A Bibliography of Publications about \textit{PVM (Parallel Virtual Machine)} and \textit{MPI (Message Passing Interface)}

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 April 2022
Version 3.253

Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0
[ICC02]. 1 [ICC02, LRQ01, VDL+15].
$\textdollar 19.95$ [Ano95b]. 2
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19].
$\textdollar 24.95$ [Ano95c]. 3
[And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SC19, SH14, TPD15, WR01, YSL+12].
$\textdollar 35$ [Ano00a, Ano00b].
$\textdollar 35.00$ [Ano99a, Ano99c, Ano99b, Ano99d]. 3\textit{D}
[KA13].
\textbf{860} [Ano00a, Ano00b]. 3 [PBC+01].
A [ARYT17]. \alpha [JMdvG+17]. Ax = b
[BG95]. \textit{D} [UZC+12]. \textit{H}^2/\textit{H}\infty [GWC95]. hp
[BCM+16]. k [She95, TK16]. \leftrightarrow [GRW+19].

\textit{M}3 [JSH+05]. \textbf{PVM}+ [Wil94]. \textit{N}
[IHMC5, Per99, Rol08b, SP99, SRK+12]. \textit{P}_\textit{N}
[OGM+19]. \textit{P}_{\textit{N}-2} [OGM+19]. SU(3)
[BW12]. \textit{t} [MPZ21]. \tau
[RGDM15, RGDML16]. \textit{XY} [KO14].

$*$ [MMAH20].

\textit{-based} [R\textohm19]. \textit{-body}
[IHMC5, Per99, SP99, SRK+12]. \textit{-D}
[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. \textbf{Dimensional} [LRQ01].
\textit{-Lop} [RGDM15, RGDML16]. \textit{-Means}
[TK16]. \textit{-Queens} [Rol08b]. \textit{-set} [She95].
\textit{-SNE} [MPZ21]. \textit{-stable} [JMdvG+17].

. [Wil94].

\textit{/Fortran} [TBG+02]. \textit{/many} [KSG13].
2

/MPI [BKK20]. /OpenMP [VDL+15].

'00 [RV00].

90 [Ben95, SM03]. 9076 [Bri95]. '91 [BG91, EJL92, IEE91]. '92 [Sie92a, Sie92b, VW92]. '93 [Ano93g, GKK+93, GHH+93, IEE93a, IEE93c]. 93SC038 [FS93]. 93SC041 [Gle93]. '94 [BS94, DW94, GT94, IEE94b, IEE94h, PSB+94, SPE95, WPH94, dGJM94]. 947 [LTDD14]. '95 [ACM95b, AH95, BH95, CLM+95, CJNW95, DMW96, FF95, HAM95b, IEE95l, Lev95, NM95, Van95, Ano98, FD97, KaM10]. 95/NT [FD97]. '96 [ACM96b, ACM96c, BDLS96, BFM96, CH96, IEE96g, IEE96e, IEE96d, LHMM96, Li96, Sil96, Was96, YH96]. '97 [ACM97a]. 978 [Che10, SD13]. 978-0-12-415933-4 [SD13]. 981 [Riz17]. 997 [Spe19].

[AGS97, BS01, DGG+12, RFRH96, SPNB14].

alloy [TG94]. AllReduce [NWT21]. ALM [PZ12]. almost [LFW20]. alpha [WLYL20].

Alterna [RGB+18, TK16]. Alternative [EM94, SWHP05, Trä12a, EKTB99].

ALWAN [HB96a, HB96b, MSB97].

AMR [NLRH07, TK19]. AMRVAC [KTXP21, TK19]. AN2 [HBT95]. analogue [WWZ+96]. analyses [ANS95]. Analysis [BHW+17, BR02, BGG+02, BBC+00, BDL98, CGLD01, CLA+19, DFP+19, EML00, FK01, FJK+17, Hol12, JF95, KL94, KNT02, KRG13, LCK11, MK17, MCLD01, NAW+16, NMS+14, Ost94, PZ12, PGAB+05, SPL+12, SBR5, SGL+20, SRT01, TFGM02, WYH+21, Whi04, WM01, BB93, BBDH14, BBI+15, Che99, DSGS17, EPP+17, GR95, GFB+14, GSM+00, GKS+11, GE95, GE96, GT07, JB96, JLG05, LC07, LG12, LRLG19, LL16, LBH12, MMB+94, MMW96, MLA+14, MJPB16, Pat93, PHJM11, PSV19, PGAB+07, RTN21, SDSCP13, ISYS12, SS94, SDJ17, SPP95, Shp95, Si96, SWL+01, SSG95, TMC90, TW12, TFZZ12, Uhl95a, Uhl95c, VM94, YCL14].

analytic [THDS19].

analytical [BAE22, BHW+12, HK09, JS13, KN17].

analyzers [MMAH20]. Analyzer [JJPL17, KKM15]. Analyzers [Ano01a].

Analyzing [BRU05, DF17, FM09, HG12, HcF05, PFG97, RPS19, MH21]. anasslich [Ano94c]. Anatomy [KWEF18]. Andrew [Ano09c, Ano99d]. animal [LM99].

anisotropic [LB+16, SS+16, YSV+16].

'Anna' [CEF+95]. Annapolis [IEE96c].

annealing [WHMO19, FH97]. Annecy [VV92]. Anniversary [Ano92, Ano93f].

annotated [GGH99]. Annotation [MGA+17]. announcement [WRMR19].

Announcements [Ano98]. Annual [ACM95b, Ano93b, Ano94h, IEE95b, USE00, Van95, Y+93, ACM95a, Eng90, IEE94e, IEE95l]. Ant [ITT02].

ant [Ano03].

antenna [DSOF11]. Anthony [Ano95c, Ano00b]. Antonio [Ano95d, IEE95g, IEE97c]. Any [Gro02a, Mar07]. AP [PBC+01, SMTW96].

AP/Linux [SMTW96]. AP1000 [SH96, IM94, SWJ95]. AP3000 [TD99].

Apache [GRW+19]. API [DM98, KQT+21, LD+11]. APIs [WCS+13]. APOLLO [Sta95b].

APOLLO-II [Sta95b]. Appendix [Ano01a]. Appendixes [Ano01a]. APPL [AB93b, AB93a]. Application [AHE00, BS07, BFM97, BBH+15, Cha02, CRGM14, DFMD94, FDG97a, FDG97b, FSC+11, GB98, HT08, IADB19, JFY00, JCH+08, KNT02, LD01, LMRG14, Ma101, MTSS94, MBB+12, NSLV16, NS16, PSSR01, Riz17, SB1+04, ST02a, SCL97, UT02, WY+19, YNJS21, ZZ04, ABC+00, ADMV05, ADR+05, BBD+22, BvTB99, BM97, BBC+99, BMPS03, CB98, CRM14, CRGM16, DS22, EMH+99, GMV+18, GWVP+14, HTJ+16, HZ96, KME09, LSG12, LFS+19, LCMG17, LBB+19, MMW96, MM03, MLA+14, MvWL+10, NMW93, RBAI17, Rol08b, SM12, SCJH19, SSS99, SFVS13, SL00, TCP15, Wor96, ZZZ+15, CG99a, PGPC92].

application-centric [SFSV13]. Application-Level [CRGM14, LMRG14, SBF+04, SCL97, BMPS03, CRM14, CRGM16, LCMG17, LBB+19].

Applications [APJ+16, RPS97, Ano89, Ano96c, AZG17, BCLN97, Ben18, BHV12, BBH+06, BRU05, BFM97, BFBW01, CGS15, CBL10, CGLD01, CBB+10, CBB+21, CH05, CNT20, CJSW95, CRGM14, Cot98, CTK00, Cot04, Cza02, Cza03, DW02, DLM+17, DERC01, DHK97, DGF97, DDN+22, DGMJ93, EV01, EML00,
Applications [Wis96a, WSN99, WBH97, WM01, dGJM94, AC07, ACH11, ACC21, ACJ12, Ano93a, Ano94f, Ano03, ABB20, Ara95, Arn95, ASB18, AGM06, BAE22, BKH13, BR04, BDV03, BAG17, BFM96, BFMT96a, CGK16, CGBS15, CDMS15, CLE20, CLSP07, CBM08, CZP21, CIJ10, CFPS95, CCHW03, CCM06, DZ98a, DSZ94, DPFT19, D+95, DCH02, EKT09, EGH99, EDS09, FE17a, FE17b, FNSW99, FCS12, Fin94, Fin95, FF95, GBR15, GS96, GHH93, HD00a, HZ99, HAJK01, JC17, JPF94, KC19, KSC19, LRG16, LG98, LGG16, LGM00, LCMG17, LBB19, LMB19, LHZY19, LS08, MA09, MBKM12, ML04, MSCM15, MS96b, NSB07, NCB12, NFG10, PK05, PT01, Rab99, RS95, RGGP18, RGP22, SLM14, SPE95, SB12, SD17, SG12, SG05, SPBR20, SIC19, SLG95, SB01].

approaches [SD16, SRS19, TMC90, TT02, VETO96, WL92, WT13, WMP14, XLW09, XJR21, YZ14, ZLZ11, BP93, TDBE11, ATC94].

Approach
[AZG17, BHM94, BJ93, BHN01, CRGM14, CD98, DLM17, FF03, GCBL12, HMKG19, HD00b, KBA02, KK20, KMWH10, LGM00, M06, PPP01, Pet00a, Pet00b, RGD13, Ros13, SDR21, TJPF12, BK11, Bis04, BTL17, CLYC16, CDP99, CRGM16, DiN96, E015, FMS15, HDB13, JS13, KPL12, KSS07, KJEM12, LSG12, MG05, MS99b, NEM17, OHG19, OW92, QM21, SVC11, SEC15, TWF09, VGP19, W009, WY21].

Approaches [JCH08, Ney00, SWHP05, SM02, AKB19, BFL99, CB11, PSS0b].

ApproachHPVM [SSH19].

Approaches [JCH08, Ney00, SWHP05, SM02, AKB19, BFL99, CB11, PSS0b].

ApproachHPVM [SSH19].

Approximate [FLS20, Huc96, MYL21, MM02, GGC07, GG09, MM03].

approximately [LFW20].

Approach
[BH94, ACC11, AC07, ACH11, ACC21, ACJ12, Ano93a, Ano94f, Ano03, ABB20, Ara95, Arn95, ASB18, AGM06, BAE22, BKH13, BR04, BDV03, BAG17, BFM96, BFMT96a, CGK16, CGBS15, CDMS15, CLE20, CLSP07, CBM08, CZP21, CIJ10, CFPS95, CCHW03, CCM06, DZ98a, DSZ94, DPFT19, D+95, DCH02, EKT09, EGH99, EDS09, FE17a, FE17b, FNSW99, FCS12, Fin94, Fin95, FF95, GBR15, GS96, GHH93, HD00a, HZ99, HAJK01, JC17, JPF94, KC19, KSC19, LRG16, LG98, LGG16, LGM00, LCMG17, LBB19, LMB19, LHZY19, LS08, MA09, MBKM12, ML04, MSCM15, MS96b, NSB07, NCB12, NFG10, PK05, PT01, Rab99, RS95, RGGP18, RGP22, SLM14, SPE95, SB12, SD17, SG12, SG05, SPBR20, SIC19, SLG95, SB01].

Architectures [ACM95b, BDT08, BBD20, BFG10, CTP01, HD02a, HD02b, HH94, IE96d, KDT12, LHHM96, L96, LZ17, LAD16, MS02b, MTS94, MPZ21, MCS00, NO02b, Nar95, PZ12, SMX18, TSC012, WYZ19, YK18, ZT19, BDP10, BN00, BKL95, CLM95, CDZ98, DM93, DZY94, GDC15, GP95, IHS18, HCC20, Hos12, LCL12, LDJK13, MLC04, NO02a, PY95, RFH95, RNM12, SPL99, TDG13, TSZ94, Uhl95a, VDL15, WST95, diAMC11].

Area [CDHL95, FIS01, BHW+12, ...
MJB15, Pan14, ZLP17, BLVB18, CLA+19, CGH+14, FA18, GMA20, GHZ12, HJJYC10, HG12, JKN+13, KB16, MBB13, MSMC15, MAAH20, SMH+12, SSH+19, SPK+12, WRSY16. awareness [HK09, VGS14]. AXAF [NH95]. AXC [CBIGL19]. azTotMD [RS22].

B [Ano01a]. Back [BIC+10]. Backend [IOK00]. backtracking [PGdCJ+18].

Backup [Gua16]. Bains [GA96]. Balance [HE02]. balanced [EZBA16]. Balancing [BkiSH01, DBA97, DI02, DK06, FSG19a, GCBL12, KSB+20, MM02, PT01, Pus95, ST97, Wal01a, Bir94, BS05, DZ96, DLR94, DvdLVS94, DR95, FMBM96, FH97, Hum95, JH97, MM03, NP94, SGS95, SY95].

Balatonfured [DKP00]. balls [BBH+15].

BARRACUDA [EPP+17]. Barrier [CldJ+15, SDB+16, YLZ13]. Based [Ada97, AHD12, AAB+17, ABG20, AP96, BHW+17, BGD+19b, BBD+20, BoFBW00, CAM12, CGC+02, CLOL18, CLP+99, CDPM03, DW02, DLLZ19, DLLZ20, DBK+09, FSC+11, FC05, For95, FSLS98, GSsx, GFJT19, HF14a, HF14b, HM01, Hus00, KLR16, LSZL02, LHZ18, kL11, LW04, LAFA15, MDM17, MGL+17, MMH98, MZLS20, NSLV16, NEO1, NHT02, NPS12, PPT96a, PCY14, PFG97, PSSS01, RDMB99, SPL+12, SM03, Smii93a, ST02b, ST97, SK+17a, SK+17b, THS+15, TD98, WTTH17, WC09, WZH16, WYH+21, WJC+21, Wis96a, WM01, WJB14, YG96, YTH+12, ZJHS20, ZWJK05, AKB+19, Ada98, AASB08, AAAA16, AWA+16, Ano03, AFG21, ABB20, AFGR18, BLPP13, BGD+92a, BLVB18, BCH+03, Bri95, BFMT96a, CwCW+11, CC10, CPM+18, CKnWH16, CRM14, CXX+12, DXB96, FE17a, FE17b, FFB99, FJJZ+14, FNSW99, FSTG99, FLPG18, FFFC99, FWS+17].

based [GS91a, GS92, GKS+96]. Gra97, Gra09, GFFP12, HDZ+20, HZ94, HWX+13, IM95, ITT99, JCP+20, JL18, JKM+17, KLV15, KB12, KPL+12, KSC+19, KPNM16, LV12, LRW01, LK96, LNW+12, LZC+20, LGG16, LMM+15, MYB16, MNO+16, MB21, MKP+96, MCB05, MT96, MS99a, MS99b, MAAH20, MFPP03, NRdA+20, Neu94, NHT06, OLG+16, OP98, PARB14, PES99, PPT96b, PK05, PS19a, PAdS+17, PGK+10, PSNL11, PKD95, PSK+10, PSLT99, Qu95, Rag96, RBP+21, RJH+20, Rót19, STP+19, SJL14, SSN+21, SS99, SG05, SSS99, SZZ11, SPBR20, SVC+11, SXMX+18, SLS96, SK+14, Sto98, Stp18, Stp20, Str96, SLN+12, SPNB21, TBB12, TSCS14, TGKL19, TY14, TBD96, TWFO09, TMPJ01, VCLM+20, WHMO19, WO09, WTM14, WTS19, WGG+19, Wis96b, WCS99, YC98, YL09, YWC11, YSL+12, ZAFAM16, ZLP17, ZHK06, ZZG+14].

Based [ZZW+95, ZWC21, vHS94, BFMT96b, FH97, KSJ95, WAS95b, FO94, GK97, KSJ96, PY95, Sut96, TSZC94, ZPLS96]. Basel [Ano94i]. Basic [PGC02, BkKh+14, BR94]. basierte [Gra97]. Basis [OMK09, RB01].

batch [VLMP+18]. batched [GNP19].

Batching [LML+19]. Batch [BP93].

Bayesian [CBS18, Fer10]. BC [IE95i].

BCS [FPF03]. BCS-MPI [FPF03]. be [CB00].

Beach [IE93b]. beam [OIH10, RCFS96]. bearings [NF94].

Beguelin [Ano95b, NMC95]. Behavior [BFM97, DeP03, Ros13, FGL+20, LLG12, PPF89, YMY11]. behaviour [EPML99].

Beijing [CZG+08, LHHM96, L96].

Beitrag [Ano94c]. Belgium [LCHS96].

belts [NS20]. Benard [TV96].

Benchmark [BWV+12, DS16, HC10, Luo99, Mül02, MBB+12, RSPM98, RTH00, SGJ+03,
Trä12h, UTY02, Ano03, BKML95, DWM12, DH95, DHS96, MKP22, Miß03, MvWL+10, PHJM11, PSH+20, Ret01, RST02, Wor96, YSWY14]. **Benchmarking** [GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02].

Benchmarks [CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TSB03, WAS95b, ZSnH01, CDD+96, MKP22, MMH99, Ste94, WT11, CE00, WT12].

Beneficial [C3000]. **benefit** [SBG+12]. **Benefits** [LB16, PSM+14, SIRP17]. **Benutzerprofile** [Wi94].

Benutzertreffens [Ano94c]. **Beowulf** [CMM03, Ste00, UP01]. **Beowulf-Class** [Ste00]. **Berlin** [PW95]. **Bessel** [KT10].

best [GT19]. **Betriebssystemkern** [Sei99]. **Better** [Str94, RS21]. **Between** [LB16, PSM+14, SIRP17].

Billions [KJ17, BS07, ASS+17]. **Billing** [SBG+17]. **Biharmonic** [YM97, Nov95]. **Biharmonic** [Des05, HCA16].

Better [STR+17]. **Bessels** [GC05, HCA16]. **Beneficial** [SBG+17]. **Beneficial** [KMH14, Aug03, BGG08, EFR+05, WK12].

Beecher [MB96, OST09]. **Beechertree** [Ano99b, Ano99d, Ano00a, Ano00b, Che10, Edd18, Mar06, Nag05, NMC95, Per97, SD13, Vre04, YFM97]. **books** [YM97, Nov95]. **Boost** [CVPS19]. **Boosting** [LRG14, SOF05]. **Bose** [KLM+19, MBA21].

Boston [IEE99a]. **Both** [BGG+17, KJ17, BS07]. **Bottleneck** [MGW97].

Bottlenecks [DSG17, JKHK08]. **Boulevard** [ACM99]. **Bound** [ASA97, SGS+21, CLA+19, MBKM12, ADMV05].

boundaries [KGB+09]. **Boundary** [BS21, PTT94, STA20, SBQZ14, SP11, SD99]. **boundary-value** [SP11]. **Bounded** [CPKG17, Mes05, PAdS+17].

BowMapCL [TBL16]. **Box** [JR13, JPP95]. **Box-counting** [JR13]. **brackets** [GSM17].

Braga [IEE96g]. **brain** [VSL31]. **Branch** [ASA97, LW20, ADMV05]. **Branches** [SGS+21]. **Breaking** [OS97]. **breast** [Str94].

Brest [IEE94e]. **Bridge** [VDL+15]. **Bridges** [DSS00].

Bristol [MC94]. **British** [IEE95a, IEE95e].
Broadband [OIS+06, CLLASPDP99].
Broadcast
[PSM+14, YSP+05, AMC+19, MTK16].
Broadcasts [SE02]. Brownian [SKM15].
Briju [PGF18]. Brussels [LCHS96].
Brute [JRG21]. Brute-forcing [JRG21].
BSGP [HZG08]. BSP
[Mar06, Bis04, GRRM99, Mar09, Röh00].
BS2OMP [Mar09]. BT [WT11, WT12].
Budapest [FK95, KKD04]. Buffer
[SEF+16, Tsu07]. buffers [MR96]. Build
[HRSA97]. Building [FD04, Gei01, Gro02a, LBD+96, IVP04, WADC99, Arn95, HS95b, MSL12, PW95, Sur95b, Kos95b]. Bulk
[Cer99, CLE17, YULMTS17]. bulk-synchronous
[CLE+20, HZG08]. burden [AV18].
Burrows [NTR16]. Burst [SEF+16]. BUS
[ITT99]. BUSTER [XWZS96]. Butterfly
[ST17]. Butterfly-Patterned [ST17].

C [Edd18, Ga97, Pri14, SM12, SSL97, TBG+02, VDL+15, Vre04, ABB20, BKK20, BGK08, BB00, CNC10, CCHW03, DARG13, Don06, FLMR17, FHK01, GTH96, GS97, Gör01, KKO2a, KPO00, KLM+19, LYSS+16, Mat16, MHSK16, QM21, Qui03, RBC20, Röti19, SSB+17, SC95, TNIB17, UZC+12, YULMTS+17, YSVM+16, ZT17]. C#
[WLR05]. C-to-CUDA [UZC+12]. C/C
[SM12, KPO00]. C/OpenCL [RBC20]. C11
[BDW16, QM21]. C11/C [QM21]. C2CU
[TNIB17]. CA [ACM95b, Ano89, BBG+95].
Cache
[CVPS19, LWKA15, LHZH17, LHZH18, MC18, MM07, NIO+02, NIO+03, SS01, SVC+11]. Cache-Coherent [SS01]. cache-friendly
[SVC+11]. Cache-Oblivious
[LHZH17, LHZH18]. Caches [LB16]. Caching
[kLCCW07, DO96, WMRMR17, WMRMR19].
CAE [KDL+95a, KDL+95b]. CAF
[GBR15, Mar05]. Caffe [AHHP17]. calculating [EZBA16, KD12]. Calculation
[GDM18, QRMG96, GSMK17, KN17, MM95, NS16, SR11]. Calculations [RB01, Sta95b, ART17, AII+21, Hol95, WH96].
calculus [PQ07]. Calif [IEE93f]. California
[ACM97b, Gatl95, IE93a, NM95, USE94, AH95, GE95, GE96, Has95, IE93b, IE93f, IE94g, IE95c, IE95f, LF+93a]. Call
[DW02, MCPP17]. Call-Graph [DW02].
Callback [SSN+21]. Callback-based
[SSN+21]. Calls [FHK01, AGLv96].
CALPHAD [TKP15]. Cambridge
[Ano95b, Ano95c, Ano96a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b].
CAMeL [KDL+95a, KDL+95b].
CAMeL/PVM [KDL+95a, KDL+95b]. CAMP
[CLM+95]. Can [Gro02a, SBG+12].
Canada [BG91, GGK+96, GGK+96, KPO00, KLM+19, BBH+95].
Cavity [PKYW95, RM99].
Cavity CASTEP [DW02].
Causal [ZJHS20]. Causal [ZJHS20].
Causality [IEE93c]. CAVE [BBH+15].
CAVE-CL [BBH+15]. cavities [BBH+15].
Cavity [PKYW95, RM99].
CBFEM
[OMK09]. CC [GB96, KLYL03]. CC-COMA
[GB96]. ccNUMA
GFIS$^+$18, GHZ12, GWVP$^+$14, KSC$^+$19. cloud-based [KSC$^+$19]. Cluster
[AUR01, BKGS02, BL95, BM97, CRE99, CMM03, HD02a, ES11, GGGC99, Gei94, Gei00, GSN$^+$01, GT01, GC05, HD02b, ITKT00, ID94, KKH03, KS96, KS01, LR01, MFTB95, MM01, NO02b, OF00, PF97, RB01, RS06, RLL01, SCR92, SHH01, SHTS01, TOTH99, TS21, Trä02b, YCA18, bT01a, AL93, BL93, BALU95, CCF$^+$94, Cou93, ED94, GK97, GMU95, Heb93, KEGM10, KEM15, LC07, LZZ$^+$11, Liu95, MW93, MM03, NO02a, PDY14, RJDH14, SS94, SR95, ST02b, SLS96, SY95, SSN94, Tho94, THM$^+$94, Tsn95, UH96, YWO95, ZLZ$^+$11, MS04].

Coarray [GBR15, YMCB14]. coarrays [SMCH15, SC19]. Coarse [ADRC98, IOK00, LG00, NIO$^+$02, NIO$^+$03, SSK$^+$18, HDZ$^+$20, Heb93, RJC95].

Coarse-Grain [IOK00]. Coarse-grained [HDZ$^+$20, Heb93, RJC95]. Coarse-Grid [SSK$^+$18]. coarsening [PSLT99]. Coast [IS16]. Coastal [GAM$^+$02]. CoCheck [MS96b, Ste96]. Code [AHP01, And98, BCGL97, CB00, CP97, CCK12, CCBPGA15, Cre16, DDL00, DZDR95, HE02, KaM10, KAMAMA17, KHS01, LD01, MMD98, MS02b, MM07, PBC$^+$01, RGD13, SM03, SZBS95a, Sta95b, TGBS05, AMS94, AD94, AFST95, BCAD06, BADC07, BW12, Bha98, Bri95, Cou93, DLR05, EZBA16, FMM15, GSKM17, Heb93, IJM$^+$05, JL18, KPL$^+$12, KH10, MG5$^+$15, MRH$^+$96, MWO95, PKE$^+$10, PSK$^+$10, RP95, RVPK18, SZBS95b, SK00, SFLD15, SMSW06, TBD96, VBLvdG08, VLYL20, Wor96, XR21, YL09, ZGZ20, ZT20].

codebooks [PMM95]. Codes [FAFD15, JFY00, SWH15, HTJ$^+$16, HWS09, HASnP00, JPP95, KBG$^+$09, LRW01, Mal01, OLG$^+$16, WB96].

Collection [LTRA02, DH95, MGC$^+$15]. collection-oriented [MGC$^+$15]. Collections [JFGRF12]. Collective [BIL99, BIC05, CCA00, FVD00, FCLG07, FP98, GLB00, GMdMBD$^+$07, Hus99, KH96, KLH$^+$20, MG5$^+$12, PGAB$^+$05, SG15, TRG05, VFD02, WRA02, BPJ22, FA18,
HS12, HMS+19, HG12, HWW97, KHB+99, KBHA94, KMH+14, LFW20, MBBD13, MB21, Pan95b, PGBF+07, PGAB+07, RJMC93, SCB14, SCB15, SS99, TD99, Träi2a, THMH21, TFZZ12. \textbf{Collectives} [CSW12, SvL99, ZGZS20, DJJ+19, HGX+22, Zah12]. \textbf{Collector} [GTS+15, WK08a, WK08c, WK08b]. \textbf{College} [AGH+95, Ano94h]. \textbf{Collision} [QRMG96, Sta95b, ART17, FFFC99, LHLK10]. \textbf{Collocative} [MKW11]. \textbf{Colony} [ITT02]. \textbf{Colorado} [R92, IEE05]. \textbf{Colt} [WN10]. \textbf{Columbia} [IEE95a, IEE95e, MAB05]. \textbf{Column} [HSP+13]. \textbf{Column-stores} [HSP+13]. \textbf{COMA} [GB96]. \textbf{Combined} [CBHH94, TJFP12, AiS+21]. \textbf{Combining} [DP94, LSM+18, PQR18, Rab98, SCB14, Sch96a, MAC08, YPAE99, Bor99, MQ21, Sch96b]. \textbf{comes} [Ano94f]. \textbf{Coming} [HK95]. \textbf{Commands} [OLG01]. \textbf{comments} [Str94]. \textbf{command} [GGL+08]. \textbf{Commander} [PP94]. \textbf{Command-line} [GS99, OGM+16, Pan95b, Par93, PGK+10]. \textbf{communication} [PM95, PKE+10, PSK+10, PS00b, RS21, SH14, SC95, TG09, TGKL19, Träi2a, THMH21, Vet02, WK20, Wu99, WMP14]. \textbf{Communication-avoiding} [GKD+18]. \textbf{communication-aware} [GMA20]. \textbf{communication-based} [PGK+10]. \textbf{Communication-buffers} [MR96]. \textbf{Communication/Computation} [HIP02]. \textbf{Communications} [BPS01, CP98, CDHL95, CDH+95, FVD00, FST98b, GMDMB+07, IEE95b, IEE95e, LZH17, LZH18, MB00, VF02, YTH+12, bT01a, ADLL03a, ADLL03b, AiS+21, BBW19, CDP99, FA18, HS12, KBHA94, MBBD13, McR92, MN91, MS99e, RGDM16, SCB14, SCB15, TD99, WLYC12]. \textbf{Communicators} [DFKS01, GFD03, GFD05, FKS96, GMM18, KH96, MJG+12]. \textbf{communities} [ACM04]. \textbf{Community} [BHW+17, FCP+01]. \textbf{Como} [CLM+95]. \textbf{COMOPS} [Luo99]. \textbf{Compact} [Uhl94, Uhl95b, Wor96]. \textbf{compaction} [VSW+13, WK08a, WK08b, WK08c]. \textbf{Compactly} [KLR16]. \textbf{Comparative} [KB98, MYL21, PSK08, SN01, AGR+95b, ED94, YCL14]. \textbf{Comparing} [BF01, DSU20, Fin97, GBR15, HVSH95, ICC02, LKJ03, ORA12, SSG95, JLG05, WLBC17]. \textbf{Comparison} [BvdB94, BS07, HC10, KBB97, LCW+03, Mat94, Mat95, Ney00, OP10, OF00, PJP01, Pok96, RS93, RBB97a, Ss01, SR98, SHH94b, VS00, Wal02, ZBl12, Ahn97, AB93b, BLP93, BID95, EVMP20, dFdoSR+19, GMU95, Har94, Har95, JS13, KDSO12, KNH+18, KC06, MSP93, Ola95, PS07, PS08, Pri14, Sm10, SYR+09, SWW+12, SHH94a, TOC18, TSZC94]. \textbf{comparison-based} [PSL11]. \textbf{Comparisons} [GS99, PG902, CLYC16]. \textbf{Compass} [PWD+12]. \textbf{Compatible}

[ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, AJHY18, ACDR94, AIM97, BJ93, BBG+95, BDG+93a, BGR97a, BL95, BCP+97, BRST94, BDH+95, BDH+97, BHNW01, BH12, CZ95a, CGB+10, CLOL3, CLOL18, CNC10, Cze16, DDS+94, DERC01, DPP01, DKM+92, DGMS93, DT94, Edd18, FTVB00, Fer98b, FGKT97, Fos98, GLN+08, Gei93a, GBD+94, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hol12, HT01, IEE92, IEE93d, IEE93c, IEE94g, IEE95c, IEE95i, IEE96f, IEE95k, IEE95l, IEE96a, IEE96f, IFI95, KK02a, KS97, LCK11, LRC14, LC93, LR01, Lu95, dFMBdFM02, ME17, Mat94, Mat95, MS04, Nov95, PKYW95, PR94b, PWP19, SCSL12, Sin93, SSS97, Ste00, SGR10, SW91, Sun90a, Sun90b, Sun92, Sun93, Sun94a, Ten95, VV95, VW92, WN10, YH96, YG96, ZL17, ZL18, ACGdT02, AMKM20].

computing [ARYT17, AL92, AH95, ASCS95, Ano93h, Ano94e, Ano94h, Ano94i, ADDR95, AMV94, BPC94, BDG+92a, BDG+94, BB+90, BKM95, Br95, BH95, CGB+10, CH96, CH95, DMR96, DE91, EJL92, EB01, FGRD01, FO94, FS95, Fer98a, FS98, FME+12, HFC95, GGGC99, GS02, GS91a, GS93, Gre94, GS92, GSxx, Gre94, HS93, SNN+20, SP+17, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LPU+11, NP12, RGML16, RCG95, Sun94b, SGD94, Wal94a, Wal94b, WK08a, WK08b, WK+08c, ZWZ+95].

condensates [KLM+19, MBA21].

densed [MC99].

Condition [TK15].

Concurrent [Ano89, BDH+91b, BRS92, BH12, BKH+13, DG95, GS91b, GS92, BSxx, Gre94, HS93, SNN+20, SP+17, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LPU+11, NP12, RGML16, RCG95, Sun94b, SGD94, Wal94a, Wal94b, WK08a, WK08b, WK+08c, ZWZ+95].

Condor [CF01, PL96].

conference [SYS12].

Conference [RCFS96, OIH10].

Concept [Ano94i].

Concurrency [ME17, NPS12, DGB+14, EBB+20, PTG13].

Concurrent [Ano89, BDG+91b, BRS92, BH12, BKH+13, DG95, GS91b, GS92, BSxx, Gre94, HS93, SNN+20, SP+17, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LPU+11, NP12, RGML16, RCG95, Sun94b, SGD94, Wal94a, Wal94b, WK08a, WK08b, WK+08c, ZWZ+95].

configurable [IEE94d, MYK19, PKB+16, BB94].

configurations [PTL+16].

Conflict [TCP15].

Conformational [MK94].

Congress [CJNW95, GH+93, PSB+94, BH95, dGJM94].

Conjugate [BG95, GFPG12, SSK+18,
Constructs [ART17].

Connected [MYK19].

Constructs [MYK19]. Constructs [KDT+12, PGC02, BKH+13, BN00].

Contexts [CS14]. Coupled contexts [MBS15, SS01, SBR95, Gra97, LLC13, LFL11, OFA].

Continuous [NS16]. Continuations [VFY15].

Contract-based [KPNM16], contrarian [KSSS07]. Contrasts [GGS99].

Controller [DGF97, DiN96, HRSA97, kLCCW07, Pet00a, Pet00b, JKN+13, SHLM14].

Coordinate [OP98, LFW20]. coordinated [BCH+08].

Core [ABB+16, Bri01, CZG+08, LZH17, SOHL+98, TCM18, YGH+14, YTH+12, ACMZR11, AV18, BBC+19, BBG+14, BL99, FHB+13, HTR08, JR13, JSM+11, JR10, KSG13, LLCD15, LLH+14, MBBD13, PZ12, SFSV13, SVC+11, TFZZ12, VDL+15, WCC+07, WYLC12, dCZG06, MMH98, Nag05, Ano99a, Ano99b]. Cores [BBG+11, DT17, BMS+17, DJJ+19, SIC19, WO09].

Coscheduling [GRV01, SGHL01]. Cosenza [KG93].

counting [JR13]. County [ACM98b].

Coupled [MBS15, SS01, SBR95, Gra97, MBA21, TK19]. Coupling [BS93, KR09, SB95, WB96]. course [STT96]. Coverage [GYT21]. Covering [MYK19].

CoW [KMG99]. CPPvm [Gör01]. CPS [Mat94]. CPU [BB18, CLOL18, DF17, EBB+20, HSO+21, HCC+20, JR13, KSL+12, Lee12, LRG14, LLC13, LFL11, OAF+15, PDY14, PHO+15, Pri14, RBC20, SdR+21, SPB+17, SSB+17].

CPU-GPU [HCC+21]. CPU-MIC [BB18].

CPU/GPU [BBG+21, KSL+12, Lee12, LLC13, OAF+15, RBC20, SSB+17].

CPU/multi [SAP16]. CPUs [ASB18].
[PGD18]. Current [Bak98, GFD05, IF95, BDG+93b, BK95, FKB94, FHP+95]. Curse [OS97].
Curve [Rö19]. cuSten [GÖ19].
cuTensor [ZLWW20]. cuTensor-Tubal [ZLWW20]. cuThomasBatch [VLMP+18].
cuTensorVBatch [VLMP+18]. cuts [GBK+18]. CVFuzz [LCH+22]. CVL [Ha94]. Cybernetics [IE95a]. cycles [PL96].
Cyclic [DDPR97, WO95, HKMC94, HC08, WO96].
Cyclops [dCZG06]. Cyclops-64 [dCZG06].

D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Bri95, BPM94a, BAS13, C12, CP15, EFR+05, ES11, GCP+13,
HF14a, HF14b, JR10, KRKS11, K014, KD13, KH801, KLR16, MK94, MSZG17,
NSM12, SC19, TPD15, WMR17, WRMR19, WR01, YSL+12, vHK94].
D-CICADA [MK94]. DAC [Cza02, Cza03].
Daemon [LB08]. DAG [SGL+20]. Dagum [Stp02]. d'Aix [GA96]. d’Aix-Marlioz [GA96].
Dallas [ACM00, IE95a]. Dame [IE96i, PG18]. damping [YPA94].
DAMPVM [Cza02, Cza03].
DAMPVM/DAC [Cza02, Cza03]. DAMS [CD98]. Dangers [BCP+97]. DaReL [KN95].
Data [AJF16, BMR01, BCG+10, BKK20, BGD12, CKmWH01, CLOL18, DK20, DERC01,
DiN96, EGR15, Ed18, EASS95, FLS20, GTS+15, GSYT21, GB98, GMPD98, Gua16,
HA10, HB95b, HC06, IADB19, JDB+14, KA13, LK14, LSCM+18, LHW05, LDJK13,
LB+21, MV17, Man01, MK17, ME17, Mat16, MGA+17, MJB15, N01, NPP+00b,
NP+00c, N01, NLRH07, PCY14, RJ21, Rei01, SGH12, SPK96, SSSLW10, SR96,
Str12, TSS+15, TPK+19, WO95, We94, ZDR01, ZG95b, Zho21, AB95, ASS+17,
AGG+95, BK11, Ben95, BR12, BID95, CFKL00, CGK11, CGL+93, DRUE12, EP96,
FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GE95, GE96, HB96a, HC08, JB96,
JCP15, JE95, JPOJ12, KN95, KJ+16, KRG13, LOHA01, LF+93a, LL16, LW20,
MA09, MM8+94, MMM13, MR96, NCB+12, NCB+17, NPP+00a, OPP00]. data
[PDY14, PG18, RJMC93, SJLM14, SSS99, SP95, SK92, TW12, TGKL19, WO96,
WZW21, WLK+18, YCL14, YYW95, ZJDW18, ZQA11]. Data- [LSM+18].
data-centered [JPO12]. Data-Driven
[ME17, NCB+12, NCB+17].
Data-Intensive [LBB+21, Rei01].

Data-Parallel
[AJF16, GB98, RJ21, CKmWH01, SPK96,
CGL+93, FKK+96b, MM8+94, MR96, SK92].
data-parallelism [BR12].
data-privatization [KRG13].

Data-Structures [GMPD98]. Databank
[FCP+01]. Database [AR01, BF97, EK97,
LBB+21, MWG97, MM14, PPT96a, MN01,
PPT96b, PPT96c, PMZ16]. Databases
[RGB+18, BA06, Bos96, ZWL13]. Dataflow
[DT17, CSPM+96]. Datasets
[DDLZ19, DLRZ20, VPS17, KGB+09].

Datatype
[Gro00, SWHP05, HCC+20, KHS12].
Datatypes [JDB+14, RTH00, SGH12, Tha98, CAHT17, THRZ99]. Dave [Stp02].
David [Ano96b, Ano99a, Ano99b, N95].

DawnCC [MGA+17]. DAWNING
[HWM02]. DAWNING-3000 [HWM02].

Day [IS16]. dbx [NE98, NE01]. DC
[B+05, IE94h, IE95k]. DCE
[Sch93, FLD96, RS93, Sch93]. DDL [FB97].

Deadlock
[LCZ+02, SG12, HPS+12, HPS+13].
Deadlocks [FJK+17]. Debugger [WCS99].
Debugger [HM01, NE01, CH94, CG99b,
MT96, XWZ96]. Debuggers [Ano01a].

Debugging
[BDGS93, GKP96, KKV01, KV98, Mor95,
NE98, Wis97, ZLL+12, BL97, BS96a, DFK93,
DH22, HLOC96, KCD+97, MLA+14].
device

Devices [GJN97, RVPK18, ZJDW18], DFB [WWZ+96], DFN [RS93], DFG-RC [RS93], DG [MV20], DG-MOSFETs [MV20], DGX [GDS+20], DGX-1 [GDS+20], DGX-1/Pascal [GDS+20], Diagnosis [AP96, LAdS+15], diagnostic [RSBT95], dictionary [LSSZ15], Diego [Has95, LF’93a, NM95], Difference [UZC+12, CdO0+20, G019, GFPG12, HE13, NZZ94, NB06, Pri14, Ram07, Str94, VM94], Differences [AHE00, LDCZ97], Different [AIM97, DSU20, GL97b, JCH+08, Neye90, Rab98, RBB97a, BN00, PY95], Differential [MFTB95, MKK21, Riz17, DFSW19, JK10, MPO20, NF94, RBB15, SP11], Differentiating [Cer99], Differentiation [BBH+08, BK08, HH22, CadGM96, HHS919], Diffusion [HF14a, HF14b, MW98, CEGS07, DM93, MM92], Digest [IEE93a, IEE95c], Digit [DALD18, LAD16], Digital [KLR16, CJ+10], Dijon [YH96], Dimemas [GLB00], Dimensional [Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK+17a, SJK+17b, ZWLZ21, AL93, KT02, LSSZ15, LLmH+21, MKK21, Ols95, PR94e, Ram07, RG18, ZWC21], Dimensions [CWL+20, SAS01, Ano93h, HP11, LZC+20], Diophantine [ZTD92], dipolar [LBB+16, LYSS+16], DIPORSI [GGCG01], DipSystem [SPL99], Direct [Bri10, GPC+17, LB98, WJB14, BCM+16, Gra09, HWS09, MM11, SWH15], direction [BGD+93b], Directions [IF95, FK94, FHP+95, Sun96], directive [CPM+18, LV12, NO02a, YL90], directive-based [CPM+18, LV12, YL90], directive/MI [NO02a], Directives [AAB+16, BBG+99, BBG+01, BKO00, CCBPGA15, JFY00, BC19b, LOHA01, VGS14], directory [JCP15], discharges [LZC+20], Disciplined [LWKA15], Discontinuous [CF19, KK19], Discovering [FJK+17], discovery [ASAK91, BK11, GWVP+14], Discrete [SSB21, ST17, WMC+18, YW21], Discrete-Event [WMC+18], diskless [PKD95], Disks [dIFMBdlFM02], Dispersion [RSV+05], Displacement [BJS97, PSSS01], Dissemination [GL97a], Distance [MR12], Distances [LAFA15], Distributed [AGS97, Ano95e, BMS+17, BME02, BGR97a, BL95, Bha93, BJS95, BRST94, BT01b, BHKR95, CGB+10, CLL03, CSW97, CC99, DMB16, DBA97, DFMD94, DG97, DHHW92, DHHW93a, EMO+93, ESM+94, FH95, Fan98, FTV08, FK01, Fos98, FS93, FFFC99, GGC99, GCCG01, GCGS98, GCBM97, GWC95, GM95, HJ98, HC10, HRA97, IEE93d, IEE93e, IEE94d, IEE94g, IEE95h, IEE95i, IEE95j, IEE96g, IEE96f, IE05, JML01, KBA02, KP96, KDL+95b, KL95, KKO2b, KSHS01, LC93, LHD+94, LHD+95, MC18, MZ93, MB12, MFTB95, MSCW95, Mat95, MBE03, NSR07, NZZ94, NH95, Pen95, PKW95, Pet00a, Pet00b, PTT94, PM95, PBK00, PD98, PMvG+13, RGD97, SCh94, SA93, SMOE93, SW91, Sun90a, Sun90b, SPNB14, TSS00b, THN00, Wl93, WQ97, WCSS99, YH96, ZDD97, ZDR01, AMBG93], distributed [AGR+95b, AB95, Ano94e, Arn95, ADM05, BSC99, BB95a, Bir94, BMPZ94a, CBFP02, CH94, CEF+95, CBHH94, DLLASPD99, CPR+95, CK99, DLRR4, DR94, DHHW93b, DR95, EGH99, FB97, FS95, FS98, FHC+95, FHB+13, GBR97, GCN+10, GKK09, GkLyCY97, GP95, HPX+93, HHA95, IEE97a, JWB96, KN95, KSG13, KJ+16, KDL+95a, LR06b, LFS94a, LFS94b, LH98, LKL96, Liu95, LYP19, LGMDR+19, Ma94, MVT96, Man98, MLC04, NAJ99, OLG+16, PK05, POL99, Par93, PrR94c, RBW+20, RAG95, RFH+95, SSH08,
SHHI01, SL94b, Sch93, SFL+94, SSC96, SPL99, Smi93b, SD99, THDS19, TSP95, THM+94, Uhl95a, VM94, VB99, Vet02, Vis95, Wal94a, Wa94b, WPL95, Wan97, YLC16, YWO95, YX95, YPZC95, ZYPC95, ZL96, ZGC94, ZHS99, Pet01.

