Title word cross-reference

#1 [Ano22].

19μW [GAE+23]. 2
[MRGRCR+21b, PNSD20]. K [LPB+21].
Vmin [ZCNA17].

-Boost [CPG+23, CRP+23]. -means
[LPB+21].

0.37mm2 [WRD+17]. 0.80pJ [MSZB19].
0.80pJ/flop [MSZB19]. 000-core
[DAKK19].

1 [CSZ+20, DEA+21, DtEt22]. 1-GHz
[CSZ+20]. 1.0 [PCW+22, PCA+24].

1.24Tflop [MSZB19]. 1.24Tflop/sW
[MSZB19]. 1.3GHz [LWA+14]. 1.44
[SWW+22]. 1.44-GHz [SWW+22].
1.44GHz [SWW+21]. 1.46TOPS
[GCL+23]. 1.7 [ZB19]. 1.7-GHz [ZB19].
1.89 [WBH+18, WBH+19]. 1.89-GHz
[WBH+18, WBH+19]. 10-bit [DRC+16].
12-nm [LCG+23]. 12-Stage [CXL+20a].
12.4TOPS [CRP+23]. 12.4TOPS/W
[CRP+23]. 123 [IVZV20]. 12nm [GCL+23].
136GOPS [CRP+23]. 140-nW [TBK+19].
16 [SCM+21]. 16-bit [RSA+23]. 16-mm2
[LCG+23]. 16-mm [BRH+19, RZAH+19b,
SWW+22, WBH+18, WBH+19]. 16.7
[LWA+14]. 160mV [TLB+22]. 16mm2
[GZK+21]. 16nm [BRH+18, RZAH+19a,
SED+23, SWW+21, WRD+17]. 175
[WBH+18, WBH+19]. 175-kHz
[WBH+18, WBH+19].

2 [CRP+23]. 2-Petaflop [SB23]. 2-to-8b [CRP+23]. 2.0 [HMJ22]. 2.5-D [PKC+20].

2.6GFLOPS [GPV+23]. 2017
[BBdD17, SSB22, TZZ+21]. 2019
[GD19, TBL19]. 2021 [IEE21]. 2022
[IEE22]. 2023 [IEE23]. 22-nm
[CSZ+20, ZB19]. 22.1 [CRP+23]. 22nm
[DC+23, GAE+23, GZK+21, MSZB19, SPDLP+22]. 24th [BBdD17]. 256 [WYK21].

256-Bit [QLC20]. 26th [TBL19]. 28
[UD20]. 28-nm [CCA+18a, SAW+20, WSK+20, WCL23, ZCNA17]. 28nm
[LZW+15, ZLP+15, ZCNA16, CCA+18b]. 28th [IEE21]. 29th [IEE22]. 2n3m5k
[WRD+17].

3 [CPLS23, LMP23, TLBL22, VMO+23].

3-D [VMO+23]. 3-nW [TLB22]. 30
[SB23]. 30-Teraflops [SB23]. 30th [IEE23]. 32
[KFGH+23]. 32-Bit [KS22, LCG+23, MLPF23, NHML+22, PMKZ22, DRC+16, DGA+17, GMV20, GSDB18, KM21, LCCS21, MCL22, MMGC20, NHK+21, RSR20, SFGB20, YTÖ21]. 32/64 [MG22].

32/64-bit [MG22]. 32I [MRSBG+20].

32IC [KK21]. 3D
[TEK21, TYEK21, ZBA+20].

3D-Graphics [TEK21, TYEK21].

4096-Core [ZSB21, ZSB20]. 410.0
[KFGH+23]. 410.0-B-32 [KFGH+23].

45nm [LWA+14]. 496-Core [RZA+19a].

4MHz [GAE+23].

5 [FFW20, FWZL19]. 511-Core [DX+18].

55 [GCL+23]. 5G
[AHB20, BZVCB23, KKH+20, Raj21].

5G-PUSCH [BZVCB23].

6 [TBK+19]. 64 [LWC18]. 64-Bit
[LCG+23, MDPM24, MZGG22, PCO+23, ZB19, CXL+20a, GCL+23, HMTL21, KCGL23, MG22, SGP+23, WSG+21].

65-nm [PCO+23]. 65nm [CCC+22].

67mm2 [GCL+23]. 695 [RZA+19a].

7 [SFBG20]. 7nm [HMTL21].

8 [FRC+18]. 8-core [CKTK22]. 8-to-64
[MSZB19]. 8.2-kHz [TKB+19]. 8.7mW
[GPV+22]. 89 [DNN23]. 8b [CRP+23].

910 [CXL+20a, CXL+20b].

ABI [AVS+22]. Abstraction [HZS+19].

Academic [ABC+20, DCC+23].

Accelerate [PMBA19]. Accelerated
[EAMK21, EKAK22, KFS22, WYLL22].

Accelerating
[AS18, DEA+21, DEA+22, DAKK21, ERGK21, GTC+20, TSS+22, ZPL+23, KKC+16].

Acceleration
[ABW+21, AYA+23, CPG+23, CRP+23, DLM21, FSS20, KSFS20, PLSK20, SB23, Sn21, VMFL23, WZW+21, Yan20, KMS22, ACM+21, WWW23]. Accelerator
[AEAS21, ABW+20, ABB+23, BCCM21, BDdD19b, CCC+19, DNN23, DXT+18, DY+22, FYH19, GZK+21, Gra16, GTCS21, JZWL23, JRD+23, KG22b, KYPD21, KBB21, KZH22, LCF23, LNA21, NHK+21, OBSB23, PS2a2a, PLH+22, PAC21, PGW+20, QLH21, RSRT19, SNH22, T22, TBR+22, WLI23, WX+22, YMY21, ZLG21, ZHL+23, DKC+21, RPA22, T22, WRD+17, ZPRD21, ZZW+21].

Accelerators
[ABM+23, GL+23, HDT+20, KGH20, NHML+22, RH+23, IWA+14, SFAA+22].

Access [MDR19, WYLL22]. accessible
[APHD+22]. Accuracy
[CLR+21b, CLR+21a, RRC+20, LGB17].

Accurate
[BHT+21, HGTD20, HGD20b, uHMS+19].

Achieving [SZHB21]. acoustic
Application-Specific

[GGARG+21, HMJ22, WT19, DL17].

Applications

[ASE+21, And20, BP21, CRRS22, DNM22, GRCCG+20, GAO21, HM21, KM21, LMD+23, MIF+23, gMCP19, NBT22, OPI+18, PDL18, RAK23, RHD+23, SJR+23, SUM+23, SSD+21, SR22, SKK+22, VSD22, WCG23, ZGG23, ZXXH22, SCR+17, WYT+23, RLL+21].

Approaches

[HSEKD21].

Approximate

[LGB17, SMOM19, VSD22].

Approximations

[FWF20].

Ara

[PCA+24].

Arbitrary

[AWB+23, JZWL23, ZZQ21].

Architectural

[KKK+17a, KKK+17b, KKK+17c, MTAL22, MS17].

Architecture

[ASH19, BP21, CPLS23, COMP19, CLW23, DBP21, DPP22, FHL+22, HBSE22, HYWP+19, HLP+24, HH21, HCP+21, HH22, HMY24, JSB20, KGH20, KG22a, KG22b, KA20, KNK+21, KKH+20, LCCS21, LF22, LWC18, LHC19, Lai21, NBT+23, MK20, MR22, MTT21, MAS18, JS19, MSD+22, MKV23, MDR19, NAR+22, NGS20, PDL18, PS22a, PKN+20, PKC+20, PW17a, PMK22, QYZ21, RKH+23, RAS+23, RMP+19, SVM+23, Sew18, SR22, SLB+22, TA22, WLY+22, WA1H21, XY+20, ZSB20, ZSB21, ZHC+18, ZWL+20, ZGL+21, ZXX21, ZZZ+23, ZNF21, CPL+24, DVP+17, HP21, KSA21, KHH22, Lu21a, Pat18, PRP+23, RPSD16, SCM+21, TCL+21, WYT+23].

Architectures

[AKM20, DXT+18, ERGK21, FTRH20, IZV20, KKK+17a, KKK+17b, KKK+17c, NNPG23, PACB21, SMB17, BP23, CLC+20, GMFC23, LF22, VMFL23].

Area

[MPU+23, MDR19, PSS23, SSD+21].

Area-Efficient

[MPU+23].

ARITH
[BBdD17, IEE21, IEE22, IEE23, TBL19].

ARITH-26 [TBL19]. Arithmetic
[BBdD17, CLR+21b, CLR+21a, GD19, IEE21, IEE22, IEE23, MDPM24, SJM+20, TBL19, SJ+23]. ARM
[AMRPC21, CRRS21, EHK20, ELG20, FTRH20, IVZV20, KSS22, KKE+22, LF22, NGS20, RFS20, SAB24, HLP+24, RMP+19, SNOT21]. Arm-A [HLP+24].

ARM-RISC-V-Heterogeneous [EHK20].
ARMv8 [Sew21].

AAA Aspects [HML21].

NGS20, RFS20, SAB24, HLP+20, NNS+21, RFS20, SAB24, HLP+24, RMP+19, SNOT21]. Arm-A [HLP+24].

ARM-RISC-V-Heterogeneous [EHK20].
ARMv8 [Sew21]. Armed [DKT+23].

Armv8 [Sew21]. Armv8-A [DKT+23].

B [KFGH+23, CPG+23, MZZG22].
B-Extension [MZZG22]. backend
[TMK+16]. Backup [FPYB23]. bad
[FvHC+23]. Bandits [DKT+23].

Bandwidth [WBH+18, WBH+19, ZZZ+20].
Banshee [RSS+21]. Bao [MP20a, MP20b].

Baremetal [MTAI22]. Barrel
[ABW+20, ABW+21]. BARVIII
[ABW+23]. Base [PMKZ22]. Baseband
[IFO+18, MB16]. Based
[YP+22, ZHC+18, ZWL+20, ZZ21, ZCH+23, ZUSK23, ZZQ21, ZWL+23, ZSM20, ZSM21, ZS23, ZCNA17, ZNF21, ZZZ+22, ZC23, dOTB+20, APSH+22, AVAG21, AFT+17, ASH19, BCCM21, BHT+21, CWD+21, CIL21, DBP21, DZZZ23, DRC+16,

Bit-Precision [RSR21]. Bits [MTT21].

BlackParrot [PGW+20]. Blake3 [ZPL+23].

Block [DPP22, KS22, LCN+23, MCL22, SEM19].

Blocking [DDM+20, JHQ23]. Blocks [ZWB19]. Board [CDF+20, RKH+23, ZSM21, TZPL21].

Body [CPG+23, CRP+23]. BOOM [Ano23a, BSZ+21, BSZ+24, ZBS+23].

BOOM-Explorer [BSZ+21, BSZ+24].

Bottleneck [KFK+19]. Branch [CSM22, SLCK21].

Capturing [TPDP+21]. carbon [AFP+17].

Case-Study [APSH+22, BHJ23, HGJD20].

Casting [KK23]. Catalog [HLHK19].

CCSDS [IVZ+20, KFGH+23]. Celerity [DXT+18, RZA+19b]. Center [Ano23g].

Center-Class [Ano23g]. Certificates [GLS21]. CFG [LWL23]. CFI [LWL23, SSM+23, ZPRD22]. CGRA [FGD+19, LNA21]. ChaCha [MPP21].

CHERI-RISC [BPS+23], Cheshire [OBSB23], China [Ano23b], Chip [DCM23, DEA+21, DtEt22, FSMU21], GVP+22, GTP+22, Gen24, OBB+24, RLL+21, RZA+19a, TDPD+21, WSK+20, YLT22, DGA+17, Ano23e, CKTG21, CYJ+22, CRF+23, DNN23, HYWP+19, HZS+19, KSSMRB23, KCHYM19, LNB+23, MSDM23, NKH+21, RSR20, SLK+21, SML+22, SMMD23, SBJ+21, ZNF21].

