[Pla02]. Thread-safety
[GT07]. Threaded
[BBG+10, MG15, WZM17, Ada98, EBKG01, SCB15, SVC+11, TSY99, TSY00].

threaded-MPI
[SVC+11]. Threading
[BBV12, MLGW18, SBT04, TBG+02, WMK+19, KPO00, KRG13, QB12, ZAT+07].

Threads
[CP98, LD01, Lee06, BS01, DJJ+19, MVTP96, ALW+15]. Three
[Car07, GA96, Nak05b, Ram07, SAS01, GSMK17, LSSZ15, Mar05, PR94c].

Three-Dimensional
[GA96, LSSZ15, PR94c]. Three-level
[Nak05b]. Throughput
[SSLMW10, Tss07, CJPC19, ES13, PP16].

throughput-oriented
[CJPC19]. Tightly
[SS01]. Tightly-Coupled
[SS01]. Tilewise
[KS15b].

Time
[BCL00, DLLZ19, FHK01, FSSD17, GSHL02, GOM+01, HO14, KFL05, MFTB95, OP98, SPB+17, SCL01, SS96, TBE05].

TBH+05, FKL08, GB94, HE13, JH95, K94, KPL+12, LHLK10, LB+16, LYY+16, LM13, MMW96, NNZ94, ON12, OsDSSP12, PTMF18, QQM17, Ram07, SBW91, SSB+16, SK92, SRS+12, TSY99, Yue94, TVV96, TCBV10, UH95c, VM94, YSVM+16, YSM+17, ZWH+95, SKD+04].

time-dependent
[DM12, LBB+16, LYY+16, ON12, SSB+16, YSM+16, YSM+17].

time-domain
time-independent [CDMS15],
time-stamping [DPFT19], Time-Varying [DLLZ19, Uhl95c], times [MLVS16, NB96, SSS99].
timing [Ols95], tips [Fer04].
TLM [SC96a], TM [GGCM99, GGGS98, KHS01].
TOD [GPC+17], TOD-Tree [GPC+17]. today [IEE94c].
Toepitz [BV99, Bav08]. Tolerance [GKP97, GL04, LMRG14, LMG17, LS08, NCB+12, NC+17, PK95d].
Tomographic [Pat93]. tomography [FWS+17, RCF96]. tomorrow [IEE94c].
Tool [Ano11b, Beg93b, BFMT96b, DW02, GSN+01, KAMAMA17, KSJ14, KKP01, LMRG14, MMSW02, MO4, NE98, SR96, SGL+00, Tra+12b, VBB18, WL96a, AGG+95, BDF+10, Beg92, Beg93c, Beg93a, BDFY99, BFMT96a, BHW+12, CPR+95, DKF94a, FSTG99, HPR+95, HD11, LCC+03, MdSAS+18, RSM+18, TSS98, WL96b, WL06b].
Tool-Set [WL96a]. Toolbox [An097, Bra97].
Toolkit [An012, LC07, LLC13, SL96].
Tools [ABC+00, BGD+91b, BGD+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, DT94, EV01, GMPD98, MH94b, MCLD01, PKB01, STMK97, Vos03, Wan97, AVA+16, BDG+92a, BFIM99, Fan98, GBF95, LH98, MSW+05, MH94a, ZL96].
Tools-supported [CDD+96]. Top [AH90, Gal97, Hus01, Man01, PTH+01b, Ser97, BBCR99, PTH+01a, SSC96, SCL97, CCHW03].
TOP-C [CCHW03]. ToPe [JKM+17].
topologies [BCM+16, Gro19, MK00]. Topology [DK06, Hat98, HM01, Tra02a, GJMM18, HRR+11, MBBD13, SPK+12].
topology-aware [MBBD13].
Topology-Based [HM01]. TOPPER [KKP01]. Toronto [GK+93, Vos03].
Torus [DDP+19, SG15]. Townsend [DT94].
TPVM [FS95, FS08]. Trace
[Ney00, FLPG18]. trace-based [FLPG18].
Traceback [dOSSM+16]. Tracefiles [FCP+01].
Traces [CC17, MANR09, WM01, CDMS15, DWM12]. Tracing [CGDL01, DP94, KG96, CG93, Mor95, SGS95].
Tracking [GAP97, HD02b]. tradeoff [RPS19].
Trading [BHM94, BHM96]. traffic
[Zah12]. Training [CSV12]. Transactional
[BWW+12, MFG+08, SBB+12].
Transactions [BWW+12]. Transfer
[BKGS02]. Transfers [THS+15].
Transform [YULMTS+17, KT10, DLBL11].
Transformation [CLA+19, EP96, NSZS13, GSKM17, HZ96, TS00]. transformations [JE95, TG94]. transformed [BY12].
Transforming [PSK+10]. Transforms
[ACMR14, KLR16, HP11, Uhl95c, Zem94].
Transient [SIS17].
transistor [Ano03].
transistors [Ano03]. Transition [MRV00].
Transitive [CGPR98, PPR01]. Translating
[Mar09, NCB+12].
Translation [DDL00, SSE12, HCL05, LME09, NCB+17].
Translator [KKM16, UZC+12, CHKH15, GScFM13].
transmitters [WWZ+96]. Transparent
[CKK+95, IF+16, NPP+00c, RVK91, SLGZ99, LFS93a, LFS93b, LFL11, NPP+00a, SAA11].
Transparency [CB16].
Transport [KHS01, RS97, VRS00, WR01, ZO04, Pri14, SH94, SCJH19, WH96].
Transporter [Fer92]. transpose [Bha98].
Transposition [HD02b]. Transputer
[Ara95, ACD94, CJS95, FK95, FF95, GN95, GHH+93, MC94, dGJM94, ZPLS96, Ara95, CJS95, GHH+93, dGJM94].
Transputers [ACDR94, AG+95b, dCH93].
TransTech [Ste94]. trap
[LBB+16, SSB+16, YSV+16]. TRAPPER
[KFSS94, SKF95]. travel [SSS99].
travel-times [SS99]. traveling [GM94].
traversing [BDG92b]. TreadMarks [LDCZ97]. Tree [DAD19, GPC+17, ADB94, AB13, BCAD06, CG93, SGS95, Zah12].
Trees [CDP03, GFJT19]. Trends [Duv92, IEE93d, MBS15, JPTE94, SGDM94, Sun96].
Triangle [SL94a, SOA11]. Triangular [Hog13, MRB17]. triangulated [Dab19].
tricks [Fer04, LK14]. Tridiagonal [DALD18, DAD19, DR18, VLMPS+18].
Triolet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].
TSUBAME [NSM12]. Tsukuba [SHM+10].
tsunami [KNH+18]. TTIG [RRBL01].
Tucson [JB96]. Tuning [Ben18, Cza02, Cza03, LWSB19, NPP+00d, SLJ+14, WG17, DBLG11, FE17, LGG16, SH14, Yan94, FVD00].
tuple [MYB16].
tuple-based [MYB16]. Tutorial [Str97, MRRP11, Str96].
turbulent [BCM+16]. turbid [BCM+16].
Ty[EM00a, EM00b, GBD+94, GLT00b, Nov95, NMC95, Per96, Ano95b]. TV [CIJ+10].
Twenty [ERS95, ERS96, HS94, IEE95c, MMH93].
Twenty-Eighth [ERS95]. Twenty-fifth [IEE95c]. Twenty-Ninth [ERS96].
Twenty-Seventh [HS94]. Twenty-Sixth [MMH93].
Two [CM98, STY99, SJK+17a, SJK+17b, YM97, AGR+95b, AL93, ADLL03a, ADLL03b, CB11, ED94, HAJK01, MSG93, dAMCFN12].
two-Dimensional [SJK+17a, SJK+17b, AL93]. two-layer [dAMCFN12].
two-level [STY99].
two-phase [ED94]. TX [AMC00, Cha05, DKM+92, Ano95a, Ano95d].
Type [GK10, MSB97, FVLS15, GFG12].
Types [Wei94, NYNT12]. typing [OA17].

UK [Abr96, AD98, EJL92, HK95, BP93, CJNW95, MC94]. UKMO [RSBT95].
ULFM [LCMG17]. Ultra [SJ02].

Ultra-High [SJ02]. Ultrafast [KRC17, FWS+17]. Ultrasonic [ASK91, DLLZ19]. Umgebung [GBR97].
UML [RGD13]. UML/MARTE [RGD13].
Umpire [VdS00]. Unbalanced [OP10].
unifying [CCM12]. Unintended [SL+17].
unit [VDL+15, SM10]. United [Boi97].
Units [KS15b, LSVWM08, ABDP15, BHS18, LHLK10, WWFT11, HJB14].
Universal [W97, DDM95]. University [CGB+10, IEE95d, IEE95j, R+92]. Unix [OLG01, RBS94]. Unleashing [CM18].
unscharfer [Wil94]. Unstructured [AB93a, NO02b, SM02, SM03, AB93b, NO02a, TP15]. unveils [Ano93].
UPC [EGC02, MT16, Mar05, SJK+17a, SJK+17b]. Update [KT10, GSK17].
Updates [ESB13, KS15a, ZDR01, HSE+17].
UPM [NPP+00d]. ups [Ano03]. USA [ACM96b, ACM98b, ACM00, ACM06a, AGH+95, BBG+95, BS94, Cha05, CGKM11, DT94, EV01, EdS08, ERS96, Gat95, Ham95a, Hol12, IEE95b, IEE95d, IEE96e, IEE96i, MCDs+08, Old02, PBG+95, Rec96, Sin93, Ten95, ACM95b, ACM97b, Agr95a, Ano89, B+95, DCM+92, GT19, HS94, IEE94e, IEE95k, IEE02, Ose94, SL94a, SS96, USE93, USE95, USE00]. Usage [FD02a, FCLG07, FD02b, FVLS15]. Use [FJBB+00, Gro02a, HK93, HK05, MB12, PSZÉ00, Shi94, ABR95, GEW98].
USENIX [USE94, USE95]. User [AD98, ACB94, BBG+91a, CHD07, CD01, CND11, DKO05, D+91, DHH92, DHW93a, DLM99, DPK00, DL003, FCLG07, BGD+94, GN95, KGRD10, KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MTW06, NPP+00c, Nov95, NMC95,
User-Level [DHHW92, DHHW93a, KCP+94b, KOW97, NPP+00a, XFB95, ZWZ05, KCP+94a, BBH...13a].

Users [Ara95, CHD09].

Uses [SH96].

Using [AR01, ADRCT98, AHP01, And98, AP96, Ano95e, AKE00, AZG17, AB93a, BST+13, BPMN97, BG95, BS93, BKGS02, BM97, Bon96, BSG+13, CCG+11, CRE99, CMM03, CP97, CSP+96, CJvdP08, CO17, Che99, CSM+97, CDM+93, CCH+03, CRGM14, CT94a, CBB+01, CD98, DePo03, DARG13, DAK98, DGM+93, DGH+19, EM02, EMO+93, ESM+94, EK97, FAFD15, FD04, FTVB00, FS93, GCG+98, GTH96, GM95, GK97, GM95, GMPD98, FHL97, GJN97, GLS94, GLT99, GL99, GLT00b, Gro19, HB96b, HSMW94, HLP+11, HT08, HRS+97, HT01, IOKO0, IDD+94, JFRG12, JPP95, KB08, KOI0, KKV01, KS96, KA13, LLR02, LTR00, LTR+02, LFS+19, LY93, LLY93, LS+97, LAFA15, MK17, MTS+94, MPD04, MR12, MSCW95, MANR09, MBD+12, MSB+07, NO02b, NIO+02]. Using [NIO+03, Neuf94, NH95, NA01, OM96, OWSA95, PD98, PGF+18, PNV01].

UT [Hol12].

UTE [JF95].

Utilising [SC96a].

Utilities [CC95].

UV2 [TW12].

UVM [NSLV16].

V [JB96, BBC+02, BHK+06]. V2 [BCH+03].

VA [Sin93, RP95].

Vacancy [HD02b].

Vaidy [Ano95b, NMC95].

Validation [BDV03, GLB00, WCC12, CMV+94, SCB14].
SCB15. Value [vHKS94, AL96, LSR95, OHG19, SP11, SD99]. Value-based [vHKS94]. valued [Str12]. VAMPIR [BHNW01, NAW+96]. Vancouver [IEE95a, IEE95i]. Vapour [PKYW95].

Vendor [Rab98, Bor97, Venice [DLO03, OL05]. venture [Ano03].

