Title word cross-reference

Birkhoff-Rott [220]. Birth [707, 901, 1000].
Birth-Death [901]. BiStability [803].
Bistable [156]. Blatz [210]. Blips [330].
Bloch [798]. Block [454, 954]. Blood [397].
Blow [621, 14]. Blow-Up [14, 621]. Blowup [55].
Boltzmann [680, 656, 544, 187, 575]. Bone [26].
Boosting [746]. Boreal [304]. Borehole [754].
Boreholes [398, 963, 880]. Borne [844].
Bose [507, 326, 353]. Both [664, 435].
Boundary-Layer [496]. Bounded [517, 1016].
Box [976]. Bragg [329]. Brain [849].
Breakup [138, 181, 309, 623]. Breast [52].
Breathing [104]. Broadwell [425]. Brownian [617, 405, 346, 128, 125].
Bubble [786, 170, 541, 82]. Bubbles [489].
Bubbly [952]. Buckley [571, 143]. Buffer [149, 396].
Buffered [166]. Buffers [142, 341]. Bulk [635].
Bumps [110, 554]. Burger [678].
Buried [319]. Bursting [374].

C [162]. Cable [147].
caches [723]. Cahn [177, 285, 263, 620].
Calcium [460].
Calculating [552, 740].
Calibration [666, 962].
Camassa [329].
Can [673, 307].
Canard [573]. Cancer [52, 195].
Capacitor [246].
Capillary [47, 822, 542, 979, 712, 362, 253, 143, 528].
Capillary-Fill [253].
Caps [48].
Capture [819, 942].
Capturing [282].
Carbide [569].
Carbon [888].
Cardiac [119, 725].
Firing [77]. First [865]. First-Price [496]. Fish [814]. Fisher [883]. Fission [682]. Fit [197].

Fitted [529]. FitzHugh [166, 635]. Fixed [926, 83, 958, 884, 938]. Fixed-Time [958].

Fluctuating [904]. Fluctuations [757, 567].

Fluid-Kinetic [309]. Fluid-Structure [567]. Fluidized [718]. Fluids [109, 735, 417].

Follow [810]. Follow-the-Leader [810].

Following [382]. Food [585]. Force [109, 885, 187, 178, 176].

Forced [404, 130, 251]. Forces [169, 111, 395].

Forcing [262, 404, 533]. Forests [304].

Form [619, 316, 432, 627]. Formal [447].

Formation [947, 532, 879, 909]. Formula [393]. Formulae [777]. Formulas [702].

Formulation [970, 228, 832, 482, 772, 863, 274]. Forward [850, 855]. Foundations [218].

Fourth [246]. Fraction [235].

Fractional [549, 726, 96, 859, 871, 115, 147, 678, 727, 450].

Fractions [313]. Framework [786, 572, 545, 164, 462, 808, 929].

Free-Draining [812]. Free-Energy [169, 936, 575].

Free-Surface [45]. Frequencies [633, 807].

Frequency [416, 172, 109, 1021, 92, 975, 968, 232, 721, 800, 583, 394, 884, 938].

Friction [184]. Frictional [340].

Front [920, 156, 658, 959]. Frontal [79]. Fronto [350, 310, 539, 564, 1011].

Frost [171]. Full [333, 255].

Fully [582, 360]. Fully-Discrete-State [360].

Functional [249, 231, 508, 782, 858].

Functional-Differential [231].

Functionals [936, 61]. Functions [416, 935, 561, 202, 361, 809, 359, 864, 51, 135].

Furnace [860]. Furthest [501]. Fusion [574].

Fuzzy [64].

G [959]. Galerkin [117]. Games [54].

Gap [674, 773]. Gaps [586].

Gas [639, 321, 111, 184, 892, 767, 699, 107, 961].

Gas-Liquid [111, 184]. Gases [94].

Gasless [350]. Gate [846]. Gated [674, 978].

Gaussian [763, 429, 469]. gelation [545].

