A Bibliography of Publications in ACM SIGARCH Computer Architecture News

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

05 June 2017
Version 1.53

Title word cross-reference

#3 [Gal80]. #4 [Fos72a].

+ [AM06, NSH+11]. 0.18µ [WW12]. 1
[SKN+15]. 10 x 10 [CTHV+15]. 2
[BAES89, MIO+10, SA88a]. 2 x 2 [LIW82]. 3
[AA11a, ASR+17, ACK+95, CBS98, FAYA87, GPY+17, GCC+14, HS86, KDS+06, KNP+07, KKC+16b, LNR+06, Loh08, MK84, MDS+11, MAS+06, OSF+15, Sib07, SLSN14, Tad13, THEK16, TSN+86, UMB+11, YA90]. 32 [Tad13]. 36 [DCS+14]. $39.95 [Fer88]. 5

AT^2 = O(N log^4 N), T = O(\log N) [HS86].
LU [WJZ15]. µ [COS2, Ulm95]. N

[HC15, WN14]. N ≥ 32 [OCBL12]. O(1)
[See89a, See89b]. r [OCBL12]. r_2 x r_2
[YA90]. r ≥ 8 [OCBL12]. r x r [YA90]. Σ(4)
[Sez86].

-bit [Tad13]. -body [WN14]. -core
[DCS+14]. -D [BAES89, FAYA87, OSF+15, SA88a, Tad13, THEK16, TSN+86].
-dimensional [HS86, MK84]. -EP-1
[Ulm95]. -point [Eij90]. -point/ [Eij90].
-stage [YA90]. -version [HC15].

//ELLPACK [HRC+90]. /what [Uht02].

'03 [IEE03].

1 [Dav80a, DM91, Fin93, NOK+83, SHNS86, SDV+87, Ulm95]. 10 [Ful76]. 100
[Kap87, RBH+03]. 1000-core [KJJ+09].
100X [LKC+10]. 101 [KKK76]. 10Gb
[VFCM13]. 10Gb/s [VFCM13]. 10GbE
[HTM15]. 10th [IEE83]. 11
[BS76, BS98b, BS98a, CRW+15, De 81,
GM82, Jen78, Lar82, Mid82, Str76, Wie82].
11/60 [Hug82]. 11/780
[CL82, EC84, EC98a, EC98b, GM82].
11th
[IEE84]. 12th [IEE85]. 14th [IEE87]. 15th
[IEE88]. '16 [Tsa16]. 16-bit [BFAJ93]. 16th
[ACM89]. 17th [IEE90]. 18th [ACM91].
1972 [Fis83]. 1973 [Sla84]. 1975
[Kin75, Mil77a]. 1976 [Buc78, Chr77, IEE76,
McG78, Mil77b, Ram78, Tan78, Vra78].
1977 [Gon77, IEE77, Whi78]. 1978
[ACM80, Sac83, Wak81]. 1981
[Ben82, IEE81, Kav81]. 1982 [Gor83]. 1987
[Bit89, Pat87, Sch88]. 1993
[ACM93a, ABC+94]. 19th [IEE92]. 1S
[SA83].

2 [ABKA85, DD90, Fat90, GKB+13, Kha97c,
Kha99b, MR90, SzUK+04, TSN+86,
TGGS14, WCW+04, WOT+95]. 2-II
[ABKA85]. 2-Sparse [AYA83]. 2.0
[BO01, Bur06]. 20 [ACM93a]. 2000
[AK01a, GPT02, KKK92, SG94]. 2001
[AK01b]. 2004 [Ano05d]. 2005
[IEE05, JPT05, RSL05]. 2006
[ABZ07, JEE06, TKJ07]. 2008 [JKTO].
2012 [AMM+12]. 2013 [Hil13]. 20th
[ACM93a]. 2100A [HW77]. 21264 [CK00].
21264-based [CK00]. 21364
[CV03, MSB+02]. 21364-based [CV03].
21st [Hil13, IEE94]. 22nd [ACM95]. 23rd
[ACM96]. 240 [BD93b]. 24th [ACM97].
25th [ACM98a]. 26th [IEE99]. 27th
[ACM00]. 28th [ACM01]. 29th [ACM02a].
2m [Dvo90]. 2nd [Co88, Kin75]. 2nd
[ACM03]. 2R [RO74]. 2X [ZBB16].
30th [IEE03]. 31st [ACM04]. 32 [BCL82].
32-bit [BFAJ93, Ulm95, Ulm97]. 32nd
[IEE05]. 33rd [IEE06]. 3600 [Moo85]. 390
[HS01]. 3L [CO82]. 3rd [IEE76].
4 [Fos72b, NOK+85, SKS+92]. 432
[GC86, HLM+82, PCH+82, Rat82]. 4381
[GPR87]. 4th [IEE77].
5 [DHB89, KC95, SGS+93]. 512
[Fis83, Fis98b]. 5th [IEE79, Rou86].
6 [PMPM96]. 60 [Bat72, BBK76, Hay77].
620 [DNS95]. 64 [ZRMH00]. 64-bit
[AA11b, YYX+07].

7.000 [Ber76]. 7th [ACM80].
80 [BSUH87, DD90]. 8000 [SGH97]. 8026
[Pat82]. 8086 [Sch89]. 8086/88 [Sch89].
8087 [Pal80]. 8800 [Cla87, CBK88]. 8th
[IEE81, JDL81, Tho81].
9th [IEE82].
VNM+12, VGK+10, WWFH03].

Acceleration

[CKS+08, GPP+17, NS16, SLTC16, TM14b, AIO+11, COH+11, CYH+11, FGVG13, GDN+16, GSM+99, JMP09, JSPM13, MSS14a, MYP+16, PCL10, SM12, SYP+14].

Accelerator [CHM08, LCL+15, MCK16, OSF+15, OHW17, SOD+14, AB86, BJL+13, CDS+14, DP12, HGS+16, KJJ+09, LNEHR11, OIA+13, SNM+16, SRWB14, TYSK11, Tem12, TPO06].

Access/execute [BC90b, HIT05, AAZ89, AKSD16, APX12, APS95, BSL08, BDF1, BC04, CME+12, CL89, CFS+12, DN93, Dow91, DSB86, DSB98, DS98, DNSN07, F0n03, F0s72a, Fre87, HL89, HK80, HASA14, HDF+90, KDO6, KPK89, KHS+97, Las88a, LTQZ06, MSS14b, MC91, ON12, PVAL95, PT86, Ria80, RDK+00, SD10, SMI82, Smi98a, Smi98c, SSR+13, SCRT78, TLD14, VLL+92, dRBC93].

access/executes [APX12, BD91, SMI82, Smi98a, Smi98c].

accessibility [CYS+99, HJ86, PBC+13].

accessing [SKP+07].

accommodating [KKM07].

account [Oya89].

accounting [EE09].

accumulators [Kee78a].

accuracy [EC96, KK99, KPK90].

Accurate [CPT08, DFL05, DH98, EBS+04, LB06, TM14a, VGX17, CG94, EESK06, KIC+16, LF00, RWA+16, SK13, VLZ88, ZYG90].

ACE [WMP07].

achieving [AKJ+09, HCS9, SN99, TP08, ACS+12, FP91b, NLS88].

Architecture [PAD16].

ACISA [Bhu83].

ACOS [NOK+85].

ACOS-4 [NOK+85].

acoustic [UVG12, UVG14].

acquisition [MF76].

across [PM92, P9n91].

activation [CHCmW00, ZCX+14].

Active [OCS98, vECGS92, vECGS98, ACK94, DMR+11, MK84, SADAD02, vESCG98].

ActivePointers [SBS16].

activity [YRK07].

actuator [KC02].

acyclic [VAV10].

ad [KMVS12].

Ada [PCH+82, R989].

adaptable [KKT05, vIG80].

adaptation [HRT03, TST07, VGNL89].

adaptations [SHA02, HA04].

Adapting [JSN98, LB08].

Add [THEK16, LGM+14].

adder [MS13a].

Adding [Tab10, KMC+93, YCT05].

Addison [Fos93, Mad94b, Sch88].

Addison-Wesley [Fos93a, Mad94b, Sch88].

addition [Jou90, Jou98a, Jou98b].

Address [BRC+05, CB17, EMZ+16, WS90, AS86, ACM02b, APS95, AS96, BCR11, BJR+99, BYG+00, BDD+99, BKW00, Bra80a, CKZ12, Est02, FP91a, FP91b, Goo87, GKS09, HK89a, HK93, L06, LBZ08, P8H14, QD08, RLS10, RF96, SWL10, SF03, SBS16, Ste88, TDF90, WY95, Will83b, Will91, WEG+86, WK89, YK05, Zha01, ZZP04].

Address-Based [BRC+05].

Addressable [Che87, MG97, Vra87, Hic77a].

Addressed [JWK12, Goo88b, Hea76, LLC98].

addresses [CBS88, CLR05, HK89c].

Addressing [Fen84, ZBF10, CCH+87, CD82, MB08, SIG98, Won89],

adequacy [RE12].

adequate [Mat91b].

Adjustable [DL92].

adoption [YMST07].

Advanced [KSN07a, Par90, GB83, OWCL90, TP8+77].

Advances [Atk79, Gor83, AD98, Sat74].

advantage [MTZ13].

Advantages
[LM74, GK85]. AEGIS [SOSD05]. Aérgia [DMMD10]. AES [MM14a]. affinity [LS12a, NAAL01]. Against [AYQ+16, Ino05, Mat91a, Mye77, SM77]. age [WWC+14]. aggregation [OBRW14, VGNV05]. aggregations [HPU+16]. aggressive [AK00, LM99]. aggressively [GWSU12]. Agile [GHS16, IMK+13]. Agility [OSK15]. agree [SCAP97]. Ahead [KKB+16, Bat72, CD77, May82, McL91, SF03]. Aho [TZH+13]. AI [DM91]. Aid [LDSC08]. aided [Pes74]. aids [Sch73b]. Aikido [OZK+12]. air [CTW+13]. Airdisks [JW95]. airRAID [JW95]. Al [Ant91]. Aladdin [SRWB14]. Alaska [ACM02a]. Alewife [ABC+95]. All-inclusive [KSL16]. alignment [IBC12]. ALITER [GSS05]. all-flash [JCSK14].Allocate [BA84]. Allocate [AWAG15, CPV05, KXXB17, WM16, BEH91b, CT90, DMB8, HFPS8, Kum87, LFZE00, NUNS94, OML83, PP03, PB82, Pri91, VNM+12, ZRW05]. allocation/reclamation [Kum87]. allocator [BMBW00]. Allowing [RTJ00]. Almasi [Lan90a]. Amnerico [Ful93]. Almost [NWB+15, TP08]. ALPHA [YHN+86, Tab96, KW84, HHA83, BS98a, CB94b, CK00, Cve03, EAK+02, Kar07, MSB+02, SFKSO2, ST03]. alpha-particle [KW84]. AlphaServer [GSSV00]. ALPS’07 [KSN07a]. Alternative [YP92, YP98a, BJL+13, Har82, LIMB09, MK11, VSMF03, VE14, YP98b]. alternatives [BVR+00, MM92, MKR02, HH09, SSP97, Woo14]. Alto [IEE09]. ALU [HRDA85, KM+98, PG04]. always [DWS+12, Bu83]. always-on [DWS+12]. amateur [Pau13]. Ambiguous [Tan77]. AMD [TL10]. Amdahl [AGS05, EE10a, JM12]. AMNESIAC [AK17]. Amnesic [AK17]. among [TtLC13, VB94]. Amorphous [And90]. AMP [Dav0a]. AMP-1 [Dav0a]. analog [HGS+16, LHG+16, SNM+16, SY+14]. Analyses [WHZ+17, OZK+12]. Analysis [ASR+17, BBFP06, CL92, CGL92, FXZ+17]. Alpine [JTB98, GPPT02, GCLM85, JKT05, JKT09, MCN+17, MD88, NH+17]. NMS+14, PJ07a, SBZ+15, Sez05, SD95, SA83, TAM+08, TK07, Tze90, WM89a, WM88, Woo86, AS98, AC09, ACC+03, AS92b, AML+10. BP04, BKW90, BMT00, CFS99, CHV04, CSSP87, CKC11, CL82, CKDK91, CK00, Cve03, DS06, D885, DF92, DS02, EPCP98, Fat90, GYCS96, GYC+10. HG97, HM05, HS85a, Hig90, Hla83, HCS02, HSN77, JM88, JmWH97, KTK12, KPK90, KT05, KMS+12, KR85b, LW84, LBH12, LBE+98, LFH03, McD82a, MS76, MM82, NMB92, Nap86, PQC+09. REL00, SMD+13. SKB09, Sib07, SA88b, SA90, SK10, SW87, SKC+03, SS82, TA83, Th01a, TACT08. VLZ88, WMP07, WO85, WF87, WO85, WO86, WZY13, YGS95]. Analytic [SPA+98, HS74]. Analytical [GB87, HK09, KS07]. Analytics [Che17, OYK+16]. analyze [HANR12]. analyzers [RR04]. Analyzing [HS85b, LW07, NS16, WZJ10, BF73, Che90].
Anchorage [ACM02a]. Andrew [Ram78].

Android [AHA+14, KDV11]. Angus [Lan90b]. animating [AFGM10].

animation [HGS+07]. Ann [IEE84]. Anne [Ful91a]. annotated [HLW94, Pri91, Sta86].

Announcing [AMM+12]. Annual [ACM80, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM04, IEE67, IEE77, IEE79, IEE81, IEE84, IEE85, IEE87, IEE88, IEE94, IEE03, JDL81, Kin75, LS73, Tho81, ACM89, IEE82, IEE83, IEE86, IEE90, IEE92].

Anomaly [DZ09, CG06, MC91]. Anomaly-based [DZ09]. answers [MPH12, Sni75b]. antenna [DSOF11]. anti [BE03]. anti-aliasing [BE03]. antivirus [UMK05].

anywhere [WSM+09]. AP1000 [HHSI93, SHI92]. aperiodic [Wei89]. API [CS13b, HFL03, NUMS94]. appliances [AIK+05, Nak01]. Application [AW17, BMP+04b, CDY+17, HSH96, KCW+09, ME78, TT08, TAM+08, DSM82, EK88, EKJ+96, EG97, Fin93, Gai83, HANR12, HDT+13, HRT03, ISL96, JS99, cJO99, KSO2a, KSO7, KSO91a, LS12b, MS76, MK05, MIPV89, OUY+13, Pjv90, Pjv90a, Pjv92, RSPV90, Rjv00, Ts90b, TZZ+16, VPS01, WBS+88].

Application-aware [KCW+09]. application-driven [KSO2a]. Application-level [BMP+04b, HANR12, HDT+13].

Application-specific [CDY+17, LS12b, MIPV89, PP92, WBS+88]. Application-transparent [AW17].

Applications [Ful91a, HJrCH16, HTM+05, MAHK16, MEB15, NWB+15, BP04, BFPG06, BFP07, BMWB00, BH91, BDMF10, CGS09, CS11a, CG92, Cop78, CLR03, CDA14, CHKM93, ELN89, FF73, FURM00, Fra83, GH76, HKD+13, HCW+10, HB90, HKA+91, JSM12, JSMP13, JB97, Kar95, KTC00, LCB+98, LWR+10, LHFL87, LS96, LZ93, MJW11, MLCW11, Mad94a, MS13c, MT02, MBS+04, MM14a, NNN+91, NKRL06, OC78, Par75, PGTM99, QMT89, RBH+03, SJLM14, SRSW14, SKE+12, ST03, SK04, SA91, SWG92, TJo1, TMV+11, Tem12, TSN+86, VIA+05, VE08, VG1N05, VM88, VGK+10, YYX+07, kSYHX+11, Yue84, ZT95, HAO4].

applicative [SK83]. applied [Arm74].

Applying [SGB00, VTSL12, MT02]. Approach [CL04, HS16, IMMC08, Let92, MZLH15, PG04, SZBP08, YT04, ASP+99, BK11, BBFP06, BS08, BRGHS9, Bhi87a, CLL01, CGL+08, CGT+14, Che87, Con88, Con90a, DFF+13, DZ09, EGK+85, FF+92, FFK+82, Gai83, GWM03, Ho90, HY96, KWT13, KS07, KMC+93, Mar83b, MSA+00, MS76, OCL90, RC+12, RJKM14, SMB02, SBRP11, SSH+07, SCZM00, Tan83, WBM+03, WGO+13, YA90, ZSL10, Tab95, HAO4].

approaches [SH87]. ApproxDadoop [GBNN15]. Approximate [GSCM16, JSCM17, PAM+16, RSA+15, SLFP16, ESCB12, KPK90, MYP+16].