Version [BCGL97, CCK+95, MHSK16, Bjo95, BHW+12, BBH+15, Man94, Str94, WaI95, WRMR19]. versioned [SSB+17].

Versions [Ano98]. Versus [RTRG+07, Ahm97, CE00, KAC02, KPO00, LMM17, LC96b, MFTB95, SCC96, SL00, WK08a, WK08b, WK08c, AGIS94, Sie99].

virtual-time [SK92]. Virtualization [FC05, MGL+17, Ott94, YSS+17, ZLP17].

Virtualized [EGR15, YWCF15, RSC+15, SIRP17].

Vision [KCR+17, JRM+94]. VISPAT [HPS95]. Visual [BPMN97, FNSW99, PDY14, Ros13, ACGdT02, LC07, GE95, GE96].

Visualization [BDGS93, GKP96, GKP97, IJ98, KA13, MVY95, NAW+96, PK98, PCY14, Wis96a, ZLGS99, Bor99, Eng00, FHC+05, HPS95, KFA96, TMS98, WST95, Wis96b].

VOBLA [BKvH+14]. Vol [ATC94, HS94, Nag05].

Volatile [BBC+02, BCH+03]. Voltage [KFL05, FKL08]. Volume [Ano99a, Ano99b, Ano99c, Ano99d, DLLZ19, DFN12, GHLL+98, SOHL+98, BHW+12, WST95].

Volumes [GAP97, SOA11]. Volumetric [KA13, CLBS17, KGB+09].

Voodoo [PMZM16]. VOOM [BR91]. VORD [KSJ14]. VR [DBA97]. VRML
VRML-Based [KSJ95, KSJ96]. vs [FH98, AFGR18, BCH+08, Lu99, Nak05b, SC19].

VTC [NU05]. VTDIRECT95 [HWS09, SWH15]. VxWorks [YGH+14].

VTC [NU05]. VTDIRECT95 [HWS09, SWH15]. VxWorks [YGH+14].

VTC [NU05]. VTDIRECT95 [HWS09, SWH15]. VxWorks [YGH+14].
Workstations
[AR01, BL95, BM97, BDD+95, BDH+97, BMS94b, DDPR97, EK97, GS91b, HIP92, IDD94, Liu95, LHZ98, MSCW95, MM01, OWSA95, PFG97, TQDL01, VLO+08, AL93, BJ95, BID95, Bru95, BMPZ94b, BMS94a, BMPZ94a, CCF+94, Coe94, DZ98a, DOSW96, GM94, GMU95, HK94, Hus99, KMC96, KMC97, KA95, MK94, MM03, RRG+99, SOF95, SR95, TDB00, dCH93].

World [CMMR12, CJNW95, FD00, GHH+93, HLP11, MC94, NSLV16, PSB+94, Wit16, dGJM94, GDB+93].

wormhole [Pan95a, Pan95b, RJMC93, ZGN94].

wormhole-routed [Pan95b, RJMC93, ZGN94].

worms [Pan95a].

WoTUG [MC94].

WPVM [ASCS95, BPMN97].

Wrapper [AS14].

Write [BIC+10].

Write-Back [BIC+10].

Writing [KSJ95, KSJ96].

X [Bad16, FWS+17].

X-ray [FWS+17].

X10 [CGH+14].

X11 [GKL95].

x86 [MGL+17].

Xab [Beg92, Beg93b, Beg93c, Beg93a].

Xen [PRS16].

Xeon [CBIGL19, DSGS17, MMDA19, OTH15, BB18, MTK16].

XPVM [KG96].

XXI [EGH+14].

YLC [Gal97].

YMP [BL94].

Yorkshire [CJNW95].

Zero [SWHP05, Hin11].

Zero-Copy [SWHP05].

ZEUS [FF95].

Zipcode [wL94, SSD+94].

zonal [Fin94, Fin95].

Zone [JCH+08, AGMJ06].

zum [Wer95].

zur [AAC+05].

References

G. Almási, C. Archer, J. G. Castaños, J. A. Gunnels, C. C. Erway, P. Heidelberger, X. Martorell, J. E. Moreira, K. Pinnow, J. Rat-
REFERENCES

Akzhalova:2008:WPL

Arthur:1993:PIU

[AB93a]

[AB95]

Augusto:2013:APG

Ayguade:2010:EOS

Appiani:1995:PSI

Appiani:1995:PSM

Adhianto:2000:TOA

Agosta:2015:OPP

D. Arnold, R. Christie,
REFERENCES

Acacio:2002:MDM

ACGdT02

Alexandro:1997:PMC

ACGR97

Agullo:2011:QOM

ACH+11

Andersch:2012:PPE

ACJ12

ACM:1990:PA

ACM90
REFERENCES

ACM:1994:CPI

ACM:1995:PAS

ACM:1995:SAA

ACM:1996:SVR

ACM:1996:FCP

ACM:1996:SCP

ACM:1997:PPS

ACM:1997:PPS

REFERENCES

Antonelli:2014:ATS

Alonso:2011:NEM

Adamo:1997:AOO

Ancona:1998:PAD

Jean-Marc Adamo. Multi-threaded object-oriented MPI-based message passing interface: the ARCH library, volume SECS 446 of *The
REFERENCES

Antonuccio-Delogu:1994:PTN

Addison:2001:EOP

Arioli:1995:PSB

Amestoy:2003:IIMa

Amestoy:2003:IIMb

Aversa:2005:HDS

[Rocco Aversa, Beniamino Di Martino, Nicola Mazzocca, and Salvatore Venticinque. A hierarchical distributed-shared memory...

Aversa:2005:PPT

Alexandrov:1998:CGP

Amritkar:2014:EPC

Azimi:2018:SVS

Ashby:1995:PPG

S. F. Ashby, R. D. Falgout, S. G. Smith, and A. F. B.
REFERENCES

Ayguade:1995:DUA

Aityan:1995:PFI

Arb:1996:SRP

Ayguade:2006:ENO

Agrawal:1995:PIW

Averbuch:1994:PES

REFERENCES

Ahmad:1997:EVP

Allsopp:2001:EUM

Aversa:1997:MDP

Aguilar:1997:PMS

Aubrey-Jones:2016:SMI

Alexandrov:1999:PMC

V. Alexandrov and A. Karaivanova. Parallel Monte Carlo algorithms for sparse SLAE using MPI. In Dongarra et al. [DLM99], pages 283–290. ISBN 3-540-66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349 (electroni-
REFERENCES

Adam:2019:CRA

Armstrong:2000:QDB

Andersen:1994:PIA

Asai:1999:MIF

Abdelfattah:2016:KOL

Alfano:1992:DNA

M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92],
REFERENCES

Altevogt:1993:PTD

Alund:1994:CFD

Amer:2015:MRC

Ayguade:2007:SIO
Almasi:1993:PDS

Aw’an:2019:OLM

Agrawal:2011:PPS

Ayguade:1999:EML

Amato:1994:PEP

anMey:2007:NPO

REFERENCES

openurl.asp?genre=article&
issn=0885-7458&volume=
35&issue=5&spage=459.

Al-Mouhamed:2015:EAO
[AMuHK15] Mayez Al-Mouhamed and
Ayaz ul Hassan Khan. Exploration of automatic
optimisation for CUDA
programming. International Journal of Parallel,
Emergent and Distributed Systems: IJPEDS,
30(4):309–324, 2015. CO-
DEN ????. ISSN 1744-
5760 (print), 1744-5779
(electronic). URL http:
//www.tandfonline.com/
doi/abs/10.1080/17445760.
2014.953158.

Aversa:1994:PSH
[AMV94] R. Aversa, N. Mazzocca, and
U. Villano. PS: a simulator
for heterogeneous computing
environments. In Dekker
et al. [DSZ94], pages 335–
343. ISBN 0-444-81784-0.

Andersson:1998:PFT
[And98] U. Andersson. Paralleliza-
tion of a 3D FD-TD code for
the Maxwell equations us-
ing MPI. Lecture Notes in
Computer Science, 1541:12–
ISSN 0302-9743 (print),
1611-3349 (electronic).

Anonymous:1989:PFC
[Ano89] Anonymous, editor. Pro-
cedings of the Fourth Con-
ference on Hypercubes, Con-
current Computers and Ap-
lications, 6–8 March 1989,
Monterey, CA, USA. Golden
Gate Enterprises, Los Al-
tos, CA, USA, 1989. LCCN
QA76.5.C619215 1989. Two
volumes.

Anonymous:1992:PSE
[Ano92] Anonymous, editor. Pro-
cedings SHARE Europe An-
niversary Meeting. SHARE
Eur. Assoc, Geneva, Switzer-

Anonymous:1993:ATA
[Ano93a] Anonymous, editor. Au-
tomotive technology and au-
tomation: Supercomputer
applications in the auto-
motive industries: 26th In-
ternational symposium —
September 1993, Aachen,
Germany, ISATA — Pro-
cedings — 26th. Automo-
tive Automation Ltd, Croy-
don, UK, 1993. ISBN 0-
947719-62-8. LCCN ????

Anonymous:1993:ISA
[Ano93b] Anonymous, editor. In-
ternational section: An-
nual conference — Septem-
ber 1993, Gallipoli, Italy.
Atti del Congresso Annuale
— Associazione Italiana per
l’Informatica ed il Calcolo
Automatico 1993. AICA,
????, 1993. ISBN ????
LCCN ????
REFERENCES

Anonymous:1994:MMP

Anonymous:1994:PDC

Anonymous:1994:PPC

Anonymous:1994:PSE

Anonymous:1994:SCC

Anonymous:1994:SQC

Anonymous:1995:CCS

Anonymous:1995:BRPb

Anonymous:1995:BRU

Anonymous:1995:RSS

Anonymous:1995:UPH

Anonymous:1996:BRMh

Anonymous:1996:IPP

Anonymous:1996:PPA

Anonymous:1996:RP
Anonymous:1997:TNR

Anonymous:1998:ANO

Anonymous, Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ????? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMa

Anonymous:1999:BRMf

Anonymous:1999:BRMb

Anonymous. Book review: MPI-The complete reference: Volume 2, the MPI-2 extensions: By William Gropp, Steven
References

Anonymous. Appendixes: Appendix A: Linux, Windows NT, AIX, Solaris; appendix B: Compilers and preprocessors, MPI implementations, development environments, debuggers, performance analyzers. The International Journal of High Performance Comput-

[ARS89] V. Abrossimov, M. Rozier, and M. Shapiro. Generic virtual memory management for operating system kernels. *Operating Systems Re-
Al-Refaie:2017:PAH

Al-Salman:1992:DIP

Addison:2003:OIA

Al-Refaie:2017:PCT

Awile:2014:PWF

Alonso:1997:PBB

Al-Shorman:2019:UPP

Mohammad Y. Al-Shorman and Majd M. Al-Kofahi. Ul-

Khalid Al-Tawil and Csaba An...

M. Baker. MPI on NT: The current status and performance of the available environments. *Lecture Notes in
REFERENCES

Blaszczyk:1995:PCE

Buyukkececi:2013:POI

Bernabeu:2008:MPA

Bedrosian:1993:MFA

Beguelin:1994:CMS

Beaumont:1995:DPG

Bunge:1995:MCM

Hans-Peter Bunge and John R. Baumgardner. Mantle con-

Bronschen:2000:OCP

Bylina:2018:EEO

Bala:1994:IEU

Bova:1999:NOM

Bova:2000:DLP

Bosilica:2002:MVT

[BBC+02] George Bosilica, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak,

REFERENCES

Bischof:2008:AAD

Bustamam:2012:FPM

Alhadi Bustamam, Kevin Burrage, and Nicholas A. Hamilton. Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse for-

Bland:2013:EUL

Bland:2013:PFR

Busa:2015:CCO

Ján Busa, Jr., Ján Busa,

Boryczko:1994:LGA [BBK+94]

Barnard:1999:MIS [BBS99]

Brown:2019:LMR [BBW19]

Brorsson:2000:SIE [BC00]

Blas:2014:RAM [BC14]

REFERENCES

Bala:2019:SIMP

Budiardja:2019:TGO

Barton:2006:SMP

Becciani:2006:FMP

Bircsak:2000:EONa

Bircsak:2000:EONb

Bouchard:1996:FCS

Betts:2012:GVG

Betts:2015:DIV

Baker:1999:MOO

Balaji:2010:IND

Bala:1997:PVQ

Bouteiller:2003:MVF
Aurelien Bouteiller, Franck Cappello, Thomas Herault, Geraud Krawezik, Pierre Lemarinier, and Frederic Magniette. MPICH-V2:

R. Baraglia, M. Cosso, D. Laforenza, and M. Nicosia. Integrating PVaniM into WAMM for monitoring meta-applications. Lecture

Bhattacherjee:2011:PLC

Bolis:2016:APA

Baiardi:2000:AMM

Blackford:1997:PEN

Burtscher:2018:HQF

Martin Burtscher, Sindhu Devale, Sahar Azimi, Jayadharini Jaiganesh, and Evan Powers. A high-quality and fast maximal independent set implementation for GPUs. ACM Transactions on Parallel Computing (TOPC), 5(2):8:1–8:??, January 2018. CO-
REFERENCES

DEN ?? ?? ISSN 2329-4949 (print), 2329-4957 (electronic).

