Title word cross-reference

(0, 1) [BM15], (0.5, n) [BE13], (1, −1) [dLL09], (1, 2) [BKM08, DK06, DK10], (1, ≤ l) [Lai05], (1, m + 1, n + 1) [BD01], (1 − ε) ex(n, C4) [BS10a], (2 + ε)n [DZ01], (2s + 1) [LL14b], (3, 1)* [Xu09], (7, 2) [Mac13, CW09], (9, v, 4, 1) [FHMY01], (d, k) [KS03a], (Δ + 2) [WHW14], (l, l) [GSL98], (k − 2) [dOBMS17], (K5 \ e) [GL08], (≤ 4) [DL14], (Q, x) [Mal89], (r + 1) [CtJL01], (t, m, s) [AS97], 0 [BG91, BCH92, HL15], 0, 1/2 [Fio06], 0.5 [AHS01], 1 [BG91, BCH92, CHZ04, GL10, HL15, LW17a, Rif99, Riz02, Spi95, ZLS08], 1.1 [NK90], 1.5 [CSS01], 1/2 [CD14], 1/3−2/3 [BW92], 2 [AB94, BBF99, BM97, BJT92, BH97, BIT13, BL17b, CL15a, CL16, CL07, CSS13, CSS01, CDK10, DGM12, FJ09, FMM093, Fis94, GVW06, GSK91, GY92, HL00, IKM92, JM97, KSS11a, LRWZ12, LM17, LC12, OSW16, PZW96, Sav14, TSN04, Vaz12, Vo07, Wan02a], 2/3 [BT14], 23 [ZJ05], 24 [EK10], 25 [KW17], 2m−2 [Car94], 2d − 1 [Le94], 2 × 4 [MMJF03], 3 [ABHM00, ACRS07, Bih05, BS16a, BS16b, BK12, BW02, CM90, CZ97, CH06a, CS02, CW09, CM14, DDT01, DD13, DJ11, DM15, DGM12, EHJ01, FRMPV15, FRZ16, FZO8, FXYY14, FT12, Gab04, GKR15, GSK91, GKO4, GKL99, HM12a, JKS17, KRS11, Kan08, KW92, LSS17, LZ08, MM12, MRST16, OSW16, Ran02, TSN04, WYZ14], 3/2 [BZ11, RV99], 3/5 [HK16b], 31 [KKW17], 34 [GW94], 3+ [DL12], 3d
CGG$^{+16}$, DH90, Gao15, GKNU10, NS11. S_n [RS93], S_2 [Abe91], st [AB00], T
[GGW06, GS98, Ray94, BS10b, BS16c, BF17, DM13, Gao15, HS89b, LS03b, Mak07, NS11, RCS88, Suk13, Bar04]. $\{U_{2,5}, U_{3,5}\}$
[CMvZW16]. v [RCS88]. ε [MR15b]. W_4
[BM94c]. $x^2 + x$ [Car94]. Z_2 [TRV03]. Z_4
[Ran02]. Z_n [LLL17, Tsa96]. Z_n^m [Fil89]. Z_n^k
[DV04]. Z_2 [TRV03]. Z_4
[Ran02]. Z_m [LLL17, Tsa96]. Z_4^m x
[CMvZW16]. ε [RCS88]. W_4
[BM94c]. $x^2 + x$ [Car94]. Z_2 [TRV03]. Z_4
[Ran02]. Z_n [LLL17, Tsa96]. Z_n^m [Fil89]. Z_n^k
[DV04]. Z_p [MR04a].

- Analogue [WIS12]. - Approximation [AHS01, BBF99, BZ11, CSS01, RV99, GW94].
- Arboricities [HM12a]. - Arboricity [BCCZ11]. - Ary [KP09, AS02, Etz96a, Lic98, LO05, LTO1, PRS98, Sca05].
- binomial [Mal89]. - Blocks [CDHH14]. - Center [KS00]. - Chain [GP08b].
- Choosable [DSL11, Far09]. - Chromatic [DS09, GKL99]. - Circuits [CL15a]. - Claw
[MRV17]. - clique [GHHY96]. - CM [Swa05].
- CNF [HS06, FFV11]. - Colorability [AK02].
- Colorable [CS02, FT12, GKO4, JKSW17, KRS11, LMI17, LS03b, MM12, WHW14].
- Colored [DGM12, KW92]. - Coloring [GKO4, KSS11b, Xu09, GKR15, Sig10, Ray94].
- Colorings [FXYY14, FR06]. - competition [IKM$^+92$]. - complete
[Vav89]. - components [JOS95].
- Configurations [FYK00]. - Conjecture [BHT16, HK16b]. - Connected
[ABHM00, CY03, CLY05a, CLY05b, DL12, DD13, DJ11, ELK08, EG03, EHJ01, FJO9, GZ06, KKK17, IKO16, LRW12, LC12, MR12, OSW16, Ste10, BBM90, Voi07].
- Connectivity [GGW06, LLL17].
- Constrained [KS03a]. - Convex
[Ave13, KMT07, Mur06]. - Convexity
[CPRdS13]. - Core [BKL$^+15$, Wan02a]. - Critical
[DL14, DL17, iKKKL09].
- Crosses [BE13]. - cube [Rif99]. - Cubes
[AS02]. - Cut [CGN06a, GH90a]. - Cuts
[Fio06]. - Cycles
[DL14, DL17, Far09, JKSW17, WX13]. - Decompositions [Lai08]. - Degenerate
[KNP05]. - Degree [DOBMS$^+17$, LM14]. - Derangement [CX08]. - Designs
[CM90, GL08, Ran02, RCS88]. - Differences
[Sav90]. - Dimensional [Bra05, CC07]. - Distance [NS11]. - Distant
[CtJL01]. - Domatic [SV08]. - domination [BCD97].
- Edge [BL17b, CS01, Gab04, Gab05b, BM97, Jac92]. - Edge-Choosable
[CW09, Mác13, Bon15]. - Edge-Colored
[LSS17, McL10]. - Edge-Connected
[KiKK17, SS11a, Cho94b]. - Equal
[Got03]. - error-correcting [CZ97]. - Eulerian
[YZ17]. - Factor [CL16, CSS13]. - Factors
[BIT13, CL15a, CDK10, Riz02, ZLS08, BH97].
- Fixed-Endpoint [LW17a]. - Flows
[FZ08, LXXZ08, WYZZ14, ALZ96]. - Fold
[CH10, OS15]. - Fragile [CMvZW16]. - Free
[Ave13, BS10a, BF$^+12$, BM16, BF17, CD16, CD14, EK13, KOT16, MTV08, MM12, Mak07, MD11, Sch02b, ASS17, Pic14, Spi95].
- Goethals [Ran02]. - Gons
[AHH$^+10$, EFF91]. - Graph [AcRS07].
- Graphic [FS09a]. - Graphs
[CL07, CM14, FRMPV15]. - Hyperbolic
[CD14]. - Identifiable [TSN04]. - Identifying
[Lai05, Sta11]. - Independence [HC98]. - Intersecting
[CL07]. - Inversion [CGG$^+16$]. - Joins
[Bar04]. - Kernels [GLS98]. - Kings [SS91].
- Labeling [Kan08, CK96]. - Labelings
[GM05, KST06, HRS12]. - Level [AYZ04].
- Line [Gab05a]. - Linear [TRV03]. - Linked
[KY12, GKY06, Pfe15]. - Matchings
[BBCZ11, LRT08, Mak07]. - Matrices
[dLL09]. - Matrix [BM15]. - Median
[BBC11]. - Minor [KMPR14, MR12].
- Minor-Free [EMOT16]. - Minors
[iKMN09, KM14]. - Möbius
[JM97]. - Monotone [Suk13].
- Neighborhood-Covering [HC98]. - nets
[AS97]. - NU [FHL$^+13$a, FHL$^+14$].
- Number [LZ05a, WGM95]. - Numberings
1-Planar [Suz10]. 18-Reconstructible [PRS03].

2 [FHL+14, Kra07]. 2-SAT [Kra07].

3 [MRV17]. 3-Arc-Dominated [Tan10].

3-Choosibility [DLŠ10]. 3-Facial [HSS08].

3-Hypergraphs [Raz10]. 3-Uniform [Kha13]. 3PC [MTV08].

4 [GM93]. 4-Cycles [DLŠ10]. 4-Vertex [Raz10].

5-Coloring [EHLP11]. 5-Cycles [ZLWC12].

91m [GM93].

Abacus [Loe10]. Abelian

[BS95a, BL16, BFGM15, CF09, DF94, DR04, DM13, Din06, FFie98, GF08, GGI07, KCL98, Sza06, Zho05].

Absolute [BN01].

Abstract [Koc98, Ngu10].

Acknowledgment [AB05].

Acquaintance [BMS14]. Acting [MS14].

Advantageous [AC90].

Adversarial [AEFT13].

Advance [PV10b].

Admit [AFT12, AHH+10]. Admitting

[FHL+13a, FHL+14]. ADMs

[CFG+09, MLS11]. adsorption [Pip89].

Addition [AB94, Alo13, GS93b].

Additive [BCE05, CY12, EK05, KK10, KLM+03, Shp13].

Addressing [WIS12]. adjacencies [Sar97].

Adjacent [BrLS07, WH15]. Admit

[AFT12, AHH+10]. Admitting

[FHL+13a, FHL+14]. ADMs

[CFG+09, MLS11]. adsorption [Pip89].

Addition [AB94, Alo13, GS93b].

Additive [BCE05, CY12, EK05, KK10, KLM+03, Shp13].

Addressing [WIS12]. adjacencies [Sar97].

Adjacent [BrLS07, WH15]. Admit

[AFT12, AHH+10]. Admitting

[FHL+13a, FHL+14]. ADMs

[CFG+09, MLS11]. adsorption [Pip89].

Addition [AB94, Alo13, GS93b].

Additive [BCE05, CY12, EK05, KK10, KLM+03, Shp13].

Addressing [WIS12]. adjacencies [Sar97].

Adjacent [BrLS07, WH15]. Admit

[AFT12, AHH+10]. Admitting

[FHL+13a, FHL+14]. ADMs

[CFG+09, MLS11]. adsorption [Pip89].

Addition [AB94, Alo13, GS93b].

Additive [BCE05, CY12, EK05, KK10, KLM+03, Shp13].

Addressing [WIS12]. adjacencies [Sar97].

Adjacent [BrLS07, WH15]. Admit

[AFT12, AHH+10]. Admitting

[FHL+13a, FHL+14]. ADMs

[CFG+09, MLS11]. adsorption [Pip89].

Addition [AB94, Alo13, GS93b].

Additive [BCE05, CY12, EK05, KK10, KLM+03, Shp13].

Addressing [WIS12]. adjacencies [Sar97].

Adjacent [BrLS07, WH15]. Admit

[AFT12, AHH+10]. Admitting

[FHL+13a, FHL+14]. ADMs

[CFG+09, MLS11]. adsorption [Pip89].

Addition [AB94, Alo13, GS93b].

Additive [BCE05, CY12, EK05, KK10, KLM+03, Shp13].

Addressing [WIS12]. adjacencies [Sar97].

Adjacent [BrLS07, WH15]. Admit

[AFT12, AHH+10]. Admitting
[ABY11]. against [OKS06]. Agents
[CDV10, Che16]. Agreement
[BHL+15, vIKLS14]. Ahead [CF10]. Aid
Alexander [Rho15]. Algebra [HM12b].
Algebraic [BB03, FG01, GR17, MdCW16,
OPVV14, SB10, WWKY11]. Algebras
[ADL+09, BHM16, Fer16, TW12].
Algorithm
[AHS01, ABGJ15, ´AS09c, BBF99, BHRZ14,
BJT92, BH96, BFPP15, BZ11, Bon91,
BK10, Boy96, BCP08, CM05b,
Che94, CMSV17, Dan09, DKM+12, Dji06,
DHJ+13, Fra95, FL91, FKW10, GK07,
GW00, GS93a, GH90a, GH90b, GL95, Han98,
Har10, HV00, IMS05, iKK11, KK90, Köp07,
KN95, LS17, LS03a, LW17a, LSL98,
MC12, Moh99, Myu01, OS92, PP07a, PV10b,
RV99, Sato02, Sei01, ’Sn14, Sot15, Way01,
AHS89, LW88a, LM89, Spr94, UWZ97].
Algorithmic
[BL04, BK17, CFT93, FK03+16, Peg14].
Algorithms
[AS09a, AYZ04, AMW00, AD96, ASZ02,
AB95, BCSK07, BCSK07, BBC11, BC09a,
BDM02, BKS09, CKN20, Che04, CV07, CL13,
DDS16, DMNW13, Elb09, FJLS03, GDVL17,
GS13, GK13b, GMPZ15, GSK1, GS16b,
GRS12, HRS05, HRS17, HaKK+09, HKST03,
JLL16, KN16, KFFHR04, Kin91, KMRR09,
KY12, KP95, KS06, LS05b, LM16, LPSR12,
MT05, MTK06, MV99, MT90, MMPM10,
MC93, MSZ10, MT11, Nao91, PRS98, RS10,
RS11, SL96, SX13, ST07, Sm14, SV11,
TP97, TTT93, Vaz12, ZMO2, vIKLS14, GW94,
GHHY96, GMW96, NS89, SS89, Mur96b].
Aligned [Tóto8]. All-Pairs [HM94].
Alldifferent [MM11]. Allocation
[FK08, LNO96, Lyn94, Red17, SX13].
Allocations [ELvS11]. Allowed [AL17].
Almost [BS10a, DP92, FS09b, GLP+12,
KK90, LS017, Mon15, WZZ09, Zho88]. Alon
[FT05b, Gly10, Sto12]. Alphabetic [KM95].
Alphabets [RSW05]. Alternating
[CP10b, FLM12, ZZW13]. Alternative
[MS05]. Altshuler [BS05b]. Always
[BS10b]. Amalgam [NS93]. among
[CTW93, KS03a]. Amortizing [KOR03].
Analogue [Br05, KLP12, WW12].
Analysis [AMW00, AHS89, AT16, BHRZ14,
BJK13, Bro90, DDS16, FS05, Fis14, FO90,
FL91, FKW10, FP13, Gab05b, GF08,
HKW15, KRS15, PSTF00, Pip95, PRS98,
Sca03, Sot15, Tak08, Yam05, Bie88].
Analytic [IK09]. Anchored [BK+15].
Angles
[AFT12, AS05, BPV10, DV96, SW04].
Angular [MP94]. Anomaly [Tov90].
Answers [NT05]. Antichains
[Fra90, DSW90]. Antiholes [BBT16].
Antiplayer [CNRS15]. Antiweb [Cv02].
Antiweb-Wheel [Cv02]. Any
[CKP16, DF94]. APN [BBMM09, TQLT13].
Apple [BLM10]. Apple-Free [BLM10].
Application [BP12, CuKŠO7, FL92, GPP04,
GL08, KŠO8b, KL08, LS17, HS89b].
Applications
[AOW15, BYHR10, Bar95, BCDMR08,
CR16, CF17, CW16, Doh03, ENSZ00, Fra90,
GKS12, GS93b, GMTW15, H15, Jan00,
KMRR09, Lu04, MK10, MP17, MMJF03,
SS02b, BC88b, SS89, Stu88]. Applied
[HHHH02]. Approach
[ACD08, BMN92, BCE+10, BAN06, CS98,
CL91b, CP16b, DMS14, Gab04, IK09,
Kim92, SSS13, SZ94, SV88].
Approximability [Che09, KVIL+12].
Approximate
[DOBMS+17, Cal13, CS09, CDN16, DHL+02,
FK98, Goe01, HT13, HKP+17a, HKP+17b,
HKP+17c, HKP+17d, KV15, LOW10,
MR15a, OS13b, Sim90, AA88].
Approximating
[ENSZ00, Fei04, FGT11, FK16,
Gab04, Gab05b, KK01, KL10, KS02, Lev09].
Approximation
[AJS99a, AHS01, AYZ04, ASZ02, AB95, AS14,
AS09c, BBF99, BYFM10, BZ11, CFKK17,
CCG, CKNZ05, Che04, CSS01, CV07, CL13, CMSV17, DM15, ELMS11, FLM+16, GLS16, GPSS01, GHHY96, HKL+14, JSOS03, JP06a, KP95, KS07, KS06, KN95, LS03a, Pal12, PP07a, RV99, RS10, RZ05, SS11a, SX13, SY11, Svi03, ZM02, vIKLS14, GW94. Approximations [KS03d].

Arbitrary [BBCZ11, Dan09, DKM+15, DR04, DS05b, Moh99, Sol12, WWKY11].

Arborescence [Kir16]. Arborescences [dGNS13]. Arboricities [HM12a]. Arboricity [BCCZ11, Wu09, HS89a].

Arising [GM90, Pip95, ACS97]. Arithmetical [GP14, Het14, JS14]. Arm [ABCG17].

Armstrong [SZ15]. Arrangable [BKTW15]. Arrangements [Sol06]. Arrays [ACLT01, BGS96, CCHZ13, GB12, MMPS10, MHLHL91, SC17, Jed93, JLM93].

Arrovian [Das99, FK97]. Arv [KP09, AS02, Etz96a, Lic98, L¨O05, LT01, PRS98, Sca05]. Aspects [CFT93, MW03, NT05]. assembly [DH90].

Assignment [FYK00, Gol06, JWF05, KS03a, Krá06, Bal89, Ray94]. Assignments [AT90, FFV11, GJ08].

Association [Rho15]. Associated [CFM94, PC97]. Associations [Rab06]. Astronomical [BKKM99, COS97]. Asymmetric [CR96, CDK10, Fis14, LS03a, Bal89].

Asymptotic [AJM08, Bac09, BEL09, Bie88, CH01, DFK+11, GM13, KK09, MMS17, McL10, NÖ08, OPR12, Ptk03, WS12, Wl05, dJMS16].

Asymptotically [GH90a]. Asymptotics [BHRZ14, KLMR03]. AT-Free [CKOS06].

Atom [DGM12]. Attachment [Ja10].

Authentication [GMW05, KCTR13, MWW94b, ST14].

Autocorrelation [TQ09].

Autocorrelations [XQ06]. Automata [BBS00, GM91, GJ16, MM93, Rom06, GM93].

Automaton [Jun12]. Automorphism [RD11].

Automorphisms [Kas05, Vse05, Ram97b]. Average [Che94, CCG+00, CF09, DMS05b, DMS08a, Gol06, GP16, KK89, XG15, AKSB89, Pit89].

Avoidance [Ehr16]. Avoider [BM09].

Avoider-Enforcer [BM09]. Avoiding [AM06a, CL15a, LR07, MMSJ08, Yus09, ZSW11]. Axis [AC14, Kim91, Tót08].

Axis-Aligned [Tót08]. Axis-Parallel [AC14].

Backbone [MŠT09]. Backup [BKM15, Fuk16]. Bad [GS03, Scho2b]. Bad-[Scho2b]. Balanced [ACLT01, AM11, BG12, EMT15, FL10, Ori93, Zhe16, BM94a].

Balancing [AE04, CLGH11, SE14, HMP97].

Band [LR04, JM97]. Band-[LR04].

Bandits [KS04]. Bandwidth [AJM08, EG03, JMSW99, JMSW00, KV90, KS02, Spr94]. Banner [KN13]. Banzhaf [Bo90].

Bar [BSIT15, CHJ+04, HVW07, SiT15].

Bar-Joint [SiT15]. Bargaining [CGV+14, Va12]. Barker [Jed93, JLM93].

Barrier [BNRT17]. Barriers [DJT15].

Barvinok [Köp07]. Barycentric [Mur10].

Base [BDT17, AS97]. Baseball [Way01].

Based [ASZ02, DKSZ10, EMT15, ES98, EH13, GMPZ15, GKNU10, Ja10, Köp07, KCTR13, Sot15, dGNS13, vBBC+15].

Bases [AK14, BP09, BP16, Chs09, CP16b, GSS14, GS93b, HKL11, JS17, NDB07, Wb98, Win16, BGM94, LW88b]. Basic [ADHL13, ADH+14, PRS02]. Basis
[BS90, Cho09, GH06, GW07, HM94, KAN90, Kot13, Lub09a]. **Basis-Exchange** [Kot13].

Batch [DS05b, GLY07]. **Bayesian** [XY15].

BCH [CZ97, Li17]. **BCH-codes** [CZ97]. Be [BS16c, Che16, MPˇS08, PW02, BBS17, Kar89]. **beat** [T¨or93]. **Beating** [GP16].

Beatty [CDR16]. **Behavior** [BK11, CIT05, CCG +00]. **Belief** [BBCZ11, PS17].

Bell [ACFL16, FR94]. **Bellman** [HS88]. **Belong** [M´es16b]. **Belonging** [LM12]. **Below** [COHH17].

Bends [ZN08]. **Bent** [CMP15, CK08a, KCTR13]. **Benzenoid** [ZLS08]. **Berge** [GP17, MT08]. **Bergman** [DD15]. **Bermond** [LPS09].

Bernstein [GSS14]. **Bessel** [Ege10]. **Best** [GKM12, GMS15, HV00]. **beta** [BDEK06]. **beta-Skeletons** [BDEK06].

Bethe [CFKK17, CCG +11]. **Better** [GPSS01].

Between [CCO +15, SA09, Wil99, ANS16, BYR05, FHM94, GPW13, Lab13].

Betweenness [CS98]. **Beyond** [ACD08, CLS15, KK14a].

B´ezout [WWKY11]. Bi [BKK16, BG12].

Bipartite [AAHLT10, AKZ17, AS07, AS14, BB16, Bal08, BHT10, BCP08, CPS17, CP16a, CM07, CDK10, CD11, DZ09a, FMM09, FF06, GL95, GRY08, HvthHLN12, HVLP13, HS10, HK05, KW08a, KS03b, KS07, LLY10, Mak07, MT90, NOO12, PT14, Pip03, Pip02, PT94, PSML08, Riz02, Sim13, Wan02b, ZZW13, Zha09, Zha11, dCLM13, Jac92, dH89].

Bipartition [AAHLT10].

Bipartition-reversing [AAHLT10].

Bipartitions [KKO16].

Binding [HLZ13].

Bin-Packing [Woe93].

Binarisation [CCJ +17]. **Binary** [ACLT01, BDM02, CLVZ96, CM12b, CG02, CSW17, DH05, FMP08, Fis90a, GZ06, Go96, GvZ17, GL10, GPW13, GJ12, HHLÖ95, Han09, HvIk+07, Kim91, KMP03, KM95, KMPR14, MR12, Mol08, OPR12, ÖV04, PP13, RSW12, Saw07, Web08, Wil05, ZLS08, vIKL+16, HS97].

Biparallelity [HLZ13].

Bipartite [AAHLT10, AKZ17, AS07, AS14, BB16, Bal08, BHT10, BCP08, CPS17, CP16a, CM07, CDK10, CD11, DZ09a, FMM09, FF06, GL95, GRY08, HvthHLN12, HVLP13, HS10, HK05, KW08a, KS03b, KS07, LLY10, Mak07, MT90, NOO12, PT14, Pip03, Pip02, PT94, PSML08, Riz02, Sim13, Wan02b, ZZW13, Zha09, Zha11, dCLM13, Jac92, dH89].

Bipartition [AAHLT10].

Bipartition-reversing [AAHLT10].

Bipartitions [KKO16].

Biparallelity [HLZ13].

Bin-Packing [Woe93].

Biodiversity [FS12a].

Biorthogonal [Kim92].

Bipancyclism [HLZ13].

Bipartition [AAHLT10].

Bipartition-reversing [AAHLT10].

Bipartitions [KKO16].

Biparallelity [HLZ13].

Bin-Packing [Woe93].

Biodiversity [FS12a].

Biorthogonal [Kim92].

Bipancyclism [HLZ13].

Bipartition [AAHLT10].

Bipartition-reversing [AAHLT10].

Bipartitions [KKO16].

Biparallelity [HLZ13].

Bin-Packing [Woe93].

Biodiversity [FS12a].

Biorthogonal [Kim92].

Bipancyclism [HLZ13].
8

[AF05, BB13, Bar01, BN01, BL17b, Bra05,
CTU14, CY08, CFM94, CS91, CR17b, DSZ05,
DH91, DJW12, EP10, FS09a, FLL10, Fra95,
Gol06, GC11, GÖ12, KKP11, KK14a, KW13,
KL92, KMR90, KSS09, Lav16, Lei94, Liu14,
LY10, Luc03, Mer99, Nao91, Nie00, OS16,
PP90, RC98, RS15, ST13, SS11b, SL95,
Ste07, Tod14, o09, Sar97, SG16, Tar88].

Boundaries [AF05, KiT13].

Boundaries [AE03, vD11, LS89].

Bounded [AD96, ABC15, Bab92, BFGR17, BHLP92,
CCVZ10, CKK04, Che94, CCL06,
DHT06, DP92, GVW06, GnN06, HaKK09,
JK99, Jou05, Koo12, KiK12, KPP13, KKS17,
LR04, LM11, OPR12, Oze13, SW14, Sei01,
Woe93, Zak14, ZM02, BCLR89, ZM02].

Bounded-Degree [HaKK09, KKS17, BCLR89].

Bounded-Genus [DHT06].

Bounded-Skew [ZM02].

Bounded-Space [Woe93].

Bounding [AH96, BM11, BC17, CP10a, EK13,
G97, HW16, JLL16, Lab13, Zuc92].

