A Complete Bibliography of Publications in *SIAM slash ASA Journal on Uncertainty Quantification*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
22 March 2023
Version 1.13

Title word cross-reference

2 [Kue15]. 4 [SSJ+13]. 2 [HBC+17, PKH22].
A [FH16]. 6 [HSH+22]. f [Rah16].
$L^2(R^d, \gamma_d)$ [SZ23]. p [EEHM14]. R^d [LSW17].

-Optimal [FH16]. -Quantiles [EEHM14].
-Regularized [HSH+22]. -Sensitivity [Rah16].

Above [DS17]. Accelerated
[CKR20, HPS16, JCN16, PM18].
Accelerating [GJWZ16]. Accelerator [Ade19]. Acceptance [LDF+23]. Accuracy
[CCD16, SAY22, ST15]. Accurate
[CLW17, CMT18, LG14, MPL16, VM19]. Acoustic [BTG14, FLL15]. Across
[CCS17]. Active
[CCZW22, CLS+19, Ede23, Lee19].
Active-Subspace [Ede23]. Adaptation
[BHR18, BBD20, TST18]. Adapted
[KJH22, ZKA22]. Adaptive
[BCWZ14, BR18, BPR21, CDGR19, CCR19,
CR20, DBK+18, DDS19, EMN16, EM16,
EMM20, FH16, GBC+14, HKT20, KS16,
MG21, MCWG22, Peh19, ZCK19, ZHYL17].
Adaptive-Domain [BCWZ14]. Adaptivity
[BPW15]. Additive
[FBG+20, GCB18, HZ21, KLS15].
Adjustments [Thu19]. Advanced
[BRPP18]. Advection
[BST18, Cha15, CCH+20, DEKR18, JT13,
JT15, SK22, TBR18]. Advection-Diffusion
[Cha15, JT13, JT15]. Advective [GMC22].
Aerodynamic [LLSS17]. Agent [FHC+18].
Agent-Based [FHC+18]. Aided [YLT18]. Airfoil [LLSS17]. Algebraic [KW16]. Algorithm [CGHM14, DC16, DKST15, DKST19, DS19, JCN16, Kou14, LvLP21, TMM20, ZHYL17].

Average [Lee19]. Averse [APSG17, KS18, KS22, ZKA22]. Aware [AP23]. Awareness [HP14].

