A Complete Bibliography of Publications in the SIAM Journal on Matrix Analysis and Applications

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

12 January 2018
Version 3.13

Title word cross-reference

(0, 1) [BH96]. (1 + \sqrt{2}) [CP17]. (A, B, C, D) [CMT09]. (AB - LB, DR - LE) = (C, F) [Kåg94]. (L_r, L_r, 1) [De 11]. (L_r, n, L_r, n, 1) [SD15a, SDD15]. (\lambda, \mu) [JKM11]. (R, S) [Tre05]. (\sigma_1, \sigma_2, \sigma_3) [ES09]. 0 [Ho90]. 1

BLW15, BV00, BH96, Har99, HT00, Ho90, KR02, NW14. 2

[BZ98, BK89, CG15a, EK96, FKLR13, HR14, LT09, Pai09, SYJ00, TT14]. 2\times 2d [Ose10], 2 \times 2 [ABL94, HLW05]. 3

[BBM02a, CO12, EK96]. 3 \times 3 [BL91], 4n^2

[HY00], A [VV89, Car94, WZ91]. A(k) [Art96]. A + \mu B [JKM11]. A = UPD [Eir00]. A^k [Gri88]. A^m = A^n = IJ [Ho90].

A^T X \pm X^T A = B [Bra98]. A X - X B = C [BHH88]. A X = B [yPWjP12]. A x = \lambda B x

[WZ91]. A X \approx B [HPS+11, HPS13, VV89].

AXB + CYD = E [LBL05, Özg91].

AXB^* + CYD^* = E [SC03]. B

[Ste10b, WZ91]. BR [GHW99]. BXAT = T

[DHZ03]. C^p [FP98]. \mathcal{G} [JMW96]. \mathcal{H}_2

[BB12]. \chi^2 [MH13a]. cp [SMBJS13, BSU15].

CUR [DMM08]. D

[KMS01, KMS03, GSCS15]. G

LT89, NSCS10. H

[AYLR04, AH07, KL98b, LG06]. H_{\infty}

[HLT12]. H_{\infty} [GGO13, FSV14]. HR [Sle09].

I \otimes A [Gre05]. I \times I \times 2 [SD09]. K

[Car94, Yas03, BT06, GGL04, KM16, Kon00, Pro13, Sor92]. L [Stu91]. \lambda [CLS88, JKM11].

LDLT [Tüm02]. LDU [CRU08]. LR

[Gen98, Sle09, Xu98]. LTI [Ver96]. LU

[AP02, BFM03, BT02, DD97, DM05].
EMC17, GL93, GDX11, HT17, KDGG13, Ogi10, RJ14, Ste93a, Tol97, Zha01, ZFW07, vdBvdV93, SY-Jo0, DY90, JOvdD89. M [BY88, KN89, KN91, MSZ03, SB01, Zha04, Bor09, DMS09, DMS12, DMS13, Guo01b, He95, HHH12, JS07, KN98, LZ97, MNST96, SWYM96, Wan98b, gWcWL12, Xue96, XL00, ZQZ14]. C* [EHVp04]. D [OP05]. QPlate [GSCS15]. R [Cho10, EHVP04], C [BDD94]. \(\mathcal{H}_\infty \) [ASvG17, FG15, GAB08, VGA10]. \(\mathcal{H}_\infty \) [MG10]. \(L_\infty \) [ABM+17]. MR^3 [WL12], \(\mu \) [Kar11a], N

[BY88, BH96, KN89, RR96, Stu89, AH07, Bor09, DMS09, DMS12, DMS13, Guo01b, HHH12, LZ97, MNST96, MN97, MP95b, Pei01, SWYM96, YL00, Yas03, JS07, Stu88].

\[\Phi(A) = \frac{1}{n} J_n \text{ [Che01b, XZC99]}, p \neq 1, 2, \infty \text{ [HO10]}\]

[MP95b]. \(q \) \[DP15\].

\[QQ \text{ [Wat00]}\]. \(R \) [He99].

\[r(A)r(AD) \text{ [Alt13]}\]. \(r(A^2D) \text{ [Alt13]}\). \(R_1 \text{ [DDV00b]}\). \(R_2 \text{ [DDV00b]}\). \(R_3 \text{ [DDV00b]}\). s [CD14, CD15]. \(S^+ \text{ [SYJ00]}\). sep^{-1} [KP92].

\[\text{Sep}_1 \text{ [GO06]}\]. \(sL - M \text{ [SL94]}\). \(\sum A_i X D_i = C \text{ [Wim92]}\). \(T_A - FT = LC \text{ [Tsu93]}\). tan \(\theta \text{ [AMS07]}\). tr \(f(A) \text{ [UCS17]}\). U [NQB14]. ULV [CGP06, Ste93b]. URV [SV00]. UTV [Fos03]. \(\varphi \text{ [GG14, KO14]}\). W [FIH15]. X [Cap00, DH03].

\[Y(k) = A(k)Y(k-1) \text{ [Art96]}\]. Z [MN97]. ZME [Stu88, Stu89].

\[\text{Commute [JMW96, DVO8a, SB05]}\]. - Bernstein [DP15].

\[\text{By- [EK96]}\]. - Circulants [NSCS10].

\[\text{Matrices [MSZ03, Stu91, SB01, Zha04, BY88, BH96, KN98, RR96, Stu89, AH07, Bor09, DMS09, DMS12, DMS13, Guo01b, HHH12, LZ97, MNST96, MN97, MP95b, Pei01, SWYM96, YL00, Yas03, JS07, Stu88]}\].

\[\text{Person [Mar91]}\]. - Primitive [Pro13].

\[\text{Product [ZRV95]}\]. - Rank [BSU15, KM16, SMBJS13]. - Regular [Cao00a, Cao00b]. - Relative [Bar00b].

\[\text{Selfadjoint [KL98b]}\]. - Similarity [CG15a]. - Skew [Tre05]. - Spectral [CP17].

\[\text{Stability [OP05]}\]. - Step [CD14, CD15, Sor92]. - Symmetric [Tre05].

\[\text{Tensors [CO12, QZQ14]}\]. - Toeplitz [NSCS10]. - Type [BBD11, WL12].

\[\text{H}[Hc89b], 13 [CH93a], 15 [Zha95], 15023 [GI97], 15th [Mol92], 17 [GI97, Ink97].

\[27 [WW08], 2D [FV98].

\[32 [Ano11]

\[70th [GRIV90].

\[1000\]
Aberth [BGT05b]. ABLE [BDY99].
Abscissa [FL99, GO11, HGCO0, KV14, LV17].
Absolute [CO99, EI98]. Accelerate [RCH08]. Accelerated [LGC+14, TP14]. Accelerating [BJM05, WZ17].
Acceleration [BRZ06, ENV92, PS08, SK16, AdHN88].
Accuracy [CD14, CD15, CHKL01, DMM03, GKK94, GI97, Gre97, GS00b, JR08, Mat09, Par05, HL06]. Accurate [AGL98, Bar02, BPE94, BV01, CGCDM13, DP15, DK88, DV92b, Dem99, DK05, DM04, DK06, DJ00, Drm00a, DV08c, DV08d, EKNX93, HB12, Hey95, Ips06, Ips09, Koe05, Koe07, Mas94, Mat95a, Og10, PM06, Ral09, SGX14, STT17]. Accurately [Fer98]. Acquired [OS10]. Active [KP08].
Adaptive [BGT05b, BDY99, Bar08, Dan91, DSZ14, KM14, Lu10, LE02, PP92, SB92, Cri88].
Addendum [GI97, Ste02]. Addition [BT13]. Additive [BP05, BW93, FS97, Zab91]. Additivity [HS98]. ADI [CR96]. Adjacency [FST+13]. Adjacency-Spectral [FST+13]. Adjoint [Cao09, LP01, Lie09, Rod05, ZAK13, vMDs05]. Adjustment [BX05]. AE

Algebras [BIP08, Bol90, BM02, BW99, CL17, CT08, DH06, DG91b, DG91c, DLM13, EZ95, EK17, FL02, FT14, FV98, FS97, GGV05, dMGF14, Guo98, GL00b, GL00a, Guo01b, GH07b, GIM08, Hoo17, JL98, JOAK10, Kap90, KP99, KM96, LwCKL13, LS17, Lg502, LX12, Lu05, MOR16, Neu00, Not06, Not16, Pap00, PS05, PUL13, SKP11, Sim16, gS98b, Sm04, VFO0, VZ06, gWcWL12, XLS16, Zim17, CRR93, San88, Sch95a].

Algebraically [RW01]. Algebras [BD95, CO99, Di09, Di00, KHH04, MMT08, Tmn99]. Algorithm [ALAK94, AA94, AMMS08, AMH10, ADD96, Arg15, AB01, BOCL97, BES05, BL15, BEG+09, BP92, Bor14, BBM02a, BBM02b, BG06b, BMU94, CM93, Cav94, C95a, CS96b, CGS98, CGGS99, Cha00, CGS+08, CH98, CCG+09, COV14, CG15a, CB00, DBW15, DW06, DH03, Day97, DV07, DGL99, DMM03, DV08c, DV08d, EKE99, FH15, FLM10, FMB3, Fub07, GHW99, GNP94, GHHW90, GDX11, GPS90, GLS94, GE94, GE95a, GbCC03, GO06, GOS15, Guo02, Guo03, GIM08, GHT10, GL10, HN90, HO94, HB12, HW98, HMR01, HR95, HTO0, HL11, HL13, HG14, IM13, IK06, IAV13, IM16, IO16, JR99, JS94, K07, Kau93, KL98a, KHH04, Kn08, KRU14, Kre08, KW94, LHC16, LGC+14, LH05, LZ10, MM11, Mars12, MVL00, MTV10, Me01, MM09, MVV92, NRT92b, OW96]. Algorithm [PYHK93, Par99, PO03, QXX14, RD95, RST10, RS08, SK95, Sen98, SB05, Sle09, Smi03, ST01, Spe98, Ste01, Ste02, Ste05, Ste06, Tasi15a, Tur03, Usc12, VZ91, Van11, VW12, Ven03, WZ01, gWcWL12, Wat95, Wat00, WL12, XK04, YP98, Ya10, ZS14, Zha17, ZJ15, Zhi12, ZZ98b, ZS07, Zim17, Bar99, CJL96b, CH92, CH93a, CM99, CM92b, DY90, Fuh88, GIMT95, GEX95b, MT89, Qia88].

Algorithmic [BBG2, EL08, GG13].

Algorithms [AG91b, AH16, AG92, AD98, AD99b].
 almost-diagonal \[\text{HD97}.\]

Alternating directional \[gWcWL12].

Alternative \[BES05, BE10].

Among \[BHH +08, Mat05, GPTPV16\].

Anal \[Ano11, CH93a, GI97, HC89b, WW08, Zha95\].

Analogue \[CH88].

Analyses \[CPS97, CP98, PGVR98\].

Analysis \[Afs08, AB01, AKP08, Bar93a, BH90, BH93, BGS07, BvdG11, BC10, BCW12, CG03a, CI95a, CGP09, Che01a, CL09, CLN12, CD17, CCG +09, CGH11, CS10b, DHT01, DSSC11, EZ95, EK17, FT14, Fie96, FC01, GSCS15, GP97, Gil13, GS06, GGV05, GS10b, Gow96, Gul95, Guo02, HHRV99, HJ0vdD93, Hig90b, HHC03, HC15, HKB08, IK06, IS07, IO16, JJ03, Kig94, KS03, KN09, KPC94, KMP01, KMN11, LVV16, Lew96, Lew99, LG02, LX06, LSB16, LS95, LT94b, MOR16, MT15, MM09, MS03, Nap13, NOZ11, NZ16, Not03, Not14, PP05a, PP05b, PAH17, Pul13, QCT16, RRR06, RST10, Saa97, Saa16, SST06, Sim16, Ste05, Ste06, Ste11b, Sun95a, Sun96, Sun04, VV88, VV89, Wat92a, Wei92, Wei11, WL12, XE10, YC97, YL97, Zha93a, ZZ01, ZZS02, ZLN10, CM89]. analysis

[CM92b, DB88, HC89a, HC89b].

Analytic \[AHH01, CR10, He99, LMZ03, Wi08\].

Analyticity \[QT15, QT16\].

Ando \[Zha04\].

Angles \[BL91, CS96a, Drm00b, KA07, QZ10\].

Anti \[FMRR13, Ver96\].

Anti-Gauss \[FMRR13\].

antiferromagnetic \[CRR93\].

Antinorms \[GZ15\].

Antireflective \[BDSC11\].

Antisymmetric \[KK17\].

antitriangular \[CLN12, MV13, PW14b\].

Any \[AKP08, CT99, GPS06, Pa09, TM12\].

Apart \[Rum15\].

Appearing \[BW05\].

Application \[AMH09, AH14, BG15, Bez12, BM01, CR96, CS01, CS10b, FMR13, GPM03, GS06, GP16, HM04a, HR00, HT00, HHLW13, Ian09, KS03, KMS01, KMS03, Li99, LF02b, LY03, LV10, LK95, Mai09, Mat97a, MS10, PAP00, PL14, RB90, Rie92, STvD17, SWYM96, Sid95, SEM13, SS17, Sor92, TFL11, WA07, JN89, MP88\].

Applications \[AJRS13, Alt13, Arg15, AL98a, AB13, BO96, Bar93b, BBTT06, BKS08, BLO03, BCCG10, Cap00, CCJ +00, Che98, CC97, CD12, DCM08, DG91a, DJ09, EK91, EJ09, FPST13, FNS08, GLS12, HN90, IUM14, JI03, JW11, JKN11, KBBH13, Kni08, KA10, KH13, KS12, LL09, LZ05a, Lim07, Mat93b, Mat96, NP99, Pe01, PGVR98, RE13, Saa06, SZ07, SB01, TL06, TH01, Tsu93, WCW10, ZQZ14, ZZLY02, ZR95, AG88b, Fuh88, GCW89, KN94\].

Applied \[DFT92, EN08, MR97, RSS09, Wa03\].

Approach \[BE07, BL94, Bor90, BET02, BEGM05, CSX15, CL17, CG03a, CH06, CLE00, CF00, Dax08, DG91b, DG91c, DEG +99, EEE99, EKK99, Frie5, GL99, GRT07, GT02, IUM14, IM16, KO05, KB90, KN09, M004, Mim00, Moa05, NNT17, Neu00, PAP00, PL94, PR12, PJJ10, TET05, VFO0, VGV09, VV10, WE90, vdWM95, BV88\].

Approaches
Approximability [HHSW97].
Approximants [BL94, CM93, Hig01, Bas89]. Approximately [ADD96, Beb06, BM02, BS02a, BS02b, Che01a, Dav08, GRK17, GHL03, HO10, HM97, IKSG10, JT98, Joh08, LC16, LBL05, MS03, Pha01, SEM13, gS96, Tan99, TW00, TP14, XG10, vD99, KY93].
Approximating [CHKL01, DPP13, GGMO17, VV15, PS08].
Approximation [Arg15, AK90, AR93, Asw16, Bai05, BG15, BRZ06, BV95, Cap98, CS09, Chn91, CG98b, CP03c, CDLP05, DDV00b, DP00, DK98, DL17b, ES09, ES11, FZ16, GG11, GG14, GO11, GGO13, GN16, HK08, HPS13, HI15, HGL05, HT17, IAVD11, IAV13, IUM14, JK15, KN00, KS15, KL07, KL10, KR02, Ko03, KO15, KJH16, KK17, Lás94, LF13, LV10, Lu96b, LRS13, Mac99, MU13, Mat93a, MBB08, NS11, Os90, OSS14, Qi11, Rei91, Rei02, RHE14, SD16, SS10, Ste08, SH93, Tan94, TYUC17, Usc12, WC14, WCY15, WS12, ZMK02, ZG01, ZLQ12, ZXL14, Zie95, dS10, vD99].
Approximations [BN05, BD09, CG03a, Dax08, DMR09, FT07, FKL13, GR93, GLV10, GHR95, HB12, JKF10, MHG15, NNP04, NW14, Nie17, NTS15, RP10, Sid95, Ste13, STT17, ZZS02, ZZS04].
Arbitrarily [Run15, Rum91].
Architectures [GHT10].
Arrays [Cho10, GMBS12, LRA93, OST08, Ste08, SD09]. Arrivals [Par94]. Arrow [AG92]. Aspects [ZZTA02]. Aspects [EL08, LPT10]. Assignment [AD98, BMU94, FP98, GP97, Mim00, NK01, Sun96, Zab91, CM89, CM92b, Zab89].
Associated [BD95, CFG98, DMS13, JZ99, Kir95, Li93, MMT08, CRR93, Tre88b, WE89].
Astronomical [BN06a]. Asymptotic [Meh08, MT00, Na98, NSCS10, Ser98, SM16]. Asymptotically [Li06]. Asymptotics [BSU15].
Asynchronous [ADL01, AD05, GLL19, SB01].
Attainable [CD14, Gre97, JR08, Lás94].
Attention [IS08]. Augmentation [SHZ12].
Augmented [CFT16, EG00, GGL13, Gut14, Mas16, Mor95, PAP00, Pai10, Saa97, WZ17, Wri97].
Augmenting [Rie92].
Autocovariance [Elt92]. Automata [GDF01].
Automated [EV06]. Automorphisms [IZ04]. Available [Lee96].
Average [TS90]. Average-Case [TS90]. Averaging [Moa02]. Avoid [SD09].
Avoiding [BB14, DGGX15, KG13].
Axis [Sch95a].
Back [IT06]. Backward [AA09, Ari00, AB01, AMVW15, Bor10, BKMS14, BKMS15, BX08, CGP90, CL09, CB00, CM89, CM92b, CH99, DM04, EGTP17, GJTP12, Gu98a, Gul95, HH92, HH98, HL90, JTP98, KZ10, LC15a, LV16, NH12, PR06, RJ14, Rum15, gSS97, gS98a, gS99a, Sun04, Tis03, Var94, XW07, ZS14, ADD99].
Bad [Pan16].
Balanced [NM02]. Balanced [AK90, BM10, CFL07, HMP94, PR88].
Balancing [EN08, KSK97, LV06]. Band [AG91b, BGKS99, CD98, HPS15, Nal99, NV02, ZZTA02]. Banded [BS15, BM99, CG03b, DK08a, GLS12, HB94, IT06, JZ93, Kau93, KS17, TS99].
Bandwidth [RS06]. Banks [CMPX03, HM04a, Jia01]. Barabanov
Barycentric [Law13]. Based
[AT07, AR93, Bar08, BB12, Bor09, BDG15, BK95, BM95, CCR+00, CCR98, DFS14b, GR00, GZ13, HT17, HJP03, IAVD11, KO05, KP08, Li16, MMD08, MJM11, Not06, Pul13, SST05, SKP11, SB05, TMNV10, HK12, JMNC09]. Bases [BDD14, BD11, EM10, LP17, MP12, NS94, RV17, SV93, vdMS05]. Basic [DG91b, DD13a, Fer97, LF02b, MLV00, ZZS02]. Basis [BFP95, EZ95, EMC17, SS17, SB95]. Basis-Kernel [SB95]. Bauer [wC03]. Bayesian [BD12]. be [Hu92, Rum15]. Behavior [BK15, BLO07, Naj98, Rog05, Tam97, TM12, GS92, Sun89]. Behaviour [Drm96]. Being [Mas94]. Benford [BHKR11]. Bernstein [DP10, DP15]. Best [DDV00b, ES09, ES11, Fei94, GH92, IAVD11, IAV13, JK15, KR02, Las94, Lee96, LBL05, LT09, NW14, Qi11, RHE14, SS10, ZLQ12, dSL08]. Beta [DK08b]. Between [CG96, FN05, KA07, Pe98, Xu98, BS02b, CG92, CF02, De06, V17, SV93, vdMS05]. Bézier [Bez12, Fie95]. Bezoutian [HH93]. BiCG [ASvG17, Gut14]. BiCircle [GW07]. Bidiagonal [Bar02, Fer98, GL05, GE95a, JOvdD01, JOvdD04, LGC+14, Par05, WLV06]. Bidiagonalization [Ari13, Bjø14, BB07, CGHR07, HPS15, JN03, Sut12]. Bidirectional [Wat93]. Bifurcation [Bea01]. Bifurcations [MS10]. Bilinear [BB12, Cao09, Cor93, FG15, RODS15]. BilUTM [SZ99]. Binary [MP11]. Biorthogonal [Sta02]. Bipartite [FL02]. Biproportion [de94a]. Birkhoff [CL14]. Birth [Cla10, DQ02, GdI08, Guo02, Guo03, HM901]. Birthday [GKRV90, Mo92]. Bisection [AL98a, Ji92]. Bivariate [NNT17]. Björck [BEG+09]. Black [AV91, MH95]. Blind [De11, PO03]. Block [AGJ14, AL95, BDY99, BB05, BBT07, BOS16, BDY99, Bom00, BB07, BCN95, CSMX15, CL17, CE02, CNW08, CG94, CD98, De08a, De08b, DN08, DRSZ07, DK15, Dm10, EP94, EG15, FMR13, FH17, FP98, FST+13, GLS12, Gar90, GL03, GGV05, Gov91a, GV99, GLS94, GLH03, Har07, HLV05, HT00, HG14, HO92, HK12, HC89a, HC89b, HIM94, JV16, KN00, KMP01, LM02, MM11, MVP05, Mus16, Meu92, MT00, MN97, NY95, Not14, OW96, Pe98, Pes14, RV12, Rog05, SZ99, SK95, Ser98, SHZ12, Sim97, Ste12, TW03, Wan98b, Wel11, ZS94, KP92, SS99, ES09, KC94]. Block-Diagonal [BOS16]. Block-Diagonalization [MM11]. Block-GTH [OW96]. Block-Iterative [CE02]. Block-LU [ES92]. Block-Monotone [Mas16]. Block-Oriented [Har07]. Block-Parallel [ZS94]. Block-Schur [KMP01]. Block-sequential [Peea88]. Block-Similarity [FP98]. Block-Toeplitz [CNW08, JV16, MVP05, KC94]. Block-Toeplitz/Hankel [MVP05]. Block-Triangularizations [IM94]. Block-Triadiagonal [HO92]. Block-Triangulosity [Bom90]. Blocking [PFR97]. Blocks [BV90, CDGS10, CNW08, GS10b, JV16, SS91]. Blockwise [XG98]. Blurring [RHE14]. Boolean [DD99, Jia98, HJ98]. Border [BDD14]. Bordered [Gov91a]. Bordering [BMMM93]. Bottom [PS94, RE98]. Bottom-Up [PS94, RE98]. Bound [BT92, DDY14a, DT11, EV06, FG94, Gow96, KK14, Lås94, Lat95b, Lee95, L99, LW05, Mat97a, SST05, Vec03, WLB05, PS88]. Boundary [ASA04, ABN09, BOS11, BL01, C01a, JLS01, LY91, MS99, NN04, Vav92, VH16, JN89]. Bounded [ABK+11, BE07, CG98, CGGS9, CGS01, Cor93, GGMO17, GR97, Kn00, Wat01, Yan93]. Bounded-Input [Cor93]. Bounded-Input/Bounded-State [Cor93].
Bounded-Realness \[\text{[ABK}^+\text{11]}\]. Bounding \[\text{[DS97, FB95, Hig90a]}\]. Bounds \[\text{[AMPV97, AKPP08, AR93, Axe92, AW05, BT10a, Bar93b, BS15, BMF05, BH90, BSU15, CS10a, DH93, DH97, EI98, FKL13, Gv98a, HS16, HDT10, HI15, IR08, IN09, JR13, JN93, Kt95, KA10, Kt95, KW94, Lee96, Li93, Li95, LS03, Li05, Li06, LS07, Li16, Lie00, LZ05b, Liu12, LR99, LPT10, Mas16, Mat93c, Mat97b, Mat98, Mel99, Môn11, Nab00, RBB90, RK95, Rum97, Rum12, RJ14, SWYM06, St91b, Sun95b, gS96, gSS97, gS98a, TVW15, Tru06, Wal03, WY17, WD00, Ye09, ZAK13, ZK17, vDHvdV00\].

Box \[\text{[AV91, MH95]}\]. Bramble \[\text{[FAT16, SW08]}\]. Breakdown \[\text{[RY05]}\]. Breakdowns \[\text{[AGJ14]}\]. Bregman \[\text{[DT08]}\]. Brent \[\text{[YB91]}\]. Bruhat \[\text{[OOvdD98]}\]. Brunovsky \[\text{[FGP00]}\]. Bulge \[\text{[WE94, Wat98]}\]. Bulge-Chasing \[\text{[WE94]}\]. Bulges \[\text{[Van11]}\]. Bunch \[\text{[DT11, JP93]}\]. Byers \[\text{[CT15, KZ10]}\].

C \[\text{[Joh96, Zha95, LW05]}\]. C-Numerical \[\text{[LW05]}\]. Calculating \[\text{[FSV14]}\]. Calculation \[\text{[CGV03, Môn11]}\]. Calculations \[\text{[MMH94, SY98]}\]. Calculus \[\text{[DK13, EDK16, Rau02a, Rau02b]}\]. Calibrating \[\text{[GS10a]}\]. CALU \[\text{[GDX11]}\]. Can \[\text{[Emb09, Fos94, HGC00, HSC04, Rum15]}\]. CANDECOMP \[\text{[GMBS12, PTC13, dMGF14, Ste08, SD09, Ste12]}\]. CANDECOMP/PARAFAC \[\text{[GMBS12, PTC13, dMGF14, Ste08, SD09, Ste12]}\]. Canonical \[\text{[BDD14, DV04, De 06, DJK17, DD13a, DD13b, DD14, DL15, GZ15, HMT10, IT11, SC05, SDC12, SD15a, SD15b, Ste11a, SL12, Ste13, Ste16a, Uc12, WCW10, ZQ10, ZM17, de 90, Hon89, WW08]}\]. Capizzano \[\text{[WW08]}\]. Carlson \[\text{[CF00]}\]. Cartan \[\text{[Tam99]}\]. Cartesian \[\text{[HR95]}\]. cascade \[\text{[GKR89]}\]. Case \[\text{[CCG}^+\text{09, FLT13, KK93a, LMZ03, NK01, SCBG05, Sta02, TS90, CM92b, MH95, Tis93]}\]. Cases \[\text{[BJ16, Fei94, So92, Zha04, BHH88]}\]. Cauchy \[\text{[HM90, Kt99, Rod06]}\]. Cauchy-Like \[\text{[Rod06, Kt99]}\]. Causal \[\text{[Ver96]}\]. Cayley \[\text{[LM98a]}\]. Center \[\text{[BE07]}\]. Centering \[\text{[Rie92]}\]. Central \[\text{[BD15]}\]. Centrality \[\text{[BK15, PAH17]}\]. Centro \[\text{[HBW90a]}\]. Centro-Hermitian \[\text{[HBW90a]}\]. Centroid \[\text{[CF02]}\]. Centrosymmetric \[\text{[Bai05, TY02, Wei96]}\]. Certain \[\text{[ADC04, BD93, Dan93, HKG09, HLT91, IZ04, KS08, OS10, Wi08]}\]. Certificates \[\text{[EMC17]}\]. CG \[\text{[NY95]}\]. Chain \[\text{[Bar00a, BF11, Es08, Hey95, HO98, Mat96, Mey94, OW96, ST01]}\]. Chain-Random \[\text{[Es08]}\]. Chains \[\text{[Bar93b, BHKR11, Bor09, BPS05, Br00, BrD07, DS97, DA05, DR93, EHW10, IM94, Kir02, LM06a, Liu12, Mas16, O'C02, TVW15, XG98, Zha93b, CRR93]}\]. Chan \[\text{[JWX03, KO05]}\]. Change \[\text{[BI99, DD16]}\]. Change-of-Variables \[\text{[BI99]}\]. Changes \[\text{[AKPP08, KA07]}\]. Characteristic \[\text{[BDF17, FIS01, IR08, RI11, Xu15]}\]. Characteristics \[\text{[PJB10]}\]. Characterization \[\text{[BZ00, CGH11, FV98, GG13, LF02a, MG10, TY02, Tre05, Wei96]}\]. Characterizations \[\text{[CGRVC08, CT08, CHW10, CH94, GP06, Yas03]}\]. Characterizing \[\text{[CPTP09a, JLZ16]}\]. Chart \[\text{[BBGM92, Tis03]}\]. Chasing \[\text{[Van11, WE91, Wat93, WE94]}\]. Chebyshev \[\text{[BE07, FLT10, GRT07, Koh99, LP17, Lu98a, MV88, NP16, TT98, ZS07]}\]. Checkable \[\text{[LQ16]}\]. Checking \[\text{[JR99]}\]. Cheeger \[\text{[BS13, Wal03]}\]. Cheeger-Type \[\text{[Wal03]}\]. Chemical \[\text{[KS15]}\]. Choice \[\text{[MH13a]}\]. Cheoleski \[\text{[BCMM95]}\]. Cheolosky \[\text{[AM09, BOCL97, BK89, Br09, CP98, CH98, DHT01, DH99, DH01, DO50, DK00, DN11, DOV94, GNP94, GSS96, GMRS00, LGWX12, LC05, LN14, Nap13, NR99, RODS15, RJ14, Ste93a, Sun95a, XG10]}\]. Cheolosky-Like \[\text{[RODS15]}\]. Choosing
[Dan93, KO01, MX98]. Circle [Guo98].
Circuit [SWYM96]. Circulant
[AG91a, BBT05, BEBT07, CT99, Cha89, CNP94, CZZ97, CP03c, dMGF14, Huc92, Mat93b, Tyr92].
Circulant-Like [CT99].
Circulants [NSCS10].
Circulative [Che92].
Class [AKP08, Bor10, BG06a, BrD07, GGRVC08, DMS13, DS16, ESR01, EL91, FP98, Fie95, GL06b, HHSW97, LX09, LM90, Lo09, LW94, MSZ03, Pe01, Pil94, YGM09, IM95, PR88, Rum91].
Classes [HMT93, JOvdD03, Kar11a, HS88].
Classical [HPS +11, Tam99]. Classification [GKK99, HPS +11, Pro13].
Classifications [HRS88].
Classified [KNX04]. Close [AD98, HGC00].
Closed [Guo98, RW01].
Closed-Loop [Guo98]. Closure [DK14].
Cluster [SCBG05]. Clustered [HJP03, SD16, Wü05].
Clustering [MW12, OS10, Van08]. CMV [BDG15].
CMV-Based [BDG15]. Co [JN98].
Co-square [JN98]. Coalescing [DP09, DPP13].
Coefficient [Art03, BZ00, SEM13]. Coefficients [AG00, BES15, Bep06, CR10, Eri92, GXX94, Gre99, IS11, JV04, LS95, Mal06, Mat05, Meu17].
Coherence [IW4].
Collection [CCS05]. Collinearity [FB94].
Collocation [DP10, DP15, HHRV99, LHHR95]. Coloring [MSZ15].
Column [DGGX15, DS10, GNP94, GG03, MM00, RSS94, Z01].
Column-Partitioned [ZZ01]. Columns [IW14, VV89]. Columnwise [SDC +12].
Combination [SW08, All89].
Combinational [NS94]. Combinations [KO14]. Combinatorial [ACST09, IS07].
Combinatorics [DS10]. Combined [LS07].
Combining [GRT07]. Come [HGC00].
Comments [Guo03, Ikr97, WW08, Zha95].
Common [LS10]. Communicability [AB16b].
Communication [BDHS11, BBD +14, DGGX15, GDX11, GMN16, KDGG13, WSSL06].
Communication-Avoiding [BBD +14].
Commuation [GP03]. Commutators [BK97, LS10]. commute [Stu88].
Commuting [Per89]. Commuators [CM03].
Comon [ZHQ16]. Compact [VMM15, HK12, KHH04]. Companion
[BDG15, BB98, DDM10, Kit95, Law13].
Comparison [MS02, TMNV10].
Componental [BH93, LW02a].
Complement
[CNW08, ET10, HS95b, LZ05b].
Complementarity [Bai99, CH93c, CHLS00, Gow90, GS94, GS02, HLTI2, Kan96, MP95a, MN97, MPS09, MM00, MPS00, PYHK93, QL99, Ven93, Pan91, WBP99].
Complementation [DV06b, Sen98].
Complements [ABN09, CDG10].
Complete
[DD12, Fie96, Gou91, GDF01, HV97, Tsa98].
Completed [Gut92, Gut94]. Completely [Au00, DS97, LQ16, QXX14, SMBJS13, TVD15].
Completion [Asw16, BJL98, BDR12, CSK95, DS10, Fri02, JR88, Lau00, Niev93, SC10, ZF14, BJS95].
Completions [CD98, Dan93].
Complex
[BLAK91, CHH +15, COV14, CW96, DZ01, GITT96, GWZ05, GZ09, Hig92, HLM94, HV05, JLZ16, JP09, Koh99, LX12, Mar11a, MV07b, RVA05, Tam98, TTT99, VNM14, WD94, YL08, CH88, CM92b, Hon89].
Complex-Symmetric [HV05].
Complexity
[DHY06, KKS97, LH05, PTC13, Xia12].
Complimentarity [CC92]. Component
[RST10, Yan98]. Components [AR93, BLO04, CI95b, JS04, MTV10, Ste08, SD09, Ste12]. Componentwise
[CC09, Dem92, EGTP17, GK93, RK95, Rum97, Rum03b, Rum15, Zha93a].
Compositions [BM01]. Compressed
[HS14, JKN11]. Compressible [BIS12].
Compression [Spe98]. Compressions [FHHJ06, MA99]. Computable
[GI96, Lie00, GI97]. **Computation** [ASVM04, AMMS08, ABM17, AT98, ABF16, AMVW15, BL13, Bar93b, Bar00a, BL94, BL00, BKS08, BMX02, Bez12, BN10, BL91, BRZ06, BHN97, CJL96a, CJL96b, CR16, CDD00, DDV04, Dhi98, DJ00, Ef13, FH10, GL17, GT08, HP09, Hey95, HIW15, HI15, Ian09, IS08, KS17, LC16, LB96, Mai06, Mar91, MR97, Mel04, MG10, Ost10, PLM94, RDC93, SC05, SGX14, Su12, WZ17, Zen16, Fuh88, GBCW89, O’L90, WW08].