Generalized [549, 797, 905, 138, 206, 858, 290, 515, 220, 866, 500, 400, 51, 135].

Generalizing [867]. Generated [799, 489, 314].

Generates [614].

Generation [885, 975, 236, 889, 176].

Genericity [823]. Genetics [774]. Gennes [719, 1010].

Geographic [209, 118].

Geomagnetic [783]. Geometric [643, 210, 649].

Geometry [986, 896, 689, 654, 826, 491, 525, 203].
Geometry-Driven [203]. Geosocial [294].
Gliding [455]. Glioma [886]. Gliomas [28].
Graph [1008]. Graphons [830]. Graphs [808].
Green’s [45, 314]. Ground [172, 507, 326, 259]. Group [830, 967, 339, 691].
Growth [935, 488, 650, 240, 73, 457, 237, 779, 886, 1009].
Guaranteed [670]. Guided [74].
Habitat [458, 590]. Hair [820, 534]. Half [924, 112, 638, 556]. Half-Plane [112].
Half-Planes [924]. Half-Space [638, 556].
Hall [21]. Hamiltonian [517, 851, 159, 627].
Handling [716]. Hare [304]. Harmonic [990, 924, 112, 963, 891, 646, 381]. Harris [387].
Harvesting [814, 376]. Healing [615].
Hemodynamics [345]. Hepatitis [162, 81].
Herbivore [249]. Herglotz [864]. Hessian [108]. Hessian-Based [108].
Heterogeneous [923, 521, 280, 829, 771, 688, 928].
Hexagonal [454]. Hexagons [719].
Hierarchical [153, 830]. Hierarchy [281].
High [416, 668, 980, 896, 310, 28, 232, 494, 808, 950, 410, 421]. High-Accuracy [421].
Hilliard-Type [263]. HIV [448, 332, 890, 202, 435, 784]. HIV-1 [435].
Hoc [501, 227]. Hodgkin [702]. Holm [66].
Homeostasis [461]. Homogeneous [127, 626, 80]. Homogenization [634, 865, 651, 681, 792, 738, 34, 1020, 546, 961].
Homogenized [771]. Homology [650].
Homotopy [333]. Honeycomb [213, 380].
HPM [333]. Human [372]. Husimi [361]. Hybrid [482, 927, 744, 196, 969].
Hyperbolic [761, 351, 793, 974, 443, 7, 222, 601, 379, 636].
Hyperbolic-Parabolic [7, 222].
Hyperbolicity [37]. Hyperelastic [768].
Hypergraphs [867]. Hyperstabilization [524]. Hysteresis [657, 173].
Immiscible [791]. Immune [746, 349].

