Title word cross-reference

(0, 1) [BM15]. (0.5, n) [BE13]. (1, −1) [dLL09]. (1, 2) [BKM08, DK06, DK10]. (1 ≤ l) [Lai05]. (1, m + 1, n + 1) [BD01]. (1−ε) ex(n, C4) [BS10a]. (2 + ε)n [DZ01]. (2s + 1) [LL14b]. (3, 1) [Xu09]. (7, 2) [Mace13, CW09]. (9v, 4, 1) [FHYM01]. (d, k) [KS03a]. (Δ + 2) [WHW14]. (k, l) [GSL98]. (K5 \ e) [GL08]. (≤ 4) [DL14]. (Q, x) [Mal89]. (r + 1) [CtJL01]. (t, m, s) [AS07]. 0 [BG91, BCH92, HL15]. 0, 1/2 [Fio06]. 0.5 [AHS01]. 1 [BG91, BCH92, CHZ04, GL10, HL15, LW17a, Rif99, Riz02, Spi95, ZLS08]. 1.1 [NK90]. 1.5 [CSS01]. 1/2 [CD14]. 1/3−2/3 [BW92]. 2 [AB94, BBF99, BM97, BJT92, BH97, BIT13, BL17b, CL15a, CL16, CL07, CSS13, CSS01, CDK10, DGM12, FJ09, FMM093, Fis94, GVW06, GSK91, GY92, HL00, IKM+92, JM97, KSS11a, LRWZ12, LC12, PSH96, Sav14, TSN04, Vaz12, Vo07, Wan02a, OSW16]. 2/3 [BT14]. 23 [JZ05]. 24 [EK10]. 2m−2 [Car94]. 2d−1 [Lei94]. 2 × 4 [MMFJ03]. 3 [OSW16, ABHM00, AcrS07, Bi05, BS16a, BS16b, BK12, BW02, CM90, CZ97, CH60a, CS02, CW09, CM14, DST01, DD13, DJ11, DM15, DGM12, EJH01, FRMPV15, FRZ16, FZ08, FXY14, FT12, Gab04, GKS15, GSK91, GKO4, GKL99, HM12a, KRS11, Kan08, KW92, LSS17, LXZZ08, MM12, MRST16, Ran02, TSN04, WYZZ14]. 3/2 [BZ11, RV99]. 3/5 [HK16b]. 34 [GW94]. 3+ [DL12]. 3d [DMN12]. 4 [AHH+10, ALZ96, BCG+10, BH97, CHZ09,
-Partitions [CGG+16]. -Path [BJT92].
-Paths [Yam16]. -Payment [PSTF00].
-Perfect [BS16c, Rif99, GS98]. -Perfection [BS16b, BS16a, BS16b, BW02, DST01, KT16, KT16].
-Point [CF17, Kap14a]. -Polymatroids [Ath14, CMP15, Mes16a].
-Polynomial [Ath14, C¸MP15, Mes16a]. -Polytopes [BS16a, BS16b, BW02, DST01, KT16, KT16].
-Preservers [KV15]. -Quasi-planar [FPS13]. -Radius [BLR16, BLR17].
-Rate [CHZ04]. -Regular [CW09, GR12, McL10, BH97].
-Representation [MRV17]. -Resonance [KSS11a]. -Resonant [YQZ09]. -Robust [KPR10].
-series [ACE97, RY91]. -set [Hur94, Lev09]. -Sets [PP07b].
-Spreading [FHL+10, FHL+11]. -Split [HL00]. -Stable [GS03].
-Spreading [FHL+10, FHL+11]. -Split [HL00]. -Stable [GS03].
-Stage [CH06a, DH90]. -State [BS15b]. -Structure [HR05a]. -Subgraph [SS11a].
-Subgraph [SS11a]. -Subgraph [AB10]. -Submodular [HI16]. -subsets [Hur94].
-Survivable [BKM08]. -Term [ST08]. -Terminal [Bih05]. -Theorem [DMN12].
-thin [BW92]. -tree [Tod89]. -Trees [DM15, GSK91, PSW96, VWY09, TP97].
-tuple [Kap14b]. -Uniform [FRZ16, GSS15, Han16a, RSR07, Yus03].
-Vectors [Swa05, Cha91]. -Visibility [HVW07]. -Wheel [Cho94a].

01-Fillings [CWYZ10].
1 [FHL+13a]. 1-Hyperbolic [BC03].
1-Planar [Suz10]. 18-Reconstructible [PR03].
2 [FHL+14, Kra07]. 2-SAT [Kra07].
3 [MRV17]. 3-Arc-Dominated [Tan10].
3-Chosability [DS10]. 3-Facial [HS08].
3-Hypergraphs [Raz10]. 3-Uniform [Kha13]. 3PC [MTV08].

4 [GM93]. 4-Cycles [DL10]. 4-Vertex [Raz10].
5-Coloring [EHL011]. 5-Cycles [ZLC12].
91m [GM93].

Abacus [Loe10]. Abelian [BS95a, BL16, BFGM15, CF09, DF94, DR04, DM13, Din06, DF04, FFie98, GF08, GG07, KCL98, Sza06, Zha05]. Absolute [BN01].
Achieves [BN01]. Achlioptas [BBFP09, KS12b]. Achromatic [KK01, KS07]. Acknowledgment [AB05].
Acquaintance [BST14, DP16]. Acquisition [LPW+13]. Acting [MS14].
Advance [PV10b]. Advancing [CKdAHdF13]. Advantageous [AC90].
Alexander [Rho15]. Algebra [HM12b].
Algebraic [BB03, FG01, GR17, MDCW16, OPVV14, SB10, WWKY11]. Algebras [ADL+09, BH16, Fer16, TW12].
Algorithm
[AHS01, ABGJ15, ÁS09c, BBF99, BHRZ14, BJT92, BHH96, BFPP15, BJZ11, Bon91, BKS10, Boy96, BCFP08, BCP08, CM05b, Che94, CMSV17, Dan09, DKM+12, Dji06, DHJ+13, Fra95, FL19, FKW10, GK07, GW00, GS93a, GH90a, GH90b, GL95, Han98, Har10, HMS05, iKK11, KK90, Kop07, KN95, LS03a, LW17a, LSL92, Luc98, MC12, Moh99, Myu01, OS92, PP07a, PV10b, RV99, Saw02, Sei01, 'Sn14, Sot15, Way01, AHS89, LW88a, LM89, Spr94, UWZ97].

Algorithmic
[BL04, CFT93, FKM+16, Peg14].

Algorithms
[AS09a, AYZ04, AMW00, AD96, ASZ02, AB95, BCSK07, BBC11, BC09a, BDM02, BKS09, CKNZ05, Che04, FJLS03, GDVL17, GS13, GK13b, GMP15, GSK91, GS16b, GRS12, HRS17, HaKK+09, HKST03, JLL16, KN16, KFHR94, Kim91, KMR09, KY12, KP95, KS06, LS95b, LM16, LPSR12, MT05, MTV08, MV99, MT90, MMPS10, MC93, MSZ10, MT11, Nao91, PRS98, RS10, RS11, SL96, SX13, ST07, Som14, SV11, TP97, TT93, Vaz12, ZM02, vIKLS14, GW94, GHYY96, GMW96, NS98, SS98, Mur96b].

Aligned
[Tót08].

All-Pairs
[HM94].

AllDifferent
[MM11].

Allocation
[BL04, CFT93, FKM+16, Peg14].

Algorithms
[AS09a, AYZ04, AMW00, AD96, ASZ02, AB95, BCSK07, BBC11, BC09a, BDM02, BKS09, CKNZ05, Che04, FJLS03, GDVL17, GS13, GK13b, GMP15, GSK91, GS16b, GRS12, HRS17, HaKK+09, HKST03, JLL16, KN16, KFHR94, Kim91, KMR09, KY12, KP95, KS06, LS95b, LM16, LPSR12, MT05, MTV08, MV99, MT90, MMPS10, MC93, MSZ10, MT11, Nao91, PRS98, RS10, RS11, SL96, SX13, ST07, Som14, SV11, TP97, TT93, Vaz12, ZM02, vIKLS14, GW94, GHYY96, GMW96, NS98, SS98, Mur96b].

Aligned
[Tót08].

All-Pairs
[HM94].

AllDifferent
[MM11].

 Allocation
[BL04, CFT93, FKM+16, Peg14].

Algorithms
[AS09a, AYZ04, AMW00, AD96, ASZ02, AB95, BCSK07, BBC11, BC09a, BDM02, BKS09, CKNZ05, Che04, FJLS03, GDVL17, GS13, GK13b, GMP15, GSK91, GS16b, GRS12, HRS17, HaKK+09, HKST03, JLL16, KN16, KFHR94, Kim91, KMR09, KY12, KP95, KS06, LS95b, LM16, LPSR12, MT05, MTV08, MV99, MT90, MMPS10, MC93, MSZ10, MT11, Nao91, PRS98, RS10, RS11, SL96, SX13, ST07, Som14, SV11, TP97, TT93, Vaz12, ZM02, vIKLS14, GW94, GHYY96, GMW96, NS98, SS98, Mur96b].

Applied
[HHHH02].

Approach
[ACD08, BNMN92, BCE+01, BAM16, CS98, CL91b, CP16b, DMS14, Gab04, IK09, Kim92, SSS13, SZ94, SV88].

Approximation
[AMW00, AHS01, AYZ04, ASZ02, AB95, AS14, AS09c, BBF99, BHRZ14, CCG+11, CKNZ05, Che04, CSS01, CV07, CL13, CMSV17, DM15, ELMS11, FLM+16, GLSS16, GPSS01, GHYY96, HKL+14, JSOS03, JP06a, KP95, KS07, KS06, KN95, LS03a, Pal12, PP07a, RV99, RS10, RZ05, SS11a, SX13, SY11, Svi03, ZM02, vIKLS14, GW94].

Approximations
[KS03d].

Arborescence
[Kir16].

Arborescences
LR04, LM11, OPR12, Oze13, SW14, Sci01, Woe93, Zak14, ZM02, BCLR89, LP88.

Bounded-Degree [HaKK+09, KKS17, BCLR89].

Bounded-Genus [DHT06].

Bounded-Skew [ZM02].

Bounded-Space [Woe93].

Bounding [AH96, BM11, BC17, CP10a, EK13, GI97, HW16, JLL16, Lab13, Zuc92].

Bounds [AS10, BEL09, BHL+15, BGJ+12, BGS96, BJK14, Buk16, CHLZ00, CL05, DMR11, DW10, DHUZ01, DSST13, DMS12, DS16, EMRPS14, FFie98, FP01, FP04, GG15, GK07, GP91, GRS12, HT13, HHLÖ95, HK02, JWF05, KM95, KW14, KS08b, Ko06a, LL99, LRTW11, Lz09, LNO96, LS16, MP13, MNP08, MTGK05, NW95, NO08, NS11, RTS00, RZ05, RR03, SC17, Sta11, SS02b, DW11, Swa05, VVY15, XSR11, YAT16, Yu17, Zha94, Zha99, dKMP+06, dKPS13, CET97, Car88, SSS95, Tam88, Tsa97].

Box [FHK96, KOS16].

Box-Greedy [FHK96].

Boxes [AC14, CC07, CFP11].

Boxicity [ABC11].

Bracelets [ACM11].

Braess [LM08, Pen12, dFM04].

Bundes [Zhe16].

Buneman [DHKM11].

Buy [LPSR12].

C. [Na01].

CAD [SW04].

Calcul [Zen90].

Calculation [Zen90].

calculus [PU95].

calls [Ser88].

Can [ASS09, BBS17, BS16c, CCNV11, Che16, MPˇS08, Kar89].

Canceling [IM05].

Cancellative [BS95a].

Canonical [AM95, Fra90, HKL99, HKW15, Rea15].

Capacitated [BYFMR10, ELvS11].

Capacities [BCF+10, KML05].

Capacity [BOS01, GR99, GZ98, Kas03, Pip91, KM06].

Caps [GL10].

Carathéodory [BCD+12].

Card [KLW89].

Cardinality [Eps06, Luc03].

Carlo [SV11].

Carries [Alo13].

Cartesian [CHM+07, CHK10, PZ05, tBaa07].

c'est [KvIL+12].

Cell [Smi01].

Cellular [MM93].

Center [BDLR01, KS00, Tam88].

Certifying [HH05].

Certificate [KT16].

Certiﬁcate [KvIL+12].

Chain [BKS10, CLY05a, DL12, Enc05, EMT15, GVKSS06, GP08b, LSL92, LCV03, MMR06, SV11].

Chains [BK90, CLY05b, DJW12, HH92, Raa08, DSW90, Pat88].

Chairs [ABF+14].

Chang [IMR14].

Changes [AM06a, FMP08].

Changing [BBG08].

Channel [DS05b, GS95, GJ08, JWF05, KSV05, KS03c, Krá06, Le94].

Channels [GSF08].

Characteristic
Characterization [DQW+15, Gly12, LÖ05, Wu09, XY15].
Characterizations [BL04].
Characterizing [Tod89].
Chart [FG01].
Charts [GW00].
Cheaters [BS91].
Cheating [OKS06].
Chebyshev [Mun06].
Check [BM15, CF09, CHW88].
Chernoff [SSS95].
Chinese [GJW16, SL96].
Chip [BHH96, JSZ15, Tar88].
Chip-Firing [BGL07, GKK05, FKK07, LLZ99].
Choice [GKM12].
Closest [MGC14, SFS09].
Closing [FMP17].
Closure [BGJ+12, HQ03].
Closures [ACD+13].
Cluster [GKNU10, Tza08].
Clustering [ADPR03, GKNU10, MRT11, Ram04].
Clusterings [BG12].
Clusters [CLW09].
Code [BB13, BN01, Kas08, LT01, Saw07].
Codegree [CM14, FRMVP15, FRZ16].
Codes [AM07, ACLT01, AMPT93, BOP94, BVH03].
Cocliques [AM07, ACLT01, AMPT93, BOP94, BVH03].
DR04, Din13, Dow91b, EK10, Enc05, Etz96b, EV98, FG01, FT05b, FHY01, FKS10, GF08, GMW05, GKS12, GÖ12, HHLÖ95, Han98, Hed08, HKW15, Jan00, KMP03, Kit02, KCTR13, KM11, Lai05, LÖ05, LS06, LW10, MMR06, MP98, Moi08, MMSJ08, NÖ08, PG06, Ran02, RR03, ST14, SS09, SS10, Sta11, SW98, TRV03, TSN04, UV15, Wil05, WC12, ZSW11, VV94, Dow91a, Etz96a, Mou94, PL99, Sav97, TZ97, CZ97.

Coding [GRR15, KSV05, SZ94, ZLS08].

Coefficients [BI13, Lla06, Mal89].

coeexistence [GKRS15].

Cofactors [IT09].

Coffman [CM05b].

Cograph [BCHP08].

CoGraphic [GS16b].

Cographs [BM93].

Cohen [Bro11, BCW96, CN12].

Coin [AD11, BN96, Cha16, CGG88, Sak89].

Collection [DO08].

Collective [DYL06, Sak89].

Collector [MW03].

colliding [KM06].

Collinearities [BDJ+15].

Collisions [CTW93].

Color [AS10, DFJS15, FR06, Yus09].

Color-Avoiding [Yus09].

Colorability [HKSS08, AK02].

Colorable [CS02, Dan01, FT12, GK04, KRS11, LS03b, MM12, WHW14].

Color [BS09, CH17, CFP11, DGM12, KW92, LSS17, Lo14, MP08, McL10, MWW94a, CH13, IS93, Zen90].

Colorful [BM07, CKMU14].

Coloring [AH03, ANP14, BGG+04, BCC+11, BTU09, BHE05, BKM13, BCP08, CKP13b, CM16, CR13, CR17, DEG+07, DŠT08, EST14, EEL09, EHLIP11, FKS05a, GN08, GKO4, HSZ13, HŠ90, HŠS08, HK16a, HK96, KSS11b, KP16, KPT94, KMŠ+09, KNP05, KZ08, KSS08, Krs04, KSS08c, LM08, Lu04, LSY01, NSA01, NK90, PZ10, Pen12, Riz02, Rya07, Sig10, SW08, Wan08, Xu09, Yus03, GKR15, Kie88, KPT95, Ray94].

Colorings [AS10, BrLS07, BVWV11, BW02, CtJL01, DJKP09, FXXJ14, FHM03, FH08, FKLW98, FW02, FR06, GL15, GvdHM+08, JK99, JT11, JS14, KMŠ+09, LM11, MŠT09, Nor11, Ofr08, Prz13, KKV11].

Colors [CR13, CR17, DF10, KK14a].

Combinatorics [PR12].

Combinations [GMTW15].

Combinatorial [AYZ04, BHM16, BSS14, BG11, BJK13, Boy96, CC07, DMS14, D008, EGR08, FS05, FL92, Fra95, FP13, GMW05, GRS12, HRS17, Hir11, JJ1T14, Kim92, Mar09, Mun06, Ngu13, Prz13, Sim90, SW98, Wil16, Sav97, SV88, Yen97].

Combinatorics [ABY14, BCE10, DJS12, GR17, MWW94b, SW99, ST10, Tha08].

Combined [Pfe15].

Committees [WS12].

Commodities [Fe00].

Commodity [GS16b].

Commodity-Flow [BS16].

Common [BCdMR08, BM14, DSST13, HK11, NvZ15, Web08].

Communication [AP92, BT92, BH93, CT93, KS92, KKN95, Kus92, Orl93].

Communication-Space [AP92].

Communications [Bon91].

Commuter [AL17].

Compact [ACL+06, Har01, HKW15, KM01, LLS04, Lu10, dS01].

Compactness [GP99].

Comparative [KV1L+12, MK09].

Comparing [FKS03, FKM+06, HLR92].

Comparison [AB94, ST14].

Comparisons [DZ01].

Compatibility [ASY14].

Compatible [KR92].

Compensation [AG06].

Competition [FLM+95, Gui98, MWW14, IM+92].

Competitive [GL95].

Complement [Ran98].

Complementary [FRA10, LSX14, BW02].

Complementation [BH13b].

Complements [CY12, KK14b].

Completable [JJI14].

Complete [AS07, BGM08, BCCZ11, BCLR95, BK91, BL01, CDM00, CDM04, CP16a, Con05, DHJ+13, FRSS09, FH10, Fox10, GG11, GMA15, GMS00, GS00, Gut93, Han98, iKSZ04, LLY10, Pip02, PSML08, SZ13, Tót10, dKPS13, Jac92, Vav89, dH89].

Completely [FG01, GS00].

