A Complete Bibliography of Publications in the *SIAM* Journal on Discrete Mathematics

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

28 May 2020
Version 3.29

Title word cross-reference

(0, 1) [BM15], (0.5, n) [BE13], (1, −1)
[dLL09], (1, 2) [BKM08, DK06, DK10],
(1, l) [Lai05], (1, m + 1, n + 1) [BD01],
(1 − ε) ex(n, C4) [BS10a], (2 + ε)n [DZ01],
(2, 2) [GZ19], (2p + 1) [LHHL18], (2P2, K4)
[GH19], (2s + 1) [LL14b], (3, 1) [Xu09],
(4, 3) [GZ19], (7, 2) [Máč13, CW09], (9v, 4, 1)
[FHMY01], (d, k) [KS03a], (A + 2)
[WHW14], (k, l) [GL98], (k − 2)
[dOBMS+17], (K5 \ e) [GL08], (≤ 4) [DL14],
(Q, x) [Mal89], (r + 1) [CtJL01], (t, m, s)
[AS97], 0 [BG91, BCH92, HL15], 0, 1/2
[Fio06], 0.5 [AHS01], 1
[BG91, BCH92, CHZ04, GL10, HL15,
LW17a, Rif99, Riz02, Spi95, ZLS08]. 1.1
[NK90], 1.5 [CSS01], 1/2 [CD14], 1/3—2/3
[BW92]. 2 [AB94, ACF18, BBF99, BM97,
BJT92, BH97, BIT13, BL17b, BCKP19,
CL15a, CL16, CL07, CSS13, CSS01, CY18,
CDK10, DX19, DGM12, FJ09, FMMO93,
Fis94, GVW06, GSK91, HY92, HL00,
IKM92, JM97, KSS11a, LRWZ12, LM17,
LC12, Nov18, OSW16, OZ18, PSW96, RT18,
Sav14, TSN04, Vaz12, Voi07, Wan02a], 2/3
[BT14], 23 [JZ05], 24 [EK10], 25 [KKW17],
2m−2 [Car94], 2d − 1 [Lei94], 2 × 4
[MMJF03]. 3 [ABHM00, AcRS07, Bih05,
BS16a, BS16b, BK12, BW02, CM90, CZ97,
CH06a, CS18c, CS02, CW09, CM14, DST01,
DD13, DJ11, DM15, DGM12, DL18b,
EHJ01, EGM18, FRMPV15, FRZ16, FZ08,
FXY14, FT12, Gab04, GKRS15, GSK91,
GK04, GKL99, HM12a, JKS17, KRS11,

1
Anchored [BKL+15]. Angles
AFT12, AS05, BPV10, DV96, SW04.
Angular [MP94]. Anomaly [Tov90].
Answers [NT05]. Anti [GLS20].
Anti-Ramsey [GLS20]. Antichains
[Fra90, DSW90]. Antiholes [BBT16].
Antisubstar [CNRS15]. Antiweb [CdV02].
Antiweb-Wheel [CdV02]. Any
[CKP16, DF94]. APN [BBMM09, TQLT13].
Apple [BLM10]. Apple-Free [BLM10].
Application [Ber20, BP12, CuKS07, FL92, GPP04, GL98, KSV05, KS08b, KL08, LS17, HS99b].
Applications [AOW15, BYHR10, Bar95, BCDMR08, CR16, CF17, CW16, DJKO19, Doh03, ENSZ00, Fra90, Gal18, GKL19, GKS12, GS93b, GMTW15, HY15, Jan00, KMRR09, Lu04, MK01, MPP17, MMJF03, SS02b, BC88b, SSS95, Stu88].
Applied [HHHH02]. Approach
[ACD08, BNMN92, BCE+01, BAM16, CS98, CL91b, CP16b, DMS14, Gab04, IK09, Kim92, LLL18, Rox19, SSS13, SZ94, SV88].
Approximability [Che09, KvIL+12].
Approximate
dOBMS+17, Cal13, CS09, CDN16, DHL+02, FK98, Goe01, HT13, HKP+17a, HKP+17b, HKP+17c, HKP+17d, KV15, LOW10, MR15a, OS13b, Sim90, AA88].
Approximating
[ENSZ00, Fei04, Fle00, FGT11, Fuk16, Gab04, Gab05b, KK01, KLN10, KS02, Lev09].
Approximation
[AS09a, ACLW18, AS01, AY94, AS02, AB95, AS14, AS09c, BPF99, BYFMR10, BZ11, BS18, CFKK17, CCG+11, CKNZ05, Che04, CSS01, CV07, CL13, CMSV17, DL18a, DM15, ELMS11, FLM+16, GLS16, GPPS01, GHYY96, HKL+14, JS03, JP06a, JP18, KP95, KS07, KS06, KN95, LS03a, Pa12, PP07a, RV99, RS10, RZ05, SS11a, SX13, SBD+19, SY11, Svi03, ZM02, vIKLS14, GW94]. Approximations
[KS03d]. Arbitrary
[BBCZ11, Dan09, DKM+15, DR04, DS05b, Moh99, Sol12, WWKY11]. Arborescence
[Kir16]. Arborescences [KPM19, dGNS13]. Arboricities [HM12a]. Arboricity
[BCCZ11, ERS19, Wu09, HS99a]. Arc
[BHH96, CPS08, FHS14, FIN08, GNS11, LS08, Mac91, Ram90, Rea15, SSR94, Tan10, Yam05, Zho09]. Arc-Disjoint [FI98].
[WL10]. Arguments
[FP99, KLMR03, RM97]. Arising
[ACF18, GM90, Pip95, ACS97]. Arithmetic
[GP14, Het14, JS14]. Arm [ABC17].
Armstrong [SZ15]. Arrangeable
[BKTW15]. Arrangements
[ASH18, RC18, Sol06]. Array [Lai18].
Arrays [ACL01, BGS96, CCHZ13, GB12, MMPS10, MHLH91, SC17, Jed93, JLM93].
Arrovian [Das99, FK97]. Ary [KP90, AS02, Etz96a, Lic98, LO05, LT01, PSS98, Sca05].
Aspects [CFT93, MW03, NT05]. assembly
[DH90]. Assignment [FYK00, Gol06, JWF05, KS03c, Krá06, Bal89, Ray94].
Assignments [AT90, FFV11, GJ08].
Assisted [Kar20]. Assmus [BR19].
Associahedra [Rho15]. Associated [CM18].
Associations [Rab06]. Asteroidal
[BKKM99, COS97]. Asymmetric
[CR96, CDK10, Fis14, LS03a, Bal89].
Asymptotic
[AJM08, Bac09, BEL09, Bie88, CH01, DFK+11, GM13, KK09, MMS17, MCL10, NÖ08, OP12, Pik03, WS12, Wl05, dJMS16].
Asymptotically [GH90a]. Asymptotics
[BHRZ14, KLMR03]. AT-Free [CKOS06].
Atom [DMG12]. Attachment [Ja10].
Attractors [Ja16]. Augmentation
[BBJ98, BJGJS99, FGT18, HK05].
Augmenting [ABS10, Bli03, Fra92, Vég11]. Authentication
[GMW05, KCT13, MW94b, ST14].
Auto-correlation [TQ09].
Autocorrelations [XQ06]. Automata
[BBS00, GM91, GJ16, MM93, Rom06, GM93].
Automaton [Jun12]. Automorphisms
[RD11]. Automorphisms
[Kas05, Vse05, Ram97b]. Average
[Che94, CCG+00, CF09, DMS08b, DMS08a, Gol06,
GP16, KK89, XGG15, AKK89, Pits90]. Averages
[Pol19]. Averse [BS18]. Avis
[RC18]. Avoidance [Ehr16]. Avoider
[BM09]. Avoider-Enforcer [BM09]. Avoiding
[AM06a, CL15a, DGN+20, LR07, MMS08, RR18, Yos09, ZSW11]. Axis
[AC14, Kim91, Tô08]. Axis-Aligned
[Tô08]. Axis-Parallel [AC14].

Backbone [MŚT09]. Backup
[BKM15, Fuk16]. Bad [GS03, Sch02b]. Bad-
Sch02b]. Balanced
[ACLT01, AM11, BG12, EMT15, FL10,
LSSZ19, Or193, Zhe16, BM94a]. Balancing
[AE04, CLGH11, DM18a, SE14, HMP97]. Ball
[GJ12]. Ballot [CFJ11]. Balls
[BYKK18, DTW03, LS14, Lut04]. Balog
[BC11]. Band [LR04, JM97]. Band-
[LR04]. Bandits
[KS04]. Bandwidth
[AJM08, EG03, JMSW99, JMSW00, KV90,
KS02, Mot19, Spr94]. Banner
[KN13]. Banzhaf
[Bol90]. Bar
[BS15, CHJ+04, HVW07, SI15]. Bar-
[SI15]. Barely
[FGS19]. Bargaining
[CGV+14, Vaz12]. Barker
[Jed93, JLM93]. Barnette
[Kar20]. Barrier
[BNT17]. Barriers
[DTJ15]. Barvinok
[Köp07]. Barycentric
[Mur10]. Base
[BDT17, AS97]. Baseball
[Way01]. Based
[ACKM19, ASZ10, EMT15, ES98,
EH13, GMPZ15, GKN10, Ja10, Köp07,
KCTR13, Sot15, Wag18, dGNS13, vBB15]. Bases
[AK14, BP09, BP16, Ch009, CP16b,
EdJdVT18, GSS14, GS93b, HKL11, JS17,
NDB07, Web08, Win16, BGM94, LW88b]. Basic
[ADHL13, ADH+14, PRS02]. Basis
[BS90, Ch09, GH06, GW07, HM94, KAN90,
Kot13, Lub90a]. Basis-Exchange
[Kot13]. Batch
[DS05b, GLY07]. Baxter
[BGRR18]. Bayesian
[XY15]. BCH
[CGV+14, LM17]. BCH-codes
[CZ97]. Be
[BS16c, Che16, MP508, PW02, BBS17, Gao18, Kar99]. beat
[Tô93]. Beating
[GP16]. Beatty
[CDR16]. Behavior
[BK11, CT05, CCG+00, MW19a]. Belief
[BBCZ11, FS17]. Bell
[CH18, ACFL16, FR94]. Bellman
[HS88]. Belong
[Més16b]. Belonging
[LM12]. Below
[COHH17, LPS18]. Bend
[DM18b]. Bends
[ZN08]. Bent
[CMP15, CK08a, KCTR13, TKMM19]. Benzenoid
[ZLS08]. Berge
[GP17, GMV20, Gyá19, HT19, MT08]. Bergman
[Ber20, DD15]. Bermond
[LPS09]. Bernstein
[GSS14]. Bessel
[Ege10]. Best
[GKM12, GMS15, HV00, Jon20]. beta
[BDEK06]. beta-Skeletons
[BDEK06]. Bethe
[CFKK17, CCG+11]. Better
[GPSS01]. Between
[CCO+15, SA90, Wi199,
AN16, BYR05, BH20, FHM94, GPW13,
HT19, KL19a, Lab13]. Betweenness
[CS98]. Beyond
[ACD08, CLS15, KK14a]. Bézout
[WWK11]. B. [BKK16, BGH+17].
Bi-Covering
[BG+17]. Bi-set
[BKK16]. Biased
[BN96, Cha16, MR15b, NvdP19].
Bichromatic
[AIH+10, Pay17]. Bicolorable
[BGL07]. Biconnected
[PSW96]. Biconnectivity
[HK05]. Bicontractual
[dR14]. Bicriteria
[SSS13]. Bidegree
[BR17a]. Bidimensional
[DFHT04, DHT06]. Bidirected
[DZ09a, EJ10]. Big
[CR15]. Bigraphs
[HH05]. Bijection
[CMS09, TKA18]. Bijections
[PV10a]. Bijective
[FW02, HK11]. Bimodality
[DH05]. Bin
[CCG+00, PLS16, FL01, JK19, Se101, Woe93]. Bin-
[Wo19]. Binarisation
[CCJ+17]. Binary
[ACLT01, BDM02, BZ20,
CLVZ96, CM12b, CG02, CSM17, DH05,
FMP08, Fis90a, GZ06, Go196, Gv17, GL10,
GPW13, GJ12, HHL095, Han09, HWS18,
HvIK+07, Kim91, KMP03, KM95, KMPR14,
MG19, MR12, Moi08, OPR12, ÖV04, PP13, RSW12, Sav07, Web08, Wil05, Yam20, ZLS08, vIKL+16, HS97. Binding [HLZ13].
Binomial [BBMM09, KKP15, Mal89].
Binpacking [FK98]. Biodiversity [FS12a]. Biorthogonal [Kim92]. Bipancyclism [HLZ13]. Bipartite [AAHLT10, AKZ17, AS07, AS14, BB16, Bal08, BIKY18, BHT10, BCP08, CMPS17, CY18, CP16a, CM07, CDK10, CD11, DZ09a, FMMO93, FF06, GL95, GRY08, HvtHLN12, HVLP13, HS10, HK05, Jan20, JQ20, KW08a, KS03b, KS07, LLY10, LHHL18, Mak07, MT90, NOO12, PT14, Piko03, Pip02, PT94, PSML08, Sim13, Wan02b, ZZW13, Zha09, Zha11, dCLM13, Jac92, dh89]. Bipartition [AAHLT10, LSSZ19]. Bipartition-reversing [AAHLT10]. Bipartitions [KKO16].
Bipartization [CNR89]. Birigidity [Ser89]. Bisection [AHFM08, KL19a]. Bishellable [AAFM+18]. Bisubmodular [BC95, FI05, HK14, Shi14, FS09a, FLL10, Fra95, GOL12, Gol06, Gol90a, MNPR17, NW95, PZ98, Tsa96, WS19, dGV05]. Bootstrap [BP15, SS91]. Boppana [BT05b]. Border [BP16, CH89]. Borel [TA93]. Bottle [iKKKL09, iKMN09].
Bound [AF05, Bar01, BL19b, BN01, BL17b, Bra05, CTU14, CY08, CFM94, CS91, CR17b, DSZ05, DH91, DJW12, EP10, FS09a, FLL10, Fra95, GOL12, GOL12, HJ18, HTS18, KKP11, KK14a, KL92, KMR99, KSS09, Lav16, Le19, Liu14, LY10, Luc03, Mer99, Nac01, Nia00, OS16, PP90, RC98, RS15, ST13, SS19, SS11b, SS18b, SL95, Ste07, Tod14, c09, Sar97, SG16, Tar88].
Boundaries [AF05, KiT13]. Boundary [AE03, Lai18, vD11, LS89]. Bounded [AD96, ABC+15, Bab92, BFGR17, BHL92, CCE+16, Che94, CCL+06, DHT06, DP92, FJK+19, GW06, GwN06, GWZ18, HaKK+09, Jk99, Jon05, Joo16, Kiki12, KPP13, KSS17, LR04, LM11, OPR12, Oze13, RW19, SW14, Sei01, Woe93, Yos19, Zak14, ZM02, BCLR89, LP88]. Bounded-Degree [HaKK+09, KKS17, BCLR89].
Bounded-Genus [DHT06]. Bounded-Skew [ZM02]. Bounded-Space [Woe93].
Bounding [AH96, BDF+18, BM11, BC17, C110a, EK13, GI97, HW16, JLL16, Lab13, Zac92].
Bounds [AS10, BEL09, BHL+15, BGJ+12, BG96, BJK14, Bk16, CHZ18, CHLZ00, CL05, DMR11, DW10, Dhz01, DSS13, DMS12, DS16, EMRS14, FFe98, FP01, FP04, FHH18, Gg15, Gk07, GP91, GRS12, HT13, HHL05, HK02, JWF05, KK17, KM018, KT19, KM95, KW14, KT17, KS08b, KO06a, LN17, LL99, LRTW11, LZ09, LNO96, LS16, Mac18, MP13, MSD19, MS19, MNP08, MTGK05, NW95, NÖ08, NS11, RTS00, RZ05, RR03, SC17, Sta11, SS02b, DW11, Swa05, VVY15, XSR11, YAT16, ...
Etz96b, EV98, FG01, FT05b, FHMY01, FKMS10, GF08, GMW05, GOR20, GKS12, GÖ12, HHLÖ95, Han98, Hed98, HKW15, HWS18, HXZ18, Jan00, KMP03, Kit02, KCTR13, KM11, Lai05, Li17, LÖ05, LS06, LWW10, MG19, MMR06, MP98, Moi08, MMSJ08, NÖ08, PG06, Ran02, RR03, ST14, SS09, SS10, Sta11, SW98, TRV03, TSN04, UV15, Wil05, WC12, ZSW11, VV94, Dow91a, Etz96a, Mou94, PL99, Sav97, TZ97, CZ97.

Codimension \([\text{CMSM}+18]\).

Coding \([\text{GRR}15, \text{Gad}18, \text{KSV}05, \text{SZ}94, \text{ZLS}08]\).

Coefficients \([\text{BI}13, \text{Lla}06, \text{TKA}18, \text{Mal}89]\).

coexistence \([\text{GKRS}15]\).

Cofactors \([\text{IT}09]\).

Coman \([\text{CM}05b]\).

Cograph \([\text{BCHP}08]\).

CoGraphic \([\text{GS}16b]\).

Cographs \([\text{BM}93]\).

Cohen \([\text{Bro}11, \text{BCW}96, \text{CN}12]\).

Coin \([\text{AD}11, \text{BN}96, \text{Cha}16, \text{CGG}88, \text{Sak}89]\).

Collection \([\text{DO}08]\).

Collective \([\text{DYL}06, \text{Sak}89]\).

Collector \([\text{MW}03]\).

colliding \([\text{KM}06]\).

Collinearities \([\text{BDJ}+15]\).

Collisions \([\text{CTW}93]\).
Complementary [Ram98].

Complementation [BH13b].

Complements [CY12, KK14b].

Completability [JJiT14].

Complete [AS07, BGM08, BCCZ11, BCLR95, BK91, BL01, CDM00, CDM04, CP16a, Con05, DHJ+13, FKK20, FRRS09, FH10, Fox10, GG11, GMA15, GMS00, GS00, GKP19, Gut93, Han98, Jan20, iKSZ04, LLY10, LZ18a, Pip02, PSML08, Sid18, SZ13, Tót10, Wal19, dKPS13, Jac92, Vav89, dH89].

Completely [FG01, GS00].

Completion [BFPP15, ELSS17, FG00, Som14].

Complex [BTU09, BCKP19, FP99, KLMR03, SS08, RM97].

Complexes [ABY14, BHM16, BW99, Bro11, Cha91, CN12, DD15, EGS13, Hir11, Jon05, KN13, LS03b, Mes16b, Swa05, Tza08].

Complexities [Do19].

Complexity [AR08, AM11, BZ04, BN01, BT96, BCF12, Boy96, BCKP19, CEHS08, CC07, CT93, CI07, CLST12, DSL19, DL89a, DM18b, FKL93, FMP17, FJLS03, FGZ19, FLM+18, GKT17, GS93b, GNS11, GvdHM+08, HKP01, Hoa10, JLR+17, Juk16, KS92, KKK95, Kas08, KBE+05, KLS18, Kus92, LZ03, Mac91, May08, MC93, MC06, Onn91, Pad16, PW02, Swa05, Tza08].

Component [Blo10, CL06, CF16, KM19b].

Components [BAH10, GW99, MP08, SW01, J095].

Componentwise [HK05].

Composition [BJK14, HS04, WC12].

Compositions [ADM+15, BM94a, BM94b, BM94c, BFM94, KR93].

Compound [FL91].

Comprehensive [AT16].

Compression [MPSZ19].

Computable [JMS90, KR04].

Computation [DM13, GDVL17, KR98, KM05b].

Computational [BM11, GS93b, Onn91].

Computations [BCE+00, KOR03, Car88, KM97].

Compute [BKS09].

Computer [CDP94, Kar20, SW99].

Computer-Aided [SW99].

Computer-Assisted [Kar20].

Computing [ACD08, BBDK00, BCDMR08, CCH14, Dan09, DDS16, DJT15, FvIKS15, Gal18, GnP06, GS16a, HKP01, HTV05, HvtHNL12, IIL14, IT09, JP66b, KN16, KL19a, KV90, MP13, NI92, NN97, Owe11, WY10, LW88a].

Concave [BJHY00, DSS12, FOST10, Vaz13].

Concave-Round [BJHY00].

Concavity [Brä10, GMTW15].

Concentration [CV09, GLS15, Mra17].

Concentrators [Pip91].

Concept [COCF10].

Concerning [DKS16, Kla06, LdCKM18].

Concise [LL14a].

Concrete [FKKL98, Hof95].

Condensed [CH89].

Condition [CSS13, CS19, CKKO10, CM14, Enc05, FZ08, GMS00, GM03, HLZ13, KM14, LGS11, OC19, Sak94, Sch10, ZLWC12, DY92].

Conditional [HL10].

Conditionally [MB18].

Conditions [BPSS19, BR17a, GJ06, Jjit14, Pfe15, Ste00, TZ15, WL03, ZZBL17].

Conductor [ACM11].

Cone [AADM18, PZ10].

Cones [BBK+16].

Conference [Ser88].

Configuration [ABCG17].

Configurations [FPS20, FYK00, GH13, MM93, Raz10, SW04, SW99].

Conflict [AAD+18, ADKS18, CKP13b, MMSJ08, ZSW11].

Conflict-Avoiding [MMSJ08, ZSW11].

Conflict-Free [AAD+18, CKP13b].

Conflicts [CM18].

Conformal [Che17].

Conformance [SL96].

Congested [BMRT20].

Congestion [CEP18, Ram97b, Ram98].

Congestion-free [Ram97b, Ram98].

Congruences [Jae89].

Congruent [Kle89].

Conic [MD16].

Conics [BVDZ16].

Conjecture [AK14, ACM+18, BT14, BP13, BLS19, BBT16, BMM09, BHT16, CCO+13, CEOT15, CKPS13, CG02, CR19, DKS16, EKK+15, FGS19, GH06, GW07, Han16b, HK16a].
HK16b, HKP⁺17a, HKP⁺17b, HKP⁺17c, HKP⁺17d, HWZZ18, HKS07, KKS10, Kar20, KSY18, LPS09, Lic14, MB18, Roz19, ST17a, Sto12, Sza08, TW19, WS06, BW92, Dow88, HL92, CCO⁺15, Cho09, CK11, HRS12, HY13, dH04, KO12, Rab08, Shp10, SZ15].

Connected [Gly10, KKL19, LW03].

Connectedness [HT90].

Connecting [MW19].

Connection [DFT15, ERS19, LMP19].

Connections [Car09, CHW10].

Connective [GL14].

Connectivities [HvZ14, JA16].

Connectivity [Ana18, BJF95, BJJ98, BJJJ99, Bev10, Cal13, CDHH14, CK14, CW14a, Cho92b, CG02, DM08b, DM08a, DGS96, DP16, Fin09, Fle05, FGT18, Fra92, FL10, GGV06, GM90, HLS00, JS03, Kao96, KW90, LLL17, NI92, OCM10, Pfe15, Ram04, Végi11].

Connectors [Kar92].

Conolly [ELJ12].

Conolly-like [ELJ12].

Conquer [ARS95, AS09c].

Consecutive [DHJN02, Ehr16, GMZ09, RR18].

Consensus [BJJ91, MP95, MP04].

Consequences [HK96, HaKK⁺09].

Consistency [SY11, Tod89].

Consistent [BK11, CK18, Abe91].

Consisting [EliK08].

Constant [CGK⁺19, CEP18, FR94, Ht14, Jan10, MMSJ08, SS11a, WC12, Car94].

Constant-Weight [CGK⁺19].

Constants [DDS16, GL14, OS13a].

Constrained [BGS17, CM05a, Gol96, HMP04, JP06a, Jor03, KS03a, Kas03, LS95a, Mar20, SL95, Tov90, Hef97, RTW97].

Constraining [SW04, SW99].

Constraint [BK11, CCJ⁺17, CM12a, EM20, FT06, FK17, GM04, KJJ04, KL08, MMS15, MT11, MRT11, Yos19, ZK11].

Constraints [ALM⁺18, BJGJS99, BKK16, BMN13, DH91, DL10, Eps06, FKT06, FGP12, FGP10, GS13, GM90, KT14, Kam17, Kam19, Kas03, KIT13, KNS05, KM94, LMNS10, Lou10, MW90, OR04, dMP93, PS97].

Constructed [TZ97].

Constructible [TZ19, TZ20].

Construct [ASZ02, BT18, BB03, BL16, Ceh07, GS89, ILM⁺16, KM95, KM94, WC12, BL17].

Construction [Ald90, Bon10, Boy01, Cap03, Cha03, CKPS15, CGK⁺19, CCG17, FS91, HJ94, KST06, Lu08, Pip95, ST14, SWKP10, AS97, CGG17].

Constructions [AM07, AB94, ACG⁺20, BER11, CTU14, CS02, DA10, GG15, GMW05, SG16, SW98].

Constructive [CL05, CPR99, Nag17, XSR11].

Contain [ARTV12, MM15].

Contained [KLMR18].

Containing [CY18, FJK⁺19, Ht14, ZL11].

Containment [KT16, SSSU89].

Content [BYKKR18].

Contiguity [AG19].

Continuity [Sul05].

Continued [Ht14].

Continuous [FFLP20, HK99, SA90].

Contours [FP99].

Contractible [DS06, DL14, EliK08].

Contractile [LM08, MT05].

Contracting [DMR11, HVLP13].

Contractions [BDD⁺19].

Contrast [BDD303].

Control [FPR18].

Controllable [SSS13].

Converge [PP12].

