Title word cross-reference

3 [Gal80]. 4 [Fos72a].

- AM06, NSH+11], 0.18µ [WW12]. 1
- SKN+15], 10 × 10 [CTHV+15]. 2
- BAES89, MIO+10, SA88a]. 2 × 2 [LIW82]. 3
- AA11a, ASR+17, ACK+95, CBS98, FAYA87, GPY+17, GCG+14, HS86, KDS+06,
 KNP+07, KKC+16b, LNR+06, Loh08, MK84,
 MDS+11, MAS+06, OSF+15, Sib07, SLSN14,
 Tad13, THEK16, TSN+86, UMB+11, YA90].
- DCS+14]. $39.95 [Fer88]. 5
- D [FayA87, OSF+15, SA88a, Tad13, THEK16, TSN+86].
- D-dimensional [HS86, MK84]. -EP-1
 [Ulm95]. -point [Eij90]. -point/ [Eij90].
- stage [YA90]. -version [HC15].

//ELLPACK [HRC+90]. /what [Uht02].

03 [IEE03].

1 [Dav80a, DM91, Fin93, NOK+83, SHNS86,
 SDV+87, Ulm95]. 10 [Ful76]. 100
accelerate [MH98]. Accelerated
[WN14, AL12, GC11]. Accelerating
[BSSM08, CTW+13, CPI17, GPFI13,
HKE+16, KXWB17, MNS+14, SMQP09,
WZL+16, KKC+16a, OZK+12, PCC+14,
TJ01, VNM+12, VG+10, WWP+03].
Acceleration [CKS+08, GPY+17, NS16,
NGAS17, SLTC16, TM14b, AIO+11,
COH+11, CYH+11, FGVG13, GDN+16,
GSM+99, JMP09, JSMP13, SS14a,
MYP+16, PCL10, SM12, SYP+14].
Accelerator [CHM08, KLKM17, LCL+15,
MCK16, OSF+15, OHW17, PRM+17,
SM17, SOD+14, AB86, BJ+13, CDS+14,
DP12, HGS+16, KJJ+09, LNEHR11,
OIA+13, SNM+16, SRWB14, TYSK11,
Tem12, TPO06]. Access
[AWSS17, BC90b, CSGT17, HIT05,
KORA17, AZ99, AKSD16, APX12, APS95,
BSL08, BD91, BC04, CME+12, CL89,
CSF+12, DN93, Dow91, DSB6, DSB98,
DS98, DSN07, Fos72a, Fre87, HL89,
HK80, HASA14, HDP+90, KK89, KPK89,
KHS+97, Las88a, LQZ06, MSS14b, MC91,
ON12, PVAL95, PT86, RDK+00, SD10,
Smi82, Smi89a, Smi98c, SSR+13,
SCRT78, TLD14, VLL+92, drBC93].
access/execute
[APX12, BD91, Smi82, Smi98a, Smi98c].
accesses
[CYL99, HJ86, PBC+13]. accessibility
[SSKP+07]. accessing
[ACM02b, Fen84, Gou78, HK89a, KDK+14].
accommodating
[iKKM07]. accordance
[Oya89]. accounting
[EE09]. accumulators
[Kee78a]. accuracy
[ECP96, KK99, KPK90]. Accurate
[CPT08, DFL05, DH98, EBS+04,
KGCG17, LB06, TM14a, VGX17, CG94,
EEKS06, KIC+16, LF00, RWA+16, SK13,
VLZ88, ZYGP09]. ACE
[WMP07]. achieve
[EKW80]. Achieving
[AKJ+09, HC89, SNN99, TP08, ACS+12, FP91b, NLS88].
Achitecture
[PAD16]. ACISA
[Bhu83]. ACOS
[NOK+85]. ACOS-4
[NOK+85]. acoustic
[UVG12, UVG14]. acquisition
[MF76]. across
[PM92, Pon91]. activation
[CHCuWH00, ZCX+14]. Active
[OCS98, vECGS92, vECGS98, ACK94,
DMR+11, MK84, SADAD02, vECGS98].
ActivePointers
[SB16]. activity
[YRK07]. actuator
[KC02]. acyclic
[VAV10]. ad
[KMVS12]. Ada
[PCH+82, Roo89]. adaptable
[KKT05, vIG80]. adaptation
[HRT03, TST07, VGNL89]. adaptations
[SHA02, HA04]. adapted
[GPPT02]. Adapting
[EKE01, JLFM15, WCS08, GVC+10]. Adaptive
[AC89, ABZ07, AW04, BCZ90,
CF93, KTMY91, MRH+16, NA83, NY14,
QJP+07, SSR05, SK10, SST06, THM14,
YJE11, AGSY94, AP95, BC93, BKA03,
CYH+11, CK92, GN92, GN98, HC04,
HG10, HBI13, JKD09, JnWH97, KLC94,
KBK02, KKD13, LWR10, NS91, N98,
PIAS13, SDG03, SBS93, YP92, YP98b,
YR98b, ZSKD13, uAM16]. Adaptiveness
[FK17]. adaptivity
[JSN98, LB08]. Add
[THEK16, LGM+14]. adder
[MS13a]. Adding
[Tab10, KMC+93, YCT05]. Addison
[Fos93a, Mad94b, Sch88]. Addison-Wesley
[Fos93a, Mad94b, Sch88]. addition
[Jon90, Jon98a, Jon98b]. Address
[BRC+05, CB17, EMZ+16, WS90, ASH86,
ACM02b, AP985, AS96, BCR11, BJ+99,
BYG+00, BDH+99, BKW90, Bra80a, CKZ12,
Est02, FP91a, FP9+92, Goo87, GUS09,
HK89a, H93, L9f74, LNBZ08, PHB14,
QD98, RLS10, RF96, SWL10, SF03, SBS16,
Ste88, TDF90, WSY95, W91b, WEG+86,
WK89, YK05, Zha01, ZZP04].
Address-Based
[BRC+05]. Addressable
[Che87, McG78, Vra78, Hic77a]. Addressed
[JWK12, Goo88b, Hea76, LLC98].
directories
[CBS88, CLR05, HK89c]. Addressing
[Fen84, ZFP10, CCH+87]
advantage [MTZ13].

Advances [Atk79, Gor83, AD98, Sat74]. AEGIS [LM74, GK85]. A´ergia [KS84a, MJ89]. Algol-60 [BBK76]. Algol-60 [BBK76].

Algorithm [EW16, Hib80, WN14, AA86, Ams83, CCB+06, Dev90, DSN07, EKEL01, FAYA87, HS85a, JL16, KDSO12, Kav80, KSS2a, MJW11, MS12, MM14a, OCBL12, Rey82, SJ86, SDGT03, WIPK09, Cha92].

Algorithms [GFT+15, Kan11, Lei91, AB86, BA84, BAES89, BWJ+90, BC93, BF90, BCS91, Cha90, DJT94, FFW98, GCS11, GNFW86, HWC91, Jon08, Kha95b, KY02, Kuh80, LRW91, MSS14a, MSB+02, NP11, OTS6, SA87, VGNVL99, VJ95]. alias [ADT13]. Aliasing [BE03, MSU97, SLM96].

Alibaba [Che17]. alignment [IBC12].

ALITER [GSS05]. all-flash [JCSK14].

All-inclusive [KSLE16]. all-optical [KM10]. Allan [Lan90a]. ALLIANT [DD90]. allocating [BA01]. Allocation [KSN07a, Par90, GB83, OWCL90, TPĐ+77].

Advances [YMST07]. Advanced [SOSD05]. AEGIS [DSM910]. AES [MM14a]. Affine [WL17]. affinity [LS12a, NML10]. Again [PAY+17]. Against [AYQ+16, YGT17, Ino05, Mat91a, Mye77, SM77]. age [WPC+14].

aggregation [OBRW14, VGNV05]. aggregations [HPU+16]. Aggressive [LLD+17, PKM17, AK00, LM99].

Alternatives [BVR+00, MM92, MKR02, NH96, SSP97, Wool4]. Alto [IEE79]. ALU [HRDA85, KDM+98, PG04]. always [DMS+12, Bhu83]. always-on [DMS+12].

AMD [TL10]. Amdeh [AGS05, EE10a, JM12]. AMNIESIAC [AK17]. Amnesic [AK17]. among [T1LeC13, VIF94]. Amorphous [And90].

AMP [Dav80a]. AMP-1 [Dav80a]. analog [HGS+16, LHH+16, SNM+16, SY+14].

Analyses [WHZ+17, OZK+12]. Analysis [ASR+17, BBFP06, CL89, CGL92, FXZ+17, GTB89, GPPT02, GLA85, JKT05, JKT09, JYP+17, MCN+17, MD88, NH+17, NMS+14, PJ07a, SBZ+15, Sez05, SD95, SA83, TAM+08, TKJ07, Tze90, WG89a, WM88, Woo86, AZ89, AC09, ACC+03, AS92a, AML+10, BP04, BKW90, BM00, CFRS09, CVH04, CSS07, CKC11, CL82, CKDK91, CK00, Cve03, DS06, DS85, DF92, DS02, EPCP98, Fat90, GYCS86, GYC+10, HG97, HM05, HS85a, Hig90, Hli83, HCSO12, HNS77, JM88, JmWI97, KTK12, KPK90, KKT05, KMS+12, KR85b, LJJW84, LBH12, LBE+98, LFH03, Mc82a, MS76, MM82, NM89, Nap86, PQC+09, REL00, SMD+13, SKB09, Sib07, SA88b, SAS90, SK10, SW87, YCR+07, KW84, HHA83, BS9a, CB94b, CK00, Cve03, EAE+02, Kar07, MSB+02, SFKS02, ST03]. alpha-particle [KW84]. AlphaServer [GSSV00].

ALPS'07 [KSN07a]. Alternative [YH92, YP98a, BJL+13, Har82, LMB09, MK11, VSMF03, VE14, YP98b].
SKC+03, SS82, TA83, Tho11a, TACT08, VLZ88, WMPO7, Wol89, WF87, Woo85, WO86, WZY13, YGS95. Analytic [SPA+98, HS74]. Analytical [GB87, HK09, KS07]. Analyzers [Che17, WCX17, OYK+16]. analyze [HANR12]. Analyzing [HS85b, LW07, NS16, WZJ10, BF73, Che90]. Anchorage [ACM02a]. Andrew [Ram78]. Android [AHA+14, KDV11]. Angus [Lan90b]. animating [AFGM10]. animation [HGS+07]. Ann [IEE84]. Anne [Ful91a]. annotated [HLW94, Pri91, Sta86]. Announcing [AMM+12]. Annual [ACM80, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM04, IEE76, IEE77, IEE79, IEE81, IEE84, IEE85, IEE87, IEE88, IEE94, IEE03, JDL81, Kin75, LS73, Tho81, ACM89, IEE82, IEE83, IEE86, IEE90, IEE92]. Anomaly [DZ09, CG06, MC91]. Anomaly-based [DZ09]. answers [MPH12, Sni75b]. antenna [DSOF11]. anti [BE03]. anti-aliasing [BE03]. antivirus [UMK05]. Anton [GBK+13, SDD+07, TGG814]. ANVIL [AYQ+16]. Any [YXR06]. AnySP [WSM+09]. anything [MDHS09]. anytime [SJ16, WSM+09]. anywhere [WSM+09]. AP1000 [HHS93, SH92]. aperiodic [Wei89]. API [CS13b, HFL03, NUM94]. appliances [AIK+05, Nak01]. Application [AW17a, BMP+04b, CDY+17b, HSH96, KCW+09, ME78, TT08, TAM+08, DSM82, EK88, EJK+96, EG97, Fin93, Gai83, HANR12, HDT+13, HRT03, ISL96, JS99, cJC099, KS02a, KS07, KSH91a, LS12b, MS76, MK05, MPSIV89, OUY+13, PjG90, PJ270a, PP92, RSYP06, RAJ00, TS90b, TZZ+16, VPS01, WBS+88]. Application-aware [KCW+09]. application-driven [KS02a]. Application-level [BMP+04b, HANR12, HDT+13]. Application-specific [CDY+17b, LS12b, MPSIV89, PP92, WBS+88]. Application-transparent [AW17a]. Applications [CDY+17a, Fu91a, HJR+16, HTM+05, LLD+17, MAH+16, MBB+15, YCR+17, BP04, BFGP06, BFP07, BMBW00, BI91, BDFM10, CGS09, CS11a, CG92, Cop78, CLR03, CDA14, CHKM93, ELN89, FF73, FURM00, Fra83, GH76, HKD+13, HCW+10, HB90, HKA+01, JSM12, JSMP13, JB97, Kar95, KTC00, LCB+98, LWRC10, LHL87, LS96, LZ93, MJW11, MLCW11, Mad94a, MS13c, MT02, MBS+04, MM14a, NNN+91, NKRL06, OC78, Par75, PGTM99, QMT89, RBH+03, SJLM14, SRSW14, SKC+12, ST03, SK04, SA91, SWG92, TJO1, TMV+11, Tem12, TSN+86, VIA+05, VE08, VGNV05, VM88, VGK+10, YYX+07, kSYHX+11, Yue84, ZT95, HA04]. applicative [SK83]. applied [Arm74]. Applying [SGBO0, VTS12, MT02]. Approach [CL04, HS16, IMMC08, Lev92, MZLN15, PG804, SZBP08, YT04, ASP+99, BK11, BF606, BS08, BRG89, Bri87a, CLL01, CGL+08, CHT+14, Che87, Con88, Con90a, DFF+13, DZ09, EGK+85, FPF+92, FKK+82, Gai83, GWM03, Ho80, HY96, KW13, KS07, KMC+93, Mar83b, MSA+00, MS76, OCL90, RCM+12, RPKG14, SBM02, SBP11, SSH+07, SCZ00, Tan83, WBM+03, WGO+13, YA90, ZSL10, Tab95, HA04]. approaches [SH87]. APPROX [BH17+17]. APPROX-NoC [BH17+17]. ApproxHadoop [GBNN15]. Approximate [GSCM16, JSCM17, PAM+16, RSA+15, SLFP16, ESCB12, KPK90, MYP+16]. approximating [TASS09]. Approximation [BH17+17, FKBS11, SJLM14]. Approximations [GBNN15, VGX17]. apps [AHA+14]. APRES [OKY+16]. April [Fos72a, IE79, IE82, IE94, ALKK90]. Aquacore [ATV+07]. Aquarius [DPS+87].
Arbitrary [SA15, WJZ15, CWS+11, Dvo90, KIC+16].

 arbitrated [PVAL95]. Arbitration [SKJ+17, KC82, MSB+02, TCCM12, VM88, WS07]. Arbor [IEE84]. Archipelago [LNBJZ08]. Architecting [LIMB09, MDS+11, BSK+10]. architects [SAR99]. Architectural [ADP+15, ALE90, BF87, BRC+05, BMA00, BCD89, CL09, CW02, CRW+15, CSGT17, CH87, CMT00, CHKM93, DHR+15, FSC76, Gal80, GSL17, GRD87, HvJDL80, Hic17, HLL+93, HH93, IAD+94, IHM89, Jou89, KMOA07, KKK+17, LGH92, LABR08, Mas96, MCC+06a, NaR07, Ozt15, PHB14, PCDL09, PBGM09, Ram88, RGG82, Ros96, Sat74, Sch73b, SG94, SL12, TM+00, Yue99a, ZYLG05, ZQL+04, AD98, BTM00, CLL01, CMF+13, CMC+91, CMC+98, CS94, CFS+12, DLL+16, DF92, DS11, DBMZ08, EA97, Fer87, GKF84, GB87, Gra84, HO91, Har82, HM93, HS90, HSH96, mW98, İMC+06, Jag80, Job82, KC95, KBS84, KMS+12, KHN07, LCS10a, MSI82, MW12, NEEJ12, NKQ13, Nİ85, NWDR93, PL06, PGRT01, PZT02, RGP82, SYK10, SLLG05, Sta89, SSP97, TNN87, VCK+12, WHG07, ZR14, dKNS10].

architectural-level [BTM00].

Architecture [ACM05, ACM89, ACM91, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, ACAAT16, ABZ07, BTR850, BKSO05, Bat80, Bat98b, Ben82, Bhu83, BCT06, CTHV+15, Chu77a, CBC+05, CGL89, Col88, DCC+87, DCC+98, DKD+15, ESCB12, FR89, FXZ+17, FKMD83, GSSV00, HMT86, HJCJ06, HTM+05, HYHD95, IEE76, IEE77, IEE79, IEE81, IEE82, IEE83, IEE84, IEE85, IEE86, IEE87, IEE88, IEE90, IEE92, IEE94, IEE99, IEE03, IEE05, IEE06, JLFM15, KK84, KNP06, Kin75, KBH+04, KOA05, LKM+05, LWB08, LJDL16, LLW+06, LS73, MSS+15, MCK16, MCN+17, Mil77b, Moo85, MRH+16, PED+08, Pat06, PGH+83, PQNT16, Pou77, PZK+17, Ros73, SCU+14, SLG+05, SOM+08, Sin92a, SHMZ94, Tak88, TS05, TLM+04, Tho81, UBF+84, VRB+17, WJZ15, WCX17, Whi78, YXR06, ZWM+14, ZH17, APGP07, AAM76, ALKK90, ABC+95, ABC+98]. architecture [Aga98, AA82, ACC+03, ATV+07, ASP+03, And90, ALBL91, ABL+80, AAG+86, AFNV90, AAG+98, AP76, Asl84, ABm93, ACM+98b, Aup80, AML+10, BGM+00, BGP+01, BFGP06, BFP07, Ber76, BB90, BC91, Bic84, B87, BSF+91, Bon13, Bou75, BC04, BR92b, Bur84, BAB88, CMF+13, Cal74, CD82, CBK+14, CLVW93, CL94, CCE+09, CES16, Che81, Che92, CLX+16, Chu77b, Cit03, CNO+87, CmWH91, CLS3, Cox79, Cra85, CC05, CRM91, DG90, DK85, Da10, DKK07, Das83, Dav80b, DRC05, De 90, DCB+94, Den80, DM74, Den76, DM98, Den98, Den03, DJ09, DP80, DMB87a, DP89b, DP98a, DDP5, DK89, Dor75, DV87b, Dow87, Dow88a, Dro99, Dur83, Dvo90, EO98, Ega82, ED83, EAE+02, Est02, EE93, EEKS06, FD87, FB08, FB92, Feu76, FC92, FF73, FR72, Fon03, Fos73].

architecture [FeOBA05, Fra83, FHH+89, FAYA87, FSS73, GAS16, GK78, Geh14, GK85, GSS12b, Gil83, GS12, Gs74, GthL+85, GHMK11, GS80, HG97, HR91, HW80, HF88, Har86, HTCU10, Har73, HFWZ87, Hay77, HJS00, HSW+00, HKN+92, Hir86, HLS05, HSC+90, HK90, HC85, HK77, HW95, Hu85, HKA+01, HG88, HC99, HP86, HP98, HoWHP98, Ian88, Ino05, IBC12, IT84, ISKR86, JZL09, JSL+13, JW82, JBW89, JB97, KHP+95, Kees79b, Keh76, KJ+09, KKC92, Kie87, KL03, KKC+16b, KL91, KGC98, Kno73, KSS+95, KS91b, KACG88, KBC+00, KMT91, La03, Lap90, Lap91, Las89b, LMND76, LR93, LHV+16, LS12b, LWS75, LNEH11, LSY+14, LL14, LDD+16, LH88, MK84, MPPZ87, MPJ+00, Ma00, Mar85, MK12, MVCA97, May82, MC93, MSP+06,
architecture

architecture [MIT89, MSCI13, Nae85, NSMK11, NNN+91, NOK+85, Nap86, NPA92, NKS86, OYK+16, PCL10, PMPM96, PN88, PSB13, PC90, PC98b, PC98a, PJDL06, PIAS13, PT86, PGH+87, PDP+13, PSB10, QMT89, QFLMK10, RGD09, RSPY06, RC80, RF90, REL00, Ree80, RAC99, Req83, RHS96, Ris76, Riv79, Rob78, ROCR5, RG91, Ros06, Ros76, Ron86, SyYH+89, SNL+03, SCP80, SCP+82, SJ86, Sch73a, Sch83, SK83, SV06, SV82, SVC03, SD00, SH05, SA88a, SEI+95, Sin92b, SGS11, SSA13, Slo73, Sni75a, Sni75b, Sni90, SDP85, SA83, Ste77, SW74, SCRT78, SLSN14, SH12, Tag85, TYNM86, TJ01, TRA91, TWC+01, Tan77, THL+86, Ter87, TTT82, Tre80, TH82, Tre83, UHI3, Ulm95, Uml97, UZU00, UZ19, VR73, VC72, VF85, VRV+14, VBS05, VSM+07a, VSM+07b].

Architecture-Adaptive [MRI+16].
architecture-compiler [CBK+14].
architecture-Level [SOM+08].
Architecture(R) [MBBS13].

Architectures All92, BRUL05, BKSO05, BHM+17, CSBA17a, Cha92, CB17, DFKC17, KKC92, KKK+17, KLS08, KSO08, KTR+04, KZT05, LRC+08, Loh08, SLFG06, SPM+06, AA11a, AAD90, ABC97, ABS98, Bay99, BHBL87, BCDL07, BCZ90, BHS91, BBBM94, BD84, BKG97, Cha90, CLM07, CF82, CCB+06, Cra79, CGVT00, CJDM99, DO82, Das83, DL87, DSBBK04, Eij90, FKBS11, Fis83, Fis98a, Fis98b, FGVG13, FSA90, FPC+97, FV82, GVY90, GTBJ89, GB83, GL98b, GTK+02, GMR89, GZuRC13, GN89, GNL13, GNW86, Han78, Hol89, HL85, JH94, Joe90, Kar95, KB92, Kav81, KBB+82, KF79, KS99, KNP+07, KTS+13, KSC16, KMC+93, KL94, KMS+10, KBR99, KCE12, Kus86, KHC92, LRC+16, Law76, LL88, LS12a, MLCW11, MST07, Mar83a, Mat90, Mel85, MNLS97, MPS1898, Mus09a, NCLJ09, PT91, PPA+13, PSP+12, Pes74, PARAKA13, PAVT16, RTY+87].

architectures [RGG82, RGP82, RE12, SGG+85, SRWB14, Sha80, Smi82, Smi98a, Smi98c, Smi14, SV89, SJC92, Str83, SMQP09, SMJ+10, SKA01, TYSSK11, TH03, TE94, TKG+02, TF79, Tmc88, VFK+04, Wir87, Wou14, ZYGP09, ZSHG07, RL17, McD88, Le91].
Archival [BLC+16].
ArchRanker [CGT+14].

ArchShield [NKQ13].
Area [AMPH09, CDY+17a, KS99, KSL08, SPM+06, THMN14, AA11a, BC02, CS13a, Mar74, WSY95, WIPK09].
Area-efficiency [AMPH09].
Area-Efficient [KSL08].

Area-Performance [SPM+06].
Area-time [THMN14].
argument [Mat91a].
Ariadne [AGSY94].
Ariel [Fra90].
Arithmetic [JPT14, VNNM06, DSG11, FDS8, MIO+10, SNM+16].

ARM [DN14, DLL+16, SRSW14].
ARPS [Thu76].

Array [KR85a, KAO05, YXR06, ZHI17, AJ77, ABS98, BT89, Bur84, CP90, CH85, Fis86, FM84, HKK80, HK98a, JB82, JKN+13, JCSK14, KPK89, KTK+86, KW11, MS87, Mic92, NLV86, New92b, New92a, Ng94, OT86, Os89, RV84, Red73, SY10, SYH11, SV74, TA83, WW12, WJS5, YL84].

array-processor [SWY10].
arrays [DBP+04, FK83, GHK89, LK91, MM92, Qu84, SFV+04, SSAC13, SGH93, Tho13a, TLD14, Tho76, VJ95].

arrival [ZW16].
Arts [An08b, Lin76, YL84].
Arthur [Ber91c].
articles [sta80a, Sta80b].

ASC [WAA+14].
Asian [TTTL10].

ASIC

Assignment [BJ03, GWM03, Mal80, RCM+12, RP99]. Assist [BKT87, KKM+06]. Assistance [LNEHR11, Sch73b]. Assistant [HLZ+15]. Assisted [AH12]. Assisting [NKQ13]. Associate [LS77]. Associative [BTW77, Mar73, Mil77b, SS88, AP93, AR80, Arm74, BB74, CP98, GGP+13, HR00, HFH+91, Jou90, Jou98a, Jou98b, Mon98, PA73, SFS04, Sez93, WQL92, WHM02]. Associative/parallel [BTW77, AR80].

Associativity [QTP05, BS95, DG92, KJLH89]. Assumptions [ABD+15]. Assurance [AHC+16]. ASSURE [SLP+09]. Asymmetric [DHT15, MA15, CBGM12, CS+16, GCN+10, JSMP13, KKKM11, SSR+13, SMQP09]. Asymmetry [BRUL05, TWB16, QFJL12]. Asymmetry-aware [TWB16]. AsyClock [HNK+17]. Asynchronized [DGT15]. Asynchronous [FW82, HCL15, HNK+17, Nis91, DFR017, VTH17, BLS99, DR91, GSS05, GM90, HSS0, Hir86, IM02, MBL+89, Nae85].

Asynchronously [LL16]. Attacks [YGST17]. Atlanta [IEE99]. Atlantic [Bra82b]. Atom [LDSC08]. Atom-Aid [LDSC08]. Atomic [BNZ08, IKK16, KK5+08, SKB+17, AT11, ADT13].

Atomicity [AM06, LDSC08, BNS11, LTOQ06, LCS10a, NRS+07, NDZ10, PLZ09].

Atoms [SAA17]. Attack [CLR05, LWH+16]. Attacks [AYQ+16, CZG+15, MMT16, CS13b, Ino05, KOAJP12, MDS12a, MMJ05, WL07].

Attributes [Avi83, VBE92]. Attribution [ZMMT16]. ATUM [ASH86, SA88b]. augmentation [Tho12a]. Augmented [MS82, DSN07, KTO+12, MS80]. Augmenting [TM11]. Austin [IEE82]. Australia [IEE92]. Authentication [YEP+06]. Author [An004a, An005a, An006a, An008a]. Authors [An082]. Automata [SD17]. Automated [BS73, KS07, LWPG17, SDWF13, SC01, XLW15, DZ09, SCA13, TS09a]. Automatic [AK17, BA06, Chr77, CM00, FFM11, HBT11, KDA12, KDP+16, LSFK08, MVB15, Qui84, SDLR+15, CBK+14, EG97, Fen84, GKT13, MSZ09, OKJ+13, SLP+09].

Automatically [LLL+17, SHC02, Bar06, RR04, SW87, WAA+14]. automation [NK86]. automaton [SJ16, TLLL07].

Automating [Mat78]. automotive [RBH+03]. autonomous [Che05, JCSK14]. autonomous [HGC10]. auxiliary [NNS+90, SD10]. availability [ARJS07, SM02, SMWH02]. Available [Ber91c, JW89, TMC+06, ZYMS15]. avenues [RKB+09]. AVF [SK10]. AVIO [LTOQ06]. avionics [And73, KM74, Sat74]. Avoid [Mud96, BLS99, HC03]. avoidance [Kun88, LC13]. Avoiding [LBN02, UVG14, GIS10, LCS10a]. Aware [BL17, CMR+06, GNB15, GCO+04, HCL15, HABZ17, KYW+17, KORA17, KSCK17, LSL+17, LCCZ17, MMB08, ORS+04, PR05, QLMP06, RL17, SABR04, TT08, YGST17, CS+16, DK13, DK14, ELM11, FeOA05, HFJ11, HSC+11, JNA+S12, JKN+13, KCW+09, KKD13, LFZE00, RLS10, SLC12, SSH+03, SCN+10, TWB16, WRSY16, Won16, LJVM12]. Awareness [CYMT16, RAM+04, BK05, HK09]. Away [SAA17, HLS05]. AxGames [PAM+16].

Fin93, GN89, Hen06, Joh04, Mas04, PBL90, PJJ07a, PJJ07b, PL06, Pon91, SW90, Si07, Spr07, WO89, YLT06. benchmarking [CLC12]. benchmarks
BCD12, BM09c, CG94, CTYP02, CPT08, DL87, DH98, ECP96, EPCP98, GYCS96, GL98b, JNS98, KK99, KT91, MTS10, MS97, PEP98, P94, RBS00, SLM96, SFKS02, Smi98b, Smi98e, SCAP97, TYS94, TL10, TFWS03, VSMF03, WR84, YP92, YP98a, YP98b, YGS95. branches [DW90, Gun90, HCC89, KE91, KJM+07, KJC06, MH86, TYS94, TFWS03, UZU00, VSMF03]. Branching [Dvo90, Lap91, McL91, OWCL90]. Breadth [MNS+14, MSH+15]. break [DB07]. break-even [DB07]. Breaking [BLJ+17, GMT16]. Breeze [Den03]. brick [KMOA07, LG04]. brick-based [LG04]. bridge [DS89, SKC+12]. Bridging [PVB17]. brief [CnWH91]. Brinch [Whi78]. Bringing [GBNN15]. British [ACM00]. broadcast [EHA03, JW95]. broadcast-free [EHA03]. broadcasting [FM84, KR85a]. Browser [PVB17]. browsing [LS+12, ZR14]. Browsix [PVB17]. Bruijn [PVB17]. BSP [MAD94a]. BTB [BM09c]. bubble [Ria80, YBM+13]. Bubble-Flux [YBM+13]. Bubbles [Cha78a]. Budget [WM16]. Buffer [CBRJ12, TIVL05, AKB85, BRGH89, BM09c, FP+92, Ino05, JADAD06, OSKA14, PBC+13, PN77, SK04, SWC+95, Tic88, ZSHG07]. Buffer-on-board [CBRJ12]. buffering [ANHN95, DSB86, DSB98, DS98, GCLM85, KHC91, Mull97, TW77]. bufferless [MM09]. Buffers [MABY15, BCG99, CFG+13, Jou90, Jou98a, Jou98b, RRK95, PK94, SW87, TF88]. bug [CCM08, DZ09, HHS13, LPSZ08, WZJ10, ZdKL+13]. buggy [RKGM14]. BugNet [NPC05]. Bugs [HSK15, HABZ17, LLLL16, LLLL17, MCXS16, BKMN10, CG86, GCZ+11, KZC12, PLZ09, VTSL12, ZSL10, ZL0+11]. Build [BNZ08, BNE16, CGS90, DHR+90, SRSW14, WY05]. Building [DBL80, LZC+17, OCCK03, SCU+14, ARJS07, BG80, Coo73, FB92, ICN+10, MGBK96, POU77, SFV+94, ZLZZ09]. Bulk [CTTC06, CTMT07]. BulkSC [CTMT07]. Burroughs [May82]. Bus [AN17, Aic92, Bra80b, BK89, CH+12, EK89a, FP91a, GH90, GCLM85, HS80, HJL89, JSS88, KM86, K82, NS86, PH88, SA92, TE93, VC94, VBS05, VM88, Wi87, WH88, ZZP04]. bus-based [TE93]. buses [HDP+90]. business [Dic81]. Butterfly [GVC+10, KDA07]. BVM [Wag83]. BWAMEM [HSBA16]. Bypass [GCS11, GL11]. bypassing [AB92]. Bytecode [OKN02, EKEL01, MW98]. C [All92, Ano99, Fos93b, Fos72a, Fu91a, MG78, Vra78, DB93b, CGB89, CRW+15, CDG+17, DBMZ08, DM82, DMB87b, H88, Won07]. C-21 [Fos72a]. C-240 [BD93b]. C [Sch91a]. C.mmp [Fu76]. CA [ACM93a]. Cache [AW04, ACB86, CH01, CCCS87, H84a, H84b, HIT05, JW97, Jou93, KHM01, KTG+17, KORA17, Lin81, LLN+17, MRG12, McF92, MBS16, PH90, QLM06, SZBP08, Smi85, SZ88, SSZ05, Str76, Tab95, TD91, TBS17, WGA+08, WSC92, YGST17, Zha06, AAV91, ASH98, ASH98, AWC+11, AZ05, AZK06, AB84, AS14, ATT+13, APS95, AK00, BJ14, BW88, BW98a, BW98b, BD93a, BC90, BVGL00, BJ03, BD64, BR99, BC04, Brit97, BKB90, CG95a, CKA91, CV88, CS06b, CY96, CMB+13, CF93, DDS94, Dah95, DB07, Dev90, Dev93, DM82, DB82, EK89b, EK89a, EP88, EE93, FFTP94, Fon03, FP91c, GAS16, GH90, Goo88a, Goo83, GH86, GW88, GVV89, Goo98, Goo98b, GMT89, HG97, HRR0, HKE+16, Hen98, Hig90, HS84, HM+05, HHC99, HC89, Ino05, IS92, JL16, JTSE10, JNA+12]. Cache [JVF13, JS99, Joh89, JMH97, JADAD06, Jou90, Jou98a, Jou98b, JLN96, JB97, KS14, KEW+85, KHP+95, KR13, Kha97a, Kha97c, KS99, KBK02, ...
Kro98a, Kro98b, KADS04, KKD13, KKP14, LRW91, Las88a, Las88b, Las91, LKL+02, LYL87, LLCP94, LBCG95, LS12a, LLG+90, LS92, MPT91, MAD11, Mat91a, MPS94, Mic92, MC91, MB91, Mou98, NG09, NO94, NRKS05, OKY+16, OMB91, OMB92, OA89, PK94, PP84, PP98, PEP98, Pat98a, PGH+83, PH88, PT10, PHH88, PHH99, PEB+09, RB500, RC91, RSYP06, RBV07, RF96, RSG93, RS84, SK11, SD87, SHBS14, SZ97, SSKP+07, SLQK12, SH91, SA88b, SG83, Sni86, Soe94, SHV+98, Ste89a, Ste89b, SJG92, SBS93, SKD+10, SS6, TK07, TE93, VRV+14, VLZ88, WBL89, WL07, WG89a, WAC+10, Wii87, WOR96, WEG+86, WK89, WLZ+09, XTW96. cache [YZ07a, YW92, YPDS3, Yue99a, Zah03, ZYG00, ZVN03, ZSKD13, Ili87, QTP05, Smi91, Quo94]. Cache-Based [YGST17, MC91, PH88, PEB+09, SD87, WL07]. cache-consistency [VLZ88]. cache-coherent [BD93a, GV88, GVW89]. cache-filtered [RF96]. cache/bus [Wil87]. cacheability [Bri87b]. Caches [KRM08, OH16, TIVL05, YNQ17, Zha03, AP93, BFG+07, BK96a, BK96b, C85+16, CSB86, CB88, CP98, C8J8, CRG+11, DL92, DSN07, FaRP98, FK+02, FK+06, GCS11, Goo87, Goo98b, HFFA09, Irw10, JVF13, KBK02, KKT05, KW89, LR00, McF89, MDS+11, MB07, NRRK05, NKRL06, NLS07, Nil90, PFZ96, RA00, SF04, Sez93, Sez94, SL88, SLSO13, SK08, VS92, VJ95, WQL92, WSY95, WO97, XL09, YE09, ZYG09]. Caching [BSAD04, BS04, CS06a, BCR10, BHS12, BFS+09, CG91, CGB89, CB98, FP91a, GUK09, HGC10, HY96, JW94, yKPR02, MA09, MBK90, NH97, PHH16b, QJP+07, WSY95]. CAD [HB90, KB80]. Caddie [PP83]. CAE [GC11]. CAI [Adl73]. calculating capacities [APS95, BNA88, Ste88]. California [IEE79, IEE03]. Call [CS13b, Feu82, Kar89, LYK+00, PA88]. Calls [GC86, Lam82]. Cambricon [LDT+16]. Cambridge [Par90]. Camino [HMJ05]. CAN [Har74, Mui96, Nik89, SKC+12, BJL+13, MPP+08]. Canada [ACM91, ACM00]. Canonical [CWS+11]. Cap [ZH16]. capabilities [AF73]. capability [MB80, WWC+14, Wi82]. capability-based [MB80]. Capacities [KKB+17]. Capacity [CPV05, WAG+08, YNQ17, ZM05, KMR012, MSU97, RBV07, SHK+07, SLQK12]. Capo [MHKT09]. capping [KZA+12]. CAPRI [RE12]. capturing [ASH86, BJ14]. Carbon [KHN07]. Care [dOFD+13]. Carlo [CTW+13, SL05]. cartographic [BF03]. Case [AOM+14, CTH+15, CS80a, GSN05, JPL08, KSCK17, LS15, QMP06, SAL+05, SAB04, BDL07, BCDN87, BD93b, BK05, C8X+11, CL94, Con88, CDK+94, CMLV04, DCW+11, DN93, D90, D89, GLA12, Gkz+07, HNTL11, Joh91, KSL+12, KMA+12, KBD+13, KADS04, LZ93, Mac96, MVD11, M09, Mac77, NKRL06, NP95, OSKA14, Par02, PD80, SN96, SM77, Sez93, SBS16, SG94, TWC+10, WQL92, Wie82, YN09, YHZX14]. CASH [ZHW16]. CASPAR [GMT16]. CASSM [CLS73]. casual [TM+01]. CAT [WSY95]. Catalog [Mat78]. Catnap [DNSD13]. Causality [HNK+17, KKS+16]. Caxton [Ano99, McG78, Vra78]. CC [FW97, KLHJ88, LC96, MNL97, OML83, SC05]. CC-banyan [KLHJ88]. CC-banyans [OML83]. CC-NUMA [FW97, LC96, MNL97, SC05]. ccNUMA [LL97]. CDO [SM12]. Cedar [KDL+93, GKL95, ASK85, KDL+98, YVK+98]. cell [CM87, DZC+13, KK08, SYL13, TGP10]. Cells [GSM16]. cellular [BT89, BG90, CLS73, CT74, Lip73, SBM02, SA86]. center [CBE+12, PMZ+10, RRT+08, WDG+16]. center-wide [WDG+16]. centers
AV10, KZA+12, LWH+16, LDK14]. central [SDV+87]. centralized [KM86]. centrally [BSD87]. centric [STND+13, VBYN+14, ZYG00].

century [Hil13]. CFP [HR09]. chaches [WQL92]. chain [BF73]. chaining [DC09]. chains [BRB02]. Chair [Ano06b, Ano06c, Ano04c, Ano04d, Ano05c, Ano05e, Ano08d].

chairman [Har74]. Chairs [Ano08c]. challenge [Har73]. Challenges [Kan11, Wit16, Dav14, Est02, LYBK11, RKB+09].

Challenging [ZWS14]. Chameleon [PS12]. Change [WJZY15, JZY14, Lar11, LIMB09, QSR09, QFLMK10, QJQL12, SWL10, SYL13, ZYZ09]. Channel [AN17, MWM04, YGST17, Dal90, DMWS12, Dug83, Isa74, Las87, MDS12a, SKA+11, WL07].

channel-to-channel [Isa74]. channels [Dow91, KPKJ07, SSJ+16]. Chaos [KS91b, GKZ+07, KS91a]. character [Cou90a, Hea76, Vin77].

character-oriented [Hea76]. Characteristics [PHH89, AE01, HO91, LCB+98, LPSZ08, NI85, OKY+16]. Characterization [BCG+08, CB94b, YRK07, ABR01, BGB98, BGM04, EK88, EC84, EC98a, HGS+07, KPH+98, NS14, Sib07, WOT+95, EC98b].

Characterizing [MMAR10, UMK05, MTPT12, SPHC02]. charge [JZY21]. Charles [Par90].

CHARSTAR [RL17]. charting [OT73]. Chasing [SAA17]. CHDL [Su75]. Cheap [CL87, PGVB04, FGAM10]. check [CCEH00, KKN00]. Checking [BK1+16, BNE16, HABZ17, MCXS16, AHK08, BNS11, SIG89, SH87].

Checkpoint [HP87, SMHW02]. checkpoint/recovery [SMHW02]. checkpointing [AGT11, BMP+04b, DP12]. checkpoints [KRS13]. checks [Hil81, NPCF08].

Chichester [Ber91a]. chill [Mid82].

CHIMAERA [YMHB00]. Chimera [PPM15]. Chinese [Gao93]. Chip [ACAAT16, ABC+17, BHM+17, CS06a, CMR+06, FK17, JPL08, JKT05, JKT09, KPY+17, KNP06, KDOA08, KSL08, KKS+08, LNA08, LNR+06, WMW04, PED+08, SSZ05, SOSD05, TTO8, TKJ07, VIA+05, ZA05, AA11a, BT13, BSL08, BGM+00, BM09a, BM10, CHX+11, CJK+05, CHZ+14, CSM+05, CJS8, DMMM10, DNSS13, DRC05, DFL05, DCS+14, DVT12, Den03, DJPK16, DSN07, E1P88, FB08, FaRP89, FTP94, FKMD83, FHS2, GSVP03, GHKM11, HGC10, HSS4, HS10, HSS5+07, IKKM07, JW94, KK08, KDS06, KBK02, KNP+07, KM10, KMS+10, KMS+12, KSN07b, KH07, KADS04, LAS+07, MJW11, MDS+11, MVD11, MPSV06, MM09, NUMS94, OPZ11, PPK+09, SYY+89, SP84, SGC+05, SLOK12, SK10, TGS14, TEL95, TEL98a, TEL98b, VS92, VT14, WSY95, WMW09, WGO+13, WO97, XYM12, XGC+10, ZA03].

chip-multiprocessor [DSN07, ZA03]. ChipLock [KF05]. chips [Bha97, FK80, HQW+10, MA+06]. Chisel [HCJ06]. choice [Sm85, E+96].

choices [BAC+98]. choose [KF08].

chromodynamics [TG10]. Chu [Mil77].

Cider [AHA+14]. Circuit [IPK08, JPL08, NNS16, AML+10, DGY89, DSS5, HFJ11, KKC+16a, LN07, LIW84, MS13a].

Circuits [HKLS00, RBOS07]. CISC [BC91, Bha97, CHJ83, Jon88a]. CISCs [BCDN87]. CITC[AT][RF96]. Clank [Hic17].

class [BAS2, DG92, Fre74, GSKF03, KDJ83, SGB00, SC89, SH80, SS86, VS92, ZELV02].

classic [Bar82]. Classification [D06, KHC091, MB16, SGG+85, K99, Ros77a, TZH+13, VFCM13]. classifier [HT10]. clause [WW89]. clauses [Chi89].

Clearing [FAD+12]. Clearwater [IEE76]. Client [Mad94a, CSBA17b]. Client-Server
client [CDL13]. Cliffs [Ber91b, Fer88]. Climbing [CY06]. Clock [AHKB00, Dav80b, ORS+90, MSS+03, PP88, WJMC04, Alb98].

Clouds [KZVT17, OSK15, FAK14]. CloudSeer [YJX+16] Club [VSH91]. clues [YMX+10]. cluster [BJ03, DK14, LZ09, MCA97, SKS+13, VSM07b].

clustered [BDA03, BMP04a, BJ03, ZK90]. Clustering [GVY90, LSL+17, GZu91c]. Clusters [GAAD+05, HJrCH16, HL15, SXYH16, ACRV12, CS09, EO98, LQL12, SBS11, TPL10, YKD01].

CM [KC95, SGS+93]. CM-5 [KC95, SGS+93]. CMIP [Mad94b].

CMOS [CCS87, LN07, WW12, Wu95]. CMP [APGP07, AMPH09, CWS06, GPV04, GKLZ+07, RKB+09, SRJ+05, SSKP+07, YCR+17].

CMPs [AJK+09, AK16, CAD09, CP05, GW10, HMM+05, JSMP13, MDS+11, MVD11, SQP08, SLSN14, YL16]. CNNs [TRM17].

CNNs [RHR+17]. Cuvlutin [AJH+16].

CN [AVN+16, HS06, KSC17, MG78, Vra78, AMPH09, BKA03, CBK+14, GSM+99, KC02, LGM+14, Ano04c].

co-adaptive [BKAB03]. Co-Chair [Ano04c].

Co-Design [AVN+16, KSC17, CBK+14, KCO2].

Co-Designed [HS06, LGM+14].

color [Goo88b, CBS88, Goo87, CF93, DB82, EK88, ES74, HK94, MGBK96, SJG92].

ColorSafe [LCS10a]. Colorado [ACM97].

colored [ES74]. coloring [AK00].

Collect [Hib80, CH04, FKC+06, HHA83, JBP09, KTK12, RP05, RYD7, TF01, WK09].

Collective [SBYH16]. Collector [GTS+15, WK08]. collectors [GTSS13].

Collapse [HCJC06, WN14, HS80].

Collision [HCJC06, HS80].

collaboration [Chr90]. Colorado [ACM97].

colored [ES74]. coloring [AK00].

ColorSafe [LCS10a]. Columbia [ACM00].

Column [AP93, CP98, GC84].

Column-associative [AP93, CP98].

COMA [FW97, FFDH00, JH94, MGBK96, SJG92].
COMA-BC [FFdDH00]. COMAs [QD98]. combination [MP91, Ria80].

combinational [MS13a]. Combinatorial [SLTB+06, Tho03e, WLY84]. Combined [DDS94, KC96, UZU00]. Combining [BZ87, CG91, GRH06, Gum83, JHK+16, KW84, UMB+11, ACM02b, MGH+96, OCF00]. concurrent [RRRV09]. Come [SGS08, VM88]. Comer [Mad94a]. comes [Lor90]. Comics [Wak81]. Coming [Mil87]. Comment [Woo86, HK90, WO86]. Comments [AF73, CBS88, CS80a, Goo88b, Woo86].

Commodity [GAAD+05, SHP+16, ZLJ16, ARJS07, COH+11, CGL+08, NPCF08, SFV+04, TASS09, UMB+12]. common [BDLM07, TKG+02]. Communication [ACAAT16, CPV05, HPJ+15, MDR+00, OA08, SXYH16, YMM15, AD98, AA82, AA98, APR89, BDA03, BVR+00, BR92a, BCC+90, BCD89, CHK93, Dow91, EO98, Ebe02, EST89, FH76, FR87, GTB89, GTK+02, GS80, Hic76, Ho80, HHS93, Jai8, Koh92, KBS84, KNP+07, Kun88, LMDN76, LR77, MVC07, MS80, MFH96, NS74, OQ91, OT86, PBN83, PA88, RSV87, SHI92, SA91, SG95, Thu78, WWA01, ZCS02, ZBJ+02, vECC92, vECS98, vECSG98, nAM16].

communication-exposed [GTK+02]. communication-parallelism [BDA03]. communications [JMY89, KC82, TF88].