Completion
Complex [BFPP15, ELSS17, FG00, Som14].
Complexes [ABY14, BHM16, BW99, Bro11, Cha91, CN12, DD15, EGS13, Hir11, Jon05, KN13, LS03b, M´es16b, Swa05, Tza08].
Complexity [AR08, AM11, BZ04, BN01, BT96, BCF12, Boy96, CEHS08, CC07, CT93, CJO7, CLST12, DL89a, FKL93, FJLS03, GKM17, GS93b, GNS11, GvdHM+08, HKP01, Ho’a10, JLR+17, Juk16, KS92, KKN95, Kas08, KBE+05, Kus92, LZ03, Mac91, May08, MC93, MC06, Onn91, Pad16, PW02, Saa93, ST13, Sno13, Zer11, BJHM88, KW96, PU95, RSSW88, Tam88, Win88].
Component [Blo10, CL06, CF16].
Components [BAH10, GW99, MP08, SW01, JO95].
Componentwise [HK05].
Composition [BJK14, HS04, WC12].
Compositions [ADM+15, BM94a, BM94b, BM94c, BFM94, KR93].
Compound [FL91].
Comprehensive [AT16].
Computable [JMS90, KR04].
Computation [DM13, GDVL17, KR98, KM05b].
Computational [BM11, GS93b, Omn91].
Computations [BCE+00, KOR03, Car88, KM97].
Compute [BKS09].
Computer [CDP94, SW99].
Computer-Aided [SW99].
Computing [ACD08, BBDK00, BCDMR08, CCH14, Dan09, DDS16, DJT15, FvIKS15, Gnn06, GS16a, HKP01, HT’05, HvtHLN12, HIL14, IT09, JP06b, KN16, KV90, MP13, NI92, NNI97, Nag10, Owe11, WY10, LW88a].
Concave [BJHY00, DSS12, FOST12, Vaz13].
Concave-Round [BJHY00].
Concavity [Brá10, GMTW15].
Concentration [CV09, GLS15, Mra17].
Concentrators [Pip91].
Concept [COIF10].
Concerning [DKS16, Kla06].
Concise [LL14a].
Concrete [FKKL98, Hof95], condensed [CH89].
Condition [CSS13, CKK010, CM14, Enc05, FZ08, GMS00, GM03, HLZ13, KM14, LGS11, Sak94, Sch10, ZLWC12, GY92].
Conditional [HL10].
Conditions [BR17a, JG06, JITT4, Pfe15, Ste00, TZ15, WL03].
Conductor [ACM11].
Cone [PZ10].
Cones [BBK+16].
Conference [Ser88].
Configurations [FYK00, GH13, MM93, Raz10, SW04, SW99].
Conflict [CKP13b, MMSJ08, ZSW11].
Conflict-Avoiding [MMSJ08, ZSW11].
Conflict-Free [CKP13b].
Conformance [SL96].
Congestion [Ram97b, Ram98].
Congestion-free [Ram97b, Ram98].
Convergence [Jae89].
Congruent [Kle89].
Conic [MD16].
Conics [BVdZ16].
Conjecture [AK14, BT14, BP13, BBT16, BMM09, BHT16, CCO+13, CEOT15, CKPS13, CK15, DKS16, EKK+15, GH06, GW07, Han16b, HK16a, HK16b, HKP+17a, HKP+17b, HKP+17c, HKP+17d, HKS07, KKS10, LPS09, Lic14, Sto12, Sza08, WS06, BW92, Dow88, HL92, CCO+15, Cho09, CK11, HRS12, HY13, dH04, KO12, Rab08, Shp10, SZ15].
Conjectures [Gly10, LW03].
Connected [ABH00, BC02, BJHY03, BAH10, BL17b, CWY00, CSS01, CL13, CDP94, CDMO16, CEOR13, CY03, CLY05a, CLY05b, Der12, DL12, DD13, DJ11, Elik08, EG03, EHJ01, FJ09, FLM+95, FM13, Gab04, Gab05b, GZ06, HW16, Hof98, KIK17, KO16, KKO16, KRS15, LRD12, LC12, MS16, MW14, MR12, OW16, PTT16, SS11a, SW01, Wol10, BM97, BMM90, Cho94b, RX88, Vo07].
Connectedness [HT90].
Connection [DFT15].
Connections [Car09, CHW10].
Connective [GL14].
Connectivities [HvZ14, JA16].
Connectivity [BJF95, BJJ98, BJGJS99, Bev10, Cal13, CDHH14, CK14, CW14a, Cho92b, CG02, DMS08b, DMS08a, DGS96, DP16, Fint09, Fle05, Fra92, FL10, GWW06, GM90, HLST00, JS03, Kao96, KW90, NI92, OC10, Pfe15, Ram04, Vég11].
Connectors [Kar92].
Conolly [EIJ+12]. Conolly-like [EIJ+12].

Conquer [ARS95, AS09c]. Consecutive [DHJN02, Ehr16, GMZ09]. Consecutive- [DHJN02]. Consensus [BJ91, MP95, MP04].

Consequences [HK96, HaKK+09].

Consistency [SY11, Tod89]. Consistent [BK11, Abe91]. Consisting [EIiK08].

Constant [FR94, Het14, Jan10, MMSJ08, SS11a, WC12, Car94]. Constants [DDS16, GL14, OS13a].

Constrained [BGS17, CM05a, Gol96, HMP04, JP06a, Jor03, KS03a, Kas03, LS95a, SL95, Tov90, Hef97, RTW97]. Constraining [SW04, SW99].

Constraint [BK11, CM12a, FF06, FK17, GM04, KJJO4, KL08, MSS15, MT11, MRT11, ZK11].

Constraints [BJGS99, BKK16, BMN13, DH91, DL150, Eps06, FKT06, FGP12, FGP10, GS13, GM90, KT14, Kas03, Kt13, KNS05, KM94, LMN10, Lou10, MW90, OR04, dMP93, PS97].

Construction [Ald90, Bon10, Boy01, Cap03, Cha03, CGG17, CKP515, CCG05, FS91, HJ94, KST06, Lu08, Pip95, ST14, SWK10, AS97].

Construction-A [CGG17]. Constructions [AM07, AB04, BER11, CTV14, CS02, DA10, GG15, GMW05, SG16, SW98].

Constructive [CL05, CPR99, XSR11].

Contain [ARTV12, MM15]. Containing [Het14, ZL11].

Contractile [LM08, MT05]. Contracting [DMR11, HVL13]. Contrast [BDDS03].

Convex [AS16, Ave13, BJHY00, BH16, BT93, CD16, DSI01, GVV06, HW96, HQ03, HR05b, KMT07, LS05, MD11, MPS+09, MvLvL13, Mur06, NO09, Omm03, Sch09, SA90, ST07, Vaz12, EFP91, MRS89].

Convex-Ear [Sch09]. Convex-Round [BJHY00]. Convexity [BCD+12, CPRdS13, DNB99, HRS93].

Convexly [HMS05]. Convolutional [Kit02, RF12]. Convolutions [Cha16].

Correlations [KM11]. coset [CZ97].

Cosets [CHZ09]. Cost [BCG+10, BL17b, CL13, CEP98, FJ17, GRY08, HR12a, HQ03, IMS05, Mak07, MTGK05, KP06]. Costs [CV07, DSS12, FOST10, FT05a, FJ17, SS11a, vWW94]. Coteries [MK01].

Counterexample [CCO+13].

Counterexamples [BBS00, CETO15, Tha08]. Counting [AFS12, ACD08, Bac09, Cai93, CCG+11].

Cover-Decomposition [BPRS13].

Coverable [CCO+13]. Coverage [AS09c, BYFMR10, BYHR10, BFRS16, BPRS13, CF05, CHW10, GSS15, HMM09, KR04a, MR04b, MRST16, NT12, NS16, Pa12, PR02, PC97, vzGVZ13, BJ92].

Counts [dJMS16]. Coupon [MW03].

Covectors [CLGH11]. Cover [AS09c, BYFMR10, BYHR10, BFRS16, BPRS13, CF05, CHW10, GSS15, HMM09, KR04a, MR04b, MRST16, NT12, NS16, Pa12, PR02, PC97, vzGVZ13, BJ92].

Cover-Decomposition [BPRS13].

Coverable [CCO+13]. Coverage [AS14, BNRT17, CH15]. Covered [BN05].

Covering [BKK16, BGS17, BR17b, CKMU14, CCHZ13, CH01, FRZ16, Fan92, FKK05, FKK07, Ho95, Ho98, HK02, HK98, Jan00, Jon05, KMR11, KCL98, LL99, Lee17,
Decycling \cite{PZ05}. Deep \cite{DMR11, Pip06}. defectives \cite{CHW88}. Define \cite{Fio06, HMS05}. Defined \cite{ADL09, Bon09, Gij09, GM93}. Defining \cite{BS15b}. Define \cite{Tro15}. Degenerate \cite{KMKS09, KNP05}. Degree \cite{ABC15, AM96, BC94, BHL92, Bon08, BM13, CKKO10, COL10, CFK10, DFJS15, DP92, DF04, Dro16, DK14, EMT15, GKY06, HPS09, HN15, HZ10, HK16b, HaKK09, JN16, Joo16, KKL10, Kan08, KSS11b, KPP13, Kha13, KL14, KW08b, KM13b, KSS08, KKS17, LS95a, LM14, LR04, LM11, LXZZ08, OPVV14, Pfe15, Shp15, SE14, ST17, Ste10, UV15, WH15, Yus14, Zak14, BCLR89, Car94, CHW88, LP88}. Degree-Constrained \cite{LS95a}. Degree-Diameter \cite{DF04}. Degree-Doubling \cite{KM13b}. Degree-Restricted \cite{BC94}. Degrees \cite{BBLM13, CL06, CDK10, GM13, IT09, Oze13, Wil99}. Delannoy \cite{AS03}. Delay \cite{LS95a}. Delays \cite{AB05}. Deletion \cite{CGL10, FSV13, GLSS16, Sno13}. Deletion-Correcting \cite{CGL10}. Deletions \cite{ABY11}. Delineation \cite{DO08}. Delivery \cite{HV00}. Delsarte \cite{AL07}. Delta \cite{BC95, BH13b, FF06, KT14, Tak14}. Delta-Matroid \cite{FF06, KT14}. Delta-Matroids \cite{BC95, BH13b, Tak14}. Demand \cite{Che04, Myu01, NS89}. Demands \cite{Che04}. Democratic \cite{May96}. Dense \cite{DHJ13, HW15, JN17, MP14, Sol06}. Denser \cite{Nd15}. Densest \cite{BT96}. Densities \cite{BBBZ12}. Density \cite{BHL05, CF09, Hua14, LM14, LZ09, Meh12, MMP13, Ric14, Suk13, WS96}. Depend \cite{Kra07}. Dependence \cite{DM03}. Dependencies \cite{BG08, SB10}. Dependent \cite{FS12a}. Depending \cite{AB95}. Depth \cite{AB94, DMS14, KW90, RTS00, RJS93, SR94}. Depth- \cite{AB94}. Depth-Two \cite{RTS00}. Derangement \cite{CX08, MS14}. Derangements \cite{FZ88, Zen90, Zen90}. derivatives \cite{Car94}. Derived \cite{DF02, HPS96}. Deriving \cite{AMB11}. Description \cite{ART14}. Descriptions \cite{May08}. Design \cite{BLMA08, BKM08, BH93, CMV10, CS09, CKN15, CV07, FL92, GM90, HKSO7, IM96, KNS05, SW99, DM88}. Design-Variable \cite{IM96}. Designing \cite{BAH10}. Designs \cite{BCS04, BV10, BRS09, CM90, GG11, GL08, GHM10, Jan00, Kas05, LS16, MMJF03}.检测者 \cite{dAHF2005}. Detection \cite{BD91, CHW88, KG93}. Determinant \cite{CHX15, MV99}. Determinants \cite{CV09, EFMN08}. Determination \cite{AJM08, LC03}. Determined \cite{Pin08}. Determining \cite{BAH10}. Designs \cite{BCS04, BV10, BRS09, CM90, GG11, GL08, GHM10, Jan00, Kas05, LS16, MMJF03}. Desire \cite{dAHF2005}. Detach \cite{Fle05}. Detachments \cite{JS03}. Detecting \cite{CK08b, FKLL15, KLL13}. Detection \cite{BS91, CHW88, KG93}. Determinant \cite{CHX15, MV99}. Determinants \cite{CV09, EFMN08}. Determination \cite{AJM08, LC03}. Determined \cite{Pin08}. Determining \cite{BAH10}. Designs \cite{BCS04, BV10, BRS09, CM90, GG11, GL08, GHM10, Jan00, Kas05, LS16, MMJF03}. Deviation \cite{WW91}. device \cite{CHW88}. DFS \cite{Cai93}. Diagnosis \cite{SW01}. Diagonals \cite{FR98, EFR91}. Diagram \cite{dAHF2005}. Diagrams \cite{AN91, BG12, Mor94, Rea15, Saw02, Stu88}. Diameter \cite{BCS04, BC09a, BFH15, Cap03, CFM94, CKdAdF13, CLST12, DF04, FFV11, FR99, FM11, FFie98, LY10, Mer99, RC98, RKDD13, SE14, Tod14, BC88a, Zho88}. Diameters \cite{N07, Ram04}. Diametral \cite{BM13}. Diamond \cite{AG15, MTR14}. Diamond-Free \cite{AG15, MTR14}. Dichotomies \cite{WS12}. Dichotomy \cite{ASS17, Fed06, HR12a, Sig10}. Dickson \cite{QD14}. DICUT \cite{AHS01}. Difference \cite{CCG05, KT99a, Mon13, FMR88, Ste88}. Differences \cite{Sav90}. Different \cite{DF10, HY12, KMS08, KS88, KMS12}. Differential \cite{LZ06}. Difficult \cite{BFR12}. Diffie \cite{CY08, FS01}. Digit \cite{MS05}. Digital \cite{AF05, DM13, FL15}. Digits \cite{DKS16}. Digraph
Digraphs [BJT92, BJHY03, CH13, CH17, CL13, CJKKO10, CM03, DCM+15, DS16, EFK14, ES98, FMMO93, FH03, FIN98, FLM+95, GSL98, GGI07, GZ10, Gui98, GRY08, HM11, HR12a, HR12b, HY12, LPS09, Mac91, OS92, OS13b, PMM98, SS94, Tan10, ZZW13, BJJHM88, IP91, Jia95].

Dilworth [IT12]. Dimension [ABC11, ABC+15, AE03, BGN15, BFGR17, BLL+15, BT93, CHM+07, FHM94, Fel14, FMP17, Gly10, Hei08, LCV03, PZ98, SS10, BT97, Sen97]. Dimension-Normalized [AE03]. Dimensional [Ale10, ABZ15, BP15, Bra05, CC07, DDS16, FKT06, FM11, GPP04, GW00, MR15a, NH91, Zun11].

dimensioned [Tod89]. Dimensions [AC14, AK14, ANP91, AS05, Bar01, RS16, SS95, VVY15]. Dirac [Lo14]. Direct [AAHLT10, BIKZ05]. Directed [AFG+16, AFG+09, ABHW13, BCS04, BW99, BMP13, CF08, Cho92a, CGK94, FFie98, GHM10, GMS15, GNS11, HN15, Hua14, JLR+17, KiK12, KvIL+12, KNs05, KT99b, KPPW15, KM05a, LL17, Lic14, Sli10, ZZW13, Bai89].

Directional [ATPRU91, AB00]. Directions [DMN12, SW99]. Dirichlet [CW92]. Disconnecting [GS00]. Discovery [FKW10]. Discrepancies [DF10]. Discrete [AF10, AG06, BL09, BHL94, Br10, CHX15, CCG+00, DFJS15, DGP06, DGM12, GM93, Gor93, GLW11, HT13, IM96, OV12, Rio98, Sca05, SS02b, SB10, Vin07, vD11, Con89, HR88]. Discrimination [Vaz13].

Disentangling [Sul12]. Disjoint [CGH+15, CHH16, Con05, DSS92, EJ01, FIN98, Ful14, GPvL15, HKL11, HY12, HMP04, KiKK17, iKK11, LPS09, Lic14, MHLH91, Sch91b, Sli10, Yus09, Yus14, HR88]. Disjointness [SW14]. Disk [GC11, Sol12]. Disks [FS05, Ric14]. Dispensers [RTS00].

Dispersion [JPT12]. Dissections [DST01, Alt89]. Dissolution [vBBC+15]. Distance [ANS16, BCE05, Che98, CE06, CKdAHdF13, DMS08b, DMS08a, DOS94, FG01, GP08a, GMS00, GM03, GO6, GO12, HHH+02, IK09, KN16, LL99, Len98, LZ05a, LZ05b, NS11, Sak94, Vin11, WL03, Wi89, WC12, XGG15, Yu17, ZLWC12, FGG89, GY92, PS97].

Distance-Hereditary [DOS94, HHH+02, KN16]. Distance-Increasing [WC12]. Distance-Preserving [Che98]. Distance-Regular [FG01]. Distances [ABR05, CR16, CF09, GJ12, KNZ14, Lab13, Owe11]. Distant [CtJL01]. Distinct [ASS09, CFG+15b, Jev95, Pin08, Tak90, KP06]. Distinctness [TB09, RSSW88]. Distinguished [HK15, NO08].

Distinguishing [ACD08, BrLS07, CHK10, Prz13, WH15]. Distorted [GC11]. Distributed [HKP01, HJ94]. Distribution [Bon09, CHP+90, CFLK17, FS01, LS09, RJS93, RF12, Sgl10, Ste88, HM88].

Distributions [CY08, COL10, Gao13, Gar92, GMTW15, KR04, Ori93, CZ97]. Distributive [ADL+09, Nao91]. Divide [ARS95, AS09c]. Divide-and-Conquer [ARS95, AS09c]. Divisibility [CC00].

Divisible [GG11]. Division [BCC+05, Bon91]. Divisors [Kle89, NO08, Car94]. DL [BN01]. DNF [SST08]. Do [ARTV12, TV03, KPT95].

Dominating [CCOY17, DK02, HK93, KLMN14, PP10]. Domination [AS09a, BM16, BK10, BHT16, CWY00, CWP09, Che98, DMR08, DHL+13, Fis94, GM16, GLS15, GPRTM11, HHHH02, HY10, HK16b, KWZ13, KS03b, KS93, LC12, Zul08, BG88, BCD97]. Double [AFK12, CY08, HY10, KS08c]. Double-split [AFK12]. Doubling
[BGN15, GK13b, GL10, KK10, KM13b].
Drawing [KPP13, Žit94]. Drawings [AFT12, Ful14, ZN08, Tod89]. Drawn [BBS17]. Dream [Més16b].
Dreamed [BBS17]. Drawings [AFT12, Ful14, ZN08, Tod89]. Drawn [BBS17]. Dream [Més16b].
Dreamed [BBS17].

Dual [AC90, BOP94, BYR05, BFH15, CCM95, CCZ12, CMSV17, DZ09a, HK11, Jan00, Ll99, PG06, UV15, VV94, BGM94].

Dyck [AG15, Fer16]. Dyck-Paths [AG15].

Dynamic [AB05, GPST15, HKL+14, IW91, Juk16, LNO96, Ram04, SS00, Tam88]. Dynamics [LM11, OS11, RSV+14, Ull14].

Edge [AJM08, AS10, ASS17, BJKV07, BrLS07, BJFJ95, BJJ98, BJGJS99, BS09, BCC+11, BL17b, BMR+10, CH13, CH17, CL90, CSS01, Cho92b, CMM+10, Con05, CM07, CW09, DMS08b, DMS08a, DS06, EJ01, Fle05, Fra92, Gab04, Gab05b, GS94a, GK07, Goe01, GPW09, HK93, HMP04, JMSW99, JMSW00, Jor03, JS03, KS08a, KKK17, KSS11b, Lai05, LSS17, Lev15, Lo14, Máč13, MW14, McL10, Meh12, MLS11, NI92, NK90, OC10, Prz13, Riz02, SS11a, Sch91b, Sim13, Sli10, Ste10, WL02, Yus14, dMP93, BM97, Bon15, Cho94b, Jac92].

Edge-Bandwidth [AJM08, JMSW99, JMSW00].

Edge-Bipartite [Sim13].

Edge-Chromatic [dMP93].

Edge-Colored [BS09, CH17, Lo14, CH13].

Edge-Coloring [BCC+11, NK90, Riz02].

Edge-Colorings [BrLS07].

Edge-Connectivity [BJFJ95, BJJ98, BJGJS99, DMS08b, DMS08a, Fle05, Fra92, JS03, NI92, OC10].

Edge-Cuts [KS08a].

Edge-Dissociation [Con05, EJ01, HMP04, KiKK17, Sch91b, Sli10, Yus14].

Edge-Face [CLS09, KSS11b].

Edge-Homogeneous [GPW09].

Edge-Injective [BMR+10].

Edge-Isoperimetric [Lev15].

Edge-Labeling [Meh12].

Edge-Markovian [CMM+10].

Edge-Partitioning [MLS11].

Edge-Robust [Jor03].

Edge-Splitting [BMR+10].

Edge-Weights [BJKV07]. Edges [AB11, BS10a, CL07, Dvo05, EliK08, EM99, FPS13, FT17, Ful14, HVL13, Kla06, PY09].

Edgewise [Ath14].

Effect [BHH94].

Efficiency [CDHZ12, Gk02].

Efficient [BM16, COCF10, DPH6, DMNW13, GS93a, HaKK+09, KG93, KRR16, Myu01, PW02, Vaz12].

Efficiently [ABY14, HHH+02].

Ehrhart [ST10].

Eigenvalue [CKNV10].

Eigenvalues [BHHH02].

Efficient [BM16, COCF10, DPH6, DMNW13, GS93a, HaKK+09, KG93, KRR16, Myu01, PW02, Vaz12].

Efficiently [ABY14, HHH+02].

Ehrhart [ST10].

Eigenspace [Iri16].

Eigenvalues [CMM+10, Iri16].

Efficiently [BM16, COCF10, DPH6, DMNW13, GS93a, HaKK+09, KG93, KRR16, Myu01, PW02, Vaz12].

Efficiently [ABY14, HHH+02].

Ehrhart [ST10].

Eigenspace [Iri16].

Eigenvalues [CMM+10, Iri16].

Efficiently [BM16, COCF10, DPH6, DMNW13, GS93a, HaKK+09, KG93, KRR16, Myu01, PW02, Vaz12].

Efficiently [ABY14, HHH+02].

Ehrhart [ST10].

Eigenspace [Iri16].

Eigenvalues [CMM+10, Iri16].

