A Bibliography of Publications about PVM (Parallel Virtual Machine) and MPI (Message Passing Interface)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

15 February 2019
Version 3.189

Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0 [ICC02]. 1 [ICC02, LRQ01, VDL+15].
19.95 [Ano95b]. 2 [Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19].
24.95 [Ano95c]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12]. 35
[Ano00a, Ano00b].
35.00 [Ano99a, Ano99c, Ano99b, Ano99d]. 3D [KA13].
60 [Ano00a, Ano00b]. 3 [PBC+01].
A [ARYT17]. α [JMdVG+17]. $Ax = b$
[BG95]. D [UZC+12], H^2/H^∞ [GWC95]. k
[She95, TK16]. M^3 [JSH+05]. PVM+
[Wil94]. N
[IHM05, Per99, Rol08b, SP99, SRK+12].
SU(3) [BW12]. τ [RGDM15, RGDM16]. XY [KO14].

-body [IHM05, Per99, SP99, SRK+12]. -D
[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. -Dimensional [LRQ01].
-Lop [RGDM15, RGDM16]. -Means
[TK16]. -Queens [Rol08b]. -set [She95].
-stable [JMdVG+17].

/many [KSG13].
/OpenMP [VDL+15].

1 [HMKV94, SOHL+98]. 10-Gigabit
[HeF05]. 100 [Str94]. 10th [DLO03, IEE96e].
'11 [ACM11]. 11th [IEE97b, KKD04]. '12
[Holl12]. 128-processor [LL01]. 12th
[DKD05, Bil95]. 13th
[Ano95d, MTWD06, PSB+94]. 14th
[CHD07, CHD09]. 15-18 [SL94a]. 15th
[IEE95i, LKD08]. 16th [RWD09]. 17th
[KGRD10, MC94]. 18-21 [DKD07]. 18th
[DE91, EJL92, IEE91]. 1992
[KG93, R+92, VW92]. 1993
[Ano94c, GGK+93, IEE93a, IEE93e, JPT949, MMH93]. 1994 [Ano94a, Ano94e, Dsz94, DT94, GN95, GT94, HK95, IEE94h, PSB+94, SPE95, SPH95, VV95]. 1995
[ACM95a, ACM96a, AGH+95, BH95, Gqt95, Ham95a, IEE95b, IEE95a, IEE95d, IEE95h, IEE95i, JB96, NM95, Nar95, Ten95, UCM95, ZL96]. 1996 [ACM96b, Abr96, Boq97, ERS96, IEE96f, IEE96e, IEE96i, Ree96]. 1997 [ACM97b]. 1998 [ACM98b]. 1999 [ACM99]. 19th
[TBD12, IEE05]. 1st [Abr96, BR95a, CGB+10, Kun94, Van95, Fer92]. 2 [AKL99, BCAD06, BHS+02, BMPZ94a, CwC+11, CD96, DCPD08, FST98a, FST98b, GFD03, GGHL+96, GTO1, GHL+98, GLT99, GLT00b, GLT00a, HGMW12, Jon96, LC97b, LSK04, MS02a, MK04, PS00a, SS99, SSL97, TRH00, VAT95, bT01a]. 2-D [BMPZ94a]. 2.0
[BO01, LPD+11, LW97, Mat00b, NSM12]. 2.2 [HR+11]. 2.X [KS96]. 2000 [ACM00, CLBS17, LL01, LSK04, NUS05, ZSnH01]. 2001 [ACM01, Old02]. 2003
[ACM03, AS14, Don06, OL05]. 2004
[ACM04]. 2005 [ACM05, DKO7]. 2006
[ACM06a, MTW07]. 2007 [SM07]. 2008
[IEE95a]. 25nm [Ano93a]. 27th [Ano94h]. 28th
[ZL96]. 2D [ZZZ+15]. 2D-DWT [ZZZ+15].
2nd [FK95, IEE93c, Nag05, YM97]. 3 [Bri95, Che10, GbH14, GBH18, GPL+96, GLT12, Gro12, HDT+15]. 3-D [Bri95]. 3.0
[Ano97, Bra97, BMR02, BRM93, DDB+16, KaM10, OP10]. 3.06 [Ano93a]. 3.1 [WCC12]. 3.4 [Gei97, GKS97]. 3.X [KS96]. 3000
[HWM02]. 33rd [ACM95a]. 37th [ACM96a]. 3D [GAP97, Gra97, LO96]. 3D-Fall [Gra97]. 3rd [ACM06b, Czg+08, Ano95a, IEE96a]. 4 [Ano03, HR97, KS97, SU05, SD13, SBT04]. 4.0 [DSGS17, JCP15, dOS016]. 4.5 [CBY18]. 43 [UZC+12]. 45-degree
[CT13]. 48th [IEE94e]. 4th
[BD97, EdS08, FF95, USE00]. 5 [TRH00]. 512 [RBB97c]. 5th
[AD98, Cha05, IEE94a, MdSC09]. 600 [LSK04]. 6000 [AL93, NMW93]. 64
[dCZG06]. 64-bit [VI93]. 6th [ACDR94, DLM99, GT94, PW95, SHM+10, Sin93]. 7th [ACM95b, CGK+11, DKP00, GN95, PBG+95]. 857 [SMSW06]. 897 [HWS09]. 8th
[CMMR12, CD01]. 90 [Ben95, SM03]. 9076 [Bri95]. 91
[BG91, EJL92, IEE91]. 92
[Bie92, Bie92b, VW92]. 93 [Ano93g, GGK+93, GHH+93, IEE93a, IEE93f]. 93SC038 [FS93]. 93SC041 [Gle93]. 94
[BS94, DW94, GT94, IEE94h, IEE94i, PSB+94, SPE95, WPH94, dGM94]. 947
[LTDD14]. 95
[ACM95a, AH95, BH95, CL+95, CJW95, DMW96, FF95, HAM95b, IEE95i, Lev95, NM95, Van95, Ano98, FD97, KaM10]. 95/NT [FD97]. 96
[ACM96b, ACM96c, BDLS96, BFM96,
CH96, IEE96g, IEE96e, IEE96d, LHH96,
LI96, SII96, Was96, YH96]. '97 [ACM97a].

978 [Che10, SD13]. 978-0-12-145933-4
[SD13]. 978-0-13-138768-3 [Che10]. 981
[Riz17]. 9th [IEE95f, Kra02, YH96].

Aachen [Ano93a, GHH+93]. Abortable
[CAWL17]. Abortable-locking [CAWL17].

Abstract [MKW11, Wel94, BG94b, HTA08].

Abstracts [SW12, YWTC15]. Abstracts

ACC [APJ+16]. accelerate

Accelerated [AB13, EADT19, KA13, SCSL12, CGK+16,
CP15, DCD+14, HTJ+16, KM10,
PdCJ+18, PMG18, Sa10, iSYS12,
SKM15, ZW1+17, ARYT17]. Accelerating

Acceleration [CGBS+15, TK16, CBYG18,
CLBS17, HE13, MGS+15, PRS16, SWS+12].

Accelerator

[APJ+16, SSAS12, YCA18, KLV15].

Accelerator-Aware [APJ+16].

Accelerators

[AKL16, AC17, NTR16, SHM+10, TCM18,
KHBS19, MSZG15, UGT09]. Access

[Bri10, HDT+15, IFA+16, JJPL17, LB98,
SGH12, WTR03, CG99b, GBH14, GB18,
HGMW12, LOHA01, MN91, SFL+94].

accesses [TGL02]. accessible [BW+12].

Accident [Smi93a, SBR95]. According

[LG900]. ACCT [FVD00]. Accumulated

[KS15b]. Accumulative [IO4]. Accurate

[HD00, MLA+14, RSPM98]. Accurately

[BgdS09]. achievable [HMS+19].

Achieving

[CBPP02, Gro01a, KLL11, RH01]. ACM

[ACM90, ACM95a, ACM95b, ACM97b,
ACM98b, ACM05, IEE02].

ACM/IEEE [ACM97b, ACM99b, ACM05].

ACO [Tsu12]. ACPC [Bos96, Vol93].

Across [NE98, AL96, CZ95b]. ACSCI

[Van95]. Active [CSAGR98, Pla02, SKH96].

Activities [MS97, CMV+94]. activity

[Veto2]. Ada [IBC+10, ITT02]. Ad-Hoc

[IBC+10]. Ada [Tou96, KP96, Tou96].

Adam [Ano95b]. Adaptable

[SPH+18, BCM+16]. Adaptation [WST95].

Adapted [Uhl95a]. Adapting

[VPFD02]. Adaptive

[Ano94b, BCMR00, BKdSH01,
Bir94, CO+94, FSC+11, HWX+13, KK98,
KT02, LFL11, MHC+12, MBES94, MRB17,
MAGR01, OKW95, Ran05, RA99, SHM+12,
SZ00, SS09, STY99, Sta95a, TMW17,
ZSG01, DBC+10, CLSP07, DLR94, EZBA16,
EASS95, IDS16, LCL+12, SLGZ99, TCBV10,
Was95a, Wl94, FSC+11].

Adaptive-CoMPI [FSC+11]. Adas

[HHC+18]. Adding

[CB00, GRV01, PSM+14]. Address

[SS01, DO96]. addresses [CGL+93].

ADDT [SR96]. ADI [Sch01]. adjacent

[Kan12]. adjoint [RMN+12]. Adjusting

[GSHL02]. ADOL [BGK08]. ADOL-C

[BGK08]. adoption [CMV+94]. Adsmith

[LKL96]. Advanced [Ano98, Ano00a, D+95,
Gei96, Ge97, GLT99, GLT00b, GLT00a,
GLT12, KG93, SSAS12, TG94, Ben95].

Advances [Bh93, BHH+08, CHD07,
CDND11, KGRD10, KKDV03, KKD04,
KKD05, LKD08, LL01, MWTW06, RWD09,
TBD12, AD08, BC14, BDW97, CD01,
DKD05, DLM99, DKP00, DLO03, HPS+12,
Kra02, HPS+13, IEE97a]. Advection

[AKK+94, CT94a, TC94, CT94b].

Advection-Chemistry [AKK+94].

Aerospace [MAB05]. Affine [DMB16].

Affinity [ETWaM12, AGG+95, NAAL01].

Affordable [RJ94]. again [Har94]. against

[GHD12]. Age

[MdSC09, Ano94f, GLJTL11, HK95]. AGEB

[SAS01]. Agent

[MtJ01b, MCB05, ZW+95]. agent-based

[MCB05]. agents [KBA02]. Aging

[LRB15]. Aging-Aware [LRB15].
AIMS [Yan94]. Air [AKK+94, BZ97, MPD04, MSML10, BTC+17, SH94, Syd94]. airspace [TCP15]. Aix [GA96, Ano10a]. Aix-les-Bains [GA96]. AI [Ano95b]. Alamos [Old02]. Albuquerque [IEE91, IEE95d]. ALDY [GS96]. ALE [HAA11]. Algebra [BDT08, CDD+13, Coo95b, IS16, MGMH97, Neu94, van97, BKvH+14, Cal94, Coo95a, PMZM16, dCH93]. Algebraic [CGPR98, Lev95]. Algorithm [ACMR14, BST+13, BP99, BT01b, DYN+06, FJBB+00, HA10, HD02b, ITT02, MW98, PB12, RDMB99, SAS01, Sch96a, SWH15, ART17, AAAA16, ARD95, BB95, BAV08, BCM+16, CCR95, CTS16, CSW99, GM94, GNN+13, GKL+09, GM95, HWS09, IM95, JRT01, KY10, KWF18, Kan94, KBP16, KN17, KMG94, KRC17, LYZ13, MM92, MLVS16, MK00, NB96, NA09, OKW95, OMK99, PGBF+07, PSLT99, Ram07, RJC95, RAG95, Sch96b, SOA11, Sur95a, TNI17, Was95a, YULMTS+17, ZSK15, ZWL+17, dH94, van93, HWS90, LTDD14, Riz17, SMSW06]. Algorithm-based [PKD95]. Algorithm-Dependant [BP99]. algorithmic [RJD14]. Algorithms [ACM95b, ATC94, ADRCT98, ASA97, CCS97, DAL18, DAK98, DK06, FB94, GMR00, GKI01, HK94, IEE96d, KK92a, LHM96, Li96, LAD16, MTT94, MGMH97, MBS15, Nar95, Pet97, PBK00, SG15, VRS00, AK99, AL92, BH96, BMS+17, BID95, DDLM95, FR95, FP92, GWC95, HL17, HPLT99, HKOO11, HS95b, Joul94, JRM+94, KL95, KRG13, LFL11, LNW+12, MTK16, MJG+12, NP12, Ob95, PP16, Pn95b, PKB99, PD11, PCS94, RH96, SPE95, Sur95b, TSZ94, WCV96, YLZ13]. alias [SOA11]. alias-free [SOA11]. aligned [AGIS94]. Aligners [SMM+16]. Alignment [dOSMM+16, AMHC11]. all-port [RJMC93]. All-to-All [LZH17, LZH18, Trš02b]. Allocation [AGS97, BS01, DGG+12, RFRH96]. alloy [TG94]. ALM [PZ12]. Altera [RGB+18, TK16]. Alternative [EM94, SWH05, Trš12a, EKTB99]. ALWAN [HB96a, HB96b, MSB97]. Amazon [HZL+11]. AMBER [SL95]. AMBER4 [VM95]. American [Ara95]. AMIP [Gat95]. Among [CB16]. AMPI [ZHK06]. AMPIC [CCHW03]. amplified [EZBA16]. AMR [NLRH07]. AN2 [HBT95]. analogue [WWZ+96]. analyses [ANS95]. Analysis [BHW+17, BR02, BGG+02, BBC+10]. BDL18, CGLD01, EML10, F01, FJK+17. Hol92, JF95, KL94, KNT02, KRG13, LCK11, MK17, MCD01, NA+96, NMS+14, O94, PZ12, PGBF+05, SPL+12, SBR95, SN01, TFMG01, Wih04, WM01, BB03, BBDH14, BBH+15, Che99, DSGS17, EPP+17, GR95, GFB+14, GKS+11, GE95, GE06, GT07, JB96, LC07, LLG12, LL16, LBH12, MB+94, MMW96, MLA+14, MPJB16, Pat93, PHJ11, PGB+07, SDCP13, iSYS12, SS94, SDJ17, SPH95, Sh94, SI96, SWL+01, SSG95, TMC09, TW12, TFZZ12, Uh95a, Uh95c, VM94, YCL14]. analytical [BHW+12, HK09, JS13, KN17]. Analyzer [JJPL17, KMK15]. Analyzers [AN01a]. Analyzing [BRU05, DF17, FM09, HG12, HoC05, PFG97]. anasslich [AN04c]. Anatomy [KWEF18]. Andrew [AN09c, AN09d]. animal [LM99]. anisotropic [LBB+16, SS16, YSVM+16]. 'Annai [CEF+95]. Annapolis [IE96c]. Annealing [FH97]. Anneyce [WV92]. Anniversary [AN02, AN03f]. annotated [GGH99]. Annotation [MGA+17]. announcement [WRMR19]. Announcements [AN08]. Annual [ACM95b, AN09c, AN09d, IE95b, USE00, Van95, Y+93, ACM95a, Eng00, IEE94e, IEE95f]. Ant [ITT02]. ante [AN03].
antenna [DSOF11]. Anthony [Ano95c, Ano00b]. Antonio [Ano95d, IEE95g, IEE97c]. Any [Gro02a, Mar07]. AP [SMTW96]. AP1000 [SH96, IM94, SWJ95]. AP3000 [TD99]. API [DM98, LPD+11]. API2 [WCS+13]. APOLLO [Sta95b]. APOLLO-II [Sta95b]. Appendix [Ano01a]. Appendixes [Ano01a]. APPL [AB93a, AB93b]. Application [AKE00, BSN95, BGdS09, BS07, BFM97, BBI+15, Cha02, CRGM14, DM98, LPD+11, API, SMTW96]. Applications [APJ+16, AGS97, Ano89, Ano96c, AZG17, BCLN97, Ben18, BHV12, BBI+06, BRU05, BFMT96b, BFWB01, CGS15, CB97, CGLD01, Cha05, CNJW95, CRGM14, Cot08, CTK00, Cot04, Cza02, Cza03, DW02, DLM+17, DERC01, DHK97, DFG97, DGMJ93, EV01, EML00, FLD98, FD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GK10, HMK09, Huo98, IEE95i, ITT02, Jes93b, JPL17, KB98, KBS04, KGK+03, KPK01, KK02b, Kuh98, La01, LAdS+15, LRG14, LCCW07, LMRG14, dLR04, MSOGR01, MS02a, Mar02, Mat01b, MAB05, MC98, MG15, MANR09, PSM+14, Rei01, RPM+08, RBB15, RRBL01, SPL+12, SG12, SPH+18, SC04, SSB+17, TTSY00, TFGM02, VdS00, VY02, Vos03, Wa96a, WC09, Wis96a, WSN99, WBH97, WM01, dGJM94, ACH+11, ACJ12, Ano93a, Ano94f, Ano03, Ara95, Arn95, AGMJ06].

applications [BKH+13, BR04, BDV03, BAG17, BFM96, BFMT96a, CGK+16, CGBS+15, CDMS15, CLSP07, CBM+08, CIJ+10, CFPS95, CCHW03, CCM+06, D99a, D99, DCH02, EKTB99, EGH99, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHDI2, GJMM18, GS96, GHH+93, HZ99, HAJK01, JC17, JPTE94, LMG17, LCMG17, LBB+19, LZHY19, LS08, MA09, MBKM12, MLCO4, MSCS15, MS96b, NSBR07, NCb+12, NFG+10, PK05, PTL+16, Rab99, RS95, RGGP+18, SJLM14, SPE95, SBF+12, SD17, SG17, SG05, SLG95, SB01, SD16, TMC09, TBB12, TPLY18, Vet02, Wis96b, Wo92, WT13, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94].

Applied [FGRD01, HC06, KaM10, GFIS+18, HMKV94, MM92, NF94, PGK+10, DMW96, Was96]. Approach [AZG17, BHM94, B393, BHNW01, CRGM14, CD98, DLM+17, FFPS03, GCBL12, HD00, KBA02, KK02a, KMWH01, LGM00, Mar06, PPR01, Pet00a, Pet00b, RGD13, Ros13, TJPF12, BK11, Bis04, BTC+17, CLYC16, CDP99, CRGM16, DiN96, EO15, FMS15, HDB+13, JS13, KPL+12, KSSS07, KJEM12, LSG12, MGG05, MS99b, NEM17, OW92, SVC+11, SEC15, TWF009, WO09].

Approaches [JCH+08, Ney00, SWHP05, SM02, BFL99, CB11, PS00a].

Approximate [Huc96, MM02, GGC+07, GG09, MM03].

Approximation [SLJ+14, SLJM14]. April [ANS95, AH95, Ano93c, Ano94h, CH96, DR94, GH94, Ham95a, IEE92, IEE93b, IEE95f, IE96e, IE97b, IE05, LCHS96, MC94, Nar95, Sie94, SW91, Ten95]. APS

Architecture [BG94a, CGC+11, CLOL18, ERKG01, EM02, FD97, Fu08, HRZ97, IEE97c, ITK00, LSZL02, PT01, PS01b, SMM+16, SC04, WK11, YTH+12, BBCR99, BG94c, CSPM+96, CS96, DiN96, FHC+95, HK09, MRH+96, PWD+12, SWYC94, SSGF00, Squ03, SP11, WCC+07, YAJG+15, YEG+13, ZWZ+95]. architecture-independent [DiN96].

Architectures [ACM95b, BDT08, BFG+10, CHPP01, HD02a, HD02b, HHK94, IEE96d, KDT+12, LHMM96, Li96, LZH17, LAD16, MS02b, MTSS94, MCS00, NO02b, Nar95, PZ12, TSCaM12, YKW+18, BDP+10, BN00, BKML95, CLM+95, CDZ+98, DM93, DZZY94, GDC15, GP95, Hos11, SY95, XF95]. atomics [BDW16]. atom [PV97, GHD12].

assessing [LMG17, dLR04, MABG96, TSCaM12, CMV+94]. assessments [Mat01b, TAH+01, Boi97, LH98].

assignment [Cza13, CK99]. assist [Kik93]. assisted [GTH96, GM13, MBBD13].

attraction [GB96]. attract [GM18]. attraction [GB96].

Avanti [CC17]. Astronomical [JB96, SPH95]. Asynchronous [Ada97, Cav93, CZ95a, CDP99, HE02, SPH+18, BBDH14, BCK+09, CZ95b, DDYM99, Sch99].

Athenas [CC17, DWM12, DBLG11, PSB+19, RDLQ12, WG17, FE17, SH14, TWFO09]. automated [CC17, DW12]. automatic [CVM+12, BBH+08, BGK08, BHK+06, CBL10, Cza03, DW02, EML98, EML00, FAFD15, FFM11, GKCF13, HZ99, JFY00, JJ+03, JPL17, KOI10, KHS12, MGA+17, NCB+17, OWSA95, Rab99, RGD13, SZ11, SR96, SSB+17, TJPF12, WC15, WM01, APBeF16, AMuHK15, AGG+95, BR04, BHR08, CHKK15, CdGM96, CPR+95, HZ96, LME09, LF93b, WMP14, ZHK06, FVD00]. automatically
WBSC17. automation [Ano93a].
automotive [Ano93a, Ano93a].
Autotuning [BAG17]. Auxiliary [STMK97]. Available [Bak98, BF98].
Avoidance [CRGM14]. AVTP [FHC+95]. award [Str94]. Awards [Str94]. Aware [APJ+16, BHP+03, Ben18, EGR15, GFS+18, HVA+16, LRBG15, MJ15, Pan14, ZLP17, CGH+14, GHZ12, HJYC10, HG12, JKN+13, KGB16, MBBD13, MSc15, SHM+12, SPK+12, WRSY16]. awareness [HK09, VGS14]. AXAF [NH05].

Based [Ada97, AHD12, AAB+17, AP96, BHW+17, BDG+91b, BoFBW00, CAM12, CGC+02, CLO18, CLF+99, CDPF03, DW02, DBK+99, FSC+11, FC05, For95, FSL98, GSxx, HF14a, HF14b, HM01, Hus00, KLR16, LSL02, LHZ18, kl11, LWP04, LAFK15, MDM17, MGL+17, MM9H9, NSL16, NE01, NHT02, NPS12, PPT96a, PCY14, FPF97, PSSS01, RDM90, SPL+12, SM03, Smi93a, ST02b, ST97, SJK+17a, SJK+17b, Tsb+15, TD98, WTT17, WC09, WZH16, Wis96a, WM01, WJB14, YG96, YTH+12, ZWJK05, Ada98, AAS98, AAAA16, AVA+16, Ano03, BLPP13, BDG+92a, BCH+03, Bri95, BFM96a, CwCW+11, CC10, CKmW16, CRM14, CBX+12, DXB96, FE17, FFB99, FJZ+14, FNSW99, FSTG99, FLPG18, FFFC99, FWS+17, GS91a, GS92, GKS+11, Gra97, Gra99, GFPG12, HZ94, HWX+13, IM95, ITT99, JL18, JKM+17, KLV15, KPL+12, KPNM16]. based [LV12, LRW01, LKL96, LW+12, LLG16, LMM+15, MYB16, MMO+16, MKP+96, MCB05, MT96, MS99a, MS99b, MFPP03, Neu94, NHT06, OLG+16, OP98, PARB14, PES99, PPT96b, PK05, PAdS+17, PKG+10, PSHL11, PKD95, PSK+10, PSLT99, Qu95, Rag96, SJLM14, SS09, SG05, SSS99, SZ11, SVC+11, SLS96, SKB+14, St098, Str96, SLN+12, TBB12, TY14, Tbd96, TFW009, TMPJ01, WO09, WFT014, WGG+19, Wis96b, WSC99, YC98, YL09, YWCC1, YSL+12, ZFAM16, ZLP17, ZHK06, ZZG+14, ZW+95, vHKS94, BFM96b, FH97, KS9J5, WAS95b, FO94, GK97, KS9J6, PY95, Su96, TSZC94, ZPLS96]. Basel [Ano04i]. Basic [PGC02, BKvH+14, BR94]. basierte [Gra97]. Basis [OMK09, RB01]. Bath [BP93]. Bayesian [Fer10]. BC [IEE95i]. BCS [FFP03]. BCS-MPI [FFP03]. be [CB00]. Beach [IEE93b]. beam [OIH10, RCF96]. bearings [NF94]. Beguelin [Ano95b]. Behavior [BFM97, Dp03, Ros13, LLG12, PPF99, YMY11]. behaviour [EPML99]. Beijing [CZG+08, LHHM96, Li96]. Beitrag [Ano94c]. Belgium [LCF95]. Benard [TV96]. Benchmark [BWV+12, DS16, HC10, Lu099, Mi02, MBB+12, RPM98, RTH00, SGJ+03, Trä12b, UTY02, Ano03, BKML95, DW312, DH95, DHS96, Mi03, MvWL+10, PHJMN11, Rei01, RST02, Wor96, YSWY14]. Benchmarking [GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02]. Benchmarks [CRE99, KS96, KAC02, MM07, NA01, R01, TSB02, TSB03, WAS95b, ZSnH01, CDD+96].
MMH99, Ste94, WT11, CE00, WT12.
Beneficial [CB00]. benefit [SBG+12].
Benefits [LB16, PSM+14, SIRP17].
Benutzerprofile [Wl94].
Benutzer treffens [Ano94c]. Beowulf
[CMM03, Ste00, UP01]. Beowulf-Class
[Ste00]. Berlin [PW95]. Bessel [KT10].
Betriebsystemkern [Sei99].
Benutzer trenns [Ano94c]. Beowulf
[CMM03, Ste00, UP01]. Beowulf-Class
[Ste00]. Berlin [PW95]. Bessel [KT10].
Bessel [KT10].
Betriebssystemkern [Sei99].
Better [Str94]. Between
[AAB+17, BS07, ASS+17, AKE00, BID95,
GFV99, JAT97, LDCZ97, MSP93]. Better
[IEE93f]. Beyond
[Gei93a, Gei93b, LSG12, Sch93, SHM+10].
Biconjugate [GFPG12]. bidirectional
[HE15]. Big
[CLD18, GTS+15, LK14,
VPS17, ASS+17, Str94]. Biharmonic
[RB01]. Big
[Ano99c, Ano99d]. billion
[KTJT03]. Billions
[MRB17]. binary
[CG93, EPP+17, SGS95, TCBV10].
Binary
[BM17, TCBV10]. Binary
[BM17, TCBV10]. Blas
[Add01, ARvW03, FMFM15].
BLASTP [LSMW11].
Blaze [PWP19]. Blaze- Tasks
[PWP19]. Block
[DDPR97, SM+16, WO95, ZB97, ADDR95,
DR18, GP95, HKMCS94, HC08, WO96]. Block- Cyclic
[DDPR97, WO95, HKMCS94, HC08, WO96]. block- tridiagonal
[DR18]. Blocking
[FW98, BCH+08, HKT+12, Nak03, HTA08]. Blood
[Pat93]. Blue
[KMH+14, AGC+05, BGH+05, EFR+05, LM13, MV17, MSW+05]. blurred
[Wl94]. BMMC [CC99]. bodies
[AGIS94, LHLK10]. Body
[RB01, RTRG+07, IIM05, NS16, Per99,
SP99, SRK+12, ADBH94]. BOF [Mat00a].
Boltzmann
[OTK15, CGK+16, MS95,
Pri14, SJK+17a, SJK+17b]. Bonn
[MTW06]. Book
[Ano95b, Ano95c,
Ano96a, Ano99a, Ano99c, Ano99d, Ano00a, Ano00b, Che10, Mar06, Nag05,
Per97, SD13, Vvo13, Vvo14, YMK97]. books
[YM97, Nov95]. Boosting
[LRG14, SFO95]. Boston
[IEE94e]. Both
[BDG12, KP96]. Bottleneck
[MW97]. bottlenecks
[DSG17, JKH08]. Boulevard
[AMC99]. Bound
[ASA97, MBKM12, ADMV05].
Boundaries
[KGB+09]. boundary
[PTT94, SBQZ14, SP11, SD99]. boundary- value
[SP11]. bounded
[MDSAS+18, PDS+17]. BowMapCL
[NTR16]. Box
[JCR13, JPP95].
Box- counting
[JCR13]. brackets
[GSM17].
Braga
[IEE96g]. Branch
[ASA97, ADMV05]. Breaking
[OS97]. breast
[Str94]. Brest
[IEE94e]. Bridge
[VDL+15]. Bridges
[DS00]. Bridging
[ACM04, AAB+17, ASS+17]. Bringing
[FKKC96]. Brisbane
[ACDR94, NAR95]. Bristol
[MC94]. British
[IEE95a, IEE95c]. Broadband
[OIS+06, CLLASPDP99]. Broadcast
[PSM+14, YSP+05, MTK16]. Broadcasts
[SE02]. Brownian
[SKM15]. Brujin
[PGF18]. Brussels
[LCHS96]. BSAP
[HZG08]. BSN
[Mar06, Bis04, GRRM99, Mar09, Ruh00].
BSP2OMP
[Mar90]. BT
[WT11, WT12]. Budapest
[FK95, KKD04]. Buffer
[SEF+16, Tsu07]. buffers
[MR96]. Build
[HRS97]. Building
[FD04, Gei01, Gro02a,
LBD+96, LP04, WAD99, Am95, HS95b,
MSL12, PW95, Sur95b, Ksh95b]. Bulk
[Cer99, DLRR99, HZG08, TNIB17]. bulk- synchronous
[HZG08]. Burrows
[NTR16]. Burst
[SEF+16]. BUS
[ITT99]. BUSTER
[XWZS96]. Butterfly
[ST17]. Butterfly- Patterned
[ST17].
[BL95]. Charm [ZHK06]. Charts [DSS00].
Check [MC17, LCC+03]. checkerboard
[BW12]. Checking [CGZQ13, Gro00],
HMK09, LCC+03, MdSAS+18, PAdS+17,
RAS16, SMAC08, YYW+12]. Checkpoint
[SSB+05, SBF+04, CRM14, ZWZ05, ZHK06,
BDB+13]. checkpoint-based
[CRM14, ZHK06]. Checkpoint-on-Failure
[BDB+13]. Checkpoint-Recovery
[SBF+04]. Checkpoint/Restart [SSB+05].
Checkpointing [DCH02, LMRG14,
SSB+05, TSS00b, BMPS03, BCH+08, CG96,
LCMG17, LBB+19, PKD95, SSCC95, Ste96].
chemical [NMW93]. Chemistry
[AKK+94, BR95a, DMW96, SSGF00].
Chemkin [Ano97, Bra97]. CHEMPI
[RR01]. Chicago [CGKM11]. China
[CGZ+08, IEE97a, LHHMM96, Li96]. Chip
[Jes93b, URKGI2, TDG13, dCZG06].
Cholesky [DC95, LC97b]. Chromosome
[BM97, dOSMM+16]. Chromosome-Wide
[dOSMM+16]. CICADA [MK94]. Circuit
[WPC07, BJ95]. Circuits [GJN97].
Circular [Tsu07]. Circulation
[GAM+02, Nes10, RSBT95]. CIS [AH00].
citation [Squ03]. City [Hol12]. civil
[PW95]. CL [BHW+12, BBH+15, LW95].
CL-PVM [LW95]. CL-ARRAY [ZT17].
clarified [WBBD15]. CLAS [DZDR95].
Class
[DFN12, Ste00, Dem96, MSL96, RFH95].
Classes [DeP03, GG09, Ott93]. classic
[HL17]. Classical [BCGL97].
Classification [SNN+19, TPLY18]. clauses
[WC15]. Clemson [ACM95a]. Client
[Ano93f, FLS98, KS97, kLCCW07, Mat01b,
Sch93, Sto98, Vis95]. Client-Agent-Server
[Mat01b]. Client/Server
[FLS98, Sto98, Vis95]. Client-Side
[kLCCW07]. Client/Server
[Ano93f, Sch93]. climate [Str94]. CLIPS
[Ano95a, Ano95e]. cLAMMA [CDD+13].
clock [NB96]. clocks [TPLY18]. CLOMP
[BGdS09]. clone [ZWL+17]. Closer
[HCZ16]. Closure [CGPR98, KH15, PPR01].
Cloud [SIS17, URKG12, ZLZ+11, ZLP17,
GF13, GHZ12, GWVP+14]. Cluster
[AUR01, BKGS02, BL95, BM97, CRE99,
CMM03, HD02a, ES11, GGGC99, Gei94,
Gei00, GSN+01, GT01, GC05, HD02b,
ITKT00, ID94, KHI03, KS96, KS01,
KHS01, LR01, MFTB95, MM01, NO02b,
OF00, PFG97, RB01, RT06, RLI01, SCR92,
SHHI01, SHTS01, ST02a, TOTH99, Trä02b,
YCA18, bT01a, AL93, BLPR93, BALU95,
BTC+17, BID95, CCF+94, Cou93, ED94,
G100, GMU95, He093, KEGM10, KO14,
K15, LC07, Li95, MW93, MM03, NO02a,
PDY14, RJDH14, SS94, SR95, ST02b,
SLS96, SY95, SSN94, Tho94, THM+94,
Tsu95, UH96, YWO95, ZLZ+11, MS04].
cluster-based [SL96]. Cluster-enabled
[SHH01]. clustered [KHB+99]. Clustering
[BBH12, HA10, RJ95, GGL+08, YCL14].
Clustern [MS04]. Clusters
[AH00, AHHP17, BDH+95, BDH+97,
BVW+12, CLO18, CSC96, DK06, GDM18,
GMDMB+07, GSY+13, HPP02, HSMW94,
HVA+16, Hus00, JNL+15, LC97a, LH95,
LVF04, MS98, MFP03, Pan14, PKB01,
PT01, PS00a, Pus95, Rei01, dOSMM+16,
SFG98, Svl99, Ste00, Tou00, UP01,
WLNL03, WT12, YWFC15, YKI+96, AB95,
ALR94, ADB94, ABG+96, ADMV05,
BWT96, BDV03, Bru95, CRE01, EKTB99,
GBF95, HCL05, Hus99, JKH08, Jon96,
JR10, JRM+94, KLY03, KLY05, KSL+12,
KJEM12, LBD+96, Lecl2, LLC13, LL95,
LKYS04, NMW93, NN95, PS07, PR+14,
PM95, PR94c, PR95, PL06, RCF06,
RGDML16, Sio05, SC96a, SL95, TFFZ12,
WLNL06, WLYC12, YST08, YL09, YHL11,
YWCC11, ZHS99, dCH93]. CM [SBG+02].
CMMMD [Har94, Har95]. CMPI [GHZ12].
CMS [FMS15]. CNF [IKM+01]. IKM+02].
CO [ACM01, AHHP17, GDM18, HJ98,
PSB+19, TOC18, Wal02]. co-array
[TOC18, Wal02]. Co-designing [AHHP17].

Coarse [ADRCT98, IOK00, KOI01, LGM00, NIO+02, NIO+03, Heb93, RJC95].

Coarse-Grain [HJ98]. coarse-grained [Heb93, RJC95].

Coarsening [PSLT99].

Coast [IS16]. Coastal [GAM+02].

CoCheck [MS96b, Ste96].

Code [AHP01, And98, BCGL97, CB00, CP97, CCK12, CCBPGA15, DDL00, DZDR95, HE02, KAM10, KAMAMA17, KHS01, LD01, MS02b, MM07, PBC+01, RGD13, SM03, SZBS95a, Sta95b, TGBS05, AMS94, ADB94, AFST95, BCAD06, BADC07, BW12, Bha98, BRi95, COUT93, DL94, EZBA16, FMM15, GSK17, Heb93, IJM+05, JPL+12, KH10, MGS+15, MRH+96, MWO95, PKE+10, PSK+10, RP95, SZBS95b, SK00, SFLD15, SMSW06, TBD96, VBLvdG08, VDL+15, Wor96, YL90]. codebooks [PMM95].

Codes [FAFD15, JFY00, SWH15, HTJ+16, HWS09, HASnP00, JPP95, KBG+09, LRW01, Mal01, OLG+16, WB96].

Coding [UHL94, UHL95b, SCC96].

Coefficients [MW98, ARYT17]. cognitive [PWD+12]. Coherence [MM07]. Coherent [SS01]. Collaborative [DCPJ12, DCPJ14].

Collapse [PKY+95]. Collecting [BMR01].

Collection [LTRA02, DH95, MGC+15].

collection-oriented [MGC+15].

Collection [JFRG12]. Collective [BIL99, BIC05, CCA00, FVD00, FCLG07, FPY08, GLB00, GMdB07+07, Hus99, KHK96, MIG+12, PGAB+05, SG15, TRG05, VFD02, WRA02, HS12, HSM+19, HG12, HW907, KHB+99, KBHA94, KMH+14, MMdB13, Pan95b, PGFB+07, PGAB+07, RJMC93, SCB14, SCB15, S999, TD99, Trää12a, TFZZ12]. Collectives [CSW12, SwL99, Zah12].

Collector [GTS+15, WK08a, WK08c, WK08b].

College [AGH+95, Ano94h]. Collision [QRMG96, Sta95b, ART17, FFFC99, LHLK10]. Collocative [MK11]. Colony [ITT02]. Colorado [R+92, IEE05]. Colt [WN10].

Columbia [IEE95a, IEE95e, MAB05].

column [HSP+13]. column-stores [HSP+13].

COMA [GB96]. Combined [CBHH94, TJPF12]. Combining [DP94, RA98, SCB14, Sch96a, SAMA08, YPAE09, Bort99, Sch96b]. comes [Ano94f].

Coming [HK95]. Commands [OLG01].

comments [Str94]. commerce [Ano94f].

commercial [Ano93a]. commodity [GGL+08].

Common [HEH98, DK13, WLR05]. Communicating [FKK+96b, GMPD98, FKK96a].

