A Complete Bibliography of Publications in SIAM slash ASA Journal on Uncertainty Quantification

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

13 October 2017
Version 1.06

Title word cross-reference

-Optimal [FH16]. -Quantiles [EEHM14]. -Sensitivity [Rah16].

Accelerated [HPS16, JCN16].
Accelerating [GJWZ16]. Accuracy [CCD16, ST15]. Accurate [LG14, MPL16].
Acoustic [BTG14, FLL15]. Adaptive [BCWZ14, EMN16, EM16, FH16, GBC14, KS16].
Adaptive-Domain [BCWZ14].
Adaptivity [BPW15]. Additive [KLS15].
Advection [Cha15, JT13, JT15].
Advection-Diffusion [Cha15, JT13, JT15].

Algebraic [KW16]. Algorithm [CGHM14, DC16, DKST15, JCN16, Kou14].
Algorithms [RKSA15]. Allen [Kue15].
Analysis [ABPS14, BN14, BTG14, CCD16, Cha15, CEGT15, DKPP16, ESS15, Le 13, KBS13, LCI14, MvOCP13, MSDO14, NHM16, OV14, SNS16, SS15, WR16, WSB16].
Analyzing [Pul13]. ANOVA [Rah14].
Appearing [LG14]. Application [BGV16, BW16, CRG15, WB14].
Applications [DKST15]. Approach [BCWZ14, LCI14, WR16].
Approximate [EEHM14, GNW14, SG15]. Approximating [DG13].
Approximation [BG15, BTG14, CLNR15, GP14a, GHT16, GNR15, GM16, KJ16, KKNT15, SP16].
Approximations
Diffusion \cite{TJWG15, VCNGP16}. Dimension-Independent \cite{Vol15}. Dimension [BTG14, KBJ14, Rah14]. Dimensions \cite{BCL16}. Discrepancies \cite{SO14}. Dispersion \cite{BW16}. Distance \cite{BBB15}. Distributed \cite{HPS16}. Distribution \cite{GNR15, HP14, SAS15}. Distributions \cite{BS13a}. Disturbance \cite{MJP13}. Divergence \cite{ACD15, TGG13}. Domain \cite{BCWZ14, GP14b}. Domains \cite{GP14b, PR16, vWGBS15}. Doubly \cite{HPS16}. Driven \cite{CHYZ13}. Dynamic \cite{PAS14}. Dynamical \cite{CRR16, FH15, MS15, OB16, Pul13, SAS15}. Dynamics \cite{DKPP16, SHL14}. Editors \cite{BEG13}. Effects \cite{PAS14, SNS16}. Efficient \cite{FLL15, LG14}. Electrical \cite{BSS15, HL15}. Element \cite{AEST15, EM16, HL15, KLS15, SE16, UP15b}. Elements \cite{ANSS14}. Elliptic \cite{CQ14, CHYZ13, GHT16, GP14b, RSW16}. Empirical \cite{BGM16, VCNGP16}. Emulation \cite{BG16, BW16, GBCC15, MT16, OC16}. Emulator \cite{MWP15, SBB14}. Emulators \cite{BCMZ16, BCM16}. Ensembles \cite{BB16}. Entropy \cite{BS13a}. Equation \cite{BCWZ14, Kue15, RSW16, XLL14}. Equations \cite{BG16, BCM16, BST16, BOS15, DLS16, DKLM15, EL13, GJWZ16, HUW13, JT13, KBJ14, KLS15, MSDO14, OB16, SP16, TJWG15, VCNGP16, JT15}. Equilibration \cite{EM16}. Equilibria \cite{Pull13}. Erratum \cite{JT15}. Error \cite{AEST15, BPW15, DC15, EM16, Lás16, MPL16, PSDF14, RS15a}. Estimate \cite{SSJ13}. Estimates \cite{AEST15, BS13b, RS15a}. Estimating \cite{TI14, WB16}. Estimation \cite{BBB15, CGHM14, DM16, Tan15, TW16, UP15a}. Estimators \cite{BCH15, EM16}. Evaluate \cite{TGG13}. Event \cite{XLL14}. Events \cite{MS15, UP15a}. Evolution \cite{CEGT15, KLS15, OB16}. Evolving \cite{WB14}. Excited \cite{MS15}. Excursion \cite{ABC16}. Exhibiting \cite{SHL14}. Exit \cite{HMR13}. Expansion \cite{DKLM15, HUW13, Soi15}. Expansions \cite{OB16, TI14}. Expected \cite{SO14}. Experimental \cite{CRG15, FH16, GM16, HLR15, PR16}. Experiments \cite{BG16, GBCC15}. Extended \cite{CRR16}. Extremal \cite{RKSA15}. Extreme \cite{Gri16, MS15}. Factors \cite{CCD16}. Failure \cite{EHM16}. Fast \cite{FN16}. FEM \cite{SP16}. Fictitious \cite{GP14b}. Field \cite{ABC16, SG15}. Fields \cite{DG13, KKNT15}. Filter \cite{CRR16, KM15}. Filtering \cite{BCWZ14, SAS15}. Filters \cite{ESS15}. Fine \cite{MSDO14}. Fine-Scale \cite{MSDO14}. Finite \cite{AEST15, ANSS14, EM16, HL15, KLS15, SE16, UP15b}. First \cite{BCMZ16, GHT16}. First-Order \cite{GHT16}. Flexible \cite{MCTI16}. Flow \cite{DKST15, SHL14}. Flows \cite{BH15, MWP15}. Fluid \cite{SHL14}. Flux \cite{MRST16}. Forcing \cite{OB16, PAS14}. Format \cite{DKLM15}. Formulating \cite{SS13}. Formulations \cite{DP16, GP14b}. Framework \cite{BB16, MCTI16, TW16}. Frameworks \cite{FPGD16}. Frequency \cite{MRRT16}. Frequentist \cite{KBS13}. Function \cite{MSDO14, WBSC15}. Functional \cite{NHM16}. Functionals \cite{ACD15}. Functions \cite{CLNR15, GNR15, GTP14, KKNT15, MRST16, TGG13, WB16}. Galerkin \cite{EM16, HL15, KS16, Pul13, SHL14, UP15b}. Gamma \cite{RKSA15}. Gauss \cite{HP14, TI14}. Gaussian \cite{ABC16, DG13, FN16, GM16}.
[MCTI16, vWGBS15]. Generalized
[JC16, Owe13, Rah14]. Geophysical
[MP15, SBB+14]. Gfrerer
[JM13]. Gfrerer-Type
[JM13]. Gibbs [ABPS14]. Girsanov
[WR16]. Global
[HGS13, LC14, DM16, SNS16, WS16]. Goal
[JC16]. Goal-Oriented
[JC16]. Good
[S014]. Gradient
[BCWZ14, DG13]. Guaranteed
[EM16]. Hastings
[MJP13]. Hazard
[SBB+14, SS13]. Heterogeneous
[Gri14]. Hidden
[CGHM14]. Hierarchical
[ABPS14, BG15, DKST15, Le 13, OC16]. High
[BS13a, KB14, KKNT15, MMRT16]. High-Dimensional
[KB14]. High-Frequency
[MMRT16]. High-Order
[KKNT15]. Higher
[DL10, EM16]. Higher-Order
[WS16]. Holomorphic
[DLS16]. Hybrid
[AS14, BCWZ14, DG13].

