A Bibliography of Publications about *PVM (Parallel Virtual Machine)* and *MPI (Message Passing Interface)*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

05 January 2019
Version 3.183

Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0
[ICC02]. 1
[ICC02, LRQ01, VDL+15].
19.95 [Ano95b]. 2
[Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17, WRMR19].
24.95 [Ano95c].
27.50 [Ano96a]. 3
[And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12].
35 [Ano00a, Ano00b].
35.00 [Ano00a, Ano99c, Ano99b, Ano99d]. 3D
[KA13].
60 [Ano00a, Ano00b]. 3
[PBC+01].
A [ARYT17].
α [JMdV+17].
Ax = b
[BG95].
D [UZC+12].
H²/H∞ [GWC95].
k [She95, TK16].
M³ [JSH+05].
PVM⁺ [Wil94].
N
[IHM05, Per99, Rol08b, SP99, SRK+12].
SU(3) [BW12].
τ [RGDM15, RGDM16].
XY [KO14].

- **body** [IHM05, Per99, SP99, SRK+12].
- **D** [DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12].
- **Dimensional** [LRQ01].
- **Lop** [RGDM15, RGDM16].
- **Means** [TK16].
- **Queens** [Rol08b].
- **set** [She95].
- **stable** [JMdV+17].

. [Wil94].

/Fortran [TBG+02].
/many [KSG13].
OpenMP [VDL+15].

1992 [DE91, EJL92, IEE91]. 1993 [Ano94c, GGK+93, IEE93a, IEE93e, JPT94, MMH93]. 1994 [Ano94a, Ano94c, DSZ94, DT94, GN95, GT94, HK95, IEE94h, PSB+94, SPE95, SPH95, VV95]. 1995 [ACM95a, ACM96a, AGH+95, BH95, Gvat95, Ham95a, IEE95b, IEE95a, IEE95d, IEE95h, IEE95i, JB96, NM95, Nar95, Ten95, UCW95, ZL96]. 1996 [ACM96b, Abr96, Boa97, ERS96, IEE96f, IEE96e, IEE96i, Ree96]. 1998 [ACM98b]. 1999 [ACM99]. 19th [TBD12, IEE05]. 1st [Akr96, BR95a, CGB+10, Kum94, Van95, Fer92].

2nd [FK95, IEE93c, Nag05, YM97]. 3 [Bri95, Che10, GBH14, GBH18, GLT12, Gro12, HDT+15]. 3-D [Bri95]. 3.0 [Ano97, Bra97, BRM02, BSM03, DDB+16, KaM10, OP10]. 3.06 [Ano03]. 3.1 [WCC12]. 3.4 [Gei97, GKPS97]. 3.X [KS96]. 3000 [HWM02]. 33rd [ACM95a]. 37th [ACM06a]. 3D [GAP97, Gra97, LO96]. 3D-Fall [Gra97]. 3rd [ACM06b, CzG+08, Ano95a, IEE96a].

4 [Ano03, HRZ97, KSHS01, NUT05, SD13, SBT04]. 4.0 [DSGS17, JCP15, dOSMM16]. 4.5 [CBYG18]. 43 [UZ+12]. 45-degree [CT13]. 48th [IEE94e]. 4th [BD97, EdS08, FF95, USE00]. 5 [TRH00]. 512 [RBB97c]. 5th [AD98, Cha05, IEE94a, MdSC09]. 600 [LSK04]. 6000 [AL93, NMW93]. 64 [dCZG06]. 64-bit [Wil93]. 6th [ACD94, DLM99, GT94, PW95, SHM+10, Sin93]. 7th [ACM95b, CGKM11, DKP00, GN95, PBG+95].

857 [MSW06]. 897 [HWS09]. 8th [CMRR12, CD01]. 90 [Ben95, SM03]. 9076 [JW95]. 91 [BG91, EJL92, IEE91]. 92 [Sie92a, Sie92b, VV92]. 93 [Ano93g, GGK+93, GH+93, IEE93a, IEE93e]. 93SC038 [FS93]. 93SC041 [Gle93]. 94 [BS94, DW94, GT94, IEE94b, IEE94h, PSB+94, SPE95, WPH94, dGJM94]. 947 [LTDD14]. 95 [ACM95b, AH95, BH95, CLM+95, CJNW95, DMW96, FF95, HAM95b, IEE95l, Lev95, NM95, Van95, Ano98, FD97, KaM10]. 95/NT [FD97]. 96
Aachen [Ano93a, GHH+93]. Abortable [CAWL17]. Abortable-locking [CAWL17].
Abstract [MKW11, Wel94, BG94b, HTA08]. Abstracts [IS16]. ACC [APJ+16]. accelerate
[SD13]. Accelerated [AB13, KA13, GHH+93]. Accelerator-Aware [APJ+16].
Accelerators [AKL16, AC17, NTR16, SHM+10, TCM18, KHS19, MSZG17, UGT09]. Access
[Bri10, HD07+15, IFA+16, JPL17, LB08, GLT12, WTR03, CG99b, GBH14, GBH18, HGMW12, LOH01, MN91, SFL+94].
accesses [TGL02]. accessible [BHW+12]. Accident [Smii93a, SBR95]. According
[LG00]. ACCT [FVD00]. Accumulated [KS15b]. Accumulative [HD04]. Accurate
[HD00, MLA+14, RSPM98]. Accurately [BGdS09]. Achieving
[CBPP02, Gro01a, KKL11, RH01]. ACM
[AC90, ACM95a, ACM95b, ACM97b, ACM98b, ACM04, ACM05, IEEE02].
Across [NE98, AL96, CZ95b]. ACSCI [Van95]. Active [CSAGR98, Pla02, SKH96].
Activities [MSS97, CMV+94]. activity
[Net02]. Ad [IBC+10, ITT02]. Ad-Hoc
[IBC+10]. Ada [Tou96, KP96, Tou96].
Adam [Ano95a]. Adaptable
[SPH+18, BCM+16]. Adaptation [WST95].
Adapted [Uhl95a]. Adapting [Sang94].
Adaptive [Ano94b, BCMR00, KHS19, Bir94, CKO+94, FSC+11, HWX+13, KK98,
KT02, LFL11, MKC+12, MBES94, MRB17, MAGR01, OKW95, Ran05, RA09, SHM+12,
SGZ00, SS09, STY99, Sta95a, TMW17, ZSG12, BDP+10, CLSP07, DLR94, EZBA16,
EASS95, IDS16, LCL+12, SLGZ99, TCBV10, Was95a, Wil94, FSC+11].
Adaptive-CoMPI [FSC+11]. Adas
[HHC+18]. Adding
[CB00, GRV01, PSM+14]. Address
[SS01, D096]. addresses [CGL+93].
ADDT [SR96]. ADI [Sch01]. adjacent
[Kan12]. adjacent [RMN+12]. Adjusting
[SHL02]. ADOL [BGK08]. ADOL-C
[BGK08]. adoption [CMV+94]. Adsmith
[LKL96]. Advanced [Ano98, Ano00a, D+95, G696, G697, GLT99, GLT00b, GLT00a,
GLT12, KG93, SSAS12, TG94, Ben95].
Advances [Bha93, BBH+98, CHD07,
CDND11, KGRD10, KKD03, KKD04,
KKD05, LKD08, LK10, MTWD06, RWD09,
TBD12, AD98, BC14, BDW07, CD01,
DKD05, DLM99, DKO00, DLO03, HPS+12,
Kra02, HPS+13, IEE97a]. Advection
[AKK+94, CT94a, TC94, CT94b].
Advection-Chemistry [AKK+94].
Aerospace [MAB05]. Aﬃne [DMB16].
Aﬃnity [ETWM12, AGG+95, NAAL01].
Affordable [Rol94]. again [Har94]. against
[GHD12]. Age
[MdSC09, Ano94f, GJLT11, HK95]. AGEB
[SAS01]. Agent
[Ma01b, MCB05, ZW+95]. agent-based
[MCB05]. agents [KBA02]. Aging
[LRBG15]. Aging-Aware [LRBG15].
AIMS [Yan94]. Air [AKK+94, BZ97,
MPD04, MSML10, BTC+17, SH94, Syd94].
Any

AP / [SMTW96]. **AP**/ [PBC+01, SMTW96]. **AP** / [SMTW96]. **AP**1000 [SH96, IM94, SWJ95]. **AP3000** [TD99]. **API** [DM98, LPD+11]. **APIs** [WCS+13]. **APOLLO** [Sta95b]. **APOLLO-II** [Sta95b]. **Appendix** [Ano01a]. **Appendices** [Ano01a]. **APPL** [AB93b, AB93a]. **Application** [AKE00, BSN95, BGdS09, BS07, BFM97, BBH+15, Cha02, CRGM14, DFMD94, FDG97a, FDG97b, FSC+11, GB98, HT08, JFY00, JKT01, LD01, LMRG14, Mal01, MTSS94, MBB+12, NSLV16, NS16, PSSS01, Ritz17, SBF+04, ST02a, SCL97, UTY02, ZZ04, ABC+00, ADMV05, ADR+05, BvdB94, BFLL99, BL97, BMP03, CBYG18, CRM14, CRGM16, EPMLO9, FFMF15, GWVP+14, HTJ+16, HZ96, KME09, LSG12, LCMG17, MMW96, MM03, MLA+14, MvWL+10, NMW93, RBAI17, Rol08b, SM12, SSS99, SFV13, SL00, TCP15, Wor96, ZZZ+15, CG99a]. **application-centric** [SFSV13]. **Application-Level** [CRGM14, LMRG14, SBF+04, SCL97, BMP03, CRM14, CRGM16, LCMG17]. **Applications** [APJ+16, AGS97, Ano89, Ano96c, AZG17, BCLN07, BHV12, BBH+06, BRU05, BFMIT96b, BBFW01, CGS15, CBL10, CGLD01, Cha05, CJRNS95, CRGM14, Cot98, CTK00, Cot04, Cza02, Cza03, DW02, DLM+17, DERC01, DTHK97, DGF97, DGMJ93, EV01, EML00, FLD98, FD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GSK10, HMK09, Hus98, IEE95I, ITT02, Jes93b, JPL17, KB98, KBS04, KPG+03, KKP01, KK02b, Kuh98, La01, LAHS+15, LRG14, LCCW07, LMRG14, dLR04, MSGR01, MS02a, Mar02, Mat01b, MAB05, MC98, MG15, MANR09, PSM+14, Rei01, RPM+08, RBB15, RRBL01, SPL+12, SG12, SPH+18, SC04, SBB+17, TSSY00, TFGM02, Vs000, VY02, Vs03, Wal96a, WC09, Wis96a, WSN99, WBH97, WM01, dGMJM94, ACH+11, ACJ12, Ano93a, Ano94f, Ano03, Aru95, Aru95, AGMJ06, BKH+13]. **applications** [BR04, BDV03, BAG17, BF96, BFM96, CAGK+16, CBGS+15, CDMS15, CLSP07, CBM+08, C1J+10, CFPS95, CCHW03, CCM+06, DZ98a, DSZ94, D+95, DCH02, EKTB99, EGH99, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GB95, GS02, GH12, GJMM18, GS96, GH12+93, HZ90, HAJK01, JC17, JPTE94, LMG17, LCMG17, LHZY19, LS08, MA09, MBKM12, MLCO4, MMCM15, MS96b, NSBR07, NC+12, NFG+10, PK05, PTL+16, Rab99, RS95, SJJL14, SPE95, SGB+12, SD17, SH12, SG05, SLG95, SB01, SD16, TMC09, TBB12, TPLY18, Vet02, Wis96b, Wol92, WMP14, XLW+09, YZ14, ZL12+11, BP93, TDBEE11, ATC94]. **Applied** [FGRD01, HC06, KaM10, GFIS+18, HMKV94, MM92, NF94, PK+10, DMW96, Was96]. **Approach** [AZG17, BH94, BJ93, BBH+01, CRGM14, CD98, DLM+17, FFP03, GCBL12, HD00, KBA02, KK02a, KnWH10, LGM00, Mar06, PPR01, Pet00a, Pet00b, RGD13, Ros13, TJPF12, BK11, Bis04, BTC+17, CLYC16, CDP99, CRGM16, Din96, EO15, FMS15, HDB+13, JS13, KPL+12, KSSS07, KJEM12, LG02, MM95, MS99b, NEM17, OW92, SVC+11, SEC15, TWF009, WO09]. **Approaches** [JCH+08, Ney00, SWHP05, SM02, BBFL99, CB11, PSS06]. **Approximate** [Huc96, MM02, GGC+07, GG09, MM03]. **Approximation** [SLJ+14, SJJLM14]. **April** [ANS95, AH95, Ano93b, Ano94a, CH96, DR94, GH94, Ham95a, IEE92, IEE93b, IR95f, IEE96e, IEE97b, IEE05, LCHS96, MC94, Nar95, Sie94, SW91, Ten95]. **APS** [GT94]. **AQUAsgp** [CP15]. **arbitrary** [HP11]. **ARCH** [Ada97, Ada98]. **architectural** [GGC+07]. **Architecture** [BG94a, CGC+11, COL18, EBKG01,
EM02, FD97, Fuj08, HRZ97, IEE97c, ITKT00, LSVL02, PT01, PS04b, SMM+16, SC04, WKP11, YTH+12, BBCR99, BGF94c, CSPM+96, CS96, DiN96, FHC+95, HK09, MRH+96, PWD+12, SWYC94, SSGF00, Squ03, SP11, WCC+07, YÁJG+15, YEG+13, ZW+95. **architecture-independent** [DiN96]. **Architectures** [ACM95b, BDT08, BFG+10, CHPP01, HD02a, HD02b, HHK94, IEE96d, KDT+12, LHHM96, Li96, LZH17, LAD16, MS02b, MTSS94, MCS00, NO02b, Nar95, PZ12, TSCaM12, YK+18, BDP+10, BN00, BKNL05, CLM+95, CDZ+98, DM93, DZZY94, GDC15, GP95, Hos12, LCL+12, LDJK13, MLC04, NO02a, PY95, RFH+95, RMNM+12, SP99, TDG13, TSSZ94, Uhl95a, VDL+15, WST95, dLAMC11]. Area [CDHL95, Fis01, BHW+12, FGT96, FGG+98, KHB+99, Qu95]. area-based [Qu95]. arising [ARvW03]. Aristotle [FSV14]. Arithmetic [Ano98, JPT14, Sur95a]. Arithmetics [HD00]. Architecture [AGH+95, Ara95, USE00, UCW95]. ATM [GFF99, HBT95, JOn96, LHD+94, LHD+95]. Atmosphere [BS93]. Atmospheric [HK93, KHS99, RSST95]. atom [MGG05]. Atomic [LRT07, LAFA15, SYF96, DS13, Hin11, SY95, XF95]. atomics [BDW16]. atoms [JLS+14]. Attacks [PV97, GHD12]. attempt [GM18]. Attraction [GB96]. audio [BJ13], August [ATC94, Ag95a, BF96, DMW96, GT94, HAM95b, IEE94g, IEE95k, IEE96f, LF+93a, Ots94, PSB+94, PBB+95, Ree96, VV95, Was96]. Austin [IEE94b]. Australasian [Bil95]. Austria [GN95, Nar95, ACDR94, Bil95]. Australian [ACDR94, GN95]. Austria [Bos96, BH95, Kra02, TBD12, Vol93]. Austrian [Fer92, FK95]. Austrian-Hungarian [Fer92, FK95]. Auto [CC17, DWM12, DLBL11, RDLQ12, WG17, FE17, SH14, TWFO09]. Auto-Generation [CC17, DWM12]. auto-parallelization [TWFO09]. Auto-scoping [RDLQ12]. Auto-Tuning [WG17, DLBL11, FE17, SH14]. AutoLink [GMPD98]. AutoMap [GMPD98]. Automata [Car07, BBK+94]. Automated [BMPS03, MV95, LLG12, RFHR96, Yan94]. Automatic [BVML12, BBH+08, BGK08, BHK+06, CBL10, Cza03, DW02, EML98, EML00, FAFD15, FFM11, GKF13, HZ99, JFY00, JJ+03, JJPL17, KOI01, KHS12, MGA+17, NO02b, NO03, OWE95, RFRH96, Yan94]. Award [Str94]. Aware
[APJ+16, BHP+03, EGR15, GFIS+18, HVA+16, LRBG15, MJB15, Pan14, ZLP17, CGH+14, GZ12, HJYC10, HG12, JKH+13, KBG16, MBBD13, MSLC15, SHM+12, SPK+12, WRSY16]. awareness [HK09, VGS14]. AXAF [NH95].

B [Ano01a]. Back [BIC+10]. Backend [IOK00]. backtracking [PGdCJ+18].
Backup [Gua16]. Bains [GA96]. Balance [HE02]. balanced [EZBA16]. Balancing [BKdSH01, DBA97, DI02, DK06, GCBL12, MM02, PT01, Pus95, ST97, Wal01a, Bir94, BS05, DZ96, DvdLVS94, DR95, FMBM96, FH97, Hum95, JJH97, MM03, NP94, SGS95, SY95]. Balatonfured [DKP00].
balls [BBH+15]. Baltimore [IEE95f]. Bamboo [NCB+12]. banded [DG95]. Bandwidth [NE01, RK01].
Bangalore [Kum94, PBPT95]. Barbara [ACM95b, AH95, IEE95f]. Barcelona [DLM99]. BARRACUDA [EP+17].
Barrier [CLdJ+15, SDB+16, YLZ13]. Based [Ada97, AHD12, AAB+17, AP96, BHW+17, BDG+91b, BoFBW00, CAM12, CGC+02, CLOL18, CLP+99, CDPM03, DW02, DBK+09, FSC+11, FC05, For95, FSL99, GSSx, HF14a, HF14b, HM01, Hus00, KLR16, LSZL02, LH18, kl11, LWP04, LAFAl5, MDM17, MGL+17, MMH98, NSSL16, NE01, NHT02, NPS12, PPT96a, PCY14, PFG97, PSS01, RDMB09, SPL+12, SM03, Smi93a, ST02b, ST97, SJK+17a, SJK+17b, TJS+15, TD98, WHT17, WC09, WZ16, Wis96a, WM01, WJB14, YG96, YTH+12, ZWJK05, Ada98, AASB08, AAAA16, AVA+16, Ano03, BLPP13, BDG+92a, BCH+03, Br95, BFM196a, CwCW+11, CC10, CkmWH16, CRM14, CXB+12, DXB96, FE17, FFB99, FJZ+14, FNSW99, FSTG99, FFFC99, FWS+17, GS91a, GS92, GKS+11, Gra97, Gra09, GFPG12, H294, HWX+13, IM95, IT99, JL18, JKM+17, KL14, KPL+12, KPNM16, LV12]. based [LRW01, LKL96, LN+12, LGG16, LMM+15, MYB16, MOM+16, MPK+96, MCB05, MT96, MS99a, MS99b, MFPP03, Neu94, NHT06, OLG+16, OP98, PARB14, PES99, PPT96b, PK05, PAdS+17, PKG+10, PSHL11, PK95, PSS+10, PST99, Qu95, Rag96, SJLM14, SS90, SS99, SZ11, SVC+11, LS96, SKB+14, Sto98, Str96, SLN+12, TBB12, TY14, TDB96, TWF09, TMPJ01, WO09, WHT014, WIs96b, WCSS99, YC98, YL09, YWC11, YSL+12, ZAFAM16, ZLP17, ZHK06, ZZ11, vHKS94, BFM96b, FH97, KSSJ95, WAS95b, FO94, GKH97, KSSJ96, PY95, Sut96, TSC94, ZPLS96].
BCS [FFP03]. BCS-MPI [FFP03]. be [CB00]. Beach [IEE93]. Beam [OIH10, RCFS96]. bearings [NF94].
Beguelin [Ano95b]. Behavior [BFM97, DeF03, Ros13, LLG12, PPF89, YMY11].
benevole [EPML99]. Beijing [CZG+08, LHMM96, L96]. Beitrage [Ano94c].
Belgium [LCHS96]. Benard [TVV96]. Benchmark [BWV+12, DS16, HC10, LNO99, MUL02, MBB+12, RSPM98, RTH00, SGJ+03, Tra12b, UTY02, Ano03, BKM15, DWM12, DH95, DHS96, MUL03, MvWL+10, PHJM11, Reu01, RST02, WOR96, YSWY14].
Benchmarking [GC05, HCA16, LCY96, MMU99, MCS00, WRA02, RST02]. Benchmarks [CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TSB03, WAS95b, ZSnH01, CDD+96, MMH99, Ste94, WT11, CE00, WT12].
Beneficial [CB00]. benefit [SBG+12]. Benefits [LB16, PSM+14, SIRP17].
Benutzerprofile [Wil94].
Benutzertreffen [Ano94c]. Beowulf [CMM03, Ste00, UP01]. Beowulf-Class
[Ste00]. Berlin [PW95]. Bessel [KT10]. Betriebssystemkern [Sei99]. Better [Str94]. Between [AAB+17, BS07, ASS+17, AKE00, BID95, GFV99, JAT97, LDCZ97, MSP93]. Beverly [IEE93f]. Beyond [Gei93a, GKP97, Gei98, Gro12, Olu14, Gei93b, LSG12, Sch93, SHM’10].

Biconjugate [GFPG12]. bidirectional [HE15]. Big [CLOL18, GTS+15, LK14, VPS17, ASS+17, Str94]. Biharmonic [RB01]. Bill [Ano99c, Ano99d]. billion [KTJT03]. Billions [MRB17]. binary [CG93, EPP+17, SGS95, TCBV10].

binary-level [EPP+17]. binary-splitting [TCBV10]. Binding [CLL03, Coo95b, MG97, Coo95a]. Bindings [Ano98, VGRS16]. Bioinformatics [BBH12]. Biological [CNM11, VBB18, BA06]. Biomolecular [BCGL97, PZK02]. BIP [CDP99, Ton00].

BLAS [Add01, ARvW03, FMFM15]. BLASTP [LSMW11]. Block [DDPR97, SMM+16, WO95, ZB97, ADDR95, DR18, GP95, HKMCS94, HC08, WO96].

Block-Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96]. block-tridiagonal [DR18]. Blocking [FH98, BCH+08, HKT+12, Nak03, HTA08].

Blood [Pat93]. Blue [KMH+14, AAC+05, BGH+05, EFR+05, LM13, MV17, MSW+05]. blurred [Wil94]. BMMC [CC99]. bodies [AGIS94, LHLK10].

Body [RB01, RTRG+07, HMO5, NS16, Per99, SP99, SRK+12, ADB94]. BOF [Mat00a]. Boltzmann [OTK15, CGK+16, MS95, Pri14, SJK+17a, SJK+17b]. Bonn [MTWD06]. Book [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, Che10, Mar06, Nag05, Per97, SD13, Vog13, Vre04, YM97]. books [YM97, Nov95]. Boosting [LRGB14, SF095].

Boston [IEE94c]. Both [BGD12, KP96]. Bottleneck [MWC97]. bottlenecks [DSG17, JKHK08]. Boulevard [ACM99].

Bound [ASA97, MBK12, ADMM05]. boundaries [KGB+09], boundary [PTT94, SBQZ14, SP11, SD99].

boundary-value [SP11]. bounded [MdSAS+18, PAdS+17]. BowMapCL [NTR16]. Box [JR13, JPP15].

Brisbane [ACM04, AAB+17, ASS+17]. Bringing [FKK96]. Bristol [MC94]. British [IEE95a, IEE95e].

Broadband [OIS+06, CLASPDP99]. Broadcast [PSM+14, YSP+05, MTK16]. Broadcasts [SE02]. Brownian [SKM15].

Bruijn [PGF18]. Brussels [LCH96]. BSGP [HZG08]. BSP [Mar06, Bis04, GRRM99, Mar09, Röh00].

BSP2OMP [Mar09]. BT [WT11, WT12]. Budapest [FK95, KKD04]. Buffer [SEP+16, Ts07]. buffers [MR96]. Build [HRS97]. Building [FD04, Gei01, Gro02a, LBD+06, LPV04, WAC99, Ams95, HS95b, MSL12, PW95, Sur95b, Kos95b].

BUSTER [XWZS96]. Butterfly [ST17]. Butterfly-Patterned [ST17].

C [Gal97, Pri14, SM12, SSL97, TBG+02, VDL+15, Vre04, BGO98, BB00, CNC10, CCHW03, DARG13, Don06, FLM17, FHK01, GTH96, GSI97, Gör01, KK02a, KPO00, LYSS+16, MHSK16, Qui03, SSB+17, SC95, TNIB17, UZC+12,
CRM14, ZWZ05, ZHK06, BDB+13, checkpoint-based [CRM14, ZHK06].
Checkpoint-on-Failure [BDB+13].
Checkpoint-Recovery [SBF+04].
Checkpoint/Restart [SSB+04, DCH02, LMRG14, SSB+05, TSS00b, BMPS03, BCH+08, CG96, LCMG17, PKD95, SSCC95, Ste96].
Checkpointing [DCH02, LMRG14, SSB+05, TSS00b, BMPS03, BCH+08, CG96, LCMG17, PKD95, SSCC95, Ste96].
chemical [NMW93].
Chemistry [AKK+94, BR95a, DMW96, SSGF00].
Chemkin [Ano97, Bra97].
CHEMPI [RR01].
Chicago [CGKM11].
China [CZG+08, IEE97a, LHHM96, Li96].
Chip [Jes93b, URKG12, TDG13, dCZG06].
Cholesky [DG95, LC97b].
Chromosome [BM97, dOSMM+16].
Chromosome-Wide [dOSMM+16].
CICADA [MK94].
Circuit [WPC07, BJ95].
Circuits [GJN97].
Circular [Tsu07].
Circulation [GAM+02, Nes10, RSBT95].
CIS [AH00].
citation [Squ03].
City [Hol12].
civil [PW95].
CL [BHW+12, BBH+15, LW95].
CL-PVM [LW95].
CL ARRAY [ZT17].
clarified [WBBBD15].
CLAS [DZDR95].
Class [DFN12, Ste00, Dem96, MSL96, RFH+95].
Classes [DeP03, GG09, Ott93].
classic [HL17].
Classical [BCGL97].
classification [TPLY18].
clauses [WC15].
Clemson [ACM95a].
Client [Ano93f, FSLS98, KS97, klCCW07, Mat01b, Sch93, Ste08, Vis95].
Client-Agent-Server [Mat01b].
Client-Server [FSLS98, Ste08, Vis95].
Client-Side [klCCW07].
Client/Server [Ano93f, Sch93].
climate [Str94].
CLIPS [Ano95a, Ano95c].
cLAMMA [CDD+13].
clock [NB96].
clocks [TPLY18].
CLOMP [BGdS09].
clone [ZWL+17].
Closer [HCZ16].
Closure [CGP98, KH15, PPR01].
Cloud [SIS17, URK12, ZL+11, ZLP17, GFIS+18, GHZ12, GWVP+14].
Cluster [AUR01, BKG92, BL95, BM97, CRE99, CMM03, HD02a, ES11, GGGC99, Gei94, Gei00, GS+01, GT01, GC05, HD02b, ITKT00, IDD94, KKH03, KS96, KS01, KHS01, LR01, MFTB95, MM01, NO02b, OF00, PFG97, RB01, RSt06, RLL01, SC02, SShH01, SHTS01, ST02a, TOTH99, Tra02b, bT01a, AL93, BLP93, BAL95, BT+17, BID95, CCF+94, Cou93, ED94, GK97, GMU95, Hee93, KEGM10, KO14, KOU15, LC07, Liu95, MW93, MM03, NO02a, PDY14, RJHD14, SS94, SR95, ST02b, SL96, SY95, SSN94, Tho94, THM+94, Ts095, UH96, YWO95, ZLZ+11, MS04].
Cluster-based [LS96].
Cluster-enabled [SHH01].
Clustered [KHB+99].
Clustering [BBH12, HA10, RJ95, GGL+08, YCL14].
Clustern [MS04].
Clusters [AH00, AHHP17, BDH+95, BDH+97, BWV+12, CLOL18, CSC96, DK06, GDM18, GMdMBD+07, GSY+13, HPP02, HSMW94, HVA+16, Hus00, JNL+15, LC97a, LH95, LVP04, MS98, MFP03, Pan14, PKB01, PT01, PS00a, Pus95, Re01, dOSMM+16, SFG98, SvL99, Ste00, Tou00, UP01, WLNL03, WT12, YWCF15, YKI+96, AB95, ALR94, ADB94, ABG+96, ADMV05, BWT96, BDV03, Bru95, CRE01, EKT99, GFB95, HCL05, Hus99, JHKH08, Jon96, JR10, JRM+94, KLY03, KLY05, KSL+12, KJEM12, LBD+96, Lee12, LLC13, LL95, LKYS04, NMW93, NN95, PS07, PRS+14, PM95, PR94c, PRS16, PL96, RCF96, RGDM16, Slo05, SC96a, SL95, TFZZ12, WLNL06, WLYC12, Y10, YL09, YH11, YWC11, ZH99, dCH93].
CM [SBG+02].
CMMD [Har94, Har95].
CMPI [GHI2].
CMS [FMS15].
CNF [IKM+01, IKM+02].
CO [ACM95a, AHHP17, GDM18, HJ98, Wal02].
Co-Array [Wal02].
Co-designing [AHHP17].
Co-Expression [GDM18].
Co-processed [HJ98].
Coarray [GR15, YMBCB14].
coarrays [SMCH15].
Coarse [ADRCT98, IOK00, KOI01, LGM00, NO+02, NO+03, Hee93, RJ95].
Coarse-Grain [IOK00].
coarse-grained
Coarse[Heb93, RJC95].

Coast[IS16]. Coastal[GAM+02].

CoCheck[MS96b, Ste96]. Code[AHP01, And98, BCGL97, CB00, CP97, CCK12, CCBPGA15, DDL00, DZDR95, HE02, KaM10, KAMAMA17, KHS01, LD01, MS02b, MM07, PBC’01, RGD13, SM03, SZBS95a, Sta95b, TGBS05, AMS94, ADB94, AFST95, BCAD06, BADC07, BW12, Bha98, Bri95, Cou93, DLR94, EZBA16, FMFM15, GSMK17, Heb93, IJM+05, JL18, KPL+12, KH10, MGS+15, MRH+96, MWO95, PKE+10, PSK+10, RP95, SZBS95b, SK00, SFLD15, SMSW06, TBD96, VBLvdG08, VDL+15, Wor96, YL09].

Codebooks[PMM95]. Codes[FAFD15, JFY00, SWH15, HTJ+16, HWS09, HASP00, JPP95, KBG+09, LRW01, MaI01, OLG+16, WB96].

Coding[Uhl94, Uhl95b, SCC96]. Coecients[MW98, ARYT17].

Coherence[MIM07]. Coherent[SS01].

Collapse[PKYW95]. Collecting[BMR01].

Collection[LTRA02, DH95, MGC+15]. collection-oriented[MGC+15].

Collections[JFGRF12]. Collective[BIL99, BIC05, CCA00, FVD00, FCLG07, FPY08, GL00, GmdMBD+07, Hu99, KI96, MJG+12, PGAb+05, SG15, TRG05, VFD02, WRA02, HS12, HG12, HW97, KHB+99, KBHA94, KM+14, MBBD13, Pan95b, PGBF+07, PGAb+07, RJMC93, SCB14, SCB15, SS99, TD99, Trä12a, TFZZ12].

Collectives[CSW12, Slv99, Zah12].

Collector[GTS+15, WK08a, WK08c, WK08b].

College[AGH+95, Ano94b]. Collision[QRMG96, Sta95b, ART17, FFFC99, LHLK10]. Colloctive[MKW11]. Colony[ITT02].

Colorado[R+92, IEE05]. Colt[WN10].

Columbia[IEE95a, IEE95c, MAB05]. column[HSP+13]. column-stores[HSP+13].

COMA[GB96]. Combined[CBHH94, TJPF12].

Combining[DP94, Rab98, SCB14, Sch96a, SMAC08, YPAE09, Bor99, Sch96b]. comes[Ano94f].

Coming[HK95]. Commands[OLG01]. comments[Str94]. commerce[Ano94f].

commercial[Ano93h]. commodity[GGL+08].

Common[HEH98, DK13, WLR05].

Communicating[FKK96b, GMPD98, FKK96a].

Communication[ABF+17, BCG+10, BIL99, BIC05, DCPJ12, DZZY94, EM02, FST98a, FJK+17, FGKT97, FBSN01, GFD03, GFB+03, GGS99, GFV99, GL00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KGBG16, LRT07, LC93, LCVD94a, MH01, MMB98, MR96, Nit00, PLK+04, RK01, RRAGM97, RT06, SWHP05, SCP97, SG12, SBG+02, SJ02, ST02b, SGL+00, SKH96, Sum12, TRG05, TG05, TRH00, Trä02b, UMK97, WBH97, XH96, YC98, ZSG12, FH98, BH96, BVML12, BH+13b, BS94, BMG07, CAHT17, CGL+93, Dem96, DWM12, DCPJ14, DGB+14, DBB+16, DS06b, GK97, GM13, Gra97, GL94, GB94, HB96a, HWX+13, Hu99, HW97, KH96, KB01, KYL03, KYL05, KHB+99, LR06b, LFL11, MLAV10, MMU99, MABG96, OGM+16, Pan95b, Pan93, PGK+10, PM95, PKE+10, PSK+10, SS06b, SH14, SC95].

communication[TG09, Trä12a, Vet02, Wu99, WMP14].

communication-based[PGK+10].

Communication-buffers[MR96].

Communication/Computation[HIP02].

Communications[BP01, CP98, CDH95, CDH+95, FVD00, FST98b, GT01, GBS+07, GmdMBD+07, IEE95b, IEE95e, LHZ97, LZH18, MB00, VFD02, YTH+12, tT01a, ADLL03a, ADLL03b, CD99, HS12, KBHA94, MBBD13, McR92, MN91, MS99c, RGDM16, SCB14, SCB15, TD99, WLYC12].

Communicators[DFK91, GFD03, GFD05, FKS96, GJM18, KB96, MJG+12].
communities [ACM04]. Community [BHW+17, FCP’01]. Como [CLM’95].

COMOPS [Luo99]. Compact [Uhl94, Uhl95b, Wor96]. compaction [VSW+13, WK08a, WK08b, WK08c].

Compactly [KLR16]. Comparative [KB98, PSK08, SN01, AGR’95b, ED94, YCL14].

Comparing [BF01, Fin97, FC07, CF05, KH15, CFP96]. compound [Luo99, MLG95, YPA94].

Comparing [We94]. Composing [PHA10]. composite [MALM95, YPA94].

Composing [GPC’17]. Composition [CTK00, Cot04, DLB07, FC05, KH15, CFP96]. compound [Luo99, MLG95, YPA94].

comprehensive [RST02]. Compression [FSC+11, KBS04, VPS17, AAAA16, HE15, UH96, Wu99]. compression-based [AAA16]. COMPSAC [IEE95].

Compton [BCD96]. Computation [BKGS02, B+95, Cert99, DSM94, DSS00, EMO’93, ESM’94, Fer10, FF95, GS91b, HIP02, IEE94a, IEE96c, KS15b, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SMOE93, WTTH17, ACM97a, ABPD15, Bis04, BALU95, Bos96, BHKR95, CL93, CMH99, CKP’93, DZZY94, HLM’17, HK94, KB01, KHBS19, KJJ’16, KG93, Lev95, MLAV10, Neu94, NZZ94, NCKB12, PF05, PKE’10, Rähl00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07].

computation-communication [SH14].

Computational [ALR94, CMM03, DFD94, JFY00, KH15, Liv00, MBS05, R+92, SBZS95a, SM07, SN01, TDBEE11, TEGM09, WPH94, Whi04, AGM06, BvdB94, BDG’92c, BR95a, HVSC11, KBG’09, PBK99, RBB15, SPE95, SZBS95b, STH96, Str94, VDL’15, BR95a, CCHW03, R+92, SL94a, WPH94].