Background [BHK20]. Backward [BGM16, BCMZ16, BS13b]. Balance [SLH19]. Balancing [AP23, SAY22]. Based [AMV+17, BCWZ14, BC21, BLS15, BBR+19, BG16, BLSZ18, BPA20, CSD17, CPBP20, DM16, FHC+18, GKL18, GP14a, HSS13, HBC+17, LW17, MCNT23, MWP15, MGBL18, MvOC13, Mor18, MRS+20, OCMB21, PO21, SBA19, UPM21, WSB16, CG22, TMM20, vdBSBvB20, KSS+19, MCW22]. Basis [CQ14, CQR17, EL13, HUW13, HL15, JCN16, MPL16, NP17, PMQ17, PSDF14, TST18, TBR18, ZKA22]. Bathymetry [LG17]. Bayes [CCD16, WGD22]. Bayesian [AD20, APSS21, AP23, BLV17, BS21, BHK20, BS18, BTG14, CSD16, CLW17, CHKLP19, DY21, EFF+23, ESS15, GP18, GBC+14, GGS23, GKh19, HS11, HAY20, HqS21, HN17, Hos17, HKZ18a, HKZ18b, KLLU19, KBS13, LLS22, Lat20, LZ22, Le 13, LCI14, LST18, Ma20, MPL16, MvOC13, OR21, PMM16, PM22, PB20, PB21, PZ20, RHH+15, RW21, RHB20, SBA19, SN17, SCN21, SpI20, SS15, ST17, Tan15, Tan20, Tec20, TGH17, WCL22, WB14, WCG23].
[DBK+18, GP14a, MGBL18, PR16].
Detection [DC16, dRL19]. Determinant [SSZR19]. Deterministic [BW23, FPGD+16, HWM18, Hos13, KWT+20].
Diagnostics [VW20]. Diagnostics-Driven [VW20]. Diagonal [BBCM22].
Differential [APV17, AAV18, BGM16, BCMZ16, BS18, CG21, CCZW22, CD21, CPBP20, DLZ21, DKLlM15, EL13, GJWZ16, GR17, HUW13, HPR18, HQS21, JKS+21, JLK17, MM21, MSDO14, Mot19, OB16, RML18, TJWG15, TST18, Ver17, VCNIP16].
Diffusion [AF19, BS18, BOS15, Cha15, DEH+18, DEKR18, HPS16, HSZ19, HLR15, IDL17, JT13, JT15, NT18, PM22, SK22, SP16, TMM20, UP15b, ZHY21].
Dimensions [BCL16, CMT18, Hos19, RJ22]. Directed [BFKRB22]. Discontinuities [HML20].
Discretization [EMM20, MM21, YY19]. Dispersion [BW16, BC22]. Displacement [RM18]. Distance [BBB+15, GKL18].
Distances [Min22]. Distributed [DPP18, HPS16]. Distribution [BBD20, CBE18, GNR15, HG19, HP14, IT17, SRGT17, SAS15, vAH17].
Divisible [Hos17]. Domain [AJHSZ20, BCWZ14, GP14b, TST18].
Driven [CHYZ13, VW20]. Dynamic [PAS14, ZLR19]. Dynamical [CRR16, DGVE19, FH16, MS15, OB16, Pul13, PA19, RA21, SAS15, SHA18, SRS17].
Dynamics [ADSG22, Ali19, BPA20, BW23, DKPP16, RPMC21, SHL14].
Early [BHR18]. Easy [XMLD21]. Easy-to-Interpret [XMLD21]. Edge [UBD+22]. Edge-Preserving [UBD+22].
Editors [BEG13]. Effect [YAZJ20]. Effective [SZ22]. Effectively [SNM17].
Effects [BBBD20, BBDM21, BCM22, EDCMD22, KSS+19, PAS14, PRB21, SNS16]. Efficiency [WR16]. Efficient [AMV+17, BR18, CBE18, CMT18, CGRF18, FLL15, GHA19, LG14, NP17, OH21, PMQ17, RA21, SBBA19, TGH17, ZCK19].
Eigenvalue [LS18]. Eigenvector [BQS18]. Electrical [BSS+15, HL15].
Elliptic [AD20, AUH17, BS18, BR18, CBE18, CQ14, CHYZ13, GHT16, GP14b, HZ21, HSAY20, RSW16, SST17]. Elworthy [YY19]. Embedded [DEH+18]. Empirical [BGM16, VCNIP16, ZGS22]. Emulating [SGH+19]. Emulation [BG16, BW16, CLW17, FHC+18, GBCC15, HWM18, KGL22, LG17, MG21, MT16, OC16, OGH22, VJC19, WGD22, ZS21].

Ensembles [HGS13].

Ensembling [BB16]. Entropic [Min22].

Entropy [BS13a, EFF+23, Hea20, PKW18, UPMS21].

Equations [Bps13, EFF+23, Hea20, PKW18, UPMS21, Wil22].

Equations-Based [CPBP20].

Equilibration [Em16]. Equilibria [Pul13].

Ergodic [AAV18]. Erratum [JT15, DKST19].

Error [AEST15, BPR21, BGA+17, BPW15, DC15, EM16, FBG+20, GCB18, Ls16, LvLP21, MPl16, MM21, PSDF14, RS15a, SSZR19, WYHW22].

Errors [EF21, SBW22]. Estimate [DL21, SSJ+13]. Estimated [Te20].

Estimates [AEST15, BS13b, Gri17, RS15a].

Estimating [BGHK20, HBC+17, TI14, WB16].

Estimation [BLOP21, ABJR22, BNB+15, BPR21, BCMN18, BBDO18, BBCM22, CBE18, CGHM14, CODM22, DG19, DM16, DFS20, GB18, GHA19, HKTW18, HKT20, HGHT20, HKZ18a, IDL17, KWT+20, LvLP21, MM21, MD19, OH21, PMQ17, PS17, PKW18, Peh19, QPO+18, SK22, Tan15, TW16, UP15a, WPU22, XS17].

Estimators [BCH15, EM16, Maz21, NvdGW20, PG22, SU20, SU21]. Euler [CCH+20]. Evaluate [TGG13].

Evaluations [WGD22]. Event [DGVE19, PKW18, UPMS21, WPU22, XLL14].

Events [MS15, UP15a]. Evidence [SCN21].