Distributed-data [FB97].

Distributed-Memory [CSW97, CC99, KN95, SSH08].

Distributed-shared [ADMV05].

Distributing [AL92]. Distribution [HB96b, LHCW05, MJB15, NPP+00b, NPP+00c, NA01, SR96, AGG+95, CSW99, GS96, HB96a, JMVG+17, KRC17, NPP+00a, RJMC93, Wil94].

Distributions [ST17, WO95, HKMC94, WO96, vHKS94].

Divergence [LiSCP13, WYH+21, LW20, VSW+13].

Divergent [WJA+19]. diversity [EO15].

Divide [CTK01, Cza02, Cza03].

Divide-and-Conquer [CTK01, Cza02, Cza03].

DMMP [BB93].

DMPI [HWM02, ZLL+12].

dna [dFdORSR19, GDMME22, PGF18].

dNAml [CDZ+98]. DNMR [SR11]. do [JLG05].

docal [RBW+20]. docking [ESB13, IPG+18, RJH+20, VGP+19, ZWL13].

Document [MSK16, AD95].

Documentation [BDG+xx].

Documents [Ano98]. does [KC94].

dog [LK14].

Domain [BMR01, CP97, EGH+14, KDHZ18, klL11, ETV94, HE13, Nel93, NZZ94, Olu14, OMK09, Ran07, SHHC18, VM94].

Domaine [GA96]. Domains [KR09].

Dongarra [Ano95b, Ano96a, Ano99a, Ano99b, NMVC95, Nag05].

dOpenCL [KSG13].

dot2dot [GDMME22].

Double [FKKC96, PTT94].

down [Str94].

Downloadable [Ano98].

DP [Arn95, KLR+15]. DPVM [IHvA+00].

DQN [PS19a].

DQN-based [PS19a]. draft [DHHW93b, GL92].

Draw [ST17].

Dresden [MdSC09].

Driven [AIM97, LWSB19, ME17, PCY14, FSG19a, FSG19b, Hin11, NCB+12, NCB+17, Qu95, SIS17, TWW009, WFT014].

Dror [Stp02]. drug [GWVP+14].

Drugs [Str94].

DSIR [LTR00, RTL99]. DSM [KBVP07].

DSMC [LJ18].

dSmpi [SSC96, SSC97]. DTM [PS07].

DTS [BHKR95].

Dual [BBC+00, GAM+02, DK02, CT13, LSSZ15].

Dual-ary [LSSZ15].

Dual-Level [BBC+00, GAM+02, DK02].

dual-scanline [CT13].

Dublin [LKD08].

Dust [diFMBdIMF02].

DVFS [PTL+16].

DWT [ZZZ+15].

Dynamically [HDW21, SSS99].

Dynamic-PVM [DvdLVS94].

Dynamics [BST+13, BCGL97, DR97, JFY00, KBM97, diFMBdIMF02, MH01, OS97, SZBS95a, SA93, TBB09, TGM09, YWCF13, ZB94, ALR94, AII+21, ABG+96, AGMJ06, BvdB94, BHS18, BvdSvD95, BBK+94, Bmpz94b, Bmpz94a, CC00b, FS009, HH18, HSVC11, JAT97, JMS14, KF96, KPK13, KR13, LHZ+20, LSVW08, NS20, OKM12, PARB14, PBK99, PIR+20, RS22, RBB15, SPE95, SZBS95b, SMK15, TG94, WPH94, XR21].

Dynamische [Wil94].

Dynamite [IvdLH+00, IHvA+00].

Dynamite/DPVM [IHvA+00].

dynamo [Hol95].

DySel
E-scale [Gua16], EA [Ben18], each [Ano00a, Ano00b]. Early [CD96, LV12, SLG95, EFR+05, HHK+19, KJA+93]. Earth [KTJ03, Nak03, Nak05a, Nak05b, UTY02]. Earthquake [UZC+12, KTJ03, KME09]. Easily [PKB01], East [IS16]. Easy [HCA16, TDG13, MJPB16, SBF94]. EasyGrid [BR04], EASYPVM [Saa94]. ECMWF [HK93, HK95], ed [Nag05]. EDEM [Tsu95]. Edge [ZDD97, Gra97, RAGJ95]. edition [Ano99a, Ano99b, Ano00b]. Editor [GT19]. education [ACM06a], EDV [Ano94c]. EDV-Benutzerfreundlich [Ano94c]. Edward [Che10]. Effect [DK06, LFS+19]. Effective [MLAV10, RK01, SNN+20, TCM09, Tsu95, BC19b, Cza13, JH97, KS15a]. Effects [SSE12]. efficacy [GScFM13]. Efficiency [KS96, MTU+15, CZ96, MMU99, RS95]. Efficient [ADT14, Att96, BHW+17, BGBP01, BCK+09, BHI+95, BFG+10, BGD12, Bru95, BDH+95, BDH+97, BMPZ94b, CPVS19, CAWL17, CFP96, DZ98a, DNN+22, DGG+12, FHP94a, FHP94b, FCN+91, GGZ+20, HBT95, HKT+12, HT08, HC06, HLO+16, KGK+03, KID13, LSB+18, LHCW05, LAD16, MDM17, MB12, MRB17, MKK21, NBB99, NWT21, OWO98, PGS+13, RJMC93, RRL01, RSC+19, SPB+17, SOYHDD19, TGB05, WQKH20, WSN99, WWFT11, YPF95, YTP20, ZWH95, ZLWW20, ZT20, BfDA94, BHW+12, CLE+20, CGH+14, FM+90, FNSW99, FHB+13, HLO5, KKB+21, KVGH11, LML+19, LKL96, LZC+20, LA06, MNYN21, MMDA19, Pan95b, PRS+14, PSH+20, PGPC21, RR01, STA20, SOA11, TPD15, TDG13, YLC16, dCZG06, CRD99, THRZ99]. Efficiently [CC99, CCM+06, PHA10]. effortless [IT99]. eigenproblem [BV99, GG99]. eigensolvers [DR18]. Eigenvalue [DAK98, BSG99, THM+94]. Eighth [ERS95, Sie94, IEE96b]. Eillean [CSS95], einem [BL94]. Einfluß [Gra97]. Einführung [MS04], einikt [CLE+20]. Einstein [ARYT17, KLM+19, MBA21]. Einstein- [ARYT17]. Ejector [CCBPGA15], elastic [PTG13]. elasticity [PTT94]. Elastodynamic [MAIHA14]. electric [BALU95, Ano03]. electrical [SII96]. electroabsorption [WW+96]. electromagnetic [DSOF11, NZZ94, OMK09, WGG+19]. electromagnetics [OGM+16]. electron [ART17, JL18]. electron-molecule [ART17]. Electronic [GJN97]. Electronics [IEE95d]. Electrosoft [SII96]. electrostatic [VDL+15]. Element [BS21, DK20, KK99, MMD98, MS02b, OD01, OMK09, RHM+17, SM02, VRS00, BB93, BCM+16, Gra99, HKV94, KME09, KEGM10, MGS+15, MKK21, Nak05a, Nak05b, PTT94, PSV19, TOC18]. Elemental [PMvdG+13]. elements [KB13]. Eliminating [DSG17]. elimination [ACMZ11]. elision [CLD+15]. elliptic [AGIS94, PR94c]. ELLPACK [BBH12, MKP+96]. ELLPACK-R [BBH12]. Else [GEO00], elucidation [MK94]. embarrassingly [RGP22]. Embedded [TME18, WZM17, YGH+14, AKD22, ACJ12, CGK11, NEM17, TMW17, WCS+13]. Embedding [FS97, SML17, SML19, MS96a]. Embodying [Ser97]. Emerging [WJA+19, RMN+12]. Emission [Pat93, EZB16]. emphasis [Bos96]. eMPI [MS96a]. eMPI/eMPICH [MS96a]. eMPICH [MS96a]. Empirical [SS94, VEO2, KST19]. Employing [AGM06, GVF+18, LB16]. emulation [Bae02, MS99b]. emulator [LTL19]. enable [SPK+12]. Enabled [Fos98, GSY+13, LSMW11, Pan14, SSLMW10, ZL17, ZLP17, DS13, GLM+08].
Enabling [APBe16, BGG+15, CLSP07, DGB+14, GBH14, GBH18, HJYC10, NPS12, TY14, ZPI06, BR04, MA09, SHHC18, WDR+19].

encapsulation [DREU12], encoding [AAAA16, PGBF+07, SM12].

endpoint [LLH+14].

endpoints [DGB+14, WK20].

energies [TKP15].

Energy [BPG94, CBB+20, CBB+21, EGR15, KFL05, LML+19, RBAI17, SPB+17, VV92, FKL08, KN17, LRLG19, MNYN21, PL+16, TDG13].

Energy-Aware [EGR15].

Energy-Efficient [SPB+17, LML+19, MNYN21, TDG13].

Engine [Wal01a, NPP+00a, Wal01b, WGG+19].

Engineering [Ano98, BPG94, BP93, EGH+14, IEE96h, KaM10, LSB15, LF+93a, MS02a, MBS15, Nag05, SM07, Str94, DMW96, IEE94c, PW95, RS+18, SI96, LF+93a].

engineers [HW11].

Engines [SLJ+14, HSW+12, SHM+12].

EngineTM [OIS+06].

English [Wil94].

Enhance [AR01].

Enhanced [Ano98, CDHL95, CDH+95, FMSG17, KY10, PLR02, Saa94, BR95b, FE17a, FE17b, TSCS14].

enhancement [ARL+94, Boi97].

Enhancements [BDG+95, BCKP00, DM95b, DM95a].

Enhancing [BFIM99, CMZ99, FSC+11, HMS+19, IPG+18, MVTP96, MSMC15, OFA+15].

Ensemble [Cot97, Cot98, BY12, FH97].

Ensemble-Based [FH97].

ENSOLV [AMS94].

Entwicklung [Sei99].

Environment [BDGS93, BFG+10, BFM07, BGL00, CHPP01, CTK01, DL07, DI02, DHHW92, DHHW93a, DDL00, FTPB00, FWR+95, GJN97, GL97a, HRSA97, KBA02, KKH03, KDL+95b, KHV97, LC93, Lus00, MSOR01, MM02, MFG+08, MSS97, NJ01, Ong02, Rol94, SDN99, SGL+00, SGHL01, TTP97, WL96a, ASAK91, ABG+96, BDG+92b, BDG+94, BK96, BT96, CEF+95, CLLASPD99, DZ96, DL10, DHHW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL+96, GLCrCY97, HZ94, IJM+05, JvdLH+00, KCD+97, Kat93, KDL+95a, Kos95b, KSFS94, wL94, MSL12, MK97, NP94, PSS99, PVSE01, PQ07, RNM13, SKSF95, Sch93, SPK96, SBF94, SWYC94, Skj93, SS95, TJ09, TSCS14, Tho94, WCC+07, WL96b, WLC07, ZPLS96].

environmental [ANS95].

Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GFB+03, Laf01, Mat94, Mat95, MFC98, PS01a, RB01, SHH94b, SSSS97, SL94, TAH+01, ACGdT02, ARL+94, ALR94, ADDR95, AMV94, Bon96, BFM99, CDH+94, CK99, DR95, EO15, HS93, HV95H95, LC07, LGMaRA+19, MS93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96].

environments-the [CDH+94].

EPS [GT94].

EPS-APS [GT94].

Epstein [BL95].

Epstein-Nesbet [BL95].

Equation [ES11, LZ97, SAS01, VRS00, DM12, LBB+16, LSS+16, MS95, NP94, ON12, Ols95, Pri14, iSYS12, SSB+16, YSVM+16, YSMA+17].

Equations [And98, BG95, GK10, Huc96, LLY93, LLMH+21, MFT95, MKK21, ORA12, ZB97, BH+12, Che99, DFSW19, IM95, JK10, Jou94, MPS20, MM11, NF94, RBB15, SL11, SSSW06, ZZG+14, dH94].

Equi [LTRA02].

Equi-Join [LTRA02].

equivalencing [LLG12].

Era [ABB+10, CZG+08, CGKM11, EdS08].

Erratum [Ano01b, HF14b, Wal94b].

Error [DFC+07, SSLMW10, HPS+12, HPS+13].

Errors [FCLG07, DFPT19, SD16].

Erweiterung [GBR97].

ESA [Whi94].

ESBMC [MdSAS+18].

ESBMC-GPU [MdSAS+18].

Espoo [RWD09].

ESPRIT [CDH+94].

Estimation [GK10, TSN21, WZM17, WQKH20, YNJS21, AMHC11, CCU95, GB94, JMDV+17, KS13, ZWHS95].

Estuarine [LRQ01].

Ethernet
[CC00a, Fin97, HcF05, KYL03, KLY05, OF00, PFG97]. **Eugene** [MCdS+08], **Euler** [DLR94, ID94]. **Euler*/Navier [DLR94, ID94]. **EU** [EU]. **EURO** [HAM95b, BFMR96, HAM95b, BFMR96]. **Euro-Par** [BFMR96, HAM95b, BFMR96]. **Euromicro** [IEE95b, IEE96g]. **EuroMPI** [CDND11, KGRD10, TGdb12, GT19, TGdb14, THy20]. **EuroMPI/USA** [GT19]. **EUROPE** [LCS96, Ano92, Ano93f, Ano93g, Ano94g, Tou96]. **European** [Ad98, Ano94i, BR95a, BDL96, BC00, BDW97, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DPK00, DLO03, KGRD10, Kra02, KKD04, LKD08, MTW06, RWD09, TBD12, WPH94, DKK97]. **EuroPVM** [BDS96, OL5, DKD07, MTW07]. **EUROPVM/MPI** [OL5, DKD07, MTW07]. **EuroPVMMPI** [KDDV03]. **EUROSIM** [BH95, DSZ94, BH95]. **Eurospace** [Tou96]. **Eurospace-Ada-Europe** [Tou96]. **Evaluate** [MW98]. **Evaluating** [BWV+12, FVLS15, FL21, FST98a, GFDO3, GFDO5, GCGG90, GLTG97, LRG+16, LH95, SSSS97, ZSNH01, GSF913, LTTC94, TG09, ZLZ+11]. **Evaluation** [ATM01, BF98, BIC+10, BFMR97, BEG+10, BB18, CLP+99, DI02, FST98b, FSSD17, Ham98, JCH+08, KS96, KK19, KKK02b, KSS00, LGCH99, LN+15, LZ97, KL11, LVP04, MH01, MG12, NN0N00, OTK15, OMM96, Pan14, Par93, RB01, SWHP05, SCP97, SEF+16, SBF+04, SM02, Sou01, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TSY00, UMK07, VY02, AB13, BCB+14, BB11...13a, BMG07, CDOO+20, CB11, DBB+16, DWS+21, HPR+95, HKH+19, HASONP0, HPS95, IM94, JC17, JMVG+17, KC19, KKKB+21, LM12, LNW+12, MKP+96, MKP22, MM03, MT96, MHH99, HH21, NN95, PSK08, RLFS013, SL94b, SWS+12, SWYC94, SFV913, TSP05, THM+94, TMPJ01, WOR96, YWO95, YS93, ZHK06]. **Evaluations** [KNH+18, MM14]. **Event** [KKV01, NSLV16, THS+15, WM01, WMC+18, FSG19a, FSG19b]. **Event-Based** [NSLV16]. **event-driven** [FSG19a, FSG19b]. **events** [HHK+19]. **everything** [CCM+06]. **everything-shared** [CCM+06]. **Evolution** [Mat01a, PS01a, RB17, SSL79, SGDM94, DFSW91, GS93, SSD+94]. **Evolutionary** [B+05, DSM94, Rag96]. **Evolving** [Bad16, ER12, MDC90]. **Ewing** [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b]. **EWOMP’99** [BC00]. **Exact** [dOSMM+16]. **examine** [LFS+19]. **ExaMPI** [SBG20]. **Example** [CHC10, SK91, NB96, Pat93]. **Examples** [Cre16, Edd18, Mat16]. **Exascale** [Bad16, SBG20, BB+20, LV12, LSG12, LGM+20, RPS19]. **Exception** [FMG17]. **exchange** [MM13, Pan95a]. **excluded** [BH+12]. **executable** [WMP14]. **Execution** [AHD12, BEM02, DT17, FC05, FM09, GR07, KGS+03, MK17, MS05, MFG+08, MAGR01, Ney00, STHY99, SAP16, BLVB18, EPML99, Mor95, PSB+19, SMAC08, TNIB17, TSY99, TSY00, UGT09]. **Executions** [GAML01]. **exhaustive** [CPK97]. **Exhibition** [HS95a, GH94, LCHS96]. **Existing** [CB00]. **EXOCHI** [WCC+07]. **Expand** [CGC+02]. **Expanding** [LA02]. **expected** [CAHT17]. **Experience** [BCC+07, BT96, CP98, PS01a, Tou00, AMS94, BC19b, CAR10, KJA+93, RSC+15]. **Experiences** [AHP01, BFZ97, CMV+94, CLLASPDP99, GLN+08, GSI91a, GSI97, GB96, GL95d, ITT02, J RM01, KS97, LGB+20, Mar02, TGM09, ZPLS96, ZKRA14, AL92, BB+B22, CCF+94, Sch94, SGDM94, BDC+93b]. **Experiment** [Luo09]. **Experimental** [BIL99, BIC05, BB18, EGC02, Ser97, UMK97]. **Experiments** [BMN97, Cee94, LGM00, OS97, RR00, ZB97, RHG+96, HAJK01]. **Expert** [BPG94]. **experts** [EO15]. **ExpEther** [NMS+14]. **Explicit** [BHV12, GFPG12,
Explicitly [Mai12, SYR+09]. exploit [ZPI06].

Exploitation

[SGLH01, CdO00+20, DS22, KW20, LC97b].

Exploration

[ADD01, AML+99, BRI10, FKL08, HEHC09, KFL05, LWKA15, LFW20, NAAL01, VGP+19, NOB08, SWCB20, THH+05].

Exploring

[AMuHK15, HS0+21, MZLS20, OFA+15, ABDP15, GE95, GE96, PDY14].

Exploiting

[BBG01, BGD02, ABDP15, GE95, GE96, PDY14].

Facilities

[SGLH01, CdO00+20, DS22, KW20, LC97b].

Facilitating

[ADD01, AML+99, BRI10, FKL08, HEHC09, KFL05, LWKA15, LFW20, NAAL01, VGP+19, NOB08, SWCB20, THH+05].
Feature-driven [Qu95]. Features [GLT99, GLT00b, GLT00a, GLT12, KAHS96, Ano00a, BPJ99, CR99, IMS16, LSB+20, WKS96, ZKRA14, dAT17]. February [Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97c].

FEM [GE97c, GLT99, GLT00b, GLT00a, GLT12, KAHS96, Ano00a, BPJ99, CR99, IMS16, LSB+20, WKS96, ZKRA14, dAT17].

FEM-Systeme [GE97c]. Fermi [SP11, WKP11]. fermions [GM18].

FETI [KLR+15]. few [NS16]. few-body [NS16].

Feynman [NS16]. FFT [DMK19, DALD18, GB98, JKM+17, NSM12, SH14, WJB14]. FFT-Based [WJB14]. FFTs [EFR+05].

FFTW [KT10]. FHP [BMS94a].

Fibonacci [GFJT19]. Field [KNT02, Goec02, KKB+21, LA20, RS22, TKP15].

fields [BALU95, RSBT95]. Fifth [DKM+92, HK93, IEE95c, IMS16]. filamentary [YA94].

Finding [FCLG07, GAVRRL17, PCS94]. File [BIC+10, CGC+02, LRT07, kLCW07, kL11, PLR02, RKO1, TSS00b, Tsz07, WTR03, DL10, LL95, SBOZ14, iSYS12].

File-I [PLR02, RKO1]. File-I/O [PLR02, RKO1]. filter [FDG19, BY12, CCU95]. find [GDMME22].

Finding [FCLG07, GAVRRL17, PCS94]. Fine [AZG17, BBG+10, JCP15, SFL+94, TCM18, YSS+17, BK11, KW14, LZYH19].

Fine-Grain [AZG17, JCP15, SFL+94, BK11, KW14].

Fine-Grained [BBG+10, TCM18, YSS+17, LZYH19].

Finite [DK20, DFN12, KKK99, MMD98, MS02b, MAIVAH14, MNN21, ODO1, OMK09, PRR14, RRM+17, SM02, UZC+12, VM49, VR500, BB93, CD0020, DD22, GÖ19, Gra09, FFPG12, HE13, HMKV94, KEM09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, PSSV19, Ram07, TCC18].

Finite-Difference [UZC+12, VM49, CD0020, HE13, NZZ94, Ram07].

Finite-Element [MS02b, MKK21, BB93, KME09, KEGM10, Nak05a, Nak05b].

Finland [RWD09]. Fire [JML01, SJ02].

Firedrake [RHM+17]. First [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gatt95, HAM95b, Kuo94, Nar95, PPB95, SSP+94, USE94, AH95, BS94, GM18, MMDA19, PMNF18, PBPT95].

FlexCL [LWWZ18]. Flexibility [KK02b]. Flexible [CS11, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAM+00, GXX+22, HOC08].

Flink [KWEF18]. FlinkCL [CLOL18]. flip [KO14, Kom15]. Floating [LWSB19].

Floating-Point [LWSB19]. Florida [ACM98a]. Flow [BMH+17, BGD12, CGZQ13, CCBPA15, FM09, MK17, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTHD99, HSHM19, JAT97, LL16, MBKM12, MH18, OSS95, PPT94, RM99, SCC95, SU96, TS12b, TOC18, TQS+20].

Flow-Based [BMH+17]. Flows [GAP97, BCA+16, BTC+17, DSS2, Heb93, LLG12].

flowshop [CB11]. Fluid [DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TG99, ALR94, ATL+12, AGM+06, BvdB94, BHS18, BIL95, HVSC11, MRRP11, PBK99, SPE95, SZBS95b, WPH94, XR21].

fluid-particulate [ATL+12]. fluids [HK94, WB96]. Flux [QRMG96, QRG95].

Fly [WMC+18, KSJ14, THRZ90, BCA06, BACD07]. FM [LC07a]. FMA [LO96].

Fock [MMDA19, CBHH94]. Focus [Cla98, CFF99]. foolish [Rol08a]. Footprint [CBB+20, TS12b]. force [Goe02, RS22].

forcing [JRG21]. Forecast [AHP01].

forecasting [Bj095, KOS+95a]. Forest [JML01, MPZ21, NCKB12]. ForestGOMP [BFG+10]. Foreword [CHD09, SBG20].

Formalizing [FGRT00]. Format [BBH12, MDM17, CBIGL19]. Forschung [Ano94c].
Fortran [Ano97, Ben95, Bra97, GBR15, TOC18, AC17, Ano98, AS14, BW12, BC19b, DZ98b, Don06, GML+16, HE13, HH14, HZ99, KaM10, Kuh98, KLM+19, LC97b, LCC+03, MWO95, iSYS12, SM03, SMCH15, SC19, TBG+02, Wal02, YBMCB14, YSVM+16, YSM+17, vHKS94]. Fortran/PVM [MWO95]. Forum [Str94]. Forward [RMNM+12, BDB+13]. Forwarding [CXB+12]. foster [SM12]. Foundation [Gei01]. Foundations [KSTM20]. four [GSMK17, MG05]. four-atom [MG05]. four-particle [GSMK17]. Fourier [DBLG11, BCM+16, YW21]. Fourteenth [IEE95b]. Fourth [Ano89, IEE93d, IEE95k, Sie92a, Sie92b, Ano94i, IEE96g]. FPGA [KNH+18, LLMV21a, LLMV21b, MKP22, MTU+15, MZLS20, PWP+16, PGF18, RGB+18, WTT17, WHMO19, WTS19]. FPGA-based [WTS19]. FPGA-Platform [WTT17]. FPGAs [AJYH18, CJPC19, JCP+20, LLMV21a, LLMV21b, LWZ18, MC17, MKP22, OFA+15, PGS+13, WZHI16, Röhl00]. fractal [Wu99]. fragment [KS15a]. fragments [OA17]. frame [MNYN21]. Framework [Ben18, DGM93, FC05, GgcG001, GR07, GDDM17, HDW21, MGL+17, NSZS13, PWP19, PMvdG+13, RBP+21, SS+05, SASS12, Sun90a, Sun90b, VT19, WZHI16, Ano93c, BA06, BLBV18, BR04, BAG17, EFR+05, FLMR17, GM13, HDZ+20, JCP+20, KKM15, KJJ+16, KKJ+08, KHL0, LLMV21a, LLMV21b, LME09, LGG16, LCMG17, LS08, MW21, PTL+16, RSC+15, SL00, TDB00, XJR21, YLC16, YWTC15, ZT17, dAT17]. Frameworks [OP10, ASS+17, KDSO12]. France [ACM90, BR95a, BFMR96, CHD07, DE91, FR95, JPTE94, MCds+08, VW92, YH96, GA96, IEE94c]. Francisco [BBG+95, IEE93a, IEE94g]. Frankfurt [Ton96]. Frankfurt/Main [Ton96]. Fredericton [BG91]. Free [DK20, KK19, PKY95, CP15, MKK21, SOA11, Zab12]. freedom [KTJT03]. Frequency [IEE94e, SrD+21]. friendly [SV11]. Frontiers [ACM06b, IEE94a, IEE96c, Sie92a, Sie92b, Sie92]. Frontiers’95 [IEE94a]. Frontiers’96 [IEE96c]. FSI [HAA+11]. FT [FD00, NL00, WTS19]. FT-MPI [FD00]. Fujitsu [Ano98, AKL99, BHS+02, SWJ95, SH96]. full [CFF19]. full-orbit [CFF19]. Fully [GA96, ZL17, SSB+16, VCLM+20]. Function [AGS97, Bri02, HHS17, MTD+17, Rötl9, RB01, SW12, HE15, JMD+17, KRC17]. Functional [ACM90, AJF16, CNM11, NW98, Ser07, CBH04, EP96, HLK+20, HSE+17, SFLD15, WZWS08]. functionality [BFHM99]. functionally [PSV19]. Functions [BKGS02, Brü12, Hat98, MDM17, CdGM96, HWX+13, PNV01]. Fundamentals [Wal96a]. fused [TW12]. fusing [BAC20]. Fusion [FH01, FMFM15, K20, PKE+10]. fusions [FF11]. Futhark [HSE+17]. Future [Dar01, IEE93d, Mat00a, BDG+93b, FK94, FHP+95, Ge04, RSP19, Sni18]. Futures [Kuh98]. fuzziing [LLCD15]. Fuzzy [MMD17, TVCB18].

MGL+17, NRdA+20, Ngu08, NWT21, NMS+14, NSM12, OFAQ+15, Pan14, PDDY14, PGdCJ+18, PF05, PS19b, Pri14, RSC+15, RS19, RBC20, RMM+12, Sa10, SK10, SdM10, dOSMM+16, sYS12, SSM09, SN+19, SSD+20, SCSL12, SIRP17.

GPU
[SBK21, SAP16, SYL19, SD16, SSB+17, SK15, SK+14, SG14, TBB12, TS12b, TMT+20, TP+20, VZT+19, VTI9, WZM17, WJA+19, WGG+19, WK11, WYZ+19, XJR21, YULMTS+17, YHL11, YCL14, YSS+17, YSS+19, ZJHS20, ZGNZ22, ZRA11, ZZG+14, ART17, PHO+15].

GPU-Accelerated
[KA13, KF16, SCSL12, PGdCJ+18].

GPU-Aware
[Pan14, FA18].

GPU-based
[MM+16, SS09].

GPU-code
[EZBA16].

GPU-enabled
[SBK21].

GPU-Job
[PS19b].

GPU-programming
[HSE+17].

GPU-Resident
[JDB+14].

GPU Acceleration
[WMRR17, WRMR19].

GPUVerify
[BCD+12].

GQ
[RFG+00].

gQoS
[LYGG20].

GRACE
[YK+96].

GRADED
[DDL00].

Graded
[PSV19].

Gradient
[BG95, GFPG12, SK+18, BAC20, KN17, MM92, Ols95].

GROD
[AZG17, IOK00, MJPB16, NIO+02, NIO+03, BK11, JCP15, KW14, SFL+94].

Grained
[ADRC98, BBG+10, LGM00, TCM18, YSS+17, HDZ+20, Heh03, LZYH19, RJC95].

GRAM
[HDW21].

Grammatical
[RBB17].

Graph
[BHW+17, CDT05, CTBT21, DW02, MM14, NPS12, PPR01, STV97, Zho21, HLP10, HK011, MAM20, PP16, PD11, RJH+20].

Graph-Based
[NPS12].

Graph-Partitioning
[STV97].

Graphic
[HJBB14].

Graphical
[BDG+91b, DDL00, BG+92a, KFSS94, SSK95, VDL+15].

Graphics
[JPL22, KS15b, LSVWM08, LSLW11, SLL+14, SLLWM10, vdLJR11, ABPD15, BHS18, CBM+08, DBL11, Fer04, GKL05, HTA08, HSW+12, KFA96, KY10, KB21, KEM09, LHLK10, MSZG17, PF05, SHM+12, SR11, WWFT11, ZLS+15, MSML10].

Graphs
[LGM00, OP10, PGF18, VZT+19, EP96, MC99, MJPB16].

Gravitational
[ZS15, KM10].

Greece
[CD01, CDND11, SM07, TG94].

green
[PTL+16, LWKA15].

Greedy
[JTE94].

Grid
[AB93a, CGB+10, CLLO3, DPP01, Fos98, KTO2, LA01, Liv00, MRB17, PLK+04, Rei01, SSK+18, TGEM09, AMKM20, AB93b, En00, GLM+08, KRKS11, KTXP21, PSV19, WYLC12, ASB08, BR04, CCHW03, DKO08, FC05, GFB+03, GL02, KTF03, KGK+03, KSSS07, LC07, LS08, NSBR07, RPM+08, RTRG+07, SHTS01].

Grid-Adaptive
[KT02, KTXP21].

Grid-Enabled
[Fos98, GLM+08, KTF03].

Grids
[NO02b, ACH+11, CC10, KBG+09, NO02a, NB96, TLK19, XJMR21, BBH+06, GR07, Run07, SN01].

GROMACS
[BvdSvD95].

Gropp
[Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

Hamburg [PSB+94]. Hamiltonian [ART17]. Handling [DFC+97, FMSG17, LSB15, LGM00, RC97, FFFC99, LN+12, THRZ99]. Hands [KmWH10]. Hands-on [KmWH10].

Harbor [BBC+00]. Hardware [BGG+15, BBW+12, BCP00, CDP03, DW02, EADT19, FGL+20, GJMM18, HSP+13, KF16, LSMW11, MFC98, PSM+14, PKB+16, SSK+18, SSLMW10, GZN22, vdLJR11, ER12, GGL+08, PMZM16, Ra99, RS21, SBG+12, SH94, SWS+12, YA+15, ZLS+15].

Hardware-Based [CDP03]. Hardware-oblivious [HSP+13]. harmonic [GSMK17]. Harness [EBK01, MS99b, PL96, FBDO1a, FBDO1b, FBVD02, FD02a, FD02b, MSFO0, Gie18].

HARP [FDG19]. Harrogate [CJNW95]. Hartree [CBH19, MMDA19].

HASEonGPU [EZBA16]. Haskell [WO97].

Hector [FRH96, RR+99]. Heijen [Van95]. held [AGH+95, GA96, JB96, Kel93, MMH93, Old02, R+92, SPH95, TC94]. Helios [SPK96]. Helmoltz [HMKV94].

Helps [Stp02]. HeNCE [BDG+92a, BDG+92b, BDG+93a, BDG+94]. Hénon [JPT14]. Herzliya [IEE96b].

HeSSE [MRV00]. Heterogeneous [ABB+10, BDG+93a, BDGS93, BL95, BCP+97, BGR97b, BCP00, CMMR12, CLO18, CLBS17, DKB20, DGGM93, DGM93, FFDG97a, FFDG97b, FL99, FS99, GS91b, GDDM17, HSO+21, IEE93f, KR09, KCR+17, LC93, LSB+18, MRV00, MM01, MM02, NTR16, OPJ+19, P98, PHO+15, RVKP19, SM19, SMS00, SG10, TQDL01, VLO+08, ACgcdT02, ADB94, ADDR95, AMV94, BDG+92c, BDG+94, BALU95, BRR99, BAG17, CCM12, CFP95, FBM96, GKS12, GCN+10, GDEB20, GCF13, HHS18, HK94, IP+18, KSC13, KSL+12, Koss95b, KSS+18, LGB+20, LCL+12, LRO6a, Lec12, Mai12, MSL12, MM03, NP94, NEM17, P95, PSB+19, RCFS96, RVKP18, SCJH19, Sk93, Sma93b, Sun94b, Sun95, TBB12, TMW17, TKP15, TDG13, VB99, VGP+19, WCC+07, WZ21, YST08, YSL+12, ZJDW18].

HeteroMPI [LR06a, VLO+08]. Heuristic [BHM96, STV97, WH94]. HI [ERS96, HS94, IEE96e, ACM97a]. HICSS [ERS96, MMH93]. HICSS-26 [MMH93].

HICSS-29 [ERS96]. hiCUDA [HA11].

Hierarchical [BM10, BSN01, HA10, HL17, MB18, MALM95, RR02, ADMV05, BDV03, GJMM18, LZZ+20, OKM12, YPZC95].

Hierarchies [SYR+09]. High [ACM97b, ACM98a, ACM98b, ACM00].
ACM01, ACM04, AJC⁺⁺²⁰, BPG94, BS21, BRS⁺⁺⁹⁴, BS07, BDA⁺⁺¹⁸, CDD⁺⁺¹³, CNM₁₁, CDHL95, CWL⁺⁺²⁰, CS14, DPP01, DDL00, DE91, FGKT97, GSHL02, GBH99, GBS⁺⁺⁰⁷, GLDS96, HMKG19, HVA⁺⁺¹⁶, HA11, Hol₁₂, IEE92, IEE9³c, IEE9⁴g, IEE9⁵k, IEE9⁶a, IEE9⁶f, IEE9⁷c, IFI⁵, JMJ⁺⁺¹¹, KLH⁺⁺²⁰, Kha₁₃, KQT⁺⁺²¹, KMK₁₆, KEGM₁₀, KH₁₅, La₀₁, LCK₁₁, LC9⁷a, LkLC⁺⁺⁰³, LML⁺⁺¹⁹, LB₁₂, LWP₀⁴, MW9₈, MPD₀⁴, ME₁⁷, MAB₀⁵, MKK₂₁, NFK₀⁸, NU₀⁵, OPJ⁺⁺¹⁹, OIH₁₀, OLG₀₁, PKB₀₁, PR₉⁴b, PTH⁺⁺⁰₁b, Rab₉₈, RH₀₁, SPM⁺⁺¹⁰, SSLMW₁₀, SCSL₁₂, SJ₀₂, Slo₀⁵, SVC⁺⁺¹¹, SSSS₉⁷, Tou₀₀, Tsu₀⁷, VW₉₂, WN₁₀, YCL₁⁴, YWCF₁⁵, YSP⁺⁺⁰⁵, Zho₂₁, AH₉₅, Ano₀₃, BADC₀₇, Ber₉₆, BWT₉⁶, BID₉₅, CHHK₁₅, CBYG₁₈, D₁₀, Duv₀₂, EZBA₁₆, EVMP₂⁰, ESB₁₃, FME⁺⁺¹², GS₀₂, GCC⁺⁺⁰⁷, GL₉₆, GL₉⁷c, HDDD₀⁹, HLK⁺⁺²⁰. high [HW₁¹, HGX⁺⁺²², Hos₁₂, KB₁₆, KME₀⁹, Lan₀⁹, LBD⁺⁺⁹₆, MNYN₂¹, MSL₁₂, MSZG₁⁷, NS₁⁹, NFG⁺⁺¹⁰, Old₀₂, OGM⁺⁺¹⁶, PGK⁺⁺¹₃, PKG⁺⁺¹⁰, PF₀₅, PTW₉₉, RBW⁺⁺²⁰, Reu₀₃, RJDH₁₄, SG₁₄, SFLD₁₅, ZSK₁₅, ZWL₁₃, dAT₁⁷, CDH⁺⁺⁹₅, D₉₀₉b, D⁺⁺⁹₅, DE₉₁, GH₉₄, HS₉₅a, KD₁₂, LCHS₉₆, LC₉⁷b, SSH₀⁸, Ten₉₅].

High-Dimensional [MW₉₈, MKK₂¹]. high-frame-rate [MNYN₂¹]. High-Level [CS₁⁴, DDL₀⁰, HA₁₁, Hos₁₂, RBW⁺⁺²⁰, SG₁⁴, SFLD₁₅]. High-order [KEGM₁⁰, EVMP₂₀, KME₀⁹, OGM⁺⁺¹⁶]. High-Performance [ACM₉⁸a, AJC⁺⁺²⁰, BS₂¹, FGKT₉⁷, IEE₉⁷c, LkLC⁺⁺⁰₃, OPJ⁺⁺¹⁹, OLG₀₁, PKB₀₁, PR₉⁴b, PTH⁺⁺⁰₁b, Rab₉₈, RH₀₁, SPM⁺⁺¹⁰, SCSL₁₂, WN₁₀, GLDS₉₆, LML⁺⁺¹⁹, OIH₁₀, SVC⁺⁺¹¹, Ano₀₃, ESB₁₃, FME⁺⁺¹², GL₉₆, GL₉⁷c, HDDD₀⁹, HLK⁺⁺²⁰, KPB₁₆, LBD⁺⁺⁹₆, Old₀₂, PGK⁺⁺¹₃, PKG⁺⁺¹₀, PF₀₅, Reu₀₃, RJDH₁₄, SFLD₁₅, ZSK₁₅, HS₉₅a, GH₉₄, LCHS₉₆, SSH₀⁸].

High-Precision [Kha₁₃]. High-Quality [BDA⁺⁺¹⁸]. High-Scalability [BS₀⁷]. High-Speed [CDHL₉₅, KMK₁₆, AH₉₅, BWT₉₆, CDH⁺⁺⁹₅]. High-Throughput [HMKG₁⁹, SSLMW₁₀, ESB₁₃]. Higher [MYB₁₆, KB₁₃, wL₉₄]. higher-level [wL₉₄].

Higher-order [MYB₁₆]. Highly [MM₉₅, PV₉⁷, TMP₁⁶, CARB₁₀, GBH₁₄, GBH₁₈, JCP⁺⁺²⁰, KKB⁺⁺²¹, PSH⁺⁺²⁰, VM₉₅]. highly-efficient [PSH⁺⁺²⁰]. highly-scalable [GBH₁₄]. Hills [IEE₉³f]. HiNet [AH₉₅].

HP [CG⁺⁺¹⁰]. HPC [ASS⁺⁺¹⁷, CGBS⁺⁺¹₅, DH₂₂, EYP⁺⁺²⁰, GDC₁⁵, GKK₀⁹, LZZ⁺⁺²⁰, LCVD₉⁴b, MKP₂₂, MAAH₂⁰, OGM⁺⁺¹₆, PRS⁺⁺¹⁴, RGGP⁺⁺¹₈, VGP⁺⁺¹₉, WDR⁺⁺¹₉, ZLP₁⁷].