Convergence [ACD⁺13, CS14, PS17, SV11].

Convex [AS16, Abe13, BJHY00, BH16, BT93, CD16, CG17, DST01, GVW06, HW96, Hq03, HR05b, KMT07, LS05, MD11, MPS⁺09, MvLvL13, Mur06, NO09, Om03, Sch09, SA90, ST07, dCST20, Vaz12, EFF91,
MRS89]. Convex-Ear [Sch09].
Convex-Round [BJHY00]. Convexity
[BCD+12, CPRdS13, DNB99, HRS93,
LSTY17]. Convexly [HMS05].
Convolutional [Kit02, RF12],
Convolutions [Ch16]. Cooperative
[Bil03]. Cop [CCNV11, CCP14]. Copies
[CL07, Let19]. CoPrime [KSY18]. Cops
[FGP12, SS11b]. Core [BKL+15, FK98,
GMRT11, HW18, SZ15, VVY15, Wan02a].
Cores [CS02]. Corners [HW18].
Corollary [GLW11]. Corona [BPS07].
Correcting [BGS96, CD93, CGL10, DA10,
FT05b, GMZ09, GOR20, KM11, CZ97].
Correction [ADH+14, AG06, JMSW00].
Correctness [PS17]. Correlated
[Or93]. Corrigendum
[DJKO19, KM11]. coset
[CHZ09]. Costs
[BYKKR18, CV07, DSS12, FOST10, FT05a,
FJ17, SS11a, vWW94]. Coteries
[MK01]. Count
[Har19]. Counterexample
[CCO+13]. Counterexamples
[BBSS00, CEOT15, Tha08]. Counting
[ASH18, AFS12, ACD08, Bac09, Cai93,
CCG+11, DM19, FKL15, FGZ19, GRS11,
Hof98, KLL13, MMS15, MR04a, MR04b,
MRST16, NT12, NS16, Pal12, PRR02, PC97,
vzGVZ13, BJ92]. Counts
[dJMS16].
Coupon [MW03]. Covectors
[CLGH11]. Cover
[AS09c, BYFMRI10, BYHR10,
BFRS16, BPRS13, CMPS17, CF05, CPF19,
CHW10, GSS15, HMM09, KCG98, Kra18a,
Lev09, LW17a, Lu90a, MPSZ19, SL95,
Yam07, Zeh17, Zha93, Zuc92, Jac92].
Cover-Decomposition
[BPRS13]. Coverable
[CCO+13]. Coverage
[AS14, BNRT17, CMPS17, CH15]. Covered
[BN05, LdCKM18]. Covering
[BKK16, BS17, BGH+17, BR17b,
CKMU14, CCHZ13, CH01, EM20, FRZ16,
Fan92, FFK05, FKK07, FGLS18, GKR+18,
Gu18, Hof95, Hof98, HK02, HC98, Jan00,
Jon05, KMR11, KCL98, LL99, Lee17,
MMPS10, SC17, Wan02b, Zha94, BS88,
CFGG88, Fra89, GHY96]. Coverings
[FKKL98, FL00, HHLÖ95, CCL98, KML05,
Bou97]. Covers
[CL16, DZ09a, DSE14, Dri12, JWF05,
KK+10, KKN95, KS03b, Luk20, MRS19,
MHHL91, Muñ05, MRS89]. Coxeter
[Lub90b, Mar09, Pet13, Sim13].
HM94, IMS05, LRT08, Sot15]. **Cut-Rank** [DZ09a]. **Cutoff** [HY89]. **Cuts** [BK90, BCH92, CR04, Fio06, GVW06, Har01, KS08a, LL17, NNI97]. **Cutting** [Boy96]. **Cutwidth** [HLMP11, HvtHLN12]. **Cyclability** [GKMT17]. **Cycle** [ARTV12, AS06, ALM18, BGL07, BCH92, CL16, Cap99, Che93, CFGJ06, Cl2O18, CM03, DPH20, DHJN02, FKS12, FS91, GKP18, GvZ19, HM94, KKL10, KRS11, KW13, LS15, Luk20, MPS06, MN18, NT12, OC19, PY90, PSML08, ST17b, Zha93, BC89, BC88a, FH94, TZ97, KvIL12]. **Cycle-Bicolorable** [BGL07]. **Cycles** [AS06, AF10, AB18, AF19, ARS17, BM19, BF12, dOBMS17, BSKS11, BG11, BY08, CdVL11, CF08, CGH15, CFLZ19, CKKO10, CGK94, Con05, CFB10, CY03, CHHM09, CM14, D2K15, DX19, Dre12, Dvo05, DL10, DL14, DL17, EHH08, EFMN08, EGM18, EFK18, Fan02, Fj09, Far09, Fed01, FKS19, FKP15, FKT09, GKP18, GK13a, GM14, GLS20, HW15, HZ95, HY12, HH13, HM19, JKSW17, KS08a, KLM10, KSS12, KS12a, KO06b, LS17, LLY10, LL17, LPS09, Li14, LZ05b, LMRS17, LMSZ19, MT90, OS17, PZ05, PP09, RS14, Spa07, Wan02b, Wan08, WXL3, ZZW13, Zho92, Zho93, ZLC12, Hur94, Hut88, KP06, RS93, YZ97]. **Cyclic** [ANP91, BG017, BER11, BW02, CS14, CCD00, Din13, EHJ01, Fer15, HKL6a, JS17, KLM10, MP98, NS16, PQ15, CET97, GÖ12, Jan95]. **Cyclically** [Ehr16, GM91, GM93]. **Cyclotomic** [CGSM16, Mom13, SS18a]. **Cylinder** [TT91]. **Cylindrical** [Ful14, dS91].

D [Naa01]. **DAGs** [DGL11]. **Data** [CKN15, GJ19, GKN10, Kao96, SV11, Tam88]. **Databases** [AA11, BHM00]. **Dates** [QG+02]. **Davenport** [Pet11, Pet15]. **Deadlock** [Lyn94]. **Decay** [KM11]. **Deciding** [ACFL16, BI13, CGG17, HT18a]. **Decimation** [COPP12]. **Decimations** [BCPP09, CK11, GKM04, TQ09]. **Decision** [LNNW95]. **Decisions** [WS12]. **Decodability** [CM05a]. **Decoders** [AM95]. **Decoding** [BZ04, EH13, Han08, KRR16, RR03]. **Decomposing** [BH97, dH89]. **Decomposition** [BCD10, BP12, BPRS13, BPT91, CKM14, CdMR12, Che17, CP16a, CD18, DH20a, Erd17, EMT15, FL10, Gab04, Gij05, HKB17a, IM96, KT19, MWZ11, PP13, Sch09, SWKP10, J095, SP19]. **Decompositions** [BDF18, BAM16, Cap99, CGK94, CS09, CK99, CLY05a, Dro16, DJM18a, DJM18b, Erd20, KiT13, Köp07, Lai08, MPS06, MS17b, OS13b, Shp13, Sp19]. **Decycling** [PZ05]. **Deep** [DAM11, Pip06]. **Defectives** [CHW88]. **Defined** [Fio06, HSM05]. **Defining** [B15b]. **Degree-Constrained** [LS95a]. **Degree-Diameter** [DF04]. **Degree-Doubling** [KM13b]. **Degree-Restricted** [BC94]. **Degrees** [BBLM13, CL06, CD10, GM13, IT09, Oe13, WIL99]. **Delannoy** [AS03]. **Delay** [LS95a]. **Delaying** [COPP12]. **Delays** [AB05]. **Deletion** [CGL10, FSV13, GLSS16, JP18, PRS18, Sno13]. **Deletion-Correcting**
Dimensional
[AC14, AK14, ANP91, AS05, Bar01, KK17, LSW18, RS16, SS95, VVY15].

Dirac
[CS19, Lo14].

Directed
[AAHLT10, BIKZ05, WZ18].

Discoveries
[ACD08, BCC05, Bon91].

Distinguishable
[ARTV12, TV03, CM18, KPT95].

DLP
[BN01].

DM
[BIKY18].

DM-Irreducible
[BIKY18].

DNF
[SST08].

Does
[ARTV12, TV03, CM18, KPT95].

Does
[GC11, Kra07, MM15].

Doignon
[CHZ18].

Domains
[Das99, FK97].

Domatic
[LHC90, SV08, MM96].

Domes
[Gra04].

Dominants
[CFP16].

Dominating
[CCO17, DK02, EKMT19, HK93, KL14, KPS20, LPS18, PP10].

Domination
[AS09a, BM16, BKR10, BHT16, CWY00, CKPW09, Che98, DMK08, DHL+13, Fis94, GM16, GLS15, GP11, HHHH02, HY10, HK16b, KWZ13, LSW18, RS16, SS95, VVY15].
KS03b, KS93, LC12, Tuz08, BG88, BCD97.
Double
[AFK12, AG18, CY08, CFS17, HY10, KS08c].
Double-Resolution [AG18]. Double-split [AFK12]. Doubling [BGN15, GK13b, GL10, KK10, KM13b].
Drawing [KPP13, Zit94]. Drawings [AFT12, Ful14, HH17, ZN08, AAFM +18, Tod89]. Drawn [BBS17].
Dream [Mes16b]. Drop [BCG +10]. Dual [AC90, BOP94, BYR05, BFH15, CCM95, CCZ12, CMSV17, DZ09a, HK11, Jan00, LL99, PG06, dCST20, UV15, VV94, BG94]. Dualities [ETT13, Hir11].
Dualization [Elb09, YS95]. Dually [BDCV98, BCD97]. Duals [Moi08, NS07].
Dyadic [CMR18]. Dyck [AG15, Fer16]. Dyck-Paths [AG15]. Dynamic [AB05, GPST15, HKL+14, IW91, Juk16, LNO96, Ram04, SS00, Tam88]. Dynamical [Gad18].
Dynamics [LM11, OS11, RSV+14, Ull14].
each [Lin97]. Ear [CK99, Gab04, Sch09]. Easy [BAH10, CMV10, DRW98, Vaz13].
Economic [vWW94]. Eden [MM93]. Edge [AJM08, AS10, ASS17, BJKV07, BrLS07, BGFJ95, BJJ98, BJGJS99, BS09, BCC+11, BL17b, BMR+10, CH13, CH17, CSL09, CGK+19, CSS01, Cho92b, CM18, CMM+10, Con05, CM07, CW09, Cra19, DMS08b, DMS08a, DJKO19, DS06, EJ01, EFK18, Fle05, Fra92, FPS18, Gab04, Gab05b, GSF94, GK07, Go01, GPW09, HK93, HT18b, HMP04, JMSW99, JMSW00, Jor03, JS03, KŠ08a, Kik17, KSS11b, Lai05, LSS17, Lev15, LLI17, Lo14, Máč13, MW14, McL10, Meh12, MLS11, NI92, NK90, OC10, Prz13, Riz02, SS11a, Sch91b, Sim13, Sli10, Ste10, WL02, Yus14, dMP93, BM07, Bon15, Cho94b, Jac92]. Edge-Bandwidth [AJM08, JMSW99, JMSW00]. Edge-Bipartite [Sim13]. Edge-Chromatic [dMP93]. Edge-Colored [BS09, CH17, CGK+19, Lo14, CH13]. Edge-Coloring [BBC+11, Cra19, NK90, Riz02]. Edge-Colorings [BrLS07]. Edge-Connectivity [BJFJ95, BJJ98, BJGJS99, DMS08b, DMS08a, Fle05, Fra92, JS03, NI92, OC10]. Edge-Cuts [KS08a]. Edge-Disjoint [Con05, EJ01, HMP04, Kik17, Sch91b, Sli10, Yus14]. Edge-Face [CLS09, KSS11b]. Edge-Homogeneous [GPW09]. Edge-Independent [HT18b]. Edge-Injective [BMR+10]. Edge-Isoperimetric [Lev15].
Edge-Robust [Lai05]. Edge-Splitting [Jor03]. Edge-Surjective [BMR+10]. Edge-Weights [BJKV07]. Edges [AD11, BS10a, BGH+17, CL07, Dvo05, EliK08, EM99, FPS13, FT17, Ful14, HV17, HVLP13, Kla06, PY09]. Edgewise [Ath14].
Edit [Lab13]. Editing [FGPS19, GKNU10].
Effect [BHH94]. Efficiency [CDHZ12, GKO2]. Efficient [BM16, COCF10, DP96, DMNW13, GOR20, GS93a, HaKK+09, KG93, KRR16, Myu01, PW02, TKMM19, Vaz12]. Efficiently [ABY14, HHH+02]. Ehrhart [ST10].
Eigenspace [iri16]. Eigenvalue [CKNV16, Iri16]. Eigenvalues [CFM94, HRS17, OC10, Ste07, Kah97].
Eigenvectors [LSO03]. Eisenberg [CDV10]. ELAs [MMPS10]. Electric [HHHH02]. Electrical [BK90, KW17].
Elegantly [EFK18]. Element [CK14, RSSW88]. Element-Connectivity [CK14]. Elementary [MR04a, MR04b, SS08]. Elements [Che07, Sav14, Jed93, JLM93]. Elimination
Elliptic [ACM11, CM90, CF17].
Embeddability [DM15, HMM09].
Embedded [AD96, CdVL11, CCH14, PP90, Car88, Hut88]. Embedding [BPSS19, BHT10, CGN+06b, CNG19, EP10, EM99, Go96, HKP*17d, Hor14, Kri10, Moh99, MW90, NOO12, Obr93, ONN19, JM97].
Embeddings [AS02, BS15a, BGM08, Ber07, BCLR95, Cai93, CK99, DGL11, KFHR94, MR15a, PSW96, SBD+19, BRK89, SP88, Suz10].
Empty [AHH+10, BDJ+15]. Encoders [AM95, RF12]. Encoding [Gra04]. Encodings [HKL99, STT92]. Encryption [KOS16].
Endowed [BR17b]. Endpoint [LW17a]. Ends [Ste10]. Endvertices [DG08]. Energy [BDvL13, FPS20, KK10].
Enumeration [GM13, Hof95, KLMN14, KBE+05, KCL98, KML05, McL10, OPR12, Pip01, Pip02, RC18, Sav14, VZ93]. Enumerative [MPP17]. Enumerator [BK91, DM13]. Enumerators [Bar02, Kap14b]. EPT [vIKL+16]. EPTAS [Jan10].
Equireplicate [ACLT01]. Equitable [KNP05, LSSY10, Yus03]. Equivalence [BYR05, CHZ04, CW16, LGS11, PRS98]. Equivalent [Cho92a, Cho92b]. Erdos [DK16, AFF+18, BBT16, BHJ18, CSS13, CP96, DT16, Dow88, Han16b, HLO17, IK09, JO18, KSY18, LMSZ19, MS14, Roz19, Vin11].
Erlang [FG89]. Errata [GM93]. Erratum [BLR17, Dow91a, FKK07, DW11, TZ20]. Error [AG06, BZ04, BGS96, CD93, DA10, FT05b, GMZ09, GOR20, KM11, CZ97].
Error-Correcting [BGS96, CD93, FT05b, GOR20]. Errors [MMPS10]. Escape [FGP14]. Estimate [Gol06, Hor19, WWKY11, LRN11].
Euclidean [DGN+20, GL15, HM88, Har11, Kar89, SE14, Tas97]. Euler [FG14, IKZ08, Wu09]. Eulerian [BOP94, BPS18, Cap99, CCM95, CH13, CH17, DMNW13, FIN98, IP91, KiKK17, MS17a, MS17b, MRS19, YZ17, ZL11].
Evaluation [HKR00]. Evaluations [MR04a, MR04b]. Evasion [DKS10, IKK06, SS89]. Even [BL09, BCPP09, CCOY17, CHZ09, CGK94, DZ09b, DQW+15, GB12, GvZ19, IT08, NNO15, PSS10, W10, Yo09]. Even-Cut [GvZ19]. Even-Cycle [GvZ19].
Eventown [SV18]. Events [YAT16]. Every [AcRS07, KSS11b, OZ18, HS09b, Zho08].
Evolution [Blo10, DKS18]. Evolutionary [CHP+90]. Evolving [CMM+10, STT92]. Exact [ADKS18, BHL05, BDM02, Cre04, GH13, HSM93, KYDN09, KRR09, LZ09, MS93, PST00, Sch04, dJMS16].
Exhaustive [BHRZ14, Kas05]. Exist [CHHM09, TV03]. Existence [CL91a, CSS13, CM14, GL08, HZ95, ILY13, MMJF03, ÖV04, OC19, WLD09, ZGL+09, RCS88]. Expander [BZ04]. Expanders [Kri18, Vin13].
Expanding [AMNV18, NS18, OS13b]. Expansion [ACKM19, DN16]. Expansions [BSS14, KMW15]. Expected [BHL+15, CL06, FS12a, MS19, Pip91, PRS88].
Experimental [BLMA+08]. Explicit [AB94, Cap03, CY08, DA10, D008, GPST15, Lu08, SS02b]. Exploiting [CP16b]. Exponential [CY08, CHZ09, Ege10, FKL+19, GRS12, IK09, Mac18]. Exponentially [HM12a, NvdP18, NT05]. Exponents [BZ04, FS01]. Expressing [EGMR20]. Ext [JKSW17]. Ext-Triangular [JKSW17]. extend [RS93]. Extendability [AS06, ANP91, CFGJ06, VW09, ZZBL17]. Extendable [ABS13, LS15]. Extended [KPT12, dCST20]. Extendibility [LZ03]. Extending [GR17, KKK+12]. Extension [BYHR10, Bol90, BKTW15, DMNW13, FR99, FM11, NNO15, NNO19, Oxl99, Pad16, Peg14, Voi07, JM97]. Extensions [AKW05, AMPT93, BM13, Che07, Naa00, PR91, Sta92, Ten09, FH89, FM11, FM13, FM97, FMP98, FR99, FH90b, GH90b, GRS12, MP17a, Saw02, Som14, SV11, Car88]. Faster [KP04, LMSZ19, Ull14, Way01, YZ97]. Fat [GZ19]. Faundree [JO18]. Fault [AS02, AU91, BCSK07, CFH16, HL10, PMM98, PL94, SX13, UBHS93]. Fault-Tolerant [AS02, BCSK07, PMM98, PL94, UBHS93]. Faults [DP96, GV92]. Faulty [CL91a, DG08]. FCC [EIH18]. FCSR [XQ06]. Feasible [GVW06, GS95, LS08]. Feedback [BBF99, BNN90, CPW13, ENSZ00, KvIL+12, Ko88]. Fermat [CW14b, EA11, LY18a, OS11]. Ferrero [Boy01]. Few [AFT12, Bal08, BHN16, BKKZ17, BS16a, CH10, DL19, HT19, HVL13, HS06, Hor14, KPP13, Pad16, Stu88]. Fewer [BS10a]. Fibonacci [CIT05]. Field [Che07, LSW18, Sch02a, Gor93]. Fields [BGL03, BS90, CKP16, DQW+15, IK09, KMP03, MP13, Mat19, NvZ15, NO08, QP15, Rn92, Ros09, Shp13, Shp15, Vin11, Vin12, Vin13, WB90, vzGV13, LW88b, LRN11]. Files [Or93]. Fillings [CWY10]. Final [Pic14]. Finding [Age94, BCDF19, BZ11, BIT13, BCKP19, CdlN11, COL10, Dj06, DJ+13, FO08, FL96, Gut93, HIKT99, Hoa10, KY12, Kri18, LZ06, LM16, MM96, MT90, MG14, NYKY20, Riz02, S04, SW01, SFS09, Wan02a, YZ97, Zha90]. Finds [GS93a]. Fine [DL17, DL18c, DL18b, KLS18]. Fine-Grained [KLS18]. Finer [HKP+17c].
Finite [AM07, AMB11, Bab92, BCE10, BBS00, BFGM15, BGL03, BY08, BS90, CW92, Che07, CW16, CDFR18, CKP16, DF94, DM13, DQW+15, Din06, Gad18, GKM+18, GGI07, IK09, JS17, KM01, KCL98, LZ03, LT11, LSW18, Mal15, MK09, MRR06, Mat19, PRS03, Pin14, QP15, RSW05, Rom06, Ron92, Ros09, Sca03, Sca05, Sch10, Shp13, Shp15, Sza06, Vin11, Vin12, Vin13, WB90, YAT16, vzGVZ13, FMRR88, Jia95, LS89, LW88b, LRN11, Lin89].

Firefighter [CCVZ10, LW10].

Firing [Eri96, GK16, JSZ15, Tar88].

First [BHLY08, BKS10, BKM13, CH06a, DJW12, LS17, MGC14, MW20, Kie88, KPT95].

First-Fit [BHLY08, BKS10, BKM13, DJW12, MW20, Kie88, KPT95].

First-Stage [CH06a].

Fit [BHLY08, BKS10, BKM13, DJW12, MW20, Kie88, KPT95].

Five [CNG19, DH20b, LSS17, Obr93].

Fixed [ARS17, ADKS18, BJKV07, BCDF19, BV10, CI07, CFK10, CPPW13, DW10, Fed06, FT20, GRR15, HN15, HT19, KPPW15, LW17a, LSSZ19, PMM98, PSV08, RSW12, DW11, WS96].

Fixed-Parameter [BCDF19, CPPW13, HN15, KPPW15, LSSZ19].

Fixed-Weight [RSW12].

Flag [Bro11, CN12, KN13, LN17, dM07].

Flammable [Pra13].

Flex [Sch10].

Flip [FKMS20, Flapping].

Floorplanning [YS95].

Floor [Fra95].

Flow [Fle00, GS16b, Gm07, IMS05, KNK93, LMS19, Ram90, Svi03, TH11].

Floors [CLLZ18, CDW07, CL20, EdJdVLT18, FZ08, FO00, GR99, Gun07, KR16, Koc98, KKO9, LXXZ08, MS17a, WCLZ15, WYZZ14, ALZ96, YCH97].

Fold [CH10, OS15].

Folder [Hir11].

Folkman [HRS18, LL15, Lu08].

Forbidden [AFK12, CFP16, FXYY14, FPS20, FLM+16, FM13, HH04, Hav19, LiO15, Let19, PP07b, Raz10, ST17a, Tuz08].

Force [FM13].

Forced [dOBMS+17].

Forcing [Dan01, KMS19, KM14, ST17b, SZ13].

Ford [HS88].

Ford-orderable [HS88].

Forest [Cha19, CKN13].

Forests [AT90, BK14, CK14, KMR11, Tak90, Tak14, vIKLS14].

Form [Jev95, WS17b, Exo89].

Formal [ASMF10, BJ91, MP95].

Forms [BCE+00, CD93, CS14].

Formula [CF17, Han09, NW95].

Formulae [Cre04, Lla06, PRS02, Sto12].

Formulas [Bac09, FFV11, HS06, MPP17, MSK93, MNPR17].

Formulation [CKNZ05].

Formulations [KPT12, dCST20].

Forward [OS92].

Forwarding [Saa93].

Foundations [BL16].

Four [AS05, HT18b, HMS05, LGS11, LM17, San96, Vin13].

Four-Variable [Vin13].

Fourier [BBMM09, Car88, DDS16, IK09, Mal15, Sca03, TQLT13].

Fractals [FHN18].

Fraction [KK10].

Fractional [Bar04, Dro16, DW20b, EK13, Fis94, Fle00, GO00, GKL19, HZ10, KKN95, KKS10, KKV11, KLP12, KKK+12, Liu14, CFGG88].

Fractionally [KiK12].

Fractions [Het14, HGW15].

Fragile [CMvZW16].

Frame [Fra95].

Frameproof [Bla03, SW98].

Frames [BHJ18, CW16].

Framework [Mur06, SB10].

Frameworks [BSiT15, CW96, FSW13, FRW12, KiT13, NOP12, NOP14, NSiT18, ST15, Whi88].

Free [AP18, AAD+18, AG15, ADKS18, Ave13, BS10a, BFK+12, BL10, BM16, BKKM99, BS10b, BS16c, BF17, CKP13b, Cho94a, CS18c, CS18b, CGSZ20, Cib13, CD16, CF10, CKOS06, CD14, CR13, CR17a, DK10, DJ11, DPRS10, DNB99, DL510, DL17, DM17, DL18c, DL18b, EK13, EMOT16, FL96, FKMS10, GH19, GP+L15, GKL99, HJ18, Hav19, HKW15, HT93, IKM99, JW18, KM19a, Kas05, KS08c, Kra18b, KOT16, LM08, Liu14, MTT08, MM12, Mak07, MTR14, MD11, OS16, PRR02, Pen12, PT94, Ry91, Sch02b, WW18, dFM04, ASS17, BH97, BS90].
COS97, Pic14, Ram97b, Ram98, Spi95].
Freeness [AKKR08], French [Zen09].
Frequencies [Nag10]. frequency [Ray94].
Friendly [Mon15], Frieze [DKM^+12].
Frobenius [AOW15]. Front [Kim11].
Fugitive [RT11]. Fukuda [RC18].
Frequencies [Nag10]. frequency [Ray94].
Friendly [Mon15]. Frieze [DKM^+12].
Frobenius [AOW15]. Front [Kim11].
Fugitive [RT11]. Fukuda [RC18].
Full [Din06, FR06, Hyu10, OV04, TV03].
Full-Rank [OV04, TV03]. Fullerenes [Gra04, KSS11a].
Fully [HKL^+14].
Function [AFH^+18, BP20a, BGS17, Cre04, EFMW18, FI05, GSWW92, GS13, GJ16, Har19, Jun12, KG98, LL99, LS09, Loc10, Lou10, MR04a, MR04b, NÖ08, Sch02a, Yos19, FV97].
Functionals [GM91, GM93]. Functions [AH96, Ale10, ABZ15, AL97, AL08, Bac09, BB^+16, BBDK00, BSS14, BGS96, BT18, BB03, BCL^+18, BBMM09, BFH^+08, Brul90, BG19, CCD00, CW92, CMP15, CH15, CK08a, CS18a, CC03, CH19, DVW18, De15, EMRPS14, FO90, FIT14, GSPRM91, GVKSS06, GSS14, GM91, Gru17, HRR00, HK14, HR05b, JMS90, KMÖ18, KMT07, KL08, KCTR13, LMNS10, Lev15, Lla06, Mur06, NW95, PZ08, SS02b, TQLT13, TKMM19, WS19, Yok19, Zun11, DGV05, GM03, HLSd88, Lin97, Tsa96].
Fundamental [YH88]. Further [HVW07, Ray94].