Range [806, 629]. Rapid [1014]. Rapidly [792]. Rare [134]. Rarefraction [82]. Rasch
[137, 123, 582, 719, 737, 781, 1022, 609, 70, 91, 497, 394, 366, 1010, 400, 730, 893].
Recursive [657]. Redatuming [815]. Redox [1003]. Reduced [464, 745].
Reduction [386, 572, 739, 199, 455, 1019, 417, 692].
Reductions [567]. Reflection [186, 82, 212]. Reflections [654, 314].
Reflectivity [903]. Refraction [137].
Refractions [654]. Refuge [22]. REGIME [761, 259, 155, 729, 969, 178, 564].
Regime-Switching [155]. Régimes [101, 309, 520]. Region [60]. Regions [592].
Regular [513]. Regularity [106].
Regularization [613, 408, 264]. Regularized [526]. Reinforced [739, 235].
Relations [101, 547]. Relative [571].
Reoccurring [357]. Reparametrizations [671]. Repeated [234]. Replication [890].
Resonances [358, 336, 329]. Resonant [131, 8, 107, 212]. Resonators [826, 752].
Resources [788, 54]. Respect [25].
Response [249, 963, 880, 489, 84].
Responses [325, 349]. Result [983].
Results [932, 293, 98, 721, 198, 113, 239].
Retina [937, 320]. Retirement [370].
Retraction [5]. Retrieval [724, 314].
Revenue [873]. Reversal [987]. Reversible
[23, 980, 125]. Reversing [208]. Revisited
[737, 420]. Revisiting [787]. Reward [917].
Reweighted [632]. Rewiring [847].
Rheometer [33]. Rhombic [391].
Rhythmomimetic [732]. Riblets [324].
Ridge [915]. Ridge-Like [915]. Riemann
[483, 515]. Riemannian [826]. Rigid
[735, 13, 57, 789, 649, 628]. Rigorous
[689, 586]. Rim [853]. Ring [273, 383, 752].
Rings [430]. Ripple [553]. Ripples [362].
Risk [293]. Rivers [744]. Roasting
[825, 1020]. Robin [905, 977]. Robust
[613, 843, 85]. Robustness [757]. Rocks
[223, 921]. Rod [424, 168]. Rogue [485].
Role [141, 22, 114, 890]. Rolling [648].
Root [820, 534]. Rooted [83]. Roots [268].
Rosenau [355]. Rosenau-Type [355].
Rosenzweig [216].
Rough [389, 960, 1007, 72, 705, 373].
Salmonella [254]. Sample [660]. Sampling [141, 364, 169, 204, 298]. Sap [321, 897].
SAR [870, 363]. Saturation [624].
Scattering [645, 127, 416, 924, 926, 683, 677, 1016, 121, 729, 436, 301, 918, 413, 609, 782, 953, 232, 270, 559, 748, 80, 818, 329, 495, 9, 863, 288, 500, 884, 938, 373]. Scenarios [365].
Scheme [392, 38, 595, 19]. Schemes [95, 106]. Schrödinger [761, 386, 90, 647, 409, 624, 393, 766, 485, 627].
Schwinger [301]. Screens [786]. Screw [503, 780]. Seasonal [376, 150, 889].
Seasonality [385]. Seawater [607, 447].
Second [430, 898, 105, 529, 906, 738, 140].
Second-Order [898, 105, 529, 906, 140].
Secondary [591]. Section [8, 194].
Sectional [741]. Secular [37].
Sedimentation [37, 741]. Seed [367]. Seen [146]. Segel [859, 913]. Segmentation [64].
Semelparous [124]. Semi [905, 129, 537].
Semi-Infinite [129, 537, 905].
Semianalytical [205]. Semiarid [306, 352].
Semiconductor [964, 101, 597].
Semiconductor-Electrolyte [597].
Semiconductors [569]. Semiopen [24].
Semiplane [628]. Sensing [595].
Sensitivities [898]. Sensitivity [459, 695].
Severity [720]. Sex [139]. Shadow [416].
Shah [64]. Shallow [213, 753, 261, 587].
Shock [832, 811, 974, 101, 766, 207, 82, 709, 410].
Sided [76]. Sign [290]. Signal [642, 931].
Simple [660, 631, 612, 649, 630]. Simplified [454, 914, 983, 460]. Simplifying [242].
Simulating [134, 519]. Simulation [219, 289, 320, 597, 75, 446, 808, 878, 732, 445].
Simulations [607, 407, 901, 30, 125, 466].
Single-Server [610]. Single-Shot [369].
Site-Specific [800]. Size [19]

REFERENCES

579, 718, 709, 886, 74, 166, 528, 855, 314.