APRES [OKY+16]. April [Fos72a, IEE79, IEE82, IEE94, ALKK90].

Aquacore [ATV+07]. Aquarius [DSP+87].

Arbitrary [SA15, WJZ15, CWS+11, Dvo90, KIC+16]. arbitrated [PVAL95]. Arbitration [SKJ+17, KC82, MBS+02, TTMC12, MV88, WS07]. Arbor [IEE84]. Archipelago [LBZ08].

Architecting [LIMB90]. architects [SAR99]. Architectural [ADP+15, ALE90, BF87, BRC+05, BMA00, BCD89, CL09, CW02, CRW+15, CH87].
CMT00, CHKM93, DHR +15, FSC76, Gal80, GRD87, HvDlJL80, HLL +3, HH93, IAD +94, IHM89, Jou89, KMOA07, KKK +17, LGH92, LABR08, Mas96, MCC +06a, NaR07, Ozt15, PBR14, PCDL09, PBGM09, Ram88, RGG82, Ros96, Sat74, Sch73b, SG94, SL12, TML +00, Yue99a, ZYL05, ZQL +04, AD98, BMT00, CLL01, CMF +13, CMC +91, CMC +98, CS94, CFS +12, DLL +16, DF92, DS11, DBMZ08, EA97, Fre87, GKF84, GB87, Gra84, HO91, Har82, HM93, HS90, HSH96, mWH98, IMC +06, Jag80, Joh82, KC95, KMS +12, KHN07, LCS10a, MSI82, MW12, NEE12, NKQ13, NWD93, PL06, PGRT01, PZT02, RGP82, SYK10, SLLG05, Sta89, SPP07, TNNI87, VCK +12, WHG07, ZR14, dKNS10.

architecture-level [BTM00]. Architecture [ACM80, ACM89, ACM91, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, ACAAT16, ABZ07, BTRS05, BKS05, Bat80, Bat98b, Ben82, Bhu83, BTC06, CTHV +15, Chu77a, CBC05, CGL89, Col88, DCC +87, DCC +98, DDK +15, ESCB12, FR89, FXZ +17, FKMD83, GSS00, HMT86, HCJC06, HTM +05, HYHD95, IEE76, IEE77, IEE79, IEE81, IEE82, IEE83, IEE84, IEE85, IEE86, IEE87, IEE88, IEE90, IEE92, IEE94, IEE99, IEE03, IEE05, IEE06, JLF15, KK84, KN07, Kin75, KBIH +04, KOA05, LMK +05, LWB08, LJdl +16, LLV +06, LS73, MSA +15, MCK16, MCN +17, Mil77b, Moo85, Mnd96, MRH +16, PED +08, Pat06, PGH +83, PQNT16, Pou77, Ros73, SCU +14, SLG +05, SOM +08, Sin92a, SMHZ94, Tak88, TS05, TLM +04, Tho51, UBF +84, WJZ15, Whi78, XYR06, ZWM +14, APG07, AAM76, ALKK00, ABC +95, ABC +98, Aga98, AA82, ACC +03, ATV +07].

architecture [ASP +03, And90, ALBL91, ABL +80, AAG +86, AFNV90, AAG +98, AP76, Asl84, Afm93, ACM +98b, Aup80, AML +10, BGM +00, BGP +01, BFGP06, BFP07, Ber76, BB90, BC91, Bic84, BSD87, BSF +91, Bon13, Bou75, BC04, BC02, BR92b, Bur84, BAB88, CMF +13, Cal74, CDP82, CBK +14, CLVW93, CL94, CCE +09, CES +16, Che81, Che92, CLX +16, Chn77h, Cit03, CNO +87, CmWH91, CLS73, Cox79, Cra85, CC05, CRM91, DG90, DK85, Dal10, DKK07, Das83, Dav80b, DRC005, De 90, DCB +94, Den80, DM74, Den76, DM98, Den98, Den03, DJ09, DP80, DMB87a, DP98b, DP98a, DDP85, DK89, Dor75, Dv87b, Dow87, Dow88, Dr99, Dug83, Dvo90, EO98, Ega82, ED83, EAE +02, Est02, EE93, EEKS06, FD87, FB08, FB92, Feu76, FCP02, FF73, FR72, Fon03, Fos73, FeOBA05, Fra83, FHH +89, FAYA87]. architecture [FSS73, GAS16, GK78, Geh14, GK85, GSS12b, Gill3, GS12, GS74, Gol84, GtHL +85, GHKM11, GSS00, HG97, HR91, HW80, HF88, Har86, HCU10, Har73, HFWZ87, Hay77, HIJS00, HSW +00, HKN +92, Hir86, HLS05, HSC +90, HK90, HC85, HK77, HW95, Hu85, HKA +01, HG88, HC99, HP86, HP98, mWHP98, Ian88, Ino05, IBC12, IT84, ISKR86, JLZ09, JSL +13, JW82, JWB89, JB97, KHP +95, Kee79b, Keh76, KJ +09, KKC92, Kic87, KL03, KKK +16b, KL91, KPG98, Kno73, KSS +95, KSS91b, KACG88, KBC +00, KMT91, Lao03, Lap90, Lap91, Las89b, LMND76, LR93, LHH +16, LS12b, LWS75, LNEHR11, LSY +14, LL14, LTD +16, LH88, MK84, MPZ47, MPJ +00, Mar00, Mar85, MK12, MVCA97, May82, MC93, MSP +06, Mid82, MBS +04, MPS87, ME78, Mue12, Muk97, MS10, MPSIV89, MIT89, MSCS13, Nae85, NSMK11]. architecture [NNN +91, NOX +85, Nap86, NPA92, NKS86, OYK +16, PCL10, PMP06, PN88, PSB13, PC90, PC98b, PC98a, PJDL06, PIAS13, PT86, PGB7 +87, PDP +13, PSB10, QMT89, QFLMK10, RGD09, RYP06, RC80, RF90, REL00, Rie80, RAC99, Req83, RHS96, Rls76, Riv79, Rob78, Roc85, Ros06, Ros76, Rou86, SyYH +89, SNL +03, SCP80, SCP +82,
architecture [WWW +88, WG9b, Wei97, Wel76, WIPK09, Wl87, WJ85, Wul88, Wul92, YZ07b, YYX +07, YMHB00, YFPR07, Y186, ZRMH00, Zak73, ZA98, ZV03, ZCX +14, ZW14, ZHW16, vT89, Atk79, Buc78, Col90, Fos93a, Gor83, Lan76, Mi177a, Sch88, Tab96, Tan78, ADK +04, Bat98a, CH04, JD81, PT83, Tho81, WGH +97].

Architecture-Adaptive [MRH +16].

architecture-compiler [CBK +14].

Architecture-Level [SOM +08].

Architecture(R) [MBBS13].

Architectures [All92, BRUL05, BKSO05, CSBA17a, Cha92, CB17, KK92, KKK +17, KSL08, KSO08, KTR +04, LRC +08, Loh88, SLFG06, SM +06, AA11a, AA90, ABC97, ABS98, BA99, BHLB87, BCDL07, BCZ90, BHS91, BBM94, BD84, BK97, Cha90, ClM07, CFB2, CCB +06, Craz79, CGVT00, CJD89, DO82, Das83, DL87, DSBK04, Eij90, FKBS11, Fis83, Fis98a, Fis98b, FGVG13, FS9a0, FPC +97, FV82, GVV90, GTB389, GB38, GL98b, GTK +02, GMT89, GZRU13, GN89, GT13, GFNW86, Han78, H898, HL85, JH94, Joe90, Kar95, KB92, Kav81, KBB +82, KF79, KS99, KNP +07, KTS +13, KSC16, KMC +93, KL94, KMS +10, KBB89, KCE12, KNS86, KHC92, LZX +16, Lw76, LL88, LS12a, MLCW11, MST07, Mar83a, Mat90, Mei85, ML979, MPSIV89, Mus99a, NCLIO9, PT91, PPA +13, PSP +12, Psc74, PAR13, PAVT16, RTY +87, RGG82, RPG82].

architectures [RE12, SGG +85, SRWB14, Sh80, Sm82, Sm89a, Sm89c, SJ04, SV89, SJ92, SM93, SMQ90, SMJ +10, SAK01, TYSSK11, TH03, TE94, TK +02, TF79, Tie88, VFK +04, Wl87, WO14, ZGP09, ZSHG07, Mc08, L91].

Archival [BLC +16].

ArchRanker [CGT +14].

ArchShield [NKQ13].

Area [AMPH09, KS99, KSL08, SM +06, THNM14, AA11a, BC02, CS13a, Mar74, WSY95, WIPK09].

Area-efficiency [AMPH09].

Area-Effective [KSL08].

Area-Performance [SM +06].

Area-time [THNM14].

argument [Mat9a].

Ariadne [AGSY94].

Ariel [Fra90].

Ariadne-Partitioning [AGSY94].

Ariadne-Partitioning-Adaptive [AGSY94].

Ariadne-Partitioning-Adaptive-Compiler [AGSY94].

Ariadne-Partitioning-Adaptive-Level [AGSY94].

Ariadne-Partitioning(Adaptive) [AGSY94].

Arido [AGSY94].

Arista [AGSY94].
Arm74, BB74, CP98, GGP+13, HR00, HFF+91, Jou90, Jou98a, Jou98b, Mou98, PA73, SFS04, Sez93, WQL92, WHM02.

Associative/parallel [BTW77, AR80].

Assiciativity [QTP05, BS95, KJLH89].

Assumptions [ABD+15]. Assurance [AHC+16]. ASSURE [SLP+09].

Asymmetric [DHT15, MA15, CBGM12, CZS+16, GCN+10, JSMP13, KKMH11, SSR+13, SMQP09]. Asymmetry [BRUL05, TWB16, QFJL12].

Asymmetry-aware [TWB16].

AsyncClock [HNK+17]. Asynchronized [DGT15]. Asynchronous [FW82, HCL15, HNK+17, Nis91, VTGH17, BLS99, DR91, GSS05, GM90, HS80, Hlr86, IM02, MBL+89, Nae85]. Asynchronously [LL16].

Atlanta [IEE99]. Atlantic [Bra82b].

Atom [LDSC08]. Atom-Aid [LDSC08].

Atomic [BNZ08, IKK16, KKS+08, SKB+17, AT11, ADT13]. Atomicity [AM06, LDC08, BNS11, LTQZ06, LCS10a, NRS+07, NDZ10, PLZ09]. attack [CLR05, LWH+16]. Attacks [AYY+16, CZG+15, MMT16, CS13b, Ino05, KOAGP12, MDs12a, MMJ05, WL07]. attributes [Avi83, VBE92]. attributing [ZMMT16]. ATUM [ASH86, SAA8b].

augmentation [Tho12a]. Augmented [MS82, DSN07, KTO+12, MS80].

Augmenting [TM11]. Austin [IEE82].

Australia [IEE92]. Authenticity [YEP+06]. Author [Ano04a, Ano05a, Ano06a, Ano08a].

authors [Ano82]. Automated [BS73, KS07, LWPG17, SDWF13, SC01, XLWZ15, DZ09, SCGA13, TS90a].

Automatic [AK17, BA06, Ch77, CM00, FFN11, HBTL11, KDA12, KDP+16, LSFK08, MVB15, Qui84, SDLR+15, CBK+14, EG97, Fen84, GKT13, MSZ09, OKJ+13, SLP+09].

Automatically [LLL+17, SPHC02, Bur06, RR04, SW87, WAA+14]. automation [NK86]. automaton [SJ16, TLLL07].

automization [Mat78]. automotive [RBH+03]. automatic [Che05, JCSK14].

autonomous [HGC10]. auxiliary [NNS+90, SD10]. availability [ARJS07, SBM02, SMHW02]. Available [Ber91c, JW89, TMC+06, ZYMS15]. avenues [RKB+09]. AVF [SK10]. AVIO [LTQZ06]. avionics [And73, KM74, Sat74].

Avoid [Mud96, BLS99, HC03]. avoidance [Kun88, LC13].

Avoiding [LBL02, UVG14, GSI10, LCS10a]. Aware [BLI17, CMR+06, GNO+04, HCL15, HABZ17, KSCK17, LSL+17, LCCZ17, MM08, ORS+04, PR05, QLMPO6, SABR04, TT08, CZS+16, DK13, DK14, ELMP11, FeOBA05, HFIJ11, HSC+11, JNAs+12, JKN+13, KCW+09, KKD13, LFZE00, RLS10, SLcC12, SSH+03, SCN+10, TWB16, WRSY16, Won16, LJVM12].

Awareness [CYMT16, RAM+04, BK05, HK09]. away [HLS05].

AxGames [PAM+16]. Axiom [Mue12].

AXP [CB94b]. Azure [Dav14].

B5000 [May82]. Back [JL16, ECX+11].

backed [LWH+16, SCA09].

backend [Cop78, OC78]. backoff [AC89]. backplane [AKB+89]. backpropagation [Kha97a].

backs [ZNF+16]. backup [WGS+14].

backward [ZS00]. Bad [SDB+15, CS13b, Irw10]. BadgerTrap [GBHS14]. baked [Chr76].

Balance [HS90, PJJ07a]. Balanced [Zha06, CKZ12, DZC+13, Kun86, SDGT03].

Balancing [TLD14, BM01, CT08, JW97, LS96, QHS+13, SLQK12]. band [OT86].

band-limited [OT86]. Bandwidth [HIT05, PGS04, AZK06, AS96, BSR06, BGK96, CHZ+14, DJ09, DSH+94, FPF+92, GM98, HJ87, HCV03, JVF13, KC96, LCC06, MVCA97, RBIV07, RKB+09, SLQK12].
broadcast-free [EHA03]. broadcasting [FM84, KR85a]. Browser [PVB17].

browsing [LRS+12, ZR14]. Browsix [PVB17]. Bruijn [SP85a]. Bryant [Fos93b].

BSD [Mad94a]. BTB [BM09c]. bubble [Ria80, YBM13]. Bubble-Flux [YBM13].

Bubbles [Cha78a]. Budget [WM16].

Buffer [CBRJ12, TIVL05, AK85, BRGH89, BM09c, FB92, Ino05, JADAD06, OSKA14, PBC+13, PN77, SK04, SWC+95, Tic88, ZSHG07].

Build [BNZ08, BNE16, CS09, DHR+90, SRSW14, WY05]. Building [DLB80, LZX+17, OCCK03, SCU+14, ARJS07, BG80, Coo73, FB92, ICN+10, MGBK96, POU77, SFV+04, ZLZZ09]. Bulk [CTTC06, CTMT07]. BulkSC [CTMT07].

Burroughs [May82]. bus [Aic92, Bra80a, BKB90, CHK+12, EK99a, FP91a, GH90, GCLM85, HS80, HJL89, JS88, KMS8, KC82, NS86, PH88, SA92, TE93, VI94, VB805, VMS8, WM88, ZPP04].

bus-based [TE93]. buses [HDP+90].

business [Dic81]. Butterfly [GVC+10, KDA07]. BVM [Wag83].

BWAMEM [HSBA16]. Bypass [GCS11, GL11]. bypassing [AB92].

Bytecode [OKN02, EKEL01, MW98].