Communication [ABF+17, BCG+10, BIL99, BIC05, DCPJ12, DZSY94, EM02, FST98a, FJKB97, FBSS01, GFD03, GFB+03, GGS99, GFV99, GLB00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KBG16, LRT07, LC93, LCVD94a, MH10, MM98, MR96, Nit00, PLK+04, RK01, RRAGM97, RSt06, SWHP05, SCP97, SGH12, SGB+02, SJ02, ST02b, SGL+00, SKH96, Sum12, TRG05, TGT05, TRH00, Trää2b, UMK97, WBS07, XH96, YC98, ZSG12, FH98, BHJ96, BVML12, BBH+13b, BS94, BMG07, CAHT17, CGL+93, Dem96, DWM12, DCPJ14, DGB+14, DBB+16, DSB+06, G97, GM13, Gra97, GL94, GB94, HB96a, HW+13, Hus99, HWW97, KH96, KB01, KY93, KYL05, KHB+99, LR06b, LFL11, MLAV10, MMU99, MABG96, OGM+16, Pan95b, Par93, PKG+10, PM95, PKE+10, PSK+10, P90b, SH14, SC95].

communication [TG09, Trää12a, Vet02, Wu99, WMP14].

communication-based [PGK+10].

Communication-buffers [MR96].

Communication/Computation [HIP02].

Communications [BPS01, CP98, CDHL95, CDH+95, FVD00, FST98b, GT01, GBS+07, GMdB07+07, IEE95b, IEE95e, LZH17].
LZH18, MB00, VFD02, YTH+12, bT01a, ADLL03a, ADLL03b, CDP99, HS12, KBHA94, MBBD13, MrC92, MN91, MS99c, RGDML16, SCB14, SCB15, TD99, WLYC12. Communicators [DFK03, FGD05, GFD05, FKS96, GJMM18, HK96, MJG+12].

Communications [ACM04]. Community [BHW+17, FCP+01]. Como [CLM+95]. COMOPS [Luo99]. Compact [Uhl94, Uhl95b, Wor96]. compaction [VSW+13, WK08a, WK08b, WK08c]. Compactly [KLR16]. Comparative [KB98, PSK08, SN01, AGR+95b, ED94, YCL14]. Comparing [BF01, Fin97, GBR15, HVSH95, ICC02, LK03, ORA12, SS95, WBSC17]. Comparison [Luo99]. Complete [BdS07, GHLL+98, Nag05, Per97, SOHL+98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, PRS+14, SOHL+96]. Completed [PTT94]. Complex [BCGL97, GMPD98, MBS15]. Complexity [NPS12]. component [HLP+17, FC+01]. Components [BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01]. Composable [MLGW18]. Composed [We94]. Composing [PHA10]. composite [MALM95, YPA94]. Compositor [GPC+17]. Composition [CTK00, Cot04, DLB07, FC05, KH15, CFP96]. compound [LLC13, SAP16]. comprehensive [RST02]. Compression [FSC+11, KB04, VPS17, AAAA16, HE15, UH96, Wu99]. compression-based [AAA16]. COMPAC [IEE95]. Compton [BCDF96]. Computation [BKGS02, B90, Cer99, DSM94, DSS00, EMO+93, ESM+94, Fer10, FF95, FS91, HIP02, IEE94a, IEE96c, KS15b, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SOM93, WTH17, ACM97a, ABD15, Bis04, BALU95, Bos96, BHKR95, CL93, CMH99, CKP+93, DZZY94, HLM+17, HK94, KB01, KHBS19, KJJ+16, KG93, Lev95, MLAV93, Neu94, NZZ94, NCKB12, PF05, PKE+10, Rish00, Shi94, SH14, TBB12, TPD15, TW12, Vo93, Wan97, Was96, SM07]. computation-communication [SH14].

Computational [ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEE11, TGEM09, WPH94, Whi04, AGMJ06, Bvd94, BDG+92c, BR95a, HVSCI11, KBG+09, PK99, RBB15, SPE95, SzBS95b, STT96, Str94, VDL+15, BR95a, CCHW03, R+92, SL94a, WPH94].

Compilable [DFN12]. Compiplations [AGH+95, ACR97, CGU12, CGPR98, IH04, PBK00, PMvG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGDK92, HJY10, KD13].
MRRP11, MR96, Smi93b, SAP16, TS12b].

Computed [DBK+09, KKL11, ZLZ+11].

Computer [ACM06a, Ano94a, GTH96, IEE95i, IEE96h, IE97c, IS16, KCR+17, Neur94, Old92, PSB+94, ST02a, Sum12, Ten95, URKG12, YTH+12, BN09, BS94, BKML95, BFM96, Cal94, CLM+95, GRTZ10, JWB96, Str94].

Computer-Assisted [GTH96].

Computers [Ano89, BP99, BCL00, DGMJ93, FFP03, GC05, IEE95b, IEE95e, ITKT00, LF+93a, MFTB95, PSZ+00, SPM+10, SS96, BvdB94, BB93, BBK+94, DLR94, Duv92, ESB13, GFB95, KOS+95a, LR06a, MMB+94, Pol99, PBK99, Wal94a, Wal94b].

Computing [ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACDR94, AIM97, BJ93, BBG+95, BDG+93a, BGR97a, BL95, BCP+97, BRST94, BDH+95, BDH+97, BHNW01, BBH12, C95a, CGB+10, CLL03, CLOL18, CNC10, Cze16, DDS+94, DERC01, DPP01, DGM93, DT94, FTVB00, Fer98b, FGKT97, Fos98, FS93, GLN+08, GS92, Gei93a, GBD+94, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hol12, HT01, IEE92, IEE93d, IEE93c, IEE94g, IEE95c, IEE95k, IEE95l, IEE96a, IEE96f, IF195, KKO2a, KS97, LCK11, LRG14, LC93, LR01, Lus00, dFMBdFM02, ME17, Mat94, Mat95, MS04, Nov95, PKW95, PR94b, PWPD19, SHTS01, SCSL12, Sin93, SSS97, Ste00, SG91, SW91, Sin90a, Sin90b, Sin92, Sun93, Sun94a, Ten95, VV95, VV92, WN10, Y96, YG96, ACGdT02, ARYT17, AL92, AH95, ASCS95, Ano93b, Ano94e, Ano94h].

computing [Ano03, ADDR95, AMV94, BPG94, BDG+92a, BDG+94, BKML95, Bru95, BHW+12, CZ95b, CZ96, CHKK15, DLRR99, DDK08, DW94, D+95, DMW96, DE91, EKTB99, EJL92, FBDO1a, FGRD01, FO94, FS95, Fer98a, FS98, FME+12, FHC+95, GGGC99, GS02, GS91a, GS93, Gei93b, Gei94, GH94, GkLyC97, HP05, HW11, HH14, HPI+93, HS95a, HH95, mH12, IEE97a, IM95, POJ12, JY95, JIM+11, JPTE94, KO14, Kos95b, KSSS07, LV12, LH98, LCHS96, LHD+94, LHD+95, LM13, Mat94, MZK93, Mal95, Mar07, PG+13, PKB06, Pen95, PG+10, PTT94, PBG+95, PN01, PW+12, RBS94, RJJH14, Sch93, SGS95, SMS00, STT96, Sti94, SP11, Sun94b, SGDM94, Sun95, SD90, TJQ09, TKP95, TBD00, Tho94, TSS98, VM94, Vis95, Was96, YULMTS+17, YLC16, YSL+12, Zem94, ZWL13, ZGC94, ZHS99, ZKR14].

Computing [ACM98a, Kon00, PW95, Per96, SCR92, TGEM09, Ano95b].

Concept [KaM10, LTR00, SB95].

Concern [Ano94i].

Concurrency [ME17, NPS12, DGB+14, PTG13].

Concurrent [Ano89, BD+91b, BR92, BHV12, BKH+13, DG95, GS91b, GS92, GSxx, Gre94, HS93, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LPD+11, NP12, RGDM16, RCG95, Sun94b, SGDM94, Wal94a, Wal94b, WK08a, WK08b, WK08c, ZW+95].

condensed [MC99].

Condition [GK10].

Condor [CF01, PL96].

conduction [iSYS12].

Cone [RCFS96, OH10].

Conference [ACM90, ACM94, ACM96b, ACM96c, ACM97b, ACM98b, ACM04, Abr96, ATC94, AGH+95, Ano89, Ano93g, Ano94a, Ano94e, Ano94i, ACDR94, BBG+95, B+05, Boi97, Bos96, BFM96, BH95, CGB+10, CH96, DSM94, DSZ94, DKD07, DKM+92, ERS95, ERS96, EJL92, FF95, Gat95, GN95, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE92, IEE94f, IEE95b, IEE95a, IEE95e, IEE95i, IEE95j, IEE96a, IEE96d, IEE96h, IEE96i, IEE97, LCK11, LF+93a, MMH93, Nar95, OL05, PR94b, Ree96, R+92, SPE95, Sil96, SM07, Sin93, SW91, USE95, USE00, VW92, Vol93, WP94, Y+93, YH96, ACM95a, ACM05, ACM06b, ANS95].
Construable [IEE94d, PKB+96, BB94].
configurations [PTL+96], conflict
[TCP15], conformational [MK94].
Congress [CJNW95, GHH+93, PSB+94, BH95, dGJM94].
Congressi [GT94].
Conjugate [BG95, GFG12, MM92, Ols95].
Connected [BT01b, KRKS11, OF00, Pet01].
Connectivity [Whi94].
Connectedness [WTR03].
Context-bounded [MdSAS+97].
Contexts [Gor01].
Continual [NS16].
Continuous [TA14].
Contract [KPNM16].
Contract-based [KPSM16], contrarian
[KSSS07].
Contrasts [GG99].
Control [FLD98, FM99, IEE94e, MSS97, MKB12, SFL+94, SHPT00].
controller [GWC95].
convection [CEGS07, TV99].
Convention
[ACM98b, ACM99, ACM00, Hol12, IEE94b].
Converse [BK96].
Conversion [ZG95b].
convex [GCN+93].
convolutions [DZZY94].
Cook [SD13].
Cooperation
[Wis01, Str94].
Cooperative
[DG97, D99, HRS99, kLCCW07, Pet00a, Pet00b, JKN+13, SHLM14].
Coordinate [OP98].
coordinated
[BCH+08].
COORDINATION
[CH96, KAH96, FKK96a, CH96].
Copley
[IEE94e].
Copperhead [CGK11].
Coprocessor [BB18], Copy [SWHP05].
copying [SH96].
CORBA
[DP01, Fin97, LRW01].
Core
[ABB+10, Bri10, CZG+08, LZH97, SOH+98, TCM18, YGH+14, YTH+12, ACMZR11, BBG+14, BL99, FHB+13, HTA08, JR13, JMG+11, JR10, KSS13, LLCD15, LHL+14, MBBD13, PZ12, SFSV13, SVC+11, TFZZ12, VDL+15, WCC+07, WYLC12, dCZG06, MMH08, Nag05, An09a, An09b].
Cores
[BBG+11, DT17, BMS+17, WO09].
Corfu
[SM07].
correct [DM93].
correction
[BCD96, FME+12].
Corrections
[BL95].
Correctness
[MK90].
Correlated
[MM07].
corruption
[FME+12].
Coscheduling
[GRV01, SGH10].
Cosenza
[KG93].
cosmological
[BAC07, Sai10].
Cost
[KS15b, RLL01, GKK97, GW+94, Wa99].
costs
[GB94].
Cots
[HIC+18].
count
[KVG11].
counters
[Rah99].
counting
[JR13].
County
[ACM98b].
Coupled
[MBS15, SS01, SBR95, Gra97].
Coupling
[BS93, KRG09, SB95, WB96].
course
[STT96].
CoW
[KMG99].
CPPvm
[Gor01].
CPS
[Mat94].
CPU
[BB18, CLOL18, DF17, JR13, KSL+12, Lee12, LRG14, LLC13, LFL11, OFA+15, PDY14, Pri14, SSS+17].
CPU-MIC
[BB18].
CPU/GPU
[KSL+12, Lee12, LLC13, OFA+15, SSS+17].
CPU/multi
[SAP16].
CPUs
[SH12, LNK+15, ON12, SFSV13, YSW14].
CPVM
[CG96].
Cracow
[BDW97].
cranial
[NAJ99].
CRANIUM
[MBE94].
Crash
[LCVD94b].
Crash-simulation
[LCVD94b].
crashworthiness
[LCVD94a].
Crawler
[Wal01a].
Cray
[BL94, GRRM99, MP95, Sch96a, Sch96b, ABG+96, AZ95, APST95, CCS97, LKJ03, LS04, MW09, Oed93, RBB97c, SWS+12, SCC95].
CRAY-T3D
EGR15, EASS95, GTS +15, GB98, GMPD98, Gua16, HA10, HB96b, HC06, JDB +14, KA13, LK14, LDJ13, MV17, Man01, MK17, ME17, MGA +17, MJB15, NJ01, NPF +00b, NPP +00c, NA01, NLRH07, PCY14, Rei01, SGH12, SPK96, SR96, Str12, THe +15, W095, Wel94, ZDR01, ZG95b, AB95, ASS +17, AGG +95, BK11, Ben95, BR12, BID95, CKmWH16, SPK96, CGL +93, DRUC12, EP96, FB97, Fan98, FVLS15, FME +12, FKK +96b, FWS +17, GE95, GE96, HB96a, HC08, JCP15, JE95, JPR97, KN95, KJ17 +16, KRG13, LOHA01, LF +93a, LL16, MA09, MMB +94, MMM13, MR96, NCB +12, NCB +17, NPP +00a, OPP00, PY14, RJM93, SJLM14, SS999, SPH95, SK92, TW12, WO96, WLK +18, YCL14, YWO95, ZRD01, ZG95b, AB95, ASS +17, AGG +95, BK11, Ben95, BR12, BID95, CKmWH16, SPK96, CGL +93, DRUC12, EP96, FB97, Fan98, FVLS15, FME +12, FKK +96b, FWS +17, GE95, GE96, HB96a, HC08, JCP15, JE95, JPO97, KN95, KJ17 +16, KRG13, LOHA01, LF +93a, LL16, MA09, MMB +94, MMM13, MR96, NCB +12, NCB +17, NPP +00a, OPP00, PY14, RJM93, SJLM14, SS999, SPH95, SK92, TW12, WO96, WLK +18, YCL14, YWO95, ZRD01, ZG95b, AB95, ASS +17, AGG +95, BK11, Ben95, BR12, BID95, CKmWH16, SPK96, CGL +93, DRUC12, EP96, FB97, Fan98, FVLS15, FME +12, FKK +96b, FWS +17, GE95, GE96, HB96a, HC08, JCP15, JE95, JPO97, KN95, KJ17 +16, KRG13, LOHA01, LF +93a, LL16, MA09, MMB +94, MMM13, MR96, NCB +12, NCB +17, NPP +00a, OPP00, PY14, RJM93, SJLM14, SS999, SPH95, SK92, TW12, WO96, WLK +18, YCL14, YWO95, ZRD01, ZG95b.
Man94, MMSW02, NPS12, OFA+15, Pan14, PLK+04, PCS94, SBG+02, SWY94, SSL97, SPK+12, Sum12, THM+94, USE94, VGRS16, BR91, CARB10, CSS95, DS96b, FD02b, GL94, GkLyC97, KA95, LC07, MAS06, OA17, PGK+10, PTW99, SL94b, Sep93, Si96, SSD+94, SWL+01, Wal94a, Wal94b].

design-pattern [MAS06]. **designed** [BSH15]. **Designing** [GKZ12, LAD16, SWHP05, SH14, WYLC12, ZLP17, AHHP17, DSOF11, Pan95b].

Designs [HVA+16, AAAA16, MC17, Shi94]. **desktop** [Mar07]. **Detailed** [DLV16, RSPM98, BTC+17, LR06b].

Detect [Str94]. **Detecting** [AGG+95, PPJ01, ZRQA11]. **Detection** [BHW+17, CSW12, CBL10, SH14, WYLC12, ZLP17, AHHP17, DSOF11, Pan95b].

Detector [DZDR95]. **Determination** [LAFA15]. **Determine** [BP99]. **Deterministic** [CFMR95, DK02, ZLL+12].

Develop [PD98]. **Developer** [IEE96i]. **developers** [Str94]. **Developing** [BFZ97, CCSM97, Cot98, DDL95, Reu03].

Development [AC17, Ano01a, BDG+91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TDBEE11, ARw03, ABC+00, BL97, BDG+92a, DS924, DHP97, KCD+97, LLC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99]. **Developments** [Mat00a].

device [KKLL11, LS10, SBQZ14, YWTC15].

Devices [GJN97, ZDWW18]. **DFB** [WWZ+96]. **DFN** [RS93]. **DFN-RPC** [RS93]. **Diagnosis** [AP96, LAd+15].

diagnostic [RSBT95]. **dictionary** [LSSZ15].

Diego [Has95, LF+93a, NM95]. **Difference** [UZC+12, GFPG12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94]. **Differences** [AKE00, LDCZ97]. **Different** [AIM97, GL97b, JCH+08, Ney00, Rab98, RBB+97a, BN00, PY95].

Differential [MFTB95, Riz17, JK10, NF94, RBB+15, SP11]. **Differentiating** [Cer99]. **Differentiation** [BBH+08, BGKO, CdGM96].

Diffusion [HF14a, HF14b, MW98, CECS07, DM93, MM92]. **Digest** [IEE93a, IEE95c]. **Digit** [DAMD18, LAD16]. **Digital** [KLR16, CIJ+10]. **Dijon** [YH96].

Dimensions [SAS01, Ano93h, HP11]. **dipolar** [BB+16, LYSS+16]. **DIPORSI** [GGCG01]. **DipSystem** [SLQ99]. **Direct** [Bri10, GPC+17, LB98, WJB14, BCM+16, Grs09, HWS09, MM11, SWH15].

direction [BGD+93b]. **Directions** [IF19, FK94, FHP+95, SM96]. **directive** [LV12, NO02a, YL09]. **directive-based** [LV12, YL09]. **directive/MPI** [NO02a].

Directives [BBG+01, BKO00, CCBPGA15, JFY00, LOHA01, VGS14]. **directory** [JCP15].

Discovering [FJK+17]. **discovery** [BK11, GWVP+14]. **Discrete** [ST17, WMC+18]. **Discrete-Event** [WMC+18]. **diskless** [PKD95].

Disks [dilFMBdilFM02]. **Dispersion** [RSV+05]. **Displacement** [BJS97, PSSS01].

Dissemination [GL97a]. **Distance** [MR12]. **Distances** [LAFA15]. **Distributed** [AGS97, Ano95e, BMS+17, BME02, BGR97a, BL95, Bha93, BJ95, BRST94, BT01b, BHKR95, CGB+10, CL03, CSW97, CC99, DMB16, DBA97, DFM94, DGF97, DHHW92, DHHW93a, EMO+93, ESM+94, FH95, Fan98, FTVB00, FK01, Foo98, F093, FFFC99, GCGM99, GGGC01, GCGS98, GCBM97, GWC95, GM95, HJ98, HC10, HRSA97, IEE93d, IEE93c, IEE94d, IE94g, IEE95h, IEE95i, IEE95j, IEE95g, IEE96b, IEE96g, IEE96f, IE05, JML01, KBA02,
Divergence [ST17, WO95, HKMCS94, WO96, vHKS94].

GBR97, GCN + [Ano94e, Arn95, ADMV05, BSC99, BB95, Bir94, BMPZ94a, CBPP02, CH94, CEF+95, CBHH94, CLLASDP99, CPR+95, CK99, DLR94, DR94, DHHW93b, DR95, EGH99, FB97, FS95, FS98, FHC+95, FHB+13, GBR97, GCN+10, GK98, GkLyCY97, GP95, HPY+93, HHA95, IEE97a, JWB96, KN95, KSG13, KKJ+16, KDL+95a, LR06b, LFS93a, LFS93b, LH98, LKL96, Lii95, Maf94, MVT96, MLC04, NA99, OLG+16, PK05, POL99, Par93, PR94c, RAC95, RFH+95, SSH08, SHH101, SL94b, Sch93, SFL+94, SSC96, SPL99, Smi93b, SD99, TSP95, THM+94, Uhl95a, VM94, VB99, Vet02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YLC16, YWO95, YX95, YPZC95, YZPC95, ZL96, ZGC94, ZHS99, Pet01].
distributed-data [FB97].

Distributed-Memory [CSW97, CC99, KN95, SSH08].
distributed-shared [ADMV05].

Distribute [AL92]. Distribution [KB96b, MJ15, NPP+00b, NPP+00c, NA01, SR96, AGG+95, CSW99, GS96, HB96a, JMD7+97, KRC17, NPP+00a, RMJ93, Wil94].
Distributions [ST17, WO95, HKMCS94, WO96, vHKS94].

Divergence [SdSCP13, VSW+13].
diversity [EO15]. Divide [CTK01, Cza02, Cza03].
Divide-and-Conquer [CTK01, Cza02, Cza03].
DMMP [BB93].
DMPI [HWM02, ZL+12]. DNA [PGF18].
DNAml [CDZ+98]. DNMR [SR11].
docking [ESB13, ZWL13].

d [LK14].

Domain [BMR01, CP97, EGH+14, kL11, ETV94, HE13, Nel93, NZ94, Ohn14, OMK09, Ram07, SHHC18, VM94].

Domaine [GA96].

Domains [KR90].

Dongarra [Ano95b, Ano96a, Ano99a, Ano99b, Nag05].
dOpenCL [KSG13]. Double [FKKC96, PTT94].
down [Str94]. Downloadable [Ano98]. DP [Arn95, KLR+15]. DPVM [HV+A00].
draft [DHHW93b, GL92]. Draw [ST17].

Dresden [MDS09]. Driven [AAM97, ME17, PCY14, Hin11, NCB+12, NCB+17, Qu95, SIS17, TFW09, WTF014].

Dror [Stp02].

drug [GWVP+14].

DSD [Str94].

DSIR [LTR00, RLF99]. DSM [KBVP07].

DSMPI [SSC96, SSC97].

DTM [PS07]. DTS [BHRK95].

Dual [BBC+00, GAM+02, DK02, CT13, LISS15].
dual-dictionary [LSZ15]. Dual-Level [BBC+00, GAM+02, DK02].
dual-scanline [CT13].

Dublin [LK08]. During [DeP03].

Dust [dCBF02]. DVFS [PTL+16].

DWT [ZZZ+15]. Dyn [WNL03, WNL06]. Dyn-MPI [WNL03, WNL06].

Dynamic [ACG97, AGS97, AVR00, CGLD01, CKWH16, CML04, CK99, CT01, DBM16, DBA97, DF94, FBM96, FD00, GFD03, GFD05, GNV01, GMB98, GL95a, KFL05, MK17, NPP+00c, NLR07, PK98, PLK+04, PT01, PGB9+18, Ram05, SP+18, Smi93b, SY95, TS12a, VD00, Vet02, Wal01a, Wil94, YST08, Ze95, DLM95, EO15, FH97, FCS+12, FKLB08, JCI7, MMB15, SBR07, NF94, OKW95, RBA117, RCG95, SCB14, SCB15, SKK+12, SKB+14, WRSY16, YPA94, DvdLV94, FCS+12].
dynamically [RVS99].

DynamicPVM [DvdLV94].

Dynamics [BST+13, BCGL97, DR97, JFY00, KMB97,
dFMBdFM02, MH01, OS97, SZBS95a, SA93, TDBEE11, TGE909, YWCF15, ZB94, ALR94, ABG96, AGMJ06, BvdB94, BHS18, BvdSvD95, BBK+94, BMPZ94b, BMPZ94a, CC00h, FHS99, HVSC11, JAT97, JMS14, KFA96, KPK13, KRG13, LSVMW08, OKM12, PARB14, PBK99, RBB15, SPE95, SZBS95b, SKM15, TG94, WPH94. Dynamische [Wil94].

dynamite [IvdLH+00, IHvA+00]. Dynamite/DPVM [IHvA+00]. DySel [CKmWH16].

E-scale [Gua16]. EA [Ben18], each [Ano00a, Ano00b]. Early [CD96, LV12, SLG95, EFR+05, KJA+93].

Earth [KTJT03, Nak03, Nak05a, Nak05b, UTY02]. Earthquake [UZC+12, KTJT03, KME09].

Easily [PKB01]. East [IS16]. Easy [HCA16, TDG13, MJPB16, SBF94].

EasyGrid [BR04]. EASYPVDM [Saa94]. ECMWF [HK93, HK95]. ed [Nag05].

EDEM [Tsu95]. Edge [ZDD97, Gra97, RAGJ95]. edition [Ano99a, Ano99b, Ano00b]. Editors [AM07, GSA08]. education [ACM06a].

EDV [Ano94c]. EDV-Benzutzertreffens [Ano94c]. Edward [Che10]. Effect [DK06].

Effective [MLAV10, RK01, TMCP09, Tsu95, Cza13, JH97, KS15a]. Effects [SSE12].

efficacy [GScFM13]. Efficiency [KS96, MTU+15, CZ96, MMU99, RS95].

Efficient [ADT14, Att96, BHW+17, BGBP01, BCK+09, BHLS+95, BFG+10, BGD12, Btu95, BDH+95, BDH+97, BMPZ94b, CAWL17, CPF96, DZ98a, DGC+12, FHPS94a, FHP94b, HBT95, HKT+12, HT08, HCO6, HLO+16, KGH+03, KD13, LAD16, MDM17, MB12, MRB17, NBK99, PGS+13, RJMC93, RRBL01, TGBS05, WSN99, WWW11, YPZC95, ZWHS95, BDA94, BHW+12, CGH+14, FM90, FNSW99, FHB+13, HCL05, KVGH11, LKL96, LA06, Pan95b, PRS+14, RR01, SOA11, TPD15, TDG13, YLC16, dCZG06, CRD99, THRZ99]. Efficiently [CC99, CCM+06, PHA10]. effortless [ITT99]. eigenproblem [BV99, GG99].

eigensolvers [DR18]. Eigenvalue [DAK98, BSC99, THM+94]. Eighth [ERS95, Sie94, IEE96b]. Eileen [CSS95].

einem [BL94]. Einfluß [Gra97]. Einführung [MS04]. Einstein [ARYT17].

electrostatic [VDL+15]. Element [MS02b, OD01, OMK09, SM02, VR00, BB93, BCM+16, Gra09, HMKV94, KME09, KEGM10, MGS+15, Nak05a, Nak05b, PTT94, TOC18].

Embedded [TCHM18, YGH+14, ACJ12, CGK11, NEM17, TMW17, WCS+13].

Embedding [FS97, SML17, MS06a]. Embodying [Ser97]. emerging [RMNM+12]. Emission [Pat93, EZBA16]. emphasis [Bos96]. eMPI [MS06a]. eMPI/eMPICH [MS06a]. eMPICH [MS06a]. Empirical [SS94, VY02].

Employing [AGMJ06, LB16]. emulation [MS09b]. emulator [LTLC94]. enable [SPK+12]. Enabled [Fos98, GSY+13, LSMW11, Pan14, ZLP17, DS13, GLM+08, HJBB14, KHSB19, KTF03, RA09, SHHI01, SR11, ZLS+15]. Enabling
[APBcF16, BGG+15, CLSP07, DGB+14, GBH14, GBH18, HJYC10, NPS12, TY14, ZPI06, BR04, MA09, SHHC18].

encapsulation [DRUC12]. **encoding** [AAAA16, PGB+12, SM12], **endpoint** [LLH+14]. **endpoints** [DGB+14]. **energies** [TKP15]. **Energy** [BPG94, EGR15, KFL05, RBA17, VW92, FKLB08, KN17, PTL+16, TDG13].

Energy-Aware [EGR15]. **energy-efficient** [TDG13]. **Engine** [Wal01a, NPP+00a, Wal01b, WGG+99].

Engineering [Ano98, BPG94, BP93, EGH+14, IEE96h, KaM10, LSB15, LF+93a, MS02a, MBS15, Nag05, SM07, Str94, DMW96, IEE94c, PW95, RMS+18, SI96, LF+93a]. **engineers** [HW11]. **Engines** [SLJ+14, HSW+12, SHM+12]. **Engine** [OIS+06]. **English** [Wil04]. **Enhance** [AR01]. **Enhanced** [Ano98, CDH+95, CDH+95, FMSG17, KY10, PLR02, Saa94, BR95b, FE17].

enhancement [ARL+94, Boi97].

Enhancements [BG+95, BCKP00, DM95b, DM95a].

Enhancing [BFIM99, FSC+11, HMS+19, MTV96, MSMC15, OFA+15]. **Ensemble** [Cot97, Cot98, KY12, FH97].

Ensemble-Based [FH97]. **ENSOLV** [AMS94]. **Entwicklung** [Sei99].

Environment [BG93, BFG+10, BFM97, BGL00, ChPP01, CTKO1, DLB07, DI02, DHH+92, DHHW93a, DDL00, FTB00, FRW+95, GJN97, GL97a, HRS97, KBA02, KKH03, KDL+95b, KV+97, LC93, Lus00, MSOR01, MM02, MFG+08, MS97, NJ01, Ong02, Rol94, SDN99, SGL+00, SGH01, TTP97, WL96a, ABG+96, BD+92b, BD+94, BK96, BT96, CEF+95, CLLASPD99, DZ96, DL10, DHHW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GH99, GPL+96, GkLyC97, HZ94, IJM95, IvDLH+00, KCD+97, Kat93, KDL+95a, Kos95b, KFSS94, wL94, MSL12, MK97, NP94, PES99, PVKE01, PQ07, RNPM13, SSKF95, Sch93, SPK96, SBF94, SWY+94, Skj93, SSG95, TJD90, Tho94, WCC+07, WL96b, WLC07, ZPL96].

environmental [ANS95]. **Environments** [Ano95c, Ano01a, Bak98, BF98, DT94, GFB+03, La90, Mat94, Mat95, MFC98, PS01a, RB01, SHH94b, SSSS97, SCL00, TAH+01, ACG+02, ARL+94, ALR94, ADDR95, AMV94, Bon96, BFIM99, CDH+94, CK99, DR94, DR95, EO15, HS93, HVHS95, LC07, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96].

environments-the [CDH+94]. **EPS** [GT94]. **EPS-APS** [GT94]. **Epstein** [BL95]. **Epstein-Nesbet** [BL95]. **Equation** [ES11, LZ97, SA91, RVS00, DM12, LBB+16, LS95, NP94, ON12, Obs95, Pri14, iSYS12, SSB+16, YSVM+16, YSMA+17].

Equations [And98, BG95, HK96, LL93, MFTB95, ORA12, ZB97, BH+12, Che99, IM95, JK10, Jou94, MM11, NF94, RBB15, SP11, SM906, ZZG+14, dH94].

Equi [LTRA02]. **Equi-Join** [LTRA02]. **equivalencing** [LLG12]. **Era** [ABB+10, CZG+08, CGK11, EdS08].

Erratum [Ano01b, HF14b, Wal94b]. **Error** [DFC+07, HPS+12, HPS+13].

Errors [FCLG07, SD16]. **Erweiterung** [GRB97].

ESA [Wii94]. **ESBMC** [MDAS+18].

ESBMC-GPU [MDAS+18]. **Espoo** [RWD09]. **ESPRIT** [CDH+94].

Estimation [GK10, AMHC11, CCU95, GB94, JMV+17, KS13, ZHS95].

Estuarine [LRQ01]. **Ethernet** [CC00a, Fii97, HcF05, KLY03, KY05, OF00, PF97].

EU [Ano03]. **Eugene** [MCdS+08]. **Euler** [DLR94, IDD94]. **Euler/Navier** [DLR94, IDD94]. **EURO** [HAMI95, BFM96, HAM95b, BFM96].

Euro-Par [BFM96, HAM95b, BFM96]. **Euromicro** [IEE95a, IEE96g]. **EuroMPI** [CDND11, KGRD10, TDB12, TB14].
EUROPE [LCHS96, Ano92, Ano93f, Ano93g, Ano94g, Tou96]. European [AD98, Ano94i, BR95a, BDL96, BC00, BDW97, CHD07, CHD09, CD01, CDN11, DK05, DLM99, DPK00, DLO03, KGRD10, Kra02, KKD04, LKD08, MTW06, RWD09, TDB12, WPH94, DHK97]. EuroPVM [BDLS96, OL05, DK05, MTW07].

EUROPVM/MP [OL05, DK07, MTW07]. EuroPVMMPI [KKDV03]. EUROSIM [BH95, DSZ94, BH95]. Eurospace [Tou96]. Eurospace-Ada-Europe [Tou96]. Evaluate [MW98]. Evaluating [BWV+12, FVLS15, FST98a, GFD03, GFD05, GCGG01, GB96, HW97, LH95, SSSS97, ZShH01, GSCFM13, LTLC94, TG09, ZLZ+11]. Evaluation [ATM01, BF98, BIC+10, BFM97, BEG+10, BB18, CLP+99, DI02, FST98b, FSSD17, Han98, JCH+08, KS96, KKO2b, KSS00, LGCH99, LND+15, LZ97, L11, LV94, MH01, MGC12, NNN00, O10K15, OM96, Pan14, Par93, RB01, SWHP05, SCP97, SEF+16, SBF+04, SM02, S001, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TTSY00, UM97, VY02, AB13, BBG+14, BBH...13a, BMG07, CB11, DDB+16, HPR+95, HASN00, HP95, IM94, JLC17, JMDV+17, LV12, LNW+12, MKP+96, MM03, MT96, MHH99, NN95, P5908, RLF913, SL94b, SWS+12, SWYC94, SFSV13, TSP95, THM+94, TMPF01, W096, Y095, Y893, ZHK06]. Evaluations [MM14]. Event [KKV01, NSLV16, THS+15, WM01, WMC+18]. Event-Based [NSLV16]. everything [CCM+06]. everything-shared [CCM+06]. Evolution [Mat01a, PS01a, RBB17, SSL07, SGM94, GS93, SSD+94]. Evolutionary [B+05, DSM94, Rag96]. Evolving [Bad16, ER12, MDSC09]. Ewing [Ano95c, Ano99e, Ano99d, Ano00a, Ano00b]. EWOMP'99 [BC00]. Exact [DOSMM+16]. Example [Che10, SK10, NB96, Pat93]. Exascale [Bad16, LV12, LSG12]. Exception [FMG17]. exchange [MM13, Pan95a]. excluded [BHW+12]. executable [WMP14]. Execution [AHD12, BME02, DT17, FC05, FM90, GR07, MKG+03, MK17, Mar05, MFG+08, MAH01, Ney00, STY99, SAP16, EPML99, Mor95, PSB+19, SMAC08, TNB17, TSY99, TSY00, UGT09]. Executions [GAML01]. Exhibition [H95a, GH94, LCHS96]. Existing [CB00]. EXOCHI [WCC+07]. Expand [CCG+02]. Expanding [LA02]. expected [CAHT17]. Experience [BPC+97, BT96, CP08, PS01a, Tou00, AMS94, CARB10, KJA+93, RSC+15]. Experiences [AHF01, BZF97, CMV+94, CLCLASP99, GLN+89, GS91a, GS91b, GB96, GL95d, ITT02, JR10, KS97, Mat02, TGE09, ZP95, Z95, ZKRA14, AL92, CC+94, Sch94, SGM94, BDG+93]. Experiment [Lu99]. Experimental [B109, B10, B108, EGC02, Ser97, UMK97]. Experiments [BPMN97, Coe94, LGM00, OS97, RR00, ZB97, RHG+96, HAK01]. Expert [BPG94]. experts [EO15]. ExpEther [NMS+14]. Explicit [BHV12, GFPG12, SGHL01, LC97]. Explicitly [Mai12, SYR+09]. exploit [ZP106]. Exploitation [GGL+08, GAM+02, BK11, GAM+00]. Exploiting [Add01, Bri10, FKL08, HEHC09, KFL05, NAAL01, Nob08, THH+05]. Exploration [AMUHK15, OFA+15, ABPD15, GE95, GE96, PDS+15]. Explorations [BGC+15]. Exploring [IFA+16, MBKM12, MUT+15]. Expose [SAL+17]. Exposing [SD16]. Exposition [IEE95d, LF+93]. EXPRESS [KS96, Ahm97, FK94, LH95, SHH94a, SHH94b]. Expression [BN12, GDM18, KH15, Sur95a]. expressions [SF15]. expressive [Tri12a, YLC16]. Extend [DF+09].
Extended [BR02, HTA08, SS99].
Extended [ABB+10, BCC+00a, BCC+00b, BDB+13, CS96, CG99a, KDT+12, LMGR14, Mar03, OFA+15, RGDML16, SDV+95, TMTP96, CG96, GGHG+96]. Extensible [BL97, GS94].
Extensions [ABB+10, BCC+00a, BCC+00b, BDB+13, CS96, CG99a, KDT+12, LMGR14, Mar03, OFA+15, RGDML16, SDV+95, TMTP96, CG96, GGHG+96].

Feature [Qu95, ZWL+17]. Feature-driven [Qu95]. Features [GLT99, GLT00b, GLT00a, GLT12, KAHS96, Ano00a, CRD99, WKS96, ZKRA14, dAT17].

FFT-Based [WJB14]. FFTs [EFR+05]. FFTW [KT10]. FHP [BMS94a]. Field [KNT02, Goe02, TKP15]. fields [BAU95, RSBT95]. Fifth [DKM+92, HK93, IEE96f, SM07, IEE95c]. filamentary [YPA94]. File [BIC+10, CC+02, LRT07, KLCCW07, kL11, PLR02, RK01, TSS00b, Tsu07, WTR03, DL10, LL95, SBQZ14, iSYS12]. File-I [PLR02, RK01]. File-I/O [PLR02, RK01]. film [SL00]. filter [BY12, CCU95]. Finding [FCLG07, GÁVRIL17, PCS94]. Fine [AZG17, BBG+10, JCP15, SFL+94, TCM18, YSS+17, BK11, KW14, LZHY19].

Fine-Grain [AZG17, JCP15, SFL+94, BK11, KW14].
Finite-Difference
[UZC+12, VM94, HE13, NZZ94, Ram07, TOC18].

Finite-Element
[MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b, NZZ94, NB96, Ram07, TOC18].

Finite-Element [MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b].

Finland [RWD09].

Fire [JML01, SJ02].

First [AGH+95, BCD96, BC00, CH96, Dem96, DFN12, DW94, G95, HAM95b, Kum94, Nar95, PBPT95, SS94, USE94, AH95, BS94, GM18, PTMF18, PBPT95].

Fix [DLV16].

FLAME [VBLvdG08].

flat [Nak05b].

Flattening [THRZ99], flavors [GM18].

FlexCL [LWZ18].

Flexibility [KL92].