Computing
[BDdD19b, CSM+21, CXL+20b, DYZ+22, FGD+19, FSMU21, GRC+19, ILG19, KBBA17, LWC18, MDPM24, MPU+23, NPA+23, PCW+22, PPYB23, SJBS21, TBSH22, WLW+21, XZW+22, Yan20, ZSB20, ZSB21, ZHL+23, Gre20, HYXW22, SCM+21, WWL+20, WTY+23, YWZL22].
Computing-in-Memory [ZHL+23].
Coprocessor [BDdD19a, CMV21, DEC+18, FSMU21, HCL+21, LHC+21, LKKK22, LYL23, MPU+23, PSS23, SWWL23, WWGW23, ZWL+20, GBP21, PRS+15].
Coprocessors [CSM+21, LVR+20].
Szk21, WLC22, ZZZ21. **CPU(R) [TZS+21].**

CPUs
[CPWG23, GWZS23, HWJ23, JRW+23].

Critic [RBK18]. **Critical**
[MKČ23, RLL+21, SKK+22, WMA+21].

criticality [CIPR21]. **Cross**
[HGJD20, VOK+22, WWN23, APHD22].

Cross-layer [VOK+22]. **Cross-Level**
[HGJD20, APHD22]. **Cross-Platform**
[WWN23]. **Crypto [RFS20].**

Cryptographic
[Bis21, DHL+21, HDT+20, MLPH23, MČB22, SNK22, TDH+23, ZWL+23].

Cryptography
[dAGM23, KGHRM23, LKKK22, NDZ+21, NHML+22, TGMD20, XHY+20, ZKS+23].

Cryptoprocessor [HBSE22, ZHC]. **Cryptosystem [PGZMG21].** **CRYSTALS [GJC23, NDZ+21].** **CRYSTALS-Dilithium [GJC23].** **CSR [BHGD21].** **Current [AMG+20, HCW23].**

Custom [CW+24, DFA+23, HBB23, LHC19, LMP23, MRB+23, MRB+24, NH+21, SNH22, Su+21, WWX+24, PKL21, PJL21].

Customizable [SCM+21]. **Customized [WZW+21, EHN23].** **Customizing [MMD+22a].** **CV32A6 [HH23].** **CVA6 [MMD+22a, MTAL22, SVM+23].** **Cyber [APHD21b, Ano22].**

Cyber-Physical [APHD21b]. **Cyber-Security [Ano22].**

Cycle [GGH+22, uhMSI19, ZNF21, DPV+17, UD18]. **Cycle-Accurate [uhMSI19].**

Cycle-True [ZNF21].

D [PKC+20, VMO+23]. **D2 [PGTD23].**

DARKSIDE [GTP+22, GPV+22]. **Data [Ano23g, DAKK19, FHL+22, GLS21, KRR22, KGBH22, KK23, LWC18, LVPB23, RKR21, Su21, TBS+21, ZHL+23, RPD+15, ZBB+20].**

Data-Flow [FHL+22]. **dataflow [GAE+23, YWZL22].**

Datapath [HMJ24]. **Datapaths [VROdIT22].** **Day [CPL+24].** **DBPS [LCN+23].**

DC
[LZW+15, WCL23, ZLP+15, ZLP+16].

DC-DC [LZW+15, ZLP+15]. **DCLS [NKTS23].** **DCT [HHB23].** **De-RISC [WMA+21, WMR+22].**

Deblocking [AS18]. **Debug [LKH23].** **Debugger [RSR20].**

DECADES [GCL+23]. **Decentralized [GSL21, NBT22, SLMS21].** **Decimal [uhMSI19].**

Decoder [KFH+23, SUAR23]. **Decoupled [Ant22, MPU+23].** **Decryption [AYA+23].**

dedicated [BMM+20]. **Deep**
[ABW+21, CRRS22, FHY19, HSL+23, KASL21, SLCK21, TRB+22, CRRS21, RCMQO23].

Deeply [JZWL23, QCL+23]. **Deeply-coupled [JZWL23].**

Deflection [KG17]. **Deflection-Routed [KG17].**

delay [LSB22]. **delegated [CLM+22].**

Demonstrating [PKL21]. **Dependable [MSDM23, NPA+23].** **Deployment [BCCM21].**

Designed [Ano22, MMGC20, QLH21, WBB+18, DDM+20, ZZW+19]. **Designing [CSM+21, KGC+24, MSJ19, Chi23],**

Designs [CPWG23]. **Detection [BGH19, HSL+23, HSL+24, SLMS21].**
[GKB+22, HSWM23, HUL+22, HCL+21, LRF+21, LHD+21, LHC+21, LCF23, LXC23, PCL+23, PGTD23, UD20, CPL+24, KSA21, LHD+22, SJY+22, ZZW+19].

Detection-Based [UD20]. **Developing**

[JHL+21, PCL+23, PHC+23, TSABTM20, XYT+22, XYT+23]. **Development**

[And20, CRMR+23, CPL+24, EHN23, HCW23, SNM22, SSK+22, ZCH+23, Bar+20, PKL+21]. **Developments**

[AAB+23]. **Device** [Lu21b, SB23, WHB+22].

Devices [ASH19, CWS+24, GST+17, HCL+21, JHK+23, MRAM+23, MTJ+22, NPA+23, SMJ21, CTN18, EHN23, SCL+21].

DFT [ZCH+23]. **Diagnostic** [MGZ+23].

Differences [Cho18, Cho19]. **Different**

[AKM21, KIS22]. **Digit** [HSE+24]. **Digital**

[CC+19, GLS21, GJC23, HH21, HH22, HSK21, RAZ+19a, KSSMRB23, TCL+21, Ano23f, WHB+18].

Dilemma [HCW23]. **Dilithium** [GJC23]. **Direct**

[ARW+23, MDR19]. **Directional** [KG17].

Disassembler [GSDB18]. **Discussion**

[APHD21a, dispatch [HK20, KKC+16].

DIV [LGB17]. **Division** [HSE+24]. **DNA**

[WHB+22]. **DNN**

[AWB+23, ADF+23, CTN18, CPG+23, CRP+23, GPV+22, GTP+22, HM21, KSA21, LCN+23, OGT+20, WXY+22].

DOJO [TSG+23]. **Domain**

[HP18, OBSB23, XHY+20, ZXX+22, Pat18].

Domain-Specific

[OBSB23, XHY+20, ZXX+22, HP18, Pat18].

Domains

[DMR+20]. **Domestic** [LWC22].

Dot [KBB21]. **double** [LWA+14].

double-precision [LWA+14]. **Driven**

[DGW+20, MRB+23, MRB+24, FHD22, LH23, RCS+19, gMCP19]. **Drones**

[Ben23]. **Drop** [HLHK19, YLT22]. **Drop-In** [HLHK19].

DSP

[GST+17, LWD20, LYL23, Su21]. **Dual**

[CYJ+22, HMTL21, KSRT23, SUAR23, WSK+20, EHN23, GMV20, NKTS23]. **Dual-Core**

[SUAR23, WSK+20, CYJ+22, HMTL21, EHN23]. **Dual-Issue** [KSRT23].

dummy [LSB22]. **DuVisor** [CLM+22].

DVFS [TBK+19, TLS+22]. **DVINO**

[CCC+22]. **Dynamic**

[BDdD19a, CMV21, CTKG21, DHL+21, KCGL23, LCN+23, PDLC18, TBK+19, TCH23, WW21, ZWL+20, PRP+23].

Dynamically [QLC20].

E203 [SJY+22]. **Early**

[HGLD19, LNZ+22, ZGD22]. **ECG**

[HUL+22]. **Ecosystem** [AA+21, EAM+22, uhMSI19, PNG20, TZPL21]. **ECU** [ZS+23].

ECUs [CTSG22, COS+23]. **EDA** [GG18].

Edge [AYA+23, CSM+21, CXL+20, FRC+18, FSU21, GPV+22, GTP+22, HSR+23, LCF23, MST+23, MTJ+22, NPA+23, OGT+20, RRC+20, So20, TT22, WWX+24, WCGL23, YC20, GRC+19, SCM+21, WTY+23, Ra21, CV22].

Edge-AI [CV22]. **Edge-Computing** [CSM+21]. **Edition** [HH22]. **Education**

[HCP+21, MSJ19, MKVD23, APHD22].

Educational [SUM23]. **EEG** [LCF23].

EEG-based [LCF23]. **Effect**

[AKM20, CLW+21]. **effective** [ZG22].

Effects [Cho18, Cho19, TAC+22, dOTB+20].

Efficiency

[CPWG23, CLR+21b, CLR+21a, dAGM23, MAS18, LGB17, SAB24, WWZ+17].

Efficient

eFPGA [GCL+23, LG+23, SRD+21].

eFPGA-Augmented [SRD+21].

EHE [EGBS22]. **Eight**

[CTK23, SW+21, SW+22].

Eight-Core

[CTK23, SW+21, SW+22].

Extraction [GTD+23, LWLA23]. Extreme [GVP+22, GTP+22, OGT+20, RRC+20, TTT22, SCM+21]. Extreme-Edge [GVP+22, GTP+22, OGT+20, RRC+20, SCM+21].

forward [PKKK22]. Four [GZ22, LCG+23].
Four-Stage [GZ22]. FP16 [TBR+22].
FPGA
[APSH+22, BCCM21, CMV21, CKTG21, Cii21, DPV+17, DDM+20, DXYZ19, EAI19, FvHC+23, GAO21, GMV20, Gra16, GSDB18, HHI23, HCP+21, HSW23, HM21, IFO+18, JSB20, KHG20, KG22b, KFGH+23, LCYK20, LCF23, MCL22, MLPH23, MFM+19, MSJ19, MSR+21, NHML+22, OBB+24, PLSK20, PSZM21, QLC20, SUM23, SSB+19, SSD+22, TLS22, WSMRM20, WHB+22, WLC22, YLI+23, ZUSK23, ZCH22, ZC23, dOTB+20, dOK23].
FPGA-Based
[CKTG21, IFO+18, KFGH+23, OBB+24, ZUSK23, APSH+22, Cii21, KG22b].
FPGA-Optimized [MFM+19]. FPGAs
[BFC+23, HHB+19, KAR+19, KG17, MAS18, RTRM19, WW19, WW21, WWB23, ZZR+20]. FPU
[BPM+21, KGC+24, PHC+23]. Framework
[BSZ+21, DKA+22, EEE+18, GMS+23, KEAS+18, LKHK23, LNA21, LHK23, MSJ19, MSR+21, NRA+22, SSR+18, SJM+20, SSD+22, ZBZ+23, ZNF21, APHD22, BCCZ21a, MS17, MRGRCR+21a, SJP+23, SCL+21]. frameworks [KSA21]. Fraud [GLS21].
Free [DPP22, AP14]. FreeBSD [Hor20].
FreeBSD/RISC [Hor20].
FreeBSD/RISC-V [Hor20]. Freedom
[Ano21]. Frequent [DHL+21]. Frequent
[MIT21]. FrodoKEM [KFS22]. fruit
[KSAL21]. Full [BHT+21, SZHB21, Sew21].
Full-Platform [BHT+21]. Full-scale
[Sew21]. Fully
[HC20, PS22a, WCL23, ZHIP+23, Ano20]. Fully-Homomorphic [PS22a].
Fully-Parallel [ZHL+23]. Function
[GZC22]. Functional [ASE+21, JRD+23, LPZ19, YLC21, MRSBGR+20, SC17]. Functions [BKdLSGL23, CWS+24, LMP23]. future [AAC+23, TCL+21].
Galois [KGHRM23]. GaN [RLL+21].
GaN-Applications [RLL+21]. Gap
[BB21, HGD20a, HM21, FRC+18]. GAP-8
[FRC+18]. Gateway [CXL22]. Gateways
[RJ+21]. gem5 [RSRT19]. GEMM
[RCMQ24]. GEMM-based [RCMQ24].
General [SNOT21, MRGRCR+21b, TZ22].
general-purpose [TZ22]. Generated
[BHR+18, SB21]. Generating
[EEI+18, GGAARG+21, SBJ21].
Generation [BFP+22, FSPB21, FDS+23, GLS21, GD19, LNA21, LPZ19, TH22, TBLD23, Ben23, CSO+23]. Generator
[Ano23e, Ant22, BRH+19, CKK+18, MKM20, TS20, TTDD21, WTS21, LS22, SB21].
Generic [GTCS21, OPY+18, RKH+23].
Genome [LVPSB+23]. Genotype
[MRB+23, MRB+24]. Gesture [ZWL+20].
Getting [Hor20]. GFLOPS [LWA+14].
GFLOPS/W [LWA+14]. GHz
[CSZ+20, RZAH+19a, SWW+22, SPDLP+22, WBB+18, WBB+19, ZB19].
Giga [GCL+23, RZAH+19a, RZAH+19b].
Giga-RISC-V [RZAH+19b]. Global
[WLW+21]. GlobalPlatform [SNOT20].
Go [SC17]. GoblinCore [LWC18].
GoblinCore-64 [LWC18], golden [HP18].
GOPS [GZK+21]. GOPS/W [GZK+21].
GOST [DN23]. GOST-28147-89
[DN23]. GPC [LN+23]. GPSCN
[TZ22]. GPGPU
[ETR+20, TEYK21, TYEK21]. GPUs
[TSS+22]. Grade [WMA+21, WM+22].
Grain [NRB+23, VROdT22, WSK+20].
Grained [SAW+20, NKTS23, RSM+23].
granularity [HYXW22]. Graph
[DYZ+22, TZ22]. Graphic [TSS+22].
Graphics
[TEYK21, WY23, TYEK21, ZJX20]. Grid
[CYJ+22, SLMS21, TS20, WTS21]. GRVI
[GRA16]. GVSoC [BHT+21].