C [All92, Ano99, Fos93b, Fos72a, Ful91a, McG78, Vrh78, BD93b, CGB89, CRW+15, CDG+17, DBM08, DM82, DMB87b, Hill83, Won07]. C-21 [Fos72a]. C-240 [BD93b]. C. [Sch91a]. C.mmp [Ful76]. CA [ACM93a]. Cache [AW04, AKCB86, CH01, CC87, Hai84a, Hai84b, HIT05, JW97, Jou93, KHM01, KTG+17, Lin81, LLN+17, MGR12, McF92, MBS16, PH90, QLM06, SDBP08, Smi85, SZG88, SSZ05, Str76, Tab95, TD91, WGA+08, WSC92, Zha06, AAVH91, ASHH88, ASHH98, AWC+11, AZ05, AOP06, AB84, AS14, ATT+13, APS95, AK00, BJ14, BW88, BW98a, BW98b, BD93a, BCZ90, BVGL00, BJ03, BD86, BRS99, BC04, BR87a, BKB90, CG95a, CKA91, CV88, CS06b, CY96, CMB+13, CF03, DDS94, Dab95, DB07, Dev90, Dev93, DM82, DB82, EK89b, EK89a, EP88, EE93, Fon03, FP91c, GAS16, GH90, Goo88a, Goo83, GH86, GW88, GVW89, Goo99a, Goo98b, GMT98, HG97, HK00, HK+16, Hen98, Hig90, HS84, HIM+05, HC99, HCS9, Ino05, IS92, JEL16, JTL01, JN8a+12, JVF13, JS99, Joh89, JnWH97].

cache [JADAD06, Jou90, Jou98a, Jou98b, JLN96, JB97, KS14, KEW+85, KHP+95, KR13, Kha97a, Kha97c, KD06, KS99, KBK02, Kro99a, Kro99b, KAD904, KKF13, KKP14, LW91, LAS88a, LAS88b, LAS91, LKL+02, LLY87, LLLP94, LBCG95, LS1a2a, LLG+90, LS92, MPT91, MAD11, Mat91a, MPS94, Mic92, MC91, MB91, M998, NG09, NO94, NRK05, OKY+16, OMB91, OMB92, OA89, PK94, PP98, PEP98, Pat98a, PGH+83, PH88, PT10, PHH88, PHH89, PEB+09, RB900, RC91, RSP06, RBIV07, RF96, RSG93, R84, SK11, SD87, SHBS14, SHZ97, SSKP+07, SLQK12, SH91, SA88b, SG83, Smi86, So94, SHV+98, Ste89a, Ste89b, SJQ92, SBS93, SDD+10, SSS6, TK07, TIE93, TUTF+94, VLF88, WBL89, WL07, WGF9a, WAC+10, WIL87, WOR96, WEG+86, WK89, WLZ+09, XT96, YY07a, YY92, YPD83, Yue99a, Zan03].

cache [YZZ00, ZVN03, ZSKD13, Ill87, QT05, Smi91, Quo94]. cache-based [MC91, PH88, PEB+09, SD87, WL07].
cache-coherent [BD93a, GW88, GVW89, JS99, SHV’98, SJC92]. cache-consistency [VLZ88], cache-filtered [RF96]. cache/bus capability [W87]. cacheability [Bri87b]. cached [HS93, MPS89, McC93]. Caches [KRM08, O’H16, TIVL05, Zha06, AP93, BFG+07, BK96a, BK96b, CZS+16, CSB86, CBS88, CP98, CJ88, CRG+11, DL92, DSN07, FaRP89, FKM+02, FKC+06, GCS11, Goo87, Goo88b, HFA09, Irw10, JVF13, KBK02, KKT05, KW98, McF89, MDS+11, MB07, NRK05, NKRL06, NLS07, Nik09, PPZ96, RA00, SFS04, Sez93, SL94, SL88, SLS05, SK08, SV92, VJ95, WQL92, WSY95, WO97, XL09, YE09, ZYGP09].

Chameleon [PS12]. Change [WJZ15, ZJZX14, Lar11, LIMB09, QSR09, QFLMK10, QFJL12, SWL10, SYL13, ZYZ09]. Channel [WM04, Da90, DMWS12, Dn83, Isa74, Las87, MDS12a, SKA+11, WL07]. channel-to-channel [Isa74]. channels [Dow91, KPKJ07, SSJ+16]. Chaos [KG91b, GKZ+07, KS91a]. character [Con90a, Hea76, Vin77].
character-oriented [Hea76].
Characteristics [PHH89, AE01, HO91, LCB+98, LPSZ08, NI85, OKY+16].
Characterization
[BCG+08, CB94b, YRK07, ABR01, RB08, BM04, EK88, EC84, EC98a, HGS+07, KPH+98, NSI94, SiB07, WOT+95, EC98b].
Characterizing
[MMAR10, UMK05, MTPT12, SPHC02].
charge [ZYZ14]. Charles [Par90].
charting [OT73]. CHDL [Su75]. Cheap [CL87, PGVB04, FGAM10].
check [CCEH00, KKN00]. Checking
[BKL+16, BNE16, HABZ17, MCM16, AHK08, BNS11, SIG89, SIH87]. Checkpoint
[HP87, SMHW02]. checkpoint/recovery
[SMHW02]. checkpointing
[AGT11, BMP+04b, DP12]. checkpoints
[KRS13]. checks [HiI81, NPCF08]. CHERI
[CDG+17, WWC+14]. Cheriton [Goo88b].
chess [EP84]. Chicago [IEE94].
Chichester [Ber91a]. chii [Mid82].
CHIMAERA [YMHB00]. Chimera
[PPM15]. Chinese [Gao93]. Chip
[ACAAT16, CS06a, CMR+06, JPL08, JKT05, KNT99, KDOA08, KSL08, KKS+08, LA08, LNR+06, MWM04, PED+08, SSZ05, SOSD05, TTO8, TKJ07, VIA+08, ZA05, AA11a, BT13, BOSL, BGM+09a, BM10, CHX+11, CJK+05, CHZ+14, CS+05, CJS88, DMM10, DNSD13, DRCO05, DF10, DCS+14, DVT12, Dn03, DJPK16, DSN07, EP88, FB08, FARP89, FTP94, FKMD83, FH82, GSVP03, GHKM11, HGC10, HS84, HS10, HGS+07, IKKM07, JW94, KKO8, KDS+06, KBB02, KNP+07, KKM10, KMS+10, KMS+12, KFN02, KNS07b, KHN07, KADS04, LAS+07, MJW11, MDS+11, MVD11, MPSV06, MM09, NUM94, OPZ11, PFK+09, Sth+89, SP84, SGC+05, SLQQK12, SKI08, TGGS14, TEL95, TEL98a, TEL98b, VS92, VT14, WSY95, WMW09, WGO+13, W097, XYM12, XGC+10, Zah03].
chip-multiprocessor [DSN07, Zah03].
ChipLock [KF05]. chips
[Bha97, FKB0, HQW+10, MAS+06]. Chisel
[HCJC06]. choice [SmI85, TEE+96].
choices [BAC+98]. choose [KWF08].
chromodynamics [TGP10]. Chu [MII77a].
Cider [AHA+14]. Circuit [IWPK08, JPL08, NNIS16, AML+10, DGY89, DS85, HJ11, KKK+16a, LN07, LIW84, MS13a].
Circuits
[HKLS00, RBOS07]. CIS
[BCC91, Bha97, Jon88a]. CISCs [BCDN87].
CITCAT [RF96]. class
[BA82, DG92, Fec74, GSKF03, KDJ83, SGB00, SC89, SH80, SS86, VS92, ZELV02].
classic [Bar82]. Classification
[DM06, KHCMI91, MBS16, SG+85, K99, Ros77a, TZ+13, VFCM13]. classifier
[HT10]. clause [WW89]. clauses [Chi89].
Clearing [FAK+12]. Clearwater [IEE76].
Client [Mad94a, CSBA17b]. Client-Server
[Mad94a]. clients [CDL13]. Cliffs
[Ber91b, Fer88]. Climbing [CV06]. Clock
[AHKB00, Dav80b, ORS+04, DFS+90, MBB+03, PP88, WJC04]. clock-regulated
[PP88]. clocked [FW82]. Clos [SDK06].
close [YCT05]. Closely [Nae85]. closing
[GOA+00, VV14a]. Cloud [Che17, DK16, DKS7, KH+17, LLL+17, YJX+16, Dav14, GC11, KSR10, LAR11, LLL14, MMR+13].
cloudlets [KLS+11]. Clouds [KZVT17, OSK15, FAK+12, MKGT16, ZW14].
CloudSeeer [YJX+16]. Club [VSH91]. clues
[YMX+10]. cluster [BJ03, DK14, LZ93, MVC97, SKS+13, VSM+07b]. clustered
[BD03, BMP04a, BJ03, KZ00]. Clustering
[GVY90, LSL+17, ZGC13].Clusters
[GAAD+05, HJc14H, HL15, SXH16, ACRV12, CGS09, E098, LQL12, SB111, TTRP10, YK01]. CM
[KC95, S+93].
CM-5 [KC95, S+93]. CMIP [Mad94b].
CMOS [CCS87, LN07, WW12, Wl05].
CMP [APG07, AMPH09, CWS06, GPV04, GZK+07, RKB+09, SRJ+05, SSK+07].
CMPs [AKJ+09, AK16, CAD09, CPV05]
GW10, HIM+05, JSMP13, MDS+11, MVD11, SQP08, SLSN14, YL16. CNNs [RHR+17]. Cnvlutin [AJH+16]. Co [AVN+16, HS06, KSCK17, McG78, Vra78, AMP09, BKAB03, CBK+14, GSM+99, KC02, LGM+14, Ano04c]. co-adaptive [BKAB03]. Co-Chair [Ano04c]. Co-Design [AVN+16, KSCK17, CBK+14, KC02].

Co-Designed [HS06, LGM+14]. co-optimization [AMP09]. co/processor [GSM+99]. Coarse [CLS05, Mos05, GTA06, KTO+12, LS12b, PCL10]. Coarse-Grain [CLS05, LS12b]. coarse-grained [GTA06, KTO+12, PCL10]. Coast [IEE92]. COATCheck [LSMB16]. Code [BD91, BNE16, MRH+16, RBB+01, WHZ+17, Ams83, AR89, BCG99, BEH91a, Bra82a, CCEH00, Cra79, HM05, HC88, KOAGP12, Kha99a, KBD+13, KMT91, LYS07, Lar82, LCED01, LSFK08, MPP+08, Mid82, MMJ05, RP99, RGG82, RGP82, RCC05, RVLS14, RA90, SYP+14, Ste89a, TACT08, UNM+95, VM97, VE08, VBYN+14, WY05, ZA98]. code-centric [VBYN+14]. code-splitting [Ams83].

coder [BBFP06]. Codes [PM92, AR80, AWC+11, Che84a, Gum83, Lip77a, PT03, WAC+10, Wi88, XT96]. Coding [Rym82, NMTH10, SM14].

CODOMs [VBYN+14]. Cogent [AHC+16].

Cognitive [Ban15, HMT86]. Coherence [CLS05, CMR+06, HWC+04, HCBS04, MNL97, Mos05, OHW17, AHH91, ASH88, ASH98, AB84, BDH+99, CKA91, CV88, CY96, CRG+11, DCS+14, HCW+04, Hen98, KR13, KKD13, LW95, LLG+90, LWZ14, LS92, MHW03, MPS89, MH98, OA89, PP84, PP98, Pat98a, SHZ97, SH91, SBS93, TD01, VV14a, VV14b, ZSKD13].

'Coherency [Goo88b, CBS88, Goo87, CF93, DB82, EK88, EK98b, Mat91a, Mic92].

Collection [Hib80, CHV04, FKC+06, HHA83, JMP09, KTK12, RP85, Rid87, TF01, WK90]. Collective [SXYH16]. Collector [GTS+15, WK08]. collectors [GTSS13].

Collision [HCJC06, WN14, HS80]. Collision-free [HCJC06, HS80].

collocation [Chr90]. Colorado [ACM97]. colored [ES74]. coloring [AK00].

ColorSafe [LCS10a]. Columbia [ACM00].

Column [AP93, CP98, GeC84].

Column-associative [AP93, CP98].

COMA [FW97, FFdDH00, JH94, MGBK96, SJ92].

COMA-BC [FFdDH00]. COMAs [QD98].

combination [MP91, Ria80].

combinational [MS13a]. Combinatorial [SLTB+06, Th03e, WLY84].

Combined [DDS94, KC96, UZU00]. Combining [BZ87, CG91, GRH96, Gum83, JHK+16, KW84, UMB+11, ACM02b, MGH+96, OCF00].

concurrent [RRV09]. Come [SGS08, VM88].

Comer [Mad94a]. comes [Lor90].

Comics [Wak81].

Coming [Mil87].

Comment [Woo86, HK90, WO86].

Comments [

AF73, CBS88, CS80a, Goo88b, Woo86].

Commercial [Rat85, AR89, BGB98, DLMN09, EJK+96, GAG88, Kav81, LC96, RO93, Tab10].

Committees [Ano04b, Ano05b].

Commodity [GAAD+05, SP+16, ZLJ16, ARJS07, COH+12, CGL+08, NPCF08, SFV+04, TASS09, UMB+12]. common [BDLM07, TKG+02].

Communication [ACAAT16, CPV05, HPJ+15, MDR+00, OA08, SXYH16, YMM15, AD98, AA82, AAZ89, APR89, BDA03, BVR+00, BR92a,
BCC⁺90, BCD89, CHKM93, Dow91, EO98, Ebe92, EST89, FH76, FR87, GTBJ89, GTK⁺92, GS80, Hic76, Hof80, HHSI93, Jai82, Joh92, KBS84, KN⁺07, Kun88, LMND76, LR77, MVC97, MS80, MFHW96, NS74, OQ91, OT86, PNB83, PA88, RSV87, SHI92, SA91, SG95, Thu78, WWA01, ZCSM92, ZBJ⁺92, vECSG98, vECGS98, vECGS98, uAM16.

communication-exposed [GTK⁺02].
communication-parallelism [BDA03].
communications [JMY89, KC82, TF88].
community [CmWH91].
Commutativity [AC09]. compact [KDS⁺06, RP99, SM14].
compaction [RE12, VSW⁺13, WK08].
compaction-adequacy [BDA03].
Company [Fos93a, Mad94b, Mil77b, Su74].
Compaq [CK00].
Comparative [GHG⁺91, SJG92, MSB⁺02, Wah83, YGS95].
Comparing [HCC89, LL88, LAS⁺90, BC91, Jon88].
Comparison [AAHV91, KB92, KKS⁺95, MM92, ZH16, AA06, AAD90, BCG99, BC93, CS80b, CJD99, ER92, Fu76, GL98b, HANN96, KDSO12, KC95, Kl94, Lai92, LS77, Lar82, MHH⁺95, Mal80, YP93].
Comparisons [LJF⁺16]. COMPASS [WL10]. compatibility [EA97, OIA⁺13].
Compatible [Bhu83, MM14b, LBH12, SS86]. compelling [SK85]. compensation [MS07]. competing [TS90a]. competition [YL16].
Compilation [TB94, BGP⁺01, CCEH00, DZZ⁺14, EA97, GA01, HCD⁺94, HFJ11, HSS94, TMW⁺13, WS87].
Compile [MPS94, GWM03, KD92, Mu88].
compile-time [GWM03, Mu89]. compiled [Las89a]. Compiler [CY96, FH82, GGV90, HPJ⁺15, HA90, NBW⁺15, RSEW04, TY90, ZCSM02, ACK⁺95, BLAA99, BAD⁺10, CBK⁺14, CSW94, CGL89, CNØ⁺87, CHCum90, CBC⁺08, CSS⁺91, FTMM99, GTK⁺02, HC88, HC95, KY02, KP96, Lal73, Sas91, Lee72, LYK⁺00, LS92, SC90, SDH⁺14, SAR99, TL00, UZU00, WLG⁺14, Wie82, ZRMH90, HMJK05, RGP82].
compiler-controlled [CSS⁺91].
Compiler-directed [GGV90, CHCum90, LS92].
compiler-flag [CSW94].
compiler-managed [BLAA99, WLG⁺14].
Compilers [HS16, HAR82]. Compiling [BSUH87]. complement [CHR90].
complementary [YLHL10]. Complete [TMW⁺09, DWS⁺12]. Complementing [Joh88].
Completion [RBS00, HR90]. completion/silent [HR90]. complex [NA83].
Complexity [FJ94, PS97, PGS04, TP08, ASP⁺03, DV87a, DZZ⁺14, Har73, KR85b, SIA01].
Complexity-Effective [PJS04, PS97, SIA01]. Complexity/performance [FJ94]. component [Nak01].
components [EEK56, MII56, YS95].
composing [CSW94].
Computation [BFA⁺15, CWS06, CH77, HPJ⁺15, Iva91, LMF⁺16, LHM⁺15, LNN⁺17, Mud80, OSF⁺15, SKN⁺15, SOD⁺14, BVCG04, CLX⁺16, CHCum90, DG90, Fis86, FKT⁺89, GTBJ89, GKB⁺13, GIS10, HW80, Kie87, MSH⁺07, MCC⁺06b, MS07, Nis91, OCS98, PB80, RS11, SWY10, SYH11, SH05, SYP⁺14, WAA⁺14, WCF01, Yue99a, vECSG98, vECGS98, vECGS98].
compression-communication [GTBJ89].
Computational [FZL6, RES⁺13, AIO⁺11, MSS14].
Computations [Bow79, VGM17, CH85,
computer-based [Sal76]. Computers
[Bot79, CYMT16, CYG+17, Dor75,
HLZ+15, HK90, IPWK06, KSO8, MSS+15,
Mud80, Wak81, AA86, AS92a, BT89, CT90,
Cra88, Don83, Don95, Don90, Don92,
EGK+85, EHA82, Feu84, GW73, GPF13,
HHL16, IS92, Kav81, KBD+13, Las87,
Las88b, Las89a, LHPL87, LV88, MT13,
NP90, Phi84, RFK88, Skl92b, Skl92a, Sta86,
Str76, SG95, TMW+13, Tho76, TS10,
Wra91, YBMT13]. Computing
[All92, Ban15, Bar11, Ber91c, BRC+05,
LRC+08, NLV86, NY14, PAM+16, RLD+17,
SCU+14, Teo90, TMC+06, Wil16, ZAI+16,
AJH+16, Cha90, Che81, Che05, EEKS06,
GB01, GIS10, GNP+13, Hal87, HF88,
HSC+11, HBI13, JOW+02, KFW08, Kin83,
KFN02, LS77, LK+10, Lip88, Lor90, LH88,
MS12, Nik89, PCD10, PM11, PCH88,
PFB+09, QHS+13, Rout, SKS+13,
SC+12, SA87, SKA01, TA76, TZZ+16,
ZJG+11, vT88, KRM83, PS98a, YPD98.