Efficiently [BM16, COCF10, DPH6, DMNW13, GS93a, HaKK+09, KG93, KRR16, Myu01, PW02, Vaz12].

Efficiently [ABY14, HHH+02].

Ehrhart [ST10].

Eigenspace [Iri16].

Eigenvalues [CMM+10, Iri16].

Efficiently [BM16, COCF10, DPH6, DMNW13, GS93a, HaKK+09, KG93, KRR16, Myu01, PW02, Vaz12].

Efficiently [ABY14, HHH+02].

Ehrhart [ST10].

Eigenspace [Iri16].

Eigenvalues [CMM+10, Iri16].

Efficiently [BM16, COCF10, DPH6, DMNW13, GS93a, HaKK+09, KG93, KRR16, Myu01, PW02, Vaz12].

Efficiently [ABY14, HHH+02].

Ehrhart [ST10].

Eigenspace [Iri16].

Eigenvalues [CMM+10, Iri16].
[DG08]. Energy [BDvL13, KK10].
Enforcer [BM09]. engineering [Tod89].
Entirely [WHW14]. Entries [Vin12].
Entropic [IMR14]. entropies [KM88].
Entropy [FGP10, MP13, NW95].
Enumerating [FKK05, FKK07].
Enumeration [GM13, Ho95, KLMN14, KBE*05, KCL98, KML05, McL10, OPR12, Pip01, Pip02, Sav14, VZ93]. Enumerator [BK91, DM13]. Enumerators [Bar02, Kap14b].
EPT [vIKL*16].
EPTAS [Jan10].
Equal [CER98, Got03].
Equalities [FJZ15, KS03a].
Equals [Kao96].
Equations [KLL13].
Equiangular [Buk16, Yu17].
Equicolorable [Pip01].
Equitable [KNP05, LSSY10, Yus03].
Equivalence [BYR05, CHZ04, CW16, LSU11, PRS98].
Equivalent [Cho92a, Cho92b].
Erdos [DK16, BBT16, CSS13, CP96, DT16, Dow88, Han16b, IK90, MS16, Vin11].
Erlang [FG89].
Errata [GM93].
Erratum [BLR17, Dow91a, FKK07, DW11].
Error [AG06, BZ04, BGS96, CD93, DA10, FT05b, GMZ09, KM11, CZ97].
Error-Correcting [BGS96, CD93, FT05b]. Errors [MMP10].
Escape [FGLP14].
Estimate [Gol06, WWKY11, LRN11].
Estimates [KR13].
Estimating [Fol14, Luc98, PV10b].
Estimation [SS03a].
Euclidean [GL15, HM88, Har11, Kar89, SE14, Tas97].
Euler [FG14, IKZ08, Wu90].
Eulerian [BOP94, Cap99, CCM95, CH13, CH17, DMNW13, FIN98, IP91, Kik17, YZ17, ZL11].
Evaluation [HHR00].
Evaluations [MR04a, MR04b].
Evasion [DKS10, IK06, SS89].
Even [BL09, BCP09, CCOY17, CHZ09, CGK94, DZ09b, DQW+15, GB12, IT08, NNO15, PSS10, Rio98, YZ97, Jec93].
Events [YAT16].
Every [AcR07, KSS11b, HS89b, Zho88].
Evolution [Blo10].
Evolutionary [CHP*T90].
Evolving [CMM10, STT92].
Exact [BHL05, BDM02, Cre04, GH13, HMS93, KYDN09, KMRR09, LZ09, MSK93, PSTF00, Sch04, dJMS16].
Examples [BL16, Lut04].
Exchange [Kot13, Ob93].
Excluded [FHJV17, FGT11].
Excluding [CNRS15].
Exclusion [Doh03, Fér15].
Exhaustive [BHRZ14, Kas05].
Exist [CHHM09, TV03].
Existence [CL91a, CM14, GL08, HZ95, LWY13, MMJ03, OV04, WLD09, ZGL+09, RCS88].
Expander [BZ04].
Expanders [Vin13].
Expanding [OS13b].
Expansion [DN16].
Expansions [BS14, KV15].
Expected [BHL+15, CL06, FS12a, Pip01, PRS88].
Experimental [BLMA*08].
Explicit [AB94, Cap03, CY08, DA10, DO08, GP10, Lu08, SS02b].
Exploiting [CP16b].
Exponential [CY08, CHZ09, Ge010, GRS12, IK90].
Exponentially [HM12a, NT05].
Exponents [BZ04, FS01].
Extend [RS93].
Extendability [AS06, ANP91, CFG06, WV09].
Extended [ABS13, LS15].
Extensions [AKW05, AMPT93, BM13, Che07, Naa00, PR91, Sta92, Ten09, FH89].
Extinction [FS12a].
Extractor [RTS00].
Extremal [AE03, BGV07, CDM04, CKPW09, CL07, DTF01, DJS12, GH13, HJ94, JS17, KLM14, KWZ13, ZZ99, NT05, dLL09, BG91].
Extremum [HM88].
Face [BW02, Bro11, CLS09, CN12, KSS11b, KM14, Mur10].
Face-Width [KM14].
Faces [Tza08].
Facet [CLM03, CdV02].
Facet-Inducing [CdV02].
Facets [BKG99].
[Chi11, DF02, Fio06, FLMY09, Pad16, Bal89].

Facial [HSS08, MM11]. **Facility** [AYZ04, BB09, CCZ12, RS10, SX13, Tam91]. **Factor** [CL16, CSS13, IT08, KS03d, Mur06, PSMLO8, Rah16, SS11a, SV08]. **factorable** [FH89]. **Factoring** [R´on92, Sza06]. **Factorization** [AAHLT10, Tro15, BGM94]. **Factorizations** [CL05].

Factors [AS09b, BIT13, BMN13, CL15a, CDK10, LWY13, LW17b, MP98, Riz02, ZLS08, Rah16, SS11a, SV08]. **Falconer** [IK09, Vin11]. **Families** [BKK16, BSS14, Bor10, BCF10, CLW09, DK10, EFK05, GP08a, GLP12, ILM16, Jev95, KM01, KMS12, KM13b, LO05, OS16, PMM98, Per16, Ran02, SG16]. **Family** [Ave13, CIT05, LL15, MTR14, Pin14, dM07]. **Fan** [CH06a]. **Fan-Out** [CH06a]. **Fans** [Sha13]. **Farthest** [HHL95]. **Farthest-Off** [HHL95]. **Fast** [Dah93, DM13, EMT15, FH10, GH90b, GRS12, MP17a, Saw02, Som14, SV11, Car88]. **Faster** [KP04, Ull14, Way01, YZ97]. **Fault** [AS02, AU91, BCSK07, CFH16, HL10, PMM98, PL94, SX13, UBHS93]. **Fault-Tolerant** [AS02, BCSK07, PMM98, PL94, UBHS93]. **Faults** [DP96, GV92]. **Faulty** [CL91a, DG08]. **FCSR** [XQ06]. **Feasible** [GVW06, GS95, LS08]. **Feedback** [BBF99, BNN90, CPPW13, ENSZ00, KvIL12, Ko88]. **Fermat** [CW14b, EA11, OS11]. **Ferrero** [Boy01]. **Few** [AFT12, Bal08, BHNTP16, BKKZ17, BS16a, CH10, HVL13, HS06, Hor14, KPP13, Pad16, Stu88]. **Fewer** [BS10a]. **Fibonacci** [CIT05]. **Field** [Che07, Sch02a, Gor93]. **Fields** [BGL03, BS90, CKP16, DW95, DK10, EFK05, GP08a, GLP12, ILM16, JeV95, KM01, KMS12, KM13b, LO05, OS16, PMM98, Per16, Ran02, SG16]. **Finding** [Age94, BZ11, BIT13, CdVL11, COL10, Dji06, DJH13, FO08, FL96, Gut93, HIK99, Hoa10, KY12, LZ06, LM16, MM96, MT90, MGC14, Riz02, SS04, SW01, SFS09, Wan02a, YZ97, Zha90]. **Finds** [GS93a]. **Fine** [DL17]. **Finer** [HKP17c]. **Finite** [AM07, AMB11, Bab92, BCE10, BBS00, BFGM15, BGL03, BY08, BS90, CW92, Che07, CW16, CKP16, DF94, DM13, DW95, Din06, GGI07, IK09, JS17, KM01, KCL98, LZ03, LT11, Mal15, MK09, MMR06, PRS03, Pin14, QP15, RSW05, Rom06, R´on92, Ros09, Sca03, Sca05, Sch10, Shp13, Shp15, Sza06, Vin11, Vin12, Vin13, WB90, YAT16, vzGVZ13, FMRR88, Jia95, LS89, LW88b, LRN11, Ln95]. **Firefighter** [CCVZ10, LW10]. **Firing** [Eri96, GK16, JSZ15, Tar88]. **First** [BHYLO8, BKS10, BMK13, CH06a, DJW12, MGC14, Kie88, KPT95]. **First-Fit** [BHYLO8, BKS10, BMK13, DJW12, Kie88, KPT95]. **First-Stage** [CH06a]. **Fit** [BHYLO8, BKS10, BMK13, DJW12, Kie88, KPT95]. **Five** [LS17, Ohr93]. **Fixed** [BVKV07, BV10, CI07, CFK10, CPPW13, DW10, Fed06, GRR15, HN15, KPPW15, LW17a, PMM98, PSV08, RSW12, DW11, WS96]. **Fixed-Parameter** [CPPW13, HN15, KPPW15]. **Fixed-Weight** [RZ12]. **Flag** [Bro11, CN12, KN13, dM07]. **Flammable** [Pra13]. **Flex** [Sch10]. **flipping** [CGG88, Sak89]. **Flips** [BDFP10]. **Flooding** [ADL13, CMM10]. **Floor** [Fra10]. **Floorplanning** [YS95]. **Flora** [Fra10]. **Flow** [Fle00, GS16b, Gun07, IMS05, KNK93, Ram90, SV03, TH11]. **Flows** [CDW07, FZ08, FO00, GR99, Gun07, KIR16, Koc98, KK09, LXZZ08, WCL15, WYZZ14, ALZ96, YCH97]. **Fold** [CH10, OS15]. **Folder** [Hir11]. **Folkman** [LL15, Lu08]. **Forbidden** [AFK12, CPF16, FXY14, FML16, FM13, HH04, LiO15, PP07b, Raz10, Tuz08]. **Force** [FM13]. **Forcing** [Dan01, KM14, ST17, SZ13]. **Ford** [HS88]. **Ford-orderable** [HS88]. **Forest** [CKN13].
19

Forests [AT90, BK14, CK14, KMR11, Tak90, Tak14, vKLS14]. Form [Jev95, Exo89]. Formal [ASMF10, BJ91, MP95]. Forms [BCE+00, CD93, CS14]. Formula [CF17, Han09, NW95]. Formulae [Cre04, Lia06, PRS02, Sto12]. Formulas [Bac09, FFV11, HS06, MSK93].

Fraction [KKS10]. Fractionally [KiK12]. Fractions [Het14, HKW15]. Fragile [CMvZW16]. Fractions [Het14, HKW15].

Gabriel [BDEK06]. Gale [CDV10, Stu88]. Gallai [HM11]. Galois [KCTR13, LO05, Rón92]. Game [BKR10, BHT16, CCPP14, DS05b, Fei00, Fra10, FHL13b, GG15, HK16b, HKW15].

Generalization [BC11, CuKS07, GG11, Han09, KM05a, SS94, Tod89]. Generalizations [AMW00, BS90, GS13, Pet15]. Genera [iKSZ04].

General [ART14, AKKR08, AH11, Blo10, Bon91, COL10, CPS08, DS05a, DSS92, FS09a, FP01, GS95, GK16, LWW10, TW12, Tza08, VV94, FG89, LB09].

Further [HVW07, Ray94].
CCL+06, Con05, CN12, CF05, CFK10, CFR10, CF10, CEOR13, CFS96, CKOS06, COS10, CDHK16, CLS15, CD14, CW09, CR13, CR15, CR17, Cre04, CY03, CLY05a, CLY05b, CLST12, CDK10, CM14, Dan01, DNS94, DOS94, Dee15, DZ09a, DKRR12, DHT06, DK02, DV96, DMP07, Die10, DL12, DD13, DK06, DK10, DJ11, DMK808, DHL+13, DP15, DGS96, DF04, DPRS10, DNB99, Dre12, Dro16, DFT15, DP16, DEW17, DSST13, DMS12, DˇST08, DˇS09, DLˇS10, DL14, DL17, DM15, EK13, EIiK08].

Graphs [EFMN08, EMOT16, EP10, EG03, EM99, EHJ01, EST14, Eri96, EJK+09, EHLP11, EO16, Elr98, ENZ00, FRMPV15, Fan92, FJ09, FKS12, Far09, FMHO93, FHL13a, FHL14, Fei10, Fel90, FFie98, FG01, FKLW98, FW02, Fle05, FKL13, FGP10, FHS14, FT17, Fra92, FLM95, FL96, FKS05b, FHL13b, FP13, FYK00, GRR15, Gao13, GP08a, GMS00, GM03, GM05, GS98, GM16, GS03, GnO6, GR17, GK13a, GB12, GH90b, GtvHP15, GPvL15, GHV06, Gra07, GL14, GK92, Gui98, GK199, HH04, HPW09, HLST00, HVW07, HN15, HM94, HM12a, HZ10, HSS08, HHH02, HKL99, HZ08, HL92, HLM01, HvtHLN12, HH05, HRS17, HY10, HK16b, HK+17b, HKP+17c, HL00, HR05a, HH+02, HT93, HM12b, HC98, IJKM99, Ja10, JTI11, JMSW99, JMSW00, JS12, JLR+17, Joo05].

Graphs [JRS14, Joo15, JN16, Joo16, JS03, JDT13, KKL+10, KRS11, KR16, KKK17, KKP11, KMM12, KKP15, KN92, KW92, KN16, KFH94, iKSZ04, iKKK19, iKM10, iKO16, KPP13, KNNK3, KZ04, KMS+09, KL14, KR04, KM02, KV90, KMR09, KK14b, KW14, KM88, KS07, KN05, KZ08, KM15, KSS08, KM14, Krá04, KST06, KS08c, KSS09, KSS12, KT99b, KS93, KS02, KPWP15, Krix10, KLS10, KS12a, KRS15, KKS17, KO06a, K006b, KOT09, KO12, LS15, LC04, LPW+13, LLS13, LiO15, Lev98, Lev15, LM08, LLY10, LRWZ12, LL14b, LW17a, LL17, LZ99, LS95b, LS03b, LZ05a, LC12, Liu14, L0R4, LHC90, Lu08, LHY13, Luh90b, LM10, LXZZ08, LSSY10, Lyn94, MÁc13, MM93, MT05, Mtv08, MM12, MP14, Mak07, MP94, MS16, MW14, MN15, MS14, McML0, MWV94a, Mei12].

Graphs [MPMP13, MP17a, MSZ10, MC12, Mer15, MT03, MŠT09, MP17b, MTR14, Moh99, Mon13, MNS14, MrLvL13, MSL11, N92, NOO12, Nie00, Nor11, OC10, Obr93, OY13, Oze13, Pal12, PRR02, PZ10, Pen12, PT14, Per16, Pfe15, Pisk03, Pip02, PT94, Pra13, PP90, Ram90, Riz02, RS08, RS15, Sak94, SRMO8, Sch91a, Sch92, Sch91b, Sch02b, SS94, SS04, Shp15, Sim13, Sli10, SZ94, Sol12, Sta92, Ste10, SZ13, Sud08, SV08, Suk13, SRR94, Suz10, SB94, TT16, TT91, Tam91, TT07, TW12, Tó10, Tuz08, Vo07, WL02, WL03, Wan08, WX13, WHW14, WH15, WIS12, Wl09, Won10, WZZ09, Wu09, WYZZ14, Xu09, Yam16, YQQ09, Yus14, Zak14, ZZ92, ZLS08, ZZW13, Zho05, Zho08, Zlwc12, Zit94, teachers, dFM04, dKPS13, dO9, ALZ96, ACS97, BM97, BM94a].

Graphs [BM94b, BM94c, BM94e, BG88, BH97, BCLR98, Bon15, BCD97, CTR97, CH89, CK96, COS97, DYL06, FH89, GP88, Gy92, HS88, Hur88, IS93, IKM+92, Jac92, J095, Kan08, K811, Kie88, KPT95, Kie97, KM06, LM99, MNN99, P97, Pip97, PC97, RX88, RS93, Spr94, TA93, Tar88, TZ97, WGM95, dHS9, BM94c].

Gravity [BG12].

Gray [Lic98, KCTR13, LT01, Sav97, Saw07, WS96].

Greater [FS12a].

Greedy [FHK06, Har10, HMS93, KOT16, Lev09, Lc09, WS06].

Grid [ABY11, BHLO5, BDvL13, CW98, CHLZ00, C06b, DPSW08, DKSZ10, HPL13, JPT12, KFH94, MLE13, Sta11, ZZ92, ZGL+09].

Grid-Block [MMJF03, ZGL+09].

Gridds [AJM08, CD08, CFP11, DGM12, GPR11, Lag00, MP08, RX88, SS89].

Griggs [HRS12].

Gröbner [BP09, CP16b, GS93b].
Grooming
[BCC+05, BCG+10, CFG+09, MLS11].
Grothendieck [FR94]. Ground [DO08].
Group [AR04, Che93, DF04, DR04, GG11, GLY07, HH01, Huy10, Pet13, QP15, RD11, RKDD13, Yam16, HY89, YH88].
Group-Labeled [Yam16]. Groups
[ABM14, Bab92, BFGM15, CS14, CF09, DM13, Din06, FLM12, FFie98, GF08, GG10, JS17, Kas05, KCL98, Lub90b, MM93, Mar09, MR15a, Rón92, Sza06, Zho05, ALZ96, CS89, Jia95]. Growing
[CS12, KS12b]. Growth
[ABH+11, GPW09, RF12]. Grundy
[GSPRM91]. Guaranteed
[GS93a].
Guarantees
[AB95, ELMS11, EH13, GPSS01, Fra89].
Guarding [HK96]. Guess
[GSWW92].
Guessing [BHKL08, GRR15].
Hadamard [Mom13, Orr08]. Hadwiger
[EKK+15, GHvHP15]. Hahn [BBM09].
Hajnal [BBT16]. Hajós [PU95]. Hales
[Lav16]. Half [Brä10, DZ09a, Fuk16, iKK11].
Half-Disjoint [iKK11]. Half-Integral
[DZ09a, Fuk16]. Half-Plane [Brä10].
Halvespaces [LS14]. Halin
[CLS09, CEOT15]. Hall [BBK+16].
Hamilton [BF12, BNN90, BSKS11, BY08, CF08, CKKO10, CFX10, CM14, DKM+15, FKT99, GK13a, KMS12, KS12a, K006b, OS13b, RS93, Sta92, ST17, ZW13]. Hamiltonian
[AS06, ABS13, AS02, CL91a, CFGJ06, Dvo05, FH94, FMM093, FLM+95, Gui98, KP06, Kan08, iKO16, LS15, ZZZ2]. Hamiltonian-Connected [iKO16].
Hamiltonicity
[BSKS11, BP10, DMP07, LRWZ12].
Hamming
[AJM08, AE03, LWW10, LS14, OV04, VV94]. Hanani
[PSS09]. Hankel [CHX15, FP99].
Hanoi [Rom06]. Hard
[DGM12, GMRT11, VVY15]. Hard-Core
[VVY15]. Hardness
[AS09a, ASS17, GK04, HN15]. Harmonic
[Bru90, CW92, FP13, FW97]. Harvesting
[JPS+14]. Hash [SG16]. Hashing
[DHL+02, MNP08]. Hastens [Ram04].
Having [AB07, DK06, KCL98, LXZZ08].
Heavy [LRWZ12]. Height [Luc98].
Heilbronn [Bar01, Bra05]. Hellman
[CY08, FS01]. Helly [Ave13, CD16, MT03].
help [GK97]. Helps [CGV+14]. Henning
[Lic14]. Hereditary
[ACFL16, BLL+15, DOS94, DF10, GS13, HHH+02, KN16, Tuz08]. Hermitian
[BM00, BN01]. Heterogeneous
[MHLHL91]. Heuristic
[MTGK05, BVW88, Fra89]. Heuristics
[GS94a, HS89b, KK89]. Hex
[Sta11]. Hexagonal
[CHLZ00, HM88]. HHD
[DNB99]. HHD-Free [DNB99]. Hidden
[AA05]. Hide [CCNV11]. Hierarchies
[LVC03]. Hierarchy
[BM00, SA90, HSLd88]. High
[BB90, Cha03, DDS16, LVC03, Yus14].
High-Dimensional
[DDS16]. Higher
[FKT06]. Higher-Dimensional
[FKT06]. Highly
[CCD00, FM13, KKO16, MW14, PTT16, Wol10]. Highways
[DHX99]. HITS
[PP12]. Hitting
[CP10a, FLM+16, GDVL17, JP12, JPS+14, Tak08]. Hoc
[KP04]. Hoeffding
[SSS95]. Hoffman
[AL07]. Hole
[CtJL01, CCL+06, FSW13, RWW88]. Holes
[AS16, BB16, FRW12, MSS14].
Homogeneous
[GPW09, Kim17, SV11, JO95].
Homological
[KM14]. Homology
[Got03]. Homomorphic
[DF94, DSV08, KOS16, Zho93].
Homomorphism
[EST14, HR12a, NT05]. Homomorphisms
[AFS12, CL15c, Fed01, FHM03, FHH08, GRY08, HZ95, MR15a, Zha11]. Homotopic
[Sch91b]. Homotopy
[Dan09]. Homotopy-Like
[Dan09]. Honeycomb
[CHY13]. Hook
[Han09, RY91]. Hop
[HMP04]. Hop-Constrained
[HMP04]. Hopf
[BHM16, FLS10, HM12b]. Horizontal
Horton [WW91]. Hub [Yam05]. Huffman [FT05a]. Huge [OS15]. Hull [ACD+13, CPRcS13, DPRS10, GVW06, KN16, SA90, Sen97]. Hulls [MD16]. Hurwitzian [Het14]. Hybridization [KvIL+12, vIKL+16]. Hyper [Mo98]. Hyper-Kloosterman [Mo98]. Hyperbolic [BC03, CD14]. Hyperbolicity [CCPP14]. Hypercube [AKS07, BGM08, Fin09, GT12, HPS96, HaKK+09, HL09, Off08, OVI2, Bal88, Ram97b]. Hypercube-Derived [HPS96]. Hypercube-Like [HL10]. Hypercubes [AA96, BFPP08, BIKZ05, CL91a, Dvo05, DG08, GSV12, LLY10, MW08, Mol11, VW09, YCH97, Chus89]. Hyperelliptic [CC03]. Hypergraph [BBLM16, BCE*01, KOT16, Lu04, NW95, Tk08]. Hypergraphs [Ad10, BF12, BBLM13, BBBZ12, BCCZ11, BL01, BHT16, BK14, CKP13b, CM16, DMS12, FRZ16, FTG11, FY04, GSS15, HPS09, Han16a, Han16b, HY10, HY15, Jon05, KLM14, Kha13, KZ08, KR15, LZ06, L09, MT03, OR04, RAZ10, RSS07, SW14, SS04, SMO07, Tim08, Yus03, CFGG88, Rya96]. Hypermaps [dR14]. Hyperoctahedral [Che93]. Hyperplanes [AA96, AS07]. Hypersurfaces [Gly12].
KT99a, Kap14a, KPT94, McD15, MT03, Sch91b, Woe93, BCP08, CKPS13, Con10, Fra89, KPT95, MSS14. **Line-Polar** [CH11].