Bounds [AS10, BEL09, BHL+15, BGJ+12, BGS96,
BJK14, Buk16, CHLZ00, CL05, DMR11,
DW10, DHUZ01, DSST13, DMS12, DS16,
EMRPS14, FFie98, FP01, FP04, G15,
GK07, GP91, GR12, HT13, HHH95,
HK2, JWF05, KK17, KM95, KW14,
KT17, KŠ8b, KŠ06a, LN17, L99,
LRTW11, LZ90, LNO96, LS16, MP13,
MNP08, MTGK05, NW95, NÖ08, NS11,
RST00, RZ05, RR03, SC17, Sta11, SS20b,
DW11, Swa05, VVY15, XSR11, YAT16,
YU17, Zh94, Zha99, dKMP+06, dKPS13,
CET97, Car88, SSS95, Tan88, Tsa96].

Box [FHK96, KOS16].

Box-Greedy [FHK96].

Boxes [AC14, CC07, CPF11].

Boxicity [ABC11].

Bracelets [ACM11].

Branch [DMM11, KML05].

Branched [KML05].

Breaker [CFG15a, EPK15].

Breaking [LB09, GPS88].

Brenti [YZ17].

Bridgeless [Mac13].

Bridges [Wol10].

Bridge [GHW05].

Bringing [SS10].

Broadcast [AR17, EK05, FY04, GV92, GPP01, GP91,
KP95, LP88].

Broadcasting [BHL92, BFPP08, FP01, FP04, Gabc05a, KP04].

Broken [ACM11, Swa05].

Brook [AKW05, KLP12].

Brooks [FHH08, FKS05a].

Brouwer [BV10].

Brownian [Pal12].

Box-Greedy [FHK96].

Boxes [AC14, CC07, CFP11].

Boxicity [ABC11].

Bracelets [ACM11].

Braess [DMM11, KML05].

Branched [KML05].

Breaker [CFG15a, EPK15].

Breaking [LB09, GPS88].

Brenti [YZ17].

Bridgeless [Mac13].

Bridges [Wol10].

Bridge [GHW05].

Bringing [SS10].

Broadcast [AR17, EK05, FY04, GV92, GPP01, GP91,
KP95, LP88].

Broadcasting [BHL92, BFPP08, FP01, FP04, Gabc05a, KP04].

Broken [ACM11, Swa05].

Brook [AKW05, KLP12].

Brooks [FHH08, FKS05a].

Brouwer [BV10].

Brownian [Pal12].

Braess [LRTW11].

Branch [DMR11, KML05].

Branched [KML05].

Breaker [CFG15a, EPK15].

Breaking [LB09, GPS88].

Brenti [YZ17].

Bridgeless [Mac13].

Bridges [Wol10].

c'est [KvIL+12]. Chain [BKS10, CLY05a, DL12, Enc05, EM15, GVKS06, GP08b, LSL92, LCV03, MMR06, SV11]. Chains [BK90, CLY05b, DJW12, HH92, Rea08, DSW90, Pat88]. Chains [ABF+14]. Chang [IMR14]. Change [PSTF00, Zha94]. Changes [AM06a, FMP08].

Certificate [KT16]. Certifying [HH05].

c'est [KvIL+12]. Chain [BKS10, CLY05a, DL12, Enc05, EM15, GVKS06, GP08b, LSL92, LCV03, MMR06, SV11]. Chains [BK90, CLY05b, DJW12, HH92, Rea08, DSW90, Pat88]. Chains [ABF+14]. Chang [IMR14]. Change [PSTF00, Zha94]. Changes [AM06a, FMP08].

Characteristic [DQW+15, Gly12, LÖ05, Wu09, XY15]. Characterization [Bol90, BP16, CW16, CH11, EM15, FHK96, FG01, HH04, HMS93, HHH+02, LW17b, LS05, Mar09, NOP14, Tuz08, WH15, WZ90, Zho93, vWW94].

Characterizations [KT16]. characterizes [Tod89]. Characterizing [BTW08].

Chvatal [BCH92, ACD+13, CSS13, DCD+15]. Circle [Fra90, SCH93, Zhe16]. Circles [SW04]. Circuit [BCSK07, BHF15, PL94, Swa05].

Circuit-Switched [BCSK07].

Circuit-Switching [PL94]. Circuits [AB94, AS02, CL15a, CH17, CL91a, CG07, FG14, Kik12, KW90, Kot13, SB91, SR94].

Circulant [Cre04, FKK05, FKK07, LLZ99].

Circulants [AM06b, BHLY08, BCHW17, CLS09, CHK10, DK06, DK11, DJ11, DS09, EK13, EJH01, FKS05b, FHL13b, GKL99, HZ10, KLMR13, KZ04, KR15, Liu14, LM10, Mra17, Per16, RS15, Sch92, Smo07, dS91, dMP93].

Circle [Fra90, SCH93, Zhe16]. Circles [SW04].

Circuit-Switched [BCSK07].

Circuit-Switching [PL94]. Circuits [AB94, AS02, CL15a, CH17, CL91a, CG07, FG14, Kik12, KW90, Kot13, SB91, SR94].

Circulant [Cre04, FKK05, FKK07, LLZ99].
Cluster [GKNU10, Tza08].

Clustering [ADPR03, GKN10, MRT11, Ram04].

Clustering [BG12]. Clusters [CLW09].

Clutter [NS93]. Clutters [CG02]. CM [Swa05].

Clutters [CG02]. CNF [FFV11, HS06]. Co [GM04, HR05a, MH09, NS16].

Co- [HR05a]. Co-2-plex [MH09]. Co-Cyclic [NS16].

Co-site [GM04]. Coalescing [CEOR13].

Cocomparability [CDHK16, KS93, MC12].

Code [BB13, BN01, Kas08, LT01, Saw07, CS89, Lic98, WS96].

Codegree [CM14, FRMPV15, FRZ16].

Codes [AM07, ACLT01, AMPT93, BOP94, BvHO17, BM00, Bar02, BZ04, BGÖ17, BHL05, BGS96, Bla03, BEN08, BK91, BLL+15, BOO5, Buk16, BE13, BR17b, CD93, CCD00, CGL10, CKPS15, CH01, CS89, CHŁZ00, CF09, DR04, Din13, Dow91b, EK10, Enc05, Etz96b, EV98, FG01, FT05b, FHYM01, FKMS10, GF08, GMW05, GKS12, GÖ12, HHLÖ95, Han98, Hed08, HKW15, Jan00, KMP03, Kit02, KCTR13, KM11, Lai05, Li17, LO05, LS06, LWW10, MMR06, MP98, Mol08, MMSJ08, NO08, PG06, Ran02, RR03, ST14, SS09, SS10, Sta11, SW98, TRV03, TSN04, UV15, Wil05, WC12, ZSW11, VV94, Dow91a, Etz96a, Mon94, PL99, Sav97, TZ97, CZ97].

Coding [GRR15, KSV05, SZ94, ZLS08].

Coefficients [BI13, Lla06, Mal89].

coeexistence [GKRS15]. Cofactors [IT09].

Coffman [CM05b]. Cograph [BCHP08].

CoGraphic [GS16b]. Cograph [BM93].

Cohen [Bro11, BCW96, CN12]. Coin [AD11, BN96, Cha16, CGGS88, Sak89].

Collection [DO08]. Collective [DYL06, Sak89]. Collector [MW03].

Colliding [KM06]. Collinearities [BDJ+15].

Collisions [CTW93]. Color [AS10, DFJS15, FR06, Yu09].

Color-Avoiding [Yus09]. Colorability [HKSS08, AK02]. Colorable [CS02, Dan01, FT12, GKO4, JKSW17, KRS11, LM17, LS03b, MM12, WHW14].

Coloration [HS97]. Colored [BS09, CH17, CFP11, DGM12, KW92, LSS17, Lo14, MP08, McL10, MWW94a, CH13, IS93, Zen90].

Color [HR05a]. Colorés [Zen90].

Colorful [BM07, CKMU14]. Coloring [AH03, ANP14, BGG+04, BCC+11, BTU09, BHE05, BKM13, BCP08, CKP13b, CM16, CR13, CR17a, DEG+07, DŠT08, EST14, EEL09, EHL11, FKS05a, GN08, GKO4, HS13, HSO9, HML11, HSS08, HΚ16a, HK96, KSS11b, KP16, IM01, KPT94, KMS+09, KN05, KZ08, KSO8, Kra04, KSO8c, LMO8, Lu04, LSSY10, NAO11, NK90, PZ10, Pen12, Riz02, Rya07, Sig10, SV08, Wan08, Xu09, Yus03, vBEM17, GKRS15, Kie88, KPT95, Ray94].

Colorings [AS10, BrLS07, BVVW11, BW02, CTJL01, DJKP09, FXY+14, FHYM03, FHH08, FKLW98, FW02, FRO6, GL15, GvdHM+08, JΚ99, JT11, JS14, KMS+09, LM11, MSTR09, Nor11, Off08, Prz13, KKV11].

Colors [CR13, CR17a, DF10, KΚ14a].

Columns [DMS14].

Column [Mac91, BJHM88, BC88b].

Combinatorial [AYZ04, BHM16, BSS14, BDT17, BG11, BJK13, Boy96, CC07, DMS14, DO08, EGR08, FS05, FL92, Fra95, FP13, GMW05, GRS12, HRS17, Hir11, JJIT14, Kim92, Mar09, Mun06, Ngu13, Prz13, Sim90, SW98, Wil16, Sav97, SV88, Yen97, MPP17].

Combinatorics [AYB14, BCE10, DJS12, GR17, MWW94b, SW99, ST10, Tha08].

Combin [PFε15]. Committees [WS12].

Commodities [Fε00].

Commodity [GS16b]. Commodity-Flow [GS16b].

Common [BCdMR08, BM14, DSS13, HKL11, NvZ15, Web08].

Communication [AP92, BOT92, BH93, CT93, KS92, KKN95, Kus92, OR93]. Communication-Space [AP92].

Communications [Bon91].

Commuter [AL17]. Compact [ACL+06, Har01, HKW15, KM01, LLS04, Lu10, dS91].
dH04, KO12, Rab08, Shp10, SZ15].

Conjectures [Gly10, LW03]. Connected [ABHM00, BC02, BJHY03, BAH10, BL17b, CWY00, CSS01, CL13, CDP94, CDMO16, CER013, CY03, CLY05a, CLY05b, Der12, DL12, DD13, DJ11, EiK08, EG03, EHJ01, FJ09, FLM+95, FM13, Gab04, Gab05b, GZ06, HW16, Hv98, KiKK17, KKKs17, iKO16, KKO16, KRS15, LRWZ12, LC12, MS16, MW14, MR12, OSW16, PTT16, SS11a, SW01, Ste10, Wol10, BM97, BMM90, Cho94b, RX88, Voi07].

Connectedness [HT90].

Connection [DFT15].

Connections [Car09, CHW10].

Connective [GL14].

Connectivities [HvZ14, JA16].

Connectivity [BJ91, MP95].

Connectors [Kar92].

Conolly [EIJ+12].

Conolly-like [EIJ+12].

Conquer [ARS95, AS90c].

Consecutive [DHJN02, Ehr16, GM09].

Consecutive- [DHJN02].

Consensus [BJ91, MP95].

Consequences [HK96, HaKK+09].

Consistency [SY11, Tod89].

Consistent [BK11, Abe91].

Consisting [EiK08].

Consisting [FR94, Het14, Jan10, MMSJ08, SS11a, WC12, Car94].

Constants [DD16, GL14, OS13a].

Constrained [BGS17, CM05a, Go96, HMP04, JP06a, Jor03, KS03a, Kas03, LS95a, SL95, Tov90, Hef97, RTW97].

Constraining [SW04, SW99].

Constraint [BK11, CCJ+17, CM12a, FF06, FK17, GM04, KJJ04, KL08, MMS15, MT11, MRT11, ZK11].

Constraints [BJGJ09, BKK16, BMN13, DH91, DLS10, Eps06, FKT06, FGP12, FGP10, GS13, GM90, KT14, Kam17, Kas03, KiT13, KNS05, KM94, LMNS10, Lou10, MW90, OR04, dMP93, PS97]. constructed [TZ97].

Constructing [ASZ02, BB03, BLM16, Che07, GS89, ILM+16, KM95, KM94, WC12, BLR17].

Construction [Ald90, Bon10, Boy01, Cap03, Cha03, CKPS15, CCG05, FS91, HJ94, KST06, Lu08, Pip95, ST14, SWKP10, AS97, CCG17].

Construction- [CCG17].

Constructible [AM07, AB94, BER11, CTU14, CS02, DA10, GG15, GMW05, SG16, SW98].

Constructive [CL05, CPR99, Nag17, XSR11].

Contain [ARTV12, MM15].

Containing [Het14, ZLI1].

Containment [KT16, SSU89].

Contiguous [Sul05].

Continued [Het14].

Continuous [HK99, SA90].

Contour [Git99].

Contours [FP99].

Contractible [DS06, DL14, EiK08].

Contractile [LM08, MT05].

Contracting [SW04, SW99].

Constraints [BJGJS99, BKK16, BMN13, DH91, DLS10, Eps06, FKT06, FGP12, FGP10, GS13, GM90, KT14, Kam17, Kas03, KiT13, KNS05, KM94, LMNS10, Lou10, MW90, OR04, dMP93, PS97].
Costs [CV07, DSS12, FOST10, FT05a, FJ17, SS11a, vWW94].

Coteries [MK01].

Counterexample [CCO+13].

Counterexamples [BBS00, CEOT15, Tha08].

Counting [AFS12, ACD08, Bac09, Cai93, CCG+11, FKLL15, GRS11, Hof98, KLL13, MMS15, MRG04a, MR04b, MRST16, NT12, NS16, Pal12, PRRO2, PC97, vzGVZ13, B92].

Counts [dJMS16].

Coupon [MW03].

Covectors [CLGH11].

Cover [AS09c, BYFMR10, BYHR10, BFRS16, BPRS13, CMPS17, CF05, CHW10, GSS15, HMM09, KG98, Lev09, LW17a, Lub90a, SL95, Yam07, Zha93, Zuc92, Jac92].

Cover-Decomposition [BPRS13].

Coverable [CCO+13].

Coverage [AS14, BNRT17, CMPS17, CH15].

Covered [BN05].

Covering [BK05, BGS17, BGH+17, BR17b, CCMU14, CCHZ13, CH01, FRZ16, Fan92, FKK05, FKK07, Hof95, Hof98, HK02, HC98, Jan00, Jon05, KMR11, KCL98, LL99, Lee17, MPPS10, SC17, Wan02b, Zha94, BS88, CFGG88, Fra89, GHLY96].

Coverings [FKKL98, FL00, HHL ¨O95, KCL98, KML05, Bou97].

Covers [CL16, D209a, DHS14, Dre12, JWF05, KKL+10, KNN05, KS03, MHLHL91, Mun05, MR89].

Coxeter [Lub90b, Mar09, Pet13, Sim13].

Creating [KS12b].

Creation [ADHL13, AD+14].

Crick [BDT17].

Crime [RT09].

criteria [Mur96a].

Criterion [DP15, SP88].

Critical [Age94, DL14, DL17, GL10, ikKKL09, LMI2, Zha90].

Cross [BJK14, Bor10, KS05, KG93].

Cross-Composition [BJK14].

Cross-Intersecting [BJK14].

Cross-Intersections [KS05].

Crosscorrelation [CCD00].

Crosses [BE13].

Crossing [AFT12, BGS17, BFMO6, Chi11, KM02, TT07, tBaa07, dKMP+06, dKPS13].

Crossings [CSW17, DEW17, DLS11, EM99, EHP11, Kla06, PSS10, PY09].

Cryptography [BDDS03].

CSPs [TZ15].

Cube [FFHJ94, RKDD13, RIf99].

Cubes [AS02, KM02].

Cubical [ABY14, Cha91].

Cuboids [BCM+12].

Curvature [OV12].

Curved [ACM11, GS94a, GC11].

Curved [OV12].

Curves [BK12, CM90, CC03, Suk13, WWKY11, vBEM17, RTW97].

Cusick [DKS16, Ros09].

Cut [AHFM08, Bih05, CGN06a, Cho92a, CFP16, DZ09a, DHKM11, GH90a, HM94, IMS05, LRT08, Sot15].

Cut-Rank [DZ09a].

Cutoff [HY98].

Cuts [BK90, BCH92, CR04, Fio06, GVW06, Har01, KS08a, LL17, NN07].

Cutting [Boy96].

Cutwidth [HLMP11, HvHLN12].

Cyclability [GKMT17].

Cycle [ART12, AS06, ABS13, BGL07, BCh92, CL16, Cap99, Che93, CFGJ06, CM03, DPSW08, DHJN02, FKS12, FS91, HM94, KKL+10, KRS11, KW13, LS15, MPS06, NT12, PY90, PSML08, ST17b, Zha93, BS89, BC88a, FH94, TZ97, KviL+12].

Cycle-Bicolorable [BGL07].

Cycles [AS06, AF10, ARS17, BF12, dOBMS+17, BKS11, BG11, BY08, C4VL11, CF08, CGH+15, CKKO10, CGK94, Con05, CK910, CY03, CHHM09, CM14, DKM+15, Dre12, Dvo05, DLS10, DL14, DL17, EK08, EMN08, Fan92, FJ09, Far09, Fed01, FKP15, FKT99, G13a, GHM14, HW15, HZ95, HY12, HH13, JKS17, KS08a, KLL10, KSS12, KS12a, KO06b, LSS17, LLY10, LL17, LPS09, Lic14, LZ05b, LMRS17, MT90, OS17, PZ05, PP90, RS14, Spa07, Wan02b, Wan08, WX13, ZZW13, Zho92, Zho93, ZLWC12, Hur94, Hut88, KP06, RS93, YZ97].

Cyclic [ANP91, BG10, BER11, BW02, CS14, CCD00, Din13, EHJ01, Fdr15, HK16a, JS17,
KML05, MP98, NS16, QP15, CET97, GÖ12, Jia95. Cyclically [Ehr16, GM91, GM93].
Cyclotomic [CGSM16, Mom13]. Cylinder [TT91]. Cylindrical [Ful14, dS91].
D [Naa01]. DAGs [DGL11]. Data [CKN+15, GKNU10, Kao96, SV11, Tam88].
Databases [AA11, BHM00]. Dates [GQS+02]. Davenport [Pet11, Pet15].
Decimation [COPP12]. Decimations [BCPP09, CK11, GKMS04, TQ09].
Decision [LNNW95]. Decisions [WS12]. Decidability [CM05a]. Decoders [AM95].
Decoding [BZ04, EH13, Han98, KRR16, RR03]. Decomposing [BH97, dH89].
Decomposition [BDmR08, BP12, BPRS13, BPT91, BPRS13, CdMR12, Che17, CP16a, Erd17, EMT15, FL10, Gab04, Gij05, HKP+17a, IM96, MWvZ11, PP13, Sch09, SWKP10, Jo95, Spi89].
Decompositions [BAM16, Cap99, CS09, CK99, CLY05a, Doro16, KTT13, Köp07, Lai08, MPs06, MS17b, OS13b, Shp13].
Decycling [PZ05]. Deep [DMR11, Pip06]. defectives [CHW88]. Define [Fio06, HMS05]. Defined [ADL+09, Bón09, Gij05, GM91, GM93].
Defining [BS15b]. Define [Trol15].
Degenerate [KMS+09, KN05]. Degree [ABC+15, AM96, dOBS+17, BC94, BHL99, Bon08, BM13, CKKO10, COL10, CFF10, DFJS15, DP92, DF04, Dr16, D1K4, EMT15, GKY06, HPS09, H1N15, HZ10, HK16b, Hakk+09, JN16, Joo16, KKL+10, Kan08, KSS11b, KPP13, Kh13, KL14, KW08b, KM13b, KSS08, KKS17, LS95a, LM14, LR04, LM11, LXZZ08, OPVV14, Pfe15, Shp15, SE14, ST17b, Ste10, UV15, WH15, Yos14, Zak14, ZZBL17, BCLR89, Car94, CHO+89, LP88].
Degree-Constrained [LS95a]. Degree-Diameter [DF04].
Deletion [CGL10, FSV13, GLS18, Sno13].
Deletion-Correcting [CGL10]. Deletions [ABY11]. Delineation [DO08]. Delivery [HV00].
Delsarte [AL07]. Delta [BC95, BH13b, FF06, KT14, Tak14]. Delta-Matroid [FF06, KT14].
Delta-Matroids [BC95, BH13b, Tak14]. Demand [Che04, Myu01, NS89]. Demands [Che04].
Democratic [May06]. Dense [DHJ+13, HW15, JN17, MP14, Sol06].
Denser [Nel15]. Densest [BT96].
Densities [BBBZ12]. Density [BHL05, CF09, Hua14, LM14, LZ09, Meh12, MMP13, Ric14, Suk13, WS96]. Depend [Kra07]. Dependence [DM03].
Dependencies [BBG08, SB10]. Dependent [FS12a]. Depending [AB05].
Depth [AB94, DMS14, KW90, RJS93, SR94].
Depth- [AB94]. Depth-Two [RTS00].
Detachment [Fle05]. Detachments [JS03].
Desire [dAHFdFK10].
Description [ART14]. Descriptions [May08]. Design [BLMA+08, BKM08, BH93, CMV10, CS09, CKN+15, CV07, FL92, GM90, HKS07, IM96, KNS05, SW99, DM88]. Design-Variable [IM96]. Designing [BAH10].
Designs [BCS04, BV10, BRS09, CM90, GL08, GHM10, Jan06, Kas05, L1S16, MMJF03, Ran02, Zha94, ZGL+09, RCS88].
Distinguished [HK15, NÖ08].
Distinguishes [Erd17]. Distinguishing [ACD08, BrLS07, CHK10, Prz13, WH15].
Distorted [GC11]. Distributed [HKP01, HJ94].
Distortional [GC11]. Distributed [HKP01, HJ94].
Distributions [Bón09, CHP+90, GMHW15, KRP04, OrI93, C297].
Distributive [ADD90, AS90]. Divide [ARS95, AS90].
Divide-and-Conquer [ARS95, AS90].
Divisibility [BMVW17, CCD00]. Divisible [GG11].
Division [BCC+05, Bon91]. Divisors [Kle89, NÖ08, Car94].
DLP [BN01]. DNF [SST08].
Does [ARTV12, TV03, KPT95]. Does [GC11, Kra07, MM15].
Domains [Das99, FK97]. Domatic [LHC90, SV08, MM96].
Domes [Gra04]. Dominants [CFP16]. Dominated [Tan10].
Dominating [CCOY17, DK02, HK93, KLN14, PP10].
Dominating [CCOY17, DK02, HK93, KLN14, PP10].
Dyck [AG15, Fer16]. Dyck-Paths [AG15].
Dynamic [AB05, GPST15, HKL+14, IW91, Juk16, LNO96, Ram04, SS00, Tan88].
Dynamics [LM11, OS11, RSV+14, Ull14].
Existence
[CL91a, CSS13, CM14, GL08, HZ95, LWY13, MMJF03, ÖV04, WLD09, ZGL+09, RCS88].
Expander [BZ04]. Expanders [Vin13].
Expanding [OS13b]. Expansion [DN16].
Expansions [BSS14, KMV15]. Expected [BHL+15, CL06, FS12a, Pip91, PRS88].
Experimental [BLMA+08]. Explicit [AB94, Cap03, CY08, DA10, DO08, GPST15, Lu08, SS02b].
Exploiting [CP16b]. Exponential [CY08, CHZ09, Ege10, GRS12, IK09].
Exponentially [HM12a, NT05]. Exponents [BZ04, FS01]. Ext [JKSW17]. Ext-Triangular [JKSW17].
extend [RS93]. Extendability [AS06, ANP91, CFGJ06, VW09, ZZBL17].
Extendable [ABS13, LS15]. Extended [KPT12]. Extendibility [LZ03]. Extending [GR17, KKK+12].
Extension [BYHR10, Bo90, BKTW15, DMNW13, FR99, FM11, NNO15, Pad16, Peg14, Voi07, JM97].
Extensions [AKW05, AMPT93, BM13, Che07, Na00, PR91, Sta92, Ten09, FH89].
Extinction [FS12a]. Extractors [RTS00].
Extremal [AE03, BGV07, CDM04, CKPW09, CL07, DSt01, DFJS15, DJS12, GP17, GH13, Jia95, JS17, KL14, KWW13, LLZ99, NT05, ZZBL17, dL09, BG91]. Extremum [HM88].
Face [BW02, Bro11, CLS09, CN12, KSS11b, KM14, Mur10]. Face-Width [KM14]. Faces [Tza08].
Facet-Inducing [CdV02]. Facets [BKG99, Chii1, DF02, Fio06, FLMY09, Pad16, Ba189].
Facial [HSS08, MM11]. Facility [AYZ04, BB09, CCZ12, RS10, SX13, Tam91].
Factor [CL16, CSS13, IT08, KS03d, Mur06, PSML08, Rah16, SS11a, SV08]. factorable [FH89]. Factorizing [Rón92, Sza06].
Factorization [AAHLT10, Tro15, BGM94]. Factorizations [CL05]. Factors [AS09b, BIT13, BMN13, CL15a, CDK10, LWY13, LW17b, MP98, Riz02, ZLS08, BH97, HKKK88, Mit97]. Falconer [IK09, Vin11]. Families [BKK16, BSS14, Bor10, BCF+10, CLW09, Dk10, EFK05, GP08a, GLP+12, ILM+16, Jev95, KM01, KMS12, KM13b, LO05, OS16, FMM98, Per16, Ran02, SG16].
Family [Ave13, CIT05, LL15, MTR14, Pin14, dM07]. Fan [CH06a]. Fan-Out [CH06a]. Fans [CR17b, Sha13]. Farthest [HHL095].
Farthest-Off [HHL095]. Fast [Dah93, DM13, EMT15, FH10, GH90b, GRS12, MP17a, Saw02, Som14, SV11, Car88].
Faster [KP04, Ull14, Way01, YZ97]. Fault [AS02, AU91, BCSK07, CFH16, HL10, PMM98, PL94, SX13, UBHS93].
Fault-Tolerant [AS02, BCSK07, PMM98, PL94, UBHS93]. Faults [DP96, GV92]. Faulty [CL91a, DG08]. FCSR [XQ06]. Feasible [GVW06, GS95, LS08]. Feedback [BBF99, BNN90, CPPW13, ENSZ00, KvIL+12, Ko88].
Ferrero [Boy01]. Few [AFT12, Ba08, BHN16, BKKZ17, BS16a, CH10, HVLP13, HS06, Hor14, KPP13, Pad16, Stu88]. Fewer [BS10a]. Fibonacci [CIT05]. Field [Che07, Sch02a, Gor93]. Fields [BGL03, BS90, CKP16, DQW+15, IK09, KMP03, MP13, NVZ15, NO08, QP15, Rón92, Ros09, Shp13, Shp15, Vin11, Vin12, Vin13, WB90, vzGVZ13, LW88b, LRN11]. Files [Ori93]. Fillings [CWYZ10].
Finding [Age94, BZ11, BIT13, CdVL1, COL10, Dui06, DHJ+13, FO08, FL96, Gut93, HKT99, Høa10, KY12, L206, LM16, MM96, MT90, MGC14, Riz02, SSO4, SW01, NSF09, Wan02a, YZ97, Zha90]. Finds [GS93a]. Fine [DL17]. Finer [HKK+17c]. Finite [AM07, AMB11, Bab92, BCE10, BBS00, BFGM15, BGL03, BY08, BS90, CW92, Che07, CW16, CKP16, DF94, DM13, DQW+15, Din06, GGI07, IK09, JS17, KM01.
KCL98, LZ03, LT11, Mal15, MK09, MMR06, PRS03, Pin14, QP15, RSW05, Rom06, Rón92, Ros09, Sca03, Sca05, Sch10, Shp13, Shp15, Sza06, Vin11, Vin13, WB90, YAT16, vzGVZ13, FMRR88, Jia95, LS89, LW88b, LRN11, Lin89.