H.265 [AS18]. H.265/HEVC [AS18].
HAMS [KSRT23]. HAMSA-DI
Hardened-by-Replication [DAPS21].

Hardened [MSDM23]. Hardware
[AKMS20, ABM20, Hardening [AKMS20, ABM20, MSM23].

QCL [APSH21]. GPV [PLSK20].

Hyperdimensional [TBSh22]. HyperSplit [PLSk20]. hypervisor
[CLM+22, MP20a, MP20b]. Hz [TBK+19].

I/O [MRGCR+21b]. ICs [PKC+20].

Identification [FAPHD23, HCL+21, KGBH22, MGZ+23].
identifying [KSAL21]. IEEE [BBdD17, IEE21, IEE22, IEE23, TBL19, KGC+24].
IEEE-Compliant [KGC+24]. II

[AHV+21, COMP19, HWV+21, WAH21].

ILA [HYZ+19]. Image [GAO21, SG23].

Impact [Cho18, Chao19, KCGL23, VMO+23, YLT22, WSMRM20]. Implantable
[AMG+20, GRCCRG+20, MRAM+23].

Implement [LCCS21, VOK+22].

Implementation
[ABC+20, ASE+21, CTN18, Cil21, FWZL19, FHD22, GAO21, GSDB18, HHH23, HSWM23, HSEKD21, HMTL21, HM21, ISM+23, JSB20, KS22, KKE+22, LHC19,
IoT-Driven [FAPHD23]. **IP** [BBVB20, Bis21, BGVBB18, HHB+19, KHH22, PPS+19, PH18, TL22, WDDM22, ZCH22]. **IP-XACT** [PPS+19, PH18] [CSM20, LGB17, LVR22, GFB24]. **Irradiation** [SML+22]. **ISA** [AKMS21, AS18, ABP22, AHB20, BPF+22, BBVB20, BP21, BGVBB18, Chi23, Chi24, FAPHD23, GTC+20, GBP21, GMMK+23, GFB+24, IZG22, KGHMR23, LCN+23, LGB17, LVR+20, MAS18, MB16, PLY+15, SZHB21, SFGB20, TMR+19, T22, TBLD23, TEYK21, TYEK21, TML+17a, TML+17b, TML+17c, WAD21, WGBZ+23, YMF+22, ZTC21]. **ISA-Level** [FAPHD23]. **ISAs** [KRR22]. **ISE** [MP21]. **Isolation** [CY+22, KLL+20]. **Issue** [EGBS22, KSR+23, SZHB21]. **ITUS** [KCHYM19].

Japan [TBL19]. **JIT** [DCL+23]. **July** [BBdD+17]. **June** [IEE+21, TBL19].

Kernel [GPL+22, HYML23, SMOM19, VMFL23]. **Key** [DNKDN+24, ML+23]. **Keys** [DCEJ+21]. **Keystone** [SNOT20, SNOT21]. **kHz** [TBK+19, WMB+18, WBM+19]. **Kid** [SEM+19]. **Kitten** [GPL+22]. **Klessydra** [CSM*+21]. **Klessydra-T** [CSM*+21]. **Kyoto** [TBL19].

LAC [FSS+20]. **Languages** [WWN23]. **Large** [gMCP19]. **Large-Scaled** [gMCP19]. **Last** [CTK22, CTK23]. **Latency** [MLPH23, MST+23, RRC+20, RHD+23]. **Layer** [KYD+21, Suv21a, VOK+22]. **Layout** [PGTD23]. **Leakage** [Bi21, PAFJ+23, POMD22, TBK+19]. **Leakage-Suppression** [TBK+19]. **Learn** [LF+22]. **Learning** [AEAS21, FHY19, HSL+23, RRC+20, SLCK21, SSD+22, TBR+22, KMS22, RCMQ24]. **led** [Chi23]. **Left** [AS22]. **LeNet** [FWZL19]. **LeNet-5** [FWZL19]. **Length** [MAS18]. **Level** [CKTK22, CTK23, DD+20, FAPHD23, GMS+23, GRD22, HYML23, HI23, HGJD20, HZS+19, MMGC20, RGD21, WZT+20, WGZ+23, YLT22, APHD22, CLM+22, HGD20, KLP+20, MRGRC21]. **Level-1** [DD+20]. **Leverage** [FDM22]. **Leveraging** [RHD+23, KG22]. **Libraries** [FTRH20]. **Library** [GRC+19, Liu21, SEG20, SNOT20, Ano20]. **License** [LRF+21]. **LiFi** [SMP+23]. **LiFi-CFI** [RSM+23]. **Light** [RS+23, SLB+22, ZSM20, MMR+17]. **Light-weight** [RSM*+23]. **Lightweight** [CRRS22, DBP21, GPL22, GTD+23, GJC23, HYWP+19, KKK+17a, KKK+17b, KKK+17c, LBP+21, MCL+21, MCL22, MLPH23, ML+23, MCB22, OBS23, PHE+23, SHZB21, SMJ21, TBSH22, TGMD20, TGMD21, MPP21, MP20a, MP20b]. **Limitations** [RHS+22]. **line** [RCS+19]. **Linear** [FTRH20, GTD+23, ZGD22]. **LinearUCB** [ABM+23]. **Linux** [CIPR21, DRN+23, ILG19, OBSB23, PS22a, SGP+23, SMOM19, VTS+23, ZBJ19]. **Linux-Canbera** [OBSB23, CIPR21]. **Linux-Ready** [PS22a, ZBI19]. **LIRA** [SMJ21]. **LIRA-V** [SMJ21]. **lite** [DRC+16]. **LiteAIR5** [GMS+23]. **little** [Lu21b]. **little-core** [Lu21b]. **LLVM** [RSS+21, RSRT19, WY23]. **LLVM-Based** [RSS+21, RSRT19]. **Lo-RISK** [PAP+23]. **Localization** [SJER23]. **Lock** [NKT23]. **Lock-Step** [NKT23]. **Lockstep** [SAF+23]. **Logic** [EA19, HLP+24, TBK+19, AFP+17]. **London** [BBdD+17]. **Long** [QLC20, GMFC23, VMFL23]. **long-vector** [GMFC23]. **Look** [SMP+22]. **Looking**
[BSZ+21, BSZ+24, LHK23, SVM+23, TSW+23, TAC+22, ZBZ+23].
Microarchitectures [KIS22]. Microcoded
[KG22]. Microcontroller [DWG+20, MDR19, SJR+23, DRC+16, DGA+17, GAE+23, HUL+22, MRGRCR+21a].
Microcontrollers
[KKE+22, RFS20, MRGRCR+21b].
Microprocessor
[CTN18, HSL+23, KHS+23, PMKZ22, POMD22, QYZ21, SS22, TKB+19, UD18, UD20, WT19, WCL23, BMM+20, BCM+21].
Microprocessors [AMRC21, LWC+16].
MicroRV32 [APHD22]. Microscopy
[SG23]. MicroTESK [CKK+18]. Millimeter
[KKH+20]. Millimeter-wave
[KKH+20]. Milliwatts [RHD+23].
MiniFloat [BPF+22]. MiniFloat-NN
[BPF+22]. Minimal [BSK22, JK20].
Minimally [TBLD23]. MINOTAuR
[GR+23]. MIPS [COMP19, MTJ+22].
MIPS-II [COMP19]. Mitigate [KFK+19].
Mitigating [GLS21]. Mixed
[BRH+19, NRB+23, OGT+20, CIPR21].
mixed-criticality [CIPR21].
Mixed-Precision [NRB+23, OGT+20].
Mixed-Signal [BRH+19]. ML
[DEA+21, DTE+22, HH23, SJER23].
ML-Based [SJER23]. mm2
[LCG+23, LCG+23]. Mobile
[KKH+20, USQ+22, ZSM20]. Mode
[HJM24]. Model
[DAKK19, JS23, LCF23, MMA+18, TML+17a, TML+17b, TML+17c, SC17].
Modeled [PPS+19]. Modeling
[GMS+23, PH18, RSRT19, ZBZ+23].
Models [GDR+22, TBLD23, TAC+22, TDH+23, KSAL21]. Modern
[LF22, MP20a, MP20b]. Modification
[KCGL23]. Modular
[BPF+22, KAR+19, KGH20]. Module
[TA22, WTZ+20, DZZZ23, MRGRCR+21b, TDTP+21, ZXXH22]. Module-LWE
[ZXXH22]. Modules [AKMS21].
Monitoring [CTSG22, DEC+18, LYZ20, SMB17, ZHX+22]. Monte [BFP+22].
MOPS [GAE+23]. MOPS/mW [GAE+23].
Morelo [Sew21]. moreMCU [SAB22].
Morphus [AHV+21, HWV+21].
Motorcycle [ZS23]. Moving [DAKK19].
MPSoC [EEI+18, LVR+20, MSB+21, NRB+22, NLLH22]. MPSoCs
[KAR+19, KEAS+18]. MRAM
[GAE+23, HWJ23, J23, ZBA+20].
MRAM-Based [HWJ23]. MS [DUM+19].
Multi
Multi-Accelerator [GZK+21].
Multi-Armed [DKT+23]. Multi-Core
[BBV+23, CXL+20a, EH20, GZH+21, HWJ23, LRF+21, PCA+24, SGP+23, TH22, WTY+23].
Multi-Grain [VRDIT22].
Multi-Layer [KYD+21]. Multi-objective
[HH23]. Multi-Precision
[PCO+23, HSL+23]. Multi-Target
[KHS+23]. Multi-tasking [BKS22].
Multi-threaded [OCC+17]. Multicore
[CDF+20, DAKK19, IK21b, JH21, PHC+23, PAC21, PGW+20, VMO+22, VMO+23, FKS22, RCMQO24]. Multiple
[BDdD19b, GFG+19, KKEG22].
Multiplication [BPLS23, ERGK21, KZH22, SSS+22, TBR+22, GBP21]. Multiplier
[VSD22]. Multiprecision [CSZ+20].
multiPULPly [ERGK21]. Multirate
[BHR+18]. Multithreaded
[CSC+21, EGBS22]. Mutation
[FAPHD23, HTGD21]. Mutation-based
[HTGD21]. Mutation-Classes [FAPHD23].
mW [GAE+23].
Nano [Ben23, KMB22]. Nano-Drones
[Ben23]. Nano-UAV [KMB22].
Nanosatellite [RKH+23]. NanoWattch [TLB+22]. Native [MDPM24, WNN23]. natural
[BRH+19, CSZ+20, CCA+18a, KCR+17, LGC+23, MSFK21, NWP+23, PCO+23, RZAH+19b, SA2+20, SWW+22, UD18, UD20, WBB+18, WBB+19, WS2+20, WCL23, ZB19, ZLP+16, ZCNA17]. NN
[BPF+22, GRC+19]. NoC [EEI+18, KG17, KEAS+18, NRA+22, PKC+20]. NoC-Based [EEI+18, KEAS+18]. NoC-MPSoc [NRA+22]. Node [CPG+23, RRC+20].
Nodes [GTC+21a, GTC+21b, SRD+21]. NOEL [And20, SAF+23, dOK23]. NOEL-V [And20, SAF+23, dOK23]. Non [DDM+20, KGHRM23, MTT21].
Non-Binary [KGHRM23]. Non-Blocking [DDM+20]. Non-Volatile [MTT21].
[TFB+19, TLL+22].
operations [CRS21]. Opportunities [LVPSB23]. Optical [KMB22, PAPJ23].
Optimal [OCC21]. Optimisation [HH23, WWW23]. optimised [PIL21].
Optimization [BSW21, BDB21, HJJ23, Lin21, Zha22, GMFC23]. Optimizations
[KCGL23, VOK22, CLC21]. Optimized [CPLS23, DPP22, KS22, KKE22, PSS23,
PSM23, SLB23, CSM2, HUL22, KK21, MF219]. Optimizing
[LVR20, TTB22, WWX24]. Optimum
[RSA23, KSA21]. Order
[Ano23a, Ant22, CPWG23, CXL20a, CCA218a, CCA218b, DMM20, GZ22,
LHD21, MFM20, SGP23, SS22, SPDLP22, ZTC21, PRS215, RPD215].
organisation [SC21]. Organization
[LF22, OCC217]. Oriented
[GVT22, KGB22]. Original [GTD23].
Orthogonal [WZW219]. OSEK [DL217].
OSEK-V [DL217]. OTA [SCL21].
Out-of-Order [Ano23a, Ant22, CPWG23, CXL20a, CCA218a, CCA218b, DMM20,
GZ22, LHD21, MFM20, SGP23, SS22, SPDLP22, ZTC21, RPD215]. Overhead
[S22].
Overlay [BCCM21]. Overlays [VROdlT22].
Overview [APHD21a, HHH219]. Own
[Szk21].