Linear
[AD96, BB13, BNMN92, Bar02, BZ04, BCCZ11, BL17a, BHH96, BGS96, BP09, BKO99, Boy96, BCP08, BM13, CD93, CS14, CuMR12, CKNZ05, Che94, CKOS06, DJ06, DHJ+13, FR99, FM11, Fio06, GSPST15, GH90a, GMS15, Han98, HKL99, HvtHLN12, HK05, JSOS03, KMP03, KK00, LW17a, LL16, LWWW10, MN15, Mer15, Moh99, Naa00, PR91, Ram98, RS15, San96, ST07, SY11, Spe08, STA03, Thu90, WKK05, WWKY11, Wen97, Wu09, Yam16, o09, HSLd88, IS93, LM89, Mou94, KG93].

Linear-Complexity [BZ04].

Linear-Interval [Mer15].

Linear-Time [Che94, DJ06, DHJ+13, HKL99, LM16, MN15]. **Linearity** [Kie88].

Lines [Buk16, Pay17, SW04, Vin07, Yu17].

Linkages [BP10].

Linked [GKY06, KY12, Pfe15].

Linking [Pip06, IP91].

List [CEHS08, CR17, DˇST08, EST14, FHKM03, FHH08, FKS05a, HM11, KZ08, RR03, Saw07, Tak08].

List-Coloring [CR17, DST08].

List-Decoding [RR03].

Listen [MP04].

Listing [PRS98].

Lists [FKS03].

Little [MR15b].

Littlewood [BJ13, LR94].

LKS [HKP+17b, HKP+17c].

Load [AE04, HMP97].

Loading [Myu01, SSW98, Sku16].

Local
[Ath14, BJFJ95, BYR05, BGJ+12, CER98, CSS13, CL11, CKPS13, DSS12, DFHT04, EH13, GKO2, IKK06, JS03, KW08a, Lev09, Pe14, Spa07, Tre04]. **Local-Optimality** [EH13].

Local/Global [CL11].

Locality [MNP08].

Localization [ASMF10].

Localized [LSO03].

Locally [BK11, BY08, DEW17, HW17a, iKM10, Lub90b, Sol06, KS88].

Locating [Ber07, MMPS10].

Location [AYZ04, BB09, CCZ12, CFH16, RS10, Tam91, Yam05, HM88, Tam88]. **Locked** [ZK11].

Loebl [HKP+17a, HKP+17b, HKP+17c, HKP+17d].

Log [GMTW15]. **Log-Concavity** [GMTW15].

logarithmic [GV92, KW90].

logarithms [Gor93].

Logic [Fer16].

Lonely [CKdAHdF13].

Long [AB05, BBT16, DJW12, EMM14, FG14, KW08a, NT05, Ste00, Kar89]. **Longest** [BM14, EFMMN08, FJ09, Gu93, KW13, MC12, RS14].

Look [CF10].

Look-Ahead [CF10].

Loop [BH13b, HJ94]. **Loose** [CM14].

Loss [FS12a].

Lot [DW10, DW11, vWW94]. **Lot-Sizing** [DW10, DW11, vWW94].

Lotteries [KMR95].

Lovász [KG98, CEOT15, Cre04, LS05]. **Low** [CF09, DK89, ES11, JJIT14, MR15a, Tó108].

Low-Density [CF09]. **Low-Dimensional** [MR15a].

Low-Rank [JJIT14].

Lower [CF09, DK89, ES11, JJIT14, MR15a, Tó108].

Lower-Diameter [Cap03].

LQ [CKP13a].

Lyapunov [GMTW15].

Lyndon [KRR16, RMS01].

Macaulay [Bro11, BCW96, CN12].

Machine [CMSV17, GQS+02, HV00].

Machines [AE04, ELSS17, JMS90, SSS2a, SSS13].

MacWilliams [Kap14b]. **Made** [PR98].

Magic [Gra07, OS13a]. **Mahonian** [IKZ08].

Main [HKP+17d]. **Majorities** [Lee90].

Majority [AB94, WS12]. **Majorization** [Ster07].

Maker [CF+15a].

Maker-Breaker [CF+15a]. **Makespan** [JSOS03, SV03].

Making [CMU14].

Management [Car09, GLY07]. **Manhattan** [CDF08].

Manifolds [Mur10].

Many
Metrics
[Ban90, BS09, Dah93, HMM09, SP88].

Midpoints [EFF91]. MILP [Jan10]. Min [Cal13, CMSV17, FT14, Gün07, HM94, HR12b, KSS12, SS00, Vse05, ELvS11, Fuj97, He97]. Min-Cut [Gün07]. Min-Max [FT14, HR12b, KSS12, SS00, Fuj97, He97]. Min-Power [Cal13]. Min-Sum [CMSV17]. Min-Wise [Vse05]. Minconvex [AS09b]. Minima [LL14a]. Minimal [ABZ15, BNN90, BCCZ10, BKS09, BB03, CY12, Gab05a, GDVL17, GMA15, GH90a, HTV05, HK15, KLMN14, KRR16, RS08, Saw07, SL95, Tak08, Zhe16]. Minimal-Time [Gab05a]. Minimally [AG15, Ste10]. Minimax [HKST03, Ram90]. Minimization [BDvL13, FI05, GS13, JSOS03, Svi03, CNR89]. minimize [DL89b]. Minimized [FT05a]. Minimizing [Alo13, AE03, CKK^+04, CFG^+09, ELSS17, FKLW98, HR17, HQ03, HV00]. Minimum [BGV07, BJHY03, BHL05, Bon08, BS15b, BL17b, CR04, CtlJL01, CH01, CL13, CF09, CDK10, Das99, Dro16, ENSZ00, FJ17, GV92, GKY06, GP91, Göü12, GSS15, GRY08, HIKT99, HPS09, HM94, HR12a, HK16b, HK93, IMS05, KKL^+10, KN16, KS05, KKM94, KP95, LRT08, LL17, Pin08, Ram04, SS11a, SMNF09, UBHS93, XGG15, Yus14, ZN08, BBM90]. Minimum-Cost [CL13]. Minimum-Time [KP95]. minimum-weight [BBM90]. Minkowski [AF10, DMIN12, GS93b, LS06, OVL12, SS09].

Minor
[BFM06, CDMO16, DHJ^+13, EMOT16, HKS08, KMPR14, MR12, Per16, BM94c].

Minor-Closed [Per16]. Minors [CFP16, FKPR05, FHVJ17, FGT11, FLH^+16, Fox10, GMA15, GT13, iKMN09, KM14, KNZ14, SZ13]. Minsquare [Mur06].

Mixing

Noncontractible [PP90, Hut88].
Nonconvex [BFP12]. Noncrossing [AR04, KLN91, LL17, Rea08, Rea15, Tza08].
noncryptographic [Sak89].
Nondominated [MK01]. Nonequivalent [Etz96a].
Nonexistence [Etz96b].
Nonhamiltonian [ABHM00].
Nonhomogeneous [CDR16]. Noninclusion [RT98].
NonInteractive [KOS16]. Nonisomorphic [Saw02].
Nonjumps [HLR13]. Nonlinear [BI05, BLMA +08, CCD00, CCM +15, LOW10].
Nonlinearity [CC03, LS09, Pet11].
Nonmonotone [LMNS10]. Nonmultiplicativity [Zho92].
Nonnegative [AAH14, FHK96].
Nonorientable [iKSZ04, KML05]. Nonplanar [CGH +10].
Nonpreemptive [PP07a]. Nonrainbow [DJKP09].
Nonredundant [Spi95]. Nonrepetitive [KM13c].
Nonseparable [Vaz13]. Nonseparating [CY03, CLY05b].
Nonsuccinct [CGV +14, Vaz12]. Nonsymmetric [CGV +14, Vaz12].
Nonsystematic [PL99]. Nontiles [CM12b]. Nontrivial [AF10].
Normal [BGM94, Bon90, BCR90, Gar92, HL15, HW17b, LW88b].
Normalized [AE03, CDH +00, WZ08]. Note [AD11, CD11, GHV06, GJ12, HS07, Ho98, HS06, dH04, KSS09, LT01, Mer99, Naa01, PV10b, Sch91a, Sku16, Yen94, Zun11, HS89a, Sag88].
Notions [KLMN14].
Nowhere [ALZ96, FZ08, KR16, LXZZ08, WYZZ14].
Nowhere-Zero [FZ08, KR16, LXZZ08, WYZZ14, ALZ96].
NP [DGM12, FRRS09, HN15].
Nullstellensatz [Prz13]. Number [AD11, AIC10, AIC13, AAH14, ACFL16, Ave13, AM06a, AM06b, AB07, ABW13, BHY10, BJHY03, BCS04, BCD +12, BC94, BFMO6, BS15b, BVDZ16, CW98, Car09, CPRdS13, CLS09, CR04, CHJ +04, CH11, CHK10, CD16, CH10, DPRS10, DMS12, DŠ09, EK13, EL09, EJ10, EJK +09, FJ15, Fl00, F10, FPS13, FHL13b, FL10, FUL14, GV92, GR17, GK13a, GLS15, GH13, GHvHP15, GPRT11, GJ06, GJ08, HZ10, HLZ13, HW17b, HT93, Jan10, Jon05, KLMR13, KVL12, KZ04, KMS +09, KZW13, KW08b, KS01, KS07, KM13c, KŠ08b, KSS09, LAV16, LIO15, LZO15a, Liu14, LHC90, LS05, MNS14, Nor11, Pin08, PSV08, PR98, RMS01, S08, Sno07, Sud12, Tak90, TH90, WVKY11, W105, Zun11, dCML13, vK116, CFFG88, Gor93, Jac62, Jed93, JLM93, W105, Pit99, Ram97a].
umber [WGM95]. Numberings [AB00].
Numbers [ACD08, BPRS13, Bro11, BK14, CFT93, COX08, CJ11, Co10, CPO99, DF10, AA11, F99, JS12, KPPR15, KLMR03, Kla06, KW14, LLY10, MSS14, Mra17, SCH92, SS01, SWR12, SSD08, Sud08, T008, W08, WLY11, Wil05, Zun11, dCML13, vKL116, CFFG88, Gor93, Jac62, Jed93, JLM93, W105, Pit99, Ram97a].
Objective [HR05b]. objects [Ko88].
Obnoxious [BDLR01, CR10, Tam91].
Obstructions [BK12, JM97, Mon15, Ram97a]. Obtained [EGS13, Mot94].
Obtaining [CLM03, HVP13]. occupancy [LW88a].
Occurrences [HS06]. Octants [KM14].
Odd [AK14, BCH92, CCL +06, CG07, DZ09b, DŠV08, FS12, KR11, KIK17, KSS12, LRT08, WS08, JLM93]. Odd-Girth [DŠV08]. Off [AP92, HHLO95]. Offord [LR94]. Offs [CGP89]. Offset [GS95]. Old [DZ09b, MV99]. Oligo [ACFL10]. On-Line [AE04, BKS10, GKL99, HV00, KT99a].
Parameterized [BFPP15, GKMT17, GNS11, GJW16, GP16, JLR+17, Shi10].
Parameters [DFHT04, FGT11, MP17b].
Parametrized [AB95].
Parity [BM15, CF09, SMR08, Sza08, Yam16, Zha93, CHW88].
Parity-Check [CF09].
Parsimonious [WH04].
Parents [BCE+01, BEN08, TSN04].
Partitioning [BDM02].
Partitioning [AD96, BKS10, Cho94a, HK99, LSS17, MLS11, Sot15, BVW88, HM88, TP97].
Pathwidth [BM93, BKK95, Der12, G JW16, Kas08, KMRR09].
Patterns [AL17, AM06a, BK05, DZ09b, FW02, JSZ15].
Paving [GH06].
Parents [BCE+01].
Part [EFK05, CCG+16, COL10, Gao15, GMS15, Gut93, KM05a, LW17a, MMP13, MC12, SB94].
Path-Width [DNS94].
Path-Tough [DNS94].
Path-Width [AHP09, DD13].
Pathology [AL95].
Pathways [AK10, AP14, AG15, AS03, BNN90, BVW88, BCD+12, BKK95, BCF+10, B14, CFJ11, DSS92, DG08, EJ01, EK08, EH13, FJ09, F1N08, GPvL15, GZ98, HW10, HM04, iKK11, KMS12, LL14a, LL17, LZ05b, MT90, NT12, RS14, Rom06, Sch91b, Sli10, Spa07, Sta92, Vin07, Yam16, KP06].
Pathways [BM93, BKK95, Der12, G JW16, Kas08, KMRR09].
Patricia [RS93].
Patterns [CFKK17, FKL15, GPP04, DK89].
Perfect [ABY11, BKS09, BL04, BS16c, BE13, CGL10, CCG+00, CL15b, Etz96b, EV98, FKT99, GS98, GH90b, HPS09, Han16a, Han16b, Hed08, HL00, HR05a, Kha13, KSS09, KO06b, KOT09, Y2S11, MW94b, MP98, MRS89, Pen12, Rif99, Vaz13, dCLM13, dFM04, Etz96a, Mit97, PL99].
Perfect-Matching [GH90b].
Perfection [BS10b, Sch02b].
Period [BCG+10, XQ06].
Periodic [BSiT15, CS14, MK09, SU89].
Periodic-Finite-Type [MK09].
Periodicity [FPST06, GPP04, KK09].
Permutations [KK09].
Permanents [BM92, Vin12].
Permutation [BKK95, BCF+10, DQW+15, Ehr16, EST14, HvtHLN12, HaKK+09, KL92].
Permutations [ALSY11, ACG94, BHNP16, BCDMR08, B0n09, BB010, BCPP09, Cap99, CR16, Cib13, CKdAHdF13, DR04, Eli09, EFK05, FKMS10, KMS08, Lab13, Ram98, Sav90, Vse05, Yen94, KM06].
Permute [QD14].
Permutations [KK09, Lin89].
Perturbations [KK09, Lin89].
Perturbed [KK09].
Petersen [LB09, DSV08].
Phase [CFKK17, DH05, FMP08, GKR15, KKP15, RSV+14, VV15].
Phenomena [BER11].
Phenomenon [CL11].
ART14, ANS16, BL17a, BS15b, FvIKS15, HMS05, SV11, Sul12, dJMS16, Ste88].

Poincaré [FP13]. Point [AH9+10, ATPRU91, AS16, Ave12, BDJ+15, BH16, BV10, CF17, Dan09, DGP06, Kap14a, MGC14, Mra17, SS95, SFS09, HY89]. Points [AS07, BS16a, BS16b, CI07, CKP16, ES11, Fed06, GRR15, HHLÔ95, KML05, Lag00, MPS08, Pin08, PR08, VZ93, dH89].

Polynomial [AP92, BJ92, BFRS16, Bon91, BC92, Brü90, BS16c, CDV10, CKN+15, CP16b, DM13, DN16, EGR08, FSV13, GLS16, GnN06, HKL+14, IMS05, IT09, JMS90, JP06a, KN16, KS03d, MT90, MC12, Mer15, ST07, SWK10, Svi03, Tar88, Zha90, dGV05, BC88b, PRS88]. Polynomial-Factor [KS03d]. Polynomial-Time [CKN+15, JP06a, ST07]. polynomially [BS88]. Polynomials [Ath14, Bar02, C¸MP15, DK10, DJ11, Ege10, Jan00, Kim92, Més16a, Mun06, QD14, Rón92, Ros09, RMS01, Shp15, YZ17, vzGVZ13, FZ88, Maš99, TsA96].

DMKŠ08, DHL+13, ELSS17, HHHH02, Ja10, LSX14, May96, Red17, SB91, BP89.

Power-of-Two-Choices [Red17]. Powerful [vzGVZ13]. Powers [AH03, AL07, GMS15, KP16, Krá04, LC04, MS16, PPU92].

Practical [ZM02]. Precedence [Tov90].

Precise [KPPR15]. Precision [Gol06].

Precolored [DL17]. Precoloring [AKW05, Voi07]. Precolorings [KKK+12].

Predicates [Eng04]. Predicting [BHH94].

Preemption [ELSS17]. Preemptive [DE11, JP06a, KN95].

Preferences [HW17a, FK97].

Prefix [CM03, HKW15, HvIK+07]. **Prefix-Free** [HKW15]. **Prefixing** [DA10]. Preimages [Zho93, DS97]. Preprocessing [BJK13].

Prescribed [AS09b, BGV07, Dvo05, DG08, KˇS08a, KiK12, KiKK17, Kas05, Lub90b]. **Preservers** [BCE05, CE06, KV15].

Preserving [BJFJ95, BJJ98, CK14, Che98, DHL+02, Fle05, JS03, KNZ14]. Prestress [CW96]. Preventing [BKL+15].

Price [Vaz13, GK97]. Primal [BYR05, CMSV17, Köp07]. **Primal-Dual** [BYR05, CMSV17]. Prime [Gly10, Gly12, LSX14, MS16, MR04a, SST08, Spi89, CET97, FH89].

Prime-Power [LSX14]. Principal [IM96].

Probabilistic [BMS12, BAM16, EP10, FK10, HKW15, KSW2, Nao91]. Probabilities [Fis90a]. **Probability** [Bar95, BM11, BB90, JS12, EGS13, Gol96, GJ16, Jun12, Lyn94, Pip06, YAT16]. **Probe** [BGL07, MN15, PW02].

Problem [vWW94, Bal89, BG91, BC17, CK96, GW94, GHHY96, He97, IW91, JM97, Lin97, SS99, Tas97, Yen97, DRW98, GJW16, SS11b].