Flexible [CS14, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAGM+00, HC08].

Flip [KWF18].

FlinkCL [CLO18].

flip [KO14, Kom15].

Florida [ACM98b].

Flow [BHWM+17, BGD12, CGZQ13, CCBPGA15, FM09, MK17, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTHD99, JAT97, LL16, MBKM12, Ols95, PTT94, RM99, SCC95, SU96, TS12b, TOC18].

Flow-Based [BHWM+17].

Flows [GAP97, BCM+16, BTC+17, Heb93, LLG12].

flows [CB11].

Fluid [DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TGM90, ALR94, AT+12, AGM06, BvdB94, BHS18, BII95, HVSC11, MRRP11, PBK99, SPE95, SZBS95b, WPH94].

fluid-particulate [AT+12].

fluids [HK94, WB96].

Flux [QRMG96, QRG95].

Fly [WMC+18, KSJ14, THRZ99, BCAD06, BADC07].

FM [LC97a].

FMA [LO96].

Fock [CBH94].

Focus [Cl98, CFRF19].

foolish [R08a].

footprint [TS12b].

force [Goe02].

Forecast [AHP01].

forecasting [Bjo95, KOS+95a].

Forest [JML01, NCKB12].

FOREST [BG+10].

Foreword [CHD09].

FORGE [WCZR06].

Fork [BGD12, SML17].

Fork-Join [BGD12, SML17].

form [NCB+12, NCB+17].

Formal [BG94a, BD87, GKS+11, GB98, LPD+11, PGK+10, VVD+09, BG94c, SZ11].

Formalizing [FGRT00].

Format [BBH12, MDM17].

Forschung [AN94c].

Fortran [Ano97, Ben95, Bra97, GBR15, TOC18, AC17, ANO98, AS14, BW12, DZ98b, Don06, GML+16, HE13, HH14, HZ99, KaM10, Kuh98, LC7b, LCC+03, MWO95, iSYS12, SM03, SMCH15, TBG+02, Wal02, YBMCB14, YSVM+16, YSMA+17, vHKS94].

Fortran/PVM [MWO95].

Forum [Str94].

Forward [RMNM+12, DDB+13].

forwarding [CXB+12].

foster [SM12].

Foundation [G901].

four [GSMK17, MGG05].

four-atom [GSMK17].

four-particle [GSMK17].

Fourier [DBL11, BCM+16].

Fourteenth [IEE95b].

Fourth [ANO98, IEE95d, IEE95k, Sie92a, Sie92b, Ano94i, IEE96g].

FPGA [MTU+15, PWP+16, GPG18, RGB+18, WTT17].

FPGA-Platform [WTT17].

FPGAs [LWZ18, MC17, OAL+15, PL+13, WZH16, ROL00].

fractal [Wu99].

fragment [KS15a].

fragments [OA17].

Framework [Ben18, DGMS93, FC05, GGCG01, GR07, GDDM17, MGL+17, NSZ13, PFW19, PMvdG+13, SSB+05, SSAS12, Sun90a, Sun90b, WZH16, Ano93c, BA06, BR04, BAG17, EFR+05, FLMR17, GM13, KKM15, KJJ+16, KKK+08, KH10, LMO9, LLGG16, LCMG17, LS08, PT6+16, RSC+15, SL00, TDB00, YLC16, YWT15, ZT17, dAT17].

Frameworks [OP10, ASS+17, KDS01].

France [ACM90, BR95a, BMFR96, CHD07, DE91, FR95, JPT94, MCDx+08, VV92, YH96, GA96, IEE94c].

Francisco [BBG+95, IEE93a, IEE94g].

Frankfurt [Ton96].

Frankfurt/Main [Ton96].

Fredericton [BG91].

Free [PKYW95, CP15, SOA11, ZAH12].

freedom [KTJT03].

Frequency [IEE94c].

friendly [SVC+11].

Frontiers [ACM06b, IEE94a, IEE96c, Sie92a, Sie92b, Sie92a].

Frontiers’95 [IEE94a].

Frontiers’96
GPGPU [BG\+15, HA11, HCZ16, JKN\+13, LME09, LDJK13, LYZ13, MBKM12, PTG13, TY14, YZ14, YEG\+13].

GPGPUs [JMdVG\+17, LSB15, gprMax [WGG\+19], gprof [GJLT11], GPU [Che10, KA13, AKL16, AHHP17, BDP\+10, BR12, BCD\+12, BCD\+15, BTC\+17, BWV\+12, BBH12, CLOL18, CBYG18, CCBPGA15, DF17, DS16, DK13, DALD18, DSOF11, DWL\+10, DWL\+12, ER12, Fer04, FFM11, FSSD17, GCN\+13, HVA\+16, HSE\+17, HK09, HK10, HZG08, mH12, JDB\+14, JLS\+14, JR13, JNL\+15, JJPL17, JPT14, KDSO12, Kha13, KSL\+12, KPM\+16, KEGM10, KO14, KMM15, LV12, Lec12, LRG14, LLC13, LAD16, MMO\+16, MdSAS\+18, MGL\+17, Ngu08, NMS\+14, NSM12, OFA\+15, Pan14, PDY14, PGdCJ\+18, PF05, Pri14, RCM\+15, RMMN\+12, Sai10, SK10, SdM10, dOSMM\+16, jYSI12, SS09, SNH\+19, SCSL12, SIRP17, SAP16, SD16, SSB\+17, SKM15, SKB\+14, SG14, TBB12, TS12b, WGG\+19, WP11, YUMTS\+17, YHL11, YCL14, YSS\+17, ZRQA11, ZZG\+14, ARYT17]. GPU-Accelerated [KA13, SCSL12, PGdCJ\+18]. GPU-Aware [Pan14]. GPU-based [MOO\+16, SS09].

GPU-code [EZA16].

GPU-programming [HSE\+17].

GPU-Resident [JDB\+14]. GPUDirect [OGM\+16, YWCF15]. GPUMP [ZC10].

GPUrs [IFA\+16]. GPUs [BY12, BDA\+18, DS13, DS16, GML\+16, GPG12, GPC\+17, GMH18, HTJ\+16, HLP10, HP11, HLP11, Hos12, IFA\+16, JKM\+17, JAK17, KGB\+09, KKM15, KKLL11, KVGHI1, LBH12, LRG15, MA09, ON12, OIH10, PP16, PB12, SHLM14, SDB\+16, SKK\+12, T5U12, VY15, WRSY16, WJ12, WJB14, YLZ13, YSWY14, ZC10, ZZZ\+15].

gpuPHASE [WMRR17, WRMR19].

GPUverify [BCD\+12]. GQ [RFG\+00].

GRACE [YKT\+96, ZRQA11]. GRADE [DDL00]. Gradient [BG95, GFPG12, KN17, MM92, Ols95].

Grain [AZG17, IOK00, KO101, MJPB16, NIO\+02, NIO\+03, BK11, JCP15, KW14, SF\+04].

Grained [ADRCT98, BBG\+10, LGM14, MA09, ON12, OIH10, PP16, PB12, SHLM14, SDB\+16, SKK\+12].

gpuSPHASE [WMRR17, WRMR19].

GPUVerify [BCD\+12]. GQ [RFG\+00].

GRACE [YKT\+96, ZRQA11]. GRADE [DDL00]. Gradient [BG95, GFPG12, KN17, MM92, Ols95].

Grain [AZG17, IOK00, KO101, MJPB16, NIO\+02, NIO\+03, BK11, JCP15, KW14, SF\+04].

Grained [ADRCT98, BBG\+10, LGM14, MA09, ON12, OIH10, PP16, PB12, SHLM14, SDB\+16, SKK\+12].

gpuSPHASE [WMRR17, WRMR19].

GPUVerify [BCD\+12]. GQ [RFG\+00].

GRACE [YKT\+96, ZRQA11]. GRADE [DDL00]. Gradient [BG95, GFPG12, KN17, MM92, Ols95].

Grain [AZG17, IOK00, KO101, MJPB16, NIO\+02, NIO\+03, BK11, JCP15, KW14, SF\+04].

Grained [ADRCT98, BBG\+10, LGM14, MA09, ON12, OIH10, PP16, PB12, SHLM14, SDB\+16, SKK\+12].

gpuSPHASE [WMRR17, WRMR19].

GPUVerify [BCD\+12]. GQ [RFG\+00].

GRACE [YKT\+96, ZRQA11]. GRADE [DDL00]. Gradient [BG95, GFPG12, KN17, MM92, Ols95].

Grain [AZG17, IOK00, KO101, MJPB16, NIO\+02, NIO\+03, BK11, JCP15, KW14, SF\+04].

Grained [ADRCT98, BBG\+10, LGM14, MA09, ON12, OIH10, PP16, PB12, SHLM14, SDB\+16, SKK\+12].
[AD98, Ano98, Ara95, ACDR94, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, GN95, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RWD09, TBD12, UMK97, BDW97, DLO03, MMU99].
grouping [WPL95]. Groups [GOM+01].
Grover [LYZ13].
Growth [PKYW95, BB95].
GTS [PKE+10].
Guest [AM07, GSA08].
GUI [VGS14].
GUI-awareness [VGS14].
guidance [SDJ17].
Guide [Ano12, D+91, GBD+94, Lad04, Nov95, Per96, Ano95b, BDG+91a, McK94].
Guideline [Tra12b].
Guidelines [TGT10].
GVirtuS [MGL+17].
Hack [DLV16].
Hague [Ano93f]. Halide [RKBA+13].
Hamiltonian [ART17]. Handling [DCF+07, FMSG17, LSB15, LGM00, RC97, FFFC99, LN+12, THRZ99].
Hands [KmWH10].
Hands-on [KmWH10].
Harbor [BBC+00].
Hardware [BGG+15, BW+12, Brii12, BCKP00, CDPM03, DW02, EADT19, GJMM18, HSP+13, LSMW11, MFC98, PSM+14, PKB+16, vdLJR11, ER12, GGL+08, PMZM16, Rab99, SBC+12, SH94, SWS+12, YAJG+15, ZLS+15]. Hardware-Based [CDPM03].
Hardware-Oblivious [HSP+13].
harmonic [GSMK17]. Harness [EBKG01, MS99b, PL96, FBDo1a, FBDo1b, FBVD02, FD02a, FD02b, MSF00, Get98]. Harrogate [CJNW95]. Hartree [CBHH94].
HASEonGPU [EZBA16]. Haskell [WO97].
Hate [Dan12].
Hawaii [ERS95, ERS96, HS94, MMH93, ZL96].
HCA [KBG16].
HDL [Kat93, KMK16].
HDMR [KD12].
Heading [Sch99].
Heat [SAS01, NP94, iSYS12].
Hector [RFRH96, RRG+99]. Heijen [Van95]. held [AGH+95, GA96, JB96, KG93, MMH93, Old02, R+92, SPH95, TG94]. Helios [SPK96].
Helmholtz [HMKV94].
Helps [Stp02]. HeNCE [BDG+92a, BDG+92b, BDG+93a, BDG+94].
Hénou [JPT14]. Herzliya [IEC96a]. HeSSE [MRV00].
Heterogeneous [ABB+10, BDG+93a, BDG93, BL95, BCP+97, BGR97b, BCKP00, CMMR12, CLOL18, DLS17, DGM93, DGMJ93, FDG97a, FDG97b, FLD98, Fos98, GS91b, GDDM17, IEE93f, KR09, KCR+17, LC93, MRV00, MM01, MM02, NTR16, PD98, SMS00, SGS10, TQD10, VLO+08, ACGD10, ADB94, ADDR95, AMV94, BDG+92c, BDG+94, BALU95, BRR99, BAG17, CCM12, CFPS95, FBM96, GKZ12, GCF+10, HK94, KSG13, KSL+12, Kos95b, LCL+12, LR06a, Lee12, Mai12, MSL12, MM03, NP94, NEM17, Pen95, PSB+19, RCFS96, SCJH19, Skj93, Smi93b, Sun94b, Sun95, TBB12, TMW17, TKP15, TGD13, VB99, WCC+07, YST08, YSL+12, ZDJW18].
HeteroMPI [LR06a, VLO+08]. Heuristic [BHM96, STV97, WH94].
HI [ERS96, HS94, IEE96c, ACM97a].
HICSS [ERS96, MMH93].
HICSS-26 [MMH93].
HICSS-29 [ERS96].
iCUDA [HA11].
Hierarchical [BMR01, FBSN01, HA10, HL17, MALM95, RR02, ADMV05, BDV03, GJMM18, OKM12, YPZC95].
hierarchies [SYR+09].
High [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, BPG94, BRST94, BS07, BDA+18, CDD+13, CNM11, CDHL95, CS14, DPP01, DDL00, DE91, FGKT97, GSHL02, GBH99, GBS+07, GLDS96, HVA+16, HA11, Hol12, IEE92, IEE93c, IEE94g, IE95k, IEE96a, IEE96f, IEE97c, IF95, JMM+11, Kha13, KMK16, KEGM10, KH15, Lai01, LCK11, LC97a, LkLC+03, LBH12, LWP04, MW98, MPD04, ME17, MAB05, NU05, OIH10, OLG01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCSL12, SJ02, Sio05, SVC+11, SSS97, Tou00, Tsu07, VW92, WN10, YCL14, YWCF15, YSP+05, AH95,
Ano03, BADC07, Ber96, BWT96, BID95, CHKK15, CBYG18, DL10, Duc92, EZBA16, ESB13, FME+12, GS02, GGC+07, GL96, GL97c, HDGD99, HW11, Hos12, KBP16, KME09, Lan09, LBD+96, MSZG17, NS91, NFG+10, Old02, OGM+16, PGS+13.

high

[PGK+10, PF05, PTW99, Reu03, RJDH14, SG14, SFLD15, ZSK15, ZWL13, dAT17, CDH+95, DZ98b, D+95, DE91, GH94, HS95a, KD12, LCHS96, LC97b, SSH08, Ten95].

High-Dimensional [MW98].

High-Level [CS14, DDL00, HA11, Hos12, SG14, SFLD15].

High-order [KEGM10, KME09, OGM+16].

High-Performance [ACM98a, FGKT97, IEE97c, LkLC+03, OLG01, FKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCSL12, WN10, GLDS96, OIH10, SVC+11, Ano03, ESB13, FME+12, GL96, GL97c, HDGD99, KPB16, LBD+96, Old02, PGS+13, PGK+10, PF05, Reu03, RJDH14, SFLD15, ZSK15, HS95a, GH94, LCHS96, SSH08].

High-Precision [Kha13].

High-Quality [BDA+18].

High-Scalability [BS07].

High-Speed [CDHL95, KMK16, AH95, BWT96, CDH+95].

high-throughput [ESB13].

Higher [MYB16, KB13, wL94].

higher-level [wL94].

Higher-order [MYB16].

Highly [MM05, PV97, TMP16, CARB10, GBH14, GBH18, VM95].

highly-scalable [GBH14].

Hills [IEE93f].

HiNet [AH95].

HIRLAM [Bjo95, HE02, KOS+95a].

histogramming [KRC17].

History [OWSA95].

Hitachi

[Ano03, NN00, TSB02, TSB03].

HLA [RTRG+07].

Hoare [KI17].

Hoc [B17].

IBC+10, ITT02. Högskolan [Eng00].

Hole [Kha13].

holistic [TWFO09].

Homomorphisms [RG18].

homotopy

[RG95, SMSW06, VY15].

Honolulu

[IEE96e].

honor [Str94].

Host [Ano95c, LRRS02].

Host-Parasite [LLRS02].

HOTB [GSMK17].

Hotel [IEE94e].

Hotel-Copley [IEE94e].

Hough

[YULM tsl+17].

House [ZLZ+11].

Houston

[ACM06a, Ano95a, Cha05, DKM+92, Y+93].

HP [CGB+10, BCM+16].

HPC [ASS+17, CGBS+15, GDC15, GKK09, LCVD94b, OL+16, PRS+14, RGGP+18, ZLP17].

HPC2002 [Ano03].

HPCN [LCHS96].

HPF

[BP98, BF01, BID95, Bri00, BDV03, CM98, CDD+96, Coe94, FKK+96b, FKKC96, FKK96a, LZ97, OP98, OPP00, SM02, Str94].

HPF-MPI [BP98].

HPL [Lee12].

HPVM [BCKP00, CLP+99].

HPVM-Based [CLP+99].

hull [GCN+13].

Hungarian

[Fer92, FK95].

Hungary

[DKP00, KKD95a, VV95, FK95].

hunting [BJP95].

Husky [YLC16].

Huss [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

Huss-Lederman

[Ano96a, Ano99a, Ano99c, Ano99b, Ano99d].

Hybrid [BB+10, BB+06, BB18].

CGC+11, CNM11, Cha02, DR97, GPC+17, HVSC11, IDS16, KS15a, KLR+15, LLRS02, LRG14, MS02b, NO02b, PZ12, SS+16, VPS17, WT12, YHL11, YPAE09, YTH+12, ADR+05, BB+14, CSPM+96, FMS15, GÁVRR17, GKK09, HDB+13, JR10, JMS14, KN17, KRG13, KJEM12, LLC13, LLH+14, MLAV10, MRRP11, NO02a, Nak05a, Nak05b, PARB14, PHJM11, SDJ17, SVC+11, WT11, WYLC12, WLYC12, WT13, YWC11, ZWL13].

hybrid-core [BB+14].

Hybridizing [LSG12].

HYDRA_MPI [PBC+01].

Hyper

[CSW99, SBT04, TBG+02, ZAT+07].

Hyper-Rectangle [CSW99].

Hyper-Threading

[SBT04, TBG+02, ZAT+07].

hypercube [HS95b, Sur95a].

Hypercubes

[Ano89, RJMC93, She95].

Hypercubic [HP11].

hyperelastic [OKW95].

hypersonic

[BTC+17].

Hyperspectral

[VLO+08].

I-SPAN [LHHM96, Li96].

I-WAY [FGT96].
I/O [Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLC+03, klLCC+06, MV17, MC18, MG12, MG15, PKS08, PLR02, RK01, SBQZ14, Tha98, Tsu07, WSN99, ZJDW18]. IASTED [Ham95a]. IBM [AL93, Ano03, BBB+94, BGBP01, BR95c, BR95b, Bri95, CE00, CDM93, FHPS94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, HMKV94, Heb93, JF95, KB98, KAC02, KMH+14, LC97b, MP95, MW93, MABG96, NMW93, WZWS08, XH96]. IBM-SP1 [FHPS94b]. ICA [IEE96d]. ICAPP [Nar95]. ICCMSE [SM07]. ICIP [IEE94b]. ICPP [Agr95a]. IFIP [DGG+12]. Idaho [Str94]. IEE [IEE95d]. identification [HPLT99]. Identity [KN17]. IEEE [ACM97b, ACM98b, ACM04, ACM05, Bha93, IEE94e, IEE94g, IEE95b, IEE95k, IEE95g, IEE96b, IEE96f, IEE96d, IEE02, Nar95]. IEEE/ACM [ACM04]. IFIP [Boi97, DB94, PSB+94]. IFS [AHP01]. Igniting [ACM03]. II [DE91, GE95, HS94, BPS01, BW+12, EM00b, GAVRRL17, Sta95b]. III [BPC94, BP93, DMS94, GE96, Has95, OKW95, SSGF00]. ILDJIT [CARB10]. I’ll [Har94]. Illumination [STK08, ZHWS95]. ILU [ABF+17]. ILU-preconditioned [ABF+17]. in [Gra97]. Image [DYN+06, FJBB+00, GA96, GPC+17, KBA02, KS01, LSZL02, MC18, NJO1, PLR02, RRBL01, WN10, ARL+94, DZZY94, GDC15, JC96, KKL11, RKBA+13, SL98, UF96, WU99, YULM+17, YPZC95, ZYZP95, dAT17]. Imagery [GGCM99, GGCGO01, GGGS98, GGGC99]. Images [Uh94, Uh95b, VLO+08, NA99]. Imaging [NH95, Has95, LM13, Pat93]. imbalances [MLVS16]. immunodominance [ZWL+17]. Impact [ADLL03a, ADLL03b, BRU05, Bri92, TSS00a, WHDB05, D096, FSV14, SHHC18]. impacts [Str94]. Implement [GM95, PPT96c]. Implementation [AB93a, AKL99, BGG+15, BGBP01, BPS01, BG95, BHP+03, BBS99, Ben01, BP98, BCD+15, Bjo95, BS97, BIC+10, BMR02, BRM03, BMS94b, BMG07, ADA+18, CCG+02, CMRF95, DYN+06, DAK08, EFR+05, ES11, FH97, FD04, FHS09, FSXZ14, FJBB+00, FHPS94a, FHPS94b, FHPS94b, FHP+94, FSL98, GH99, GB98, GSB+07, Gro02a, HPP02, HRZ97, HKT+12, Huc96, HHA95, HAA+11, IBC+10, ITT02, IM94, JSS+15, JSH+05, LSZL02, LTRA02, LZ97, LWP04, MS02b, MW98, MN91, MT96, MRH+96, NSS12, NNON00, OTH15, OLGO1, Pan14, PLK+04, PS00a, Pet97, PB90, PTH+01a, PTH+01b, PB12, RDMB99, RG18, RSV+05, SH94, SBF+04, SBG+02, Ser97, SCC96, SSC97, SZBS95a, SW95, SYF96, Sum12, Sur95a, TOH99, TBG+02, TRH00, TMP01, USE94, VT97, WH94, WPC07, YGIH+14, YW095, ZZG+14, ACaG02, AS92]. implementation [AAA16, AAC+05, ADLL03a, ADLL03b, AB93b, BR91, BvdSvD95, BR95b, Ber96, BBCR99, BK96, BCK+09, BS01, BS05, Bor99, BR99, BS96b, BDV03, Bri95, B00, BAS13, CDZ+98, CEBS07, CG99a, CdmG96, CBH94, CD96, DSW96, D96a, DL10, DBB+16, DSOF11, DM12, FFB99, FWNK96, FGT96, FGG+04, GCC99, GG99, GG09, GAVRRL17, GL92, GL94, GL96, GLDS96, GL97c, GT07, GlLyCY97, HBT95, HCI05, HS95b, ITT99, IvdLH+00, JRM+94, JC96, KY10, KTF03, KBVP07, KL95, KVGH11, KB13, Lee12, LC07, L096, MLI0, Man94, MAIAH14, MS95, MSZG17, ON12, OKW95, OA17, OGM+16, PJHM11, PR94a, PT99, PCS94, RAM07, RRFH96, Sep93, SZBS95b, SCL97, St08, SNIP10, Su95b, SL95, TIK15, TP01, TS12b, TA14, TCP15, Tsr95, TV96, VDL+15, VGRS16]. implementation [VM95, Was95a, WMR17, WMRM19, YPA94, ZLS+15, dH94, diAMCFN12, van93]. Implementations
[AKK+94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG+10, FB94, Gro02b, kLC+06, LCW+03, Mar02, ORA12, Sap97, TSCaM12, TGE09, VS00, WT12, ZDD97, CLSP07, ER12, ED94, GML+16, ICC02, KWEF18, MKP+96, NN95, Pri14, RLFdS13, WLK+18, WT11, YCI14]. implemented [BBDH14, EP96]. Implementing [DPZ97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MMH98, MS99c, MSB97, SSC96, SS99, SMTW96, SL901, SCC95, Tra02a, Wil93, BWT96, LHZ97, YX95]. Implementor [GL95b]. Implicit [MS02b, NA01, SL901, Bjo95, TSP05, WADC99].

Importance [BCG+10, PCY14].

Importance-Driven [PCY14]. Improve [KBS04, SH96a, Tha98, GKH97, RHG+96]. Improved [Trä02b, Mø+16, dAMCN1]. improvements [DPS08]. Improving [CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SM12, SCL00, XF95, CZ96, JKN+13]. in-house [ZLZ+11]. In-Memory [CLOL18, CRM14, HSP+13]. In-Place [LTS16, HSE+17, PSHL11]. Including [BW+12, GLT12]. incompressible [BCM+16, Lon95, RM99, TS12b].

Intelligence [BPG+94]. intelligent [IEE93a, ZWZ+95]. Intel(R) [TBG+02, SBTO4]. INtensities [ARYT17]. Intensive [Rei01, BFL99, BKML95, SL94a]. Inter
Inter-Atomic [LAFA15]. Inter-Node [KFL05, FKLB08, LFL11]. inter-workgroup [SDB+16]. Interaction [DMMV97, GFV99, NSLV16, Sou01]. interactions [PARB14]. Interactive [Coo95b, KPK13, KA13, NE98, RTMR+07, STK08, Coo95a, IJM*05].

Intercommunication [TMP16]. Interconnect [Bru12, SJ02, BWT96, SWS+12, TBD96]. Interconnected [Hus00]. Interconnecting [MC98]. Interconnection [MANR09, SB95, AVA+16]. Interconnects [RA09]. Interface [Ano93d, Ano01b, BCFK99, BDH+97, CHD07, Cer99, CGH94, CDND11, DFKS01, DHHW93a, DBK+09, FKKC96, FSLS98, Gle93, GL95c, GLDS96, GLT00b, HDB+12, HRSA07, KSJ95, KGRD10, KKDV03, KKD04, LKD08, LkLC+03, LW97, MPI98, MS98, MBS98, MBES94, MMSW02, MTWD06, PS01b, RWD09, SSL97, TDB00, TW01, TBD12, WD96, Wer95, YHGL01, Ada98, AD98, Ano93c, Ano94d, BBBS+94, BBCR99, Bru95, BDW97, BR94, CKFL00, CFF+96, CD01, CG99b, DDK05, DBB+16, DS96b, DLM99, DPK00, DLO03, HRR+11, KOB01, KSJ95, KBHA94, Kra02, NS91, Pie94, PR94a, RMS+08, SL94a, SW93, BDV+95, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, AMHC11, BC14, BBH06, BRU05, BDH+95, Cot04, DDK08, DiN96, FKS96, FGT96, FGG+98, GGHL+96, GLT99, GLS99, GLT00a, GL04].

Interface [Han98, IBC+10, KTF03, KKD05, LK10, MSL96, RFFH96, SWPH05, SLG95, SLW+01, TGT05, YGH+14, Ano95c, Ano00a, Ano00b]. InterfaceArchitecture [Sei99]. Interfaces [MGC12, Wit16, RJDH14, Trä12a].

Interfacing [Lus00, PL96]. interference [ZJWD18]. Intermediate [SML17].

internal [BBH+15]. International [ACM94, ACM96b, ANS95, Abr96, ATC94, AGH+95, Ano93a, Ano94a, Ano94e, BPG94, Bos96, BFM96, Cha05, CZG+08, CGKM11, CMRR12, CGF+10, CH96, DFM94, DW94, EV01, EdS08, ESR95, ERS96, ETL92, Gat95, GA96, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE93c, IEE93b, IEE94d, IEE94g, IEE95b, IEE95c, IEE95a, IEE95k, IEE95i, IEE95f, IEE95i, IEE96a, IEE96f, IEE96e, IEE96d, IEE97b, IEEO5, KUM94, LCK11, LF+93a, Lev95, LHHM96, Li96, MMH93, MCD+08, MdcS09, Nar95, Ost94, PW95, PBG+95, PBPT95, Rec96, R+92, SHM+10, Sie94, Si96, SM07, Tou96, VV92, Vol93, Vos03, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPET94, LC97, Mal95, ZL96, Ano93b, HHK94, Sch93].

Internet [NE98]. Interoperabilität [GRRG97]. Interoperability [BoFBW00, Don06, PLR02, GRR97]. Interoperable [Rab98, MSL12, YBMCB14]. Interoperation [FDG97a, FDG97b, FLD98]. Interpolants [RB01]. interpolation [BAS13].

interprocess [SC95]. interprocessor [DS96b]. interrupts [CXB+12, SH96].

Intervals [MDM17]. intranode [GM13, VSW+13]. intranode [GM13].

inter-warp [VSW+13]. Introducción [VP00]. Introducing [JKM+17, TBS12].

Introduction [Ano96b, AM07, Che10, Cze16, DOSW95, GSA08, HW11, Mar02, Mat00b, SK10, VP00].

Inverse [URKG12]. Inverse [Huc96, BV99, GGC+07, GG09, Wan02].

Inversion [ACMR14, Kan12].

Investigating [GMDMBD+17, Ros13].

investigation [PHW+13]. Invisible [Wis97]. Invited [Gei93a].

IO [AHP01, BIC+10, CGF+02, CFF+96, DL10, FGRD01, FWNK96, FSLS98, LRT07].
Kernel-Level LA-MPI

Kernels
- [BCD+15, KI17, KAC02, Pet01, Ros13, SS8+17, ARS89, BCD+12, FVS14, FVLS15, FFM11, KKM15, PTG13, PG8+13, TBB12].
- Kerr [Kha13], key [LF9+93a, kind [SP11].
- Kinect [KP13], kinetic [JL8].
- Kinetics [LD01, BCT+17].
- King [ACM99].
- Kingdom [Bos96].
- Klagenfurt [Bos96].
- Knapsack [IC00].
- KNEM [GM13], knowledge [FNSW99].
- knowledge-based [FNSW99].
- Knoxville [PR94b], Kohr [Str02].
- Kolmogorov [Str97].
- KOP3D [KR99].
- Koppelrandkommunikation [Gra97].
- Kpi [EML00].
- KPN2GPU [BK11].
- KPP [AC17].
- Kremlin [GJ94].
- Kronecker [LNW8+12].
- KSIX [AUR01].
- KSR1 [BL94].
- KU [IM94].
- Kungl [Eng00].
- Kyoto [IF95, SPE95, IF95].

L [AAC8+05, BGH8+05, EFR8+05, MSW8+05].
- LA-MPI [YSP8+05].
- Label [Str94].
- Labeling [FPJ01, KRKS11].
- Labeling [HL10].
- Laboratory [YJ95].
- Lafayette [EV01, EdS08].
- Lagrangian [CT94a, CT94b, RSV8+05, TC94].
- Lahey [An98].
- Lake [Hol12].
- LAM [OF00, RS06, SSB8+05, Squ03, ZW05].

LAM/MPI
- [OF00, RS06, SSB8+05, Squ03, ZW05].
- Lambda [PQ07].
- Lambda-calculus [PQ07].
- LAMGAC [MSOGR01, MS02].
- Lamport [TPLY18].
- LAN [CCU95, CDH8+95, MSOGR01, MTSS94, TSZC94, ZGC94].
- LAN-based [TSZC94].
- LAN-Message [MTSS94].
- Lanczos [GP95, Sch96a, Sch96b].
- Landing [ICZ09].
- Landsat [GCGM99, GCGS98].
- Landsat-TM [GCGM99, GCGS98].
- Lane [HHC8+18].
- Language [ACM96a, NM95, PD8+98, TA14, WLR05, Ben95, CGK11, Hos12, Nob08, RKBA8+13, Röh00].
- Languages [CF8+94, FMSG17, FSSD17, CH96, Mar05, Olu14, SWS8+12, PBG95, SS96].
- LANS [Fin97].
- LAPACK [Add91, ARvW00].
- LaPerm [WRSY16].
- LAPI [GBP01].
- Laplace [ACMR14].
- Large [AKE00, BHW8+17, BZ97, BJS90, BHNW01, CGC8+11, DALD18, FFP03, Huc96, JFGRF12, LLY93, MK8+12, MFPP03, PCY14, RGB8+18, SGJ8+03, SM03, SvL99, TGEM09, WMC8+18, WT12, ZWJK05, AAS08, AMS94, BCA8+06, BA06, BCH8+08, Che99, CCHW03, DZZY94, FME99, IM95, JLS8+14, KEGM10, Kos95b, KA95, LS10, MLA8+14, NFG8+10, PD11, RMMN8+12, SC96a, TBB12, TOC18, WT11, WT13, ZWL8+13, ZA14].
- Large-Scale [AKE00, BHW8+17, BZ97, FFP03, MFPP03, SM03, WMC8+18, WT12, BJS99, SvL99, AAS08, BCH8+08, Che99, FME8+12, LS10, MLA8+14, PD11, RMMN8+12, WT11, WT13, ZA14].
- Large-sized [JLS8+14].
- Larger [NB96].
- LargeScale [LD1+15].
- Laser [EZBA16, WZ8+96].
- Lastverteilung [WZ94].
- Latency [Jes93a, Jon96, KBHA94, NCB8+12, NCB8+17, TBB96].
- latency-tolerant [NCB8+12, NCB8+17].
- Lattice [BBK8+94, BMS94b, HLP11, SJK8+17a, SJK8+17b, BW12, BMS94a, CGK8+16, GM18, Sai10, PVC8+11, BLPP13, OTK15].
- Launches [An03].
- Layer [CSAG98, HE98, FKK96a, PT94, dAMC11].
- Layered [DiN96].
- Layering [Hus01], layers [KC94].
- Layout [GG17, BG8+95, HP11, LDJK13, Str12].
- Lazy [TCB16].
- Leaks [DL16].
- Learned [GKPS97, MWO95].
- Learning [AHHP17, Gro01b, FE17, KWEF18, LSSZ15, SEC15, TWFO09, WO09, WFT14].
- learning-based [FF17].
- Least [PWP8+16, VRS00, DK13].
- Least-Squares [VRS00].
- Lecture [Gel93a].
- Leeds [Abr96].
- legacy [BR04, LP00, LRW01].
- Lemon [DRUC12].
Lengths [GSHL02]. LEO [CCBPGA15].
Leonardo [Stp02]. Lessons [MWO95].
Level [AELGE16, BGG+15, BBC+00, CS14, CRGM14, DHHW92, DHHW93a, DDL00, GS91b, GAM+02, HA11, HKT+12, DK02, KCP+94b, KOW97, LVP04, LMRIG14, NPP+00c, SHM+10, SFB+04, TS12a, TW01, X9F5, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LBB+19, LM13, MALM95, NS91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBH:::13a]. Leveraging [HDB+12, NPP+00c, SHLM14, LFL11]. LIB [NPP+00d]. libefp [KS15a].
Libraries [BHLS+95, BWV+12, CGZQ13, DARG13, GFD05, IEE94f, IEE95j, MLGW18, MM14, ARvW03, BCM11, BfDA94, CRD99, GS94, PS07, Skj93, SDB94, SSG95, DHK97].
Library [AKL16, Ada97, Boo01, BLW98, Coo95b, DHP97, EM02, FHK01, For95, GFB+03, GSI97, Gro92a, HB96b, ITK700, JPT14, KBG16, OD01, PLK+04, PS01a, RR02, Saa94, SBG+02, Sta95b, SHK96, TD98, UTY02, WN10, YKLD17, ZC10, Ada98, AMHC11, Arn95, CSS95, CGG10, Coo95a, DRUC12, DXB96, FB97, Fan98, FKK+96b, GDC15, GLM+08, GL94, HB96a, HLM+17, Har94, Har95, JKM+17, JC96, KS15a, KN95, LR06a, MSL96, PKB06, PS00b, RFH+95, SSC96, SH96, ZT17, CC95, Mc96b, Sun12]. Life [PZ12, Str94]. Lifting [vdLJR11].
Lightweight [CKmWH16, DT17, FLB+05, KMK16, TCM18, FS95, Ott93]. Like [BST+13, BKO00, CGJ+00, KOB01, VGS14, CSS95]. Likelihoods [MSCW95]. LIME [DRUC12]. Limits [GB96, MBKM12].
Linda [Mat94, KS96, MSP93, BLIP93, CSS95, Gal97, Mat95, TDB00]. Linda-like [CSS95]. Line [BoFBW00, CGS15, Wis98, Bor99]. Linear [ASA97, BDT08, BG95, CDD+13, Gao03, Huc96, LLY93, LZ97, MGH97, MSB97, YKW+18, van97, BSN95, BKvH+14, BAV08, BRR99, CEGS07, DR18, Gra09, GFPG12, Jou94, MW98, MM11, OKW95, SCC96, SMSSW06, dCH93, dH94]. Linear-scaling [Gao03]. Lines [NE01, YULMTS+17]. Link [BGR97b, SJ02]. Linked [WJ12].
Linköping [FF95]. LINPACK [JNL+15]. Linux [Sei99, SMT96, USE00, SSS97, Ano01a, GSN+01, MK04, OF00, PS07, PKB01, RsT06, Sei99, So95, SL+00, YL09]. Linz [Kra02]. lipid [FHSO99]. Liquid [DSS00, JLS+14]. Lisbon [IEE93d]. LISP [ACM90]. List [Tra98, WJ12]. Lithe [PHA10]. Lithography [RDMB99].
Liverpool [AD98]. LLVM [SML17]. Load [Ano94b, BkdH01, BS05, DI02, DR95, DK06, GCBL12, HE02, MM02, NP94, PT01, Pus95, SGS95, ST97, Wal01a, Bir94, CkO+94, DZ96, DL94, DvdLV94, EZBA16, FMBM96, FH97, GS96, Hum95, JH97, MM03, SCL97, SY95, W894]. load-balanced [EZBA16]. Local [BSG00, CDHL95, CSM97, IKM+01, LBB+19, AMHC11, BY12, CGL+93, FSV14, IKM+02, LHD+94, LHD+95]. Locality [MJB15, ZLP17]. Locality-Aware [MJB15, HJYC10]. localization [HC08].
Locally [BHS+02]. Locating [PNV01]. Lock [ALB+18]. Lockheed [Str94]. Locking [kL11, CAWL17, PGK+10].
Logging [BCH+03, LBB+19]. Logic [KI17, BJ95, KMC96, KMC97, POL99]. logical [TPLY18]. LogP [CKP+93].
London [EJL92]. Love [Dan12].
look-up [BJS13]. Loop [DMB16, SHM+10, TJPF12, SHLM14, WYL12, WLYC12, YST08, YWC11]. loops [AHD12, LOHA01]. Loosely [Ada97].
Lop [RGDM16, RGDM15]. Louisiana [USE95, IEE96b]. Love [Dan12]. Love-Hate [Dan12]. Low [BGG+15, GGS99, Jen96].
MC17, NE01, RLL01, Str94, GK97, KBHA94, LZHY19, TBD96, ZRQA11.

