Title word cross-reference

<table>
<thead>
<tr>
<th>0,1</th>
<th>BM15</th>
<th>0,5, n</th>
<th>BE13</th>
<th>1,-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>dLL09</td>
<td>1,2</td>
<td>BKM08, DK06, DK10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, l</td>
<td>Lai05</td>
<td>1,m + 1,n +1</td>
<td>BD01</td>
<td></td>
</tr>
<tr>
<td>(1 - e)x(n,C4)</td>
<td>BS10a</td>
<td>(2 + e)n</td>
<td>DZ01</td>
<td></td>
</tr>
<tr>
<td>(2,2)</td>
<td>GZ19</td>
<td>(2p + 1)</td>
<td>LHHL18</td>
<td>(2P1, K1)</td>
</tr>
<tr>
<td>(2s + 1)</td>
<td>LL14b</td>
<td>(3,1)</td>
<td>[Xu09]</td>
<td></td>
</tr>
<tr>
<td>3a:a</td>
<td>DH20b</td>
<td>4,3</td>
<td>[GZ19]</td>
<td></td>
</tr>
<tr>
<td>Máč13, CW09</td>
<td>(9e, 4,1)</td>
<td>[FHMY01]</td>
<td>(d,k)</td>
<td></td>
</tr>
<tr>
<td>KS03a</td>
<td>(Δ + 2)</td>
<td>WHW14</td>
<td>(k,l)</td>
<td>GSL98</td>
</tr>
<tr>
<td>(k - 2)</td>
<td>dOBMS+17</td>
<td>(K5 \ e)</td>
<td>GL08</td>
<td>(≤ 4)</td>
</tr>
<tr>
<td>DL14</td>
<td>(Q,x)</td>
<td>[Ma89]</td>
<td>(r + 1)</td>
<td>Ctl01</td>
</tr>
<tr>
<td>(t,m,s)</td>
<td>AS97</td>
<td>0</td>
<td>BG91, BCH92, HL15</td>
<td></td>
</tr>
<tr>
<td>0,1/2</td>
<td>Fio06</td>
<td>0.5</td>
<td>AHS01</td>
<td></td>
</tr>
<tr>
<td>BG91, BCH92, CHZ04, GL10, HL15, LW17a, Rif99, Riz02, Spi95, ZLS08</td>
<td>1 - 1/e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILM20</td>
<td>1.1</td>
<td>NK90</td>
<td>1.5</td>
<td>CSS01</td>
</tr>
<tr>
<td>CD14</td>
<td>1/3--2/3</td>
<td>BW92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB94, ACF18, BBF99, BM97, BJT92, BH97, BIT13, BL17b, BCKP19, CL15a, CL16, CL07, CSS13, CSS01, CY18, CDK10, DX19, DGM12, FJ09, FMM093, Fis94, GVW06, GSK91, HY92, HL00, IKM+92, JM97, KSS11a, LRWZ12, LM17, LC12, Nov18, OSW16, OZ18, PSW96, RT18, Sav14, TSN04, Vaz12, Voi07, Wan02a</td>
<td>2/3</td>
<td>BT14</td>
<td>23</td>
<td>JZ05</td>
</tr>
<tr>
<td>[MMJF03]</td>
<td>3</td>
<td>[ABHM00, Acr07, Bh05, BS16a, BS16b, BK12, BW02, CM90, CY97, CH06a, CS18c, CS02, CW09, CM14, DST01, DD13, DJ11, DM15, DGM12, DL18b, EHJ01, EGM18, FRMPV15, FRZ16, FZ08, FXYY14, FT12, Gab04, GKR15, GSK91, GL08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GK04, GKL99, HM12a, JKS17, KRS11, Kan08, KW92, LSS17, LXZ08, MM12, MRST16, NNO19, OC19, OSW16, PW18, Ran02, TSN04, WYZZ14, ZKNS20. [3/2
[BR11, RV99]. 3/5 [HK16b], 31 [KKW17]. 34
[GW94]. 3+ [DL12]. 3d [DMN12]. 4
[AH9+10, ALZ96, BC9+10, BH97, CHZ90, Cho94a, CR19, CY93, CL05a, CL05b, DX19, DL14, DL17, DL18c, DL18b, Far90, GH19, GZ06, GK04, HWWZ18, HWZZ20, JKS17, JN16, KKK17, Kap14a, KP09, LZ18b, MR12, OZ18, RC98, WX13]. 4, 5
[CF17]. 5 [BW92, CL15a, DX19, DLS11, JKS17, KRS11, iKO16, Luk20]. 5/6
[CR17b]. 5/8 [LS03a], 6 [Bal08, iKKL09]. 6/5 [BL17b]. 7 [Far90, JKS17, KR11]. 8
[KSS11b, Ran02]. 84 [FL00]. 9
[DSV08, KSS11b]. 32, 17, 8 [CS89]. A
BH18, CGG17, Yam16. A=[LV98]. 9
[FLM12], AG(3, 2) [KMP14]. AG(m, q)
[BJv92]. α [BCC11, Lic98, LT01]. B
[CGG+16, BBCZ11, GS03, LRT08]. B_d
BFK+12. B_k [SS19], BCH(2^m, 8), n
[CH90]. mod(2p + 1) [Lai08]. modp
[BCPP09]. C = 6 [BCC+05]. C_4
[CD14, BS10a]. C_7 [Pic14]. CAT(0) [ABY14].
., [MTV08]. χ [CKPS13, RW19]. χ = Δ
[CR15]. ax^q + b
[DV15, YZ17, Bar01, Bra05, C07, KNP05, SV08]. D_n [AR04]. Δ [CKPS13, Cra19].
Δ + 1 [Bon15]. Δ = 1 [CR13, CR17a]. Δ ≥ 9
[WHW14]. Δ ≥ 8 [Bon15]. e [CH19]. E^2
[Wor88]. λ [EHW18, LM14, BCPP09, G089b, GKS04, TQ09]. ζ [CGN0+6b, HMM09].
ζ_λ [BN15]. F [FGPS19, KOT16], F(3, 3)
[GH13]. F_k [CCDO0]. F_3 [BBO05]. F_4
[B05]. F_5 [Shp10]. 10 OPT [HV1]. 3
[BHT16]. G [DHJN02]. γ [LN17, Spi95].
GF(2) [Web08]. GF(p) [Gor93]. GF(q^2)
[Mot94]. H [ASS17, Cha91, CGS20, FS09a, GKY06, GL17, KL19b, Let19, MRV17, Pfe15, Sig10, Ath14, Got03, Més16a, Swa05].
k [LWY18, BCdMR08, KS00, AYZ04, AK02, Ana18, AS02, AB07, BSS14, BKL+15, BBM90, BLR16, BLR17, CDHH14, CL07, CGN+06b, CGN06a, CQX20, CDK+18, Cho94b, COPT12, CKP16, DH00, DHJN02, DSI09, EiK08, EG03, EFK05, FK03, Fed01, FH+13a, FH+14, FFV11, FPP13, FHL20, Gab05a, Gab05b, GP18, GH90a, GHY96, Got03, GKW19, GSS15, Han16a, HVW07, Har18, HN16, HS06, Hur94, HC08, KKS17, KSY18, KY12, KS19, KPR10, Lev09, Lin97, LW18, MPS08, Mc110, PSTF00, PP07b, PRS98, RRS07, SS11a, Sav90, SST08, Ste10, Swa05, TRV03, TP97, Tod89, VWW09, YQQ90, YC03]. K_r^{2p+1} [LZ09]. K_{2p+1}
[Lai08]. K_{2p+1} [EMOT16]. K_3 + e [SWR12].
K_4 [Gya19, JW18, ZKNS20, FS90b, GS03, Sch02b]. K_4 - e [SWR12]. K_5
[LZ18b]. K_5 \{ e [FT12]. K_6 [KM14, iKM09]. K_Δ
[EM13]. K_3^{1+1} [BBB12]. K_{n,n} [dKM06].
K_n [AAFM+18, dKM06]. K_{n,n} [LSL17].
K_{n,n} - I [MPS06]. K_{t,t} [Mak07]. k-(S,T)
[CL13]. L [C11]. L(2, 1) [JRS16, CW18, CK06, FR06, GM05, Kan08, KST06]. L(p, 1)
[HRS12]. L^p [Kra18b]. L^p [BK17]. λ
[LZ05a, RCS88, SS11a, WGM05]. |n - 12
[FLM12]. M [KMT07, Mur06, Kap14b, MRV17, S01, C08a]. M(K_{3} \{ e [MR12].
M_{3}^{93} [BS95b]. F^{8}_{12} [TV03]. F^{a}_{n}
[Mra17, WZZ18]. Z^2 [RR18]. Z^d
[FGLP14, MP13, GKS15]. Z_m [QD14]. Z_p
[BM15]. Z_p \{ S_n \ [Ath14]. H [KT16]. V
[KT16]. HJ(4, 2) [Lav16]. N
[SS91, AS02, DKS16, DH09, DHJN02, EFF91, Hed08, Hur94, JLR20, KP09, OS15, Pin08, Rf99, S01, T93, dH89]. n + 1
[T93]. n + t [DKS16]. n - 1 [dH89].
n - log(n + 1) - 3 [Hd98]. n_{\log n} [BHR14].
N^N [BB92]. N \{ WLD09]. n ≥ 12 [FLM12].
n ≤ 2k + 1 [DHJN02]. \{ o [CMP15]. o(log n)
[AKKS89]. O(n \log n) [EM09]. O(n)
[MM96]. O(n^\log n) = o(n^{2.376}) [HTV05].
O(n \log n) [KMS98, WY10, Spr94].
$O(\sqrt{n \log^{3/4} n})$ [CS91]. ω [CKPS13]. $\Omega \log n$ [RSSW88]. $OPT^{O(1)}$ [GLS16]. P [CGG+16, BBC11, GP20, Jac92, JO95, LO05, MR04a, Vav89]. P_3 [CPRdS13, HR05a]. P_5 [BM16, MM12, BF17, KPT95]. P_6 [BM16]. P_8 [CS18c]. $PGL_2(q)$ [Shp10]. $PGL_3(q)$ [MS14]. q [AS97, ACS97, CX08, Etz96a, GSS14, Sca05, WIS12, YZ17]. q, t [LLL18]. Q_n [WGM95]. r [BS15b, BCD97, FYK00, GRS12, LZ18a, Sia18, Sta11]. $R(3, n)$ [Exo89]. $r = 3, 4$ [ZGL+09]. R^n [Qui10, BT96]. $RL(d, k)$ [Lou10]. $r \times 4$ [ZGL+09]. S [Ave13, CD16, MD11, RY91, CGG+16, DffH90, Gao15, GKNU10, NS11]. S_n [RS93]. S^2_n [Abe91]. st [AB00]. T [GGW06, GS98, Ray94, WP05, BS10b, BS16c, BF17, DM13, Gao15, GP20, Jac92, JO95, LO05, MR04a]. ε [MR15b], W_3 [BM94c]. $x^2^n + x$ [Car94]. Z_2 [TRV03]. Z_4 [Ran02]. Z_m [LLL17, Tsa96]. Z_n [Fil89], Z^n_k [DV04], Z_p [MR04a].

5-Coloring [EHLP11]. 5-Cycles [ZLWC12].

91m [GM93].

Amortizing [KOR03]. Anagram [WW18].
Anagram-Free [WW18]. Analogue [HHLM20]. Analysis [AMWO0, AHS89, AT16, BHRZ14, BD20b, BJK13, Bru90, DDS16, FS05, Fis14, FO90, FL91, FK10, FP13, Gab05b, GF08, HKW15, KRS15, New20, PTF00, Prip5, PRS98, Sca03, Sot15, Tak08, Yam20, Yam05, Bie88].
Bias [BGY20]. Biased [BN96, Cha16, MR15b, NvdP19, NP20a].
Bichromatic [AHK+10, Pay17].
Bicolorable [BGvL07]. Biconnected [PSW96]. Bicontactual [dR14].
Bijection [CMS09, TKA18]. Bijections [PV10a]. Bijective [FW02, HK11].
Bijections [PV10a]. Bifacility [AAHLT10]. Bin-Packing [Woe93].
Bipartition-reversing [AAHLT10]. Bipartitionings [KKO16]. bipartization [CNR89].
Biorientation [Ser89]. Birkhoff [DKW10]. Bisection [AHF08, KL19a].
Bismellable [AAKM+18]. Bisubmodular [BC95, Fl05, HK14, Shi2, Fuj97].
Blanks [ASH18]. Blocks [AMPT93, AM95, CM05a, CH01, FSW13, GMZ09, Han98, LS16, MMJF03, Ran02, Wei19, ZGL+09, Liu97].
Block-Type-Decodability [CM05a]. Blocking [BD01, FHS14]. Blocks [CDHH14, DEE17, DHKM11, FRW12, RR18].
Book [BL19b, BB13, Bar01, BL19b, BN01, BL17b, Bra05, CTU14, CY08, CFB94, CS91, CR17b, DSZ05, DH91, DJW12, DvHT20, EP10, FS09a, LL10, Fra95, Gol06, GC11, GO12, HJ18, HTS18, KKP11, KK14a, KW13, KL92, KMRR09, KSS09, Lav16, Lei94, Liu14, LY10, Luc03, Mer99, Nao91, Nie00, OS16, PP90, RC98, RS15, ST13, SS11b, SS18b, SL95, Ste07, Td14, o09, Sar97, SG16, Tar88].
Boundaries [AF05, KIT13]. Boundary [AE03, Lai18, vD11, LS09].
Bounded [AD96, ABC9, Bab92, BST20, BFGR17, BHL92, CCVZ10, CMM+04, Che94, CCL+06, DHT06, DP92, DEJ+20, FJK+19, GVM06, GnN06, GWZ18, HKM20, HKK+09, JK99, Jou05, Joo16, K12, KPP13, KKS17, LR04, LM11, OPR12, Oze13, RW19, SW14, Sh12, Woe93, Yos19, dGV05].
Zak14, ZM02, BCLR89, LP88).

Bounded-Degree
[HKK+09, KKS17, BCLR89],

Bounded-Genus [DHT06],

Bounded-Skew [ZM02]. Bounded-Space [Woe93].

Bounding [AH96, BDF+18, BM11, BC17, CP10a, EK13, GI97, HW16, JLL16, Lab13, Zuc92].

Bounds [AS10, BST20, BEL09, BHL+15, BGJ+12, BGS96, BJK14, Buk16, CHZ18, CHLZ00, CL05, DMR11, DW10, DW11, DHUZ01, DSS13, DMS12, DP10, FP01, FP04, FHHN18, GP07, GP91, GRS12, HT13, HHLÖ95, HK02, JWF05, KKW17, KM08, KT19, KM95, KW14, KT17, K50s6, KO06a, LN17, LL99, Lam20, LRTW11, LZ09, LNO96, LS16, Mac18, MPSS20, MP13, MDS19, MS19, MNP08, MTGK05, NO95, NS11, RTS00, Raz20, RZ05, RR03, SC17, Sta11, SS02b, Swa05, VVV15, XSR11, YAT16, Yu17, Zha94, Zha99, dKMP+06, dKPS13, CET97, Car88, SS95, Tam88, Tsa96].

Box [FHK96, KOS16]. Box-Greedy [FHK96].

Boxes [AC14, CC07, CF11]. Boxicity [ABC11].

Branch [DMR11, DL91, KLM05]. Branched [KLM05].

Branches [Yam20]. Breaker [CFG+15a, EFKP15, Han19b]. Breaking [ILM20, LB09, GSP88]. Brenti [YZ17].

Bricks [CFLZ19]. Bridgeless [Mâc13].

Bridges [Wol10]. Bridging [GHW05].

Bringing [SS10]. Broadcast [AR17, BMRT20, EK05, FY04, GV92, GPP01, GP91, KP05, LP88]. Broadcasting [BHL92, BFPP08, FP01, FP04, Gab05a, KP04].

Broken [ACM11, Swa05]. Brook [AKW05, KLP12]. Brooks [FHH08, FKS05a, HS90]. Brooks-Type [FHH08, FKS05a].

Brownian [Pal12]. Bruhat [Abe91]. Brujin [ES98, KRR16, Mit97, Obr93, RSW12].

Brunn [AF10, CIN18, OV12]. Brushes [AAW09]. Buchberger [UWZ97].

Budgeted [CMPS17, Jüt06, KPS20]. Buffer [ElvS11]. Building [CFG+15a].

Bull [CS18b, LM08, Pen12, dFM04]. Bull-Free [CS18b, LM08, Pen12, dFM04].

Bundles [Zhe16]. Buneman [DHKM11].

Buser [LMP19]. Buy [LPSR12].

C. [Naa01]. CAD [SW04]. Calculus [Zen90].

calculation [Zen90]. calculus [PU95]. calls [Ser88].

Can [ASS09, BBS17, BS16c, CCNV11, Che16, Gao18, KSW17, MP09, PP12, Kar89].

Canceling [IMS05]. Cancellative [BS95a]. Canonical [AM95, Fra90, HKL99, HKW15, Rea15].

Capacitated [ACLW18, BYFM10, EEL09, KSW00, NI92].

Capacities [BCHF+10, KS03a, KPS17, GZ98, HTS18, KSF19, Pip91, KM06].

Caps [GL10]. Carathéodory [BCD+12].

Cardinality [KMW89].

Cardinality [Eps06, Luc03, MNN18]. Carlo [SV11].

Categorical [BNR96, Tot10].

Category [AMS01]. Center-Eect [BHH94].

Center-Eect [BHH94].

Central [WW91]. Centrally [Nov18].

Caratheodory [BCD+12].

Centralize [WW91]. Centralization [Nov18].

Certain [BC91, Bro11, GM90, LW88a].

Centralize [WW91]. Centralization [Nov18].

Centralize [WW91]. Centralization [Nov18].

[BGW20, DSL19, MGC14, SFS09]. Closing [BLS19, FMP17]. Closure [BGJ+12, HQ03].
Closures [ACD+13]. Cluster
[BGG+20, GKN10, Tza08]. Clustering
[ADPR03, GKN10, MRT11, Ram04].
Clustering [BGJ+12]. Clusters [CLW09].
Cluster [BGW20, DSL19, MGC14, SFS09]. Clustering
[BGG+20, GKN10, Tza08]. Closures
[BLS19, FMP17]. Closure [BGJ+12, HQ03].
Closures [ACD+13]. Cluster
[BGG+20, GKN10, Tza08]. Clustering
[ADPR03, GKN10, MRT11, Ram04].
Cluster [AD11, BN96, Cha16, CGG88, Sak89].
Collection [DO08]. Collective
[DL06, Sak89]. Collector [MW03].
colliding [KM06]. Collinearities [BDJ+15].
Collisions [CTW93]. Color
[AS10, DFJS15, FPS20, FR06, GJXZ20, JLR20, Mot19, Yus09]. Color-Avoiding
[Yus09]. Colorability
[DL18b, DH20b, HKSS08, AK02].
Colorable [CS18c, CS02, Dan01, FT12, GH19, GKO4, JKSW17, KRS11, LM17, LS03b, MI12, MMO9, WHW14].
coloration [HS97]. Colored [AF19, BS09, BCF+20, CH17, CGK+19, CFPP11, DGM12, EFK18, KW92, KY18, LSS17, Lo14, MP08, McL10, MWW94a, CH13, IS93, Zen09].
colorés [Zen90]. Colorful
[BM07, CKMU14]. Coloring
[AAD+18, AKP20, AH03, ANP14, AKDS18, BGG+04, BCC+11, BTU09, BLM20, BHE05, BM13, BCP13b, CLO18, CGSZ20, CM16, CR13, CR17a, Cral9, DEG+07, DX19, DST08, DH20c, EST14, EEL09, EHLP11, FKO05a, GTK19, GN08, GKR+18, GK04, GS20, HS13, HSO9, HM11, HSO8, HK16a, HK96, JL20a, JSRSW18, KSS11b, KP16, iKM10, KPT94, KM07, KNO9, KOS08, KLS18, Kra04, KSP08, Lam20, LM08, Lu04, LSSY10, MN18, Nao91, NK90, PZ10, Pen12, Riz02, Rya07, Sig10, SV08, Wan08, Xn09, Yus03, vBE17, GKR15, Kie88, KPT95, Ray94].
Colorings
[AS10, AG19, BR19a, BVVW11, BW02, CjJL01, DJKP09, FXYY14, FHM03, FHH08, FKLW98, FW02, FR06, GL15, GvHM+08, HJ18, HGY20, JK99, JT11, JS14, KMS+09, LM11, MTS09, Nor11, OF08, Prz13, WW18, KKV11]. Colors
[CR13, CR17a, Cral9, DF10, HJ18, KK14a].
Colourful [DSM14]. Colouring
[Mac91, BJHM88, BS09]. Column
[OPR12]. Combinations [GMTW15].
Combinatorial
[AY04, ACF18, BM16, BSS14, BDT17, BG11, BJK13, Boy96, CC07, DMS14, DO08, EGR08, FS05, FL92, Fra95, FP13, GMY05, ...]
GRS12, HRS17, Hir11, JJiT14, KPS19, Kim92, LLL18, Mar09, Mat19, MW19a, Mun06, Ngu13, Prz13, Sim90, SW98, Wil16, Sav97, SV88, Yen97, MPP17.

Combinatorially [SGM20].

Combinatorics [ABY14, BCE10, DJS12, GR17, Mar20, MWW94b, SW99, ST10, Tha08].

Combined [Pfe15].

Committees [WS12].

Commodities [Fle00].

Commodity [GS16b].

Commodity-Flow [GS16b].

Common [BCdMR08, BM14, BH20, DSST13, HKL11, NvZ15, Web08].

Communication [AP92, BYKKR18, BOT92, BH93, CT93, KS92, KKN95, Kus92, Orb93].

Communications [Bon91].

Commuter [AL17].

Compact [ACL+06, DKWL20, Har01, HKW15, KM01, LLS04, Lu10, dS91].

Compactions [FGZ19].

Compactness [GP99].

Comparability [HHLM20].

Comparative [KvIL+12, MK09].

Comparing [FKS03, FM+06, HLR92].

Comparison [AB94, RC18, ST14].

Comparisons [DZ01].

Compatibility [ASY14].

Compatible [KR92].

Compensation [AG06].

Competition [FLM+95, Gui98, MSS14, IKM+92].

Competitive [GL95].

Complementary [Ram98].

Complement [Fra10, LSX14, LHHL18, LW88b].

Complementation [BDJ+10, BH13b].

Complements [CY12, KK14b].

Completable [JiT14].

Complete [AGCH20, AS07, BGM08, BCCZ11, BCLR95, BK91, BL01, CDM00, CDM04, CP16a, Con05, DHJ+13, FKK20, FRR09, FH10, Fox10, GG11, GMA15, GMS00, GS00, GKP19, Gut93, Han98, Jan20, iKSZ04, LLY10, LZ18a, Pip02, PSML08, Sid18, SZ13, Tót10, Wal19, dKPS13, Jac92, Vav89, dH89].

Completely [FG01, GS00].

Completion [BFPP15, ELSS17, FG00, Som14].

Complex [BTU09, BCKP19, FP99, KLMR03, SS08, RM97].

Complexes [AY14, BHM16, BW99, BV20, Bro11, Cha91, CN12, DDL20, DD15, EGS13, Hir11, Jon05, KN13, LS03b, Més16b, Swa05, Tza08].

Complexities [Do19].

Complexity [AR08, AM11, BZ04, BN01, BT96, BCF12, Boy96, BCKP19, CEHS08, CC07, CT93, CI07, CLST12, DSL19, DL89a, DM18b, FKL93, FMP17, FJLS03, FGZ19, FLM+18, GKM17, GS93b, GNS11, GvdHM+08, HKP01, HM20, Hoâ10, JLR+17, Juk16, KS92, KKN95, Kas08, KBE+05, KLS18, Kus92, LZ03, Mac91, May08, MC93, MC06, Omn91, Pad16, PW02, Saa93, ST13, Sno13, Zer11, BJHM88, KW96, PU95, RSSW88, Tam88, Win88].

Component [Bli10, CL06, CF16, KM19b].

Components [BAH10, CFDK20, GW99, MP08, SW01, JO95].

Componentwise [HK05].

Composition [BJK14, HS04, WC12].

Compositions [ADM+15, BM94a, BM94b, BM94c, BFM94, KR93].

Compound [FL91].

Comprehensive [AT16].

Compression [MPSZ19].

Computable [JMS90, KR04].

Computation [DM13, GDVL17, KR98, KM05b].

Computational [BM11, GS93b, Omn91].

Computations [BCE+00, KOR3, Car88, KM97].

Compute [BKS09].

Computer [CDP94, Kar20, SW99].

Computer-Aided [SW99].

Computer-Assisted [Kar20].

Computing [ACD08, BBDK00, BCdMR08, CCH14, Dan09, DDS16, DJT15, FvIKS15, Gal18, GnN06, GS16a, HKP01, HTV05, HvHLN12, IIL14, IT09, JP06b, KN16, KL19a, KV90, MP13, NI92, NN17, Nap10, Owe11, WY10, LW88a].

Concave [BJHY00, DSS12, FOST10, Vaz13].

Concave-Round [BJHY00].

Concavity [Bra10, GMTW15].

Concentration [CV09, GLS15, Mra17].

Concentrators [Pip91].

Concept [COCF10].

Concerning
Concise [LL14a]. Concrete [FKKL98, Hof95].
Condensed [CH89]. Condition [CSS13, CS19, Enc05, FZ08, GMS00, GM03, HL13, KM14, LGS11, OC19, Sak94, Sch10, ZLWC12, GY92].
Conditional [HL10]. Conditionally [MB18]. Conditions [BPSS19, BPSS20, BR17a, CL20a, GJ06, JJiT14, Pfe15, Ste00, TZ15, WL03, ZZBL17].
Conflict [AAD+18, ADKS18, CKP13b, HGY20, MMSJ08, ZSW11]. Conflict-Avoiding [MMSJ08, ZSW11]. Conflict-Free [AAD+18, CKP13b, HGY20]. Conflicts [CM18]. Conformal [Ch17].
Conic [MD16]. Conics [BVZ16]. Conjecture [AK14, ACM+18, BT14, BP13, BLS19, BB16, BBM09, BHT16, CCO+13, CEOT15, CKPS13, CG02, CR19, DKS16, EKK+15, FGS19, GM20, GH06, GW07, Han16b, HK16a, HK16b, HKP+17a, HKP+17b, HKP+17c, HKP+17d, HWZZ18, HWZZ20, HKS07, JI20a, KKS10, KSY18, LPS09, Lic14, MB18, Roz19, SGM20, ST17a, Sto12, Sza08, TW19, WS06, BW92, Dow88, HL92, CCO+15, Cho09, CK11, HRS12, HY13, dH04, KO12, Rab08, Shp10, SZ15].
Conjectures [Gly10, KKL19, LW03]. Connected [ABHM00, BC02, BHY03, BAH10, BL17b, CW00, CSS01, CL13, CDP94, CDMO16, CEOR13, CY03, CL05a, CL05b, Der12, DL12, DD13, DJ11, Eiki08, EKM+19, EG03, EHJ01, FJ09, FGPS19, FL3+95, FM13, Gab04, Gab05b, GZ06, GvZ19, HW16, HV17, Hof98, JW18, Kik17, KKK17, K016, KPS20, KKO16, KRS15, LRWZ12, LC12, LPS18, LZ18b, MS16, MW14, MR12, OWS16, OZ18, PTT16, SS11a, SW01, Ste10, W010, BM97, BBM90, Cho94b, RX88, Voi07].
Connectivity [Anu18, BJFJ95, BJ98, BJGJS99, Bev10, Cal13, CDHH14, CK14, CW14a, Cho92b, CG02, DMS08b, DMS08a, DGS96, DP16, Fin09, Fle05, FG18, F92, FL10, GGW06, GM90, HLST00, JS03, Kao96, KW90, LLL17, Ni92, OC10, Pfe15, Ram04, V11]. Connectors [Kar92]. Conolly [EIJ+12]. Conolly-like [EIJ+12]. Conquer [ARS95, AS09c]. Consecutive [THJN02, Ehr16, GMZ09, RR18].
Constant [CGK+19, CEP18, FR94, Het14, Jan10, MMSJ08, SS11a, WC12, Car94]. Constant-Weight [CGK+19]. Constants [DDS16, GL14, OS13a]. Constrained [BG17, CM05a, Gb96, HMP04, JP06a, Jor03, KS03a, KS03, LS95a, Mar20, SL95, Tov90, He97, RTW97].
Constraining [SW04, SW99]. Constraint [BK11, CCJ+17, CM12a, EM20, FF06, FK17, GM04, KJJ04, KL08, MMS15, MT11, MRT03, Yos09, ZK11]. Constraints [ALM+18, BJGJS99, BKK16, BMN13, DH91, DSL01, Eps06, FKT06, FGP12, FGP10, GS13, GM90, KT14, Kam17, Kam19, Kas03, K13, KNS05, KMH4, LMNS10, Lou10, MW90, OR04, dMP93, PS97].