Computational [DMP96, KBHH13, LPT10, Mei04].

Computationally [BN05].

Computations [DP15, EKNX93, Gil94, GZ13, Hig93, Koe07, LNP93, LE02, Mat95a, Vog99, WY17, YB91, GS92].

Compute [BD98a, GNP94, GO06, HMP94].

Computed [Gre97].

Computers [BMSV92, NY95].

Computing [ABL94, Ain17, AMH09, AH14, B096, Bar02, BF11, BHR10, BGN12, CHZ16, CW96, DH03, DA05, DHV92, ES09, EW13, EM15, EHW10, Fer97, Gen98, GHHW90, GPKX94, GSV00, GL13, GKL14, GOS15, Han03, HY01, Har05, HW98, HO98, HMMT04, JKM11, JMM14, JS94, JN03, JCG14, KL98a, KM11, KM14, KV14, LW97, LP13, LV17, MV08, Mar11b, MOR04, MV17, NGB10, NH12, NS11, NS94, PW90, QS06, QACT13, RI11, RK95, RST01, Sni03, VV10, Wat92b, WD95, WLV06, Xu05, Xue96, Zha17, vDHvdV00].

comrade [NP16]. **Con** [HB12].

Con-Eigenvalue [HB12].

Concavity [Gro98, KN94].

Concept [Han94].

Concerning [Kir02, Wei95].

Condensed [Meh99].

Condition [AMH09, AW10, ABC07, AW05, BDMS10, BDM12, BT14, B190, BLP90, BD10, Bor10, BK06, CT93, CD05, CC09, DBW15, DMC13, Dhi98, Dm96, ES05, GI00, GK93, GKLX94, Grc10, GV07, Har05, HH92, HH98, HR14, HQ16, KK06, Kar10, KL89, KL19, Kir02, KPM09, KW94, LX09, Li06, LS11, LW94, LP11, LT94b, Mat95b, Mor12, PP92, RRA05, SST06, SB92, gS00a, Tan94, TT14, Tur97, VT98, ZMW17, Ede88].

Conditional [CK00, RR08].

Conditioned [MX98, NV02, PAP00, FGS96, Rum91].

Conditioning [BG11, Baz00, DP10, DP00, GTP113, HMT06, HIW15, HL03, HN90, J12, L18, L19, Ma16, NN04, RR98, ST08, SD15b, SD90, SL12, VH16, ZWF05, Gd88, OW88].

Cones [Pi14, V00].

configured [JH88].

Confluent [Hig90b, Lu94, Lu95, Lu96, Lu98a, ZZ98b].

Congruence [F06, PR91, Hon89].

Conic [PJB10, Sec11].

Conjecture [BT03, CG15b, JP09, ZH16, FF93].

Conjugate [AV91, BM00, BES98, BG06b, CFT16, CGLV11, DFT92, EG00, FAT16, GRT07, GTPT14, GMN16, HS10, KL08, LH05, Saa06, Tre05, YBZC16, Zha10b, GS92].

Conjugate-Gradient [CFT16].

Connection [BSS13, GKR89].

Connections [FN04, MBN17, Sid95, SX11].

Conquer [AA94, CK91, FLM12, GE95a, GbbCc03, LGC+14, Sut13, QX08, GE95b].

Consecutive [DD99, EG00].

Conservation [CG03a].

Conservative [OP05].

Considerations [DHW92].

comsimilarity [CH88].

Consistency [Han94, Kn95].

Consistent [CPTP09a, FST+13, LWYW14, YGM09].

Consistently [Har93].

Constant [GHL03].

Constants [BT10a, Cro16].

Constrained [ALP07, AE97, A092, BN06a, BMO92, Bar98, BBBT06, BB09, BK07, CG10, CH99, DS16, FM93a, FT07, GW92, Gu95, Jam92, KP08, LY03, Mar11a, PSM12, SZ07, SS13, SDA10, WD00, ZHY16, FGS96, GL96].

Constraint [Ba05, BNW09, Cao02, Do07, KGW00, Log17, yPWjP12, ZH03].

Constraint-Style [Do07].

Constraints
[AW00, CG98b, EAS98, GS10a, HS10, See11, VBW98]. Constructed [Cap98].

Constructing [Chu95, DJST05, KU13, LP17].

Construction [AG91b, CS10b, GZ15, LHC16, Mae98, Tur03, VF00].

Constructive [AR93, BLW15].

containment [BF89].

Continuation [BT10b, CH93c, Kan96, Ple00].

Continuity [de 90].

Continuous [BET02, BZ00, CH94, WBP89].

Contour [YXC +17].

Contour-Integral [YXC +17].

Contractibility [AhS98].

Contraction [BRR00, CG15a].

Contractions [Næv93, JR88].

Contribution [BG11, SC05, WW08].

Control [BB12, BOS16, BM06, DS16, GPM03, HS10, LS95, LT94a, Q506, SCPW12, FF93, GP88].

Corresponding [AT98, GR93, QACT13, QCT15].

Cosine [CDD00].

Cosine-Sine [CDD00].

Cost [RT93].

Counterexample [BTV03, HS00, Kol03].

Counterexamples [JP09].

Counting [DLT15, Fer98].

Counts [GNP94].

Coupled [CH97, DK15, S91a, SD15a, SDD15].

Coupling [DS97, FNV08].

Covariance [BMfY03, BN06a, BKK07, BX05, CS10b, Fuh07, Lu10, RD95, SCA12, Ste91a, VP93, dBG08].

Covariance-Preconditioned [BN06a].

CP [FZ16, ZF14].

CP-Matrix [FZ16, ZF14].

Cramer [DTGVL05].

Cream [SW91].

Criss-Cross [LV17].

Criteria [AM09, ADR92, Ari13, AM05, AB16b, CPTP09b, COV17, EL91, BF89].

Criterion [AH07, FM93b, Li02, SNC02].

Critical [AAB10, BJL98, CCG +09, DLT15, O’N05].

Cross [LV17, GBCW89].

cross-validation [GBCW89].

Crouzeix [CG15b].

Crystals [HHLW13].

CS [Ste16a, Sut12, Sut13].

Cubature [Sch95b, Xn15].

Cubically [NS09].

Cubes [NS09].

Cycle [Gri88, ADC04].

Cyclic [BG94, Drn10, GH92, Ger92, Guo03, Har07, HMR01, Mar91, Nou96, RT99, SS89].

Cyclically [GV99].
D [Zha95, SYJ00]. D. [Ikr97]. DAE [BL02]. Damped [Lan07, PTC13, Tas15b]. Damper [TV09]. Damping [Tas15a]. Dangling [IS08]. Darcy [FAT16]. Data [AM09, AG91b, AKP08, BKKL91, CGGS98, CGP09, CDLP05, EL97, EGK91, GG11, HJP03, IO16, MMD08, MU13, MW12, RK95, SNC02, Wat01, x96]. Davidson [HP02, HKP05, HN09, Not05, SvdV96, Sta02, SX11, ZS07]. Death [Clai10, DQ02, Gdl108, Guo02, Guo03, HMR01]. Deblurring [BDSC11, BBTK08]. Decay [BES15, BS15, FSZ14, MNT10, Nab99]. decision [LP89]. Decisions [Ste16c]. Decomposability [GDF01, SL94]. Decomposable [DS97, Li91, MHG15]. Decompose [FT16]. Decomposing [BLW15]. Decomposition [AL98a, BB08, BOCL97, Bar02, BDD14, BOS13, BD95, BX08, CS01, CM92a, CG92, CGP06, CL09, CLN12, CFG97, CDD00, CF02, CK00, DDV00a, DDV04, De 06, De 11, DG91a, DD08, DD12, DD13a, DD13b, DD14, DL15, Drm00a, Eir00, Fri05, GL17, G96, dMGF14, Gru06, GO95c, GOS15, GW92, HMP94, Hem95, HMMT04, HMT10, HIW15, HV97, HJJ03, JS94, JN03, JU11, Kap90, KL92, KZ10, Kol03, Kon00, LRA93, LF02b, LS17, MV07b, Mat93c, Mat95b, MV92, MHG17, NMG10, NH12, O’N05, Oovid98, Ose10, PS94, PE95, PP05a, Rei91, Rob16, RS94, Sai16, SST05, SS06, SDC12, SD15b, Ste10a, Ste11a, Ste12, Ste93b, SV00, Sun95b, gS00a, SV15, Suc12, To97, Tum02, Van10, VNM14, WE94, WCW10, Xu05, YB91, YL08, Zha91, Zha93a]. Decomposition [ZH16, vdSBvdV93, AG88b, CS98, CG90, GI97, IM95, WE89]. Decompositions [BES05, BG15, BvdMR+97, BL10, CGCDM13, CD00, CHH+15, CD13, CF02, De 08a, De 08b, DN08, DCM08, DV92a, De 94b, Dem99, Di 00, DE99, DIS15, DMM08, F9B95, Fie96, GP06, HY01, Her90, Her96, Kol01, LC16, LS07, MMD08, MV08, SCPW12, SS91, SD15a, SDD15, SdA10, SL12, Ste16c, ZMK02, ZS94, vdmRR01, Gad88]. Deconvolution [MLV00, PO03, Ya100]. Decoupling [CH06, CMT09, DIS15, KN99, vdWM95]. Decreasing [Pan93]. Dedication [Bru88, GKR09, Mo102]. Deduce [SCBG05]. Defective [Zen16]. Defectivity [BGMN15]. Deferred [vdG93]. Deficient [EG15, Fos03, HS13, Men12, MH15]. Defined [IS11, Kar11a, Tum97]). Define [AfPA07, BGN03, BW95, BJL98, BDR12, BD05, BS16, Cha00, CG98b, DHT01, EG00, GI00, GI00, Grut06, GL10, GHT10, HO94, HMT09, HP02, Hu92, JH02, Joli08, JSG15, KN91, LNTXX1, LNTX13, LS11, Lu98b, MV97, Mat92, Mat97b, Mel04, Moa05, Niel10, NY95, NV02, OR93, Pha01, Ple00, Ren02, VGV09, WZ91, Whi90, XG10, Ye09, ZWF05, Zha17, Zha16b, AG88a, FM88]. Definiteness [CCL09, Roh94]. Definitions [De 08b]. Deflated [AGJ14, CGL11, EGG11, GGLN13, Gut14]. Deflating [BBMX02]. Deflation [BBM02b, Dax08, EN08, KKV07, Kre08, LS96, NAY12, PR12, SEM13, TMN10]. Deflations [MV14]. Deformations [EKK97, GPM03]. Degeneracy [CC92]. Degenerate [CGS01, DSSC11, MM05]. Degree [ADD96, BS90, HM04b, Lie08, Mor94, Mur98, OV99, Cee92]. Delay [DLMT13, MG10, MBN17, Yan93, MJM11]. Delocalization [KMS15]. Demmel [DMC13]. denominator [Nov11]. Dense [CGHR07, For03]. Density [BKS08, LW14]. Departure [Lee95, Lee96]. Dependent [BK15, GMSB12, MMW17, PSW12, SK16, SS17, SdA10, SL12]. Derivation [BL93]. Derivative [AMH09, BMGNN92, CCH98, GL17, Kho99, KLX04, NoF17]. Derivatives [ACL93, AT98, BE03, HL13, HR14, OW95, QACT13, Seb96, Sen06]. Derived [KC94].
Descent [KL08, Pan91]. Described [KLX07]. Description [SZK95]. Described [KLX07]. Description [FV98, Hla08, Pop12, Ste16b]. Descriptions [SZK95]. Descriptor [BGMN92, CT91, CH06, CFL07, CT08, KLX04, Min15, RE13]. Design [BIS12, DK99, GL99, GMS92, Kau06, KB90, RD95, SNC02]. Designs [SZK95]. Descriptor [BGMN92, CT91, CH06, CFL07, CT08, KLX04, Mim15, RE13]. Design [BIS12, DK99, GL99, GMS92, Kau06, KB90, RD95, SNC02]. Designs [KMS01, KMS03, LP13, NW02]. Detecting [GHT09, GHT10]. Detection [BV92, Bom00, DD12, MS10]. Determinant [ASA04, BLdP97, BM01, CT88, FSV14, HKG09, JOvdD03, Reu02, VBW98, MP88]. Determinantal [LZ05b]. Determinants [FH93, IR08, Stu91, MV88, MOvdDW89]. Determines [Par05]. Deterministic [BIS12]. Development [PGVR98]. Diagonal [ALN07, BV90, BOS16, Bor14, CDGS10, CNW08, Chu95, DJST05, DK99, DK01, GGV05, Gre92, Har05, Hig97, KB93, SCPW12, Tho94, Tis04, Wal95, ZFW07, HD97, HRS88, MV88]. Diagonal-Plus-Semiseparable [Har05]. Diagonalisation [Bin90]. Diagonalizable [FJ06, LM06b]. Diagonalization [Asf08, BGBM93, CSX15, CL17, CS96a, Dav08, De 06, DK15, Joh08, MM11, Pha01]. Diagonally [BS96, Dan91]. Diagonally [CE02, DDD14a, DDD14b, For96, Hu92, Li02, LZ05b, Mat09, NV94, SWYM96, Sle09, ST14, Ye09]. Diagonals [HHC03]. Dichotomy [MS97]. Difference [Bor03, GKK99, GT99, MT15, SCA12]. Differented [VP93]. Differences [AMPV97, CP03b, CT93, SvdVM00, Zha00]. Different [YL16, Whi89]. Differentiable [LS01]. Differential [BGMM15, DLMT13, Ek17, Gre92, HHRV99, KM06, Moa05, RE13, Zh12, JN98]. Differential-Algebraic [DLMT13, Ek17, KM96]. Differentiating [GPTI14]. Diffusion [BWQ06, BGSC07, Ern00, ILSN17, RP10, de 92]. Digital [SWYM96, DB88]. Digraph [Sev03]. Digraphs [AB16b, MOvdDW89]. Distributions [GCL16, MA99]. Dimension [HJP03, Ost10]. Dimensional [BvdMR+97, CHIH+15, GV99, Gre99, HHLW13, Ji92, JLS01, Kil99, OST08, RHE14, Sch95b]. Dimensionality [NBS10, OST08]. Dimensions [YL16]. Diophantine [BT92]. Direct [Bjo14, Gk06, Hig93, Xia13]. Directed [DN11]. Direction [GLV10, HXY11, Par94]. Direction-of-Arrival [Par94]. Direction-Preserving [GLV10]. directional [gWeWL12]. Disc [LZ05b]. Discrepancy [CS10b]. Discrete [ASA04, BF06, BF93, Bor03, BD95, CF02, CFL07, CZ03, Cor93, DL17a, For03, Guo98, HHLW13, JLS01, JOAk10, KO05, KH13, KLX04, Kuz15, LF02a, LG02, Lin11, Mas16, RT93, Sun04, TCTM00, Tur97, Van08, ZZZ04, LP89, Meh88]. Discrete-Time [CFL07, Cor93, JOAK10, KLX04, LF02a, LG02, Mas16, Sun04, TCTM00, BF06]. Discrete-Trigonometric-Transform [KO05]. Discretization [DGMR00]. Discretizations [Beb06, Ern00]. Discretized [CDGS10]. Discriminant [CGH11, PP05a, PP05b, ZLN10]. Disjunct [CdS90]. Disk [Baz00]. Displacement [BT17, BJMS17, BD95, CK91, CLG93, CSK95, Di 00, KC94, KO05, Pan93, PW03, RD95, DS95, GKR89]. Dissection [BV90, BHL+93, BT02, GTW00, HR95, SV93, Ten97]. Dissipation [MM16]. Distance [AKL+11, Bar00b, BS16, BLO04, Dem92, DLT15, Fio11, GHHW90, Gu00, GMO+06, HW98, HS16, JSG15, KMS15, Lau00, LOvdD02, Men08, Qi13, Rum97, BJ95, POW88], distance-regular [Pow88]. Distances [KNS97, LM06b, Lim13, Rum03a, Rum03b, YL16]. Distinct [Far16]. Distributed [ADLK01, ADV05, IO16, KP92, Vog99]. Distribution [AW10, AW05, BF11, DQ02, DD10, DK08a, GN03, Har99, Mey94, WA07, ZZTA02].

E-optimal [NW02]. Early [BBM02b, KK07, Kre08, NAY12]. Easily [LQ16]. Eckart [VNVYM14, Kol03, Lin11]. Edge [AB16b]. Effect [CH93b, IW14, Kre08]. Effective [BM99, BW99, COV17, LRN06, Mar91, Tan99, XX17]. Effects [SvdVM00]. Efficient [Bar98, BMSV92, BN05, CGS98, CGGS99, Cha00, CH97, DW06, Day97, DK05, EMC17, FGS14b, GL03, GNP94, GE94, Gu98c, GOS15, LHC16, LGWX12, RG05, RDC93, SY100, SX09, TV09, TETAO5]. Efficiently [EM15]. Ehrlich [BGT05b]. Eidson [HN90]. Eigendecomposition [HHLW13]. Eigendecompositions [AB05, DK06]. Eigenpair [WZ17]. Eigenpairs [CE94, Eff13, KM11, KM14, HL06]. Eigenpolynomials [Men99]. Eigenproblem [Bai05, BJ16, CD15, DHT01, DMM03, GE94, GGBCC03, HB94, RBB90, gS96, GE95b]. Eigenproblems [Anc91, GLS94, GL05, Gui99, HLT08, Jia95, SK16, Ste01, Ste02, Tas15a, ZS07]. Eigensolver [BDG15, HHLW13, TP14, XDC14, YXC+17]. Eigensolvers [KN09, NZ16, Tis01b]. Eigenspace [Li98b, NS94, XK94]. Eigenspaces [CZ03]. Eigenstructure [CKL04, Mm00, NK01, TDV15]. Eigensystem [Mat95a]. Eigensystems [LS07]. Eigenvalue [AA94, Aho11, AHS00, AD98, AL95, BDF99, BS05, BL12, BL13, Bar93a, VMM15, BF00, BMS06, Bet09, BT10b, BB98, BH13, BD90, BGT05b, BEG07, BBGF00, Bol90, Bor10, BKMS14, BKMS15, BEG05, BGBM92, BW93, Cha00, CPZ11, CKL04, CG06, CKP11, DBW15, DW06, DG91c, DD10, DLM04, DW15, DD14, DYY16, DK08a, Eff13, EGGR99, EW13, Emb09, Fri92, GH99, GITT96, GT17, GK06, GT02, GR93, Gr96, GKL97, GKT09, GL10, GZ13, HB12, HH98, HP02, HKP05, HGL05, HLQ09, Isp06, Isp09, IM16, JKM11, JMM14, Ji92, JS04, JLS01, KKT06, Kar10, KMM14, Kau93, Kau06, Kir92, Kni04, KW92, KX07, LZ14, LX09, LC15a, LSV16, Li98a, LNTX11, LNTX13, LM03, LKK97, LE02, MV97, Mac95, MMM06a, MV17, Mat98, Mee09, Mel04, MBN17, Miy14]. Eigenvalue
[MMH94, NOZ11, NQZ10, Ors06, PM06, Ple00, Ple06, QACT13, Q CCT17, RSS09, RW01, Saa16, Sec11, SCBG05, SHY10, Sid95, SvdV96, SY98, SW94, SB11, Tis01a, TH01, Tis03, Tro90, VG V09, Voo12, VYH11, W95, WE91, Wat93, WE94, WS00, fX96, Xue96, XE12, YGM09, YBZC16, ZS14, Zen16, Z98a, ZWF05, Zha10a, ZXL14, ZBJ15, ZZTA02, All89, GIMT95, Ove88, San88, Tre88a, Tre89].

Eigenvalues [AS93, AAB10, ACL93, AT98, Axe92, BNS13, BS96, BGH07, BS16, Cao09, CFJKS13, CHZ16, Chu95, wC03, CZ03, CGS94, CDN14, CW96, DGMR00, DPP13, DH97, DK08b, Ede88, EI98, Elm97, EW13, EM15, FL02, Far16, Fer98, FG94, GN03, GM00, Guo98, HO94, Har99, HDT10, HC15, HL02, IN09, JH02, KKM14, Koe05, KPM09, KW94, Kui00, LNV92, LGC08, LPS08, LY91, Mal06, MR97, MS10, Mel99, Mel04, MYK14, MBN17, MBO97, Naja98, NQB14, NS09, NST15, OW92, OW95, Pen01, Pen05, Pes14, QACT13, QCT15, QCT16, RS96, Ra90, Rap91, RVA05, Ri11, Rohl93, SHJ09, SM16, Ste91b, Tru06, Wal03, Wat00, Wil08, Ye99, Zha05, vDhvD00, Auc89, HM89, Sun89].

Eigenvector [Del97, EGGR99, Fer97, GR93, Gru06, Har98, JS04, Lat95b, Mat97a, Men99, PDF16, Stu89].

Eigenvector-Eigenvalue [EGGR99].

Eigenvectors [AMS07, ACL93, AT98, BdTD11, DP04, JK05b, Kuz15, Mor95, Pes14, Pow88, QACT13, QCT15, PSL09].

Either [Ito96].

Eitherwise [ABN09].

Elimination [AZB98, BDD13, BS09, CH99, DGL99, EL05, EL08, Fos94, Gar09, GP93, GT04, GL93, GG03, Gov91, Gov91a, GGC09, HP99, Hig90a, Ku13, Liu90, QXX14, TS90, YC97, HH89].

Ellipsoid [CG10, SCPW12].

Ellipsoid-Constrained [CG10].

Ellipsoids [DN11].

Elliptic [ACST09, Be06, CDGS10, Gre92, GV99, Gre99, HHRV99, MS97, PS04, KCT09].

Elliptical [LT89].

Elman [BG05a].

Embedded [Bry17].

Embedding [QCT17, BV88].

Embeddings [BGH07, GM00].

EMS [Lat95a].

Enclosure [Miy14].

Enclosures [DN11].

Endpoint [Bry17].

Enhanced [EEK99, RCH08].

Enhancing [AB16b].

Enlarged [GMN16].

Ensemble [KMN11, JJ88].

Entanglement [NQB14].

Entries [Chu95, DK09, DK01, Har99, Zha05, JDoDa99].

Entropy [BW95, Le96].

Entrywise [TVW15].

Envelope [GP97].

Environment [DG91b, DG91c].

Episodic [HN97].

Epsilon [SS91, ZS94].

Equality [CH99, FM93a, GS10, HS88, So92, Zha04].

Equality-Constrained [FM93a].

Equation [AGL98, BGSC07, BM96, BIP08, Bor03, Che01b, DL92, FP17, Guo1a, GH07b, GIM08, GKL12, HK01, Ho90, Kag94, KB90, KO15, LS10, Li99, LBL05, LG02, LB02, Lu05, MOR16, MX09, MP11, OL99, yPWjP12, SC03, Sta02, Sun04, TV99, Tsz93, Wim92, XZC99, de92, BHH88, BC88, KP92, Ozg91, Sch95a, Ts94].

Equations [BWQ06, BD05, BK95, BT92, Bra98, BGMN15, C95b, CS98, CG03b, CG08, Che01a, CHH95, CCG09, CFL07, CH97, C910, CR10, DTGV05, DK15, DSSC11, DLMT13, EGT17, ESR01, EK17, Ern00, FAT16, FHS09, Gar90, GKK99, GH07a, GV99, Gre99, Gu98c, Guo98, GL00b, GL00a, Guo1b, HHRV99, Han94, HS95a, HP92b, HM97, HO92, Joo92, JL98, JOAKt10, KP99, LHHV95, LW02b, LwCKL13, Lim07, LX06, ILNS17, LX12, LY91, MT15, Mor00, Neu00, PR12, Pop15, RW94, RRR06, RDC93, Roh03, RP10, Sch95b, SS13, SW11, Sim16, SS17, CS98b, VV10, Vav92, gWCW12, Wri95, XCG10, ZHZ05, von93, BMO92, GL96, Wim88b].

Equilibria [WSSL06].
Equilibrium [BL02, DD10, DK08a, Mar91, PW90, Vav94].

Equivalence [HLT91, HLM94, Tho94, HRS88].

Equivalences [GPTPV16]. Equivalent [Kni00, WE89].

Ergodicity [AG00, Art03, Ger92, IS11].

Erratum [Ano11, CH93a, CRS01, EDK16, HC89b, JOvdD04, LNTX13, PU14]. Error [Art00, AB01, Bar93a, Bar93b, BEBT07, Bor10, BCW12, CP03a, CH93b, CL09, DH93, DMR09, DMM08, EGTP17, EMC17, FKL13, Gow96, GJTP12, Gu15, HL08, Hig90a, HH92, HH98, HL708, JR13, JTP10, KA10, KMN11, LW02a, LC15a, LVV16, LPT10, MM11, Mas16, PP05b, RBB90, RJ14, Ste05, Ste06, gS00a, Van10, Var94, WY17, ZS02, ZK17, ADD89, CM89, CM90, Tsa94, VV89].

Error-Controlled [MM11].

Errors [AA09, BKMS14, BKMS15, CGGS99, CGSS01]. Errors-in-Variables [CGGS99, CGSS01].

ESPRIT [Par94]. Essentially [SGX14].

Estimate [BGT05a, CP03a, CH93b, GJTP12, KMN11].

Estimates [AL95, BKK07, Bol90, DMR09, FKL13, Gru06, GKL95, GKL97, Kni04, LW02a, Lat95a, SHY10, Var94, Zul11, KL89].

Estimating [Bol90, Del97, Gre97, Gu00, GMO+06, JTP10, KW92, LC15b, SW97, TV90].

Estimation [AMH09, BEBT07, Bis90, BLP90, BKK07, CS01, CGGS98, HL08, HT00, KLR98, LX09, Mat95b, Men08, Par94, PP92, SB92, SES95, Tan94, UCS17, Wo93a, XK94, YLA97, Pea88].

Estimators [TT14, KP92]. Euclidean [BJ95, Bry17, DS17, Drm00b, GHHW90, HN98, Lau00, Par99, QL13]. Euler [BL91].

Evaluating [GTJ13, Hig01, MP88].

evaluation [BN88]. Even [Mel01, Mel04].

Even-Odd [Mel01]. Events [EHW10].

Eventually [JS07]. Every [Ito96].

Evolution [Tre90]. Evolving [DL03, FH17, Saa16].

Exact [AW10, BGT14, Emb09, GK15, GGC09, HK01, HI15, OSS14, RK95, ZLY02].

Exactness [Sch05]. Exchanges [Wat98].

Exclusion [HL02, Pe105, SHJ09].

Executed [MS15]. Existence [BB95, FMX02, HQ16, Lat95a, ZWP05, Gad88].

Exit [GN13]. Expansion [BRR00, Rau02a, Rau02b, Vac94].

Expansion-Contraction [BRR00].

Expansions [DM05, HR93, HKG09, SM14].

Expectation [Fuh97]. Expectation-Maximization [Fuh97].

Expected [EHW10]. Experimental [LP13].

Explained [EM00]. Explanatory [CH93b].

Explicit [KK12, Kuz15, MX09, MBN17, Pop12, ST01, Ste91a, Wel11, Win92].

Exploitation [HKBM08].

Exploring [EL92].

Extension [BB96, BvdMR97, Bom00, Jia01, Ko03, Pia11, Tre90, Zhe96, Zhe98].