Firefighter [CCVZ10, LW10].

Firing [Eri96, GK16, JSZ15, Tar88].

First [BHLY08, BKS10, BKM13, DJW12, Kie88, KPT95].

First-Fit [BHLY08, BKS10, BKM13, DJW12, Kie88, KPT95].

First-Stage [CH06a].

Flag [Bro11, CN12, KN13, LN17, dM07].

Flammable [Pra13].

Flex [Sch10].

flipping [CGG88, Sak89].

Flips [BDFP10].

Flooding [ADL13, CMM+10].

Floor [Fra10].

Floorplanning [YS95].

Flora [Fra10].

Flow [Fle00, GS16b, Güm07, IMS05, KNK93, Ram09, Svi03, TH11].

Flows [CDW07, FZ08, FO00, GR99, Güm07, KR16, Koc98, KK90, LXZ08, MS17a, WCLZ15, WYZ14, ALZ96, YCH97].

Fold [CH10, OS15].

Folder [Hir11].

Folkman [LL15, Lu08].

Forbidden [AFK12, CFP16, FXYY14, FLM+16, FM13, HH04, LI15, PP07b, Raz10, ST17a, Tuz08].

Force [FM13].

Forced [dOBMS+17].

Forcing [Dan01, KM14, ST17b, SZ13].

Ford [HS88].

Ford-orderable [HS88].

Forest [CKN13].

Forests [AT90, BK14, CK14, KMR11, Tak90, Tak14, vKLS14].

Form [Jev95, WS17b, Exo89].

Formal [ASMF10, BJ91, MP95].

Forms [BCE+00, CD93, CS14].

Formula [CF17, Han09, NW95].

Formulae [Cre04, Lla06, PRS02, Sto12].

Formulas [Bac09, FFV11, HS06, MPP17, MSK93, MNPR17].

Formulation [CKNZ05].

Formulations [KPT12].

Forward [OS92].

Forwarding [Saa93].

Foundations [BL16].

Four [AS05, HMS05, LGS11, LM17, San96, Vin13].

Four-Variable [Vin13].

Fourier [BBMM09, Car88, DDS16, IK09, Mal15, Sca03, TQLT13].

Fraction [KKS10].

Fractional [Bar04, Dro16, EK13, Fis94, Fle00, FO00, HZ10, KKN95, KKS10, KKV11, KLP12, KKK+12, Liu14, CFGG88].

Fractionally [KiK12].

Fractions [Het14, HKW15].

Frame [Fra95].

Frameproof [Bla03, SW98].

Frames [CW16].

Framework [Mur06, SB10].

Frameworks [BSIT15, CW96, FSW13, FRW12, KiT13, NOP12, NOP14, ST15, WHI88].

Free [AG15, Ave13, BS10a, BFK+12, BLM10, BM16, BKKM99, BS10b, BS16c, BF17, CKP13b, Cho94a, Cib13, CD16, CF10, CKOS06, CD14, CR13, CR17a, DK10, DJ11, DPRS10, DNB99, DLS10, DL17, DM17, EK13, EMOT16, FL96, FKMS10, GPvL15, GKL99, HKW15, HT93, IKM99, Kas05, KS08c, KOT16, LM08, Liu14, MTV08, MM12, Mak07, MTR14, MD11, OS16, PRR02, Pen12, PT94, RY91, Sch02b, dFM04, ASS17, BH97, COS97, Pic14, Ram07b, Ram08, Sp09].

Freeness [AKKR08].

French [Zen90].

Frequencies [Nag10].

frequency [Ray94].

Friendly [Mon15].

Frieze [DKM+12].

Frobenius [AOW15].

Front [Kim11].

Fugitive [RT11].

Full [Din06, FR06, Huy10, ÖVO4, TV03].

Full-Rank [ÖVO4, TV03].

Fullerene [FKS12, YQZ09].

Fullerenes [Gr04, KSS11a].

Fully [HKL+14].

Function [BGS17, Cre04, FI05, GSWW92, GS13, GJ16, Jun12, KG98, LL99, LS09, Loe10, Lou10, MR04a, MR04b, NO08, Sch02a, FV97].

Functionals [GM91, GM93].

Functions
fundamental [YH88]. Further [HVW07, Ray94].

Gabriel [BDEK06]. Gale [CDV10, Stu88]. Gallai [HM11]. Galois [KCTR13, LÖ05, Rön92]. Game [BKR10, BHT16, CCPP14, DS05b, FS05, Fei10, Fra10, FHL13b, GG15, HK16b, JSZ97, KWZ13, KLW98, Tar88]. Games [ABS10, AEFT13, ADHL13, ADH14, BM09, BMS12, Bil03, Bo09, BHKL08, CG14, CFG15, Eri96, EFKP15, FMP17, G16, GM16, JDT13, KW15, KW08b, KM10, MR04a, MR04b, RMS01, ZL11, DK89, FG18].

Glauber [LM11, RSV14]. Global [CL11, CPS08, G97, NÖ08, Tre04]. Go [Che16]. Goethals [Ran02]. Golf [DTW03].

Gowers [BC11]. Graham [CM05b, WIS12]. Gram [Sim13]. Graph [AS06, AC14, AL07, AS09, AHFM08, ACFL16, AcRS07, BSI14, BP10, BGS17, BPT91, BNR96, CCH91, CW98, CDM00, Cha03, CR04, CH94, CK14, CK99, CSS13, CN98, Cho04, CFM94, CL06, CKNV16, CTW93, CK08c, CDHK16, CHW10, CD11, DSS92, DE93, DM11, DHKM11, DK11, DSH13, DSY08, EGR08, EJK09, FO08, FKKL08, FKK05, FKS03, FKPR05, Fin09, Fis94, FO08, FH10, FJ17, GP08a, GM04, GT15, GS00, GLS15, GN08, GH90a, GKM17, GKY06, GJ96, HK99, HW15, HVL13, HS10, Ho98, HK96, Hof98, JN17, KM13, KSS11b, Kao96, KW13, KPT94, KY12, KMS08, KMS12, KM13b, KS08b, KM05a, KM11].
KCL98, LW10, LM12, LLS04, LS08, LW17b, LR91, MS14, Mer99, MC06, Mra17, Mur06, Naa00, PY90, PSML08, Rab06, RD11.

Graph
[RT09, RZ05, Rom06, SS05, ST13, SL96, Ste07, SWKP10, Wag07, Wan02b, WS17a, WY10, YS95, Zha09, Zha11, dCLM13, Bal89, BVW88, BB97, GM14, HS89a, KW96, MM96, RW98, Sp88, Zho88, dH89, LB09].

Graph-Based [GKNU10].

Graph-Coloring [HK96].

Graph-Different [KMS08, KMS12].

Graph-Theoretic [KM05a].

Graph-Theoretical [Wag07].

Graphic [FS09a, GS16b, KMPR14, PP13].

Graphical [CR96, FGP10].

Graphicality [BR17a].

Graphs
[AAHLT10, ARTV12, ABS13, AFT12, AA10, Adl08, AH03, AD11, AKZ17, AM14, AJM08, AH16, AH94, AG14, ABHM00, AD96, AEC94, AKKR08, AaW09, ABC+15, AHP09, AGHI11, ADL13, AP14, ABY11, AS07, AS90b, AS14, AG15, ACD08, AM06b, AB07, ABHW13, AE03, BB16, BJKV07, BGG+04, BG07, Bal08, BHL08, BS10a, BS15a, BC02, BC03, BHRZ14, BJ95, BJHY00, BCS04, BP87, BF96, BS09, BCC+11, BFP12, BCCZ11, BGM08, BTU09, BC09a, BGFR17, BKSI11, BEO9, BcDMO8, BHL09, BGL07, Bev10, BHH96, BW99, Bko10, BDD+98, BDPE10, BMP13, Bon08, BZ11, BDEK06, BKM13, BHT10, BKT15, BLL+15, BIT13, BDCV98, BL04, BLM10, BM16, BC09b, BFH+08, BMN3, BS93, BKKM99, BC09, BN05, BY08, BS10b, BS16c, BF17].

Graphs
[CR10, CdVL11, CHM+07, CCOY17, Cai93, CCV10, CDP08, CEHS08, CL15a, CL16, CT14, Cap03, CDH14, CW92, CMS17, CDM04, CLS09, CDM+14, CF08, CL07, CKP13b, CGN+06b, Ch94, CFGJ06, CEOT15, Ch17, CL11, CH10, Cho92a, Cho94a, CKPS13, CGK94, CP16a, CH11, CMM+10, CP10a, COL10, CLO+06, Con05, CN12, CF05, CFK10, CFR10, CF10, CEOR13, CF96, CKOS06, COS10, CDHK16, CL15, CD14, CW90, CR13, CR15, CR17a, CR17b, CRc04, CY03, CL05a, CL05b, CLST12, CDK10, CM14, Dan01, DNS94, DO94, Dei15, DZ09a, DMR12, DHT06, DKO2, DMY6, DAM07, Die10, DEE17, DL12, DD13, DKO6, DK10, DJ11, DMKS08, DHL+13, DP15, DGS96, DF04, DRS10, DSB99, Drc12, Dro16, DFT15, DP16, DP17, DEW17, DSST13, DMS12, DST08, DVS08, DS09].

Graphs
[DL10, DLS11, DL14, DL17, DM17, EK13, Elik08, EFMN08, EM10, EP10, EG03, EM99, Ejj01, EST14, Er96, EJK+09, EHL11, EO16, ELM98, ENS00, FRR15, Fan92, FJ09, FKS12, Fur09, FMM09, FH+13a, FH+14, Fei10, Fe90, FF98, FG01, FKWH98, FW02, Fl95, FKLL15, FPS13, FG01, FHS14, FT17, Fra92, FL+95, FL96, FKS05b, FHL13b, FP13, FYY00, Fu14, GRR15, Gao13, GP08a, GMS00, GM03, GM05, GS98, GM16, GS03, Gn06, GR17, GK13a, GB12, GH09b, GHt15, GPV15, GHV06, Gra07, GL14, Gk92, Gk98, GKL99, H04, HPW09, HLST00, H07, H05, HR17, HY10, HK16b, HKP+17b, HKP+17c, HLO0, HR05a, HHH+02, HT93, H12b, H198, IKM99].

Graphs
[Ja10, JT11, JMSW99, JMSW00, JS12, JKSW17, LR+17, Jon05, JRS14, Joo15, JN16, Joo16, JS03, JDT13, KKL+10, KRS11, KR16, KiKK07, KPP15, KKS12, KNR92, KW92, KN16, KFHR94, iKSS04, iKKL09, iKMO10, KPP13, KKNK93, KZ04, KMS+09, KL14, KPr04, KM02, KV90, KMR09, KKL14, KW14, KMM08, KSN07, KNP05, KZ08, KVM15, KSS08, KM14, Kra04, KST06, KS08c, KSS09, KSS12, KT99b, KS93, KS02, KPSW15, Krl10, KLS10, KS12a, KRS15, KKS17, KO06a, KO06b, KOT09, KO12, LS15, LC04, LPW+13, LLS13, LiO15, Len98,
Lev15, LM08, LLY10, LRWZ12, LL14b, LW17a, LL17, LLZ99, LS10b, LS03b, LZ05a, LC12, Liu14, LR04, LHC90, Lu08, LWY13, Lub09b, LM10, LXXZ08, LSSY10, Lyn94, Mác13, MS17a, MS17b, MM93, MT05, MT08, MM12]. Graphs

[MP14, Mak07, MP94, MS16, MW14, MN15, MSS14, McL10, MMW94a, Meh12, MMP13, MP17a, MSZ10, Mer15, MCT14, Moh99, Mom13, MNS14, MvLvL13, ML11, NL92, NOO12, Nie00, Nor11, OC10, Obr93, OYY13, Oze13, Pal12, PRR02, PZ10, Pen12, PT14, Per16, Pfe15, Pik03, Pip02, PT94, Pra13, PP90, Ram90, Riz02, RS08, RS15, Sak94, SMR08, Sch91a, Sch92, Sch9b, Sch02b, SS94, SS04, Shp15, Sim13, SL90, SZ94, Sol12, ST17a, Sta92, Ste10, SZ13, Sud08, SV08, Suk13, SSR94, Suz10, SB94, TT16, TTR1, Tam91, TT07, TW12, Ttx10, Voi07, WL02, WL03, Wan08, WX13, WHW14, WH15, WIS12, Wok99, Woz10, WZ09, Wu09, WX13, XU13, YQZ09, Yus14, Zak14, ZZ92, ZLS08, ZW13, Zho05].

Graphs

[ZN08, Zho09, ZLWC12, Žit94, tBa07, dFM04, dKPS13, o09, ALZ96, ACS97, BM97, BM94a, BM94b, BM94c, BFM94, BG88, BH97, BCLR89, Bon15, BCD97, CET97, CH98, CK96, COS97, DYL06, FH89, GP88, GY92, HS88, Hust88, JS93, IKM92, Jac92, JO95, Kan98, KKV11, Kie85, KPT95, Kie97, KM06, LM90, MRS89, PS97, Pip98, PC97, RX88, RS93, Spr94, TA93, Tar88, TZH7, WGM95, dHS95, BM94c].

Gravity [BG12]. Gray

[Li08, KCTR13, LT01, Sav97, Sav07, WS96]. Greater [FS12a]. Greedy [FKK96, Ham10, HSN93, KOT16, Lev09, Luc98, WS06]. Grid

[AY11, BH05, BDL13, CW98, CHLZ00, CH06b, DPPW08, DKSZ10, HPL13, JPT12, KFHR94, MMJF03, Sta11, ZZ92, ZGL9+09]. Grids

[AJM08, CDP08, CFP11, DGM12, GPRT11, Lag00, MP08, RX88, SS89]. Griggs

[HRS12]. Gröbner [BP09, CP16b, GS93b]. Grooming

[BCC+05, BCG+10, CFG+09, MLS11]. Grothendieck [FR94]. Ground [DO08]. Group

[AR04, Che93, DF94, DR04, GG11, GLY07, HH01, HLT17, Pet13, QP15, RD11, RKDD13, Yam16, HY89, YH88]. Group-Labelled [Yam16]. Groups

[ABM14, Bab92, BFGM15, CS14, CF09, DM13, Din06, FLM12, FFie98, GF08, GGI07, JS17, Kas05, KCL98, Lub90b, MM93, Mar09, MR15a, Rón92, Sza06, Zho05, ALZ96, CS89, Jia95]. Growing

[CS12, KS12b]. Growth

[ABH+11, GPW09, RF12]. Grundy

[GSPRM91]. Guaranteed [GS93a]. Guarantees

[AB95, ELMS11, EH13, GPSS01, Fra89]. Guarding [HK96]. Guess [GSWW92].

Guessing [BHKL08, GRR15]. Hadamard [Mom13, Orr08]. Hadwiger

[EEK+15, GHvHP15, ST17a]. Hahn [BBM09]. Hajnál [BBT16]. Hajós [PU95]. Hales [Lav16]. Half

[Brá10, DZ09a, Fúk16, iKK11]. Half-Disjoint [iKK11]. Half-Integral

[DZ09a, Fúk16]. Half-Plane [Brá10]. Halflspaces [LS14]. Halin

[CL90, CEOT15, CEOT17]. Hall

[BBK+16]. Hamilton

[BF12, BNN09, BS11, CEOT15, BO80, CFK10, CM14, DKM95, FKT99, G13a, KMS12, KS12a, KO06b, OS13b, RS93, Sta92, ST17b, ZW13]. Hamiltonian

[AS06, AS13, AS02, dOBMS+17, CL91a, CFG06, Dvo05, FH94, FM09, FLM95, G198, K06, K08, iKO16, LS15, ZZ92]. Hamiltonian-Connected [iKO16]. Hamiltonicity

[BSKS11, BP10, DMP07, LRWZ12]. Hamming

[AJM08, AE03, LW10, LS14, ÖV04, 9V94]. Hanani [PSS09]. Hankel [CHX15, FP99].
<table>
<thead>
<tr>
<th>Term</th>
<th>Reference</th>
<th>Term</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanoi</td>
<td>[Rom06]</td>
<td>Homotopy</td>
<td>[Dan09]</td>
</tr>
<tr>
<td>Hard</td>
<td>[DGM12, GMRT11, VVY15]</td>
<td>Homotopy-Like</td>
<td>[Dan09]</td>
</tr>
<tr>
<td>Hard-Core</td>
<td>[VVY15]</td>
<td>Honeycomb</td>
<td>[CHY13]</td>
</tr>
<tr>
<td>Hardness</td>
<td>[AS09a, ASS17, GK04, HN15]</td>
<td>Hook</td>
<td>[Han09, MPP17, RY91]</td>
</tr>
<tr>
<td>Harmonic</td>
<td>[Bru90, CW92, FP13, FV97]</td>
<td>Hop</td>
<td>[HMP04]</td>
</tr>
<tr>
<td>Harvesting</td>
<td>[JPS+14]</td>
<td>Hop-Constrained</td>
<td>[HMP04]</td>
</tr>
<tr>
<td>Hash</td>
<td>[SG16]</td>
<td>Hopf</td>
<td>[BHJM16, FLS10, HM12b]</td>
</tr>
<tr>
<td>Hashing</td>
<td>[DHL+02, MNP08]</td>
<td>Horizontal</td>
<td>[GG12, GMRT11, VVY15]</td>
</tr>
<tr>
<td>Hastens</td>
<td>[Ram04]</td>
<td>Horton</td>
<td>[WW91]</td>
</tr>
<tr>
<td>Having</td>
<td>[AB07, DK06, KCL98, LXZ08]</td>
<td>Hub</td>
<td>[Yam05]</td>
</tr>
<tr>
<td>Heavy</td>
<td>[LRWZ12]</td>
<td>Huffman</td>
<td>[FT05a]</td>
</tr>
<tr>
<td>Heilbronn</td>
<td>[Bar01, Bra05]</td>
<td>Hybridization</td>
<td>[KK12, vK15+16]</td>
</tr>
<tr>
<td>Height</td>
<td>[JMW17, Luc98]</td>
<td>Hyper</td>
<td>[Moi08]</td>
</tr>
<tr>
<td>Heilbronn</td>
<td>[Bar01, Bra05]</td>
<td>Hyperbolic</td>
<td>[CCPP14]</td>
</tr>
<tr>
<td>Height</td>
<td>[JMW17, Luc98]</td>
<td>Hyperbolicity</td>
<td>[CCPP14]</td>
</tr>
<tr>
<td>Height</td>
<td>[JMW17, Luc98]</td>
<td>Hypercube</td>
<td>[AKS07, BGM08, Fin09, GT12, HPS96,</td>
</tr>
<tr>
<td>Heilbronn</td>
<td>[Bar01, Bra05]</td>
<td>Hypercube-Derived</td>
<td>HaKK+09, HL10, Off08, OV12, Bal88,</td>
</tr>
<tr>
<td>Height</td>
<td>[JMW17, Luc98]</td>
<td>Hypercube-Like</td>
<td>Ram97b]</td>
</tr>
<tr>
<td>Heilbronn</td>
<td>[Bar01, Bra05]</td>
<td>Hypercubes</td>
<td>[AA96, BFPP08, BIHZ05, CL91a, Dvo05,</td>
</tr>
<tr>
<td>Height</td>
<td>[JMW17, Luc98]</td>
<td>Hypercubes</td>
<td>DG08, GSV12, LLY10, MW08, Mol11,</td>
</tr>
<tr>
<td>Heilbronn</td>
<td>[Bar01, Bra05]</td>
<td>Hypercubes</td>
<td>VW09, YCH97, Chu89]</td>
</tr>
<tr>
<td>Height</td>
<td>[JMW17, Luc98]</td>
<td>Hyperelliptic</td>
<td>[CC03]</td>
</tr>
<tr>
<td>Heilbronn</td>
<td>[Bar01, Bra05]</td>
<td>Hyperedges</td>
<td>[BBL16, BCE+01, KOT16, Lu04, NW95,</td>
</tr>
<tr>
<td>Height</td>
<td>[JMW17, Luc98]</td>
<td>Hyperedges</td>
<td>Tak08]</td>
</tr>
<tr>
<td>Heilbronn</td>
<td>[Bar01, Bra05]</td>
<td>Hyperoctahedral</td>
<td>[Che93]</td>
</tr>
<tr>
<td>Height</td>
<td>[JMW17, Luc98]</td>
<td>Hyperplanes</td>
<td>[AA96, AS07]</td>
</tr>
<tr>
<td>Heilbronn</td>
<td>[Bar01, Bra05]</td>
<td>Hypersurfaces</td>
<td>[Gly12]</td>
</tr>
<tr>
<td>Height</td>
<td>[JMW17, Luc98]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identity [HK11]. Ihara [Dei15]. II [BM94b, CEOT17, DMS08b, DF10, DL17, EK10, GM94, Han16a, HKP+17b, JLM93, MR04b, MPP17, Mur96b, MRNS17, SS02b]. II. [KW96]. IID [Rah16]. III [BM94c, HKP+17c, KLW89, KMV15]. IIS [Rya96]. IIS-hypergraphs [Rya96]. Image [AF05]. Images [DS97, Kim91]. Imagination [BKR10]. Immersion [BS09]. Immersions [DK14, MW14]. Immune [Bac09]. Imperfection [GM04]. Implicants [SST08]. Implications [FiT14]. Implicit [KNR92]. Implying [GKY06]. Impossibility [BGN15, dH89]. Impossible [JSZ15]. Improper [WX13]. Improved [AYZ04, AMW00, AS14, Bac09, BDM02, Che04, Doh03, DJW12, DS16, ELMS11, Gab05b, KKW17, iKK11, KW13, KS07, KT17, KO06a, LS04, LÖ05, Lu10, MSZ10, NÖ08, Sot15, Stat1, Tam88, Tod14, VVY15, Woe93, dKMP+06, dKPS13, LRN11]. Improving [CSS01]. Inset [XY15]. Inapproximability [EK05, GSS15, GL17]. Incidence [AS07, Bal08, HM12b, IK09, LS16, Pip02, RS16, SS08]. Include [Pin14]. Inclusion [Doh03, Fér15]. Inclusion-Exclusion [Doh03, Fér15]. Incomparability [BKLM13]. Incomparable [DJW12]. Incomplete [BH94]. Increasing [BJF95, WC12]. Independence [ACL+06, BNR96, DMS12, FMMO93, FLMY09, Fox10, HC98, KM13a, LOW10, Swa05, Töt10, SSS95]. Independent [Age94, BLM10, BKKM99, CW98, CER98, CCG+11, DM17, FRMPV15, FKS12, FO08, Fle00, FL96, Für91, GS93a, HT93, IT08, Kir16, LZ06, OR04, PP07a, RSV+14, SS04, TT16, Vse05, Zha90, Bot97, GS89, Sag88]. Independently [PSS10]. Index [BCHW17, FKS05b, FL15, KR15, LW03, LM10, Saa93, WH15]. Indicators [DSS12]. Indices [Wag07]. Indifference [SS94]. Individual [HH01]. induce [KPT95]. Induced [AFK12, AKS08, AB07, BB16, BP89, Che93, CF16, CM07, DF02, DS16, ELiK08, Fis90a, GPvL15, GRSL12, Hua14, Jan05, JRS14, JN16, Joo16, KMM12, Nag10, PTT16, Tuz08, BM94a]. Inducibility [CSW17]. Inducing [CdV02]. Inequalities [AB95, BCCZ10, BH16, BCF92, CdV02, CR96, Doh03, DJS12, FR94, FP13, GL14, SS05, SL95, Kah07, LR94]. Inequality [AF10, Bar95, BL90, DDS16, IMR14, OV12, RSD17]. Inference [DM03]. Infinite [BCE10, BCCZ10, Bon10, BCF+10, CW92, Dei15, KK09, PT14, Ran02, 'S14, Ste10, SZ13, AHS89, KM06, Weng97]. Infinitesimal [KnT13, SiT15]. Infinity [BL17a]. Influence [Che09, CGG88]. Information [WS17a, KG93]. Injective [BRM10]. Input [RF12]. Input-Output [RF12]. Inputs [SY11]. Insights [MV99]. Instance [PSV08]. Instances [ASZ02]. Instantaneous [FO00]. Integer [AO15, BCCZ10, BCCZ11, BP09, BP12, BH93, CS09, Dan09, Dow91b, GW006, Gij05, GM90, HS04, KYDN09, MD16, MVLeL13, Myu01, Oum91, PPU92, Tra15, WCLZ15, WS17b, Yam97, Dow91a, FKS97, TT89, UWZ97]. Integers [Rya07]. Integrable [CHX15]. Integral [ABM14, Che17, DZ09a, Fuk16, Jan10, Jev95, MH09]. Integrality [BB09, CCZ12, DZ09a, HMM09]. Integrity [BEL09]. Interactive [Bab92, Orl93]. Interchange [Die10, SS00]. Interconnecting [DHX99]. Interconnection [CKN+15, Zho09, DM88]. Interference [FKLW98, FW02]. Interference-Minimizing [FKLW98]. Interior [Ave12, DJT15]. Interlacing [CDH+04, FJZ15]. Interlacings [Die10]. Interleaving [JCB06, MP98]. Internal [DM03]. Internally [GZ06, MR12]. Internet [BAG03]. Interplay [FHM94]. Interpolation [CW14b, CF17]. Interpretation [CS94, Mun06].
Intersecting [BKK16, Bor10, CL07, CLW09, GLP+12, KS08a, WL02].