Convolutions [Cha16]. Cooperative [BIL03]. Cop [CCNV11, CCPP14]. Copies [CL07, Let19]. Coprime [KSY18]. Cops [FGP12, HKM20, SS11b]. Core [BKL+15, FK98, GMRT11, HW18, SZ15, VVY15, Wan02a]. Cores [CS02]. Corners [HW18]. Corollary [GLW11]. Corona [BPS07]. Correcting [BGS96, CD93, CGL10, DA10, FT05b, GMZ09, G0RF20, KM11, CZ97]. Correction [ADH+14, AG06, JMSW00]. Correctness [PS17]. Correlated [OR93]. Correlation [AL95, Bac09, Wag07]. Correlations [DJKO19, KM11]. Corrigendum [DJM+18a]. coset [CZ97]. Cosets [CHZ09]. Cost [BCG+10, BL17b, CL13, CP98, FJ17, GRY08, HSS19, HR12a, HQ03, IMS05, Mak07, MTGK05, KP06]. Costs [BYKKK18, CV07, DSS12, FOST10, FT05a, FJ17, SS11a, vWW94]. Coteries [MK01]. Count [Har19]. Counterexample [CCO+13]. Counterexamples [BBS00, CEOT15, Tha08]. Counting [ASH18, AFS12, ACD08, Bac09, Cai93, CCG+11, DM19, FKLL15, FGZ19, GRS11, Ho98, K11L3, MMS15, MPP20, MR04a, MR04b, MRST16, NT12, NS16, Pal12, PR02, PC97, vGZV13, B392]. Counts [dJMS16]. Coupon [MW03]. Covectors [CLGH11]. Cover [ÅS09c, BYFM10, BYHR10, BFRS16, BPRS13, CMPS17, CF05, CFP19, CHW10, GSS15, HMM09, KG98, Kt18a, Lev09, LW17a, Lub90a, MPSZ19, SL95, Yam07, Zeh17, Zha93, Zuc92, Jac92]. Cover-Decomposition [BPRS13]. Coverable [CCO+13]. Coverage [AS14, BNRT17, CMPS17, CH15]. Covered [BN05, LDCKM18]. Covering [BBK16, BGS17, BGH+17, BR17b, CKN14, CL20a, CCHZ13, CH01, EM20, FRZ16, Fan92, FKK05, FKK07, FGLS18, GKR+18, Gu18, Ho95, Ho98, HK02, HC98, Jan00, Jon05, KMR11, KCL08, LL99, Lee17, MPPS10, SC17, Wan02b, WY20, Zha94, BS88, CFFG88, Fra89, GHYN96]. Coverings [FKKL98, FL00, HHH195, KCL98, KL105, Bou97]. Covers [CL16, DZ09a, DHS14, DRE12, JWF05, KKL+10, KNN95, KS03b, Lu920, MRS19, MHLHL91, Mu05, MRS89]. Coxeter [Lub90b, Mar09, Pet13, Sim13]. Creating
[KS12b]. Creation [ADHL13, ADH+14].
[Age94, DL14, DL17, DL18c, DL18b, GL10, Har18, JLD+18, iKJKL09, LM12, Zha90].
Cross [BJK14, Bor10, KS05, KG93].
Cross-Composition [BJK14].
Cross-Intersecting [Bor10].
Cross-Intersections [KS05].
Crosscorrelation [CCD00].
Crosses [BE13].
Crossing [AFT12, AADM18, BGS17, BFM06, BK07, Chi11, HT18a, KM02, OZ18, TT07, dKMP+06, dKPS13].
Crossings [CSW17, DEW17, DLS11, EM99, EHL11, Kla06, PSS10, PY09].
Cryptographic [TKMM19].
Cryptography [BDDS03].
CSPs [BZ20, TZ15].
Cube [FFHJ94, RKDD13, Rif99].
Cubes [AS02, KM02].
Cubic [AC14, ABHM00, BB16, Bev10, BZ11, BIT13, CCOY17, CL15a, CL16, Cap03, CK08a, CFLZ19, CLS15, DL18a, KSS09, LM10, Luk20, Mac13, PR02, KKV11].
Cubical [ABY14, Cha91].
Cuboids [BCM+12].
Curvature [LMP19, OV12, Yos19].
Curve [ACM11, GSO4a, GC11].
Curved [OV12].
Curves [BK12, CM90, CC03, RT18, Suk13, WWKY11, vBEM17, RTW97].
Cusick [DKS16, Ros09].
Cut [AHFM08, Bih05, CMM20, CGN06a, CQX20, Cho92a, CFP16, DZ09a, DHKM11, GH90a, GvZ19, Gimi07, HM94, IMS05, iKXX0, LRT08, So15].
Cut-Rank [DZ09a].
Cutoff [HY89].
Cuts [BK90, BCH92, CR04, Fio06, GVW06, Har01, KS08a, LL17, NN97].
Cutting [Boy96].
Cutwidth [HLMP11, hVHLN12].
Cyclability [GKMT17].
Cycle [ARTV12, AS06, ABS13, ALM+18, BGL07, BCH92, CL16, Cap99, Ch93, CFG06, CLI98, CM03, DPSW08, DHJN02, FKS12, FS91, GKP18, GvZ19, HM94, KKL+10, KRS11, KW13, LS15, Luk20, MPS06, MN18, NT12, OC19, PY90, PSML08, ST17b, Zha93, BP89, BC88a, FH94, TZ97, KvIL+12].
Cycle-Bicolorable [BGL07].
Cycles [AS06, AF10, AB18, AF19, ARS17, BM19, BF12, dOBS+15, BSKS11, BG11, BY08, BCF+20, CaVL11, CF08, CGH+15, CFLZ19, CKKO10, CPPT20, CGK94, Conn05, CFK10, CY03, CHHM09, CM14, DKL+15, DX19, Dre12, Dvo05, DL10, DL14, DL17, EiIK08, EFMN08, EG18, EFK18, Fan92, FJ09, Far09, Fed01, FKM10, FKP15, FKT99, GM20, GJXZ20, GKP18, GK13a, GMHM14, GLS20, HW15, HZ95, HY12, HH13, HM19, JKS17, KS08a, KLN10, KSS12, KS12a, KO06b, LSS17, LLY10, LL17, LPS09, Lqc14, LZ05b, LMRS17, LMSZ19, MT90, OS17, PZ05, PS20, PP90, RS14, Ra20, Spa07, Wan02b, Wan08, WX13, ZZW13, Zho92, Zho93, ZLWC12, Hur94, Hut88, KP06, RS93, YZ97].
Cyclic [ANP91, BG017, BER11, BW02, CS14, CDD00, Din13, EHJ01, Fér15, HK16a, JS17, KLM05, MP98, NS16, QP15, CET97, GO12, Jia95].
Cyclically [Ehr16, GM91, GM93].
Cyclotomic [CGSM16, Mom13, SS18a].
Cylinder [TT91].
Cylindrical [Ful14, dS91].
D [Naa01].
DAGs [DGL11].
Data [CKN+15, GJ19, GKN10, Kao96, SV11, Tam88].
Databases [AA11, BHM00].
Dates [GQS+02].
Davenport [Pet11, Pet15].
Deadlock [Lyn94].
Decay [KM11].
Deciding [ACFL16, BI13, CGG17, HT18a].
Decimation [COPP12].
Decimations [BCPP09, CK11, GKM04, TQ09].
Decision [LNNW95].
Decisions [WS12].
Decodability [CM05a].
Decoders [AM95].
Decoding [BZ04, EH13, Han98, KRR16, RR03].
Decomposing [BH97, dH89].
Decomposition [BCDM08, BP12, BPRS13, BPT91, CKM14, CDMR12, Ch17, CP16a, CD18, DH20a, Er17, EMT15, FL10, Gab04, Gi05].
Decompositions [BDF+18, BAM16, Cap99, CGK+19, CS09, CK99, CLY05a, Dro16, DJM+18a, DJM+18b, Erd20, KiT13, Köp07, Lai08, MPS06, MS17b, OS13b, Shp13, Spi19].

Decycling [PZ05].

Deep [DMR11, Pip06].

Defective [BLM20].

Defectives [CHW88].

Define [Fio06, HMS05].

Defined [AKP20, ADL+09, Bon09, Gij05, GM91, GM93].

Defining [BS15b].

Definite [Tro15].

Degeneracy [FGL+20].

Degenerate [GKL19, KMŚ+09, KNK05].

Degree [ABC+15, AM06, dOBMS+17, BC94, BHP92, BPSS19, BPSS20, Bon08, BMN13, CKKO10, COL10, CFK10, CR19, CNG19, DLMO18, DFJS15, DP92, DF04, Dro16, DH20a, DK14, ERS19, EMT15, FGPS19, FT20, GP18, GKY06, HPS09, HRS18, HN15, HZ10, HK16b, HKK+09, HLT19, JN16, Joo16, KKL+10, Kan08, KSS11b, KPP13, Kha13, KL14, KW08b, KM13b, KSS08, KKS17, LS95a, LM14, LR04, LM11, LXZZ08, OPV14, OC19, Pfe15, PVUY18, Shp15, SE14, ST17b, Ste10, UV15, WH15, Yus14, Zak14, ZZBL17, BCLR89, Car94, CHO+89, LP88].

Degree-Constrained [LS95a].

Degree-Diameter [DF04].

Degree-Doubling [KM13b].

Degree-Restricted [BC94].

Degrees [BBLM13, CL06, CDK10, GM13, IT09, Oze13, Wil99].

Delannoy [AS03].

Delaunay [Str20].

Delay [LS95a].

Delaying [CDP94].

Deletion [CGL10, FSV13, GLS16, JP18, PRS18, Sns13].

Deletion-Correcting [CGL10].

Deletions [ABY11].

Delineation [DO08].

Delivery [BYKKR18, HV00].

Delsarte [AL07].

Delta [AP18, BC95, BH13b, FF06, KT14, Tak14].

Delta-Matroid [FF06, KT14].

Delta-Matroids [BC95, BH13b, Tak14].

Demand [Che04, Myu01, NS89].

Demands [CEP18, Che04].

Democratic [May96].

Dense [AHP19, BD20a, CFP19, DHJ+13, GKR+18, HW15, JN17, MP14, McK19, So106].

Denser [Nel15].

Densities [BBBZ12].

Density [BHL05, CF09, CFS20, Hua14, LM14, LZ18a, LZ09, Meh12, MMP13, Ric14, Sid18, Suk13, WS06].

Depend [Kra07].

Dependence [DM03].

Dependencies [BBG08, SB10].

Dependent [FS12a].

Dependent [AB05].

Depth-A [AB94].

Depth-Two [RTS00].

Derangement [CX08, MS14].

derangements [FZ88, Zen90, Zen90].

Derivation [EW19].

derivatives [Car94].

Derived [DF02, HPS96].

Deriving [AMB11].

Description [ART14, Wal19].

Descriptions [May08].

Design [ACLW18, BLMA+08, BKM08, BH93, CMV10, CS09, CKN+15, CV07, FL02, GM90, HKS07, IM96, KNS05, SW99, DM88].

Design-Variable [IM96].

Designing [BAH10].

Designs [BCS04, BV10, BRS09, CM90, GG11, GL08, GHM10, Jan00, Kas05, LS16, MMJF03, Ran02, Zha94, ZGL+09, RCS88].

Desire [AHAHFdK10].

Detachment [FL05].

Detachments [JS03].

Detecting [CK08b, FLKL15, KLL13].

Detection [BS91, CHW88, KG93].

Determinant [CHX15, MV99].

Determinants [CV09, EFMN08].

Determination [AJM08, LC03].

Determine [CM18].

Determined [Pin08].

Determining [BN01, LS89].

Deterministic [BMS12, BBS00, BPT91, DKM+12, FKK18, GMPZ15, HV00, KP04, Lu04, SYKY18, Som14].

Detours [BCDF19].

Deviation [Yan20, WW91].

device [CHW88].

DFS [Cai93].

Diagnosis [SW01].

Diagonal [OS17].

Diagonals [PR98, EFF91].

Diagram [dAHFfdK10].

Diagrams [ANP91, BG12, DEH20, MRAS19, Mor94, Rea15, Saw02, Stu88].

Dial [BD20b].
Dial-a-Ride [BD20b]. Diameter
[BCS04, BDF+18, BC09a, BFH15, Cap03, CFM94, CkdAhdf13, CLST12, DF04, FFV11, FR99, FM11, FFie98, FK18a, HKM20, KPS19, LLM19, LY10, Mer99, RC98, RKDD13, SE14, Tod14, BC88a, Zho88].

Diameters [NS07, Ram04].

Diametral [NS07, Ram04].

Diamond [AG15, MTR14].

Diamond-Free [AG15, MTR14].

Dichotomies [WS12].

Dichotomy [ASS17, Fed06, HR12a, MW20a, Sig10].

Dickson [QD14].

DICUT [AHS01].

Dierence [CCG05, Fan20, FK18b, KT99a, Mom13, NYKY20, FMRR88, Ste88].

Dierences [Sav90].

Dierent [DF10, HY12, KMS88, KS88, KMS12].

Dierential [LZ06].

Dicult [BFR12].

Difficulty [HM20].

Dilate [Sha20].

Dilworth [IT12].

Dimension [ABC11, ABC+15, AE03, BGN15, BDF+18, BFGR17, BLL+15, BT93, CHM+07, Cai18, FH94, Fe14, FMP17, Gly10, Hed08, HWS18, JMW17, Kra18b, LCV03, PZ98, SGM20, SS10, BT97, Sen97].

Dimension-Free [Kra18b].

Dimension-Normalized [AE03].

Dimensional [Ale10, ABZ15, BP15, Bra05, CK18, CC07, DDS16, FKTO6, FM11, GPP04, GW00, MW19a, MR15a, MW20b, NH91, SBD+19, Zun11, HM20].

dimensioned [Tod89]. Dimensions

[AC14, AK14, ANP91, AS05, Bar01, KK17, LSW18, RS16, SS95, VVY15].

Dirac [CS19, CP20b, Lo14].

Direct [AAHTL10, BIKZ05, WZ18].

Directed [AFG+16, AFG+09, AB18, ABHW13, BCS04, BW99, BMP13, CMM20, CF08, CAP18, CY18, Che92a, CkG94, Er2d0, FFl98, GHM10, GMS15, GNS11, Han9a, HN15, Hua14, JLR+17, Kiki12, KviL+12, KNS05, KTP99b, KPPW15, KLM05a, LL17, Lic14, SLi10, ZZW13, Bal89].

Directional [ATPRU91, AB00].

Directions [DMN12, SW09].

Dirichlet [CW92].

Disconnecting [GS00].

Dissociation [Vaz13].

Disentangling [Sul12].

Disjoint [ARS17, BM19, CHG+15, CflZ19, CFH16, Con05, DSS92, EJ01, FIN98, Ful14, GM20, GPV15, Hkl11, HY12, HMP04, KikK17, KikK11, LLL17, LPS09, Lic14, LW20, MG19, MLHHL91, Sch91b, Sli10, Yus09, Yus14, HR88].

Disjointness [ALM+18, SW14].

Disk [GC11, JSRSW18, Sol12].

Disks [AKP20, FS05, Ric14].

Dispersers [RTS00].

Dispersion [JPT12].

Dissections [CMR18, DST01, Alt89].

Dissolution [vBBC+15].

Distance [ANS16, BDD+19, BCEO5, Che98, CE06, CkdAhdf13, DMS08b, DMS08a, DOS94, DX19, FG01, GP08a, GMS00, GM03, GJ06, GÓ12, HH+02, IK09, KN16, KL19a, LL99, LLM19, Len98, Li17, LZ05a, LZ05b, NS11, Pon20, Sak94, Vin11, WL03, Wil99, WC12, XGG15, XG20, Yu17, ZLWC12, FG89, GY92, PS97].

Distance-Hereditary [DOS94, HH+02, KN16].
Distance-Increasing [WC12].
Distance-Preserving [BDD+19, Che98].
Distance-Regular [FG01].
Distance-Uniform [LLM19].

Distances [ABR05, CR16, CF09, GJ12, KNZ14, Lab13, Owe11].

Distant [CtJL01].
Distinct [ASS09, CFG+15b, GWZ18, Je95, Pin08, Tak90, KP06].

Distinctness [TQ99, RSSW88].

Distinguished [HK15, NO08].

Distinguishes [Erd17].

Distinguishing [ACD08, BrLS07, CHK10, JL20a, Prz13, WH15].

Distorted [GC11].

Distortion [SBD+19].

Distributed [DM18a, HKP01, HJ94].

Distributions [Bon09, CHP+90, CFKK17, ERS19, FS01, FPS18, LS09, RJ93, RF12, Slp10, Ste88, WS17b, HM88].

Distributed [ADL+09, Nao91].

DLP [BN01].

DM [BIKY18].

DM-Irreducible [BIKY18].

DNF [SST08].

Do [ARTV12, MS20, TV03, CM18, KPT95].

Does [GC11, Kra07, MM15].

Doignon [CHZ18].

Domains [Das99, FK97].

Domestic [LHC90, SV08, MM96].

Domesticity [Moi08, NS07].

Dyadic [CMR18].

Dyck [AG15, Fer16].

Dyck-Paths [AG15].

Dynamic [AB05, ABL+20, GPST15, HKL+14, IW91, Juk16, LNO96, Ram04, SS00, Tam88].

Dynamical [Gad18].

Dynamical [LM11, OS11, RSV+14, Ul14].

each [Lin97].

Easy [BAH10, CMV10, DRW98, Vaz13].

Economic [vWW94].

Eden [MM93].

Edge [AJM08, AS10, ASS17, BJKV07, BrLS07, BJFJ95, BJ98, BJS99, BS09, BCC+11, BG20, BL17b, BMR+10, BCF+20, CH13, CH17, CLS09, CGK+19, CSS01, Cho92b, CM18, CMM+10, Con05, CM07, CW09, Cra19, DMS08b, DMS08a, DJKO19, DS06, EJ01, EF18, Fle05, Fra92, FPS18, Gab04, Gab05b, GS94a, GK07, Goe01, GPW09, HK93, HT18b, HMP04, JMSW99, JMSW00, Jor03, JS03, JL20a, KS08a, KiKK17, KSS11b, Lai05, LSS17, Lev15, LLL17, Lo14, LW20, Mac13, MW14, McL10, Meh12, MLS11, NI92, NK90, OC10, Prz13, Riz02, SS11a, Sch91b, Sim13, Sli10, Ste10, WL02, Yus14, dMP93, BM97, Bon15, Cho94b, Jac92].

Edge-Bandwidth [AJM08, JMSW99, JMSW00].

Edge-Bipartite [Sim13].

Edge-Chromatic [dMP93].

Edge-Colored [BS09, BCF+20, CH17, CGK+19, Lo14, CH13].
Edge-Coloring [BCC+11, Cra19, NK90, Riz02].

Edge-Colorings [BrLS07].

Edge-Connectivity [BIFJ95, BJJ98, BJGJS99, DMS08b, DMS08a, Fle05, Fra92, JS03, NI92, OC10].

Edge-Cuts [KS08a].

Edge-Disjoint [Con05, EJ01, HMP04, KiKK17, LW20, Sch91b, Sl10, Yus14].

Edge-Independent [HT18b].

Edge-Injective [BMR+10].

Edge-Isoperimetric [Lev15].

Edge-Labeling [Meh12].

Edge-Markovian [CMM+10].

Edge-Partitioning [MLS11].

Edge-Robust [Lai05].

Edge-Surjective [BMR+10].

Edge-Weights [BJKV07].

Edges [AD11, BS10a, BGH+17, CL07, Dvo05, EIiK08, EM99, FPS13, FT17, Ful14, HV17, HVLP13, Kla06, PY09].

Edgewise [Ath14].

Edit [Lab13].

Editing [FGPS19, GKNU10].

Eect [BHH94].

Efficiency [CDHZ12, GK02].

Efficient [BM16, COCF10, DP96, DMNW13, GOR20, GS93a, HKK+09, KG93, KRR16, Myu01, PW02, TKMK19, Vaz12].

Efficiently [ABY14, BNCPR20, HH+02].

Ehrhart [ST10].

Eigenvalue [CK14, LSSW88].

Eigenvalues [CK14].

Eigenspace [Iri16].

Eigenvectors [LS003].

Electric [HHH02].

Electric [BK90, KW17].

Elegant [EFK18].

Element [CK14, RS88].

Element-Connectivity [CK14].

Elementary [MR04a, MR04b, SS08].

Elements [Che07, Sav14, Jed93, JLM93].

Elimination [BKS09, Che98, KSW17, Way01, Vav89].

Elliptic [ACM11, CM90, CF17].

Embeddability [DM15, HMM09].

Embedded [AD96, CdVL11, CCH14, DH20b, PP90, Car88, Hut88].

Embedding [BPSS19, BPSS20, BHT10, CGN+06b, CNG19, EP10, EM99, Gol96, HKP+17d, Hor14, Kri10, Moh99, MW90, NOO12, Obr93, ONN19, JM97].

Embeddings [AS02, BS15a, BGM08, Ber07, BCLR95, Cai93, CK99, DGL11, KFHR94, MR15a, PSW96, SBD+19, BRK89, SP88, Suz10].

Empty [AHH+10, BDJ+15].

Encoders [AM95, RF12].

Encoding [Gra04].

Encodings [HKL99, STT92].

Encryption [KOS16].

Endowed [BR17b].

Endpoint [LW17a].

Endvertices [DG08].

Energy [GP20].

Engineering [Tod89].

Entanglement [AP18].

Entirely [WHW14].

Entries [L117, Vin12].

Entropic [MR14].

entropies [KM88].

Entropy [FGP10, MP13, NW95].

Enumerating [EM20, FKK05, FKK07, NP18].

Enumeration [GM13, Ho95, KLMN14, KBE+05, KCL98, KML05, MR20, McL10, OPR12, Pip01, Pip02, RC18, Sav14, VZ93].

Enumerative [MPP17].

Enumerator [BK91, DM13].

Enumerators [Bar02, Kap14b].

Envy [MS20, PR20].

Envy-Free [MS20].

Envy-Freeness [PR20].

EPT [vIKL+16].

EPTAS [Jan10].

Equal [CER98, Got03].

Equations [KLL13].

Equidistribution [HS95].

Equireplicate [ACLT01].

Equivariant [Buk16, KT19, Yu17].

Equicolorable [Pip01].

Equiangular [Buk16, KT19, Yu17].

Equidistribution [SS95].

Equireplicate [ACLT01].

Equivalence [BYR05, CHZ04, CV16, LGS11, PPR98].

Equivalent [Cho92a, Cho92b].

Erdos [DK16, AFH+18, BBT16, BJJ18, CSS13, CP96, DT16, Dow88, Han16b, HLO17, IK09, JO18, KSY18, LMSZ19, MS14, Roz19, Vin11, XG20, vBJU20].

Erlang [FG89].

Errata [GM93].

Error [BLR17, DW11, Dow91a, FKK07, HWZ220, TZZ20].

Error [AG06, BZ04, BGS96, CD93, DA10, FT05b].
GMZ09, GOR20, KM11, CZ97.

Error-Correcting
[BGS96, CD93, FT05b, GOR20]. **Errors**
[MMP10]. **Escape** [FGLP14]. **Estimate**
[Go06, Hor19, WWKY11, LRN11].

Estimates [KR13]. **Estimating**
[MMPS10]. **Estimates** [KR13]. **Estimation**
[ERS19, SS02b]. **Estimators** [CV09].

Euclidean [DGN+20, GL15, HM88, Har11, Kar89, SE14, Tas97].

Euler [FG14, IKZ08, Wu09]. **Eulerian**
[BOP94, BPS18, Cap99, CCM95, CH13, CH17, DMNW13, FIN98, IP91, KIKK17, MS17a, MS17b, MRS19, YZ17, ZL11].

Evaluation [HKR00]. **Evaluations** [MR04a, MR04b].

Evasion [DKS _Z10, IKK06, SS89].

Even [BL09, BCPP09, CCOY17, CHZ09, CGK94, DZ09b, DQW+15, GJXZ20, GB12, GvZ19, IT08, NNO15, PSS10, Rio08, YZ97, Jed93].

Even-Cut [GvZ19].

Even-Cycle [GvZ19].

Eventown [SV18].

Events [YAT16].

Every [AcRS07, KSS11b, OZ18, HS89b, Zho88].

Evolution [Bio10, DKS18]. **Evolutionary**
[CHP+90]. **Evolving** [CMM+10, STT92].

Exact [ADKS18, BHL05, BDM02, Cre04, GH13, HMS93, KYDN09, KMRR09, LZ09, MSK93, PSTF00, Sch04, dJMS16].

Examples [BL16, Lut04].

Exceedances [Ath14]. **Excess** [PVUY18]. **Exchange**
[Kot13, Obr93]. **Excluded**
[EW19, FHJV17, FGT11]. **Excluding**
[CNRS15]. **Exclusion** [Doh03, Fér15].

Exhaustive [BHRZ14, Kas05]. **Exist**
[CHHM09, MS20, TV03]. **Existence**
[CLS1a, CSS13, CM14, GL08, HZ95, LLY13, MMJF03, ÔV04, OC19, WLD09, ZGL+09, RCS88]. **Expander** [BZ04].

Expanders [Kri18, Vin13]. **Expanding**
[AMNV18, NSiTW18, OS13b]. **Expansion**
[ACKM19, DN16]. **Expansions**
[BSS14, KMV15]. **Expected** [BHL+15, CL06, FS12a, MS19, Pip91, PRS88]. **Experimental** [BLMA+08]. **Explicit**
[AB94, Cap03, CY08, DA10, DO08, GPST15, Lu08, SS02b]. **Exploiting** [CP16b].

Exponential [CY08, CHZ09, Ege10, FKL+19, GRS12, IK09, Mac18, MPSS20]. **Exponentially** [HM12a, NvdP18, NT05].

Exponents [BZ04, FS01, ST20a]. **Expressing** [EGMR20]. **Ext** [JKSW17]. **Ext-Triangular** [JKSW17]. **extend** [RS93].