Evolution [CEGT15, KLS15, OB16].

Evolve [GIMS19]. Evolve-Filter-Relax [GIMS19]. Evolving [DEKR18, WB14].

Exact [Min22]. Excited [MS15]. Excursion [ABCG16, BPA20, RA21]. Exhibiting [SHL14].

Expansions [BGGR22, FMS17, HSS+18, JLK17, LMS21, MS17, OB16, TI14, Ver17].

Expectation [LvLP21, VM19].

Expectations [SST17]. Expected [GB18, HGGT20, SO14, Tan20, TGH17].

Expensive [CDM+18, OCMB17].

Experience [OVWH19]. Experiment [FMS17]. Experimental [BS21, CRG+15, FH16, GM16, HLR15, KJH22, PR16, SHA18, SPJJ21, TH18, TGL23, WCG23].

Experimentation [TGH17]. Experiments [BG16, BMP18, GBC15, HWM18, HC18, HML20, OVWH19, SN17, SCN21, SGH+19, Tan20, XMLD21]. Explicit [AAV18].

Explorations [Maz21]. Exponential [HS21, HN17]. Expression [SZ23].

Extended [CRR16]. Extrapolated [DLL22]. Extremal [RKSA15]. Extreme [DGVE19, Gri16, Gri7, MS15, RA21].

EzGP [XMLD21].

Factors [CCD16, XMLD21]. Failure [DG19, EHM16, PKW18, UPMS21].

Fictitious [GP14b]. Fidelity [Peh19, PKNW19].

Field [ABCG16, SG15, XS17]. Fields [APSG17, BK21, DG13, KSS+19, KKNT15, SZ22].

Filling [PZ20]. Filter [BGA+17, CRR16, CCH+20, GIMS19, KM15, LvLP21, PMQ17, RErB+22, TMM20, WPU22]. Filtering

Moment [DZ21]. Monotone [GBCC15, RM18]. Monotonic [BKM18].
Monte [DTVW20, DKST19, PM18, BLOP21, AUH17, BC21, BJL+18, BKM18, CHKW22, CGRF18, DM15, DDS19, DLS16, DKST15, DNP21, EMN16, EHM16, GKS21, GP18, GNR15, GSM22, GMN22, GKK+21, HMR+13, HGGT20, HQS21, HPW21, KBJ14, KRS21, KN18, LW22, MCNT23, MD19, Pe19, PB21, QPO+18, SST17, VV19].
Multifidelity [AP23, BPA20, Le 13, LCI14, Ma20, PKW18, Pe19, PKNW19, PB20, PB21, QPO+18, ST15, ZNX14, PG22].
Multilevel [AUH17, BLS15, BJL+18, BPR21, CDGR19, CJY22, CCRG18, DKST15, DKST19, EMN16, EHM16, GNR15, GB18, GHA19, GSM22, GMN22, HPS16, HMR+13, HGGT20, HQS21, HPW21, JS22, KRS21, Kou14, KN18, LDF+23, MCNT23, MD19, SU20, SU21, SST17, TJWG15, UP15a, VV19].
Multimodal [Oli17, Soi15]. Multimodel [BG16]. Nanoemulsion [CRG+15]. Natural [SS13].
Nuisance [RHBH20]. Numerical [AD20, BTG14, Cha15, DBK+18, FLL15, HZ21, Kue15, MRST16, NHM+16, SAY22].
Objective [Ma20, PKH22]. Observables [DC16]. Observation [Che20, EF21, HGS13]. Observation-Based [HGS13]. Observations [DM15]. Observed [CF1+21, PS17, SAS15, SK22, TH18].
Operator [DLS16, MOM18, PM22]. Operators [Min22]. Optimal [AAV18, APSG17, APS21, AUH17, BLS15, BHN18, BHR18, BS21, CDMN16, CQ14, CRG+15, CLYM20, EF21, FH16, GP14a, GHT16, GKK+21, HZ21, IDL17, KJH22, MN21, NP19, PSDF14, SK22, SP16, Soi17, WCG23]. Optimality [KS18, KS22].