Beguelin:1993:PEC

Beguelin:1994:HHN

Beguelin:1995:REP

Beguelin:19xx:PSS

[BDG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov,???? 19xx.

Beguelin:1993:VDH

Bruck:1995:EMPb

Bruck:1997:EMP

[BDH+97] Jehoshua Bruck, Danny Dolev, Ching-Tien Ho, Marcel-Cătălin Roșu, and Ray Strong. Efficient message passing interface (MPI)
REFERENCES

Browne:1998:RPA

Bode:1996:PVM

Baghsorkhi:2010:APM

Bronevetsky:2007:CFS

Baboulin:2008:SID

Marc Baboulin, Jack J. Dongarra, and Stanimire Tomov. Some issues in dense linear algebra for multicore and special purpose architectures. LAPACK Working Note 200, Department of
REFERENCES

REFERENCES

REFERENCES

Baraglia:1999:AN

Bubak:1996:MPP

Bubak:1997:EPA

Bouge:1996:EPP

Bubak:1996:PBP

Bubak:1996:PPM

Bozas:1997:PED

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Broquedis:2012:LEO] François Broquedis, Thierry Gautier, and Vincent Danjean. libOMP, an efficient

Bronevetsky:2009:CAC

Blanco:2002:PMA

Balasubramanian:2015:EGL

Bhanot:2005:OTL

Bischof:2008:PRM
Christian Bischof, Niels Guertler, and Andreas Kowarz. Parallel reverse mode automatic differentiation for OpenMP programs with ADOL-C. In Bischof et al. [BBH+08], pages 163–173. CODEN LNCSA6. ISBN 3-
REFERENCES

[Bha98] Gyan Bhanot. A 2-d transpose MPI code. Research report RC 21217, T. J. Wat-
REFERENCES

Bader:1996:PPA

Bouteiller:2006:MVP

Bubec:1995:DSC

Bischof:1995:CSM

Bachem:1994:PCT

Bachem:1996:STH

Brunst:2001:POL

REFERENCES

[Busa12] Ján Busa, Jr., Shura Hayryan, Ming-Chya Wu, Ján Busa, and Chin-Kun Hu. ARVO-CL: the OpenCL version of the ARVO pack-

REFERENCES

Blaheta:1997:PIP

Blaheta:1999:LFM

Bhandarkar:1996:MPM

Bull:2000:JOL

Bekas:2002:PCP

[BKGS02] Constantine Bekas, Efrosini Kokiopoulou, Efstratios Gallopoulos, and Valeria Simoncini. Parallel computation of pseudospectra using transfer functions on a MATLAB-MPI cluster platform. Lecture Notes in Computer Science, 2474:

Balevic:2011:KAD

Bhandarkar:2001:ALB

REFERENCES

Suchendra M. Bhandarkar and Salem Machaka. Chromosome reconstruction from physical maps using a cluster of workstations. The
REFERENCES

Booth:2000:SSM

Basumallik:2002:TOE

Buntinas:2007:IES

Bronevetsky:2003:AAL

Bubak:1994:IES

Bubak:1994:EMD

M. Bubak, J. Moscinski, M. Pogoda, and W. Zdech-

[BMS94a]

[BMS94b]

[BMS+17]

[Berrendorf:2000:PCO]

REFERENCES

REFERENCES

[132]

Borkowski:1999:LVC

Boszormenyi:1996:PCT

Brebbia:1993:ASE

Berthou:1998:PHM

Barbosa:1999:ADM

Beletsky:1994:OPV

REFERENCES

REFERENCES

[Bernaschi:1995:PEI]

[Bernaschi:1995:DRP]

[Bane:2002:EOA]

[Bra97]

[Bloes:2004:ETF]

[Bergstrom:2012:NDP]

[BRR99] V. Boudet, F. Rastello, and

REFERENCES

Bassomo:1999:PGE

Bolton:2000:MPL

Bukata:2015:SRC

Bakhtiaril:1995:APL

Bai:2013:SLA

Benzoni:1991:MFR

REFERENCES

REFERENCES

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

Blum:1996:PPIP

Bureddy:2012:OGM

Bihari:2012:CIT

REFERENCES

141

141

Blattner:2012:PSC

Bendtsen:1997:RLS

Carpen-Amarie:2017:EOC

Calmet:1994:RWC

Cabarle:2012:SNP

Carbajal:2007:PTD

Campanoni:2010:HFP

Simone Campanoni, Giovanni Agosta, Stefano Righizzi, and Andrea Di Biagio. A highly flexible, par-

Cavender:1993:APV

Chabbi:2017:EAL

Cartwright:2000:AOE

Creec:2016:TSS

Cooper:1994:CHF

REFERENCES

Coronado-Barrientos:2019:ANF

Casas:2010:APD

Che:2008:PSG

Chapman:2002:APU

Clay:2018:GAP

Chapple:1995:PUL

[CC95] S. R. Chapple and L. J.
REFERENCES

Couturier:2000:PMD

Cardoso:2010:MSO

Chen:2017:AA

REFERENCES

trans/tbd/2017/08/07809142-abs.html.

[CChen:2000:MCO]
Chen:2000:MCO

[CCBPGA15]
Couder-Castaneda:2015:PCM

[CCF+94]
Casas:1995:MMT

Collingbourne:2012:STO
Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly. Symbolic testing of

Cotronis:2001:RAP

Clemencon:1996:THM

Cao:2013:CHP

Conforti:1996:PIA

Cownie:1994:PPP

J. Cownie, A. Dunlop, S. Hellberg, A. J. G. Hey, and D. Pritchard. Portable parallel programming environments-the E-

REFERENCES

Chau:2007:MIP

Chau:2007:MIP

Chau:2007:MIP

Cerin:1999:DMP

Cerin:1999:DMP

Chen:2001:TMK

Chen:2001:TMK

Choudhary:1994:LCR

Choudhary:1994:LCR

Chen:2001:FFT

Chen:2001:FFT

Corbett:1996:OMP

REFERENCES

Clematis:1999:EPC

Cownie:1999:SID

Chaudhuri:2010:PIC

Carretero:2015:AMM

Calderon:2002:IMI

Camp:2011:SIU

Carter:2010:PLN

Clarke:1994:MMP

Cunningham:2014:RXE

Carpenter:2000:MML

Catanzaro:2011:CCE

REFERENCES

1523-2867 (print), 1558-1160 (electronic). PPoPP '11 Conference proceedings.

Calore:2016:PPA

Chapman:2011:OPE

Chatterjee:1993:GLA

Caubet:2001:DTM

Chan:1998:PCT

REFERENCES

Casanova:2015:TMS

Cecilia:2012:CSC

Chen:2013:IRM

Cheng:1994:PDP

Ciancarini:1996:CLM

Charny:1996:MPV

Chapman:2002:PAD

Barbara Chapman. Par-

Cheng:2010:BRBb

Cho:2010:OPP

Cook:1995:TAS

Cadenelli:2019:CUO

Chapman:2008:UOP

Culler:1993:LTR
David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E. Schauer, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: towards a realistic model of

Castro-Leon:1993:MCP

Clark:1998:FOP

Chabbi:2015:BEP

Chen:2003:GMD

REFERENCES

[CORBACHO-LOZANO:1999:EDD]

[CLANTONI:1995:CCA]

[CHEN:2018:FOB]

[CHIEN:1999:DEH]

[CHANDRA:2007:ESP]

REFERENCES

F. Coelho. Experiments with HPF compilation for
REFERENCES

a network of workstations. In Gentzsch and
Harms [GH94], pages 423–428. ISBN 0-387-57981-
8 (New York), 3-540-57981-8 (Berlin). LCCN
QA76.88.157 1994. DM96.00. Two volumes.

Cooperman:1995:SBP

G. Cooperman. STAR/MPI: binding a parallel library to
interactive symbolic algebra systems. In Levelt [Lev95],
76.95 I59 1995.

Cooperman:1995:SMB

Gene Cooperman. STAR/
MPI: Binding a parallel li-
brary to interactive symbolic
algebra systems. In Lev-
elt [Lev95], pages 126–132.
76.95 I59 1995.

Cotronis:1997:MPP

J. Y. Cotronis. Message-
passing program develop-
ment by ensemble. Lecture Notes in Computer Science,
0302-9743 (print), 1611-3349 (electronic).

Cotronis:1998:DMP

Y. Cotronis. Developing message-passing applications on MPICH under
ensemble. Lecture Notes
in Computer Science, 1497:
145–??, 1998. CODEN
LNCS.9D. ISSN 0302-9743
(print), 1611-3349 (elec-
tronic).

Cotronis:2004:CMP

Yiannis Cotronis. Composition of Message Passing Interface applications over
MPICH-G2. The Interna-
tional Journal of High Per-
formance Computing Applica-
tions, 18(3):327–339, Fall 2004. CODEN IHPCFL. ISSN 1094-3420
(print), 1741-2846 (elec-
sagepub.com/content/18/3/327.full.pdf+html.

Coussement:1993:PMO

G. Coussement. Paralleliza-
tion of a mesh optimization
code on a RS/6000 clus-
ter. In Anonymous [Ano93f],
pages 185–212. ISBN ????
LCCN ???

Carvalho:1997:PCC

L. M. R. Carvalho and J. M.
L. M. Palma. Parallelization of a CFD code using PVM and domain decom-
position techniques. Lecture Notes in Computer Science,
1215:247–??, 1997. CODEN LNCS.9D. ISSN
0302-9743 (print), 1611-3349
(electronic).

Carissimi:1998:AEM

A. Carissimi and M. Pasin.
Athapascan: An experience

[Cercos-Pita:2015:ANF]

[Cappello:1999:PNB]

[Cappello:2001:UPS]
REFERENCES

Cores:2014:FAM

Cores:2016:ROM

Cores:2014:MAL

Ciampolini:1996:EPM

Coole:2014:FFH

Chetlur:1998:ALE

REFERENCES

REFERENCES

[167]

[CT94a]

[CT13]

[CT94b]

[CTK00]

[CTK01]

[CT02]
REFERENCES

Cao:2011:OMM

Cui:2012:OOB

Cavender:1995:SSA

Chengqing:1996:WIP

Czarnul:2002:DTI

Czarnul:2003:PTA

Czapinski:2013:EPM

Czech:2016:IPC

Chapman:2008:PPM

Dongarra:1991:UGP

Dongarra:1995:HPC

5. ISSN 0927-5452. LCCN QA76.88.H55 1995.

REFERENCES

DiMartino:2001:WDS

DAgostino:2014:CAM

Dow:2002:CMA

Didelot:2012:IMC

Didelot:2014:IMC
delCuvillo:2006:LOC

Dozsa:2000:THL

Decker:1995:TDU

Deveci:2019:GMT

Dongarra:1997:BCA

Dean:1994:CPV

[DeP03] C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. *Cmg, 2*(??):821–832, 2003. CODEN ????

Duran:2007:PEH

Figueiredo:2019:MOP

Demaine:2001:GCM

Deshpande:1994:ADN

Diaz:2012:CCF

REFERENCES

2209-0558, USA, 1994. ISBN ???. LCCN ???.

[DHK97] M. Derakhshan, S. Hammerling, and A. Krom-
REFERENCES

Dongarra:1997:CSD

Dongarra:1996:SRP

DiPiero:2014:PPP

DiSerio:2002:ENN

DiNucci:1996:CDS

Denis:2019:SPT

Alexandre Denis, Julien Jaeger, Emmanuel Jeannot, Marc Pélaire, and Hugo Taboada. Study on progress

Karniadakis:2002:DLP

Drosinos:2006:EPT

Deo:2013:PSA

DiMartino:2005:RAP

DiMartino:2007:SIS

Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra. Special issue on selected papers from the Eu-
REFERENCES

REFERENCES

Dickens:2010:HPI

DelaAsuncion:2011:SOL

DelaAsuncion:2012:MCI

Desai:2007:CEM

Marcos:2002:DDP

REFERENCES

CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

In Grebe et al. [GHH+93], pages 465–480. ISBN 90-5199-140-1. LCCN ????