Extendability [AS06, ANP91, CFGJ06, VW09, ZZBL17]. **Extendable** [ABS13, LS15]. **Extended**
[KPT12, dCST20]. **Extendibility** [LZ03].

Extending [GR17, KKK+12]. **Extension**
[BYHR10, Bo10, BKTW15, DMNW13, FR99, FM11, NNO15, NNO19, Ox119, Pad16, Peg14, Vo07, JM97].

Extensions [AKW05, AMPT93, BM13, Che07, Naa00, PR91, Sta92, Ten09, FH89]. **Extinction**
[FS12a]. **Extractors** [RTS00].

Extremal [AE03, BG07, BL19a, CD04, CL20a, CKPW09, CL07, CFS20, DST01, DFS15, DJS12, GP17, GH13, HJ94, Jan20, Jia95, JS17, KLM14, KWZ13, LLZ99, MT20, NT05, Pon20, ST20a, Sid18, ZZBL17, dLL09, BG91]. **Extremum** [HM88].

Face [BW02, Bro11, CLS09, CN12, KSS11b, KM14, Mur10]. **Face-Width** [KM14]. **Faces**
[Tza08]. **Facet** [CLM03, CdV02].

Facet-Inducing [CdV02]. **Facets** [BG09, Ch11, DF02, Fio06, FLMY09, Pad16, Bal89].

Facial [HS08, MM11]. **Facility**
[AYZ04, BB09, CCZ12, RS10, SX13, Tam91].

Factor [CL16, CSS13, IT08, KS03d, Mur06, PSML08, Rah16, SS11a, SV08]. **factorable** [FH89].

Factoring [Ron92, Sza06].

Factorization [AAH10, Tro15, BGM94]. **Factorizations** [CL05]. **Factors**
[AS09b, BIT13, BMN13, CL15a, CDK10, LLY13, LLY17b, MP98, Riz02, ZLS08, BH97, CY18, HKKK88, Mit97]. **Fail** [MMO20].

Fair [AFP+18]. **Falconer**
[IK09, Vin11, ZG20]. **Families**
[BKK16, BSS14, Bor10, BCF+10, CGK+19,
CLW09, DK10, EFK05, GZ19, GP08a, GLP+12, ILM+16, Jev95, KL19b, KM01, KMS12, KM13b, LÖ05, OS16, PMM98, Per16, Ran02, SG16, WZ18. **Family** [Ave13, CTT05, FFLP20, LL15, MTR14, Pin14, dM07]. **Fan** [CH06a]. **Fan-Out** [CH06a]. **Fans** [Ber20, CR17b, Sha13]. **Far** [FGL+20]. **Farthest** [HHLO95]. **Farthest-O** [HHL095]. **Fast** [Dah93, DM13, EMT15, FH10, GH90b, GRS12, MP17a, Saw02, Som14, SV11, Car88]. **Faster** [AFL+20, KP04, LMSZ19, Ull14, Way01, YZ97]. **Fat** [GZ19]. **Faudree** [JO18]. **Fault** [AS02, AU91, BCSK07, CFH16, HL10, PMM98, PL94, SX13, UBHS93]. **Fault-Tolerant** [AS02, BCSK07, PMM98, PL94, UBHS93]. **Faults** [DP96, GV92]. **Feasible** [GVW06, GS95, LS08]. **Feedback** [BBF99, BNN90, CPPW13, ENSZ00, KvIL+12, Ko88]. **Fermat** [CW14b, EA11, LY18a, OS11]. **Ferrero** [Boy01]. **Few** [AFT12, Bab08, BHNP16, BKKZ17, BS16a, BCF+20, CH10, DL19, HT19, HVLP13, HS06, Hor14, KPP13, Pad16, SV20, Stu88]. **Fewer** [BS10a]. **Fibonacci** [CIT05]. **Field** [Che07, LSW18, Sch02a, Gor93]. **Fields** [BGY20, BGL03, BS90, CKP16, DQW+15, IK09, KMP03, MWW20, MP13, Mat19, NvZ15, NÖ08, QP15, Rön92, Ros09, Shp13, Shp15, Vin11, Vin12, Vin13, WB90, XG20, vzGVZ13, LW88b, LARN11]. **Files** [Orl93]. **Fillings** [CWYZ10]. **Final** [Pic14]. **Finding** [Age94, BCFD19, BZ11, BIT13, BCPK9, CdvL11, COL10, Djj06, Dnj+13, F008, FL96, Gurt93, HIKT99, Hoâ10, KY12, Kri18, Lz06, LM16, MM96, MT90, MGC14, NYKY20, Riz02, SS04, SW01, SFS09, Wan02a, YZ97, Zha90]. **Fixes** [GS93a]. **Fine** [DL17, DL18c, DL18b, KLS18]. **Fine-Grained** [KLS18]. **Finer** [HKP+17c, Lam20]. **Finite** [AM07, AMB11, Bab92, BCE10, BBS00, BFGM15, BGL03, BY08, BS90, CW92, Che07, CW16, CDFR18, CKP16, DF94, DM13, DQW+15, Din06, Gad18, GKM+18, GI07, IK09, JS17, KM01, KCL98, LZ03, LT11, LSW18, MW20, Mal15, MK09, MRR20, MMR06, Mat19, MW20b, PRS03, Pin14, QP15, RSW05, Rom06, Rön92, Ros09, Sca03, Sca05, Sch10, Shp13, Shp15, Sza06, Vin11, Vin12, Vin13, WB90, XG20, YAT16, vzGVZ13, FMRR88, Jia95, LS89, LW88b, LRR11, Lin89]. **Firefighter** [CCZ10, LW10]. **Firing** [Eri96, GK16, JSZ15, Tar88]. **First** [BHL08, BK10, BM13, CH06a, DJW12, LS17, MG14, MW20a, Kie88, KPT95]. **First-Fit** [BHL08, BK10, BM13, DJW12, MW20a, Kie88, KPT95]. **First-Stage** [CH06a]. **Fit** [BHL08, BK10, BM13, DJW12, MW20a, Kie88, KPT95]. **Five** [CPPT20, CNG19, DH20c, DH20b, LS17, Orb93]. **Fixed** [ARS17, ADKS18, BJKV07, BCD19, BV10, CJ07, CKF10, CPPW13, DW10, DW11, Fed06, FT20, GRR15, HN15, HT19, KPPW15, LW17a, LSZ19, PMM98, PSV08, RSW12, WS96]. **Fixed-Parameter** [BCDF19, CPPW13, HN15, KPPW15, LSZ19]. **Fixed-Weight** [RSH12]. **Flag** [Bro11, CN12, KN13, LN17, dM07]. **Flammable** [Pra13]. **Flex** [Sch10]. **Flip** [FKMS20]. **Flipping** [GKW19, CGG88, Sak89]. **Flips** [BDPP10, GKW19]. **Flooding** [ADL13, CMM+10]. **Floor** [Fra10]. **Floorplanning** [YS95]. **Flora** [Fra10]. **Flow** [Fle00, GS16b, Gijn07, IMS05, KNK93, LMS19, Ram90, Swi03, TH11]. **Flows** [CLLZ18, CDW07, CL20, EdJdVLT18, FZ08, FO00, GR99, Gijn07, KR16, Koc98, KK09, LLS+20, LXZZ08, MS17a, MNO20, WCLZ15, WYZZ14, ALZ96, YCH97]. **Fold** [CH10, JLR20, OS15]. **Folder** [Hir11]. **Folkman** [HRS18, LL15, Lu08]. **Forbidden** [AFK12, CFP16, FXY14, FPS20, FL+16].
FW20, FM13, HH04, Hav19, LiO15, Let19, PP07b, Raz10, ST17a, Tu08. Force [FM13]. Forced [dOBMS+17]. Forcing [Dan01, KKS19, KM14, ST17b, SZ13]. Ford [HS88]. Ford-orderable [HS88]. Forest [Cha19, CKN13]. Forests [AT90, BK14, CK14, KMR11, Tak90, Tak14, vKLS14]. Form [Jev95, WS17b, Exo89]. Formal [ASMF10, BJ91, MP95]. Forms [BCE++00, CD93, CS14]. Formula [CF17, Han09, NW95]. Formulae [Cre04, Lla06, PRS02, Sto12]. Formulas [Bac09, FFV11, HS06, MPP17, MSK93, MNPR17]. Formulation [CKNZ05]. Formulations [KPT12, dCST20]. Forward [HS88]. Forwarding [Saa93]. Foundations [BL16]. Four [AS05, HT18b, HMG05, LGS11, LM17, San96, Vin13]. Four-VeV [Vin13]. Fourier [BBM09, Car88, DDS16, IK09, Mal15, Sca03, TQTL13]. Fractals [FHNN18]. Fraction [KK10]. Fractional [Bar04, Dr016, DH20c, EK13, Fis04, Fle00, FO00, GKL19, HZ10, KKN95, KKS10, KKV11, KLP12, KKK+12, Liu14, CFGG88]. Fractionally [KiK12]. Fractions [Het14, HKW15]. Fragile [CMvZW16]. Frame [FMOS20, Fra95, GP20]. Frameproof [Bla03, SW98]. Frames [BHJ18, CW16]. Framework [Mur06, SB10]. Frameworks [BSIT15, CW96, FSW13, FRW12, KiT13, NOP12, NUP14, NSITW18, SiT15, Whi88]. Free [AP18, AAD+18, AKP20, AG15, ADKS18, Ave13, BS0a, BFK+12, BLM10, BM16, BKKM99, BS10b, BS16c, BF17, CKP13b, Cho94a, CS18c, CS18b, CGSZ20, Cib13, CD16, CF10, CKOS06, CD14, CR13, CR1a, DK10, DJ11, DPRS10, DNB99, DL510, DL17, DM17, DL18c, DL18b, EK13, EMOT16, Eri20, FL96, FKMS10, GH19, GPvL15, GLK99, HJ18, Hav19, HKW15, HGY90, HT93, ICM99, JW18, KM19a, Kas05, KS08c, Kral18b, KOT16, LM08, Liu14, MTV08, MM12, Mak07, MS20, MTR14, MD11, OS16, PRR02, Pen12, PT94, RY91, Sch02b, WW18, dFM04, ASS17, BH97, COS97, Pic14, Ram97b, Ram98, Sp95]. Freeness [AKKR08, PR20]. French [Zen90]. Frequencies [Nag10]. frequency [Ray94]. Friendly [Mon15]. Frieze [DKM+12]. Frobenius [AOV15, Front [Kim11]. Fugitive [RT11]. Fukuda [RC18]. Full [Din06, FR06, Hu010, OV04, TV03]. Full-Rank [OV04, TV03]. Fullerene [FKS12, Kar20, YQZ09]. Fullerenes [Gra04, KSS11a]. Fully [HKL+14]. Function [AFH+18, BD20a, BGS17, Cre04, EFMW18, FI05, GSWW92, GS13, GJ16, Har19, Jun12, KG98, LL99, LS09, Loe10, Lou10, MR04a, MR04b, NO08, Sch02a, Yos19, FV97]. Functional [GM91, GM93]. Functions [AH96, Ale10, ABZ15, AL95, AL71, Bac09, BBK+16, BBDK00, BSS14, BGS96, BT18, BB03, BCL+18, BBMM09, BF+08, Br90, BG19, CDD00, CW92, CMP15, CH15, CK08a, CS18a, CC03, CH19, DwV18, De15, EMRFS14, FO90, FY14, GSPRM91, GVKS06, GSS14, GM91, Gru17, HKR00, HK14, HR05b, JMS90, KMO18, KMT07, KL08, KCTR13, LMNS10, Lev15, Lia06, Mur06, NW95, PZ98, SS02b, TQTL13, TKMM19, WS19, Yok19, Zun11, dGV05, GM93, HSLd88, Lin97, Ts96]. fundamental [YH88]. Further [HVV07, Ray94].
Graph-Based [GKNU10]. Graph-Coloring [HK96].
Graph-Different [KMS08, KMS12].
Graph-Theoretic [KM05a].
Graph-Theoretical [Wag07]. Graph-TSP [New20].
Graphic [FS09a, GS16b, KMPR14, PP13, Wag18].
Graphical [CR96, FGP10, MUWY18].
Graphicality [BR17a].
Graphs [AAHLT10, AAD18, ARTV12, ABS13, AFT12, AA10, Adl08, AH03, AD11, AKZ17, AB14, AJM08, AH16, AH96, ACH14, ABHM00, AD96, AFG12, ACG94, AKKR08, AaW09, ABC+15, AKTZ19, AHP09, AGH11, ADL13, AP14, AF19, ABY11, AS07, AS09b, AS14, AG15, ACD08, AM06b, AB07, ABHW13, AE03, BB16, BJKV07, BG+04, BGV07, BAl08, BHL08, BSo10, BS15a, BL19a, BC02, BC03, BHRZ14, BFJ95, BJHY00, BCS04, BPS07, BF96, BS09, BCC+11, BST20, BP14, BBeC11, BMG08, BTU09, BC09a, BFGR17, BS15a, BIKY18, BCDMR08, BHL02, BGL07, BDPR18, Bn01, BHH96, BG20, BW99, BG+20, BLo10, BKK95, BD+98, BDFP10, BMP13, Bon08, BZ11, BDEK06, BKM13, BHT10, BKTW15, BCL+18, BLL+15, BTR13, BDCV98, BLo4, BLM10, BM16, BC09b].
Graphs [BK07, BFI+08, BMN13, BSo9, BKKM99, BCP08, BN05, BY08, BS10b, BS16c, BF17, CR10, CdVL11, CHM+07, CCOY17, Cai93, CCVZ10, CDP08, CEHS08, CL15a, CL16, CTU14, Cap03, CDHH14, CW92, CMPS17, CD04, CL02a, CS09, Cha19, CMM20, CDM+14, CF08, CL07, CK13b, CGN+06b, CEP18, Che94, CFGJ06, CCEOT15, Che17, CL11, CLLZ18, CY18, CHK10, CI018, Ch09a, Cho94a, CKSP13, CS18c, CS18b, CPPT20, CGSSZ20, CGK94, CP16a, CH11, CMM+10, CP10a, COL10, CCL+06, Con05, CN12, CF05, CKF10, CR10, CI010, CDFR18, CFP19, CF09, CKOS06, COS10, CDHK16, CL15, CD14, CW09, CR13, CR15, CR17a, CR17b, CRA19, CR19, CL20b, CY20, Cre04, CNG19, CY03, CLY05a, CLY05b, CLST12, CD19, CM14, Dan01, DNS94, DOS94, DKWL20].
Graphs [Dei15, DZ09a, DRKR12, DHT06, DK02, DV96, DMP07, Dii10, DDE17, DL12, DD13, Do19, DK06, DK10, DJ11, DX19, DMKS08, DHL+13, DP15, DGS96, DF04, DPRS10, DKS18, DNB99, Drel2, Dr016, DFT15, DP16, DP17, DEW17, DJM+18b, DSS13, DMS12, DST08, DPS08, DS09, DLS10, DLS11, DL14, DL17, DM17, DL18c, DL18b, DH20c, DH20b, EK13, EIK08, EKM+19, EFM08, EMOT16, EP10, EG03, EM99, EHJ01, EST14, EW19, En09, EJK+09, EHLP11, EO16, EdJdVLT18, EFK18, ELR98, ENSZ00, FRMP15, Fan92, F09, FKS12, Far09, FMM03, FH+13a, FH+14, Fe10, Fe90, FKMS20, FFie98, FG01, FPS20, FK18W92, FLe05, FKL15, FPR18, FPS13, FW20, FP10, FHS14, FJJ18, FT17, Fra92, FL+95, FL96, FK18a, FK05b, FHL13b, FPS18, FT20, FP13, FYK00, Fu14].
Graphs [FK18b, GRR15, Gao13, GJ20, GH19, GP08a, GMS00, GM03, GM05, GS98, GM16, GS03, GKL19, GmN06, GPK19, GR17, GK13a, GB12, GH90b, GHvH15, GPV15, GHP20, GHV06, Gra07, GL14, GKR+18, GK92, Gu08, GKL09, HH04, HPW09, HLT00, HRS18, Han19a, HST19, HSS10, HVW07, HN15, HM94, Har18, HM12a, HZ10, HSS08, HH02, Hk19, HZ08, HLR92, HLM11, HvtHN12, HH05, HHLM20, HRS17, Hen18, HY10, HK16b, HKP+17b, HKP+17c, HLO0, HR05a, Hor19, HKM20, HH+102, HXZ18, HGY20, HT93, HM12b, H98, Ikm09, Ja10, JT11, JMSW99, JMSW00, JS12, JKSW17, JLR+17, Jou05, JRS14, Joo15, JN16, Joo16, JS03, JDT13, JW18, JSR18, KKL+10, KRS11, KR16, KiK717, KKS19, KKP11, KMM12, KKP15, KNR92, KW92, KN16, KFHR94, Kar20, KM19a, iKSZ04].
Graphs [iKKKL09, iKM10, iKO16, KPP13, KNK93,
KZ04, KMŠ⁺09, KL14, KR04, KM19b, KM02, KV09, KMRR09, KK14b, KW14, KM88, KS07, KNP05, KZ08, KMV15, KS08, KM14, Kr04, KST06, KS08c, KSS09, KSS12, KT09b, KS03, KPPW15, KR20, Kri10, KLS10, KS12a, KRS15, KKS17, Kri18, KO06a, KO06b, KOT09, KO12, KZ18, jKiO20, LS15, LTBL20, LC04, LLM19, LPW⁺13, LLS13, LiO15, Len98, Let19, Lev15, LM08, LLY10, LRWZ12, LL14b, LW17a, LHL18, LL17, LZZ99, LS03b, LZ05a, LC12, Liu14, LR04, LHC90, Lu08, LWW13, LWW18, LLS⁺20, Lub09b, LiCKM18, LM10, Luk20, LXZZ08, LSSY10, Lyn94, MN18, MWWZ20, Máč13, MS17a, MS17b, MRS19, MM93, MT05, MTV08, MM12, MP14, Mak07, MP94, MS16, MW14, MN15, MSS14, McK19, McL10.

Graphs
[MWW94a, Meh12, MPM13, MP17a, MSZ10, MC12, Mer15, MNN18, MT03, MST09, MP17b, MTR14, Moh99, Mon13, Mot19, MNS14, MsLV13, MLS11, Ni92, NOO12, NvdP19, NP20a, New20, Nie00, Nor11, OC10, Ob13, OYY13, OC19, Oze13, ONN19, Pa12, PRR02, PZ10, Pen12, PT14, Per16, Pe15, Pik03, Pip02, PTr94, Pr13, PP90, Ram90, Riz02, RS08, RW19, RS15, Sak94, SMR08, Sch91a, Schh, Sch91b, Sch02b, SCSR94, SCSR04, Shp15, Sid18, Sim13, Sli10, SCSR94, SCSR12, ST17a, Sta92, Ste10, SZ13, Sud08, SV08, Suk13, SSR94, Suz10, SB94, TT16, TT91, Tam91, TW19, TT07, TW12, Ṭt10, Tuz08, Vo17, Wal19, WL02, WL03, Wan08, WX13, WHW14, WH15, WIS12, Wei19, Wll99, Wol10, WZZ09, Wu09, WYZ14, Xu09, Yam16, YQZ09, Yus14, Zak14].

Graphs
[ZZ92, ZLS08, ZZW13, Zho10, ZN08, Zho09, ZLWC12, Žit94, dFM04, dKPS13, o09, ALZ96, ACS97, BM97, BM94a, BM94b, BM94c, BM94d, BM94e, BF94, BG88, BH97, BCLR89, Bon15, BCD97, CET97, CH89, CK96, COS97, DYL06, FH89, GPS88, GY92, HS88, Hut88, IS93, IKS⁺92, Jac92, JO95, Kan08, KKV11, Kie88, KPT95, Kie97, KM06, LM89, MRS89, PS07, Pip89, PC97, RX88, RS93,Spr04, TA93, Tar88, TZ97, WGM05, dH89, BM94c, DJM⁺18a].

Gravity [BG12]. Gray
[Li98, KCTR13, LT01, Sav97, Sav07, WS96]. Greater [FS12a]. Greedy [FKH96, Har10, HMS93, KOT16, Lev09, Luc89, WS06]. Grid [ABY11, BHL05, BDvL13, CW98, CHLZ00, CH06b, DPSW08, DKSZ10, HPL13, JPT12, KFHR94, MMJF03, Sta11, ZZZ92, ZGŁ⁺09]. Grid-Block [MMJF03, ZGŁ⁺09]. Grids [AJM08, CDP08, CFP11, DGM12, FKK18, GPRT11, Lag00, MP08, RX88, SS89]. Grobb [HRS12]. Gröbner [BP09, CP16b, GS93b]. Growth [AB95, ELMS11, EH13, GPSS01, GHP20, Fra89]. Growth [ABH⁺11, BG19, GPW09, GPS19, MW20b, RF12]. Grundy [GSPRM91]. Guaranteed [GSP93a]. Guarantees [AB95, ELMS11, EH13, GPS09, GHP20, Fra89]. Gröthendieck [FR94]. Ground [DO08]. Group [ACKM19, AR04, Che93, DF94, DR04, GG11, GLY07, HH01, Huy10, LLL17, Pot13, QP15, RD11, RKDD13, Yam16, YH89, YH88]. Group-Based [ACKM19]. Group-Labelled [Yam16]. Groups [AB14, AM18, Bab92, BFMG15, CS14, CF09, DM13, Din06, FLM12, FFiles98, GF08, GG107, JLD⁺18, JS17, Kas05, KCLR08, Lub90b, MG19, MM93, Mar09, MR15a, MW20b, Rón92, Sza06, Zhou00, ALZ96, CS89, Jia95]. Growing [BYKKR18, CS12, KS12b]. Growth [ACKM19, BG19, GPW09, GPS19, MW20b, RF12]. Grundy [GSPRM91]. Guaranteed [GSP93a]. Guarantees [AB95, ELMS11, EH13, GPS09, GHP20, Fra89]. Guarding [HK96]. Guess [GSWW92]. Guessing [BHKL08, GRR15].

Half-Integral [DZ09a, Fuk16].
Half-Plane [Bra10].
Halfspaces [LS14].
Halin [CLS09, CEOT15, CEOT17, CS19].
Hall [BBK+16], Halting [Cai18], Halved [Lai18].
Hamilton [AB18, AF19, BF12, BNN09, BSKS11, BY08, CF08, CKKO10, CKF10, CM14, DKM+15, FKT99, GK13a, KMS12, KS12a, KO06b, OS13b, RS93, Sta92, ST17b, ZZW13].
Hamiltonian [AS06, ABS13, AS02, dOBMS+17, CL91a, CFGJ06, Dvo05, FH94, FMO093, FLM+95, Gui98, KP06, Kan08, Kar20, iKO16, LS15, OZ18, ZZ92].
Hamiltonian-Connected [iKO16].
Hamiltonicity [BSKS11, BP10, DMP07, LRWZ12].
Hamming [AJM08, AE03, GPS19, LTBL20, LWW10, LS14, OV04, Pol19, VV94, XG20].
Hanani [PSS09].
Hankel [CHX15, FP99].
Hanoi [Rom06].
Hard [BDPR18, DGM12, GMRT11, VVY15].
Hard-Core [VVY15].
Harmonicity [BSKS11, BP10, DMP07, LRWZ12].
Harmonic [Bru90, CW92, FP13, FV97].
Harvesting [JPS+14].
Hash [SG16].
Hastens [Ram04].
Haven [AB07, CNG19, DK06, KCL98, LXZZ08].
Heat [Hor19].
Heavy [GNP20, LRWZ12].
Hedetniemi [TW19].
Height [JMW17, Luc98].
Heilbronn [Bar01, Bra05].
Hellman [CY08, FS01].
Help [Ave13, CD16, MT03].
Helps [CGV+14].
Henning [Lic14].
Hereditary [ACFL16, BLL+15, DOS94, DF10, GS13, HH+10, KN16, Tuz08].
Hermitian [BM00, BN01].
Heterogeneous [MHLHL91].
Heuristic [MTGK05, BWV88, Fra89].
Heuristics [GS94a, HS89b, KK89].
Hex [Sta11].
Hexagon [Lai18].
Hexagonal [CHLZ00, HM88].
HHD [DNB99].
HHD-Free [DNB99].
Hidden [AA05, NYKY20].
Hide [CCNV11].
Hierarchies [LCV03].
Hierarchy [BM00, SA90, HSLd88].
Higher [BB90, BCHW17, Cha03, CK18, CFDK20, DDS16, Hen18, LCV03, Yus14].
High-Dimensional [DDS16].
High-Order [CFDK20].
Higher [FT06, LMP19, MW19a].
Higher-Dimensional [FKT06].
Highly [CCD00, FM13, GVZ19, KKO16, MW14, PTT16, Wol10].
Highways [DHX99].
Hill [BLS19].
Hilton [CR19].
HITS [PP12].
Hitting [BST20, CP10a, FLM+16, GDVL17, JP12, JPS+14, MRWS17, Tak08].
Hive [TKA18].
Hoc [KP04].
Hoeffding [SSS95].
Hoffman [AL07].
Hole [CTJL01, CCL+06, FSW13, RWW88].
Holes [AS16, BB16, CS18b, FRW12, MSS14, ST17a].
Homogeneous [GPW09, Kim17, KPT20, SV11, JO95].
Homological [JLD+18, KM14].
Homology [Got03, LN17].
Homomorphic [DF94, DŠV08, KOS16, Zho93].
Homomorphism [BP17, EST14, HR12a, NT05, Wro20].
Homomorphisms [AFS12, CL15c, Fed01, FHM03, FH08, FGZ19, GRY08, HZ95, MR15a, Zha11].
Homotopic [Sch91b].
Homotopy [Dan09, Wro20].
Homotopy-Like [Dan09].
Honeycomb [CHY13].
Hook [Han09, MPP17, RY91].
Hop [HMP04].
Hop-Constrained [HMP04].
Hopf [BM16, FLS10, HM12b].
Horizontal [GM12, IM96].
Horton [WW91, Yam20].
Hub [Yam05].
Huffman [FT05a].
Huge [OS15].
Hull [ACD+13, BDPR18, CPRdS13, DPRS10, GVW06, KN16, SA90, Sen97].
Hulls [MD16].
Hurwitzian [Het14].
Hybridization [KvIL+12, vIKL+16].
Hyper [Mo08].
Hyper-Kloosterman [Mo08].
Hyperbolic [BC03, CD14, FK18a, KM19b].
Hyperbolicity [CCPP14].
Hypercontractivity [Pol19]. Hypercube [AKS07, Ana18, BGM08, Fin09, GT12, HPS96, HKK’09, HL10, Kra18b, Off08, OV12, Sid18, Bal88, Ram97b]. Hypercube-Derived [HPS96]. Hypercube-Like [HL10]. Hypercubes [AA96, BFPP08, BIKZ05, CL91a, Dvo05, DG08, GSV12, LLY10, MV08, Mol11, Spi19, VV09, YCH97, Chu89]. Hyperelliptic [CC03]. Hypergraphs [BBLM16, BCE+01, CP20a, KOT16, Lu04, NW95, ST20a, Tak08]. Hypergraphic [CKP13a]. Hypergraphs [AKP20, Adl08, AS19, ADKS18, AG19, BF12, BBLM13, BBBZ12, BCCZ11, BP20, BL01, BHT16, BK14, BCF+19, CFK20, CM16, DJKO19, DMS12, EGM18, FRZ16, FGT1, FY04, FJK’19, GP17, GMV20, GNP20, GLS20, GSS15, HPS09, Han16a, Han16b, Han18, HST19, HT19, HY10, HY15, HWZZ18, HM19, Jon05, KLM14, Kh13, KZ08, KR15, LZ06, LZ18a, LZ09, LY18b, LP19, MT03, OS17, OR04, Raz10, RRS07, SW14, SS04, ST20b, Sm07, Tim08, Yun03, ZKN02, CFGG88, HWZZ20, Ry96]. Hypermaps [dR14]. Hyperoctahedral [Che93]. Hyperplanes [AA96, AS07]. Hypersurfaces [Gly12]. Hypertrees [CFDK20].