References

REFERENCES

[33] V. Cregan, S. B. G. O’Brien, and S. McKee. The shape of a small lli-

Ptashnyk:2010:DMM

Kirst:2010:PRP

Ibragimov:2010:SAR

Burger:2010:HAP

Keeler:2010:SAG

Delon:2010:FTO

Sun:2010:SCS

Godin:2010:DBI

Cogan:2010:EBI

[42] N. G. Cogan. An extension of the boundary integral method applied to

Peter:2010:GSA

Liondas:2010:TIS

Hein:2010:ERI

Akers:2010:TWD

Akers:2010:DTD

Zammett:2010:MMI

Li:2010:IID

Joly:2010:AAW

Zabarankin:2010:GAF

[51] M. Zabarankin. Generalized analytic functions in axially symmetric Oseen

REFERENCES

Huang:2010:LFD

Haslinger:2010:MFM

Hall:2010:AAS

Li:2010:VFM

Nong:2010:TFE

Abenda:2010:NSS

Chen:2010:TPW

Daly:2010:ETB

Flaatten:2010:WPM

[69] Tore Flåtten, Alexandre Morin, and Svend Tollak Munkejord. Wave prop-

Liu:2010:PEE

Elliott:2010:SPF

Xu:2010:DWC

Hsu:2010:SPS

Thompson:2010:GSW

Hetmaniuk:2010:ACD

Yang:2010:CSD

Ermentrout:2010:SDT

Gautesen:2010:DTD

REFERENCES

Golovaty:2010:FRL

Liu:2010:DIO

Zou:2010:ASM

Sheng:2010:CTS

Li:2010:CSF

Szomolay:2010:AAR

Massot:2010:RMM

Bagarello:2010:OLD

[87] Kristoffer J. Glover, Peter W. Duck, and David P. Newton. On nonlinear

REFERENCES

Chapman:2011:UMS

Liu:2011:AEC

Ali:2011:BML

Cox:2011:SOC

Kampen:2011:GRP

Petra:2011:MDO

Yang:2011:SHB

Dontsov:2011:ELF

[109] E. V. Dontsov and B. B. Guzina. Effect of low-frequency modulation on

Bresslo:2011:TDB

Friis:2011:GWS

Duran:2011:OTH

Passerini:2011:TRS

Bourouiba:2011:IMB

Kimura:2011:AFL

Bennetts:2011:WAT

Fikioris:2011:EUS

Rao:2011:ORA

Ambrosi:2011:ECC

Sample:2011:MCO

Costabel:2011:KMI

Richardson:2011:DBE

Ammari:2011:ROA

[123] Habib Ammari, Emmanuel Bossy, Vincent Jugnon, and Hyeonbae Kang. Re-
REFERENCES