[Dziubak:2012:OOI] Tomasz Dziubak and Jacek Matulewski. An object-

Dathathri:2016:CAL

Dalcin:2019:FPM

DiMartino:1997:IPD

Dongarra:1996:APC

Dinda:1996:PIA

REFERENCES

References

REFERENCES

DiMartino:1997:MDH

Davina:2018:MCP

Deuzeman:2012:LMP

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES

Deniz:2016:MGM

REFERENCES

188

(print), 1544-3973 (electronic).

Duran:2005:RAP

Dang:2017:ECB

Dietrich:2017:CBA

Davidor:1994:PPS

Dohi:2011:GIO

Domokos:2000:PRC

REFERENCES

Deshpande:1996:MIBa

Dekker:1994:MPP

Dongarra:1994:PSW

Diavastos:2017:SLR

Duval:1992:TPP
D. Duval. Trends in parallel programming models for high performance computers. In Ferenczi [Fer92], page 33. ISBN ???? LCCN ????.

Dikken:1994:DDL

Dongarra:1994:PSC
Jack Dongarra and Jerzy Wasniewski, editors. Parallel scientific computing:
REFERENCES

DeRose:2002:CCG

Du:2010:COT

Deshpande:2012:AGC

Dong:1996:SPL

Li Dong, Li Xiaoming, and Fang Binxing. The study on the parallel library based on
REFERENCES

Deng:2006:PIK

Dantas:1996:ILB

Dantas:1998:ESM

Delv:1998:HPF

Dragovitsch:1995:PPS

Dykes:1994:CCP

Edmonds:2019:HAS

[EADT19] Mark Edmonds, Tauvir Atahary, Scott Douglass,
REFERENCES

Edjlali:1995:DPP

Elwasif:2001:AMT

Eppstein:1994:CSP

Eigenmann:2008:ONE

ElMaghraoui:2009:MIM

K. El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and Carlos A. Varela. Malleable iterative MPI applications. *Concurrency*

Eleftheriou:2005:SFF

El-Ghazawi:2002:UPP

Eppstein:1992:PGC

Eickermann:1999:PID

Erhel:2014:DDM

REFERENCES

REFERENCES

Emani:2015:CDM

Ebner:1996:TFP

Espinosa:1999:REB

Eizenberg:2017:BBL

ElZein:2012:GOC

El-Rewini:1995:PTE

El-Rewini:1996:PTN

Hesham El-Rewini and Bruce D. Shriver, editors. *Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences (HICSS-29): Wailea,
REFERENCES

HI, USA, 3–6 January 1996.
IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1996. ISBN
0-8186-7324-9. ISSN 1060-3425. LCCN ???? Five vol-
umes.

[ES11] Simon Uzezi Ewedafe and
Rio Hirowati Shariffudin. Parallel implementation of
2-D telegraphic equation on
MPI/PVM cluster. International Journal of Par-
allel Programming, 39(2):
202–231, April 2011. CO-
DEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640
(electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=

[ETV94] Y. Escaig, G. Touzot, and
M. Vayssade. Parallelization
of a multilevel domain de-
composition method. Computing systems in engi-
neering: an international
journal, 5(3):253–263, June
1994. CODEN COSEEE. ISSN
0956-0521.

[ETWaM12] Alexandre E. Eichenberger,
Christian Terboven, Michael
Wong, and Dieter an Mey. The
design of OpenMP thread affinity. Lecture
Notes in Computer Science,
7312:15–28, 2012. CODEN
LNCSDD. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/chapter/10.
1007/978-3-642-30961-8_2/.

[ESB13] Sally R. Ellingson, Jeremy C.
Smith, and Jerome Baudry. Software news and up-
dates: VinaMPI: Facilitat-
ing multiple receptor high-
throughput virtual docking on
high-performance comput-
ers. Journal of Com-
putational Chemistry, 34
(25):2212–2221, September
30, 2013. CODEN JC-
CHDD. ISSN 0192-8651
(print), 1096-987X (elec-
tronic).

[EV01] Rudolf Eigenmann and
Michael J. Voss, editors. OpenMP shared memory

Eckert:2016:HAL

Faraji:2018:DCG

Fabeiro:2016:WPP

Fabeiro:2015:AGO

Fang:1998:DDL
Niandong Fang. Distributed data library and tools for an MPI programming environment, volume 1 of Research reports in computer science. Shaker, Aachen, Germany, 1998. ISBN 3-8265-4101-
REFERENCES

4. xx + 195 pp. LCCN 7???? Also published as dissertation of the University of Basel.

Friedel:2001:HMC

Fagg:2002:FTM

Floros:2005:TGS

Falzone:2007:PMF

Ferschweiler:2001:CDP

REFERENCES

REFERENCES

Fagg:2002:HFTa

Fagg:2002:HFTb

Fagg:2004:BUF

Fagg:1997:HMAa

Falch:2017:RAM

REFERENCES

[Fer04] Randima Fernando, editor.

[Fer04] Randima Fernando, editor.

[FFB99] A. Fava, M. Fava, and M. Bertozzi. MPIPOV: a
parallel implementation of
POV-Ray based on MPI. In
Dongarra et al. [DLM99],
pages 426–433. ISBN 3-540-
66549-8 (softcover). ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

[FCCC99] G. Frugoli, A. Fava, E. Fava,
and G. Conte. Distributed collision handling
for particle-based simulation. In Dongarra et al.
[DLM99], pages 410–417.
ISBN 3-540-66549-8 (soft-
cover). ISSN 0302-9743
(print), 1611-3349 (elec-
tronic). LCCN QA76.58
E973 1999.

[FFM11] Jan Fousek, Jiří Filipovič,
and Matuš Madzin. Au-
tomatic fusions of CUDA-
GPU kernels for parallel
map. ACM SIGARCH Com-
puter Architecture News, 39
CODEN CANED2. ISSN
0163-5964 (print), 1943-5851
(electronic).

[FFP03] Juan Fernandez, Eitan
Frachtenberg, and Fab-
rizio Petri. BCS-MPI: a
new approach in the sys-
tem software design for
large-scale parallel comput-
er. In ACM [ACM03],
page ?? ISBN 1-58113-695-
1. LCCN ???. URL http:/

[Foster:1997:MMC] Ian Foster, Jonathan Geisler,
Carl Kesselman, and Steven
Tuecke. Managing multiple communication meth-
ods in high-performance networked computing systems.
Journal of Parallel and Dis-
tributed Computing, 40(1):
CODEN JPDCER. ISSN
0743-7315 (print), 1096-0848
idealibrary.com/links/doi/10.1006/jpdc.
com/links/doi/10.1006/
REFERENCES

jpdc.1996.1266/production/
pdf; http://www.idealibrary.
com/links/doi/10.1006/
jpdc.1996.1266/production/
ref.

[FGRD01] Graham E. Fagg, Edgar
Gabriel, Michael Resch,
and Jack J. Dongarra. Parallel
IO support for meta-computing
applications: MPI_Connect IO
applied to PACX–MPI. Lecture
Notes in Computer Science,

[FH95] I. Foster, J. Geisler, and
S. Tuecke. MPI on the
I-WAY: a wide-area,
multimethod implementation of
the Message Passing Interface.
In IEEE [IEE96i], pages 10–17.
ISBN 0-8186-7533-0. LCCN QA76.642
M67 1996.

[FGRT00] Thomas Fahringer, Michael
Gerndt, Graham Riley, and
Jesper Larsson Träff. Formalizing
OpenMP performance properties with ASL.
Lecture Notes in Computer
CODEN LNCSDC9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/
bibs/1940/19400428.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1940/19400428.
pdf.

[FH97] Andre Fachat and Karl Heinz
Hoffmann. Implementation
of Ensemble-Based Simulated
Annealing with dynamic
load balancing under MPI.
Computer Physics
Communications, 107(1–3):
CODEN CPHCBZ. ISSN
0010-4655 (print), 1879-2944
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0010465597000969.

Andre:1998:BVN
REFERENCES

Andrew Friedley, Torsten Hoe
er, Greg Bronevetsky, Andrew Lumsdaine, and
Ching-Chen Ma. Ownership passing: efficient dis-
tributed memory programming on multi-core systems.
CODEN SINODQ, ISSN 0362-1340 (print), 1523-2867
(print), 1558-1160 (electronic). PPoPP ’13 Confer-
ence proceedings.

E. A. Franke, S. D. Huffman, W. M. Carter, J. P. Baum-
gartner, and D. J. Wenzel. AVTP — an architecture for visualization using remote parallel/distributed computing. In Grinstein
and Erbacher [GE95], pages 230–237. CODEN PSISDG,
ISBN 0-8194-1757-2. ISSN 0277-786X (print), 1996-

Antony J. Field, Thomas L. Hansen, and Paul H. J.
Kelly. Run-time fusion of MPI calls in a parallel
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
link/service/series/0558/|bibis/2017/20170363.htm;
http://link.springer-ny.com/link/service/series/|
0558/papers/2017/20170363..pdf.

H. Franke, P. Hochschild, P. Pattnaik, J.-P. Prost, and
M. Snir. MPI-F: an MPI prototype implementation on
IBM SP1. In Dongarra and Tourancheau [DT94], pages
1994.

H. Franke, P. Hochschild, P. Pattnaik, J.-P. Prost, and
M. Snir. MPI on IBM SP1/SP2: current status

H. Franke, P. Hochschild, P. Pattnaik, and M. Snir. An efficient implementation of MPI. In Decker
and Rehmann [DR94], pages 219–230. ISBN 0-8176-
REFERENCES

[Fis01] Markus Fischer. System area network extensions to
REFERENCES

the parallel virtual machine.
CODEN LNCS09. ISSN 0302-9743 (print), 1611-3349
link/service/series/0558/bibs/2131/21310098.htm;

Fernandez:2000:UPM

[FJBB+00] Gustavo J. Fernández, Julio Jacobo-Berlles, Patricia Boren-
sztejn, Marisa Bauzá, and Marta Mejail. Use of PVM for MAP image restoration:
a parallel implementation of the ARTUR algorithm.
CODEN LNCS09. ISSN 0302-9743 (print), 1611-3349
link/service/series/0558/bibs/1908/19080113.htm;

Feng:2014:SBS

Xiaowen Feng, Hai Jin, Ran Zheng, Zhiyuan Shao, and Lei Zhu. A segment-based
sparse matrix–vector multiplication on CUDA. Concurrency and Computation:
CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634
(electronic).

Flower:1994:EJM

Jon Flower and Adam Kolawa. Express is not just
a message passing system: current and future directions in Express.
CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336
(electronic). URL http://www.elsevier.com/cgi-in/cas/tree/store/parco/cas_sub/browse/browse.

Ferenczi:1995:PAH

Szabolcs Ferenczi and Peter Kacsuk, editors. Proceedings of the 2nd Austrian-
Hungarian Workshop on
REFERENCES

REFERENCES

[Foster:1996:GCM]

[Foglia:2005:LMM]

[Florez:2005:LMM]

[Fagg:1996:MMH]

[Ferreira:2018:CMM]

[Fachada:2017:CCF]

REFERENCES

[FM90]

[Furlinger:2009:CAE]

[FMBM96]
J. C. Fabero, I. Martin, A. Bautista, and S. Molina. Dynamic load balancing in a heterogeneous environment under PVM. In IEEE [IEE96g], pages 414–419.