P [CLC21]. P870 [Ano23d]. Pacemaker
[VNY23]. Packed [LY23, YCL23].
Packed-SIMD [LYL23]. Packet
[PLSK20, DKC21, WWW21]. Parallel
[GRC219, Gra16, MAS18, MGZ23,
NRB23, OBB24, RCMOQ24, ZHL23,
HC20]. Parallel-Execution-Unit [MAS218].
Parallelization [BZVCB23]. Parallelizing
[KMB22]. Partial
[CMV21, CTPG21, WW21]. Partitioning
[RHS22]. Pass [DNKDN24, AF217].
Password [XZW22]. patches [HUL22].
Path [RKRF21]. Paths [KRR22]. Pattern
[TT22]. Patterns [MTT21]. Paving
[BFP22]. Payment [ZSM20]. PCI [Lu22],
PCI-E [Lu22]. PCIe [CRMR23]. PCs
[LF22]. Penetration [CXLL22].
Perception [MST23]. Perceptron
[KYD21]. PERCIVAL
[MMD22b, MMD22c, MDMP24]. Perf
[SNOT21]. Performance [AS22, Ano23c,
Ano23d, BFP22, Bis21, BP21, CXL20a,
CTSG22, DMM20, DRN23, FHL22,
HGD20b, JBR23, LYH20, LRB18, MAS18,
MZZG22, MPU20, MCB22, PAPJ23,
QCL23, SJR23, SSS20, SS22, SMB21,
SN20, SNOT21, T21, TLS22, ZB19,
ZGMD22, ZGD22, ZCH23, ZXXH22,
CS22, DKK21, HK20, JS23, KHH22,
MS27, SAB24, TLS22, WWL20, ZCH22].
PERI1 [TRK19]. PERK1 [TRK21]. Periodical
[DWG20]. Periodical-Driven [DWG20].
Peripheral [EHN23]. peRISC
[VGT22]. Perspective
[CDP22, SMP22, AAC23]. Petaflop
Photovoltaic [DL22]. Physical
[APHD21b, GKB22, HYL23, LHK23,
MST23, NNP23, NAL22, WSU19].
Physical-Aware [LHK23]. PIC [SG23].
Pipeline [CXL20a, EGB22, OCC217,
ZZZ21, GM20, MG22, YTL23].
Pipelined [PDP22, PMK22, PNV22,
QCL23, TGT23]. pipelining [CS22].
[UD18]. Plate [LRF21]. Platform
[AKMS20, APHD21b, Ben23, BWP22,
BHT21, CSO23, EMMB19, GGH22,
IFO218, JHL21, KG22c, LCYK20, LCF23,
gMCP19, NGS20, OBS23, QY221, SAB22,
WZT20, WYK21, WNN23, WMA21,
WMR22, ZHL22, ZUS23, APHD22,
DG217, FKS22, HGP20, HG22].
Platforms
[Ano21, MSP23, WWX24, CIPR21]. PLL
[RZA21b, RZA21a]. Plug [OBS23].
Plug-In [OBSB23]. Pluggable [MC22].
Points [JZWL23]. Poisoning [AVS+22].
Poly[XY21]. Policy
[HWJ23, SSS+22]. Polynomial
[KZH22, WMGD23]. popularity [Chi23].
Portable [BCZZ1a, LYL23, WHB+22].
Porting [GPL22, Zha22]. Portland [IEE23].
Posit [CLR+21b, CLR+21a, CRSS22, KK23, MESSS23, MMD+22a, MMD+22b, MMD+22c, MDPM24, SJM+20, TRGK19, TRGK21, CRSS21, SJP+23].
Post
[EKAK22, FSGM+19, FS2020, GJC23, HBSE22, KSFS24, KGHRM23, LKKK22, NDZ+21, PGTGD23, PGZMG21, RFS20, TH22, XHY+20, ZKS+23, MRGRCR+21a].
Post-Layout [PGTD23]. Post-Quantum
[EKAK22, FS2020, GJC23, HBSE22, KSFS24, KGHRM23, LKKK22, PGZMG21, RFS20, XHY+20, ZKS+23].
Post-Silicon [TH22, MRGRCR+21a].
Potential [LMP23]. Power
Powered
[TLB+22, AAC+23]. PPMU [CTSG22].
Practical [MKVD23, VOK+22]. Precision
[AWB+23, BPF+22, BDD19a, CRP+23, GFB+24, KGC+24, LCN+23, NR+23, OGT+20, PCO+23, RSR21, YCL+23, BDD19b, HSL+23, IWA+14, ZWZL+20].
Precision-Scalable [CRP+23].
Predictability [GCCR21]. Predictable
[GCR+23]. Prediction [BWP22, SLCK21].
Predictor [CSM22]. PRESENT
[GM21]. Preventing [ARH+22].
Prevention [WSG+21]. PRINCE
[MCL22]. Principle [KG22c]. Printer
[YL+23]. Privilege [TZG+23]. Privileged
[WAH21]. Proceedings
[IEE23, GD19, IEE21, IEE22]. Process
[HMTL21]. Processing
[AVAG21, ABP22, CCG+19, CCG21, CRRS22, GA201, HWG22, MESS23, PCA+24, RMF22, SG23, SED+23, Su21, ZB19, ZBB+20, DCK+21, KHH22, WWZL17].
Processor
[TS20, TSSH22, TT22, TGT+23, TCH23, VRDlT22, WDD22, WTS21, WMDG23, WW19, WSK+20, XY+20, ZLC19, ZTC21, ZWB19, ZGL+21, ZGD22, ZGG23, ZXXH22, ZHC22, ZLP+16, ZCNA17, ZC23, dOTB+20, DOK23, AvAG21, AFP+17, BWGB18, CMV21, CPL+24, CSM22, DUM+19, DPV+17,
DZZZ23, DAK+21, EHN23, FvHC+23, GAE+23, GMV20, GWY+23, HK20, HYXW22, KK21, KHH22, KMS22, LHD+22, LWA+14, LZW+15, LPB+21, LSB22, MS17, MB16, MMR+17, RPD+15, RPSD16, SJYZ22, YWZL22, ZLP+15, ZCNA16.

Prospects

[MLD].

Processors

Product

[CXL+20a, KBBA17]. Prof5

[SCA+22]. profiler [SCA+22]. Program

[CKK+18]. Programmable

[Ant22, CTSG22, DEC+18, EA19, HCL+21, Lu22, PLH+22, SAW+20, TSS+22].

Programming

[BBV+23, HLP+24, KGBH22, WDM22, WBN23]. Programs

[WY23, ZPRD23]. Progress

[HWG22, Lin21]. Project [AAC+23].

Projects

[RBK18]. Propagated [LHT+21].

Properties

[CAL23]. Proposal [KKOY19].

Prospects

[RBK+22]. protected [SGCGCR17]. Protecting

[AHV+21, DGH19, HVW+21, WSUM19].

Protection

[Bis21, DBGJ20, DCEJ21, GKB+22, HYML23, NAL22, RTRM19, RSM+23, TGMD21]. Protocol [DCM23].

Proton

[dOK23]. Prototype [FHD22, HGLD18, ZWL+23, DPV+17, HPDP20].

Prototypes

[HGLD19, HGTD20, HG20b, HGTD21].

Pruned

[MRK+23]. Public [MLD+23].

Public-Key

[MRGR+21b, TZ22]. PUSCH

Q

[Raj21]. QEMU [AKMS20, Hor21a]. Quad [SR22]. Quad-Core [SR22]. Qualification [FAPHD23]. Quality

[LPZ19, SMOM19]. Quantitative [ZZZ+23].

Quantized

[ADF+23, DFA+23, GRC+19, GTC+20, GTC+21a, GTC+21b, NR+23].

Quantum

[EAK22, FSGM+19, FSS20, GJC23, HSBE22, KSFS24, KGHRM23, LKKK22, NDZ+21, PGZ20, RFS20, XHY+20, ZKS+23]. Quark

[ADF+23, NWP+23]. Quire [MMD+22a, MMD+22b, MMD+22c, SJP+23].

quire-enabled [SJ+23].

race [SCR+17]. Radiation [BFC+23, CG23, SLK+21, WW19, WWB23, dOTB+20].

Radio

[ABH20, PACB21]. Radix [HSE+24].

Radix-4 [HSE+24]. RAE [WWL+20].

RAM

[DXYZ19]. Random [APHD21a, DHL+21, TTB22, TTDD21, LS22].

Randomization

[ZZL+22]. Randomized

[JRW+23]. Range [UD18]. RANTT

[KA20]. Rapid [GGH+22, LPZ19]. RAS

[ZZZ+23]. Rate [ZHL+23]. Rates [YLC21].

Raven

[LZW+15]. Razor [VKG22].

Reader

[PW17a]. Ready

[PS22a, ZB19, CDP+22]. Real [APSH+22, BB21, HSWM23, HCL+21, KFGH+23, LHD+21, LHC+21, LCF23, MSDM23, PLH+22, WBH+18, WBH+19, ZHX+22].

Real-Time

[HSWM23, KFGH+23, LHD+21, LHC+21, MSDM23, PLH+22, WBH+18, WBH+19, ZHX+22, APSH+22, BB21, HCL+21, LCF23].

REALISE

[MLD+23]. REALISE-IoT

[MLD+23]. Reality [SED+23]. Realization

[KDKN+24, NAL22]. Reason [TDPD+21].

Recognition

[GXLW22, LRF+21, ZWL+20, DZZ22].
Recommendation [DEA+21, DtEt22].
Reconfigurable [DAHK20, LYZH20, gMCP19, SR22, Swu21b, VRoDiT22, WLI23, ZLC19, SAB22, WRD+17].

Reconfiguration [ABM+23, CMV21, CKTG21, WW21].
Recovering [MTAL22]. Recovery [DBP21, XZW+22]. Recurrence [HSE+24].