ConAir [ZdKL+13]. concept
[GB01, GIS10, GNP+13, Hal87, HF88,
HSC+11, HBI13, JOW+02, KFW08, Kin83,
KFN02, LS77, LK+10, Lip88, Lor90, LH88,
MS12, Nik89, PCD10, PM11, PCH88,
PFB+09, QHS+13, Rout, SKS+13,
SC+12, SA87, SKA01, TA76, TZZ+16,
ZJG+11, vT88, KRM83, PS98a, YPD98.

Concurrent
[ABB+15, CJ01, DGT15, LLLG16, LLL+17,
CS+12, DJ99, GZC11, HHS13, LYBC88,
LPSZ08, PTG13, Tab10, VTSL12, WZJ10,
ZSL10, ZLO+11, ZdKL+13].

Concurrent
[CSBA17a, DGT15, FAH83, Lan90b, Tak88,
Whi78, ALE90, AA89, GNP+13, Hal87,
HSC+11, HBI13, JOW+02, KFW08, Kin83,
KFN02, LS77, LK+10, Lip88, Lor90, LH88,
MS12, Nik89, PCD10, PM11, PCH88,
PFB+09, QHS+13, Rout, SKS+13,
SC+12, SA87, SKA01, TA76, TZZ+16,
ZJG+11, vT88, KRM83, PS98a, YPD98.

condition [Wil88]. Conditional
[SDL+15, vPPR06, AS91a, Hum96,
Lan91, MSU97, SFK02, SFS00, ULM98].

conditionally [TLD14]. Conery [Bit89].
Conference [IEE83, IEE87, IEE88, Mar88,
ACM97, IEE84, IEE85, ACM80, IEE76,
IEE77, IEE79, IEE81, IEE82, IEE86, Kin75].

conferences [Cit03, Pat91]. Confidence [GKMP98]. configurability [ZW14].

Configurable [ARJS07, ACF05, DDY95, PKB+16, WJ15, WJGA12, CSJC10, ELMP10, SRJ+05, ZVN03, ZHW16].

configuration [Adl73, DS02, FJB85, FeOBA05, IT93, Oya89, SBRP11].

configurations [JSL95, KMC02]. Confined [VTGH17]. confirmation [Lit94].

Conflict [LCS+10b, Zha06, HK89c, LNGR12, MSU97, QST14, VLL+92]. conflict-free [HL89, HK89c, VLL+92].

conflicts [BC90b, HKK80, LLCP94, PBC+13, Wei89].

conferring [BKL+16, HWC+04, HVML04, MS05, BRG89, CTMT07, DNB+11, GLL+90, GGH91, GLL+98, Gha98, HCC+04, HS13, HT14a, KEW+85, KCM92, LHH91, LNR12, NCLJ09, QTSQ13, QSQ14, RLS10, SNM+12, Ste89b, SS86, VLZ87, ZB92].

consistent [DKCZ93, HX97]. console [Pay78]. Consolidated [HJR+CH16, GL11].

consolidation [LL14, MH07]. Constant [NNIS16, HW95, PSB13]. constants [VPS01].

constrained [CG92, GW10, UMC+10, WMW09, YN09]. Constraint [STND+13]. Constraints [MZLH15, FBH02, Tri80]. Constructing...
OC78, PMPM96, Pal80, PSP+12, PMZ+10, Pri91, PT03, RL74a, RRT+08, Ros77a, RS99, RVD07, SJLM14, SK86, SSJ+16, Sha80, SHNS86, SEI+95, SF91, SY89, SC1+10, ST08, TA83, Ta87, TK07, TY90, TP06, TBC94, TJS83, VS92, WE74, WDC+13, WS90, WL10, WCG14, WBRK13, WD1+16, XBH03, YTY83, Yoko94, YW89, ZYG00, Kro83, SHBS14./data-control [PMPM96]. data-driven [GLH88, YTY83]. Dataflow [BS06, CCV+09, DM74, DM98, Gau85, TJS83]. data-intensive [BHG85, TJS83]. data-races [LCS+10b].
data-reconstruction [Yok94]. data-similar [BFS+09]. Database [MM14b, Pra82, BH78, Bra77, Cha78a, Hak85, HK77, KMI+85, LR93, LBE+98, SCRT78, WLP+14]. Datacenter [Bia17, LLGL16, AMW+10, BTS+11, MKGT16, MNL+12, PCC+14, SA10, TMV+11].
datacenter-scale [BTS+11]. Datacenters [BL+17, GNB15, DK13, GKL+13, GSU11, GWSU12, WRS13, WGS+14]. Dataflow [Hu85, SPM+06, YSY+90, BBJ+08, Bic84, Bur82, CES16, CAS8, GB87, GTB89, GPF13, GVC+10, GHHS9, HG86, HPF86, HG88, Ian88, Kap87, KHP+95, LS12b, MFP+06, NMB92, Nis89, PT91, PM11, Roc85, SyYH+89, SK86, SKS+92, SA87, TFWS03]. dataflow-based [TFWS03]. dataflow/von [Ian88].
Dead-block [LFF01]. dead-instruction [BS02]. Deadlock [Kun88, LN91, AP95, KCW+09, KKK76]. Deadlock-free [LN91, KCW+09, KKK76]. deadlocks [PW97]. DeAliaser [ADT13]. dealing [BFGP06, BFP07]. Debug [EW16, FGVG13, PT03]. debuggable [MST82]. Debugger [CHLS16]. debuggers [AR83]. Debugging [NPC05, RSA+15, ZQL+04, AGS89, CL87, DZ09, DP12, HT14b, Joh82, KP05, LCS10a, Sch73b, VNN13]. Debunking [LKC+10].
Decade [Bar11, Woo14]. decay [KHM01]. December [LS73]. Decentralized [NS74, HW80, LG04, Lsm85, RS84].
decimal [Ris76]. decision [ASP+99]. declarative [SBRP11, WWW+88]. Declustered [ABSC98]. declustering [ABC97]. decode [KL02]. decoded [IS92]. decomposed [KNP+07]. Decomposition [WJZ15, VGSS85]. Deconfigurable [FGVG13]. Deconstructing [DBP+04, GAAD+05]. Decoupled [BS04, GRH06, HR09, RPW96, Sez94, SJS08, Smi82, Smi98a, WDDW10, ZLLZ09, APX12, CP11, GtHL+85, KHC92, SKA01, TJ01, WKKJ12, Smi98c].
Decoupling [CYL99, HHL16, JSAM10, LZC+17]. HCBS04, KCE12, MHW03, OSKA14]. dedicated [Sch83, SC92]. Deep [HABZ17, RLD+17, AJH+16, HLM+16, MW12, RWA+16, VBS05]. deeper [SC02].
Definition [Dik90, AH90, AH98a, AH98b, Lee73]. definitional [KBS84]. definitions [Fra83].
defragmenter [PSP+12]. degradation [DI90]. degraded [TLD14]. Degrading [KNP06, CSSP87, ZS00]. degrees...
[EE14, Kha99d]. DejaVu [VNM+12]. Delay [TLM+04, VC04, ZA05, DM96, DM87, HRDA85, KBK02]. delayed [PHH16a, PHH16b]. delays [HBJ+02, PD76, PD98, Pat98b]. Delft [FR87, Rui86]. delinquent [CWT+01]. delivery [KD06, RAC99]. DeLorean [MCT08]. delta [AS92a, TXZ09]. Demand [GMF+11, KKJ+13, MSS+15, QTP05, GK09, NLP14]. Demand-based [KKJ+13, GKC09]. Demand-driven [GMF+11]. demonstrating [DCS+14]. Demultiplexing [BS06]. DeNovoND [SKA13]. DeNovoSync [SA15]. Dense [RLIC06, WJZ015, Rui90]. densities [GM84]. Density [GSCM16, GPV04, GCG+14, KKC+16b, MHhK+13, Ste09a, Wan01]. Denver [ACM97]. departments [Slo73]. Dependable [SLFG06, Par88b]. Dependence [GRH06, HNP15, RKB08, APD01, CE98, RBR02, SAS90]. Dependences [CASM06, MBVS97]. dependencies [JLV13, NPC06, RVD07]. dependency [AS92b]. Dependent [YT04, Dev93, HKE+16, HY85, Yue81]. depth [EWN05, HP02, HBJ+02, YMST07]. derivation [MSZ09]. derivative [Ann91]. Deriving [HS73, RB04]. describe [OT73]. describing [EG97, Wak80]. Description [SC98, Das93, JS73, MSSZ76, Su75, Van81, WP87]. descriptions [Hen06]. descriptor [BB74, Wei76]. descriptor-based [BB74]. descriptors [LLC06]. Design [Alv93, AOM+14, AVN+16, BBK76, BAC+08, BD84, CYH+11, CJZ99, DMB87b, DR91, EBS+04, Fer88, FK80, FTG88, GMT89, JD88, JKT05, KHT09, KHP+05, KY02, KMS6, KM74, KR85b, LNR+06, LIW82, LCL+16, MS13a, McL90, NUS+93, NKH+85, PA73, RL76, RCV+05, RYF+13, Rui66, SFPK02, SOSD05, TAV10, Tab95, TAM+08, TIVL05, TKJ07, VHL73, Woo86, ZWSM15, ZAI+16, AWC+11, ALBL91, Ano81, AKB+89, AMPH09, AML+10, BS73, BA74, BF03, BVR+00, Bhu83, BDJ+11, Bou75, Bra82a, Bra82b, BKB90, BM09c, Bur82, CBK+14, CCS87, CGT+14, CZ14, CY96, CH85, Cra85, CR94, DN14, Das77, DO82, DPB77, EP84, EK80, EE10a, FW97, FCJ97, FSS+09, FL76, FSS87, Gai83, GRB+08, GP76, GSSV00, GB83, HG97, HRR0, HAOS86, HS73, HS90, HY85, HRDA85, HIM+05, HNS77, HS85c]. design [HSS12, IMC+06, Isa74, IT84, JYZ14, Joe90, JW97, Jon82, Jon89, JOW+02, KS07, KC02, KSCK17, Lan77, LGH92, LYL87, LRS+08, LR77, MSA91, Mar83b, Mck74, MD88, Mi82, Mi87, MSSZ76, MKR02, MB07, NK86, NMS+00, NO94, NO96, OT86, Oya89, Pay78, PP83, Psp74, Ph84, PPH88, RBR02, RCL73, Ran85, RHZC74, Rod85, SYH11, Sav85, Sch89, SRW84, SC01, Slo74, SS85, SV89, SV74, TA67, TTTT10, Tur79, UMC+10, VT14, VFK+04, VE14, WL+14, WS74, WF87, Woo85, WO86, WLP+14, YY92, YKD01, ZRMH00, ZYG00, Hol83, Su74, TA83]. design-oriented [Slo74]. Designed [HS06, LGM+14]. Designing [BF90, HW87, LRC+08, SNGN00, Tri80, WO97, Asl84, CMR+12, DSOF11, GSS12a, GGK+82, GGK+98, GRD87, LMS+13, MST07, PHB14]. Designs [TMC+06, BJK+13, CWS+11, GCG+14, Lai92, OCF00, SWC+95, WL07]. desktop [BDFM10, FURM00, LCB98]. desktops [Dow88b]. Destage [VJ95]. Destination [RF88, MHS+03]. destination-set [MHS+03]. Detailed [MKR02, ACC+03]. Detecting [AHMN91, LLL+17, LDS08, ZFC03, CF93, CWD+06, LITQ06, ZSL10, ZLO+11]. Detection [GV05, RCV+05, TS05, TP15, ZL16, ZJL17, AC05, BM06, BWWA05, BSO2, CG06, DMS+13, DSR+93, FAH83, Ger80, GMF+11, HC04, HHS13, Jai82, LS82, MC91, MSQ09, NSQ16, NSH+11, QTSQ13,
MPSV06, NSMK11, NY14, ON90, OAA09, OYK+16, PSC06, PSP+12. Efficient
[PT86, RP99, RGG92, Ria80, RL14, SB05, SK11, SYH11, Sch83, SSJ+16, SYL13, Sez86, SSAC13, SDP85, SA84, SDR11, SQP08, SKA13, TGP10, UMB+11, VF85, VLZ88, VE14, WW13, WIPK09, WBKR13, XJK+16, kSYHX+11, ZZY09, ZSHG07]. Efficiently
[IMC+06, KDL+16, MCT08, SW16, BCS91, KJS+06, LS12a, SGB00, TZZ+16, Wil91, ZZP04]. Effort
[MPI+12, DCW+11]. EGA
[GW+03]. EGPA
[HKK+08]. EIE
[HLM+16]. eigenvalues
[MDSO11]. Elastic
[HGC10, PTG13]. Elasticity
[OSK15, ZL14]. Elastodynamics
[ZK90]. electrical
[Slo73]. electro
[FR87, LN92]. electro-optic
[FR87]. electro-optical
[LN92]. electromagnetic
[DSOF11]. electronics
[Mar94, Roc94]. elegant
[Um97]. element
[LW82, Nap86, Wil91]. elementary
[HKN+92]. elements
[MBL89, Ru90]. ELI
[Fis83, Fis98a, Fis98b, GAH+12]. ELI-512
[Fis83, Fis98b, Fis98a]. Eliminating
[APX14, WSM96, MGW09, MPT+12]. Elimination
[Cha92, BS02, DSR+93, EA02, KKK00, MK12, ZHG+11]. elliptic
[BGM04, MS13b, SH05]. ELLPACK
[HRC+90]. EM-3
[HTY83]. EM-4
[SKS+92]. EM-X
[KSS+95]. embarrassingly
[ZWS14]. Embedded
[CBC+05, Koa05, LNEHR11, ORS+04, PAD16, SST06, ABRO1, A105, BBFP06, BP04, BGM04, CKS16, FBF+00, KC02, KKC+16a, KW11, L6vH06, M5ST07, M5ar00, MA06, MBBS13, NKL06, OIA+13, PRP09, RTJ00, RRO04, SFS04, SDF13, SK04, TLL07, VPS01, ZVN03]. Embedded-Ring
[SST06]. Embedding
[BT89]. emergencies
[GWSU12, MPT+12, YLHL10]. Emerging
[BRUL05, LRC+08, SRI01, VSM+08, DKCZ93, Est02, FA+12, NK01, Tem12]. EMMA
[Str83]. EMMA-an
[Str83]. emphasis
[Th012a]. Empirical
[ACK+95, SS82, BAC+98, LC13, ON90, VSH91]. Employ
[MABYT15]. employing
[CWS06, GUK09, OWCL90, SLNS14]. emulating
[HvD+10]. emulation
[HCG+06, Kh99a, Las89a, NMS+00]. emulations
[Ros89]. emulators
[MMP+12]. Enable
[WGA+08, KDS+06, UMB+11]. Enabling
[JSJ+04, KDP02, MCGL17, TGC+14, WLZ+17, HR09, HEK+16, LHE+13, LSS04, LM99, RWA+16, SRE+07, SRWB14, VGK+10, XBH03, YCMR12]. encoded
[Lec74]. encoding
[BM06, God13, SSJ+16, ST79]. EncCore
[ZRZ+14]. Encrypted
[JSCM17]. Encryption
[YEP+06, YNQ15, CS11b, Ra84, RSP05]. End
[CCV+09, Enm06, HLL+15, SBRM09, SNM+12, AKHB00, EBS+11, KSL16, OS03, PM11, RAC99, Sm90, Wil95, Zac73]. end-point
[Wil95]. end-to-end
[HLZ+15, CCV+09, SBRM09, SNM+12, KSL16]. Energy
[AMW+10, ABR01, ASR+17, AWC+11, AK16, AML+10, BCS11, BKAB03, CDY+17, CTH+15, CS06b, CHLS16, FG01, FeOBA05, GJT+11, HA04, Ino05, JOW+02, KNP06, KSL08, LJdL+16, LS12b, M5L15, NZO+05, NY14, OYK+16, PR05, RPSV07, RL14, SSJ+16, VKI+00, ACM02b, MAB+01, BHS12, CZ14, CES16, CZS+16, CKS15, CMB+13, CLG+14, DSN13, DB07, FPC+97, GKL+13, GZU12, GZuRC13, HRT03, JLS+13, KDS+06, KIC+16, KSN07b, KZA+12, LHE+13, LLD+04, LQL12, LCG+14, MLN+12, MKG98, MAL01, SFS04, SB05, SHA02, SDH+14, SSD+13, TK07, TL00, UMC+10, UMB+11, VSI+10, VE14, Won16, WBKR13, ZL16, ZZY09]. Energy-Aware
[PR05]. energy-constrained
[UMC+10]. Energy-driven
[VTI+00]. Energy-effective
[FG01]. Energy-Effectiveness
[PR05].
energy-efficiency [CMB+13, KSN07b].