[Fiala:2012:DCS]

[Filipovic:2015:OCC]

[Ferretti:2015:MCH]
REFERENCES

CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

[Fan2017:SEE]

[Ferenc:1999:VMK]

[Femminella:1994:PBP]

[Ford:1995:NNN]

[Foster:1998:GEM]

[Freeman:1992:PNA]

[Faraj:2008:SPA]
Ahmad Faraj, Pitch Patarasuk, and Xin Yuan. A study of process arrival patterns

Ferreira:1995:PAI

Frisch:1993:PDC

Frisch:1997:ESP

Frisch:1999:MDC

Frisch:2011:ACE

Rosa Filgueira, David E. Singh, Jesús Carretero, Alejandro Calderón, and Félix García. Adaptive-CoMPI: Enhancing MPI-based applications’ performance and

Fan:2019:BPA

Fan:2019:SAO

Fuerle:1998:IPC

Fumero:2017:JTG

Folino:1998:EMC

Folino:1998:PEM
REFERENCES

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP

Fujimoto:2008:DMV

Fagg:2000:AAC

REFERENCES

Fang:2015:EVD

[FVLS15]

Fineberg:1996:PPI

[FWNK96]

Franke:1995:MPEb

Grangeat:1996:PTI

Galibert:1997:YCL

FWS+17
REFERENCES

[Gao03] Shiwu Gao. Linear-scaling parallelization of the WIEN

[217]

Galaktionov:1997:MST

Gates:1995:PFI

Gonzalez-Alvarez:2017:HMO

Gupta:1994:CTE

Ghosh:1996:ELM

Gorlatch:1998:GMI

Graham:2007:OMH

Grove:2005:CBP

Garcia:2012:DLB

GarciaSalcines:1997:PRR

Garcia:1999:MMI

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Gonzalez-Dominguez:2018:MPC

Grinstein:1995:VDE

Geist:1993:ILP

Geist:1993:PBN

Grinstein:1996:VDE

Geist:1994:CCW

REFERENCES

Geist:1996:APP

Geist:1997:ACP

Geist:1998:HNG

Geist:2000:PMW

Geist:2001:BFN

Grabowsky:1998:NMP

[GEW98] Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprint-Reihe des Chemnitzer SFB 393 Sonderforschungsbereich NumerischeSimulation auf Massiv Parallel Rechnern 97,08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998.

Gabriel:2003:FTC

224

REFERENCES

Gravvanis:2012:SFD

Giordano:1999:IBP

Garzon:1999:PIE

Giannoutakis:2009:DIP

Giannoutakis:2007:MHP

REFERENCES

Canada, 1993. ISBN ???.
LCCN QA76.76.S64 C378 1993 v.1-2. Two volumes.

Genaud:2008:EPC

Getov:1999:MJM

Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

Gentzsch:1994:HPC

Ghosh:2012:RAA

Grebe:1993:TAS

Goumopoulos:1997:PCS

REFERENCES

Gropp:1998:MCR

Gong:2012:OCN

Garcia:2011:KRR

Goglin:2018:HTM

Grecki:1997:MPE

Gerlach:2001:IOJ

REFERENCES

Granat:2009:NPQ

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

Geist:1997:CPF

Geist:1997:BPW

Gopalakrishnan:2011:FAM

REFERENCES

0167-8191 (print), 1872-7336 (electronic).

Gonzalez:2001:MIM

Gropp:1994:UMP

Gropp:1999:UMA

Gropp:1999:UMA

REFERENCES

REFERENCES

Gong:2016:NPG

Goujon:1998:AAT

Guan:1995:SCC

Gray:1995:PCT

Goedecker:2002:OPF

Gonzalez:2001:OET

REFERENCES

REFERENCES

REFERENCES

Gropp:2001:LSM

Gropp:2002:BLC

Gropp:2002:MNS

Gropp:2012:MBW

Gropp:2019:UNS

Gonzalez:1999:PPM

Gutierrez:2010:QCS

Gaito:2001:ADC

Gittens:2019:AAS

Geist:1991:ENB

Geist:1991:PSS

Geist:1992:NBC

REFERENCES

Geist:1993:EPC

Gropp:1994:SEP

Gold:1996:UAL

Geist:19xx:NBC
G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

Garg:2002:TO

Gao:2008:GEI

Gardner:2013:CCE

REFERENCES

link/service/series/0558/bibs/2131/21310225.htm;

[GTH96] B. A. Gennart, J. Tarraga Gimenez, and R. D. Hersch. Computer-assisted generation of PVM/C++ pro-

Gidra:2015:NGC

Guang:2016:NMN

Gallardo:2018:EMM

Ge:1995:DHA

Guerrero:2014:PCM

Hadjidoukas:2010:NOP

Panagiotis E. Hadjidoukas and Laurent Amsaleg. Nested OpenMP parallelization of a hierarchical data cluster-

[Han:2011:HHL]

[HAA+11]

[Ham:1995:PII]

[Haridi:1995:EPP]

REFERENCES

<table>
<thead>
<tr>
<th>Hansen:1998:EMP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hardwick:1994:PVL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hardwick:1995:PVL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hassanzadeh:1995:MMG</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hisley:2000:PPE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hatazaki:1998:RRS</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Hunold:2016:RMB

Hu:2016:CLG

Hurwitz:2005:AMP

Huang:2005:TME

He:2000:PAA

Ding:2002:MOP

He:2002:MOP
REFERENCES

Harvey:2011:STP

Hadjidoukas:2009:HPF

Hoeffer:2012:LMO

Hoeffer:2015:RMA

Heikonen:2002:ILB

REFERENCES

LCCN QA76.73.F25 H367 2013.

[HSM19] Jan Hückelheim, Paul Hovland, Michelle Mills Strout, and Jens-Dominik Müller.

REFERENCES

[HK90] Hong:2009:AMG

[HK10] Hong:2010:IGP

[HKN+01] Hoeflinger:2001:IPV
Jay Hoeflinger, Bob Kuhn, Wolfgang Nagel, Paul Petersen, Hrabri Rajic, Sanjiv Shah, Jeff Vetter, Michael

Hong:2011:ACG

Hori:2012:EKL

Hasanov:2017:HRC

Hu:2000:ONS

Haque:2017:CCL

S. Anisul Haque, X. Li, F. Mansouri, M. Moreno Maza, D. Mohajerani, and W. Pan. CUMODP: a CUDA library for modular polynomial computa-
REFERENCES

Hung:2016:EBP

[HLO+16]

Hung:1996:RDM

[HL96]

Hilbrich:2009:MCC

[HMK09]

Hawick:2011:RLS

[HL11]

Huband:2001:DTB

[HM01]
Hakula:1994:FEM

Holmes:2019:PPE

Hogg:2013:FDT

Hollerbach:1995:FDA

Hollingsworth:2012:SPI

G. J. Hoyos-Rivera and V. G. Sanchez-Arias. Using PVM to build an interface to support cooperative work in a distributed systems environment. Lec-
REFERENCES

Hempel:1997:IMN

Hartley:1993:CPS

Hesham:1994:PTS

Hertzbeger:1995:HPM

Hungenahally:1995:PIQ

Hoefer:2012:OPC

REFERENCES

Henriksen:2017:FPF

Haeuser:1994:RNS

Heimel:2013:HOP

Hormati:2012:SPS

Hu:2001:PCC

Howes:2008:U

Ha:2008:NBP

[HTA08] Phuong Hoai Ha, Philippas Tsigas, and Otto J. Anshus. Non-blocking programming on multi-core graphics pro-

Hluch:1999:GWF

Hariri:2016:PPA

Huckle:1996:PIS

Humphres:1995:LBE

Husbands:1998:MSD

Huse:1999:CCD

Huse:2000:MOS
[Hus00] Lars Paul Huse. MPI optimization for SMP based clusters interconnected with SCI. Lecture Notes in
REFERENCES

REFERENCES

Hempel:1999:AMP

HZG08

HZ99

IADB19

IADB19

Hou:2008:BBS

IADB19

Hou:2008:BBS

IADB19

IADB19

IADB19

IADB19

IADB19

IADB19

IADB19

IADB19

[Ibanez:2016:HMT]

[IEEE:1991:PSA]

[IEEE:1992:PSH]

[IEEE:1993:DPC]

[IEEE:1993:PSI]

[IEEE:1993:PIS]

IEEE:1993:PFW

IEEE:1993:PSP

IEEE:1993:WHP

IEEE:1994:FSF

IEEE:1994:IPN

REFERENCES

Three volumes. IEEE catalog no. 94CH35708.

IEEE:1994:OOE

IEEE:1994:PSI

IEEE:1994:PIF

IEEE:1994:PTI

IEEE:1994:PSW

2. LCCN TK 5101 A1 I34 1995. IEEE catalog no. 95CH35765.

IEEE:1995:PIP

IEEE:1995:PSI

IEEE:1995:PEW

IEEE:1995:PIC

IEEE:1995:PIC

IEEE:1995:PSP

REFERENCES

1995. ISBN 0-8186-7088-
6. LCCN QA76.9.D5 I328
95TB8075.

IEEE:1995:PNA

[IEE95]
1995. IEEE catalog no. 95CB35838.

IEEE:1996:ICH

[IEE96a]
1996. IEEE catalog number 96TB100074.

IEEE:1996:EIS

[IEE96b]

IEEE:1996:EIS

[IEE96c]
1996. IEEE catalog number 96TB100062.

IEEE:1996:FSS

[IEE96d]
IEEE:1996:PII

IEEE:1996:PFI

IEEE:1996:PFE

IEEE:1997:APD

REFERENCES

http://www.nsc.liu.se/~boein/ifip/kyoto/workshop-info/proceedings/.

REFERENCES

Satake:2012:OGA

Imamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IA

Iskra:2000:IDE

Jatala:2017:SSG

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

Jabbarzadeh:1997:PSS

Jacoby:1996:ADA

Juhasz:1996:PIP
Z. Juhasz and D. Crookes. A PVM implementation of a portable parallel image processing library. In Bode et al. [BDLS96], pages 188–?. ISSN 3-540-61779-5. LCCN QA76.58.E975 1996.

Jarzabek:2017:PEU

Jin:2008:PEM

Jaeger:2015:FGD
Julien Jaeger, Patrick Carribault, and Marc Pérache. Fine-grain data manage-

Jenkins:2014:PMD

Jeremiassen:1995:RFS

Jeshope:1993:LVRV

Jeshope:1993:MCA

Jann:1995:AMP

Johnson:2012:FOL

Jin:2000:AGO

Haoqiang Jin, Michael Frunkin, and Jerry Yan. Automatic generation of OpenMP directives and its

Jackson:1997:SYE

Jin:2003:AMP

Jin:2011:HPC

Jo:2017:PMA

Jin:2011:HPC

Januszewski:2010:ANS

Jeun:2008:OPB

Jan:2017:ITF

Jog:2013:OCT

Jambunathan:2018:COB

Jost:2005:WMP

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

Jung:2014:MCM

Jo:2015:ALM

Jones:1996:LLM

Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:P

A. Joubert. Parallel algorithms for linear and nonlinear equations derived from networks. In Joubert et al.

[JPTE94]

Jiang:2012:OSP

[JPOJ12]

Juric:1995:UPV

[JPP95]

Joldes:2014:SSH

[JPT14]

Joubert:1994:PCT

[JPTE94]

Jost:2010:EUH

[JR10]

Jimenez:2013:BCA

Judd:1994:PIV

Jin:2013:PCU

Ju:1996:SPT

Jain:1996:IOP

Jin:1995:LTP

Kumar:1995:MWD

Kepner:2004:M

Kumar:2013:GAI

Krawezik:2002:SOV

Krone:1996:ICF

Kapinos:2010:PPP

REFERENCES

Kabir:2002:DIS

Klemm:2009:RTM

Kulkarni:2016:HAP

Knies:1994:SLL

Kitowski:1997:CPM

Kannan:2016:HPP

Ke:2004:RCM

Klemm:2007:JIO

Karamcheti:1994:SOM

Krawezik:2006:PCM

Kacsuk:1997:GDD

Konuru:1994:ULP

Konuru:1994:UPP

R. Konuru, J. Casas, R. Prouty, S. Otto, and
REFERENCES

Kotselidis:2017:HMR

Kanal:2012:MMC

Krotkiewski:2013:ESC

Kang:2018:PRS

Klingebiel:1995:COD

Klingebiel:1995:CPO

Kakimoto:2012:PCG

Klemm:2012:EOV

Komatitsch:2010:HOF

Kepner:2005:PPM

Kale:1996:PMD

Kappiah:2005:JTD

Kramer-Fuhrmann:1994:TGP

O. Kramer-Fuhrmann, L. Schafers, and C. Scheidler. TRAPPER — a graphical programming environment for parallel systems. In Becks and Perret-Gallix [BPG94],
REFERENCES

REFERENCES

[3349 (electronic). LCCN ???? URL http://www.springerlink.com/content/978-3-642-15646-5.]

Kafura:1996:CCC

Kwon:2010:SPC

Karrenberg:2012:IPO

Kramer:2015:SET

Khanna:2013:HPN

Kielmann:1999:MMC
REFERENCES

acm.org/pubs/citations/proceedings/ppopp/301104/p131-kielmann/.