Extensions [HN90, JMWF96, Bar98].

External [SZK95].

Extrema [Nie10].

Extremal [GZ09, GL13, GKL14, HLW94, KW94, TL06, Wim88a, Zha05, HPR89].

Extremality [GWZ05, JP09].

Extreme [BGN12, DK08b, LC15b, LT94a, Mel99, Nie10, vDHdvV00]. Eye [LM06a].

Facial [LP96]. Factor [BHR10, CS10b, DD13a, DT11, Gen98, GGL14, Li95, NNF14, SDC14, SdA10, Wat92a, BK89, Zab89].

Factored [BS02a, BS02b].

Factoring [CB90, Gil13, JP94]. Factorisations [CI94].

Factorization [AP02, Ari00, AL95,
BBD$^+$14, BF11, BFm03, Bé09, BHP03, BMMT10, CRKU08, CPS97, CH98, CLe00, DDe14a, DD97, DH99, DH01, DH05, DGX15, DGSw06, DOV94, DT11, EL92, FP16, GP93, GH91, GTO4, GTW00, GN94, GSS96, GO95, GK15, GMRS00, GDX11, Gu95, Guo01b, Gup02, HT17, HY01, HJOvdD93, IUM14, JMM14, JOvdD01, JOvdD04, JP99, KDGG13, KP08, LRRN06, LGWX12, Liu90, LN14, MV96, NR99, NV99, OgI10, PK93, PK94, PM06, PW14b, PL97, QXX14, RR94, RODS15, SYJ00, SV97, SV05, VP93, Wo93, WT11, XCC14, XG10, XX17, XQ08, Za01, ZFW07, BBDS95, CH88, DY90, Liu88, Naz89].

Factorizations
[ANT09, Bez12, BCMM95, CS10a, CMPX03, CK12, DK00, DN11, DM05, EMC17, rFO06, Fos03, LC05, MMT05, MW01, Nap13, Ogi10, RJ14, STvD17, SMBJS13, SB92, Ste93a, WL12, CF89, JOvdD89, Wri97].

Factorized
[KY93].

Factors
[GL93, dMGF14, LS03, Li05, LB96, PR01, SST06, Wo93, ZZS02, ZZS04, HH89].

Fail
[Emb09, Fos94].

Failures
[EM00].

Falk
[SH91a].

Families
[GWZ05, GZ09, Mai99].

Fan
[FHLS13, LM98b].

Far
[Rum15].

Farenick
[Ikr97].

Fast
[AP94, AMVW15, BB08, BDSC11, BS12, BES15, BBD$^+$16, BOCL97, BBTK08, BL94, BEG$^+$09, BEGG07, BIP08, BK95, CS98, CG03b, CDG$^+$05, CGP06, CDG$^+$07, Di09, DV08e, DV08d, GR17a, GS03, Gu98b, GMO$^+$06, GO11, GGO11, GB01, HD12, HP90, HR00, HR04, HG14, HLQ09, HHLW13, KS17, LQ09, Law3, LHC16, Lu94, Lu95, Mar11b, MLV00, MT10v, Miiy14, Mon11, NRT92a, NPO2, OSt09, PK93, PK94, PP92, RE91, Rod06, STvDD17, SB03, Ten97, UCS17, VS14, VP93, XCC14, XCC15, XK94, XE12, YXC$^+$17, ZFW07, ZLN10, ZZ98b].

Faster
[AB13, ACW17, BJMS17, Not05].

FastMap
[Ost10].

Fat
[HHC03].

BBGL92].

Fausett
[Zha95].

Feasibility
[AM09, CE02, FM93b].

FEAST
[TP14].

Features
[NSC10].

Feedback
[BBGN92, CCH98, CMT09, KLM04, RE13, Yan93, Zab89].

FEM
[GSC15, KA10].

Fenchel
[Zha10b]. Few
[EW13, LC15b, STT17].

Fiber
[Kau06].

Fiedler
[BDTD11, DDM10, NP16].

Fiedler-comrade
[NP16].

Field
[LWWY14, RW01, YGM09].

Fields
[Fay95].

Fike
[wC03].

Fill
[BFM03, HP09, ZFW07].

Fill-In
[BFM03].

Filter
[CMPX03, GR07, GW00, HM04a, KMN11, SCA12, DB88].

Filtered
[BBK08, Saa06].

Filtering
[ET10, MBM08, dKV10, KCT90].

Filters
[Sor92].

Finding
[BBTT06, BBK08, Bor14, CG15a, DYY16, Fei94, GPS09, GZ09, LNP93, LGL16, NQZ10, OW96, Pi94, SD12].

Finer
[ZZTA02].

Finite
[ACST09, BF11, BLW15, Beb06, BHK11, BvdMR$^+$97, CP03b, CD15, CTY3, DJS05, GIKT95, HK95, LF02a, PP11, RW94, R05, RP10, ST08, SII03, Ten97, GS92].

Finite-Dimensional
[BvdMR$^+$97].

Finite-Element
[ACST09, ST08].

Finite-Precision
[PP11].

Finite-state
[BHKR11].

Finitely
[G96, GB7].

Finiteness
[BT03].

First
[DA05, DIS15, Hem95, KN99, Lu10, SM16, dBG08].

First-Order
[DIS15, Hem95, Lu10, dBG08].

Fischer
[Zha04].

Fisher
[BBV07, LH05, VJ07].

Fitting
[EGK91, SCPW12, Wat01, GBCW89].

Five
[MV88, TS99].

Five-diagonal
[MV88].

Five-Point
[T99].

Fixed
[BS10, DD08, HNT99, Zab91].

Fixing
[Hel00].

Fletcher
[YBZC16].

Flexible
[CGLV11].

Floating
[DJ00, JR13, LST91, RM91].

Floating-Point
[DJ00, JR13, LST91].

FLOPs
[LN14].

Flow
[AL98a, BL02, KN09, Lag91].

Flows
[DRTW91, KLS16, LX12, Mat05, WE90, WE89].

Fluid
[CGS94, LX12].

Focused
ZH05, ZLN10, CJL96a, GBCW89, VV89]. Generalizing [DTGVL05]. Generate [JOvdD03]. Generated [IZ04, Tre88a]. Generating [AKP08, Ser96, vdMS05]. Generators [Pil94]. Generic [CO12, COV14, Cho10, DD08, DD16, DL15, Ste08, SD09, YNVMI4, WC14, IM95]. Geodesics [Bry17]. Geometric [AFPA07, BD93, BS10, CR16, CF00, DQ02, DL02, EEK97, EEK99, JK95b, KN09, Lim13, Mos05, MLR9, NQ14]. Geometry [BDD13, BF06, EAS98, QC16]. Give [Nie10]. Given [BHH08, CPTP09a, HP09, Næv93, Pen95, Whi00, X96, YB91, dF05, BN88, HPR89]. Givens [DV08b, GO95]. Givens-Weight [DV08b]. Global [BBT05, BBT06, BT08, BM01, CG03a, Drm10, FP98, Gow96, WC14, WCY15]. Globally [Auc91]. Glued [PV09]. GMRES [AG14, BM05, BGT05a, BR08, BW97, CG15b, ES12, FLT13, GPS96, HY10, JRG09, Kn00, Lie00, LS04, Meu11, Meu17, Mor95, Mor00, MH15, NRT92b, PRS06, RY05, SEM13, TM12, Tol97]. GMRES-Equivalent [Kn00]. Goal [BvdG11]. Goal-Oriented [BvdG11]. Golub [AG91a]. Golden [Lim07]. Golub [Ari13, HPS15, Mo92]. Good [MMM06a]. Google [WW08, LM06a, SC05, WI09]. Graded [Li05]. Gradient [AV91, BM00, BES98, BG06b, CFT16, DFT92, EG00, FAT16, GRT07, GMN16, HS10, KL08, KN09, LH05, MMH94, NOZ11, YBZ16, GS92]. Gradients [CG03a, GTPT14]. Gram [PR06, BP92, Di09, GGL04, GMRS00, HII15, Ste05]. Graph [AR93, AL98a, BSS13, BGH+06, BHI+08, Bor09, FT14, FY98, FC01, GPS90, GMS90, GM00, KA07, MP12, PV17, Van08, dF05, vdWM95]. Graph-Theoretic [vdWM95]. Graphs [BJL98, Fei00, FT16, GTJ13, KN99, Lew91, Pen98, PSL90, Pow88]. Grassman [Mac99]. Grassmann [CDH12, ES09, LE02, QZL05]. Greedy [ABM+17, CB00, MHHG17, NR99]. Green [HK08, Na01]. Greville [ZZLY92]. Grid [DTF92, PV17]. Grids [BHL+93, RW94]. Gröbner [BDD14]. Ground [Bar08]. Ground-Based [Bar08]. Group [BT06, DS17, DJ09, Gdlli08, Jia89, Kir95, KNS97, KN98, Lew96, Moa02]. Groups [DL03, HMMT04, HMMT05]. Growth [BZ98, DT11, Gou91, KNS04, KMS01, KMS03, Ran07, SST06, HH89]. Growth-Factor [DT11]. GSVD [WXZ16]. GTH [OW96, Sen98]. Guarantee [FM93b]. Guarantees [WCCL16]. guide [AdHN88]. Guyan [BB96]. Gypsy [GY92]. Hadamard [BZ07, BG13, CDF94, DMS09, DMS12, FM88, GG02, HM90, MS91, Mat93b, MP98, Sen06, WZ95, Zha97, ZY93]. Hall [BS94b]. Halley [NBG10]. Hamilton [Mac95]. Hamiltonian [ABK+11, JL98, KMP01, Kre05, LW97, MMS16, PLM94, Tis01b, ZHZ05, vdMRR01]. Hamiltonian-like [JL98]. Hamiltonian/ Hamiltonian [BBM02, Mhe99]. Hand [GRT07, HPS13, HS16, KS92, MB10]. Hankel [Bez12, CM93, FPST13, GP03, HH93, HR04, PK94]. Hard [GG11, H010, RK95]. Harmonic [Wu17]. Hartley [BF93, HR00]. Hartwig [BV07, LH05, VJ07]. Having [CMPX03, Har99]. Heisenberg [CRR93, Per88]. Helmholtz [OL99]. her [GKRV90]. Hermite [ASA04, BFZ07, CIL96a, CIL96b, Kuz15, LHHR95, Per88]. Hermite-type [Kuz15]. Hermitian [LNTX13, AGG88, AKPP08, Ash01, BDY99, BGN03, Ben09, BS15, Bin90, BLAK91, BKMS14, BS16, BDF17, Cao00b, CE12, Cha89, CPS00, Chu95, DJST05, DPP13, DH97, ENV92, ESS+12, FNS08, Gro97, GHT10, HD97, HBW90a, HBW90b, Hon89, Huh02, IN09, JS04, Joh08, LT89, LM06b, LNTX11, MV97, Mat92, Mat98, Meh04,
MMW17, MYK14, MT00, Nic10, Pai10, PK93, Pha01, PR88, PR91, RS09, RP10, Ser96, SB04, SK16, Ste91b, SH93, Tis93, Tre94, Tru06, WZ95, Win06, Yas03, YXC+17, ZZ98a, ZHZ05, dF05].

Hermitian-Generalized [ZHZ05].

Hessenberg [BEG+09, BEGG07, BGH95, DV07, GL03, GR17a, Kn04, PP11, Ste06, Stu91].

Hessian [Mön11].

Heuristic [GK15, Sal88].

Heuristics [AR93, NR99].

Hidden [MN97, ML89].

Hierarchical [EZ95, Gra10, Le 06, LRSV13, QXX14, XX16, Xia12].

Hierarchically [CGP06, HG14, LHC16, Mar11b].

Hierarchies [DK14]. High [DMM03, HLW94, ZG01, JP94].

High-performance [JP94]. Higher [BE03, CG03a, DDV00b, De 08a, De 08b, DN08, DSD17, GLPS11, HR14, IAVD11, KR02, Men08, Sai16, SQ13, VQA10, Zab89].

Higher-Order [CG03a, DDV00b, De 08a, De 08b, DN08, DSD17, IAVD11, KR02, VQA10, Zab89].

Homotopies [WPB98]. Homotopy [CHZ16, CLS88, DYY16, LKK97]. Hopf [Guo01b, MS10]. Horizon [OS09].

Hotopixx [Gil13]. Householder [CB00, DBCW98, RS98]. HSS [CDG+07, LGWX12]. Hybrid [Cav94, GRT07, HO94, NRT92b].

Hyperbolic [AH16, BHP03, CB90, DS17, GHT09, Par05, Ple06, RS88, SS88, SV05, PS88]. hypercube [CG90]. Hyperrectangles [Mön11].

Ice [SW91]. Ideal [Toh97, Özg91]. Idempotent [Lew91, Pat00].

Identifiability [CO12, COV14, COV17, DDL14].

Identification [FPST13, FGM91, LV10, PGVR98, SH91b, Ver96, Vog99]. Identity [Rie92, MP88]. IDR [GZ13]. If [HO10]. II [BL13, Bap89, BDMS12, BBM02b, CJL96b, Car94, CM92b, De 08b, DG91c, DD13b, DV08d, EKK99, Gut94, Ito96, KMS03, LLZ09, Li98b, Mur93, Rumi03b, SDD15, YY11, ZZ98a]. III [DN08].

Ill-Conditioned [NV02, PAP00, FGS96, Rumi91]. Ill-Posed [BGT14, ES12, Kil99, KO01, NV02, PAP00, dSL08, DK88, FGS96, Rumi91].

Ill-Posedness [dSL08]. ILU [BW99]. ILUs [BS02b]. ILUT [SZ99]. Image [BBTK08, NNP04, RHE14, ZGP10]. Images [CR96]. Imaginary [MS10, Sch95a]. Imaging [BN06a, HKBM08, KBBH13]. Immanant [CL99]. Immitance [BLAK91]. Immitance-Type [BLAK91]. Implementation [DW06, Day97, GMS92]. Implementations [Bér09, Fuh07].

Implications [LT97]. Implicit [DGSW06, DSSC11, FSV14, Jam92, MT15, MP91, Sor92, SZK95]. Implicit-Factorization [DGSW06]. Implicitly [BF00, JK97, IJN03, LS96, Lek01, Mor00, XE12]. Imply [EI98]. Improve [Swe93]. Improved [BT10a, BV90, BG13, BMM10, DH93, For03, GHT10, Guo02, HL13, JR13, Nab00, RJ14, SST05, SL12, Ste03]. Improvement [AL98a, LZ97, OS09, ZY93]. Improving [BBD+16, CD14].

Incremental [BRR00, HL02, NW98, Peñ05, SH09].

Incomplete [AL95, BCMM95, BMM10, DK00, HHL17, LON06, LS06, NAP13, WT11, XX17, Zha01, ZW07]. Incremental [BS90, BLP90, CT93, IO16, TT14].

Indefinite [AGL98, BWN09, BBD+14, BHP03, BvdMR+97, Cao02, CGS98, CH98, Cle00, DP05, DP07, GMP592, GS10b, HS14, IT06, JP93, KG110, Meh04, RT93, RS02, RODS15, SZ07, SvDM00, Tis04, Zha01].
CH92, CH93a, JP94, Liu88. **Independence** [Ste10a, Wan98b]. **Index** [BCN95, CC92, Kra95, KH13, RR08]. **Indexing** [YS14, ZZ99]. **Indices** [BFZ07, DDM10, DS10]. **INDSCAL** [DL15]. **Induced** [Bea01, GL05, SQ13]. **Induction** [BCN95, CC92, Kra95, KH13, RR08]. **Inductive** [PS94]. **Inequalities** [AJRS13, Auj00, BSvdD95, Ber88, BK97, CL99, Dri06, GHR95, HLS97, Li91, LM02, Mat92, MP98, Pop15, Tam99, TFL11, WZ95, YL00, Zha97, Zha99, Zha04, ZQ10, CT88, GP88]. **Inequality** [BSS13, BS94a, CHW10, FGM91, HS90, Loe90, TU91, PR88]. **Inertia** [BS91, BS94a, CHW10, FGM91, HS90, Loe90, TU91, PR88]. **Inertia-Controlling** [FGM91]. **Inertia-Preserving** [BS91, BS94a]. **Inertial** [Wim06]. **Inertias** [CD98, Dan93]. **Inexact** [AGJ14, BMS06, BF05, FHS09, GTI11, JR99, LM98a, LZ10, Not03, RSS09, SX11, XE10, XE12, vdES04]. **Infinite** [GLP01, GP04, JMM14, KMS01, KMS03, Mae98, OS09, Wat00, vdMS05]. **Infinite-Horizon** [OS09]. **Infinity** [BET02]. **Inflation** [Stu88]. **Inherited** [JOvdD89]. **Inner** [AV91, CGLV11, HN09, JR13, MH13b, MH15, Rod05, SX11, Wan98b, ZHY16, CF89]. **Inner-Iteration** [MH13b, MH15], **inner-outer** [CF89]. **Input** [AD98, BMU94, MX98, Mim15, HJ89, Mee88]. **input-output** [HJ89]. **Input/Bounded** [Cor93]. **Inputs** [BOS16]. **Instability** [HW98, HO98, PL93]. **Instances** [Lau00]. **Integer** [CG10, Lin1]. **Integral** [Che01a, HK08, LY91, Vav92, YXC+17]. **Integration** [DL02]. **Integrators** [GG14, Nov11]. **interaction** [GBCW89]. **Interface** [CM92a, GL99]. **Interior** [CH93c, FS01, LV10, LP13, Mes08, Wri95, FG896, Wri97]. **Interior-Point** [LV10, Wri95, Wri97]. **Interlacing** [BO96, HP92a, HS95b, Tam99, dF05]. **Interleaved** [LRN06]. **Interpolants** [BL00, Law13, LC15a]. **Interpolation** [AT07, BB12, DSZ14, FG15, GVV04, JSG15, MV97, VZ06, MH95]. **Interpolation-Based** [BB12]. **Interpolatory** [Sai16]. **Interpretation** [FF98]. **Intersection** [BW95]. **Interval** [AM95, AM09, AM05, FM93b, Gar90, Gar90, GP04, HDT10, JR99, LF02a, Neu00, Pop15, RR98, Roh93, Roh94, RK95, RR96, Roh03, Zha05]. **Intervals** [HS09, Pein05, SHJ09]. **Introduction** [MG92, NP99]. **Invariance** [DDL14, Lew96]. **Invariant** [ASVM04, AYPP08, BD08a, BER04, BKS08, BT10b, BHM97, BK06, DHH92, DLT15, DLM14, FPM02, GS03, GP16, HM90, KK14, Kre05, Mly14, PLM94, QZL05, RR08, Rod05, VF00, VJ07, WLB05, Zab89, Zha99, dSV01, LT89]. **Invariants** [AJRS13]. **Inversion** [AH16, AHS00, Bao05, Beb06, BMS06, BS02a, BW93, CCS05, CGVRc08, Che01a, CG98a, CMO4, CC17, DBW15, DMS09, DMS12, DMS13, DLM04, EW13, FF99, FZL14, Fri92, FHS*94, GG02, GN13, GIT196, Gov91b, GT111, Gre05, GLH03, GH06, HLW05, JS07, KM16, Kau92, KK12, KosvdD07, Kir95, KN97, KN98, Kni04, KN91, KLM07, Lan07, L14, LGL16, LM03, Lu10, MMS94, MSZ03, MH13a, MS10, Men92, NV94, Nab99, Ogi10, Ors06, PDF16, Pat00, RSS09, RW01, ST01, SW98, Tan99, TW00, Vec03, WijBo11, Wan98b, Wei96, WLB05, X96, XSW10, YBZ16, ZF05, vD99, FM88, KY93]. **Inverses** [BM05, BM02, BS02a, CLG93, Djo08, ES08, Ejt92, H993, HR00, KM06, MNST96, SHS03, LP89]. **Inversion** [AKH01, BLNT13, BC10, CM93, GR17b, HH94, PK93, PK94, WP03, RS92, Ste91a, XXCB15, ZS98b, CJL96a, DV06a]. **Invert** [FS10, HL06]. **Invertible** [WC10]. **Inverting** [FP16]. **Involuntary** [IZ04]. **Involving** [Ain17, AG91a, FF94, SD12, ZZ98b, Zha95].
Irreducible [Art96, FGJ00, FG94, GR89, Kir95, LGL16].
Irregular [GLS12, RW94]. Isometric [BvdMR+97].
Isometry [BT10a]. Isotropic [Kre05].
Isotypic [MOR04]. Issue [DCM08, IPS06, IPS09].
Issues [Ari00, Mei04, Més08, SV97].
Iteration [Ben09, BMS06, BX08, Dan91, ESR01, EW13, Emb99, KZ10, KO14, LS96, Leh01, LWWW14, LGL16, Lu05, MOR04, MOR16, MS10, MP11, MH13b, MI15, NBG10, Not03, Nou06, RSS09, RS08, Saa16, SvdV96, SY08, SX11, TP14, YE10, YGM09, YLA97, ZHY16, de 92, AdHN88, BF89, Lag91, San88].
Iterations [ASVM04, AV91, BKS08, Bor09, BPS05, CNP94, HMMT05, HN09, Ian99, IKSG10, NS07, NRT92a, NH12, NOZ11, STT17, ZZS04].
Iterative [AH07, ADR92, AG00, BN06a, BN06b, BGS07, BV01, CR96, Cao00, Cao08, C02, CPT09, CG96, DHT01, DGSW06, ET10, EL91, FS10, FNS08, GL12, GL17, GR15, GV09, GRK17, GL00b, Guo01, GH07b, HHRV99, HLT12, Han94, HO92, HV05, HZ01, Jam92, KL19, KS99, KOO1, LHH95, LWXZ06, Li02, MG92, MS02, MR97, NP02, NY95, OL99, PAP00, Pan91, RW92, SWZ11, Tis01a, Wei95, Woz93, XE10, dKV10, AdHN88, BY88].
Jacobi-Jordan [WW08, BFZ07, MMT08, MV17, MBO97, MD03, SC05, Ste13, Wel11].
Kawasaki [FP17]. Kernel [ACW17, BWQ06, MT10, PP05a, SB95].
Kinematic [GKK99]. Kinematics [DS17].
KKT [FJ97, IKSG10]. Kleinman [FHS09].
Knopp [Kni08]. Known [AD02].
Kohn [LWWW14, Kreiss [TT99], Kronecker [BT13, HCS9b, Zha95, Bar98, BCS1, BS15, BT12, DD07, DD08, FK94, FG90, aIGP98, Gre05, HL17, HCS9a, IT11, KN00, MV07a, NN04, RHE14, SB03, de 90].
Krupnik [Ikr97]. Krylov [Ste02, BER04, VMM15, BG15, BR05, BF05, CTF16, DMR09, DK98, DSS14, ESS+12, EN08, Ern00, FGS1a4, GGLN13, GG14, GOR14, GT11, GPTPV16, GMN16, GS00b, Gut14, HS95a, JK97, KO15, KJH16, KT10b, KT11, LM98a, LY03, MMJ11, MH13b, NZ16, RS02, Saa97, SS13, Saa95, Sim00, Sim16, SvdVM00, Ste01, WY17, ZHL1, vDES04].
Krylov-Based [MJM11].
Krylov-Subspace [CTF16].
Kublanovskaya [GKR90]. Ky [FHLS13, LM98b].
J [An01, CH93a, GI97, HCS9b, WW08, Zha95, Ikr97].
Jacobian [CS96a, DV92b, Drm96, DV08c, DV08d, Drm10, DK80b, Hac93, Har97, HM89, HPS15, HP02, HKP05, HN09, IA93, KHH04, Kni04, LR05, Mac95, MV08, Mas94, Mas95, Mat09, Mat95a, McH04, MeH08, Not05, Nou96, SS89, SvdV96, St02, SX11, fX96].
Jacobi-like [Meh04].
Jacobi-Type [MV08].
Jacobiens [HKG09]. Joint [Afs08, BN05, BN10, CSX15, CL17, Joh08, JCG14, LP00, Pha01, PJB10, WA07].
J lagrange [AT07, Law13, LC15a, Nie10].
Lagrangian [AW00, FMX02, GSCS15, LW97, MP12, RR08].
Lambert [FHI15].
Lanczos [BDY99, BKS08, BF00, BES98, BBGL92, CD15, Cz02, Day97, FKL13, FLSS17, GS92, GLL94, Gut92, Gut94, GR00, HL06, Huh02, Jia95, JN03, Jou92, KW92, KW94, Kui00, MOR04, MB10, Pia10, PP11, UCS17, WS00, Wul05, XK94, vDHvdV00].
Lanczos-Type [GR00].
Langemeyer [SH91a].
Langville [IK06].
Laplace [KK12].
Laplacian [BS13, Gre92, GMS90, GM00,
HO15, KNS97, KA07, LY91, PV17, STvD17, TS99]. \textbf{Laplacians} [CL99].

\textbf{Large} [ABM+17, BMFy03, BSFM10, BKS08, BHM00, BGKS99, BrD07, DK99, DK01, ES92, EW13, FF94, FM93a, GH07a, GAB08, GH03, HXY11, HH89, HP92b, IO16, JK95a, Jia95, LC15b, LC16, LS06, LwCKL13, LKK97, MS10, NY95, OS09, PR12, Reu02, SS13, Sim16, SK16, SY98, SCA12, Ste01, Ste02, WZ17, WS00, XCGL10, Zha95, ZS07, HC89a, HC89b].

\textbf{Large-Scale} [ABM+17, BMFy03, BMfY03, BSFM10, BKS08, BHM00, BGKS99, BrD07, DK99, DK01, ES92, EW13, FF94, FM93a, GH07a, GAB08, GH03, HXY11, HH89, HP92b, IO16, JK95a, Jia95, LC15b, LC16, LS06, LwCKL13, LKK97, MS10, NY95, OS09, PR12, Reu02, SS13, Sim16, SK16, SY98, SCA12, Ste01, Ste02, WZ17, WS00, XCGL10, Zha95, ZS07, HC89a, HC89b].

\textbf{Largest} [Ano11, CPZ11, DSD17, GR93, JN91, KW92, NQZ10, OW92].

\textbf{Latent} [Elt92, VS14, ZZ99].

\textbf{Latouche} [Guo02].

\textbf{Lattice} [LK95].

\textbf{Lattices} [PAH17].

\textbf{Laurent} [HM04a, Tre88b].

\textbf{Law} [BZ07, CG03a, Djo08, BHKR11].

\textbf{Layered} [BKKL91, KT10a].

\textbf{LCM} [Wan98a].

\textbf{LCP} [Mor94].

\textbf{LDL} [XXC10].

\textbf{LDU} [DDY14a].

\textbf{Leading} [EG15, GS10b, JV04].

\textbf{Least} [Yan98].

\textbf{Least-Index} [CC92].

\textbf{Least-Squares} [ANT09, BG11, Ben99, BX05, CGS98, CK91, EL97, For96, FS01, HM97, LS06, Mal04, Rod06].

\textbf{Lee} [Ikr97].

\textbf{Left} [KOSvdD07].

\textbf{Legendre} [Zha10b].

\textbf{Length} [APK08, JN93].

\textbf{lengths} [Gri88].

\textbf{Leslie} [Kir92, KN94].

\textbf{Less} [HM04b, OP05].

\textbf{Letters} [JH02].

\textbf{Level} [Bor90, BBM02a, DQ02, DK13, EDFX16, HR14, Not16, TMV10, WT11, LS16].

\textbf{Level-} [HR14].

\textbf{Level-Geometric} [DQ02].

\textbf{Leverage} [HIW15, Hoo17].

\textbf{Leverrier} [Bar89].

\textbf{Levinson} [CH93a, BLAK91, CH92, FL10, Mel01].

\textbf{Liapunov} [KB93].

\textbf{Lidskii} [Lew99, MO97].

\textbf{Lie} [BW93, KHH04, MMT08, Tam99].

\textbf{Lifted} [JCG14].

\textbf{Like} [AG92, CT91, CH92, FLM10, Mel00, BEM01].

\textbf{Limit} [Ste13].

\textbf{Limited} [EM15, Sal88].

\textbf{Limited-Memory} [EM15].

\textbf{Limiting} [BK15, DD10, DK08a].

\textbf{Line} [HHRV99, HK01, RCH08].

\textbf{Linear} [ADC04, ABG07, Art96, AGL98, ANT09, Bai99, BGN03, BL12, BDHS11, BFZ07, BSFM10, BBT07, BF06, BGT14, BES98, Bom00, BM06, Bor03, BT92, BF05, BCW12, CT91, CP03a, Cao08, Cap98, CP03b, CE02, C95b, CS98, CGS98, CG98b, CGS+08, CFT99, CH93c, CFL17, CRR93, CGH11, CC92, CLH00, CG06, DGMR00, DK05, DTGV10, DD12, Din98, DS16, DS95, DLM13, ENV92, EHvP04, EGTP17, ES12, ES92, EG00, EM93a, For96, FS01, FHLS13, FL99, FNS08, FKL13, Gar90, GL03, Gil13, GLT6, GKK99, GRT07, Gow90, GS94, GS02, GR15, GTI11, GJT12, Grc10, GCL16, GV09, Gu98a, Gu98b, GGUc, GAB08, GH03, GHR95, GW92, Gu95, HLLT12, HL80, Han94, Har05, HH92, HPS13, HL91, HLM94, HJ89, JT09, Jou92].

\textbf{Linear} [Kan96, Kar11a, KGW00, KL10].
KS08, KO14, KJH16, KT10b, KT11, KLX04, LW02a, LWXZ06, ILNS17, Loe90, Lu94, Lu95, LT94b, Mal03, MF95a, MG92, MV07b, Mat92, MR97, Mec03, MB10, MMS16, Men12, Mim15, MN97, MPS98, MPS00, NV94, NRT92b, Naj98, Neu00, NY95, OST08, PS05, PYH93, PF05b, PR17, PR88, Pop12, Pop15, QL99, RT93, RR95, Roh03, Ru012, STvDD17, Sch05, SS91, SWZ11, SvdV96, SvdVM00, ST14, Ste10a, Sj92, Tig91, TV09, TETA05, VBW98, Ven93, Wei95, Wim88b, Wri95, XCGL10, XXG12, ZHZ05, ZXL14, vdES04, All89, ADD90, Ash91, BDV89, MT89, Pan91, Qia88, WBP89, Wim88A.

Linear-algebraic [CRR93].

Linear-Time [Bom00, DD12].

Linearization [HLT08, HMT09, LC15a, LVV16, MBN17, SB11].

Linearizations [AB16a, BdTD11, BDF17, DDM10, HMT06, HMMT07, LP17, MMMM06a, MMMM06b, NNT17, RVV17].

Linearized [HKBM08].