Compatible [Bhn83, MM14b, LBH12, SS86]. competing [AAHV91, KB92, KKS+15, MM92, ZH16, EA97, GA01, HCD+94, HFJ11, HSS94, TMW+13, WS87]. Compile [MPS94, GWM03, K92, Mul89]. compile-time [GWM03, Mul89]. compiled [Las89a]. Compiler [CY96, FH82, GGV90, HPJ+15, HA90, NWB+15, RSEW04, TYZ90, ZCSM02, ACK+95, BLAA99, BAD+10, CBK+14, CS94, CGL89, CNO+87, CHcmWH00, CBC+08, CSS+91, FTM99, GKT+02, HC88, HC89, K92, KPH96, Lal73, Las91, Lee72, LYK+00, LS92, SC90, SDH+14, SAR99, TL00, UZU00, WL9+14, Wie82, ZRMH00, HMJK05, RGP82].

compiler-controlled [CSS+91]. Compiler-directed [GGV90, CHcmWH00, LS92]. compiler-flag [CSW94].

completion/silent [HR09]. complex [NA83]. Complexity [FJ94, PJS97, PGS04, TP08, ASP+03, DV87a, DZZ+14, Har73, KR85b, SKA01]. Complexity-Effective [PGS04, PJS97, SKA01].
Complexity/performance [FJ94].
component [Nak01]. components [EEKS06, MSCS13, SFV+04]. composing [CWS+11]. composite [Tho10b].
Compositional [MCN+17]. Comprehending [YHZX14].
Comprehensive [FBG12, LWPG17, TAM+08, GS80, LB08, LPSZ08]. Comprehensively [KJS+06]. Compressed [JSCM17, PRM+17, HLM+16].
Computation [BFA+15, CWS06, Chr77, HPJ+15, Hick, Iva91, LJJ+16, LHM+15, LLN+17, Mud80, OFS+15, SKN+15, SOD+14, WL17, BVC04, CLX+16, CHCmWH00, DG90, Fis86, FKT+89, GTBJ89, GKB+13, GHS+10, HW80, Kie87, MST07, MCC+06b, MS07, Nis91, OCS98, PB80, RSF11, SWY10, SYH11, SH05, SYP+14, WAA+14, WCF01, Yue99a, vEGS92, vEGS98, vEGS98].
computation-communication [GTBJ89].
Computational [FZL16, RES+13, AIO+11, MSS14b].
Computations [Bow79, VGX17, CH85, FHH+89, IHI08, KKO08, LS12b, Mar00, ML05, SW90, SHNS86, VSG+10, ZWS14].
Compute [VRB+17, SC92].
compute-bound [SC92]. Computeach [Hol83]. computed [VSMF03]. Computer [ACM80, ACM89, ACM91, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, AK17, Ant91, Atk79, BS76, BS98b, Buc78, CS80a, Col88, Col90, Den74, FFR72, Fos93a, Fos93b, Fos73, FSS73, Gor83, Hol83, IEE76, IEE77, IEE79, IEE81, IEE82, IEE83, IEE84, IEE85, IEE87, IEE88, IEE90, IEE92, IEE94, IEE99, IEE03, IEE05, IEE06, JWB93, JWB94, JDL81, Kin75, Lan76, LS73, LR77, McK74, Mi177b, Mi177a, Mo83, Mud96, Pat06, Ram78, Ros73, Ros76, Sch88, Slo73, TQC+15, Tho81, Thu78, Adl73, All76, ACC+90, And90, Asl84, Aup80, Avi83, Bat72, BBZ88, Ber76, BF73, Bou75, Bra82a, Bra92b, Bur82, CDP3, Che81, CLM07, CMP+88, Chr77b, Cit03, CT74, Cox79, Dal10, Dan93, Dus83, Den80, DNB+11, DP80, DP98b, DP98a, DK89, Dor75, Dor82].

computer [Dri99, Ebe02, EKW80, Ega82, EWN05, FBM07, Fon03, GWS98, FSS76, GMC+09, Geh14, GB87, GB74, Gil83, Har73, Har78, Hay77, HS73, HJS00, Hill13, HHSI03, HK77, IEE86, Isa74, JD88, JB82, Jen74, JS88, Jor83, KFGS84, Kar95, Ker74, KSE+16, Kn073, KSS+95, Kun86, Lap03, LP80, LP98, Lap90, Lap91, Las89b, Law76, LMND76, Lin76, Lip73, LC96, MK84, Mar85, Mar83b, MT97, Mat90, ME78, Muk97, Nap86, PD80, PS98b, Pau13, Pay78, Pes74, PNB83, Pne83, Pie98, RHZC74, RC80, RL76, Ree80, Riv79, Rob78, Ros86, Sal76, Sat74, Sch73a, SGNG00, Sib07, Slo74, Smi75a, Smi75b, Smi82, Smi98a, Ste77, SMRT85, ST77, Su75, Thu76, TPD+77, TF79, TSK+83, TSN+86, TH82, Tre83, Tur79, VR73, VC72, Wak80, WE74, Wei97, Wil83a].

computer [Wul88, YPD83, Ye09, YSY+90, vT89, KRM83, PS98a, Wit76].

computer-based [Sal76]. Computers [Bow79, CYMT16, CYG+17, Dor75, HLZ+15, HK90, IFW06, KSO08, MSS+15, Mud80, Wak81, AA86, AS92a, BT89, CT90, Cra88, Don83, Don85, Don90, Don92, EGK+85, EHA82, Fen84, GW73, GPF13, HHL16, IS92, Kav81, KBD+13, Las87, Las88b, Las99a, LHPL87, LV88, MT13, NP90, Phi84, RFK88, Sld92b, Sld92a, Sta86, Str76, SG95, TMW+13, Tho76, TS10, Wra91, YBM+13]. Computing [All92, Ban15, Bar11, Ber91c, BRC+05, LRC+08, NLV86, NY14, PAM+16, RLD+17, SCU+14, Teo90, TMC+06, Wil16, ZAI+16,
Coordinating [GK81, MAHK16, SCRT78, LQL12, SKD+10]. coordination [FG91, OBRW14]. coping [UNM+95]. coprocessing [Deb89, ML05]. coprocessor [CSJC10, GPR87, KAC88, RF90, SC92, TLLL07]. coprocessors [CS00]. Copy [MT16, MPS89, TML+00]. CORAIL [Pou77]. CoRAL [VTGH17]. Corasick [TZH+13]. Core [IKKM07, KTR+04, KZT05, MGT+17, SHP+16, AJK+09, ARJS07, AIK+05, AMPH09, BM10, CHZ+14, CSN+05, DCS+14, ELMP10, ELMP11, EE14, GW10, HATA08, JZLO9, KST11, KW13, KJ109, KSCE16, KKKM11, LCWM08, Loh08, MLCW11, MLC+09, MST07, MTP12, MBS+04, Mus09a, Mus09b, NSMK11, PBC+13, PBM09, RBW09, SK13, SMQ09, SMJ+10, TBC94, TL11, UVG14, XL09, YZ07b, YLHL10, ZW14, ZWH16, ZSHG07]. core-level [YLHL10]. CoreDet [BAD+10]. cores [AFGM10, CWS06, CWS+11, CLG+14, HD510, Mat10, MAF+09, PM14, RLVC10, SW16, SDR11, UMC+10, VJE+12, VSG+10]. CoreSymphony [NSMK11]. corner [Sho74a, Sho74b]. Corona [VSM+08]. Correct [SD87, LYBK11]. correctable [MAD11]. correcting [AWC+11, Che84a, WAC+10]. Correction [JHK+16, Mac90, Bos84, GM84, GHKP89, Rao84]. correction/detection [Bos84]. correctness [AF73, MHW03]. Correlated [BJR+99, TFWS03, YGS95]. correlating [LFF01]. Correlation [SLM96, DC09, EPC98, SM12, SLT02, V94, ZRZ+14]. correlator [Mar74]. correspondence [GS07]. cortical [HTBL11, SM14]. cosine [PSB13]. Cosmic [HSS12]. Cost [AMH+16, CLC90, MCK16, MSH+15, Reg76, YEP+06, AZK06, AML+10, Bet73, CA94, CZ14, CK92, DW90, Den76, Dev90, HCC89, JS88, K96, KDA07, KJM+07, LSSG05, MH86, MG91, OCL90, PT10, PZT02, Ria80, R89].
Sez94, SCP+06, TDF90, Tri80, UVG12, WSY95, WGH+97, WL88, WAC+10, YE09.
Cost-Effective [MCK16, MG91, OCL90, PZT02, Ria80, WGH+97, WL88].
Cost-efficient [MSh+15, KDA07].
Cost-optimal [CLC90], cost-performance [PT10].
coteries [HWC91].
Counting [BKL07, FKC08, Hen07b, SBM09].
Counters [ACJL13, DMS+13, GMF+11, Hen07b, SBCM09].
Coupled [RBK08, DS11, FKC+06, JMP09].
CPU/GPUs [PHB14, RvD77, SP98a, Smi86, VFCM13].
CPU/GPUs [PHB14].
CPU/2000 [CH01, Cit03].
CPU02000 [Gov07, GS07, Hen06, Hen07b, Hen07d, KC07, PJJ07a, PJJ07b, Spr07, WH07, Won07, YRK07].
CPUs [WY05, WDA+08].
Crafting [TOL+11].
Crash-Consistency [BKL+16].
CRAV [ACK+95, DD90, VSH91, KCG+95, SA83].
Crav-1S [SA83].
Crav-2 [DD90].
CRAV-T [ACK+95].
Crazy [Tsa16].
CRC [AA11b].
Create [DFK17].
creating [FSS+09, MST82, TZZ+16].
creation [NOK+83].
CRF [SAR99].
CRIB [GL11].
CRISP [DM87, DMB87b, DMB87a].
criteria [ME78, Par75, Ria87].
Critic [FSR+04].
Critical [GH88, HSKS15, LKM+05, ZSG+17, ZE16, DESE13, EE10a, FRBO1, HHS13, KS14, LZC+16, LPMZ11, LCG+14, MBK90, SMQP09, YL16].
critical-path [FRBO1].
Criticality [ANMF08, DESE13, BM09a, GLM13, ScJLW01].
critique [AI83].
Cross [WCX17, Kar89].
cross-domain [Kar89].
Cross-End [WCX17].
crossbar [BH91, DR91, LHL+89, MM82, YA90].
crossbars [Dow88b, NP95, SM+16].
Crosshatch [Ng94].
Crossing [OHW17].
Crowdsourcing [PAM+16].
CRUISE [JN+12].
crunching [BBD+89].
crypto [BK05].
cryptographic [MS+13, ML05, YLT06].
cryptography [BGM04, BMA00, MS13b, SH05].
CryptoManiac [WWA01].
CSR [SHP+16].
CTA [SL+17].
CTrigger [PLZ09].
Cubes [PAY+17].
CUDA [FFM11, LBH12, MM14b].
CUDA-compatible [LBH12].
Cultural [Mat78].
culture [Pau13].
Cummings [Lan90a].
Current [MH+82, Sta80a, Sta80b, Cha78b, Lai92, Ria80, sta79].
curve [BGM04, MS13b, SH05, ZPS+04].
curves [TASS09].
Custom [LRS07, SUC+14, SKS+13, TM11].
customers [ZH16].
Customisable [GTL13, GLVC13].
customizable [FBF+00].
Customization [CBC+05].
customized [SRW+14, SC01].
Customizing [YLP+17, CLR03].
Cutia [Ant91].
Cyber [Ozt15].
Cyber-Physical [Ozt15].
cycle [EE09, HANN96, KKP14, ZYGP09].
cycle-accurate [ZYGP09].
cycles [WBA17].
cyclic [HKT93, JYV13].
Cyclone [EHA03, HJH90].
Cyclops [ACC+03].
Cydra [DH89].
Cyrus [HD+13].
cytocomputer [LM80].
D [BAES89, Bur02, Lan90b, FY83, AA11a, ASR+17, ACK+95, BFG+07, CBS98, FAYA87, GPY+17, GCG+14, ISKR86, KDS+06, KNP+07, KKC+16b, LNR+06, Loh08, LG04, MDS+11, MIO+10, MAS+06, OSF+15, SKN+15, SA88a, SLSN14, Tad13, THEK16, TSN+86, UMB+11].
D-NUCA [BFG+07].
D-SPTF [LG04].
D-Stacked
Loh08, GCG+14.
D-Stacking [UMB+11].
D. [All92, Kri91]. **D2D** [SHBS14]. daemons [Hol89]. **DAISY** [EA97]. Daily [Tak88].
damping [PV03]. Daniel [Ber91b]. **DAP** [Red73]. Dark [EBS11]. **dasCMP’05** [JKT05].
dasCMP’06 [TKJ07].
dasCMP’08 [JKT09]. dasCMP’09 [TKJ10].

[LLG+90, LLJ+92, LLJ+98, LL98]. Data [APD01, AK81, BHM+17, Bra77, BOC04, CSBA17a, CKmWH16, Che17, Chr76, C2G+15, DGT15, DMD+17, FM84, FP91c, GTS+15, IWP908, KZC12, KYY83, KORA17, KDBA78, MS82, MM14a, MBS16, Mul89, MMS14, NBH+15, Ph85, RSY06, RB107, Req93, SGH97, SMJ+10, Tak89, Tic88, TTVL05, UJ92, VF85, WCX17, Wil98, ZLJ16, ZLJ17, AHMN91, APP+14, AV10, ATHM86, APT90, APS95, BK11, BBK76, Ber80, BTW77, BFS+09, BLL+83, BMM14, CDP82, CDPS+83, CCE+09, CGS09, Cho90, CB94a, CF+12, CFS+12, Chu77a, CDL13, CJG02, Cop78, CF93, DM74, DBL80, DM98, Den98, DC90, DSM82, DJT94, FFW98, Fen84, Fos72a, FG83, FR87, Gau85, GLH88, GK78, GB74, Gil83, GRR74, GTA06, GGV90, GWM03, GBY+16, HP+16, HM93, HR90, Hom82, HEK+16, HA90, Hum96, HP86, HP98, MWH98]. data [JW95, JCO99, yKPR02, KSCE16, KL91, KL94, KZA+12, KPR+08, KW98, KHC92, Lafl9, Lec74, LLCP94, LAB+91, LWH+16, LPMI11, LJK+13, LDK14, LCS+10b, LM99, Lun75, MM83, MS80, MSB+11, MS87, MPS89, MS07, MBV97, MF76, MKM+83, MSQT09, MMAS08, MDH509, NRK85, NKRLO6, NI85, NS74, Nit89, OZK+12, OCS8, PPM96, Pah80, PSP+12, PMZ+10, Pri91, PT03, RL74a, RT+08, Ros77a, RS99, RVD07, SJLM14, SK86, SSJ+16, Sha98, SHNS86, SEI+91, SFH98, SCS+10, ST08, TAK87, TK07, TYZ90, TPO06, TBC94, TJS83, VS92, WE74, WDC+13, WS90, WL10, WCG14, WBKR13, WD9+16, XBH03, YTY83, Y904, WY98, ZYG00, Kro83, SHBS14]. data-control [PMPM96]. data-driven [GLH88, YTY83].

Data-flow [BS06, CV+09, DM74, DM98, Gau85, TXS83]. data-intensive [CGS09, MSB+11]. Data-parallel
[CKmWH16, MMS14, LAB+11, PSP+12]. data-races [LCS+10b]. data-reconstruction [Yok94].
data-similar [BSF+99]. Database [MM14b, Pra82, BH78, Bra77, Ch78a, Hak85, HK77, KMI+85, LR93, LBE+98, SCRT78, WLP+14, ZBJ+02]. databases [BH78, Gou78].

datacenter-scale [BS+11]. Datacenters [BLJ+17, GNB15, DK13, KGL+13, GSU11, GWSU12, WRS13, WGS+14]. Dataflow
[Hu85, NGS17, SP+06, YSY+90].

BBJ+08, Bic84, Bur82, CES16, CA88, GB78, GTBJ89, GPF13, GVC+10, GDH89, HG86, HP86, HH88, Ian98, Kap87, KHP+95, LS12b, MSP+06, NMB92, Nik89, Nit89, PT91, PM11, Roc85, SyYH99, SK86, SKS+92, SA87, TFWS03]. dataflow-based
[TFWS03]. dataflow/von [Ian98].

DataScalar [BKG97]. David [Mad94a, Bow79, Goo88b, Mud80].
day [HLS05]. DBAR [MJW11]. DBNS [SMD+13, SG11]. DC [Wak81]. DCatch
[LLL+17]. DCD [HY96]. DCNN [RLD+17].

DCT [PSB13]. DDA [KS84a]. DDDP
[KKY83]. DDOS [HBCG13, PQNT16].

DDR4 [MHHK+13]. DRDx [Bi12]. deactivating [CRG+11]. Dead
[LOF01, AFGM10, ADS+13, BS02, NP95].

dealock [LOF01]. deal-instruction
[BS02]. Deadlock [ED17]. Km88, LN91, AP95, KCW+09, KKK76].

Deadlock-free [ED17, LN91, KCW+09, KKK76]. deadlocks [PW97]. DeAliaser [ADT13].
deal [BFGP06, BFP07]. Debug
[EW16, FVJ13, PT03]. debuggable
[MS12]. Debugger [CHLS16]. debuggers
[AR83]. Debugging
[NPC05, RSA*15, ZQL*04, AGS89, CL87, DZ09, DP12, HT14b, JH82, KP05, LCS10a, ScH73b, VNN13].
Debunking [LKC*10].
Decade [Bar11, Woo14].
December [LS73].
Decentralized [NS74, HW80, LG04, LuM85, RS84].
decimal [Ris76].
decision [AS*99].
declarative [SBRP11, WWW*88].
Declustering [ABC97].
declustering [KL02].
de coded [IS92].
decomposed [KNP07].
Decomposition [WJZ15, VGSS85].
Decontacting [DBP*04, GAAD*05].
Decoupled [BCS04, GRH06, HR90, RPW96, Sez94, SDB80, Smi82, Smi98a, WL17, WD10, ZLZZ09, APX12, CP11, GHL*85, KHC92, SKA01, TJ01, WKJ12, Smi98c].
Decoupling [CYL99, HH16, JSAM10, KBG*17, LHZ*17, HCB804, KCE12, MHW03, OSA14].
dedicated [Sch83, SC92].
Deep [HABZ17, RLD*17, VRB*17, AJH*16, HLM*16, MW12, RWA*16, VBS05].
deeper [SC02].
DeepQA [Fer11].
Default [MGT*17].
Default-On [MGT*17].
defeat [YK05].
Defect [SV05, PJDL06, SCP*06, Tem12].
defect-tolerant [Tem12].
defects [Par88b].
Defending [VGST17].
Defense [PQNT16, LWH*16].
Defenses [AN17].
Defined [DHR*15, TBS17, OLJ*14, SBS13, TM08].
Definition [DiK90, AH90, AH98a, AH98b, Lee73].
definitional [KBS84].
definitions [FRA83].
defragmenter [PSP*12].
degradation [DI90].
degraded [TLD14].
degradings [KNP06, CSSP87, ZSO0].
degrees [EE14, Kha99d].
DejaVu [VMN*12].
Delay [TLM*04, VC04, ZA05, DeM96, DM87, HRDA85, KBK02].
delayed [PHH16a, PHH16b].
delays [HBJ*02, PD76, PD98, Pat98b].
Delft [FR87, Rui86].
delinquent [CVT*01].
delivery [KDO6, RAC99].
DeLorean [MCT08].
delta [AS92a, TXZ09].
Demand [GMF*11, KKJ*13, MSS*15, QT05, GKI09, NLP14].
Demand-based [KKJ*13, GKI09].
Demand-driven [GMF*11].
demonstrating [DCS*14].
Demultiplexing [BS06].
DeNovoND [SKA13].
DeNovoSync [SA15].
Dense [RLIC06, WJZY15, Rui90].
densities [GM84].
Density [GSCM16, GPV04, GCG*14, KKC*16b, MHhK*13, Ste89a, Wan01].
Denver [ACM97].
departments [Slo73].
Dependable [SLFG06, Par88b].
Dependence [GRH06, HNP15, RBK08, ADP01, CE98, RBR02, SAS90].
Dependences [CASM06, MBVS97].
dependencies [JJV13, NPC06, RVD07].
dependency [AS92b].
Dependent [YT04, Dev93, HKE*16, HY85, Yue81].
depth [EWN05, HP02, HBJ*02, YMST07].
derivation [MSZ09].
derivative [Ann91].
Deriving [HS73, RR04].
Descent [DFRO17].
describe [OT73].
descibing [EG97, Wak80].
Description [SC89, Das83, JS73, MSSZ76, Su75, Van81, WP87].
descriptions [Hem06].
descriptor [BB74, Vel76].
descriptor-based [BB74].
descriptors [LLC06].
Design [AMB93, AOM*14, AVN*16, BK76, BAC*98, BS84, CYH*11, CIZ99, DMB87b, DR91, ED17, EBS*04, Fer88, FK80, FTG88, GMT89, JD88, JKT05, KGT09, KGSS17, KHP*95, KY02, KM86, KM74, KR85b, LNR*06, LIW82, LCL*16, MS13a, McL90, NUS*93, NHK*85, PA73, RL76, RCV*05, RYF*13, Rui86, SFKS02, SOSD05, TAV10, Tab95, TAM*08, TIVL05, TKJ07, VHL73, WW06, ZWSM15, ZAI*16, AWC*11, ALBL91, AKB*89, AMPH09, AML*10, BS73, BA74, BFP03, VRB*00, Bhu83, BDJ*11, Bou75, Bra82a, Bra82b,.
BKB90, BM09c, CBK+14, CCGS7, CDT+14, CZ14, CY96, CH87, Cra85, CR94, DN14, Das77, DO82, DPB77, EP84, EKW80, EE10a, FW97, FCJV97, FSS+09, FL76, FSS76, Gai83, GR8+08, GP76, GSSV00, GB83, HG97, HR00, HAO86, HS73, HS90, HY85, HRDA85, HIm+05, design [HSN77, HS85c, HSS12, IMC+06, Isa74, IT84, JZY14, Joe90, JW97, Jou82, Jou89, JOW+02, KS07, KC02, KSCK17, Lan77, LGH92, LYL87, LRS+08, LR77, MSAD91, Mar83b, McK74, MD88, Mil82, Mil87, MSSZ76, MRO2, MB07, NK86, NMS+00, NO94, NH096, OT86, Oya89, Pay78, PP83, Pes74, Phi84, PH88, RRR02, RCL73, Ran85, RHZC74, Rod85, SYH11, Sav85, Sch89, SRW14, SC01, Sl74, SS85, SV89, SV74, TA76, TTTL10, Tur79, UMC+10, VDT4, VFK+04, VE14, WLG+14, WS74, WFC87, Woa85, WO86, WLP+14, YY92, YKDO1, ZRMH00, ZY00, Hol83, Su74, TA83, design-oriented [Sl74]. Designed [HS06, LGM+14], Designing [BF90, HW87, LRC+08, SGNG00, Tri80, WO07, As84, CM8+12, DSOF11, GSS12a, GGK+82, GGK+98, GRD87, LMS+13, MSh07, PBB14], Designs [RGSJ17, TMC+06, BJL+13, CNS+11, GCG+14, Lai92, OCF00, SWC95, WL07], desktop [BDFM10, FURM00, LCB+98], desktops [Dow88b]. Destage [VJR95], Destination [RFS88, MHS+03], destination-set [MHS+03], Detailed [MKR02, ACC+03], Detecting [AHMN91, LLL+17, LSDC08, ZF03, CF93, CWO0+06, LTQZ06, ZSL10, ZLO+11], Detection [GV05, NSA+17, RCV+05, TS05, TP15, ZLH16, ZLL17, ACM05, BM06, BWW05, Bos84, BS02, CG06, DMS+13, DSR+93, FAH83, Ger80, GMF+11, HC04, HHS13, Jai82, LS82, MC91, MSQ09, NSQ16, NSH+11, QT tq13, RM00, SGK+04, UVG12, WDC+13, WCG14, ZRZ+14, DWS+12], detections [ISG07], detectors [UVG12, UVG14], Determination [UVG12, UVG14], Determining [PAM+16], Determining [CDY+17b], determinism [LWV+10, SKA13], Deterministic [LB17, LLLG16, NPC05, NLP14, Rid87, TLLL07, BAD+10, Bon13, CHCW10, DLO09, DNB+11, HR09, MHKT09, OAA09, XBH03], Deterministically [MCT08], DEUCE [YNQ15], Developer [LJH+16], developing [Bre10], development [BS08, BR92b, Coo73, HAO86, Hen07b, RM77, SBS13, Sch89, TAM0, YHF03, YSY+90], Deviations [NSA+17], Device [DFKC17, XLWZ15, DJ09, KS12, KRS13, KTO+12, KHBS14, Lafa8, Lafa00, RKM+11, SBQZ14, SBVP11, TSLe13, V194, YHZX14], device-driver [YHZX14], Devices [BCSB11, MABYT15, KC74, LJK+13, LRS+12, NLS88, RSF11, RKG14, SDWF13, SLSN14, WADA+08, ZLZZ09], Devirtualizable [LS04], devirtualization [KJM+07], DFT [BHS91], DFTL [GKU09], D Gates [ASR+17], DIGIT [Sch89], DIABLO [TQC+15], Diagnosabilities [Wan93], diagnosability [YZP+11], diagnosable [HS73], diagnose [AJL14], diagnosing [Ebe02, TAV10], diagnosis [ACJ13, Mal80, PC83, Wan93, YMX+10, uAM16], DianNao [CDS+14], DICE [YNQ17], Dictionary [Fis84, SA84], Did [DK17], Die-stacked [JVF13, SLSO13], Diego [ACM93a, IEE03], difference [GPF13, JLN96, KZC12], difference-bit [JLN96], different [Reg76], differential [GLH88], Differentiated [MSS+15], Difficult [CTYP02], Difficult-path [CTYP02], digit [MS10], Digital [Alv93, Chr77, BA74, BNP04a, DP76, FSS73, GP76, GSS12a, GSS12b, GW03, JS73, KKC+16b, KB80, MS13b, OT73, Smi14, Sch83], digital-signal [GW03], digraph [FAY83], Dijkstra [AM+12], Dileep [Tab96], dimension [Gut87], Dimensional
[PAD16, SAL+05, BSSM08, ES74, HS86, LH88, MK84, RFK88, SM14, YL84, nZY84].

dimensionally [KNP+07].
dimensionally-decomposed [KNP+07].
dimensions [Teo90].
DIMM [GGP+13, ZLZZ09].
DIMMs [YCMR12].
Direct [CM87, Chu77b, HIT05, SCP+82, Zha06, AP93, EHA82, HFWZ87, Jou90, Jou98a, Jou98b, KD06, WQL92, Wil78, YW98, SHBS14].

Direct-execution [CM87, Chu77b].
Direct-Mapped [Zha06, AP93, Jou90, Jou98a, Jou98b, WQL92].
direct-to-cache [KD06].
Direct-to-Data [SHBS14].

Direct [CM87, Chu77b, HIT05, SCP+82, Zha06, AP93, EHA82, HFWZ87, Jou90, Jou98a, Jou98b, KD06, WQL92, Wil78, YW98, SHBS14].

direct-to-cache [KD06].
Direct-to-Data [SHBS14].

Direct [CM87, Chu77b, HIT05, SCP+82, Zha06, AP93, EHA82, HFWZ87, Jou90, Jou98a, Jou98b, KD06, WQL92, Wil78, YW98, SHBS14].

direct-to-cache [KD06].
Direct-to-Data [SHBS14].
dominant [MTZ13], dominated [KBBK02]. Don’t [Sez96, BCR10, HSS12]. Dorado [Pie83].

double [BdDPT10, BBBM94, KT91, MS10, Rou86, SGS11]. double-width [KT91].

DoubleClick [VLW+11]. doubling [CL09].

Douglas [Mads94a]. down [PBWH+11].

dragon [AM87]. Dragonfly [KDSA08].

DRAM [LJVM12, BSK+10, CJDM99, CJ01, GDN+16, HS93, HSS12, JVF13, KBG+17, KSL+12, KDK+14, KSC17, LIMB99, LZZ+07, LPMZ11, LLZ+13, LJK+13, MLN+12, Mar00, MMH+13, MM08, NKG13, OSKA14, PKM17, SSJ+16, SLSO13, SSR+13, SKD+10, SCN+10, UMC+10, YQ17, kSYHX+11, ZCZ+14, ZZL09].

DRAM-based [GDN+16]. DRAM-system [CJ01].

DreamWeaver [MW12]. DRFx [SMN+11].

Drive [GSN05].

Driven [JHK+16, KDS90, KYK83, BP04, BKB90, DCC+87, DCC+98, DRR89, GLH88, GMF+11, GKB+13, HB90, KS02a, Kha95a, KEL91, LSSG05, MM83, MSB+05, MTG+99, OTS6, RVD07, SZD+08, SKS88, SQP08, TBL12, VK1+00, WW89, YTY83, YW89].

driver [LNEHR11, RKM+11, YHZX14].

drivers [K12, MSZ90, RKG14].

drowning [HC03]. Drowsy [FKM+02].

DRPM [GSK03].

DSL [Z98].

HCSO12, SGM+15. DSM [LF99, SHV+98].

DSNS [KMT91].

dSP [CS11a, JLFM15, MS13c, McL90, PP03, RP99, SSAC13, TH03].

DSPs [ISJ04].

Dual [KKS+15, KSL08, KSK+16, GM82, MAL01, SC05].

Dual-Function [KSL08]. dual-link [SC05].

DudeTM [LZC+17].

due [DI90, KE91, UVG14].

duet [LSY+14].

dumps [WZJ10].

Duo [AOA+14].

Duplication [Jai82, SABR05, LRHM90].

durability [SWL10].

Durable [LZC+17, ZZY09]. during [KD06].

Dusty [FKC+06].

DVFS [KSN07b].

dwarf [WBS+88].

Dynamic [ADP+15, Alb98, AS92b, BT13, BWMA05, BS02, CKmWH16, CT90, CJ88, FP91a, FJ185, GS05, HTC10, HBHA02, HSC+11, JSSN89, KGCG17, LW95, LPH+09, Mat92, MS05, MT16, MBVS97, MS16, PPM17, PSB10, RS84, SZ+15, SS97, SD09, TS10, VJM99, WGG07, WK09, ZSG+17, ZR05, ZPS+04, BJ03, BM09a, CL16, CKS16, CHCnWH00, DS02, EA97, EA02, EHA03, FBG12, Fos72a, GGH92, GTBJ89, GYCS96, GVC+10, GA01, GSKF03, HL89, HSS94, JMK+08, KJ+07, KC82, KBD+13, LJ90, MSS14a, MSS+03, MCD+08, MK12, McD82a, McF92, MTN+00, Nap86, OZK+12, PGV02, PS12, PMZ+10, PS94, QD98, RCC05, SAB+05, Sh89, SL96, SS07, SLZD04, TMW+13, TFS03, TL00, UC01, VM97, WRSY16, WOR96, XJK+16, YP93, YJSE12, ZJG+11, An089].

Dynamical [KLKM17, Lev92].

Dynamically [BDA01, BDA03, ICN+10, RAM+04, SRJ+05, CSJC10, CO03, FCJV97, HGC10, KKT05, KM91, KP05, LWRC10, LM76, LCS10a, PIAS13, RRRV09, RLS10, SWL10].

dynamically-hazard-resolved [KMT91].

dynamically-scheduled [FCJV97].

dynamics [AIO+11, SDD+07].

dynamism [MTJ13].

dynamo [WDG+16].

DySel [CKmWH16].

DySER [JLFM15].

e2 [PSB10].

eager [KPG98, Uhl02].

Early [BYG+00, DLMN09, FAB+96, JOW+02, SDR11].

easy [Hig90, HCSO12].

eat [KBG97].

EBDa [ED17].

EC [BT13, KSL16, SLSB10, UMB+12, YE09, YE10].

ECG [TZH+13].

ECMon [NG09].

economical [AB84, MPT91].

ECOS [ZELV02].

ECP [SLSB10].

ed [Col88].

EDDIE [NSA+17].

Edge [KHG+17, CCB+06, DSBB04].

edited [All92, Col90, Par90].

Editing [OC78].
editor [Hen07a]. Editors [Ful93, BGP+01, BFP05]. eDRAM [JSL+13]. eDRAM-based [JSL+13]. Eds [Ber91c]. Edsger [AMM+12]. education [Har73, Kno73, Ros73]. educational [BA74, Cor89, PPZ96]. Edward [Fre88].

EEG [Hu55]. Effect [Kum87, BEH91a, CSW94, DV87a, Ega82, EK89a, GM98, GL89b, Mid82, MI91, OWCL90, RR77, ZSL10]. effect-oriented [ZSL10]. Effective [KKN00, MCK16, PGS04, RS99, SF03, CHK+12, FG01, KZA+12, MTC+07, MG91, OCL90, PJS97, PS14, PZT02, Ria80, Ste88, SCA01, WGH+97, WL88]. effectively [AZK06]. Effectiveness [PR05, CRG+11, DCW+11, JS88, PEP98]. Effects [AD98, DB82, FB92, MVCA97, THEK16, BTS+11, HGS+07, KHC92, LJS+02, YLHL10]. Efficiency [BL17, Bia17, HGTW05, LB08, MTU+15, SFM17, SLG+05, TM05, WM16, ACM02b, AMPH09, BFG+07, CKS16, CM+13, CLG+14, FPC+97, Ham09, KSN07b, LAB+11, MS13b, OKY+16, PAVT16, QHS+13, RLCV10, SCN+10, Tan77, WKJ12, WOR96, Won16, YJE11]. Efficient [AWAG15, AGS89, AK16, BM91, BGC+13, BGH+08, BEL+00, CWY+08, CTH+15, CB17, DK16, EBS+04, EA02, GPy+17, GVW89, GS85, HCV03, HC15, HSBA16, Hum96, IBC12, KBG97, KN06, KSL08, KS95, Kuh80, LJD+16, LNRG12, MABYT15, MBBS13, MKP05, OSF+15, PHP16a, PHP16b, PPM17, RGP82, Ros89, SSK+13, SMN+13, Smi14, ST79, SA15, TMC+06, THNM14, TTTL10, TXZ09, Wit76, WLZJ17, YNQ15, ZL16, ZH17, ZQL+04, APG07, AWC+11, AP95, BKA03, CGS09, CZ14, CES16, CZS+16, CFS+12, CS06b, CP11, DGY89, DK14, FHM+11, GHW90, GJT+11, GZnRC13, HLM+16, HCJC06, HCSO12, HBI13, HDS10, IMK+13, JSL+13, JOW+02, KS14, KR13, KDS+06, KS99, KDA07, KM10, KDP+16, KMS+10, LB06, LWV+10, LWRC10, LS12b, LDK14, MJW11, MGH+96, MK90, MC91, MS+15, MPSV06, NSMK11, NY14, ON90, OAA09, OYK+16, PSC06]. efficient [PSP+12, PT86, RP99, RG82, Ria80, RL14, SB05, SK11, SYH11, Sla83, SSJ+16, SYL13, Sez86, SSAC13, SDP85, SA84, SDR11, SQP08, SKA13, TGP10, UMB+11, VF85, VLZ88, VE14, WW13, WIPK09, WBR13, XJK+16, kSYHX+11, ZZY09, ZSHG07].

Eliminating [APX14, WSM96, MGW09, MTPT12]. Elimination [Cha92, BS02, DSR+93, EA02, KKN00, MK12, ZJG+11]. elliptic [BGM04, MS13b, SH05]. ELLPACK [HRC+90]. EM-3 [YTY83]. EM-4 [SKS+92]. EM-Based [NSA+17]. EM-X [KSS+95]. embarrassingly [ZWS14].

Embedded [CBC+05, Koa05, LNEHR11, ORS+04, PAD16, SST06, ABR01, AIIK+05, BBFP06, BP04, BGM04, CKS16, FBF+00, KC02, KKC+16a, KW11, LBvH06, MS07, Mar00, MA06, MBBS13, NKR06, OIA+13, PPR09, RT00, RR04, SFS04, SDWF13, SK04, TLLL07, VPS01, ZVN03].
environmetal [CMR+12].

Environments [LRC+08, RGSJ17, ATS14, BGM04, EJK+96, VNM+12]. EOLE [PS14].

EP [Um15, TRA91]. EPI [AGS05]. EPIC
[ACM+98b, BC04, SzUK+04]. EPILOG
[Wis86]. Episodes [HH08]. Epsilon
[GDHH89]. Equation [SK+15, LSFK08]. equations
[BVGL00, Chr90, Don83, Don85, Don88, Don90, Don92, GLH88, JD88, OT86, Qui84].
equipped
[Don90, Don92, GLH88, JD88, OT86, Qui84].
equip[ACM+98b, DBK+04, EJK+90, EK04].

Errata
[Ber91a].

Errata
[Ano81, DBK+92, JD88, Sta81]. Error
[Che84a, DBK+92, WEMR04, YMM15, AWC+11, Bos84, Con88, DJPK16, FGAM10, FAH83, GM84, Gum83, HVAN14, HCA99, KW84, KCE12, NKQ13, NSQ16, PBGM09, Rao84, SGK+04, UGV14, WAC+10, YE09, YXM+10]. Error-correcting
[Che84a, AWC+11, WAC+10]. Error-Prone
[YMM15]. Errors
[LABR08, SDB+15, YMM15, BWWA05, HSS12, ISGS07, KDK+14, LRS+08, ZY07a, ZLO+11]. ES40
[CK00]. Esterel
[LbV+06]. estimates
[WMP07]. Estimation
[LABR08, TM14a, VJE+12, GKM98, SBM09, WMW09].

Euripus
[DP12]. EV8
[SFK+02]. evaluate
[Sho87]. Evaluating
[ADK+04, BVR+00, EK89b, GS07, JH94, OA99, PK94, SBC+05, VRB+17, ZY07a, CMR+12, MCC+06b, PL06].

Evaluation
[BKS05, DCK93, EJK+96, HGS+16, LP91, MYB89, NH096, Par75, RCV+05, SHN86, SAA17, SGS+93, THL+86, TLM+04, Wu92, YHN+86, ASH88, ASH98, ATH86, ACK+95, BBH94, BNT78, BWJ+90, CGB88, Che92, CMB+13, Cra79, CB13, CKPK90, DL87, DNS95, DR91, EK88, EP87, EP88, GMC+09, GHH91, GZuRC13, GLVC13, GHG+91, HLM+82, HANN96, HVAN14, HLR98, HJS86, HJS87, Hea84, HS84, IT93, IS92, ISKR86, IM02, JZL09, Kea89, Kea78b, Kea79a, KB76, Kaha99a, Kaha99b, Kaha99c, KY02, KHC+91, LS82, LKC+10, McK74, MIO+10, MKR02, Nad88a, Nad88b, NDZ10, NWD93, ON90, OQ91, Pat82, SK83, Smi85, SPA+98, SHM+94, SJG92, SCH+91b, SV74, Tab88, Tad13, TNNI87, WL+14, YTY83, Yom92, Zub80, Hen98].

Evaluations
[MM14a]. even
[DB07]. EVENODD
[BBBM94]. Event
[HNK+17, DS11, GSS05, GLL+90, GLL+98, Gha88, GKB+13, OQ91, TBL12]. event-driven
[GKB+13]. events
[NG09]. everything
[Lar11]. Evolution
[BDMF10, Cra88, BS86, CR94, KWF08, Pan13, Tag85].

Evolutionary
[AWAG15, Ber76]. Evolving
[SADAD02]. EX
[MH13]. exact
[TZH+13]. examination
[SLSN14, VCK+12]. Examinating
[WMP07, DZZ+14, Tha10]. Example
[FK80, Ric80, Dow887, Dow88a]. examples
[Maz77]. exceeding
[ASP+03, GHS16]. exception
[MDS12b]. exceptions
[GA01, LCS+10b, SMN+11, UH93]. excessive
[GH90]. exchange
[Feu84, So83, VR87]. exclusion
[McF92, SLQK12]. Exclusive
[BSADAD04, OH16, GCS11]. Executable
[Cra83]. execute
[APX12, BD91, Smi82, Smi98a, Smi98c]. executing
[See89a, See89b]. Execution
[AWAG15, Bic84, Bit89, BGH+08, CHM08, DVT12, HCL15, HC15, KKS+15, Kro83, KKS+16, LCB+98, MCT08, MKP05, NPC05, NSA+17, PCC+08, PR05, Rot05, STS17, SJA+17, WDV10, YMM15, ZS01, AS91a, AT11, AIO+11, ANH95, AHA+14, ATT+13, ACM+98b, ASP+99, BG84, BAD+10, BFS+09, BCK14, CO82, CM87, Chun7b, CHYW13, DBK04, EHA82, HFW27, HK97, HKA+01, HP87, KDM92, KY02, KPG98, KPH96, LBCG95, Li94, LN92, Luk01, LRRH90, MHM+95, MEV92, MSB+05, MPP+08, MDS12b, MCC+06b, MW98, NMB92, PG05, PACL05, PS94, RG02, SCP+82, SLLG05, SDP85, SOS94.
SLZD04, SQP08, SMQP09, ST87, SP87, Tak87, TWC+10, Ter87, TXZ09, Ulm98, UMK05, UT83, UZU00, WCT98, WY05, WR84, Wie82, Wil78, YHZX14, YW89, ZkKL+13, Uhl02. **Execution-based** [ZS01]. **execution-driven** [MSB+05].

execution-time [LRHM90]. executions [APX+14, BFS+09]. **Exemplar** [AF98]. exercises [Kno73]. **expandable** [AA4, FS92]. **Expanded** [AS92a, JW95].

expansion [LCM+09]. expansions [SM12]. **Expected** [Qoz94]. expediting [YL16].

experience [CGBG88, DLMN09, FAB+96, RVLS14, Str83, WP87]. **Experiences** [ZBJ+02, JOW+02, Mat78]. experiment [Ano81, CD82, PP82]. **Experimental** [DBK+02, HS84, ACK94, CMPZ87, GPR87, HS01, ISKR86, KDK+14, KRM83, LJK+13, WCW+04]. **Experimenting** [Wis86].

expert [Gra84, LN92, Pau13, Roc85]. **ExpEther** [NMS+14]. **explicit** [CHKM93, LS92, PC90, PC98a, PC98b]. explicitly [MT02]. **exploit** [KTS+13].

exploitation [BK11, PSG06]. **Exploiting** [AZ05, AZK06, BSL08, CKS16, CFA04, EAS+17, FdfD00, Fra86, GTA06, HH08, HCS8, KGGC17, KDM+98, KKB+16, KW98, LLYB88, MP91, Mos05, NH97, NAAL01, Nit89, PV04, SST8, SNL+03, SZB08, SABR05, TEE+06, DMD10, DC09, FS92, HANR12, KKM+06, KHM01, KSL+12, NaR07, NK01, NRS8, OKY+16, QFLMK10, QFJL12, SSJ+16, VM97, VJM99, VAV10, ZRZ+14]. **Exploration** [DM06, BS73, BFP03, CYH+11, CGT+14, Jon08, MMP+12, RYF+13, SRWB14, WFC01].

explore [SHK+11]. **Exploring** [HS13, HJF11, HIM+05, JSL95, LAB+11, MTU+15, NO94, NK01, WGS9b, WCL17, IMc+06]. **Exposed** [TLM+04, GTK+02, TACT0].

Exposed-Wire-Delay [TLM+04].

exposing [NG09, NSQ16, NaR07, PLZ09]. **Express** [PKPJOJ, dICKK]. **Expression** [BTC06, RP99]. expressions [Kee78a, Kee78b, Kee79a, SK83]. **ExpressOS** [MPX+13]. **Extend** [SZBP08].

Extended [ISJ04, BK91, BCS91, CA94, Dug83, MGK+82, HTA08, HSC+90, Kin83, PAA88].

Extending [Yue81, ADS+13, MSA+00, ZNF+16]. **extensible** [Fre74, GKT78, SWY10, Feu76].

extension [Bur84, CBC+08, EAE+02, PDP+13, ULM98, WS91].

extension-oriented [CBC+08]. extensions [DDS94, HPU+16, LP91, RJ09, Wa80].

external [LWV+10]. **Extra** [WL88, LH86b]. **extract** [JW95]. extracting [LCED01].

Extraction [Uth93a, Uth93b, MTN+00]. extractions [LYBC88]. **extremely** [GZuRC13]. extremum [LF82, WLY84].

extremum-search [WLY84]. **Eyeriss** [CES16].

F [Ben82, Sch91a]. **FAB** [SFV+04]. fabric [GDN+16, KPKJ07, PCC+14]. **FabScalar** [CWS+11]. **FACADE** [NWB+15].

facebook [WDG+16]. **facilitate** [WZJ10]. facilities [GS80, Tob80]. facility [KBS84, LMND76, SSD+13]. **FACOM** [YHN+86]. **Factor** [LABR08, DMWS12, NEEJ12]. **factoring** [RBC84, WIPK09]. factorization [DD90].

Factors [BRC+05, SK10]. fail [Lip73].

fail-soft [Lip73]. **Failure** [GHKP89, IKK16, SKB+17, ACJ13, LC13, uAM16].

Failure-Atomic [IKK16, SKB+17].

Failures [PKM17, ABC97, AJL14, BBBBB94, Par88b, SLSB10]. **Fair** [KC82, MMS14b].

Fairness [ELMP10, MM08, SKJ+17, WM16, KSN07b, ZL14]. false [HWI+11]. **FAME** [TWC+10]. family [DO82, Feu84, LR93, ME78, Sal76, Smi75a, Smi75b, Str76, WS90].

far [VJM99]. far-flung [VJM99]. **FAST** [DRCO05, ACAAT16, BG84, CG94, CSGT17, GC86, HSC+90, HABZ17, KCGG17, Lam82, SGC+05, SP87, TM14a, VHX17, WBA17, APS95, BKS+94].
BDLM07, BMA00, CGS09, CME+12, CS13a, CV88, CCA+11, HT10, KIC+16, LKL+02, LS92, LN92, McL90, MSZ09, MSS14b, Mou98, NYNT12, OPZ11, RAC99, SK13, SEE74, WWA01, YA90, HS86, NNS12.

Faster [MMT16]. Fastest [MCK16]. Fault [Ann91, BA84, FV82, GV05, LER+17, PC83, PGVB04, RCV+05, SH80, VS80, AA86, AGSY94, Avi83, BS87, Con88, DSY95, DJPK16, FF73, GSVP03, GKN80, HAN12, HBBT11, KRS13, KLC94, KR80, KR85b, LS82, LIW82, Mar85, MS82, MC93, MGBK96, NSH+11, PA73, RRP06, RM00, SCGA13, SKB09, SPR00, TBG+97, TVZ85, VPC02, WMP07, WL88, WIPK09, Wil91].

Fault-Tolerant [PGVB04, FV82, AGSY94, BS87, DSY95, GKN80, KLC94, KR85b, LS82, LIW82, Mar85, MS82, MC93, MGBK96, NSH+11, PA73, RRP06, RM00, SCGA13, SKK09, SPR00, TBG+97, TVZ85, VPC02, WMP07, WL88, WIPK09, Wil91].

Faults [PTS+11, HAN12, WCS08, dKNS10].

Federated [CHTV+15]. Feedback [SQP08, HMM06, SS89]. Feedback-driven [SQP08].

Fence [MA14, MA15]. Fence-Free [MA15, MA14].

Fences [DHT15, DMT13, SAR99]. Fetch [ANMF08, HK90, BKAB03, CG94, CMMP95, FG91, GM98, Kro98a, Kro98b, LBCG95, LV88, OKNO2, Prz90, RR77, TH86, TEE+96]. fetch-and-increment [FG91].

Fetch-and-Op [HK90, LV88].

figure [Lan77]. File [AH+16, BKL+16, GCO+04, AA89, BNT78, CBF93, CGVT00, DS89, DSH+94, HL85, JSL+13, PBL90, SBZQ14, SFK13, YRK07]. files [LH86a, TA03, kSYHX+11]. filesystem [CG91]. filter [DSG11, GRRT84]. filtered [RF96]. Filtering [HTM15, Rot05, SST06, HTCU10, HT11, PHH16a, PHH16b, RG09]. filters [Pra82].