Identification
[Hes14, LG14]. III
[BET+14]. Illustrated
[WS16]. Impact
[ST15]. Impedance
[BSS+15, HL15]. Improved
[BW13, HP14]. Improvement
[S014]. IMSE
[GP14a]. Independent
[Vol15]. Index
[Rah16]. Indices
[Owe13, Owe14, Tan15]. Inequality
[JM13]. Inexact
[BG16]. Inference
[BBB+15, PPM16]. Infinite
[BTG14]. Influences
[HUW13]. Influential
[LG14]. Information
[BG16, DKPP16, SSS+13, SG15]. Information-Theoretic
[SG15]. Informative
[DM15]. Initial
[BJP16]. Input
[GJWZ16, LG14, TJWG15, WS15]. Inputs
[EEHM14, NVM+16]. Instability
[CGHM14]. Integrated
[GM16]. Integration
[DLS16]. Interest
[BET+14, EM16]. Intermittent
[CGHM14]. Intermittently
[MS15]. Internal
[S014]. Interpolation
[GP14a, KJ16, VC16]. Interpolatory
[DG13]. Intrusive
[DP16]. Inverse
[ABPS14, BC16, BTG14, BET+14, ES15, FN16, KBJ14, MPL16, R15a, SE16, Vol15]. Iteration
[BLS15, SE16]. Iterative
[CE15, L15]. Kalman
[ES15, KM15]. Karhunen
[HUW13]. Kernel
[GP14a, KJ16]. Kernel-Based
[GP14a]. Kernels
[GM16]. Kinetic
[DP16]. Kinetics
[WR16]. Knowledge
[CRG+15]. Korteweg
[XL14]. Lagrange
[BS13a, SG15]. Land
[RHH+15]. Large
[KM15, RKA15, WB14]. Law
[vWGBS15]. Laws
[DP16, MR16]. Learning
[CRG+15]. Least
[CL15, RKA15]. Least-Squares
[CL15]. Levenberg
[BG16]. Lévy
[K15]. Limit
[KM15]. Linear
[FH16, FN16, KLS15, L15, RKA15, SP16]. Linear-Gaussian
[FN16]. Local
[EM16, HL15]. Lévy
[HUW13]. Log
[BN14, HPS16, UP15a]. Log-Normal
[BN14]. Log-Normally
[HPS16]. Log-Transformed
[UP15a]. Long
[OB16, SAS15]. Long-Time
[SAS15]. Low
[BOS15, CR15, KKNT15]. Low-Rank
[BOS15, KKNT15].

Macroscale
[DC16]. Many
[BJP16]. Maps
[PPM16, SBB+14]. Marginal
[MJP13]. Markov
[DKST15]. Marquardt
[BG16]. Mass
[MWP15]. Massively
[GNW14]. Material
[Gri16]. Matrix
[GTP14]. Maximum
[BS13a]. MCMC
[CGHM14, Vol15]. Mean
[HMR+13]. Measure
[BCH15, BET+14]. Measure-Theoretic
[BET+14]. Measures
[DM16, RAH14]. Media
[CHA15, FLL15].
Mercer [GM16]. Meridional [PAS14].
Meshes [vWGBS15]. Message [BEG13].
Nanoemulsion [CRG+15]. Natural [SS13].
Penalization [ANSS14].

Spectral [ASG13]. Periodic [SHL14].

Quadrature [HPS16, KW16, TI14].

Quantification [BSS15, BH15, DKST15, DKPP16, EHH14, FPGP14, KW16, MPL16, RS15b]. Quantifying [ABCG16].

Quantiles [EHH14]. Quantities [BG15, BET14, EMN16]. Quasi [DLS16]. Quasi-Monte [DLS16]. Quasimonte Carlo [Kue15].

Randomize-Then-Optimize [BSS15]. Rank [BOS15, CLNR15, KKNT15]. Rare [UP15a, XLL14]. Rare-Event [XLL14].

Raus [J13]. Realism [HP14]. Realizations [PSDF14]. Reconstruction [GBC14]. Reduced [CQ14, DC15, EL13, HUW13, JCN16, MPL16, PSDF14].

Series [WB14]. Set [PSDF14]. Sets [ABCG16, HGS13]. Several [BCL16]. Shape [BTG14, WB16]. Shapley [Owe14, SNS16]. Signals [CGHM14].