Problems [AMW00, AM11, ASS17, BK11, CLM03, CKMU14, CKPW09, CS09, CCZ12, CMSV17, CC07, Cho92b, CKPV91, CKN13, DSS12, DJS12, EV98, FL92, FK17, GM16, GT12, GMPZ15, GM90, GNS11, HR12a, HK96, HHH+02, HJ94, Hua14, HC98, JLL16, Jor03, Jütt06, KT14, KLM14, KBE+05, KWW13, KMV15, KS06, KJJ04, LNNW95, MT11, MRT14, NR91, RT98, RS16, SA90, SS13, Sim90, SR94, Sno13, Som14, SS00, ZK11, Zha90, van94, BS88, BCD97, HS89b, NS89, PC97, RWW88, Ray94, SU89, Tum88, TP97, TT89].

Procedure [MP95]. **Procedures** [CLM03].

Process [COPP12, CS94, Die10, KPS16, KOT16, Pic14, Red17]. **Processes** [BBFP09, KS12b, LR91].

Process-Type [KR13].

Product [AAHLT10, ALSY11, Ath14, CCM+15, CKPS15, DMKŠ08, KR13, KL08, MM15, MRNS15, Sh13, AHS89, LRN11].

Product-Type [KR13]. **Products** [Jan10, PP07a, DL89b].

Profit [PRS88]. **Profits** [JS012]. **Program** [Dow91b, Dow91a].

Programming
[ASZ02, BGS96, BP12, CKNZ05, GPST15, HK99, Juk16, KG98, SA90, UWZ97].

Programs [BCCZ10, BBCZ11, Boy96, HKL+14, HMM09, OS15, PPU92, Vaz12].

Progression [Het14].

Progressions [GP14].

Project [AT16], Projection [DF02, Gar92].

Projective [Bal08, CW16, Enc05, GB12, MS14, Nel15, PSS09, Vse05].

Prolific [BEN08].

Proof [BL09, CK11, CS91, EMT15, HK11, HKP+17d, dH04, HKS07, IMR14, Lic14, Sig10, Wil16, HK16b, Yen97].

Proofs [Bab92, EFK05, Loe10].

Propagation [AS09a, BBCZ11].

Proper [BHH96, BFPP15, FSV13, HH05, HR12b, LC04].

Properties [AC90, ACFL16, CdVL11, CM05a, DTM01, EGR08, FMM09, NS93, OPV14, RRS07, ST13, SW98, ZZ92, dLL09, CCM95, HM88, HY89, TT89].

Property [AcRS07, BBC11, BCE+01, BEN08, Brä10, CHX15, TSN04, WZ08, Way01].

Proportional [PT90], protection [KG93].

Protocol [ACMW17, Sak89].

Protocols [FP04, KOS16].

Prototype [MTGK05].

Proximity [GK13b].

Pruning [DMR11].

pseudo [HSLd88].

Pseudodisc [Pin14].

Pseudodiscs [Pin14].

Pseudoforests [FH1+10].

Pseudorandom [KLS10, KO06b].

Pseudorandomness [OS11].

Pumpkins [JPS+14].

Pursuit [BMP13, DKSŽ10, IJK06, SS89].

Pursuit-Evasion [DKSŽ10, IJK06, SS89].

Push [MP17a].

Push&Pull [ACMW17].

Pyramidal [van94].

Quadratic [BCH92, Fis14, HK99, LS05].

Quadratically [BM07].

Quadratic [RS16].

Quadruple [FHS14, GMZ09, JZ05, EH91].

Qualitative [EGS13].

Quantiﬁers [MMS15].

Quartet [ASY14, ANS16, SY11].

Quasi [AGH11, BJHY03, BGÔ17, CM90, CKPS13, CT93, CPR99, FPS13, GSPRM91, GHV06, GO12, KPP15, MSS14, i008, SMR08].

Quasi-Cyclic [BGÔ17, GÔ12].

Quasi-line [CKPS13, MSS14].

Quasi-Parity [SMR08].

Quasi-Ramsey [CPR99, KPP15].

Quasi-Random [AGH11].

Quasi-Symmetric [CM90].

Quasi-transitive [BHZY03].

Quasi-triangulated [GHV06].

Quasigroups [KP09].

Quasirandom [FH10].

Quaternary [TRV03].

Quaternions [SS08], que [KvIL+12].

Queries [DHL+02], Question [Naa01, Tha08, CP96].

Questions [Dow88, NT05].

Queue [GSV12, HP97].

queueing [FG89].

Quotients [CW14b, OS11].

Radii [HK02].

Radio [EK05, KP04, KM05b].

Radius [BLR16, BLR17, BR17b, CH01, KZ04, LL99, RR03].

Rado [DT16, DK16, MS14].

Radon [Con89, DV04, Fil89, Onn91, Sca03].

Rainbow [DFT15, FM13, OYY13].

Ramanujan [Mor94, T97], Ramsey [AL07, BMS12, CET97, Con10, CPR99, EMPS14, Exo89, FS09b, GT12, KPP15, KSV05, Kie97, Pik03, RW89, RRS07, RS08, SW12, Sud08, XSR11].

Ramsey-Type [FS09b, RW99].

Random [Ald90, AGH11, ADL13, AP14, AS16, BBLM13, BBLM16, BHRZ14, BF96, BTU09, BSKS11, BK90, Bev09, Bev10, Blo10, BMP13, BGL03, CF08, CZLW05, CL06, CP16a, CP10a, COL10, COPP12, CM12a, CF05, CTK01, CFR10, CF10, CEOR13, CF16, CTW93, CFS96, CV09, DMRK12, DMP07, Die10, DP96, DH05, DFT15, DP16, DS16, DJS12, FT12, FO08, FVV11, FMP08, FKT99, FKS05b, FHL13b, FJ17, FL15, GW99, Gao13, GK07, Git99, GK13a, GLS15,
GS94b, GH90a, GH90b, HS04, JP12, JT11, Joo15, JA16, KKP15, KW13, KL14, KR04, KW14, KPS16, Kri10, KLS10, KS12a, KO12, KOT16, KR15, Luc98, Lyn94, MP13, MP17a, MP17b, MRT11, MSK93, Mra17, NDB07, Ngu13, Pip89, PSV08, Ric14, RRS07, Sch04, Sch92, SS02b, ACS97, BC88a.

Random [BB97, DS97, HS97, LR94, Kra07].

Random-Edge [GK07]. Randomized [FH10, IKK06, LPSR12, SS02a]. Randomly [KKS17, Zho88].

Randomness [CT93, KM97, KR98, KOR03, MR15b]. Randomness-Rounds [KR98].

Rank [ADL09, BR17b, CDD15, DZ09a, Din06, FLM12, JJiT14, Ja10, KS05, MPS10, OV04, iO08, PP12, Sch09, TV03, DK89].

Rank-Based [Ja10]. Rank-Selected [Sch09]. Rank-Width [iO08]. Ranking [Alo06, CPR99, KRR16, McD15, CH89, PRS88]. Rankings [BDJ98, FKM06, Fis90a, KT99b]. Rapid [Win16]. Rate [BC17, CHZ04, LW10, RF12, WW91]. Rates [CCVZ10, FGLP14]. Ratio [BYR05, BCC05, BCG10, BDEK06, BNR96, CFG09, Gun07, PV10b, Töt10, HS89b].

Rational [Rho15, Vaz12, Jae89]. Rationality [CDV10].

Rationality-ratio [Kle89, LW88a, WW91]. rays [DGP06]. Real [Suz01]. Real-embedding [Suz10]. Reach [MP04]. Reached [Che16]. Real [Bón09, EJK09, GJ06, GJ08, KŠ08a, YZ17].

Real-Rootedness [YZ17]. Reality [dAHF10]. Realizability [FHJV17].

Realization [CFM09, Win88].

Realizations [EMT15]. Realized [Eli09].

Realizer [LS04]. Realizing [AM96, HN15, LXZ88, PS97].

Rearrangeable [CH06a]. Reassembling [Vyg16]. Reciprocal [KR93]. Reciprocity [JS14]. Recognition [Ban09, BCHP08, CH11, CCL06, COS10, CD14, Dah03, HH05, MN15, Mer15, San96]. Recognized [BS16c]. Recognizing [BGL07, CH15, GSK91, HS88, HL00, LC04].

Reconfigurations [CDP08].

Reconstructed [MP08]. Reconstructible [PRS03]. Reconstructing [DG12, GV10, KK14b].

Reconstruction [ADM15, BM11, BVW11, BGJ12, CCM15, MRT11, Ste00, SV11, Tha08].

Reconstructions [vD11]. Reeski [Sza08].

Rectangle [BDM02, KS06]. Rectangles [Lub90a, Fra89, RWW88]. Rectangular [Lag00]. rectilinear [Fra89]. Recurrence [EJ12, Pip95]. Recurrences [ARS95].

Recurrent [KK09]. Recursion [AL95]. Recursions [ILM16]. Recursive [BPT91, CCG05, FMP08, FG89, KPT94].

Rédei [QP15]. Reducible [Ram90, vzGV13]. Reduction [BG15, CK15, CK15, Cho90, Mš16a, Tov90].

Reductions [PV10a]. Reed [BK91, CKPS13, Rab08, RR03]. Reflexive [BFH08, FHL13a]. Region [Kim91, War88].

Regular [AKS08, ASS09, AaW09, AP14, Bal08, BS15a, BCS04, CCG05, CKNV16, CF05, CFR10, CFS96, CW09, DHL13, DFT15, ET13, FG01, FKLW98, FW02, GMRT11, GM03, Gra07, GRS12, Ho95, KW14, KCL98, LW13, MK10, MWZ11, McL10, Mehl12, MTR14, Mom13, MLS11, OC10, OR04, OS13b, PR08, RSV14, Riz02, dR14, BH97].

Regularity [COVF10, DKM12].

Rejection [BLMS00]. Related [Ad08, BB12, Bar02, Bag03, BH93, Buk16, CKMU14, CY08, CY12, DJS12, GP08a, Hua14, KLM14, MP17b, SR94, SV11, Dow88, WGM95]. Relation [BBC11].

Relaxations [CKP13a, SA90]. \textit{Relaxed} [GKNU10]. Release [GQS+02]. \textit{Relevance} [HKR00]. Reliability
Saalschutz [Zen90]. saalschützien [Zen90].
Satisfied [Mal89]. Satisfying [CSS13, Enc05, FFV11, Gol96]. Saturating [GL10]. Savage [Naa01]. SC-Hamiltonicity [BP10]. Scale [CF10]. Scale-Free [CF10]. Schedule [DL89b]. Scheduling [BLMS+00, CMSV17, DE11, DL99b, GW00, GQ5+02, GSS01, HKST03, JP06a, Jan10, JLL16, KN95, PP07a, SS02a, SS13, SS00, Tov90, dS91, dMP93, DL99a, PSW97, SU89].
Schema [BYR05]. Scheme [CZOS98, CZLfw05, Ete96b, JSOS03, OKS06, SY11, Svi03]. Schemes [ABR05, BDDS03, BS01, DF94, HKL+14, JP06a, MWW94b, SW98, SWK10, CGG88, SV88].
Schensted [Sn14]. Schinzel [Pet11, Pet15]. Schnyder [LLS04, Schroder [SS91]]. Schur [BSS14, HR93, HR05b, Loe10]. Score [FvIKS15, PP12]. SDR [HR89b]. Search [BHRZ14, BKS09, DH05, FMP08, GK02, Lev09, LNNW95, Luc03, MTGK05].
Searches [KW08a]. Searching [CK08c, CDHK16, FG00, KK90, Ko88, RT09, RT11, AA88]. Second [CKNV16, CW96, QD14]. Second-Order [CW96]. Secret [BBDK00, BI05, BTW08, CCM+15, OKS06, SWK10]. Secret-Sharing [BI05]. Secretary [AMW00, KMO5a]. Section [MT11]. Secure [FY04, OKS06]. Security [AA11, Kao96].
Seemingly [CM12a]. segments [Tör93]. Selected [Sch09]. Selecting [DHUZ01]. Selection [BB90, CHY13, DZ01, PW13]. Selections [IM96]. Self [BOP94, BO05, Jan00, LLS13, LW88b, LSX14, PG06, BGM94].
Semi [ELMS11]. Semi-streaming [ELMS11]. Semialgebraic [ART14]. Semicomplete [BJT92, GRY08, BJHM88]. Semidefinite [ASZ02, HMM09, KG98]. Semilax [CkKO10]. Semigraphoids [MP05+09].
Sequential [SL95, Tak08, Pip89]. Serial [GF08, Kot13, MM88]. Series [AC96, BBG08, BLR16, BLR17, BCPP09, BR17a, CIT05, CCD00, CDR16, CGG+16, COL98, FS09a, FKW10, GM92, GKMS04, GMITW15, HN15, LR07, LXXZ08, Pet11, Pet15, RSW12, ST17, Ste00, TQ09, XQ06, CK11, KSS8, Mit97]. Sequential [SL95, Tak08, Pip89]. Serial [GF08, Kot13, MM88]. Series [AC96, BBG08, BLR16, BLR17, BCPP09, BR17a, CIT05, CCD00, CDR16, CGG+16, COL98, FS09a, FKW10, GM92, GKMS04, GMITW15, HN15, LR07, LXXZ08, Pet11, Pet15, RSW12, ST17, Ste00, TQ09, XQ06, CK11, KSS8, Mit97].
Server
set-covering [BS88]. Sets [Age94, AHH10, ATPRU91, ABZ15, AS16, Ave13, AE03, BNN90, BDJ15, Bon10, BLM10, BKKM99, BM14, BK05, CW98, CER98, CCG11, CLW09, CCG05, Cib13, CD16, CF16, DA10, DM17, Elb09, EFK14, ENSZ00, FKS12, Fis90b, FL96, Für91, GVV06, GLP12, GS93a, GMPZ15, GL10, Har11, HK93, HT93, JK99, Je95, Juk16, KLMN14, Kim17, KM01, LRT08, LM12, Lz06, Mom13, MR15b, MD16, MD11, MS05, NS11, OR04, PP07b, RSV14, Ros90, SS04, SS95, TT16, Tcha08, Ve05, Yu17, Zha90, Abe91, Ba18, BM94b, BJvV92, Bou97, HR88, HS89b, Sag88].

Pet15, vIKL+16, IP91, IS93, KP06.

Thresholds [CH06b, FRZ16]. Tight [BF12, CM14, DSZ05, EP10, GP91, KL92, LNO96, Nie00]. Tighter [RZ05].

Tile [JWF05]. Tiling [BDM02, CD11, HW17b, Zha90]. Tilings [BE13, CLVZ96, Din06, EV98, HS10, ÔV04, Rêm02, TV03].

Tight [BF12, CM14, DSZ05, EP10, GP91, KL92, LNO96, Nie00]. Tighter [RZ05].

Tile [JWF05]. Tiling [BDM02, CD11, HW17b, Zha90]. Tilings [BE13, CLVZ96, Din06, EV98, HS10, ÔV04, Rêm02, TV03].

Time [BNMN92, BP15, BST14, Bon91, BCPH08, BS16c, CdMR12, Che94, CKN+15, CMM+10, CF05, CGP98, Dîj06, DP16, DHJ+13, ELSS17, FP04, GO00, Gab05a, GV92, GRS11, GJ16, HKL+14, HKL99, HT05, Hv1HL12, HV00, HK05, JMS09, JSOS03, JP06a, JLL16, KN16, KK90, KMS08, KP95, LW17a, LM16, MN15, Moh99, RS11, ST07, SY11, SWKP10, Svi03, Wan02a, WY10, Zuc92, AKKS89, Car88, IS93, MM06, PRS08].

Tolerant [AS02, AU91, BCSK07, PMM98, PL94, SX13, UBHS03]. Tolerating [GV92].

Tomography [AG06, DFJS15, DGM12, GLW11, HT13, SB10, vD11].

Top [FKS03]. Topological [CdVL11, CDM00, CD04, Fu14, DGL11, HK15, KLN91, K006a, SZ13, TT07].

Topologies [VZ93]. Topology [BAG03].

Tori [JCB06]. Toric [BVD13, BC09b, GMA15, dAHF010, LS06, SS09, SS10, UV15]. Toroidal [iKO16, NOO12]. torpid [GKRS15]. Torus [AF10, BL09, BL90, KS08c, Rio98]. Total [BG88, BHT16, CLS09, CDWZ17, CCZ12, DZ09a, ELSS17, Gra07, HY10, HY15, KS08, LPW+13, o09, K096]. Total-Coloring [KS08]. Totally [Gj05]. Tough [DNS04].

Tour [DRW98, SL96, Zha93, Kar89].

Tournament [CPR99, PRS08]. Tournaments [Al06, BNN00, HW96, KKO16, Kim17, MT90]. Tours [BIT13, CLS15, Tas97]. Tower [Rom06].

Trace [GR17, RMS01]. Traceability [SW98]. traceable [Zho88]. Ttractability [HN15, HK14, KP05, SH15, SL10, TZ15].

Tractable [CPPW13]. Trade [AP92, CGP98]. Trade-Off [AP92].

Transfer [CL15b]. Transform [DV04, Kim91, Sca05, Con89, Fil89].

Transformation [KCL98]. Transformations [MK01]. Transforming [CGH+10]. Transforms [Sca03, Car88].

Transhipment [AC90]. Transients [JAJ96].

Transition [KKP15, RSV+14, VVY15]. Transitions [CH13, CH17, CFK17, DH05].

Transitive [BGJ+12, GL14, HLST00, Iri16, Mac91, Zho09, BJHY03].

Transitive-Closure [BGJ+12].

Transitivity [HT90]. Transmission [FKPR05, KPR10]. Transport [DS12].

Transportation [BFH15, KP00]. Transposition [CKdAHdF13, LY10, RS93].

Transpositions [ALSY11, BP98, BFR12, CI01, dAHF010, PR91, RSW05].

Transversal [BHT16, FT14]. Transversals [FKS12, Fe90, HY10, HY15, RS14, SMF09].

Travel [MTGK05]. Travelling [CR96, Fis14, G09a, Gao15, GP16, RC08, SS95, Vyg16, van94, Bal89, Kar90, SAR97, Tas97].