Parabolic

Problems [AD20, ABPS14, AKSAS22, APSS21, AP23, AEST15, ASG13, BCWZ14, BCL16, BC21, BQS18, BHR18, BET+14, CEGT15, CBE18, CQ14, CG21, CHKP19, CPBP20, CKR20, DEH+18, DFS20, Din21, Döl20, ESS15, GK20, HHS22, HSAY20, HN17, Hos17, JZZ21, KB114, KP20, KS16, LLS22, Lat20, LS18, LST18, LN21, MPL16, MN21, NT18, NP17, NvdGW20, RSi15a, RKSA15, SBBA19, SIT17, SN17, ST17, Tec20, TBR18, TGL23, UP15b, Vo15, VM19, ZKA22].

Process [BBR+19, CLW17, DM16, GM16, GNW14, GW18, GXW22, HWM18, HS21, HC18, KWT+20, LG17, MG21, MvOCP13, MCWG22, PT17, PG13, RPD+20, Tan19, Tec20, TGL23, WYHW22, XMLD21]. Process-Based [BBR+19, MvOCP13].

Processes [BRB20, HL18, IDL17, LK22, MGBL18, Min22, MS15, MT16, OGH22, PR16, PS17, PDD14, SAY22, TH18, WB16, WYHW22].

Profile [GBC+14]. Progressive [DG19].

Projected [Tu019, Wan22, WCL22].

Projections [PA19]. Propagating [Hes13].

Quadratic [APSG17, Tan20]. Quadrature [HPS16, KW16, PZ20, TI14, vdBBS+B20].

Quadratures [SNM17]. Qualitative [XMLD21]. Quality [DLZ21].

Quantification [Ade19, ADH23, AHJSHZ20, BSS+15, BH15, BLS21, BK21, BBR20, BS21, BU21, BHTG21, CBE18, CLW17, CQR17, CDS22, CG22, CFGS20, DGVE19, DLS22, DKST15, DKST19, DKPP16, EHHM14, FPGD+16, G20, GMN22, HS21, HSZ19, HMC+17, HP21, HLY22, K18, KWT+20, KW16, LLS22, LLS17, MPL16, MM21, MRS+20, OCMB17, PKH22, RB19, RJ22, RS15b, Sc22, SC20, TGL23, XMLWZ21, YLT18].

Quantified [OHK+20]. Quantifying [ABC16, PO21, RPMC21, SWGE22].

Quantile [BCK22, BPA20, ECDMD22, FHC+18].

Quantile-Based [BPA20, FHC+18]. Quantile-Oriented [ECDMD22].

Quantiles [EHM14]. Quantitative [EBC16, XMLD21]. Quantities [BG15, BET+14, EM16, Sc22].

Quasi [BLO20, DS16, GKS21, GP18, GKE+21, SST17].

Quasi-Monte [BLO20, DLS16, GKS21, GP18, GKK+21, SST17].

Quintic [Kue15].

Random [APSG17, AUI17, ABCG16, BCL16, BST16, BDKR22, BJ16, BR18, BK21, BPA20, CG12, CHYZ13, DG13, DGVE19, DEKR22, DJ18, DKLM15, Döl20, EL13, FLL15, GJWZ16, GKS21, GMM22, GKH19, Gri14, HK18, JKS+21, JS22, KSS+19, KRS21, KKNT15, LG14, LW17, LW22, LST18, MRST16, MUL19, OB16, PS20, Pu13, RKSA15, SLH19, SP16, So15, Soi17, SG15, SSZR19, TJWG15, TST18, TBR18, UP15b, VV19, XS17, vAH17].

Randomize [BSS+15]. Randomize-Then-Optimize [BSS+15].

Randomized [BLO20, Oli17].

Randomly [EM12, NT18]. Range [OVW19].

Rank [BSS15, BS18, BS18, CLNR15, KKNT15, LES19, RDGS22].

Ranking [HL17].

Rare [PKW18, UP15a, UPMS21, WPU22, XLL21].

Rare-Event [XLL21].

Rates [BC22, NvdGW20, SZ23, TW20].

Raus
Stopped [GB18]. Stopping [BLS15, BHR18]. Stopping-Convergence [BLS15]. Strategies [DEH+18, PKNW19].

Structured [WB14]. Study [BS18, BGR22, CCH*20, KBJJ14, OVHW19]. Sub [vAH17]. Sub- [vAH17]. Subnetworks [OKH+20]. Subproblem [BGV16].

Subsampled [SNM17, TI14]. Subset [BLV17]. Subspace [BGAV17, Ede23, GCB18, SE16].