Computationally [PN12].

Computations [AGH’95, AGCR97, CGU12, CGPR98, IH04, PBK00, PMvdG’13, WJ12, ANS95, AASB08, BL99, CG93, DMW96, EGD92, HJYC10, KD13, MRRP11, MR96, SM93b, SAP16, TS12b].

Compute [DBK’09, KKL11, ZLZ’11].

computed [FWS’17, SSS99]. Computer [ACM06a, Ano94a, GTH96, IEE95, IEE96, IEE97c, IS16, CR’17, Neu94, Old02, PSB’94, ST02a, Sum12, Ten95, URKG12,
YTH+12, BN00, BS94, BKML95, BFM96, Cal94, CLM+95, GRTZ10, JWB96, Str94).

Computing-Assisted [GTH96]. *Computers* [Ano89, BP99, BCL00, DGMJ93, FFP03, GC05, IEE95b, IEE95e, IEE95f, MFTB95, PSZÉ00, SP+10, S96, BvdB94, BB93, BBK+94, DLR94, Duv92, ES13, GBB95, KOS+95a, LR06a, MMB+94, POL99, PBK99, Wal94a, Wal94b].

Computing [ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACDR94, AIM97, BJ93, BBG+95, BB+93, BGR97a, BL95, BCP+97, BRST94, BDH+95, BDH+97, BHNW01, BBH12, CZ95a, CGB+10, CLL03, CLOJ18, CMC10, Cze16, DSS+94, DERCO1, DPP01, DMK+92, DMS93, DTO94, F98b, FGKT97, Fos98, FS93, GLN+08, GS92, Gei93a, GBD+94, SXX, Gei00, GN95, GL97a, GT94, Gua16, Hol12, IEE92, IEE93d, IEE93e, IEE94f, IEE95a, IEE95b, IEE95c, IEE95d, IEE95f, IEE95i, IEE96a, IEE96b, IEE96f, IEE97a, IIE95, IM95, JPOJ12, JY95, JLM+11, JPTE94, KO14, Kos95b, KS96, L92, LH98, LCHS96, LHD+95, LHD+95, LM13, Ma94, MZK93, Mal95, Mar07, PGS+13, PNB06, Pen95, PK+10, PTT94, PBD+95, PN01, PWD+12, RBS94, RJDH14, Sch93, SGS95, SMS00, STT96, Sit94, SP11, Sun94b, SGDM94, Sun95, SD99, TD90, TKP15, TDB00, Tho94, TSS98, VM94, Vis95, Was96, YULMTS+17, YLC16, YSL+12, Zem94, ZWL13, ZGC94, ZHS99, ZKRA14, ACM98a].

Computing [Kon00, PW95, Per96, SCR92, TEGM09, Ano95b]. **Concept** [KaM10, LTR00, SB95]. **Concern** [Ano94i].

Concurrency [ME17, NPS12, DGB+14, PTG13].

Concurrent [Ano89, BDG+91b, BR92, BHV12, BK+13, DG95, GS91b, GS92, GSxx, G94, HS93, Sun92, Sun93, ZDR01, BDG+92a, FS95, GS91a, GS93, LP+11, NP12, RGDML16, RCG95, Sun94b, SGDM94, Wal94a, Wal94b, WK08a, WK08b, WK08c, ZW+95].

condensed [MC99]. **Condition** [KK10].

Conductor [CF01, PL96]. **conduction** [iSYS12].

Conference [AcM90, AcM94, ACM96b, ACM96c, ACM97b, ACM98b, ACM04, Abr96, ATC94, AGH+95, Ano89, Ano93g, Ano94a, Ano94e, Ano94i, ACDR94, BBG+95, B+05, Boi97, Bos96, BFMR96, BH95, CGB+10, CH96, DSM94, DSZ94, DKD07, DMK+92, ERS95, ERS96, EJL92, FF95, G95, G95, GT94, Ham95a, Ham95b, S95a, SH94, Hol12, IEE92, IEE94f, IEE95b, IEE95a, IEE95e, IEE95i, IEE95l, IEE95j, IEE96a, IEE96d, IEE96h, IEE96i, IE291, LCK11, LF+93a, MMH93, Narr95, LO5, PR94b, Ree96, R+92, SPE95, SII96, SM07, S93, SW91, USE95, USE00, VW92, V93, WPH94, Y+93, YH96, ACM95a, ACM05, ACM06b, ANS95, Ano93b, Ano93c, Ano95a, BR95a, BIL95, BDLS96, DR94, Eng00, GH94, JPTE94, LCHS96, Mal95, PW95, Van95, ZL96, ACM94, Ano94g, IEE95b, KKDVI03].

Configurable [IEE94d, PKB+16, BB94].

configurations [PTL+16]. **conflict** [TCP15]. **conformational** [MK94].
Congress [CJNW95, GHG+93, PSB+94, BH95, dGJM94]. Congressi [GT94].
Conjugate [BG95, GFPG92, MM92, Ols95].
Connected [BT01b, KRKS11, OF00, Pet01].
Connectivity [Wei94]. Conquer
[CTK01, Cza02, Cza03]. conscious [ZA14].
consistency [WBSC17, YZW+12].
Consistent [TGT10, CG96, CZA96, FKK96].
Consistency [CTK91, CZA91]. Construct
[BPH94, EGR15]. Construct
[DP94, EM94]. Constructing [DM93].
construction [ART17]. Constructs
[KDT+12, PGC02, BKH+13, BN00].
consumer [ACJ12]. Contact [NAK03].
CONTAIN [SBR95]. containers
[STr12, ZT17]. content [GFB+14].
contention [ALW+15, DSG17, ZAH12].
Context [DDG+12, DR18, Msas9+18, OLG+16, PAdS+17, SCB15].
context-bounded [Msas9+18, PAdS+17].
Contexts [CS14]. Contiguous [WTR03].
continual [NS16], continuation [VY15].
Continuous [TA14]. Contract [KPNM16].
Contract-based [KPNM16]. contrarian
[KSSS07]. Contrasts [GGS99]. Control
[FLD98, FM09, IEE94e, MSS97, MBKM12, SFL+94, SHTP00]. controller [GWC95].
convocation [CEGS07, TVV96].
Convention [ACM98b, ACM09, ACM00, Hol12, IEE94b].
Converse [BK96]. Conversion [ZG95b].
convex [GCN+13]. convolutions
[DZZY94]. Cook [SD13]. Cooperation
[WIS01, STR94]. Cooperative
[DG97, DiN96, HRS97, kLCCW07, Pet00a, Pet00b, JKN+13, SHLM14].
Coordinate [OP98]. coordinated
[BCH+08]. COORDINATION
[CH96, KAH96, FKK96a, CH96]. Copley
[IEE94e]. Copperhead [CGK11]. Copy
[SWHP05]. copying [SH96]. CORBA
[DPP01, FIU97, LRW01]. Core
[ABB+10, BRI10, CZG+08, LHZ17, SOHL+98, TCM18, YGH+14, YTH+12, ACMZR11, BBG+14, BL99, FHB+13, HTA08, JR13, JIM+11, JR10, KSG13, LLCD15, LLH+14, MBBD13, PZ12, SFSV13, SVC+11, TFZZ12, VDL+15, WCC+07, WYLC12, dCZG06, MMH98, NAG05, ANO99a, ANO99b]. Cores
[BBG+11, DT17, BMS+17, WO09]. Corfu
[SM07]. correct [DM93]. correction
[BCD96, ME+12]. Corrections [BL95].
Correctness [HMK90]. Correlated
[MM07]. corruption [ME+12].
Coscheduling [GRV01, SGHL01]. Cosenza
[KG93]. cosmological [BADC07, SAI10].
Cost [KS15b, RLL01, GKM07, GWVP+14, WU99].
costs [GB94]. Cots [HHC+18]. count
[KVGH01]. counters [RB99]. counting
[JR13]. County [ACM98b]. Coupled
[MBS15, SSO1, SBR95, Gra97]. Coupling
[BS93, KR09, SB95, W96]. course
[STT96]. Cow [KMG99]. CPPvM [Gö01].
CPS [Mat94]. CPU [CLO01, DF17, JR13, KSL+12, Lee12, LR14, LLC13, FL11, Oxford+15, PDI14, Pri14, SSB+17].
CPU/GPU
[KL+12, Lee12, LL13, OFA+15, SSB+17].
CPU/multi [SAP16]. CPUs
[KH12, LND+15, ON12, SFSV13, YSVY14].
CPVM [CG96]. Cracow [BDW07]. cranial
[NAJ99]. CRANIUM [MBES94]. Crash
[LCVD94b]. Cras-h-simulation [LCVD94b].
crashworthiness [LCVD94a]. Crawler
[Wal01a]. Cray [BL94, GRRM99, MP95, Sch96a, Sch96b, ABG+96, AZ95, AFST95, CSM97, LK03, LSK04, MWO95, Oed93, RBB97c, SWS+11]. CRAY-T3D
[Sch96a, Sch96b]. CRAY-T3E [Che99].
Creation [Hat98, MFC98, PS00a]. Crew
[GHL97]. CRI [MSCW95]. CRI-MAP
[MSCW95]. Critical
[DSGS17, SLN+12, SDJ17]. Critical-blame
[DSGS17]. critical-path [SDJ17]. cross
[JR13]. cross-platform [JR13].
cryptanalysis [BSN95]. Cryptographic
[VP97, ABD15]. cryptographic
[VP97, ABD15]. Cryptography
[VP97, ABD15].
CS [FST98a, FST98b, Jon96]. CS-2 [FST98a, FST98b]. CS/2 [Jon96]. CT [DYN+06, NAJ99]. CT-scans [NAJ99].
cube [Pan95a]. Cubes [DERC01]. CUDA [Pri14, AMuHK15, AAA16, ACMZ11, AC17, Ano12, BHS18, BY12, BTC+17,
BAG17, BSH15, BBH12, CAM12, CGU12, CMM11, CLYC16, CBM+08, CSV12, CFF19,
CB11, Cza13, DCD+14, DSS13, DR18, DARG13, DLV16, DWL+10, DWL+12,
DM12, EPP+17, ER12, FJZ+14, Fer10, FMFM15, FFM11, FWS+17, Fuj08, GDC15,
GScFM13, GLN+08, GML+16, GFPG12, GWVP+14, GRTZ10, HE13, HJBB14,
HVA+16, HLM+17, HD11, HLP10, HP11, HLP11, Hg13, HFI14a, HFI14b, HKO11,
HT08, HLO+16, JL18, JK10, JC17, JLS+14, JGFRF12, KRKS11, KHBS19, KD12,
KAMAMA17, Khai3, KS13, KVGH11, KMO09, KO14, KH15, KD13, KA13, Lan09,
LRG14, LGKQ10, LSS15, LBH12, LSVMW08, LSMW11, LAD16, LBB+16,
LYSS+16, LYZ13, MMO+16, MR12,
MSML10, MdSAS+18, MGL+17, MM14,
NSL16, NS16, NBGS08, OIH10, ORA12].
CUDA [PGS+13, PRS+14, PHJMI11,
PAdS+17, PGdCJ+18, PSHL11, PTMF18,
PRS16, RBA17, Ros13, SSE12, SK10,
S1Y12, SD17, STK08, SS09, Seg10,
SKM15, SP11, SR11, SJ+17a, SJK+17b,
TNB17, TVC18, TS12b, TA14, TCP15,
Tsu12, UZC+12, WG17, WJ12, WMRR17,
WMR19, WWFT11, WJB14, XXL13,
YULMTS+17, YHL11, YZ14, YMY11,
ZSK15, ZAFAM16, ZZZ+14, ZBd12,
ZLS+15, ZZZ+15, dAMC11, dAMC12,
vdLJR11, Che10, SD13, Vog13].
CUDA-compatible [LBH12].
CUDA-Enabled [LSMW11, DS13, KHBS19, SR11, ZLS+15].
CUDA-NP [YZ14]. CUDA-quicksort [MMO+16]. CUDA-sharing [PRS+14].
CUDA-streams [TVCB18].
CUDA-to-OpenCL [GScFM13].
CUDA-MPI [LYSS+16]. cudaBayesreg [Fer10]. CUDA-EASY [Sai10]. CUDAAlign [SDM10, dOSMM+16]. CUDA-TM [SM12].
culling [LHLK10]. CUMODP [HLM+17].
CUMULVS [GKP97]. CURAND [Ano12].
Current [Bak98, GFD05, IFI95, BDG+93b,
FK94, FHP+95]. Curse [OS97].
Customization [GSY+13]. cut [CG99a, CXB+12].
cut-through [CXB+12].
CVL [Har94]. Cybernetics [IEE95a].
cycles [PL96]. Cyclic
[DDPR97, WO95, HMKCS94, HC08, WO96].
Cyclops [dCZG06]. Cyclops-64 [dCZG06].
D [And98, DYN+06, SSS99, SH14, VDL+15,
Bha98, BCL00, Bri95, BMPZ94a, BAS13,
CGU12, CP15, EFR+05, ES11, GCN+13,
HF14a, HFI14b, JR10, KRKS11, KO14,
KD13, KHS01, KLR16, MK94, MSZG17,
NSM12, TP15, WMR19, WR01, YSL+12, vHKS94].
D-CICADA [MK94]. DAC [Cza02, Cza03]. Daemon [LB98].
Dagum [Stp02]. d‘Aix [GA96].
d‘Aix-Marlioz [GA96]. Dallas
[ACM00, IEE95i]. Dame [IEE96i].
damping [YPA94]. DAMPVM
[Cza02, Cza03]. DAMPVM/DAC
[Cza02, Cza03]. DAMS [CD98].
Dangers [BCP+97]. DaReL [KN95]. Data
[AJF16, BMR01, BCG+10, BG12,
CKnWH16, CLOL18, DERC01, Dn96,
EG15, EASS95, GTS+15, GB98, GMPD98,
Gua16, HA10, HB96b, HC06, JDB+14,
KA13, LK14, LDJK13, MV17, Man01,
ME17, MGA+17, MJB15, NJ01, NPP+00b,
PDP+00c, NA01, NLRH07, PCY14, Rei01,
SGH12, SPK96, SR96, Str12, TSH+15,
WO95, Wel94, ZDR01, ZG95b, AB95,
ASS+17, AGG+95, BK11, Ben95, BR12,
BP15, CFKL00, CGK11, CGL+93,
DRUC12, EP96, FB97, Fan98, FVLS15,
FME$^{+12}$, FKK$^{+96b}$, FWS$^{+17}$, GE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPOJ12, KN95, KJJ$^{+16}$, KRG13, LOHA01, LF$^{+93a}$, LL16, MA09, MMB$^{+94}$, MMM13, MR96, NCB$^{+12}$, NCB$^{+17}$, NPP$^{+00a}$, OPP00, PDY14, RJMC93, SJLM14, SSS99, SPH95, SK92, TW12, WO96, YCL14, YW095, ZJDKW18, ZQRA11.\[\text{Data-centered} \text{[JPOJ12]}.

Data-Driven \text{[ME17, NCB$^{+12}$, NCB$^{+17}$]}.

Data-Intensive \text{[Re01]}.

Data-Parallel \text{[AJF16, GB98, CKNWH16, SPK96, CGL$^{+93}$, FKK$^{+96b}$, MMB$^{+94}$, MR96]}.

Data-Parallelism \text{[BR12]}.

Data-Privatization \text{[KRG13]}.

Data-Structures \text{[GMDP98]}.

Databank \text{[FCP$^{+01}$]}.

Database \text{[AR01, BFZ97, EK97, MWG97, MM14, PPT96a, MN91, PPT96b, PPT96c, PMZM16]}.

Databases \text{[RGB$^{+18}$, BA06, Bos96, ZWL13]}.

Data \text{[DT17, CSPM$^{+96}$]}.

Datasets \text{[VPS17, KGB$^{+09}$]}.

Datatype \text{[Gro00, SWHP05]}.

Datatypes \text{[JDB$^{+14}$, RTH00, SGH12, Tha98, CAHT17, THRZ99]}.

Dave \text{[Stp02]}.

David \text{[Ano96a, Ano99a, Ano99b, Nag05]}.

DawnCC \text{[MGA$^{+17}$]}.

DAWNING \text{[HWM02]}.

DAWNING-3000 \text{[HWM02]}.

Day \text{[IS16]}.

DCX \text{[NE98, NE01]}.

DC \text{[B$^{+05}$, IEE94a, IEE95k]}.

DCE \text{[Sch93, FLD96, RS93, Sch93]}.

DDL \text{[FB97]}.

Deadlock \text{[LCZ$^{+02}$, SG12, HPS$^{+12}$, HPS$^{+13}$]}.

Deadlocks \text{[FKJ$^{+17}$]}.

Debbuger \text{[WCS99]}.

Debugger \text{[HM01, NE01, CH94, CG99b, MT96, XWZ96]}.

Debuggers \text{[Ano01a]}.

Debugging \text{[BDGS93, GKP96, KKV01, KV98, Mor95, NE98, Wis97, ZLL$^{+12}$, BL97, BS96a, DKF93, HLOC96, KCD$^{+97}$, MLA$^{+14}$]}.

December \text{[Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, PBPT95, Y$^{+93}$]}.

Decimation \text{[PCY14]}.

Decoder \text{[MC17]}.

Decomposition \text{[BJS97, CP97, EGH$^{+14}$, DBVF01, ETV94, OMK09, SHHC18]}.

Decompositions \text{[NZZ94]}.

Deconfliction \text{[TCP15]}.

Dedicated \text{[WLNL03, Hsu99, WLNL06]}.

Deep \text{[AHHP17, SEC15]}.

Defining \text{[GAML01]}.

Deformable \text{[STK08]}.

Deforming \text{[GA97]}.

Degree \text{[LZC$^{+02}$, SG12, HPS$^{+12}$, HPS$^{+13}$]}.

Degrees \text{[FJK$^{+17}$]}.

Debugger \text{[HM01, NE01, CH94, CG99b, MT96, XWZ96]}.

Debuggers \text{[Ano01a]}.

Derived \text{[JDB$^{+14}$, RTH00, SWHP05, Tha98, CAHT17, Jou94, THRZ99]}.

Der? \text{[Sch01]}.

Description \text{[TKP15]}.

Descriptors \text{[LNW$^{+12}$]}.

Design \text{[AS92, AAC$^{+05}$, Ano01b, ACD$^{+09}$, BCD$^{+15}$, BHH$^{+13b}$, BS96b, BMR02, BRM03, CLP$^{+99}$, ETWAM12, FD02a, FP03, GG09, HWM02, JSH$^{+05}$, KVGH11, KLC$^{+06}$, KL11, LVP04, Man94, MMSW02, NPS12, OPA$^{+15}$, Pan14, PLC$^{+04}$, PCS94, SBG$^{+02}$, SWY94, SSL97, SPK$^{+12}$, Sum12, THM$^{+94}$, USE94, VGRS16, BR91, CARB10, CSS95, DS96b, FD02b, GL94, GkLyCY97, KA95, LC07, MAS06, OA17, PGK$^{+10}$, PTW99, SL94b, Sep93, SIl96, SSD$^{+04}$, SWL$^{+01}$, Wal94a, Wal94b]}.

design-pattern \text{[MAS06]}.

designed \text{[BHS15]}.

Designing \text{[GKZ12, LAD16, SWHP05, SH14, WYLC12, ZLP17, AHHP17, DSOF11, Pan95b]}.\]
Designs [HVA+16, AAAA16, MC17, Shi94].
desktop [Mar07]. Detailed
[DLV16, RSPM98, BTC+17, LR06b]. detect
[Str94]. Detecting
[AGG+95, PPJ01, ZRAA11]. Detection
[BHW+17, CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, HHC+18, KSJ14, SG12, ZDD97, BBH+15, DKF94a, HDMG90, HGMW12, HPS+12, HPS+13, LZZ+02, RAGJ95, TCP15, TDG13, TWF009, WTHF14, YULMT+17].
Detector [DZDR95]. Determination [LAFA15]. Determine [BP99].
Deterministic [CFMR95, DK02, ZLL+12]. Develop [PD98]. Developer [IEE96i]. developers [Str94]. Developing [BFZ97, CCSM97, Cot98, DDLM95, Reu03]. Development
[AC17, Ano01a, BDG+91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TDYEE11, ArvW03, ABC+00, BL97, BDG+92a, DSZ94, DHP97, KCD+97, LLC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99].

diagnostic [RSBT95]. dictionary [LSZ15].

Diego [Has95, LF+93a, NM95]. Difference [UZC+12, GFP912, HE13, NZZ94, NB96, Pri04, Ram07, Str94, VM94]. Differences [AKE00, LDZC97]. Different [AIM97, GL97b, JCH+98, Ney00, Rab98, RBB97a, BN00, PY95]. Differential
[MFTB95, Riz17, JK10, NF94, RBB15, SP11].

Differentiating [Cer99]. Differentiation [BBH+08, BGK08, CgGM06]. Diffusion [HF14a, HF14b, MW98, CEGS07, DM93, MM92]. Digest [IE93a, IE93c]. Digit [DALD18, LAD16].

Dijon [YH96]. Dimemas [GLB00]. Dimensional

Dimensions [SAS01, Ano93h, HP11].
dipolar [LBB+16, LYS+16]. DIPORSI
[GGCG01]. DipSystem [SPL99]. Direct
[Bri10, GPC+17, LB98, BCM+16, Gra09, HWS09, MM11, SW15]. direction [BDG+93b]. Directions
[IF95, FK94, FH+95, Sun96]. directive
[LV12, NO02a, YL09]. directive-based
[LV12, YL09]. directive/MPI [NO02a].

Directives [BBG+01, BKO00, CCBPGA15, JFY00, LOHA01, VGS14]. directory
[JCP15]. Discovering [FJK+17]. discovery
[BK11, GWVP+14]. Discrete [ST17].
diskless [PKD95]. Disks [DFMBdFM02]. Dispersion
[RSV+05]. Displacement
[BJS97, PSS01]. Dissemination [GL97a].
Distance [MR12]. Distances [LAFA15].

Distributed
[AGS97, Ano95e, BMS+17, BME02, BGR97a, BL95, Bha93, BJ95, BRST94, BT01b, BHKR95, CGB+10, CL03, CSW97, CC99, DMB16, DBA97, DFMD94, DG97, DHHW92, DHHW93a, EMO+93, ESM+94, FH95, Fan98, FTVB00, FK01, Fos98, FS93, FFFC99, GGCM99, GCGG01, GCGS98, GCBM97, GCW95, GM95, HJ98, HC10, HRS97, IEE93d, IEE94a, IEE94d, IEE94g, IEE95h, IEE95i, IEE95k, IEE95l, IE96g, IEG96, IE96f, IE96e, IEE95f, IEE95i, IE95g, IE96b, IEG96, IE96f, IE96e, IE95f, JML01, KBA02, KP96, KDL+95b, KL95, KK02b, KSHS01, LC93, LHD+94, LHD+95, MZ93, MB12, MFTB95, MSCW95, Mat95, MBE03, NSBR07, NZ94, NH95, Pen95, PKYW95, Pet00a, Pet00b, PTT94, PMM95, PBB00, PD98, PMvdG+13, RGGD97, Sch94, SA93, SMOE93, SW91, Sun90a, Sun90b, TSS00b, THN00, WIL93, WO97, WCSS99, YH96, ZDD97, ZDR01, AMBG93, AGR+95b, AB95, Ano94e]. distributed

[Arn95, ADMV05, BSC99, BB95, Bir94, BMPZ94a, CBPP02, CH94, CEF+95].
E-scale [Gua16]. each [Ano00a, Ano00b]. Early
[CD96, LV12, SLG95, EFR+05, KJA+93].
Earth
[KTJT03, Nak03, Nak05a, Nak05b, UTY02].
Earthquake [UZC+12, KTJT03, KME09].
Easily [PKB01, East [IS16]. Easy
[HCA16, TDG13, MJPB16, SBF94].
EasyGrid [BR04]. EASYPVM [Saa94].
ECMWF [HK93, HK95]. ed
[Nag05]. EDEM [Tsu95].
Edge [ZDD97, Gra97, RAGJ95].
edition [Ano99a, Ano99b, Ano00b]. Editors
[AM07, GSA08]. education [ACM06a].
EDV [Ano94c]. EDV-Benutzertreens
[Ano94c]. Edward [Che10].
eect [DK06]. Eective
[MLAV10, RK01, MJPB16, SBF94].
effects [SSE12].
eacacy [GScFM13].
Eciency [KS96, MTU+15, CZ96, MMU99, RS95].
Ecient
[ADT14, Att96, BHW+17, BGBP01, BCK+09, BHL95, BFG+10, BGD12, Bru95, BDF+95, BDF+97, BMPZ94b, CAWL17, CFP96, DZ98a, DGG+12, FHPS94a, FHPS94b, HBT95, HKT+12, HT08, HCO6, HLO+16, KGK+03, KD13, LAD16, MDM17, MB12, MRB17, NBK99, PGS+13, RJMC93, RRBL01, TGBS05, WSN99, WWFT11, YZC95, ZWHS95, BFD94, BHW+12, CGH+14, FM90, FNSW99, FHB+13, HCL05, KVGH11, LK96, LA06, Pan95b, PRS+14, RR01, SOA11, TPB15, TDG13, YCL16, dCZG06, CRD99, THR99]. Eciently
[CC99, CCM+96, PHA10]. effortless
[ITT99]. eigenproblem
[BV99, GG99].
eigen solvers [DR18]. Eigenvalue
[DAK98, BSC99, THM+94]. Eighth
[ERS95, Sie94, IIE96b]. Eilean
[CSS95].
einem [BL94]. EinfluB [Gra97].
Einfuhrung [MS04]. Einstein [ARYT17].
Einstein-
[ARYT17]. Ejector
[CCBPGA15]. elastic [PTG13]. elasticity
[PTT94]. Elastodynamic [MAIVAH14].
electric [BALU95, Ano03]. electrical
[SII96]. electroabsorption
[WWZ+96]. electromag netic
[DSOF11, NZZ94, OMK09]. electromagnetics
[OGM+16]. electron
[ART17, JL18]. electron-molecule
[ART17]. Electronic
[GIN97]. Electronics
[IEE95d]. Electrosoft [SII96]. electrostatic
[VDL+15]. Element
[MS02b, ODO1, OMK09, SM02, VRS00, BB93, BCM+16, Gra09, HMKV94, KME09, KEGM10, MG+15, Nak05a, Nak05b, PPT94].
Elemental
[PMvdG+13]. elements
[KB13].Eliminating
[DSG17]. elimination
[ACMR11]. elision
[CLdJ+15]. elliptic
[AGIS94, PR94c]. ELLPACK
[BBH12, MRP+96]. ELLPACK-R
[BBH12]. Else
[Gei00]. elucidation
[MK94]. Embedded
[TCM18, YGH+14, ACJ12, CGK11, NEM17, TMW17, WSC+13]. Embedding
[FS97, SML17, MS96a].
Embodiment
[Ser97]. emerging
[RMNN+12]. Emission
[Pat93, EZBA16]. emphasis
[Bos96]. eMPI
[MS96a]. eMPI/eMPICH
[MS96a]. eMPICH
[MS96a]. Empirical
[SS94, Vy02]. Empowering
[AGMJ06, LB16]. emulation
[MS99b]. emulator
[ILTC94]. enable
[SPK+12]. Enabled
[Fos98, GSY+13, LSMW11, Pan14, ZLP17, DS13, GLM+08, JBB414, KHS19, KTF03, RA09, SHH01, SR11, ZLS+15]. Enabling
[APBcF16, BPG+15, CLSP07, DGB+14, GBH14, GH18, HJYC10, NPS12, TY14, ZP06, BR04, MA09, SHHC18]. encapsulation
[DRUC12]. encoding
[AAA16, PGBF+07, SM12]. endpoint
[LLH+14]. endpoints
[DGB+14]. energies
[TKP15]. Energy
[BP94, EGR15, KFL05, RBA17, VW92, FKL10, KN17, PTL+16, TDG13]. Energy-Aware
[EGR15]. energy-efficient
[TDG13]. Engine
[WA01a, NPP+00a, WA01b]. Engineering
[Ano98, BPG94, BP93, EGH+14, IEE96h, KaM10, LSB15, LF+93a, MS02a, MBS15, Nag05, SM07, Str94, DMW96, IEE94c, PW95, SI96, LF+93a], engineers [HW11], Engineers [SLJ+14, HSW+12, SHM+12].

Engine^{T,M} [OIS+06]. English [Wil94].

Enhance [AR01]. Enhanced [Ano98, CDHL95, CDH+95, FMSG17, KY10, PLR02, Saa94, BR95b, FE17].

Enhancement [ARL+94, Boi97].

Enhancements [BDG+95, BCKP00, DM95b, DM95a].

Enhancing [BFIM99, FSC+11, MVTP96, MSMC15, OFA+15]. Ensemble [Cot97, Cot98, BY12, FH97].

Enhance [AR01]. Enhanced [Ano98, CDHL95, CDH+95, FMSG17, KY10, PLR02, Saa94, BR95b, FE17].

Enhancement [ARL+94, Boi97].

Enhancements [BDG+95, BCKP00, DM95b, DM95a].

Enhancing [BFIM99, FSC+11, MVTP96, MSMC15, OFA+15]. Ensemble [Cot97, Cot98, BY12, FH97].

Ensemble-Based [FH97]. ENSOLV [AMS94]. Entwicklung [Sei99].

Environment [BDGS93, BFG+10, BFM97, BGL00, CHPP01, CTK01, DLB07, DI02, DHHW92, DHHW93a, DDL00, FTVB00, FWR+95, GJN97, GL97a, HRSA97, KBA02, KKH90, KDL+95b, KV97, LC93, Lus00, MS0GR01, MM02, MFG+08, MSS97, NJ01, Ong02, Rol94, SDN99, SGL+00, SGLH01, TTP97, WL96a, ABG+96, BDG+92b, BDG+94, BK96, BT96, CEF+95, CLASSPD99, DZ96, DL10, DHHW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL+96, GkLyCY97, HZ94, IJM+05, IvdLH+00, KCD+97, Kat93, KDL+95a, Kos95b, KFSS94, wL94, MSL12, MK97, NP94, PES99, PVKE01, PQ07, RNPM13, SSK+95, Sch93, SPK96, SBF94, SWYC94, Skj93, SSG95, TJD99, Tho94, WCC+07, WL96b, WLC07, ZPLS96].

Environmental [ANS95]. Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GFB+03, La01, Mat94, Mat95, MFC98, PS01a, RB01, SHH94h, SSS97, SCL00, TAH+01, ACGdT02, ARL+94, ALR94, ADDR94, AMV94, Bon96, BFIM99, CDH+94, CK99, DR94, DR95, EO15, HS93, HVSH95, LC07, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS93, ZL96].

environments-the [CDH+94]. EPS [GT94]. EPS-APS [GT94]. Epstein [BL95]. Epstein-Nesbet [BL95]. Equation [ES11, L979, SAS01, VRS00, DM12, LBB+16, LYSS+16, MS95, NP94, ONI12, Ols95, Pri14, iSYS12, SSB+16, YSVM+16, YSMA+17].

Equations [Ano98, BG95, GI90, Huc96, LLY93, MFTB95, ORA12, ZB97, BHW+12, Che99, IM99, JK10, Jou94, MM11, NF94, RBB15, SP11, SMSW06, ZZG+14, dIH94].

Equi [LTRAO2]. Equi-Join [LTRAO2].

Equivalencing [LLG12]. Era [ABB+10, CZG+08, CGKM11, EdS08].

Erratum [Ano01b, HF14b, W94a]. Error [DFC+07, HPS+12, HPS+13]. Errors [FCLG07, SD16]. Erweiterung [GBR97].

ESA [Whi94]. ESBM [MdSAS+18].

ESBMC-GPU [MdSAS+18]. Espoo [RWD09]. ESPRIT [CDH+94]. Estimation [GI0, AMHC11, CCU95, GB94, JMDVG+17, KS13, ZWH95].

Estuarine [LRQ01]. Ethernet [CC00a, Fin97, HCF05, KYL03, KYL05, OF00, PFG97].

EU [Ano03]. Eugene [MCdS+08]. Euler [DLR94, IDD94]. Euler/Navier [DLR94, IDD94].

EURO [HAM95b, HAM95b, HAM95b, BFM96].

Euro-Par [BFMR96, HAM95b, BFM96].

Euromicro [IEE95b, IEE96g].

EuroMPI [CDND11, KGRD10, TBD12, TB14].

EUROPE [LCMS96, Ano92, Ano93f, Ano93g, Ano94g, Tou96]. European [AD98, Ano94i, BR95a, BDLS96, BC00, BDW97, CHD07, CHD09, C01, CDND11, DKD05, DLM99, DKP00, DLO03, KGRD10, Kra02, KKD04, LKD08, MTW06, RWD09, TBD12, WP94, DHH97].

EuroPVM [BDL96, OL05, DKD07, MTW07].

EUROPVM/MPI [DL05, DKD07, MTW07]. EuroPVM-MPI [KKDV03].

EUROSIM [BH95, DSZ94, BH95]. Eurospace [Tou96].

Eurospace-Ada-Europe [Tou96].

Evaluate [MW98]. Evaluating
[BWV+12, FVLS15, FST98a, GFD03, GFD05, GGCG001, GB96, HW97, LH95, SSSS97, ZSnH01, GScFM13, LTLC94, TG09, ZLZ+11]. Evaluation

[ATM01, BF98, BIC+10, BFM97, BEG+10, CLP+99, DI02, FST98b, FSSD17, Han98, JCH+08, KS96, KK02b, KSS00, LGCH99, LNK+15, LZ97, kL11, LVP04, MH01, MGC12, NON00, OTK15, OM96, Pan14, Par93, RB01, SWHP05, SCP97, SEF+16, SBF+04, SM02, Sou01, SJK+17a, SJK+17b, TOTH99, TSB02, TSB03, TTSY00, UMK97, VY02, AB13, BBG+14, BBH+...13a, BMG07, CB11, DBG+16, HPR+95, HAASN00, HPS95, IM94, JCI7, JMdVG+17, LV12, LN8+12, MKP+96, MM03, MT96, MSH99, NN95, PSK08, RLFdS13, SL94b, SW+12, SWY94, SFSV13, TSP95, THM+94, TMP01, Wor96, YWO95, YS93, ZHK06]. Evaluations [MM14]. Event

[KKV01, NSLV16, THS+15, WM01]. Event-Based [NSLV16]. everything [CCM+06]. everything-shared [CCM+06]. Evolution [Mat01a, PS01a, RBB17, SSL97, SGM94, GS93, SSD+94]. Evolutionary [B+05, DSM94, Rag96]. Evolving [Bad16, ER12, MdS09]. Ewing [ANO95, ANO99c, ANO99d, ANO00a, ANO00b]. EWOMP’99 [BC00]. Exact [DOSMM+16]. Example [Che10, SK10, NB96, Pat93]. Exascale [Bad16, LV12, LSG12]. Exception [FMSG17]. exchange [MMM13, Pan95a]. excluded [BHW+12]. executable [WMP14]. Execution [AH12, BME02, DT17, FC05, FM90, GR07, KGK+03, Mar05, MFG+08, MAGR01, Ney00, STY99, SAP16, EPM99, Mor95, SMAC08, TNN17, TSY99, TSY00, UGT09]. Executions [GAML01]. Exhibition [HS95a, GH94, LCHS96]. Existing [CB00]. EXOCHI [WCC+07]. Expand [CGC+02]. Expanding [LA02]. expected [CAHT17]. Experience [BCP+97, BT96, CP98, PS01a, Tou00, AMS94, CARB10, KJA+93, RSC+15]. Experiences [AH01, BFZ97, CMV+94, CLLASPDP99, GLN+08, GS91a, GS97, GB96, GL95d, ITT02, JR10, KS97, Mar02, TGM09, ZPLS96, ZKRA14, AL92, CCF+94, Sch94, SGDM94, BDG+93b]. Experiment [Lu09]. Experimental [BL99, BIC05, EGC02, Ser97, UMK97]. Experiments [BPMN97, Coe94, LGM00, OS97, RR00, ZB97, RHG+96, HAJK01]. Expert [BPG94]. experts [EO15]. ExpEther [NMS+14]. Explicit [BHV12, GFPG12, SGHLO1, LC97b]. Explicitly [MAIL12, SYR+09]. exploit [ZP106]. Exploitation [GGL+08, GAM+02, BK11, GAM+00]. Exploiting [Add01, Bri10, FKL08, HEHC09, KFL05, NAAL01, Nob08, THH+05]. Exploration [AMuHK15, OFA+15, ABPD15, GE95, GE96, PDY14]. Explorations [BGC+15]. Exploring [IFA+16, MBK12, MTU+15]. Expose [SAL+17]. Exposing [SD16]. Exposition [IE99d, LF+93a]. EXPRESS [KS96, Ahm97, FK94, LH95, SHH94a, SHH94b]. Expression [BN12, GDM18, KH15, Sur95a]. expressions [SFLD15]. expressive [TRAI2a, YLC16]. Extend [DFA+09]. Extended [BR02, HTA08, SS99]. Extending [ABB+10, BCC+00a, BCC+00b, BDB+13, CS96, CG99a, KDT+12, LMRG14, Mar03, OFA+15, RGDML16, SDV+95, TMTF96, CG96, GGLH+96]. Extensible [BL97, GS94]. Extension [AELGE16, BGR97a, CSAGR98, VAT95, Hum95, JH97, SG14, SC95, ZT17, GBR97]. Extensions [Fos01, GOM+91, GLHL+98, HVA+16, HE15, DPSD08, HP05, Kat93, Ano99c, Ano09d]. Extent [KL11]. Extent-Based [KL11]. exterior [HMKV94]. external [BBB+94]. Extraction [CBL10, HLO+16, dAT17]. Extreme [MdSC09, ZKRA14].
Extreme-scale \cite{ZKRA14}. eyes \cite{Str94}.