Finding [BCG14, DZ+14, HABZ17, LF82, MCXS16, BKMN10, J040, MHI12, SBRM09]. Fine [BBP03, CSS+91, KRS13, KKS+15, MS07, OBRW14, SJA+17, WYM+17, ALE90, BK11, FS92, GH90, GKB+13, HBHA02, KDM+98, KHN07, MLC+09, MP91, MFHW96, RBW90, SYK10, SK11, SSD+13, SGS+93, WJGA12, kSYHX+11, ZCX+14, ZSHG07]. Fine-Grain [SJA+17, BFP03, CSS+91, MS07, OBRW14, ALE90, BK11, FS92, GH90, HBHA02, KDM+98, MLC+09, MFHW96, SYK10, SK11, WJGA12, ZSHG07]. Fine-Grained [WYM+17, KRS13, GKB+13, KHN07, MP91, RBW90, SSD+13, SGS+93, kSYHX+11, ZCX+14]. Fingerprinting [SGK+04]. finite [CF89, DGY99, GPF13, MMS14, Nap86, SC01, SLTB+06, ZWS14]. finite-state [CF89, MMS14]. FIR [DSG11]. fire [BTS+11]. Firefly [PKK+09, TS87].

HHB+14, HK89c, KCW+09, Kro98a, Kro98b, KKK76, LHH91, LN91, MA14, RG02, ST08, VLL+92, WS07, WAFM07, XGC+10.

Free-Cooled [GNB15]. free-space [XGC+10]. Freecursive [FRK+15].
freeness [AHK08]. Freon [HCG+06].
frequencies [McD82a]. frequency [DSN07, MSS+03, MCD+08, PM11, TA03, WJMCO4].

Frequent [ZYG00, HA04]. Fresh [Den03].

Fused [THEK16]. fusion [IKKM07, LGM+14]. fusions [FFM11].

Functional [Arno74, Har78, Hom82, HG88, JSL95, NK86, P888, YMTHB00, vLG80].

functionality [HP86, HP98, mWHP98].

Functions [SOSD05, YT04, BLs+76, Chi89, DGY89, Fra76, McD77, SSAC13, dDIS13].

Fully [HSL17, MMM+95, MMAS08, NMZ12, XB03, ZYGP09]. full-system [XBH03, ZYGP09].

Fully [SBK77, AP95, HR00, Jou90, Jou98a, Jou98b, SKS+13, SB77, VHL73].

fully-associative [Jou90, Jou98a, Jou98b].

fully-streamed [SKS+13]. Function [HSL17, KSL08, Law76, RV07, Bur02, DJ09, GB83, Jen74, NNS+90, SP89].

Functional [Arno74, Har78, Hom82, HG88, JSL95, NK86, P888, YMTHB00, vLG80].

functionality [HP86, HP98, mWHP98].

Functions [SOSD05, YT04, BLs+76, Chi89, DGY89, Fra76, McD77, SSAC13, dDIS13].

Fused [THEK16]. fusion [IKKM07, LGM+14]. fusions [FFM11].

Future [Ant91, HLF+15, HPU+16, Her06, MC92, Pat06, TAM+08, VSM+07a, VSM+07b, VC04, BDA03, Bas77, BDJ+11, BGK96, Cra88, Hey90, JL16, JM12, Lip78a, PKK+09, Par95, Sch77, Tha10, Wil01, vTS98].

Futurebus [Aic92, SS86]. futures [TH03].

Fuzzy [Lev92, Gup89]. FX [DF90]. FX/80 [DD90].

G [Hol83, Lan90b, Su74, EKW80]. G [Sac83]. GaAs [OMB91]. Gainesville [LS73]. gains [DDS94]. Galoish [CLF+17, NL14]. Game [FZL16]. gaming [MS76]. gamma [LH86b, Bat72, PR82].

gang [HVAN14]. GangES [HVAN14]. Gap [PVB17, PT83, Quo94, SKC+12, VV14a, Wil01]. Garbage [GTS+15, Hib80, CHV04, FK+06, GTSS13, HHA83, JMP09, RP85, Rde87].

gassiloud [All92]. gate [KW11, WW12]. gates [TWM+09]. gathering [TMW+01]. gating [MKG98].

Gaussian [Cha92]. GCC [RVLS14].

Geiger [JADAD06]. Gelenbe [Ber91a]. gem5 [BBB+11]. GEMS [MSB+05].

Gen3 [dCKK15]. Gene [SAB+05]. Gene/L [SAB+05]. General [Ano04c, Ano06b, SYP+14, BA82, CT74, FR89, GSZ90, GCTR08, HQW+10, HSC+90, LSS04, MSB+05, Now87, RV77, Ran85, RAJ99, Ree82, Ste77, Ska01, TPO06, WY05, Woo14, Ano05c, Ano08c].

General-purpose [SYP+14, FR89, GCTR08, HQW+10, RAJ99, TPO06, WO14].

generalization [HT10]. Generalized [AK81, G84, Lf98].

generalizing [Mat90]. generate [Bur06, RP99, WSC92].

Generating [PKB+16]. Generation [AYQ+16, BKW90, HL15, Mo83, BA06, BD91, BEH91a, CCA+11, D76, DPB77,

HK89a, Kar95, KDA12, KDP+16, KBD+13, LYS07, Mid82, PVS90, RGG82, RGP82,

Rou86, SF03, SMRT85, Tre83, VSM+07a, VSM+07b, CH04].

generational [KHOM1, WK08]. generator [AA11b, EP84, HC88, MF05].

Genetic [GFT+15]. Genomic [HSBA16].

Geometric [Sch83, CHG06, Hai84a, Hai84b,

LYBC88, Sez05].

George [Lan90a].

Georgia [IEE99].

Gerard [Cho93b].

Germany [ACM04]. Gerrit [Chr77].

Gert [Goo88b].

GF11 [BDW85].

Ghost [CDA14].

GhostRider [LHM+15].

Gibbs [WZL+16].

Ginger [HR07].

Girling [Su74].

Gleipnir [JK13].

Glen [Hol83].

Glenford [Atk79, Gor83].

Global [QTP05, KBC+00, NSI94, OAO8, PNB83, SHA02, SMHW02, TFWS03, ZFC03].

global-scale [KBC+00].

Globally
Globally-Synchronized [LNA08]. Go
[Pat06, MPP+08]. Goal
[SDLR+15, SDGT03]. Goal-Directed
[SDLR+15]. goals [ALE90]. Going
[KS02a, LLC+14]. Gold [IEE92]. Good
[SDB+15, Irv10]. Goodman
[CBS88, Goo88b]. Goodput [RHR+17].
Google [CSBA17b]. GOPS [RBH+03].
Gordon [CGS09]. Göteborg [ACM01].
Gotlieb [Lan09a]. GoTM [JVV13].
GP10000 [BWJ+90]. GPGPU
[JSL+13, JKN+13, PTG13, RE12, VRV+14].
GPGPUs
[JKM+13, LSH15, LHE+13, RE13, VE14].
GPU [ABD+15, APX12, APX14, ABC+17,
Bon13, BCD12, CPI17, DSOF11, FFMI11,
GC11, HLI15, HK09, HK10, HEK+16, JPT14,
KDSO12, KORA17, LKC+10, MDSO11,
MNS+14, MSN+15, NMS+14, PPM15,
TM14b, WLG+14, WN14, WL10, XJK+16,
YKL+16, ZJG+11]. GPUAccelerated
[HSB16]. GPUTest [Bon13]. GPUs
[SFK13]. GPUs
[ANS+15, ABC+17, CT08, LYBK11,
LSL+17, LCCZ17, LBH12, MDS12b,
OXY+16, OBRW14, PPM17, PHB14, SBS16,
SFK13, TGC+14, TP006, TL10,
WRSY16, WL17, WYMN+17, WLZJ17].
GPUWatch [LHE+13]. Gracefully
[KNP06, CSSP87]. gracefully-degrading
[CSSP87]. Gradient
[DFR017, Chr90, GSZ90]. gradient-type
[GSZ90]. graduate [Muk97]. Graffiti
[Jo95]. Graham [Alv93]. Grain
[CLS05, CKS+08, Mos05, SJA+17, ALE90,
BK11, BFP03, CSS+91, FS92, GHW90,
HBA02, Kap87, KDM+98, LS12b,
MLC+09, MS07, MFHW96, OBRW14,
SYK10, SK11, WJGA12, ZSHG07].
Grained [KKS+15, WYM+17, GTA06,
GKB+13, KRS13, KTO+12, KHN07, MP91,
PCL10, RWB09, SSD+13, SGS+93,
KSYHX+11, ZCX+14]. grammar [FL76].
Granularity [THEK16, CSY90, GSN06,
RSG03, YJE11, YJSE12, ZSKD13].
Graph [HPF86, MM14b, VTGH17, WHZ+17,
APD01, CCC+88, Con88, HCSO12,
OYK+16, THS6, Tra85, VE14]. Graphical
[MZH15, ER92]. graphics
[AAZ89, CBS98, HTA08, HSW+11, Ker74,
LHPL87, PN88, Sin92a, TSN+86]. Graphs
[AWAG15, HNP15, VGX17, FAY83, GVV90].
Graspan [WHZ+17]. greater [BYP+91].
greedy [PMA+13]. green
[CMR+12, HCSO12]. Green-Marl
[HCSO12]. GreenSwitch [GKL+13]. Greg
[Ber91c]. Grid [WDW10, TKG+02].
grid-based [TKG+02]. GRIFFIN [GCJ17].
grips [Mil87]. Grossetie [All92].
group [Mil82, Mil87, WL88, ZT95]. groups [NH97].
growth [EWN05, Gur94, Hen07c]. GRT
[WSC+14]. GS1280 [Cve03]. GS320
[GSSV00]. GT [TRA91]. GT-EP [TRA91].
Guaranteed [LNA08]. guaranteeing
[LMB99]. guarantees [BKMN10, GHKM11,
KC96, MYP+16, MTC+07]. Guard
[OHW17]. Guarded [PS94]. Guarding
[GCJ17]. Guardrail [RKG14]. guest
[MSZ09, BGP+01, Hen07a]. Guests
[BFP05]. Guide
[Mad94b, OCF00, STND+13]. Guided
[WB03, Den03]. Guidelines
[Ano06e, MST82, HS73, Pat91, Rym82].

H [Iva91, Su74, Tan78, Cra88]. H-series
[Cra88]. H21 [SWW02]. hacker [HLS05].
Half [KL03]. Half
[KL03]. Half-DRAM [ZCX+14].
Half-price [KL03]. Hall
[Alv93, Ant91, Ber91b, Buc78, Chr77, Fer88,
Fos93b, Ful91b, Hhi91, Kri91, Lan90b, Lev92,
Mad94a, Ram78, Whi78]. HALSIM
[BKS+94]. Halstead [Iva91, Sch91a].
Halsted [Cha92]. Handbook [Alv93].
handheld [SWW02]. handle
[Laf04, SGB00]. Handling
Hardware-assisted [AJH12].
Hardware-based [KJM+07, MR90].
Hardware-driven [MTG+99].
Hardware-level [LKO+14].
Hardware-measurements [HKK80].
Hardware-modulated [CJK+05].
Hardware-OS [LSMB16].
Hardware-Software [CHLS16, KSCK17, LHM+15, KCO2, RO74, SSH+07, VKI’00].
hardware-supported [MPP+08].
Hardware/Operating [AVN+16].
Hardware/Operating-System [AVN+16].
Hardware/software [HJB+82, PN77, Ran85, Rat82, FMB+07, KDA12, LGM+14, RES+13, WBM+03].
hardware/speed [CM80].
hardwired [BZ87, OUY+13].
harmful [JM12, PBC+13, Zii01].
harmonic [CHG06].
Harmony [KTK12].
Harnessing [DFKC17, VT14, APP+14].
Harold [Fos72a, Lan76, Sch88].
Harper [Dik90].
HARRIS [KKC92, Cra88].
Harry [Gon77].
HARTS [SD00].
harvesting [CHLS16].
Hash [HCJC06].
Hash-based [HCJC06].
hashing [TLL07].
haul [DCB+94].
having [HS80, HP86, HP98, mWHP98].
Hawaii [IE88].
Hawkes [GLVC13].
Hayden [Mii77b].
Hayes [Col88].
hazard [KTM91].
HC1 [MH13].
HC1-EX [MH13].
HCloud [DK16].
HDL [KMK16, OUY+13].
HDTrans [SSB07].
Heads [Göh14].
healing [SLK05, SLP+09].
health [Zii01].
heap [CG06, Hom82, KJS+06, LBL02].
heap-based [CG06].
heap/substitution [Hom82].
HeapMD [CG06].
Heaps [CAA+11].
Heart [KONA82].
Heat [GPV04].
Heat-and-run [GPV04].
Heavy [TP15].
helix [Ron86, CBK+14].
help [Laf98, Laf00, Pay78].
Helper [WCW+04, KST11, SR+05].
Hénon [JPT14].
HEP [Jor83].
Here [Pat06].
Heritage [Mat78].
heterogeneity [MT13].
Heterogeneous [ANS+15, AVN+16, BLJ+17, CTHV+15].
HCL15, HHB+14, KGGS17, KTR+04, LJdL+16, LL16, SAA17, Tho81, VST16, ZAI+16, AA84, AA11a, ACRV12, AKB+89, ACS+12, BF87, DVT12, DK13, GCN+10, GHKM11, LWI12, LCWM08, Mil82, MV11, MPM14, PARKA13, PP92, TZZ+16, TTPL10, TL11, VJE+12, VI94, VT14.

Heterogeneous-ISA
[BLJ+17, VSST16, DVT12, VT14].

Heterogeneous-race-free
[HHB+14].

HeteroOS
[KGGS17].

Hewlett
[HW77].

hi
[MMP+12].

hi-fi
[MMP+12].

HIBRID
[MBS+04].

HIBRID-SOC
[MBS+04].

HICAMP
[CFS+12].

HIDEB
[ZZP04].

Hiding
[GGH92, KD06, STS17, ZA05, BR92a, Kee79b, PGV05, PL09, RSP05].

Hierarchical
[BD93b, Cha90, GB83, HS77, Wil87, AP76, BF90, Gou78, Nae85, PPZ96, RB97, SBM02, Sin92b].

Hierarchies
[SSZR05, TMC+06, TAM+08, TBS17, BW88, BW98a, BV99, GG90, MH07, PHH98, Tri08, VRV+14, WM88].

Hierarchy
[KTG+17, RL17, Tab95, YGST17, GeC84, HGC10, JmWH97, Lan77, RBIV07, Reg76, SHBS14, SHK+11, WBL98, Zah03].

Hierarchy-Aware
[YGST17].

High
[ABY+87, AA11b, AW04, AW17b, Alv93, AHC+16, AS96, BNZ08, BTC06, Co99, DH16, DSG11, Dow91, GSCM16, HS85a, HL15, HIT05, JTSE10, JMY98, KPS+16a, KDTG05, KMK16, KPS+16b, LJP+16, LBH12, MS13b, MS13c, MCK16, Mil77a, Sch88, SAK06, SLG+15, SOD+94, SF91, TF88, TS05, TP15, TW77, VV14b, WSC+14, WEMR04, dCKK15, ARS07, ACS+12, BM91, BVR+00, BR06, BDJ+11, BNA88, BD84, CG95b, CDS+14, CJ99, CF82, CMM95, DCB+94, DB07, DG92, DP09, DP98b, DP98a, DSH+94, ELMP10, FTM99, FL76, FHH+89, Gun90, Gup89, HHA93, HW87, HBI113, HT10, HC85, HP86, HC89, HP98, mWHP98, Hya93, JCSK14, Kat89, KC96, KDA07, KCC+16b, KFN02, LP80, LP98, Lar82, LBYK11, MPH12, MKKU03, MHH+13, MIT89, NKQ13, NHH+85, NS86, NP90, OMB91, OCLB12, PN88, PP82].

High
[Pic83, Pie98, JP+07, QR90, RBIV07, RRP06, Ris76, RBC84, RKG14, SJ86, SVC03, SEI+95, SP89, SV87, SV98, Soh98b, SMHZ94, SQP08, SV74, TRA91, TDF90, Tem12, TTMH80, Tre80, TA03, TLLL07, Tur79, VFCM13, Wan01, WW12, WGH+97, Wil01, Wo97, WSC92, WBS+88, WBL98, YMB00, YCT05, ZC+14, ZLZZ09].

High-associativity
[DG92].

High-Assurance
[AHC+16].

High-bandwidth
[AS96, SF91, BSR06, DSH+94, ZC+14, ZLZZ09].

High-coverage
[RRP06].

High-Density
[GSCM16, KKC+16b, MHH+13, Wan01].

High-bandwidth
[AW17b, Col90, DH16, Mil77a, LJF+16, BM91, BD48, DP80, DP98b, DP98a, FL76, Lar82, MPH12, PP82, Ris76, SV74].

High-Performance
[AW04, BNZ08, KPS+16b, Sch88, WEMR04, dCKK15, TF88, VV14b, DCB+94, ELMP10, HHA83, Hya93, KC96, KFN02, LP80, LP98, NP90, OMB91, Pie83, Pie98, SV74, SV98, Soh98b, SQP08, TRA91, Tem12, WGH+97, WBS+88, YMB00].

High-Radix
[KDTG05, SAK06, KDA07].

High-sensitivity
[WW12].

High-Speed
[Alv93, HS85a, KMK16, TW77, BVR+00, MIT89, NHH+85, SMHZ94, TDF90, TLLL07, Tur79].

High-Throughput
[BTC06, MCK16, CDS+14, WBKR13].

Higher
[XDLB13].

Highlights
[Kan11].

Highly
[CTHV+15, HD86, KDS15, Lan90a, RLD+17, ZYMS15, LL97, Lun85, MS84, PT10, RWA+16, SFS04, UJ92, Won16, YK94, ZVN03].

highly-accurate
[RWA+16].

highly-associative
[SFS04].

Highly-Available
[ZYMS15].

Highly-Programmable
[CTHV+15].

Highly-Scalable
[KDS15, RLD+17].

highly-selective
[PT10].
TMV+11, VGNV05, ACM+98b, CMC+91, CMC+98, SzUK+04, mWH98). **improvement** [OCL90]. **Implementability** [DHT15].

implementable [TEE+96].

Implementation [ATHM86, DSH+10, Eij90, Hib80, HSBA16, HK90, ISJ04, Lai73, LCL+16, MIO+10, SP85, SP89, SO3D05, TTHM14, Vin77, AA86, AIO+11, AAG+86, AFNV90, AAG+98, Bar92, BH91, Bri87a, CLM07, Cop78, CDK+94, DN14, DO82, DGY89, DLMN09, DSOF11, DPB77, EPS84, FH82, GRB+08, GSS12b, GS12, Hof80, Hom82, IAD+94, Jag80, JLZ09, LGH92, LLJ+98, LL98, LV88, Mar83b, MB80, NMTH10, Nut77, OC78, PSB13, PS14, RvD77, Roc85, SP84, SWY10, SJ86, Sez94, SHZ97, SD95, SG51, UI93, VP89, Chr77, BM91]. **Implementations** [AHC+16, Tab96, BS+76, KJLH89, TW91, Wil82, YP92, YP98a, YP98b].

implemented [CCE+09, Hay77, KONA82].

Implementing [CDP83, Fin93, FM76, KEW+85, KL02, OMB91, SSP97, CW02, GPR87, OM94, SC02, SN98d].

Implications [HLZ+15, Sh92b, VSM+08, BJ78, CSM+05, DLL+16, EE10a, HKA+01, HSS12, KMOA07, KDBA78, LRS+08, LJK+13, PCDL09, WM95, ZWM+14].

implicit [Yue84]. **Implicitly** [PFV03].

Implicitly-multithreaded [PFV03].

importance [KSS84b]. **Improve** [CGY+17, EAS+17, YCR+17, AZ05, AZK06, Bra82b, CD82, CMB+13, DJT94, ECP96, HCV03, MHS+03]. **Improved** [BR92a, EW16, RKM+11, dRBC93, Bur02, FP91b, JL16, JS88, Lap91, Ng94, SRJ+05].

improvement [KDMP92, NNS+90].

Improvements [Rod85, MS82, SHK+11].

Improving [BFG+07, BJ03, Bia17, CLS05, CS99, CFG+13, CLG+14, FaRP89, GLM13, HWI+11, HGTW05, HHSI93, JMK+08, Jou90, Jou98a, JB97, KK99, KRM08, KSN07b, KORAI7, MAL01, MBS16, NRKS05, OSK15, PTG13, PHJH17, PD76, PEP98, PD98, SB05, Sur07, Tha10, TFWS03, VM97, WKJ12, YEP+06, YT04, YZP+11, JVJ13, JKN+13, JWK12, KCE12, LJ5+02, OKY+16, QFJL12, SL92, SMHW02, SPR00, YERJ99, Jos98b, Pat98b].

IMPULSE [BNA88]. **in-cache** [WEG+86].

In-Datacenter [JYP+17]. **in-depth** [EWN05]. **In-flight** [CMLV04]. **In-Network** [LLN+17, DCS+14]. **In-Order** [TP08, SL05]. **in-situ** [SNM+16]. **in-vivo** [CK11].

IncBricks [LLN+17]. **incentives** [ZL14].

including [NNS16].

inclusive [KSLE16].

incoherence [HCBS04].

incoming [Har74].

Inconsistent [MCXS16].

incorporating [Tob80].

increase [SWL10].

Increased [CYMT16, TM05, GSM4, HJ6+82, YBM13].

Increasing [CHZ+14, CRG+11, Har73, yKP02, SC02, SSC98, VLL+92, WOR96, GCC+14, SCN+10].

increment [FG91].

Incremental [BFA+15, HhEH+15, SAS90, CS11b].

Independence

[ANMF08, AZRA07, HR07].

independent [Bri87a, NLV86, RTY+87, SA88a, WO89].

Index [A004a, A005a, A006a, A008a, Bur02, De 81, SBM].

Inductive [PV04, CL09, PV03].

Inductive [PV04, CL09, PV03].

Industrial [Str83].

industry [Dal10, Tho10a].

INDY [COp78, OC78].

ineffectual [AJH+16].

ineffectual-neuron-free [AJH+16].

inefficiency [HQW+10].

Inexpensive [KJLH89].

Inference

[HNK+17, KKS+16, Uch83, HLM+16, ISKR86, WZL+16, ZMTM16].

influence [VGSS85].

Information

[A008e, CWY+08, FXZ+17, HD77, YSCC16, ZWSM15, CS06b, DKK07].
Information-Flow [YSAC16, ZWSM15], Information-hiding [Kee79b]. Informing [HMMS96].

Infrastructures [YJX+16]. initial [Ham09, Ham10, KSRL10, Laf04, UVG12, WGS+14, WGH+97, ZZP04].

Infrastructures [YJX+16]. initial [Ham09, Ham10, KSRL10, Laf04, UVG12, WGS+14, WGH+97, ZZP04].

InkTag [HKD+13]. Inlining [LMG04, AK00].

Instruction-Grain [CKS+08]. instruction-length [IS92].

Instruction-Level [ASR+17, PGS04, DF92, MEV92, JW89, Wal91]. Instruction-path [Deb89].

Instructions [HGTW05, YT04, BFAJ93, HY85, KT91, KKM+06, Kee78a, Las88a, LL00, PPA+13, ST79, TM11, Wil92, Wil83a, Yue81, ZS00]. instructions/operands [Las88a].

Instrumentation [vT88, FBG12, GSS05, PACL05, RD01, SAB+05]. instrumented [KP05]. Integer [GCO+04, MPPZ87, SDLR+15, PH90, SBV91].

Integration [BEH91b, PQNT16, KD92, SIG89, SFKW13, vECSG98, vECSG98].

Innovations [BD86, Den80, Las89b]. Innovative [Kav81, SHZ97]. Input/Output [CD77, JWB93, JWB94, BP04, DP76, McD77, PAVT16, AS91b].

Integrating [BEH91b, PQNT16, KD92, SIG89, SFKW13, vECSG98, vECSG98].

integration [SPN06]. Integrity [FRK+15, HDK+11, HS10, HDS10, KS99, KDP02, LLZ+13].

Intel [Fos72b, GCJ17, GC86, HLM+82, MR90, Pal80, Pat82, PDP+13, Sch89].

Intelligence [Che17, KHG+17, Lev92].

Intelligent [LJVM12, Qu79, YCR+17, AJC+88, Lip77a, Lip78b, OCS98].

intelligently [AT11]. intensity [GLVC13].

Inter [BM10, KST11, KSL08, FH76, GS80, TGGS14, ZW16]. inter-arrival [ZW16].

Inter-core [BM10, KST11]. inter-node [TGGS14]. inter-process [FH76, GS80].
Inter-router [KSL08]. Interaction
[ALBL91, Mar83a, Nak01, RPASA97].
Interactions [OHW17, RO74]. Interactive
[HhEH+15, JHK+16, FURM00, Ker74, PP83, SAS90]. Interconnect
[CMR+06, MB07, PED+08, PAY+17, SKJ+17, WGH+97, CHX+11, KM10, NP95, XGC+10]. Interconnect-Aware
[CMR+06]. interconnected
[AA84, MSSZ76]. Interconnecting [And73].
Interconnection
[ED17, IPWK06, APGP07, BK91, BA82, DS85, FW82, FAH83, HJ87, JKD09, Kni91, KR85b, KPKJ07, LHH91, LlW84, MBLZ89, MG91, PR82, PW97, Ros89, Rui90, SS89, SKB09, Sie77, TYZ85, WL88].
Interconnections
[KZT05, Kuh80, SC05].
interprets
[KMA+12, KMS+12, MDS+11, MVD11].
interest
[Bre72, sta80a, Sta80b].
interesting
[SL93]. Interface
[HTM15, LSMB16, MEB15, Vis76, WBA17, dIcK15, BL98a, BLA+94, BLA+98b, BLA+98a, CG95b, CS13b, Cou90b, DP76, GP76, Isa74, JCS+14, KJJ+09, Kep91, yKPR02, MHKT09]. Interfaces [Wit16, BSR06, Ch76, Cou90a, KDA12, MFHW96].
Interfacing
[Fu91b, BI12, Sac83]. Interface
[HS16, TAV10, WP87].
Interfacing
[CHLS16, Hic17, SBIS11, WCS08].
Intermodule
[HS74]. International
[AC89, ACM91, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, HLR98, IEE83, IEE84, IEE85, IEE86, IEE87, IEE88, IEE90, IEE92, IEE94, IEE99, IEE03, IEE05, IEE06, Mar88, Su74, Dor75]. Internet
[CLF+17, Ham09, OLI+14, Tho94a, Tho95a, Tho95b, Tho95c, Tho96a, Tho96b, Tho97a, Tho97b, Tho97c, Tho97d, Tho98a, Tho98b, Tho98c, Tho99a, Tho99b, Tho99c, Tho00a, Tho00b, Tho01a, Tho01b, Tho01c, Tho01d, Tho02a, Tho02b, Tho02c, Tho03a, Tho03b, Tho03c, Tho03d, Tho04a, Tho04b, Tho04c, Tho05a, Tho05b, Tho05c, Tho05d, Tho06c, Tho06a, Tho06b, Tho07a, Tho07b, Tho07c, Tho07d, Tho08a, Tho08b, Tho08b, Tho09c, Tho09d, Tho10c, Tho10d, Tho10e, Tho11b, Tho11c, Tho11d, Tho12b, Tho12c, Tho12d, Tho13b, Tho13c, Tho13d, Tho14a, Tho14b, Tho14c, Tho15a, Tho15b, Tho15c, Tho16].
Internet-scale
[Ham09]. Internetworking
[Mad94a]. Interpolation
[WB08]. interpolations
[CLC90]. interpretation
[CFRS99, NA83]. interpreted
[BKC14].
Interpreter
[Car96]. Interprocedural
[WHZ+17]. interprocessor
[KBS84, Mar83a, RSV87]. Interprocessor
[APR89, Dow91]. interrupt
[Sit73]. interruptible
[SV87, SV98, Soh98b]. interrupts
[Ger81, MGH+96, Par02, SP85b, SP98b, Sni98d].
interval
[JTSE10]. intervals
[Hai84a, Hai84b]. interweaving
[BCD12]. Interr pend [GSM06]. Intra
[DKD+15, EAS+17, SGS08, VSW+13, XJK+16, XGC+10]. intra-chip
[XGC+10]. Intra-disk
[SGS08]. Intra-Kernel
[DKD+15]. Intra-Request
[EAS+17]. intra-SM
[XJK+16]. intra-warp
[VSW+13]. Introducing
[MBLZ95, vdSS79]. Introduction
[ABZ07, AABAT98, JW93, JKT05, JKT09, KCP05, KSN07a, Lan76, TKJ07, BGP+01, BFP05, Hen07a, Lip88, Su75, JB94]. Introspective
[MAS+06]. Invasive
[TS05, ACF05]. invalidation
[CV88, HC99, LF00, LW95, LS92, WGS9a]. Invalidations
[SA15]. inverses
[LTQZ06, MPX+13, SCGA13].
[BSADAD04]. Inverse [MS82]. inversion [BNT78]. inverter [HBJ+02].
Investigating [DB07]. investigation [LJ90, Wel76, YKD01]. InvisiFence [BMW09]. InvisiMem [AN17]. Invited [Tsa16, SGG+85, SMR85].
IOMMU [MABY15, MMT16]. Ion [BKSO05, KSO08]. Ion-Tap [KSO08].
Ion-Trap [BKSO05]. iOS [AHA+14].
IOStone [PBL90]. IP [Mad94a, BSR06, BC02]. IPC [AHK80, Alb98, Mikk03]. IPC/clock [Alb98].
IPP [ABY+87, MYB89]. iPSC [MR90]. iPSC/2 [MR90]. IRAM [FPC+97]. Irregular [LLD+17, CBK+14, KTC00, NP11, SKB09, ZT95].
irregularities [ZJG+11]. Irreproducible [Mud96]. ISA [BLJ+17, DVT12, KTR+04, RAJ99, TML+17, VT14, VSST16, WIT16].
ISAAC [SNM+16]. ISAs [HNTL11]. ISCA [ACM89a, ACM84, IEE03].
Isolation [CP17, ARJS07, DZ09, LCF+14, MTC+07, RRRV09]. ISOLATOR [RRRV09]. Israel [ACM89]. Issue [ISJ04, JWB93, JWB94, Ram88, ABZ07, AZ05, AS96, BKA03, CM+91, CM+98, CYL99, CMMP95, FG01, GL11, HHJ90, mWH98, JKT05, JKT09, KCO5, KSN07a, Pen88, SJH98, SV87, SoH98b, TEE+96, TKJ07, VM97, WS84]. Issues [EGK+85, BD86, BURG, GTB89, GH88, GRD87, HCD+94, IAD+94, RSG93, SLG95, UJ92].
issuing [HKK+92]. iSwitch [LQL12]. Italian [CJM77]. Italy [ACM95].
Itanium [BT13, SzAK+04, WCW+04].
Itanium-2 [WCW+04]. iterated [HA90]. Iteration [SKEK]. iterations [FAY83, UZU00]. Iterative [CFE+12, SA87].
J [All92, Atk79, Ber91a, Bow79, Fer88, Gor83, Lan90b, Mil77b, Mud80, Tak88, DCF+98, NWD93, SGS+93].
J-machine [NWD93, SGS+93, DCF+98]. Jack [Sac83].
jHISC [HFL03]. JIT [DZ+14]. JIT-based [DZ+14]. JiTI [RD01]. JNI [CDG+17].
job [EE10b, ST00]. Join [Atk79, Ben82, Bow79, Fos93b, Gor83, Mud80, Ben82, Bit89, Col88]. Johns [FR72].
jumps [CPF97, JMK+08]. June [ACM89, ACM95, ACM97, ACM98a, ACM00, ACM01, ACM84, IEE84, IEE85, IEE86, IEE87, IEE89, IEE03, IEE05, IEE06].
Just [Bra82a, Lip78a, LYK+00, RD01].
just-in-time [LYK+00]. JUSTDO [IKK16].
K2 [AFNV90, LWZ14]. Karan [Fos93b].
Katzman [Gon77]. KCM [BBD+89].
Keeping [Wil83a]. keeps [HLS05]. Kendo [OAA09]. Kenneth [Mil77b].
KENSUR [ABL+80]. Kernel [CKW16, DKD+15, LCL+16, BK05, C07, FBG12, HDK+11, LLL+13, OC78, ST03, SAS8a].
Kernel-base [CKW16].
kernel-independent [SA88a]. Kernels [LJF+16, FFM11, PTG13, SC92, SKC+03].
key [BMA00, GCG+14, LF99]. key-value [GCG+14]. Keynote [Est02, Wil84]. keys [ML05]. KickStarter [VGA17]. Kill [KTB+17]. kilo [CML04]. GKLMA01. kilo-translation [CML04]. Kilo-NOC.
[ASR+17, AW17b, AOM+14, BCSB11, CFA04, Col90, D’H16, KGCCG17, Mil77a, PGS04, PCC+08, SOM+08, SOD+14, TIVL05, TM14b, BW88, BW98a, BW98b, BM91, BBFP06, BDFM10, BD4, BMP+04b, BTM00, KBK00, CG91, CZZ+16, CG89, CCEH00, CBS98, DD90, DF92, DG99, DP80, DP98b, DP98a, Eijj90, EPCP98, EE14, FTM99, FURM00, FL76, Fra86, GCS11, GKO09, HANR12, HDT+13, HK09, HS74, JW98, JW94, JSN98, KDM+98, KB76, KS92b, KSL+12, KGS+17, KSA03, Lar82, LS12a, LKO+14, LJF+16, LYCB88, MEV92, MHP12, MT02, McDB92b, NH97, NK86, NK01, Par02, PP82, PGTM99, PT10, PT03, PHH89, QFLMK10, RRT+08, RLIC06, RLW94, RLW98a, RLW98b, Ris76, RVD07, SYL13, SL88, SLT02, SCZM00, SCH+91b, SKD+10, Sur07, SLSN14, SV74, TTMH80, TSK+83, TSN+86, Tre80, Uht93a, Uht93b, UZ91] level [WAL91, WBL89, WQL92, WY05, WC14, WCF01, XLWZ15, YLHL10, YP92, YP98a, YP98b, YE09, YKL+16].

level-two [WQL92]. levels [DC09, Lee73, Reg76, SM14, Tho13a, YP93]. Leveraging [AJL14, GWSU12, HS16, SOM+08, YLHL10, BT13, GPV04, HT14b, JL16, KKP14].

lifecycle [CMR+12]. Lifetime [SBZP08, SABRO4, SABRO5, AD+13, ZNF+16].

Lifting [HS16, MFP+12]. light [HS86, SD10]. light-weight [SD10].

Lightweight [CKMWH16, HSKS15, HH08, KKK+17, KMK16, KKS+16, MCGL17, YLP+99, dCKK15, GSS05, VTS11]. Ligure [ACM95]. like [AAZ89, WIL83a, SV82]. likely [SCGA13]. limit [ASP+03, DZZ+14, YKL+16]. Limitations [TE93, AF73, BGK96, Dan93, GSU11, KPO3].

Limited [DFKC17, Su74, OT86, PIAS13, SH91, SYP+14]. limited-precision [SY+14]. Limited-Use [DFKC17]. Limiting [DGMB07]. LimitLESS [CKA91]. Limits [KTC00, LW92, SJH98, WAL91, LB80, PTG99]. Linda [KACG98]. Line [FAY83, HTM15, AAM76, AK00, CG95a, CHK+12, Fis86, HASA14, OM94].

line-based [CHK+12]. Linear [Bak94, Jim05, Don83, Don85, Don88, Don90, Don92, GSZ90, HGS+16, JD88, RV84, Tri80]. linearly [FM84]. linear-processing-oriented [OPZ11]. lingual [TTMH80]. linked [KR85b, SC05].

line-based [ADP+15]. Links [KSL08, EST89, LHL+89, NOK+83].

LISP-execution [SDP85]. List [Ano82, ATHM86, PT86, SCP80, SCP+82, SDP85].

don-row [SCP80, SCP+82]. list-processing-oriented [ATHM86].

literature [Cha78b, Hak85, sta79, sta80a, Sta80b].

Litmus [LPW17]. little [CDL13, HRR+90]. live [GTK13]. Lived [LCL+16]. lo-fi [MPP+12]. Load [DET00, GAR+05, PCC+08, RAK17, Rot05, YCT05, AAD90, BJ+99, BYG+90, CT08, GLM13, KMK12, LS96, LRC98, OKY+16, RPSV07, SREL+07, SDG703, YER99, Zha01, ZMM16]. load-address [BJ+99]. load-balanced [SDG703].

load-balancing [LS96]. Load-Load [RAK17]. Load-store [DET00, SER+07].

Load/Store [PCC+08, AAD90]. Loading [HL15]. loads [CS99, CWT+01, FJ94, HHL16, YCT05].

Local [KLK17, SKC16, THM14, CYL99, HS80, Hol89, MD88, SHA02, TF79, TSK+83].
local/remote [Hol89]. Locality [KKT05, KKP14, LSL+17, PCC+08, SZD04, ScJLW01, SSK17, WCL17, CM00, Joh92, KW98, KKD13, LL00, LW07, PSG06, SLcC12, SCN+10, WRSY16, WCF01, XDLB13, ZYG00, ZFC03]. Locality-Aware [LSL+17, KKD13, SCN+10].

Locality-oblivious [KKP14]. localization [SCGA13]. localized [MSCS13, UMB+12].

locally [MI02]. Lock [GMT16, Bri87b, GP08, HM93, RG02, ST08].

lock-based [RG02]. Lock-Free [GMT16, GP08, HM93, RG02, ST08].

Long [Fis83, KJC06, STS17, BK91, BKW90, CGL89, CWT+01, Fis98a, Fis98b, KG16, OCK03, OCLR90, RSF11, SV91].

Long-latency [KJC06]. long-range [CWT+01]. long-running [KGS16, RSF11].

longer [XHB06]. Look [MC91, And90, CD77, EWN05, Mas87, SK04]. Look-ahead [MC91, CD77]. lookaside [BRGH89, CFG+13, FPF+92]. Looking [ECX+11, Ill87]. lookup [SHBS14]. Loop [BC90a, CSBA17b, LR77, CZS+16, CM00, DH89, GKO+00, HW+11, KPF96, NMB92, OKJ+13, RL74b, RL76, UZU00].

loop-block [CZS+16]. looping [Ulm98].

Loops [CHM98, BG84, HA90, LS96, TYZ90].

loosely [Bhu84]. lossless [Btu06]. Lost [WBA17]. LOT [UMB+12]. LOT-ECC [UMB+12]. Low [AWSS17, HC04, HTM+05, KDV11, KSN07a, LSSG05, LLW+06, LLC98, WM04, DFRO17, SHI92, WGA+08, WC914, CG95b, CZ14, CK95, CDY+17a, CDY+17b, CK92, DRM+11, Dev90, EKM04, GDN+16, GSM06, GIS10, IMK+13, JZYZ14, KOAGP12, KC96, Kni91, KFN02, KHS+97, KR85b, IWLZ12, MPP+08, NS86, NSH+11, OSKA14, PF84, PF98, Pat98a, RWA+16, RR06, SZ94, SCP+06, SLcC12, SSB07, SH12, TDF90, TSK+83, TSN+86, UVG12, WGO+13, WAC+10, YEO9, YCMR12, ZCX+14, ZLZZ09, Mi87, Sho87]. low-cost [CK92, Dev90, KC96, SCP+06, TDF90, WAC+10, YE09]. Low-Latency [MWM04, SHI92, IMK+13, KHS+97, OSKA14].

low-leakage [GIS10]. Low-level [WCG14, TSK+83, TSN+86]. low-locality [SLcC12].

Low-Overhead [AWSS17, HC04, KOAGP12, NSH+11, PP84, PP98, Pat98a, RR06, SSB07]. Low-power [LLW+06, DRM+11, EKM04, GDN+16, KFN02, IWLZ12, RWA+16, YCMR12, ZCX+14]. Low-Precision [DFRO17].

low-speed [ZLZZ09]. LReplay [CHCW10]. LRU [CP98, DSN07]. LRU-based [CP98, DSN07]. LSI [KS84a]. Ltd [Dor75].

LU [DD90]. Lx [FBB+00].

MA [EE06, Par90]. MAC [GSS12a, GSS12b, MS13a, MS13b, MS13c]. Mace [Par88a]. Machine [AK81, CRW+15, Lev92, LCL+15, RTY+87, SBK77, Wag83, ALM82, ABC+95, ABC+98, Ag98, ATMS98, ABKA85, An80, Bak91, BH78, BBB+89, BLL+83, CDS+14, Con88, CSS+91, DCF+98, DOS47, GY89, DRR98, DM82, DDP85, DSM82, Dow87, Dow88a, ERT78, FL76, Fra86, Gli83, GST74, GGK+82, GGK+98, HHA83, Hii83, Hom82, HY85, HR78, ISKR86, JDL81, JADAD06,
KONA82, KKC+16a, KW84, KBD+13, Laf83, LC02, LL14, McL90, MS80, Miy85, MKM+83, NK86, NKH+85, NOK+85, Nitt89, PH85, Ros77a, RBC84, SK60, SKS+92, SDD+07, SC01, SA87, Sie77, SA84, ST79, SB77, SV74, TN87, Tan77, TH86, TKG+02, Tra85, TM80, Tre80, Uch83, UJ92, WP87, WY05, WHZ+17, WY87, YTY83, Yue81, YHN+86, ZWS14, AYA83, Fuj91, JK77, NW93, SGS93.

Machine-based [ZWS14].
Machine-code [KBD+13].
Machine-independent [RTY+87].
Machine-learning [CDS+14].
Machine-oriented [GS74].
Machine-readable [Miy85].
Machines [GTS+15, HS06, BLAA99, BBK76, Ber74, BC90a, CWd06, Feu82, Fis84, Gl98c, HANN96, HSH96, HRC90, HW95, HH93, HP87, Jou88, JW89, LR93, LSS04, MMS14, NGS99, Par95, Par75, RO93, Smo89, TJC88, Tak87, Ter87, TBC94, TtLcC13].
Macro [CLR03, HCW+10, SS85].
Macro-SIMDization [HCW+10].
MacroSS [HCW+10].
MACS [BD93b].
Madison [IEE05].
Madman [HR78].
Magics [Alv93].
Magnitude [BNE16].
Main [AW17a, AMH+16, Dor82, ES05, AKSD16, CS11b, CLX+16, DMR+11, DGMB07, LLD+04, Mac96, QSR09, YE10, ZZYZ09].
Main-Memory [ES05].
Mainframe [EKW80].
Maintaining [AV10].
Maintenance [Lin76, LS04].
Makes [EPCP98].
Making [BDL07, NKRL06, CCA+11, Drev94, DMT13, HCBS04].
Malicious [SWL10].
Malware [KKWB17].
Man [NK86].
MAN-YO [NK86].
Manage [AFTP90, GPV04].
Managed [MAHK16, BLAA99, CBGM12, CFG+13, HR00, NUS+93, SW87, WLG+14, WK09].
Managed-Language [MAHK16].
Management [AW17a, BLI17, DM06, GNB15, GSN05, HjrCH16, HPJ+15, KGS97, KORA17, LNR+06, Mad94b, MRG12, MSB16, PPM17, RLIC06, TT08, XLWZ15, ALE90, BCZ90, BM09a, BTS+11, Bra77, BC04, CTW+13, CRM91, DFF+13, Dv80b, DK14, ELMP11, GS74, GKD+07, GSKF03, HCD+94, HS85a, HCG+96, HH93, IMK+13, JnW97, JSA10, KTM91, Kro83, LLD+04, LZZ+07, LLC+14, LDK14, MSB+11, MP14, NMZ12, New92a, PMA+13, Phi84, PHB14, PCH+82, QM91, RRT+08, RBW09, RTY+87, Req83, Ros77a, SSD+13, SA10, SHV12, Tak87, TL00, WDG+16, YBM13, ZPS+04].
Managing [DLSW76, DS02, KZA+12, SSZ90, BDA03, GJT+11, GKL+13, LZC+16, SBIS11, SK08, ZELV02].
ManArray [PP03].
Manchester [Cha92, Tan78, SK86].
Manifesting [GZC11].
MANIP [WLY84].
Manipulation [LLF03, Tob80].
Manipulator [MS80, MS82].
Mano [Buc78].
Manual [NMZ12].
Manufacturing [KMOA07].
Many [HHE+15, AYK+09, CCH+87, DII86, JLZ90, KSCE16, MLCW11, MXT07, Mat91b, MTPT12, Mus09b, ZSHG07].
Many-core [AJK+09, JLZ90, KSCE16, MLCW11, MXT07, MTPT12, Mus09b, ZSHG07].
Manycores [BMF+16, BS08].
ManyCores [AVN+16].
Map [JPT14, FFM11, MT13].
Mapped [Zha06, AP93, BLA+94, BLA+98b, BLA+98a, Jou90, Jou98a, Jou98b, WQL92, YE09].
Mapping [AWAG15, BCDL07, EW16, HSBA16, LBvH06, MS87, DZC+13, FKBS11, GH88, HG97, HEK+16, Kuh80, Laf98, Ree82, SWL10, SSAC13, WY05, WK08].
Mappings [GKU09].
MapReduce [ACRV12, GBNN15].
Maps [BLAA99].
March [IEE77].
Margherita [ACM95].
Marginal [AML+10].
Margins [BT13].
Mario [Fos93a].
Mark [CHV04].
Mark-Sweep [CHV04].
Market
New92a, NP17, Par88a, PHJH17, PCW14, PAY+17, PG16, RHL05, RDK+00, RSP05, RGSJ17, SKB+17, SDS08, SOD+14, SWA+06, SDB+15, Tab05, TMC+06, TAM+08, TML+17, VFK+04, WJZY15, WSH+05, YEP+06, YE09, ZYMS15, ZLJ16, ZH17, vPCC06, AD98, AR33, AJK+09, AHMN91, AGT11, AJ77, AKCB86, ATS14, AL74, APR89, AL91, AKSD16, Arm74, AJL14, ACM02b, AJC+88. memory
[ACK94, ACS+12, ADS+13, BLAA99, BHS12, BGC+13, Bay99, BSK+10, BCZ90, BMBW00, BF73, BLS99, BR90, BLA+94, BLA+98b, BLA+98a, BDL07, BMW09, BMV+07, BI12, BSF+91, BM06, BCC+90, Bos84, Bra77, BC04, BF90, BMP+04b, BB74, CMF+13, CDP82, CDP83, COH+11, CGS09, CA94, CL89, CZ14, Che81, CSSP87, CS11b, CLX+16, CM87, CNV+06, CMM+06, CMT00, CM00, CBRJ12, CDK+94, CP11, CRG+11, CRM91, DCW+11, DFL06, DFF+13, DVS7a, DMR+11, DLM00, D93, DLMN09, DI90, DMB07, DP12, DKCZ93, ELM10, EGG+85, FB08, Far05, FMM+07, FH88, FSS+09, FeOBA05, Fre87, FHH+89, Gao93, GCN+10, GGH91, GGH92, Gha98, GLM13, Goo83, GcC84, GHS6, Goo98a, Goo98b, GGV90, GGG+82, GGG+98, GSS95, GN99, HW77, HD77, Har91, HVAC03, HKE+16, HC04, HS13]. memory
[Hen07d, HM93, HGC10, Hic77a, HR09, HSH96, HK09, Hoo77, HMMS96, HBB+14, HX97, HKM02, HSS94, H10, Hum96, Hy93, ISL96, Ill87, ICN+10, JK13, JZL09, JH09, JH95, Jon08, cJCO99, JB97, KT91, KC292, KJT+10, KKO8, KD6+14, KSL16, KKC+16b, KE16, KW84, KL94, KFN02, KSS5, KHS+97, KC07, Kr03, La69, Las88a, LSSG05, LW95, Lee88, eHLL89, LIMB09, LAS+07, LP91, LLD+04, LCM+09, LZZ+07, Lin81, LHL+89, LMR92, LCF+14, LLC+14, LS+14, LS92, Luk01, LLC98, Mac96, MLN+12, MHS+03, MF05, MD88, MTS10, MBK90, MTC+07, MBLZ89, MKKU03, MBM+06, MGBK96, MYB89, MJ89, Nad88b, NMZ12, NUMS94, NSQ16, NPC06, NSI94, NAAL01, Nik09, Nis91, ON90, ON12, OCS89, PGV05, PBC+13, PN77, PVAL95, PGSH00, PNB83, Phi84, PPH14, PP03, PCH+82, PZT02]. memory
[QD99, Qui79, QSR09, QFLMK10, RRP+07, RPASA97, RTY+87, Rau91, Ree82, Reg76, RLW94, RPW96, RLW98a, RLS10, ROKB95, RZ80, RA90, SB05, SIG99, SN96, SA92, SD87, See89a, See89b, SWL10, SYL13, SJ89, SL92, SL93, SAR99, SVC03, SHZ97, SSH+07, SD10, SA91, SWG92, SMN+11, SF91, SLT02, SWAF09, SSR+13, SPA+98, SMH02, SHV+98, Sta89, SHMZ94, SG95, SKC+03, SC05, SHK+11, SSC98, Tab10, TK07, TMV+11, TBG+97, TBC94, TDR91, UMB+11, UMB+12, VCK+12, VGVN05, VBHY+14, VTS11, VTS12, VAV10, WS07, WHMO2, WGT+05, WK08, Wei89, Wi12, Wil85, Wil87, WCA02, WCF+93, WLZ+09, WM95, XH06, YCT05, YKA96, YE10, YJE11, YCMR12, YJSE12, YN09, kSYHX+11, Zal03, ZT95, ZRW05, ZLZZ09, ZPS+04, ZZZY09, ZW16, ZB92, BFP07, DLSW76, DS98, Gha098]. memory-efficient
[ON90]. memory-intensive
[KK08, SKC+03]. memory-latency
[MKKU03]. Memory-Level
[CA04, HK09]. Memory-Safe [CRW+15]. Memory-system [FCJV97]. MEMS
[KW11, SNG00]. MEMS-based
[SNG00]. MemScale [DMR+11]. MEMS
[FFH+89]. Mercury
[HCG+06, WGH+97]. Merge
[MCK16, LCM08]. merit [Lan77]. MeRLiN [KGGC17]. mesa
[JW82, McD82a, SS82]. Mesh
[Mus09b, SAL+05, BHBL87, DCS+14, Mus09a, SWC+95]. Mesh-based
[Mus09b, Mus09a]. mesh-connected
[BHBL87, SWC+95]. Message
[An04c, An04d, An05c, An05e, An06b, An06c, An08c, An08d, HWC91, KBS84,
LR77, BCG14, Bra77, DCC+87, DCC+98,
DRR89, FAB+96, GVY90, GH88, HHS93,
KD06, KL94, MGH+96, PH88, SK85, SHI92,
Wit76. message-based [SK85].
message-driven [DCC+87, DCC+98].
Message-passing
[HWC91, FAB+96, GH88]. messages
[RL74b, vECGS92, vECGS98, vECSG98]. messaging
[HWC91, FAB+96, GH88].