M [PBC+01]. M-SPH [PBC+01]. M6A [EM00a]. M6B [EM00b]. MA [Ano95b, Ano95c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. Machine [AS92, AGIS94, BJ93, BS93, CHD07, D+91, FE17, Fis01, GBd+94, Gre94, KNT02, KKDv03, KKD04, LKD08, MTWD06, Nov95, Pat93, Per96, RWD09, TY14, VS00, Wel94, AD98, AL92, Ano95b, BR01, BCG+91a, BPC94, Bir94, BDL96, BDW97, CARB10, CLM+95, Cav93, Cha96, Che99, CD01, CC00b, DM93, DKD05, DLM99, DKP00, DLO03, FM90, KWE98, KMC97, Kra92, LG93, MN91, MRH+96, NB96, Sch94, SK92, SC96, SL00, TVC98, TW12, TWF09, WO09, WFT014, ARL+94, BG94b, JPP95, KKD05, LK10, QRG95, SSS99].
machine-learning [TWF009]. machine-learning-based [TWF014].

Machines [BP99, BZ97, BCC+00a, BT01b, DR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCSL12, ZWJK05, BCA+06, BSC90, BCC+00b, DDS+94, DCH02, GKS12, KN95, PRS16, SL94b, TSY99, TSY00, WPL95, ZWL13, Gei01, YC98]. made [MJPB16].

Many-Core [LZH17, TCM18, YTH+12, LLC15, ACMZ11, KSG13, MBB13, dCZG06]. Many-Cores [DT17]. Manycore [MJ15, KGB+09]. Map [JPT14, FM11, FJBB+00, MSCW95]. MAPA [JPL17]. Maple [Pet00a, Pet00b, Pet01]. Mapping [BB18, GAMR00, HC06, NTR16, RRBL01, TSZC94, WO09, DDL95, EO15, GF1+18, HC08, TWF09, WSC+13, WFT14, WK08a, WK08c, dCZG06, WK08b]. MapReduce [EADT19, JS13, MMM13, PD11, WZH16]. Maps [BM97, KRC17]. Marc [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. March [ACM95a, ACM06a, Ano89, Ano93c, Cal94, DKM+92, IE93f, IE94d, IE95b, IE97a]. Marine [LLR02]. market [LF+93a]. Markov [BBH12, FK01]. Marlioz [GA96].
marshaling [CFKL00]. MARTE [RGD13].
Martin [ACM99]. Maryland
[IEE96c, SPH95]. MASA [SMM+16].
MasPar [ARL+94]. Massachusetts
[IEE94e]. masses [Cla98].
MassPar [ARL+94]. Massachusetts
[IEE94e]. masses [Cla98].
Massively [BJ93, BHS18, BBH12, DSZ94, IE94a,
IEE96c, KHS19, KnWH10, Oed93, Sie92b,
Sta95b, CS96, DR94, HVSC11, KN17,
LCL+12, MYB16, RBB12, SRK+12, DSZ94].
massively-parallel [MYB16].
Master [FH98, EML00, LTR00, HP05].
Master-Slave [FH98].
Master/Worker [FH98].
Master/Slave [LTR00]. Master/Worker
[EML00]. Matching [GGC+07, KMM15,
KS01, MM02, OWSA95, WH94, FLPGL18,
MM03, Qu95, YPZC95, YZPC95].
Materials [Y+93, SSP+94]. mathematical
[Van97, Has95]. Mathematics
[Wan97, Has95].
Matrix [AKL16, BSvdG91, Cha96, DS13,
Fuj08, GKM17, Kan12].
Matrix-Vector
[AKL16, BSvdG91, Cha96, DS13,
Fuj08, GKM17, Kan12].
Maydan [Stp02]. MBCF [MMH99]. MCA
[WCS+13]. McDonald [Stp02]. MCHF
[SYF96]. McLean [IEE94a, Sie92a, Sie92b].
MCNP [MW93, McK94, WH96]. MD
[IEE02, TMPJ01]. mdb [DKF94a]. MDE
[RGD13]. Means [TK16]. Measurement
[BFBW01, BFIM99, KRS99, Shi94, TMC09].
Measurements [IvA+00, EFR+05, GL99].
MECCA [AC17]. mechanics
[Bil95, MGG05, SL95]. Mechanism
[CGLD01, KSV01, MH01, TSS00b,
Traf02, HWX+13, SRP17, ZRQA11, ZA14].
Mechanisms
[Wal01a, CGBS+15, Ott93, TMTP96].
Mechatronic [KDL+95b, KDL+95].
MEDINA [AC17]. medium
[WLNL06]. medium-scale [WLNL06].
Meeting [AD98, Ano93f, CHD07, CD01,
CDND11, DKD05, DLM99, DKP00, DLO03,
GA96, KGRD10, Kra02, KKD04, LKD08,
MC94, MTWD06, RW09, TBD12, BDW97,
JB96, SPH95, Ano92, CHD09]. megabase
[SdM10]. Meiko [FST98a, FST98b, Jon96].
Melia [WZHZ16]. Mellon [IEE94a].
Membership [MDM17]. membrane
[FHS099]. Memory
[Att96, BME02, BW+12, Bri10, Bdo17,
BT01b, CLOL18, CSW97, CC99, DM98,
DMB16, DR97, DHHW92, DHHW93a,
EADT19, FB94, GCMB97, GB96, GSN+01,
GSHL02, GLRS01, HC10, HDB+12,
HD+15, HT01, JPL17, KB98, KS13,
KSHS01, LS15, Luo99, MB12, MRB17,
MHE98, MMH98, MCD+08, MIoo92,
NPP+00d, PBK00, PK96, PMvdG+13,
Roi13, STY99, ST02b, SW91, Thr99, VS00,
VT97, ARS89, ABC95a, ABC95b,
ADMV05, BCA+06, BMVL12, BSC99,
BMG07, CBPP02, Cha05, Cha96, CBHH94,
CRM14, CC00b, DF17, DLRL94, DVVF01,
DS96b, DHHW93b, DPZ97, EV01, FSV14,
FHB+13, GCN+10, GBH14, GBH18, GKK90,
GL96, GL97c, GP95, HS+13, HGMW12,
HDB+13, HK99, JC17, JE95, KN95, KJ+93,
KC06, LKL96, MLC04, NAL09, NAAL01,
OLG+16, PK05, PS00b, RGD15, SSH08].
memory
Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a, BB94, BS96a, BFMT96a, FLB+05, LC07.

Monodomain [ORA12]. Monte [HBBJ14, RP95, WH96, ADRC98, AK99, DAK98, NSLV16, RR00, SK00, SMK15, ZZ04].

Monterey [Ano89, Gat95, USE94]. Montpellier [DE91]. Montréal [Lev95].

MOPS [GJN97]. Morehouse [AGH+95]. Morgan [SD13]. Morton [LZH18].

MOSIX [BBGL96]. motif [FMS15].

motors [SKM15]. movement [MV17]. Moving [HAA+11, LSG12]. MPE [GKL95, KFA96]. MPEG [NU05].

MPEG-4 [NU05]. MPI [ARYT17, AD98, Ano95c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, BDW97, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, DLO03, GBR97, GEW98, IEE96i, JMS14, KGRD10, Kra02, KKD04, LKD08, MTWD06, Nag05, Per97, PS01b, RWD09, RLVRG12, ST02a, TBD00, TBD12, Vre04, WSN99, YM97, ST02b, ACGdT02, Ada97, Ada98, ACH+11, APJ+16, AASB08, ART17, ATM01, ACR97, AK99, ABF+17, AHP01, ACMZR11, ALW+15, ALB+18, ADL03a, ADL03b, And98, FH98, AVA+16, Ano93e, Ano94d, Ano98, Ano01a, Ano03, AKE00, AKL99, AJF16, AIM97, ADR+05, AHP17, Bad16, BV96, BCM00, BAK98, BF98, BCFK99, BBC+10, BCG+10, BBC+11, BBG01, BS99, BBG+14, BA06, BCA06, BADC07, BGR97a, BKGS02, Ben01, BW12, BH12, BKH+13, BIL99, BIC05, BP98].

MPI [BF01, BBCR99, BBDD14, BK96, BKdSH01, Bha98, BfDA94, BHL8+95, BHS+02, Bis04, BBh…13a, BBh+13b, BBh+13, BIC+10, BR04, BCM+16, BTC+17, BM00, Boo01, BBC+02, BCH+03, BHC+06, BBC+00, BS96b, BMR02, Bri02, BRM03, Bri10, BMS03, BS07, BDL98, Bru95, BDh+95, BDh+97, Bri12, BL98, BBFW01, BEG+10, BCH+08, BWV+12, CGC+02, CWS12, CGC+11, CwCW+11, CRE99, CE00, CRE01, CC10, CP98, CAHT17, CGJ+00, CCKL00, CSS95, CBG8+15, CGG10, CB00, CDMS15, CGS15, CBL10, Cha02, CEGS07, CDP99, CCA00, CFDL01, CLL03, CGZQ13, CC17, CSARG08, CNC10, CC00a, CGH94, CSM97, CFMR95, CDD+96, Coo85a, Coo85b, CFF+96, CRGM14, CRM14, CRGM16, CC99, CT02, CD96, CG99b, DPK05, DPK08, Dan12, DSG17, DZ96, DZ98a, DR18, DW02, DLM+17, DZ98b, Dem96, DPP01]. MPI [DLB07, DSW96, DS96a, DRUC12, DKD07, DJ02, DL10, DCPJ12, DCPJ14, DAK98, DGG+12, DGB+16, HD02a, DXX96, DSW95, DCH02, DBK+09, EZBA16, EGH99, EDS09, ES11, FH97, FD96, FDG97a, FDG97b, FLD98, FD00, FBD01a, FBD01b, FGR01, FBV02, FBD02a, FBD02b, FD04, FCLG07, FB95, FB96, FB97, Fan98, FPY08, FFF99, FNSW99, FTVB00, FFP03, FLPG18, FMS15, FH01, FHK02, FSSC+11, FCS+12, Fin07, Fin94, Fin95, FWNK96, Fin00, FLB+05, FC05, FST98a, FST08b, FJK+17, FK+96b, FKK96a, FQT96, FQS98, FHS94a, FHPS94b, FHP+94, FHP+95, Fra95, FWR+95, FKL08, FBS01, FSL08, GB97, GFD03, GFD05, GDC15, GGGC99, GCGM99, Gao03, GR15, GCGS98, GCC99, GBCL12, GHG+96, Gei00, GR07, GGL+08, GJR09, GSI97, GH14, GBH18, GGS99, GR95, GLB00, Gle93, GM13, GJM18].

MPI [GT01, GH99, GF5+18, GHZ12, GAVRL17, GRR99, GAM00, GKS+11, GB98, GMPD98, GPL+96, Gra97, GEW98, GB+87, GLM+08, GL02, GL94, GLS94, GL95a, GL95b, GLK95, GL95c, GL06, GLD96, GL97c, GL97b, GHL+98, GL99, GLT99, GLS99, Gro00, GLT00b, GLT00a, Gro01a, Gro01b, Gro02a, GL02, Gro02b, GT07, GLT12, Gro12, GPC+17, GC05, GSY+13, Gua16, HJ98, HC10, Har94, Har95, HL17, Hat98, HO14, HD02b, HE02, Hem94, HZ96, Hem96, HRZ97, HZ99, HEH98.
HGMW12, HMK09, HPS+12, HPS+13, Hin11, HRR+11, HDB+12, HDB+13, HDT+15, HKN+01, HMS+19, HLOC96, HKT+12, HVSC11, HWX+13, HM01, HCA16, HG12, HeF05, Hus98, Hus00, Hus01, HWW97, IDS16, IRU01, ITTK00, ICC02, JL18, JF95, JDB+14, Jes93b, JJM+11, JS13, JNL+15, Jon96, JR10, JSH+05, KB01, KFA96, KS15a. **MPI**

[KPW05, KW14, KWEF18, KD12, Kan12, KFL05, KB98, KK02a, KL94, KLY03, KLY05, KSJ95, KSJ96, KN17, KBS04, KGk+03, KHk+99, KBM07, KLR+15, KRO9, KMG99, KEGM10, KRC17, KV98, KAC02, KC06, KBG16, KMH+14, KRG13, LK14, LAdS+15, LLKS02, LTDD14, LGM00, LRT07, LC97a, LR06b, LTRA02, Lee12, LZ97, LRW01, LPD+11, LLC13, LZH17, LZh18, kLCC+06, kLCCW07, KL11, LFL11, LSI0, LC96, LCW+03, LP04, LWP04, LGG16, LYSS+16, LB96, LMG17, LCMG17, LBB+19, LNE00, L096, dLR04, LZH19, LS08, LL01, LZC+02, LKJ03, LCC+03, LKYS04, LSK04, LLH+14, MBBD13, MMR99, MS02a, MS02b, MV17, MC18, MTK16, Man01, Man98, MK17, MLVS16, MLAV10, MKP+96, MSMC15, MSL12, MH01, MLS96, MS96a, MC98, MGg05, MAS06, MM02, MM03, MOL5, MCO05, MANR09, MRRP11, MG97]. **MPI**

[MMM13, MTW07, MK04, MCLD01, MMR99, MMH98, MS99c, MB00, MvWL+10, NAW+96, NOO2b, NOO2a, Nak05a, Nak05b, NSBR07, NE98, NE01, Nes10, NSS12, NH95, NCB+12, NCB+17, NAJ99, NW98, Nt00, NHT02, NHT06, NFG+10, NN95, OLM96, OLG+16, OKM12, OIS+06, ODOM, OF00, Ong02, OP98, OL05, OGM+16, OMK09, Pac97, PARB14, Pan14, PK98, PES99, PLK+04, PSK08, PDY14, PS00a, PS01a, PHJ11, PTL+16, Per99, PZ12, PGK+10, PFG97, PLR02, PGAB+05, PGBF+07, PGAB+07, Pla02, PD11, PSSS01, PSK+10, PTH+01a, PTH+01b, PS00b, PTW99, QB12, Qui03, Rab98, Rab99, RDM99, RR01, Ram07, RSBT95, RMS+18, Ran05, RA09, RAS16, RCFS96, RBB97a, RBB97b, RBB97c, RSPM08, RTH00, RH01, Rei01, RST02, Reu03, RGD15, RGDM16, RGPP+18, RNP13]. **MPI**

[RPm+08, Röhl00, Rol08b, RsT06, RFRH96, RRG+99, RTRG+07, SE02, SCB14, SCB15, SPM+10, SSB+05, Sap97, SSB+16, SDJ17, SGH12, SBF+04, SCJH19, SW12, SGB+02, SG05, Ser97, SS01, SWS+12, SG12, STY99, SM02, SM03, SP+18, SP99, SZ11, SC04, SSc96, SS99, SBS95a, SBS95b, SDN99, SvL99, SJ02, SW05, SMTW96, SH96, SDB94, SLG95, SDV+95, SPH96, Slo05, SVC+11, SK00, SB01, SOHL+96, SOHL+98, Sn18, SHHC18, SSL97, SQu03, Ste96, ST97, Sto98, SU96, Str96, Sn12, SN01, TOTH99, TAH+01, TSY99, TSY00, TKP15, Tka98, TGL02, TC09, TPLY18, TW01, TD99, TOC18, Tra98, THRZ99, TRH00, Trö92b, Tra02a, TGT10, Trä12a, Trä12b, TMPJ01, TFGM02, Tsu07, TFFZ12, UTY02, URKG12, VF02, VS00, VPS17, VSRC94, VSRC95, VGRS16, VdS00, VP00, VVD+09]. **MPI**

[WH96, Wal95, WO95, Wal96a, WD96, WO96, Wal01a, Wal01b, Wal00, WC09, WLNL03, WLNL06, Wer95, WST95, Whi04, WLR05, WWZ+96, Wsc98, WB96, WM01, WACD99, Wac99, WRA02, WCS99, WT11, WYLC12, WT12, WLYC12, WT13, WMP14, XH96, XLW+09, YM97, YL09, YHL11, YWC11, YLC14, YMBMC14, YPAE09, YTH+12, YSP+05, Zah12, ZZ+04, ZLZ+11, ZW00, ZLP17, ZJW18, ZLL+12, ZZ05, ZSnH01, ZK1A4, ZA14, bT01a, dIAMCFN12, KH96, Mar06, YM97, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d]. **MPI-1**

[SOHL+98]. **MPI-2**

[Ano99c, Ano99d, Ano00a, AKL99, BCAD06, BHS+02, CwCW+11, CD96, DPSD08, GFD03, GGH+96, GT01, GHH+98, GLT99, GLT00b, GLT00a, HGMW12, LSK04, MS02a, MK04, PS00a, SS99, SSL97,
TRH00, bT01a, BADC07]. MPI-3
[GBH14, GBH18, GLT12, HDT+15].
MPI-ACC [APJ+16].
MPI-Based
[Ada97, FSC+11, RDMB99, SM03, Ada98,
AVA+16, GKS+11, Gra97, LRW01, OLG+16,
OP98, SZ11, TMPJ01]. MPI-basierte
[Gra97]. MPI-benchmark [Reu01].
MPI-CHECK [LCC+03].
MPI-CUDA
[DR18, dIAMCFN12].
MPI-DDL
[GBR97].
MPI Delphi
[Hin11].
MPI-F
[LC97a].
MPI-FM
[GCJ01a].
MPI-GlUE
[Rab98].
MPI-Hybrid
[CJC+11].
MPI-I
[IRU01, Tsu07].
MPI-I/O
[IRU01, Tsu07].
MPI-Interoperable
[YBMCB14].
MPI-IO
[BIC+10, CJC+02, CFF+10, DL10,
FWSK96, FSLS98, LRT07, LLG16, PSK08,
PTh+01a, SW12, St098, TGL02, ZZ04].
MPI-IO/GPSF
[PTIC+11].
MPI-LAPI
[BGBP01].
MPI-Level
[LVP04].
MPI-like
[CGL+00].
MPI-only
[LSI01].
MPI-OpenCL
[JNL+15].
MPI-OpenMP
[MS02b].
MPI-parallelized
[KMG99].
MPI-Performance-Aware-Reallocation
[GFIS+18].
MPI-StarT
[Hus98].
MPI-The
[Ano99c, Ano99d].
MPI-thread
[IDS16].
MPI-Umgebung
[GBR97].
MPI/CUDA
[PHJ11].
MPI/GAMMA
[CC00a].
MPI/GPU
[EZBA16].
MPI/GPU-code
[EZBA16].
MPI/MBCF
[MCH14].
MPI/OpenACC
[OGM+16].
MPI/OpenMP
[ADRO+05, GÄVRL17, HKN+01, JR10,
KS15a, KN17, KLR+15, KRG13, LLRR02,
PZ12, SB01, WT11, WT12, WT13].
MPI/PVM
[ES11].
MPI/RT
[SKD+04].
MPI/RT-1.1
[SKD+04].
MPI/SMPs
[MLAV10].
MPI1
[Sti94].
MPI2
[MP198, Wal96b].
MPI2007
[MyWl+10].
MPI_Allgather
[GMdMBD+07].
MPI Connect
[FRG01].
MPIICH
[BBC+02, BCH+03, BHK+06, Cot98, Cot04,
GL97a, KTF03, LKJ03, OPM06, OF00,
RGF+00, RsT06, SBG+02, TRG05].
MPIICH-CM
[SBG+02].
MPIICH-G2
[Cot04, KTF03, OPM06].
MPIICH-GQ
[RFG+00].
MPIICH-V
[BBC+02, BHK+06].
MPIICH-V2
[BCH+03].
MPIICH2
[BMG07, Gro02b, ZSG12].
MPICheck
[FLD98].
MpiScope
[Trä12].
MPICheckNet
[GM18].
mipiJava
[BCFK99].
MPINE
[MS02b].
MPIT
[FB97].
MPP
[CC00a].
MPPs
[BGR97].
Multi
[Ada98, ABB+10, Bri10, BCKP00, CAW17,
CZG+08, DWL+10, EBK01, FSXZ14,
HD02b, HRZ97, JCH+08, JNL+15, KBA02,
KT02, LTS16, LM13, MLGW18, MG15,
MB00, NMS+14, PZ12, RG18, RR02, Smi93a,
ST02a, ST02b, SS+17, WBH97, YGH+14,
ACMZR11, AGMJ06, BCK+09, DCH02,
DWL+12, Fin94, Fin95, FHB+13, HTA08,
HE15, JR13, JMJ+11, JR10, KSG13, KLV15,
KO14, Kom15, LS10, LLH+14,
MALM95, NSM12, SCB15, SFSV13,
SVC+11, SAP16, Str12, TS12b, TFZZ12,
WCC+07, WO09, WADC99, WYLC12,
ZAFAM16, ZWZ+15, ZZZ+15, SAP16, SG14].
multi-
[ACMZR11, KSG13].
multi-/*
[KSG13].
multi-accelerator
[KLV15].
multi-agent
[ZWZ+95].
multi-agents
[KBA02].
Multi-Array
[LTS16].
Multi-cluster
[ST02b, KO14, KMG13].
Multi-Core
[ABB+10, Bri10, CZG+08, YGH+14, PZ12,
FHB+13, HTA08, JR13, JMN+11, JR10,
LLH+14, SFSV13, SVC+11, TFZZ12,
WCC+07, WYLC12].
multi-cores
[WO09].
multi-CPU
[SAP16].
multi-CPU/multi-GPU
[SAP16].
Multi-Dimensional [HD02b, KT02, RG18].
multi-endpoint [LLH+14]. Multi-GPU
[JNL+15, NMS+14, NSM12, TS12b, SAP16, SG14]. multi-kernel [SAP16].
Multi-level [CAWL17, LM13, HE15, MALM95, ZZZ+15]. Multi-Network [BCKP00].
Multi-Node [HRZ97]. multi-peta
ops [LSG12].
multi-phase [ZAFAM16]. Multi-Physics
[WBH97]. multi-place [BCK+09].
Multi-processing [MLGW18].
Multi-Processor [RR02, Smi93a, DCH02].
multi-programming [WADC99].
multi-protocol [MB00]. multi-socket
[LS10]. Multi-Stage [FSXZ14].
Multi-Threaded [MG15, Ada98, EBKG01, SCB15].
Multi-Threading [MLGW18].
Multi-Threaded
[MG15, Ada98, EBKG01, SCB15].
Multi-valued [Str12]. Multi-versioned
[SSB+17]. multi-virtual [Fin94, Fin95].
Multi-Zone [JCH+08, AGMJ06].
Multiblock [IDD94, DLR94]. Multicast
[CCA00, CDPM03, ZGN94]. Multicasting
[SE02].
MultiCL [APBcF16]. multicomputer
[SWJ95, TD99].
multicomputers [HWW97, Yan94, YX95]. Multiconference
[Ten95].
Multicore [BDT08, CGC+11, CB16, DS16, GDM18, KDT+12, LNK+15, WT12, YKW+18, CLYC16, GJLT11, HW+13, JPOJ12, KN17, LS10, MBBD13, MM11, Nob08, OPW+12, PDY14, QB12, RDGML16, WCS+13, WT11, WLYC12, WT13, YHL11, YWCI11, diAMC11].
multicore/many
[MBBD13].
multicore/many-core [MBBD13].
Multicores [GDDM17, UGT09].
multidestination [Pan95a].
multidimensional [CSW99, PDY14, ZT17].
multidisciplinary [Fin94, Fin95].
multifrontal [LM95]. Multigrain
[AZG17, IOK00]. Multigrid
[BCMR00, AGIS94, IHM05, Lou95, Mic93, Mic95, PSLT99, RM99, Sta95a, ZZZ+14].
multigroup [QRG95, QRMG96].
multilevel
[PSSS01, BAV08, ETV94, GAM+00, JJY+03].
multimedia [GBF+14]. multimethod
[FGT96]. Multiobjective [RLVRGP12].
multiparadigm [FS98]. Multiphase
[SPH+18]. Multiphysics [NPS12].
multiphase [ZAFAM16]. Multigrid
[BCKP00]. multigrid
[CAWL17, LM13, HE15, MALM95, ZZZ+15].
multi-kernel [SAP16].
Multi-level [CAWL17, LM13, HE15, MALM95, ZZZ+15]. Multi-Network [BCKP00].
Multi-node [HRZ97]. Multi-processing [MLGW18].
Multi-processor [RR02, Smi93a, DCH02].
multi-programming [WADC99].
NAG [DHP97, For95, McD96]. NAMD [PZKK02]. Naming [MSF00]. Nancy [BR95a]. NanosCompiler [GAM+00].
Narrow [YSS+17]. NAS [CRE99, CE00, CCF+94, CDD+96, KS96, KAC02, MMH99, WAS95b, WT11, WT12].
NATO [KG93, TG94]. NATUG [Ara95]. NATUG-7 [Ara95]. nature [DSM94].
Navigator [Che99, DLR94, HSMW94, IDD94, Lou95, SCC95]. NB [BG91], NC [Agr95a, SL94a]. NCS [AL92], nCUBE2 [BL94]. Near [PKYW95], Nearest [DI02].
Nearest-Neighbor [DI02]. Nebulung [MFG+08]. NEC [GPL+96, HRZ97, TRH00]. Necessary [NPP+00b]. Needed [Gei00]. Neighbor [DI02]. neighborhood [HS12]. Nekk5000 [MGS+15]. Nekbone [GML+16]. Nemesis [BMG07].
Nesbet [BL95]. Nested [AHD12, BR12, BS01, DLR99, GLP+00, HA10, MMS07, TTSY00, ZLP17, aMST07, AGMJ06, BS05, HSE+17, THH+05, YZ14].
Nests [DBM16]. Net [CNM11, NE98, NE01, PES99].
Net-Console [PES99]. Net-dbx [NE98, NE01]. netCDF [LkLC+03].
Netherlands [DSZ94, Ano93f, Van95]. Nets [Sou01, Str94]. Network [ACM98a, AR01, BDG+91b, BDG+93a].
BCKP00, CZ95a, CDHL95, CSC96, DM95b, DMD95, DBA97, DFM94, DGSM93, DGM93, EGK79, Fer98b, Fis01, GS91b, GS92, Gei93a, GSxx, Hus98, ITT02, LB98, LH95, MSCW95, MANR09, OF00, OWSA95, TW01, AL92, AH95, AVA+16, BDG+92a, BDG+92c, BDG+94, BsvdG91, BJ95, Bon96, BBK+94, BD95, BM96, Coe94, CLLASPDP99, Fer98a, GS91a, Gei93b, GKh97, GHZ12, HBT95, HK94, HI95, IM95, KMC96, KMC97, KA95, LH98, LHD+94, LHD+95, MK94, MRH+96, POL99, PR94c, PTW99, Rag96, SEC15, SPK+12, TSS98, YS93, ZPS96, GKh97].
Network-Balancing [DBA97].
Network-Based [BDG+91b, GS92, BDG+92a, IM95].
Network-Specific [DM95b, DM95a]. network-topology-aware [SPK+12].
Networked [FGKT97, GBD+94, Nov95, Per96, Ano95b, BMPZ94b, BM94a, BMPZ94a, GM94, HS93, RRG+99].
Networking [ACM97b, ACM98b, ACM00, ACM01, ACM04, Hol12, LCK11, CBX+12, GH94, HS95a, ITT99, LCHS96, MZK93].
Networks [CSV12, CMD93, DDPR97, GFV99, GDMA18, GHL97, HHK94, HLZC00, HPP02, LHHM96, Li96, LH98, MBES94, QMGR00, SG15, TQLD01, Tou00, VLO+08, VBB18, WAS95b, WMC+18, BK11, BRS92, CZ95b, CFPS95, DG95, DZ99a, Ju94, LR06a, LTL94, LHD+94, LHD+95, NFG+10, Pan95a, TDB00, ZGN94].
Neural [AGH+95, CAM12, CSV12, QMGR00, Str94, GkLyC97, Rag96].
Neurocomputing [PSZ99]. neutrino [KHS99]. Neutron [LD01, RS97, VRS00, WR01, MM92].
Nevada [Ano94e]. never [Har94]. Neville [ACMR11]. Newport [IEE93b]. News [Ano97, Ano03, Bra97, ESB13, KS15a, Str94].
Newton [ZB97]. Next [GKPS97, Gei98, Gei01, VPS17, SP11, ZKRA14].
NoC-based [HWX+13]. Node [HRZ97, KLF05, FKL08, GM13, JR10, LFL11, ZF01]. Nodes [BCB+02, BCH+03, DBK+09, JNL+15, MKC+12]. Noise [SAL+17]. Non [BCG+10, CCSM97, Gua16, HTA08, MW98, Man01, WLNL03, WTR03, FH98, BCH+08, OKW95, OMKO9, TVCB18, WLNL06].
Non-blocking [HTA08, FH98, BCH+08].
Non-Contiguous [WTR03].
Non-Data-Communication [BCG+10].
non-dedicated [WLN06]. non-iterative [OMK09]. Non-linear [MW98, OKW95]. Non-Local [CCSM97]. Non-persistent [Man01]. non-singleton [TVCB18].
Non-stop [Gua16]. nonaligned [AGIS94].
Noncontiguous [JDB+14, TGL02]. Nondeterminacy [DKF93]. nondeterminism [Obe96]. Nondeterministic [KSV01, CRD99].
Nonlinear [Nak03, Was95a, ZB97, CEGLS07, Jot94].
Note [BR02, SGHL01]. Notre [IEE96]. novel [DDYM99, GKK09, MLVS16, MSL12].
November [ACM96c, ACM97b, ACM98b, ACM99, ACM99, ACM99, ACM00, ACM01, ACM03, ACM04, ACM05, An94c, ACDR94, BDW97, GN95, HK95, Hol12, IEE91, IEE93e, IEE94b, IEE94h, IEE94i, IEE94j, IEE94k, IEE94l, LCK11, USE94].
novel [GTS+15]. Number [BP99, HTO8, WHDB05, CBY98, Lan09].
Numeric [MLGW18]. Numerical [ACMR14, BS93, BCP+97, CWS97, DHK97, DHP97, FK01, For95, FB94, HH14, Has98, IF95, KM10, Kha13, McD96, NHT02, PKYW95, TDBE11, YKL17, AL92, Boi97, BCM+16, CWS99, FP92, GS94, JK10, KB13, Nob08, NHT06, Pri14, SMAC08, SU96].
O [Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLC+03, kLCC+06, MV17, MC18, MG12, MG15, PSK08, PLR02, RK01, SBQ14, Tha98, Tsu07, WSN99, ZJDW18].
O2000 [CML04]. O2WebCL [CHKK15]. Oberammergau [BP94]. Object [Ada97, BCFK99, CFKL00, FMSG17, MSL96, PD98, SWL+01, YHGL01, YX95, Ada98, BR91, DM12, LKL96, OKM12, RFH+95, SL94b, TDG13]. object-based [LKL96].
Object-Oriented [BCF99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. Objects [KH15, Man01, MFC98, HS93, SOA11, SC95, YW90, ZPLS96].
Oblivious [LZH17, LZH18, UALK17, HSP+13].
observations [ZKRA14]. observed [CAHT17]. Occam [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. Ocean [BS93, GAM+02, Bi95, Mal01, Nes10, Sch99, Wal00]. Oceans [IEE94c, IEE94d].
OCLOptimizer [FAD15]. OCM [BoFBW00]. OCM-Based [BoFBW00].
October [An93f, An94e, An94i, Ara95, BPG94, Bha93, BDL96, CHD07, CGB+10, DSM94, DLO03, DE91, FK95, GKK+93, IEE94f, IEE95a, IEE95g, IEE95j, IEE95b, IEE96c, IF95, JB96, Kra02, Old02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vol93].
 octree [JL18].
octree-based [JL18]. ODE [An97, Bra97].
ODEs [Pet97]. OdinMP [BB00].
OdinMP/CCp [BB00]. Off [CGS15].
Off-Line [CGS15]. Offering [EK97].
Official [An08]. Offload [BRU06].
Offloading [MGA+17, DSGS17, KGB16].
 oft [Rol08a]. Oil [FSXZ14, ZAFAM16].
OKs [Ano03]. old [LK14]. OMB [BWV+12]. OMB-GPU [BWV+12]. OMIS [LW97]. Omni [KSS00, KSH01].
OmniRPC [SHTS01]. OMP [SGJ+03].
OMP2001 [TSB03]. OMP2012 [MBB+12].
OMPI [ACH+11, OM96]. OmpSs [ABF+17, PSB+19, YÄJG+15]. on-chip [TDG13].
On-Demand [CTK00]. On-Line [BoFBW00, Wis98]. On-the-fly [KJ14].
ONC [RS93]. One [BPS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, GBH18, LSK04, MS99c, Ols95, PGK+10, diAMC11].
one-dimensional [Ols95]. one-layer [diAMC11]. One-Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, LSK04, MS99c, PGK+10].
only [LS10, Squ03].Ontario [GGK+93].
onto [OFA+15]. OOMPI [MSL96]. OOPS [RFH+95]. OPAL [CwCW+11, NW98].
OPAL-MPI [NW98]. opaque [SOA11].
Open [BGG+15, KDL+95b, WGG+19, AVA+16, KDL+95a, Nob08, GBS+07, VGRK16].
Open-Source [BGG+15, AVA+16, Nob08].
OpenACC [CGK+16, CCBPGA15, GML+16, GM18, HTJ+16, JCP15, KLV15, Kom15, LB16, LS2G12, MGS+15, OGM+16, QHCC17, RLFdS13, SCHJ19, WLK+18].
OpenACC-based [KLV15]. OpenCL [ABDP15, APBcF16, AB13, BLPP13, BDW16, BN12, BHW+12, BBH+15, BAS13, CDD+13, CP15, CLOL18, CIJ+10, CHKK15, CCK12, CS14, CLBS17, DARG13, Di 14, DWL+10, DWL+12, FAFD15, FLMR17, FE17, FSV14, FLVS15, GsFM13, GDDM17, HD11, HE15, HHC+18, JSS+15, JKM+17, JR13, JNL+15, JMvDG+17, KKM15, KH12, KM10, KKL11, KSL+12, KJJ+16, KB13, KPK13, Lee12, LNK+15, LWZ18, LL16, LAF15, MC17, MAIVAH14, MTU+15, MSZG17, MHSK16, ON12, OTK15, ORA12, PCY14, PHW+13, PSB+19, PB12, RG18, RGD13, RB1B15, RGB+18, RB1B17, SFSV13, SAP16, SSB+17, SG14, SFLD15, SG10, Str12, THS+15, TK16, TMMW17, TKP15, TY14, WTTTH17, WZH16, YSWY14, YWC15, YSL+12, ZWL+17, ZT17, dAT17].
OpenCL-accelerated [ZWL+17].
OpenCL-Based [CLOL18, WTTTH17, WZH16, JKM+17].
OpenCL-to-WebCL [CHK15]. OpenGL [Ano98, LHZ97, ORA12]. openMosix [Slo05]. OpenMP
[Cha05, CZZG+08, CGKM11, CMMR12, EV01, JMS14, MdSc09, SHM+10, Vos03, OKM12, ST02a, ST02b, Add01, ARvW03, ABC+00, AHD12, AAB+17, AELGE16, ACMZR11, ATL+12, ADT14, ACJ12, Ano97, Ano01b, Ano03, AKE00, ADMV05, ADR+05, AGM10, AM07, ACD+09, ABB+10, BST+13, BR02, BHP+03, BME02, Ben18, BN00, BF01, BBDH14, BWV+12, BCC+00a, BCC+00b, BGK08, BGG+02, BS01, BS05, BBC+00, Bra97, Bri00, BDV03, BdS07, BGdS09, BFG+10, BGD12, BC00, BS07, BB00, BRO00, BO01, BEG+10, BB18, CRE99, CE00, Car07, CB00, CGLD01, CDK+01, CLYC16, CM08, CHPP01, CBPP02, Cha02, CM05, CGKM11, CMMR12, Cla98, CBG18, CCM+06, CCBPGA15, CC00b, DM98, DW02, DBVF01, DGS17, HD02a, DFC+07, DFA+09, ETWAM12, EM00a, EM00b, EV01, Eds08, FGRTO0, FMSG17, FSXZ14].
OpenMP
[FM09, GSA08, GJP01, GSMK17, GG09, Goe02, GÁVRL17, GAM+00, GAML01, GOM+01, GAM+02, Gra09, HPP02, HP05, HDDG09, HA10, HO14, HD02b, HMK09, HASu00, HK+01, HAJK01, HVSC11, HLCZ00, HT01, HCL05, HEHC09, HJYC10, HAA+11, JLM+05, ICC02, IOK00, ITO02, JCP15, JKHK08, JPOJ12, JFY00, JY+03, JCH+08, JMJ+11, JR10, KB01, KS15a, KO01, KaM10, KOI01, KN17, KKH03, KKH16].
Kuh98, KBG16, Kum94, Lad04, LTDD14, LTR00, LKD08, LSLZ02, LTRA02, LHHM96, Li96, LZ97, LH97, kLCC+06, LO96, Lus90, MSOR01, MS02b, MM92, MC18, MWG97, dLFMbdlFM02, Mar06, Mar07]. Parallel

[MFTB95, MSCW95, Mat94, Mat95, MBS15, MG12, MG15, MRB17, MM11, Mic93, Mic95, MTWD06, MCLD01, MS95, MCDs+08, MBB+12, MSB97, NO02b, NO02a, Nak03, Nak05a, Nak05b, NSZS13, Nar95, NSS12, NAJ99, NJ01, Nov95, Oed93, OP10, OL01, Ong02, Ott93, OWSA95, Pac97, PPT96a, PVKE01, Pat93, PSZÉ00, PV97, Per99, Per96, PLR02, PWPD19, PKB+16, PBC+01, Qui03, RR00, RDMB99, RBS94, Ree96, RS95, RC97, RSV+05, Röl00, Rol94, RWD09, RLL09, RLL01, SCP97, SPE95, SGZ00, Sch01, Sch96a, Sch96b, Seg10, Ser97, Sev98, She95, SM03, SP99, Sie94, Sie92a, Sie92b, Sin93, STV07, SWH15, Sou01, Sta95b, Ste94, SSN94, SGS10, Str96, Str97, Str94, SNP90, Sm90b, Sm94a, Syd94, TMP16, TSS00b, TTP97, TC94, TCP15]. Parallel