Linearly [CH97, GR17b, GMBS12, SdA10, SL12].

Lines [LF02b].

Link [De 06].

Liouville [Mal06].

Lipschitz [BLO07].

Lipschitzian [MNT99].

List [Ano97].

Loadings [GMBS12, SdA10, SL12].

Local [ALN07, Art03, FGM91, FP16, GS03, Us012, Gad88, Sun98].

Locality [Tol97].

Localization [BF89, BH13, CE12, CKP11, Pe01].

Locally [Cap00].

Locating [BNS13].

Location [Lin03].

Locations [BB98].

Log [DGIM15].

Log-Det [DGIM15].

Logarithm [CR16, CHKL01, D00, Hig01, KL98a, Zim17].

Logarithmic [BE03, HGC99, HGC00, IM13, Koh99, NNF14].

Logarithms [DMP96].

Look [AD98, G00, SK95, CH92, Ch93a].

Look-Ahead [GR00, SK95, CH92, CH93a].

Loop [Bër09, Guo98].

Loop-Based [Bër09].

Lorentz [AYLR04].

Loss [BP92].

Lossless [RD95].

Low [Asw16, COV14, CP03c, CDLP95, Dax08, DD07, DD16, DL17b, GG11, GQ14, GL13, IAVD11, IAV13, IUM14, JKN11, KK12, KB90, KL07, Ko03, KO15, KK17, KT11, LC16, LW02b, LS17, Lie08, MU13, MD03, NS11, Nie17, OSS14, PTC13, SCPW12, SS10, SC10, Ste08, Ste13, SST17, Ta15a, TYUC17, VV10, VYH11, WC15, WCCL16, XLS16, ZZ99, ZZS02, ZZS04, dSL08, dTDM08, vdV96, AG88b].

Low-Order [KB90].

Low-Rank [Asw16, COV14, CDLP05, Dax08, DD16, DL17b, GG11, GQ14, GL13, IUM14, KK12, KL07, Ko03, KO15, KT11, LC16, LS17, MU13, NS11, OSS14, SCPW12, SC10, Ste08, Ste13, STT17, TYUC17, VV10, XLS16, ZZS02, ZZS04, dSL08, vdV96].

Low-Rank-Plus-Shift [ZZ99].

Lower [AR93, AW05, BSU15, DS97, Lás94, LW05, L06, MBM08, Vec03].

Lower-Bounding [DS97].

Lower-Rank [MBM08].

LSQR [Ben99, JTP10].

Luk [YB91].

Lumpability [DS97].

Lur’e [PR12].

Lyapunov [CT15, BES15, BH90, BD05, BC88, BN87, CFL07, CH97, DL03, EW13, HS95a, HP92b, KO15, LŠ10, L02b, RDC93, SS17, TCT00, TV09, VV10].

Lyusternik [MB097].

M [GL03].

M-Matrix [GL03].

M. [Ikr97].

Machines [SYJ00].

Magnitudes [Nie10].

Maintaining [BBM02a].

Majorization [Bap98, KA07, KA10, Zha17, ZK17].

Majorization-Minimization [Zha17].

Make [JRG09].

Manifold [Bry17, DL02, Din98, Fio11, LE02, Zim17].

Manifolds [CDH12, LWW15].

Manufacturing [CCZ97].

Mapping [MRT08].

Mappings [Gow90, VZ06].

Maps [CS96c, FHLS13, Loe90].

Marginals [SH91b].

Markov [Bar93b, Bar00a, BF11, BHKR11, Bor99, BPS05, Buc00, BrD07, CCZ97, DS97, DA05, DR93, ES08, EHW10, Ger92, Hey95, H098, IM94, Kir02, LP98, LM06a, LFW13, LX12, Liu12, Mas16, Mey94, O’C02, OW96, ST01, TVW15, XG98, Zha93b].
ZZTA02, dF05, dSV01, vDHvdV00, vDH99, vMS05, All89, AG88b, Auc89, BY88, BH96, CJL96a, CF89, Che92, DIG106, DS95, Ede88, FF98, GP88, Hav89, HPR89, HRS88, Hon89, HC89a, HC89b, Ikr97, IM95, JN89, JP94, KN89, KN94, MP88, ML89, Per88, PR88, PSL90, RR96, Rum91, Stu88, Stu89, Tre88a, Tre89, Wim88a].

Matricity [GG13].

Matrix [AS93, ALAK94, AA09, Afs08, AAB10, AMH09, AMH10, AB16a, AMPV97, AG91b, AW10, ACL93, AT98, Ano11, AW00, AH14, AKP08, ABF16, AG00, Art03, AHH01, AW05, BD98a, BB95, BB96, BM94, BF93, BM96, BNS13, BMSV92, BL91, BM06, BKMS14, BKMS15, BS16, BHR10, BW99, BL10, BF05, BG13, BX05, BD95, BZ00, BC92, BtDF11, BDF17, BGN12, BM97, CSX15, CGHR07, Chu95, wC03, CH06, CHW10, Cla10, CD98, CG110, CR10, DH03, Dax08, De06, DD99, DD08, DD16, Dem92, DRSZ07, Dhi98, DT08, Di00, DP00, DMR09, DK14, DK15, DS10].

Matrix [DD13a, DJ09, DM08, DD97, Dm00a, DK98, DL15, DK01, EE97, EEK99, EE11, E198, ESR01, E196, Elt92, EK17, FL02, FZ16, Far16, FHI15, Fay95, FPST13, FH17, Fer97, For03, FV98, FP16, FT07, FH10, FKLR13, FG14b, FLSS17, GPM03, GH91, Ge91, GL03, GI395, GI97, GL99, GT17, GI94, GI11, GK15, GTJ13, GHHW90, GSV00, GMRS00, Gov05a, GR17b, GTI11, G098, Goll08, GKL95, GO11, GKL14, GLM17, Gou98, Guo01a, GH06, GKL12, GR05, GN16, HLT12, HM04a, Ha99, HLW05, He99, HR00, HO10, Hey95, HO98, Hig92, Hig93, HK95, HT00, Hig01, HK01, Hig03, HM04T, HM05T, Hig05, HMT06, HMT07, HMT09, HL11, HL13, HR14, HS16, HGC99, HGC00, Ho90, HS95a, HI15, Hu92, Huc92, HSC04, HL02, HKBM08, HC89b].

Matrix [Ian06, Ian09, Kr97, Ito96, IM16, IS07, IT11, JS94, Jia01, JMO93, JOvdD03, JKN11, JOAK10, KKS97, Kau93, KB90, KL91, KL92, KL98a, KP98, Kir95, KN98, KNOX02, KRU14, Koh99, KN91, KPC94, KMS15, Kra95, KH13, KL98b, KLS16, LP01, LM03, LP05, LN92, L au00, Law13, LP17, LT97, LV06, Lew96, LR94, LY03, Li06, LBL05, Lie08, LT09, Lim07, LX06, LNP93, LWW15, Lu98a, Mac99, MV97, MMM06b, Mar11b, Mat93a, Mat95b, Mat96, Mat97a, MSZ15, Mei04, Mel04, MYK14, NV94, NRT92a, NBO10, NNT17, NS11, NK01, NS90, NST15, Nov17, Nov91, Og10, Ost10, OW92, PAP10b, Pa09, Pa11, PP14a, P11, Pan93, PY93, Par05, PV09, Pea01, yPW14, P14, P10, QI06, Q13, QCT15, QCT16, RS96, RHR94]. Matrix [Rau02a, Rau02b, RE13, RS06, RV17, RE98, Rum97, SCPW12, SD16, STV17, Sch05, Sch95b, Sch96, SC05, Sev03, SMOBS13, SC03, Sid95, SC10, Sni03, So92, ST01, SD12, SU94, Ste91b, Ste16c, SH93, SV15, SD12, Tam98, TFL11, TDF15, Tho94, TL06, Tls93, T12, T98, TT99, Tre90, TW03, TV17, Tro09, TU91, Tns93, VVM05, VBW98, Vec03, Ven93, Vog99, Wan98b, gWcWL12, WY17, WL05, WS12, WCC16, Wh90, WD95, Wim92, XX16, Xia12, fX96, Xue96, YLA97, ZMK02, Zha91, Zha95, ZHZ05, ZGP10, Zhe96, Zhe98, Zim17, vdV96, von93, AdH88, B95, BMO92, BK89, Bas89, BV88, Ber88, BHH88, B88, CS89, CLS88, DV06a, FM88, Gad88, GL96, HD97, JMW96, JMS98, JNS90, JOvdD89, JH88, KL89, LG06, LRS98, Ove88, OW88].

Matrix [Stu88, Wim88b, WW08, ZF14].

Matrix-Algebraic [Zim17].

Matrix-Matrix [MSZ15].

Matrix-type [BL94].

Matrix-Valued [ALAK94, Cla10, Kra95, KH13, Mat93a, QCT15, QCT16]. Matrix-Vector [BF05, GT11, HR00].
Matroids \[\text{Mor94}\]. Max \[\text{BSvdD95, BCGG10, BJ16, DD98, HT17, Hoo17}\].
Max-Algebra \[\text{BCGG10}\]. Max-Plus \[\text{BJ16, DD98, HT17, Hoo17}\].
Maxima \[\text{RSS94}\]. Maximal \[\text{Lat95b}\].
Maximally \[\text{EG15}\]. Maximization \[\text{Fuh07, LWW15, VBW98}\].
maximizing \[\text{All89}\]. Maximum \[\text{BW95, BE10, Bor03, CD14, JR08, OR93, YLA97, Ove88}\].
Maxwell \[\text{CHH+15}\]. Mean \[\text{BEBT07, BD93, BS10, CR16, HL08, JV16, Lim07, Mon05, Zha17}\].
Mean-Square \[\text{HL08}\]. Means \[\text{AMPV97, AFW07, DDV04, Dri06, Gem98, Lim13, Mon02, Pål11, PT05}\].
Measure \[\text{NQB14}\]. Measurement \[\text{CH93b}\].
Measures \[\text{BK15, BGMN15, DRSZ07}\]. Mechanics \[\text{CGS94}\]. Media \[\text{BKKL91, CHH+15}\].
Meet \[\text{Mac95}\]. memoriam \[\text{Joh96}\]. Memory \[\text{ADV05, EM15, LHC16, KP92}\].
Mendelsohn \[\text{AL98a, IM95}\]. Meromorphic \[\text{ALAK94}\]. Mesh \[\text{vdSBvdV93}\].
Meshes \[\text{Ten97}\]. Metabolic \[\text{LS95}\]. Metamorphosis \[\text{Van11}\]. Method \[\text{AGJ14, Ain17, AT07, AM09, ABM+17, An011, BBS15, BDY99, BS05, BV90, BBTK08, BST16, BF00, BGSO7, BGT05b, BIP08, BR05, BBGL92, BMNZ94, BHM97, CS01, CFT16, CD15, CGLV11, CPZ11, CH93c, CD17, CG98a, Dan91, DHT01, DD97, Del97, DV92b, DYY16, Drm96, ESR01, ES09, EG00, FJ97, FAT16, FS09, FS10, FSV14, FLSS17, GLS12, GT13, GG14, GH07a, GTPT114, GRK17, Guo98, GL00a, Guo01a, GH06, Hac93, Har07, Hem95, HMT93, HS10, Hig92, Hig97, HK01, Hig05, HP02, HKP05, HN09, HGL05, HV05, Hu92, Hz01, Hu94, Huh02, Ia06, IT06, JMM14, Ji92, JN03, Joh08, KL92, KP08, KM11, KM14, KO15, Kui00, LLZ09, LM98a, LY03, LZ05a, LV10, LR05, Lu98b, LP13, LKK97, LE02, MV08, Mas95, MOR16, Mat09, MR97, Mee09, MB10\]. Method

\[
\text{Mor95, MM00, Nov11, OL99, PW15, Ple00, QL99, QS06, Qi13, RCH08, RST01, RT99, RP10, RW92, SGX14, Sim16, SH91a, SvdV96, SS17, Sor92, Sta02, SD09, Ste10b, SX11, Tis01a, TV09, wVJ11, Wa95, WC14, WCY15, WS00, Wü10, XCG10, Xu05, XQ14, YE12, YBZC16, ÛS94, ZS94, ZS94a, ZH03, Zha10a, ZH17, de 92, vDvdV00, vdMS05, vdV96, CS89, CLS88, HL06, KN89, Mii88, SS89}\]. Methods
\[
\text{AL95, Bai99, BGN03, BWQ06, BN06a, Bar08, BV92, Bar93a, VMM15, BN06b, BBD11, BM99, BES98, BHM00, Bj14, BV01, BM02, BF05, BrD07, BGBM92, BGBM93, BCW12, CR96, Cao00a, Cao08, CG92, CHZ16, CGI10, CH99, CG96, DFT92, Dr10, ENV92, EHV04, ESS+12, EN08, Ern00, EL91, FJ97, FM91, FM93a, FS01, FS97, FNS08, FG14a, Gar90, GL13N1, GOR14, GR15, Gre97, GV99, GMN16, GS03, Gu00, GMM+06, GM00, Gro14, HHRV99, HJ07, HY10, He99, HXY11, HS95a, HO92, HK12, JK11, JK95a, JK97, Jam92, Jia95, Jou92, JCG14, Kan96, KL91, KO1, KL08, KT10b, KT11, KV14, LWXZ06, Lch01, LS17, Lu10, MNR15, MG92, MS02, Mat95a, Més08, Mor00, MH13b, MH15, NP02, Ors06, PW90, Ple06, Ruser06, Ruser05, SA29, SSB17, S2W21, Sid95\].

Methods \[\text{Sim00, SV15, SJ92, WY17, Wei95, Wh10, Wo93, Wr95, ZZS04, ZHY14, dB98, vG93, vS04, AdHN88, BY88, FGS96, GL16, Wri97\]. Metric
\[
\text{Bar00b, BD10, BS10, BDST08, Zim17}\].

Metrics \[\text{QZL05}\]. Meyer \[\text{IK06}\]. MGS \[\text{PRS06}\].
MGS-GMRES \[\text{PRS06}\]. MIMO \[\text{DSZ14, GV04}\].
Mic \[\text{Lat95b}\]. Minimal \[\text{BEGL05, BMOvdD04, BDTD11, DDM10, DS10, FJKM96, Fio11, HP09, IM16, OV99, Par92, Pr01, Pey01, Sch95b, SMBJS13}\].

Minimal-Distance \[\text{Fio11}\]. Minimax \[\text{Ash91, IM95}\]. Minimization \[\text{BL12, BL13, FPST13, FM93a, HN98, NNF14, Zha17}\].

Minimizer \[\text{CS10b}\]. Minimizers \[\text{FGM91}\].
Minimizing \[\text{BDHS11, CG96, Ern00, GV07, }\]

N [GKRV90]. N [Ikr97]. Nano [GKL12]. Nash [CT15]. Navier [WT11, Elm97]. Navier- [WT11]. Near [CJL96a, GCL16, GDF01, Har99, BL02]. Nearest [BHR10, Den92, GHHW90, GLM17, HS16, Men12, QS06, Qi13, Rum97]. Nearly [BR08, BW97, DS97, ES2+12, MHG15].
ST14, WD95, Zha93b, GL96, Hav89).
Nearness [BDST08, DT08, GKL14, KMS15, SV15].
Necessary [Cor93, Gad88, HQ16, ZWF05].
Nested [BOS13, BHL+93, BT02, Cao00a, HR95, SS91, SV93, Ten97].
Nested-Dissection [BT02].
Network [AL98a, BK15, vdSBvdV93].
Networks [BDR12, FMRR13, FH17, GDF01, IO16, KS15, WSSL06].
Neumann [CLN14, MOC91].
Neville [GP93, GT04].
Newton [KZ10, BIP08, BX08, ES09, EM15, FHS09, GR03a, Guo98, GL00a, GH06, HK01, Ian06, Joh08, KL92, LE02, PTC13, QL09, Q506, Qi13, San88, Tis01a, ZˇS94, ZZS04, Zha10a, ZBJ15].
Newton-Like [GL00a, ZZS04].
Next [Mar91].
Nilpotent [LW05].
Nine [ZFW07].
Nine-Diagonal [ZFW07].
Next-Diagonal [ZFV07].
No [CCL09, QCCT17, CH93a, GI97, HC89b, Ikr97, WW08, Zha95].
No-spillover [QCCT17].
Node [GPS90, RE98].
Nodes [Baz00, IS08].
Noise [BE07, Par94, Wan15].
Noisy [CR96, HL08].
Non [BDY99, BGN03, CE12, CH93c, ENV92, IN09, RSS09, YXC+17].
Non-Hermitian [BDY99, BGN03, CE12, ENV92, IN09, RSS09, YXC+17].
Non-Interior-Point [CH93c].
Noncommutative [HM04b].
Nonconvex [BST16, TFL11].
Nondefinite [CPS00, Ser96].
Nondeterministic [DY90].
Nondiagonalizable [LM06b].
Nonexistence [VNMV14].
Nonfull [Fei94].
Nonfull-Rank [Fei94].
Nongeneric [Van92, VV88].
Nonhomogeneous [Ger92].
Nonincreasing [GPS96].
Noninterior [Kan96].
Nonlocal [CD17, KPC94].
Nonmaximal [FG94, Nab00, Wal03].
Nonmonic [GH91].
Nonnegative [Aru11, Art03, BN10, BCR11, CPZ11, CFJKS13, CK12, FGJ00, FHS+94, FG94, Gil13, GK15, GR93, Gru06, HNT99, Har98, HHSW97, JZ99, KMS93, KOSvdD07, KP08, Kir95, KNOX02, Koe05, Koe97, LL09, Lew91, LGL16, Nab00, NQZ10, NT08, Ors06, PL14, QXX14, QCL16, SGX14, TFL11, YY10, YY11, ZY93, ZHY16, AdH88, HR88].
Nonnegatively [BN06a].
Nonnegativity [BH08, KP08, NS94, SW91].
Nonnormal [BES15, GCL16, SCBG05].
Nonorthogonal [CL17].
Nonoverlapping [CG92].
Nonpositive [CRU08, CFJKS13, HC15].
Nonseparable [Mae98].
Nonsingular [BC92, CRKU08, EG15, NK01].
Nonsingularity [GT99].
Nonsmooth [Bebo06, Lew99].
Nonspherical [SS10].
Nonsquare [BEGM05, CG06, IM16, LGC08].
Nonstandard [RT99, Zul11].
Nonstationary [Mat05, MPS01, SWZ11].
Nonsymmetric [AA94, BM06, BGT05b, BIP08, BG06a, Cao02, CS98, CZ02, Day97, EN08, GV99, GL00b, Guo01b, GH07b, GM08, Jon92, JL98, JOAKt10, KK93a, LwCKL13, LX12, Lu05, LKK97, Meh08, Mor00, Nab99, NRT92a, NRT92b, PW15, SHY10, SB05, SW04, VHK01, Auc89, OV88].
Norm-Minimizing [CG96].
Normal [Aru00, BZ98, BE03, CG96, Dax08, FKL13, GG013, GM17, HN98, HNT99, HJ07, HT00, HGC00, Koh99, Li16, LT09, LV10, Mat93b, Mat05, Men11, NS11, Pal09, PO03, RGP96, RGP98, TT14, WS12, FSV14, HC89a, HC89b].
Norm-Minimizing [CG96].
Norm [Bea01, Chn91, FKKL96, Fri02, GLPS11, GCL16, Huc94, Hui01, HU12, Hu12, Ikr97, Ito96, Ls94, LK95, Mai99, Mur91, Mur93].
Normality [Lee95, Lee96].
Normalized [GN13, PW14a].
Norms
[BK97, BGKS99, BV07, CDP94, FHLS13, GKL95, GZ09, GZ15, HO10, HHSW97, HGC99, HM90, HLS97, IS11, MG10, Mor12, NNF14, PR91, VJ07, Zha99, Zul11, LT89, Wim88a, ABM+17]. Normwise [FLV04, Rum03a, XW07]. Note [BHL+93, Cao00b, Cao02, Cao09, CL09, CT15, DD08, DM04, FH93, GG03, Gro97, KZ10, KP99, LT94a, LM03, Log17, LR99, Mas94, MNT99, Tum02, Zhe98, BM88, San88, Sun89]. Novel [AFPA07, GRK17, RCH08]. NP [GG11, HO10, RK95]. NP-Hard [RK95, GG11, HO10]. NQZ [Ano11, CPZ11]. Nuclear [Li16, LV10]. Null [AD02, AB01, Bar93b, FJ97, GT08, GOS15, Guo02, KSH02, PR16]. Null-Space [FJ97, PR16]. Nullspace [KSG10, Jam92, PW90, SV93]. Number [AMH09, AW10, ABG07, AW05, BDMS10, BDMS12, BGT14, Bor10, CT93, Dhi98, ES05, Far16, GV07, Har05, HR14, KW94, Li06, LP11, LT94b, sG00a]. Numbers [BK06, CD05, CC09, DMC13, GK93, Grc10, KTK06, Kir02, KPM09, NW98, PT05, RVA05, SST06, VT98, ZMW17, Ede88]. Numerical [BDHS11, BBD+16, BDD14, BLd93, BBMX02, BGBM92, BGBM93, CDGS10, CH93b, CG15a, Cho10, CG98a, Cro16, CP17, DBW15, DH92, GLPS11, GL96, GPTVP16, Gap02, HB94, KM16, LP01, Li91, LR94, LP00, LW05, Lin03, LR05, MG92, MA99, MKY14, Mes08, MHR94, Ovd98, Ovs06, Ple06, RD95, Ste03, Ste11b, Swe93, Tre88a, Tre89, TV03, TU91, Tur97, Vav94, Xu05, CJL96a, CJS96b]. Numerically [Fuh07].

Obey [BHKKR11]. Object [GL99]. Object-Oriented [GL99]. Objects [NW02]. Oblique [CE02, DL02, GT99, JK95a, Ste11b]. Observability [Bar94, CT91, EJK09, Wim88b]. Observations [CHZ03]. Observed [CH93b]. Obtained [Pai09, PW14a]. occasion [Mol92]. Odd [LF02b, Mel01, Mel04]. Odd/Even [LF02b]. Odd/Even-Mode [LF02b]. ODEs [KJH16]. Oettli [May12]. Off [CDGS10]. Off-Diagonal [CDGS10]. Ohta [FP17]. One [Arg15, BV90, BCGG07, Bor97, BO07, DD13a, GTW00, GT17, GE94, JK15, JLS01, MMW17, MH15, PL14, Qi11, SB92, Sle09, Ste10a, Tre90, WC14, Wei92, ZG01, MH95]. One-Dimensional [JLS01]. One-Parameter [Tre90]. One-Sided [BB07]. One-Way [BV90, GTW00]. onto [Bar14, Din98]. Operations [LB02]. Operator [CT15, Dri06, HHLW13, J03, KK12, Mat93b, Nof96, PS08, RRR06, RHE14, TCTM00, TV03, BM88, BN87]. Operators [AM90, Bg06, BK90, BM17, BET02, CHI+15, C03, Elm97, Gre92, GCL16, Grun06, HK08, Hnt98, HLM94, JLS01, KBBH13, Knu00, KM96, PW03, Rog05, Si03, SQ13, Tig91, ZAK13, DS95]. Oppenheim [LZ97, YL00, Zha04]. Optic [Kau06]. Optical [HKBM08]. Optics [Bar08]. Optimal [ASvG17, ADC04, BB95, BBT06, BOS16, Bet09, BGH07, Bor14, CS09, CC17, DP10, DS16, FG15, FLH9, GH92, GCS12, GDX11, HB12, HS10, HS13, KN00, KMS01, KMS03, Li06, LC05, LP13, PS04, gSS97, TS99, TV09, Ty92, VCA10, Whi00, Mee98, NW02]. Optimal-Order [DS16]. Optimality [CB00, ES11, EMC17, OW88]. Optimally [SES95]. Optimization [BM01, BLO03, CDH12, GN03, GMPS92, GGO13, HL08, Hig93, MYK14, NBS10, PSW12, FRR17, SZ07, TFL11, VV10, W11, ZLQ12, FGS96]. Optimized [DK13, EDK16]. Optimizing [FN08, HO94, NBG10, NP13, OW95]. Optimum [Woz93]. Orbit [DZ01, DK14]. Orbits [DD08, LP98]. Order
BB96, BE03, CG03a, DDV00b, De 08a, De 08b, DN08, Djo08, DD13a, DD13b, DD14, DSD17, DS16, DIS15, FLV04, GS94, Hem95, HR14, IAVD11, KB90, KBHH13, KR02, LGL16, Lu10, Men08, MJM11, OL99, Peñ95, PS04, Sai16, SS17, SQ13, SD15b, SM16, SH91b, Ste10a, SW98, Vac94, VCA01, dBG08, BS05, Zab89. Ordered [Har93, JOvdD01, JOvdD04]. Ordering [Alt13, ADD96, ALP07, AL98b, BFM03, BS90, DFT92, GO95, Gro97, HP09, LRN06, NR99, RS94, RE98, YL08]. Orderings [BT02, Har93, Mas95, Pey01, SS89]. Orders [He99, JMW96]. Ordinal [WI09]. Ordinary [WZ95]. Oriented [BvdG11, GL99, Har07, Mor94]. Origin [AHH01]. Orthogonal [BZ98, BV95, CS09, Cla10, DDL14, DP04, DMM03, EM00, EGK91, FB95, Fie96, GW07, GGL04, Grc10, HL94, LD98, LSL17, MV08, MH91, Nap13, OST09, Re96, Sh95, Th93, VFGM05, VVM05, WC15, CH88, CG90, DGI06, Hon89, Mee88, SB88]. Orthogonality [BP92, EAS98, HS98]. Orthogonalization [CGLV11, Dax08, RODS15]. Orthogonally [CCJ+00, DLT15, ROH15]. Orthonormal [BLW15, IW14, SDC+12]. orthotropic [CS98]. Oscillation [KH13]. Oscillators [FL99]. Other [Gre92]. Out-of-Core [Bér99]. Outer [ZHY16, CF89]. Output [CCH98, HJ89, Mee88]. Overall [DD13b]. Overcoming [HO98]. Overdetermined [HM97]. Overlap [Whi00]. Overlapping [CG92, SS91, ZS94]. Overrelaxation [GH92].