Message-passing
[HC95, Las91] Messina [Ful93].

Meta [CCEH00]. methodological [WOT+95]. Methodology
[Asl84, CS94, Che92, KL95a, KL99a, RCL73].
Methods [BS06, Gau85, BGM04, Chr90, Ei90, GSI90, KTM97, ON90, OM94, Sin92b, Tho11a, WJC04].

Microprocessor
[DBK+02, Nut77, TLM+04, WEMR04, AA82, AP76, BCL82, Che92, Dav80a, DM87, DM87b, DMB87a, FGVG13, HP02, HPU+16, HS84, HC88, KKK76, MBL+89, MFS, NHO96, OMB91, OCF00, OCL90, RV77, RZ80, SCP+06, SEI+95, Wd76]. microprocessor-based [RZ80].
Microprocessors [Ful91b, LKM+05, Pat06, SABR04, Zak77, AZ05, AL74, BS88, BS93, BFGK96, CGL92, Lin81, Lip78a, Sch77, Ste88, TA03, WOR96, WJMC04].

Microprogram [JK77, FM76].
Microprogrammable
[Coo73, NKS86, HvDJK80, TSK+83].
microprogrammed
[Arm74, Ker74, MM83, Zak73].

Microprogramming
[Gon77, FM76]. Microsequencer
[Dvo00]. microthreading [CSK+99].

Microprocessors
[BS06, Gau85, BGM04, Chr90, Ei90, GSI90, KTM97, ON90, OM94, Sin92b, Tho11a, WJC04].

Microcomputers
[Keh76, Rad82, VHL73].

Microcontrollers
[CCS+91, HRW09, HP86, HP98, JWS98, Jon88a, KS95, MPP+08].

Microcomputer
[Ben92, Sac83, Che84b, KM74, RM77]. microdrivers [GRB+08]. Microelectronic
[ABC+94]. microfluidics [ATV+07].

Microkernel
[TOL+11]. micromachines
[McD82b]. Micromodules [Coo73].
micron [CCS87]. microcontrollers
[BS06, Gau85, BGM04, Chr90, Eij90, GSZ90, Kum87, MT97, ON90, OM94, Sin92b, Tho11a, WJMC04].

Microprocessor
[DBK+02, Nut77, TLM+04, WEMR04, AA82, AP76, BCL82, Che92, Dav80a, DM87, DM87b, DMB87a, FGVG13, HP02, HPU+16, HS84, HC88, KKK76, MBL+89, MFS, NHO96, OMB91, OCF00, OCL90, RV77, RZ80, SCP+06, SEI+95, Wd76]. microprocessor-based [RZ80].

Microprogramming
[Asl84, CS94, Che92, KL95a, KL99a, RCL73].
Methods [BS06, Gau85, BGM04, Chr90, Ei90, GSI90, KTM97, ON90, OM94, Sin92b, Tho11a, WJC04].
Minimize [AT11, GH86, WS74].
Minimizing [MZLH15, DD80].
Minimum [Rou86].
Minos [CC05].
MIPS [CH87, CKDK91, SD09, UC94].
MIPS-X [CH87].
MIRA [PED+08].
Mirv [FTM99].
misconfiguration [ZRZ+14].
misleading [Cit03].
miss [AP93, BVGL00, CS06b, Quo94, TASS09, YCT05, ZPS+04].
Misses [Zhao06, DSR+93, GBHS14, HKE+16, LKL+02,LBL02,ST03,XT96].
Missing [SP96].
MissSPECulation [Cit03].
mitigate [PKM17].
Mitigation [AGS05, YMM15, MHhk+13, RLCV10].
Mitigating [KSCK17, MDS12a].
Mixed [WCS09, GSS12b].
Mixed-mode [WCS09].
ML [Dik90].
MLC [HASA14].
MLP [QLMP06].
MLP-Aware [QLMP06].
Mnemosyne [VTS11].
Mobile [KHE97, Ljdl+16, APX12, APX14, CLM07, LHG+16, LWZ14, LRS+12, MLN+12, RLCV10, SRSW14, YCMR12, ZR14].
Mode [SLG+05, De 81, TLD14, TM11, WCSS09].
Model [AHK08, AW17b, AM06, CKmWH16, CDG+17, HVML04, KS04, LWP07, MZLH15, SJA+17, TML+17, Bak91, BKS+94, Che90, DSH+10, FHM+11, GCN+10, GN92, GN98, GSM06, HK90, HK10, JB76, KB97, KS84, KDP92, KJT+10, LCMW08, Lor90, MMNB07, MJ89, NEEJ12, Nig90, Nik09, OCS98, PS77, PS98c, PA88, Quo94, RFS88, SA92, SAR99, SP98a, SMN+11, SL05, SHK+11, TWC+10, UT83, WMW09, WWC+14, YB86].
Model-based [MZLH15].
Modeling [AS91b, Ant91, EBS+04, EE01a, SS98, SH91, TAM+08, Afs05, BTS+11, BD93b, EE10b, GB57, IMC+06, JW95, LB06, LZZ+07, Rid87, ZA98].
Modelling [Nad88a, Nad88b, TBL12, Bec95, KB76].
Models [BKL+16, LB17, LCCZ17, SS85, BJ14, BF73, BC90b, GGH91, HHB+14, LCED01, LSFK08, NCLJ09, ZB92].
Modern [LSL+17, SDB+15, FAK+12, HMMS96, KS12, LJK+13, Sib07].
Modes [CCH+87, DMR+11].
Modification [Kep91].
Modifications [GB87].
Modulated [CJK+05].
Module [ABC+17, KHC92, MM83].
Modules [FSS73, HS74, MSS76].
Moguls [SHK+11].
Mojin [ZYS15].
Molecular [PDL15, GB01, MDCS13, SDD09, UC94].
Molecular-scale [PDL15].
Mondrian [DDM+17, WCA02].
monitor [CBK88, Hu85, MR90, MK05, YLP+99].
monitored [OQ91].
Monitoring [CKS+08, Ebe02, RSA+15, SH92, YJX+16, GVC+10, JADAD06, MDS12a, NG09, VGK+10].
monitors [MSI82].
monolithically [BSK+10].
Monsoon [PC90, PC98b, PC98a].
Monte [CTW+13, SL05].
MonteSim [SL05].
Moonwalk [KZV17].
Moore [Brec10].
Morning [Su74].
Morphable [QLLMK10].
Morpheus [ZZZ+16].
Morris [Buc78].
mortar [KMOA07].
Morton [LW07].
Morton-hybrid [LW07].
Morton-order [LW07].
motion [RWB09].
Motorola [Afz95, Gil80].
moves [AL12, EP84, TW91].
move-to-front [TW91].
Moving [Dal10, KE91].
MP [VSH01].
MEPEG [Kha99b].
MEPEG-2 [Kha99b].
MPSOC [FMB+07].
MPTsim [ZYG09].
MRAM [GIS10, GGP+13, WCN01].
MS [AZ89].
MTraceCheck [LB17].
MU5 [Bra82b].
MU6 [EKW80].
MU6-G [EKW80].
MU6-V [ICT85].
much [Bra80a, KJC06].
Multi [ABC+17, BSF+09, CGBS98, cC91, CBS98, KTR+04, KZT05, Loh08, MGT+17].
MSH+15, PED+08. Van81, YCR+17, nZY84, ARJS07, AA82, AP76, BW88, BW98a, BW98b, CHZ+14, CKC11, CSM+05, DS02, ELMP10, ELMP11, Eij90, EE14, FR89, FSS76, HTCA08, HTCU10, HDS10, KHP+95.
KDM+98, KMS+10, KMS+12, KKK76, KKMH11, KKP14, LBvH06, LCWM08, LLC+14, LCS10a, MK84, MLCW11, MLC+09, MŠT07, Maz77, MBS+04, MIO+10, Mus09a, MPM14, Nad88b, NSMK11, NS86, OA08, PBC+13, PBGM09, PHH89, QFLMK10, RRT+08, RKM+10, RvD77, RBW09, SWC+95, SQP08, SMQP09, SMJ+10, TF88, TTMH80, TM80, TM11, TL11, UMC+10, UZ91, VIA+05, VJE+12, Wid76, WAC+10, XL09, YZ07b, YLHL10, YN09, kSYH+11, CH04, NMS+14, multi-[MŠT07], multi-ALU [KDM+98], multi-bank [PBC+13], multi-bit [WAC+10], multi-chip [KMS+10, KMS+12], Multi-CHIP-Module [ABC+17], multi-configuration [DS02]. Multi-Core [KTR+04, KZT05, MGT+17, Loh08, ARJS07, CHZ+14, CS+05, ELMP10, ELMP11, EE14, HTA08, KKKH11, LCWM08, MLC+09, MBS+04, Mus09a, NSMK11, PBC+13, PBGM09, RBW09, SMQP09, SMJ+10, TL11, XL09, YZ07b, YLHL10], multi-cores [HDS10, MPM14, UMC+10, VJE+12], Multi-dimensional [nZY84], Multi-execution [BFS+09], multi-FPGA [MIO+10]. Multi-GPU [MSH+15, NMS+14], multi-hop [KKP14], Multi-layered [PED+08], Multi-level [CG89, CSB98, BW88, BW98a, BW98b, Eij90, PHH89, QFLMK10, RRT+08, UZ91], multi-lingual [TTMH80], multi-memory [Nad88b], multi-micro-computer [FSS76], multi-microprocessor [Maz77], multi-microprocessor [AA82, AP76, RvD77, Wid76], multi-mode [TM11], multi-path [CKC11], multi-policy [LLC+14], multi-port [SWC+95], Multi-processor [Van81, NS86, TM80, VIA+05, YN09], multi-programming [Van81], multi-purpose [HTCU10], multi-queue [TF88], multi-sensory [MK84].

Multi-Stage [YCR+17], Multi-threaded [cC91, KHP+95, LBvH06, MLCW11, OA08, RKM+10, SQP08], multi-threading [MLC+09, kSYH+11, CH04], multi-user [FR89], multi-variable [LCS10a], Multibanked [TIVL05], multibit [OCBL12], Multicast [BDH+99, JPL08, LN91], Multicasting [JPL08], Multicomputer [VMN06, AA84, AAEBAT98, BLA+94, BLA+98a, BLA+98b, FAB+96, GB83, HB90, LN91, Mat85, NS91, NWD93, SWC+95, WLY84], multicomputers [AGSY94, AKB+89, GH88, MC92], Multicore [BRUL05, DM06, GMT16, MK11, PQNT16, SLFG06, WM16, ZBBL16, ZE16, BBJ+08, BFS+09, EES+11, EE10a, FKBS11, GCTR08, KST11, NCL09, PQ+09, PIAS13, PIB10, SSD+13, VNN13, WZJ10, WCS08, WJS09, WJGA12, WZ13, ZYGPO9, ZBF10], Multicores [RHR+17, GTSS13, Irw10, JM12], multicube [GW88], multidestinations [SSP97], multidimensional [BHS91], Multifacet [MST+05], multifunctional [CJM77], multigrain [YKA96], multigrid [MT97], multilanguage [BF87], Multilayered [BS87], multilevel [MSSZ76, PPZ96], MultiLisp [Hal87], Multimedia [Roc94, GSR93, GMS+99, HKA+01, Kha99b, Kha99d, JTM01, Th03e, Wra91, HA04], multimicrocomputer [NOK+83], multimicroprocessor [MS76], Multinomial [TJCC88], multithread [CH84, MKKU03, MG91], Multiple [AK81, CB17, CGVT00, GFT+15, EMZ+16, HCC+06, HKT93, HJL89, HHJ90, JPT14, Las88a, MIT89, ORS+04, PQNT16, TM05, AZ05, ABC97, AS96, BA84, CMC+91, CMC+98, CS80b, DNSD13, Dav80a, DC09, Dow91, Dre94, EP87, GWM03, HKN+92, HS85b, HDP+90, mWH98, JS88, KR85a,
LGH92, Lee85a, MJW11, MSS+03, Mar82, NUMS94, OPZ11, PS88, PAVT16, RL74a, RBS00, RF90, SWY10, SA92, SP89, SJH89, Tho13a, TtLeC13, VE14, WCT98, WG89b, WJM04, YM11]. multiple-API [NUMS94]. Multiple-banked [CGVT00]. multiple-bus [SA92]. multiple-context [LGH92]. multiple-FPGA [YM11]. multiple-instruction [mWH98]. multiple-instruction-issue [CMC+91, CMC+98]. multiple-issue [AZ05, AS96]. multiple-precision [JPT14]. multiple-processor [BA84]. multiple-site [Dre94]. multiplexed [GCLM85]. Multiplication [D’H16, MPPZ87, RV84, SBV91, WJ85]. multiplicity [LLC+14]. multiplier [HS85c, SMD+13]. Multipliers [BdDPT10, OCBL12, Tad13]. Multiply [THEK16, LGM+14]. multiply-add [LGM+14]. multiport [For94a, For94b, LHL+89]. multiported [TA03]. multiprocessing [ALKK90, AlS3, BGM+00, DLCO09, Gra91, Las88b, Str83, Wil78]. Multiprocessor [Ber91a, BD86, CLS05, Göh14, Han78, LYL87, Man01b, Miy85, MCT08, SA88b, ASK85, AR89, BFP03, BKT87, BF73, Bri87b, BC90b, Bur84, CCC+88, CSB86, CBS88, CGBG88, CM80, Cve03, DVT12, Den03, DS89, DI90, DI91, DSN07, ED83, FCP92, FH88, FF73, Fra90, FHH+89, FP91c, GKL83, GLH88, GL73, GL98a, Goo87, Goo88b, GW88, HAOS86, Hal87, HS77, Hoo77, HDP+90, JB76, JS99, Joh88, Joh92, KDP92, KDS+06, KC82, KSN07b, KR80, KOH+94, Kus98, KOH+98, LH91, LS82, eHLL89, LR90, LWV+10, LLG+90, Lip98, LMR92, Lm85, LRHM90, Mal80, Mar85, MSB+05, MF05, MPS89, Mi92, Mil82, MBLZ89, MPSV06, MKHT09, NMS+00, NO94, NH90, Nl85, Nik09, NP95, Oya89, PR82, PNB83, Phi84, PP03, PWA13, PP92, PH88, RC91, RTY+87]. multiprocessor [RB90, Rod85, SP84, SP85a, SK85, SA92, SC89, SJ88, Sin92b, Tab88, TS78, TS90b, Tob80, TTMH80, TP90, TE93, VI94, VT14, VLZ88, VM88, Vin77, VGSS85, WG89b, XBH03, VF85, Zah03]. multiprocessor-array [Mic92]. Multiprocessor/distributed [Miy85]. Multiprocessors [CTTC06, CS06a, CMR+06, JKT05, JKT09, KKS+08, LNR+06, LHL+89, SSZR05, SST06, TT08, TKJ07, ZA05, AT11, AGS89, BSL08, BD93a, BM09a, BM10, Blu84, BM09, BNA88, BR92a, BF90, CS89, CJK+05, CK92, CY96, CMT00, DFL05, DD90, DN93, DB82, DS86, DSR+93, DS98, DS98, FB08, Far05, GLL+90, GGH91, GGH92, GLL+98, Gha98, GSV03, GVW99, GGV90, GS95, Har91, HGC10, HT14a, HJLS9, HGS+07, IKKM07, KEL91, KHN07, KADS04, LW95, LAS+07, LAS85, LS92, MPT91, MHS+03, MC92, MNLS97, MBK90, MGBK96, Nad88a, Nad88b, PAA97, PP84, PP98, Pat98a, PVAL95, Pri91, PZT92, PP09, QSQ14, Rat85, RSG93, SGC+05, SD87, SHZ97, SA91, SMHW02, SHV+98, SK08, Ste89b, SY89, TSB97, TD91, Wah83, WM09, WG89a, WAF07, Wil87, WM88, ZL14]. multiprocessors [ZK90, ZT95, Ber91b, Kri91]. Multipleprogramming [GH76, CGL92, DI90, MP86, TGC+14, XJ+16]. Multiscalar [SBV95, SBV98, Sol98a]. multistage [DS85, HJ87, KR85b, SS89, SK09, Ste89b, TYZ85, VR87, WL88]. Multitasking [HCl77b, PPM15, PPM17, ELN89, QMT89, SMB10]. multithread [DSH+10]. Multithreaded [KTR+04, ACC+03, BAD+10, BMBW00, BNS11, CL94, CGL92, EJK+96, GL98b, HF88, JSMP12, JSMP13, LBE+98, LC13, NPA92, PFV03, PDP+13, PT03, RCM+12, REL00, ST00, TE94, UZU00, VGK+10]. Multithreading [PT91, SKA01, BR92a,
HCD+94, IAD+94, Luk01, MWP07, MKR02, OAA09, PGS06, RM00, SW16, TSCH99, TEL95, TEE+96, TEL98a, TEL98b, VPC02, WLG+14, WW93, WCW+04. MultiTitan [Jou89], multivariate [GLVC13]. München [ACM04], MuNet [HW80], Murli [Fun93].

N [NI85, JVV13, Sin92b]. N-body [Sin92b]. name [Lin77], NAND [KRM08], nano [HHL16]. nano-instruction [HHL16]. NanoFabrics [GB01]. Nanometer [Emm06]. Nanophotonic [VSMT08, XYM12]. nanophotonics [PKK+09]. nanoscale [ICN+10, LN07, PJDL06, PCDL09].

National [Mat78, TF01]. Native [CSBA17b, AHA+14]. nature [Cox79, HSS12]. navel [Lin76]. Navigating [WBKR13, SHBS14]. navigation [KM74].

Nercromancer [AFGM10]. nectar [AKB+89]. Need [NP17]. needle [Dal10]. needy [PMA+13]. negative [SCAP97].

nest [KPH96]. Nested [DKD+15, NNIS16, SJA+17, SSK17, GHS16, MBM+06, TY790].

nests [CM00]. Net [Fu191a]. nets [AF73, Lip88, Zab80, Joe90, Yok94].

Network [BHM+17, GPY+17, HCJC06, HTM+05, HSL17, HIT05, KSL08, KMSV12, LER+17, LNR+06, LR77, LNN+17, Mad94b, MCK+16, NZO+05, RLD+17, SAKD06, SLTC16, TQC+15, ZBBL16, AA86, AJH+16, AKB+89, BS87, BLS99, BDH+99, BSR06, BSD87, BLA+94, BLA+99b, BLA+98a, CG95b, CS13a, CLX+16, CMP+88, CKA09, DNSD13, DCS+14, DSH+94, DR91, DKCZ93, Est02, FFdDH00, GP88, GHKM11, HS80, HLM+16, HCV03, yKPR02, KHSB14, KMS+10, KS91a, LH86b, LF82, MS80, MS82, MSZ90, MG91, MFHW96, N880, NS94, PKK+09, PR82, RFS88, RWA+16, RL74b, RL76, Rui90, SP84, SP85a, Sez86, SNM+16, SKB09, SVC03, SM89, TF79, TGG84, TLLL07, WL88, YLT06, vIG80].

Network-in-Memory [LNR+06].

Network-On-Chip [BHM+17, KSL08, DNSD13, GHKM11, PKK+09]. networked [HSW+00, Nak01]. networking [SHMZ94, VGN05]. Networks [ED17, FK17, IPWK06, KNP06, KDA08, LNA08, Lev92, MMW04, PRM+17, PAY+17, SAL+05, VRB+17, APGP07, AMW+10, AA11a, AS92a, AWV88, Ann91, AEBA98, BK11, BK91, BHBL87, BAE89, BV+00, BG80, BC02, CSJC10, CES16, CK92, CH84, MMDD10, DS85, DCB+94, EKM04, FW82, Fra90, FAH83, GH88, GL73, GL98a, GCLM85, HJ87, JM88, JMY89, JKD09, KCO2, Kha97a, KLHJ88, KC96, KDA07, KHS+97, KJ83, KR85b, KMSV12, LHH91, LW84, LC02, LN91, Lip98, LDT+16, MJW11, MBLZ89, MM87, MM90, NS91, NBK95, NMTH01, OQ91, OT73, PW97, RHS96, Ros89, SC98, S889, SH80, Sic77, SDT03, Sov83, Ste98b, Tem10, TYZ85, VR87, WGO+13, Wit76, XYM12, Yok94, YA90, nZY84, Mar88, Pen88].

Networks-on-Chip [FK17, AA11a, MJW11, WGO+13].

Neurocube [KGC+16b].

Neuromorphic [Geh14, HNTL11, KKC+16b]. neuron [AJH+16, YM11]. neurons [Smi14].
Neurosurgeon [KHG17]. Next
[AYQ+16, CG95a, CCA+11, Lee72, CH04].
Next-Generation
[AYQ+16, CCA+11, CH04], NHT [Fin93].
NHT-1, NIC [HTM15, YKD01].
NICE [Ulm97]. NonRDY [CG95b]. Ninja
[SKC+12]. NJ [Ber91b]. No [RRT08].
NOBLE [ST08]. NoC [KSL08, GHKM11,
BHM+17, DCS+14, NCLJ09, PDL15, YL16].
NoCs [KKP14, PWA13]. Node [Emm06,
LSS04, RSG93, TGGS14, VSM+07].
nodes [NMS+12, TAV10]. NoHype [KSR10].
Noise [PV04, PV03]. Non
[AMH+16, BSADAD04, CYMT16, CYG+17,
HTA08, HHS13, JCSK14, LB17, LLLG16,
RCAK17, YNQ15, ZYMS15, BK96a, BK96b,
Che87, CS11b, CCA+11, CLS73, FJ94,
GRRT84, KBK02, LZC+16, LWS75, McD77,
NMS+12, SA92, ST08, SKA13, TZH+13,
VJ95, WGO+13, Zak77]. Non-blocking
[HTA08, BK96a, BK96b, FJ94, ST08].
non-blocking/lockup-free
[BK96a, BK96b]. non-critical [LZC+16].
non-determinism [SKA13].
Non-Deterministic [LB17, LLLG16].
non-exact [TZH+13]. non-interfering
[WGO+13]. Non-Invasive [BSADAD04].
nongeneric [CL73, LWS75, Zak77].
nongeneric [GRRT84].
Non-Preemptive [CYMT16, CYG+17].
Non-race [HHS13]. non-redundant
[Che87]. non-software [McD77].
Non-Speculative [RCAK17]. Non-SSD
[JCS14]. non-uniform [KBK02, SA92].
Non-Volatile [AMH+16, YNQ15, ZYMS15,
CS11b, CCA+11, NMS+12, VJ95].
nondeterminism [HBCG13]. NonStop
[HHJ90]. nonuniform [KMT91]. NOrec
[DCW+11, MS15]. Nostrand
[McG78, Vra78]. note [Lun75, Wan93].
Notes [BSLF05]. notion [vdSS79]. Novel
[HS16], PAD16, Bar82, CCE+09, CLX+16,
Couv90a, CS12, Kha97b, KNP+07, Lap90,
MS10, MIT89, PSB13, SMD+13, SSAC13,
Ste88, SC05, TRA91, VFK+04, WHM02,
YY92]. NPCryptBench [YLT06]. NRE
[KZVT17]. NT [LCB+98]. NUAL [SJ04].
NUCA [BFG+07, HFFA09, MB07]. nucleus
[KONA82]. Nuggets [Th09, Th91a,
Th91b, Th91c, Th92a, Th92c, Th93a,
Th93b, Th93d, Th94a, Th94b, Th94c,
Th94d, Th95a, Th95b, Th95c, Th96a,
Th96b, Th97a, Th97b, Th97c, Th97d,
Th98b, Th99a, Th99b, Th99c, Th00a,
Th00b, Th01a, Th01b, Th01c, Th01d,
Th02a, Th02b, Th02c, Th03a, Th03b,
Th03c, Th03d, Th04a, Th04b, Th04c,
Th05a, Th05c, Th05d, Th08a, Th14b,
Th14c, Th15a, Th15b, Th15c, Th16,
Th19d, Th92b, Th93b, Th98a, Th98c,
Th95b, Th96c, Th96a, Th96b, Th97a,
Th97b, Th07b, Th07c, Th07d, Th08b,
Th09b, Th09c, Th09d, Th10c, Th10d,
Th10e, Th11b, Th11c, Th11d, Th12b, Th12c,
Th12d, Th13b, Th13c, Th13d, Th14a].
null [KKN00]. NUMA [BSF+91, CSBA17a,
DFF+13, FW97, GTS+15, LL14, LC96,
MNLS97, NDB+14, SKJ+17, SJG92, SC05].
NumaGiC [GTS+15]. number
[DSG11, Fis84, GSS12b, Joh04, MS12, Sez96,
SGS11, TS90a, VLL+92]. numbers
[CS11a, FTP94, MS10]. numeric
[CL73, HB90, HHS0, LWS75, Pal80, Zak77].
numerical [Che90, GRRT84, HRC+90,
MS76, NNN+91, PB80]. NV [CC11].
NV-Heaps [CC11]. NVM [LSY+14].
NVMM [CS11b]. NVRAM [KKB+16].
NVWAL [KKB+16]. NYU
[EGK+85, GGK+82, GGK+98, Got98].
BC90a, CFE+12, DET00, Dal89, DSOF11, KPK96, LLC06, McF89, MTG+99, OKN02, OMB92, RYF+13, SDH+14, TL11, TACT08, TL00, VSW+13, ZCSM02, ZR05.

Optimizations
[CFP04, BP04, BTM00, DS06, KL02, KMC02, LRW91, LHE+13, LM99, MPS94, ON12, OA08, RBG+01, TASS09, VKI+00, WW13]. optimize [CM00, Kar89]. Optimized
[BHBL87, KK08, PA88, RAM+04, SBS93, SC05, XT96]. Optimizer [PSR05, BS74].

Optimizing
[BVGL00, CPV05, DHT15, IMMC08, LL14, PAY+17, RH+17, DFRO17, Sch01a, SG95, ACRV12, BC04, Har82, HKM02, HC89, LQ12, SC90, VAV10]. optimum [HP02]. option [Fon03]. Options [QD98, TTT10].

OR-parallel [DRR98, ST87]. ORAM [FRK+15]. ORB [OUY+13]. orbiter
[Sat74]. Orchestrated [JKM+13, RSEW04].

Orchestration [FKBS11].

Order
[KS04, TP08, AIO+11, BMM14, CMLV04, HX97, HHS13, HP87, JSL95, Lee85a, L07, MTZ13, NEEJ12, SW16, SL05, SD09, XDLB13]. order-sensitive [HHS13].

ordered [GB74]. Ordering
[CLO4, LSMB16, vPCCR06, AH90, AH98a, AH98b, BMW09, DCS+14, GLL+90, GLL+98, Gha98, LNR12]. orderings
[Jon08]. Orders [BNE16]. ordinary
[AS92b, VJM99]. Organization [CSSP87, GCO+04, WBL89, BC91, CM80, DJ99, Kro98a, Kro98b, KKP14, Nad88a, New92b, New92a, UMC+10, VBS97, RAM98]. organizational [Jon89]. organizations
[EP88, FTP94, HS77, HS93, Nad88b, RB89, Red92, SG83, SSR+13]. organizing
[LAK09, PJDL06]. oriented
[ATHM86, ABL+80, CBC+08, CRM91, DK85, Gai83, GC86, GS74, Gra91, HB86, Hea76, HS13, Hir86, Hya93, IT84, JMK+08, Kar95, Llf03, LFH03, MF76, My77, NKS86, SM77, SL074, SEE74, Wel76, YHF03, ZSL10].

Origin [LL97]. origins [HLR98]. orthogonal [HDP+90, SC89]. orthogonal-access [HDP+90]. Orthrus
[HDS10]. OS-level [XLZW15]. OSek
[TP08, HX97, AIO+11, CMLV04, HP87, JSL95, MTZ13, SW16, SD09]. Outlier
[HTM15]. outline [CHJ38]. Output
[CD77, JWB93, JWB94, KC74, Che90, MCD77, PAV16, AS91b]. OUTRIDER
[CP11]. Outstanding [LSB15]. overall
[Jon04]. overcome [ON12]. Overcoming
[KP03, SGH93]. Overflow
[SDLR+15, Ino05]. Oversead [AWSS17, CG95b, CJ01, HC04, JH94, KOAG12, LW95, LAS85, MVCA97, NSH+11, PP84, PP98, Pat98a, RP85, RPF06, RSP05, ROK95, SSB07, SHV12, WRS4, YL16].

Overheads
[KSC17, KZT05, D90, LYK+00, MHI+13, NSI94]. Overlapped
[DHB89]. Overlay
[EW16, JLMF15, LJF+16]. Overshadow
[CGL+08]. Overview
[CBF93, Hal87, Mo83, GKF84, GSR93, GA79, JW82, KGM87, MFST88, RCG91].

OWL [JKN+13]. Oxygen [SWW02].

P
[Col88, Tab96, Fos72a, JDL81, PR05].

P-Thread
[PR05]. P400 [MET87]. p754
[Ste8]. PA [SGH97]. PA-8000 [SGH97].

Pacifier
[QS14]. pack
[Las88b, Las99a, Las91]. package [SW90].

Packet
[AW+16a, PGVB04, CH84, DMMD10, DR91, KDJ83, LMN76]. packets
[Jai8].

Packaging
[HGT05, PEP09]. pads
[ZWM+14]. Page
[ANS+15, AW17a, CB17, LER+17, AHJ12, BCR10, BSSM08, CNV+06, KU09, H089, K07, LFZE00, LS12a, Z96, ST03, SM89, TKHP92, W191, ZPS+04]. page-based
[CNV+06]. page-level
[GBK09, LS12a]. page-sized [SM89]. paged
[AR3, O82, CDP8, CDP8, RTY+87]. pages
[OCS98, Sta89, SCN+10]. **Paging**
[SKB+17, GHS16, Lip78b, MP86]. **Pair**
[MCXS16, BC02]. pairwise [IBC12]. **Pallas**
[HABZ17]. **Palo** [IEE79].

[APT90]. Panel [vT89, DSF+90, DHR+90, HCD+94, Hil13, IAD+94, Kav81, Mud96].

paper [Lun75, Mac99]. **Papers** [Lei91, BGP+01]. **PAQ** [JWK12].

paradigm [FS92, PPA+13, TL00, VFK+04, VSM+07a, VSM+07b]. **Paragon** [DK13].

Parallel [All92, BGP+01, Ber91c, BFA+15, Bit89, BAB88, Cha92, Ful93, GFT+15, GFNW86, HJrCH16, Hib80, Hil91, HCL15, HK90, JWB93, JWB94, Lan90a, Lei91, LHPL87, LN92, Mar73, McG78, Mil77b, Par88a, PKB+16, PZK+17, RP85, Rui86, Sav85, SD17, SBK77, TS90a, Vra78, YMM5, vdhHS90, AS91a, APP+14, AR80, AS92a, APR89, AR89, AFNV90, BM91, Bat80, Bat98b, Bat98a, BBHH, BBZ88, BTF77, BF87, BWJ+90, CL09, CLVW93, CPdM+96, CO82, CCC+88, Cha90, CKuWH16, CSY90, CAD09, CG92, CLC90, Cou88, CBF93, CHKM93, DD90, DM91, DRR89, DESE13, DJT94, EK88, EK89a, FDS7, Far05, FR89, FFM11, FR87, FHH+89, FKT+89, Gai83, GKF84, GAG88, GCN+10, GVC+10, GMT89, GKS1, GGK+82, GGK+98, Hak85, HW80, HFS88, HJ86, HW87, HHS+91, HHS+93, HRC+90]. **parallel** [HB90, HA90, HC88, ICT85, ISKR86, JSW87, JDL81, Joe90, KTK12, KFQS84, Kap87, KPK89, KM86, KL94, KSS+95, KBR99, La95, Lee88, LWRC10, LAB+11, LR93, LV88, LMRS92, LS92, MST+07, MT02, MM87, MFST88, MM814, Nae85, NNS+90, NK86, NPA92, NOK+83, Nis91, Nut77, PvsG80, PAP+12, Qu79, RCL73, RCR3, RB99, Rid87, RS84, RA90, SJLM14, SKC+12, SGG+85, SL92, Sib07, SSDK84, STV94, SWG92, SGS+11, SSS8, SGS+93, SG95, SSP+97, SB77, STS87, SP87, Tad13, TYZ90, Tan83, TBC94, Tra85, Uch83, UT83, VGK+10, VGSS85, WY05, WWW+88, WK08, WSC92, YPD83, Ye09, Yoko94, YW89, dRBC93, vT89]. **parallel-disk** [Yok94]. **parallel-pipelined** [YPD83]. **Parallelism**
[BCSB11, CFA04, HhEH+15, HPJ+15, JHK+16, MM08, OS03, SGS08, SJA+17, TMC+06, YLP+17, ABSC98, AKSD16, BDA03, BK11, BDMF10, BYP+91, CKJ+05, CSS+91, DF92, EE14, FFdDH00, FURM00, Fra86, FS92, GTA06, Har78, HDT+13, HK90, JW89, JWK12, KDO2, KDM+98, KSL+12, KTC00, KR+08, Kum87, KHN07, LW92, MEV92, MP91, NH97, NPS+89, PGTM99, RVD07, SSS8, Sur07, TPO06, TSK+83, TSN+86, TEL95, TEL98a, TEL98b, Uht93a, Uht93b, UZ91, Wa91, WR85, YKL+16]. **Parallelism-Aware** [MM08].

Parallelization
[BS06, RA90, SKA+11, ZS15, AC09, CBK+14, CMT00, GSM06, HGS+17, LSFK08, NIS94, PGRT01, KRM+10, SAS90]. **Parallelizing** [LZ93, NPCF08, WDC+13, CO03, VLR+11, ZWS14]. **ParaLog** [VGK+10]. **parameterized** [CM00]. **parameterless** [NL14]. **parameters** [Kee79b, RHZC74]. **Paraprox** [SJLM14].

Parasol [GK+13]. **Paravirtual** [KMN+16]. **paravirtualization** [SBQZ14]. **ParcBench** [GN99]. **PARD** [MSS+15]. **PARDIS** [BI12]. **Parity**
[SGH93, LK91, MAD11, Th12a]. **Park** [MII+77b].

PARSEC3.0 [ZBBL16]. **Part** [RGSJ17]. **Part-of-Memory** [RGSJ17].

Partial [SKCY16, AR80, Cit03, GLH88, GKS1, JS98, MM+95, RRP06]. **partial-multiple-bus** [JS88]. **particle** [KW84]. **partitioned** [DS85, FPF+02]. **Partitioning** [SMF17, BG80, CMB+13, Dev93, GL73, GL98a, HA00, KPR+08, Lip98, LPMZ11, SK11, SC90, WBRK13, XL09, XJK+16, ZA98]. **Pascal** [SV82, WAK80]. **Pascal-like** [SV82]. **PASM** [SDK84]. **Pass** [Emm06]. **passing** [FA+96, GVY90, GHH88, HWC91, Kee79b, ...]
Past [Ber91c, Hey90, TH03, Tha10, VPS01].

PASTIS [TTCM10]. Pat [Goo88b]. patch [VNN13]. patents [ZK17].

Path [BG80, HABZ17, MCXS16, MMP+12, CTPY02, CKC11, CS00, CCB+06, Deb89, DB00, FB01, JW97, RYF+13, SKB97, UJ92, WCT98]. Path-exploration [MMP+12].

Pathologies [BMV+07]. paths [NLS88, PR82, UC01]. patient [Hu85].

Pattern [AWS16, BOC06, KORA17, DJPK16, KMVS12, SJLM14, Vin77].

Pattern-Aware [KORA17]. pattern-based [SJLM14]. Pattern-Recognition [AWS16].

Patterns [Par88a, PKB+16, WJZ15, DJPK16, WG89a].

Patterson [CS80a]. Paul [Fu93, McD88].

Paving [PS14]. PC [DJ09]. PCI [dICKK15].

PCIE [KHBS14]. PCM [AKS16, DZC+13, WJZY15]. PCM-based [AKS16].

PCMs [HASA14]. PDOC [Hak85].

PDP [BS76, BS98b, BS98a, CRW+15, Fu17, Hug82, Jen78, Mid82, Str76].

PDP-10 [Fu76]. PDP-11 [BS76, BS98b, BS98a, CRW+15, Hug82, Mid82, Str76].

PDP-11/60 [Hug82]. PEACH2 [HL15, KHBS14]. Peak [CDY+17b, Won16].

Peephole [BA06]. Peering [CHJ83].

Penalty [KT91]. Pending [CHCW10].

Pennsylvania [IEE87, ACM96]. Pentium [KPH+98]. Per-thread [EE09].

Perceived [MCD+08]. Perception [MK84]. Perfect [KPK89, BAE89, KPK0, BR90, KPK90, VSH91].

Perform [AK00].

Performance [ASK85, AF95, AW04, AAD90, AW17b, AR89, ABC+17, AE01, BRU05, BNZ08, BB30, BC91, BMV+97, BJ90, BLO90, CSM+05, CK00, Cve03, DDK+16, DNS95, DI90, DI91, DDP85, Don83, Don85, Don88, Don90, Don92, DHT15, EP87, EP88, EAS+17, FD87, GGH91, HO91, HS00, HAN96, HJ96, HJ97, Hen07b, HL15, HB90, HS93, IT93, IS92, Jor83, JYP+17, KDS012, Kar07, KPS+16a, KMDP92, KPH+98, KKK92, Kja97, Kka99b, Kha99c, KPS+16b, KTR+04, Lau05, LIVW84, LK91, LLD+04, MP86, MS82, MZLH15, MM41b, MM88, NMS+14, OQ91, OSF+15, OMB92, Pon91, PHH88, PEB+09, RHR+17, RAJ99, SMD+13, SK85, SA92, Sch88, SG92, Sib07, SPM+06, Tab95, Tad13, TNN87, TS90b, TP08, WSC+14, WEM04, WFT87, YEP+06, YPDP83, YT04, Yon02, ZA98, ZH16, dICKK15].

Performance

[AD98, ABY+87, AJK+09, ABC+95, ABC+98, Aga98, AS91b, AKB85, AKCB86, AZ05, APR89, APX12, ACJL13, ACS+12, AML+10, BD93a, BFGP06, BFP07, BM99a, Blu84, BMW90, BS95, BNA88, BD93b, BEH91a, BB74, BCD12, CH01, CBG12, CA94, CSW94, CL90, CP90, CB92, CB94a, CJZ99, CGBG88, CY96, Cla87, CK88, Cra79, CJDM99, CJ01, CB13, CB94b, CKPK90, DDS94, Dah95, DLY+16, DV87a, DS85, DCD+94, DMS+13, DB07, DJ90, DK89, Dow91, DJT94, ELMP10, EK80, EK89b, EK89a, EWN05, EC84, EC98a, EC98b, ECX+11, EE93, EEE96, FJ94, FaRP9, Fat90, FB92, FHU00, FUM00, FHH+89, FTG88, Fu17, GS12, GAH+12, GMT89, GMF+11, HLM+82, HLR98, HHA83, HWH+11, HJB+82, HW87, Hig90, HK10, HBB13, HHS93, HMM89, HYY96, HPS6, HCS9, HP98, mWHP98, Hya93, ISL96].

Performance

[IM02, JVV13, JTSE10, JMY89, JS99, JMK+08, JKN+13, Joh04, Joh92, Jou90, Jou93, Jou98a, Jou98b, JCR10, JB97, Kar98, Kat97, KBB76, Kha99a, KKh96, KSS+95, KFMN2, KSN91b, KDL+93, KDL+98, KHC91, KKM94, KLRW09, LHP0, LHP1, LS82, LKB91, LBO6, LB11, LLJ+92, LLL+98, LLC9, LCB82, LBH12, LL14, LBB+98, LPL+09, LRHM91, MLC+99, MS13, MPH12, MCD+08, MR90, MWH03, MDS12a, MTT13, MB91, MUS09b, NAD88a, Nad88b, NRRS05, NIS99, NG94, NS86, NP90,
PH90, PT10, PHH99, Prz90, QJP+07,
QSR09, QFJL12, RFK88, RBS00, RHZC74,
RR77, Reg76, Ruc94, RBC84, SBRM09,
SB05, SJ86, SKC+12, SC89, SNN99,
SRWB14, SRJ+05, SSkP+07, SP98a,
SEI+95, SH91, SMB09, SP89, SG94, SZ88.

performance [SV87, SV98, Soh98b, SC02,
SL05, SW87, Ste89a, SJG92, SG95, SKC+03,
SQP08, SPR00, TYS+94, TF88, TRA91,
Tem12, Tic88, Tri80, VGNV05, VLZ88,
VV14a, VV14b, VGSS85, WBL89, WGH+97,
Wil01, WSC92, WBS+88, YTY83, YZ07b,
YMHB00, YHZX14, ZS00, Zub80, ZB92,
Ber91a, VJE+12]. **Performance-Directed**
[Tab95]. **performance-optimal** [PHH89].

performance-transparent [BMW09].
Performance/Watt [Lau05]. **period**
[CHCW10]. **periodic** [JW95]. **peripheral**
[Bra80b, Cout90b, MS84]. **peripherals**
[VPS01]. **permanent** [NSH17].

permutation [Bak94, RE13, Sov83].

Persist [STS17]. **Persistence**
[RC05, NH12]. **persistency** [KGS+17, PCW14].
Persistent [IKK16, KPS+16b, LZC+17, NH+17,
SKB+17, CLM07, CCA+11, GPR87,
KBC+00, LSY+14, VTS11]. **Personal**
[HLZ+15, Got98, LP00, LP98, Pie83, Pie98].

Perspective [GSM05, ACK+95, Fre87,
Hen07c, KR13, Mus09b]. **Pervasive**
[KLD+16]. **pessimistic** [Wan97]. **Petri**
[AF73, Joe90, Zub90]. **Phantom** [BM99c].

Phantom-BTB [BM99c]. **Phase**
[SSC03, WJZY15, JZY14, LIMB09, QSR09,
QFLMK10, QFJL10, SWL10, SYL13,
SZ04, ZZY90, dRBC93]. **phase-change**
[QSR09, SWL10]. **Phastlane** [CA09].

Philadelphia [ACM96]. **Phoenix** [Ste81].
phone [KDV11]. **Photon**
[PDL15, KMS+10, KMS+12, TCCM12].
photonic [BSK+10, UMB+11]. **PHP**
[GSL17]. **phylogenetic** [LH88]. **Physical**
[Dan93, HGS+07, LMG04, Ozt15, SSO05,
AMPH09, GCG+14, Oya89, VCK+12].

physically [For94a, For94b, JWK12].
physics [KDKB78, YFPR07]. **PicoServer**
[KDS+06]. **PICSEL** [MCD+08]. **Picture**
[Isa74, AC09, Cal74]. **PIE** [VJE+12].

Piecewise [Jim05, Req83]. **PIF**
[YSCC16]. **PIM** [ISKR08, SKC+03]. **PIM-D**
[ISKR86]. **Pin** [MF05]. **pinning** [SK10]. **pins**
[CHZ+14, PM92]. **Pipe**
[MTU+15, GtHL+85]. **Pipeline**
[MKG98, OSF+15, PV03, BMO1, CCE+09,
GTA06, HPF2, HBJ+02, IHS80, KMI+85,
KDM92, MIO+10, PD76, PD98, Pat98b,
SN95, TST07, Wil83a, YMS07]. **pipelined**
[AS91a, BFAJ93, GKF84, GM90, GLVC13,
Jor83, Kog73, Kog77, LM80, MSB+02,
NOK+83, OMB92, RV77, RR77, Rym82,
SVC03, SA88a, SA91, SP85b, SS85, SP98b,
SMi98d, SV87, SV98, Soh98b, WS84, WS87,
YPD83]. **Pipelines** [MBV15, TM05, PGB12,
SCP+06, SC02, SRA+04]. **Pipelining**
[AB92, Ano89, Cla87, LLD+17, MIT89,
CS99, DET00, GHW90, KK08, KS86,
LSFK08, NK01, SF03]. **PipeRench**
[GSM99]. **pipes** [LMS+13]. **PIPP**
[XL09]. **Piranha** [BGM+00]. **Pitfalls** [KBB+82].