Gabriel [BDEK06]. Gain [EHV18]. Gale [CDV10, Stu88]. Gallai [BL19a, HM11].
Galois [KCTR13, LÖ05, Rón92]. Game [BKR10, BHT16, CCP14, DEF19, DS05b, FS05, Fei10, Fra10, FH13b, GG11, Han19b, HK16b, JSZ15, KWZ13, KLW98, Tar88].
Games [ABS10, AEFT13, ADHL13, AD^+14, BM09, BMS12, Bil03, Bol90, BHKL08, CDR16, CGV^+14, CCNV11, CFG^+15a, Er196, EFKP15, FK98, Gad18, HKSS08, Jon20, Vaz12, HR88]. Gamete [LGS11]. Gantt [GW00]. Gap [BDG^+17, FMP17, GW19]. Gaps [HMM09, LR07, Sul05]. Garden [MM93]. Gates [Häs94]. Gaussian [Vav89].
Gaussians [RSD17]. Gelfand [LMS19].
Genera [iKSZ04]. General [ART14, AKKR08, AH11, Blo10, Bon91, COL10, CPS08, DS05a, DSS92, FS09a, FP01, GS95, G16, IYW13, Mar20, Mur06, PW13, LRN11, DL18c]. Generalization [ACM^+18, BC11, BCC^+19, CuKS07, GG11, Han09, KM05a, SS94, Tfd89].
Generalizations [AMW00, AFP^+18, BS90, GS13, Pet15].
Generalized [AB00, AS03, BYHR10, BAM16, BKM15, DHL^+13, FKS05a, FT05b, Fuk16, JLD^+18, Kar92, KK90, Lec17, Len98, Lev15, LWW10, MSD19, MST09, MUWY18, PR18, Sch92, SL95, TW12, Tza08, VV94, FG99, LB09].
Generalizing [LGS11]. Generated [BFG15, Shp15, Web08]. Generating [AMV18, BBK^+16, FO90, FSMY09, GSWW92, GSS14, PR19, Sax90, Saw02].
Generation [GDVL17, GVW06, Kas05].
Generator [EA11]. Generators [GMA15].
Geodetic [BDPR18, CPRe813]. Geometric [ACL18, CTU14, CFM^+09, CS98, DMP07, DSST13, EMRPS14, GM16, JD13, MP17b, RS16, SSSU89, Snu07]. Geometries [NO09]. Geometry [AM07, BCE10, BC09b, DDS16, FFie98, Nel15, Oum91]. Gesell [Bö109]. Giant [CL06, Kra07]. Girth [AA10, BGV07, Bal08, Cha03, CH06b, DSV08, DH20b, KP16, KL13, KO06a, Lub90b, WL03, WY10, KKV11]. Given [AHS01, CL06, CKV16, GM13, HW15, KN08b, KM94, LM10, MR04a, MR04b, MS19, RMS01, ZL11, DK89, FG89].
Glauber [LM11, RSV^+14]. Global [CL11, CPS08, GJ20, GK97, NÖ08, Tre04].
Go [Che16]. Goethals [Ran02]. Golf [DTW03]. Gomory [ACD+13, CDD+15].
Gonality [Hen15]. Gons [AHH+10, EFF91].
Good [LCV03, Meh12, TKMM19]. Goodey [Kar20]. Goresky [ACM+18, CK11].
Gossiping [CGP98, DP92, DP96, FP01, FP04, Ser88]. Gowers [BC11]. Gradient [Hor19].
Graham [CM05b, WIS12]. Grained [KLS18]. Gram [Sim13].
Graph [AS06, AC06, AC14, AADM18, AL07, ASS09, AHFM08, ACFL16, AcRS07, BP20a, BDF+18, BST14, BP10, BGS17, BDD+19, BPT91, BNR96, CCH14, CW98, CDM00, Cha03, CRO4, CHJ+10, CK11, CK14, CK99, CSS13, CR98,Cho94a, CFM94, CL06, CKNV16, CTW93, CK08c, CDHK6, CHW10, CD11, DSS92, DE93, DM11, DJK+11, DHJ+13, DM18b, DSV08, EGR08, EJK+09, FO08, FKKL98, FKK05, FKK07, FJ17, GP08a, GKPP18, GM04, GT13, GS00, GL15, GN08, GH09a, GKM17, GKY06, GJ06, GKN010, GK04, HK99, HW15, HL013, HS10, HT18a, Ho10, HK96, Ho98, Jan20, JLD+18, JN17, KMR11, KSS11b, Kao96, KW13, KPT94, KY12, KOR18, KMS08, KMS12, KM13b, KS08b, KM05a, KM11, KCL98, LW10, LM12, LLS04, LS08].
Graph [LMP19, LW17b, LR91, MS14, Mer99, MCC06, Mra17, Mu06, Naa00, New20, OZ18, PY90, PSML08, Rab06, RD11, KT09, RZ05, Rom06, SS05, ST13, SL96, Ste07, SWKP10, Wago07, Wan02b, WS17a, WY10, WW18, YS95, Zha09, Zha11, dCLM13, Bal89, BVW88, BB97, GM94, HS89a, KW06, MM96, RW89, SP88, Sp189, Zho08, dh89, LB09].
Graph-Based [GKN010].
Graph-Coloring [HK96].
Graph-Different [KMS08, KMS12].
Graph-Theoretic [KM05a].
Graph-Theoretical [Wag07].
Graph-TSP [New20].
Graphic [FS09a, GS16b, KMP14, PP13, Wag18].
Graphical [CR96, FP10, MUW18].
Graphicality [BR17a].
Graphs [AAHT01, AD+18, ART12, ABS13, AFT12, AA10, Ad08, AH03, AD11, AKZ17, ABM14, AJM08, AH16, AH96, AGH14, ABHM00, AD96, AFK12, ACG94, AKKR08, AaW09, ABC+15, AKT12, AHP90, AGH11, ADL13, AP14, AF19, ABY11, AS07, AS09b, AS14, AG15, ACD08, AM06b, AB07, ABW13, AE03, BB16, BJK07, BG+04, BGV07, Bal08, BHY08, BS10a, BS15a, BL19a, BC02, BC03, BHRZ14, BJFJ95, BJHY00, BPS07, BF96, BS09, BCC+11, BFP12, BBCZ11, BGM08, BTU09, BC09a, BFG17, BS11, BEL09, BIKY18, BCdMR08, BHL92, BGL07, BDP18, Bev10, BHH96, BW99, BGG+20, Blo10, BKK95, BDJ+98, BFP10, BMP13, Bon08, BZ11, BDE06, BK313, BHT10, BKTW15, BCL+18, BL+15, BIT13, BDCV98, BL04, BLM10, BM16, BC09b, BFH+08, BMN13].
Graphs [BS93, BKKM99, BCP08, BN05, BY08, BS10b, BS16c, BF17, CR10, CdVL11, CHM+07, CCOY17, Ca93, CCVZ10, CDP08, CE08, CL15a, CL06, CU14, Cap03, CDHH14, CW92, CMPS17, CDM04, CLO59, Cha19, CD+14, CF08, CL07, CKP13b, CNG+06b, CEP18, Che94, CFG06, CIE015, Che17, CLI11, CLZ18, CY18, CHK10, CLI018, Cho92a, Cho94a, CKPS13, CS18c, CS18b, CGZ20, CGK94, CP16a, CH11, CMM+10, CP10a, COL10, CCL+06, Co05, CN12, CF05, CK10, CFI10, CF10, CEOR13, CDFR18, CF19, CFS96, CK0806, COS10, CDHK16, CLS15, CD14, CW09, CR13, CR15, CR17a, CR17b, Craf19, CR19, CL02, Cre04, CN19, CY03, CL05a, CY05b, CLST12, CDFK10, CM14, Dan01, DNS94, DOS94, De15, DZ09a, DKRR12, DHT06, DK02, DY96, DMP07, Die10, DEE17].
Graphs [DL12, DD13, Do19, DK06, DK10, DJ11, DX19, DMK08, DHL+13, DP15, DGS96, DGS96, DZ19].
Graphs [AAHT01, AD+18, ART12, ABS13, AFT12, AA10, Ad08, AH03, AD11, AKZ17, ABM14, AJM08, AH16, AH96, AGH14, ABHM00, AD96, AFK12, ACG94, AKKR08, AaW09, ABC+15, AKT12, AHP90, AGH11, ADL13, AP14, AF19, ABY11, AS07, AS09b, AS14, AG15, ACD08, AM06b, AB07, ABW13, AE03, BB16, BJK07, BG+04, BGV07, Bal08, BHY08, BS10a, BS15a, BL19a, BC02, BC03, BHRZ14, BJFJ95, BJHY00, BPS07, BF96, BS09, BCC+11, BFP12, BBCZ11, BGM08, BTU09, BC09a, BFG17, BS11, BEL09, BIKY18, BCdMR08, BHL92, BGL07, BDP18, Bev10, BHH96, BW99, BGG+20, Blo10, BKK95, BDJ+98, BFP10, BMP13, Bon08, BZ11, BDE06, BK313, BHT10, BKTW15, BCL+18, BL+15, BIT13, BDCV98, BL04, BLM10, BM16, BC09b, BFH+08, BMN13].
Graphs [BS93, BKKM99, BCP08, BN05, BY08, BS10b, BS16c, BF17, CR10, CdVL11, CHM+07, CCOY17, Ca93, CCVZ10, CDP08, CE08, CL15a, CL06, CU14, Cap03, CDHH14, CW92, CMPS17, CDM04, CLO59, Cha19, CD+14, CF08, CL07, CKP13b, CNG+06b, CEP18, Che94, CFG06, CIE015, Che17, CLI11, CLZ18, CY18, CHK10, CLI018, Cho92a, Cho94a, CKPS13, CS18c, CS18b, CGZ20, CGK94, CP16a, CH11, CMM+10, CP10a, COL10, CCL+06, Co05, CN12, CF05, CK10, CFI10, CF10, CEOR13, CDFR18, CF19, CFS96, CK0806, COS10, CDHK16, CLS15, CD14, CW09, CR13, CR15, CR17a, CR17b, Craf19, CR19, CR19, CL02, Cre04, CN19, CY03, CL05a, CY05b, CLST12, CDFK10, CM14, Dan01, DNS94, DOS94, De15, DZ09a, DKRR12, DHT06, DK02, DY96, DMP07, Die10, DEE17].
Hitting [CP10a, FLM+16, GDVL17, JP12, JPS+14, LMRS17, Tak08]. Hive [TKA18].
Hoc [KP04]. Hoeffding [SSS95]. Hoffman [AL07]. Hole [CtJL01, CCL+06, FSW13, RWW88]. Holes [AS16, BBT16, CS18b, FRW12, MSS14, ST17a]. Homogeneous [GPW09, Kim17, SV11, JO95]. Homological [JLD+18, KM14]. Homology [Got03, LN17]. Homomorphic [DF94, DSV08, KOS16, Zho93]. Homomorphism [BP17, EST14, HR12a, NT05, Wro20]. Homomorphisms [AFS12, CL15c, Fed01, FHM03, FHH08, FGZ19, GRY08, FRZ16, FGT11, FY04, FJK+19, GP17, GMOV20, GLS20, GSS15, HPS09, Han16a, Han16b, Han18, HST19, HIT19, HY10, HY15, HWZ18, HM19, Jon05, KLM14, Kha13, KZ08, KR15, LZ06, LZ18a, LZ09, LY18b, LP19, MT03, OS17, OR04, Raz07, RRS07, SW14, SS04, Sm07, Tim08, Yus03, CFGG88, Rya96]. Hypermaps [DR14]. Hyperoctahedral [Che93]. Hyperplane [RC18]. Hyperplanes [AA96, AS07]. Hypersurfaces [Gly12].

II. [KW96]. IID [Rah16]. III [BM94c, CEOT17, DMS08b, DF10, DL17, EK10, GAo18, GM94, Han16a, HKP+17b, JLM93, MR04b, MPP17, Mur96b, MRNS17, SS02b]. II. [KW96]. IID [Rah16]. III [BM94c, DL18c, HKP+17c, KLW89, KMOV15]. IIS [Rya96]. IIIS-hypergraphs [Rya96]. Image [AF05]. Images [DS97, Kim91].

AS14, Bac09, BL19b, BDM02, Che04, Doh03, DJW12, DS16, ELMs11, Gab05b, GHP20, HJ18, KK17, KW17, iKK11, KW13, KS07, KT17, KO06a, LLS04, LÖ05, Lu10, MSZ10, New20, NO08, Sot15, Sta11, Tam88, Tod14, VVY15, Woe93, dKMP +06, dKPS13, LRN11].

Improving [CSS01]. Imset [XY15]. Inapproximability [EK05, GSS15, GL17]. Incidence [AS07, Bal08, HM12b, IK09, LS16, Mac18, Pip02, RS16, SS08]. Include [Pin14]. Inclusion [Doh03, Fér15, KS05]. Inclusion-Exclusion [Doh03, Fer15]. Incomparability [BKM13]. Incomparable [DJW12]. Incomparable [Doh03]. Incomplete [BHH94]. Increasing [BJFJ95, WC12]. Independence [ACL +06, BNR96, DMS12, FMM093, FLMY09, Fox10, HC98, KM13a, LOW10, Swa05, Tót10, SSS95]. Independent [Age94, BLM10, BKKM99, CW98, CER98, CCG +11, DM17, FRMPv15, FKS12, FO08, Flé00, FL96, Für91, GS93a, HST19, HT18b, HST93, IT08, Kir16, LZ06, OR04, PP07a, RSV +14, SS04, TT16, Vse05, Zha90, Bou97, GS89, Sag88]. Independently [PSS10]. Index [BCHW17, FKS05b, FL15, KR15, LW03, LM10, Saa93, WH15]. Indicators [DSS12]. Indices [Wag07]. Indifference [SS94]. Individual [HH01]. induce [KPT95]. Induced [AFK12, AHS08, AS19, AKTZ19, AB07, BB16, BP98, Che93, CF16, CM07, DF02, DS16, ELiK08, Fis90a, GP18, GPvL15, GR512, Hun14, Jan05, JRS14, JN16, Joo16, JW18, KMM12, KM19a, Nag10, PTT16, Tuz08, BM94a]. Induced-Universal [AKTZ19]. Inducibility [CSW17]. Inducing [CdV02]. Inequalities [AB05, BCCZ10, BD19, BH16, BCCZ10, CdV02, CR96, Doh03, DS12, FR94, FP13, GL14, Kra18b, LMP19, SS05, SL95, TZ19, TZ20, Kahl97, LR94]. Inequality [AF10, Bar95, BL90, CIN18, DDS16, IMR14, OV12, RSD17]. Inference [DM03]. Infinite [BCE10, BCCZ10, Bon10, BCF +10, CW92, Dei15, KLR18, KK09, PT14, Ran02, Sn14, Ste10, SZ13, AHS89, KM06, Wen97]. Infinitesimal [KiT13, SIT15]. Infinity [BL17a, Ber20]. Influence [Che09, CGG88]. Information [WS17a, KS03]. Ingleton [NvdP18]. Inhomogeneous [McK19]. Injective [BMR +10]. Input [RF12]. Input-Output [RF12]. Inputs [SY11]. Insights [MV99]. Instance [PSV08]. Instances [ASZ02]. Instantaneous [FO00]. Integer [AOW15, BCCZ10, BDP19, BCBC11, BP09, BP12, BH93, CS09, CLLZ18, Dan09, Dow91b, GVW06, Gi05, GM90, HS04, KYD909, MD16, MvLVL13, Mun01, NP18, Om091, PPU92, She18, Tra05, WCL15, WST17b, Yam07, Dow91a, FKS97, TT99, UW297]. Integer-Valued [CLLZ18]. Integers [AHP19, Che17, DZ9a, Fuk16, Jan010, JeV95, MH09]. Integrability [CH15]. Integral [ABM14, Che17, DZ9a, Fis90a, VN18, KSY18, KL188, MW19b, Rya07]. Integrable [XH15]. Integrity [BN09, CCZ12, DZ9a, GW19, HM09, dCT20]. Integrity [Bel09]. Interactive [Bal92, Orl93]. Interchange [Die10, SS00]. Interconnecting [DHH99]. Interconnection [CKN +15, Zho09, DM88]. Interference [FKLW98, FW02]. Interference-Minimizing [FKLW98]. Interior [Ave12, DJT15]. Interlacing [CDH +04, FJZ15]. Interlacings [Die10]. Interleaving [JBS10, MP98]. Interlocked [CFK19]. Internal [DM03]. Internally [GZ06, MR12]. Internet [BAG03]. Interplay [FMH94]. Interpolation [CW14b, CF17]. Interpretation [CS94, Mun06]. Intersecting [BKK16, Bor10, CL07, CLW09, GLP +12, KŠ08a, KL19b, Luk20, MB18, Wl02, WZ18]. Intersection [ABS13, AC14, BBC11, BTU09, Blo10, CH89, FF06, GMA15, JSRSW18, KS09, KMW06, Koc98, KM01, MSZ10, MvLVL13, Pet13, PR98, Sha13, Suk13, Mur06a, Mur96b].
Intersections [FKM13, KS05, ST10].
Intertwines [Bon10, GI97]. Intertwining [CW14a, HvZ14].
Interval [BFPP15, CFGJ06, COS10, DJ11, EST14, EEL09, FH94, Fer16, FG00, FSV13, FJJ18, GP99, GP08a, HH05, HR12b, KV90, KS06, KS02, LC04, LW17a, LHC90, MN15, Mer15, BG88, Kie88, KW96, MM96, PS97, Spr94].
Intervals [BCdMR08, DK10, Fer16, KJJ04].
Intractable [CM12a]. Invariant [CD93, CDHH14, CDR16, Gly12, KG93].
Inverse [LW03, Mal15]. Inversion [CGG16, Mal15]. Invertibility [Con89].
Invertible [GK16]. Inverting [SS02b].
Islands [EO16]. Isogenies [BT18].
Isolating [PTT16]. Isometric [BGM08, FHJV17, Mol11]. Isometry [Hu10]. Isomorphic [Kas05].
Isomorph-Free [Kas05]. Isomorphic [AAFL06, Con05, dH89]. Isomorphism [Che94, FKKL98]. Isoperimetric [BL90, HST01, Kah97, KF14, Lev15].
Isostatic [FSW13]. Issues [BAG03, Nas14]. Item [CCG00]. Iterated [Fra10, Zhu18, Mal89]. Iterating [Li98, LT01]. Iterative [SFS09]. IV [BFM94, HKP+17d].
J [GM93]. Jackson [BBM09]. Jeu [S14].
Jewett [Lav16]. Job [GPSS01, JS05]. Job-Shop [GPSS01]. Jobs [Jan10, PP07a].
Kernelization [ALS+18, BJK13, BJK14, FHNN18, FL+16, JP18, Kra18a]. Kernel [BFBR16, EKM+19, GP08a, GLS18, GPPST15, Hed08]. Kerov [Sn14]. Key [GLY07]. Khinchine [DDS16].
KillerQu'est [KvIL+12]. KillerQu'est-ce [KvIL+12]. Kimura [MRV17]. Kimura-3 [MRV17]. Kind [MGC14, QD14].
Kinetically [War]. Kings [SS91].
Knock [Tk17]. Knock-Knee [Tk17].
Knowledge [DF94]. Known [CPS08].
Knuth [Sn14]. Ko [DT16, D16, MS14].
Konylös [HLT19]. Kotzig [CuK57].
Kruskal [Buk12]. Krylov [BGL03]. Kühn [MMS17].
L [BL17a, Ber20]. L-Infinity [BL17a, Ber20]. Label [BBC+19a, BKS09].
Labeled [CX08, FJ11, GM03, MS16].
Labeling [ABR05, AKTZ19, BBC+19a, CKZN05, DZ05, GP08a, GMS00, JPT12, JSRSW18, Kan08, Kim91, LZ05a, Meh12, WL03, ZLW12, CK96].
Labelings [BJKV07, GM05, Gra07, GK92, KST06, Lag90, LZ05b, MMP13, HRS12]. Labelled [Bak90, Yam16]. Labelling [G292, Sak94, Zho05]. Labelings [BMR+10, EJK+09, GJ06, K08b, FGK89].
Laced [Sim13]. Laguerre [FZ88].
Languages [ETT13, FKL93]. Laplacian
[CFM94, BMV92, CL15b, GM94, HRS17, Iri16, LMP19].
Laplacians
[CDH+04, ILD+18, Ste07, TH11]. Large
[AA10, AKZ17, AHH+10, AKS08, AS07, AS16, BBC19a, BFK+12, dOBMS+17, BW02, Che07, CP10b, Cra19, Dro16, DM17, FG14, FKP15, FM13, GP18, GJ12, HPS09, HS04, KL9b, Kha13, KZ04, Kim17, KST06, KO06a, LLM19, Lee17, MP08, MNS14, SJ13, SL05, WH15, Yan20, EH91, KK1, KCV, RCS88, WW91, RX88]. Large-Girth
[AA10]. Larger
[KMP03]. Largest
[GW99, Iri16, WW91, KZ04, SST08]. Lariat
[DvW18]. Lassos
[HK15]. Last
[JZ05, KKS10]. Latency
[LRTW11]. Latin
[BCM+12, MW08, WLD09]. Lattice
[Ave12, BHE05, BH16, BT96, BS16a, BS16b, Can93, CL90, DD15, DMN12, EIH18, FL00, Got03, KNK93, KT17, KŠ08b, KS03d, MG14, MW19a, NT12, NDB07, OPV14, Onn91, Rea08, SFS09]. Lattice-Simplex
[FL00]. Lattice-Width
[DMN12]. Lattices
[ADL+09, ABH+11, BFGM15, CGG17, CCGG18, EHV18, FM11, GJ08, KL08, Lec90, NDB07, N16, RSD17, Sch09, WZ08, DSW90]. Laurent
[CHX15]. Law
[CK91, Ja10]. Layer
[GW00]. Layers
[BFM17a, BS16b]. Laying
[HLR92]. Leaking
[vIM18]. Leakage
[AEFT13]. Learning
[AA05, BB00]. Lease
[LPSR12]. Least
[ARTV12, DSV08, HK16b]. Leaves
[AFG+09, BKZ17, Bon08, BZ11, CWY00, KKW1]. Lecture
[BBK+16]. Lee
[Spa07]. Lee-Type
[Spa07]. Lehman
[AFG+16]. Lemma
[BKTW15, BK17, CS18a, DKM+12, FPST06, NT12, Peg14]. Lempel
[CL07]. Length
[BH20, CCD00, CGH+15, EK10, FJ09, Han09, HT19, HD08, HY12, KW13, KS03d, SS09, TSN04, vD11, BFR17, DL89b, HS97, Tas97]. Lengths
[CHP+90, GS94a, GKPP18, JA16, KRS11, KJ04, MN18, PY90, SW99]. Level
[AYZ04, ACF18]. LexBF5
[HH05, BCP08]. Lexicographic
[BBM09]. Lexicographically
[KRR16]. Lier
[DS05b]. Lie
[ADL+09]. Lifetime
[BNRT17]. Lift
[AT16]. Lift-and-Project
[AT16]. Lifting
[BDP19, BK12]. Liftings
[SL95]. Lifts
[ACKM19, CF08, FT12, GS16b]. Light
[DS06, ES11, ENS15, Sol12]. Like
[Dan09, HL10, EIJ+12]. Likelihood
[CFKK17, SS02b]. Limit
[BK11, CP10b, WW91]. Limited
[OR04, SSS95]. Limiting
[Gar92, RJS93]. Line
[AE04, BKS10, CH11, CR17b, Gab05a, GSPRM91, GKM+18, GKL99, HT90, HV00, KFHR94, KT99a, Kap14a, KPT94, McD15, MT03, Sch91b, Woe93, BCP08, CKPS13, Con10, Fra09, KPT95, MSS14]. Line-Polar
[CH11]. Linear
[AD96, BB13, BNMN92, Bar02, BZ04, BCCZ11, BL17a, BHH96, BGS96, BP09, BKG99, Box96, BCP08, BM13, CD93, CS14, CdMR12, CKN05, Che94, CKOS06, DJ06, DHJ+13, EGM18, FR99, FM11, Fio06, GPST15, GH90a, GMS15, Han98, HKL99, HvtHNL12, HK05, HTS18, JSOS03, JMW17, KMP03, KK90, LW17a, LL15, LM16, LWW10, MG19, MN15, Mer15, MNN18, Moh99, Naa00, PS17, PR91, Ram98, RS15, Sun96, She18, ST07, SY11, Spe08, Sta02, TR03, Ten09, Wan02a, WWKY11, Wen97, Wu09, Yam16, o09, HSLd88, IS93, LM89, Mou94, KG93]. Linear-Complexity
[BNRT17]. Linear-Interval
[Mer15]. Linear-Time
[Che94, DJ06, DHJ+13, H Kaz99, LM16, MN15, MNN18]. Linearity
[Kie88]. Linearized
[Val19]. Lines
[Buk16, KT19, Pay17, SW04, Vin07, Yu17]. Linkages
[BP10]. Linked
Matching
[CDHZ12, CS91, DSS12, ELMS11, Fin09, FJ17, GPP04, GH90b, GL95, GMPZ15, Han16b, KMR11, KT14, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97]. Matchings
[AKZ17, ACG94, ABY11, BBCZ11, Can93, CL11, Che16, CY18, CHK17, DJKP09, DM19, FJJ18, FKT99, FKM13, HPS09, Han16a, Han16b, HK01, Har18, HR02, HK13, JRS14, JN16, Joo16, Joo16, KMS98, LdCKM18, MNN18, NH91, Tak14, VW09, Wal19, WZ08, Zha99, ZZW13, BC88a, Hef97].
Methods
[AT16, DS05a, DA10, GKL19, LZ06].