F [FHPS94b, FHP$^+$94]. **F90** \cite{DP94}. face \cite{HDDG09}. **Faces** \cite{Gro12}. **facilitate** \cite{PKB06}. **Facilitating** \cite{MC99,ZLL$^+$12,ESB13}. **Facilities** \cite{MMH98, MN91}. **Facility** \cite{KG96, SHTS01, KZCS96, LHCT96}.

factorization \cite{AZ95, BSvdG91, BRS92, DG95, KBP16, WLC07}. **Factorizations** \cite{TD98, LC97b}.

Fail \cite{LFS92, LFS93a, LFS93b}. **Fail-safe** \cite{LFS92, LFS93a, LFS93b}. **Failure** \cite{BBH:::13a, CRGM14, BBH$^+$13b, CGH$^+$14, BDB$^+$13}. **failure-aware** \cite{CGH$^+$14}.

failures \cite{JS13}. **Faithful** \cite{KLR16}.

Fall \cite{Gra97}. **false** \cite{JE95}. **family** \cite{AVA$^+$16}.

farming \cite{Str94}. Fast \cite{Ben01, BHS$^+$02, BBH12, CS14, DFN12, EM02, Hog13, JFGRF12, JMdVG$^+$17, PSHL11, PR94c, PBC$^+$01, RB01, SE02, TKP15}. **fields** \cite{BALU95, RSBT95, Fifth}.

February \cite{Ano95d, GE95, GE96, IEE93a, IEE94a, IEE97c}. **FEM** \cite{GEW98}.

FEM-Systeme \cite{GEW98}. Fermi \cite{SP11, WKP11}. fermions \cite{GM18}. **FETI** \cite{KLR$^+$15}. **few** \cite{NS16}. **few-body** \cite{NS16}. Feynman \cite{NS16}. **FFT** \cite{DALT18, GB98, JKM$^+$17, NSM12, SH14, WJB14}.

FFT-Based \cite{WJB14}. **FFTs** \cite{EFR$^+$05}.

FFT-W \cite{KT10}. **FHP** \cite{BMS94a}. **Field** \cite{KNT02, Goce02, TKP15}.

filamentary \cite{YYA94}. **File** \cite{BIC$^+$10, CGC$^+$02, LRT07, kLCCW07, kL11, PLR02, RK01, SS00b, Tsu07, WTR03}. **File-I** \cite{PLR02, RK01}. **File-I/O** \cite{PLR02, RK01}.

film \cite{SL00}. filter \cite{BY12, CCU95}. Finding \cite{FCLG07, GAVRRL17, PCS94}. **Fine** \cite{AZG17, BBG$^+$10, JCP15, SFL$^+$94, TC18, YSS$^+$17, BK11, KW14, LZYH19}.

Fine-Grain \cite{AZG17, JCP15, SFL$^+$94, BK11, KW14}.

Fine-Grained \cite{AZG17, JCP15, SFL$^+$94, BK11, KW14}.

Finite \cite{DFN12, MS02b, MAIVAH14, OD01, OMK09, Pri14, SM02, OMK09, Pri14, SM02, UZC$^+$12, VM94, VRS00, BB93, Gra09, GFGP12, HE13, HMKV94, KME09, KEGM10, KB13, Nak05a, Nak05b, NZZ94, NB96, Ram07}.

Finite-Dierence \cite{UZC$^+$12, VM94, HE13, NZZ94, Ram07}.

Finite-Element \cite{MS02b, BB93, KME09, KEGM10, Nak05a, Nak05b, NZZ94, NB96, Ram07}.

Finite-Difference \cite{BBG$^+$10, VM94, HE13, NZZ94, Ram07}.

FlexCL \cite{VBLvdG08}. **Service** \cite{VBLvdG08}.

flexibility \cite{KK02b}.
DGB+14, GAM+00, HC08]. Flink
[KWEF18]. FlinkCL [CLOL18]. flip
[KO14, Kom15]. Florida [ACM98b]. Flow
[BHW+17, BGD12, CGZQ13, CCBPGA15, FM09, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTDH99, JAT97, LL16, MBKM12, Ols95, PTT94, RM99, SCC95, SU96, TS12b].
Flow-Based [BHW+17]. Flows
[GAP97, BCM+16, BTC+17, Heb93, LLG12].
flows
[CB11]. Fluid [DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TEGEM09, ALR94, ATL+12, AGMJ06, BvdB94, BHS18, BI95, HVSC11, MRRP11, PBK99, SPE95, SZBS95b, WPH94]. fluid-particulate
[ATL+12]. fluids [HK94, WB96]. Flux
[QRM96, QRG95]. fly
[KSJ14, THRZ99, BCAD06, BADC07]. FM
[LC97a]. FMA [LO96]. Fock [CBHH94].
Focus [Cla98, CFF19]. foolish [Rol08a].
footprint [TS12b]. force [Goe02]. Forecast
[AHP01]. forecasting [Bjo95, KOS+95a].
Forest [JML01, NCKB12]. ForestGOMP
[BFG+10]. Foreword [CHD09]. FORGE
[WCVR96]. Fork [BGD12, SML17].
Fork-Join [BGD12, SML17]. form
[NCB+12, NCB+17]. Formal
[BG94a, BdS07, GKS+11, GB98, LPD+11, PGK+10, VVD+09, BG94c, SZ11].
Formalizing [FGRT00]. Format
[BBH12, MDM17]. Forschung [Ano94c].
Fortran [Ano97, Ben95, Bra97, GBR15, AC17, Ano98, AS14, BW12, DZ98b, Don06, GML+16, HE13, HH14, HZ99, KaM10, Kuh98, LC97b, LCC+03, MWO95, iSYS12, SM03, SMCH15, TGB+02, Wal02, YMBCB14, YSV+16, YSMA+17, vHKS94].
Fortran/PVM [MWO95]. Forum [Str94].
Forward [RMNM+12, BDB+13].
forwarding [CBX+12]. foster [SM12].
Foundation [Gei01]. four
[GSMK17, MGG05]. four-atom [MGG05].
four-particle [GSMK17]. Fourier
[DBLG11, BCM+16]. Fourteenth [IEE95b].
Fourth [Ano89, IEE93d, IEE95k, Sie92a, Sie92b, Ano94i, IEE96g]. FPGA [MTU+15, PWP+16, PGF18, RGB+18, WTH17].
FPGA-Platform [WTH17]. FPGAs
[LCW18, MC17, OFA+15, PGS+13, WZHZ16, Rôh00]. fractal [Wu99].
fragment [KS15a]. fragments [OA17].
Framework [DGSMS93, FC05, GCGG01, GR07, GDDM17, MGL+17, NSZ13, PMvdG+13, SSB+05, SSAS12, Sun90a, Sun90b, WZH16, Ano93c, BA06, BR04, BAG17, EFR+05, FLMR17, GM13, KKM15, KJJ+16, KKO+08, KH01, LME09, LGG16, LCM17, LS08, PTL+16, RSC+15, SL00, TDB00, YLC16, YWTC15, ZT17, dAT17].
Frameworks [OP10, ASS+17, KDS012].
France [ACM90, BR95a, BMFR96, CHD07, DE91, FR95, JPT94, MCD+S+08, VW92, YH96, GA96, IEE94c]. Francisco
[BBG+95, IEE93a, IEE94g]. Frankfurt
[Ton96]. Frankfurt/Main [Ton96].
Fredericton [BG91]. Free
[PKYW95, CP15, SOA11, Zab12]. freedom
[KTJT03]. Frequency [IEE94c]. friendly
[SVC+11]. Frontiers [ACM06b, IEE96c, IEE96c, Sie92a, Sie92b, Sie92a].
Frontiers’95 [IEE94a]. Frontiers’96
[IEE96c]. FSI [HAA+11]. FT
[FD00, LNLE00]. FT-MPI [FD00]. Fujitsu
[Ano98, AKL99, BHS+02, SWJ95, SH96]. full [CFF19]. full-orbit [CFF19]. Fully
[GA96, SSB+16]. Function
[AGS97, Bshirt, MCPP17, RB01, SW12, HE15, JMDV+17, KRC17]. Functional [ACM90, AJSF16, CMN11, NW98, Ser97, CBHH94, EP96, HSE+17, SFLD15, WZWS08].
functionality [BFM99]. Functions
[BJMG02, Brü12, Hat98, MDM17, CdG96, HWX+13, PNV01]. Fundamentals
[Wa96a]. fused [TW12]. Fusion
[FH01, FMFM15, PKE+10]. fusions
[FFM11]. Futhark [HSE+17]. Future
[Dar01, IEE93d, Mat00a, BDG+93b, FK94, FHP+95, Gei94, Sni18]. Futures [Kuh98].
fuzzing [LLCD15]. Fuzzy
G [OPM06]. G2 [Cot04, KTF03, OPM06].
GA [Ara95]. GAIN [ARYT17].
GAIN-MPI [ARYT17]. Gains [CMM03].
Gallipoli [Ano93b]. GAMMA [CC00a].
Gap [ABP+17, ASS+17]. Garbage [GTS+15].
Gas [BMS94b, BBK+94, BMS94a]. gather [MTK16].
Gauge [BW12]. Gauss [BG95, LM99, Ols95].
GCel [SHH94a, SHH94b]. GECCO [B+05].
Geist [Ano95b]. Gemini [SWS+12]. gms [Fer04, mH12, PF05]. Gene
[DM18, PCS94, AAC+05, BGH+05, EFR+05, KMH+14, LM13, MV17, MSW+05].
gene-finding [PCS94]. Gene/L [AAC+05, BGH+05, EFR+05, MSW+05].
Gene/Q [KMH+14, LM13, MV17].
General [Che10, IH04, MW08, SK10, SZBS95a, Sun94a, ABDP15, ADL03a, ADL03b, CBM+08, FLD96, KPNM16, PF05, RSBT95, SZBS95b, SWM06, YPA94].
General-Purpose [Che10, SK10, ABDP15, CBM+08, KPNM16, PF05]. Generalized [DFKS01, FKS96, BSC99, SD99, van93].
Generating [AZG17, CGL+93, ER12, IJM+05, PKB+16, SFLD15]. Generation [AB93a, CC17, FAFD15, Gei98, GTH96, HTO8, JFYO0, LTTD14, RG13, SBB+17, TGBS05, VPS17, AB03b, CPR+95, DCD+14, DWM12, KHS12, KPL+12, KH10, SP11, WS96, WMP14, ZKRA14]. generational [WK08a, WK08b, WK08c]. generative [MAS06]. generator [Lan09, TNIB17, YL09]. Generic [ARS89, AKL99, GB98, BAS13, GM13, ZT17].
Genetic [FTVB00, MTSS94, MSCW95, PB12, WKS96, Wal01a, WHDB05, AB13, BB95, FSTG99, HPLT99, RJC95, Wal01b, B+05].
genetics [LM99]. Geneva [JEE97b].
genomic [SDM10]. GeoComputation
[AB96, Abr96]. GeoFEM [NO02b, NO02a, Nak03]. geomechanics [BJS99]. geometrical [FMS15]. Geometry [STK08, STT96]. geophysical [Has95]. Georeferencing [GCCS98]. Georgia [USE00, UCW95]. German [EGH99, GBR97, Gra97, GEW98, Sei99, Wer95].
Germany [BDL96, GH94, KGRD10, MTWD06, MDC09, PSB+94, Sch93, Tong96, Ano93a, BPG94, Cal94, GH+93, WPH94].
Gesellschaft [Ano94c]. get [Str94]. Getting [Nob08]. GF100 [WKP11]. gHull [GCN+13]. GHz [Ano03]. Gibbs [TKP15].
Gigabit [CC00a, HcF05, EGH99]. Giganet [GT01, Tra02b, bT01a]. GIS [CFPS95, CSM97]. Give [DZ98b]. Glenda [SBF94, Bie95]. Global [BGG00, DSS00, Pan95a, Ros13, SHTS01, STK08, SW15, TTP97, HWS09, HCL05, HEHC09, LF+93a, Str94, Wan02, YLZ13, Zah12, ZWS95].
Globally [BHS+02]. GLUE [Rab98]. GMRES [hD94]. Gmund [Wo93]. GNU [YSMA+17]. go [KC94]. good [Mat03].
Göttingen [Ano94c]. GP [LRBG15].
GP-GPUs [LRBG15]. GPPS [ABP01, BIC+10, PTH*01a, PTH+01b].
GPGPU [BGG+15, HA11, HCH16].
Gmunden [Ano94c]. GPGPU [BGG+15, HA11, HCH16].
GPGPUs [JMdVG+17, LSB15]. gprof [JLT11].
GPU [Che10, KA13, AKL16].
AHHP17, BDP+10, BR12, BCD+12, BCD+15, BTC+17, BWV+12, BBH12, CLOL8, CBYG18, CCBPGA15, DF17, DS16, DK13, DALD18, DSOF11, DWL+10, DWL+12, ER12, Fer04, FMM11, FSSD17, GCN+13, HVA+16, HSE+17, HK09, HK10, HZG08, HJ12, JDB+14, JLS+14, JR13, JNL+15, JPL17, JPT14, KDS012, Kha13, KSL+12, KPL+12, KI17, KPNM16, KEGM10, KO14, LV12, Lee12, LRG14, LLC13, LAP16, MOM+16, MDSAS+18, MGL+17, Ngu08, NMS+14, NSM12, OFA+15, Pan14, PDY14, PGdCJ+18, PF05,

gpuSPHASE [WMRR17, WRMR19]. GPUVerify [BCD12]. GQ [RFG00]. GRACE [YKI96, ZRQA11]. GRADE [DDL00]. Gradient [BG95, GFPG12, KN17, MM92, Ols95]. Grained [ADRCT98, BBG10, LGM00, TCM18, YSS17, He93, LZHY19, RJC95]. Grammatical [RBB17]. Grand [DGMJ93, Ten95, BDG92c]. Graph [BHW17, DW02, MM14, NPS12, PPR01, STV97, HLP10, HK0011, PP16, PD11]. Graph-Based [NPS12]. Graph-Partitioning [STV97]. Graphic [HJBB14]. Graphical [BDG91b, DDL00, BDG92a, KCD97, KFSS94, SSKF95, VDL15]. Graphics [KS15b, L SVMW08, LSWM11, SLJ14, vdlJR11, ABDP15, BHS18, CBM08, DBLG11, Fer04, GKL95, HTA08, HSW12, KFA96, KY10, KME09, LHLK10, MSZG17, PF05, SHM12, SR11, WWFT11, ZLS15, MSML10].

Graphs [LGM00, OP10, PFG18, EP96, MC99, MJPB16]. Gravitational [ZSK15, KM10]. Greece [CD01, CDND11, SM07, TG94]. green [PTL16]. Grenoble [JPTE94]. Grid [AB93a, CGB10, CLL03, DPP01, Fos98, KTO2, Laf01, Liv00, MRB17, PLK04, Rei01, TEGM09, AB93b, Eng00, GLM08, KRKS11, WYLC12, AAS08, BR04, CCHW03, DKD08, FC05, GFB03, GL02, KTF03, KGK10, KSS07, LC07, LS08, NSBR07, RPM08, RTR07, SHTS01]. Grid-Adaptive [KT02]. Grid-Enabled [Fos98, GLM08, KTF03]. Grids [NO02b, ACH11, CC10, KBG09, NO02a, NB96, BHH06, GR07, Ram07, SN01].

GROMACS [BvdSvD95]. Gropp [Ano95c, Ano99c, Ano99d, Ano99e, Ano99b]. Gross [LBB16, LYSS16, SSB16, YSV16, YSMA17]. Ground [HTHD99, NS16]. groundwater [AFST95, EGD92]. Group [AD98, Ano98, Ara95, ACDR94, CHD07, CHD09, CD01, CDND11, DDK05, DLM99, DPK00, GN95, KGRD10, Kra02, KKD04, LKDO8, MC94, MTW06, RWD09, TBD12, UMK97, BDW97, DLO03, MM99]. grouping [WPL95]. Groups [GOM10].

Hack [DLV16]. Hague [Ano93f]. Halide [RKBA13]. Hamburg [PSB94].

Hamiltonian [ART17]. Handling
[DFC+07, FMSG17, LSB15, LGM00, RC97, FFFC99, LNW+12, THRZ99]. Hands [KmWH10]. Hands-on [KmWH10].

Harbor [BBC+00]. Hardware [BGG+15, BWW+12, Brii12, BCKP00, CDPM03, DW02, GJMM18, HSP+13, LSWM11, MF98, PSM+14, PKB+16, vdLJR11, ER12, GGL+08, PMZM16, Rab99, SBG+12, SH94, SWS+12, YAJG+15, ZLS+15].

Hardware-Based [CDPM03]. Hardware-oblivious [HSP+13]. harmonic [GSMK17]. Harness [EBKGO1, MS99b, FBD01a, FBD01b, FBVD02, FD02a, FD02b, MSF00, Gei98].

Harrogate [CJNW95]. Hartree [CBHH94]. HASEonGPU [EZBA16]. Haskell [WO97].

Hate [Dan12]. Hawaii [ERS95, ERS96, MM93, ZL96]. HCA [KBG16]. HDL [Kat93, KMK16].

HDMR [KD12]. Heading [Sch99]. Heat [SAS01, NP94, iSYS12]. Hector [RFRH96, RGG+99]. Heijen [Van95]. held [AGH+95, GA96, JB96, KG93, MM93, Old02, R+92, SP95, TG94]. Helios [SPK96]. Helmholtz [HMK94]. Helps [Stp92].

HeNCE [MRV00]. Heterogeneous [ABB+10, BDG+93a, BDGS93, BL95, BCP+97, BGR97b, BCKP00, CMMR12, CLOL18, CLBS17, DGM93, DGMJ93, FDD97a, FDD97b, FLD98, Fos98, GSS1b, GDDM17, IEE93f, KRO99, KCR+17, LC93, MRV00, MM01, MM02, NTR16, PD98, SMS00, SG10, TQDL01, VLO+08, ACgdT02, ADB94, ADDR95, AMV94, BDG+92c, BDG+94, BALU95, BRR99, BAG17, CCM12, CFP95, FMB96, GKDZ12, GGN+10, GKC13, GKH94, KSC13, KSL+12, Kos95b, LCL+12, LR06a, Lee12, Mai12, MSL12, MM03, NP94, NEM17, Pen95, RCFS96, Sjk93, Sni93b, Sun94b, Sun95, TBB12, TMW17, TKP15, TDG13, VB99, WCC+07, YST08, YSL+12, ZJDW18].

HeteroMPI [LR06a, VLO+08]. Heuristic [BHM96, STV97, WH94]. HI [ERS96, HS94, IEE96c, AC97a].

HICSS [ERS96, MM93]. HICSS-26 [MM93]. HICSS-29 [ERS96]. hiCUDA [HA11].

Hierarchical [BMR00, BSN01, HA10, H17, MALM95, RR02, ADVM05, BDV03, GJMM18, OKM12, YPZC95]. hierarchies [SYR+09]. High [AC97b, AC98a, AC98b, ACM00, ACM01, ACM04, BPG94, BRST94, BS07, CDD+13, CNM11, CDH105, CS14, DPP01, DDL00, DE91, FGKT97, GSHL02, GBH09, GBS+07, GLDS96, HVA+16, HA11, Hol12, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IF97, J1M11, Kha13, KMK16, KEGM10, KH15, Lax01, LCK12, LC97a, LkLC+03, LBH2, LWPO4, MW98, MPD04, ME17, MAB05, NO05, OHI0, OML01, PKB1, PR94b, PTH+01b, Rab08, RH01, SPM+10, SCLS12, SJ02, SLO05, SVC+11, SSS97, Tolu00, Ts07, WV92, WN10, YCL14, YWCF15, YSP+05, AH95, An03, BADC07, Ber96, BWT96, BID95, CHKK16, CBYG18, DL10, Duv92, EZBA16, ESB13, FME+12, GS02, GCC+07, GL96, GL97c, HGDG09, HW11, Hos12, KBP16, KME09, L909, LBD+96, MSL12, MSZG17, NS91, NFG+10, Old02, OGM+16, PGS+13]. high [PGK+10, PF05, PTW99, Reu03, RJH14, SG14, SFLD15, ZSK15, ZW13, DAT17, CDH+95, DZ98b, D+95, DE91, GH94, HS95a, KD12, LCHS96, LC97b, SSH08, Ten95].

High-Dimensional [MW98]. High-Level [CS14, DDL00, HA11, Hos12, SG14, SFLD15]. High-order [KEGM10, KME09, OGM+16].

High-Performance [AC98a, FGKT97, IEE97c, LkLC+03, LOM1, PKB1, PR94b, PTH+01b, Rab08, RH01, SPM+10, SCLS12, WN10, GLDS96, OIH10, SVC+11, An03, ES13, FME+12, GL96, GL97c, HGDG09, KEP16, LBD+96, Old02, PGS+13, PK+10,
PF05, Reu03, RJDH14, SFLD15, ZSK15, HS95a, GH94, LCHS96, SSH08.

High-Precision [Kha13]. High-Scalability [BS07]. High-Speed [CDHL95, KMK16, AH95, BW96, CDH+95].

high-throughput [ESB13]. Higher [MYB16, KB13, wL94]. higher-level [wL94].

Higher-order [MYB16]. Highly [MM95, PV97, TMP16, CARB10, GBH14, GBH18, VM95]. highly-scalable [GBH14].

Hills [IEE93f]. HiNet [AH95]. HIRLAM [Bjo95, HE02, KOS+95a].

histogramming [KRC17]. History [OWSA95]. Hitachi [Ano03, NNON00, TSB02, TSB03]. HLA [RTRG+07]. Hoare [KI17].

Hoc [IBC+10, ITT+02]. Högskolan [Eng00]. Hole [Kha13]. holistic [TWFO09].

Homomorphisms [RG18]. homotopy [GWC95, SMSW06, VY15].

Honolulu [IEE96e]. honor [Str94]. Host [Ano95e, LLRS02]. Host-Parasite [LLRS02]. HOTB [GSMK17]. Hotel [IEE94e]. Hotel-Copley [IEE94e]. Hough [YULMTS+17]. house [ZLZ+11].

Houston [ACM06a, Ano95a, Cha05, DMB+92, Y+93].

HP [CGB+10, BCM+16]. HPC [ASS+17, CGBS+15, GDC15, GKK09, LCV94b, OLG+16, PRS+14, ZLP17].

HPC2002 [Ano03]. HPCN [LCHS96].

HPF [BP98, BF01, BID95, Bri00, BV03, CM98, CDD+96, Coe94, FKK+96b, FKKC96, FKK96a, LZ97, OP98, OPP00, SM02, Str94].

Hungary [DKP00, KKD04, VV95, FK95]. hunting [JPP95]. Husky [YLC16]. Huss [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05].

Huss-Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d]. Hybrid [BBG+10, BBH+06, CGC+11, CNM11, Cha02, DR97, GPC+17, HVSC11, IDS16, KS15a, KLR+15, LLRS02, LRG14, MS02b, NO02b, PZ12, SSB+16, VPS17, WT12, YHL11, YPAE09, YTH+12, ADR+05, BBG+14, CSPM+96, FMS15, GA+91, GKK17, GKK96a, HKK17a, HKB+02, HMB+11, HKN00, HLL+01, MLAV10, MRRP11, NO02a, Nak05a, Nak05b, PAR14, PHJ+11, SDJ+17, SVC+11, WT11, WYLC12, WYL+12, YWC11, ZWL+13].

hybrid-core [BBG+14]. Hybridizing [LSG12]. HYDRA_MPI [PBC+01]. Hyper [CSW99, SBT04, TBG+02, ZAT+07]. Hyper-Rectangle [CSW99].

Hyper-Threading [SBT04, TBG+02, ZAT+07]. hypercube [HS95b, Sur95b].

Hyperspectral [VLO+08]. I-SPAN [LHHM96, Li96]. I-WAY [FGT96].

I/O [Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLC+03, kLCC+06, MV17, MGC12, MG15, PSK08, PLR02, RK01, SBQZ14, Tha98, Tsu07, WSN99, ZJDW18].

IASTED [Ham95a]. IBM [AL93, Ano03, BBB+94, BGP01, BR95c, BR95b, Bri05, CE00, CM93, FHS94b, FHP+94, FHP+95, Fra95, FWR+94, GL95d, HSMW94, HKV94, Heb93, JF95, KB98, KAC02, KHS01, KMH+14, LC97b, MP95, MW93, MABG96, NW93, WZWS08, XZ96].

IBM-SP1 [FHS94b]. ICA [IEE96d]. ICAPP [Nar95]. ICCMSE [SM07]. ICIP [IEE94b]. ICPP [Ag95a]. ID [DGG+12]. Idaho [Str94].

identification [HPL1999]. identity [KN17].

IEEE [ACM97b, ACM98b, ACM04, ACM05, Bha93, IEE94e, IE94g, IE95b, IE95a, IE95k, IE95g, IE96b, IE96f, IE96d, IE02, Nar95].

IEEE/ACM [ACM04]. IFIP [Boi97, DR94, PSB+94]. IFS [AHP01].
Igniting [ACM03]. II

[DE91, GE95, HS94, BPS01, BWW+12, EM00b, GAVRR17, Sta95b]. III

[BP94, BP93, DSM94, GE96, Has95, OKW95, SSGF00]. ILDJIT [CARB10]. I’ll

[Har94]. Illumination [STK08, ZWHS95].

ILDJIT [CARB10]. I’ll

[Har94]. Illumination [STK08, ZWHS95].

ILU [ABF+17]. ILU-preconditioned [ABF+17]. im [Gra97]. Image [DYN+06, FJBB+00, GA96, GPC+17, KBA02, KS01, LSZL02, NJ01, PLR02, RRBL01, WN10, ARL+04, DZZY94, GDC15, JC96, KKLL11, RKBA+13, SLS96, Uh96, Wu99, YULMTS+17, YPZC95, YZPC95, dAT17].

Imagery

[GGCM99, GGCG99, GCGS98, GGGC99].

Images [Uhl94, Uhl95b, VLO+08, NAJ99].

Imaging [NH95, Has95, LM13, Pat93].

imbalances [MLVS16].

immunodominance [ZWL+17].

Impact

[ADLL03a, ADLL03b, AB93b, BR91, BvdSvD95, BR95b, Ber96, BCR99, BK96, BCK+09, BS01, BS05, Bor99, BRR99, BS96b, BDV03, Bri95, BB00, BAS13, CDZ+98, CEGS07, CG99a, Cgm96, CBHH94, CD96, DS96, DS96a, DL10, DBB+16, DSOF11, DM12, FF99, FWNK96, GT96, FGG+98, GCC99, GG99, GG09, GAVRL17, GL92, GL94, GL96, GLD96, GL97e, GT07, GkLyC97, HBT95, HCL05, HS95b, I1TT99, IvdLD+00, JRM+94, JC96, K1Y10, KTF03, KBVP07, KL95, KVGH11, KB13, Lee12, LC07, LO96, MCM+16, Man94, MAIHA14, MS95, MSZG17, ON12, OKW95, OA17, OGM+16, PHJN11, PR94a, PTW99, PCS94, Ram07, RRFH96, Sep93, SZBS95b, SCL97, Sto98, SNMP10, Sur95b, SL95, TKP15, TDP15, TS12b, TA14, TCP15, Ts95, TVV96, VDL+15, VGRS16, VM95].

implementation

[Was95a, WMRR17, WMR19, YP94, ZLS+15, dh94, dlAMCFN12, van93].

Implementations [AKK+94, Ano01a, ACMR14, AJF16, BM00, BS07, BEG+10, FBN94, Gro02b, kLCC+06, LCW+03, Mar02, ORA12, Sap97, TSCAM12, TGM09, VS00, WT12, ZDD97, CLSP07, ER12, ED94, GML+16, ICC02, KWEF18, MKP+06, NN95, Pru14, RLFS13, WT11, YCL14].

implemented [BBDH14, EP96].

Implementing

[DPZ97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MMH98, MS99c, MSB97, SSC96, SS99, SM1T96, SGHL01, SCC95, Tra02a, Wil93, BT96, LH97, XY95].

Implementor [GL95b]. Implicit [MS02b, NA01, SGHL01, Bjo95, TSP95, WADC99].

Importance [BCG+10, PCY14].

Importance-Driven [PCY14]. Improve

[KBS04, SK96, Tha98, GKH+97, RHG+96].

Improved

[Tra02b, MCM+16, dlAMCFN12].

improvements [DPSD08]. Improving
GSY+13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SM12, SCL00, XF95, CZ96, JKN+13. In-house
[RLZ+11]. In-Memory
[CLOL18, CRM14, HSP+13]. In-place
[BWW+12, GLT12]. Incompressible
[BGM+16, Lou95, RM99, TS12b]. Incorporating
[LM94, LYZ13, TKP15]. Incremental
[dOSMM+16]. Indefinite
[YKW+18]. Independent
[BCL00, BRU05, CSW12, CDMS15, DiN96, MV17, YBZL03]. Index
[DALD18, LAD16]. Index-Digit
[DALD18, LAD16]. Indexers [Wal01a]. Indexers/Crawler [Wal01a]. Indexing
[LTR00]. Industry
[CGB+10, IEE96a, Kuh94, PBPT95]. indicator
[BPMN97, DHK97, ALR94, ABC95a, ABC95b, BT96, EKTB99, Was96, Kon00]. industries [Ano93a]. Industry
[DM98, Ano94f]. Industry-Standard
[DM98]. inefficiency
[HKMW12]. Inertial
[Str97]. Infer
[VBB18]. Inference
[LAD+S15, TVCB18]. Infinitesimal
[BPH97, LCH96a, ALR94, ABC95a, ABC95b, BT96, EKTB99, Was96, Kon00]. infinitesimal
[OdSSP12]. influence
[Gra97]. Information
[AN98, CGB+10, Ano93c, CG99a, MMR99, WACD90, PSB+94]. infrastructure
[GFSI+18, WLR05]. infrastructures
[GWVP+14]. Initial
[LH+14, VDL+15, AL96, LSR95]. Initiated
[SSB+15]. initiatives
[Su95]. inito
[SSF01, SEC15]. Injection
[RRAGM97, SAL+17]. Inn
[IEE93c]. Innovation
[ACM03]. Input
[CFF+94, SMH+12, JWB96]. input-aware
[SHM+12]. Input-Output
[CFF+94]. Input/output
[JWB96]. Inspection
[BPMN97]. inspired
[NEM17, TDB00]. instances
[RBAII17, ZLZ+11]. Institute
[Old02, TG94]. Instrumentation
[MVY95, Yan94]. Insurance
[PZ12]. Integer
[ASA97, CF01, WLC07, ZC10, BHJ96, KVGH11]. Integrate
[CC10]. integral
[HK94]. Integrals
[FBSN01, NS16]. Integrate
[GLRS01]. Integrated
[CDFL01, DGM93, HK98+01, KSV01, WL96a, DF17, HK10, KW14, VDL+15, WWZ+96, WL96b, XWS96]. Integrating
[BCLN97, CM98, FSP01, JKA+93, KAHS96, wL94, WTFO14, TWFO99]. Integration
[CGB+11, CFW97, FD96, FB94, MAIVAH14, Sci99, AL96, CFSW99, KB13, RBB15]. Integrator
[Per99, SP99]. Intel
[Ano96c, Ano03, DSGS17, MP95, OTK15, URKG12, VDL+15, YSM+17]. Intelligence
[BP94]. intelligent
[IEE95a, ZWZ+95]. Intel(R)
[TBG+02, SBT04]. INtensities
[ARYT17]. Intensive
[Rei01, BFL09, BKML95, SL94a]. Inter
[KFL05, LAFA15, FKW08, LFL11, SDB+16]. Inter-Atomic
[LAFA15]. Inter-Node
[KFL05, FKW08, LFL11]. inter-workgroup
[SDB+16]. Interaction
[DMMV97, GFV99, NSLV16, Sou01]. interactions
[PARB14]. Interactive
[Coo95b, KPK13, KA13, NE98, RTRG+07, STK08, Coo95a, LIM+05]. Intercommunication
[TMB16]. Interconnect
[Bru12, SJ02, BWT96, SW+12, TBD96]. Interconnected
[Hus00]. Interconnecting
[MCG18]. Interconnection
[MANR09, SB95, AVA+16]. Interconnects
[RA90]. Interface
[Ano93d, Ano01b, BCFK99, BDH+97, CHD07, Cer99, CGH94, CDND11, DFK90, DHHW92, DHHW93a, DBK+09, FKKC96, FSLS98, Gle93, GLS94, GL95c, GLDS96, GLTO00, HDB+12, HRSA97, KSJ95, KGRD10, KKD04, LKD08, LkL+03, LWW97, MP98, MS98, MS98,
MBES94, MMSW02, MTWD06, PS01b, RWD09, SSL97, TDB00, TW01, TBD12, WD96, Wer95, YHGL01, Ada98, AD98, Ano93c, Ano94d, BBB+94, BBCR99, Bru95, BDW97, BR94, CFF96, CD01, CG99b, DKB05, DBB+16, DS96b, DLM99, DPK00, DLO03, HPY+93, HRR+11, KOB01, KS96, KBHA94, Kra02, NS91, Pie94, PR94a, SL94a, SW95, SDV+95, VM95, Wa94a, Wa94b, ZWL13, ZKRA14, AMHC11, BC14, BHH+06, BR05, BDH+95, Cot04, DDK08, DiN96, FKS96, FGT96, FGG+98, GGHL+96, GLT99, GLS99, GLT00a, GL04, Han98].

Interface [IBC+10, KTF03, KKD05, LK10, MSL96, RRF96, SWHP05, SL95, SWL+01, TGT05, YGH+14, Ano95c, Ano00a, Ano00b].