Surface [BPW15, DEKR18]. Surfaces [BKMI18, HL17]. Surrogate [Ad19, AP23, BDW13, DFS20, GH17, MS17, OCMB17, SRGT17].

Surrogate-Based [OCMB17]. Surrogates [CSD17, RHH+15, Sc22]. Survey [LMS21].

Tailed [Hos17]. Tails [HN17]. Taylor [CG21]. Technique [MMRT16, MRS+20].

Tensor-Train [RDGS22]. Term [HG17]. Terms [CPBP20, So17]. Test [KPR22]. Their [BGA+17, KBW18]. Theorems [GK20].

Time-Dependent [GIMS19]. Time-Harmonic [KP18]. Time-Stepping [GMN22].

Tolerant [ABJN18]. Tomographic [UBD+22].

Tomography [ADH23, BSS+15, HL15].

Trade [Maz21]. Trade-Off [Maz21].

Tradeoff [ST15]. Train [DKLM15, EMM20, RDGS22]. Trajectory [Ari19, HSH+22]. Transfer [LK22, PT17].

Transform [CRR16, EB21].

Transformation [WR16]. Transformed [UP15b]. Transient [PAS14]. Transmission [AMV+17]. Transport [CCR19, CCH*20, CHK22, IT17, MDK20, NP19, PNM16, PM18, RML18].

Trends [PAS14].

Truncation [RPMC21].

Truncation-Related [RPMC21]. Trust [HS21]. Tsunami [BG16, LG17]. TT-Cross [DS19].

Two [BPR21, CCH*20, Hos19, IT17, KP20, Maz21]. Two-Dimensional [CCH*20]. Two-Level [BPR21].

Two-Phase [IT17]. Two-sided [KP20].

Type [BGR22, JM13, TW16].

Ultrahigh [HKZ18a, HKZ18b]. Unbiased [CJ+21, SU20, SU21]. Uncertain [EMN16, GP14b, Kou14, LES19, MN21, PM22, SHL14, SRS17, UBD+22, Ver17, WBSC+15].

Uncertainties [ABC16, BDW13, LLSS17, OVHW19, RW20, RPMC21, RHB19].

Uncertainty [Ade19, ADH23, APSS21, AJHSZ20, BSS+15, BH15, BLSZ18, BK21, BFRK22, BRB20, BS1, BU12, BHTG21, BPW15, Cha15, CBE18, CLW17, CQR17, CDS22, CG22, CFGS20, DP16, DLS22, DFS20, DKST15, DKST19, DKPP16, EBM21, EPPS22, FPGD+16, GK20, GKM22, GMN22, GCB18, GKK+21, HS21, HK18, HG19, HG21, HBC+17, HP14, HPW21, HLY22, KP18, KWT+20, KW16, KM14, LLS22,
REFERENCES

MMRT16, MPL16, MCTI16, MRS+20, OHK+20, OCMB17, PO21, PKH22, RJ22, RS15b, SWGE22, Sca22, SC20, SL22, SS13, TGL23, XLWZ21, YLT18, YWT20, ZCK19.

Understanding [GMC22].

Updating [EFF+23]. Using [APSG17, BDKR22, BCKW22, BCMN18, BW16, BDW13, CRG+15, CFGS20, DM16, DFS20, DLZ21, DNP21, FHC+18, GSM22, HUW13, HGS13, HPW21, LLS22, Lee19, LvLP21, MS17, MG21, OGH22, PMM16, RHH+15, RM18, RKSA15, TGG13, TGH17, VV19, VW20, WB16, ZCK19, ZGS22, ZS21, MN21].

Verification [WSB16]. versus [Sta15]. via [ADSG22, ACD15, BRB20, HKTW18, HKZ18a, HKZ18b, KSW14, NP19, SY19, SO14, Tuo19, dRLI19]. View [UBD+22].

Walkers [LWZ22]. Warped [FSK22, MGBL18]. Warping [MS17]. Wasserstein [DY21, EPS22, FKL21, Min22, WCL22].

Wave [FLL15, GKS21, GMN22, LW22, MMRT16].

Waveform [DY21]. Way [BBB+15]. Weak [AAV18, KLS15]. Weighted [BS21, CQ14, TBR18]. Weights [vdBSBvB20].

Well [HN17, Hos17, Lat20, PS20]. Well-Posed [HN17, Hos17]. Well-Posedness [PS20, Lat20]. White [BC22, CGRF18, LN21]. Whittle [KSS+19].