Metric [BDF+18, BFGR17, BDG+17, BR17b, BR19, CHM+07, CKNZ05, CV07, DM11, Gao15, SS11a, Sol12, Ste88, Win88].

Metrics [Ban90, BS09, Dah93, HMM09, SP88].

Midpoints [EFF91].

Migration [JK19].

MILP [Jan10].

Min [Cal13, CMSV17, FiT14, Gau07, HM94, HR12b, KSS12, SS00, Vse05, ELvS11, Fuj97, He97].

Min-Cut [Gau07].

Min-Max [FiT14, HR12b, KSS12, SS00, Fuj97, Hef97].

Min-Power [Cal13].

Min-Sum [CMSV17].

Min-Wise [Vse05].

Minconvex [AS09b].

Minima [LL14a].

Minimal [ABZ15, BNN90, BCCZ10, BDP19, BKS09, BB03, CY12, Gab05a, GDVL17, GMA15, GH90a, HRS18, HTV05, HK15, KLMN14, KRR16, RS08, Sav07, SL05, Tak08, Zeh17, Zhe16].

Minimal-Time [Gab05a].

Minimally [AG15, Ste10].

Minimax [HKST03, Ram90].

Minimization [BDvL13, Fi05, GS13, JSS03, Svi03, CNR99].

Minimize [DL89b].

Minimized [FT05a].

Minimizing [Alo13, AE03, BYKKR18, CKK+04, CFG+09, ELS17, FKLL08, HRS17, HQ03, HV00].

Minimum [BGV07, BJHY03, BHL05, Bon08, BS15b, BL17b, CR04, ClJL01, CH01, CL13, CF09, CDK10, Das99, Dro16, DH20a, ENSZ00, FJ17, FPS18, FK18b, GV92, GKY06, GP91, GO12, GSS15, GRY08, HIKT99, HPS09, HRS18, HM94, HR12a, HK16b, HK93, IMS05, KKL+10, KN16, KS05, KKM94, KP95, LRT08, Li17, LL17, OC19, Pin08, Ram04, SS11a, SMNF09, UBH93, XGG15, Yus14, ZN08, BBM90].

Minimum-Cost [CL13].

Minimum-Time [KP95].

Minimum-Weight [FPS18, BBM90].

Minkowski [AF10, CIN18, DMN12, GS93b, LS06, OV12, SS09].

Minor [BFM06, CDMO16, DHJ+13, EMOT16, HKSS08, HN20, JW18, KMP14, MR12, Per16, BM94c].

Minor-Closed [HN20, Per16].

Minors [AP18, AFH+18, CFP16, EW19, FKPR05, FHJV17, FGT11, FLM+16, Fox10, GMA15, GT13, KMN09, KM14, KNZ14, SZ13].

Minsquare [MUR06].

Minus [Gly10].

Mirror [CL11].

Misère [KLW89].

Mixed [BJFJ95, BH13a, CWY10, IM96, IT09, RV99, GJW16].

Mixing [BPS18, BP17, CDW07, EMT15, KS02, SY20, VVY18, Win16, GKR15].

Mixture [MM15].

Mixtures [MM15, Su12].

MMSNP [BCF12].

Mobile [BNRT17].

Möbius [CFM+09, JM97, Lin97].

Mod [GVW06, LL14b, LHL18].

Mod- [GVW06].

Model [ART14, BMRT20, CHZ04, ELMS11, FGP10, GMR11, GKN10, HL10, LNNW95, MSZ10, SW10, TKA18, Vaz13, VVY15, GKR15, SU89].

Models [BDT17, BGG+20, Mar20, MUWY18, Zho09, Bie88].

Modes [Bon91].

Modification [ASS17].

Modifications [LS03].

Modifying [TKMM19].

Modular [BCdMR08, EHV18, Kap14a, Yam05].

Modulo [CLLZ18, MS16].

Molen [ACM11].

Moment [BMM20].

Moments [Bar95, ERS19].

Mönke [New20].

Monadic [KZ18].

Monochromatic [AHH+10, AHP19, BMM20, BL01, CH13, CH17, CPF11, ELR98, FS09b, FM13, LR07, LSS17, MP08].

Monoid [BS95].

Monoids [GR17].

Monomial [CKO8a, GGI07].

Monomials [Din13].

Monotone [ARS17, AcRS07, GM91, HH17, HR12b, HRS93, JS14, KW90, ST13, Suk13, Yos19, GM93].

Monotonic [DSZ05, GMH10].

Monotonicity [BGJ+12, GKW19, HY89, YH88].

Monte [SV11].

Moody [TW12].

Moon [CWYZ10].

Morphisms [CIO7].

Morse [JP06b, SvMO8].

Moser [Peg14].

Most [CNG19, DD13, HZ10, HV17, JN16, JMW17, KKL4a, San96, Zho88].

Motif [FKW10].

Motion [ATPRU91].

Motors [JSZ15].
Mubayi [MB18]. Multicandidate [Bo190]. Multicast [CH06a]. Multichromosomal
[BH13a]. Multicolor [DP17, SW12]. Multicolored [AAFL06, Con05, KO06b].
Multicommodity [Fle00, Gun07, RS10, YCH97]. Multicovering [HK02]. Multicut
[KPPW15]. Multidimensional [AJM08, ARS95, Buk12, CDF08, GL15, Kit02, OR04].
Multiflow [Fuk16, Hir11, FKS97]. Multigraph [Gab04, Gab05b]. Multigraphs
[GM13, HLR13, KY18, NI92, NK90, WH04, CCM95]. Multilevel [LZ05b]. Multimatroids
Multipartition [Wag96]. Multipartitions [HRS93]. Multiparty [KOR03]. Multiple
[BCE+01, Bon91, BMN13, CS18a, CFR10, DGN+20, FKW10, GKO2, GZ98, HHL O95, PZ10].
Multiplexed [BCC+05]. Multiplication [QP15, SR94, WB90]. Multiplicative
[TW19]. Multiplicities [FKK20]. Multiplicity [DSST13, HS04, RY91]. Multiplicity-Free
[RY91]. Multipihedra [FLS10]. Multiply [GM14]. Multiprocessor
[BLMS+00, Toy90]. Multiset [OS16, Yen94]. Multiset-Union-Free [OS16]. Multislope
[GM16]. Multitype [KKP15, MSK93]. Multivalued [FS12b]. Multivariable
Must [Pin14]. Mutating [Eri96]. Mycielski [MST09].

Nakayama [Wil16]. Name [ACL+06]. Narrow [ES11, Li17]. Narrow-Sense
[Li17]. Narrow-Shallow-Low-Light [ES11]. Nash [CGV+14, Vaz12].

Nathanson [CY12]. Natural [MPSZ19, dMO7]. Navigability [FLL10].
Navigating [DM11]. NC [GSK91]. Near [BFH+08, CHHM09, DP16, Han16a, HK13,
LT11, MWZ11, dLL09, Zhou88]. Near-Extremal [dLL09]. Near-Popular
[BFH+08, LT11]. Near-Universal [CHHM09]. Nearest [BS09, Tas97].
Nearest-Neighbor [BS09]. Nearly [AKS08, DJ11, Gij05, GK13b, HH92, HZ08,
Meh12, NDB07]. Neccessary [TZ15]. Necklaces [GL15, WS96]. Negative
[HMM09, Wu09]. Neighbor [BS09, DGS96, FFH94, Har10, KS19, Prz13, Shi12, Tas97].
Neighborhood [BFPP08, CFT93, DHL+02, GPS19, HCO98, KPS20, MW90].
Neighborhoods [FRMPV15, DJS16]. Neighbory [Nov18]. Neighbors
[ARTV12, HW17b, MP04]. Nemhauser
[BYHR10]. Nested
[DS05a, ELJ+12, ILM+16]. Nestings
[Kla06, FY09]. Nestohedra [Gru17]. Nets
[CF16, DM13, AS97]. Network
[A CLW18, ADHL13, ADH+14, ASMF10, BKM08, BOS01, CS09, CV07, DM03,
FvIKS15, FLL10, GM90, HKS07, JM17, KYDN09, KNS05, KKO9, LS95a, vBBC+15,
Bie88, BCW96, NN19]. Network-Based
[vBBC+15]. Networks [AR17, AU91, BCS07, BYKKR18, BT0U9, BAH10, BK90,
BKL+15, BL16, BH93, CHZ04, CH06a, CHe09, CHY13, CDF08, DP92, DP96, ES98,
GRR15, GV92, GVKS06, GL08, GR99, GM91, GP91, HHHH92, HPS96, HaKK+09,
HL10, HJ94, HKS07, JLD+18, JAJ16, KW17, KL92, Koc98, KP04, KKO9, KM05b, Lu10,
May96, PL94, Pip95, Pip06, SW01, UBHS93, XY15, Zho09, vIM18, Bal88, BBM90, FFP88,
GM93, LS98, LP88, PPSW97, TM08, TH11]. Neural
[Bal88]. Neuronal
[JA16]. Next
[EMM14, SS10]. Niho
[dH04]. Nikodym
[LW18]. Nilsequences
[CS14]. Nine
No-Hole [CtJL01]. No-Wait [Svi03]. Node [ARTV12, TT89, Vég11]. Node-Connectivity [Vég11]. Non-Boolean [Eng04, GM05, KY12]. Nonapproximability [Eng04]. Nonorientable [PP90, Hut88]. Noncrossing [AR04, KLN91, LL17, Rea08, Rea15, Tza08]. Noncryptographic [Sak89]. Nondominated [MK01]. Nonequivalent [Etz96a]. Nonexistence [Etz96b]. Nonexpansive [Fed06]. Nonextendible [BCM+12]. Nonhamiltonian [ABHM00]. Nonhomogeneous [CDR16]. Noninclusion [RT98]. NonInteractive [KOS16]. Noninteracting [BP20b]. Nonisomorphic [Saw02]. Nonjumps [HLR13]. Nonlinear [BI05, BLMA+08, CCD00, CCM+15, LOW10]. Nonlinearities [KMÔ18]. Nonlinearity [CC03, LS09, Pet11]. Nonmonotone [LMNS10]. Nonmultiplicativity [Zho92]. Nonnegative [AAH14, FHK96]. Nonorientable [KSZ04, KML05]. Nonplanar [CGH+10]. Nonpreemptive [PP07a]. Nonrainbow [DJKP09]. Nonredundant [Spi95]. Nonrepetitive [KM13c]. Nonseparable [Vaz13]. Nonseparating [CY03, CLY05b, EliK08]. Nonsuccinct [May08]. Nonsymmetric [CGV+14, Vaz12]. Nonsystematic [PL99]. Nontiles [CM12b]. Nontrivial [AF10]. Nonunique [BDP19]. Normal [BGM94, Bóu09, BCE+00, BS90, Gar92, HL15, HW17b, WS17b, LW88b]. Normalized [AE03, CDH+04, WZ08]. Note [AD11, CD11, GHV06, GJ12, HS10, Ho98, HS06, dH04, Ks04, KL19b, LT01, Mer99, Naa01, PV10b, Rab08, Sch91a, Sku16, Yen94, Zun11, HS89a, Sag88]. Notion [dCST20]. Notions [KLMN14]. Nowhere [ALZ96, FZ08, GKR+18, KR16, LXZ08, MS17a, WYZZ14]. Nowhere-Zero [FZ08, KR16, LXZ08, MS17a, WYZZ14, ALZ96]. NP [DGM12, FRSS09, HN15]. NP-Complete [FRRS09]. NP-Hard [DGM12]. NP-Hardness [HN15]. NU [FHL+13a, FHL+14, LS18]. Nullity [BH13b]. Nullstellensatz [Prz13]. Number [AD11, Ale10, AADM18, Ako13, AHH14, ARS17, ACFL16, Ave13, AM06a, AM06b, AB07, ABHW13, BM19, BHY03, BCS04, BCD+12, BC94, BDP18, BFM06, BS15b, BvdZ16, CW98, Car09, CPfRdS13, CLS09, CR04, CHJ+04, Chi11, CHK10, CH16, CHW10, DPRS10, DMS12, DŠ09, EK13, Eli09, EJH01, EJK+09, FJZ15, Fle00, Fox10, FPS13, FHL13b, FL10, Fu14, GV92, GKP18, GR17, GWZ18, GK13a, GL15, GH13, GHvHP15, GPT11, GJ06, GJ08, Gyá19, HJ18, Har19, HZ10, HT18a, HLZ13, HW17b, HT93, Jan10, Jan20, Jon05, KKS19, KLMR13, KvIL+12, KZ04, KMS09, KWZ13, KW08b, KK01, KS07, KM13c, KS08b, KSS09, Lav16, LiO15, LZ05a, Liu14, LHC90, LW18, LS05, MS16, MRAS19, Mot19, MNS14, NvdP19, Nor11, OZ18, Pin08, PSV08, PR98, RMS01, SOT08, Smo07]. Numberings [AB00]. Numbers [AD11, Ale10, AADM18, Ako13, AHH14, ARS17, ACFL16, Ave13, AM06a, AM06b, AB07, ABHW13, BM19, BHY03, BCS04, BCD+12, BC94, BDP18, BFM06, BS15b, BvdZ16, CW98, Car09, CPfRdS13, CLS09, CR04, CHJ+04, Chi11, CHK10, CH16, CHW10, DPRS10, DMS12, DŠ09, EK13, Eli09, EJH01, EJK+09, FJZ15, Fle00, Fox10, FPS13, FHL13b, FL10, Fu14, GV92, GKP18, GR17, GWZ18, GK13a, GL15, GH13, GHvHP15, GPT11, GJ06, GJ08, Gyá19, HJ18, Har19, HZ10, HT18a, HLZ13, HW17b, HT93, Jan10, Jan20, Jon05, KKS19, KLMR13, KvIL+12, KZ04, KMS09, KWZ13, KW08b, KK01, KS07, KM13c, KS08b, KSS09, Lav16, LiO15, LZ05a, Liu14, LHC90, LW18, LS05, MS16, MRAS19, Mot19, MNS14, NvdP19, Nor11, OZ18, Pin08, PSV08, PR98, RMS01, SOT08, Smo07]. Numberings [AB00]. Numbers
Zho93]. **Origins** [Pet11]. **Orthogonal** [AM07, BGS96, BÖ05, DJM+18b, FHYMO1, GB12, NDB07, Spi19, ZN08, Bal88, DJM+18a]. **Orthogonality** [CGG17, GN08], **orthogonally** [MRS89]. **Osthus** [MMS17]. **Other** [FPS18, GRS11]. **Outdegree** [CH17]. **Outerplanar** [CGN+06b, LZ05a]. **Outerstring** [RW19]. **Output** [RF12]. **Overinterval** [CM05b]. **Overlap** [Jan00]. **Overlapping** [BH20, WS12].

p2 [LO05]. **Packable** [GZ10]. **Packets** [DP96]. **Packing** [ALM+18, AB18, BF12, BP13, Bar04, BSKS11, CLM03, CDM+14, CK14, CCG+00, CG07, JR19, DFJS15, DKMS17, EIH18, Eps06, FKT06, Fs94, FL91, GMFZ15, GMW96, Gu18, GL17, Har18, HPS19, Jan05, JOS12, JLL16, JK19, Kik12, Kikk17, Kir16, LMSZ19, Sei01, Woe93, Yam16, Zak14, dGSNZ13, BCD97, HS98b, TT89].

Packings [AMB11, BT96, CCG+00, KT17, KS12a, KOT09, Nag17, Ric14]. **Page** [EM99, MW90]. **Pagenumber** [VWY09]. **Pages** [Obr93]. **Pair** [BJvV92, DSL19, DK02, FHH08, FGK89, GK92, HK11]. **Pair-List** [FHH08]. **Pair-splitting** [BJvV92]. **Pairs** [BDT17, Bon10, Boy01, BM13, GPW13, HM94, LRWZ12, PSV08, Alt89]. **Pairwise** [CE06, KV15, KSY18, KM06]. **Pancyclicity** [HL10, KLS10]. **Paradox** [LRTW11]. **Paraffin** [ACM11]. **Parallel** [AC14, ALSY11, AM96, BB90, BC09b, BH15, Cho92a, Cho94a, Dahi93, EP10, ELSS17, GPS88, GS93a, HS90, HHH+02, JSZ15, KR16, KFHR94, Kim91, KN95, NS98, PP07a, RS15, SSS13, ZN08, BM97, DL89a, GS89, LM98, RSSW88].

Parallel-Task [KN95]. **Parallelisms** [AALF06]. **Parameter** [ADKS18, BCDF19, CPPW13, GJ19, HN15, KPPW15, Kra18a, KS12b, LSSZ19]. **Parameterized** [BFPP15, BCKP19, FLM+18, FKL+19, GKMT17, GNS11, GJW16, GP16, JLR+17, Sli10, Zeh17]. **Parameters** [DFHT04, FGT11, MP17b]. **Parametrized** [AB95]. **Parametrizing** [She18]. **Parent** [BCE+01, BEN08, TSN04]. **Parents** [BCE+01]. **Pareto** [Kam19]. **Parity** [BM15, CF09, HT18a, SMR08, Sza08, Yam16, Zha93, CHW88]. **Parity-Check** [CF09]. **Parsimonious** [WH04]. ** Parsimony** [FvIKS15]. **Part** [EFK05, ACM+18, CCG+00, FHL+13a, FHL+14, Gao18, Lia06]. **Partial** [BYFMR10, BP09, Bor10, CMS17, Ege10, FKM+06, FL92, FMP17, FY04, GSK91, Hor14, HRS93, JT11, JS14, KPS20, KM02, Koc98, PSW96, dGV05, SSSU89, TP97]. **Partially** [BFRS16, Elb09]. **participant** [CGG88]. **Particles** [BDvL13]. **Parsimonious** [WH04]. **Parsimony** [FvIKS15]. **Pareto** [Kep18, Kep19]. **Part** [EFK05, ACM+18, CCG+00, FHL+13a, FHL+14, Gao18, Lia06]. **Partial** [BYFMR10, BP09, Bor10, CMS17, Ege10, FKM+06, FL92, FMP17, FY04, GSK91, Hor14, HRS93, JT11, JS14, KPS20, KM02, Koc98, PSW96, dGV05, SSSU89, TP97]. **Partially** [BFRS16, Elb09]. **participant** [CGG88]. **Particles** [BDvL13]. **Partite** [Fcd01, GKP19, GSS15, LW18, RRS07]. **Partition** [BJGJS99, BP20a, BGs17, CEHS08, Can93, CS94, DF02, HR05b, KKCLS20, Rea08, Sni01, KS88, MM96]. **Partition-Optimization** [HR05b].

Partitioning [AD96, BKS10, Cho94a, Gal18, HK99, LSS17, MLS11, Sot15, BVW88, HM88, TP97]. **Partitionings** [BDM02]. **Partitions** [ASS09, AM11, AR04, BL01, CX08, CCG+16, COL10, DG08, FHKM03, Fe90, GS94b, HW18, HMSW14, IKZ08, Kim11, KR93, LV89, Len98, Lin97, MW20, Moll11, Onn91, PY09, Riff99, Sni01, SZ15, Tza08, Zen90]. **Parts** [AHS01, HS04]. **Party** [KOS16]. **Passage** [HH92]. **Passing** [MT11]. **Path** [AHP09, BT92, CL15c, DNS94, DD15, DD13, Erd20, Gao15, GMS15, Gut93, Hli18, KM19a, KM05a, LW17a, MPP13, MC12, SB94, ZBBL17]. **Path-Decompositions** [Erd20]. **Path-Tough** [DNS94]. **Path-Width** [AHP09, DD13, Hli18].

Pathology [AL95]. **Paths** [AK10, AP14, AG15, AS03, BNN90, BPV10, BCD+12, BK90, BCF+10, BHJ18, BK14, CFJ11, JR19, DSS92, DG08, EJ01, EFK18].
ELR98, EH13, FJ09, FIN98, GPvL15, GLS20, GZ98, HW10, HT19, HMP04, iKK11, KMS12, LL14a, LL17, LZ05b, LW18, LP19, MT90, MNPR17, NT12, RS14, Ron06, Sch91b, Sli10, Spa07, Sta92, Van07, Yan16, KP06.

Pathwidth [BM93, BKK95, Der12, GJW16, Kas08, KMR09].

Patricia [RJS93].

Pattern [AF19, CFKK17, FKLL15, GPP04, DK89].

Patterns [AL17, AM06a, BK05, DZ09b, FW02, JS15].

Patterson [KM01].

Paving [GH06].

Payment [PSTF00].

Pebbling [AGH14, BC09a, Chu89, CLST12, CH06b, MC06].

Pedigrees [Tha08].

Peeling [HPL13].

Penalizing [AB05].

Pentagons [BDJ+15].

Penalizing [ABY11, BKS09, BL04, BS16c, BE13, CGL10, CY18, CCG00, CL15b, DM19, Etz96b, EV98, FKT99, GS98, GH90b, HPS09, Han16a, Han16b, Han18, Hed08, HL00, HR05a, HXZ18, Kha13, KSS09, KO06b, KOT09, LGS11, LWY18, MWW94b, MP98, MRS89, Pen12, Rif99, Vaz13, dCLM13, dFM04, Etz96a, Mit97, PL99].

Perfect-Matching [GH90b].

Perfection [BS10b, BF17, Sch02b].

Perfectly [LM08, MT05].

Performance [AB95, Fra89, PV10b, KK90].

Percolation [BP15, BW09, GKM+18, MdCW16, Rah16, SS91].

Perfect [ABY11, BKS09, BL04, BS15b, BE13, CGL10, CY18, CCG+00, CL15b, DM19, Etz96b, EV98, FKT99, GS98, GH90b, HPS09, Han16a, Han16b, Han18, Hed08, HL00, HR05a, HXZ18, Kha13, KSS09, KO06b, KOT09, LGS11, LWY18, MWW94b, MP98, MRS89, Pen12, Rif99, Vaz13, dCLM13, dFM04, Etz96a, Mit97, PL99].

Perfect-Matching [GH90b].

Perfection [BS10b, BF17, Sch02b].

Period [BCG+10, XQ06].

Periodic [BS15, CS14, MK09, SU89].

Periodic-Finite-Type [MK09].

Periodicity [FPST06, GPP04, KK90].

Periods [MK09].

Permanent [CV09].

Permanents [BMV92, Vin12].

Permutation [AMNV18, BT18, BKK95, BCF+10, DQW+15, Ehr14, HvtHLN12, HaKK+09, KL92, WZZ18].

Permutations [ALSY11, ACG94, BHN20, BCDMR08, Bon09, Bor10, BCPP09, Cap99, CR16, Cib13, CFK19, CKdAHdF13, DR04, Eli09, EFK05, FKMS10, KMS08, KS19, Lab13, Ram98, Sav90, Vse05, Yan94, KM06].

Permute [QD14].

Permutohedra [MUWY18].

Perturbations [KK09, Lin89].

Perturbed [AHP19, KKS17].

Phase [CMR18, CFKK17, DH05, FMP08, GKR515, KKP15, RSV+14, VVY15].

Phenomena [BER11].

Phylogenetic [ART14, ANS16, BL17a, BS15b, FvKS15, HSM05, KL19a, SV11, Su12, dMS16, vM18, Ste88].

Phylogenetics [Ber20].

Phylogenies [DMR11].

Phylogeny [LGS11].

Piecewise [WWKY11].

Pillar [KT19].

Pipe [Mé616b].

Pivoting [LM89, Vav89].

Placement [BH05, MLS11].

Planar [AH03, ABHM00, AST94, AHP09, ACD08, BB16, BCC+11, Bon15, BS93, BY08, Cai93, CTU14, CEP18, CL1018, Cra19, CL20, CLY05b, DV96, DSS92, Dj06, DX19, DM18b, DŠ08, DL10, DM17, DH20b, Far09, Fle14, Fri91, GW99, GHP20, HM94, HM12a, HKL99, JMW17, KMM12, KFHR94, iKM10, KW17, KPP13, KNK93, KMS+09, KL92, KSS12, KR20, LM17, LL17, LLS04, Lu10, LSSY10, LP10, MR14, SM08, Sch91a, Sch91b, Suz10, WL02, WL03, WX13, WHW14, WH15, WY10, ZLWC12, BCLR89, BT97, FPS13, GI97, DL17, DL18b].

Planarly [DGL10, DP15, HKSS08].

Plancherel [FP13].

Plane [BBS17, BFP12, BDT17, Boy96, Bri10, Cha91, CGM+15, CEOT15, CR16, CEOT17, DEG+07, DJ11, DM15, EHJ01, FHJV17, FT17, GZ19, GPS19, HŠS80, HZ08, JKW17, KSS11b, KS08, MS14, ONN19, Pay17, PRS03, PSS09, PP07b, Pin08, PWW96, SW04, SW09, Xu09, CCM95, RWW88, Ser89].