References

REFERENCES

Agapiou:2014:AGS

Atar:2015:RBR

Arbogast:2015:PEE

Azzimonti:2014:MFE

Arnst:2013:HSS

Berliner:2016:FMM

Banerjee:2015:MDE

Banks:2015:APP
REFERENCES

[Bao:2016:IRS]

[Bao:2016:FOS]

[Bao:2014:HSG]

[Bao:2014:HSG]

[Ba:2014:HTA]

[Ba:2014:HTA]

[BG15]

[Beck:2016:SDM]

[BEG13]

[BEG13]

[BET+14]

[BDM16]
REFERENCES

REFERENCES

Bender:2013:PEB

Bardsley:2015:RTO

Barajas-Solano:2016:SCM

Bui-Thanh:2014:AID

REFERENCES

REFERENCES

?? 2016. CODEN SJUQA3. ISSN 2166-2525.

REFERENCES

Elfverson:2014:UQA

Elfverson:2016:MMC

Elman:2013:RBC

Eig:2013:UQA

Ernst:2015:AEP

REFERENCES

REFERENCES

Gramacy:2014:MPA

Gauthier:2014:SAI

Gordon:2014:PFD

Grigoriu:2014:RSR

Grigoriu:2016:MMM

Gratton:2014:SCM

Hessling:2013:DSP

Hessling:2014:ICM

Heaton:2013:MUC
Matthew J. Heaton, Tamara A. Greasby, and Stephan R. Sain. Modeling uncertainty in climate using ensembles of regional and

Hyvönen:2015:SGF

Hooker:2015:CTE

Higham:2013:MET

Horwood:2014:GMD

Harbrecht:2016:MAQ

Haasdonk:2013:RBM

Jiang:2016:GOR

Jin:2013:OIS

REFERENCES

Jarman:2013:CCS

Jarman:2015:ECC

Kantas:2014:SMC

Kenz:2013:CFB
Zackary R. Kenz, H. T. Banks, and Ralph C. Smith. Comparison of frequentist and Bayesian confidence analysis methods on a viscoelastic stenosis model.

Kovacs:2015:WCF

Kressner:2015:LRT

Kwiatkowski:2015:CSR

Kohler:2014:CPA

Kouri:2014:MSC

Kunoth:2016:SAT

Kleiber:2014:MCD

Kuehn:2015:NCS

Ko:2016:AMQ

Laszlo:2016:CEP

LeGratiet:2014:BAG

Gratiet:2013:BAH

REFERENCES

244–269, ???. 2013. CODEN SJUQA3. ISSN 2166-2525.

Labovsky:2014:EAM

Mittal:2016:FUP

Murray:2013:DSS

Mohan:2014:VMA

Montagna:2016:CEN

Minunno:2013:SPD

Mahmood:2015:PBE

Nanty:2016:SMS

Ozent:2016:DPC

Oughton:2016:HEM

OMalley:2014:CPN

Owen:2013:VCG

Owen:2014:SIS

Pampell:2014:PDT

Picheny:2013:NST

Parno:2016:MSB

Padonou:2016:PGP

Perrin:2014:PEO

Pulch:2013:SGM

Rahman:2014:GAD

Rahman:2016:SI

REFERENCES

Ray:2015:BCC

Roosta-Khorasani:2015:ASA

Regier:2015:MMU

Romer:2016:SMR

Sanz-Alonso:2015:LTA

Spiller:2014:AEC

Sousedik:2016:ISI

Schick:2014:NGM

Song:2016:SEG

Strong:2014:WMG

Soize:2015:PCE

Silvester:2016:OSL

Stein:2013:FNH

Sturlaugson:2015:SAC

Singh:2013:PME

Sinsbeck:2015:IDA

Stark:2015:CVP

Tan:2015:SBP

Thorarinsdottir:2013:UPD

Tang:2014:SGQ

Teckentrup:2015:MSC

Tuo:2016:TFC

Ullmann:2015:MER
REFERENCES

Ullmann:2015:SLT

Vidal-Codina:2016:EIM

Vollmer:2015:DIM

vanWyk:2015:PLN

Williamson:2014:EBE

Wang:2016:ESC

Wang:2015:PDF

Wang:2016:EGT
Ting Wang and Muruhan Rathinam. Efficiency of the Girsanov transformation approach for parametric sensitivity analysis of stochastic chemical kinetics. SIAM/ASA Journal on
REFERENCES

Wentworth:2016:PSV

Xu:2014:RES

Zhu:2014:CAS