Package [GL99]. Packets [HL17]. Padé [BAS89, BL94, CM93, CJL96a, CJL96b, DP00, GN16, Hig01, HL11, HL13, Lu98b]. PageRank [WW08, BRZ06, GLY15, IK06, IS08, LM06a, SC05, WI09]. Pair [LS10, LM06b, LGL16, Ste16a]. Pairs [BC92, Car94, EJK09, FV98, GPM03, GHT10, JKM11, KS12, KLS16, LAW13, LM06b, Tis04, HD97]. Palindromic [BKMS15, HLQ09]. Panel [KDGG13]. Parabolic [DSSC11, MS97]. PARAFAC [RCH08]. Parallel [BO96, BOC17, BB07, CGHR07, Cri88, DYT06, DGL99, DP07, HR95, HP92b, JS94, Kon00, LC05, LR05, NY95, SYJ00, SJ92, Wal95, ZS94, ZGP10, de 92, vD99, vdG93, vDS0vV93, DY90, KN89, SS89, Tsa94]. Parallelizable [ZZ98a]. Parameter [BK15, BKK07, CS01, CGGS98, DP09, HP02, HKP05, Ji92, LZ10, MH13a, MMW17, Pl00, SK16, SS17, Tre90, VOG99]. Parameter-Dependent [BK15, MMW17, SK16, SS17]. Parameterization [KJH16]. Parameterized [BT10b, BCW12, CG10, DBW15, MB10, NS09]. Parameters [DPP13, FST+13, HZ01, KO01]. Parametric [GS06, Pop12, Pop15, SS17]. Parametrization [DJ09, DY10, FMX02, Jia01]. Parametrized [KT11, Mee03]. Paraunitary [Jia01]. Parlett [DH03]. Part [BM94, FG94, Mat92, NAB00, BM00, BBM02a, BBM02b, De 08a, De 08b, DN08, DG91b, DG91c, DD13a, DD13b, EEE99, EEE99, Fer97, Gut92, Gut94, Ho00, LLZ99, MMT08, Ra02a, Ra02b, Ruo03a, Ruo03b, SD15a, SDD15]. Parter [JDS03]. Partial [ABG07, BJ04, BT02, DD16, DEG+99, Fos94, GKR89, GGC09, Gro97, GMBS12, HHRV99, He99, Hig97, JKM97, JMM14, JN03, RW95, Tam98, To97, Wo93, YL08, ZZ99, JMW96, JR85]. Partially [CKL04, Dan93, KLX07, Nav93]. Partition [Wai95]. Partitioned [De 08a, IIM94, LNT11, LNT13, ZZ01, IM95]. Partitioning [AR93, FST+13, PV17, PSL90, YP98]. Partitions [Li16]. Pasciak [FAT16, SW08]. Pasciak-Type [FAT16]. Passage
[DA05, KN99]. Path [GTJ13, JS07].
Path-Sums [GTJ13]. Pathways [LS95].
Pattern [BSvdD95, DD97, Her90, LS95, HPR89].
Patternus [BMOvdD04, HLW94, KOSvdD07, LOvdD02, SHS93, Tsa98, J88]. PDE [DSC11, PWS12, SZ07].
PDE-Constrained [PSW12, SZ07]. PDEs [BOS16, CDGS10, GLS12, Hem95].
Penalized [YLA97, ZZS04]. Bounded-State [Cor93].
Equivalence [IIM94]. Even-Mode [LF02b]. Group [ST01].
Hamiltonian [BBMX02, Meh99]. Hankel [MVP05]. PARAFAC [dMGF14, GMBS12, PTC13, Ste08, SD09, Ste12].
Quotient [GSV00]. Pencil [CH06, GLM17, HGC08, JOAKt10, Naj98, SL94, BV88].
Pencils [AA09, AAB10, AT98, BBMX02, BT12, BT13, Bol90, BM06, BKMS14, BKMS15, BS16, BEGM05, CG98b, CG06, DD08, DD16, DK14, DJK17, EEE97, EEE99, EK96, EK17, GPM03, GT17, HO94, HMT09, HGC99, IM16, IS07, IT11, KL98b, LGC08, LV06, IW97, Meh99, MMW17, TU91, NP16].
Performance [BS90, BH90, BBM02a, NR99, Swe93, Wat00, JP94]. Periodic [BT06, CCS05, CFL07, GKK99, GK06, Kir95, KLX04, LS02, Sun04, Tam97, BC88].
Periodicity [CD00, DP09]. Permanent [GP88]. permanents [FF93]. Permutation [FJBD15, Stu88]. Permutated [MP12].
Persymmetric [AKM97, GL93]. Perturbation [AB+91, BCR11, BBGF00, BM06, BEGM05, CGRVC08, CPS97, CP98, CGP90, CS10a, CLN12, wC03, DDY14a, DDY14b, DD07, Din98, DM05, DOV94, EEE97, EEE99, EI98, ES11, Ehm97, Far16, Fie96, FJ06, Gu98a, HY00, Hig03, HC15, IR08, IN09, IM16, JK15, Kåg94, Kar11a, KK14, KPC94, KP99, KMP01, Kre05, LMZ03, LNV92, Li95, L99a, Li98b, Li99, LS03, Li05, LS07, LNTX11, LNTX13, LgS02, Liu12, LR99, LT94b, MOC91, Mat93c, Mat97a, Mat97b, MBO97, MD03, Ral09, RRR06, Ste93a, Sun95a, Sun95b, Sun96, gS997, gS98b, Sun04, TVW15, Vac94, Wan15, WD00, WLB05, Wel11, XSW10, XG98, Ye09, Zha93a, ZZ01, dTDM08].
Perturbations [BEGG07, BW93, DD16, EK96, GT17, GGM017, HNT99, Kar11b, Li93, MMS16, MMW17, MT15, RS96, RW95, Rum03a, Rum03b, SW94, WD94, WD95, Zab91, AG88b]. Perturbed [AKPP08, ANT09, BBS15, BFZ07, HH912, Naj98, SEM13, SM16]. Phase [CFL17, Mar11a]. Phenomenon [Hig03]. Photonic [HLW13]. Pieces [CD90].
Piecewise [BE02, Gow96]. Pierce [FF93]. Pivot [Gar09]. Pivoting [BS02a, BT02, CCI+99, DEG+99, DGGX15, DP05, DP07, Fos94, Gou91, GGC09, Hig97, HS14, IT06, KDGG13, MM00, SS98, Swe93, Tol97, YC97, HH89]. Placement [GT17, MX98, Min15, vdWM95]. Plane [AP94, PS88]. Plus [BJ16, CG03b, DD98, Har05, HR04, HT17, Hoo17, ZZ99]. POD [CFT16]. POD-Augmented [CFT16]. Point [BG04, BG06a, CH93c, CHZ03, Din98, DGSW06, Do77, DJ00, EG15, GGV05, GS10b, GOR14, HZ01, JR13, JR08, KC09, LV10, LZ10, LP13, Mar91, Mes08, Not14, OS10, PW14b, PR16, PU10, PR14, RS02, SR07, SHY10, SHZ12, SB04, TS01a, TS99, Tu02, Wri95, WT11, XW07, Zull11, Run91, Wri97]. Points [AAB10, BGN12, DPP13, DL15, GL13, GKL14, O’N05, de 90]. Pointwise [CRS99, CRS01]. Poisson [CCZ97]. Polar [BvdMR+97, BX08, Eir00, GL17, GI96, HMM04, HMT09, Kap90, KL92, KZ10, Li95, LS03, Li05, Mat93c,
NBG10, NH12, NNF14, Pil94, YL08, ZMK02, vdMRR01, G197. Pole
[BMU94, FP98, MX98, Min15, RS08, Sun96, Zab01, vdWM95, CM92b, GKRR99].
Poles [GG14, MX98, VGA10].
Polyadic [DD13a, DD13b, DD14, DL15, SDC+12, SD15a, SDD15, SD15b].
Pole [BMU94, FP98, MX98, Mim15, RS08, Sun96, Zab91, vdWM95, CM92b, GKR98].
Polygons [Fie95].
Polyhedral [Pil94, VF00].
Polynomial [BDD13, BKS08, Bet09, BN10, Bor10, CSX15, DMR09, FJKM96, FLV04, Gem98, HLT08, KJH16, Lau00, LC15a, LVV16, MMMMO66a, Mur91, Mur93, Mur98, NNT17, Re91, SKP11, Sor92, TH01, Wim06, Ash91, BV88, Tre88b].
Polynomial-Time [BN10].
Polynomially [GR97].
Polynomials [AB16a, AMVW15, BNS13, BKMS14, BdTD11, BDF17, BV95, BGH95, wC03, Cla10, De 11, DP15, DIS15, EG91, FLT10, FIS01, GH91, GW07, Gdl08, GR05, HM04a, HM04b, HMT06, HMT07, HMT09, IR08, JLM16, JV04, Kt95, LP01, LP05, LNV92, LP17, LR94, LY03, LT09, Lin03, MM06, Meu17, NNT17, NK01, NST15, RS96, RR94, RI11, RVV17, Tas15b, TDV15, TZ13, TT98, Xu15, ZZ98b, dSV01, DGIM06, MV88, Per88].
Polytope [GWZ05, GZ09, GZ15, JP09, JCG14].
Polytopes [GP16].
Positive [AMT90, A01, AFPA07, Asw16, BGN03, BW95, BJ98, BDR12, BF06, BD05, BS10, BHH+08, BT92, CS01, Car94, CT08, CCL09, CHLS00, DK05, DH03, DY10, EG00, FHJ06, FV98, GP06, GT04, GNV03, GLV10, HLW94, Her90, Hu92, HQ16, JMO93, JH02, JovdD03, Joh08, JSG15, KOSvD07, KN91, LS09, Lat95b, Lau00, Li05, LS11, Lu98b, LQ16, MV97, Mat92, Mat97b, Mel04, Moa05, NS07, ND06, NY95, NV02, OR93, Pe98, Pe05, PT05, Pha01, QXX14, Reu02, Roh94, SMBJS13, SH93, Wal03, WZ91, WZ95, Whi90, XG10, Ye09, Zha00, ZWF05, Zha17, Zha10b, vdMS05, AG88a, FM88, HPR89].
Positive-Definite [FP98, MX98, Min15, RS08, Sun96, van96, LB09, vdWM95, AG88a, FM88, HPR89].
Positive-Definite [FP98, MX98, Min15, RS08, Sun96, van96, LB09, vdWM95, AG88a, FM88, HPR89].
Positive-Definite [FP98, MX98, Min15, RS08, Sun96, van96, LB09, vdWM95, AG88a, FM88, HPR89].
[Gil94, GS92]. **Prediction** [Elm92, GGC99, NP96, Qia88]. **Predictor** [BB98].

Preface [LGPS90]. **Prescribed** [CE94, CLK04, DJT05, FIS01, NS94, RSS94, TD15, BH96].

Presence [CGGS98, Par94, Wat00]. **Preserved** [DMS12, Loe90].

Preserving [BB96, BB98, BGM02, CGCDM13, CPT09b, CGP09, CG10, CH93c, CKL04, CGH11, CK91, CC10, CSG94, CKS95, CC92, CHLS00, DFT92, DG91c, DT08, DLM04, DW15, DS10, Do107, DS16, DP05, Eff13, EHVp04, EL97, EW13, FF94, Fio11, FJBd15, For03, For96, FS01, Fos03, Fri92, GH91, GHNV03, GHTT96, GP97, GTH11, GJT012, Gre05, Gu98a, Gu98b, GKL97, GKL14, Guo03, GHT09, HY110, HM01, HS10, HH98, HZ01, HLQ09, Huc92, Ips06, Ips09, IW14, Jam92, JMM14, J192, JLS01, Ken96, KKM14, Kau06, Ki99, KO01, Kni04, KMS15, Lan07, LX09, Lau00, LC15a].

Problems [Sun96, SD12, TETA05, VZ91, VGV09, Wei92, fX96, ZZ98a, ZWF05, Zha10a, ZXL14, ZMW17, ZF14, dSL08, BJ95, Pan91, San88, Tis93, Tre88a, Tre89, VV88, VV89, WBP89].

Problems [AT07, ABG07, ACST09, ANT09, ABN09, BDY98, BST16, VMM15, BDR12, Ben99, BOS16, BG04, BN06b, BMS06, Bet09, BT10b, BH13, BM96, BES98, BHM00, BKK07, BBGF00, Bor10, BS16, BG06a, BGBM92, CGCDM13, CPT09b, CGP09, CG10, CH93c, CKL04, CGH11, CK91, CC10, CSG94, CKS95, CC92, CHLS00, DFT92, DG91c, DT08, DLM04, DW15, DS10, Do107, DS16, DP05, Eff13, EHVp04, EL97, EW13, FF94, Fio11, FJBd15, For03, For96, FS01, Fos03, Fri92, GH91, GHNV03, GHTT96, GP97, GTH11, GJT012, Gre05, Gu98a, Gu98b, GKL97, GKL14, Guo03, GHT09, HY110, HM01, HS10, HH98, HZ01, HLQ09, Huc92, Ips06, Ips09, IW14, Jam92, JMM14, J192, JLS01, Ken96, KKM14, Kau06, Ki99, KO01, Kni04, KMS15, Lan07, LX09, Lau00, LC15a].

Procedure [CW96, GIKT95, GGL04, LS16].

Procedures [GR00]. **Process** [Art96, BR08, CRK05, Gut92, Gut94, HKV05, Pai10, PP11, Van08]. **Processes** [AG00, Cap98, CC97, Cla10, DQ02, Gdfl08, Guo02, LF02a, LP89]. **Processing** [Aru92, SKP11, ZR95, Cri88, Fuh88].
Procrustes [AE97, SB88]. Product [Alt13, Bar98, BOS13, BK90, BvdMR+97, GS00, G06, GR00, HK08, JS07, KN00, Kar11a, KT10b, LS11, LWWM15, MTT05, MV02, MV07a, MP98, NNP04, RHE14, Sen06, SB03, Van10, Zha10b, ZR95, FM88, Tre88b].

Product/Quotient [GSV00]. Products [BZ07, BF05, CDH12, FF94, FHLS13, FIS01, GTI11, GLP01, GP04, HL17, HM90, HLS97, JR13, MTT08, Mae98, MSZ15, Rod05, WZ95, Zha97, HC89a, HC89b, PS88, Zha95].

Profile [PK93, PK94]. Programming [Ari00, AB01, ES92, FGM91, FS01, GS10a, Gil13, HXY11, LT97, LP11, MW01, OS09, PJB10, MT89]. Projected [CFL07, GOR14]. Projecting [Din98]. Projection [Bor14, GHHW90, JK95a, Sim16, TP14, ZH03]. Projections [CE02, FNV08, Grc10, MOR04, WQ00, WZ17].

Projections [CE02, FNV08, Grc10, MOR04, WD00, WZ17].

Projections [CE02, FNV08, MOR04, WQ00, WZ17].

Projective [Hu92, Sa88]. Projectors [GT99, KS17, MS03, RE13, Ste11b]. Proof [Drm10, NV94, PS94, Bar89]. Proper [SCBG05]. Properties [BSvdD95, BO96, BDMS10, BDMS12, BRZ06, Che98, DC91a, EH92, FLT13, GIK00, Gov91b, Gow96, GW00, HP92a, KK93b, KK93a, Le 96, LF02b, LQ16, MNR15, MP95b, ND06, NS94, NSCS10, OS10, PP11, PW14a, RE13, SB04, SQ13, SU94, Tre94, Tre05, VZ91, dF05, Bas89, Lag91, MLS9, VV89]. Property [DRTW91, JWXL03, LT97, NNF14].

Proportional [BGHN92, CCH98, KLX04]. Proximity [KT10a]. Pseudocontractions [SB01]. Pseudoinverse [LC16].

Pseudospectra [AA09, AAB10, BLO03, BLO07, EK17, GL13, GKL14, HT00, Kar10, Kar11b, LP05, Ran07, TH01].

Pseudospectral [BLO04, GO11, KV14, LV17]. Pseudospectrum [BL10, BGN12]. PSVD [ABL94].

Purely [MS10]. Pyramids [HO15].

QMR [Sim97]. QR [Ste06]. QT [DK13, EDEK16, KK12]. Quadratic [Ain17, AW00, Ari00, AB01, BS05, BBTT06, BH09, BT10b, CL40, CSS10, DL03, FGM91, FS01, GP97, GHT09, GL10, HK01, HGL05, HLQ09, LKX07, LP01, LZ14, LNV92, LY03, LS11, Lin03, Mat98, Mee09, MP11, NK01, Ple06, QACT13, RS96, RT93, See11, SH91a, Tas15a, Tas15b, TZ13, TU91, Voo12, ZS14, Zha03, Zha10b, Meh88].

Quadratically [BBTT06, QS06].

Quadrature [CKR05, FMMR13, FG14b, UCS17]. Quadratures [Kau92]. Quadratic [Nie10].

Quadruples [CMT09, alGP98]. Quality [GM98]. Quasi [BT12, BT13, BLAK91, CS98, Cla10, DS97, DQ02, EM15, GI00, GIK00, GI01, GR17b, GD1b, Gdil08, Guo02, Guo03, Har07, HMR01, Ste05, VGV09].

Quasi-Birth-and-Death [Cla10, DQ02, GD08]. Quasi-Birth-Death [Gus02, Guo03, HMR01]. Quasi-Cyclic [Har07].

Quasi-Definite [G100, GI00]. Quasi-Newton [EM15, GI01]. Quasi-Newton [EM15, GI01].

Quasi-Separable [VGV09]. Quasi-Toeplitz [BLAK91, CS98].

Quasiseparable [GSS96]. Quasiseparable [BOS13, BDL11, BEG+09].

Quasiseparable-Vandemonde [BE+09].

Quaternions [Mac95]. Question [Kir02].

Queue [GT02]. Queueing [BM96].

Queues [NH97]. Quotient [DJ00, Not03, RS08, Ste16e, SL94, SX11, EX10, ZAK13, BF89].

Quotients [CDH12].

R [CT15, Ikr97, KZ10].

Radau [FLSS17].

Radii [HNT99, Lj91, MMS16].

Radius [Alt13, BN05, BN10, BZ00, GR93, GO11, GGMO17, JCG14, KV14, LW05, NP13, Tig91, Tro90, BH96, OW88]. Ramaswami [Guo02].

Random
Randomized [BG13, CD13, GR15, GR17b, HI15, MNR15, Mar11b, RST10, WXZ16, XXC14, XXCB14, XXG12, Xia13, ZF13].

Randomized-Range [AS93, BLd93, CP17, GTI11, KM16, LP01, LR94, LP00, Lin03, TW03, TU91, FM88].

Range-Space [GTI11].

Range [AS93, BLd93, CP17, GTI11, KM16, LP01, LR94, LP00, Lin03, TW03, TU91, FM88].

Range [AS93, BLd93, CP17, GTI11, KM16, LP01, LR94, LP00, Lin03, TW03, TU91, FM88].
Rectangular [Baz00, BHL+93, BD10, GT04, GT08, HLS97, WA07, YL08].

Recurrence [ESS+12, ZZ98b].

Recurrences [GS00b, GR00]. Recurrent [Guo02]. Recursive [BM00].

Recurrence [ESS+12, ZZ98b]. Recurrences [GS00b, GR00]. Recurrent [Guo02]. Recursive [BM00].

Recursively [Gre97]. Recycling [CFT16].

Reduced [GV99, Gre99, NS96, SS17].

Reducibility [LW94]. Reducible [BCGG10, EHW10].

Reduction [ASvG17, AG91b, Bar02, Bar94, BB12, BB96, BG94, GT17, LV06, Pow88].

Reductions [SH91b]. Reeves [YBZC16]. Referees [Ano97]. Reference [Tol97].

Refinable [Han03, JRZ99, RST01]. Refined [Eir00, IN09, JN03].

Refinement [BES05, DHT01, JDS03, Tls01a, Hav89].

Regression [ACW17, BE07, Fei94, O’L90].

Regular [Bez12, Cao00a, Cao00b, DD16, GT17, LV06, Pow88]. Regularity [FGP00, GP16, JR99, RR98, RST01].

Regularization [BE07, BGMN92, CCH98, GH099, KS99, KO01, KLX04, Mal03, MH13a, PSLW12, WX16].

Regularization-Robust [PSW12].

Regularized [BBTT06, BBTK08, BST16, CC17, DGSW06, Do17, LC16, LPT10, PO03, RG05, SNC02, SHZ12]. Regularizing [HJ07].

Regularizers [KB90]. Related [Alt13, BF93, BKMS14, CZ03, Cro16, CKP11, DMC13, DLM04, DK98, FS01, Gut92, Gut94, Gut14, HLS97, May12, MP91, PK93, PK94, SWYM96, ZLQ12, Bas89, BBDS95].

Relation [Fie95, Nou96, Tam97, Xu98, ZZ98b, MV88].

Relations [BS02b, CG96, EGGR99, GP03, HLTL91, Mat05]. Relationship [CG92, HPS+11, PP05b, Peñ98].

Relationships [CF02]. Relative [Bar00b, DDY14b, DP04, DMM03, DMM08, DH97, EJ98, EGTP17, HC15, Le 96, Li98a, Li98b, Li99, Li05, LR99, Par05, Tru06, Ye99].

Relative-Error [DMM08]. Relatively [WL06]. Relaxation [AW00, BF05, ENV92, HZ01, LZ10, Woz93].

Relaxations [FJBd15, Hel00, LQ16, Nlt14, Sch05].

Reliable [Dh98, Ra11]. Remark [Lat95b].

Remarks [BGT05a, Fri16, Wei95].

Renumbering [BW99]. Reordering [GK06, PFRR17, Zha01].

Repartitioning [GH92]. Repeated [AT98, BS96, QACT13].

Representing [DV08b, FS97, GdlI08, KK12, Mar11b, Sai16, Ste16a, Sb95, Sb03, We96].

Representations [CDG+05, CGP06, CDG+07, HLW05, HR00, JZ16, LHC16, MW01, WL06, WL12].

Representing [Tig91]. Reputation [dKV10]. Require [Tsa98].

Rescaling [Hu92]. Research [GKL12].

Residual [CD14, CGLV11, DH97, Ern00, FJKM96, Gre97, Hj90, Mat98, Meu11, Meu17, Saa06, Ste91b, gS96, Tru06].

Residual-Minimizing [Ern00].

Residual-type [Saa06].

Residuals [BD09, Grc10]. Resolution [CC92].

Resonance [GS06]. Respect [RODS15, WD94].

Response [BL12, BL13, ZXL14, MP88]. Restart [WS00]. Restarted [BJM05, BER04, BF00, FGS14a, JK97, JN03, LS96, Le01, MR97, Mor95, Mor00, NZ16, Sim00, XE12].

Restarting
[AGJ14, CGLV11, EGG11, Sta02]. **Restarts** [FGS14b, ZH17]. **Restoration** [CR96, NNP04, RHE14]. **Restricted** [BT10a, CDD00, DG91a, MT15, Nov11, VZ91, Zha91]. **Restricted-denominator** [Nov11]. **Result** [Pai10, Sle09, Voo12]. **Results** [BLd93, Cho10, DG91b, Din98, Djo08, DD13a, Fer97, GS02, GWZ05, KS03, Mei04, Men99, MPS98, NP96, Ser98, Wil08, YL00, YY10, YY11, von93, CRR93]. **Resummations** [GTJ13]. **Retrieval** [BR05, CFL17]. **Revealing** [CGCDM13, CI94, DGGX15, DK06, FB95, HY01, KDDG13, LLZ09, LZ05a, PE95, PL97, Ste93b]. **Reverse** [BMRZ94, Djo08]. **Reversible** [DR93]. **Review** [AYLR04, Meu92]. **Revisited** [Dub00, Hig05, Pey01, Wu17]. **Reweighted** [O’L90]. **Riccati** [BIP08, CR10, FHS09, Guo98, GL00a, GL00b, Guo01b, GH07b, GIT08, JL98, JOMM10, KP99, LwCKL13, Lim07, LG02, LX06, LX12, Lu05, MOR16, MX09, Sch95a, Sim16, gS98b, Sun04, gWeWL12]. **Riccati-Type** [LX06]. **Ridge** [ACW17]. **Riemannian** [BS10, CDH12, IAVD11, Lim13, VV10, WCCl16, YBZC16, Zha10a, ZBJ15, Zim17]. **Riesz** [vDMs05]. **Right** [GRT07, HPS13, HPS16, HP02, KS92, MB10, Ple00, WCW10]. **Right-Hand** [GRT07, HPS13, HPS16, KS92, MB10]. **Rightmost** [EW13, MR97]. **Rigidity** [S08, SC10]. **Rigorous** [CS10a, DN11]. **Ritz** [AKPP08, BGV10, BD09, CE12, Hav98, KA07, KA10, PP11, Tan94, TM12, WZ17, Wu17, Wu05, ZXL14, ZK17]. **Robust** [Joh96]. **Robust** [AL98b, BH90, BLO03, DLM13, Efi13, EL97, GQ14, KB93, LGWX12, NK01, O’L90, PSH12, SNC02, Sch05, WLW06, WT11, XG10, XX17, Yan93, Zha01, Zul11]. **RobustMap** [Ost10]. **Robustness** [BCGG10, Gil13, WD94]. **Role** [Liu90]. **Root** [DK98, EKNX93, GH06, HMNT05, Ian06, Ian09, KNOX02, LFW13, Mat97a, Mei04, KN94]. **Roots** [AMVW15, CG15b, FH10, GR05, LB02, Lu98b, MS91, NST15, Sm03, JN89]. **Rosenbrock** [AB16a]. **Rotation** [DL02, JSG15]. **Rotations** [AP94, Drm10, GOR95, Moa02, SV05, Van11, PS88, SB88]. **Rounding** [SvdVM00]. **Roundoff** [EMC17]. **Roundoff-Free** [EMC17]. **Row** [CH06, CH99, DH05, FHS‘94, GNP94, RS94, RSS94, Pan91]. **Row-Wise** [CH99]. **Rows** [GN03]. **RQ** [SY98]. **Rule** [DTGVL05, Mat96, SW98]. **Rules** [CR96]. **S** [CT15, WW08]. **Saddle** [BG04, BG06a, CHZ03, DGSW06, Dol07, EG15, GGV05, GS10b, GOR14, HZ01, JR08, KC09, LZ10, Not14, OS10, PW14b, PR16, PU10, PU14, RS02, SZ07, SHY10, SHZ12, SB04, Tum02, WT11, XW07, Zul11]. **Saddle-Point** [CHZ03, DGSW06, EG15, HZ01, Tum02]. **Saddlepoint** [DR93]. **Satisfy** [ZZ98b]. **Satisfying** [CG03a]. **Scalable** [vD99]. **Scalar** [ACST09, BvdMR97, Kar11a, MMT05, MMT08]. **Scale** [AMH10, AP94, BBS15, Bet09, BZ00, BX08, CH94, DP05, FLV04, Fuy95, Hig05, HO15, JSG15, KL92, KZ10, KRU14, RSS94, SW97]. **Scaling** [BB95, Gre92]. **Schatten** [FHL13]. **Scheduling** [ADLK01, ADW05]. **Scheme**
[ALN07, ALP07, IAVD11, NY95]. Schemes [Bor03, JZ99, Whi00, vdG93, Whi89].

Schmidt [BP92, GGL04, PRS06, Ste05, VNV14].

Schrödinger [JLS01, JZ99, Whi00, vdG93, Whi89].

Schur [GLV10, Ste02, ALAK94, ABN09, BLAK91, BL10, CO99, CS96b, CDGS10, CLN12, CNW08, CH88, DH03, DDV04, DV06b, ET10, GUX94, G06, GH06, HL11, HL13, HS95b, HLS97, IM13, JMM14, KL98a, KPC94, KMP01, LZ05b, MV07b, Mat95b, SK95, SM03, Ste01, Sun95b, ZH17, vdV96].

Schur-Monotonic [GLV10].

Schur-Type [ZH17].

Schwarz [Bor09, BPS05, FS97, FNS08, HM90, NS07].

Scores [HIW15, Hoo17].

Search [Hig93, RCH08].

Searches [HK01].

Secant [CFG98].

Second [BS05, BH93, BLAK91, BL10, CO99, CS96b, CDGS10, CLN12, CNW08, CH88, DH03, DDV04, DV06b, ET10, GUX94, G06, GH06, HL11, HL13, HS95b, HLS97, IM13, JMM14, KL98a, KPC94, KMP01, LZ05b, MV07b, Mat95b, SK95, Sm03, Ste01, Sun95b, ZH17, vdV96].

Second-Moment [BH93].

Second-Order [BS05, BH93, BLAK91, BL10, CO99, CS96b, CDGS10, CLN12, CNW08, CH88, DH03, DDV04, DV06b, ET10, GUX94, G06, GH06, HL11, HL13, HS95b, HLS97, IM13, JMM14, KL98a, KPC94, KMP01, LZ05b, MV07b, Mat95b, SK95, Sm03, Ste01, Sun95b, ZH17, vdV96].

Sections [Rog05, Sil03].

Secular [LB02].

Seidel [MNR15].

Selected [XXCB15].

Selection [AB13, CB09, Lu10, RE98, dBG08].

Self [Cao09, LP01, LWYY14, Per88, WE89, WE90, YGM90, ZAK13, vdMS05].

Self-Adjoint [Cao09, LP01, ZAK13, vdMS05].

Self-Consistent [LWYY14, YGM90].

Self-dual [Per88]. Self-equivalent [WE89].

Self-Similar [WE90].

Self-adjoint [KL98b, RRR06, ZTAA02].

Semantic [VS14, ZZ99].

Semencul [AG91a]. Semi [BY88, GK15, LHC16].

Semi-iterative [BY88].

Semi-Nonnegative [GK15].

Semi-Separable [LHC16].

Semiaffine [QCL16].

Semicircle [BZ07].

Semiclassical [HL17].

Semiconvergence [AM05].

Semidefinite [AD02, BS10, BHH’08, CS01, Car94, CFG98, DHZ03, DH97, DY10, FNS08, GS10a, GS02, HXY11, He00, HLW94, Her90, JT98, Lau00, LWXZ06, Mal04, MW01, NS07, NW14, Ste10b, SH93, WZ95, Zha00, HPR89].

Semidirect [HG14].

Semigroups [GR97, Jia98].

Semimonotone [MP95b].

Semiproximal [BST16].

Semiring [Pat00].

Semiseparable [CG03b, CDGS10, CGP06, GLV10, Har05, Mar11b, VVM05].

Semisimple [LMZ03, Lan07, QCT15, QCT16].

Semismooth [QY04].

Sense [HPS16].

Sensing [JKN11].

Sensitivity [Afs08, Bol90, CI95b, DB88, GG06, GTP13, GKL97, Mey94, Zen16, Zha93b].

Separable [LG94, KS92, LHC16, VGV09]. Separation [De 11, LZ05b, WLB05].

Separators [GM98].

Sequence [BGGJ95, DD99, GM98a, Pa09, PW14a, Tam97].

Sequences [Arg15, FC01, HSC04, NSCS10].

Sequential [DP07, Pea88]. Sequentially [CDG+05].

Series [DM05, FG15, HR93, KS03, SX14, VP93, BS89, BN88, Tre88b].

Serra [WW08].

Serra-Capizzano [WW08].

Server [GT02].

Set [AM95, AKM97, BF06, CP17, EK96, Gow96, Gro97, Hla08, Huh01, KP08, LP96, May12, Pl89, Pea88].

set-theoretic [Pea88].

Sets [AMT90, BN10, CRS99, CR01, DLT15, GGO13, G15, GP16, Kar11a, May12, MPS00, Pop12, Pro13, SU94].

Several [Bin90, CCG+09]. Sham [LWYY14].

Shape [AKM97].

Shape-Invariant [GS03]. Shift-Invert [FS10, HL06].

Shifted [CM03, GLS94, Guo03, GIM08, HMR01, KM11, KM14, MV07a].

Shifting [MP91, vdG93].

Shifts [BBM02a, Emb09, Wat95, Zhl12].

Short [ESS+12]. Short-Term [ESS+12].

Shorted [BM88].

SIAM [Ano11, CH93a, HC89b, WW08, Zha95, GI97, Lkr97].

Sided [BB07, CZ02, FB95, Fie96, SWYM96, ZH17].