HPC₂₀⁰² [Ano₀₃]. Hpcfolder [JKN₂²]. HPCN [LCHS₉₆]. HPF [B₉₈⁸, BF₀₁, BID₉₅, Bri₀⁹, BDV₀₃, CM₉₈, CDD⁺⁺⁹₆, Coo₉₄, FKK⁺⁺⁹⁶b, FKKC₉₆, FKK₉₆₆a, LZ₉₇, OP₉₅, OPP₀⁰, SM₀₂, Str₉⁴].

HPF-MPI [BP₉₈⁸]. HPL [Lee₁²]. HPVM [BCKP₀⁰, CLP⁺⁺⁹₉, KSS⁺⁺¹₈].

HPVM-Based [CLP⁺⁺⁹₉]. illull [GCN⁺⁺¹₃]. human [VLSPL₁⁹]. Hungarian [Fer₀₂, FK₉₅, LYIP₁⁹]. Hungary [DΚP₀₀, KKD₀⁴, VV₉₅, FK₉₅]. hunting [JPP₉⁵]. Hungarian [YLC₁⁶]. Huss [Ano₉₆a, Ano₉₉₉a, Anoₙ₉₉c, Ano₉₉b, Ano₉₉d, Nag₀⁵].

Huss-Lederman [Ano₉₆₆a, Ano₉₉₉a, Anoₙ₉₉c, Ano₉₉b, Ano₉₉d]. Hut [MPZ₂¹]. Hybrid
HKTt12, Huc96, HHA+11, IBC+10, ITT02, IM94, JSS+15, JSH+05, LSZL02, LTRA02, LZ97, LWP04, LHCW05, MS02b, MW98, MN91, MT96, MRH+96, NSS12, NNON00, OTK15, OLG01, Pan14, PLK+04, PS00a, Per21, Pet97, PPK99, PTH+01a, PTH+01b, PB12, RMB99, RG18, RSV+05, SH94, SBF+04, SBG+02, Ser97, SCC96, SSC97, SZBS95a, SWJ95, SYF96, Sum12, Sur95a, TOTH99, TBG+02, TRH00, TMPJ01, USE94, VT97, WH94, WPC07, YGH+14]. Implementation [YWO95, ZZG+14, ACGdT02, AS92, AAA16, AAC+05, ADLL03a, ADLL03b, AFG21, AB93b, BR91, BvdSvD95, BR95b, Ber96, BBCR99, BK96, BCK96b, BS01, BS96b, BDV03, Bro95, BB90, BAS13, CdGM96, CBHH94, CD96, DS22, DSW96, DS96a, DL10, DDB+16, DSOF11, DM12, FFB99, FWNK96, FGT96, FGG+98, FCS+19, GCC99, GG99, GG09, GÁVRR17, GL92, GL94, GL96, GLDS96, GL97c, GT07, GlLyCY97, HBT95, HCH05, HWW21, HS95b, ITT99, IvdLH+00, JRM+94, JC96, KY10, KTF03, KB21, KBVP07, KL95, KVGH11, KNH+18, KB13, Lec12, LC07, LYIP19, LO96, MMO+16, Man94, MV20, MAIVAH14, MS95, MSZG17, ÖN12, OKW95, OA17, OGM+16, PHJM11, PR94a, PPCK91, PTW99, PSC99, Ram07, RRF9H96, Sep93, SZBS95b, SCL97, SBB20]. implementation [Sto98, SNMP01, Sur95b, Swa01, SL95, TSCS14, TKP15, TP15, TS01, TA14, TCP15, Tsu95, TVV96, VDL+15, VGRS16, VM95, Was95a, WMR17, WMR19, YPA94, ZLS+15, dH94, dIAMCFN12, van93]. Implementations [AKK+94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG+10, DFP+19, FB94, Gro02b, kLCC+06, LCW+03, Mar02, ORA12, Sap97, TSCaM12, TGEM09, VS00, WT12, ZDD07, CLSP07, ER12, ED94, GML+16, ICC02, KWEF18, MKP+96, NN95, Pri14, RLFdS13, WLK+18, WT11, YCL14]. implemented [BBDH14, EP96, VLM+20]. Implementing [CDT05, DPZ97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MMH98, MS99c, MSB97, SSC96, SS99, SMTW96, SGHL01, SCC95, Tra02a, Wil93, BWT96, LHZ97, YX95]. Implementor [GL95b]. Implicit [LHCW05, MS02b, NA01, SGHL01, Bjo95, EVMP20, TSP95, WADC99]. Importance [BCG+10, PCY14]. Importance-Driven [PCY14]. Improve [KBS04, SKH96, Tsa98, ZWL21, GKF7, HD00a, RHG+96]. Improved [Trä02b, AFG21, MNO+16, XJR21, dIAMCFN12]. improvements [DPS08]. Improving [CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KHL+20, KHI2, K20, KO2b, LB98, MK97, MPZ21, PTG13, RSC+15, SM12, SPB20, SCL00, XG95, CZ96, JK+13]. Imputation [Zho21]. In-depth [MKP22]. in-house [ZL+11]. in-kernel [CZP21]. In-Memory [CL18, ZL17, CRM14, HSP+13, SBK21]. In-Place [LTS16, HSE+17, PS911]. Including [BWW+12, GLT12]. Incomplete [MYL21]. Incompressible [BCM+16, Lou95, RM99, TS12b, TGS+20]. Incorporating [LM94, LYZ13, TKP15]. Incremental [dOSMM+16]. Indefinite [YKW+18]. Independent [BCL00, BRU05, BDA+18, CSW12, CBS18, CDMS15, DiN96, MV17, YBZL03]. Index [DAL18, LAD16]. Index-Driven [Dal18, LAD16]. Indexers [Wal01a]. Indexers/Crawler [Wal01a]. Indexing [LTR00]. India [CGB+10, EIE96a, Kna94, PBPT95]. indicator [FSV14]. Industrial [BPMN97, DHH97, ALR94, ABC195a, ABC195b, BT96, EKTB09, Was96, Knu00]. industries [Ano93a]. Industry [DM98, Ano94f]. Industry-Standard
IBC+10, KTF03, KKD05, LK10, MSL96, RRFH96, SWHP05, SLG95, SWL*01, TGT05, YGH+14, Ano95c, Ano00a, Ano00b. Interface Architecture [Sei99]. Interfaces [LBB+21, MGC12, Wit16, FCS+19, RJDH14, Træ12a, THMH21]. Interfacing [Lus00, PL96]. interference [ZJDW18]. Intergroup [KTAB+19]. Intermediate [SML17, SML19]. Internal [BBH+15]. International [ACM94, ACM96b, ANS95, Abr96, ATC94, AGH+95, Ano93a, Ano94a, Ano94e, BPG94, Bos96, BFMR96, Cha05, CZZG+08, CGKM11, CMRR12, CGB+10, CH96, DSM94, DW94, EV01, EdS08, ERS95, ERS96, ELJ92, Gat95, GA96, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE93c, IEE93b, IEE94d, IEE95i, IEE95f, IEE95l, IEE95k, IEE95a, IEE95b, IEE95e, IEE96a, IEE96f, IEE96c, IEE96d, IEE97b, IEE97c, IEE05, Kum94, LCK11, LEV+93a, Lev95, LHHM96, Li96, MHH93, MSc+08, MS09, Nar95, Ost94, PW95, PBG+95, PBPT95, Rec96, R+92, SHM+10, Sie94, Sil96, SM07, Toul96, VV92, Voo93, Vos93, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, HJB+21, JPET94, LCHS96, Ma95, RV00, ZL96, Ano93b, HHHK94, Sch93]. Internet [NE98]. Interoperabilität [GBR97]. Interoperability [BoFBW00, Don06, PLR02, SIC+18, GBR97]. Interoperable [Rab98, MSL12, YBMCB14]. Interoperation [FDG97a, FDG97b, FLD98]. Interpolants [RB01]. Interpolation [CWL+20, BAS13]. interposition [GSM+00]. Interpretative [MKW11]. Interpreted [FSSD17]. Interpretive [CNC10]. interprocess [SC95]. interprocessor [DS96]. Interrupts [CXB+12, SH96]. Intervals [MDM17]. Intra [KLH+20, GM13, VSW+13]. Intra-Node [KLH+20, GM13]. intra-warp [VSW+13]. intrinsics [Stp18]. Introducción [VP00]. Introducing [JKM+17, TBS12]. Introduction [Ano96b, AM07, Che10, Cze16, DOSW95, GSA08, HW11, Mar02, Mat00b, SK10, GT19, VP00]. Intrusive [SDR+21]. Invariant [BBD+20]. Invasive [URKG12]. inventory [OHHG19]. Inverse [Huc96, BV99, GGC+07, GG09, Wan02]. Inverses [MYL21]. Inseparable [ACMR14, Kan12]. Investigating [GMdMBD+07, Ros13]. investigation [PHW+13]. Invisible [Wis97]. Invited [Gei93a]. IO [AHW01, BIC+10, CGC+02, CFF+96, DL10, FRG01, FWNK96, FSL98, LRT07, LGG16, PSK08, PTH+01a, PTH+01b, SW12, St98, TGL02, ZZ04]. IO/GPFS [PTH+01a]. IOMMU [YWCF15]. IOV [YWCF15, ZLP17]. IPCC [SC95]. IPPS [IEE96e]. Ireland [KKD05]. IRREGULAR [FR95, BM01, Caa02, Caa03, BL99, HASuP00, HY20, LOHA01, MR96, NP12]. irregularly [FR95, Smi93b]. ISA [Wit16]. ISBN [Che10, SD13]. ISBN-13 [Che10]. ISCA [Ano94e, YH96]. Ischia [ACM06b]. iScore [RJH+20]. Iserver [SHH94a, SHH94b]. Iserver-Occam [SHH94a, SHH94b]. Ising [AL93, KO14]. island [JPL21]. Isolating [Lus00]. Isosurface [PCY14]. ISPAN [HHK94]. Israel [DSM94, IEE96b]. Israeli [IEE96h]. ISSAC [Lev95]. ISSTA [Ost94]. Issue [AM07, BDB+13, BC00, GSA08, MP98a, MP98b, SBG20, BC19a, CHD09, DKD07, GT19, Mar02, Old02, TH20]. Issues [BDT08, FD02a, KG+93, MW98, Pan95b, PRQ21, PS01b, ZDD97, ARW03, EGH99, FD02b, HHA95, PK99]. Italy [CMRR12, CH96, DKD05, DKD07, D+95, DLO03, HS95a, IEE95b, KG93, OL05, ACM06b, Ano93b, CLM+95, DR94, Sil96]. Iteration [BAC20, HF14a, HF14b, OHG19]. Iteration-fusing [BAC20]. iterations [Lou95, YST08]. Iterative
[CCSM97], [DK06, NO02b, Nak03, SC04, ADDR95, EDSV09, LSR95, MGG05, NO02a, Nak05a, Nak05b, OMK09, dH94]. Ithaca [PBG+95, Rec96]. IV [SPH95]. IWOMP [CGZ+08, CGKM11, CMMR12, EdS08, MCdS+08, MdSC09, SHM+10]. IWPP [Kum94, PBPT95]. IWPP-94 [Kum94, PBPT95]. IWWP [Kum94]. IX [R+92].

Jack [Ano95b, Ano96a, Ano99a, Ano99b, Nag05, NMC95]. Jacobi [BBBH14, CGU12, LM99]. JaMP [KBVP07]. January [ERS96, GE96, HS94, IEE95h, IEE96g, MMH93, USE95]. Janus [GJP01]. Japan [SHM+10, SPE95, HHK94, IFI95]. Jason [Che10]. Java [ACM98a, Ano97, BCFK99, BDY99, Bra97, BK00, BKO00, CGJ+00, CFKL00, CLL03, DeP03, Fer98b, Fer98a, GGS99, KOB01, KBVP07, LRW01, MSS08, MG97, NE98, RAS16, SMS00, SZ99, TDB00, VGRS16, VGS14, WN10, WCS99, YC98, YHGL01]. Java-based [WCS99]. Java-MPI [GGS99]. Java/CORBA [LRW01]. JavaNOW [TDB00]. Jaypee [GCG+10]. Jeff [Stp02]. Jersey [Bha93]. Jerusalem [DM94]. Jiang [Ano95b, NMC95]. JMI [GDEBC20]. Job [KSC+19, NSS12, PS19b]. Jobs [GSHL02, OPM06, WDR+19, ZA14]. Join [BGD12, LTRA02, SML17, BMS+17, SML19, She95]. Joint [GT94, Ano03, YHGL01, Ano93c]. JOMP [BK00]. Jose [ACM97b, GE95, GE96]. JPEG [CLBS17, NU05]. JPT [BDY99]. JPVM [Fer98b, Fer98a, LGCH99]. Jr [ACM99]. Juggler [BLBV18]. Julia [Cre16]. July [ACM95b, ACM97a, Boi97, EV01, GA96, Has95, IEE93c, IEE96i, Lev95, PW95, TG94]. Jumpshot [ZLGS99]. June [ACM90, Ano94f, B+05, BG91, CGZ+08, CGKM11, CMMR12, DSZ94, DW94, D+95, IEE94e, IEE95c, IEE95i, IEE96d, IEE96h, KG93, LHHM96, Li96, MCdS+08, MdSC09, R+92, SL94a, SHM+10, TG94, Vos03]. Jupiter [Str94]. Just [FKLB08, FSSD17, KFL05, FK94]. Just-In-Time [FSSD17, FKLBO8]. JVMP [DeP03].

kernel-independent [YBZL03].

KU [IM94]. Kungl [Eng00]. Kyoto [IFI95, SPE95, IFI95].
L [AAC+05, BGH+05, EFR+05, MSW+05].
LA-MPI [YP+05]. Lab [Str94]. Label [ABG20]. Labeling [PPJ01, KRKS11].
labelling [HLP10]. laboratory [JY95].
LABS [RRJ+20]. Lafayette [EV01, EdS08].

Lagrangian
[CT94a, CT94b, RSV+05, TC94]. Lahey [Ano98]. Lake [HoI2]. LAM [OF00, RS06, SS+05, SQu03, SWa01, ZWZ05].

LAN [AAC+05, BGH+05, EFR+05, MSW+05]. Language [ACM96a, NM95, PD98, Stp18, Stp20]. Learning [DLV16]. Learned [GKPS97, MWO95]. Learning [AHHP17, AJC+20, GD+20, Gro01b, TWLL19, ZJHS20, ZIJW20, AM+19, FE17a, FE17b, KWEF18, LSSZ15, NWT21, SEC15, TFWFO09, WO09, WFT014].

learning-based [FE17a, FE17b]. Least [PWP+16, VRS00, DK13]. Least-Squares [VRS00]. Lecture [Gh93a]. Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

Leeds [Abr96]. legacy [BR04, LP00, LRW01]. Legio [RGP22].

Lemon [DRUE12]. Length [FLS20].

Lengths [GSHL02]. LEO [CCBPAG15].

Leonardo [Stp02]. Lessons [MWO95].

Level [AELGE16, BGG+15, BBC+00, CS14, CRGM14, DHHW92, DHHW93a, DDL00, GS91b, GAM+02, HA11, HKT+12, DK02, KCP+94b, KOW97, LVP04, LMRG14, NPP+10, SHM+10, SBF+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, LG+16, wL94, LCY19,
LCMG17, LBB+19, LM13, MALM95, NS91, Nak05b, RBW+20, STY99, SCL97, SG14, SFLD15, WDR+19, YZ14, ZWZ05, ZZZ+15, BBH...13a. levels [AML+99]. Leveraging [BBW19, HDB+12, NPP+00c, SHLM14, BPJ22, LFL11]. LFIB4 [Stp20]. LIB [NPP+00d]. libefp [KS15a]. libOMP [Bgd12]. Libraries [Bhls+95, BWV+12, CGZQ13, DARG13, GFD05, IEE94f, IEE95], MLGW18, MM14, ARvW03, BCM11, BFD94, CRD99, DWS96, Gao03, Huc96, LLY93, LZ97, MB18, MGMH97, MSB97, YKWH+18, ZTD19, van97, BSN95, BAK20, BKvH+14, BAV08, BRR99, CEGS07, DR18, Gra09, GFPG12, Jou94, LSB+20, LRLG19, MW98, MM11, OKW95, SCC96, SMSW06, VLCM+20, dCH93, dH94].

Linux [Sei99, USE00, SSLS97, Ano01a, GNZ+01, MK04, OF00, PS07, PKB01, RvT06, Sei99, SMTW96, Slo05, SGL+00, YL09]. Linz [Kra02]. lipid [FHS99]. Liquid [DSS00, JLS+14, ZL18]. Lisbon [IEE93d].

Load [Ano94b, BKdSH01, BS05, DI02, DR95, DK06, GCB12, HE02, KSB+20, MM02, NP94, PT01, Pus95, SGS95, ST97, Wal01a, Bir94, CKO14, DSH96, DvdlVS94, EZBA16, FMBM96, FH97, GS96, Hum95, JH97, MM03, SCL97, SY95, Wall94]. load-balanced [EZBA16]. Local [BGG95, CDHL95, CCMS97, IKM+01, LBB+19, AMHC11, BY12, CGL+93, FSU14, IKM+02, LHD+94, LHD+95, PHM+22, RRJ+20].

Logic [KII17, BJ95, KMC96, KMC97, POL99].

Logical [SR98, TPLY18]. LogP [CKP+93]. London [EJL92, Ano93h, Ano94f]. long [dFOSR+19, ZCB92]. Longest [Per21].

Look [HCB96]. lookup [BJ13]. Loop [DMB16, HC17, SHM+10, TJPF12, AV18, SHLM14, WYLC12, WYLC12, YST08, YWC11]. Loops [AHD12, CLA+19, COE20, DSC05, HH22, LOHA01, RRJ+20].
Loosely [Ada97].
Lop [RGDM16, RGDM15].
Louisiana [USE95, IEE96b].
Love [Dan12].
Love-Hate [Dan12].
Low [BGG+15, LSHY19, TBD96, ZRQA11].
Low-Bandwidth [NE01].
Low-Cost [FLS20, RLL01, GK97].
Low-Density [MC17].
Low-Degree [BGG+15, GGS99].
Low-life [Str94].
Low-overhead [ZRQA11].
Low-power [SM19].
LPN [TSCS14].
LPVM [ZG98].
LSS [BCAD06, BADC07].
LU [AZ95, BR09, BB18, LC97b].
Lugano [GT94].
Luminous [KNT02].
Lumsdaine [Ano99c, Ano99d].
Lusk [Ano95c, Ano99c, Ano99d, Ano99a, Ano99b, Ano99d, Ano99a, Ano99b].
Lustre [DL10].
Luther [ACM99].
Lyngby [DW94, DMW96, Was96].
Lyon [AZ95, BRS92, BB18, LC97b].
M [PBC+01].
M-SPH [PBC+01].
M2L [KKB+21].
M6A [EM00a].
M6B [EM00b].
MA [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano99a, Ano99b].
Machine [AS92, AGIS94, BJ93, BS93, CHD07, D+91, FE17a, FE17b, Fis01, GBD+94, Gre94, JCP+20, KNT02, KKD03, KKD04, LKD08, MTW06, Nov95, NMC95, Pat93, Per96, RW69, TY14, VSO0, Wel94, AD98, AL92, Ano95b, BR91, BDP+91a, BPC94, Bir94, BDL96, BDW97, CARB10, CLM+95, Cav93, Che99, Che99, CD10, CCU0, DM93, DKB0, DLM99, DLD9, DLD03, FM90, KWEF18, KMC97, KSS+18, Kra02, LG93, MN91, MRH+96, NB96, Sch94, SK92, SCC96, SLO0, TVCB18, TW12, TWF009, WO09, WTW014, ARL+94, BG94b, JPP95, KKD05, LK10, QRG95, SSS96].
machine-learning [TWF009].
machine-learning-based [TWF014].
Machines [BP99, BZ97, BCC+00a, BT01b, CDT05, DR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCS12, ZWJK05, BCA+06, BSC99, BCC+00b, BBW19, BB95b, DDS+94, DCH02, GZ12, Hol95, KN95, PRS16, RJJH+20, SLD94b, TS99, TS00, WPL95, ZWL13, Ge01, YC98].
made [MJPB16].
MAFFT [ZLS+15].
Magnetic [Y+93, PKE+10].
Magnetism [Y+93].
magnetized [CFF19].
Magnetohydrodynamic [KT02, WVFT11].
magnetohydrodynamics [ZT20].
Magnetostatic [BB93].
MagPie [KHB+99].
Main [Toy96].
Maintaining [PKB01].
maintenance [ZDR04, ZDR01].
major [WLK+18].
Makes [ZG95b, Str94].
Malleable [EDSV09, MSLM15].
Manbo [WZWS08].
Man [IEE95a].
Managemable [PKB01].
Managed [KCR+17, LB16, SYR+09].
Management [AJ97, ALB+18, AUR01, BGR97b, BGL00, CPV19, E97, FDG97a, FDG97b, GJR90, PPT96a, PS00a, SIS17, STY99, TSH+15, ARS89, DZ96, F17, FL96, GMM18, GL95a, JCP15, LF+93a, PPT96b, PPT96c, YWTC15].
manager [Sep93, SSD+20].
managers [FL96].
Managing [FL96, FGK17, Liv00, NPS12, Obe96].
Manchek [Ano95b, NMC95].
Mangrove [BB+20].
Manipulation [KKV01].
Mantle [BB95b].
Manual [CS12, SLV16, Reu01].
Many [DT17, LHZ17, LLD15, R01, SSMX+18, TC18, YTH+12, ACMZ11, AV18, BBC+19, VDX+15, dZG06].
Many-Accelerator [SMX+18].
Many-Core [LZH17, TC18, YTH+12, LLD15, ACMZ11, AV18, BBC+19, KSK13, MBB13, dZG06].
Many-Cores [DT17].
Manycore [MBB+20, DJ+19, KGB+09].
Map [JPT14, FFM11, FJBB+00, MSC95].
MAPA [JPL17].
Maple [PET00a, PET00b, PET01].
Mapping [BB18, DDP+19, FDG19, GAMR00, HC06].
NTR16, RRBL01, SPB+17, TaF21, TSZC94, WO09, ASAK19, DDLM95, EO15, GFIs+18, HC08, TWF09, WCS+13, WTF014, WKO8a, WKO8c, dCZG06, WKO8b.

MapReduce [EADT19, GGZ+20, JS13, MMM13, PD11, WZH16].

Maps [BM97, KRC17]. **Marc** [Ano96a, Ano99a, Ano99b, Ano99c, Nag05]. **March** [ACM95a, ACM06a, Ano89, Ano93c, Cal94, DKM+92, IEE93f, IEE94d, IEE95b, IEE97a].

Marine [LLRS02]. **market** [LF+93a].

Markov [BBH12, FK01]. **Marlioz** [GA96].

Marsa [Stp20]. **Marsa-LFIB4** [Stp20].

marshaling [CFKL00]. **MARTE** [RGD13]. **Martin** [ACM99]. **Maryland** [IEE96c, SPH95]. **MASA** [dFdosr+19, SMM+16]. **MASA-OpenCL** [dFdosr+19]. **Massachusetts** [IEE94e].

masses [Cla98]. **Massive** [BJ93, BHS18, BBH12, DSZ94, IEE94a, IEE96c, KHSB19, KmWH10, LPJ98, Oed93, Sie92a, Sta95b, CS96, DR94, HVSC11, KN17, KB21, LCL+12, MYB16, RBB17, SRK+12, DSZ94].

massively-parallel [MYB16]. **Master** [FH98, EML00, LTR00, HP05].

master-slave [HP05]. **Master-Workerproblem** [FH98]. **Master/Slave** [LTR00]. **Match** [EML00]. **Matching** [GGC+07, KMM15, KS01, MM02, OWSA95, WH94, FLPG18, FGL+20, GMA20, LFS+19, MM03, Qu95, YPZC95, YZPC95].

Materials [STH22, Y+93, PSV19, SSP+94].

Mathematical [Per21, VZT+19, Wan97, Has95].

Mathematics [Whi04, ANS05]. **MATLAB** [BKGS02, RBC20, Whi04, Ano97, Bra97, ZZG+14]. **MATLAB-MPI** [BKGS02].

MatlabMPI [KA04, Kep05]. **Matloff** [Edd18]. **MATOG** [WG17].

matrices [DR18, GG99, GSMK17, Kan12]. **Matrix** [AKL16, BSvdG91, Cha96, DS13, DK20, Fuj08, GK10, KF16, KK19, MKK21, PMvdG+13, TQDL01, TD98, ART17, CMH99, ER12, FAF16, FJZ+14, KPB16, MPS20, PKD95, TPD15, XLL13].

Matrix-Free [DK20, KK19, MKK21].

Matrix-Vector [AKL16, DS13, Fuj08, XLL13]. **matting** [WLYL20].

Max [ACM97a].

Mark [Ano94c].

Max-Planck-Gesellschaft [Ano94c].

Maximal [BDA+18]. **maximisation** [CCU95].

Maximum [TSN21, HKOO11].

May [ACM96b, ACM06b, AGH+95, BR95a, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95e, IEE95d, IEE95i, PR94b, RV00, SPE95, SW91, SS96, Van95]. **Maydan** [Stp02].

MBCF [MMH99]. **MCA** [WCS+13].

McDonald [Stp02]. **MCHF** [SYF96].

McLean [IEE94a, Sie92a, Sie92b].

MCNP [MW93, McK94, WH96].

MD [IEE02, TMPJ01].

mdb [DKF94a].

MDE [RGD13].

Means [TK16].

Measurement [BFBW01, BFIM99, KRS99, Shi94, TMC09].

Measurements [Hhv+00, EFR+05, GL99].

MECCA [AC17].

mechanics [Bil95, MGG05, SL95].

Mechanism [CGLD01, KSV01, MH01, THS+15, TSS00b, Tra02a, HWX+13, SRP17, ZRQA11, ZA14].

Mechanisms [Wal01a, CBGS+15, Ott93, TMTP96].

Mechatronic [KDL+95b, KDL+95a].

mEDA [VAT95]. **mEDA-2** [VAT95].

media [EZBA16, MAIVAH14].

Medical [WYZ+19, RTN21].

Medicine [GA96].

MEDINA [AC17].

Medium [CWl+20, WLNL06].

medium-scale [WLNL06].

Meeting [AD98, Ano93f, CH07, CD01, CDND11, DK06, DL99, DKP00, DLO03, GA96, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RWD09, TBD12, BDW97, JB96, SP95, Ano92, CH09].

megabase [SdM10].

Meiko [FST98a, FST98b, Jon96].
Melia [WZHZ16]. Mellon [IEE94d]. Membership [BMS19, MDM17].
membrane [FHSO99].

\begin{itemize}
\item Memory [ADGA20, Att96, BME02, BWW+12, Bri10, Bds07, BT01b, CVSP19, CDT05, CLOL18, CLA+19, CSW97, C99, DM98, DMB16, DR97, DHHW92, DHHW93a, EADT19, FB94, GGr+20, GCBM97, GB96, GSN+01, GSHL02, GLRS01, HC10, HDB+12, HDT+15, HT01, JJPL17, KB98, KS13, KC19, KSHS01, LSB15, LML+19, Luo99, MB12, MRB17, MBE03, MMH98, McdS+08, Mül02, NPP+00d, PBK00, Pok96, PMvdG+13, Ros13, STY99, ST02b, SW91, Thr99, VSS0, VT97, WJA+19, ZL17, ZL18, ARS89, ABC95a, ABC95b, ADMV05, BCA+06, BVML12, BSC99, BMG07, CdOO+20, CBPP02, Cha05, CJvdP08, Cha96, CBHH94, CRM14, CC00b, DF17, DLR94, DBVF01, DZ97, DPZ97, EVMP20, EV01, FSV14, FHB+13, GCN+10, GBH14, GBH18, GKK09, GL96, GL97c, GP95, GADM20, HSP+13, HGMW12, HDB+13, HK09].
\item memory [JC17, JE95, KN95, KSTM20, KJA+93, KC06, KKL96, MLC04, NAJ99, NAAL01, OLG+16, PK05, PS00b, QM21, RS19, RGDM15, SSH08, SSSHI01, SL94b, SBF+12, SYR+09, SFL+94, SCS96, SPL99, SBK21, SD16, SPNB14, TS99, TSY00, THDS19, TSCS14, Ulh95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WK08c, WK20, WBSC17, WMRR17, WMR19, XY95, LBD+96, GK97, SG05].
\item Memory-access-aware [CLA+19].
\item Memory-Based [MMH98].
\item memory-constrained [TSCS14].
\item Memory-Divergent [WJA+19].
\item Memory-Efficient [GGZ+20, MRB17].
\item memory-level [HK09]. Memory-Oriented [ZL18]. Memory/Message [ST02b].
\item MemTo [GSN+01].
\item Menon [Stp02]. Mesh [DDP+19, HAA+11, MRB17, Ran05, BAS13, CLSP07, Cout93, GBR15, HDZ+20, IDS16, SWCB20]. mesh-oriented [HDZ+20]. mesh-particle [BAS13]. Meshes [MRB17, TPD15]. Mesoscopic [VT19].
\item Message [Ano93d, AKL99, Att96, BC19a, BZ97, BCH+03, BBG+99, BBG+01, BDH+97, BGR97b, BFM97, CHD07, Cer99, CGZQ13, CGH94, Cot97, Cot98, CTK00, CDND11, DFSK01, DDM+22, DHHW92, DHHW93a, DLD00, FKCC96, Fos98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLT00b, Hen94, KGRD10, KS97, KSV01, KKDV03, KKD04, LKD08, Luo99, MP98a, MP98b, MP95, MS98, MBES94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, RC97, RRB01, RWD09, RFG+00, SAL+17, ST02b, TBD12, WD96, Wer95, Wis97, YHGL01, ZWL13, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93e, Ano94d, Ano95c, Ano00a, Ano00b, AMC+19, BBG+14, BL97, BvdSvD95, BJ95, Bru95, BDW97, BFIM99, CGJ+00, CDZ+98, CRD99, CD01, CG99b, DFK93, DM93, DKD05, DS96b, DHHW93b, DOW96, DLM99].
\item message [DKP00, DLO03, FGL+20, FK94, GMA20, GL92, HP05, HPY+93, Hen96, JKN22, KJA+93, Kra02, LR06a, LBD+96, wL94, LFS+19, LC96, LMM+15, LBB+19, LC97b, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sc99, SWJ95, SDV+95, SZ99, SG95, ST94, TSCS94, VM95, Wal94a, Wal94b, ZKRA14, ZA14, AMHIC11, BC14, BBH+06, BR05, BDH+95, Cot04, DKD08, Din96, FKS96, FGT96, FGG+98, GGHL+96, GLDS96, GT99, GL99, GLT00a, GL04, Han98, IBC+10, KTF03, KKD05, LK10, MTSS94, MSL96, PS01b, RRFH96, SWHP05, SLG95, SWL+01, TGT05, TDB00, Wer95, YGH+14].
\item Message-Passing [Ano93d, Att96, Cot97, Cot98, DHHW92, DLD00, GLS94, GL95c, GLT00b, MP98a, MP98b, PBK00, Pok96, RRB01, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvdSvD95, CDZ+98, GL92, Hen96,
Message-Passing-Interface [Wer95].
MessagePassing [Sei99].
Messages [KBS04, SKH96].
Messaging [HEH98, KC94].
Meta [BCLN97, FBD01a, FGRD01].
Meta-Applications [BCLN97].
Meta-computing [FBD01a, FGRD01].
MetaHaskell [Mai12].
metaheuristics [ZSK15].
metal [JLS+14].
MetaMP [OW92].
metaprogramming [Mai12, TSEE21].
meterological [RSBT95].
Meteorology [HK93, HK95].
Method [ADGA20, ACMR14, BP99, CGU12, DAD19, FCGL07, GSI07, HBF21, HC06, KMK16, OMK09, RHM+17, Riz17, STA20, TSS00a, ARYTT17, AJS+21, AFG21, BBDH14, BCM+16, DSOF11, ETV94, GFIS+18, HE13, HMKV94, HJBB14, HPLT99, JMS14, KS15a, KD12, KKB+21, LCL+12, MMDA19, Nak05b, NS16, PTT94, PGPC21, Pri14, Qu95, RTN21, SMMT98, TSK15, YBZL03, dAAMCFN12, AAB+17, OTK15].
Methodologies [Sun94b].
Methodology [MOL05, WTH17, HPR+95, LM94, WMP14].
Methods [BCMR00, CMK00, DFN12, DW02, EBO21, ECL90, EBO21, FCL95, FGKT97, GFPG12, KLR+15, kL11, NA01, Sch01, SM07, TDBEE11, Whi04, ZGN22, ZB97, CdO0+20, CECS07, DF17, D+95, Gra09, Has95, KW20, LSR95, MM11, Nak05a, PGK+10, PGPC21, R+92, SL94a, SGS95].
Metric [SNN+19].
Metrics [DW02, PARB14].
Metropolis [HJB14].
Mexico [IEE91, RVO00, Sie94].
MGCG [TSS00a].
MGF [GLM+08].
MGRIT [HBF21].
MIAOW [BBG+15].
MIC [BB18, CCBPGA15, LCY19].
MICE [BK96].
Micro [Ano03, BWV+12, SGH12, YSYW14].
Micro-applications [SGH12].
Micro-Benchmark [BBV+12, YSYW14].
microbenchmark [BO01].
Microcoded [WPP+16].
microtask [OIS+06].
MIDAS [BFZ97].
Middleware [AUR01, CLL03, CC10, RPS19].
Middlewares [DP01].
Midpoint [JMS14].
Migol [LS08].
Migratable [OW92].
Migrating [VSR94, VSR95, IvdLH+00, KBG+09].
Migration [Ano94b, CCK+95, CLL03, CML04, CCBPGA15, CT01, NPP+00c, NLRH07, Ott94, OS97, PS19b, ST97, AMBG93, BBGL96, CKO+94, CRM14, CRGM16, CK99, DDYM99, HZ99, LCVD94b, LM13, QHCC17, RRFH96, SSS99, SC97, Ste96].
Milan [HS95a].
Million [LHLK10].
Millions [BBG+11].
MIMD [BvdB94, BB93, BCL00, Uhl95a, WST95].
MIMD/DMMP [BB93].
MiMPI [GCC99].
mini [LBG+20, SC97].
mini-application [SC97].
mini-applications [LBG+20].
MINIME [DS16].
MINIME-GPU [DS16].
minimization [POL99].
minimize [AJS+21].
Minimum [KA95, Wu99, GKD+18, NCKB12].
Mining [BBG+20, MA09].
minisweep [SC97].
Mississippi [IEE94f, IEE95j, IEE94f, IEE95j].
mitigating [OdSSP12].
Mitigation [BBH...13a].
Mitsubishi [Ano03].
mittels [Wil94].
Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01].
Mixed-Mode [BEG+10].
Mixing [CP98, GAP97, HDW21, CBY18].
mixture [EO15].
MK [NS91].
MLP [JLG05].
mm_par2.0 [OKM12].
MN [Ano94b].
Mob [STV97].
Mobile [ITT02, TWLL19].
Mode [BGK08, Bri02, BEG+10, LRT07, HHSM19, SB01, YX95].
Model [AP96, BGG+02, Bds07, CKmWH16, Cha02, CZG+08, Dar01,
DFA+09, FSXZ14, FBSN01, GLB00, GLRS01, HLP11, KD12, LWKA15, LWZ18, LGG16, LPJ98, LA02, LRQ01, MKW11, NSLV16, NOO2b, PRQ21, Ran05, RSV+05, RRBL01, SPM+10, SB95, SPH+18, THN00, VT97, Wal01a, WYZ+19, YCA18, AL93, BSC99, Bir94, BG94b, BDV03, CMV+94, CL93, CKP+93, ED94, GKKZ12, GCN+10, GkLyC97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, HY20, JPL22, KOS+95a, KSL+12, KLV15, LR06b, LA06, LLH+14, Mar05, MMAH20, MsAS+18, MSZG17, MGC+15, NO02b, Nak05a, PAdS+17, PQR18, QM21, RAS16, RGDML16, RCG95, Sch93, BSC99, Bir94, BG94b, BDV03, CMV+94, CL93, CKP+93, ED94, GKKZ12, GCN+10, GkLyC97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, HY20, JPL22, KOS+95a, KSL+12, KLV15, LR06b, LA06, LLH+14, Mar05, MMAH20, MsAS+18, MSZG17, MGC+15, NO02a, Nak05a, PAdS+17, PQR18, QM21, RAS16, RGDML16, RCG95, Sch93, SH94, Sch99, SMAC08, Str94, VBLvdG08, Vis95, Wan02, WC15, WLK+18, WYLdC12, YX95, ZWC21, TA14].