X [ADH23]. X-Ray [ADH23].

Zakai [BCWZ14]. Zero [SLH19].

References

Abdulle:2018:OES

Azzimonti:2016:QUE

Ömer Deniz Akyildiz, Connor Duffin, Sotirios Sabanis,

Arbogast:2015:PEE

Aetr:2019:APP

Aylwin:2020:DUQ

Agrawal:2022:VIA

Andrianakis:2017:EHM

Azzimonti:2014:MFE

Alsup:2023:CAS

Terence Alsup and Benjamin Peherstorfer. Context-aware surrogate modeling for
balancing approximation and sampling costs in multi-fidelity importance sampling and Bayesian inverse problems.

Alexanderian:2017:MVR

Alexanderian:2021:ODL

[APSS21] Alen Alexanderian, Noemi Petra, Georg Stadler, and Isaac Sunseri. Optimal design of large-scale Bayesian linear inverse problems under reducible model uncertainty: Good to know what you don’t know.

Abdulle:2017:SMM

Aristoff:2019:GPR

David Aristoff. Generalizing parallel replica dynamics: Trajectory fragments, asynchronous computing, and PDMPs.

Arbabi:2022:GSM

Arnst:2013:HSS

Ali:2017:MMC

Ahmad Ahmad Ali, Elisabeth Ullmann, and Michael Hinze. Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random co-

Berliner:2016:FMM

Banerjee:2015:MDE

Broto:2020:VRE

Broto:2021:GLA

BenSalem:2019:GPB

Bardsley:2021:OBM

REFERENCES

[Bao:2014:HSG]

[Butler:2014:MTC]

[Bergou:2022:SLM]

[Birmpa:2022:MUC]

[Ballani:2015:HTA]

[Butler:2013:PUU]

[Beck:2016:SDM]
REFERENCES

Bocquet:2017:DKF

Borggaard:2020:BAE

Bachouch:2016:ERM

Bourgey:2022:CSP

Bergou:2016:LMM

Berry:2015:NUQ

Blanchard:2018:OAE

Braverman:2021:PHU

Belomestny:2021:VRD

Beskos:2018:MSM

Berlyand:2016:CRM

Birmpa:2021:UQM

Bousquet:2018:ALS

Abdellah:2021:DER

Belomestny:2015:MSB

Denis Belomestny, Marcel Ladkau, and John Schoenmakers. Multilevel simulation based

Bertozzi:2018:UQG

Bect:2017:BSS

Borgonovo:2018:FAM

Bonizzoni:2014:PAD

Benner:2015:LRS

Bulthuis:2020:MQB

Bespalov:2021:TLP

Bryant:2015:EDA

C. M. Bryant, S. Prudhomme, and T. Wildey. Error decomp-

Benner:2018:LRE

Bespalo:2018:EAA

Barr:2022:GKM

Birrell:2020:UQM

Ballest-Ripoll:2018:TAA

Batou:2013:CLM

Bender:2013:PEB

REFERENCES

References

Bowman:2016:EMS

Bungert:2023:CDD

Chaudhry:2018:EDE

Capistran:2016:BAO

Cotter:2020:PFS

Cotter:2019:ETA

Callahan:2017:BML

Chen:2022:AAP

Cockayne:2021:PGF

Cerou:2019:ANA

Chen:2022:SPP

Conrad:2018:PLA

CREPEY:2020:UQS

CHADA:2021:UID

CHEN:2021:TAC

CHURCHILL:2022:SBS

CHEN:2014:MAP

CROCI:2018:EWN

CHARRIER:2015:NAA

CHEN:2020:ICC

REFERENCES

CLASON:2019:GMB

COX:2022:MCM

CHENG:2013:DDS

CHADA:2022:MEK

CHAK:2023:GLE

COTTER:2020:TMA

CHEVREUIL:2015:LSM

Coleman:2019:GFC

Chen:2017:FCS

Crisan:2020:SAS

Chen:2018:RAE

Constantinescu:2020:STI

Chen:2014:WRB

Chen:2017:RBM

Chen:2015:OLE

[CRG+15] Si Chen, Kristofer-Roy G. Reyes, Maneesh K. Gupta,

Paul Dupuis, Markos A. Katsoulakis, Yannis Pantazis, and Petr Plecháč. Path-space information bounds for uncertainty quantification and sensi-