Planes [Bal08, GKM+18, GB12].

Planning [ATPRU91].

Planted [COL10].

Planting [ZK11].

Plates [DEF19].

Player [BMS12, Vaz12].

Playing [DTW03].

Plenethystic [Wil16].

Plex [GNK10, MH09].
KiK12, KiKK17, Kas05, Lub90b.
Preservers [BCE05, CE06, KV15].
Preserving [BJFJ95, BJJ98, BDD19, CK14, Che98, DHL+02, Fle95, JS03, KNZ14]. Prestress [CW96, CG17]. Preventing [BKL+15].
Price [Vaz13, GK97]. Primitive [BYR05, CMSV17, Kop07]. Primitive-Dual [BYR05, CMSV17]. Prime [Gly10, Gly12, LSX14, MS16, MR04a, SST08, Spi89, CET97, FH89]. Prime-Power [LSX14]. Primitive [Li17]. Principal [IM96]. Priori [MLS11]. Prioritizing [AR17]. Prism [CK08b]. Privacy [CK91, FY04, Kus92]. Private [FFHJ94, HKS07, KR98, KOR03, KM97]. Probabilistic [BMS12, BAM16, EP10, FKW10, HKW15, KSN2, MUWY18, Nao91]. Probabilities [Fis90a]. Probability [Bar95, BM11, BB90, DJS12, EGS13, Gol96, Jun12, Lyn94, Pip06, YAT16]. Probe [BGL07, MN15, PW02]. Problem [AFG+16, AYZ04, AR08, AS14, BBF99, BJT92, BNMN92, Bar01, BAH10, BKM15, BKL+15, BKM08, BN96, BKS10, BH13a, BMW00, Bra05, BH05, BDLR01, CCVZ10, CEHS08, CFFK17, CKN05, CGN06a, CDHZ12, CY12, CKN+15, Che14, CHY13, CDE+18, Cho92b, Cho09, CL11b, CM12a, CM07, DFJS15, DF04, DGM12, EK05, EJ01, FMP17, Fio06, FO09, FS09b, FYK00, Fuk16, GDVL17, GS94a, Gao15, GPP01, GL95, GMS15, GR12, GW19, GP16, HM94, HW10, HL017, HK13, HN20, IK09, IT08, JW05, JPT12, KYDN09, KP00, iKK11, KS00, KR92, KKM94, KS03c, Kr06, KM05a, L403, LW10, Lev15, Lev09, LW03, LW17a, LSL92, LHC90, Lub90a, MC93, MPS19, MC12, Mur06, MRN15, MRNS17, MW03, Myu01, PSTF00, PW13, PSS08, Qui10, RV99, Rya07, Saa93, SSW98, SS91]. Problem [Sku16, SS95, Vin11, WIS12, Yam05, YZ17, vWW94, Ba89, BG91, BC17, CK96, GW94, GHHY96, Hef97, IW91, JM97, Lin97, SS89, Taz97, Yen97, DR98, GJW16, SS11b]. Problems [AMW00, AM11, ASS17, BLS17, BK11, Cai18, CLM03, CKM14, CKPW09, CS09, CCZ12, CMSV17, CC07, Cho92b, CKPV91, CCI+17, CKN13, DJS12, DJS12, EV98, FL92, FK17, GMOV20, GM16, GT12, GMPZ15, GM90, GNS11, HR12a, HK96, HHH+02, HJ94, Hua14, HC98, JLL16, Jor03, Jdt06, KT14, KSSL20, KLM14, KBE+05, KPS20, KWZ13, KMV15, KS06, KJ04, LNNW95, LDCKM18, MT11, MRT11, NHI91, PT14, RS10, RT98, RS16, SA90, SSS13, Sid18, Sim90, Sns10, Som14, SS00, SV18, ZK11, Zha10, van94, BS88, BCD97, HS89b, NS89, PC97, RWW88, Ray94, SU89, Tan98, TP97, TT89]. Procedure [MP95]. Procedures [CLM03]. Process [COP12, CS94, Die10, KPS16, KOT16, Pic14, Red17]. Processes [BBFP09, CDFR18, KS12b, LR91]. Processing [SSS13]. Processors [Jan10, PP07a, DL89b]. Product [AHLST10, ALSY11, Ath14, BL19b, CCM+15, CKPS15, DMK88, KR13, KLO8, MM15, MRNS15, MRNS17, PS17, Sha13, AHS89, LRN11]. Product-Type [KR13]. Products [BBM09, BIKZ05, CHM+07, CHK10, CH10, Elb09, Fis94, GMS00, Lee17, Mat19, MM15, PZ05, Sni01, Sp07, WZ18, bba07]. Profile [DH05, FKK20, GP08b]. profit [PRS88]. Profits [JSO12]. Program [Dow91b, She18, Dow91a]. Programming [ASZ02, BGS96, BP12, CKN05, GSP15, HK99, HTS18, Juk16, KG98, PS17, SA90, UWZ97]. Programs [BCCZ10, BBCZ11, Boy96, HKL+14, HMM09, OS15, PP09, Vaz12]. Progression [Het14]. Progressions [GP14]. Project [AT16]. Projected [TZ19, TZ20]. Projection [DF02, Gar92]. Projections [DGM12, FKK05, FKK07, Ho95, Ho98, KMP03, MPS08, NT18, PZ98, PP10].
Projective \cite{Bal08, CW16, Enc05, GKM+18, GB12, MS14, Ne15, ONN19, PSS09, Vse05}. \textbf{Proliﬁc} \cite{Ben08}. \textbf{Proof} \cite{BL09, CK11, EMT15, FGS19, HK11, HKP+17d, dH04, HK07, IMR14, Kar20, Lic14, Sig10, Wil16, HK16b, Yen97}. \textbf{Proofs} \cite{Bab92, EFK05, Loc10, MPP17}. \textbf{Propagation} \cite{AS09a, BBCZ11, PS17}. \textbf{Proper} \cite{BHH96, BFPP15, BMVW17, FSV13, HH05, HR12b, LC04}. \textbf{Properly} \cite{KY18}. \textbf{Properties} \cite{AC90, ACFL16, CdVL11, CM05a, CGMV19, DST01, DP17, EGR08, FMMO93, FPS20, GZ19, JLD+18, NS93, OPVV14, RRS07, ST13, SW98, TKMM19, ZZ92, dLL09, CCM95, HM88, HY89, TT89}. \textbf{Property} \cite{AcRS07, BBC11, BCE+01, BEN08, Bra10, BHJ18, CHX15, TSN04, WZ08, Way01}. \textbf{Prophet} \cite{EHLM17}. \textbf{Proportional} \cite{PT90}. \textbf{Protection} \cite{KG93}. \textbf{Protocol} \cite{ACMW17, Sak89}. \textbf{Protocols} \cite{FP04, KOS16}. \textbf{Prototype} \cite{MTGK05}. \textbf{Proximity} \cite{GK13b}. \textbf{Pruning} \cite{DMR11}. \textbf{pseudo} \cite{HSLd88}. \textbf{pseudo-Boolean} \cite{HSLd88}. \textbf{Pseudodisc} \cite{Pin14}. \textbf{Pseudodiscs} \cite{Pin14}. \textbf{Pseudoforest} \cite{FMZ09, JZ05, EH91}. \textbf{Pseudoforests} \cite{FHJ+10}. \textbf{Pseudorandom} \cite{KLS10, KO06b}. \textbf{Pseudorandomness} \cite{OS11}. \textbf{Pseudorandomness} \cite{OS11}. \textbf{Pseudo-Boolean} \cite{HSLd88}. \textbf{Pseudorandomness} \cite{OS11}. \textbf{Pumpkins} \cite{JPS+14}. \textbf{Pursuit} \cite{BMP13, DKSŽ10, Ikk06, SS89}. \textbf{Pursuit-Evasion} \cite{DKSŽ10, Ikk06, SS89}. \textbf{Push} \cite{MP17a}. \textbf{Push&Pull} \cite{ACMW17}. \textbf{Pushing} \cite{KKsvL20}. \textbf{Pyramidally} \cite{van94}. \textbf{Pyramids} \cite{PW18}. \textbf{Quadratic} \cite{BCH92, Fis14, HK99, LS05, Wal19}. \textbf{Quadratically} \cite{BM07}. \textbf{Quadric} \cite{RS16}. \textbf{Quadrilinear} \cite{Mac18}. \textbf{Quadruple} \cite{FHS14, GMZ09, JZ05, EH91}. \textbf{Qualitative} \cite{EGS13}. \textbf{Quantifiers} \cite{MMS15}. \textbf{Quantitative} \cite{CHZ18}. \textbf{Quartet} \cite{ASY14, ANS16, SY11}. \textbf{Quasi} \cite{AGH11, BJHY03, BG017, CM90, CH19, CKPS13, CT93, CPR99, FPS13, GSPRM91, GHV06, GÖ12, KPPR15, MSS14, iO08, SMR08}. \textbf{Quasi-Cyclic} \cite{BGÖ17, GÖ12}. \textbf{Quasi-line} \cite{CKPS13, MSS14}. \textbf{Quasi-Parity} \cite{SMR08}. \textbf{Quasi-Ramsey} \cite{CPR99, KPPR15}. \textbf{Quasi-Random} \cite{AGH11}. \textbf{Quasi-Symmetric} \cite{CM90, CH19}. \textbf{Quasi-transitive} \cite{BJHY03}. \textbf{Quasi-triangulated} \cite{GHV06}. \textbf{Quasigroups} \cite{KP09}. \textbf{Quasirandom} \cite{FH10}. \textbf{Quasisymmetric} \cite{Gru17}. \textbf{Quaternary} \cite{TRV03}. \textbf{Quaternions} \cite{BL19b, SS08}. \textbf{que} \cite{KvIL+12}. \textbf{Queries} \cite{DHL+02}. \textbf{Question} \cite{JO18, Naa01, Tha08, CP96}. \textbf{Questions} \cite{Dow88, NT05}. \textbf{Queue} \cite{GSV12, HP97}. \textbf{queueing} \cite{FG89}. \textbf{Queues} \cite{HLR92}. \textbf{Quick} \cite{Ser88}. \textbf{Quickly} \cite{CFG+15a}. \textbf{Quiet} \cite{ZK11}. \textbf{Quorums} \cite{PW02, HMP97}. \textbf{Quotients} \cite{CW14b, OS11}. \textbf{Radii} \cite{HK02}. \textbf{Radio} \cite{EK05, KP04, KM05b}. \textbf{Radius} \cite{BLR16, BLR17, BR17b, CH01, KZ04, LL99, RR03}. \textbf{Rad} \cite{DT16, DK16, Han19b, MS14}. \textbf{Radon} \cite{Con89, DV04, Fil89, Om91, Sca03}. \textbf{Rainbow} \cite{DFT15, FMS20, FM13, GS20, HLO17, KY18, Kor18, KLS18, LV18, Mot19, RW89, RRS07, RS08, SWR12, Sud08, XSR11}. \textbf{Ramanujan} \cite{Mor94, TZ97}. \textbf{Ramsey} \cite{AL07, BLS17, BM12, CET97, Con10, CPR99, DP17, EMRPS14, Exo89, FS09b, GMOV20, GT12, GLS20, HRS18, HST19, JO18, KPPR15, KSV05, Kie97, KKL19, LW18, Mot19, OS17, Pik03, RW89, RRS07, RS08, SWR12, Sud08, XSR11}. \textbf{Ramsey-Type} \cite{FS09b, RW89}. \textbf{Random} \cite{AK90, AGH11, ADL13, AP14, AF19, AS16, BBLM13, BBLM16, BHRZ14, BF96, BTU09, BSKS11, BK90, Bev09, Bev10, BGG+20, Blo10, BMP13, BGL03, CMR18, CF08, CZLw05, CL06, CP16a, CP10a, COL10, ...
COPP12, CM12a, CF05, CFK10, CFR10, CF10, CEOR13, CF16, CTW93, CFS96, CV09, CSW17, DKR12, DMP07, DJKO19, Die10, DP96, DKS18, DH05, DFT15, DP16, DP17, DEF19, DS16, DJS12, EFK18, FT12, FO08, FFV11, FMP08, FK18a, FKK18, FKT99, FKS05b, FHL13b, FJ17, FPS18, FT20, FL15, FK18b, GW99, Gao13, GK07, Git99, GK13a, GLS15, GS94b, GH90a, GH90b, Han19b, HS04, HPS19, HN20, JP12, JT11, Joo15, JA16, KKP15, KW13, KL14, KR04, KM19b, KLMR18, KW14, KPS16, Kri10, KLS10, KS12a, KO12, KOT16, KZ18.

Random [KR15, Luc98, Lyn94, McK19, MP17a, MP17b, MRT11, MS93, Mra17, NDB07, Ngu13, Pip89, PSV08, Ric14, RRS07, Sch92, SYK18, SS02b, WS17b, Yam20, ACS97, BC88a, BB97, DS97, HS97, LR94, Kra07]

Random-Cluster [BGG +20].

Random-Edge [GK07].

Randomized [FH10, IKK06, Kra18a, LPSR12, SS02a].

Randomly [AHP19, KKS17, Zho88].

Randomness [CT93, KM97, KR98, KOR03, MR15b].

Randomness-Rounds [KR98].

Rank [ADL +09, BR17b, BR19, CDD +15, DZ09a, Din06, FLM12, JJT14, Ja10, KS05, MFSZ19, MPS +09, ÖVO4, iO08, PP12, Sch09, TV03, DK89].

Rank-Based [Ja10].

Rank-Selected [Sch09].

Rank-Width [iO08].

Ranking [Alo06, CPR99, KRR16, McD15, CH89, PRS88].

Rankings [BDJ +98, FKM +06, Fis90a, KT99b].

Ranks [FK18b, GGS17].

Rapid [Win16].

Rapidly [SYK18].

Rate [BC17, CHZ04, LW10, RF12, WW91].

Rates [BG19, CCV10, GFLP14].

Ratio [BYR05, BCC +05, BC +10, BDG +17, BDEK06, BNR96, CFG +09, Gön07, PV10b, Tó10, WS17a, HS89b].

Rational [BT18, Rho15, Vaz12, Jae89].

Rationality [CDV10].

ratios [Kle89, LW88a, WW91].

rays [DGP06].

Re-embeddings [Suz10].

Reach [MP04].

Reached [Che16].

Real [Bön09, EJK +09, GJ06, GJ08, KS08b, YZ17].

Real-Rootedness [YZ17].

Reality [dAHFdFK10].

Realizability [FHJV17].

Realization [CFM +09, GMTW19, Win88].

Realizations [EMT15].

Realized [Eli09].

Realizer [LLS04].

Realizing [AM96, HN15, LXZZ08, PS97].

Rearrangeable [CH06a].

Reassembling [Vyg16].

Receivers [AR17].

Reciprocal [KR93].

Reciprocity [JS14].

Recognition [Ban90, BCHP08, CH11, CCL +06, COS10, CD14, Dah93, HH05, LS17, MN15, Mer15, Sun96].

Recognized [BS16c].

Recognizing [BGL07, CH15, GSK91, HS88, HL00, LC04].

Reconfiguration [MNPR17, Wro20].

Reconfigurations [CDP08].

Reconnection [KL19a].

Reconstructed [MP08].

Reconstructibility [vIM18].

Reconstructible [PRS03].

Reconstructing [DG12, GVKS06, KK14b].

Reconstruction [ADM +15, BM11, BVVW11, BGY +12, CCM +15, MRT11, Ste00, SV11, Tha08].

Reconstructions [vD11].

Recski [Sza08].

Rectangle [BDM02, KS06].

Rectangles [Lub90a, Fra89, RWW88].

Rectangular [CMR18, Lag00, MW19b].

Recurrence [EIJ +12, Pip95].

Recurrences [ARS95].

Recurrent [KK09].

Recursion [AL95].

Recur [ILM +16].

Recursive [BPT91, CCG05, FMP08, FG89, KPT94].

Rédei [QP15].

Reducible [Ram90, vzGVZ13].

Reduction [BGN15, CKN +15, Cho09, Més16a, Tov90, Hli18].

Reductions [PV10a].

Reed [BK91, CKPS13, Rab08, RR03].

Refined [KR20].

Refining [Erd17].

Reflexive [BH +08, FHL +13a, LS18].

Region [Kim91, TZ19, TZ20, Wor88].

Regions [vBEM17].

Regular [AKS08, SS09].
AaW09, AP14, Bal08, BS15a, BCS04, BGG+20, BK17, CCG05, CKNV16, CF05, CFR10, CFS96, CW09, DJKO19, DHL+13, DFT15, ETT13, FG01, FKLW98, FW02, FGL18, GMR11, GM03, GGS17, Gra07, GRS12, Ho95, KW14, KCL98, LWY13, MK01, MWvZ11, McL10, Meh12, MTR14, Mom13, MLS11, OC10, OR04, OS13b, PW18, PR98, RSV+14, Riz02, dR14, BH97.

Regularity [BK17, COCF10, DKM+12].

Reiner [FGS19].

Rejection [BLMS+00].

Related [Adl08, BBBZ12, Bar02, BAG03, BH93, Buk16, CKMU14, CY08, CGK+19, CY12, DJ12, GP08a, Hua14, KL14, MP17b, SR94, SV11, Dow88, WGM95].

Relating [DM18b].

Relation [BBCZ11].

Relations [EIJ+12, HMM09, KSS12].

Relationship [CCO+15].

Relationships [BH94, GPW13].

[EkK+15, FJ09, HK02, LW10].

Relatively [vzGVZ13].

Relatives [BGRR18].

Relaxation [BCCZ10, Fuk16, HY13, HI16, Jan10, KG98].

Relaxations [CKP13a, SA90].

Relaxed [ALM+18, GKN10].

Release [GQS+02].

Relevance [HKR00].

Reliability [Ber07, BCE+00, BCW96].

Reliable [FKPR05].

Remark [Cha16].

Remarks [GLW11, SV18].

Removal [DT16, FJZ15].

Removed [La18].

Removing [Fei04, PS10].

Rendezvous [GJ16].

Rent [LPSR12].

Rental [LPSR12].

Reordering [DE11, EL17, LM98].

Repair [MG19].

Repairable [MG19].

Repeated [AS05, BBM13, CL07, Het14].

Repelling [BDV13].

Repetition [DA10].

Repetitions [DGN+20].

Replacement [LL14a].

Replicated [MLHL91].

Replicating [Vin93].

Representability [BPWX13].

Representable [BS95a, HvZ14, NvZ15].

Representation [AKZ17, Do19, GKS12, KN92, Kim11, LLS04, MRV17, PT90].

Representations [ATPRU91, ADL+09, BFP12, BS93, FK18b, GM16, GPW13, HPW09, Har01, HZ08, KM01, LS08, MR15a, MS05, MvLvL13, Rea15, Saw07, SA90, TTT19, TA93, dGV05].

Representative [GMPZ15].

Representatives [Jev95, KR92].

Representing [AC14, BHNP16, HMSW14, PG06, Tsa96].

Require [KW90].

Required [DH20a, Gol06].

Requirements [Fra92].

Requires [DZ01, KKS+20].

Rescaling [LP19].

Reserving [BOS01].

Residues [BCP09].

Resilient [BS96, BOS01, KLS10].

resistances [LS9].

Resistor [JLD+18].

Resolution [AG18, MP94].

Resolvable [JZ05, WLD09].

Resolving [OV04].

Resonance [KSS11a, ZLS08].

Resonant [YQQ09].

Resource [FYK00, HKST03, JP06a, Lyn94].

Respect [HRS93].

Restarts [JP12].

Restricted [ABS10, BC94, DEW17, FP04, FJJ18, GKP18, HL10, KS05, OS92, SS00, Vin12, WZ08, HKKK88, Lin97].

Restrictions [AS10].

Result [CDH+04, CR16, HKP+17d, HK96, LZ09, Oxl19, Ric14].

Resulting [FJZ15].

Results [ACG+20, ASS17, AFP+18, CS14, CKPV91, dOCHLO19, FKL93, GP17, Har19, HVW07, Mac18, Pik03, SW10, HL92, Ray94].

Retaining [CDMO16].

Retractions [FJH+10].

Revealing [SB10].

Reversals [Cap99, CI01, HvIK+07, RSW05].

Reverse [Cib13, CDD+15, FKMS10, RC18].

Reverse-Free [Cib13, FKMS10].

Reversible [BK90, JMS90].

Reversibly [JMS90].

Reversing [AHLT10].

Revisited [CdMR12, Fel14, LRT08, Naa00, WL10, BS95b].

Revisiting [CD18].

Revolution [NOP14].

Ricci [BCL+18, OV12].

Richardson [B13, TKA18].

Ride [CCNV11].

Riesz [Lee17].

Rigid [AH96, AG19, Gu18, JDT13, NOP14].

Rigidity [CW96, CG17, FRW12, FLM+18, Fra95, GJ20, Gra91, KTT13, Ngu10, NOP12].

Secretary [AMW00, EHL17, HN20, KM05a]. Section [MT11]. Secure [FY04, OKS06]. Security [AA11, Kao96]. Seemingly [CM12a].

Segments [CK18, Tør93]. Selected [LMRS17, Sch09]. Selecting [DHUZ01]. Selection [BB90, CHY13, DZ01, PW13].

Selections [IM96]. Self [BOP94, BO05, Hli18, Jan00, LLS13, LW88b, LSX14, FG06, WS19, BGM94].

Self-Complementary [LSX14, LW88b]. Self-Dual [BOP94, Jan00, PG06, BGM94]. Self-Orthogonal [BO05].

Self-Predicting [WS19]. Self-reduction [Hli18].

Semialgebraic [ART14, Do19]. Semicomplete [BJT92, GRY08, BGM94].

Semidefinite [BOP94, BO05, Hli18, Jan00, LLS13, LW88b, LSX14, FG06, WS19, BGM94].

Semi-Self-Complementary [LSX14, LW88b].

Semi-Self-Dual [BOP94, Jan00, PG06, BGM94].

Semi-Self-Orthogonal [BO05].

Semi-Self-Predicting [WS19]. Self-reduction [Hli18].

Semialgebraic [ART14, Do19]. Semicomplete [BJT92, GRY08, BGM94].

Semidefinite [ASZ02, HMM09, LG09, dCST20].

Sequential [SL95, Tak08, Pip89]. Serial [GF08, Kot13, MMR06, WB90]. Seriation [GJ19]. Series [ACM11, ABH+11, BCR09b, Choo92a, Choo94a, Ege10, EP10, KR16, RY91, RS15, Waf96, ZNS08, ACS97, BM97].

Series-Parallel [BCR09b, Choo92a, Choo94a, EP10, KR16, RS15, ZNS08, BM97]. Server [CL91b, CKPV91]. Servers [Ber07]. Set [BBB+19a, BBF99, BBNZ92, BFRS16, CLM03, CVD02, CHY13, CDW07, CH10, CPPW13, DO08, EKM+19, FGS19, F008, FFV11, GDVL17, GLSS16, GS03, GT98, GS94b, Han19b, Hq03, IZK08, JPY10, KS92, KMN18, KMS05, KMW06, Kvi1+12, KPS20, Kim11, Lev09, LPS18, Pin08, PY09, Rya07, WZ18, BKK16, BS88, BC88b, EH91, GS98, Hur94]. set-covering [BS88]. Set-Valued [FGS19]. Sets [Age94, AHH+10, AHP19, ABZ15, AS16, AMNV18, Ave13, AE03, BMM90, BDJ+15, Bon10, BLM09, BM14, BK05, CW08, CER98, CCG+11, CLW09, CLI018, CCG05, CB15, CD16, CF16, DSY19, DA10, DM17, Eib09, EFK14, ENSZ00, FKS12, Fis90b, FL96, Füñ91, GZ19, GVW06, GLP+12, GS93a, GMPZ15, GL10, HST19, Har11, Hav99, HK03, HST93, JK99, Jev95, Juk16, KLMN14, Kim17, KSY18, KLMR18, KM10, KT17, LRT08, LM12, LZ06, LSW18, MB18, Mon13, MR15b, MD16, MD11, MS05, Nov18, NS11, OR04, PP07b, RSV+14, Ros09, SS19, SS04, SS95, TT16, Tak08, Vse05, Yu17, Zha90, Abe91, BAI88, BM94b, BV99, Bov97, HR88, HS89b, Sag88].

Settings [ACF18]. Seven [CFG+09, KCI4a, Sav14]. Several [CH15, DF04, Fed06]. Seymour [CG02].

Shadows [KMAC15]. Shallow [ES11]. Shannon [AL07, HTS18, Kas03]. Shape [CP10b, FL00, MS19]. Shapes [MPP17].

Shard [Pet13]. Shared [BBDK00]. Shares [HSS19]. Sharing [BI05, BTW08, CCM+15, OKS06, SWK10].

Sharp [DMP07]. Shatter [BG19].
Li17, Lub90a, MW03, PMM98, Rêm02, Ry91, SWR12, Ste07, Stu88, SW10, Zha94, Ba89, Bie88, DP17. Sometimes [DRW98].

Somewhat [KOS16]. SONET [CFG+09].

Sorting [AKKS89, AA88, AU91, BP98, BNN90, BFR12, Cap99, CDP94, CI01, dAHFdFK10].

Sós [HKP+17a, HKP+17b, HKP+17c, HKP+17d, Roz19].

Sourcewise [CE06].

Sorting [AKKS89, AA88, AU91, BP98, BNN90, BFR12, Cap99, CDP94, CI01, dAHFdFK10].