Intersection
[ABS13, AC14, BBC11, BTU09, Blo10, CH89, FF06, GMA15, KS92, KMW06, Koc98, KM01, MSZ10, MvLvL13, Pet13, PR98, Sh13, Suk13, Mur96a, Mur96b].

Intersections [FKM13, KS05, ST10].

Intertwines [Bon10, GI97].

Intertwining [CW14a, HvZ14].

Interval
[BFPP15, CFGJ06, COS10, DJ11, EST14, EEL09, FHM94, Fer16, FG00, FSV13, GP99, GP08a, HH05, HR12b, KV90, KS06, KS02, LC04, LW17a, LHC90, MN15, Mer15, BG88, Kie88, KW96, MM96, PS97, Spr94].

Intervals [BCdMR08, DK10, Fer16, KJJ04].

Intractable [CM12a].

Invariant [CD93, CDHH14, CDR16, Gly12, KG93].

Inverse [LW03, Mal15].

Inversion [CGG+16, Mal15].

Invertibility [Con89].

Invertible [GK16].

Inverting [SS02b].

Involutions [AAHLT10].

Involving [SWR12].

Irreducible [RMS01, vzGVZ13].

Irredundance [BG88].

Irreflexive [FHL+14].

Irregular [AT90, CFS96].

Irregularity [BBLM16, KKP11, MP14, Nic09].

Islands [EO16].

Isolating [PTT16].

Isometric [BGM08, FHJV17].

Isometry [Huy10].

Isomorph-Free [Kas05].

Isomorphic [AAFL06, Con05, dHS98].

Isomorphism [Che94, FKKL98].

Isoperimetric [BL90, HLST00].

Isostatic [FSW13].

Item [CCG+00].

Iterated [Fra10, Mal89].

Iterating [Li98, LT01].

Iterative [SFS09].

IV [BFM94, HKP+17d].

J [GM93].

Jackson [BBM09].

Jeu [Sn14].

Jewett [Lav16].

Job [GPSS01, JSOS03].

Job-Shop [GPSS01].

Jobs [Jan10, PP07a].

Jogs [TH90].

Johnson [Etz96b, RD11, SG16].

Johnson-type [SG16].

Join [Rea15].

Joins
[Bar04, tBaa07].

Joint [EMT15, SiT15].

Joints [Qui10].

Jordan [vBEM17].

Jumps
[BC95, KMT07].

Jumps [HLR13].

Kac [TW12].

Kaiser [CC+13].

Kalai [Tod14].

Kannan [DKM+12].

Karakhanyan [BL09].

Katona [Buk12].

Kernel [FSV13, GLS16].

Kernelization
[BJK13, BJK14, FLM+16].

Kernels
[BFRS16, GSPRM91, GLS98, GPST15, Hed08].

Ker [Sn14].

Key [GLY07].

Khintchine [DDS16].

KillerQu'est [KvIL+12].

KillerQu'est-ce [KvIL+12].

Kimura [MR17].

Kimura-3 [MR17].

Kind [MGC14, QD14].

Kings [SS91].

Kissing [KKW17].

Klapper [CK11, Shp10].

Klein [IKKKL09, iKM09, RS16].

Kleitman [Tod14].

Kloosterman [Mo08].

Knappe
[DKMS17, LMNS10, SL95, Yan07].

Knee [Lei94].

Kneser [EJK+09, HPW09].

Knock [Lei94].

Knock-Knee [Lei94].

Knowledge [DF94].

Known [CP08].

Knuth [Sn14].

Ko [DT16, DK16].

Kotzig [CuK+07].

Kruskal [Buk12].

Krylov [BGL03].

Kühn [MMS17].

L [BL17a].

L-Infinity [BL17a].

Label [BK09].

Labeled
[CX08, CFJ11].

Labeling
[ABR05, CKNZ05].

Labellings
[BJK07, GM05, Gra07, GK92].

Labelings
[BFJK07, GM05, Gra07, GK92, KST06].

Labelled
[Ald90, Yam16].

Labelling
[GB92, Sak94, Zho05].

Labellings
[BM+10, EJK+09].

Languages [ETT13, FKL93].

Laplacian
[CFM94, BMV92].

Laced [Sim13].

Laguerre [FZ88].

Languages [ETT13, FKL93].

Laplacian
[CFM94, BMV92, CL15b].

Laplacians [CDH+04].

Lei94.

Lei94.
Large [AA10, AKZ17, AHH+10, AKS08, AS07, AS16, BFK+12, dOBMS+17, BW02, Che07, CP10b, Dro16, DM17, FG14, FKP15, FM13, GJ12, HPS09, HS04, Kha13, KZ04, Kim17, KST06, K006a, Lee17, MP08, MNS14, SS04, SZ13, Sul05, WH15, EH91, KKV11, RCS88, WW91, RX88].

Large-Girth [AA10].

Larger [KMP03].

Largest [GW99, Iri16, KW08b, SST08].

Lassos [HK15].

Last [JZ05, KKS10].

Latency [LRTW11].

Latin [BCM+12, MW08, WLD09].

Lattice [Ave12, BHE05, BH16, BT96, BS16a, BS16b, Can93, CL90, DD15, DMN12, FL00, Got03, KNK93, KT17, KS08b, KS03d, MGC14, NT12, NDB07, OPVV14, Orn91, Rea08, SFS09].

Lattice-Simpex [FL00].

Lattice-Width [DMN12].

Lattices [ADL+09, ABH+11, BFGM15, CGG17, FM11, GJ08, K080, Lec90, NDB07, NS16, RSD17, Sch09, WZ08, DSW90].

Laurent [CHX15].

Law [CK91, Ja10].

Lawler [GW00].

Layer [GS95, Lei94].

Layered [IM96].

Laying [HLR92].

Layouts [GSV12, KLN91, KS02, HP97, Pat88].

Lazy [RT11].

LBFS [COS10].

Leading [CDR16].

Leads [FS12a, Ja10].

Leaf [Alt89, HS97].

Leakage [AEFT13].

Learning [AA05, BBS00].

Lease [LPSR12].

Least [ARTV12, DSV08, HK16b].

Leaves [AFG+09, BKKZ17, Bon08, BZ11, CWY00, KW91].

Lecture [BBK+16].

Lee [Špa07].

Lee-Type [Špa07].

Lehman [AFG+16].

Lekkerkerker [LM16].

Lemma [BKTW15, BK17, DKM+12, FPST06, NT12, Peg14].

Lempel [CI07].

Length [CCD00, CGH+15, EK10, FJ09, Han09, Hed08, HY12, KW13, KS03d, SS09, TSN04, vD11, BFRG17, DL89b, HS97, Tas97].

Lengths [CHP+90, GS94a, JA16, KR511, KJJ04, PY90, SW99].

Level [AYZ04].

LexBFS [HH05, BCP08].

Lexicographic [BBM09].

Lexicographically [KRR16].

Liar [DS05b].

Lie [ADL+09].

Lifelong [BNRT17].

Lift [AT16].

Lift-and-Project [AT16].

Lifting [BK12].

Liftings [SL95].

Lifts [CF08, FT12, GS16b].

Light [DS06, ES11, ENS15, Sol12].

Like [Dan09, HL10, EL17b].

Likelihood [CFKK17, S202b].

Limit [BK11, CP10b, WW91].

Limited [OR04, SS95].

Limiting [Gar92, RJS93].

Line [AE04, BK510, CH11, CR17b, Gab05a, GSPRM91, GKL99, HT90, H00, KFR94, KT99a, Kap14a, KPT94, McD15, MT03, Sch91b, Woe93, BCP08, CKPS13, Con10, Fra89, KPT95, MSS14].

Line-Polar [CH11].

Linear [AD96, BB13, BNMM92, Bar02, BZ04, BBCZ11, BL17a, BHH96, BGS96, BP09, BKG99, Boy96, BCP08, BM13, CD93, CS14, CdMR12, CKNZ05, Che94, CKOS06, Djio6, DHJ+13, FR99, FM11, Fio06, GSPST15, GH90a, GMS15, Han98, HKL99, Ht2012, HK05, JOS03, JM17, KMP03, KK90, LW17a, LL15, LM16, LW10, MN15, Mer15, Moh99, N000, PS17, PR91, Ram98, RS15, San96, ST07, SY11, Spe08, Sta09, TRV03, Ten09, WH02a, WWK11, Wn97, Wu09, Yam16, o09, HSLd88, IS93, LM9, Mou94, KG93].

Linear-Complexity [BZ04].

Linear-Interval [Mer15].

Linear-Time [Che94, Djio6, DHJ+13, HKL99, LM16, MN15].

Linearity [Kie88].

Lines [Buk16, Pay17, SW04, Vin07, Yu17].

Linkages [BP10].

Linked [GKY06, KY12, Plc15].

Linking [Pip06, IP91].

Links [CDP94].

List [CEHS08, CR17a, DSZ05, DST08, EST14, FHKM03, FHH08, FKS05a, HML1, KZ08, RR03, Saw07, Tak08].

List-Coloring [CR17a, DST08].

List-Decoding [RR03].

Listen [MP04].

Listing [PRS98].

Lists [FKS03].

Little [MR15b].

Littlewood [BR13, LR94].

Liu [HL92].

LKS [HCP+17b, HCP+17c].

Load [AE04, HMP97].

Loading [Myu01, SSW98, Sku16].

Local

Locked [ZK11]. Loebl [HKP17a, HKP17b, HKP17c, HKP17d].

Log-Concavity [GMTW15]. Logarithmic [GV92, KW90]. logarithms [Gor93]. Long [AB05, BBT16, DJW12, EMM14, FG14, KW08a, NT05, Ste00, Kar89]. Longest [BM14, EFMN08, FJ09, Gut93, KW13, MC12, RS14]. Look [CF10]. Look-Ahead [CF10]. Loop [BH13b, HJ94].

Lower-Density [CF09]. Low-Dimensional [MR15a]. Low-Rank [J JiT14]. Lower [Bar01, BGJ+12, BJK14, Cap03, DSZ05, DHUZ01, DMS12, EMRPS14, FS09a, FP01, FP04, FLL10, Fra95, JWF05, KKW17, KL92, KM95, KW14, KSS09, Lab13, Lei94, LY10, Luc03, MNP08, Nac01, NW95, OS92, PP09, ST13, Swa05, Tsa96, XSR11, YAT16, Zuc92, dKPS13, Car88, Sar97].

Lyapunov [GM93, GM91]. Lyndon [KRR16, RMS01].

Macaulay [Bro11, BCW96, CN12]. Machine [CMSV17, GQS'+02, HV00].

Matchings [AKZ17, ACG94, ABY11, BCCZ11, Can93, CL11, Che16, CHK17, DJJKP09, FKTT99, FKM13, HPS09, Han16a, Han16b, HKP01, HR02, HK13, JRS14, JN16, Joo16, JP06b, Kam17, KMM12, Kha13, Kla06, KSS09, KO06b, LRT08, LR91, Mak07, Nas14, OC10, Pip02, dCCLM13, Pit89, R93]. Math [GM93]. mathematical [SU89]. Matrices [AM06a, Bal08, BS95a, BK17, CP10b, FHK96, Gj05, GK16, IM96, IT09, JiJT14, KS05, LL14a, Mon15, Ngu13, OPR12, Orr08, Vin12, dLL09, BG91, DK89, KP06, Spi95]. Matrix [BM15, BR17b, EMT15, Iri16, KK90, LS17, LSO03, OPVV14, Som14, Tro15, WS17b].
Matroid [BPWX13, BKK16, BLMA⁺08, FF06, FKM13, GMA15, GGW06, KT14, Kam17, Kas08, KiT13, KS03b, LMNS10, May08, Om03, Sza08, Yam16, dGNS13, Mur96a, Mur96b]. Matroid-Based [dGNS13]. Matroidal [Sha13]. Matroids [Bon10, BC95, BH13b, BRS09, CW14a, CDMO16, CMvZW16, DD15, DM88, GHW05, GZ06, GvZ17, Gra91, GPW13, GS16b, HKL11, HvZ14, Jan05, Kap14a, KBE⁺05, Kot13, KMPR14, MWZ11, MR12, Nél15, Ny15, Ng10, PG06, PP13, Sno13, Tak14, iT12, Web08, Wil05, dM07, CH89, Whi88]. Matter [CHO⁺89]. Matters [KPT12]. Max [ELvS11, FiT14, Gün07, HSZ13, HR12b, KSS12, PS17, Sot15, SS00, Fuj97, He97, AHS01]. Max-Cut [Sot15]. Max-Flow [Gün07]. Maximal [Ave13, BGG⁺04, BKS09, CER98, CD16, Dji06, DSW90, Fü91, HKP01, HT93, KW08a, Kir16, MD11, Muñ05, Sza06, TSN04, GS89]. Maximin [AR95]. Maximization [KT99a, FKS97]. Maximize [Car09]. Maximizing [AAH14, BNRT17, CKNV16, HIKT99, Kas03, KL08, LMNS10]. Maximum [AD11, ANS16, AS14, BB16, BB13, BP15, BHL⁺15, BHH96, BW02, BLM10, CCM00, CMS17, CFFK17, CKP13b, CHD12, Cib13, CM07, DSS13, DK14, EJ01, Fei04, FO08, FvIKS15, FGP10, GL95, GRS12, HZ10, HRS17, HV00, Hua14, JT11, Joo16, Kau08, KSS11b, KL14, KW08b, KY12, KLN10, KS08, KL08, KMPR14, LSO3a, LRTW11, LS19, Luc03, Mak07, MMP13, Oze13, SY11, SS02b, Sz10, WH15, XQ06, Zak14, Zeh17, GW94]. Maximum-Length [CCD00]. Maximum-Weight [CHDZ12]. Maxmaxflow [RS15]. Mean [HH92]. Means [LRR14]. Measurable [GL15]. measurement [FMRR88]. measurements [LS89]. Measures [Sn14]. Mechanisms [HLR92]. Medial [Kim91]. Median [BBC11, BH13a, CL11, DHUZ01, DZ01, IJM99, MP95, tBaa07]. Medians [BC02, Lec90]. Meet [Fra92]. Meets [Lev09]. Melons [VV94]. Memoryless [BBFP09]. Meromorphic [Lia06]. Mersenner [EA11]. Mesh [CDP94]. Mesh-Connected [CDP94]. Message [FKPR05, KPR10, MT11]. Meta [CIT05]. Meta-Fibonacci [CIT05]. Method [BM11, CP10a, MdCW16, Ros09, Tak08]. Methods [AT16, DS05a, DA10, LZ06]. Metric [BFGR17, BD⁺17, BR17b, CHM⁺07, CKNZ05, CV07, DM11, Gao15, SS11a, Sol12, Ste88, Win88]. Metrics [Ban90, BS09, Dali93, HMM09, SP88]. Midpoints [EFF91]. MILP [Jan10]. Min [Cal13, CMS17, FiT14, Gün07, HM94, HR12b, KSS12, SS00, Vse05, ELvS11, Fuj97, He97]. Min-Cut [Gün07]. Min-Max [FiT14, HR12b, KSS12, SS00, Fuj97, He97]. Min-Power [Cal13]. Min-Sum [CMS17]. Min-Wise [Vse05]. Minconvex [AS09b]. Minima [LL14a]. Minimal [ABZ15, BNN90, BCCZ10, BKS09, BB03, CY12, Gab05a, GDVL17, GMA15, GH90a, HTV05, HK15, KLMM14, KRR16, RS08, Saw07, SL95, Tak08, Zeh17, Zhe16]. Minimal-Time [Gab05a]. Minimally [AG15, Ste10]. Minimax [HKST03, Ram90]. Minimization [BDvL13, FI05, GS13, JSOS03, Svi03, CNR89]. minimize [DL89b]. Minimized [FT05a]. Minimizing [Alo13, AE03, CCK⁺04, CFG⁺09, ELSS17, FKLW98, HRS17, HQ03, HV00]. Minimum [BGG07, BJHY03, BHL05, Bon08, BS15b, BL17b, CR04, CtJL01, CH01, CL13, CF09, CDK10, Das09, Dro16, ENS200, FJ17, GV92, GKY06, GP91, GÖ12, GS15, GRY08, HIKT99, HPS09, HM94, HR12a, HK16b, HK03, IMS05, KKL⁺10, KN16, KS05, KKM09, KPP95, LRT08, Li17, LL17, Pin08, Ram04, SS11a, SMNF09, UBHS93, XGG15, Yus14, ZN08, BBM90].
Minkowski
[AF10, DMN12, GS93b, LS06, OV12, SS09].
Minor
[BFM06, CDMO16, DHJ+13, EMOT16, HKSS08, KMPR14, MR12, Per16, BM94c].
Minor-Closed [Per16]. Minors
[CFP16, FKPR05, FHVJ17, FGT11, FLM+16, Fox10, GMA15, GT13, IKMN09, KM14, KNZ14, SZ13]. Minsquare [Mur06].
Minus [Gly10]. Mirror [CL11]. Mis`ere [KLW89]. Mixed
[BJFJ95, BH13a, CWYZ10, IM96, IT09, RV99, GJW16].
Mixing [BP17, CDW07, EMT15, KS02, Fox10, GMA15, GT13, iKMN09, KM14, KNZ14, SZ13]. Mixture [MM15].
Mixture [MM15, Sul12]. MMSNP [BCF12]. Mobile [BNRT17]. Möbius
[CFM+09, JM97, Lin97]. Mod
[GVW06, LL14b]. Mod- [GVW06]. Model
[ART14, CHZ04, ELMS11, FGP10, GMRT11, GKNU10, HL10, LNNW95, MSZ10, SW10, Vaz13, VVY15, GKR115, SU89]. Modes
[BDT17, Zho09, Bie88]. Modes [Bon91].
Modification [ASS17]. Modifications
[LS003]. Modular
[BCdMR08, Kap14a, Yam05]. Modulo
[MS16]. Molien [ACM11]. Moments
[Bar95]. Monochromatic
[AHH+10, BL01, CH13, CH17, CFP11, ELR98, FS09b, FM13, LR07, LSS17, MP08].
Monoid [BS95a]. Monoids [GR17].
Monomial [CK08a, GGI07]. Monomials
[Din13]. Monotone
[ARS17, AcRS07, GM91, HH17, HR12b, HRS93, JS14, KW90, ST13, Suk13, GM93].
Monotonic
[DSZ05, GHM10]. Monotonicity
[BGJ+12, HY89, YH88].
Monte [SV11]. Moody [TW12]. Moon
[CWYZ10]. Morphisms [CI07]. Morse
[JP06b, SwM08]. Moser [Peg14]. Most
[DD13, HZ10, HV17, JN16, JMW17, KK14a, San96, Zho88]. Motif [FKW10]. Motion
[APTRU91]. Motors [JSZ15]. Moves
[BHNP16]. Moving [ABY14]. MPS
[CH06a]. Multichromosomal [BH13a]. Multicolor
[DP17, SWR12]. Multicolored
[AALF06, Con05, K006b]. Multicommodity
[Fle00, Gin07, RS10, YCH97]. Multicovering [HK02]. Multicut
[KPPW15]. Multidimensional [AJM08, ARS95, BUK12, CDF08, GL15, KIt02, OR04]. Multiflow
[Fuk16, Hir11, FKS97]. Multigraph
[Gao04, Gab05b]. Multigraphs
[GM13, HLR13, NI92, NK90, WH04, CCM95]. Multilevel [LZ05b]. Multimatroids
[Bou97]. multinomial [HY89]. Multiobjective [BP09]. Multipartite
[Gut93, MMS17, Töt10]. Multipartition
[Wag96]. Multipartitions [HRS93]. Multiparticle [KOR03]. Multiple
[CE+01, Bon91, BMN13, CFR10, FW10, GKO2, GZ98, HHLÖ95, PZ10]. Multiplexed
[BCC+05]. Multiplication
[QP15, SB90]. Multiplicity
[DSST13, HS04, RY91]. Multiplicity-Free
[RY91]. Multiplihedra [FLS10]. Multiply
[GHM14]. Multiprocessor
[BLMS+00, Tov90]. Multiset [OS16, Yen94]. Multiset-Union-Free [OS16]. Multislope
[LPJR12]. Multistate [GMRT11].
Multitolerance [GM16]. Multitype
[KKP15, MSK93]. Multivalued [FS12b]. Multivariable
[MRR06]. Multivariate
[vzGVZ13]. Murnaghan [Wil16]. Musical
Nakayama [Wil16]. Name [ACL+06].
Narrow [ES11, Li17]. Narrow-Sense
[Li17]. Narrow-Shallow-Low-Light
Navigability [FLL10]. Navigating [DM11].
NC [GSK91]. Near
[BFH+08, CHHM09, DP16, Han16a, HK13,
LT11, MWvZ11, dLL09, Zho88].
Near-Extremal [dLL09]. Near-Popular
[HK13]. Near-Regular [MWvZ11].
near-traceable [Zho88]. Near-Unanimity
[BFH+08, LT11]. Near-Universal
[CHHM09]. Nearest
[BS09, Tas97]. Nearest-Neighbor
[BS09]. Nearly
[AKS08, DJ11, Gij05, GK13b, HH92, HZ08,
Meh12, NDB07]. Necessary
[TZ15]. Necklaces
[GL15, WS96]. Negative
[HMM09, Wu09]. Neighbor
[BS09, DGS96, FFHJ94, Har10, Prz13, Shi12, Tas97].
Neighborhood
[BFPP08, CFT93, DHL+02, HC98, MW90].
Neighborhoods
[FRMPV15, dJMS16]. Neighborhoods
[FRMPV15, dJMS16]. Neighbors
[ARTV12, HW17b, MP04]. Nemhauser
[BYHR10]. Nested
[DS05a, EIJ+12, ILM+16]. Nestings
[Kla06, PY09]. Nestohedra [Gru17].
Nets
[CF16, DM13, AS97]. Network
[ADHL13, ADH+14, ASMF10, BKM08, BOS01, CS09,
CV07, DM03, FvIKS15, FL10, GM90,
HK07, JM17, KYD09, KNS05, KK09,
LS95a, vBBC+15, Bie88, BCW96, NNI97].
Network-Based
[vBBC+15]. Networks
[ARS17, AU91, BCSK07, BTU09, BAH10,
BK09, BKL+15, BL16, BH03, CH04, CH06a,
Che09, CHY13, CDF08, DP92, DP96, ES98,
GRR15, GV92, GVKS06, GL08, GR99,
GM91, GP91, HHH02, HPS96, HaKK+09,
HL10, HJ94, HKS07, JA16, KW17, KL92,
Koc98, KP04, KK09, KM05b, Lu10, May96,
PL94, Pip95, Pip06, SW01, UBHS93, XY15,
Zho09, Bal88, BMM90, FFP88, GM93, LS89,
LP88, PWS97, Tam88, TH11]. Neural
[Bal88]. Neuronal [JA16]. Next
[EMM14, SS10]. Niveau [dH04].
Nilsequences
[CS14]. Nine
[KS08, SvM08]. No
[BV10, CH13, CH17, CtJL01, CL15b,
DK06, GLSS16, KM06, Kim17, KST06,
MR12, Svi03, BM94c, GM93, KMP14]. No-Hole
[CtJL01]. No-Wait
[Svi03]. Node
[ARTV12, TT89, Vég11].
Node-Connectivity
[Vég11]. Node-packing
[TT89]. Nodes
[XY15, BVW88]. Noise
[AG06]. Noisy
[ASMF10, KM05b]. Non
[Eng04, GM05, KY12]. No-Non
[KY12]. Non-Boolean
[Eng04]. Non-Surjective
[GM05]. Nonadaptive
[HH01]. Nonadjacent
[MS05]. Nonapproximability
[Eng04]. Nonbinary
[vIKLS14]. Nonblocking
[CHZ04, Pip95, FFP88]. Noncommutative
[BSS14]. Nonconstant
[CW92, LS95a]. Nonconstructible
[Lut04]. Noncontractible
[PP90, Hut88]. Nonconvex
[BP12]. Noncrossing
[AR04, KLN91, LL17, Rea08, Rea15, Tza08].
noncryptographic [Sak89]. Non-dominated
[MK01]. Nonequivalent
[Etz96a]. Nonexistence
[Etz96b]. Nonexpansive
[Fed06]. Nonextendible
[BCC+12]. Nonflowerable
[AD11]. Nonhamiltonian
[ABHM00]. Nonhomogeneous
[CDR16]. Noninclusion
[RT98]. NonInteractive
[KOS16]. Nonisomorphic
[Saw02]. Nonjumps
[HLR13]. Nonlinear
[BP07a, BLMA+08, CCD00, CCM+15, LOW10].
Nonlinearity
[CC03, LS90, Pet11]. Nonmonotone
[LMN01]. Nonmultiplicativity
[Zho92]. Nonnegative
[AAH14, FHK96]. Nonorientable
[iKSZ04, KML05]. Nonplanar
[CGH*10]. Nonpreemptive
[PP07a]. Nonrainbow
[DJKP09]. Nonredundant
[Spi95]. Nonrepetitive
[KM13c]. Nonseparable
[Vaz13]. Nonseparating
[CY03, CLY05b, EIiK08]. Nonsuccinct
[May08]. Nonsymmetric
[CGV+14, Vaz12]. Nonsystematic
[PL99]. Nontiles
[CM12a]. Nontrivial
[AF10]. Normal
[BGM94, Bón09, BCE+00, BS90,
Gar92, HL15, HW17b, WS17b, LW88b].
BHM00, CMV10, CC07, DO08, HR05b, Jüt06, LOW10, Omn03, RT98, ST07, SSS13, Sim90. Optimizing [GT13, Ten09, dFM04]. Optimum [OKS06]. Oracle [HK14].