Dodwell:2015:HMM

Dodwell:2019:EHM

Dick:2016:HOQ

Dick:2022:EPL

Dobson:2021:UCM

DelMoral:2015:SMC

DeLozzo:2016:EDB

REFERENCES

Drovandi:2021:SMH

Dolz:2020:HOP

Despres:2016:UPI

Durante:2018:SGM

Joseph Durante, Raj Patel, and Warren B. Powell. Scenario generation methods that replicate crossing times in spatially distributed stochastic systems.

delRosario:2019:LVD

Du:2017:RA

Dolgov:2019:HAL

Dinner:2020:SGV

REFERENCES

[EFF+23] Max Ehre, Rafael Flock, Martin Füße, Iason Papaioannou, and Daniel Straub. Certified dimension reduction for Bayesian updating with the cross-entropy method. *SIAM/
Elfverson:2016:MCC

Elman:2013:RBC

Eigel:2016:LEE

Eigel:2020:ASG

Eigel:2016:AMM

Ernst:2022:WSR

Ernst:2015:AEP

REFERENCES

REFERENCES

SIAM/ASA Journal on Uncertainty Quantification, 6(2): 522–548, ????, 2018. CODEN SJUQA3. ISSN 2166-2525. [GMN22]

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Code</th>
<th>Abstract</th>
</tr>
</thead>
</table>

Hung:2020:LID

Higham:2013:MET

Hosseini:2017:WPBb

Hosseini:2019:TMH

Horwood:2014:GMD

Heitzinger:2018:CFM

REFERENCES

2018. CODEN SJUQA3. ISSN 2166-2525.

Harbrecht:2016:MAQ

Hu:2021:UQB

Hoang:2021:MMC

Huan:2018:CSC
Herrmann:2019:UQS

Haasdonk:2013:RBM

Haaland:2018:FCS

Iolov:2017:ODE

Ibrahima:2017:MDS

Iza-Teran:2019:GML

Jiang:2016:GOR

Jamanda:2021:COF

Jimenez:2017:NPC

Jin:2013:OIS

Jahnke:2022:MSC

Jarman:2013:CSS

Jarman:2015:ECC

Jin:2021:SPS

REFERENCES

Kantas:2014:SMC

Kenz:2013:CFB

Kyzyurova:2018:CCM

Katzfuss:2022:SVA

Kang:2016:KAR

Kouri:2022:RAO

Kressner:2015:LRT

Kahle:2019:BPI
Christian Kahle, Kei Fong Lam, Jonas Latz, and Elisa-

Kovacs:2015:WCF

Kovacs:2015:WCF

Kwiatkowski:2015:CSR

Kwiatkowski:2015:CSR

Kouri:2014:MSC

Kouri:2014:MSC

Kamilis:2018:UQL

Kamilis:2018:UQL

Kubinova:2020:BPS

Klein:2022:TCS

Koley:2021:MMC

Kunoth:2016:SA

Kouri:2018:EOC

Kouri:2022:CEO

Khristenko:2019:ABE

Kleiber:2014:MCD

Kuehn:2015:NCS

REFERENCES

[KW16] Ko:2016:AMQ

[Lás16] Laszlo:2016:CEP

[Latz:2020:WPB]

[Le 13] Le:2018:SLS

[LeGratiet:2013:BAH]

[LeGratiet:2014:BA]

[LCE18] Lee:2018:SLS
Lee:2019:MAS

Lee:2019:LRS

Labovsky:2014:EAM

Liu:2017:DRG

Li:2021:RMD

Li:2022:NTS

Lopez-Lopera:2018:FDG

Li:2020:SAB

Qin Li, Jian-Guo Liu, and Ruiwen Shu. Sensitivity analysis of Burgers’ equation with...