Pitfall [KBB+82]. **Place**
[Pla76]. **Platform**
[EL94, PL04]. **Places** [PLZ09]. **Planar**
[CK92]. **Planar-adaptive** [CK92]. **plane**
[KSE18, LHH88]. **Plasticine**
[PZK+17]. **Platform**
[WSC+14, CLC12, CAD09, CKC11, FBF+00,
MK11, PWA13, SBS13, WCW+04, YMN1].
Platforms [SLTC16, BCDL07, BS08,
LSFK08, MBBS13, SMB10, SMB07].

plausible [YM11]. **Player** [LYM16].
PLUS [BR90]. **PMS** [KB76, KB76].

Pocket [KLS+11]. **PocketWeb** [LHS+12].
Point [DHN16, Ste80, YXR06, BDAPT10,
Bra72, DAI90, E190, EST89, GSS12a,
GLVC13, JBW89, LKB91, LGM+14, PB80,
RF90, RHS96, RIS76, SC92, SIT73, THEK16,
Wil95, dDIS13. **Point-in-time** [YXR06]. **point-to-point** [EST89, RHS96]. **point** [Eij90]. **Pointer** [Wil91, CFRS99, DS06, KKN00, RS99, Sez96]. **pointers** [SH91]. **points** [DB07, SLP+09].

Policies [SSZR05, BSF+91, DG92, FRB01, Jou93, LBCG95, QJP+07, SG83, SKD+10, WS07]. **Policy** [YGST17, LKO+14, LLC+14]. **Polling** [MGH+96]. **Poly** [HNS77]. **Poly-Processor** [HNS77]. **poly cyclic** [MSAD91]. **polyhedra** [BVGL00]. **PolyMage** [MVB15]. **Polymorphic** [KDOA08, SMB10]. **polymorphous** [SNL+03]. **polynomial** [AA11b]. **PolyPath** [KPG98]. **Polyvalent** [LCL+15]. **pool** [ZR05]. **Port** [BTRS05, SWC+95, WOR96]. **port/three** [AA29]. **portability** [VC72]. **Portable** [PARA13, CYH+11, HSW+11, Kep91, LYBK11, NLP14]. **Portend** [KZC12]. **POSC** [SC90]. **Position** [FRK+15]. **Position-based** [FRK+15]. **Positional** [HRT03]. **Post** [LB17, SDH+14, Wit16]. **Post-compiler** [SDH+14]. **Post-ISA** [Wit16]. **Post-Silicon** [LB17]. **potential** [DG99, DZZ+14, GM90, PS88]. **potholes** [Coc96, Ebr96, Mas96, Ros96]. **power** [RRT+08, AA11a, BM01, BL17, CDY+17a, CDY+17b, FWB07, HTM+05, IM02, KSN07a, LFZE00, LW+16, MSB+11, MMNB07, OSF+15, ORS+04, PDL15, PMZ+10, RLIC06, RAM+04, SSD+13, TM05, TT08, TL11, XLZW15, YCR+17, ZH16, AV10, BSL08, BFQ+07, BM09a, BTM00, CBGM12, CGS09, CKS16, DMR+11, DGMB07, EKMO4, ECX+11, FKM+02, GDN+16, GW10, GPV04, GWSU12, GIS10, GSKF03, HCI+11, HK10, IMK+13, JYZ14, KDV11, KHM01, KM10, KMS+10, KFN02, KZA+12, LB06, LLW+06, LWLZ12, LPMZ11, LDK14, MLCW11, MGW09, MS07, MF76, MPM14, NS86, PMA+13, PIAS13, PEB+09, RRT+08, RWB09, RWA+16, SYH11, SRWB14, SBIS11, SMB09, SQP08, Tho03e, TS10, WMMW09, WRS13, WGS+14, WAC+10, Wil83b, WDQ+16, YCMR12, Yue81, ZCX+14, CMF+13, MBBS13]. **Power-Aware** [ORS+04, HSC+11]. **power-constrained** [GW10]. **power-efficient** [CGS09, KM10, KMS+10, SYH11, SQP08]. **power-performance** [SRWB14]. **POWER5** [BCG+08]. **PowerChief** [YCR+17]. **PowerChop** [LZC+16]. **powered** [GKL+13, LQL12]. **powerful** [HY85, Ulm97]. **PowerNap** [MGW09]. **PowerPC** [Az95, DNS95]. **pp** [Fer88, Par88a, Par90]. **PP4** [MS84]. **PRIME** [Fen84, ME78]. **Practical** [AK16, CWY+08, FXZ+17, Ful93, HM05, Hsib, Mad94b, MGT+17, MCC+06a, OKJ+13, ZJL17, KS91a, LM80, MHKT09, NSH+11]. **Pre** [PR05, KY02, Luk01, VSMF03, SRWB14]. **pre-computed** [VSMF03]. **Pre-Execution** [PR05, KY02, Luk01]. **Pre-RTL** [SRWB14]. **Precise** [Bak91, CYG+17, DS11, GA01, LCS+10b, QTSQ13, SP85b, SP98b, Smi98d, UH93, YBM+13, ZM+16]. **Precision** [MCGL17, DFQ17, BDP17, JPT14, MPPZ87, SY+14]. **Precomputation** [SLG+05, APD01, CWT+01, TS10]. **preconditioned** [Chr90]. **preconstruction** [JS00]. **predecryption** [RSP05]. **predicated** [ANHN95, ACM+98b, ASP+99, MMH+95]. **predication** [JMK+08, RSEW04, SGB00, TL10]. **predictability** [BS95, EPCP98, SS98, Zha01]. **predictable** [AJK+09]. **predicting** [HKM02, JM12]. **Prediction** [CYG+17, FSR+04, JKH+16, Jim05, SLG+05, ASK85, BWJ+90, BE03, CG94, CG95a, CRT99, CHP97, CTYP02, Che90, CPT08, CE98, DZ90, DI91, DH98, DB00, ECP96, FFW98, FRB01, GM98, GYCS96, GL98b, JTSE10, JSN98, KE91,
prediction-based [RRP06]. Predictive [YSCC16, IMC+06]. Predictor [BSMF08, Sez05, KSA03, LF99, SFK02, SCAP97]. Predictors [BBK08, BJR99, BM09a, Bur02, EG97, ECP96, EPCP98, JG97, MSU97, SLM96, SC01, YP93]. predilections [KBB82]. Preemption [PPM15, WLZJ17]. Preemptive [CYMT16, CW+17, SKS88, TGC+14].

Preface [Pen88, Ram88]. Prefetch [ELMP11, Skl92b, Skl92a, Jou90, Jou98a, Jou98b, KW13, Kro98a, Kro98b, VS92]. Prefetch-aware [ELMP11]. prefetcher [WL10]. prefetchers [LFF01]. Prefetching [Bha17, JG97, APD01, CKP91, CLS06, CB94a, CHV04, CWT+01, CJG02, DC09, FP91c, GGV90, GP95, JKM+13, Joh89, KST11, KS02a, KL91, LLCP94, RSEW04, RBV07, RPAS97, RS99, SGH97, SLT02, TE93, WBM+03, XT96, ZT95, ZRW05].

Problem [VC04, AB84, FAY83, GTL13, Sav85, SGRH93, WH97]. Problems [Lan90b, SKCY16, Deb89, Kog73, MS76, NLV86, NP90, RG91, WLY84]. procedure [AK00, Feu82, GC86, Lam82, OT73, PA88]. Procedures [AK81, OM94]. Proceedings [ACM80, IEE76, IEE77, IEE97, IEE81, IEE82, IE83, IE86, IE88, IE05, IE06, ACM89, ACM91, ACM95, ACM96, ACM98a, ACM00, ACM01, ACM02a, ACM04, IE90, IE92, IE94, IE99, IE03, JDL81, LS73, ACM97, IE84, IE85, IE87].

Process [Feu84, FG91, KSCK17, BK11, Dev93, FH76, GS80, Hic76, Mus96b, RBOS07, TST07, WW12, YXM12]. process-dependent [Dev93]. processes [Ger81, GLVC13, vdSS79]. Processing [DHR+15, GAR+05, GSL17, HCJC06, JYP+15, KPS+16a, Mar73, MEB15, MV815, MKP05, VTGH17, WCX17, AJ77, ATHM86, AAZ89, BMP04a, BLS99, BNA88, Bra77, BC04, CL09, CLX+16, CD77, CLS13, DIY86, ED83, FBF+00, Fur05, Gal83, GK78, Geh14, GRR84, GYB+16, Hak85, HC85, HEK+16, HD86, ICT85, IHM89, KS02b, La95, Lor90, LS77, MAL01, NS74].
MS13b, Miy85, Nae85, Nit89, Qui79, RCL73, RL74a, RBG+01, RAJ99, RAJ00, Rui90, Sav85, SSDK84, SKC+03, Tan83, Tho12a, VF85, Waj92, WE74, WSC92, WSM+09, WJ85, WLP+14, YY92, Zak73, Zak77, Par88a]. processing-in-memory [CLX+16].

Processor

[AK81, BK91, BCG+08, CLF+17, CY06, EBS+04, GCJ17, HCC+06, HSKS15, HNS77, KS04, KD92, KTG+17, KAO+05, ORS+04, Rui86, SKJ+17, SD17, SOSD05, Tan78, ZSG+17, ABY+87, AB92, AS91a, ALKK90, AR80, And73, AFNV90, AIK+05, Arm74, APX12, Ásm93, AM7, Aßm93, AML+10, BDA01, BA82, CO82, CL94, CCE+09, CYL99, CT90, Cla87, CS80b, CGL89, DCC+87, DCC+98, DM74, DM98, Den98, EKM04, EC84, EC98a, EC98b, EE10b, FP91b, FTP94, FRB01, FK83, FD88, FH76, FG83, FR87, FKT+89, Gai83, GKF84, GLM13, GSS12a, GM82, GSM+99, Gol84, GRR+84, Goo83, Goo98a, Goo98b, GDHH89, GKN80, HFH+91, HS85a, HKK80, HPH+91, HS01, HKN+92, HY85, HJJ90, Hug82, JB82, JMY89, JLZ09, JW82, JSL95, Kan74, Kap87].

Processor-memory

[Goo83, Goo98a, Goo98b, LHL+89].

Processor-side [GLM13].

Processor-cache [FTP94].

Processors

[AW04, AWS16, CDY+17a, CDY+17b, CBC+05, GAR+05, Lan90b, Loh08, NZO+05, SLFG06, ARJS07, APR89, AS96, BT13, BDA03, BJ03, BT77, CMC+91, CMC+98, CW02, CHZ+14, CMLV04, DB07, EKEL01, ER92, EE09, EST89, FCJV97, Fis84, Fis86, FM84, GJT+11, GAG+08, GSS12b, GM90, GKS+03, GRD+87, GCTR+08, Gu+89, HTA08, Hay77, HS13, HKLS00, HR09, HYHD95, HMMS96, HRT03, IT93, IM02, KST11, KS07, KKC+16a, Kog77, KDBA78, KSA03, KP03, LYS07, LH92, LWLZ12, LBE+98, LKG+12, Luk01, MMH+95, MT84, MS87, MA06, MPT+12, MM87, MA14, NH97, NLV86, OWCL90, PJ+97, PS12, PA73, PVF+03, PS88, PS94, QD99, RCM+12, RPASA97, RAJ99, RYF+13, RS84, RA90, Rym82, SJ88, SNN99, SC01, SVC03, SP85b, SS85, SP98b, Smi98d, SZ88, SV87].

Processes

[SF91, SBV95, SV98, SBV98, Soh98b, Soh98a, SPA+98, SD94, SD09, SPR00, Su07, TS90a, Tho03c, TH76, VBS05, Wei89, YLHL10, YLT06, Yue81, ZYL+05, ZBF10, Lan90b, McG78, Mil77b, Vra78].

Procrastination [PG16].

Procrastination-Based [PG16].

Producing [MDHS09].

Production

[ACJL13, ZJL17, uAM16, AJL14, LL88].

Production-run [ACJL13, uAM16, AJL14].

Productivity [Wit16].

Products [Ful91a].

Profile [MSS+03, Aic92, BP04].

Profile-driven [BP04].

Profiler [PKM17].

Profiling

[Far05, OFS+15, PKM17, SOD+14, CL87, DG99, DB00, HC04, JK13, LJK+13, MTG+99, ON12, SBS01, SCH+91b, TL11, WH07].

Program [Ano04d, Ano05e].
programmability [LAB+11].
Programmable [CLF+17, CTHV+15, KLKM17, MSS15, ATV+07, BI12, CLR03, FKMD83, FL76, GP76, KKC+16b, KW11, LLZ+13, NMS+00, SYH11, SSAC13, WDA08, WL10].
programmed [PPA13].
Programmer [Wit16, HEK+16].
programmer-transparent [HEK+16].
Programming [ABD+15, AWS16, CKMWH16, EMZ+16, HCD+94, HCW+04, Hil91, KMC02, LL16, SGM15, TTPL10, Zho16, ABL+80, BF87, CBC+08, Den03, DBMZ08, DMB87b, DSH+10, DZC+13, ESCB12, Feu76, GMT89, GCTR08, HTA08, HFWZ87, HW87, HY85, HSW+11, HRC+90, HG88, KDSO12, KJJ+09, LCWM08, MSS14a, Mad94a, McK74, NYNT12, RG91, Rui86, SKC+12, SKS+92, Sch73a, ST08, Van81, WWW+88, Win80, Wir87, Ben82].
Programs [BS06, NP17, RSA+15, SLFP16, AZ9, AL91, AS92b, BM91, Bi84, BMP+04b, BNS11, CBK+14, CO82, CO03, CA88, DESE13, EK88, EK89a, FKBS11, Far05, GTA06, Han78, KL94, KP05, LM76, LC13, LFH03, MS87, PDP+13, QM91, RRV09, RG02, SDWF13, SLTB06, SGS+93, ST87, TBC94, UT83, UC94, VJM99, WOT+95, Bia89, Sch91a, Whi78].
progress [Mil87, Pat87].
project [ABM87, CSM77, HLW94, Kat89, KGM87, Mo83, Muk97, HMT86, Ste81].
Projection [Ant91, SSK+07].
projects [Dre94, SMRT85].
Prolog [ABY+87, ALE90, BCDN87, CMPZ87, DF92, DDP85, FD87, HSC+90, MYB89, NKH+85, SP89, Tic88, TSN+86, WW89].
Prolog/Lisp [TSN+86].
Promotion [OCY+15, PEP98, ROKB95, XL09].
promotion/insertion [XL09].
Proponent [YMM15].
Propagating [VPS01].
propagation [LS82, LRS+08].
Properties [ZSG+17, BW88, BW98a, BW98b, CZS+16].
property [HT10, Rse82].
Prophet [FSR+04, CYG+17].
Prophet/Critic [FSR+04].
promotion/insertion [XL09].
Prone [YMM15].
Propagating [VPS01].
proportionality [LCG+14].
proposal [BP04, Sit73, TT82].
proposals [Mat78].
proposed [Ste80, Tur79].
proprietary [VE08].
ProRace [ZJL17].
Protect [CLR05].
Protected [Feu82, MAD11, MSS14b].
Protecting [LS82, LRS+08].
Protection [AYQ+16, BNZ08, MMT16, McD82b, ZH17, Ber80, CGL+08, FSC76, HS10, HDS10, Hug82, Jon82, KOAGP12, KSLE16, LLZ+13, SLLG05, SCP+06, WJGA12, Wil82, WCA02, YE09].
ProteusTM [DDK+16].
prototypes [DBL80].
Prototyping [ABC+94, BK14, DRCO05, PWA13, PDP+13].
Protozoa [ZSKD13].
provable [TOL+11].
Provably [WGO+13].
Providing [CME+12, Gra84, YXR06, HMMS96, KD06].
provisioned [GWSU12].
Provisioning [DK16, FB07, PMZ+10, YKD01].
Prudent [PG16].
Pruning [YLP+17, BM09b].
pseudo-partitioning [XL09].

Pseudo-randomly [Rau91]. PSI [TNNI87].

Publications
[Ful91a, Tan78, Tho09a, Sta81]. Publisher [Ano08e]. Publishers
[All92, Bit89, Fer88, McDB88, Par88a].

Publishing [Fos93a, Mad94b]. PuDianNao [LCL+15]. pump [JZY14]. purpose
[CT74, FR89, FK80, FTG88, GCTR08, HQW+10, HTCU10, HSC+90, KS84a, MK84, Mar74, NK86, Now87, RAJ99, SDD+07, SYP+14, Ste77, SCA01, TPO06, Woo14]. Puzzling [Jon83]. PVT [YLHL10]. pyramidal [Tan83]. Python [Tab10].

Q100 [WLP+14]. QA [TSN+86]. QA-2 [TSN+86]. QOLB [KBG97]. QoS
[CYMT16, CYG+17, DK13, DK14, EO98, GKD+13, KS14, TMW+13, YBM13, YKD01, ZE16]. QoS-aware [DK13, DK14]. Quad [KPI+98]. Qualitatively [Laf03]. Quality [LNA08, PAM+16, RSA+15, WYM+17, KK84, MYP+16].

Quality-of-Service [LNA08].

Quantification [KF79]. quantifying [RLCV10]. quantile [dOFD+13]. Quantum
[BKSO05, HPJ+15, IPWK06, IWPK08, KSO05, KBD+13, TMC+06, VNM06, CLM07, OCCK03, SV06, TGP10]. Quasar [DK14]. qubits [CLM07]. Queensland [IEE92]. query [GKF84]. question [Lip76, MHP12]. questions [Smi75b].

Queue [BC02, PCC+08, Hic76, HK89b, PN77, PH85, RBR02, SKD+10, TF88].

Queueing [JKW12, BC09b, KC96]. queues [LS77, PP88, PHG+87, SRE+07]. Queueing [Nik09]. Quick [Hig90, WHM02]. QuickRec
[PDP+13]. QuickSAN [CS13a]. quite [SL93].

R [CBS88, Dik90, Goo88b]. R. [Dik90].

R256 [FKT+89]. Race [HH08, LHH91, MSS14a, ZLJ16, ZLJ17, AHK08, GMF+11, HHB+14, HHS13, KCZ12, MSQTO9, VAV10, WDC+13, XHB06, DWS+12]. Race-free
[LHH91]. race-freeness [AHK08]. races [AHMN91, KZC12, LCS+10b, PT03, VAV10, WCG14]. Radio
[LIW+06, NNI16, Wak81, Ebe02, NNS12, SBS13]. RADISH
[DWS+12]. Radix [GS12, KDTG05, SAKD06, BDJ+11, KDA07, OCBL12].

Radix-2 [GS12, OCB12]. RAID
[ABC97, BBBM94, CLW93, CJK99, DSH+94, MC93, Tho13a]. RAID-II
[DSH+94]. RAID5 [Tho12a]. TD14]. RAIDR [LJVM12]. RAIDs [BSADAO4].

RAMs [Mat92]. Random
[SOSD05, KMA+12, OSI89, WZL+16]. randomization [KS91a]. randomized
[BKMN10, SWL10]. randomly [Rau91]. randomness [PBC+13]. range
[CWT+01, HIi88]. SIG89]. ranking [CGT+14]. Rapid
[ABC+94, DFL05, DS11, EW16, SBS01, CKA09, PWA13, AWS16].

RapidMRC [TASS09]. RASE [DFL05].

Rate
[HTM15, WEMR04, AP93, AHK00, Alb98, Kog73, SDO9, TASS09]. rates
[CMPM95, LC+14, NKQ13, Quo94]. ratio
[JVF13, ZPS+04]. ratios
[Hai84a, Hai84b, Lun75, YCT05]. RAs
[SAA17]. Raw [TLM+04, BLAA99]. ray
[RGD09, BSADAD04]. rays [HSS12]. RC
[CBK+14, GFV99]. RCDC [DNB+11].

RCQ [KC96]. RCU [CKZ12]. Re
[BSK+10, Hea84, Rot05, DSBK04, JTE10]. Re-architecting
[BSK+10]. Re-evaluation
[Hea84]. Re-Execution
[Rot05, DSBK04]. re-reference [JTE10]. Reach
[PKM17, SSC98]. Reactive
[FW97, TMW+13, HFFA09]. Read
[HSBA16, AZK06, Hic77a, Joh91, WSM96]. read-only-memory
[Hic77a]. readable
[Miy85]. reading [Smi75b]. Readings
[HJS00]. Real
[SBM09, WL+14, ABR01, ASP+03, Aup80, BJL+13, CLC12, CTW+13].
CJZ99, DI90, DP76, DPB77, ELN89, FF73, GH76, Jen74, KTMY91, LYBC88, LPSZ08, Mar82, MDSO11, MAL01, NMS+00, NDZ10, PQC+09, RHS96, Rid87, Roo89, SA88a, SA91, SKS88, TRA91, Thu76, WBL89, YM11, YFPR07, YHZX14. real-time [ABR01, ASP+03, CLC12, CTW+13, CJZ99, DP76, DPB77, ELN89, FF73, GH76, Jen74, LYBC88, NMS+00, PQC+09, RHS96, Rid87, Roo89, SA88a, SA91, SKS88, TRA91, Thu76, YM11, YFPR07]. Real-world [WLG+14, BJL+13, YHZX14]. Reality [Wit16, KTO+12]. realization [PSP+12]. Realizing [MKU03]. really [CHG06, NP95]. realtime [OUY+13]. REAPER [PKM17]. Rearrangeability [VR87]. rearranging [KT91]. Reassignment [WM16]. rebirth [Tem10]. Rebound [AGT11]. ReBudget [WM16]. Rebuild [Tho12a]. receive [KD06]. Recency [SDS00]. Recency-based [SDS00]. recentralization [Lor90]. Reclamation [PG16, Kum87]. recoding [OCBL12]. Recognition [AWS16, KOA05, AB86, CFS82, KKM86, LNEH11]. recommendations [MPP+08]. reconcile [SAR99]. reconfigurability [PPR09]. Reconfigurable [ABZ07, BCSB11, Goh14, KG16, LLD+17, NY14, OUY+13, PZK+17, RAJ00, THMN14, WSC+14, dClK15, BCDL07, BBJ+08, BSD87, CLC12, DSH+10, FD88, FHM+11, GDN+16, GFP13, HBII13, JB82, KTO+15, KDP+16, KW11, MPJ+00, MFS88, NSMK11, NMS+12, NUY12, OIA+13, PCL10, PM11, PEB+09, PCC+14, SBS13, SSDK84, SSAC13, Sur07, TS10, TTT10, TBL12, WW12, YMB00]. reconfiguration [GKN80, MK11]. Reconstructing [KGT+17]. reconstruction [Yok94]. Record [HGT+17, HDT+13, HT14b, HT14a, PDP+13, QS014]. record-replay [HDT+13]. Record/Replay [MGT+17]. recorder [XBC89]. Recording [HH08, MCT08, NPC05, NPC06, GSS05, VAV10, XB06]. recoverable [LAK09]. recoveries [ISG07]. Recovery [LAK09, SZBP08, VTM07, YXR06, AP95, Con88, GSVP03, PZT02, SMH02, UVG14, VPC02, ZdKL+13, dKNS10]. rectangular [JMS8, OML83, PB82]. recurrence [Kog73]. recurrent [Qui84]. Recursion [FRK+15]. Recursive [SSK17, AA86, IH08, TH82]. recursively [Har86]. ReCycle [TST07]. redesign [CHV04]. RedEye [LHG+16]. REDSPY [WCL17]. Reduce [JH+16, PV04, WE04, BSL08, Goo83, Goo98a, Goo98b, KHM01, KPH06, PM92, PBC+13, PV03, SC05, Wei89, YLH10, YCT05]. Reduced [CS80a, LH86a, MS15, HJ87, HL85, PD80, PS98b, Sta86, XT96, PS98a]. Reducing [BHS12, DW90, HHe+15, Har91, HASA14, HS06, KT91, LLCP94, LLY+00, MH68, MW98, ROK95, SSR+13, WAC+10, Zha06, AP93, DM87, FP91a, FPF+92, FKM+02, GHG+91, HCC89, KD06, KIM+07, LW95, LAS85, LCF+14, PSB13, SDH+14, ST03, SC01, VSC+10, WSY95]. Reduction [ANM08, Ber74, Hoo77, BT13, BM01, CCC+88, Con88, HBHA02, Hom82, HRT03, LN07, MKG98, PT83, SFS04, TK07, TH86, Tra85, TM08, TS10, WR84, XB06, YL16]. Redundancy [PS04, SZBP08, PJ07a]. Redundant [ZH17, APX14, Che87, MKR02, PSG06, PR82, RRP06, SGH93, WLW+14]. ReEnact [PT03]. reentrant [Com90b]. REF [ZL14]. Reference [Hol89, Lof74, MCXS16, BHS12, FKC+06, GS07, JTSE10, JMO9, JNMW97, Kec79b, MF05, SA92, WK89, Yue84]. reference-counting-based [JMP09]. references [Ger80]. referencing [HD77, MD88]. refinement [AL12]. refinements [CGBG88]. ReFlex [KLK17, LWL12]. Refresh [KSC17, LPMZ11, Mat92, MHHK+13, SWL10, LJVM12]. Refresh-Aware
Regaining [Laf00].

Region [LS12a, SBZ+15, ADT13, WBM+03, WW13, WCF01]. region-level [WCF01].

regions [Bre10]. RegionScout [Mos05].

Register [BS04, Cha96, DeM96, GCO+04, KMC+93, LMG04, QMT89, WW93, AAZ89, BS73, BYG+00, BEH91a, BEH91b, CCV+09, CGVT00, EP87, EP88, FP91a, HKT93, HS85b, HL85, ISGS07, JSL+13, Klu76, LcC92, LH86a, MSAD91, QM91, Req83, TA03, TS99, WS90, kSYHX+11, Yue84].

Register [BLI17]. Reinforcement [IMMC08, SLTC16]. Reinhold [McG78, Vra78]. related [EGK+85, Smi86, YERJ99]. relating [Bur82, RHZC74]. relational [BH78, BLL+83, Cha78a, GKF84, KMF+85, MKN+83, YS6, SS78].

Relationship [SOM+08]. relative [Bet73]. Relax [dKNS10]. Relaxed [SAA17, DNB+11, HT14a, NCLJ09, QSQ14]. relaxed-consistency [HT14a, QSQ14].

RelaxFault [KE16]. RelaxReplay [HT14a]. relayout [MTN+00]. release [DKCZ93, KCZ92, Waj92]. Releasing [SDR11]. Reliability [KGGC17, SKB09, SABR04, SABR05, WGA+08, CZ14, DP12, FGM10, HS10, LNBZ08, NSQ16, Ng94, OL02, PGB12, RKM+11, SMB02, Tri80, UMB+12, WMP07, WCS09].

Reliability-Aware [SABR04]. Reliable [WJZY15, ZYMS15, BVR+00, ICN+10, JZYZ14, KSLE16, MG91, NRS+07, SYL13, YK05, Yok94]. reloaded [SRB+07].

Removal [SHP+16]. Removing [PGRT01]. Renaissance [GA79]. Rename [PSR05, GL11]. Rename-Based [PSR05].

ewable [GKL+13, LQ12]. RENO [PSR05]. Reordering [AM06, RACAK17, BCG99]. repair [BRM10, HP87, KE16, SDWF13].

Replacement [QTP05, QLMP06, YGST17, Dev90, DG92, DSN07, JL16, JTSE10, JNas+12, Kha95b, Kha97a, Kaa97c, McF92, PK94, SG83].

Replay [HT14b, MGT+17, NPC05, BRM10, CHCW10, EHA03, HR09, HDT+13, HT14a, LWV+10, MHKT09, PDP+13, QSQ14, VLW+11, VNN13, XBH03]. Replaying [MCT08]. Replica [MK84]. replicated [EST89, ICN+10]. Replication [CPV05, ZA05, AZ05, AKZ06, HFFA09, SHV+98]. replication/migration [SHV+98]. Reply [Goo88b, SM77, Wnt06]. Report [ABC+94, Mud96, Dic80, Gas88, Mar88, Mil87, Pat87, RVLS14, Ste80, Irw86].

reporting [CCM08]. repository [KBS84].

Representation [Ch89, HS16, Tho76, HS74, SDP85]. reproduction [WZJ10]. ReQoS [TMW+13]. Request [EAS+17, She10, LG04, SZD+08]. requests [SJ88, TLD14]. required [JH94].

Requirements [CDY+17b, Bra77, Cra79, CA88, CHKM93, Joh82, Kun87, Kun86, LFH03, OC78].

ReRAM [CLX+16]. ReRAM-based [CLX+16]. ReRun [HH08]. rescue [SLP+09, SV05]. Rescuing [DJPK16].

Research [BMF+16, HLL+93, Hill13, Kin83, Par90, Pat06, CHJ83, Dal10, DCS+14, Est02, FKT+89, Rec80, SzUK+04, Tho09a,
Resilient [SLSO13, HC99, LRS+08]. Resistant [TML+09, VCK+12]. Resilient [GIS10, ICN+10, SLSB10, ZNF+16]. resolution [BYG+00]. Resolved [Woo14, KMT91]. resolver [Lee85a]. Resonant [PV04]. Resource [CY06, CA88, DK16, OML83, PPM17, PB82, RL17, SFM17, WM16, BM09a, CMLV04, DK14, ELP01, FJB85, GST74, GKZ+07, HCD+94, JB76, PAVT16, Rey82, RE13, SHV12, Tak87, TMV+11, TA76, TF01, VNM+12]. Resource-Efficient [DK16, DK14]. Resources [KGS16, LSB15, Mat10, BDA01, JDL81, MPH12, Mat90]. Resourcing [MSS+15]. Resourcing-on-Demand [MSS+15]. Respec [LWV+10]. Response [VFHD97, AV10, Lee85a, SM89]. responsive [HSC+11]. Responsiveness [YCR+17, CMB+13]. restartable [PGH+87]. restoration [Sta89]. restoring [BH91, HP86, HP98, mWHP98, SEI+95]. restructurable [AP76]. Results [Mud96, RSA+15, CMPZ76, FSC76, GP76, ISKR86, Kh76, MBL+89, PP88, SzUK+04, WG89b, WH07, Wis86]. RETCON [BRM10]. Retention [PKM17, LJK+13, LJVM12]. Retention-Aware [LJM12]. Rethinking [PBWH+11, RGSJ17, UMC+10, MDS12a, ZCX+14]. retrieval [AR80, ERT78, GSR93, Lee85a, Rob78, WW89]. retrofitting [CGL+08]. Retrospective [AH98a, Aga98, BW98b, Bat98a, BS98a, BLA+98b, DCF+98, Den98, DP50, DP98b, DP08a, DS98, EC98b, Fis98a, Gha98, Goo98a, Got98, GL98c, Hen98, mWHP98, mWH98, Jou98b, Kro98b, Kus98, LL98, Lip98, N98, PC98a, Pat98b, Pat98a, PS98a, Pie98, RLW98a, SP98a, Smi98c, Smi98d, Smi98b, Soh98b, Soh98a, TEL98a, VYK+98, YP98b, vECSG98, Pie83]. return [CLR05, YK05]. returns [KE91]. reuse [ATT+13, CHCmWH00, KOAGP12, NAAL01, RKM+11, SS97, WCF01, WZY13]. Reverse [LSB15, Som94]. Review [Alv93, Atk79, Ben82, Bit89, Buc78, Chr77, Fer88, Fos93a, Full93, Gor83, Hol83, Lan76, Mad94a, Mad94b, McG78, Mil77a, Mud80, Ram78, Ros73, Sac83, Tab96, Tan78, Vra78, Whi78, All92, Ant91, Ber91b, Ber91a, Ber91c, Bow79, Cha92, Col88, Col90, Dirk90, Fos72a, Ful91b, Ful91a, Gon77, Hil91, Iva91, Kri91, Lan90a, Lan90b, Lev92, McD88, Mil77b, Par88a, Par90, Sch88, Sch91a, Smo89, St74, Tak88, Wak81]. Reviewers [Ano04e, Ano05f, Ano06d, Ano08f]. Reviews [Fos93b, Lan93, Mil77a, Ben82, Bit89, Chr77, Hol83, Lan76, Mud80, Sac83, ACM93b, Vra78, Whi78]. revisionist [PT91]. Revisit [WQL92]. Revisiting [AJH12, WWC+14]. Revivable [SLFG06]. ReVIVaL [LWB08]. ReVive [PZT02]. reviving [ADS+13]. revolution [KWF08]. Revolutions [Emm06, ECX+11]. rewriting [HR07]. REYSM [NS86]. RFID [RF11]. RFID-scale [RF11]. Rhythm [APP+14]. Rice [PRA97]. Richard [Fu91a]. RID [MCXS16]. Rigel [KJJ+09]. rigorous [WWFH03]. Ring [MABY15, SST06, BD93a, Mic92, SGGV92]. ring-based [BD93a]. ring-connected [Mic92]. rIOMMU [MABY15]. RISC [HO91, AAZ89, Aflm93, BZ87, BC91, Bha97, BEH91a, BSHU87, CO82, CHJ83, Con89, Deb89, Dow87, Dow88a, Dow88b, DFT86, ELN89, ER92, EE93, FCP92, Gis98, Hea84, HL85, HDP+90, Jon88c, Kie87, Lar82, Mil87, PPMPM96, PP82, PP8, GPH+98, Pat84, PS98b, PS98a, PH90, Sho87, SEI+95, Ste88, UBF+84, Wil83a, WWC+14, Yue99b]. RISC-based [FCP92, HDP+90]. RISC-like [AAZ89, Wil83a]. RISC/CISC [CHJ83]. RISCs [BCD87, BEH91b, Jon88b].
SCU+14, SBK77, TQC+15, BTS+11, CY96, FAK+12, FY82, GKL83, GW88, GWV89, Ham09, HSH96, HIM*05, JK09, Joh92, KBC+00, LAS85, LCG*14, MPT91, Mar00, MT13, MBK90, NNS*90, NP90, OT86, OLJ+14, PCC*14, RSF11, RSG93, SPHC02, Smi14, SB77, TMW+13, TD91, WHZ+17, YBMT13. **Scale-out** [LKGF*12, NDB+14, FAK+12]. **ScaleDeep** [VRB*17]. **Scaling** [DGT15, Emm06, JS99, KZT05, PTB16, RL17, RKB+09, EBS+11, ECX+11, Geh14, LDK14, MSS*03, MCD*08, NKQ13, NY14, PM11, SW16, WZY13]. **Scalpel** [YLP*17]. **Scan** [Fis86]. **scanning** [Lec74]. **scarce** [ZWM*14]. **SCC** [Wil88]. **schedule** [NAAL01]. **scheduled** [FCJV97, FM84, KMT91, NH97]. **scheduler** [BKM10, EHA03, JCS*14, SRB*07, WRSY16]. **schedulers** [NP11]. **Scheduling** [JSWB93, KSCK17, MT84, MM08, SXYH16, SA91, TT08, VJE*12, AA82, ACS*12]. Bak91, BEH91b, CS06b, CNO*87, CCB*06, DK13, DZZ*14, DJT94, EA02, EE10b, GGH92, GLM13, IBC12, JW95, JNS*12, JDL81, JSMP12, JKN*13, JKM*13, JSAM10, KD92, KKJ*13, LSI2a, LJ90, LRHM90, MSAD91, MDR*00, MSSI4b, MSP*06, MiL82, MAL01, OA08, RDK*00, SYK10, STND*13, SBM09, SLH90, ST00, Tho11a, Won16, YERJ99, YKL*16, ZBF10]. **Scheme** [ES05, AJ77, AP95, AS14, BS87, BBBM94, CKA91, CHC10, CV88, HJ86, HL89, HS85a, Hic76, Kha97a, Kha97c, KKK76, Lap91, LS92, MPS89, MTS*99, MC91, PH88, TYS*94, TTM12, TY85, Wei89, Won90, VP89]. **schemes** [AAHV91, ASHH88, ASHH98, CB94a, GYCS96, Hen98, HCC89, LM76, MPT91, Rao84, RS84, SL92, VS92, YGS95]. **Schneck** [McD88]. **Schöfield** [Sch91a]. **Schur** [Chr90]. **SCHUSS** [GRRT84]. **SCI** [SGV92]. **Science** [Col90, DHR+90, KF79, Pau13, KRM83]. **scientific** [BNA88, Cha90, CHKM93, FKT*+89, LS96, SHNS86, YYX*+07]. **SCISM** [VB92]. **SCNN** [PRM*17]. **Scope** [OCY*15]. **SCORPIO** [DCS*14]. **Scrambled** [Lee88]. **Scripting** [CSGT17, KKK*17]. **SD** [WIJZY15]. **SDC** [UVG14]. **SDF** [OLJ*14]. **SDR** [WSC*14]. **SEA1** [Ful91a]. **Seamless** [FCP92]. **Search** [BTRS05, DGT15, MNS*14, MSH*15, SKCY16, CWD*06, RLVC010, SKA*11, SGS11, TYNM86, WLY84]. **Searching** [JPT14, BTW77, Cop78]. **Seattle** [IEE90]. **Second** [Smi91]. **Secondary** [Lord76, EE93, Lip77a, PK94]. **Secret** [DGT15]. **Secretary/Treasurer** [Irw86]. **Secrets** [LKM*05]. **section** [SMQP09, YL16]. **sections** [EE10a, HHS13, MBK90]. **sectored** [Sez94]. **Secure** [AMH*16, SW74, SLZD04, SOSD05, TLcC13, WBA17, YGST17, BA84, CS11b, HKD*13, Ino05, KFM05, ML05, NMI12, RYF*13, SL12, WGO*13, WWA01]. **securing** [LWH*16]. **Security** [Ber80, CWY*08, CHe05, CDG*17, DFKC17, FXZ*17, HSKS15, SWL10, SLG*05, YEP*06, ZWSM15, ZSG*17, CC05, DDK07, HS10, Ino05, Kar07, LK0*14, LNBZ08, MX*13, MK05, MM14a, NPCF08, PL06, TOL*11, VCK*12]. **Security-Critical** [HSKS15]. **security-modified** [MM14a]. **see** [AC09]. **segment** [BLs*76, Hea76, See89a, See89b]. **segment-sequential** [Hea76]. **Sego** [KDL*16]. **Seitz** [Par90]. **Selected** [Lei91, CH01]. **Selection** [CKmWH16, LM76, PR05, BGP*01, ME78]. **Selective** [CRT09, HC99, KPG08, LF00, RAM*04, ZH17, ACM20b, CV88, DSBK04, EHA03, GKTU99, PT10, ZNF*16]. **Selective-set-invalidation** [HC99]. **Self** [IMMC08, CS99, CTV*09, DGY89, LF00, LW95, NS80, Now87, PJD06, SLK05, SLP*09, DLSW76]. **self-healing**
serviceability [SBM02]. Services
[HH+EH15, JHK+16, KDL+16, MSS+15, MSB+11, PCC+14, SLK05]. Session
[NYNT12, Tsa16, DHR+90, HCD+94, IAD+94, SGG+85, SMRT+85]. Set
[BSK005, Blu83, CS80a, CBC+05, PS98a, TM14b, AZ89, AAD90, BD84, BEH91a, BA97, Bur82, CG95a, CKDK91, Cra83, DV87a, De 90, DS02, Fos72b, GH90, Gov73, GTR+13, HB86, HHL16, HC99, Joh89, KJLH89, KS02b, KMC+93, LDT+16, Man01b, Man01a, Mar83b, MHS+03, McD82a, PD80, PS98b, Sho87, SFS00, SK08, Sta86, SS82, TJS83, WQL92, Wie82, Wil88, HLL+93].
set-associative [WQL92].
set-associativity [KJLH89]. sets
[CE98, EPS7, GB74, HS85b, Mye77, NA83, RSG93, SM77, Wak80]. Setting
[UVG12]. severe [ZSL10]. SG1 [LX97]. SGX
[WBA17]. SH [AIK+05]. SH-X [AIK+05]. Shack [Wak81]. shader [APX14]. shaders
[WL10]. shadow [GHS16, SSC08]. shall
[Bak94]. Shallow [SKN+15]. shaping
[ZW16]. Shared [DK16, Irw10, Lass88, MRG12, MCT08, MM08, PPM15, WSH+05, ZE16, AGT11, Bay99, BCZ90, BLS99, BR90, BMP+04b, CHX+11, CA94, CG898, CFS+12, CMT00, CF93, CDK+94, DCO09, Di90, DKCZ93, DSN07, ELM91, EGK+85, FB08, Far05, FH88, FHH+89, GCN+10, GLL+90, GGH91, GGH92, GLL+98, Gha98, GGK+82, GGK+98, GS95, GNS89, Har91, HSH96, HJL89, HX97, ISL96, JBC76, KCC+92, KL94, K95, KHS+97, KAD+04, LIW95, eHLL89, LMRS92, LS92, MHS+03, MBK90, MGBK96, Nad88a, NPC06, NO94, Nik09, Nis91, OZK+12, PGSP00, PH88, PZT02, RPASA97, RLW94, RPW96, RLW98a, RLV98b, Rey82, SRJ+05, SHZ97, SWG92, SPA+98, SMH02, SK08, ST80, TBB+97, TD91, TA76, WIL87, WCF+93, XLO9, YPD83, YKA96, YN09, ZT95, ZBF10].
shared-bus [PH88]. shared-cache [NO94].
shared-medium [CHX+11].
Shared-Memory
[MCT08, BR90, CMT00, CDK+94, EGK+85, FH88, GLL+90, GGH91, GGH92, GLL+98, Gha98, GGK+82, GGK+98, GS95, GN89, HX97, LW95, eHLL89, LMRS92, MHS+03, MBK90, PZT02, RPASA97, SWG92, SPA+98, TBG+97, YN09, ZT95]. Sharing
[Mos05, WYM+17, EK88, EK89a, FH76, Hum96, KS14, KC74, LF99, LCM+09, SBS93, ST87, TMV+11, TE94, TtLC13, Wah83, ZL14, ZW14], sharing-based
[TE94]. SHARP [YGST17]. Sheaved
[Sta89]. SherLog [YMX+10], shift [Klu76]. Shoestring
[FGAM10], Shor
[WPK09]. Short
[HSBA16, KKC+16a, LCL+16, AJL14, CPT08, DCB+94, Gun89, HY85, OCCK03, Yue81]. Short-circuit
[KKC+16a], short-haul
[DCB+94]. Short-Lived
[LCL+16], short-term
[AJL14], short-wordlength
[Yue81]. shortcut
[KMA+12, CSGT17]. Should
[Wil88, Muk97, Woo14, dOFD16a].
Shredder
[AMH+16]. Shredding
[AMH+16], SHRIMP
[BLA+94, BAC+98, BLA+98b, BLA+98a, FAB+96]. shuffle
[BAES89, BSD87, Sov83, VR87]. shuffle/exchange
[Sov83]. shuffle/exchange
[VR87]. shuttle
[Sat74]. SI
[LCF+14], SI-TM
[LCF+14]. Side
[AN17, DMWS12, GSL17, YGAST17, Bra82b, GLM13, MDS12a, WL07, TMW+01]. Side-channel
[DMWS12, MDS12a]. Sidewinder
[LJdL+16]. SieveStore
[PT10]. SIGARCH
[Ano99, Ano06e, Bre72, Dic81, Pat91]. SIGMA
[Sez86, SHNS86]. SIGMA-1
[SHNS86]. Signal
[Kro83, BMP04a, GSS12a, GSS12b, GWM03, MS13b, Nit89, SKC+03, VFS5, WSM+09]. signature
[MSQT09], signature-based
[MSQT09]. signatures
[MMJ05, SZD+08, TACT08], significance
[Ros77b, SIT73]. significant
[Par95]. SigRace
[MSQT09]. silent
[HR09, LL02, AMH+16]. Silicon
[KMS+10, LB17, BSK+10, EBS+11, FGVG13, KMOA07]. Silicon-photonic
[KMS+10]. Silver
[IEE77]. SIMD
[BHBL87, BAES89, ED83, HWC91, KCE12, MT97, Par95, PSP+12, PJDLO6, RE13, Sie77, TNY11, VSW+13, YL84]. SIMDization
[HCW+10]. Simics
[Far05]. similar
[BC91, BFS+09]. similarity
[Bra77, SSJ+16]. SIMD
[MIT89]. simple
[AS+03, BDL07, DDS94, FKM+02, HW95, LCE01, RPSV07, ULM95]. SimplePower
[VKI+00]. SimpleScalar
[BA97, Man01b, Man01a]. simplifying
[LCS+10b]. SimPoint
[LSSG05]. SIMT
[KTs+13, WL17]. simulate
[MAF+09]. Simulated
[GKO+00]. Simulating
[KLK+17, RBO07]. Simulation
[DFL05, DBK+02, EBS+04, JKT05, JKT09, Kno73, KMK16, SCU+14, SKN+15, TKJ07, ALM82, BC90b, CLL01, CB89, DROC05, DSOF11, Fra86, Fra90, GKO+00, GPPT02, GCLM85, HVAN14, HRC+90, HB90, HGS+07, Kha95a, KIC+16, KEL91, KBR89, LSSG05, LMDN76, LSFK08, MS13a, MF05, Mel85, MSSZ76, Mou98, NK86, OCF00, PGSP00, RL76, Rey82, SK13, SDD+07, SL88, TYSS11, TBL12, Van81, WF87, WWFH03, YM11]. simulation-adapted
[GPPT02]. Simulations
[WN14, BKB90, CAD09, GP88, GPF13]. Simulator
[TQC+15, Ayz95, BBB+11, Cor89, FTM99, MSB+05, PRA97, SRWB14, TSB99, WGT+05, ZyG09]. simulators
[Sho87]. Simultaneous
[BCD12, CSK+99, CCE+09, TEL95, TEL98b, HKN+92, LBE+98, Luk01, RL74b, REL00, RM00, SW16, ST00, TSC99, TEP+96, VPC02, TEL98a]. Singh
[Ful91b]. Single
[BTRS05, BW+91, KTR+04, MIT89, SOSD05, VE14, WHZ+17, BGM+00, CS11a, CS80b, CSM+05, FDP94, GCLM85, Jhh04, Kuh80, KHC92, KKP14, LH86a, Lap90, Lap91, LSS04, MLC+09, MPS89,
MS10, SyYH+89, SP84, SHBS14, Tob80, VIA+05, VIF94, YZ07b, ZdKL+13.
single-bus [GCLM85, VIF94]. Single-Chip
[SOSD05, BGM+00, FTP94, SP84].
single-cycle [KKP14]. Single-graph
[VE14]. Single-ISA [KTR+04].
Single-machine [WHZ+17]. single-node
[LS04]. single-processor [MIT89].
single-stage [Kuh80]. single-term [CS11a].
single-thread [MLC+09]. single-threaded
[VIA+05, YZ07b, ZdKL+13].
single-window [LH86a]. Sinking
[CDG+17]. Sites [JPT14]. Sirius
[HLZ+15]. SISAL [SC90]. site [Dre94]. situ
[SNM+16]. Size
[Wil83b, BEH91a, DV87a, DL92, Gov07,
Hol89, NLV86, OCB12, Reg76, WS74].
size-independent [NLV86]. sized
[EKW80, FWB07, SM89]. Sizes
[CB17, KC07, Prz90, RSG03, TKHP92].
Sketch [TP15]. sketching
[SLTB+06]. Skewed
[BS95, CL89, HL86, Sez93]. skewed-associative
[Sez93]. skewing
[JW97]. skip [BCR10]. Slack
[EAS+17, CKS16, DMMD10, FBH02].
Slackened [GRH06]. SlackSim [CAD09].
Slavenburg [Goo88b]. sleep
[LDK14, MW12]. SleepScale [LDK14].
slice [PSG06, PC83, TDF90]. slice-based
[PSG06]. slicer [XJK+16]. slices
[HvD12, ZS90, ZS01]. slicing
[HRDA85, XJK+16]. SlicK
[PSG06]. Slipstream [SPR00]. slope [LSN14]. slots
[DeM96]. Slotted [SKB+17]. slow
[ZN+16]. SM [AYA83, ABKA85, XJK+16].
small
[CDS+14, DIY86, FaRP89, Fis84, Jor90,
Jor98a, Jou98b, RHZC74, SA87, SGH93].
small-footprint [CDS+14]. smallest
[Mas87]. Smalltalk [BSUH87, UB+84].
Smalltalk-80 [BSUH87]. Smart
[AN17, MPJ+00, FSS+09, LMS+13].
smartphones [LWLZ12, CZG+15].
SMARTS [WWFH03]. smashing
[YK05]. Smith [KDSO12]. SMP
[KPH+98, KKK+13, MNLS97]. SMP-based
[MNLS97]. SMPs [MSA+00]. SMS
[KKK76]. SMT [BMP04a, CY06, EE09,
EE10b, EE14, GPV04, VC04]. SMTp
[CH04]. SNAP [DM91]. SNAP-1 [DM91].
Snapshot [CPI17, LCF+14]. SNMP
[Mad94b]. SNMPv2 [Mad94b]. Snoop
[Mos05, BSL08]. Snoop-Based [Mos05].
Snooping [SST06, BDH+99, Dah95, EK89b,
MSA+00, VLZ88]. Snoops [SST06].
Snoopy [GH90, DCS+14]. SOAR
[UBF+84]. SOC
[MBS+04, BFP03, LMS+13]. Society
[Mud96, Ros76]. Sockets [Mad94a].
Socrates [Fos74]. SODA [LLW+06].
Soft [GM84, LABR08, WEMR04, FGAM10,
HC99, LYS07, Lip73, SGK+04, TSK13].
soft-error [SGK+04]. soft-error-resilient
[HC99]. SoftSig [TACT08]. Software
[AA86, AWV88, AYQ+95, BCF01, CA94,
CH04, CSB86, CHLS16, CDK07, Don76,
DH+15, DB00, Ful91b, HS15, KF02,
KS17, Lan90b, LLW+06, LHM+15,
MA06, TL10, TML+17, TBS17, WCL17,
ZH16, ZQ04, AA06, AAVH91, AC09,
ACJL13, AJL14, BCG99, BS08, BC90,
BRG09, CB00, Don83, Don85, Don92,
DKZ93, ELN89, FMB+07, GHWR90, GS95,
GMF+11, HR00, HJS+82, HDS10, HCC89,
IKK+07, Jag80, JH82, KF79, KC02,
KCZ92, KDA12, KDP02, KL91, Las89a,
LRS+08, Luk01, LSF08, LGM+14,
MWP07, MDD77, MCL93, MP91, MHKT09,
NUS+03, NRS+07, ND210, OIA+13, OAA09,
OL02, OLJ+14, OA09, PNN77, RES+13,
RK10+10, Ran85, RPAS09, Rat82, RM77,
RO74, SBS13, SCGA13, Sch73b, SDH+14].
software [SBS16, SLLG05, SSH+07, SLK05,
SLF+09, SH87, TML+10, TACT08, VPS01,
VC72, VKI+00, VBY+14, WBM+03,
WL07, WMY+05, YZP+11, dKNS10,
SoMethInG [Bat72, Fos72b]. Sons [Atk79, Ben82, Ber91a, Bow79, Fui93, Gor83, Mud80]. sorter [DSM82]. Sorting [MCK16, CT08, Gut87, HW95, SP85a]. SpecTLM [BCR11]. Spectrometer [NNIS16]. SpeculatIve [BS06, CTT06, CWY+08, CWT+01, CASM06, HSS94, LGM+14, MT02, PGV02, PGV05, RKM+10, RCK17, STS17, SJA+17, ANHN95, ACM02b, ACM+98b, BCR11, CCE+09, CMT00, DS06, LF99, LBCG95, LPH+09, MDS12b, OL02, PGR01, ZCSM02, ZS01]. speech [AB86]. Speed [Alv93, IWP08, TM05, AA11b, APR89, BVIR+00, CM80, CFW82, DSG11, Gun90, Gup89, GSKF03, HS85a, KW84, KMK16, LDK14, MTT89, NKH+85, PN88, SHMZ94, TDF90, TW77, TLL07, Tur79, uAM16, DWS+12]. Software-Based [AYQ+16, MA06, TL10]. Software-Controlled [BCG+08, CSB86, KFN02, KL91, Luk01]. Software-Defined [DHR+15, TBS17, OLJ+14]. software-exposed [TACT08]. Software-extended [CA94]. software-hardware [MHKT09]. software-managed [HR00, NUS+93]. software-only [GS95]. solid [CME+12, CS13a, DJ09, JWK12, JCS+14, PB80]. solid-state [DJ09]. solution [AB84, PP84, PP98, Pat89a, WH97]. solutions [Kog73]. solve [Deb89]. Solved [AOM+14, SKN+15, SKCY16, AL12]. solvers [GC11, vdhHS90]. Solving [AYA83, GSZ90, GLH88, Lan90b, ABKA85, DJ09, JWK12, JCS+14, PB80]. Some [BLs+76, EHA82, Joh82, Las90b, PP88, Sha80, Yue84, Das77, Deb89, Wis86]. Specialized [NS16, QHS+13, Rob78, Tho10b, Woo14]. specializing [MKGT16]. specific [BS08, CDY+17b, KS07, LS12b, MPSiV89, PP92, RYP06, SYH11, WBS+88]. specification [Cra83]. Specifying [BKL+16, BNS11, RLS10]. SPECS [HSKS15]. Specialization [NS16, QHS+13, Rob78, Tho10b, Woo14]. special-purpose [FK80, MK84, SDD+07]. specialization [OKJ+13]. specialize [CWS06]. Spatial [AYA83, WJZ15, ABKA85, GSZ90, IHM89, PRM+17, SW90]. Sparse [AYA83, WJZ15, ABKA85, GSZ90, IHM89, PRM+17, SW90]. Sparsity [LCCZ17]. Sparsity-Aware [LCCZ17]. Sparsity-aware [LCCZ17]. Spatial [BVC04, SWA+06, CS99, CES16, CM00, CCB+06, DBM+08, GB01, KW98, Mar00, MCC+06b]. spatial-lattice [Mar00]. spatially [MCS13, PPA+13]. spatially-programmed [PPA+13]. Spatio-temporal [SWAF09]. SPEAC [Mar74]. Speakers [Tsa16]. SPEC [AE01, CH01, CSW94, Cit03, CKDK91, CB94b, GPPT02, GS07, Hen06, Hen07b, Hen07d, Hen07c, KC07, MJF95, PJJ07a, PJJ07b, PH90, Spr07, We07, Won07, YRK07]. SPEC95 [PSTM99]. Special [KSN07a, ABZ07, FK80, FTG88, JKT05, JKT09, KC05, KS84a, MK84, Mar74, NK86, SDD+07, TKJ07, JWB93, JWB94, Pen88, Ram88]. SpaceJMP [EMZ+16]. Spaces [EMZ+16, SSK17, CKZ12, IMC+06, PHB14, Wi91]. Space [ACM98a]. spanning [HDP+10]. Space-efficient [FHM+11]. SpaceJMP [EMZ+16]. Spaces [EMZ+16, SSK17, CKZ12, IMC+06, PHB14, Wi91]. Space [ACM98a]. spanning [HDP+10]. Sparc64 [ST03]. SparcCenter [SG94]. sparing [MM92]. SPARK [SW90]. Sparse [AYA83, WJZ15, ABKA85, GSZ90, IHM89, PRM+17, SW90]. Sparsity [LCCZ17].
store-wait-free [WAFM07]. Stored
[SK86, GSU11, GWSU12]. stores
[GCG+14, LL02]. strands [CP11]. strata
[NPC06]. Strategies
[ANS+15, FP91b, NP90, BA82, GS95, KDJ83,
Prz90, RR77, Smi98b, Smi98e, VGS85].
strategy
[BEH91a, Dev93, ELN89, Wan93, dRBC93].
stratified [ATT+13, SBS01]. Stream
[ADK+04, DC09, HCC+06, NGAS17,
SKN+15, BYP+01, Dav80a, FKBS11, God13,
GTK+02, GTA06, HSW+11, LCC06, MTS98,
NRK50, PK94, RL74a, RGD09, SKC+03,
WS91, YXY+07]. Stream-Dataflow
[NGAS17]. stream/Multiple [MTS99].
streamed [SKS+13]. Streaming
[Mac98, SWA+06, VGY17, WSH+05,
BCDL07, BD91, GSM+99, HCW+10,
SYH11, SWAF09, VFMCM13, Waj92].
streaming-array [SYH11]. Streamlining
[APS95]. StreamRay [RGD09]. streams
[CDS03, CL09, GCTR08, ZFC03, TLM+04].
Streamware [GCTR08]. strength
[AWC+11]. STREX [ATT+13]. strict
[KS14, TOL+11]. stride [ZFC03]. strides
[VL+92]. strike [HSS12]. String
[Cop78, TS05, ACF05, TYNM86, Vin77].
striped [CP90, KDS12]. stripping
[DS89, HAS14]. stripped [HM05].
Strober [KIC+16]. strong
[MTC+07, NSQ16]. Strongly [BNZ08].
Strongly-Atomic [BNZ08]. Structural
[SABR05, NP90]. Structure
[Bow79, JS73, Mud80, BEH91a, Fen84,
HG86, HHA83, JS88, KBK02, KTS+13,
MSH82, Mat78, Now87, PNB83, TTT82].
Structured
[Ano81, Bou75, PT83, Ram78, CFS+12,
Hil83, Kan74, KB80, KK76, Lafa95, LM74,
Lof74, SA86, Ter87, Van81, VHL73, WR84].
Structures [BRC+05, CSBA17a, DGT15,
All76, BS76, BS08b, DG92, FW82, Gau85,
HM93, Hom82, Klh76, Lec74, RS99, SK86,
SDP85, SPS07, Iva91, Tak88]. Structuring
[Goo88a, Hic77b]. struggles [RRT+08].
STT [GIS10, GGP+13, MDS+11].
STT-MRAM [GIS10, GGP+13].
STT-RAM [MDS+11]. students [Muk97].
Studies
[EBS+04, BC90b, DDP85, FD87, GKZ+07].
Study [AOM+14, CTHV+15, LSB15,
ZAI+16, BAC+98, BCDN87, BD93b, CBJ92,
CB94a, CY96, Con88, CDK+94, DCW+11,
DI90, FTP94, FAK+12, GTSS13, KS0a,
KW13, KDK+14, KM74, KDL+93, KDL+98,
KBD+13, LZ93, LJK+13, LPSZ08, MSB+02,
RB89, RB90, Red92, SL88, SG94, SG83,
Smi98b, Smi98e, TNY11, TA76, UC94,
VSH91, Wah83, WS87, Wie82, ZB92].
Studying [WZY13]. style
[Al83, CL07, Lip76]. Sub
[CASM06, CCS87, ZW14, ZHW16].
sub-core [ZW14, ZHW16]. sub-micron
[CCS87]. Sub-Threads [CASM06].
subarray [KSL+12]. subarray-level
[KSL+12]. subclass [Joe90]. subdivision
[MTS10]. subject [Tri80]. submicron
[VB805]. subordinate [CSK+99, CTY02].
Subroutine [WH07, KE91]. subscript
[KPK90]. Subsetting [PJ07b].
substitution [Hom82, LH88]. substrate
[DRCO05, ELMP10]. subsume [Nik89].
subsistem [ACK94, BBH94, CPDM+96,
Dug83, SHMZ94, TMV+11]. sub-systems
[Jar80, Kat89, Yom92]. Subthreshold
[NZO+05]. Subthreshold-Voltage
[NZO+05]. Suggested [Gil80]. suitable
[Roe85, SP84]. Suite
[ZZBL16, BO01, Hen07c, Joh04, PJJ07a,
PJJ07b, PL06, YLT06]. Suites
[LWPG17, Pon91]. sum [LLC98].
sum-addressed [LLC98]. Summary
[HH88, HK77, Kav81]. Summer [DK17].
Super [CCE+09, KKK92]. Super
[WJZY15, FB92, ST03]. super-scalar
[FB92]. Supercomputer [Che90, CKPK90,
McD88, ASK85, BDW85, DR91, NBKP95].
Supercomputer-based [Che90].
supercomputers [HS93, KS86, SL92, VSM+97a, VSM+97b, WSS4, WS87].