Kallenborn:2019:MPC

Kucukboyaci:2001:PPT

Kjolstad:2012:ADG

Kojima:2017:HLG

Kikuchi:1993:PAS

Kranz:1993:IMP

Kwon:2012:HAO

Kim:2016:DOF

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Krysztop:2002:IFP

Kronbichler:2019:FMF

Kranzlmueller:2004:RAP

Kranzlmueller:2005:RAP

Kranzlmueller:2003:RAP

Kee:2003:POP

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO

Kobler:2001:DOP
REFERENCES

Karrels:1994:PAM

Kofakis:1995:DPL

Liao:2011:DEM

Kumar:2019:FOP

Liao:2007:CCS

Klawonn:2015:HMO

[KLM+15] Axel Klawonn, Martin Lanser, Oliver Rheinbach, Holger Stengel, and Ger-

cusses GPU floating-point considerations.

REFERENCES

Kermarrec:1996:PDS

Kuckuk:2013:IPD

Klockner:2012:PPS

Kolesnichenko:2016:CBG

Kuhn:2000:OVT

Kamal:2005:SVT

[KPW05] Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI.
REFERENCES

In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????

Kegel:2013:DTU

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

Kim:2014:VVF

Kim:2012:OUP

Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. OpenCL as a unified programming model for heterogeneous CPU/GPU clusters. *ACM SIGPLAN Notices*, 47
Kusano:2000:PEO

Kotsifakou:2018:HHP

Kurzyniec:2007:UCA

Kranzlmuller:2001:IRM

Keppens:2002:OPM

REFERENCES

Koval:2010:USB

Kang:2019:SAM

Karonis:2003:MGG

Komatitsch:2003:BDF

Kuhn:1998:FFW

Kumar:1994:PPI

V. K. Prasanna Kumar, editor. Parallel processing: 1st IWWP: proceedings of the First International Workshop on Parallel Processing (IWPP-94), December 26–
REFERENCES

Kranzlmüller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

Kamburugamuve:2018:AML

Kamal:2010:EIN

Karwande:2003:CMC

Amit Karwande, Xin Yuan, and David K. Lowenthal. CC–MPI: a compiled communication ca-

Karwande:2005:MPC

Krantz:1996:RFP

Lopez:2002:ESM

Ladd:2004:GPP

Lobeiras:2016:DEI

Laguna:2015:DPF

Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Saurabh Bagchi, and

Laforenza:2001:PHP

Lorentz:2015:AMS

Langdon:2009:FHQ

Loos:1996:MPS

Lavi:1998:IPD

References

REFERENCES

Lewis:1993:PCP

Lauria:1997:MFH

Luecke:1997:HPF

Li:2007:DIV

Luecke:2003:MCT

Liddell:1996:HPC

REFERENCES

Liu:1996:BMP

Lee:2001:APT

Lu:1997:QPD

Liu:2013:DLO

Lorenzon:2019:ASO

References

Lee:2006:PT

Lee:2012:SMO

Levesque:1993:SAA

Lim:2011:ATC
Leon:1992:FP

[102x681]REFERENCES

Lee:1999:PEJ

Liu:2016:MBM

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681]REFERENCES

[102x681] REFERENCES
Li:2010:SVC

Lassous:2000:HGA

Lopez-Gomez:2019:ESP

Leung:1995:EPE

Leung:1998:PAN

Liao:2007:OOP

Lee:1996:TSF

Liu:2005:EIO

Lin:1994:DNC

Lin:1995:DNC

Li:1996:PSI

Liu:2010:RTC

Li:1997:PIO

[LKJ03] Wen-Yew Liang, Chun-Ta King, and Feipei Lai. Adsmith: an efficient object-based distributed shared memory system on PVM. In Li [Li96]. ISBN 0-8186-

REFERENCES

0302-9743 (print), 1611-3349 (electronic). LCCN QA76.58.1547 1995.

B. C. Loh and G. A. Manson. Incorporating software reuse into the PCSC methodology. In de Gloria et al. [dGJM94], pages 929–941. ISBN ???? LCCN ????.

Losada:2017:ARV

Lopez:2015:PBV

Losada:2014:EAL

Lee:2015:OPE

Louca:2000:MFP

Lima:2012:PEO

REFERENCES

Lu:1996:PIF

Labarta:2001:NOD

Lou:1995:PIN

Landman:2000:PLR

Li:2001:PCS

Lastovetsky:2006:HTM

Alexey Lastovetsky and Ravi Reddy. HeteroMPI: Towards a message-passing library for heterogeneous networks of computers. Jou-
REFERENCES

Le:2006:DMC

Lotfi:2015:AAC

Lee:2014:BCA

Lima:2019:PEA

Luo:2001:PDE

Latham:2007:IMI

Robert Latham, Robert Ross, and Rajeev Thakur. Implementing MPI-IO atomic

Li:2001:WMB

Luckow:2008:MFT

Lin:2010:TLS

Lashgar:2015:CSR

Levesque:2012:HEA

REFERENCES

[Lazzarino:2002:PBP]

[Langr:2014:APP]

[Laohawee:2000:PDT]

[Lazar:1994:SRE]

[Lee:2002:IPC]
REFERENCES

Langr:2016:ASM

Luo:1999:SMV

Lusk:2000:IIC

Lee:2012:EED

Liu:2004:BMI

Li:1995:CPP

Ludwig:1997:OUI

[LW97] T. Ludwig and R. Wisbmueller. OMIS 2.0 — a

Liu:2004:HPR

Liang:2018:FMP

Li:1993:MSU

Lopes:2019:FBD

Loncar:2016:OOM

Vladimir Loncar, Luis E. Young-S., Srdjan Skrbić, Paulsamy Muruganandam, Sadhan K. Adhikari, and Antun Balaz. OpenMP,

Lu:2013:WGA

Li:2017:PCO

Li:2018:COM

Shigang Li, Yunquan Zhang, and Torsten Hoeffer. Cache-oblivious MPI all-to-all communications based on Morton order. *IEEE Transactions on Parallel and Distributed Systems*, 29(3):542–
Lu:2019:PMM

Ma:2009:CRS

Mavriplis:2005:HRAa

Miguel:1996:APN

Maeis:1994:SSD

Moreno:2001:AEP

Mainland:2012:EHM

Molero-Armenta:2014:OOI

Mirvis:1995:HML

Malyshkin:1995:PCT

Malfetti:2001:AO

Manchek:1994:DIP

REFERENCES

Mans:1998:PDP

Manis:2001:PNP

Miguel-Alonso:2009:INS

Marowka:2002:ISI

Marowka:2003:EOT

Marowka:2005:EMT

Marowka:2006:BRP

REFERENCES

Marowka:2007:PCD

Marowka:2009:BCT

Mehta:2006:MSG

Mattson:1994:PEP

Mattson:1995:PEP

Mattson:2000:BOF

Mattson:2000:IO

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal, Volume, Pages</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
<th>CODEN</th>
<th>ISSN</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

[MBE03] Seung-Jai Min, Ayon Basumalik, and Rudolf Eigenmann. Optimizing OpenMP programs on software distributed shared memory systems. *International Journal of Parallel Pro-

[MBS15] Miriam Mehl, Manfred
References

REFERENCES

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

McKinney:1994:PGU

Moore:2001:RPA

Moreira:2017:FCR

REFERENCES

McRae:1992:VC

Mierendorff:2000:WMB

Marin:2017:ERF

Monteiro:2018:EGC

Muller:2009:EOA
Matheou:2017:DDC

Megson:1998:CRH

Milovanovic:2008:NEE

Mintchev:1997:TPM

Moody:2003:SNB

Martin:1995:DPC

Mehtha:2015:MTP

Kshitij Mehta and Edgar Gabriel. Multi-threaded par-

REFERENCES

2017. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Mazzariol:1997:PCS

Markidis:2015:OAN

Matthey:2001:EMO

Hwu:2012:GCG

Moll:2018:PCF

Miller:1994:PPP

Miller:1994:PPT

B. P. Miller, J. K. Hollingsworth, and M. D. Callaghan.

[MK94] Luděk Matyska and Jaroslav Koča. D-CICADA: a software for conformational PES elucidation on network of

McDonald:1997:IPT

McDonald:2000:TPA

Mohror:2004:PTS

Manwade:2017:DFA

Maheo:2012:AOL

Markus:1996:PEM

Min:2001:PCO

Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eigen-

Marendic:2016:NMR

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2001:TSH

Michailidis:2002:PSL

Michailidis:2003:PEL

Panagiotis D. Michailidis and Konstantinos G. Margaritis. Performance evaluation of load balancing strategies for approximate string matching application on an

REFERENCES

Mudge:1993:PTS

Morimoto:1998:IMM

Mohamed:2013:MMM

Manca:2016:CQI

MacFarlane:1999:PPI

REFERENCES

REFERENCES

Mork:1995:DPP

Manke:1995:MPP

Martin:2004:HPA

MPIForum:1998:SIM

Muller:1996:CDI

Martins:2012:PDC

Meister:2017:PME

Oliver Meister, Kaveh Rahnama, and Michael Bader. Parallel memory-efficient adaptive mesh refinement on structured triangular meshes with billions of grid cells. ACM Transactions on Mathematical Software, 43(3):
REFERENCES

Mo:1996:IOP

Mininni:2011:HMO

Mazzocca:2000:TPP

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

REFERENCES

Marinho:1998:WMP

Mierendorf:1999:PMB

Migliardi:1999:PEH

Mourao:1999:IMO

Macias:2002:SEA

Mahinthakumar:2002:HMO

Mertens:2004:CCP

REFERENCES

Mysliwiec:1997:IPS

Matise:1995:PCG

Migliardi:2000:SFT

McCandless:1996:OOM

Massetto:2012:NSB

Mattson:2005:PPP

Martorell:2005:BGP

Mossaiby:2017:OIH

Miel:1996:IER

Mallon:2016:MUB

Marin:1994:GAL

Momeni:2015:EEO

Mohr:2007:SPE

Mohr:2006:RAP

Muller:2002:SMB

Muller:2003:OCB

Malakar:2017:DMO
Preeti Malakar and Venkatram Vishwanath. Data movement optimizations for

Notes in Computer Science,

Manis:1996:EPT

Muller:2010:SMA

Mehra:1995:AIM

McKinney:1993:MMI

Mamontov:1998:AES

Manegold:1997:QBM

REFERENCES

[NAGJ99] C. Nicolescu, B. Albers, and

[NAGJ99] C. Nicolescu, B. Albers, and

[NB96] C. NicCanna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine
(PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ???. LCCN ???.

Nickolls:2008:SPP

Neyman:1999:ERP

Nguyen:2012:BTM

Nobari:2012:SPM

Neophytou:1998:NDJ

REFERENCES

REFERENCES

Nunez:2010:NTS

Nguyen:2008:GG

Nguyen:1995:SPI

Norden:2002:OVM

Norden:2006:OVM

Nakano:2002:SCG

Hirofumi Nakano, Kazuhisa Ishizaka, Motoki Obata, Keiji Kimura, and Hironori Kasahara. Static coarse grain task scheduling with cache optimiza-
REFERENCES

REFERENCES

[Nadeau:1995:SVR]

[Novotny:1995:BRA]

[Nomura:2014:PAM]

[Nanayakkara:1993:PIR]

[Nupairoj:1995:PES]

[Nishitani:2000:IEO]

REFERENCES

REFERENCES

Notz:2012:GBS

Nagaraj:1991:MHL

Naumenko:2016:ACT

Nascimento:2007:DDS

Nadal-Serrano:2016:PSC

Nukada:2012:SMG

[NZZ94] S. T. Nguyen, B. J. Zook, and Xiaodong Zhang. Distributed computation of electromagnetic scattering problems using finite-

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Olivier:2012:CMW

Oed:1993:CRM

Ong:2000:PCL

Owaida:2015:EDS

Otten:2016:MOI

Otero:2019:OAA

Ortega:2019:CAC

Okitsu:2010:HPC
Yusuke Okitsu, Fumihiko Ino, and Kenichi Hagiwara. High-performance

Ohara:2006:MMP

Oh:2012:MOO

Oakley:1995:ADR

Orlando:2005:PSP

Oldehoeft:2002:SIS

REFERENCES

ISSN 0920-8542 (print), 1573-0484 (electronic).

[Ols95] Luke Olszewski. A timing comparison of the con-
REFERENCES

ODowd:2006:WGM

Orlando:2000:MDT

Olivier:2012:OTS

Oliveira:2012:CCO

Overeinder:1997:BCD

Ostrand:1994:PIS

REFERENCES

REFERENCES

6. LCCN QA 76.58 I56 1995.
IEEE catalog no. 95TH8052.

REFERENCES

J. Puthukattukaran, S. Chalasani, and P. Senapathy.

References

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

Petcu:1997:ISM

Petcu:2000:PDAa

Petcu:2000:PDAb

Petcu:2001:WMM

uni-linz.ac.at/software/
ps.gz.