[TQDL01, THN00, TDBEE11, Tsu07, TVV96, Uh94, Uh95b, Uh96, UCW95, VLO+08, VR05, VB99, WH96, Wal01a, We94, WAS95b, WHD85, WO97, WSN99, WMC+18, WTR03, WT12, YM97, YHL01, YHH6, YPA94, YG96, YTH+12, YZPC95, YSL+12, ZB94, ZZ04, ZDR04, ZWJK05, ZAT+07, ZLS+15, ZZZ+15, ZGC94, ZB97, van97, ACM97a, ARvW03, APBe16, ART17, AAAA16, AD98, AL92, AFB+17, ASCS95, ADT14, AD95, ACJ12, Ano93h, Ano95c, Ano00b, ADB94, ADDR95, AB93b, AFST95, AB13, AGIS94, ADMV05, BHIJ06, BB+94, BR91, BA06, BHS18, BB95, BCAD96, BB93, BDG+02b, BB94, BPC94, Ben95, BvdSv95, BKH+13, BAV08, BN00, Bir94, BCM+16, BKML95, Bos96, BFMR96, BID95, Biri95, Bru95, BDW97, BSH15, CARB10, CL93, CGK11, Cav93, CLDJ+15, CLSP07, CT13, CLYC16, CKmWH16]. Parallel

[Cha05, Cha96, CGL+93, CEGS07, CH94, CZ96, Che99, CLJ+10, CS96, CSW99, Cla98, CEF+95, CDD+96, CdGM96, CBH94, Coo95a, CCHW03, CLLASDP99, CFF+96, CPR+95, CD1+94, CKP+93, CB11, DKF93, DFK94b, DR18, DL94, DLRR99, DDS+94, DR94, DSZ94, DM93, DRUC12, DBVF01, DkD05, DvdLSv94, DXB96, DMW96, DLM99, DKP00, DLO03, Duv92, DZZY94, EASS95, EV01, FB96, FFB99, FM90, FO94, FSTG99, Fer98a, FSM15, FCS+12, FK+06b, FM11, FHC+95, GG99, GCN+10, GBG+08, GBF95, GG09, GFB+14, GÁVRRL17, GKS+11, GEW98, GKK09, GKF13, Gra09, GP95, HAM95b, HPY+93, HWS99, Heb93, HPS+96, HZ94, HZ99, HPLT99, HDB+13, HSVH95, HH95, HLOC96, HVS11, HLO+16, IEE97a, IM95, JWB96, JC17, JY95, JMM+11, JC96, JMDVG+17, KCD+97, KHB819, KB01]. Parallel

[KB16, KN17, KOS+95a, KL95, Kos95b, KRC17, KG93, KFSS94, Kra02, KKJ+08, KH10, LM99, LCL+12, LH98, LS10, LCVD94a, LLM+15, Loo95, LG93, LM13, LL95, LC97b, LSR95, MMR99, MYB16, MB+94, MK93, MM95, Mar05, MSP93, MK00, MN91, MHC94a, MRRP11, MALM95, MLA+14, MRH+96, MHH99, Mor95, MC99, MR6, MvWL+10, NSB07, Neu94, NB06, NBGS08, NCKB12, NF94, OdSSP12, Ols95, Olu14, OW92, PHA10, PPT96b, PPT96c, PKB06, PBG+95, PNV01, PBK99, PP9F, PY95, PBPT95, PSLT99, PCS94, Ram07, RJ95, RBB15, Rol08b, RBB17, SJLM14, SM12, SSKF05, SH94, Sch94, Sch99, SPK96, SBF94, SWYC94, SK92, SCC96, SL00, SMAC08, SZ11, SPL99, SMS00, SVC+11, Sm93b, STT96, SH14, SRK+12, SLS96, Sta95a, Sti94, SMSW06, Sun95, Sur95a, Sut96, SL95]. Parallel

[TJD09, TDB00, TMPJ01, Uhl95a, Uhl95c, VM95, Vis95, Vos03, Wan97, Was96, Was95a, WK08a, WK08b, WK08c, Wol92, WT11,
WYLC12, WLYC12, WMP14, YULMTS+17, YHL11, YWC11, YBZL03, YYW+12, ZL96, ZWHS95, ZAFAM16, ZWL13, ZJDW18, ZWL+17, dH94, ARL+94, Ano94e, Ano94f, ACD94, BDLS96, BS94, BG94b, Bos96, CC95, Cza13, DSM94, DHK97, DW94, EJL92, Fr95, FF95, GN95, JPTE94, JPP95, KKD05, Kum94, Lk10, LkLC+03, Mal95, MKP+96, OKW95, Pq07, QRG95, SSSS96, SPE95, Stp02, TDBEE11, TGEM09, Vol93, Vre04, WN10, YC98, ZPLS96, ZDR01, ZHS99]. parallel-programming [KKJ08]. parallel/distributed [FHC95, Wan97]. parallele [GEW98]. Parallelisation [SJK+17a, SJK+17b, WCVR96, LF93b]. Parallelism [CGC+11, Eds08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, KT02, Mar03, MGA+17, MMS07, MdSc09, RBAa05, SHM+10, SML17, SGZ00, TCM18, TSSY00, Th99, YPAeo9, ATL+12, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, JC17, JPOJ12, Kos95b, OPP00, KKBa+13, SLGZ99, SHPTo0, THH+05, TWFO09, W009, WTFO14, WRSY16, YZ14, PGdcj+18]. Parallelization [AL93, And98, AIM97, BCM11, BS07, CREe99, CP97, Con93, Cza03, ETV94, HA10, JR10, Kik93, KLr+15, LP00, OD01, Pok96, QmGr00, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZWS08, WR01, aMST07, AGMJ06, BW12, BDY99, BJS99, CDD+96, Gao03, Goe02, IDS16, LJCm+05, JI18, JIY+03, JMS14, KS15a, KD12, KRG13, MCB05, MGr05, Ns10, NEM17, OLG+16, TWFO09, VBLvdG08]. Parallelized [FBS01, OMK09, KMG99, OKM12]. parallelizer [BHRs08]. Parallelizing [BST+13, Car07, GGH99, IOK00, IKM+01, IKM+02, SR95, ZZ95, AMS94, BY12]. Parallelddatorcentrum [Eng00]. Parallizing [LRQ01]. parameter [HPLT99, JMdVG+17]. parameterized [CT13]. Parameters [GFV99, BAG17]. Parametric [LLG98, Pat93]. Paramid [Ste94]. Parapera [LTDD14]. Paraprox [SLLM14]. Parasite [LLRS02]. paravirtualization [SBQZ14]. ParCo93 [JPTE94]. PARCOACH [SCB14]. PARCS [LD01]. Paris [CD07, Har94, Har95]. Parity [MC17]. Parix [HVSH95, RS95, SHH94a, SHH94b]. Park [SL94a, IEE93c]. PARKBENCH [DHS96, DH95]. PARMACS [GR95, HZ96, HZ99]. PARMACS-to-MPI [HZ96]. ParNess [HSW94]. PARRAY [CCM12], parsing [Sur95a]. Parsytec [SHH94a, SHH94b]. part [VSRc95, EM00a, EM00b, GK10]. Partial [DERC01, DLV16, FSSD17, KK02b, MK17, MFTB95, OM96, ST17]. partially [CdGM96]. Particle [GS97, KH01, NSL16, Z004, BAS13, CFF99, FFFC99, GSKM17, KPK13, RFH+95, VDL+15]. particle-based [FFFc99]. particle-in-cell [VDL+15]. particle-mesh [BAS13]. particulate [ATL+12]. Partitionierung [Gra97]. Partitioning [CTK01, kL11, STV97, CT13, Cha96, Gra97, GKF13, YST08]. partners [Str94]. Pasadena [IEE95c]. PASCO [ACM97a]. passage [PTMF18]. Passing [AMHC11, Ana93d, AKL99, Att96, BZ97, BCI14, BBH+06, BB+01, BRU05, BDH+95, BDH+97, BGR97b, BF97, CD07, Cer99, CGH94, Cot97, Cot98, CTK00, Cot04, CEND11, DFKS01, DK08, DHHW92, DHHW93a, DLL00, FKKC96, FKS96, FGt96, Fos98, FGG+98, FB94, GR07, GB96, Gle93, GLRS01, GL94, GL95c, GLDS96, GLT99, GLS99, GLT00b, GLT00a, GL04, IBC+10, KTF03, KGRD10, KS97, KSV01, KKD03, KKD04, KK05, KKD08, KLD08, KLD10, Luo09, MPI98, MTSS94, MS98, MSL96, MBE94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, PS01b, RRBL01.
RWD09, RFG+00, SWHP05, SWL+01, ST02b, TGT05, TDB00, TBD12, WD96, Wer95, Wis97, YHGL01, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, Ano93c, Ano94d, Ano95c, Ano00a, Ano00b, BL97, BvdSvD95, Bjo95, Bru95, BDW97]. passing [BFIM99, CGJ+00, CDZ+98, CRD99, CD01, DKF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKPO0, DLO03, FK94, FHB+13, GL92, HP05, HPY+93, Hem96, KJA+93, Kra02, LR06a, LBD+96, wL94, LC96, LMM+15, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SW95, SDV+95, SZ99, SSG05, Sti94, TSZC94, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, DiN96, GHHL+96, Han98, Hem94, RRF9H6, SLG95, Wer95, YGH+14]. Past [Dar01]. Path [CGPR98, GAMR00, SDJ+12, Zel95]. path-based [SLN+12]. Pathway [CNM11]. PATOP [BFBW01]. Pattern [CSW12, CC17, JJP17, RDMB99, MAS06, SJLM14]. pattern-based [SJLM14]. Pattern-Independent [CSW12]. Patterned [ST17]. Patterns [DMMV97, FPY08, KB98, PKB+16, RRAGM97, SGH12, DZZY94, GÁVRL17, HGMW12, PM95, PKS+10]. PC [AH00, EKTB99, KS01, LKYS04, RLL01, Ste00, WLYC12, YST08, YL90, MMB+94]. PC-Cluster [RLL01], PCAT [ACDR94, GN95]. PCAT-93 [ACDR94]. PCAT-94 [GN95]. PCG [BJS97]. PCI [K97]. PCI-based [K97], PCRCW [BS94]. PCs [CRE99], PCSC [LM94]. PCTE [HZ94]. PCTRAN [KHS01]. PDCS [YH96]. PDE [GBR15, NHT02, NHT06, NPS12]. PDES [PT01, SCL01, SLO01, H014, HHA95]. PDGC [CGB+10]. PDP [IEE96g]. Peer [GR07]. Peer-to-Peer [GR07]. PELCR [FQ07]. PEMPI [FB95]. PEMPIs [MOL05]. Pennsylvania [ACM96b, IEE94d]. pentadiagonal [Kan12]. Pentium [Ano03]. Pentium(R) [SBT04]. PENTRAN [KHS01]. people [ACR95, Ano94i]. per-triangle [SOA11]. perception [CLM+95]. perceptual [WPL05]. Performance [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ATM01, AR01, Ano01a, Ano01b, AD95b, BBGL96, Ben18, BN00, BBDH14, BGG+02, BY12, BRM03, BRST94, BS07, BDL98, BCKP00, BHNW01, BFMT96b, BFBW01, BEG+10, CGK+16, CDD+13, CRE99, CDJ95, CGLD01, CNM11, Che99, CSC96, CCBPGA15, DPD08, DM95b, DW02, D98b, DPP01, DWL+10, DBK+09, EGH99, EGC02, EML98, EML00, FD02a, FGRT00, FCP+01, FSC+11, FST98b, FGKT97, GFP03, GKP96, GGS99, GBH99, GFIS+18, GRR99, GBS+07, GC05, GMDM+07, GSY+13, HVA+16, HKN+01, Hol12, HF14a, HF14b, HPS95, Hus08, IEE92, IE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IF95, IR01, IVA+00, JSS+15, JC17, JCH+08, JS13, KDS012, KaM10, KL94, KH12, KBS04, KMB97, KKP01, KH15, KC06, KK02b, KHS01, KSS00, La01]. Performance [LAD+S+15, LCK11, LC97a, LB98, LGCH99, LNK+15, LH98, LC93, LLLC+03, LWZ18, LNW+12, LS10, LSW+03, IVP04, LWP04, LDC97, LZHY19, LC97b, LKYS04, MMB+94, MKP+96, MDP04, ME17, MGMH97, MGC12, MM02, MM03, MOL05, MS99a, MHC94b, MMSW02, MK04, MCLD01, MHH99, MM14, MMS07, NSL16, NMW93, NPP+00d, NMS+14, NN95, OK15, OF00, OLG01, PARB14, PKB01, PHJN11, PJ12, PR94b, PF97, PGAB+05, PGAB+07, PGC02, PY95, PTH+01b, PS01b, QHCC17, QB12, Rab98, RBB97a, RBB97c, RH01, RRAGM97, Ros13, Rst06, SGJ+03, SPM+10, SLJ+14, SWHP05, SCP97, SEF+16, SPL+12, SCSL12, SM02, SM03, SSS97, SJ02, SSS97, SC96b, SKH96, SJK+17a, SJK+17b, TSB02, TSB03,
TTSY00, Ten95, Tha98, TBG+02, TGT10, Trä12b, TFGM02, TFZZ12, VFD02, VY02, WN10, WAS95b, WM01, WT11, WT12.

Performance
[WT13, XF95, XH96, XXL13, YC98, Yan94, YWC11, YS93, YWCF15, YSP+05, ZLGS99, ZWJK05, ZHK06, ZSnH01, ABDP15, Ahm97, ADL03a, ADL03b, Ano03, AFST95, BDP+10, Ber96, BV03, BMF96, BFMT96a, BFM199, CRE01, CAHT17, CLYC16, CBPP02, CBM+08, CHKK15, DM95a, DL10, DO96, D+95, DWL+12, DE91, Duvr92, EFR+05, ESB13, FAF16, FD02b, FE17, FSV14, FME+12, Fin97, GS02, GGC+07, GK97, GR95, GHZ12, GML+16, GL96, GLDS96, GL97c, GL99, GWVP+14, HDDD09, HW11, HASnP00, HAJK01, HMS+19, HK10, HVSC11, HMAA95, HG12, HcF05, JFKH08, JFM+11, JKN+13, KBBP16, KKM15, KS13, LBD+96, LTLC94, LC07, LBH12, LCY96, LB96, LL01, LKJ03, LSTK04, MC17, MP95, MSMC15, MSW+05, MSL12, MABC96, MHC94a, MSZG17, MJPPB16, MG+15, NU05, NFG+10, OI10, Old02, PG+13, PHW+13, PK+10].

Performance-aware [MSMC15].
Performance-based [YWC11].
Performance-Portable [JSS+15, DWL+10, DWL+12, FAF16].
Performance-prediction [BDV03].
Performance/cost [GWVP+14].
Performances [GFV99, DS96b, IM94].
Performing [CC99].
Peridynamic [MSZG17].
Periscope [LG16].
Permutations [CC99, LTDD14].
Persistent [Man01, SG12, HMS+19].
Persistent-sets [SG12].
Personal [SSS97].
Personalized [BHJ96].
Perspective [Sai18].
Perturbation [KN17].
Perverse [Rol08a].
PES [MK94].
Pessimistic [BCH+03].
Petaflops [LSG12].
Petascale [CGK11, CBY18, ZWL13, Gei01].
Petersburg [Ma95].
Petri [CNM11].
PFSlib [LL95].
PGAS [SW+12, SJK+17a, SJK+17b].
Phase [CBL10, ED94, TKP15, T94, ZAFAM16].
Phase-field [TKP15].
Phi [BB18, DSGS17, MTK16, OTK15].
Philadelphia [ACM96b].
PHOENICS [SZBS95b, SZBS95a].
Phoenix [ACM96c, IEE95b, Ten95].
Photo [JFGRF12].
Phylogenetic [MR12, LBH12].
Physical [BM97, GJN97, GWVP+14].
Physics [GT94, KH15, VW92, WBH97, ANS95, BPG94, DMW96].
PIC [BDV03, HTJ+16, JL18].
Picos [YAJG+15].
Pilot [OS97, CGG10].
PINEAPL [DHK97].
Pinhole [NH95].
Pipe [MTU+15].
Pipeline [GAMR00].
Pipelined [GAML01].
Pipelines [MAGR01, FWS+17, RKBA+13].
pipelining [MM11].
Pisa [Sil96].
Pitaevskii [LBB+16, LYS+16, SSB+16, YSM+16, YMA+17].
Pittsburgh [ACM96c, ACM04, Ham95a, IEE94d].
Place [IEE94e, LTS16, BCK09, HSE+17, PSHL11].
placement [SLN+12, SPP+12].
Planck [Ano94c].
Planning [GAMR00].
Planning [HMS+19, Zel95].
plant [FO94].
PLAPACK [vau97].
plasma [JL18, YKLD17].
Plasmafusionsforschung [BL94].
plasmas [CCF19].
Platform [BKGS02, BB18, NO02b, PGF18, WTH17, BSH15, CB11, Cza13, DLW+10, DWL+12, HTJ+16, HHA95, JR13, NO02a, XXL13, YSL+12].
Platforms [AIM97, HD00, JML01, ZB97, GGC+07, GFB+14, MBBD13, TKP15, TS12b].
Plesset [BL95, KN17].
PLIERS [MMR99].
plug [MS99b].
plug-in [MS99b].
plume [JL18].
plus [HDB+13].
PMAc [PTL+16].
priority [DR95, Man98]. Prism [SDN99].
private [Str94]. privatization [KRG13].
Probabilistic [LAdS+15]. Probability [QRMG96, Sta95b].
Problem [BSh15, DALD18, DAK98, ICC02, Lee06, MTSS94, RLRGP12, ZSnH01, AB93b, Dsm94, GM94, GKF13, HKM94, IHM05, MM92, SL00, SP11, Cza13].

Problems
[AS97, BHM94, BHM96, BMR01, BPMN97, CGPR98, EML98, HAA+11, DK02, MBS15, Nak03, Riz17, AL96, CEGS07, FR95, LS95, NZZ94, OMK09, SC96a, SD99].
Problem-Management [BGL00].
process [AGLv96].
Proceedings [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM04, ACDR94, CNJW95, GN95, Hol12, IEE93f, IEE95d, IEE02, KG93, LCIK11, MC94, R+92, SM07, Ten95, TH95, CLM+95, DSZ94, DE91, EJL92, FF95, GHH+93, HK95, HHHK94, IEE94a, IEE94b, IEE94c, IEE95b, IEE95e, IEE96a, IEE97c, IEE95, JPET94, Kung94, LF+93a, Li96, PSB+94, PBPT95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM05, ACM06b, ACM06a, ATC94, Agr95a, AGH+95, AH95, Ano89, Ano92, Ano94a, BBG+95, Bha93, CHD07, CZG+08, CGKM11, CMRMR2, CBG+10, CDN11, D MK+92, DT94, DLO03, EV01, EdS08, ERS95, ERS96, Fer92, FK95, Ga95, GGGK+93, GA96, GT94, Ham95a, HS94, HK93, IEE91, IEE92, IEE93d, IEE93c, IEE93b, IEE93e, IEE94e, IEE94d, IEE94f, IEE94h, IEE94g, IEE95, IEE95].

Proceedings
[IEE95i, IEE95f, IEE95l, IEE95g, IEE95h, IEE96g, IEE96f, IEE96e, IEE96d, IEE96b, KGRD10, LDK08, MTWD06, MM93, MCdS+08, MDSC09, Ost94, PR94b, Re96, RWD09, SCR92, SHM+10, Sie94, TDB12, USE94, USE95, USE00, VW92, Vos03, Y+93, YH96, AD98, BG91, BDL96, BS94, Bos96, BFMR96, BDW97, CH96, CD01, DSM94, DKS05, DW94, DMW96, DLM99, DKP00, Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97a, Kra02, KKD04, LCHS96, Mal95, PBG+95, Sch93, To96, Vu95, Vo93, Was96].
Proceedings.
[Ano93f, Ano94g, IEE96i, IEE97b, LHHM96].
Process [ATC94, AR01, BGL00, CL03, DeP03, DK06, FDC97a, FDG97b, FLD98, FPGY08, KCP+94b, Kow97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HG12, JLS+14, KCP+94a, MLVS16, MK00, SHHC18, Ste96].
Process-Management [BGL00].
processed [AGLv96].
Processes [CB16, MW98, Pet00a, Pet00b, FS95, GFIS+18, SPK+12].
Processing [ATC94, Acr95a, AR01, Bbg+95, Dckm92, Ggcm99, GgCGG001, HJB14, IEE93b, IEE93f, IEE95e, IEE95a, IEE95f, IEE95g, IEE96b, IEE96g, IEE96e, IEE96d, IEE97b, IEE05, IOK00, JDB+14, K0101, KS15b, LSVMW08, MLGW18, MC18, MSML10, Nar95, NH95, NJ01, PLR02, PD98, Ree96, RRRB10, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, BJ13, BHS18, BFM9R6, CFPS95, CLALSPDPP99, Dsz94, FWS+17, GDC15, GGC99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kum94, LHLK10, LG93, PSB+94, PBPT95, RKBA+13, Rhi00, RCG95, SS999, SLS96, VDL+15, Wol92, WWFT11].
Processor [HC06, Oed93, Ott94, PWP+16, RR02, Smi93a, SBTO4, UALK17, ABDP15, AC17, DCH02, HC08, LL01, OIS+96, RNPM13].
Processor-Oblivious [UALK17].
Processes
[AJ97, Br10, HK93, HK95, KmWh10, MJB15, OLG01, PKK02, Bbg+14, Cvm+08, DBLG11, HTA08, HWX+13].
Producing [HAJK01].
product [CMH99, ER12, SMSW06].
production [LAdS+15, SL00].
Productivity [BS07, KaM10, Wt16].
products [Ano97, Bra97].
profiles [AS92].
profiles [Wil94]. profiling
[GPL+96, LZHY19, Rab99, Vet02].

Program
[Ano96d, AB93a, BMS94b, CHPP01, Cot97, EML98, MM95, MK17, MRV00, Ney00, PS01b, TSY00, THN00, UTY02, CDZ+98, JF95, LP00, LLC13, OKM12, PFP99, SAI10, TNB17, TMPJ01, ZL96]. programación [VP00]. Programmable [OA17].

Programmcode [BL94]. Programmer [Gua16, Wit16]. programmers [CGG10].

Programming
[ACM90, Ada97, ACGR97, ASA97, ACJ12, Ano96b, BBG+10, BLP93, BHV12, BF01, BBG+01, BKO00, CMK00, CDK+01, CKmWH16, Cha02, CZG+08, CF01, Cza03, DM98, DARG13, DDL00, DK06, DWL+10, EM00a, EM00b, FTVB00, FWR+95, GLRS01, GLS94, GLS99, HA11, HDB+12, HDT+15, KKH03, KP05, KP96, KuWH10, KVI97, Lad04, La01, LLRS02, MSOGR01, Mat94, Mat95, MCDs+08, NO02b, SPM+10, SK10, SS01, SDN99, SHH94b, ST02a, ST02b, SGS10, Stp02, TTP97, TV97, Vre04, Wal01a, Wal02, WO97, YM97, YHLG01, YCA18, AGCdT02, AMuHK15, Ano95c, Ano00b, AB13, BJ13, BCA+06, BB94, BS96a, BKH+13, CLYC16, Cha05, CEF+95, CDH+14, CGH+14, DLW+10, Duv92, EASS95, EV01, FB95, FB96, Fan98, FSTG99, Fer04, Fra95, FHB+13, FF95, GK12, Ge96, GBH14, GBH18, GRTZ10].

programming
[HTA08, HS93, HZ94, HDB+13, HVSH95, HSW+12, HGZ08, KDS012, KOB01, KSG13, KSL+12, KLV15, KPNM16, KSFS94, KKJ+08, LV12, LSFS93a, LSFS93b, LH98, LPD+11, LLH+14, MB+94, MVT96, MSP93, MC99, MGC+15, NO+02a, Nak05a, NYNT12, NBGS08, OIS+06, OH14, OW92, Pac97, PVKE01, PF05, Qui03, RJHD14, iSYS12, SSKF95, SYR+09, Se10, SPK96, SBF94, SPL99, SHH94a, SD99, VP00, Vos03, Wal01b, Wan02, WCC+07, WAC99, WYLC12, WLVC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE+17, CHL0, SD13].

Programs
[AJF16, Beg93b, BKdSH01, BGK08, BGG+02, BDL98, BGL00, CSH12, CRE99, CHPP01, CD98, DLB07, DMMV97, Di14, FKH02, FJK+17, GR07, GTH96, GL04, GC05, HCN+01, HMO1, FKL05, KL94, KSJ14, KK01, KSL+12, KVV01, Mar09, MVY95, MOL05, MBE03, MKW11, MCDL01, MJB15, NSZS13, NE98, NEO1, NPP+00d, OM96, PPJ01, RH01, RFG+00, SZ99, SFBO+04, SR96, TGBS05, WBD94, Wis97, ZLL+12, Beg92, Beg93c, Beg93a, BCK+09, BMP03, CRE01, CLJ+15, CGL+93, CH94, CRM14, CPF96, DFK93, DFK94b, EP96, EPP+17, FLS+05, FKL08, GG99, GRRM99, GKS+11, GB94, HD11, HZ96, HLOC96, HEHC09, KCD+97, KS13, KO14, Kom15, LGKQ10, LLG12, LL16, LBB+16, LYSS+16, LMM+15, LCZ+02, MT96, MDSAS+18, Mor95, NBK99, Ob96, OdSSP12, FES99, PAdS+17, RAS16].

programs
[Reu03, RRG+99, SSB+16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THI+05, UGT09, VVD+09, YSVM+16, YSM+17, YYW+12, ZJW18, ZRQA11].

Progress
[BRU05, LaDS+15, SPH+18, MLA+14, MC94]. Progress-Dependence [LAdS+15]. Project [BHK+06, BSH15, DHK97, MRVO0, ABC+00, CDH+94].

Promise
[Ano93f]. Promotion [OCY+15, WBBD15]. Propagation [EMF+93, ESM+94, JML01, SMOE93, KEGM10, RMNN+12]. Properties
[FGRT00, J18, MS96b, SP+94]. Proposal
[DDHW92, DHHW93a, DPC+07, DPA+09, ZKRA14]. Proposals [Wal96b]. protected [GHD12].

Protein
[RGB+18, GAVRRL17, SEC15, ZAT+07]. proteins [BH+12, BHB+15, FMS15].

Protocol
[CAWL17, GSY+13, KL11,

Provide [Add01, LMRG14]. Provides [Ano98, Nel93]. Providing [GKP97, Zah12]. Proving [MS96b]. PRS [UCW95].

certification based [LMM +15]. Protocols [BCH +08, DM93, LH98]. Proto planetary [dIFMBdlFM02]. Prototype [Ano01b, FHP +94, MMSW02, BK96, CCF +94, KYL03, KYL05]. prover [Sut96].

Provide [Add01, LMRG14]. Provides [Ano98, Nel93]. Providing [GKP97, Zah12]. Proving [MS96b]. PRS [UCW95].

LMM +15, RA09, XF95, BDB +13, CwCW +11, DDYM99, MN91, MB00, ZPI06.

Protocol-based [LMM +15]. Protocols [BCH +08, DM93, LH98]. Proto planetary [dIFMBdlFM02]. Prototype [Ano01b, FHP +94, MMSW02, BK96, CCF +94, KYL03, KYL05].
SA93, SR96, SHH94a, SHH94b, Smi93a, SBR95, SC96a, STT96, SMOE93, SGL*00, SGHL01, SCL97, SSSS97, Sta95b, SY95, SYF96, SC96b, Str94, SKH96, Sun90a, Sun00b, Sun92, Sun93, Sun94a, SGDM94, Sun96, STMK97, SN01, SCL00, Sun95, Sut96, SL95, TMTP96, TC94, TDB96, TD98, Tsu95, Uh94, Uh95b, Uh96, UM97, VSRC94, VR95, VAT95, WK96, WH94, WCVR96, WA95b, Wo97, Wis96a, WL96a, Wis98, Wis96b, WL96b, WCSS99, Wu99, WLC07, XWZS96, XF95, YG96, YKI+96, ZPL96, PVM, [ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, Zol93, van93, An095b], PVM-AMBER [SL95], PVM-Based [WA95b, FO94, PY95, Sut96, ZPL96, LSZL02, TD98], PVM-GRACE [YKI+96], PVM-Implementation [BJS97, Huc96], PVM-RPC [KS97], PVM/C [GTH96], PVM/MPI [AD98, BDW97, CHD07, CHD09, DKD05, DL99, DKP00, DLO03, Kra02, KKD04, LKD08, MTWD06, RWD09, AGCR97, SN01], PVM3 [IM94], PVM3/AP1000 [IM94], PVMaple [Pet00a, Pet00b, Pet01], PVMe [BR95c, BR95b], PVMGeant [DZ95], PVMPi [FD96, FGD97a, FGD97b], PyCUDA [KPL+12], PythonOpenCL [KPL+12], Python [BL97, DPS05, DPSD08, Di14, GFB+14, SSH08], PyTrilinos [SSH08], quantitative [BLP93, BBH+15], quantization [HE15], Quantum [BCGL97, BCL00, GRTZ10, Hin11, MGG05, NMW93, SK00, SSGF00, TJD09], Quasi [DDYM99, Pla02, ZB97], Quasi-asynchronous [DDYM99], Quasi-Newton [ZB97], Queens [Rol08b], Queensland [ACD94], Query [AR01], Quest [MWG97], Queue [NSS12, CG99b, PTL+16, Sep93, ZA14], queues [Man98], quicksort [MMO+16, MMO+16], R [BBH12, JPO12, LR01], R&D [Str94], R&D-100 [Str94], Race [CFMR95, KSJ14, DKF94a], Races [PPJ01, SAL+17, DFK94b, LLG12, ZRQA11, EPP+17], Radial [RB01, KRC17], Radiance [GCBM97, KMG99, RC97], radiation [SCJH19], Radiology [GA96], Rajeev [An00a], Raleigh [Agr95a], Ramesh [Stp02], Random [HT08, LDTD14, Lan09], Randomized [Tra98], Range [KBM97, MH01, BMPZ94a, PARB14, She95], range-join [She95], Rank [Hat98], Ranking [Tra98], Rapid [FWS+17], RASC [YCL14], rate [BBG+14, YPA94], rationale [BBH+13b], Ray [CG93, DP94, KGB+09, FWS+17, SGS95, FFB99], Ray-Tracing [DP94], Raleigh [TV96], Rayleigh-Benard [TV96], rCUDA [PRS16, RSC+15, Sirp17], RDMA [GSY+13, LWP04, Pan14, RA09], RDMA-Based [LWP04], RDMA-Enabled [GSY+13, Pan14, RA09], Re-MCP17, Re-Vectorization [MCP17], Reaching [BHS+02], Reaction [HF14a, HF14b], Reactive [BCL00, Hex93], reactor [ANS95], readability [SM12], Reading [HK95], Ready [Bri02, DZ98b], Ready-Mode [Bri02], Real [LHLK10, NSLV16, Tho94, UP01, YGH+14, An94f, Fer04, FLB+05, JR10, ZWZ+95, SKD+04].

Q [KMH+14, LM13, MV17], QAPs [Ts912], QCD [BLPP13, GM18, SYC+11], QCQ [ACH+11], QCQ-OMPI [ACH+11], QCMPi [TJD09], QR [GKK09, LC97b], QSATS [Hin11], Quadratic [Cza13], Quadratics [YSP+05, LCW+03], quadtrees [HS95b, PGBF+07, SC96, Sur95b], qualitative [BLP93], Quality [Boi97, BDA+18, RFG+00, WHDB05, Ano94a, Lan09, Boi97], Quality-of-Service [RFG+00], Quantifying [AKE00, LDCZ97].
Real-Time [UP01, YGH+14, LHLK10, Fer04, ZWZ+95, SKD+04], Real-World [NSLV16].
Realistic [YMYI11, ZSnH01, CKP+93]. Reality [ACM96a, Ano93f, NM95, Wit16], realizing [YZ14]. Reallocation [GFIS+18], rebooting [GJLT11]. Receive [Bri02]. Receiver [ZG95b]. receptor [ESB13].
Rechnen [Ano94c, BL94, MS04]. Recognition [CC17]. recomputation [RKBA+13]. Reconfigurable [MFC98, SPM+10, NYNT12].
Reconﬁguration [CS14, MSMC15]. Reconstruction [BM97, DYN+06, GA96, LSSZ15, OIH10, RAGJ95]. Record [UALK17, CRD99]. Record&Replay [KSV01].
Recovery [SBF+04, BBH+13b, BDB+13, LFS93a, LFS93b, SSCC95, ZWZ05]. Rectangle [CSW99]. rectiﬁed [WBBD15].
Recurrences [ACGR97]. Recursive [DSS00, PWP+16, SD99]. Red [van93]. redesign [HL17]. Redistribution [DDPR97, HC06, WO95, WO96, HC08, KN95]. Reduce [PSM+14]. Reduced [SW12]. Reducing [CRGM16, JE95, BCM11]. Reduction [FKH02, MFPP03, SG12, HL17, Jes93a, MLVS16, Pan95a, PQ07].
Remote [BMR01, HDT+15, IFA+16, OCY+15, Tsa07, WBBD15, AGLv96, FHC+95, GBH14, GBH18, HGMW12, RSC+15, SIRP17, SH96]. Remotely [GGCM99, GGCG001, GCGS98, VLO+08, GGGC99]. Remoting [MGL+17].
removal [ZZZ+15]. Removing [ZJDW18]. Rendering [GCBM97, LSZL02, SU96, UCW95].
Replay [CFMR95, HLOC96, UALK17, CRD99, MT96, NBK99, XLW+09]. replay-based [MT96]. Replication [WC09, KJJ+16, ZJDW18].
Research [Ano96d, BR02, MC94, SL94a, SGHL01, Ara95, BPG94, LP00, Oed93]. Reservoir [OWSA95, ZAFAM16, ZZ95, Ano95d].
Resident [JDB+14]. Resilient [CGH+14, Gua16, LCMG17, LGM17, LBB+19, MLVS16]. Resolution [MAB05, Str94, BADC07, KN17].
Resolving [Str97]. Resource [BGR97b, BSH15, KIK98, SIS17, YSS+17, DZ96, FLD96, NEM17,ZA14].
resource-conscious [ZA14]. resource-restricted [NEM17]. Resources [LSB15, NA+96, Kos95b, R+92].
Response [BBO+00]. Restart [SSB+05, LGM17]. restarted [dH94].
Restoration [FJBB+00]. Restore [Gua16]. restricted [NEM17]. Restructuring [KAMAMA17].
Results [BIL99, BIC05, HSMW94, Wal01a, BR95c, BR95d, CCM11s, DZ96, FLD96, NEM17, ZA14].
DHS96, VDL+15. reusable [KKJ+08],[102x646]
rethinking [GJLT11]. Retrieval [RLL01, MMR99, MRH*96, RTL99].
[102x275]RS/6000 [Cou93, Heb93, MW93]. Reverse [BGK08, LSB15, LM13, QHCC17]. Review [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99d, Ano00a, Ano00b, BDL98, Che10, Mar06, MCLD01, Nag05, Per96, Per97, SD13, Vre04, Stp02, Vog13]. Reviews [Ano97, Bra97, YM97]. Revised [Cha05]. Revision [MHSK16]. rewrite [SFLD15].
Runtimes [AHHP17]. Russia [Mal95]. RWA [RLVRGP12].
S [AHHP17, Röh00]. S-Caffe [AHHP17]. S-language [Röh00]. S1 [GLTO0b]. 3D [LSG12]. Safe [PL02, GCC99, LFS92, LFS93a, LFS93b, NYNT12]. safety [GT07]. salesman [GM94]. Salt [Hol12]. San [ACM04, Ano95d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IEE95h, IEE95g, IEE97c, LF+93a, NM95]. Sanders [Che10]. Sandy [VDL+15]. Santa [ACM95b, AH95, IEE95f, OKd02]. Satorini [CD01, CDND11]. Satorini/Thera [CD01]. Saphir [Ano99c, Ano99d]. SAR [AB95]. Satellite [UHL94, UHL95b, SSN94]. Satisfiability [IKM00, IKM00a]. saturated [TOC18]. Saturday [B+05]. Saturday-Wednesday [B+05]. Save [KFL05, FKL08]. SBS [MSB97, WWZ+96]. SBS-Type [MSB97]. SC+11 [LCK11]. SC2000 [ACM00]. SC2001 [ACM01]. SC2002 [IEE02]. SC2003 [ACM03]. SC97 [ACM67, ACM97b]. SC98 [ACM95b, ACM98b]. SC+99 [ACM99]. Scalability [Ben18, BS07, FSC+11, KBS04, LL01, LKYS04, LSK04]. Scalable [Add01, AHHP17, BH+17, BBC+02, BHNW01, BGL00, CSM5, CDPM03, EFR+05, GFB+14, GS94, HGMW12, IEE92, IEE94f, IEE95j, IBC+10, KK98, LTS16, kLCC+06, MFPP03, NBGS08, NPP+00d, NCB12, DSM12, OLG01, PP01, PR94b, PBK00, SDJ17, SBF+04, SK93, SS96, TDP15, UP01, VBVLvdG08, VY02, ZLGS99, BB+94, Bri95, CLSP07, FWS+17, GBH14, GBH18, GM13, GLK95, HRR+11, HAJK01, KRC17, KRG13, LM99, LTL99, MMB+94, MRRP11, PWD+12, SPK+12, TR12a].
ScalAPACK [BV99, BRR99, DHP97].
Scale [AKE00, BHW+17, BZ97, BHNW01, FFP03, MFPP03, SM03, TGEM09, WMCT+18, WT12, AASB08, BCA+06, BJS99, BCH+08, Che99, DZZY94, FME+12, Gu16, Kos95b, LS10, MLA+14, PTL+16, PD11, RMNM+12, SVL99, TBB12, WLNLO6, WT11, WT13, ZKRA14, ZAI+14, Ben18].
SCALE-EA [Ben18]. SCALEA [TFGM02].
Scaling [CC17, KFL05, SLJ+14, FKLB08, Gao03, LFL11, PDY14]. scan [AAAA16, YLZ13]. scans [NAJ99]. SCASH [SHHI01]. SCATCI [ART17]. scatter [BCD96, MTK16].
Scattering [BCL00, NZZ94, OMK09]. SCF [MM95]. schedule [NAAL01]. scheduler [ADDR95, TCBV10, WRSY16]. Scheduling [BBH+06, BHS15, CML04, DMB16, EGR15, GDDM17, GSHL02, GHL97, HC06, JW96, MJB15, NIO+02, NIO+03, TJPF12, APB+F16, DZ98a, JKN+13, LHC96, MBKM12, NSBR07, OPW+12, Sma93b, SSK+12, SBB+14, WLYC12, WLYC12, WYCL11].
Scheme [CTK01, LNLE00, MW98, SBF+04, BBGL96, Bjo95, MRRP11, OKM12, SCC96, YPZC95, FM90]. Schemes [PPJ01, WYLIC12, WLYC12, ZAT+07].
Schmid [CBYG18]. School [VV95].
Schrödinger [DM12, ÖN12]. SCI [FS97, HEH98, Hus00, ZHS99].
SCIDDLE [ABG+96, AGLv96].
SCIDDLE-PVM [ABG+96]. Science [EGH+14, IEE95d, MMH93, Old02, SM07, ACM06a, DMW96, HK93]. Sciences [ERS96, HS94, ZL96, ERS95]. Scientific [AGH+95, AP+16, BBG+95, DKM+92, DT94, Gap96, GL97a, HJ98, KK02a, LkLC+03, Mar06, Nag05, Sin93, SSB+17, VY02, WN10, Bis04, DW94, SBB+12, TBB12, WT13, Ano97, Bra97]. scientists [HW11, Str94]. ScIP [KH15]. SCIPVM [ZHS99]. Scope [OCY+15, BDB+13, WBBD15].
scoping [RDLQ12, WC15]. Scottsdale [IEE95b]. Scratchpad [JAK17, MB12]. Scripting [Ong02, KPL+12, Nob08]. scripting-based [KPL+12]. SCTP [KPW05, ZP10]. SDK [TK16]. SDSM [CCM+06]. Seamless [KK02a]. Search [BSH15, Cza13, IKM+01, Wal01b, FMS15, IKM+02, Wal01a, ZSK15, CB11]. Searches [BSG00]. Searching [JPT14, MM01, BA06, Wal01b]. Seattle [ACM05, BS94, LCK11, Ost94]. Second [Ano00b, BL95, DT94, DE91, IE94d, IEE96d, IEE96i, LHHM96, Toup96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFM96, DMW96, FR95, KN17, Li96]. Second-Order [BL95, KN17]. Secondary [WHBD05, SEC15, ZAT+07]. section [Ano93b, DKO08]. segment [FJZ+14]. segment-based [FJZ+14]. Segmentation [KBA02, AD95, CCU95]. Seidel [BG95, LM09, Ols95]. seismic [AMBG93, KL95, KEGM10, LM13, QHCC17, RMNM+12, SSS99, WCV96]. Seismograms [DF94]. Select [KDV03].
Selected [DH96, MTT07, OL05, TB14, ChD09, Cha05, DKO07, JC17]. selecting [PTL+16]. Selection [CkmWH16, SNN+19, PGBF+07, WKS96, ZWL+17]. Selective [Nak04]. Self [NSS12, SLJ+14, TGT10, VFD02, NSBR07, WYLC12, WLYC12, YWC11]. Self-Consistent [TGT10]. self-scheduling [NSBR07, WYLC12, WLYC12, YWC11].
Sensed [GGCM99, GGCG01, GGCS98, VLO+08, GGGC99], sensitive [GKCF13]. Sensitivity [dLR04]. Separable [Ben01, CdGM96]. September [Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CLM+95, CHD07, CJNW95, CD01, CDN+11, DKD05, DKD07, DL99, DK00, DLO03, EJL92, FK95, FR95, GH+93, IEE93d, JPT+94, KGRD10, Kra+02, KKD04, LKD08, Mal95, MTWD06, OL05, PS+94, RWD09, SPH95, SM07, TBD12, VV95, WW92, WPH94, YH96].

