A Bibliography of Publications about *PVM* (*Parallel Virtual Machine*) and *MPI* (*Message Passing Interface*)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

31 May 2018
Version 3.173

Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0
[ICC02]. 1 [ICC02, LRQ01, VDL+15].
19.95 [Ano95b]. 2 [Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17].
24.95 [Ano95c]. 27.50 [Ano96a]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12].
35 [Ano00a, Ano00b]. 35.00
[Ano99a, Ano99c, Ano99b, Ano99d]. 3D
[KA13].
60 [Ano00a, Ano00b]. 3 [PBC+01].
A [ARYT17]. α [JMdVG+17]. $Ax = b$
[BG95]. D [UZC+12]. H^2/H^∞ [GWC95].
k
[She95, TK16]. M^3 [JSH+05]. PVM^+ [Wil94]. N
[IHM05, Per99, Rol08b, SP99, SRK+12].
SU(3) [BW12]. τ [RGDM15, RGDM16].
XY [KO14].

-**body** [IHM05, Per99, SP99, SRK+12]. -**D**
[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. -**Dimensional** [LRQ01].
-**Lop** [RGDM15, RGDM16]. -**Means**
[TK16]. -**Queens** [Rol08b]. -**set** [She95].
-**stable** [JMdVG+17].

. [Wil94].

/**Fortran** [TBG+02]. /**many** [KSG13].
/**OpenMP** [VDL+15].
WCC +07, YÁJG +15, YEG +13, ZWZ +95. architecture-independent [DiN96].

Architectures [ACM95b, BDT08, BFG +10, CHPP01, HD02a, HD02b, HHK94, IEE96d, KDT +12, LHHM96, L96, LZH17, LAD16, MS02b, MTSS94, MCS00, NO02b, Nar95, PZ12, TSCaM12, BDF +10, BN00, BKML95, CLM +95, CDZ +98, DM93, DZZY94, GDC15, GP95, Hos12, LCL +12, LDJK13, MLC04, NO02a, PY95, RFH +95, RMNM +12, SPL99, TDG13, TSZC94, Uhl95a, VDL +15, WST95, dAMC11]. Area [CDHL95, Fis01, BHW +12, BG00, FGG +98, KHB +99, Qu95]. area-based [Qu95]. arising [ARvW03].

Ashes [Thr99]. ASL [FGRT00]. ASME [LF +93a]. aspects [CG99a]. assembly [TPD15]. Assessing [LMG17, dLR04, MABG96, TSCaM12, CMV +94].

Assessment [Mat01b, TAH +01, Boi97, LH98]. Assignment [Cza13, CK99]. assist [Kik93]. Assisted [GTH96, GM13, MBBD13]. Astro [CC17]. Astronomical [JBP9, SPH95].

asymmetric [GCN +10]. Asynchronous [Ada97, Cav93, CZ95a, CD99, HE02, BBDH14, BCK +09, CZ95b, DDYM99, Sch99]. Athapascan [CP98]. Atlanta [AGH +95, Aa95, USE00, UCW95]. ATM [GFV99, HBT95, Jon96, LHD +94, LHD +95]. Atmosphere [BS93]. Atmospheric [HK93, RBST95]. atom [MGG05]. Atomic [LRT07, LAFA15, SYF96, DS13, Hin11, SY95, XF95]. atomics [BDW16]. atoms [JLS +14]. Attacks [PV97, GHD12]. attempt [GM18]. Attraction [GB96]. audio [BJ13]. August [ATC94, Aa95a, BFMR96, DMW96, GT94, HAM95b, IEE94g, IEE95k, IE95l, IE96f, LF +93a, Ost94, PSB +94, PGB +95, Rec96, VV95, Was96].

Austin [IEE94b]. Australasian [Bi95]. Australia [GN95, Nar95, ACDR94, Bi95]. Australian [ACDR94, GN95]. Austria [Bos96, BH95, Kra02, TBD12, Vo93].

Austrian [Fre92, FK95]. Austrian-Hungarian [Fr92, FK95]. Auto [CC17, DWM12, DBLG11, RDLQ12, WG17, FE17, SH14, TWFO09]. Auto-Generation [CC17, DWM12]. auto-parallelization [TWFO09]. Auto-scoping [RDLQ12].

Auto-Tuning [WG17, DBLG11, FE17, SH14]. AutoLink [GMPD98]. AutoMap [GMPD98]. Automata [Car07, BBK +94]. Automated [BMP03, MMY95, LLG12, RFRH96, Van94].

Automatic [BVML12, BH +08, BGK08, BHK +06, CBL10, Cza03, DW02, ELM98, EML00, FAFD15, FFH11, GKCF13, HZ99, JFY00, JYJ +03, JPL17, KOI1, KHS12, MGA +17, NCB +17, OWSA95, Rab99, RGD13, SZ11, SR96, SSB +17, TJFP12, WC15, WM01, APBcF16, AMuK15, AGG +95, BR04, BHR98, CHK15, CDGM96, CPR +95, HZ96, LME09, LF93b, WMP14, ZHK06, FVD00]. Automatically [WBSC17]. automation [Ano93a]. automotive [Ano93a, Ano93a].

AXAF [NH95].

C [Gal97, Pri14, SSL97, TBC+02, VDL+15, Vre04, BKG08, BBN99, CACN10, CACHW3]. DARO13, Don06, FLMR17, FHK01, GTH96, GSI97, GÖR01, KKO2a, KOPO00, LYS0+16, MHSK16, QU03, SSB+17, SC95, TNIB17, UZC+12, YULMTS+17, YSVM+16, ZT17]. C# [WLR05]. C-to-CUDA [UZC+12]. C/C [KPO00]. C11 [BDW16]. C2CU [TNIB17]. CA [ACM95b, Ano99, BBG+95]. Cache [LZH17, LZH18, MM97, NIO+02, NIO+03, SS01, SVC+11]. Cache-Coherent [SS01]. cache-friendly [VC+11]. Cache-Oblivious [LZH17, LZH18]. Caches [LB16]. Caching [LCCW07, DO96, WMRR17]. CAE...
[RR01]. Chicago [CGKM11]. China [CZG+08, IES97, LH96, L96]. Chip [Jes93b, URK92, TDG13, dCZG06].
Circular [Tsu07]. Circulation [GAM+02, Nes10, RSBT95]. CIS [AH00].
Chip [Jes93b, URK92, TDG13, dCZG06]. Chip-Based [Jes93b, URK92, TDG13, dCZG06].
Class [DFN12, Dem96, MSL96, RFH95]. Classes [DeP03, GG09, Ott93].
Climate [Str94]. CLIPS [Ano95a, Ano95b]. CO [AC01, AHHP17, H98, Wal02].
Coarse-Grain [IKM+01, IKM+02]. Coarse-Grained [IKM+01, IKM+02].
CoCheck [MS96b, Ste96]. Code [AH01, And98, BCGL97, CBF00, CP97, CCK12, CCBPGA15, DDL00, DZG95, H02, KaM10, KAMAMA17, KHS01, LD01, L94, M95, M07, PBC+01, RGD13, SM03, SZBS95a, Sta95b, TGBS05, AMS94, AD04, AFST95, BCAD06, BADC07, BW12, Bha98, Bri95, Cou93, DLR94, EZBA16, FMMF15, GSK17, He93, KEGM10, KO14, Kom15, LC07, LLu09, MW93, MM03, NO02b, OF00, PFG97, RO91, RS70, RLL01, SCR92, SHH01, SHT01, ST02a, TOTH99, Tra02b, bT01a, AL93, BL93, BAL95, BTC+17, BID95, CCF+94, Cou93, E94, GK97, GM95, He93, H93, KEGM10, KO14, Kom15, LC07, LLu09, MW93, MM03, NO02b, PDY14, RJDH14, SS94, SR95, ST02b, SLS96, SY95, SSN94, Th94, THM+94, Tsu95, UH96, YWO95, ZLZ+11, MS04].
Cluster-Based [SLS96]. Cluster-Enabled [SH91]. Clustered [KHB+99]. Clustering [BBH12, HA10, RJC95, GGL+08, YCL14].
Clusters [MS04]. Clique [AH00, AHHP17, BDH+95, BDH+97, BW+12, CSC96, DK06, GMDMB+07, GSY+13, HPP02, HSMW94, HVA+16, Hus00, JN+15, LC97, LH95, LV94, MS98, MFP03, Pan14, PKB01, PT01, PS00a, PS95, Rei01, dOSMM+16, SFG98, SVL99, Ste00, Tou00, UP01, WLNO03, WT12, YWCF15, YKL+96, AB95, ALR94, ADB94, ABG+96, ADMV05, BWT96, BD03, Br095, CRE01, EKT99, G95, HL95, J99, JKH98, J96, JR+94, K93, K93, K5+12, KJEM12, LBD+96, L09, L13, LL95, LYS94, NMW93, NN95, PS97, PRS+14, PM95, PR94c, PR94e, PL96, RC096, RDGM16, Sl05, SC96a, SL95, TFZZ12, WLN06, WL12, YS08, YL09, YHL11, YW99, ZS99, dCH93]. CM [SBG+02]. CMMD [Har94, Har95]. CMPI [GH12]. CMS [FS15]. CNF [IKM+01, IKM+02]. CO [AC01, AHHP17, H98, Wal02].
Coarse-Grain [IKM+01, IKM+02]. Coarse-Grained [IKM+01, IKM+02].
Coarse-Grained [IKM+01, IKM+02]. Coarsening [PST99]. Coast [IS16]. Coastal [GAM+02].
CoCheck [MS96b, Ste96]. Code [AH01, And98, BCGL97, CBF00, CP97, CCK12, CCBPGA15, DDL00, DZG95, H02, KaM10, KAMAMA17, KHS01, LD01, MM02b, MM07, PBC+01, RGD13, SM03, SZBS95a, Sta95b, TGBS05, AMS94, AD04, AFST95, BCAD06, BADC07, BW12, Bha98, Bri95, Cou93, DLR94, EZBA16, FMMF15, GSK17, He93, J94, K5+05, KPL+12, KH10, MGS+15, MR96, MWO95, PKE+10, PSK+10, RP95, SZBS95b, SK00, SFLD15,
SMSW06, TBD96, VBLvdG08, VDL+15, Wor96, YL09. codebooks [PMM95].

Codes [FAFD15, JFY00, SWH15, HTJ+16, HWS09, HASnP00, JPP95, KBG+09, LRW01, Mal01, OLG+16, WB96]. Coding [Uhl94, Uhl95b, SCC96]. Coefficients [MW98, AYT17]. cognitive [PWD+12].

Coherence [MM07]. Coherent [SS01]. Collaborative [DCPJ12, DCPJ14]. Collapse [PKYW95]. Collecting [BMR01]. Collection [LTRA02, DH95, MGC+15]. collection-oriented [MGC+15]. Collections [JFGRF12]. Collective [BIL99, Bic05, CCA00, FVD00, FCLG07, FPY08, GLB00, GMdMBD+07, Hus99, KH96, MJG+12, PGAB+05, SG15, TRG05, VFD02, WRA02, HS12, HG12, HWW97, KHB+99, KBHA94, KMH+14, MBBD13, Pan95b, PGBF+07, PGAB+07, RJMC93, SCB14, SCB15, SS99, TD99, Tra12a, TFFZ12]. Collectives [CSW12, SvL99, Zah12]. Collector [GTS+15, WK08a, WK08c, WK08b].

College [AGH+95, Ano94h]. Collision [QRMG96, Stat95b, ART17, FFFC99, LHLK10]. Collocative [MKW11]. Colony [ITT02]. Colorado [R+92, IE05]. Colt [WN10]. Columbia [IEE95a, IEE95c, MAB05]. column [HSP+13]. column-stores [HSP+13].

COMA [GB96]. Combined [CBHI94, TJPF12]. Combining [DP94, Rab98, SCB14, Sch96a, SMAC08, YPAE09, Bor99, Sch96b]. comes [Ano94f].

Coming [HK95]. Commands [OLG01]. comments [Str94]. commerce [Ano93g]. commodity [GGL+08]. Common [HEH98, DK13, WLR05]. Communicating [FKK+96b, GMPD98, FKK96a].

Communication [ABF+17, BCG+10, BIL99, BIC05, DCPJ12, DZZY94, EM02, FST98a, FJK+17, FGKT97, FBSN01, GFD03, GFB+03, GGS99, GFV99, GLB00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KBG16, LRT07, LC93, LCVD94a, MH01, MMH98, MR96, Nit00, PLK+04, RK01, RRAGM97, RsT06, SWHP05, SCP97, SGH12, SBG+02, SJ02, ST02b, SGL+00, SKH96, Sum12, TRG05, TGT05, TRH00, Tra92b, UMK97, WBH97, XH96, YC98, ZSG12, FH98, BJ96, BVML12, BBH+13b, BS94, BMG07, CAHT17, CGL+93, Dem96, DW01, DCPJ14, DGB+14, DDB+16, DS96b, GK97, G13, Gra97, GL94, GB94, HB96a, HWX+13, Hus99, HWW97, KH96, KB01, KLY03, KLY05, KHB+99, LR06b, LFL11, MLAV10, MMU99, MABG96, OGM+16, Pan95b, Par93, PGK+10, PM95, PKE+10, PSK+10, PS00b, SH14, SC95].

Communications [BPS01, CP98, CDHL95, CDH+95, FVD00, FST98b, CT01, GBS+07, GMdMBD+07, IEE95b, IEE95e, LZH17, LH18, MB00, VFD02, YTH+12, bT01a, ADL03a, ADLL03b, CDP09, HS12, KBHA94, MBBD13, McR92, MN01, MS99c, RGDM16, SCB14, SCB15, TD99, TFFZ12]. Communicators [DFKS01, GF03, GFD05, FK96, GJMM18, KH96, MJG+12].

communities [ACM04]. Community [BHW+17, FCP+01]. Como [CLM+95].

COMOPS [Luo99]. Compact [Uhl94, Uhl95b, Wor96]. compaction [VSW+13, WK08a, WK08b, WK08c].

Comparatively [KL16]. Comparative [KB98, PSK08, SN01, AGR+95b, ED94, YCL14].

Comparing [BF01, Fin97, GBR15, HVSH95, ICC02, LK303, ORA12, SSG95, WBSC17].

Comparisons [BvdB94, BS07, HC10, KBM97, LCW+03, Mat94, Mat95, Ney00, OP10, OF00, PPJ01, Pok96, RS93, RBB97a,
SS01, SHH94b, VS00, Wal02, ZBd12, Ahm97, AB93b, BLP93, BID95, GMU95, Har94, Har95, JS13, KDS012, KCO6, MSGP93, Obs95, PS07, PSHL11, Pri14, SdM10, SYR+09, SWS+12, SHH94a, TszC94].

correlation-based [PSHL11].

Comparisons [GGS99, PGC02, CLYC16].

Compass [PWD+12].

Compatible [GGS99, PGC02, CLYC16].

Compatible [MM14, LBH12, OIH10].

Compcon [IEE93a].

compete [Ano96a].

CoMPI [FSC+11, FCS+12].

Compilation [FSSD17, HKMCS94, LRBG15, SBW91, Coe94, FM90, PGS+13, SHM+12].

Compile [GB94, TSY99, JE95].

Compile-time [GB94].

Compile/run [TSY99].

Compile/run-time [TSY99].

compiled [KYL03, KYL05].

Compilers [Ano01a, CFF+94, LZ97, MKV+01, SBT04, SS96, Hos12, PGB95, ZT17].

Compiling [DMB16, Hos12, CGK11].

Complete [BdS07, GHL+98, Nag05, Per97, SOHL+98, YM07, Ano99a, Ano99c, Ano99b, Ano99d, PRS+14, SOHL+96].

Completed [PTT94].

Complex [BCCL97, GMPD09, MSB15].

Complexity [NPS12].

component [HLP10, KRKS11, Sgu03].

Components [BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01].

Composed [Wel94].

Composing [PHA10].

composite [MALM95, YPA94].

Compositing [GPC+17].

Composition [CTK00, Cot04, DB07, FC05, KH15, CF96].

compound [LLC13, SAP16].

comprehensive [RST02].

Compression [FSC+11, KBS04, VPS17, AAAA16, HE15, UH96, Wu99].

compression-based [AAA16].

COMPSAC [IEE95].

Compton [BCD96].

Computation [BKGS02, B+05, Cer99, DSB94, DSS00, EMO+93, ESM+94, Fer10, FF95, GS91b, HIP02, IEE94a, IEE96c, KS15b, Mar06, MR12, MWS95, Nag05, PPR01, Sie92a, Sie92b, SMOE93, WTH+17, ACM97a, ARDP15, Bis04, BALU95, Bos96, BHK95, CL93, CMH99, CKP+93, DZZY94, HLM+17, HK94, KB01, KJ+16, K93, Lev95, MLA010, Neu94, NZZ94, NCKB12, PF05, PKE+10, Röh00, Shi94, SH14, TBB12, TP15, TW12, Vol93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational

[ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MSB15, R+92, SZSB95a, SM07, SN01, TDBEE11, TEGM09, WPH94, Whi04, AGM06, Bvdb94, BDG+92c, BR95a, HVSC11, KBG+99, Pbh99, SPE95, SZSB95b, STT96, Str94, VL+15, BR95a, CCHW03, R+92, SL94a, WPH94].

Computationally [DFN12].

Computations [AGH+95, ACGR97, CGU12, CGPR98, IH04, PBK00, PMvD+13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGDK92, HJYC10, KD13, MRRP11, MR96, Smi93b, SAP16, TS12b].

Computing [ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACDR94, AIM97, BJ93, BBG+95, BDG+93a, BGR97a, BL95, BCP+97, BRST94, BDH+95, BDH+97,
BHNW01, BBH12, CZ95a, CGB+10, CLL03, CNC10, Cze16, DDS+94, DERC01, DPP01, DKM+92, DGMS93, DT94, FTvb00, Fer98b, FGK79, Fos98, FS93, GLN+08, GS92, Gei93a, GBd+94, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hoi12, HT01, IEE92, IEE93d, IEE93e, IEE95c, IEE95k, IEE95l, IEE96a, IEE96f, IFI95, KK02a, KS97, LCK11, LRG14, LC93, LR01, Lus00, dlFMBdlFM02, ME17, Mat94, Mat95, MS04, Nov95, PKYW95, SHTS01, SCSL12, Sin93, SSSS97, Ste00, SG910, SW91, Sun90a, Sun90b, Sun92, Sun93, Sun94a, Ten95, VV95, VW92, WN10, YH96, YG96, AGCdt02, ARYT17, AL92, AH95, ASCS95, Ano93g, Ano94e, Ano94h, Ano03, ADDR95.

Computing
[AMV94, BPG94, BDG+92a, BDG+94, Bkml95, BrU95, HbW+12, Cz95b, Ch96, Chkk15, Dlrr99, DkD08, Dw94, D95, Dmwo96, De91, Ektb99, Ejl92, Fbd01a, Fgrd01, F094, F95, F98, Fme+12, Fhc+95, GgGc99, Gs02, Gs91a, Gs93, Gei93b, Gei94, Gh94, GlklyCy97, Hp05, H114, Hhp+93, Hs95a, Hh95, mH12, Iee97a, Im95, Jpoj12, Jy95, Jjm+11, JpTe94, K014, Kos95b, KssS07, lv12, Lh98, Lchs96, Lhd+94, Lhd+95, Lm13, Ma94, Mzk93, Ma95, Ma97, PGs+13, Pkb06, Pen95, Pgk+10, Ptt94, Pbg+95, Pnv01, Pwd+12, Rs94, Rjdh14, Sc93, Sgs95, Sm500, Stt96, St94, Sp11, Sun94b, Sgdm94, Sun95, Sd99, Tjd09, Tk15, Tdb00, Tho94, Ts98, Vm94, Vis95, Ws96, Yulmts+17, Ylc16, Ysl+12, Zem94, Zwl13, Zgc94, Zhs99, Zkra14, Acm98a, Kon00]. Computing
[Pw95, Per96, Scr92, Tgem09, An95b].

Concept [KaM10, Ltr00, SB95].

Concern [Ane94].

Concurrent
[Ane89, Bdg+91b, BRS92, Bhv12, Bkh+13, DG95, Gs91b, Gs92, Gsxx, Gre94, Hs93, Sun92, Sun93, Zdr01, Bdg+92a, Fsc95, Gs91a, Gs93, Lpd+11, Np12, Rgdml16, Rcg95, Sun94b, Sgdm94, Wai94a, Wai94b, Wko08a, Wko08b, Wko08c, Zwz+95].

Condensed [Mc99].

Condition
[Mc99].

Condor
[Cf01, Pl96].

Conduction
[iSys12].

Cone
[RCFS96, Oih10].

Conference
[ACm90, Acm94, Acm96b, Acm96c, Acm97b, Acm98b, Acm04, Abr96, Atc94, AgH+95, Ano89, Ano93f, Ano94a, Ano94e, Ano94i, AcDr94, BBg+95, B9+05, Boi97, Bso96, BfMr96, Bh95, Cgb+10, Ch96, Dm94, Dsz94, DkD07, Dkm+92, Ers95, Ers96, Elj92, Ff95, Gat95, Gn95, Gt94, Han95a, Han95b, Hs95a, Hs94, Hol12, Iee92, Iee94f, Iee95b, Iee95e, Iee95i, Iee95l, Iee95j, Iee96a, Iee96d, Iee96h, Iee96i, Iee02, LcK11, Lf9+3a, Mmh93, Nai95, Ol05, Pr94b, Rec96, R9+92, Spe95, Sii96, Sm07, Sin93, Sw91, Ues95, Ues00, Vv92, Vai93, Wph94, Y9+93, Yh96, Acm95a, Acm95c, Acm00b, An95s, An95b, An93c, An95a, Br95a, Bil95, Bdl96, Dr94, Ego00, Gh94, JpTe94, Lch96, Ma95, Pw95, V995, Zl96, Acm94, An94e, Iee95b, Kkd03].

Configurable
[Iee94d, Pkb+16, Bb94].

Configurations
[Ptl+16].

Conflict
[Tcp15].

Conformational
[Mk94].

Congress
[Cjnw95, Ghh+93, Psb+94, B9h5, DgJm94].

Conglomerate
[Bt94].

Conjugate
[Bg95, GfFg12, Mm92, Ols95].

Connected
[BT01b, KrgS11, Of00, Pct01].

Connectivity
[Whi94].

Conquer
[Ctk01, Cza02, Cza03], conscious
[za14].

Consistency
[Wsbc17, Yyw+12].

Consistent
[Tgt10, Cg96, Cg99a].

Console
[Ps99].

Consortium
[Brst94].

Constrained
[Bsh15, Egri15].

Construct
[Dp94, Em94].

Constructing
[Dr93].

Construction
[ArT17].

Constructs
[Kdt+12, Pgc02, Bkh+13, Bn00].

Consumer
[Acj12].

Contact
[Nak03].
Datasets [VPS17, KGB09]. Datatypes [Gro00, SWHP05, KHS12]. Datasets [VPS17, KGB09]. Datatypes [Gro00, SWHP05, KHS12].

Datasets [VPS17, KGB09]. Datatypes [Gro00, SWHP05, KHS12].

DawnCC [MGA+17]. DAWNING [HWM02]. DAWNING-3000 [HWM02].

DawnCC [MGA+17]. DAWNING [HWM02]. DAWNING-3000 [HWM02].

Dave [Stp02]. David [Ano96a, Ano99a, Ano99b, Nag95].

David [Ano96a, Ano99a, Ano99b, Nag95].

Debugging [BDGS93, GKP96, KKV01, KV98, Mor95, NE98, Wise97, ZLL+12, BL97, BS96a, DKF93, HLOC96, KCD+97, MLA+14].

Debugging [BDGS93, GKP96, KKV01, KV98, Mor95, NE98, Wise97, ZLL+12, BL97, BS96a, DKF93, HLOC96, KCD+97, MLA+14].

Decay [LTZ+02, SG12, HPS+13].

Decay [LTZ+02, SG12, HPS+13].

December [Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, PBPT95, Y+93].

December [Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, PBPT95, Y+93].

Decimation [PCY14]. decoder [MC17].

Decomposition [BJS97, CP97, EGH+14, DBVF01, ETV94, OMK09, SHHC18]. decompositions [NZ94]. deconfliction [TCP15].

Decomposition [BJS97, CP97, EGH+14, DBVF01, ETV94, OMK09, SHHC18]. decompositions [NZ94]. deconfliction [TCP15].

Deep [Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, PBPT95, Y+93].

Deep [Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, PBPT95, Y+93].

Design [HVA+16, AAAA16, MC17, Shi94].

Design [HVA+16, AAAA16, MC17, Shi94].

Desktop [Mar07]. Detailed [DLV16, RSPM98, BTC+17, LR06b]. detect [Str94].

Desktop [Mar07]. Detailed [DLV16, RSPM98, BTC+17, LR06b]. detect [Str94].

Detecting [AGG+95, PPJ01, ZRQA11]. Detection [BHW+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KSJ14, SG12, ZDD97, BBH+15, DKF94a, HHDG09, HGMW12, HPS+12, HPS+13, LZC+02, RAGJ95, TCP15, TDG13, TWFO09, WFTO14, YULMTS+17].

Detecting [AGG+95, PPJ01, ZRQA11]. Detection [BHW+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KSJ14, SG12, ZDD97, BBH+15, DKF94a, HHDG09, HGMW12, HPS+12, HPS+13, LZC+02, RAGJ95, TCP15, TDG13, TWFO09, WFTO14, YULMTS+17].

Detector [DZDR95]. Determination [LAFA15]. Determine [BP99].

Detector [DZDR95]. Determination [LAFA15]. Determine [BP99].

Determined [DAF+09, HO14, MFTB95, DM12, LBB+16, LYS+16, ON12, SSB+16, TVV96, YPA94, YSV+16, YSM+17].

Determined [DAF+09, HO14, MFTB95, DM12, LBB+16, LYS+16, ON12, SSB+16, TVV96, YPA94, YSV+16, YSM+17].
Developments [Mat00a]. device

Devices [GJN97, ZJDW18].

DFB [WWZ96].

DFN [RS93].

DFN-RPC [RS93].

Diagnosis [AP96, LAdS15].

Diagnostic [RSBT95].

dictionary [LSSZ15].

Diego [Has95, LF93a, NM95].

dierence [UZC12, GFPG12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94].

dierences [AKE00, LDCZ97].

dierent [AIM97, GL97b, JCh08, Ney00, Rab98, RBB97a, BN00, Pri14, Ram07, Pri14, Ram07, Str94, VM94].

dierential [MFTB95, Riz17, JK10, NF94, RBB15, SP11].

dierentiating [Cer99].

Diusion [HF14a, HF14b, MW98, CEGS07, DM93, MM92].

Digest [IEE93a, IEE95c].

digit [DALD18, LAD16].

digital [KLR16, CIJ10].

Dijon [YH96].

Dimemas [GLB00].

Dimensional [Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK+17a, SJK+17b, AL93, KT02, LSSZ15, Ols95, PR94c, Ram07, RG18].

Dimensions [SAS01, Ano93g, HP11].

diopol [LB95].

DIPORSI [GGCGO01].

Distributed [AGS97, Ano95c, BMS+17, BME02, BGR97a, BL95, Bha93, BJ95, BRST94, BT01b, BHKR95, CGB+10, CL03, CSW97, CC99, DMB16, DAV97, DFMD94, DG97, DHHW92, DHHW93a, EMO+93, ESM+94, FH95, Fan98, FTBV00, FK01, Foo98, FS99, FFC99, GGGCM99, GGGCG01, GCGS98, GCM97, GC95, GM95, HJ98, HC10, HRS97, IEE93d, IEE93e, IEE94d, IEE94g, IEE95b, IEE95c, IEE95i, IEE95g, IEE96b, IEE96g, IE05, JML01, KBA02, KP96, KL95, KL96, KSHS01, LC93, LHD+94, LHD+95, MZK93, MB12, MFTB95, MSCW95, Mat95, MBE03, NSBR07, NZZ94, NH95, Pen95, PKYW95, Pet00a, Pet00b, PTT94, PPM95, PBK00, PD98, PMvdG+13, RGD97, Sch94, SA93, SMOE93, SW91, Sun90a, Sun90b, TSS00b, TNN00, W097, WCSS99, YH06, ZDD97, ZDR01, AMBG93, AGR+95b, AB95, Ano94a].

distributed [Arn95, ADMV05, BSC99, BB95, Bir94, BMPZ94a, CBPP02, CH94, CEF+95, CBHH94, CLLASPD99, CPR+95, CK99, DLR94, DR94, DHHW93b, DR95, EGHH99, FB97, FS95, FS98, FHC+95, FHB+13, GBR97, GCM+10, GKK09, GlkLYC97, GP95, HPY+93, HAA95, IE97a, JW96, KN95, KSG13, KJ+16, KDL+95a, LRL06b, LFS93a, LFS93b, LH98, LKL96, Liu95, Mat94, MVT96, Man98, MLC04, NAJ99, OLG+16, PK05, POL99, Par93, PR94c, RAGJ95, RFiH+95, SSH08, SHH101, SL94b, Sch93, SFL+94, SSSC96, SPL99, Sm93b, SD99, TSP95, THM+94, UHL95a, VM94, VB99, Vet02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YLC16, YWO95, YX95, YPZ95, YZPC95, ZL96, ZGC94, ZHS99, Pet01].

distributed-data [FB97].

Distributed-Memory [CSW97, CC99, KN95, SSH08].

distributed-shared [ADMV05].

Distributing [AL92].

Distances [LAFA15].

Distance [MR12].

Dispersion [RSV+05].

Displacement [BJS97, PSSS01].

Dissemination [GL97a].

Discovering [FJK+17].

discovery [BK11, GWVP+14].

discrete [ST17].

diskless [PK95].

Disks [dFMBdFM02].

Directions [AL92].

Dixmuns [CSW97, CC99, KN95, SSH08].

diagnostic [RSBT95].
HB96b, MJB15, NPP+00b, NPP+00c, NA01, SR96, AGG+95, CSW99, GS96, HB96a, JDIVG+17, KRC17, NPP+00a, RJMC93, Wil94. Distributions [ST17, WO95, HKMC94, WO96, vHKS94]. Divergence [SDSCP13, VSW+13].

diversity [EO15]. Divide [CTK01, Cza02, Cza03].

Domain [BMR01, CP97, EGH+14, kL11, ETV94, HE13, Ne93, NZZ94, Ohu4, OMK09, Ram07, SHHC18, VM94]. Domaine [GA96].

dOpenCL [KSG13]. Double [FKKC96, PTT94]. down [Str94].

Downloadable [Ano98]. DP [Arn95, KLR+15]. DPVM [IHvA+00].

draft [DHHW93b, GL92]. Draw [ST17].

Dresden [MdsC09]. Driven [AIM97, ME17, PCY14, Hin11, NCB+12, NCB+17, Qun95, SIS17, TWFO09, WTOF14].

Dror [Strp02]. drug [GWVP+14]. drugs [Str94].

DSIR [LTR00, RTAL9]. DSM [KBVP07]. DSMPI [SSC96, SSC97]. DTM [PS07]. DTS [BH2R95]. Dual-Complex [BBC+00, GAM+02, DK02, CT13, LSSZ15].

dual-dictionary [LSSZ15]. Dual-Level [BBC+00, GAM+02, DK02]. dual-scanline [CT13]. Dublin [LKD08]. During [DcP03].

Dust [dFMBdFMO2]. DVFS [PTL+16].