Pharr:2005:GGP
public/katalog/420569.PDF; http://www.loc.gov/catdir/toc/ecip055/
2004030181.html.

Piernas:1997:APM

Pjesivac-Grbovic:2007:PAM

Pjesivac-Grbovic:2007:MCA

Pjesivac-Grbovic:2005:PAM

Prabhakar:2002:PCB
link/service/series/0558/bibs/2327/23270413.htm;
Peng:2018:CDC

Pessoa:2018:GAB

Poirier:2018:DAB

Pervez:2010:FMA

Papakonstantinou:2013:ECC

Pan:2010:CPS

Heidi Pan, Benjamin Hindman, and Krste Asanović. Composing parallel software efficiently with Lithe. ACM SIGPLAN Notices,

Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno. NPACI rocks clusters: Tools for easily deploy-

Paul:2006:TLF

PKB06

Prabhakar:2016:GCH

PKB+16

Plank:1995:ADC

Plank:1995:ADC

Preissl:2010:OCC

Prebhakar:2016:GCH

Periyathamby:1995:NSG

Periyathamby:1995:NSG

Pruyne:1996:ICP

REFERENCES

FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).

Park:2004:DID

Piriyakumar:2002:EFI

Pfenning:1995:OCP

Piscaglia:1995:DOC

Poulson:2013:ENF

Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and

So-Hee Park, Mi-Young Park, and Yong-Kee Jun. A

Pierce:1994:PSH

Pozo:1994:FTE

Priimak:2014:FDN

Pena:2014:CEC

Prades:2016:CAX

Pedroso:2000:MPC

[PS00a] Hernâni Pedroso and João Gabriel Silva. MPI-2 process creation & management imple-

Protopopov:2000:SMC

Pedroso:2001:WLE

Protopopov:2001:MMP

Pandey:2007:SCM

Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. de Supinski, and Daniel J. Quinlan. Transforming MPI source code based on communication

Prieto:1999:PRM

Peng:2014:BAH

Plunkett:2001:AMD

Pikle:2019:AFE

Payrits:2000:UPC

REFERENCES

Pierro:2018:SFP

Phan-Thien:1994:CDL

Prylli:1999:DHP

Puskas:1995:LBW

Peinado:1997:HPC

Park:2001:PPE

Pahl:1995:CCB

References

Preissl:2012:CSS

Pang:2016:MKR

Pirkelbauer:2019:BTF

Prasad:1995:PPB

Perla:2012:PAH

Phillips:2002:NBS
Qiu:2012:PWM

Qawasmeh:2017:PPR

Quo:2000:PNN

Qaddouri:1995:MFS

Qaddouri:1996:CPC

Qu:1995:FAS

Quinn:2003:PPC

[Russell:1992:CMW]

[Rashti:2009:SAM]

[Rabenseifner:1998:MG1]

[Rabenseifner:1999:APM]

[Ragg:1996:PEN]
T. Ragg. Parallelization of an evolutionary neural network optimizer based on PVM. In Bode et al. [BDLS96], pages 351–?? ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-

REFERENCES

Reinhard:1997:MHP

Reimann:1996:CBT

Ross:1995:DCM

Royuela:2012:ASO

Radhakrishna:1999:MBP

Reeves:1996:PIC

Reinefeld:2001:CDI

[RGDM16]

[RGD97]

[RGD13]

[RGDML16]

[RGGP+18]

Ralf Reussner and Gunnar Hunzelmann. Achiev-
REFERENCES

ing performance portability with SKaMPI for high-performance MPI programs. [RJC95]

Roda:1996:PEI

Rizzardi:2017:ATS

Robinson:1993:ECD

Rabenseifner:2001:ECF

Rolf Rabenseifner and Alice E. Koniges. Effective communication and file-

Ragan-Kelley:2013:HLC

Reyes:2013:PEO

Rungsawang:2001:LCP

Rubio-Largo:2012:UUMO

Roe:1999:PMI
Kevin Roe and Piyush Mehrotra. Parallelization of a multigrid incompressible viscous cavity flow solver us-

Rietmann:2012:FAS

Ramesh:2018:MPE

Rodrigues:2013:POM

Rolhe:2000:PPS

Rolfe:1994:PAP

Rolfe:2008:POF

Rabaea:2000:EPM

Rageb:2001:CEM

Rauber:2002:LSH

Roda:1997:PPI

Roig:2001:EMM

Robinson:1996:TMI

REFERENCES

Russ:1999:UHR

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

Roy:1997:PNT

Reano:2019:SIN

Rambu:1995:DSS

Reano:2015:IUE

Carlos Reaño, Federico Silla, Adrián Castelló, Antonio J. Peña, Rafael Mayo, Enrique S. Quintana-Ortí, and José Duato. Improving the user experience of the

Reussner:2000:BMD

Rungsawang:1999:PDT

Ryczew:2007:IBS

Riebler:2018:ACA

Riebler:2019:TAH

Ropo:2009:RAP

Simonsen:1993:DMD

Saarinen:1994:EES

Sainio:2010:CGA

Sato:2017:NIT

Saphir:1997:SMI

Soldado:2016:ECM

REFERENCES

REFERENCES

Schindewolf:2012:WSA

Sani:2014:PDF

Smith:2004:SIP

Saltz:1991:MRT

Stubbs:1995:ICE

Smith:1996:UWC

Smith:1995:CRC
Steed:1996:PPP

Sievert:2004:SMP

Shterenlikht:2019:MVF

Saillard:2014:PCS

Saillard:2015:SDV

Stagg:1995:IPN

Shyu:1996:ILQ

Schill:1993:DOD

Schneeman:1994:DSS

Schuele:1996:PLA

Schuele:1999:HAP

Schevtschenko:2001:PAS

REFERENCES

LCCN ???? Proceedings available via anonymous ftp from ftp.scri.fsu.edu in directory pub/parallel-workshop.92.

Shi:2012:VGA

Szeberenyi:1999:SGB

SM-D:2013:BRC

Sorensen:2016:EER

Skjellum:1994:WLM

Sorensen:2016:PIW

Schmitt:2017:SCP

Felix Schmitt, Robert Dietrich, and Guido Juckeland. Scalable critical-path analysis and optimization guidance for hybrid MPI–CUDA applications. *The International Journal of High Per-

[SdN99] Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??

Schenck:2016:EPM

Segovia:2010:PPN

Seifert:1999:ESI

Sept:1993:DIP

Serot:1997:EPF

Sevenich:1998:PPU

Scott:1998:PWN

REFERENCES

REFERENCES

Steuwer:2014:SHL

Sack:2015:CAM

Sunderam:1994:PCC

Schneider:2012:MAC

Solsona:2001:IEI

Saito:2003:LSP

[SGJ03] Hideki Saito, Greg Gaertner, Wesley Jones, Rudolf Eigenmann, Hidetoshi Iwashita, Ron Lieberman, Matthijs van Waveren, and Brian Whitney. Large system per-

Solsona:2000:MCM

Scherer:2000:APO

Sekharan:1995:LBM

Stone:2010:OPP

Schmidt:1994:IAP

Sitsky:1996:MLW

Song:2014:DAT

Shen:1995:PSM

Sloot:1994:CIO

Sloot:1994:CIP

Sojka:2018:IEM

REFERENCES

REFERENCES

REFERENCES

Satoh:2001:COT

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV

Skjellum:1995:EAM

Anthony Skjellum, Ewing Lusk, and William Gropp. Early applications in the

Scherer:1999:TAP

Samadi:2014:SPS

Su:2012:CPB

Sloan:2005:HPL

Squyres:1996:CBP

Shires:2002:EHM

D. Shires and R. Mohan. An evaluation of HPF and

Shires:2003:OPF

Simos:2007:CMS

Santos:2012:ICC

Siegel:2008:CSE

Shterenlikht:2015:FC

REFERENCES

2015. CODEN ???? ISSN 1061-7264 (print), 1931-1311 (electronic).

Smith:1993:MBA

Smith:1993:DSI

Schardl:2017:TEF

Silva:2000:HPC

Smohacki:1993:DCW

Sandes:2016:MMA
Edans F. De O. Sandes, Guillermo Miranda, Xavier Martorell, Eduard Ayguade, George Teodoro, and Alba

[SMM+16] Edans F. De O. Sandes, Guillermo Miranda, Xavier Martorell, Eduard Ayguade, George Teodoro, and Alba
REFERENCES

Su:2006:APP

Sitsky:1996:IMU

Sunderam:2001:CAP

Snir:2018:FMT

Suciu:2010:PIN

Shekofteh:2019:MSG

S.-Kazem Shekofteh, Hamid Noori, Mahmoud Naghibzadeh, Hadi Sadoghi Yazdi, and Holger Fröning. Metric selection for GPU kernel classification. ACM Transactions on...
REFERENCES

Sintorn:2011:EAF

Snir:1996:MCR

Snir:1998:MCR

SousaPinto:2001:PEI

Sidonio:1999:PBI

Stpiczynski:2011:SKB
Przemysław Stpiczyński and Joanna Potiopa. Solving a kind of boundary-value problem for ordinary differential equations using Fermi — the next gen-

Singh:2017:EER

Satofuka:1995:PCF

Speck:2019:APP

Shaw:1995:ADA

Skjellum:1996:TTM

Si:2018:DAA

Min Si, Antonio J. Pena, Jeff Hammond, Pavan Balaji, Masamichi Takagi, and Yutaka Ishikawa. Dynamic adaptable asynchronous progress...

REFERENCES

LAM/MPI (citation only).

ACM SIGPLAN Notices, page ??, 2003. CODEN SINODQ, ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[Sivaraman:1996:AAD]

[Szalay:2011:FCD]

[Szymanski:1996:LCR]

[Spek:2012:MST]

[Sultana:2019:FRB]

[Schmidt:1994:EA]

[Szymanski:1996:LCR]
REFERENCES

[RSSC97] Sotomayor:2017:ACG

[SSD+17] Sotomayor:2017:ACG

REFERENCES

Stellner:1995:CMC

Sosa:2000:IQC

Sala:2008:PHP

Schafer:1995:TGP

Squyres:1997:DEM

Shi:2010:PAE

R. Stephens. Parallel benchmarks on the Transtech Pyramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???. LCCN ???.

Sterling:2000:SCB

Still:1994:PPC

Schmitz:2008:IIG

Sunderam:1997:TAS

Stockinger:1998:VPC

Stpiczynski:2002:PPO

Stpiczynski:2018:LBV

Przemyslaw Stpicziński. Language-based vectorization and parallelization using intrinsics, OpenMP, TBB and Cilk Plus. *The
Sala:2019:IBN

Strok:1994:NJI

Strietzel:1996:PTS

Strietzel:1997:PTS

Strzodka:2012:DLO

REFERENCES

Sunderam:1993:PCC

Sunderam:1994:GPP

Sunderam:1994:MSH

Sunderam:1995:RIH

Sunderam:1996:PSS

Suresh:1995:IOP

Suresh:1995:PIQ

Suttner:1996:SPB

Smelyanskiy:2011:HPL

Steve Sistare, Rolf vande-Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

Sitsky:1995:IPM

Skjellum:2001:OOA

Shee:1994:DMA

Shan:2012:PEH

Sotiriou-Xanthopoulos:2018:OBV

Stathopoulos:1995:DLB

A. Stathopoulos and A. Ynnerman. Dynamic load balancing of atomic structure programs on a PVM cluster. In Hertzberger and Ser-

ing. MPI implementation of
Phoenix: a general purpose
computational fluid dynam-
ics code. In Tentner [Ten95],
pages 122–127. ISBN 1-
56555-078-1. LCCN ???

Simunovic:1995:MIP

[SZBS95b] S. Simunovic, T. Zacharia,
N. Baltas, and D. B. Spald-
ing. MPI implementation
of PHOENICS: a general
purpose computational fluid
dynamics code. In Tent-
ner [Ten95], pages 122–127.
ISBN 1-56555-078-1. LCCN ???

Thompson:2014:CIC

[TA14] Elizabeth A. Thompson and
Timothy R. Anderson. A
CUDA implementation of
the Continuous Space Lan-
guage Model. The Journal
of Supercomputing, 68(1):
65–86, April 2014. CODEN
JOSUED. ISSN 0920-8542
(print), 1573-0484 (elec-
springer.com/article/10.
1007/s11227-013-0665-x.