RedMuLE [TBR+22]. Reduced [Pat17].

Resilient [CCA+18b, DBP21, NRLH22, WCL23].

Resisted [DHL+21]. Resolution [WBH+18, WBH+19]. Resource [AHH20, ET21, dAGM23, IK21b, JBK23, PACB21, SCL+21, ZCH22].

TTB22, TS20, TMR +19, TBSH22, TLS22, TT22, TBS +21, TZPL21, TH22, TZZ +21, TZ22, TZG +23, TGDMD20, TGDMD21, TBLD23, TDPP +21, TEYK21, TEYK21, TSS +22, TGRK19, TGRK21, TGT +23, TAC +22, TSABTM20]. **RISC**

[ZSM20, ZSM21, ZS23, ZJX20, ZHL +23, ZBA +20, ZLP +15, ZCNA16, ZLP +16, ZCNA17, ZG22, ZPL +23, ZNF21, ZZZ +22, ZC23, dOTB +20]. **RISC-HD** [TBSH22].

RISC-V

RISC-V-Based [HHL23, MJK+23, PCG+23, QCL20, RMR21, TBR+22, BCCM21, GGH+22, GGÄRG+21, HSL+23, HUL+22, KSSMRB23, RLL+21, SJP+23], **RISC-V/Tensor** [DEA+21, DiEl22], **RISC-V3** [KRRF21], **RISC-V** [JHLD21], **RISC-V** [ZZB+20, Hor21a], **RISCV-based** [ZZB+20], **riscv** [QEMU] [Hor21a], **Rise** [Su20, AYA+23], **RISK** [PAPJ+23, FFW20], **Risk-5** [FFW20], **RLWE** [ZHC+18], **RNN** [AHLB20, CDF+20, PABC21], **RNN-based** [AHLB20, PABC21], **Road** [BFP+22].

Roadmap [FDMM22], **Robotics** [LCYK20], **Rocket** [Ano23e, LBDPP19, LNB+23, SBJ21], **Root** [HSE+24], **Roots** [Gen24], **ROS** [LCYK20], **ROS-Based** [LCYK20], **rotation** [HC20].

Routed [KG17], **RSA** [KSSMRB23], **RSM** [TGMD21], **RTOS** [DL17], **Running** [GDR+22, IVZV20], **Runtime** [HGTGD20, LWLA23, SAB22, WWN23, WRD+17], **Runtime-reconfigurable** [SAB22, WRD+17], **RV** [CKTG21], **RV-CAP** [CKTG21], **RV32E** [Ano20], **RV32I** [DPP22, GRCRG+20], **RV32IMAC** [DWG+20], **RV32X** [WY23], **RVCoreP** [KK21], **RVCoreP-32IC** [KK21], **RvDi** [FHL+22], **RVFC** [XLZ23], **Rvfs** [HCP+21], **RVNet** [WWZL23], **RVCoC** [EEI+18], **RV** [PCA+24].

s [RZA+19b], **Saber** [KZI22, ZHLR22], **Safe** [gMCP19], **SafeLS** [SAF+23], **Safety** [ABA+23, DLP21, MKC23, RLL+21, WMA+21, DUM+19], **Safety-Critical** [MKC23, RLL+21, WMA+21], **SAR** [DR+16], **Sargantana** [DCC+23, SPDP+22], **SAT** [FSPB21], **SAT-Based** [FSPB21], **Satellite** [CDF+20], **SBST** [FSPB21], **FDS+23**, **Scalability** [TH22], **Scalable** [AKMS20, BZC23, CSZ+20, CRP+23, GST+17, KKOY19, PNSD20, RSRT19, TBK+19, WWL+20], **Scalar** [BDD+19], **Scale** [DAPK19, TSW+23, Sew21], **Scale4Edge** [EAM+22], **Scaled** [gMCP19], **Scaling** [DHL+21, LCN+23, TLB+22], **Scheduled** [QLC20], **Scheduling** [APS+22, EGB22], **Scheme** [FSS20, LWLA23, WLC22], **schemes** [HK20], **Scientific** [BDD+19, MPDM24], **Script** [ZNK21], **Script-Based** [ZNK21], **Scripting** [KKK+17a, KKK+17b, KKK+17c], **Sealable** [DCEJ21], **SealPK** [DCEJ21], **second** [GCL+23], **Secure** [AEE+21, DBP21, FSMM+19, GJC23, HYWP+19, KCHYM19, PDL18, PKC+20, SS+19, SS22, SLMS21, ZLC19, BF23], **Secure-Boot** [HYWP+19], **Secures** [Gen24], **Securing** [DG22, PRP+23], **Security** [AAA+21, AAB+23, ANO22, ASI19, AHV+21, CDP+22, CVJ+22, CAL23, DCL23, FHL+22, GAMG+23, Gen24, GWSZ23, HW+21, NGS20, OPY+18, RRJ+21, SG23, SKK+22, USO+22, WGG+23, ZHX+22, ZC23, Lu21a, MMR+17].
Soft-Cores [GRD22]. Soft-Processor [MAS18, CMV21, MS17]. Soft-Processors [SUAR23]. Softcore [FdRES23, HLHK19, JBK23, PKL21, PJJL21], softcores [TLS22]. Software [AHV+21, BB21, Bau17, Bis21, BPS+23, CRMR+23, DAPS21, DYZ+22, DXYZ19, DLMP21, HVW+21, HSL+23, LBDDP19, LKHK23, MSD+22, uhMSI19, RFS20, SMGS22, TML+17a, TML+17b, TML+17c, WYK21, ZGMD22, ZGD22, ZWL+23, ZNF21, HP18, MRGRCR+21b, SBJ21, SCM+21, TZPL21, TSBATM20].

Software-driven [LHK23].

Software-emulated [MRGRCR+21b].

Software-Hardware [uhMSI19].

Software-implemented [SMGS22].

software/hardware [SCM+21].

SOI [CSZ+20, KCZ+17, MSZB19, SAW+20, SPDLP+22, WSK+20].

software-implemented [SMGS22].

Software-Hardware [uhMSI19].

Software-implemented [SMGS22].

software/hardware [SCM+21].

SOI [CSZ+20, KCZ+17, MSZB19, SAW+20, SPDLP+22, WSK+20].

SonicBOOM [LHK23].

sound [SGCGCR17].

sounds [FvHC+23].

Source [ABC+20, APHD21b, Ano21, Ano23c, CTN18, CKP19, DXT+18, FTRH20, Gen24, GCCR21, HWC23, HLHK19, HHB+19, ILG19, LNA21, MMD+22b, MMD+22c, MFM+19, PFD21, PCW+22, PCO+23, PCA+24, PGW+20, SAF+23, SSR+18, WW21, WSG+21, APHD22, DAK+21, GYV+23, HTGD21, SNM22, SCL+21, TZPL21, VOK+22].

Space [And20, BSZ+21, BSZ+24, CDP+22, FDMM22, LHK23, RAPK23, SVM+23, SLZ+23, SMDM23, SLBJ23, WLM+21, WMA+21, WMR+22].

SpaceFibre [Suw21b].

Spaceflight [MSP23].

Sparq [DFA+23].

Sparse [WBBH+18, WBH+19].

SPEC [SSB22, TZS+21].

Specific [GGAARG+21, HMJ22, OBSB23, WT19, XHY+20, YYP+22, ZXXH22, DL17, HP18, LPB+21, Pat18].

Specification [CTSG22, HZS+19].

Specifications [LPZ19].

SpecTerminator [JHQ23].

Spectral [WBH+18, WBH+19].

Spectre [LHD+22].

Spectrophotometer [SLB+22].

Speculative [GRD22, GCCR21, GCR+23, JHQ23, VKG22].

speeh [DZZZ23].

Speed [BSSW21, HBSE22, KZH22, LWD20, NDZ+21, RLL+21, ZNF21].

Speed-Up [NDZ+21, ZNF21].

speedAI240 [SB23].

Speeding [LMP23, MGZ+23].

Spike [Hor21b].

sprung [Gen24].

SQRT [LGB17].

Square [HSE+24, TS20, WTS21].

SRAM [FvHC+23, RTRM19, SG23, VKG22, WW19, WW21, WWB23, ZHL+23, ZCNA17, dOTB+20].

SRAM-Based [RTRM19, WWB23, ZCNA17, dOTB+20, WW19, WW21].

Stage [CXL+20a, GZ22, KFK+19, PMKZ22, CSM22, YTL+23, ZZZ21].

Standard [LHK23, BF23].

standards [HC20].

Started [Hor20].

States [IEE23].

Static [LWLA23, RHS+22, steady [SCR+17].

Stealthy [PGTD23].

Step [NXTS23].

Stimulus [AMG+20].

Storage [GCL+23, Lu21b].

Strategies [PPYB23].

Strategy [IJJ23].

Stream [SZHB21].

Structurally [MKB+23].

Structurally-Pruned [MKB+23].

Structure [LPL22].

Structured [ZCH+23].

STT [ZBA+20].

STT-MRAM [ZBA+20].

studies [GYW+23].

Study [APSH+22, BHD23, CPWG23, DCM23, HGLD19, HGJD20, PKC+20, PGTD23, RHGD21, SS22, SSR+18, WMGD23, YLC21, SCM+21].

Sub [ADF+23, DFA+23, UD18].

Sub-Byte [ADF+23, DFA+23].

Submicrosecond [KCR22].

Submicrosecond [KCR22].

Suitability [KRA22].

Suitable [SUM23].

Suite [CPK19, GYW+23].

Superscalar [Ant22, GMV20].

Superscaler [DDM20].

Support [BPM+21, CSZ+20, CSZ+20, Cil21, KKK+17a, KKK+17b, KKK+17c, KKG22, MSD+22, PCO+23, WW23, ZG22].

Supported [LCN+23].

Supporting [DRN+23, MZZG22, KK21].

Supports
Switched [ZLP+16, LZW+15, MSFK21, ZLP+15].
Switched-Capacitor [ZLP+16, LZW+15, MSFK21, ZLP+15].
Switching [HGT20, ZLP].
SWUpdate [SCL+21].
SX [GMFC23, VMFL23].
Symposium [BHD23, TZG+23].
Synchronization [DAK+19].
Synthesis [GRD22, MMGC20, NSM+22].
Synthesizable [LCG+23, RZAH+19].
System [KSSMRB23, MSZB19].
System-Aware [SMB17].
System-Level [GMS+23, HGP20].
System-on-chip [DGA+17, CTK21].
CRP+23, DNN23, HYWP+19, HZS+19, KSSMRB23, KCHYM19, MSDM23, NKHi+21, RSR20, SLK+21, SML+22, SMDM23, ZNF21].
Systematic [HGD+19].
Threshold [GST+17, UD20, WCL23].
Throughput [DN23, VKG22].
Thwarting [BR24].
Tiered [DXT+18].
Tightly [CMV21].
Tightly-Coupled [GKB+22, CMV21].
Tightly-integrated [ZLP+15].
TIGRA [GTC21].
Tile [KG22a, KG22b].
Tiles [GCL+23].
Time [HWSM23, IZG22, KFGH+23, LHD+21].

[KGC+24]. Suppression [TBK+19].
surveillance [SGCGR17]. Survey [AAB+23, BR24, CLV23, ET21, IZG22, MSD+22, NSG20, DAK+21, Lu21a].
Sustainable [SAB22]. SVE [CRRS21]. SW [KSSMRB23, MSZB19]. SweRV [ANO23f].