Asch:2011:RCA

Keener:2011:KSG

Donovan:2011:ISM

Zabarankin:2011:GAF

Knowles:2011:CWP

Al-Musallam:2011:RRI

DeVille:2011:SST

Lebensztayn:2011:LTG

Anderson:2011:PGA

Qesmi:2011:HBC

Popovic:2011:SCM

Han:2011:TFX

Wall:2011:IPM

Tsai:2011:TWB

[166] Je-Chiang Tsai and James Sneyd. Traveling waves in the buffered

Haltmeier:2011:MAI

Lafortune:2011:ILD

Chipot:2011:ESM

Fontelos:2011:SSB

Peppin:2011:FHC

Bao:2011:ILS

Xu:2011:AWC

REFERENCES

Fontelos:2011:EBV

Jiang:2011:ASS

Duan:2011:RTI

Friis:2011:WPC

Dhia:2011:MAJ

Lai:2011:NNR

Li:2011:DBF

REFERENCES

Ammari:2011:MIE

Yariv:2011:ICV

Sobral:2011:GOS

Repke:2011:TAB

Negron-Marrero:2011:RVD

Dondl:2011:CEC

Nepomnyashch:2011:SSC

Minelli:2011:CDD

Huang:2012:LFG

Tilley:2012:GDC

Izen:2012:SFD

Emami:2012:SSC

Fehrenbach:2012:GGP

Hunter:2012:SSD

Foster:2012:RIS

Mohler:2012:GPK

REFERENCES

Bauer:2012:MAA

Sun:2012:GBR

Skrynnikov:2012:SIV

Li:2012:GDH

Dodwell:2012:SSV

Du:2012:NAN

Givli:2012:SMB

Leugering:2012:ETA

Keeler:2012:RTR
REFERENCES

Arnold:2012:UVF

Li:2012:ESN

Calvez:2012:ANM

Illner:2012:FDE

Lakshtanov:2012:HFS

Jones:2012:SPI

Akers:2012:SSD

Goldsztein:2012:EFS

Martin:2012:GIG
Ma:2012:SSV

Lam:2012:IPC

Zhou:2012:ARM

Gao:2012:MMM

He:2012:MEF

Joshi:2012:SJC

Riaza:2012:MEB

Oliveras:2012:RWW

Epele:2012:GSL

Lindsay:2012:MQS

[246] A. E. Lindsay and J. Lega. Multiple quenching solutions of a fourth order parabolic PDE with a singular nonlinearity modeling a MEMS capacitor.
REFERENCES

Feliu:2012:VEC

Kuegler:2012:SUM

Castillo-Chavez:2012:GDP

Jiang:2012:EEC

Rees:2012:AAF

Tang:2012:SBF

Rebelo:2012:MTF

Beaumont:2012:PSW

[255] Isaac B. Sprague and Prashanta Dutta. Depth averaged analytic solution for

[264] G. Yin, Guangliang Zhao, and Fuke Wu. Regularization and stabilization
REFERENCES

[273] Seung-Yeal Ha and Moon-Jin Kang. On the basin of attractors for the unidirectionally coupled Kuramoto model in...
REFERENCES

Gugat:2013:CSD

Richardson:2013:ASM

Dai:2013:MIG

Kim:2013:EUB

Muller:2013:GMA

Wang:2013:FAC

Campillo-Funollet:2013:MSE

Muller:2013:GMA

Li:2013:VIS

[291] Bo Li and Yanxiang Zhao. Variational implicit solvation with solute molecular

Fromion:2013:SGE

Giorgi:2013:AIL

Chapman:2013:EAT

Escobedo:2013:COP

Liu:2013:MMW

Craciun:2013:PPM

Sherratt:2013:PSKa

Xiao:2013:CMM

Crooks:2013:SEM

[308] Elaine Crooks, Bogdan Kazmierczak, and Tomasz Lipniacki. A spatially

Goudon:2013:FKM

Ghazaryan:2013:SBC

Bendali:2013:MJR

Mamode:2013:TPS

Kang:2013:BVF

deHoop:2013:RGF

Xu:2013:ACM

Liang:2013:CFS

REFERENCES

REFERENCES

Cai:2013:ACG

Nguyen:2013:LLE

Dresch:2013:TLM

Osting:2013:LLS

Zhang:2013:CTV

DeMatteis:2013:EFI

Conway:2013:SAP

Nave:2013:CHP

vanderSchaft:2013:MSB
[334] Arjan van der Schaft, Shodhan Rao, and Bayu Jayawardhana. On the mathematical structure of balanced chemical reaction networks governed by mass
REFERENCES

[343] Isabel N. Figueiredo and Carlos Leal. Physiologic parameter estimation using inverse problems. *SIAM Journal on
REFERENCES

Jachalski:2013:SSL

Cousins:2013:NPB

Franz:2013:MRD

Lei:2013:DCD

Pakdaman:2013:RSS

Shu:2013:GSN

Ghazaryan:2013:GCF

Bellouquid:2013:HVP

Sherratt:2013:PSKb

[352] Jonathan A. Sherratt. Pattern solutions of the Klausmeier model for

Kapitula:2013:KMG

Xu:2013:MTI

Rey:2013:LTB

Camiola:2013:CTM

Roubicek:2013:MRL

Dobson:2013:RPW

Shuai:2013:GSI

Fermo:2013:FDS

REFERENCES

0036-1399 (print), 1095-712X (electronic).

Merck:2013:MCD

Cheng:2013:MMA

Zhang:2013:NIE

Mackey:2013:DBS

Balsim:2013:ACP

Chen:2013:BIT

Black:2013:MMC

Fikioris:2013:SWS

George Fikioris, Panagiotis J. Papakanellos, and Themistoklis K.