Takeda:2001:AME

[TAH+01] K. Takeda, N. K. Allsopp,
J. C. Hardwick, P. C. Macey,
D. A. Nicole, S. J. Cox, and
D. J. Lancaster. An as-
essment of MPI environ-
ments for Windows NT. The
Journal of Supercomputing,
CODEN JOSUED. ISSN
0920-8542 (print), 1573-0484
(electronic). URL http://
www.wkap.nl/oasis.htm/
338207.

Traf:2014:SPE

[TBB12] Jesper Larsson Träff and
Siegfried Benkner. Selected
papers from EuroMPI 2012.
Computing, 96(4):259–261,
April 2014. CODEN
CMPTA2. ISSN 0010-485X
(print), 1436-5057 (elec-
springer.com/article/10.
1007/s00607-013-0335-z.

Tao:2012:UGA

[TB14] Jian Tao, Marek Blazewicz,
and Steven R. Brandt. Using
GPU’s to accelerate stencil-
based computation kernels
for the development of large
scale scientific applications
on heterogeneous systems.
ACM SIGPLAN Notices,
CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). PPOPP ’12 confer-
ence proceedings.

Touhaï:1996:DPC

[TBD96] A. Touhafi, W. Brissinck,
and E. F. Dirkx. Devel-
opment of PVM code for a
low latency switch based in-
terconnect. In Bode et al.
[BDLS96], pages 229–??
ISBN 3-540-61779-5. ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
QA76.58.E975 1996.
Traf:2012:RAM

Tahan:2012:ITC

Thomas:1994:PSA

Tzannes:2010:LBS

Tagliavini:2018:UFG

Giuseppe Tagliavini, Daniele Cesarini, and Andrea Marongiu. Unleashing fine-grained parallelism on embedded many-core accelerators with lightweight OpenMP tasking. IEEE Transactions on Parallel and

Tian:2002:IOC

Tagliavini:2018:UFG

Giuseppe Tagliavini, Daniele Cesarini, and Andrea Marongiu. Unleashing fine-grained parallelism on embedded many-core accelerators with lightweight OpenMP tasking. IEEE Transactions on Parallel and

[REFERENCES]

[Thompson:2015:PCI]

[Tourino:1998:PBL]

[Tourino:1999:MMC]

[Thiruvathukal:2000:JNW]

[TDB00]
[TD98]
[TD99]
[TDBEE11]
[TD99]
REFERENCES

[TDGF13]

[Ten95]

[TFGM02]
Hong-Linh Truong, Thomas Fahringer, Michael Geissler, and Georg Madsen. Performance analysis for MPI applications with SCALEA.

[Tu2012:PAO]

[TG94]
Thakur:2009:TSE

Tian:2005:PCT

Tuncer:2009:PCF

Tian:2019:GAB

Thakur:2002:ONA

Thakur:2005:OSO

Trafj:2010:SCM

Thakur:1998:CUM

Rajeev S. Thakur. A case for using MPI’s derived datatypes to improve I/O performance. In ACM [ACM98b], page ??

Teijeiro:2019:OPS

Tian:2005:CEN

Treftz:1994:DPE

C. Trefftz, C. C. Huang, P. K. McKinley, T. Y. Li, and Z. Zeng. Design and performance evaluation of a
REFERENCES

Tran:2000:PPM

Thomsen:1994:RTS

Throop:1999:SOS

Traeff:1999:FFE

Takizawa:2015:ODT

REFERENCES

REFERENCES

REFERENCES

Toussaint:1996:AES

Tourancheau:2000:HSN

Thebault:2015:SEI

Tong:2018:FCM

Tinetti:2001:HNW

REFERENCES

0558/papers/2131/21310296.pdf.

[TSB02]

[TS12a]

[TSB03]

[Thibault:2012:AIF]

[TS12b]
REFERENCES

[Tsu95] H. Tsunekawa. Effective implementation of EDEM workstation cluster using PVM. In Pahl and Werner
REFERENCES

[TTV96]

[TTSY00]

[TWV96]

[TW01]

[TVCB18]

REFERENCES

REFERENCES

REFERENCES

USENIX:1995:PUT

USENIX:2000:PAL

Uehara:2002:MBP

VanKatwijk:1995:AAC

vandeGeijn:1997:UPP

Uehara:2002:MBP

vanderPas:1993:PIG

VanKatwijk:1995:AAC

Vlassov:1995:MEP

Vazquez:1999:PNS

Villaverde:2018:PTI

VanZee:2008:SPF

Vapirev:2015:IRC

vanderLaan:2011:AWL

REFERENCES

ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

[Vikas:2014:MGA] Vikas, Nasser Giacaman,

vonHanxleden:1994:VDF

Viswanathan:1995:PCM

Valero-Lara:2018:CCC

Valencia:2008:PPR

Valero-Lara:2019:MTS

REFERENCES

Varadarajan:1994:FDT

Vincent:1995:HPP

Vogel:2013:BWC

Volkert:1993:PCS

Voss:2003:OSM

VidalMacia:2000:IPM

[VP00] Antonio Vidal Maciá and José Luis Pérez Gómez. Introducción a la programación en MPI. (Spanish)
REFERENCES

[VSRC94] P. L. Vaughan, A. Skjellum, D. S. Reese, and Fei-
REFERENCES

Jeffrey S. Vetter and Andy Yoo. An empirical perfor-

Verschelde:2015:PHC

Vasilache:2019:NAL

Wong:1999:BMM

Walker:1994:DSM

Walker:1994:EDS

Walker:1995:MVB

D. W. Walker. An MPI version of the BLACS. In

REFERENCES

REFERENCES

Wolf:1997:CMP

Wickerson:2017:ACM

Walters:2009:RBF

Wang:2015:AST

Wang:2012:OVT

Wu:1999:JBD

P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ????.

R. White. VCMON — the VM/ESA Connectivity Monitor. In Anonymous [Ano94g], pages 783–792. ISBN ???? LCCN ????.

Timothy James Wilkinson. Implementing Fault Tolerance in a 64-bit Distributed
References

Wilhelms:1994:DAL

Wismueller:1996:SBV

Wismueller:1998:LMS

Wismueller:2001:UMT

Witchel:2016:PPW

0163-5980 (print), 1943-586X (electronic).

Wei:2012:OLL

Wang:2019:MEM

Wu:2014:OFB

Wegiel:2008:MCVb

Wegiel:2008:MCVc

Wittenbrink:2011:FGG
REFERENCES

Wagner:1996:GSG

Lehman:1994:IZP

[Li wei Lehman. Integrating zipcode and PVM: towards a higher-level message-passing environment. Technical report MSSU-EIRS-ERC 94-2, Engineering Research Center for Computational Field Simulation, Mississippi State University, Starkville, MS, USA, 1994. 7 pp.]

Wismueller:1996:TSI

[R. Wismueller and T. Ludwig. The tool-set — an integrated tool environment for PVM. Lecture Notes in Computer Science, ?? (1067):1029–??, ???. 1996. CODEN LNCS9D. ISSN 0302-9743 (print), 1611-3349 (electronic).]

Wismueller:1996:TSI

Wu:2007:IFR

Wolfe:2018:ODM

Weatherly:2003:DMS

REFERENCES

Weatherly:2006:DMS

Willcock:2005:UMC

Wu:2012:UHM

Wolf:2001:APA

Wolfe:2018:MLS

Wende:2019:OVT

[WMK+19] Florian Wende, Martijn Marsman, Jeongnim Kim,

Wu:2014:MAG

Winkler:2017:GSM

Wendykier:2010:PCH

Walk:er:1995:RBD

Walk:er:1996:RBC

Winstanley:1997:PDP

Wang:2009:MPM

Wolbers:1992:SPP

Worley:1996:MPE

Weng:2007:OIS

Wagner:1994:CFD

Wang:1995:PPG

Wu:2001:PCS

Worsch:2002:BCM

Winkler:2019:GSM

Wang:2016:LLA

Wisniewski:1999:SME

Len Wisniewski, Brad Smislof, and Nils Nieuwejaar. Sun MPI I/O: Efficient I/O for parallel applications. In ACM [ACM99], page ??.

West:1995:AVV

Wu:2011:PCH

 REFERENCES

0163-5999 (print), 1557-9484 (electronic).

[Wu:2012:PCH] P.-Y. Wu. Minimum communication cost fractal im-

[Wu:1999:MCC] P.-Y. Wu. Minimum communication cost fractal im-

Wang:2008:PIM

Xu:1995:IPP

Xu:1996:MCO

Xue:2009:MSR

Xiong:1996:BID

Xu:2013:PMO

Yelon:1993:PTS

REFERENCES

Yazdanpanah:2015:PHR

Yan:1994:PTA

Yang:2014:PMI

Ying:2003:NPK

Yalamanchilli:1998:CPJ

Yviquel:2018:CPU

Hervé Yviquel, Lauro Cruz, and Guido Araujo. Clus-
ter programming using the OpenMP accelerator model.

REFERENCES

Yang:2016:HTM

Yan:2013:SFS

Yalamov:1997:BRT

Yilmaz:2011:RMS

Yi:1994:PID

Yilmaz:2009:HPC

E. Yilmaz, R. U. Payli, H. U. Akay, and A. Ecer. Hybrid parallelism for CFD simulations: Combining MPI with OpenMP. In Tuncer et al. [TGEM09], pages 401–408.
Parallel CFD 2007 was held in Antalya, Turkey, from May 21 to 24, 2007.

You:1995:EIM

Young:1993:PEN

Yu:2005:HPB

Young-S:2017:OGI

You:2012:PCS

Yang:2011:PBP

Younge:2015:SHP

Yonezawa:1995:IED

You:2015:VFO

Yong:1995:SOM

Yu:2012:SCC

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). LCTES ’12 proceedings.

Yang:2014:CNR

You:1995:PIM

Zounmevo:2014:FRC

Zaza:2016:CBP

Zahavi:2012:FTR

Zhong:2007:PPS

REFERENCES

Zhao:2010:GMP
Zhao:2012:CDS
Zdetsis:1994:PMD
Zilli:1997:TBN
Zhu:2012:CDS
Zhang:1997:DED
Zhang:2001:PPV
ZDR01
ZDR12
ZC10
ZD97

Zhang:2004:PMV

Zelek:1995:DPP

Zemla:1994:WTC

Zhou:1995:FMP

Zhou:1995:RMR

Zhou:1996:FMP

Zhou:1998:LST
Zielinski:1994:PPS

Zu:1994:OSM

Zheng:2006:PEA

Zoraja:1999:SPD

Zhang:2018:IRP

Zounmevo:2014:ESC

Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. Extreme-scale computing services over MPI: Experiences, ob-

Zaky:1996:PDT

Zha:2017:IFM

Zha:2018:LSM

Zaki:1999:TSP

Zhou:2012:DFD

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Digital Object Identifier (DOI)</th>
<th>ISSN</th>
<th>LCCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhu, Kenli Li, Ahmad Salah, Lin Shi, and Keqin Li</td>
<td>2015</td>
<td>Parallel implementation of MAFFT on CUDA-enabled graphics hardware</td>
<td>IEEE/ACM Transactions on Computational Biology and Bioinformatics</td>
<td>12(1)</td>
<td>205-218</td>
<td>January 2015</td>
<td>10.1109/TCBB.2014.2354341</td>
<td>1545-5963 (print), 1557-9964 (electronic)</td>
<td></td>
</tr>
<tr>
<td>Zhai, Mingliang Liu, Jidong Zhai, Xiaosong Ma, and Wenguang Chen</td>
<td>2011</td>
<td>Cloud versus in-house cluster: evaluating Amazon cluster compute instances for running MPI applications</td>
<td>ACM SIGPLAN Notices</td>
<td>46(8)</td>
<td>135-146</td>
<td>August 2011</td>
<td>10.1145/1931518.1931534</td>
<td>0362-1340 (print), 1523-2867</td>
<td></td>
</tr>
<tr>
<td>J. A. Zollweg</td>
<td>1993</td>
<td>Overview of PVM</td>
<td>Anonymous</td>
<td>981-986</td>
<td></td>
<td></td>
<td>0254-6213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Zambonelli, M. Pugassi, L. Leonardi, and N. Scarabottolo</td>
<td>1996</td>
<td>Experiences on porting a Parallel Objects environment from a transputer network to a PVM-based system</td>
<td>IEEE</td>
<td>0-8186-7376-1</td>
<td></td>
<td></td>
<td>QA76.58 .E97 1996.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zhao:2012:ASO

Zarrabi:2015:GSA

Zoltani:2001:EPO

Zouaoui:2017:CNG

Zaitsev:2019:SLD

Zareski:1995:EPG