Energy-Efficient
[AK16, CTHV+15, KNP06, AW+11, CS06b, GJT+11, JOW+02, LS12b, RL14, CES16, CZS+16, GZuRC13, JSL+13, SB05, UMB+11, WBKR13]. Energy-harvesting
[CHLS16]. Energy-interference-free
[CHLS16]. Energy-performance
[AML+10]. energy-proportional
[MLN+12]. Energy-security
[Ino05].

Enforcement
[GRH06, SDLM+15, CTMT07, LKO+14].

Enforcing
[ZE16].

Engine
[BTRS05, AAZ89, CLR03, GLVC13, HvDJL80, HLM+16, LAf04, NK86, OUY+13, QHS+13, WW89, YW89]. Engineering
[LSB15, Adl73, Slo73, Slo74].

Engines
[MKP05, BKC14, HSW+11, SRJ+05].

England
[Ber91a].

Englewood
[Ber91b, Fer88].

enhance
[CZ14, SK10].

Enhanced
[Rot05, Fos72a, HKE+16, Las89a, PGB12].

Enhancement
[BS95].

Enhancements
[Man01b, Man01a].

equation-based [LSFK08]. equations
[BVGL00, Chr90, Don83, Don85, Don88, Don90, GLH88, JD88, OT86, Qui84].

equipped [HHA83].

equivalence
[HANR12].

evaluated
[BNS10, DBK+02, JDL81, Sta81]. Error
[Che84a, DBK+02, WERM04, YMM15, AWC+11, Bos84, Con88, DJPK16, FGAM10, FAH83, GM84, GMM83, HAN14, HCM99, KCE12, NKQ13, NSQ16, PBGM09, Rao84, SGK+04, UVG12, UVG14, WAC+10, YE09, YMX+10].

Error-correcting
[Che84a, AWC+11, WAC+10].

Error-Prone
[YMM15]. Errors
[LABR08, SDB+15, YMM15, BWWA05, HSS12, ISG07, KDK+14, LRS+08, ZLO+11].

ES40
[CK00].

Esterel
[LBvH06].

estimates
[WMP07].

Estimation
[LABR08, TM14a, VJE+12, GMK+98, SBM09, WMW09].

Euripus
[DP12].

Evaluating
[ADK+04, BVR+00, EK89b, GS07, JH94, OA89, PK94, SWC+95, UY07a, YZ07a, CMR+12, MCC+06b, FL06].

Evaluation
[BKSO05, DKKC93, EJK+96, HGS+16, LP91, MYB89, NHO96, Par75, RCV+05, SHNS86, SGS+03, THL+86, TLM+04, Wul92, YHN+86, ASH88, ASH98, ATHM86, ACF+05, BBH94, BNT78, BWJ+90, CGBG88, Che92, CMB+13, Cra79, CB13, CKPK90, DL87, DNS95, DR91, EK88, EP87, EP88, GMD+09, GGH91, GZuRC13, GLVC13, GHG+91, HLM+82, HAN96, HVAN14, HLR98, HJS+85, Hea84, HS84, IT93, IS92, ISKR86, IM02, JLZ09, KEE78a, KEE78b, KEE79a, KEE79b, KEE99a, KEE99b, KHCM99].

Evaluations
[MM14b].

even
[DB07].
EVENODD [BBBM94]. Event [HNK+17, DS11, GSS05, GLL+90, GLL+98, Gha98, GKB+13, Q9Q1, TBL12].
Evolutionary [AWAG15, Ber76]. Evolving [SADAD02]. EX [MH13]. exact [TZH+13].
examination [LSN14, VCK]. Examining [WMF07, DZZ]. Tha10].
Example [FK80, Ric80, Dow87, Dow88a]. Examples [Maz77]. exceeding [ASP+03, GHS16]. exception [MDS12b]. exceptions [GA01, LCS+10b, SMN+11, UH93].
excessive [GH90]. exchange [Feu84, Sov83]. exclusion [McF92, SLQK12]. Exclusive [BSADAD04, OH16, GCS11]. Executable [Cra83]. executing [See89a, See89b].
Execution [AWAG15, Bic84, Bit89, BGH+08, CHM08, DVT12, HCL15, HC15, KKS+15, Kro83, KKS+16, LCB+98, MCT08, MKP05, NPC05, PCC+08, PR05, Rot05, WDW10, YMM15, ZS01, AS91a, AT11, AIO+11, ANH95, AHA+14, ATT+13, ACM+98b, ASP+99, BG84, BAD+10, BFS+09, BKC14, CO82, CM87, Chutt7b, CHWY13, DBSK04, EH82, HFZW87, HX97, HKA+01, HP87, KDMP92, KY20, KPY98, KPH96, LBCG95, Li94, LN92, Luk01, LRHM90, MHH+95, MEV92, MSB+05, MPP+08, MDS12b, MCC+06b, MW98, NMB92, PGV05, PACL05, PS94, RG02, SCP+82, SLLG05, SDP85, So94, SLZD04, SQP08, SMQ09, ST57, SP87, Tak87, TWC+10, Ter87, TXZ09, ULM98, UK05, UT83, UZU00, WCT98, WY05, WR84, Wei82, Wil87, YHX14, YW89, ZdKL+13, Uht02].
Expected [Q094]. expediting [YL16]. experience [CGBG88, DLMN09, FAB+96, RVLS14, Str83, WP87]. Experiences [ZBJ+02, JOW+02, Mat78]. experiment [An081, CD82, PP82]. Experimental [DBK+02, HS84, ACK94, CMPZ87, GPR87, HS01, ISKR86, KDK+14, KRM83, LJK+13, WCW+04]. Experimenting [Wis86]. expert [Gra84, LN92, Pau13, Roc85].
ExpEther [NMS+14]. explicit [CHKM93, LS92, PC90, PC98b, PC98a]. explicitly [MT02]. exploit [KTS+13]. exploitation [BK11, PSG06]. Exploiting [AZ05, AKZ06, BSL08, CKS16, CFA04, EAS+17, FFDH00, Fra86, GTA06, HH08, HC88, KDM+98, KKB+16, KW98, LYYBC88, MP91, Mos05, NH97, NAAL01, Nit89, PV04, SS78, SNL+03, SZBP08, SABR05, TEE+96, DMMD10, DC09, FS92, HANR12, KKM+06, KHM01, KSL+12, NaR07, NK01, NA83, OKY+16, QFLMK10, QFJL12, SSJ+16, VM97, VJM99, VVAV10, ZRZ+14].
Exploration [DM06, BS73, BFP03, CYH+11, CGT+14, Jon08, MMP+12, RYF+13, SRWB14, WC01]. explore [SHK+11]. Exploring [HS13, HFJ11, HIM+05, JSL95, LAB+11, MTU+15, NO94, NK01, WG98b, WCL17, IMC+06]. Exposed [TLM+04, GTK+02, TACT08].
Exposed-Wire-Delay [TLM+04]. exposing [NG09, NSQ16, NaR07, PLZ09].
Express [KPKJ07, dICKK15]. Expression [BTC06, RP99]. expressions [Kec78a, Kee78b, Kee79a, SK83].
ExpressOS [MPX+13]. Extend [SZBP08].
Extended [ISJ04, BK91, BCS91, CA94, Dug83, GGK+82, HTA08, HSC+90, Kin83, PA88].
Extending [Yue81, ADS+13, MSA+00, ZNF+16]. extensible [Fre74, GK78, SWY10, Feu76].
extension [Bur84, CBC+08, EAE+02, PDP+13, Ulm98, WS91].
extension-oriented \cite{CBC08}. extensions \cite{DDS94, HPU94, LP91, RA99, W98}. external \cite{LW94}. Extra \cite{WL98, LH96b}. extract \cite{JW95}. extracting \cite{LCED01}. Extraction \cite{Uht93a, Uht93b, MT94}. extremely \cite{GZuRC13}. extremum \cite{LF82, WLY84}. extremum-search \cite{WLY84}. Eyeriss \cite{CES16}.

\textbf{F} \cite{Ben82, Sch91a}. \textbf{FAB} \cite{SFV94}. \textbf{fabric} \cite{GDN16, KPK07, PCC14}. \textbf{Fab5calar} \cite{CWS04}. \textbf{FACADE} \cite{NBW15}. facebook \cite{WDG16}. facilitate \cite{WZ10}. facilities \cite{GS94, Tob90}. facility \cite{KBS84, LMN96, SSD13}. \textbf{FACOM} \cite{YHN86}. \textbf{Factor} \cite{LAB90, DM92, NEJ92}. \textbf{factoring} \cite{RBC84, WP90}. factorization \cite{DD90}. \textbf{Factors} \cite{BRC95, SK01}. fail \cite{Lip73}. fail-soft \cite{Lip73}. \textbf{Failure} \cite{GHKP89, IKM96, SKB17, ACJ13, LC93, NA16}. \textbf{Failure-Atomic} \cite{IKM96, SKB17}. failures \cite{ABC97, AJL14, BBBM94, Par98b, SLS10}. \textbf{Fair} \cite{KC98, MSS14b}. \textbf{Fairness} \cite{ELM10, MM08, SKJ17, WM16, KSN07, ZL14}. \textbf{false} \cite{HWW05}. \textbf{FAME} \cite{TWC10}. family \cite{DO82, Feu84, LR93, ME98, SMI75a, SMI75b, STR76, WS90}. far \cite{VJ93}. far-flung \cite{VJ93}.

\textbf{Fast} \cite{MCK96, MKK12, MCK96}. \textbf{Fastest} \cite{MCK96}. \textbf{Fault} \cite{Ann91, BAF94, GV05, LER17, PC83, PGVB04, RCV95, SH05, BVS05, AAS6, AGS94, AVI83, BSM87, CON88, DD95, DPK16, FV93, GSK03, GSK90, HAN92, HBT11, KRS13, KLC94, KR90, KRS85, LS82, LIW92, MRS95, MCG15, MGB15, NES11, PAF73, RRP06, RMM00, SCG91, SKB90, SPR00, TBB97, TZY85, VPC10, WMP07, WL88, WIPK09, WI91}. \textbf{Fault-Detection} \cite{RCV95}. \textbf{fault-injection} \cite{WMP07}. \textbf{Fault-secure} \cite{BA94}. \textbf{fault-tolerance} \cite{AVI83, KRS85}. \textbf{Fault-Tolerant} \cite{PGVB04, FV92, AGS94, BSD87, DDK95, GSK90, KLC94, KR90, LS82, LIW92, MRS95, MCG15, MGB15, PA73, TZY85, WL88}. \textbf{Faults} \cite{PTS91, HAN89, WCE98, DKNS10}. \textbf{faulty} \cite{BCS91}. \textbf{FCM} \cite{BFR98}. \textbf{FDT} \cite{DOS11}. \textbf{feasibility} \cite{DSO11, DMS95, DMS15}. feasibility \cite{FF94a}. \textbf{featherweight} \cite{DFL93}. \textbf{feature} \cite{LYB98}. \textbf{features} \cite{BCL82, H91, YK95}. \textbf{February} \cite{P97}. \textbf{Federated} \cite{CTH15}. \textbf{Feedback} \cite{SQP08, HMM96, S89}. \textbf{Feedback-driven} \cite{SQP08}. \textbf{Fence} \cite{MA14, MA15}. \textbf{Fence-Free} \cite{MA15, MA14}. \textbf{Fences} \cite{DHT15, DMT13, SAR99}. \textbf{Fetch} \cite{ANM98, HK90, BBK90, CG94, CMM95, FG91, GM98, KRO98, KRO98b, LBCG95, LV88, OKN02, PRZ90, RR77, TH90, TEE94}. \textbf{fetch-and-increment} \cite{FG91}. \textbf{Fetch-and-Op} \cite{HK90, LV88}. \textbf{Fetch-Criticality} \cite{ANM98}. \textbf{fetch/} \textbf{prefetch} \cite{KRO98a, KRO98b}. \textbf{fetches} \cite{SM98}. \textbf{fetching} \cite{UNM95}. \textbf{Few} \cite{HH98, LIP79, MAZ84}.

\textbf{Few-to-Many} \cite{HH98}. \textbf{ffLink} \cite{DLCKK01}. \textbf{FFT} \cite{GS92, NNI96, SJ96, L96}. \textbf{fi} \cite{MMP12}. \textbf{fidelity} \cite{RGM14}. \textbf{Field} \cite{ZS94, RIA80, SAC93, WZL96}.

\textbf{Field-testing} \cite{ZS94}. \textbf{fields} \cite{LIP97}. \textbf{fifth} \cite{SMR85, MO83}. \textbf{Fighting} \cite{BTS11}. \textbf{figure} \cite{LAN77}. \textbf{File} \cite{AH95, BK16, GCO94, AZ95, BNT78, CBF92, CGV90, D79, DSH94, HLS95, JSL95, PBL90, SQK12, SFW13, YR97}. \textbf{files} \cite{L98a, TA03}. \textbf{filesystem} \cite{CG91}. \textbf{filter} \cite{DGR85, GRT94}. \textbf{filtered} \cite{RF96}. \textbf{Filtering}
Finding
[BCG14, DZZ+14, HABZ17, LF82, MCXS16, BKN10, Joh04, MPH12, SBRM09]. Fine
[BFP03, CSS+91, KRS13, KKS+15, MS07, OBRW14, ALE90, BK11, FS92, GHW90, GKK+13, HBHA02, KDM+98, KHN07, MLC+09, MP91, MFWH96, RWB09, SYK10, SK11, SSD+13, SGS+93, WJGA12, kSYHX+11, ZCX+14, ZSHG07]. Fine-grain
[BFP03, CSS+91, MS07, OBRW14, ALE90, BK11, FS92, GHW90, HBHA02, KDM+98, MLC+09, MFWH96, SYK10, SK11, WJGA12, ZSHG07]. Fine-grained
[KRS13, GKB+13, KHN07, MP91, RWB09, SSD+13, SGS+93, kSYHX+11, ZCX+14].