DWT [ZZZ+15]. Dyn [WLN03, WLN06]. Dyn-MPI [WLN03, WLN06]. Dynamic [ACGR97, AGS97, AUR01, CGLD01, CKmWH16, CML04, CKB99, CTK01, DMB16, DBA97, DFM99, FMBM96, FD00, GFD03, GFD05, GRV01, GCBL12, GMD98, GL95a, KFL05, NPP+00c, NLRH07, PK98, PLK+04, PT01, Rau05, Smi93b, SY95, TS12a, VdS00, Vet02, Wal01a, Wil94, YST08, Zc95, DDLM95, EO15, FH97, FCS+12, FKL08, JCI7, MSMC15, NSBR07, NF94, OKW95, RBAI17, RCG95, SCB14, SCB15, SKK+12, SKB+14, WRSY16, YPA94, DvdLVS94, FCS+12].

dynamically [SSS99]. DynamicPVM [DvdLVS94]. Dynamics [BST+13, BCGL97, DR97, JFY00, KMB07, dFMBdFMO2, MH01, OS97, SZBS95a, SA93, TDBEE11, TGM09, YWCF15, ZB94, ALR94, ABG+96, AGMJ06, BvdB94, BHS18, BvdSvD95, BBK+94, BMPZ94b, BMPZ94a, CC00b, FHS099, HVSC11, JAT97, JMS14, KFA96, KPK13, KRG13, LSVMW08, OK12, PARB14, PB99, RBB15, SPE95, SZBS95b, SKM15, TG94, WPH94].

Dynamische [Wil94]. dynamite [IvdLH+00]. Dynamic/DPVM [IHvA+00]. Dynamite/DPVM [IHvA+00]. DySel [CKmWH16].

E-scale [Gua16]. each [Ano00a, Ano00b].

Early [CD96, LV12, SLG95, EFR+05, KJA+93].

Earth [KTJT03, Nak03, Nak05a, Nak05b, UTY02].

Earthquake [UZC+12, KTJT03, KME09].

Easily [PKB01]. East [IS16]. Easy [HCA16, TDG13, MJPB16, SBF94].

EasyGrid [BR04]. EASYPVM [Saa94].

ECMWF [HK93, HK95]. ed [Nag05].

EDEM [Tsu95]. Edge [ZDD97, Gra97, RAGJ95]. edition [Ano99a, Ano99b, Ano00b]. Editors [AM07, GSA08]. education [ACM06a].

EDV [Ano94c]. EDV-Benutzertreffens [Ano94c]. Edward [Che10]. Effect [DK06].

Effective [MLAV10, RK01, TMC09, Tsu95, Cza13, JH97, KS15a]. Effects [SSE12].

efficacy [GScFM13]. Efficiency [KS96, MTU+15, CZ96, MMU99, RS95].

efficient [ADT14, Att96, BHW+17].

Efficient
environmental [ANS95]. Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GFB03, Laf01, Mat94, Mat95, MFC98, PS01a, RB01, SHH94b, SSSS97, TAH*01, ACGrT02, ARL*94, ALR94, ADDR95, AMV94, Bon96, BFIM99, CDH94, CK99, DR94, DR95, EO15, HS93, HVSh95, LC07, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96].

Environments-the [CDH94].

EPS [GT94]. EPS-APS [GT94]. Epstein [BL95]. Epstein-Nesbet [BL95]. Equation [ES11, LZ97, SAS01, VRS00, DM12, LBb+16, LYSS+16, MS95, NP94, ON12, Obs95, Pri14, iSYS12, SSB+16, YSVM+16, YSMA+17]. Equations [Ano98, BG95, GK10, Huc96, LLY93, MFTB95, ORA12, ZB97, BHW+12, Che99, IM95, JK10, Jou94, MM11, NF94, RBB15, SP11, SMSW06, ZZG+14, dh94]. Equi [LTRa02]. Equi-Join [LTRa02]. equivalencing [LLG12]. Era [ABB+10, CZG+08, CGKM11, EdS08]. Erratum [Ano01b, HF14b, Wa94b]. Error [DFC+07, HPS+12, HPS+13]. Errors [FCLG07, SD16]. Erweiterung [GBR97].

ESA [Whi94]. ESBMC [MdSAS+18].

ESBMC-GPU [MdSAS+18]. Espoo [RWD09]. ESPRIT [CDH94]. Estimation [GK10, AMHC11, CUC95, GB94, JMDVG+17, KS13, ZWHS95]. Estuarine [LRQ01]. Ethernet [CC00a, Fin97, HeC05, KYL03, KYL05, OF00, PFG97]. EU [Ano03]. Eugene [MCdS+08]. Euler [DLR94, IDD94]. Euler/Navier [DLR94, IDD94]. EURO [HAM95b, BFMR96, HAM95b, BFMR96].

Euro-Par [BFMR96, HAM95b, BFMR96]. Euromicro [IEE95b, IEE96g]. EuroMPI [CDND11, KGRD10, TBD12, TB14]. EURO [LCHS96, Ano92, Ano93e, Ano93f, Ano94g, Tou96]. European [AD98, Ano94i, BR95a, BDLS96, BC00, BDW97, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, KGRD10, Kra02, KKD04, LKD08, MTW06, RWD09, TBD12, WPH94, DHK97]. EuroPVM [BDLS96, OL05, DKD07, MTW07].

EUROVPM/MPI [OL05, DKD07, MTW07]. EuroPVMMPI [KVD03]. EUROSIM [BH95, DZ94, BH95]. Eurospace [Tou96]. Eurospace-Ada-Europe [Tou96]. Evaluate [MW98]. Evaluating [BWV+12, FVLS15, FST98a, GFC01, GFC05, GCG01, GB96, HWW97, LH95, SSSS97, ZSnH01, GScFM13, LTL94, TG09, ZL9+11]. Evaluation [ATM01, BF98, BIC+10, BFM97, BEG+10, CLP+99, DI02, FST98b, FSSDR17, Han98, JCH+08, KS96, KKD04, LKD08, LVP04, MH01, MG12, NON00, OLT95, OM96, Pan14, Par93, RB01, SWHP05, SCP97, SEF+16, SBF+04, SM02, Sou01, SJK+17a, SJK+17b, TOTH99, TBS02, TSB03, TTSY00, UM97, VY02, AB13, BBG+14, BBH+13a, BMG07, CB11, DDB+16, HPR+95, HASn00, HPS95, IM94, JIC+17, JMVDG+17, LV12, LNW+12, MKP+96, MM03, MT96, MMH99, NN95, PSK08, RLFdS13, SL94b, SWS+12, SWY94, SFSV13, TSP95, THM+94, TMPJ01, Wor96, YWO95, YS93, ZHK06].

Evaluations [MM14]. Event [KKV01, NSLV16, THS+15, WM01]. Event-Based [NSLV16]. everything [CCM+06]. everything-shared [CCM+06].
Evolution [Mat01a, PS01a, RBB17, SSL97, SGDM94, GS93, SSD+94]. Evolutionary [B+05, DSM94, Rag96]. Evolving [Bad16, ER12, MSc90]. Ewing [A95c, Ano99c, Ano99d, Ano00a, Ano00b]. EWOMP’99 [BC00]. Exact [dOSM+16]. Example [Che10, NB96, Pat93, SK10]. Exascale [Bad16, LV12, LSG12]. Exception [FMSG17]. Exchange [MMM13, Pan95a]. excluded [BHW+12]. executable [WMP14]. Execution [AHD12, BME02, DT17, FC05, FM09, GR07, KGK+03, Mar05, MFG+08, MAGR01, Ney00, STY99, SAP16, EPML99, Mor95, SMAC08, TNIB17, TSY99, TSY00, UGT09]. Executions [GAML01]. Exhibition [HS95a, GH94, LCHS96]. Existing [CB00]. EXOCHI [WC9+07]. Expand [CGC+02]. Expanding [LA02]. expected [CAHT17]. Experience [BCP+97, BT96, CP98, PS01a, Ton00, AMS94, CARB10, KIA+93, RSC+15]. Experiences [AH01, BFZ97, CMV+94, CLASDP99, GLN+98, GS91a, GSI97, GB96, GL96d, IT102, JR10, KS97, Mar02, TGM09, ZPLS96, ZKRA14, AL92, CCF+94, Sch94, SGDM94, BDG+93b]. Experiment [Lnc09]. Experimental [BIL99, BIC05, EGC02, Ser97, UMK97]. Experiments [MPM97, Cc94, LGM00, OS97, RR00, ZB97, RHG+96, HAJK01]. Expert [BPG94]. experts [EO15]. ExpEther [NMS+14]. Explicit [BH12, GFP912, SGHL01, LC97b]. Explicitly [Mai12, SYR+09]. exploit [ZPI06]. Exploitation [GGL+08, GAM+02, BK11, GAM+00]. Exploiting [Add01, Bri10, FKL08, HEHC09, KFL05, NAAL01, Nob08, THH+05]. Exploration [AMuHK15, OFA+15, ABDP15, GE95, GE96, PDY14]. Explorations [BGG+15]. Exploring [IFA+16, MBKM12, MTU+15].Expose [SAL+17]. Exposing [SD16]. Exposition [IEE95d, LF+93a]. EXPRESS [SK96, Ahm97, FK94, LH95, SHH94a, SHH94b]. Expression [BN12, KH15, Sur95a]. expressions [SFLD15]. expressive [Trä12a, YLC16]. Extend [DFA+09]. Extended [BR02, HTA08, SS99]. Extending [ABB+10, BCC+00a, BCC+00b, BDB+13, CS96, CG99a, KDT+12, LMRG14, Mar03, OFA+15, RGDM16, SDV+95, TMTP96, CG96, GGH+96]. Extensible [BL97, GS94]. Extension [AELGE16, BGR97a, CSAGR98, VAT95, Hum95, JH97, SG14, SC95, ZT17, GBR97]. Extensions [Fis01, GOM+01, GHLL+98, HVA+16, HE15, DPSD08, HP05, Kat93, Ano99c, Ano99d]. Extent [kL11]. Extent-Based [kL11]. exterior [HMKV94], external [BBB+94]. Extraction [CB10, HLO+16, dAT17]. Extreme [MdSC09, ZKRA14]. Extreme-scale [ZKRA14]. eyes [Str94]. F [FHPS94b, FHP+94]. F90 [DP94]. face [HDDG09]. faces [Gro12]. facilitate [PKB06]. Facilitating [MC99, ZLL+12, ESB13]. Facilities [MMH98, MN91]. Facility [KG96, SHTS01, KZCS96, LHCT96]. factorization [AZ95, BSvdG91, BR92, DG95, KBP16, WLC07]. Factorizations [TD98, LC97b]. Fail [LFS92, LFS93a, LFS93b]. Fail-safe [LFS92, LFS93a, LFS93b]. Failure [BBH...13a, CRGM14, BBH+13b, CGH+14, BDB+13]. failure-aware [CGH+14]. failures [JS13]. Faithful [KLR16]. Fall [Gra97]. false [JE95]. family [AVA+16]. farming [Str94]. Fast [Ben01, BHS+02, BBH12, CS14, DFN12, EM02, Hog13, JFGRF12, JMDV+17, PSHL11, PR94c, PBC+01, RB01, SE02, SS09, STY99, SR11, UP01, WTR03, Lam09, LCL+12, NYNT12, TDG13, YULMTS+17, YLZ13, YBZL03].
ZA14, AAB+17, DBLG11, PFG97. Faster [Tsu12, ZG95a, ZG96]. Fat [Zah12].
Fat-tree [Zah12]. FATCOP [CF01]. Fault [BBC+02, BCH+03, BK+06, CF01, CFDL01, FB01a, FBVD01, FD02a, FD04, GFB+03, GKP97, GJR09, GL04, Gua16, IEE95c, JS+05, LMRG14, LNLE00, dLR04, MSP00, RPM’08, TS12a, UC09, Wi93, BCR+08, FD01b, FD02b, HG12, LMG17, LS08, PKD95, SG05, ZHK06, FD00].
Fault-Management [GJR09]. Fault-Tolerant [BHK+06, FD04, GFB+03, IEE95c, JS+05, LMG17, LS08]. Faults [LAdS+15]. FCRC [ACM96b]. FD [And98]. FD-TD [And98]. FDDI [LC93]. FDTD [DSOF11, VM94]. Fe [Old02, BJS99]. feasibility [KBG16]. Feature [Qu95, ZWL+17]. Feature-driven [Qu95]. Features [GLT99, GLT00b, GLT00a, GLT12, KAHS96, An00a, CRD99, CK96, CRD99, CL07, kLCCW07, kL11, PLR02, RK01, TSS00, Tu07, WTR03, DL10, LL95, SBQ14, SYS12]. Feature-I [PLR02, RK01]. File [BY12, CCU95]. Finding [FCLG07, GAUSSL17, PCS94]. Fine [AZG17, BBG+10, JCP15, SFL+94, YSS+17, BK11, KW14]. Fine-Grain [AZG17, JCP15, SFL+94, BK11, KW14]. Fine-Grained [BBG+10, YSS+17]. Finite [DFN12, MS02b, MAIVAH14, OD01, OMK09, Pri+14, SM02, UZC+12, VM94, VR00, BB93, Gra09, GFGP12, HE13, HMKV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, Ram07]. Finite-Difference [UZC+12, VM94, HE13, NZZ94, Ram07]. Finite-Element [MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b]. Finland [RWD09]. Fire [JML01, SJ02]. First [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, Gat95, HAM95b, Kun94, Nar95, PBPT95, SS+94, USE94, AH95, BS94, G18, PTMF18, PBPT95]. Fix [DLV16]. FLAME [VBLvdG08]. File [Nak05b]. Flattening [THRZ99]. flavors [GM18]. Flexibility [KK02b]. Flexible [CS14, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAM+00, HC08]. Flink [KWEF18]. Florida [ACM98b]. Flow [BHW+17, BGD12, CGQZ13, CCBP91, CS14, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAM+00, HC08]. Flow-Based [BHW+17]. Flows [GAP97, BCM+16, BCT+17, Heb93, LLG12]. Flowshop [CB11]. Fluid [DFM90, GAP97, JFY00, ZBS95a, TDBEE11, TEM09, A19, ATL+12, AGM06, BvdB94, BHS8, Bi95, HSC11, MRRP11, PBK99, SPE95, ZBS95b, WPH94]. fluid-particulate [ATL+12]. fluids [HK94, WB96]. Flux [QRM96, QRG95]. fly [KSJ14, THRZ99, BCA06, BAC07]. FM [LC97a]. Fock [CBH94]. Focus [Cl98]. foolish [Rol08a]. footprint [TS12b]. force [Goe02]. Forecast [AHP01]. forecasting [Bj95, KOS+95a]. Forest [JML01, NCKB12]. ForestGOMP [BFG+10]. Foreword [CHD09]. FORGE [WCVR96]. Fork [BGD12, SML17]. Fork-Join [BGD12, SML17]. form [NCB+12, NCB+17]. Formal
Formalizing [FGRT00]. Format
[BBH12, MDM17]. Forschung [Ano94c].

Fortran
[Ano97, Ben95, Bra97, GBR15, Ano98, AS14, BW12, DZ98b, Don06, GML+16, HE13, HH14, HZ99, KaM10, Kuh98, LC97b, LCC+03, MWO95, iSYS12, SM03, SC15, TBG+02, Wal02, YBMCB14, YSM+16, YSMA+17, vHK94]. Fortran/PVM
[MWO95]. Forum [Str94]. Forward
[RMNM+12, DBB+13], forwarding
[CXB+12]. Foundation [Gei01]. four
[GSMK17, MGG05]. four-atom [MGG05].
four-particle [GSMK17]. Fourier
[DBLG11, BCM+16]. Fourteenth [IEE95b].

Fourth
[Ano89, IEE93d, IEE95k, Sie92a, Sie92b, Ano94i, IEE96g]. FPGA
[MTU+15, PWP+16, WTT17].

FPGA-Platform
[MT17]. FP GAs
[MC17, OFA+15, PGS+13, WZH16, Roh00].
fractal [Wu99]. fragment [KS15a].

fragments [OA17]. Framework
[DGMS93, FC05, GGC001, GR07,
GDMM17, MGL+17, NSZS13, PMvdG+13,
SSB+05, SSAS12, Sun90a, Sun90b, WZH16,
Ano93c, BAO0, BR04, BAG17, EFR+05,
FLMR17, GM13, KKM15, KJJ+16, KKJ+08,
KH10, LME09, LGG16, LCMG17, LSO8,
PTL+16, RSC+15, SL00, TDB00, YLC16,
YWTC15, ZT17, dAT17]. Frameworks
[OP10, ASS+17, KDSO12]. France
[ACM90, BR95a, BFM96, CHD07, DE91,
FR95, JPT94, MCD+08, WV92, YH96,
GA96, IEE94c]. Francisco
[BBG+95, IEE93a, IEE94g]. Frankfurt
[Tou96]. Frankfurt/Main [Tou96].

Fredericton
[BG91]. Free
[PKYW95, CP15, SOA11, Zah12], freedom
[KTJ03]. Frequency [IEE94e]. friendly
[SVC+11]. Frontiers
[ACM06b, IEE94a, IEE96c, Sie92a, Sie92b, Sie92a].
Frontiers’95 [IEE94a]. Frontiers’96
[IEE96c]. FSI [HAA+11]. FT
[FD00, LNE00]. FT-MPI [FD00]. Fujitsu
[Ano98, AKL99, BHS+02, SWJ95, SH96].

Fully
[GA96, SSB+16]. Function
[AGS97, Bri02, MCP17, RB01, SW12, HE15,
JMvdV+17, KRC17]. Functional
[ACM90, AJF16, CNM11, NW98, Ser97, CBHH94,
EP96, HSE+17, SFLD15, WZWS08].

functionality
[BFM99]. Functions
[BKGS02, Bru12, Hat98, MDM17, CdGM96,
HWX+13, PNVO1].

Fundamentals
[Ano96a]. fused [TW12]. Fusion
[CXK94, FMFM15, PKE+10]. fusions
[FFM11]. Futhark
[HSE+17]. Future
[Dar01, IEE93d, Mat00a, BDG+93b, FK94,
FHP+95, Gei94]. Futures [Kuh98]. fuzzing
[LLCD15]. Fuzzy
[MM17].

G
[OPM06]. G2
[Cot04, KTF03, OPM06].

GA
[Ara95]. GAIN
[ARYT17].

GAIN-MPI
[ARYT17]. Gains
[CMM03]. Gallipoli
[Ano93b]. GAMMA
[CC00a].

Gap
[ABB+17, ASS+17]. Garbage
[GT+15]. Gas
[BMS94b, BBK+94, BMS94a]. gather
[M16]. gauge [BW12]. Gauss
[BG95, LM99, Ols95]. GCel
[SHH94a, SHH94b]. GECCO
[B+05]. Geist
[Ano95b]. Gemini
[SWS+12]. gems
[Fe04, mH12, Ng08, PF05]. gene
[PCS94, AAC+05, BGH+05, EFR+05,
KMH+14, LM13, MV17, MSW+05].

gene-finding
[PCS94]. Gene/L
[AAC+05, BGH+05, EFR+05, MSW+05].

Gene/Q
[KMH+14, LM13, MV17].

General
[Che10, IH04, MV08, SBS95a,
Sun94a, ABDP15, ADDL03a, ADDL03b,
CBM+08, FL96, KPNM16, PFO5, RSBT95,
SK10, SBS95b, SMSW06, YPA94].

General-Purpose
[Che10, ABDP15, CBM+08, KPNM16, PFO5, SK10].

Generalized
[DFKS01, FKS96, BSC99, SD99, van93].

Generating
[AZG17, CGL+93, ER12].
HRZ97, HKT+12, Huc96, HHA95, HAA+11, IBC+10, ITTO2, IM94, JSS+15, JSH+05, LSZL02, LTHA09, LZ97, LWFP04, MS02b, MW98, MN91, MT96, MRH+96, NSS12, NNON00, OTH15, OLGO1, Pan14, PLK+04, PS00a, Pet97, PBK99, PTH+01a, PTH+01b, PB12, RDMB99, RQ18, RSV+05, SH94, SBF+04, SBG+02, SC97, SSC96, SSC97, SZBS95a, SW95, SYF96, Sum12, Sur95a, TOOTH99, TTH00, TMPJ01, USE94, VT97, WH94, WPC07, YGH+14, YWO95, ZZG14, ACGdT02, AS92, AAAA16.

implementation [AAC+05, ADLL03a, ADLL03b, AB93b, BR91, BVDvD95, BR95b, BR96, BBCR99, BK96, BCK+09, BS01, BS05, B99, BR99, BS96b, BDV03, Bri95, BB00, BAS13, CDZ+98, CEAS97, CDG99a, CDGM96, CBHH94, CD96, DSW96, DS96a, DL10, DBB+16, DSOFI11, DM12, FFB99, FWNK96, FG97, FGG+98, GCC99, GG99, GG09, GAVRRL17, GL92, GL94, GL96, GLD96, GL97c, GT07, GkL97, HBT95, HCO10, HS95b, IIT99, IvdLH+00, JRM+94, JC96, KY10, KTF03, KV97, KV98, KB13, Lee12, LC07, LO96, MMO+16, Man94, MAIVAH14, MS95, MSZG17, ON12, OKW95, OAI7, O9+16, PH97, PR94a, PT99, PCS94, RAM07, RR96, Sep93, SZBS95b, SCL97, Sto98, SNMP10, Sur95b, SL95, TKP15, TP15, TS12b, TA14, TCP15, Tsu95, TV96, VDL+15, VR95, VM95].

implementation [Was95a, WMRR17, YPA94, ZLS+15, dH94, dAMC12, van93].

Implementations [AKK+94, Ano01a, ACMR14, AJ16, BM00, BS07, BEG+10, FB94, Gro02b, kLCC+06, LCW+03, Mar02, ORA12, Sap97, TSCM12, TEGM09, VSO0, WT12, ZD97, CLSP07, ER12, ED94, GML+16, ICC02, KWEF18, MKW+96, NN95, Pri14, RLFS13, WT11, YCL14].

implemented [BBDH14, EP96].

Implementing [DPZ97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MM98, MS99c, MSB97, SSC96, SS99, SMTW96, SGHL01, SSC95, Tra02a, Wil93, BWT96, LH97, YX95].

Implementor [GL95b].

Implicit [BS05, NA10, SGHL01, Bjo95, TSP95, WADC99].

Importance [BCG+10, PCY14].

Importance-Driven [PCY14].

Improved [Trä02b, MMO+16, dAMC12].

improvements [DPSD08].

Improving [CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IR01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SCL00, XF95, CZ96, JKN+13].

in-house [ZLZ+11].

In-memory [CRM14, HSP+13].

In-place [HSE+17, PSHL11].

Including [BWW+12, GLT12].

incompressible [BCM+16, Lou95, TS12b].

Incorporating [LM94, LgY13, T1K15].

Incremental [DOSMM+16].

Independent [BCL00, BRU05, C05, DMS15, D96, MV17, YBZL03].

Index [DALD18, LAD16].

Index-Digit [DALD18, LAD16].

Indexers [Wal01a].

Indexing [LTR00].

India [CGB+10, IE96a, KU94, PBPT95].

indicator [FSV14].

Industrial [BPMN97, DK97, ALR94, ABC95a, ABC95b, BT96, EKB99, W96, K00].

industries [Ano93a].

Industry [DM98, Ano94f].

Industry-Standard [DM98].

inefficiency [HGMW12].

Inertial [Str97].

Inference [LDS+15].

Infiniband [SWHP05, LCW+03, LW04, LW04, PK05, PRS16, SPK+12, ZLP17].

InfiniBand-based [PK05].

inflation [OdSSP12].

influence [Gra97].

Information [Ano98, CGB+10, Ano93c, CG99b, MM99, WADC99, PSB+94].

Infrastructure [WLR05].

infrastructures [GWVP+14].

Initial [LLH+14, VDL+15, AL96, LSR95].

Initiated [SSB+05].

initiatives [Sun95].
initio [SSGF00, SEC15]. Injection
[RRAGM97, SAL+17]. Inn [IEE93c].
Innovation [ACM03]. Input
[CFF+94, SHM+12, JWB96]. input-aware
[SHM+12]. Input-Output [CFF+94].
Input/output [JWB96]. Insight [IEE02].
Inspiration [BPMN97]. inspired
[NEM17, TBD00]. instances
[RBAI17, ZLZ+11]. Institute
[Old02, TG94]. Instrumentation
[MVV95, Yan94]. Insurance [PZ12].
Integer [ASA97, CF01, WLC07, ZC10,
BHJ96, KVGH11]. InteGrade [CC10].
integral [HK94]. Integrals [FBSN01, NS16].
Integrate [GLRS01]. Integrated
[CFFDL01, DGMMS93, HKN+01, KSV01,
WL96a, DF17, HK10, KW14, VDL+15,
WWZ+96, WL96b, XWZ96]. Integrating
[BCLN97, CM98, GJF01, KJA+93, KAHS96, wL94, WFT014, TWFO09].
Integration
[CFC+11, CSW97, FD96, FB94, MAIVAH14,
Sei99, AL96, CSW99, KB13, RBB15].
Integrator [Per99, SP99]. Intel
[Ano90c, Ano93, DSGS17, MP95, OTK15,
URKG12, VDL+15, YSMA+17].
Intelligence [BPG94]. intelligent
[IEE95a, ZWZ+95]. Intel(R)
[TBG+02, SBT04]. Intensities [ARYT17].
Intensive
[Rei01, BFL109, BKML95, SL94a]. Inter
[KFL05, LAFA15, FKLB08, LFL11, SDB+16].
Inter-Atomic [LAFA15]. Inter-Node
[KFL05, FKLB08, LFL11].
inter-workgroup [SDB+16]. Interaction
[DMMV97, GFV99, NSLV16, Sou10].
interactions [PARB14]. Interactive
[Coo95b, KPK13, KA13, NE98, RTRG+07,
STK08, Coo95a, LJM+05].
Intercommunication [TMP16].
Interconnect
[Bru12, SJ02, BWT96, SWS+12, TBD96].
Interconnected [Hus00]. Interconnecting
[MC98]. Interconnection
[MANR09, SB95, AVA+16]. Interconnects
[RA99]. Interface
[Ano01b, BCFL99, BDH+97, CHD07, Cer99,
CGH94, CDND11, DFKS01, DHHW92,
DHHW93a, DBK+09, FKKC96, FLS98,
Gle93, GLS94, GL95c, GLDS96, GLT00b,
HDB+12, HRSA97, KSJ95, KGRD10,
KKTV03, KKD04, LKD08, LkLC+03, LW97,
MP98, MS98, MSS98, MBS94, MMSW02,
MTW06, PS01b, RWD09, SSL97, TBD00,
TW01, TBD12, WD96, Wer95, YHGL01,
Ada98, AD98, Ano93d, Ano94d, BB+B+94,
BBCR99, Bru95, BDW97, BR94, CFKL00,
CFF+96, CD01, CG99b, DDK05, DBB+16,
DS96b, DLM99, DPK00, DLO03, HPY+93,
HRR+11, KOB01, KSJ96, KBA94, Kra02,
NS91, Pr94a, SL94a, SWJ95,
SV+95, VM95, Wal94a, Wal94b, ZWL13,
ZKRA14, AMHC11, BC14, BB+B+06, BRU05,
BDH+95, Cot04, DKD08, DiN96, FKS96,
FGT96, FGG+98, GGH+96, GLT99,
GLS99, GLT00a, GL04, Han98, IBC+10].
Interface
[KTFO3, KKD05, LK10, MSL96,
RDFH96, SWHP05, SLG95, SWL+01,
TGT05, YGH+14, Ano95c, Ano00a, Ano00b].
InterfaceArchitecture [Sei99]. Interfaces
[MGC12, Wet16, RJDH14, Traäl2a].
Interfacing [Lus00, PL96]. interferences
[ZJDM81]. Intermediate [SML17].
internal [BBH+15]. International
[ACM94, ACM96b, ANS95, Abc96, ATC94,
AGH+95, Ano93a, Ano94a, Ano94e, BPG94,
Bos96, BFMR96, Cha05, CZG+08,
CGKM11, CMMR12, CGB+10, CH96,
DSM94, DW94, EV01, EdS08, ERS95,
ERS96, EJL92, Gat95, GAF96, GT94,
Ham95a, HAM95b, HS95a, HS94, Hol12,
IEE93c, IEE93b, IEE94d, IEE94g, IEE95b,
IEE95c, IEE95a, IEE95k, EIE95i, EIE95f,
IEE95i, IEE96a, IEE96f, IEE96e, IEE96d,
IEE97b, IEE97c, IEE05, KUN94, LCK11,
LF+93a, Lev95, LHHM96, LS9, MMP93,
MCdS+08, MdSC09, Nar95, Ost94, PW95,
PBG+95, PBPT95, RE96, R+92, SHM+10,
Sie94, Sil96, SM07, Tou96, VW92, Vo93, Vos03, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPET94, LCHS96, Mal95, ZL96, Ano93b, HHK94, Sch93.

Joint [GT94, Ano03, YHGL01, Ano93c].
Jose [ACM97b, GE95, GE96]. JPEG [NU05]. JPT [BDY99]. JPVM [Fer98b, Fer98a, LGCH99]. Jr [ACM99].
July [ACM95b, ACM97a, Boi97, EV01, GA96, Has95, IEE93c, IEE96i, Lev95, PW95, TG94].
Jumpshot [ZLG99]. June [ACM90, Ano94f, B05, BG91, CZG08, CGKM11, CMMR12, DSY94, DW94, D95, IEE94e, IEE95c, IEE96d, IEE96h, KG93, LHHM96, Li96, MCDs+08, MsDC09, R+92, SL94a, SHM+10, TG94, Vos03].
Kanter [EML00]. Knowledge-based [FNSW99].
Kopp [Kohr]. Knowledge [FNSW99].
Kopp [Ko
large-sized [JLS+14]. Larger [NB96].
LargeScale [LaD+S+15], laser
[EZBA16, WWZ+96]. Lastverteilung
[Wil94]. Latency [Jes93a, Jon96, KBHA94, NCB+12, NCB+17, TBD96].
latency-tolerant [NCB+12, NCB+17].
Lattice
[BBK+94, BMS94b, HLP11, SJK+17a, SJK+17b, BW12, BMS94a, CGK+16, GM18, Sai10, SVC+11, BLPP13, OTK15]. launches
[An03]. Layer [CSAG98, HEH98, FKK99a, PT9T4, dlAMC11, dlAMCF12].
layered [DiN96]. Layering [Hus01]. layers
[KC94]. Layout
[WG17, BGH+05, HP11, LDJK13, Str12]. Lazy [TCBV10]. Leaks [DLV16]. Learned
[GKPS97, MWO95]. Learning
[AHHP17, Gro01b, FE17, KWEF18, LSSZ15, SEC15, TWFO09, WO09, WFT014].
learning-based [FE17]. Least
[PWP+16, VRS00, DK13]. Least-Squares
[VR900]. Lecture [Gei93a]. Lederman
[An096a, An099a, An099c, An099b, An099d, Nag05]. Leeds [Abr96]. legacy
[BR04, LP00, LRW01]. Lemon [DRUC12].
Lengths [GSHL02]. LEO [CCBPG15].
Leonardo [Stp02]. Lessons [MWO95].
Level
[AELGE16, BGG+15, BBC+00, CS14, CRGM14, DHWW92, DHWW93a, DLL00, GS91b, GAM+02, HA11, HKT+12, DK02, KCP+94b, KOW97, LVP04, LMRG14, NPP+00c, SHM+10, SBF+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GSS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LM13, MALM95, NS91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBH...13a. Leveraging
[HDB+12, NPP+00c, SHLM14, LFL11]. LIB
[NPP+00d]. libefp [KS15a]. libOMP
[BDG12]. Libraries [BHL+95, BWV+12, CGZQ13, DARG13, GFD05, IEE94f, IEE95j, MM14, Arv03, BCM11, BiDA94, CRD99, GS94, PS07, Skj93, SDB94, SSG95, DHK97].