Travelling [DRW98]. Tree [AFG+16, Ad08, BP13, Ban90, BFG17, BS15b, BDLR01, CC95, CKP13b, CP10a, Dal93, DSH14, DM11, FJZ15, F085, GMRT11, GLS16, GL95, G070, HW16,
HMS05, HKS07, JLR+17, KIT13, KLM+03, LNNW95, LR04, Luc03, LR91, MRV17, MdcCW16, Owe11, RZ05, San96, Sca05, Ste00, VZ93, Wan02a, Alt89, DYL06, DL89b, HS97, IW91, Tod89, Tree- [LR04], Tree-length [BFGR17], Tree-Matchings [LR91], Tree-Related [Adl08], tree-structured [DL89b], Tree-Width [HW16, Luc03, San96], Treedepth [GJW16], Treenode [CDN16], Trees [AT90, AAFL06, Ald90, ART14, AFG+09, ASY14, ANS16, ABR05, AL95, AH11, ANP14, BS95a, BL17a, Bev09, BM11, BVWW11, BCLR95, BKK17, Bon08, BZ11, BMV92, Cai93, CWY00, CHP+90, CKP13a, Cha91, CGM+15, CDWW17, CKK+04, CK14, CFG+15a, Con05, CL15b, CL15c, DZ09b, DH05, DM15, ES11, EJ01, FMP08, FT05a, FKT99, FL15, Git09, GSK91, HS97, IKM99, Han09, HKW15, HMSW14, IIL14, KZ04, KW08b, KM95, KW91, KM13c, KW96, Kri10, KKS17, Lu10, LM11, Luc98, McD15, Mésa16a, Mol11, NO09, Oze13, Pip01, PSW96, Rah16, RSM+96, RSV+14, VWR99, Vyg16, XGG15, YG99, YG99b, YG99c, YG99d, YG99e, YG99f, YG99g, YG99h, YG99i, YG99j, YG99k, YG99l, YG99m, YG99n, YG99o, YG99p, YG99q, YG99r, YG99s, YG99t, YG99u, YG99v, YG99w, YG99x, YG99y, YG99z], Trick [Zha11], Treewidth [BM93, BKK95, BJK13, CCVZ10, CDN16, DFHT04, MP17b, SSR94, Ram97a], Trellis [BT96, Kas08], Triadic [KPS16], Triangle [AKKR08, AB95, Bar01, Sno06, Sno06b, Sno06c, Sno06d, Sno06e, Sno06f, Sno06g, Sno06h, Sno06i, Sno06j, Sno06k, Sno06l, Sno06m, Sno06n, Sno06o, Sno06p, Sno06q, Sno06r, Sno06s, Sno06t, Sno06u, Sno06v, Sno06w, Sno06x, Sno06y, Sno06z], Triangulation [TT93], Triangulated [ELR98, GHV06], Triangulating [IS93, KW92, MWW94a], Triangulations [BBK+16, CFM+09, CEOT15, CGH+10, HTV05, iKMNO99, Més16b, MRST16, NNO15, WWKY11, Zhe16], Tricks [RJS93], Trinomials [Din13, DQW+15], Tripartite [iKSZ04], Triple [BKK99, BH15, GJ16, HR14, BKK99, COS97], Triple-Free [BKK99, COS97], Triples [FS01, HR14], Tropical [BK12, Juk16, Sha13, Spe08, ST10], Tropicalizing [ABGJ15], Trotter [BYHR10], Truncations [iT12], TSP [BIT13, CLS15, LS03a], Tucker [LM16], tuple [Kap14b], Turán [AKS07, BBZZ12, BK14, Dow88, GH13, JS12, KMV15, LM14, LZ90, Nor11, PT14], Turbo [GF08], Turing [JMS90], Tutte [Gn06, LW17b, PS09], Tutte-Type [LW17b], Twenty [RKDD13], Twins [GKM12], Twist [KS04], Two [ARTV12, ATPRU91, Ale10, ABZ15, ADL+09, BPS07, BC09a, BMS12, BP15, BCG+10, CDV10, CLST12, DFJS15, DJV12, DTW03, DS05b, DLS11, DL17, EA11, EFK05, FM11, FK17, FR94, FIN98, G07, GMS00, GM03, GW00, G096, H11, HK16b, HMP04, KS03, KOS16, KMS+09, KL14, Kla06, Knut95, Lei94, LW03, LZ05a, Lla06, LSL92, MP08, PZ05, PY09, R00, Red17, RS16, Rya07, Sak94, Sni01, Ste00, WL03, Web08, Yu17, Zak14, ZLWC12, Zun11, CH98, CHW88, DL89b, Exo89, H11, KK11, KLW89, Ko88, Zho88], Two-Batch [DS05b], Two-Chain [LSL92], Two-Color [DFJS15], Two-Colored [MP08], Two-Coloring [KMS+09], Two-Dimensional [Ale10, ABZ15, BP15, FM11, GW00, Zun11], Two-Directional [ATPRU91], Two-Distance [Yu17], two-factors [HKKK88], Two-Generator [EA11], Two-Layer [Lei94], Two-Part [EFK05], Two-Party [KOS16], Two-Period [BCG+10], two-person [KLW89], Two-Player [BS12], Two-Set [Rya07], Two-Variable [FK17].
Types [BD01, CM05a, CGG+16, EK10, FHH08, FKS05a, FS09b, HMM09, KR13, LW17b, MK09, Špa07, YZ17, KOT09, Lin89, RW89, SG16]. types [BRK89].

Typical [FKK05, FKK07].

Unidirectional [BBC+05, CFG+09]. Unified [CK08e]. Uniform [Ald90, BF12, BBLML3, BCCZ11, BL01, CFKK17, ELSS17, FRZ16, GSS15, HPS09, Han16a, Jan10, Kha13, KR15, Lia06, RRS07, Yus03, HM88].

Unimodality [HSLd88]. Unimodular [Gij05, OS15]. Union [AS10, BFK+12, GP14, OS16, YAT16, Whi88]. Union-free [BFLK+12]. Unions [GMZ09, Sta92].

Unique [CKP13b, FMRR88, HSZ13, JJT14, KMR95, MMP13]. Unique-Max [HSZ13]. Unique-Maximum [CKP13b].

Unique-Path [MMP13]. Uniquely [Dan01]. Uniqueness [GLW11, OS13a]. Unit [Che04, GR99, HKW15, LS08, Ric14, Vin11, Kle89]. unit-congruent [Kle89].

Unitary [CW16, dAHFdlFK10]. Universal [BS09, BCLR89, BG11, CHHM09, HH13, Pat88, Hur94]. Universality [DKRR12, KL14]. Unknown [SW01].

Upright [CS91]. Upward [DGL10, DGL11]. Urn [CZOS98, CZLFW05, SW10]. Use [BL04, CDN16, KOS16, RS16]. Using [ABY14, Cai93, CCG+11, EFK05, HH04, HRS93, Jan10, KZN14, Luc03, MMR01, NW95, NÖO8, SL96, Gor93, Tam88].

Valued [FK17, TZ15]. values [KP06]. Variable [BJKV07, FK17, HS06, IM96, Krá06, Sei01, Vin13]. Variable-Sized [Sei01]. Variables [HKR00, Jan10, Lla06, LR94]. Variance [DH05]. variant [UWZ97]. Variations [MRNS15].

Varieties [BFH+08, DF04, FMP08]. VC [BLL+15]. VC-Dimension [BLL+15]. Vector [BN05, IK09, KS03d, Vin11, WCLZ15, Web08].

Vectors [Cha91, CN12, GP08, GJ12, Jev95, Mur10, Swa05, Bal88]. Vehicle [GZ98]. Vershik [Sn14]. Version [AK14, CZLFW05, Lo14]. Versus [Tre04, CPRdS13]. Vertex [Age94, ABY11, AS14, AS09c, BBF99, BrLS07, BYFMR10, BYHR10, BMP13, BMR+10, BRK89, CHW10, CPPW13, Dan01, DZ09a, FJZ15, Fe90, FSV13, FL10, GT12, Gra07, GSS15, HT90, HLST00, HPS09, HMM09, HY12, KvIL+12, Kha13, KG98, Lai05, Lic14, LR04, Mac91, McD15, MWW94a, Mol11, MW90, OS13a, Raz10, WH15, Zer11, Zha90, o09, vBBC+15, HS89a, Kie97, TP97].

Vertex-Pursuit [BMP13]. Vertex-Robust [Lai05]. Vertex-Transitive [HLST00, Mac91]. Vertical [DGM12].

Vertices [Bal08, BHL05, CH17, CHLZ00, DHHM11, FV05, KiK12, KiKK17, LM12, Pad16, Ste10, ZL11, Stu88]. Very [Sol06].

Via [ACG94, AM06a, AFS12, AB00, AL17, BMS12, BV10, CWR89, Fuk16, Fl14, GPST15, HKL99, KLMM13, KLL13, LW88a,
REFERENCES

Aichholzer:1996:CHH

Alon:2005:LHS

Adamaszek:2010:LGR

Ahlswede:2011:SSD

Akhbari:2006:MPI

Alon:2014:MNN

Abay-Asmerom:2010:DPF

Alon:2009:CRG
Noga Alon, Pawe Pra at, and Nicholas Wormald. Cleaning

Abello:1991:WBO

Afek:2014:MC

Allamigeon:2015:TSA

Ardila:2011:RPG

Aldred:2000:NCC

Axenovich:2013:VND

Ahmady:2014:ICG

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Alstrup:2005:LSS

Algaba:2010:VGR

Abueida:2013:HSI

Anstee:2011:PMG

Ardila:2014:MRE

Alekseyev:2015:MTS

Adler:1990:APD
Adiga:2014:RCG

Arvind:2008:CDN

Averkov:2013:CAH

Atminas:2016:DBN

Alon:1994:RPG

Arias:2006:CRN

Alon:2001:EBB

Amdeberhan:2011:BBM

Acan:2017:PPR

Avart:2007:EMG

Andrews:1997:SAS

Aleksandrov:1996:LAP

Agnarsson:2011:NMN

Alon:2014:CBN

Alon:2013:BNC

Adler:2008:TRW

Alverson:2009:DLD

Amini:2013:FWS

Acharya:2015:SRS

Alon:2003:TC

Azizouglu:2003:ESM

Azar:2004:LLB

Alon:2013:ALG

Abrams:2005:GBD

Alon:2010:BMI

Abdi:2016:LTD

Alexeev:2012:FIS
REFERENCES

Amini:2012:CSH

Ackerman:2012:GAP

Alpers:2006:SEC

Apollonio:2015:MUD

Ageev:1994:FCI

Amini:2011:SWQ

Alcon:2014:PSG

Albertson:1996:BFR
REFERENCES

1996. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Alon:2008:LNR

Albertson:2005:PEB

Althofer:1995:CBF

Alon:2007:GPD

Archer:2017:APS

Aldous:1990:RWC

Alekseyev:2010:NTD

Alon:2006:RT
Noga Alon. Ranking tournaments. *SIAM Journal on
REFERENCES

[Alt89] Stephen F. Altschul.

Hamed Amini and Yuval Peres. Shortest-weight paths in random regular graphs.

Aboulker:2012:GDC

Adams:1997:CNB

Ashir:2002:FTE

Autebert:2003:GDP

Apfelbaum:2005:RAT

Abueida:2006:CEH

Apfelbaum:2007:LCB

725, 2007. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Noga Alon, Asaf Shapira, and Uri Stav. Can a graph…

Aravind:2017:DRH

Alon:1994:PS

Aravind:2017:DRH

Alon:2014:CQT

Alon:2002:CWC

Aigner:1990:IAT

Au:2016:CAP

Athanasiadis:2014:ESL

REFERENCES

Al-Thukair:1991:MPT

Assaf:1991:FTS

Averkov:2012:SLS

Averkov:2013:MFS

Ageev:2004:ICA

Babai:1992:BRI

Bach:2009:IAF

Ben-Ameur:2003:IRR

REFERENCES

Ben-Ameur:2010:DSN

Baldi:1988:NNA

Balbuena:2008:IMP

Ben-Ari:2016:PAG

Bandelt:1990:RTM

Barnes:1995:IPM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar01</td>
<td></td>
</tr>
<tr>
<td>Bar02</td>
<td></td>
</tr>
<tr>
<td>Bar04</td>
<td></td>
</tr>
<tr>
<td>BB90</td>
<td></td>
</tr>
<tr>
<td>BB97</td>
<td></td>
</tr>
<tr>
<td>BB03</td>
<td></td>
</tr>
<tr>
<td>BB09</td>
<td></td>
</tr>
<tr>
<td>BB13</td>
<td></td>
</tr>
</tbody>
</table>
ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Carl Bracken, Eimear Byrne, Nadya Markin, and Gary McGuire. Fourier spectra of binomial APN functions.
REFERENCES

Bouchet:1995:DMJ

Bandelt:2002:GCM

Bandelt:2003:HG

Bekmetjev:2009:PAD

Brennan:2009:TGS

Boreinstein:2011:CGB

Byrne:2017:BOR

Bermond:2005:TGU
\[BCC+05\] Jean-Claude Bermond, Charles J. Colbourn, David Coudert, Gennian Ge, Alan C. H. Ling, and Xavier Muñoz. Traffic grooming in unidirectional wavelength-division

Basavaraju:2011:AEC

Basu:2010:MII

Bermond:2011:ACU

Brandstadt:1997:CDC

Barbosa:2012:CNC

Bergeron:2008:CCI

REFERENCES

[102x681] REFERENCES

DEN SJIDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

[CGF10] Jean-Claude Bermond, Charles J. Colbourn, Lucia Gionfriddo,

Jean Bourgain, Todd Cochrane, Jennifer Paulhus, and Christopher Pinner. Decimations of ℓ-sequences and permutations

Banks:2004:NTD

Bagchi:2007:AFT

Brown:1996:CMR

Batten:2001:BST

Brandstadt:1998:DCG

Blundo:2003:COT

Bose:2006:SRG
Bohman:2010:FG

Tom Bohman, Andrzej Dudek, Alan Frieze, and Oleg Pikhurko.

Bodlaender:1998:RG

Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, Ton Kloks, Dieter Kratsch, Haiko Müller, and Zsolt Tuza.

Barat:2015:EPP

János Barát, Vida Dujmović, Gwenaël Joret, Michael S. Payne, Ludmila Scharf, Daria Schymura, Pavel Valtr, and David R. Wood.

Berman:2002:ESB

Piotr Berman, Bhaskar Das-Gupta, and S. Muthukrishnan.

Bouman:2013:EMR

Nick Bouman, Jan Draisma, and Johan S. H. van Leeuwaarden.

Buzaglo:2013:TCP

Sarit Buzaglo and Tuvi Etzion.
Tilings by (0.5,n)-crosses and perfect codes.
REFERENCES

Benko:2009:ABI

Blackburn:2008:PCI

Berman:2007:LSR

Berget:2011:CCS

Beveridge:2009:CRW

Beveridge:2010:CRC

Barnes:1996:SRW

Bal:2012:PTH

REFERENCES

Bottcher:2015:LGF

Belmonte:2017:MDB

Brewster:2008:NUF

Borgwardt:2015:CDD

Barat:2012:LFU

Barahona:1994:CGPd

Bokal:2006:MCN

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

[BG11] Antonio Blanca and Anant P. Godbole. On universal cy-

Brieden:2012:OWB

Bacso:2004:CMC

Bhattacharyya:2012:LBL

Brent:2003:RKS

Berry:2007:RCP

Blake:1994:NSD

REFERENCES

Beaudou:2008:IES

Bartal:2015:IDR

Belfiore:2017:QCS

Bernath:2017:PCC

Balbuena:2007:MOE

Boyd:1993:IPR
REFERENCES

REFERENCES

REFERENCES

Benedetti:2016:CHA

Bereg:2016:RPF

Bujtas:2016:TGH

Beimel:2005:PNS

Bottcher:2010:EBG
Bienstock:1988:AAS

Biha:2005:TCP

Bresar:2005:HDP

Bilbao:2003:CGU

Boyd:2013:FFC

Barthelemy:1991:FTC

Benjamin:1992:AWC

Bang-Jensen:1995:PIL

REFERENCES

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Babilon:2007:LGF

Bang-Jensen:1992:PAP

Beutelspacher:1992:PSS

Berman:1990:RPC

Blake:1991:CWE

Burstein:2005:USW

Bodirsky:2011:LBL

Bogart:2012:OLT

Bushaw:2014:TNF

Bolotashvili:1999:NFL

Bodlaender:1995:TPP

Berczi:2016:CIB

Broersma:1999:ISA

Bjorklund:2017:STF

Bhawalkar:2015:PUS

[BKL+15] Kshipra Bhawalkar, Jon Kleinberg, Kevin Lewi, Tim Roughgarden, and Aneesh
Bresar:2010:DGI

Berry:2009:MLS

Bosek:2010:FFA

Bottcher:2015:EBL

Bosek:2013:FFC

Bosek:2015:GTB

BKR10

[102x367]
Biha:2008:PSN

[BKS09]
Berry:2009:MLS

[BKS10]
Bottcher:2015:EBL

[BKMK15]

[BKMK13]

[BKMK15]
Bottcher:2015:EBL

[BKMK13]
Biha:2008:PSN

[89]
[102x681]REFERENCES

REFERENCES

29(2):962–1001, ???. 2015. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Blackburn:2003:FC

Bousquet:2015:ICH

Brandstadt:2010:ISM

Berstein:2008:NMO

Bartal:2000:MSR

Bloznelis:2010:CEG

Bondy:2016:COR
Bondy:2017:ECO

Bodlaender:1993:PTC

Barahona:1994:CGPa

Barahona:1994:CGPb

Barahona:1994:CGPc

Baiou:1997:SEC

Barbero:2000:WHH

Barany:2007:QMC

REFERENCES

CEDEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Brandt:2010:EIE

Belfrage:2012:POP

Botti:1992:LPT

Boppana:1996:BCP

Blackmore:2001:DWA

Brown:2005:WCV

Bar-Noy:1992:LTA

REFERENCES

[Bón09] Miklós Bóna. Real zeros and normal distribution for statistics on Stirling permutations

Bonin:2010:CIS

Bonamy:2015:PGE

Babai:1994:ESD

Borg:2010:CIF

Bosh:2010:CIS

Borm:1992:PVC

Bouchet:1997:MCI

Boyd:1996:CCP

REFERENCES

Boykett:2001:CFP

Bermond:1989:ISP

Bafna:1998:ST

Bafna:1998:ST

Balogh:2013:TPC

Benevides:2015:MPT

Fabricio Benevides and Michal Przykucki. Maximum percolation time in two-dimensional

[BPT91] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Deterministic decomposition of recursive graph classes.

REFERENCES

Bertolazzi:1988:CPS

Bandelt:1995:SMR

Bshouty:1990:GNB

Bokowski:1995:ASR

Bartal:2009:UIS

Balogh:2010:AAF

REFERENCES

2010. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Berg:2014:CEF

Benjamini:2014:ATG

Brightwell:1993:ODC

Blake:1996:TCD

Brightwell:1997:ODP

Baber:2014:SC

Behrisch:2009:CRI

Beimel:2008:CIW

REFERENCES

[BYR05] Reuven Bar-Yehuda and Dror Rawitz. On the equivalence between the primal-dual schema and the local ratio technique. *SIAM*
REFERENCES

Carlson:1988:ULB

Carlet:1994:DCD

Caragiannis:2009:WMW

Cai:1995:TS

Cheon:2003:NBF

Chlebik:2007:CCO

Canteaut:2000:WDC

Coffman:2000:PDI

Chu:2005:RCR

Cabello:2014:CSE

Chee:2013:SCA

Conforti:2006:OHR

Carlson:1995:DEP

REFERENCES

Cascudo:2015:SSN

Chalopin:2011:CRG

Cada:2013:CCC

Cada:2015:RBT

Cada:2017:DES

Chalopin:2014:CRG

Cai:2010:SRG

[CCVZ10] Leizhen Cai, Yongxi Cheng, Elad Verbin, and Yuan Zhou. Surviving rates of graphs with

Chen:2012:TDI

Calderbank:1993:ECC

Czygrinow:2011:NBG

Coudert:2014:RFH

Conforti:2016:MFC

Conforti:2015:RCG

Comellas:2008:MMS

REFERENCES

4801 (print), 1095-7146 (electronic).

Chen:2004:IRN

Carmesin:2014:BCI

Corneil:2016:PGS

Chen:2012:MWS

Czygrinow:2010:FBG

Cera:2000:SGT

Cera:2004:EGT

REFERENCES

/epubs.siam.org/sam-bin/dbq/article/37867.

REFERENCES

Chakrabarty:2010:RSP

Cabello:2011:FCT

Conforti:2007:MSF

Chang:2017:TWC

Coppersmith:2006:SSP

Cameron:2008:CLP

Cooper:2013:CRW
Chen:2015:PTS

Caro:1998:LSW

Calkin:1997:NRB

Cooper:2005:CTR

Chebolu:2008:HCR

Como:2009:ASM

Cooper:2010:RWL

Colin Cooper and Alan Frieze. Random walks with lookahead in scale-free random graphs. *SIAM Journal on Discrete Mathematics*, 24(3):1162–1176, ????. 2010. CODEN SJDMEC. ISSN 0895-
Cooper:2016:VSV

Chen:2017:PEI

Colbourn:2009:MSA

Clemens:2015:BST

Conlon:2015:DVS

Chung:1988:FCN

Chen:2006:CEH

Conforti:2016:CDF

Cooper:2010:MRW

Coppersmith:1996:RWR

Chang:1993:AAN

Cornuejols:2002:IBC

Conforti:2007:POC

Chor:1988:ISP

Chen:2016:ISP
REFERENCES

Chandrasekaran:2017:DOC

Cortes:2010:TTN

Chen:2015:DCC

Chung:1994:ECD

Chee:2010:SSP

Chan:2015:SST

Chekuri:2006:SKC

Chandra Chekuri, Sudipto Guha, and Joseph (Seffi) Naor. The Steiner k-cut problem. SIAM Journal on Discrete Mathematics, 20(1): 261–271, January 2006. CODEN SJDMEC. ISSN 0895-
REFERENCES

4801 (print), 1095-7146 (electronic).

Chekuri:2006:EKO

Czumaj:1998:TCT

Ciolan:2016:CNS

Chakrabarty:2014:SHN

Camerini:1989:ITM

Chen:2001:AMC

Chen:2006:MRS

REFERENCES

Chang:2016:RSB

Chen:1993:ICS

Chen:1994:LTA

Chepoi:1998:DPD

ISSN 0895-4801 (print), 1095-7146 (electronic).