Prigiobbe:2013:HTF

Ablowitz:2013:NWP

Schmidt:2013:UAT

McGinty:2013:MAW

Hall:2013:MCR

Ammari:2013:ENC

Zhang:2013:RDL

Bao:2013:DRS

REFERENCES

Chen:2014:BDM

Calderer:2014:EMN

Kim:2014:NFS

Guermond:2014:VRE

Dohnal:2014:TSW

Wang:2014:SSH

Alves:2014:LES

Bonilla:2014:HOA

Klibanov:2014:PIS

[413] Michael V. Klibanov. Phaseless inverse scattering problems in three dimen-
REFERENCES

74

for mechanistic control of drug release.

Liu:2014:CED

Calderer:2014:LCE

Han:2014:RTR

Bao:2014:NCE

Zheng:2014:MWS

Liu:2014:GBM

Albi:2014:SAF

Zigelman:2014:IES

REFERENCES

Selen:2014:PFS

Gourley:2014:MMS

Li:2014:SWE

Lai:2014:MHV

Gibson:2014:CSL

Kang:2014:BSI

Fang:2014:SDA

Zeng:2014:PSD

Shklyaev:2014:OLM

Sergey Shklyaev, Alexander A. Nepomnyashchy, and Alexander Oron. Oscillatory longwave Marangoni convection
REFERENCES

Flores:2014:DDW

Mamode:2014:QSS

Guzzo:2014:ETV

Schneider:2014:HOM

Zhang:2014:PFM

Li:2014:MAT

Jazar:2014:DSI

Chirove:2014:ACL
REFERENCES

Marck:2014:WOS

Plocliniczak:2014:AEK

Pender:2014:GCE

Alarcon:2014:SAR

Packwood:2014:MTM

Bourne:2014:HPS

Hohenegger:2014:DRM

Garon:2014:TDQ

Kolokolnikov:2014:BMD

[466] Antoine Perasso and Ulrich Razafison. Asymptotic behavior and numer-

Ferreira:2014:MTV

Aftalion:2014:ORS

Smith:2014:GBD

Faye:2014:PLD

Chung:2014:CDA

Hong:2014:CTS

Manevitch:2014:NOA

Song:2014:MII

Cai:2014:DMP

Magpantay:2014:ECI

Hyvonen:2014:OEP

deLuna:2014:TDW

Mehats:2014:CQT

Carter:2014:MST

Alfaro:2014:ESR

Foster:2014:MOP

Azevedo:2014:URS

[483] A. V. Azevedo, A. J. de Souza, F. Furtado, and D. Marchesin. Uniqueness of the Riemann solution for three-

Shuguan Ji, Weishi Liu, and Mingji Zhang. Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson–Nernst–Planck models. *SIAM Journal

Biondini:2015:INM

Cheng:2015:ACT

Murashige:2015:HOD

Park:2015:APM

Fibich:2015:LAF

Nakamura:2015:RIC

Egger:2015:ICM

Black:2015:TDM

Wang:2015:TDD

REFERENCES

REFERENCES

REFERENCES

Wang:2015:MSN

Forestier–Coste:2015:DFS

Ammari:2015:MMF

Ammari:2015:MMM

Flores:2015:PSM

Ko:2015:IBM

Brenna-Medina:2015:SST

Reardon:2015:IWU

Wang:2015:SIT
REFERENCES

CODEN SMJMAP. ISSN 0036-1399 (print), 1095-712X (electronic).