Sós [HKP+17a, HKP+17b, HKP+17c, HKP+17d, Roz19].

Space [ABC17, AP92, BDM02, BK12, DHL14, FKK+19, GMTW19, KW17, MNPR17, Owe11, Pol19, Siz01, Web08, Woe93, Car88, IS93].

Spaced [Lag00, LSO03].

Spacefilling [GS94a].

Spaces [BS09, BL17a, BDG+17, BGL03, BP17, BN05, CLVZ96, DGN+20, FGLS18, GK13b, GL10, GL15, Har11, IK09, KM94, LSTY17, Öv04, Rêm02, SBD+19, Sol12, Spe08, Vin11, Vse05].

Spacial [Hor19].

Span [CtJL01, Sza06].

Spanners [BGJ+12, BCE05, CC95, ENS15, HPS06, KV15, KLM+03, LS95a, SE14, DYL06].

Spanning [AAFL06, Ald90, AFG+09, BJHY03, Bon08, BZ11, BDEK06, BL17b, CWY00, CGM+15, Cha19, CEOT15, CEOT17, CS19, CSS01, CFG+15a, CP10a, DL19, DM11, Gab04, Gab05b, Gao13, GL95, GPS19, Gu18, HV17, HT18b, KKK17, KV91, Kri10, KKS17, LLL17, Lu10, Oze13, RSM+96, BFM94, BBM90, Cho94b].

Sparse [AM11, ADL13, BCE05, BK17, CC010, CM16, CE06, Cre04, DMS12, DŠT08, EKM+19, FO08, FS01, FHL13b, Gao13, GK13a, GM13, Gu18, Hen18, HKP+17a, JT11, JLR+17, Joo15, JW18, KKK17, KMRR19, KLR18, KSK12a, Kri18, KM11, KZ18, LSSY10, MP17a, Pra13, SY11, BG91, GPS88].

Sparification [BZ20, FK17, GHP20].

Sparifiers [KR20].

Spectral [KLM14, Sot15].

Spectrum [BPS07, CGL10, Lec17, Sca05, GM94].

Speed [MV18].

Sperner [AFP+18, EFK05].

Sperner- [AFP+18].

Sphere [AMB11, BC94, BCKP19, EIH18, Vin11, Zhe16, BS95b].

Spheres [LN17, Lut04, NSIT18].

Spherical [BV10, Bmk16, FRW12, Kra18b, Pol19, Yu17].

Spider [ABS13, Pip06].

Spider-Web [Pip06].

Spikes [BCC+19].

Spin [Mar20].

Spine [EM99].

Spirality [DGL10].

Spirals [Wen97].

Split [AGH14, BL04, CdMR12, HL11, HL00, LC04, Tim08, AFK12, KM88, Spi89].

Split-Perfect [BL04].

Splits [BB17, LSG11].

Splitter [GZ06].

Splitting [GM05, Goe01, GL15, Joo13, Myu01, BJV92].

Spotting [KKK17].

Spread [CFH16, JM17].

Spreading [ACMW17, FL10].

Spreads [CMP15].

Springer [CFJ11].

Square [BHM05, KM19a, LS95b, MT08, ST17b, FH94].

Square-3PC [MT08].

Square-Free [KM19a].

Squaregraphs [BCE10].

Squares [DŠT08, GS94a, JSO12, KT16, WLD09].

Stabbing [KS06, Tót08].

Stability [AG06, CW96, CG17, dOCHLO19, DT16, EFMW18, DK16].

Stabilization [CM05a].

Stable [CDHZ12, Cdv02, CL11, Che16, EMM14, EFK14, GS03, HSZ13, HW10, HW17a, JK99, Kam19, NH91, PVS08, Pts89, BM94b].

Stack [HP97].

Stacks [HLR92].

Stage [Kar92, CH06a, DH90].

Stalls [COHH17].

Stanley [Bón09, CR16, CS18a].

Star [iKM10, LLZ99].

Stars [GRS11, Hua14, TT07].

Start [vWW94].

Start-Up [vWW94].

Starting [Dan09].

State [BN01, BS15b, CL15b, LGS11].

Stationary [MP13].

Statistical [AA11, BHM00, DM03].

Statistics [Bón09, CWY10, IZK08, MSK93, Sch04].

Steinberg [HY13].

Steiner [AFG+16, BM97, BAH10, BH15, BCHW17,.
CKP13a, CGN06a, CK14, CKN13, DM18a, DOS94, JR19, ES11, EH91, FKL+19, Für91, GMZ09, GMW96, GNS11, Hor14, IW91, JZ05, JLR+17, NO09, PC97, Ri99, RZ05, RTW97, VZ93, Wen97.

Step [CK14, LPS09]. Stirling [Bon09, FP99, KLMR03, RM97]. Stock [DW10, DW11]. Storage [BYKKR18, DM18a, LNO96]. Story [LPS18]. Strahler [Yam20]. Straight [KFHR94, Sch91b]. Straight-Line [KFHR94, Sch91b]. Strategic [Nas14]. Strategies [Fei10]. Strategy [BKR10]. streaming [ELMS11]. Street [CDF08, RX88]. Strength [Gal18, HKR00, KKP11, MP14, Nie00, NS11, o09]. Strengthening [CKPS13]. Stretch [CCH14, KV15]. Strict [GL14, HW17a, FK97]. Strictly [CHZ04]. String [ADM+15, RT98]. Strings [Ci01, Gal96, HvJK+07, MR04a, MR04b, PRS98, RSW12]. Stripping [Gao18]. Strong [AH16, AM06b, BP10, BGRR18, BP17, BS10b, Cal13, DE93, DK14, FKS05b, GL95, HY10, JPY10, PSS09, Sch02b]. Strong-Baxter [BGRR18]. Stronger [LRTW11]. Strongly [BJHY03, CDV10, CGMV19, DN16, FLM+95, IMS05, LLL17, MTR14, Mom13, TW19, ZSW11, RX88]. Structural [SW01]. Structure [BL19a, CER98, CP16b, CMvZW16, COS10, DE93, DEW17, DL17, DL18c, DL18b, EW19, GM05, GT13, HKP+17b, HKP+17c, HR05a, IM96, KNK93, KM01, MM11, Nas14, Rem02, SB10, Wan08, BBM90, BB97, Ram97a]. Structured [FGT18, DL89b]. Structures [BDT17, BG11, Che93, CF16, Dan01, FLS10, GLY07, HIKT99, HMS93, LT11, STT92, Špa07, SWKP10, Tam88]. Study [BDF+18, DFK+11, FYK00, MK09, ACS97]. Subclass [CK08a]. Subclasses [CS18c]. Subcodes [BG017, LWW10]. Subcolorings [FJLS03]. Subcritical [DFK+11]. Subcubes [OF08]. Subcubic [DST08, JRS14, KMM12, Liu14]. Subdeterminants [GWZ18]. Subdigraphs [BHY03]. Subdivided [BGM08, JS12]. Subdivision [LI05, LZ18b]. Subdivisions [Ath14, Jan20, JQ20, Mur10, Tót08, WW18]. Subexponential [BFPP15]. Subfamilies [BFK+12, CK08b]. Subfamily [EJK+09]. Subfield [NvZ15]. Subgraph [AA05, AM11, BL17b, CEOT15, CEOT17, CSS01, Cho92a, Cho92b, CM07, DJKO19, Dj06, Gab04, Gab05b, Gu18, GRS12, SS11a, Zha93, BM97, Ch94b]. Subgraphs [AFK12, AKS08, AGH11, AFS12, AS07, AB07, BB16, BMM20, CCOY17, CDM00, CDM04, CS19, CMvZW16, COS10, DE93, DEW17, DL17, DL18c, DL18b, EW19, GM05, GT13, HKP+17b, HKP+17c, HR05a, IM96, KNK93, KM01, MM11, Nas14, Rem02, SB10, Wan08, BBM90, BB97, Ram97a]. Subgroup [Hau10]. Subgroups [Shp13]. Subhypergraph [CDK+18]. Subhypergraphs [Nag10]. Sublinear [CHZ18, DN16, ERS19, GRS11, RS11]. Sublinear-Time [GRS11]. Submatrices [LM16]. Submodular [BW09, FT14, GS13, HI16, IMS05, KSF19, LMNS10, SS13, Yos19]. Submodularity [CGV+14, NYK20]. Subpattern [AR08]. Subposets [Sh09]. Subquartic [New20]. Subsequence [BH20, CP96]. Subsequences [BM14]. Subset [CKN+15, CPP13, ENS20, PW13, SS00, DM88]. Subset-Restricted [SS00]. Subsets [AAH14, BGM15, BP20a, BGM15, CFG+15b, CHHM09, D008, Før91, GJ12, HW96, HIKT99, LPS18, PRS03, PP10, Sza06, Zha90, Hau94]. Subspace [WZ08]. Substar [CNRS15]. Substring [ADM+15]. Subtour [GW19]. Subtournaments [Kim17]. Subtree [BHL+15, FMP08, MS19]. Subtrees [KW08b]. Succeed [Ste00].
SL96, HY89, Spi89, YH88]. Tests [MPS+09]. Tetrahedra [SvM08]. Their [BL19a, HY15, JMW17, KK14b, MK01, MMJF03, LW88a, LWW10]. Theorem [AFG+16, AOW15, BL09, BS90, Buk12, BR19, CHZ18, CuKŠ07, DK16, DSS92, DL12, DMN12, DS06, EW19, Fed06, FKS05a, FTY14, GZ06, GT13, HMLT19, Koc98, KS03c, KOT09, LGS11, Lo14, MMS17, MWvZ11, MS14, MW20, OSW16, Ram90, Yam20, Fu97, He97, RW89, WW01, AKW05, AKS07, BYHR10, BV10, BC11, KLP12]. Theorems [BEL09, CCG+00, DFJS15, DEE17, FHH08, FR06, FT05b, IK09, MSD19, SS08, Suk13]. Theoretic [BCS04, KM05a]. Theoretical [Wag07]. Theory [ASMF10, BLS17, BJ91, DHT06, FL92, GRR15, Gad18, GR17, KSV05, KPT94, KKL19, MP95, PT90, ST10]. Theorem [AFG+16, AOW15, BL09, BS90, Buk12, BR19, CHZ18, CuKŠ07, DK16, DSS92, DL12, DMN12, DS06, EW19, Fed06, FKS05a, FTY14, GZ06, GT13, HMLT19, Koc98, KS03c, KOT09, LGS11, Lo14, MMS17, MWvZ11, MS14, MW20, OSW16, Ram90, Yam20, Fu97, He97, RW89, WW01, AKW05, AKS07, BYHR10, BV10, BC11, KLP12]. Theorems [BEL09, CCG+00, DFJS15, DEE17, FHH08, FR06, FT05b, IK09, MSD19, SS08, Suk13]. Theoretic [BCS04, KM05a]. Theoretical [Wag07]. Theory [ASMF10, BLS17, BJ91, DHT06, FL92, GRR15, Gad18, GR17, KSV05, KPT94, KKL19, MP95, PT90, ST10]. Theorem [AFG+16, AOW15, BL09, BS90, Buk12, BR19, CHZ18, CuKŠ07, DK16, DSS92, DL12, DMN12, DS06, EW19, Fed06, FKS05a, FTY14, GZ06, GT13, HMLT19, Koc98, KS03c, KOT09, LGS11, Lo14, MMS17, MWvZ11, MS14, MW20, OSW16, Ram90, Yam20, Fu97, He97, RW89, WW01, AKW05, AKS07, BYHR10, BV10, BC11, KLP12].
[HN15, HK14, KPPW15, Sli10, TZ15].

Tractable
[ADKS18, BCDF19, CPPW13, LSSZ19].

Trade
[AP92, CGP98]. Trade-Off [AP92].

Transfer
[CL15b]. Transference [MSD19].

Transform
[DV04, Kim91, Sca05, Con89, Fil89].

Transformations
[MK01]. Transforming [CGH+10].

Transmission
[AR17, FKPR05, KPR10]. Transport [DSS12]. Transportation [BFH15, KP00].

Transposition
[AC90]. Transient [Cha19].

Transients
[JA16]. Transition [KKP15, RSV+14, VVY15]. Transitions [CMR18, Ch13, CH17, CFFKK17, DH05].

Transitive
[BGJ+12]. GL14, HLST00, Iri16, Mac91, Zho09, BJHY03].

Transitive-Closure
[BGJ+12].

Transitivity
[HT90].

Transshipment
[AC90]. Transient [Cha19].

Tree
[AFG+16, Adl08, BP13, Ban90, BDF+18, BFR17, BS15b, BDLR01, CC95, CKP13b, CP10a, Dah93, DHS14, DM11, DJM+18a, DJM+18b, Erd17, FZ15, FS05, FKL+19, FJK+19, GMRT11, GLS16, GL95, GLY07, HW16, HMS05, HKS07, JLR+17, KT13, KL19a, KLM+03, Let19, LTY17, LNNW95, LR04, Luc03, LR91, MRV17, MS19, MdCW16, Owe11, RZ05, San96, Sca05, Ste00, VZ93, Wan02a, Yam20, Alt89, DYL06, DL89b, HS97, IW91, Tod89]. Tree- [LR04]. Tree-Decomposition [Erd17].

Tree-length
[BFGR17]. Tree-Matchings [LR91]. Tree-Related [Adl08].

tree-structured
[DL89b]. Tree-Width
[HW16, Luc03, San96]. Treedepth
[GJW16]. Tree-length
[CDN16]. Trees
[AT90, AAFL06, Ald90, ART14, AFG+09, ASY14, ANS16, ABRO5, AL05, AH11, ANP14, BS95a, BL17a, BPSS19, Bev09, BM11, BVW11, BCLR95, BKKZ17, BDT17, Bon08, BZ11, BMV92, Cai93, CWY00, CHP+09, CKP13a, Cha01, CGM+15, CDWZ17, CKK+04, CK14, CFG+15a, Con05, CL15b, CL15c, CSW17, DL19, DZ09b, DH05, DM15, ES11, EJ01, FM08, FT05a, FKT99, FL15, Gi99, GSK91, HSZ13, Han09, HH17, HKW15, HT18b, HSMW14, I114, KL19a, KZ04, KW08b, KM95, KW91, KM13c, KW96, Kri10, KKS17, LLL17, Lu10, LM11, Luc98, McD15, Mós16a, Mol11, NO09, Oxz13, Pip01, PSW96, Rah16, RSM+96, RSV+14, VWY09, Vyg16, XGG15, Zm02, Zha99, dJMS16, vKL+16, BCLR89, GMW96, PC97, RTW97, Sag88, Ste88, TP97, Wen97].

Treewidth
[BM93, BKK95, BJK13, CCVZ10, CDN16, DFH04, TP17b, SSR94, Ram97a].

Trellis
[BT96, Kas08].

Triadic
[PS16].

Triangle
[AKRR08, AB95, Bar01, Bra05, CCG05, DPRS10, Dro16, DH20a, DL10, DL17, DM17, DL18c, DL18b, FL96, GKL99, Har19, HT93, IKM99, JS14, KS08c, Liu14, Mer15, PT94, BH97].

Triangle-Free
[DS10, DL10, DM17, DL18c, DL18b, FL06, GKL99, HT93, IKM99, KS08c, Liu14, PT94, BH97].

Triangle-Freeness
[AKRR08].

Triangles
[CDM+14, CFS20, DL18b, Lai18, Pin08, WL02, Yus09].

Triangular
[DV96, JKM17, KS08b].

Triangularization
[T93].

Triangulated
[CG17, ELR98, GHV06].

Triangulations
[BBK+16, CFM+09, CEOT15, CEOT17, CGH+10, HTV05, iKMN09, Mes16b, MRST16, NNO15, NNO19, SS18b, WWKY11, Zhe16]. Trick [Zha11]. Tries [RJS93]. Trilinear [Mac18]. Trinomials [Din13, DQW+15, WZZ18]. Tripartite [iKSZ04]. Triple [BKKM99, BH15, BCHW17, JR19, GJ16, Gyåh9, Hor14, Nag17, Rìf99, COS97]. Triple-Free [BKKM99, COS97]. Triples [AHP19, FS01, Hor14]. Trisection [RT18]. Tropical [BK19, BK12, Juk16, LY18a, Sha13, Spe08, ST10]. Tropicalizing [ABGJ15]. Trotter [BYHR10]. True [CR19]. Truncations [iT12]. Trunk [FJK+19]. Tsetlin [LMS19]. TSP [BIT13, CLS15, DL18a, LS03a, New20]. Tucker [LM16]. Tunnel [ABCG17]. tuple [Kap14b]. Turán [AKS07, BBBZ12, BLS17, BK14, Dow88, GH13, Gyåh9, JS12, JQ20, KKL19, KV15, LM14, LZ18a, LZ09, Nor11, PT14, Sid18]. Turbo [GF08]. Turing [JMS90]. Tutte [GnN06, LW17b, PSS09]. Tutte-Type [LW17b]. Twenty [RKDD13]. Twins [GKM12]. Twist [KS04]. Two [ARTV12, ATPRU91, ALi10, ABZ15, ADL+09, BLS17, BPS07, BC09a, BMS12, BP15, BC+10, BG+17, BGR18, CDV10, CF17, CMSM+18, DOCHL09, CHK17, CLST12, DFJS15, DJW12, DTW03, DSO5b, DLS11, DL17, DL18b, EA11, EFK05, FM11, FK17, FQ94, FIN98, GK07, GMS00, GM03, GW00, Go96, HJ18, HKL11, HV17, HK16b, HMP04, Kas03, KLI19a, KOS16, KM+09, KLI14, Kla06, Knu95, Lei94, LW03, LZ05a, Lla06, LSL2, LdCKM18, MN18, MP08, PZ05, PY09, RTS00, RR18, Red17, RS16, Ryu07, Sak94, Smi01, St00, SV18, WL03, Web08, Yu17, Zak14, ZLWC12, Zum11, CH98, CHW88, DL89b, Exo89, HKKK88, KP06, KLW89, Ko88, Zhao88]. Two-Batch [DS05b]. Two-Chain [LSL92]. Two-Color [DFJS15]. Two-Colored [MP08]. Two-Coloring [KM+09]. Two-Connected [HV17]. Two-Dimensional [AC10, ABZ15, BP15, FM11, GW00, Zum11]. Two-Directional [ATPRU91]. Two-Distance [Yu17]. two-factors [HKK88]. Two-Generator [EA11]. Two-Layer [Lei94]. Two-Part [EFK05]. Two-Party [KOS16]. Two-Period [BCG+10]. two-person [KLW89]. Two-Player [BMS12]. Two-Set [Rya07]. Two-Sided [CHK17]. Two-Variable [FK17]. Two-Way [KMu95]. Type [BD01, CM05a, CIN18, CI18, EK10, FHH08, FS09a, HMM09, KR13, LW17b, MK09, Spa07, TMK19, YZ17, AFP+18, KOT09, Lin89, RW89, SG16]. types [BRK89]. Typical [BL19a, FKK05, FK07].

X [DG06]. X-rays [DG06].

Yeh [HRS12]. Yeo [Lic14]. Yields [GVW06]. Yong [FGS19]. Young [DZ09b, PV10a].

References

REFERENCES

Abrego:2018:BD

Alon:2014:MNN

Abay-Asmerom:2010:DPF

Alon:2009:CRG

Alon:1994:ECD

Andreae:1995:PGA

Annexstein:2000:DRG

Albers:2005:DTA

Axenovich:2007:GHS

Anastos:2018:PDH

Adiga:2011:BPD

Alon:2015:SDB

Ardila:2017:CSR

Abello:1991:WBO

Afek:2014:MC

Allamigeon:2015:TSA

Ardila:2011:RPG

Ahmady:2014:ICG

Alstrup:2005:LSS

Algaba:2010:VGR

REFERENCES

1010, ???? 2010. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Abueida:2013:HSI

Anstee:2011:PMG

Ardila:2014:MRE

Alekseyev:2015:MTS

Adler:1990:APD

Adiga:2014:RCG

Arvind:2008:CDN

Averkov:2013:CAH

Alon:1994:RPG

Alon:2020:MCH

Agarwal:2019:EGB

Arias:2006:CRN

Marta Arias, Lenore J. Cowen, Kofi A. Laing, Rajmohan Rajaraman, and Orjeta Taka.

Alon:2001:EBB

Adamaszek:2018:ASC

Amdeberhan:2011:BBM

Acan:2017:PPR

Avart:2007:EMG

Andrews:1997:SAS

Aleksandrov:1996:LAP

Agnarsson:2011:NMN

Alon:2013:BNC

Ashok:2018:EFP

Adler:2008:TRW

Alverson:2009:DLD

L. Wyatt Alverson II, Robert G. Donnelly, Scott J. Lewis,
REFERENCES

Marti McClard, Robert Per-
vine, Robert A. Proctor, and
N. J. Wildberger. Distributive
lattices defined for representa-
tions of rank two semisimple
Lie algebras. *SIAM Journal
on Discrete Mathematics*, 23
(1):527–559, ????. 2009. CO-
DEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (elec-
tronic).

Hamed Amini, Moez Draief,
and Marc Lelarge. Flood-
ing in weighted sparse ran-
gom graphs. *SIAM Journal
on Discrete Mathematics*, 27
(1):1–26, ????. 2013. CO-
DEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (elec-
tronic).

Jayadev Acharya, Hirakendu
Das, Olgica Milenkovic, Alon
Orlitsky, and Shengjun Pan.
String reconstruction from
substring compositions. *SIAM
Journal on Discrete Mathe-
matics*, 29(3):1340–1371, ????. 2015. CO-
DEN SJDMEC. ISSN 0895-4801 (print), 1095-
7146 (electronic).

Noga Alon, Seannie Dar,
Michal Parnas, and Dana Ron.
Testing of clustering. *SIAM
Journal on Discrete Mathe-
matics*, 16(3):393–417, 2003. CO-
DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

M. Cemil Azizouglu and
Ömer Eugeciouglu. Extremal
sets minimizing dimension-
normalized boundary in Ham-
mimg graphs. *SIAM Journal
on Discrete Mathematics*, 17(2):219–236, 2003. CO-
DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic). URL http://

Yossi Azar and Leah Epstein.
On-line load balancing of tem-
porary tasks on identical ma-
chines. *SIAM Journal on Dis-
crete Mathematics*, 18(2):347-
352, 2004. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-
7146 (electronic). URL http:

Noga Alon, Yuval Emek,
Michal Feldman, and Moshe
Tennenholtz. Adversarial
leakage in games. *SIAM Jour-
nal on Discrete Mathematics*,
27(1):363–385, ???? 2013. CO-
DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).
REFERENCES

Amini:2011:SWQ

Alcon:2014:PSG

Albertson:1996:BFR

Agnarsson:2003:CPP

Alkon:2011:RWG

Aksoy:2016:GMS

Armbruster:2008:GBC

Aichholzer:2010:LBP

Amini:2009:PWP

Aigner-Horev:2019:MST

Ageev:2001:AAM

Akhtar:2008:ADE

Alon:2002:TC

Abraham:2010:VP

David J. Abraham and Telikepalli Kavitha. Voting
Aharoni:2014:WVR

Alon:2008:TTF

Ajtai:1989:SA

Alon:2007:TTH

Alon:2008:LNR

Alstrup:2019:ALS

Albertson:2005:PEB
Aharoni:2017:RLM

Althöfer:1995:CBF

Alon:2007:GPD

Archer:2017:APS

Aldous:1990:RW

Alekseyev:2010:NTD

Agrawal:2018:KCP

Alon:2006:RT

REFERENCES

Christos A. Athanasiadis and Victor Reiner. Noncrossing partitions for the group
REFERENCES

D. P. D. S. Ahal: 2008: CSP

Ahal: 2008: CSP

Alon: 2017: BTP

Alonso: 1995: MDC

Aracena: 2017: NFP

Allman: 2014: SDG

Aboulker: 2012: GDC

Adams: 1997: CNB

[ÁS09c] Eyjólfur Ingi Ásgeirsson and Cliff Stein. Divide-and-conquer approximation algo-

[ATPRU91] Fawzi Al-Thukair, Andrzej Pelc, Ivan Rival, and Jorge Urrutia. Motion planning, two-directional point representa-

Assaf:1991:FTS

Averkov:2012:SLS

Averkov:2013:MFS

Ageev:2004:ICA

Babai:1992:BRI

Bach:2009:IAF

Ben-Ameur:2003:IRR

Ben-Ameur:2010:DSN

Baldi:1988:NNN

Balas:1989:AAP

Balbuena:2008:IMP

Ben-Ari:2016:PAG

Bandelt:1990:RTM

Barnes:1995:IPM

Barequet:2001:LBH
REFERENCES

Mourad Bâlou and Francisco Barahona. Maximum weighted induced bi-

Bafna:1999:AAU

Beveridge:2009:MRA

Balister:2013:RDR

Balister:2016:RHI

Bienstock:1990:SMW

Bafna:1999:AAU

Beveridge:2009:MRA

Balister:2013:RDR

Balister:2016:RHI

Bienstock:1990:SMW

REFERENCES

Bondy:2009:LPC

Bracken:2009:FSB

Birkendorf:2000:LDF

Balvociute:2017:WCS

Bonamy:2016:EHC

Bollobas:1988:DCP

Brown:1988:SSP

Brown:1992:RRP

REFERENCES

|----------------|-----------------|

|-----------------|----------------|

|---------------------|------------------|

<table>
<thead>
<tr>
<th>Basu:2010:MII</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Brandstadt:1997:CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andreas Brandstädt, Victor D. Chepoi, and Fedor F. Dragan. Clique r-domination and clique r-packing problems on dually chordal graphs.</td>
</tr>
</tbody>
</table>
REFERENCES

Barbosa:2012:CNC

Bezakova:2019:FDF

Bergeron:2008:CCI

Boros:2000:BNF

Barg:2001:HAI

Bollobás:2005:SDP
REFERENCES

Banding:2010:CGF

Brightwell:2010:PCF

Bodirsky:2012:CM

Bermond:2010:DCW

REFERENCES

REFERENCES

REFERENCES

Berman:2002:ESB

Basu:2019:NLI

Bessy:2018:GHN

Black:2017:VPT

Bouman:2013:EMR

Buzaglo:2013:TCP

Benko:2009:ABI

REFERENCES

REFERENCES

Battista:2012:NRP

Bermond:2008:NBH

Bliznets:2015:SPA

Bienstock:1991:EPS
REFERENCES

Blanca:2011:UCN

Brieden:2012:OWB

Bukh:2019:SFP

Bacso:2004:CMC

Blanca:2020:SUP

Bhangale:2017:BCC

Bhattacharyya:2012:LBL
REFERENCES

Brent:2003:RKS

Berry:2007:RCP

Blake:1994:NSD

Beaudou:2008:IES

Bartal:2015:IDR

Belfiore:2017:QCS

Bouvel:2018:SBS

REFERENCES

Bierbrauer:1996:OAR

Bernath:2017:PCC

Balbuena:2007:MOE

Boyd:1993:IPR

Bertram:1997:DRG

Brueni:2005:PPP

Boyd:2013:MCM

REFERENCES

Brijder:2013:NLC

Bryant:2015:STS

Berg:2016:LPI

Bukh:2020:LLC

Ben-Haim:2005:OCL

Boros:1994:PCE

Bhattacharya:1996:LAM

Bruhn:2018:FPE
Henning Bruhn, Matthias Heinlein, and Felix Joos.