Cheng:2004:IAA

Cheng:2007:CFF

Cheng:2009:AIS

Cheng:2016:SMC

Christine T. Cheng. On the stable matchings that can be reached when the agents go marching in one by one. SIAM
REFERENCES

Curtis:2009:NUC

Chimani:2011:FCN

Chang:2004:BVN

Choi:2010:DCN

Cohen:2000:BCI

Caceres:2007:MDC

Chartrand:1989:MD

[G. Chartrand, H. Hevia, O. Oellermann, F. Saba, and

Chopra:1992:ESD

Chopra:1992:PES

Chopra:1994:GPP

Chopra:1994:ECS

Chow:2009:RRB

Carter:1990:DLE

Chung:1989:PH

References

Chang:1988:ODT

Csorba:2010:ANG

Chang:2015:HDS

Chiang:2013:TSS

Chen:2004:ERM

Charpin:2009:CWE

Christie:2001:SSR

REFERENCES

Constantinescu:2007:LZC

Cibulka:2013:MSR

Callaghan:2005:BFM

Chor:1991:ZOL

Chang:1996:LPG

Chen:1999:GED

Charpin:2008:CMB

Chudnovsky:2008:DTP

REFERENCES

REFERENCES

2014. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Covert:2016:SPF

Chudnovsky:2013:LSR

Chee:2015:PCA

Chrobak:1991:NRS

Chambers:2009:EPR

Cremona:1990:SLP

Chan:1991:EHC

REFERENCES

Csikvari:2015:HTP

Candrakova:2016:SCC

Chavez-Lomeli:2011:BC

Canovas:2003:FOP

Chan:2009:EFT

Correa:2015:TTC

Cusack:2012:CPD

REFERENCES

Cohen:1996:TBS

Chen:2009:FSI

Curran:2005:CDC

Curran:2005:NPC

Calderbank:1990:QSD

Comellas:2003:SCP

Chaichanavong:2005:SBI

Chaichanavong:2005:SBI

[CM05b] Marc Chardon and Aziz Moukrim. The Coffman–

Ayça Çesmelioğlu, Wilfried Meidl, and Alexander Pott. Bent functions, spreads, and...
REFERENCES

132

REFERENCES

[Coja-Oghlan:2010:ESR]

[Coja-Oghlan:2017:WSW]

[Collins:1998:CS]

[Coja-Oghlan:2010:FPP]

[Constantine:1989:IDR]

[Constantine:2005:EDI]

[Conlon:2010:LRN]

[Coja-Oghlan:2012:DPR]
REFERENCES

290–309. 2013. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Cranston:2015:GBC

Chen:2016:PPA

Cranston:2017:LCC

Cheng:1989:CSG

Coffman:1991:SPU

Constantine:1994:SPI

Chor:1998:GAB

Benny Chor and Madhu Sudan. A geometric approach to betweenness. *SIAM Journal
REFERENCES

Collins:2002:CCC

Chekuri:2009:AID

Chudnovsky:2012:GC

Chung:1993:CCQ

REFERENCES

Chang:2001:MSN

Cano:2014:UBC

Coppersmith:1993:CAR

Cole:2007:GKT

[CuKŠ07]
Connelly:1996:SOR

Calkin:1998:NIS

Cranston:2009:CRG

Chen:2014:IFQ

Chien:2016:CPU

Caro:2000:CDS

Chen:2014:ICM

Chen:2010:MSF

REFERENCES

2010. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Dolecek:2010:REC

Dahlhaus:1993:FPR

Hausen:2010:UTC

Daneshgar:2001:FSC

Dang:2009:ASH

Dasgupta:1999:SMS

deCarvalho:2013:NPM

REFERENCES

[Der12] Dariusz Dereniowski. From pathwidth to connected pathwidth. *SIAM Journal on
REFERENCES

Dujmovic:2017:SGL

Desmedt:1994:HZK

Doignon:2002:FWO

Dougherty:2004:DDP

Doerr:2010:HDD

Demaine:2004:BPL

Diemunsch:2015:ETD

Jennifer Diemunsch, Michael Ferrara, Sogol Jahanbekam, and James M. Shook. Extremal theorems for degree

Drmota:2011:ASS

deFigueiredo:2004:OBF

Dudek:2015:RCR

Dvorak:2008:PFH

Didimo:2010:USU

Giacomo:2011:UTB

Durr:2012:RCG

Christoph Dürr, Flavio Guiñez, and Martin Matamala. Recon-

REFERENCES

Hou:2004:NPN

Drmota:2005:BPT

Dujmovic:2013:LTA

Du:2002:OCC

Dress:2011:BCV

Dolev:2002:NPH

REFERENCES

REFERENCES

Dong:2011:ZFI

Djidjev:2006:LTA

Dvorak:2009:MNC

Dujmovic:2012:IBF
REFERENCES

Delsarte:1989:LRM

Deogun:2002:DPG

Dong:2006:GHN

Dong:2010:ZFI

Dvorak:2014:SIM

Devlin:2016:O

Dellamonica:2012:DAF

DeBiasio:2015:AOH

REFERENCES

Ding:2012:CTC

Dvorak:2014:CGS

Dvorak:2017:FSC

Du:1988:MSI

REFERENCES

1104–1107, ???? 2012. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Deza:2014:CAC

Dvorak:2016:SSS

Dragan:1999:CHF

Dankelmann:1994:PTG

Dohmen:2003:IIE

Day:1994:SDH

REFERENCES

REFERENCES

Daniel:2005:CGS

Dvůrak:2009:CNG

REFERENCES

Dumitrescu:2013:BMM

DeLoera:2001:EPD

Dvorak:2008:LCS

Dvorak:2008:PGO

Duffus:1990:MCA

Dietz:2005:TLB

Das:2016:RSE

Dumitriu:2003:PGT

[DTW03] Ioana Dumitriu, Prasad Tetali, and Peter Winkler. On playing golf with two balls. *SIAM
REFERENCES

DiBattista:1996:APT

DeDeo:2004:RT

Dvorak:2005:HCP

DiSumma:2010:LSS

Summa:2011:ELS

Dragan:2006:CTS

Dor:2001:MSR

Espig:2015:WBG

Ejov:2008:DLC

Engel:2003:TBC

Egecioglu:2010:BPP

Edelman:2013:SCO

Etzion:1991:TLS

Even:2013:LOG

[EH13] Guy Even and Nissim Halabi. Local-optimality guarantees based on paths for op-

Enomoto:2001:CCN

Erman:2011:CGC

Ehrenborg:2016:CCP

Egawa:2008:NIC

Erickson:2012:NRR

Erlebach:2001:MED

Ehr16

Rok Erman, Suzana Jurečič, Daniel Král’, Kris Stopar, and Nik Stopar. Optimal

Erdos:2015:DBP

Encheva:2005:PCS

Engebretsen:2004:NNB

Elkin:2015:LS

Even:2000:AMS

Esperet:2016:IGS

Emek:2010:TUB

REFERENCES

2010. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

167

Fellows:1990:TVP

Felsner:2014:ODP

Feray:2015:CIE

Ferrari:2016:DAI

Feder:2006:CBB

Fellows:1994:PNC

Fiduccia:1998:GDB

Feldman:1988:WSN

REFERENCES

REFERENCES

Fomin:2012:CRC

Fomin:2011:AWP

Feigenbaum:1989:FES

Fan:1994:SHC

Fountoulakis:2010:QRS

Feder:2008:BTT

Feder:2010:RP

Tomáš Feder, Pavol Hell, Peter Jonsson, Andrei Krokhin, and Gustav Nordh. Retractions to pseudoforests. *SIAM
171

REFERENCES

Fiorini:2017:EMI

Faigle:1996:CNB

Feder:2003:LP

Feder:2013:GAN

Frieze:2013:GCN

Feder:2014:GAN

Felsner:1994:IBI

1994. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

893–912, January 2006. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Farber:2015:NIE

Fishburn:1997:SAD

Faigle:1998:ACA

Filtser:2017:STV

Feng:2005:ETC

Feng:2007:EET

Feng:1998:ICC

Rongquan Feng, Jin Ho Kwak, Juyoung Kim, and Jaeun Lee.

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Foucaud:2015:LSS

Fich:2005:GMR

Frank:1997:IMM

Fagin:2003:CTL

Fiala:2005:BTT

Frieze:2005:SCI

Faria:2012:OCT

REFERENCES

[Fernandes:2012:AAG] Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer. All alternating groups \(A_n \) with \(n \geq 12 \) have polytopes of rank \(\frac{n}{2} \). *SIAM Journal on Discrete Mathematics*, 26(2):482–498, ???? 2012. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).
REFERENCES

Fomin:2016:HFM

Fouilhoux:2009:GFI

Favaron:1993:HPB

Feng:2008:PCS

Fujita:2013:FRS

Felsner:2011:LED

REFERENCES

[FP99] Philippe Flajolet and Helmut Prodinger. On Stirling numbers for complex arguments and Hankel contours. *SIAM
REFERENCES

REFERENCES

[182]

Fishburn:2006:FCT

Franzblau:1989:PGS

Frankl:1990:CAC

Frank:1992:AGM

Franzblau:1995:CAL

Fraenkel:2010:CIF

Falgas–Ravry:2015:CTG

Fellows:2009:CWN

REFERENCES

[Falla:2012:TDE] Beáta Faller and Mike Steel. Trait-dependent extinction

Fujishige:1997:MMT

Fukunaga:2016:AGT

Fulek:2014:END

Furedi:1991:MIS

Fang:1997:TFH

Fischer:2015:CMP

Fishburn:2002:IPR

Fan:2014:FSC

REFERENCES

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

187

Gao:2013:DSS

Gao:2015:MPT

Gardy:1992:NLD

Glynn:2012:GOA

Garin:2008:AST

REFERENCES

[Goldwasser:2013:ETN] John Goldwasser and Ryan Hansen. The exact Turán number of $F(3,3)$ and all extremal configurations. *SIAM
REFERENCES

Goldschmidt:1996:AAC

Ge:2010:MDD

Gould:2014:MCC

Gorgos:2006:NQT

Golovach:2015:HNG

Geelen:2005:BSM

Gupta:1997:BSP

Gijswijt:2005:IDP

[Dion Gijswijt. Integer decomposition for polyhedra defined by nearly totally uni-

Goldberg:1997:GPU

Garnier:2002:ELS

Guruswami:2004:HCC

Gartner:2007:TNB

Glebov:2013:NHC

Gottlieb:2013:PAN

Guzman:2016:CFG

Gyarfas:1999:LCG

REFERENCES

Garrod:2012:HCB

Goresky:2004:DS

Grigorescu:2012:SRC

Gould:2006:MDI

On minimum degree implying that a graph is H-linked.

Jaime González and Osvaldo Landaeta. A competitive strong spanning tree algorithm for the maximum bipartite matching problem.

Gennian Ge and Alan C. H. Ling. On the existence of $(K_5\setminus e)$-designs with application to optical networks.

David J. Grynkiewicz and Vsevolod F. Lev. 1-saturating sets, caps, and doubling-critical sets in binary spaces.

Geoffrey R. Grimmett and Zhongyang Li. Strict inequalities for connective constants of transitive graphs.

Jaroslaw Grytczuk and Wojciech Lubawski. Splitting multidimensional necklaces and measurable colorings of Euclidean spaces.

Roman Glebov, Anita Liebenau, and Tibor Szabó. On the concentration of the domination number of the random graph.
SIAM Journal on Discrete Mathematics, 29(3):
REFERENCES

1186–1206, ???? 2015. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Giannopoulou:2016:TDS

Gritzmann:2011:UDT

Graham:2007:OTS

Glynn:2010:CAT

Glynn:2012:IHP

Graham:2007:OTS

Glynn:2010:CAT

Glynn:2012:IHP

Graham:2007:OTS

Glynn:2010:CAT

Glynn:2012:IHP

Graham:2007:OTS

Glynn:2010:CAT

Glynn:2012:IHP

Graham:2007:OTS

Glynn:2010:CAT

Glynn:2012:IHP
REFERENCES

May 1991. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic). See errata [GM93].

Archontia C. Giannopoulou and George B. Mertzios. New geometric representations and domination problems on tolerance and multitolerance...

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grotschel:1996:PST</td>
</tr>
<tr>
<td>[GMW96] M. Grötschel, A. Martin, and R. Weismantel. Packing</td>
</tr>
<tr>
<td>Steiner trees: separation algorithms. *SIAM Journal on Discrete</td>
</tr>
<tr>
<td>(print), 1095-7146 (electronic).</td>
</tr>
<tr>
<td>Ge:2005:CCO</td>
</tr>
<tr>
<td>[GMW05] Gennian Ge, Ying Miao, and Lihua Wang. Combinatorial constructions</td>
</tr>
<tr>
<td>for optimal splitting authentication codes. *SIAM Journal on Discrete</td>
</tr>
<tr>
<td>Mathematics*, 18(4):663–678, 2005. CODEN SJD-MEC. ISSN 0895-4801</td>
</tr>
<tr>
<td>(print), 1095-7146 (electronic).</td>
</tr>
<tr>
<td>Ge:2009:BSS</td>
</tr>
<tr>
<td>[GMZ09] Gennian Ge, Ying Miao, and Xiande Zhang. On block sequences of</td>
</tr>
<tr>
<td>Steiner quadruple systems with error correcting consecutive unions.</td>
</tr>
<tr>
<td>SJD-MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).</td>
</tr>
<tr>
<td>Godsil:2008:COG</td>
</tr>
<tr>
<td>SJD-MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).</td>
</tr>
<tr>
<td>Goemans:2001:AES</td>
</tr>
<tr>
<td>Gimenez:2006:CTP</td>
</tr>
<tr>
<td>[GnN06] Omer Giménez, Petr Hlinny, and Marc Noy. Computing the</td>
</tr>
<tr>
<td>Tutte polynomial on graphs of bounded clique-width. *SIAM Journal on</td>
</tr>
<tr>
<td>0895-4801 (print), 1095-7146 (electronic).</td>
</tr>
<tr>
<td>Guo:2011:PCA</td>
</tr>
<tr>
<td>complexity of arc-weighted directed Steiner problems. *SIAM Journal on</td>
</tr>
<tr>
<td>(print), 1095-7146 (electronic).</td>
</tr>
<tr>
<td>Gunerixccx:2012:BMD</td>
</tr>
<tr>
<td>[GO12] Çem Güneri and Ferruh Özbudak. A bound on the minimum distance of</td>
</tr>
<tr>
<td>quasicyclic codes. SIAM Journal on Discrete Mathematics, 26(4):1781-</td>
</tr>
<tr>
<td>1796, 2012. CODEN SJD-MEC. ISSN 0895-4801 (print), 1095-7146 (electronic)</td>
</tr>
<tr>
<td>Goemans:2001:AES</td>
</tr>
</tbody>
</table>
REFERENCES

\[\text{Golic:1996:CEP}\]

\[\text{Goldberg:2006:BPR}\]

\[\text{Gordon:1993:DLU}\]

\[\text{Gottlieb:2003:HED}\]

\[\text{Grigni:1991:TBM}\]

\[\text{Gavoille:1999:CIR}\]

\[\text{Gavoille:2008:ODL}\]
REFERENCES

Gerbner:2008:CPV

Gilboa:2014:UAP

Gutin:2016:PTS

Gasieniec:2001:WPS

Galil:2004:TDP

Goncalves:2011:DN

Goldberg:1988:PSB

Goldberg:2001:BAG

[GPS01] Leslie Ann Goldberg, Mike Paterson, Aravind Srinivasan,

[GPW13]

[Garneno:2015:ELK]

[Golovach:2015:IDP]

[Graves:2009:GEH]

[Guenin:2013:RBP]

[Goemans:2002:SMS]

REFERENCES

Giscard:2017:ACT

Graver:1991:RM

Graver:2004:EFG

Gray:2007:VMT

Gadouleau:2015:FPB

Gonen:2011:CSO

Gupta:2012:MRI

Gutin:2008:MCH

Gregory Gutin, Arash Rafiey, and Anders Yeo. Minimum cost homomorphisms

Goldberg:1989:CMI

Goldberg:1993:EPA

Gritzmann:1993:MAP

Gao:1994:SSE

Goh:1994:RSP

Greenberg:1995:FOO

Gerards:1998:GAS

Ginsburg:2000:CDC

Gijswijt:2003:SSP

Goemans:2013:ASS

Grohe:2016:CT

Guenin:2016:SCF

Granot:1991:NAR

Galeana-Sanchez:1998:SKD

REFERENCES

REFERENCES

REFERENCES

Gorlich:2010:PD

Hromkovic:2009:SPN

Han:2016:NPM

Han:2016:PMH

Hartvigsen:2001:CRC

Hartvigsen:2010:NSG

Harangi:2011:ASE

Hastad:1994:SWT

Hwang:1998:NCI

Heden:2008:PCL
Olof Heden. Perfect codes of length \(n \) with kernels of dimension \(n - \log(n + 1) - 3 \). *SIAM Journal on Discrete Mathematics*, 22(4):1338–1350, 2008. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Hefner:1997:MMT

Hetyei:2014:HCF

Hassin:1992:MPT

Huang:2001:WIT
S. H. Huang and F. K. Hwang. When is individual testing optimal for nonadaptive group testing? *SIAM
REFERENCES

Hage:2004:CAS

HH04

Hell:2005:CLR

HH05

Haynes:2002:DGA

HHHH02

Hsieh:2002:CEP

HHH+02

Hamalainen:1995:BBC

HHLÖ95

Horan:2013:UCW

HH13
REFERENCES

[Honkala:2002:MBR] Iiro Honkala and Andrew Klapper. Multicovering

Hsu:2005:OAB

Hamel:2011:BPS

Huang:2013:NPM

Huber:2014:OTS

Huber:2015:DMT

Hebdige:2016:TCC

Henning:2016:DGP

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Hell:1988:RTF

He:1999:LTS

Harvey:2011:DCB

Halman:2014:FPT

Hanckowiak:2001:DCC

Hladky:2017:ALKa

Hladky:2017:ALKb
[HKP+17b] Jan Hladký, János Komlós, Diana Piguet, Miklós Si-

Heuberger:2015:CTC

Hong:1992:SRL

Hoang:2000:RPS

Hsieh:2010:PRH

Ha:2015:NK

Heggernes:2011:CSG

Heath:1992:CQS

Horn:2013:JNM

Paul Horn, Steve La Fleur, and Vojtech Rödl. Jumps and nonjumps in multi-
DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Hamidoune:2000:ICV

Y. O. Hamidoune, A. S. Lladó, O. Serra, and R. Tindell. On isoperimetric connectiv-
ity in vertex-transitive graphs. *SIAM Journal on Discrete Mathematics*, 13(1):139–144,
2000. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Hu:2013:OBN

Zhiquan Hu, Ka Ho Law, and Wenan Zang. An optimal binding number condition for bi-
DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Haimovich:1988:EPH

M. Haimovich and T. L. Magnanti. Extremum properties of hexagonal partitioning

Hartvigsen:1994:APM

Harutyunyan:2011:GTL

Harutyunyan:2012:PGE

Ararat Harutyunyan and Bojan Mohar. Planar graphs have exponentially many 3-
DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Sepp Hartung and André Nichterlein. NP-hardness

Hamburger:2009:KRG

Hochbaum:2003:MCC

Heuer:1988:SGD

Hassin:2002:RM

Hoang:2005:CSP

Hwang:2005:POS

Hell:2012:DMC

REFERENCES

Hajnal:1990:BCP

Hamel:1997:LLC

Hitczenko:2004:MPR

Hoory:2006:NUK

Hladky:2010:NBG

Hammer:1988:LSU

Havet:2008:FCP

Hahnle:2013:SRU

REFERENCES

(1):109–125, ???? 2013. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Hamidoune:1990:VTS

Hujter:1993:NMI

Hajdu:2013:BAD

Heggernes:2005:CMT

Huang:2014:MID

Hurlbert:1994:UCS

Hutchinson:1988:SNC

Hoogeveen:2000:BPD

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Kawarabayashi:2011:IAH

Kawarabayashi:2009:CGK

Isaak:1992:CG

Imrich:1999:MGT

Kawarabayashi:2010:SCA

Kawarabayashi:2009:MTK

Kawarabayashi:2016:CTG

Kawarabayashi:2004:ONG
Ken ichi Kawarabayashi, Chris Stephens, and Xiaoya

REFERENCES

Iriarte:2016:LEL

Idury:1993:TTC

Iwata:2008:IEF

Iwata:2009:CDA

Tanigawa:2012:GRM

Imase:1991:DST

Janssen:2010:RBA

Just:2016:LAT

Jacobson:1992:ECC

Jaeschke:1989:SRC

Janusz:2000:OCP

Janata:2005:MIP

Jansen:2010:ESJ

Jiang:2006:OIT

Jordan:2013:GSR

Jedwab:1993:BAE

REFERENCES

308, May 1993. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

[Juvan:1997:OMB]

[Jacopini:1990:RTM]

[Jiang:1999:EBG]

[Joos:2016:IMGa]

[Jiang:2017:SDS]

[Jamison:1995:CHD]

[Jonsson:2005:SCG]
Jakob Jonsson. Simplicial complexes of graphs and hy-

REFERENCES

Jiang:2012:DPG

Jiang:2012:TNS

Jiang:2010:SSS

Joos:2014:IMS

Jochemko:2014:AMO

Jia:2017:EBF

Jansen:2012:PSP

REFERENCES

4801 (print), 1095-7146 (electronic).