Induced [AKF12, AKS08, AS19, AKTZ19, AB07, BB16, BP89, Che93, CPPT20, CF16, CM07, DF02, DS16, EiIK08, Fis90a, GP18, GPvL15, GRS12, Hua14, Jan05, JRS14, JN16, Joo16, JW18, KMM12, KM19a, Nag10, PTT16, Tuz08, BM94a].

Induced-Universal [AKTZ19].

Inducibility [CSW17].

Inducing [CdV02].

Inequalities [AB95, BCCZ10, BDP19, BH16, BCH92, CdV02, CR96, Doh03, DJS12, FR94, FP13, GL14, Kra18b, LMP19, SS05, SL05, TZ19, TZ20, Kah97, LR94].

Inequality [AF10, Bar95, BL90, CIN18, DDS16, IMR14, OV12, 'Sn14, RSD17].

Inference [DM03].

Infinite [BCE10, BCCZ10, Bon10, BCH92, CR96, Doh03, KLMR18, KO97, PT14, Ram02, Sn14, Ste10, SZ13, AHS89, KM06, Wen97].

Infinities [BCE10, BCCZ10, Bon10, CCF+10, CW92, Dei15, KLMR18, KO97, PT14, Ram02, Sn14, Ste10, SZ13, AHS89, KM06, Wen97].

Infinities [BCE10, BCCZ10, Bon10, CCF+10, CW92, Dei15, KLMR18, KO97, PT14, Ram02, Sn14, Ste10, SZ13, AHS89, KM06, Wen97].

Inductive [CSW17].

Inducible [CdV02].

Infinite [BCE10, BCCZ10, Bon10, BCF+10, CW92, Dei15, KLMR18, KO97, PT14, Ram02, Sn14, Ste10, SZ13, AHS89, KM06, Wen97].

Infinite [BCE10, BCCZ10, Bon10, BCF+10, CW92, Dei15, KLMR18, KO97, PT14, Ram02, Sn14, Ste10, SZ13, AHS89, KM06, Wen97].

Interference-Minimizing [FKLW98].

Interior [Ave12, DJT15].

Interlacing [CDH+04, FJKZ15].

Interlacings [Die10].

Interleaving [JCB06, MP98].

Interlocked [CFK19].

Internally [GZ06, MR12].

Internet [BAG03].

Interplay [FHM94].

Interpolation [CW14b, CF17].

Interpretation [CS94, Mun06].

Intersecting [BKK16, Bol10, CL07, CLW09, GLP+12, KS08a, KL19b, Luk20, MB18, WL02, WZ18].

Intersection [ABS13, AC14, BBC11, BTU09, Blo10, CH89, FF06, GAMA15, JSRSW18, KS02, KM06, Koc98, KM01, MSZ10, MVLvL13, Pet13, PR98, Sha13, Suk13, Mur96a, Mur96b].

Intersections [FKM13, GDCM20, KS05, ST10].

Intertwines [Bol10, GJ97].

Intertwining [CW14a, HvZ14].

Interval [BNCP31, BFP15, CFGJ06, COS10, DJ11, EST24, EEL09, FF06, GAMA15, JSRSW18, KS02, KM06, Koc98, KM01, MSZ10, MVLvL13, Pet13, PR98, Sha13, Suk13, Mur96a, Mur96b].

Intervals [BCdMR08, DK10, Fer16, KJJ04].

Intractable [CM12a].

Invariant [CD93, CDHH14, CDR16, Gly12, KG93].

Invariants [DEH20].

Inverse [LW03, Mal15].

Inversion [CCG+16, Mal15].

Invertibility [Con89].

Invertible [GK16].

Inverting [SS02b].

Involutions [AACL10].

Involutions [Kas05].

Isolated [TT16].

Isometric [BGM08, FHJV17, Mol11].

Isometry [Hyu10].

Isomorphic [Kas05].

Isomorphism-Free [Kas05].

Isomorphism
[AAFL06, BR20, Con05, GJXZ20, dH89].

Isomorphism [Che94, FKKL98].

Isoperimetric [BL90, HLST00, Kah97, KW14, Lev15].

Isostatic [FSW13]. Issues [BAG03, Nas14].

Item [CCG00].

Iterated [Fra10, Zhu18, Mal89].

Iterating [Lic98, LT01]. Iterative [SFS09].

IV [BFM94, HKP17d].

J [GM93]. Jackson [BBM09].

Jeu [Sn14].

Jewett [Lav16].

Job [GPSS01, JSOS03]. Job-Shop [GPSS01].

Jobs [Jan10, PP07a].

Jogs [TH90].

Johnson [Etz96b, RD11, SG16]. Johnson-type [SG16].

Join [Rea15].

Joins [Bar04, BK07, WY20].

Joining [EMT15, SiT15].

Joints [Qui10].

Jordan [vBEM17].

Judicious [LSSZ19].

Jump [BC95, KMT07, Mur06, ST07, Shi12, Sza08].

Jumps [HLR13].

Kac [TW12].

Kaiser [CCO13].

Kakeya [LSW18, MWW20].

Kalai [Tod14].

Kannan [DKM12].

Karakhanyan [BL90]. Katona [Buk12].

Kernel [FSV13, GLSS16, KL19a, PRS18].

Kernelization [ALM18, BJK13, BJK14, FHN18, FL16, JP18, Kra18a].

Kernels [BFRS16, EKM19, GSPRM91, GSL98, GPT15, Hed08].

Kerov [Sn14].

Key [FGPS20, GLY07].

Khintchine [DDS16].

KillerQu'est [Kvil12].

KillerQu'est-ce [Kvil12].

Kimura [MRV17]. Kimura-3 [MRV17].

Kind [MGC14, QD14].

Kinetically [Mar20].

Kings [SS91].

Kissing [KKW17, MSD19].

KKM [AFP18]. KKM-type [AFP18].

Klapper [CK11, ACM18, Shp10].

Klein [iKKKL09, iKMN09, RS16].

Kleitman [Tod14].

Kloosterman [Mo08].

Knapsack [DKM17, KSF19, LMNS10, SL95, Yos19].

Knee [Lei94].

Knesser [CMSM18, EJK9+09, FK18b, HPW09].

Knock [Lei94].

Knock-Knee [Lei94].

Knowledge [DF94].

Known [CPS08].

Knut [Sn14].

Ko [DT16, DK16, MS14].

Kolmogorov [HLT19].

Kotzig [CuK07].

Kraskal [Buk12].

Krylov [BGL03].

Kuhn [MMS17].

L [BL17a, Ber20].

L-Infinity [BL17a, Ber20].

Label [BBC19, BKS09].

Labeled [CX08, CFJ11, GM94, MS16].

Labeling [ABR05, AKTZ19, BBC19, CKNZ05, DSZ05, GP08a, GMS00, JPT12, JSRSW18, Kan08, Kim91, L05a, Meh12, WL03, ZL12, C906].

Labelings [BJK07, GM05, Gra07, GK92, KST06, Lag00, L05b, MMP13, HRS12].

Labelled [Ald90, Yam16].

Labelling [GV92, Sak94, Zho05].

Languages [ETT13, FKL93].

Laplacian [BM92, CFM94, CL15b, GM94, HRS17, Iri16, LMP19].

Laplacians [CDH10, JLD18, Ste07, TH11].

Large [AA10, AKZ17, AHH10, AKS08, AS07, AS16, BBC19a, BFK12, DOBMS17, BW02, Che07, CP10b, Cra19, Dro16, DM17, FG14, FKP15, FM13, GP18, GJ12, HPS09, HS04, KL19b, Kha13, KZ04, Kin17, KPT20, KST06, KO06a, LLM19, Lee17, MP08, MNS14, SS04, Sh09, S105, WH15, Yam20, EH91, KK19, RCS88, WW91, RX88].

Large-Girth [AA10].

Larger [KMP03].

Largest [GW99, Iri16, K08b, KM19b, SST08].

Lariats [DvW18].

Lasso [HK15].

Latency [LRTW11].

Latin [BCM12, MW08, WLD09].

Latice [Ave12, BHE05, BH16, BT96, BS16a, BS16b, Can93, CL90, DD15, D12, E18, FGPS20, FL00, Got03, KNK93, KT17, KS08b, KS03d, MGC14, MW19a, NT12, NDB07, OPVV14, Om91, Rea08, SFS09].

Lattice-Simplex [FL00].

Lattice-Width
[DMN12]. \textbf{Lattices} [ADL+09, ABH+11, BFGM15, CGG17, CCGG18, EH+18, FM11, GJ08, KL08, Lec90, NDB07, NS16, RSD17, Sch09, WZ08, DSW90]. \textbf{Laurent} [CHX15]. \textbf{Law} [CK19, Ja10]. \textbf{Lawler} [GW00]. \textbf{Layer} [GS95, Lei94]. \textbf{Layered} [DEJ+20, IM96]. \textbf{Layers} [DM18b]. \textbf{Laying} [HLR92]. \textbf{Layouts} [GSV12, KLN91, KS02, HP97, Pat88]. \textbf{Lazy} [RT11]. \textbf{LBFS} [COS10]. \textbf{Leading} [CDR16]. \textbf{Leads} [FS12a, Ja10]. \textbf{Leaf} [Alt89, vIM18, HS97]. \textbf{Leaf-Reconstructibility} [vIM18]. \textbf{Leakage} [AEFT13]. \textbf{Learning} [AA05, BBS00]. \textbf{Lease} [LPSR12]. \textbf{Least} [ARTV12, CK91, Ja10]. \textbf{Leaves} [AFG+09, BKKZ17, Bon08, BZ11, CWY00, KW91]. \textbf{Lecture} [BBK+16]. \textbf{Lee} [Spa07]. \textbf{Lee-Type} [Spa07]. \textbf{Lehman} [AFG+16]. \textbf{Lekkerkerker} [LM16]. \textbf{Lemma} [BKTW15, BK17, CS18a, DKM+12, FPST06, IM96, KRS11, KJJ04, MN18, PY90, SW99]. \textbf{Length} [BH20, CCD00, CGH+15, CPPT20, EK10, JA16, KRS11, KJJ04, MN18, PY90, SW99]. \textbf{Lengths} [CHP90, GS94a, GKPP18, JA16, KRS11, KJJ04, MN18, PY90, SW99]. \textbf{Level} [AYZ04, ACF18]. \textbf{Levelness} [HKT20]. \textbf{LexBFS} [HH05, BCHP08]. \textbf{Lexicographic} [BBM09]. \textbf{Lexicographically} [KRR16]. \textbf{Liar} [DS05b]. \textbf{Lie} [ADL+09]. \textbf{Lifetime} [BNRT17]. \textbf{Lift} [AT16]. \textbf{Lift-and-Project} [AT16]. \textbf{Lifting} [BDP19, BK12]. \textbf{Liftings} [SL95]. \textbf{Lifts} [ACKM19, CF08, FT12, GS16b]. \textbf{Light} [DS06, E511, ENS15, Sol12]. \textbf{Like} [Dan09, HL10, EIJ12]. \textbf{Likelihood} [CFKK17, SS02b]. \textbf{Limit} [BK11, CP10b, WW91]. \textbf{Limited} [OR04, SSS95]. \textbf{Limiting} [Gar92, RJS93]. \textbf{Line} [AE04, BD20b, BKS10, CH11, CR17b, Gab05a, GS091, GKM+18, GL99, HT90, HV00, KFHR94, KT99a, Kap14a, KPT94, McD15, MT03, Sch91b, Woe93]. BCP08, CKPS13, Con10, Fra89, KPT95, MSS14]. \textbf{Line-Polar} [CH11]. \textbf{Linear} [AD96, BB13, BMN92, Bar02, BZ04, BBCZ11, BL17a, BHH96, BGS06, BP09, BKG99, Boy96, BCHP08, BM13, CD93, CS14, CMe12, CKNZ05, Che94, CKO06, Dji06, DHJ+13, EGM18, FR99, FM11, Fio06, GSP15, GH90a, GMS15, Han98, HKL99, HvtHLN12, HK05, HTS18, JS03, JLR20, JMW17, KMP03, KK90, LW17a, LL15, LM16, LWW10, MG19, MN15, Mer15, MN18, Moh99, Naa00, PS17, Pon20, PR91, Ram98, RS15, Sm96, She18, ST07, SY11, Spe08, Sta92, TRV03, Ten09, Wao2a, WW05, Wnu97, Wu09, Yam16, o09, HSLd88, IS93, LM95, Mou94, KG93]. \textbf{Linear-Complexity} [BZ04]. \textbf{Linear-Interval} [Mer15]. \textbf{Linear-Time} [Che94, Dji06, DHJ+13, HKL99, LM16, MN15, MN18]. \textbf{Linear/Complexity} [BZ04]. \textbf{Linear/Interval} [Mer15]. \textbf{Linear/Time} [Che94, Dji06, DHJ+13, HKL99, LM16, MN15, MN18]. \textbf{Linear-Time} [Che94, Dji06, DHJ+13, HKL99, LM16, MN15, MN18]. \textbf{Linear/Complexity} [BZ04]. \textbf{Linear/Interval} [Mer15]. \textbf{Linear-Time} [Che94, Dji06, DHJ+13, HKL99, LM16, MN15, MN18]. \textbf{Linearity} [Kie88]. \textbf{Linearized} [Wal19]. \textbf{Lines} [Buk16, KT19, Pay17, SW04, Vin07, Yu17]. \textbf{Linkages} [BP10]. \textbf{Linked} [GKY06, KY12, Pfe15]. \textbf{Linking} [Pip06, IP91]. \textbf{Links} [CDP94, DEH20, MM020]. \textbf{List} [CEH08, CGS20, CR17a, DSS05, DS09, DH20b, EST14, FHKM03, FHH08, FKS05a, HM11, KZ08, RR03, Sav07, Tak08]. \textbf{List-Coloring} [CR17a, DSS05, DS09]. \textbf{List-Decoding} [RR03]. \textbf{Listen} [MP04]. \textbf{Listing} [CGMV19, PRS98]. \textbf{Lists} [FKS03]. \textbf{Little} [MR15]. \textbf{Littlewood} [BI13, LR94, TKA18]. \textbf{Liu} [HL92]. \textbf{LKS} [HKP+17b, HKP+17c]. \textbf{LLL} [BGW20]. \textbf{Load} [AE04, HMP97]. \textbf{Loading} [Myu01, SSW98, Sku16]. \textbf{Local} [Ath14, BJF95, BRY05, BGJ+12, CER98, CL20a, CCGG18, CSS13, CL11, CKPS13, DSS12, DFHT04, EH13, FPS20, GKO2, IKK06, JS03, KW08a, Lev09, Peg14, Roz19, Spa07, Tre04]. \textbf{Local/Optimality} [EH13]. \textbf{Local/Global} [CL11]. \textbf{Locality} [BMRT20, MNP08]. \textbf{Localization} [ASM10]. \textbf{Localized}
OPR12, Orr08, Vin12, dLL09, BG91, DK89, KP06, Spi95. Matrix
[BM15, BR17b, EMT15, FLM+18, GWZ18, Iri16, KK90, LS17, LS03, MW20b, OPVV14, Som14, Tro15, 1597s]. Matroid
[BPWX13, BKK16, BLMA+-08, FF06, FKM13, GMA15, GWG06, Hli18, HN20, KT14, Kam17, Kam19, Kas08, Kit13, KS03b, LMNS10, May08, Osi19, Sza08, Yam16, dGNS13, Mur96a, Mur96b]. Matroid Based [dGNS13]. Matroidal Matroids
[BPWX13, BKK16, BLMA+08, FF06, FKM13, GMA15, GGW06, Hli18, HN20, KT14, Kam17, Kam19, Kas08, Kit13, KS03b, LMNS10, May08, Osi19, Sza08, Yam16, dGNS13, Mur96a, Mur96b]. Matter
[CHO+89]. Matters
[Ave13, BGG+04, BKS09, CER98, CP20a, CD16, CGMV19, Djio6, DS90, Für90, GPS19, HKP01, HT93, KW08a, Kir16, Kra18b, MD11, Muni05, Sza06, TSN04, GS89]. Maximin [ARS95]. Maximization
[ILM20, KT99a, KSF19, FKS97]. Maximizing
[Car09]. Metric
[BDF+18, BFGR17, BDG+17, BR17b, BR19, CHM+07, CKNZ05, CV07, DM11, Gao15, SS11a, Sol12, XG20, Ste88, Win88]. Metrics
[Ban90, BS09, Dah93, HMM09, SP88]. Midpoints
[EFF91]. Migration
[JK19]. MILP
[Jan10]. Min [Cal13, CMSV17, FiT14, Gün07, HM94, HR12b, HHRM20, KSS12, SS00, Vse05, ELvS11, Fuj97, He97]. Min-Cut [Gün07]. Min-Max
[FiT14, HR12b, KSS12, SS00, Fuj97, He97]. Min-Orderable
[HHRM20]. Min-Power
[Cal13]. Min-Sum
[CMSV17]. Min-Wise
[Vse05]. Minconvex
[AS09b]. Minima
[LL14a]. Minimal
[ABZ15, BNN90, BCCZ10, BDP19, BKS09, BB03, CY12, DDL20, Gab05a, GDVL17, GMA15, GH90a, HRS18, HTV05, HK15, KLNM14, KRR16, LPS18, RS08, Saw07, SL95, Tak08, Zeh17, Zhe16].

Minimal-Time [Gab05a].

Minimally [AG15, Ste10].

Minimax [HKST03, Ram90].

Minimization [BDvL13, FI05, GS13, JSOS03, Svi03, CNR89, JS14, KW90, ST13, SU89].

Minimize [DL89b].

Minimized [FT05a].

Minimizers [GP20].

Minimizing [Alo13, AE03, BYKKR18, CKK+04, CFG+09, ELSS17, FKLW98, HRS17, HQ03, HV00].

Minimum [BGV07, BJHY03, BHL05, BPSS20, Bon08, BS15b, BL17b, CR04, CtJL01, CQX20, CH01, CL13, CF09, CDK10, Das99, Dro16, DH20a, ENSZ00, FJ17, FPS18, FK18b, GV92, GKY06, GP91, GÖ12, GSS15, GRY08, HIKT99, HPS09, HRS18, HM94, HR12a, HK16b, HK93, IMS05, KKL+10, KN16, iKX20, KS05, KKM94, KP95, LRT08, Li17, L17, OC19, Pin08, Ram04, SS11a, SMNF09, Str20, UBHS93, WY20, XGG15, Yus14, ZN08, BBM90].

Minimum-Cost [CL13].

Minimum-Time [KP95].

Minimum-Weight [FPS18, BBM90].

Minkowski [AF10, CIN18, DMN12, GS93b, LS06, OV12, SS90].

Minor [BFM06, CDMO16, DHJ+13, DEJ+20, EMOT16, HKS08, HN20, JW18, KMPR14, MR12, Per16, BM94c].

Minor-Closed [DEJ+20, HN20, Per16].

Minors [AP18, AFH+18, BST20, CFP16, EW19, FKPR05, FHJV17, FGT11, FLM+16, Fox10, GMA15, GT13, iKMN09, KM14, KNZ14, SZ13].

Minsquare [Mur06].

Minus [Gly10].

Mirror [CL11].

Misère [KLW89].

Mixed [BJFJ95, BHI3a, CWYZ10, IM96, IT09, RV99, GJW16].

Mixing [BPS18, BP17, CDW07, EMT15, KS02, SYKY18, Win16, GKR15].

Mixture [MM15].

Mixtures [MM15, Su12].

MMSNP [BCF12].

Mobile [BNRT17].

Möbius [CFM+09, JM97, Lin97].

Mod [GVW06, LL14b, LIH18].

Mod- [GVW06].

Model [ART14, BMRT20, CHZ04, ELMS11, FGP10, GMR11, GKN10, HL10, LNNW95, MSZ10, SW10, TK918, Vaz13, VY15, GKR15, SU89].

Models [BDT17, BGG+20, Mar20, MUWY18, Zho09, Bie88].

Modes [Bon91].

Modification [ASS17].

Modifications [LS03].

Modifying [TKMM19].

Modular [BcdMR08, EHV18, Kap14a, Yam05].

Modulo [CLLZ18, MS16].

Molien [GVW06, LL14b, LHHL18].

Monadic [KZ18].

Monochromatic [AHH+10, AHP19, BMM20, BL01, BCF+20, CH13, CH17, CFP11, ELR98, FS09b, FM13, LR07, LSS17, MP08].

Monoids [GR17].

Monomial [CK08a, GGI07, JL20b].

Monomials [Din13].

Monotone [ARS17, AcRS07, GM91, HH17, HRS93, JS14, KW90, ST13, Suk13, Yos19, GM93].

Monotonic [DSZ05, GHM10].

Monotonicity [BGJ+12, GKW19, HY89, YH88].

Morse [JP06b, SvM08].

Moser [Peg14].

Most [CNG19, DD13, HZ10, HV17, JN16, JMW17, KK14a, San96, Zho88].

Motif [FKW10].

Motion [ATPRU91].

Motors [JSZ15].

Moves [BHNP16].

Moving [ABY14].

MPS [PV10b].

MR [GM93].

MST [Sol12].

Mubayi [MB18].

Muller [BGY20].

Multicandidate [Bo90].

Multicast [CH06a].

Multichromosomal [BH13a].

Multicolor [DP17, SWR12].

Multicolored [AAL06, Con05, KO06b].

Multicommodity [Fle07, Gün07, RS10, YCH97].

Multicovering [HK02].

Multicriteria [JL20b].

Multicut [KPPW15].

Multidimensional [AJM08, ARS95, Buk12, CDF08, GL15, Kit02, OR04].

Multiflow [Fuk16, Hir11, FKS97].

Multigraph
[Gab04, Gab05b]. **Multigraphs**
[GM13, HLR13, KY18, MT20, NI92, NK90, WH04, CC95]. **Multilevel** [LZ05b].
Multimatroids [Bou97]. multinomial [HY89].
Multimodularity [LZ93]. Multimodular [LR13, KY18, MT20, NI92, NK90, WH04, CC95]. **Multinomial** [HY89].
Multiobjective [BP09]. Multipartite [Gut93, MMS17, Tóth10].
Multipartition [Wag96]. **Multipartitions** [HRS93]. **Multiparty** [KOR03].
Multiple [BCE01, Bon91, BMN13, CS18a, CFR10, DGN+20, FKW10, GK02, GZ98, HHL09, PZ10]. **Multiplexed** [BCC+05].
Multiplication [QP15, SR94, WB90]. **Multiplicative** [TW19].** Multiplicities** [FKK20].
Multiplicity [DSST13, HS04, RY91]. **Multiplicity-Free** [RY91]. **Multiplicities** [FKK20].
Multiplets [DS05a, EIJ+12, ILM+16]. **Nestings** [Kla06, PY09]. **Nestohedra** [Gru17]. **Nets**
[CF16, DM13, AS97]. **Network** [ACLW18, ADHL13, ASMF10, BKM08, BOS01, CS09, CV07, DM03, FvIKS15, FLL10, GM90, HKS07, JM17, KYDN09, KN05, KKK09, LS95a, vBBC+15, Bie88, BCW96, NN97]. **Network-Based** [vBBC+15]. **Networks** [ARS17, AU91, BCS07, BYKRR18, BTU09, BAH10, BK90, BKL+15, BL16, BH93, CHZ04, CH06a, Che09, CHY13, CDF08, DP92, DP96, ESR98, GR15, GV92, GVKSS06, GL08, GR99, GM91, GP91, HHHH02, HPS96, HKK+09, HL10, HJ94, HKS07, JLD+18, JA16, KW17, KL92, Koc98, KP04, KK09, KM05b, Lu10, May96, PL94, Pip95, Pip06, SW01, UBHS93, XY15, Zho09, vIM18, Bal88, BBM90, FFP88, GM93, LS89, LP88, PS97, Tam88, TH11]. **Neumann** [DKWL20]. **Neural** [Bal88]. **Neuronal** [JA16]. **Newton** [FGPS20]. **Next** [EMM14, SS11]. **Nilsequences** [CS14]. **Nine** [KSS08, Sm08]. **No** [BPV10, CH13, CH17, CTJL01, CL15b, DK06, GLSS16, KM19a, KMW06, Kim17, KST06, MR12, Svi03, BM94c, GM93, KMP14]. **No-Hole** [CTJL01]. **No-Wait** [Svi03]. **Node** [ARTV12, TT89, Vég11]. **Node-Connectivity** [Vég11]. **Node-packing** [TT89].
OS17, Sch92, SS91, SWR12, SS08, Sud08, T6t08, XSR11, dKMP+06, dKPS13, Abe91, Exo89, LW88a, RM97. Numerical
[BP12, CGSM16, EA11, SS18a]. Nuts
[KMS98].

Objective [HR05b]. objects [Ko88].
Obnoxious [BDLR01, CR10, Tan91].
Observations [BHH94]. Obstacle
[MWvZ11]. Obstruction [CLiO18, FHS14].
Obstructions [BK12, CGSZ20, JM97, Mon15, Ram97a]. Obtained
[EGS13, Mou94]. Obtaining
[CLM03, HVLP13]. occupancy [LW88a].
Occurrence [MRR20]. Occurrences
[HS06]. Octants [CKMU14]. Odd [AK14,
BGY20, BCHO2, CMM20, CFLZ19, CS18b,
CCL+06, CG07, DZ09b, DSV08, FKS12,
KR11, KKK17, KSS12, LRT08, LMRS17,
MN18, MS17b, RT18, Wan08, JLM93].
Odd-Girth [DSV08]. Oddtown [SV18].
Odd [AP92, HHL095]. Orford [LR94].
One-Factor [PSML08]. One-Page [MW90].
One-Player [BMS12]. One-Point [Mra17].
One-Sided [CHK17, Kam91]. Online
[AB18, BBC+19a, BD20b, DSO25, DE11,
Eps06, EEL09, ELvS11, HKST03, JK19,
JSRSW18, KP00, Sei01]. Only
[Kar20, Wan08]. Onto
[FKK05, FKK07, KMP03]. Opaque
[DJT15]. Open [HGY20, YZ17].
Open-Neighborhood [HGY20].
Operations
[FHL+13a, FHL+14, KMT07, Orro08].
Optical [AM07, FHYM01, GL08, KSV05].