Sequence [GMU95, SMM+16, AMHC11, TszC94]. sequences [GAVRRL17, SdM10]. Sequencing [VPS17]. Sequential [EK97, RPM+08, GGH99, SR95, TN1B17, TSzC94]. Serial [SWH15, HPS+96, HWS09]. serialization [CFKL00]. Serialized [KH10]. Serielles [BL94]. Series [Nag05, BR94]. Server [Ano93f, FSLS98, KS97, Mat01b, Sch93, Sto98, Vis95]. Servers [CGC+02, SIS17, GK97]. Service [RFG+06, LS08, SPK+12]. Services [FC05, AAC+05, ZKRA14]. Session [NYNT+12, ZL96]. Set [BDA+18, SW12, WL96a, Ano00a, Ano00b, She95, WL96b]. Sets [SG12, G+93]. setting [GL95a]. Setup [NSLV16]. Seventh [BBG+95, HS94, IEE93b, IEE96g, Eng00, Y+93]. several [GBR15]. SGI [Che99, CML04, KMG99, LB96, LL01, LK+03, LSK04, TW12, ZSN+01].

SGI/CRAY [Che99]. SGI/CRAY-T3E [Che99]. shadow [SOA+11]. shallow [dIAMC11, dIAMCF12]. Shane [SD13].

Shanghai [IEE97a]. SHARE [Ano92, Ano93f, Ano94g]. Shared [BCA+06, BME02, Bri+10, DM98, DMB16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HTO1, KB98, KPS01, LRT+07, Lu99, MBE03, MCD+08, M+02, NNP+00d, PBK00, PK96, PS00b, Ros13, SS01, STY99, ST02b, Thr99, VS00, VT97, ABCI95a, ABCI95b, ADMV05, BMG07, CBPP02, Cha96, CCM+06, CC00b, DBVF01, DS96b, DPZ97, EV01, GCN+10, GL96, GL97c, HS93, HDB+13, J+95, KJA+93, KJ+06, LKL96, MLC04, PK05, RGD+15, SHH+01, SL94b, SFL+94, SSC96, TS+99, TS00, V+03, WMR+17, WMR+19, YW95, YY95, Cha05].

Shared-Memory [DM98, HDB+12, NNP+00d, Pok96, Thr99, PS00b, ABCI95a, ABCI95b, BMG07, GL96, GL97c, KJA+93, PK05, TS00]. Sharing [Att96, CML04, CB16, DiN96, JAK+17, KK98, J+95, OT93, PRS+14]. shear [JAT97].

ShearLab [KLR16]. Shearlet [KLR16]. Shearlets [KLR16]. SHMEM [BBDH14, Hus01, LSK04, Sch96a, Sch96b, Sob01]. Short [KBM97, MH01, BMPZ94a, PARB14]. Short-Range [KBM97, MH01, BMPZ94a, PARB14]. shorter [NB96]. Showcase [USE00].

SIAM [BBG+95, DKM+92, Sin93]. Side [kLCC07]. Sided [BP+90, GFD03, GFD05, GT01, HDB+12, LRT+07, MH01, MB00, TGT+03, T+00, ZSG12, bT01a, BM00, D+16, GBH18, LSK04, MS99c, PGK+10, GBH14]. SIGCSE [ACM06a]. Signal [IEE95c]. signals [Uhl95c]. Signatures [Gro00]. significance [AMHC11]. silent [FME+12]. silicon [Ano03, Goe02]. SIMD [Bvd+94, HS95b, KDT+12, LL16, Sur95b, VSW+13]. Simple [MSF00, Mu01, SC04, ITT99, JH97, Nes10, PN01]. simulate [Heb93]. Simulated [BHM94, BHM96, FH97, RSB+95].

Simulating [DLM+17, KDL+95b, KDL+95a, NFG+10].

Simulation [CDMS15, CCB+15, DMMV97, DZDR95, GSI97, GM95, GJN97, Ham95a, JML01, KBM97, KMK16, LLRS02, MFTB95, MPD04, MAN+09, PCY14, PTK95, PZKK02, RR00, RDMB99, SS12, Str97, Ten95, UZC+12, WMC+18].
Simulation-Based [ZWJK05].

Simulations [CGS15, CNM11, DFMD94, DI02, GAP07, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG07, SM02, YPAE09, ADT14, ABG96, BHS18, BADC07, CFF19, GM18, Hin11, JMS14, LS10, LSWMV08, RMNM12, SU96, TOC18, WWFT11].

Simulator [CAM12, MRV00, UTY02, WPC07, AMV94, LS10, PWD12, WZWS08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b].

Simulators [SB95, AVA16].

Singapore [IEE96d].

Single [BM00, HF14a, HF14b, MB00, URKG12, AGIS94, KKL11].

Single-Chip [URKG12].

Single-sided [BM00].

single/multigrid [AGIS94].

singleton [TVCB18].

Sinks [JPT14].

Sites [Ano98].

Sixth [HK95, IEE96c, MMH93, SW91].

size [GKCF13].

sized [JLS14].

Sizes [DALD18, ZSaH01].

SKaMPI [KRS99, RSPM98, RH01, Reu01, RST02, Reu03].

SkelCL [SG14].

Skeleton [GB98, IH04, RJDH14].

Skeletons [Ser97].

Skjellum [Ano95c, Ano00b].

Slack [KFL05, FKLB08].

SLAE [ADRCT98, AK99].

Slave [LTR00, HP05].

SLEPC [DR18].

SLICC [KBH94A].

Slices [GSHL02].

Slim [WMC18].

Small [HLP11, TS12b, Ano94b].

small-footprint [TS12b].

Small-World [HLP11].

Smith [KDSO12, RGB18].

Smithsonian [Str94].

smoking [YSL12].

SMP [Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMDMBD107, HD02b, Hus00, HIP02, JKH08, KOI01, KKH03, KMG99, KAC02, NO02b, NO02a, ST02a, TOTH99, Tra02b, YWC11, bTe01a].

SMPCheckpoint [DCHO2].

SMP [MLAV10].

SMPSuperscalar [GCBL12].

SMT [PADS17].

SMT-based [PADS17].

snake [JPP95].

snake-in-the-box [JPP95].

Snir [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

SnuCL [Lee12].

soccer [YMYI11].

socket [LS10].

Softshell [SKK12].

Software [Ano94i, BME02, BPG94, BDG+xx, CZ95b, ESB13, FFP03, GBF95, Gre95, HPR+95, HS94, HHA95, IE99, IF99, KS15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, Si96, TDBEE11, VdS00, Wis01, Wil92, Ano97, BSC99, Boy97, Bra97, BR94, CMV+94, CPB02, DP297, Hum95, JH97, JB96, LM94, MK94, Neu94, Old02, PHA10, PK05, PGK+10, RAS16, SHHI01, Sch94, Sei99, SPH95, Str94, WGG19, ZGN94, Ano94i, KG93, Si96].

Software-Managed [LB16].

Solan [CGB10].

Solaris [Ano01a].

solidification [JLS14].

solids [Hi11].

Solution [DWL10, FBSN01, HO14, MC18, RPM+08, SEF+16, Tsu12, VRS00, DWL12, IM95, JK10, LSR95, MALM95, ON12, PRS+14, SC96a].

solutions [AGIS94, LMG17].

Solve [Hog13, Riz17, BAV08, Che99, GGC99].

Solver [Ben01, BP98, CF01, HSMW94, ID94, LZ97, SJK+17a, SJK+17b, WJB14, YKW+18, AMS94, CP15, CFF19, DM12, JR10, LM99, Lou95, OGM+16, RM99, SRK+12, SCC95, THM+94, ZZG+14].

Solvers [DFN12, DALD18, GK10, MS97, NO02b, Nak03, NHT02, NLRH07, QRM96, RS97, WR01, ABF+17, ADLL03a, ADLL03b, ADDR95, BRR99, CL93, DR18, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94c, QRG95, SSH08].

Solving [ADRCT98, BM94, BMH96, BV99, BG95,
KKM15, Röhl00, SL94a, Vet02]. Status
[Bak98, DZ98b, GL95c, BDG+93b, FHP+95, Hem96, Sun96]. stealing [TCBV10].
Steepest [Sch01]. Steering [GKP97, PK98].
Stencil [CGU12, WTHH17, KD13, TBB12]. stencil-based [TBB12]. step
[Kos95b, ZG98]. Stereo [ZBd12, Qu95].
Steering [GKP97, PK98].
Stencil [CGU12, WTHH17, KD13, TBB12]. stencil-based [TBB12].
step [Kos95b, ZG98].
Still [HCA16].

Strategies
[MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, TSZC94, VB99].
Strategy [AIM97, DI02, Hat98, VPS17, ZB94, ZSG12, DKF94b, DR95, MSL12].
}

Strayed [Rol08a]. stream
[HSW+12, UGT09]. Streamline [CGC+11].
streams [TVCB18]. StreamScan [YLZ13].
Strength [Kon00]. String
[KMM15, MM02, MM03]. striped [KDS012].

Strongly [GAP97, ZZG+14]. Structural
[PSS01]. Structure
[CBL10, LAF15, SYF96, WHDB05, EPM19, SEC15, SY95, ZAT+07].
Structured [FB96, Mar06, MRB17, NLRH07, Ran05, Bis04, CLSP07, FR95, GBR15, JAT97, Sni93b]. Structures
[GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. studies [DHP07]. Study
[AIM97, BF01, BHLs+95, DARG13, EGC02, FPY08, GL97a, HHC+18, KCR+17, LSB15, MM02, NLSV16, NA01, PK05, RRBL01, SCL01, TC94, AGR+95b, BJ13, BfDA94, BJS99, BY12, Bri00, CBM+08, DXB96, ED94, FO94, JR13, KBG16, LPD+11, LLH+14, MS96b, PSK08, PGK+10, PSHL11, RSBT95, RJC95, TP15, Wal01b, WLK+18, ZSK15]. Stuttgart [KGRD10, WPH94].
style [JPOJ12]. sub [MJG+12]. sub-communicators [MJG+12].
subcircuit [HLO+16]. subdomain
[CEG+07]. subdomains [SHHC18].
subgroup [XLW+09]. Submitting [NSS12].
Subrange [Str97]. Subroutine [Saa94].
surface [ED94]. subsystem [BMG07, MABG96].
Subsystems [STMK97]. Subtle [SAL+17].
Success [Gro01b, LF+93a]. Successes
[MS01]. Suitability [Mat01b]. suitable
[MAS06]. Suite [ACMR14, AKE00, BWV+12, MBB+12, Riz17, Ano03, BO01, MvWL+10, TG09, YSWY14, SNMP10]. Suites
[MCS00, SGJ+03]. summation
[HM05]. Sums [ST17, MYB16].
Subrange [Str97]. Subroutine [Saa94].
surface [ED94]. subsystem [BMG07, MABG96].
Subsystems [STMK97]. Subtle [SAL+17].
Success [Gro01b, LF+93a]. Successes
[MS01]. Suitability [Mat01b]. suitable
[MAS06]. Suite [ACMR14, AKE00, BWV+12, MBB+12, Riz17, Ano03, BO01, MvWL+10, TG09, YSWY14, SNMP10]. Suites
[MCS00, SGJ+03]. summation
[HM05]. Sums [ST17, MYB16].

Supercomputer
[Ano93a, CLF+99, Str94, AAC+05, BGH+05, EFR+05, GL96, GL97c, KMH+14, NSM12, Ste94, GS91b, MAB05].
Supercranes
[BP93, BDG+92c, ETB99, KN17, WT11, WT13].
Supercomputing
[ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93e, IEE94h, Lin95, Sch94, ACM94, ACM96c, Ano93g, BG91].
Supercomputer
[Ano93a, CLF+99, Str94, AAC+05, BGH+05, EFR+05, GL96, GL97c, KMH+14, NSM12, Ste94, GS91b, MAB05].
Supercomputers
[BP93, BDG+92c, ETB99, KN17, WT11, WT13].
Supercomputing
[ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93e, IEE94h, Lin95, Sch94, ACM94, ACM96c, Ano93g, BG91].
Super-Object
[YX95]. Supercomputers
suppression [WWZ+96], Surface [KS15b, PKYW95, BHW+12, DCD+14, RAGJ95, TSP95].

Survey [Sap97], Survive [ABB+10].
sustainable [CGBS+15], SVD [CMH99].

Swan [HD11], Swapping [SC04].
Sweden [Eng00, HAM95b, FF95].
Swensden [KO14, Kom15].
Switch [SCL01, TBD96].
Switched [LC93, KYL03, KYL05].
SWITCHES [DT17].

Sweden [Eng00, HAM95b, FF95].
Swendsen [KO14, Kom15].
Switch [SCL01, TBD96].
Switched [LC93, KYL03, KYL05].
SWITCHES [DT17].

Symmetric [BDV03, MDM17, YKW+18, BA08, DCH02, GG99].
Symposium [ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHH94, IEE93b, IEE94a, IEE94c, IEE95c, IEE95d, IEE95k, IEE95f, IEE96b, IEE96c, IEE96f, IEE96e, IEE97b, IEE97c, IEE05, LHMM96, LK96, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tout96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94h, Lev95, Old02].
synchronisation [SDB+16].
Synchronization [LA02, OCY+15, TGT05, BMG07, LA06, TMTP96, YLZ13].
Synchronization [VT97].
Synchronous [Ada97, BJ13, Cer99, DLRR99, HZG08].
Synergistic [UGT09].

Systems [AAB+17, Ano94b, Att96, BCGL97, BGBP01, BM02, BCG94, Bha93, CD95, CAWL17, CFF94, CWS97, CJJ95, Coo99b, EADT19, FD96, FGKT97, Fos98, Gua16, HRSA97, IEE93d, IEE94d, IEE95a, IEE95i, IEE96h, KKH03, KP96, KDL+95b, KCR+17, KS97, LY93, LW97, MWG97, MBE03, MJB15, MB+12, SM03, SGS10, SS96, TMP16, THN00, USE94, YGH+14, YH96, ZB07, dGMJ94, AGR+95b, ACMZR11, ATL+12, Ano94e, BBB+94, BA08, CFF94, CLYC16, CBPP02, Coo99a, CPR+95, DF17, DR94, DBVF01, DdLV94, FHB+13, GBR97, GCN+10, GEW98, GKK09, GKF13, Gra09, GFP12, GH+93, HAA95, IM95, JB96, JM+11, KSG13, KLB+99, KLV15, KDL+95a, KFSS94, LR06b, LH98, LCVD94b, LLH+14, MSL12, MVWL+10, Old02, OPW+12, Pan95b, Par93, PSB+19, QBI2, SSKF95, SCJH19, SPH95, SVC+11, SMi93b, SG14, SMSW06].
dIAMC11, dIAMCFN12, JW896.
Systemsoftware [Sei99]. systolic [BSC99].

T3D
[AZ95, AFST95, CCSM97, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95].
T3E [BBS99, Boo01, Che99, GRRM99, LSK94, RBB97c]. T3E-512 [RBB97c].
T3E-600 [LSK04]. T9000 [BR94].

T9000 [BR94].

Table [BJ13].
Tabu [BSH15, Cza13, CB11].
Tags [Wis97].
Tails [Kha13].

takes [GDB93].

Talbot [ACMR14, Riz17].
Tapir [SML17].

targeting [JKM17]. Task
[AHD12, AAB17, FKKC96, GDM17, GPC17, IK00, KOI01, LHCT96, Mar03, MJB15, NIO+02, NIO+03, NSZS13, NJ01, OP10, OS97, SG200, SPL+12, TBS12, TS12a, YKW+18, APBcF16, ABF+17, BGH+05, GKF13, OdSSP12, OPW+12, OPPO0, RRF96, RFR96, SKB+14, WC15].
Task-Based
[AHD12, AAB17, SPL+12, SKB+14].
Task-Overlapped
[GPC17].

Task-Parallel
[NSZS13, ABPCF16, ABF+17]. Taskers
[FLD96]. Tasking [DFA+09, KaM10, SHM+10, TCM18, TSCaM12, WC15]. Tasks
[ACD+09, DT17, DFA+09, JW96, OP98, PWPD19, RR02, RDQL12, YS+17, BS01, DDYM99, DR95, FKK+96b, FKK96a, IvdLH+00, PKE+10, PWPD19]. TAU
[MMS07, RMS+18]. taxonomy [SPH96].

TBSCM [BP98]. TC2 [Boi97].

TC2/WG2.5 [Boi97]. TCGMSG
[GB96, Mat94, Mat95]. TCP [KWP05]. TD
[And98]. Teaching
[MJK00, JY95, MK97, PKB06]. Technical
[Ano93c, Ano98, MC94, USE95, ACM06a, Sni18]. Technique
[BCD+15, HC06, HAA+11, MK17, HC08, Nesi10, RBB17, MAIVAH14]. Techniques
[CP97, GS92, Mu01, SAL+17, SPL+12, TGB90, Wis01, BPG94, Fer04, FCS+12, HKMCS94, KJN+13, KBG+09, NFG+10, PF05, SKS01, WST95]. Technologies
[Ma95]. Technology
[Ano97, Bra97, CBG+10, CSV12, Dan12, GN95, HS94, PWP+16, SBT04, TBC+02, Ano93a, Ano93c, D+05, DM12, IEE94c, NS16, ZAT+07]. Tekniska [Eng00].

Telegraphic [Es11]. TELMAT [BR94].
temperature [Hin11]. Template
[GS97, PKB06]. Templates [BN12, KH15].

Tennessee [PR94b].

Terabyte [KTJT03]. Terabytes [IEE02].

Terms [KD12]. Tessionall [SS09].

Test
[SNMP10, TG99, AAA16, CR+95, GL92].

Testbed [Mat01b, EGH99, PY95]. Testing
[CCK12, DFK94b, OS95, VSS+12, CMV+94, DFK93].

Testsuite [WCC12]. Texas
[ACM06a, IEE94b, IEE95i, IEE95g, IEE97c, Y+93].

Text
[LTR00, MM01, RLL01, RTL99].

Textbook
[Ano98]. textural [WKS96].

texture [HE15].

TFETI [SHHC18].

TH [CFDL01].

TH-MPI [CFDL01].

Thakur [Ano00a].

Their [Brui12, GOM+01, RG18, GSMK17].

theory [Sut96]. Theory
[GT10, BW12, CBH94].

Thera [CD01].

Think [HCA16].

Third
[BP94, Bos96, DSM94, GA96, IEE94g, Sai96, Was96, BDL96, Mal95, IEE97c].

Thirty [Y+93]. Thirty-seventh [Y+93].

Thousands [PZKK02].

Thread
[AECL16, BB18, ETDW12, GOM+01, GT07, Nit00, Pla02, STY99, HK09, IDS16, JKN+13, SPH96, SLN+12, YZ14].

Thread-Level
[AECL16, HK09, YZ14].

Thread-Safe [Pla02].

Thread-safety
[GT07].

Threaded
[BPG94, Bos96, DSM94, GA96, IEE94g, Sai96, Was96, BDL96, Mal95, IEE97c].

Threaded-MPI [SC+11].

Threading
[BHV12, MLGW18, SBT04, TBBG+12, KPO00, KR13, QD12, ZAT+07].

Threads
[CP98, LD01, Lee06, BS01, MVTP96, ALW+15].

Three
[Car07, GA96, Nak05b, Ram07, SAS01, GSMK17, LSSZ15, Mar05, PR94c].

Three-
Three-Dimensional
[GA96, LSSZ15, PR94c]. Three-level
[Nak05b]. Throughput
[Tsu07, ESB13, PP16]. Tightly [SS01].
Tightly-Coupled [SS01]. Tilewise
[KS15b]. Time [BCL00, FHK01, FSSD17, GSHL02, GOM+01, HO14, KFL05, MFTB95, OP98, SCL01, SS96, TSP95, UP01, YGH+14, AL96, CDMS15, DLR94, DM12, Fer04, FLB+05, FKLB08, GB94, HE13, JE95, KC94, KPL+12, LHLK10, LBB+16, LYSS+16, LM13, MMW96, NZZ94, ÖN12, OdSSP12, PTMF18, QHCC17, Ram07, SBW91, SSB+16, SK92, SRK+12, TSY99, Tho94, TVV96, TCBV10, Uhl95c, VM94, YSVM+16, YSA+17, ZW+95, SKD+04].
time-dependent
[DM12, LBB+16, LYSS+16, ÖN12, SSB+16, YSVM+16, YSA+17]. time-domain
[HE13, NZZ94, Ram07, VM94].
time-independent [CDMS15].
time-varying [Uhl95c]. times
[MLVS16, NB06, SS99]. timing [Ols95].
tips [Fer04]. TLM [SC96a]. TM
[GGCM99, GCGS98, KHS01]. TN
[DT94, BR94]. TOD [GPC+17]. TOD-Tree
[GPC+17]. today [IEE94c]. Toeplitz
[BV99, BAV08].
Tolerance
[GK97, GL04, LMRG14, LNLE00, RPM+08, TS12a, WC90, Wila93, SG05, ZHK06].
Tolerant [BBC+02, BCH+03, BHK+06, CF01, CFDL01, FD00, FBD01a, FBSD02, FD02a, FDO4, GF8+03, IEE95c, JSH+95, MSF00, BCH+08, FBD01b, FBD02b, HGI2, LM17, LS08, NCB+12, NCB+17, PKD95].
Tomographic [Pat93]. tomography
[FWS+17, RCF96]. tomorrow [IEE94c].
Tool [Ano01b, Beg93b, BFMT96b, DW02, GS+01, KAMAMA17, CSJ14, KK90, LMRG14, MMSW02, MK04, NE98, SR96, SGL+00, Trà+12b, VVB18, WL96a, AGG+95, BDP+10, Beg92, Beg93c, Beg93a, BDY99, BFMT96a, BHW+12, CPR+95, DKF94a, FSTG99, HPR+95, HD11, LCC+03, MdSAS+18, RMS+18, TSS98, WL96b, WL96b]. Tool-set [WL96a]. Toolbox
[Ano97, Bra97]. Toolkit
[Ano12, LC07, LLC13, SLS96]. Tools
[ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vos03, Wan97, AVA+16, BDG+92a, BFIM99, Fan98, GFB59, LH98, MSW+05, MHC94a, ZL96].
Tools-supported [CDD+96]. Top
[AHP01, Gal97, Hus01, Man01, PTH+01b, Ser97, BBCR99, PTH+01a, SSC96, SCL97, CCHW03]. TOP-C [CCW03]. ToPe
[JKM+17]. topologies [BCM+16, MK00].
Topology
[DK06, Hat98, HM01, Tra02a, GJMM18, HRR+11, MBBD13, SPK+12].
topology-aware [MBBD13].
Topology-Based [HM01]. TOPPER
[KKP01]. Toronto [GGK+93, Vos03].
Torus [SG15]. Townsend [DT94]. TVPM
[FS95, FS98]. Trace [Ney00, FLPG18].
trace-based [FLPG18]. Traceback
[dOSMM+16]. Tracefiles [FCP+01]. Traces
[CC17, MANR09, WM01, CDMS15, DWM12]. Tracing
[CGLD01, DP94, KG96, CG93, Mor95, SGS95]. Tracking
[GAP97, HD02b]. Trading
[BHM94, BHM96]. traffic [Zah12].
Training [CSV12]. Transactional
[BWW+12, MFG+08, SBG+12].
Transactions [BWW+12]. Transfer
[BKG02]. Transfers [THS+15].
Transform [YULMTS+17, KT10, DUBL11].
Transformation
[EP96, NSZS13, GSKM17, HZ96, TSY00]. transformations [JE95, TG94].
transformed [BY12]. Transforming
[PSK+10]. Transforms
[ACMR14, KLR16, HP11, Uhl95c, Zem94].
Transient [SIS17]. transistor [Ano03].
transistors [Ano03]. Transition [MRV00].
Transitive [CGPR98, DPR01]. Translating
[Mar09, NCB+12]. Translation
Ree96, Sin93, Ten95, ACM95b, ACM97b, Agr95a, Ano89, B+05, DKM+92, HS94, IEE94e, IEE95k, IEIE02, Ost94, SL94a, SS96, USE94, USE95, USE00]. Usage [FD02a, FCLG07, FD02b, FVLS15]. Use [FJBB+00, Gro02a, HK93, HK95, MB12, PSZE00, Shi94, AB95, GEW98]. USENIX [USE94, USE95]. User [AD98, ACDR94, BDG+91a, CHD07, CD01, CDND11, DKD05, D+91, DHHW92, DHHW93a, DLM99, DKP00, DLO03, FCLG07, GBD+94, GN95, KGRD10, KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MTWD06, NPP+00c, Nov95, Per96, RWD09, TBD12, XF95, ZWZ05, Ano95b, BBB+94, BDW97, KCP+94a, RSC+15, Reu01, Wil94, BBH...13a]. User-Level [DHHW92, DHHW93a, KCP+94b, KOW97, NPP+00c, XF95, ZWZ05, KCP+94a, BBH...13a]. Users [Ara95, CHD09]. uses [SH96]. Using [AR01, ADRCT98, AHPO1, Ano98, AP96, Ano95e, AKE00, AZG17, AB93a, BST+13, BPMN97, BG95, BS93, BKG02, BM97, Bon96, BBC+00, BBH12, CGC+11, CRE99, CMM03, CP97, CSPM+96, CC17, Che99, CCM97, CDM93, CCHW03, CRGM14, CT94a, CCBPGA15, CD98, DeP03, DARG13, DAK98, DGMJ93, EM02, EMO+93, ESM+94, EK97, FAFFD15, FD94, FTVB00, FS93, GCCM09, GCSC08, GH96, GM95, GKM97, GS96, GMPD98, GHL97, GJN97, GLS94, GLUT99, GLT00b, GLT00a, HB96b, HSMW94, HJ98, HL11, HT98, HRS97, HT01, IOK00, IHD94, IKM+01, JFGRF12, JPP95, KB98, KOI01, KKV01, KS96, KA13, LLRS02, LTR00, LRT07, LTRA02, LY93, LLY+93, LZ97, LAFA15, MK17, MTSS94, MPD04, MR12, MSCW95, MANR90, MBB+12, MSB97, NO02b, NIO+02, NIO+03, Neu94, NH95, NA01]. Using [OM96, OCY+15, OWSA95, PWP+16, PK98, PPT96c, POL99, PT01, Per99, Pet97, PBK00, PD98, PGF18, Pus95, QRMG96, QMG90, RR00, Reu93, RRBL01, RIVRG12, RLL01, RRG+99, SAS01, Sek98, SSAS12, SP99, SA93, SMI93a, SBR95, STV97, SMEOE93, Sta95b, ST17, SKH96, SCL01, SJK+17a, SJK+17b, TS12a, TSB02, TSB03, TK16, TBB12, Tha98, Tra98, Tsu07, VLO+08, WO95, Wal01a, WJ12, WLR05, Wis97, Wis01, WMC+18, WLYC12, YKW+18, ZBd12, van97, vdLJR11, AMHC11, AK99, ABF+17, AL96, ADT14, ABG+96, AB03b, AGIS94, AGG+95, BV99, BFLL99, BSC99, BG+92c, Bic95, Bis04, BCM+16, BTC+17, BCD96, BID05, BAG17, BSH15, BMG07, CG93, CBM+08, CBYG18, CdGM96, CS14, CLBS17, CT94b, CC00b, DG95, DS13, DRUC12, DSOF11, DCH02, DM12, EGDK92, FB96, FSV14, FSC+11]. using [Fin94, Fin95, FHC+95, FWS+17, GGCC99, GSKK17, GQ99, Goe02, GFB+14, GM95, GM18, GRTZ10, HB96a, HDDD90, HTJ+16, HP11, HPS+96, HPLL99, HAStP00, HLO+16, HAA+11, IJM+05, IM95, IKM+02, JL18, JF95, JHHK08, JLS+14, JYY+03, JMM+11, JPT14, JR10, JMDV+17, KFA96, KRKS11, KY10, Kat93, KJJ+16, KR09, KMK16, KME09, KMC96, KMC97, KRC17, KMD13, KPK13, LP00, LSG12, LSSZ15, LCY96, LSMW08, LCMG17, LO96, MM99, MP95, Mar06, MSMC15, MAB05, MK94, MM11, Mic93, Mic95, MRH+96, MMM13, MSML10, MS95, MM14, MC99, MvWL+10, NO02a, Nak05a, NZZ94, NB96, NAJ99, NO05, OKM12, OIH10, Ols95, Pat93, PDL14, PGdCJ+18, PN01, PKE+10, QRG95, RJ1395, RAS16, RCFS96, RBH17, RM99, RCG95, SLM14, Sm10, SLGZ99, SSGS95, SSS99, SMS00]. using [SOA11, SVC+11, SSGF00, SFLD15, SSN94, SU96, SP11, TC94, TPLY18, Tsu95, Uhl94, Uhl95b, UH96, VM94, VB99, VGS14, VM95, WO96, Wal01b, WSC+13, WCVR96, WST95, WMRR17, WRMR19, WADC99, Wor96,

WARPED [MMW96]. WARPmemory [SF095]. Washington [B+05, BS94, IEE93c, IEE94h, IEE95k, Ost94]. water [HTHD99, R+92, dAMC11, dAMC12]. Waterman [KDSO12, RGB18]. watershed [NA999]. Water [BBC+00, EMO93, ESM94, NSLV16, SMOE93, Gei94, KM10, KEGM10, Mal01, NB96, RMNM12]. Water-Particle [NSLV16]. Waveform [LSR95]. Wavelet [Uhl94, Uhl95b, Zem94, vdlJR11, Uhl95a, Uhl95c]. Way [Vog13, FGT96]. ways [CZ96]. weak [SD16]. Weather [AH01, HE02, Bjo95, KOS95a, Mal01]. web [CHKK15, AAS08, NE01, PES99, Wal01b].

Wide-area [FGG98, FGT96]. WIEN [Gao03]. Will [CB00]. William [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b]. Williamsburg [IEE92]. Win32 [MS98]. windows [QB12, RGGP+18, Ano01a, CLP99, DFD97, GGGC99, PS01a, SFG98, SSSS97, TA+01]. Windows95 [SSSS96]. Winona [Ano94h]. wireless [Bon96]. wissenschaftliche [MS04]. wissenschaftliches [Ano94c]. without [BW12, Pla02, YLZ13]. WLAN [MSOG01]. WMPI [BPS01, MS98, MSS98, MS99c, PS01a, SMS00]. WOMPAT [CM05, EV01, Vos03]. Wollongong [GN95]. Work [HRSA97, Pet00a, Pet00b, OdSSP12, TCBV10]. work-stealing [TCBV10]. Worker [EML00, YG96]. Worker-Based [YG96]. Workerproblem [FH98]. Workflow [LYZ13]. Workforce [Liv00]. workgroup [SDB16]. Working [Ano98, Boi97, MCS00, Pet01, DR94].

Workload [AGS97, DBV01]. Workloads [CC17, LWZ18, APB16, AVA16, SKB14]. WorkPlace [Ano07, Bra97]. workqueueing [VBLvdG08]. Workshop [ACM98a, Agr95a, BPG94, Bha93, BC00, Cha05, CZG98, CGKM11, CMMR12, DW94, DT94, EV01, EdS08, Fer92, FF95, F995, HK93, HK95, IEE95a, IE95f, IEE94d, IEE95b, IE96f, IF95, KG93, Kuh98, Kuh93, MdSC09, PBPT95, PBPT95, SCR92, SM90, Sch93, Vos03, Was96, AH95, BS94, Ca94, D+95, DMW96, FR95, GL95b, IE93f]. Workshops [MCDS+08]. Workstation [GHL97, HSMW94, KS96, LC97a, MFT95, Pos95, YKI96, AB95, ALR94, BLP93, BSvdG91, BRs92, BALU95, BWT96, CCG95, D95, ED94, GBF95, Heb93, JRM94].
REFERENCES

LL95, NMW93, NN95, PM95, PL96, RBS94, RCFS96, SC96a, SSN94, SL95, THM+94, Tsu95, UH96, YWO95, ZHS99, MS04].

workstation-cluster [Heb93], Workstation-Clusters [MS04].

Workstations [AR01, BL94, BL95, BM97, BDH+95, BDH+97, BMS94b, DDPR97, EK97, GS91b, HIP02, ID94, Liu95, LHZ98, MSCW95, MM01, OW95, PFG97, TQDL01, VLO+08, AL93, BJ95, BID95, Bru95, Bmpz94b, BMS94a, BMPZ94a, CCF+94, Coe94, DZ98a, DOSW96, GM94, GMU95, HK94, Hus99, KMC96, KMC97, KA95, MK94, MM03, RRG+99, SFO95, SR95, TDB00, dCH93].

World [CMMR12, CJNW95, FD00, HLP11, MC94, NSLV16, PSB+94, Wit16, dGJM94, GDB+93, JR10]. Worlds [Rab98].

wormhole [Pan95a, Pan95b, RJMC93, ZGN94].

wormhole-routed [Pan95b, RJMC93, ZGN94]. worms [Pan95a]. WoTUG [MC94]. WoTUG-17 [MC94]. WPVM [ASCS95, BPMN97].

Wrapper [AS14]. Wrapping [LRW01].

Write [BIC+10]. Write-Back [BIC+10].

Writing [FAF16, SDB94, FNSW99]. Written [KaM10]. WWW [KSJ95, KSJ96].

X [Bad16, FWS+17]. X-ray [FWS+17].

X10 [CGH+14]. X11 [GKL95]. x86 [MGL+17].

Xab [Beg92, Beg93b, Beg93c, Beg93a]. Xen [PRS16]. Xeon [DGST17, OTK15, BB18, MTK16]. XPVM [KG96]. XXI [EGH+14].

YLC [Gal97]. YMP [BL94]. Yorkshire [CJNW95].

[JCH+08, AGMJ06]. zum [Wer95]. zur [GBR97, Sei99].

References

AlQuraishi:2016:CBP

Agullo:2017:BGB

Almasi:2005:DIM

G. Almasi, C. Archer, J. G. Castaños, J. A. Gunnels,

Akzhalova:2008:WPL

Arthur:1993:CUA

Arthur:1993:PIU

Arthur:1993:PIU

Aloisio:1995:UPW

Augusto:2013:APG

Ayguade:2010:EOS

Adhianto:2000:TOA

Appiani:1995:PSI

Appiani:1995:PSM

Agosta:2015:OPP

REFERENCES

1532-0626 (print), 1532-0634 (electronic).

Aliaga:2017:CTP

Arb1enz:1996:MDS

Abrahart:1996:GIC

Alvanos:2017:PMM

Ayguade:2009:DOT

Arnold:1994:PCT

10558, Burke, VA 2209-0558, USA, 1994. ISBN 90-5199-149-5. LCCN ????