Ji:2005:RSQ

L. Ji and L. Zhu. Resolvable Steiner quadruple systems for the last 23 orders.

Kao:1996:DSE

Ming-Yang Kao. Data security equals graph connectivity.
ISSN 0895-4801 (print), 1095-7146 (electronic).

Kahale:1997:IIE

Nabil Kahale. Isoperimetric inequalities and eigenvalues.
ISSN 0895-4801 (print), 1095-7146 (electronic).

Khosrovshahi:1990:NBT

ISSN 0895-4801 (print), 1095-7146 (electronic).

Kapadia:2014:MMP

Rohan Kapadia. Matroids with a modular 4-point line.
ISSN 0895-4801 (print), 1095-7146 (electronic).

Kaplan:2014:MIT

Nathan Kaplan. MacWilliams identities for m-tuple weight enumerators.
ISSN 0895-4801 (print), 1095-7146 (electronic).

Karloff:1989:HLC

Howard J. Karloff. How long can a Euclidean traveling salesman tour be.
ISSN 0895-4801 (print), 1095-7146 (electronic).

Karp:1992:TSG

Richard M. Karp. Three-stage generalized connectors.
*SIAM
REFERENCES

Khachiyan:2005:CSE

Ming-Yang Kao, Martin Fürer, Xin He, and Balaji Raghavachari. Optimal parallel algorithms for straight-line grid embeddings of planar...

Kao:1993:EDP

Kleinberg:1998:LTF

Khan:2013:PMU

Kierstead:1988:LFF

Kierstead:1997:CGV

Kakimura:2012:PDC

Kakimura:2017:PED

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Kohli:1989:APH

Klawe:1990:ALT

Kortsarz:2001:AAN

Kunszenti-Kovacs:2009:NPA

Katz:2010:ADE

Kaminski:2014:BVB

Kocay:2014:RGT

REFERENCES

Kardos:2010:LFF

[KKS10] František Kardoš, Dan Král', and Jean-Sébastien Sereni.

Krivelevich:2017:BDS

Kardos:2011:FCC

Klawe:1992:TLB

[KL92] Maria Klawe and Tom Leighton.

Krokhin:2008:MSF

[KL08] Andrei Krokhin and Benoît Larose.

Kim:2014:URG

Klazar:2006:ICN

Kleitman:1989:DUC

[Kle89] D. J. Kleitman.
Kowaluk:2013:CDS

Kratsch:2003:ATS

Keevash:2014:SEP

Kante:2014:EMD

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Korner:2001:CRI

Klavzar:2002:PCC

Kubicki:2005:GTG

Kushilevitz:2005:CNR

Korner:2006:PCP

Kudekar:2011:DCS

Kakimura:2013:RIS

Korner:2013:DDG

Kozik:2013:NCN

Krakovski:2014:HFW

Kwak:2005:EBC

Kang:2012:IMS

Kim:2003:PBL

Kung:2014:MSB

Kushilevitz:1995:LUW

Kaiser:2011:CGF

Kneis:2009:BPS

Komlos:1998:MNB

Korner:2008:GDP

Kierstead:2009:TCN

Körner:2012:FGD

REFERENCES

Kobayashi:2007:OMC

Kostochka:2015:TPS

Keevash:2006:SSN

Krishnamurti:1995:AAP

Klee:2013:FCB

Kant:2016:PTA

Khuller:1993:LSF

Kostochka:2005:ECD

Kannan:1992:IRG

Khanna:2005:DND

Knuth:1995:TWR

Krauthgamer:2014:PTD

Ko:1988:STO

Kuhn:2006:IBT

Kuhn:2006:MHC

REFERENCES

Kuhn:2012:PCR

Kochol:1998:PIT

Koppe:2007:PBA

Kushilevitz:2003:ARP

Khamsemanan:2016:BBU

Kuhn:2009:OTT

Kotlar:2013:CSS

Kuhn:2016:RGF

Ross J. Kang, János Pach, Viresh Patel, and Guus Regts. A precise threshold for quasi-Ramsey numbers. *SIAM Jour-

REFERENCES

Kravitz:2007:RSD

Krivelevich:2010:EST

Kociumaka:2016:ERL

Kaiser:2011:GOC

Krivelevich:2015:SAC

Korner:1988:SPS

Kalyanasundaram:1992:PCC

Kratsch:1993:DCG

REFERENCES

Khuller:2000:CKC

Kratsch:2002:ABM

Kashyap:2003:EAC

Ko:2003:BDS

Kral:2003:TAC

Kumar:2003:PFA

Katta:2004:NBT
Kesevash:2005:SSR

Kovaleva:2006:AAR

Kortsarz:2007:IAA

Kral:2008:BRN

Kral:2008:CTF

Krivelevich:2012:OPH
REFERENCES

Krivelevich:2012:CSS

Kowalik:2008:TCP

Kral:2009:NLB

Kral:2006:CLG

Kral:2012:MMR

Kral:2011:EPG
REFERENCES

REFERENCES

REFERENCES

Kemkes:2013:IUB

Kolesnik:2014:LBI

Kenyon:2017:SCP

Kinnersley:2013:EPG

Kobayashi:2012:AFM

Kabadi:2009:ISE

Kierstead:2004:RTT

Kostochka:2008:ALC

REFERENCES

2012. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Luo:2003:DCG

Leclerc:1990:MMS

Lee:2017:CLS

Leighton:1994:LBT

Lenart:1998:GDG

Levin:2009:AUS

Lev:2015:EIP

Lam:2011:GSE

Fumei Lam, Dan Gusfield, and Srinath Sridhar. Generalizing the splits equivalence theorem and four gamete condition: Perfect phy-

References

Laihonen:1999:NBC

Lee:2014:RPR

Li:2014:MOG

Lin:2015:FLF

Liang:2017:MCS

Lladser:2006:UFC

Lin:2004:ICV

Lee:2013:SSG

REFERENCES

2013. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Li:2010:RNC

Lih:1999:SEC

Liu:1989:LRA

Leveque:2008:CBF

Lukotka:2010:CGG

Lucier:2011:GDC

Levit:2012:VBA

REFERENCES

REFERENCES

4801 (print), 1095-7146 (electronic).

Louidor:2010:TFC

Lee:2010:ANO

Liestman:1988:BNB

Lichiardopol:2009:STB

Lotker:2012:RLB

LeSaulnier:2013:TAG

Luczak:1991:TMG

Leader:1994:LOI

I. Leader and A. J. Radcliffe. Littlewood–Offord inequalities for random variables. SIAM
Lozin:2004:BTC

Landman:2007:AMS

Li:2011:ISP

Levi:2014:TSM

Letchford:2008:OMC

Lin:2011:SBB

Li:2012:PHS

Binlong Li, Zdenek Ryjácek, Ying Wang, and Shenggui Zhang. Pairs of heavy subgraphs for Hamiltonicity of

REFERENCES

Lin:2008:UCA

Litsyn:2009:DBF

Long:2014:WHH

Lafond:2015:HCG

Lund:2016:IBB

Lou:1992:OAM

Liu:2003:LEW

Lang:2017:APE

Luo:2010:ECS

Li:2014:SCC

Lu:2001:NIA

Lu:2004:DHC

Lu:2008:ECS

Lu:2010:ICR

Loten:2011:NUP

REFERENCES

[Luo:2008:RDS] Linyuan Lu and Yiting Yang. A lower bound on the transpo-
Lynch:1994:RRA

Larose:2003:CEP

Liu:2005:CDT

Liu:2005:MDL

Li:2006:DMF

Lu:2009:ERH

MacGillivray:1991:CCV

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

[Milans:2006:CGP] Kevin Milans and Bryan Clark. The complexity of
REFERENCES

Mertzios:2012:SPA

McDonald:2015:LVR

McLeod:2010:AEE

MoranR:2011:MFC

Moran:2016:CIH

Mohammadi:2016:AMT

Mehrabian:2012:DNR

Merris:1999:NUB

Mertzios:2015:RST

Meszaros:2016:PRT

Meszaros:2016:PDC

McKilliam:2014:FCP

McClosky:2009:CPP

McKinley:1991:DCR

Mitchell:1997:BSP

REFERENCES

McConnell:2015:LTR

Motwani:2008:LBL

Mousset:2014:NGL

Mollard:2011:VPH

Momihara:2013:SHD

Montgomery:2015:AAF

Morgenstern:1994:RD

Mouaha:1994:SCO

Malitz:1994:ARP

McMorris:1995:MPF

Mitchell:1998:PFC

Mustafa:2004:LYN

Matousek:2008:LMC

Marcus:2013:CBE

2013. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Majerski:2014:ISD

Meier:2017:PFS

Mitsche:2017:TRP

Ma:2006:CD

Matousek:2008:HMP

Morton:2009:CRT

Miers:2004:CSGa

Miers:2004:CSGb

C. R. Miers and F. Ruskey. Counting strings with given elementary symmetric function evaluations II: Circular

Mayhew:2012:ICB

Moore:2015:ARA

Moore:2015:OBS

Mrazovic:2017:OPC

Murphy:2015:VSP

Motwani:1989:PGO

Miracle:2016:SCO

REFERENCES

Montanari:2011:RCR

Mauhar:2017:HRK

Muir:2005:ADS

Meagher:2014:EKR

Mani:2016:NLC

Morris:1993:EFM

McKay:2014:CNQ
REFERENCES

Mohammadian:2014:FDF

Maffray:2008:ASF

Munoz:2005:IMC

Munarini:2006:CIC

Murota:1996:VMIa

Murota:1996:VMIb

Murota:2006:CFJ

Murai:2010:FVB

 REFERENCES

Neelamani:2007:NOL

Nelson:2015:MDT

Nguyen:2010:ARM

Nguyen:2013:SRC

Ng:1991:TDS

Nagamochi:1992:CEC

Nierhoff:2000:TBI

Nishizeki:1990:ECM

Nagamochi:1997:CAS

[NNI97] Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. Computing all small

Nisan:1989:PAZ

Nobili:1993:PPC

Nesetril:2007:SDD

Nozaki:2011:BDS

Nguyen:2016:CCC

Nesetril:2005:SAE

Nakamigawa:2012:CLP

Nelson:2015:MRF

REFERENCES

ORDENTLICH:2012:AEB

OCARROLL:2014:DAP

OISER:2004:ISR

OHLITSKY:1993:ICB

ORRICK:2008:SOH

OLESKY:1992:FLR

OSTAFE:2011:PDF

REFERENCES

Oh:2013:RGS

Ozeki:2013:STB

Padrol:2016:ECP

Pal:2012:BAC

Paterson:1988:UCW

Payne:2017:BLP

Provan:1997:CPA

Pegden:2014:EMT

REFERENCES

Penev:2012:CBF

Perrett:2016:CRM

Pettie:2011:OND

Petersen:2013:SIO

Pfender:2015:CDC

Picollelli:2014:FSF

Pettie:2015:TGD

Padro:2006:RSI
REFERENCES

Pikhurko:2003:ASR

Pinchasi:2008:MND

Pinchasi:2014:FFP

Pippenger:1989:RSA

Pippenger:1991:ECC

Pippenger:1995:ARA

Pippenger:2001:EET

Pippenger:2002:EMI

Pippenger:2006:LPD

Pittel:1989:ANS

Pippenger:1994:FTC

Phelps:1999:NPC

Padro:1998:FTF

Przytycka:1990:LBS

Paletta:2007:NAA

Perles:2007:FKS

REFERENCES

[PSS09] Michael J. Pelsmajer, Marcus Schaefer, and Despina Stasi. Strong Hanani–Tutte on the
CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Pelsmajer:2010:RIE

Patt-Shamir:2000:EAE

Petit:1990:TPR

Poljak:1994:BST

Peng:2014:ITP

Penev:2016:IHC

Pitassi:1995:CHC

Pak:2010:RYT

Peleg:2002:HES

Payne:2013:GPS

Pretzel:1990:CLG

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Poznanovic:2009:Cnt

Paturi:1998:DPB

Pike:2005:DCP

Pan:2010:MCC

Qu:2014:DPS

Qureshi:2015:RAF

Quilodran:2010:JP

Rabern:2006:GA

REFERENCES

Raychaudhuri:1994:FRC

Razborov:2010:HFV

Rispoli:1998:BDS

Ray-Chaudhuri:1988:EDL

Ramras:2011:AGJ

Reading:2008:CNP

Reading:2015:NAD

Redlich:2017:PTC

REFERENCES

Rokicki:2013:DRC

Richmond:1997:SNC

Ruskey:2001:NIP

Ronyai:1992:GGF

Rosendahl:2009:CMV

Ruckenstein:2003:BLD
REFERENCES

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Regev:2017:IGL

Ravi:1996:STS

Ragde:1988:PCE

Restrepo:2014:PTG

Radcliffe:2005:RTF

Ruskey:2012:BSF

Rubinov:1998:SNO

REFERENCES

[RX88] Fred S. Roberts and Yonghua Xu. On the optimal strongly connected orientations of city

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Pages</th>
<th>Volume</th>
<th>Issue</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN (print)</th>
<th>ISSN (electronic)</th>
<th>URL</th>
</tr>
</thead>
</table>

REFERENCES

Scheinerman:1992:GCN

Schirokauer:2002:SFF

Schrijver:2002:SPB

Schachtel:2004:EWR

Schweig:2009:CED

Schulze:2010:SSC

Solomon:2014:BDD

Seiden:2001:OOA

REFERENCES

Sendrier:1997:DH

Seress:1988:QGC

Servatius:1989:BP

Sommer:2009:FCL

Shangguan:2016:SHF

Shaw:2013:TIP

Shioura:2012:NSJ

Shparlinski:2010:DOK

Shparlinski:2013:ADS

REFERENCES

Shparlinski:2015:CGG

Siggers:2010:NPC

Simon:1990:ASC

Simson:2013:CGC

Schulze:2015:IRS

Skutella:2016:NRL

Sherali:1995:SSL

Shen:1996:GAC
REFERENCES

528, November 1996. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Slivkins:2010:PTE

Smith:2001:PSP

Sakashita:2009:MTP

Smorodinsky:2007:CNG

Sales:2008:PQP

Sniady:2014:RSK

Snook:2013:CDP

Solymosi:2006:DAL
József Solymosi. Dense arrangements are locally very dense. I. *SIAM Journal on
Solomon:2012:MSD

Soma:2014:FDA

Soto:2015:IAM

Simoes-Pereira:1988:OCG

Spacapan:2007:OLT

Speyer:2008:TLS

Spinrad:1989:PTS

Spinrad:1995:NFM
REFERENCES

[SS02a] Andreas S. Schulz and Martin Skutella. Scheduling unrelated machines by randomized rounding. *SIAM
REFERENCES

Steel:2002:IRF

Shachnai:2004:FLI

Schaefer:2005:SGI

Solymosi:2008:EIT

Soprunov:2009:TSC

Soprunov:2010:BTC

Safari:2011:CFA

MohammadAli Safari and Mohammad R. Salavatipour. A constant factor approximation for minimum λ-edge-connected k-subgraph with metric costs. SIAM Journal on
REFERENCES

Scott:2011:BCR

Sundaram:1994:TCA

Schmidt:1995:CHB

Shioura:2013:SOA

Santoro:1989:GCP

Sloan:2008:TDL

Schrijver:1998:RLP

1998. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Shioura:2007:PTA

Steffens:2010:CGT

Scheidweiler:2013:LBC

Schillewaert:2014:CCA

Staden:2017:DSF

Stachowiak:1992:HPG

Stanton:2011:IBI

Steel:1988:DSD

REFERENCES

Sudakov:2008:RNS

Suk:2013:DTI

Sullivant:2005:SCT

Sullivant:2012:DNP

Suzuki:2010:REM

Stinson:1988:CAT

Sudeep:2008:MFD

Stefankovic:2011:FCM

Daniel Stefankovic and Eric Vigoda. Fast convergence of Markov chain Monte Carlo algorithms for phylogenetic reconstruction with homogeneous data on closely related species. *SIAM Journal on

REFERENCES

[TAKAZAWA14] Kenjiro Takazawa. Optimal matching forests and evaluated
REFERENCES

[Tam88]

[Tam91]

[Tan10]

[Tar88]

[Tassiu1997:WCL]

[tBaa07]

[Tenner:2009:OLE]

[TH90]
Tai-Ching Tuan and S. Louis Hakimi. River routing with a small number of jogs. SIAM Journal on Discrete Mathematics, 3(4):585–597, Novem-
Taylor:2011:LFN

Thatte:2008:CPC

Timar:2008:SH

Todd:1989:TGC

Todd:2014:IKK

Torocsik:1993:SB

Toth:2008:AAS

Toth:2010:UCI

Ágnes Tóth. The ultimate categorical independence ratio of complete multipartite graphs. *SIAM Journal on Discrete Mathematics*, 23(4):1900–1904, 2010. CODEN SJDMEC. ISSN 0895-
Tovey:1990:SAR

Telle:1997:AVP

Tian:2009:ADD

Tan:2013:FSN

Trevisan:2004:LVG

Tropp:2015:IFP

Tapia-Recillas:2003:LQC

Tsai:1996:LBR

REFERENCES

Terlep:2012:GGK

Tillich:1997:OCC

Thapper:2015:NCT

Tzanaki:2008:FGC

Ueno:1993:MFT

Ullrich:2014:SWF

Umanna:2015:DTC

Urbaniak:1997:VBA

REFERENCES

vanDalen:2011:BLR

Vazirani:2013:NCU

Vazirani:2012:RCP

Vegh:2011:AUN

Vavasis:1989:GEP

VanderVeen:1994:NCP

Vazirani:2012:RCP

Vegh:2011:AUN
vanIersel:2016:HNT

vanIersel:2014:AAN

Vince:1993:RT

Vince:2007:DLW

Vinh:2011:EFD

Vinh:2012:PMR

Vinh:2013:FVE

Voigt:2007:PEC
REFERENCES

REFERENCES

Wu:2012:CCC

Wang:2015:VFI

Webb:2008:VSG

Weng:1997:LST

Whittlesey:1995:NRG

Will:2004:PM

Wang:2015:CAV
REFERENCES

REFERENCES

Weinard:2006:GSC

Wendemuth:2012:MDO

Wu:2009:LAG

Wang:2013:ICP

Wang:1991:LDR

Wang:2011:EBN

Wang:2010:CGP

Oren Weimann and Raphael Yuster. Computing the girth of a planar graph in $O(n \log n)$ time. *SIAM Journal on Discrete Mathematics*, 24(2):609–616, ????. 2010. CODEN SJD-
REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Wu:2014:NZF

Wang:2008:NMP

Wu:2009:CAC

Xu:2009:AMP

Wu:2009:CPG

Xu:2015:MAD

Xu:2011:MCL

Xi:2015:CIP

Ye:2009:RFG

[YQZ09]

Yeap:1995:SFG

[YS95]

Yu:2017:NBE

[Yu17]

Yuster:2003:ECU

[Yus03]

Yuster:2009:DCA

[Yus09]

Yuster:2014:EDC

[Yus14]

Yuster:1997:FEC

[YZ97]

Yang:2017:BOP

[YZ17]

Zak:2014:PTG

[Andrzej Zak. On packing two graphs with bounded...]

Zeng:1990:CSP

Zeng:1990:FCI

Zerbib:2011:ZCV

Zhang:2009:EGB

Zhang:2010:ZCV

Zhang:1990:FCI

Zhang:1993:PSS

Zhang:1994:SNB

Zhang:1999:OBM

Zhao:2009:BGT

Zhao:2011:BST

Zheng:2016:MBT

Zhou:1988:AER

Zhou:1992:NOC

Zhou:1993:CHP

Zhou:2005:LCG

Zhou:2009:CAT

Zitnik:1994:DGS

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Zdeborova:2011:QPL

Zhang:2011:ESC

Zhang:2008:RGB

Zhu:2012:LPG

Zelikovsky:2002:PAA

Zhou:2008:ODS

Zhang:2011:SCA
REFERENCES

Zuckerman:1992:TLB

Zunic:2011:NNT

Zamfirescu:1992:HPG

Zhang:2013:DHC