Library
[AKL16, Ada97, Boo01, BLW98, Coo95b, DHP97, EM02, FHK01, For95, GFB+03, GSI97, Gro02a, HB96b, IKT00, JPT14, KBG16, OD01, PLK+04, PS01a, RR02, Saa94, SBB+02, Sta95b, SKH96, TD98, UTY02, WN10, YKLD17, ZC10, Ada98, AMHC11, Arn95, CSS95, CGG10, Coo95a, DRUC12, DXB96, FB97, Fan98, FKK+96b, GDC15, GLM+08, GL94, HB96a, HLM+17, Har94, Har95, JKM+17, JC96, KS15a, KN95, LR06a, MSL96, PKB06, PS00b, RFH+95, SSC96, SH96, ZT17, CC95, McD96, Sum12].
Life
[PZ12, Str94]. Lifting [vdLJR11].
Lightweight
[CKMWH16, DT17, FLB+05, KMK16, FS95, Ott93]. Like
[BST+13, BK00, CGB+00, KOB01, VGS14, CSS95].
Likelihoods
[MSC95]. LIME
[DRUC12]. Limits
[G96, BMK12].
Linda
[Mat94, KS96, MSP93, BLP93, CSS95, Gru97, Mat95, TDB00]. Linda-like [CSS95].
Line
[BoFBW00, CGS15, Wis98, Bor99].
Linear
[ASA97, BDT08, BG95, CDD+13, Gao03, Huc96, LLY93, LZ97, MGH97, MSB97, van97, BSN95, Bkx9+14, BAV08, BRR99, CEGS07, DR18, Gra09, GFPG12, Jou94, MW98, MM11, OKW95, SCA96, SMSW06, dCH93, dH94]. Linear-scaling
[Gao03]. Lines
[NE01, YULMTS+17]. Link
[BGR97b, S3J02]. Linked
[WJ12].
Linköping
[FF95]. LINPACK
[JNL+15].
Linux
[Sei99, SMTW96, USE00, SSSS97, An05a, GSN+01, MK04, OF00, PS07, PKB01, RT06, Sei99, Sl005, SGL+00, YL09]. Linz
[Kra02]. lipid
[FH09]. Liquid
[DS00, JLS+14]. Lisbon
[IEE93d]. LISP
[AC90]. List
[Tra98, WJ12]. Lithe
[PHA10]. Lithography
[RD99].
Liverpool
[AD98]. LLVM
[SML17]. Load
[An94b, BKdSH01, BS05, DI02, DR95,
load-balanced [EZBA16]. Local
[BSG00, CDHL95, CCSM97, IKM+01,
AMHC11, BY12, CGL+93, FSV14, IKM+02,
LHD+94, LHD+95]. Locality-Aware
[MJB15, HJYC10]. Locality-Aware
localization [HC08].
Locally [BHS+02]. Locating [PNV01].
Lockheed [Str94]. Locking [kL11, CAWL17, PGK+10].
Logging [BCH+03]. Logic
[KI17, BJ95, KMC96, KMC97, POL99]. LogP
[CKP+93]. London [EJL92, Ano93g, Ano94f]. Look
[HCZ16]. lookup [BJ13]. Loop
[DMB16, SHM+10, TJPFI2, SHLM14,
WYLC12, WLYC12, YST08, YWC11]. Loops
[AHD12, LOHA01]. Loosely [Ada97].
Lop [RGDML16, RGDML15].
Louisiana [USE95, IEE96b]. Love [Dan12].
Love-Hate [Dan12]. Low
[BGG+15, GGS99, Jon96, MC17, NE01, RLL01, Str94,
GK97, KBHA94, TBD96, ZRQA11].
Low-Bandwidth [NE01]. Low-Cost
[RLL01, GK97]. Low-Density [MC17].
Low-Level [BGG+15, GGS99]. Low-life
[Str94]. low-overhead [ZRQA11]. LPVM
[ZG08]. LSS [BCAD06, BADC07]. LU
[AZ95, BR592, LC97b]. Lugano [GT94].
Luminous [KNT02]. Lumsdaine
[Ano99c, Ano99d]. Lusk
[Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].
Lustre [DL10]. Luther [ACM99]. Lyngby
[DW94, DMW96, Was96]. Lyon
[BFMR96, FR95].
M [PBC+01]. M-SPH [PBC+01]. M6A
[EM00a]. M6B [EM00b]. MA
[Ano95b, Ano95c, Ano96a, Ano99a, Ano99c,
Ano99b, Ano99d, Ano00a, Ano00b].
Machine
[AS92, AGIS94, B393, BS93, CHD07, D+91,
FE17, Fis01, GBD+94, Gre94, KNT02,
KKVD03, KKD04, LKD08, MTWD06,
Nov95, Pat93, Per96, RWD09, TY14, VSO0,
Wel94, AD98, AL92, Ano95b, BR91,
BDG+91a, BPC94, Bir94, BDL96, BDW97,
CARB10, CLM+95, Cav93, Cha96, Che99,
CD01, CC00b, DM93, DKD05, DLM99,
DKP00, DL003, FM10, KWEF18, KMC97,
Kra02, LG93, MN91, MRH+96, NB96, Sch94,
SK92, SCC06, SL00, TW12, TFVO09,
WO99, WTV014, ARL+94, BG94b, JPP95,
KKD05, LK10, QRG95, SSSS96].
machine-learning [TFVO09].
machine-learning-based [TFVO14].
Machines
[BP99, BZ97, BCC+00a, BT01b, DR97,
EGR15, GB96, GTS+15, HC10, MGL+17,
STY99, SCSL12, ZWJK05, BCA+06, BSC99,
BCC+00b, DDS+94, DCH02, GZK12, KN95,
PRS16, SL94b, TSY99, TSY00, WPL95,
ZWL13, Gei01, YC98]. made [MJPB16].
MAFFT [ZLS+15]. Magnetic
[Y+93, PKE+10]. Magnetism [Y+93].
Magnetohydrodynamic
[KT02, WWFT11]. Magnetostatic [BB93].
MagPie [KHB+99]. Main [Tou96].
Maintaining [PKB01]. maintenance
[ZDR04, ZDR01]. Makes [ZG95b, Str94].
Malleable [EDSV09, MSMC15]. Mambo
[WZWS08]. Man [IEE95a]. Manageable
[PKB01]. Managed
[KCR+17, LB16, SYR+09]. Management
[AJ97, AUR01, BGR97b, BGL00, EK97,
FDC97a, FDC97b, GJR09, P896a, PS00a,
SIS17, STY99, THS+15, ARS89, DZ96,
DF17, FLD96, GJMM18, GL95a, JCP15,
LF+93a, P896b, P896c, YWT15].
manager [Sep93]. managers [FLD96].
Managing
[FLD98, FGKT97, Liv00, NPS12, Obe96].
Machek [Ano95b]. Manipulation
[Att96, BME02, BWW+12, Bri10, BdS07, BT01b, CSW97, CC99, DM98, DMB16, DR97, DHHW92, DHHW93a, FB94, GCBM97, GB96, GSN+01, GSHL02, GLRS01, HC10, HDB+12, HDT+15, HT01, JPL17, KB98, KS13, KSHS01, LSB15, Luo99, MB12, MRB17, MBE03, MMH98, MCZS+08, MüI02, NPP+00d, PBK00, Pok96, PMvdG+13, Ros13, STY99, ST02b, SW91, Thr99, V500, VT97, ARS89, ABC195a, ABC195b, ADM05, BCA06, BSC99, BMG07, CBPP02, Cha05, Cha96, CBHH94, CRM14, CC00b, DF17, DLR94, DBVF01, DS89b, DHHW93b, DPZ97, EV01, FSV14, FHB+13, GCN+10, GL96, GL97c, GP95, HSP+13, HGMW12, HDB+13, HK09, JC17, JE95, KN95, KJA+93, KC06, LKL96, NA]99, NAAL01, OLG+16, PK05, PS00b, RGD15, SSH08, SHH10, SL94b, SBG+12, SYR+09].

memory
[SFL94, SSC96, SPL99, SD16, TSY99, TSY00, Uhl95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WKS94, WMRR17, YX95, LBD+96, GK97, SG05].

Memory-Based [MMH98].

Memory-Efficient [MRB17].

memory-level [HK09]. Memory/Message
[ST02b]. MemTo [GSN+01]. Menon
[Stp02]. Mesh [HAA+11, MRB17, Ran05, BAS13, CLSP07, Cou93, GRB15, IDS16].

mesh-particle [BAS13]. Meshes
[MRB17, TPD15]. Message
[AKL99, Att96, BZ97, BCH+03, BBG+01, BDH+97, BGR97b, BMF97, CHD07, Cer99, CGZQ13, CGH94, Cot97, Co98, CTK00, CDN11, DKFS01, DHHW92, DHHW93a, DDL00, FKKC96, Fos98, FB04, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLT00b, Hem94, KGRD10, KS97, KSV01, KKKD03, KKKD04, LKD08, Luo99, MPI98, MP95, MS98, MBSES94, MG97, MTW006, MSS97, NW98, PBK00, Pok96, RC97, RRBL01, RWD09, RFGL+00, SAL+17, ST02b, TBD12, WD96, Wer95, Wis97, YHGL01, ZWL13, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93d, Ano94d, Ano95c, Ano00a, Ano00b, BBGL+14, BL97, BvdSvd95, Bjo95, Br95, DWF97, BFIM99, CGJ+00, CDZ+98, CRD99, CD01, CG99b, DKF93, D93, DKD05, D96b, DHHW93b, DOW96, DLM99, DKP00, DLO03, FK94, GL92, HP05, HPY+93].

message
[Hen96, KJA+93, Kra02, LR06a, LBD+96, wL94, LCY96, LMM+15, LC97b, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SWJ95, SDV+95, SZ09, SSG95, Sti94, TSZC94, VM95, Wal94a, Wal94b, ZKRA14, ZA14, AMHC11, BC14, BBH+96, BRU05, BDH+95, Cot04, DKD08, DiN96, FKS96, FGT96, FGG+98, GGHL+96, GLDS96, GTL99, GLSS00, GL04, Han98, IBC+10, KTF03, KKD05, KK10, MTSS94, MLS96, PS01b, RRFH96, SWHP05, SL95, SLW+01, TGT05, TBD00, Wer95, YGH+14].

Message-Passing [Att96, Cot97, Cot98, DHHW92, DDL00, GLS94, GL95c, GLT00b, MPI98, PKB00, Pok96, RRBL01, AAC+05, Ano94d, Ano95c, Ano00a, Ano00b, BvdSvd95, CDZ+98, GL92, Hem96, KJA+93, LR06a, LBD+96, wL94, LMM+15, PS00b, SSG95, Sti94, DiN96, GGHL+96, Han98, RRFH96, SL95, SLW+01, TGT05, TBD00, Wer95, YGH+14].

Message-Passing-Interface [Wer95].

Message-Passing [Sei99]. Messages
[KBS04, SKH96]. Messaging
[HEH98, KC94]. Meta
[BCLN97, FBD01a, FGRD01].

Meta-Applications [BCLN97].

Meta-computing [FBD01a, FGRD01].

Metacomputer [OS97]. Metacomputing
[Fin00, MSF00, MS99b, FBVD02].

MetaHaskell [Mai12]. metaheuristics
[ZSK15]. metal [JLS+14]. MetaMP
[OW92]. metaprogramming [Mai12]. meteorological [RSBT95]. Meteorology
[HK93, HK95]. Method [ACMR14, BP99, BJS97, CGU12, FCLG07, GSI97, HC06,
Methodologies [Sun94b]. Methodology [MOL05, WTTH17, HPR+95, LM94, WMP14]. Methods [BCMR00, CMK00, DFN12, EGH+14, FGKT97, GFPG12, KLR+15, kL11, NA01, Sch01, SM07, TDBEE11, Whi04, ZB97, CEGS07, DF17, D+95, Gra09, Has95, LSR95, MM11, Nak05a, PGK+10, R+92, SL94a, SGS95]. Metrics [DW02, PARB14]. Metropolis [HJBB14]. Mexico [IEE91, Sie94]. MGCG [TSS00a]. MGF [GLM+08]. MIAOW [BGG+15]. MGF [GLM+08]. MIAOW [BGG+15]. MIC [CCBPGA15]. MICE [BK96]. Micro [Ano03, BWV+12, SGH12, YSWY14]. Micro-applications [SGH12]. Micro-Benchmark [BWV+12, YSWY14]. microbenchmark [BO01]. Microcoded [PWP+16]. microtask [OIS+06]. MIDAS [BFZ97]. Middleware [AUR01, CLLO3, CC10]. Middlewares [DPP01]. Midpoint [JMS14]. Migol [LS08]. Migratable [KOW97]. Migrating [VSR94, VSR95, IvdlH+00, KGB+09]. Migration [Ano94b, CCK+95, CLLO3, CML04, CCBPGA15, CTK01, NPP+00c, NLRH07, Ott94, OS97, ST97, AMBG93, BBGL96, CKO+94, CRM14, CRGM16, CK99, DDMY99, HZ99, LCVD94b, LM13, QHCC17, RRFH96, SSS99, SCL97, Ste96]. Milan [HS95a]. million [LHLK10]. Millions [BBG+11]. MIMD [BvdB94, BB93, BCL00, Uhl95a, WST95]. MIMD/DMMP [BB93]. MiMPI [GCC99]. MINIME [DS16]. MINIME-GPU [DS16]. minimization [POL99]. Minimum [KA95, Wu99, NCKB12]. mining [MA09]. Mississippi [IEE94f, IEE95j, IEE94f, IEE95j]. mitigating [OdSSP12]. Mitigation [BB+...13a]. Mitsubishi [Ano03]. mittels [Wii94]. Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01]. Mixed-Mode [BEG+10]. Mixing [CP98, GAP97, CBG98]. mixture [EO15]. MK [NS91]. mm_par2.0 [OKM12]. MN [An94h]. Mob [STV97]. Mobile [ITT02]. Mode [BGK08, Bri02, BEG+10, LRT07, SB01, YX95]. Model [AP96, BGG+92, BdS07, CkmWH16, Chao2, CZG+08, Dar01, DFA+09, FSBN01, GLB00, GLRS01, HLP11, KDD12, LG16, LA02, LRQ01, MKW11, NSL16, NO02b, Ran05, RSV+05, RRBL01, SPM+10, SB95, THN00, VT97, WLa01a, AL93, BSC99, Bir94, BG94b, BDV03, CMV+94, CL93, CKP+93, ED94, GZK12, GCN+10, GkLyCY97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, KOS+95a, KSL+12, KL15, LR06b, LA06, LLL+14, Mar05, MdSAS+18, MSZG17, MGC+15, NO02a, Nak05a, PAiS+17, RAS16, RGDML16, RCG95, Sch93, SH94, Sch99, SMAC08, Str94, VBLvdG08, Vis95, wan02, WC15, WYL1C12, YX95, TAT14]. Model-Based [AP96, LGG16]. Modeling [ACM96a, ATM01, BS07, CSC96, CDM93, FST98a, GAM+02, MO05, NM95, RGDM15, SEL+16, TDD09, VFD02, XH96, BDP+10, Bi95, KM01, KEM09, KEGM10, MS99a, XXL13, YMY11]. Modelling [FST98b, GC05, Han95a, KDL+95b, BJS99, HTHD99, KDL+95a, MSML10, QHCC17]. Models [AKK+94, BS93, BZ97, CMK00, Cer99, CN11, DK06, EMO+93, ESM+94, GJN97, PPFS98, SS01, SMOE93, WH04, BB95, CH96, Duv92, KO14, LV12, MCB05, Nes10, RSRT95, RBAI17, SYR+09, WAL00, WBSC17]. moderate [Uhl95a]. Modern [AHHP17, DARG13, KDT+12, LNK+15, SM07, HHH14, PMZM16]. modes [WZWS08]. Modified [Riz17, GP95, KD12]. Modular [CT02, HPP02, FWS+17, HLM+17]. modulator [WWZ+96]. modulator/DFB [WWZ+96]. Module [Ano98]. Modules
[AKK +94, DS96b]. **modules-design**

[DS96b]. **Molecular** [ABG +96, BST +13, BCGL97, BL95, BS07, DR97, DI02, KBM97, LAFA15, MH01, SA93, YWCF15, ZBH94, BvdSvD95, BBK +94, BMPZ94b, BMPZ94a, CC00b, DCD +14, FHSO99, JAT97, JMS14, KFA96, KRG13, LSVMW08, OKM12, PARB14, SL95, ZWL13]. **molecule** [ART17].

Mller [BL95, KN17]. **Monito** [SGL +00].

Monitor [KRS99, Whi94]. **Monitoring** [AH00, BCLN97, Beg93b, BFM96, BFMT96b, CD98, DBK +09, GSN +01, LY93, LW97, MFGW97, MGV95, SGL +00, UP01, Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a, BB94, BS96a, BFM96b, FLB +05, LC07].

Monodomain [ORA12]. **Monte** [HJBB14, RP95, WH96, ADRT98, AK99, DAK98, NSL16, RR00, SK00, SKM15, ZZ04].

Montely [Ano99, Gaf95]. **Montpellier** [LEV95].

MOPS [GJN97]. Morehouse [AGH +95].

Morgan [SD13]. Morton [LZH18].

MOSIX [BBGL96]. **motif** [FMS15].

motors [SKM15]. **movement** [MV17].

Moving [HAA +11, LSG12].

MPEG [GKL95, KFA96].** MPEG** [NU05].

MPEG-4 [NU05]. **MPI** [ARYT17, AD98, Ano95c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, BDW97, CHD07, CHD09, CD01, CDND11, DDK05, DLM99, DKP00, DL03, GBR07, GEV98, IEE96i, JMS14, KGRD10, Kra02, KKD04, LKD08, MTWD06, Nag05, Per97, PS01b, RWD09, RLVRGP12, ST02a, TDB00, TDB12, Vre04, WSN99, YM97, ST02b, ACGr02, Ada97, Ada98, ACH +11, APJ +16, AASB08, ART17, ATM01, ACGr97, AK99, ABF +17, AHP01, ACMZ11, ALW +15, ADL03a, ADL03b, And98, FH98, AVA +16, Ano93d, Ano94d, Ano98, Ano01a, Ano03, AKE00, AKL99, AJF16, AIM97, ADR +05, AHHP17, Bad16, BV99, BCMR00, Bak98, BF98, BFCK99, BBG +10, BCG +10, BBG +11, BGBP01, BBS99, BBG +14, BA06, BCD06, BADC07, BGR97a, BKG02, Ben01, BW12, BHYV12, BKH +13, BIL99, BC05, BPr8, BF01].

MPI [BBR99, BBDH14, BK96, BKE07, Bha98, BBDA94, BHS +02, Bis04, BB99, BBA +13h, BDB +13, BIC +10, BR04, BCM +16, BTC +17, BM00, Boo01, BBC +02, BCH +03, BKH +06, BBC +00, BS96b, BRM02, BM03, Bni10, BPM03, BS07, BDLS, Bru95, BDH +95, BDH +97, Btu12, BLW98, BFBW01, BES +10, BACH +08, BWV +12, CGC +02, CSW12, CGC +11, CwCW +11, CRE09, CRE01, CCT17, CGJ +00, CFS100, CSS95, CGBS +15, CGG10, CB00, CDMS15, CGS15, CR10, Cha02, CE07, CDP99, CCA00, CDFL01, CLO3, CGZQ13, CC17, CASR98, CNC10, CCC0a, CGH94, CSMF97, CFMR95, CDD +96, Coo95a, Coo95b, CFF +96, CRM14, CRM14, CRM16, CCG9, CT02, CD96, CGB99, DPS05, DPD08, Dan12, DSG17, DZ96, DZ98a, DR18, DW02, DLM +17, DZ98b, Dem96, DPP01, DLB07, DSW96]. **MPI** [DS96a, DRUC12, DDK07, DI02, DL10, DCPJ12, DCPJ14, DAK98, DGG +12, DGB +14, DBB +16, HD02a, DBX96, DOSW95, DCH02, DBK +09, EZBA16, EGH99, EDSV09, ES11, FH97, FD96, FDC97a, FDG97b, FL98, FD00, FBDO1a, FBDO1b, FGDR01, FBVDO2, FD02a, FD02b, FD04, FCLG07, FB95, FB97, Fan98, FPY08, FFB99, FNSW99, FTVBO0, FF03, FMS15, HK01, HK02, FSC +11, FCS +12, Fin97, Fin94, Fin95, FWNK96, Fin00, FLB +05, FC05, FST98a, FST98b, FJ +17, FKH +96, FKH96a, FT96, Fos98, FHP94b, FHP94, FHP +95, Fra95, FWR +95, FKB08, FBSN01, FLS98, GBRR, GFD03, GFD05, GDC15, GC12, GCP19, Gao02, GBR15, GCW98, GCR99, GCB12, GCHL +96, Gei00, GR07, GGL +08, GR09, GSH17, GB14, GSS99, GR95, GLB00, Gl03, GM13, GJMM18, GT01, GB99, GHZ2, GAVR17].
[GRRM99, GAMR00, GKS+99, GL98, GMD98, GPL+99, Gra97, GEW98, GMB+07, GLM+08, GL92, GL94, GLS94, GL95a, GL95b, GKL95, GL95c, GL96, GLS96, GLS97, GLLH+98, GLT99, GLS99, Gro00, GLT00a, GLT01a, Gro01b, Gro02a, GLT02, Gro02b, GTO7, GLT12, Gro12, GPC+17, GC05, GS+13, Gua16, HJ98, HC10, Har94, Har95, HL17, Hat98, HO14, HD02b, HE02, Hem94, HZ96, Hem96, HRZ97, HZ99, HEH98, HGMW12, HM09, HPS+12, HPS+13, Hin11, HRR+11, HDB+12, HDB+13, HD+15, HKN+01, HLOC96, HKT+12, HVSC11, HWX+13, HM01, ICA16, HG12, HcF05, Hts98, Hts00, Hts01, HWW97, LDS16, IROU1, ITKTOO, ICC02, JF95, JDB+14, Jes93b, JMJ+11, JS13, JNL+15, Jon96, JR10, JSW+09, KB01, KF96, KS15a, KPW05, KW14, KWEF18, KID12, Kan12, KFL05, KB98, KK02a]. **MPI**

[KL94, KLY03, KLY05, KS15, KS19, KN17, KBS04, KGK+03, KHB+99, KGM97, KLR+15, KR09, KMG99, KEGM10, KRC17, KV98, KAC02, KC06, KGB16, KMH+14, KRG13, LK14, LADG+15, LLRL02, LTDD14, LGM00, LRT07, LC97a, LR06b, LTRA02, Lec12, L297, LRW01, LDP+11, LIC13, LZH17, LHZH18, LKCC+06, LKCCW07, LL11, LFL11, LS10, LCY96, LCW+03, LYP04, LW04, LGG16, LLYS+16, LB96, LM17, LCMG17, LNLE00, LO96, dLRO4, LS08, LL01, LCC+02, LKJ03, LCC+03, LKYS04, LSK04, LLH+14, MBB13, MMM99, MS02a, MS02b, MV17, MK16, Man01, Man98, MLYS16, MLAV10, MKP+96, MSCM15, MSL12, MHS1, MSL96, MS96a, MC98, MG05, MAS06, MM02, MM03, MSL05, MCS00, MRR09, MRR11, MG97, MMM13, MTO07, MK04, MCLD01, MMH98, MMH99, MS99c, BB00, MvWL+10, NA+96, NO02b, NO02a]. **MPI**

[Nak05a, Nak05b, NSBR07, NE09, NE01, Nes10, NSS12, NH95, NCB+12, NCB+17, NA99, NW98, Nut00, NHT02, NHT06, NFG+10, NN95, OM96, OLG+16, OKM12, OIS+06, OD01, OF00, Oug02, OP98, OLS05, OGM+16, OMK09, Pac97, PARB14, Pan14, PK98, PBS09, PLK+04, PS08, PDKY14, PS00a, PS01a, PHJM11, PTL+16, Per99, PZ12, PGM+10, PFG97, PLR02, PAB+05, PGBF+07, PAGA+07, Pha02, PD11, PSS01, PSK+10, PTH+01a, PTH+01b, PS00b, PT99, QB12, Qui03, Rab98, Rab99, RDMM99, RR01, Ram07, RSST95, Ran05, RA09, RAS16, RCF96, RBB97a, RBB97b, RBB97c, RSPM98, RTH00, RH01, Ren01, RST02, Ren03, RDCM15, RDML16, RNPM13, RPM+08, Röh00, Rol08b, RsT06, RFRH96, RRG+99, RTRG+07, SE02, SCB14, SCB15, SP+10, SSB+05, Sap97, SSB+16]. **MPI**

[SDJ17, SGH12, SBF+04, SW12, SBG+02, SG05, Ser97, SS01, SWS+12, SG12, STY99, SM02, SM03, SP99, SZ11, SC04, SSC96, SS99, SZBS95a, SZBS95b, SDN99, SG99, SJ02, SWJ05, SMTW06, SH06, SBD94, SL95, SDV+95, SP96, Sla05, SVE+11, SK00, SB01, SOHL+96, SOHL+98, SHHC18, SSL97, Squ03, Ste96, ST97, Sto98, SS96, Str96, Sun12, SN01, TOT99, TA+01, TS09, TS04, TPK15, Tan04, TGL02, TG09, TW101, TD99, Tra98, TRZ99, TRHO0, Tra02b, Tra02a, TGT10, Tra12a, Tra12b, TMB04, TFMG02, Tsl07, TFFZ12, TTOY02, URGK12, VFD02, VS00, VPS17, VSR94, VSRC95, VG16, VcS00, VP00, VVD+09, WH96, WA05, W095, WA06a, W096, W096, WA01a, WA01b, WA100, WC09, WLNL03, WLNL06, Wer95, WST95, Wh04, WLR05, WWZ+96, Wis98, WB96]. **MPI**

[WM01, WADCC99, WAC96, WRA10, WCSS09, WT11, WYL12, WT12, WLYC12, WMP14, XH96, XLI+09, YM07, YL09, YHL11, YWC11, YCL14, YBMB14, YPA09, YTH+12, YSP+05, Zah12, ZZ04, ZL+11, ZW05, ZLP17, ZJWD18, ZZL+12, ZZ95, ZSN01, ZKRA14, ZA14, bTO1a]

O [Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLC+03, kLCC+06, MV17, MGC12, MG15, PSK08, PLR02, RK01, SBQZ14, Tha98, Tsn07, WSN99, ZJDW18]. O2000 [CML04]. O2WebCL [CHK15]. Oberammergau [BPG94]. Object [Ada97, BCFK99, CFKL00, FMSG17, MSL96, PD98, SWL+01, YHGL01, YY95, Ada98, BR91, DM12, LK1L96, OKM12, RFH+95, SL94b, TDG13]. object-based [LKL96]. Object-Oriented [BCFK99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. Objects [KH15, Man01, MFC98, HS93, SC95, YW90, ZPLS96]. Oblivious [LZH17, LZH18, UALK17, HSP+13]. observations [ZKRA14]. observed [CAHT17]. Occam [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. Ocean [BS93, GAM+02, Bic95, Mal01, Nes10, Sch99, Wal00]. Oceans [IEE94c, IEE94c]. OCLoptimizer [FAFD15]. OCM [BoFBW00]. OCM-Based [BoFBW00]. October [Ano93e, Ano94e, Ano94i, Ara95, BPG94, Bha93, BDL96, CHD07, CGB+10, DSM94, DLO03, DE91, FK95, GKK+93, IEE94f, IEE95a, IEE95g, IEE95j, IEE96b, IEE96c, IFI95, JB96, Kra02, Old02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vol93]. ODEs [Ano07, Bra97]. ODEs [Pet97]. OdinMP [BB00]. OdinMP/CCp [BB00]. Off [CGS15]. Off-Line [CGS15]. Offering [EK97]. Official [Ano98]. Offload [BRU05]. Offloading [MGA+17, DSGS17, KBG16]. off [Rol08a]. Oil [FSXZ14, ZAFAM16]. OKs [Ano03]. old [LK14]. OMB
43