REFERENCES

REFERENCES

76

Street, Suite 300, Silver
Spring, MD 20910, USA, 1997. ISBN 0-89791-985-
8. LCCN QA76.9.A25 A265
acm.org/pubs/contents/
proceedings/commsec/266741/

[ACM99] ACM, editor. SC’99: Ore-
gon Convention Center 777
NE Martin Luther King Jr.
Boulevard, Portland, Ore-
gon, November 11–18, 1999.
ACM Press and IEEE Com-
puter Society Press, New
York, NY 10036, USA and
1109 Spring Street, Suite
300, Silver Spring, MD
20910, USA, 1999.

Workshop on Java for High-
Performance Network Com-
puting. ACM Press, New
eng/conferences/java98/
program.html. Possibly un-
published, except electroni-
cally.

Performance Networking
and Computing: Proceedings
of the 1998 ACM/IEEE
SC98 Conference: Orange
County Convention Cen-
ter, Orlando, Florida, USA,
November 7–13, 1998. ACM
Press and IEEE Computer
Society Press, New York,
NY 10036, USA and 1109
Spring Street, Suite 300,
Silver Spring, MD 20910,

www.supercomp.org/sc98/
papers/.

[ACM00] ACM, editor. SC2000:
High Performance Networking
and Computing. Dallas Conven-
tion Center, Dallas, TX, USA,
November 4–10, 2000. ACM
Press and IEEE Computer
Society Press, New York, NY
10036, USA and 1109 Spring
Street, Suite 300, Silver
Spring, MD 20910, USA,
sc2000.org/proceedings/
info/fp.pdf.

[ACM01] ACM, editor. SC2001:
High Performance Networking
and Computing. Denver,
ACM Press and IEEE Com-
puter Society Press, New
York, NY 10036, USA and
1109 Spring Street, Suite
300, Silver Spring, MD
ACM:2003:SII

ACM:2004:SHP

ACM:2006:PST

ACM:2006:PCC

ACM:2011:SSP

Antonelli:2014:ATS

Alonso:2011:NEM

Ancona:1995:PAD

Alexandrov:1998:RAP

Adamo:1997:AOO

Adamo:1998:MTO

Antonuccio-Delogu:1994:PTN

V. Antonuccio-Delogu and U. Becciani. A parallel tree N-body code for heterogeneous clusters. In Dongarra and Wasniewski [DW94],
REFERENCES

Addison:2001:EOP

Arioli:1995:PSB

Amestoy:2003:IIMa

Amestoy:2003:IIMb

Aversa:2005:HDS

Aversa:2005:PPT

Rocco Aversa, Beniamino Di Martino, Massimiliano Rak, Salvatore Venticinque, and Umberto Villano. Performance prediction through...

[ALEXANDROV:1998:CGP]

[ADT14]

[AIT2016:OES]

[AHST95]

[AYG95]

[AGH95]

REFERENCES

REFERENCES

Asai:1999:MIF

Abdelfattah:2016:KOL

Alt:1996:PIA

Amer:2018:LCM

REFERENCES

[anMey:2007:NPO] Dieter an Mey, Samuel Sarholz, and Christian Terboven. Nested paralleliza-

Al-Mouhamed:2015:EAO

Aversa:1994:PSH

Andersson:1998:PFT

Anonymous:1989:PFC

Anonymous:1992:PSE

Anonymous:1993:ATA

Anonymous:1993:ISA

REFERENCES

REFERENCES

Anonymous:1995:BRPb

Anonymous:1995:BRU

Anonymous:1995:RSS

Anonymous:1995:UPH

Anonymous. Using PVM to host CLIPS in distributed environments. In 3rd *CLIPS conference — September 1994*, Houston, TX [Ano95a], pages 203–211. ISBN ???? LCCN ????

Anonymous:1996:BRMh

Anonymous:1996:IPP

REFERENCES

Anonymous:1996:PPA

Anonymous:1996:RP

Anonymous:1997:TNR

Anonymous:1998:ANO
[Ano98] Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ???? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMa

Anonymous:1999:BRMf
Anonymous:1999:BRMb

Anonymous:2000:BRUd

Anonymous:2000:BRUe

REFERENCES

reliable distributed applications. In USENIX [USE95],
76.76 O63 U88 1995.

[ARS89]
V. Abrossimov, M. Rozier,
and M. Shapiro. Generic
virtual memory management
for operating system kernels.
Operating Systems Review,
CODEN OSRED8. ISSN
0163-5980 (print),
1943-586X (electronic).

[ART17]
Ahmed F. Al-Refaie and
Jonathan Tennyson. A par-
allel algorithm for Hamil-
tonian matrix construction
in electron-molecule colli-
sion calculations: MPI–
SCATCI. Computer Physics
Communications, 221(??):
CODEN CPHCBZ. ISSN
0010-4655 (print),
1879-2944 (electronic).
URL http://
www.sciencedirect.com/
science/article/pii/S0010465517300255.

[AS92]
Abdulmalik Salman Al-
Salman. Design and imple-
mentation of a profiler for
the parallel virtual machine
(PVM) system. M.s. the-
thesis, University of Georgia,
Directed by Steven C. Cater.

[AS14]
Omar Awile and Ivo F.
Sbalzarini. A Pthreads
wrapper for Fortran 2003.
ACM Transactions on Math-
ematical Software,
CODEN ACMSCU. ISSN
0098-3500 (print),
1557-7295 (electronic).

[ASA97]
J. L. Alonso, H. Schmidt,
and V. N. Alexandrov. Parallel
branch and bound algo-
rithms for integer and mixed

Alves:1995:WPC

Anderson:2017:BGB

Agrawal:1994:PIC

Amritkar:2012:OPF

Al-Tawil:2001:PME

REFERENCES

REFERENCES

Battre:2006:MFP

Bader:2016:EMT

Becciani:2007:FMH

Bruel:2017:ACC

Baker:1998:MNC

Blaszczyk:1995:PCE

Buyukkececi:2013:POI

Bernabeu:2008:MPA

Bedrosian:1993:MFA

Beguelin:1994:CMS

Beaumont:1995:DPG

Brunschen:2000:OCP

Bylina:2018:EEO

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BBC99] Stephen T. Barnard, Luis M. Bernardo, and Horst D. Simon. An MPI implementation of the SPAI preconditioner on the T3E.

[BCA+06] Christopher Barton, Čín Casçaval, George Almási,
REFERENCES

[BCD96]

[BCAD06]

[BCC00a]

[BCC00b]

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul Thomson, and John Wickerson. The design and implementation of a verification technique for GPU kernels. *ACM Transactions on Programming Languages and Systems*, 37(3):10:1–10:??, June 2015. CODEN ATPTSD. ISSN
REFERENCES

0164-0925 (print), 1558-4593 (electronic).

[Baker:1999:MOO]

[BCG+10]

[Bala:1997:PVQ]

[BCH+03]

[BCH+08]

[BCK+09]
Ganesh Bikshandi, Jose G. Castanos, Sreedhar B. Kodali, V. Krishna Nandivada, Igor Peshansky, Vijay A. Saraswat, Sayan-

Bruno:2000:PEH

Bolloni:2000:TIQ

Baraglia:1997:IPW

Bhattacharjee:2011:PLC

Bolis:2016:APA

REFERENCES

Baiardi:2000:AMM

Blackford:1997:PEN

Burtscber:2018:HQF

Bland:2013:SIP

Beguelin:1991:UGP

Beguelin:1991:GDT

[BDG+91b] Adam Beguelin, Jack J. Dongarra, A. Geist, Robert Manchek, and V. S. Sun-
REFERENCES

REFERENCES

[BG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, ???.

Baghsorkhi:2010:APM

Bronevetsky:2007:CFS

Baboulin:2008:SID

Briguglio:2003:PPM

Bubak:1997:RAP

Marian Bubak, J. J. Dongarra, and Jerzy Wasniewski, editors. Recent advances in parallel virtual machine and message passing interface: 4th European PVM/mpi user’s group meeting Cracow, Poland, November 3–5, 1997: proceedings, volume 1332 of Lecture Notes in Computer Science. Springer-Ver-

REFERENCES

Benkner:1995:VF

Bencheva:2001:MPI

Benedict:2018:SES

Bernaschi:1996:RHP

Baker:1998:MNP

Berthou:2001:COH

Bubak:2001:PMS

REFERENCES

REFERENCES

REFERENCES

Borger:1994:FSP

BG94c

Barbour:1995:PIG

BG95

Banikazemi:2001:MLE

BGdS09

Broquedis:2012:LEO

Bronevetsky:2009:CA

V. Blanco, L. García, J. A. González, C. Rodríguez, and G. Rodríguez. A performance model for the analysis of OpenMP programs. Par-
REFERENCES

Balasubramanian:2015:EGL

Bhanot:2005:OTL

Butler:2000:SPM

Beisel:1997:EMD

REFERENCES

[BHKR95] T. Bubeck, M. Hiller, W. Kuchlin, and W. Rosenstiel. Distributed symbolic computation with
REFERENCES

REFERENCES

Rob H. Bisseling. *Parallel scientific computation: a structured approach us-
REFERENCES

[BKO00] J. Mark Bull, Mark E. Kambites, and Jan Obdrza-

Beaugnon:2014:VV

Ballico:1994:PSP

Bendrider:1995:SME

Beazley:1997:EMP

Bubak:1999:TPR

Baraglia:1993:PWC

REFERENCES

[BRONEVETSKY:2003:AAL]

[BUBAK:1994:PDS]

[BUBAK:1994:EMD]

[BRIGHTWELL:2002:DIM]

[BUBAK:1994:FLG]

Boisvert:1997:QNS

Bonnet:1996:UPW

Booth:2001:OML

Borkowski:1999:LVC

Boszormenyi:1996:PCT

Brebbia:1993:ASE

REFERENCES

Berthou:1998:PHM

Barbosa:1999:ADM

Beletsky:1994:OPV

Baptista:2001:IOS

REFERENCES

REFERENCES

Boeres:2004:ETF

Bergstrom:2012:NDP

Briscolini:1995:PID

Brieger:2000:HOO

Brightwell:2002:RMR

Ron Brightwell, Rolf Riesen, and Keith D. Underwood. Analyzing the impact of overlap, offload, and independent progress for Message Passing Interface applications. *The International Journal of High Per-
REFERENCES

Bruning:2012:MFT

Barth:1993:CNM

Bolding:1994:PCR

Beguelin:1996:TMD

Brightwell:1996:DIM

Blikberg:2001:NPA

2C1C9%3Blinkingpublicationresults%2C1C21.

to linear cryptanalysis. In Gray and Naghdy [GN95], pages 278–279. ISBN ???? LCCN ???.

[Bai:2013:SLA]

[BSvdG91]

[Bt01a]

[BTC+17]

REFERENCES

Badia:1999:SIT

Baltas:1994:CPC

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

Blum:1996:PIP

Bureddy:2012:OGM

Bihari:2012:CIT

Blattner:2012:PSC

Bendtsen:1997:RLS

Carpen-Amarie:2017:EOC

Calmet:1994:RWC

Cabarle:2012:SNP

REFERENCES

Santiago Garcia Carbajal [Car07]

Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi, and Andrea Di Biagio [CARB10]

Mark Edward Cavender [Cav93]

REFERENCES

Chapple:1995:PUL

Cormen:1999:PBP

Ciaccio:2000:GMG

Couturier:2000:PMD

Cardoso:2010:MSO

Chen:2017:AAG

Jian Chen and Russell M. Clapp. Astro: Auto-generation of synthetic
REFERENCES

Chen:2000:MCO

Couder-Castaneda:2015:PCM

Chen:2000:MCO

Couder-Castaneda:2015:PCM

Cooperman:2003:UTC

Casas:1995:MMT

Jeremy Casas, Dan L. Clark, Ravi Konuru, Steve W. Otto, Robert M. Prouty, and Jonathan Walpole. MPVM: a migration transparent version of PVM. Computing
REFERENCES

REFERENCES

[CDD+94] J. Cownie, A. Dunlop, S. Hellberg, A. J. G. Hey, and D. Pritchard. Portable parallel programming environments—the ESPRIT PPPE project. In Dekker et al. [DSZ94], pages...
REFERENCES

[CDND11] Yiannis Cotronis, Anthony
REFERENCES

Chaussumier:1999:ACM

Coll:2003:SHB

Ceron:1998:PID

Cappello:2000:MVM

Clemencon:1995:AEP

C. Clemencon, A. Endo, J. Fritscher, A. Muller, R. Ruhl, and B. J. N. Wylie. The ‘annai’ environment for portable distributed parallel programming. In El-Rewini and Shriver [ERS95], pages
REFERENCES

REFERENCES

Clematis:1999:EPC

Cownie:1999:SID

Chaudhuri:2010:PIC

Carretero:2015:AMM

Calderon:2002:IMI

Camp:2011:SIU

Carter:2010:PLN

Cunningham:2014:RXE

Carpenter:2000:MML

Catanzaro:2011:CCE
REFERENCES

1523-2867 (print), 1558-1160 (electronic). PPoPP ’11 Conference proceedings.

Calore:2016:PPA

Chapman:2011:OPE

Chatterjee:1993:GLA

Caubet:2001:DTM

Chan:1998:PCT

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Casanova:2015:TMS

Cecilia:2012:CSC

Chen:2013:IRM

Cheng:1994:PDP

Ciancarini:1996:CLM

Charny:1996:MPV

Chapman:2002:PAD

Barbara Chapman. Par-

Chapman:2005:SMP

Chergui:1999:UPP

J. Chergui. Using PMD...
to parallel solve large-scale
Navier–Stokes equations.
performance analysis on
SGI/CRAY-T3E machine.
In Dongarra et al. [DLM99],
pages 341–348. ISBN 3-540-
66549-8 (softcover). ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

(4):401, December 2010. CODEN ???. ISSN 1895-1767. URL http:
//www.scpe.org/index.php/
scpe/article/view/663.
See [SK10].

Myeongjin Cho, Youngsun
Han, Minseong Kim, and
Seon Wook Kim. O2WebCL:
an automatic OpenCL-to-
WebCL translator for high
performance web comput-
(print), 1573-0484 (elec-

B. Chapman, O. Hernandez,
A. Patil, and A. Prabhakar. Program development environment for
OpenMP programs on cc-
NUMA architectures. Lecture Notes in Computer Science, 2179:210–??, 2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
(electronic). URL http://
link.springer-ny.com/
link/service/series/0558/
bibs/2179/21790210.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/2179/21790210.

S. M. Cho, D. W. Im, O. Y.
Jang, H. J. Song, B. D.
Paulovicks, V. Sheinin, and
H. Yeo. OpenCL and paral-
lel primitives for digital TV
applications. IBM Journal of
Research and Development,
CODEN IBMJAE. ISSN
0018-8646 (print), 2151-8556
(electronic).
Burke, VA 2209-0558, USA, 1995. ISBN 90-5199-235-1
(IOS Press), 4-274-90062-2
(Ohmsha). LCCN ????

REFERENCES

Chandra:2007:ESP

Chang:2016:APC

Chapman:1998:OHI

Chapman:2005:O

Claver:1999:PCS

Cahir:2000:PMM

discusses pvm, mpi, shmem, high-performance fortran, and posix threads.

Corbalan:2004:PMD

Carson:2003:CGU

Chapman:2012:OHW

Campanai:1994:EAS

Chou:2010:CMI

Chalkidis:2011:HPH

Georgios Chalkidis, Masao Nagasaki, and Satoru Miyano.

REFERENCES

REFERENCES

[Cores:2014:FAM]

[Cores:2016:ROM]

[CS96]

[Coole:2014:FFH]

[Chetlur:1998:ALE]

Cavenaghi:1996:UPS

Carreira:1995:DEL

Chevitarese:2012:STN

Ciegis:1997:NID

Ciegis:1999:HDA

Calotoiu:2012:PID

Cao:2011:OMM

Cui:2012:OOB

Cavender:1995:APN

Cavender:1995:SSA

Chengqing:1996:WIP

Czarnul:2002:DTI

Czarnul:2003:PT
Pawel Czarnul. Programming, tuning and automatic parallelization of irregular

[DAK98] I. Dimov, V. Alexandrov, and A. Karaivanov. Im-
Dieguez:2018:SLP

Danalis:2012:MCT

Darema:2001:SMP

Demidov:2013:PCO

deAndrade:2017:OFH

Demuynck:1997:DOD
K. Demuynck, J. Broeck-

0558/papers/1908/19080258.pdf.

Decker:1995:TDU

Dongarra:1997:BCA

Dean:1994:CPV

Dan:1999:QAM

Durand:1991:HPC

Demaine:1996:FCC

DePasquale:2003:UJU

[DeP03] C. J. DePasquale. Using the JVMPI to understand the behavior of Java classes during the development process. Cmg, 2(??):821–832, 2003. CODEN ????

Dehne:2001:CPD

REFERENCES

Dashti:2017:AMM

Duran:2009:PEO

Duran:2007:PEH

Demaine:2001:GCM

Deshpande:1994:ADN

Manish Deshpande, Jinzhao Feng, Charles L. Merkle, and Ashish Deshpande. Application of a distributed network in computational fluid dynamic simulations. The
REFERENCES

REFERENCES

[DHK97] M. Derakhshan, S. Hammarling, and A. Krommer. PINEAPL: a European project on Parallel In-
REFERENCES

Drosinos:2006:EPT

Deo:2013:PSA

DiMartino:2005:RAP

DiMartino:2007:SIS

DiMartino:2008:SSG

REFERENCES

Damodaran-Kamal:1993:NTD

Damodaran-Kamal:1994:MSR

Damodaran-Kamal:1994:TRP

Dongarra:2000:RAP

Dongarra:1992:PFS

Dongarra:2010:HPI

delaAsuncion:2011:SOL

Marc de la Asunción,

Augustin Degomme, Arnaud Legrand, George S.
REFERENCES

[Dongarra:2003:RAP]

[DLR94]

[DLR94]

Despens:1993:CCP

Davies:1995:NSP

Davies:1995:NPE

Dagum:1998:OIS

Dziubak:2012:OOI

Dathathri:2016:CAL

DiMartino:1997:IPD

0302-9743 (print), 1611-3349 (electronic).

Dongarra:1996:APC

Dinda:1996:PIA

Donev:2006:ICF

Sandes:2016:CIS

Dongarra:1995:IMS

Dongarra:1996:MPS

REFERENCES

[DPS05] Lisandro Dalcín, Rodrigo Paz, and Mario Storti.

REFERENCES

Dowaji:1995:LBS

DiMartino:1997:MDH

Davina:2018:MCP

Deuzeman:2012:LMP

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES

Hoang-Vu Dang and Bertil Schmidt. CUDA-enabled sparse matrix-vector multiplication on GPUs using

Deniz:2016:MGM

Dang:2017:ECB

Dietrich:2017:CBA

Davador:1994:PPS

Dohi:2011:GIO

REFERENCES

[Domokos:2000:PRC]

[Deshpande:1996:MIBa]

[Dekker:1994:MPP]

[Dongarra:1994:PSW]

[Diavastos:2017:SLR]

[Duval:1992:TPP]
D. Duval. Trends in parallel programming models for high performance computers. In Ferenczi [Fer92], page 33. ISBN ???? LCCN ???

[Dikken:1994:DDL]
L. Dikken, F. van der Linden, J. Vesseur, and P. Sloot. DynamicPVM: Dynamic load balancing on parallel systems. In Gentzsch and Harms [GH94], pages
REFERENCES

REFERENCES

REFERENCES

Edmonds:2019:HAS

Edjlali:1995:DPP

Elwasif:2001:AMT

Eppstein:1994:CSP

Eigenmann:2008:ONE

REFERENCES

0302-9743 (print), 1611-3349 (electronic). LCCN ???. URL http://
www.springerlink.com/
content/978-3-540-79561-2.

ElMaghraoui:2009:MIM

Eleftheriou:2005:SFF

www.research.ibm.com/
journal/rd/492/eleftheriou.pdf.

Eickermann:1999:PID

[T. Eickermann, H. Grund, and J. Henrichs. Performance issues of distributed MPI applications in a German gigabit testbed. In

Eppstein:1992:PGC

[Margaret J. Eppstein, Joseph F. Guarnaccia, David Emery Dougherty, and Robert S. Kerr. Parallel groundwater computations using PVM. In
www.research.ibm.com/
journal/rd/492/eleftheriou.pdf.

El-Ghazawi:2002:UPP

[Tarek El-Ghazawi and François Cantonnet. UPC performance and potential: a NPB experimental study. In IEEE [IEE02], page ??.
pap316.pdf.

Eickermann:1999:PID

[T. Eickermann, H. Grund, and J. Henrichs. Performance issues of distributed MPI applications in a German gigabit testbed. In
REFERENCES

REFERENCES

pages 56–68. ISBN 90-5199-163-0. LCCN ????

Eigenmann:2000:TMPa

Eigenmann:2000:TMPb

Espenica:2002:PPA

Espinosa:1998:ADP

Espinosa:2000:APA

Ewing:1993:DCW

Engquist:2000:SVG

Björn Engquist, editor. *Simulation and visualization on*

Emani:2015:CDM

Ebner:1996:TFP

Espinosa:1999:REB

Eizenberg:2017:BBL

ElZein:2012:GOC

El-Rewini:1995:PTE

El-Rewini:1996:PTN

Ewedafe:2011:PID

Ellingson:2013:SNU

Ewing:1994:DCW

Escaig:1994:PMD

Eichenberger:2012:DOT

Alexandre E. Eichenberger, Christian Terboven, Michael Wong, and Dieter an Mey. The design of OpenMP thread affinity. *Lecture
REFERENCES

Eckert:2016:HAL

Fabeiro:2016:WPP

Fabeiro:2015:AGO

Fang:1998:DDL

Niandong Fang. Distributed data library and tools for an MPI programming environment, volume 1 of Research reports in computer science. Shaker, Aachen, Germany, 1998. ISBN 3-8265-4101-
REFERENCES

4. xx + 195 pp. LCCN ????. Also published as dissertation of the University of Basel.

Freeman:1994:SMM

Fang:1995:PMS

Fang:1996:SPP

Fang:1997:MDD

Fagg:2001:FTM

Fagg:2001:HFT

REFERENCES

REFERENCES

3108. URL http://www3.interscience.wiley.com/cgi-bin/abstract?ID=10050413;

Ferrari:1998:JNPa

Fernando:2004:GGP

FerreiradaSilva:2010:PBC

Fritzson:1995:PP

Peter Fritzson and Leif Finno, editors. Parallel programming and applications: proceedings of the Workshop on Parallel Programming and Computation (ZEUS ’95) and the 4th Nordic Transputer Conference (NTUG ’95): Linköping, Sweden. IOS Press, Postal Drawer 10558, Burke, VA 2209-0558, USA, 1995. ISBN 90-5199-229-7 (IOS Press), 4-274-90056-8 (Ohmsha). LCCN ???.

Fava:1999:MPI

Frugoli:1999:DCH

REFERENCES

195

Fousek:2011:AFC

Fernandez:2003:BMN

Foster:1998:WAI

Fagg:2001:PIS

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.springer-n...pdf.

Andrew Friedley, Torsten Hoefer, Greg Bronevetsky, Andrew Lumsdaine, and Ching-Chen Ma. Ownership passing: efficient distributed memory programming on multi-core systems.
REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP ’13 Conference proceedings.

Franke:1995:AAV

Franke:1995:MIS

Franke:1994:AAV

Franke:1994:RTF

Franke:1994:MIM

Fang:1999:PMD

Zhiwu Fang, A. D. J. Haymet, Wataru Shinoda,

Fineberg:1994:IMM

Fineberg:1995:IMM

Fin:1997:CPM

Fink:2000:IMC

Fischer:2001:SAN

Fernandez:2000:UPM

Gustavo J. Fernández, Julio Jacobo-Berlles, Patricia Boren-[

sztejn, Marisa Bauzá, and Marta Mejail. Use of PVM for MAP image restoration:
REFERENCES

Forejt:2017:PPA

Feng:2014:SBS

Flower:1994:EJM

Ferenczi:1995:PAH

Fischer:2001:DNM

REFERENCES

bibs/2131/21310272.htm;

[

Florez:2005:LMM

Fagg:1996:TGR

Fagg:1998:MMH

Fachada:2017:CCF

Ferreira:2018:CMM

Feeley:1990:PVM

Furlinger:2009:CAE

[FM09] Karl Furlinger and Shirley Moore. Capturing and analyzing the execution con-
REFERENCES

[FNSW99] D. Ferenc, J. Nabrzyski, M. Stroinski, and P. Wierzejewski. Visual MPI, a knowledge-based system for writing efficient MPI ap-

[FNSW99] D. Ferenc, J. Nabrzyski, M. Stroinski, and P. Wierzejewski. Visual MPI, a knowledge-based system for writing efficient MPI ap-

Franke:1995:MPEa

Fritscher:1993:PDC

Ferrari:1995:TDC

Fischer:1997:ESP

Filgueira:2011:A

Fuerle:1998:IPC

Fumero:2017:JTG

Folino:1998:EMC

Folino:1998:PEM

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP

Fernandez:2000:DCE
Francisco Fernández, Marco Tomassini, Leonardo Vanneschi, and Laurent Bucher.

[Fuj08] Fujimoto:2008:DMV

[Fagg:2000:AAC]

M. Gonzalez, E. Ayguadé, X. Martorell, and J. Labarta. Defining and supporting pipelined executions in
Gonzalez:2000:PAM

Gao:2003:LSP

Galaktionov:1997:MST

Gates:1995:PFI

Gonzalez-Alvarez:2017:HMO

SUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

[Geist:1994:PPV]

[Golebiewski:1999:HPI]

Robert Gerstenberger, Maciej Besta, and Torsten Hoeßler. Enabling highly-scalable remote memory access programming with MPI-3 One Sided. *Scientific
Gerstenberger:2018:EHS

Gabriel:1997:EMU

Edgar Gabriel, Thomas Beisel, and Michael Resch. Erweiterung einer MPI-Umgebung zur Interoperabilität verteilter MPP-Systeme. (German) [Extension of an MPI environment for interoperability with distributed MPI systems]. Studienarbeit angewandte Informatik RUS 37, Rechenzentrum Universität Stuttgart, Stuttgart, Germany, 1997.

Garain:2015:CCF

Graham:2007:OMH

Grove:2005:CBP

REFERENCES

Garcia:2012:DLB

GarciaSalcines:1997:PRR

Garcia:1999:MMI

Garcia-Consuegra:1998:DGR

Gelado:2010:ADS

Gao:2013:GGA

Geist:1993:PTW

[GDB+93] A. Geist, J. Dongarra, A. Beguelin, B. Manchek, and Weicheng Jiang. PVM

Geist:1993:ILP

Geist:1993:PBN

Geist:1994:CCW

Geist:1996:APP

Geist:1997:ACP

Geist:1998:HNG

Geist:2000:PMW

Geist:2001:BFN

Grabowsky:1998:NMP

Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprint-Reihe des Chemnitzer SFB 393 Sonderforschungsbereich Numerische Simulation auf Massiv Parallelen Rechnern 97,08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998.

Gabriel:2003:EPM

Gabriel:2005:EDC

Gomez-Folgar:2018:MPA

Gravvanis:2012:SFD

Giovanidis:2019:IBP

Garzon:1999:PIE

Giannoutakis:2009:DIP

REFERENCES

Giannoutakis:2007:MHP

Gallud:2001:EDF

Gallud:1999:DPR

Gallud:1999:CCU

Godlevsky:1999:PSA

Geist:1996:MEM

A. Geist, W. Gropp, S. Huss-

Gawman:1993:PCT

Genaud:2008:EPC

Getov:1999:MJM

Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

Gentzsch:1994:HPC

Ghosh:2012:RAA

Grebe:1993:T

Goumopoulos:1997:PCS

Gropp:1998:MCR

Gong:2012:OCN

Garcia:2011:KRR

Goglin:2018:HTM

REFERENCES

www.sciencedirect.com/science/article/pii/S0167819118301480

Grecki:1997:MPE

Gerlach:2001:IOJ

Genaud:2009:FMP

Gillett:1997:UMC

Granat:2010:PSS

Grasso:2013:APS

REFERENCES

[102x681] 220

282, August 2013. CO-
DEN SINODQ. ISSN
0362-1340 (print), 1523-2867
(print), 1558-1160 (elec-
tronic). PPoPP ’13 Confer-
eence proceedings.

Robert Granat, Bo Kågström,
and Daniel Kressner. A
ovel parallel QR algorithm
for hybrid distributed mem-
ory HPC systems. LAPACK
Working Note 216, Depart-
ment of Computing Science
and HPC2N, Umeå Univer-
sity, S-901 Umeå, Sweden,
April 2009. URL http:]
http://www.netlib.org/lapack/
lawns/pdf/lawn216.pdf.

[102x681] 282

W. Gropp, E. Karrels, and
E. Lusk. MPE graphics-
scalable X11 graphics in
MPI. In IEEE [IEE95j],
pages 49–54. ISBN 0-8186-
6895-4. LCCN QA76.58 .S34
1994.

Huiwei Guan, Chi kwong
Li, To yat Cheung, and
Songnian Yu. Parallel de-
sign and implementation
of SOM neural computing
model in PVM environment
of a distributed system. In
IEEE [IEE97a], pages 26–
31. ISBN 0-8186-7876-3 (pa-
perback and case), 0-8186-
7878-X (microfiche). LCCN

G. A. Geist, James Kohn,
and Philip Papadopoulos.
Visualization, debugging,
and performance in PVM. Tech-
ical report, Oak
Ridge National Laboratory,
Knoxville, TN, USA, 1996.
epm.ornl.gov/~geist/CapeCod.
p.

G. A. Geist, II, James Arthur
Kohl, and Philip M. Pa-
padopoulos. CUMULVS:
Providing fault tolerance, vi-
sualization, and steering of
parallel applications. Inter-
national Journal of Super-
computer Applications and
High Performance Com-
puting, 11(3):224–235, Fall
1997. CODEN IJSCFG.
ISSN 1078-3482.
Bronis R. De Supinski, Martin Schulz, and Greg Brenelets.

Garland:2012:DUP

Gropp:1992:TIM

Gropp:1995:DPM

Gropp:1995:IMM

Gropp:1995:MMI

Gropp:1995:EIS

Gropp:1996:HPM
W. Gropp and E. Lusk. A high-performance MPI im-
REFERENCES

Gropp:2002:MG

Gropp:2004:FTM

REFERENCES

REFERENCES

Gonzalez:2001:MIM

Gropp:1999:UMP

Gropp:1999:UMA

Gropp:2000:UMA

Gropp:2000:TSU
William Gropp, Ewing (Rusty)

REFERENCES

Gong:2016:NPG

Goujon:1998:AAT

Gray:1995:PCT

Goedecker:2002:OPF

Gonzalez:2001:OET

Marc Gonzalez, Jose Oliver, Xavier Martorell, Eduard
REFERENCES

Gorzig:2001:CCP

Gorzig:2001:CCP

Guarracino:1995:PMB

Grosset:2017:TTT

Govindan:1996:OMP

Gillich:1995:FPP

REFERENCES

REFERENCES

C. Gold and T. Schneckenburger. Using the ALDY load distribution system

Geist:19xx:NBC

G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

Garg:2002:TOA

Gao:2008:GEI

REFERENCES

[Golbiewski:2001:MOS] Maciej Golbiewski and Jes-

Gropp:2007:TSM

Gennart:1996:CAG

Gidra:2015:NGC

[GTS+15] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen. Nu-

Guang:2016:NMN

Ge:1995:DHA

Guerrero:2014:PCM

[HAM95b] Seif Haridi, Khayri Ali, and Peter Magnusson, edi-

Hansen:1998:EMP
Per Brinch Hansen. An evaluation of the Message-Passing Interface. *ACM SIGPLAN Notices*, 33(3): 65–72, March 1998. CODEN SINODQ, ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). The author criticizes MPI, and remarks “MPI ... lack[s] the elegance and security that can only be checked by a parallel programming language.”.

Hardwick:1999:PVL

Hassanzadeh:1995:MMG

Hisley:2000:PPE
Hatazaki:1998:RRS

Hachler:1996:IAC

Huang:2006:ECS

Huang:2008:FPM
REFERENCES

Hamid:2010:CMB

Hunold:2016:RMB

Huang:2005:TME

Hu:2016:CLG

He:2000:PA

Ding:2002:MOP

Yun He and Chris H. Q. Ding. MPI and OpenMP paradigms on cluster of SMP architectures. In IEEE [IEE02], page ?? ISBN 0-7695-1524-X. LCCN
He:2002:MOP

Harvey:2011:STP

Hoefer:2012:LMO

Hoefer:2013:MMN

Hadjidoukas:2009:HPF

Hoefer:2015:RMA

REFERENCES

2015. CODEN ????. ISSN 2329-4949 (print), 2329-4957 (electronic).

Heikonen:2002:ILB

Hadi:2013:CFA

Havran:2015:EBT

Hebeker:1993:CPC

Herland:1998:CML

Huang:2009:EGO

REFERENCES

REFERENCES

Hong:1995:PNP
[HH95] Lin Hong and Chen Huaping. PVM and network parallel computing. *Mini-

Hanson:2014:NCM
[HH14] Richard J. Hanson and Tim Hopkins. *Numerical computing with modern For-

Hui:1995:SPS
[HHA95] Chi-Chung Hui, Mounir Hamdi, and Ishfaq Ahmad. Software platform for solv-
ing PDEs on distributed systems: Implementation issues and performance prediction. In IEEE [IEE95l], pages 383–388. CODEN PSICD2. ISBN 0-8186-7119-
X. ISSN 0730-6512. LCCN QA 76.6 C6295 1995. IEEE catalog number 95CB35838.

Huang:2018:ACO

Horiguchi:1994:ISP
[HHK94] S. Horiguchi, D. Frank Hsu, and M. Kimura, editors. *International Sym-
6 (case), 0-8186-6506-8 (microfiche). LCCN QA76.58 .I5673 1994 Bar. IEEE cata-
log number 94TH0697-3.

Hinde:2011:QMD

Huttunen:2002:MCC
[HIP02] Pentti Huttunen, Jouni Ilonen, and Jari Porras.
REFERENCES

Haimes:1998:UPM [HJ98]

Hall:2014:MMC [HJBB14]

Huang:2010:ELA [HJYC10]

Hoffmann:1993:PFE [HK93]

Henriksen:1994:PCF [HK94]

Hoffmann:1995:CAP [HK95]
Geerd-R. Hoffmann and Norbert Kreitz, editors. Coming of age: proceedings
REFERENCES

Hong:2009:AMG

Hong:2010:IGP

Hiranandani:1994:CTB

Hori:2012:EKL

Atsushi Hori, Toyohisa

???

URL http://www.acm.org/pubs/contents/proceedings/supercomputing/181181/.
REFERENCES

Hasanov:2017:HRC

Hu:2000:ONS

Haque:2017:CCL

Hung:2016:EBP

Hong:1996:RDM

REFERENCES

REFERENCES

Haynes:2014:MO

Hogg:2013:FDT

Hollingsworth:2012:SPI

Hosking:2012:CHL

Hadjidoukas:2005:OEM

Hawick:2011:HSL
Hidalgo:1999:MMP

Hadjidoukas:2002:MOI

Hariri:1995:STE

Hondroudakis:1995:PEV

Hilbrich:2012:MRE

Hilbrich:2013:MRE

REFERENCES

Programming, 21(3–4):109–121, 2013. CODEN SCIPEV. ISSN 1058-9244 (print), 1875-919X (electronic).

[Hariri:1993:MPI]

[Hoefler:2011:SPT]

[Hoyos-Rivera:1997:UPB]

[Hempel:1997:IMN]

[Hoyos-Rivera:1997:UPB]

[Hartley:1993:CPS]

[Hesham:1994:PTS]

Hertzberger:1995:HPM

Henriksen:2017:FPF

Hungenahally:1995:PIQ

Haeuser:1994:RNS

Hoefer:2012:OPC

Hormati:2012:SPS

Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and Scott Mahlke. Sponge: portable stream

[Huckle:1996:PIS] T. Huckle. PVM-implementation of sparse approximate inverse preconditioners for solving large sparse linear equations. Lecture...
REFERENCES

Houzeaux:2011:HMO

Hoekstra:1995:CPP

Hager:2011:IHP

Huang:2002:DDD

He:2009:AVS

Hwang:1997:EMC

Kai Hwang, Choming Wang, and Cho-Li Wang. Evaluat-

Huang:2013:ACM

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP

Hou:2008:BBS

Isaila:2010:SMP

Florin Isaila, Francisco Javier Garcia Blas, Jesús Carretero, Wei keng Liao, and Alok Choudhary. A scalable Message Passing Interface implementation of an ad-hoc parallel I/O system. *The International Journal of High Performance Comput-
REFERENCES

REFERENCES

IEEE:1993:PSI

IEEE:1993:PIS

IEEE:1993:PFW

IEEE:1993:WHP

IEEE:1994:FSF

IEEE, editor. Frontiers’95, the 5th Symposium on the
REFERENCES

IEEE:1994:IPN

IEEE:1994:OOE

IEEE:1994:PSI

IEEE:1994:PIF

IEEE:1994:PSP

IEEE, editor. Proceedings of the Scalable Parallel Libraries Conference, October 6–8, 1993, Mississippi State, Mississippi. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
REFERENCES

IEEE:1994:PTI

IEEE:1994:PSW

IEEE:1995:IIC

IEEE:1995:ISE

REFERENCES

[IEE96c] IEEE, editor. Frontiers’96, the Sixth Symposium on the Frontiers of Massively Parallel Computation: October 27–31, 1996, Annapolis, Maryland: proceedings. IEEE Computer So-

IEEE:1996:PIS

IEEE:1996:PII

IEEE:1996:PFE

IEEE:1996:PSI

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1997:PIP

IEEE:1997:TIS

IEEE:2002:STI

IEEE:2005:IPD

Iida:2016:GET

IFIP:1995:KWC

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Iskra:2000:PMD

Ierotheou:2005:GOC

[IROU01] Jonathan Ilroy, Cyrille Randriamaro, and Gil Utard. Improving MPI-I/O performance on PVFS. *Lecture Notes in Computer Sci-
REFERENCES

Ilie:2016:AEC

Satak:2012:OGA

Imamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IAC

REFERENCES

Iskra:2000:IDE

Jatala:2017:SSG

Jabbarzadeh:1997:PSS

Jacoby:1996:ADA

Juhasz:1996:PIP

Jarzabek:2017:PEU

REFERENCES

Jin:2008:PEM

Jaeger:2015:FGD

Jenkins:2014:PMD

Jeremiassen:1995:RFS

Jesshope:1993:LRV

Jesshope:1993:MCA

Jann:1995:AMP

Joefon Jann and Hubertus Franke. Analysis of an MPI program using UTE on the IBM SP2. Research report RC 20085 (88832), IBM T. J. Watson Research Cen-
REFERENCES

Johnson:2012:FOL

Jin:2011:HPC

Jo:2017:PMA

Jin:2003:AMP

Januszewski:2010:ANS

Jeun:2008:OPB

Jan:2017:ITF

Jog:2013:OCT

Jambunathan:2018:COB

Jones:1996:LLM

[Jon96] Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:PAL

Jiang:2012:OSP

Juric:1995:UPV

Joldes:2014:SSH

Joubert:1994:PCT

Jost:2010:EUH

REFERENCES

Jimenez:2013:BCA

Judd:1994:PIV

Jin:2013:PCU

Jung:2005:DIM
Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuik Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M^3). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jaaaskelainen:2015:PPP

Ju:1996:SPT

Jain:1996:IOP
Ravi Jain, John Werth, and James C. Browne, edi-

Jin:1995:LTP

Kumar:1995:MWD

Kepner:2004:M

Krawezik:2002:SOV

Krone:1996:ICF

O. Krone, M. Aguilar, B. Hirsbrunner, and V. Sunderam. Integrating coordination features in PVM. In Ciancarini and Hankin [CH96], pages 432–435. ISBN 3-540-61052-9. ISSN 0302-9743 (print), 1611-
Kapinos:2010:PPP

Khan:2017:RCS

Kanal:2012:PAI

Kamatneni:1993:PPE

Karlsson:1998:CCC

Kaiser:2001:OCC

Kabir:2002:DIS

Klemm:2009:RTM

Kulkarni:2016:HAP

Knies:1994:SLL

Kitowski:1997:CPM

J. Kitowski, K. Boryczko, and J. Moscinski. Compari-
REFERENCES

Kannan:2016:HPP

Ke:2004:RCM

Klemm:2007:JIO

Karamchetei:1994:SOM

Krawezik:2006:PCM

Kacsuk:1997:GDD

REFERENCES

REFERENCES

save energy in MPI programs. In ACM [ACM05], page 33. ISBN 1-59593-061-2. LCCN ?????