Supercomputing
[GBH94, Hey90, NKS+90, VF+94].

superimposed [AR80].

Superoptimization
[TP90, VCK].

Superpotizer [Mas87].

Superoptimizers [BA06].

Superpage [ROKB95].

Supernodes [SSC98].

Supерpipelined [Jou88, JW89, SD94].

Superscalar
[Jou88, KS04, CYL99, CWS+11, DSF+90, HKL00, IT93, JW89, JSL95, KS07, KMT91, LC92, Lai92, LKB91, NNN+91, OWCL90, PJS97, SNN99, SLH90, SF91, Suf07, TA03, UH93, VM97, WOR96].

Supplant [Woo14].

Syntactic [Tho12a].

Support
[ADP+15, CRW+15, CS+17, DHR+15, GSI71, HFL03, Hic17, JPL08, KKK+17, LER+17, Ott15, Ram88, SD09, SA15, WYM+17, ZQL+04, AR83, ADT13, AA82, ALE90, BCL82, BLS99, BFR78, BDO4, BMA00, BCD89, CMF+13, CL90, CL87, CS99, C14, CFS+12, C1Y96, CMT00, CHChmWH00, CSS+91, CR94, DF92, DHB89, DBM08, DMB87b, ESCB12, FSC76, FH76, GSR93, Gra84, GKB+13, HTCU10, HMM93, Hill83, HH93, HHM89, JDL81, J0h82, KC95, KFM05, KM86, KNS95, KH07, LeC74, LCS10a, MJW11, MS08, MWP97, MHH+95, MH07, MCD77, MW12, MDS12b, MTTG+99, MBK90, Mul98, New92, New92a, OPZ11, PS12, PQC+09, PHB14, PZT02, RSV87, RSF11, RGG82, RGP82, RWP96, RIS76, ROC94, RO98, SMB10, SYK10, SV06, SLLG05, SHI92, SLK05, SMN+11, SG94, SFS00, Sos94, Sta89].

Supported
[ST08, Ska13, SS86, SL12, Tab10, TML+00, TP90, VCK+12, WK08, WDA08, Wli82, Yue99a, ZYLC05, ZR14].

Supported
[MPP+08].

Supporting
[BCC+90, EW16, MSS+15, MCN+17, MBM+06, PCH+82, WK89, BH78, DG90, Dvo90, FMB+07, Hill81, Nak01, TKHP92, Wil91, ZWH16, ZSHG07].

Supports
[AK81].

Supremenum [SH92].

Surfer
[TMW+01].

SurfNoC [WGO+13].

Surprise
[SPH+16].

Survey
[Bar91c, Goh14, RO93, Tho11a, CmWH91, GAG88].

Surviving
[LDSC08, PAM11].

Sustained
[BAT12, DK89].

SVB
[PLZ09].

SVW
[Rot05].

SW
[FJB85, JM88, PB82].

SW-banyan
[JMB88].

SW-banyans
[FJB85].

Swapper
[ATS14].

SWAR
[CL09].

Sweden
[IEE83, ACM01].

Sweep
[CV04].

Switch
[BDJ+11, DR91, Ha84a, Ha84b, LHL+89, MABL97, MM89, SPP97].

Switch-based
[SPP97].

Switch-level
[Fra86].

Switchable
[CHZ+14].

Switched
[RL74a, DS85, DR91, KMS+12].

Switcherland
[EO98].

Switches
[ECRP96, Kn91, MB91, TF88, YA90].

Switching
[HL15, KD83, CS84, LHR84, LW92, PM92, SD95, TGG14].

Swizzling
[Wil89].

SX
[Fat90].

SX-2
[Fat90].

SXA
[Ter87].

Sylvan
[Bur84].

Symbiosis
[EE10b].

Symiotic
[ST00].

Symbol
[Lal73, RO74].

SYMBOL-2R
[RO74].

Symbolic
[BK14, CWHY13, GRD87, HA87, HF88, Kie87, LH88, OCF00].

Symbolics
[Moo85].

Symmetric
[AAD90, BAMA0, KB92, MDS011].

Symmetric-key
[BAMA0].

Symmetrical
[Max77].

Symmetry
[Ts90b].

Symposium
[ACM80, ACM89, ACM91, ACM93a].

Symmetry
[ACM95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, IEE76, IEE77, IEE79, IEE81, IEE82, IEE83, IEE84, IEE85, IEE87, IEE88, IEE90, IEE92, IEE94, IEE99, IEE93, IEE05, IEE06, JDL81, KN75, LS73, Tho01, IEE06, LEI91].

SYNAPSE
[NI95].

Synchronization
[ACAT16, AK16, GMT16, LR90, MCS91, MA15, OCV+15, PG16, SA15, ZSHG07, AC89, BD86, CSY90, DESE13, GVW98, GS80, Gup89, Hic76, KBG97, LAS85, MT02, MPT12, MPSV06, MBVS97, RP85, SGC+05, SY89, TVZ90].

Synchronization-induced
[MPT12].
Synchronized [LNA08]. synchronizer [CG92]. Synchronizing [FK83, SJ88].
synchronous [BCD89, IM02].
Synchronoscalar [ORS04]. SynFull [BJ14].
synonym [PHH16a, PHH16b]. Synopsis [Tsa16].
Synthesis [D'H16, LIF+16, LWPG17, MEB15, PP92, SOD+14, EG97, Gas88, Kin83, LS12b, MPR12, Qui84].
synthetic [BJ14, PBL90]. System [AHC+16, AOM+14, AVN+16, BLC+16, BKL+16, Buc78, Chr77, DKL+15, FL76, HMT+05, HSW+00, HCL15, KDL+16, LHM+15, MAHK16, NMS+14, VSM+08, WHZ+17, ZYSM15, AA84, AIO+11, AS91b, ACC+90, And73, And90, ALBL91, APT90, AFGM10, Aflm93, AJC+88, BBFP06, BGG98, Bar82, BLAA99, BBL88, BCL82, BAD+10, BR90, BAC+08, BC02, BR92b, CDP82, CDM77, CS13b, CO03, CZ14, CIZ99, CSSP87, Che92, CS11b, CLS73, CBF93, Cra85, CJ01, CK00, DSG11, Dav80a, Dav14, DLSW76, DS89, DF90, DJ09, DP76, DPB77, FCV97, FR89, FSC76, FSS+09, FR87, FSS76, Gao93, GP88, GMC+09, GSS12b, GA79, GYCS96, GPV04, Gra91, GKN80, HW77, HAO86, Hai87, HFL03, HHA83, HWT+11, HKT+13, HBI13, HMK02, HSS12, ICT85, JS73, KONA82, KTO+12, KM86, Kor74]. system [KRM83, KW11, KDL+93, KDL+98, KKK76, La04, Law76, LL88, Lee73, LSC2, LP91, LJS+02, LRS+08, LWZ14, LR77, LNEHR11, LN92, LC96, MK84, MS12, MM83, Mar82, MTC+07, MB89, MIO+10, MF76, NH12, NSI94, NDZ10, NSI8, NOK+83, OQ91, PS12, PBL90, Pou77, QRS09, QFLMK10, RRP+07, RSF11, RM77, Red92, REL00, RR04, RO74, Roc94, Rod85, RZ80, Rui86, SB05, Sat74, SK83, SYL13, SSDK84, SFWK13, SLCe12, SGS11, SG95, SW74, SC05, SLSN14, TA83, TS90b, TA76, TOL+11, TP90, Van81, VFCM13, VI94, VYK+98, WGT+05, WDA+08, Wil78, WO89, Woo14, WD+16, XBH03, YKA96, YJSE12, ZELV02, ZYGP09, ZRZ+14, ZLZZ09, Ber80, Cal74, CC87, Dud83, HO91, HNS77, MPSB87, MO83, NI85].
System-Level [AOM+14, BBFP06, SLSN14]. System/370 [CCS87, Dud83, MPSB87]. System/38 [Ber80]. System/6000 [HO91]. Systematic [GZuRC13, Jon82, VGNLV89, Mar83b]. Systems [ANS+15, ABC+94, BNE16, CHLS16, DK16, Geh14, HVML04, Hil91, KLMK17, KAOA05, LLLG16, Lev92, LLL+17, MSH+15, MM08, Ozt15, RCV+05, SHP+16, SAA17, SDB+15, SGM+15, WHZ+17, YVCB17, ZE16, ABR01, Adl73, AHMN91, ARJS07, AJH12, ASP+03, ACS+12, Avi83, BCG14, BA84, BS73, BBFP06, BFP06, BF70, BK90, COH+11, CLC12, CSY90, Che90, CGL+08, CG92, CKE16, CKC11, CS80b, CBRR12, CBC+08, CDA14, CHWY13, CRMR11, DF+13, DIY86, DZZ+14, DSH+10, Ebe02, ELM10, ELM11, Est02, EST89, GS290, Gau85, GCH+10, GTK13, GL73, GL98a, Gra84, GFNW86, HCU10, HW1+11, HCM+06, HS73, Hill3, HPF86, Hoo77, HEK+16, HX97, HBCG13, ILS96, ICN+10, HO80, Isa74, JD88, JCSK14, KTM91, KDMP92, Kha99a].

systems [Kha99b, Kha99c, Kin83, KOBS88, KMS+10, KR80, KB80, KKH11, Lee88, LAK09, LAS+07, LZZ+07, LCWM08, Lip98, LN92, LG04, LRHM90, ML+13, MLC+09, Mal80, MP86, MPS89, MSS76, MPSV06, MAL01, MPH+13, MMAS08, NUMS94, NP95, OIA+13, OLJ+14, Oya89, PQC+09, PBC+13, PG00, PIAS13, PL06, PP92, RWB09, RPASA97, RCC05, RR04, Roc85, RB007, Ros06, SBM02, SF804, Sal76, SK13, SGNG00, SL93, STV94, SMO89, SF91, SPA+98, SKS88, Sta89, SHMZ94, SMRT85, ST77, SSP97, TASS09, Tho09a, TL11, TBL12, UMB+11,
UMB+12, VPS01, VGSS85, WS07, WE74, WCS08, XT96, YPD83, Yok94, YJE11, ZVN03, vT88, vIG80, Ant91, Ber91c, Kos93b, JW93J, JW94, KSN07a, Ram88.

Systolic
[TW91, BCC+90, CH85, DV87b, FKMD83, HS85c, Kp, MeL, NLY86, Qui84, VGNL89, nZY84].

T [Zho16, BMM14, ACK+95, NPA92].

T.Node [All92]. T3D [KC95]. T9000
[LR93]. Tabak [Ber91b, Kri91]. table
[BCR10, BE03, HH93, JW97, KE91]. tables
[Ree82]. Tablets [CZ+15], tactical
[ST77, TP+77]. tag
[EA02, HR07, RFS88, Sez94]. Tagged
[Feu76, GK85, Har86, SA87]. Tags
[SH77, Font93, Gurn83, JW97, SM94, WSY95].

Tail [HhEH+15, JHK+16, ZMMT16]. Tailor
[LWRC10]. tailored [UVC14]. Tailoring
[CLM07]. tale [Bha97]. Talk [Bra82c].

Tame [AVN+16]. taming [HBCG13].
tamper [TML+00]. Tannenbaum [Ram78].

Tap [KSO08]. tape [VRV+14]. Tapping
[WDA+08, GSU11]. Teran tapula
[EAE+02].

Tarazu [ACR12]. Target
[CHP97, JHK+16, PAM+16, BM99c, KE91, LNEHR11]. Target-Driven [JHK+16].

Targeted [SDLR+15, BTA+11]. targets
[Dve90]. Tartan [MCC+06b]. Task
[AWAG15, CS89, Pri91, Ste80, BCD89, GVY90, GTA06, Hain84a, Hain84b, KTC00, LRHM90, MiI82, OBRW14, RCM+12, Ros76]. task-based [KTC00]. tasking [Roo89].

Tasks
[KGS16, ZE16, LRHM90, Mar82, MT84].

Taurus [MAHK16]. TaxDC [LLLG16].

Taxonomy
[LLLG16, Avi83, Gl83, Joh88, Smo89, TH76].

TCB [MPP+09], TCC [HCW+04], TCgen
[Bur06]. TCI [AZRA97]. TCP
[Mad94a, BSR06, LCL+16]. TCP/IP
[Mad94a, BSR06]. team [CR94]. Technical
[Ful91a, GA79, CR94]. Technique
[AK16, ASH86, AP93, CFR99, FP91a, HSS94, IBC12, Jag90, Kee79b, Kha97b, LN07, Lan77, LAS85, MPSV06, PV03, RD01, SFS04, SGS11, UZU00, VLZ88, WSY95].

Techniques
[DM06, Mon98, MKP95, WEMR04, ZH16, AA06, AC89, Arm74, BGP+01, BR92a, CGB89, FKM+02, GSR93, GHKP89, GHG+91, HA90, JKN+13, KDV11, KHC91, MP19, RGP82, RFS88, Ria80, TYZ90, Tua78, W887, YERJ99, Ful91b].

Technology-Driven
[KDA08]. Teenage
[Bar11]. Telecommunications [Dre94].
telecommuters [Dre94]. Telescope
[NIS16, NIS12]. telling [KZC12].
temperamental [NaR07]. Temperature
[GNB15, SSH+03, WMW09, HCG+06].

Temperature-aware
[SS8+03].

Temperature-constrained
[WMW09].

Tempest [RLW94, RLW98a, RLW98b].
template [CWS+11, FAYA87]. Temporal
[CWdO+06, PG04, WSH+05, NMTH10, SWAF09]. Temporally
[LL02, MA15].
temporary [SP87]. Ten [Ye99, PTA+11].

Tensor [JYP+17]. Tera [ACC+90]. term
[AJL14, CS11a]. terminal [CJM77]. terms
[PSB13]. Terri [Ful91a]. Test
[LWP17, YHF03, CTV+09, GH90, GKN80, KPK90, MBL+89]. test-and-test-and-set
[GH90]. Testability [S05]. testbed
[RES+13]. testing [DRC05, PP96, SGB00, SzUK+04, ZMMT16]. tests
[MMP+12]. TETRIS [GYP+17]. Texas
[Kin75, IEE82]. Text
[BN78, CL09, Rb78, TW91]. Textbook
[Su74]. textual [BTW77]. texture
[CBS98, HCG97]. their
[BSF+91, Cra88, Jai82, OC78, PLZ09, RFK88, RAJ00, SSP97, SS86, VM88]. them [KBG97, KDK+14, LWLZ12]. theorem [Gao93]. theoretic [Nik09]. Theory [ED17, MPM14, Sov83, XDLB13]. There [PAY+17]. Thermal [DM06, GSN05, LZZ+07, BTS+11, MMNBR07, MMAR10]. Thermally [KRY+17]. Thermally-Aware [KRY+17]. Thermostat [AW17a]. Thin [LMS+13]. Thoughts [Sha80]. thousand [SK13]. thousand-core [SK13]. Thread [Bet73, BM09a, FURM00, KHP+04, PR05, RWB09, SKS+92, BDMF10, CSM+05, DG99, EE09, EE14, GJT+11, GP08, HK09, JKN+13, KDM+98, MLC+09, MT02, PT03, SBM09, SLM02, SCZM00, TE94, YKL+16, LWR10]. Thread-based [SKS+92]. Thread-level [FURM00, BDMF10, DG99, EE14, HK09, MT02, PT03, SCZM00, YKL+16]. Threaded [WCT98, cC91, CSS+91, HS13, KHP+04, LBvH06, MLCW11, OA08, RKM+10, SQP08, VIA+05, Wu08, YZ07b, ZdKL+13]. Threading [BFA+15, CCE+09, MLC+09, RRP06, SQP08, kSYHX+11, CH04]. Threads [CTTC06, CASM06, CPT08, DESE13, HKT93, HKN+92, KST11, LWR10, LPH+09, OL02, WCW+04, ZCMS02]. Three [PAD16, RFK88, SM14, AAZ89, DD90, ES74, Lai92, LSFK08, Teo90]. three-access [AAZ89]. Three-Dimensional [PAD16, RFK88, ES74]. three-port [AAZ89]. three-port/three-access [AAZ89]. Thresholding [THM+14]. Throttling [AGS05, ELMP10]. Throughput [BTC06, MCK16, SAL+05, SN95, TS05, TP15, AFGM10, CG95b, CHK+12, CDS+14, FP91b, GJT+11, HCV03, HS13, yKPR02, KSN07b, LKC+10, PD76, PD98, Pat98b, SL92, SVC03, VFMC13, WBKR13, YJE11]. throughput-oriented [HS13]. Thumber [Mil77b]. thwarting [WL07]. TickerTAIP [CLVW93]. TIDBITS [HRD+85]. tiered [AW17a, UMB+12]. Tightly [KHBS14, ALE90, Bri87b, Mar85, NI85, SKS+13, SJ88, YMHB00]. tightly-coupled [ALE90, Mar85, NI85, SKS+13, YMHB00]. Tile [ORS+04, TYSSK11]. Tile-Based [ORS+04]. Tiled [RL17, SPM+06, ZA05, MSP+06, New92b, New92a, SKC+03]. Tiles [WDL10]. Time [Fuji91, HS06, MCG17, SGS08, Wra91, ABR01, AV10, ASP+03, Bat72, CLC12, CTW+13, CG92, CJS99, DP76, DPB77, ELN89, FF73, FHM+11, FTG88, GPF13, GH76, GWM03, HANN96, HBII13, HRD85, HW95, Jen74, JnWH97, KD92, KL02, KPH96, LYK+00, LYBC88, LJ+13, LRHM90, Mas84, MPI94, MAL01, Mul89, NMS+00, PQC+09, PPR09, RB800, RHS06, Rid87, RD01, Roo98, SIG89, See91a, See91b, SA88a, SA91, SBM09, SKS88, TRA91, Thr76, THM14, TP90, Wu91, YXR06, YMI11, YFPR07, YMX+10, ZW16, dRBC93]. time-constrained [CG92]. time-delay [HRD85]. Time-sequenced [Wra91]. time/space [FHM+11]. time/space-efficient [FHM+11]. timebombs [CWdO+06]. Timed [Zub80, DGY99, Now87]. Timekeeping [HM02, MDS12a]. Timely [YXR06, LF00]. times [May82, QFJL12, SM99, TL14]. Timestamp [MSA+00]. Timetraveler [VAV10]. TimeWarp [MDS12a]. Timing [GW73, ZWSM15, Afs95, CKS16, HFJ11, ISG07, KCE12, PS77, PS98c, SP98a, YLM+10]. timing-aware [HFJ11]. timing-error [KCE12]. Timing-Sensitive [ZWMS15]. tiny [LC02]. Title [Rat85]. TLB [BM10, CB02, GBHS14, KS02a, PII17, ROKB95, RGSJ17, SD00, ST03, SSC98, TDF90]. TLBs [NUS+93]. TLP [SNL+03]. TLSync [OPZ11]. TM [Fen82, LCF+14].
TMC [KC95]. together [LWRC10]. Token [MHW03, Lip77a, PC90, PC98b, PC98a, SA87, TTM12]. token-store
[PC90, PC98b, PC98a]. TokenTM [BGH+08]. Tokyo [EIE86]. Tolerance [SV05, AA86, Ann91, Avi83, Con88, CP11, HBT11, KRS13, KW84, KR80, MS82, MTS10, PBGM09, RRP06, SH80, SPR00]. Tolerant [GAR*05, LWB08, PGVB04, AGSY94, BSD87, DRY95, FCP92, FF73, FV82, GKN80, KLC94, KR85b, LS82, LIW82, Mar85, MC93, MKKU03, MGBK96, PA73, PJDL06, SKB09, Tem12, TYZ85, VB05, WL88, WIPK90]. tolerate [TST07].
Tolerating [ABC97, CASM06, Luk01, QD99, XYM12, BBJB94, GHG*91, LK*92, NQK13].

TOM [HEK+16]. Tomasulo [EKEL01].
tomography [MMAS08]. too [Bra80a].
Tool [HLL*93, TAM*08, BA97, Burt06, Cor89, GBSH14, GSS05, JK13, Man01b, Man01a, MESSZ6, NMS*0, PPZ06, Sch89].
tools [ASK85, HS74, Spr07, Sro01]. toolset [BBJ*08, MSB*05]. top
[HSB5a, PBWH*11, SW87]. top-of-stack [HSB5a].
Topic [LCCZ17]. topics [Smi86].
Topologies [PDL15, KMA*12]. Topology [KDSA08, KDA07, Tze90].
Toronto [AC91]. Torto [Dik90]. torus [HWC91, SDGT03]. Totally [CMR*12].
touch [LFO0]. TP [CB94b]. TPC [JHK*16].
Trace [BKB90, GCJ17, JS00, LHM*15, BJ03, BRS99, Burt06, CNO*87, HWI*11, HB90, Kha95a, Kha97b, KEL91, KSA03, LSSG05, PEP98, RBS00, RSYP06, TF01].
trace-based [HWI*11]. Trace-driven
[BKB90, Kha95a, KEL91, LSSG05].
trace-level [KSA03]. Traces
[RAM*04, Sto86, ASH86, BKW90, OQ91, RF96, YHXX14].
Tracing
[Kha99d, JK13, RGD09]. Tracker
[LYM16]. Tracking [CLS05, CWY*08, YSCC16, BYG*00, JOW*02, SCC03, SLZD04, TWM*09, ZPS*04, uAM16].

Trade [NLS88, SPM*06, BDA03, CM80, MS07, SEI*95]. trade-off [BDA03, CM80].
Trade-offs
[NLS88, SPM*06, MS07, SEI*95]. tradeoff
[CW02, CS94, Ino05, MHS*0, YJE11].
Tradeoffs
[CMM*06, JW94, SV89, TKHP92, AML*10, CH87, CGL89, DMB87b, FJ94, HJB*82, Jou89, JOW*02, LGH92, LAB*11, MYP*16, NUS*93, PN77, PHH88, RCL73, RAN85, Reg76, SFSK02, SLSN14].

Traffic
[DSH91, HM81, WGA*02, VPC02]. traditional [SKC*12].

Transaction
[ATT*13, DI86, HCS5, RBG*01].

Transactionable
[BNZ08, BWH*0, CP17, DDK*16, HWC*04, HM93, MS15, MCC*06a, NP17, RG02, RHL05, SD80, ZJ06, BDEM07, BRM10, BMV*07, CMF*13, COH*11, CVN*06, CMM*06, DCM*11, DFL06, DLMN09, FM80*7, HCW*04, LCF*14, MTC*07, MBM*06, RRP*07, SSH*0, Tab0, VTS12, WSO7].

Transactionableizing
[RLS14].

Transactions
[BWH*08, KPS*12, LZC*10, MCG17, QST14, RKM*13].

Transfer
[HCL15, BS73, HS74, KD06, MS07].

Transfer-Aware
[HCL15]. transfers
[DJT94, Hum96, Lip77a]. Transform
[HS86, NNS12, NZY84]. transformation
[DJPK16, KS84a, RCC05, SV06].

Transformations
[SSK17, AC09, CM00, RP99]. Transformer
[Sch83]. transforming [KSC16].

Transient
[GSV03, GV05, RM00, VPC02, HANR12, YZ07a]. Transient-Fault
[GV05, GSV03, VPC02]. transients
[PM92]. transistors [FTP94]. transit
[CKA09, Mac98]. transitive [XHB06].

Translation
[AZEE17, AKB85, AK01b, AK01a, BCR10, Bha17, BRGH89, CB17, PHJH17, YVCB17, ABL+80, ACM02b, AS96, BCR11, CLL01, CFG+13, FPF+92, FBG12, GKEU09, HS01, HH93, PHH16a, PHH16b, PHB14, QD98, RLS10, SBS16, TDF90, WEG+86].

- Translation-aware [RLS10].
- Translation-Triggered [Bha17].
- Translator [KMK16, SSB07, UC01].
- Transmission [CHK+12, OPZ11, RL74b].
- Transparent [AZRRA07, CBC05, HEK16, KP05, VNN13, AW17a, BMW09, LLZ13, ST03].
- Transputer [LR93, OQ91, WS85].
- Transputer-networks [OQ91].
- Transputers [Hey90].
- Trap [BKSO05, KKN00, YXR06].
- TRAP-Array [YXR06].
- Trapping [EW16].
- Trigonometric [dDIS13].
- Trimmed [VGX17].
- TriCheck [TML+17].
- TriCheck [Woo85].
- Triple-A [JCSK14].
- Triple-base [MS12].
- TRIPS [GMC+09, SNL+03].
- Trisection [TML+17].
- Trojan [BCG14].
- Truce [Mas04].
- True [MMT16].
- Trusted [AWSS17].
- Trustzone [SRSW14].
- TSO [DMT13].
- TSO tool [HVL04].
- Tsunami [SKN+15].
- Tuning [MRH+16, AAM76, CSW94, D91, LPH+99, SG94].
- Tunnel [HLW94].
- Turing [La03].
- turn [HFM+11, GN92, GN98, Ni98].
- tutorial [SGG+85].
- tutorial [HSS12].
- TwinDrivers [MSZ09].
- Two [AW17a, MPT91, PCC+08, SAL+05, Bha97, BSSM08, BKB90, BPY+91, CG91, EPCP98, JW94, Kha99c, LH88, ON90, Sez93, SL88, Sta81, TKHP92, WBL89, WQL92, YL84, YP92, YP93, YP98a, YP98b, dRBC93].
- Two-Dimensional [SAL+05, BSSM08, LH88, YL84].
- Two-Level [PCC+08, BKB90, CG91, EPCP98, JW94, SL88, WBL89, YP92, YP98a, YP98b].
- two-phase [dRBC93].
- Two-tiered [AW17a].
- two-way [Sez93, WQL92].
- TxLinux [RRP+07].
- TxRace [ZLJ16].
- type [BMM14, GSZ90, Gil83, Sov83, SH87, WW89].
- Typed [KKK+17].
- types [Feu76, GB74, NYNT12, Sie77, ST08, VI94].
- typestate [GZC+11].
- Typhoon [RLW94, RLW98a, RLW98b].

- Ubik [KS14].
- ubiquitous [CDS+14].
- Ugly [SDB+15, Irw10].
- Ulisse [CJM77].
- ultimate [Gri88, Jon88c].
- Ultra [CDY+17a, CDY+17b, HTM+05, SCP+06, CKS16, EKM04].
- Ultra-low [CDY+17a, CDY+17b].
- ultra-low-power [CKS16].
- ultracomputer [Got98, EGK98, GGK98, GGK98].
- UltraSmall [TSK13].
- ultrasound [CYH+11].
- Unbelievable [HC15].
- Unbounded [CNV+06, BDLM07].
- Uncertain [Zho16, BMM14, BMM14].
- uncommon [BDLM07].
- uncomputation [SV06].
- Unconstrained [ANHN95].
- unconventional [Kha95b].
- uncorrectable [DJPK16].
- undefined [Ger80].
- Underlying [YLP+17].
- Underprovisioning [WGS+14].
- Understanding [HQW+10, ISL96, KS12, KZT05, LJS+02, LRS+08, LRC+08, MHhK+13, MMAS08, RRP06, DFR017, ZS00, HSS12].
- Unidata [Ber76].
- Unidirectional [Bos84].
- Unification [Woo86, GK81, SA86, Woo85].
WO86, YMST07]. **Unified** [Bay99, CS94, DP12, JBW89, LSY+, PMPM96, PHB14, Ris76, Tak87]. **Uniform** [Sov83, ABC97, DN93, KBK02, Qui84, SA92]. **uniformly** [SA86]. **Unifying** [TGGS14, FW97]. **Unikernels** [MMR+]. **unintrusive** [HDT+]. **uniprocessor** [CJ01, RTY+]. **uniprocessors** [EJK+]. **Unit** [JYP+17, Woo86, BNA88, CRM91, GSS12a, GSS12b, HK89a, HS85c, MS13a, MS13b, MS13c, PS88, Skl92b, Skl92a, TH86, Woo85, WO86, WLP+14, YMHB00]. **Units** [AWAG15, THEK16, JSL95, LZZ+16, Mat91b, Nad88b, PHB14, RR77, SP89, Sur07, WZL+16]. **universal** [Bra82a, FFW98]. **universality** [Sie77]. **universities** [Tho10a, ABC+94]. **University** [Cha92, LS73, MFST88]. **UNIX** [AKB85, AKCB86, PVB17]. **unknown** [Par75]. **unlimited** [GXL12]. **unnecessary** [Tho10b]. **unordered** [SRE+]. **unorthodox** [KDBA78]. **unresolved** [TYS+94]. **Untrusted** [KDL+16, CS13b, HKD+13]. **update** [GKT13, SLc12]. **update-aware** [SLc12]. **update-intensive** [SLc12]. **Updates** [IKK16]. **upon** [Bra82b, RR77]. **UPS** [KZA+12]. **USA** [ACM93a, IEE03, IEE06]. **Usability** [WSC+14]. **usable** [TOL+11]. **usage** [AZ98, CmWH91, Dev90, MW98, Wie82]. **usage-based** [Dev90]. **Use** [BS04, DD90, DFK17, NHH+17, SLSB10, Sho87, ZJL17, BH78, BB74, Cit03, CL82, GC84, GH86, HCV03, HCB04, Kee78b, Kee79a, LC82, Maz77, NRK05, Sez96, SS85, SHV+98, We97, YP93]. **Use-Based** [BS04]. **used** [Che90, LHL+89, MS13b]. **useless** [DSR+93]. **Usenet** [Tho90, Th91a, Th91b, Th91c, Th91d, Th92a, Th92b, Th92c, Th93a, Th93b, Th93c, Th93d, Th94b, Th94c, Th94d]. **User** [SOM+08, AL91, CME+12, FR89, GP76, MS182, MCD+08, Nak01, Par02, RLU94, RLU98a, RLU98b, SLT02, Tob80, TSK+83, TM80, ZYL05]. **user-defined** [TM80]. **user-level** [Par02, RLU94, RLU98a, RLU98b, SLT02]. **user-microprogrammable** [TSK+83]. **user-perceived** [MCD+08]. **user-programmable** [GP76]. **uses** [TP06]. **Using** [AK00, BN208, BLS99, BNE16, CFRS99, CWY+08, CCEH00, CLR05, ECP96, GCJ17, Goo83, Goo98b, GSM16, HVML04, Kar89, LNR+06, LW08, MHS+03, MF05, MMJ05, MH98, OCY+15, PAV16, SCG13, SRS14, SLFG06, STS17, SDR+15, SLT02, SK10, SOS05, TM05, ZJ16, AAM76, Az95, AS86, AD13, AR80, AWAG15, AWC+11, BDH+99, CGS09, CTY02, CG06, CE98, CKZ12, CHW13, CB94b, DSG11, Das83, DW90, DSO11, Don83, Don85, Don90, Don92, DESE13, EST89, Far05, FFDDH00, FAYA87, GSZ90, GC11, GGH92, GSS12b, GB01, GMF+11, GCTR08, HvDJL05, HJ86, HO4, HTM15, HBHA02, HR07, HY85, HDP+90, JTSE10, JPT14, JC97, KRS13, KST11, KF79, KS84a, KDM92, Kec78a, KPH+98, KDS+06, KM10, KGS16, MKM16, KW98, LF00, LSSG05, LS12a, LS12b, LWL12]. **using** [MS13a, McD82a, McK74, MS80, MM14b, NNS16, NPC06, OPZ11, PCL10, PGG+87, PT03, QSR09, RBR02, RKM+10, RP99, RLCV10, RLD+17, ROKB95, RVL014, SLP+09, SEI+95, SGS11, SSAC13, SA88b, SSC98, Tab10, TQC+15, TM14a, TPO06, TS10, TS99, VSH91, Van81, VKI+00, VPC02, WP87, WMP07, WZL+16, WR84, WL10, ZRW05, ZLZZ09, ZZY09, ZS01, Goo98a]. **UT1000** [Cor89]. **Utility** [JSM13, JNAs+12]. **utility-aware** [JNAs+12]. **Utility-based** [JSM13]. **Utilization** [CYMT16, CYG+17, KOR17, PPM17, CKDK91, CM8+13, RE13, YBM13].
utilizing [CS06b, KKN00].

V [KB76, QTP05]. V-PMS [KB76]. V-Way [QTP05]. V9 [BKS+94]. Validating [LB17]. Validation [LB17, DZ09, HYHD95, Kha99d, MMNBR07, TXZ09, VNN13]. validity [KEL91]. Value [CL04, NGS99, WCL17, BEL+00, CRT99, DG99, GM98, GCG+14, KTS+13, KSA03, Lee85a, LL00, PS14, SB05, SSJ+16, TSS99, WCF01, ZCSM02, ZYG00, ZFC03].

Variable [LBW08, AWC+11, CYL99, De 90, IS92, LCSI0a, LRIHM90, PN77, RL74b, TW77, VHL73, WS91]. variable-length [RL74b, VHL73]. variable-strength [AWC+11]. variables [Bri87b]. Variant [MRH+16, Tze90]. VariaSim [RBOS07].

Variation [GNB15, LBW08, TT08, Jen78, Pon91, TST07]. Variation-Aware [GNB15, TT08]. Variation-Tolerant [LBW08]. variations [Mus09b, Slee10, XYM12, YLHL10]. various [Cra79, Don83, Don85, Don88, Don90, Don92, IT93, Sie77].

vstructured [Lip73]. VAX [BS98a, BB90, CLS2, Cla87, CBK88, De 81, EC84, EC98a, EC98b, GM82, HR91, Lar82, PB80, Wie82]. VAX-11 [CLS2, De 81, EC84, EC98a, EC98b, Lar82, Wie82]. VAX-11/780 [CLS2, EC84, EC98a, EC98b].

VecCleArit [LN07]. VDL [Lee73]. VEAL [CHM08].