T [CSM+21, LWD20, MMR+17]. Table [AS22]. TAIGA [MS17]. TailoredCore [GGK+21]. Target [KHS+23].
Techniques [CC+18a, dOK23]. Technology [CCC+22, DCC+23, GG18, ZB19]. TEE [SNOT20, YXH20]. Telemetry [CDF+20].
Temperature [TLB+22]. Tensor [DEA+21, DTE+22]. Teraflops/W [SB23].
Tesla [TSC+23]. Test [AAA+21, CKK+18, DKT+23, MKM20, TH22, TDD21].
their [WSG+21]. Theoretic [KA20, NDZ+21]. Thermal [OBP+24, VMO+22, VMO+23]. Things [DGA+17, SCR+17]. Thousand [DEA+21].
threaded [OCC+17]. Threading [BCM+21]. Three [ZZZ21]. Three-stage [ZZZ21].
Threshold [GST+17, UD20, WCL23]. Throughput [DN23, VKG22]. Thwarting [BR24].
Tiered [DXT+18]. Tightly [CMV21]. GKB+22, GTC21, ZLP+15].
Tightly-Coupled [GKB+22, CMV21]. tightly-integrated [ZLP+15]. TIGRA [GTC21]. Tile [KG22a, KG22b].
Tiles [KG22a]. Tiles [GCL+23].
Time [HWSM23, IZG22, KFGH+23, LHD+21].
LHC+21, MSDM23, NNPG23, PLH+22, WBH+18, WBH+19, ZHX+22, ZHLR22, APSH+22, BB21, HCL+21, LCF23].

Time-Memory [ZHLR22].

Time-Triggered [NNPG23], **Timer** [EHK20]. **Timescales** [KZG+17]. **Timing** [BS21, BWF22, GCCR21, GCR+23, LHT+21, NNPG23, UD20, VKG22, WSG+21]. **Timing-Instructions** [NNPG23]. **Tiny** [GVT+22, NBT22, BPM+21]. **Tiny-FPU** [BPM+21]. **Tissue** [AMG+20]. **TL** [MKVD23]. **TL-Verilog** [MKVD23]. **TLB** [PKN+20]. **TMR** [WW21, WWB23].

Tolerance [DKA+22, RMP+19, SMGS22, JS23].

Tolerant [BCM+21, SLZ+20, SML+22, SMMD23, SR22, SUAR23, VSD22, WW21, dOK23]. **Tool** [AMRCP21, FFD21, RBK18, MG22, SCA+22]. **Toolchain** [TZS+21]. **Tools** [DRN+23, MSJ19]. **Toolset** [HMJ22]. **TOPS/W** [NRB+23]. **TOPS/W** [NRB+23].

Torus [KG17]. **Tournament** [CSM22].

TPM [BCZ21b, SJB21]. **TPU** [Pat18].

Trace [HWG22, KGBH22, KKEG22, ZPRD22].

tracing [BP+23]. **Tracking** [PDLC18, SS19, WGZ+23]. **Trade** [MTJ+22]. **Trade-off** [RCC+20, ZHLR22]. **Trade-offs** [RRC+20, ZHLR22]. **traffic** [SJJY22]. **Training** [BPF+22, GPP+22, GTP+22, LCN+23].

Transactions [SLMS21]. **Transceivers** [KKH+20]. **Transducers** [FRes23].

Transform [KA20, NDZ+21]. **Transformer** [JHLD21]. **Transformers** [MKB+23].

Transient [YL21]. **transistor** [AFP+17]. **Transition** [TZG+23, TDH+23].

translation [TOY22]. **Translator** [RSS+21]. **Transmission** [Suv21b].

Transparency [LHK23]. **Transport** [Suv21a]. **Transprecision** [MSZB19].

TrichCheck [TML+17a, TML+17b, TML+17c].

Triggered [NNPG23]. **Trigonometric** [GZC22, KNH+21]. **Triple** [HJ23].

Triple-Level [HJ23]. **Trisection** [TML+17a, TML+17b, TML+17c]. **Trojan** [DCM23, PGTD23]. **Trojan-D2** [PGTD23].

Trojan-ing [DCM23]. **Trojans** [ARH+22, DCM23, PGTD23]. **True** [ZNF21]. **Trust** [SJS21]. **Trusted** [AVS+22, BCZ21a, HDT+20, MCL+21, SNOT21, USQ+22]. **TrustZone** [SNOT21].

try [Chi23]. **TS** [SNOT21]. **TS-Perf** [SNOT21]. **tuning** [YCL+23]. **Tutorial** [ANO22, G18]. **TVM** [CLC+20, YCL+23]. **Type** [BDdD19a, KK23]. **Typed** [KKK+17a, KKK+17b, KKK+17c].

UAV [KMB22]. **UEFI** [Zha22]. **UK** [BDdD17]. **Ultra** [ABP22, ERGK21, GRC+19, KMB22, PCL+23, TBR+22, VTS+23, ZSB20, ZWL+20, CPL+24, SCR+17].

Ultra-efficient [ZSB20]. **Ultra-Low** [ABP22, KMB22, PCL+23, CPL+24].

Ultra-Low-Power [TBR+22, ERGK21, VTS+23, ZWL+20, SCR+17].

Ultraefficient [ZSB20]. **Ultralow** [PPYB23].

Ultralow-Power [PPYB23].

UltrScale [dOK23]. **SGFB20**. **Undergraduates** [MSJ19]. **Unified** [HSE+24]. **Uniform** [HSS+19]. **Unifying** [EHK20].

Unit [AVS+22, AvAg21, BPF+22, CRRS22, CTSG22, GKB+22, ISM+23, LYZH20, MSZB19, MC22, MSSS23, MAS18, MST+23, FS22b, QCL+23, SMB17, ZHX+22, ZSM21, EHN23]. **United** [IEE23]. **Universal** [LSS22]. **Unprivileged** [WA21]. **Unprotected** [DG22, FvHC+23]. **Unum** [BDdD19a, BDdD19b]. **Updates** [SCL+21].

Upsets [BWZ+21]. **Usage** [LVR+20]. **Use** [MDPM24, Szk21]. **user** [CLM+22].

user-level [CLM+22]. **Using** [BDdD19a, DAKK19, FSIU21, GJC23, HCP+21, IPO+18, JZWL23, KKH+20, KGBH22, KFGH+23, KK23, LYL23],
ZJX20, ZHL+23, ZBA+20, ZLP+15, ZCNA16, ZLP+16, ZCNA17, ZG22, ZPL+23, ZNF21, ZZL+22, ZC23, dOTB+20, dOK23.

Vitamin-V [AAC+23]. Vitruvius [MPU+23]. VLSI [LLS22, YTL+23].

v MCU [MST+23]. Vmin [ZCNA16].

Volatile [MTT21]. Voltage [AMG+20, CCA+18a, CCA+18b, WCL23].

Volume [WA21, WAH21]. Vortex [ETR+20, TEYK21, TYEK21].

VOSysmonitorRv [CIPR21]. VP [APHD21b]. VPQC [XHY+20]. vs [LGB17].

VSDflow [GG18]. VTF [JHLD21]. Vulnerability [KNK+21, GW+23].

Vulnerable [AV+21, HVS+21]. VVT [AAC+23].

WebRISC-V [MG22]. weight [MMR+17, RSM+23]. Western [Ano23f].

Wi-Fi [WRD+17]. Will [Gre20]. Win [Gen24]. Winograd [WZW+21].

Winograd-Based [WZW+21]. wins [SCR+17]. Wireless [ABP22, KIS20].

Without [MMA+18, Bis21]. Word [QLC20]. Work [HWG22, Liu21].

x264 [WWW23]. x86 [LF22]. XACT [PPS+19, PH18]. xBGAS [WLW+21].

Years [Pat18]. YOLO [QLH21, ZZW+19].
Yun [PCO+23].

References

Abella:2021:SR

Anders:2023:SRD

Abella:2020:ARV
Jaume Abella, Calvin Bulla, Guillem Cabo, Francisco J. Cazorla, Adrián Cristal, Max Doblas, Roger Figueras, Alberto González, Carles Hernández, César Hernández.

MohammadHossein AskariHemmat, Olexa Bilaniuk, Sean Wagner, Yvon Savaria, and Jean-Pierre David. RISC-V barrel processor for deep neural network accel-
AskariHemmat:2023:QIR

Amarnath:2017:CNT

Andri:2020:ERV

Austin:2021:MIR

Todd Austin, Austin Harris, Tarunesh Verma, Shijia Wei, Alex Kisil, Misiker Aga, Valeria Bertacco, Baris Kasikci, and Mohit Tiwari. Morpheus II: a RISC-V security extension for protecting vulnerable software and hardware. In

Anonymous:2023:VVD

Antonov:2022:SOR

Asanovic:2014:ISS

Ahmadi-Pour:2021:CRV

Ahmadi-Pour:2021:RVA

Ahmadi-Pour:2022:MFA

Ahmadi-Pour:2022:TMS

Annink:2022:PSE

Adit:2022:PLT

Adel:2021:IFV

Auer:2019:SAR

Lukas Auer, Christian Sku-

Ali:2021:VPU

Alder:2022:FPU

AskariHemmat:2023:BAP

Azad:2023:RRV

Barriga:2020:RVP

REFERENCES

Bellocchi:2021:RVB

Barbirotta:2021:FTS

Boubakri:2021:OPT

Boubakri:2021:TFT

Bocco:2019:DPN

Bocco:2019:SSM

REFERENCES

REFERENCES

[Bis21] Arnab Kumar Biswas. Cryptographic software IP protection without compromising performance or timing side-channel leak-

[BKdLSGL23] Eric Bavier, Nicholas Knight, Hugues de Lassus Saint-Geniès, and Eric Love. Vectorized nonlinear functions with the RISC-V vector extension. In IEEE [IEE23], pages 127–130. LCCN ???.

[Bertaccini:2022:MNE] Luca Bertaccini, Gianna Paulin, Tim Fischer, Ste-

REFERENCES

[Boseler:2023:EPP] Marco Bertuletti, Yichao

CAL23

Chiu:2018:CR

Chiu:2018:ORV

Calicchia:2019:DSP

Cabo:2022:DRV

Guillem Cabo, Gerard Candón, Xavier Carril, Max Doblas, Marc Domínguez, Alberto González, César Hernández, Víctor Jiménez, Vatistas Kostalampros, Rubén Langarita, Neil Leyva, Guillem López-Paradís, Jonathan Mendoza, Francesco

[Cannizzaro:2023:ERV] Michael J. Cannizzaro, Evan W. Gretok, and Alan D. George. RISC-

[Cho19]

[Chi23]

[Chi24]

[Cho18]

[Cil21]

[Cilardo:2021:MES]

REFERENCES

Chupilko:2018:TPG

\begin{quote}
\end{quote}

Chupilko:2019:OSV

\begin{quote}
\end{quote}

Charaf:2021:RCE

\begin{quote}
\end{quote}

Chen:2022:CRV

\begin{quote}
\end{quote}

Chen:2023:ECR

\begin{quote}
\end{quote}

Chen:2020:EOT

\begin{quote}
Yi-Ru Chen, Hui-Hsin Liao, Chia-Hsuan Chang, Che-Chia Lin, Chao-Lin Lee,
\end{quote}

Chen:2022:DUL

Chen:2021:SEE

Ciocirlan:2021:AEPb

Ciocirlan:2021:AEPa

Cui:2023:RVI

Cui:2021:AEP

[CMV21] Jairo Walber Abdala Castro and Aurelio Morales-Villanueva. Exploring dynamic partial reconfiguration in a tightly-coupled coprocessor attached to a RISC-V soft-processor on

Cieslak:2019:RMI

Conti:2023:MHR

Choi:2024:DNA

Chen:2023:PMZ

Chatzopoulos:2023:EEO

Odysseas Chatzopoulos, George Papadimitriou, Wing Shek Wong, and Dimitris Gizopoulos. Energy efficiency

Castells-Rufas:2023:EEP

Conti:2023:WAI

Cococcioni:2022:LPP

REFERENCES

Cheikh:2021:KDV

Choudhury:2022:ORV

Cuomo:2023:TRV

Cai:2018:IDR

Cosimi:2022:AHS

Francesco Cosimi, Fabrizio Tronci, Sergio Saponara,
and Paolo Gai. Analysis, hardware specification and
design of a programmable performance monitoring
unit (PPMU) for RISC-V ECU. In IEEE, editor,
2022 IEEE International Conference on Smart Com-
puting (SMARTCOMP), pages 213–218. IEEE Com-
puter Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 2022.