Model-Based [AP96, LGG16]. Modeling [ACM96a, ATM01, BS07, COE20, CSC96, CDM93, FST98a, GAM+02, HSO+21, MOL05, MZLS20, MH21, NM95, RGDM15, Róti19, SEF+16, STH22, TD99, VFDO2, WJA+19, WMC+18, XH96, AC07, BDP+10, BAEE22, Bic95, BB95b, JLD18, KM10, KME09, KEGM10, LHZY19, MS99a, WT13, XXL13, YMY11]. Modelling [FST98b, GC05, Ham95a, KDL+95b, BJ999, HTHD99, KDL+95a, MSML10, QHCC17]. Models [AKK+94, BS93, BZ97, CMK00, Cer99, CNM11, DK06, EMO+93, ESM+94, GJN97, PFP98, SS01, SM093, SYL19, TSN21, WH04, BB95a, CPM+18, CH96, CBS18, Duv92, EVMP20, KO14, LV12, MCB05, Nes10, RSBT95, RBA17, RHJ+20, STP+19, SYR+09, Wal00, WBSC17]. moderate [Uhl95a]. Modern [AHHP17, DARG13, KDT+12, LNK+15, MPZ21, SM07, EYP+20, HHI4, HCC+20, PMZM16]. modernization [WL1Y20]. modes [WZWS08]. Modified [Rix17, GP95, KD12]. Modular [CT02, HPP02, FWS+17, HLM+17]. modulator [WWZ+96]. modulator/DFB [WWZ+96]. Module [Ano98]. Modules [AKK+94, DS96b]. modules-design [DS96b]. Molecular [ABG+96, BST+13, BCGL97, BL95, BS07, DR97, DJ02, KBM97, LAFA15, MH01, SA93, YWCF15, ZB94, AiiS+21, BvdSvD95, BBK+94, BMPZ94b, BMPZ94a, CC00b, DCD+14, Da19, FHSO99, HHS18, JAT97, JMS14, KFA96, KRG13, LH+20, LSVW08, OKM12, PARB14, PIR+20, SL95, VGP+19, ZWL13, RS22]. molecule [ART17]. Möller [BL95, KN17]. Moment [SSB21]. MONC [BBW19]. Monito [SGL+00]. Monitor [KRS99, Whi94]. Monitoring [AH00, BCLN97, Beg93b, BFM96, BFMT96b, CD98, DBK+09, GSN+01, IADB19, LY93, LW97, MWG97, MVY95, SGL+00, UP01, Wis98, Wis01, Yn94, Beg92, Beg93c, Beg93a, BB94, BS96a, BFMT96a, FLB+05, LC07]. Monodomain [ORA12]. Monona [ZL18]. Monte [HJJBB14, RP95, WH96, ADRC98, AK99, DAK98, NSLV16, RR00, SK00, SKM15, ZZ04]. Monterey [Ano89, Gat95, USE94]. Montpellier [DE91]. Montréal [Lev95]. MOPS [GJN97]. Morehouse [AGH+95]. Morgan [SD13]. Morphable [ZL17]. morphology [VLSPL19]. Morton [LZH18]. MOSFETs [MV20]. MOSIX [BBGL96]. motif [FMS15]. motors [SKM15]. movement [MV17, PG18]. Moving [HAA+11, KQT+21, LSG12]. MPC [BPJ22]. MPE [GKL95, KFA96]. MPEG [NU05]. MPEG-4 [NU05]. MPI [ARYT17, AD98, Ano95c, Ano99a, Ano99c, Ano99d, Ano00a, Ano00b, BDW97, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, GBRT97, GEW98, IEE96i, JKN22, JMS14, KGRD10, Kra02, KKKD04, LKDD08, MTWD06, Nag05, Per97, PS01b, RWD09, RLVRGP12, SBG20, STO2a, TDB00, TDB12, Vre04, WSN99, YN97, ST02b, ACGdT02, AKB+19, Ada97, Ada98, AC07, ACH+11, APJ+16, AASB08, ART17, ATM01.
KC06, KBG16, KMH+14, KRG13, LK14, LAd+15, LRG+16, LLRS02, LTTD14, LGM00, LRT07, LC97a, LR06b, LTRA02, Lec12, LFS+19, LFW20, LZ97, LRW01, LPD+11, LLC13, LZH12, LZH18]. **MPI** [LK20, kLCC+06, kLCCW07, kL11, LZZ+20, LFL11, LS10, LSM+18, LZC+20, LCY96, LC+03, LVP04, LWP04, LGG16, LBB+21, LYSS+16, LB06, LGm+19, LMG17, LCm+17, LBB+19, LGM10, LNL00, L96, dLR04, LZHY19, TS19, TPL14, TSV19, TSY99, TSH00, TTH01, TWH02, TTM19, TWS01, TWS+19, TAC01, Tra98, THRZ99, TRH00, Tra02, Tra02, TGT10, Tra12a, Tra12b, THMH21, TMPJ01, TFGM02, Tso07, TFZ12, TFV20, UTW02, UKRG12, VFD02, VLSPL19, VSO0, VPS17, VSR94, VSRC95, VRS16, VsS00, VPO0, VVD+09, WH96, Wa95, Wa96a, WO96, Wa96a, Wa91b, Wa90, WC09, WL03, WL06, Wer95, WST95]. **MPI** [Whi04, WK20, WLR05, WWZ+96, Wis98, WB96, WM01, WADC99, Wor96, WRA02, WDR+19, WCs99, WT11, WLC12, WT12, WLYC12, WT13, WMP14, XH96, XL+09, YM97, YL90, YHC11, YC11, YMB14, YW21, YPAE09, YTH+12, YSP+05, Za92, ZSO1, ZWL20, ZLYC12, ZLYC12, ZL20, ZWC21, Z59, ZS01, ZKRA14, ZA14, bT01a, dIAMCFN12, KH96, Mar06, YM97, An09a, An09a, An09c, An09c, An09d]. **MPI-1** [SOHL+98]. **MPI-2** [An09c, An09d, An00a, AKL99, BCAD06, BHS+02, CwCW+11, CD96, DSSD08, GFD03, GGH+96, GT01, GHH+98, GLT99, GLT00b, GLT00a, HGM12, LSK04, MS02a, MK04, PS00a, SS09, SSO95, SSO95b, SDN99, Syl99, SHHC18, SSL97, Sq03, Ste96, ST97, Sto98, SU96, Str96, SRS+19, Sm12, Sn01, Swa01, TOD09, TAI+01, TSY99, TSY00, THDS19, TSCS14, TKP15, TK91, Tha98, TGL02, TGO9, TGIKL19, TPLY18, TW01, TD09, TO18, Tra98, THRZ99, TRH00, Tra02, TGT10, Tra12a, Tra12b, THMH21, TMPJ01, TFGM02, Tso07, TFZ12, TFV20, UTW02, UKRG12, VFD02, VLSPL19, VSO0, VPS17, VSR94, VSRC95, VRS16, VsS00, VPO0, VVD+09, WH96, Wa95, Wa96a, WO96, Wa96a, Wa91b, Wa90, WC09, WL03, WL06, Wer95, WST95]. **MPI** [Whi04, WK20, WLR05, WWZ+96, Wis98, WB96, WM01, WADC99, Wor96, WRA02, WDR+19, WCs99, WT11, WLC12, WT12, WLYC12, WT13, WMP14, XH96, XL+09, YM97, YL90, YHC11, YC11, YMB14, YW21, YPAE09, YTH+12, YSP+05, Za92, ZSO1, ZWL20, ZLYC12, ZLYC12, ZL20, ZWC21, Z59, ZS01, ZKRA14, ZA14, bT01a, dIAMCFN12, KH96, Mar06, YM97, An09a, An09a, An09c, An09c, An09d]. **MPI-1** [SOHL+98]. **MPI-2** [An09c, An09d, An00a, AKL99, BCAD06, BHS+02, CwCW+11, CD96, DSSD08, GFD03, GGH+96, GT01, GHH+98, GLT99, GLT00b, GLT00a, HGM12, LSK04, MS02a, MK04, PS00a, SS09, SSO95, SSO95b, SDN99, Syl99, SHHC18, SSL97, Sq03, Ste96, ST97, Sto98, SU96, Str96, SRS+19, Sm12, Sn01, Swa01, TOD09, TAI+01, TSY99, TSY00, THDS19, TSCS14, TKP15, TK91, Tha98, TGL02, TGO9, TGIKL19, TPLY18, TW01, TD09, TO18, Tra98, THRZ99, TRH00, Tra02, TGT10, Tra12a, Tra12b, THMH21, TMPJ01, TFGM02, Tso07, TFZ12, TFV20, UTW02, UKRG12, VFD02, VLSPL19, VSO0, VPS17, VSR94, VSRC95, VRS16, VsS00, VPO0, VVD+09, WH96, Wa95, Wa96a, WO96, Wa96a, Wa91b, Wa90, WC09, WL03, WL06, Wer95, WST95]. **MPI** [Whi04, WK20, WLR05, WWZ+96, Wis98, WB96, WM01, WADC99, Wor96, WRA02, WDR+19, WCs99, WT11, WLC12, WT12, WLYC12, WT13, WMP14, XH96, XL+09, YM97, YL90, YHC11, YC11, YMB14, YW21, YPAE09, YTH+12, YSP+05, Za92, ZSO1, ZWL20, ZLYC12, ZLYC12, ZL20, ZWC21, Z59, ZS01, ZKRA14, ZA14, bT01a, dIAMCFN12, KH96, Mar06, YM97, An09a, An09a, An09c, An09c, An09d].
Allgather
T
Connect
JLG05, JR10, KS15a, KN17, KLR
MPI/RT
KRG13, LLRS02, MMDA19, PZ12, SB01,
MPI-dot2dot
MPI-DDL
MPI-CUDA
[DR18, YW21, dIAMCFN12].
MPI-driven [Hin11].
MPI-F
[FHP94b, FHP94].
MPI-FM [LC97a].
MPI-FT [LNLE00].
MPI-GLUE [Rab98].
MPI-GPU [TPV20].
MPI-Hybrid
[CSC+11].
MPI-I [IRU01, Tsu07].
MPI-I/O [IRU01, Tsu07].
MPI-Interoperable [YBMCB14].
MPI-IO
[BIG+10, CCG+02, CFF+96, DL10,
FWK96, FSL99, LRT07, LGG16, PKS08,
PTH+01a, SW12, ST08, TGL02, ZZ04].
MPI-IO/GPFS
[PTH+01a].
MPI-LAPI
[BGBP01].
MPI-Level [VP04].
MPI-like
[CJG+00].
MPI-only [LS10].
MPI-OpenCL
[JNL+15].
MPI-OpenMP
[MS02b].
MPI-Parallel [DK20].
MPI-parallelized
[DFSW19, KMG99].
MPI-Performance-Aware-Reallocation
[GFIS+18].
MPI-StarT
[Hus98].
MPI-The
[Ano99c, Ano99d].
MPI-thread [IDS16].
MPI-Umgebung
[BGR97].
MPI/CUDA
[PHJ11].
MPI/GAMMA
[CC00a].
MPI/GPU
[EZBA16].
MPI/GPU-code
[EZBA16].
MPI/MBCF
[MHH99].
MPI/OpenACC
[OGM+16].
MPI/OpenMP
[ADR+05, GAVRRL17, HDZ+20, HKN+01,
JLG05, JR10, KS15a, KN17, KLR+15,
KRG13, LLRS02, MMDA19, PZ12, SB01,
WT11, WT12, WT13].
MPI/PVM
[ES11].
MPI/RT
[SKD+04].
MPI/RT-1.1
[SKD+04].
MPI/SMPSS
[MLAV10].
MPII
[Sti94].
MPIII
[MP98a, MP98b, Wal96b].
MPI2007
[MvWL+10].
mpi4py
[DF21].
MPI_Allgather
[GMdMBD+07].
MPI_Connect
[GRD01].
MPI_T
[GVF+18, HHK+19].
MPICH
[BBC+02, BCH+03, BHK+06, Cot98, Cot04,
GL97a, KTF03, LKJ03, OPM06, OF00,
RFG+00, RST06, SBG+02, TRG05].
MPI-CH-CM
[SBG+02].
MPI-CH-G2
[Cot04, KTF03, OPM06].
MPI-CH-GQ
[RFG+00].
MPI-CH-V
[BBJ+02, BHK+06].
MPI-CH-V2
[BCH+03].
MPICH2
[BMG07, Gr02b, ZSG12].
MPIConnect
[FLD98].
mpicroscope
[Trä12b].
MPIGeneNet
[GDG18].
mpJava
[BCFK99].
MPI-P1
[Sou01].
MPIPOV
[FFB99].
MPI-Wiz
[XLW+09].
MPJ
[CJG+00].
MPL
[XH96].
MPLO*
[CRD99].
MPP
[CDJ95, DOW96, GBR97].
MPP-Systeme
[GBR97].
MPPs
[BGR97a, BBR97a].
MPSoC
[KKJ+08, KH10, PSM+14].
MPSoCs
[MB12, NEM17, SPB+17].
MPVM
[CCK+95].
MRI
[LSL015].
MRO
[MMM13].
Multi
[Ada98, ABB+10, Bri10, BCKP00, CAWL17,
CZG+08, COE20, DK20, DS22, DWL+10,
EBKG01, FSXZ14, HD02b, HRZ97, JCH+08,
JNL+15, KBA02, KT02, LTS16, LCY19,
LM13, MLGW18, MG15, MB00, NMS+14,
PZ12, RG18, RR02, Smi93a, ST02a, ST02b,
SSB+17, TPV20, WBH07, XR21, YGH+14,
ZL18, ACMZR11, AGMJ06, BBC+19,
BCK+09, CdOO+20, DCH02, DWL+12,
Fin94, Fin95, FHB+13, HTAO8, HE15, JR13,
JIM+11, JR10, KSG13, KLV15, KO14,
Kor15, LSG12, LS10, LLH+14, MALM95,
NS12, SCB15, SFSV13, SVE+11, SAP16,
Str12, TS12b, TFZZ12, VLSPL19, WCC+07,
W009, WADG99, WYL12, ZAFAM16,
ZWZ+95, ZZZ+15, SAP16, SG14].
multi-
[ACMR11, BBC+19, CdOO+20, KSG13].
multi-/many-core
[KSG13].
multi-accelerator
[KLV15].
multi-agent
[ZWZ+95].
Multi-agents
[KBA02].
Multi-Array
[LTS16].
Multi-cluster
[ST02b, KO14, Kom15].
Multi-Context
[ZL18].
Multi-Core
[ABB+10, Bri10,
CZG+08, YGH+14, PZ12, FHB+13, HTA08,
DGG+12, PS01b, RBAA05, TGBS05, WJ12, DSG17, TMC09, TG09, WCC+07.

Multithreading [BBG+10, ZWL13].

Munich [BDLS96, GH94].

Mushy [Wit16].

MUST [HPS+12, HPS+13].

Mutual [She95].

MV [TWLL19].

MVAPICH [RMS+18].

MVICH [OF00].

Myocardial [Pat93].

Myrinet [CDP99, GBH99, JSH+05, LCW+03, PTW99, Tou00].

n [DDN+22, Pan95a, ADB94, RTRG+07].

N-body [AD94, RTRG+07].

N-cube [Pan95a].

NAG [DHP97, For95, McD96].

NAMD [MSF00].

Nancy [BR95a].

NanosCompiler [GAM+00].

Narrow [YSS+17, YSS+19].

NAS [CRE99, CE00, CCF+94, CDD+96, KS96, KAC02, MMH99, WAS95b, WT11, WT12].

NASA [MAB05].

National [Str94, BRST94].

Native [SZ99].

NATO [KG93, TG94].

NATUG [Ara95].

NATUG-7 [Ara95].

nature [DSM94].

Navier [Che99, DLR94, HSMW94, IDD94, Lou95, SCC95].

NC [BG91].

NCCL [AMC+19].

NCCL2 [AMC+19].

nCUBE2 [BL94].

Nearest [DI02].

Nebelung [MFC+08].

NEC [GPL+96, HRZ97, TRH00].

Necessary [NPP+06b].

Needed [Gei00].

Negative [KF16].

Neighbor [DI02].

neighborhood [HS12].

Nek5000 [MG+15, OG+19].

Nebbone [GML+16].

Nemesia [BMG07].

Neset [BL95].

Nest [BL95].

Nest [ABL91, BS01, DLR99, DSCL05, GLP+00, HA10, MMS07, SGL+20, TTSY00, ZLP17, aMST07, AGM06, BS05, HSE+17, HY20, LW20, THH+05, YZ14, JLG05].

Nesting [BBC+99].

Nests [DMB16].

Net [CNM11, NE98, NE01, PES99, TWLL19].

Net-Console [PES99].

Net-dbx [NE98, NE01].

NetCDF [LkLC+03].

Netherlands [DSZ94, Ano93f, Van95].

Nets [Sou01, Str94].

Network [ACM98a, AR01, BDG+91b, BDG+93a, BCKP00, CZ95a, CDHL95, CSC96, DM95b, DM95a, DBA97, DFMD94, DMG93, EK97, Fer98b, Fin01, GS92, Gei93a, GSxx, Hus98, ITT02, LB98, LH95, Meso95, MANR09, FO00, OWSA95, R21, TW01, VZT+19, AL92, AH95, AVA+16, BDG+92a, BDG+92c, BDG+94, BsVdG91, BJ95, Bon96, BBK+94, BID95, BF96, Cee94, CLLASDP99, Fer98a, GS91a, Gei93b, GK97, GHZ12, HBT95, HK94, HH95, IM95, KMC96, KMC97, KA95, LH98, LK20, LHD+94, LHD+95, MK94, MRH+96, POL99, PR94c, PTW99, Rag96, SEC15, SPK+12, TSS98, YS93, ZPL96, GK97].

Network-Balancing [DBA97].

Network-Based [BDG+91b, GS92, BDG+92a, IM95].

Network-Specific [DM95b, DM95a].

network-topology-aware [SPK+12].

Networked [FGKT97, GBD+94, Nov95, NMC95, Per96, Ano95b, BMPZ94b, BMS94a, BMPZ94a, GM94, HS93, RRG+99].

Networking [ACM97b, ACM98b, ACM00, ACM01, ACM04, Hol12, LCK11, CXB+12, GH94, HS95a, ITT99, LCHS96, MZK93].

Networks [CSV12, CDM93, DFB+19, DDPR97, GFV99, GDM18, GLH97, HHH94, HLCZ00, HIP02, LH96, LHZ98, MBES94, QMGR00, SG15, SM19, TQDL01, Tou00, VLO+08, VBB18, WAS95b, WMC+18, BK11, BRS92, CZ95b, CFPS95, DG95, DZ98a, Jou94, LR06a, LTL94, LHD+94, LHD+95, NFG+10, Pan95a, SOYHDD19, TDB00, ZGN94].

Neural [AGH+95, CAM12, CSV12, QMGR00, RJ21, SM19, Str94, GkLyC97, Rag96].

Neurocomputing [PSZ+00].

Neutral [CBB+21].

neutrino [KHBS19].

Neutron [LD01, RS97, VRS00, WR01, MM92].

Nevada [Ano94e].

never [Har94].

Neville
Newton [Ano97, Ano03, Bra97, ESB13, KS15a, Str94]. Next
[AKPS97, Gei98, Gei01, VPS17, VZT+19, EYP+20, SP11, ZKRA14, vdP17].

Next-Generation [VPS17, ZKRA14]. NFS
[CGC+02]. NHPDCC [BRST94]. NIC
[MFP03]. NIC-based [MFP03]. Nice
[ACM90]. nineteenth [IEE95]. Ninth
ERS96, R+92. NIST [SNMP10]. Nitzberg
[Ano99c, Ano99d]. NLP [VB99]. NM
[IEE95d, Old02]. NMF [KF16]. nmfgpu4R
[KF16]. NoC [HWX+13]. NoC-based
[HWX+13]. Node
HRZ97, KLI+20, KLI+20, FLB08, GM13,
Gro19, JR10, LFI+11, MKP22, RS19, Zah12].

Nodes [BBC+02, BCI+03, DBK+09,
JNL+15, MKC+12, BKB+22, VGP+19].

Noise [SAL+17]. Non [BCG+10, CTBT21,
CCS97, Gau16, HTA08, KLI+20, KLI+16,
MW98, Man01, SD+21, WLN03, WTR03,
FHI98, BCI+08, OWK95, OMK09, STP+19,
TVCB18, WLN06]. Non-blocking
[HTA08, FHI98, BCI+08, STP+19].

Non-Contiguous [KLI+20, WTR03].

Non-Data-Communication [BCG+10].
non-dedicated [WLN06].

Non-Determinism [CTBT21].

Non-Intrusive [SDR+21]. non-iterative
[OMK09]. Non-linear [MW98, OWK95].

Non-Local [CCS97]. Non-Negative
[KF16]. Non-singleton [TVCB18]. Non-stop
[Gau16]. nonaligned [AGIS94].

nonblocking [DJD+19]. Noncontiguous
[JDB+14, TGL02]. Nondeterminacy
[DKF93]. nondeterminism [Obe96].

Nondeterministic [KSV01, CRD99].
nonequispaced [YW21]. Nonintrusive
[TGS+20]. Nonlinear [Nak03, Was95a,
ZB97, CEAS07, Jou94, NS20]. nonnegative
[KBP16]. nonsymmetric [dH94]. Nordic
[FF95]. Norfolk [Sin93]. normal [CBS18].
normalized [Gra09]. Norman [Edd18].

North [CJNW95]. Note
[BR02, Cre16, SGHL01]. notification
[SSN+21]. Notre [IEE96]. novel
[DDY99, GKK09, MLS16, MSL12, QM21].

November [ACM96, ACM97b, ACM98b,
ACM99, ACM00, ACM01, ACM03, ACM04,
ACM05, Ano94c, ACDR94, BDW97, GN95,
HK95, Hol12, IE91, IE93e, IE94b,
IE94h, IIE02, LC11, USE94]. novice
[CGG10]. Novices [Stp02]. NOWs
[SLEZ99]. NP [YZ14]. NPCI [KB01].
NPB [EGC02]. NR [Gau16]. NR-MPI
[Gau16]. NRC [LD01]. NScluster [TSN21].

NUMA
[BCC+00a, BCI+00b, BFG+10, CAW17,
GTS+15, MKC+12, MAH20, MBJ15,
OPW+12, SLN+12, TSC11, ZLP17].

NUMA-aware [MAH20]. NumaGiC
[GTS+15]. Numba [BS21]. Number
[BP99, HT08, WHDB05, CCS19, CBY18,
Lan09, Stp20]. Numeric [MLG18].

Numerical
[ACMR14, BS93, BCI+97, CWS97, DHB97,
DH97, FKI01, For95, FKB94, HH14, Hol95,
Hus98, IF95, KM10, Kha13, McD96, NS20,
NHT02, PK95W95, TD01, TVP20,
YKL17, AL92, Boi97, BCM+16, CWS99,
DFGS99, FG94, HD00a, JK10, KB13,
Nob08, NHT06, PT14, SMAC08, SU96].

Numerically [BKML95, BFL09]. nur
[BL94]. Nutzung [GEW98]. NVIDIA
[GDS+20, GNP19, KC19, KMLE09, Seg10,
VLMP+18, XKL13, KMK15, Lan09].

NVRAM [MC18]. NX [Pie94, PR49a]. NY
[IEE96f, PBG+95, Ree96, SS96].

O [Bos96, CFF+96, DRUE12, IRU01,
IBC+10, KLI+20, KL1C+03, KLC+06,
LPJ98, MMD98, MV17, MC18, MGC12,
On-Chip [WYZ +19, TDG13]. On-Demand [CTK00, LSB +18]. On-GPU [LW20].
On-Line [BoFBW00, Wis98]. On-the-fly [KSJ14]. ONE [RS93]. One [BPS01, GFD03, GFD05, GBH14, GT01, HDB +12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DPFT19, DBB +16, GBH18, KW20, LSK04, MS99c, Ols95, PKG +10, dlAMC11].
One-dimensional [Ols95]. one-layer [dlAMC11]. One-Sided [BPS01, GFD03, GFD05, GT01, HDB +12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DPFT19, DBB +16, LSK04, MS99c, PKG +10].
One-step [KW20]. only [LS10, Squ03]. Ontario [GGK +93]. onto [OFA +15].
OOMPI [MSL96]. OOPS [RFH +95].
OPAL [CwCW +11, NW98]. OPAL-MPI [NW98]. opaque [SOA11]. Open [BGG +15, KDL +95b, WGG +19, AVA +16, KDL +95a, LSB +20, Nob08, GBS +07, VGRS16].
Open-Source [BGG +15, AVA +16, LSB +20, Nob08].
OpenACC [ACC +21, CGK +16, CCBPGA15, GML +16, GM18, HTJ +16, HY20, JCP15, KDHZ18, KL15, Kom15, LLMV21a, LLMV21b, LBG +20, LB16, LSG12, LHZ +20, MGS +15, OGM +19, OGM +16, QHCC17, RLFDs13, SCJH19, STh22, Stp20, VGP +19, WLK +18, XJR21, XR21, EVPM20].
OpenACC-based [KL15].
OpenACC-like [HY20].
OpenACC-to-FPGA [LLVM21a, LLVM21b]. OpenCL [ABDP15, APBeF16, ASAK19, AB13, BLPP13, BBC +19, BDW16, BN12, BS21, BHW +12, BBH +15, BAS13, CJPC19, CDD +13, CP15, CLOL18, CZP21, CIJ +10, CHKK15, CCS19, CCK12, CS14, CLBS17, CBIGL19, CBS18, DARG13, Di 14, DWL +10, DWL +12, FAFD15, FLMR17, FDG19, FE17a, FE17b, FSV14, FVLS15, dFdOSR +19, GScFM13, GDMM17, HSO +21, HHS18, HD11, HE15, HHC +18, JSS +15, JCP +20, JKM +17, JR13,
JNL+15, JMdVG+17, KKM15, KH12, KM10, KKL11, KSL+12, KJJ+16, KNH+18, KB13, KPK13, Lee12, IWKA15, LNK+15, LCH+22, IWZ18, LL16, LAFA15, MC17, MKP22, MAIVAH14, MTU+15, MSZG17, MZLS20, MHSK16, ON12, OTK15, ORA12, PS19a, PCY14, PHW+13, PSB+19, PSH+20, PB12, RG18, RBW+20, RBG20, RVKP18, RVKG19, RGD13, RBB15, RGB+18, RRJ+20, RBG17, SFSV13, SPB+17, SAP16, SXM+18, SSB+17, SG14, SFLD15]. OpenCL [SGS10, Str12, THS+15, TSEE21, TK16, TMW17, TKP15, TY14, TL19, WTHH17, WMO19, WZH16, WTS19, WQKH20, WYH+21, YSWY14, YWT15, YSL+12, ZWL+17, ZT17, dAT17, KB21]. OpenCL-accelerated [ZWL+17]. OpenCL-Based [CLOL18, MZLS20, WTTH17, WZHZ16, JKM+17, SXM+18, WMO19]. OpenCL-like [TSEE21]. OpenCL-to-WebCL [CHKK15]. OpenCL-written [KH+18]. OpenCLC [LSB+20]. OpenFabrics [FCS+19]. OpenFOAM [TGS+20]. OpenGL [Ano98, Bae20, LHZ97, ORA12, Röt19]. OpenGL- [Röt19]. OpenHMPP [AAB+16]. openMosix [Slo05]. OpenMP [Cha05, CZG+08, CGK11, CMMR12, EV01, JMS14, MSc09, SH+10, Vos03, OKM12, ST02a, ST02b, Add01, ARW03, ABC+00, AC07, AHD12, ADK22, AAB+17, AELGE16, ACC+21, ACMZ12, ATL+12, ADT14, ACJ12, Ano97, Ano01b, Ano03, ABB20, AKE00, ADMV05, ADR+05, ASB18, AML+99, AGM06, AM07, ACD+09, ABB+10, BST+13, BBB+22, BR02, BAE22, BHP+03, BME02, Ben18, BN00, BF01, BBDH14, BW+12, BCC+00a, BCC+00b, BGK08, BGG+02, BS01, BS05, BCC+99, BBC+00, Bra97, Bri00, BDV03, BdS07, BGDs09, BFG+10, BGD12, BC00, BS07, BB00, BC19b, BK00, BKO00, BO01, BGE+10, BB18, CdOO+20, CRE99, CE00, Car07, CB00, CGLD01, CDK+01, CLY16, CM08, CM299, CHPP01, CBPP02, Cha02, CM05, CJvdP08, CGKM11, CMMR12, CLA+19, Cla98, CYG18, CCM+06, CCBPGA15, CCO0b]. OpenMP [CF19, Dah19, DM98, DW02, DBVF01, DFH+19, DKB20, DSG17, HD02a, DGH+19, DFC+07, DFA+09, ETW12, EB+20, EM00a, EM00b, EV01, EdS08, FGRT00, FSMG17, FSG19a, FS19b, FSX14, FM09, RSA08, GJP01, GMSK17, GG09, Goe02, GAVRRL17, GSH+00, GML+01, GOM+01, GAM+02, Gra09, HPP02, HP05, HDD09, HA10, HO14, HD02b, HDZ+20, HMK09, HANP00, HNK+01, HAJK01, HVSC11, HLCZ00, HT01, HCL05, HEHC09, HJY10, HHH19, HH22, HAA+11, IJM+05, ICC02, IOK00, ITT02, JC15, JKHK08, JPOJ12, JFY00, JY+03, JCH+08, JMM+11, JLG05, JR10, KB01, KS15a, KOB01, KaM10, KOB10, KN17, KKH03, KT02, KS14, KL+15, KBVP07, KBG+09, KQ+21, KSB+20, KVV01, KT10, KH15, KAC02, KC06, Kuh98, KPO00, KLM+19, KRG13, KSS00, KS001, KJEM12, LOHA01, LP00). OpenMP [LLRS02, LTS16, LBG+20, LD01, LMO09, LL13, LHC+07, LNW+12, LRLG19, LHWW05, LYSS+16, LA02, LA06, LdSB19, LMRG14, LH98, LL01, LLM+14, MK+12, MS02b, Mal01, MV02, MM07, MB12, Mar02, Mar03, MLC04, Mar05, Mar09, MP04, MCB05, Mat00a, Mat00b, Mat01a, Mat03, MG05, MG12, MG15, MM11, MGF+08, MKV+01, MBE03, MRRP11, MMDA19, MMS02, MKW11, MM14, MMS07, MJB15, MJBP16, MCI+08, Mül01, Mü02, Mü03, MBB+12, MBA21, NO20, Nks05, NIO+02, NIO+03, NEM17, NPP+00b, NPP+00c, NPP+00a, NPP+00d, NAAL01, NA01, NNON00, Nob08, NU05, NHT02, NHT06, OOS+08, OP10, OPW+12, PARB14, PPJ01, PVKE01, PK05, Per21, PZ12, PQR18, PRQ21, PGC02, PKE+10, Qui03, Ra05, RDLQ12,
RLVRGP12, RBAA05, SSE12, SSb+16, SHHl01, SHTS01, SKS01, SLGZ99, SGZ00.

OpenMP
[SPL+12, SdR+21, SHPT00, SSAS12, SK00, SB01, SBB20, SBB21, Sp02, Sp18, Sp20, SGL+20, SGS+21, Ta01, TMCh18, TBS12, TS12a, TS02, TSY00, TSN21, TSS00a, THD51, TSCaM12, TJFP12, ThR99, Tbg+02, THH+05, TGBS05, TMT+20, VLSPL91, VLCM+20, VDL+15, VPS17, VGS14, VGP+19, Vos03, Vre04, Wal00, Wal02, WCC12, WC15, WZW21, WJG+21, WMC+19, WPC07, WLYL20, WT11, WYLCl2, WT12, WLYC12, WT13, YK+18, YHL11, YWC11, YCL14, YKD17, YPA99, YSV+16, YSM+17, YYW+12, YCA18, ZAT+07, ZT20, ZWC21, ZSnH01, aMST07, dCZG06, vdP17, RM99, SGF00, WCS+13, EVMP20. OpenMP* [KDT+12]. OpenMP-based [ABB20, LNW+12]. OpenMP-like [BK00, BKO00, KOB01, VGS04]. OpenMP-oriented [MLC04]. OpenMP-parallel [IHSM19]. OpenMP-style [JPOJ12]. OpenMP/mpi [BEG+10, HM09, LLC13, LYSS+16, MG05, NO02b, Nk05a, SSB+16, SK00]. OpenMPI [DS22]. OpenSHMEM [HVA+16]. OpenTuner [BAG17].

OpenUH [HEHC09, LHC+07]. Operating [MM98, RGD97, TL19, USE94, Wi93, ARS89, Sei99]. operational [KOS+95a].

Operations [BIL99, BIC05, CAA00, FCLG07, FP08, GFO05, GLB00, FSM+14, PGB+05, TRG05, TG05, WRA02, ZLW20, BMG07, DS13, HMS+19, IDS16, KHB+99, KMH+14, LFW20, MB21, PGB+07, PKD95, SSS9, TFF21].

Optimising [DK20, KK19, NHT02, NHT06]. opportunistic [C10]. Opportunities [LB16]. optical [MRH+96]. Optimal [BP99, GAMR00, GZ99, B395a, ER12, PQ07, PTL+16, Sur95a]. optimiertes [Sei99]. optimisation [AMuHK15].

Optimising [Boo01, FKH02]. Optimistic [SCL00, CXB+12, PY95]. Optimization [AEL+20, BSG00, BNW01, DBA97, Goe02, HS12, Hus00, ITT02, KGR+03, KMH+14, LLVM21a, LLVM21b, LCV19, LdSB19, MC17, MBS15, MSH10, NIO+03, PSS00, SM03, SVL99, SWH15, TRG05, WTTTH17, WJ12, AMK02, BMS19, Cot93, DSOF11, DH22, FCS+12, HWS09, HDZ+20, KHS12, LME09, LDKJ13, MALM95, PP16, PS19a, PMM95, SKS01, SJD17, Stp20, Str12, TMW17, TMT+20, TFF21, VSW+13, Was96, XKL13, XFR21, ZWC21].

Optimizations [NSL16, SSE12, sys12, TSS00a, BVML12, HLL+20, HEHC09, LL16, MV17, SSH+19].

Optimize [SdR+21, BBW19, GVF+18, GFIS+18, WLC12]. Optimized [AKL16, ABG20, AMC+19, B102, FAFLD15, MAIVH14, PM95, PTH+04a, THS+15, THD51, WJB14, BKV+14, EBB+20, MMM13, Sei99]. optimizer [BHRS08, Rag96]. Optimizing [BGH+05, CXB+12, MMF15, KKP01, ME03, MZLS20, NSZS13, O96, SSAS12, TGL02, TG05, WK20, G02, LHC+07, RKB+13].

Options [RR00]. Orange [ACM98b]. orbit [CFF19, MBA21, SSN94]. Order [BL95, DFN12, LHZ18, EVMP20, KN17, KME09, KEGM10, KB13, MYB16, OGM+16, THDS19]. ordering [Zab12].

Origin [LL01, LSK04, ZSnH01]. Origin2000 [Bri00, MH01]. original [RNPM13]. Orlando [ACM98b]. Orleans [IEE96b, USE95]. ORNL [Bor99]. Orthogonal [SSB21]. orthogonality [THMH21]. OSCAR [I0K00, Slo05].

out-of-core [BL99]. Output [CFF+94, HE02, JWB96]. Outstanding [LSB15]. Overcoming [JHKH08].

Overhauling [BDW16]. Overseer [BR02, DFP+19, FST98a, XH96, CRGM16, KC94, KRS99, LZHY19, ZRQA11].

Overheads [BCG+10, BGdS09, BCM11, SS94]. Overlap [ADGA20, BRU05, DCPJ12, DCPJ14, MLAV10, PSK08, SH14].

Overview [CFF+96, Gre95, GL95c, Zo93, GHZ12, GPl+96, HHK+19, Wer95]. OWL [JKN+13]. Ownership [FHB+13]. Oxford [Boi97].

P [CAM12, WHDB05]. P-RnaPredict [WHDB05]. P03M [BJJ93]. P2P [GR07, GGL+08, GJR09, RS19, SBG+02].

P2P-MPI [GGL+08, GJR09]. P4 [KS06, Mat94, Mat95]. PA [ACM04, Ham95a, ACM96c]. Pablo [BFMT96a, BFMT96b]. Pablo-based [BFMT96a, BFMT96b]. Pacific [IEE95c].

Package [BKK20, BS93, HFB21, KCP+94b, KOW97, LW95, OD01, SYF96, TSN21, van97, BBH+12, BBH+15, CwCW+11, DFSW19, Gao03, KCP+94a, LFS93a, LFS93b, SL95].

Palm [KVH97]. Pairs [USE94]. Pairwise [AMHC11]. Palazzo [GT94]. PALLAS [KVVH97]. Palm [TSN21]. Papers [BBD+13, OL05, TB14, ACM90, CHD09, DKD07, GT19, IEE93a, IEE95c, KKD03, MTW07, Old02, TH20, Ano93g, Cha05].

PARA [DW94, DMV96, Was96, CB96]. parabolized [SCC95]. ParaCells [SYL19].

Paradigm [KKH03]. Paradigm [HIP02]. Paradigms [BG95, CHD09, HD02a, HD02b, Cd00+20]. Paradyne [MHC94a, MHC94b]. Paragon [Ano96c, HWW97, MP95, PR94a]. Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC11, AGH+95, AS92, ADRCT98, AK99, AMBG93, ASA97, AL96, AP96, Ano95b, ACR94, AB93a, AJF16, BHM94, BJJ93, BBG+95, BCGL97, BKK20, BFL99, BPF99, BG95, BS93, BBG+91a, BKM05, Ben01, BP98, Bha93, Bic95, BG08, Bis04, BAL95, BCL00, BSG00, BBG+99, BBC+00, BBG+01, BFZ97, BDL99, BDH+95, BDH+97, BT01b, BMS94b, BMPZ94a, BFM97, BKO00, BBH12, BGL00, CGC+02, CHD07, Cer99, CDZ+98, CCU99, CDK+01, Cha02, CGB+10, COE20, CNC10, CFF+94, CSW97, CMH99, CPF95, CSM97, Coo95b, CT94a, CT94b, CCO09, Cee15, DSM94, DK20, DRC01, DYN+06, DK13, DP+19, DI14, DI02, DAD19, DSS00, D+91, DKN+92, DGM93, DT94, DGH+97, DZDR95, DK06, DSC05, EKT99, EGR15, EM00a, EM00b, EGD92, EJL92, ES11, FGRD01].

Parallel [FHS99, FJBB+00, FP93, Fer98b, HKH01, dFdOR+19, Fis01, For95, FP92, FB94, FS93, FF95, GCBM97, GLN+08, GBD+94, GKP97, GR07, GSI97, GSKM17, GDM18, GB98, GHL97, GK10, GFPG12, GJN97, Gre94, GLS94, GLL97a, GLS99, GlkL97, HFB21, HJ98, HLP10, HO14, HK94, HK93, HK95, HKK94, HT01, HH22, HAA+11, IE93b, IE94a, IE94f, IE95h, IE95f, IE95g, IE95j, IE96b, IE96c, IE96g, IE97b].

Pagoda [YSS+17, YSS+19]. pairwise [AMMC11]. Palazzo [GT94]. PALLAS [KVVH97]. Palm [TSN21]. Papers [BBD+13, OL05, TB14, ACM90, CHD09, DKD07, GT19, IEE93a, IEE95c, KKD03, MTW07, Old02, TH20, Ano93g, Cha05]. PARA [DW94, DMV96, Was96, CB96]. parabolized [SCC95]. ParaCells [SYL19].

Paradigm [KKH03]. Paradigm [HIP02]. Paradigms [BG95, CHD09, HD02a, HD02b, Cd00+20]. Paradyne [MHC94a, MHC94b]. Paragon [Ano96c, HWW97, MP95, PR94a]. Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC11, AGH+95, AS92, ADRCT98, AK99, AMBG93, ASA97, AL96, AP96, Ano95b, ACR94, AB93a, AJF16, BHM94, BJJ93, BBG+95, BCGL97, BKK20, BFL99, BPF99, BG95, BS93, BBG+91a, BKM05, Ben01, BP98, Bha93, Bic95, BG08, Bis04, BAL95, BCL00, BSG00, BBG+99, BBC+00, BBG+01, BFZ97, BDL99, BDH+95, BDH+97, BT01b, BMS94b, BMPZ94a, BFM97, BKO00, BBH12, BGL00, CGC+02, CHD07, Cer99, CDZ+98, CCU99, CDK+01, Cha02, CGB+10, COE20, CNC10, CFF+94, CSW97, CMH99, CPF95, CSM97, Coo95b, CT94a, CT94b, CCO09, Cee16, DSM94, DK20, DRC01, DYN+06, DK13, DP+19, Di14, DI02, DAD19, DSS00, D+91, DKN+92, DGM93, DT94, DGH+97, DZDR95, DK06, DSC05, EKT99, EGR15, EM00a, EM00b, EGD92, EJL92, ES11, FGRD01].
parallel [MR96, MrVW+10, NSBR07, Neu94, NB96, NBGS08, NCKB12, NF94, OdSSL12, Ols95, Olu14, OW92, PHA10, PPT96b, PPT96c, PKB06, PBG+95, PNV01, PK99, PPF89, PY95, PBPT95, PSLT99, PCS94, Ram07, RJC95, RGP22, RBB15, Rol08b, RBB17, SBJLM14, SWCB20, SM12, SSKF95, SH94, Sch94, Sch99, SP96, SBF94, SWYC94, SK92, SCC96, SL00, SMAC08, SZ11, SLP99, SMS00, SVC+11, Smi93b, STT96, SH14, SRK+12, SLS96, Sta95a, Sta94, SMSW06, Sun95, Sur95a, Sut96, Swa01, SL95, TJD09, THDS19, TMPJ01, Uhl95a, Uhl95c, VM95, Vis95, Vos03, Wan97, WZW21, Was96, Was95a, WK08a, WK08b, WK08c, Wol92, WT11, WYLC12, WLYC12, WMP14, YLMTS+17, YHL11, YWCl11, YBLZ03, YYW+12, ZL06, ZWHS95, ZAFAM16, ZWL13, ZJDW18, ZT20, ZWL+17, dH94, ARL+94, An90e, An90f, ACDR94].

Parallel [BS94, BOS96, Bos96, CC95, Cza13, DSM94, DPK7, DW94, Edi18, EJL92, FR95, FF95, GN95, JPE94, JPP95, KKD05, Kum94, LkLC+03, Ml95, MKP+96, OKW95, PQ07, QR95, SS96, SPE95, Stp02, TDBEE11, TEGM09, Vol93, Pre04, WN10, YC98, ZPLS96, ZDR01, ZHS99].

Parallel-in-time [HFB21].

parallel-programming [KKJ+08].

parallel/distributed [HFC+95, Wan97].

parallelle [GEW98]. parallelles [BL94].

Parallelisation [SJ+17a, SJ+17b, WCV96, LF93b].

Parallelism [CGC+11, EdS08, EK97, FKK96, GLP+00, GAM+02, GPC+17, DK02, KT02, Mar03, MGA+17, MMS07, MdSC09, RBA05, SHM+10, SML17, SML19, SGZ00, SGL+20, TCM18, TSY00, TP+19, Thr99, YPAE09, ATL+12, AML+99, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, HY20, JC17, JPOJ12, Kos95b, MAAH20, OPP00, RKB+13, SLZ99, SHPT00, THH+05, TWF09, W009, WIF014, WRSY16, WZ21, YZ14, PdC+18].

Parallelization [AL93, And98, AAB+16, AIM97, BCM11, BS07, CRE99, CP97, Cou93, CF19, Cza03, ET94, HA10, JR10, Kik93, KLR+15, LP90, MB18, OD01, P96, QMG00, R96, R99, R97, SAS01, WPL95, WZWS08, WR01, aMST07, ACC+21, ABB00, AG01, BW12, D99, BJS99, CDD+96, FSG19a, Goo03, Ged02, IDS16, IJM+05, JL18, JY+03, JMS14, KS15a, KD12, KRG13, MCB05, MGG05, MMDA9, Nas92, NEM17, OLG+16, St018, TWF09, VB10, ZT20]. parallelize [KJ22]. Parallelized [FBSN01, OK00, AI+21, DFSW19, KMG99, OKM12].

Parallelizer [BHRS08]. Parallelizing [BST+13, Car07, GGH99, IKM00, IKM02, SR95, ZZ95, AMS94, BY12].

Parallldatorcentrum [Eng00].

Parallizing [LRQ01].

parameter [DH22, HPLT99, JMDV+17].

parameterizable [JCP+20].

parameterized [CT13]. Parameters [GFV99, BAG17, KSC+19]. Parametric [LLG12, Pat93]. parametrised [TG+20].

Paramid [St94]. Paraperm [LTDD14].

Paraprox [SJ+14]. Parasite [LLRS02].

Parity [MC17]. Paris [HVSH95, RS95, SHH94a, SHH94b]. Park [SL94a, IEE93c]. PARKBENCH [DHS96, DH95].

PARMACS [GR95, HZ96, HZ99]. PARMACS-to-MPI [HZ96].

ParNSS [HSMW04]. PARRAY [CCM12].

parsing [Sur95a]. Parsytec [SHH94a, SHH94b].