Vector [Cha92, Fat90, GP95, KBH+04, KKS+08, MSAD91, PVAL95, SFS00, Wag83, BB90, Bur84, CL89, DD90, Dow87, Dow88a, Dow88b, EAE+02, FP91c, HY86, HIL89, HPU+16, HK89c, HS93, ICT85, IHM89, JBW89, KDMP92, KW84, KP03, MPSB87, Sk192b, Sk192a, SZ88, VLL+92, Wei89, YY92, Yue99a, ZK90]. Vector-Thread [KBH+04].

vector/scalar [JBW89]. vectorization [cC91, PGV02, PSB10, VJM09]. vectors [DSF+90, KTK12]. Veljko [Col90].

Verification [ED17, FXZ+17, FRK+15, GRH06, MS05, TML+17, ZSG+17, Das83, RK+11, Sto06].

Verified [KDL+16]. Verifying [AHKC16, CHWY13, HVML04, LSMB16, MPX+13, RLS10]. Verilog [KMK16].

Verlag [Ber91c]. versatile [AA84, Aßm93, CH85, SP85a]. version [ABKA85, Ann91, BHS91, B97, HC15, Jon08, Mad94a, Nis91]. versus [AHKB00, Bha99, BEH91a, CB76, CDK+94, DHR+90, KKC92, LJF+16, LJ90, Mull89, PMA+13].

vertical [LL+14, MSB2]. Very [Fis98b, RGSJ17, AS92a, BK+94, BTW77, KWK90, KTM91, Tre80, Fis83, Fis98a].

Vesta [CBF93]. VF [DD90]. VI [ZBJ02].

Via [CASM06, APX14, ACJL13, BM01, BYG+00, CY06, DS11, DS02, ELMP10, FBG12, FRB01, GLM13, HRA85, IMC+96, IKK16, JnWH97, KKK99, KJM+07, LWV+10, LS12a, LNRG12, LTQ06, MSS+15, ML05, MAL01, PKM17, Quo94, QTP05, RSW04, RM00, SBS01, SLG+05, SLQK12, SMB09, SLZD04, ST08, UV14, VGX17, WCW+04, WM16, WZY13, WWHF03, YJX+16, YZF+11, ZdKL+13, ZBF10, dRBC93, uAM16].

Victim [ZA05, BCG09, GAS16, NRK05]. video [BBFP06, MBS+04, RAJ99]. Videos [JSCM17]. view [Adl73, Dug83, Gil83, KDBA78, Mat90, PT91, Par88a]. violation [PLZ09, QTJ13].

Violations [LDSC08, LTQ06, LCS0a]. Viper [PGB12]. Virtual [AZEE17, ASP+03, AL91, BLA+94, BLA+98a, Dal90, EMZ+16, HS06, JPL08, MH07, MWM04, MWM04, YKL+16, AR83, AL74, BHS12, BGC+13, BLS99, BB74, CBS88, CWD+06, Goo87, Goo88b, HH77, IS96, JADAD06, KTM91, KR13, KKC+16a, KPKJ07, LYK+00, LC02, Lip77b, LL14, LSS04, ML05, NOK+85, PHH16a].
REFERENCES

[SDV+87]. \textbf{ZS-1} [SDV+87]. \textbf{ZSim} [SK13]. Zynq [JLFM15].

References

\textbf{Ahuja:1982:MMA}

\textbf{Agrawal:1984:BHH}

\textbf{Agrawal:1986:SIR}

\textbf{Adams:2006:CSH}

\textbf{Agyeman:2011:PAO}

\textbf{Akagic:2011:HSC}

\textbf{Alpert:1990:PCL}

REFERENCES

Ashraf:1998:IRM

Annaratone:1986:WAI

Annaratone:1998:WAI

Adve:1991:CHS

Abd-Alla:1976:LAT

Anido:1989:TPT

Archibald:1984:ESC

Anantharaman:1986:HAS

Abnous:1992:PBV

Allen:1994:RWR

Agarwal:1995:AMA

Alvarez:1997:TMF

Agarwal:1998:AMA

REFERENCES

Amano:1985:SIN

André:1980:KAO

Ashenden:1987:LWP

Acquaviva:2001:ECE
Andrea Acquaviva, Luca Benini, and Bruno Riccó. Energy characterization of embedded real-time operating systems. ACM SIGARCH Computer Architecture News,
REFERENCES

Alvarez:1998:DDA

Abe:1987:HPI

Aleen:2009:CAS

Abadal:2016:WAF

Agarwal:1989:ABS

Agarwal:1990:TCS

Agarwal:1998:ABS

Aggarwal:2007:ISI

Alverson:1990:TCS

Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porterfield, and Burton Smith. The Tera computer system. ACM
REFERENCES

[ACK94]

Almasi:2003:DCD

[ACK+03]

Aldwairi:2005:CSM

[ACF05]

Arulraj:2013:PRS

[ACM80]

Asthana:1994:EAM

[ACK+95]

Arpaci:1995:EEC

[ACM1995]

ACM:1980:CPA

REFERENCES

August:1998:IPS

ACM:2000:PIS

ACM, editor. Proceedings of

REFERENCES

PLOS '12 conference proceedings.

Ausavarungnirun:2012:SMS

Abandah:1998:EAT

Ahn:2004:EIS

Adler:1973:MCC

Agrawal:2015:ASD

Azevedo:2013:ZME

Ahn:2013:DAS

REFERENCES

Aslot:2001:PCS

Agerwala:1973:CCL

Ansari:2010:NES

Annaratone:1990:KPP

Afzal:1995:PMU

Agarwal:1998:RAM

REFERENCES

IEEE Computer Society Order Number PR08491; IEEE Order Plan Catalog Number 98CB36235.

Andrus:2014:CNE

Amani:2016:CVH

Abdulla:2008:MCR

Agarwal:2000:CRV

Adve:1991:DDR

Arvind:1983:CMN

Aichinger:1992:FBP

REFERENCES

Arakawa:2005:SXE

Akamine:2011:IOE

Ahuja:1977:MMS

Asthana:1988:IMS

Ahn:2012:RHA

Albericio:2016:CIN

Abts:2009:APP

Dennis Abts, Natalie D. Enright Jerger, John Kim, Dan Gibson, and Mikko H. Lipasti.

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Hideharu Amano and Wayne Luk. FPGA-based Connect6 solver with hardware-accelerated move refinement. *ACM SIGARCH Computer Architecture News*, 40(5):4–9, December 2012. CODEN CANED2. ISSN 0163-
REFERENCES

REFERENCES

Amsbury:1983:CSA

Abts:2010:EPD

Aga:2017:ISM

Anderson:1973:IDP

Anderson:1990:ACS

Ando:1995:USE

Agarwal:2008:FCR

Annexstein:1991:FTH
Anonymous:1981:ESM

Anonymous:1982:LA

Anonymous:1989:PTD

Anonymous:1999:MSF

Anonymous:2004:AI

Anonymous:2004:C

Anonymous:2004:GCC

Anonymous:2004:PCM

Anonymous:2004:Ra

Anonymous:2005:AI
REFERENCES

Anonymous:2005:C

Anonymous:2005:GCM

Anonymous:2005:MW

Anonymous:2005:PCM

Anonymous:2005:R

Anonymous:2006:AI

Anonymous:2006:MGC

Anonymous:2006:MPC

Anonymous:2006:R

Anonymous:2006:SG
Anonymous:2008:AI

Anonymous:2008:CA

Anonymous:2008:MGC

Anonymous:2008:MPC

Anonymous:2008:PI

Anonymous:2008:R

Agarwal:2015:PPS

Anthony:1991:BRT

Ando:2014:CSF

Arnold:1976:HRM

Agarwal:1993:CAC

Anjan:1995:EFA

Annaratone:1989:ICS

Abad:2007:RRE

Agrawal:2014:RHD

Annaratone:1989:ICS
REFERENCES

Aggarwal:2007:CIB

Armstrong:1974:FMT

Adams:1991:PPP

Akella:1991:MMI

Alleyne:1992:EDN

Austin:1992:DDA

Austin:1996:HBA

REFERENCES

Arelakis:2014:SSC

Agarwal:1986:ANT

Agarwal:1988:EDS

Agarwal:1998:EDS

Abu-Sufah:1985:PPT

Aslam:1984:MDC

August:1999:PDL

References

109

0163-5964 (ACM), 0884-7495 (IEEE).

Anantaraman:2003:VSA

Ajay:2017:GIL

Assmann:1993:RPA

Agarwal:2011:FIF

Amamiya:1986:IEL

Atkins:1979:RAC

Amit:2014:VMS

References

Atta:2013:SBI

Amin:2007:APA

Aupperle:1980:RIC

Ahmad:2010:JOI

Avizienis:1983:FTF

Asmussen:2016:MHO

Alameldeen:2004:ACC
REFERENCES

Agarwal:2017:TAT

Al-Wattar:2015:EMA

Alameldeen:2011:EEC

Angstadt:2016:RPP

Awad:2017:OLO

Anderson:1988:SNN

Amano:1983:SSM

Aweke:2016:ASB

Adams:1989:AIS

Allu:2005:ERC

Alam:2017:DIY

Allu:2006:ERC

Al-Zawawi:2007:TCI

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Baron:1974:ELC

Bhuyan:1982:GCP

Banerjee:1984:FSA

Burger:1997:STS

Bansal:2006:AGP

Butler:1988:PAO

Blumrich:1998:DCS

Bergan:2010:CCR

Ben-Asher:1989:DSA

Baker:1991:PIS

Baker:1994:LLP

Banavar:2015:WEC

Barton:1982:SNH

Barroso:2011:WSC

Baskett:1977:MMF

Bataille:1972:SOG

M. Bataille. Something old: the Gamma 60 the com-

REFERENCES

Batcher:1980:AMP

Bay99

Brundage:1974:PED

Bhandarkar:1990:VVA

Binkert:2011:GS

Nathan Binkert, Bradford Beckmann, Gabriel Black,

Beltrametti:1988:CMM

Bodin:1990:LOH

Bucher:1990:ACM

Bhandarkar:1991:PAC

Boppana:1993:CAW

Buonadonna:2002:QPI

Brifault:2004:DCM

Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa, Alper Buyuktosunoglu, Chen-Yong Cher, and Mateo Valero. Software-controlled priority characterization of POWER5
REFERENCES

<table>
<thead>
<tr>
<th>BibTeX Key</th>
<th>Reference</th>
</tr>
</thead>
</table>

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Banescu:2010:MFP

Bilir:1999:MSN

Binkert:2011:ROF

Blundell:2007:MFC

Blake:2010:ETL

Beetem:1985:GS

Breen:2003:AAA
Kristopher C. Breen and Duncan G. Elliott. Aliasing and anti-aliasing in branch history table prediction. *ACM
REFERENCES

Beckmann:1995:HPM

Beeler:1984:BBB

Bradlee:1991:ERP

Burrows:2000:EFV

Benzie:1982:BRR

Berkling:1974:RLR
REFERENCES

Berndt:1976:ECA

Berstis:1980:SPD

Bernecky:1991:BRMb

Bernecky:1991:BRMa

Bernecky:1991:BRP

Bettcher:1973:TSR

Bhandarkar:1973:MCM

Bisiani:1987:ASM

REFERENCES

October 1987. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Brochard:1990:DAH

Bhatotia:2015:ITL

Bunda:1993:BVB

Bardine:2007:IPE

Bartolini:2006:MPD

Bechini:2003:FGD

Bartolini:2005:GEI

REFERENCES

[BGK96] Doug Burger, James R. Goodman, and Alain Kägi. Mem-

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Beivide:1987:OMC

Boyapati:2017:AND

Bilardi:1991:OVA

Basu:2012:RMR

Bhujade:1983:DAC

Bhuyan:1984:PLC

Bojnordi:2012:PPM

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic). ISCA ’12 conference proceedings.

Bianchini:2017:IDE

Bic:1984:ELP

Bitar:1989:BRR

Bhandarkar:1978:STT

Bhargava:2003:IDC

Badr:2014:SST

Belhadj:2013:CRW

REFERENCES

[Bugge:1990:TDS] Håkon O. Bugge, Ernst H. Kristiansen, and Bjørn O.
REFERENCES

REFERENCES

Beck:1987:VAM

Borg:1990:GAV

Blumrich:1994:VMM

Blumrich:1998:VMM

Blumrich:1998:RVM

Barua:1999:MCM

References

[132]

Caned2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[Bornholt:2016:DBA]

[Bai:2017:VRE]

[Barbalace:2017:BBH]

[Bilas:1999:UNI]

[Bagrodia:1991:EIH]

Rajive Bagrodia and Sharad Mathur. Efficient Implementation of high-level parallel programs. ACM SIGARCH Computer Architecture News,
Bahar:2001:PER

Bond:2006:BBE

Bhattacharjee:2009:TCP

Bond:2009:LP

Burcea:2009:PBV

Bhattacharjee:2010:ICC

Burke:2000:ASF

Berger:2000:HSM
Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe,

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[Bos84] Bella Bose. Unidirectional error correction/detection for
REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

[Bre10] Eric A. Brewer. Technology for developing regions:

Bon
di:1974:HHM

[BS74] James O. Bondi and Paul D. Stigall. HMO, a hard-
ware microcode optimizer. ACM SIGARCH Computer
Architecture News, 3(4):45–
51, December 1974. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Bell:1976:CSW

[BS76] Gordon Bell and William D. Strecker. Computer struc-
tures: What have we learned
from the PDP-11? ACM
SIGARCH Computer Archi-
tecture News, 4(4):1–14, Jan-
uary 1976. CODEN CANED2.
ISSN 0163-5964 (ACM), 0884-
7495 (IEEE).

Bhatia:1987:MIN

[BS87] Sanjiv K. Bhatia and A. G.
Starling. Multilayered Il-
liac network scheme. ACM
SIGARCH Computer Archi-
tecture News, 15(4):23–31,
September 1987. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Bodin:1995:SAE

[BS95] François Bodin and André
Seznec. Skewed associa-
tivity enhances performance pre-
dictability. ACM SIGARCH
Computer Architecture News,
CODEN CANED2. ISSN
0163-5964 (ACM), 0884-7495
(IEEE).

Bell:1998:RWW

[BS98a] Gorden Bell and W. D.
Strecker. Retrospective:
What have we learned from
the PDP-11 — what we have
learned from VAX and Alpha.
In ACM [ACM98a], pages 6–
10. ISBN 0-8186-8491-7, 0-
8186-8492-5, 0-8186-8493-3.
URL http://portal.acm.
org/toc.cfm?id=279358;
cfm?id=285930. ACM Order
Number 414984. IEEE Com-
puter Society Order Number
PR08491; IEEE Order Plan
Catalog Number 98CB36235.

Bell:1998:CSW

[BS98b] Gordon Bell and William D.
Strecker. Computer struc-
tures: what have we learned
from the PDP-11? In
ACM [ACM98a], pages 138–
151. ISBN 0-8186-8491-7,
0-8186-8492-5, 0-8186-8493-3.
URL http://portal.acm.
org/toc.cfm?id=279358;
cfm?id=285930. ACM Order
Number 414984. IEEE Com-
puter Society Order Number
PR08491; IEEE Order Plan
Catalog Number 98CB36235.

Butts:2002:DDI

Dynamic dead-instruction de-
tection and elimination. ACM
SIGARCH Computer Archi-
tecture News, 30(5):199–210,
REFERENCES

December 2002. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[Buts:2004:UBR]

[Balakrishnan:2006:PDD]

[Bengtsson:2008:DSA]

[Bairavasundaram:2004:XRN]

[Biswa:1987:CCS]

[Bolosky:1991:NPT]

[Beamer:2010:RAD]

Scott Beamer, Chen Sun, Yong-Jin Kwon, Ajay Joshi, Christopher Batten, Vladimir Stojarovíc, and Krste Asanović. Re-architecting DRAM memory systems with monolithically integrated silicon photonics. *ACM SIGARCH*
REFERENCES

REFERENCES

REFERENCES

REFERENCES

0-8186-8492-5, 0-8186-8493-3.
URL http://portal.acm.org/toc.cfm?id=279358;

URL http://portal.acm.org/toc.cfm?id=279358;

[BZ87] Amitava Bandyopadhyay and Yuan F. Zheng. Combining both microcode and hard-wired control in RISC. ACM
REFERENCES

Culler:1988:RRD

Chaiken:1994:SEC

Chen:2009:SPP

Callan:1974:APS

Carlile:1996:IB

Colohan:2006:TDB

Chen:1994:PSS

Cvetanovic:1994:CAA

[Z. Cvetanovic and D. Bhanderkar. Characterization of Alpha AXP performance using TP and SPEC workloads.]
REFERENCES

Curtsinger:2013:SSS

Cox:2017:EAT

Clark:2005:AFT

Cox:2008:XEO

Corbett:1993:OVP

Cao:2012:YYP

Chen:1992:SBS

J. Bradley Chen, Anita Borg, and Norman P. Jouppi. A
REFERENCES

Clark:1988:MVP

Campanoni:2014:HRA

Cox:1998:MLT

Chiueh:1991:MTV

Crandall:2005:SA

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Chang:1987:CDS

Carretero:2009:EER

Conner:1977:IOC

Cook:1982:EIO

Criswell:2014:VGP

Chisnall:2017:CJS

Cox:1994:SVH

[CE98] George Z. Chrysos and Joel S. Emer. Memory dependence prediction using store sets.
REFERENCES

Chen:2016:ESA

Chu:1982:VAH

Chen:2012:IOD

Chang:2013:IVP

Casse:1999:UAI

REFERENCES

REFERENCES

Cheriton:1989:MLS

Cheriton:1988:VMI

Cohn:1989:ACT

Chen:2008:OVB

Caulfield:2009:GUF

Chen:2014:ARA

Cruz:2000:MBR

Chin:1984:CPM

Chuang:1985:VSA

Chow:1987:ATD

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Chaudhuri:2004:SAN

Chang:1978:BRD

Chattergy:1978:CL

REFERENCES

REFERENCES

[Chr90] Christina C. Christara. Schur complement preconditioned

REFERENCES

Cortadella:1988:DRC

Cuppu:2001:CLS

Ju:1999:PMD

Cuppu:1999:PCC

Cooksey:2002:SCD

Chen:2005:HMP

Cerretti:1977:UIP

CKmWH16 Li-Wen Chang, Hee-Seok Kim, and Wen mei W. Hwu. DySel: Lightweight dynamic selection for kernel-based...

T. A. Cargill and B. N. Locanthi. Cheap hardware support for software debugging and
REFERENCES

REFERENCES

Cantin:2005:IMP

Cantin:2006:SP

Cao:1993:TPR

Chi:2016:PNP

Chroust:1980:RMO

Chiang:1987:DEL

Clauss:2000:AML
Cook:2013:HEC

Chang:1991:IAF

Chang:1998:IAF

Caulfield:2012:PSU

Cain:2013:RAS

Cristal:2004:CRC

REFERENCES

Chung:2006:TTM

Conte:1995:OIF

Chow:1988:HNH

Civera:1987:EVP

Cheng:2006:IAC

Chang:2012:TGE

Cintra:2000:ASS

REFERENCES

DEN CANED2, ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Colwell:1988:BRC

Colwell:1990:BRH

Contessa:1988:AFT

Cooper:1973:MMB

Copeland:1978:SSS

Cornett:1989:UMS

Cousins:1989:DCR

Cousins:1990:NAC
Cousins:1990:RPI

Cox:1979:NCA

Chen:1990:MPS

Chung:1998:LBC

Crago:2011:OEM

Carretero:1996:MPD

Chen:2017:AGH

Choi:2008:ABP

REFERENCES

Calder:1999:SVP

Chisnall:2015:BPA

Clark:1980:CCR

Coffman:1980:CBS

Chen:1989:TMH

Chen:1994:UAT

Carr:1999:ISP

REFERENCES

David E. Culler, Amurag Sah, Klaus E. Schauser,

Andrew A. Chien, Tung Thanh-Hoang, Dilip Vasudevan, Yuanwei Fang, and Amirali Shambayati. 10 × 10: a case study in highly-programmable and energy-efficient heterogeneous fed-
REFERENCES

Ceze:2007:BBE

Ceze:2006:BDS

Chau:2013:ASM

Chappell:2002:DPB

Cheong:1988:CCS

Cvetanovic:2003:PAA

Chang:2002:ATI

REFERENCES

(CY96) Lynn Choi and Pen-Chung Yew. Compiler and hardware support for cache coherence in large-scale multiprocessors: design considerations and performance study. *ACM SIGARCH Computer Archi-
REFERENCES

Choi:2006:LBS

Chen:2017:PPQ

Chen:2011:DSE

Chen:2016:BQA

Chen:2014:MLC

Choi:1999:DLV

Cho:1999:DLV
REFERENCES

Colp:2015:PDS

Cheng:2016:LLB

Dahlgren:1995:BPH

Dally:1989:MOF

Dally:1990:VCF

Dally:2010:MNC

Danesh:1993:PLC

Dasgupta:1977:DSL

REFERENCES

Dasgupta:1983:VCA

Davidson:1980:MSM

Davies:1980:CAM

Davis:2014:IWA

Dubois:1982:ECC

Duesterwald:2000:SPH

Deris:2007:ICE

Desikan:2002:EME

REFERENCES

Dennis:1980:BBD

Devietti:2008:HAS

Denehy:2004:DSA

Daly:1987:AMD

Daly:1998:AMD

REFERENCES

URL http://portal.acm.org/toc.cfm?id=279358;

[DCF+98] Bhavya K. Daya, Chia-Hsin Owen Chen, Suvinay Subramaniam, Woo-Cheol Kwon, Sunghyun Park, Tushar Krishna, Jim Holt, Anantha P. Chandrakasan, and Li-Shiuan Peh. SCORPIO: a 36-core research chip demonstrating snoopy coherence on a scalable mesh NoC with in-network or-

References

deDinechin:2013:FPT

Didona:2016:PAM

Drumond:2017:MDE

Dobry:1985:PSP

Dahlgren:1994:CPG

Dao:1995:CFC

DePrycker:1981:NIM

DeGloria:1990:VVI

Debaere:1989:IPC

DeMone:1996:RWD

Dennis:1976:CAC

Dennis:1980:WIC

Dennis:1998:RPA

Dennis:2003:FBM

DuBois:2013:CSI

REFERENCES

DeVille:1990:LCU

DeVille:1993:PDP

DeGloria:1992:ILP

Dashti:2013:TMH

Deng:2017:LLH

Davis:2005:RRA

185

REFERENCES

REFERENCES

David:1989:EIB

Driesen:1998:AIB

D'Hollander:2016:HLS

Dehnert:1989:OLS

Ditzel:1990:BSV

Dhawan:2015:ASS

Duan:2015:AMF

Yuelu Duan, Nima Honarmand, and Josep Torrellas. Asymmetric memory fences: Optimizing both performance and implementabil-

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Henry Duwe, Xun Jian, Daniel Petrisko, and Rakesh Kumar. Rescuing uncorrectable fault

Durand:1994:DSA

Dally:1985:OOA

Dollan:1989:CSP

Delimitrou:2013:PQA

Delimitrou:2014:QRE

Delimitrou:2016:HRE

Delimitrou:2017:BKW

REFERENCES

613, March 2017. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Dwarkadas:1993:ERC

[DKCZ93]

Dautenhahn:2015:NKO

[DKD+15]

Dalton:2007:RFI

[DKK07]

DeKruijf:2010:RAF

[dKNS10]

DeRosa:1987:EBA

[DL87]

Dubnicki:1992:ABS

[DL92]

delaChevallerie:2015:FLH

REFERENCES

5964 (print), 1943-5851 (electronic).

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Demme:2013:FOM

Duan:2013:WTM

Demme:2012:SCV

Dewan:1993:CUM

Dall:2014:KAD

Devietti:2011:RRC

Diep:1995:PEP

REFERENCES

Das:2013:CEP

Dasgupta:1982:TFL

deOliveira:2013:WYS

Dongarra:1983:PVC

Dongarra:1985:PVC

Dongarra:1988:PVC

Dongarra:1990:PVC

REFERENCES

1990. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Dongarra:1992:PVC

Doran:1975:ICL

Doran:1982:MFC

Dowd:1987:ERV

Dowd:1988:ERV

Dowd:1988:RVC

Dowd:1991:HP1

Dworak:1976:IIR

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

REFERENCES

REFERENCES

198

URL http://portal.acm.org/toc.cfm?id=279358;
http://portal.acm.org/toc.cfm?id=285930. ACM Order
Number 414984. IEEE Computer Society Order Number
PR08491; IEEE Order Plan Catalog Number 98CB36235.

Rajagopalan Desikan, Simha Sethumadhavan, Doug Burger,
and Stephen W. Keckler. Scalable selective re-execution for
EDGE architectures. ACM SIGARCH Computer Archi-
CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Edward S. Davidson, Gurindar S. Sohl, Joseph A. Fisher, Greg
Grohoski, Yale Pratt, J. E. Smith, and David R. Stiles.
Better than one operation per clock (panel): vectors,
VLIW, and superscalar. ACM SIGARCH Computer Archi-
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Malay Das, Amitabha Sinha, and Nishant Kumar Giri. High
speed residue number system (RNS) based FIR filter
using distributed arithmetic (DA). ACM SIGARCH Com-
puter Architecture News, 39 (5):1–4, December 2011. CO-
DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (elec-
tronic).

A. L. Drapeau, K. W. Shirriff, J. H. Hartman, E. L. Miller,
S. Seshan, R. H. Katz, K. Lutz, D. A. Patterson,
E. K. Lee, P. M. Chen, and G. A. Gibson. RAID-
II: a high-bandwidth network file server. ACM SIGARCH
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495
(IEEE).

Keisuke Dohi, Yuichiro Shibata, Tsuyoshi Hamada,
Tomonari Masada, Kiyoshi Oguri, and Duncan A. Buell.
Implementation of a programming environment with a
multithread model for reconfigurable systems. ACM
SIGARCH Computer Architecture News, 38(4):40–45,
September 2010. CODEN CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Yasunori Dohi, Akira Suzuki, and Noriyuki Matsui. Hard-
ware sorter and its application to data base machine.
ACM SIGARCH Computer Architecture News, 10(3):218–
225, April 1982. CODEN
REFERENCES

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Ernst:2002:EDS

Espasa:2002:TVE

Elyasi:2017:EIR

Eberle:2002:MDC

Ebrahim:1996:P

Eeckhout:2004:CFM

Esmaeilzadeh:2011:DSE

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Emer:1984:CPP

Emer:1998:CPP

Emer:1998:RCP

Evers:1996:UHB

Esmailzadeh:2011:LBL

Ericsson:1983:LSM

Emer:1997:LDP

Egan:1982:EVC

Edler:1985:IRM

El-Halabi:1982:SRD

Ernst:2003:CBF

Lee:1989:MPC

Eijkhout:1990:IPP

Eickemeyer:1996:EMU

Richard J. Eickemeyer, Ross E. Johnson, Steven R. Kunkel,
REFERENCES

Eggers:1988:CSP

Eggers:1989:ESC

Eggers:1989:EPF

El-Kharashi:2001:ATA

Ekanayake:2004:ULP

Edwards:1980:MGN

Ebrahim:2010:FST

Eiman Ebrahim, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness via source throttling: a configurable

Ebrahimi:2011:PAS

Elkateeb:1989:PSR

Emma:2006:ESR

Hajj:2016:SPM

Eberle:1998:SQC

Ebeling:1984:DIV

Eickemeyer:1987:PEM

REFERENCES

Estrin:2002:KAS

Eslami:2016:IOM

Ekman:2005:DLC

Felten:1996:EEM

Fuchs:1983:CED

Ferdman:2012:CCS

REFERENCES

Caned2. Issn 0163-5964 (ACM), 0884-7495 (IEEE).

Faraboschi:2000:LTP

Feiner:2012:CKI

Fields:2002:SMP

Farkas:1997:MSD

Fineberg:1992:SLT

Fagin:1987:PSP

Fiske:1988:RAP

Fenwick:1984:AOA

P. M. Fenwick. Addressing operations for automatic data structure accessing. ACM
REFERENCES

Foutris:2013:DMA

Ford:1976:HSI

Fusaoka:1982:CCH

Finkel:1988:YSM

Fritsch:1989:DSM

Fu:2011:ATM

Fineberg:1993:INA

REFERENCES

REFERENCES

Fournier:1976:SDG

Fuller:1976:IMS

Fortes:1984:DBL

Ferri:2007:HSF

Fong:2003:CAA

Forsell:1994:MMPa

Forsell:1994:MMPb

REFERENCES

REFERENCES

Fu:1991:DPM

Fromm:1997:EEI

Farrens:1992:PTL

Flynn:1972:CAJ

Frietman:1987:EOD

Feitelson:1989:AMU

Franchi:1976:DFC

Frailey:1983:WLC

Dennis J. Frailey. Word length of a computer architecture definitions and applica-
REFERENCES

Manoj Franklin and Gurindar Sohi. The expandable split

Fritsch:1990:PBA

Fernandez:1976:ASS

Falcon:2004:PCH

Fujimoto:1988:DPS

REFERENCES

[Ful93] Fuller:1993:BRP
REFERENCES

Gibson:1979:TOR

Gschwind:2001:OPE

Gunawi:2005:DCS

Gehringer:1988:SCP

Gordon:2012:EBM

Gaillat:1983:DPP

Galloway:1980:AIR

Gaillat:1983:DPP

Gandhi:2005:SLS

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Gass:1988:WRS

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Gaur:2016:BVC

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Gaudiot:1985:MHS

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Giloi:1974:SCC

W. K. Giloi and H. Berg.
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Giloi:1983:HFD

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Ghosal:1987:AMA

D. Ghosal and L. N. Bhuyan.
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Goldstein:2001:NSC

Seth Copen Goldstein and Mihai Budiu.
NanoFabrics: spatial computing using

Gandhi:2014:BTI

Goiri:2015:ABA

Gehringer:1986:FOO

Ge:2017:GGC

Xinyang Ge, Weidong Cui, and Trent Jaeger. GRIF-FIN: Guarding control flows using Intel processor trace.
REFERENCES

Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng,

REFERENCES

Ghosh:1988:CIM

Glew:1990:SCT

Gharachorloo:1998:RMC

Gupta:1991:CEL

Grot:2011:KNH

Gibson:1989:FCT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN (print)</th>
<th>ISSN (electronic)</th>
</tr>
</thead>
</table>
REFERENCES

Gehringer:1985:TAH

Grossman:2013:HFSF

Gajski:1983:CLS

Grunwald:1998:CES

Grosspietsch:1980:CTR
K. E. Grosspietsch, J. Kaiser, and E. Nett. A concept

REFERENCES

PR08491; IEEE Order Plan
Catalog Number 98CB36235.

Golla:1998:CEB

[GL98b] Prasad N. Golla and Eric C.
Lin. A comparison of the ef-
ficacy of branch prediction on
multithreaded and scalar ar-
chitectures. ACM SIGARCH
Computer Architecture News,
CODEN CANED2. ISSN
0163-5964 (ACM), 0884-7495
(IEEE).

Gross:1998:RRW

[GL98c] Thomas Gross and Monica
Lam. Retrospective: a ret-
rospective on the Warp ma-
hines. In ACM [ACM98a],
pages 45–47. ISBN 0-8186-
8491-7, 0-8186-8492-5, 0-8186-
8493-3. LCCN QA76.9.A73
S97 1998. URL http:///
portal.acm.org/toc.cfm?id=279358;
ACM Order Number 414984.
IEEE Computer Society Or-
der Number PR08491; IEEE
Order Plan Catalog Number
98CB36235.

Gunadi:2011:CCR

[GL11] Erika Gunadi and Mikko H.
Lipasti. CRIB: consolidated
rename, issue, and by-
pass. ACM SIGARCH
Computer Architecture News,
39 (3):23–32, June 2011. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tronic).

Gaudiot:1988:SPD

J. L. Gaudiot, C. M. Lin,
and M. Hosseiniyar. Solv-
ing partial differential equa-
tions in a data-driven multi-
processor environment. ACM
SIGARCH Computer Archi-
tecture News, 16(2):223–230,
ISSN 0163-5964 (ACM), 0884-
7495 (IEEE).

Gharachorloo:1990:MCE

[GLL+90] Kourosh Gharachorloo, Daniel
Lenoski, James Laudon,
Phillip Gibbons, Anoop Gupt,
and John Hennessy. Memory
consistency and event order-
ing in scalable shared-memory
multiprocessors. ACM SIGARCH
Computer Architecture News,
18(3a):15–26, June 1990.
CODEN CANED2. ISSN
0163-5964 (ACM), 0884-7495
(IEEE).

Gharachorloo:1998:MCE

[GLL+98] Kourosh Gharachorloo, Daniel
Lenoski, James Laudon,
Phillip Gibbons, Anoop Gupt,
and John Hennessy. Memory
consistency and event order-
ing in scalable shared-memory
multiprocessors. In ACM [ACM98a],
pages 376–387. ISBN 0-8186-8491-7,
0-8186-8492-5, 0-8186-8493-3.
URL http://portal.acm.
org/toc.cfm?id=279358;
ACM Order
REFERENCES

Khaled Abdel Ghaffar and Robert J. McEliece. Soft error correction for increased densities in VLSI memories.

ACM SIGARCH Computer Architecture News, 37 (1):1–12, March 2009. CODEN CANED2. ISSN 0163-
REFERENCES

REFERENCES

Godard:2013:MSS

Gohringer:2014:RMS

Goldwasser:1984:GOD

Gonzalez:1977:BRR

Goodman:1983:UCM

Goodman:1987:CMV

Good:1988:SIC

Goodman:1988:RDR

James R. Goodman. Reply to David R. Cheriton’s, Pat Boyle’s, and Gert A. Slavenburg’s “Comments on ‘Coherency for multiprocessor vir-
REFERENCES

Goodman:1998:RUC

Goodman:1998:UCM

Gorsline:1983:RAC

Gottlieb:1998:RPR

Gouda:1978:HCC

Gove:2007:CWS

Darryl Gove. CPU2006 working set size. ACM SIGARCH
REFERENCES

[Garth:1988:ISN]

[Gschwind:1995:VP]

[Gordenstam:2008:LLF]

[Giefers:2013:AFD]

[Gomez:2002:ASA]

REFERENCES

Gomaa:2004:HRL

Gao:2017:TSE

Graham:1984:PAS

Grabienski:1991:FFS

Ganapathy:2008:DIM

Guha:1987:AID

Garg:2006:SMD

Griffin:1988:UUR

Glenn W. Griffin. The ultimate ultimate RISC. *ACM
REFERENCES

Gonzalez-Rubio:1984:SFP

Goldstein:1974:MOR

Guillier:1980:ACF

Grahn:1995:ESS

Gove:2007:ECB

Giri:2012:FIN

Guo:2016:HDI

Gurumurthi:2003:DDS

Gope:2017:ASS

Goldstein:1999:PCP

Goldmakher:2006:ILG

Gurumurthi:2005:DDR

Ghandeharizadeh:1993:OTS

Gao:2005:AAL

[GSS05] Xiaofeng Gao, Beth Simon, and Allan Snively. ALITER: an asynchronous lightweight instrumentation tool for event...
REFERENCES

Ghosh:2012:FPR

Ghosh:2012:NAF

Gharachorloo:2000:ADA

Ghovanian:2011:BLT

Gomaa:2003:TFR

Gallivan:1990:SGS

Gordon:2006:ECG

Michael I. Gordon, William Thies, and Saman Amaran-

Ghosal:1989:ACC

Goodman:1985:PVD

Gordon:2002:SCC

Guo:2013:CAS

Gidra:2015:NGC

Gidra:2013:SSS

REFERENCES

[102x681] REFERENCES

5964 (print), 1943-5851 (electronic).

REFERENCES

Gerasoulis:1990:CTG

Gentleman:1973:TC

Goodman:1988:WMN

Gibson:2010:FSC

Grewal:2003:EAC

Govindan:2012:LSE

Greathouse:2012:CUW
REFERENCES

Gu:2016:BFN

Guha:2013:SEW

Hudak:1990:CTD

Hughes:2004:FAF

Huang:2017:PSA

Haikala:1984:CHRa

Hansen:1978:MAC

Halstead:1987:OCM

Hara:1996:PCI

Hari:2012:REA

Halstead:1986:CDM

Hartenstein:1973:IHC

Hartenstein:1974:LM1

Harvill:1978:FPO

Harbison:1982:AAO

Harland:1986:RMT

Harper:1991:RMC

Hoseinzadeh:2014:RAL

Haynes:1977:AAC

Harland:1986:MOO

Hsu:1990:PMT

Hunt:2013:DTN

Heo:2002:DFG

Hong:2013:RTR
Hrishikesh:2002:OLD

Hashmi:2011:AAF

Horst:1985:AHV

Hwu:1988:EPM

Hwu:1989:AHI

Hwang:1999:SSI

Heinrich:2003:OWA

Hauswirth:2004:LOM

[HC04] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak detection using adaptive sta-
REFERENCES

Hasan:2006:CSE

Hmid:2015:TAR

Hong:2012:GMD

Hasan:2003:EUM

Hammond:2004:PTC

Hormati:2010:MMS

Hammerstrom:1977:ICC

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

[Hsu:1986:HCS]

[Hofmann:2011:EOS]

[Hwang:1990:ORB]

[Huang:2010:OES]

[Healy:1976:COC]

[Heath:1984:RER]
Hsieh:2016:TOM

Hennessy:1998:RED

Henning:2006:SCB

Henning:2007:SCM

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>ISBN</th>
<th>ISSN</th>
</tr>
</thead>
</table>
REFERENCES

Hawakami:1986:SDS

Hum:1988:SWF

Hakura:1997:DAC

Herrero:2010:ECC

Hughes:2007:PSA

Huang:2016:EAA

Hines:2005:IPE
Stephen Hines, Joshua Green, Gary Tyson, and David Whalley. Improving program efficiency by packing instruc-

[Huck:1993:AST]

[Hower:2008:REE]

[Hayashi:1983:AHP]

[Hower:2014:HRF]

[Haque:2015:FMI]

[Horst:1990:MII]

REFERENCES

Huang:2016:DLN

Huang:2013:NRC

Horie:1993:IAP

Hibino:1980:PPG

Hicks:1976:GQS

Hicks:1977:MCA

Hicks:1977:MPS

Hicks:2017:CAS

REFERENCES

May 2017. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Huggahalli:2005:DCA

Harper:1986:PEV

Harper:1987:PER

Hopper:1989:MVW

Han:2016:IMD

Hill:2000:RCA

REFERENCES

Hsiao:1977:ADC

Hsiao:1977:ADC

Hsu:1989:AGU

Hsu:1989:HMP

Hsu:1989:LCF

Hsu:1990:CFO

Hong:2009:AMG

Hong:2010:IGP

Hughes:2001:VEM
Christopher J. Hughes, Praful Kaul, Sarita V. Adve, Rohit Jain, Chanik Park, and Jayanth Srinivasan. Variability in the execution of multimedia applications and implications for architecture. *ACM
REFERENCES

Hofmann:2013:ISA

Hashemi:2016:ADC

Hercksen:1980:HMS

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Henry:2000:CWW

Hu:2002:TMS

Hirata:1992:EPA

Hidaka:1993:MTC

Huguet:1985:RRF

Harper:1989:DSS

Herbordt:2015:LLG

Hill:1993:WAR

Hansen:1982:PEI

Han:2016:EEI

REFERENCES

REFERENCES

Hoffmann:1980:HIC

Hoogendoorn:1977:RMI

Hollaar:1983:BRR

Holliday:1989:RHP

Homoines:1982:HSC

Hwu:1986:HHP

Hwu:1987:CRO

Hwu:1998:HHP

[HP98] Wen-Wei Hwu and Yale N. Patt. HPSm, a high performance restricted data flow architecture having minimal functionality. In ACM [ACM98a], pages 300–308.
REFERENCES

Hartstein:2002:OPD

Hong:1986:GAS

Heckey:2015:CMC

Hayes:2016:FVM

Hameed:2010:USI

Hutchison:1978:MM

Hall:1991:VVA

Hallnor:2000:FAS

Hilton:2007:GCI

Hilton:2009:DSC

Houstis:1990:ENS

Hsu:1985:TST

Huang:2003:PAP

REFERENCES

Hofmann:2009:MBM

Hemphill:1973:DDG

Huen:1974:IPR

Harris:1977:HMO

Hamacher:1980:PCF

Hill:1984:EEC

Hasegawa:1985:HST

Hitchcock:1985:AMR

REFERENCES

Hurson:1985:SMU

Hasegawa:1986:FFT

Ho:1990:BAD

Hsu:1993:PCD

Hilgendorf:2001:ITE

Hu:2006:RST

Huang:2010:ICM

Hechtman:2013:EMC

REFERENCES

REFERENCES

Honarmand:2014:RDL

Ha:2008:NBP

Harris:2010:DFM

Hempstead:2005:ULP

Hayashi:2015:LRO

Hu:1985:DAE

Huguet:1982:PPS

Hummel:1996:EDS
[Hum96] Susan Flynn Hummel. Efficient data sharing with condi-
REFERENCES

REFERENCES

Herbordt:1991:MPA

Hammond:2004:TMC

Hayashizaki:2011:IPT

Hu:1997:OES

Hyatt:1993:HPO

REFERENCES

Ho:1995:AVP

Iannucci:1994:AII

Iannucci:1988:TDN

Ipek:2010:DRM

Ibbett:1985:MPV

IEEE:1976:CPA

IEEE:1977:CPA

IEEE:1979:CPA

IEEE:2003:PAI

IEEE:2003:PAI

IEEE:1994:PAI

IEEE:1999:PIS

IEEE:1994:PAI

IEEE:1994:PAI
IEEE:2005:ISC

IEEE:2006:ISC

Irwin:1980:OPS

Ibbett:1989:AMS

Izraelevitz:2016:FAP

Ipek:2007:CFA

Iliffe:1987:FLM

Iyer:2002:PPE

Ipek:2006:EEA

Isci:2013:AEV

Ipek:2008:SOM

Inoue:2005:EST

Isailovic:2006:INS

Irwin:1986:STR
Mary Jane Irwin. Secretary/treasurer’s Report. *ACM*
IRWIN:2010:SCM

INTRATER:1992:PED

ISAACSON:1974:PSP

IRIE:2007:PTE

IYER:2004:ESI

ITO:1986:APE

IFTODE:1996:UAP
REFERENCES

Ishikawa:1984:DOO

Inoue:1993:PEV

Ivanovic:1991:BRC

Isailovic:2008:RQC

Jones:2006:GMB

Jagannathan:1980:TAI

Jain:1982:DPT

REFERENCES

References

Jensen:1974:DFC

Jennings:1978:VP

Joseph:1997:PUM

Joe:1994:EMO

JHK

Jimenez:2005:PLB

Jensen:1977:HMM

REFERENCES

José A. Joao, Onur Mutlu, and Yale N. Patt. Flexible reference-counting-based hardware acceleration for garbage collection. ACM
REFERENCES

Johnson:1997:RTA

Jesshope:1989:HPC

Jaleel:2012:CCR

Joerg:1990:SPN

Johnson:1982:SRA

Johnson:1988:CMM

Johnson:1989:WSP

Johnson:1991:CRB

Douglas Johnson. The case for a read barrier. ACM
REFERENCES

Johnson:1992:ICL

Johnson:1995:GMW

Johnson:2004:MFS

Jones:1982:SPM

Jones:1983:PM

Jones:1988:MC

Jones:1988:RCR

Jones:1988:UR

Jonsson:2008:SSE

Bengt Jonsson. State-space exploration for concurrent algorithms under weak memory orderings: (preliminary

Jordan:1983:PMH

Jouppi:1988:SVS

Jouppi:1989:AOT

Jouppi:1990:IDM

Jouppi:1993:CWP

Jouppi:1998:IDM

Jouppi:1998:RID

REFERENCES

Juang:2002:EEC

Jerger:2008:VCT

Joldes:2014:SSH

Jordan:1973:SDS

Jiang:1988:PMB

Jiang:1999:SAP
Jacobson:2000:TP

Johnson:2010:DCM

Jevdjic:2017:ASC

Jourdan:1995:ECF

Jing:2013:EES

Joao:2012:BIS

Joao:2013:UBA

Juan:1998:DHL

Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. Dynamic history-length fitting: a third

Jain:1995:AAE

Jokinen:1997:CDP

Jung:2012:PAQ

Jouppi:2017:DPA

Krishnaswamy:1988:ALC

Kundu:2004:CSI

Kane:1974:ISI

Kannan:2011:ARH

Kaplan:1987:LLG

Karger:1989:URO

Kerner:1976:PLL

Kavi:1980:SA

Kavi:1981:IAC

Katz:1989:PHP

Kavi:1980:SA

Kavi:1981:IAC

Kumar:1980:SLC

Kaushal:1992:CHH

Kavi:1982:HAP

Kubiatowicz:2000:OAG

Kudrow:2013:QRC

Kagi:1997:ESL

Kateja:2017:VDB

REFERENCES

ISSN 0163-5964 (print), 1943-5851 (electronic).

Krashinsky:2004:VTA

Kim:2002:ANU

Kravitz:1989:LSM

Kavi:1984:MRD

King:1974:ODS

Knott:1982:FDA

Karamcheti:1995:CAS

Kim:1996:RCQ

Keen:2002:HSC

Kaeli:2005:WIS

Kinsy:2009:AAD

Keleher:1992:LRC

Krimer:2012:LDI

Korn:2007:SCS

Keckler:1992:PCI

Stephen W. Keckler and William J. Dally. Processor coupling: integrating com-

Kim:2008:PCN

Kirovski:2002:ETS

Koeplinger:2016:AGE

Kgil:2006:PUS

Kim:2008:TDH

Kakimoto:2012:PCG

Kim:2005:MHR

[KDTG05] John Kim, William J. Dally, Brian Towles, and Amit K. Gupta. Microarchitecture of a high-radix router. ACM SIGARCH Computer Archi-
REFERENCES

Koldinger:1991:VTD

Keppel:1991:PIF

Kerr:1974:MPI

Katz:1985:ICC

Kgil:2005:CSS

Kondo:2002:SCC

REFERENCES

Kaliorakis:2017:MED

Kolli:2017:LLP

Khalid:1995:TDS

Khalid:1995:URA
REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Kurian:1992:MLE

Kurian:1991:CPE

Kaxiras:2001:CDE

Kumar:2007:CAS

Kavi:1995:DCM

Kontothanassis:1997:VBS

Leonidas Kontothanassis, Galen Hunt, Robert Stets, Nikolaos Hardavellas, Michal Cierniak,

an architecture and scalable programming interface for a 1000-core accelerator.

Kessler:1989:IIS

Kim:2007:VPR

Kharbutli:2006:CEP

Kelm:2010:CHM

Kavi:1984:AQ

Kalamatianos:1999:IAI

Kessler:2008:OCP

Christoph W. Kessler and Jörg Keller. Optimized on-chip pipelining of memory-

Kim:2016:NEN

Keown:1992:PHR

Kim:2016:SCD

Kim:2016:NPD

Kurian:2013:LAA

Kim:2013:DBC

Kuznia:1976:SSM

Kim:2017:TAA

Kawahito:2006:NIR

Kwon:2011:VPA

Kawahito:2000:ENP

Kwon:2014:LOC

Kumar:2008:AVO

Sanjeev Kumar, Daehyun Kim, Mikhail Smelyanskiy, Yen-Kuang Chen, Jatin Chughani.