InterfaceArchitecture [Sei99]. Interfaces [MGC12, Wit16, RJDH14, Tra12a]. Interfacing [Lus00, PL96]. interference [ZJDW18]. Intermediate [SML17]. internal [BBH+15]. International [ACM94, ACM96b, ANS95, Abr96, ATC94, AGH+95, Ano93a, Ano94a, Ano94e, BPG94, Bos96, BFM96, Cha05, CZG+08, CGKM11, CMMR12, CGB+10, CH96, DGM94, DW94, EV01, EdS08, ERS95, ERS96, EJL92, Gat95, GA96, GT94, Ham95a, HAM95b, HS95a, HS94, Hol12, IEE93c, IEE93b, IEE94d, IEE94g, IEE95b, IEE95c, IEE95a, IEE95k, IEE95i, IEE95f, IEE95i, IEE95a, IEE96a, IEE96d, IEE96f, IEE96e, IEE96d, IEE97b, IEE97c, IEE95, Küm94, LCK11, LF+93a, Lev95, LHHM96, Lj96, MMH93, MCD+08, MDSC09, Nar95, Ost94, PW95, PBG+95, PBPT95, Ree96, R+92, SHM+10, Sie94, Sil96, SM07, Tou96, VW92, Vol93, Vos03, Was96, YH96, ACM97a, AH95, BS94, DMW96, FR95, GH94, JPT94, LCHS96, Mal95, ZL96, Ano93b, HHK94, Sch93].

Iteration [HF14a, HF14b]. iterations [Lou95, YST08]. Iterative [CCSM97, DK06, NO02b, Nak03, SC04, ADDR95, EDSV09, LSR95, MGG05, NO02a, Nak05a, Nak05b, OMK09, dH94]. Ithaca [PBG+95, Ree96]. IV [SPH95]. IWOMP [CZG+08, CGKM11, CMMR12, EdS08, MCdS+08, MdSC09, SHM+10]. IWPP [Kum94, PBPT95]. \textbf{IWPP-94} [Kum94, PBPT95]. IWWP [Kum94]. IX [R+92].

Jack

[Ano95b, Ano96a, Ano99a, Ano99b, Nag05]. Jacobi [BBDH14, CGU12, LM99]. JaMP [KBVP07]. January [ERS96, GE96, HS94, IEE95h, IEE96g, MMH93, USE95]. Janus [GJP01]. Japan [SHM+10, SPE95, HHK94, IFI95]. Jason [Che10]. Java

July

[ACM95b, ACM97a, Boi97, EV01, GA96, Has95, IEE93c, IEE96i, Lev95, PW95, TG94]. Jumpshot [ZLGS99]. June

[ACM90, Ano94f, BG91, CZG+95, DLO03, HS95a, IEE95b, KG93, OL05, ACM06b, Ano93b, CLM+95, DR94, Si96].
[PPJ01, KRKS11]. **labelling [HLP10].**

laboratory [JY95]. Lafayette [EV01, EdS08]. Lagrangian [CT94a, CT94b, RSV+05, TC94]. Lahey [Ano98]. Lake [Hol12]. LAM [OF00, RsT06, SSB+05, Squ+03, ZWZ05]. LAM/MPI [OF00, RsT06, SSB+05, Squ+03, ZWZ05]. lambda [PQ07]. lambda-calculus [PQ07]. LAMGAC [MSOGR01, MS02a]. Lamport [TPLY18]. LAN [CCU95, CDH+95, MSOGR01, MTSS94, TSZC94, ZGC94]. LAN-based [TSZC94]. LAN-Message [MTSS94]. Lanczos [GP95, Sch96a, Sch96b]. Landing [dCZG06]. Landsat [GGCM99, GCGS98]. Landsat-TM [GGCM99, GCGS98]. Lander [Ano98a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. Leeds [BR04, LP00, LRW01]. legacy [BBH::13a]. Leveraging [HDB+12, NPP+00c, SHLM14, LFL11]. LIB [NPP+00d]. libefp [KS15a]. libOMP [BGD12]. Libraries [BHL5+95, BWV+12, CGZQ13, DARG13, GFD05, IEE94f, IEE95j, MLGW18, MM14, ARvW03, BCM11, BfDA94, CRD99, GS94, PS07, Skj93, SDB94, SSG95, DHK97]. Library [AKL16, Ada97, Boo01, BLW98, Coo95b, DHP97, EM02, FHK01, For95, GFB+03, GSI97, Gro02a, HB96b, ITKT00, JPT14, Lasso [AKL16, Ada97, Boo01, BLW98, Coo95b, DHP97, EM02, FHK01, For95, GFB+03, GSI97, Gro02a, HB96b, ITKT00, JPT14, Large-Scale [LAdS+15]. Large [EZBA16, WWZ+96]. Lastverteilung [Wil94]. Latency [Jes93a, Jon96, KBHA94, NCB+12, NCB+17, TBD96]. latency-tolerant [NCB+12, NCB+17]. Lattice [BBK+94, BMS94a, BLP13, OTK15]. Launches [Ano03]. Layer [CSAGR98, HEH98, FFK96a, PT94, dLAMC01, dLAMC012]. layered [DiN96]. Layering [KOS94]. layers [KC94]. Layout [WG17, BGH+05, HP11, LDJK13, Str12]. Lazy [TCBV10]. Leaks [DLV16]. Learned [GKPS97, MWO95]. Learning [AHHP17, Gro01b, FE17, KWEF18, LSSZ15, SEC15, TWFO09, WO09, WZ01]. learning-based [FE17]. Least [PWP+16, VRS00, DK13]. Least-Squares [VRS00]. Lecture [Get93a]. Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. Leeds [Abr96]. legacy [BR04, LP00, LRW01]. Lemon [DRUC12]. Lengths [GSHL02]. LEO [CCBPAGA15]. Leonardo [Stp02]. Lessons [MWO95]. Level [AELGE16, BGG+15, BBC+00, CS14, CRGM14, DHHW92, DHHW93a, DDL00, GS91b, GAM+02, HA11, HKT+12, DK02, KCP+94b, KOW97, LVP04, LMRG14, NPP+00c, SHM+01, SBF+04, TS12a, TW01, XF95, BMPS03, CAW17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, W94, LCMG17, LM13, MALM95, NS91, Nako05b, STY99, SCL97, SG14, SFLD15, YZ14, ZW05, ZZZ+15, BBH...13a]. Leveraging [HDB+12, NPP+00c, SHLM14, LFL11]. LIB [NPP+00d]. libefp [KS15a]. libOMP [BGD12]. Libraries [BHL5+95, BWV+12, CGZQ13, DARG13, GFD05, IEE94f, IEE95j, MLGW18, MM14, ARvW03, BCM11, BfDA94, CRD99, GS94, PS07, Skj93, SDB94, SSG95, DHK97].
KBG16, OD01, PLK^+04, PS01a, RR02, Saa94, SBG^+02, Sta95b, SKH96, TD98, UTY02, WN10, YKLD17, ZC10, Ada98, AMHC11, Arn95, CSS95, CGG10, Coo95a, DRUC12, DXB96, FB97, Fan98, FKK^+96b, GDC15, GLM^+08, GL94, HB96a, HLM^+17, Har94, Har95, JKM^+17, JC96, KS15a, KN95, LR06a, MSL96, PKB06, PS00b, RFH^+95, SSC96, SH96, ZT17, CC95, McD96, Sum12].

Life [PZ12, Str94].

Lifting [vdLJR11].

Lightweight [CKmWH16, DT17, FLB^+05, KMK16, TCM18, FS95, Ott93].

Like [BST^+13, BK000, CGJ^+00, KOB01, VGS14, CSS95].

Likelihoods [MSCW95].

LIME [DRUC12].

Limits [GB96, MBKM12].

Linda [Mat94, KS96, MSP93, BLP93, CSS95, Gal97, Mat95, TDB00].

Linda-like [CSS95].

Line [BoFBW00, CGS15, Wis98, Bon99].

Linear [ASA97, BDT08, BG95, CDD^+13, Gao03, Huc96, LLY93, LZ97, MGMHF97, MSB97, YKW^+18, van97, BSN95, BKvH^+14, BAV08, BRR99, CEGS07, DR18, Gra99, GFPQ12, Jou94, MW98, MM11, OKW95, SCC96, SM5W06, dCH93, dH94]. Linear-scaling [Gao03]. Lines [NE01, YULMTS^+17]. Link [BGR97b, SJ02]. Linked [WJ12].

Linköping [FF95]. LINPACK [JNL^+15].

Linux [Sei99, SMTW96, USE00, SSHS97, Ano01a, GSN^+01, MK04, OF00, PS07, PKB01, RsT06, Sei99, Sgl99, SGL^+00, YL09]. Linz [Kra02]. lipid [FHSO99]. Liquid [DSS00, JLS^+14]. Lisbon [IEE93d]. LISP [ACM90]. List [Tra98, WJ12]. Lithe [PHA10]. Lithography [RDMB99].

Liverpool [AD98]. LLVM [SML17]. Load [Ano94b, BKdSH01, BS05, Di02, DR95, DK06, GCLB12, HE02, MM02, NP94, PT01, Pus95, SGS95, ST97, Wal01a, Bir94, CKO^+94, DZ96, DLR94, DvILVS94, EZBA16, FBM96, FH97, GS96, Hum95, JH97, MM03, SCL97, SY95, Wi94].

load-balanced [EZBA16].

Local [BSG00, CDHL95, CCMS97, IKM^+01, AMHC11, BY12, CGL^+93, FSV14, IKM^+02, LHD^+94, LHD^+95]. Locality [MJB15, ZLP17, BHR08, HJYC10, RKBA^+13, WRSY16]. Locality-Aware [MJB15, HJYC10]. localization [HC08].

Locally [BHS^+02]. Locating [PNV01].

Lockheed [Str94]. Locking [kL11, CAWL17, PGK^+10]. Logging [BCH^+03].

Logic [KI17, BJ95, KMC96, KMC97, POL99]. logical [TPLY18]. LogP [CKP^+93].

London [EJL92, Ano93h, Ano94f]. Look [HCZ16]. lookup [BJ13]. Loop [DAMB16, SHM^+10, TJPF12, SHLM14, WYLC12, WLYC12, YST08, WYC11].

Loops [AHD12, LOHA01]. Loosely [Ada97].

Lop [RGDML16, RGDM15].

Louisiana [USE95, IEE96b].

Love [Dan12]. Love-Hate [Dan12].

Low [BGG^+15, GGS99, Jon96, MC17, NE01, RU01, Str94, GK97, KBHA94, LHZH19, TBD96, ZRQA11].

Low-Bandwidth [NE01]. Low-Cost [RU01, GK97].

Low-Density [MC17].

Low-Level [BGG^+15, GGS99]. Low-life [Str94].

low-overhead [ZQA11].

LPVM [ZG98].

LU [BCAD06, BACD07].

AZ95, BRS92, LC97b. Lugano [GT94].

Luminous [KNT02]. Lumsdaine [Ano99c, Ano99d].

Lusk [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

Lustre [DL10].

Luther [ACM99].

Lyngby [DW94, DMW96, Was96]. Lyon [BFMR96, FR95].
AD98, AL92, Ano95b, BR91, BDG+91a, BPC94, Bir94, BDLS96, BDW97, CARB10, CLM+95, Cav93, Che99, CD01, CC00b, DM93, DKO05, DLM99, DKO00, DKO03, FM90, KWEF18, KMC97, Kra92, LG93, MN91, MRH+96, NB96, Sch94, SK92, SCC96, SL00, TVCB18, TW12, WF009, W09, WF014, AR+94, BG94b, JPP95, KK+95, LI03, QRG95, SSSS96].

machine-learning [TWFO09].

machine-learning-based [WTFO14].

Machines [BP99, BZ97, BCC+00a, BT01b, DR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCSL12, ZWJK05, BCA+06, BSC99, BCC+00b, DDH95, DKO02, GZ12, KN95, PRS16, SL94b, TSY99, TSY00, WPL95, ZWL13, Gei01, YC98].

made [MJPB16].

MAFFT [ZLS+15].

Magnetic [Y+93, PKE+10].

Magnetism [Y+93].

Magnetized [CFF19].

Magnetohydrodynamic [KT02, WWFT11].

Magnetostatic [BB93].

MagPie [KHB+99].

Main [Tou96].

Maintaining [PKB01].

maintenance [ZDR04, ZDR01].

Makes [ZG95b, Str94].

Malleable [EDSV09, MSIC15].

Manbo [WW05].

Man [IEE95a].

Manageable [PKB01].

Managed [KCR+97].

management [ZDR04, ZDR01].

managers [FL96].

Managing [FD98, FGKT97, Liv00, NPS12, Obe96].

Manchek [Ano95b].

Manipulation [KK01].

Manual [CSW12, NSLV16, Reu01].

Many [DT17, LHZ+17, LLCD15, RBO1, TCM18, YTH+12, ACMZ+11, VDL+15, dCZG06].

Many-Core [LZH17, TCM18, YTH+12, LLCD15, ACMZ+11, KSG13, MM+13, dCZG06].

Many-Cores [DT17].

Manycore [MJB15, KGB+09].

Map [JPT14, FFM11, FJB+00, MSCW95].

MAPA [JPL17].

Map [Pet00a, Pet00b, Pet01].

Mapping [AMR00, HCO06, NTR16, RRBL01, TSZC94, W09, DDL+95, EO15, GFIS+18, HCO8, WF009, WCS+13, WF014, WK08a, WK08c, dCZG06, WK08b].

MapReduce [JS13, MMM13, PD11, WZH16].

Maps [BM97, KRC17].

Marc [Ano96a, Ano99a, Ano99c, Ano99d, Ano99e, Ano99f, Nag05].

March [ACM95a, ACM06a, Ano89, Ano93c, Cal94, DKM+92, IEE93f, IEE94d, IEE95b, IEE97a].

Marine [LRS02].

market [LF+93a].

Markov [BBH12, FKO1].

Marloz [GA96].

marshaling [CFKL00].

Marte [RG13].

Martin [ACM99].

Maryland [IEE96e].

masses [Cla98].

Massive [Sie92a, MALM95, OLG+16].

Massively [BJ93, BHS18, BBH12, DSSZ94, IEE94a, IEE96c, KHBS19, KmWH10, Oed93, Sie92b, Sta95b, CS96, DR94, HVSC11, KN17, LCL+12, MBY16, RBB17, SRK+12, DSZ94].

massively-parallel [MBY16].

Master [FH98, ELM00, LTR00, HP05].

master-slave [HP05].

Master-Worker [FH98].

Master/Slave [LTR00].

Master/Worker [ELM00].

Matching [GCC+07, KS01, MM02, OWSA95, WH94, MM03, Qu95, YPZ95, YZP95].

Materials [Y+93, SSP+94].

Mathematical [Wan97, Has95].

Mathematics [Whi04, ANS95].

MATLAB [BKGS02, Whi04, Ano97, Bra97, ZZG+14].

MATLAB-MPI [BKGS02].

MatlabMPI [KA04, Kep05].

MATOG [WG17].

matrices [DR18, GGG9, GSMK17, Kan12].
Matrix [AKL16, BSvdG91, Cha96, DS13, Fuj08, GK10, PMvdG+13, TQDL01, TD98, ART17, CMH99, ER12, FAf16, FJZ+14, KPB16, PKD95, TDP15, XXL13].

Matrix-Vector [AKL16, DS13, Fuj08, XXL13].

Maui [ACM97a].

Max [Ano94c].

Max-Planck-Gesellschaft [Ano94c].

maximisation [CCU95].

maximum [HKOO11].

Maxwell [And98].

May [ACM96b, ACM06b, AGH+95, BR95a, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95e, IEE95d, IEE95i, PR94b, SPE95, SW91, SS96, Van95].

Maydan [Stp02].

MBCF [MMH99].

MCA [WCS+13, McDonald [Stp02].

MCHF [SYF96].

Meat [WCS+13].

McLean [IEE94d].

McLennan [Stp02].

MCNP [WCS+13].

MD [IEE02, TMPJ01].

Means [TK16].

Measurement [BFW01, BFIM99, KRS99, Shi94, TMC09].

Measurements [IHvA+00, EFR+05, GL99].

MECCA [AC17].

Mechanics [Bil95, MGG05, SL95].

Mechanism [CGLD01, KSV01, MH01, THS+15, TSS00b, Tra02a, HWX+13, SIRP17, ZRQA11, ZA14].

Mechanisms [Wal01a, CBGS+15, Ott93, TMTP96].

Mechatronic [KDL+95b, KDL+95a].

mEDA [VAT95].

mEDA-2 [VAT95].

Media [EZBA16, MAIVAH14].

Medicine [GA96].

MEDINA [AC17].

medium [WLNL06].

medium-scale [WLNL06].

Meeting [AD98, Ano93f, CHD07, CDO1, CDND11, DDK05, DLM99, DKP00, DLO03, GA96, KGRD10, Kra02, KKDO4, LDL08, MC94, MTWD06, RWD09, TBD12, BDW97, JB96, SPI95, Ano92, CHD99].

megabase [SDM10].

Meiko [FST98a, FST98b, Jon96].

Melia [WZH16].

Mellon [IEE94d].

Membership [MDM17].

membrane [HFSO99].

Memory [Att96, BME02, BWW+12, Bri10, Bds07, BT01b, CLOL18, CSW97, CC99, DM98, DMB16, DR97, DHHW92, DHHW93a, FB94, GCBM97, GB96, GSN+01, GSHL02, GLRS01, HC10, HDB+12, HDT+15, HT01, JPL17, KB98, KS13, KSSH01, LSB15, Lu09, MB12, MRB17, MRB03, MMH98, MCD+08, Mii10, NPP+00d, PBK00, Pok96, PMvdG+13, Ros13, STY99, ST02b, SW91, Thr99, VS00, VT97, ARS89, ABC95a, ABC95b, ADMV05, BCA+06, BVML12, BSC99, BMG07, CBPB02, Cha05, Cha96, CBHH94, CRM14, CC00b, DF17, DLR94, DBVF01, DS96b, DHHW93b, DPZ97, EV01, FSV14, FHB+13, GCN+10, GBH14, GBH18, GKK09, GL96, GL97c, GP95, HSP+13, HGMW12, HDB+13, HK09, JC17, JE95, KN95, KJA+93, KCO6, LKL96, PLC04, NA399, NAA01, OLG+16, PK05, PS00b, RGDM15, SSH08, STHH01, SL94b].

memory [SBG+12, SYR+09, SFL+94, SSC96, SPL99, SD16, TSY99, TSY00, Uh95a, Vos03, Wal94a, Wal94b, WPL95, WK08a, WK08b, WK08c, WBS17, WMRR17, WRMR19, YX95, LBD+96, GK97, SG05].

Memory-Based [MMH98].

Memory-Efficient [MRB17].

memory-level [HK09].

Memory/Message [ST02b].

MemTo [GPN+01].

Menon [Stp02].

Mesh [HAA+11, MRB17, Ran05, BAS13, CLSP07, Con93, GBR15, IDS16].

mesh-particle [BAS13].

Meshes [MRB17, TPD15].

Message [Ano93d, AKL99, Att96, BZ97, BCH+03, BBG+01, BDH+97, BGR97b, BF09, CHD07, Cer99, CGZQ13, CGH94, Cot97, Cot98, CTX00, CDND11, DFKS01, DHHW92, DHHW93a, DLD00, FKKC96, Fos98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLT00b, Hem94, KGRD10, KS97, KSV01, KKD04, LKD08, Lu09, MP198, MP95, MS98, MBES94, MG97, MTWD06, MSS97, NW98, PBK00, Pok96, RC97, RRBL01, RWD09, RFG+00, SAL+17, ST02b, TBD12, WD96, Wer95, Wis97, YHL01, ZWL13, ZG95a, ZG96].
Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01].

Mixed-Mode [BEG+10].

Mixing [CP98, GAP97, CBYG18].

mixture [EO15].

MK [NS91].

mm par2.0 [OKM12].

MN [Ano94h].

Mob [STV97].

Mobile [ITT02].

Mode [BGK08, Br02, BEG+10, LRT07, SB01, YX95].

Model [AP96, BGG+02, BS07, CKmWH16, Cha02, CZG+08, Dar01, DFSA+09, FSXZ14, FBSN01, GLB00, GLRS01, HL11, KD12, LKW18, LGG16, LA02, LR00, MKW11, NSLV16, NO02b, Ran05, RSV+05, RRBL01, SPM+10, SB95, SPH+18, THN00, VT97, Wal01a, AL93, BSC99, Bir94, BG94b, BDV03, CMV+94, CL93, CKP+93, ED94, GYZ12, GCN+10, GkLyC97, GWVP+14, GRTZ10, HPLT99, HK09, HK10, KOS+95a, KSL+12, KL15, LR06b, LA06, LHL+14, Mar05, MDSAS+18, MSZG17, MGC+15, NO02a, Nak05a, PA+17, RAS16, RGDM16, RCG95, Sch93, SH94, Sch99, SMAC08, Str94, VBLvdG08, Vis95, Wan02, WC15, WYLIC12, YX95, TA14].

Model-Based [AP96, LGG16].

Modeling [ACM96a, ATM01, BS07, CSSC96, CD93, FST98a, GAM+02, MOL05, NM95, RGD15, SEF+16, TD99, VFD02, XH96, BDP+10, Bic95, JI18, KM10, KME09, KEGM10, LZHY19, MS99a, XLLL13, YMY11].

Modelling [FST98b, GC05, Ham95a, KDL+95b, BJS99, HTTH99, KDL+95a, MSML10, QHCC17].

Models [AKK+94, BS93, BZ97, CMK00, Cer99, CNM11, DO06, EMO+93, ESM+94, GJN97, PPF89, SOS1, SME03, WH04, BB95, CH96, DV92, KO14, LV12, MCB05, Ns10, RSBT95, RBA17, SYR+09, Wal00, WBSC17].

moderate [Uhl95a].

Modern [AHHP17, DAR13, KDT+12, LNK+15, SM07, HH14, PMZM16].

modes [WZWS08].

Modified [Riz17, GP95, KD12].

Modular [CT02, HPP02, FWS+17, HLM+17].

modulator [WWZ+96].

modulator/DFB [WWZ+96].

Module [Ano98].

Modules [AKK+94, DS96b].

modules-design [DS96b].

Molecular [ABC+96, BST+13, BCGL97, BL95, BS07, DR97, DI02, KBM97, LAF15, MH01, SA93, YWFC15, ZH94, BvDSvD95, BBK+94, BPMZ94b, BPMZ94a, CC00b, CDC+14, FHS099, JAT97, JMS14, KFA96, KR13, LSVW08, OKM12, PARB14, SL95, ZMW13].

molecule [ART17].

Moller [BL95, KN17].

Monitor [SGL+00].

Monitored [AH00, BCLN97, Beg93b, BMF96, BFMT96b, CD98, DBK+09, GSN+11, LY93, LW97, MWG97, MVY95, SGL+00, UP01, Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a, BB94, BS96a, BFMT96a, FLB+05, LC27].

Monodomain [ORA12].

Monte [HJBB14, RP95, WH96, ADRC198, AK99, DAK98, NSLV16, RRO0, SK00, SKM15, ZZ04].

Monterey [Ano89, Gt95, USE94].

Montpellier [DE91].

Montral [Lev95].

MOPS [GJN97].

Morehouse [AGH+95].

Morgan [SD13].

Morton [LZH18].

MOSIX [BBGL96].

motif [FMS15].

motors [SKM15].

movement [MV17].

Moving [HAA+11, LSG12].

MPE [GKL95, KFA96].

MPEG [NU05].

MPEG-4 [NU05].

MPI [ARYT17, AD98, Ano95c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b, BDW97, CHD07, CHD09, CD01, CDND11, DK05, DLM99, DKP00, DLO03, GB97, GEW98, IEE96i, JMS14, KGRD10, Kra02, KKD04, LKD08, MTWD06, Nag05, Per97, PS01b, RWD09, RLVGP12, ST02a, TDB00, TDB12, Vre04, WSN99, YM97, ST02b, AGT02, Ada97, Ada98, Aph+11, APJ+16, AASB08, ART17, ATM01, ACGR97, AK99, ABF+17, AHP01, ACMZ11, ALW+15, ADL03a, ADL03b, And98, FH98, AVA+16, Ano93e, Ano94d, Ano98, Ano01a, Ano03, AKL99, AJF16, AIM97, ADR+05, AHHP17, Bad16, BV99, BCMR00, Bak98, BF98, BCFK99, BBG+10, BCG+10, BBG+11, BGBP01,
Multicores \[GDDM17, UGT09]\.
multidestination \[Pan95a]\.
multidimensional \[CSW99, PDY14, ZT17]\.
multidisciplinary \[Fin94, Fin95]\.
multifrontal \[IM95]\.
Multigrain \[AZG17, IOK00]\.
Multigrid \[BCMR00, AGIS94, IHM05, Lou95, Mic93, Mic95, PSLT99, RM99, Sta95a, ZG+14]\.
Multigroup \[QRG95, QRMG96]\.
Multilevel \[PSSS01, BAV08, ETV94, GAM+00, JJY+03\].
multimedia \[GFB+14\].
multimethod \[FGT96\].
Multiobjective \[RLVRGP12\].
Multiparadigm \[FS98\].
Multiphase \[SPH+18\].
Multiphysics \[NPS12\].
Multiplatform \[SMM+16\].
multiple \[BSG00, CB16, FGKT97, FBSN01, JPT14, JSH+05, LTR00, NTR16, Sta95a, ZC10, ESB13, GM18, KGB+09, KKLL11, SHHC18\].
Multiple-Precision \[ZC10, JPT14\].
Multiplication \[AKL16, DS13, Fuji08, TQDL01, FAF16, FJZ+14, XXL13\].
Multipole \[AAP+17, LCL+12, YBZL03\].
Multiported \[SG15\].
Multiprocessing \[MW93, VGS14\].
Multiprocessor \[Pet97, ABCI95a, ABCI95b, ADMV05\].
MultiProcessors \[BDV03, CC99, HPP02, NPP+00d, SBW91, SS01, Tra98, JSH+05, KC06, SYR+09, AGIS94\].
Multiprogrammed \[TSY99\].
Multiprogramming \[BHP+03\].
Multiprotocol \[BHK+06\].
Multirail \[LVP04\].
multiscale \[CwCW+11\].
multiservice \[CLASPDP99\].
multisource \[ZDR04\].
multistage \[ZGN94\].
multiupdate \[GCC99, SWY94, ZG98\].
multiphase-safe \[GCC99\].
Multithreaded \[AZG17, DGG+12, PS01b, RBAA05, TGBS05, WJ12, DSG17, TMC09, TG09, WCC+07\].
Multithreading \[BBG+10, ZWL13\].
Munich \[BDLS96, GH94\].
Mushy \[Wit16\].
MYSTIC \[OF00\].
Myocardial \[Pat93\].
Myrinet \[GBH99, CDP99, HC05, JSH+05, LCW+03, PTW99, Tou00\].
n \[Pan95a, ADB94, RTRG+07\].
N-body \[ADB94, RTRG+07\].
n-cube \[Pan95a\].
NAG \[DHP97, For95, McD96\].
NAM \[ZK92\].
Nancy \[BHK+06\].
NATO \[KG93, TG94\].
NATUG \[Ar95\].
nature \[MZ99\].
Navier \[Che99, DLR94, HSMW94, IGD+04, Lou95, SCC95\].
NB \[BG91\].
NC \[Agr95a, SL94a\].
nCUBE2 \[BL94\].
Near \[PKY95\].
Nearest-Neighbor \[DI02\].
Nebeling \[MFB+08\].
NEC \[GPL+96, HRZ97, TRH00\].
Necessary \[NPP+00b\].
Needed \[Gei00\].
Neighbor \[DI02\].
nhood \[HIS2\].
Nek5000 \[MGS+15\].
Nekbone \[GML+16\].
Nemesis \[BMG07\].
Nest \[BL95\].
Nest \[AHD12, BR12, BS01, DLR99, GLP+00, HA10, MMS07, TTSY00, ZL17, aMS07, AGJ+06, BS05, HSE+17, THH+05, YZ14\].
Nests \[DMB16\].
Net \[CNM11, NE98, NE01, PES99\].
Net-Console \[PES99\].
Net-dbx \[NE98, NE01\].
netCDF \[LkLC+03\].
Netherlands \[DSZ94, Aan09, Van95\].
Nets \[Sou01, Str94\].
Network \[ACM98, AP01, BGD+01b, BCP00, CZ95a, CDH+95, CSC96, DM95b, DM95a, DAA+97, DFM+94, DGM+92, DGMJ93, EK+97, FKB98, Fis01, GS91b, GS92, Gei93a, GSxx, Hua98, IT02, LB98, LH95, MSCW95, MANR09, OF00, OWSA95, TW01, AL92, AH95, AVA+16, BGD+92a, BGD+92c, BDG+94, BSvdG91, BJ95, Bl95\].
Bon96, BBK⁹⁴, BID95, BFM96, Cee94, CLLASPD99, Fer98a, GS91a, Gei93b, GK97, GHZ12, HBT95, HK94, HH95, IM95, KMC96, KMC97, KA95, LH98, LH94, LHD⁹⁴, MK94, MRH⁹⁶, POL99, PB94c, PTW99, Rag96, SEC15, SPK⁹⁴, TSS98, YS93, ZIFS96, GK97.

Network-Balancing [DBA97].

Network-Based [BDG⁹ⁱb, GS92, BDG⁹²a, IM95].

Network-Specific [DM95b, DM95a].

network-topology-aware [SPK⁹²].

Networked [FGK97, GBD⁹⁴, Nov95, Per96, Ano95b, BMPZ94b, BMS94a, GM94, HS93, RGG⁹⁹].

Networking [ACM97b, ACM98b, ACM00, ACM01, ACM04, Hol12, LCK11, CXB⁹⁴, GH94, HS95a, ITT99, LCHS96, MZK93].

Networks [CSV12, CDM93, DDPR97, GFV99, GDM18, GHL97, HLCZ00, HIP02, LHHM96, L96, LH99, MBES94, QMR00, SG15, TQDL01, Tou00, VLO⁹⁸, VBB18, WAS95b, BK11, BRS92, CZ95b, CFPS95, DG95, DZ98a, Jou94, LR06a, LTL94, LHD⁹⁴, LHD⁹⁵, NFG⁹¹, Pan95a, TDB00, ZGN94].

Neural [AGH⁹⁵, CAM12, CSV12, QMGR90, Str94, GkLyCY97, Rag96].

Neurocomputing [PSZÉ00].

neutrino [KHBS19].

Neutron [LD01, RS97, VRS00, WR01, MM92].

Nevada [Ano94c]. never [Har94]. Neville [ACMR91].

Newport [IEE93b] News [Ano97, Ano93, Bra97, ESB13, KS15a, Str94].

Newton [ZB97]. Next [GKPS97, Gei98, Gei01, VPS17, SP11, ZKRA14].

Next-Generation [VPS17, ZKRA14].

NFS [CCG⁹²].

NHPDCC [BRST94].

NIC [MFP03].

NIC-based [MFP03].

Nice [AC90].

nineteenth [IEE95].

Ninth [ERS96, R²⁹²].

NIST [SNMP10].

Nitzberg [Ano99c, Ano99d].

NLP [VB99].

NM [IEE95d, Old92].

NoC [HWX¹³].

NoC-based [HWX¹³].

Node [HRZ97, KFL05, FKL08, GM13, JR10, LFL11, Zah12].

Nodes [BBC⁹², BCH¹³, DBK⁹⁰, JNL⁹⁵, MKC¹²].

Noise [SAL¹⁷].

Non [BCG¹⁰, CSM97, Gua16, HTA08, MW98, Man01, WLN03, WTR03, FH98, BCH⁹⁸, OKW95, OMK09, TVCB18, WLN06].

Non-blocking [HTA08, FH98, BCH⁹⁸].

Non-Contiguous [WTR03].

Non-Data-Communication [BCG¹⁰].

donated [WLN06].

Non-linear [OMK09].

Non-Local [CCSM97].

Non-persistent [Man01].

non-singleton [TVCB18].

Non-stop [Gua16].

nonaligned [AGIS94].

Noncontiguous [BDW97, GN95, HK95, Hol12, IEE02, USE94].

normalized [Gra09].

North [CJNW95].

Note [BR02, SGHL01].

Notre [IEE96].

novel [DDYM99, GKK09, MLVS16, MSL12].

November [ACM96c, ACM97b, ACM98b, ACM99, ACM00, ACM01, ACM03, ACM04, ACM05, Ano94c, ACDR94, BDW97, G95, HK95, Hol12, IEE91, IEE93e, IEE94b, IEE94h, IEEO2, LCK11, USE94].

novice [CGG10].

Novices [Stp02].

NOWs [SLGZ99].

NP [YZ14].

NPACI [PKB01].

NPB [EGC02].

NR [Gua16].

NR-MPI [Gua16].

NRC [LD01].

NSGA [GAVRRL17].

NSW [GN95].

NT [Ano01a, Bak98, BFK98, CLP¹⁹⁹, FD97, GGGC99, PS00a, SFG98, TAH⁹¹].

N TRUE Encrypt [KY10].

NTUG [FF95].

Nuclear [BPG94, GA96].

nuclei [NS16].

NUMA [BCC⁹⁰, BCC¹⁰b, BFG⁺¹⁰, CAWL17, GTS⁺¹⁵, MKC⁺¹², MBJ⁺¹⁵, OPW⁺¹², SLN⁺¹², TSCM12, ZLP17].

NumaGiC [GTS⁺¹⁵].

Number
Octree [BP99, HT08, WHDB05, CBYG18, Lan09].
Octree-based [BP99, HT08, WHDB05, CBYG18, Lan09].
Numerical [MLGW18]. Numerical
[ACMR14, BS93, BCP97, CSW97, DHK97, DHA97, FK01, For95, FB94, HH14, Hu98, IF95, KM10, Kha13, McD96, NHT02, PKY95, TDBB11, YKLD17, AL92, Boi97, BCM+16, CSW99, FP92, GS94, JK10, KB13, No89, NHT06, Pri14, SMAC08, SU96].
Numerically [BKML95, BFFL99]. nur
[BL94]. Nutzung [GE98]. NVIDIA
[KME09, Seg10, XLL13, KKM15, Lan09].
NX [Pie94, PR94a]. NY
[IEE96f, PBG+95, Re696, SS96].

O [Bos96, CFF+96, DRUC12, IR01, IBC+10, LKLC+03, kLCC+06, MV17, MGC12, MG15, PSK08, PLR02, RK01, SBQ214, Tha98, Tsu07, WSN99, ZJDW18].
O2000 [CML04]. O2WebCL [CHK15].
Oberammergau [BFP94]. Object
[Ada97, BCFK99, CFKL00, FMSG17, MSL96, PD98, SLW+91, YHGL10, YX95, Ada98, BR91, DM12, LK196, OKM12, RFH+95, SL94b, TDG13]. object-based
[KL96]. Object-Oriented
[BCFK99, PD98, SLW+91, Ada98, DM12, OKM12, RFH+95]. Objects
[KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZPSL96]. Oblivious
[LZH17, LZH18, UALK17, HSP+13]. observations [ZR14]. observed
[CAHT17]. Ocean [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. Ocean
[BS93, GAM+02, Bc95, Mal01, Nes10, Sch99, Wal00]. Oceans [IEE94c, IEE94c].
OCOptimizor [FAD15]. OCM
[BoFWB00]. OCM-Based [BoFWB00].
October [An93f, An94e, An94i, Ara95, BPC94, Bha93, BDL96, CHD07, CGB+10, DSH94, DLO03, DE91, FK95, GGK+93, IEE94f, IEE95a, IEE95g, IEE95j, IEE96b, IEE96c, IF95, JB96, Kra02, Ld02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vol93].