[38]
Sides [GRT07, HPS13, HPS16, KS92, MB10]. Sign [BD90a, BMOVdD04, BC92, BD15, BDF17, BHM97, CK00, HM10, JMO93, KL91, KL92, KOsVD07, LOvdD02, LS95, Pen95, Sha95, SHS03, Tsa98, JJ88]. Sign-Central [BD15]. Sign-Nonsingular [BC92]. Sign-Solvability [CK00, Sha95]. Signal [Aru92, SKP11, ZR95, Fuh88]. Signatures [Wim06]. Signed [HKG09, KSH02, SHS03]. Significance [Van92]. SIMD [BMSV92]. Similar [LLˇS09, Sle09, WE90]. Similarity [CG15a, FP98, GKK99, IIM94, LPS08, VVM05, dSV01, CH88]. Similarity/Equivalence [IIM94]. Simple [Bol90, GG14, Lu05, OP05, Ste91b, Tam99, WLB05]. Simpler [JRG09]. Simultaneous [AhS98, Bin90, BGBM93, CS96a, DDV04, De 06, MM11, OSt09, Pr91, Sut12, CJL96a, CJL96b]. Sinc [NP02]. Sine [CDD00]. Single [AD98, BMU94, CHH+15, MX98, Mim15, SX11, Meh98]. Single-Curl [CHH+15]. Single-Input [AD98, BMU94, MX98, Mim15]. Single-Vector [SX11]. Singly [Tis03]. Singular [AMMS08, AHH01, BO08, BES15, BV90, Bar02, BL02, BT17, BG14, BB96, BK90, Bor09, BW97, Cao08, CVG03, C195a, CL09, CT15, CHH+15, CFG97, CCH98, CDD00, DDV00a, DG10a, DV29a, De 94b, DD98, Dem92, Den99, DP09, DSD17, DJ00, Dmn00a, ES12, Fer98, Fri05, Gra10, GE95c, GRK17, GLM17, Han94, HMP94, HHSW97, HDT10, HS00, HJP03, HC15, Is07, JS94, JN03, JN91, JN93, Kin95, LC15b, Li93, Li98a, Li98b, LM20, LS07, MS02, MMW17, MV92, MMH94, MS03, Not16, ON05, PS94, PP05a, RY05, RW95, Rv905, Rum97, SCBG05, SS06, SWZ11, Si03, SB01, g500a, Tam98, TVBG11, WA07, Wan15, Wat92b, YB91, Zha91, Zh97, Zha00, QZ10, Bap89, BY88, BN87, FF93, GL96, KN89, WE89]. Singularities [MS99, VJ07]. Singularity [Bea01, FP16, LH05, RR98, Roh93, Wan98a]. Singularity-Induced [Bea01]. Singularly [Na98]. Sinkhorn [Kn08]. Size [CNW08, KNX04]. Size-Classified [KNX04]. Skeleton [CD13]. Sketching [ACW17, TYUC17]. Skew [AKM97, BGN03, BDLP97, BBM02, Ben09, DHZ03, DK14, Fer98, GV99, GPTP16, Hac93, Hla08, Kre05, Meh99, Rod05, RP10, SBO4, Tam98, TY02, Tre03, Yas03]. Skew-Adjoint [Rod05]. Skew-Centrosymmetric [TY02, Yas03]. Skew-Hamiltonian [BBM02, Kre05, Meh99]. Skew-Hamiltonian/Hamiltonian [BBM02, Meh99]. Slow [BET02]. Sluggish [O’C02]. Small [BLO07, CO12, CNW08, GV07, GKL95, GKL15, Hig03, JV04, Kar11b]. Smallest [GKL95, GKL97]. Smith [LK95, Mur91, Mur93]. Smooth [DE99, Ma08]. Smoothed [BC10, SST06]. Smoother [TW00]. Smoothing [HJ07, QL99]. Smoothing-Norm [HJ07]. Smoothness [CD00, Han03, JRGB09, JJO3]. Snap [IT06]. Snap-Back [IT06]. SOAR [BS05]. Sobolev [RST01]. Solution [AM95, AKM97, BS05, Bar98, BTB05, BBT06, BBTTB08, BG14, BM96, BO1, CGCD13, C195b, CPTP09b, CH97, DK05, DHZ03, DS16, DP07, EHvP04, FLM12, Gar90, GL03, dMGF14, GPTP13, GV09, GL00b, GH07b, HLT12, HB94, Han94, Hla08, HP92b, HM97, HJ92, Ips06, Ips09, Jou92, KS08, L510, LHHR95, Li99, LW02b, LBL05, Lu94, Lu96, Lu05, Mac99, May12, Mee03, Mee09, MP11, MPS00, OS10, OL99, PAP00, PYHK93, PP05b, Pop12, RG05, R006, RPG96, SC03, SJ92, TSU93, Ver96, Wei92,
Solutions [BEP94, BT92, Buc00, CPTP99a, Che01b, CGH11, CK91, CH94, CR10, DYY16, EL97, EP94, GHR95, Ho90, KC09, KT10a, KLX07, Lat95a, Mal03, MX09, OSS14, ypWJP12, RDC93, RK95, gS96, VV10, WS12, Winn92, XZC99, ZHZ05, ZWF05, DK88, Winn88b]. Solvability [Buc00, DBW15, HPS16, Pop15, Roh03, Sha95]. Solve [ANT09, GH07a, VGV09]. Solved [HLT08, LC15a, LVV16]. Solver [ADLK01, ADV05, AV91, CS98, CGP06, CDG+07, DV08a, DL92, HY00, Ste03, VHK01, XXG12, Tsa94]. Solvers [ADR92, AGL98, DH93, DGSW06, DSSC11, Gov91a, GT11i, GS00b, Gut14, JR98, MR97, PFRR17, STVD17, SvdVM00, Wri95, XXCB14, Xia13, XE10]. Solves [FS10, SX11]. Solving [AT07, ADD89, BEG+09, Ben99, BD90, BM99, BHP03, BF05, BLNT13, CG10, CG96, DHT01, DTGVL05, ESR01, ES12, EG00, Fio11, Fos03, GRT07, GLS94, GKL14, GL00a, GHT09, GL10, HXY11, Hig00b, HK01, HV05, Huc92, JH92, JFV04, JOAKt10, LwCKL13, LH05, MV07b, MLV00, MM00, NY95, Ors06, PV17, SWZ11, SS17, ST14, SB11, ZF13, BDV89]. Somne [Au00, BLd93, BGT05a, BK97, BN10, CCJ+00, CDG+05, CS10a, CD00, Cho10, CHW10, C203, CHZ03, Cro16, DLM04, Dri06, EGGRR99, EL91, GR17a, GIk00, GG06, GS02, HMT93, Ho90, JJ88, Kan96, KS03, Li91, LZ97, MP95b, MPS98, ND06, NP96, SU94, Ste11a, TL06, Trev94, Wei95, XX16, Xia12, YL00, ZQZ14, von93, GIMT95, MT89, VV89]. SOR [Dan91, HNP98]. Soules [EM10]. Space [AD02, AB01, APFA07, BW95, BH90, BH93, BD10, Bry17, Cle00, Drm06b, FJ97, aGP98, GT11i, GOS15, GS00b, PR16, Qi11, QZL05]. Spaces [BvdMR+97, GT08, GS03, KSH02, MTT05, MMM06b, NNT17, Sal88]. Sparse [Ari00, AB01, AL98b, AKP08, BV92, BLP90, BM02, BW99, BT02, BFP95, BrD07, Cav94, CDG+07, Che01a, CC09, CG90, DD97, DH99, DH01, DH05, DGL99, DEG+99, DD12, DK99, DK01, DP05, DP07, EL92, EL05, GL99, GMS92, GL93, GNP94, Gil94, GO95, GT08, GGC09, GLS94, Gup02, HS13, HN93, KU13, LGPS90, LS06, LC05, Liu90, LNP93, LB96, Lu10, LN14, LKK97, MSZ15, NP96, NP99, NR99, NY95, PFRR17, PL97, RN06, Reu02, RS94, RE98, SZ99, STVD17, SY00, SV3, SV15, Tan99, TW00, Vog99, XLS16, Xia13, XXCB15, ZS02, ZS04, dBG08, vdD99, vdBVdV93, ADD89, DY90, KY93, Liu88, PSL90]. Sparsity [CK12, HJOvdD93, HLW94, HPR89]. Spatially [Par94]. SPD [LGW12, XX17]. Special [BG94, BJ16, Che98, DCM08, Fie95, Fie00, Ips06, IS08, Ips09, LGGP90, MG92, NP99, STH03, Tho94, BHH88, HM89]. Specific [COV14, COV17]. Specified [CHKL01, Ch091, CS10b, Dan93, KKM14]. Spectra [HSC04, IZ04, KA07, MT00, Ser98]. Spectral [Alt13, AG91b, BMY03, BSvdD95, BGSC07, BE03, BN05, BN10, BZ00, BCGG10, BCW12, CSX15, Cap00, CS98b, Cle00, CG10, CP17, FGJ00, FST+13, FC01, FL99, GSCS15, GP97, GG06, GS06, GS10b, Grc10, GR93, GM98, GGO13, HNT99, HCG00, JJ03, JW11, JCG14, Kar11a, KS17, KK93b, KK93a, Lan07, LS01, Li16, MS97, Mat97b, MW01, Mön11, NFF14, NP13, NSCS10, PR01, PJB10, QY04, Sen06, SB04, SQ13, TP14, TYP02, Tiq91, Tre90, Tre94, WS12, Wel11, XE12, Yas03, AG88b, BH96, OW88]. Spectrally [BMOvdD04]. Spectroscopy [LW05]. Spectrum [Chu91, CG98a, DJS05, FT16, GMS90, MS03, PV09, ZAK13, DS95]. Sphere [CDLP05]. Spherical [ZLQ12]. SPIKE [MM09]. Spill [CCL09]. Spill-Over [CCL09]. spillover [QCT17]. Spline [HHRV99, GBCW89]. Split [Mel01].
Splitting
[BBS15, BGN03, Cao00b, HM04a, ILNS17, MBN17, Ral09, RP10, SB04, YLA97].

Splittings
[Cao00a].

Spring
[NW02].

Square
[DL02, DK98, GR93, HL08, HH94, HMT05, LFW13, Lu98b, MS91, Mat97a, Mei04, PR01, XSW10, JN89].

Squared
[BEBT07, GN16, PP05b].

Squares
[ABG07, Aru92, ANT09, BG11, Bar98, BBT05, BBT06, BBT08, BE10, BST16, Ben99, BN06b, BPE94, BES98, BHM00, Bj¨o14, BV01, BHP03, BX05, BV95, CGCDM13, CNP94, CGS98, CPTP09b, CPG09, CG10, CH93b, Chu91, CG98b, CK91, CH99, DN08, DHZ03, EL97, EP94, FF94, FB94, For96, FS01, GS10a, GH099, GJTP12, GTP13, Grc10, Gu98a, Gu98b, GW92, Gu95, HY110, HXY11, HPS*11, HG14, HM97, HV97, IW14, Jam92, KS92, KLR98, KP08, KT10a, LY03, LS06, LPT10, Mal04, Mal03, MVP05, Mar11a, ML00, MW01, MH13b, MH15, PRS06, Re91, RG05, Rod06, Rum12, Sha95, SC03, STT17, TETA05, Uscl2, VZ91, Van92, WC14, WCY15, Wei92, WD00, XCB14, ZH03, ZHY16, ZMW17, ZLZ02, ZF13, O’L90, Qia88, VV88, VV89, Zha95].

Squaring
[AMH10, BBS15, Hig05].

Stability
[BBD+16, BH90, BvdG11, BES98, BJ¨o14, BLO03, BX08, CMT09, Cor93, DLM13, FLM10, FJ97, FGS96, GGS96, GLT96, GGM017, Hig90b, Hig97, IM94, JWX03, KB93, KZ10, Kn04, KV14, LR05, LSB16, MS99, Ma99, MMS16, MT15, NH12, OvdkD98, OP05, PRS06, Pali10, RR08, Roh94, RT99, SV97, SS98, Ste03, Ste16b, Tis01b, TS01, Tro90, Wat95, Wri95, Wri97, XX16, YP98, Ya100, Yan85, ZF070, BBD95, BDV89, JJS88].

Stabilization
[HY00, W¨ol05].

Stabilized
[Ern00, LZ10, Sim97, VHK01].

Stable
[AB05, AMVW15, Bar00a, CM93, CS98, CGS98, Cha00, CG03b, CH99, DP07, fR006, FGS14b, Fuh07, Gov91a, GE94, Gu98c, GGBc03, Hu92, JK97, JRG09, LS10, LW97, LOvdD02, PLM94, RR08, Sut12, TCTM00, Tro60, Vav94, XXCB14, XSW10, ZS14, CJL96b, GL03].

Stage
[SB04, YLA97, SB01].

Staircase
[EEK99, EM00, SZK95].

Start
[Del97, KW92].

State
[BH90, BH93, BGMN92, CMT09, Cle00, Cor93, DGM00, HS10, KLR11, Zab98].

State-Discretization
[DGM00].

state-feedback
[Zab98].

State-Space
[BH90, Cle00].

Stationary
[BF11, Cao08, FNS08, GV99, KS15, LF02a, Liu12, MS02, Mey94, OW96].

Statistical
[BR11, GKL95, GL97, Hoo17, KL98].

Steepest
[KL08].

Step
[AV91, CD14, CD15, KMN11, Sle09, Sor92].

Steps
[Sle09].

Stepwise
[Mim00].

Stiefel
[Bry17, LWW15, Zim17].

Stieljes
[Bas89, FGS14a, MMS94, NV94].

Stiffness
[GCS15].

Stochastic
[AK90, BF11, CG98a, DGM00, EU10, Fie95, FST+13, GDF01, HR93, MW12, PU10, PU14, Pul13, Sen98, UCS17, WSSL06, YBZC16, Hav89].

Stokes
[Elm97, WT11].

Stopping
[AAR02, Ari13, CPTP09b, EL01].

Strang
[KO05].

Strategies
[DP05, DP07, Kon00, RE98, Ser96].

Strategy
[BF05, CD14, PFRR17, Zha01].

Stratification
[EEK99, EJ99, FGP00, aIGP98, Huh01].

Stratification-Enhanced
[EEK99].

Strict
[BD15, Zie95].

Strictly
[GP06, MMS94, NV94].

Strong
[BS94b, Ger92, LP17, Ya100, BDV89].

Stronger
[FJKM96].

Strongly
[BS94a, Mal06, Tas15b].

Structural
[EL92].

Structure
[AFPA07, BRR00, BFZ07, Bar98, BT17, BS15, Bjo90, BHR10, BJMS17, CK91, CS95, De94b, Di09, DLM04, DJK17, Gill94, Gre05, GCC09, GL10, HH93, HJP03, HLQ09, HKBM08, KC94, KO05, KK17].
KT10b, KS12, KLS16, LP96, LG08, LX06, LK95, MV17, MMS16, MBO97, MD03, NP96, ZZ99, ZZ01, dTDM08, DS95.

Structure-Preserving [GL10, HLQ09, KK17, KS12, KLS16, LX06, MMS16].

Structured [AA09, ADC04, BB08, BB08, BBTK08, BE10, BST16, BM06, Bor10, BKMS14, BKMS15, Buc00, BGBM92, BGN12, BGDN15, BK06, CGCDM13, CB90, CV07, DV08a, DV08b, Dem99, DK06, Fuh07, GR17a, GW07, Gk93, Gu98c, GMMO17, GRK17, GL10, HHSW97, HH92, HH98, IUM14, JV16, JK95b, KKT06, Kar10, Kar11b, KS08, KPM09, LX00, Li99, Mac09, MMT05, MMMM06a, MMT08, MVP05, MU13, MLV00, Mrl91, Mrl93, NP99, OSS14, PO03, Rv17, RPG96, RPG98, Rum03a, Rum03b, Rum15, SV97, Ste16b, gS98a, TH01, Tis01b, Tis03, VFGM05, Wat92b, WD95, XCC14, XCC14, XX16, XG10, XCG10, Xia12, XCG12, XX17, XW07, Zhld12, vDWM95, DGM06, GIMT95].

Structured [BKMS14, BKMS15, DD07, DV06a, DV06b, Ek96, GJ00, GL93, RD95, ST08, ZGP10, DB88].

Study [CG15b, Zhe96, Zhe98].

Sturm [BGH95, Mal06].

Style [Dol07].

Subadditive [ZQ10].

Subclasses [LQ16].

Subdefinite [CHLS00, ND06].

Subdiagonal [GN16].

Subdivision [JZ99].

Subdivisions [GP16].

Subdominant [GN03].

Subgeometric [Mas16].

Subject [CG98b, VV89].

Sublinear [CD13].

Submatrices [JK95b, dSV01].

Submatrix [Bai05, OR93].

Submultiplicativity [JN19].

Subsampled [BG13].

Subset [AB13, CB00, DA05, Fei94].

Subspace [ASVM04, AT07, ABM17, AKPR08, BR05, BD09, CP03a, CFT16, ESS12, EN08, Ern00, FGS14a, GGLN13, GG14, GPTP16, GMN16, Gut14, HS95a, HGL05, JK97, KO15, KT10b, KT11, KV14, Ldh01, Li98b, LY03, MVV92, MH13b, NZ16, RSS09, RS02, Saa97, Saa16, SS13, Sid95, Sim00, Sim16, SK16, TP14, Ver96, WY17, vDvES04, Fuh88, Lag91].

Subspace-Based [AT07].

Subspaces [BD98a, BER04, BKS08, BBMX02, BT10b, BHM97, BK06, CGV03, DHW92, Drn00b, DK08, DSZ14, FB05, FMX02, KK14, KA07, Krc05, Li93, LW97, Men12, Miy14, PLM94, RR08, Rod05, Ste16a, SL94, Tam99, WL05, YL16].

Substochastic [Har99].

Substructures [ST08].

Substructuring [EV06, PW90].

Successive [Eff13, GH92, MHHG15].

Successively [JvD01, JvD04].

Such [JKM11].

Sufficient [BM00, Cor93, CC92, HQ16, LS10, Mor12, MM00, RR08, ST08, ZWF05, Gad88, Pan91].

Sum [BL15, BLdP97, Her96, LPS08, OW92].

Sums [FF99, FHS94, GTJ13, HS00, MW01].

Superdiagonal [Tam98].

Superfast [AG88a, CGS94, FLM12, Ste03, VKH01, XCC14, XCG10, XX12, XX17, XX19, Zhld12, vDWM95, DGM06, GIMT95].

Superdiagonal [NK99, DEG99].

Supernodes [LNP93].

Superoptimal [Tyr92].

Superresolution [ZGP10].

Supersymmetric [KR02].

Support [BGH16, BB03, BGH07, SW97].

Support-Graph [BGH16].

Suprema [AMT90].

Surfaces [Nie10].

SVD [CS09, DP09, DO04, DV08c, DV08d, GS00, GL05, GE95a, IO16, LCG14, MVV93, Par05, Vac94, WLV06, Xu05, ZZ99].

SVD-like [Xu05].

SVDs [CF02, Koe95, ZZ01].

Swarztrauber [Tsa94].

Sylvester [AT07, BMO92, CJB96, DK15, GL96, GH07a, HM97, KP92, Kåg94, Li99, SS13].

Sylvester-type [DK15].

Symbol [GSCS15].

Symbolic [EL92, GGC09, Gup02].

Symbols [BV07, HK12].

Symmetric [AM95, AKM97, AT98, AG92, Ar91, AFPA07, AGL98, Aue91, BNW09, BB14, BO96, BOCL97, Bar93a, BldP97, BR08, BS96, BL91, Bor14, Cao00a, Cao99, CD15, ...]
Cav94, Cha00, CFJKS13, CH98, CE94, CG98b, CGLM08, CDN14, CW96, DHT01, DHZ03, DMM03, DK06, DP05, DP07, EGTP17, EG00, rFO06, Fer98, Fri92, Fri16, GIT96, G00, GIK00, GSS96, GV09, GPTPV16, GLS94, GL05, GE94, GLV10, Hac93, HO94, HL17, Han03, HM04a, HB94, HY01, Her96, HM07, Hla08, HS14, HV05, IT06, Jla01, JLZ16, JP93, JLS01, JSG15, Kau93, KN91, LZ14, LF02b, LM03, Lu98b, MV97, MV13, Mat09, May12, Mee03, MB10, MMW17, Mel99, Mel04, Meu92, Moa05, MHG15, MHG17, NS07, NOZ11, Nic17, NY95, NV02, OW92, OW95, PM06, Ra11, RBB90. **Symmetric** [Reu02, Rob16, RS92, Rod05, RODS15, SZ07, SS10, SvdVM00, ST14, Tam98, TY02, TL06, Tis04, Tre90, Tre05, Tur03, VGV09, VYH11, WZ91, Whi90, WS00, XLS16, XG10, Ye09, Zha05, ZWF05, ZLQ12, ZHQ16, ZS07, vDHvdV00, All89, BDV89, DK14, FGS96, GE95b, JP94, Lu08, Ove88, Tre88a]. **Symmetric-Definite** [Cha00, CG98b]. **Symmetric-Indefinite** [BBD+14]. **Symmetries** [FT16, VV15, RR94]. **Symmetrization** [ALN07]. **Symmetrized** [DD98]. **Symmetry** [CCL09, EL92, HM04a, KRU14, SS06, Ste11a]. **Symplectic** [BF00, D09, Fio11, GS06, GKL14, KS12, KLS16, LW97, Mel88]. **Synthesis** [JKN11]. **System** [AB16a, BFZ07, DH93, DK05, DJK17, FPST13, FL99, JW11, KPC94, LV10, MR97, PGVR98, RBB90, WCW10, WR97]. **Systematic** [QCT16]. **Systems** [AM95, ADC04, AK90, BGN03, BRR00, Bar08, BSFM10, BEBTO7, BEG+09, BB12, BF06, BH90, BH93, BB06, BM09, BG94, Bor03, BF05, BLNT13, BW97, BGMN92, BCW12, CT91, CP03a, Cao08, CP03b, CPS00, CI95b, CS98, CG03b, CGS+08, CCZ97, CNW08, CH98, CH06, CFL07, CT08, CK00, Cor93, CG96, DGMR00, DTGV105, DL03, DGSW06, DS16, DSZ14, DP07, ENV92, EGTP17, ES12, EG00, EG15, EL91, FLM10, FL12, FG15, FJ07, FY98, FNS08, FKLR13, GV04, GL03, Ger92, GMP92, GSS96, GLT96, GV05, GRT07, GOR14, Gre91a, GR15, GT11, GV99, Gre99, GV09, Gu98c, GAB08, GLH03, GHR95, Han94, HMP94, Hig90a, Hig90b, HH92, HS14, HO92, HV05, IKS90, Jug92, KG00, KS08, K10b, KT11, KLX04, Lan07, LW02a, LWXZ06]. **Systems** [LM90, ILS17, Lu94, Lu95, Lu96, Lu98a, LH05, LT94b, MV02, MV07a, MV07b, Mat92, Mee03, MB10, MMS16, Mel01, Men08, Men12, MG10, MM11, Min15, Mor00, NRT92b, NP02, NY95, Not16, NV02, OS10, PAP00, PS05, PR16, PV17, Pop12, Pop15, PU10, QCCT17, RT93, RE13, RD95, RY05, RK95, Roh03, Rum12, STvD17, Ser96, SS91, SvdVM00, ST14, gSS97, gSS98a, SSK95, SJ92, TV09, VHK01, Var94, Vav94, Ver96, Wal95, We95, XCL10, XXG12, XX07, YP98, Yan93, dKV10, vdES04, vdWM95, AG88a, ADD89, Ash91, BDV89, CJL96a, CJL96b, Cha98, CH92, CH93a, Cri88, FGS96, HC98a, HC98b, Sch95a, Tre88b, Wim88a, Zab89, PU14]. **Systolic** [MV93].

T [Zha95]. **T** [JWX03, KO05]. **Tails** [AW05, ES05]. **Takagi** [XQ08]. **Tandem** [GT02]. **Tangential** [DSZ14, GV04]. **Technique** [ADV05]. **Taylor** [SGX14]. **Techniques** [DMP96, JOAK10, LS96, PS08, BK89]. **Telescopes** [Bar08]. **Tensor** [AJRS13, BLW15, BLNT13, CS09, CHZ16, CGLM08, CDH12, De 08a, De 08b, DN08, DC08, De 11, DW15, DK13, DIS15, ES09, ES11, EDK16, FHL13, GQ14, HK08, JK15, JZL16, KS15, KL10, Kol01, Kol03, KM11, KM14, KT10b, KT11, LC15b, LC16, Li16, LGL16, LRV13, MMD08, MV08, MHG17, MBM08, NQZ10, NW14, Nic17, Ose10, Qi11, QXX14, QCL16, RV12, Rau02a, Rau02b, ...
Ste10a, Ste11a, SL12, Ste13, UsC12, WCY15, ZLQ12, dSL08. Tensor-Based [MMD08]. Tensor-CUR [MMD08]. Tensor-Product [HK08]. Tensor-Train [LRSV13]. Tensors

Ano11, Asw16, BB08, CPZ11, CS09, CK12, CO12, COV14, COV17, CGL08, CDN14, CLN14, DDV00b, DL17a, DD13a, DD13b, DD14, DDS17, Frl16, Gra10, IAVD11, IAV13, KBHH13, KR02, KK17, LRSV13, LQ16, MGH15, NQB14, QXX14, Rob16, Sai16, SQ13, SD15b, VNNM14, WC14, YY10, YY11, ZG01, ZQZ14, ZHQ16. Term

BLAK91, ESS+12, GR00, ZZ98b, GS00b.

Terms [BLW15, De08a, De08b, DN08, De11, SD15a, Ste10a, Ste12]. Test [OP05, vdMS05, Stu89]. Tests [MH13a]. Text [HJP03]. th

Ian09, Smi03, Ste10a, Ian06, GH06. Their [Bez12, CCZ97, CM03, DL17a, EK96, HL13, J LZ16, KMS01, KMS03, Lew91, LF02b, NP99, RS96, Sil03, SX11, Tig91, HM89, HMT09, JN89, MV88, TFL11]. Theorem

AMS07, CLN14, HS95b, JDS03, Kol03, Kra95, KH13, Lew99, LM98b, Lin11, May12, TT99, YY10, YY11, Zhe96, Zhe98, IM95, Tis93. Theorems [BH13, wC03, CK00]. Theoretic [VF98, vdWM95, Pea88]. Theoretical [KBHH13, Mei04]. Theory

[ABK*11, AH16, BL12, BKS08, BBGF00, BH03, BHH07, BM06, BCGG10, DDY14b, DM05, EEE97, EEE99, EL05, ES11, EJK09, FS97, GPM03, GLT96, GSO6, GdIl08, Gut92, Gut94, KP99, KH13, LMI03, Li98a, Li98b, Li99, LWWY14, Lu05, Ma99, Ma03, MOC91, MX09, MBO97, Mor94, Not16, SKP11, SC10, s98b, WE94, XG94, CT88, DK88, OW88, KY93]. Thick [WS00].

Thick-Restart [WS00]. Third [DD13a, DD13b, DD14, KBHH13, LGL16, SD15b].

Third-Order

[DD13a, DD13b, DD14, KBHH13, SD15b].

Thomas [PS04]. Thompson [Joh96].

Three [BLAK91, CHH*15, Cho10, DPP13, El98, GV99, Gre99, GBMS12, GS00b, GR00, Hig92, HHLW13, LRA93, OST08, RHE14, SdA10, Ste13, ZZ98b]. Three-Dimensional

[CHH15, GV99, Gre99, HHLW13, OST08]. Three-Term

[BLAK91, GR00, ZZ98b, GS00b]. Three-Way

[BN10, Bom00, CT91, CFL07, Cor93, Dhi98, DD12, DLM13, Har05, JOAK10, KS03, KLD04, LF02a, Lgs02, Mas16, MG10, MJM11, OST08, PC16, PSW12, RT93, ST14, Sun04, TCTM00, VP93, BF06, LP89, Meh88]. Time-Delay [MG10, MJM11]. Time-Dependent [PSW12]. Time-Invariant [DLM13].

Time-Varying [CT91]. Times

[DA05, GN13, KN99]. TLS

[HPS16, PGVR98]. Toda [DRTW91, Lag91]. Toda-Type [DRTW91]. Toeplitz

[CH93a, Ikr97, AG88a, BN06b, BMF05, BD90, B99, BLAK91, BBDS95, BK95, BGKS99, BET02, BV07, BGN12, Cap98, Cha89, CH2, CNP94, CP00, CS98, CGS+08, CNW08, CE94, DG91b, DG91c, DD10, DLM04, DK08a, FKLK06, FLM10, FL12, FSZ14, Fri92, G9494, GP03, HB94, HY00, HH94, HR00, HR04, Huc92, HSC04, Ito96, JV16, JR88, KC94, KN00, KN91, KK93b, KK93a, LS04, ILNS17, LH05, MV97, MV88, Mel99, Mel01, Mel04, MT00, Nerv93, NSCS10, NV02, PK93, Per91, PW15, RS92, Rod06, Rog05, SK95, Ser96, Ser98, Sil03, Ste03, SH93, Swe93, Tre88a, Tre88b, Tre89, Tre90, Tre94, VHK01, Var94, Vec03, VJ07, X012, XXG12, ZZTA02]. Toeplitz-[Rod06]. Toeplitz-Block [KC94].

Toeplitz-Derived [KC94]. Toeplitz-Like

[FLM10, ILNS17, FLM12, SK95]. Toeplitz-Plus-Hankel

[HR04]. Toeplitz-Related [DL04]. Toeplitz/Hankel

[MVP05]. Tolerance [BBGL92].
Tomographic [HKBM08]. Tomography [Sal88]. Torus [Tho94]. Total [Arul92, BG11, BDSC11, BBT05, BBT06, BBTK08, BE10, BST16, BHN00, FB99, GH099, GTP13, HPS+11, LPT10, MVP05, MLY00, PO03, RS06, RG05, RPG96, RGP98, VZ91, Van92, Wei92, ZMW17, VV88, VV89]. Totally [CRRU08, DK05, FGJ00, FHGJ06, GT04, HC15, Koe05, Koe07, Peñ98, ZY93].

Tournament [FL02]. Trace [LWW15, NBS10, WZ95, Wat92a, Ber88]. Traces [OR93]. Tracking [MVV92]. Tractable [LQ16]. Train [LC15b, LC16, LRSV13]. Trains [HLQ09]. Transfer [Bar94, FN04]. Transform [BF93, BK95, DL17a, For03, HR00, KO05, Kuz15, SB03]. Transformation [CCJ+00, CG15a, Mai99, XE12].

Transformations [Dub00, IM94, LM98a, SV05, Ste16b, WL12]. Transforms [BD95, SKP11, Tur97, RS88]. Transient [EK17]. Transients [O’C02].

Transition [DRSZ07, EHW10, JJ03, LFW13, Spe98]. Transitions [DJK17, EK96]. Transmission [LF02b, Wat95]. Transport [Lai05, MX09].

transposition [JH88]. Transputers [vdSBvdV93]. Tree [GG03, MSZ03, dF05, Liu88]. Tree-Like [MSZ03]. Trees [CL99, EL05, EL08, KU13, KN98, Liu99, MP11, Nab01].

Triadic [rFO06]. Triangle [ZQ10].

Triangular [ABL94, BMF05, BCN95, FSZ14, HY01, LM02, NV93, NST09, PK93, PK94, Pes14, RW95, SHZ12, Vec03, VP93, VTB98, vD99, CH88, KP92, Naz89].

Triangularizable [Mae98]. Triangularization [SS98]. Triangularizations [IM94]. Triangularizing [TZ13]. Tricyclic [DL92]. Tridiagonal [BO96, BOCL97, BGT05b, BD98b, Bon00, BG94, CM03, CW96, DG91b, DG91c, DRSZ07, Dhi98, DL92, ES08, rFO06, Fer97, Fer98, Gei91, GITT96, Har05, Hig90a, HO92, HHH12, LS04, Meu92, Nab99, Par92, PL03, PDF16, Per91, Ple06, Tis04, VGV09, VH16, Wal95, Wil08, YP98, GE95b, Tsa94].

Tridiagonal-Diagonal [Tis04]. Tridiagonality [Bom00]. Tridiagonalization [Cav94, GIKT95, Pai10, PP11, SB05, GBCW89]. Tridiagonalizing [BS96]. Tridiagonals [Ral11].

Trigonometric [AH16, BD95, KO05]. Triples [PR01]. Triplets [Drm00a, Zha91]. Tropical [NST15]. Trummer [Lu95].

Truncated [BGT14, GTPI13, MM09, SGX14, SY98, ZZ01]. Truncations [Mas16]. Trust [IAVD11, SW94]. Trust-Region [IAVD11]. TSC [PM06]. Tucker [DK13, EDK16, LRSV13, OST08, Sai16].

Tukey [SKP11]. Tukey-Type [SKP11]. Twice [LS01]. Twisted [WL12]. Two [ABL94, Bji14, CE94, CZ02, DGM06, DP09, DK13, EDK16, FB95, Fie96, FNV08, GW07, GT99, GS00b, HM04b, HP02, HK05, Ji92, JH02, Klok99, LSB16, Not16, Páll11, Ple00, PV17, Sch95b, SWYM96, Ste99, Ste91b, SB01, SJ92, TMNV10, WA07, WT11, YLA97, Zha10b, ZH17].

Two-Dimensional [Ji92, Klok99, Sch95b]. Two-Grid [PV17]. Two-Level [DK13, EDK16, Not16, TMNV10, WT11, LSB16].