Butler:2008:GG

Ben-Haim:2005:EMD

Bernstein:2015:BES

Bermond:1992:BBD

Balogh:2008:FFC

Brankovic:2000:OPS

Benedetti:2016:CHA

[BHM16] Carolina Benedetti, Joshua Hallam, and John Machacek. Combinatorial Hopf algebras

REFERENCES

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

[BJFJ95] Jørgen Bang-Jensen, András Frank, and Bill Jackson. Preserving and increasing local edge-connectivity in mixed
Bang-Jensen:1999:ECA

Bang-Jensen:1988:CCS

Bang-Jensen:2000:CRC

Bang-Jensen:2003:SCS

Bang-Jensen:1998:ECA

Bodlaender:2013:PTC

Bodlaender:2014:KLB

[BJK14] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan
REFERENCES

Babilon:2007:LGF

Bang-Jensen:1992:PAP

Beutelspacher:1992:PSS

Berman:1990:RPC

Blake:1991:CWE

Bodirsky:2011:LBL

REFERENCES

REFERENCES

[BS09] A. Berry, R. Krueger, and G. Simonet. Maximal label

Benjamin Bond and Lionel Levine. Abelian networks I. Foundations and examples.
REFERENCES

Bernstein:2017:IOL

Boyd:2017:TBM

Balogh:2019:TSG

Basit:2019:ISP

Blackburn:2003:FC

Bousquet:2015:ICH

Brandstadt:2010:ISM

Berstein:2008:NMO

Bartal:2000:MSR

Bloznelis:2010:CEG

Bondy:2016:COR

Bondy:2017:ECO

Balogh:2017:TPR

Balogh:2019:CHC

Bodlaender:1993:PTC

Barahona:1994:CGPa

Barahona:1994:CGPb

Barahona:1994:CGPc

Barbiero:2000:WHH

Barany:2007:QMC

Balogh:2009:AEG

Bhatnagar:2011:CMB

Brightwell:2013:DPL

Bukh:2014:LCS

Bshoury:2015:PCM

Brandstät:2016:WED

Bai:2019:NVD

Bhattacharya:2020:SMP

Brewster:2013:FMD

REFERENCES

[BN01] T. Blackmore and G. H. Norton. Determining when the absolute state complexity of a Hermitian code achieves its DLP bound. *SIAM*
REFERENCES

Brown:2005:WCV

Bar-Noy:1992:LTA

Bar-Noy:1990:SMF

Brown:1996:UCI

Bar-Noy:2017:MBC

Bouyukliev:2005:CSO

Bolger:1990:CEB

Bonuccelli:1991:PTO

Bonsma:2008:STM

Bona:2009:RZN

Bonin:2010:CIS

Bonamy:2015:PGE

Babai:1994:ESD

Borg:2010:CIF

Brightwell:2001:RRC

REFERENCES

REFERENCES

REFERENCES

Barik:2007:SCT

Boczko:2018:SMT

Besomi:2019:DCE

Borie:1991:DDR

Barany:2010:PNS

Ball:2013:RBM

Burstein:2017:SCG

Byrne:2017:CRM
Eimear Byrne and Alberto Ravagnani. Covering radius of matrix codes endowed with...

REFERENCES

Bruck:1990:HAP

Bertolazzi:1988:CPS

Bshouty:1990:GNB

Brickell:1991:DCT

Brightwell:1993:RPG

Bandelt:1995:SMR

Bokowski:1995:ASR

Bartal:2009:UIS

József Balogh and Wojciech Samotij. Almost all C_4-free graphs have fewer than $(1 - \varepsilon) \text{ex}(n, C_4)$ edges. *SIAM Journal on Discrete Mathematics*, 24(3):1011–1018, 2010. CODEN SDMEJC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Baber:2014:SC

Bisson:2018:CPR

Behrisch:2009:CRI

Beimel:2008:CIW

Bukh:2012:MKK

Bukh:2016:BEL

Bondarenko:2010:SDB

Boys:2016:NOC

REFERENCES

Barbe:2003:SCR

Bhatnagar:2011:RCT

Barnes:1988:NHP

Bjorner:1999:CDG

Borodin:2002:CCP

Brightwell:2009:SP

Bruhn:2008:HCP

Henning Bruhn and Xingxing Yu. Hamilton cycles in planar locally finite graphs. *SIAM
REFERENCES

Bar-Yehuda:2005:EBP

Barg:2004:EEE

Bonsma:2011:AAF

REFERENCES

REFERENCES

Chu:2005:RCR

Chandrasekaran:2011:CIS

Chandrasekaran:2018:LTL

Cabello:2014:CSE

Chee:2013:SCA

Cohen:2017:BVC

Conforti:2006:OHR

REFERENCES

REFERENCES

Chen:2012:TDI

Czygrinow:2011:NBG

Coudert:2014:RFH

Conforti:2016:MFC

Coudert:2018:RDC

Conforti:2015:RCG

[CDD+15] Michele Conforti, Alberto Del Pia, Marco Di Summa,

[Faenza15]

Comellas:2008:MMS

[Comellas08]

Cooper:2018:DVP

[Cooper18]

Carmesin:2014:BCI

[Carmesin14]

Corneil:2016:PGS

[Corneil16]

Chen:2012:MWS

[Chen12]

Czygrinow:2010:FBG

Andrzej Czygrinow, Louis DeBiasio, and H. A. Kierstead. 2-factors of bipartite graphs.

Chlamtac:2018:DSP

Cera:2000:SGT

Cera:2004:EGT

Chapuy:2014:PTW

Chun:2016:UCM

Charbit:2012:LTS

Coudert:2016:ATU

David Coudert, Guillaume Ducoffe, and Nicolas Nisse. To approximate treewidth, use treelength! *SIAM Journal on Discrete Mathematics*, 30(3):
REFERENCES

Chlebus:1994:SMC

Calinescu:2008:RGG

Cassaigne:2016:NBS

Cheng:2002:FIA

Chakrabarty:2010:RSP

Cabello:2011:FCT

Conforti:2007:MSF
Chang:2017:TWC

Coppersmith:2006:SSP

Cameron:2008:CLP

Cooper:2013:CRW

Chen:2015:PTS

Chen:2017:PTS

Chekuri:2018:CCR
Caro:1998:LSW

Calkin:1997:NRB

Cooper:2005:CTR

Chebolu:2008:HCR

Como:2009:ASM

Cooper:2010:RWL

Cooper:2016:VSV

Chen:2017:PEI

765, ???? 2017. CODEN SJD-MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

[CFG88]

Colbourn:2009:MSA

Clemens:2015:BST

Conlon:2015:DVS

Chung:1988:FCN

Chen:2006:CEH

Colbourn:2016:DSS

Chen:2011:LBP

REFERENCES

REFERENCES

[CG02] Gérard Cornuéjols and Bertrand Guenin. Ideal binary clutters, connectivity, and a conjecture of Seymour. *SIAM*
References

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Chung:1994:ECD

Chee:2019:DEC

Chee:2010:SSP

Chan:2015:SST

Conte:2019:LMS

Chekuri:2006:SKC

Chekuri:2006:EKQ
REFERENCES

Czumaj:1998:TCT

Ciolan:2016:CNS

Chudnovsky:2020:OTC

Chakrabarty:2014:SHN

Camerini:1989:ITM

Chen:2001:AMC

Chen:2006:MRS

Czygrinow:2006:GPG

Andrzej Czygrinow and Glenn Hurlbert. Girth, pebbling, and

Chandran:2003:HGG

Chang:2016:RSB

Chan:2019:RWT

Chen:1993:ICS

Chen:1994:LTA

Chepoi:1998:DPD

Cheng:2004:IAA

Cheng:2007:CFF

REFERENCEs

140

4801 (print), 1095-7146 (electronic).

Chen:2009:AIS

Ning Chen. On the approx-
imability of influence in social
networks. SIAM Journal on
Discrete Mathematics, 23(3):
1400–1415, ???? 2009. CO-
DEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (elec-
tronic).

Cheng:2016:SMC

Christine T. Cheng. On the
stable matchings that can be
reached when the agents go
marching in one by one. SIAM
Journal on Discrete Mathemat-
ics, 30(4):2047–2063, ????
2016. CODEN SJDMEC.
ISSN 0895-4801 (print), 1095-
7146 (electronic).

Chen:2017:CDI

Beifang Chen. Conformal de-
composition of integral ten-
sions and potentials of signed
graphs. SIAM Journal on Dis-
crete Mathematics, 31(4):
2457–2478, ???? 2017. CO-
DEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (elec-
tronic).

Curtis:2009:NUC

Dawn Curtis, Taylor Hines,
Glenn Hurlbert, and Tatiana
Moyer. Near-universal cycles
for subsets exist. SIAM Jour-
nal on Discrete Mathematics,
CODEN SJDMEC. ISSN

Chimani:2011:FCN

Markus Chimani. Facets in
the crossing number polytope.
SIAM Journal on Discrete
Mathematics, 25(1): 95–111,
???? 2011. CODEN SJDMEC.
ISSN 0895-4801 (print), 1095-7146 (elec-
siam.org/sidma/resource/
1/sjdmec/v25/i1/p95_s1.

Chang:2004:BVN

Yi-Wu Chang, Joan P.
Hutchinson, Michael S. Ja-
cobson, Jeno Lehel, and Dou-
glas B. West. The bar visibil-
ity number of a graph. SIAM
Journal on Discrete Mathe-
CODEN SJDMEC. ISSN
0895-4801 (print), 1095-7146
(electronic). URL http://
/epubs.siam.org/sam-bin/
dbq/article/34345.

Choi:2010:DCN

Jeong Ok Choi, Stephen G.
Hartke, and Hemanshu Kaul.
Distinguishing chromatic num-
ber of Cartesian products of
graphs. SIAM Journal on Dis-
crete Mathematics, 24(1):82–
100, ???? 2010. CODEN SJDM-
EC. ISSN 0895-4801 (print),
1095-7146 (electronic).

Cseh:2017:PMT

Ágnes Cseh, Chien-Chung
Huang, and Telikepalli Kavitha.

[Cohen:2000:BCI]

[Caceres:2007:MDC]

[Chartrand:1989:MD]

[Cho92a]

[Cho92b]

[Cho94a]

[Cho94b]

Sunil Chopra. The k-edge-connected spanning subgraph polyhedron. *SIAM Journal on Discrete Mathematics*, 7

Cho09

Carter:1990:DLE

Chung:1989:PH

Chang:1988:ODT

Csorba:2010:ANG

Chang:2015:HDS

Chiang:2013:TSS

Chen:2004:ERM

W. R. Chen, F. K. Hwang, and Xuding Zhu. Equivalence of

Charpin:2009:CWE

Chestnut:2018:SBQ

Christie:2001:SSR

Constandinescu:2007:LZC

Cibulka:2013:MSR

Cifre:2018:DBM

Callaghan:2005:BFM

REFERENCES

[Chen:2015:PTD] Jiehua Chen, Christian Komusiewicz, Rolf Niedermeier,

Chee:2015:PCA

Chrobak:1991:NRS

Chambers:2009:EPR

Cremona:1990:SLP

Chan:1991:EHC

Chrobak:1991:NAS

Coppersmith:2005:CBO

REFERENCES

Cranston:2020:CFP

Chavez-Lomeli:2011:BC

Choi:2018:CCO

Cheng:2018:SGM

Canovas:2003:FOP

Chan:2009:EFT

Correa:2015:TTC

Cusack:2012:CPD

Charles A. Cusack, Timothy Lewis, Daniel Simpson, and
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1160–1173, ???? 2017. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Collins:1998:CS

[Col98] Collins:1998:CS

Coja-Oghlan:2010:FPP

Corneil:1997:ATF

[Con89] Constantine:1989:IDR

Constantine:1989:IDR

Conlon:2010:LRN

Conlon:2010:LRN

Corneil:2010:LSR
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Cranston:2017:LCC

Cranston:2017:SFB

Cranston:2019:HZC

Cranston:2019:AEC

Crespi:2004:EFL

Cheng:1989:CSG

Coffman:1991:SPU

Chudnovsky:2018:CSF

Chen:2019:DCS

Cheriyan:2001:IAS

Chen:2013:EFG

Czabarka:2017:IBT

Chung:1993:CCQ

Chang:2001:MSN

REFERENCES

Cano:2014:UBC

Coppersmith:1993:CAR

Cole:2007:GKT

Cheriyan:2007:AAN

Costello:2009:CRD

Cartwright:1992:IGN

Connelly:1996:SOR

Calkin:1998:NIS

REFERENCES

54–60, February 1998. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

[CW09] Daniel W. Cranston and Douglas B. West. Classes of 3-
regular graphs that are (7, 2)-edge-choosable. SIAM Journal
SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

[CWY00] Yair Caro, Douglas B. West, and Raphael Yuster. Con-
nected domination and spanning trees with many leaves.
SIAM Journal on Discrete Mathematics, 13(2):202–211,
2000. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-
7146 (electronic). URL http://epubs.siam.org/sam-bin/
dbq/article/35378.

[CW14a] Rong Chen and Geoff Whittle. Intertwining con-
nectivity in matroids. SIAM Journal on Discrete Mathematics,
28(3):1402–1404, 2014. CODEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (electronic).

[CW14b] Zhixiong Chen and Arne Winterhof. Interpolation of Fer-
mat quotients. SIAM Journal on Discrete Mathematics,
28(1):1–7, 2014. CODEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (electronic).

[CX08] William Y. C. Chen and Deheng Xu. Labeled parti-
tions and the q-derangement numbers. SIAM Journal on Discrete Mathematics, 22(3):
1099–1104, 2008. CODEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (electronic).

[CW16] Tuan-Yow Chien and Shayne Waldron. A characterization
of projective unitary equivalence of finite frames and ap-
lications. SIAM Journal on Discrete Mathematics, 30(2):
976–994, 2016. CODEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (electronic).
REFERENCES

Curran:2003:NCC

Chang:2008:EBD

Chen:2012:PNR

Chiba:2018:DFD

Charpin:1997:CWD

Chen:2005:RVS

Chen:1998:OAP

Silva:2020:NTD
[164]

Ding:2013:CGP

Delucchi:2015:BCL

De:2016:RKI

Donald:1993:SSO

Dosa:2011:POS

Diestel:2017:DTB

Dudek:2019:RVG

Andrzej Dudek, Sean English, and Alan M. Frieze. A random

DeVos:2007:CCP

Deitmar:2015:IZF

Dereniowski:2012:PCP

Dujmovic:2017:SGL

Desmedt:1994:HZK

Doignon:2002:FWO

Dougherty:2004:DDP

REFERENCES

Doerr:2010:HDD
CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Demaine:2004:BPL
CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Diemunsch:2015:ETD
CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Drmota:2011:ASS

Dvork:2008:PFH
Tomáš Dvořák and Petr Gregor. Partitions of faulty hypercubes into paths with pre-

[DGL10]

[DGM12]

[DGN20]

[DGL11]

[DGP06]

[DGNS13]

[DGP06]

[DGS96]
L. L. Doty, R. J. Goldstone, and C. L. Suffel. Cayley graphs with neighbor connectivity one. *SIAM Journal on
REFERENCES

Peter J. Dukes and Daniel Horsley. On the minimum degree required for a triangle decomposition. SIAM Journal on Discrete Mathematics, 34 [DH20a]
REFERENCES

Dvorak:2020:FCP

Dujmovic:2013:LTA

Du:2002:OCC

Dress:2011:BCV

Dolev:2002:NPH

Dorbec:2013:GPD

REFERENCES

Devadoss:2014:PCT

Demaine:2006:BTB

Dor:2001:LBS

Ding:2013:CCS

Dong:2011:ZFI

Djidjev:2006:LTA

[Dj06]

Dujmovic:2018:COT

[DJM+18a]

Dujmovic:2018:OTD

[dJMS16]

deJong:2016:NPT

[DJMS16]

Dzindzalieta:2012:OPI

D. Dzindzalieta, T. Juskevičius, and M. Sileikis. Optimal probability inequalities for random walks related to

[DJS12]

REFERENCES

Drmota:2016:CCC

Dowden:2018:ERG

Dumitrescu:2010:VBP

Du:1989:STS

Du:1989:CSP

Ding:2012:CTC

Dvorak:2014:CGS

Dvorak:2017:FSC

REFERENCES

REFERENCES

[Dv:2011:GTC] Zdenek Dvorák and Matthias Mnich. Large independent

Dau:2018:MSS

Durocher:2018:RGT

Dyer:2019:CPM

Dorbec:2008:PDP

Draisma:2012:LWD

Dorn:2013:EAE

deWerra:1993:ECS

January 1993. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Diks:1992:ASG

Diks:1996:EGP

Dosen:2015:PCG

Dudek:2016:ATR
REFERENCES

Deuineko:1998:STE

DeWerra:1991:CCC

Drmota:1997:IPR

Daniel:2005:CGS

Dumitriu:2005:TBL

Dvorak:2006:TAC

Dvorak:2009:CNG

Dutta:2016:IBI

REFERENCES

CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

References

1029–1039, ???? 2018. CODEN SJDEMC. ISSN 0895-4801 (print), 1095-7146 (electronic).

2009. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Eliahou:2011:TGN

Erdős:2005:TPS

Erdős:2014:SSS

Espig:2018:ECP

REFERENCES

 REFERENCES

Edelman:2013:SCO

Etzion:1991:TLS

Ev en:2013:LOG

Enomoto:2001:CCN

Esfandiari:2017:PS

Erman:2011:CGC

Ehrenborg:2016:CCP

Richard Ehrenborg. Cyclically consecutive permutation avoidance. SIAM Journal on Discrete Mathematics, 30(3):1385–1390, 2016. CODEN SJDMEC. ISSN 0895-
REFERENCES

Elkies:2010:CTI

Edwards:2013:BFC

Edwards:2015:RHC

Elbassioni:2009:ADP

Elizalde:2009:NPR

Epstein:2011:IAG

REFERENCES

Emek:2010:TUB

Epstein:2006:OPC

Erde:2017:RTD

Erde:2020:DPD

Eriksson:1996:CFG

Eden:2019:STE

Espona:1998:CDB

Elkin:2011:NSL

Enright:2014:LCL

Erdos:2013:CDR

Etzion:1996:NAP

Etzion:1996:NPC

Etzion:1998:PCT

Erde:2019:SDS

Exoo:1989:TCR

Fan:1992:CGC

Farzad:2009:PGC

Feder:2001:CHO

Feder:2006:DTF

Feige:2004:AMC

Feige:2010:OSG

Fellows:1990:TVP

Felsner:2014:ODP

Feray:2015:CIE

Ferrari:2016:DAI

Luca Ferrari. Dyck algebras, interval temporal logic, and posets of intervals. *SIAM*
REFERENCES

1989. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Fomin:2000:GSI

Fiol:2001:ACC

Florescu:2014:ERR

Fomin:2018:CVS

Franc:2010:CGI

Furedi:1989:PLG
REFERENCES

Fomin:2012:CRC

Fomin:2019:ECF

Fan:2019:PCR

Fomin:2011:AWP

Fomin:2018:SCA

Focke:2019:CCS

Feigenbaum:1989:FES
REFERENCES

Fan:1994:SHC

Fountoulakis:2010:QRS

Feder:2008:BTT

Feder:2010:RP

Fiorini:2017:EMI

Faigle:1996:CNB

Feder:2003:LP

Feder:2013:GAN

[FHL+13a] Tomás Feder, Pavol Hell, Benoit Larose, Cynthia Loten, Mark Siggers, and Claude

Frieze:2013:GCN

Feder:2014:GAN

Felsner:1994:IBI

Feder:2003:AHC

Fuji-Hara:2001:OOO

Fluschnik:2018:FKL

Francis:2014:BQN

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

2015. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Fishburn:1997:SAD

Faigle:1999:ACA

Filtser:2017:STV

Friedrich:2018:DHR

Furedi:2018:KRR

Feng:2005:ETC

Feng:2007:EET

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic). See [FKK05].

REFERENCES

[Fagin:2003:CTL]

[Fiala:2005:BTT]

[Frieze:2005:SCI]

[Faria:2012:OCT]

[Frieze:1999:PMH]

[Fekete:2006:HDP]

REFERENCES

REFERENCES

//epubs.siam.org/sam-bin/dbq/article/35575.

[FLM12] Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer. All alternating groups A_n with $n \geq 12$ have polytopes of rank $\left\lceil \frac{n-1}{2} \right\rceil$. *SIAM Journal on Discrete Mathematics*, 26(2):482–498, 2012. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

REFERENCES

Flajolet:1990:SA

Fleischer:2000:ORI

Feige:2008:FMI

Fiorini:2010:VPC

Fox:2010:CMI

Flajolet:1999:SNC

Flammini:2001:OGL

Flammini:2004:LBB

[FP04] Michele Flammini and Stéphane Pérennès. Lower bounds on

REFERENCES

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Felsner:1999:LED

Fishburn:2006:FCT

Franzblau:1989:PGS

Frankl:1990:CAC

Frank:1992:AGM

Franzblau:1995:CAL

Fraenkel:2010:CIF

Falgas–Ravry:2015:CTG
REFERENCES

213

1504–1539, 2015. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Jacob Fox and Benny Sudakov. Ramsey-type problem

Faller:2012:TDE

Furedi:2012:OMS

Fomin:2013:PKP

Finbow-Singh:2013:IBH

Forst:2005:WCM

Friedman:2005:GAB

Farzad:2012:RLC

Franck:2017:CPG

Frieze:2020:RGF

Fujishige:1997:MMT

Fukunaga:2016:AGT

Fulek:2014:END

Furedi:1991:MIS

Fang:1997:TFH

Fischer:2015:CMP

Fishburn:2002:IPR

Fan:2014:FSC

Franklin:2004:SHP

Fujiita:2000:SCR

Foata:1988:LPW

Fan:2008:OCN

Gabow:2004:EDA

REFERENCES

Geelen:2006:MC

Goldschmidt:1990:AOL

Goldschmidt:1990:FPM

Geelen:2006:RBC

Goldwasser:2013:ETN

Gaspers:2019:FGC

Goldschmidt:1996:AAC

REFERENCES

Gregory Gutin, Mark Jones, and Magnus Wahlström. The

Lee-Ad Gottlieb and Robert Krauthgamer. Proximity algorithms for nearly doubling spaces. SIAM Journal on Discrete Mathematics, 27(4):1759–1769, 2013. CODEN SJDMEC. ISSN 0895-
REFERENCES

4801 (print), 1095-7146 (electronic).

REFERENCES

0895-4801 (print), 1095-7146 (electronic).