[BWV+12]. OMB-GPU [BWV+12]. OMIS [LW97]. Omni [KSS00, KSH01].
OmniRPC [SHTS01]. OMP [SGJ+03].
OMP2001 [TSB03]. OMP2012 [MBB+12].
OMPI [ACH+11, OM96]. OmpSs
[ABF+17, YÀJG+15]. on-chip [TDG13].
On-Demand [CTK00]. On-Line
[BoFBW00, Wis98]. On-the-fly [KSS00].
ONC [RS93]. One [BPS01, GFPD03, GFPD05,
GBH14, GT01, HDB+12, LRT07, MH01,
TGT05, TRH00, ZSG12, bT01a, DBB+16,
LSDK04, MS99c, Ols95, PGK+10, dlAMC11].
one-dimensional [Ols95]. one-layer
[dlAMC11]. One-Sided
[BP501, GFPD03, GFPD05, GT01, HDB+12,
LRT07, MH01, TGT05, TRH00, ZSG12,
bT01a, DBB+16, LSDK04, MS99c, PGK+10].
only [LS10, Squ03]. Ontario [GGK+93].
onto [OFA+15]. OOMPI [MSL96]. OOPS
[RFH+95]. OPAL [CwCW+11, NW98].
OPAL-MPI [NW98]. opaque [SOA11].
Open [BG+15, KDL+95b, AVA+16,
KDL+95a, NOb08, GBS+07, VGRS16].
Open-Source [BG+15, AVA+16, NOb08].
OpenACC [CGK+16, CCBPGA15,
GML+16, GM18, HTJ+16, JCP15, KLV15,
Kom15, LB16, LSDK12, MGS+15, OGM+16,
QHCC17, RLFdS13]. OpenACC-based
[KLV15]. OpenCL
[ABDP15, ABP+B16, AB13, BLPP13,
BDW16, BN12, BHW+12, BHH+15, BAS13,
CDD+13, CP15, CIJ+10, CHKK15, CCK12,
CS14, DAR13, DI 14, DWL+10, DWL+12,
FADF15, FLMR17, FE17, FSV14, FVS15,
GsfcFM13, GDDM17, HD11, HE15,
HHC+18, JSS+15, JKM+17, JR13, JNL+15,
JMvG+17, KKM15, KH12, KM10, KKL11,
KSL+12, KJ+16, KB13, KPK13, Lee12,
LNK+15, LL16, LAF15, MC17, MAIVAH14,
MTU+15, MSZG17, MHSK16, ON12,
OTK15, ORA12, PCY14, PHW+13, PB12,
RG18, RGD13, RBB15, RBB17, SVF13,
SAP16, SBB+17, SG14, SFLD15, SGS10,
Str12, THS+15, TK16, TMW17, TKP15,
TY14, WTT17, WZH16, YSWY14,
YWTC15, YSL+12, ZWL+17, ZT17, dAT17].
OpenCL-accelerated [ZWL+17].
OpenCL-Based
[WTTH17, WZH16, KJM+17].
OpenCL-to-WebCL [CHKJ15]. OpenGL
[Ano98, LH97, ORA12]. openMosix
[Slo05]. OpenMP
[Cha05, CGZ+08, CGKM11, CMMR12,
EV01, JMS14, MDSC09, SHM+10, Vos03,
OKM12, ST02a, ST02b, Add01, ArvW03,
ABC+00, AHD12, AAB+17, AELGE16,
ACMZR11, ATL+12, ADT14, ACJ12, Ano97,
Ano01b, Ano03, AKE00, ADMV05, ADR+05,
AGMJ06, AM07, ACD+09, ABB+10,
BST+13, BR02, BHP+03, BME02, BN00,
BF01, BBDH14, BWW+12, BCC+00a,
BCC+00b, BG08, BGG+02, BS01, BS05,
BBC+00, Brain, Bri00, BDV03, BdS07,
BGS09, BFG+10, BG12, BC00, BS07,
BB00, BKO00, B01, BFG+10, CRE99,
C00, Car07, CB00, CGLD01, CDK+01,
CLYC16, CM08, CHP01, CBP02, Cha02,
CM05, CGKM11, CMMR12, Cha98,
CYB18, CCM+06, CCBPGA15, CC00b,
DM98, DW02, DBV01, DSGS17, HD02a,
DFC+07, DFA+09, ETW12, EM00a,
EM00b, EV01, EdS08, FGR00, FMSG17,
FSXZ14, FM09, GSA08]. OpenMP
[GJP01, GS MK17, GG09, Goe02,
GÅVR17, GAM+00, GAML01, GOM+01,
GAM+02, Gra09, HP02, HP05, HDDD09,
HA10, HO14, HD02b, HKM09, HASp00,
HKN+01, HAJK01, HVSC11, HLCZ00,
HT01, HCL05, HEHC09, HJY09, HAA+11,
JMJ+05, ICC02, IO00, ITT02, JCP15,
JKHK08, JPOJ12, JFY00, JTY+04, JCH+08,
JMJ+11, JR10, KB01, KS15a, KBO1,
KaM01, KIO01, KN17, KKH03, KTO2,
KJS14, KLR+15, KBVP07, KBG+09,
KKV01, KT10, KH13, KAC02, KCO6,
Kuh98, KPO00, KRG13, KSS00, KSH01,
KJEM12, LOHA01, LP00, LLS02, LD01,
LME09, LLC13, LHC+07, LNW+12,
LYSS¹⁺¹⁶, LA02, LA06, LMGR14, LH98, LL01, LLH⁺¹⁴, MKC⁺¹², MS02b, Mal01, MM07, MB12, Mar02, Mar03, MLC04, Mar05, Mar09, MPD04, MCB05, Mat00a, Mat00b, Mat01a, Mat03, MGG05, MGC12, MG15, MM11, MFG⁺⁰⁸]. OpenMP [MKV⁺⁰¹, MBE03, MRRP11, MMSW02, MKW11, MM14, MM07, MJB15, MJPB16, MCds⁺⁰⁸, MüI01, MüI02, MüI03, MBB⁺¹², NO02b, Nak05a, NIO⁺⁰², NIO⁺⁰³, NEM17, NPP⁺⁰⁰b, NPP⁺⁰⁰c, NPP⁺⁰⁰a, NPP⁺⁰⁰d, NAAL01, NA01, NN000, No008, Nu005, NHT02, NHT06, OOS⁺⁰⁸, OP10, OPW⁺¹², PARB14, PPJ01, PVKE01, PK05, PZ12, PGC02, PKE⁺¹⁰, Qui03, Ran05, RDLQ12, RLVRGP12, RBA05, SSE02, SBB⁺¹⁶, SHH01, SHT01, SK01, SLG99, SG00, SPL⁺¹², SHPT00, SSAS12, SK00, SB01, Sp02, TBS12, TSDa, TSB02, TTSY00, TSS00a, TSCaM12, TJPF12, Thr09, TBJ⁺¹², THH⁺⁰⁵, TGBS05, VDL⁺¹⁵, VPS17, VGS14, Vos03, Vro04, Wa001, Wa002, Wan02, WCC12, WC15, WP007, WT11, WYL12, WT12, WLYC12, YHL11, YWC11, YCL14, YKLD17, YPAE09, YSVM⁺¹⁶, YSMA⁺¹⁷, YYW⁺¹², ZAT⁺⁰⁷, ZSn01, aMST07, dCZG06, RM99, SSG00, WCS⁺¹³]. OpenMP* [KDT⁺¹²]. OpenMP-based [LNW⁺¹²]. OpenMP-like [BKO00, KOB01, VGS14]. OpenMP-oriented [MLC04]. OpenMP-style [JPOJ12]. OpenMP/MPI [BEG⁺¹⁰, HMK09, LLC13, LYSS⁺¹⁶, MGG05, NO00b, Nak05a, SBB⁺¹⁶, SK00]. OpenSHMEM [HVA⁺¹⁶]. OpenTuner [BAG17]. OpenUH [HEHC09, LHC⁺⁰⁷]. Operating [MMH98, RG97, USE94, Wil03, ARS98, Sei99]. operational [KOS⁺⁹⁵a]. Operations [BIL99, BIC05, CCA00, FCLG07, FPY08, GFD05, GLB00, PSM⁺¹⁴, PGAB⁺⁰⁵, TRG05, TGT05, WRA02, BMG07, DS13, IDS16, KHB⁺⁹⁹, KMH⁺¹⁴, PGAB⁺⁰⁷, PKD95, SS99, TFZZ12]. Operators [NHT02, NHT06]. opportunistic [CC10]. Opportunities [LB16]. optical [MRH⁺⁹⁶]. Optimal [BP99, GAMR00, ZGN94, BB95, ER12, PQ07, PTL⁺¹⁶, Sur95a]. optimiertes [Sei99]. optimisation [AMuHK15]. Optimising [BAM16, FKH02]. Optimization [SCL00, CXX⁺¹², PY95]. Optimization [BSG00, BHNW01, DBA97, Goe02, HS12, Hus00, ITT02, KGK⁺⁰³, KMH⁺¹⁴, MC17, MBS15, MüI01, NIO⁺⁰², NIO⁺⁰³, PSSS01, SM03, SvL09, SWH15, TRG05, WTTH17, WJ12, Cou03, DSOF11, FCS⁺¹², HWS09, KHS12, LME09, LDJK13, MALM95, PP16, PMM95, SK01, SDJ17, Str12, TMW17, TFZZ12, VSW⁺¹³, Was96, XLL13]. Optimization [NSLV16, SSE12, iYS12, TSS00a, BVML12, HEHC09, LL16, MV17]. optimize [WLYC12]. Optimized [AKL16, Bri02, FADF15, MAIVH14, PM95, PTH⁺⁰¹a, TH⁺¹⁵, WBJ14, BKvH⁺¹⁴, MMM13, Sei99]. optimizer [BHRS08, Rag96]. Optimizing [BGH⁺¹⁵, CB⁺¹², FMFM15, KKP01, MBE03, NSZ13, OM96, SSAS12, TGL02, TGT05, GS02, LHC⁺⁰⁷, RKBA⁺¹³]. Options [RR00]. Orange [ACM98b]. orbit [SSN94]. Order [BL05, DFN12, LZH18, KN17, KME09, KEGM10, KB13, MYB16, OGM⁺¹⁶]. ordering [Zah12]. ordinary [NF94, RBB15, SP11]. Oregon [ACM99, IEE93e, SW91]. Organization [BPC94, JFRG12]. Oriented [Ada97, BCFK99, FMSG17, MSL96, PD98, YHGL01, Ada98, BR91, DM12, MGC⁺¹⁵, OKM12, RFH⁺⁰⁵, SWL⁺⁰¹, MLC04]. Origin [LL01, LSK04, ZSnH01]. Origin2000 [Bri00, MH01]. original [RNPM13]. Orlando [ACM98b]. Orleans [BKF99, USE95]. ORNL [Bor99]. OSCAR [BKF99]. oscillator [BJ13, GSKM17]. OSDI [USE94]. OSF [Sch93]. Other [OP10]. Otot [DKF94b]. Otto [Ano96a, Ano99a, Ano99b, Nag05].
out-of-core [BL99]. Output [CFF+94, HE92, JWR96]. Outstanding [LSB15]. Overcoming [JKHK08].

Overview [CFF+96, Gre95, GL95c, Zol93, GHZ12, GPL+96, Wer95]. OWL [JKN+13]. Ownership [FHB+13]. Oxford [Boi97].

P [CAM12, WHDB05]. P-RnaPredict [WHDB05]. P03M [BJ93]. P2P

[GR07, GGL+08, JKE90, SBG+02]. P2P-MPI [GGL+08, GJR99].

PACX [FGRD01, KR09, RBB97b]. PACX-MPI [KR09, RBB97b]. Page [CML04, NPP+00c]. pages [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Pagoda [YSS+17]. pairwise [AMHC11]. Palazzo [GT94]. PALLAS [KVH97]. Papers [BDB+13, LO51, TB14, ACM90, CHD09, DKD07, IEE93a, IEE95c, KKD03, MTW07, Old02, Ano93f, Cha05]. PARA [DW94, DMW96, Was96, CD96].

parabolized [SCC95]. Paradigm [HIP02]. Paradigms [BGD12, CM98, HD02a, HD02b]. Paradyne [MHC94a, MHC94b]. Paragon [Ano96c, HWW97, MP95, PR94a]. Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC11, AGH+95, AS92, ADRC98, AK99, AMBG93, ASA97, AL96, AP96, Ano95b, ACMR14, AB93a, AJF16, BH94, BJ93, BBG+95, BCGL97, BFL99, BP99, BG95, BS93, BDG+91a, BKS02, Ben01, BP98, Bha93, Bie95, BG98, Bis04, BALU95, BCL00, BSG00, BBC+00, BBG+01, BFZ97, BD98, BDH+95, BDH+97, BT01b, BMS94b, BMP94a, BFM97, BKO00, BBH12, BLM95, CGC+02, CHD07, Cer99, CD+98, CUC99, CDK+01, Cha02, CGB+10, CNC10, CFF+94, CWS97, CMH99, CFPS95, CSEM97, Coo95b, CT94a, CT94b, CC00b, Ce96, DS94, DERC01, DYN+06, DK13, Di14, DI02, DSS00, D+91, DKM+92, DGMJ93, DT94, DZDR95, DK06, EKTB99, EGR15, EM00a, EM00b, EGK92, EJL92, ES11, FGRD01, FHSO99, FJBB+00, FFP03, Fer98b, FHK01, FF95, FP92].

Parallel [FB94, FS93, FF95, GCBM97, GLN+98, GBD+94, GKP97, GR07, GSI97, GSKM97, GB98, GHL97, GK10, GFPG12, GJN97, Gre94, GL94, GL97a, GL97b, GL97c, GlLyCY97, HJ98, HLP10, HO14, HK94, HK93, HK95, HHK94, HT01, HA+11, IEE93b, IEE94a, IEE94f, IEE95h, IEE95j, IEE95m, IEE95n, IEE96b, IEE96c, IEE96g, IEE96e, IEE96d, IEE97b, IEE05, IKT90, IB+10, IOK00, ID94, IH04, IH05, JAT97, JML01, JUN94, JRM+94, KFA96, Kan12, KK20a, KOI01, KNT02, Kat93, KB95, KEP05, KRO9, KON00, KPP01, KMC96, KMC97, KS96, KKD02, KK01, KV97, KHS01, KH08, KG96, Kum94, Lad04, LTDD14, LTR00, LKD08, LSZL02, LTRA02, LHHM96, L96, LZ97, LH97, kLCC+06, L996, Lus00, MSOGR01, MSOGR01, MM92, MW97, dIFMBdlfIM02, MAR06, MAR07, MFTB95, M CSCW95, Mat94].

Parallel [MB95, PBS15, MGC12, MG15, MRB17, MM11, Mic93, Mic95, MTW96, MCLD01,
MS95, MCdS + 08, MBb + 12, MSB97, NO02b, NO02a, Nak03, Nak05a, Nak05b, NSZS13, Nar95, NSS12, NA99, NJ01, Nov95, Oed93, OP10, OLG01, Ong02, Ott93, OWSA95, Pac97, PPT96a, PVKE01, Pat93, PSZE00, PV97, Per99, Per96, PLR02, PKB + 16, PBC + 01, Qui93, RR00, RDMB99, RBS94, Ree96, RS95, RC97, RSV + 05, Röh00, Rol94, RWD09, RTL99, RLL01, SCP97, SPE95, SGZ00, Sch01, Sch96a, Sch96b, Seg10, Ser97, She98, SHE95, SM03, SP99, Sie94, Sie92a, Sie92b, Sin93, STV97, SWH15, Sou01, Sta95b, Ste94, SSN94, SGS10, Str96, Str97, Str94, SNMP10, Sun90a, Sun90b, Sun94a, Syd94, TMP16, TSS00b, TTP97, TC94, TCP15, TQDL01, THN00, TDBEE11].

Parallel

[Tsu07, TVV96, Uhl94, Uhl95b, UH96, UCW95, VLO + 08, VRS00, VB99, WH96, Wal01a, Wei94, WAS95b, WHDB05, WO97, WSN99, WTR03, WT12, YM97, YHGL01, YH96, YPA94, YG96, YTH + 12, YZPC95, YSL + 12, ZB94, ZZ04, ZDR04, ZWJK05, ZAT + 07, ZLS + 15, ZZZ + 15, ZGC94, ZB97, van97, ACM97a, ARvW03, APBcF16, ART17, AAA16, AD98, AL92, ABE + 17, ASC95, ADT14, AD95, ACJ12, Ano93g, Ano95c, Ano00b, ADB94, ADDR95, AB93b, AFST95, AB13, AGIS94, ADMV05, BJH06, BBS + 94, BR91, BA06, BHS18, BB95, BCADO6, BB03, BDG + 92b, BB94, BPC94, Ben95, BvdSvD95, BKH + 13, BAV08, BN00, Bir94, BCM + 16, BKM95, Bos96, BFMR96, BID95, Bri95, Bru95, BDW97, BSH15, CARB10, CL93, CGK11, Cav93, CLdJ + 15, CLSP07, CT13, CLYC16, CKmWH16, Cha05, Cha96, CGL + 93, CEOS07, CH94].

parallel

[CZ96, Che99, CJI + 10, CS96, CSW99, Cla98, CEF + 95, CCD + 96, CdGM96, CBH94, Coo95a, CCHW03, CLLASPDP99, CFF + 96, CPR + 95, CD01, CDH + 94, CKP + 93, CB11, DKF93, DFK94b, DR18, DLR94, DLRR99, DDS + 94, DR94, DSZ94, DM93, DRUC12, DBVF01, DKD05, DvdLVS94, DXB96, DMW96, DLM99, DPK00, DLO03, Duv92, DZZY94, EASS95, EV01, F96, FBB99, FM90, F94, FSTG99, Fer98a, FMS15, FCS + 12, FKK + 96b, FMM11, FH + 95, GG99, GCN + 10, GGL + 08, GBB95, GG09, GFB + 14, GÄVRL17, GKS + 11, GEW98, GKK09, GKF13, Gra09, GP93, HAM95b, HPY + 93, HWS09, Heb93, HPS + 96, HZ94, HZ99, HPLT99, HDB + 13, HVS95, HH95, HLOC96, HVSC11, HLO + 16, IEE97a, IM95, JWB96, JC17, JY95, JMJ + 11, JC96, JMdvG + 17, KCD + 97, KOB01, KBP16, KN17, KOS + 95a, KnWH10, KL95, Kos95b].

Parallel [KRC17, KG93, KS94, Kra02, KJ + 08, KH10, LM99, LCL + 12, LH98, LS10, LCVD94a, LMM + 15, Lon95, LG93, LM13, LL95, LC97b, LSR95, MM99, MYB16, MBB + 94, MKZ93, MM95, Mar05, M93, MN91,
MHC94a, MRPR11, MALK95, MLA + 14, MRH + 96, M99, Mor95, MC99, MR96, MyWL + 10, NSB07, Neu94, NB06, NBGS08, NCKB12, NF94, OdSSP12, Ols95, Olu14, OW92, PHA10, PPT96b, PPT96c, PKB06, PBC + 95, PN01, PBK99, PFP89, PY95, PBPT95, PSL99, PCS94, Ram07, RJC95, RBB15, Rol98b, RBB17, SLM14, SSKF95, SH94, Sch94, Sch99, SP96, SBF94, SWYC94, SK92, SCC96, SLO0, SMAC08, SZ11, SPL99, SMS00, SVC + 11, Sm93b, STT96, SH14, SRK + 12, SLS96, St95a, St94, SMSW06, Sun95, Sur95a, Sut96, SL95, TJ90, TDB00, TMP01, Uhl95a, Uhl95c, VM95]. parallel [Vis95, Vos03, Wan97, Was96, Was95a, WK08a, WK08b, Wok92, WT11, WYL12, WLYC12, WMP14, YULMT + 17, YHL11, YW11, YBZL03, YYW + 12, ZL96, ZWHS95, ZAFAM16, ZWL13, ZDW18, ZWL + 17, diH94, ARL + 94, Ano94e, Ano94f, ACDR94, BDL96, BS94, BCG94b, Bos96, CC95, Cza13, DSM94, DHK97, DW94, EJL92, FR95, FF95, GN95, JPE94, JPP95, KK05, KMW04, KL95, Kos95b].
MKP+96, OKW95, PQ07, QRG95, SSSS96, SPE95, Stp02, TDBEE11, TEG09, Velo93, Vre04, WN10, YC98, ZPLS96, ZDR01, ZHS99. Parallel-programming [KKJ+08]. Parallel/distributed [FHC+95, Wan97]. parallelles [BL94]. Parallelisation [SJK+17a, SJK+17b, WCVR96, LF93b]. Parallelism [CGC+11, EdS08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, KT02, Mar03, MGA17, MMS07, MdSC09, RBA05, SHM+10, SML17, SGZ00, TTSTY00, Thr99, YPAE09, ATL+12, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, JC17, JPOJ12, Kos95b, OPF00, RKBA+13, SLGZ99, SHPT00, THH+05, TWF009, WO09, WTA014, WRSY16, YZ14]. Parallelization [AL93, And98, AIM97, BCM11, BS07, CRE99, CP97, Cou93, Cza03, ETV94, HA10, JR10, Kik93, KLR+15, LP00, OD01, Pok96, QMGR00, Rag96, RP95, RM99, RS97, SAS01, WPI95, WZWS08, WR01, aMST07, AGMJ06, BW12, BDY99, BJS99, CDD+96, Gao03, Goe02, IDS16, LJ+05, JYY+03, JMS14, KS15a, KD12, KRG13, MCB05, MG05, Nes10, NEM17, OLG+16, TWF009, VBLvdG08]. Parallelized [FBSN01, OMK99, KMG99, OKM12]. parallelizer [BHRS08]. parallizing [LRQ01]. parameter [HPLT99, JMdVG+17]. parameterized [CT13]. Parameters [GFV99, BAG17]. Parametric [LLG12, Pat93]. Paramid [Ste94]. Paraperm [LTDD14]. Paraprox [SJLM14]. Parasite [LLRS02]. paravirtualization [SBQZ14]. ParCo93 [JPTE94]. PARCOACH [SCB14]. PARCS [LD01]. Paris [CHD07, Har94, Har95]. Parity [MC17]. Parix [HVSH95, RS95, SHH94a, SHH94b]. Park [SL94a, IEE93c]. PARKBENCH [DHS96, DH95]. PARMACS [GR95, HZ96, HZ99]. PARMACS-to-MPI [HZ96]. ParNNS [HSMW94]. PARRAY [CMC12]. parsing [Sur95a]. Parsytec [SHH94a, SHH94b]. part [VSR95, EM00a, EM00b, GKI0]. Partial [DERC01, DLV16, FSSD17, KKB02, MFTB95, OM96, ST17]. partially [CdGM96]. Particle [GS107, KHS01, NSLV16, ZZO4, BAS13, FFFC99, GSMK17, KPK13, RF9+95, VDL+15]. particle-based [FFFC99]. particle-in-cell [VDL+15]. particle-mesh [BAS13]. particulate [ATL+12]. Partitionierung [Gra97]. Partitioning [CTK01, KL11, STV97, CT13, Cha96, Gra96, GKC13, YST08]. partners [Str94]. Pasadena [IEE95c]. PASCO [ACM97a]. passage [PTMF18]. Passing [AMHC11, AKL99, Att96, BZ97, BC14, BBH+06, BBG+01, BRU05, BDH+95, BDH+97, BGR97b, BFM97, CHD07, Cerr99, CGH94, Cot97, Cot98, CTK00, Cot04, CDND11, DFKS01, DKD08, DHHW92, DHHW93a, DDL00, FKKC96, FKS96, FGT96, Fos98, FGG+98, FB94, Gd07, GB96, Gle93, GLR01, GLS94, GL95c, GLS96, GLT99, GLS93, GLT00b, GLT00a, GL04, IBC+10, KTF03, KGRD10, KS97, KSV01, KKD03, KKD04, LKD08, LKD10, Luo99, MPI98, MTSS94, MS98, MSL96, MBES94, MG97, MTWD06, MSS97, NW98, PBB00, Pok96, PS01b, RRBL01, RWD09, RF+90, SWHP05, SWL+01, ST02b, TGT05, TDB00, TDB12, WD96, Wer95, Wis97, YGHL01, ZG95a, ZG96, ZL+12, Ada98, AD98, AAC+05, Ano93d, An94d, An95c, An00a, An00b, BL97, BvdSvD95, Bjo95, Bru95, BWD97, BWM99]. passing [CGJ+00, CDZ+98, CRD99, CD01, DFD93, DK93, DGD05, DSN96b, DHHW93b, DONS96, DLM99, DKP00, DLO03, FK94, FHB+13, GL92, HP05, HPY+93, Hem96,
KJA+93, Kra02, LR06a, LBD+96, wL94, LCY96, LMM+15, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SWJ95, SDV+95, SZ99, SSG95, Sth94, TSZC94, VM95, Wal94a, Wall94b, ZWL13, ZKRA14, DiN96, GHGL+96, Han98, Hem94, RRFH96, SLG95, Wei95, YGH+14. Past [Dar01]. Path [CGPR98, GAMR00, SDJ17, SLN+12, Zel95]. path-based [SLN+12]. Pathway [CNM11]. PATOP [BFBW01]. Pattern [CSW12, CC17, JJPL17, RDMB99, MAS06, SJLM14]. pattern-based [SJLM14]. Pattern-Independent [CSW12]. Patterned [ST17]. Patterns [DMMV97, FPY08, KB98, PKB+16, RRAAGM97, SG12, DZZY94, GAVRL17, HG12, PM95, PS97+10]. PC [AH00, EKTB99, KS01, LKYS04, RLL01, Ste00, WLYC12, YST08, YL09, MMB+94]. PC-Cluster [RLL01]. PCAT [ACDR94, GN95]. PCAT-93 [ACDR94]. PCAT-94 [GN95]. PCG [BJ97]. PCI [BK97]. PCI-based [BK97]. PCRCW [BS94]. PCs [CRE99], PCSC [LM94]. PCTE [HZ94]. PCTRAN [KHC01]. PDCS [YH96]. PDE [GBR15, NH02, NPS12]. PDES [PT01, SCL00, SCL01, H014, HHA95]. PDGC [CGB+10]. PDP [IEE906]. Peer [GR07]. Peer-to-Peer [GR07]. PELCR [PO7]. PEMPI [FB95]. PEMPIs [MOL05]. Pennsylvania [ACM96b, IE94d]. pentadiagonal [Kan12]. Pentium [An03]. Pentium(R) [SBT04]. PENTRAN [KHC01]. people [ASC95, An094i]. per-triangle [SA11]. perception [CLM+95]. perceptual [WPL95]. Performance [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, ATM01, AR01, An008a, An001b, ADR+05, Bak98, BBGL96, BN00, BBH14, BGG+02, BY12, BRM03, BRST94, BS07, BDL98, BCKP00, BHNW01, BFMT96b, BFBW01, BEG+10, CGK+16, CDD+13, CRE99, CDJ95, CGLD01, CNA11, Che99, CSC96, CCBPG9A15, DSD08, DM95b, DW02, DZ98b, DPP01, DWL+10, DBK+09, EGH99, EGC02, EML98, EML00, FD02a, FGRT00, FCP+01, FSC+11, FST98b, FGK97, GFDO3, GKP96, GGS99, GBH99, GRRM99, GB9+07, GC05, GMDMB+07, GSY+13, HAV+16, HKN+01, Hol12, HF14a, HF14b, HPK95, HUS98, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IF195, IRU01, Iva+00, JSS+15, JC17, JCH+08, JS13, KDSO12, KaM10, KL94, KH12, KBS04, KMB97, KKP01, KH15, KC06, KK02b, KHS01, KSS00, La01, LaD+15, LCK11, LC97a]. Performance [LB98, LGCH99, LNK+15, LH98, LC93, LKLC+03, LNW+12, LSO, LCW+03, LVP04, LW04, LDCZ97, LC97b, LKYS04, MM9+94, MKP+96, MPD04, ME17, MGH97, MGC12, MM02, MM03, MOL05, MS99a, MHC94b, MMS02, MK04, MCLD01, MM99, M14, MMS07, NLSV16, NM93, NPP+00d, NMS+14, NN95, OTRK15, OF00, OL01, PARB14, PKB01, PH11M, PZ12, PR94b, PFG97, PGBA+05, PC02, PY95, PTH+01b, PS01b, QHCC17, QB12, Rab98, RB97a, RB97c, RH01, RRAAGM97, RS13, RS06, SGJ+03, SPM+10, SLJ+14, SWHP05, SCP97, SEP+16, SPL+12, SC12, SM02, SM03, SSC97, SJO2, SSSS97, SC96b, SKH96, SJ+17a, SJK+17b, TSB02, TSB03, TTSY00, Ten95, Tha98, TGB+02, TGT10, Tra12b, TFM02, TFZZ12, VFD02, VYO2, W10N, WAS95b, WM01, WT11, WT12, XF95, XH96, XXL13, YC98, Yan94]. Performance [YW11, YS93, YWFC15, YSP+05, ZLGS99, ZWJK05, ZH06, ZSNH01, ABDP15, Ahm97, ADLL03a, ADLL03b, An03, AFST95, BDP+10, Ber96, BDV03, BF96, BFMT96a, BFTR99, CRE01, CAHT17, CLY16, CBPP02, CBM+08, CHHK15, DM95a, DL10, DO96, D+95, DW+12,
DE91, Duv92, EFR+05, ES03, FAF16, FD02b, FE17, FSN14, FME+12, Fin97, GS02, GGC+07, GKK97, GR95, GHZ12, GML+16, GL96, GLDS96, GL97c, GL99, GWVP+14, HHSS09, HW11, HASn00, HAJK01, HK10, HVSC11, HHA85, HG12, HcF05, JKH00, JMN+11, JKN+13, KBB16, KK15, KS13, LBB+96, LTL14, LC07, LBB12, LCTY96, LB96, LLO1, LJK03, LSK04, MC17, MP95, MSCM15, MSW+05, MSL12, MABG96, MHC94a, MSZG17, MJPB16, MGC+15, N05, NFG+10, OIH10, Oid02, PGS+13, PHV+13, PGK+10, PF05, PMZM16, PTW99, Rab09, Reu03, RGDM15.

performance [RJDH14, Sep93, SFO95, SJ95, S105, SV+11, SK00, SFLD15, TMC09, TSP95, TG90, THM+94, VDL+15, Wor96, YCL14, ZSK15, ZLT13, dAT17, HS95a, GH94, LCSH96, SSH08].

Performance-aware [MSMC15].

Performance-based [YWC11].

Persistent [Man01, SG12].

Persistent-Set [SG12].

Personal [SSS97].

personized [BHJ96].

perturbation [KN17].

Perverse [Rol08a].

PES [MK94].

Pessimistic [BCH+03].

petalops [LSG12].

Petascale [CGMK11, CBYG18, ZWL13, Gei01].

Petersburg [Mal95].

Petri [CZL17].

PFSLib [LVL95].

PGAS [SW+12, SJK+17a, SLJ+17b].

Phase [CBL10, ED94, TKP15, TG94, ZAFAM16].

phase-field [TKP15].

Phi [DSG17, MTK16, OTK15].

Philadelphia [ACM96].

PHOENICS [SZBS95b, SZBS95a].

Phoenix [ACM03, IEEE95b, Ten95].

Photo [JFGRF12].

Phylogenet [MR12, LH12].

Physical [BM97, GJN97, GWVP+14].

Physics [GT94, KH15, VV92, WBH97, ANS95, BPG94, DMW96].

PIC [BDV03, HTJ+16].

Picos [YATG+15].

Pilot [OS97, CSG10].

PINEAPL [DHK97].

Pinhole [NH95].

Pipe [MTU+15].

Pipeline [GAMR00].

Pipelined [GAML01].

Pipelines [MAG01, FWS+17, RKBA+13].

pipelining [MN11].

Pisataevskii [LBB+16, LSS+16, SSB+16, YSM+16, YSM+17].

Pittsburgh [ACM96c, ACM04, Ham95a, IEEE94d].

Place [IEEE94e, BCK+09, HSE+17, PSLH11].

placement [SLN+12, SPK+12].

Planck [Ano94c].

Planning [GAMR00], planning [Zel95].

plant [FO94].

PLAPACK [van97].

PLASMA [YKL17].

Plasmalfusionsforschung [BL94].

Platform [BKGS02, NO02b, WTTH17, BSH15, CB11, Cza13, DWL+10, DWL+12, HTJ+16, HHA95, JRI2, NO02a, XXL13, YSL+12].

Platforms [AIM97, HD00, JML01, ZB97, GGC+07, GFB+14, MMBD13, TKP15, TS12b].

Plesset [BL95, KN17].

Pliers [MMR99].

plug [MS99b].

plug-in [MS99b].

plus [HDB+13].

PMaC [PTL+16].

PMD [Che99].

PML [Ram07].

PMPIO [FWNK96].

Pampio-a [FWNK96].

pcl [JSS+15].

Point [GBS+07, HCO, KV98, ADL03a, ADL03b].

Point-to-Point [GBS+07, HCO, KV98, ADL03a, ADL03b].

Pointers [LRT07].

Poisson [BP98, WJB14].

Poland [BDW97].

Pollard [OS97].

Policies [CML04, PZ12].

Pol [MM13].

Polling [DCP12, Pla02, DCP14, SH96].

Pollutant [RSV+05].

Pollution [AKK+94, BZ97, MPD04, MSML10, SH94, SVD94].

POLSYS/GLP [MSM06].

polygonization [TSP95].

polygons [CT13].

polyhedral [BHR10, KGB+09].

polymer
[JAT97]. Polynomial
[VY15, HLM+17, SMSW06]. port
[CCHW03, Har94, RJMC93]. Portability
[KaM10, RS95, RH01, ABDP15, CGK+16, FE17, MGC+15, PHW+13, QHCC17, Reu03]. Portable
Proceedings

[IEE95i, IEE95f, IEE95l, IEE95g, IEE95j, IEE96g, IEE96f, IEE96d, IEE96b, KGRD10, LKD08, MTWD06, MMH93, MCDs+08, MdSC09, Osl94, PR94b, Ree96, RWD09, SCR92, SHM+10, Sie94, TIBD12, USE94, USE95, USE96, VW92, Vos93, YH93, AD98, BCG91, BLDS96, BS94, Bos96, BFMR96, BDW97, CH96, CD01, DSM94, DKD05, DW94, DM96, DLM99, DKP00, Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97a, Kra02, KKD04, LCHS96, Mal95, PBG+95, Sch93, Tou96, VV95, Vol93, Was96]. Proceedings.

[Ano93e, Ano94g, IEE96i, IEE97b, LHHM96].

Process [AUR01, BGL00, CLT99, DeP03, DK06, FGD97a, FGD97b, FL98, FP08, KCP+94b, KOW97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FL96, GL95a, HR+11, HG12, JLS+14, KCP+94a, MLVS16, MK00, SHHC18, Ste96].

Process-Management [BGL00].

processed [HJ98]. Processes [CB16, MW98, Pet00a, Pet00b, FS95, SPK+12].

Processing [ATC94, Agr95a, AR01, BBG+95, DKM+92, GGM99, GGCM01, HJBB14, IEE93b, IEE93f, IEE95e, IEE95h, IEE95f, IEE95g, IEE96b, IEE96g, IEE96e, IEE96d, IEE97b, IEE05, IOK00, JDB+14, KOI01, KS15b, LSVW08, MSML10, Nar95, NH95, NJ01, PLR02, PD98, Ree96, RRBL01, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, BJ13, BHS18, BFMR96, CFPS95, CllASr99, Dsz94, FWS+17, GDC15, GGGC99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kum94, LHLK10, LG93, PSB+94, PBPT95, RKBa+13, Ro600, RCG95, SSS99, SLS96, VDL+15, Wol92, WFT11].