Octree [JL18].
Octree-based [JL18]. ODE [Ana97, Bra97].
ODEs [Pet97]. OdinMP [BB00].
OdinMP/CCp [BB00]. Off [CGS15].
Off-Line [CGS15], Offering [EK97].
Official [Ana08]. Offload [BRU05].
Offloading [MGA+17, DSGS17, KBG16].
Oft [Rol88a]. Oil [FSXZ14, ZAFAM16].
OKs [Ana03], old [LK14]. OMB
[BWV+12]. OMB-GPU [BWV+12]. OMIS
[LW97]. Omnǐ [KSS00, KSHS01].
OmniRPC [SHTS01]. OMP [SGJ+03].
OMP2001 [TSB03]. OMP2012 [MBB+12].
OMPI [ACH+11, OM96]. OmpSs
[ABF+17, YÁJ+15]. on-chip [TDG13].
On-Demand [CT00]. On-Line
[BoFBW00, Wis98]. On-the-fly [KSJ14].
ONC [RS93]. One
[BS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, GBH18, LSK04, MS99c, Ols95, PGK+10, dIAMC11].
one-dimensional [Ols95]. one-layer
[dIAMC11]. One-Sided
[BS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, LSK04, MS99c, PGK+10]. only [LS10, Squ03]. Ontario [GGK+93],
onto [OFA+15]. OOMPI [MSL96]. OOPS
[RFH+95]. OPAL [CwCW+11, NW98].
OPAL-MPI [NW98]. opaque [SO91].
Open [BGG+15, KDL+96b, AVA+16, KDL+96b, KDL+96a, No89, GBS+07, VGRS16].
Open-Source [BGG+15, AVA+16, No89].
OpenACC [CGK+16, CCGBP15, GML+16, GML+16, HTJ+16, JCP15, KLV15, Kom15, LB16, LSG12, MGS+15, OGM+16, QHCC17, RLFs13]. OpenACC-based
[KLV15]. OpenCL
[ABDP15, APBF+16, AR13, BLPP13, BDW16, BN12, BBH+12, BBH+15, BAS13, CDD+13, CP15, CLOL18, CIJ+10, CHKK15, CCK12, CS14, CLBS17, DARG13, Di 14, DWL+10, DWL+12, FAFD15, FLMR17, FE17, FSV14, FVLS15, GScFM13, GDDM17,
OpenCL-accelerated [ZWL +17].

OpenCL-Based

OpenCL-to-WebCL [CHKK15].

OpenMP

OpenMP*- [KDT +12].

OpenMP-based [LNW +12].

OpenMP-like [BKO00, KOB01, VGS14].

OpenMP-oriented [MLC04].

OpenMP-style [JPOJ12].

OpenMP/MPI

openMosix [Slo05].

OpenMP-like [BKO00, KOB01, VGS14].

OpenMP-oriented [MLC04].

OpenMP-style [JPOJ12].

OpenMP/MPI

openMosix [Slo05].

OpenMP* [KDT +12].

OpenMP-based [LNW +12].

OpenMP-like [BKO00, KOB01, VGS14].

OpenMP-oriented [MLC04].

OpenMP-style [JPOJ12].

OpenMP/MPI

openMosix [Slo05].

OpenMP* [KDT +12].

OpenMP-based [LNW +12].

OpenMP-like [BKO00, KOB01, VGS14].

OpenMP-oriented [MLC04].

OpenMP-style [JPOJ12].

OpenMP/MPI

openMosix [Slo05].

OpenMP* [KDT +12].

OpenMP-based [LNW +12].

OpenMP-like [BKO00, KOB01, VGS14].

OpenMP-oriented [MLC04].

OpenMP-style [JPOJ12].

OpenMP/MPI
Pagoda [YSS+17].
paradigm [AMHC11].
Palazzo [GT94].
PALLAS [KVH97].
Parade [AMHC11].
Papers [BDB+13, OL05, TB14, ACM90, CHD09, DKD07, IEE93a, IE95c, KDDV03, M70W, Old2, Ano93g, Cha05].
PARA [DW94, DMW96, Was96, CD96].
parabolized [SCC95].
ParADE [KKH03].
Paradigm [HIP92].
Paradigms [BGD12, CM98, HD02a, HD02b].
Paradyn [MHC94a, MHC94b].
Paragon [Ano96c, HWW97, MP95, PR94a].
Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC11, AGH95, AS92, ADRCT98, AK99, AMBG93, ASA97, AL96, AP96, Ano95b, ACMR14, AB93a, AJF96, BH94, BSG91a, BK94, BHA93, Bic95, BGK08, Bis04, BALU95, BCL00, BSG00, BB94, BFB97, DBD97, DHD97, BT01b, BMS94b, BMPZ94a, BF94, FS93, FF95, GCBM97, GLN08, GBD94, GKP97, GR07, GSH97, GSKM17, GDM81, GBH98, GHL97, GK10, GFPG12, GJ97, Gre94, GLS94, GL97a, GL99, GlkL97, HJ98, HLP10, HO14, HK94, HK95, HHK94, HT01, HAA+11, IEE93b, IEE94a, IEE94f, IEE95b, IE95f, IEE95g, IE95j, IE96b, IE96c, IE96g, IEE96e, IEE96d, IE97b, IE05, ITKT00, IBCT+10, IK00, ID94, IH04, IHM05, JAT97, JML01, Jou94, JRM94, KFA96, Kan12, KK02a, KOI01, KNT02, Kat93, BKS04, Kep05, KWH10, KR09, Kon00, KKP01, KMC96, KMC97, KS96, KDDV03, KDD04, KS01, KWH97, KHS01, Kuh98, KBG16, Kuo94, Lad04, LTDD14, LTR00, LKD08, LSZL02, LTRA02, LHHM96, L96, LZ97, LH97, kLCC96, LO96, Lus00, MSGR01, MS02b, MM92, MWG97, dFMBdF902, Mar06, Mar07, MFB95].
Parallel [MSCW95, Mat94, Mat95, MBS15, MG15, MRB17, MM11, Mic93, Mic95, MTWD06, MCLD01, MS95, MCD9+08, MBB9+12, MSB97, NO02b, NO02a, Nak03, Nak05a, Nak05b, NSZS13, Nar95, NSS12, NAJ99, NJ01, Nov95, Oed93, OP10, OLG01, Ong02, Ott93, OWSA95, Pac97, PPT96a, PVKE01, Pat93, PSZE90, PV97, Per99, Per96, PLR02, PKE+16, PBC9+01, Qui03, RR00, RDMB99, RBS94, Ree96, RS95, RC97, RSV95, Röh00, Rol94, RWD09, RRL09, SCP97, SPE95, SGZ00, Sch01, Sch96a, Sch96b, Seg10, Ser97, Sev98, She95, SM03, SP99, Sie94, Sie92a, Sie92b, Sin93, STV97, SWH15, Sou01, Sta95b, Ste94, SS94, SG10, Str96, Str97, Str94, SNNP10, Sun90a, Sun90b, Sun94a, Syd94, TWP96, TS90, TPT97, TCP94, TCP15, TQDL01, TH94].
Parallel [TDBEE11, Tso07, TV96, Ulh94, Ulh95b, UH96, UWC95, VLO+08, VRS90, VB99, VH96, Wal01a, We94, WAS95b, WHDB05, W097, WSN99, WTR03, WT12, YM97, YHL01, YH96, YPA94, YGB96, YTH9+12, YZPC95, YSL+12, ZB94, ZZ04, ZDR04, ZW97, ZAT+07, ZLS+15, ZZZ+15, ZGC94, ZB97, van97, ACM97a, ARW03, APB16, ART17, AAAAA16, AD98, AL92, ABF+17, ASC95, ADT14, AD95, AC92, Ano93b, Ano95c, Ano00b, ADB94, ADD95, AB93b, AFST95, AB13, AGIS94, ADMV05, BHJ96, BBB9+94, BR91, BA06, BHS18, BB95, BCD06, BB93, BDG9+2b, BB94, BPC94, Ben95, BvdSvD95, BKH9+13, BAV08, BN00, Birt94, BCM+16, BKML95,
parallel [CEGS07, CH94, CZ96, Che99, CEF +95, CDD +96, CKmWH16, Cha05, Cha96, CGL +93].

parallel [CEGS07, CH94, CZ96, Che99, CEF +95, CDD +96, CKmWH16, Cha05, Cha96, CGL +93].

parallel [CEGS07, CH94, CZ96, Che99, CEF +95, CDD +96, CKmWH16, Cha05, Cha96, CGL +93].

parallel [CEGS07, CH94, CZ96, Che99, CEF +95, CDD +96, CKmWH16, Cha05, Cha96, CGL +93].

parallel [CEGS07, CH94, CZ96, Che99, CEF +95, CDD +96, CKmWH16, Cha05, Cha96, CGL +93].
Parallelised Centrum [Eng00].

Parallizing [LRQ01], parameter [HPLT99, JMvVG+17], parameterized [CT13]. Parameters [GFV99, BAG17].

Parallelizing [CT13]. Parameter [HPLT99, JMvVG+17], parameterized [CT13].

Parameter [HPLT99, JMvVG+17], parameterized [CT13]. Parameters [GFV99, BAG17].

Parameters [GFV99, BAG17].}

Parallelising [LRQ01], parameter [HPLT99, JMvVG+17], parameterized [CT13]. Parameters [GFV99, BAG17].

Partitionierung [Gra97].
[GR07]. Peer-to-Peer [GR07]. PELCR
[PR07]. PEMPI [FB95]. PEMPIs
[MOL05]. Pennsylvania
[ACM96b, IEE94d]. pentadiagonal
[Kan12]. Pentium [Ano03]. Pentium(R)
[SBT04]. PENTRAN [KHS01]. people
[ACSM95, Ano94b]. per-triangle [SOA11].
perception [CLM95]. perceptual
[WPL95]. Performance
[ACM97b, ACM98a, ACM98b, ACM00,
ACM01, ACM04, ATM01, AR01, Ano01a,
Ano01b, ADR+05, Bak98, BBGL96, BN00,
BBDH14, BGG+02, BY12, BRM03,
BRST94, BS07, BLD08, BCPS00, BHNN01,
BFMT96b, BFBBW01, BEG+10, CGK+16,
CDD+13, CRE99, CDJ95, CLD01, CMN11,
Che99, CSC96, CCBBPA15, DPD08,
DM95b, DW02, DZ98b, DPP01, DWL+10,
DBK+09, EGH99, EGCO2, EML98, EML00,
FD02a, FGR70, FCP+01, FSC+11,
FST98b, FGKT97, GFDO3, GKP96, GGS99,
GHB99, GFI+18, GRMM99, GBS+07,
GCO5, GMIDMB+07, GSY+13, HVA+16,
HKN+01, HM01, HF14a, HF14b, HPS95,
Hus98, IEE92, IEE93c, IEE94g, IEE95k,
IEE96a, IEE96f, IEF95, IRRU01,
HvA+00, JSS+15, JCM17, JCH+08, JS13,
KDSO12, KaM10, KL94, KH12, KBS04,
KB97, KKP01, KH15, KCO6, KK02b,
KHS01, KSS00, LAF01, LADS+15, LCK11].
Performance
[LC97a, LB98, LGH99, LNKH+15, LH98,
LC93, LKL+03, LWZ18, LNW+12, LS10,
LCW+03, LVP04, LWP04, LDC97, LHZ019,
LC97b, LKYS04, MB+94, MKP+96,
MP04, ME17, MGMH97, MGC12, MM02,
MM03, MLO5, MS99a, MHC94b, MMSW02,
MK04, MCLD01, MMNH09, MM14, MMS07,
NSL16, NMT93, NPP+04d, NMS+14,
NN95, OTK15, OF00, OLG01, PARB14,
PKB01, PHJM11, PZ12, PR94b, PFPG97,
PGB+06, PGAB+07, PSG02, PY95,
PHT+01b, PS01b, QHCC17, QB12, Rab98,
RRW97a, RBB97c, RH01, RRAGM97, Ros13,
RST06, SGJ+03, SPM+10, SLJ+14,
SWHP05, SCP97, SED+16, SPL+12,
SCSL12, SM02, SM03, SSC97, SJ02, SSSS97,
SC96b, SKH96, SJK+17a, SJK+17b, TSB02,
TSB03, TTSY00, Ten95, Tha98, TBG+02,
TGT10, Tri12b, TFGMO2, TFZ12, VFD02,
VY02, WNI0, WAS95b, WM01, WT11,
WT12, XF95, XH96]. Performance
[XXL13, YC98, Yan94, YWC11, YS93,
YWCF15, YSP+05, ZLGS99, ZWJK05,
ZHK06, ZSNH01, ABDP15, Ahn97,
ADLO3a, ADLO3b, Ano03, AFST95,
BDP+10, Bern6, BDV03, BF696, BFM96,
BFMT96a, BFIM99, CRE01, CAHT17, CLYC16,
CBPP02, CB+08, CHKH15, DM95a,
DL10, D96, D95, DWL+12, DE91, Duv92,
EFR+05, ESB13, FAF16, FD02b, FE17,
FSV14, FME+12, Fin97, GS02, GGC+07,
GK97, GR95, GHZ12, GML+16, GL96,
GLDS96, GL97c, GL99, GWVP+14,
HDC09, HW11, HASS00, HAJK01,
HK10, HVSC11, HHA95, HG12, Ho10,
JKHK08, JMN+11, JKN+13, KBP16,
KKM15, KS13, LCD+96, LTL94, LC07,
LBH12, LCH96, LL01, LJK03, LSK04,
MC17, MP95, MSLM15, MSW+05, MSL12,
MABG96, MHC94a, MSZ17, MJPB16,
MGY+15, NUS05, NFH+10, OH10, O02,
PGE+13, PHV+13, PKG+10, FFP05,
PMZM16, PTW99, Rab99]. performance
[Reu03, RDGM15, RJDH14, Sep93, SFO95,
SWJ95, Sl05, SVC+11, SK00, SFLD15,
TMCQ909, TSP95, TG09, THM+94, VDL+15,
Wor96, YCL14, ZSK15, ZW13, DAT17,
HS95a, GH94, LCH96, SSH08]. performance-aware [MSMC15].
Based [YWC11]. Performance-Portable
[JSS+15, DWL+10, DWL+12, FAF16].
Performance-prediction [BDV03].
Performance/cost [GWVP+14].
Performances [GFV99, DS96b, IM94].
Performing [CC99]. Peridynamic
[MSZ17]. Periscopic [LGG16].
USE94, USE95, USE00, VW92, Vos03, Y+93, YH96, AD98, BG91, BDLS96, BS94, Bos96, BFMR96, BDW97, CH96, CD01, DSM94, DKO05, DW94, DMW96, DLM99, DKP00, Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97a, Kra02, KKD04, LCHS96, Mal95, PBB+95, Sch93, Tou96, VV95, Vol93, Was96. Proceedings. [Ano93f, Ano94g, IEE96i, IEE97b, LHHM96]. Process [AUR01, BGL00, CLL03, DeP03, DK06, FDP97a, FDG97b, FLD98, FPY08, KCP+94a, KOW97, PS00a, SC04, ST97, Tra92a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HJ98, JLS+14, KCP+94a, MLVS16, MK00, SHHC18, Ste96]. Process-Management [BGL00]. processed [HJ98]. Processes [CB16, MW98, Pet00a, Pet00b, FS95, GFI+95, SPK+12]. Processing. [ATC94, Agr95a, AR01, BBG+95, BM92, GGCM99, GGCG01, HJBB14, IEE93b, IEE03f, IEE95c, IEE95f, IEE95g, IEE96b, IEE96c, IEE96e, IEE97b, IEE05, IOK00, JDB+14, KOI01, KS15b, LSVM08, MLGW18, MSML10, NAR95, NH95, NJ01, PLR02, PD98, Ree96, RRB01, Ro94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, BJ13, BHS18, BFMR96, CFPS95, CLASPD99, DSZ94, FWS+17, GDC15, GGGC99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kumm94, LHLK10, LC93, PSB+94, PBPT95, RKBA+13, Roh00, RCG95, SSS99, SLS96, VDL+15, Wol92, WWFT11]. Processor [HC06, Oed93, Ott94, PWP+16, RR02, Smit93a, STB04, UALK17, ABDP15, AC17, DCH02, HC08, LL01, OIS+06, RNPM13]. Processor-Oblivious [UALK17]. Processors [AJ97, Bri10, HK93, HK95, KuWH10, MJB15, OLG01, PZKK02, BBG+14, CBM+08, DLBL11, HTA08, HWX+13]. Producing [HAK01]. product [CMH99, ER12, SMSW06]. production [CLdJ+15, SL00]. productive [LV12]. Productivity [BS07, KaM10, WIT16]. products [Ano97, Bra97]. profile [TWFO09, WITFO14]. profile-driven [TWFO09, WITFO14]. profiler [AS92]. profiles [Wi94]. profiling [GPL+96, LZHY19, Rab99, Vot02]. Program [Ano96d, AB93a, BMS94b, CHPP01, Cot97, EML98, MM95, MRR00, Ney00, PS01b, TS00, THN00, UTY02, CDZ+98, JF95, LP00, LHC13, OKM12, PPF89, Sai10, TNIB01, ZL95]. Programación [VP98]. Programmable [OA17]. Programmatic Code [BL94]. Programmer [Gua16, WIT16]. programmers [CGG10]. Programming [ACM90, Ada97, AGCR97, ASA97, ACJ12, Ano96b, BBG+10, BLF93, BHV12, BF01, BBG+01, BC00, CMK00, CD97, CKW11, Cha02, CZG+08, CF01, Cza03, DM98, DARG13, DDL00, DK06, DLW+10, EM00a, EM00b, FTV00, FWR+95, GLRS01, GLS94, GLS99, HA11, HBB+12, HDT+15, KKH03, Kep05, KP96, KnWh10, KVH97, La04, La01, LLRS02, MSOG01, Mat94, MDs+08, N002b, SPM+10, SK10, SS01, SDN99, SHH94b, ST02, ST02s, SGS10, Sp02, TTP97, VT97, Vre04, Wal01a, Wal02, WO97, YM97, YHGL01, ACGD102, AMUK15, Ano95c, Ano00b, AB13, BJ13, BCA+06, BB94, BS06a, BK11+13, CLYC16, Cha05, CEF+95, CDH+94, CGH+14, DWL+12, Duv92, EASS95, EV01, FB95, FB96, Fan98, FSTG99, Fer04, Fra95, FHB+13, FF95, GCKZ12, Ge06, GBH14, GBH18, GRTZ10, HTA08]. programming [HS93, HZ94, HBB+13, HVSH95, HSW+12, HZG08, KDS01, KOB01, KSG13, KSL+12, KL15, KPN16, KFSS94, KJK+08, LV12, LFS09a, LFS09b, LH98, LPD+11, LLH+14, MMB+94, MVT96, MSP93, MC99, MGC+15, NO02a, Neb05a, NYNT12, NBGS08, OIS+06, Olu14, OW92, Pac97, PVKE01, PF05, Qui03, RJDH14, iSYS12,
Programs [AJF16, Beg93b, BKdSH01, BGK08, BGG02, BDL98, BGL00, CSW12, CRE99, CHPP01, CD98, DLB07, DMMV97, Di14, FKH02, FJK17, GR07, GTH96, GL04, GCO5, HC10, HKN01, HM01, KFL05, KJS14, KKv01, KSV01, Mar09, MVY95, MOL05, MBE03, MKW11, MCLD01, MJB15, NSSZ13, NE01, NPP00d, OM96, PPJ01, RH01, RFG00, SGZ00, SBF04, SR96, TGBS05, Wel94, Wis97, ZLL+12, Beg92, Beg93c, Beg93a, BCK+09, BMPS03, CRE01, CldJ+15, CLG+93, CH94, CRM14, CFP96, DFK93, DFK94b, EP96, EPP17, FLB05, FKLB08, GGH99, GRM09, GKS+11, GB94, HD11, HZ96, HLOC96, HEHC09, KCD+97, KS13, KO14, KQ15, LGKQ10, LLG12, LL16, LBB+16, LYSS+16, LMM+15, LZC+02, LCC+03, MT96, MdSAS+18, Mor95, NBK99, Obe96, OdSS12, PES99, PadS+17, RAS16].

Progress [BRU05, LAd+15, SPH+18, MLA+14, MC94]. Progress-Dependence [LAdS+15]. Project [BHK+06, BSH15, DHK97, MRV00, ABC+00, CDH+94].

proteins [BHW+12, BBH+15, FMS15].

Protocol [CAWL17, GSY+13, kL11, LMM+15, RA09, XF95, BDB+13, CwCW+11, DDYMN99, MN91, MB00, ZIP+06].

Protocol-based [LMM+15]. Protocols [BCH+08, DMM+93, LH98].

Protoplanetary [dFMdFM+02]. Prototype [Ano01b, FHP+94, MSW02, BK96, CCF+94, KLY03, KLY05].

Provide [Add01, LMRG14].

Providing [GKP97, Zah12].

Proving [MS96b].

Pruning [SMM+16].

Public [Str94, GWVP+14, NH93, RST02].

Public-private [Str94].

Pseudo-search [Wal01a].

Pseudorandom [WHD+05].

Pseudospectra [BGS92].

Pseudospectral [Bri95, MRR+11].

PSP [PGV+96].

Pthreads [AS14, TS12b].

Prop [iSYS12].

Protocols [BCH+08, DM93].

Protoplanetary [dlFMdlF+02].

ProtoPlanetary [dlFMdlF+02].

Protocol-based [LMM+15].

Protocols [BCH+08, DMM+93].

Protocol [[GHD+12]].

Protocol [GHD+12].

Protocols [BCH+08, DM93].

Protocols [BCH+08].

Provide [Add01, LMRG14].

Provides [Ano98, NH93].

Providing [GKP97, Zah12].

Proving [MS96b].

PR [UCW95].

Pruning [SMM+16].

Public [Str94, GWVP+14, NH93, RST02].

Public-private [Str94].

Puma [BS96b].

purely [HSE+17].

Purpose [BDT08, Che10, SZBS95a, Sun94a, ABP15, CBM+08, KPNM16, PF05, SK10, SZBS95b].

PVanM [BCLN97, TSS98].

PVFS [IRU+01].

PVM [AD98, B194, BDLS96, BDW97, CHD07, CHD09, CD01, DKO5, DLM99, DKO0, DLO03, Kra02, KLD08, McD96, MTWD06, RWD09, Wil94, A97, Ahm97, AS92, AGC97, ADRC98, AL92, AGR+95b, AB95, ASA97, AL96, ARL+94, AKK+94, AP96, An94b, An95e, An96b, An96c, ABCI95a, ABCI95b, ABG+96, AGLv96, AB93b, AB93a, ADMV05, BS95, BLP93, BFL99, BBG96, BG95, BS93, BDG+91a, BDG+92b, Beg92, BDG+93b, BDG+93a, Beg93b, Beg93c, BC93a, BDG+95, BS96a, BDG+95, BL95, BR95b, Ber96, BS97, BT96, BWT96, BG94a, Bon96, BG94b, BG94c, Bor99, BCD96, BRR99, BFZ97, BD95, BMS94b, BF96, BFMT96a, BFMT96b, CMV+94, CP97, CD95, CKO+94, CCK+95, CSPM+96, C295a, CGPR98, CG93, CDHL95, CDH+95, CF01, CZ96, CS96, CG96, CG99a].

PVM
Quantifying \cite{AKE00, LDCZ97}.
quantitative \cite{BLP93, BBH15}.
quantization \cite{HE15}.
Quantum \cite{BCGL97, BCL00, GRTZ10, Hin11, MGG05, NMW93, SK00, SSGF00, TJ09}.
Quasi-\cite{DDYM99, Pla02, ZB97}.
Quasi-asynchronous \cite{DDYM99}.
Quasi-Newton \cite{ZB97}.
Queens \cite{Rol08b}.
Queensland \cite{ACDR94}.
Query \cite{AR01}.
Quest \cite{MWG97}.
Queue \cite{NSS12, CG99b, PTT16, Sep93, ZA14}.
queues \cite{Man98}.
quicksort \cite{MMO16, MMO16}.

R \cite{BBH12, JPOJ12, LR01}.
R&D \cite{Str94}.
R&D-100 \cite{Str94}.
Race \cite{CFMR95, KSJ14, DKF94a}.
Races \cite{PPJ01, SAL17, BDB13, LLG12, ZRQA11, EPP17}.
Radial \cite{BBH12, JPOJ12, LR01}.
Radiance \cite{GCBM97, KMG99, RC97}.
Radiology \cite{GA96}.
Rajeev \cite{Ano00a}.
Raleigh \cite{Agr95a}.
Ramesh \cite{Stp02}.
Random \cite{HT08, LTDD14, Lan09}.
Randomized \cite{Tra98}.
Range \cite{KBM97, MH01, BMPZ94a, PARB14, She95}.
range-join \cite{She95}.
Rank \cite{Hat98}.
Ranking \cite{Tra98}.
Rapid \cite{FWS17}.
RASC \cite{YCL14}.
rate \cite{BBG14, YPA94}.
rationale \cite{BBH13}.
Ray \cite{GG93, DP94, KGB09, FWS17, SGS95, FFB99}.
Ray-Tracing \cite{DP04}.
Rayleigh \cite{TVV96}.
Rayleigh-Benard \cite{TVV96}.
rCUDA \cite{PRSL16, RSC15, SIRP17}.
RDMA \cite{GSY13, LWP04, Pan14, RA09}.
RDMA-Based \cite{LWP04}.
RDMA-Enabled \cite{GSY13, Pan14, RA09}.
Re \cite{MCP17}.
Re-Vectorization \cite{MCP17}.
Reaching \[BH502] Reaction \cite{HE14a, HE14b}.
Reactant \cite{BCL00, Heb93}.
reactor \cite{ANS95}.
readability \cite{SM12}.
Reading \cite{HK95}.
Ready \cite{Bri02, DZ98b}.
Ready-Mode \cite{Bri02}.
Real \cite{LHLK10, NSLV16, Tho94, UP01, YGH14, Ano94f, Fer04, FLB05, JR10, ZWZ95, SKD04}.
Real-Time \cite{UP01, YGH14, LHLK10, Fer04, ZWZ95, SKD04}.
Real-World \cite{NSLV16}.
Realistic \cite{YMYI11, ZShH01, CKP93}.
Reality \cite{ACM06a, Ano93f, NM95, Wit16}.
realizing \cite{YZ14}.
Reallocation \cite{GSF18}.
rebooting \cite{BJLT11}.
Receive \cite{Bri02}.
Receiver \cite{ZG95b}.
receptor \cite{ESB13}.
Rechnen \cite{ANC94, BL94, MS04}.
Recognition \cite{CC17}.
recognition \cite{RKBA13}.
Reconfigurable \cite{MFC98, SPM10, NYNT12}.
Reconfiguration \cite{CS14, MSMC15}.
Reconstruction \cite{BM97, DYN06, GA96, LSS15, OIH10, RAG95}.
Record \cite{UALK17, CRD99}.
Record&Replay \cite{KSV01}.
record/replay \cite{CRD99}.
Reduction \cite{SBF04, BBH01, BDB13, LFS93a, LFS93b, SSCC95, ZW05}.
Rectangle \cite{CSW99}.
rectiﬁed \cite{WBBD15}.
Recurrences \cite{ACGR97}.
Recursive \cite{DS00, PWP16, SD99}.
Red \cite{van93}.
redesign \cite{HL17}.
Redistribution \cite{DDPR97, HC06, WO95, WO96, HC08, KN95}.
Reduce \cite{PSM14}.
Reduced \cite{SW12}.
Reducing \cite{CRG16, JE95, BCM11}.
Reduction \cite{FKH02, MFP03, SG12, HL17, Jes93a, MLVS16, Pan95a, PQ07}.
Redundancy \cite{TS12}.
redundant \cite{KJ16}.
Reference \cite{GHLL98, Nag05, SOHLY98, YM97, Ano99a, Ano99c, Ano99b, Ano99d, SOHL01, Per97, Ano96a}.
Reﬁnement \cite{MRB17, Ran05, CLSP07, DL94}.
regions \cite{LFL11}.
regression \cite{RBA17}.
Regular \cite{HL17}.
Reliability \cite{CGZQ13}.
Reliable \cite{SE02, Arn95}.
Remark \cite{SWH15}.
remedies \cite{AL16}.
Remo \cite{IEE95h}.
Remote
Gro00, KBS04, KCR⁺¹⁷, NPP⁺⁰⁰d, TJPF12, ZLP17, ALW⁺¹⁵, BL99, BR94, EPP⁺¹⁷, EO15, HPS⁺¹², HPS⁺¹³, KW14, LLH⁺¹⁴, MA09, NPP⁺⁰⁰a, TSY00, YAJG⁺¹⁵.

Runtimes [AHHP17]. **Russia** [Mal95].

RWA [RLVRGP12].

S [AHHP17, Röh00]. **S-Caffè** [AHHP17].

S-language [Röh00]. **S-language** [Roh00].

S-Cae [AHHP17].

S-language [Roh00]. **S-Safe** [Pla02, GCC99, LFS92, LFS93a, LFS93b, NYNT12].

S-language [GT07]. **salesman** [GM94].

S-language [S3D].

S-language [LSG12]. **Salesman** [GM94].

Saturday [AAA16, YLZ13].

Saturday-Wednesday [B05].

Saturday [KL96, M95].

Saturday [ADD95, TCBV10, WRSY16], **schedulers** [NP12].

Scheduling [ABB95, BJS99, APBcF16, BCL00, NZZ94, OMK09], **SCF** [MM95].

Scheduling [ADD95, TCBV10, WRSY16]. **schedulers** [NP12].

Scheduling [BBH⁺⁰⁶, BSH15, CML04, DMB16, EGR15, GDDM17, GSHL02, GH97, HC06, JW96, MJB15, NIO⁺⁰₂, NIO⁺⁰³, TJPF12, APBeF16, DZ98a, JKN⁺¹³, LHCT96, MBKM12, NSBR07, OPW⁺¹², Smi93b, SKK⁺¹², SKB⁺¹⁴, WYLC12, WLYC12, WVC11].

Scheme [CTK01, LNLE00, MW98, SBF⁺⁰⁴, BBGL96, Bjo95, MRRP11, OKM12, SCC96, YPZC95, FM90].

Schemes [PPJ01, WYLC12, WLYC12, ZAT⁺⁰⁷].

Schmidt [CBYG18].

Schrodinger [FEH⁺¹⁴, IEE95d, MMH39, Old02, SM07, ACM06a, DMW96, HK93].

Scientists [HW11, Str94].

SciPAL [KH15].

SCIPVM [ZHS99].

Scope [OCY⁺¹⁵, BDB⁺¹³, WBBD15], **scoping** [RDLO02, WC15].

Scratchpad [JAK17, MB12].

Scripting
Selective [Nak03].

Search [BSH15, Cza13, IKM+01, Wal01b, FMS15, IKM+02, Wal01a, ZSK15, CB11]. Searches [BSC01]. Searching [JPT14, MM01, BA06, Wal01b]. Seattle [ACM05, BS94, LCK11, Ost94]. Second [Ano00b, BL95, DT94, DE91, IEE94d, IEE96d, IEE96i, LHHM96, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFMR96, DMW96, FR95, KN17, Li96].

Second-Order [BL95, KN17]. Secondary [WHDB05, SEC15, ZAT+07]. section [Ano93b, DKO08]. segment [FJZ+14].

segment-based [FJZ+14]. Segmentation [KBA02, AD95, CCU95]. Seidel [BG95, LM99, Ols95]. seismic [AMBC93, KL95, KEGM10, LM13, QHCC17. RMMN+12, SSH99, WCVR96].

Seismograms [DP94]. Select [KKD03].

Selected [DHS96, MTW07, OL05, TB14, CHD09, Cha05, DKO07, JC17]. selecting [PTL+16].

Selection [CKmWH16, PGBF+07, WKS96, ZWL+17].

Selective [Nak03]. Self [NSS12, SLJ+14, TGT10, VFD02, NSB07, WYLCL2, WLYC12, WYCC11].

Self-Consistent [TGT10]. self-scheduling [NSB07, WYLCL2, WLYC12, WYCC11].

Self-Submitting [NSS12]. Self-Tuning [SLJ+14].

Semantic [MTU+15, DKF94a, OA17]. Semantically [MKW11]. semantics [RNP13].

Semaphores [TTP97]. Semi [CT94a, Bjo95, PSLT99, TC94, CT94b].

semi-coarsening [PSLT99]. semi-implicit [Bjo95].

Semi-Lagrangian [CT94a, TC94, CT94b]. Semiconductor [GJN97, Ano03, LS10].

Seminar [Ano94f, Ano93h]. Send [GPC+17].

Sensed [GGM99, GGC001, GCGS98, VLO+08, GGGC99]. sensitive [GKCF13]. Sensitivity [dLR04]. Separable [Ben01, CEGM96].

September [Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CLM+95, CHD07, CJNW95, CD01, CDND11, DKO05, DKO07, DLM99, DPK00, DLO03, EJL92, FK95, FR95, GHH+93, IEE93d, IEE94c, JPT94, KGRD10, Kra02, KKKD04, LKD08, Mal95, MTW06, OL05, PSB+94, RWD09, SPI95, SM07, TBD12, VV95, VW92, WPH94, YH96].

Sequence [GMU95, SMM+16, AMHC11, TSSC94].

sequences [GÁVRL17, SdM10].

Sequencing [VPS17]. Sequential [EK97, RPM+08, GGH99, SR95, TNIB17, TSSC94].

Serial [SWH15, HPS+96, HWS09].

serialization [CFKL00]. Serialized [KH10].

Serielles [BL94]. Series [Nag05, BR94].

Server [Ano93f, FSL98, KS97, Mat01b, Sch93, Sto98, Vis95]. Servers [CCG+02, SIS17, GKG7]. Service [RFG+00, LS08, SPK+12]. Services [FC05, AAC+05, ZKRA14]. Session [NYNT12, ZL96]. Set [SW12, WL96a, Ano00a, Ano00b, She95, WL96b]. Sets [SG12, CGL+93]. setting [GL95a].

Setup [NSL16]. Seventh [BBG+95, HS94, IEE93b, IEE95g, IEE96h, Eng00, Y+93]. several [GRB15].

SGI [Che99, CML04, KMG99, LB96, LL01, LK03, LSK04, TW12, ZSH01].

SGI/CRAY [Che99].

SGI/CRAY-T3E [Che99]. shadow [SOA11]. shallow [dLAMC11, dLAMCFN12]. Shane [SD13].

Shanghai [IEE97a]. SHARE [Ano92, Ano93f, Ano94g].

Shared [BEM06, BME98, DMB16, FKH02, FB94, GB96, GLRS01, HC10, HDB+12, HT01, KB98, KSHS01, LRT07, Luo99, MBE03, MCD+08, MI02, NPP+00d, PBM00, Pok96, PSS06, Ros13, SS01, STY99, ST02b, Thr99, VSO0, VT97, ABCI95a, ABCI95b, ADMV05, BM07, CBPP02, Cha96, CCM+06, CC00b].
DBVF01, DS96b, DPZ97, EV01, GCN°+10, GL96, GL97c, HS93, HDB°+13, JE95, KJA°+93, KC06, KLR96, MLC04, PK05, RGDUM15, SHHI01, SL94b, SFL°+94, SSC96, TSY99, TSY00, Vos03, WMRR17, WMR19, YWO95, YX95, Cha05.

Shared-Memory
[DM98, HDB°+12, NPP°+00d, Pok96, Thr99, PS00b, ABC95a, ABC95b, BMG07, GL96, GL97c, KJA°+93, PK05, TSY00].

Sharing
[Att96, CML04, CB16, DiN96, JAK17, KK98, JE95, Ott93, PRS°+14].

Shear
[JAT97].

ShearLab
[KLR16].

Shearlet
[KLR16].

Shearlets
[KLR16].