Sharma:2015:DWS

Lindsay:2015:TPC

Ghazaryan:2015:SAC

Li:2015:QSC

Savina:2015:SCG

Brubaker:2015:TDC

Gosse:2015:LIA

Frank:2015:NBE

Fogelson:2015:FEP

REFERENCES

Slawomir Bialecki, Bogdan Kazmiereczak, and Je-Chiang Tsai. Stationary

[572] Zhenning Cai, Yuwei Fan, and Ruo Li. A framework on moment model

[581] Pawel Kordybuik and Piotr Szymczak. Steadily translating parabolic

Bal:2015:RFA

Rundell:2015:RDS

Herschlag:2015:ESS

Choi:2015:CTW

Monjarret:2015:LWP

Nicola:2015:ODP

Dijkstra:2015:DTQ

Li:2015:EFS

REFERENCES

Fu:2015:AAP

Jiao:2015:DMT

Bonaccorsi:2015:EON

Thorpe:2015:CMM

Sandbichler:2015:NCS

Saumier:2015:OTP

He:2015:MSR

Drew:2015:MTS

Fromion:2015:SMP

[608] Alexandre Munnier and Karim Ramdani. On the detection of small moving

REFERENCES

Hofbauer:2016:GSS

Yang:2016:NFH

Walton:2016:RSI

Lam:2016:ERL

Li:2016:TPR

Chiricotto:2016:DSE

Griesmaier:2016:FFS

Ando:2016:PRF

Chapman:2016:HRD

REFERENCES

Borum:2016:SCP

Ammari:2016:PPD

Peron:2016:ETC

Boyer:2016:SDC

Hu:2016:MCM

Larsson:2016:GSA

Bronski:2016:GHS

Figueiredo:2016:HMA

Karrasch:2016:LTT

[661] Basant Lal Sharma. Wave propagation in bifurcated waveguides of square lat-

[670] L. Angela Mihai and Alain Goriely. Guaranteed upper and lower bounds
REFERENCES

REFERENCES

[688] Dane Taylor, Per Sebastian Skardal, and Jie Sun. Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment func-
REFERENCES

Friedrich:2016:GRA

Rajan:2016:LSW

Magal:2016:FSE

Strugarek:2016:RSC

Gordon:2016:ACF

Brunton:2016:SSP

deGreef:2016:PSD

Wagner:2016:OAW

Simpson:2016:TED

REFERENCES

[706] Yongxin Chen, Tryphon Georgiou, and Michele Pavon. Entropic and displacement interpolation: a computational approach using the Hilbert met-
Bini:2016:GSP

Alberti:2017:MAU

Sprenger:2017:SWD

Epstein:2017:EDP

Ainseba:2017:CST

Lopez:2017:SBC

Magi:2017:MBM

Griesmaier:2017:UPI

Wang:2017:PVB

Hyvonen:2017:PCH

Fazly:2017:IRD

Sobral:2017:FAS

Canevari:2017:ORN

Duncan:2017:AAI

Mandel:2017:PBG

Coclite:2017:NWA

Leonardi:2017:MLR

Maretzke:2017:SEL

Coudiere:2017:ATL

Angstmann:2017:FOC

MacNamara:2017:FEL

Chen:2017:MBR

Garnier:2017:FWT

deHoop:2017:RLM

Munch:2017:ASU

Yao:2017:RDD

Mascali:2017:CTG

Ijioma:2017:TWR

Frigaard:2017:CYN

Fadai:2017:DRK

Garde:2017:DRD

Marigo:2017:SOH

Canic:2017:DRB

Misawa:2017:BIE

Burger:2017:ESS

Biondini:2017:GPD

[742] Gino Biondini and Thomas Trogdon. Gibbs phenomenon for dispersive PDEs

[751] Benjamin Letson, Jonathan E. Rubin, and Theodore Vo. Analysis of interacting local oscillation mechanisms in

REFERENCES

REFERENCES

REFERENCES

DEN SMJMAP. ISSN 0036-1399 (print), 1095-712X (electronic).