Fingerprinting [SGK+04]. finite
[CF82, DGY89, GPFI13, MMS14, Nap86, SC01, SLTB+06, ZWS14]. finite-state
[CF82, MMS14]. FIR [DSG11]. fire
[BTS+11]. Firefly [PKK+09, TS87]. Firmware
[MSI82, KONA82]. First
[KS04, LS73, Mar88, MNS+14, MSH+15, TIvL05, Bak94, BMlM14, MBL+89, NEEJ12, VM88, ZELV02, MKM+83]. first-come
[VMB+88]. First-Level [TIvL05].
First-Order [KS04, BMm14, NEEJ12].
first-serve [VM88]. fitting [JSN90]. five
[Kha99d]. Fixed [DDIS13, VPS01].
fixed-application [VPS01]. Fixed-point
[ddDIS13]. flag [CSW94]. Flagship
[WWW+88]. Flash
[KRM08, KL17, CGS09, GKO09, JCSK14, OLJ+14, CCEH00, GKO+00, KHO+94, Kus98, KOH+98]. flat [ALE90]. Flattened
[KDA07]. FLEP [WLZJ17]. FLEX
[MAT85, PN88]. FLEX/32 [MAT85].
FlexBulk [AT11]. FLEXclusion [SLQK12].
Flexibility [ISJ04, EE14, QHS+13, TM11].
Flexible [CKS+08, JMP09, QM91, SYK10, SDO80, SHV+98, SST06, WLZJ17, BEL+00, DKK07, DRC005, DP12, Nak01, SSH+07, SLQK12, TNY11, WW93, WWA01, YE10].
FlexNIC [KPS+16a]. Flicker [PIAS13].
flight [CMLV04, XBH03]. Flikker
[LPMZ11]. FLIP [GRA91]. FLIP-FLOP
[GRA91]. Flipping [KDK+14]. Floating
[D’H16, GSS12a, Sit73, Ste80, THEK16, BIDPT10, Bra72, Dal89, JBW89, LKB91, Lip77a, LGM+14, PB80, RF90, Ris76, SC92].
Floating-Point
[D’H16, THEK16, BIDPT10, Dal89, JBW89, LGM+14, Ris76, SC92]. FLOP
[GRA91]. FLOPS [MIO+10]. FLOPS- [MIO+10].
Florida [IEE76, LS73, LS73]. Flow
[Ak81, CWY+08, EBS+04, FZX+17, Kro83, TM14a, Ter87, VF85, YSC16, ZWS15, ATHM86, BS06, BWA05, CDP82, CDP83, CCV+09, Dal90, DKK07, DDY95, DM74, DML80, DM98, Den98, FG83, Gau85, Gk78, HP86, HP98, mHP98, LW92, LJS+02, MS87, MMAS08, OT73, PMPM96, PH85, Pri91, Req83, Sha80, SHNS86, SEI08, ZWS14].
Flow-control [Ter87]. Flows
[GCJ17, VE14]. Flowware [OT73]. Fluid
[SCU+14, AIO+11]. flung [VJM99]. Flux
[YBMT13]. Fly [KKS+15, ZS15, CWS06, Kep91, SZD+08, ZJG+11]. Flynn [Lun75].
FO4 [HBJ+02]. focus [Lun05]. Focusing
[FRB01]. fog [CHJ83]. folding
[DM87, EKEL01]. foo [Gas88]. footprint
[CD8+14, HeU07d, JVF13]. footprints
[KW98]. force [Ros76]. forcing [PBC+13].
forecasting [SBRM09]. fork [TLD14].
fork/join [TLD14]. form [Miy85]. Formal
[MCN+17, WJMC04, Hof80, PAVT16, HA04]. format [Bra72, SV89]. forming [AT11].
Forth
[Bak94, HFZ87]. FORTRAN
[Sch91a, Don88, RA90, Don83, Don85, LM76]. forward
[Hill87, Ree80]. forward-looking
[Hill87]. Forwardflow [GW10]. Forwarding
[GRH06, SST06, LM99]. Foster
[Hill91, MC78, Vra78, Ano99]. foundation
[PB80]. founder [Ano99]. fountain
[WDA+08]. four [EK89b]. Fourier
WY05, Woo14, Ano05c, Ano08c.

General-purpose

[SYP+14, FR89, GCT08, HQW+10, RAJ99, TPO06, Wool4]. generalization

[HT10]. **Generalized**

[AK81, Gol84, Hic76, LaF98]. generalizing

[Mat90]. generate

[Bur06, RP99, WSC92]. Generating

[PKB+16]. Generation

[AYQ+16, BKW90, HL15, Mo83, BA06, BD91, BEH91a, CCA+11, DP76, DPB77, HK89a, Kar95, KDA12, KDP+16, KBD+13, LYS07, Mid82, PvcS00, RGG82, RGP82, Rou86, SF03, Smrt85, Tre83, VSM+07a, VSM+07b, CH04]. generational

[KHM01, WK08]. generator

[AA11b, EP84, HC88, MF05]. Genetic

[GFT+15]. Genomic

[HSBA16]. Geometric

[Lan90a]. Georgia

[GEE99]. Gerald

[FS093b]. Germany

[ACM04]. Gerrit

[Goo88b]. GF11

[SDB+05]. GoTM

[ALE90]. Going

[AAZ89, CBS98, HTA08, HSW99, KRS13, LAO+16, LLY+15, MZLH15, ER92]. Goal-Directed

[SAL+17]. Goal-Dependent

[SB+14]. Goals

[ATA79, Gor83]. Global

[QTP05, KBC+00, NSI94, OA08, PN83, SHA02, SMH80, TFWS03, ZFC03]. global-scale

[KBC+11]. Globally

[LNA08]. Go

[Pat06, MPP+08]. Goal

[SDLR+15, SDGT03]. Goal-Directed

[SDLR+15]. goals

[ALE90]. Going

[KSO2a, LLC+14]. Gold

[IEE92]. Good

[SDB+14]. Good

[IRW06]. Goodman

[CBS88, Goo88b]. Goodput

[RHR+17]. Google

[CSBA17b]. GOPS

[RBH+03]. Gordon

[CGS09, GSt80, ACM01]. Gottlieb

[Lan90a]. GoTM

[JVW13]. GoP

[BJW90]. GPGPU

[JSL+13, JKN+13, PTG13, RE12, VR+14]. GPGPUs

[JKM+13, LSA15, LHE+13, RE13, VE14]. GPU

[ABD+15, APX12, APX14, Bon13, BCD12, DSOF11, FMM11, GC11, HL15, HK90, HKL+16, JPT14, KDS012, LKC+10, MDS011, MNS+14, MS9+15, NMS+14, PPM15, TM14b, WLG+14, WN14, WL10, YXL+16, YKL+16, ZJG+11]. GPUAccelerated

[HSBA16]. GPUDet

[Bon13]. GPUfs

[SFKW13]. GPUs

[ANS+15, CT08, LYSB11, LSL+17, LCCZ17, LBH12, MDS12b, OKY+16, OBRW14, PPM17, PHB14, SBS16, SFKW13, TGC+14, TPO06, TL10, WRSY16, WLZJ17]. GPUWatch

[LHE+13]. Gracefully

[KNP06, CSSP87]. gracefully-degrading

[CSSP87]. gradient

[CHR90, GSZ90]. gradient-type

[GSZ90]. graduate

[Muk97]. Graffiti

[JoH95]. Graham

[Alv93]. Grain

[CL505, KCS+08, MOS05, ALE90, BK11, BFP03, CS89+11, FST92, GH90, HHBA02, Kap87, KDM+98, LS12b, MLC+09, MS07, MFHW96, OBRW14, SYK10, SKI11, WL10, ZSG07]. Grained

[KKS+15, GTA06, GKB+13, KRS13, KTO+12, KHN07, MP91, PCL10, RWB09, SSD+13, SGS+93, KSYHX+11, ZCX+14]. grammar

[FL76]. grammar-programmable

[FL76]. Granularity

[THEK16, CSY90, GSM06, RSG03, YJE11, YJSE12, ZSKD13]. Graph

[HPF86, MM14b, VTC+17, WHZ+17]. Graphical

[MZH15, ER92]. graphics

[AAS9, CBS98, HTA08, HSW+11, Ker74, LHP+87, P88, Sin92a, TSN+86]. Graphs

[AWAG15, HNP15, VGX+17]. Greater

[BYP+91]. greedy

[PMA+13]. green

[CMR+12, HCOE12]. Green-Marl

[HCSO12]. GreenSwitch

[OKIE+13]. Greg

[BER91c]. Grid

[WDW10, TKG+02]. grid-based

[TKG+02]. GRIFFIN

[GCJ17]. grips

[Mil87]. Grossetie

[Mil87]. groups

[Mil87]. groups

[Mil87]. groups

[Mil87]. groups

[Mil87]. groups

[Mil87]. groups

H [Iva91, Su74, Tan78, Cra88]. H-series [Cra88]. H21 [SWW02]. hacker [HLS05]. Half [KL03, Chr76, ZCX+14]. half-baked [Chr76]. Half-DRAM [ZCX+14].

Hardware [AR83, AVN+16, BNZ08, BGH+08, COH+11, CJK+05, CKS+08, CWY+08, CHLS16, CDMWH00, DSM82, FXZ+17, FH76, Ful91b, Ger80, GKB+13, HJB+82, HKK80, Ho80, ISJ04, JPL08, KC02, KSKC17, LHM+15, LSMB16, MWP07, Mat90, MS15, NRS+07, PQC+09, PN77, PKB+16, RSV87, Ran85, Rat82, RO74, SBV91, SZD+08, SLK05, TPG+97, THNM14, TML+17, Wil82, Wir87, Woo86, ZWSM15, ZH16, ZLJ16, AA06, AAV91, APP+14, AJH12, AA82, ACF05, AL12, AB86, AFNV90, APX14, ACJL13, AJL14, Bar82, BC91, BB8+08, BMV+07, BS74, CBGM12, CL87, CS99, CW06, CB94a, CHV04, CY96, CM80, Chu77a, CKB88, CM8+13, Coo73, CDK+94, CBS98, CSS+91, DC8+11, DS02, DLMN09, DMB87a, DP12, EC8+11, FAK+12, FMB+07, FTG88, FH82, GMF+11, HVAN14, Har73, Hii81, HK89b, HCC89, JDL81, JMD09, KMI+85].

hardware [KW13, KNN00, KMM+06, KJM+07, KDA12, KDP+16, KS95, LAL73, Las89a, LM74, LKO+14, LNH+11, LCS+10b, LGM+14, MSS14a, MR90, MPP+08, McL91, MP91, MTG+99, MTN+00, MHKT09, MB80, NMZ12, NMS+00, NDZ10, NPCF08, NMT10, RES+13, RM77, RPW96, RKGM14, RKM+11, SHA02, SA86, SSH+07, Sos94, SK10, SH87, Sto86, Su75, SKA13, Tab10, TYM86, TACT08, VPS01, VGLN89, VR73, VKI+00, WBM+03, WY05, WW13, WS89b, Wli91, WW89, Woo85, WO86, dKNS10, vdSS79, DWS+12].
[VT14, APP+14], **Harold** [Fos72a, Lan76, Sch88]. **Harper** [Dik90]. **HARRIS** [KKC92, Cra88]. **Harry** [Gon77]. **HARTS** [SD90], **harvesting** [CHLS16]. **Hash** [HCJC06], **Hash-based** [HCJC06], **hashing** [TLLL07], **haul** [DCB+94], **having** [HS80, HP86, HP98, mWHP98]. **Hawaii** [IEE88]. **Hawks** [GLVC13]. **Hayden** [Mil77b]. **Hayes** [Col88]. **hazard** [KMT91]. **HC1** [MH13]. **HC1-EX** [MH13]. **HCloud** [DK16]. **HDL** [KKM16, OUY16]. **HDTrans** [SSB07].

healing [SLK05, SLP+09], **health** [Zil01]. **heap** [CG06, Hom82, KJS+06, LBL02]. **heap-based** [CG06]. **heapsubstitution** [Hom82]. **HeapMD** [CG06]. **Heaps** [CCA+11]. **Heart** [KONA82]. **Heat** [GPV04]. **Heat-and-run** [GPV04]. **Heavy** [TP15]. **helix** [Rou86, CBK+14]. **help** [Laf98, Laf00, Pay78]. **Helper** [CW+04, KST11, SRJ+05]. **Hénon** [JPT14]. **HEP** [Jor83]. **Here** [Pat06]. **Heritage** [Mat78]. **heterogeneity** [MT13].

Heterogeneous [ANS+15, AVN+16, BLJ+17, CTHV+15, HCL15, HBB+14, KTR+04, LJdL+16, LL16, Tho81, VSST16, ZAF+16, AA84, AA11a, ACRV12, AKB+89, ACS+12, BF87, DVT12, DK13, GCM+10, GHKM11, LWZ14, LCWMO8, Ml82, MVD11, MPM14, PARKA13, PP92, TZZ+16, TPPL10, TL11, VJE+12, V194, VT14].

Heterogeneous-ISA [BLJ+17, VSST16, DVT12, VT14].

Heterogeneous-race-free [HHB+14]. **Hewlett** [HW77]. **hi** [MMP+12]. **hi-fi** [MMP+12]. **HIBRID** [MBS+04].

HIBRID-SOC [MBS+04]. **HICAMP** [CFS+12]. **hidden** [CWD0+06, GZC+11].

HIDE [ZZP04]. **Hiding** [GHG92, KD06, ZA05, BR92a, Kee79b, PGV05, PL90, RSP05]. **Hierarchical** [BD93b, Cha90, GB83, HS77, Wil87, AP76, BF90, Gou78, Nae85, PPZ96, RM77, SBM02, Sin92b].

Hierarchies [SSZR05, TMC+06, TAM+08, BW88, BW98a, BW98b, GGV90, MH07, PHH89, Tri80, VR+14, WM88].

Hierarchy [KTB+17, Tab95, GcC84, HGC10, JnWH97, Lan77, RBV07, Reg76, SHBS14, SHK+11, WBL89, Zab03]. **High** [ABY+87, AA11b, AW04, Alv93, AHC+16, ASh96, BN08, BTO6, Co90, D+H16, DSG11, Dow91, GCM16, HS85a, HL15, HIT05, JTE10, JMY89, KPS+16a, K DTG05, KMK16, KPS+16b, LIF+16, LBH12, MS13b, MS13c, MCK16, Mil77a, Sch88, SAKD06, SLG+05, SOD+14, SF91, TF88, TS05, TP15, TW77, VV14b, WSC+14, WEMR04, dICKK15, ARJS07, ACS+12, BM91, BV+00, BSR06, BDJ+11, BNA88, BD84, CG95b, CDS+14, CJZ99, CSF2, CMMP95, DCB+94, DB07, DG92, DP90, DP98b, DP98a, DSH+94, ELMP10, FTM99, FL76, FHH+89, Gun90, Gup89, HHA83, HW87, HBI13, HT10, HC85, HP96, HC89, HP98, mWHP98, Hya93, JCK14, Kat89, KC96, KDA07, KK+16b, KFM02, LP80, LP98, Lar82, LYB11, MPH12, MKKU03, MHH+13, MIT89, NDK13, NKH+85, NS86, NP90, OMB91, OCB12, PNL8, PP82, Pie83].

high [Pie98, QJP+07, QSR09, RBV07, RRP06, Ris76, RBC84, KGK14, SJ86, SVC03, SE+95, SP98, SV87, SV98, Soh98b, SHMZ94, SQP08, SV74, TRA91, TDF90, Tem12, TTM10, Tre80, TA03, TLLL07, Tur79, VFMC13, Wan01, WW12, WGH+97, Wil01, WO97, WSC92, WBS+88, WDKR13, YHMB00, YCT05, ZC+14, ZLZZ09].

high-associativity [DG92].

High-Assurance [AHC+16].