Chander:2022:SRV

[V. Naveen Chander and Kuruvilla Varghese. A soft
RISC-V vector processor for Edge-AI. In IEEE, edi-
tor, 2022 35th International Conference on VLSI De-
sign and 2022 21st International Conference on Em-
bedded Systems (VLSID), pages 263–268. IEEE Com-
puter Society Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 2022.

Chen:2021:DVR

Jiarong Chen, Zixin Wang, Yingfeng Ding, Haopeng
Feng, and Dihu Chen. Design and verification of
RISC-V CPU based on HLS and UVM. In IEEE, editor,
2021 IEEE International Conference on Computer
Science, Electronic Information Engineering and In-
telligent Control Technol-
ogy (CEI), pages 659–664.
IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring,
MD 20910, USA, 2021.

Chen:2024:RV

Yuxing Chen, Xinrui Wang,
Suwen Song, Lang Feng,
and Zhongfeng Wang. RISC-
V custom instructions of el-
ementary functions for IoT
endpoint devices. IEEE
Transactions on Computers,
73(2):523–535, February
2024. CODEN IT-
COB4. ISSN 0018-9340
(print), 1557-9956 (elec-
tronic).

Chen:2020:XCM

Chen Chen, Xiaoyan Xi-
ang, Chang Liu, Yunhai
Shang, Ren Guo, Dongqi
Liu, Yimin Lu, Ziyi Hao,
Jiahui Luo, Zhijian Chen,
Chunjian Li, Yu Pu,
Jianyi Meng, Xiaolang Yan,
Yuan Xie, and Xiaoning
Qi. Xuantie-910: a com-
mercial multi-core 12-stage
pipeline out-of-order 64-bit
high performance RISC-V
processor with vector exten-
sion: Industrial product. In
IEEE, editor, 2020 ACM/
IEEE 47th Annual Interna-
tional Symposium on Com-
puter Architecture (ISCA),
pages 52–64. IEEE Com-
puter Society Press, 1109
Spring Street, Suite 300,

Nguyen Dao, Andrew Attwood, Bea Healy, and Dirk Koch. FlexBex: a RISC-V with a reconfigurable instruction extension. In IEEE, editor, 2020 International Conference on

Dave:2021:CLA

Doblas:2023:SAS

Delshadtehrani:2021:SSP

Ducasse:2023:JCS
Quentin Ducasse, Pascal Cotret, and Loïc Lagadec. JIT compiler security through low-cost RISC-V extension. In IEEE, editor, 2023 IEEE Inter-
REFERENCES

national Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 125–128. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2023.

Deb:2023:RVS

Suman Deb, Anupam Chattopadhyay, and Avi Mendelson. A RISC-V SoC with hardware trojans: Case study on trojan-ing the on-chip protocol conversion. In IEEE, editor, 2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2023.

Desalphine:2020:NMV

Ditzel:2021:AMR

Delshadtehrani:2018:NPM

REFERENCES

17(1):92–95, January/June 2018. CODEN ????. ISSN 1556-6056 (print), 1556-6064 (electronic).

Dupuis:2023:SCR

De:2022:HSU

Duran:2017:SCP

DeMulder:2019:IPR

Dao:2021:CPA

[DHL+21] Ba-Anh Dao, Trong-Thuc Hoang, Anh-Tien Le, Akira Tsukamoto, Kuniyasu Suzuki, and Cong-Kha Pham. Correlation power analysis attack resisted cryptographic

Christian Dietrich and Daniel Lohmann. OSEK-V: application-specific RTOS instantiation in hardware.
REFERENCES

Dow:2021:SHS

Doran:2020:SFB

Dao:2023:HTC

deOliveira:2023:EFT

Dang:2024:RAO

Tuan-Kiet Dang, Khai-Duy Nguyen, Binh Kieu-
deOliveira:2020:ESC

Dharsni:2022:OHF

Dennis:2017:SCR

Duran:2016:BR

Domingos:2023:SR

[EAM+22] Wolfgang Ecker, Peer Adelt, Wolfgang Mueller, Reinhold Heckmann, Milos Krstic, Vladimir Herdt, Rolf Drechsler, Gerhard Angst, Ralf

Elkhatib:2021:ARV

Elmohr:2018:RF

Eni:2022:EHB

Eckert:2020:UTI

Emil:2023:DEA

Demyana Emil, Mohammed

Elkhatib:2022:ARV

Elmohr:2020:EFI

Eggimann:2019:RVB

Eliahu:2021:MME

Elsadek:2021:RVR

REFERENCES

Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2021.

[Elsabbagh:2020:VOC]

[Funck:2023:IIL]

[Furano:2022:ERL]
Gianluca Furano, Stefano Di Mascio, Alessandra Menicucci, and Claudio Monteleone. A European roadmap to leverage RISC-V in space applications. In IEEE, editor, 2022 IEEE Aerospace Conference (AERO), pages 1–

[Fernandes:2023:EAS]

[Faller:2023:CBA]

[Felzmann:2020:RCA]
Isaías Felzmann, João Fabréicio Filho, and Lucas Wanner. Risk-5: Controlled approximations for RISC-V. IEEE
REFERENCES

Fiolhais:2019:LEH

Farshchi:2019:IND

FernandesDosSantos:2022:EEN

Feng:2022:RRV
Lang Feng, Jiayi Huang,
Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2022.

[Flamand:2018:GRV]

[Fritzmann:2019:TRS]

[Forno:2021:CEN]

[Faller:2021:TSB]

[Fritzmam:2020:ERV]
REFERENCES

Shanggong Feng, Junning Wu, Shengang Zhou, and Renwei Li. The implementation of LeNet-5 with NVDLA on RISC-V SoC. In IEEE, editor, 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), pages 39–42. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2019.

Johannes Geier, Lukas Auer, Daniel Mueller-Gritschneder, Uzair Sharif, and Ulf Schlichtmann. CompaSeC: a compiler-assisted security countermeasure to address instruction skip fault attacks on RISC-V. In IEEE, edi-
REFERENCES

Gholizadehazari:2021:FIR

Gaura:2021:DIL

Gruin:2021:SET

Gao:2023:DGC
Fei Gao, Ting-Jung Chang, Ang Li, Marcelo Orenes-Vera, Davide Giri, Paul J. Jackson, August Ning, Georgios Tziantzioulis, Joseph Zuckerman, Jinzheng Tu, Kaifeng Xu, Grigory Chirko, Gabriele Tombesi, Jonathan Balkind, Margaret Martonosi, Luca Carloni, and David Wentzloff. DECADES: a 67mm2, 1.46TOPS, 55 giga cache-coherent 64-bit RISC-V instructions per second, heterogeneous manycore SoC with 109 tiles including accelerators, intelligent storage, and eFPGA in 12nm FinFET. In IEEE, editor, 2023 IEEE Custom Integrated Circuits Conference (CICC), pages 1–2. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver
REFERENCES

[GLS21] B. Mahesh Goud, Dilip Lilaramani, and Mahendra Swain. Generation and authentication of digital certificates using Ethereum based decentralized mecha-

[Yimin Gao, Sergiu Mosanu, Mohammad Nazmus Sakib,

Gokulan:2020:DBD

Gordon:2022:PKL

Garofalo:2019:PNC

Gray:2016:GPM

Garcia-Ramirez:2020:SRV

Greengard:2020:NWR

Gorius:2022:DER

Gur:2018:FIB

Gautschi:2017:NTR

Garofalo:2020:XAQ

Garofalo:2021:XEEa

Garofalo:2021:XEEb

Green:2021:TTI

Gousselot:2023:LCA

Théophile Gousselot, Olivier Thomas, Jean-Max Dutertre, Olivier Potin, and Jean-Baptiste Rigaud. Lightweight countermeasures against...

Garofalo:2022:DHRb

Gracia:2022:PTT

Guo:2023:TMS

Gao:2022:RDR

Gao:2022:TFI

Hadayeghparast:2022:HSP

Harb:2020:FPC
REFERENCES

Hung:2021:EEP

Harris:2021:RUR

Hoang:2020:CAT

Trong-Thuc Hoang, Christian Duran, Akira Tsukamoto, Kuniyasu Suzuki, and Cong-Kha Pham. Cryptographic accelerators for trusted execution environment in RISC-V processors. In IEEE, editor, 2020 IEEE International Symposium on Circuits and Sys-
REFERENCES

Vladimir Herdt, Daniel Große, Hoang M. Le, and

REFERENCES

[HMTL21] Van-Ninh Ho, Khai-Minh Ma, Hong-Hai Thai, and Duc-Hung Le. Implement-
REFERENCES

88

REFERENCES

Silver Spring, MD 20910, USA, 2021.

He:2023:AHS

Haribabu:2023:RVC

He:2023:DIR

Herdt:2021:MBC

Hoyer:2022:DAF

REFERENCES

Applications (MeMeA), pages 1–6. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2022.

REFERENCES

Jahnke:2023:PEP

Jang:2021:DMP

Jiao:2021:RVR

Jin:2023:SBS

Johns:2020:MRV

Jimenez:2023:FVR

Victor Jimenez, Mario Rodriguez, Marc Dominguez, Josep Sans, Ivan Diaz, Luca Valente, Vito Luca Guglielmi, Josue V. Quiroga, R. Ignacio Genoves, Nehir Sonmez, Oscar Palomar, and Miquel Moreto. Functional verification of

Joannou:2023:RTR

Jose:2023:SME

Jiang:2023:FAU

Karabulut:2020:RRV

Jain:2020:IEB

Koppelmann:2019:RVE

Kamaleldin:2019:MMS

Koenig:2017:HAC

Kressel:2023:EIO

Kumar:2019:ISR

159. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2022.

REPRESENTATIONS

Kanamori:2021:ROR

Kurian:2023:PER

Kim:2016:SCD

Kwon:2022:OIS

Kukner:2022:RVP

Kim:2020:FCC

[Jungwoo Kim, Jae Min

Kim:2020:RIL

Kanase:2021:ADB

Kuhne:2022:POF

Kovacevic:2022:RVV

Kazemi:2021:DVA

Knodtel:2022:SID

[KRR22] Johannes Knödtel, Sebastian Rachuij, and Marc Reichenbach. Suitability

Kim:2022:OIP

K:2021:CAD

K:2021:CAD

Kra:2023:HLP

Karmakar:2023:HSI

Koca:2021:MLP

Kuang:2022:HSN

Laurent:2019:FIH

Lai:2021:IBR

Li:2023:EAA

Ang Li, Ting-Jung Chang, Fei Gao, Tuan Ta, Georgios Tziantzioulis, Yanghui Ou, Moyang Wang, Jizheng Tu, Kaifeng Xu, Paul Jackson, August Ning, Grigory Chirkov, Marcelo Orenes-Vera, Shady Agwa, Xiaoyu Yan, Eric Tang, Jonathan Balkind, Christopher Battten, and David Wentzla. CIFER: a cache-coherent 12-nm 16-mm² SoC with four 64-bit RISC-V application cores, 18 32-bit RISC-V compute cores, and a 1541 LUT6/mm² synthesizable eFPGA. *IEEE Solid-State Circuits Letters*, 6:229–232, 2023. ISSN 2573-9603.

REFERENCES

Spring, MD 20910, USA, 2017.

Li:2021:LPA

Liu:2021:WPR

Lee:2022:PQC

Lu:2021:D

Loh:2022:VDC

Siu Hong Loh, You Hong Liew, and Jia Jia Sim. VLSI design course with verification of RISC-V design using universal verification.

REFERENCES

Silver Spring, MD 20910, USA, 2021.

Liu:2022:RVS

Liu:2019:RGH

Lupori:2018:THP

Lamberti:2021:LPL

Leplus:2022:IRD

Lu:2021:SRV
T. Lu. A survey on RISC-V security: Hardware and architecture. arXiv.org,
Lu:2021:ESD

Lima:2020:ORV

Lee:2014:DPG

REFERENCES

??(??):30, July 9, 2021.

Lu:2022:DPP

Lopez-Villellas:2023:RVG
Lee:2016:AAB

Leidel:2018:GRV

Li:2020:IMS

Liang:2023:IHI

REFERENCES

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2018.