Orbits [Shp10]. Order [BGV07, BCD+12, BT93, Che07, CKNV16, CW96, CG17, DF02, FKT06, FL92, Fel14, FMP17, GB12, GMS15, JS14, KP09, LSX14, Pet13, Abe91, BT97, CET97]. orderable [HS88]. Ordered [ATPRU91, CL05, Elb09, Fis90b, GT98, GvdHM+08, IKZ08, Rif99, XY15]. Ordering [BKG99, Fio06, MSK93, OS92, iO08, Rio98]. Orderings [BKS09, Che98, CKOS06, HKL99, HR12b, Sch04, RW89]. Orderly [Lu10]. Orders [ANP91, Boy01, CM05b, EGS13, HH13, HRS93, JZ05, Mer15, Sch91a, BB97, SSSU89]. Ordinary [BVdZ16]. Ore [FZ08, KOT09]. Ore-type [KOT09]. Orientable [CMS09, iKS04]. Orientation [CKN13, KNS05]. Orientations [AH16, DKT+15, DE93, Iri16, Lai08, LL14b, MRST16, PY90, Bal88, RX88]. Oriented [AGH11, BCF+10, Fed01, HZ95, Zho92, Zho93]. Origins [Pet11]. Orthogonal [AM07, BGS96, BO05, FHY01, GB12, NDB07, ZN08, Bal88]. Orthogonality [CGG17, GN08]. orthogonally [MRS89]. Osthus [MMS17]. Other [GRS11].

Outdegree [CH17]. Outerplanar [CGN+06b, LZ05a]. Output [RF12]. Overinterval [CM05b]. Overlap [Jan00]. Overlapping [WS12].

Parameterized [BFPP15, GKMT17, GNS11, GJW16, GP16, JLR+17, SLi01, Zeh17]. Parameters [DFH04, FGT11, MP17b]. Parametrized [AB95]. Parent [BCE+01, BEN08, TSN04]. Parents [BCE+01]. Parity [BM15, CF09, SMRS08, Zha93, CHW88]. Parity-Check [CF09]. Parsimonious [WH04]. Parsimony [FvIKS15]. Part [EFK05, CCG+00, FHL+13a, FHL+14, Lla06]. Partial [BYFM10, BP09, Bor10, CMS17, Ege10, FKM+06, FL92, FMP17, FY04, GSK91, Hor14, HRS93, JT11, JS14, KM02, Koc98, PSSW96, dG05, VSSU89, TP97]. Partially [BFRS16, Elb09]. participant [CGG88].

[ASS09, AM11, AR04, BL01, CX08, CGG +16, COL10, DG08, FHMK03, Fe90, GS94b, HMSW14, IKZ08, Kim11, KR93, LV89, Len98, Lin97, Mol11, Oun91, PY09, Rif99, Smi01, SZ15, Tza08, Zen90]. Parts [AHS01, HS04]. Party [KOS16]. Passage [HH92]. Passing [MT11]. Path [AHP09, BJT92, CL15c, DNS94, DD15, DD13, Gao15, GMS15, Gut93, KM05a, LW17a, MMP13, MC12, SB94, ZZBL17]. Path-Tough [DNS94]. Path-Width [AHP09, DD13]. Pathology [AL95]. Paths [AK10, AP14, AG15, AS03, BNN90, BPV10, BCD +12, BK90, BCF +10, BK14, CFJ11, DSS92, DG08, EJ01, ELR98, EH13, FJ09, FIN98, GPvL15, GZ98, HW10, HMP04, iKK11, KMS12, LL14a, LL17, LZ05b, MT90, MNPR17, NT12, RS14, Rom06, Sch91b, Sli10, Sta92, Vin97, Yam16, KP06]. Pathwidth [BM93, BKK95, Der12, GJW16, KMS08, SV11, Su12, dJMS16, Ste88]. Patricide [RJS93]. Pattern [CFKK17, FKLL15, GPP04, DK89]. Patterns [AL17, AM06a, BK05, DZ09b, FW02, JSZ15]. Paving [GH06]. Payment [PSTF00]. Pebling [AGH14, BC09a, Chu89, CLST12, CH06b, MC06]. Pedigrees [Tha08]. Peeling [HPL13]. Penalizing [AB05]. Pentagons [BDJ +15]. Peptoids [LW03]. Perceptron [Gol06]. Percolation [BP15, BW09, MdCW16, Rah16, SS91]. Perfect [ABY11, BK90, BL04, BS16c, BE13, CGL10, CCG +00, CL15b, Etz96b, EV98, FT09, GS98, GH09b, HPS09, Han16a, Han16b, Hed08, HLO0, HR05a, Kha13, KSS09, KO06b, KOT09, LGSS11, MW94b, MP98, MRS89, Pen12, Rif99, Vaz13, dCLM13, dFM04, Etz96a, Mit97, PL99]. Perfect-Matching [GH90b]. Perfection [BS10b, BF17, Sch02b]. Perfectly [LM08, MT05]. Performance [AB95, Fra89, PV10b, KK89]. Period [BCG +10, XQ06]. Periodic [BS15, CS14, MK09, SU89]. Periodic-Finite-Type [MK09]. Periodicity [FPST04, GPP04, KK09]. Periods [MK09]. Permanent [CV09]. Permanents [BMV92, Vin12]. Permutation [BKK95, BCF +10, DQW +15, Ehr16, EST14, HvTHL12, HaKK +09, KL92]. Permutations [ALSY11, ACG94, BHNP16, BCDMR08, Bon09, Bor10, BCPP09, Cap99, CR16, Cib13, CKdAhDF13, DR04, Eli09, EFK05, FKMS10, KMS08, Lab13, Ram98, Sav90, Vse05, Yan94, KM06]. Permuted [QD14]. Person [KLW89]. Perturbations [KK09, Lin89]. Perturbed [KKS17]. Petersen [LB09, DSV08]. Phase [CFKK17, DH05, FMP08, GKR15, KKP15, RSV +14, VVY15]. Phenomena [BER11]. Phenomenon [CL11]. Phylogenetenic [ART14, ANS16, BL17a, BS15b, FvIKS15, HSM05, SV11, Su12, dJMS16, Ste88]. Phylogenies [DMR11]. Phylogeny [LGS11]. Piecewise [WWKY11]. Pipe [Măs16]. Pivoting [LM89, Vav89]. Placement [BH05, MLS11]. Planar [AH03, ABHM00, AST94, AHP09, ACD08, BB16, BCC +11, Bon15, BS93, BY08, Ca93, CT14, CLY05b, D97, DSS92, Dj06, DSV08, DL10, DM17, Dar09, Fel14, Fur91, GW99, HM94, HI12a, HKL09, JM17, KMM12, KFR94, iKM10, KW17, KPP13, KNK93, KMS +09, KL92, KSS12, LM17, LL17, LLS04, Lu10, LSSY10, MP94, MRST16, SMO9, Sch91a, Sch91b, Suz10, WL02, WL03, WX13, WH14, WH15, WY10, ZLWC12, BCLR89, BT97, FPS13, GI97, DL17]. Planarity [DGL10, DP15, KHS08]. Plancherel [FP13]. Plane [BB17, BFS12, BDT17, Boy96, Bri10, Cha91, CGM +15, CEOT15, CR16, CEOT17, DEG +07, DJ11, DM15, EHK01, FJHV17, FT17, HS808, HZ08, JKSW17, KSS11b, KSS08, MS14, Pay17, PR03, PSS09, PP07b,
Pin08, PSW96, SW04, SW99, Xu09, CCM95, RWW88, Ser89. Planes [Bal08, GB12].
Plenesthetic [Wii16]. Plex [GKNU10, MH09]. Plummer [CEOT15]. Plus [PSML08, BC88a]. PMU [BH05]. Poincaré [FP13]. Point [AH11, ATPRU91, AS16, Ave12, BDJ15, BH16, BDG17, BV10, CF17, Dan09, DGP06, Kap14a, MGC14, Mra17, SS95, SFS09, HY89]. Points [AS07, ARS17, BS16a, BS16b, CI07, CKP16, ES11, Fed06, GRR11, HHLÖ95, KML05, Lag00, MPS08, Pin08, PR98, VZ93, dH89].
Polynomial [AP92, BJT92, BFRS16, Bon91, BC92, Brn90, BS16c, CDV10, CKN15, CP16b, DM13, DN16, EGR08, FSV13, GLS16, Gm06, HKL14, IMS05, IT09, JMS90, JP06a, KN16, KS03d, MT90, MC12, Mer15, ST07, SWKP10, Svi03, Tar88, Zha90, dGV05, BC88b, PRS88]. Polynomial-Factor [KS03d]. Polynomial-Time [CKN15, JP06a, ST07]. polynomially [BS88]. Polynomials [Ath14, Bar02, ÇMP15, DK10, DJ11, Ege10, Jan00, Kim92, Mße16a, Mun06, QD14, Rén92, Ros09, RMS01, Shp15, YZ17, vzGVZ13, FZ88, Mal89, Tsa96]. Polynomialones [CWY10]. Polytope [AHFM08, BBC11, BMK08, BKG99, BH93, Ch11, Cho94a, DF02, Fis14, FLMY09, GS03, MRV17, MH09, RC98, XY15, Bal89, Sar97]. Polytopes [ABH11, BB09, BS16a, BS16b, BW02, BT93, CFS17, CdV02, CG17, Dan09, DST01, FLM12, GS93b, HL15, JK99, JS14, KT16, Mrše16b, Pad16, SL95, UV15, BM97, Stu88].
DHL+02, Fle05, JS03, KNZ14. Prestress [CW96, CG17]. Preventing [BKL+15].
Price [Vaz13, GK97]. Primal [BYR05, CMSV17, Kôp07]. Primal-Dual [BYR05, CMSV17]. Prime [Gly10, Gly12, LSX14, MR04a, SST08, Spå99, CET97, FH89].
Problem [BGL07, MN15, PW02]. Problem [AFG+16, AYZ04, AR08, AS14, BFB99, BJT92, BMN92, Bar01, BAH10, BM15, BK+15, BM08, BN96, BKS10, BH13a, BHM00, Br05, BH05, BDLR01, CCVZ10, CEHS08, CFKK17, CKNZ05, CGN06a, CDHZ12, CY12, CKN+15, Che94, CHY13, Cho92b, Cho95, CL91b, CM12a, CM07, DFJS15, DF04, DGM12, EK05, EJ01, FMP17, Fio06, FOST10, FS09b, FKY00, Fuk16, GDVL17, GS94a, Gao15, GPP01, GL95, GMS15, GR12, GP16, HM94, HW10, HLO17, HK13, IK09, ITO8, JFW05, JPT12, KYD09, KP00, iKK11, KS00, KR92, KKM94, KS03c, Krå06, KM05a, LZ03, LW10, Lev15, Lev9, LW3, LW17a, LSH12, LHC90, Lub09a, MC93, MC12, Mur06, MNS15, MRS17, MW03, Myu01, PST00, PW13, PSV08, Qu010, RV99, Rya07, Saa93, SSW98, SS91, Sku16, SS95, Vin11, WIS12]. Problem [Yam05, ZY17, vWW94, Bal89, BG91, BC17, CK96, GW94, GHHY96, Heff97, IWF01, JMB97, Lin97, SS99, Tak97, Yen97, DRW98, GJW16, SS11b]. Problems [AMW00, AM11, ASS17, BLS17, BK11, CLM03, CMU14, CPW09, CS09, CCZ12, CMSV17, CC07, Cho92b, CKPV91, CCJ+17, CKN13, DSS12, DJ12, EV98, FL92, FK17, GM16, GT12, GMP15, GM90, GNS11, HR12a, HK96, HHH+02, HJ94, Hua14, HC98, JLL16, Jor03, Ji06, KT14, KLM14, KBE+05, KZW13, KVM15, KS06, KJ04, LNNW95, MT11, MRT11, NH91, PT14, RS10, RT98, RS16, SA90, SSS13, Sh190, Sr94, Snu13, Snu14, SSS13, ZK11, Zha90, van94, BS98, BCD97, HS99b, NS99, PC97, RWW88, Ray94, SSS13, TSS91, TT99].
Profile [DH10, GP08b]. Profit [PRS88]. Profits [JSO12]. Program [Dow91b, Dow91a]. Programming [ASZ02, BKS96, BP12, CKNZ05, GSP15, HK99, Juk16, KG98, SA00, UW997]. Programs [BCCZ10, BBCZ11, Boy96, HKL+14, HMO09, OS15, PPU02, Vaz12].
Progression [Het14]. Progressions [GP14]. Project [AT16]. Projection [DF02, Gar92]. Projections [DG12, FK97, FK07, Hoff95, Hof98, KMP03, MPS08, PZ98, PP10].
Projective [Bal08, CH16, Enc05, GB12, MS14, Nie15, POP09, Vse05]. Prolific [BN08]. Proof [BL90, CK11, CS91, EMT15, HK11, HKP+17d, H04, HKS07, IMR14, Li14, S10, Wil16, HK16b, Yen97]. Proofs [Bab92, EFK05, Loe10, MPP17].
Propagation [AS09a, BBCZ11, PS17]. Proper [BHH96, BFPP15, BMV17, FSV13, HH05, HR12b, LC04]. Properties [AC90, ACFL16, CDVL11, CM05a, DST01, DP17, EGR08, FMM093, NS93, OPV14,
Replicating [Vin93]. Representability [BPWX13].
Representable [BS95a, HvZ14, NvZ15]. Representation [AKZ17, GKS12, KNR92, Kim11, LLS04, MRV17, PT90].
Representations [ATPRU91, ADL+09, BFP12, BS93, GM16, GPW13, HPW09, Har01, HZ08, KM01, LS08, MR15a, MS05, MvLvL13, Rea15, Saw07, SA90, TT91, TA93, dGV05].
Representative [GMPZ15]. Representatives [Jev95, KR92]. Representing [AC14, BHNP16, HMSW14, PG06, Tsa96].
Require [KW90]. Required [Gol06]. Requirements [Fra92].
Reserving [BOS01]. Residues [BCPP09]. Resilience [BSKS11]. Resilient [BG96, BOS01, KLS10].
Resonance [KSS11a, ZLS08]. Resonant [LS89]. Resolution [MP94].
Resolvable [JZ05, WLD09]. Resulting [FJZ15]. Results [ASS17, CS14, CKPV91, FKL93, GP17, HVW07, Pik03, SW10, HL92, Ray94].
Retaining [CDMO16]. Retractions [FHJ+10]. Revealing [SB10].
Retractions [Cap99, CI01, HvIK+07, RSW05]. Reverse [Cib13, CDD+15, FKMS10]. Reverse-Free [Cib13, FKMS10].
Rim [RY91]. Ring [HK07, KCTR13, MLS11, Myu01, Nao91, SSW98, SKu16]. Rings [BvH03, BCC+05, Car09, Che04, CFG+09, LÖ05, MMM06, BCW96]. Riordan [BL09].
River [TH90]. RNA [BDT17]. Robber [CCN11, CCPP14, FG12].
Robbers [SS11b]. Robinson [Sn14]. Robinsonian [LS17].
Robotic [ABCG17]. Robots [ABY14].
Robust [DDS16, FKM13, HR02, KM13a, KPR10, Lai05, Sak89]. Robustly [OS13b]. Roman [CKPW09, LC12].
Roommates [CL11, HK13]. Root [ABH+11, FR94, Mês16b].
Rooted [BC94, CMS09, EGR08, KiT13, vIKL+16].
Rooted-Tree [KiT13]. Rootedness [YZ17].
Roots [AA10, BC92, LS95b, Per16, RS15].
Rota [AK14, Cho09, GH06, GW07, Gly10].
Rothschild [HLO17]. Rotor [AH11, FGLP14]. Rough [HKP+17b].
Round [Bab92, BJHY00].
Routing [FO00, Knu95, SS02a, TT89]. Rounding [FO00, Knu95, SS02a, TT89].
Rounds [KR98, AA88].
Routings [PMM98, Ram98, Ram97b]. Rover [MTGK05].
Rumor [ACMW17, FH10]. Rumors [JM17].
Run [MSK93, Sch04]. Runlength [OR04].
Runlength-Limited [OR04].
Running [JLL16]. Rural [DMNW13, SL96].
Saalschutz [Zen90]. saalschützien [Zen90].
Safe [DP92].
Salesman [CR96, Fis14, GS94a, Gao15, GP16, RC98, SS95, Vygl16, van94, Bal89, Kar89, Sar97, Tas97].
Salvage [BCLR95].
Salvage-Embeddings [BCLR95].
Same [CGH+15, Wil99].
Sample [KM94]. Sampled [SY11].
Samples [BDG+17]. Sampling [MRST16].
Sets [Age94, AH+10, ATPR91, ABZ15, As16, Ave13, AE03, BNN90, BDJ+15, Bon10, BLM10, BKKM99, BM14, BK05, CW98, CER98, CCG+11, CLW09, CGG05, Cib13, CD16, CF16, DA10, DM17, Elb09, EFK14, ENSZ00, FKS12, Fis90b, FL96, Fü91, GVW06, GLP+12, GS93a, GMPZ15, GL10, Har11, HK93, HT93, JK99, Jev95, Juk16, KL14, Kim17, KM01, KT17, LRT08, LM12, LZ06, Mom13, MR15b, MD16, MD11, MS05, NS11, OR04, PP07b, RSV+14, Ros09, SS04, SS95, TTT16, Tak08, Vse05, Yu17, Zha90, Abe91, Bal88, BM94b, BV19, Bu97, HR88, HS89b, Sag88].

Sized [Se01]. Sizes [AHS01, AB07, CGL10, CCG+00, Gar92, KPT12, KŠ08a, OS16, Zak14, Lin97]. Sizing [DW10, DW11, vWW94]. Skeletons [BDEK06]. Skein [CKK+04, HK14, Mom13, MPP17, ZM02]. Ski [LPS12]. Skrekovski [CCO+13]. Sliceable [YS95]. Slicing [FS09]. Sliding [AMPT93, AM95]. Sliding-Block [AMPT93]. Slopes [KPP13]. Slotting [Che04]. Slow [ILM+16]. Slowly [JM17, PP12]. Small [ABR05, AM06a, AB07, BCS04, BPV10, BGL+17, FKLL15, GHytHP15, GRS11, JI17, JN15, KV15, KM94, KLL13, KS12b, Lu08, Lut04, MW08, NS07, PG06, Pin14, RSM+96, Shp15, SB91, Ste10, Su05, TH90, Wan08, NN97].