Processor [HC06, Oed93, Ott94, PWP+16, RR02, Smi93a, STB04, UALK17, ABDP15, DCH02, HC08, LL01, OIS+06, RNPM13]. Processor-Oblivious [UALK17].

Processors [AJ97, Bri10, HK93, HK95, MB91, OLG01, PZKK02, BBG+95, CBM+08, DBLG11, HTA08, HWX+13, KnM90]. Producing [HAIK01].

product [CMH99, ER12, SMSW06]. production [CLAI+15, SL00]. productive [LV12].

Productivity [BS07, KaM10, Wt16].

products [Ano97, Bra97]. profile [TFW09, Wt104]. profile-driven [TFW09, Wt104]. profiler [AS92].

profiles [Wil94]. profiling [GPL+96, Rab99, Vet02]. Program [Ano96d, AB93a, BMS94b, CHP001, Cot97, EML98, MM95, MRV00, Ney00, FS01b, TS00, THN00, UTY02, CDZ+98, JF95, LP00, LSC11, OKM12, PPF99, Sai10, TNIB17, TMPJ01, ZL96].

Programación [VP00]. Programmable [OAI7].

Programmcode [BL94]. Programmer [Gua16, Wt16]. programmers [CGG10].

Programming [ACM90, Ada97, ACGR97, ASA97, ACJ12, Ano96b, BBG+95, BLP93, BHV12, BF01, BBG+95, BKO00, CMK00, CDK+01, CKnWH16, Cha02, CZG+08, CF01, Cza03,
programming

[HDB+13, HVSH95, HSW+12, HZG08, KDSO12, KOB01, KSG13, KSL+12, KV15, KPNM16, KFSS94, KJJ+08, LV12, LFS93a, LFS93b, LH98, LPP+11, LLIH+14, MMB+94, MVT96, MSP93, MC99, MG+15, NO02a, Nak05a, NYNT12, NBGS08, OIS+06, Olu14, OW92, Pac97, PVKE01, PF05, Qu03, RJDH14, SK10, iSYS12, SSF95, SYR+09, Seg10, SPK96, SBF94, SPL99, SHH94a, SD99, VP00, Voo03, Wal01b, Wan02, WCC+07, WAD99, WYLC12, WYLC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE+17, Che10, SD13]. Programs

[AJF16, Beg93b, BKdSH01, BG08, BGG+02, BDL98, BGL00, CSW12, CRE99, CHPP01, CD98, DBL07, DMMV97, Di 14, FKH02, FJ+17, GR07, GTH96, GL04, GC05, HCN+01, HM01, KFL05, KL94, KJS14, KKV01, KSV01, Mar09, MVY95, MOL05, MBE03, MKW11, MCLD01, MJB15, NSZS13, NE98, NE01, NP+00d, OM96, PPJ01, RH01, RFG+00, SGZ00, SBF+04, SR96, TGBS05, We94, Wis97, ZLL+12, Beg92, Beg93c, Beg93a, BCK+09, BMP03, CRE01, CLdJ+15, CGL+93, CH94, CRM14, CFP96, DFK93, DFK94b, EP96, EPP+17, FLB+05, FKLBO8, GGH99, GRRM99, GKS+11, GB94, HD11, HZ96, HLOC96, HEHC09, KCD+97, KS13, KO14, Kom15, LGKQ10, LLG12, LL16, LBB+16, LYSS+16, LMM+15, LZZ+02, LCC+03, MT96, MdSAS+18, Mor95, NBK99, Obe96, OdSSP12, PES99, PAdS+17, RAS16].

programs

[Reu03, RRG+99, SSB+16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THH+05, UGT09, VVD+09, YSVM+16, YSMA+17, YYW+12, ZJJDW18, ZRQA11].

Progress

[BRU05, LAAdS+15, MLA14, MC94].

Progress-Dependence

[LAA+15].

Project

[BHK+06, BSH15, DHK97, MRV00, ABC+00, CDH+94]. Promise [Ano93c].

Promotion

[OCY+15, WBB15].

Propagation

[EMO+93, ESM+94, JML01, SMOE93, KEGM10, RMNM+12].

Properties

[FGT10, MS96b, SSP+94].

Proposal

[DHHW92, DHHW93a, DFC+07, DFA+09, ZKRA14]. Proposals [Wal96b].

protected [GHD12],

protein [GAVRRL17, SEC15, ZAT+07].

proteins [BHW+12, BBH+15, FMS15].

Protocol

[CAWL17, GSY+13, KL11, LMM+15, RA09, XF95, BDB+13, CwCW11, DDDY99, MN91, MB00, ZPI06]. Protocol-based [LMM+15]. Protocols [BCH+08, DM93, LH98].

Protoplanetary

dlFMBdlFM02]

Prototype

[Ano01b, FHP+94, MMSW02, BK96, CCF+94, KYL03, KYL05].

prover [Sut96].

Provide

[Add01, LMRG14]. Provides

[Ano98, Nel93]. Providing

[GKP97, Zah12].

Proving

[MS96b].

Proximity

[UCW95].

Pruning

[SMM+16].

PS [AMV94].

Pseudo

[Wall08, Lan09]. Pseudo-search [Wall08].

Pseudorandom

[WHDB05]. Pseudospectra [BKGS02].

pseudospectral

[Bri95, MRRP11].

PSPVM

[BWT96].

Pthread

[ZAT+07]. Pthreads

[AS14, TS12b].

PTX

[iSYS12].

Public

[Str94, GWVP+14, Nel93, RST02].
Public-private [Str94]. Puma [BS96b].
purely [HSE+17]. Purpose
[BDT08, Che10, SZBS95a, Sun94a, ABDP15,
CBM+08, KPNM16, PF05, SK10, SZBS95b].
PVaniM [BCLN97, TSS98]. PVFS [IRU01].
PVM [AD98, BL94, BDLS96, BDW97,
CHD07, CHD09, CD01, DLM99,
DKP00, LHZ97, LKD08, McD96, MTWD06,
WLD94, WLF92, LFS93a, LHS95, LLY93,
LW95, LHZ97, LKL96, LDC97, MV98,
Man94, MVT96, Man01, MP95,
dfMBdlFM02, MTSS94, MFTB95,
MSCW95, MSP93, Mat94, Mat95, MMU99,
Mat01b, MRV00, MK97, McK94, MC98,
MC98, MVy95, MS96b, Mic93, Mic95,
MT96, MS99a, MS99b, MHC94a, MHC94b,
MRH+96, MS95, MC99, MWO95, Nel93,
NP94, Neu94, NKR99, Ney00, NB96, NAJ99,
Nov95, Obi95, Ols95, OPP00, Ott94,
OWSA95, PPR01, PK98, PPT96b, PPT96a,
PPT96c, POL99, PT01, PKYW95].
PVM [Per96, Pet97, PTT94, Pla02, PNV01, PD98,
PY95, PL96, Pus95, QR95, QRMC96,
Qu95, QMGR00, RR00, RS93, Rag96, RS95,
RHG+96, RRAGM97, Rol94, RGD97, Saa94,
SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98,
SGS95, SSS99, SPI96, Sep93, Sev98, Shi94,
SA93, SR96, SHH94a, SHH94b, Smi93a,
SBR95, SC96a, ST96, SME93, SGL+00,
SGHL01, SGL97, SSSS97, Sta95b, SY95,
SYF96, SC96b, Str94, SKH96, Sun90a,
Sun90b, Sun92, Sun93, Sun94a, SGDM94,
Sun96, STMK97, SN01, SCL00, Sur95b,
Sut96, SL95, TMT96, TC94, TBD96,
TD98, Tsn95, UHI94, UHI95b, UH96,
UMK97, VSRC94, VSR95, VB99, VAT95,
WKS96, WH94, WCV96, WAS95b, WO97,
Wis96a, WL96a, Wis96b, WL96b,
WCS99, Wu99, WLC07, XWZ96, XF95,
YG96, YKI+96, ZLS96]. PVM
[ZPI06, ZB94, Zem94, ZDR01, ZG95a,
ZG95b, ZG96, Zo93a, Azo93a, Ano95b].
PVM-AMBER [SL95]. PVM-Based
[WS95b, FQ94, PY95, SU96, ZL95,
SL902, TD98]. PVM-GRACE [YKI+96].
PVM-Implementation [BJS97, Huc96]. PVM-RPC [K97]. PVM/C [GTH96]. PVM/MPI [AD98, BDW97, CHD07, CHD09, CD01, DKD05, DL99, DKP00, DLO03, Kra02, KKD04, LKD08, MTWD06, RWD09, ACRG97, SN01]. PVM3 [IM94]. PVM3/AP1000 [IM94]. PVMaple [Pet00a, Pet00b, Pet01]. PVMe [BR95c, BR95b]. PVMGeant [DZDR95]. PVMPI [FD96, FDG97a, FDG97b]. PyCUDA [KPL+12]. PyOpenCL [KPL+12]. Python [BL97, DPS05, DPSD08, Di 14, GBF+14, SSH08]. PyTrilinos [SSH08].

roots [PNV01]. routed [Pan95b, RJMC93, ZGN94]. router [Jes93a].

Routines [Add01, Sch96a, LSK04, Sch96b]. Routing [BHM94, BHM96, MTSS94, MBES94, WH94, BS94, Zah12]. RPC [KZCS96, KS97, RS93, SHTS01]. RPVM [CMM03, LR01].

RS [BGBP01, Cou93, Heb93, MW93]. RS/ [Cou93, Heb93, MW93]. **RS/6000** [BGBP01].

RS6000 [CDM93]. **RS/6000** [CDM93]. **RSA** [WLC07]. **RT** [KAMAMA17]. RT-1.1 [SKD+04]. RT-CUDA [KAMAMA17].

RTL [BGG+15]. RUBIS [BR94]. Ruby [Ong02]. **rules** [SFLD15]. Run [DLR94, DGMJ93, FHK01, GOM+01, OP98, SBW91, SS96, KPL+12, RRG+99, Str94, TCBV10].

Run-Time [FHK01, GOM+01, OP98, SS96, DLHR94, SBW91, KPL+12, TSY99, TCBV10].

Running [BZ97, CCM+06, YKI+96, CRE01, ZL+11].

Runtime [AAB+17, BGD12, CFF+94, DMB16, DT17, Gro00, KBS04, KCR+17, NPP+00d, TJPF12, ZLP17, ALW+15, BL99, BR94, EPP+17, EO15, HPS+12, HPS+13, KW14, LLH+14, MA09, NPP+00a, TSY00, YA+15].

Runtimes [AHHP17]. **Russia** [Mal95].

RWA [RLVRGP12].

S [AHHP17, Roh00]. S-Caffe [AHHP17].

S-language [Roh00]. **S1** [GLT00b]. S3D [LSG12]. Safe [Pla02, GCC99, LFS92, LFS93a, LFS93b, NYNT12]. safety [GT07].

salesman [GM94]. Salt [Hol12]. San [ACM97b, An095d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IEE95b, IEE95g, IEE97c, LF+93a, NM95].

Sanders [Che10].

Sandy [VDL+15]. Santa [ACM95b, AH95, IEE95f, Old02].

Santorini [CD01, CDND11]. Santorini/Thera [CD01]. Saphir [An099c, An099d]. **SAR** [AB95]. Satellite [Uhl94, Uhl95b, SSN94].

Satisfiability [IKM+01, IKM+02].

Saturday [B+05]. Saturday-Wednesday [B+05]. Save [KFL05, FKL08]. SBS [MSB97, WWZ+96]. SBS-Type [MSB97].

SC2003 [ACM03]. **SC97** [ACM97b, ACM97b]. **SC98** [ACM98b, ACM98b]. **SC99** [ACM99].

Scalability [BS07, FSC+11, KBS04, LL01, LKY04, LSK04]. Scalable [Add01, AHHP17, BHW+17, BBC+02, BHNW01, BGL00, CGS15, CDMP03, EFR+05, GFB+14, GS94, HGMW12, IEE92, IEE94f, IEE95j, IBC+10, KK98, kLCC+06, MFPP03, NBGS08, NPP+00d, NCKB12, NSM12, OLG01, PPJ01, PR94b, PBK00, SDJ17, SBF+04, Skj93, SS96, TPD15, UP01, VBLvdG08, VY02, ZLGS99, B+94, Bri95, CLSP07, FWS+17, GBH14, GM13, GKL95, HRR+11, HAJK01, KRC17, KRG13, LM99, LTL94, MBB+94, MRPP11, PWD+12, SPK+12, Trl12a]. ScalAPACK [BV99, BRR99, DHP97].

Scale [AKE00, BHW+17, BZ97, BHNW01, FFP03, MFPP03, SM03, TGERM09, WT12, AASB08, BCA+06, BS99, B+89, Che99, DZZ94, FME+12, Gua16, Kos95b, LS10, MLA+14, PTL+16, PD11, RNM+12, SvL99, TBB12, WLN06, WT11, ZKRA14, ZA14].

SCALEA [TFGM02]. Scaling [CC17, KFL05, SLJ+14, FKL08, Gao03, LFL11, PDY14]. scan [AAAA16, YLZ13].

scanline [CT13]. scans [NAJ99]. SCASH [SHH01]. SCATCI [ART17]. scatter [BCD96, MTK16].

Scattering [BCL00, NZZ94, OMK09]. **SCF** [MM95].

schedule [NAAL01]. scheduler [ADDR95, TCBV10, WRSY16]. schedulers [NP12].

Scheduling [BBH+06, BSH15, CML04, DMB16, EGR15, GDM17, GSHL02, GHL97, HCO6, JW96, MJB15, NIO+02, NO+03, TJPF12, APF+16, DZ98a, JKN+13, LHCT96, MBKM12, NSBR07, OPW+12, Smi93b, SKK+12].
SKB+14, WYLC12, WLYC12, YWC11.

Scheme [CTK01, LNLE00, MW98, SBF+04, BBGL96, Bjo95, MRRP11, OKM12, SCC96, YPZC95, FM90]. Schemes [PPJ01, WYLC12, WLYC12, ZAT+07].

Schmidt [CBYG18]. School [VV95].

Schroedinger [DM12, ON12].

Schrodinger [DM12, ON12]. SCI [FS97, HEH98, Hus00, RR01, ZHS99].

SCIDDLE [ABG96, AGLv96]. SCIDDLE-PVM [ABG96].

Science [EGH+14, IEE95d, MMH93, Old02, SM07, ACM06a, DMW96, HK93]. Sciences [ERS96, HS94, Zhu96, ERS95].

Scientific [AGH+95, APJ+16, BBG+95, DKM+92, DT94, Gat95, GL97a, HH98, KK02a, LkLC+03, Mar06, Nag05, Sin93, SSB+17, VY02, WN10, Bis04, DW94, SBG+12, TBB12, Ano97, Bra97].

Scientists [HW11, Str94]. SciPAL [KH15]. SCIPVM [ZHS99].

Scope [OCY+15, BBD+13, WBBD15].

Scratchpad [JAK17, MB12].

Scratchpad [JAK17, MB12].

Scripting [Ong02, KPL+12, Noh08]. scripting-based [KPL+12]. SCTP [KPVW05, ZFH06]. SDK [TK16].

SDSM [CCM+06]. Seamless [KK02a]. Search [BSSH15, Cza13, IJM+01, Wals01b, FMS15, IJM+02, Wals01a, ZSK15, CB11]. Searches [BSSG00].

Searching [JPT14, MM01, BA06, WA01b]. Seattle [ACM05, BS94, LCK11, Ost94].

Second [Ano00b, BL95, DT94, DE91, IEE94d, IEE96d, IEE96i, LSHM96, Tov96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFM96, DMW96, FR95, KNL17, LK96].

Second-Order [BL95, KN17]. Secondary [WHDB05, SEC15, ZAT+07]. section [Ano93b, DKD08]. segment [FJZ+14]. segment-based [FJZ+14]. Segmentation [KBA02, AD95, CUC95].

Seidel [BG95, LM99, Obs95], seismic [AMB93, KL95, KEGM10, LM13, QHCC17, RMMN+12, SSS99, WCVR96].

Seismograms [DP94]. Select [KKDV03].

Selected [DHS96, MTW07, OL05, TB14, CHD09, Cha05, DKL07, JC17]. selecting [PTL+16]. Selection [CKmWH16, PGBF+07, WKS96, ZWL+17].

Selective [NK03]. Self [NSS12, SLJ+14, TGT10, VFD02, NSB07, WYLC12, WLYC12, YWC11].

Self-Consistent [TGT10]. self-scheduling [NSB07, WYLC12, WLYC12, YWC11].

Semaphores [TCP97]. Semi [CT94a, Bjo95, PSI99, TC94, CT94b].

semi-coarsening [PSL+99]. semi-implicit [Bjo95]. Semi-Lagrangian [CT94a, TC94, CT94b].

Semiconductor [GJN97, Ano03, LS10].

Seminar [Ano94f, Ano93g]. Send [GPC+17]. Sender [BCH+03].

Sensed [GGCM99, GGC901, GGC98, VLO+08, WGGC99]. sensitive [GKCF13]. Sensitivity [dLR04]. Separable [Ben01, CDM96].

September [ABr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CLM+95, CHD07, CIVW95, CD01, CDND11, DKL05, DKL07, DLM99, DKP01, DKL03, EJL92, FK95, FR95, GHH+93, IEE93d, IEE94c, JPT94, KGRD10, KRL02, KDD04, LKD08, Mal95, MTW06, OL05, PSB+94, RWD09, SPH95, SM07, TDB12, VVL95, VW92, WPH94, YH96].

Sequence [GMU95, SMM+16, AMHC11, TSZC94].

sequences [GÁVRR17, SD10].

Sequencing [VP97]. Sequential [EK97, RPM+08, GGH99, SR95, TN1H17, TSZC94].

Serial [SWH15, HPS+96, HWS09].

serialization [CFKL00]. Serialized [KH10].

Serielles [BL94]. Series [Nag05, BR94].

Server [Ano93c, FSL98, KS97, Mat01b, Sch93, Sto98, Vis95]. Servers [CGC+02, SIS17, GZ97].
[RFG+00, LS08, SPK+12]. Services
[FC05, AAC+05, ZKRA14]. Session
[NYNT12, ZL06]. Set [SW12, WL96a, Ano00a, Ano00b, She95, WL06b]. Sets
[SG12, GCL+93]. setting [GL95a]. Setup
[NSLV16]. Seventh [BBG+95, HS94, IEE93b, IEE96b, Eng00, Y+93].
several [GBR15]. SGI
[Che99, CML04, KMG99, LB96, LL01, LK03, LSK04, TW12, ZShH01].
SGI/CRAY [Che99]. SGI/CRAY-T3E [Che99].
shadow [SOA11]. shallow
dlAMC11, dlAMCFN12. Shane [SD13].
Shanghai [IEE97a]. SHARE
[Ano92, Ano93c, Ano94g]. Shared
[BCA+06, BME02, Bri10, DM98, DMB16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HT01, KB98, KSHS01, LRT07, Lnc99, MBE03, MCDs+08, MHi02, NPP+00d, PK00, Pok96, PS00b, Ros13, SS01, ST099, ST02b, Th099, VS00, VT97, ABC95a, ABC95b, ADM05, BMG07, CBPP02, Cha96, CCM+06, CC00b, DBVF01, DS96b, DPZ97, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, JE95, KJA+93, KC06, LKL96, MLC04, PK05, RGD15, SHH01, SL94b, SFL+94, SSC96, TSY99, TSY00, Vos03, WMRR17, WY95, XY95, Cha05].
Shared-Memory
[DM98, HDB+12, NPP+00d, PK06, Th099, PS00b, ABC95a, ABC95b, BMG07, GL96, GL97c, KJA+93, PK05, TSY00]. Sharing
[Att96, CML04, CB16, DiN96, JLa17, KK98, JEl95, Ort93, Pre+14]. shear [JAT97].
ShearLab [KLR16]. Shearlet [KLR16].
Shearlets [KLR16]. SHMEM [BBDH14, Hus01, LSK04, Sch96a, Sch96b, SS01].
Short [KBM97, MH01, BMPZ94a, PARB14].
Short-Range
[KBM97, MH01, BMPZ94a, PARB14].
shorter [NB96]. Showcase [USE00].
SHPCC [IEE92]. SHPCC-92 [IEE92]. SIAM [BBG+95, DKM+92, Sin93]. Side
[kLCCW07]. Sided
[BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, MB00, TGT05, TRH00, ZSG12, bT01a, BM00, DBB+16, LSK04, MS99c, PGK+10, GBH14]. SIGCSE
[ACM06a]. Signal [IEE95e]. signals
[Uhi95c]. Signatures [Gro00]. significance
[AMHC11]. silent [FME+12]. silicon
[Ano03, Goe02]. SIMD [BvdB94, HS95b, KDT+12, LL16, Sur95b, VSW+13]. Simple
[MS00, Mi01, SC04, ITT99, JH97, Nes10, PN01]. simulate [He93]. Simulated
[BHM94, BMH96, FH97, RSBT95].
Simulating
[DLM+17, KDL+95b, KDL+95a, NFG+10].
Simulation
[CDMS15, CCBPGA15, DMMV97, DZDR95, GSI97, GM95, GJN97, Ham95a, JML01, KBM97, KMK16, LLRS02, MFTB95, MPD04, MAN09, PCD14, PKYW95, PKKK02, RR00, RMB99, SSAS12, Str97, Ten95, UZC+12, ZZ04, ZWJK05, dIAMC11, Ano95d, AD+05, BJ95, BCM+16, BH95, BMPZ94b, CwCW+11, CSPM+96, DSO11, FHS099, FO94, FFFC99, GRTZ10, JAT97, JLS+14, KTJ03, KMC96, KMC97, LCVD94b, LCVD94a, LY123, MMW96, MALM95, NB96, NF94, OKM12, PARB14, PY95, RFH+95, SWYC94, SP+94, SKM15, Str96, Syd94, Tho94, YPA94, YEG+13, YSL+12, Eng00]. Simulation-Based
[ZWJK05]. Simulations
[CGS15, CNM11, DFMD94, DI02, GAF97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG+07, SM02, YPAE09, ADT14, ABG+96, BHS18, BADC07, GM18, Hin11, JMS14, LS10, LSVMW08, RMMN+12, SU96, WWFT11].
Simulator
[CAM12, MRR00, UTY02, WPC07, AMV94, LS10, PWD+12, WZWS08, ZAFAM16, ZZ95, KTJ03, Nak03, Nak05a, Nak05b].
Simulators
[SB95, AVA+16]. Singapore
[IEE96d]. Single
[BM00, HF14a, HF14b, MB00, URKG12, AGIS94, KKL11].
Single-Chip
[URKG12]. Single-sided
59

[BM00]. single/multigrid [AGIS94]. Sinks [JPT14]. Sites [Ano98]. Sixth
[HK95, IEE96c, MMH93, SW91]. size [GKCF13]. sized [JLS+14]. Sizes
[DALD18, ZSnH01]. SKaMPI [KR99, RSPM98, RH01, Reu01, RST02, Reu03].

SkelCL [SG14]. Skeleton [GB98, IH04, RJD14]. Skeletons [Ser97].
Skjellum [Ano95c, Ano00b]. Slack [KFL05, FKLB08]. SLAE
[ADRCT98, AK99]. Slave [LTR00, HP05].

SLEPe [DR18]. SLIC [KBHA94]. Slices [GSHL02]. Small [HLP11, TS12b, Ano94b].
small-footprint [TS12b]. Small-World [HLP11]. Smith [KDSO12]. Smithsonian
[Str94]. smoking [YSL+12]. SMP [Add01, CRE99, CRE01, CCBPGA15,
HD02a, DK06, GT01, GMdMBD+07, HD02b, Hus00, HIP02, JKHK08, KOI01,
KKH03, KMGG09, KAC02, NO02b, NO02a, ST02a, TOTH09, Trå02b, YWC11, bT01a].

SMPCkpt [DCH02]. SMPI [DLM+17]. SMPS [HLCZ00, NU05, SvL99]. SMPSs
[MLAV10]. SMPSSuperscalar [GCBL12]. SMT [PAdS+17]. SMT-based [PAdS+17].

snake [JPP95]. snake-in-the-box [JPP95]. Snir [Ano96a, Ano99a, Ano99c, Ano99b,
Ano99d, Nag05]. SnuCL [Lee12]. soccer [YMYI11]. socket [LS10]. Softshell
[SKK+12]. Software
[Ano94i, BME02, BPG94, BDG+xx, CZ95b, ESB13, FFP03, GBF95, Gre95, HPR+95,
HS94, HAA95, IEE95l, IEE96h, IF95, KS15a, KC94, KAMAMA17, KG93, LB16,
MEE03, NPS12, OI94, PZ12, Si96, TDBEE11, VdS00, Wis01, Wol92, Ano97,
BC99, Boi97, Bra97, BR94, CMV+94, CBBP02, DP97, Hum95, JH97, JB96.
LM94, MK94, Neu94, Old02, PHA10, PK05, PGK+10, RAS16, SHHI01, Sch94, Se99,
SP95, Str94, ZGN94, Ano94i, KC93, Si96].

Software-Managed [LB16]. Solaran [CGB+10]. Solaris [Ano01a]. solidification
[JLS+14]. solids [Hin11]. Solution

[DWL+10, FBSN01, HO14, RPM+08, SEF+16, Tsu12, VRS00, DWL+12, IM95,
JK10, LSR95, MALM95, ON12, PRS+14, SC96a]. solutions [AGIS94, LMG17]. Solve
[Hog13, Riz17, BAV08, Che99, GGGC99].

Solver
[Ben01, BP98, CF01, HSMW94, IDD94, LZ97, SJK+17a, SJK+17b, WJB14, AMS94,
CP15, DM12, JR10, LM99, Lou95, OGM+16, RM99, SRK+12, SCC95, THM+94, ZZG+14].

Solvers [DFN12, DALD18, GK10, MSB97, NO02a, NHT02, NLRH07, QRMG96,
RS97, WR01, AFB+17, ADLL03a, ADLL03b, ADDR95, BRR99, CL93, DR18,
MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94c, QR95, SSH08]. Solving
[ADRCT98, BHM94, BHM96, BV99, BG95, BDG+92c, BSH15, DALD18, GFG12,
Huc96, LLY93, MS02a, NF94, SAS01, SP11, SD99, BB95, DMS04, HAA95, LBB+16,
LYSS+16, MM11, SBB+16, SMSW06, YSVM+16, YSMA+17]. SOM [GkLyCY97].

Some
[BDT08, Mul01, Pet97, AL92, NN95, RSBT95]. Sopron [VV95]. Sorrento
[DKD05, DKD07]. sort [KVGHI11, PSHL11]. sorting [BHJ96, PSHL11]. Sound [SG12].

Source
[BG+15, MM07, AVA+16, NCB+17, Nob08, PSK+10]. Source-Code-Correlated [MM07].

Sources
[ZDR01, KM10]. South [ACM95a]. southeast [ACM95a]. Sowing [GL97a].

SP
[BBGP01, CE00, HMKV94, LC97b, WT11, WT12]. SP-1 [HMKV94]. SP-2 [LC97b].

SP1/SP2 [FF+94, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, MP95].

SPAA [ACM95b]. Space
[CML04, CB16, HO14, MSF00, OFA+15, SAS01, SS01, TA14, SRK+12].

Space-Sharing [CML04]. Space-Time
[HO14, SRK+12]. SPAI [BBS99]. Spain
[DL99]. SPAN [LHHM96, Li96]. Spanish
spanning [NCKB12]. Spark [KWEF18]. Sparse [AZ95, BBH12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADLL03a, ADLL03b, ER12, FJZ+14, GG99, Gra09, NHT06, XXL13].

SPEC [Ano03, MvWL+10, MBB+12, NA01, SGJ+03, TSBO3]. **Special** [AM07, BDT08, BDB+13, BC00, CHD09, DKD07, DKD08, GSA08, MP198, Bos96, Mar02, PN01, Ren01, Old02]. **Specific** [DM95b, DM95a, Glu14]. **Specification** [BG94a, BdS07, MGC12, MHSK16, BG94c, LPD+11]. **Specifications** [OFA+15, WMP14]. **Specified** [MGMH97]. **specifying** [LPD+11]. **specimen** [Rol08b].

SPECT [BCD96]. **spectator** [YMYI11]. **Spectra** [Str97, SR11]. **Spectral** [MW98, BCM+16, MGS+15]. **spectral/hp** [BCM+16]. **Speculation** [AELGE16, SHM14]. **Speculative** [RA09, dOSMM+16]. **Speed** [CDHL95, Tou00, AH95, BWT96, BID95, KMK16, CDH+95]. **Speeding** [CSV12]. **Speedup** [VPS17]. **SPH** [CP15, OLG+16, PBC+01, WMRR17]. **Sphere** [CT94a, CT94b]. **spherical** [KT10].

SPICE3 [WPC07]. **Spiking** [CAM12]. **Spin** [HLP11, KO14, KOM15]. **splitting** [TCBV10]. **SPMD** [BST+13, Dar01, KAC02, Wal00, Wal02]. **SPMD-Like** [BST+13]. **Spokane** [IEE93c].

Sponge [HSW+12]. **spontaneous** [EZBAI6]. **Spring** [Ano94g, IEE93a]. **SPTHEO** [Sat96]. **SPY** [SSG95]. **Squares** [PWP+16, VRS00]. **SR** [YWCF15, ZLP17]. **SR-IOV** [YWCF15]. **SR8000** [NN00, TSBO2, TSBO3]. **SS7** [LTL1C94]. **SSGM** [HPS+96]. **SSS** [MMH98]. **SSS-CORE** [MHH98]. **St** [Ma95]. **Stability** [DSS00]. **stable** [JMvW+17]. **Stage** [FSXZ14]. **staggered** [GM18]. **Stampi** [ITK00]. **Standard** [DM98, GSl97, GLP+00, GL95c, Hem94, MPI98, NH95, SKD+04, SGS10, Wer95, YKLD17, Ano94d, BDB+13, Bor99, Cla98, CG99b, DHHW93b, DOSW96, FB95, Gk97, GL92, Hem96, Sti94, VM95, Wal94a, Wal94b, WD96, Ano97, Bra97, CGH94, DOSW95, GLDS96]. **Standards** [FKK96, Thr99]. **Star** [CDM93, Coo95a, Coo95b]. **STAR/MPI** [Coo95a, Coo95b]. **Start** [Gro02b, Hus98]. **Startup** [PS07]. **State** [ACM11, IEE94f, IEE95j, Wis96a, Wis96b, BTC+17, LF93b]. **state-to-state** [BTC+17]. **states** [NS16]. **Static** [NIO+02, NIO+03, RL1RGP12, SCB15, SCB14]. **Static/dynamic** [SCB15].

Statics [TG94, TG94]. **Stationary** [AW98].

Statistical [LR01, SNMP10, AMHC11, KKM15, Roh00, SL94a, Vet02]. **Status** [Bak98, DZ98b, GL95c, BDG+93, BDG+93b, FHP95, Hem96, Sun96]. **stealing** [TCBV10].

Steepest [Sch01]. **Steering** [GKP97, PK98]. **Stencil** [CGU12, WTTH17, KD13, TBB12]. **stencil-based** [TBB12]. **step** [Kos95b, ZG98]. **Stereo** [ZBD12, Qu95]. **Steve** [Ano96a, Ano99a, Ano99b, Nag05]. **Steven** [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. **Still** [HCA16]. **Stochastic** [DK02, LLS02, MW98, PTMF18, RSV+05, JK10]. **Stockholm** [Eng00, HAM95b]. **Stokes** [Che99, DLR94, HSMW94, ID994, Lou95, PTT94, SCC95, ZZG+14]. **stop** [Gua16, LM17]. **stop-and-restart** [LM17].