High-bandwidth [AS96, SF91, BSR06, DSH+94, ZC+14, ZLZZ09]. **high-coverage** [RRP06]. **High-Density** [GCM16, KKH+16, MMH+13, Wan01].

high-frequency [TA03]. **High-Level** [Co90, D+H16, Mil77a, LIF+16, BM91, BD84, DP80, DP98b, DP98a, FL76, Lar82, MPH12, PP82, Ris76, SV74].
High-Performance
[AW04, BNZ08, KPS+16b, Sch88, WEMR04, dCKK15, TF88, VV14b, DCB+94, ELMP10, HHA83, Hya93, KC96, KFNO2, LP80, LP98, NP90, OMB91, Pie83, Pie98, SV87, SV98, Soh98b, SQP08, TRA91, Tem12, WGH+97, WBS+88, YMH000]. High-Radix
[KDTG05, SAKD06, KDA07].
high-sensitivity [WW12]. High-Speed
[Alv93, HS85a, KM16, TW77, BVR+00, MTT89, NKH+85, SHM294, TDF90, TLLL07, Tur79]. High-Throughput
[BTC06, MCK16, CDS+14, WBKR13].
higher [XDLB13]. Highlights [Kan11].
Highly [CTHV+15, HD86, KDSA08, Lan90a, RLD+17, ZYMS15, LL97, Lum85, MS84, PT10, RWA+16, SFS04, UJ92, Won16, Yok94, ZVN03]. highly-accurate [RWA+16]. highly-associative [SFS04].
Highly-Available [ZYMS15].
Highly-Programmable [CTHV+15].
Highly-Scalable [KDSA08, RLD+17].
highly-selective [PT10].
Hill
[CY06, Col88, Gon77, Iva91]. Hill-Climbing
[CY06]. hills [Zho16]. HIOS [JCS+14].
HIPStR [VSST16]. histogram [CKB88].
historical [Hen07c, Smo89]. History
[Sez05, SKJ+17, Sos94, BE03, Hol89, JSN98, KE91, SCAP97, TFW03, YP93]. History-Based [SKJ+17]. history-length
[JSN98]. hit [Hai84a, Hai84b, JVF13].
Hitter [TP15]. Hitting [WM95]. HIVE
[AA84]. HLL [CO82, KBs+82, Kch76].
HLL-RISC [CO82]. HLS [OCF04].
HMO [BS74]. Hoard [BBMW00]. hoc [KMVS12].
HOIST [RR04]. Holistic
[MAHK16, DFF+13]. home [Lor90, Nak01].
homogeneous [MT13, SB77].
Homogenous [SBK77]. Honeywell
[JK77, Mar73]. Honolulu [IEE88]. hop
[KKP14]. Hopkins [FR72]. horizontal
[BC90a, Das77, RGG82, RGP82, SV89]. Host
[OHW17, JCS+14, TSK+83].
Host-Accelerator [OHW17]. hostile
[CDA14]. hosts [TtLcC13]. hot
[DB00, Lee85b, MTG+99, MTN+00, UC01].
HOTL [XDLB13]. Houston [Kin75].
Howard [Alv93]. HP
[AD98, Cve03, MPPZ87, SGH97]. HP/
Convex [AD08]. HPC [KMA+12]. HPM
[NKH+85]. HPPAC [RSLF05]. HPSm
[HP86, HP98, mWHP98]. HTGL [Bec95].
HTM [HRW09, JYV13]. Hub [HL15]. huge
[Wil91]. Hughes [VF85]. Hybrid
[BNZ08, DCC+11, DFL06, FSR+04, MS15,
RCV+05, CB+15, WN14, WLZ+09, YZ07b,
ZH16, BC02, Dah95, ECP96, Iau88,
KJT+10, LZC+16, LW07, MK12, MTH+07,
PHH16a, PHH16b, SK+92, SD95, VFMC13,
kSYXH+11]. Hydras [Göh14]. hypercube
[Ann91, CS99, CMP+08, CT90, Eij90, HB90,
KB92, MR90, Tze90]. hypercube-derivative
[Ann91]. hypercubes [BCS91, Gut87, Wan93].
hypernet [KB92]. Hyperswitch
[CMP+08]. hypervisor
[DN14, LLZ+13, MSZ09, SL12].
hypervisor-secure [SL12].
I-cache [Quo94]. i-NVMM [CS11b]. I.
[Ian90b]. I/O
[Aic92, AAZ89, ACK94, BBH94, CPdM+96,
Coc96, Ebr96, Fin93, GAH+12, HY96, HIT05,
JSWB93, JCS+14, Kait89, KMN+16, LZ93,
MABYT15, NS+90, PM92, RB90, Red92,
SBQZ14, SD90, STV94, Smo89, SKS88,
TOL+11, TtLcC13, VI94, YRK07, dRBC93].
IA [ZRHM00]. IA-64 [ZRHM00]. IA32
[ST03]. IaaS [ZW14, ZHW16]. Iago
[CS13b]. Ian [Hil91]. iAPX
[HLM+08, PCH+82, Rat82]. iAPX-432
[PCH+82, Rat82]. IBM [Ber80, DD90,
Fer11, GPR87, H091, SCH+91b]. IBM/
6000 [SCH+91b]. ICL2900 [Dor75]. Idea
[SGS08]. ideal [KPKJ07, KSL08]. Ideas
[Tsa16]. idempotent [ZdKL+13].
identification [DS11, JSMP12, TFW03].
Identifying [ZSG+17, CG06, DESE13,
[Bri87a, NLV86, RTY+87, SA88a, WO89]. Index [Ano04a, Ano05a, Ano06a, Ano08a, Bur02, De 81, SBM+14]. Indicating [HST04]. Indicate [Joh04]. indices [Tab88]. Indirect [JKD09, PP03, CHP97, DH98, JMK+08, JW97, KK99, KJM+07, YCT05]. Individual [SOM+08, Fon03]. induced [KW84, MTP+12]. Inductive [PV04, CL09, PV03]. industrial [Str83]. Industry [Dal10, Tho10a]. INDY [Cop78, OC78]. ineffectual [AJH+16]. ineffectual-neuron-free [AJH+16]. inefficiency [HQW+10]. Inexpensive [KJL+89]. Inference [HNK+17, KKS+16, Uch83, HLM+16]. Influence [VGSS+85]. Information [Ano08e, CWY+08, FXZ+17, HD77, YSCC16, ZWSM15, CS06b, DKK07, DMWS12, ERT78, GLM13, Kan74, Kee79a, KS99, Mac98, NSQ16, SLZD04, TWM+09, TOL+11, TT82, TMW+01, ZRZ+14, ZZP04]. Information-Flow [YSCC16, ZWSM15]. information-hiding [Kee79a]. Informing [HMM+96]. infrastructure [Ham09, HMK+05, KSR+10, LA04, UVG12, WGS+14, WHG+07, ZZP04]. Infrastructures [YJJ+16]. initial [CGB+88, KDL+93, KDL+98]. initialization [LBL02]. Initiated [SA15]. injection [MMJ+05, TTM+12, WM+07]. InkTag [HKD+13]. Inlining [LMG+04, AK00]. innovation [Aup80, Gal80]. innovations [BS86, Den80, Las89b]. Innovative [Kav81, SHZ97]. Input [CD77, JWB93, JWB94, BP04, DP76, McD77, PAVT6, AS91b]. input-output [McD77]. input-sensitivity [BP04]. Input/Output [CD77, JWB93, JWB94, AS91b]. inputs [BJL+13]. insertion [GCS11, PD76, PD98, Pat98b, QJP+07]. Inspection [VCK+12]. Inspired [Wil16]. Instability [STV94]. instant [LRS+12]. instead [Mat10]. Institute [IEE83]. Instruction [ASR+17, AM06, BKS+05, Blu83, Bur82, CKS+08, CS00, CS80a, CBC+05, DF92, Deb89, Fis83, HCC+06, HS01, LBC+95, Lit94, MVS+92, MSP+06, MIT89, PGS04, PS98a, PSR05, SV87, SV98, SCH+91b, UNM+95, Uln98, WS74, WS84, XT96, AS91a, AA+90, ATT+13, Bak91, BD84, BEH+91, BYP+91, BS02, BKAB03, CG94, CMC+91, CMC+98, CS06b, CL82, CKDK+91, CGL95, CMMP95, CJ88, Cra83, CMLV04, DV87a, De 90, EHA03, Far+89, Fis83a, Fis98b, Fon03, Fre74, GM98, Goo88a, HB86, HKN+92, HJJ00, HHL+16, HCS99, nWH89, IS92e, JW89, Kep91, KS02b, KMC+93, KRM83, Kro98a, Kro98b, KADS04, KHC+91, Lap90, Lap91, KKL+02, LDT+16, LFH03, Mar93, McD82a, McF89, MCL89, MPS94, MMJ+05, MA06, Mye77, NH97, NA83, OA08, OCL+90, PDS0, PGH+83, PS98b, PS77, PS98c]. instruction [PGTM99, RBR+02, RL74a, RR77, RAC99, RF96, SM77, SF03, Sho87, SP98a, SG83, SJH89, SFS00, S97, SV89, Sta86, Ste89a, Sur07, S82, TH+96, TEE+96, Uht93a, Uht93b, VM97, Wak80, Wal91, WY05, WR84, Wie82, WS91, YZ07a, YERJ99, Soh98b]. Instruction-Grain [CKS+08]. instruction-length [IS92]. Instruction-Level [ASR+17, PS98, DF92, MEV92, JW89, Wal91]. Instruction-path [Deb89]. Instructions [HGT+05, YT04, BFA+93, HY85, KT91, KKM+06, Kee78a, Las88a, LL+00, PPA+13, ST97, TM11, Wal92, Wil83, Yue81, ZS00]. instructions/operands [Las88a]. instrument [GBH+14, WE74]. Instrumentation [vT88, FEG+12, GSS05, PACL05, RD01, SAB+05]. instrumented [KP05]. Integer [GCO+04, MPPZ87, SDL+15, PH90, SBV91]. integral [MST+07]. Integrated [ACM+98b, BSR+06, BR92b, GCC+14, KAO+05, SLFG06, ABY+87, BSK+10, FTM+99, GP88, HK10,
Integrating [BEH91b, PQNT16, KD92, SIG89, SKFW13, vECGS98, vECSG98].
Integration [SPN96].
Integration [FRK +15, HDK +11, HS10, HDS10, KS99, KDP02, LLZ +13].
Intel [Fos72b, GCJ17, GC86, HLM +82, MR90, Pal80, Pat82, PDP +13, Sch89].
Intelligence [Che17, KHG +17, Lev92].
Intelligent [LJVM12, Qui79, AJC +88, Lip77a, Lip78b, OCS98].
Intelligently [AT11].
Intensity [GLVC13].
Intensive [CGS09, KK08, LZ93, MSB +11, SLcC12, SKC +03].
Inter [BM10, KST11, KSL08, FH76, GS80, TGGS14, ZW16]. inter-arrival [ZW16].
Inter-core [BM10, KST11].
Inter-node [TGGS14].
Inter-process [FH76, GS80].
Inter-router [KSL08].
Interactions [OHW17, RO74].
Interfacing [Ful91b, BI12, Sac83].
Interference [HJrCH16, BF73, CHLS16, Hoo77, JB76, SCAP97]. interfering [WGO +13].
Interleaved [SL92, YJX +16, CL89, CSSP87, Rau91, WJ85]. interleaving [LTQZ06, NLS88, YN09].
Interlock [MEV92].
Intermediate [HS16, TAV10, WP87].
International [ACM89, ACM91, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, HLR98, IEE83, IEE84, IEE85, IEE86, IEE87, IEE90, IEE92, IEE94, IEE99, IEE03, IEE05, IEE06, Mar88, Su74, Dor75]. Internet [Ham09, OLJ +14, Tho94a, Tho95b, Tho95c, Tho96a, Tho97a, Tho97b, Tho97c, Tho97d, Tho98a, Tho98b, Tho98c, Tho99a, Tho99b, Tho99c, Tho00a, Tho00b, Tho01a, Tho01b, Tho01c, Tho01d, Tho02a, Tho02b, Tho02c, Tho03a, Tho03b, Tho03c, Tho03d, Tho04a, Tho04b, Tho04c, Tho05a, Tho05b, Tho05c, Tho05d, Tho06a, Tho06b, Tho07a, Tho07b, Tho07c, Tho07d, Tho08a, Tho08b, Tho09b, Tho09c, Tho09d, Tho10c, Tho10d, Tho10e, Tho11b, Tho11c, Tho11d, Tho12b, Tho12c, Tho12d, Tho13b, Tho13c, Tho13d, Tho14a, Tho14b, Tho14c, Tho15a, Tho15b, Tho15c, Tho16].
Internet-scale [Ham09]. Internetworking [Mad94a].
Interpolation [LWB08].
Interpolations [CLC90]. Interpretation [CFRS99, NA83].
Interpreted [BKC14].
Interpreter [Chu77a, CMPZ87, Fre74, OKN02].
Interpreters [Bra82c, KKC +16a].
Interpreting [Car96]. Interprocedural [WHZ +17].
Interprocess [KBS84, Mar83a, RSV87]. Interprocessor [AP89, Dow91]. interrupt [Sit73].
Interruptible [SV87, SV98, Soh98b]. interrupts [Ger81, MGH +96, Par02, SP85b, SP98b, Smi98d]. Interscience [Atk79].
interval [JTSE10]. intervals [Hai84a, Hai84b]. interweaving [BCD12].

Inthreads [GSM06]. Intra [DKD+15, EAS+17, SGS08, VSW+13, XJK+16, XGC+10]. intra-chip [XGC+10].

Introduction [ABZ07, AAEBAT98, JWB93, JKT05, JKT09, KCO5, KSN07a, Lan76, TKJ07, BGP+01, BFPO5, Henn07a, Lip88, Snt5, JWB94]. Introspective [MAS+06].

Intrusion [TS05, ACF05]. invalidation [CV88, HC99, LF00, LW95, LS92, WG98a].

Invalidations [SA15]. invariants [LTQZ06, MPX+13, SCGA13]. Invasive [BSADAD04]. Inverse [MS82]. inversion [BNT78]. inverter [HBJ+02].

Investigating [DB07]. investigation [LJ90, Wol76, YKDD01]. InvisiFence [BMW90]. Invited [Tsa16, SGG+85, SMRT85].

ISA [BLJ+17, DVT12, KTR+04, RAJ99, TML+17, VTI14, VST16, Wit16]. ISAAC [SNM+16]. ISAs [HNTL11]. ISCA [ACM93a, ACM04, IEE03]. isolation [ARJS07, DZ09, LCF+14, MTC+07, RRRV09]. ISOLATOR [RRRV09]. Israel [ACM89]. Issue [ISJ04, JWB93, JWB94, Ram88, ABZ07, AZ05, AS96, BKAB03, CMC+91, CMC+98, CYL99, CMMP95, FG01, GL11, HHJ90, mWH98, JKT05, JKT09, KCO5, KSN07a, Pen88, SJJH89, SV87, SV98, Soh98b, TEE+96, TKJ07, VM97, WS84]. Issues [EGK+85, BD86, Bu82, GTBJ89, GH88, GRD87, HCD+94, IAD+94, RSG93, SLLG05, UJ92]. issuing [HKN+92]. iSwitch [LQL12]. Italian [CJM77]. Italy [ACM95].

Itanium [BT13, SzUK+04, WCW+04]. Itanium-2 [WCW+04]. iterated [HA90].

Iteration [SSK17]. iterations [FAY83, UZU00]. Iterative [CFE+12, SA87]. iteratively [Kan74]. iThreads [BFA+15].

IVEC [HS10]. iWarp [BCC+00]. iWatcher [ZQL+04]. IXM2 [HFH+91].

J [All92, Atk79, Ber91a, Bow79, Fer88, Gor83, Lan90b, Mil77b, Mud80, Tak88, DC+98, NWD93, SGS+93]. J-machine [NWD93, SGS+93, DC+98]. Jack [Sad83].

James [CBS88]. January [IEE76, KIN75].

Japan [IEE86, YSY+90]. Java [CO03, CDG+17, EKEL01, HFL03, LYK+00, LFH03, MW98, OKN02, OUY+13, OUY+13, RTJ00, SK04, YLP+99].

Java-to-HDL [OYU+13]. Jersey [Fer88, Mil77b].

John [Atk79, Ben82, Bow79, Fos93b, Gor83, Mud80, Ben82, Bit89, Cols88]. Johns [FR72].

July [ACM98a, ACM01, Wak81]. jump [RS99, Wil83a]. jump-pointer [RS99].

jumps [CHP97, JMK+08]. June [ACM89, ACM95, ACM97, ACM98a, ACM00, ACM01, ACM04, IEE84, IEE85, IEE86, IEE87, IEE88, IEE93, IEE95, IEE06].

Just [Bra82a, Lip78a, LYK+00, RD01].

just-in-time [LYK+00]. JUSTDO [KK16].

K2 [AFNV90, LWZ14]. Karam [Fos93b].
Katzan [Gon77]. KCM [BBD+89].
Keeping [Wil83a]. keeps [HLS05]. Kendo [OAA09].
Kenneth [Mil77b]. KENSUR [ABL+80].
 Kernel [CKmWH16, DKD+15, LCL+16, BK05, Cop78, FBG12, HDK+11, LLL+13, OC78, ST03, SA88a].
Kernel-based [CKmWH16].
kernel-independent [SA88a].
Kernels [LJF+16, FFM11, PTG13, SC92, SKC+03].
 key [BMA00, GCG+14, LF99]. key-value [GCG+14].
Keynote [Est02, Wil83b].
keys [ML05].
KickStarter [VGX17].
Kill [KTG+17].
kilo [Kuck].
kilo-instruction [CMLV04, GHKM11].
Kilo-NOC [GHKM11].
Kim [Lan90b].
Kinetic [HNP15].
Kluwer [All92, Bit89, McD88, Par88a, Tak88].
KMP [TTMH80].
KMP/II [TTMH80].
knobs [HSC+11].
knowing [DK17, Muk97].
knowledge [LWLZ12].
knowledge [ML05].
Kill [KG89].
KMP [TTMH80].
KMP/II [TTMH80].
knowing [DK17, Muk97].
knowing [LWLZ12].
Knowledge [BBD+89, MKM+83, WW89, YI86].
KORA [Kha97c].
KORA-2 [Kha97c].
Kosko [Lev92].
KPN2GPU [BK11].
Kuck [Bow79, Mud80].
KVM [DN14].
KVM/ [DN14].
Kyushu [MFST88].