Optima [GK02]. Optimal
[BSKS11, BCC+10, BDDS03, BLR16,
BLR17, Bon91, BG12, BC17, CHW88,
CZOS98, CCG+00, DDS16, DH90, DJHJN02,
DJS12, EJK+09, EH13, Fei10, F000, FPR18,
FMHY01, FS12b, GP08a, GMW05, GH90a,
GY07, G95, HSS19, HZ08, HH17, HK05,
HLZ13, HH01, HKST03, HRS93, JCB06,
JP06b, KFHR94, KPS20, Kim91, KST06,
KS12a, Lai05, LSL92, MG19, MR15b, Sei01,
SR39, Sp07, SS89, T09, TZ07, Zha99,
Ram97b, RX88]. Optimality
[BHE05, E1H18, E1H3, FP01, SP88, Mur96a].
Optimally [CM50b, GM03]. Optimization
[AOW15, BL17a, Ber20, BLMA+08, BP09,
BCHO2, BM000, BS18, C17, CC07,
DLMO18, DO08, GJ19, HR05b, J20b, J06,
LOW10, Onn03, RT08, ST07, SSS13, Sim90].
Optimizing [GT13, Ten09, dFM04].
Optimum [OKS06]. Oracle [HK14].
Orbits [Shp10]. Order [BG07, BCD+12,
BDF+18, BT93, BR20, Che07, CKN16,
CW96, CG17, CFDK20, DF02, FKT06,
FL92, F14, FMP17, GB12, GMS15,
HT20, JS14, KP09, KZ18, LXS14, LMP19,
LMS19, Pet13, Abe91, BT97, CET97].
Order-Isomorphic [BR20]. Orderable
[HHRM20, HS88]. Ordered
[ATPRU91, CL05, Elb09, Fis90b, GT98,
GvdHM+08, IKZ08, Rif99, XY15]. Ordering
[BK99, Fio06, MSK93, OS92, iO08, R109].
Orderings [BKS09, Che98, CKOS06,
HKL99, HR12b, Sch04, Wg18, RW59].
Orderly [Lu10]. Orders
[ANP91, Boy01, CM50b, EGS13, HH13,
HRS93, JZ05, Mer15, Sch91a, BB97, SSSU59].
Ordinary [BvdZ16]. Ore
[CNG19, FZ08, KOT09]. Ore-Degree
[CNG19]. Ore-type [KOT09]. Orientable
[CMS20, iKS04]. Orientation
[CKN13, KNS05, LHL14]. Orientations
[AH16, DKL+15, DE93, Iri06, Lai08, LL14b,
MRST16, PY90, Bal88, RX88]. Oriented
[AGH11, BCF+10, Fed01, HZ95, Zho92,
Zho93]. Origins [Pet11]. Orthogonal [AM07, BGS96, BÖ05, DJM +18b, FHM01, GB12, NDB07, Sp19, ZN08, Bu18, DJM +18a]. Orthogonality [CGG17, GN08], orthogonally [MRS89], Osthus [MMS17]. Other [FPS18, GRS11]. Outdegree [CH17]. Outerplanar [CGN +06b, LZ05a]. Outerstring [RW19]. Output [RF12]. Overinterval [CM05b]. Overlap [Jan00]. Overlapping [BH20, WS12].

p_2 [LO05]. Packable [GZ10]. Packets [DP09]. Packing [ALM +18, AB18, BF12, BP13, Bar04, BSKS11, CLM03, CDM +14, CK14, CQX20, CGG +00, CG07, DR19, DFJS15, DKMS17, EIH18, Eps06, FKT06, Fis94, FL91, GMPZ15, GMW96, Gu18, GL17, Har18, HPS19, Jan05, JSO12, JLL16, JK19, KIK12, KIKK17, Kir16, LMSZ19, Sei01, Woe93, Yam16, Zak14, dGNS13, vBJU20, BCD97, HS89b, TT89].

Parameterized [BLM20, BFPP15, BCKP19, FLM +18, FKL +19, GKT17, GNS11, GJW16, GP16, JLR +17, SL10, Zeh17]. Parameters [DFHT04, FGT11, MP17b]. Parametric [BGW20]. Parametrized [AB05]. Parametrizing [She18]. Parent [BCE +01, BEN08, TSN04]. Parents [BCE +01]. Pareto [Kam19]. Parity [BM15, CF09, HT18a, SML08, Sza08, Yam16, Zha93, CHW88]. Parity-Check [CF09]. Parsimonious [WH04]. Parsimony [FvIKS15]. Partial [EFK05, ACM +18, CCG +00, FHL +14, Gao18, Lla06]. Partial [BYFM01, BP09, Bor10, CMPS17, Ege10, FKM +06, FL92, FMP17, FY04, GSK91, Hor14, HRS93, JT11, JS14, KPS20, KM02, Koc98, PSW96, dGV05, SSSU89, TP97].

Partitionings [BDM02]. Partitions [ASS09, AM11, AR04, BL01, CX08, CCG +16, COL10, DG08, FHKM03, Fe09, GS94b, HW18, HSW14, IKZ08, Kim11, KR93, LV89, Len98, Lin97, MPP20, MW20a, Mol11, Onn91, PY09, Sni01, SZ15, Tza08, Zen90].

Parts [AHS01, HS04]. Party [KOS16]. Passage [HH02]. Passing [MT11]. Path [AFL +20, AHP09, BJ792, CL15c, DNS94, DD15, DD13, Erd20, Gao15, GMS15, Gut93, HIl18, KM19a, KM05a, LW17a, MPM13, MC12, SB94, ZZBL17].

Path-Decompositions [Erd20]. Path-Tough [DNS94]. Path-Width [AHP09, DD13, HIl18]. Pathology [AL95].

Paths
Planning [ATPRU91]. Planted [COL10].
Poincaré [FP13]. Point [AH9+10, ATPRU91, AS16, Ave12, BDJ+15, BH16, BDG+17, BV10, CF17, Dan09, DSL19, DGP06, Kap14a, Mat19, MGC14, Mra17, SS95, SFS09, HY89]. Point-Sets [DSL19]. Points [AS07, ARS17, BS16a, BS16b, CI07, CKP16, ES11, FGPS20, Fed06, GRR15, HHL095, KML05, Lag00, LY18a, MPS08, NP18, PR98, VZ93, dH89].
Polyominoes [CWYZ10]. Polytope [AHFM08, BBC11, BMK08, BKG99, BH93, CH11, Cho94a, DF02, Fis14, FLMY09, GS03, GMTW19, MRV17, MH09, PVUY18, RC98, XY15, Bal89, Sar97]. Polytopes [ACF18, ABH+11, BB09, BS16a, BS16b, BW02, BT93, CFS17, CdV02, CG17, Dan09, DGT1, FGPS20, FFLP20, FLM12, GS93b, HL15, HKT20, JK09, JS14, KPS19, KT16, LMS19, Mês16b, Nov18, Pad16, SL95, UV15, Wal19, BM97, Stu88]. POMSET [FKL93].
Preemptive [DE11, JP06a, KN95].
Preferences [CHK17, HW17a, FK97].
Prefix [CM03, HKW15, HvIK+07].
Prefix-Free [HKW15]. Prefixing [DA10].
Preimages [Zho93, DS97]. Preprocessing [BJK13]. Prescribed [AS09b, BGV07, Dvo05, DG08, KŠ08a, KiK12, KiKK17, Kas05, Lub90a, MWW20, MC93, MPSZ19, MC12, Mur06, MRNS15, MRNS17, MW03, Myn01, PSTF00, PW13, PSV08, Qui10, RV99, Rya07].

Problem [Saa93, SSW98, SS91, Sku16, SS95, Str20, Vin11, WIS20, Yam05, YZ17, vWW94, Bal89, BG91, BC17, CK96, GW94, GHHY96, He97, IW91, JM97, Lin97, SS89, Tas97, Yen97, DRW98, DvHT20, GJW16, SS11b].

Problems [AMW00, AM11, ASS17, BLS17, BK11, BGW20, BFN20, Cai18, CLM03, CMMU14, CKPW09, CS09, CC12, CMSV17, CC07, Che92b, CKPV91, CC17, CKN13, DSS12, DJS12, EV98, FL92, FK17, GMV20, GM16, GT12, GMPZ15, GM90, GNS11, HR12a, HK96, HHH+02, HU94, Hua14, HCG98, JLL16, Jor03, Ji10, KT14, KKSvL20, kXX20, KLM14, KBE+05, KPS20, KWZ13, KVV15, KS06, KJ04, LNNW95, LDCKM18, MT11, MRT11, NH91, PT14, RS10, RT98, RS16, ST20a, SA90, SSS13, Sid18, Sim90, SR94, Sno13, Som14, SS00, SV18, ZK11, Zha90, van94, BS88, BCD97, HSS9b, NS99, PC97, RWW88, Ray94, SU89, Tam88, TP97, TT89].

Products [BBM09, BIJK05, BK07, CHM+07, CH10, Ch10, Eib09, Fis94, GMS00, Lee17, Mat19, MM15, PZ05, S mi01, Spa07, WZ18]. Profile [DH05, FKK20, GP08b]. profi [PRS88].

Profits [JSO12]. Program [Dou91b, She18, Dou91a]. Programming
\[\text{ASZ02, BGS96, BP12, CKNZ05, GPST15, HK99, HTS18, Juk16, KG98, PS17, SA90, UWZ97}.\]
\textbf{Programs}
\[\text{BCCZ10, BBCZ11, Boy96, HKL}^+14, \text{HMM09, OS15, PPU92, Vaz12}.\]
\textbf{Progress}
\[\text{JL20a}.\]
\textbf{Progressions}
\[\text{Het14}.\]
\textbf{Project}
\[\text{AT16}.\]
\textbf{Projected}
\[\text{TZ19, TZ20}.\]
\textbf{Projection}
\[\text{DF02, Gar92}.\]
\textbf{Projections}
\[\text{DGM12, FKK05, FKK07, Hof95, Hof98, KMP03, MP08, NP18, PZ98, PP10}.\]
\textbf{Projective}
\[\text{Bal08, CW16, Enc05, GKM}^+18, \text{GB12, MS14, Ndm15, ONN19, PSS09, Vse05}.\]
\textbf{Proliﬁc}
\[\text{BEN08}.\]
\textbf{Proof}
\[\text{BL09, CK11, CS91, EMT15, EMT15, FGS19, HK11, HKP}^+17d, \text{dH04, HKS07, IMR14, Kar20, Lic14, Sig10, Wil16, HK16b, Yen97}.\]
\textbf{Proofs}
\[\text{Bab92, EFK05, Loe10, MPP17}.\]
\textbf{Propagation}
\[\text{AS09a, BBCZ11, PS17}.\]
\textbf{Proper}
\[\text{BHH96, BFPP15, BMVW17, FSV13, HH05, HRL2b, LC04}.\]
\textbf{Properly}
\[\text{KY18}.\]
\textbf{Properties}
\[\text{AC90, ACFL16, CDVL11, CM95a, CGMV19, DST01, DP17, EGR08, FMM093, FPS20, GZ19, HST19, JLD}^+18, \text{NS93, OPV14, RSS07, ST13, SW98, TKMM19, ZZ92, dLL09, CCM95, HM88, HY89, TT89}.\]
\textbf{Property}
\[\text{AcRS07, BBC11, BCE}^+01, \text{BEN08, Brå10, BHJ18, CHX15, TSN04, WZ08, Way01}.\]
\textbf{Prophet}
\[\text{EHL17}.\]
\textbf{Ratio}
\[\text{Protection}\]
\[\text{BG01}.\]
\textbf{Protocol}
\[\text{ACMW17, Sak89}.\]
\textbf{Protest}
\[\text{Ac}^+01, \text{Ben08, Brä10, BHJ18, CHX15, TSN04, WZ08, Way01}.\]
\textbf{Quotients}
\[\text{CW14b, OS11}.\]
\textbf{Radii}
\[\text{HK02}.\]
\textbf{Radio}
\[\text{E05, Kp04, KM05}.\]
\textbf{Radputation}
\[\text{BLR16, BLR17, BR17b, CH01, KZ04, LL09, RR03}.\]
\textbf{Radon}
\[\text{DT16, DK16, Han19b, MS14}.\]
\textbf{Radon}
\[\text{Con89, DV04, Fil89, Osn91, Sca03}.\]
\textbf{Rainbow}
\[\text{CP20b, DFT15, FKMS20, FM13, GS20, HLO17, KY18, Kor18, KLS18, LY18b, LW20, OYY13}.\]
\textbf{Ramanujan}
\[\text{Mor94, TZ97}.\]
\textbf{Ramsey}
\[\text{AL07, BLS17, BMS12, CET97}.\]
Con10, CPR99, DP17, EMRPS14, Exo89, FS09b, GJXZ20, GMOV20, GT12, GLS20, HRS18, HST19, JO18, KPPR15, KSV05, Kie97, KKL19, LW18, LW20, Mot19, NP20a, NP20b, OS17, Pik03, PS20, RW89, RRS07, RS08, SWR12, Sud08, XSR11.

Ramsey-Type [FS09b, RW89]. Random

Random [Ald90, AGH11, ADL13, AP14, AF19, AS16, BBLM13, BBLM16, BHRZ14, BF96, BTU09, BSKS11, BK90, Bev09, Bev10, BK90, Bev09, Bev10, BG20, BGG +20, Blo10, BMP13, BGL03, CMR18, CF08, CZLFW05, CL06, CP16a, CP10a, COL10, COPP12, CM12a, CFDK20, CF05, CTK10, CFR10, CF10, CEOR13, CF16, CTW93, CF96, CV09, CSW17, DKRR12, DMP07, DJKO19, Die10, DP96, DKS18, DH05, DFT15, DP16, DP17, DEF19, DS16, DJS12, EFK18, FT12, FO08, FFV11, FMP08, FK18a, FKK18, FKT99, FKS05b, FHL13b, FJ17, FPS18, FT20, FL15, FK18b, GW99, Gaol3, GK07, Git99, GK13a, GLS15, GS94b, GH90a, GH90b, Han19b, HS04, HPS19, HN20, JP12, JT11, Joo15, JA16, KKP15, KW13, KL14, KR04, KM19b, KLM18, KW14, KPS16, Kri10, KLS10, KS12a, KO12].

Random-Cluster [BGG +20]. Random-Edge [GK07]. Randomized [FH10, IKK06, Kra18a, LPS12, SS02a].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].

Score [FvIKS15, PP12]. Scott [HWZ18, HWZ20]. SDR [HS89b].

Search [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18]. Searches [KW08a]. Searching [BHRZ14, BKS09, DH05, FMP08, GK02, LS17, Lev09, LNNW95, Luc03, MTGK05, RC18].
GLP+12, GS93a, GMPZ15, GL10, HST19, Har11, Hav19, HK93, HT93, JK99, Jev95, Juk16, KLM14, Kim17, KSY18, KLMR18, KM01, KT17, LRT08, LM12, LZ06, LSW18, MB18, Mom13, MR15b, MD16, MD11, MS05, Nov18, NS11, OR04, PP07b, RSV+14, Ros09, SS19, SS04, SS95, TT16, Take08, Vse05, Yu17, Zha90, Abe91, Bal88, BM94b, BJvV92, Bou97, HR88, HS89b, Sag88.

Settings [ACF18]. Seven [CFG+09, KK14a, Sav14]. Several [CHX15, DF04, Fed06]. Seymour [CG02]. Shadows [KMV15]. Shallow [ES11]. Shannon [AL07, HTS18, Kas90, Abe91, Bal88, BM94b, BJvV92, Bou97, HR88, HS89b, Sag88].

BGH+17, FKLLL\textsubscript{15}, GDCM\textsubscript{20}, GHvTHP\textsubscript{15}, GRS\textsubscript{11}, JM\textsubscript{17}, JK\textsubscript{17}, KV\textsubscript{15}, KM\textsubscript{94}, KLL\textsubscript{13}, KS\textsubscript{12b}, Lu\textsubscript{08}, Lu\textsubscript{04}, MW\textsubscript{08}, Mot\textsubscript{19}, NS\textsubscript{07}, PG\textsubscript{06}, Pin\textsubscript{14}, RSM+\textsubscript{96}, Shp\textsubscript{15}, SB\textsubscript{91}, Ste\textsubscript{10}, Sul\textsubscript{05}, TH\textsubscript{90}, Wan\textsubscript{08}, NS\textsubscript{07}\]. \textbf{Small-World} [JM\textsubscript{17}]. \textbf{Small} [Kra\textsubscript{18a}]. \textbf{Smallest} [BBS\textsubscript{00}, CSS\textsubscript{01}, Gab\textsubscript{04}, Gab\textsubscript{05b}]. \textbf{Smartstart} [BD\textsubscript{20b}]. \textbf{Smith} [WS\textsubscript{17b}]. \textbf{Smoothed} [Kra\textsubscript{18a}]. \textbf{Smoothing} [DH\textsubscript{91}]. \textbf{Snoop} [PW\textsubscript{02}]. \textbf{Social} [BKL\textsubscript{+\textsubscript{15}}, Che\textsubscript{09}]. \textbf{Soft} [EIH\textsubscript{18}]. \textbf{Solid} [CFLZ\textsubscript{19}]. \textbf{Solomon} [BK\textsubscript{91}, RR\textsubscript{03}]. \textbf{Solution} [BT\textsubscript{14}, DGM\textsubscript{12}, MNPR\textsubscript{17}, Sza\textsubscript{08}]. \textbf{Solutions} [BBCZ\textsubscript{11}, CHX\textsubscript{15}, EIJ\textsubscript{+\textsubscript{12}}, EV\textsubscript{98}, FG\textsubscript{99}, HT\textsubscript{13}, Hor\textsubscript{19}, ILM\textsubscript{+\textsubscript{16}}, LW\textsubscript{03}, Sim\textsubscript{90}, Str\textsubscript{20}, FG\textsubscript{89}]. \textbf{Solvability} [CD\textsubscript{10}, SS\textsubscript{05}]. \textbf{Solvable} [AMNV\textsubscript{18}, HHH\textsubscript{+\textsubscript{02}}, ALZ\textsubscript{96}, BS\textsubscript{88}]. \textbf{Sometimes} [DRW\textsubscript{98}]. \textbf{Somewhat} [KOS\textsubscript{16}]. \textbf{SONET} [CFG\textsubscript{+\textsubscript{09}}]. \textbf{Sorting} [AKK\textsubscript{89}, KKS\textsubscript{L20}, Jae\textsubscript{89}]. \textbf{Some} [BB\textsubscript{09}, Bal\textsubscript{08}, BBZ\textsubscript{12}, Bar\textsubscript{02}, BG\textsubscript{20}, Cai\textsubscript{18}, CCZ\textsubscript{12}, Choo\textsubscript{92h}, Din\textsubscript{13}, DK\textsubscript{10}, DSS\textsubscript{13}, Har\textsubscript{19}, HL\textsubscript{02}, KPS\textsubscript{19}, iKS\textsubscript{Z04}, KBE\textsubscript{+\textsubscript{05}}, Li\textsubscript{17}, Lub\textsubscript{90a}, MW\textsubscript{20b}, MW\textsubscript{03}, PM\textsubscript{99}, Rem\textsubscript{02}, Ry\textsubscript{91}, SWR\textsubscript{12}, Ste\textsubscript{07}, Stu\textsubscript{88}, SW\textsubscript{10}, Zha\textsubscript{94}, Bal\textsubscript{89}, Bie\textsubscript{88}, DP\textsubscript{17}]. \textbf{Solves} [CM\textsubscript{05b}]. \textbf{Solving} [Boy\textsubscript{96}, KKS\textsubscript{vL20}, Jae\textsubscript{89}]. \textbf{Some} [BB\textsubscript{09}, Bal\textsubscript{08}, BBZ\textsubscript{12}, Bar\textsubscript{02}, BG\textsubscript{20}, Cai\textsubscript{18}, CCZ\textsubscript{12}, Choo\textsubscript{92h}, Din\textsubscript{13}, DK\textsubscript{10}, DSS\textsubscript{13}, Har\textsubscript{19}, HL\textsubscript{02}, KPS\textsubscript{19}, iKS\textsubscript{Z04}, KBE\textsubscript{+\textsubscript{05}}, Li\textsubscript{17}, Lub\textsubscript{90a}, MW\textsubscript{20b}, MW\textsubscript{03}, PM\textsubscript{99}, Rem\textsubscript{02}, Ry\textsubscript{91}, SWR\textsubscript{12}, Ste\textsubscript{07}, Stu\textsubscript{88}, SW\textsubscript{10}, Zha\textsubscript{94}, Bal\textsubscript{89}, Bie\textsubscript{88}, DP\textsubscript{17}]. \textbf{Solves} [CM\textsubscript{05b}]. \textbf{Solving} [Boy\textsubscript{96}, KKS\textsubscript{L20}, Jae\textsubscript{89}]. \textbf{Some} [BB\textsubscript{09}, Bal\textsubscript{08}, BBZ\textsubscript{12}, Bar\textsubscript{02}, BG\textsubscript{20}, Cai\textsubscript{18}, CCZ\textsubscript{12}, Choo\textsubscript{92h}, Din\textsubscript{13}, DK\textsubscript{10}, DSS\textsubscript{13}, Har\textsubscript{19}, HL\textsubscript{02}, KPS\textsubscript{19}, iKS\textsubscript{Z04}, KBE\textsubscript{+\textsubscript{05}}, Li\textsubscript{17}, Lub\textsubscript{90a}, MW\textsubscript{20b}, MW\textsubscript{03}, PM\textsubscript{99}, Rem\textsubscript{02}, Ry\textsubscript{91}, SWR\textsubscript{12}, Ste\textsubscript{07}, Stu\textsubscript{88}, SW\textsubscript{10}, Zha\textsubscript{94}, Bal\textsubscript{89}, Bie\textsubscript{88}, DP\textsubscript{17}]. \textbf{Solves} [CM\textsubscript{05b}]. \textbf{Solving} [Boy\textsubscript{96}, KKS\textsubscript{vL20}, Jae\textsubscript{89}]. \textbf{Some} [BB\textsubscript{09}, Bal\textsubscript{08}, BBZ\textsubscript{12}, Bar\textsubscript{02}, BG\textsubscript{20}, Cai\textsubscript{18}, CCZ\textsubscript{12}, Choo\textsubscript{92h}, Din\textsubscript{13}, DK\textsubscript{10}, DSS\textsubscript{13}, Har\textsubscript{19}, HL\textsubscript{02}, KPS\textsubscript{19}, iKS\textsubscript{Z04}, KBE\textsubscript{+\textsubscript{05}}, Li\textsubscript{17}, Lub\textsubscript{90a}, MW\textsubscript{20b}, MW\textsubscript{03}, PM\textsubscript{99}, Rem\textsubscript{02}, Ry\textsubscript{91}, SWR\textsubscript{12}, Ste\textsubscript{07}, Stu\textsubscript{88}, SW\textsubscript{10}, Zha\textsubscript{94}, Bal\textsubscript{89}, Bie\textsubscript{88}, DP\textsubscript{17}]. \textbf{Solves} [CM\textsubscript{05b}]. \textbf{Solving} [Boy\textsubscript{96}, KKS\textsubscript{L20}, Jae\textsubscript{89}]. \textbf{Some} [BB\textsubscript{09}, Bal\textsubscript{08}, BBZ\textsubscript{12}, Bar\textsubscript{02}, BG\textsubscript{20}, Cai\textsubscript{18}, CCZ\textsubscript{12}, Choo\textsubscript{92h}, Din\textsubscript{13}, DK\textsubscript{10}, DSS\textsubscript{13}, Har\textsubscript{19}, HL\textsubscript{02}, KPS\textsubscript{19}, iKS\textsubscript{Z04}, KBE\textsubscript{+\textsubscript{05}}, Li\textsubscript{17}, Lub\textsubscript{90a}, MW\textsubscript{20b}, MW\textsubscript{03}, PM\textsubscript{99}, Rem\textsubscript{02}, Ry\textsubscript{91}, SWR\textsubscript{12}, Ste\textsubscript{07}, Stu\textsubscript{88}, SW\textsubscript{10}, Zha\textsubscript{94}, Bal\textsubscript{89}, Bie\textsubscript{88}, DP\textsubscript{17}]. \textbf{Solves} [CM\textsubscript{05b}]. \textbf{Solving} [Boy\textsubscript{96}, KKS\textsubscript{vL20}, Jae\textsubscript{89}].
Jan05, JN17, Joo15, JW18, KiKK17, KKK17, KW08a, KLN10, KLL13, KLN91, KS12b, LRW12, LM16, PTT16, PT94, SW01, Tuz08, ZL11, BM94a, FM94, BP89, FH89. **Subgroup** [Hyu10, MWWZ20]. **Subgroups** [Shp13]. **Subhypergraph** [CDK+18]. **Subhypergraphs** [Nag10]. **Sublinear** [CHZ18, DN16, ERS19, GRS11, RS11]. **Sublinear-Time** [GRS11]. **Submatrices** [KPT20, LM16]. **Submodular** [BW09, FiT14, GS13, HI16, IMS05, KSF19, LMNS10, SSS13, Yos19]. **Submodularity** [CGV+14, NYKY20]. **Subpattern** [AR08]. **Subposets** [Sch09]. **Subquartic** [New20]. **Subsequence** [BH20, CP96]. **Subsequences** [BM14]. **Subset** [CKN+15, CPPW13, ENSZ00, PW13, SS00, DM88]. **Subset-Restricted** [SS00]. **Subsets** [AAH14, BGN15, BD20a, BGH+17, CFG+15b, CHHM09, DO08, Für91, GJ12, HW96, HIKT99, LPS18, PRS03, PP10, Sza06, Zha90, Hur94]. **Subspace** [WZ08]. **Substar** [CNRS15]. **Substring** [ADM+15]. **Subtour** [GW19]. **Subtournaments** [Kim17]. **Subtree** [BHL+15, FMP08, MS19]. **Subtrees** [KW08b]. **Succinct** [GKS12, HKL99]. **Suffice** [Cra19, HMS05, SV20]. **Sufficient** [BR17a, Sch10, Ste00]. **Sufficiently** [Ste00]. **Suit** [KLW89]. **Sum** [BL19b, Bev10, CMS17, DK16, Hav19, HR05b, Jev95, KT16, KR13, MRNS15, MRNS17, Ram04, RR18, Zak14, LRN11]. **Sum-Distinct** [Jev95]. **Sum-Free** [Hav19]. **Sum-of-Diameters** [Ram04]. **Sum-Product** [BL19b, MRNS15, LRN11]. **Sums** [CY08, CHZ09, CKP16, CH10, Ege10, FKT99, GS94a, HKW15, IK9, KR93, LS06, Mac18, MPSS20, OR12, Smi01, CP96]. **Sumsets** [Fan20]. **Sun** [Hoà10]. **Super** [Das99, FK97, HT90, KW09, KMO18]. **Super-Logarithmic** [KW90]. **Super-Set** [KMO18]. **Superconcentrators** [RTS00]. **Supercritical** [KW13]. **Superlogarithmic** [McK19]. **Supermodular** [BG17, KLO8]. **Supersolvable** [Sch09]. **Superstring** [WS06]. **Supertree** [DS05a], supply [NS89], supply-demand [NS89]. **Supported** [NOP12]. **Surface** [LS06, Mth09, SS09]. **Surfaces** [BK12, CMS09, CGH+10, DKS18, S09, DL14, DL18c, EQ16, Fio06, GKL19, KM14, KLM05, NOP12, NOP14, Oze13, Wu09, Zıt94]. **Surjective** [AMPT93, BEST01, GM05, KST06]. **Survey** [Sav97]. **Survivable** [BKM08, BH93]. **Surviving** [CCVZ10, LW10]. **Svensson** [New20]. **Swapping** [FRW12, Zha11]. **Sweep** [Fra89]. **Sweep-line** [Fra89]. **Swendsen** [Ull14]. **Switch** [DM19]. **Switched** [BCS07, Bon91]. **Switching** [Bon91, CHZ04, HH04, OWY13, Orr08, PL94, Wil99]. **Symbolic** [RT18]. **Symmetric** [AL17, BS95a, BvH03, CM90, CEP18, CR96, CvW18, GS15, GS17, GZ19, GBM15, KST06]. **Symmetry** [AMPT93, BEST01, FGZ19, GM05, KST06]. **Symmetry-Breaking** [GPS88]. **Symplectic** [HK11]. **Synchronizing** [GJ16, Jun12]. **Synthesis** [GPP01]. **System** [FLMY09, MM11, BC88b, DH09]. **Systematic** [KCTR13, Mou94]. **Systems** [ABS10, BMS03, BC95, BH15, BV17, CS14, CM05a, CHX15, CM05b, CFH16, DM18a, DR19, FY18, GAD18, GMA15, GPP01, GMZ09, Gy19, Har10, Hor14, IM96, JZ05, JPY10, KM13a, KS03a, Kas03, KS05, KWM06, KMT07, KN95, LOW10, MH09, Mur06, Nag17, PW02, PSML08, Rif99, SMN09, ST07, Shi12, Sza08, ZLS08, DL89a, EH91, FG89, HMP97, HS89b, KS88]. **Szemerédi** [BC11, NP20b].
T [FKS05a, Sch02b]. T-Coloring [FKS05a]. T-Perfection [Sch02b]. Tableau [PV10a].
Tableaux [FGS19, 'Sn14]. Tables [Lu10, Sul05, KG93]. Tabloids [RY91].
tabulated [KG93]. Tail [MSD19, Raz20]. Tails [BG20]. Takagi [Lev15].
Tanglegrams [CSW17]. Tangles [DEE17, Erd17, GS16a]. Taquin [’Sn14].
Tardos [Peg14]. Target [CHY13]. Tarsi [Gly10, Sto12].
Task [CM05b, KN95, PSW97, DL89a]. Tasks [AE04, DL89b]. TCP [AB05].
Teaching [ABZ15]. Technique [BYR05, CGS16a]. Techniques [BB03, HKP17d, MV18, Ste00].
Templates [GvZ17]. Temporal [Fer16]. Temporary [AE04]. Tenner [FGS19].
Tent [AL17]. Tenor [PPU92]. Tent [AL17]. Term [SST08, Wai19].
Terminal [BKM15, Bib05, Fum16, KN14]. terminals [RTW97]. Terms [RS15].
Ternary [HLV97]. Tesselations [GPW09, Vin93]. Test [BFRS16, KG93]. Testable [ArRS07].
Testing [AK02, ADPR03, AKR08, BD20a, CCGG18, DJKO19, DGL10, EG03, GKS12,
GKW19, HH01, LRR14, MPPS10, PRS02, SL96, HY89, Sp89, YH88]. Tests [MPG+09].
Tetrahedra [SvM08]. Their [BL19a, HY15, JMW17, iKX20, KK14b,
MK01, MMJF03, LW88a, LW90].
Theorem [AFG16, AOW15, BL09, BCD12, BR19, CHZ18, CuK07, CP20b,
DK16, DSS92, DL12, DMN12, DS06, EW19, Fd06, FKS05a, FiT14, GZ06, GT13, HM11,
HlT9, Koc98, Ks03c, KOT09, LGS11, Lo14, MMS17, MWvZ11, MS14, MW20a,
NP20a, NP20b, OSW16, Ram90, Ym20, Fum97, Hef97, RW98, WW91, AKW05,
AKS07, BYHR10, BV10, BC11, KLP12].
Theorems [BEL09, CCG1+00, DEE17, FHH08, FR06, FT05b, IK09, MSD19, SS08, Suk13].
Theoretic [BCS04, KM05a]. Theoretical [Wag07]. Theory
[ACGH20, ASMF10, BLS17, BJ91, DHT06,
FL92, GRR15, Gad18, GR17, KS05, KPT94,
KKL19, MP95, MT20, PT90, ST20b, ST10].
Theta [CS18a, CK08b, Cre04, KG98, LS05].
Thickness [MD18b]. Thicknesses [Fis90b].
thin [BW92]. Third [HK16a]. Thomassen
[CCL0+15, LPS09, WL10]. Three
[AC14, AS05, BCD12, Bon08, Cai18, CH17,
CMSM18, Ch09, CSGZ20, DI13, EM99,
GFP04, GLW11, HJ18, HZ10, KKL1+0, Kar92, KZ04, LGS11, LSW18, Mot19,
MW20b, NHH1, Pet15, vIKL1+16, IP91, IS93, KP06]. Three-Color [Mot19].
three-colored [IS93]. Three-Coloring
[CSGZ20]. Three-Dimensional
[GFP04, MW20b, NH91]. three-linking
[IP91]. Three-Stage [Kar92]. Three-State
[LGS11]. Threshold
[Ale10, ABZ15, BTW08, BDDS03, BB03,
BS91, Buc90, CM12a, DF94, DMP07, DP16,
FRMPV15, Has94, HLMP11, KPPR15,
SB91, SR94, Zun11, FV97, SY88].
Thresholds [CH96b, FRZ16]. Throughput
[ILM20]. Ties [CH17, Kam17]. Tight
[AFH1+18, BF12, BD20b, BFN20, BCF20,
CM14, DSZ05, EP10, FJK1+19, GP91, HM19,
KLS19, KL29, Lam20, LW18, LNO96, Nie00,
OC19]. Tighter [RZ05]. Tile [JW05].
Tiling [BDM02, CD11, HW17b, Zha09].
Tiling [BE13, CM18, CLZV96, Din06,
EV98, Han18, Hs10, Lai18, OV04, OC19,
Ré02, TV03]. Time
[BNM18, BP15, BSN14, Bon91, BCHP08,
BS16c, BF20, CdMR12, Che94, CKN1+15,
CM1+10, CF05, CFP19, CGP08, Dij06,
DP16, DHI1+13, ERS19, ELSS17, FP04,
F000, FKL1+19, Gab05a, GV92, GRS11,
GJ16, GPS19, HKL1+14, HKL99, HT05,
HvTHL12, HV00, HK05, JMS00, JSOS03,
JP06a, JLL16, JLR20, KN16, KK90, KMS98,
KP95, LW17a, LM16, MN15, MNN18,
Moh99, RS11, ST07, SY11, SWKP10, Svi03,
51

