A Bibliography of Publications about the RISC-V Open Source Computer Architecture

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

09 August 2023
Version 1.10

Title word cross-reference

3 [ZBA+20].

000-core [DAKK19].

1 [DtEt22].

2-Petaflop [SB23], 2017 [BBdD17], 2019 [GD19, TBL19], 24th [BBdD17], 26th [TBL19].

30 [SB23], 30-Teraflops [SB23], 30-Teraflops/W [SB23], 32-Bit [MLPH23],
32/64 [MG22], 32/64-bit [MG22].

4096-Core [ZSB21].

511-Core [DXT+18].

64-bit [MG22].

ABI [AVS+22]. Abstraction [HZS+19].
Accelerating
[DtEt22, DAKK19, ERGK21, KKC+16]. Accelerator
[BDdD19b, DXT+18, KBBA17, PGW+20, RSRT19]. Achieving
[SZHB21]. Agile
[LWC+16, PGW+20, XYT+23]. ALU
[RTRM19]. Android [WWN23].
application [DL17]. application-specific
[DL17]. Applications [MPU+23].
Approach [LWC+16]. Architectural
[KKK+17a, KKK+17b, KKK+17c].
Architecture [FHL+22, PW17, ZSB21].
Architectures [DXT+18, ERGK21,

1
backend [TMK+16], bandwidth [ZZB+20].
Based [JHQ23, MLPH23, RTRM19].
RSRT19, ZZB+20. Binary [KGHRM23].
Bit [MLPH23, MG22]. BlackParrot
[PGW+20]. Blocking [JHQ23]. Blocks
[ZWB19]. Brew [Szk21]. Build [Szk21].
Building [LWC+16, ZWB19].

CakeML [TMK+16]. Can [Szk21].
Celerity [DXT+18]. channel [Bis21].
Channels [JHQ23]. Chip
[JJ+19]. Chiplet [Szk21]. Chips
[DXT+18]. circuit [KKC+16]. Classes
[JHQ23]. Classical [KGHRM23]. Codes
[KGHRM23]. Compiler [AS22, TMK+16].

Complete [FHL+22]. Composable
[ZWB19]. Compromising [Bis21].
Compute [DAKK19, GHHR21]. Computer
[BBdD17, TBL19, TSW+23]. Computing
[BBdD19b, KBB17, MPU+23, ZSB21, Gre20]. Conference [GD19]. Configurable
[TGRK21]. Constrained [ZHLR22].

Coprocessor
[BBdD19a, DEC+18, MPU+23]. Core
[DXT+18, GCR+23, TGRK19, TGRK21, ZSB21, DAKK19]. Coprocessors
[MLPH23, ZSB21, SB23]. Correction
[KGHRM23]. CPU [Szk21]. Cross
[VOK+22, WVN+23]. Cross-layer
[VOK+22]. Cross-Platform [WWN23].

Cryptography [Bis21, MLPH23].
Cryptographic [KGHRM23].

D [ZBA+20]. Data

Efficient [MPU+23]. Embedded
[SMP22, Ano20, KKC+16]. Emulation
[ZZB+20]. Enabled [TGRK19, TGRK21].

Enforcement [FHL+22]. Engine
[ERGK21]. entropy [SNM22].

Environments [AVS+22]. Error
[KGHRM23]. Error-Correction
[KGHRM23]. Esperanto [DtEt22].

ET-SoC-1 [DtEt22]. Evaluate [VOK+22].
Evaluation [AS22, GMFC23]. Even
[Szk21]. Exa [TSW+23]. Exa-Scale
[TSW+23]. Exact [KBB17]. Execution
[AVS+22, GCR+23]. Extension
[ABP22, KGHRM23, ZSB21, YCL+23].

Fabric [DXT+18]. Fast [DXT+18]. Faulty
[AVS+22]. Featuring [GCR+23]. Field
[KGHRM23]. First [SMP22]. Fixed
[YCL+23]. Fixed-point [YCL+23].

Floating
[Ano20, SEG20, ZSB21, BBdD19b].

Floating-Point
[Ano20, SEG20, ZSB21, BBdD19b]. Flow
[FHL+22]. FPGA [MLPH23]. FPGAs
[KG17, RTRM19, ZSB+20]. FreeBSD
[Hor20]. FreeBSD/RISC [Hor20].
FreeBSD/RISC-V [Hor20]. Full [ZSB21].
fully [Ano20].

Galois [KGHRM23]. gem5 [RSRT19].

Generation [GD19]. Getting [Hor20].

Hardware [KBB17, TML+17a, TML+17b, TML+17c, DL17]. Heterogeneous
Implement [ABP22]. High-bandwidth [ZB +20].
IEEE [BBdD17, TBL19]. ILA [HZS +19].
Instruction-Level [HZS +19]. Integration [ZB +20]. Integrity [FHL +22]. interface [SNM22]. interpreters [KKC +16].
IoT [ABP22]. IP [Bi21]. ISA [ABP22, KGHRM23, SZHB21, TML +17a, TML +17b, TML +17c]. Issue [SZHB21].
Japan [TBL19]. July [BBdD17]. June [TBL19].
Kyoto [TBL19].
Languages [WWN23]. Latency [MLPH23].
LLVM [RSRT19]. LLVM-Based [RSRT19].
London [BBdD17]. long [GMFC23].
long-vector [GMFC23]. Look [SMP22].
Low [ABP22, MLPH23, ERGK21]. Low-Latency [MLPH23].
Methodology [RTRM19, XYT +23].
Microprocessors [LWC +16]. MINOTAUr [GCR +23]. ML [DtEt22]. Model [DAKK19, TML +17a, TML +17b, TML +17c].
Native [WWN23]. Near [ZB +20].
Near-data [ZB +20]. NEC [GMFC23]. Networks [ERGK21]. Neural [ERGK21].
Numerics [BBdD19a].
Offs [ZHLR22]. Open [DXT +18, PW17, PGW +20, VOK +22, ZWB19].
Open-Source [DXT +18, PGW +20, VOK +22].
Packed [YCL +23]. Performance [AS22, Bi21, FHL +22, MPU +23, XYT +23].
Point [AVS +22, Ano20, SEG20, ZSB21, YCL +23, BBdD19b]. Poisoning [AVS +22].
Power [ABP22, ERGK21]. Practical [VOK +22]. Precision [BBdD19a, YCL +23, BBdD19b].
Programmable [DEC +18]. Programming
QEMU [Hor21a]. Quantum [KGHRM23].