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Kirner:1986:DDS

Kirman:2010:PEA

Koibuchi:2012:CRS

Kiyohara:1993:RCN

Kohler:2002:PLO

Kamiya:1985:HPA

Kobayashi:2016:HSV

Ryohei Kobayashi, Tomohiro Misono, and Kenji Kise.

Kuperman:2016:PR

Kim:2007:AIB

Koka:2012:MAA

Kuga:1991:DDH

Kumar:2012:NLT

Shiv Kumar, Seshadri Krishna Murthy, G. Varapradas, and S. Sivasathya. Network load and traffic pattern on the capacity of wireless ad hoc

Knight:1991:TLL

Knoke:1973:SEC

Kim:2006:GDE

Kim:2007:NDD

Kyo:2005:IMA

Kayaalp:2012:BRL

Kogge:1988:VRB

REFERENCES

Kogge:1973:MRP

Kogge:1977:MPP

Kuskin:1998:SFM

Kamibayashi:1982:HOS

Kornerup:1974:CMS
REFERENCES

Koo:2017:APA

Kozyrakis:2003:OLC

Kumar:2005:TDD

Klauser:1998:SEE

Kwon:1996:COR

Keeton:1998:PCQ

Kim:1989:PLS

Klappholz:1990:PAA

David Klappholz, Kleanthis Psarris, and Xiangyun Kong. On the perfect accuracy of an

Kumar:2007:EVC

Kulkarni:2008:OPB

Kaufmann:2016:HPP

Kolli:2016:HPT

Kuhl:1980:DFT

Kumar:1985:APM

Kumar:1985:DAF

REFERENCES

Kadav:2013:FGF

Kawakami:1984:SPL

Kruskal:1984:IBS

Kunkel:1986:OPS

Konstantinidou:1991:CRP

Konstantinidou:1991:CRA

Kontothanassis:1995:ESM

Kim:1999:AEA

Seongwoo Kim and Arun K. Somani. Area efficient architectures for information integrity in cache memories.
Kandiraju:2002:GDT

Kim:2002:ISM

Karkhanis:2004:FOS

Karkhanis:2007:ADA

Kadav:2012:UMD

Kasture:2014:UEC

Koushiro:2003:TLV

Kim:2016:BPC

[KSCE16] Jungrae Kim, Michael Sullivan, Esha Choukse, and

REFERENCES

Barbara Kreaseck, Dean Tullsen, and Brad Calder.

Kim:2017:KPC

Kondo:1986:PMA

Kambadur:2012:HCA

Kagimasa:1991:ASM

Kinoshita:2012:ARS

Kumar:2004:SIH

DEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Kim:2013:MME

Kuhn:1980:EMA

Kumar:1987:ESA

Kung:1986:MRB

Kung:1988:DAS

Kuskin:1998:RSF

King:1984:CSA

Kumar:1998:ESL

Kubota:2011:MWS

Kang:2013:HPP

Karne:2008:OSC

Khatamifard:2017:TTA

Kanev:2017:MAM

Kim:2002:DEC

Kishi:1983:DDD

Kontorinis:2012:MDU

Kasikci:2012:DRV

Kumar:2005:IMC

Khazraee:2017:MNO

Lee:2011:ETB

Li:2008:OEA

REFERENCES

[330]

REFERENCES

December 1973. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Dennis Lee, Jean-Loup Baer, Brad Calder, and Dirk Grunwald. Instruction cache fetch...

Lo:1998:ADW

Ling:2012:HPP

Lewis:2002:AIM

Li:2006:MEM

Levy:1982:UBM

Lovett:1996:SCN

Levis:2002:MTV

REFERENCES

Lucia:2013:CEF

Lee:1998:ECD

Lai:1992:EBS

Li:2017:SSA

Lie:2001:SME

Lo:2014:TEP
Liu:2015:PPM

Lin:2016:SKT

Lucia:2010:CES

Luciad:2008:MPM

Liu:2014:SRJ

Lucia:2008:AAD

Liu:2016:CIS

Lechner:1974:SED

Lee:1972:MNC

Lee:1973:VDS

Lee:1985:DMR

Lee:1985:HSC

Lun:2003:OOP

Lebeck:2000:PAP

Lumb:2004:DSD

Laudon:1992:AIT

Lupon:2014:SHS

Lang:1986:RRS

Lee:1986:ESG

Louri:1988:BPA

[102x681] REFERENCES
[102x681]340

Louri:1988:BPA

Leng:2013:GEE

LiKamWa:2016:RAC

[102x681] REFERENCES
[102x681]340

Landin:1991:RFI

Litaize:1989:MSM

[102x681] REFERENCES
[102x681]340

[102x681] REFERENCES
[102x681]340

Liu:2015:GHS

Levinthal:1987:PCG

Adam Levinthal, Pat Hanrahan, Mike Paquette, and Jim Lawson. Parallel computers for graphics applications. ACM SIGARCH Com-

Lipovski:1978:JFM

Lipovski:1978:SPI

Lippmann:1988:ICN

Lipovski:1998:RBN

Litchfield:1994:IES

Love:1990:ISV

Liaqat:2016:SEE

Lin:2016:FHL

[LJF+16] Colin Yu Lin, Zhenghong Jiang, Cheng Fu, Hayden Kwok-Hay So, and Haigang

Liu:2013:ESD

Li:2002:UIO

Lee:1991:FPP

Lee:1991:PCP

Lee:2010:DGV
REFERENCES

460, June 2010. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Lotfi-Kamran:2012:SP

Lebeck:2002:LFI

Lee:2005:APC

[LL98] Daniel E. Lenoski and James P. Laudon. Retrospective: The

Lei Liu, Yong Li, Zehan Cui, Yungang Bao, Mingyu Chen,

Lee:1994:RCC

Li:2004:PDE

Li:2017:API

Lun:2003:MMO

Lenoski:1990:DBC

Lenoski:1992:DP1

REFERENCES

Lenoski:1998:DPI

Liu:2017:DAD

Liu:2017:ITN

Lin:1982:DFT

Lee:1984:PAC
REFERENCES

Lin:2006:SLP

Liu:2013:CTP

Lawson:1974:ASH

Luk:1999:MFE

Lipasti:2004:PRI

Leung:1976:CSF

Clement K. C. Leung, David P. Misunas, Andrij Nczwid, and Jack B. Dennis. A computer...

Vitaliy B. Lvin, Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Archipelago: trading address space for reliability and security. *ACM SIGARCH Computer Ar-
REFERENCES

[Kai Li and Karin Petersen. Evaluation of memory system

Lampson:1998:PHP

Luo:2009:DPT

Liu:2011:FSD

Lu:2008:LMC

Li:2012:ICO

Liu:1977:MCP

REFERENCES

200, March 1977. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Lin:2012:EED

Lashgar:2015:CSR

Lundvall:2008:APS

Li:2017:LAC

Lustig:2016:CVM

Lowell:2004:DVM

Laurenzano:2005:LCT

Liu:2014:NDU

Lu:2006:ADA

Luk:2001:TML

Lunde:1975:MDW

Lundstrom:1985:DCH

Lipovski:1988:FOI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Manjikian:2001:MESb

Manjikian:2001:ESa

Marvel:1973:HHA

Marvel:1974:SSP

Markenscoff:1982:MPS

Marovac:1983:IID

Marovac:1983:SAD

Mark:1985:SCF

Maren:1988:CRI

REFERENCES

Margolus:2000:EDA

Massalin:1987:SLS

Mashey:1996:AP

Mashey:2004:WBM

Mashey:2004:AP

Matelan:1985:FM

Matthes:1990:HRG
Mayer:1982:ABB

Matthes:1991:HMO

Myers:1980:HIC

Mogul:1991:ECS

Muralimanohar:2007:IDC

Mittal:2013:EVE

Min:1990:ECS

Moch:2004:HSM

Mizrahi:1989:IMS

Moravan:2006:SNT

Martin:1989:FAM

REFERENCES

Mukkara:2016:WID

Moshovos:1997:DSS

Min:1991:ECB

Michael:1992:FMB

Menon:1993:AFT

McDonald:2006:ASP

Mishra:2006:TES

REFERENCES

REFERENCES

Mellor-Crummey:1989:SIC

MCGL17

Mcl90

McL91

MCMahan:2017:ASF

MCK74

Mcl90

Mcl91

MCK16
REFERENCES

REFERENCES

Martin:2012:TRT

Menon:2012:IES

Matsunobu:2011:DCE

Mountain:1978:AMC

Mefenza:2015:IBM

Melhem:1985:LSS

Malik:1992:ILP

REFERENCES

September 1992. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Mulder:1976:MOD

McCurdy:2005:UPM

Mukherjee:1996:CNI

Murakami:1988:OKU

Morris:1991:CER

Morin:1996:COB

Maquelin:1996:PWC

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Mashtizadeh:2017:TPD

Meisner:2009:PES

McFarling:1986:RCB

Mukherjee:1998:UPA

Marty:2007:VHS

Mahram:2013:NBC

Mukundan:2013:UMR

Montesinos:2009:CSH

Pablo Montesinos, Matthew Hicks, Samuel T. King, and Josep Torrellas. Capo:

Mahlke:1995:CFP

Michael:1992:DBC

Middelburg:1982:EPA

Miller:1977:BRRb
REFERENCES

Miller:1977:BRR

Miller:1982:HMD

Mills:1987:CGR

Morisita:2010:IEA

Murakami:1989:SSI

Miya:1985:MDP

Moskowitz:1989:AMM

Mirghafori:1995:TSB

Ma:2011:DER

Ma:1984:ARS

Moffie:2005:AAS

Meyer:2011:MRP

Mars:2012:BDS

Manne:1998:PGS

REFERENCES

Ma:2011:SPC

Malladi:2012:TEP

Mudge:1982:PAC

Marczynski:1983:DDS

Moore:1987:BDN

Menon:1992:CSA

Mutlu:2008:PAB

Moscibroda:2009:CBR

Mondal:2014:DSM

Morishima:2014:PEG

Mesa-Martinez:2010:CPT

Mysore:2008:UVF

Milenkovic:2005:UID

Mesa-Martinez:2007:PMV

Martignoni:2012:PEL

Madhavapeddy:2013:ULO

Mytkowicz:2014:DPF

Markuze:2016:TIP

Michael:1997:CCA

Mitsuishi:2014:ABF

Moto-oka:1983:OFG

REFERENCES

Moon:1985:AS

Moshovos:2005:REC

Moudgill:1998:TFS

Malkawi:1986:PMP

Melvin:1991:EFG

Malik:2012:ERA

Mai:2000:SMM

Muthukaruppan:2014:PTB

[MPM14] Thamirmalai Somu Muthukaruppan, Anuj Pathania, and

McCune:2008:HLC

Magenheimer:1987:IMD

Mendelson:1989:SCC

Muldor:1989:AFA

Monchiero:2006:EST

Matteo Monchiero, Gianluca Palermo, Cristina Silvano, and Oreste Villa. An efficient synchronization technique for
REFERENCES

Robert J. McMillen and Howard Jay Siegel. MIMD machine communication using the augmented data manipulator network. *ACM
McMillen:1982:PFT

Moeller:1984:PPP

Mendelson:1987:MDF

Meixner:2005:DVS

Miyoshi:2007:FGC

Mukherjee:2010:NAC

Maitra:2012:NAC

Maitra:2013:DSM

Maitra:2013:HEM

Maitra:2013:HPM

Matveev:2015:RHN

Martin:2000:TSA

Mangione-Smith:1991:VRD

Mukherjee:2002:CSA
REFERENCES

234, December 2002. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Malita:2007:MMC

Michaud:1997:TCC

Menon:2009:TSA

Mehrotra:1984:STD

Martin:1997:SCM

Martinez:2002:SSA

Mars:2013:WMH

Minh:2007:EHT

Merten:1999:HDP

Merten:2000:HMD

Miller:2012:VCE

Meng:2010:DWS

Momeni:2015:EEO

REFERENCES

5964 (print), 1943-5851 (electronic).

McFarlin:2013:DDO

Mudge:1980:BRR

Mudge:1996:RPH

Mukherjee:1997:WSG

Mulder:1989:DBR

Musoll:2009:LSO

[MZW15] Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry

Morioka:1989:EMS

Myers:1977:CAS

Mahajan:2016:TSG

Mishra:2015:PGM

Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry

Norton:1983:AIM

Nikolopoulos:2001:EMA

Naderi:1988:MPEa

Naderi:1988:MPEb

Nakajima:2001:MCS

Napolitano:1986:CAD
Najaf-abadi:2007:ACE

Nowatzyk:1995:CNW

Naeem:2009:SRC

Novakovic:2014:SN

Neelakantam:2010:RSE

Nair:2012:FOM

Newman:1992:MMSb
Newman:1992:MMSa

Nakra:1999:VPV

Ng:1994:CDA

Nair:1997:EIL

Nagarajan:2009:EEC

Narayanan:2012:WSP

Nowatzki:2017:SDA

Nalli:2017:APM

REFERENCES

Ng:1988:TOB

Nesbit:2007:VPC

Navarro:1986:CSI

Najjar:1992:ALL

Nanda:2000:MPR

Nakaya:2012:NVR

Nomura:2014:PAM

REFERENCES

5964 (print), 1943-5851 (electronic).

Nuno-Maganda:2010:TCH

Nagarakatte:2012:WHS

Nakahara:2016:FCS

Nakahara:2012:WFF

Nakahima:1991:OVS

Nagashima:1990:IFA

Nayfeh:1994:EDS

Nishimura:1983:LPP

Nanba:1985:VAV

Nowak:1987:SGP

Noor:1990:SLS

Nowatzyk:1995:CRD

Nguyen:2011:SCS

REFERENCES

global memory and network
contention, operating system
and parallelization overheads.
*ACM SIGARCH Computer
Architecture News*, 22(2):71–
80, April 1994. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[NUS+93]
David Nagle, Richard Uhlig,
Tim Stanley, Stuart Sechrest,
Trevor Mudge, and Richard
Brown. Design tradeoffs
for software-managed TLBs.
*ACM SIGARCH Computer
Architecture News*, 21(2):27–
38, May 1993. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[Nutt77]
Gary J. Nutt. Microprocessor
implementation of a parallel
processor. *ACM SIGARCH
Computer Architecture News*,

[Nguyen:2015:FCR]
Khanh Nguyen, Kai Wang,
Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing Xu.
FACADE: a compiler and
runtime for (almost) object-bounded big data applications. *ACM SIGARCH Computer

[NWDB+15]
Michael D. Noakes, Deborah A. Wallach, and William J.
REFERENCES

Nunez-Yanez:2014:EER

Ng:2012:STT

Nazhandali:2005:EOS

Zhang:1984:MDS

Owicki:1989:EPS

Ottoni:2008:COG

Olszewski:2009:KED

Marek Olszewski, Jason Ansel, and Saman Amarasinghe.

Orr:2014:FGT

Otis:1978:ERD

Oudjida:2012:NHR

Oskin:2003:BQW

Oskin:2000:HCS

Oyang:1990:CEA

Oskin:1998:APC

Orr:2015:SUR

Olson:2016:PDW

Ogawa:2013:RJA

Oh:2013:PAL

Ogata:2002:BFO

REFERENCES

OKrafka:1990:EET

Odaira:2012:COA

Oh:2011:TSM

Oehlrich:1991:PEC

Oliver:2004:SMC

Oberoi:2003:PFE

Okina:2015:PPP

Omote:2015:IAE

O:2014:RBD

Osln:1989:DAP

Omohundro:1973:FFC

Onaga:1986:DRA

Ohkawa:2013:RHO

Oyang:1990:EEA

REFERENCE

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Oyang:1989:MCA

Ozdal:2016:EEA

Olszewski:2012:AAS

Ozturk:2015:ASC

Parhami:1973:DFT

Pucci:1988:OCE

Pan:2005:CPE

REFERENCES

Pangracious:2016:NTD

Palmer:1980:IND

Park:2016:ATC

Parnas:1975:ECA

Parhami:1988:BRM

Parhami:1988:DFV

Parhami:1990:BRA

Parhami:1995:SMD

Behrooz Parhami. SIMD machines: do they have a significant future? ACM SIGARCH Computer Architecture News,
REFERENCES

Mary Payne and Dileep Bhandroidkar. VAX floating point:

Premkumar:1982:RAR

Park:2013:RCH

Park:1983:FDB

Powell:2009:ACS

Porter:2011:RLT

Park:1990:ISF

Papadopoulos:1990:MET

REFERENCES

REFERENCES

Pollack:1982:SAM

Paek:2010:BAU

Pelley:2014:MP

Patel:1976:ITP

Patterson:1980:CRI

Patel:1998:ITP

Pang:2015:MLL
Jun Pang, Chris Dwyer, and Alvin R. Lebeck. More is less,

Pokam:2013:QPI

Putnam:2009:PPC

Park:2008:MML

Penn:1988:PSI

Patel:1998:ITC

Peskin:1974:CAD

REFERENCES

REFERENCES

Petit:2000:LSE

Postiff:1999:LIL

Pajuelo:2002:SDV

Pajuelo:2005:SEH

Puente:2004:ICR

Preiss:1985:DFQ

Preiss:1988:CBM

Pnevmatikatos:1990:CPI
Dionisios N. Pnevmatikatos and Mark D. Hill. Cache performance of the integer

Pichai:2014:ASA

Prybylski:1988:PTC

Prybylski:1989:CPO

Park:2016:ESFa

Park:2016:ESFb

Philipson:1984:VBD

Park:2017:HTC

Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. Hybrid TLB

Petrica:2013:FDA

Pier:1983:RDH

Pier:1998:RPH

Patwardhan:2006:DTS

Phansalkar:2007:ARA

Phansalkar:2007:SSC

Palacharla:1997:CES

Palacharla:1994:ESB

Prabhakar:2016:GCH

Pan:2009:FIF

Poe:2006:BBS

Park:2009:CEA

Patel:2017:RPR

REFERENCES

Park:1992:CRS

Pell:2011:SEF

Paul:2013:CBN

Paez-Monzon:1996:RPD

Pelley:2010:PRD

Parker:1977:HST

Page:1988:FAH

Philipson:1983:CSM

[PNB83] Lars Philipson, Bo Nilsson, and Bjorn Breidegard. A

Björn Pehrson and Joachim Parrow. Caddie an interactive design environment.

Pitsianis:2003:IVM

Parashar:2013:TIC

Park:2015:CCP

Park:2017:DRM

Purnaprajna:2009:RTR

Pulido:1996:ETT

Paolieri:2009:HSW

PQNT16

Pramanik:1982:DF

Pai:1997:RRS

Price:1991:TAD

Parashar:2017:SAC

Przybylski:1990:PIB

Peuto:1977:ITM

Pleszkun:1988:PPM

Pnevmatikatos:1994:GEB

Patterson:1998:RRR

Patterson:1998:RRI

REFERENCES

[PS98c] Putnam:2010:DVE

[PSB10] Parashar:2006:SSB
Park:2012:SDE

Petric:2005:RRB

Plotkin:1983:TSA

Pleszkun:1986:AEL

Papadopoulos:1991:MRV

Prvulovic:2003:RUT

Pritchett:2010:SHS

Phothilimthana:2016:SS

[PTBD16] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. Scaling up superopti-

Pai:2013:IGC

Palix:2011:FLT

Powell:2003:PDM

Powers:2017:BBG

Paalvast:1990:MPP

REFERENCES

Moinuddin K. Qureshi, Michele Franceschini, Ashish Jagmohan, and Luis A. Lastras. PReSET: improving performance of phase change memories by

Qureshi:2010:MMS

Qadeer:2013:CEB

Qureshi:2007:AIP

Quammen:1991:FRM

Quammen:1989:RWA

Qian:2014:PRR

Xuehai Qian, Benjamin Sadlelices, and Depei Qian. Pacifier: record and replay for relaxed-consistency multiprocessors
REFERENCES

Qureshi:2009:SHP

Qureshi:2005:VWC

Qian:2013:VSP

Quick:1979:IMP

Quinton:1984:ASS

Quong:1994:ECM
REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Randell:1985:HST

Rao:1984:JEE

Rattner:1982:HSC

Rattner:1985:CMT

Rudd:1984:HPF

Reddy:1989:SPD

Reddy:1990:SBP

References

[RBIV07] Ryan Rakvic, Bryan Black, and John Paul Shen. Completion time multiple branch prediction for enhancing trace cache performance. *ACM
REFERENCES

Rattner:1980:OBC

Ramamoorthy:1991:BMC

Ros:2017:NSL

Reddi:2005:PDC

Radojko:2012:OTA

Reis:2005:DEH
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Ryoo:2017:RTD

Rajwar:2005:VTM

Rajbhandari:2017:OCM

Rexford:1996:RAR

Rannem:1974:RSC

Riad:1980:CFC

Richards:1980:CE

Ridoux:1987:DSM

[Rid87] O. Ridoux. Deterministic and stochastic modeling of parallel garbage collection: towards real-time criteria. ACM
REFERENCES

REFERENCES

December 1974. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Reames:1976:DSD

Reames:1974:LNS

Ribic:2014:EEW

Reddi:2010:WSU

Ren:2017:SDH

Ranganathan:2006:ELP
REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Romanescu:2010:SDV

Reinhardt:1994:TTU

Reinhardt:1998:RTT

Reinhardt:1998:TFD

Ravi:1977:HMS

REFERENCES

[Rou86] Larry O’Neal Rouse. The twisted double helix: a minimum distance architecture

Ram:1985:PGC

Rao:1999:SAU

Ranganathan:1997:ISP

Ramirez:2007:EST

Reinhardt:1996:DHS

Rau:1977:EIF

Regehr:2004:HSA

Reddy:2006:UPB

Ramadan:2007:MTT

Rajamani:2009:IDE

Raghavendra:2008:NPS

Rudolph:1984:DDC

Roth:1999:EJP

Ringenburg:2015:MDQ
Michael Ringenburg, Adrian Sampson, Isaac Ackerman,

Subramanian Ramaswamy, Jaswanth Sreeram, Sudhakar Yalamanchili, and Krishna V. Palem. Data trace cache: an

Radhakrishnan:2000:AIE

Rashid:1987:MIV

Ruighaver:1986:DAD

Ruighaver:1990:MND

Ramakrishnan:1984:MMM

Ramseyer:1977:MMI

Rul:2007:FLP

REFERENCES

REFERENCES

Somani:1984:EVD

Shobatake:1986:UPB

Shippen:1987:TTD

Shukla:1988:KIP

Sites:1988:MCA

Shukla:1991:SPC

Sayeed:1992:PMB

Soundararajan:2010:IMO

Vijayaraghavan Soundararajan and Jennifer M. Anderson. The impact of management operations on the virtualized datacenter. *ACM SIGARCH Computer Architecture News*,...
Sung:2015:DES

Sinclair:2017:CRS

Schulz:2005:SDB

Srinivasan:2004:CLR

Srinivasan:2005:ESD

Sachs:1983:BRR

Sivathanu:2002:ERA

Muthian Sivathanu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Scott:2006:BHR

Salisbury:1976:MMC

Seo:2005:NOW

Shen:1999:CRF

Smith:1990:IDA

Satterfield:1974:AAS

Savage:1985:PPL

REFERENCES

Sullivan:1977:LSHa

Sam:2005:IMS

Sharma:2011:BMS

Sahoo:2002:SHA

Singh:2009:RTP

Seshadri:2014:DBI

Sani:2014:PDF

Saidi:2009:EEP

Schupbach:2011:DLA

Stenstrom:1993:ACC

Sastry:2001:RPS

Saha:2013:IDP

Shahar:2016:ACS

REFERENCES

REFERENCES

REFERENCES

Schalkoff:1983:TED

Schachter:1988:BRH

Schwartz:1989:DDD

Schneck:1991:BRO

Schrödinger:1991:ILP

Srinivasan:2001:LVC

Sudan:2010:MPI

REFERENCES

Sansonnet:1980:MLD

Sansonnet:1982:DEL

Shyam:2006:ULC

Stucki:1978:CCA

Sano:2014:FBC

Steffan:2000:SAT

Scheurich:1987:CMO

Shin:1990:DAH
Shin:1990:DAH
Kang G. Shin and Greg
Dykema. A distributed
I/O architecture for HARTS.
ACM SIGARCH Computer
Architecture News, 18(3a):
332–342, June 1990. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Su:1994:BMS
Su:1994:BMS
C.-L Su and A. M. Despain.
Branch with masked squash-
ing in superpipelined pro-
cessors. ACM SIGARCH
Computer Architecture News,
CODEN CANED2. ISSN
0163-5964 (ACM), 0884-7495
(IEEE).

Shin:1995:AIH
Shin:1995:AIH
Kang G. Shin and Stuart W.
Daniel. Analysis and imple-
mentation of hybrid switching.
ACM SIGARCH Computer
Architecture News, 23(2):211–
219, May 1995. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Suh:2009:DMR
Suh:2009:DMR
Jinho Suh and Michel Dubois.
Dynamic MIPS rate stabiliza-
tion in out-of-order pro-
cessors. ACM SIGARCH
Computer Architecture News, 37
(3):46–56, June 2009. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Shriraman:2010:SLW
Shriraman:2010:SLW
Arrvindh Shriraman and
Sandhya Dwarkadas. Sentry:
light-weight auxiliary mem-
ory access control. ACM
SIGARCH Computer Archi-
tecture News, 38(3):407–
418, June 2010. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Subramaniyan:2017:PAP
Subramaniyan:2017:PAP
Arun Subramaniyan and
Rectuparna Das. Parallel
automata processor. ACM
SIGARCH Computer Archi-
tecture News, 45(2):600–612,
May 2017. CODEN CANED2.
ISSN 0163-5964 (print), 1943-
5851 (electronic).

Sridharan:2015:MEM
Sridharan:2015:MEM
Vilas Sridharan, Nathan De-
Bardeleben, Sean Blanchard,
Kurt B. Ferreira, Jon Stear-
ley, John Shalf, and Sud-
hanva Gurumurthi. Memory
errors in modern systems: The
good, the bad, and the ugly.
ACM SIGARCH Computer
Architecture News, 43
(1):297–310, March 2015. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tronic).

Shaw:2007:ASP
Shaw:2007:ASP
David E. Shaw, Martin M.
Deneroff, Ron O. Dror, Jeff-
rey S. Kuskin, Richard H.
Larson, John K. Salmon,
Cliff Young, Brannon Bat-
son, Kevin J. Bowers, Jack C.

SDB+15
SDB+15
Vilas Sridharan, Nathan De-
Bardeleben, Sean Blanchard,
Kurt B. Ferreira, Jon Stear-
ley, John Shalf, and Sud-
hanva Gurumurthi. Memory
errors in modern systems: The
good, the bad, and the ugly.
ACM SIGARCH Computer
Architecture News, 43
(1):297–310, March 2015. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tronic).
REFERENCES

Singh:2003:GLB

Schulte:2014:PCS

Sidiroglo-Douskos:2015:TAI

Sohi:1985:ELE

Sudhakrishnan:2011:REB

Saulsbury:2000:RBT

Shriraman:2008:FDT

Smith:1987:ZCP

Schulte:2013:ARB

Staudhammer:1974:FDO

Seebauer:1989:MCEa

Seebauer:1989:MCEb

Simone:1995:ITO

Seznec:1993:CTW

Seznec:1994:DSC

Seznec:1996:DUP

Seznec:2005:AGH

Sohi:1991:HBD

Seznec:2003:EAP

Seznec:2002:DTA

REFERENCES

Silberstein:2013:GIF

Shen:2017:MCA

Smith:2000:VIS

Sakanaka:2004:LER

Saito:2004:FBD

Smith:1983:SIC

Singhal:1994:ASP

REFERENCES

Stricker:1995:OMS

Sadler:2000:APE

Sampson:2005:FSC

Schwetman:1985:CPP

Stodolsky:1993:PLO

Santhanam:1997:DPH

Smolens:2004:FBS

Stewart:2015:ZDW

Schlosser:2000:DCS

Spertus:1993:EMF

Sankar:2008:IDP

Singha:2011:NAF

Scott:1992:PSR

Shen:1980:FTC

John P. Shen and John P. Hayes. Fault tolerance of a class of connecting networks. ACM SIGARCH Computer Architecture News, 8
Steenkiste:1987:TTC

Sharp:1980:STD

Simoni:1991:MPL

Sasanka:2002:JLG

Sembrant:2014:DDD

Shen:2010:RBV

REFERENCES

Shimizu:1992:LLM

Sun:2011:MME

Steenkiste:1994:AEH

Shimada:1986:EPD

Shore:1974:CCa

Shore:1974:CCb

Short:1987:UIS
REFERENCES

[Shalev:2016:CCS]

[Soundararajan:1998:FUM]

[Syed:2012:LOA]

[Shi:1997:IID]

[Sibai:2007:PAW]

[Siegel:1977:UVT]

[Sato:1989:RTC]
REFERENCES

[SJG92] Per Stenström, Truman Joe, and Anoop Gupta. Comparative performance evaluation of cache-coherent NUMA and
REFERENCES

Smith:1989:LMI

Samadi:2014:PPB

Sanguinetti:1985:PMB

Sargeant:1986:SDS

Shimizu:2004:JOL

Sridharan:2010:UHV

Sanchez:2011:VSE

Sanchez:2013:ZFA

Sung:2001:MDA

Sawada:2011:PCW

Sung:2013:DEH

Sharma:2009:RPL

Seo:2017:FAS

Suh:2003:PAP

Satish:2012:CTP

Sassa:2016:FSP

Stuecheli:2010:VWQ

Srikantaiah:2008:ASP

Song:2017:HBA

Sklenar:1992:PUVb

Sklenar:1992:PUVa

Sano:2015:SCS

Sano:2013:ECC

Short:1988:SST

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Seznec:1992:IPS

Seznec:1993:OMS

Srinivasan:2005:MNC

Szefer:2012:ASH

Simha:2012:UAS

Shi:2006:IFD

Sui:2016:PCA

Shi:2005:HEC

Weidong Shi, Hsien-Hsin S. Lee, Mrinmoy Ghosh, Chenghuai Lu, and Alexandra Boldyreva. High efficiency counter mode

[Smith:1990:BBS]

[SLH90]

[SLK05]

[Sloan:1973:CAC]

[Sloan:1974:DOC]

REFERENCES

48, March 2009. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Jiang Su, Jianxiong Liu, David B. Thomas, and Peter Y. K. Cheung. Neural network based reinforcement learning acceleration on FPGA platforms. *ACM SIGARCH Com-
REFERENCES

Suh:2004:SPE

Schulthess:1977:RCA

Smith:1989:MRT

Saha:1994:DDT

Shun:2012:FAC

Sen:2014:TLT

Sabeghi:2010:RMS

Smith:1991:SBC

[Smith:1991:SBC]

Smith:1998:DAE

[Smith:1998:DAE]

Smith:1998:RSB

[Smith:1998:RSB]

Smith:1998:RIP

[Smith:1998:RIP]

Smith:1998:SBP

[Smith:1998:SBP]

Smith:2014:EDN

Suleman:2010:DMM

Singh:2011:EPS

Smotherman:1989:SBT

Suleman:2009:ACS

Stone:1985:FGC

Severson:1995:TCP

Sankaralingam:2003:EIT

Singh:2012:EES

Shafiee:2016:ICN

Shahhoseini:1999:ABP

Soejima:2014:MPF

Sohi:1998:RMP

REFERENCES

Number 414984. IEEE Computer Society Order Number PR08491; IEEE Order Plan Catalog Number 98CB36235.

REFERENCES

Sherwood:2002:ACL

Swanson:2006:APT

Saulsbury:1996:MMW

Sundaramoorthy:2000:SPI

Spradling:2007:SCB

Soundararajan:2007:MBV

Suleman:2008:FDT
REFERENCES

Srinivasan:2004:CFP

Sassone:2007:MSR

Sethumadhavan:2007:LBE

Srivastava:2001:EOB

Shayesteh:2005:DCS

Santos:2014:UAT

Shao:2014:APR
Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Aladdin: a Pre-RTL, power-performance accelerator simulator enabling

Sadowski:1978:EPR

Sweet:1982:EAM

Smith:1985:MUD

Sweazey:1986:CCC

Scott:1989:UFC

Sodani:1997:DIR

Sazeides:1998:MPP

Schkufza:2013:SS

Sinha:2013:NRA

Sridhar:2007:HLO

Shen:2013:PCF

Siegel:1984:PRP

Skadron:2003:TAM

Shriraman:2007:IHS

Sundararajah:2017:LTN

Shi:2007:CCP

Stunkel:1997:IMW

Son:2013:RMA

[SSR+13] Young Hoon Son, O. Seongil, Yuhwan Ro, Jae W. Lee, and

REFERENCES

[Ste80] David Stevenson. A report on the proposed IEEE Floating

REFERENCES

Stanley:1987:PAA

Saad:1990:SBP

Sleiman:2016:ESO

Somogyi:2006:SMS

Somogyi:2009:STM

Stoll:1995:EMP

Singh:1992:SSP

Seong:2010:SRP

Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee.

Steele:2002:OHH

Sano:2010:PIA

Sheng:2016:CCF

Su:1989:DSM

Sano:2011:DSP

Sanchez:2010:FAS

Seong:2013:TLC

[SYL13] Nak Hee Seong, Sungkap Yeo, and Hsien-Hsin S. Lee. Tri-level-cell phase change mem-

[StAmant:2014:GPC]

[Sakai:1989:ADS]

[So:1988:CPV]

[Shin:2008:PWR]

[John W. Sias, Sain zee Ueng, Geoff A. Kent, Ian M. Steiner, Erik M. Nystrom, and Wen mei W. Hwu. Field-testing

Thomasian:1976:DSS

Takahashi:1983:DFP

Tseng:2003:BMR

Tabak:1988:LIM

Tabak:1995:CMH

Tabak:1996:BRA

Tabba:2010:ACP

REFERENCES

Thakur:1994:CCD

Teodosiu:1997:HFC

Tsoi:2012:MRS

Tsai:2017:JSD
Po-An Tsai, Nathan Beckmann, and Daniel Sanchez.

Thapar:1991:CCL

Taylor:1990:TSL

Tullsen:1993:LCP

Thekkath:1994:ISB

Tullsen:1996:ECI

Tullsen:1995:SMM

Tullsen:1998:RSM

[TEL98] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Retrospective: Simultane-

REFERENCES

Treleaven:1982:RCA

Thakkar:1986:IFU

Tan:2003:DAP

Thacker:2010:IFE

Tada:2016:ESG

Taylor:1986:ESL

Torres-Huitzil:2014:AEI

Thorelli:1976:RAC

REFERENCES

Thornton:1981:ASC

Thorson:1990:UN

Thorson:1991:UNa

Thorson:1991:UNb

Thorson:1991:UNc

Thorson:1991:UNd

Thorson:1992:UNa

Thorson:1992:UNb

Thorson:1992:UNc

REFERENCES

Thorson:1995:INc

Thorson:1996:INa

Thorson:1996:INb

Thorson:1997:INa

Thorson:1997:INb

Thorson:1997:INc

Thorson:1997:INd

Thorson:1998:INaa

Thorson:1998:INb
Thorson:1998:INc

Thorson:1999:INa

Thorson:1999:INb

Thorson:1999:INc

Thorson:2000:INa

Thorson:2000:INb

Thorson:2001:INa

Thorson:2001:INb

Thorson:2001:INc

REFERENCES

REFERENCES

[Tho04a] Thorson:2004:INb

[Tho04b] Thorson:2004:INc

[Tho04c] Thorson:2004:IN

[Tho05a] Thorson:2005:INa

[Tho05b] Thorson:2005:INb

[Tho05c] Thorson:2005:INc

[Tho05d] Thorson:2005:INd

[Tho06a] Thorson:2006:INa

[Tho06b] Thorson:2006:INb

[Tho06c] Thorson:2006:IN
Thorson:2007:INa

Thorson:2007:INb

Thorson:2007:INc

Thorson:2007:INd

Thorson:2008:INa

Thorson:2008:INb

Thomasian:2009:PSS

Thorson:2009:INa

Thorson:2009:INb

Thorson:2009:INc
REFERENCES

REFERENCES

REFERENCES

Thorson:2014:INb

Thorson:2014:INc

Thorson:2015:INa

Thorson:2015:INb

Thorson:2015:INc

Thorson:2016:INa

Thurber:1976:ANR

Thurber:1978:CCT

Tick:1988:DBP
REFERENCES

Torres:2005:SBD

Talla:2001:MDA

Takefuji:1988:MCS

Tokoro:1983:WSC

Tanaka:2007:LER

Kiyofumi Tanaka and Takahiro Kawahara. Leakage energy reduction in cache memory by data compression.

Thies:2002:CML

Talluri:1992:TST

Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson. Tradeoffs in supporting two page sizes.
REFERENCES

[TLL+07] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker

Treleaven:1980:MPR

Talpes:2005:ISP

Trouve:2011:ADA

Tanabe:2014:FAO

Tsuyama:2014:GFA

Thaker:2006:QMH

Thekkath:2000:ASC

David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
REFERENCES

[170x646] Trippel:2017:TMM

[TML+17]

[Tang:2011:IMS]

[TMV+13]

[Taki:1987:PAE]

[Tani:2011:SFB]

Tobias:1980:SUM

Tiwari:2011:CUM

Tsoukarellas:1990:RTS

Tseng:2008:AOP

Tong:2015:HTS

Thurber:1977:ATC

Tarditi:2006:AUD

REFERENCES

December 2006. CODEN OS-REDS. ISSN 0163-5980.

REFERENCES

Tanaka:2013:USP

Tomita:1986:CLL

Tiwari:2007:RPA

Tokoro:1982:SSI

Mario Tokoro and Takashi Takizuka. On the semantic structure of information — a proposal of the abstract storage architecture.

Teodorescu:2008:VAA

Tribino:2012:PPA

Tu:2013:SDS

Tokoro:1980:HLM

Tsoi:2010:PFC

Tse:2010:ERD

Turton:1979:PHS

Tredennick:1977:HSB

Thomborson:1991:SIM

Torng:2016:AAW

Tan:2010:CFF

Tiwari:2009:CIF

Tucek:2009:EOV

Takahashi:1986:NSS

Talcott:1994:IUB

Takamaeda-Yamazaki:2011:FBS

Tzeng:1985:FTS

Tang:1990:CTD

REFERENCES

1990. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

0163-5964 (ACM), 0884-7495 (IEEE).

[Ulm98] B. Ulmann. Instruction looping, an extension to conditional execution. *ACM

Udipi:2011:CMC

Udipi:2012:LEL

Udipi:2010:RDD

Uluski:2005:CAW

Uhlig:1995:IFC

Umeayama:1983:PEM

REFERENCES

Venkateswaran:2005:FTB

Vilanova:2014:CPS

Vaughan:1972:Cas

Vijaykumar:2004:WDP

Valamehr:2012:IRM

vanderHouwen:1990:POS

vandeSnepscheut:1979:INP

VanErtvelde:2008:DPA

Voitsechov:2014:SGM

vonEicken:1992:AMM

vonEicken:1998:AMM

vonEicken:1998:RAM

Vedder:1985:HDF

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

[Vrsalovic:1985:IPD] Dalibor Vrsalovic, Edward F. Gehringer, Zary Z. Segall, and
REFERENCES

Chris A. Vissers. Interface, a dispersed architecture.
REFERENCES

Varma:1995:DAD

VanCraeynest:2012:SHM

Vajapeyam:1999:DVM

Vijaykrishnan:2000:EDI

Valero:1992:INS

Veeraraghavan:2011:DPS

Vernon:1988:AEP
M. K. Vernon, E. D. La-

[VNM06]

[VNN13]

[VP89]

[VPC02]
T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault recovery using simultaneous multithread-
REFERENCES

vonPraun:2006:CMO

Vahid:2001:PCP

Vaucher:1973:HLC

Varma:1987:RMS

Vranesic:1978:BRR

Venkataramani:2017:SSC

Venkatesan:2014:SST
Rangharajan Venkatesan, Shankar Ganesh Ramasubramanian, Swagath
REFERENCES

Varma:1992:CPS

Venkatesh:2010:CCR

Vajapeyam:1991:ESC

Venkateswaran:2007:FGSa

Venkateswaran:2007:FGSb

Vantrease:2008:CSI

Vintan:2003:ABP

Venkat:2016:HHI

Vaidya:2013:SDO

vanTilborg:1988:IDC

vanTilborg:1989:PFD

Venkat:2014:HID

Vora:2017:CCR

Volos:2011:MLP

Volos:2012:ATM

Voskuilen:2014:FCP

Voskuilen:2014:HPF

Veidenbaum:1998:RCS

Waterland:2014:AAS

REFERENCES

REFERENCES

REFERENCES

Weinsberg:2008:TFC

Watanabe:2010:WWD

Wann:1974:CCS

Wood:1986:CAT

Weiss:1989:ASS

Weicker:1997:USB

Welch:1976:IDO

Weaver:2004:TRS

Wong:1987:PAD

REFERENCES

Weber:1989:ACI

Weber:1989:EBM

Wilkerson:2008:TCC

Weber:1997:MIA

Wassel:2013:SLL

Wang:2005:DMS
David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer Jaleel,

Wilkes:1997:CLS

Weicker:2007:SPR

Walcott:2007:DPA

Whiteside:1978:BRR

Wang:2002:NAM

Wang:2017:GSM

Widdoes:1976:MMM

Lawrence C. Widdoes, Jr. The Minerva multi-microprocessor. *ACM SIGARCH Computer
REFERENCES

Wiecek:1982:CSV

Williams:1978:MSD

Wilkes:1982:HSM

Wilkes:1983:KJI

Milkes:1983:SPS

Wilson:1978:MSD

Wilkes:1988:SSS

Wilson:1991:PSP

REFERENCES

Wilkes:1995:MWC

Wilmot:1998:DTM

Wilkes:2001:MGF

Williams:2016:BIC

Winfree:2008:TMP

Whitney:2009:FTA

Wirth:1987:HAP

Wise:1986:EES

Wittie:1976:EMR

[Wit76] Larry D. Wittie. Efficient message routing in Mega-Micro-

Wegiel:2008:MCV

Wegiel:2009:DPC

Wang:2012:IWE

Wang:2017:DAC

REFERENCES

Wong:1989:SAS

Wong:2007:CBS

Wong:2016:PEA

Woo:1985:HUU

Woo:1986:RCC

Wood:2014:RSA

Wilson:1996:ICP

Woo:1995:SPC
Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2 programs: characterization and methodological considerations. *ACM

Wall:1987:MEU

Wray:1991:TSD

Wang:2013:VPD

Wang:2016:LLA

Wade:1974:IDM

Weiss:1984:IIL

Weiss:1987:SSC

Whitby-Strevens:1985:T

Wolfe:1991:VIS

Williams:1990:ADR

Wittenbrink:1992:CGW

Waliullah:2007:SFC

Wang:2014:GRS

[Tao Wang, Guangyu Sun, Jiahua Chen, Jian Gong, Haoyang Wu, Xiaoguang Li, Songwu Lu, and Jason Cong. GRT: a reconfigurable SDR platform with high performance and usability. *ACM SIGARCH Computer Ar-
Wenisch:2005:TSS

Widigen:1996:EOR

Woh:2009:AAA

Wong:1989:TDH

Waldspurger:1993:RRF

Watanabe:2012:MCP

Wang:2013:TEH

Wu:2001:CFF

Woodruff:2014:CCM

Wunderlich:2003:SAM

Watson:1988:FPA

REFERENCES

[XYM12] Yi Xu, Jun Yang, and Rami Melhem. Tolerating pro-

Youssef:1990:NAF

Abdou Youssef and Bruce Arden. A new approach to fast control of $r_2 \times r_2$ 3-stage Benes networks of $r \times r$ crossbar switches. *ACM SIGARCH Computer Architecture News*, 18(3a):50–59, June 1990. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Yang:2013:BFP

Yoon:2012:BEM

Yoon:2009:MME

Yoon:2010:VFE

Ye:2009:TWW

Yan:2006:ICP

Yoaz:1999:STI

Yeh:2007:PAR

Young:1995:CAS

Yan:2017:SHA

Yu:2003:TBS

Ryan W. S. Yu, Gary K. W. Hau, and Anthony S. Fong. Test bench for software development of object-oriented

Yuhara:1986:EFA

Yu:2014:CPR

Yokota:1986:MAR

Yoon:2011:AGM

Yoon:2012:DGM

Yu:2016:CWM

Ye:2005:RRA

Dong Ye and David Kaeli. A reliable return address
REFERENCES

Yeung:1996:MMS

Yum:2001:QPC

Yoon:2016:VTM

Kim:2002:IWS

Yasrebi:1984:SAS

Yao:2016:OCO

Yan:2010:LCL

Guihai Yan, Xiaoyao Liang, Yinhe Han, and Xiaowei Li.

Yao:2007:OPD

Yuan:2010:SED

Yu:2009:CIC

Young:2015:DWE

Young:2017:DCD

Yokota:1994:DND

Yomtov:1992:PED

Man-Ki Yoon, Negin Salajegheh, Yin Chen, and Mihai Christodorescu. PIFT: Pre-

Yuba:1990:DCD

Yehia:2004:SDI

Yamaguchi:1983:PEL

Yuen:1984:SAI

Yuen:1999:ASC

Yuen:1999:SR

REFERENCES

REFERENCES

Zhang:1998:PMC

Zhang:2005:VRM

Zahran:2003:CMH

Zhao:2016:SHC

Zaks:1973:MAF

Zaky:1977:MNN

Zucker:1992:PSM

Zhan:2016:PMB
Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai
REFERENCES

Zhuravlev:2010:ASR

Zh:2002:COS

Zh:2002:EVC

Zh:2014:HDH

Zh:2013:CFC

Zh:2016:DEQ

REFERENCES

5964 (print), 1943-5851 (electronic).

Zeng:2002:EME

Zhou:2003:DGS

Zhang:2006:BCR

Zhou:2016:PUH

Zheng:2017:RMA

Zilles:2001:BHC

Zhang:2011:FED

Zhang:2017:PPD

Zecca:1990:ECV

Zahedi:2014:RRE

Zhang:2016:TED

Zhang:2011:CDC
REFERENCES

Zheng:2009:DDB

Zhang:2016:TAS

Zhang:2016:MWE

Zhou:2004:DTP

Zhou:2004:IEA

Zhu:2014:WAS

Zahir:2000:CCD

Rumi Zahir, Jonathan Ross, Dale Morris, and Drew Hess. OS and compiler considerations in the design of the

Zhao:2005:DMO

Zhao:2014:EES

Zilles:2000:UBS

Zilles:2001:EBP

Zhu:2007:SSB

Weirong Zhu, Vugranam C. Sreedhar, Ziang Hu, and Guang R. Gao. Synchronization state buffer: sup-

Zhao:2013:PAG

Zhang:2010:CDS

Zhang:1995:SIA

Zuberek:1980:TPN

Zhang:2003:HCC

Zhou:2014:SAS

Zhou:2016:MMI

REFERENCES

[Zhang:2014:AIP]

[Zhang:2015:HDL]

[Zeng:2009:MCA]

[Zhang:2005:ASP]

[Zhang:2000:FVL]

[Zhao:2014:CES]

[Zhao:2014:CES]

[Zhang:2015:MRH]
Yiyong Yang, Jian Yang, Amirsaman Memaripour, and Steven Swanson. Mojim: a

Zhuang:2004:HIE

Zhou:2009:DEE