Total-Coloring [KSS08]. Totally [EM20, Gij05]. Tough [DNS94]. Tour [DRW98, SL96, Zha93, Kar89]. Tournament [CPR99, KSW17, PRS88]. Tournaments [Al06, BNN09, HW96, KKKS17, KKO16, Kim17, MT90]. Tours [BIT13, CLS15, Tas97]. Tower [Rom06]. Trace [GR17, Mat19, RMS01]. Traceability [SW98]. traceable [Zho88]. Tractability [HN15, HK14, KPPW15, Sli10, TZ15].

Travelling [DRW98]. Tree [AFG+16, Ad08, BP13, Ban90, BDF+18, BFGR17, BS15b, BDLR01, CC95, CKP13b, CQX20, CP10a, Dab93, DHS14, DM11, DJM+18a, DJM+18b, Erd17, FJZ15, FS05, FKL+19, FJK+19, GMT11, GLSS16, GL95, GLY07, HW16, HNS05, HK07, JLR+17, KT13, KL19a, KLM’03, Let19, LSTY17, LNNW95, LR04, Luc03, LR91, MRV17, MS19, MdCW16, Owe11, RZ05, San96, Sca05, Ste00, VZ93, Wan02a, Vam20, Alt89, DYL06, DL89b, HS89, IWK19, Tod89]. Tree-Related [Ad08]. Tree-Structured [DL89b]. Tree-Width [HW16, Luc03, San96]. Treedepth [GJW16]. Treelength [CDN16]. Trees [AT90, AAL16, Ald90, ART14, AFG’09, ASY14, ANS16, ABR05, AL95, AH11, ANP14, BS95a, BL17a, BPSS19, BPSS20,
Bev09, BM11, BVWV11, BCLR95, BKKZ17, BDT17, Bon08, BZ11, BMV92, Cai93, CWY00, CHK+90, CKP13a, Cha91, CGM+15, CDWZ17, CCK+04, CK14, CFG+15a, Con05, CL15b, CL15c, CSW17, DL19, DZ09b, DH05, DM15, ES11, EJ01, FMP08, FT05a, FKT99, FL15, Git99, GSK91, HSZ13, Han09, HH17, HKW15, HT18b, HMSW14, IIL14, KL19a, KZ04, KW08b, KM95, KM19, KM13c, KW96, Kri10, KKS17, LLL17, Lu10, LW20, LM11, Luc98, McD15, Més16a, Mol11, NO09, Oze13, Pip01, PSW96, Rah16, RSM+96, RSV+14, VY09, Vyg16, XGG15, ZM02, Zha99, dJMS16, vIKL+16, BCLR89, GMW96, PC97, RTW97, Sag88, Ste88, TP97, Wen97.

Treewidth [BST20, BM93, BKK95, BJK13, CCVZ10, CDN16, DFHT04, MP17b, SSR94, Ram97a].

Trellis [BT96, Kas08].

Triadic [KPS16].

Triangle [AKKR08, AB95, Bar01, Bra05, CCG05, DPRS10, Dro16, DH20a, DL17, DM17, DL18c, DL18b, FL96, GKL99, Har19, HT93, IKM99, JS14, KS08c, Liu14, Mer15, PT94, BH97]. Triangle-Free [DPRS10, DLS10, DL17, DM17, DL18c, DL18b, FL96, GKL99, HT93, IKM99, KS08c, Liu14, PT94, BH97]. Triangle-Freeness [AKKR08]. Triangles [CDM+14, CFS20, DL18b, Lai18, Pin08, WL02, Yus09].

Triangular [DV96, JKSW17, KS08b].

Triangularization [TT93]. Triangulated [BBK95, BK13, CCVZ10, CDN16, DFHT04, MP17b, SSR94, Ram97a].

Triangulation [Str20]. Triangulations [BBK+16, CFS+09, CEOT15, CEOT17, CGH+10, HTV05, IMKN09, Més16b, MRST16, NNO15, NNO19, SS18b, WWKY11, Zhe16].

Trick [Zha11]. Tries [RJS93]. Trilinear [Mac18, MPSS20]. Trinomial [MPSS20].

Trinomials [Dim13, DQW+15, WZZ18]. Tripartite [KSZ04]. Triple [BKKM99, BH15, BCHW17, DR19, GJ16, Gyá19, Hor14, Nag17, Rif99, COS97].

Triple-Free [BKMM99, COS97]. Triples [AHF19, FS01, Hor14]. Trisection [RT18].

Tropical [BK19, BK12, JLS09b, Juk16, LY18a, Sha13, Spe08, ST10]. Tropicalizing [ABGJ15]. Trotter [BYHR10]. True [CR19]. Truncations [IT12]. Trunk [FJK+19]. Tsetlin [LMS19]. TSP [BIT13, CLS15, DL18a, LS03a, New20].

Tucker [LM16]. Tunnel [ABC17]. tuple [Kap14b]. Turán [AKS07, BBBZ12, BLS17, BK14, Dow88, GH13, Gyá19, JS12, JQ20, KKL19, KKV15, LM14, LZ18a, LZ09, NP20b, Nor11, PT14, ST20a, Sid18, ZKS20].

Turing [JMS90]. Tutte [GnN06, WL17b, PSS09]. Tutte-Type [WL17b]. Twenty [RKDD13]. Twins [BR20, GKM12]. Twill [KS04]. Two [ARTV12, ARTPR91, Ale10, ABZ15, ADL+09, BLS17, BPS07, BCK09a, BMS12, BP15, BCG+10, BGH+17, BGR18, CDV10, CFS17, CMS+18, dOCHLO19, CHK17, CLST12, DFJS15, DJW12, DTW03, DS05b, DLS11, DL17, DL18b, EA11, EFK05, FM11, FK17, FR94, FIN98, G07, GMS00, GM03, GW00, Gol96, HJ18, HM20, HKL11, HV17, HK16b, HMP04, KS03, KKL19a, KOS16, KMS+09, KKL14, Kla06, Km95, Lei94, LW03, LZ05a, Lla06, LSL92, LdCKM18, MN18, MP08, P205, PY09, RTS00, RR18, Red17, RS16, Rya07, Sak94, ST20a, Smi01, Ste00, SV18, WL03, Web08, Yu17, Zak14, ZLWC12, Zun11, CH89, CHW88, DL89b, Eso89, HKKK88, KP06, KLW89, KSS88, Zho88]. Two-Batch [DS05b].

Two-Chain [LSL92]. Two-Color [DFJ15]. Two-Colored [MP08]. Two-Coloring [KMS+09]. Two-Connected [HV17].

Two-Dimensional [Ale10, ABZ15, BP15, FM11, GW00, Zun11, HM20].

Two-Layer [Lei94]. Two-Part [EFK05].
Two-Party [KOS16]. Two-Period [BCG+10]. Two-person [KLN89].
Two-Player [BMS12]. Two-Set [Rya07]. Two-Sided [CHK17]. Two-Variable [FK17]. Two-Way [Knu95]. Type [BD01, BV20, CM05a, CGG+16, CIN18, EK10, FHH08, FKS05a, FS09b, HMM09, KR13, LW17b, MK09, Spa07, TKMM19, YZ17, AFP+18, KOT09, Lin89, RW89, SG16].
types [BRK89]. Typical [BL19a, FKK05, FKK07].

Unidirectional [BCC+05, CFG+09]. Unified [CK08c]. Uniform [Ali90, BF12, BBLM17, BCCZ11, BL01, CFKK17, ELSS17, EGM18, FRZ16, GSS15, HPS09, Han16a, Han18, HWZ18, HWZZ20, Jan10, Kha13, KR15, LLM19, Lla06, LZ18a, OS17, PRS18, RR18, Rus07, Yus03, ZKNS20, HM88].

Upright [CS91]. Upward [DGL11, DGL10]. Urn [CZOS98, CZLW05, SW10]. Use [BL04, CDN16, KOS16, RS16]. Using [ABY14, BDF+18, BDG+17, Cai93, CCG+11, EFK05, HH04, HRS93, Jan10, KNZ14, Kri18, Luc03, MMP10, NW95, NO08, SL96, Str20, Gor93, Tam88].
Utilities [Vaz13].

Valued [CLLZ18, CCJ+17, FGS19, FK17, TZ15]. values [KP06]. Variable [BJK07, FK17, HS06, IM96, Kra06, Sei01, Vin13].
Variable-Sized [Sei01]. Variables [BDP19, HRR00, Jan10, Lla06, LR94].
V ariance [DH05, Str20]. Variant [DEF19, NPP06, UWZ97]. Variation [HTS18]. Variations [MRNS15, MRNS17].
Varieties [BFH+08, DF04, FM08]. Variety [BK19]. Varying [MV18]. VC [BDF+18, BLL+15, HWS18].
VC-Dimension [BL+15, HWS18]. Vector [BGW20, BN05, IK09, KS03d, Vin11, WCLZ15, Web08, XG20]. Vectors [Cha91, CN12, FGLS18, GP08b, GJ12,
Vehicle [GZ98]. Vershik ['Sn14]. Version [AK14, dOBMS+17, BGW20, CZLfW05, Lo14].

Verstraëte [GM20]. Versus [Tre04, CPRdS13, CSF20]. Vertex [Age94, AY11, AS14, ÁS09c, BBF99, BM19, BrLS07, BYFM10, BYHR10, BMP13, BMR+10, BRK89, CMPS17, CHW10, CFPW13, Dan01, DZ09a, FJZ15, Fe90, FSV13, FL10, GM20, GT12, GHP20, Gra07, GSS15, HT90, HLST00, HPS09, HRS18, HMM09, HY12, JP18, JLa0a, KMi19a, iKX20, KvLL12, Kha13, KG98, Kra18a, KR20, Lai05, Lic14, LR04, Mac91, MacD15, MW94a, MPSZ19, Mol11, MW90, OS13a, Ra010, WH15, Zeh17, Zer11, Zha90, o09, vBBC15, HS89a, Kie97, TP97].

Vertexes [Bal08, BHL05, BGH17, CH17, CHLZ00, DL19, DHKM11, EM20, Fle05, GP18, HT19, KiK12, KiKK17, KKSvL20, LM12, Pad16, Ste10, ZL11, Stu88].

Very [Sol06]. Via [ACG94, AM06a, AFS12, AB00, AL17, BD20a, BMS12, BV10, CNR89, DS19L, FP520, Fuk16, Fu14, GPST15, GS20, HKL99, HTS18, JLR20, KLMM13, KT17, KLL11, LW88a, LL14a, LL17, LLS04, Lu10, NT12, Prz13, Wro20, WC12, Yam16].

View [CS08, CK08c, FKM+16, Mat19]. Viewpoint [FLM+18]. Violation [iKX20].

Virtual [HKS07]. Visibility [ABHW13, CHJ+04, HVW07, HZ08, IKK06, LLS04].

Visible [RT11]. Vision [DKS10].

Voronoï [MGC14, SGM20, Wor88]. Voting [AK10, Bal90, CDFR18, FKM+16, IIL14, CEOR13]. VPN [FOST10].

Wavelength [BCC+05, BCC+10, Car09]. Wavelength-Division [BCC+05]. Wax [ACM11]. Way [EMM14, Kn95, BJ92].

WDM [Car09, CFG+09]. Weak [AK14, DF02, GT13, HH13, IP91, SS19, Abe91]. Weakly [AGH11]. Weakness [GT98].

Weaving [ACG20]. Web [Pip06]. Weber [LY1a]. Weight [AP14, BB13, BM00, Bar02, BHH96, BK91, BB03, BLM10, CCD00, CER98, CDWZ17, CHZ09, CGK+19, CDHZ12, CPPT20, DM13, FPS18, JT11, Kap14b, LS14, LV03, MMSJ08, RF12, RSW12, SE14, BBM90, CZ97].

Weighted [ADL13, ANP14, BB16, BS95a, BBCZ11, BWT08, BM16, BG12, CDM+14, Det15, Die10, ELS13, FP13, Ga18, GNS11, HRS17, Mon20, LOW10, MC93, BG88, FZ88].

Weights [BJKV07, CM07, FPS18, Hs94, Krz06, LWW10, SB91, VV94]. Well [BN05, COHH17, FL92, Lag00, iO08, Rif99].

Well-Covered [BN05]. Well-Ordered [Rif99]. Well-Partial-Order [FL92].

Well-Quasi-Ordering [iO08].

Well-Spaced [Lag00]. Wheel [AFH+18, CDV20, Cha09a]. Wheels [OSW16]. Wheels-and-Whirls [OSW16].

which [Erd17, HS89b]. Whirls [OSW16].

Who [KSW17]. Whose [Jev95]. Wide [FFP88]. Wide-sense [FFP88]. Widely [LS03]. Width [AHP09, BDY+20, DD13, DMN12, FRRS09, GFT11, GnN06, HW16, Hll18, KM14, Lam20, LR04, Luc03, iO08, Rn96]. Widths
REFERENCES

[Adl08]. Wiedemann [KMÖ18]. Wiener [FL15, LW03]. Win [KSW17]. Windows [GOR20]. Windy [CPS08]. Winkler [GG15]. Winners [KMR95]. Wired [Cha19]. Wirelength [CKK+04]. Wiring [SW01, Pat88]. Wise [GNPV20, Vse05]. Without [CDM00, CL07, CH06a, CEOT15, CEOT17, CS12, DJW12, DL14, MNS14, BBC19b, BH15, CDM04, CPPT20, DMR11, DX19, ES11, Far09, FKP15, GS03, JPY10, JKSW17, KSY18, Kle89, KLN10, LLS19, WL02, WX13, ZLWC12]. Word [BK05, Sch04]. Word-Run [Sch04]. Words [BM14, BH20, Fra10, KRR16, MRR20, RMS01]. World [JM17]. Worst [ASZ02, PV10b, SS95, Tak08, Tas97, HS89b]. Worst-Case [PV10b, SS95, Tak08, HS89b]. Wreath [Ath14].

X [DGP06]. X-rays [DGP06].

Yeh [HRS12]. Yeo [Lic14]. Yields [GVW06]. Yong [FGS19]. Young [DZ09b, PV10a].

References

Abel:2018:CFC

Alfaro:2018:CNC

Akbari:2006:MPI

Abrego:2018:BD

Alon:2014:MNN

Abay-Asmerom:2010:DPF

AaW09

Alon:1994:ECD

Andreae:1995:PAG

Annexstein:2000:DRG

Albers:2005:DTA

Axenovich:2007:GHS

Anastos:2018:PDH

Adiga:2011:BPD

Alon:2015:SDB

Ardila:2017:CSR

Abello:1991:WBO

Afek:2014:MC

Allamigeon:2015:TSA

Ardila:2011:RPG

Aldred:2000:NCC

Axenovich:2013:VND

Avin:2020:DBG

Ahmady:2014:ICG

Alstrup:2005:LSS

Alstrup:2005:LSS

Ardila:2014:MRE

Federico Ardila, Tia Baker, and Rika Yatchak. Mov-

[Alekseyev:2015:MTS]

[ACD13]

[Averkov:2013:CAH]

[ACF18]

[Aminas:2016:DBN]
Aistis Atminas, Andrew Collins, Jan Foniok, and Vadim V. Lozin. Deciding the Bell number for hereditary graph

Alon:1994:RPG

Alon:2020:MCH

Akleman:2020:TCT

Agarwal:2019:EGB

Arias:2006:CRN

Alon:2001:EBB

Adamaszek:2018:ASC

[ACLW18] Anna Adamaszek, Artur Czumaj, Andrzej Lingas, and Jakub Onufry Wojtaszczyk. Approximation schemes for

*Tewodros Amdeberhan, Mahir Bil
can, and Victor H. Moll*. Broken bracelets, Molien se-
ries, paraffin wax, and an elliptic curve of conductor
1843–1859, ????, 2011. CODEN SJDMEC. ISSN 0895-
siam.org/sidma/resource/1/sjdmec/v25/i4/p1843_s1.

*Badria Alsulmi, Todd Cochran,
Michael J. Mossinghoff, Vincent Pigno, Chris Pinner, C. J. Rich-
dardson, and Ian Thompson*. A generalization of the
2973–3002, ????, 2018. CODEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (electronic).

Geir Agnarsson and Jill Bigley Dunham. A note on the maximum number of edges of non-

Geir Agnarsson and Jill Bigley Dunham. A note on the maximum number of edges of non-

Alon:2014:CBN

Alon:2013:BNC

Ashok:2018:EFP

Alverson:2009:DLD

Amini:2013:FWS

Acharya:2015:SRS

Azizouglu:2003:ESM

Alon:2010:BMI

REFERENCES

Alon:2009:SDT

Abdi:2016:LTD

Aboulker:2018:TEP

Alexeev:2012:FIS

Agrawal:2020:PCF

Asada:2018:FDG

Amini:2012:CSH

Omid Amini, Fedor V. Fomin, and Saket Saurabh. Count-

Ackerman:2012:GAP

Alpers:2006:SEC

Apollonio:2015:MUD

Alpers:2018:DRI

Ayre:2019:RCH

Ageev:1994:FCI

Amini:2011:SWQ

REFERENCES

siam.org/sidma/resource/1/sjdmec/v25/i1/p234_s1.

Alcon:2014:PSG

Alb:1996:BFR

Agnarsson:2003:CPP

Angel:2011:RWG

Aksoy:2016:GMS

Armbruster:2008:GBC

Aichholzer:2010:LBP

Amini:2009:PWP

[AHP09] Omid Amini, Florian Huc, and Stéphane Pérennes. On the path-width of planar

Aigner-Horev:2019:MST

Akhatar:2008:ADE

Alon:2002:TC

Abraham:2010:VP

Aharoni:2014:WVR

Alon:2008:TTF

Alon:2008:LNR

Ajtai:1989:SA

Ackerman:2020:CHD

Alstrup:2019:ALS

Albertson:2005:PEB

Aharoni:2017:RLM

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Althofer:1995:CBF

Alon:2007:GPD

Alekseyev:2010:NTD

Agrawal:2018:KCP

Alon:2006:RT

Aldous:1990:RWC

Agrawal:2018:KCP

[Alo13] Noga Alon. Minimizing the number of carries in addi-
REFERENCES

Albert:2011:PPP

Altschul:1989:LPT

Alspach:1996:NZF

Ashley:1995:CES

Arikati:1996:RDS

Axenovich:2006:APM

Axenovich:2006:SCN

Alderson:2007:COO

T. L. Alderson and Keith E. Mellinger. Constructions of optical orthogonal codes from...

[Alon:2011:SBP]

[Arkus:2011:DFS]

[Arvind:2018:EGS]

[Anastos:2018:CH]

[Alles:1991:EDD]

Peter Alles, Jaroslav Nešetřil, and Svatopluk Poljak. Extend-

[AP92]

[AP14]

[AP16]

[AR04]

Ahal:2008:CSP

Alon:2017:BTP

Alonso:1995:MDC

Aracena:2017:NFP

Allman:2014:SDG

Aboulker:2012:GDC

Adams:1997:CNB

Ashir:2002:FTE

References

REFERENCES

Àlon:1994:PS

Àlon:2014:CQT

Àlon:2002:CWC

Àthanasiadis:2014:ESL

Àl-Thukair:1991:MPT

Àu:2016:CAP

Àthanasiadis:2014:ESL

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>

REFERENCES

80
Balogh:2012:TDS

Bayati:2011:BPW

Biedl:2019:RLS

Babka:2019:OLL

REFERENCES

REFERENCES

REFERENCES

Bender:1994:NDR

Bouchet:1995:DMJ

Bandelt:2002:GCM

Bandelt:2003:HG

Bekmetjev:2009:PAD

Brennan:2009:TGS

Borenstein:2011:CGB

REFERENCES

Byrne:2017:BOR

Brettell:2019:GS

Bermond:2005:TGU

Basavaraju:2011:AEC

Basu:2010:MI

Bermond:2011:ACU

Brandstadt:1997:CDC

Andreas Brandstädt, Victor D. Chepoi, and Fedor F. Dragan. Clique r-domination and clique r-packing problems on dually chordal graphs.
REFERENCES

Barbosa:2012:CNC

Bezakova:2019:FDF

Bergeron:2008:CCI

Boros:2000:BNF

Barg:2001:HAI

Bollobas:2005:SDP

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Bandelt:2010:CGF

Brightwell:2010:PCF

Bodirsky:2012:CM

Bustamante:2020:PEC

Bermond:2010:DCW

Boros:1992:CCO

Bretscher:2008:SLT

REFERENCES

REFERENCES

[Bourgain:2009:DSP]

[Banks:2004:NTD]

[Battn:2001:BST]

[Barvinok:2020:TDS]

[Birx:2020:TAS]
REFERENCES

[Brandstadt:1998:DCG]

[Bernstein:2019:DPG]

[Blundo:2003:COT]

[Biswas:2006:SRG]

[Beaudou:2018:BOG]

[Bohman:2010:FG]

[Bishnu:2017:UPS]
REFERENCES

[BDPR18] Stéphane Bessy, Mitre C. Dourado, Lucia D. Penso, and Dieter Rautenbach. The geodetic hull number is hard for chordal graphs. *SIAM Journal on Discrete Mathe-
REFERENCES

Black:2017:VPT

Bouman:2013:EMR

Buzaglo:2013:TCP

Benko:2009:ABI

Blackburn:2008:PCI

Berman:2007:LSR

Berget:2011:CCS
REFERENCES

Bernstein:2020:IOB

Beveridge:2009:CRW

Beveridge:2010:CRC

Barnes:1996:SRW

Bal:2012:PTH

Bruhn:2017:PFG

Bottcher:2015:LGF

Belmonte:2017:MDB
REFERENCES

Bliznets:2015:SPA

Bulteau:2012:STD

Basavaraju:2016:PPK

Bertossi:1988:TDI

Bienstock:1991:EPS

Blanca:2011:UCN

Brieden:2012:OWB

REFERENCES

434, 2012. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Berry:2007:RCP

Blake:1994:NSD

Beaudou:2008:IES

Bartal:2015:IDR

Belfiore:2017:QCS

Bouvel:2018:SBS

Bierbrauer:1996:OAR

[BGS96] Jürgen Bierbrauer, K. Gopalakrishnan, and D. R. Stinson. Orthogonal arrays, resilient functions, error-correcting codes, and linear program-
REFERENCES

Binay Bhattacharya, Pavol Hell, and Jing Huang. A linear algorithm for maximum

Bruhn:2018:FPE

Butler:2008:GG

Ben-Haim:2005:EMD

Bernstein:2015:BES

Bermond:1992:BBD

Balogh:2008:FFC

Brankovic:2000:OPS

REFERENCES

Benedetti:2016:CHA

Bereg:2016:RPF

Banderier:2014:AES

Bottcher:2010:EBG

Bujtas:2016:TGH

Beimel:2005:PNS

Burgisser:2013:DPL
Bienstock:1988:AAS

Biha:2005:TCP

Berczi:2018:MBG

Bresar:2005:HDP

Boyd:2013:FF

Barthelemy:1991:FTC

Benjamin:1992:AWC

Arthur T. Benjamin and Fritz Juhnke. Another way of counting N^N. *SIAM Journal on...
REFERENCES

Bang-Jensen:1995:PIL

Bang-Jensen:1999:ECA

Bang-Jensen:2003:SCS

Bang-Jensen:1998:ECA

Bang-Jensen:1988:CCS

Bodlaender:2013:PTC

Hans L. Bodlaender, Bart M. P. Jansen, and Stefan

Bodlaender:2014:KLB

Babilon:2007:LGF

Bang-Jensen:1992:PAP

Beutelspacher:1992:PSS

Berman:1990:RPC

Blake:1991:CWE

Burstein:2005:USW

REFERENCES

Bernath:2015:GTB

Bresar:2010:DGI

Berry:2009:MLS

Bosek:2010:FFA

Bottcher:2015:EBL

Bollobás:1990:ID

Brys:2001:MPC

Brandstadt:2004:SPG
[BL04] Andreas Brandstädt and Van Bang Le. Split-perfect

Bezrukov:2009:SPK

Bond:2016:ANF

Bernstein:2017:IOL

Balogh:2019:TSG

Basit:2019:ISP

Blackburn:2003:FC

REFERENCES

REFERENCES

Bondy:2017:ECO

Balogh:2017:TPR

Balogh:2019:CHC

Bodlaender:1993:PTC

Barahona:1994:CGPa

Barahona:1994:CGPb

Barahona:1994:CGPc

Baiou:1997:SEC

REFERENCES
ISSN 0895-4801 (print), 1095-7146 (electronic).