Storage [ACM04, Hol12, LCC11, HP11, NFG+10, ZJDW18]. **stores** [HSP+13]. **straight** [YUL17]. **strayed** [Rol08a].

Stream [HSW+12, UGT09]. **Streamline** [CC+11].

StreamScan [YLZ13]. **Strength** [Kon00].

String [MM02, MM03]. **striped** [KSDO12]. **Strongly** [GAP97, ZZG+14]. **Structural** [PSSS01]. **Structure** [CBL10, LAFA15, SYF96, WDB05].
Structured [FB96, Mar06, MRB17, NLRH07, Ran05, Bis04, CLSP07, FR95, GBR15, JAT97, Smi93b].

Structures [GMDP98, JY95, KA95, OKW95, SHPT00, WB96, YPA94].

Studies [DHP97].

Studies [GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94].

Studies [DHP97].

Studies [GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94].

Studies [DHP97].

Studies [GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94].

Studies [DHP97].
Synchronous
[Ada97, BJ13, Cer99, DLRR99, HZG08].
Synergy [SSAS12]. Synergistic [UGT09].
Synthesis [CS14, GWC95], synthesized [MC17]. Synthesizer [DS16]. Synthesizing [AJF16, NP12]. Synthetic [CC17, DP94].
Syracuse [IEE96]. SYSMO [MM95].
System [Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BF97, BG12, CAM12, CGC+02, DBA97, DALD18, ERS95, ERS96, EK97, FBD01a, FBV02, FPP03, Fis01, Gal97, GCBM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, KBA02, LLRS02, LTR00, LLY93, Maf94, MRV00, MM02, MSF00, MMH98, MMS07, MMH99, NPP+00d, NMS+14, Oed93, PPT96a, RGD97, SGJ+03, SSCP97, SA93, ST02b, Sun93, TSS00b, Tsu07, UP01, Wil03, ARS89, AS92, AL92, BB94, Bri95, BBI+15, DL10, FNS99, FK94, GS91a, GS93, GS96, GMU95, GkLyCY97, HDDD09, Hum95, HS95b, IBC+10, IIT99, JH97, JLS+14, KW14, Kik93, LBD+96, LKL96, LL95, MA09, MMR99, MM+94, MA06, MM11, MS99b, MALM95, NAJ99, PPT96b, PPT96c, PK05, RJDH14, RTL99, SHHI01, SL94b, Sei99, SPL99]. System-Submitted [SGDM94, Sun96, Sur95b, VSR94, VSR95, WCC+07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, ZWZ+95, dCZG06, AL93, NMW93, Yan94]. System-Initiated [SSB+05]. System-on-a-chip [dCZG06].
System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [AAB+17, Ano94b, Att96, BCGL97, BGBP01, BME02, BPG94, Bh93, CDJ95, CAWL17, CFF+94, CSGW97, CJNW95, Coo95b, Fb96, FGKT97, Fon98, Gua16, HRS907, IIE93d, IIE94d, IIE95a, IIE95i, IIE96b, KKH03, KP96, KDL+95b, KCR+17, KS97, LY93, LW97, MW97, MBE03, MBJ15, MBB+12, SM03, SGS10, SS96, TMP16, THN00, USE94, YGH+14, YH96, ZB97, dGJIM94, AGR+95b, ACMZR11, ATL+12, Ano94e, BBB+94, BAV08, CKO+94, CLYC16, CBPP02, Coo95a, CPR+95, DF17, DR94, DBVF01, DvdLV94, FHB+13, GBR97, GCM+10, GEW98, GK90, GKF913, Gna09, GFGP12, GH+93, HAA95, IM95, JB96, JMM+11, KOSG13, KHB+99, KL15, KDL+95a, KFSS94, LR06b, LH98, LCV94b, LLH+14, MSL12, MvWL+10, Old02, OPW+12, Pan95b, Par93, QBl2, SSKF95, SPI95, SVC+11, Smi93b, SGI4, SMW06, SLN+12, Sun94b, TBB12]. systems [TMW17, TSP95, WCS+13, WWZ+96, WADC99, WYLC12, ZL96, ZGC94, dH94, diAMC11, diAMCFN12, JWB96]. Systemsoftware [Sei99]. systolic [BSC99].

T3D
[AZ95, AFST95, CCSM97, HHWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95].
T3E [BBS99, Boo01, Che99, GRRM99, LSK04, RBB97c]. T3E-512 [RBB97c].
T3E-600 [LSK04] [BR94].

Tabu [B915, Cza13, CB11]. Tags [Wis97].

Tags [Kha13]. takes [GB+93].

Talbot [ACMR14, Riz17]. Tapir [SML17].

targeting [JKM+17]. Task [AHD12, AAB+17, FFK96, GDDM17, GPC+17, IK000, LHTC96, Mar03, MJB15, NIO+02, NIO+03, NS313, NJ01, OP10, OS97, SGZ00, SPL+12, TBS12, TS12a, APBcF16, ABF+17, BAGH+05, GKFC13, OdSSP12, OPW+12, OP00, RRF96, RFR96, SKB+14, WC15].

Task-Based [AHD12, AAB+17, SPL+12, SKB+14]. Task-Overlapped [GPC+17].

Task-Parallel [NSS13, APBcF16, ABF+17]. Taskers [F96].

Tasks [DFA+09, Kaaim10, SHM+10, TSCA12, WC15].

Tasks [ACD+09, DT17, DFA+09, JW96, OP98, RR02, RDLQ12, YSS+17, BS01, DDYM99, DR95, FKK+96b, FKK96a, IvdLH+00, PKE+10].

TAU [MMS07]. taxonomy
LMG17, LS08, NCB+12, NCB+17, PKD95.

Tomographic [Pat93]. tomography [FWS+17, RCF96]. tomorrow [IEE94c].

Tool [Ano01b, Beg93b, BFMT96b, DW02, GSN+01, KAMAMA17, KJ14, KKP01, LMRG14, MMSW02, MK04, NE98, SR96, SGL+00, Tra12h, WL96a, AGG+95, BDP+10, Beg92, Beg93c, Beg93a, BDY99, BFMT96a, BW+12, CRR+95, DKF94a, FSTG99, HPR+95, HD11, LCC+03, MsSAS+18, TSS98, WL96b].

toolset [WL96a].

Toolbox [Ano97, Bra97].

Toolkit [Ano12, LC07, LLC13, SLS96].

Tools [ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vo03, Wan97, AVA+16, BDG+92a, BFIM99, Fan98, GFB95, LH98, MSW+95, MHC94a, ZL96].

Tools-supported [CDD+96].

Tool-support [Ano97, Bra97], Toolkit [Ano12, LC07, LLC13, SLS96].

Tools [ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vo03, Wan97, AVA+16, BDG+92a, BFIM99, Fan98, GFB95, LH98, MSW+95, MHC94a, ZL96].

Tools-supported [CDD+96].

Top [AHP01, Gal97, Hus01, Man01, PTH+01b, Ser97, BBCR99, PTH+01a, SSC96, SCL97, CCHW03].

TOP-C [CCHW03].

TopPe [JKM+17].

topologies [BCM+16, MK00].

Topology [DK06, Hat98, HM01, Tra02a, GJM+18, HRR+11, MBBD13, SPK+12].

topology-aware [MBBD13].

Topology-Based [HM01].

TOPPER [KKP01].

Toronto [GGK+93, Vos93].

Torus [SG15].

Townsend [DT94].

TPVM [FS95, FS98].

Trace [Ney00].

Traceback [dWSSM+16].

TraceFiles [FCP+01].

Traces [CC17, MAR09, WM01, CDS15, DWM12].

Tracking [CGLD01, DP94, KG96, CG93, Mor95, SGS95].

Trans [GAP97, HD02b].

Trading [BHMM94, BHM96].

traffic [Zah12].

Training [CSV12].

Transactional [BWW+12, MFG+08, SBG+12].

Transactions [BWW+12].

Transfer [BKGS02].

Transfers [THS+15].

Transform [YULMTS+17, KT10, DBLG11].

Transformation [EP96, NSZS13, GSMK17, HZ96, TSY00].

transformations [JE95, TG94].

transformed [BY12].

Transforming [PSK+10].

Transforms [ACMR14, LKL+16, HLP11, Uhl95c, Zem94].

Transient [SIS17].

transistor [ANO03].

transistors [ANO03].

Transition [MRV00].

Transitive [CGPR98, PPR01].

Translating [MAR09, NCB+12].

Translation [DDL00, SSE12, HCL05, LME09, NCB+17].

Translator [KMK16, UZC+12, CHKK15, GSC-FM13].

transmitters [WWZ+96].

Transparent [CCK+95, IFA+16, NPP+00c, SLGZ99, LFS93a, LFS93b, LFL11, NPP+00a, SOA11].

Transparently [CB16].

Transport [KHS01, RS97, VR00, WR01, ZI04, Pri14, SH94, WH96].

Transporter [Fer92].

transpose [Bha98].

Transposition [HD02b].

Transfer [Bra95, ACDR94, CJNW95, FF95, FN95, GH9+93, CM04, dGJM94, ZPLS96, Ar01, CJNW95, GH9+93, dGJM94].

Transputers [ACDR94, AGR+95b, dCH93].

TransTech [Ste94].

trap [LBB+16, SB+16, SSV+16].

TRAPPER [KFSS94, SSKF95].

travel [SSS99].

travel-times [SSS99].

traveling [GM94].

traversing [BDG+92b].

TreadMarks [LDCZ97].

Tree [GPC+17, ADB94, AB13, BCAD06, CG93, SGS95].

Tree [LL94, SOA11].

Trends [DEL15, JPTE94, SGDM94, SMM96].

Triangle [SL94a, SOA11].

triangular [Hog13, MBB15].

tricks [Fer04, LK14].

Triangular [SK17].

tripping [CZ96, SP96].

Truncated [ZB97].

Truncating [Ran07].

TSMDC [ANO03].

TSUBAME [NMB01].

Tsukuba [SH+10].

TTIG [RR+10].

Tucson [JB96].

Tuning [CZ02, Cz03, NPP+00d, SLJ+14, WG17, DBLG11, FE17, LGG16, SH14, Yan94, FVD00].

tuple [MYB16].

tuple-based [MYB16].
Turbulence [Str97, MRRP11, Str96]. Turbulent [BCM+16, CBYG18]. Tutorial [EM00a, EM00b, GBD+94, GLT00b, Nov95, Per96, Ano95b]. TV [CJ+10]. Twenty [ERS95, ERS96, HS94, IEE95c, MMH93]. Twenty-Eighth [ERS95]. Twenty-fifth [IEE95c]. Twenty-Seventh [ERS95]. Twenty-Sixth [HS94]. Twenty-Fifth [IEE95c]. Two [CM98, STY99, SJK+17a, SJK+17b, YMW97, AGR+95b, AL93, ADLI03a, ADLI03b, CB11, ED94, HAJK01, MSP93, dIAMCFN12]. Two-Dimensional [SJK+17a, SJK+17b, AL93]. Two-layer [dIAMCFN12]. Two-level [STY99]. Two-phase [ED94]. TX [ACM00, Cha05, DKM+92, Ano95a, Ano95d]. Type [GK10, MSB97, FVLS15, GFPG12]. Types [Wel94, NYNT12]. typy [OA17].

U.S. [LD01]. U.S.A [Ano94e]. Uberblick [Wer95]. UK [Abr96, AD98, EJL92, HK95, BP93, CJNW95, MC94]. UKMO [RSBT95]. ULFM [LCMG17]. Ultra [SJ02]. Ultra-High [SJ02]. Ultrafast [KRC17, FWS+17]. Umgebung [GBR97]. UML [RGD13]. UML/MARTE [RGD13]. Umpire [VdS00]. Unbalanced [OP10]. Uncertainty [MBS15]. Understand [DeP03]. Understanding [CRE01]. Unibus [KSSS07]. UNICOM [Ano93g]. unified [GKZ12, JC17, KSL+12, KL15]. unifies [RJDH14]. uniform [KSG13]. uniformly [Tra+12a]. Unify [VSR94, VSR95]. unifying [CCM12]. Unintended [SAL+17]. unit [VDL+15, MSML10]. United [Ba97]. Units [KS15b, LSVMW08, ABDP15, BHS18, LHLK10, WWFT11, HJB14]. Universal [LW97, DDL95]. University [CGB+10, IEE95d, IEE95j]. Unix [OLG01, RBS94]. unscharfer [Wil94]. Unstructured [AB93a, NO02b, SM02, SM03, AB93b, NO02a, TPD15]. unveils [Ano03]. UPC [EGC02, MTK16, Mar05, SJK+17a, SJK+17b]. Update [KT10, GSMK17]. Updates [ESB13, KS15a, ZDR01, HSE+17]. UPM [NPP+00d]. ups [Ano03]. USA [ACM96b, ACM98b, ACM00, ACM06a, AGH+95, BBG+95, BS94, Chat05, CGKM11, DT94, Ev01, Ed08, ERS96, Gat95, Ham95a, Hol12, IEE95b, IEE95d, IEE96f, IEE96e, IEE96i, MCD+08, Old02, PBBG+95, Re06, Sin93, Ten95, ACM95b, ACM97b, Agr95a, Ano89, B+05, DKM+92, HS94, IEE94e, IEE95k, IEE02, Ost94, SL94a, SS96, USE94, USE95, USE00]. Usage [FD02a, FCLG07, FD02b, FVLS15]. Use [FJBB+00, Gro02a, HK93, HK95, MB12, PSZ+E00, Shi94, AB95, GEW98]. USENIX [USE94, USE95]. User [AD98, ACDR94, BDG+91a, CHD07, CD01, CDN11, DKD05, D+91, DHH92, DHHW93a, DLM99, DPK00, DLO03, FCLG07, GBD+94, GN95, KGRD10, KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MT06, NPP+00c, Nov95, Per96, RWD09, TBD12, XF95, ZW05, Ano95b, BBB+94, BDW97, KCP+94a, RSC+15, Reu01, Wil94, BBH...13a]. User-Level [DHHW92, DHHW93a, KCP+94b, KOW97, NPP+00c, XF95, ZW05, KCP+94a, BBH...13a]. Users [Ara95, CHD09]. uses [SH96]. Using [AR01, ADRCT98, AHP01, And98, AP96, Ano95e, AKE00, AZG17, AB93a, B+13, BPMN97, BG95, BS93, BKGS02, BM97, Bon96, BBC+00, BBH12, CGC+11, CRE99, CMM03, CP97, CSPM+96, CC17, Che99, CSM97, CD93, CCHW03, CRGM14, CT94a, CCBPGA15, CD98, DeP03, DARG13, DAK98, DGMJ93, EM02, EMO+93, ESM+94, EK97, FAFD15, FD04, FTVB00, FS93, GGC99, GCGS98, GTH96, GM95, GKM7, GS96, GMPD98, GHL97, GN97, GLS94, GLT99, GLS99, GLT00b, GLT00a, HB96b, HSMW94, HJ98, HLP11, HT08, HRSA97, HT01, IOK00, ID94, IKM+01, JFGRF12, JPP95, KB98, KOI01, KKV01, KS96, KA13,
LLRS02, LTR07, LTRA02, LY93, LLY93, LZ97, LAFAX, MTSX94, MPDP04, MR12, MSCW95, MANN90, MBB+12, MSB97, NO02b, NI0+2, NI0+03, Neu94, NH95, NA01, OM96. **Using**
[OCY+15, OWSA95, PW+16, PK98, PPT96c, POL99, PT01, Per99, Pet97, PBK00, PD98, Pu95, QRMG96, QMRG00, RR00, Reu03, RRL01, RVMP12, RLL01, RRG+99, SAS01, Sev98, SSSA12, SP99, SA93, Smi93a, SBR95, ST97, SMOE93, Sta95b, ST17, SKH96, SCL01, SJ+17a, SJ+17b, TS12a, TSB02, TSB03, TK16, TBB12, Tha98, Tra98, Tso07, VLO+08, WO95, Wal01a, WJ12, WLR05, Wis97, Wis01, WLYC12, ZBd12, van97, vdLJR11, AMHC11, AK99, ABF+17, AL96, ADT14, ABG+96, AB03b, AGIS94, AGG+95, BV99, BFL99, BSC99, BG+92c, Bi95, Bi94, BCM+16, BTC+17, BCD96, BD95, BAG17, BSH15, BMG07, CG93, CBM+08, CBYG18, CdGM96, CS14, CT94b, CC00b, DG95, DS13, DRUC12, DSOF11, DCH02, DM12, EGDK92, FB96, FSV14, FSC+11, Fin94, Fin95, FHC+95, FWS+17, GGGC99]. **Using**
[GMK17, GG09, Geo02, GFB+14, GUM95, GM18, GRTZ10, HB96a, HDDG09, HTJ+16, HP11, HPS+96, HPLT99, HAP00, HLO+16, HAA+11, IJM+05, IM95, IKM+02, JF95, JKHK08, JLS+14, JYY+03, JMM+11, JPT14, JR10, JMDV+17, KAF6, KRKS11, KY10, Kat93, KJJ+16, KR09, KMK16, KME09, KMC96, KMC97, KRC17, KD13, KP13, LP00, LSG12, LSSZ15, LCY96, L SVMW08, LCMG17, LO96, MMR99, MP95, Mar06, MSMC15, MAB05, McK94, MM11, Mic93, Mic95, MRH+96, MMM13, MSML10, MS95, MM14, MC99, MvWL+10, NO02a, Nak05a, NZZ94, NB06, NAJ99, NU05, OKM12, OIH10, Obs95, Pat93, PDY14, PNV01, PKE+10, QRG95, RJC95, RAS16, RCS96, RBA17, RM99, RCG95, SHLM14, Sm10, SLGZ99, SGS95, SSS99, SMS00, SOA11, SVC+11, SSGF00, SFLD15, SSN94, SU96, SP11, TC94]. **using**
[Tsu95, Uhl94, Uhl95b, Uhl96, VM94, VB99, VGS14, VM95, WO96, Wal01b, WC+13, WCVR96, WST95, WMRR17, WADC99, Wor96, WYLC12, XF95, YULMT+17, YWCI11, YWCF15, ZWHS95, ZSK15, ZAT+07, ZZ95, Ano85c, Ano90a, Ano90b]. **UT** [Hol12]. **UTE** [JF95]. **Utilising**
[SC96a]. **Utilities** [CC95]. **UV2** [TW12]. **UVM** [NSL16].

V [JB96, BCC+02, BHK+06]. **V2** [BCH+03]. **VA** [Sin93, RP95]. **Vacancy** [HD02b]. **Vaidy** [Ano95b]. **Validation** [BDV03, GLB00, WCC12, CMV+94, SCB14, SCB15]. **Value** [vHKS94, AL96, LSR95, SP11, SD99]. **Value-based** [vHKS94]. **valued** [Str12]. **VAMPIR** [BNW01, NAW+96]. **Vancouver** [IEE95a, IEE95i]. **Vapour** [PKYW95]. **Variable** [Ano98, ZZG+14]. **Variables** [FKH02]. **Various** [LI95]. **varying** [Uhl95c]. **VCMON** [Wh94]. **vCUDA** [SCSL12]. **Vector** [AKL16, DS13, Fuj08, KDT+12, LL16, Uhl95c, Er12, FVLS15, FJZ+14, GL96, GL97c, Har94, Har95, HE15, PMZM16, XL13]. **Vectorization** [IKM+01, MCP17, IKM+02]. **Vectorized** [KB13]. **vectors** [AAAA16]. **Vegas** [Ano94e]. **Vehicle** [BHM94, BHM96, WH94, BKvH+14]. **Vendor** [Rab98, Bor99]. **Venice** [DLO03, OL05]. **venture** [Ano03]. **Verification** [BCD+15, RAS16, Tria12b, LMM+15, SZ11, VVD+09]. **verified** [WBBD15]. **verifier** [BCD+12, LGKQ10]. **verify** [MdsSAS+18, SMAC08]. **Verilog** [Kat93, KMK16]. **Versatile** [KSJ14]. **Version** [BCGL97, CCK+95, MHSX16, Bjo95, BHW+12, BBH+15, Man94, Str94, Wal95]. **versioned** [SSB+17]. **Versions** [Ano98]. **Versus** [RTRG+07, Ahm97, CE00, KPW05, KAC02, KPO00, LMG17, LC97b, MFTB95, NSL16, NHT02, NHT06, RS95, SZ99,
verteilter [GBR97].

VGRIDSG [AB93a, VIA [Sei99, FKKC96, BHW+12, CGZQ13, DS96b, GB96, Hos12, HCL05, LdiS+15, LSSZ15, NPP+00c, QC17, SLJ+14, Sti94, VBlvdG08, YPZC95, ZJDW18, ZLL+12, EM02, RR01].

References

[GBR97, Sei99]

References

AlQuraishi:2016:CBP

Agullo:2017:BGB

Almasi:2005:DIM

Akzhalaeva:2008:WPL

Arthur:1993:PIU

[AB93a] T. Arthur and M. Bockelie. A parallel implementation of the unstructured grid generation program VGRIDSG using PVM and APPL. In Sincovec [Sin93], pages 899–
REFERENCES

Arthur:1993:CUA

Aloiso:1995:UPW

Augusto:2013:APG

Ayguade:2010:EOS

Adhianto:2000:TOA

REFERENCES

Ayguade:2009:DOT

Arnold:1994:PCT

Acacio:2002:MDM

Alexandrov:1997:PMC

Agullo:2011:QOM

Andersch:2012:PPE

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPOPP '12 conference proceedings.

300, Silver Spring, MD 20910, USA, 1999.

REFERENCES

[J.-M. Adamo. ARCH, an object oriented MPI-based li-

Ada:1998:MTO

Antonuccio:1994:PTN

Addison:2001:EOP

Arioli:1995:PSB

Amestoy:2003:IIMa

Amestoy:2003:IIMb

[ADLL03b] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Xiaoye S. Li. Im-

[Alexandrov:1999:CGP][AFST95]

[Alexandrov:1999:CGP][AFST95]

[Amritkar:2014:EPC]

[Aldea:2016:OES]

[Ashby:1995:PPG]

REFERENCES

REFERENCES

Almeida:1995:CST

Alfaro:1997:FDW

Alnuweiri:1995:PHF

Astalos:2000:CMS

Agathos:2012:TBE

Awan:2017:CCD

Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi, and Dhabaleswar K. Panda. S-Caffe: Co-designing MPI runtimes and Caffe for scalable deep learning on modern GPU clusters. ACM SIGPLAN Notices, 52(8):193–205, Au-
Ahmad:1997:EVP

Aubrey-Jones:2016:SMI

Aversa:1997:MDP

Aguilar:1997:PMS

Aversa:1997:MDP

Armstrong:2000:QDB

Andersen:1994:PIA

Asai:1999:MIF

Abdelfattah:2016:KOL

Altevogt:1993:PTD

REFERENCES

REFERENCES

Anonymous:1993:ISA

Anonymous:1993:JFI

Anonymous:1993:MMP

Anonymous:1993:PSE

Anonymous:1993:SEC

Anonymous:1993:CDP

Anonymous:1994:ICS

Anonymous:1994:ALM

Anonymous:1994:FWR

Anonymous, editor. *Forschung und wissenschaftliches Rech-
Anonymous: 1994: MMP

Anonymous: 1994: PDC

Anonymous: 1994: PPC

Anonymous: 1994: PSE

Anonymous: 1994: SCC

Anonymous: 1994: SCC

Anonymous: 1994: SCC

Anonymous: 1995: CCS

Anonymous: 1995: BRPB

Anonymous. Book review: PVM: Parallel virtual machine: a users’ guide and

Anonymous:1995:BRU

Anonymous:1995:IPP

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In 3rd CLIPS conference — September 1994, Houston, TX [Ano95a], pages 203–211. ISBN ???. LCCN ???.

Anonymous:1996:BRMh

Anonymous:1996:IPP

Anonymous:1996:PPA

Anonymous:1996:RP

Anonymous:1997:TNR

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ????. ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMa

Anonymous:1999:BRMf

Anonymous:1999:BRMb

Anonymous:2000:BRUd

Anonymous:1999:BRMg

Anonymous:2000:BRUe

Anonymous:2001:AAL

Anonymous. Appendixes: Appendix A: Linux, Windows NT, AIX, Solaris; ap-

Anonymous:2001:EDP

Anonymous:2003:MNIc

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

Aji:2016:MEA

REFERENCES

Aji:2016:MAA

AlHaddad:2001:UNW

Arabnia:1995:TRA

Altas:1994:NIE

Arnow:1995:DLB

Abrossimov:1989:GVM

Al-Refaie:2017:PAH

Al-Refaie:2017:PCT

Al-Salman:1992:DIP

Awile:2014:PWF

Alonso:1997:PBB

REFERENCES

CODEN LNCS.D9. ISSN 0302-9743 (print), 1611-3349 (electronic).

REFERENCES

Angskun:2001:DPM

Arteaga:2017:GFG

Beyer:2005:GEC

Battre:2006:MFP

Dominic Battré and David Sigfredo. MPI framework for parallel searching in large biological databases. *Journal of Parallel and Distributed Computing*, 66(12):
Bader:2016:EMT

Becchi:2007:FMH

Bruel:2017:ACC

Baker:1998:MNC

Blaszczyk:1995:PCE

Buyukkececi:2013:POI

REFERENCES

[BBC+00] Steve W. Bova, Clay P. Breshears, Christine E. Cuicchi, Zeki Demirbilek, and Henry A. Gabb. Dual-level parallel analysis of harbor wave response using MPI and OpenMP. The Interna-
REFERENCES

Bosilca:2002:MVT

Bertozzi:1999:MIT

Bethune:2014:PAA

Bailey:1995:PSS

Bova:2001:PPM

Balaji:2010:FGM

Balaji:2011:MMC

Barrett:2014:EMM

Barak:1996:PPM

Bouteiller:2006:HPS

Bischof:2008:AAD

Christian H. Bischof, H. Martin Bücker, Paul Hovland,

REFERENCES

REFERENCES

Bircsak:2000:EONa

[BCC+00a]

Bircsak:2000:EONb

[BCC+00b]

Bouchard:1996:FCS

[BCF96]

Betts:2012:GVG

[BCD+15]

Baker:1999:MOO

[BCFK99]

Balaji:2010:IND

Pavan Balaji, Anthony Chan, William Gropp, Rajeev Thakur, and Ewing Lusk. The importance of non-data-communication overheads in MPI. The
Bala:1997:PVQ

Bouteiller:2003:MVF

Bun

Bikshandi:2009:EP1

Bruno:2000:PEH

REFERENCES

REFERENCES

REFERENCES

Beguelin:1992:SCG

Beguelin:1993:PHT

Beguelin:1993:PEC

Beguelin:1994:HHN

Beguelin:1995:REP

Beguelin:1993:PSS

Beguelin:1993:VDH

[BDH95] Jehoshua Bruck, Danny...

Bruck:1997:EMP

Jehoshua Bruck, Danny Dolev, Ching-Tien Ho, Marcel-Cătălin Roșu, and Ray Strong. Efficient mes-

Bronevetsky:2007:CFS

REFERENCES

[Beg92] Beguelin, A. Xab: a tool for monitoring PVM

References

Baker:1998:MNP

Berthou:2001:COH

Bubak:2001:PMS

Bischof:1994:CSM

Broquedis:2010:FEO

Bubak:1999:EFP
M. Bubak, W. Funika, K. Iskra, and R. Maruszewski. Enhancing the functionality of performance measurement tools for message passing environments. In Dongarra et al. [DLM99], pages 67–74. ISBN 3-540-
REFERENCES

REFERENCES

Broquedis:2012:LEO

Bronevetsky:2009:CA

Blanco:2002:PMA

Balasubramanian:2015:EGL

Bhanot:2005:OTL

Bischof:2008:PRM

Christian Bischof, Niels Guertler, and Andreas
REFERENCES

Butler:2000:SPM

Brune:1997:HMP

Breitenecker:1995:ESC

Bhargava:1993:PIW

REFERENCES

scalable VAMPIR approach.
CODEN LNCS94.
ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/bibs/2074/20740751.htm;

Barekas:2003:MAO
A multiprogramming aware OpenMP implementation.
CODEN SCIPEV.
ISSN 1058-9244 (print), 1875-919X (electronic).

Bondhugula:2008:PAP
[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
A practical automatic polyhedral parallelizer and locality optimizer.
CODEN SINODQ.
ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Bisseling:2002:FMF
[BHS+02] Georg Bisseling, Hans-Christian Hoppe, Alexander Supalov, Pierre Lagier, and Jean La-
tour.
Fujitsu MPI-2: Fast locally, reaching globally.
CODEN LNCS94.
ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer.de/link/service/series/0558/bibs/2474/24740401.htm;

Bazow:2018:MPS
[Dennis Bazow, Ulrich Heinz, and Michael Strickland.
Massively parallel simulations of relativistic fluid dynamics on graphics process-
ing units with CUDA.
Computer Physics Communications, 225(??):92–113, April 2018.
CODEN CPHCBZ.
ISSN 0010-4655 (print), 1879-2944 (electronic).

Berk:2012:PET
[Tobias Berk, Helge Hagenauer, and Marian Vajtersic.
Portable explicit threading and concurrent programming for MPI applications.
CODEN LNCS94.
ISSN 0302-9743 (print), 1611-3349 (electronic).
Busa:2012:ACO

Bae:2017:SEF

Bickham:1995:POM

Bernaschi:2005:ERA

Blas:2010:IEF

Branca:1995:CBH

A. Branca, M. Ianigro, and A. Distante. A comparison between HPF and PVM for data parallel algorithms on a cluster of workstations using a high speed network. In Hertzberger and Serazzi [HS95a], pages 930–931. ISBN 3-540-59393-4. ISSN

Bilger:1995:AFM

Bernaschi:1999:ERA

Biradar:1994:ADL

Bisseling:2004:PSC

Baiardi:1993:PVM

Boianov:1995:DLC

Barkati:2013:SPA

REFERENCES

Bjorge:1995:ISS

Blaheta:1997:PIP

Blaheta:1999:LFM

Bhandarkar:1996:MPM

Balevic:2011:KAD

Bhandarkar:2001:ALB

Bekas:2002:PCP

[BKGS02] Constantine Bekas, Efrosini Kokio pouloU, Efstratios Gallopoulos, and Valeria Simoncini. Parallel computation of pseudospectra using transfer functions on a MATLAB-MPI cluster platform. *Lecture Notes in Computer Science*, 2474:
REFERENCES

[Beazley:1997:EMP]

[Bubak:1998:PCL]

[Baraglia:1993:PWC]

[Bach:2013:LQB]

[Bubak:1998:PCL]

[Bhandarkar:1997:CRP]
Both:2000:SSM

Basumallik:2002:TOE

Buninas:2007:IES

Bronevetsky:2003:AAL

Bubak:1994:PDS

Bubak:1994:EMD

Baiardi:2001:CRD

Fabrizio Baiardi, Paolo Mori, and Laura Ricci. Col-

REFERENCES

Borkowski:1999:LVC

Boszormenyi:1996:PCT

Berthou:1998:PHM

Barbosa:1999:ADM

Beletsky:1994:OPV

Barbosa:1997:EUW

Baptista:2001:IOS

Balou:1991:DIV

Burrer:1994:RRB

C. Burrer and P. Remy. RUBIS: a runtime basic interface software on TELMAT T9000 TN series. In de Gloria et al. [dGJM94], pages 63–78. ISBN ???? LCCN ????