Mitchener:2017:SML

Bruna:2017:DPS

Isakov:2018:ISI

Nicholls:2018:NSG

Kisil:2018:IWH

Tordeux:2018:TPF

Deschner:2018:SSS

Ye:2018:DLF

Volpert:2018:DDS

REFERENCES

Poignard:2018:SLM

Riaza:2018:TBP

Fadai:2018:AAM

Greenleaf:2018:SMR

Haltmeier:2018:ALP

Ren:2018:NQP

Laurencot:2018:HDP

Juang:2018:ACC

McCuan:2018:FEL
REFERENCES

2018. CODEN SMJMAP. ISSN 0036-1399 (print), 1095-712X (electronic).

Choi:2018:VIF

Marcotte:2018:OHT

Kettunen:2018:AEA

Jin:2018:TCN

Facca:2018:TSM

Borcea:2018:LBI

Gordon:2018:EMA

Bressloff:2018:DSP

Brander:2018:MEM

REFERENCES

Freistuhler:2018:NWP

Haddar:2018:UTD

Brunner:2018:RPP

Qu:2018:MTW

Tudisco:2018:NLE

Cumberbatch:2018:CVC

Li:2018:NEC

Abbasi:2018:ADC

Lawley:2018:PAV

REFERENCES

Doschoris:2018:ISD

Dai:2018:PSV

Devitt-Lee:2018:NDW

Coman:2018:WSR

Filbet:2018:VMS

daMota:2018:MTW

Carrillo:2018:ZNC

Banaji:2018:INM

Liu:2018:AMF

[858] Xuejiao Liu, Yu Qiao, and Benzhuo Lu. Analysis of the mean field free energy

Estrada-Rodriguez:2018:FPK

Sloman:2018:AAS

Lazzaroni:2018:ADP

Bennett:2018:MMM

Poblet-Puig:2018:BAF

Vasquez:2018:AHW

Dalwadi:2018:UDT

Torrejon:2018:GME

Bosch:2018:GDI

Ferreira:2018:DRV

Mizerski:2018:LSH

Gilman:2018:DFR

Ferrillo:2018:CCF

Arredondo:2018:MDN

Fibich:2018:REL

Chang:2018:MTN

Du:2018:SND

REFERENCES

Fogelson:2018:AMF

Stepien:2018:TWG

Ji:2018:AAD

Brown:2018:SCL

Pan:2018:SIA

Conway:2018:EHI

Mercier:2018:ALM

Huang:2018:CHC

deHoop:2018:RSM

Zhao:2018:STD

[894] Guangyu Zhao and Shigui Ruan. Spatial and temporal dynamics of a non-local viral infection model. SIAM

Chesnel:2018:IPR

Hohenegger:2018:RCF

Debarnot:2018:CNR

Herty:2018:MMM

Monter:2018:SDA

Klika:2018:DSD

Kim:2018:DVS

Boujlida:2018:ATE

Tong:2018:DMM

[911] Jiajun Tong and Michael J. Shelley. Directed migration of microscale swim-

[920] Grégory Faye and Zachary P. Kilpatrick. Threshold of front propaga-
REFERENCES

REFERENCES

REFERENCES

Wang:2019:IDE

Cucker:2019:FUS

Sun:2019:FTF

Tzella:2019:CFP

Liu:2019:NFI

Sloman:2019:HSC

Clement:2019:ACL

Hermanns:2019:TRS

Adam:2019:OMP

[973] Yevhen Ivanenko, Mats Gustafsson, B. L. G. Jonsson, Annemarie Luger,

Falle:2019:SSD

Hakkaev:2019:GSK

Vanel:2019:AMP

Harrach:2019:GUL

Lawley:2019:EFT

Brubaker:2019:TDC

Cavallo:2019:RDS

Rebolledo:2019:OSA

Liard:2019:WPS

[982] Thibault Liard and Benedetto Piccoli. Well-posedness for scalar conservation

Meadows:2019:GAS

Cherednichenko:2019:TDB

Jiang:2019:MGD

Blyth:2019:NAF

Bal:2019:TRT

Arrigo:2019:NBA

Arnold:2019:MEC

Aquino:2019:AEC

REFERENCES

REFERENCES

REFERENCES

[1022] Alexander Katsevich. Analysis of reconstruction from discrete Radon transform data in \mathbb{R}^3 when the function has jump discontinuities. *SIAM