[BM16] Andreas Brandstäd and Rafael Mosca. Weighted efficient domination for P_5-free and P_6-free graphs. *SIAM Journal on Discrete Mathematics*, 30(4):2288–2303, 2016. CODEN SJDMEC. ISSN 0895-
REFERENCES

Bai:2019:NVD

Bhattacharya:2020:SMP

Brewster:2013:FMD

Bonato:2013:VPR

Brandt:2010:EIE

Becker:2020:ILB

Belfrage:2012:POP
REFERENCES

REFERENCES

3(1):7–20, February 1990. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Bonin:2010:CIS

Bonamy:2015:PGE

Babai:1994:ESD

Brightwell:2001:RR

Borm:1992:PVC

Bouchet:1997:MCI

Boyd:1996:CCP

Borg:2010:CIF

REFERENCES

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Peter Brass. An upper bound for the d-dimensional analogue
REFERENCES

119

Branden:2010:DCH

Buss:1989:VTB

Balister:2007:AVD

Browder:2011:FNC

Britz:2009:DM

Bruck:1990:HAP

Bertolazzi:1988:CPS

REFERENCES

REFERENCES

REFERENCES

Behrisch:2009:CRI

Beimel:2008:CIW

Bukh:2012:MKK

Bukh:2016:BEL

Bonareno:2010:SDB

Braun:2020:HTC

Boys:2016:NOC

Barbe:2003:SCR

REFERENCES

Bhatnagar:2011:RCT

Barnes:1988:NHP

Brightwell:1992:CP

Brightwell:2009:SP

Bjorner:1999:CDG

Borodin:2002:CCP

BY08

Bar-Yehuda:2010:APC

Bar-Yehuda:2010:ENT

Bar-Yehuda:2018:GHB

Bar-Yehuda:2005:EBP

REFERENCES

[Car94] Claude Carlet. The divisors of \(x^{2^n} + x\) of constant derivatives and degree \(2^{n-2}\). *SIAM Journal on Discrete Mathematics*,

[Car94] Claude Carlet. The divisors of \(x^{2^n} + x\) of constant derivatives and degree \(2^{n-2}\). *SIAM Journal on Discrete Mathematics*,

Caragiannis:2009:WMW

Cai:1995:TS

Cheon:2003:NBF

Chlebik:2007:CCO

Canteaut:2000:WDC

Coffman:2000:PDI

Chu:2005:RCR
Wensong Chu, Charles J. Colbourn, and Solomon W. Golomb. A recursive construction for regular differ-

Chandrasekaran:2011:CIS

Chandrasekaran:2018:LTL

Cabello:2014:CSE

Chee:2013:SCA

Cohen:2017:BVC

Conforti:2006:OHR

Carlson:1995:DEP

Cascudo:2015:SSN

Chalopin:2011:CRG

Cada:2015:RBT

Cada:2017:DES

Chalopin:2014:CRG

REFERENCES

Chlamtác:2018:DSP

Cera:2000:SGT

Cera:2004:EGT

Chapuy:2014:PTW

Chun:2016:UCM

Charbit:2012:LTS

Coudert:2016:ATU

David Coudert, Guillaume Ducoffe, and Nicolas Nisse. To approximate treewidth, use treelength! *SIAM Journal on Discrete Mathematics*, 30(3):1424–1436, 2016. CODEN SJDMEC. ISSN 0895-
REFERENCES

133

4801 (print), 1095-7146 (electronic).

Chlebus:1994:SMC

CDP94

Calinescu:2008:RGG

CDP08

Cassaigne:2016:NBS

CDR16

Cheng:2002:FIA

CdV02

Chakrabarty:2010:RSP

CDV10

Cabello:2011:FCT

CdVL11

Conforti:2007:MSF

CDW07
Chang:2017:TWC

Coppersmith:2006:SSP

Cameron:2008:CLP

Cooper:2013:CRW

Chen:2015:PTS

Chen:2017:PTS

Chekuri:2018:CCR

REFERENCES

765, ????, 2017. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Cooley:2020:SRH

Colbourn:2009:MSA

Clemens:2015:BST

Conlon:2015:DVS

Chung:1988:FCN

Chen:2006:CEH

Colbourn:2016:DSS

REFERENCES

Chen:2011:LBP

Cooper:2010:HCR

Cohen:2019:IP

Chan:2017:PTU

Chen:2019:DOC

Chung:1994:UBD

Chavez:2009:GRM

REFERENCES

Cooper:2011:MBC

Conforti:2016:CDF

Cooper:2019:CTD

Cooper:2010:MRW

Coppersmith:1996:RWR

Chappell:2017:TDP

Conlon:2020:BVT

Chang:1993:AAN
Gerard J. Chang, Martin Farber, and Zsolt Tuza. Algorithmic aspects of neighbor-

Cornuejols:2002:IBC

Conforti:2007:POC

Connelly:2017:PST

Chor:1988:ISP

Chen:2016:ISP

Chandrasekaran:2017:DOC

Cortes:2010:TTN

REFERENCES

Chen:2015:DCC

Chung:1994:ECD

Chee:2019:DEC

Chekuri:2006:SCP

Chakrabarty:2014:SHN

Camerini:1989:ITM

Chen:2001:AMC

Soojin Cho and JiSun Huh. On e-positivity and e-unimodality of chromatic quasi-symmetric functions. *SIAM Journal on
Chan:1991:PTV

Chandran:2003:HGG

Chen:1994:LTA

Chepoi:1998:DPD

Cheng:2004:IAA
REFERENCES

Cheng:2007:CFF

Chen:2009:AIS

Cheng:2016:SMC

Chen:2017:CDI

Curtis:2009:NUC

Chimani:2011:FCN

Chang:2004:BVN
145

REFERENCES

Chopra:1994:GPP

Chopra:1994:ECS

Chow:2009:RRB

Carter:1990:DLE

Chung:1989:PH

Chang:1988:ODT

Csorba:2010:ANG

Chang:2015:HDS

Chiang:2013:TSS

Chen:2004:ERM

Charpin:2009:CWE

Chestnut:2018:SBQ

Christie:2001:SSR

Constantinescu:2007:LZC

Cibulka:2013:MSR

Cifre:2018:DBM
REFERENCES

Callaghan:2005:BFM

Chor:1991:ZOL

Chang:1996:LPG

Chen:1999:GED

Charpin:2008:CMB

Chudnovsky:2008:DTP

Corneil:2008:UVG

Cochrane:2011:PGK

Chekuri:2014:GRS

Chiu:2018:HDC

Cunha:2013:ATD

Charikar:2004:MWZ

Christofides:2010:SDC

Cardinal:2014:MOC

REFERENCES

2014. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CKP13b]</td>
<td>Cheilaris:2013:UMC Panagiotis Cheilaris, Balázs Keszegh, and Dömötör Pálvölgyi. Unique-maximum and conflict-free coloring for hypergraphs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

[Cheilaris:2013:UMC] Panagiotis Cheilaris, Balázs Keszegh, and Dömötör Pálvölgyi. Unique-maximum and conflict-free coloring for hypergraphs

Covert:2016:SPF

Chudnovsky:2013:LSR

Chee:2015:PCA

Chrobak:1991:NRS

Chambers:2009:EPR

Cremona:1990:SLP

Chan:1991:EHC

REFERENCES

Chrobak:1991:NAS

Coppersmith:2005:CBO

Chung:2006:VGC

Chee:2007:EGR

Cheng:2011:SRM

Cheriyan:2013:AAM

Candrakova:2015:ACF

Coutinho:2015:NLP

REFERENCES

2015. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Csikvari:2015:HTP

Candrakova:2016:SCC

Chakraborti:2020:EGL

Cranston:2020:CFP

Chavez-Lomeli:2011:BC

Choi:2018:CCO

Cheng:2018:SGM

Canovas:2003:FOP

[CLM03] Lázaro Cánovas, Mercedes Landete, and Alfredo Marín. Facet obtaining procedures for

REFERENCES

Cannon:2018:PTR

Chapuy:2009:BRM

Chappelon:2018:CTT

Cheung:2017:PDA

Chakrabarty:2010:DEO

Clark:2016:SFM

Cook:2012:CMG

Csaba:2019:EGH
[Béla Csaba and Judit Nagy-György. Embedding graphs having Ore-degree at most

Choi:1989:GBM

Chudnovsky:2015:ESA

Coja-Oghlan:2010:ESR

Coja-Oghlan:2017:WSW

Collins:1998:CS

Coja-Oghlan:2010:FPP

Constantine:1989:IDR

Constantine:2005:EDI

[Con05] Gregory M. Constantine. Edge-disjoint isomorphic multicolored trees and cycles in complete graphs. *SIAM

Conlon:2010:LRN

Coja-Oghlan:2012:DPR

Corneil:1997:ATF

Corneil:2010:LSR

Coppersmith:1996:QES

Cogill:2010:STM

Colomo:2010:LSL
REFERENCES

REFERENCES

REFERENCES

Chen:2016:PPA

Cranston:2019:AEC

Cranston:2017:LCC

Cranston:2017:SFB

Cranston:2019:HZC

Crespi:2004:EFL

Cheng:1989:CSG

Coffman:1991:SPU

REFERENCES

REFERENCES

[Calkin:1998:NIS] Neil J. Calkin and Herbert S. Wilf. The number of independent sets in a grid...
REFERENCES

REFERENCES

Curran:2003:NCC

Chang:2008:EBD

Chen:2012:PNR

Chiba:2018:DFD

Cranston:2020:SGN

Charpin:1997:CWD

Chen:2005:RVS

Chen:1998:OAP
Robert W. Chen, Alan Zame, Andrew M. Odlyzko, and

Dolecek:2010:REC

Dahlhaus:1993:FPR

Hausen:2010:UTC

Daneshgar:2001:FSC

Dang:2009:ASH

Dasgupta:1999:SMS

deCarvalho:2013:NPM

Marcelo H. de Carvalho, Cláudio L. Lucchesi, and
REFERENCES

Silva:2020:NTD

Ding:2013:CGP

Delucchi:2015:BCL

Dao:2020:MCM

De:2016:RKI

Donald:1993:SSO

Dosa:2011:POS

[169]
REFERENCES

REFERENCES

Dujmovi\v{c}:2017:SGL

Dew:2020:IRN

Desmedt:1994:HZK

Doignon:2002:FWO

Dougherty:2004:DDP

Doerr:2010:HDD

Demaine:2004:BPL

REFERENCES

References

173

Durr:2012:RCG

Debski:2020:AMR

deGevigney:2013:MBP

Dulio:2006:DPX

Doty:1996:CGN

deGraaf:2005:PRS

deCaen:1989:IDC

REFERENCES

Vida Dujmović, Daniel J. Harvey, Gwenael Joret, Bruce

Dukes:2020:MDR

Dv orak:2020:FCP

Dv orak:2020:LCE

Dujmovic:2013:LTA

Du:2002:OCC

Dress:2011:BCV

Dolev:2002:NPH

Dorbec:2013:GPD

Devadoss:2014:PCT

Demaine:2006:BTB

REFERENCES

[Diaz:2019:ECR] Alberto Espuny Díaz, Felix Joos, Daniela Kühn, and

[Dvork:2009:MNC]

[DJKP09]

[Dujmovic:2018:COT]

[DJW12]

[Dzindzalieta:2012:OPI]

[deJong:2016:NPT]

[Dujmovic:2012:IBF]

Delsarte:1989:LRM

Deogun:2002:DPG

Dong:2006:GHN

Dong:2010:ZFI

Dvora:2014:SIM

Devlin:2016:SEK

Dellamonica:2012:DAF

DeBiasio:2015:AOH

deKlerk:2006:IBC

Disser:2017:PKU

deKlerk:2013:ILB

Dellamonica:2012:URG

Drmota:2016:CCC

Dowden:2018:ERG

Dumitrescu:2010:VBP

[DKSZ10] Adrian Dumitrescu, Howi Kok, Ichiro Suzuki, and

DeCarvalho:2020:BNG

Du:1989:CSP

Du:1989:STS

Ding:2012:CTC

Dvorak:2014:CGS

Dvorak:2017:FSC

Dunik:2018:CTA

REFERENCES

REFERENCES

CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Durocher:2018:RGT

Dyer:2019:CPM

Dorbec:2008:PDP

Draisma:2012:LWD

Dorn:2013:EAE

deWerra:1993:ECS

Diaz:2007:STH

Daskalakis:2011:PBB

Dankelmann:2008:ADEb

Dankelmann:2008:ADEa

Dutta:2012:NLB

Deza:2014:CAC

Dvorak:2016:SSS

Dragan:1999:CHF

Dankelmann:1994:PTG

Peter Dankelmann, Thomas Niessen, and Ingo Schiermeyer. On path-tough
REFERENCES

Dror:2008:COE

Do:2019:RCS

Bastos:2017:LHC

Contiero:2019:SRT

Dohmen:2003:IIE

Day:1994:SDH

Dowd:1988:QRE

REFERENCES

186

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

2163–2172, 2010. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Diaz:2008:WCG

Ding:2015:PTF

Dey:2004:CCU

Drell:2012:CGC

Dross:2016:FTD

Deuinek:1998:STE

REFERENCES

DeWerra:1991:CCC

Drmota:1997:IPR

Daniel:2005:CGS

Dumitriu:2005:TBL

Dvork:2006:TA

Dvork:2009:CNG

Dutta:2016:IBI

David:2019:CCP

[DvW18] Samantha Dahlberg and Stephanie van Willigenburg. Lollipop and lariat symmetric functions. *SIAM Journal on
REFERENCES

Eliahou:2011:TGN

Espert:2018:ABF

Epstein:2009:OCI

Erdős:1991:MDC

Erdős:2005:TPS

Erdős:2014:SSS

Espig:2018:ECP

Espig:2015:WBG

Ejov:2008:DLC

Erbes:2018:SPF

Engel:2003:TBC

Egecioglu:2010:BPP

Ergemlidze:2018:UHL

Engels:2020:EMM

Eisenstat:2008:CPR

David Eisenstat, Gary Gordon, and Amanda Redlich. Combinatorial properties of

Edelman:2013:SCO

Etzion:1991:TLS

Even:2013:LOG

Enomoto:2001:CCN

Esfandiari:2017:PS

Erman:2011:CGC

Ehrenborg:2016:CCP

Ehrenborg:2016:CCP

References

Elias:2014:LBG

Erdos:2015:DBP

Encheva:2005:PCS

Engebretsen:2004:NNB

Elkin:2015:LS

Even:2000:AMS

Espéret:2016:IGS

Emek:2010:TUB

Epstein:2006:OPC

Erde:2017:RTD

Erde:2020:DPD

Eriksson:1996:CFG

Epstona:1998:CDB

Elkin:2011:NSL

REFERENCES

Fan:1992:CGC

Fang:2020:GPD

Farzad:2009:PGC

Feder:2001:CHO

Feder:2006:DTF

Feige:2004:AMC

Feige:2010:OSG

Fellows:1990:TVP

Felsner:2014:ODP
Stefan Felsner. The order dimension of planar maps re-

Uriel Feige, Abraham D. Flaxman, and Dan Vilenchik. On

[Fomin:2000:GSI]

[Furedi:1989:PLG]

[Florescu:2014:ERR]

REFERENCES

REFERENCES

Fomin:2018:SCA

Focke:2019:CCS

Fan:1994:SHC

Fountoulakis:2010:QRS

Feder:2008:BTT

Feder:2010:RP

Feigenbaum:1989:FES

Languages: en
@if々

ewcommand\REFERENCES{
\section{REFERENCES}

Fomin:2018:SCA

Focke:2019:CCS

Fan:1994:SHC

Fountoulakis:2010:QRS

Feder:2008:BTT

Feder:2010:RP

Feigenbaum:1989:FES

Languages: en
}
REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Fiorini:2017:EMI

Faigle:1996:CNB

Feder:2003:LP

Feder:2013:GAN

Frieze:2013:GCN

Feder:2014:GAN

Fu:2020:ASP

REFERENCES

[Felsner:1994:IBI]

[Feder:2003:AHC]

[Fuji-Hara:2001:OOO]

[Fluschnik:2018:FKL]

[Feder:2003:AHC]

[Fujishige:2005:BFM]

[Fill:1989:RT]

[Frank:1998:TAD]
Fink:2009:CMG

Fiorini:2006:CLO

Fishburn:1990:BPI

Fishburn:1990:TOS

Fisher:1994:DFD

Fischer:2014:AAQ

Fujishige:2014:MMT

Fan:2009:RLL

REFERENCES

Friedrich:2018:DHR

Furedi:2018:KRR

Feng:2005:ETC

Friedrich:2018:UDD

Feige:2020:PMC

Feng:1998:ICC

[Rongquan Feng, Jin Ho Kwak, Juyoung Kim, and Jaeun Lee.](http://epubs.siam.org/sam-bin/dbq/article/43186)

Feigenbaum:1993:CRP

Fomin:2019:PSE

Fagin:2016:AVV

REFERENCES

REFERENCES

REFERENCES

[Fraughnaugh:1996:FIS]

[Forcade:2000:LSC]

[Fujita:2010:BDN]

[Fuchs:2015:WIR]

[Fraigniaud:2010:LBN]

[Fraughnaugh:1995:CGS]
Kathryn F. Fraughnaugh, J. Richard Lundgren, Sarah K.

Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer. All alternating groups A_n with $n \geq 12$ have polytopes of rank $\left\lfloor \frac{n-1}{2} \right\rfloor$. *SIAM Journal on Discrete Mathematics*, 26(2):482–498, ????. 2012. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Shinya Fujita and Colton Magnant. Forbidden rain-
REFERENCES

Favaron:1993:HPB

Fife:2020:UFM

Feng:2008:PCS

Felsner:2017:CPO

Fishburn:1988:UFD

Flajolet:1990:SAG

Fleischer:2000:ORI

REFERENCES

Feige:2008:FMI

Fiorini:2010:VPC

Fox:2010:CMI

Flajolet:1999:SNC

Flammini:2001:OGL

Flammini:2004:LBB

Fuhr:2013:PPP

REFERENCES

2020. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Graver:2011:WDC

Gabrys:2020:SCS

Gainer-Dewar:2017:MHS

Garin:2008:AST

Gao:2011:CGC

Gadouleau:2015:NCB

Gomez:2007:CDF

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

REFERENCES

Gregory Gutin, Mark Jones, and Magnus Wahlström. The

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Gottlieb:2013:PAN

Guzman:2016:CFG

Gyarfas:1999:LCG

Gimbel:2019:FCM

Garrod:2012:HCB

Gerber:2018:LPF

Goresky:2004:DS

REFERENCES

REFERENCES

Guruswami:2017:ITP

Gerbner:2012:AIF

Glebov:2015:CDN

Gu:2020:ARN

Giannopoulou:2016:TDS

Gritzmann:2011:UDT

Graham:2007:OTS

[GM04] Stefanie Gerke and Colin McDiarmid. Graph imperfect-

Georges:2005:SGN

Greenhill:2013:AES

Giannopoulou:2016:NGR

Gao:2020:CVV

Garcia-Marco:2015:MTI

Gerbner:2020:RPB

Goyal:2015:DAM

Galvin:2011:MHC

Georges:2000:LPC

Grzesik:2015:DPL

Gross:2015:LCC

Gouveia:2019:SRS

Grötschel:1996:PST

REFERENCES

Golic:1996:CEP

Goldberg:2006:BPR

Gordon:1993:DLU

Gelles:2020:EEC

Gavoille:1999:CIR

REFERENCES

Galil:2004:TDP

[102x681] 240
[220x645] 240
[102x626] [GPP04] Zvi Galil, Jong Geun Park, and Kunsoo Park. Three-
[170x614] dimensional periodicity and its application to pattern
[170x590] matching. SIAM Journal on Discrete Mathematics,
18(2):362–381, 2004. CODEN SJDMEC. ISSN
0895-4801 (print), 1095-7146 (electronic). URL http://
epubs.siam.org/sam-bin/dbq/article/39030.

Goncalves:2011:DNG

[102x657] [GPRT11] Daniel Gon calves, Alexandre
[170x645] Pinlou, Micha el Rao, and
Stéph an Thomassé. The domi-
nation number of grids. SIAM
Journal on Discrete Mathematics,
SJDMEC. ISSN 0895-4801 (print),
1095-7146 (electronic). URL http://
epubs.siam.org/sidma/resource/1/sjdmec/v25/i3/p1443_s1.

Goldberg:1988:PSB

[102x628] [GPS88] Andrew V. Goldberg, Serge A.
Plotkin, and Gregory E. Shann-
non. Parallel symmetry-
breaking in sparse graphs. SIAM
Journal on Discrete Mathematics,
SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Gravner:2019:MST

[102x637] [GPS19] Janko Gravner, J. E. Paguyo,
and Erik Slivken. Maximal
spanning time for neighbor-
hood growth on the Hamming
plane. SIAM Journal on Dis-
crete Mathematics, 33(2):976–
993, 2019. CODEN SJDM-
EC. ISSN 0895-4801 (print),
1095-7146 (electronic).

Goldberg:2001:BAG

[102x657] [GPSS01] Leslie Ann Goldberg, Mike
Paterson, Aravind Srinivasan,
and Elizabeth Sweedyk. Better
approximation guarantees for job-shop scheduling. SIAM
CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146
(electronic). URL http://
epubs.siam.org/sam-bin/dbq/article/32610.

Garnero:2015:ELK

[102x645] [GPST15] Valentin Garnero, Christophe
Paul, Ignasi Sau, and Dim-
itrios M. Thilikos. Explicit lin-
er kernels via dynamic pro-
gramming. SIAM Journal on
Discrete Mathematics, 29(4):
1864–1894, 2015. CODEN
SJDMEC. ISSN 0895-4801
(print), 1095-7146 (elec-
tronic).