Reader [PW17]. Recommendation [DtEt22]. Registers [SZHB21].

Saber [ZHLR22]. Scalable [RSRT19].

Scalar [BDdD19b]. Scale [DAKK19, TSW+23]. Scientific [BDdD19b].

Scripting [KKK+17a, KKK+17b, KKK+17c]. Security [FHL+22]. SEGGER [Ano20]. Semantic [SZHB21]. Short [KKC+16].

Short-circuit [KKC+16]. Side [Bis21, JHQ23]. Side-channel [Bis21].

Signal [ABP22]. SIMD [YCL+23].

simulation [MG22]. Singapore [GD19].

SMURF [BDdD19b]. SoC [DtEt22, HZS+19, MLPH23]. SoCs [PGW+20]. Soft [RTRM19]. Software [Bi21, TML+17a, TML+17b, TML+17c].

Source [DXT+18, PGW+20, SNM22, VOK+22]. specific [DL17]. Specification [HZS+19].

Spike [Hor21b]. SRAM [RTRM19].

SRAM-Based [RTRM19]. Started [Hor20].

Stream [SZHB21]. STT [ZBA+20].

STT-MRAM [ZBA+20]. Support [KKK+17a, KKK+17b, KKK+17c].

supported [Ano20]. SX [GMFC23].

System-on-Chip [HZS+19]. Systems [SMP22].

Timing [Bis21, GCR+23]. tool [MG22].

Torus [KG17]. Trade [ZHLR22].

Trade-Offs [ZHLR22]. TriCheck [TML+17a, TML+17b, TML+17c].

Trisection [TML+17a, TML+17b, TML+17c].

Tuning [AVS+22]. YCL [YCL+23].

TVM [YCL+23]. Type [BDdD19a]. Typed [KKK+17a, KKK+17b, KKK+17c].

UK [BBdD17]. Ultra [ABP22, ERGK21].

Utilization [SZHB21].
REFERENCES

PGW+20, SMP22, SNM22, SZHB21, SB23, Szk21, TGRK19, TGRK21, XYT+23, YCL+23, ZSB21, Zee22, ZHLR22, ZBA+20, V/Tensor [DtEt22], Variable [BDdD19a], Variable-Precision [BDdD19a], variant [Ano20], Vector [MPU+23, GMFC23], Verification [HZS+19, TML+17a, TML+17b, TML+17c], verified [TMK+16], virtual [KKC+16], Virtualization [SMP22], Vitruvius [MPU+23].

W [SB23], WasmAndroid [WWN23], WebRISC [MG22], WebRISC-V [MG22], Will [Gre20], Wireless [ABP22]. without [Bis21].

References

Amor:2022:RVI

Anonymous:2020:RVE

Adit:2022:PLT

Alder:2022:FPU

Burgess:2017:ISC

Bocco:2019:DPN

Andrea Bocco, Yves Durand, and Florent de Dinechin. Dynamic precision numerics using a

Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Alhawai, Austin Rovinski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao, Steve Dai, Aporva Amarnath, Bandhav Veluri, Paul Gao, Anuj Rao, Gai Liu, Rajesh K. Gupta, Zhiru Zhang, Ronald Dreslinski, Christopher

[Eliahu:2021:MME]

[Feng:2022:RRV]

[Gruin:2023:MTP]

Horne:2020:GSF

Horne:2021:RQ

Horne:2021:S

Huang:2019:ILA

Jin:2023:SBS

Koenig:2017:HAC

Kapre:2017:HDR

Kuo:2023:RVG

[KGHRM23] Yao-Ming Kuo, Francisco García-Herrero, Oscar Ruano, and Juan Antonio Maestro. RISC-V Galois Field ISA extension for non-binary error-correction codes and classical and post-

Kim:2016:SCD

Kim:2017:TAAa

Kim:2017:TAAb

Kim:2017:TAAc

Mariotti:2022:WVB

Gianfranco Mariotti and Roberto Giorgi. WebRISC-V: a 32/64-bit RISC-V pipeline simulation
Ma:2023:DSB

Minervini:2023:VAE

Patterson:2017:RVR

Rogers:2019:SLB

Ramos:2019:APM

A. Ramos, R. G. Toral, P. Reviriego, and J. A. Maestro. An ALU protection methodology

Snelgrove:2023:SPT

SEGGER:2020:SFP

Sa:2022:FLR

Saarinen:2022:DRV

Schuiki:2021:SSR

Szkandera:2021:BYO

Takagi:2019:ISC

REFERENCES

Tiwari:2019:PPE

Tiwari:2021:PCP

Tan:2016:NVC

Trippel:2017:TMMa

Trippel:2017:TMMb

Trippel:2017:TMMc

Talpes:2023:MDT

REFERENCES

REFERENCES