Small-World [JM17]. Smallest [BBS00, CSS01, Gab04, Gab05b]. Smith
[WS17b]. Smoothed [KRS15]. Smoothing [DH91]. Snoop [PW02]. Social [BKL+15, Che09]. Solomon [BK91, RR03]. Solution [BT14, DGM12, MNPR17, Sza08]. Solutions [BBCZ11, CHX15, EJ+12, EV08, FP10, HT13, IM+16, LW03, Sim90, FG89]. Solvability [CDV10, SS05]. Solvable [HHH+02, van94, ALZ96, BS88]. Solves [CM05b]. Solving [Boy96, Jae89]. Some [BB09, Bal08, BBBZ12, Bar02, CCZ12, Cho92b, Din13, DK10, DSST13, HL92, iKZS04, KBE+05, Li17, Lub09a, MW03, PPM98, Rém02, RY91, SWR12, Ste07, Stu88, SW10, Zha94, Bal89, Bie88, DP17]. Sometimes [DRW98]. Somewhat [KOS16]. SONET [CFG+09]. Sorting [AKKS89, AA88, AU91, BP98, BNN90, BFR12, Cap99, CDP94, C101, dAHFdK10]. Sós [HKP+17a, HKP+17b, HKP+17c, HKP+17d]. Sourcewise [CE06]. Space [ABC17, AP92, BDM02, BK12, DHS14, KW17, MNPR17, Owe11, Sei01, Web08, Woe93, Car88, IS93]. Spaced [Lag00, LSO03]. Spacefilling [GS94a]. Spaces [BS09, BL17a, BDG+17, BGL03, BP17, BN05, CLVZ96, GK13b, GL10, GL15, Har11, IK09, KM94, LSTY17, ŐV04, Rém02, Sol12, Spe08, Vin11, Vse05]. Span [CtJL01, Sza06]. Spanners [BGJ+12, BCE05, CC95, ENS15, HPS96, KV15, KLM+03, LS99a, SE14, DY106]. Spanning [AAFL06, Ald90, AFG+09, BJHY03, Bon08, BZ11, BDEK06, BL17b, C Wy00, CGM+15, CEOT15, CEOT17, CSS01, CFG+15a, CP10a, DMI11, Gab04, Gab05b, Gao13, GL95, HV17, KKK17, KWD1, Ki09, KKS17, LLI17, Lu01, Oze13, RSM+96, BFM94, BBM90, Cho94b]. Sparse [AM11, ADL13, BCE05, BK17, COCF10, CM16, CE06, Cre04, DMS12, DST08, FO08, FS01, FHL13b, Gao13, GK13a, GM13, HKP+17a, JTL11, JLR+17, Joo15, KKK17, KMRR09, KS12a, KM11, LSSY10, MP17a, Pra13, SY11, BG91, GPS88]. Sparsification [FK17]. Sparsity [MC93]. Spatial [BP17, DM03, JM17]. Special [LR07, MR11, RY91, Sch02a]. Species [SV11]. Specified [CDMO16]. Spectra [BBM09, CM03, CF09, TQLT13]. Spectral [KLM14, Sot15]. Spectrum [BPS07, CGL10, Lee17, Sza05, GM94]. Spener [EFK05]. Sphere [AMB11, BC94, Vin11, Zhe16, BS95b]. Spheres [LN17, Lut04]. Spherical [BV10, Buk16, FRW12, Yu17]. Spider [ABS13, Pip06]. Spider-Web [Pip06]. Spine [EM99]. Spirality [DGL10]. spirals [Wen97]. Split [AGH14, BL04, CdMR12, HLMP11, HL00, LC04, Tim08, AFK12, KM88, Sp89]. Split-Perfect [BL04]. Splits [BBS17, LGS11]. Splitter [GZ06]. Splitting [GMW05, Goe01, GL15, Jor03, Myu01, BJv92]. Spotting [KKZ17]. Spread [CFH16, JM17]. Spreading [ACMW17, FH10]. Spreads [CMP15]. Springer [CFJ11]. Square [BHL05, LS95b, MTV08, ST17b, FH94]. Square-3PC [MTV08]. Squaregraphs [BCE10]. Squares [DST08, GS94a, Jso12, KT16, WL09]. Stabbing [KS06, Tó08]. Stability [AG06, CW96, CG17, DT16, DK16]. Stabilization [CM05a]. Stable [CDHZ12, CdV02, CL11, Che16, EMM14, EFK14, GS03, HSZ13, HW10, HW17a, JK99, NH91, PSV08, Pit89, BM94b]. Stack [HP97]. Stacks [HLR92]. Stage [Kar92, CH06a, DH90]. Stalls [COHH17]. Stanley [Bón09, CR16]. Star [iKM10, LLZ99]. Stars [GRS11, Hua14, TT07]. Start [vWW94]. Start-Up [vWW94]. Starting [Dan09]. State [BN01, BS15b, CL15b, LGS11]. Stationary [MP13]. Statistical [AA11, BHM00, DM03]. Statistics
Steinberg [HY13], Steiner [AFG+16, BM97, BAH10, BH15, BCHW17, CKP13a, CGN06a, CK14, CKN13, DOS94, ES11, EH91, Für91, GMZ09, GMW96, GNS11, Hor14, IW91, JZ05, JLR+17, NO09, PC97, Rü99, RZ05, RTW97, VZ93, Wen97].
Steiner–Tree [VZ93].
Step [CK14, LPS09].
Stirling [Bón09, FP99, KLMR03, RM97].
Stochastic [CS94, HKL+14].
Stock [DW10, DW11].
Stockhausen [Yen97].
Storage [LNO96].
Straight [KFHR94, Sch91b].
Straight-Line [KFHR94, Sch91b].
Strategic [Nas14].
Strategies [Fei10].
Strategy [BKR10].
streaming [ELMS11].
Street [CDF08, RX88].
Strength [HKR00, KKP11, MP14, Nie00, NS11, o09].
Strengthening [CKPS13].
Stretch [CCH14, KV15].
Strict [GL14, HW17a, FK97].
Strictly [CHZ04].
String [ADM+15, RT98].
Strings [CI01, Gol96, HvIK+07, MR04a, MR04b, PRS98, RSW12].
Strong [AH16, AM06b, BP10, BP17, BS10b, Cal13, DE93, DK14, FKS05b, GL5, HY10, JPY10, PSS09, Sch02b].
Stronger [LRTW11].
Strongly [BHHY03, CDV10, DN16, FLM+95, IMS05, LLL17, MTR14, Mom13, ZSW11, RX88].
Structural [SW01].
Structure [CER98, CP16b, CMvZW16, COS10, DE93, DEW17, DL17, GM05, GT13, HKP+17b, HKP+17c, HR05a, IM96, KKK93, KM01, MM11, Nas14, Ré602, SB10, Wao08, BMM90, BB97, Ram97a].
structured [DL89b].
Structures [BDT17, BG11, Che93, CF16, Dan01, FLS10, GLY07, HKT99, HMS93, LT11, STT92, Špa07, SWKP10, Tam88].
Study [DFK+11, FYK00, MK09, ACS97].
Subclass [CK08a].
Subcodes [BGÖ17, LWW10].
Subcolorings [FJS03].
Subcritical [DFK+11].
Subcubes [Off08].
Subcubic [DŠT08, JRS14, KMM12, Liu14].
Subdigraphs [BJHY03].
Subdivided [BGM08, JS12].
Subdivision [LIO15].
Subdivisions [Ath14, Mur10, Tôt08].
Subexponential [BFP15].
Subfamilies [BFK+12, CKOS06].
Subfamily [EJK+09].
Subfield [NvZ15].
Subgraph [AA05, AM11, BL17b, CEOT15, CEO17, CSS01, Cho92a, Cho92b, CM07, Dji06, Gab04, Gab05b, GRS12, SS11a, Zha93, BM97, Cho94b].
Subgraphs [AKF12, AKS08, AGH11, AFS12, AS07, AB07, BB16, CCOY17, CDM00, CDM04, DS16, FXYY14, Fei04, FG14, FKP15, FM13, Gao13, GS98, GRS11, HH04, HV17, Jan05, JN17, Joo15, Kikk17, KKK17, KW08a, KLN10, KLL13, KL91, KS12b, LRW12, LM16, PTT16, PT94, SW01, Tuz08, ZL11, BM94a, BF94, BP89, FI89].
Subgroup [Hyu10].
Subgroups [Shp13].
Subhypergraphs [Nag10].
Sublinear [DN16, GRS11, RS11].
Sublinear–Time [GRS11].
Submatrices [LM16].
Submodular [BW09, FIT14, GS13, HI16, IMS07, LMNS10, SS13].
Submodularity [CGV+14].
Subpattern [AR08].
Subsets [Sch09].
Subsequence [CP96].
Subsequences [BM14].
Subset [CKN+15, CPPW13, ENSZ00, PW13, SS00, DM88].
Subset-Restricted [SS00].
Subsets [AAH14, BGN15, BGH+17, CFG+15b, CHHM09, DO08, Für91, GJ12, HW96, HKT99, PRS03, PP10, Sza06, Zha90, Hur94].
Subspace [WZ08].
Substar [CNRS15].
Substring [ADM+15].
Subtournaments [Kim17].
Subtree [BHL+15, FMP08].
Subtrees [KW08b].
Succede [Ste00].
Succinct [GKS12, HKL99].
Sufficient [HMS05].
Sufficient [BR17a, Sch10, Ste00].
Sufficently [Ste00].
suit [KLV98].
Sum [Bev10, CMSV17, DKS16, HR05b, Jev95, KT16, KR13, MRNS15, MRNS17, Ram04, Zak14, LRN11].
Sum-Distinct [Jev95].
Sum-of-Diameters [Ram04].
Sum-Product [MRNS15, LRN11]. Sums [CY08, CHZ09, CKP16, CH10, Ege10, FKT99, GS94a, HKW15, IK09, KR93, LS06, OP12, Smi01, CP96]. Sun [Hoà10]. Super [Das99, FK07, HT90, KW90]. Super-Logarithmic [KW90].

Superconcentrators [RTS00]. Super-

critical [KW90]. Superstrings [WS06]. Supertrees [DS05a].

Supply [NS89]. Supply-demand [NS89]. Supported [NOP12].

Surfaces [BK12, CMS09, CGH +10, DŠ09, DL14, EO16, Fio06, KM14, KML05, NOP12, NOP14, Oze13, Wio99, Žlt94].

Sweep [Fra89]. Sweep-line [Fra89].

Symmetric [AL17, BS95a, BvH03, BGS17, CM90, CR96, GF08, GS13, Kot13, Lubi90b, MR04a, MR04b, RC98, SIT15, Sol12, dGV05, van94, Ste88].

Symmetries [LB09]. Symmetry [KPT12, Sch10, CS98, SGR98].

Synchronous [GPP01]. Synthesis [KYDN09]. Systematic [KCTR13, Mot94]. Systems [ABS10, Bil03, BC95, BH15, BCHW17, CS14, CM05a, CHX15, CM05b, CFH16, Für91, GMA15, GPP01, GMZ09, Har10, Hor14, IM96, JZ05, JPY10, KM13a, KS03a, Kas03, KS05, KMW06, KMT07, KN95, LOW10, MH09, Mur06, Nag17, POW2, PSML08, Rif99, SMNF09, ST07, Shi12, Sza08, ZLS08, DL89a, EH91, FG89, HMP97, HS89b, KS88].

Szemerédi [BC11]. T [FKS05a, Sch02b]. T-Coloring [FKS05a].

T-Perfection [Sch02b]. Tableau [PV10a]. Tableaux [Sn14]. Tables [Lu10, Su05, KG93]. Tabloids [RY91].

tabulated [KG93]. Takagi [Lev15].

Tanglegrams [CSW17]. Tangles [BKM08, BK93].

Task [CM05b, KN95, PSW97, DL89a]. Tasks [AE04, DL89b]. Taxa [DS05a]. TCP [AB05]. Teaching [ABZ15]. Technique [BYR05, Zuc92].

Techniques [BB93, HKP +17d, Ste00]. Templates [GvZ17]. Temporal [Fer16].

Temporary [AE04]. Tensegrity [CW96]. Tensions [Che17]. Tensor [PPU92]. Tent [AL17].

Term [SST08]. Terminal [BKM15, Bih05, Fuk16, KNZ14]. terminals [RTW97]. Terms [RS15]. Ternary [HvIK*07]. Tessellations [GPW09, Vin93].

Test [BFRS16, KG93]. Testable [AcR07]. Testing [AK02, ADPR03, AKKR08, DGL10, EG03, GKS12, LRR14, MMPS10,PRS02, SL96, HY89, Sp89, YH88]. Tests [MPS*09]. Tetrahedra [SvM08].

Their [HY15, JMW17, KK14b, MK01, MMJF03, LW88a, LW10]. Theorem [AFG+16, AOW15, BL90, BS90, Buk12, CuKS07, DK16, DSS92, DL12, DNM12, DS06, Fed06, FKS05a, FT14, GZ90, GT13, HM11, Koc98, KS03c, KOT90, LGS11, Lo14, MMS17, MWVZ11, MS14, OW16, Ram90, Fu797, Hef97, RW99, WW91, AKW05, AKS07, BYHR10, BV10, BC11, KLP12].

Theorems [BEL09, CCG+00, DFJS15, DEE17, FHH08, FR06, FT05b, IK09, SS08, Suk13]. Theoretic [BCS04, KM05a]. Theoretical [Wag07]. Theory [ASMF10, BLS17, BJ91, DHT06, FL92, GRR5, GR17, KSV05, KPT94, MP95, PT90, ST10]. Theta
[CK08b, Cre04, KG98, LS05], Thicknesses [Fis90b], thin [BW92], Third [HK16a].

Thomassen [CCO +15, LPS09, WL10].

Three [AC14, AS05, BCD +12, Bon08, CH17, Cho09, DD13, EM99, GPP04, GLW11, HZ10, KKL +10, Kar92, KZ04, LGS11, NH91, Pet15, vKL +16, IP91, IS93, KP06].

Three-colored [IS93], Three-Dimensional [FPP04, NH91].

Third-Linking [IP91].

Three-Stage [Kar92].

Three-State [LGS11].

Thresholds [BDM02, CD11, HW17b, Zha09].

Threshold [BG88, BHT16, CLS09, CDWZ17, CCZ12, DZ09a, ELSS17, Gra07, HY10, HY15, KSS08, LPW +13, o09, KW96].

Thresholds [CH06b, FRZ16].

Ties [CHK17, Kam17].

Tight [BF12, CM14, DSZ05, EP10, GP91, KL92, LNO96, Nie00].

Tighter [RZ05].

Tile [JWF05].

Tiling [BDM02, CD11, HW17b, Zha09].

Tilings [BE13, CLVZ96, Din06, EV98, HS10, ¨OV04, Rémy02, TV03].

Time [BNMN92, BP15, BST14, Bon91, BCHP08, BS16c, CdMR12, Che94, CKN +15, CMM +10, CF05, CGP98, Dj06, DP16, DJ +13, ELSS17, FP04, FO00, Gab05a, GV92, GRS11, GJ16, HKL +14, HKL99, HTV05, HvtHLM12, HV00, HK05, JMS03, JS0303, JP06a, JLL16, KN16, KK90, KMS98, KP95, LW17a, LM16, MN15, Moh99, RS11, ST07, SY11, SWKP10, Svi03, Wan02a, WV10, Zuc92, AKKS89, Car88, IS93, MM96, PRS88].

Time-Division [Bon91].

Time-Space [Car89].

Times [CP10a, HH92, JP12, SSS13].

Together [Més16b].

Tolerance [GM16, MSZ10].

Tolerant [AS02, AU91, BCSK07, PMM98, PL94, SX13, UBHS93].

Tolerating [GV92].

Tomography [AG06, DFJS15, DGM12, GLW11, HT13, SB10, vD11].

Top [FKS03].

Topological [CdVL11, CDM00, CDM04, Ful14, DGL11, HK15, KLN91, KO06a, SZ13, TT07].

Topologies [VZ93].

Topology [BAG03].

Tori [JCB06].

Toric [BDvL13, BC09b, GMA15, dAHFdFK10, LS06, SS09, SS10, UV15].

Toroidal [IKO16, NOO12].

Toric [GKR15].

Torus [AF10, BL09, BL90, KSS08c, Rio98].

Total [BG88, BHT16, CLS09, CDWZ17, CCZ12, DZ09a, ELSS17, Gra07, HY10, HY15, KSS08, LPW +13, o09, KW96].

Total-Coloring [KSS08].

Totally [Gj05].

Tough [DNS94].

Tour [DRW98, SL96, Zha93, Kar89].

Tournament [CPR99, KSW17, PRS88].

Tournaments [Al06, BNN90, HW96, KKK17, KKO16, Kim17, MT90].

Tours [BIT13, CLS15, Tats97].

Tower [Rom06].

Trace [GR17, RMS01].

Traceability [SW98].

Traceable [Zho88].

Tractability [HN15, HK14, KPPW15, Sl10, TZ15].

Tractable [CPP13].

Trade-Off [AP92, CGP98].

Trade-Offs [CGP98].

Tradeoff [KR98,Lou10].

Tradeoffs [Car88].

Trades [KAN90].

Traffic [BCC +05, MLS11].

Trait [FS12a].

Trait-Dependent [FS12a].

Transfer [CL15b].

Transform [DV04, Kim11, Sca05, Con89, Fil89].

Transformation [KCL98].

Transformations [MK01].

Transforming [CGH +10].

Transforms [Sca03, Car88].

Transportation [AC90].

Transients [JA16].

Transition [KKP15, RSV +14, VVY15].

Transitions [CH13, CH17, CFKK17, DH05].

Transitive [BGJ +12, GL14, HLST00, Iri16, Mac91, Zho09, BJHY03].

Transitive-Closure [BGJ +12].

Transitivity [HT90].

Transmission [AR17, FKPR05, KPR10].

Transport [DSS12].

Transportation [BFH15, KP00].

Transposition [CKdAHdF13, LY10, RS93].

Transpositions [ALSY11, BP98, BFR12, CL01, dAHFdFK10, PR91, RSW05].

Transversal [BHT16, FiT14].

Transversal/Packing [GL17].

Transversals [FKS12, Fel90, HY10, HY15, RS14, SMNF09].
Travel [MTGK05]. Traveling [CR96, Fis14, GS94a, Gao15, GP16, RC98, SS95, Vy96, van94, Bal89, Kar89, Sar97, Tas97]. Travelling [DRW98]. Tree [AFG+16, Adl08, BP13, Ban90, BFGR17, BS15b, BDLR01, CC95, CP13b, CP10a, Dah93, DHS14, DM11, Erd17, FJZ15, FS05, GMRT11, GLSS16, GL95, GLY07, HW16, HMS05, HKS07, JLR+17, KTM+03, LSTY17, LNNW95, LR04, Luc03, LR91, MRV17, McdW16, Owe11, RZ05, Sca95, Ste00, VZ93, Wan02a, Alt89, DYL06, DL89b, HS97, IW91, Tod89]. Tree-Decomposition [Erd17]. Tree-length [BFGR17]. Tree-Matchings [LR91]. Tree-Related [Adl08]. Tree-structured [DL89b]. Tree-Width [HW16, Luc03, San96]. Treedepth [GJW16]. Treelength [CDN16]. Trees [AT90, AAFL06, Ald90, ART14, AFG+09, ASY14, ABR05, ANP14, BS95a, BL17a, Bev09, BM11, BVVW11, BCLR95, BKKZ17, BDT17, Bon08, BZ11, BMV92, Cai93, CWY96, CHP+90, CKP13a, Cha91, CGM+15, CDW17, CKK+04, CK14, CFG+15a, Con05, CL15b, CL15c, CSW17, DZ09b, DH05, DM15, EJ01, EM08, FTF05a, FKT99, FL15, Git99, GSK91, HSZ13, Han09, HH17, HK15, HMSW14, ILL14, KZ04, KW08b, KM95, KW11, KW96, Kri10, KKS17, LLL17, Lu10, LM11, Luc98, McD15, Més16a, Moll11, NO09, Oze13, Pip01, PSW96, Rah16, RSM+96, RSV+14, VY96, Vgg16, XGG15, ZM02, Zha99, DJM16, vIKL+16, BCLR89, GMW96, PC97, RTW97, Sag88, Ste88, TP97, Wen97]. Treewidth [BM93, BKK95, BJ13, CCVZ10, CDN16, DFHT04, MP17b, SSR94, Ram97a]. Trellis [BT96, Kas08]. Triadic [KP16]. Triangle [AKK08, AB95, Bar01, Bra05, CCG05, DRPS10, Dru16, DL510, DL17, DM17, FL96, GKL99, HT93, IKM99, JS14, KS08c, Liu14, Mer15, PT94, BH97]. Triangle-Free [DPRS10, DL510, DL17, DM17, FL96, GKL99, HT93, IKM99, KS08c, Liu14, PT94, BH97]. Triangle-Freeness [AKK08]. Triangles [CDM+14, Pin08, WL02, Yua09]. Triangular [DV96, JKW17, K908]. Triangularization [TT93]. Triangulated [CG17, ELR98, GHV06]. Triangulations [BS93, KW92, BMW94a]. Tract [Zha11]. Trees [JRS93]. Tripartite [iKSS04]. Triple [BKK99, BH15, BCHW17, GJ16, Hor14, Nag17, Rif99, COS97]. Tripath [BKK99, COS97]. Triangles [CDM+14, Pin08, WL02, Yua09]. Triangular [DV96, JKW17, K908]. Triangulated [TT93]. Triangulating [BS93, KW92, BW94a]. Track [Zha11]. Trees [JRS93]. Trinomials [Din13, DQW+15]. Tripartite [iKSS04]. Tropical [BK12, Juk16, Sha13, Spe08, ST10]. Tropicalization [ABG15]. Trotter [BYHR10]. Truncations [T12]. TSP [BIT13, CLS15, LS03a]. Tucker [LM16]. Tunnel [ABC17]. Tuples [Kap14b]. Turán [AKS07, BBBZ12, BLS17, BK14, Dow89, GH13, JS12, KMV15, LM14, LZ09, Nor11, PT14]. Turbo [GF08]. Turing [JMS90]. Tutte [GnN06, LW17b, PSS09]. Tutte-Type [LW17b]. Twenty [RKDD13]. Twins [GKM12]. Twist [KS04]. Two [ART12, ATPR91, Ale10, AB25, ADL+90, BLS17, BPS07, BC09a, BMS12, BP15, BCG+10, BGH+17, CDV10, CF517, CHK17, CLST12, DFJS15, DFW12, DTW03, DSW05, DLS11, DL17, EA11, EKF05, FM11, FK17, FR94, FIN98, GOK7, GMS00, GM03, GW00, Gol96, HKS11, HV17, HK16b, HMP04, Kas03, KOS16, KMS+09, KL14, Kla06, Km95, Lei94, LW03, LZ05a, Lha06, LSL92, MP08, PZ05, PY09, RST00, Red17, RS16, Rya07, Sak94, Smi01, Ste00, WL03, Web08, Yu17, Zha14, ZLWC12, Zun11, CH89, CHW88, DL89b, Exo89, HMKK88, KP06, KLW99, Ko89, Zha89]. Two-Batch [DS05b]. Two-Chain [LSL92]. Two-Color [DFJS15]. Two-Colored [MP08]. Two-Coloring [DFJS15].
Two-Connected [HV17].
Two-Dimensional [Ale10, ABZ15, BP15, FM11, GW00, Zun11].
Two-Directional [ATPRU91].
Two-Distance [Yu17].
two-factors [HKKK88].
Two-Generator [EA11].
Two-Layer [Lei94].
Two-Part [EFK05].
Two-Period [BCG10].
two-person [KLV98].
Two-Player [BMS12].
Two-Set [Rya07].
Two-Sided [CHK17].
Two-Variable [FK17].
Two-Way [Km95].
Types [BRK89].
Typical [FKK05, FKK07].
UET [CM05b].
Ultimate [BNR96, Tét10].
Ultraproducts [Dah93].
Unavoidable [BFH10].
Unbalanced [AG15, Red17].
Uncapacitated [Yam05].
Uncoupled [HH92].
Underweight [Ko88].
Undirected [BBF99, CS09, ENSZ00, GR99, Végil11, NN97].
Unicyclic [BAH10].
Unified [CKO86].
Uniform [Ald90, BF12, BLB13, BCCZ11, BLO1, CFKK17, ELS17, FRZ16, GSS15, HPS09, Han16a, Jan10, Kha13, KR15, Lla06, OS17, RRS07, Yut03, HM88].
Unimodular [Gij05, OS15].
Union [AS10, BFK12, GP14, OS16, YAT16, Whi88].
Union-free [BFK12].
Unions [GMZ09, St1992].
Unique [CKP13b, FMR88, HSZ13, JI14, KM195, MPM13].
Unique-Max [HSZ13].
Unique-Maximum [CP13b].
Unary [Dan01].
Uniqueness [GLW11, OS13a].
Unit [Che04, GR99, HKW15, LS08, Rie14, Vin11, Kle89].
unit-congruent [Kle89].
Unitary [CW16, dAHDfK10].
Universal [BS09, BCLR89, BG11, CG17, CHHM09, HH13, Pat88, Hur94].
Universal [DKR12, KL14].
Unknown [DKMS17, SW01].
Unraveling [KBL15].
Unrelated [SS02a].
Unsatisfiable [HS06].
Untangling [CTU14].
Unweighted [Lev09].
Update [FV97].
Updates [GLY07, GK97].
Upright [CS91].
Upward [DGL10, DGL11].
Urns [CZOS98, CZLW05, SW10].
Use [BL04, CDN16, KOS16, RS16].
Using [ABY14, BDG17, Cai93, CCG11, EFK05, HH04, HRS93, Jan10, KNZ14, Luc03, MMP10, NW95, NO08, SL96, Gor93, Tam88].
Utilities [Vaz13].
Vacant [CF16].
Valency [CKNV16].
Valid [BDT17].
Valuated [Muro6a, Mur96b, Tak14].
Value [ABS10, Bla90, BOT92, DM13, Ros09].
Valued [CC17, FK17, TZ15].
values [KP06].
Variable [BJKV07, FK17, HS06, IM96, Kra06, Sei01, Vin13].
Variable-Sized [Sei01].
Variables [HKR00, Jan10, Lla06, LR94].
Variant [DH05].
Variations [MRNS15, MRNS17].
Varieties [BFH08, DF04, FMP08].
VC [BL15].
VC-Dimension [BL15].
Vectors [BN05, IK09, Ks03d, Vin11, WCLZ15, Web08].
Vers [Cha91, CN12, GP08b, GJ12, Jev95, LN17, Mur10, Swa05, Ba18].
Vehicle [GZ98].
Vershik [Sn14].
Version [AK14, dOBMS17, CZLW05, Lo14].
Versus [Tre04, CPRdS13].
Vertex [Age94, ABY11, AS14, As90c, BBF99, BrLs07, BYFMR10, BYHR10, BMP13, BMR10, BRK89, CMS17, CHW10, CPPW13, Dan01, DZ09a, FJZ15, Fe90, FSV13, FL10, GT12, Gra07, GSS15, HT90, HLST00, HPS09, HMM09, HY12, Ky12].
Kha13, KG98, Lai05, Lic14, LR04, Mac91, McD15, MWW94a, Mol11, MW90, OS13a, Raz10, WH15, Zeh17, Zer11, Zha90, o09, vBBC+15, HS89a, Kie97, TP97.

Vertex-Colored [MWW94a].

Vertex-Disjoint [Lic14].

Vertex-Magic [Gra07].

Vertex-Neighborhood [MW90].

Vertex-Pursuit [BMP13].

Vertex-Robust [Lai05].

Vertex-Transitive [HLST00, Mac91].

Vertical [DGM12].

Vertices [Bal08, BHL05, BGH+17, CH17, CHLZ00, DHKM11, Fle05, KiK12, KiKK17, LM12, Pad16, Ste10, ZL11, Stu88].

Very [Sol06].

Via [ACG94, AM06a, AFS12, AB00, AL17, BMS12, BV10, CNR89, Fuk16, Ful14, GPST15, HKL99, KLMR13, KT17, KLL13, LW88a, LL14a, LL17, LLS04, Lu10, NT12, Prz13, WC12, Yam16].

Virtual [HKS07].

Visibility [ABHW13, CHJ+04, HVW07, IKK06, LLS04].

Visible [RT11].

Vision [DKSZ10].

Vision-Based [DKSZ10].

Vizing [KK14a].

VLSI [FL92].

Volume [CL06, CFG+15b].

Voronoi [MGC14, Wor88].

Voting [AK10, Bo90, FKM+16, IIL14, CEOR13].

VPN [FOST10].

Wait [Svi03].

Wakeup [GPP01].

Walk [Ald90, CF16].

Walker [EFKP15].

Walkers [DPSW08].

Walks [AH11, BF96, Bev09, CP10a, CFR10, CF10, CEOR13, CTW93, CFS96, Die10, DJS12, FGPL14, GR17, JP12, KR04].

Walksat [COHH17].

Wandering [Vin07].

Wang [Uli14].

Watson [BTD17].

Wave [RT09].

Wavelength [BCC+05, BCG+10, Car90].

Wavelength-Division [BCC+05].

Wax [ACM11].

Way [EMM14, Knu95, BJ92].

WDM [Car09, CFG+09].

Weak [AK14, DF02, GT13, HH13, IP91, Abe91].

Weakly [AGH11].

Weakness [GT98].

Web [Pip06].

Weight [AP14, BB13, BM00, Bar02, BHH96, BK91, BB03, BLM10, CCD00, CER98, CDWZ17, CHZ09, CDHZ12, DM13, JT11, Kap14b, LS14, LCV03, MMSJ08, RF12, RSW12, SE14, BBM90, CZ97].

Weighted [ADL13, ANP14, BB16, BS95a, BBCZ11, BTW08, BM16, BG12, CDM+14, Dei15, Die10, ELMS11, FP13, GNS11, HRS17, LOW10, MC93, BG88, FZ88].