SHMEM
[BBDH14, Hus01, LSK04, Sch96a, Sch96b, SS01].

Short
[KBM97, MH01, BMPZ94a, PARB14].

Short-Range
[KBM97, MH01, BMPZ94a, PARB14].

shorter
[NB96].

Showcase
[USE00].

SHPCC
[IEE92].

SHPCC-92
[IEE92].

SIAM
[BBG°+95, DKM°+92, Sin93].

Side
[kLCCW07].

Sided
[BPS01, GFD03, GFD05, GT01, HDB°+12, LRT07, MH01, BM00, TGT05, TRH00, ZSG12, bT01a, BM00, DBB°+16, GBH18, LSK04, MS99c, PGK°+10, GBH14].

SIGCSE
[ACM06a].

Signal
[IEE95c].

signals
[Uhl95c].

Signatures
[Gro00].

significance
[AMHC11].

silent
[FME°+12].

silicon
[Ano03, Goe02].

SIMP
[BvdB94, HS95b, KD7°+12, LL16, Srf95b, VSW°+13].

Simple
[MSF00, Mü101, SC04, ITT99, JH97, Nes10, PN01].

simulate
[Heb93].

Simulated
[BHM94, BHM96, FH97, RSBT95].

Simulating
[DL°+17, KDL°+95b, KDL°+95a, NFG°+10].

Simulation
[CDMS15, CCBPGA15, DMM97, DZD95, GSB97, GM95, GN97, Ham95a, JML01, KMB97, KMK16, LLRS02, MFTB95, MPD04, MAN909, PCY14, PKY95, PZKK02, RR00, RDMB99, SSAS12, Str97, Ten95, UZC°+12, ZZ04, WJ05, dLAC11, Ano95d, ADR°+05, BJ95, BCM°+16, BH95, BMPZ94b, CwC°+11, CSPM°+96, DSOF11, FHS99, FO94, FFCC99, GRTZ10, JAT97, JLS°+14, KTJ93, KMC96, KMC97, LCVD94b, LCVD94a, LYZ13, MMW96, MALM95, NF94, OKM12, PARB14, PY95, RFH°+95, SWYC94, SS°+94, SKM15, Str96, Syd94, Tho94, YPA94, YEG°+13, YSL°+12, Eng00].

Simulation-Based
[ZWJ95].

Simulations
[CGS15, CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG°+07, SM02, YPAE09, ADT14, ABG°+96, BHS18, BADC07, CFF19, GM18, Hin11, JMS14, LS10, LSVMW08, RMNM°+12, SU96, WWFT11].

Simulator
[CAM12, MRV00, UTY02, WPC07, AMV94, LS10, PWD°+12, WZWS08, ZAFAM16, ZZ95, KTJ93, Nak03, Nak05a, Nak05b].

Simulators
[SB95, AVA°+16].

Singapore
[IEE96d].

Single
[BM00, HF14a, HF14b, MB00, URK12, AGIS94, KKL11].

Single-Chip
[URK12].

Single-sided
[BM00].

single/multigrid
[AGIS94].

singleton
[TVC18].

Sinks
[JPT14].

Sites
[Ano98].

Sixth
[HK95, IEE96c, MMH93, SW91].

size
[GKCF13].

sized
[SZL°+14].

Sizes
[DALD18, ZSnH01].

SKaMPI
[KRS99, RSPM98, RH01, Reu01, RST02, Reu03].

SkelCL
[SG14].

Skeleton
[GB98, IH04, RJDH14].

Skeletons
[Ser97].

Skjellum
[Ano95c, Ano00b].

Slack
[KFL05, FKLB08].

SLAE
[ADRCT98, AK99].

Slave
[LTR00, HP05].

SLEPc
[DR18].

SLICC
[KBAH94].

Slices
[GSHL02].

Small
[HLP11, TS12b, Ano94h].

small-footprint
[TS12b].

Small-World
[HLP11].

Smith
[KDSO12, RGB°+18].

Smithsonian
[Str94].

smoking
[YSL°+12].

SMP
[Add01, CRE99, CRE01, CCBPGA15, HD02a, DK06, GT01, GMDMB°+07, HD02b, Hus00, HIP02, JHK08, KDI01, KKH03, KMG99, KAC02, NO02b, NO02a, ST02a, TOTH99, Trä02b, YWC11, bT01a].
SMPCkpt [DCH02]. SMPI [DLM9+17].
SMPs [HLCZ00, NU05, SvL99]. SMPSs [MLAV10]. SMPSuperscalar [GCB12].
SMT [PAadS+17]. SMT-based [PAadS+17].
snake [JPP95]. snake-in-the-box [JPP95].
socket [LS10]. Softshell [SKK17].
Software [Ano94i, BME02, BPG94, BDG+xx, CZ95b, ESB13, FF03, GBF95, Gre95, HPR+95, HS94, HHA95, IEE95i, IEE96h, IIF95, KS15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PLZ12, SL96, TDBE11, VdS00, Wis01, Wol92, Ano97, BSC99, Bli97, Bra97, BR94, CMV+94, CBPP02, DPPZ97, Hum95, JH96, LM94, MK94, Neu94, Old02, PHA10, PK05, PGK+10, RSA16, SHH01, Sch94, Sei99, SPH95, Str94, ZGN94, Ano94i, KG93, SL96].
Software-Managed [LB16]. Solan [CGB+10]. Solaris [Ano01a]. solidification [JLS+14]. solids [Hin11]. Solution [DWL9+10, FBSN01, HO14, RPM+08, SEF+16, Tnu12, VRS00, DWL9+12, IM95, JK10, LSR95, MALM95, ON12, PRS+14, SC96a]. solutions [AGIS94, LMG17]. Solve [Hog13, Riz17, BAV08, Che99, GGGC99].
Solver [Ben01, BP98, CF01, HSMW94, IDD94, LZ97, SJK+17a, SJK+17b, WJB14, YK+18, AMS94, CP15, CFF19, DM12, JR10, LM99, Lon95, OGM+16, RM99, SRK+12, SCC95, THM9+94, ZZG+14].
Solvers [DFN12, DABD18, G10, MSB97, NO02b, Nak03, NHT02, NLRH07, QRMG96, RS97, WR01, ABF+17, ADL03a, ADL03b, ADDR95, BRR99, CL93, DR18, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94c, QRG95, SHS08]. Solving [MRC14, BHM94, BHM96, BV99, BG95, BDG+92c, BSH15, DDL18, GFF12, Huc96, LLY39, MS02a, NF94, SAS01, SP11, SD99, BB95, DSM94, HHA95, LBB+16, LYSS+16, MM11, SSS+16, SMSW06, YSVM+16, YSMA+17]. SOM [GkLyC97].
Some [BDT08, Mil01, Pet97, AL92, NN95, RSBT95]. Sopron [Vv95]. Sorrento [DKD05, DKD07]. sort [KVGH11, PSHL11]. sorting [BHJ96, PSHL11]. Sound [SG12].
Source [BGG+15, MM07, AC17, AVA+16, NCB+17, Nob98, FPK+10].
Source-Code-Correlated [MM07].
sourceto-source [AC17]. Sources [ZD01, KM10]. South [ACM95a].
southeast [ACM95a]. Sowing [GL97a]. SP [BGPB01, CE00, HMKV94, LC97b, WT11, WT12].
SP-1 [HMKV94]. SP-2 [LC97b].
SP1 [BR95c, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, MP95].
SP1/SP2 [FHP+95, Fra95, FWR+95]. SP2 [BR95b, FHP+95, Fra95, FWR+95, HWW97, JF95, KB98, KHS01, MABG96, XH96].
SPAA [ACM95b]. Space [CM104, CB16, HO14, MSF00, OFA+15, SAS01, SS01, TA14, SRK+12].
Space-Sharing [CM104]. Space-Time [HU14, SRK+12]. SPAI [BBS99]. Spain [DLM99]. SPAN [LHH9+96, Li96]. Spanish [VP00]. spanning [NCKB12]. Spark [KWEF18]. Sparse [AZ95, BBH12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADL03a, ADL03b, ER12, FJZ+14, GGG99, Gra09, NHT06, XLL13].
SPEC [Ano03, MW9+10, MB+12, NA01, SGJ+03, TB03]. Special [AM07, BDT08, BD+13, BC00, CHD09, DKD07, DKD08, GSA08, MP98, Bos96, Mar02, PNV01, Rev01, Old02]. Specific [DM95b, DM95a, Oh14]. Specification [BG94a, BdS07, MGGC12, MHSK16, BDG94c, LPD+11]. Specifications [OFA+15, WMP14]. Specified [GMMH97]. specifying [LPD+11]. specimen [Ro08b].
SPECT [BCD96]. spectator [YMYI11].
[RA09, dOSMM+16]. Speed
[CDHL95, Tou00, AH95, Ano03, BWT96, BID95, MKM16, OLG+95]. Speeding
[CSV12]. Speedup [VPS17]. SPH [CP15, OLG+16, PBC+01, WMRR17, WMR19]. Sphere [CT94a, CT94b]. spherical [KT10]. SPICE3 [WPC07]. Split [CAM12]. Spin
[HLP11, KO14, Kon15]. splitting [TCBV10]. SPMD
[BST+13, Dar01, KAC02, Wal00, Wal02]. SPMD-Like [BST+13]. Spokane [IEE93c]. Spong
[HSW+12]. spontaneous [EZBA16]. Spring [Ano94g, IEE93a]. SPTHEO [Sat96]. SPY [SSG95]. Squares
[PWP+16, VRS00]. SR [YWCF15, ZLP17]. SR-IOV [YWCF15]. SR8000
[NNON00, TSB02, TSB03]. SS7 [LTLC94]. SSGM [HPS+96]. SSS [MMH98]. SSS-CORE [MMH98]. St [Ma95]. Stability [DSS00]. stable [JMdVG+17]. Stage [FSXZ14]. staggered [GM18]. Stampi [ITKT00]. Standard
[DM98, GSI97, GLP+00, GL95c, Hem94, MI98, NH95, SKD+04, SGS10, Wer95, YKL17, Ano94d, BDB+13, Bor99, Cla98, CG99b, DHHW93b, DOSW96, FB95, GKL97, GL92, Hem96, St94, VM95, Wal94a, Wal94b, WD96, Ano97, Bra97, CGH94, DOSW95, GLD95]. Standards
[FKK96, Th99]. Star
[CDM93, Coo95a, Coo95b]. STAR/MPI
[Coo95a, Coo95b]. START
[Gro02b, Hus98]. Startup [PS07]. State
[ACM11, IEE94f, IEE95]. Wis96a, Wis96b, BTC+17, LF93b]. state-to-state [BTC+17]. states [NS16]. Static
[NIO+02, NIO+03, RLRGIP12, SCB15, SCB14]. Static/dynamic [SCB15]. Statics
[TG94, TG94]. Stationary [MW98]. Statistical
[LIR01, SNP10, AMHC11, KKM15, Roh00, SL94a, Vot02]. Status
[Bak98, DZ98b, GL95c, BDG+93b, FHP+95, Hem96, Sun96]. staining [TCBV10]. Steepest
[Sch01]. Steering [GKP97, PK98]. Stencil
[CGU12, WTH17, KD13, TBB12]. stencil-based [TBB12]. step
[Kos95b, ZG98]. Stereo [ZBd12, Qu95]. Steve
[Ano96a, Ano99a, Ano99b, Nag05]. Steven
[Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. Still [HCA+16]. Stochastic
[DK02, LLRS02, MW98, PTMF18, RSV+05, JK10]. Stockholm [Eng00, HAM95b]. Stokes
[Che99, DLR94, HSMW94, IDD94, Lou95, PTT94, SCC95, ZZG+14]. stop
[Gun16, LMG17]. stop-and-restart [LMG17]. Storage
[ACM04, Hol12, LCK11, HP11, NFG+10, ZJWD18]. stores [HSP+13]. straight [YULMTS+17]. Strategies
[M02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, TSCZ94, VB99]. Strategy
[AIM97, DI02, Hat98, VPS17, ZB94, ZSG12, DKF94b, DR95, MSL12]. strayed
[Rol08a]. stream
[HSW+12, UGT09]. Streamline [CGC+11]. streams [TVCB18]. StreamScan [YLZ13]. Strength
[Kon00]. String [MM02, MM03]. striped [KDS01]. Strongly
[GAP97, ZZG+14]. Structural [PSSS01]. Structure
[CBL10, LAFA15, SY96f, WHDB05, EPM99, SEC15, SY95, ZAT+07]. Structured
[FB96, Mar06, MRB17, NLRH07, Ran05, Bis04, CLSP07, FR95, GBR15, JAT97, Sni93b]. Structures
[GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. studies [DHP97]. Study
[AIM97, BF01, BHL+95, DARG13, EGCO2, FPY08, GL97a, HHC+18, KCR+17, LSB15, MM02, NSLV16, NA01, PK05, RRBL01, SCL01, TG94, AGR+95b, BJ13, BFDNA4, BJS99, BY12, Bri00, CBM+08, DX96, ED94, FO94, JR13, KGB16, LPD+11, LLH+14, MS96b, PSK08, PGK+10, PSHL11, RSBT95, RJC95, TPD15, WAL01b, ZSK15]. Stuttgart
[KGRD10, WPH94]. style
[MJG+12]. sub
[MJG+12]. sub-communicators [MJG+12]. subcircuit [HLO+16]. subdomain
[CEG07]. subdomains [SHHC18]. subgroup [XLW+09]. Submitting [NSS12].
Subrange [Str97]. Subroutine [Saa94].
subroutines [dCH93]. subsurface [ED94].
subsystem [BMG07, MABC96].
Subsystems [STMK97]. Subtle [SAL+17].
Success [Gro01b, LF+93a]. Successes [Gro01a]. Successful [Gro12].
success [DK31]. Suitability [Mat01b]. suitable [MAS96].
Suite [ACMR14, AKE00]. BWV+12, MBB+12, Riz17, Ano03, BO01,
MvWL+10, TG09, YSWY14, SNMP10. Suites [MCS00, SGJ+03]. summation
[IHM05]. Sums [ST17, MYB16]. SUN
[BM00, SJ02, WSN99]. Sunderam
[Ano95b]. Super [Gua16, YX95].
Super-Object [YX95]. Supercomputer
[Ano93a, CLP+99, Str94, AAC+05, BGH+05,
EFR+05, GL96, GL97c, KM+14, NS12,
Ste94, GS91b, MAB05]. Supercomputers
[BP93, BDG+92c, EKTB99, KN17, WT11].
Supercomputing
[ACM96b, ACM04, ACM05, BDG+91b,
HK93, IEE91, IEE93c, IEE94a, Liu95, Sch94,
ACM94, ACM96c, Ano93g, BG91].
supertile [Pri14], superscalar [ACJ12].
Supersonic [CCBPGA15]. Support
[Ano98, BBG+10, BFBW01, CFF+94,
DMMV97, FGRD01, GRV01, GOM+01,
HRSA07, LMRG14, MK04, OP98, PSX+14,
RRO2, SDN99, SBT04, TW01, Wis98, Wis01,
YSP+05, BB…13a, BL99, CC10, CZ95b,
DRL94, Hos12, Ma94, TSY99, TSY00,
TY14, WK08a, WK08b, WK08c, YAJG+15].
Supported [KLR16, CDD+96].
Supporting
[FD00, FMSG17, GAML01, Gua16, MMS07,
OOS+08, WLN03, WLN06, WCSS99,
YWC15, FLD96, GAM+00]. Supports
[AELEGE16, CLL03, DGM93]. suppression
[WWZ+96]. Surface [KS15b, PKYV95,
BHW+12, DCD+14, RAGJ95, TSP95].
Survey [Sap97]. Survive [ABB+10],
sustainable [CGBS+15]. SVD [CMIH99].
Swan [HD11]. Swapping [SC04]. Sweden
[Eng00, HAM95b, FF95]. Swendsen
[KO14, Kom15]. Switch [SCL01, TBD96].
Switched [LC93, KLY03, KLY05].
SWITCHES [DT17]. Switzerland
[GT94, Ano94i, IEE97b, SX
[HRZ97, TRH00]. SX-4 [HRZ97]. SX-5
[TRH00]. Sydney [Bil95]. Sylvester
[GIK10]. Sylvester-Type [GIK10].
Symbolic [CCK12, Coo95b, Ste00,
YYW+12, ACM97a, BHRK95, Coo95a,
Lev95, LGKQ10, LLG12, SMAC08].
Symmetric [BDV03, MDM17, YKW+18,
BAY08, DCH02, GG99]. Symposium
[ACM95b, ACM96a, Ano94a, Ano95d, BG91,
DE91, HHK94, IEE93c, IEE93b, IEE94a,
IEE94e, IEE94g, IEE95c, IEE95d, IEE95k,
IEE95f, IEE95g, IEE96b, IEE96c, IEE96f,
IEE96e, IEE97b, IEE97c, IEE05, LHHM96,
L96, NM95, O994, S94a, Sie94, Sie92a,
Sie92b, Ten95, Tou96, USE94, UCW95,
ACM97a, ACM06a, Ano93a, Ano94b, Lev95,
Odd02]. synchronisation [SDB+16].
Synchronization [LA02, OCY+15, TGT05,
BMG07, LA06, TMTP96, YLZ13].
Synchronizing [VT97]. Synchronous
[Ada97, BJ13, Cer99, DLR99, HZG08].
Synergia [SSAS12]. Synergistic [UGT09].
Synthesis [CS14, GW95]. synthesized
[MC17]. Synthesizer [DS16]. Synthesizing
[AJF16, NP12]. Synthetic [CC17, DP94].
Synracle [IEE96]. SYMOS [MM95].
System
[Ada97, AJ97, AH00, BG95, BDG+xx, BL95,
BFZ97, BGD12, CAM12, CGC+02, DBA97,
DALD18, ERS95, ERS96, EK97, FBD01a,
FBVD02, FFP03, Fis01, Gal97, GCBM97,
GS91b, GS92, GSxx, GM95, Gre95, HS94,
KBA02, LLRS02, LTR00, LLY93, Ma94,
MRV00, MM02, MS00, MHH08, MMS07,
MMH93, NPP+00d, NMS+14, Oed93,
PPT96a, RGD97, SGJ+03, SSB+05, SCP97,
SA93, ST02b, Sm93, TSS00b, Tsv07, UP01,
Wt93, ARS89, AS92, AL92, BB94, Br95,
BBH+15, DL10, FNSW99, FK94, GS91a,
GS93, GS96, GMU95, GkLyCY97, HDDG09,
[GT94, Ano94i, IEE97b, SX
[HRZ97, TRH00]. SX-4 [HRZ97]. SX-5
[TRH00]. Sydney [Bil95]. Sylvester
[GIK10]. Sylvester-Type [GIK10].
Symbolic [CCK12, Coo95b, Ste00,
YYW+12, ACM97a, BHRK95, Coo95a,
Lev95, LGKQ10, LLG12, SMAC08].
Symmetric [BDV03, MDM17, YKW+18,
BAY08, DCH02, GG99]. Symposium
[ACM95b, ACM96a, Ano94a, Ano95d, BG91,
DE91, HHK94, IEE93c, IEE93b, IEE94a,
IEE94e, IEE94g, IEE95c, IEE95d, IEE95k,
IEE95f, IEE95g, IEE96b, IEE96c, IEE96f,
IEE96e, IEE97b, IEE97c, IEE05, LHHM96,
L96, NM95, O994, S94a, Sie94, Sie92a,
Sie92b, Ten95, Tou96, USE94, UCW95,
ACM97a, ACM06a, Ano93a, Ano94b, Lev95,
Odd02]. synchronisation [SDB+16].
Synchronization [LA02, OCY+15, TGT05,
BMG07, LA06, TMTP96, YLZ13].
Synchronizing [VT97]. Synchronous
[Ada97, BJ13, Cer99, DLR99, HZG08].
Synergia [SSAS12]. Synergistic [UGT09].
Synthesis [CS14, GW95]. synthesized
[MC17]. Synthesizer [DS16]. Synthesizing
[AJF16, NP12]. Synthetic [CC17, DP94].
Synracle [IEE96]. SYMOS [MM95].
System
[Ada97, AJ97, AH00, BG95, BDG+xx, BL95,
BFZ97, BGD12, CAM12, CGC+02, DBA97,
DALD18, ERS95, ERS96, EK97, FBD01a,
FBVD02, FFP03, Fis01, Gal97, GCBM97,
GS91b, GS92, GSxx, GM95, Gre95, HS94,
KBA02, LLRS02, LTR00, LLY93, Ma94,
MRV00, MM02, MS00, MHH08, MMS07,
MMH93, NPP+00d, NMS+14, Oed93,
PPT96a, RGD97, SGJ+03, SSB+05, SCP97,
SA93, ST02b, Sm93, TSS00b, Tsv07, UP01,
Wt93, ARS89, AS92, AL92, BB94, Br95,
BBH+15, DL10, FNSW99, FK94, GS91a,
GS93, GS96, GMU95, GkLyCY97, HDDG09,
Hum95, HS95b, IBC+10, ITT99, JH97, JLS+14, KW14, Kik93, LBD+96, LKL96, LL95, MA09, MM99r, MM99, MM99b, MALM95, NAJ99, PPT96b, PPT96c, PK05, RJDH14, RTL99, SHHI01, SL94b, Sei99, SPL99].

System [SGDM94, Sun96, Sun95b, VSRC94, VSRC95, WCC+07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, ZWZ+95, dCZG96, AL93, NMW93, Yan94].

System-Initiated [SSB+05].

System-on-a-chip [dCZG06].

System/6000 [AL93, NMW93].

Systems [AAB+17, Ano94b, Att96, BCGL97, BGBP01, BME02, BPG94, Bha93, CDJ95, CAWL17, CFF+94, CSW97, CJNIW95, Coo95b, FD96, FGKT97, Fos98, Gua16, HRS97, IEE93d, IEE94d, IEER95a, IEE95i, KKH93, KP94, KDL+95b, KCR+17, KSG97, LY93, LW97, MWG97, MBE03, MBJ15, MBJ+12, SM03, SG910, SS96, TMB91, THN00, USE94, YGH+14, YH96, ZB97, dGJM94, AGR+95b, ACMZR11, ATL+12, Ano94c, BBB+94, BAY08, CKO+94, CLYC16, CBPP02, Coo95a, CPR+95, DF17, DR94, DBV01, DvdLVS94, FHB+13, GRB97, GCN+10, GEW98, GKK90, GCF013, Gra90, GFP912, GH1+93, HHA95, IM95, JB96, JMM+11, KSG13, KHB+99, KLV15, KDL+95a, KFSS94, LR06b, LH98, LCV994b, LLH+14, MSL12, MvWL+10, Old02, OPW+12, Pan95b, Par93, QB12, SSKF95, SPH95, SVC+11, Smi993b, SG14, SMSW06, SLN+12, Sun94b, TBB12].

Systems [TMW17, TVCB01, TSP95, WCSS+13, WWZ+96, WAD99, WYLCZ12, ZL96, ZGC94, dH94, dLAC911, dLAMC112, JWB96].

Systemsoftware [Sei99].

systolic [BSC99].

T3D

[AZ95, AFST95, CCM979, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95].

T3E

[BBS99, Boo01, Che99, GRRM99, LSK04, RBB97c].

T3E-512 [RBB97c].

T3E-600 [LSK04].

T9000 [BR94].

table

[BJ13].

Tabu

[BH93, CA13, CB11].

Tags

[Wis97].

Tails

[Kha13].

Takes

[GDB+93].

T3D

[AZ95, AFST95, CCM979, HWW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95].

T3E

[BBS99, Boo01, Che99, GRRM99, LSK04, RBB97c].

T3E-512 [RBB97c].

T3E-600 [LSK04].

T9000 [BR94].

table

[BJ13].

Tabu

[BH93, CA13, CB11].

Tags

[Wis97].

Tails

[Kha13].

Takes

[GDB+93].
Tools-supported [CDD+96]. Top [AHP01, Gal97, Hus01, Man01, PTH+01b, Ser97, BCBR99, PTH+01a, SSC96, SCL97, CCHW03]. Top-C [CCHW03]. Topology [JKM+17]. topologies [BCM+16, MK00]. Topology [DK06, Hat98, HM01, Tra02a, GJMM18, HRR+11, MBBD13, SPK+12]. topology-aware [MBBD13]. Topology-Based [HM01]. TOpper [AHP01, Gal97, Hus01, Man01, PTH+01b, Ser97, BCBR99, PTH+01a, SSC96, SCL97, CCHW03]. TOP-C [CCHW03]. Topologies [BCM+16, MK00]. Topology [DK06, Hat98, HM01, Tra02a, GJMM18, HRR+11, MBBD13, SPK+12]. topology-aware [MBBD13].
U.S. [LD01]. U.S.A [Ano94c]. Überblick [Wer95]. UK [Abr96, AD98, EJL92, HK95, BP93, CJNW95, MC94]. UKMO [RSBT95]. ULFM [LCMG17]. Ultra [SJ02]. Ultra-High [SJ02]. Ultrafast [KRC17, FWS+17]. Umgebung [GBR97]. UML [RGD13]. UML/MARTE [RGD13]. Umpire [VdS00]. Unbalanced [OP10]. Uncertainty [MBS15]. Understand [DeP03]. Understanding [CRE01]. Unibus [KSSS07]. UNICOM [Ano93h]. unified [GKZ12, JC17, KSL+12, KLV15]. unifies [RJDH14]. uniform [KSG13]. uniformly [Tra12a]. Unify [VSRC94, VSRC95]. unifying [CCM12]. Unintended [SAL+17]. unit [VDL+15, MSML10]. United [Boi97]. Units [KS15b, LSVMW08, ABDP15, BHS18, LHLK10, WWFT11, HJBB14]. Universal [LW97, DDLM95]. University [CGB+10, IEE94d, IEE95j, R+92]. Unix [OLG01, RBS94]. Unleashing [TCM18]. unscharfer [Wil94]. Unstructured [AB93a, NO02b, SM02, SM03, AB93b, NO02a, TPD15]. unveils [Ano93]. UPC [EGC02, MTK16, Mar05, SJK+17a, SJK+17b]. Update [KT10, GSMK17]. Updates [ESB13, KS15a, ZDR01, HSE+17]. USP [NPP+04a]. ups [Ano03]. USA [ACM96b, ACM98b, ACM00, ACM06a, AGH+95, BBG+95, BS94, Cha05, CGKM11, DT94, EV01, EdS08, ERS06, Gat95, Ham95a, Hoh12, IEE95b, IEE95d, IEE96a, IEE96i, MCDs+08, Old02, PBG+95, Ree96, Sin93, Sen95, ACM95b, ACM97b, AGR95a, Ano89, B+05, DKM+92, HS94, IEE94c, IEE95k, IEE02, Ost94, SL94a, SS96, USE94, USE95, USE00]. Usage [FD02a, FCLG07, FD02b, FVLE15]. Use [FJBB+00, Gro02a, HK93, HK95, MR12, PSZ100, Shi94, AB95, GEW98]. USENIX [USE94, USE95]. User [AD98, ACDR94, BDG+91a, CHD07, CD01, CDND11, DDK05, D+91, DHHW92, DHHW93a, DLM99, DPK00, DLO03, FCLG07, GBD+94, GN95, KGRD10, KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MTWD06, NPP+00c, Nov95, Per96, RWD09, TBD12, XF95, ZWZ05, Ano95b, BBB+94, BDW97, KCP+94a, RSC+15, Rei01, Will94, BB...+13a]. User-Level [DHHW92, DHHW93a, KCP+94b, KOW97, NPP+00c, XF95, ZWZ05, KCP+94a, BB...+13a]. Users [Ara95, CHD09]. uses [SH96]. Using [AR01, ADRCT98, AHP01, And98, AP96, Ano95e, AKE00, AZG17, AB93a, BST+13, BPMN97, BG95, BS93, BKS02, BM97, Bon96, BBC+00, BBH12, CGC+11, CRE99, CMM03, CP97, CSPM+96, CC17, Che99, CSM97, CDM93, CCHW03, CRGM14, CT94a, CCBPGA15, CD98, DeP03, DAR913, DAK98, DGMJ93, EM02, EMO+93, ESM+94, EK97, FAFD15, FD04, FTVB00, FS93, GGMCM99, GCGS98, GTH96, GM95, GK97, GS96, GMPD98, GHL97, GJN97, GL94, GLT99, GLS94, GLT00d, GLO08b, HB96b, HSMW94, HJ98, HLP11, HT08, HRSA97, HT01, IOK00, IDD94, IKM+01, JGFRF12, JPP95, KB98, KOI01, KKV96, KA13, LLRS02, LTR00, LRT07, LTRA02, LY93, LLY93, LZ97, LAFA15, MTS94, MPD04, MR12, MSCW95, MANR09, MM+12, MSB97, NO02b, NIO+02, NIO+03, Neu94, NH95, NA01, OM96]. Using [OCY+15, QWSA95, PWP+16, PK98, PPT96c, POL99, PT01, Per99, Pet97, PBK00, PD98, PGF18, Pus95, QRMG96, QMGR00, RR00, Reu03, RRBL01, RLVG012, RLL01, RRg+99, SAS01, Sev98, SSAS12, SP99, SA03, Smi93a, SBR95, STV97, SMOE93, Sta95b, ST17, SKH96, SCL01, SJK+17a, SJK+17b, TS12a, TS12b, TBB02, TSB03, TK16, TBB12, Tha98, Tra98, Tsa07, VLO+08, WOO95, WAI01a, WJ12, WLR05, Wis97, Wis01, WLYC12, YKW+18, ZBd12, van07, vdLJR11, AMHC11, AK99, ABF+17, AL96, ADT14, ABG+96, AB33b, AGIS94, AAG+95, BV99, BFL199, BSC99,
BDG+92c, Bic95, Bis04, BCM+16, BTC+17, BCD96, BID95, BAG17, BSH15, BMG07, CG93, CBM+08, CBYG18, CdGM96, CS14, CLBS17, CTZ94b, CC00b, DG95, DS13, DRUC12, DSOF11, DCH02, DM12, EGDK92, FB96, FSV14, FSC+11, Fin94, Fin95. using [FHC+95, FWS+17, GGCG99, GSKM17, GG09, Goe02, GFB+14, GMU95, GM18, GRTZ10, HBS96a, HDDG09, HTJ+16, HP11, HPS+96, HPLT99, HSNP00, HLO+16, HAA+11, JIM+05, IM95, IKS+02, JL18, JF95, JKHX08, JLS+14, JYY+03, JMM+11, JPT14, JR10, JMDVG+17, KFA96, KRRK11, KY10, Kat03, KJJ+16, KR09, KMK16, KME09, KMC96, KMC97, KRC17, KD13, KPK13, LP00, LSG12, LSSZ15, LCY96, LSVWM08, LCMG17, LO96, MMR99, MP95, Mar06, MSMS15, MAB05, MeK94, MM11, Mic03, Mic05, MRH+96, MM13, MSML10, MS95, MM14, MC99, MvWL+10, NOO2a, Nak05a, NZ94, NB96, NAJ99, NU05, OKM12, OIH10, Ols95, Pat93, PDI14, PGdCJ+18, PNV01, PKE+10, QRG95, RJC95, RAS16, RCFS96, RBA17, RM99, RCG95, SHLM14, SdM10, SLGZ99, SGS95, SSS99, SMS00, SOA11, SVC+11, SSGF00]. using [SFLD15, SSN94, SU96, SPl1, TC94, TPLY18, Tsn05, Uhl94, Uhl95b, UH96, VM94, VB99, VGS14, VM95, WO96, Wa10b, WCS+13, WCVR96, WST95, WMRR17, WMRR19, WADC90, Wot96, WYL12, XF95, YULM17, YWC11, YWC15, ZWH95, ZSK15, ZAT*07, ZZ95, Ano95c, Ano00a, Ano00b]. UTE [H10]. UTE [JF95]. Utilising [SC96a]. Utilities [CC95]. UV2 [TW12]. UVM [NSL16].

V [JB96, BBC+02, BHK+06]. V2 [BCH+03]. VA [Sin93, RP95]. Vacancy [HD02b]. Vaidy [Ano95b]. Validation [BDV03, GLB00, WCC12, CMV+94, SCB14, SCB15]. Value [vHK94, A196, LSR95, SP11, SD99]. Value-based [vHK94]. valued [Str12]. VAMPIR [BHNW01, NAV+96].

verteilter [BR97]. VGRIDSG [GR03a]. VIG [Sei99, FKCK96, BH9+12, CGZQ13, DS96b, GB96, Hos12, HCL05, LAAS+15, LSSZ15, NPP+00c, QHCC17, SLI+14, St94, VDBI08, YPZ95, ZJD12, ZLL+12, EM02, RR01]. VIA/SCI [RR01]. viable [Ano03]. Victoria [IEE95c]. Video [KSJ95, KS96]. videogames [YMY11]. Vienna [BH95, TBD12, Ben95]. View [ZDR01, ZDR04]. ViMPIOS [Sto98]. VinaMPI [ESB13]. ViPIOS [Sto98]. Virginia [IE92, IE94a, Sie92a, Sie92b]. VirtCL [YWT95]. Virtual [ACM96a, AS92, ARL+94, BJ93, BNP99, BS93, BGR94, CHD07, D+91, EGR15, Fis01, GBD+94, Gel01, Gre94, ITT99, JPP95, KNT02, KKDV03, KKD04, KKD05, LKD08, LK10, MTTW06, NM95, Nov95, Pat93, Per96.

 Vision [KCR +17, JRM +94]. VISPAT [HPS95]. Visual [BPMN97, FNSW99, PDY14, Ros13, ACGdT02, LC07, GE95, GE96]. Visualization [BDGS93, GKP96, GKP97, HJ98, KA13, MVY95, NAW +96, PK98, PCY14, Wis96a, ZLGS99, Ber99, Eng00, FHC +95, HPS95, KFA96, TSS98, WST95, Wis96b].

watershed [NAJ99]. Wave [BBC +00, EMO +93, ESM +94, NSL16, SMOE93, Gei94, KM10, KEGM10, Mal01, NB96, RMNM +12]. Wave-Particle [NSL16]. Waveform [LSR95]. Wavelet [Uhl94, Uhl95b, Zem94, vdLR11, Uhl95a, Uhl95c]. Way [Vog13, FGT96]. ways [CZ96]. weak [SD16]. Weather [AHP01, HE02, Bjo95, KOS +95a, Mal01].

Web [CHKK15, AASB08, NE01, PES99, Wal01b]. Web-Based [NE01, PES99]. WebCL [CHKK15]. WebCom [OPM06]. WebCom-G [OPM06]. Wednesday [B +05]. Weicheng [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].