Part [VSR95, EM00a, EM00b, GK10]. Partial [DREC01, DLV16, FSSD17, KK02b, MK17, MFTB95, MH18, MKK21, OM96, ST17].
partially [CdGM96]. Particle
[GS97, KS91, SSV96, RB+21, ZO04,
BAS13, CFF19, FF99, GSKM17, KPK13,
RFH+95, VDL+15]. particle-based
[FFFC99]. particle-in-cell [VDL+15].
particle-mesh [BAS13]. particulate
[ATL+12]. Partition [DAD19, PS19a].
partitioned [DWS+21]. Partitionierung
[GR97]. Partitioning [CTK01, DAD19,
K11, SPB+17, STV97, WJ+21, CT13,
Ch96, Gr97, GKF13, YST08].
Partitioning-Based [WJG+21]. partners
[Str94]. Pasadena [IEE95c]. Pascal
[GDS+20, KC19]. PASCO [ACM97a].

passage [PTMF18]. Passing
[AMHC11, An93d, AKL99, Att96, BC19a,
BZ97, BC14, BHH+06, BBG+99, BBG+01,
BRU05, BDH+95, BDH+97, BGR97b,
BF97, CD97, Cer99, CGH94, Cot97,
Cot98, CTK00, Cot04, CDND11, DF97,
DK06, DH95, DH95a, DL00,
FKK96, FK96, FG98, FGG+98,
FG94, GR07, GB96, Gle93, GLRS01, GLS94,
GL95c, GLDS96, GL979, GLS99, GLT00b,
GLT00a, GL94, IB+10, KTF93, KGR91,
K97, KS01, KVD03, KKD04, KKD05,
LKD08, LK10, Lu99, MP98a, MP98b,
MT99, MS98, MSL96, MB99, MG97,
MTW06, MSS97, NW98, PB90, P96,
PS01a, RRBL01, R9D9, RF9+00,
SWH05, SL+10, ST92b, TGT05, TDB00,
TBD12, WD96, Wer95, Wis97, YHGL01,
ZG95a, ZG96, ZL+12, Ad98, AD98,
ACh+05, An93e, An94d, An95c, An00a,
An00b, Bl97, BvdS99]. passing
[Bj95, Br95, BDW97, BFIM99, CGJ+00,
CDZ+98, CR99, CD01, DFK93, DM93,
DK05, DS96b, DH95b, DSW96,
DL99, DKP00, DLO03, FK94, FBB+13,
GL92, HP95, HPY+95, Hen96, JK92,
KA+93, Kra02, LR06a, LBD+96, WL94,
LC96, LMM+15, LC97b, MP95, NS91,
PS07, PKB06, Pie94, PR94a, PS00b, Sc99,
SJJ95, SDV+95, SZ99, SSS95, St94,
TS94, VM95, Wal94a, Wal94b, ZWL13,
ZR914, DI96, GGHL+96, Han98, Hen94,
RF996, SG95, Wer95, YGH+14]. Past
[Dar01]. Path [CGPR98, GSYT21,
GAMR00, SDJ17, SLN+12, Zel95].
path-based [SLN+12]. pathological
[LCH+22]. Pathway [CNM11]. PATOP
[BF99]. Pattern [CSW12, CC17,
JPL17, RDB99, MA90, SJL14].
pattern-based [S14].
Pattern-Independent [CSW12].
Patterned [ST17]. Patterns
[DM97, FPP08, KB98, MS95,
P9+16, Pro21, RRAG97, SG912, SR98,
DZZ94, GAVR97, HGMW12].
Lg99a+19, PM95, PS9+10]. PC
[AH00, CD05, EKT99, K91, LK904,
RLL01, Ste00, WLYC12, YST08, YL90,
ZH920, MB9+94]. PC-Cluster [RLL01].
PCAT [ACD94, GN95]. PCAT-93
[ACD94]. PCAT-94 [GN95]. PCG
[BJS97]. PCI [K97]. PCI-based [K97].
PCRCW [BS94]. PCs [CRE99]. PCSC
[L94]. PCTE [H94]. PCTRAN
[KHS01]. PCS [Y96]. PDE
[GBR15, KTXP21, H902, R906, N912].
PDES [PT01, SL90, SL91, CO+20,
HO14, HHA95]. PDGC [CBG+90]. PDP
[IEE96g]. pearl [HLK+20]. Peer [GR07].
Peer-to-Peer [GR07]. PELCR [PQ07].
PEMP [FB95]. PEMP[is [M95].
Pennsylvania [ACM96b, I944].
pendadiagonal [GNP19, Kan12]. Pentium
[An93]. Pentium(R) [SBT04].
PENTRAN [KHS01]. people
[ASCS95, An94a]. per-triangle [SOA11].
perception [CLM+95]. perceptual
[WPL95]. perform [CB91].
Performance
[ACM97b, ACM98a, ACM98b, ACM99,
ACM01, ACM04, AC07, ATM01, AR01,
An01a, An01b, ADR+05, AG+20, Bak98,
BBG96, Ben18, BN00, BS21, BBD14,
BGG+02, BY12, BRM03, BRST94, BS07,
BDL98, BCKP00, BHNW01, BFMT96b, BFW01, BEG+10, CGK+16, CVPS19, CDD+13, CRE99, CDJ95, CGLD01, CBB+21, CNM11, Che99, COE20, CSC96, CCBPGA15, DPSD08, DM95b, DW02, DZ98b, DPP01, DWL+10, DBK+09, EGH99, EGC02, EML98, EML00, FD02a, FGRT00, FCP+01, FSC+11, FST98b, FGKT97, GFD03, GKP96, GGS99, GBH99, GFIS+18, GRRM99, GBS+07, GC05, GMDMB+07, GSY+13, HVA+16, HKN+01, Hol12, HF14a, HF14b, Hps95, Has98, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IFI95, IADB19, JSS+15, JC17, JCH+08, JS13, JLG05, KDSO12, KaM10, KL94, KH12, KBS04, KBM97.] Performance [KC19, KKP01, KH15, KC06, KK02b, KHS01, Laf01, LAdS+15, LWSB19, LCK11, LC97a, LB98, LGCH99, LNK+15, LH98, LC93, LkLC+03, LW28, LNW+12, LRLG19, LS10, LCW+03, LVP04, LW04, LDC297, LZYH19, LC97b, LKYS04, MM+94, MKP+96, MPD04, ME17, MGMM97, MGC12, MM02, MOl05, MS99a, MHC94b, MMSW02, MK04, MCLD01, MMH99, MM14, MMS07, MLZS20, NLSV16, NMW93, NKF98, NPP+00d, NMS+14, NN95, OTK15, OPJ+19, OF00, OLG01, PARB14, PKB01, PHJM11, PZ12, PR94b, PFG97, PGAB+05, PGAB+07, PG02, PY95, PTH+01b, PS01b, QHCC17, QB12, Rab98, RBB97a, RBB97c, RH01, RRAGM97, Ros13, RSt06, SGJ+03, SPM+10, SLJ+14, SWHP05, SCP97, SEF+16, SPL+12, SCSL12, SM02, SM03, SSC97, SJ02, SSSS97, SC96b, SKH96, SJK+17a, SJK+17b, TSB02, TSB03, TTY00]. Performance [Ten95, Tha98, TGB+02, TGT10, Tra12b, TFGM02, TFZZ12, VFDP02, VY02, WZM17, WQKH20, WN10, WAS95b, WM01, WT11, WT12, WT13, WYZ+19, XF95, XH96, XXL13, YC98, Yan94, YWC11, YS93, YWCF15, YSP+05, ZLGS99, ZWLZ21, ZWK05, ZHK06, Zhao21, ZSuH01, ABDP15, Ahm97, ADLL03a, ADLL03b, Ano03, AFST95, BDP+10, BAE22, Be96, BPJ22, BDV03, BFMT96a, BFIM99, CRE01, CAHT17, CLYC16, CBPP02, CBM+08, CHKK15, DL95a, DL10, D96, D+95, DWL+12, DE91, Duv92, EFR+05, ESB13, FAF16, FD02b, FE17a, FE17b, FSV14, FME+12, Fin97, GV+18, GS02, GGC+07, Gk97, Gr95, GHZ12, GML+16, GSN+00, GL96, GLDS96, GL97c, GL99, GWPV+14, HDDD90, HkL+20, HW11, HGX+22, HASn00, HAJK01, HMs+19, HK10, HVSC11, HHA95, HG12, HcF05, JKH08, JHM+11, JKN+13, KBP16, KKM15, Ks13, KSC+19, LBD+96]. performance [LTC94, LFS+19, LC07, LML+19, LBH12, LCY96, LB96, LL01, LKJ03, LSK04, MCI7, MP95, MSMC15, MSW+05, MSL12, MKP22, MABC96, MHC94a, MSZG17, MPJB16, MG+15, NUN05, NFG+10, OH10, Old02, PG+13, PS19a, PH+13, PGK+10, PF05, PMZM16, PTW99, Rab99, RMS+18, RPS19, Reu03, RGDM15, RJDH14, Sep93, SF095, SPB10, SWJ95, St05, SVC+11, SK00, SFLD15, TMC09, TSP95, TG09, TH+94, VDL+15, Wor96, XR21, YCL14, ZSK15, ZWL13, ZGZS20, dat17, HS95a, GH94, LCHS96, SSH08]. performance-aware [MSMC15]. Performance-based [YWC11]. Performance-Driven [LWSB19]. Performance-Neutral [CBB+21]. Performance-Portable [JSS+15, DWL+10, DWL+12, FAF16]. performance-prediction [BDV03]. performance/power [RPS19]. Performances [GFV99, DS96b, IM94]. Performing [CC99]. Peridynamic [MSZG17]. Periscope [LG16]. perishable [OHG19]. Permutations [CC99, LTDD14]. Persistent [Man01, SG12, HMs+19]. Persistent-Sets [SG12]. Personal
Portland [ACM99, ANS95, IEE93e, SW91].
Portugal [IEE93d, IEE96g].
Positron [Pat93].
POSIX [LD01].
Post [BBH13b, Wit16, ABC00].
Post-failure [BBH13b].
Post-ISA [Wit16].
Poster [JJPL17, LZH17].
POSYBL [Mat94].
Potential [EGC02, Gro01a, KS15a].
potentials [THDS19].
Potts [KO14].
POV [FFB99].
POV-Ray [FFB99].
Power [DDN22, LWZ18, LB96, EZBA16, FO94, HK10, Nel93, RPS19, SM19, Bri95, DDN22].
Power-Efficient [DDN22].
Powered [NE98, RTN21].
PP [IEE96d].
PPARDB [PPT96b, PPT96a, PPT96c].
PPARDB/PVM [PPT96b, PPT96c].
PPPE [CDH94].
PPSN [DSM94].
PPT [BAE22].
PPT-Multicore [BAE22].
Practical [AC17].
Pre [AC17].
Pre-processor [AC17].
Precedence [EGR15].
Precedence-Constrained [EGR15].
Precise [FK17].
Precession [Ano98, Kha13, ZC10, JPT14].
Precisions [HDW21].
Preconditioned [GFPG12, ABF17, MM92].
Preconditioner [BBS99, FSXZ14].
Preconditioners [Huc96].
Preconditioning [MYL21, Nak93, GGC07].
predictability [GRRM99].
Predicting [RRAGM97].
Prediction [MLO10, WGD95, ZWJK05, ADR05, BAE22, BDV03, CMV94, HHA95, RBA17, SEC15, SC96b, SSN94, Was95a, ZAT07].
Predictive [FK17].
Preemptive [BBH06, BBGL96].
Preface [DKD07, OL05].
Prefetching [BIC10, KC19].
Prefix [WJ12, DK13, MYB16].
Preliminary [GFPG12].
Present [Dar01].
presented [ACM90].
preservation [IEE94c].
Preserving [NRPM13].
Press [Ano95b, Ano95c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, Edd18].
Pricing [RR00].
Primitives [DDL00, FST98a, ZLWW20, ABPD15, CLJ10, STP19].
Princeton [Bha93].
principles [BSC99, HS12, SSP94].
print [YM97].
priority [DR95, Man98].
Prism [SD99].
private [Str94].
privatization [KRG13].
Probabilistic [LAdS15].
Probability [QRMG96, Sta95b].
Problem [BSH15, DALD18, DAK98, GAMR00, ICC02, Lee06, MTSS94, RLVGP12, ZSNH01, AB93b, DSM94, GM94, GKF13, GADM20, HMKV94, HMI05, MM92, RRJ20, SL00, SP11, TSCS14, Cza13].
Problems [ASA97, BHM94, BHM96, BM01, BMN97, CGPR98, EML98, HAA11, DK02, LMS18, MBS15, Nak93, Riz17, AL96, CEGS07, FR95, JRG21, LSR95, NZZ94, OMK90, SC96a, SD99, TGS20].
procedure [AGLv96].
Proceedings [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM04, ACDR94, CJNW95, GN95, Hol12, IE93f, IE95d, IEO02, KG93, LCK11, MC94, RV00, R92, SM07, Ten95, TG94, dGMJ94, ACM96b, Ano94e, Ano94i, BPG94, Boi97, BH95, CLM95, DSZ94, DE91, EJL92, FF95, GH93, HK95, HHHK94, IEE94a, IEE94b, IEE94c, IE95b, IE95e, IEE96a, IE97c, IEO05, JPT94, Km94, LF93a, Li96, PS94, PB95, SBE95, SW91, WPH94, ACM90, ACM95a, ACM95b, ACM96b, ACM06a, ATC94, Agr95a, AGH95, AH95, Ano89, Ano92].
Proceedings [IEE95k, IEE95i, IEE95f, IEE95l, IEE95g, IEE95j, IEE96g, IEE96f, IEE96e, IEE96d, IEE97b, IEE05, IOK00, JDB +14, KO101, KS15b, LSVMW08, MLGW18, MC18, MSML10, Nar95, NH95, NJ01, OWO98, PLR02, PD98, Ree96, RRBL01, Rol94, SCP97, Sev98, Sie94, Sn93, VLO +08, WN10, AB95, Ano94f, ASB18, BJ13, BHS18, BMFR96, CFPS95, CLASPD99, DSZ94, FWS +17, GDC15, GGGC99, Gre94, HAM95b, HCC +20, HPS +96, JPL22, JC96, Kat93, KB21, Kum94, LHLK10, LG93, PSB +94, PBPT95, RKBA +13, Röh00, RCG95, SSS99, SLS96, VDL +15, Wol92, WWFT11].

Process-Management [BGL00].

programs [CGG10]. Programming [ACM90, Ada97, ACRG97, ASA97, ACJ12, Ano96b, BBG +10, BL093, BHV12, BF01, BBG +99, BBG +01, BK000, CMK00, CDF +01, CKmWH16, Cha02, CZG +08, CF01, Cza03, DMS98, DSU20, DARG13, DLL00, DK06, DWL +10, EM00a, EM00b, FTVB00, FWR +95, GLRS01, GLS94, GLS99, HSO +21, HAI11, HDB +12, HDT +15, KKH03, Kep05, KP96, KmWH10, KVH79, Lad04, Laf01, LLRS02, MSOGR01, Mat94,
Mat95, MSM05, MCdS+08, NO02b, SPM+10, SK10, SS01, SDN99, SHH94b, ST02a, ST02b, SGS10, Stp02, TTP97, VT97, Vre04, Wal01a, Wal02, WO97, YW97, YHGL01, YCA18, ACGrT02, AmnHK15, Ano95c, Ano00b, AB13, BJ13, BCA+06, BB94, BS96a, BKH+13, CPM+18, CLYC16, Chat05, CvdP08, CEF+95, CDH+94, CGH+14, DWL+12, Duv92, EASS95, EVMP20, EV01, FSF91b, FB95, FB96, Fun98, FSTG99, Fer04. programming [Fra95, FHB+13, FF95, GKS12, Ge96, GBH14, GBH18, GRTZ10, HTA08, HS93, HDZ+20, HZ94, HDB+13, HVSH95, HSW+12, HZG08, HY20, JPL22, KDSO12, KOB01, KSG13, KSL+12, KLV15, KPNM16, KFSS94, KKJ+08, L12, LFS93a, LFS93b, LH98, LPD+11, LLLH+14, MMB+94, MVT96, MSP93, MC99, MGC+15, NO02a, Nak05a, NYNT12, NB908, OIS+06, Obi14, OW92, Pac07, PVK1E01, PF05, Qui03, RBW+20, RJH14, STP+19, iSYS12, SSKF95, SYR+09, Seg10, SPK96, SBF94, SPL99, SIIH94a, SD99, VP00, Vos03, Wal01b, Wan02, WCC+07, WADC99, WYLC12, WYLC12, YHL11, YWC11, YX95, YS93, ZWC21, ZGC94, DRS94, HSE+17, Che10, SD13]. Programs [AJF16, Beg93b, BKdS01, BGK08, BG+02, BDL98, BGL00, CSW12, CRE99, CHP00, CD98, DLB07, DMM97, Di 14, FKH02, FJK+17, GR07, GTH96, GSYT21, GL04, GC05, HC10, HKN01, HM01, JLG05, KFL05, KL94, KJSJ14, KKV01, KSV01, Mar09, MYY95, MLO10, MBE03, MKW11, MCLD01, MJB15, NSZS13, NE98, NE01, NPP+06d, OM96, PPJ01, RH01, RFG+00, SGZ00, SBF+04, SR96, TGBS05, WYH+21, Wc94, Wsl97, ZLL+12, Beg92, Beg93c, Beg93a, BCK+09, BPMPS03, CRE01, CLdJ+15, CGL+93, CH94, CRM14, CFP96, DKF93, DKF94b, EP96, EPP+17, FSF91a, FLB+05, FKLB08, GGH99, GRRM99, GKS+11, GB94, HD11, HZ96, HLOC96, HEHC09, KCD+97, KS13, KO14, Kor15, KL+19, LGKQ10, LLG12, LL16, LBB+16, LYSS+16, LMM+15, LZC+02, LCC+03, MT96, MdSAS+18, Mor95, NBK99, Obe96]. programs [OdS12, PES99, PAdS+17, RAS16, Ren03, RRG+99, SSB+16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, TTH+05, TGLK19, UGT09, VVD+09, WZW21, YSM+16, YSM+17, YY+12, ZJZW18, ZRAA11]. Progress [BRU05, LAdS+15, SPH+18, DJJ+19, MLA+14, RSC+19, MC94]. Progress-Dependence [LAdS+15]. Project [BHK+06, BSH15, DHK97, MRV00, ABC+00, BBB+20, CDH+94]. Promise [Ano93e]. Promotion [OCY+15, WBB15]. Propagation [EMO93, ESM+94, JML01, SMOE93, ASAK19, KEGM10, RMN+12, ZWC21]. proper [TGS+20]. Properties [FGRT00, JL18, MS96b, SSP+94]. Proposal [DHHW92, DHHW93a, DFC+07, DFA+09, ZKRA14]. Proposals [Wal96b]. protected [GH12]. Protein [RGB+18, GAVRRL17, RJH+20, SEC15, ZAT+07]. protein-protein [RJH+20]. proteins [BHW+12, BBH+15, FMS15]. Protocol [CAWL17, GSY+13, KL11, LMM+15, RA09, XF95, BBB+13, CW+11, DDM99, MN91, MB00, ZPI06]. Protocol-based [LMM+15], Protocols [BCH+08, DDN+22, DM93, LH98, LZZ+20]. Protoplanetary [dlFMBdlFM02]. Prototype [Ano01b, FHP+94, MMSW02, BK96, CCF+94, KLY03, KLY05]. Prototyping [SX+18, Spe19]. proven [Sut96]. Provide [Add01, LMRG14]. Provides [Ano98, Ne99]. Providing [GKP97, Zah12]. Proving [MS96b]. PRS [UCW95]. pruned [dFDSR19]. Pruning [SMM+16, WQKH20]. PS [AMV94]. Pseudo [Wal01a, Lan09]. Pseudo-search [Wal01a]. Pseudorandom [WHDB05, Stp20]. Pseudospectra
WL96b, WCS99, Wu99, WLC07, XWZ96, XF95, YG96, YKI+96. **PVM** [ZPL96, ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, Zol93, van93, NMC95, Ano95b].

PVM-AMBER [SL95]. **PVM-Based** [WAS95b, FO94, PY95, Sut96, ZPL96, LSZL02, TD98].

PVM-GRACE [YKI+96]. **PVM-Implementation** [BJ897, Huc96].

PVM-RPC [KS97]. **PVM-GRACE** [YKI+96]. **PVM-Implementation** [BJS97, Huc96].

PVM3 [IM94]. **PVM3/AP1000** [IM94]. **PVMaple** [Pet00a, Pet00b, Pet01]. **PVMe** [BR95c, BR95b]. **PVMGeant** [DZDR95]. **PVMPI** [FD96, FDG97a, FDG97b]. **PyCUDA** [KPL+12]. **PyMGRIT** [HFB21]. **PyOpenCL** [KPL+12]. **pySDC** [Spe19]. **pySDC-Prototyping** [Spe19]. **PySPH** [RBP+21].

Python [BL97, DPS05, DPSD08, Di 14, DFSW19, GFB+14, HFB21, RBP+21, SSH08].

Python-based [RBP+21]. **PyTrilinos** [SSH08].

Q [KMH+14, LM113, MV17]. **QAPs** [Tsu12].

QCD [BLPP13, GM18, SVC+11]. **QCG** [ACH+11]. **QCG-OMPI** [ACH+11].

QCPI [TD99]. **QMPI** [EYP+20].

QNSTOP [AEW+20]. **QoS** [LYGG20].

QoS-Oriented [LYGG20]. **QR** [GKK09, LC97b]. **QSATS** [Hin11].

QSW_MPI [MW21]. **Quadratic** [Cza13].

Quadratics [YSP+05, LCW+03]. **quadtree** [HS95b, PGBF+07, SCC96, Sur95b, TK19]. **quadtree/octree** [TK19].

rCUDA [CPM+18, IPG+18, PRS16, PS19b, PIR+20, RCS+15, RPS19, RS19, RS21, SRP17, SPBR20]. **RDMA** [GSY+13, LWP04, Pan14, RA09].

RDMA-Based [LWP04]. **RDMA-Enabled** [GSY+13, Pan14, RA09].

Re [MCP17]. **Re-Vectorization** [MCP17].

Reaching [BHS+02]. **Reaction** [HF14a, HF14b].

Ray [CG93, DP94, KGB+09, FWS+17, SGS95, FFB99]. **Ray-Tracing** [DP94]. **Rayleigh** [TV96].

Rayleigh-Benzard [TV96]. **Rayleigh-Benard** [TV96].

rCUDA [CPM+18, IPG+18, PRS16, PS19b, PIR+20, RCS+15, RPS19, RS19, RS21, SRP17, SPBR20]. **RDMA** [GSY+13, LWP04, Pan14, RA09].

R&D [MCP17]. **Re-Vectorization** [MCP17].

Reaching [BHS+02]. **Reaction** [HF14a, HF14b]. **Re** [MCP17].

Read [SSLMW10]. **readability** [SM12].
S [AHHP17, Röhl00]. S-Caffe [AHHP17].
S-language [Röhl00]. S1 [GLT00b]. S3D [LSG12]. SAEO [GSYS21]. Safe [Pia02, GCS99, LFS92, LFS93a, LFS93b, NYNT12]. Safety [CLA+19, GT07]. salesman [GM94].
Salt [Hol12]. sampling
[CBS18, SOYHDD19, WYL12]. San
[ACM97b, Ano95d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IE95b, IEE95g, IEE97c, LF+93a, NM95]. Sanders [Che10].
Sandy [VDL+15]. Santa
[ACM95b, Ah95, IEE95f, Old02, RV00]. Santorini [CD01, CND11].
Santorini/Thera [CD01]. Saphir
[Ano99c, Ano99d]. SAR [AB95]. Satellite
[Uhl94, Uhl95b, SSN94]. Satisfiability
[IKM+01, IKM+02]. saturated [TOC18].
Saturday [B+05]. Saturday-Wednesday
[B+05]. Save [ADG97, CFL05, FKL08].
Saving [CBB+21]. SBS [MSB97, WWZ+96].
SBS-Type [MSB97]. SC’11 [LCK11].
SC2000 [ACM00]. SC2001 [ACM01].
[ACM97b, ACM97b]. SC98
[ACM98b, ACM98b]. SC’99 [ACM99].
Scalability [Ben18, BSO7, FSC+11, KBS04, LL01, LKYS04, LSK04, VLSPL19]. Scalable
[Add01, AHHP17, BHW+17, BBC+02, BHNW01, BGL00, CGS15, CLE+20, CDP03, EFR+05, GFB+14, GS94, HIC17, HGMW12, IEE92, IE94f, IEE05j, IBC+10, KTB+19, KK98, LTS16, kLC+06. MFP03, NBGS08, NFP+00d, NCKB12, NSM12, OLG01, PPJ01, PR94b, PBK00, SDJ17, SBF+04, Skj93, SS96, TPD15, TPV20, UP01, VBLvG08, VV02, ZLGS99, ZL818, BBG+94, Br95, CLSP07, FWS+17, GBH14, GBH18, GMI3, GKL05, HRR+11, HAJK01, KRC17, KRG13, LM99, LTLC94, MMB+94, MRRP11, PWD+12, SPK+12, Trä12a]. ScalAPACK
[BV99, BR99, DHP97]. Scale
[AK00, AFGR18, BHW+17, BZ97, BHNW01, CBB+20, FFP03, HC17, MFP03, SM03, TGEM09, WMC+18, WT12, AASB08, BKK20, BCA+06, BJS99, BCH+08, Che99, DZZY94, FME+12, Gua16, IP+18, Kos95b, LS10, MLA+14, NWT21, PTL+16, PD11, RMMN+12, SIC+19, Svl99, TBB12, WLNLO6, WT11, WT13, ZKRA14, ZA14, Ben18]. SCALE-EA [Ben18]. Scale-Out [AFGR18]. Scale-Up [AFGR18].
SCALEA [TFGM02]. Scaling
[CC17, GDS+20, KFL05, SLJ+14, FKL08, Gao03, FL11, PDY14]. scan
[AAA16, YLZ13]. scaline [CT13]. scans
[NAJ99]. SCASH [SHHI01]. SCATCI
[ART17]. scatter [BCD96, MK16].
Scattering [BCL00, NZ94, OKM09]. SCF
[MM95]. schedule [NAAL01]. scheduler
[ADDR95, TCVB10, WRSY16]. schedule
ers [AV18, NP12]. Scheduling
[BBH+06, BSH15, CML04, DMB16, EGR15, GDM17, GSHL02, GHL97, HC06, JYW6, MJ95, NIO+02, NO+03, SM19, SNN+20, SGL+20, TIPF12, WJG+21, APFC16, DZ98a, HC17, JKN+13, KSC+19, LHT96, MBKM12, NSBR07, OPW+12, Smi93b, SKK+12, SKB+14, WLYLC12, WLYC12, YWC11].
Scheme [CTK01, LNEE00, MW98, SBF+04, Bae20, BBGL96, Bjo95, MRP11, OKM12, SCC96, YPZC95, FM90]. Schemes
[HC17, PPJ01, MPS20, WLYLC12, WLYC12, ZAT+07]. Schmidt [CBYG18]. School
[VV95]. Schrödinger [DM12, ON12]. SCI
[FS97, HEH98, Us00, RR101, ZHS99].
SCIDDL [AB+96, AGLV96].
SCIDDL-PVM [AB+96]. Science
[Ed18, EGH+14, IEE95d, Mat16, MMH93, Old02, SM07, ACM06a, DMW06, HK93].
Sciences [ERS96, HS94, ZL96, ERS95]. Scientific
[AGH+95, APJ+16, BBG+95, DCMK+92, DT94, Gt95, GL97a, HJ98, KKO2a, LWSB19, LkLC+03, Mar06, Nag05, Sin93, SSB+17, VV02, WN10, ACC+21, Bis04, DW94, SBG+12, SIC+19, TBB12, WT13, Ano97, Bra97]. scientists
[HW11, Str94]. SCI-PAL [KH15]. SCIPVM
Scope
[OCY+15, BDB+13, WBBD15], scripting
[RDQ12, WC15]. Scottsdale [IEE95b].
Scratchpad [JAK17, MB12]. Scripting
[Ong02, KPL+15]. BDB [13, WBBD15]. SDK
[TK16]. SDM [CCM+06]. Sea [LPJ98].
Seamless [KK02a, LdSB19]. Search
[BSH15, Cza13, IEE96d, IEE96i, LHHM96, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFM96, DMW96, FR95, KN17, Li96].
Second-Order [BL95, KN17]. Secondary
[WHDB05, SEC15, ZAT+07].
segment-based [FJZ+14]. Segmentation
[KBA02, AD95, CCM+06]. Seidel
[BG95, LM99, Ols95]. Seismic
[OWO98, AMBG93, KL95, KEGM10, LM13, QHCC17, RMMN+12, SS99, WCVR96].
Seisograms [DP94]. Select [KKDV03].
Selected [DHS96, MTW07, OL05, TB14, TH20, CHD09, Cha05, DDK07, JC17, KC19].
selecting [PTL+16]. Selection
[CKmWH16, SNN+19, GDEBC20, PGBF+07, WKS96, ZWL+17].
Select [KSS+02]. Self
[HC17, NSS12, SLJ+14, TGT10, VFD02, NSB07, WYLCL12, WLYC12, YWC11].
Self-Consistent [TGT10]. Self-scheduling
[H17, NSB07, WYLCL12, WLYC12, YWC11].
Self-Submitting [NSS12].
Self-Tuning [SLJ+14]. Semantic
[EADT19, MTU+15, DFK94a, OA17].
Semantically [MKW11]. semantics
[RNP13]. Semaphores [TTP97]. Semi
[CT94a, Bjo95, PSLT99, TC94, CT94b].
semi-coarsening [PSLT99]. semi-implicit
[Bjo95]. Semi-Lagrangian
[CT94a, TC94, CT94b]. Semiconductor
[GJN97, Ano03, LS10]. Seminar
[Ano94f, Ano93h]. Send [GPC+17]. Sender
[BCH+03]. Sensored [GCGC99]. sensitive
[GKCF12]. Sensitivity [dLR04]. Separable
[Ben01, CdmG96]. September
[ABr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, CLM+95, CHD07, CJNW95, CD01, CND11, DKD05, DKD07, DLM99, DKP00, DLO03, EJL92, FK95, FR95, GHH+93, IEE93d, IEE94c, JPT94, KGRD10, Kru02, KKD04, LKD08, Mal95, MTWD06, OL05, PSB+94, RWD9, SP95, SM07, TMD12, VV95, VW92, WPH94, YH96].
Sequence
[GMU95, SMM+16, AMHC11, TSZC94].
sequences
[dFdOSR+19, GAVRRL17, SdM10].
Sequencing [VPS17]. Sequential [EK97, RPM+08, GG99, SR95, TNIB17, TSZC94].
Serial [SWH15, HPS+96, HWS09].
serialization [CFKL00]. Serialized [KH10].
Serielles [BL94]. Series [Nag05, BR94].
Server [Ano93f, AFGR18, FSL98, K597, Mat01b, Sch93, Sto98, Vis95]. Server-Class
[AFGR18]. serverless [NRdA+20]. Servers
[CGC+02, SIS17, GKK97]. Service
[RFG+00, LS90, SPK+12]. Services
[FC05, LB+18, AAC+05, ZKRA14].
Session [NYNT12, ZL96]. Set
[BD+18, SW12, WL96a, Ano00a, Ano00b, PSH+20, She95, THM21, WL96b]. Sets
[SG12, CGL+93]. setting [GL95a]. Setup
[NSLV16]. Seventh [BBG+95, HS94, IEE93b, IEE95g, IEE96h, Eng00, Y+93].
several [GBR15]. SGI
[Che99, CML04, KMG99, LB96, LL01, LKJ03, LSK04, TW12, ZSH01].
SGI/CRAY [Che99]. SGI/CRAY-T3E
[Che99]. shadow [SOA1]. shallow
[DS22, STA20, dIAM11, dIAMCFN12].
Shane [SD13]. Shanghai [IEE97]. shaped
[ZWC21]. SHARE
Shared
[ADGA20, BCA06, BME02, Bri10, CDT05, DM08, DMB16, FKH02, FB94, GB96, GLR01, HC10, HDB+12, HT01, KB98, KSHS01, LRT07, Lru09, MBE03, McDS+08, Miil02, NPP+00d, PBK00, Pok96, PS00b, Ros13, S01, STY99, ST02b, Thr99, VS00, VT97, ABC95a, ABC95b, ADMV05, BMG07, CdOO+20, CBPP02, CJvD08, Cha96, CCM+06, CC00b, DBVF01, DS96b, DP97, EVMP20, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JE95, KJA+93, KC06, LKL96, ML04, PK05, QM21, RGD15, SHH01, SL94b, SFL+94, SSC96, TSY99, TSY00, THDS19, Vos03, WLYL20, WK20, WMRR17, WMR19, YWO95, YX95, Cha01].

Shared-Memory
[DM98, HDB+12, NPP+00d, Pok96, Thr99, PS00b, ABC95a, BMG07, CdOO+20, EVMP20, GL96, GL97c, KJA+93, PK05, TSY00].

Shared/distributed [THDS19].

Shared-Memory
[Att96, CML04, CB16, DI96, JAK17, KK98, LYGG20, JE95, Ot93, PRS+14].

Shear [JAT97].

Shearlet [KLR16].

Shearlet [KLR16].

Sharing [Att96, CML04, CB16, DI96, JAK17, KK98, LYGG20, JE95, Ot93, PRS+14].

Short-Read [SSLMW10].

Shorter [NB96].

Showcase [USE00].

SHPC [IEE92].

SHPC [IEE92].

SHAP-92 [IEE92].

SiAM
[BBG+95, DKM+92, Sin93].

Side [kLCW07].

Sized
[BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, MB00, TG05, TH00, ZSG12, bT01a, BM00, DPFT19, DBB+16, GBH18, LSK04, MS90c, PGK+10, GBH14].

SIGCSE [ACM06a].

Signal [IEE95c].

Signals [Uhl95c].

Signatures [Gro00].

Significance [AMHC11].

Silent [FME+12].

Silicon [LHZ+20, Ano03, Goe02, ZL18].

Silicon-Monona [ZL18].

SIMD
[BvdB94, HS95b, KDT+12, LL16, Sur95b, VSW+13, WMK+19, vdp17].

Similarity
[LSB+20].

Simple
[MSF00, MI01, SC04, BC19b, ITT99, JH97, JKN22, Nes10, PGPK21, PV01].

simulate [Heb93].

Simulated
[BHMH94, BH96, FH97, MPZ21, RSBT95].

Simulation
[CDMS15, CCBPA15, DMMV97, DZDR95, GSI97, GM95, GN97, Han95a, JML01, KDHZ18, KBM97, KMK16, LLRS02, MFTB95, MPD04, MANR09, PCY14, PKYW95, PZKK02, RR00, RDMB99, SSAS12, SXMY+18, Str97, Ten95, UZC+12, VT19, WM+18, ZZO4, ZJK05, diaMC11, ASA19, Ano95d, ADR+05, BJ95, BCM+16, BH95, BMPZ94b, CwCW+11, CSPM+96, DSO11, FHS99, FO94, FLP18, FFFC99, GRTZ10, IPG+18, JAT97, JLS+14, KTJT03, KNH+18, KMC96, KMC97, LFS+19, LH+20, LCVD94a, LCVD94a, LYZ13, MMW96, MWP21, MALM95, NS20, NB96, NF94, OKM12, PAR14, PY95, RFH95, SWYC94, SPP+94, SKM15, Str96, Syd94, Th94, WHMO19, WGG+19, YPA94, YEG+13, YSL+12, Eng00].

Simulation-Based [ZJWK05].

Simulations
[CGS15, CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG+07, SX02, YPAE09, ADT14, ABG+96, BHS18, BADC07, CFF19, GM18, Hin11, JMS14, LS10, SLSM08, MNY21, RMNM+12, SU96, THDS19, TOC18, VLSPL19, WWFT11].

Simulator
[CAM12, MRV00, PH0+15, UT02, WPC07, AMV94, LS10, LZC+20, PWD+12, WZWS08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b].

Simulators
[SB95, AVA+16].

Singapore [IEE96d].

Single
[BM00, HF14a, HF14b, MB00, UKG12, WZM17, AGHS94, KLL11, LK20,
MKP22, THMH21. Single-Chip [URKG12]. Single-sided [BM00]. Single-Threaded [WZM17]. single/multigrid [AGIS94]. singleton [TVCB18]. Sinks [JPT14]. Sites [Ano98]. Sixth [HK95, IEE96c, MMH93, SW91]. Size [WQKH20, YT20, GKF13]. sized [JLS+14]. Sizes [DALDI8, ZShn01]. Sizing [YNJ21]. SKaMPI [KRS99, RSPM98, RH01, Reu01, RST02, Ren03]. SkelCL [SG14]. Skeleton [GB98, IH04, RJDH14]. Skeletons [Ser97]. Skew [GGZ+20]. Skew-Tolerant [GGZ+20]. Skjellum [Ano95c, Ano00b]. Slack [CBB+20, KFL05, FKL08]. SLAE [ADRCT98, AK99]. sLASs [VLCM+20]. Slave [LTR00, HP05]. SELPc [DR18]. SLICC [KBHA94]. Slices [GSHL02]. Slim [WMC+18]. Small [HLP11, TS12b, Ano94h]. small-footprint [TS12b]. Small-World [HLP11]. Smith [KDSO12, RGB+17]. Smithsonia [Str94]. smoking [YSL+12]. Smoothed [RBP+21]. SMP [Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMdMBB+07, HD02b, Hus00, HIP02, JHKH08, KO10, KKH03, KMG97, KAC02, NO02b, NO02a, ST02a, TOTH99, Trà02b, YWCC11, bTO1a]. SMPCkpt [DCH02]. SMPI [DLM+17]. SMPs [HLCZ00, NU05, SL09]. SMPs [MLAV10]. SMPSuperscalar [GCBL12]. SMT [PADS+17]. SMT-based [PADS+17]. snake [JPP95]. snake-in-the-box [JPP95]. SNE [MPZ21]. Snir [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, N005]. SnuCL [Lee12]. soccer [MYM11]. Socket [COE20, Gro19, LS10]. SoCs [AFGR18]. Soft [AJYH18]. Softshell [SKK+12]. Software [Ano94i, BKK20, BME02, BPG94, BDG+92, C95b, DGH+19, ES13, FPS03, GBF95, Gre95, HPR+95, HS94, HHA95, IEE95i, IEE96h, IIF95, KS15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, Sil96, STH22, Swa01, TDBEE11, VdS00, Wis01, Wol92, Ano97, BSC99, B0197, Bra97, BR94, CMV+94, CBPP02, DPZ97, Hum95, JH97, JB96, LBS+20, LM94, MK94, Neu94, Old02, PHA10, PK05, PGK+10, RAS16, RJJ+20, WSHH1, Sch94, Sei99, SPH95, SSD+20, Str94, WGG+19, ZG9N4, Ano94i, KG93, Sil96]. Software-Managed [LB16]. Solan [CSGB+10]. Solaris [Ano01a]. Solidification [HSO+21, JLS+14]. solids [Hin11]. Solution [DLW+10, FBSN01, HO14, MC18, RPM+08, SEF+16, SSK+18, Tsu12, VRS00, DWL+12, GADM20, IM95, JK10, LGM+20, LSR95, MALM95, ON12, PRS+14, SC96a]. solutions [AGIS94, LMG17]. Solve [Hog13, LSN+18, Riz17, BAV08, Che99, GGGC99, TGSC14]. Solver [Ben01, BP98, CF01, CF19, HSMW94, IDD94, LK97, SJK+17a, SJK+17b, TPV20, WJB14, YKW+18, AMS94, CP15, CFF19, DS22, DM12, GNP19, HDZ+20, HHSN19, JR10, LM99, L005, MV20, MBA21, OGM+16, RM99, STA20, SRK+12, SCC95, THM+94, ZZG+14]. Solvers [DFN12, DALD18, GKI10, MSB97, NO02b, Nak03, NHT02, NLRH07, QRGM96, RS97, SSK+18, WR01, ABF+17, ADLL03a, ADLL03b, ADDR95, BRR99, CL03, DR18, EVMP20, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PGPC21, PR94c, QRGM95, SSH08]. Solving [ADRCT98, BH9M4, BM96, BV99, BG95, BDG+92c, BSH15, DAL18, DAD19, GFGP12, HUC96, LLY93, M02a, NF94, SAS01, SP11, SD99, ZTD19, BB95a, DSM94, HHA95, LBB+16, LYSS+16, MM11, SS+16, SMW06, YSVM+10, SYM+17]. SOM [GkLyCY97]. Some [BDT08, Mi01, AL92, NN05, RSBT95]. Supron [VY95]. Sorrento [DKD05, DKD07]. sort [KVGH11, PSHL11]. Sorting [Gre18, LTS16, BHJ96, PSHL11]. Sound [SG12]. Source [ABB20, BGG+15, HH22, MM07, AC17, AV+16, LBS+20, NCB+17,
Nob08, PSK+10, WGG+19].

Source-Code-Correlated [MM07].

Source-to-Source [HH22, AB120, AC17].

Sources [CTBT21, ZDR01, KM10].

South [ACM95a], **southeast** [ACM95a].

Sowing [GL97a].

SP [BGB01, CE00, HMKV94, LC97b, WT11, WT12].

SP-1 [HMKV94].

SP-2 [LC97b].

SP1 [BR95c, FHP94b, FHP+94, Fra95, FWR+95, GL95d, HSMW94, MP95].

SP1/SP2 [FHP95, Fra95, FWR+95].

SP2 [BR95b, FHP+95, Fra95, FWR+95, HWW97, JF95, KB98, KHS01, MABG96, XH96].

SPACE [ACM95b].

Space [CML04, CB16, HO14, MSF00, MZLS20, OFA+15, SAS01, SS01, TA14, SRK+12].

Space-Sharing [CML04].

Space-Time [HO14, SRK+12].

Spaces [Rö19].

SPAI [BBS99].

Spain [BBS99].

Spain [BBS99].

Spain [BBS99].

Spain [BBS99].

Spanish [VP00].

spanning [NCKB12].

Spark [GRW+19, KWF018].

Sparse [AZ95, BBH12, CWL+20, DS13, DK20, Huc96, MYL21, NHT02, TD98, ZB97, AK99, ADL10a, ADL10b, BAC20, ER12, FJZ+14, GG99, Gra09, NHT06, XL13].

SPEC [ANO03, MVWL+10, MBB+12, NA01, SGJ+03, TS03].

Special [AM07, BDT08, BC19a, BDB+13, BC00, CHDO9, DKDO7, DKDO8, GSA08, GT91, MP198a, MP98b, SGB20, TH20, Bos96, Mar92, PNV01, Reu01, OId02].

Specific [DM95b, DM95a, Olu14].

Specification [BG94a, BdS07, MGC12, MHSK16, BG94c, LD+11].

Specifications [OFA+15, WMP14].

Specified [GMH97].

specifying [LPD+11].

specimen [Ro10].

SPECT [BCD96].

spectator [YM11].

Spectra [Str97, SR11].

Spectral [MW98, Spe19, BCM+16, MGS+15].

spectral [BCM+16].

Spectrum [AELE16, SHLM14].

Speculative [RA09, dOSM+16].

Speed [CDHL95, Ton00, AH95, ANO03, BWT96, BID95, KMK16, CDH+95].

Speeding [CSV12, YNS21].

Speedup [VPS17].

SPH [AFG21, CP15, OLG+16, PBB+01, WMHR17, WRMR19].