Weights [BJKV07, CM07, Hä94, Krá06, LWW10, SB91, VV94].

Well [BN05, COHH17, FL92, Lag00, i008, Rif99].

Well-Covered [BN05].

Well-Ordered [Rif99].

Well-Partial-Order [FL92].

Well-Quasi-Ordering [i008].

Well-Spaced [Lag00].

Wheel [CdV02, Ch94a].

Wheels [OSW16].

Wheels-and-Whirls [OSW16].

Which [Erd17, HS89b].

Whirls [OSW16].

Who [KSW17].

Whose [Jev95].

Wide [FFP88].

Wide-sense [FFP88].

Widely [LS03].

Width [AHP09, DD13, DMN12, FRRS09, FGT11, Gnu06, HW16, KM14, LR04, Luc03, i008, San96].

Widths [Ad08].

Wiener [FL15, LW03].

Win [KS17].

Windy [CP08].

Winkler [GG15].

Winners [KMR95].

Wirelength [CKK+04].

Wiring [SW01, Pat88].

Wis[ve05]. Without [CDM00, CL07, CH06a, CEOT15, CEOT17, CS12, DJW12, DL14, MNS14, BH15, CDM04, DMR11, ES11, Far09, FKP15, GS03, JPY10, JKSW17, Kle89, KL10, WL02, WX13, ZL12].

Word [BK05, Sch04].

Word-Run [Sch04].

Words [BM14, Fra10, KRR16, RMS01].

World [JM17].

Worst [ASZ02, PV10b, SS95, Tak08, Tas97, HS89b].

Worst-Case [PV10b, SS95, Tak08, HS89b].

Wreath [Ath14].

X [DGP06].

X-rays [DGP06].

Yeh [HRS12].

Yeo [Lic14].

Yields [GVW06].

Young [DZ09b, PV10a].
References

Abay-Asmerom:2010:DPF

Alon:2009:CRG

Alon:1994:ECD

Annexstein:2000:DRG

Albers:2005:DTA

Axenovich:2007:GHS

Adiga:2011:BPD

Abhijin Adiga, Diptendu Bhowmick, and L. Sunil Chan-
REFERENCES

[ABHM00] R. E. L. Aldred, S. Bau, D. A. Holton, and Brendan D. McKay. Nonhamiltonian 3-connected cubic planar...
REFERENCES

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

REFERENCES

Abdi:2016:LTD

Alexeev:2012:FIS

Amini:2012:CSH

Ackerman:2012:GAP

Alpers:2006:SEC

Apollonio:2015:MUD

Ageev:1994:FCI

[AHH10] Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado, and Birgit Vogtenhuber. Large bichromatic point sets admit empty

Amini:2009:PWP

Allouche:1989:AIP

Ageev:2001:AAM

Akhtar:2008:ADE

Alon:2002:TC

Abraham:2010:VP

Aharoni:2014:WVR

REFERENCES

REFERENCES

Archer:2017:APS

Aldous:1990:RWC

Alekseyev:2010:NTD

Alon:2013:MNC

Albert:2011:PPP

Altschul:1989:LPT

Alspach:1996:NZF

Brian Alspach, Yi-Ping Liu, and Cun-Quan Zhang. Nowhere-zero 4-flows and Cayley graphs on solvable groups. *SIAM
REFERENCES

REFERENCES

REFERENCES

Adams:1997:CNB

Ashir:2002:FTE

Autebert:2003:GDP

Apfelbaum:2005:RAT

Abueida:2006:CEH

Apfelbaum:2007:LCB

Aazami:2009:AAH

Apollonio:2009:MFP

Asgeirsson:2009:DCA

Aravind:2010:BEC

Apollonio:2014:IAM

Arizmendi:2016:LAC

Anderson:2010:FTN

Alon:2009:CGD

Aravind:2017:DRH
Alon:1994:PS

Alon:2014:CQT

Alon:2002:CWC

Aigner:1990:IAT

Au:2016:CAP

Athanasiadis:2014:ESL

Al-Thukair:1991:MPT

Assaf:1991:FTS
REFERENCES

Averkov:2012:SLS

Averkov:2013:MFS

Ageev:2004:ICA

Babai:1992:BRI

Bach:2009:IAF

Ben-Ameur:2003:IRR

Ben-Ameur:2010:DSN

Baldi:1988:NNA

Bandelt:1990:RTM

Balas:1989:AAP

Barequet:2001:LBH

Ben-Ari:2016:PAG

Barg:2002:SPR

Baiou:2011:MP1

Bayati:2011:BPW

Beimel:2000:CFS

Bafna:1999:AAU

Beveridge:2009:MRA

Balister:2008:SCD

Beck:2016:GFT

Balister:2013:RDR

Balister:2016:RHI

Bienstock:1990:SMW

Bondy:2009:LPC

Bracken:2009:FSB

Birkendorf:2000:LDF

Balvociute:2017:WCS

Bonamy:2016:EHC

Bollobás:1988:DCP

Bouchet:1995:DMJ

Brown:1988:SSP

Brown:1992:RRP

Bouchet:1995:DMJ

REFERENCES

REFERENCES

[Basu:2010:MII]

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Bretscher:2008:SLT

Bryant:2017:STS

Bhatt:1989:UGB

Bhatt:1995:SEC

Bryant:2012:NLC

Broersma:2008:NAL

Bourgain:2009:DSP

REFERENCES

Bouman:2013:EMR

Buzaglo:2013:TCP

Benko:2009:ABI

Blackburn:2008:PCI

Berman:2007:LSR

Berget:2011:CCS

Beveridge:2009:CRW

Beveridge:2010:CRC

Andrew Beveridge. Connectivity of random cubic sum

Barnes:1996:SRW

Bal:2012:PTH

Bruhn:2017:PFG

Bottcher:2015:LGF

Belmonte:2017:MDB

Brewster:2008:NUF

Borgwardt:2015:CDD

REFERENCES

Barat:2012:LFU

Barahona:1994:CGPd

Bokal:2006:MCN

Battista:2012:NRP

Bermond:2008:NBH

Bliznets:2015:SPA

Bulteau:2012:STD

Basavaraju:2016:PPK

[BFRS16] Manu Basavaraju, Mathew C. Francis, M. S. Ramanujan, and Saket Saurabh. Partially polynomial kernels for set cover and test cover. SIAM
REFERENCES

Bhattacharyya:2012:LBL

Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Komin Jung, Sofya Raskhodnikova, and David P. Woodruff.

[BGS96] Jürgen Bierbrauer, K. Gopalakrishnan, and D. R. Stinson. Orthogonal arrays, resilient functions, error-correcting

[BHL+15] Daniel Irving Bernstein, Lam Si Tung Ho, Colby Long, Mike Steel, Katherine St. John, and

Bermond:1992:BBD

Balogh:2008:FFC

Banderier:2014:AES

Bottcher:2010:EBG

Julia Böttcher, Peter Heinig, and Anusch Taraz. Embedding into bipartite graphs.
REFERENCES

[Bujtas:2016:TGH]
Csilla Bujtás, Michael A. Henning, and Zsolt Tuza. Transversal game on hypergraphs and the \(\frac{3}{4} \)-conjecture on the total domination game. SIAM Journal on Discrete Mathematics, 30(3):1830–1847, ???? 2016. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

[Beimel:2005:PNS]

[Burgisser:2013:DPL]

[Bienstock:1988:AAS]

[Biha:2005:TCP]

[Bresar:2005:HDP]

[Bilbao:2003:CGU]
Boyd:2013:FFC

Barthelemy:1991:FTC

Benjamin:1992:AWC

Bang-Jensen:1995:PIL

Bang-Jensen:1999:ECA

Bang-Jensen:1988:CCS

Bang-Jensen:2000:CRC

Bang-Jensen:2003:SCS

[Jørgen Bang-Jensen, Jing Huang, and Anders Yeo. Strongly connected spanning
REFERENCES

REFERENCES

[BL04] Andreas Brandstädt and Van Bang Le. Split-perfect

Berstein:2008:NMO

Bartal:2000:MSR

Bloznelis:2010:CEG

Bondy:2016:COR

Bondy:2017:ECO

Balogh:2017:TPR

Bodlaender:1993:PTC

Barahona:1994:CGPa

Barahona:1994:CGPb

Barahona:1994:CGPc

Baiou:1997:SEC

Barbero:2000:WHH

Barany:2007:QMC

Balogh:2009:AEG

Bhatnagar:2011:CMB

Bukh:2014:LCS

Bshouty:2015:PCM

Brandstadt:2016:WED

Belfrage:2012:POP

Bonamy:2015:PGE

Babai:1994:ESD

Borg:2010:CIF

Brightwell:2001:RRC

Borm:1992:PVC

Bouchet:1997:MCI

Boyd:1996:CCP

Boykett:2001:CFP

REFERENCES

Bermond:1989:ISP

Bafna:1998:ST

Blanco:2009:PGB

Benvenuti:2010:SHL

Bafna:1998:ST

Balogh:2013:TPC

Benevides:2015:MPT

Braun:2016:PCB
REFERENCES

Briceno:2017:SSM

Bollobas:2013:CDP

Barik:2007:SCT

Borie:1991:DDR

Barany:2010:PNS

Ball:2013:RBM

Burstein:2017:SCG

Byrne:2017:CRM

Eimear Byrne and Alberto Ravagnani. Covering radius of matrix codes endowed with

Brass:2005:UBD

Branden:2010:DCH

Buss:1989:VTB

Balister:2007:AVD

Browder:2011:FNC

Britz:2009:DM

Bruck:1990:HAP

Bertolazzi:1988:CPS

P. Bertolazzi and A. Sassano. A class of polynomi-

Bshouty:1990:GNB

Brickell:1991:DCT

Brightwell:1993:RPG

Bandelt:1995:SMR

Bokowski:1995:ASR

Bartal:2009:UIS

Balogh:2010:AAF

József Balogh and Wojciech Samotij. Almost all C_4-free graphs have fewer than $(1–\epsilon)\text{ex}(n,C_4)$ edges. *SIAM Journal on Discrete Mathematics*, 24(3):1011–1018, ???? 2010. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).
REFERENCES

REFERENCES

Berg:2014:CEF

Benjamini:2014:ATG

Brightwell:1993:ODC

Blake:1996:TCD

Brightwell:1997:ODP

Baber:2014:SC

Behrisch:2009:CRI

Beimel:2008:CIW

Bukh:2012:MKK

Bukh:2016:BEL

Bondarenko:2010:SDB

Boys:2016:NOC

Barbe:2003:SCR

Bhatnagar:2011:RCT

Barnes:1988:NHP

Brightwell:1992:CP

References

Carlson:1988:ULB

Cheon:2003:NBF

Carlet:1994:DCD

Caragiannis:2009:WMW

Cai:1995:TS

Cai:1995:TS

Chlebik:2007:CCO

Canteaut:2000:WDC
Coffman:2000:PDI

Cabello:2014:CSE

Chee:2013:SCA

Cohen:2017:BVC

Conforti:2006:OHR

Michele Conforti, Gérard Cornuéjols, Xinming Liu, Kristina Vuskovic, and Giacomo Zambelli. Odd hole

Cai:2010:SRG

Chen:2012:TDI

Conforti:2015:RCG

Czygrinow:2011:NBG

REFERENCES

REFERENCES

[Cassaigne2016NBS] Julien Cassaigne, Eric Duchêne, and Michel Rigo. Nonhomoge-

REFERENCES

Cooper:2013:CRW

Chen:2015:PTS

Chen:2017:PTS

Caro:1998:LSW

Calkin:1997:NRB

Cooper:2005:CTR

Chebolu:2008:HCR

Como:2009:ASM

Cooper:2010:RWL

Cooper:2016:VSV

Chen:2017:PEI

Colbourn:2009:MSA

Clemens:2015:BST

Conlon:2015:DVS
REFERENCES

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Chavez:2009:GRM

Cooper:2011:MBC

Conforti:2016:CDF

Cooper:2010:MRW

Coppersmith:1996:RWR

Chappell:2017:TDP

Chang:1993:AAN

Cornuejols:2002:IBC

Gérard Cornuéjols and Bertrand Guenin. Ideal binary clut-

Conforti:2007:POC

Connelly:2017:PST

Chor:1988:ISP

Chen:2016:ISP

Chandrasekaran:2017:DOC

Cortes:2010:TTN

Chen:2015:DCC

Guantao Chen, Ronald J. Gould, Kazuhide Hirohata, Katsuhiro Ota, and Songling Shan. Disjoint chorded cy-

Chung:1994:ECD

Chee:2010:SSP

Chekuri:2006:SKC

Chekuri:2006:EKO

Czumaj:1998:TCT

Ciolan:2016:CNS

Chakrabarty:2014:SHN

Camerini:1989:ITM

Chen:2001:AMC

Chen:2006:MRS

Chen:2011:LPG

Chen:2006:GPG

Croot:2010:FSS

Churchley:2011:LPG

REFERENCES

Chang:2004:BVN

Choi:2010:DCN

Cohen:2000:BCI

Caceres:2007:MDC

Chartrand:1989:MD

Cseh:2017:PMT

Chopra:1992:ESD

Sunil Chopra. The equivalent subgraph and directed cut
REFERENCES

Chopra:1992:PES

Chopra:1994:GPP

Chopra:1994:ECS

Chow:2009:RRB

Carter:1990:DLE

Chung:1989:PH

Chang:1988:ODT

Csorba:2010:ANG

Péter Csorba, Cor A. J. Hurkens, and Gerhard J.
REFERENCES

Chang:2015:HDS

Chang:2013:TSS

Chen:2004:ERM

Charpin:2009:CWE

Pascale Charpin, Tor Helleseth, and Victor Zinoviev. On cosets of weight 4 of BCH(2^m, 8), m even, and exponential sums. *SIAM Journal on Discrete Mathematics*, 23(1):59–78, ???. 2009. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Christie:2001:SSR

Constantinescu:2007:LZC

Cibulka:2013:MSR

References

[102x681] 239, ????, 2013. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Chekuri:2014:GRS [CKKO10]

Cunha:2013:ATD [CKMU14]

Charikar:2004:MWZ [CKN13]

Christofides:2010:SDC [CKK+04]

Cardinal:2014:MOC [CKMU14]

Cygan:2013:SFO [CKN+15]

Chen:2015:PTD

Cioaba:2016:MOR

Chekuri:2005:LPF

Corneil:2006:LOS

Chakrabarty:2013:HLR

Cheilaris:2013:UMC

Covert:2016:SPF

Chudnovsky:2013:LSR

[CKPS13] Maria Chudnovsky, Andrew D. King, Matthieu Plumettaz,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chapuy:2009:BRM

Cheung:2017:PDA

Chakrabarty:2010:DEO

Clark:2016:SFM

Cook:2012:CMG

Choi:1989:GBM

Chudnovsky:2015:ESA

Coja-Oghlan:2010:ESR

REFERENCES

Coja-Oghlan:2017:WSW

Collins:1998:CS

Coja-Oghlan:2010:FPP

Constantine:1989:IDR

Constantine:2005:EDI

Conlon:2010:LRN

Coja-Oghlan:2012:DPR

Corneil:1997:ATF

Corneil:2010:LSR

Coppersmith:1996:QES

Cogill:2010:STM

Colomo:2010:LSL

Chung:2016:DRG

Cifuentes:2016:ECS

Cygan:2013:SFV

REFERENCES

Chen:2016:PPA

Cranston:2017:LCC

Cranston:2017:SFB

Crespi:2004:EFL

Cheng:1989:CSG

Coffman:1991:SPU

Constantine:1994:SPI

REFERENCES

Chor:1998:GAB

Collins:2002:CCC

Chekuri:2009:AID

Chudnovsky:2012:GC

Candela:2014:CRS

Cheriyan:2001:IAS

Chen:2013:EFG

Kevin P. Costello and Van Vu. Concentration of random determinants and permanent es-
REFERENCES

Cartwright:1992:IGN

Connelly:1996:SOR

Calkin:1998:NIS

Cranston:2009:CRG

Chen:2014:ICM

Chen:2014:IFQ

Chien:2016:CPU

REFERENCES

Caro:2000:CDS

Chen:2010:MSF

Chen:2008:LPD

Chen:2005:RVS

Chen:2008:EBD

Chen:2012:PNR

Charpin:1997:CWD

Chen:2005:RVS

[CZW05] Robert W. Chen, Alan Zame, Chien-Tai Lin, and Hsiu fen...

Dasgupta:1999:SMS

Sanit Dasgupta. On the size of minimum super Arrovian domains. *SIAM Journ-
REFERENCES

dCarvalho:2013:NPM

Ding:2013:CGP

Delucchi:2015:BCL

De:2016:RKI

Donald:1993:SSO

Dosa:2011:POS

Diestel:2017:DTB
REFERENCES

DeVos:2007:CCP

Deitmar:2015:IZF

Dereniowski:2012:PCP

Dujmovic:2017:SGL

Desmedt:1994:HZK

Doignon:2002:FWO

Dougherty:2004:DDP

REFERENCES

149

ISSN 0895-4801 (print), 1095-7146 (electronic).

Dieker:2010:IRW

Dinitz:2006:FRT

Ding:2013:CCS

Dong:2011:ZFI

Djidjev:2006:LTA

Dvorak:2009:MNC

deJong:2016:NPT

Dzindzalieta:2012:OP1

D. Dzindzalieta, T. Juskevičius, and M. Sileikis. Optimal probability inequalities...

Dumitrescu:2015:COI

Dujmovic:2012:IBF

Delsarte:1989:LRM

Deogun:2002:DPG

Dong:2006:GHN

Dong:2010:ZFI

Dvorak:2014:SIM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Durocher:2015:PTE

Dvorak:2017:LIS

Dorbec:2008:PDP

Draisma:2012:LWD

Dorn:2013:EAE

deWerra:1993:ECS

Diaz:2007:STH

Daskalakis:2011:PBB

Constantinos Daskalakis, Elchanan Mossel, and Sebastien Roch. Phylogenies without branch

REFERENCES

159

Dror:2008:COE

Dowd:1988:QRE

Dowd:1991:EIP

Dowd:1991:IPC
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>DOIs</th>
</tr>
</thead>
</table>
REFERENCES

Dey:2004:CCU

Deuineko:1998:STE

dAzevedo:2014:BRH

Dreher:2012:CGC

Dross:2016:FTD

Daniel:2005:CGS

Drmota:1997:IPR

REFERENCES

Dumitriu:2005:TBL

Dvorak:2006:TAC

Dvorak:2009:CNG

Dutta:2016:IBI

Dumitrescu:2013:BMM

DeLoera:2001:EPD
[DSL01] Jesús A. De Loera, Francisco Santos, and Fumihiko Takeuchi. Extremal properties for dissections of con-

REFERENCES

DeDeo:2004:RT

Dvorak:2005:HCP

DiSumma:2010:LSS

Drigan:2006:CTS

Dor:2001:MSR

DelPia:2009:HIV
REFERENCES

Dershowitz:2009:MPT

Eliahou:2011:TGN

Epstein:2009:OCI

Erdos:1991:MDC

Erdos:2005:TPS

Erdos:2014:SSS

Espig:2015:WBG

Ejov:2008:DLC

Vladimir Ejov, Jerzy A. Filar, Walter Murray, and Gi-

Engel:2003:TBC

Egecioglu:2010:BPP

Eisenstat:2008:CPR

Edelman:2013:SCO

Etzion:1991:TLS

Even:2013:LOG

Enomoto:2001:CCN

REFERENCES

Esfandiari:2017:PS

Erman:2011:CGC

Ehrenborg:2016:CCP

Egawa:2008:NIC

Erickson:2012:NRR

Erlebach:2001:MED

Erman:2009:ORN

Rok Erman, Suzana Jurečič, Daniel Král’, Kris Stopar, and Nik Stopar. Optimal

Elkin:2005:PAI

Elkies:2010:CTI

Edwards:2013:BFC

Edwards:2015:RHC

Elbassioni:2009:ADP

Elizalde:2009:NPR

Epstein:2011:IAG

Enomoto:1999:EGT

Eirinakis:2014:OSM

Ellingham:2016:CMF

Elias:2014:LBG
Marek Eliáš, Jirí Matousek, Edgardo Roldán-Pensado, and Zuzana Safernová. Lower bounds on geometric Ramsey

Epstein:2006:OPC

Erde:2017:RTD

Eriksson:1996:CFG

Espona:1998:CDB

Elkin:2011:NSL

Enright:2014:LCL

Erdos:2013:CDR

Etzion:1996:NAP

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Feige:2010:OSG

Fellows:1990:TVP

Felsner:2014:ODP

Feray:2015:CIE

Ferrari:2016:DAI

Feder:2006:CBB

Fellows:1994:PNC

Fiduccia:1998:GDB
REFERENCES

Franc:2010:CGI

Fomin:2012:CRC

Fomin:2011:AWP

Feigenbaum:1989:FES

Fan:1994:SHC

Fountoulakis:2010:QRS

Feder:2008:BTT

Felsner:1994:IBI

Feder:2003:AHC

Fuji-Hara:2001:OOO

Francis:2014:BQN

Fujishige:2005:BFM

Fill:1989:RT

Frank:1998:TAD

Fink:2009:CMG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fujita:2010:BDN

Fuchs:2015:WIR

Fleischer:2000:AFM

Fraigniaud:2010:LBN

Fraughnaugh:1995:CGS

Fernandes:2012:AAG
[FLM12] Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer. All alternating groups A_n with $n \geq 12$ have polytopes of rank $\left\lceil \frac{n-1}{2} \right\rceil$. *SIAM Journal on Discrete Mathematics*, 26(2):482–498, ???. 2012. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Felsner:2017:CPO

Fishburn:1988:UFD

Flajolet:1990:SAG

Fleischer:2000:ORI

Feige:2008:FMI

Fiorini:2010:VPC

Fox:2010:CMI

Flajolet:1999:SNC
Philippe Flajolet and Helmut Prodinger. On Stirling numbers for complex arguments and Hankel contours. *SIAM
REFERENCES

Flammini:2001:OGL

Flammini:2004:LBB

Fuhr:2013:PPP

Fox:2013:NEQ

Fan:2006:NPL

Fishburn:1994:BIG

Felsner:1999:LED

REFERENCES

REFERENCES

Beáta Faller and Mike Steel. Trait-dependent extinction

REFERENCES

REFERENCES

Gao:2013:DSS

Gao:2015:MPT

Gardy:1992:NLD

Glynn:2012:GOA

Graver:2011:WDC

Gainer-Dewar:2017:MHS

Garin:2008:AST

REFERENCES

Goldwasser:2013:ETN

Goldschmidt:1996:AAC

Ge:2010:MDD

Gould:2014:MCC

Gorgos:2006:NQT

Golovach:2015:HNG

Geelen:2005:BSM

Gupta:1997:BSP

REFERENCES

Gijswijt:2005:IDP

Gittenberger:1999:CRT

Griggs:2008:RNC

Gutin:2012:NLS

Gonze:2016:SPF

Gutin:2016:MCP

REFERENCES

2016. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Gyarfas:1999:LCG

Garrod:2012:HCB

Goresky:2004:DS

Golovach:2017:PCG

Guo:2010:MRM

Galvin:2015:PCT

Grigorescu:2012:SRC

Gerber:2012:AIF

Glebov:2015:CDN

Giannopoulou:2016:TDS

Archontia C. Giannopoulou, Daniel Lokshtanov, Saket Saurabh, and Ondrej Suchý. Tree deletion set has a polynomial kernel but no OPTO(∞) approximation. *SIAM Journal on Discrete Mathematics*, 30(3):1371–1384, ????. 2016. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Gritzmann:2011:UDT

Graham:2007:OTS

Glynn:2010:CAT

Glynn:2012:IHP

REFERENCES

4801 (print), 1095-7146 (electronic).