1993.

REFERENCES

Kafura:1996:CCC

Kwon:2010:SPC

Karrenberg:2012:IPO

Kramer:2015:SET

Khanna:2013:HPN

Kielmann:1999:MMC

[HKB+99] Thilo Kielmann, Rutger F. H. Hofman, Henri E.

Kallenborn:2019:MPC

Kucukboyaci:2001:PPT

Kojima:2017:HLG

Kikuchi:1993:PAS

REFERENCES

Kranzlmuller:2004:RAP

Kranzlmuller:2003:RAP

Kee:2003:POP

REFERENCES

[KL94] E. Karrels and E. Lusk. Performance analysis of MPI programs. In Dongarra and
REFERENCES

Kofakis:1995:DPI

Liao:2011:DEM

Liao:2006:SDI

Liao:2007:CCS

Klawonn:2015:HMO

Kutyniok:2016:SFD

REFERENCES

Kim:2015:OBU

Khanna:2010:NMG

Kombatitsch:2009:PHO

Koholk:1999:MPR

R. Koholka, H. Mayer, and A. Goller. MPI-parallelized radiance on SGI CoW and...

[KN17] Michio Katouda and Takahito Nakajima. MPI/OpenMP hybrid parallel algorithm for resolution of identity second-order Möller–Plesset perturbation calculation of analytical energy gradient for massively parallel multicore supercomputers. Journal of Computational Chem-
Kasprzyk:2002:APV

Komura:2014:CPG

Kambites:2001:OLI

Kasahara:2001:ACG

Komura:2015:OPS

Yukihiro Komura. OpenACC programs of the Swendsen–Wang multi-cluster

REFERENCES

Klockner:2012:PPS

Kolesnichenko:2016:CBG

Kamal:2005:SVT

Klimach:2009:PCH

Kranzlmuller:2002:RAP

Kra02

REFERENCES

Kouetcha:2017:USP

Kunaseth:2013:ASD

Kalentev:2011:CCL

Kranzlmueller:1999:MOM

Kotsis:1996:EEP

Krantz:1997:CSC

Krawczyk:2001:PIM

Henryk Krawczyk and Jamil Saif. Parallel image match-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Krantz:1996:RFP

Lopez:2002:ESM

Lopez:2006:ESM

Ladd:2004:GPP

Kamal:2010:EIN

Karwande:2003:CMC

Karwande:2005:MPC

Kranetz:1996:RFP

KZCS96

KZCS96

Lopex:2002:ESM

LA02

LA06

LA06

LA06

LA06

LA06

LA06

LA06

LA06
Loberas:2016:DEI

Laguna:2015:DPF

Laforenza:2001:PHP

Lorentz:2015:AMS

Langdon:2009:FHQ

REFERENCES

Loos:1996:MPS

Lavi:1998:IPD

Lashgar:2016:ESM

Loncar:2016:CPS

Losada:2019:LRR

Lawton:1996:BHP

Ling:2012:HPP

Lewis:1993:PCP

Lauria:1997:MFH

Luecke:1997:HPF

Li:2007:DIV

Luecke:2003:MCT

Glenn Luecke, Hua Chen, James Coyle, Jim Hoekstra, Marina Kraeva, and Yan Zou. MPI-CHECK: a tool for checking Fortran

Liddell:1996:HPC

Lathrop:2011:SPI

Lashuk:2012:MPA

Losada:2017:RMA

Lonsdale:1994:CRP

REFERENCES

Lonsdale:1994:CMH

Liu:2003:PCM

Lee:2001:APT

Lu:1997:QPD

Liu:1996:BMP

Liu:2013:DLO

Lee:2006:PT

Lee:2012:SMO

Levesque:1993:SAA

Lim:2011:ATC

REFERENCES

[Leon:1992:FP]

[Leon:1993:FPA]

[Leon:1993:FPP]

[LFS92]
Leon:1993:VVM

[LG93]

[LGCH99]

[Liu:2016:MBM]

[LGKQ10]
Guodong Li, Ganesh Gopalakrishnan, Robert M. Kirby, and Dan Quinlan. A symbolic verifier for CUDA programs. ACM SIGPLAN Notices, 45(5):357–358, May 2010. CODEN SINODQ. ISSN 0362-1340 (print),
REFERENCES

1523-2867 (print), 1558-1160 (electronic).

Lassous:2000:HGA

Leung:1995:EPE

Leung:1998:PAN

Liao:2007:OOP

Lee:1996:TSF

Lin:1995:DNC

Lin:1994:DNC

Mengjou Lin, J. Hsieh, D. H. C. Du, J. P. Thomas,

Li:1996:PSI

Li:1996:SIS

Li:1997:PIO

Li:1998:RTC

Li:1995:WCD

Li:1996:PSI

Xiaomao Liu. Workstations cluster for distributed supercomputing. *Mini-Micro Sys-
Livny:2000:MYW

Lastovetsky:2010:RAP

Luecke:2003:CPM
REFERENCES

ISSN 1532-0626 (print), 1532-0634 (electronic).

Liang:1996:AEO

Li:2003:PNH

Luecke:2001:SPO

Luecke:2004:PSM

Q. Li, J.-C. Liu, and T. G. Yip. Solving large linear equations using PVM sys-

N. Losada, M. J. Martín, G. Rodríguez, and P. González. Extending an application-level checkpointing tool to provide fault tolerance sup-

REFERENCES

Lou:1995:PIN

Landman:2000:PLR

Li:2011:FSM

Li:2001:PCS

Lastovetsky:2006:HTM

Le:2006:DMC

Lotfi:2015:AAC

Lee:2014:BCA

Changmin Lee, Won Woo Ro, and Jean-Luc Gaudiot. Boosting CUDA ap-

Luo:2001:PDE

Latham:2007:IMI

Li:2001:WMB

Luckow:2008:MFT

Lin:2010:TLS

REFERENCES

[LTRA02] Nung Kion Lee, David Taniar, J. Wenny Rahayu, and Mafruz Zaman Ashrafi.

Li:1995:CPP

Ludwig:1997:OUI

Liu:2004:HPR

Liang:2018:FMP

Liu:1993:MSU

Loncar:2016:OOM

Lu:2013:WGA

Lu, Jiabin Yuan, and Weiwei Zhang. Workflow of the Grover algorithm simulation incorporating CUDA and GPGPU.
REFERENCES

Li:1997:EHC

Li:2017:PCO

Li:2018:COM

Lu:2019:PMM

Ma:2009:CRS

Mavriplis:2005:HRAa

Miguel:1996:APN

Maffei:1994:SSD

Moreno:2001:AEP

Mainland:2012:EHM

Molero-Armenta:2014:OOI

[MAIVA14] M. Molero-Armenta, Ursula Iturrarán-Viveros, S. Aparicio, and M. G. Hernández. Optimized OpenCL implementation of the Elastodynamic Finite Integration

G. Manis. Persistent and non-persistent data objects...

Miguel-Alonso:2009:INS

Marowka:2002:ISI

Marowka:2003:EOT

Marowka:2005:EMT

Marowka:2006:BRP

Marowka:2007:PCD

Marowka:2009:BCT

Ami Marowka. BSP2OMP: a compiler for translating BSP

Meheta:2006:MSG

Mattson:2000:BOF

Mattson:2000:IO

Mattson:2001:EO

Matuszek:2001:APS

Mattson:2003:HGO

Mourao:2000:SSC

Marongiu:2012:OCE

Muller:2012:SOA

Ma:2013:KAT

Teng Ma, George Bosilca, Aurelien Bouteller, and Jack J. Dongarra. Kernel-assisted and topology-aware MPI collective communications on multicore/many-core platforms. *Journal of Parallel and Distributed Computing*, 73(7):
Min:2003:OOP

McKenzie:1994:CIM

Malits:2012:ELG

Mehl:2015:RTC

Miles:1994:PTO

Roger Miles and Alan Chalmers, editors. *Progress in Transputer and occam Research, WoTUG-17 Proceedings of the 17th World occam and Transputer User Group*
REFERENCES

Medeiros:1998:IPM

Morrison:1999:FPP

Maier:2017:OLD

Malinowski:2018:SIP

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

Matthias S. Mueller, Barbara M. Chapman, Bronis R. de Supinski, Allen D. Mal-
REFERENCES

Moore:2001:RPA

Moreira:2017:FCR

Moore:2001:RPA

Mierendorff:2000:WMB

Marin:2017:ERF

Monteiro:2018:EGC

Muller:2009:EOA

Matheou:2017:DDC

Megson:1998:CRH

Milovanovic:2008:NEE

Milos Milovanović, Roger Ferrer, Vladmir Gajinov,

Meh:2012:SPE

Muralidharan:2015:COP

Medvedev:2005:OMA

Montella:2017:VCB

Mazzariol:1997:PCS

Markidis:2015:OAN

[MGGS15] Stefano Markidis, Jing Gong, Michael Schliephake, Erwin Laure, Alistair Hart, David Henty, Katherine Heisey, and Paul Fischer. OpenACC acceleration of the Nek5000 spectral element code. *The Interna-
REFERENCES

 [Matthey:2001:EMO]

 [MH01]
 [MHSK16]

 [Hwu:2012:GCG]
 [Mic93]

 [MHC94a]
 [MHC94b]

 [Munshi:2016:OCS]

 [Mic95]

 [Micihelse:1993:PMU]

 [Micihelse:1995:PMU]

REFERENCES

Muddukrishna:2015:LAT

Mittal:2012:CAS

Muddukrishna:2016:GGO

Matyska:1994:DCS

McDonald:1997:IPT

McDonald:2000:TPA

Mohror:2004:PTS

REFERENCES

Manwade:2017:DFA

Maheo:2012:AOL

Markus:1996:PEM

Min:2001:PCO

Mokbel:2011:ASR

Mitra:2014:AAP

Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin Schulz, and

Marjanovic:2010:ECC

Marowka:2004:OOA

Malakhov:2018:CMT

Marendic:2016:NMR

Majumdar:1992:PPC

Mantovani:1995:HPS

REFERENCES

Morishima:2014:PEG

Malony:1994:PAP

Mudge:1993:PTS

Morimoto:1998:IMM

Morimoto:1999:PEM

Mohamed:2013:MMM
Manca:2016:CQI

MacFarlane:1999:PPI

Morris:2007:SNO

Mohr:2002:DPP

Matuszek:1999:BPG

Martin:1996:WTW

REFERENCES

REFERENCES

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

Mierendorff:1999:PMB

Migliardi:1999:PEH

Mourao:1999:IMO

Macias:2002:SEA

Mahinthakumar:2002:HMO

Mertens:2004:CCP

Mysliwiec:1997:IPS

Migliardi:2000:SFT

McCandless:1996:OOM

B. C. McCandless, J. M. Squyres, and A. Lumsdaine. Object oriented MPI (OOMPI): a class library

Massetto:2012:NSB

Massetto:2012:NSB

Massetto:2012:NSB

Martin:2015:EPM

Molnar:2010:APM

Macias:2001:PP

Matrone:1993:LPC

REFERENCES

Mysliwiec:1997:CAM

Martins:1998:JIW

Martorell:2005:BGP

Mossaiby:2017:OIH

Miei:1996:IER

Mallon:2016:MUB

Marin:1994:GAL

F. J. Marin, O. Trelles-Salazar, and F. Sandoval. Genetic algorithms on LAN-Memory passing architectures using PVM: Applica-

REFERENCES

link/service/series/0558/1
bibs/2327/23270380.htm; [MvWL+10]
http://link.springer-
ny.com/link/service/series/0558/papers/2327/23270380.pdf.

Muller:2003:OCB
Matthias S. Müller. An
OpenMP compiler bench-
mark. *Scientific Program-
CODEN SCIPEV. ISSN
1058-9244 (print), 1875-
919X (electronic).

Malakar:2017:DMO
Preeti Malakar and Venka-
tram Vishwanath. Data
movement optimizations for
independent MPI I/O on
the Blue Gene/Q. *Parallel
Computing*, 61(??):35–51,
January 2017. CODEN
PACOAJ. ISSN 0167-8191 (print), 1872-7336
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S016781911630062X.

Manis:1996:EPT
G. Manis, C. Voliotis,
P. Tsanakas, and G. Pa-
pakonstantinou. Enhancing
PVM with threads in dis-
tributed programming. In
Liddell et al. [LCHS96],
pages 1013–?? ISBN 3-540-
61142-8 (paperback). LCCN
QA76.88 .H52 1996.

Muller:2010:SMA
Matthias S. Müller, Matthijs
van Waveren, Ron Lieber-
man, Brian Whitney, Hideki
Saito, Kalyan Kumaran,
John Baron, William C.
Brantley, Chris Parrott,
Tom Elken, Huiyu Feng,
and Carl Ponder. SPEC
MPI2007 — an application
benchmark suite for paral-
lel systems using MPI. *Con-
currency and Computation:
Practice and Experience*, 22
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).

Mehra:1995:AIM
P. Mehra, B. Van Voorst,
and J. Yan. Automated
instrumentation, monitoring
and visualization of PVM
programs. In Bailey et al.
[BBG+95], pages 832–837.

McKinney:1993:MMI
G. W. McKinney and J. T.
West. Multiprocessing
MCNP on an IBM RS/ 6000
cluster. *Transactions of the
American Nuclear Society*,
CODEN TANSAO. ISSN 0003-
018X.

Mamontov:1998:AES
Y. V. Mamontov and
M. Willander. An algo-
rithm to evaluate spectral

Manegold:1997:QBM

Morton:1995:LLP

Maleki:2016:HOT

Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

Nagel:1996:VV

NicCanna:1996:LGS

[NB96] C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ?? LCCN ???

Nickolls:2008:SPP

Neyman:1999:ERP

Nguyen:2012:BTM

Nguyen:2017:ATM

Nobari:2012:SPM

[NCKB12] Sadegh Nobari, Thanh-Tung

Neophytou:2001:NDW

Nesterov:2010:SPT

Neun:1994:UPB

Nelson:1993:PPP

Neyman:2000:CDA

Nordling:1994:SOD

Nunez:2010:NTS

Nguyen:2008:GG

Nguyen:1995:SPI

Norden:2002:OVM
Norden:2006:OVM

Nakano:2002:SCG

Nitsche:2000:TCM

Nicolescu:2001:DTP

Cristina Nicolescu and Pieter Jonker. A data and task parallel image processing environment. *Lec-
Norden:2007:DDM

Nadeau:1995:SVR

Nomura:2014:PAM

Nanayakkara:1993:PIR

Nupairoj:1995:PES

Nishitani:2000:IEO

[NNON00] Yasumori Nishitani, Kiyoshi Negishi, Hiroshi Ohta, and Eiji Nunohiro. Implementation and evaluation of OpenMP for Hitachi

[Nakajima:2002:PISb]

[Nakajima:2002:PISa]

REFERENCES

Notz:2012:GBS

Nagara:j:1991:MHL

Naumenko:2016:ACT

Nukada:2012:SMG

Nascimento:2007:DDS

Nadal-Serrano:2016:PSC

[NSBR07]

[NSLV16]

[NS16]

[NSM12]
REFERENCES

http://conferences.computer.org/sc/2012/papers/1000a044.pdf.

Nguyen:1994:DCE

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

[Orr S. Orr, Shuai Che, Ayse Yilmazer, Bradford M. Beckmann, Mark D. Hill, and David A. Wood. Synchronization using remote-scope promotion. ACM

Oed:1993:CRM

[Wilfried Oed. The Cray Research massively parallel processor system CRAY

Oekliska-Dluzewska:2001:PFE

Olivier:2012:CMW

REFERENCES

Ong:2000:PCL

Owaida:2015:EDS

Otten:2016:MOI

Okitsu:2010:HPC

Ohara:2006:MMP

Oh:2012:MOO

Kwang Jin Oh, Ji Hoon Kang, and Hun Joo Myung. mm_par2.0: An object-oriented molecular dynam-

Oakley:1995:ADR

Orlando:2005:PSP

Oldehoeft:2002:SIS

Ong:2001:SUC

Oger:2016:DMM

G. Oger, D. Le Touzé, D. Guibert, M. de Lefèvre, J. Biddiscombe, J. Soumagne, and J.-G. Picci-

References

kevin_obiern:2008:soc

orlando:1998:mbt

olivier:2010:coo

odowd:2006:wgm

orlando:2000:mdt

olivier:2012:ots

Stephen L. Olivier, Allan K. Porterfield, Kyle B. Wheeler, Michael Spiegel,

Oliveira:2012:CCO

Ovareinder:1997:BCD

Otto:1993:PAC

Otto:1994:PVM

S. W. Otto. Processor virtualization and migration for
REFERENCES

Otto:1992:MAP

Ouenes:1995:PRA

Pacheco:1997:PPM

Pereira:2017:SBC

Panda:1995:GRW

Panda:1995:IDE

Panda:2014:GAM

Plazek:1999:IIC

Plazek:2000:SCC

Puthukattukaran:1994:DIP

Peng:2014:IDI

Poggi:1998:UPD

REFERENCES

SODM. ISSN 0164-1212 (print), 1873-1228 (electronic).

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD
REFERENCES

Petcu:1997:ISM

Petcu:2000:PDAa

Petcu:2000:PDAb

Petcu:2001:WMM

Pharr:2005:GGP

Piernas:1997:APM

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Papadopoulos:1998:DVS

Park:2005:SOA

Papadopoulos:2001:NRC

Paul:2006:TLF

Prabhakar:2016:GCH

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

Pruyne:1996:ICP

Plachetka:2002:QTS

Park:2004:DID

Piriyakumar:2002:EFI

Pfenning:1995:OCP

Piscaglia:1995:DOC

Poulson:2013:ENF

Pirk:2016:VVA

Plagianakos:2001:LCP

Pokorny:1996:CMP

Parrilia:1999:UPD

[L. Parrilla, J. Ortega, and A. Lloris. Using PVM for

Pai:2016:CTO

Ppoplawski:1989:MPP

Park:2001:CSL

Pagourtzis:2001:PCT

Ppapakostas:1996:PSP

Ppapakostas:1996:PPP

Papakostas:1996:UPI

Pedicini:2007:PPE

Pierce:1994:PIN

Pierce:1994:PSH

Pozo:1994:FTE

Priimak:2014:FDN

REFERENCES

REFERENCES

REFERENCES

Pears:2001:DLB

Pai:2013:IGC

Prost:2001:MIG

Prost:2001:THP

Peraza:2016:PGQ

Joshua Peraza, Ananta Tiwari, Michael Laurenzano, Laura Carrington, and Allan Snavely. PMaC’s green queue: a framework for selecting energy optimal DVFS configurations in large scale MPI applications. Concurrency and Computation:

REFERENCES

Pierro:2018:SFP

Phan-Thien:1994:CDL

Prylli:1999:DHP

Puskas:1995:LBW

Peinado:1997:HPC

Park:2001:PPE

Pahl:1995:CCB

Peter Jan Pahl and Heinrich Werner, editors. *Computing in civil and building engineering: 6th International

Preissl:2012:CSS

Pang:2016:MKR

Pirkelbauer:2019:BTF

Perla:2012:PAH

Phillips:2002:NBS

James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé. NAMD:
Biomolecular simulation on thousands of processors.
In IEEE [IEE02], page ??
ISBN 0-7695-1524-X. LCCN ???

Qiu:2012:PWM

Qawasmeh:2017:PPR

Quoy:2000:PNN

Qaddouri:1995:MFS

Qaddouri:1996:CPC

Qu:1995:FAS

REFERENCES

REFERENCES

CODEN PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

Rejitha:2017:EPC

Resch:1997:CM

Resch:1997:PM

Resch:1997:PMC

Rodriguez:2015:OPI

Russo:2017:MPG

Reale:1994:PCU

[RBS94] F. Reale, F. Bocchino, and S. Sciortino. Parallel computing on Unix workstation

Reinhard:1997:MHP

Reimann:1996:CBT

Ross:1995:DCM

Royuela:2012:ASO

Radhakrishna:1999:MBP

Reeves:1996:PIC

Reinefeld:2001:CDI

REFERENCES

Reussner:2001:SSK

Reussner:2003:USD

Roy:2000:MGQ

Reynders:1995:OOO

Rooy:2000:MGQ

RascH:2018:MDH

Rucci:2018:OOS

Rough:1997:PRD

Rodrigues:2013:MAA

Rico-Gallego:2015:ILM

Rico-Gallego:2016:EIL

Rivas-Gomez:2018:MWS

REFERENCES

Rabenseifner:2001:ECF

Ragan-Kelley:2013:HLC

Reyes:2013:PEO

Rungsawang:2001:LCP

Rubio-Largo:2012:UMO

Roe:1999:PMI

[RM99] Kevin Roe and Piyush
REFERENCES

Rietmann:2012:FAS

Ramesh:2018:MPE

Rodrigues:2013:POM

Rohrl:2000:PPS

Rolfe:1994:PAP

Rolfe:2008:PF0
Timothy J. Rolfe. Perverse and foolish oft I strayed. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education), 40(2):52–55, June 2008. CO-

Khaled Rageb and Wolfgang Rehm. CHEMPI: efficient MPI for VIA/SCI. Preprint-Reihe des Chemnitzer SFB 393, Technische Universität.
REFERENCES

Rauber:2002:LSH

Roda:1997:PPI

Roig:2001:EMM

Robinson:1996:TMI

Russ:1999:UHR

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

Roy:1997:PNT

Rambu:1995:DSS

Reano:2015:IUE

Reussner:1998:SDA

Reussner:2002:SCB

Rozman:2006:CPL

Igor Rozman, Marjan šterk, and Roman Trobec. Communication performance of

Roberti:2005:PIL

Reussner:2000:BMD

Rungsawang:1999:PDT

Ropo:2009:RAP

REFERENCES

Simonsen:1993:DMD

Saarinen:1994:EES

Sainio:2010:CGA

Sato:2017:NIT

Saphir:1997:SMI

Soldado:2016:ECM

Sahimi:2001:AAS

Mohd Salleh Sahimi, Norma Alias, and Elankovan Sun-

Schuster:1995:CSM

Smith:2001:DMM

Seyfarth:1994:GEE

Schulz:2004:IES

Selikhov:2002:MCC

REFERENCES

REFERENCES

diction of PVM programs.

Siev:2004:SMP

Saillard:2014:PCS

Saillard:2015:SDV

Stagg:1995:IPN

Shyu:1996:ILQ

Schill:1993:DOD

Alexander Schill, editor. DCE — the OSI distributed computing environment: client/server model and beyond: International DCE Workshop, Karlsruhe, Germany, October 7–8, 1993: proceedings, number 731 in Lecture Notes in
Schneenman:1994:DSS

Schuele:1996:PLA

Schuele:1996:PLA

Schevtschenko:2001:PAS

Searles:2019:MO

Song:1997:ALL

Suppi:2000:IOP

Suppi:2001:PCS

Santos:1997:ECP

SCRI:1992:PWC

Shi:2012:VGA

REFERENCES

ISSN 0018-9340 (print), 1557-9956 (electronic).

SM-D:2013:BRC

Sorensen:2016:PIW

Schmitt:2017:SCP

Sandes:2010:CUG

Sistare:1999:MSP

[SDN99] Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??

Sampaio:2013:DA

Skjellum:1995:EMP

Sack:2002:FMB

Spencer:2015:DLN

Schenck:2016:EPM

Segovia:2010:PPN

Seifert:1999:ESI

Sept:1993:DIP

Serot:1997:EPF

Sevenich:1998:PPU

Scott:1998:PWN

Schoinas:1994:FGA

Steuwer:2015:GPP

Michel Steuwer, Christian Fensch, Sam Lindley, and

REFERENCES

Francesc Solsona, Francesc Giné, Josep Lérida, Por-

Sekharan:1995:LBM

Scherer:2000:APO

Schmidt:1994:IAP

Sitsky:1996:ML

Stone:2010:OPP

References

Song:2014:DAT

Shen:1995:PSM

Sloot:1994:CIO

Sloot:1994:CIP

Sojka:2018:IEM

Sato:2001:CEO

REFERENCES

Sato:2001:OGR

Siegel:1992:FFS

Siegel:1992:FSF

Siegel:1994:PEI

Silvester:1996:SEE

Sincovec:1993:SCP

REFERENCES

50, March 2014. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Krishnan R. Subramaniam, Suraj C. Kothari, and Don Heller. A communication library using active messages to improve performance of PVM. *Journal of Parallel and Dis-
REFERENCES

Skjellum:1993:SLH

Steinberger:2012:SDS

Spiechowicz:2015:GAM
J. Spiechowicz, M. Kostur, and L. Machura. GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA.

Satoh:2001:COT

Sall:1994:CIS
REFERENCES

[Su:2012:CPB] ChunYi Su, Dong Li, Dimitrios S. Nikolopoulos, Matthew Grove, Kirk Cameron, and Bronis R.

Sloan:2005:HPL

Squyres:1996:CBP

Shires:2002:EHM

Shires:2003:OPF

Simos:2007:CMS

REFERENCES

Edans F. De O. Sandes, Guillermo Miranda, Xavier Martorell, Eduard Ayguade, George Teodoro, and Alba...

Sochacki:1993:DCW

Silva:2000:HPC

Su:2006:APP

Sitsky:1996:IMU

Sunderam:2001:CAP

Snir:2018:FMT

Suciu:2010:PIN

Shekofteh:2019:MSG

Sintorn:2011:EAF

Snir:1996:MCR

Snir:1998:MCR

REFERENCES

REFERENCES

Silva:1999:IME

Shan:2001:CMS

Schwarz:2009:GFG

Shan:2012:OAA

Sankaran:2005:LMC

Satarić:2016:HOM

Bogdan Satarić, Vladimir

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.springer.com/chapter/10.1007/978-3-642-30961-8_13.[SSK95]

Stellner:1995:CMP

[SSGF00]

Sosa:2000:IQC

Squyres:1997:DEM

[SST94]

Stone:1994:PSO

[SSTP+94]

Shelton:1994:FPS

W. A. Shelton, G. M. Stocks, F. J. Pinski, R. G. Jor-

Sen:1999:PBD

[SSS99]

Santana:1996:PVM

[SSSS96]

Souza:1997:EPH

[ST02a]

Smyk:2002:AMM

[ST02b]

REFERENCES

message-passing standard.

Schmitz:2008:IIG

Sunderam:1997:TAS

Stockinger:1998:VPC

Stpiczynski:2002:PPO

Strietzel:1996:PTS

[Str96] M. Strietzel. Parallel turbulence simulation based on...

REFERENCES

Sunderam:1990:PFPa

[Sun90a]
V. S. Sunderam. PVM: a framework for parallel distributed computing. Technical Report ORNL/TM-11375, Dept. of Math and Computer Science, Emory University, Atlanta, GA, USA, February 1990. See also [Sun90b].

Sunderam:1990:PFPb

[Sun90b]

Sunderam:1992:CCP

[Sun92]

Sunderam:1993:PCC

[Sun93]
V. Sunderam. The PVM concurrent computing system. In Anonymous [Ano93h], pages 20–84. ISBN ???. LCCN ???.

Sunderam:1994:GPP

[Sun94a]
V. Sunderam. General purpose parallel computing with PVM. In Anonymous [Ano94f], pages 185–198. ISBN ???. LCCN ???.

Sunderam:1994:MSH

[Sun94b]

Sunderam:1995:RIH

[Sun95]
V. S. Sunderam. Recent initiatives in heterogeneous parallel computing. In Gray and Naghy [GN95], pages 1–16. ISBN ???. LCCN ???.

Sunderam:1996:PSS

[Sun96]

Suresh:1995:IOP

[Sur95a]
REFERENCES

Suresh:1995:PIQ

Suttner:1996:SPB

Smelyanskiy:2011:HPL

Sistare:1999:OMC

Steve Sistare, Rolf van de Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

Stout:1991:SDM

Sehrish:2012:RFS

Sosonkina:2015:RAV

REFERENCES

Stathopoulos:1995:DLB

Sydow:1994:PSA

Stathopoulos:1996:PIM

Schneider:2009:CPM

Stankovic:1999:NVJ

Siegel:2011:AFV

Simmunovic:1995:MIP

REFERENCES

REFERENCES

Thompson:2015:PCI

Tourino:1998:PBL

Tourino:1999:MMC

Thiruvathukal:2000:JNW

Tromeur-Dervout:2011:PCF

Lyon, France.

Toton:2013:EFE

Ten95

Truong:2002:PAM

Tu:2012:PAO

Turchi:1994:SDA

Thakur:2009:TSE

Rajeev Thakur and William Gropp. Test suite for eval-
Tian:2005:PCT

Tuncer:2009:PCF

Thakur:2002:ONA

Thakur:2005:OSO

Traf:2010:SCM

Thakur:1998:CUM

Tian:2005:CEN

Trefftz:1994:DPE

Tran:2000:PPM

Thomsen:1994:RTS

Tennyson:2015:MOI

Tallen:2009:EPM

Tampouratzis:2016:AIIH

Trobec:2001:IEM

Theodoropoulos:1996:ESP

Taylor:2017:AOO

[TMW17] Ben Taylor, Vicent Sanz Marco, and Zheng Wang. Adaptive optimization for OpenCL programs on embedded heterogeneous sys-

Takahashi:1999:IEM

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Toussaint:1996:AES

Tourancheau:2000:HSN

Thebault:2015:SEI

Loïc Thébault, Eric Petit, and Quang Dinh. Scalable and efficient implement-

Jesper Larsson Träff. Alternative, uniformly expres-

Taha:2012:UDT

Thibault:2012:AIF

References

Traf:2012:MTM

Thakur:2005:OCC

Traf:2000:IMO

Jesper Larsson Träff, Hubert

[TRH00] Jesper Larsson Träff, Hubert

REFERENCES

P. Theodoropoulos, P. Tsanakas, and G. Papakonstantinou.

Samuel P. Uselton, Michael Brian Cox, and Craig M. Witten-

REFERENCES

REFERENCES

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

vonHanxleden:1994:VDF

Viswanathan:1995:PCM

Valencia:2008:PPR

Varadarajan:1994:FDT

Vincent:1995:HPP

James J. Vincent and Kenneth M. Merz Jr. A highly portable parallel implemen-
REFERENCES

449

[VPS17] Sandino Vargas-Perez and Fahad Saeed. A hybrid MPI-OpenMP strategy to speedup the compression of big next-generation sequencing datasets. IEEE Trans-
REFERENCES

REFERENCES

495, ???? 1995. IEEE catalog number 95TH8024.

[Vaidya:2013:SDO]

[VT97]

[VV95]

[Vo:2009:FVP]

[Verkerk:1992:PIC]

[VY02]

[VY15]
Jan Verschelde and Xiangcheng Yu. Polynomial homotopy continuation on GPUs. *ACM Communications in Computer Algebra*, 49(4):130–133, December 2015. CODEN ???. ISSN
1932-2232 (print), 1932-2240 (electronic).

[Wong:1999:BMM]

[Walker:1995:MVB]

[Walker:1996:MFA]

REFERENCES

ID=76500353&PLACEBO=IE.

Wasniewski:1996:APC

Wolf:1996:CFS

Wickerson:2017:ACM

Walters:2009:RBF

Wang:2015:AST

Wang:2007:EAP

Wang:2012:OVT

Wu:1999:JBD

Wang:2013:PMO

Wedemeijer:1996:PSA

REFERENCES

Walker:1996:MSM

Welch:1994:PVM

Werner:1995:UMP

Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI. (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.

Weber:2017:MAL

Warren:2019:CBG

Wark:1994:PIR

P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ????

Wagner:1996:PMM

Wiese:2005:IPN

Kay C. Wiese, Andrew Hendriks, Alain Deschenes, and Belgacem Ben Youssef. The impact of

White:1994:VVC

R. White. VCMON — the VM/ESA Connectivity Monitor. In Anonymous [Ano94g], pages 783–792. ISBN ???? LCCN ????

White:2004:CMM

Wilhelms:1994:DAL

Wismueller:1996:SBV

Wismueller:1997:DMP

REFERENCES

[Wismueller:2001:UMT]

[Witchel:2016:PPW]

[Wei:2012:OLL]

[Wu:2014:OFB]

[Wegiel:2008:MCVa]

[Wegiel:2008:MCVb]
REFERENCES

RED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Wolfe:2018:MLS

Wu:2014:MAG

Winkler:2017:GSM

Wendykier:2010:PCH

Walk:1995:RBD

Walk:1996:RBC
D. W. Walker and S. W. Otto. Redistribution of block-cyclic data distributions using MPI. *Concurrency: practice and expe-

Winstanley:1997:PDP

Wang:2009:MPM

Wolbers:1992:SPP

Worley:1996:MPE

Weng:2007:OIS

Wagner:1994:CFD

Wang:1995:PPG

[CLM+95] Cho-Li Wang, V. K. Prasanna, and Young Won Lim. Parallelization of perceptual grouping on distributed memory machines. In Cantoni et al. [CLM+95], pages
REFERENCES

REFERENCES

REFERENCES

Wang:2008:PIM

Xu:1995:IPP

Xu:1996:MCO

Xue:2013:PMO

Yelon:1993:PTS

Yazdanpanah:2015:PHR

Yan:1994:PTA

Yang:2014:PMI

Ying:2003:NPK

Yalamanchilli:1998:CPJ

Yviquel:2018:CPU

Hervé Yviquel, Lauro Cruz, and Guido Araujo. Clus-

Yero:2001:JOO

YarKhan:2017:PPN

Yamazaki:2018:SIL

Yang:2009:DBM

REFERENCES

E. Yilmaz, R. U. Payli, H. U. Akay, and A. Ecer. Hybrid parallelism for CFD simulations: Combining MPI with OpenMP. In Tuncer et al. [TGEM09], pages 401–408.
You:1995:EIM

Yu:2005:HPB

Young:1993:PPN

REFERENCES

Yang:2011:PBP

YWC11

YWCF15

[YWC11]

You:2015:VFO

YX95

[YWCF15]

[YWTC15]

[YX95]

[YYW+12]
REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). LCTES ’12 proceedings.

Yang:2014:CNR

You:1995:PIM

Zounmevo:2014:FRC

Zaza:2016:CBP

Zahavi:2012:FTR

Zhong:2007:PPS

References

(Zdetsis:1994:PMD)

[Zilli:1997:TBN]

CODEN LNCS29. ISSN 0302-9743 (print), 1611-3349 (electronic).

(Zhu:2012:CDS)

4_31.

(Zhao:2010:GMP)

(Zhang:1997:DED)

(Zhang:2001:PPV)

Xin Zhang, Lingli Ding, and Elke A. Rundensteiner.

Zhang:2004:PMV

Zelek:1995:DPP

Zemla:1994:WTC

Zhou:1995:FMP

Zhou:1995:RMR

Zhou:1996:FMP

Zhou:1998:LST

REFERENCES

Zielinski:1994:PPS

Zu:1994:OSM

Zheng:2006:PEA
Gengbin Zheng, Chao Huang, and Laxmikant V. Kalé. Performance evaluation of automatic checkpoint-based fault tolerance for AMPI and Charm++.

Zoubaja:1999:SPD

Zhang:2018:IRP

Zounmevo:2014:ESC
Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. Extreme-scale computing services over MPI: Experiences, ob-

Zhai:2011:CVH

Zollweg:1993:OP

J. A. Zollweg. Overview of PVM. In Anonymous [Ano93f], pages 981–986. ISBN ???? ISSN 0254-6213. LCCN ????

Zarrelli:2006:EPE

Zambonelli:1996:EPP

Zheng:2011:GLO

Zhao:2012:ASO

Zarrabi:2015:GSA

REFERENCES

(Zhu:2017:OAP) Huming Zhu, Yanfei Wu, Pei Li, Peng Zhang, Zhe Ji, and
REFERENCES

Zhu:1995:RTC

Zhang:2005:ULC

Zheng:2014:IMS

Zhu:2015:PML