Bernardi:1995:CCE

Bernaschi:1995:PEI

M. Bernaschi and G. Richelli. PVMe: an enhanced implementation of PVM for
REFERENCES

Bernasch[1995:DRP]
i

BR95c

Bane:2002:EOA

BR04

Bergstrom:2012:NDP

BR02

Bane:2002:EOA

Bra97
REFERENCES

REFERENCES

Benzoni:1992:CLF

Benzoni:1992:CLF

Briley:1994:NNH

Briley:1994:NNH

Bruning:2012:MFT

Bruning:2012:MFT

Barth:1993:CNM

Barth:1993:CNM

Brightwell:2005:AIO

Brightwell:2005:AIO

Bolding:1994:PCR
Kevin Bolding and Lawrence Snyder, editors. Parallel computer routing and communication: first international workshop, PCRCW ’94, Seattle, Washington, USA, May 16–18, 1994: proceedings, number 853 in Lecture Notes in Computer Science. Springer-Ver-
REFERENCES

REFERENCES

on a Giganet SMP cluster.

Bu:2001:PAC

Libor Bu and Pavel Tvrđík. A parallel algorithm for connected components on distributed memory machines.

Bonelli:2017:MCA

Francesco Bonelli, Michele Tuttafesta, Gianpiero Colonna, Luigi Cutrone, and Giuseppe Pascazio. An MPI–CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster.

Badia:1999:SIT

Baltas:1994:CPC

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

Bihari:2012:CIT

Blum:1996:PIP

Bureddy:2012:OGM

Blattner:2012:PSC

CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

REFERENCES

Chabbi:2017:EAL

Cartwright:2000:AOE

Czapinski:2011:TST

Creech:2016:TSS

Cooper:1994:CHF

Casas:2010:APD

Che:2008:PSG

Chapman:2002:APU

Clay:2018:GAP

Chapple:1995:PUL

Cormen:1999:PBP

Ciaccio:2000:GMG

REFERENCES

Couturier:2000:PMD

Cardoso:2010:MSO

Chen:2017:AAG

Chen:2000:MCO

Couder-Castaneda:2015:PCM

REFERENCES

Yifeng Chen, Xiang Cui, and Hong Mei. PARRAY: a unifying array representation for heterogeneous parallelism. ACM SIGPLAN Notices, 47(8):171–180, August 2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160
REFERENCES

138

Cao:2013:CHP

Conforti:1996:PIA

Chang:1995:EPCb

Cowie:1994:PPP

Casanova:1995:PPM

REFERENCES

Chandra:2001:PPO

Colombet:1993:SMI

Casanova:2015:SMA

Cotronis:2011:RAM

Chaussumier:1999:ACM

Coll:2003:SHB

Ceron:1998:PID

Chau:2000:MVM

Clemencon:1995:AEP

Chen:2001:FFT

REFERENCES

REFERENCES

Calderon:2002:IMI

Camp:2011:SIU

Carter:2010:PLN

Clarke:1994:MMP

Cunningham:2014:RXE

Carpenter:2000:MML

Catanzaro:2011:CCE

Calore:2016:PPA

Chapman:2011:OPE

Chatterjee:1993:GLA

Caubet:2001:DTM

Jordi Caubet, Judit Gimenez.

[Jordi Caubet, Judit Gimenez.]
REFERENCES

Paolo Ciancarini and Chris Hankin, editors. *Coordination languages and models: First International Confer-
REFERENCES

REFERENCES

Cappello:2009:FSI

Chergui:1999:UPP

Cheng:2010:BRBb

Jie Cheng. Book review: CUDA by Example: An Introduction to General-Purpose GPU Pro-

Cho:2015:OA

Chapman:2001:PDE

REFERENCES

REFERENCES

Chandra:2007:ESP

Chang:2016:APC

Chapman:1998:OHI

Chapman:2005:O

Claver:1999:PCS

Cahir:2000:PMM

Margaret Cahir, Robert Moench, and Alice E. Koniges. Programming models and methods. In Koniges [Kon00], chapter 3, pages 27–54. ISBN 1-55860-540-1. LCCN QA76.58
REFERENCES

I483 2000. Discusses PVM, MPI, SHMEM, High-Performance Fortran, and POSIX threads.

Corbalan:2004:PMD

Carson:2003:CGU

Chapman:2012:OHW

Campanai:1994:EAS

Chou:2010:CMI

Chalkidis:2011:HPH
Georgios Chalkidis, Masao Nagasaki, and Satoru Miyano.
REFERENCES

Coelho:1994:EHC

Cooperman:1995:SBP

Cooperman:1995:SMB

Cotronis:1997:MPP

Cotronis:1998:DMP

Cotronis:2004:CMP

Coussement:1993:PMO

G. Coussement. Parallelization of a mesh optimization code on a RS/ 6000 cluster. In Anonymous [Ano93e], pages 185–212. ISBN ???? ISSN 0254-6213. LCCN ????
Carvalho:1997:PCC

Carissimi:1998:AEM

Cercos-Pita:2015:ANF

Corno:2001:UPS

ChassindeKergommeaux:1999:MER

Cappello:1999:PNB

Cappello:1995:PTA

Cappello:2001:UPS

REFERENCES

REFERENCES

Cao:2011:OMM

Cui:2012:OOB

Cavender:1995:APN

Cavender:1995:SSA

Chengqing:1996:WIP

Czarnul:2002:DTI

Czarnul:2003:PT
Pawel Czarnul. Programming, tuning and automatic parallelization of irregular
divide-and-conquer applications in DAMPVM/DAC.
The International Journal of
High Performance Computing
HPCFL. ISSN 1094-3420 (print), 1741-2846 (electronic).

Tabu Search for Quadratic Assignment Problem on
CODEN JPDCEP. ISSN
0743-7315 (print), 1096-0848
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S074373151200175X.

2016. ISBN 1-107-17439-2 (hardcover), 1-316-79583-

[CZG+08] Barbara Chapman, Weiming Zheng, Guang R. Gao,
Mitsuhisa Sato, Eduard Ayguadé, and Dongsheng
Wang, editors. A Practical Programming Model for
the Multi-Core Era: 3rd
International Workshop on
OpenMP, IWOMP 2007,
Beijing, China, June 3–7,
2007 Proceedings, volume
4935 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany /
Heidelberg, Germany / Lon- don, UK / etc., 2008. CO-
DEN LNCSD9. ISBN 3-
540-69302-5 (print), 3-540-
69303-3 (e-book). ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
???? URL http://
www.springerlink.com/
content/978-3-540-69303-
1.

Virtual Machine. Oak Ridge National Laboratory,

[D+95] J. J. Dongarra et al., editors. High performance computing: technology, meth-
ods, and applications (Advanced workshop, June 1994,
Cetraro, Italy), volume 10
of Advances in Parallel Com-puting. Elsevier, Am-
sterdam, The Netherlands,
1995. ISBN 0-444-82163-
5. ISSN 0927-5452. LCCN

[DAK98] I. Dimov, V. Alexandrov, and A. Karaivanova. Im-

Dieguez:2018:SLP

Danalis:2012:MCT

Darema:2001:SMP

Demidov:2013:PCO

deAndrade:2017:OFH

Demuynck:1997:DOD

[K. Demuynck, J. Broeck-

[daCunha:1993:PLA]

[Dow:2002:CMA]

[Didelot:2012:IMC]

[Didelot:2014:IMC]

[delCuvillo:2006:LOC]

[Dozsa:2000:THL]
REFERENCES

0558/papers/1908/19080258.pdf.

Decker:1995:TDU

Dongarra:1997:BCA

Dean:1994:CPV

Dan:1999:QAM

Durand:1991:HPC

Demaine:1996:FCC

DePasquale:2003:UJU

[DeP03] C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. *Cmg*, 2(?):821–832, 2003. CODEN ????

Dehne:2001:CPD

REFERENCES

Duran:2007:PEH

Demaine:2001:GCM

Deshpande:1994:ADN

Manish Deshpande, Jinzhang Feng, Charles L. Merkle, and Ashish Deshpande. Application of a distributed network in computational fluid dynamic simulations. The
REFERENCES

Diaz:2012:CCF

DAmbra:1995:CBC

Dinan:2014:ECC

DiNapoli:1997:DCA

Dinan:2012:EMC

deGloria:1994:TAS

REFERENCES

[DHK97] M. Derakhshan, S. Hammarling, and A. Krommer. PINEAPL: a European project on Parallel In-
REFERENCES

Dongarra:1997:CSD

Dongarra:1996:SRP

DiPierro:2014:PPP

DHS96

DI02

DiNucci:1996:CDS

DK02

Suchuan Dong and George Em Karniadakis. Dual-level parallelism for deterministic and stochastic CFD problems. In IEEE [IEE02], page ?? ISBN 0-7695-1524-X. LCCN ???? URL
REFERENCES

REFERENCES

Damo

daran-Kamal:1993:NTD

Damo

daran-Kamal:1994:MSR

Damo

daran-Kamal:1994:TRP

Dongarra:1992:PFS

Dongarra:2000:RAP

Dickens:2010:HPI

delaAsuncion:2011:SOL

[dAMC11] Marc de la Asunción,

Augustin Degomme, Arnaud Legrand, George S.

REFERENCES

[DiMartino:1997:IPD]
REFERENCES

0302-9743 (print), 1611-3349 (electronic).

Dongarra:1996:APC

Dinda:1996:PIA

Donev:2006:ICF

Sandes:2016:CIS

Dongarra:1995:IMS

Dongarra:1996:MPS
REFERENCES

[DeRoeck:1994:CFP]

[DP94]

[DPS05]

[DPSD08]

[Dou:1997:ISV]

[Decker:1994:PEM]

REFERENCES

Dowaji:1995:LBS

DiMartino:1997:MDH

Davina:2018:MCP

Deuzeman:2012:LMP

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES

Hoang-Vu Dang and Bertil Schmidt. CUDA-enabled sparse matrix-vector multiplication on GPUs using...

Deniz:2016:MGM

Dang:2017:ECB

Dietrich:2017:CBA

Davidor:1994:PPS

Dohi:2011:GIO

REFERENCES

REFERENCES

REFERENCES

[102x681] Dong:1996:SPL

[DXB96]

[Dyn+06]

[DYN+06]

[DZ98a]

[DYN+06]

[DZ98b]

[Dragovitsch:1995:PPS]

[Dragovitsch:1995:PPS]

[DZZY94]

S. G. Dykes, Xiaodong Zhang, Yan Zhou, and

1532-0626 (print), 1532-0634 (electronic).

Eleftheriou:2005:SFF

El-Ghazawi:2002:UPP

Eppstein:1992:PGC

Eickermann:1999:PID

Erhel:2014:DDM

REFERENCES

Rudolf Eigenmann and Tim Mattson. Tutorial M6B: Parallel programming with OpenMP: Part II. In ACM
Espenica:2002:PPA

Espinosa:1998:ADP

Espinosa:2000:APA

Engquist:2000:SVG

Hesham El-Rewini and Bruce D. Shriver, editors. Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences (HICSS-29): Wailea, HI, USA, 3–6 January 1996. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD

EWEDAFE:2011:PID

ETV94

ETV94

EV01

Rudolf Eigenmann and Michael J. Voss, editors. *OpenMP shared memory parallel programming: International Workshop on OpenMP Applications and Tools, WOMPAT 2001*,

Eckert:2016:HAL

Fabeiro:2015:AGO

Fabeiro:2016:WPP

Fabeiro:2016:HAL

Fang:1998:DDL

Freeman:1994:SMM
REFERENCES

Fang:1995:PMS

Fang:1996:SPP

Fang:1997:MDD

Fagg:2001:FTM

Fagg:2001:HFT

Friedel:2001:HMC

REFERENCES

REFERENCES

Fagg:1997:HMAa

Fagg:1997:HMAb

Falch:2017:RAM

Ferenczi:1992:AHW

Ferrari:1998:JNPb

Ferrari:1998:JNPa

REFERENCES

Possibly unpublished, except electronically.

Fernando:2004:GGP

FerreiradaSilva:2010:PBC

Fritzson:1995:PPA

Fava:1999:MPI

Frugoli:1999:DCH

Fousek:2011:AF
REFERENCES

Thomas Fahringer, Michael Gerndt, Graham Riley, and Jesper Larsson Träff. Formalizing OpenMP performance properties with ASL.

[I] Friedley:2013:OPE

E. A. Franke, S. D. Huffman, W. M. Carter, J. P. Baumbergarter, and D. J. Wenzel. AVTP — an architecture for visualization using remote parallel/distributed computing. In Grinstein

E. A. Franke, S. D. Huffman, W. M. Carter, J. P. Baumbergarter, and D. J. Wenzel. AVTP — an architecture for visualization using remote parallel/distributed computing. In Grinstein
REFERENCES

Field:2001:RTF

Franke:1994:MEI

Fang:1999:PMD

REFERENCES

REFERENCES

Lecture Notes in Computer Science, 2400:630–??, 2002.

Foster:1996:MCL

Foster:1996:CDT

Foster:1996:DSB

[FKKC96] Ian Foster, David R. Kohr, Jr., Rakesh Krishnaiyer, and Alok Choudhary. Double standards: Bringing task parallelism to HPF via the message passing interface. In ACM [ACM96c], page ?? ISBN 0-89791-854-1. LCCN QA 76.88

Foster:1996:GCM

Foster:1996:JTD

Freeh:2008:JTD

Foster:1996:JTD

Foster:1996:JTD

Florez:2005:LMM

REFERENCES

198

[Fagg:1996:TGR]

[Fagg:1998:MMH]

[Fachada:2017:CCF]

[Feeley:1990:PVM]

[Furlinger:2009:CAE]

[Fabero:1996:DLB]

[Fiala:2012:DCS]
David Fiala, Frank Mueller,

Filipovic:2015:OCC

Ferretti:2015:MCH

Fan:2017:SEE

Ferenc:1999:VMK

Femminella:1994:PBP

Ford:1995:NNN

Brian Ford. The new NAG numerical PVM li-
brary (or A new parallel numerical library based on PVM). In IFIP Working Group 2.5 [IF195], page ?? ISBN ?? LCCN ?? URL http://www.nsc.liu.se/~boein/ifip/kyoto/workshop-info/proceedings/}

[Foster:1998:GEM]

[FP92]

[FPY08]

[FR95]

[Fra95]

[FS93]

[FS95]
A. J. Ferrari and V. S. Sunderam. TPVM: distributed concurrent computing with
lightweight processes. In
IEEE [IEE95k], pages 211–
218. ISBN 0-8186-7088-
6. LCCN QA76.9.D5 I328
95TB8075.

Fischer:1997:ESP

M. Fischer and J. Simon.
Embedding SCI into PVM.
Lecture Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic).

Ferrari:1998:MDC

Adam Ferrari and V. S.
Sunderam. Multiparadigm
distributed computing with
TPVM. Concurrency: prac-
tice and experience, 10(3):
199–228, March 1998. CO-
DEN CPEXEI. ISSN 1040-
3108. URL http://www3.
interscience.wiley.com/
cgi-bin/abstract?ID=5374;
http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=5374&PLACEBO=IE.pdf.

Filgueira:2011:ACE

Rosa Filgueira, David E.
Singh, Jesús Carretero, Ale-
jandro Calderón, and Félix
García. Adaptive-CoMPI:
Enhancing MPI-based ap-
plications’ performance and
scalability by using adap-
tive compression. The
International Journal of
High Performance Compu-
ting Applications, 25(1):93–
114, February 2011. CODEN
IHPCFL. ISSN 1094-3420
(print), 1741-2846 (elec-
sagepub.com/content/25/1/93.full.pdf+html.

Fuerle:1998:IPC

T. Fuerle, E. Schikuta,
C. Loeffelhardt, and K. Stockinger.
On the implementation of a
portable, client-server based
MPI-IO interface. Lecture
Notes in Computer Science,
1497:172–??, 1998. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
tronic).

Fumero:2017:JTG

Juan Fumero, Michel Steuwer,
Lukas Stadler, and Christophe
Dubach. Just-in-time GPU
compilation for interpreted
languages with partial eval-
uation. ACM SIGPLAN No-
CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic).

Folino:1998:EMC

G. Folino, G. Spezzano,
and D. Talia. Evaluating
and modeling communication
overhead of MPI prim-
itives on the Meiko CS-2.
Lecture Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic).
Folino:1998:PEM

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP

Fernandez:2000:DCE

Fujimoto:2008:DMV

REFERENCES

REFERENCES

Galibert:1997:YCL

Gonzalez:2000:NSF

Gonzalez:2002:DLP

Gonzalez:2001:DSP

Gonzalez:2000:PAM

Gao:2003:LSP

Galaktionov:1997:MST

Gates:1995:PFI

Gupta:1994:CTE

Ghosh:1996:ELM

Gorlatch:1998:GMI

Geist:1994:PPV

Gentzsch:1995:STP

Golebiewski:1999:HPI

Gerstenberger:2014:EHS

Gabriel:1997:EMU

Edgar Gabriel, Thomas Beisel, and Michael Resch. Erweiterung einer MPI-Umgebung zur Interoperabilität verteilter MPP-Systeme. (German) [Extension of an MPI environment for interoperability with distributed MPI systems]. Studienarbeit angewandte Informatik RUS 37, Rechenzentrum Universität Stuttgart, Stuttgart, Germany, 1997.

Garain:2015:CCF

Sudip Garain, Dinshaw S. Balsara, and John Reid.

Graham:2007:OMH

Grove:2005:CBP

Garcia:2012:DLB

GarciaSalcines:1997:PRR

Garcia:1999:MMI

REFERENCES

Garcia-Consuegra:1998:DGR

Geist:1993:PTW

Gelado:2010:ADS

Galizia:2015:MCL

Gao:2013:GGA

Ghose:2017:FOT

REFERENCES

[Gei97] G. A. Geist. Advanced capabilities in PVM 3.4. Lec-
REFERENCES

Geist:1998:HNG

Geist:2000:PMW

Geist:2001:BFN

Grabowsky:1998:NMP

Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprint-Reihe des Chemnitzer SFB 393 Sonderforschungsbereich Numerische Simulation auf Massiv Parallelen Rechnern 97,08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998.

Gabriel:2003:FTC

Garzon:1999:PIE

Giannoutakis:2009:DIP

Giannoutakis:2007:MHP

Gallud:2001:EDF

Gallud:1999:DPR

Gallud:1999:CCU

J. A. Gallud, J. M. Garcia, and J. Garcia-Consuegra. Cluster computing using MPI and Windows NT to

Granat:2010:PSS

Granat:2009:NPQ

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

Geist:1997:CPF
G. A. Geist, II, James Arthur Kohl, and Philip M. Papadopoulos. CUMULVS: Providing fault tolerance, visualization, and steering of parallel applications. International Journal of Super-

REFERENCES

REFERENCES

[GLN+08] Michael Garland, Scott Le Grand, John Nickolls,

Gonzalez:2000:TSN

Gonzalez:2001:MIM

Gropp:1994:UMP

Gropp:1999:UMP

Gropp:1999:UMA

William Gropp, Ewing Lusk, and Rajeev Thakur. *Using MPI-2: Advanced Features of the Message Pass-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gropp:2001:CSA

Gropp:2001:LSM

Gropp:2002:BLC

Gropp:2002:MNS

Gropp:2012:MBW

G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

REFERENCES

Gruber:1994:PJE

Golbiewski:2001:MOS

Gropp:2007:TSM

Gennart:1996:CA

Gidra:2015:NGC

Guang:2016:NMN

Suo Guang. NR-MPI: A non-stop and fault resilient MPI supporting programmer defined data backup and restore for E-scale super computing systems. Supercomputing Frontiers and Innovations, 3(1):4–21, ????. 2016. CODEN ????. ISSN

DEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic). URL

Hamza:1995:PII

Haridi:1995:EPP

Hansen:1998:EMP

Hardwick:1994:PVL

Hardwick:1995:PVL

Hassanzadeh:1995:MMG
Hisley:2000:PPE

Hatazaki:1998:RRS

Haechler:1996:IAC

Hausner:1995:EIP

Huang:2006:ECS

REFERENCES

Huang:2008:FPM

Hamid:2010:CMB

Hunold:2016:RMB

Hurwitz:2005:AMP

Huang:2005:TME

Hu:2016:CLG
Liang Hu, Xilong Che, and

He:2000:PAA

Ding:2002:MOP

He:2002:MOP

Harvey:2011:STP

Hoeffer:2012:LMO

Hoeffer:2013:MMN

Hadjidoukas:2009:HPF

Hoefler:2015:RMA

Heikonen:2002:ILB

Hadi:2013:CFA

Havran:2015:EBT

Hebeker:1993:CPC

Herland:1998:CML

Huang:2009:EGO

Hempel:1994:MSM

Hempel:1996:SMM

Holmen:2014:ASI

Holmen:2014:EAS

Hursey:2012:AF

Joshua Hursey and Richard L. Graham. Analyzing fault aware collective performance in a process fault tolerant MPI. Parallel Computing, 38(1–2):15–25, Jan-

REFERENCES

[102x681]REFERENCES

[177x646]238

[Hinde:2011:QMD]
Robert J. Hinde. QSATS: MPI-driven quantum simulations of atomic solids at
zero temperature. *Computer Physics Communications*, 182(11):2339–2349,
November 2011. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).
URL http://www.sciencedirect.com/

[177x634]science/article/pii/S0010465511001615

[HJBB14]
Clifford Hall, Weixiao Ji, and Estela Blaisten-Barojas. The Metropolis Monte Carlo
CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
URL http://www.sciencedirect.com/

[177x622]science/article/pii/S0021999113007626

[HJYC10]
Lei Huang, Haoqiang Jin, Liqi Yi, and Barbara Chapman. Enabling locality-
aware computations in OpenMP. *Scientific Programming*, 18
CODEN SCIPEV. ISSN 1058-9244 (print), 1875-919X (electronic).

[HK93]
Geerd-R. Hoffmann and Tuomo Kauranne, editors. *Proceedings of the Fifth ECMWF Workshop on the Use of Parallel Processors in Meteorology. Parallel Super-
computing in Atmospheric*
Henriksen:1994:PCF

Hoffmann:1995:CAP

Hong:2009:AMG

Hong:2010:IGP

Hiranandani:1994:CTB

Hoeflinger:2001:IPV

REFERENCES

bibs/2104/21040040.htm;

Hong:2011:ACG

Hori:2012:EKL

Hasanov:2017:HRC

Hu:2000:ONS

Haque:2017:CCL

Hung:2016:EBP
[Che-Lun Hung, Chun-Yuan Lin, Chia-Shin Ou, Yuan-Hong Tseng, Po-Yen Hung,

Hong:1996:RDM

Hawick:2010:PGC

Hawick:2011:RLS

Huband:2001:DTB

Hilbrich:2009:MCC

Hakula:1994:FEM

K. A. Hawick and D. P. Playne. Hypercubic storage layout and transforms in arbitrary dimensions using GPUs and CUDA. Concurrency and Computation:
REFERENCES

Hidalgo:1999:MMP

Hadjidoukas:2002:MOI

Hariri:1995:STE

Hondroudakis:1995:PEV

Heckathorn:1996:SSP

Hilbrich:2012:MRE

Hilbrich:2013:MRE

Tobias Hilbrich, Joachim
REFERENCES

[HRZ97]

Hariri:1993:MPI

[HZ97]

Hempel:1997:IMN

[H97]

Hartley:1993:CPS

[H94]

Hesham:1994:PTS

REFERENCES

Huckle:1996:PIS

Humphres:1995:LBE

Husbands:1998:MSD

Huse:1999:CCD

Huse:2000:MOS

Huse:2001:LST

Hamidouche:2016:CAO

[HVA+16] Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan, Hari Subramoni, Ching-Hsiang Chu, and Dhabaleswar K. Panda. CUDA-aware OpenSHMEM: Extensions and designs for...

Houzeaux:2011:HMO

Hoekstra:1995:CPP

Hager:2011:IHP

Huang:2002:DDD

He:2009:AVS

REFERENCES

(electronic). See remark [SWH15].

Hwang:1997:EMC

Huang:2013:ACM

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP

Hou:2008:BBS

Isaila:2010:SMP

[IBC+10] Florin Isaila, Francisco Javier Garcia Blas, Jesús Carretero, Wei keng Liao,

REFERENCES

IEEE:1994:PTI

IEEE:1994:PSW

IEEE:1995:IIIC

IEEE:1995:CP1

IEEE:1995:DPT

REFERENCES

REFERENCES

IEEE:1996:PIS

IEEE:1996:PPII

IEEE:1996:PFE

IEEE:1996:PSI

IEEE:1996:PSII

REFERENCES

REFERENCES

puter Society Order Number P2312.

Iwama:2001:PLS

Iwama:2002:PLS

Iwashita:1994:IPE

Ingle:1995:MAS

Ishizaka:2000:CGT

Ilroy:2001:IMP

REFERENCES

Ilie:2016:AEC

Satak:2012:OGA

Imamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IA
Mohammad Towhidul Islam, Purimala Thulasiraman, and Ruppa K. Thulasiram. Implementation of ant colony optimization algorithm for mobile ad hoc network applications: OpenMP experiences. Parallel and Distributed Computing Prac-
REFERENCES

REFERENCES

Jin:2008:PEM

Jaeger:2015:FGD

Jenkins:2014:PMD

Jeremiassen:1995:RFS

Jesshope:1993:LRV

Jesshope:1993:MCA

Jann:1995:AMP

Joejon Jann and Hubertus Franke. Analysis of an MPI program using UTE on the IBM SP2. Research report RC 20085 (88832), IBM
REFERENCES

Julian-Moreno:2017:FPA

Jorba:2001:SFF

Jung:2014:MCM

Jo:2015:ALM

Jon:1996:LLM

[Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:P

Jiang:2012:OSP

Juric:1995:UPV

Joldes:2014:SSH

Joubert:1994:PCT

Jost:2010:EUH

Jimenez:2013:BCA

Judd:1994:PIV

D. Judd, N. K. Ratha, P. K. McKinley, J. Weng, and

Jin:2013:PCU

Jung:2005:DIM

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M^3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jaaskelainen:2015:PPP

Ju:1996:SPT

Jain:1996:IOP

Jin:1995:LTP

REFERENCES

Ke:2004:RCM

Klemm:2007:JIO

Karamcheti:1994:SOM

Krawezik:2006:PCM

Kacsuk:1997:GDD

Konuru:1994:ULP

Konuru:1994:UPP

R. Konuru, J. Casas, R. Prouty, S. Otto, and
REFERENCES

Kotselidis:2017:HMR

Kanal:2012:MMC

Krotkiewski:2013:ESC

Klingebiel:1995:COD

Klingebiel:1995:CPO

Kakimoto:2012:PCG

REFERENCES

Klemm:2012:EOV

Komatitsch:2010:HOF

Kepner:2005:PPM

Jeremy Kepner. Parallel programming with MatlabMPI.

KFA96

KFL05

KFSS94

KPG94

Janusz S. Kowalik and Lucio Grandinetti, editors. Software for parallel computation: Proceedings of the NATO Advanced Workshop on Software for Parallel

Kep05

Kumm:2012:EOV

KFA96

KFL05

KFSS94

KPG94

Kowalik:1993:SPC

Kohl:1996:PTF

Kainz:2009:RCM

Keller:2003:TEE

Kafura:1996:CCC

D. Kafura and L. Huang. Collective communication and communicators in mpi++. In IEEE [IEE96i], pages 79–

REFERENCES

Kjolstad:2012:ADG

Kojima:2017:HLG

Kikuchi:1993:PAS

Kranz:1993:IMP

Kwon:2012:HAO

Kim:2016:DOF
REFERENCES

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Krysztop:2002:IFP

Kranzlmuller:2005:RAP

[KKD05] Dieter Kranzlmüller, Peter Kacsuk, and Jack Dongarra. Recent advances in Parallel Virtual Machine and...

Kranzlmuller:2003:RAP

Kee:2003:POP

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO

Kobler:2001:DOP

Karrels:1994:PAM

Kofakis:1995:DPI

Liao:2011:DEM

Liao:2006:SDI

Liao:2007:CCS

Klawonn:2015:HMO

Kutyniok:2016:SFD

Kim:2015:OBU

Khanna:2010:NMG

Kormicki:1996:PLS

Kormicki:1997:PLS

Komatitsch:2009:PHO

Koholkat:1999:MPR

Kumar:2014:OMC

Kobayashi:2016:HSV

Kirk:2010:PMP

[KmWH10] David B. Kirk and Wenmei W. Hwu. *Programming massively parallel processors hands-on with CUDA*. Mor-

REFERENCES

REFERENCES

[KPW05] Humaira Kamal, Brad Penoff, and Alan Wagner. SCTP versus TCP for MPI. In ACM [ACM05], page 30. ISBN 1-59593-061-2. LCCN ????.

Kranzlmuller:2002:RAP

Kouetcha:2017:USP

Kunasetc:2013:ASD

Kalentev:2011:CCL

Kranzlmueeller:1999:MOM

Kotsis:1996:EEP

Krantz:1997:CSC

Krawczyk:2001:PIM

Kim:2013:MPE

Kovinen:2015:TAC

Kaliman:2015:SNU

Kuszano:2001:OOC

Katkere:1996:VWI

Katkere:1995:VBW

Kim:2012:OUP

REFERENCES

Kusano:2000:PEO

Kurzyniec:2007:UCA

Keppens:2002:OPM

Kov:2010:USB

Karonis:2003:MGG

Komatitsch:2003:BDF

Kuhn:1998:FFW

Kumar:1994:PPI

Kranzlmueller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

W. Krotz-Vogel and H.-C. Hoppe. The PALLAS

Félix César García López and Nieves Luz Frías Arrocha. Expanding the

Istvan Lorentz, Razvan Andonie, and Levente Fabry-

[LB98]

[LB09]

[LB96]

[Lashgar:2016:ESM]

[LB16]

REFERENCES

Lawton:1996:BHP

Ling:2012:HPP

Lewis:1993:PCP

Luecke:1997:HPF

Li:2007:DIV

Kuan-Ching Li and Hsun-Chang Chang. The design and implementation of visual performance monitoring and analysis toolkit for cluster and Grid environments. *The Journal of Supercomputing,*
REFERENCES

Luecke:2003:MCT

Liddell:1996:HPC

Lashuk:2012:MPA

Losada:2017:RMA

REFERENCES

Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

Liu:1996:BMP

Lee:2001:APT

Lu:1997:QPD

REFERENCES 296

Jun Liu, Wei Ding, Ohyoung Jang, and Mahmut Kandemir. Data layout optimization for GPGPU architectures. ACM SIGPLAN Notices, 48(8):283–284, August 2013. CO-
DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
tronic). PPoPP ’13 Conference proceedings.

DEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Jaejin Lee. SnuCL and an MPI + OpenCL implementation of HPL on heterogeneous CPU/GPU clusters. In ???, editor, ATIP ’12: Proceedings of the ATIP/ A*CRC Workshop on Ac-

A. H. M. Levelt, editor. ISSAC ’95: International symposium on symbolic and algebraic computation — July 10–12, 1995, Montréal, Canada, ISSAC — Proceed-

K. H. Law, R. E. Fulton, et al., editors. Engi-
neering data management: key to success in a global market: proceedings of the 1993 ASME International Computers in Engineer-
ing Conference and Exposi-
tion, August 8–12, San Diego, California. COM-
PUTERS IN ENGINEER-
ING VOL COM. American Society Mech. Engi-

J. M. Levesque and R. Friedman. The state of the art in automatic parallelisation. In Anonymous [Ano93f], pages

REFERENCES

ISSN 1532-0626 (print), 1532-0634 (electronic).

Li:2010:SVC

Lassous:2000:HGA

Leung:1995:EPE

Leung:1998:PAN

Liao:2007:OOP

Lee:1996:TSF

Lin:1994:DNC

Mengjou Lin, Jehwei Hsieh, D. H. C. Du, J. P. Thomas,

Lin:1995:DNC

Li:1996:PSI

Li:1996:SIS

Li:1996:PIO

Lu:1998:ONW

REFERENCES

REFERENCES

Luecke:2003:CPM

Liang:1996:AEO

Luecke:2004:PSM

Ludwig:1995:PPF

Li:2003:PNH

Luecke:2001:SPO

REFERENCES

wiley.com/cgi-bin/fulltext?ID=85007180&PLACEBO=IE.pdf.