Sphere [CT94a, CT94b].

spherical [Hol95, KT10].

SPICE [WPC07].

Spiking [CAM12].

Spin [HLP11, JRG21, KO14, Kom15, MBA21].

spin-1 [MBA21].

spin-glass [JRG21].

splitting [MPS20, TCBV01].

SPMD [BST+13, Dar04, KAC02, Wal90, Wal02].

SPMD-Like [BST+13].

SpMV [CG19].

Spokane [IEE93c].

Sponge [IEE93d].

spontaneous [EZBA16].

spreading [SOYHDD19].

Spring [Ano94g, IEE93a].

SPTHEO [Sta96].

SPY [SSG95].

Squares [PWP+16, VRS00].

SR [YWCFC15, ZLP17].

SR-IOV [YWCFC15].

SR8000 [NNON00, TS02, TS03].

SRP [BBC+19].

SS7 [LTLC94].

SSGM [HPS+06].

SSS [MM98].

Ssss-CORE [MM98].

St [Mal95].

Stability [DSS00, HD00a].

stable [JMDV+17].

Stage [FSXZ14].

stages [KW20, SRS+19].

staggered [GM18].

Stampi [ITK00].

stamping [DFP19].

Standard [DM98, GSI97, GLP+00, GL95c].

**Hem94, MP198a, MP98b, NH95, SKD+04, SGS10, Wer95, YKLD17, Ano94d, BDB+13, Bor99, Cla98, CG99b, DHHW93b, DOSW96, FB95, GK97, GL92, Hem96, St94, VM95, Wal94a, Wal94b, WD96, Ano97, Bra97, CG94, DOSW95, GLDS96].

Standards [FUKC96, Thr99].

Star [CDM93, Coo95a, Coo95b].

STAR [Coo95a, Coo95b].

Start [Gro02b, Hus98].

Startup [PS07].

State [ACM11, IEE94f, IEE95j, WS96a, WS96b, BSTC+17, LF93b].

state-to-state [BTC+17].

states [NS16].

Static [NIO+02, NIO+03, RVG12].

**SCB15, SCB14].

Static/dynamic [SCB15].

Statics [TG94, TG94].

Stationary [MW98].

Statistical [LR01, SNM+10, AMHC11, KMM15, Röhl90, SL94a, Vet02].

statistics [FL21].

Status [Bak98, DF21, DZ98b].
GL95c, BDG+93b, FHP+95, Hem96, Sun96].
stealing [TCBV10]. Steepest [Sch01].
Steering [GKP97, PK98]. Stencil
[CGU12, WTT17, GÖ19, KD13, TBB12].
steer[ing]-based [TBB12]. step
[KW20, Kos95b, ZG98, vdP17]. steps
[KW20]. Stereo [ZBd12, Qu95].
Steering [GKP97, PK98]. Stencil
[CGU12, WTTH17, G ´O19, KD13, TBB12].
stencil-based [TBB12]. step
[KW20, Kos95b, ZG98, vdP17]. steps
[KW20]. Stereo [ZBd12, Qu95].
Steering [GKP97, PK98]. Stencil
[CGU12, WTTH17, G ´O19, KD13, TBB12].
stencil-based [TBB12]. step
[KW20, Kos95b, ZG98, vdP17]. steps
[KW20]. Stereo [ZBd12, Qu95].
Steering [GKP97, PK98]. Stencil
[CGU12, WTTH17, G ´O19, KD13, TBB12].
superscalar [ACJ12]. Supersonic [CCBP'GA15]. Support
[Ano98, BBG +10, BFBW01, CFF +94, DMMV97, FGRD01, GRV01, GOM +01, HRS19, LMRG14, MK04, OP98, PSM +14, RR02, SDN99, SBT04, TW01, Wis98, Wis01, YSP +05, ZL18, ADK22, BBH...13a, BPJ22, BL99, CC10, CZ5b, DLR94, Hos12, Ma94, RS19, RJH +20, TSY99, TSY00, TY14, WK08a, WK08b, WK08c, YAJG +15]. Supported
[KLR16, ZGNNZ22, CDD +96, RJH +20]. Supporting
[FD00, FMSG17, FSG19b, GAML01, Gua16, MMS07, OOS +08, SGL +20, WLNL03, WLNL06, WCS99, YWCF15, FL96, GAM +00]. Supports
[AELGE16, CLL03, DGMS93]. suppression
[WWZ +96]. Surface
[KS15b, PKYW95, Rot19, BHW +12, DCD +14, RAGJ95, TSP95]. surfaces
[Dab19]. Survey
[Sap97, ZGNNZ22, BBB +20, HJB +21]. Survive
[ABB +10]. sustainable
[CGBS +15]. SVD [CMH99]. Swan [HD11]. Swapping
[SC04, BBW19]. Sweden
[Eng00, HAM95b, FF95]. Swendsen
[KO14, Kom15]. Switch
[SCL01, TDB06, KSC +19]. Switched
[L93, KLY03, KLY05]. switches
[HGX +22, DT17]. Switzerland
[GT94, Ano94a, IEE97b]. SX
[HRZ97, TSEE21, TRH00]. SX-4 [HRZ97]. SX-5 [TRH00]. SX-Aurora [TSEE21]. Sydney
[Bl95]. Sylvester [GK10]. Sylvester-Type [GK10]. Symbolic
[CC12, Coo95b, Ste00, YYW +12, ACM97a, BHKR95, Coo95a, Lev95, LGKQ10, LL92, SMC08]. Symmetric
[BDV03, MDM17, YKW +18, BAV08, DCH02, GG99]. Symposium
[ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE95b, IEE94a, IEE94e, IEE94g, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IEE05, LHMM96, Li96, NM95, Oster94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tou96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94h, Lev95, Old02]. synchronisation
[SDB +16]. Synchronization
[LA02, OCY +15, TGT05, BMG07, LA06, SPNB14, TMT96, YLZ13]. Synchronizing
[VT97]. Synchronous
[Ada97, BJ13, Cer99, CLE +20, DLR99, HZG08, SRS +19]. Synergy
[SSAS12]. Synergistic
[UGT09]. Synthesis
[CS14, GWC95]. synthesized
[MC17]. Synthesizer
[DS16]. Synthesizing
[AJF16, LK20, NP12]. Synthetic
[CC17, DP94]. Syracuse
[IEE96]. SYSMO
[MM95]. System
[Ada97, AJ97, AH00, BG95, BDG +xx, BL95, BFZ97, BGD12, CAM12, CCG +02, DBA97, DALD18, ERS95, ERS96, EK97, FBD01a, FBVD02, FFP03, Fis01, Gal97, GCBM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, IADB19, KBA02, LRR02, LTR00, LLY93, Ma94, MRV00, MM02, MSF00, MMH98, MMS07, MMH93, NPP +00d, NMS +14, Oed93, PPT96a, RGD97, SGJ +03, SSB +05, SCP97, SA93, ST02b, Sun93, TSS00b, Tsu07, UP01, Wil93, YSS +19, ARS89, ADK22, AS92, AL92, BB94, Bri95, BBH +15, DL10, DPFT19, DH22, FNSW99, FK94, GS91a, GS93, GS96, GMU95, GkLyCY97, HDDD90, Hum95, HS95b, IBC +10, ITT99, JH97, JLS +14, KW14, Kik93, LBD +96, LKL96, LL95, MA09, MMR99, MBB +94, MAS06, MM11, MS99b, MAL95, MAAH20, NA99, PPT96b, PPT96c, PK05]. system
[RJHD14, RTL99, SHH01, SL94b, Sei99, SL99, SGDM94, Sm96, Sun95b, VSR94, VSR95, WCC +07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, ZWZ +95, dCZG06, AL93, NMW93, Yan94]. System-Initiated
[SSB +05]. system-on-a-chip [dCZG06]. System/6000
[AL93, NMW93]. Systeme
[GBR97, GEW98]. Systems
[ABB +17, Ano94b, At96, BCGL97, BGBP01, BME02, BPG94, Bha93, CD95, CAWL17, COE20,
CFF, CSW97, CJNW95, Coo95b, DAD19, EADT19, FD96, FGKT97, Fos98, GGZ+20, Gua16, HC17, HRSA97, IEE93d, IEE94d, IEE95a, IEE95i, KHI03, KP96, KQT+21, KDL+95b, KCR+17, KS97, LY93, LBB+21, LW97, MWG97, MBE03, MJB15, MBB+12, SM03, SGS+21, SS96, TMP16, TWL19, THN00, TL19, USE94, WJG+21, YGH+14, YH96, ZTD19, ZB97, dGJM94, AGR+95b, ACMZR11, ATL+12, Ano94e, BBB+94, BAC20, BAV08, CdO0+20, CKO+94, CLYC16, CBPP02, Coo95a, CPR+95, DF17, DR94, DBVF01, DvdLVS94, FHB+13, GB97, GCN+10, GDEBC20, GEW98, GKK09, GKC13, Goro9, GFP12, GH+93, HAA95, IPG+18, IM95, JB96, JIM+11, KSG13, KHB+99, KL15, KDL+95a, KFSS94, LBG+20, LR06b, LH98, LRLG19, LCVD94b.

systems
[LG+20, LLH+14, MSL12, MW+10, Old02, OPV+12, Pan95b, Par93, PSB+19, PGPCK21, QB12, RPS19, SSKF95, SCJH19, SP95, SVC+11, Smi93b, SG14, SMSW06, SLN+12, Smn94b, TBB12, TMW17, TVCB18, TSP95, VLMPS+18, WCS+13, WWZ+96, WADC99, WYLC12, ZL96, ZGCG94, dH94, dIAMC11, dIAMCF12, JW96].

System software [Sei99]. Systolic [BSC99].

T3D
[AZ95, AFST95, CCSM97, HHW97, MP95, MW095, Oed93, Sch96a, Sch96b, SCC95].

T3E
[BBS99, Boo01, Che99, GRRM99, LSK04, RBB97].

T3E-600 [LSK04]. T9000 [BR94].

Table [BJ13].

Tablets [MYN21].

Tabu
[BSH15, Cza13, CB11]. Tags [Wis97].

Taihu Light
[LHZ+20].

Tails [Kha13].

takes [GDB+93].

Tablot [ACMR14, Riz17].

tandem [GDMME22].

TapiR
[SML17, SL19].

Targeting
[BC19b, ABB20, JKM+17, RVK18].

Task
[AHD12, AAB+17, FkkC96, GDDM17, GPC+17, GJF19, IOK00, KOI01, KSB+20, LHC96, Mar03, MJB15, NIO+02, NIO+03, NS97, NJ01, OP10, OS97, SGZ00, SPL+12, SGS+21, TB12, TS12a, WJG+21, YK+18, APBC+16, ABF+17, BLV18, BGH+05, GKCF13, OdSS12, OPW+12, OPP0, RRFH96, RFRH96, STP+19, SWC20, SK+14, WC15, WDR+19].

Task-Based
[AHD12, AAB+17, GJF19, SPL+12, BLV18, STP+19, SKB+14].

Task-level [WDR+19].

Task-Overlapped
[GPC+17].

Task-Parallel
[KSB+20, NS97, ABPC+16, ABF+17].

Taskers
[FLD96].

Tasks
[DFA+09, KaM10, SHM+10, TCM18, TSCaM12, VLSPL19, WC15, vdP17].

tasklet
[PQ18].

Tasking
[ACD+09, DDP+19, DT17, DFA+09, JY96, OP98, PWP19, RR02, RDLQ12, SGL+20, WJG+21, YSS+17, YSS+19, BS01, DDYM99, DR95, EBB+20, FKK+96b, FKK96a, IvdLH+00, PKE+10, PWP19].

TAU
[MMS07, RMS+18].

taxonomy
[SP96].

TBB [Stp18].

TBSCM [BP98].

TC2 [Boi97].

TC2/WG2.5 [Boi97].

TCGMSG
[GB96, Mat94, Mat95].

TCP
[KPW05].

TD [And98].

Teaching
[MK00, JY95, MK97, PKB06].

Technical
[Ano93c, Ano98, MC94, USE95, ACM06a, Sni18].

Technique
[BCD+15, HC06, HAA+11, MK17, HC08, Nes10, RBB17, MAIVA14].

Techniques
[CP97, CS02, Miü01, SAL+17, SLP+12, TGBS05, Wis01, AMKM20, BPP94, Fer04, FCS+12, GSM+00, HKMC94, JKN+13, KBG+09, NFG+10, PF05, SSK01, WST95].

Technologies
[Mal95].

Technology
[Ano97, Bra97, CGB+10, CSV12, Dan12, GN95, HS94, PWP+16, ST04, TBG+02, Ano93a, Ano93c, D+95, DM12, IE94c, NS16, ZAT+07].

Tekniska
[Eng00].

Telegraphic
[ES11].

TELMAT [BR94].

temperature
[Hin11, RS22].

temperature-dependent
[RS22].
Template [GS197, PKB06]. Templates [BN12, KH15]. Tennessee [PR94b]. Tensor [BKK20, ZLWW20]. terabyte [KTJ03]. Terabytes [IEE02]. teraflops [KTJ03].

Terms [KD12]. Tesla [MYL21].

Tessellation [SS09]. Test [GSYT21, SNMP10, TG09, AAAA16, CPG17, CPR+95, GL92, TGKL19].

test-input [CPKG17]. Testbed [Mat01b, EGH99, PY95]. Testing [CDT05, CCK12, DKK94b, DLLLZ20, Ost94, ViS00, CMV+94, DFK93, KSTM20].

Testsuite [WCC12]. Texas [ACM06a, IEE94b, IEE95l, IEE95g, IEE97c]. Text [LTR00, MM01, RLL01, RTL99].

Textbook [Ano98]. textural [WKS96]. texture [HE15]. TFETI [SMMC18]. TH-MPI [CFDL01]. Thakur [Ano00a]. Their [Brü12, GOM+01, RG18, GSMK17].

theorem [Sut96]. Theory [GK10, BW12, CBHH94]. Thera [CD01].

thermostat [RS22]. Think [HCA16].

Third [BPG94, Bos96, DSM94, GA96, IEE94g, Sil96, Was96, BDLS96, MAB95, IEE97c]. Thirty [Y+93]. Thirty-seventh [Y+93]. Thousands [PZKK02, BMS+17].

Thread [AELGE16, BB18, ETWaM12, GOM+01, GT07, LML+19, Nit00, Pla02, STY99, SPB+17, AKB+19, HK09, IDS16, JKN+13, LW0, SPH96, SLN+12, YZ14].

thread-based [AKB+19]. thread-data [LW20]. Thread-Level [AELGE16, HK09, YZ14].

Thread-Safe [Pla02]. Thread-safety [GT07]. Threaded [BBG+10, MG15, WZM17, Ada98, EBKG01, SCB15, SVC+11, TSY99, TSY00].

threaded-MPI [SVC+11]. Threading [BHV12, MLGW18, SBT04, TBG+02, WMK+19, KPO00, KRG13, QB12, ZAT+07].

Threads [CP98, LD01, Lee06, SDR+21, BS01, DJJ+19, MVTP96, ALW+15]. Three [Car07, GA96, ILLmH+21, Nak05b, Ram07, SAS01, ZWLZ21, GSMK17, LSSZ15, LZC+20, Mar05, PR94c, ZWC21]. Three-Dimensional [GA96, ZWLZ21, ILLmH+21, LSSZ15, PR94c, ZWC21]. Three-level [Nak05b].

Throughput [HMKG19, SSLMW10, Tso07, CJP19, ESB13, FP16]. throughput-oriented [CJPC19]. Thrust [DSU20]. Tied [WJG+21]. Tightly [SS01].

Tightly-Coupled [SS01]. Tilewise [KS15b]. tiling [KW20]. Time [BCL00, CBB+20, CBB+21, DLLLZ19, DLLLZ20, FHK01, FSSD17, GSHL02, GOM+01, HO14, KFL05, MFTB95, OP98, SPB+17, SGL+20, SCL01, SS96, TWLL19, TSP95, UP01, YGH+14, AL96, ASB18, CDMS15, DLR94, DS22, DPFT19, DM12, Fer04, FLB+05, FKL08, GB94, HE13, HFB21, JE95, KC94, KPL+12, KSC+19, KW20, LHLK10, LBB+16, LYSS+16, LM13, MMW96, NZ94, ON12, OdSSP12, PTMF18, PRQ21, QHCC17, Ram07, SBW91, SBB+16, SM19, SK92, SRK+12, TSY99, Tho94, TVV96, TCBV10, Uhl95c, VM94, YSM+16, YSM+17, ZWZ+95, SKD+04].

time-critical [KSC+19]. time-dependent [DM12, LBB+16, LYSS+16, ON12, SBB+16, YSM+16, YSM+17]. time-domain [HE13, NZZ94, Ram07, VM94].

time-explicit [DS22]. time-independent [CDMS15]. time-stamping [DPFT19].

Time-Varying [DLLLZ19, DLLLZ20, Uhl95c]. times [MLVS16, NB96, SWCB20, SSS99].

timing [Ols95]. tips [Fer04]. TLM [SC96a].

Tolerance [GKP97, GL04, LMRG14, LNLE00, RPM+08, TS12a, WC09, Wi93, CLE+20, LRG+16, LGM+20, SG05, WDR+19, ZHK06].

Tolerant [BCC+02, BCH+03, BHK+06, CF01, CFDL01, FD00, FBD01a, FBVD02, FD02a, FD04, GFB+03, GGZ+20, IEE95c,
tomorrow [IE94c], Tool [Ano01b, Beg93b, BFMT96b, DW02, GSN+01, KAMAMA17, KSJ14, KKP01, LMRG14, MMSW02, MK04, NE98, SR96, SGL+00, Trää12b, VBB18, WL96a, AGG+95, BDP+10, Beg92, Beg93c, Beg93a, BDY99, BMFT96a, BHW+12, CPR+05, DDK94a, FSTG99, GDME22, HPR+95, HD11, IMS16, JKN22, LS+20, LCC+03, MdSAS+18, RMS+18, TSS98, WL96b, WL96b].

Toolbox [Ano97, Bra97]. Toolkit [Ano12, KTXP21, LC07, LCC13, SLS96, PSH+20].

tools-supported [CDD+96]. Top [AHP01, Gal97, Hus01, Man01, PTH+01b, Ser97, BBCR99, PTH+01a, SSC96, SCL+97, CCHW03].

Top-C [CCHW03]. ToPe [JKM+17].

topologies [BCM+16, Gro19, MK00]. Topology [DK06, Hat98, HM01, Tra02a, GMJ18, HRR+11, MBBD13, SPK+12].

topology-aware [MBBD13].

Topology-Based [HM01]. TOPPER [KKP01].

Toronto [GGK+93, Vos03].

Torus [DDP+19, SG15]. Townsend [DT94].

TPVM [FS95, FS98]. Trace [Ney00, FLPG18]. trace-based [FLPG18].

Traceback [dOSMM+16].

Tracefiles [FCP+01].

Traces [CC17, MANR09, WM01, CDS15, DWM12].

Tracing [CGLD01, DP94, KG96, CG93, Mor95, SGS95].

Tracking [GAP97, HD02b].

tradeoff [RPS19].

Trading [BHM94, BHM96].

Traffic [VT19, Zah12]. Training [CSV12, RJ21].

Transactional [BW+12, MFG+08, SBG+12].

Transactions [BW+12, SSD+20].

Transcoding [LSB+18].

Transfer [BJK02].

Transform [THS+17, KT10, DBLG11].

Transformation [CLA+19, EP96, NSZS13, CS19, GSKM17, HZ96, TSY00, YW21].

transformations [JE95, TG94].

transformed [BY12].

Translating [Mar09, NCb+12].

Translation [DDL00, SSE12, HCL05, LME09, NCb+17, WZW21].

Translator [KMK16, UZC+12, CHK15, GScFM13].

transmitters [WW+96].

Transparent [CCK+95, IF+06, NPP+00c, RVK19, SLGZ09, LFS93a, LFS93b, LFL11, NPP+00a, SOA11].

Transparently [CB16].

Transport [KHS01, MMD98, RS97, VRS00, WR01, ZZ04, Pri14, SH94, SCJH19, WH96].

Transporter [Fer92]. transpose [Bha98].

Transposition [HD02b].

Transputer [Ara95, ACDR94, CJNW95, FK95, FF95, GN95, GHH+93, MC94, dGJM94, ZPLS96, Ara95, CJNW95, GHH+93, dGJM94].

Transputers [ACDR94, AGR+95b, dCH93].

Transtech [Ste94].

trap [LBB+16, SSB+16, YSM+16].

TRAPPER [KFS894, SSF95].

travel [SSS99]. travel-times [SSS99]. traveling [GM94].

traversing [BDG+92b].

TreadMarks [LDCZ97].

Trend [DAD19, GPC+17, MB21, ADB94, AB13, BCAD06, CG93, SGS95, Zah12].

Tree-based [MB21].

Trees [CDPM03, GFJT19].

Trends [Duv92, IEE93d, MBS15, JPTE94, SGDM94, Sun96].

Trial [DSU20].

Triangle [SL94a, SOA11].

Triangular [Hog13, MB17].

triangulated [Dab19].

Triangulation [CWL+20]. tricks
Tridiagonal [DALD18, DAD19, DR18, VLMPS18].
Triolet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].

TSMC [Ano03].

Triolet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].

TSMC [Ano03].

Triolet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].

TSMC [Ano03].

Triolet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].

TSMC [Ano03].

Triolet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].

TSMC [Ano03].

Triolet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].

TSMC [Ano03].

Triolet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97].
truncating [Ram07]. TSMC [Ano03].

TSMC [Ano03].
CDND11, DKD05, D+91, DHHW92, DHHW93a, DLM99, DPK00, DLO03, FCLG07, GBD+94, GN95, KGRD10, KCP+94b, KOW97, Kra02, KKD04, LKD08, M94, MTWD06, NPP+00c, Nov95, NMC95, Per96, RWD09, TBB12, XF95, ZW05, Ano95b, BBB+94, BDW97, KCP+94a, LRG+96, BBH...13a.

User-Level [DHHW92, DHHW93a, KCP+94b, KOW97, NPP+00c, XF95, ZW05, KCP+94a, LRG+96, BBH...13a].

Users [Ara95, CHD09, KQT+21, HJB+21].

Uses [SH96]. Using [AR01, ADRCT98, AHP01, And98, AP96, Ano95e, AKE00, AZG17, AB93a, BST+13, BPMN97, BG95, BS93, BKGS02, BM97, Bon96, BCP+00, BBH12, CGC+11, CRE99, CRM03, CP97, CSPM+96, CJetp08, CC17, Che99, COE20, CCSM97, CD98, DePo3, DARG13, DDN+22, DAK98, DGM93, DGH+19, EM02, EMO+93, ESM+94, EK97, FAFD15, FD04, FDG96, FTVB20, FS93, GGCM99, GCGS98, GTH96, GM95, Gk07, GS96, GSYT21, GMDP98, GHL97, GJN97, GLS94, GLT99, GLS99, GLT00b, GLTOOa, Gro91, HB96b, HSMW94, HJ98, HLP11, HD00a, HT08, HRS97, HT01, IOK00, ID94, IKM+11, JGRF12, JPP95, KB08, KOI01, KKV01, KF16, KS96, KA13, LLRS02, LRT00, LRTA02, LFS+19, LYM9, LVL93, LZ97, LS98, LAF15, MK17, MTS99, MPD04, MR12].

Using [MSCW95, MARNO9, MBB+12, MS97, NO02b, NIO+02, NIO+99, NH05, NA01, OMI96, OCY+15, OWAS95, PWP+16, PK98, PPT96c, POL99, PTO1, Per99, Pte97, PBK00, PD98, PFG18, PS95, QRGM96, QMGR00, RR00, Reo03, RRBL01, RLVRGP12, RLL01, RRG+99, SAS01, Sev98, SSAS12, SP99, SA93, Smi93a, SBR95, STV97, SMOE93, SSB21, Sta95b, ST17, SKH96, SCL01, SJK+17a, SJK+17b, TS12a, TSB02, TSB03, TSN21, TK16, TBB12, Tha98, Tra98, Tsn07, VLO+08, WO95, Wal01a, WTS19, WJ12, WLR05, Wis97, Wis01, WMC+18, WLYC12, YKW+18, ZWZL21, ZCB15, Zb12, van97, vdLJR11, vdlP17, AMHC11, ASAK19, AK99, AFB+17, AL96, ADT14, ABG+96, AB93b, AGS94, AGG+95, BV99, BC+19, BFLL99, BAE22, BSC99, BDG+92c, Bc95, Bis04, BCM+16, BTC+17, BCD96, BID95, BAG17].

using [BSH15, BMG07, CJPC19, CPM+18, CG93, CMB+08, CBG18, CdGM96, CS94, CLBS17, CT94b, CC00b, DG95, DMR9, DS13, DS22, DREUE12, DSOE11, DCH02, DM12, EGD92, FB96, FSV14, FSC+11, Fin94, Fin95, FHC+95, FWS+17, GGHC99, GSMK17, Gg09, Goo01, GFB+14, GMU95, GM18, GRTZ10, GADM20, HB96a, HHDG09, HT+16, HPI1, HPS+96, HPLT99, HA+00, HOl95, HLO+16, HAA+11, IM+05, IM95, IMK+02, JL18, JKN22, JF95, JPL22, JKH08, JLS+14, JJO+03, JIM+11, JPT14, JR10, JMD17+17, KFA96, KRKS11, KY10, Kat93, KJJ+16, KRO9, KMK16, KME09, KC96, KCM97, KRC17, KMM15, KID13, KPK13, LP00, LSS92, LSSZ15, LHZ+20, LCIY96, LSWMV08, LCMG17, LO96, MMR99, MP95, Mar06, MSMC15, MNNY21, MAB05, MCh94, MKP22, MM11, Mic93, Mic95, MRH+96, MMM13, MSML10].

uses [MS95, MM14, MC99, MgW+10, NO02a, Nak05a, NZZ94, NB96, NAJ99, NU05, OKM12, OHI10, Ols05, OHG91, Pat93, PDY14, PGdCJ+18, PSV19, PNV01, PKE+10, QRG95, RJ95, RAS16, RCF96, RBA17, RM99, RC95, SHLM14, Sm10, SLGZ99, SSN+21, SGM5, SSS99, SMS00, SOA11, SVC+11, SS90, SBB20, SOYHDD19, SFLD15, SSN94, SU96, SP11, Stp18, Stp20, TC94, TPLY18, Tsn95, Ulh94, Ulh95b, UH96, VM94, VB99, VGS94, VM95, WO96, Wal01b, WCS+13, WCVR96, WST95, WMR17, WMR919, WADC99, Wor96, WYLC12, XF95, XJ21, XR21,
V [JB96, BBC+02, BHK+96]. V100 [MYL21]. V2 [BCH+03]. VA [Sin93, RP95].
Vacancy [HD02b]. Vaidy [Ano95b, NMC95]. Validation [BDV03, GLB00, WCC12, CMV+94, SCB14, SCB15].
Value [vHKS94, AL96, LSR95, OHG19, SP11, SD99]. Value-based [vHKS94].
valued [Str12]. VAMPIR [BHNW01, NAW+96]. Vancouver [IEE95a, IEE95i].
Vapour [PKYW95]. Variable [Ano98, LK20, ZZG+14]. Variables [FKH02]. variably [TOC18].
Various [LH95]. Varying [DLLZ19, DLLZ20, Uhl95c]. VASP [WMK+19]. VCMON [Whi94].
Vector [AKL16, DS13, Fuj08, KDT+12, LL16, Uhl95c, Er12, FVLS15, FJZ+14, GL96, GL97c, Har94, Har95, HE15, PMZM16, RJJH+20, XXL13, ZCB12].
Vectorization [IKM+01, MCP17, IKM+02, Stp18].
Version [BCGLO7, CCK+95, MHSK16, Bjo95, BHW+12, BBH+15, DS22, Man94, RS22, Str94, Wai95, WRM19]. versioned [SSB+17]. Versions [Ano98]. Versus [RTRG+07, Ahm97, CEE00, KPWO5, KAC02, KPO00, LMG17, LC97b, MFTB95, NSL16, NHT02, NHT06, RS95, SZ99, Wal00, ZLZ+11]. verteilter [GBR97]. VGRIDSG [AB93a]. VIA [Sei99, CTTT21, FKKC96, ADGA20, BKK20, BHW+12, CWL+20, CGZQ13, DS96b, FLPG18, GB96, Hos12, HCL05, LAAS+15, LSSZ15, LCH+22, NPP+00c, QHCC17, RBC20, SLJ+14, Sti94, VBLvdG08, YPZC95, ZJDW18, ZLL+12, EM02, RR01]. VIA/SCI [RR01]. viable [Ano03]. Victoria [IEE95e]. Video [KSJ95, KSJ96, LSB+18]. videogames [YMY11]. Vienna [BH95, TBD12, Ben95]. View [ZDR01, ZDR04]. ViMPIOS [Sto98].
VinaMPI [ESB13]. ViPIOS [Sto98]. Virginia [IEE92, IEE94a, Sie92a, Sie92b]. VirtCL [YWT15]. Virtual [ACM96a, AS92, ARL+94, BJ93, BP99, BS93, BG94b, CHD07, D+91, EGR15, Fis01, GBD+94, Geo01, Gre94, ITT99, JPP95, KNT02, KKD04, JD05, LKD08, LK10, MTW06, NM05, Nov95, NMC95, Pat93, Per96, QEG95, RWD09, SS99, Sei99, SCSL12, SXMM+18, TY14, Tso07, WBL94, YC98, ARS89, AD98, AL92, Ano95b, BR91, BDC+91a, BPC94, BCR99, Bir94, BDL96, BCM+16, BFM96, BDW97, BB95b, CARB10, Cav93, Cha96, CD01, CXB+12, DDD+94, DM93, DKD05, DLM99, DPK00, DLO03, DPZ97, ESM90, Ho95, KMC97, KSS+18, Kra02, LG93, MN91, MRH+96, NB96, PRS16, Sch94, SK92, SCC06, SL00, WK08a, WK08b, WK08c, AGIS94, Sei99].
[BDGS93, GKP96, GKP97, HJ98, KA13, MVY95, NAW+96, PK98, PCY14, Wis96a, ZLGS99, Bor99, Eng00, FHIC+95, HPS95, KFA96, TSS98, WST95, Wis96b].

Visualizer [HKN+01], VLSI [Jes93a], VM [GDH12, McR92, Whi94]. VM-protected [GHD12], VM/ESA [Whi94]. VMPP [LG93].

VOL [GHD12, McR92, Whi94]. VM/ESA [KG96], VM/ESA [Whi94]. VMPP [LG93].

VOOBLA [BKvH+14], Vol [ATC94, HS94, Nag05]. Volatile [BBC+02, BCH+03]. Volta [KC19].

Voltage [KFL05, FKL08]. Volume [Ano99a, Ano99c, Ano09d, DLLZ19, DLLZ20, GHL+98, KLH+20, SOH+98, BHW+12, DSS22, WST95].

VRML-Based [KSJ95, KSJ96]. vs [FH98, AFR18, BCH+08, IPG+18, Luo99, Nak05b, SC19]. VTC [NU05]. VTIDIRECT95 [HWS09, SWH15].

vulnerabilities [LCH+22]. VxWorks [YGH+14].

WA [ACM05, LCK11]. Wailea [ERS96, HS94, MMH93]. wait [SWCB20].

Waknaghat [CBG+10]. walk [RJH+20]. Walker [Ano99a, Ano99c, Ano09d, Nag05].

walks [MW21]. wall [NB96]. wall-clock [NB96]. walls [JAT97]. WAMM [BCLN97].

Wang [KO14, Kom15]. Warehousing [DREC01]. Warp [MPZ21, SCL01, HKOO11, MMW96, VSW+13]. WARPED [MMW96]. WARPmemory [SF905].

Washington [B+05, BSH94, IEE93c, IEE94h, IEE95k, Ost94]. watching [JLG05]. water [DS22, HTD49, R+92, STA20, dIAMC11, dIAMCF12]. Waterman [KDS012, RGB+18]. watershed [NAJ99].

Wave [BBC+00, EMO+93, ESM+94, NSLV16, SMOE93, Get94, KM10, KEGM10, Mal01, NS20, NB96, RMNM+12].

Wave-Particle [NSLV16]. Waveform [LSR95]. Wavelet [Uhl94, Uhl95b, Zem94, vLJR11, Uhl95a, Uhl95c]. Way [Vog13, HLK+20, WDR+19, FGT96]. ways [CZ06]. WCRT [SGS+21]. weak [SD16].

Weather [AHP01, HE02, Bjo95, KOS+95a, Mal01]. web [CHKK15, AASB08, NE01, PES99, Wal01b].

Weighted-Averaging [RJ21]. welcomes [Str94]. West [EV01, EdS08]. Westin [IEE94e]. We’ve [GKP97]. WG10.3 [DR94]. WG2.5 [Boi97]. Wheeler [NTR16].

where [KC94]. which [SH96]. Whippetree [SK+14]. whistler [NS20].

Wide [FGG+98, MPZ21, dOSMM+16, FGT96, KHB+99]. Wide-area [FGG+98, FGT96]. Wide-Warp [MPZ21]. WIEN [Gao03]. Will [CB00]. William [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

Williamsburg [IEE92]. Win32 [MS98]. windows [QB12, QM21, RGGP+18, Ano01a, CLP+99, FD97, GGGC99, PS01a, SFG98, SSS97, TAH+01]. Windows95 [SLL95]. Winona [Ano94h]. wireless [Bon96]. wissenschaftliche [MS04].

wissenschaftliches [Ano94c]. within [WDR+19]. without [BW12, Pla02, RSC+19, YLZ13]. WLAN [SOGR01]. WMPI [BPS01, MS98, MSS98, MSS99, PS01a, SMS00]. WOMPAT [Cha05, EV01, Vo03].

Woolongong [GN95]. Work [HRS97, Pet00a, Pet00b, WQKH20, OdSSP12, TCBV10]. Work-Group [WQKH20]. work-stealing [TCBV10]. Worker [EML00, YG96]. Work-Based [YG96]. Workerproblem [FH98]. Workflow [LYZ13]. workflows
References

AlQuraishi:2016:CBP

REFERENCES

L. Adhianto, F. Bodin,

Allegretti:2020:OBB

Abrahart:1996:GIC

Adhianto:2007:PMC

Alvanos:2017:PMM

Aldinucci:2021:PPS

Ayguade:2009:DOT

REFERENCES

ISSN 1045-9219 (print), 1558-2183 (electronic).

Arnold:1994:PCT

Acacio:2002:MDM

Alexandrov:1997:PMC

Agullo:2011:QOM

Andersch:2012:PPE

ACM:1990:PAC

REFERENCES

[ACM97a] ACM, editor. PASCO ’97. Proceedings of the second international symposium on parallel symbolic computa-
REFERENCES

REFERENCES

ANTONUCCIO-DELOGU:1994:PTN

ADDISON:2001:EOP

ARIOLI:1995:PSB

ADAMEK:2020:GFC

AGATHOS:2022:CAA

AMESTOY:2003:IIMA

[ADLL03a] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent,

REFERENCES

S. K. Aityan, L. T. Grujic, R. J. Hathaway, G. S. Ladde, N. Medhin, and M. Samuelbandham, editors. *Pro-

Averbuch:1994:PES

Arbenz:1996:SRP

Ayguade:2006:ENO

Agrawal:1995:PIW

Almeida:1995:CST

Alfaro:1997:FDW

[AGS97] F. J. Alfaro, J. A. Gallud, and J. L. Sanchez. A function to dynamic workload allocation in distributed applications. Lecture Notes in Computer Science, 1332:
REFERENCES

Nicholas K. Allsopp, John F. Hague, and Jean-Pierre

[AHP01] Nicholas K. Allsopp, John F. Hague, and Jean-Pierre
REFERENCES

Andoh:2021:AMM [AjIS+21]

Aversa:1997:MDP [Aim97]

Aguilar:1997:PMS

Awan:2020:CPC [AJC+20]

Aubrey-Jones:2016:SMI

M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92], page ?? ISBN ????. LCCN ???. Proceedings available via anonymous ftp from ftp.scri.fsu.edu in directory pub/parallel-workshop.92.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Ayguade:1999:EML

Amato:1994:PEP

anMey:2007:NPO

Al-Mouhamed:2015:EAO

Aversa:1994:PSH

Andersson:1998:PFT

Anonymous:1989:PFC

REFERENCES

Anonymous:1992:PSE

Anonymous:1993:ATA

Anonymous:1993:ISA

Anonymous:1993:JFI

Anonymous:1993:MMP

Anonymous:1993:PSE

Anonymous:1993:SEC

Anonymous:1993:SEC
REFERENCES

Fairs, Utrecht, Netherlands, 1993. ISBN ???? LCCN ????

Anonymous:1994:SCC

Anonymous:1994:SQC

Anonymous:1995:CCS

Anonymous:1995:BRPb

Anonymous:1995:BRU

Anonymous:1995:RSS

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In
REFERENCES

3rd CLIPS conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ????. LCCN ????.

Anonymous:1996:BRMHi

Anonymous:1996:IPP

Anonymous:1996:PPA

Anonymous:1996:RP

Anonymous:1997:TNR

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ????? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMa

REFERENCES

Anonymous:1999:BRMf

Anonymous:1999:BRMb

Anonymous:2000:BRUd

Anonymous:2000:BRUe

Anonymous:2000:AAL

Anonymous:2001:EDP

Anonymous:2003:MNIc

REFERENCES

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

Aji:2016:MEA

Aji:2016:MAA

AlHaddad:2001:UNW

Arabnia:1995:TRA
Hamid Arabnia, editor. Transputer research and
REFERENCES

Al-Refaie:2017:PAH

Al-Refaie:2017:PCT

Altas:1994:NIE

Arn95

Arnow:1995:DLB

ARS89

ART17

ART17

ARTY17

ARvW03
Al-Salman:1992:DIP

Awile:2014:PWF

Alonso:1997:PBB

Alves:1995:WPC

Aydin:2018:RTP

Al-Shorman:2019:UPP

Andersson:2017:BGB

REFERENCES

Endowment, 10(8):901–912, April 2017. CODEN ????. ISSN 2150-8097.

Agrawal:1994:PIC

Amritkar:2012:OPF

Attiya:1996:ERS

Angskun:2001:DPM

Arif:2018:RBP

Andujar:2016:OSF

Asenjo:1995:SLF

Arteaga:2017:GFG

Beyer:2005:GEC

Battre:2006:MFP

Barrada:2020:IFC

REFERENCES

Bader:2016:EMT

Becciani:2007:FMH

Bae:2020:ESO

Barai:2022:PMP

Bruel:2017:ACC

Baker:1998:MNC

REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic).

Blaszczyk:1995:PCE

Buyukkececi:2013:POI

Bernabeu:2008:MPA

Bedrosian:1993:MFA

Beguelin:1994:CMS

Beaumont:1995:DPG

Bunge:1995:MCM
Hans-Peter Bunge and John R. Baumgardner. Mantle convection modeling on parallel virtual machines. Com-

Bova:1999:NOM

Bova:2000:DLP

Bosilica:2002:MVT

Bertozzi:1999:MIT

Badia:2019:ASP

Bertozzi:1999:MIT

[BBD+20] N. Bombieri, F. Busato, A. Danese, L. Piccolboni,

REFERENCES

[BBG+11]

[BB+08]

REFERENCES

QA76.88.I57 1994. DM96.00. Two volumes.

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, and Paul Thomson. The design and
implementation of a verification technique for GPU kernels. ACM Transactions on Programming Languages and Systems, 37 (3):10:1–10:??, June 2015. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[121] Bikshandi:2009:EPI

[BCKP00] Bruno:2000:PEH

[BCL00] Bolloni:2000:TIQ

[BCM+16] Bolis:2016:APA

[BDA+18] Burtscher:2018:HQF

A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A user’s guide to PVM: Parallel virtual machine. Technical Report ORNL/TM-11826,
Mathematical Sciences Section, Oak Ridge National Laboratory, Knoxville, TN, USA, September 1991.

REFERENCES

Beguelin:1995:REP

Beguelin:19xx:PSS

[BDG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, ????, 19xx.

Beguelin:1993:VDH

Bruck:1995:EMPb

Bruck:1997:EMP

Browne:1998:RPA

REFERENCES

perftools-review/. Accepted, to appear.

Bode:1996:PVM

Baghsorkhi:2010:APM

Bronevetsky:2007:CFS

Baboulin:2008:SID

Briguglio:2003:PPM

Bubak:1997:RAP

Marian Bubak, J. J. Dongarra, and Jerzy Wasniewski, editors. Recent advances in parallel virtual
REFERENCES

REFERENCES

Benkner:1995:VFA

Bencheva:2001:MPI

Benedict:2018:SES

Bernaschi:1996:RHP

Baker:1998:MNP

Berthou:2001:COH

Bubak:2001:PMS

Marian Bubak, Wlodzimierz Funika, Bartosz Bali, and

Bischof:1994:CSM

Broquedis:2010:FEO

Bubak:1999:EFP

Baraglia:1999:PAN

Bubak:1996:MPP

Bubak:1997:EPA

M. Bubak, W. Funika, and J. Moscinski. Evaluation of

Bouge:1996:EPP

Bubeck:1996:BPP

Bubak:1996:PPM

Bubak:1996:PPM

Bhavsar:1991:SSJ

Boerger:1994:FSP

E. Boerger and U. Glasser. A formal specification of the PVM architecture. In Pehrson et al. [PSB⁺94],
REFERENCES

REFERENCES

Beisel:1997:EMD

Brune:1997:HMP

Breitenecker:1995:ESC

Bhargava:1993:PIW

Bhanot:1998:DTM

Bader:1996:PPA

Bouteiller:2006:MVP

REFERENCES

[BBHRS08] Uday Bondhugula, Albert Hartono, J. Ramamujam, and P. Sadayappan. A practical automatic polyhedral parallelizer and locality optimizer. ACM SIG-
REFERENCES

Bisseling:2002:FMF

Bazow:2018:MPS

Berka:2012:PET

Busa:2012:ACO

Bae:2017:SEF

Seung-Hee Bae, Daniel Halperin, Jevin D. West, Martin Rosvall, and Bill Howe. Scalable and efficient flow-based community detection for large-scale graph analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 11
REFERENCES

135

REFERENCES

in computer science, Department of Computer Science, College of Engineering, Lamar University, Beaumont, TX, USA, 1994. viii + 44 pp.