Williamsburg [IEE92]. Win32 [MS98]. windows [QB12, Aho01a, CLP +99, FD97, GGGC99, PS01a, SFG98, SSSS97, TAH +01]. Windows95 [SSSS96]. Winona [Ano94h]. wireless [Bon96]. wissenschaftliche [MS04]. wissenschaftliches [Ano94c].

without [BW12, Pla02, YLZ13]. WLAN
[MSOGR01]. **WMPI** [BPS01, MS98, MSS98, MS99c, PS01a, SMS00]. **WOMPAT** [Cha05, EV01, Ves03]. **Woollongong** [GN95]. **Work** [HRSA97, Pet00a, Pet00b, OdSSP12, TCBV10]. **work-stealing** [TCBV10]. **Worker** [EML00, YG96]. **Worker-Based** [YG96]. **Workerproblem** [FH98]. **Work** [LYZ13]. **Workforce** [Liv00]. **workgroup** [SDB+16]. **Working** [Ano98, Boi97, MCS00, Pet01, DR94]. **Workload** [AGS97, DBVF01]. **Workloads** [CC17, LWZ18, APBcF16, AVA+16, SKB+14]. **WorkPlace** [Ano97, Bra97]. **workqueuing** [VBLvdG08]. **Workshop** [ACM98a, Agr95a, BPG94, Bha93, BC00, Cha05, CGZ+08, CGKM11, CMMR12, DW94, DT94, EV01, EdS08, Fer92, FK95, FF95, HK93, HK95, IEE93d, IEE93f, IE94d, IE95h, IEE96g, IFI95, KG96, Kuh98, Kum94, MDC90, PBD95, PBPT95, SCR92, SHM+10, Sch93, Ves03, Was96, AH95, BS94, Cal94, D+95, DM96, FR95, GL95b, IEE93f]. **Workshops** [MCdS+08]. **Workstation** [GHL97, HSMW94, KS96, LC97a, MFTB95, Pus95, YKI+96, AB95, AL94, BL95, BSvdG91, BRS92, BALU95, BWT96, CCU95, DG95, ED94, GFB95, Heb93, JRM+94, LL95, NM93, NN95, PM95, PL96, RBS94, RCFS96, SC96a, SSN94, SL95, THM+94, Tsr95, UH96, YWO95, ZHS99, MS04]. **workstation-cluster** [Heb93]. **Workstation-Cluster** [MS04]. **Workstations** [AR01, BL94, BL95, BM97, BDH+95, BDH+97, BMS94b, DDP97, EK97, GS91b, HIP02, ID94, Liu95, LH98, MSCW95, MM01, OWSA95, PFG97, TQDL01, VLO+08, AL93, BJ95, BII95, Bru95, BMPZ94b, BMS94a, BMPZ94a, CCF+94, Coe94, DZ98a, DOW96, GM94, GMU95, HK94, Hsu99, KMC96, KMC97, KA95, MK94, MM03, RRG+99, SM95, SR95, TDB00, dCH93]. **World** [CMMR12, CJNW95, FD00, GHH+93, HLP11, MC94, NSLV16, PSB+94, Wit16, dGJM94, GDB+93, JR10]. **Worlds** [Rab98]. **wormhole** [Pan95a, Pan95b, RJMC93, ZGN94]. **wormhole-routed** [Pan95b, RJMC93, ZGN94]. **worms** [Pan95a]. **WoTUG** [MC94]. **WoTUG-17** [MC94]. **WPVM** [ASC95, BPMN97]. **Wrapper** [AS+14]. **Wrapping** [LRW01]. **Write** [BIC+10]. **Write-Back** [BIC+10]. **Writing** [FAF16, SDB94, FNSW99]. **Written** [KaM10]. **WWW** [KSJ95, KSJ96].

X [Bad16, FWS+17]. X-ray [FWS+17]. X10 [CGH+14]. X11 [GKI95]. x86 [MGL+17]. Xab [Beg92, Beg93b, Beg93c, Beg93a]. Xen [PRS16]. Xeon [DSGS17, OTK15, MTK16]. XPVM [KG96]. XXI [EGH+14].

YLC [Gal97]. YMP [BL94]. Yorkshire [CJNW95].

References

REFERENCES

293, 2016. CODEN ????, ISSN 1744-5760 (print), 1744-5779 (electronic). [AASB08]

Agullo:2017:BGB

Almasi:2005:DIM

Arth:1993:PIU

Arth:1993:CUA

Akzh:2008:WPL

REFERENCES

Aloisio:1995:UPW

Augusto:2013:APG

Ayguade:2010:EOS

Adhianto:2000:TOA

Appiani:1995:PSI

Appiani:1995:PSM

[ACGdT02] Alexandrov:1997:PMC

REFERENCES

REFERENCES

ACM:1997:PPS

ACM:1997:SHP

ACM:1998:AWJ

ACM:1998:SHP

ACM:1999:SPO

ACM:2000:SHP

[ACM00] ACM, editor. *SC2000: High Performance Network-

ACM:2011:SSP

Antonelli:2014:ATS

Ancona:1995:PAD

Alexandrov:1998:RAP

Adamo:1997:A0O

REFERENCES

[Aversa:2005:HDS]

[Aversa:2005:PPT]

[Alexandrov:1998:CGP]

REFERENCES

Ayguade:1995:DUA

Aityan:1995:PFI

Averbuch:1994:PES

Arbenz:1996:SRP

Ayguade:2006:ENO

Agrawal:1995:PIW

Almeida:1995:CST

[AGR+95b] F. Almeida, F. Garcia, J. Roda, D. Morales, R-
REFERENCES

Alfaro:1997:FDW

Alnuweiri:1995:PHF

Astalos:2000:CMS

Ahmad:1997:EVP

Ishfaq Ahmad. Express

Agathos:2012:TBE

Awan:2017:CCD

Allsopp:2001:EUM

Aversa:1997:MDP

Aguilar:1997:PMS

Aubrey-Jones:2016:SMI

Alexandro:1999:PMC

Armstrong:2000:QDB

Brian Armstrong, Seon Wook Kim, and Rudolf Eigenmann. Quantifying differences between OpenMP

Andersen:1994:PIA

Asai:1999:MIF

Abdelfattah:2016:KOL

Alfano:1992:DNA

M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92], page ?? ISBN ?? LCCN ?? Proceeding available via anonymous ftp from ftp.scri.fsu.edu in directory pub/parallel-workshop.92.

Altevogt:1993:PTD

Alt:1996:PIA

R. Alt and J. L. Lamotte. Parallel integration across time of initial value problems using PVM. In Bode et al. [BDLS96], pages 323–??
REFERENCES

anMey:2007:NPO

Al-Mouhamed:2015:EAO

Aversa:1994:PSH

Andersson:1998:PFT

Anonymous:1989:PFC

Anonymous:1992:PSE

Anonymous:1993:ATA

REFERENCES

Anonymous:1994:FWR

Anonymous:1994:MMP

Anonymous:1994:PDC

Anonymous:1994:PPC

Anonymous:1994:SCC

Anonymous:1994:SQC

Anonymous:1995:BRPb

Anonymous:1995:BRU

Anonymous:1995:RSS

Anonymous:1995:UPH

Anonymous:1996:BRMh

Anonymous:1996:IPP

Anonymous. An introduction to PVM programming. World-Wide Web,
Anonymous:1996:PPA

Anonymous:1996:RP

Anonymous:1997:TNR

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ????. ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMa

Anonymous:1999:BRMf

REFERENCES

Anonymous:1999:BRMb

Anonymous:2000:BRUd

Anonymous:2000:BRUe

Anonymous:2001:AAL

Anonymous:2001:EDP

Anonymous:2001:MNIc

Anonymous:2012:CTC

ANS:1995:MCR

Anglano:1996:PMB

REFERENCES

REFERENCES

[BAD17] Battre:2006:MFP

[BAS17] Bruel:2017:ACC

[BAS13] Ferit Büyükerceci, Omar Awile, and Ivo F. Sbalzarini. A portable OpenCL implementation of generic

Bernabeu:2008:MPA

Bedrosian:1993:MFA

Beguelin:1994:CMS

Beaumont:1995:DPG

Beguelin:1994:CMS

Bedrosian:1993:MFA

Beguelin:1994:CMS

REFERENCES

[BGG⁺01] Steve W. Bova, Clay P. Breshears, Henry Gabb, Bob Kuhn, Bill Magro, Rudolf Eigenmann, Greg Gaertner, Stefano Salvini, and Howard

Balaji:2010:FGM

Balaji:2011:MMC

Barrett:2014:EMM

Balak:1996:PPM

Bouteiller:2006:HPS

REFERENCES

Bisc Hof:2008:AAD

Bustamam:2012:FPM

Bland:2013:EUL

Bland:2013:PFR

Busa:2015:CCO
Ján Busa, Jr., Ján Busa, Shura Hayryan, Chin-Kun Hu, and Ming-Chya Wu. CAVE-CL: an OpenCL version of the package for detection and quantitative anal-

Boryczko:1994:LGA

Barnard:1999:MIS

Blas:2014:RAM

Barton:2006:SMP

REFERENCES

Bhattarajee:2011:PLC

Boli:2016:APA

Baiardi:2000:AMM
REFERENCES

[BDG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, ??? 19xx.

[BDGS93] Adam Beguelin, Jack Dongarra, Al Geist, and V. Sunderam. Visualization and debugging in a heterogeneous
REFERENCES

Bruck:1995:EMPb

Bruck:1997:EMP

Browne:1998:RPA

Bode:1996:PVM

Baghsorkhi:2010:APM

REFERENCES

REFERENCES

REFERENCES

Bernaschi:1996:RHP

[110]

[BF98]

Berthou:2001:COH

[102]

Bubak:2001:PMS

Bischof:1994:CSM

Broquedis:2010:FEO

REFERENCES

FAVORITE RHODES: 2012: LEA

BRONEVETSKY: 2009: CAC

BLANCO: 2002: PMA

BHALABRAMANIAM: 2015: EGL

BHANOT: 2005: OTL

REFERENCES

[BGR97a]

Bischof:2008:PRM

[BGR97b]

Butler:2000:SPM

Beisel:1997:EMD

Brune:1997:HMP

Breitenecker:1995:ESC

Bhargava:1993:PIW

Bhanot:1998:DTM

Bader:1996:PPA

Bouteiller:2006:MVP

Bubeck:1995:DSC

Bischof:1995:CSM

Bachem:1994:PCT

Bachem:1996:STH

REFERENCES

1996. CODEN DAMADU. ISSN 0166-218X (print), 1872-6771 (electronic).

[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral parallelizer and locality optimizer. ACM SIG-

[BHV12] Tobias Berka, Helge Hagenaier, and Marian Va-
 REFERENCES

REFERENCES

REFERENCES

REFERENCES

Suchendra M. Bhandarkar and Salem Machaka. Chromosome reconstruction from

REFERENCES

[BN00] Rudolf Berrendorf and Guido Nieken. Performance characteristics for OpenMP con-

REFERENCES

REFERENCES

REFERENCES

[Bra97] Randall Bramley. Technology news & reviews: Chemkin software; OpenMP Fortran Standard; ODE toolbox for Matlab; Java products; Scientific Workplace 3.0. IEEE Comput-

Randall Bramley. Technology news & reviews: Chemkin software; OpenMP Fortran Standard; ODE toolbox for Matlab; Java products; Scientific Workplace 3.0. IEEE Comput-

[BR04] Boeres:2004:ETF

REFERENCES

Briscolini:1995:PID

Brieger:2000:HOO

Brightwell:2002:RMR

Brightwell:2010:EDA

Brightwell:2003:DIP
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Berendsen:1995:GMP

Baskaran:2012:ACO

Berg:2012:FCL

Blum:1996:PIP

Bureddy:2012:OGM

Bihari:2012:CIT

[CABR10] Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi, and Andrea Di Biagio. A highly flexible, par-

Casas:2010:APD

Che:2008:PSG

Chapman:2002:APU

Clay:2018:GAP

Chapple:1995:PUL

Cormen:1999:PBP

Ciaccio:2000:GMG

Couturier:2000:PMD

Cardoso:2010:MSO

Chen:2017:AAG

Chen:2000:MCO

REFERENCES

Chen:2012:PUA

Clematis:1997:DNL

Chamaret:1995:PFE

Coulau:1996:EIP

Cunha:1998:MPP

Cotronis:2001:RAP

REFERENCES

REFERENCES

References

REFERENCES

[CFKL00] Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. Object serialization for marshaling data in a Java interface to MPI. *Concurrency: prac-
REFERENCES

An implementation of race detection and deterministic replay with MPI. In Haridi et al. [HAM95b], pages 155–166. ISBN 3-540-60247-X. ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA76.58.I553 1995.

Cotronis:1996:ECP

Clematis:1995:PPH

Clemencon:1995:IRD

Cownie:1999:SID

J. Cownie and W. Gropp. A standard interface for debugger access to message queue information in MPI. In Dongarra et al. [DLM99],

REFERENCES

REFERENCES

Chatterjee:1993:GLA

Caubet:2001:DTM

Casanova:2015:TMS

Cecilia:2012:CSC

Chan:1998:PCT

REFERENCES

Chen:2013:IRM

Cheng:1994:PDP

Ciancarini:1996:CLM

Charny:1996:MPV

Chapman:2002:PAD

Chapman:2005:SMP

REFERENCES

[Cappello:2007:RAP]

[Cappello:2009:FSI]

[Chergui:1999:UPP]

[Cheng:2010:BRBb]

[Cho:2015:OAO]
Myeongjin Cho, Youngsun Han, Minseong Kim, and Seon Wook Kim. O2WebCL:

Chapman:2001:PDE

Cho:2010:OPP

Cook:1995:TAS

Czarnul:1999:DAP

Chang:2016:DLD

REFERENCES

[Culler:1993:LTR]

[CL93]

[Clark:1998:FOP]

[Cornelis:2017:HAV]

[Chabbi:2015:BEP]

[Chen:2003:GMD]
L. Chen, C. LiWang, and F. C. M. Lau. A grid middleware for distributed Java computing with MPI binding and process migration.
REFERENCES

Corbacho-Lozano:1999:EDD

Cantoni:1995:CCA

Chien:1999:DEH

Chandra:2007:ESP

Chen:2018:FOB

openurl.asp?genre=article&
issn=0920-8542&volume=
39&issue=2&spage=177.

Chang:2016:APC

[CLYC16] Chih-Hung Chang, Chih-
Wei Lu, Chao-Tung Yang, and Tzu-Chieh Chang. An
approach of performance comparisons with OpenMP
and CUDA parallel programming on multicore sys-
tems. *Concurrency and Computation: Practice and
Experience*, 28(16):4230–
4245, November 2016. CO-
DEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).

Chapman:1998:OHI

[CM98] B. Chapman and P. Mehro-
tra. OpenMP and HPF: In-
tegrating two paradigms.
*Lecture Notes in Computer
CODEN LNCSDD9. ISSN
0302-9743 (print), 1611-3349
(electronic).

Chapman:2005:O

[CM05] Barbara M. Chapman and
Federico Massaioleti. OpenMP:
Parallel Computing, 31
(10–12):957–959, October/
December 2005. CODEN
PACOEG. ISSN 0167-8191
(print), 1872-7336 (elec-
tronic).

Claver:1999:PCS

[CMH99] J. M. Claver, M. Mollar,
and V. Hernandez. Para-
lel computation of the SVD
of a matrix product. In
Dongarra et al. [DLM99],
pages 388–395. ISBN 3-540-
66549-8 (softcover). ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

Cahir:2000:PMM

[CMK00] Margaret Cahir, Robert
Moench, and Alice E. Koniges. Programming
models and methods. In
Koniges [Kon00], chapter 3,
pages 27–54. ISBN 1-55860-
540-1. LCCN QA76.58
J483 2000. Discusses
PVM, MPI, SHMEM, High-
Performance Fortran, and
POSIX threads.

Corbalan:2004:PMD

[CML04] Julita Corbalan, Xavier
Martorell, and Jesus Labarta.
Page migration with dy-
namic space-sharing schedul-
ing policies: The case of
the SGI O2000. *Inter-
national Journal of Paral-
lel Programming*, 32(4):263–
288, August 2004. CO-
DEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640
(electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0885-7458&volume=
32&issue=4&spage=263.

Carson:2003:CGU

[CMM03] Brett Carson, Robert Muris-
on, and Ian A. Mason. Computational gains using
REFERENCES

J. L. Cercos-Pita. AQUAgsphush, a new free 3D SPH solver accelerated with OpenCL. Computer Physics
REFERENCES

[Cores:2016:ROM] Iván Cores, Mónica Rodríguez, Patricia González, and María J. Martín. Reducing the overhead of an MPI application-level migration

REFERENCES

Chevitarese:2012:STN

Ciegis:1997:NID

Ciegis:1999:HDA

Calotoiu:2012:PID

Cote:1994:PSA

Cote:1994:PSL

Cotronis:2002:MMP

Yiannis Cotronis and Zacharias Tsiatsoulis. Modular MPI and PVM components. Lecture Notes in Computer Sci-
REFERENCES

Zheng Cui, Lei Xia, Patrick G. Bridges, Peter A. Dinda, and John R. Lange. Optimizing overlay-based virtual networking through optimistic interrupts and cut-through forwarding. In Hollingsworth [Hol12], pages
REFERENCES

160

Cavender:1995:APN

Cavender:1995:SSA

Chengqing:1996:WIP

Czarnul:2002:DTI

Czarnul:2003:PTA

Czapinski:2013:EPM

Czech:2016:IPC
REFERENCES

Chapman:2008:PPM

Dongarra:1991:UGP

Dongarra:1995:HPC

Dimov:1998:IMC

Dieguez:2018:SLP

Danalis:2012:MCT

Anthony Danalis. MPI and compiler technology: a love-hate relationship. Lecture Notes in Computer Science,
REFERENCES

[Darema:2001:SMP]

[Demidov:2013:PCO]

[deAndrade:2017:OFH]

[Demuyneck:1997:DOD]

[Dinan:2016:IEM]

[Dursun:2009:MPM]
Hikmet Dursun, Kevin J. Barker, Darren J. Kerbyson, Scott Pakin, Richard Sey-

[DCD14]

[DBLG11]

[DBV01]

[DCH02]

[DCPJ12]

[daC1993]

Sylvain Didelot, Patrick Carribault, Marc Pérache,
REFERENCES

Dan:1999:QAM

Durand:1991:HPC

Demaine:1996:FCC

DePasquale:2003:UJU

C. J. DePasquale. Using the JVMPi to understand the behavior of Java classes during the development process. *Cmg*, 2(??):821–832, 2003. CODEN ????

Dehne:2001:CPD

Dashti:2017:AMM

Duran:2009:PEO

Alejandro Duran, Roger Ferrer, Eduard Ayguadé, Rosa M. Badia, and Jesus Labarta. A proposal to extend the OpenMP tasking model with dependent tasks. *International Journal of Parallel Programming*.
Duran:2007:PEH

Demaine:2001:GCM

Dhabal:1995:CBC

Dinan:2014:ECC

James Dinan, Ryan E. Grant, Pavan Balaji, David Goodell, Douglas Miller, Marc Snir, and Rajeev
REFERENCES

Di Napoli: 1997: DCA

Dinan: 2012: EMC

de Gloria: 1994: TAS

A. de Gloria, M. R. Jane, and D. Marini, editors.

Dongarra: 1993: UPF

Dongarra: 1993: IPF

da Cunha: 1994: PIR

REFERENCES

Dongarra:1995:PBC

168.

Dongarra:1992:PUL

Dongarra:1993:PUM

Dongarra:1993:DSM

Dongarra:1997:CSD

Dongarra:1996:SRP

REFERENCES

DiPierro:2014:PPP

DiSerio:2002:ENN

DiNucci:1996:CDS

Karniadakis:2002:DLP

Drosinos:2006:EPT

Deo:2013:PSA

REFERENCES

DiMartino:2005:RAP

DiMartino:2007:SIS

DiMartino:2008:SSG

Damodaran-Kamal:1993:NTD

Damodaran-Kamal:1994:MSR

Damodaran-Kamal:1994:TRP

REFERENCES

5948. LCCN QA76.76.T48 I58 1994.

References

Desai:2007:CEM

Marcos:2002:DDP

Degomme:2017:SMA

Dongarra:1999:RAP

REFERENCES

DeKeyser:1994:RTL

Lu:2004:AFS

DeSande:1999:NBS

DiPietro:2016:CLD

Despons:1993:CCP

Davies:1995:NSP

Davies:1995:NPE

Dagum:1998:OIS

Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for

REFERENCES

REFERENCES

Dalcin:2005:MP

Dalcin:2008:MPP

Dou:1997:ISV

Decker:1994:PEM

Dowaji:1995:LBS

DiMartino:1997:MDH

Davina:2018:MCP

[A. Lamas Daviña and J. E. Roman. MPI-CUDA parallel linear solvers for block-

Deuzeman:2012:LMP

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES

Deniz:2016:MGM

Dang:2017:ECB

REFERENCES

Dongarra:1994:PSW

Diavastos:2017:SLR

Duval:1992:TPP

D. Duval. Trends in parallel programming models for high performance computers. In Ferenczi [Fer92], page 33. ISBN ????. LCCN ???.

Dikken:1994:DDL

Dongarra:1994:PSC

DeRose:2002:CCG

REFERENCES

Du:2010:COT

Du:2012:COT

Deshpande:2012:AGC

Dong:1996:SPL

Deng:2006:PIK

Dantas:1996:ILB
M. A. R. Dantas and E. J. Zaluska. Improving load

Eppstein:1994:CSP

Eigenmann:2008:ONE

ElMaghraoui:2009:MIM

Eleftheriou:2005:SFF

El-Ghazawi:2002:UPP

Eppstein:1992:PGC
REFERENCES

REFERENCES

Ewing:1993:DCW

Engquist:2000:SVG

Ewing:1993:DCW

Earring:1996:TFP

Espinosa:1999:REB

Eizenberg:2017:BBL

Ariel Eizenberg, Yuanfeng Peng, Toma Pigli, William

Hesham El-Rewini and Bruce D. Shriver, editors. *Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences (HICSS-29): Wailea*, [ESM+94]

Richard E. Ewing, Robert C.
REFERENCES

[Fabeiro:2016:WPP] Jorge F. Fabeiro, Diego Andrade, and Basilio B.
REFERENCES

Fabeiro:2015:AGO

[Fang:1998:DDL]

[Fang:1996:SPP]

[Fang:1997:MDD]

[Fagg:2001:FTM]

Graham E. Fagg, Antonin Bukovsky, and Jack J. Dongarra. Fault tolerant MPI for the HARNESS meta-
REFERENCES

[FCLG07] Christopher Falzone, Anthony Chan, Ewing Lusk, and William Gropp. A portable method for finding

Graham E. Fagg and Jack J. Dongarra. FT-MPI: Fault Tolerant MPI, supporting

Fagg:2002:HFTa

Fagg:2002:HFTb

Fagg:1997:HMAa

Peter Fritzson and Leif Finno, editors. *Parallel programming and applications: proceedings of the Workshop on Paral-
A. Fava, M. Fava, and M. Bertozzi. MPIPOV: a parallel implementation of
POV-Ray based on MPI. In Dongarra et al. [DLM99], pages 426–433. ISBN 3-540-
66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA76.58
E973 1999.

G. Frugoli, A. Fava, E. Fava, and G. Conte. Distributed collision handling for particle-based simulation.

Ian Foster, Jonathan Geisler, William Gropp, Nicholas Karonis, Ewing Lusk, George
Thiruvathukal, and Steven Tuecke. Wide-area implementation of the Message Passing Interface. Parallel Computing, 24(12–13):1735–1749, November 1,

Ian Foster, Jonathan Geisler, Carl Kesselman, and Steven Tuecke. Managing multi-

REFERENCES

Andre:1998:BVN

Friedley:2013:OPE

Franke:1995:AAV

Friedley:2013:OPE

Field:2001:RTF

Frank:1994:MMP

Frank:1995:MIS
H. Franke, P. Hochschild, P. Pattnaik, J.-P. Prost, and M. Snir. MPI on IBM
REFERENCES

REFERENCES

197

Fischer:2001:SAN

Fernandez:2000:UPM

Forejt:2017:PPA

Feng:2014:SBS

Flower:1994:EJM
REFERENCES

[FKK96] Ian Foster, David R. Kohr, Jr., Rakesh Krishnaiyer, and Alok Choudhary. Double standards: Bringing task parallelism to HPF via the message passing interface. In ACM [ACM96c], pages ?? ISBN 0-89791-854-1. LCCN QA 76.88
REFERENCES

REFERENCES

Ferreira:1995:PAI

Franke:1995:MPea

Fritscher:1993:PDC

Ferrari:1995:TDC

Fischer:1997:ESP

Ferrari:1998:MDC

Filgueira:2011:ACE

REFERENCES

Fuerle:1998:IPC

Fumero:2017:JTG

Folino:1998:EMC

Folino:1998:PEM

Fernandez:1999:PGP

Fang:2014:API

Feng:2014:MSP

[FSXZ14] Chunsheng Feng, Shi Shu, Jinchao Xu, and Chen-Song Zhang. A multi-stage preconditioner for the black

Fernandez:2000:DCE

Fujimoto:2008:DMV

Fagg:2000:AAC

Fang:2015:EVD

Fineberg:1996:PPI

REFERENCES

Gonzalez:2001:DSP

Gonzalez:2000:PAM

Gao:2003:LSP

Galaktionov:1997:MST

Gates:1995:PFI

Gonzalez-Alvarez:2017:HMO

Gupta:1994:CTE

Ghosh:1996:ELM

Gorlatch:1998:GMI

Geist:1994:PPV

Gentzsch:1995:STP

REFERENCES

Grove:2005:CBP

Garcia:2012:DLB

GarciaSalcines:1997:PRR

Garcia:1999:MMI

Garcia-Consuegra:1998:DGR

Gelado:2010:ADS

REFERENCES

Gao:2013:GGA

Geist:1993:PTW

Galizia:2015:MCL

Ghose:2017:FOT

Gonzalez-Dominguez:2018:MPC

Grinstein:1995:VDE

REFERENCES

Grinstein:1996:VDE

Geist:1993:ILP

Geist:1994:CCW

Geist:1996:APP

Geist:1997:ACP

Geist:1998:HNG

Geist:2000:PMW

Geist:2001:BFN

Gabo:2003:SMC

REFERENCES

213

Gabriel:2003:EPM

Gabriel:2005:EDC

Gomez-Folgar:2018:MPA

Gravvanis:2012:SFD

Giordano:1999:IBP

Garzon:1999:PIE

[GG99] E. M. Garzon and I. Gar-

Giannoutakis:2009:DIP

Giannoutakis:2007:MHP

Gallud:2001:EDF

Gallud:1999:DPR

Gallud:1999:CCU

J. A. Gallud, J. M. Garcia, and J. Garcia-Consuegra. Cluster computing using MPI and Windows NT to solve the processing of remotely sensed imagery. In Dongarra et al. [DLM99],

REFERENCES

[Ghosh:2012:RAA]

[Grebe:1993:TAS]

[Goumopoulos:1997:PCS]

[Gropp:1998:MCR]

[Gong:2012:OCN]

[Garcia:2011:KRR]

Saturnino Garcia, Dong-ghan Jeon, Christopher M. Louie, and Michael Bedford Taylor. Kremlin: rethinking

Granat:2010:PSS

Robert Granat and Bo Kagström.

Grasso:2013:APS

Granat:2009:NPQ

Gropp:1995:MGX

Guan:1997:PDI

Geist:1996:VDP

Geist:1997:CPF

G. A. Geist, II, James Arthur Kohl, and Philip M. Papadopoulos. CUMULVS: Providing fault tolerance, visualization, and steering of parallel applications. International Journal of Super-
References

[Geist:1997:BPW]

[Gopalakrishnan:2011:FAM]

[Garland:2012:DUP]

[Gropp:1992:TIM]

REFERENCES

REFERENCES

Gropp:2004:FTM

Girona:2000:VDC

Gropp:1996:HPP

Glendinning:1993:MMP

Gregoretti:2008:MGE

Garland:2008:PCE

Michael Garland, Scott Le Grand, John Nickolls,

González:2000:TSN

González:2001:MIM

Gropp:1994:UMP

Gropp:1999:UMP

Gropp:1999:UMA

William Gropp, Ewing Lusk, and Rajeev Thakur. *Using MPI-2: Advanced Features of the Message Pass-
REFERENCES

Gropp:2000:UMA

[GLT00a] Gajeki:1994:NAT

Gianuzzi:1995:UPI

Goglin:2013:KGS

Gupta:2018:ALQ

Gu:2007:IPC

Gong:2016:NPG

Goujon:1998:AAT

Guan:1995:SCC

Gray:1995:PCT
REFERENCES

S. Crear, and O. Johnson.

Lothar Grabowsky. MPI-basierte Koppelrandkommunikation und Einfluss der Partitionierung im 3D-Fall. (German) [MPI-based coupled edge communication and influence of partitioning in 3D-Fall]. Preprint-Reihe des Chemnitzer SFB 393 97,17, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1997. 13 pp.

REFERENCES

Gropp:2001:CSA

Gropp:2001:LSM

Gropp:2002:BLC

Gropp:2002:MNS

Gropp:2012:MBW

REFERENCES

Gonzalez:1999:PPM

Gutierrez:2010:QCS

Gaito:2001:ADC

Geist:1991:ENB

Geist:1991:PSS

Geist:1992:NBC

REFERENCES

Geist:1993:EPC

Gropp:1994:SEP

Gold:1996:UAL

Geist:19xx:NBC
G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Technical report, Oak Ridge National Laboratory and Emory University, Knoxville, TN, USA and Atlanta, GA, USA, 19xx.

Garg:2002:TOA

Gao:2008:GEI

Gardner:2013:CCE
REFERENCE S

Gine:2002:ALT

Gine:2001:MMM

Gerlach:1997:ECS

Germanas:2017:HUP

Gu:2013:PCI

REFERENCES

[Gua16] Suo Guang. NR-MPI: A non-stop and fault resilient MPI supporting programmer defined data backup and restore for E-scale super computing systems. Supercomputing Frontiers and Innovations, 3(1):4–21, ????. 2016. CODEN ????. ISSN

REFERENCES

Hamza:1995:PII

Haridi:1995:EPP

Hassanzadeh:1995:MMG

REFERENCES

Hisley:2000:PPE

Hatazaki:1998:RRS

Hachler:1996:IAC

Haechler:1996:IA

Hausner:1995:EIP

Huang:2006:ECS

He:2000:PAA

Ding:2002:MOP

He:2002:MOP

Hoever:2011:STP

Hoever:2012:LMO

Hoever:2013:MMN

Herland:1998:CML

Huang:2009:EGO

Hempel:1994:MSM

Hempel:1996:SMM

Holmen:2014:ASI

Holmen:2014:EAS

Hursey:2012:AF

REFERENCES

Henriksen:1994:PCF

Homann:1995:CAP

Hong:2009:AMG

Hong:2010:IGP

Hiranandani:1994:CTB

Hoeflinger:2001:IPV

REFERENCES

bibs/2104/21040040.htm;

Hong:2011:ACG

Hori:2012:EKL

Hasanov:2017:HRC

CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).

Hu:2000:ONS

Haque:2017:CCL

Hung:2016:EBP

[HLO+16] Che-Lun Hung, Chun-Yuan Lin, Chia-Shin Ou, Yuan-Hong Tseng, Po-Yen Hung,
References

Hong:1996:RDM

Hawick:2010:PGC

Hawick:2011:RLS

Hilbrich:2009:MCC

Hakula:1994:FEM

Haynes:2014:MOA

Hogg:2013:FDT

Hollingsworth:2012:SPI

Hosking:2012:CHL

Hadjidoukas:2005:OEM

Hawick:2011:HSL

K. A. Hawick and D. P. Playne. Hypercubic storage layout and transforms in arbitrary dimensions using GPUs and CUDA. Concurrency and Computation:
REFERENCES

Hidalgo:1999:MMP

Hadjidoukas:2002:MOI

Hariri:1995:STE

Hondroudakis:1995:PEV

Heckathom:1996:SSP

Hilbrich:2012:MRE

Hilbrich:2013:MRE
Tobias Hilbrich, Joachim

Hariri:1993:MPI

Hoefer:2011:SPT

Hoyos-Rivera:1997:UPB

Hempel:1997:IMN

Hartley:1993:CPS

Hesham:1994:PTS

REFERENCES

REFERENCES

Houzeaux:2011:HMO

Hoekstra:1995:CPP

Hager:2011:IHP

Huang:2002:DDD

He:2009:AVS

(electronic). See remark [SWH15].

Hwang:1997:EMC

Huang:2013:ACM

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP

Hou:2008:BBS

Isaila:2010:SMP

[Florin Isaila, Francisco Javier Garcia Blas, Jesus Carretero, Wei keng Liao,

[Isabel:2002:CMO]

[Issman:1994:PME]

[Ibanez:2016:HMT]

[IEEE:1991:PSA]

[IEEE:1992:PSH]

[IEEE:1993:DPC]

IEEE, editor. *Digest of papers: Compcon spring
IEEE:1993:PSI

IEEE:1993:PIS

IEEE:1993:WHP
REFERENCES

IEEE, editor. *Proceedings of the Scalable Parallel Li-

REFERENCES

REFERENCES

 IEEE:1995:ISE

IEEE:1995:PSI

IEEE:1995:PEW

IEEE:1995:PIC

REFERENCES

[IEE96c] IEEE, editor. Frontiers’96, the Sixth Symposium on the Frontiers of Massively
REFERENCES

IEEE:1996:PIS

IEEE:1996:PIS

IEEE:1996:PFE

IEEE:1996:PFE

IEEE:1996:PSI

REFERENCES

7536-5. LCCN QA75.5 .I75
1996. IEEE Computer Society Press Order Number
PR07536.

[IEE96i] IEEE, editor. Proceedings. Second MPI Developer’s Conference: Notre Dame, IN, USA, 1–2 July
1996. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA,

[IEE97a] IEEE, editor. Advances in parallel and distributed computing: March 19–21, 1997, Shanghai, China: proceed-
ings. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA,

Switzerland. IEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA,
97TB100094.

[IEE97c] IEEE, editor. Third International Symposium on High-Performance Computer Architecture: pro-
ceedings, February 1–5, 1997, San Antonio, Texas. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1997. IEEE catalog number
97TB100094.

7695-1524-X. LCCN ????.

[IEE05] IEEE, editor. 19th International Parallel and Distributed Processing Symposium: proceedings: April
4–8, 2005, Denver, Colorado. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
LCCN ???.
REFERENCES

Iwama:2001:PLS

Iwama:2002:PLS

Iwashita:1994:IPE

Ingle:1995:MAS

Ishizaka:2000:CGT

Ilroy:2001:IMP

[Jonathan Ilroy, Cyrille Randriamaro, and Gil Utard.]

Ilie:2016:AEC

Satake:2012:OGA

Imamura:2000:ASM

Ishihara:1999:VBS

Islam:2002:IAC
Mohammad Towhidul Islam, Purimala Thulasiram, and Ruppa K. Thulasiram. Implementation of ant colony optimization algorithm for mobile ad hoc network applications: OpenMP experiences. *Parallel and Distributed Computing Prac-
REFERENCES

References

REFERENCES

REFERENCES

Jin:2003:AMP

Januszewski:2010:ANS

Jeun:2008:OPB

Jan:2017:ITF

Jog:2013:OCT

Jambunathan:2018:COB

REFERENCES

Jie:2014:ASP

Julian-Moreno:2017:FPA

Jorba:2001:SFF

Jung:2014:MCM

Jo:2015:ALM
Jones:1996:LLM

Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:PAL

Jiang:2012:OSP

Juric:1995:UPV

Joldes:2014:SSH

Joubert:1994:PCT

Jost:2010:EUH

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jong suk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet (M³). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ??????

Ravi Jain, John Werth, and James C. Browne, edi-

Jin:1995:LTP

Kumar:1995:MWD

Kepner:2004:M

Krawezik:2002:SOV

Krone:1996:ICF

O. Krone, M. Aguilar, B. Hirsbrunner, and V. Sunderam. Integrating coordination features in PVM. In Ciancarini and Han-kin [CH96], pages 432–435. ISBN 3-540-61052-9. ISSN 0302-9743 (print), 1611-
Kapinos:2010:PPP

Khan:2017:RCS

Kanal:2012:PAI

Kanal:2012:PAI

Katamneni:1993:PPE

Karlsson:1998:CCC

Kaiser:2001:OCC
REFERENCES

app/home/contribution.asp?wasp=7pab6gzbaf8x991rwy%
26referrer=parent%26backto=
issue%2C2%2C11%3Bjournal%3B
2C1%2C9%3Blinkingpublicationresults%3C
2C1%2C1.