Lin:2016:VDF

Li:2013:COM

Luo:2014:ISM

Langlais:2002:SSM
Li:1993:SLL

Loh:1994:ISR

Larsen:1999:SPG

Lu:2013:MLP

Lee:2009:OGC

Losada:2017:ARV

Lopez:2015:PBV

REFERENCES

Lou:1995:PIN

REFERENCES

Lee:2014:BCA

Luo:2001:PDE

Latham:2007:IMI

Li:2001:WMB

Luckow:2008:MFT

Lin:2010:TLS
Paul T. Lin and John N. Shadid. Towards large-scale

Lashgar:2015:CSR

Levesque:2012:HEA

Luecke:2004:PSS

Liu:2011:CBA

Lumsdaine:1995:WIM

Li:2015:AMR
Jiansen Li, Jianqi Sun, Ying Song, and Jun Zhao. Ac-

Liu:2008:AMD

Lazzarino:2002:PBP

Langr:2014:APP

Lazar:1994:SRE

Laohawee:2000:PDT
bibs/1908/19080297.htm;

Lee:2002:IPC

Luo:1999:SMV

Lusk:2000:IIC

Lee:2012:EED

Liu:2004:BMI

REFERENCES

Li:1995:CPP

Ludwig:1997:OUI

Liu:2004:HPR

Lu:2013:WGA

Li:1997:EHC

Loncar:2016:OOM

Lu:2013:WGA

Li:1997:EHC

Konming Gary Li and Nabil M. Zamel. An evaluation of HPF compilers and the implementation

Luecke:2002:DDM

[LI:2018:COM]

Luecke:2002:DDM

[LI:2017:PCO]

Ma:2009:CRS

[MA09]

Mavriplis:2005:HRAa

Miguel:1996:APN

[JOSÉ MIGUEL, AGUSTÍN ARRAVARRENA, RAMON BÉIVIDE, AND JOSÉ ANGEL GREGORIO.] Assessing the performance of the new IBM
REFERENCES

[Mainland:2012:EHM] Paolo Malfetti. Appli-

Mirvis:1995:HML

Manchek:1994:DIP

Mans:1998:PDP

Manis:2001:PNP

Miguel-Alonso:2009:INS

REFERENCES

REFERENCES

Mattson:1995:PEP

Mattson:2000:BOF

Mattson:2000:IO

Mattson:2001:EO

Mattson:2003:HGO

Matuszek:2001:APS

Mourao:2000:SSC

[MB00] Elson Mourão and Stephen Booth. Single sided communications in multi-protocol MPI. *Lecture Notes in
REFERENCES

Andrew J. Maier and Bruce F. Cockburn. Op-

REFERENCES

Moreira:2017:FCR

McRae:1992:VC

Mierendorf:2000:WMB

Muller:2009:EOA

Matheou:2017:DDC

Megson:1998:CRH

Milovanovic:2008:NEE

Moody:2003:SNB

Martin:1995:DPC

Mintchev:1997:TPM

S. Mintchev and V. Getov. Towards portable message

Raffaele Montella, Giulio Giunta, Giuliano Laccetti,

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MK94]</td>
<td>Luděk Matyska and Jaroslav Brodský.</td>
</tr>
</tbody>
</table>

McDonald:1997:IPT

McDonald:2000:TPA

Mohror:2004:PTS

Maheo:2012:AOL

Markus:1996:PEM

Min:2001:PCO

REFERENCES

Mokbel:2011:ASR

Mitra:2014:AAP

Marjanovic:2010:ECC

Marowka:2004:OOA

Marendic:2016:NMR

Majumdar:1992:PPC

REFERENCES

1992. CODEN TANSAO. ISSN 0003-018X.

Mantovani:1995:HPS

Michailidis:2001:TSH

Michailidis:2002:PSL

Michailidis:2003:PEL

Marathe:2007:SCC

Michailidis:2011:PDM

Panagiotis D. Michailidis and Konstantinos G. Margaritis. Parallel direct methods for solving the sys-

Morishima:2014:PEG

Malony:1994:PAP

Mudge:1993:PTS

Morimoto:1998:IMM

Morimoto:1999:PEM

Mohamed:2013:MMM

Hisham Mohamed and Stéphane Marchand-Maillet. MRO-MPI: MapReduce overlapping using MPI and an optimized data exchange policy.

D. E. Martin, T. J. McBryer, and P. A. Wilsey. WARPED:
a time warp simulation kernel for analysis and application development. In H. El-
Rewini and B. D. Shriver, editors, Proceedings of the Twenty-Ninth Hawaii In-
nernational Conference on System Sciences, volume 1, pages 5–??, 1996.

Meleshchuk:1991:IPP

S. B. Meleshchuk and A. N. Nedumov. Implementation of a protocol for parallel database access with virtual machine communications facilities. Program-
mirovanie, 17(1):35–42, January/February 1991. CO-
DEN PCSODA. ISSN 0132-

Midorikawa:2005:PNM

Edson Toshimi Midorikawa, Helio Marci Oliveira, and Jean Marcos Laine. PEM-
CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http:
33&issue=5&spage=499.

Mork:1995:DPP

P. Mork. Debugging parallel programs with execution tracing. In Ferenczi and
Kacsuk [FK95], pages 176–183. ISBN ???. LCCN ???. Technical report
KFKI-1995-2/M.N.

Manke:1995:MPP

J. W. Manke and J. C. Pat-
terson. Message passing per-
f ormance of Intel Paragon,
IBM SP1 and CRAY T3D using PVM. In Bailey et al.
[BBG+95], pages 768–769.

Martin:2004:HPA

María J. Martín, Marta
Parada, and Ramón Doallo.
High performance air pol-
(print), 1573-0484 (elec-
tronic). URL http://
ipsapp008.kluweronline.
com/IPS/content/ext/x /
J/5189/1/54/A/5/abstract. htm.

MPIForum:1998:SIM

MPI Forum. Special issue:
MPI2: a message-passing
interface standard. Interna-
tional Journal of Super-
computer Applications and
REFERENCES

Muller:1996:CDI

Martins:2012:PDC

Meister:2017:PME

Mo:1996:IOP

Mininni:2011:HMO

Mazzocca:2000:TPP

REFERENCES

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

Mierendorff:1999:PMB

Migliardi:1999:PEH

Mourao:1999:IMO

Macias:2002:SEA
REFERENCES

Mahinthakumar:2002:HMO

Mertens:2004:CCP

Mysliwiec:1997:IPS

Migliardi:2000:SFT

McCandless:1996:OOM
B. C. McCandless, J. M. Squyres, and A. Lumsdaine. Object oriented MPI

Massetto:2012:NSB

Martin:2015:EPM

Molnar:2010:APM

Macias:2001:PPA

Matrone:1993:LPC
REFERENCES

Mysliwiec:1997:CAM

Martins:1998:JIW

Martorell:2005:BGP

Mossaiby:2017:OIH

Miei:1996:IER

Mallon:2016:MUB

Marin:1994:GAL

F. J. Marin, O. Trelles-Salazar, and F. Sandoval. Genetic algorithms on LAN-Message passing architectures using PVM: Applica-

Muller:2003:OCB

Malakar:2017:DMO

Manis:1996:EPT

Muller:2010:SMA

Mehra:1995:AIM

McKinney:1993:MMI

Mamontov:1998:AES
Y. V. Mamontov and M. Willander. An algorithm to evaluate spectral

Manegold:1997:QBM

Morton:1995:LLP

Maleki:2016:HOT

Maly:1993:DCP

Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

Nagle:2005:BRM

Nicolescu:1999:PWA

Nakajima:2003:PIS

Nakajima:2005:TLH

Narashimhan:1995:IIF

Nagel:1996:VVA

NicCanna:1996:LGS

C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ???? LCCN ????

Nickolls:2008:SPP

Neyman:1999:ERP

Nguyen:2012:BTM

Nguyen:2017:ATM

Nobari:2012:SPM

Sadegh Nobari, Thanh-Tung

REFERENCES

Norden:2006:OVM

Nakano:2002:SCG

Nakano:2003:SCG

Nitsche:2000:TCM

Nicolescu:2001:DTP
Cristina Nicolescu and Pieter Jonker. A data and task parallel image processing environment. *Lec-
REFERENCES

Norden:2007:DDM

Nadeau:1995:SVR

Nomura:2014:PAM

Nanayakkara:1993:PIR

Nupairoj:1995:PES

Nishitani:2000:IEO
Yasunori Nishitani, Kiyoshi Negishi, Hiroshi Ohta, and Eiji Nunohiro. Implementation and evaluation of OpenMP for Hitachi

Nakajima:2002:PISb

Nakajima:2002:PISa

Noble:2008:GMY

Novotny:1995:BPP

Nemer-Preece:1994:LBH

Nicole Anne Nemer-Preece.

Notz:2012:GBS

Nagara:1991:MHL

Naumenko:2016:ACT

Nadal-Serrano:2016:PSC

Nukada:2012:SMG

Akira Nukada, Kento Sato, and Satoshi Matsuoka. Scalable multi-GPU 3-D FFT for TSUBAME 2.0 supercomputer. In Hollingsworth [Hol12], pages 44:1–44:??
REFERENCES

REFERENCES

Nguyen:1994:DCE

Omar:2017:PSF

[Cyrus Omar and Jonathan Aldrich. Programmable semantic fragments: the design and implementation of typy. ACM SIGPLAN Notices, 52(3):81–92, March 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).]

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Olivier:2012:CMW

Oed:1993:CRM

[Wilfried Oed. The Cray Research massively parallel processor system CRAY]
REFERENCES

Ong:2000:PCL

Owaida:2015:EDS

Otten:2016:MOI

Okitsu:2010:HPC

Ohara:2006:MMP

Oh:2012:MOO

Kwang Jin Oh, Ji Hoon Kang, and Hun Joo Myung. mm_par2.0: An object-oriented molecular dynam-

Oakley:1995:ADR

Orlando:2005:PSP

Oldehoeft:2002:SIS

Ong:2001:SUC

Oger:2016:DMM

G. Oger, D. Le Touzé, D. Guibert, M. de Leffe, J. Biddiscombe, J. Soumagne, and J.-G. Picci-

OBrien:2008:SOC

ODowd:2006:WGM

Orlando:2000:MDT

Olivier:2012:OTS

[Ott94] S. W. Otto. Processor virtualization and migration for PVM. In Dongarra and
REFERENCES

Otto:1992:MAP

Otto:1992:MAP

Ouenes:1995:PRA

Pacheco:1997:PPM

Pacheco:1997:PPM

Panda:1995:GRW

Panda:1995:GRW

Panda:1995:IDE

Panda:1995:IDE

Panda:2014:GAM

Panda:2014:GAM

Pereira:2017:SBC

Pereira:2017:SBC
REFERENCES

REFERENCES

Plazek:1999:IIC

Plazek:2000:SCC

Puthukattukaran:1994:DIP

Peng:2014:IDI

Poggi:1998:UPD

REFERENCES

SODM. ISSN 0164-1212 (print), 1873-1228 (electronic).

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1997:BRM

Pereira:1999:RPP

Pernice:1999:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

REFERENCES

Petcu:1997:ISM

Petcu:2000:PDAa

Petcu:2000:PDAb

Petcu:2001:WMM

Pharr:2005:GGP

Piernas:1997:APM

REFERENCES

CODEN LNCS.D9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Pjesivac-Grbovic:2005:PAM

Pjesivac-Grbovic:2007:PAM

Pjesivac-Grbovic:2007:MCA

Prabhakar:2002:PCB

Pervez:2010:FMA

Papakonstantinou:2013:ECC

Alexandros Papakonstantinou, Karthik Gururaj, John A. Stratton, Deming Chen, Jason Cong, and Wen-Mei W. Hwu. Efficient compilation of CUDA kernels for

Pan:2010:CPS

Pennycook:2011:PAH

Pennycook:2013:IPP

Pierce:1994:NMP

Papadopoulos:1998:DVS

Park:2005:SOA

Pruyne:1996:ICP

Plachetka:2002:QTS

Park:2004:DID

PiriyaKumar:2002:EFl

Pfennning:1995:OCP

Piscaglia:1995:DOC

September 1995. CODEN SPICEF. ISSN 0923-5965 (print), 1879-2677 (electronic).

[PQ07] Marco Pedicini and Francesco Quaglia. PELCR: Parallel environment for optimal lambda-calculus reduction. ACM Transactions on

Pehrson:1994:IPP

Preissl:2010:TMS

Prieto:1999:PRM

REFERENCES

1523-2867 (print), 1558-1160 (electronic).

Prost:2001:MIG

Prost:2001:THP

Peraza:2016:PGQ

Pierro:2018:SFP

Phan-Thien:1994:CDL

Prylli:1999:DHP

Puskas:1995:LBW

Peinado:1997:HPC

Park:2001:PPE

Pahl:1995:CCB

Preissl:2012:CSS

Pang:2016:MKR

REFERENCES

Rabenseifner:1998:MGI

Rabenseifner:1999:APM

Ragg:1996:PEN

Ratha:1995:DED

Ramadan:2007:TDM

Rantakokko:2005:DMO

Rehman:2016:VMJ

Waqas Ur Rehman, Muhammad Sohaib Ayub, and Junaid Haroon Siddiqui. Verification of MPI Java programs using software model checking. *ACM SIGPLAN Notices*, 51(8):55:1–55:??, Au-
Roussos:2001:BMB

Rufai:2005:MPO

Rejitha:2017:EPC

Resch:1997:PMC

Rodriguez:2015:OP1

Marcos Rodríguez, Fernando Blesa, and Roberto Barrio. OpenCL parallel inte-
REFERENCES

[RDMB99] H. Radhakrishna, S. Divakar, N. Magotra, and
REFERENCES

Reeves:1996:PIC

Reinefeld:2001:CDI

Reussner:2001:SSK

Reussner:2003:USD

Roy:2000:MGQ

Reynders:1995:OOO

REFERENCES

REFERENCES

Rietmann:2012:FAS

Rodrigues:2013:POM

Rohrl:2000:PPS

Rolfe:1994:PAP

Rolfe:2008:PO

Rolfe:2008:SMA

REFERENCES

Roig:2001:EMM

Robinson:1996:TMI

Russ:1999:UHR

Reinefeld:1995:PVE

Roy:1997:PNT

R. Roy and Z. Stankowski. Parallelization of neutron

REFERENCES

385

REFERENCES

Schuster:1995:CSM

Smith:2001:DMM

Seyfarth:1994:GEE

Schulz:2004:IES

Selikhov:2002:MCC

Schindewolf:2012:WSA

REFERENCES

Saillard:2014:PCS
Emmanuelle Saillard, Patrick Carribault, and Denis Barthou.

Saillard:2015:SDV
Emmanuelle Saillard, Patrick Carribault, and Denis Barthou.

Stagg:1995:IPN

Shyu:1996:ILQ

Schill:1993:DOD

Schneenman:1994:DSS
Richard D. Schneenman. Distributed supercomputing software: experiences with the parallel virtual machine — PVM. Technical Report NISTIR 5381, U.S. Dept. of
REFERENCES

Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1994. vi + 18 pp.

Schuele:1996:PLA
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Schuele:1996:PLA

Schuele:1996:PLA

Schuele:1999:HAP

Schevtschenko:2001:PAS

Song:1997:ALL

Suppi:2000:IOP

Schevtschenko:2001:PAS

Suppi:2001:PCS
Remo Suppi, Fernando
Cores, and Emilio Luque. PDES: a case study using the switch time warp. [SCSL12]

Tyler Sorensen and Alastair F. Donaldson. Exposing errors related to weak memory in GPU applications. [SD16]

Proceedings available via anonymous ftp from ftp.scri.fsu.edu in directory pub/parallel-workshop.92. [SCR92]

Proceedings available via anonymous ftp from ftp.scri.fsu.edu in directory pub/parallel-workshop.92. [SCR92]
REFERENCES

[SdM10] Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??.

Sack:2002:FMB

Spencer:2015:DLN

Segovia:2010:PPN

Schenck:2016:EPM

Sept:1993:DIP

Serot:1997:EPF

Sevenich:1998:PPU

Scott:1998:PWN

Schoinas:1994:FGA

Steuwer:2015:GPP

Siegelin:1995:BPW

Shen:2013:ACE

REFERENCES

Stone:2010:OPP

John E. Stone, David Gohara, and Guochun Shi.

Scherer:2000:APO

Alex Scherer, Thomas Gross, and Willy Zwaenepeel.

Schmidt:1994:IAP

M. Schmidt and R. Hanisch.

Sitsky:1996:MLW

D. Sitsky and E. Hayashi.

Song:2014:DAT

Sukhyun Song and Jeffrey K. Hollingsworth.

Shen:1995:PSM

H. Shen.

Sloot:1994:CIO

P. M. A. Sloot, A. G. Hoekstra, and L. O. Hertzberger.
A comparison of the Iserver-Occam, Parix, Express, and PVM programming environments on a Parsytec GCel. In Gentzsch and

[Slovent:] Sloatent:1994:CIP

[Sato2010:BLL] Mitsuhisa Sato, Yoshihiro Hanawa, Matthias S. Müller, Barbara M. Chapman, and Bronis R. de Supinski, ed-

IEEE catalog no. 92CH3185-6.

REFERENCES

REFERENCES

Sanders:2010:CEI

Steinberger:2014:WTB

Skjellum:2004:RTM

Subramaniam:1996:CLU

Skjellum:1993:SLH

Steinberger:2012:SDS

REFERENCES

Spiechowicz:2015:GAM

Satoh:2001:COT

Sall:1994:CIS

Scales:1994:DES

Swanson:1995:PAP

Shyu:2000:APV
REFERENCES

Skjellum:1995:EAM

Scherer:1999:TAP

Samadi:2014:SPS

Su:2012:CPB

Sloan:2005:HPL

Squyres:1996:CBP

Shires:2002:EHM

Shires:2003:OPF

Simos:2007:CMS

Siegel:2008:CSE

Shterenlikht:2015:FC

REFERENCES

Smith:1993:MBA

[Smi93a] K. A. Smith. Multi-
processor based accident
using PVM. In Sin-
covec [Sin93], pages 262–265.
QA 76.58 S55 1993. Two vol-
umes.

Smith:1993:DSI

[Smi93b] S. L. Smith. Dynamic
scheduling of irregularly
structured parallel computa-
tions in heterogeneous dis-
 tributed systems. *ACM
SIGPLAN Notices*, 28(1):
86, January 1993. CODEN
SINODQ, ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Scharl:2017:TEF

[SML17] Tao B. Scharl, William S.
Moses, and Charles E. Leis-
erson. Tapir: Embedding
fork-join parallelism into
LLVM’s intermediate rep-
 resentation. *ACM SIG-
PLAN Notices*, 52(8):249–
265, August 2017. CODEN
SINODQ, ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Sandes:2016:MMA

[SMM+16] Edans F. De O. Sandes,
Guillermo Miranda, Xavier
Martorell, Eduard Ayguade,
George Teodoro, and Alba
C. M. A. De Melo. MASA:
a multiplatform architecture
for sequence aligners with
block pruning. *ACM Trans-
actions on Parallel Com-
puting (TOPC)*, 2(4):28:1–
28:??, March 2016. CO-
DEN ????. ISSN 2329-4949
(print), 2329-4957 (elec-
tronic).

Sochacki:1993:DCW

[SMOE93] J. S. Sochacki, D. Mitchum,
P. O’Leary, and R. E. Ewing.
Distributed computation of
wave propagation models us-
ing PVM. In IEEE [IEE93e],
pages 22–33. ISBN 0-8186-
4340-4 (paperback), 0-8186-
4341-2 (microfiche), 0-8186-
4342-0 (hardback), 0-8186-
4346-3 (CD-ROM). ISSN
1063-9535. LCCN QA76.5

Silva:2000:HPC

[SMS00] Luís Moura Silva, Paulo
Martins, and João Gabriel
Silva. Heterogeneous par-
allel computing using Java
and WMPI. *Concurrency: prac-
tice and experience*, 12(11):1077–1091,
September 2000. CO-
DEN CPExEi. ISSN 1040-
3108. URL http://www3.
interscience.wiley.com/
cgi-bin/abstract/76000189/
START; http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=76000189&PLACEBO=IE.
pdf.

Su:2006:APP

[SMSW06] Hai-Jun Su, J. Michael
McCarthy, Masha Sosonk-
REFERENCES

REFERENCES

N. Sidonio and A. Pereira. A parallel N-body integra-

Skjellum:1996:TTM

Sener:1996:DPP

Subramoni:2012:DSI

Silva:1999:DPP

Schmidl:2012:PAT

Saldana:2010:MPM

Squyres:2003:CAL

Sivaraman:1995:PSP

Sivaraman:1996:AAD

Szalay:2011:FCD

Speck:2012:MST

Schmidt:1994:EAO

Szymanski:1996:LCR

REFERENCES

REFERENCES

Stellner:1995: CMP

Sosa:2000:IQC

Sala:2008:PHP

Schaifers:1995:TGP

Squyres:1997:DEM

Stone:1994:PSO

Shelton:1994:FPS

REFERENCES

REFERENCES

REFERENCES

[Stp02] Przemyslaw Stpiczynski. Parallel Programming in OpenMP helps novices: a review of Parallel Programming in OpenMP by Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon. IEEE [Str97]

V. S. Sunderam. PVM: a framework for parallel distributed computing. Technical Report ORNL/TM-11375, Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA, February 1990. See also [Sun90b].
REFERENCES

[Sun93] V. Sunderam. The PVM concurrent computing system. In Anonymous [Ano93g], pages 20–84. ISBN ?? LCCN ???

Two volumes. IEEE catalog no. 95TH0682-5.

[SWHP05] Gopalakrishnan Santhanaraman, Jiesheng Wu, Wei Huang, and Dhabaleswar K. Panda. Designing zero-copy Message Passing Interface derived datatype communication over infiniband:

[SvL99] Steve Sistare, Rolf vandeVaat, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

[SWHP05] Gopalakrishnan Santhanaraman, Jiesheng Wu, Wei Huang, and Dhabaleswar K. Panda. Designing zero-copy Message Passing Interface derived datatype communication over infiniband:

Sitsky:1995:IPM

Skjellum:2001:OOA

Shan:2012:PEH

Shee:1994:DMA

Stathopoulos:1995:DLB

REFERENCES

Sydow:1994:PSA

Stathopoulos:1996:PIM

Schneider:2009:CPM

Stankovic:1999:NVJ

Siegel:2011:AFV

Simunovic:1995:MIP

Simunovic:1995:MIP

Thompson:2014:CIC

[TA14] Elizabeth A. Thompson and Timothy R. Anderson. A

[Tahan:2012:ITC]0

[Thomas:1994:PSA]0

[Tzannes:2010:LBS]0

[Thompson:2015:PCI]0

[Tourino:1999:MMC]0

[Tourino:1998:PBL]0

J. Touriño and R. Doallo. Modeling MPI collective

Thiruvathukal:2000:JNW

Tromeur-Dervout:2011:PCF

Tentner:1995:HPC

REFERENCES

Truong:2002:PAM

Tu:2012:PAO

Turchi:1994:SDA

Thakur:2009:TSE

Tian:2005:PCT

Tuncer:2009:PCF

Ismail H. Tuncer, Ülgen

[Tian:2005:CEN] Xinmin Tian, Jay P. Hoeffinger, Grant Haab, Yen-

Hiroyuki Takizawa, Shoichi Hirasawa, Makoto Sug-

Tampouratzis:2016:AIH

Trobec:2001:IEM

Theodoropoulos:1996:ESP

Taylor:2017:AOO

Takafuji:2017:CCC

Takahashi:1999:IEI

REFERENCES

[Tou96]

[TQDL01]

[TTPD15]

[Tra98]

[Tra02a]
Jesper Larsson Traff. Implementing the MPI process topology mechanism. In IEEE [IEE02], page ?? ISBN 0-7695-1524-X. LCCN ???? URL http://www.sc-

[Tra02b]

REFERENCES

Thibault:2012:AIF

Takahashi:2002:PEH

Terboven:2012:AOT

Ten:1995:TPE

S. V. Ten, V. V. Savchenko, and A. A. Pasko. Time performance evaluation of im-
licit surface polygonization on distributed systems. In Gray and Naghdy [GN95], pages 183–193. ISBN ????
LCCN ????

Topol:1998:PTV

Tatebe:2000:IOO

Tavora:2000:DCM

Tsunekawa:1995:EIE

Tsujita:2007:RMP

Tsutsui:2012:AMG

Tang:1999:CR

Tang:2000:PTR

Trelles-Salazar:1994:MSS

Theodoropoulos:1997:GSP

Tanaka:2000:PEO

REFERENCES

REFERENCES

Uselton:1995:PRS

Udupa:2009:SES

Uhl:1994:PCC

Uhl:1995:PIC

Uhl:1996:PIC

Uminski:1997:EEP
[P. W. Uminski, M. R. Matuszak, and H. Krawczyk.]

REFERENCES

Field G. Van Zee, Paolo Bientinesi, Tze Meng Low, and Robert A. van de

Oscar Vega-Gisbert, Jose E. Roman, and Jeffrey M. Squyres. Design and im-

Vikas:2014:MGA

vonHanxleden:1994:VDF

Viswanathan:1995:PCM

Valencia:2008:PPR

Varadarajan:1994:FDT

Vincent:1995:HPP

James J. Vincent and Kenneth M. Merz Jr. A highly portable parallel implementation of AMBER4 using the message passing interface standard. Journal of Computational Chemistry,
REFERENCES

REFERENCES

Vrenios:2004:PPC

Varin:2000:PAL

VanVoorst:2000:CMI

Vaughan:1994:MPM

Vaughan:1995:MPM
REFERENCES

Walker:2001:DLB

Walker:2001:SEC

Wallcraft:2002:CCA

Wang:1997:TPD

Wang:2002:OPG

Wasniowski:1995:NAP

White:1995:PNP

S. White, A. Alund, and V. S. Sunderam. Performance of the NAS parallel benchmarks on PVM-Based

REFERENCES

REFERENCES

Walkern:1996:MSM

Welchn:1994:PVM

Wernern:1995:UMP

Webern:2017:MAL

Wark:1994:PIR

[P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ???.]

Wagner:1996:PMM

White:1994:VVC

[R. White. VCMON — the VM/ESA Connectivity Monitor. In Anonymous]
REFERENCES

[Ano94g], pages 783–792. ISBN ???. LCCN ???.

Witchel:2016:PPW

Wei:2012:OLL

Wu:2014:OFB

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wegiel:2008:MCVc

Willcock:2005:UMC

Wu:2012:UHM

Weng:2007:OIS

Wagner:1994:CFD

Wang:1995:PPG

Wu:2001:PCS

Worsch:2002:BCM

Wang:2016:LLA

Wisniewski:1999:SME

Len Wisniewski, Brad Smisloff, and Nils Nieuwejaar. Sun MPI I/O: Efficient I/O for parallel applications. In ACM [ACM99], page ??

West:1995:AVV

Wu:2011:PCH

Wu:2012:PCH

Wang:2014:IPD

Worringen:2003:FPN

Waidyasooriya:2017:OBF

Hasitha Muthumala Waidya-

[Wu99]

[WWFT11]

[Wang:2016:MMF]
Wang:2008:PIM

Xu:1995:IPP

Xu:1996:MCO

Xue:2009:MSR

Xiong:1996:BID

Xu:2013:PMO

REFERENCES

Yelon:1993:PTS

Yazdanpanah:2015:PHR

Yang:2014:PMI

Ying:2003:NPK

Yalamanchilli:1998:CPJ

REFERENCES

Yang:2014:HPD

Yu:2013:A

Yoon:1996:WBP

Yang:2014:IMP

Yetongnon:1996:PII

Yero:2001:JOO

References

References

2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP ’13 Conference proceedings.

References

2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP ’13 Conference proceedings.

Yalamov:1997:BRT

Yilmaz:2011:RMS

Yi:1994:PID

Yilmaz:2009:HPC

You:1995:EIM

Young:1993:PEN

references

461

REFERENCES

issn=0920-8542&volume=44&issue=1&page=1.

[ZWCF15] Andrew J. Younge, John Paul Walters, Stephen P. Crago,

Yonezawa:1995:IED

You:2015:VFO

Yang:2014:CNR

You:1995:PIM

[ZBd12] Ke Zhu, Matthias Butenuth,

Zhao:2010:GMP

Zhang:2001:PPV

Zhang:2004:PMV

Zelek:1995:DPP

REFERENCES

Zemla:1994:WTC

Zhou:1995:FMP

Zhou:1996:FMP

Zhou:1998:LST

Zielinski:1994:PPS

Zu:1994:OSM

REFERENCES

Zheng:2006:PEA

ZHK06

Zoraja:1999:SPD

ZHS99

Zounmevo:2014:ESC

ZKRA14

Zakry:1996:PDT

ZJDW18

REFERENCES

Zaki:1999:TSP

Zhou:2012:DFD

Zhang:2017:DLN

Zhu:2015:PIM

Zhai:2011:CVH

Zollweg:1993:OP

J. A. Zollweg. Overview of PVM. In Anonymous [Ano93e], pages 981–986. ISBN ???? ISSN 0254-6213. LCCN ????

Zarrelli:2006:EPE

Roberto Zarrelli, Mario Petrone, and Angelo Ianuccio. Enabling PVM to exploit the SCTP protocol. *Journal of Parallel and Distributed Computing*, 66(11):
1472–1479, November 2006. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Zambonelli:1996:EPP

Zheng:2011:GLO

Zhao:2012:ASO

Zarrabi:2015:GSA

Zoltani:2001:EPO

Zouaoui:2017:CNG

REFERENCES

(??):53–81, December 2017.
CODEN ?, ISSN 1477-8424 (print), 1873-6866 (electronic). URL http://
www.sciencedirect.com/
science/article/pii/S147784241630135X

[ZWH95] D. Zareski, B. Wade, P. Hubbard, and P. Shirley. Ef-
icient parallel global il-
illumination using density es-
imation. In Uselton et al. [UCW95], pages 47–
54, 104–105. ISBN 0-
89791-774-1 (softbound) [in-
valid checksum], 0-7803-
3120-6 (microfiche). LCCN
QA76.58.P3778 1995. ACM
order number 428957. IEEE
Computer Society Press or-
der number 95TB8134.

[ZWJK05] Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad, and
Laxmikant V. Kalé. Simu-
lation-based perfor-
ance prediction for large
parallel machines. Inter-
national Journal of Paral-
lel Programming, 33(2–3):
183–207, June 2005. CO-
DEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640 (elec-
tronic). URL http://
www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
33&issue=2&page=183.

[ZWL13] Xiaohua Zhang, Sergio E. Wong, and Felice C. Light-
stone. Message passing in-
terface and multithreading
hybrid for parallel molecular
docking of large databases
on petascale high perfor-
ance computing machines.
Journal of Computational
Chemistry, 34(11):915–927,
April 30, 2013. CODEN
JCCHDD. ISSN 0192-8651
(print), 1096-987X (elec-
tronic).

[Hu17] Huming Zhu, Yanfei Wu, Pei Li, Peng Zhang, Zhe Ji, and
Maoguo Gong. An OpenCL-
accelerated parallel immu-
nomodulance clone selection
algorithm for feature selec-
tion. Concurrency and Com-
putation: Practice and Expe-
rience, 29(9), May 10, 2017.
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).

[Zhu95] Miaoliang Zhu, Chunming Wu, Youjun Zhang, Yi Jin,
and Jie Li. A real-
time and concurrent intel-
ligent robotic system based
on multi-agent architecture.
High Technology Letters, 5
CODEN GTONE8. ISSN
1002-0470.

[ZWL05] Youhui Zhang, Dongsheng Wong, and Weimin Zheng.
User-level checkpoint and re-

Zhu:2015:PML