Gould:2006:MDI

Gonzalez:1995:CSS

Ge:2008:EDA

Grynkiewicz:2010:SSC

Grytczuk:2015:SMN

Guruswami:2017:ITP

Archontia C. Giannopoulou, Daniel Lokshtanov, Saket Saurabh, and Ondrej Suchý. Tree deletion set has a polynomial kernel but no $\text{OPT}^{O(1)}$ approximation. *SIAM Journal on Discrete Mathematics*, 30(3):1371–1384, ???? 2016. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

REFERENCES

REFERENCES

Georges:2000:LPC

Grzesik:2015:DPL

Gross:2015:LCC

Gouveia:2019:SRS

Grotschel:1996:PST

Ge:2005:CCO

Ge:2009:BSS

REFERENCES

2009. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

REFERENCES

Gravner:2019:MST

Goldberg:2001:BAG

Garnero:2015:ELK

Golovach:2015:IDP

Graves:2009:GEH

Guenin:2013:RBP

Goemans:2002:SMS

REFERENCES

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Gupta:2008:COC

Gat-Viks:2006:RCF

Gentile:2006:MCG

Grace:2019:HCE

Goemans:1994:NAA

Gao:1999:SLC

REFERENCES

Goemans:2000:TDG

Geelen:2007:RBC

Gutukunst:2019:CIG

Glanzer:2018:NDR

Griggs:1992:LGC

Gyarfas:2019:TNB

Guan:1998:MCV

Geelen:2006:STI

REFERENCES

578–587, January 2006. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Haviv:2019:SFS

Hwang:1998:NCI

Heden:2008:PCL

Hefner:1997:MMT

Hassin:1992:MPT

Huang:2001:WIT

S. H. Huang and F. K. Hwang. When is individual testing optimal for nonadaptive group testing? *SIAM
REFERENCES

[HHLO95] Heikki O. Hämäläinen, Iiro S. Honkala, Simon N. Litsyn,

[HK93] Frank Hoffmann and Klaus Krikel. A graph-coloring result and its consequences for polygon-guarding problems. *SIAM Journal on Dis-

Hager:1999:GPC

Honkala:2002:MBR

Hsu:2005:OAB

Hamel:2011:BPS

Huang:2013:NPM

Huber:2014:OTS

Huber:2015:DMT

Hebdige:2016:TCC

Henning:2016:DGP

Hell:1988:RTF

He:1999:LTS

Harvey:2011:DCB

Halman:2014:FPT

Hanckowiak:2001:DCC

REFERENCES

REFERENCES

Hefetz:2008:PCM

Hunsaker:2003:OOA

Heuberger:2015:CTC

Hong:1992:SRL

Hoang:2000:RPS

Hsieh:2010:PRH

Ha:2015:NP

Hlinený:2018:SSR

Hegernes:2011:CSG

Hoppen:2017:RER

Heath:1992:CQS

Horn:2013:JNM

Hamidoune:2000:ICV

Hyde:2019:DSK

Hu:2013:OBN

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Haimovich:1988:EPH

Hartvigsen:1994:APM

Huang:2019:TCH

Hatami:2009:IGS

REFERENCES

[Hoà10] Chinh T. Hoàng. On the complexity of finding a sun in

Hoppen:2019:PAR

Hamburger:2009:KRG

Hochbaum:2003:MCC

Heuer:1988:SGD

Hassin:2002:RM

Hoang:2005:CSP

Hwang:2005:POS

REFERENCES

REFERENCES

REFERENCES

Petr Hlinený and Carsten Thomassen. Deciding parity of

Hoyer:2018:FEI

He:2019:HFB

Hu:2018:BSC

Heggernes:2005:CMT

Huang:2014:MID

Hurlbert:1994:UCS

Hutchinson:1988:SNC

REFERENCES

Hoogeveen:2000:BPD

Heeger:2017:TCS

Harkens:2007:FRB

Heggernes:2012:CCB

Hartke:2007:FRB

Huynh:2014:ICR

REFERENCES

[Hou:2018:BSC] Jianfeng Hou, Shufei Wu, Qinghou Zeng, and Wenxing Zhu. The Bollobás–Scott conjecture for 4-uniform hyper-

Huang:2018:PCC

Hwang:1989:CPM

Henning:2010:STH

Henning:2012:VDC

Michael A. Henning and Anders Yeo. Vertex disjoint cycles of different length in di-
REFERENCES

He:2008:NOV

Hatami:2010:FCN

Iglesias:2014:CVT

Iosevich:2009:EFD

Isler:2006:RPE

Kawarabayashi:2011:IAH

Kawarabayashi:2009:CGK

Isaak:1992:CG

Garth Isaak, Suh-Ryung Kim, Terry A. McKee, F. R. McMorris, and Fred S. Roberts.

Imrich:1999:MGT

Kawarabayashi:2010:SCA

Kawarabayashi:2009:MTK

Kawarabayashi:2016:CTG

Kawarabayashi:2004:ONG

Ishikawa:2008:EMS

Isgur:2016:CNF

REFERENCES

REFERENCES

Iwata:2008:IEF

Janssen:2010:RBA

Iwata:2009:CDA

Just:2016:LA

Tanigawa:2012:GRM

Jacobson:1992:ECC

Imase:1991:DST

Jaeschke:1989:SRC

Janusz:2000:OCP

Janata:2005:MIP

Jansen:2010:ESJ

Janzer:2020:ENS

Jiang:2006:OIT

Jordan:2013:GSR

Jedwab:1993:BAE

Jevtic:1995:FSI

REFERENCES

Jiang:2000:CEB

Jorete:2017:PPD

Joos:2016:IMGa

Jonsson:2005:SCG

Jones:2020:WGB

Brant Jones. Weighted games of best choice. SIAM Journal on Discrete Mathematics, 34
Joswig:2006:COM

Janson:2012:HTR

Jansen:2018:AKC

Joret:2014:HHP
REFERENCES

1363–1390, 2014. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

[JS14] Katharina Jochemko and Raman Sanyal. Arithmetic of marked order polytopes, monotone triangle reciprocity,

Jia:2017:EBF

Jansen:2012:PSP

Jansen:2003:MMJ

Jukna:2016:TCS

Jiang:2015:MIF

Jaslar:2011:MWP

Junosza-Szaniawski:2018:OCL

Jungers:2012:SPF

Juttner:2006:BOP

Joret:2018:MFI

Janssen:2005:LBT

Ji:2005:RSQ

Kahale:1997:IIE

Kamiyama:2017:PMT

Kamiyama:2019:PSM

Khosrovshahi:1990:NBT

Kan:2008:LHG

Kao:1996:DSE

Kapadia:2014:MMP

Kaplan:2014:MIT

Karloff:1989:HLC

Karp:1992:TSG

Kardos:2020:CAP

Kashyap:2003:MSC

Navin Kashyap. Maximizing the Shannon capacity of constrained systems with two constraints. *SIAM
REFERENCES

Kaski:2005:IFE

Kashyap:2008:MPC

Khachiyan:2005:CSE

Kwak:1998:ERG

Ku-Cauich:2013:SA

Kao:1994:OPA

Kao:1993:EDP

Ming-Yang Kao and Dan Gusfield. Efficient detection and protection of information in cross tabulated tables. I. Linear invariant test. *SIAM
REFERENCES

Kleinberg:1998:LT

Khan:2013:PM

Kierstead:1988:L

Kierstead:1997:CG

Kakimura:2012:P

Kakimura:2017:PE

Kim:1991:OP
Kim:1992:CAB

Kim:2011:FRS

Kim:2017:USL

Kiraly:2016:MIA

Kitchens:2002:MCC

Katoh:2013:RTD

Krokhin:2004:CSP

Kohli:1989:APH

[KK89] Rajeev Kohli and Ramesh Krishnamurti. Average performance of heuristics for satisfiability. *SIAM Journal on Dis-

Klawe:1990:ALT

Kortsarz:2001:AAN

Kunszenti-Kovacs:2009:NPA

Katz:2010:ADE

Kaminski:2014:BVB

Kocay:2014:RGT

Kral:2012:EFM

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Kang:2017:SSC

Kaiser:2010:SCC

Kim:2019:TCR

Kalkowski:2011:NUB

Kang:2015:PTM

Kardos:2010:LFF

Krivelevich:2017:BDS

Kalinowski:2019:ZFN

Kanj:2020:SPP

Kardos:2011:FCC

Kallal:2017:ILB

Klawe:1992:TLB
[Maria Klawe and Tom Leighton. A tight lower bound on the

Krokhin:2008:MSF

Kim:2014:URG

Kelk:2019:TKC

Keller:2019:NLH

Klazar:2006:ICN

Kleitman:1989:DUC

Kowaluk:2013:CDS

Kortsarz:2010:AMS

King:2012:FAB

Krivelevich:2010:RPR

Kowalik:2018:FGC

Kahn:1989:SST

Korner:1988:GSE

Koller:1994:CSS

Klawe:1995:ULB

REFERENCES

Kushilevitz:1997:RPC

Korner:2001:CRI

Klavzar:2002:PCC

Kubicki:2005:GTG

Kushilevitz:2005:CNR

Korner:2006:PCP

Kudekar:2011:DCS

Kakimura:2013:RIS

Korner:2013:DDG

Kozik:2013:NCN

Krakovski:2014:HFW

Karthick:2019:SFG

Kiwi:2019:SLC

Kwak:2005:EBC

Kang:2012:IMS

Kavut:2018:SSP

Kim:2003:PBL

Knes:2009:BPS

Komlos:1998:MN
János Komlós, Yuan Ma, and Endre Szemerédi. Matching nuts and bolts in $O(n \log n)$

Körner:2008:GDP

Kierstead:2009:TCN

Korner:2012:FGD

Kobayashi:2007:OMC

Kostochka:2015:TPS

Keevash:2006:SSN

Krishnamurti:1995:AAP

Klee:2013:FCB

Kante:2016:PTA

Kostochka:2005:ECD

Kannan:1992:IRG

Khanna:2005:DND

Knuth:1995:TWR

REFERENCES

Krauthgamer:2014:PTD

Kuhn:2012:PCR

Ko:1988:STO

Kuhn:2006:IBT

Kuhn:2006:MHC

Kochol:1998:PIT

Koppe:2007:PBA

Kushilevitz:2003:ARP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Citation</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
</table>
REFERENCES

Kabadi:2006:CMT

Krotov:2009:AQO

Kang:2016:CPG

Keszegh:2013:DPG

Kratsch:2015:FPT

Korandi:2016:RTP

Dániel Korándi, Yuval Peled, and Benny Sudakov. A random triadic process. SIAM
REFERENCES

Kafer:2019:CDS

[292]

Kaibel:2012:SMS

[280]

Knuth:1992:PCR

[288]

Knuth:1993:RSP

[288]

REFERENCES

CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

C. W. Ko and F. B. Shepherd. Bipartite domination and simultaneous matroid covers. *SIAM Journal on Dis-

Kral:2003:TAC

Kumar:2003:PFA

Katta:2004:NBT

Keevash:2005:SSR

Kovaleva:2006:AAR

Kortsarz:2007:IAA

Kaiser:2008:CIE

Tomáš Kaiser and Riste Škrekovski. Cycles intersecting edge-cuts of prescribed sizes. *SIAM Journal on Dis-

Kral:2008:BRN

Kral:2008:CTF

Krivelevich:2012:OPH

Krivelevich:2012:CSS

Kral:2009:NLB

Kawase:2019:SMU

Kowalik:2008:TCP

Kaiser:2011:RF

Kang:2011:EPG

Kral:2012:MMR

Kral:2006:CLG

Kashyap:2005:ART

Kim:2017:WCW

Kiss:2018:CEA

Kao:1999:LDM

Kratochvil:1999:RDG

Kakimura:2014:MPD

Kellner:2016:SSC

Kovacevic:2017:IBS

King:2019:NUB

Kushilevitz:1992:PCC

[Eyal Kushilevitz. Privacy and communication complexity. *SIAM Journal on Dis-
Kleitman:1990:CBI

Kleitman:1991:STM

Kleitman:1992:TCG

Kleitman:1995:CFK

REFERENCES

Kabadi:2009:IEN

Kierstead:2004:RTT

Kostochka:2008:ALC

Kupavskii:2018:SMS

Labarre:2013:LBE

Lagarias:2000:WSL

Laihonen:2005:OER

Lai:2008:OD

Lai:2018:LTH

Lavrov:2016:UBH

Lal:2009:BSB

Lau:2004:RPP

Liu:2012:RDC

Luo:2003:DCG

Lucchesi:2018:TUP

304

REFERENCES

REFERENCES

REFERENCES

Liu:2014:UBF

Laihonen:1999:NBC

Lee:2014:RPR

Li:2014:MOG

Lin:2015:FLF

Liang:2017:MCS

Lladser:2006:UF

Li:2017:GCS

Jiaao Li, Hong-Jian Lai, and Rong Luo. Group connectivity, strongly Z_m-connectivity, and edge disjoint spanning

Lee:2018:CAS

Lavrov:2019:DUG

Lin:2004:ICV

Lee:2013:SSG

Li:2010:RNC

Lih:1999:SEC

Liu:1989:LRA

REFERENCES

Levéque:2008:CBF
Benjamin Lévêque and Frédéric Maffray. Coloring bull-free
perfectly contractile graphs. SIAM Journal on Discrete

Lukotka:2010:CGG
Robert Lukot’ka and Ján Mazák. Cubic graphs with
given circular chromatic index. SIAM Journal on Discrete

Lucier:2011:GDC
B. Lucier and M. Molloy. The Glauber dynamics for
colorings of bounded degree trees. SIAM Journal on Discrete

Levit:2012:VBA
Vadim E. Levit and Eugen Mandrescu. Vertices belonging
to all critical sets of a graph. SIAM Journal on Discrete

Lo:2014:DTD
Allan Lo and Klas Markström. ℓ-degree Turán density. SIAM
CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Lindzey:2016:LTA
Nathan Lindzey and Ross M. McConnell. Linear-time algo-
rithms for finding Tucker submatrices and Lekkerkerker–
CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Li:2017:PDD
Zhentao Li and Bojan Mohar. Planar digraphs of digirth four
are 2-colorable. SIAM Journal on Discrete Mathematics,

Lee:2010:MNS
Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and
Maxim Sviridenko. Maximizing nonmonotone submodular
functions under matroid or

Ling:2005:IPA

Lo:2014:ECV

Loehr:2010:APS

Louidor:2010:TFC

Lee:2010:ANO

Liestman:1988:BNB

Luczak:2019:PHR

Lichiardopol:2009:STB

Li:2011:ISP

Levi:2014:TSM

Letchford:2008:OMC

Lin:2011:SBB

Li:2012:PHS

Lawler:1989:DRB

Liestman:1995:DCN

REFERENCES

REFERENCES

1035–1061, ????. 2014. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Lafond:2015:HCG

Lund:2016:IBB

Laurent:2017:SFS

Larose:2018:NPR

Liu:2003:LEW

Lang:2017:APE

Luo:2010:ECS

Rong Luo, Jean-Sébastien Sereni, D. Christopher Stephens.

Lu:2008:ECS

Lu:2010:ICR

Lubiw:1990:BBP

Lubotzky:1990:LSG

Luczak:1998:GAE

Lucena:2003:NLB

Lukotka:2020:SCC

Lutz:2004:SEN

REFERENCES

Lu:2018:SRN

Liu:2010:RGH

Lu:2013:EGF

Lu:2018:APM

Luo:2008:RDS

Lin:2018:TFW

Lu:2018:RMH

Lu:2010:LBT

Lin:2018:TFW

Mattheus:2019:TPF

Mayoraz:1996:PDN

Mayhew:2008:MCN

Mammoliti:2018:MCC

McCormick:1993:WSP

Milans:2006:CGP

Mertzios:2012:SPA

McDonald:2015:LVR

McKinley:2019:SCD

Meszaros:2016:PRT

Meszaros:2016:PDC

Ma:2019:OBL

McKilliam:2014:FCP

McClosky:2009:CPP

McKinley:1991:DCR

Mitchell:1997:BSP

Makino:2001:TRN

REFERENCES

Manada:2009:CSP

Munoz:2011:EPR

Machi:1993:GEC

Manacher:1996:FDP

Magos:2011:FSA

Maffray:2012:CFG

Montufar:2015:WDM

REFERENCES

REFERENCES

[MNP08] Marko Moisio. On the duals of binary hyper-Kloosterman

Mollard:2011:VPH

Momihara:2013:SHD

Montgomery:2015:AAF

Morgenstern:1994:RD

Mota:2019:TCB

Mouaha:1994:SCO

Malitz:1994:ARP

McMorris:1995:MPF

REFERENCES

Mitchell:1998:PFC

Mustafa:2004:LYN

Matousek:2008:LMC

Marcus:2013:CBE

Majerski:2014:ISD

Meier:2017:PFS

Mitsche:2017:TRP

Morales:2017:HFS

Ma:2006:CD

Matousek:2008:HMP

Morton:2009:CRT

Meesum:2019:RVC

Miers:2004:CSGa

Miers:2004:CSGb

Mayhew:2012:ICB

Dillon Mayhew and Gordon Royle. The internally 4-connected binary matroids with no $M(K_5 \setminus e)$-minor. *SIAM Journal on Discrete Mathematics*, 26(2):755-767, 2012. CODEN SJD-
Moore:2015:ARA

Moore:2015:OBS

Mrazovic:2017:OPC

Medina:2019:NUD

Murphy:2015:VSP

Murphy:2017:VSP

Motwani:1989:PGO

Macajova:2019:CCS
Edita Macajová, Edita Rollová, and Martin Skoviera. Circuit covers of signed Eulerian
Miracle:2016:SCO

Montanari:2011:RCR

Mauhar:2017:HRK

Muir:2005:ADS

Meagher:2014:EKR

Mani:2016:NLC

Macajova:2017:NZF
DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Manoussakis:1990:PAF

Metelsky:2003:LGH

Maffray:2005:APC

Maffray:2008:ASF

Mohammadian:2014:FDF

Mudgal:2005:BTC

Mézard:2011:SSC

REFERENCES

Megow:2018:DTS

Muller:2013:IRC

Moran:1990:OPB

Myers:2003:SNA

McKay:2008:CSL

Marx:2014:IHE

Melczer:2019:HDL

Micheli:2019:RUM

Giacomo Micheli and Violetta Weger. On rectangular unimodular matrices over the algebraic integers. *SIAM Jour-
REFERENCES

Milans:2020:DTF

Mayhew:2011:ODT

McMorris:1994:TVC

Mitchell:1994:CPA

Myung:2001:EAR

Naatz:2000:GLE

Naatz:2001:NQC

Nagle:2010:CFI

Nagle:2017:CPT

Naor:1991:LBP

Nasre:2014:PMS

Newman:2020:IAM

Nguyen:2010:ARM
Nguyen:2013:SRC

Ng:1991:TDS

Nagamochi:1992:CEC

Nierhoff:2000:TBI

Nishizeki:1990:ECM

Nagamochi:1997:CAS

Nakamoto:2015:EET

Nakamoto:2019:ECT

REFERENCES

REFERENCES

986–1002, ???? 2018. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Nisan:1989:PAZ

Nobili:1993:PPC

Nesetril:2007:SDD

Nixon:2018:RFE

Nozaki:2011:BDS

Nguyen:2016:CCC

Nesetril:2005:SAE
<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson:2018:DEM</td>
</tr>
<tr>
<td>Nelson:2019:NBG</td>
</tr>
</tbody>
</table>

OCarroll:2014:DAP

Odentlich:2004:ISR

Orrick:2008:SOH

Olesky:1992:FLR

Ostafe:2011:PDF

O’Neal:2013:UVM

Osthus:2013:AHD

Onn:2015:HUF

Ordentlich:2016:UBS

Omidi:2017:DRN

Oxley:2016:WWT

Oxley:2016:WWT

Ollivier:2012:CBM

Owen:2011:CGD

REFERENCES

REFERENCES

cia. Representing small identically self-dual matroids by

Picollelli:2014:FSF

Pikhurko:2003:ASR

Pinchasi:2008:MND

Pinchasi:2014:FFP

Pippenger:1989:RSA

Pippenger:1991:ECC

Pippenger:1995:ARA

Pippenger:2001:EET

REFERENCES

Nicholas Pippenger:2002:EMI

Nicholas Pippenger:2006:LPD

Boris Pittel:1989:ANS

T. Przytycka and J. H. Przytycki. On a lower bound for short

Paletta:2007:NAA

Perles:2007:FKS

Pinchasi:2010:DSU

Peserico:2012:HCC

Papalamprou:2013:DBS

Pemantle:1992:TP1

Pruesse:1991:GLE

REFERENCES

REFERENCES

Pak:2010:RYT

Paletta:2010:SNA

Pineda-Villavicencio:2018:EDP

Peleg:2002:HES

Payne:2013:GPS

Pellicer:2018:PRT

Pretzel:1990:CLG

Poznanovic:2009:CNT

REFERENCES

4801 (print), 1095-7146 (electronic).

Paturi:1998:DPB

Pike:2005:DCP

Pan:2010:MCC

Qu:2014:DPS

Qureshi:2015:RAF

Quilodran:2010:JP

Rabern:2006:GA

Rabern:2008:NRC

REFERENCES

REFERENCES

Remila:2002:SSS

Ravazzi:2012:GRI

Rhoades:2015:ADR

Richter:2014:DRR

Rifa:1999:WOS

Riordan:1998:OED

Rizzi:2002:FFB

Rais:1993:LDD

REFERENCES

Royle:2015:LBT

Rudnev:2016:UKQ

Regev:2017:IGL

Ragde:1988:PCE

Restrepo:2014:PTG

Radcliffe:2005:RTF

Ravi:1996:STS

REFERENCES

Rodl:1989:RTT

RW89

Rok:2019:OGB

Ryan:1996:IH

Ryan:2007:TSP

Roberts:1988:OSC

Remmel:1991:SRH

Rawlins:1988:HPR

Gabriel Robins and Alexander Zelikovsky. Tighter bounds for

[Sav90] Carla D. Savage. Generating permutations with k-
REFERENCES

REFERENCES

REFERENCES

ary 1988. CODEN SJDMEC.
ISSN 0895-4801 (print), 1095-7146 (electronic).

Servatius:1989:BP

Sommer:2009:FCL

Shangguan:2016:SHF

Shaw:2013:TIP

Shen:2018:PIL

Shioura:2012:NSJ

Shparlinski:2010:DOK

Shparlinski:2013:ADS
Shparlinski:2015:CGG

Sidorenko:2018:EPH

Siggers:2010:NPC

Simson:2013:CGC

Schulze:2015:IRS

Skutella:2016:NRL

Sherali:1995:SSL

REFERENCES

402–421, 2013. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Spinrad:1995:NFM

Spink:2019:OSC

Sprague:1994:ABI

Siu:1994:ODT

Sugihara:1989:OAP

Shapiro:1991:BPS

Sen:1994:IDG

Snyder:1995:EAD
REFERENCES

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

[SS09] Ivan Soprunov and Jenya Soprunova. Toric surface codes and Minkowski length of polygons. *SIAM Journal on Dis-

REFERENCES

[Sloan:2008:TDL] Robert H. Sloan, Balázs Szörényi, and György Turán. On k-term DNF with the largest number of prime impli-

REFERENCES

Schillewaert:2014:CCA

Song:2017:HCG

Staden:2017:DSF

Stachowiak:1992:HPG

Stanton:2011:IBI

Steel:1988:DSD

Steel:2000:SCT

REFERENCES

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

[Sull2005:SCT]

[Sull2012:DNP]

[Suz2010:REM]

[SV88]

[SV18]
REFERENCES

REFERENCES

Scott:2014:HBD

Swartz:2005:LBV

Sun:2010:DCS

Shen:2013:AAF

Snir:2011:LTA

Shiraga:2018:DRW
REFERENCES

[Takazawa:2014:OMF] Kenjiro Takazawa. Optimal matching forests and valued...
REFERENCES

Tamir:1988:ICB

Tamir:1991:OFL

Tan:2010:ADD

Tardos:1988:PBC

Tassiuas:1997:WCL

tBaa07

Tenner:2009:OLE

Tuan:1990:RRS

REFERENCES

Tropp:2015:IFP

Tapia-Recillas:2003:LQC

Tsai:1996:LBR

Todd:1993:NTS

Tardos:2007:CST
<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tait:2016:ISP</td>
<td></td>
</tr>
<tr>
<td>Tardif:2019:HCS</td>
<td></td>
</tr>
<tr>
<td>Tuza:2008:HDG</td>
<td></td>
</tr>
<tr>
<td>Tillich:1997:OCC</td>
<td></td>
</tr>
<tr>
<td>Trachtenberg:2003:FRT</td>
<td></td>
</tr>
<tr>
<td>Thapper:2015:NCT</td>
<td></td>
</tr>
<tr>
<td>Terlep:2012:GGK</td>
<td></td>
</tr>
<tr>
<td>Tan:2019:IPV</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

[vIKLS14] Leo van Iersel, Steven Kelk, Nela Lekić, and Leen Stougie.
REFERENCES

vanIersel:2018:LRP

Vinh:2012:PMR

Vinh:2013:FVE

Voigt:2007:PEC

Vsemirnov:2005:APS

Maxim Vsemirnov. Automorphisms of projective spaces and min-wise independent

von zur Gathen: 2013: CRP

Wagner: 1996: MS

Wagner: 2007: CGT

Wagner: 2018: CGM

Walter: 2019: CDM

Wang: 2002: FCT

Wang: 2002: CBG

Wang: 2008: SCG

Wayne:2001:NPF

Wang:1990:BSM

Wu:2012:CCC

Wang:2015:VFI

Webb:2008:VSG

Weissauer:2019:BNG

Weng:1997:LST

Whittlesey:1995:NRG

Will:2004:PM
Todd G. Will and Heather Hulett. Parsimonious multi-

Paul Wollan. Bridges in highly connected graphs. *SIAM
REFERENCES

Wang:2008:NMP

Wang:2018:IFS

Wu:2009:CAC

Wang:2018:SNC

Xu:2015:MAD

Xu:2006:AMP

Xu:2011:MCL

Xu:2009:CPG

REFERENCES

Yuster:2009:DCA

Yuster:2014:EDC

Yuster:1997:FEC

Yang:2017:BOP

Zeng:1990:CSP

Zerbib:2011:ZCV

Zhang:2009:EGB

Zhang:1999:OBM

Zhang:1990:FCI

Zhao:2009:BGT

Zhang:1993:PSS

Zhao:2011:BST

Zhang:1994:SNB

Zheng:2016:MBT

Zhao Zhang and Hao Li. Eulerian subgraphs containing

Zamfirescu:1992:HPG

Zhang:2017:EDC

Zhang:2013:DHC