Gunerixccx:2012:BMD

Goemans:2001:AES

Golic:1996:CEP

REFERENCES

REFERENCES

Goncalves:2011:DNG

Goldberg:1988:PSB

Goldberg:2001:BAG

Garnero:2015:ELK

Goldovach:2015:IDP

Graves:2009:GEH

Guenin:2013:RBP
Bertrand Guenin, Irene Pivotto, and Paul Wollan. Relationships between pairs of representations of signed binary matroids. *SIAM Journal on
REFERENCES

Goemans:2002:SMS

Goldberg:1999:FUU

Graver:1991:RM

Graver:2004:EFG

Gray:2007:VMT

Gadouleau:2015:FPB

Getu:1992:HGG

Guichard:1998:CGH

Gimbel:1998:WOS

Goldwasser:2012:VRP

Gutin:1993:FLP

Gargano:1992:MTB

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Geelen:2007:RBC

Griggs:1992:LGC

Guan:1998:MCV

Geelen:2006:STI

Gorlich:2010:PD

Hromkovic:2009:SPN

Han:1998:NDA

Han:2009:YAG

Han:2016:NPM

Han:2016:PMH

Hartvigsen:2001:CRC

Hartvigsen:2010:NSG

Harangi:2011:ASE

Haastad:1994:SWT

Hwang:1998:NCI

Heden:2008:PCL

Olof Heden. Perfect codes of length n with kernels of dimension $n - \log(n + 1) - 3$. SIAM Journal on Discrete Mathematics, 22(4):
REFERENCES

1338–1350, ???? 2008. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

REFERENCES

REFERENCES

Halman:2014:FPT

Hanckowiak:2001:DCC

Hladky:2017:ALKa

Hladky:2017:ALKb

Hladky:2017:ALKc

Hladky:2017:ALKd

REFERENCES

Hammer:2000:ESR

Hurkens:2007:VPN

Hefetz:2008:PCM

Hunsaker:2003:OOA

Heuberger:2015:CTC

Hong:1992:SRL

Hoang:2000:RPS

Chính T. Hoàng and Van Bang Le. Recognizing perfect 2-split graphs. *SIAM Journal on Dis-
REFERENCES

REFERENCES

Hu:2013:OBN

Haimovich:1988:EPH

Hartvigsen:1994:APM

Harutyunyan:2011:GTL

Harutyunyan:2012:PGE

Humpert:2012:IHA

Hatami:2009:IGS

REFERENCES

REFERENCES

Hofmeister:1998:NCC

Horsley:2014:EPS

Heath:1997:SQL

Har-Peled:2013:PG

Heydemann:1996:SHD

Han:2009:PMU

Hamburger:2009:KRG

Hochbaum:2003:MCC

Dorit S. Hochbaum and Maurice Queyranne. Minimizing a convex cost closure set. *SIAM
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Havet:2012:GYC

Helmberg:2017:CAM

Haddad:1988:RBF

Hakimi:1989:NVA

Hurkens:1989:SSS

Hajnal:1990:BCP

Hamel:1997:LLC

A. M. Hamel and M. A. Steel. The length of a leaf coloration on a random binary tree. SIAM Journal on Discrete Mathematics, 10(3):359–372, August 1997. CODEN SJDMEC. ISSN 0895-
REFERENCES

Hitczenko:2004:MPR

Hoory:2006:NUK

Hladky:2010:NBG

Hamidoune:1990:VTS

Hujter:1993:NMI

Mihály Hujter and Zsolt Tuza. The number of maximal independent sets in triangle-free...
REFERENCES

Hajdu:2013:BAD

Heggernes:2005:CMT

Huang:2014:MID

Hurlbert:1994:UCS

Hutchinson:1988:SNC

Hoogeveen:2000:BPD

Heeger:2017:TCS

Klaus Heeger and Jens Vygen. Two-connected spanning subgraphs with at most $\frac{10}{11}OPT$ edges. *SIAM Journal on Discrete Mathematics*, 31(3):1820–1835, ???. 2017. CODEN SJDMEC. ISSN 0895-
REFERENCES

Daniel J. Harvey and David R. Wood. Cycles of given size in a dense graph. *SIAM Journal on
REFERENCES

Hamann:2016:BCT

Hoefer:2017:LSM

Huang:2017:NNN

Hill:2013:RSC

Henning:2015:TTH

REFERENCES

Hyun:2010:SFP

Hell:1995:EHO

He:2008:NOV

Hatami:2010:FCN

Ikelsias:2014:CVT

Iosevich:2009:EFD

Isler:2006:RPE

Kawarabayashi:2011:IAH

REFERENCES

[IMR14] Russell Impagliazzo, Christo

Iriarte:2016:LEL

Idury:1993:TTC

Iwata:2008:IEF

Iwata:2009:CDA

Imase:1991:DST

Janssen:2010:RBA

Just:2016:LAT

Jacobson:1992:ECC

Jaeschke:1989:SRC

Janusz:2000:OCP

Janata:2005:MIP

Jansen:2010:ESJ

Jiang:2006:OIT

Jordan:2013:GSR

Jedwab:1993:BAE

REFERENCES

Jevtic:1995:FSI

Jia:1995:ECD

Jackson:2014:CCU

Janssen:1999:BSS

Jin:2017:PGC

Jansen:2016:BRT

Jedwab:1993:BAI

Jones:2017:PCD

[JLR + 17] Mark Jones, Daniel Lokshutanov, M. S. Ramanujan, Saket Saurabh, and Ondrej

//epubs.siam.org/sam-bin/dbq/article/30978.

Juvan:1997:OMB

Janssen:2017:RSS

Jacopini:1990:RTM

Jiang:1999:EBG

Jiang:2000:CEB

Joret:2017:PPD

Joos:2016:IMGa

Felix Joos and Viet Hang Nguyen. Induced matchings

"Jiang:2017:SDS"

"Jamison:1995:CHD"

"Jonsson:2005:SCG"

"Joos:2015:RSS"

"Joos:2016:IMGb"

"Jordan:2003:CES"

"Jansen:2006:PRC"

Joswig:2006:COM

Janson:2012:HTR

Joret:2014:HHP

Jiang:2012:DPG

Jiang:2012:TNS

Jiang:2012:TNS

Jiang:2010:SSS

Joos:2014:IMS

Jordan:2003:DPL

Jiang:2012:TNS

REFERENCES

Jochemko:2014:AMO

Jia:2017:EBF

Jansen:2012:PSP

Jansen:2003:MMJ

Jiang:2015:MIF

Jaslar:2011:MWP

Jukna:2016:TCS

Jungers:2012:SPF
Raphaël M. Jungers. The synchronizing probability function of an automaton. *SIAM
REFERENCES

Juttner:2006:BOP

Janssen:2005:LBT

Ji:2005:RSQ

Kahale:1997:IIE

Kamiyama:2017:PMT

Khosrovshahi:1990:NBT

Kang:2008:LHG

Kao:1996:DSE

Ming-Yang Kao. Data security equals graph connectiv-
Kapadia:2014:MMP

Kaplan:2014:MIT

Karloff:1989:HLC

Karp:1992:TSG

Karp:1992:TSG

Khachiyan:2005:CSE

L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and

Kwak:1998:ERG

KCL98

Ku-Cauich:2013:SAC

KCTR13

Kao:1994:OPA

KFHR94

Kao:1993:EDP

Kao:1998:ERG

Kleinberg:1998:LTF

Kleinberg:1998:LTF

Khan:2013:PMU

Khan:2013:PMU

Kierstead:1988:LFF

REFERENCES

530, November 1988. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Csaba Király. On maximal independent arborescence

Katz:2010:ADE

Kaminski:2014:BVB

Kocay:2014:RGT

Kral:2012:EFP

Kang:2017:SSC

Kaiser:2010:SCC

Kohli:1994:MSP

REFERENCES

Keevash:2014:SEP

Kante:2014:EMD

Kemkes:2003:SNC

Keevash:2013:DGC

Kratochvil:1991:NST

Kortsarz:2010:AMS

King:2012:FAB

Kubicki:2005:GTG

Kushilevitz:2005:CNR

Korner:2013:DDG

Kozik:2013:NCN

Krakovski:2014:HFW

Kneis:2009:BPS

Komlos:1998:MNB

Korner:2008:GDP

Kierstead:2009:TCN

Korner:2012:FGD

Kobayashi:2007:OMC

Kostochka:2015:TPS

Keevash:2006:SSN

REFERENCES

Krishnamurti:1995:AAP

Klee:2013:FCB

Kante:2016:PTA

Khuller:1993:LSF

Kostochka:2005:ECD

Kannan:1992:IRG

Khanna:2005:DND

REFERENCES

Knuth:1995:TWR

Krauthgamer:2014:PTD

Ko:1988:STO

Kuhn:2006:IBT

Kuhn:2006:MHC

Kuhn:2012:PCR

Kochol:1998:PTT

Koppe:2007:PBA

REFERENCES

2007. CODEN SJD-MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

Kowalski:2004:FDB

Kabadi:2006:CMT

Krotov:2009:AQO

Kang:2016:CPG

Keszegh:2013:DPG

Kang:2015:PTQ

Kratsch:2015:FPT

Kundgen:2010:RSM

REFERENCES

ISSN 0895-4801 (print), 1095-7146 (electronic).

Korandi:2016:RTP

Kierstead:1994:LCR

Kierstead:1995:LFF

Knuth:1992:PCR

Knopfmacher:1993:RSP

Kushilevitz:1998:RRT

Kindler:2004:DCR

Konyagin:2013:NSP

Kurauskas:2015:CIR

Kaiser:2016:NZF

Kral:2006:CAP

Kravitz:2007:RSD

Krivelevich:2010:EST

Kociumaka:2016:ERL

Kaiser:2011:GOC

Krivelevich:2015:SAC

Korner:1988:SPS

Kalyanasundaram:1992:PCC

Kratsch:1993:DCG

Khuller:2000:CKC

Kratsch:2002:ABM

REFERENCES

Kashyap:2003:EAC

Ko:2003:BDS

Kral:2003:TAC

Kumar:2003:PFA

Katta:2004:NBT

Keevash:2005:SSR

Kovaleva:2006:AAR

Sofia Kovaleva and Frits C. R. Spieksma. Approximation al-

REFERENCES

4801 (print), 1095-7146 (electronic).

Michael P. Kim, Warut Suksompong, and Virginia Vasilevska Williams. Who can win a single-elimination tournament? *SIAM Journal on
REFERENCES

Kao:1999:LDM

Kratochvil:1999:RDG

Kellner:2016:SSC

Kovacevic:2017:IBS

Kushilevitz:1992:PCC

Kleitman:1990:CBI

Kellner:2016:SSC

Kovacevic:2017:IBS

Kushilevitz:1992:PCC

Kleitman:1990:CBI

REFERENCES

Kemkes:2013:IUB

Kolesnik:2014:LBI

Kenyon:2017:SCP

Kinnersley:2013:EPG

Kobayashi:2012:AFM

Kabadi:2009:IEN

Kierstead:2004:RTT

Kostochka:2008:ALC

A. V. Kostochka and Xuding Zhu. Adapted list coloring of graphs and hyper-

Labarre:2013:LBE

Lagarias:2000:WSL

Laihonen:2005:OER

Lai:2008:OD

Lavrov:2016:UBH

Lal:2009:BSB

Lau:2004:RPP

Lam:2011:GSE

Lu:1990:DNP

Li:2017:MDS

Lichtner:1998:IAG

Lichiardopol:2014:PCH

Lind:1989:PSF

Linusson:1997:PRB

Lee:2015:NCG

REFERENCES

4801 (print), 1095-7146 (electronic).

Liu:2014:UBF

Laihonen:1999:NBC

Lee:2014:RPR

Li:2014:MOG

Lin:2015:FLF

Liang:2017:MCS

Lladser:2006:UFC

Li:2017:GCS

Jiao Li, Hong-Jian Lai, and Rong Luo. Group connectivity, strongly \(Z_m\)-connectivity, and edge disjoint spanning

Labbe:2017:BEV

Lovasz:1995:SPD

Lub:2010:ANO

REFERENCES

[Landman:2007:AMS] Bruce M. Landman and Aaron Robertson. Avoiding monochromatic sequences...

Li:2011:ISP

Levi:2014:TSM

Letchford:2008:OMC

Lawler:1989:DRB

Liestman:1995:DCN

[274]

Long:2014:WHH

Lou:1992:OAM

Lafond:2015:HCG

Liu:2003:LEW

Lund:2016:IBB

Lang:2017:APE

Luo:2010:ECS

[LSY10] Rong Luo, Jean-Sébastien Sereni, D. Christopher Stephens, and Gexin Yu. Equitable coloring of sparse planar graphs. *SIAM Journal on
REFERENCES

Cai Heng Li, Shaohui Sun, and Jing Xu. Self-complementary circulants of prime-power order. SIAM Journal on Discrete Mathematics, 28(1): 8–17, ????. 2014. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

DEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Lubiw:1990:BBP

Lubotzky:1990:LSG

Luczak:1998:GAE

Lucena:2003:NLB

Lutz:2004:SEN

Lefmann:1989:P

Langenhop:1988:CON

Lempel:1988:SCN

References

Li:2003:STC

Leizhen:2010:SRG

Li:2017:LTA

Lu:2013:EGF

Luo:2008:RDS

REFERENCES

2008. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Lu:2010:LBT

Lynch:1994:RRA

Larose:2003:CEP

Liu:2005:MDL

Li:2006:DMF

Lu:2009:ERH

MacGillivray:1991:CCV

REFERENCES

Milans:2006:CGP

Mertzios:2012:SPA

McDonald:2015:LVR

McLeod:2010:AEE

MoranR:2011:MFC

Moran:2016:CIH

Mohammadi:2016:AMT

Mehrabian:2012:DNR
Abbas Mehrabian. On the density of nearly regular graphs with a good edge-labeling. *SIAM Journal on...
REFERENCES

Merris:1999:NUB

Mertzios:2015:RST

Meszaros:2016:PRT

Meszaros:2016:PDC

McKilliam:2014:FCP

McClosky:2009:CPP

McKinley:1991:DCR

Mitchell:1997:BSP

Makino:2001:TRN

Manada:2009:CSP

Munoz:2011:EPR

Machi:1993:GEC

Manacher:1996:FDP

Magos:2011:FSA

Maffray:2012:CFG
Montufar:2015:WDM

Mutoh:2003:EGB

Mehrabian:2013:MDG

Martinez:2010:LEU

Martinez-Moro:2006:MCF

Martin:2015:CSC

Martin:2017:AMK

REFERENCES

Momihara:2008:CWC

McConnell:2015:LTR

Motwani:2008:LBL

Mouawad:2017:SRP

Mousset:2014:NGL

Mohar:1999:LTA

Moisio:2008:DBH

Mollard:2011:VPH

REFERENCES

REFERENCES

2008. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Morton:2009:CRT

Miers:2004:CSGa

Miers:2004:CSGb

Mayhew:2012:ICB

Moore:2015:Ara

Moore:2015:OBS

Mrazovic:2017:OPC

[Rudi Mrazović. One-point concentration of the clique and chromatic numbers of the random Cayley graph on \mathbb{F}_2^n. *SIAM Journal on Discrete Mathematics*, 31(1):143–154, ????. 2017. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).]
Murphy:2015:VSP

Murphy:2017:VSP

Motwani:1989:PGO

Muir:2005:ADS

Montanari:2011:RCR

Mauhar:2017:HRK

Muir:2005:ADS

References

Munoz:2005:IMC

Munarini:2006:CIC

Murota:1996:VMIa

Murota:1996:VMIb

Murota:2006:CFJ

Murai:2010:FVB

Mahajan:1999:DOA

Muller:2013:IRC

Tobias Müller, Erik Jan van Leeuwen, and Jan van Leeuwen. Integer representations of convex polygon intersection graphs. *SIAM Journal on Discrete Mathematics*, 27
REFERENCES

Myung:2001:EAR

Naatz:2000:GLE

Naatz:2001:NQC

Nagle:2010:CFI

Naatz:2001:NQC

Nagle:2017:CPT

Naor:1991:LBP

Nasre:2014:PMS

Neelamani:2007:NOL

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Nelson:2015:MDT

Nguyen:2010:ARM

Nguyen:2013:SRC

Ng:1991:TDS

Nagamochi:1992:CEC

Nierhoff:2000:TBI

Nishizeki:1990:ECM

Nagamochi:1997:CAS
Nakamoto:2015:EET

Niederreiter:2008:IAB

Nielsen:2009:STC

Nakamoto:2012:BET

Nixon:2012:RFS

Nixon:2014:CGR

Norine:2011:TGN

Nisan:1989:PAZ

[NS89] Noam Nisan and Danny Soroker. Parallel algorithms for zero-one supply-demand problems. *SIAM Journal on Dis-

O:2009:LBI

Obrenic:1993:EBS

O:2010:ECE

Offner:2008:PCS

Ogata:2006:OSS

Onn:1991:GCC

Onn:2003:CMO

[OS13a] Allen O'Neal and Peter J. Slater. Uniqueness of vertex

Osthus:2013:AHD

Onn:2015:HUF

Ordentlich:2016:UBS

Omidi:2017:DRN

Oxley:2016:WWT

Ostergaard:2004:REF

Ollivier:2012:CBM

Owen:2011:CGD

Oh:2013:RGS

Ozeki:2013:STB

Padrol:2016:ECP

Pal:2012:BAC

Paterson:1988:UCW

Payne:2017:BLP

Provan:1997:CPA

Pegden:2014:EMT

Penev:2012:CBF

Perrett:2016:CRM

Pettie:2011:OND

Petersen:2013:SIO

Pettie:2015:TGD

Pfender:2015:CDC

Padro:2006:RSI

Picollelli:2014:FSF

Pikhurko:2003:ASR

Pinchasi:2008:MND

Pinchasi:2014:FFP

Pippenger:1989:RSA

Pippenger:1991:ECC

Pippenger:1995:ARA

Pippenger:2001:EET

Perles:2007:FKS

Pinchasi:2010:DSU

Peserico:2012:HCC

Papalamprou:2013:DBS

Pemantle:1992:TP1

Pruesse:1991:GLE

Poonen:1998:NIP

Pralat:2013:SGF
ISSN 0895-4801 (print), 1095-7146 (electronic).

Palmer:2002:CCF

Poljak:1988:TRE

Proskurowski:1998:AAL

Parnas:2002:TBB

Pebody:2003:FSP

Przybylo:2013:NDE

Peer:1997:RIG
REFERENCES

Park:2017:CCM

Pu:2008:CSC

Pelsmajer:2009:SHT

Pelsmajer:2010:RIE

Patt-Shamir:2000:EAE

Pittel:2008:NFP

Proskurowski:1996:PET

Phillips:1997:TSN

Cynthia Phillips, Clifford Stein, and Joel Wein. Task

Petit:1990:TPR

Poljak:1994:BST

Peng:2014:ITP

Penev:2016:IHC

Pitassi:1995:CHC

Pak:2010:RYT

Paletta:2010:SNA

Peleg:2002:HES

David Peleg and Avishai Wool. How to be an efficient snoop, or the probe complexity of quorum systems. *SIAM Journal on Dis-

Payne:2013:GPS

Pretzel:1990:CLG

Poznanovic:2009:CNT

Paturi:1998:DPB

Pike:2005:DCP

Pan:2010:MCC

Qu:2014:DPS

Longjiang Qu and Cunsheng Ding. Dickson polynomials of the second kind that permute \mathbb{Z}_m. SIAM Journal on Discrete Mathematics, 28(2):722–735, 2014. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).
Qureshi:2015:RAF

Quilodran:2010:JP

Rabern:2006:GA

Rabern:2008:NRC

Rahman:2016:FIP

Ramachandran:1990:MAT

Ramachandramurthi:1997:SNO

Ramras:1997:CFO

REFERENCES

1998. CODEN SJDEMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Riordan:1998:OED

Rizzi:2002:FFB

Rais:1993:LDD

Rokicki:2013:DRC

Richmond:1997:SNC

Ruskey:2001:NIP

Romik:2006:SPT

Ronyai:1992:GGF

Royle:2015:LBT

Rudnev:2016:UKQ

Regev:2017:IGL

Ravi:1996:STS

Ragde:1988:PCE

Restrepo:2014:PTG

Radcliffe:2005:RTF

REFERENCES

/Ruskey:2012:BSF

/Rubinov:1998:SNO

/Richerby:2009:GSC

/Richerby:2011:SVL

/Radhakrishnan:2000:BDE

/Rubinstein:1997:STT

/Raghavachari:1999:AAM

REFERENCES

[102x681] Rodl:1989:RTT

[RWW88] Roberts:1988:OSC

[Rya96] Ryan:2007:TSP

[RYa07] Robins:2005:TBG

[SA90] Sherali:1990:HRB

 REFERENCES

[Sav14] Thomas J. Savitsky. Enumeration of 2-polymatroids on up
REFERENCES

Sawada:2002:FAG

Sawada:2007:SGC

Siu:1991:PTC

Szwarcflter:1994:CGC

Stolk:2010:AFD

Sarkar:2017:UBS

Scarabotti:2003:FAC

REFERENCES

Scarabotti:2005:DST

Scheinerman:1991:NPG

Schrijver:1991:EDH

Scheinerman:1992:GCN

Schrijver:2002:SPB

Schachtel:2004:EWR

Schweig:2009:CED
REFERENCES

4801 (print), 1095-7146 (electronic).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
| Schulze:2015:IRS | Bernd Schulze and Shin ichi Tanigawa. Infinitesimal rigid-

Skutella:2016:NRL

Sherali:1995:SSL

Shen:1996:GAC

Slivkins:2010:PTE

Smith:2001:PSP

Sakashita:2009:MTP

Smorodinsky:2007:CNG

REFERENCES

REFERENCES

Spacapan:2007:OLT

Speyer:2008:TLS

Spinrad:1989:PTS

Spinrad:1995:NFM

Sprague:1994:ABI

Siu:1994:ODT

Sugihara:1989:OAP

Shapiro:1991:BPS

REFERENCES

REFERENCES

REFERENCES

489, ???? 2014. CODEN SJD-MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Song:2017:HCG

Staden:2017:DSF

Stachowiak:1992:HPG

Stanton:2011:IBI

Steel:1988:DSD

Steel:2000:SCT

Stephen:2007:MBE

Stein:2010:EVS
Maya Stein. Ends and vertices of small degree in infinite minimally k-(edge)-connected

REFERENCES

[SW98] D. R. Stinson and R. Wei. Combinatorial properties and constructions of traceability schemes and frameproof...

Servatius:1999:CPC

Shi:2001:SDW

Saliola:2004:CPC

Suen:2010:SRA

Scott:2014:HBD

Swartz:2005:LBV

Sun:2010:DCS

Hung-Min Sun, Huaxiong Wang, Bying-He Ku, and Josef Pieprzyk. Decomposition construction for secret

REFERENCES

REFERENCES

397–398, August 1988. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Philip Todd. A k-tree generalization that characterizes consistency of dimensioned engineering drawings. *SIAM Journal on Discrete Mathematics*,
Todd:2014:IKK

Torocsik:1993:SB

Toth:2008:AAS

Toth:2010:UCI

Tovey:1990:SAR

Telle:1997:AVP

Tian:2009:ADD

Tan:2013:FSN

Trevisan:2004:LVG

Tropp:2015:IFP

Tapia-Recillas:2003:LQC

Tsai:1996:LBR

To:2004:MCL

Tipnis:1989:NPP

Tamassia:1991:RGC

Todd:1993:NTS

Michael J. Todd and Levent Tungel. A new triangulization for simplicial algorithms. *SIAM Journal on Dis-
Tardos:2007:CST

Tait:2016:ISP

Tuza:2008:HDG

Trachtenberg:2003:FRT

Terlep:2012:GGK

Tillich:1997:OCC

Thapper:2015:NCT

Tzanaki:2008:FGC

Eleni Tzanaki. Faces of generalized cluster complexes and noncrossing partitions. *SIAM
REFERENCES

Vijay V. Vazirani. Nonseparable, concave utilities are easy—in a perfect price discrimination market model. *SIAM
vanBevern:2015:NBV

vanBatenburg:2017:CJR

vanDalen:2011:BLR

Vegh:2011:AUN

vanIersel:2016:HNT

vanIersel:2014:AAN

Vince:1993:RT

Vince:2007:DLW

Vinh:2011:EFD

Vinh:2012:PMR

Vinh:2013:FVE

Voigt:2007:PEC

Vsemirnov:2005:APS

vanderGeer:1994:GHW

Vera:2015:IBP

Vandenbussche:2009:MEH

Vandenbussche:2009:PT

Wag96

Vygen:2016:RTT

Vollmar:1993:EST

Vollmar:1993:EST

Wagner:2007:CGT

Wagner:1996:MS

Wagner:1996:MS

REFERENCES

MEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

REFERENCES

1205–1214, ????, 2008. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Weng:1997:LST

Whittlesey:1995:NRG

Will:2004:PM

Wang:2015:CAV

Whiteley:1988:UMR

Wang:2014:PGE

Will:1999:SDB

Wild:2005:ANB

[Wil05] Marcel Wild. The asymptotic number of binary codes and binary matroids. *SIAM
REFERENCES

Weldon:2016:CPP

Wildon:2016:CPP

Winkler:1988:CMR

Winkler:1988:CMR

Windisch:2016:RMM

Windisch:2016:RMM

Watanabe:2012:AAP

Watanabe:2012:AAP

Wang:2002:CEC

Wang:2002:CEC

Wang:2003:LPG

Wang:2003:LPG

Wood:2010:TCA

Wang:2017:SNF

Wu:2009:LAG

Wang:1991:LDR

Wang:2011:EBN
Shaofan Wang, Renhong Wang, Dehui Kong, and Baocai Yin. Estimate of the Bézout number for linear piecewise algebraic curves over arbitrary triangulations.

Wang:2013:ICP

Weimann:2010:CGP

Wu:2014:NZF

Yaman:2007:IKC

Yamaguchi:2016:PPG

Yang:2016:LBP

Yu:1997:HMF

Yen:1994:NMP

Yen:1997:CPS

Yao:1988:FMG

Ye:2009:RFG

Yeap:1995:SFG

Yu:2017:NBE

Yuster:2003:ECU

Yuster:2009:DCA

Zak:2014:PTG

Zehavi:2017:MMV

Meirav Zehavi. Maximum minimal vertex cover parameterized by vertex cover. *SIAM
REFERENCES

2017. CODEN SJDMEC. ISSN 0895-4801 (print), 1095-7146 (electronic).

Zeng:1990:CSP

Zerbib:2011:ZCV

Zhang:2009:EGB

Zhang:1990:FCI

Zhang:1993:PSS

Zhang:1994:SNB

Zhang:1999:OBM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
</table>
Zdeborova:2011:QPL

Zhang:2011:ESC

Zhang:2008:RGB

Zhu:2012:LPG

Zelikovsky:2002:PAA

Zhou:2008:ODS

Zhang:2011:SCA

REFERENCES

Zuckerman:1992:TLB

Zunic:2011:NNT

Zamfirescu:1992:HPG

Zhang:2017:EDC

Zhan:2013:DHC