Melo:2016:OBP

Maisto:2022:PVU

Mumcu:2022:PEL

Ma:2021:CR

Ma:2022:DSB

Mallasen:2024:BPE

David Mallasén, Alberto A. Del Barrio, and Manuel

Morales:2019:LAD

Mashimo:2019:OSF

Mariotti:2022:WVB

Moallemi:2023:SSI

Min:2023:EER

Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2018.

Mallasen:2022:CCR

Mallasen:2022:POSa

Mallasen:2022:POSb

Mantovani:2020:HBR

Menon:2017:SR

Martins:2020:BMLa

J. Martins and S. Pinto.

Martins:2020:BMLb

Marshall:2021:LIC

Minervini:2023:VAE

Markov:2022:IRV

REFERENCES

Malone:2023:RVP

Merchant:2021:AFB

Malathi:2023:DRV

Mendat:2023:RVN

Mac:2019:FSB

Martinoli:2022:RIC

Mao:2021:CEB

Moratelli:2022:MRV

Matsuno:2021:RWE

REFERENCES

Meng:2022:DBH

Ng:2022:RIP

Nicholas:2020:SAS

Nguyen:2022:TNN

[Ngo-Doan Nguyen, Duy-Hieu Bui, and Xuan-Tu Tran. Tiny neuron network system based on RISC-V processor: a decentralized approach for IoT applications. In IEEE, editor, 2022 International Conference on Advanced Technolo-

Nannipieri:2021:RVP

Nguyen-Hoang:2022:IBR

[Duc-Thinh Nguyen-Hoang, Khaï-Minh Ma, Duy-Linh Le, Hong-Hai Thai, Tran-Bao-Thuong Cao, and Duc-Hung Le. Implementa-

Nguyen:2021:CBT

Nikiema:2023:DLC

Nanjundaswamy:2023:RVT

Nikiema:2023:TDR

Felipe F. Nascimento, Rodrigo N. Wuerdig, André F. Ponchet, Bruno Sanches, Denis S. Loubach, Roberto D’Amore, Marcus H. Victor Junior, Walter S. Oliveira, Vitor O. Kuribara, and Luiz C. Moreira. RISC-V SoC physical implementation in 180 nm CMOS
 REFERENCES

Ottaviano:2024:CRV

Ottaviano:2023:CLL

Olivieri:2017:IOP

Oleksiak:2019:DVE

Ottavi:2020:MPR

Gianmarco Ottavi, Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Luca Benini, and Da-

Silver Spring, MD 20910, USA, 2018.

Perotti:2024:AES

Park:2023:DUL

Perotti:2023:YOS

Perotti:2022:NA

Palmiero:2018:DID

REFERENCES

Jina Park, Kyuseung Han, Eunjin Choi, Sukho Lee,
REFERENCES

Papaphilippou:2021:SRV

Papaphilippou:2021:DCS

Papadopoulos:2020:CTH

Nikolaos Charalampos Papadopoulos, Vasileios Karakostas, Konstantinos Nikas, Nectarios Koziris, and Dionisio Park:2022:BIS

REFERENCES

<table>
<thead>
<tr>
<th>Patsidis:2020:RVS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prabhakaran:2022:DAM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Payvar:2019:IER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Philip:2023:ICE</th>
</tr>
</thead>
</table>
REFERENCES

Poli:2021:DIR

Patterson:2017:RVR

Patterson:2017:SIC

Qi:2023:DPF

Qui:2020:DIB

Qin:2021:CHA

[Xinyu Qin, Xudong Liu, and Jun Han. A CNN hardware accelerator designed for YOLO algorithm based on RISC-V SoC. In IEEE, editor, 2021 IEEE 14th International Conference on...
REFERENCES

ASIC (ASICON), pages 1–4. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2021.

[RCS19] Annachiara Ruospo, Riccardo Cantoro, Ernesto Sanzchez, Pasquale Davide Schiavone, Angelo Garo-

Frank Riese, Vladimir Herdt, Daniel Große, and Rolf Drechsler. Metamorphic testing for processor verification: a RISC-V case study at the instruction level. In IEEE, editor, 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2021.

REFERENCES

Rogan:2023:RVI

Sam Rogan and Yoshihito Kondo. RISC-V is inevitable. In IEEE, editor, 2023 International Conference on IC Design and Technology (ICICDT), page xxxvi. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2023.

Rao:2023:GBC

Reichenbach:2021:RVR

Richter:2021:RVB

Razilov:2022:CSP

Rodrigues:2019:THF

Cristiano Rodrigues, Ivo Marques, Sandro Pinto, Tiago Gomes, and Adriano Tavares. Towards a heterogeneous fault-tolerance architecture based on Arm and RISC-V processors. In

Rajabalipanah:2021:ARV

Raza:2023:ODI

Roodsari:2023:LCL

Ramirez:2020:FDR

RK:2021:VBP

REFERENCES

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2021.

Rogers:2019:SLB [RSRT19]

Riedel:2021:BFL [RSS+21]

Ramos:2019:APM [RTRM19]

Rovinski:2019:GGR [RZAH+19a]

Rovinski:2019:ECN [RZAH+19b]
Austin Rovinski, Chun Zhao, Khalid Al-Hawaj, Paul Gao, Shaolin Xie, Christopher Torng, Scott Davidson, Aporva Amarnath, Luis Vega, Bandhav Veluri, Anuj Rao, Tutu Ajayi, Julian Puscar, Steve Dai, Ritchie Zhao, Dustin Richmond, Zhiru Zhang, Ian Galton, Christopher Batten, Michael B. Taylor,

REFERENCES

[SCR+17] Pasquale Davide Schiavone, Francesco Conti, Davide

Sanchez-Flores:2022:RCA

1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2022.

Singh:2020:DIB

Sadrabadi:2023:ESE

Salazar-Garcia:2017:RVB

S:2023:DMC

Stapf:2021:HWT

Emmanuel Stapf, Patrick Jauernig, Ferdinand Brasser, and Ahmad-Reza Sadeghi. In hardware we trust? From TPM to enclave computing on RISC-V. In IEEE, editor, 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integra-
REFERENCES

Selg:2023:MBO

Safrai:2023:HHP

Sharma:2020:CRV

Sharma:2023:CQE

Song:2022:HER

REFERENCES

Parangat Sud, Shekoufeh Neisarian, and Elif Bilge

Saarinen:2022:DRV

Suzaki:2020:LIP

Suzaki:2021:TPG

Soria-Pardos:2022:SGO

Shukla:2022:LOR

Satyam Shukla and Kailash Chandra Ray. A low-overhead reconfigurable RISC-V quad-core processor architecture

[Serrano:2021:LPL] Ronaldo Serrano, Marco

REFERENCES

Syafalni:2022:RVL

Schiavone:2018:OSV

Salomo:2022:A

Su:2020:RRV

Su:2021:FAD

Charlie Hong-Men Su. Flexible acceleration of data processing with RISC-V DSP,

Shukla:2023:EFT

Saif:2023:FIE

Suvorova:2021:ADR

Suvorova:2021:RVB

Sa:2023:CRV

Schmidt:2021:ECR

Schmidt:2022:ECG

Shu:2023:HDS

Schuiki:2021:SSR

Szkandera:2021:BYO

Tulemez:2022:ICI

Şafak Tülemez and Deniz Turgay Altilar. Implementation of code integrity check module for RISC-V architecture with AES. In IEEE, editor,
REFERENCES

REFERENCES

Tine:2021:VERa

Tehrani:2020:RVE

Tehrani:2021:RPP

Tiwari:2019:PPE

Tiwari:2021:PCP

Tiwari:2023:IDI
Ankita Tiwari, Prithwijit Guha, Gaurav Trivedi, Nitesh Gupta, Navneeth Jayaraj, and Jan Pidanic. IndiRA: Design and implementation of a pipelined RISC-V processor. In IEEE, editor, 2023 33rd International...
REFERENCES

Conference Radioelektronika (RADIOELEKTRONIKA), pages 1–6. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2023.

[Tan:2022:SPS]

[Tsai:2022:ETI]

Chun-Jen Tsai and Yi-De Lee. Embedded TCP/IP controller for a RISC-V SoC. In IEEE, editor, 2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2022.

[Takes:2022:NSP]

[Taka:2022:IPR]

[Tan:2016:NVC]

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael Norrish. A new verified compiler backend for CakeML. ACM SIGPLAN Notices, 51(9):60–73, September 2016. CODEN SINODQ. ISSN 0362-1340
REFERENCES

Trippel:2017:TMMa

Trippel:2017:TMMb
Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. TriCheck: Memory model verification at the trisection of software, hardware, and ISA. *Operating Systems Review*, 51(2):119–133, June 2017. CODEN OSRED5. ISSN 0163-5980 (print), 1943-586X (electronic).

Trippel:2017:TMMC
Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. TriCheck: Memory model verification at the trisection of software, hardware, and ISA. *ACM SIGPLAN Notices*, 52(4):119–133, April 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Tagliavini:2019:DES

Tsuchiya:2022:ACT

Tada:2020:IGS
Jubee Tada and Keiichi Sato. An implementation

Torres-Sanchez:2020:DAI

Tine:2022:AGR

Talpes:2023:MDT

Takayama:2022:IPM

Tabanelli:2022:ORF

[TTB22] Enrico Tabanelli, Giuseppe

[TZ22]

Tran:2021:RVR

[TTDD21]

Tine:2021:VERb

[TZ+23]

Tang:2022:GGP

[TZPL21]

Tan:2021:POS

REFERENCES

[Vasudev:2022:ITR] Srikrishna Vasudev, Kartickraj K, and Anuj Grover. Up to 13.7% increase in throughput of RISC V SoC using timing speculative ra-

Vizcaino:2023:ALV

Venkateswarlu:2022:TPA

Venkateswarlu:2023:IDI

Vijaykumar:2022:MPO

REFERENCES

Computer Society Press,
1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2023.

Wu:2022:FIP

Waterman:2013:RVI

Wang:2023:RCA

Wang:2021:XGA

REFERENCES

[Wang:2022:DBO]

[Wessman:2021:RFR]

[Wang:2017:LWF]
Angie Wang, Brian Richards, Palmer Dabelt, Howard Mao, Stevo Bailey, Jaeduk Han, Eric Chang, James Dunn, Elad Alon, and Borivoje Nikolić. A 0.37mm2 LTE/Wi-Fi compatible, memory-based, runtime-reconfigurable 2n3m5k

[WMGD23]

[Wessman:2022:RCR]

REFERENCES

International Conference on IC Design and Technology (ICICDT), pages 1–4. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2019.

Wilson:2019:NRT

Wilson:2021:FIT

[Wang:2024:OCC]

[WWZL17]

[Wang:2023:LRV]

[Wang:2019:OOM]

REFERENCES

[Yan20] Dun-An Yang, Jing-Jia

Yong:2022:SLI

Yen:2023:FDR

Yilmaz:2021:DIB

Yasin Yilmaz, Yavuz Se-lim Tozlu, and Berna Örs. Design and implementation

You:2022:RVP

Yin:2020:HHP

Yildiz:2021:CAR

Yu:2022:CSI

Zaruba:2019:CAC

REFERENCES

CODEN IEVSE9. ISSN 1063-8210 (print), 1557-9999 (electronic).

[Zimmer:2016:RRC] Brian Zimmer, Pi-Feng Chiu, Borivoje Nikolić, and
REFERENCES

Zhang:2022:ABP

Zhang:2022:POR

Zhang:2018:DR

Zhou:2023:RVB

Zhang:2022:TMT

Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, and Jean-Max Dutertre. Extending a RISC-V core

Zgheib:2022:CVS

Zgheib:2023:CCI

Zhong:2023:RVB

Zaruba:2020:CRV

Zaruba:2021:MCR

Zhong:2020:RVS

Zhong:2021:HIR

Zekany:2021:TOP

Zhao:2023:NTF

Zhang:2019:CBB

Zhang:2020:ULP

[ZZQ21] Zhenhong Zheng, Xiangyu Zhu, and Hui Qian. Design and implementation of