[Li2017:URL] Li:2017:URL

Mittal:2016:FUP

Mohammadi:2022:CVB

Mycek:2019:MMC

Moosmuller:2020:GAT

Ming:2021:LGP

Marmin:2018:WGP

Minh:2022:FSA

Murray:2013:DSS
Lawrence M. Murray, Emlyn M. Jones, and John

Matsuda:2021:EOD

Malenova:2016:SSC

Martin:2021:PCO

Morrison:2018:RMI

Morris:2018:DFM

Motamed:2019:FSP

Manzoni:2016:ASB

Minunno:2013:SPB

Mahmood:2015:PBE

Nanty:2016:SMS

Newsum:2017:ERB

Nusken:2019:CSS

Nane:2018:ASI

Nickl:2020:CRP

REFERENCES

Ozen:2016:DPC

Oughton:2016:HEM

Owen:2017:CSB

Oughton:2022:IVE

Owen:2021:EEA

Osthus:2020:PCA

Oliver:2017:MRM

REFERENCES

Owen:2017:SVM

Omre:2021:BSI

OMalley:2014:CPN

Osthus:2019:PUB

Owen:2013:VCG

Owen:2014:SIS

Pulch:2019:SPS

Pampell:2014:PDT

Prescott:2020:MAB
REFERENCES

Prescott:2021:MAB

Peherstorfer:2019:MMC

Picheny:2013:NST

Pham:2022:EAC
Trung Pham and Alex A. Gorodetsky. Ensemble approximate control variate estimators: Applications to Multifidelity importance sampling.

Patil:2022:OFU

Perry:2019:ASH

Peherstorfer:2018:MPC
REFERENCES

[PS20] O. R. Pembery and E. A. Spence. The Helmholtz equa-
REFERENCES

Perrin:2014:PEO

Park:2017:SRT

Pulch:2013:SGM

Pronzato:2020:BQE

Qian:2018:MMC

Rao:2021:ECE

Rahman:2014:GAD

Rahman:2016:SI
REFERENCES

Rahman:2018:MPP

Rahman:2020:SCE

Rabitti:2019:SOI

Rohrbach:2022:RBA

Ruzayqat:2022:LPF

Rumsey:2020:DMU

Ray:2015:BCC

Rahman:2022:SDD

Sharif Rahman and Ramin Jahanbin. A spline dimensional decomposition for uncertainty quantification in high-
REFERENCES

Roosta-Khorasani:2015:ASA

Rim:2018:DIU

Rim:2018:TRM

Roystant:2020:GKG

Roustant:2021:GK

Resseguier:2021:QTR

Rao:2015:PEE

Regier:2015:MMU

REFERENCES

DEN SJUQA3. ISSN 2166-2525.

Romer:2016:SMR

Ren:2020:CIM

Reich:2021:FPP

Sanz-Alonso:2018:ISN

Sanz-Alonso:2015:LTA

Sanz-Alonso:2022:FER

Spiller:2014:AEC

Saibaba:2019:EMB

REFERENCES

Sung:2022:CIC

Severino:2020:UQU

Scarabosio:2022:DNN

Sinsbeck:2021:SDC

Sousedik:2016:ISI

Staber:2015:ASL

Sun:2019:ESD

Shulkind:2018:EDN

Sousedik:2022:SGM

Spagnol:2019:GSA

Seshadri:2017:ESQ
Pranay Seshadri, Akil Narayan, and Sankaran Mahadevan. Effectively subsampled quadratures for least squares polyno-

Song:2016:SEG

Strong:2014:WMG

Soize:2015:PCE

Soize:2017:OPT

Silvester:2016:OSL

Sun:2021:RSD

Spiliopoulos:2020:IGA

Salem:2017:UPD

REFERENCES

Stanhope:2017:RSI

Stein:2013:FNH

Sturlaugson:2015:SAC

Singh:2013:PME

Scheichl:2017:QMC

Swigon:2019:IJD

Sinsbeck:2015:IDA

Su:2017:SIS

[ST17] Chen Su and Xuemin Tu. Sequential implicit sampling methods for Bayesian inverse

REFERENCES

Tan:2019:GPM

Tan:2020:BOE

Torlo:2018:SWR

Teckentrup:2020:CGP

Thorarinsdottir:2013:UPD

Tsilifs:2017:EBE

Travelletti:2023:UQE

Thorbergsson:2018:EDP

Leifur Thorbergsson and Giles Hooker. Experimental design...

REFERENCES

REFERENCES

Vermiglio:2017:PCE

Vernon:2019:KBE

Vondrejc:2019:ACC

Vollmer:2015:DIM

VanBarel:2019:ROP

Volodina:2020:DDN

vanWyk:2015:PLN

Wallstrom:2017:AMI

References

REFERENCES

Zhao:2021:LBM

Zhou:2017:HAM

Zou:2022:LAR

Zhang:2019:SDA

Zhu:2014:CAS

Zhu:2021:ESS