REFERENCES

[BK95] M. Bendrider and J.-M. Leclercq. Second-order Möller–Plesset and Epstein–Nesbet corrections to the molecular charge density: Distributed computing on a cluster of heterogeneous workstations with the PVM system. In Bernardi and Rivail [BR95a], pages 73–
REFERENCES

REFERENCES

Booth:2000:SSM

Basumallik:2002:TOE

Buntinas:2007:IES

Bronevetsky:2003:AAL

Bubak:1994:PDS

Bubak:1994:EMD
M. Bubak, J. Moscinski, ...
REFERENCES

Baiardi:2001:CRD

Brightwell:2002:DIM

Bubak:1994:FLG

Bubak:1994:IPL

Barthels:2017:DJA

Boschetti:2019:MOD
Marco Antonio Boschetti, Vittorio Maniezzo, and Francesco Strappaveccia. Membership overlay design optimization with re-
source constraints (accelera-
cerated on GPU). Jour-
nal of Parallel and Dis-
CODEN JPDCE. ISSN 0743-7315 (print), 1096-0848
electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0743731518304908.

Berrendorf:2000:PCO [BO01]

Rudolf Berrendorf and Guido
Nieken. Performance char-
acteristics for OpenMP con-
structs on different par-
allel computer architec-
tures. Concurrency: practice
and experience, 12(12):1261–
1273, October 2000. CO-
DEN CPEXEI. ISSN 1040-
3108. URL http://www3.
interscience.wiley.com/
cgi-bin/abstract/76500355/
START; http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=76500355&PLACEBO=IE.
pdf.

Bawidamann:2012:ETO [BoFBW00]

Uwe Bawidamann and Marco
Nieken. Expression tem-
plates and OpenCL. Lecture
Notes in Computer Science,
LNCSD9. ISSN 0302-9743
(print), 1611-3349
springer.com/chapter/10.1007/978-3-642-31500-8_8/.

Bull:2001:MSO

J. Mark Bull and Darragh
O’Neill. A microbenchmark
suite for OpenMP 2.0. ACM
SIGARCH Computer Archi-
tecture News, 29(5):41–48,
December 2001. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Bubak:2000:IOB

Marian Bubak, W. odz-
imierz Funika, Bartosz Balis,
and Roland Wismüller. In-
teroperability of OCM-based
on-line tools. Lecture
Notes in Computer Science,
1908:242–?, 2000. CO-
DEN LNCSD9. ISSN 0302-9743
(print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/
bibs/1908/19080242.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080242.
pdf.

Boisvert:1997:QNS

R. F. Boisvert, editor. Qual-
ity of numerical software:
asessment and enhance-
ment / proceedings of the
IFIP TC2/WG2.5 Working
Conference on the Quality
of Numerical Software, As-
sement and Enhancement,
Oxford, United Kingdom, 8–
12 July 1996. Chapman and
Hall, Ltd., London, UK,
LCCN QA297 .I35 1996.
REFERENCES

[Bar99] J. Barbosa and A. Padilha. Algorithm-dependant method to determine the optimal number of computers in parallel virtual machines. Lecture Notes in Computer Sci-
REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Beletsky:1994:OPV

Becks:1994:NCT

Bouhrour:2022:TLC

Stephane Bouhrour, Thibaut Pepin, and Julien Jaeger. Towards leveraging collective performance with the support of MPI 4.0 features in MPC. Parallel Computing, 109(??):??, March 2022.

Barbosa:1997:EUW

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Baptista:2001:IOS

Balou:1991:DIV

A. T. Balou and A. N. Refenes. The design and implementation of VOOM: a parallel virtual object ori-
REFERENCES

ented machine. Micro-

MMICDT. ISSN 0165-6074

(print), 1878-7061 (elec-

tronic).

Burrer:1994:RRB

[BR94]

C. Burrer and P. Remy. RU-

BIS: a runtime basic inter-

face software on TELMAT

T9000 TN series. In de Glo-

ria et al. [dGJM94], pages

63–78. ISBN ???? LCCN

????

Bernardi:1995:CCE

[BR95a]

Francesco Bernardi and
Jean-Louis Rivail, editors.
Computational chemistry:
1st European conference
on computational chemistry
(May 1994, Nancy, France),
number 330 in AIP Confer-
ence Proceedings. American
Institute of Physics,
ISBN 1-56396-457-0. ISSN

0094-243X (print), 1551-

7616 (electronic), 1935-0465.
LCCN QA76.88.15 1995.

Bernaschi:1995:DRP

[BR95c]

Massimo Bernaschi and
Giorgio Richelli. Development
and results of PVMe on the IBM 9076 SP1. Journal of Parallel and Dis-

tributed Computing, 29(1):

CODEN JPDCER. ISSN

0743-7315 (print), 1096-0848
(electronic). URL http://

www.idealibrary.com/
links/doi/10.1006/jpdc.1995.1107/production;

http://www.idealibrary.
com/links/doi/10.1006/
jpdc.1995.1107/production/
pdf.

Bane:2002:EOA

[BR02]

M. K. Bane and G. D. Riley.
Extended overhead analysis
for OpenMP (research note).
Lecture Notes in Computer
CODEN LNCSD9. ISSN

0302-9743 (print), 1611-3349
(electronic). LCCN QA76.88.

i57 1995.

Beneches:2004:ETF

[BR04]

Cristina Boeres and Vinod
E. F. Rebello. EasyGrid:
towards a framework for

[Bergstrom:2012:NDP]

[Bramley:1997:TNR]

[Brieger:2000:HOO]

[Brightwell:2002:RMR]

[Briscolini:1995:PID]

[Brieger:2000:HOO]
REFERENCES

REFERENCES

PCFL. ISSN 1094-3420 (print), 1741-2846 (electronic). URL http://hpc.sagepub.com/content/19/2/103.full.pdf+html.

Bruning:2012:MFT

Barth:1993:CNM

Bolding:1994:PCR

Beguelin:1996:TMD

Brightwell:1996:DIM

Blikberg:2001:NPA
REFERENCES

REFERENCES

Bakhtiari:1995:APL

Bai:2013:SLA

Benzoni:1991:MFR

Blaszczyszk:1996:EPI

biewski:2001:MOS

Bu:2001:PAC

Bonelli:2017:MCA

Badia:1999:SIT

Baltas:1994:CPC

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

Blum:1996:PIP

[BWT96] J. M. Blum, T. M. Warschko,
REFERENCES

Bureddy:2012:OGM

Bihari:2012:CIT

Calmet:1994:RWC

J. Calmet, editor. Rhine workshop on computer alge-
REFERENCES

[Czapinski:2011:TST] Michal Czapinski and Stuart Barnes. Tabu Search with two approaches to parallel flowshop evaluation on
REFERENCES

REFERENCES

Che:2008:PSG

Che:2008:APU

Chapman:2002:APU

Cowles:2018:ISB
REFERENCES

Couder-Castaneda:2015:PCM

Casas:1995:MMT

Collingbourne:2012:STO

REFERENCES

Costa:2006:ROA

Chen:2012:PUA

Ciglaric:2019:OLP

Clematis:1997:DNL

Chamaret:1995:PFE

Coulaud:1996:EIP

Cunha:1998:MPP
159

REFERENCES

REFERENCES

Yiannis Cotonis, Anthony...

Ceron:1998:PID

Cappello:2000:MVM

Clemencon:1995:AEP

Chau:2007:MIP

Cerin:1999:DMP

Chen:2001:FFT

Crivellini:2019:OPS

REFERENCES

Chen:2001:TMK

Choudhary:1994:LCR

Corbett:1996:OMP

Clauser:2019:FFO

Carpenter:2000:OSM

REFERENCES

[CGB+10] Pranay Chaudhuri, Sukumar Ghosh, Raj Kumar Buyya, Jian-Nong Cao, and
REFERENCES

Cunningham:2014:RXE

Carpenter:2000:MML

Catanzaro:2011:CCE

Calore:2016:PPA

Chapman:2011:OPE

REFERENCES

0302-9743 (print), 1611-3349 (electronic). LCCN ???. URL http://www.springerlink.com/content/978-3-642-21487-5.

Chatterjee:1993:GLA

Caubet:2001:DTM

Chen:2013:IRM
Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin. Improving the reliability of MPI libraries via message flow checking. *IEEE Transactions on Parallel and Dis-
REFERENCES

Ciancarini:1996:CLM

Chapman:2005:SMP

Charny:1996:MPV

Cappello:2007:RAP

Cappello:2009:FSI

Chergui:1999:UPP

Cheng:2010:BRBb

Cho:2015:OAO

REFERENCES

Chapman:2001:PDE

Cho:2010:OPP

Cook:1995:TAS

Cadenelli:2019:CUO

Chapman:2008:UOP

Czarnul:1999:DAP

P. Czarnul and H. Krawczyk.

Chang:2016:DLD

Casas:1994:ALM

Culler:1993:LTR

Castro-Leon:1993:MCP

E. Castro-Leon. A model of computation with parallel solvers. In Anony-
mous [Ano93g], pages 189–198. ISBN ???. LCCN ???.

Clark:1998:FOP

Chikin:2019:MAA

REFERENCES

Chen:2018:FOB

Chien:1999:DEH

Chandra:2007:ESP

Chang:2016:APC

Chapman:1998:OHI

Chapman:2005:O

Barbara M. Chapman and
REFERENCES

Campanai:1994:EAS

Chapman:1999:EOF

Chou:2010:CMI

Chalkidis:2011:HPH

Coelho:1994:EHC

Cho:2020:PMP

Cooperman:1995:SBP

Cooperman:1995:SMB

[176]

Cotronis:1997:MPP

[185]

Cotronis:1998:DMP

[177]

Cotronis:2004:CMP

[177]

Coussement:1993:PMO

[185]

Carvalho:1997:PCC

[178]

Carissimi:1998:AEM

[178]

Cercos-Pita:2015:ANF

[185]

REFERENCES

REFERENCES

[R. Ciegis, R. Sablinskas, and J. Wasniewski. Hyper-rectangle distribution algo-

Cotronis:2000:CMP

Czarnul:2001:DPD

[Czapiński:2013:EPM] Michal Czapinski. An effective Parallel Multistart Tabu Search for Quadratic Assignment Problem on CUDA platform. Jour-
REFERENCES

Sebastian Daberdaku. Accelerating the computation of triangulated molecular...

Dieguez:2019:TPR

Dieguez:2018:SLP

Danalis:2012:MCT

Darema:2001:SMP

Demidov:2013:PCO

Denis Demidov, Karsten Ahnert, Karl Rupp, and Peter Gottschling. Programming CUDA and OpenCL: a case study using modern C++

deAndrade:2017:OFH

Demuyucch:1997:DOD

Dinan:2016:IEM

James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. An implementation and evaluation of the MPI 3.0 one-sided communication inter-

Dursun:2009:MPM

Dotsenko:2011:ATF

DiMartino:2001:WDS

Beniamino Di Martino, Sergio Briguglio, Gregorio Vlad, and Giuliana Fogaccia. Workload decomposition

[DCZG06] Juan del Cuvillo, Weirong Zhu, and Guang Gao. Land-
REFERENCES

[DDL00] Decker:1995:TDU

[DDPR97] Dongarra:1997:BCA

C. E. Dean, R. C. Denny, P. C. Stephenson, G. J. Milne, and E. Pantos. Comm...

[DeP03] C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. *Cmg*, 2(?):821–832, 2003. CODEN ????

REFERENCES

DEN IJSAE9. ISSN 0890-2720.

REFERENCES

DEN ACMHEX. ISSN 1019-7168.

REFERENCES

- Dongarra:1996:SRP

- DiPierro:2014:PPP

- DiSerio:2002:ENN

- DiNucci:1996:CDS

- Denis:2019:SPT

- Karniadakis:2002:DLP
 Suchuan Dong and George Em Karniadakis. Dual-level parallelism for deterministic and stochastic CFD problems. In IEEE [IEE02], page ?? ISBN 0-7695-1524-
REFERENCES

REFERENCES

[DKP00] J. J. Dongarra, Peter Kacsuk, and Norbert Podhorszki, editors. Recent advances in parallel virtual machine and message...

Dickens:2010:HP1

delaAsuncion:2011:SOL

delaAsuncion:2012:MCI

Desai:2007:CEM

Marcos:2002:DDP

REFERENCES

[DLO03] Jack Dongarra, Domenico Laforenza, and Salvatore Orlando, editors. Recent advances in parallel virtual machine and message passing interface: 10th European PVM/MPI Users’ group Meeting, Venice, Italy, September 29–October 2, 2003: Proceedings, volume 2840 of Lecture Notes in Computer Science. Springer-

DeKeyser:1994:RTL

DeSande:1999:NBS

DiPietro:2016:CLD

Despons:1993:CCP

Davies:1995:NSP

Davies:1995:NPE

REFERENCES

REFERENCES

REFERENCES

Dowaji:1995:LBS

DiMartino:1997:MDH

Davina:2018:MCP

Deuzeman:2012:LMP

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES

Hoang-Vu Dang and Bertil Schmidt. CUDA-enabled sparse matrix-vector multiplication on GPUs using

REFERENCES

Dohi:2011:GIO

Domokos:2000:PRC

Daleiden:2020:GPP

Deshpande:1996:MIBa

Dekker:1994:MPP

REFERENCES

[Dongarra:1994:PSW]

[DT94]

[Diavastos:2017:SLR]

[DT17]

[Duval:1992:TPP]
D. Duval. Trends in parallel programming models for high performance computers. In Ferenczi [Fer92], page 33. ISBN ???? LCCN ????

[Duv92]

[Dikken:1994:DDL]

[Dw94]

[DW94]

[DeRose:2002:CCG]

[DW02]
REFERENCES

Dantas:1996:ILB

Dantas:1998:ESM

Delves:1998:HPF

Dragovitsch:1995:PPS

Dykes:1994:CCP

Edmonds:2019:HAS

Edjlali:1995:DPP

Eichenberger:2020:HCG

Elwasif:2001:AMT

Eppstein:1994:CSP

Eddelbuettel:2018:BRN

Eigenmann:2008:ONE

Erhel:2014:DDM

Ebrahimirad:2015:EAS

Evans:1992:PCP

Eberl:1999:PCP

Elamvazuthi:1994:OPA

C. Elamvazuthi and G. A. Manson. Occam, PVM and the alternative construct. In Miles and Chalmers [MC94],
Eigenmann:2000:TMPa

Eigenmann:2000:TMPb

Espinica:2002:PPA

Espinosa:1998:ADP

Espinosa:2000:APA

Ewing:1993:DCW

Engquist:2000:SVG

Björn Engquist, editor. Simulation and visualization on

IEEE Computer Society
Press, 1109 Spring Street,
Suite 300, Silver Spring, MD
20910, USA, 1995. ISBN 0-
8186-6935-7. LCCN ????

El-Rewini:1996:PTN

[HRS96] Hesham El-Rewini and
Bruce D. Shriver, editors.
Proceedings of the Twenty-
Ninth Hawaii International
Conference on System Sci-
ences (HICSS-29): Wailea,
HI, USA, 3–6 January 1996.
IEEE Computer Society
Press, 1109 Spring Street,
Suite 300, Silver Spring, MD
20910, USA, 1996. ISBN
0-8186-7324-9. ISSN 1060-
3425. LCCN ???? Five vol-
umes.

Ewedafe:2011:PID

[ES11] Simon Uzezi Ewedafe and
Rio Hirowati Shariffudin.
Parallel implementation of
2-D telegraphic equation on
MPI/PVM cluster. Interna-
tional Journal of Par-
allel Programming, 39(2):
202–231, April 2011. CO-
DEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640
(electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=

Ellingson:2013:SNU

[ESB13] Sally R. Ellingson, Jeremy C.
Smith, and Jerome Baudry.
Software news and up-
dates: VinaMPI: Facilitat-
ing multiple receptor high-
throughput virtual docking
on high-performance comput-
ers. Journal of Com-puta-
tional Chemistry, 34
(25):2212–2221, September
30, 2013. CODEN JCC-
HDD. ISSN 0192-8651
(print), 1096-987X (elec-
tronic).

Ewing:1994:DCW

[ESM+94] Richard E. Ewing, Robert C.
Sharpley, Derek Mitchum,
P. O’Leary, and J. S.
Sochacki. Distributed com-
putation of wave propaga-
tion models using PVM.
IEEE parallel and dis-
tributed technology: sys-
tems and applications, 2(1):
26–31, Spring 1994. CODEN
IPDTEX. ISSN 1063-6552
(print), 1096-987X (elec-
tronic).

Escaig:1994:PMD

[ETV94] Y. Escaig, G. Touzot, and
M. Vayssade. Parallelization
of a multilevel domain de-
composition method. Com-
puting systems in engi-
neering: an international
journal, 5(3):253–263, June
1994. CODEN COSEEO.
ISSN 0956-0521.

Eichenberger:2012:DOT

[ETWaM12] Alexandre E. Eichenberger,
Christian Terboven, Michael
Wong, and Dieter an Mey.
The design of OpenMP
thread affinity. Lecture
Eigenmann:2001:OSM

Eichstadt:2020:CSM

Elis:2020:QNG

Eckert:2016:HAL

REFERENCES

[FB97] Niandong Fang and Helmar Burkhart. MPI-
REFERENCES

[Flores:2005:TGS] Evangelos Floros and Yian-

[217]

[FD96] Graham Fagg and Jack Dongarra. PVMPI: An integration of PVM and
REFERENCES

REFERENCES

sagepub.com/content/18/3/353.full.pdf+html.

[FDG97a] G. Fagg, J. Dongarra, and A. Geist. Heterogeneous MPI application interop-
eration and process manage-
ment under PMPI. Technical report CS-97-
??, University of Ten-
netlib.org/utk/papers/
pvmmpi97.ps; http://
www.netlib.org/utk/people/
JackDongarra/pdf/pvmmpi97.
pdf.

[FDG97b] G. E. Fagg, J. J. Don-
garra, and A. Geist. Hetero-
genous MPI application interop-eration and process manage-
ment under PMPI. Lecture Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic).

[FDG19] Thomas Faict, Erik H.
D’Hollander, and Bart
Goossens. Mapping a
guided image filter on the
HARP reconfigurable archi-
tecture using OpenCL. Al-
gorithms (Basel), 12(8), Au-
gust 2019. CODEN AL-
GOCH. ISSN 1999-4893

www.mdpi.com/1999-4893/
12/8/149.

DEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).

DEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).

Austrian-Hungarian Work-
shop on Transporter Ap-
lications. Proceedings.
Hungarian Acad.of Sci, Bu-
ISBN ???? LCCN ????.

[Ferrari:1998:JNPb] Adam Ferrari. JPVM: network parallel comput-
REFERENCES

DEN CPEXEI. ISSN 1040-3108. URL http://www3.
interscience.wiley.com/
cgi-bin/abstract?ID=10050413;
http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=10050413&PLACEBO=IE.
pdf. Special Issue: Java for
High-performance Network
Computing.

Adam J. Ferrari. JPVM:
Network parallel comput-
ing in Java. In ACM
[ACM98a], page ?? ISBN
edu/conferences/java98/
papers/jpvm.pdf; http://
www.cs.ucsb.edu/conferences/
java98/papers/jpvm.ps.
Possibly unpublished, except
electronically.

Randima Fernando, editor. *GPU gems: programming
techniques, tips, and tricks for real-time graphics*,
volume 1 of *GPU gems*. Ad-
dison-Wesley, Reading, MA,
USA, 2004. ISBN 0-321-
22832-4. xiv + 765 pp.
US$45.99.

Adelino Ferreira da Silva.
cudaBayesreg: Bayesian
computation in CUDA.
The *R Journal*, 2(2):48–
55, December 2010. CO-
DEN ????? ISSN 2073-
4859. URL http://
journal.r-project.org/
2010-2_Ferreira`da-Silva.
pdf.

Peter Fritzson and Leif
Finno, editors. *Paral-
lel programming and ap-
plications: proceedings of the Workshop on Paral-
lel Programming and Com-
putation (ZEUS ’95) and the 4th Nordic Transputer
Conference (NTUG ’95):
Linköping, Sweden*. IOS
Press, Postal Drawer 10558,
Burke, VA 2209-0558, USA,
(IOS Press). 4-274-90056-8
(Ohmsha). LCCN ????.

A. Fava, M. Fava, and
M. Bertozzi. MPIPOV: a
parallel implementation of
POV-Ray based on MPI. In
Dongarra et al. [DLM99],
pages 426–433. ISBN 3-540-
66549-8 (softcover). ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

G. Frugoli, A. Fava, E. Fava,
and G. Conte. Distributed collision handling
LCCN QA76.58 E973 1999.

Jan Fousek, Jiří Filipovič, and Matuš Madzin. Automatic fusions of CUDA–GPU kernels for parallel
CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

idealibrary.com/links/doi/10.1006/jpdc.1996.1266/production;

Kurt Ferreira, Ryan E. Grant, Michael J. Levenhagen, Scott Levy, and Taylor Groves. Hardware MPI message matching: Insights into MPI matching behav-

REFERENCES

Andre:1998:BVN

Friedley:2013:OPE

Franke:1994:MMP

Franke:1995:AAV

Field:2001:RTF

Franke:1995:MIS
REFERENCES

Franke:1994:EIM

Fang:1999:PMD

REFERENCES

Fischer:2001:SAN

Fernandez:2000:UPM

Forejt:2017:PPA

Feng:2014:SBS

Flower:1994:EJM
REFERENCES

REFERENCES

Computer Society Press Order Number: RS00126.

Freen:2008:JTD

Foster:1996:GCM

Ferreira:2021:EMR

Florez:2005:LMM

Fagg:1996:TGR

Fagg:1998:MMH

Fachada:2017:CCF

REFERENCES

Ferreira:2018:CMM

Fan:2020:ALC

Feeley:1990:PVM

Furlinger:2009:CAE

Fabero:1996:DLB

Fiala:2012:DCS

REFERENCES

REFERENCES

[Fumero:2017:JTG] Juan Fumero, Michel Stoeuwer, Lukas Stadler, and Christophe Dubach. Just-in-time GPU compilation for interpreted languages with partial eval-
Folino:1998:EMC

Folino:1998:PEM

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP

Fernandez:2000:DCE

Fujimoto:2008:DMV

Fagg:2000:AAC

Fang:2015:EVD

Fineberg:1996:PP1

Franke:1995:MPEb

Frust:2017:RDP

REFERENCES

[DáVRRRL17] David L. González-Álvarez, Miguel A. Vega-Rodríguez, and Álvaro Rubio-Largo. A hybrid MPI/OpenMP parallel implementation of

Gerstenberger:2018:EHS

Gabriel:1997:EMU

Edgar Gabriel, Thomas Beisel, and Michael Resch. Erweiterung einer MPI-Umgebung zur Interoperabilität verteilter MPP-Systeme. (German) [Extension of an MPI environment for interoperability with distributed MPI systems]. Studienarbeit angewandte Informatik RUS 37, Rechenzentrum Universität Stuttgart, Stuttgart, Germany, 1997.

Garain:2015:CCF

Graham:2007:OMH

Grove:2005:CBP

REFERENCES

issn=0920-8542&volume=34&issue=2&spage=201.

REFERENCES

Geist:1993:PTW

Galizia:2015:MCL

Ghose:2017:FOT

Gonzalez-Dominguez:2020:CJA

Gonzalez-Dominguez:2018:MPC

Gonzalez-Dominguez:2022:MDP

[GEW98] Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprint-
Reihe des Chemnitzer SFB 393 Sonderforschungsbereich Numerische Simulation auf Massiv Parallelen Rechnern 97,08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998.

Gabriel:2003:FTC

Gonina:2014:SMC

Gomez-Folgar:2018:MPA

F. Gomez-Folgar, G. Indalecio, N. Seoane, T. F. Pena, and A. J. Garcia-

Gueunet:2019:TBA

Gravvanis:2012:SFD

Giordano:1999:IBP

Garzon:1999:PIE

Giannoutakis:2009:DIP

Giannoutakis:2007:MHP

K. M. Giannoutakis, G. A. Gravvanis, B. Clayton, A. Patil, T. Enright, and
REFERENCES

Gallud:2001:EDF

Gallud:1999:DPR

Gallud:1999:CCU

Godlevsky:1999:PSA

Geist:1996:MEM

REFERENCES

[Gawman:1993:PCT]

[Genaud:2008:EPC]

[Getov:1999:MJM]
Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). VEE ’12 conference proceedings.

Brice Goglin, Emmanuel Jeannot, Farouk Mansouri, and Guillaume Mercier. Hardware topology management in MPI applications through hierarchical com-

Ivan Grasso, Klaus Kofler,

Gianinazzi:2018:CAP

Granat:2009:NPQ

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

Geist:1997:CPF

REFERENCES

1997. CODEN IJSCFG. ISSN 1078-3482.

Geist:1997:BPW

Gopalakrishnan:2011:FAM

Garland:2012:DUP

Gropp:1992:TIM

Gropp:1994:MCL

Gropp:1995:DPM

Gropp:1995:IMM

REFERENCES

Gropp:1995:EIS

Gropp:1995:MMI

Gropp:1996:HPM

Gropp:1997:SMC

Gropp:1997:WPM

Gropp:1997:HPM

Gropp:2002:MG

William Gropp and Ewing Lusk. MPI on the Grid. Lecture Notes in Computer Science, 250.
REFERENCES

Gropp:2004:FTM

Girona:2000:VDC

Gropp:1996:HPP

Glendinning:1993:MMP

Gregoretti:2008:MGE

Garland:2008:PCE
Michael Garland, Scott Le Grand, John Nickolls,

Gonzalez:2000:TSN

Gonzalez:2001:MIM

Gropp:1994:UMP

Gropp:1999:UMP

Gropp:1999:UMA

William Gropp, Ewing Lusk, and Rajeev Thakur. *Using MPI-2: Advanced Features of the Message Pass-
REFERENCES

Gupta:2018:ALQ

Ghazimirsaeed:2020:CAM

Gong:2016:NPG

Goujon:1998:AAT

Guan:1995:SCC
REFERENCES

Gray:1995:PCT

Gloster:2019:CBP

Gloster:2019:CCF

Goedecker:2002:OPF

Gonzalez:2001:OET

Gorzig:2001:CCP

REFERENCES

Guarracino:1995:PMB

Grosset:2017:TTT

Govindan:1996:OMP

Gillich:1995:FPP

Genaud:2007:PMP

Grabowsky:1997:MBK
[Grabowsky] Lothar Grabowsky. MPI-basierte Koppelrandkommunikation und Einfluss der Partitionierung im 3D-Fall. (German) [MPI-based coupled edge communication and influence of partitioning in 3D-Fall].

References

REFERENCES

REFERENCES

Gold:1996:UAL

Geist:19xx:NBC

G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

Garg:2002:TOA

Gao:2008:GEI

Gardner:2013:CCE

Gine:2002:ALT

Francesc Giné, Francesc Solsona, Porfidio Hernández, and Emilio Luque. Adjusting the lengths of time slices when scheduling PVM jobs with high memory requirements. Lecture Notes in Computer Science, 2474:156–??, 2002. CODEN LNCSD9. ISSN 0302-9743
Gerlach:1997:ECS

Gonzalez:2000:AIT

Germanas:2017:HUP

Gine:2001:MMM

Gu:2013:PCI

REFERENCES

Gong:2021:TDG

Gruber:1994:PJE

Golbiewski:2001:MOS

Gropp:2007:TSM

Gropp:2019:GEI

Gennart:1996:CAG
B. A. Gennart, J. Tarraga Gimenez, and R. D. Hersch. Computer-assisted generation of PVM/C++ pro-

Hansen:1998:EMP

Hardwick:1994:PVL

Hardwick:1995:PVL

Hassanzadeh:1995:MMG

Hisley:2000:PPE

Hatazaki:1998:RRS

[Hachler:1996:IAC]

[Haechler:1996:IAC]

[Hausner:1995:EIP]

[Huang:2006:ECS]

[Huang:2008:FPM]

[Hamid:2010:CMB]

Nor Asilah Wati Abdul Hamid and Paul Coddington. Comparison of MPI benchmark programs on shared memory and distributed memory machines (point-to-point communication). The International Journal of High Performance Computing Applications, 24(4):469–483, November 2010. CODEN IHPCFL. ISSN 1094-3420 (print), 1741-2846 (elec-
REFERENCES

Han:2017:SLS

Hunold:2016:RMB

Hashmi:2020:FXZ

Hurwitz:2005:AMP

Huang:2005:TME

Hu:2016:CLG

REFERENCES

Mohammed F. Hadi and

Havran:2015:EBT

Hebeker:1993:CPC

Herland:1998:CML

Huang:2009:EGO

Hempel:1994:MSM

Hempel:1996:SMM

Holmen:2014:ASI

John K. Holmen and David L. Foster. Accelerating sin-

[HGX+22] Pouya Haghi, Anqi Guo, Qingqing Xiong, Chen Yang, Tong Geng, Justin T. Broaddus, Ryan Marshall, Derek Schafer, Anthony Skjellum, and Martin C. Herbordt. Reconfigurable switches for high perfor-

Hong:1995:PNP

HH95

Hanson:2014:NCM

HH14

Huckelheim:2022:SSA

HH22

Hui:1995:SPS

Huang:2018:ACO

Huang:2018:ACO

Horiguchi:1994:ISP

REFERENCES

Haimes:1998:UPM

Hori:2021:ISM

Hall:2014:MMC

Huang:2010:ELA

Hoffmann:1993:PFE

Henriksen:1994:PCF

[HK94] P. Henriksen and R. Keunings. Parallel computation of the flow of in-
REFERENCES

[Hong:2011:ACG] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating CUDA graph algo-

REFERENCES

Hung:2016:EBP

Hong:1996:RDM

Hawick:2010:PGC

Hawick:2011:RLS

Huband:2001:DTB

Hilbrich:2009:MCC

Hajihassani:2019:FAI

Hakula:1994:FEM

Holmes:2019:PPE

Haynes:2014:MOA

Hogg:2013:FDT

Hollerbach:1995:FDA

Hollingsworth:2012:SPI

Hosking:2012:CHL

Hadjidoukas:2005:OEM

Hawick:2011:HSL

Hidalgo:1999:MMP

Hadjidoukas:2002:MOI

Hariri:1995:STE

REFERENCES

-(Controller:1995:PEV) IEEE catalog number 95CH35784.

Hoyos-Rivera:1997:UPB

Hempel:1997:IMN

Hartley:1993:CPS

Hesham:1994:PTS

Hertzberger:1995:HPM

Hungenahally:1995:PIQ

Hoefler:2012:OPC

Torsten Hoefler and Timo Schneider. Optimization principles for collective
REFERENCES

neighborhood communications. In Hollingsworth [Hol12], pages 98:1–98:??

Henriksen:2017:FPF

Haeuser:1994:RNS

Halbiniak:2021:EOH

Kamil Halbiniak, Lukasz Szustak, Tomasz Olas, Roman Wyrzykowski, and Pawel Gepner. Exploration of OpenCL heterogeneous programming for porting solidification mod-

Heimel:2013:HOP

Hormati:2012:SPS

Hu:2001:PCC

Howes:2008:U

Ha:2008:NBP

Hluchy:1999:GWF

Hariri:2016:PPA

Huckle:1996:PIS

Humphres:1995:LBE

Husbands:1998:MSD

Parry J. Husbands. MPI-StarT: Delivering network
performance to numerical applications. In
ACM [ACM98b], page ??
ISBN ???: LCCN ???
URL http://
www.supercomp.org/sc98/
papers/.

communication on dedicated
clusters of workstations. In
Dongarra et al. [DLM99],
pages 469–476. ISBN 3-540-
66549-8 (softcover). ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

[Huse:2000:MOS] Lars Paul Huse. MPI op-
timization for SMP based
clusters interconnected with
SCI. Lecture Notes in
Computer Science, 1908: 56–??, 2000. CODEN
LNCSDE. ISSN 0302-
9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/
bibs/1908/19080056.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080056.
pdf.

SHMEM on top of MPI.
Lecture Notes in Computer
CODEN LNCSDE. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/
bibs/2131/21310044.htm;
http://link.springer-ny.com/link/service/series/
0558/papers/2131/21310044.
pdf.

[Hamidouche:2016:CAO] Khaled Hamidouche, Ak-
shay Venkatesh, Ammar Ah-
mad Awan, Hari Subra-
moni, Ching-Hsiang Chu,
and Dhabaleswar K. Panda.
CUDA-aware OpenSHMEM:
Extensions and designs for
high performance OpenSH-
MEM on GPU clusters. Para-
allel Computing, 58(??):27–
36, October 2016. CO-
DEN PACOJE. ISSN
0167-8191 (print), 1872-7336
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167819116300345.

[Houzeaux:2011:HMO] G. Houzeaux, M. Vázquez,
X. Sáez, and J. M. Cela.
Hybrid MPI–OpenMP per-
formance in massively par-
allel computational fluid
dynamics. In Tromeur-
Dervout et al. [TDBEE11],
pages 293–297. CODEN
LNCSA6. ISBN 3-
642-14437-3 (print), 3-642-
14438-1 (e-book). ISSN
1439-7358. LCCN ???: URL
http://link.springer.com/
content/pdf/10.1007/978-
REFERENCES

Huang:2013:ACM

Huang:2020:POL

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP

Hou:2008:BBS

Izadpanah:2019:PAP

Ramin Izadpanah, Ben-

IEEE:1993:WHP

IEEE:1994:FSF

IEEE:1994:IPN

IEEE:1994:IPN

[IEEE:1995:DPT]

[IEEE:1995:ISE]

[IEEE:1995:IPR]

[IEEE:1995:PIP]

[IEEE:1995:PSI]

[IEEE:1995:PEW]

293

IEEE:1996:FSS

IEEE:1996:PII

IEEE:1996:PFE

IEEE:1996:PII

IEEE:2005:IPD

Iida:2016:GET

IFIP:1995:KWC

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Iskra:2000:PMD
REFERENCES

REFERENCES

Ishizaka:2000:CGT

Imbernon:2018:ELS

Ilroy:2001:IMP

Ilie:2016:AEC

Satake:2012:OGA
REFERENCES

Imamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IAC

Iskra:2000:IDE

Jatala:2017:SSG

Jabbarzadeh:1997:PSS
A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner. Parallel simulation of shear flow of polymers between structured walls by molecular dynamics simulation on

Jacoby:1996:ADA

Juhasz:1996:PIP

Jarzabek:2017:PEU

Jin:2008:PEM

Jaeger:2015:FGD

Jin:2000:AGO

Jin:2011:HPC

Jackson:1997:SYE

Jo:2017:PMA

Jin:2003:AMP

Jost:2005:WMP

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

Jung:2014:MCM

Jo:2015:ALM

Jones:1996:LLM

Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:PAL

Janssen:2022:GPU

Jiang:2012:OSP

Juric:1995:UPV

Joldes:2014:SSH

Joubert:1994:PCT

Jost:2010:EUH

Jimenez:2013:BCA

Jalowiecki:2021:BFS

Judd:1994:PIV

Jin:2013:PCU

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M^3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????.

Kumar:2013:GAI

Krawezik:2002:SOV

Krone:1996:ICF

Kapinos:2010:PPP

Khan:2017:RCS

Kanal:2012:PAI
Katamneni:1993:PPE

[Sreevenu Katamneni. Parallel processing extensions to Verilog HDL using the PVM environment. M.s.e.e. thesis, Department of Electrical Engineering, University of Alabama, Tuscaloosa, AL, USA, 1993. viii + 108 pp.]

Karlsson:1998:CCC

Kaiser:2001:OCC

Kruzel:2013:VOI

Kim:2021:GRP

Kabir:2002:DIS

Klemm:2009:RTM

Kulkarni:2016:HAP

Knies:1994:SLL

Kitowski:1997:CPM

Kannan:2016:HPP

Ke:2004:RCM

Jian Ke, Martin Burtscher, and Evan Speight. Runtime compression of MPI messages to improve the perfor-

R. Konuru, J. Casas,

Klingebiel:1995:CPO

Klingebiel:1995:CPO

Klingebiel:1995:CPO

Kakimoto:2012:PCG

Kepner:2005:PPM

Komatitsch:2010:HOF

Klemm:2012:EOV

Koitka:2016:NGA
REFERENCES

Kale:1996:PMD

Kappiah:2005:JTD

Kramer-Fuhrmann:1994:TGP

Kowalik:1993:SPC

Kohl:1996:PTF

Kainz:2009:RCM

Keller:2003:TEE

Keller:2010:RAM

Kafura:1996:CCC

Kwon:2010:SPC

Karrenberg:2012:IPO

Kramer:2015:SET

Khanna:2013:HPN

Gaurav Khanna. High-precision numerical simulations on a CUDA GPU:

Kielmann:1999:MCC

Kallenborn:2019:MPC

Kucukboyaci:2001:PPT

Kjolstad:2012:ADG

Kojima:2017:HLG

Kensuke Kojima and Atsushi Igarashi. A Hoare logic for GPU kernels. *ACM*
REFERENCES

Krysztop:2002:IFP

Kronbichler:2019:FMF

Kohnke:2021:CFM

Kranzlmuller:2004:RAP

REFERENCES

Kranzlmüller:2005:RAP

Kranzlmüller:2003:RAP

Kee:2003:POP

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO

Kobler:2001:DOP

Liao:2011:DEM

REFERENCES

Liao:2007:CCS

Kang:2020:IMC

Kumar:2019:FOP

Klawonn:2015:HMO

Kutyniok:2016:SFD

Kim:2015:OBU
Jungwon Kim, Seyong Lee,
REFERENCES

Khanna:2010:NMG

Kormicki:1996:PLS

Kormicki:1997:PLS

Komatitsch:2009:PHO

Koholka:1999:MPR

REFERENCES

Kono:2018:EOW

Kasprzyk:2002:APV

Komura:2014:CPG

Kambites:2001:OLI

Kasahara:2001:ACG

Komura:2015:OPS

Koniges:2000:ISP

Kauranne:1995:OHM

Koski:1995:STL

Konuru:1997:MUL

Kermarrec:1996:PDS

Kuckuk:2013:IPD

Sebastian Kuckuk, Tobias Preclik, and Harald

Klockner:2012:PPS

Kolesnichenko:2016:CBG

Kuhn:2000:OVT

Kamal:2005:SVT

Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????

Klemm:2021:OAH

Klimach:2009:OAH

Parallel CFD 2007 was held in Antalya, Turkey, from May 21 to 24, 2007.

Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunaseth:2013:ASD

Kalentev:2011:CCL

Kranzmueller:1999:MOM

Kotsis:1996:EEP

REFERENCES

Knight:2019:TES

Kegel:2013:DTU

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

Kim:2014:VVF

Kim:2012:OUP

Kusano:2000:PEO

Kotsifakou:2018:HHP

Kurzyniec:2007:UCA

Kirkham:2020:FEM

REFERENCES

Kranzlmüller:2001:IRM

Keppens:2002:OPM

Koval:2010:USB

Kang:2019:SAM

Karonis:2003:MGG

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

Korch:2020:ILE

Kamburugamuve:2018:AML

Kamal:2010:EIN

Karwande:2003:CMC

Karwande:2005:MPC

Amit Karwande, Xin Yuan, and David K. Lowenthal. An MPI prototype for compiled communication on Ethernet switched clusters. *Journal of Parallel and Distributed Computing*, 65(10):
REFERENCES

Lorentz:2015:AMS

Langdon:2009:FHQ

Loos:1996:MPS

Lavi:1998:IPD

Lashgar:2016:ESM

Loncar:2016:CPS

Losada:2019:LRR

Liu:2021:BMN

Lawton:1996:BHP

Larrea:2020:EPM

REFERENCES

Ling:2012:HPP

Lewis:1993:PCP

Lauria:1997:MFH

Luecke:1997:HPF

Li:2007:DIV

Luecke:2003:MCT

Glenn Luecke, Hua Chen, James Coyle, Jim Hoekstra, Marina Kraeva, and Yan Zou. MPI-CHECK: a tool for checking Fortran 90 MPI programs. Concurrency and Computation:
REFERENCES

Li:2022:CDC

Liddell:1996:HPC

Lashuk:2012:MPA

Losada:2017:RMA

Nuria Losada, Iván Cores, María J. Martín, and Patricia González. Resilient MPI applications using an application-level checkpointing framework and ULFM. The Journal of Supercomputing, 73(1):100–113, Jan-
REFERENCES

Lu:1997:QPD

Liu:2013:DLO

Lorenzon:2019:ASO

Lee:2006:PT

Lee:2012:SMO

Levelt:1995:IIS

REFERENCES

[102x681] REFERENCES

340

Leon:1992:FP

Leon:1993:FPA

Leon:1993:FPP

Lim:2011:ATC

[LF93b] LFS93b

Leon:2019:USE

Scott Levy, Kurt B. Ferreira, Whit Schonbein, Ryan E.