Golovach:2015:IDP

[102x639] [GPvL15] Petr A. Golovach, Daniël
Paulusma, and Erik Jan van
Leeuwen. Induced disjoint
paths in claw-free graphs. SIAM
Journal on Discrete Mathematics,
29(1):348–375, 2015. CODEN SJD-
Graves:2009:GEH

Guenin:2013:RBP

Goemans:2002:SMS

Goldberg:1999:FUU

Giscard:2017:ACT

Graver:1991:RM

Graver:2004:EFG

REFERENCES

Gritzmann:1993:MAP

Gao:1994:SSE

Goh:1994:RSP

Greenberg:1995:FOO

Gerards:1998:GAS

Ginsburg:2000:CDC

Gijswijt:2003:SSP

REFERENCES

Goldman:2014:GFB

Guruswami:2015:IMV

Gregor:2012:QLH

Getu:1992:HGG

Gimbel:1998:WOS

Goldwasser:2012:VRP

Giannopoulou:2013:OGM

Gu:2018:SRS

Guichard:1998:CGH

Günlük:2007:NMC

Gutin:1993:FLP

Gargano:1992:MTB

Gupta:2008:COC

Gat-Viks:2006:RCF

Gentile:2006:MCG

Grace:2017:TBM

REFERENCES

Grace:2019:HCE

Goemans:2000:TDG

Geelen:2007:RBC

Gutekunst:2019:CIG

Glanzer:2018:NDR

Christoph Glanzer, Robert Weismantel, and Rico Zenklusen. On the number of distinct rows of a matrix with bounded subdeterminants. *SIAM Journal on
Griggs:1992:LGC

Gyarfas:2019:TNB

Guan:1998:MCV

Geelen:2006:STI

Gorlich:2010:PD

Gao:2019:PFF

Han:1998:ND

Han:2009:YAG

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Hartvigsen:2018:PMC

Harris:2019:SRC

Haastad:1994:SWT

Haviv:2019:SFS

Hwang:1998:NCI

Heden:2008:PCL

Hefner:1997:MMT

Hendrey:2018:SGH

Hetyei:2014:HCF
Gábor Hetyei. Hurwitzian continued fractions containing a repeated constant and an

REFERENCES

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Hsieh:2002:CEP

Haynes:2002:DGA

Hell:2020:BAC

Hirai:2016:SR

Halldorsson:1999:FSM

Magnús M. Halldórsson, Kazuo Iwano, Naoki Katoh, and Takeshi Tokuyama. Finding subsets maximizing minimum structures. *SIAM Jour-
REFERENCES

Hirai:2011:FCM

Hsu:1994:EPC

Han:2018:IBM

Horton:1993:MED

Hoffmann:1996:GCR

Hager:1999:GPC

Honkala:2002:MBR
Hsu:2005:OAB

[HK05]

Hamel:2011:BPS

[HK11]

Huang:2013:NPM

[HK13]

Huber:2014:OTS

[HK14]

Huber:2015:DMT

[HK15]

Hebdige:2016:TCC

[HK16a]

Henning:2016:DGP

[HK16b]
REFERENCES

[HKP01] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the distributed

Hefetz:2008:PCM

Hunsaker:2003:OOA

Haase:2020:LOP

Heuberger:2015:CTC

Hong:1992:SRL

Hoang:2000:RPS

Hsieh:2010:PRH

REFERENCES

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Ha:2015:NP

Hlineny:2018:SSR

Heggernes:2011:CSG

Hopp\pen:2017:RER

Heath:1992:CQS

Horn:2013:JNM

Hamidoune:2000:ICV

References

Hyde:2019:DSK

Hu:2013:OBN

Haimovich:1988:EPH

Hartvigsen:1994:APM

Harutyunyan:2011:GTL

Harutyunyan:2012:PGE

Humpert:2012:IHA

Huang:2019:TCH

Hartarsky:2020:CTD

Hatami:2009:IGS

Holzman:1997:LBQ

Huygens:2004:TED

Huber:2005:FCS

Huber:2014:RPT

Hartung:2015:NHF

Huynh:2020:MSP

Hoang:2010:CFS

Hofmeister:1995:ECR

Horsley:2014:EPS

Horn:2019:SGE

Heath:1997:SQL

REFERENCES

Har-Peled:2013:PG

Heydemann:1996:SHD

Han:2009:PMU

Hoppen:2019:PAR

Hamburger:2009:KRG

Hochbaum:2003:MCC

Heuer:1988:SGD

Hassin:2002:RM

REFERENCES

REFERENCES

REFERENCES

Hartke:2007:FRB

Huynh:2014:ICR

Haglin:1996:CST

Haxell:2010:SPP

Harvey:2015:CGS

Hamann:2016:BCT

Hoefer:2017:LSM

Huang:2017:NNN

Huang:2018:CCP

Harry H. Y. Huang and Larry X. W. Wang. The corners of

Hu:2018:VDB

Hou:2018:BSC

Hou:2020:EBS

Hwang:2018:PCC

Hwang:1989:CPM

Henning:2010:STH

Henning:2012:VDC

REFERENCES

Hill:2013:RSC

Henning:2015:TTH

Hyun:2010:SFP

Hell:1995:EHO

He:2008:NOV

Hatami:2010:FCN

Iglesias:2014:CVT

Iosevich:2009:EFD

REFERENCES

Isler:2006:RPE

Kawarabayashi:2011:IAH

Kawarabayashi:2009:CGK

Isaak:1992:CG

Imrich:1999:MGT

Kawarabayashi:2010:SCA

Kawarabayashi:2009:MTK

Kawarabayashi:2016:CTG

[iKO16] Ken ichi Kawarabayashi and Kenta Ozeki. 5-connected

Kawarabayashi:2004:ONG

Kawarabayashi:2020:MVV

Ishikawa:2008:EMS

Isgur:2016:CNF

Im:2020:BBN

Iwata:1996:HPS

Impagliazzo:2014:EPC

Russell Impagliazzo, Christopher Moore, and Alexander Russell. An entropic proof of Chang’s inequality. *SIAM
REFERENCES

Imase:1991:DST

Janssen:2010:RBA

Just:2016:LAT

Jacobson:1992:ECC

Jaeschke:1989:SRC

Janusz:2000:OCP

Janata:2005:MIP

Jansen:2010:ESJ

Klaus Jansen. An EPTAS for scheduling jobs on uniform processors: Using an

K. Jansen, F. Land, and K. Land. Bounding the running time of algorithms for scheduling and packing prob-

Jedwab:1993:BAI

Jones:2017:PCD

Jansen:2020:NLT

Jiang:1999:EBG

REFERENCES

Jiang:2000:CEB

REFERENCES

Jones:2020:WGB

Joos:2015:RSS

Joos:2016:IMGb

Janson:2003:CES

Jansen:2006:PRC

Joswig:2006:COM

Janson:2012:HTR

Jansen:2018:AKC
References

Joret:2014:HHP

Jiang:2012:DPG

Jiang:2010:SSS

Jiang:2020:TNB

Joos:2014:IMS

Jordan:2003:DPL

Jiang:2012:TNS

Jochemko:2014:AMO

REFERENCES

2014. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Jungers:2012:SPF

Juttner:2006:BOP

Joret:2018:MFI

Janssen:2005:LBT

Ji:2005:RSQ

Kahale:1997:IIE

Kamiyama:2017:PMT

Kamiyama:2019:PSM

REFERENCES

Khosrovshahi:1990:NBT

Kang:2008:LHG

Kao:1996:DSE

Kapadia:2014:MMP

Kaplan:2014:MIT

Karlo:1989:HLC

Karp:1992:TSG

Kardos:2020:CAP

Kashyap:2003:MSC

[Kas03] Navin Kashyap. Maximizing the Shannon capacity of constrained systems with two constraints. *SIAM
REFERENCES

REFERENCES

Kleinberg:1998:LT

Khan:2013:PM

Kierstead:1988:L

Kakimura:2012:PD

Kakimura:2017:PE

Kim:1991:OP

Kim:1992:CAB

Kim:2011:FRS

Kim:2017:USL

Kiraly:2016:MIA

Kitchens:2002:MCC

Katoh:2013:RTD

Krokhin:2004:CSP

Kohli:1989:APH

Rajeev Kohli and Ramesh Krishnamurti. Average performance of heuristics for satisfiability. *SIAM Journal on Dis-
Klawe:1990:ALT

Kortsarz:2001:AN

Kunszenti-Kovacs:2009:NPA

Katz:2010:ADE

Kaminski:2014:BVB

Kocay:2014:RG

Kral:2012:EFP

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Kang:2017:SSC

Kaiser:2010:SCC

Kim:2019:TCR

Karchmer:1995:FCC

Kim:2016:BHC

Kalkowski:2011:NUB

Kohli:1994:MSP

Kang:2015:PTM

Kardos:2010:LFF

Krivelevich:2017:BDS

Kalinowski:2019:ZFN

Kanj:2020:SPP

Kardos:2011:FCC

Kallal:2017:ILB

Klawe:1992:TLB

Maria Klawe and Tom Leighton. A tight lower bound on the

Krokhin:2008:MSF

Kim:2014:URG

Kelk:2019:TKC

Keller:2019:NLI

Klazar:2006:ICN

Kleitman:1989:DUC

Kowaluk:2013:CDS

REFERENCES

[Kemkes:2003:SNC] Graeme Kemkes, Chiu Fan Lee, Donatella Merlini, and Bruce Richmond. Stirling numbers for complex argu-

[KLMR03] Graeme Kemkes, Chiu Fan Lee, Donatella Merlini, and Bruce Richmond. Stirling numbers for complex argu-

Kortsarz:2010:AMS

King:2012:FAB

Krivelevich:2010:RPR

Kowalik:2018:FGC

Kahn:1989:SST

Korner:1988:GSE

Koller:1994:CSS

Klawe:1995:ULB

REFERENCES

Kakimura:2013:RIS

Korner:2013:DDG

Kozik:2013:NCN

Krakovski:2014:HFW

Karthick:2019:SFG

Kiwi:2019:SLC

Kwak:2005:EBC

Kang:2012:IMS

REFERENCES

Korner:2008:GDP

Kierstead:2009:TCN

Korner:2012:FGD

Kobayashi:2007:OCF

Kostochka:2015:TPS

Keevash:2006:SSN

Krishnamurti:1995:AAP

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Klee:2013:FCB

Kante:2016:PTA

Kostochka:2005:ECD

Kannan:1992:IRG

Khanna:2005:DND

Knuth:1995:TWR

REFERENCES

Krauthgamer:2014:PTD

Kuhn:2012:PCR

Ko:1988:STO

Kuhn:2006:IBT

Kuhn:2006:MHC

Kotchol:1998:PIT

Koppe:2007:PBA

Kushilevitz:2003:ARP

REFERENCES

Korandi:2018:RSG

Khamsemanan:2016:BBU

Kuhn:2016:RGF

Kotsarz:1995:AAM

Kalyanasundaram:2000:OTP

Kowalski:2004:FDB

REFERENCES

Kabadi:2006:CMT

Krotov:2009:AQO

Kang:2016:CGP

Keszegh:2013:DPG

Kang:2015:PTQ

Kratsch:2015:FPT

Kundgen:2010:RSM

Korandi:2016:RTP
Dániel Korándi, Yuval Peled, and Benny Sudakov. A random triadic process. *SIAM
Kafer:2019:CDS

Kierstead:1994:LCR

Knuth:1992:PCR

Knopfmacher:1993:RSP

Kushilevitz:1998:RRT

Kindler:2004:DCR

Konyagin:2013:NSP

Kurauskas:2015:CIR

Kaiser:2016:NZF

Krauthgamer:2020:RVS

Kráľ:2004:CPC

REFERENCES

REFERENCES

REFERENCES

Ko:2003:BDS

Kral:2003:TAC

Kumar:2003:PFA

Katta:2004:NBT

Keevash:2005:SSR

Kovaleva:2006:AAR

Kortsarz:2007:IAA

Guy Kortsarz and Sunil Shende. An improved approximation of the achromatic
number on bipartite graphs.

Kaiser:2008:CIE

Kral:2008:BRN

Kral:2008:CTF

Krivelevich:2012:OPH

Krivelevich:2012:CSS

Kovacs:2019:NSP

Kawase:2019:SMU

REFERENCES

Kim:2017:WCW

Kiss:2018:CEA

Kao:1999:LDM

Kratochvíl:1999:RDG

Kakimura:2014:MPD

Kellner:2016:SSC

Kovacevic:2017:IBS

King:2019:NUB

[KT19] Emily J. King and Xiaoxian Tang. New upper bounds

Kushilevitz:1992:PCC

Kleitman:1990:CBI

Kavitha:2015:SSP

Kelk:2012:CKQ

Karchmer:1990:MCC

Kleitman:1991:STM

Kannan:1992:TCG

REFERENCES

[102x681] REFERENCES

Keevash:2018:RMP

Kabadi:2009:IEP

Kierstead:2004:RTT

Kostochka:2008:ALC

Kupavskii:2018:SMS

Labarre:2013:LBE

Lagarias:2000:WSL

Laihonen:2005:OER

Tero Laihonen. On optimal edge-robust and vertex-robust \((1, \leq l)-identifying codes. *SIAM Journal on Discrete Mathematics*, 18(4):825–834, 2005. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-
REFERENCES

[Luo2003:DCG] Yuan Luo, Wende Chen, and A. J. Han Vinck. The determination of the chain good weight hierarchies with

Linusson:1997:PRB

Lee:2015:NCG

Liu:2014:UBF

Laihonen:1999:NBC

Lee:2014:RPR

Li:2014:MOG

Liang:2017:MCS

Lladser:2006:UFC

Li:2017:GCS

Lee:2018:CAS

Lavrov:2019:DUG

Lin:2004:ICV

Lee:2013:SSG

Lu:2020:FSG

REFERENCES

Li:2010:RNC

Lih:1999:SEC

Liu:1989:LRA

Leveque:2008:CBF

Lukot’ka:2010:CGG

Lucier:2011:GDC

Levit:2012:VBA

Lo:2014:DTD
Lindzey:2016:LTA

Li:2017:PDD

Lee:2010:MNS

Liu:2019:CHO

Lokshtanov:2017:HSO

Liu:2019:GTP

Lokshtanov:2019:PCF
2019. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

1667–1681, 2010. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Liestman:1988:BNB

Luczak:2019:PHR

Lichiardopol:2009:STB

Lokshtanov:2018:BAS

Lotker:2012:RLB

LeSaulnier:2013:TA

Luczak:1991:TMG

References

REFERENCES

REFERENCES

Lin:2008:UCA

Litsyn:2009:DBF

Long:2014:WHH

Lafond:2015:HCG

Lund:2016:IBB

Laurent:2017:SFS

Larose:2018:NPR

Lou:1992:OAM

REFERENCES

Liu:2003:LEW

Lang:2017:APE

Luo:2010:ECS

Lokshtanov:2019:BJB

Lin:2017:CTS

Lund:2018:FFK

Li:2014:SCC

REFERENCES

[Lu08] Alexander Lubotzky. Locally symmetric graphs of prescribed girth and Coxeter

Luczak:1998:GAE

Lucena:2003:NLB

Lukotka:2020:SCC

Lutz:2004:SEN

Lefmann:1989:P

Langenhop:1988:CON

Lempel:1988:SCN

Li:2003:STC

[Xueliang Li and Lusheng Wang. Solutions for two conjectures on the inverse

Lu:2018:APM

Lu:2018:RMH

Luo:2008:RDS

Lynch:1994:RRA

Larose:2003:CEP

Liu:2005:CDT

References

Makai:2007:MCF

Mallows:1989:ISI

Malandro:2015:FIF

Marietti:2009:CCC

Mareche:2020:CGK

Mattheus:2019:TPF

Mayoraz:1996:PDN

Mayhew:2008:MCN

Mammoliti:2018:MCC

[MB18] Adam Mammoliti and Thomas Britz. On Mubayi’s conjec-

McCormick:1993:WSP

Milans:2006:CGP

Mertzios:2012:SPA

McDonald:2015:LVR

McKinley:2019:SCD

McLeod:2010:AEE

MoranR:2011:MFC

Moran:2016:CIH

Mohammadi:2016:AMT

Mehrabian:2012:DNR

Merris:1999:NUB

Mertzios:2015:RST

Meszaros:2016:PRT

Meszaros:2016:PDC

Ma:2019:OBL

[MM93] Antonio Machi and Filippo Mignosi. Garden of Eden

Manacher:1996:FDP

Magos:2011:FSA

Maffray:2012:CFG

Montufar:2015:WDM

Mutoh:2003:EGB

Matuschke:2020:RFW

Mehrabian:2013:MDG

REFERENCES

Martinez:2010:LEU

Martinez-Moro:2006:MCF

Martin:2017:AMK

Momihara:2008:CWC

McConnell:2015:LTR

Ma:2018:CGT

Mertzios:2018:LTA

Motwani:2008:LBL

Mouawad:2017:SRP

Mousset:2014:NGL

Mohar:1999:LTA

Moisio:2008:DBH

Mollard:2011:VPH

Momihara:2013:SHD

Koji Momihara. Skew Hadamard difference sets from cyclotomic strongly regular graphs. *SIAM Journal on
Montgomery:2015:AAF

Morgenstern:1994:RD

Mota:2019:TCB

Mouaha:1994:SCO

Malitz:1994:ARP

McMorris:1995:MPF

Mitchell:1998:PFC

Mustafa:2004:LYN

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MR12]</td>
<td>Dillon Mayhew and Gordon Royle</td>
<td>The internally 4-connected binary matroids with no (M(K_5 \setminus e))-minor.</td>
<td>SIAM Journal on Discrete Mathematics</td>
<td>26</td>
<td>2</td>
<td>755–765</td>
<td>2012</td>
<td>CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).</td>
</tr>
</tbody>
</table>
Moore:2015:ARA

Moore:2015:OBS

Mrazovic:2017:OPC

Medina:2019:NUD

Murphy:2015:VSP

Murphy:2017:VSP

Mansour:2020:FAP

Motwani:1989:PGO

Macajova:2019:CCS

Miracle:2016:SCO

Montanari:2011:RCR

Mauhar:2017:RKP

Muir:2005:ADS

Meagher:2014:EKR

Mani:2016:NLC

[MS16] Arun P. Mani and Rebecca J. Stones. The number of la-

REFERENCES

Miskuf:2009:BCG

Mertzios:2010:NIM

Manoussakis:1990:PAF

Metelsky:2003:LGH

Maffray:2005:APC

Mezard:2011:SSC

Mubayi:2020:ETL

REFERENCES

Mitchell:1994:CPA

Makhul:2020:SKP

Ma:2020:SPC

Myung:2001:EAR

Naatz:2000:GLE

Naatz:2001:NQC

Nagle:2010:CFI

Nagle:2017:CPT

Naor:1991:LBP

Nasre:2014:PMS

Neelamani:2007:NOL

Nguyen:2010:ARM

Nguyen:2013:SRC

Ng:1991:TDS

Cheng Ng and Daniel S. Hirschberg. Three-dimensional

Nielsen:2009:STC

Nakamoto:2012:BET

Nixon:2012:RFS

Nixon:2014:CGR

Norine:2011:TGN

Novik:2018:ASC

Nguyen:2018:EPI

Nelson:2020:RTB

Nobili:1993:PPC

Nesetril:2007:SDD

Nesetril:2005:SAE

Nozaki:2011:BDS

Nixon:2018:RFE

REFERENCES

REFERENCES

[OSta13a] Allen O’Neal and Peter J. Slater. Uniqueness of vertex

Osthus:2013:AHD

Onn:2015:HUF

Ordentlich:2016:UBS

Omidi:2017:DRN

Oxley:2016:WWT

Ostergaard:2004:REF

Ollivier:2012:CBM

REFERENCES

Payne:2017:BLP

Provan:1997:CPA

Pegden:2014:EMT

Penev:2012:CBF

Perrett:2016:CRM

Pettie:2011:OND

Petersen:2013:SIO

Pettie:2015:TGD

Pfender:2015:CDC

Florian Pfender. Combined degree and connectivity conditions for H-linked graphs.
REFERENCES

Padro:2006:RSI

Picollelli:2014:FSF

Pikhurko:2003:ASR

Pinchasi:2008:MND

Pinchasi:2014:FFP

Pippenger:1989:RSA

Pippenger:1991:ECC

Pippenger:1995:ARA

REFERENCES

8(2):322–345, May 1995. CO-
DEN SJDMEC. ISSN 0895-
4801 (print), 1095-7146 (elec-
tronic).

Pippenger:2001:EET

Pippenger:2002:EMI

Pippenger:2006:LPD

Pittel:1989:ANS

Pippenger:1994:FTC

Phelps:1999:NPC

Padro:1998:FTF

Polyanskiy:2019:HSA
Yury Polyanskiy. Hypercontractivity of spherical averages in Hamming space. *SIAM
Pongracz:2020:BLC

Przytycka:1990:LBS

Paletta:2007:NAA

Perles:2007:FSP

Pinchasi:2010:DSU

Peserico:2012:HCC

Papalamprou:2013:DBS

Pemantle:1992:TP1

Robin Pemantle, James Propp, and Daniel Ullman. On tensor powers of integer programs. *SIAM Journal on Dis-

Pruesse:1991:GLE

Poonen:1998:NIP

Plaut:2020:AEF

Pralat:2013:SGF

Palmer:2002:CCF

Poljak:1988:TRE

Proskurowski:1998:AAL

[PSML08] Liqun Pu, Hao Shen, Jun Ma, and San Ling. Cycle systems in the complete bipartite graph plus one one-factor. *SIAM
Pelsmajer:2009:SHT

Pelsmajer:2010:RIE

Patt-Shamir:2000:EAE

Pittel:2008:NFP

Proskurowski:1996:PET

Phillips:1997:TSN

Petit:1990:TPR

REFERENCES

Poljak:1994:BST

Peng:2014:ITP

Penev:2016:IHC

Pitassi:1995:CHC

Pak:2010:RYT

Paletta:2010:SNA

Pineda-Villavicencio:2018:EDP

Peleg:2002:HES

[Qu:2014:DPS] Longjiang Qu and Cunsheng Ding. Dickson polynomials of the second kind that permute
REFERENCES

Qureshi:2015:RAF

Rahman:2016:FIP

Ramachandran:1990:MAT

Ramachandramurthi:1997:SNO

Ramras:1997:CFO

Ray-Chauduri:1988:EDL

Ramras:2011:AGJ

Reading:2008:CNP

Reading:2015:NAD

Redlich:2017:PTC

Remila:2002:SSS

Ravazzi:2012:GRI

Rhoades:2015:ADR

Richter:2014:DRR

Rifa:1999:WOS

Riordan:1998:OED

Rizzi:2002:FFB

Rokicki:2013:DR

Richmond:1997:SNC

REFERENCES

Ruskey:1993:HCE

Rautenbach:2014:TLP

Rodl:2008:RMG

Ravi:2010:AAM

Rudnev:2016:UKQ

Rubinfeld:2011:STA

Regev:2017:IGL

REFERENCES

Roberts:1988:OSC

Remmel:1991:SRH

Ryan:1996:IH

Ryan:2007:TSP

Robins:2005:TBG

Sherali:1990:HRB

Saad:1993:CFI

Sagan:1988:NIS

Saks:1989:RNP

Sakai:1994:LCG

Sanders:1996:LRT

Sarangarajan:1997:LBA

Savage:1990:GPD

Savage:1997:SCG

Savitsky:2014:EPS

Sawada:2002:FAG

Sawada:2007:SGC

Siu:1991:PTC

Szwarcfiter:1994:CGC

Stolk:2010:AFD

Sidiropoulos:2019:AAL

Sarkar:2017:UBS

Scarabotti:2003:FA

Scarabotti:2005:DST

Fabio Scarabotti. The discrete sine transform and the spectrum of the finite q-ary
REFERENCES

Bernd Schulze. Symmetry as a sufficient condition for a finite flex. *SIAM Journal on
Solomon:2014:BDD

Seiden:2001:OOA

Sendrier:1997:DH

Seress:1998:QGC

Servatius:1989:BP

Sommer:2009:FCL

Shangguan:2016:SHF

Sikirić:2020:VCC

REFERENCES

Shaw:2013:TIP

Shakan:2020:LGD

Shen:2018:PIL

Shioura:2012:NSJ

Shparlinski:2010:DOK

Shparlinski:2013:ADS

Shparlinski:2015:CGG

Sidorenko:2018:EPH

Siggers:2010:NPC

Simon:1990:ASC

Simson:2013:CGC

Schulze:2015:IRS

Skutella:2016:NRL

Sherali:1995:SSL

Shen:1996:GAC

Slivkins:2010:PTE

Smith:2001:PSP

Sakashita:2009:MTP

Sniady:2014:RSK

Snook:2013:CDP

Solymosi:2006:DAL

Solomon:2012:MSD

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

[Siu:1994:ODT]

[Sugihara:1989:OAP]

[Sapiro:1991:BPS]

[Steiner:2000:SRI]

[Schulz:2002:SUM]

Steel:2002:IRF

Solymosi:2008:EIT

Shachnai:2004:FLI

Soprunov:2009:TSC

Soprunov:2010:BTC

Safari:2011:CFA

REFERENCES

Scott:2011:BCR

Sawhney:2018:SCN

Seacrest:2018:LBT

Schoen:2019:UBW

Sundaram:1994:TCA

Schmidt:1995:CHB

Shioura:2013:SOA

REFERENCES

Staden:2017:DSF

Shangguan:2020:NTE

Shangguan:2020:SHA

Stacho wiak:1992:HPG

Stanton:2011:IBI

Steel:1988:DSD

Steel:2000:SCT

Stephen:2007:MBE
REFERENCES

312, ???? 2007. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Stein:2010:EVS

Stones:2012:FAT

Strang:2020:SMV

Sleator:1992:SEE

Sturmfels:1988:SAA

Serafini:1989:MMP

Sudakov:2008:RNS

Suk:2013:DTI

Andrew Suk. Density theorems for intersection graphs of t-monotone curves. *SIAM
Sullivan:2005:SCT

Sullivan:2012:DNP

Suzuki:2010:REM

Stinson:1988:CAT

Sudeep:2008:MFD

Stefankovic:2011:FCM

Sudakov:2018:TRE

REFERENCES

Silvanus:2020:FSP

Sviridenko:2003:MMN

Siersma:2008:NMG

Stinson:1998:CPC

Servatius:1999:CPC

Shi:2001:SDW

Saliola:2004:CPC

Suen:2010:SRA

Scott:2014:HBD

Swartz:2005:LBV

Sun:2010:DCS

Shetler:2012:SMR

Shen:2013:AAP

Snir:2011:LTA

Shiraga:2018:DRW

Sole:1994:CAS

Stein:2013:FLC

Stanley:2015:CCA

Szabo:2006:FFA

Szabo:2008:MPJ

Tang:1993:RBC

Takacs:1990:NDF

Takata:2008:WCA

[Tak08] Ken Takata. A worst-case analysis of the sequential

Jenő Töröcsik. \(n + 1 \) segments beat \(n \). *SIAM Journal on Discrete Mathematics*, 6(3): 491–500, August 1993. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Tropp:2015:IFP

Tapia-Recillas:2003:LQC

Tsai:1996:LBR

Tardos:2007:CST

Tipnis:1989:NPP

Tamassia:1991:RGC

Todd:1993:NTS

To:2004:MCL

REFERENCES

[vIKL+16] Leo van Iersel, Steven Kelk, Nela Lekić, Chris Whidden,

REFERENCES

Voigt:2007:PEC

Vsemirnov:2005:APS

VanderGeer:1994:GHW

Vera:2015:IBP

Vandenbussche:2009:MEH

vanHoesel:1994:PCE

Vandenbussche:2009:PT

Vygen:2016:RTT
REFERENCES

Vollmar:1993:EST

von zur Gathen:2013:CRP

Wagner:1996:MS

Wagner:2007:CGT

Wagner:2018:CGM

Walter:2019:CDM

Wang:2002:FCT

Wang:2002:CBG
REFERENCES

Wang:2008:SCG

Wayne:2001:NPF

Wang:1990:BSM

Weissauer:2019:BNG

Wang:2015:VFI

Webb:2008:VSG

Weng:1997:LST
REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Whittlesey:1995:NRG

Will:2004:PM

Wang:2015:CAV

Whiteley:1988:UMR

Wang:2014:PGE

Will:1999:SDB

Wild:2005:ANB

Wildon:2016:CPP

Mark Wildon. A combinatorial proof of a plethys-

Winkler:1988:CMR

Windisch:2016:RMM

Watanabe:2012:AAP

Wang:2002:CEC

Wang:2003:LPG

Wood:2010:TCA

Wolfe:2009:ERL

4801 (print), 1095-7146 (electronic).

[WY10] Oren Weimann and Raphael Yuster. Computing the girth of a planar graph in $O(n \log n)$ time. *SIAM Journal on Dis-

Wu:2020:MJS

Wu:2014:NZF

Wang:2008:NMP

Wang:2018:IFS

Wang:2018:SNC

Xu:2020:EFD

Xu:2015:MAD

Yamamoto, Ken. Large deviation theorem for branches of the random binary tree.

Yang:2016:LBP

Yu:1997:HMF

Yen:1994:NMP

Yen:1997:CPS

Yao:1988:FMG

Yokoi:2019:MCF

Yoshida:2019:MMS

Ye:2009:RFG

Zehavi:2017:MMV

Zeng:1990:CSP

Zerbib:2011:ZCV

Zhang:2009:EGB

Zhang:1990:FCI

Zhang:1993:PSS

Zhang:1994:SNB

Zhang:1999:OBM

Zhao:2009:BGT

Zhao:2011:BST

Zheng:2016:MBT

Zhou:2005:LCG

Zhou:2009:CAT

Zhu:2018:PIS

Bao-Xuan Zhu. Positivity of iterated sequences of poly-

Zitnik:1994:DGS

Zdeborova:2011:QPL

Zhu:2012:LPG

Zhang:2011:ESC

Zhang:2008:RGB

Zelikovsky:2002:PAA

REFERENCES

Zhou:2008:ODS

Zhang:2011:SCA

Zuckerman:1992:TLB

Zunic:2011:NNT

Zamfirescu:1992:HPG

Zhang:2017:EDC

Zhang:2013:DHC
REFERENCES

4801 (print), 1095-7146 (electronic).