Two-Parameter [DP09, HP02, HK05, Ji92, Ple00].

Two-Sided [CZ02, FB95, Fie96, SWYM96, ZH17].

Two-Stage [SJ92, SB01]. Two-Stage-Splitting [YLA97]. Two-term [GS00b]. Two-Variable [Pé11]. Type [BEG*09, BBD11, BLAK91, BS16, DRTW91, DM05, FAT16, GR00, HP02, HK05, Ito06, KO05, LX06, LV17, MV08, MMS94, MSZ03, SKP11, Wal03, Wat98, WL12, ZHY16, ZK17, BL94, DK15, IM95, Kuz15, Saa06, ZH17].

Ulm [wVBJ11]. Ulm-like [wVBJ11]. Ultrametric [Fie00, MMS94, NV94]. ULV
Unbounded [CO99]. Uncertain [BOS16, EL97, SNC02]. Uncertainties [CGGS98, Wat01]. Uncertainty [BEBT07, Yan93]. Uncontrollability [BLO04, Gu00, GMO+06, Men08]. uncontrollable [Sch95a]. Uncorrelated [CGH11]. Uncoupled [Zha93b, Hav89]. Uncoupling [Van08]. Undamped [JW11, QCTT17]. Underdetermined [DH93, Rum12, gSS97]. Undersampled [CGH11]. Undamped [RU95]. Use [Ari00, BD95, DK99, EJK09, GW00, Swe93]. Useful [Pal09]. User [GL99]. Using [AS93, ALPK07, ANT09, ACW17, ABN09, BD98a, BKS08, BI99, BBGL92, BEGM05, BCW12, DIS15, Fos03, FSV14, Gu95, JMM14, LC16, LM98a, LE02, Mac99, Nov11, Os10, PYHK93, PP05a, PO03, RE13, SS17, TV09, WLV06, XK94, AL98b, HRS88, OL90, Zab99]. USSOR [Nou96]. Uzawa [LZ10].
REFERENCES

Hel00, MT89]. **Variant** [AG91a, MT89].

Variants [GTI11, KK07, RT99, ZZLY02].

variate [GSCS15]. **Variation** [BDSC11, BM94].

Variational [Auc99, CFG97, CF02]. **Variations** [Li98a, Li98b]. **Varied** [Par05].

Varieties [YL16]. **Variety** [JT98]. **Various** [RVV17].

Varying [CT91, Mal06]. **Vector** [AFPA07, BF05, BRZ06, BV95, CT15, Elt92, Fay95, GTI11, HR00, HQ16, IS11, JMO93, MMMM06b, MP11, NNT17, OW96, Sid95, SW97, SX11, VZ06, Wan15, KN94].

Vector-Valued [Sid95]. **Vectors** [Bar93b, LC15b, Paio9, PP11, PW14a, Wu17, BN87].

Vera [GKRV90]. **Verification** [Voo12].

Verifications [Sch05]. **Verified** [FH10, Run12]. **Versal** [EEK97, EM90, GPM03]. **Version** [KDGG13, Sin97]. **Versions** [BB07].

Vertical [MN97, QL99]. **Via** [Dax08, Gow96, STT17, Van08, Bar94, BH90, BG13, BLNT13, BZ00, CFT16, CCGDM13, CDG+07, CHZ16, CDD00, wC03, CT88, FP16, GVV04, GGO13, HY01, Lew99, LP11, LP13, Mae98, Mat95b, MW01, FR01, SB11, UCS17, XXCB14, XXG12, XX17, ZŠ94].

Vibrating [Lan07, TV09]. **Vibration** [HLQ09].

Vibrations [MMMM06a]. **Vibroacoustic** [QCCT17]. **View** [BCR11, Hig03, Ost10].

Viscosity [TV09]. **Vishik** [MBO97].

Volterra [FG15]. **Volume** [BI99].

Volumetric [HHSW97]. **vs** [Toh97].

W [Zha95]. **W.** [Ikr97]. **Waldén** [GJTP12].

Walk [ES08]. **Walks** [DMS13, DRZ07, KN99, PCB16]. **Wave** [HL17]. **Wavefront** [Bar08]. **Wavelet** [For03, Tur97].

Wavelets [GP16, Hel95, JRZ99, J03]. **Way** [BV90, Cho10, GTW00, GMBS12, LRA93, SdA10, Ste13]. **Weakly** [CM93, SS91, SWYM96, CJL96b].

Weierstrass [dTDM08]. **Weighing** [NW02].

Weight [DV08b, For96]. **Weighted** [BN06b, BV01, DL17b, FS01, GW92, Gu95, HHSW97, HS13, HV97, KNS97, KN98, KT10a, SES95, SW98, WD00, YL08].

Weighting [MPS01, Whi89]. **Weights** [GG11]. **Well** [BBM02a, MX98].

Well-Focused [BBM02a]. **WGL** [YL08].

Which [BEG07, Cao09, Kui00]. **Whose** [CF07, AdHN88].

Wiener [ET10, Guo01b, JDS03]. **Wise** [CH99].

within [HPS13, LM98a]. **without** [DD07, YC06].

Woodbury [Rie92]. **Words** [JH02]. **Works** [HPS+11]. **World** [Hig03].

Worst [FLT13]. **Worst-Case** [FLT13].

Wrapped [Ain17].

Xu [KZ10].

Young [HN90, Kol03, Lin11, VNM14].

Zero [DG91c, Gow96, GP04, SD12, ZFW07, GKR89]. **Zero-Fill** [ZF07]. **Zero-Finding** [SD12]. **Zeros** [DY10, Kit95, Lin03, TU91].

References

[Bibhas Adhikari and Rafikul Alam. Structured back-}

Ahmad:2010:PCP

Ahmad:2010:PCP

Ahmad:2010:PCP

Arioli:2001:BEA

Alam:2005:SEM

Avron:2013:FSS

Alam:2016:LRM

Arrigo:2016:EMC

Arrigo:2016:CGM

Francesca Arrigo, Michele Benzi, and Caterina Fenu. Computation of generalized matrix functions. *SIAM* Journal on Matrix Analysis and

Avron:2017:FKR

Arnold:1998:SIE

Arbenz:2002:PSM

Arico:2004:VCO

Arioli:1989:SSL

Amestoy:1996:AMD

REFERENCES

[AdHN88] G. Avdelas, J. de Pillis, A. Hadjidimos, and M. Neu-
 mann. A guide to the acceleration of iterative methods whose
 iteration matrix is nonnegative and convergent. SIAM Journal
 on Matrix Analysis and Applications, 9(3):329–342, ???.
 1988. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162
 (electronic).

[ADLK01] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent,
 and Jacko Koster. A fully asynchronous multifrontal solver
 using distributed dynamic scheduling. SIAM Journal
 CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162
 (electronic). URL http://epubs.siam.org/sam-bin/
 dbq/article/35819.

 ria for iterative solvers. SIAM Journal on Matrix Analysis
 SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

[ADR92] Mario Arioli, Iain Duff, and Daniel Ruiz. Stopping crite-
 ria for iterative solvers. SIAM Journal on Matrix Analysis
 SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

[AE97] Lars-Erik Andersson and Tommy Elfving. A constrained
 Procrustes problem. SIAM Journal on Matrix Analysis
 SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

[AFPA07] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and
 Nicholas Ayache. Geometric means in a novel vector
 space structure on symmetric positive-definite matrices.
 SIAM Journal on Matrix Analysis and Applications, 29(1):
 328–347, ????. 2007. CODEN SJMAEL. ISSN 0895-
 4798 (print), 1095-7162 (electronic).

 joint diagonalization. SIAM Journal on Matrix Analysis
 SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).
Ammar:1988:SSR

Arbenz:1988:SDH

Ammar:1991:VGS

Arbenz:1992:LAS

Artzrouni:2000:NMI

Agullo:2014:BGM

REFERENCES

REFERENCES

García-Planas:1998:KSS

Ainsleigh:2017:MCM

Allman:2013:TRI

Arun:1990:BAS

Alefeld:1997:SSP

Atreas:2008:CSU

Argentati:2008:BCR
Axelsson:1995:EEB

Ashcraft:1998:ADM

Ashcraft:1998:ROS

Ackner:1994:SAM

Allwright:1989:MME

Amestoy:2007:DMS

Amestoy:2007:UOU
Patrick R. Amestoy, Xiaoye S. Li, and Stéphane Pralet. Unsymmetric ordering

[Altenberg:2013:OSR]

[AM95]

[AM05]

[Alefeld:2009:NCF]

[Al-Mohy:2009:CFD]

[Al-Mohy:2010:NSS]

[Aishima:2008:CDA]

Kensuke Aishima, Takayasu Matsuo, Kazuo Murota, and Masaaki Sugihara. On convergence of the DQDS algorithm

[Avron2009:UPF] Haim Avron, Esmond Ng, and Sivan Toledo. Using per-

Marc Artzrouni. On the dynamics of the linear pro-

REFERENCES

REFERENCES

REFERENCES

Barlow:2002:MAB

Bardsley:2008:WRM

Basu:1989:PAM

Bazan:2000:CRV

Balakrishnan:1995:EUO

Bhat:1996:SOS

Sanjay P. Bhat and Dennis S. Bernstein. Second-order systems with singular mass matrix and an extension of Guyan reduction. SIAM Journal on
REFERENCES

Bezerra:1998:ELG

Bosner:2007:BPV

Badeau:2008:FMS

Benner:2012:IBM

Bevilacqua:2011:TMQ

Ballard:2014:CAS

Ballard:2016:INS
Grey Ballard, Austin R. Benson, Alex Druinsky, Benjamin

Bojanczyk:1995:SBR

Bohnhorst:2000:PTU

Boley:1992:AFT

Braman:2002:MAPa

Braman:2002:MAPb

Benner:2002:NCD

Peter Benner, Ralph Byers, Volker Mehrmann, and Hong-guo Xu. Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. *SIAM
REFERENCES

Bader:2015:SSS

Beck:2006:FGO

Bolzern:1988:PLE

Brualdi:1992:SNM
REFERENCES

REFERENCES

537–552, October 1990. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

[Boito:2010:CMS] Paola Boito and Jean-Pierre Dedieu. The condition metric in the space of rectangular

Brualdi:2015:SSC

Batselier:2013:GMP

Batselier:2014:CDN

Bueno:2017:LHM

Bevilacqua:2015:CBE

Ballard:2011:MCN

Beltran:2010:CPC

Carlos Beltrán, Jean-Pierre Dedieu, Gregorio Malajovich, and Mike Shub. Convexity properties of the condition
REFERENCES

REFERENCES

[Bai:1999:AAB]

[Bord:2003:HOL]

[Beck:2007:RRB]

[Beck:2010:STM]

[Beardmore:2001:SIB]

[Bebendorf:2006:AIP]

[Beck:2007:MSE]
REFERENCES

SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

REFERENCES

Bereux:2009:CIC

Bijorck:1998:SCG

Barlow:2005:AAR

Baker:2015:FSV

Bottcher:2002:PCT

Betcke:2009:OSG

Bezerra:2012:VFR

Beattie:1989:LCC

Bini:1993:MAR

Benner:2000:IRS

Bouras:2005:IMV

Benvenuti:2006:GRS

Barreto:2011:CSD

REFERENCES

Baumann:2003:DOF

Brualdi:1995:SBP

Baragaña:2007:HIJ

Bondeli:1994:CRS

Benzi:2004:PGS

Botchev:2006:CNP

Bridson:2006:MCG

REFERENCES

1056–1068, ????, 2006. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Boman:2007:OEE

Bottcher:1999:NLT

Bunse-Gerstner:1992:RDS

Butta:2015:DER

Bai:2003:HSH

Butta:2012:CSP

Bertaccini:2007:SAP

Daniele Bertaccini, Gene H. Golub, and Stefano Serra-

REFERENCES

REFERENCES

Bhat:1993:NND

Byers:1997:MSF

Bojanczyk:2003:SIL

Borsdorf:2010:CNC

Ben-Israel:1999:CVF

Binding:1990:SDS

REFERENCES

326–347, January 2006. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Benz:2015:LBP

Bock:2007:CMP

Bruckstein:1991:RLM

Bora:2014:SEB

Bora:2015:SEB

Bekas:2008:CLI

REFERENCES

REFERENCES

M. Brazell, N. Li, C. Navasca, and C. Tamon. Solving multi-

REFERENCES

Bischof:1990:ICEb

Batselier:2015:CAD

Butler:1988:NSO

Bhatia:1994:VUP

Bini:1996:SNM

Bini:1999:EMS

Barth:2000:MRC

REFERENCES

[BM02] Jewel B. Barlow, Moghen M. Monahemi, and Dianne P.

Heinrich Bolz and Wilhelm Niethammer. On the evaluation of matrix functions given by power series. *SIAM Journal on
REFERENCES

REFERENCES

Bar-On:1997:FPC

Boley:1990:ESA

Bomze:2000:LTC

Borisov:2003:DMP

Borovac:2009:GBA

Bora:2010:SEC

Borsdorf:2014:AFO
[Rüdiger Borsdorf. An algorithm for finding an optimal...
projection of a symmetric matrix onto a diagonal matrix.

Bella:2013:NPD

Benner:2016:BDP

Bru:2005:ASI

Blom:2005:KSM

Beckermann:2008:APG

Bernhard Beckermann and Lothar Reichel. The Arnoldi process and GMRES for nearly

REFERENCES

Berman:1991:IPM

Berman:1994:SIP

Bruaid:1994:SHM

Bischof:1996:TDS

Bollhofer:2002:FAI

Bollhofer:2002:RBI

Bai:2005:SSO

[BS05] Zhaojun Bai and Yangfeng Su. SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. *SIAM Jour-
Bonnabel:2010:RMG

Benzi:2015:DBF

Bora:2016:DPH

Bargiacchi-Soula:2010:LN

Bandeira:2013:CIG

Beck:2016:ASM

Bomze:2015:NLB
Immanuel M. Bomze, Werner Schachinger, and Reinhard Ullrich. New lower bounds and asymptotics for the cp-
REFERENCES

Bapat:1995:PPS

Borosh:1992:SBP

Brainman:2002:NDO

Benitez:2006:GPM

Bah:2010:IBR

Beyn:2010:CIS

Berger:2012:QKF

Thomas Berger and Stephan Trenn. The quasi-Kronecker form for matrix pencils. *SIAM
REFERENCES

[Berger:2013:AQK]

[Beckermann:2017:SVM]

[Blondel:2003:ECF]

[Buchholz:2000:MSS]

[Beelen:1988:PAE]

[Barlow:1990:IMO]

[Barlow:1992:RDM]
REFERENCES

[BV07]

[BvG11]

[BvdM+97]

REFERENCES

REFERENCES

4798 (print), 1095-7162 (electronic). See note [KZ10].

REFERENCES

[CB90] G. Cybenko and M. Berry. Hyperbolic Householder algorithms for factoring structured

Chung:2017:ORI

Chiang:2009:CAD

Chu:1998:RSS

Castillo:2000:OBP
Enrique Castillo, Angel Cobo, Francisco Jubete, Rosa Eva

REFERENCES

Chiu:2013:SRA

Carson:2014:RRS

Chen:2017:CAM

Carson:2015:ASL

Chandrasekaran:2000:CRS

Chandrasekaran:2005:SFA

Chandrasekaran:2007:FSH

S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals. A fast solver for HSS representations via sparse matri-
Chandrasekaran:2010:NRD

Curtef:2012:ROT

Chhetry:1990:MCM

Chu:1994:STM

Moody T. Chu and Melissa A. Erbrecht. Symmetric Toeplitz matrices with two prescribed

Chu:2005:LRA

Cui:2014:ARE

Cowen:1994:NHM

REFERENCES

Censor:2002:BIA

Carden:2012:RVL

Chen:1989:SIO

Compta:2000:GAC

Chu:2002:CDR

Chu:1997:VFG

Tony F. Chan and Danny Goovaerts. On the relationship between overlapping and nonoverlapping domain decomposition methods. *SIAM*
REFERENCES

Cullum:1996:RBG

Chu:1998:NMI

Chu:1998:LSA

Chu:2006:GEP

Castillo:2003:MAA

Chandrasekaran:2003:FSA

Chang:2010:SEC

Choi:2015:AFS

Choi:2015:RMS

Castro-Gonzalez:2013:ASS

Chandrasekaran:1998:PEP

Chandrasekaran:1999:EAB

Chu:2011:CAS

References

N. Castro-González, J. Robles, and J. Y. Vélez-Cerrada. Char-

[CH93a]

[CH92]

[CH93b]

[CH93c]

Chen:1993:NIP

Collins:1997:ESL

Colella:1994:CSF

Chatterjee:1993:NEM

Chen:1998:MCA
REFERENCES

Ke Chen. An analysis of sparse approximate inverse preconditioners for boundary integral equations. *SIAM Journal on
REFERENCES

Chen:2001:RSE

Chern:2015:SVD

Choulakian:2010:SNR

Chu:1991:LSA

Chu:1995:CHM

[Chu95] Moody T. Chu. Constructing a Hermitian matrix from

Chu:2010:IRC

Ciarlet:2003:SOG

Chen:2016:CTE

Chandrasekaran:1994:RRF

Chandrasekaran:1995:AAC

Chandrasekaran:1995:SSC

REFERENCES

[Cvetkovic:2011:ELR] Lj. Cvetković, V. Kostić, and J. M. Peña. Eigenvalue lo-
Calvetti:2005:QRB

Canto:2008:FNT

Chan:1999:IIL

Chen:2009:NBE

Cai:2017:AAN

Clayton:2010:QBD

Clements:2000:SSA

Comon:1993:DRG

Chen:2012:PAA

Cui:2014:BNT

Chu:1988:HMG

Cox:1989:BEA

Chan:1992:IPT

Cox:1992:BEA

Cabay:1993:WSA

Clary:2003:SFM

Chen:2003:MFB

Chua:2009:SFD

Chen:1994:CPT

Clay:2008:BDS

Chaisuriya:1999:ASA

Stefano Serra Capizzano and Cristina Tablino Possio. Superlinear preconditioners for finite differences linear systems.
REFERENCES

Chu:2003:RVL

Crouzeix:2017:NRS

Chang:2009:CMC

Chang:2009:SCI

Chang:2011:PCN

Kung-Ching Chang, Kelly J. Pearson, and Tan Zhang. Primitivity, the convergence
of the NQZ method, and
the largest eigenvalue for
nonnegative tensors. *SIAM
Journal on Matrix Analysis
and Applications*, 32(3):
806–819, ???? 2011. CO-
DEN SJMAEL. ISSN 0895-
4798 (print), 1095-7162 (elec-
siam.org/simax/resource/
1/sjmael/v32/i3/p806_s1.
See minor correction to au-
thors’ address [Ano11].

Calvetti:1996:AAI

D. Calvetti and L. Reichel.
Application of ADI iterative
methods to the restoration of
noisy images. *SIAM Journal
on Matrix Analysis and Ap-
plications*, 17(1):165–186, Jan-
uary 1996. CODEN SJMAEL.
ISSN 0895-4798 (print), 1095-
7162 (electronic). URL http:
//epubs.siam.org/sam-bin/
dbq/article/27368.

Curtain:2010:ASM

Ruth Curtain and Leiba Rod-
man. Analytic solutions of ma-
trix Riccati equations with an-
alytic coefficients. *SIAM Jour-
nal on Matrix Analysis and
Applications*, 31(4):2075–2092,
???? 2010. CODEN SJMAEL.
ISSN 0895-4798 (print), 1095-
7162 (electronic).

Cardoso:2016:MAG

João R. Cardoso and Rui
Ralha. Matrix arithmetic–
geometric mean and the com-
putation of the logarithm.

Cristi:1988:PPA

Roberto Cristi. Parallel pro-
cessing in the adaptive control
of linear systems. *SIAM Jour-
nal on Matrix Analysis and
Applications*, 9(1):96–105, ????
1988. CODEN SJMAEL. ISSN
0895-4798 (print), 1095-7162
(electronic). SIAM Conference
on Linear Algebra in Signals,
Systems, and Control (Boston,

Crouzeix:2016:SCR

Michel Crouzeix. Some con-
stants related to numerical
ranges. *SIAM Journal on Ma-
trix Analysis and Applications*,
37(1):420–442, ???? 2016. CO-
DEN SJMAEL. ISSN 0895-
4798 (print), 1095-7162 (elec-
tronic).

Choi:1993:LAR

Man Duen Choi, Jeffrey S.
Rosenthal, and Peter Rosen-
thal. Linear-algebraic results
associated with antiferromag-
netic Heisenberg chains. *SIAM
Journal on Matrix Analysis
and Applications*, 14(3):830–
852, July 1993. CODEN
SJMAEL. ISSN 0895-4798
(print), 1095-7162 (electronic).
REFERENCES

Cohen:1999:PUC

Cohen:2001:EPU

Chen:1989:MDM

Cardoso:1996:JAS

Chandrasekaran:1996:SGS

Crouzeix:1996:GMA

Chandrasekaran:1998:FSS

Cao:2001:DMP

Chen:2009:TSO

Chang:2010:RPB

Chun:2010:CCM

Constantinescu:1995:DSC

Cai:2015:MPS

Cover:1988:DII

Thomas M. Cover and Joy A. Thomas. Determinant inequalities via information theory.
REFERENCES

Campbell:1991:OLT

Chen:1993:IUF

Capizzano:1999:CLP

Chu:2008:ACP

Chen:2015:NO

Cullum:1996:PCE

Cullum:2002:TSA

REFERENCES

REFERENCES

org/sam-bin/dbq/article/29250.

DeBrunner:1988:SAD

dAspremont:2008:FOM

Dai:2015:SCN

DeLathauwer:2008:SIT

Davis:1997:UPM

DeSchutter:1998:DSV

DeSchutter:1999:SCP

REFERENCES

[DD08] DeTeran:2008:NGK

[DD13a] Domanov:2013:UCPa

[DD13b] Domanov:2013:UCPb

Ignat Domanov and Lieven De Lathauwer. Canonical polyadic

DeLathauwer:2008:DHOa

DeLathauwer:2008:DHOOb

DeLathauwer:2011:BSE

Dieci:1999:SDM

Demmel:1992:CDN

Demmel:1999:SAS

DelCorso:1997:EEP

REFERENCES

Demmel:1999:ASV

DaFonseca:2005:IPH

DAzevedo:1992:OMP

DeMoor:1991:RSV

Delsarte:1991:TAa

Delsarte:1991:TAab

Demmel:2015:CAR

REFERENCES

Delgado:2006:TVO

Dorpinghaus:2015:LIR

Demmel:1999:APS

DeDona:2000:CES

Dollar:2006:IFP

Demmel:1993:IEB

Drmac:1997:RRB

Davis:1999:MSC

Davis:2001:MRM

Davies:2003:SPA

Davis:2005:RMS

Dhillon:1998:RCC

Davies:2001:ACM

[DHT01] Philip I. Davies, Nicholas J. Higham, and Françoise Tisseur. Analysis of the Cholesky method with iterative refinement for solving the symmetric definite generalized eigenproblem. *SIAM Journal on...
REFERENCES

Dongarra:1992:NCC

Deng:2003:LSS

DiFiore:2000:MAD

DiBenedetto:2009:GMF

Ding:1998:PRP

Dreesen:2015:DMP

Drmac:2000:AQS

Zlatko Drmac and Elizabeth R. Jessup. On accurate quotient singular value compu-
REFERENCES

Dopico:2009:PMS

Dmytryshyn:2017:CST

Djordjevic:2008:FRR

Dhillon:2005:GFA

Demmel:1988:ASI

Druskin:1998:EKS

REFERENCES

REFERENCES

Dolgov:2013:TLQ

Dmytryshyn:2014:OCH

Dmytryshyn:2015:CST

deKerchove:2010:IFR

Dodson:1992:TTE

DelBuono:2002:GIM

Dieci:2003:LES

REFERENCES

Dellacherie:2009:HFI

Dellacherie:2012:HFP

Dellacherie:2013:CIM

DeLathauwer:2008:DHOc

Domes:2011:REE

Dollar:2007:CSP

Drmac:1994:PCF

[DOV94] Zlatko Drmač, Matjaž Omladič, and Krešimir Veselić. On the perturbation of the

Dieci:2000:CPA

Dhillon:2004:OER

Dieci:2009:TPS

Duff:2005:SSP

Duff:2007:TSM

Dieci:2010:OCB

REFERENCES

REFERENCES

[dSL08] Vin de Silva and Lek-Heng Lim. Tensor rank and the

[Dhillon:2008:MNP]

[Druinsky:2011:GFB]

[DeMoor:1992:GSV]

[Demmel:1992:JMM]

James Demmel and Krešimir Veselić. Jacobi’s method is

Delvaux:2006:SPM

Delvaux:2006:SPS

Delvaux:2007:HRA

Delvaux:2008:BSR

Delvaux:2008:GWR

Drmac:2008:NFAa

Drmac:2008:NFAb

David:2006:EIM

Roden J. A. David and David S. Watkins. Efficient

REFERENCES

Erhel:2000:ACG

Estrin:2015:NSP

Elhay:1999:SEE

Eisenstat:2017:SCR

Eirola:2004:SML

Ewald:2010:CET

REFERENCES

2010. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

D. J. Evans and C. Li. New stopping criteria for some iterative methods for a class of unsymmetric linear systems.
REFERENCES

Eisenstat:1992:ESS

ElGhaoui:1997:RSL

Eisenstat:2005:TET

Eisenstat:2008:AAE

Elman:1997:PEP

Eltinge:1992:ECP

Edelman:2000:SFE
Alan Edelman and Yanyuan Ma. Staircase failures explained by orthogonal versal forms. SIAM Journal
REFERENCES

Ernst:2000:RMK

Eldersveld:1992:BLU

Edelman:2005:TCN

El-Shehawey:2008:ITM

Elden:2009:NGM

Elden:2011:PTO

Elden:2012:SIP

Lars Eldén and Valeria Simoncini. Solving ill-posed linear systems with GMRES

REFERENCES

155

Farrell:2016:NDE

Fairag:2016:BPT

Faybusovich:1995:MGA

Fierro:1994:CTL

Fierro:1995:BSR

Frangioni:2001:SAS

Feiveson:1994:FBR

Alan H. Feiveson. Finding the best regression sub-

REFERENCES

Flagg:2015:MVS

Fallat:2000:SSI

Ferrer:2000:RBK

Forsgren:1996:SSI

Frommer:2014:CRK

Frommer:2014:ESA

Andreas Frommer, Stefan
REFERENCES

Flowe:1993:NGV

Frommer:2010:VCS

Fenu:2017:BMF

Fasi:2015:AML

Fosner:2013:LMP

Friedland:1994:RSI

Shmuel Friedland, Rohan Hemasinha, Hans Schneider, Jeffrey Stuart, and James Weaver. Row sums and inverse row sums for nonnegative matrices. *SIAM Journal...*
REFERENCES

REFERENCES

REFERENCES

Fan:2002:AME

Favati:2010:SLA

Favati:2012:DCA

Frommer:2017:RLM

Faber:2010:CPM

Faber:2013:PWC

Fan:2004:NSS

REFERENCES

Fiedler:1988:RHP

Forsgren:1993:NML

Frommer:1993:NCG

Fenu:2013:BGA

Freiling:2002:EUP

Forster:2004:CBR

Frommer:2008:CSI

REFERENCES

REFERENCES

REFERENCES

org/sam-bin/dbq/article/
30121.

[FS01] Forsgren:2001:WLL

Fritscher:2016:ESD

Fuhrmann:1988:ASC

Fuhrmann:2007:NSI

Fornasini:1998:PPM

Xu:1996:JMI

Fan:2016:CMA

Gugercin:2008:MRL
S. Gugercin, A. C. Antoulas, and C. Beattie. \mathcal{H}_∞ model reduction for large-scale linear dynamical systems. *SIAM
REFERENCES

F. Alberto Grünbaum and Manuel D. de la Iglesia. Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes. *SIAM Journal on Ma-

REFERENCES

Gerontidis:1992:CSE

Gangsong:2002:IFH

Gilbert:2003:NCE

Giraud:2006:SSS

Gillis:2011:LRM

Gharbia:2013:ACM

Göckler:2014:UAF

Tanja Göckler and Volker Grimm. Uniform approximation of φ-functions in exponential integrators by a rational

REFERENCES

0895-4798 (print), 1095-7162 (electronic).

Genin:2003:OPP

Golub:1999:TRT

Guler:1995:ASS

Guo:2009:DSH

Guo:2010:IAA

Geist:1999:EA

REFERENCES

George:1996:PDF

George:1997:APD

Gilbert:1994:PSS

Gillis:2013:RAH
Nicolas Gillis. Robustness analysis of Hottopixx, a linear

REFERENCES

REFERENCES

[176]

Golub:1990:DVK

[GKRV90]

[102]

Gohberg:1994:CAA

[GKX94]

[102]

Gilbert:1993:ESU

[GL93]

[102]

Ghavimi:1996:NML

[GL96]

[102]

George:1999:OOA

[GL99]

[102]

Guo:2000:NLM

[GL00a]

[102]

Guo:2000:ISC

[GL00b]
REFERENCES

REFERENCES

[GMBS12] Xijing Guo, Sebastian Miron, David Brie, and Alwin Stege-

[GM98]: Guattery:1998:QSS

[GM00]: Guattery:2000:GEL

[GMBS12]: Guo:2012:UMP

[GM98]: Guattery:1998:QSS

[GM00]: Guattery:2000:GEL

[GMBS12]: Guo:2012:UMP

[GMN16]: Grigori:2016:EKS

[GM00]: Gu:2006:FME

[GMPS92]: Gill:1992:PIS

[GMRS00]: Tim N. T. Goodman, Charles A. Micchelli, Giuseppe Rodriguez, and Sebastiano Seatzu. On the Cholesky factorization of

REFERENCES

Gillespie:1995:OGR

Gu:2006:ACB

Guglielmi:2011:FAA

Gould:2014:PKM

Guglielmi:2015:EAC

Gould:1991:GGE

Govaerts:1991:SSB

Gover:1991:PIG

REFERENCES

Sy-Ming Guu and Chin-Tzong Pang. On the convergence to zero of infinite products of interval matrices. SIAM
Gasca:2006:CDA

Guglielmi:2016:IPS

Garcia-Planas:2003:RVD

Grimes:1990:NAF

Greenbaum:1996:NCC

Greif:2016:NEA

REFERENCES

Goldfarb:2014:RLR

Gross:1993:ASR

Gurvits:1997:CPB

Gutknecht:2000:LAP

Gurvits:2005:MPR

Gower:2015:RIM

Gemignani:2017:FHR

REFERENCES

REFERENCES

Grinstead:1988:CLK

Guglielmi:2017:NIM

Gross:1997:NPO

Gross:1998:MCM

Golub:2007:HAC

Grubić:2006:EEE

Greenbaum:1992:PBF

4798 (print), 1095-7162 (electronic).