Levy:2020:UVA

Loyot:1993:VVM

Lee:1999:PEJ

Liu:2016:MBM

Li:2010:SVC

Lassous:2000:HGA

Losada:2020:FTM [LHG]

Lopez-Gomez:2019:ESP [LHGm+19]

Lee:1996:TSF [LHCT96]

Leung:1995:EPE [LH95]

Liao:2007:OOP [LHC+07]

Lee:1996:TSF [LHCT96]
REFERENCES

Liang:2020:AMD

Li:1996:SIS

Liu:1995:WCD

Livny:2000:MYW

Lastovetsky:2010:RAP

LaSalle:2014:MBD

Luecke:2004:PSM

Ludwig:1995:PPF

Luecke:2001:SPO

Lin:2016:VDF

Li:2013:COM

Lidbury:2015:MCC

Li:2012:PFA

Luo:2014:ISM

Lyu:2021:FFA

Langlais:2002:SSM

Lambert:2021:OOFa

Lambert:2021:OOFb

Jacob Lambert, Seyong Lee, Jeffrey S. Vetter, and Allen D. Malony. Optimiza-
tion with the OpenACC-to-
FPGA framework on the ar-
ria 10 and stratix 10 FP-
GAs. Parallel Computing,
CODEN PACOEJ. ISSN
0167-8191 (print), 1872-7336
(electronic). URL http://
/www.sciencedirect.com/
science/article/pii/S0167819121000417

[Li:1993:SLL]
Q. Li, J.-C. Liu, and T. G.
Yip. Solving large linear
equations using PVM sys-
tem. In Law et al. [LF+93a],
pages 685–690. ISBN 0-7918-
1169-7. LCCN TA345.A86
1993.

[Loh:1994:ISR]
B. C. Loh and G. A. Manson.
Incorporating software reuse
into the PSCS methodology.
In de Gloria et al. [dGJM94],
pages 929–941. ISBN ?????
LCCN ????.

[Larsen:1999:SPG]
M. Larsen and P. Mad-
sen. A scalable parallel
Gauss-Seidel and Jacobi
solver for animal genetics.
In Dongarra et al. [DLM99],
pages 356–363. ISBN 3-540-
66549-8 (softcover). ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

[Lu:2013:MLP]
Ligang Lu and Karen Mager-
lein. Multi-level parallel
computing of reverse
time migration for seismic
imaging on Blue Gene/Q.
ACM SIGPLAN Notices, 48
CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). PPoPP ’13 Conference
proceedings.

[Lee:2009:OGC]
Seyong Lee, Seung-Jai Min,
and Rudolf Eigenmann.
OpenMP to GPGPU: a com-
piler framework for auto-
matic translation and op-
timization. ACM SIG-
PLAN Notices, 44(4):101–
110, April 2009. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

[Losada:2017:ARV]
Nuria Losada, María J.
Martín, and Patricia González.
Assessing resilient versus
stop-and-restart fault-tolerant
solutions in MPI applica-
tions. The Journal of Super-
computing, 73(1):316–329,
January 2017. CODEN JO-
SUED. ISSN 0920-8542
(print), 1573-0484 (elec-
tronic).

[Li:2019:TBH]
Bing Li, Mengjie Mao, Xi-
aoxiao Liu, Tao Liu, Zhi-
hao Liu, Wujie Wen, Yiran
Chen, and Hai (Helen) Li.
Thread batching for high-
performance energy-efficient

REFERENCES

Lu:1996:PIF

Labarta:2001:NOD

Lou:1995:PIN

Landman:2000:PLR

Li:2011:FSM

Lockey:1998:CRM

Li:2001:PCS

Michael Na Li and A. J. Rossini. RPVM: Cluster statistical computing in R.
REFERENCES

Lastovetsky:2006:HTM

Le:2006:DMC

Lotfi:2015:AAC

Lee:2014:BCA

Laguna:2016:EEU

Lima:2019:PEA

REFERENCES

Luo:2001:PDE

Latham:2007:IMI

Li:2001:WMB

Luckow:2008:MFT

Lin:2010:TLS

Han Lin, Zhichao Su, Xiandong Meng, Xu Jin, Zhong Wang, Wenting Han, Hong An, Mengxian Chi, and Zheng Wu. Combining Hadoop with MPI to solve metagenomics problems that are both data-
REFERENCES

Daniel Langr, Pavel Tvrdík, Tomáš Dytrych, and Jerry P. Draayer. Algorithm 947:

Lazar:1994:SRE

Laohawee:2000:PDT

Lee:2002:IPC

Langr:2016:ASM

Luo:1999:SMV
Lusk:2000:IIC

Lee:2012:EED

Liu:2004:BMI

Jiuxing Liu, Abhinav Vishnu, and Dhabaleswar K. Panda. Building multirail Infini-
Lee:2015:GCE

Liu:2004:HPR

Liang:2018:FMP

Li:1993:MSU

Lu:2020:GQO

Laguna:2019:GPD

Lopes:2019:FBD

[LYIP19] Paulo A. C. Lopes, Satyendra Singh Yadav, Aleksan-

Li:2017:PCO

Li:2018:COM

Lu:2019:PMM

Liao:2020:DCS

Ma:2009:CRS

REFERENCES

Mavriplis:2005:HRAa

Miguel:1996:APN

Maffeis:1994:SSD

Moreno:2001:AEP

Mainland:2012:EHM

Molero-Armenta:2014:OOI

Malyshkin:1995:PCT

[Mal95] Victor Malyshkin, editor. *Parallel computing technologies: third international con-
REFERENCES

Malfetti:2001:AOW

Mirvis:1995:HML

Manchek:1994:DIP

Mans:1998:PDP

Manis:2001:PNP

[MAS06] Paras Mehta, José Nelson Amaral, and Duane Szafron. Is MPI suitable for a generative design-pattern system?
REFERENCES

Mattson:1994:PEP

Mattson:1995:PEP

Mattson:2000:BOF

Mattson:2000:IO

Timothy G. Mattson. An introduction to OpenMP 2.0.

Mattson:2001:EO

Matuszek:2001:APS

Mattson:2003:HGO

Matloff:2016:PCD

Mourao:2000:SSC

Marongiu:2012:OCE

Maleki:2018:AHP

Margolin:2021:TBF

REFERENCES

Muruganandam:2021:OSR

Muller:2012:SOA

Ma:2013:KAT

Min:2003:OOP

McKenzie:1994:CIM

Malits:2012:ELG

Mehl:2015:RTC

Miles:1994:PTO

Medeiros:1998:IPM

Morrison:1999:FPP

Maier:2017:OLD

Moreira:2017:FCR

McRae:1992:VC

Mierendorff:2000:WMB

Marin:2017:ERF

Monteiro:2018:EGC

Muller:2009:EOA
Matthias S. Müller, Bronis R. de Supinski, and Barbara M. Chapman, editors. Evolving OpenMP in an Age of Extreme Parallelism: 5th International Workshop on OpenMP, IWOMP 2009 Dresden, Germany, June 3–
REFERENCES

Matheou:2017:DDC

Megson:1998:CRH

Milo2008:NEE

Moody:2003:SNB

Martin:1995:DPC
REFERENCES

Mintchev:1997:TPM

Mehta:2015:MTP

Mendonca:2017:DAA

Mehta:2012:SPE

Muralidharan:2015:COP

Medvedev:2005:OMA
Montella:2017:VCB

Mazzariol:1997:PCS

Markidis:2015:OAN

Matthey:2001:EMO

Hwu:2012:GCG

Moll:2018:PCF
Simon Moll and Sebastian Hack. Partial control-flow linearization. *ACM SIG-
REFERENCES

Muller:2021:MAE

Mittal:2012:CAS

Muddukrishna:2016:GGO

Matyska:1994:DCS

McDonald:1997:IPT

McDonald:2000:TPA

Mohror:2004:PTS

Manwade:2017:DFA

REFERENCES

Maheo:2012:AOL

Munch:2021:HDE

Markus:1996:PEM

Meyer:2022:DFA

Min:2001:PCO

Mokbel:2011:ASR

Mohammed F. Mokbel,

REFERENCES

Majumdar:1992:PPC

Mantovani:1995:HPS

Michailidis:2001:TSH

Michailidis:2002:PSL

Michailidis:2003:PEL

Marathe:2007:SCC

Jaydeep Marathe and Frank Mueller. Source-code-correlated cache coherence characterization of OpenMP

Michailidis:2011:PDM

Morishima:2014:PEG

Mofrad:2020:GNA

Malony:1994:PAP

Mackay:1998:SPF

Mironov:2019:EMO

Vladimir Mironov, Alexander Moskovsky, Michael

REFERENCES

Mena:2020:GAS

Meyer:2021:IBH

Muller:1996:CDI

Martins:2012:PDC

Meister:2017:PME

Mo:1996:IOP

J. Mo, F. Romelfanger, R. J. Hanisch, D. Redding, S. Sirlin, and A. Boden. Implementation of an optical prescription retrieval code using PVM (parallel virtual machine) in a mixed architec-
ture network. In Jacoby and Barnes [JB96], pages 100–
103. ISBN ???? ISSN 1080-
7926. LCCN QB51.3.E43
A87 1995.

Pablo D. Mininni, Duane
Rosenberg, Raghu Reddy,
and Annick Pouquet. A hy-
brid MPI–OpenMP scheme
for scalable parallel pseudo-
spectral computations for
fluid turbulence. Parallel
Computing, 37(6–7):
316–326, June/July 2011.
CODEN PACOEJ. ISSN
0167-8191 (print), 1872-7336
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0167819111000512.

N. Mazzocca, M. Rak, and
U. Villano. The transi-
tion from a PVM pro-
gram simulator to a het-
erogeneous system simula-
tor: The HeSSE project.
Lecture Notes in Computer
CODEN LNCS9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/1
bibs/1908/19080266.htm;
http://link.springer-
ny.com/link/service/series/0558/papers/1908/19080266.

K. Morinishi and N. Sato-
fuka. Parallel implemen-
tation of the Boltzmann
equation solvers using PVM.
In Satofuka et al. [SPE95],
pages 339–346. ISBN 0-444-
82317-4. LCCN QA911 .P35
1994.

T. P. McMahon and A. Skjel-
lum. eMPI/eMPICH: em-
bedding MPI. In IEEE
[IEE96i], pages 180–184.
ISBN 0-8186-7533-0. LCCN
QA76.642 .M67 1996.

J. Menden and G. Stellner.
Proving properties of PVM
applications — a case study
with CoCheck. In Bode et al.
[BDLS96], pages 134–??.
ISBN 3-540-61779-5. ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
QA76.58.E975 1996.

J. Marinho and J. G. Silva.
WMPI — message passing
interface for Win32 clusters.
Lecture Notes in Computer
CODEN LNCS9. ISSN
0302-9743 (print), 1611-3349
(electronic).

H. Mierendorff and H. Schwamborn.
Performance modeling based
on PVM. In Dongarra
et al. [DLM99], pages 75–
82. ISBN 3-540-66549-8

REFERENCES

Matise:1995:PCG

Migliardi:2000:SFT

McCandless:1996:OOM

Massetto:2012:NSB

Mattson:2005:PPP

Martin:2015:EPM

REFERENCES

Molnar:2010:APM

Macias:2001:PPA

Martorell:2005:BGP

REFERENCES

[Müll02] Matthias S. Müller. A shared memory benchmark in OpenMP. Lecture Notes

[MV20] José M. Mantas and Francesco Vecil. Hybrid OpenMP–CUDA parallel implementation of a deterministic solver for ultrashort DG-MOSFETS. The Interna-
REFERENCES

Manis:1996:EPT

Muller:2010:SMA

Mehra:1995:AIM

Mamontov:1998:AES

Matwiejew:2021:QFP

REFERENCES

Manegold:1997:QBM

Morton:1995:LLP

[Don Morton, Kefei Wang, and David O. Ogbe. Lessons learned in porting Fortran/PVM code to the Cray T3D. IEEE parallel and distributed technology: systems and applications, 3(1):4–11, Spring 1995. CODEN IPDTEX. ISSN 1063-6552 (print), 1558-1861 (electronic).]

Maleki:2016:HOT

Mercan:2019:CCH

Ma:2021:CSB

Maly:1993:DCP

Mu:2020:OOB

[Jiandong Mu, Wei Zhang, Hao Liang, and Sharad Sinha. Optimizing OpenCL-based CNN design on FPGA with comprehensive design space exploration and collaborative performance modeling. ACM Transactions on Reconfigurable Technol-

Nakajima:2005:PIS

Nakajima:2005:TLH

Narashimhan:1995:IIF

Nagel:1996:VVA

NicCanna:1996:LGS

C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ?? LCCN ???.

Nickolls:2008:SPP

Neyman:1999:ERP

Nguyen:2012:BTM

Nguyen:2017:ATM

Nobari:2012:SPM

Neophytou:1998:NDJ

Neophytou:2001:NDW

Nelson:1993:PPP

Neugebauer:2017:PAR

[NEM17] Olaf Neugebauer, Michael Engel, and Peter Marwedel. A parallelization approach
REFERENCES

for resource-restricted embedded heterogeneous MP-SoCs inspired by OpenMP.

[Nesterov:2010:SPT]

[Nes10]

[Neum:1994:UPB]

Marcin Neyman. Comparison of different approaches to trace PVM program execution. *Lecture Notes in Computer Science*, 1908:274–??, 2000. CODEN LNCSDF. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http:

[Ney00]

pdf.

[Nordling:1994:SOD]

[Nunez:2010:NTS]

[Nieplocha:1998:CHP]

Jarek Nieplocha, Ian Foster, and Rick A. Kendall. ChemIO: High performance parallel I/O for compu-
REFERENCES

Norden:2006:OVM

Nakano:2002:SCG

REFERENCES

Novotny:1995:BRA

Nupairoj:1995:PES

Nomura:2014:PAM

Nishitani:2000:IEO

Nakajima:2002:PISb

Nanayakkara:1993:PIR

Nupairoj:1995:PES

Nishitani:2000:IEO

Nakajima:2002:PISb

Kengo Nakajima and Hiroshi Okuda. Parallel iterative solvers for unstructured grids using a directive/mpi hybrid programming model

Nakajima:2002:PISA

Novotny:1995:BPP

Nemer-Preece:1994:LBH

Nguyen:2012:SCS

Dimitrios S. Nikolopoulos, Theodore S. Papathodorou, Constantine D. Polychronopoulos, et al. A transparent runtime data distribution engine for OpenMP.

Naranjo:2020:ASC

Nagaraj:1991:MHL

Naumenko:2016:ACT

Nadal-Serrano:2016:PSC
REFERENCES

Nguyen:2021:EMA

Ng:2012:STT

Nguyen:1994:DCE

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Felicia Okulicka-Dluzewska. Parallelization of finite element package by MPI library. *Lecture Notes in Computer Science*, 2131:
Olivier:2012:CMW

Oed:1993:CRM

Ong:2000:PCL

Hong Ong and Paul A. Farrell. Performance comparison of LAM/MPI, MPICH, and MVICH on a Linux cluster connected by a Gigabit Ethernet network. In USENIX [USE00], page ??

Otten:2016:MOI

REFERENCES

REFERENCES

Olukotun:2014:BPP

Ogawa:1996:OOM

Oguz:2009:PCB

OBrien:2008:SOC

Kevin O'Brien, Kathryn OBrien, Zehra Sura, Tong Chen, and Tao Zhang. Supporting OpenMP on
REFERENCES

Oliveira:2012:CCO

Overeinder:1997:BCD

Ostrand:1994:PIS

Obrecht:2015:PEO

Otto:1993:PAC

Otto:1994:PVM

Otto:1992:MAP

S. W. Otto and M. Wolfe. The MetaMP approach to

Parsons:1993:EDC

Pal:2014:PMH

Patterson:1993:PPE

Puzniakowski:2012:TOI

Pringle:2001:TPF

Pingali:1995:LCP

REFERENCES

Plazek:1999:IIC

Plazek:2000:SCC

Prasanna:1995:FIP

Puthukattukaran:1994:DIP

Peng:2014:IDI

Poggi:1998:UPD
Agostino Poggi and Giulio Destri. Using PVM to develop a distributed object-

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1996:RPP

Pernice:1997:BRM

Pereira:1999:PBI

Perepu:2021:OIP

Pavan Kumar Perepu. OpenMP implementation of paral-

Papagapiou:1999:NWD

Petcu:2000:PDAb

Petcu:2001:WMM

Pharr:2005:GGP

Matt Pharr and Randima Fernando, editors. *GPU gems 2: programming techniques for high-performance graphics and general-purpose computation*, volume 2 of *GPU gems*. Addison-Wes-

Peng:2018:CDC

Pessoa:2018:GAB

Poirier:2018:DAB

Pervez:2010:FMA

Pimentel-García:2021:EIP

Pan:2010:CPS

Pennycook:2011:PAH

Protze:2022:MDT

[PHM+22] Joachim Protze, Marc-André Hermanns, Matthias S.

Power:2015:GGH

Pennycook:2013:IPP

REFERENCES

Pierce:1994:NMP

Prades:2020:MRU

Papadopoulos:1998:DVS

Papadopoulos:2001:NRC

Paul:2006:TLF

Prabhakar:2016:GCH

Raghu Prabhakar, David

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

Pruyne:1996:ICP

Plachetka:2002:QTS

Park:2004:DID

Piriyakumar:2002:EFI

Pfenning:1995:OCP

Piscaglia:1995:DOC

Poulson:2013:ENF

Pirk:2016:VVA

Plagianakos:2001:LCP

V. P. Plagianakos, N. K. Nousis, and M. N. Vrahatis. Locating and computing in parallel all the sim-

REFERENCES

//link.springer-ny.com/link/service/series/0558/bibs/2131/21310249.htm;

REFERENCES

Pozo:1994:FTE

Priimak:2014:FDN

Proficz:2021:AGA

Pinho:2021:RTI

Pena:2014:CEC

Pedroso:2000:MPC

Protopopov:2001:MMP

Pandey:2007:SCM

Nirved Pandey and G. K.

REFERENCES

Peters:2011:FPC

Patrick:2008:CEO

Preissl:2010:TMS

Prieto:1999:PRM

Peng:2014:BAH

Plunkett:2001:AMD

REFERENCES

Pikel:2019:AFE

Payrits:2000:UPC

Pears:2001:DLB

Pai:2013:IGC

Prost:2001:MIG

Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, and Alice Koniges. MPI-IO/GPFS, an optimized implementation of MPI-IO on top of GPFS. In ACM [ACM01], page ?? ISBN 1-58113-293-X. LCCN
REFERENCES

REFERENCES

REFERENCES

CODEN ?? ?? ISSN 1544-3566 (print), 1544-3973 (electronic).

Prasad:1995:PPB

Perla:2012:PAH

Phillips:2002:NBS

Qiu:2012:PWM

Qawasmeh:2017:PPR

REFERENCES

Rashti:2009:SAM

Rabenseifner:1998:MGI

Rabenseifner:1999:APM

Ragg:1996:PEN

Ratha:1995:DED

Ramadan:2007:TDM

Rantakokko:2005:DMO
Jarno Rantakokko. A dynamic MPI–OpenMP model for structured adaptive mesh

[RBS94] F. Reale, F. Bocchino, and S. Sciortino. Parallel computing on Unix workstation

References

REFERENCES

Reinefeld:2001:CDI

Reussner:2001:SSK

Reussner:2003:USD

Roy:2000:MGQ

Reynders:1995:OOO

Russ:1996:HAT

[RFHR96]
Rasch:2018:MDH

Rucci:2018:OOS

Rough:1997:PRD

Rodrigues:2013:MAA

Rico-Gallego:2015:ILM

Rico-Gallego:2016:EIL

Rivas-Gomez:2018:MWS

Rocco:2022:LFR

Reussner:2001:APP

Rizza:2017:ATS

Mariarosaria Rizzardi. Algorithm 981: Talbot Suite DE: Application of modified Talbot’s method to

Ramroach:2021:ADP

Ratha:1995:CUC

Rodrigues:2014:TPS

Renaud:2020:IMS

Robinson:1993:ECD

Rabenseifner:2001:ECF

REFERENCES

Also ICASE report 99-36.

Rolfe:2008:SMA

Rosen:2013:PVA

Roth:2019:AOC

Ramon:1995:PKV

Rodriguez:2008:FTS

Reano:2019:APP

Rabaea:2000:EPM

Rageb:2001:CEM

Rauber:2002:LSH

Roda:1997:PPI

Roig:2001:EMM

Robinson:1996:TMI

Russ:1999:UHR

[RRG+99] Samuel H. Russ, Jonathan Robinson, Matt Gleeson,

[RSS95]

[RSS19]

[RSS21]
Carlos Reaño and Federico Silla. Redesigning the rCUDA communication

Ralf Reussner, Peter Sanders, and Jesper Larsson Träff. SKaMPI: a comprehensive benchmark for public benchmarking of MPI. *Scien-
REFERENCES

REFERENCES

REFERENCES

Simonsen:1993:DMD

Saarinen:1994:EES

Sainio:2010:CGA

Sato:2017:NIT

Saphir:1997:SMI

Soldado:2016:ECM

Sahimi:2001:AAS

Mohd Salleh Sahimi, Norma Alias, and Elankovan Sundararajan. The AGEB algorithm for solving the heat equation in three space dimensions and its parallelization using PVM. Lecture Notes in Computer Science, 2073:918–??, 2001. CODEN LNCS9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http:
Schuster:1995:CSM

Smith:2001:DMM

Spiliotis:2020:PII

Seyfarth:1994:GEE

Schulz:2004:IES

Selikhov:2002:MCC

REFERENCES

REFERENCES

Saltz:1991:MRT

Stubb:1995:ICE

Smith:1996:UWC

Steed:1996:PPP

Sievert:2004:SMP

Shterenlikht:2019:MVF

Saillard:2014:PCS

[Sch96b] J. Schuele. Parallel Lanczos algorithm on a CRAY-

Schuele:1999:HAP

Schevtschenko:2001:PAS

Searles:2019:MOA

Robert Searles, Sunita Chandrasekaran, Wayne Joubert, and Oscar Hernandez. MPI + OpenACC: Accelerating radiation transport mini-application, mini-

Song:1997:ALL

Suppi:2000:IOP

Suppi:2001:PCS

Remo Suppi, Fernando Cores, and Emilio Luque. PDES: a case study using the switch time warp.
Santos:1997:ECP

SCRI:1992:PWC

Shi:2012:VGA

Szeberenyi:1999:SGB

SM-D:2013:BRC

Sorensen:2016:EER

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Skjellum:1995:EMP

Sack:2002:FMB

Spencer:2015:DLN

Schenck:2016:EPM

Segovia:2010:PPN

Seifert:1999:ESI

Sept:1993:DIP

Serot:1997:EPF

Sev98

Scott:1998:PWN

Schoinas:1994:FGA

Steuwer:2015:GPP

Siegelin:1995:BPW

REFERENCES

Shen:2013:ACE

Selikhov:2005:CMB

Sharma:2012:SRP

Steuwer:2014:SHL

Sack:2015:CAM

Sunderam:1994:PCC

REFERENCES

Schneider:2012:MAC

Solsona:2001:IEI

Saito:2003:LSP

Solsona:2000:MCM

Sun:2020:RTS
J. Sun, N. Guan, F. Li, H. Gao, C. Shi, and W. Yi. Real-time scheduling and analysis of OpenMP DAG

[Sekaran:1995:LBM]

[SGS95]

[SGZ00]

[Scherer:2000:APO]

[SH94]

[Schmidt:1994:IAP]

[SH96]
D. Sitsky and E. Hayashi. An MPI library which uses polling, interrupts and remote copying for the Fujitsu AP1000+. In Li et al. [LHHM96], pages 43–
REFERENCES

REFERENCES

REFERENCES

Silvester:1996:SEE

Sincovec:1993:SCP

Silla:2017:BRG

Sharma:2017:PDR

Sistare:2002:UHP

Szo:2017:PET

Szoke:2017:PET

Samadi:2014:PPB

Shen:1992:VTD

Smith:2000:DPM

Sanders:2010:CEI

Steinberger:2014:WTB

Skjellum:2004:RTM

[SKD+04] Anthony Skjellum, Arkady Kanevsky, Yoginder S. Dan-
REFERENCES

Subramaniam:1996:CLU

Skjellum:1993:SLH

Steinberger:2012:SDS

Spiechowicz:2015:GAM

Satoh:2001:COT

(electronic). URL http://iospress.metapress.com/app/home/contribution.asp?referrer=parent%26backto=%26referrer=parent%26backto=issue%2C7%2C11%3Bjournal%2C1%2C9%3Blinkingpublicationresults%2C1%2C1

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV

Skjellum:1995:EAM

Scherer:1999:TAP

REFERENCES

acm.org/pubs/citations/proceedings/ppopp/301104/p96-scherer/.

REFERENCES

using PVM. In Sincovec [Sin93], pages 262–265.

[SMS00] Luís Moura Silva, Paulo Martins, and João Gabriel Silva. Heterogeneous parallel computing using Java and WMPI. *Concurrency: practice and experience*, 12(11):1077–1091, September 2000. CODEN CPAXE1. ISSN 1040-
REFERENCES

Su:2006:APP

Sitsky:1996:IMU

Sunderam:2001:CAP

Snir:2018:FMT

Suciu:2010:PIN

Shekofteh:2019:MSG

Shekofteh:2020:CEC

Sintorn:2011:EAF

Snir:1996:MCR

Snir:1998:MCR

SousaPinto:2001:PEI

REFERENCES

[Satofuka:1995:PCF] N. Satofuka, Jacques Periaux, and Akin Ecer, ed-

REFERENCES

473

Silva:1999:DPP

Schmid:2012:PAT

Saldana:2010:MPM

Symeonidou:2014:DRB

Squyres:2003:CAL

Sivaraman:1995:PSP

H. Sivaraman and C. S. Raghavendra. Parallelizing sequential programs to a cluster of workstations. In Agrawal [Agr95a], pages 38–
REFERENCES

Sivaraman:1996:AAD

Five volumes.

Simitci:1998:CLP

Szalay:2011:FCD

Speck:2012:MST

Sultana:2019:FRB

Schmidt:1994:EAO

Szymanski:1996:LCR

Boleslaw K. Szymanski and Balaram Sinharoy, editors. Languages, Compilers and Run-Time Systems for Scalable Computers, 22–24 May
REFERENCES

Satarić:2016:HOM

Sotomayor:2017:ACG

Spiliotis:2021:PCD

Silva:1996:IDS

Silva:1997:IPD

Silva:1995:PCR

Skjellum:1994:DEZ

Shen:2020:GPC

Sabne:2012:ECO

Stellner:1995:CMP

Sosa:2000:IQC

Sala:2008:PHP

Sharif:2019:APC

Schmitt:2018:RHG

Schafers:1995:TGP

Shi:2010:PAE

Stone:1994:PSO
REFERENCES

Adam Smyk and Marek Tudruj. Application of

R. Stephens. Parallel benchmarks on the Transtech...
REFERENCES

Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ???. LCCN ???.

Stellner:1996:CCP

Sterling:2000:SCB

Smith:2022:PAM

Still:1994:PPC

Schmitz:2008:IIG

Sunderam:1997:TAS

Stockinger:1998:VPC

Kurt Stockinger. ViMPIOS — a portable, client-server based implementation of

Stpiczynski:2002:PPO

Stpiczynski:2018:LBV

Sala:2019:IBN

Stpiczynski:2020:ALB

Strok:1994:NJI

Dale C. Strok. In the news: Jupiter impacts: Resolution makes a big difference. supercomputer farming down under. HPF Forum welcomes comments. Smithsonian Awards honor computational scientists. low-life computer viruses. PVM developers get R&D-100 award. the eyes have it. neural nets detect breast cancer. better cars through cooperation. parallel version of global climate model. Lockheed to run Idaho National...

Shinji Sumimoto. The MPI Communication Library for the K computer: Its design...
REFERENCES

Sunderam:1990:PFP

Sunderam:1990:PFPa

Sunderam:1990:PFPb

Sunderam:1992:CCP

Sunderam:1993:PCC

V. Sunderam. *The PVM concurrent computing system*. In Anonymous [Ano93b], pages 20–84. ISBN ?? LCCN ???.

Sunderam:1994:GPP

V. Sunderam. General purpose parallel computing with PVM. In Anonymous [Ano94f], pages 185–198. ISBN ?? LCCN ???.

Sunderam:1994:MSH

Sunderam:1995:RIH

V. Sunderam. Recent initiatives in heterogeneous parallel computing. In Gray and Naghdy [GN95], pages 1–16. ISBN ?? LCCN ???.

Sunderam:1996:PSS

Suresh:1995:IOP

H. Suresh. Implementation of an optimal par-

Steve Sistare, Rolf vandeVaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

Christopher A. Swann. Software for parallel comput-
REFERENCES

Samfass: 2020: LTO

Sosonkina: 2015: RAV

Santhanaraman: 2005: DZC

Sitsky: 1995: IPM

Skjellum: 2001: OOA

REFERENCES

REFERENCES

REFERENCES

Tentner:1995:HPC

Truong:2002:PAM

Tu:2012:PAO

Turchi:1994:SDA

Thakur:2009:TSE

Tian:2005:PCT

[TGBS05] Xinmin Tian, Milind Girkar, Aart Bik, and Hideki Saito. Practical compiler tech-

[TGS+20] Vasileios Tsiolakis, Matteo Giacomini, Ruben Sevilla, Carsten Othmer, and Antonio Huerta. Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in OpenFOAM. *Computer Physics Communications*, 249(??):Article 107013, April

REFERENCES

Thakur:2005:OSO

Traff:2010:SCM

Traff:2020:SIS

Tian:2005:CEN
Xinmin Tian, Jay P. Hoeflinger, Grant Haab, Yen-Kuang Chen, Milind Girkar, and Sanjiv Shah. A compiler for exploiting nested parallelism in OpenMP pro-

Trefftz:1994:DPE

Traf:2021:MCC

Tran:2000:PPM

Thomsen:1994:RTS

Throop:1999:SOS

Traeff:1999:FFE

J. L. Traeff, R. Hempel, H. Ritzdoff, and F. Zimmermann. Flattening on the fly: Efficient handling
of MPI derived datatypes. In Dongarra et al. [DLM99], pages 109–116. ISBN 3-540-
66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA76.58
E973 1999.

Takizawa:2015:ODT

Hirohiko Takizawa, Shoichi Hirasawa, Makoto Sugawara, Isaac Gelado, Hiroaki
Kobayashi, and Wenhui Wu. Optimized data transfers based on the OpenCL event
management mechanism. *Scientific Programming*, 2015(?)::576498:1–576498:16,
???? 2015. CODEN SCIEPV. ISSN 1058-9244 (print), 1875-919X (electronic). URL
https://www.hindawi.com/journals/sp/2015/576498/.

Tabakin:2009:QPE

Frank Tabakin and Bruno Juliá-Díaz. QCMPi: a parallel environment for quantum
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL http://

Thoman:2012:AOL

Peter Thoman, Herbert Jordan, Simone Pellegri, and Thomas Fahringer. *[TKP15]*
Automatic OpenMP loop scheduling: a combined compiler and runtime approach. *Lecture

Tang:2016:AKM

Qing Y. Tang and Mohammed A. S. Khalid. Acceleration of k-means algorithm using Altera
SDK for OpenCL. *ACM Transactions on Reconfigurable Technology and Systems (TRETS)*,
10(1):6:1–6:????, December 2016. CODEN ???. ISSN 1936-7406 (print), 1936-7414
(electronic).

Teunissen:2019:GML

J. Teunissen and R. Keppens. A geometric multigrid library for quadtree/
octree AMR grids coupled to MPI-AMRVAC. *Computer Physics Communications*,
245(??):Article 106866, December 2019. CODEN CPHCBZ. ISSN 0010-4655
(print), 1879-2944 (electronic). URL http://
www.sciencedirect.com/science/article/pii/S001046551930253X.

Tennyson:2015:MOI

P. Gerald Tennyson, G. M. Karthik, and G. Phaniku-

REFERENCES

Theodoropoulos:1996:ESP

Taylor:2017:A00

Takafuji:2017:CCC

Tracy:2018:CMC

Takahashi:1999:IEM

Toussaint:1996:AES

REFERENCES

REFERENCES

CODEN LNCS-D9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/bibs/2131/21310296.htm;

Traeff:1998:PRL

[Tr98] J. L. Traeff. Portable randomized list ranking on multiprocessors using MPI.
CODEN LNCS-D9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Traff:2002:IMP

[Tr02a] Jesper Larsson Träff. Implementing the MPI process topology mechanism.

Traff:2002:IMA

[Tr02b] Jesper Larsson Träff. Improved MPI all-to-all communication on a Giganet SMP cluster.
CODEN LNCS-D9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer.de/link/service/series/0558/bibs/2474/24740392.htm;

Traff:2012:AUE

Jesper Larsson Träff. Alternative, uniformly expressive and more scalable interfaces for collective communication in MPI.
CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

Traff:2012:MTM

CODEN LNCS-D9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer.com/chapter/10.1007/978-3-642-33518-1_15/.

Thakur:2005:OCC

Rajeev Thakur, Rolf Rabenseifner, and William Gropp.
Optimization of collective communication operations in MPICH.
The International Journal of High Performance Computing

REFERENCES

REFERENCES

Tatebe:2000:IOO

Tavora:2000:DCM

Tsunekawa:1995:EIE

Tsujita:2007:RMP

Tsutsui:2012:AMG

REFERENCES

504

Tang:1999:CRT

<table>
<thead>
<tr>
<th>TSY99</th>
</tr>
</thead>
</table>

Tang:2000:PTR

<table>
<thead>
<tr>
<th>TSY00</th>
</tr>
</thead>
</table>

Theodoropoulos:1997:GSP

<table>
<thead>
<tr>
<th>TTP97</th>
</tr>
</thead>
</table>

Tanaka:2000:PEO

<table>
<thead>
<tr>
<th>TTSY00</th>
</tr>
</thead>
</table>

Trelles-Salazar:1994:MSS

<table>
<thead>
<tr>
<th>TSZC94</th>
</tr>
</thead>
</table>
Tellez-Velazquez:2018:CSI

Twerda:1996:PIT

Tourancheau:2001:SMN

Thorson:2012:SUF

Tournavitis:2009:THA

Tang:2019:MNT

Tien:2014:EOS

Utterback:2017:POR

Utterback:2019:POR

Uhl:1996:PIC

Uhl:1994:PCC

[Uhl94] A. Uhl. Parallel compact coding of satellite images with wavelet packets using PVM. In Kumar [Kum94], pages 382–387. ISBN 0-07-
REFERENCES

REFERENCES

USENIX:1995:PUT

USENIX:2000:PAL

Uehara:2002:MBP

vanderPas:1993:PIG

VanKatwijk:1995:AAC

vandeGeijn:1997:UPP

REFERENCES

ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Vikas, Nasser Giacaman,

von Hanxleden: 1994: VDF

Viswanathan: 1995: PCM

Valero-Lara: 2020: SFA

Valero-Lara: 2018: CCC

Valencia: 2008: PPR

Valero-Lara:2019:MTS

Varadarajan:1994:FDT

Vincent:1995:HPP

Vogel:2013:BWC

Volkert:1993:PCS

Voss:2003:OSM

REFERENCES

Vidal Maciá:2000:IPM

Vargas-Perez:2017:HMO

Vrenios:2004:PPC

Varin:2000:PAL

Van Voorst:2000:CMI

Brian Van Voorst and Steven
REFERENCES

Vo:2009:FVP

[Vo:2009:FVP]

Verkerk:1992:PIC

[VW92]

Vetter:2002:EPE

[VY02]

Verschelde:2015:PHC

[VZT+19]

Vasilache:2019:NAL

[WADC99]

Wong:1999:BMM

[Wal94a]

Walker:1994:DSM

David W. Walker. The design of a standard mes-

Walker:1994:EDS

Walker:1995:MVB

Walker:1996:MFA

Wallcraft:2000:SOV

Walker:2001:DLB

Wolf:1996:CFS

Wickerson:2015:RSP

Walters:2009:RBF

Wang:2015:AST

Wolf:1997:CMP

Wickerson:2017:ACM

Wickerson:2015:RSP

Walters:2009:RBF

Wang:2015:AST

Wang:2007:EAP

Perry H. Wang, Jamison D. Collins, Gautham N.

Justin M. Wozniak, Matthieu Dorier, Robert Ross, Tong Shu, Taha Kuc, Li Tang, Norbert Podhorszki, and Matthew Wolf. MPI jobs within MPI jobs: a practical way of enabling task-level fault-tolerance in HPC.

Welch:1994:PVM

Werner:1995:UMP

Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI. (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.

Weber:2017:MAL

Warren:2019:CBG

Wark:1994:PIR

P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ????

Wagner:1996:PMM

Wiese:2005:IPN

Kay C. Wiese, Andrew Hendriks, Alain Desch-
REFERENCES

Wiese:2005:PRN

White:1994:VVC

White:2004:CMM

Waidyasooriya:2019:OBD

Wilkinson:1993:IFT

Wilhelms:1994:DAL

Wismueller:1996:SBV

Wismuller:2019:SBV
REFERENCES

Wang:2021:PBS

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wegiel:2008:MCVc

White:2020:OPP

Wittenbrink:2011:FGG

Wagner:1996:GSG

T. Wagner, C. Kuebbeck, and C. Schittko. Genetic selection and generation of textural features
with PVM. In Bode et al. [BDLS96], pages 305–?? ISBN 3-540-61779-5. ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA76.58.E975 1996.

Lehman:1994:IZP

Wismueller:1996:TSI

Wismuller:1996:TSI

Wu:2007:IFR

C.-L. Wu, D.-C. Lou, and S.-Y. Chen. Integer factor-
REFERENCES

Willcock:2005:UMC

Wu:2012:UHM

Weng:2020:CMS

Wolf:2001:APA

Wolfe:2018:MLS

Noah Wolfe, Misbah Mubarak, Christopher D. Carothers, Robert B. Ross, and Philip H. Carns. Modeling large-scale slim fly networks using parallel discrete-event simulation. *ACM Transactions on Modeling and
REFERENCES

Wende:2019:OVT

Wu:2014:MAG

Winkler:2017:GSM

Wendykier:2010:PCH

Walker:1995:RBD

Walker:1996:RBC
Winstanley:1997:PDP

Wang:2009:MPM

Wolbers:1992:SPP

Worley:1996:MPE

Weng:2007:OIS

Wagner:1994:CFD

Wang:1995:PPG

Wang:2020:EPE

Wu:2001:PCS

Worsch:2002:BCM

Winkler:2019:GSM

Wang:2016:LLA

Wisniewski:1999:SME

REFERENCES

Shao-Chung Wang, Lin-Ya Yu, Li-An Her, Yuan-Shin Hwang, and Jenq-Kuen Lee. Pointer-based divergence analysis for OpenCL

Wang:2008:PIM

Xu:1995:IPP

Xue:2009:MSR

Xue:2021:IFG
Weicheng Xue, Charles W. Jackson, and Christopher J. Roy. An improved framework of GPU computing for CFD applications on structured grids using OpenACC.

Xiong:1996:BID
Jianxin Xiong, Dingxing Wang, Weimin Zheng, and Meiming Shen. BUSTER: an integrated debugger.
REFERENCES

[Xu:2013:PMO]

[Yan:1994:PTA]

[Yan:2014:PTA]

[Ying:2003:NPK]
Lexing Ying, George Biros, Denis Zorin, and Harper

Yalamanchilli:1998:CPJ

Yviquel:2018:CPU

Yang:2014:HPD

Yu:2013:AGA

Yoon:1996:WBP

[YKLD17] Asim YarKhan, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra. Porting the PLASMA numerical library to the OpenMP standard. International Jour-

Yang:2021:SSG

Yi:1994:PID

Yilmaz:2009:HPC

You:1995:EIM

Young:1993:PEN

Yuan:2012:PCS

REFERENCES

Yang:2011:PBP

You:2015:VFO

Yong:1995:SOM

Yu:2012:SCC

Yang:2014:CNR

You:1995:PIM

Zounmevo:2014:FRC

Zaza:2016:CBP

Zahavi:2012:FTR

Zhong:2007:PPS

REFERENCES

issn=0920-8542&volume=41&issue=1&spage=1.

Zdetsis:1994:PMD

Zilli:1997:TBN

Zhu:2012:CDS

Zhao:2010:GMP

Zhong:2022:ULV

Zhang:1997:DED

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

Zhou:1995:FMP

Zhou:1995:RMR

Zhou:1996:FMP

Zhou:1998:LST

Zielinski:1994:PPS

Zu:1994:OSM

Zhao:2022:SGM

Zhong:2006:PEA
Zhou:2021:HPG

Zoraja:1999:SPD

Zhang:2018:IRP

Zarebavani:2020:CCB

Zounmevo:2014:ESC

Zaky:1996:PDT

Amr Zaky and Ted Lewis, editors. *Program development tools and environments for parallel and distributed systems: Session; 28th Hawaii international conference on system sciences — 1995*, volume 2 of *Kluwer International Se-
Zha:2017:IFM

Zha:2018:LSM

Zaki:1999:TSP

Zhou:2012:DFD

Zhang:2017:DLN
REFERENCES

Zhang:2020:CTE

Zhai:2011:CVH

Zollweg:1993:OP

J. A. Zollweg. Overview of PVM. In Anonymous [Ano93f], pages 981–986. ISBN ???? ISSN 0254-6213. LCCN ????

Zarrelli:2006:EPE

Zambonelli:1996:EPP

Zheng:2011:GLO

Zhao:2012:ASO

Xin Zhao, Gopalakrishnan Santhanaraman, and William Gropp. Adaptive strategy for one-sided communication in MPICH2. *Lecture Notes in Computer*

Zijie Zhu, Yongxian Wang, and Xinghua Cheng. Parallel optimization of three-dimensional wedge-shaped

[Zareski:1995:EPG]

[Zheng:2005:SBP]

[Zhang:2013:MPI]

[Zhu:2017:OAP]

[Zhang:2021:IRP]
Jingrong Zhang, Zihao Wang, Zhiyong Liu, and Fa Zhang. Improve the resolution and parallel performance of the three-dimensional refine algorithm in RELION using CUDA and MPI. *IEEE/ACM Transactions on Computa-
REFERENCES

(print), 1532-0634 (electronic).