Kruzel:2013:VOI

Kabir:2002:DIS

Klemm:2009:RTM

Kulkarni:2016:HAP

Knies:1994:SLL

Kitowski:1997:CPM

J. Kitowski, K. Boryczko, and J. Moscinski. Compari-

Kannan:2016:HPP

Ke:2004:RCM

Klemm:2007:JIO

Krawezik:2006:PCM

Kacsuk:1997:GDD

REFERENCES

REFERENCES

Nandini Kappiah, Vincent W. Freeh, and David K. Lowenthal. Just in time dynamic voltage scaling: Exploiting inter-node slack to
References

save energy in MPI programs. In ACM [ACM05],
page 33. ISBN 1-59593-061-2. LCCN ????

Kramer-Fuhrmann:1994:TGP

[KFSS94] O. Kramer-Fuhrmann, L. Schafers,
and C. Scheidler. TRAPPER — a graphical pro-
gramming environment for parallel systems. In Becks
and Perret-Gallix [BPG94],
1993.

Kowalik:1993:SPC

[KG93] Janusz S. Kowalik and Lucio Grandinetti, editors. Software for parallel computa-
tion: Proceedings of the NATO Advanced Workshop on Software for Parallel Computation, held at Ce-
traro, Cosenza, Italy, June 22–26, 1992, volume 106 of NATO ASI series. Series F, Computer and systems sciences. Springer-Verlag, Berlin, Germany / Hei-

Kohl:1996:PTF

and Shriver [ERS96],

Kainz:2009:RCM

Bernhard Kainz, Markus Grabner, Alexander Bornik,
Stefan Hauswiesner, Judith Muehl, and Dieter Schmal-
stieg. Ray casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs. ACM Transactions on Graphics, 28(5):152:1–152:9, December 2009. CODEN AT-
GRDF. ISSN 0730-0301 (print), 1557-7368 (electronic).

Keller:2003:TEE

[KGRD10] Rainer Keller, Edgar Gabriel,
Bettina Krammer, Matthias S. Müller, and Michael M.
Resch. Towards efficient execution of MPI applica-
tions on the Grid: Porting and optimization is-

Keller:2010:RAM

[KGRD10] Rainer Keller, Edgar Gabriel,
Michael Resch, and Jack Dongarra, editors. Recent Advances in the Message Passing Interface: 17th Eu-

Keller:2010:RAM

[KGRD10] Rainer Keller, Edgar Gabriel,
Michael Resch, and Jack Dongarra, editors. Recent Advances in the Message Passing Interface: 17th Eu-

REFERENCES

Thilo Kielmann, Rutger F. H. Hofman, Henri E.

Kallenborn:2019:MPC

Kucukboyaci:2001:PPT

Kjolstad:2012:ADG

Kojima:2017:HLG

Kikuchi:1993:PAS

Kranz:1993:IMP

Kwon:2012:HAO

Kim:2016:DOF

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

Krysztop:2002:IFP

Kranzlmüller:2004:RAP

Kranzlmüller:2003:RAP

Kee:2003:POP

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstaninou:2001:TTO

Kobler:2001:DOP

Karrels:1994:PAM

E. Karrels and E. Lusk. Performance analysis of MPI programs. In Dongarra and

Kofakis:1995:DPI

Liao:2011:DEM

Liao:2006:SDI

Liao:2007:CCS

Klawonn:2015:HMO

Kutyniok:2016:SFD

Kim:2015:OBU

Khanna:2010:NMG

Komatitsch:2009:PHO

Koholk a:1999:MPR

R. Koholk a, H. Mayer, and A. Goller. MPI-parallelized radiance on SGI CoW and
REFERENCES

Kumar:2014:OMC

Kobayashi:2016:HSV

Kalns:1995:DPD

Katouda:2017:MOH

Kasprzyk:2002:APV

Leszek Kasprzyk, Ryszard Nawrowski, and Andrzej Tomczewski. Application of a parallel virtual machine for the analysis of a luminous field. *Lecture Notes in Computer Sci-
REFERENCES

Kambites:2001:OLI

Koniges:2000:ISP
REFERENCES

Kauranne:1995:OHM

Koski:1995:STL

Konuru:1997:MUL

Kermarrec:1996:PDS

Kuckuk:2013:IPD

KlocKner:2012:PPS

REFERENCES

Kunaseth:2013:ASD

Kalen tev:2011:CCL

Kranzlm ueller:1999:MOM

Kotsis:1996:EEP

Krantz:1997:CSC

Krawczyk:2001:PIM

Kim:2013:MPE

Yooseong Kim and Avi-

Kaliman:2015:SNU

Kovanen:2015:TAC

Kegel:2013:DTU

Kusano:2001:OOC

Katkere:1995:VBW

REFERENCES

REFERENCES

Keppens:2002:OPM

Koval:2010:USB

Karonis:2003:MGG

Komatitsch:2003:BDF

Kuhn:1998:FFW

REFERENCES

Kumar:1994:PPI

Kranzlmueller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

Kamal:2014:IFG

Kamburugamuve:2018:AML

Kamal:2010:EIN

REFERENCES

ISBN 1-4244-7675-5. LCCN ????

Laguna:2015:DPF

Laforenza:2001:PHP

Lorenz:2015:AMS

Langdon:2009:FHQ

Loos:1996:MPS

Lavi:1998:IPD

[LB98] R. Lavi and A. Barak. Improving the PVM daemon

Lashgar:2016:ESM

Loncar:2016:CPS

Lawton:1996:BHP

Ling:2012:HPP

Lewis:1993:PCP

REFERENCES

[LCK11] Scott Lathrop, Jim Costa, and William Kramer, editors. *SC’11: Proceed-
Lashuk:2012:MPA

Losada:2017:RMA

Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

REFERENCES

New York, NY 10036, USA, 2012. ISBN 1-4503-1644-1. LCCN ????.

Loyot:1993:VVM

Lee:1999:PEJ

Liu:2016:MBM

Li:2010:SVC

Lassous:2000:HGA

Leung:1995:EPE

Leung:1998:PAN

Ka-Cheong Leung and Mounir Hamdi. Performance assessment of network protocols and parallel programming

[Liao:2007:OOP]

[LHC+07]

[LHHM96]

[Lee:1996:TSF]

Li:1996:PSI

Fuchang Liu, Takahiro Harada, Youngum Lee, and Young J. Kim. Real-time collision culling of a million bodies on graphics processing units. *ACM Transactions on Graphics*, 29
REFERENCES

[Li:1997:PIO]

[Lu:1998:ONW]

[Livny:2000:MYW]

[Lastovetsky:2010:RAP]
REFERENCES

sagepub.com/content/24/1/3.full.pdf+html.

LaSalle:2014:MBD

Lastovetsky:2008:RAP

Luecke:2003:CPM

Liang:1996:AEO

Li:2003:PNH

Luecke:2004:PSM

Glenn R. Luecke, Marina Kraeva, Jing Yuan, and

Ludwig:1995:PPF

Luecke:2001:SPO

Lin:2016:VDF

Li:2013:COM

Lidbury:2015:MCC

Li:2012:PFA

Peng Li, Guodong Li, and Ganesh Gopalakrishnan. Parametric flows: auto-

Luo:2014:ISM

Langlais:2002:SSM

Li:1993:SLL

Loh:1994:ISR

Larsen:1999:SPG

Lu:2013:MLP

REFERENCES

Lee:2009:OGC

Losada:2017:ARV

Lopez:2015:PBV

Losada:2014:EAL

Lee:2015:OPE

Louca:2000:MFP

[LRT07] Robert Latham, Robert Ross, and Rajeev Thakur. Implementing MPI-IO atomic mode and shared file pointers using MPI one-sided

Li:2001:WMB

Luckow:2008:MFT

Lin:2010:TLS

Lashgar:2015:CSR

Levesque:2012:HEA

Luecke:2004:PSS

Glenn R. Luecke, Silvia Spanoyannis, and Marina

[Lus00] Ewing Lusk. Isolating and interfacing the com-

Lee:2012:EED

Liu:2004:BMI

Liu:2004:HPR

Liang:2018:FMP

REFERENCES

Li:1993:MSU

Loncar:2016:OOM

Lu:2013:WGA

Li:1997:EHC

Luecke:2002:DDM

Li:2017:PCO

Shigang Li, Yunquan Zhang, and Torsten Hoeffer. Poster:

REFERENCES

Moreno:2001:AEP

Mainland:2012:EHM

Molero-Armenta:2014:OOI

Malyshkin:1995:PCT

Malfetti:2001:AOW

Mirvis:1995:HML

[MALM95] Y. Mirvis, F. Abdi, B. Lajevardi, and P. Murthy. Hi-

Marowka:2005:EMT

Marowka:2006:BRP

Marowka:2007:PCD

Marowka:2009:BCT

Mehta:2006:MSG

Mattson:1994:PEP

Mattson:1995:PEP

Mattson:2000:BOF

[Tim00a] Tim Mattson. BOF: OpenMP and its future developments. In ACM [ACM00], page 106. URL
REFERENCES

Mattson:2000:IO

Mattson:2001:EO

Matuszek:2001:APS

Mourao:2000:SSC

Marongiu:2012:OCE
Andrea Marongiu and Luca Benini. An OpenMP compiler for efficient use of distributed scratchpad memory in MPSoCs. IEEE Trans-
REFERENCES

Muller:2012:SOA

Ma:2013:KAT

Min:2003:OOP

McKenzie:1994:CIM

Malits:2012:ELG
Roman Malits, Evgeny Bolotin, Avinoam Kolodny, and Avi Mendelson. Exploring the limits of GPGPU scheduling in control flow bound applications. ACM Transactions on Architecture and Code Optimization, 8(4):29:1–29:??, Jan-
Mehl:2015:RTC

Miles:1994:PTO

Medeiros:1998:IPM

Morrison:1999:FPP

Maier:2017:OLD

Massaioli:2005:OPA

McDonald:1996:NNP

McK94

McR92

S. J. McRae. VM communications. In Anonymous

McRae:1992:VCR

McR92

S. J. McRae. VM communications. In Anonymous

McKinney:1994:PGU

Moore:2001:RPA

Moeller:2008:OSM

Mueller:2008:OSM

MCP17

Moreira:2017:FCR

REFERENCES

[Ano92], pages 439–453.

Mierendorff:2000:WMB

[Hermann Mierendorff, Kläre Cassirer, and Helmut Schwamborn.]

Marin:2017:ERF

[Manuel Marin, David Defour, and Federico Milano.]

Monteiro:2018:EGC

[Felipe R. Monteiro, Erickson H. da S. Alves, Isabel S. Silva, Hussama I. Ismail, Lucas C. Cordeiro, and Eddie B. de Lima Filho.]

Muller:2009:EOA

[Matthias S. Müller, Bronis R. de Supinski, and Barbara M. Chapman, editors.]

Matheou:2017:DDC

[George Matheou and Paraskevas Evripidou.]
Data-driven concurrency for high performance computing. ACM Transactions on Architecture and Code Optimization,
REFERENCES

Megson:1998:CRH

Milovanovic:2008:NEE

Mintchev:1997:TPM

Moody:2003:SNB

Martin:1995:DPC

Mehta:2015:MTP

Kshitij Mehta and Edgar Gabriel. Multi-threaded parallel I/O for OpenMP applications. International Journal of Parallel Programming, 43(2):286–309, April 2015. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (elec-

Markidis:2015:OAN

Matthey:2001:EMO

Hwu:2012:GCG

Miller:1994:PPP

Miller:1994:PPT

Munshi:2016:OCS

REFERENCE

//www.khronos.org/registry/
OpenCL/specs/opencl-2.
0-openclc.pdf.

1993. CODEN SPCOEL. ISSN 0168-7875.

REFERENCES

223, March 1997. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

Mitra:2014:AAP

Marjanovic:2010:ECC

Marowka:2004:OOA

Malakhov:2018:CMT

Marendic:2016:NMR

Majumdar:1992:PPC

REFERENCES

Morishima:2014:PEG

Malony:1994:PAP

Mudge:1993:PTS

Morimoto:1998:IMM

Morimoto:1999:PEM

Mohamed:2013:MMM

References

REFERENCES

Muller:1996:CDI

Martins:2012:PDC

Meister:2017:PME

Mo:1996:IOP

Mininni:2011:HMO

Mazzocca:2000:TPP

REFERENCES

link/service/series/0558/1
bibs/1908/19080266.htm;
http://link.springer-
ny.com/link/service/series/ I
0558/papers/1908/19080266.

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

J. Marinho and J. G. Silva. WMPI — message passing interface for Win32 clusters. [MS02a]

Mourao:1999:IMO

Migliardi:1999:PEH

Macias:2002:SEA

Elsa M. Macías and Alvaro Suárez. Solving engineering applications with LAMGAC over MPI-2. **Lec-
REFERENCES

Mahinthakumar:2002:HMO

Mertens:2004:CCP

Mysliwiec:1997:IPS

McCandless:1996:OOM

[MSL96] B. C. McCandless, J. M. Squyres, and A. Lumsdaine. Object oriented MPI

Massetto:2012:NSB

Martin:2015:EPM

Molnar:2010:APM

Macias:2001:PPA

Matrone:1993:LPC
Mysliwiec:1997:CAM

Martins:1998:JIW

Martorell:2005:BGP

Mossaiby:2017:OIH

Miei:1996:IER

Mallon:2016:MUB

Marin:1994:GAL

[MTSS94] F. J. Marin, O. Trelles-Salazar, and F. Sandoval. Genetic algorithms on LANN Message passing architectures using PVM: Applica-

[Momeni:2015:EEO]

[Mohr:2007:SPE]

[Mohr:2006:RAP]

[Müller:2001:SSO]

[Müller:2002:SMB]
REFERENCES

link/service/series/0558/bibs/2327/23270380.htm;

Muller:2003:OCB

Malakar:2017:DMO

Manis:1996:EPT

Muller:2010:SMA

Mehra:1995:AIM

McKinney:1993:MMI

Mamontov:1998:AES
Y. V. Mamontov and M. Willander. An algorithm to evaluate spectral

Manegold:1997:QBM

Morton:1995:LLP

Maleki:2016:HOT

Maly:1993:DCP

Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

REFERENCES

55, December 2001. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Nagel:1996:VVA

NicCanna:1996:LGS

C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ?? LCCN ???

Nickolls:2008:SPP

Neyman:1999:ERP

Nguyen:2012:BTM

Nguyen:2017:ATM

Nobari:2012:SPM

Sadegh Nobari, Thanh-Tung

REFERENCES

Norden:2006:OVM

Nakano:2002:SCG

Nakano:2003:SCG

Nitsche:2000:TCM

Nicolescu:2001:DTP
Cristina Nicolescu and Pieter Jonker. A data and task parallel image processing environment. *Lec-
Norden:2007:DDM

Nadeau:1995:SVR

Nomura:2014:PAM

Nanayakkara:1993:PIR

Nupairoj:1995:PES

Nishitani:2000:IEO

Yasunori Nishitani, Kiyoshi Negishi, Hiroshi Ohta, and Eiji Nunohiro. Implementation and evaluation of OpenMP for Hitachi

[Nakajima:2002:PISb]

[Nob08]

[Novotny:1995:BPP]

[NP94]
Load balancing the heat equation in a heterogeneous environment with PVM. [NPP+94]

REFERENCES

Notz:2012:GBS

Nagara:1991:MHL

Naumenko:2016:ACT

Nukada:2012:SMG

Nascimento:2007:DDS

Nadal-Serrano:2016:PSC

REFERENCES

http://conferences.computer.org/sc/2012/papers/1000a044.pdf.

REFERENCES

Nguyen:1994:DCE

Omar:2017:PSF

Oberhuber:1996:MNP

Orr:2015:SUR

Okulicka-Dluzewska:2001:PFE

Olivier:2012:CMW

Oed:1993:CRM

[Wilfried Oed. The Cray Research massively parallel processor system CRAY]

Ong:2000:PCL

Owaida:2015:EDS

Otten:2016:MOI

Okitsu:2010:HPC

Ohara:2006:MMP

Oh:2012:MOO

Kwang Jin Oh, Ji Hoon Kang, and Hun Joo Myung. mm_par2.0: An object-oriented molecular dyna-

Oakley:1995:ADR

Orlando:2005:PSP

Oldehoeft:2002:SIS

Ong:2001:SUC

Olger:2016:DMM

G. Oger, D. Le Touzé, D. Guibert, M. de Lefèvre, J. Biddiscombe, J. Soumagne, and J.-G. Picci-

OBrien:2008:SOC

Orlando:1998:MBR

Olivier:2010:COO

ODowd:2006:WGM

Orlando:2000:MDT

Olivier:2012:OTS

Stephen L. Olivier, Allan K. Porterfield, Kyle B. Wheeler, Michael Spiegel,

Oliveira:2012:CCO

Overeinder:1997:BCD

Otto:1993:PA

Otto:1994:PVM

S. W. Otto. Processor virtualization and migration for...
REFERENCES

Otto:1992:MAP

Ouenes:1995:PRA

Pacheco:1997:PPM

Pereira:2017:SBC

Panda:1995:GR

Panda:1995:IDE

Panda:2014:GAM

REFERENCES

Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1995.

SODM. ISSN 0164-1212 (print), 1873-1228 (electronic).

Plimpton:2011:MML

Pawliczek:2014:VED

Pennington:1995:DHC

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

REFERENCES

REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Prabhakar:2002:PCB

Pessoa:2018:GAB

[PGF18] Carl Poirier, Benoit Gosselin, and Paul Fortier. DNA assembly with de Bruijn graphs using an FPGA platform. IEEE/ACM Transac-

REFERENCES

480, April 1994. CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

Papadopoulos:1998:DVS

Park:2005:SOA

Papadopoulos:2001:NRC

Paul:2006:TLF

Prabhakar:2016:GCH

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

Pruyne:1996:ICP

Plachetka:2002:QTS

Park:2004:DID

Piriyakumar:2002:EFI

REFERENCES

service/series/0558/papers/2474/24740174.pdf.

Pfenning:1995:OCP

Piscaglia:1995:DOC

Poulson:2013:ENF

Pirk:2016:VVA

Plagianakos:2001:LCP

Pokorny:1996:CMP

Parrilia:1999:UPD

L. Parrilla, J. Ortega, and A. Lloris. Using PVM for
REFERENCES

Pai:2016:CTO

Poplawski:1989:MPP

Park:2001:CSL

Pagourtzis:2001:PCT

Papakostas:1996:PSP

Papakostas:1996:PPP

REFERENCES

Papakostas:1996:UPI

Pedicini:2007:PPE

Pierce:1994:PIN

Pierce:1994:PSH

Pozo:1994:FTE

Priimak:2014:FDN

REFERENCES

Protopopov:2001:MMP

Pandey:2007:SCM

Pehrson:1994:IPP

Peters:2011:FPC

Patrick:2008:CEO

Preissl:2010:TMS

Prieto:1999:PRM

Peng:2014:BAH

Plunkett:2001:AMD

Payrits:2000:UPC

Pears:2001:DLB

Arnold N. Pears and Nicola Thong. A dynamic load

[PT01]

REFERENCES

Robert Preissl, Theodore M. Wong, Pallab Datta, Myron Flickner, Raghavendra Singh, Steven K. Esser,

Pang:2016:MKR

Prasad:1995:PPB

Perla:2012:PAH

Phillips:2002:NBS

Qiu:2012:PWM

Qawasmeh:2017:PPR

Ahmad Qawasmeh, Maxime R. Hugues, Henri Calandra, and Barbara M. Chapman. Performance portability in reverse time migration and seismic modelling.

Quo:2000:PNN

Qaddouri:1995:MFS

Qaddouri:1996:CPC

Qu:1995:FAS

Quinn:2003:PPC

Russell:1992:CMW

[RA09]

[Rab98]

[Rab99]

[Rag96]

[RAGJ95]

[Ram07]

Rantakokko:2005:DMO

Rehman:2016:VMJ

Roussos:2001:BMB

Rufai:2005:MPO

Rejitha:2017:EPC

Resch:1997:PM

Michael Resch, Thomas Beisel, and Holger Berger.

Research: 1997: PMC

Rodriguez: 2015: OPI

Russo: 2017: MPG

Reale: 1994: PCU

Reinhard: 1997: MHP

Reimann: 1996: CBT

Ross: 1995: DCM

D. L. Ross, J. S. Collins, and J. H. George. A dynamic ca-
REFERENCES

Royuela:2012:ASO

Radhakrishna:1999:MBP

Reeves:1996:PIC

Reinefeld:2001:CDI

Reussner:2001:SSK

Reussner:2003:USD

[RGD+13] A. Wendell O. Rodrigues, Frédéric Guyomarc’h, and

[RJ95] N. K. Ratha, A. K. Jain,
REFERENCES

REFERENCES

[Röh00] Armin Röhrl. Parallel processing in statistical computation: BSP, FPGas and MPI for the S-language.

Rolfe:1994:PAP

Rolfe:2008:PFO

Rolfe:2008:SMA

Rosen:2013:PVA

Ramon:1995:PKV

Rodriguez:2008:FTS

Rabaea:2000:EPM

Adrian Rabaea and Monica Rabaea. Experiments with parallel Monte Carlo simulation for pricing op-
REFERENCES

Rageb:2001:CEM

[RR01]

Raub:2002:LSH

[RR02]

Roda:1997:PPI

[RRAGM97]

Roig:2001:EMM

[RRBL01]

Robinson:1996:TMI

[RRFH96]

Russ:1999:UHR

Ralf Reussner, Peter Sanders, and Jesper Larsson Träff. SKaMPI: a comprehensive

REFERENCES

REFERENCES

Soldado:2016:ECM

Sahimi:2001:AAS

Schuster:1995:CSM

Smith:2001:DMM

Schulz:2004:IES

Martin Schulz, Greg Bronievetsky, Rohit Fernandez, Daniel Marques, Kesav Pingali, and Paul Stodghill. Implementation and evaluation of a scalable application-level checkpoint-recovery scheme
for MPI programs. In ACM [ACM04], page 38. ISBN 0-7695-2153-3. LCCN ????

Selikhov:2002:MCC

Schindewolf:2012:WSA

Sani:2014:PDF

Smith:1995:CRC

Smith:2004:SIP

Saltz:1991:MRT

REFERENCES

REFERENCES

Shyu:1996:ILQ

Schill:1993:DOD

Schneenman:1994:DSS

Schuele:1996:PLA

Schuele:1996:PLA

Schuele:1999:HAP

Schevtschenko:2001:PAS
REFERENCES

Song:1997:ALL

Suppi:2000:IOP

Suppi:2001:PCS

Suppi:2001:PCS

[Santos:1997:ECP]

SCR:1992:PWC

Shi:2012:VGA

[Lin Shi, Hao Chen, Jian-]

Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??

Segovia:2010:PPN

Seifert:1999:ESI

Sevenich:1998:PPU

Scott:1998:PWN

Schoinas:1994:FGA

Serot:1997:EPF

Sept:1993:DIP
REFERENCES

REFERENCES

10.1007/s11227-014-1213-y.

Sack:2015:CAM

Sunderam:1994:PCC

Saito:2003:LSP

Saidon:2001:IEI

Schneider:2012:MAC

REFERENCES

REFERENCES

Mitsuhisa Sato, Hiroshi Harada, Atsushi Hasegawa, and Yutaka Ishikawa. Cluster-enabled OpenMP: An OpenMP

Shing:1994:UPC

Samadi:2014:LGU

Sato:2010:BLL

Samadi:2012:AIA

Shah:2000:FCS

Sanjiv Shah, Grant Haab, Paul Petersen, and Joe Throop. Flexible control structures for parallelism in OpenMP. *Concurrency: practice and ex-

REFERENCES

REFERENCES

Samadi:2014:PPB

Shen:1992:VTD

Smith:2000:DPM

Sanders:2010:CEI

Steinberger:2014:WTB

Skjellum:2004:RTM

Subramaniam:1996:CLU

Skjellum:1993:SLH

Steinberger:2012:SDS

Spiechowicz:2015:GAM

Satoh:2001:COT

Sall:1994:CIS

REFERENCES

REFERENCES

Su:2012:CPB

Sloan:2005:HPL

Squyres:1996:CBP

Shires:2002:EHM

Shires:2003:OPF

Simos:2007:CMS

Theodore E. Simos and George Maroulis, editors. Computation in Modern Science and Engineering: Proceedings of the [Fifth]
REFERENCES

Santos:2012:ICC

Siegel:2008:CSE

Smith:1993:MBA

Smith:1993:DSI

Schardl:2017:TEF

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Sandes:2016:MMA

Sochacki:1993:DCW

Silva:2000:HPC

Su:2006:APP

Sitsky:1996:IMU

Sunderam:2001:CAP

SousaPinto:2001:PEI

Sidonio:1999:PBI

Stpiczynski:2011:SKB

Satofuka:1995:PCF

Shaw:1995:ADA

Skjellum:1996:TTM

C. Sener, Y. Paker, and A. Kiper. Data-parallel programming on Helios, parallel environment and PVM. In Yetongnon and Hariri [YH96], pages 2–?? ISBN 1-?? LCCN ????.

REFERENCES

CODEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

[Sil99] P. Silva and J. G. Silva. Implementing MPI-2 extended collective operations. In Dongarra et al. [DLM99],
REFERENCES

Sotomayor:2017:ACG

Silva:1996:IDS

Silva:1997:IPD

Silva:1995:PCR

Skjellum:1994:DEZ

Sabne:2012:ECO

Stellner:1995:CMP

G. Stellner, M. Schumann, and M. Girnghuber. Comparing message-passing li-

REFERENCES

bibs/2326/23260241.htm;
http://link.springer-
ny.com/link/service/series/0558/papers/2326/23260241.pdf.

Steele:2017:UBP

Guy L. Steele, Jr. and Jean-
Baptiste Tristan. Using
butterfly-patterned partial
sums to draw from discrete
distributions. *ACM SIG-
PLAN Notices*, 52(8):341–
355, August 2017. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

Stals:1995:AMP

L. Stals. Adaptive multi-
grid in parallel. In Bailey
et al. [BBG95], pages 367–

Stankovski:1995:MPA

Z. Stankovski. A massively
parallel algorithm for the
collision probability calcu-
lations in the APOLLO-II
code using the PVM library.
In ANS [ANS95], pages 1573–
1583. ISBN 0-89448-
198-3. LCCN TK9006.M37
1995. Two volumes.

Stephens:1994:PBT

R. Stephens. Parallel bench-
marks on the Transtech
Paramid supercomputer. In
de Gloria et al. [dGJM94],
pages 136–146. ISBN ????
LCCN ????

Stellner:1996:CCP

G. Stellner. CoCheck:
checkpointing and process
migration for MPI. In IEEE
[IEE96e], pages 526–
531. ISBN 0-8186-7255-
2. LCCN QA76.58 .I565
1996. IEEE catalog number
96TB100038. IEEE Com-
puter Society Press order
number PR07255.

Sterling:2000:SCB

Thomas Sterling. Symbolic
computing with Beowulf-
class PC clusters. *Lec-
ture Notes in Computer
CODEN LCNSDS9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http:
//link.springer-ny.com/
link/service/series/0558/
bibs/1908/19080007.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080007.
pdf.

Still:1994:PPC

C. H. Still. Portable paral-
lel computing via the MPI1
message-passing standard.
Computers in Physics, 8(5):
533–536, 538–539, September-
October 1994. CODEN
CPHYE2. ISSN 0894-1866
(print), 1558-4208 (elec-
tronic).

Schmitz:2008:III

Arne Schmitz, Markus
Tavenrath, and Leif Kobbelt.

[Sunderam:1997:TAS]

[STMK97]

[Sto98]

[Stp02]

[Strok:1994:NJI]

[Strietzel:1996:PTS]

[Strietzel:1997:PTS]
M. Strietzel. Parallel turbulence simulation: Resolving the inertial subrange of Kolmogorov’s spectra. Lecture Notes in Computer Sci-
REFERENCES

Sunderam:1990:PFPb

Sunderam:1992:CCP

Sunderam:1993:PCC

Sunderam:1994:GPP

Sunderam:1994:MSH

Sunderam:1995:RIH

Sunderam:1996:PSS

Suresh:1995:IOP

Suresh:1995:PIQ

Suttner:1996:SPB

Smelyanskiy:2011:HPL

Sistare:1999:OMC

Steve Sistare, Rolf van de Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

Stout:1991:SDM

Sosonkina:2015:RAV

Santhanaraman:2005:DZC

Gopalakrishnan Santhanaraman, Jiesheng Wu, Wei Huang, and Dhabaleswar K. Panda. Designing zero-copy Message Passing Interface derived datatype communication over infiniband:

Sitsky:1995:IPM

Skjellum:2001:OOA

Shan:2012:PEH

Shee:1994:DMA

Stathopoulos:1995:DLB

REFERENCES

REFERENCES

[TAH+01]

[TBD96]

[TBD12]

[TBB12]

Tian:2002:IOC

Tahan:2012:ITC

Thomas:1994:PSA

Tzannes:2010:LBS

Tagliavini:2018:UFG

Thompson:2015:PCI

REFERENCES

REFERENCES

Ten:1995:HPC

Truong:2002:PAM

Tu:2012:PAO

Turchi:1994:SDA

Thakur:2009:TSE

Tian:2005:PCT

Xinmin Tian, Milind Girkar, Aart Bik, and Hideki Saito. Practical compiler tech-

Thakur:1998:CUM

Tian:2005:CEN

Trefftz:1994:DPE

Thomsen:1994:RTS

Throop:1999:SOS

Tran:2000:PPM
REFERENCES

REFERENCES

[TNIB17] Daisuke Takafuji, Koji Nakano, Yasuaki Ito, and Jacir Bordim. C2CU: a CUDA–C program generator for bulk execution of a sequential algorithm. *Con-

Tallen:2009:EPM

Tampouratzis:2016:AIH

Trobec:2001:IEM

Takafuji:2017:CCC
currency and Computation: Practice and Experience, 29 (17), September 10, 2017. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

[TQDL01] Fernando Tinetti, Antonio Quijano, Armando De Giusti, and Emilio Luque.

[Thakur:2005:OCC] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication operations...

Tsunekawa:1995:EIE

Tsujita:2007:RMP

Tsutsui:2012:AMG

Tang:1999:CRT

Tang:2000:PTR

Trelles-Salazar:1994:MSS

O. Trelles-Salazar, E. L. Zapata, and J.-M. Carazo. Mapping strategies for sequential sequence comparison algorithms on LAN-

Two volumes.

Theodoropoulos:1997:GSP
TTP97

Tanaka:2000:PEO
TTSY00

Tellez-Velazquez:2018:CSI
TVCB18

Twerda:1996:PIT
TVV96

Tourancheau:2001:SMN
TW01

Thorson:2012:SUF
TW12
Greg Thorson and Michael Woodacre. SGI UV2:

Tournavitis:2009:THA

Tien:2014:EOS

Utterback:2017:POR

Uselton:1995:PRS

Udupa:2009:SES

Uhl:1996:PIC

A. Uhl and J. Hammerle. Parallel image compression on a workstation cluster using PVM. In Bode et al. [BDLS96], pages 301–?? ISBN 3-540-61779-5. ISSN
Uhl:1994:PCC

Uhl:1995:AWA

Uhl:1995:PCC

Uhl:1995:VPW

Uminski:1997:EEP

Uthayopas:2001:FSR

Urena:2012:IMI

REFERENCES

vanderLaan:2011:AWL

Vetter:2000:DST

Vetter:2002:DSP

Vadhiyar:2002:PMS

Vega-Gisbert:2016:DIJ

Vikas:2014:MGA

vonHanxleden:1994:VDF

R. von Hanxleden, K. Kennedy, and J. Saltz. Value-based distributions in Fortran D. In Gentzsch

Viswanathan:1995:PCM

Valencia:2008:PPR

Varadarajan:1994:FDT

Vincent:1995:HPP

Vogel:2013:BWC

Volkert:1993:PCS

REFERENCES

rithms for the least-squares finite element solution of the neutron transport equation.
Lecture Notes in Computer Science, 1908:121–??, 2000.

VanVoorst:2000:CMI

Vaughan:1995:MPM

Vaughan:1994:MPM

Vaidya:2013:SDO

Vlassov:1997:SSM

Vandoni:1995:CSC
C. E. Vandoni and C. Verkerk, editors. *1994 CERN
References

Vo:2009:FVP

Verkerk:1992:PIC

Vetter:2002:EPE

Verschelde:2015:PHC

Wong:1999:BMM

Walker:1994:DSM

REFERENCES

Z. See erratum [Wal94b].

REFERENCES

Wallcraft:2002:CCA

Wang:1997:TPD

Wang:2002:OPG

Wasniewski:1995:NAP

White:1995:PNP

Wasniewski:1996:APC

Wolf:1996:CFS

[K. Wolf and E. Brakkee.}
REFERENCES

Coupling fluids and structures codes on MPI. In IEEE [IEE96i], pages 130–137. ISBN 0-8186-7533-0. LCCN QA76.642 .M67 1996.

[Wickerson:2015:RSP]

[Wolf:1997:CMP]

[Wang:2015:AST]

REFERENCES

Wang:2012:OVT

Wu:1999:JBD

Wang:2013:PMO

Wedemeijer:1996:PSA

Walker:1996:MSM

Welch:1994:PVM

Werner:1995:UMP

Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.

Wu:2014:OFB

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wegiel:2008:MCVc

Wittenbrink:2011:FGG

Wagner:1996:GSG

Lehman:1994:IZP

REFERENCES

Wismueller:1996:TSI

Wismueller:1996:TSI

Wu:2007:IFR

Weatherly:2006:DMS

Willcock:2005:UMC

Wu:2012:UHM

Wolf:2001:APA

Wu:2014:MAG

Winkler:2017:GSM

Wendykier:2010:PCH

Walker:1995:RBD

Walker:1996:RBC
D. W. Walker and S. W. Otto. Redistribution of

Wu:2001:PCS

Worsch:2002:BCM

Winkler:2019:GSM

Wang:2016:LLA

Wisniewski:1999:SME
Len Wisniewski, Brad Smisloff, and Nils Nieuwejaar. Sun MPI I/O: Efficient I/O for parallel applications. In ACM [ACM99], page ??

West:1995:AVV
J. E. West, M. M. Stephens, and L. H. Turcotte. Adaptation of volume visualization techniques to MIMD architectures using MPI. In

REFERENCES

REFERENCES

Yu:2013:AGA

Yoon:1996:WBP

Yang:2014:IMP

Yetongnon:1996:PII

Yero:2001:JOO

Yang:2011:HCO

Chao-Tung Yang, Chih-Lin Huang, and Cheng-Fang Lin. Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters. Computer Physics
Yuasa:1996:RPG

YarKhan:2017:PPN

Yamazaki:2018:SIL

Yang:2009:DBM

Yang:2016:HTM

Yan:2013:SFS

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). PPoPP '13 Conference proceedings.

Youth:2016:OFP

Yan:2014:OMB

Yoshinaga:2012:DBM

Yang:2011:PBP

Younge:2015:SHP

[YWCF15] Andrew J. Younge, John Paul Walters, Stephen P. Crago, and Geoffrey C. Fox. Supporting high performance molecular dynamics in virtu-

Yonezawa:1995:IED

You:2015:VFO

Yang:2014:CNR

Yong:1995:SOM

You:1995:PIM

REFERENCES

REFERENCES

Zaki:1999:TSP

Zhou:2012:DFD

Zhang:2017:DLN

Zhao:2015:PIM

Zhai:2011:CVH

Zollweg:1993:OP

Zarrelli:2006:EPE

REFERENCES

1472–1479, November 2006. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Zambonelli:1996:EPP

Zheng:2011:GLO

Zhao:2012:ASO

Zarrabi:2015:GSA

Zoltani:2001:EPO

Zouaoui:2017:CNG

Zareski:1995:EPG

Zheng:2005:SBP

Zhang:2013:MPI

Zhu:2017:OAP

Zhu:1995:RTC

Zhang:2005:ULC

Youhui Zhang, Dongsheng Wong, and Weimin Zheng. User-level checkpoint and re-