M. Seetharama Gowda and Y. Song. Some new results

REFERENCES

Sun:1997:OBP

Golub:2000:CSG

Gross:1999:NDT

Grassmann:2002:TQM

Gasso:2004:TPF

Gotsman:2008:CNS

Gernandt:2017:EPR

References

Gratton:2011:RSV

Gratton:2013:SCT

Gratton:2014:DMC

George:2000:MOW

Gu:1998:BPB

Gu:1998:NFA
REFERENCES

REFERENCES

Greif:1999:BSM

Greif:2007:MCN

Greif:2009:ISS

Gallivan:2004:MRM

Galliksson:1992:MDC

Gulliksson:2000:UPT

REFERENCES

Geronimo:2007:TVO

Wang:2012:ADD

Guglielmi:2005:CPE

Guglielmi:2009:FEC

Gutknecht:2013:ECB

Guglielmi:2015:CCP

Hacon:1993:JMS

Hanke:1994:ICC

[Han94] M. Hanke. Iterative consistency: a concept for the solution of singular systems of

REFERENCES

SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

REFERENCES

2015. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

REFERENCES

REFERENCES

155–164, ???. 1989. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

[HHLW13] Tsung-Ming Huang, Han-En Hsieh, Wen-Wei Lin, and Weichung Wang. Eigendecompo-

[Hadjidimos:1999:AIL]

[Hershkowitz:1997:AWN]

[Holodnak:2015:RAG]

[Higham:1990:BEG]

[Higham:1990:SAA]

[Higham:1992:SMM]

DEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Hansen:2007:SNP

Hare:1993:SAF

Howland:2003:SPD

Higham:1995:MPF

Higham:2001:SQM

Hackbusch:2008:TPA

Huckle:2012:CFA

Thomas K. Huckle and Christos Kravaritis. Compact Fourier analysis for multigrid methods based on block symbols. *SIAM Journal on Ma-
REFERENCES

Hyde:2008:AEM

Helsen:2005:CIA

Huhtanen:2002:EIR

Hetmaniuk:2006:UAE

Hager:2008:OGM

Higham:2011:SPA

Higham:2013:ISP

Hladik:2008:DSS

Horn:1994:LOP

Huang:2009:SPA

REFERENCES

DEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

REFERENCES

Higham:2007:SLM

Helmke:1994:DSC

He:2001:SCR

Higham:2006:CLM

Higham:2009:DMP

Higham:2010:CGP

Herceg:1993:CMM

REFERENCES

REFERENCES

REFERENCES

[Hill:1992:RIP]

[Hodel:1992:PSL]

[Hochstenbach:2002:JDT]

[Hegavernes:2009:FCM]

[Helton:1989:REP]

[Hnetynkova:2011:TLS]

[Hnetynkova:2013:CPW]
Hnetynkova:2015:BGG

Hnetynkova:2016:SCP

Hu:2016:NSC

Haviv:1993:SES

Heath:1995:CPN

Heinig:2000:HTR

Heinig:2004:NFA

CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Nicholas J. Higham and Samuel D. Relton. Higher order Fréchet derivatives of matrix functions and the level-2 condition number.
CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Daniel Hershkowitz and Hans Schneider. On the inertia of intervals of matrices.
CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Shu-An Hu and Ronald L. Smith. The Schur complement interlacing theorem.
CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Robert E. Hartwig and Peter Semrl. Power additivity and orthogonality.
REFERENCES

[HT00] Nicholas J. Higham and Françoise Tisseur. A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospec-

Hook:2017:IPB

Hu:1992:PMR

Huckle:1992:CSM

Huckle:1994:AMN

Huhtanen:2001:SSN

Huhtanen:2002:HLM

Hough:1997:COD

Patricia D. Hough and Stephen A. Vavasis. Complete orthogonal decomposition for weighted

REFERENCES

4798 (print), 1095-7162 (electronic).

REFERENCES

Ikramov:1997:CNT

Ito:2010:ANI

Iannazzo:2013:SLA

Ito:2016:AGE

DEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Ipsen:2009:RPB

Iwen:2016:DIS

Ipsen:2006:SIA

Ipsen:2009:SIA

Ipsen:2008:PBD

Iwata:2007:CAS

Ipsen:2008:PCS

Ipsen:2011:ECD

REFERENCES

Irony:2006:SBP

Iwata:2011:KCF

Ito:1996:ENT

Ishteva:2014:FAS

Ipsen:2014:ECS

Iserles:2004:SCM

James:1992:INI

Douglas James. Implicit nullspace iterative methods for

Jungers:2014:LPM

Johnson:2003:PWT

Jia:1995:CGL

REFERENCES

Jianmiao:1998:SSG

Jiang:2001:SPM

Jeffries:1988:SSP

Jia:2003:SAT

Jaimoukha:1995:OPM

Johnson:1995:PSG

Jaimoukha:1997:IRK

Jiang:2015:UPB

Jarlebring:2011:CAP

Juditsky:2011:LRM

Juang:1998:NAR

Juang:2001:EPO

Jiang:2016:CRV

REFERENCES

223

C. R. Johnson, D. D. Olesky, and P. van den Driessche. Matrix classes that generate all matrices with positive determinant. *SIAM Journal on
REFERENCES

Johnson:2004:ESO [JOvdD04]

Jones:1994:FSI [JP94]

Johnson:2009:CCP [JR99]

Jansson:2005:ACR [JR99]

Johnson:1988:CTP [JR88]

REFERENCES

0895-4798 (print), 1095-7162 (electronic).

REFERENCES

Kilmer:2013:TOT

Kailath:1994:GDS

Kimura:2009:VSS

Kuo:1990:MFE

Khabou:2013:FPR

Keller:2000:CPI

Kratz:2013:GIT

REFERENCES

Kleinsteuber:2004:JAC

Kilmer:1999:CLP

Kirkland:1995:GIA

Kirkland:2002:QCC

Kittaneh:1995:SVC

Koskela:2016:KAL

Antti Koskela, Elias Jarlebring, and Michiel E. Hochstenbach. Krylov approximation

Ku:1993:SPPb

Ku:1993:SPPa

Kaagstrom:2007:SVQ

Kazeev:2012:LRE

Karow:2014:PBI

Kovac:2017:SPL

Karow:2014:NEP

REFERENCES

Kalantari:1997:CMB

Karow:2006:SEC

Kenney:1989:CEM

Kenney:1992:SNM

Kenney:1998:SFA

Krupnik:1998:SUM
REFERENCES

Kunkel:1996:GID

Kolda:2011:SPM

Kolda:2014:ASP

Katsouleas:2016:IPR

Kovalenko:2011:EEE

Konstantinov:2001:PAH

Koukouvinos:2001:VMI

REFERENCES

[Kirkland:1999:CDF]

[Kamm:2000:OKP]

[Knyazev:2009:GFA]

[Kirkland:2002:EPR]
REFERENCES

[Koe05] Plamen Koev. Accurate eigenvalues and SVDs of totally

Plamen Koev.

REFERENCES

Kaagstrom:1992:DSM

Konstantinov:1999:NPT

Kim:2008:NMF

Konstantinov:1994:NPA

Kressner:2009:SHC

Kofidis:2002:BRA

Kratz:1995:ITM

REFERENCES

Kressner:2005:PBI

Kressner:2008:EAE

Kilmer:1999:IRM

Klein:2003:SRV

Klein:2008:RSC

REFERENCES

Kaya:2013:CET

Kuijlaars:2000:WEF

Kuznetsov:2015:EHT

Kuznetzki:1992:ELE

Kuczynski:1994:PBE

Kolotilina:1993:FSA
Kielbasinski:2010:NNS

Lagarias:1991:MPT

Lancaster:2007:ISP

Laszlo:1994:ALB

Latham:1995:EES

Latham:1995:RMM

Laurent:2000:PIP

Lawrence:2013:FRG

Lu:1996:MCO

Livne:2002:RSE

Liao:2005:BAS

Lin:2005:ORS

Lawrence:2015:BEP

Lee:2015:EFE

REFERENCES

1014, ???, 2015. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Lee:2016:RCA

Lee:1995:PUB

Lee:1996:BAB

Lehoucq:2001:IRA

REFERENCES

Li:1998:RPTb

Li:1999:BSS

Li:2000:CCB

Li:2006:AOL

Li:2016:BSN

Li:2002:ICG

Li:2005:RPB

Li:2016:BSN
REFERENCES

[251] Liesen:2008:WAM

[252] Lim:2007:MGM

[253] Lim:2013:RDB

[254] Linden:2003:QNR

[257] Liu:1990:RET

[258] Liu:2012:PBS

REFERENCES

Lyness:1995:ASN

Lui:1997:HML

Lin:2017:SPT

Laffey:2009:NMS

Lee:2009:RRM

Li:1990:RPC

Lehoucq:1998:UGC
R. B. Lehoucq and Karl Meerbergen. Using generalized Cayley transformations within an...

REFERENCES

Luce:2014:MFP

Liu:1993:FSS

Li:2011:PPH

Langer:1992:PEQ

Loewy:1990:LMP

Loghin:2017:NCP

Lin:2002:DPS

[LOvdD02] Qing Lin, D. D. Olesky, and P. van den Driessche. The
REFERENCES

REFERENCES

Leurgans:1993:DTW

Lee:2006:EPT

Lubich:2013:DAH

Lundy:1995:SPA

Lehoucq:1996:DTI

Lewis:2001:TDS

REFERENCES

Lu:2016:SAT

[LSB16]

Li:1989:IHF

[LT89]

Li:1994:NEC

[LT94a]

Liesen:2009:BAP

[LT09]

Lu:1994:FSC

[LT94b]

REFERENCES

ISSN 0895-4798 (print), 1095-7162 (electronic).

Liu:2010:IPM

Lu:2017:CCT

Lawrence:2016:BEA

Lu:1994:RCC

Lin:1997:CSL

Lasser:2002:EEL

Li:2002:LRS

Laub:2009:FCE

Liu:2012:CNA

Lu:1991:ELT

Li:2003:KSM

Liu:2005:DSS

Liu:1997:SIO

Li:2005:RRM

Lu:2010:MNI

Lancaster:2014:ISQ

Maroulas:1999:CDN

Mackey:1995:HJM

MacInnes:1999:SSM

Maesumi:1998:CFS

Mailybaev:1999:TFM

Alexei A. Mailybaev. Transformation of families of matrices to normal forms and its application to stability theory. *SIAM Journal on Matrix Analysis and Appli-
Marchi:1991:ECE

Malick:2004:DAS

Malyshev:2006:CSE

Marchi:1991:ECE

Markovsky:2011:CLS

Martinsson:2011:FRA

Mascarenhas:1994:NJB

Walter F. Mascarenhas. A note on Jacobi being more accurate than QR. *SIAM Journal
REFERENCES

Mascarenhas:1995:CJM

Masuyama:2016:EBA

Mathias:1993:AMV

Mathias:1993:HON

Mathias:1993:MPD

Mathias:1992:MPD

Mathias:1995:AEC

Mathias:1995:CEM

Mathias:1997:SPB

Mathias:1998:QRB

Matsuura:2005:RAM

Matejas:2009:AJM

[Mat09] J. Matejaš. Accuracy of the Jacobi method on scaled diagonally dominant symmetric matrices. *SIAM Journal on Ma-
REFERENCES

Mayer:2012:OPL

Meerbergen:2010:LMP

Muti:2008:LRT

Michiels:2017:EFS

Moro:1997:LVL

Moro:2003:LRP

Meerbergen:2003:SPS

Meerbergen:2009:QAM

Mehrmann:1988:SOM

Mehl:2004:JLA

Mehl:2008:ACN

Meini:2004:MSR

Melman:1999:BEE

Melman:2001:EOS

Melman:2004:CSE

Mendlovitz:1999:MRE

Mengi:2008:EDU

Mengi:2012:NLS

Meszaros:2008:NII
Meurant:1992:RIS

Meurant:2011:RNF

Meurant:2017:CFG

Meyer:1994:SSD

Manteuffel:1992:ISS

Michiels:2010:CCN

Mani:1995:DBB

Mead:2013:TCR

J. L. Mead and C. C. Hammerquist. χ^2 tests for the

Morikuni:2013:IIK

Morikuni:2015:CII

Mu:2017:GAS

Miminis:2000:SAG

Miminis:2015:PPS

Miyajima:2014:FEA
Michiels:2011:KBM

Morris:1989:GPH

Maarten Maes:2009:ATS

Maehara:2011:AEC

Mahoney:2008:TCD

Moore:1994:NGA

Mackey:2006:SPE

Mackey:2006:VSL

Martinez:1994:ISU

Mehl:2016:SRL

Mackey:2005:SFS

REFERENCES

DEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Mackey:2008:SMP

Mehl:2017:PDR

Mohan:1997:VBH

Ma:2015:CPR

Mcdonald:1996:IUM

Murthy:1999:NLN

Mastronardi:2010:DFM
REFERENCES

Moakher:2002:MAG

Moakher:2005:DGA

Marchi:1991:PTN

Mol:1992:DGH

Mön:2011:FCS

Mor:1994:LDT

Mor:1995:RGM

REFERENCES

REFERENCES

Mangasarian:1995:ELC

Murthy:1995:SPF

Mond:1998:IHP

Mehrmann:2012:DAP

Mehrmann:2012:DAP

Murthy:1995:SPF

Murthy:2000:SSL

Migallon:2001:NMG

Meerbergen:1997:RAM

Marcus:1991:HSR

Malyshev:1997:PES

Mailybaev:1999:SBS

Marek:2002:CCG
Moskvina:2003:APS

[MSZ03]

Meerbergen:2010:IIP

[MS10]

Martinez:2003:NCI

[MSZ03]

McCourt:2015:SMM

[MSZ15]

Mitchell:1989:VKL

[MT89]

Miranda:2000:ASH

[MT00]

Mehrmann:2015:SAI
Volker Mehrmann and Do Duc Thuan. Stability analysis of implicit difference equations

[MT15]
under restricted perturbations.

Mastronardi:2010:FAU

Markovsky:2013:SLR

Murota:1991:SNF

Murota:1993:SNF

Murota:1998:DMP

Marr:1988:FDT

Mackens:1997:MES
REFERENCES

REFERENCES

Markovsky:2005:BTH

Moonen:1992:SVD

Moonen:1993:SAS

McLean:2001:SFS

Meyer:2012:SDC

Mehrmann:1998:CPS

Mehrmann:2009:ESR

REFERENCES

Nakatsukasa:2012:DAE

Nazareth:1989:UTF

Nakatsukasa:2010:OHI

Ngo:2010:TRO

Neogy:2006:SPG

Neumaier:2000:SAA

Nakatsukasa:2012:BSI

Nievergelt:2010:WLM

Nie:2017:LRS

Nag:2017:FFD

Nakatsukasa:2017:VSL

REF:

[102x102]REFERENCES

Nievergelt:2010:WLM

Nie:2017:LRS

Nag:2017:FFD

REFERENCES

Notay:2003:CAI

Notay:2005:JDF

Notay:2006:ABA

Notay:2014:NAB

Notay:2016:ATL

Noutsos:1996:ORU

Novati:2011:URD

Ng:1999:PGO

Nachtigal:1992:HFN

Nachtigal:1992:HGA

Neumann:1994:ACB

Nash:1996:PRM

Nabben:2007:SIS

Reinhard Nabben and Daniel B. Szyld. Schwarz iterations for symmetric positive semidefinite problems. *SIAM Journal on Matrix Analysis and Ap-
Nie:2009:MCP

Nechepurenko:2011:LRA

Ngondiep:2010:SFA

Noferini:2015:TRA

Noutsos:2008:RHN

Nabben:1994:LAP

Noutsos:2002:NBT
D. Noutsos and P. Vassalos. New band Toeplitz preconditioners for ill-conditioned...

Ogita:2010:AMF

OLEary:1990:RRC

Otto:1999:ISH

ONeil:2005:CPS

Odeh:1998:BDN

Oliveira:2005:SLC

Olkin:1993:MST

Ostrouchov:2010:MCV

Oarua:1999:MDC

Overton:1988:MME

Overton:1988:MSR

Overton:1992:SLE

Overton:1995:SDO

OLeary:1996:BGA

Dianne P. O’Leary and Yuan-Jye Jason Wu. A block-GTH

REFERENCES

DEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Pan:2016:HBV

Padiy:2000:GAM

Parlett:1992:RTF

Parlett:2005:BMD

Pati:2000:MPI

REFERENCES

Patel:2016:HTM

Parlett:2016:IEP

Park:1995:DRR

Pearson:1988:BSA

Pena:1995:MSC

Pena:1998:RBG

Pena:2001:CMA

Dinh Tuan Pham. Joint approximate diagonalization of

References

PillersDobler:1994:MAF

Protasov:2010:JSC

Pal:1994:FTF

Parlett:1993:FIT

Pierce:1997:SMR

References

Protasov:2014:ROC

Plestenjak:2000:CMR

Plestenjak:2006:NMT

Pelaez:2006:AFE

Pruessner:2003:BDU

Popova:2012:EDA

REFERENCES

4798 (print), 1095-7162 (electronic).

REFERENCES

Pierce:1991:SCN

Petersen:2001:MSS

Poloni:2012:DAL

Pestana:2016:NSP

Protasov:2013:CPS

Paige:2006:MGS

Pan:1988:SBP

Pan:1994:BIP
C.-T. Pan and Kermit Sigmon. A bottom-up inductive

Powell:2004:OPR

Paige:2005:CPL

Popolizio:2008:ATA

Pothen:1990:PSM

Pearson:2012:RRP

Petz:2005:MPN

REFERENCES

Paige:2014:PUM

Pestana:2014:AFS

Pestana:2015:PMM

Qian:2013:CDR

Qian:2017:EEU

Qi:2016:SGN
DEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Qi:2014:NTF

Qi:2004:SSF

Qiu:2005:UIM

Ralha:2009:PSM

Ralha:2011:RES

Ransford:2007:PPG

Rauhala:2002:AAEa

REFERENCES

Reichel:1991:FDV

Reusken:2002:ADL

Fang:2006:SFS

Renaut:2005:EAS

Rezghi:2014:BKP

Rehman:2011:CCP

Riedel:1992:SMW

Kurt S. Riedel. A Sherman–Morrison–Woodbury identity

Rump:2014:IBE

Rohn:1995:CEC

Robeva:2016:ODS

Rodman:2005:ISS

Rodriguez:2006:FST

Rozloznik:2015:CLF

Rogozhin:2005:SVB

A. Rogozhin. The singular value behavior of the finite

[RR94] A. C. M. Ran and L. Rodman. Factorization of ma-
REFERENCES

REFERENCES

Radjabalipour:1996:EQM

Rozloznik:2002:KSM

Reid:2006:RTB

Rothblum:1994:SMP

Robbe:2009:IIS
Ron:2001:CSR

Ron:2001:CSR

Rokhlin:2010:RAP

Rokhlin:2010:RAP

Ran:1993:LQP

Ran:1993:LQP

Rossi:1999:NCR

Rossi:1999:NCR

Rump:1991:CAI

Rump:1991:CAI

Rump:1997:BCD

Rump:1997:BCD

Rump:2003:SPPa

Rump:2003:SPPa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sun:2003:KPR

Sun:2011:SRE

Simoncini:2004:SPH

Simoncini:2005:JCF

Shim:2003:LSS

Sidje:2005:BTA

Singer:2010:ULR

Stein:2012:DFP

Serra-Capizzano:2005:HDP

Scherer:20195:ARE

Schmid:1995:TDM

Scherer:2005:RRL

Saunderson:2012:DLR

J. Saunderson, V. Chandrasekaran, P. A. Parrilo, and

Stegeman:2009:MAD

Sustik:2012:ZFP

Sorensen:2015:CCPa

Sorensen:2015:NUC

Savas:2016:CMA

Stegeman:2010:UCC

Sorensen:2015:CCPb

Sebastiani:1996:DMP

Sendov:2006:GHP

Antonie Stam and Steven C. Hillmer. Order reductions of the marginals and identification of multiple ARMA mod-
Suffridge:1993:AHP

Shader:1995:LSS

Shen:2009:IEI

Shao:2003:MSS

Shen:2010:EEP

Shen:2012:ABT

Sidi:1995:AVV

Avram Sidi. Application of vector-valued rational approximations to the matrix eigen-

Sirkovic:2016:SAL

Sandryhaila:2011:ASP

Syrmos:1994:DQS

Stegeman:2012:IUC

Slemons:2009:RTS

Jason Slemons. The result of two steps of the LR algorithm is diagonally similar to the result of one step of the HR algorithm. *SIAM Journal on Matrix Analysis and Applications*, 31(1):68–74, ????. 2009. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Sosa:2016:FOA

Shaked-Monderer:2013:RMF

Naomi Shaked-Monderer, Immanuel M. Bomze, Florian Jarre, and Werner Schachinger. On the cp-rank and minimal cp

Smith:2003:SAC

Sayed:2002:RRD

So:1992:ECM

Sorensen:1992:IAP

Spears:1998:CAP

Song:2013:SPP

Shroff:1989:CCJ

REFERENCES

326–346, ????. 1989. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

Sezer:1991:NED

M. E. Sezer and D. D. Šiljak. Nested epsilon decompositions of linear systems: Weakly coupled and overlapping blocks. [SŠ91]

Stewart:1998:HTS

Shah:2006:SPS

Mili I. Shah and Danny C. Sorensen. A symmetry preserving singular value decomposition. [SS06]

Shah:2010:BNS

Mili I. Shah and Danny C. Sorensen. Best nonspherical symmetric low rank approximation. [SS10]

Shank:2013:KSM

Stephen D. Shank and Valeria Simoncini. Krylov subspace methods for large-scale constrained Sylvester equations. [SS13]

Son:2017:SPD

Nguyen Thanh Son and Tatjana Stykel. Solving parameter-dependent Lyapunov equations using the reduced basis method with application to parametric model order reduction. [SS17]

Sala:2005:ICB

Marzio Sala, John N. Shadid, and Ray S. Tuminaro. An improved convergence bound for aggregation-based domain decomposition preconditioners. [SST05]

REFERENCES

Sankar:2006:SAC

Sonin:2001:RAF

Shklarski:2008:RFE

Spielman:2014:NLT

Stathopoulos:2002:CBJ

Stepniak:1991:ICM

Stewart:1991:TSR
Stewart:1993:PCF

Stewart:1993:URR

Stewart:1993:URR

Stewart:2001:KSA

Stewart:2002:AKS

Stewart:2003:STS

Stewart:2005:EAQ

Stewart:2006:EAU

Stegeman:2008:LRA

Stegeman:2010:UOT

Stewart:2010:SAM

Stegeman:2011:UCT

Stewart:2011:NAO

Stegeman:2012:CPD

Stegeman:2013:TWJ

Stewart:2016:CCR

G. W. Stewart. A canonical CS representation of a pair of sub-

Stewart:2016:DSO

Stewart:2016:RDM

Szlalom:2017:ALR

Schaub:2017:SMF

Stuart:1988:IMM

Stuart:1989:ETI

Stuart:1991:DHM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[336]

//epubs.siam.org/sam-bin/dbq/article/34126.

[Tan99] Wei-Pai Tang. Toward an effective sparse approximate in-

Taslaman:2015:AQE

Taslaman:2015:SDQ

Tippett:2000:CSD

Teran:2015:MPC

Teng:1997:FND

Tunyan:2005:EAL

Tan:2011:NMI

[TFL11] Chee Wei Tan, Shmuel Friedland, and Steven Low. Nonnegative matrix inequalities and their application to noncon-

Tisseur:2001:SPP

Thompson:1994:DTM

Tigelaar:1991:MLO

Tismenetsky:1993:MGM

Tisseur:2001:NMF

Tisseur:2001:SSH

Tisseur:2003:CBE

Françoise Tisseur. A chart of backward errors for singly

[TP14] Ping Tak Peter Tang and Eric Polizzi. FEAST as a subspace iteration eigensolver accelerated by approximate spec-

Trench:1988:NSE

Trench:1988:TSA

Trench:1989:NSE

Trench:1990:SEO

Trench:1994:SSP

Trench:2005:CPS

Troutt:1990:EFR

[Tro90] Marvin D. Troutt. An eigenvalue formula for the radius of

Toh:1999:KMT

Tebbens:2014:ICE

Tsing:1991:INR

Tuma:2002:NDM

Turcajova:1997:NCD

Turcajova:2003:ACS

Truhar:2009:EME

Ninoslav Truhar and Krešimir Veselić. An efficient method for estimating the optimal dampers’ viscosity for linear vibrating systems using Lya-
REFERENCES

REFERENCES

REFERENCES

vanDorsselaer:2000:CPB

vanderMee:2001:RHP

vanderMee:2005:MGI

vanderStappen:1993:PSD

vanderVeen:1996:SML

vanderWoude:1995:DDP

Vecchio:2003:BIL
Antonia Vecchio. A bound for the inverse of a lower trian-
REFERENCES

REFERENCES

Voos:2012:RVR

Vijayan:1993:FTF

Vecharynski:2014:FUA

Viswanath:1998:CNR

VanHuffel:1988:ASN

VanHuffel:1989:APG

Vandereycken:2010:ROA

REFERENCES

Walshaw:1995:DDP

Walker:2003:RCT

Wang:1998:SLM

Wang:2015:SVP

Watson:1992:AMT

Watkins:1993:BCA

Watkins:1990:RAS

Watkins:1991:CAE

Watkins:1994:TDB

Wei:1992:ATL

Weissler:1995:SRC

Wei:1996:CRD

Welters:2011:ERF

[Wim92] Harald K. Wimmer. Explicit solutions of the matrix equa-
REFERENCES

\[\text{Wimmer:2006:ISH} \]

\[\text{Willems:2012:TFT} \]

\[\text{Wei:2005:PBD} \]

\[\text{Willems:2006:CBS} \]

\[\text{Woznicki:1993:EOR} \]

\[\text{Wright:1995:SLE} \]

\[\text{Wright:1997:SAS} \]

Stephen Wright. Stability of augmented system factorizations in interior-point meth-

Seak weng Vong, Zheng jian Bai, and Xiao qing Jin. An

REFERENCES

SJMAEL. ISSN 0895-4798 (print), 1095-7162 (electronic).

REFERENCES

Xu:2010:SPD

Xu:1998:RBA

Xu:2005:NMC

Xu:2015:GCP

REFERENCES

Xia:2012:SSS

Xian:1999:RSE

Yalamov:2000:ASS

Yanushevsky:1993:RCD

Yan:1998:SCP

Yasuda:2003:SCH

Yang:1991:RCS

B. Yang and J. F. Böhme. Reducing the computations of

Yao:2016:RFR

Yeung:1997:PAG

Ye:2009:RPB

Yang:2000:SRO

Yang:2008:WPD

Ye:2016:SVD

Yu:1997:MAT

Yalamov:1998:SPA

Peng:2012:SME

Ye:2017:FCI

Yang:2010:FRP

Yang:2011:FRP

REFERENCES

REFERENCES

ISSN 0895-4798 (print), 1095-7162 (electronic).

Zha:1995:CLL

Zhan:1997:ISV

Zhan:1999:IUI

Zhan:2000:SVD

Zhang:2001:MDR

Zhang:2004:ECI

Zhan:2005:EER

Zhang:2010:RNM

Zhao:2010:LFC

Zhang:2017:MMA

Zheng:1996:FSG

Zheng:1998:NFS

Zhlobich:2012:DAS

Zhang:2016:CCR

Xinzhen Zhang, Zheng-Hai Huang, and Liqun Qi. Comon's

[Zheng:2020:MTI]

[ZH05]

[ZH05]

[Zhang:2005:HGH]

[Zie95]

[Zheng:2016:MTI]

[Zhang:2012:BRA]

[Zhang:2017:BRA]

Xinzhen Zhang, Chen Ling, and Liqun Qi. The best rank-1 approximation of a symmet-

algorithm for large symmetric
eigenproblems. SIAM Journal
on Matrix Analysis and Ap-
lications, 29(3):954–971, ????
2007. CODEN SJMAEL. ISSN
0895-4798 (print), 1095-7162
(electronic).

Zeng:2014:BSA

Linghui Zeng and Yangfeng Su.
A backward stable algorithm
for quadratic eigenvalue prob-
lems. SIAM Journal on Matrix
Analysis and Applications, 35
(2):499–516, ????. 2014. CO-
DEN SJMAEL. ISSN 0895-
4798 (print), 1095-7162 (elec-
tronic).

Zulehner:2011:NNR

Walter Zulehner. Nonstan-
dard norms and robust esti-
mates for saddle point prob-
lems. SIAM Journal on Matrix
Analysis and Applications, 32
(2):536–560, ????. 2011. CO-
DEN SJMAEL. ISSN 0895-
4798 (print), 1095-7162 (elec-
siam.org/simax/resource/
1/sjmael/v32/i2/p536_s1.

Zhang:2005:NSC

Zhenyue Zhang, Jing Wang,
and Min Fang. Necessary
and sufficient conditions for
the existence of positive de-
finite solutions to the symmet-
ric recursive inverse eigenvalue
problem. SIAM Journal on
Matrix Analysis and Applica-
tions, 26(4):1115–1131, Octo-
ber 2005. CODEN SJMAEL.

ISSN 0895-4798 (print), 1095-
7162 (electronic). URL http:
//epubs.siam.org/sam-bin/
dbq/article/43133.

Zhang:2014:RRA

Lei-Hong Zhang, Jungong Xue,
and Ren-Cang Li. Rayleigh–
Ritz approximation for the lin-
ear response eigenvalue prob-
lem. SIAM Journal on Matrix
Analysis and Applications, 35
(2):765–782, ????. 2014. CO-
DEN SJMAEL. ISSN 0895-
4798 (print), 1095-7162 (elec-
tronic).

Zhang:1993:IHI

Xiao Dong Zhang and Shang Jun
Yang. An improvement of
Hadamard’s inequality for to-
tally nonnegative matrices.
SIAM Journal on Matrix Anal-
ysis and Applications, 14(3):
705–711, July 1993. CODEN
SJMAEL. ISSN 0895-4798
(print), 1095-7162 (elec-
tronic).

Zha:1998:CCP

Hongyuan Zha and Zhenyue
Zhang. A cubically con-
vergent parallelizable method
for the Hermitian eigenvalue
problem. SIAM Journal on
Matrix Analysis and Applica-
tions, 19(2):468–486, April
1998. CODEN SJMAEL.
ISSN 0895-4798 (print), 1095-
7162 (electronic). URL http:
//epubs.siam.org/sam-bin/
dbq/article/30203.
Zhong:1998:FAI

Zha:1999:MLR

Zhang:2001:SPA