L [Mad94a, Par90, SAB+05].
L2 [TASS09].
laboratory [BA74, VR73, WE74].
LADM [RF888].
LAN [VFHD97, WH97].
Lane [KCE12, RE13].
Langdon [Hol83].

Language [Col90, MAHK16, Mil77a, ZWSM15, Bec95, BCL82, CO82, Das77, Das83, DBM08, DP80, DMB87b, DP98b, DP98a, EG97, ECX+11, FL76, HTCU01, HFWZ87, HFJ11, KB76, KMC02, KB80, Las89a, LKO+14, LCS+10b, McK74, McI85, PqG890, PP82, RL14, SRSW14, Sav85, Sch73a, SBRP11, SV74, TKG+02, WP87, WCG14].
language-level [WCG14]. languages [ABL+80, Ber74, BD84, BKC14, CF82, DO82, Est02, Feu76, Hll83, JMK+08, JS73, Lar82, Ris76, SV82, Sr75, TM80, Tre80, Van81, Wir87, Woo14, Hl91]. LAP [CZS+16].
LaPerm [WSY16]. LARD [WCG14]. Large
[BGH+08, CASM06, Mil77b, SCU+14, WHZ+17, AS92a, BTW77, CY96, FTP94, FK83, FSS73, GKLS83, GHKP89, GW88, GWV89, HSH96, HIM+05, HH93, JKDO9, Joh92, KTMY91, Kap87, Kha99a, KW84, KR80, LKL+02, LAS85, LCG+14, MPT91, Mar00, MBK90, MM87, Muku79, MB07, NNS+90, NP90, OT86, OCBL12, PCC+14, RSG93, SRWB14, SPHC02, Smi14, Str83, SB77, TD91, TFWS03, WW89, SBK77].

Large-Scale
[Mi77b, SCU+14, WHZ+17, CY96, GW88, GWV89, Joh92, LCG+14, MPT91, Mar00, MBK90, NP90, OT86, PCC+14, RSG93].
largest [CJ01].
last [DK17, CZS+16, GCS11, LF00, SKD+10, WKJ12, YE09].
last-level [GCS11, SKD+10]. last-touch [LF00]. last-write [WKJ12]. Late
[SRE+07, QD99].
Late-binding [SRE+07].
Latency [GAR+05, HhEH+15, JHK+16, LWB08, MWM04, ZE16, BR92a, CP11, CJ01, DMM10, DB07, FCP92, GGH92, GHG+91, HASA14, IMK+13, JVF13, KS14, KDO06, Knc96, Kn01, KHS+97, KJC06, KHC92, La98, LCG+14, Lu01, Llc98, Mac98, MVCA97, MHS+03, MKKU03, NMB92, OSKA14, PGV05, RSPO5, SH92, SGK+04, SSR+13, SC05, WGO+13, WSM96, YCT05, ZM16].
Latency-Critical
[ZE16, KS14, LCG+14].
later tolerant [FC92].
later bandwidth [MHS+03].
later [Laf04, May82, PT11].
Latin
[KPK89]. lattice [Mar00, SKS+13, TGP10].
Lavington [Tan78]. law
[JM12, AGS05, Bre10, EE10a]. layer
[GKU09]. layered [PED+08]. layout
[CM00, Lm99, RBG+01, XT96]. Lazy
[KCZ92].
LDF [Kap87].
LDX [KKS+16].
Leading [CR94]. Leak
[BM90b, BM06, HC04]. Leakage
[Mu809a, TK07, DMWS12, FKM+02, GIS10, HBA02, KHM01, LN07, SFS04, ZZP04].
leakage-biased [HBHA02].
leakage-energy-reduction [SFS04].
Leakage-saving [Mus09a]. learned [BS76, BS98b, BS98a, Kar07]. Learning [CY06, IMMC08, LCCZ17, LCL+15, LPSZ08, SOM+08, SLTC16, CDS+14, TJCC88].
Learning-Based [CY06].
length [Fra83, IS92, JSN98, PN77, RL74b, SKB09, TW77, VHL73, Sez05]. Leopard [AMB87].
less [BNE16, PDL15, WN14, DB00]. lessons [GC86, Kar07]. let [KBG97, HL15]. Letter [Har74].
letting [AC09]. Level [ASR+17, AOM+14, BCSB11, CFA04, Co90, D’H16, Mil77a, PGS04, PCC+08, SOM+08, SOD+14, TIVL05, TM14b, BW88, BW98a, BW98b, BM91, BBFP06, BDMF10, BD84, BMP+04b, BTM00, BK90, CG91, CZS+16, CG89, CCEH00, CBS98, DD90, DF92, DG99, DP80, DP98b, DP98a, Eij90, EPCP98, EE14, FTMM99, FURM00, FL76, Fra86, GCS11, GUK09, HANR12, HDT+13, HK09, HS74, JW89, JW94, JSN98, KDM+98, KB76, KS02b, KSL+12, KSA03, Lar82, LS12a, LKO+14, LJF+16, LYBC88, MEV92, MPH12, Mt02, McD82b, NH97, NK86, NK01, Par02, PP82, PGTM99, PT10, PT03, PHH89, QFLMK10, RRT+08, RLIC06, RLW94, RLW98a, RLW98b, Rls76, RV07, SYL13, SL88, SLT02, SCZM00, SCH+91b, SKD+10, Snr07, SLSN14, SV74, TTMH80, TSK+83, TSN+86, Tre80, Uht93a, Uht93b, UZ91, Wai91, WBL89, WQJ92]. level [WY05, WCG14, WCF01, XLWZ15, YLHL10, YP92, YP98a, YP98b, YE09, YKL+16]. level-two [WQL92]. levels [DC09, Lee73, Reg76, SM14, Tho13a, YP93].
Leveraging [AJL14, GWSU12, HS16, SOM+08, YLHL10, BT13, GPV04, HT14b, JL16, KKK14].
Lexington [Sac83]. LFTHREADS [GP08]. LGDG [DG90]. Libraries [MM14b, LYBK11]. Library [BFA+15, JPT14, Fax08, GP08, MMR+13, PBWH+11, TGP10]. LIDE [PGSP00].
lifecycle [CMR+12]. Lifetime [SZBP08, SABR04, SABR05, ADS+13, ZNF+16].
Lifting [HS16, MMP+12]. light [HS86, SD10]. light-weight [SD10].
Lightweight [CKmWH16, HSKS15, HH08, KKK+17, KMK16, KKS+16, MCGL17, YLP+99, dICKK15, GSS05, VTS11]. Ligure [ACM95]. like [AZ89, Wil83a, SV82]. likely [SCGA13]. limit [ASP+03, DZZ+14, YKL+16]. Limitations [TE93, AF73, BGK96, Dan93, GSU11, KP03].
Limited [Su74, OT86, Pias13, SH01, SYP+14].
limited-precision [SYP+14]. Limiting [DGMB07]. LimitLESS [CKA91]. Limits [KTC00, LW92, SJH89, Wal91, LB08, PGTM99]. Linda [KACG88]. Line [FAY83, HTM15, AAM76, AK00, CG95a, CHK+12, Fis86, HASA14, OM94].
line-based [CHK+12]. Linear [Bak94, Jim05, Don83, Don85, Don88, Don90, Don92, GSZ90, HGS+16, JD88, RV84, Tri80].
linearly [FM84]. lines [OPZ11].
linguistic [TTMH80]. link [KR85b, SC05]. linked [RS99].
Linking [ADP+15].
Links [KSL08, EST89, LHL+89, NOK+83].
Links-I [NOK+83]. LINQits [CDL13].
Linux [DN14, PTS+11, ST03]. Lipovski [Sac83]. LIPP [ED83]. LIS [HH83].
LISP-execution [SDP85]. List [Ano82, ATHM86, PT86, SCP80, SCP+82, SDP85]. list-directed [SCP80, SCP+82].
list-processing-oriented [ATHM86].
literature [Cha78b, Hak85, sta79, sta80a, Sta80b].
Litmus [LWPG17]. little [CDL13, DHR+90]. live [GKT13]. Lived [LCL+16].
lo-fi [MMP+12]. Load [DET00, GAR+05, PCC+08, Rot05, YCT05, AAD90, BJR+99, BYG+00, CT08, GLM13, KMVS12].
LS96, LLC98, OKY+16, RPSV07, SRE+07, SDGT03, YERJ99, Zha01, ZMMT16.

load-address [BJR+99], load-balanced [SDGT03], load-balancing [LS96].

Load-store [DET00], SRE+07. Load/Store [PCC+08, AAD90]. Loading [HL15]. loads [CS99, CWT+01, FJ94, HHL16, YCT05].

Local [KLD17, SKCY16, THNM14, CYL99, HS80, Hol89, MD88, SHA02, TF79, TSK+83].

local/remote [Hol89]. Locality [KKT05, KKP14, LSL+12, CDY17, KKD13, SCJLW01, SSK17, WCL17, CM00, Joh92, KW98, KKD13, LL00, LW07, PSG06, SLcC12, SCJLW01, XDLB13, ZYG00, ZFC03]. Locality-Aware [LST+17, KKD13, SCJLW01].

Locality-oblivious [KKP14]. localization [SCGA13]. localized [MSCS13, UMB+12].

locally [IM02]. Lock [GMT16, Bri87b, GP08, HM93, RG02, ST08].

lock-based [RG02]. Lock-Free [GMT16, GP08, HM93, RG02, ST08].

lock-variables [Bri87b]. locking [Wal89].

Logarithmic [Tab88]. Logging [IKK16, KKB+16, SGH93, VLW+11]. Logic [Bit89, Fer88, Hill91, HK89c, KBR98, NY14, Su74, ALM82, ASP+99, Bak94, Bie84, Chi89, GF01, GMT89, HW87, HBJ+92, MGS14a, NK86, RG91, SV87, SV98, Soh98b, ST87, UT83, WS84, WF87, YCT05]. Logs [YJX+16, YMX+10]. logTM [MBM+06].

Long [Fis83, KJC06, BK91, BKW90, CGL89, CWT+01, Fis98a, Fis98b, KGS16, OCCK03, OCL90, RSF11, SBV91].

Long-latency [KJC06]. long-range [CWT+01]. long-running [KGS16, RSF11].

longer [XHB06]. Look [McL91, And90, CD77, EWN05, Mas87, SK04]. Look-ahead [McL91, CD77]. lookaside [BRGH89, CFG+13, FPF+92]. Looking [ECX+11, Ill87]. lookup [SHBS14]. Loop [BC90a, CSBA17b, LR77, CZS+16, CM00, DHB89, GKO+00, HWI+11, KPP96, NMB92, OKJ+13, RL74b, RL76, UZU00]. loop-block [CZS+16]. looping [Ulm98].

Loops [CHM08, BG84, HA90, LS96, TYZ90].

loosely [Bnu84]. lossless [Bur06]. LOT [UMB+12]. LOT-ECC [UMB+12].

Low [HC04, HTM+05, KDV11, KSN07a, LSSG05, LW+06, LLC98, MMW04, SH92].

WGA+08, WCG14, CG95b, C14, CKS16, CDY+17, CK92, DMR+11, Dev90, EKM04, GDN+16, GSM06, GIS10, IMK+13, JZY14, KOAGP12, KC96, Kn91, KFN02, KHS+97, KR85b, LMLZ12, MPP+08, NS86, NSH+11, OSKA14, PP84, PP98, Pat98a, RWA+16, RPR06, Sez94, SCP+06, SLcC12, SB07, SHV12, TDF90, TSK+83, TSN+86, UVG12, WGO+13, WAC+10, YE09, YCM12, ZCX+14, ZLZ09, Mif87, Sho87].

low-cost [CK92, Dev90, KC96, SCP+06, TDF90, WAC+10, YE09].

Low-Latency [MMW04, SH92, IMK+13, KHS+97, OSKA14].

low-leakage [GIS10]. Low-level [WCG14, TSK+83, TSN+86]. low-locality [SLcC12].

Low-overhead [HC04, KOAGP12, KSN+11, PP84, PP98, Pat98a, RPR06, SB07].

low-power [LLW+06, DMR+11, EKM04, GDN+16, KFN02, LMLZ12, RWA+16, YCM12, ZCX+14].

low-speed [ZLZ09]. LReplay [CHCW10]. LRU [CP98, DSN07].

LRU-based [CP98, DSN07]. LSI [KS84a]. Ltd [Dor75]. LU [DD90]. Lx [FBF+00].

M [Dik90, Fos93b, Ful91a, WW12]. M. [Buc78]. M/C [CGB89]. M3 [AVN+16, JK77]. M3L [SCP80]. M68000 [WS90]. M68020 [KKC92]. MA [IEE06, Par90]. MAC [BS12a, BS12b, MS13a, MS13b, MS13c].

Mace [Par89a]. Machine [AK81, CRW+15, Lev92, LCL+15, RYT+87, Wag83, ALM82, ABC+95, ABC+98, Aga98].
ATHM86, ABKA85, Ano81, Bak91, BH78, BBD+89, BL+83, CDS+14, Con88, CSS+91, DCF+98, DO82, DGY89, DRR89, DM82, DDP85, DSM82, Dow87, Dow88a, ERT78, FL76, Fra86, Gis83, GS74, GGK+82, GGK+98, HHA83, Hii83, Hom82, HY85, HR78, ISKR86, JDL81, JADAD06, KONA82, KKC+16a, KW84, KBD+13, Laf03, LC02, LL14, McL90, MS80, Miy85, MKM+83, NK86, NKK+85, NOK+85, Nit89, PH85, Ros77a, RBC84, SK86, SKS+92, SDD+07, SC01, SA87, SA84, ST79, SB77, SV74, TNN87, Tan77, TH86, TKG+02, Tra85, TM80, Tre80, Uch83, UJ92, WP87, WY05, WHZ+17, WF87, YTY83, Yue81, YHN+86, ZWS14, AYA83, Fuj91, JK77, SBK77, NWD93, SGS+93. machine-based [ZWS14]. machine-code [KBD+13]. Machine-independent [RTY+87]. machine-learning [CDS+14]. machine-oriented [GS74]. machine-readable [Miy85]. Machines [GTS+15, HS06, BLA99, BBK76, Ber74, BC90a, CWdO+06, Feu82, Fis84, GL98c, HANN96, HSF96, HR+90, HW95, HH93, HP87, Jou88, JW89, LR93, LSS04, MMS14, NG99, Par95, Par75, RO93, Smo89, TJCC88, Tak87, Ter87, TBC94, TJS83, TSN+86, TP90, TLeC13]. macro [CLR03, HCW+10, SSS5]. macro-pipelined [SS5]. macro-SIMDization [HCW+10]. MacroSS [HCW+10]. MACS [BD93b]. Madison [IEE95]. Madman [HR78]. Magic} [Alv93]. Magnitude [BNE16]. Mahler [WP87]. Main [AW17, AMH+16, Dor82, ES05, AKSD16, CS11b, CLX+16, DMR+11, DGM80, LLD+04, Mac96, QSR09, YE10, ZZY90]. Main-Memory [ES05]. mainframe [EKW80]. maintaining [AV10]. maintenance [Lin76, LSS04]. makes [EPCP98]. Making [BDLM07, NKRL06, CCA+11, Dre94, DMT13, HCBS04]. malicious [SWL10]. Malacle [KWXB17]. malware [CWdO+06, DMS+13]. MAN [NK86]. MAN-YO [NK86]. manage [APT90, GPV04]. Managed [MAHK16, BLAA99, CBFM12, CFG+13, HR00, NUS+93, SW87, WL+14, WK90]. Managed-Language [MAHK16]. Management [AW17, BL17, DM06, GNB15, GSN05, HJrCH16, HP+15, LIN+06, Mad94b, MRG12, MBS16, PPM13, TL08, XLWZ15, ALE90, BCZ90, BM09a, BTP+11, Bra77, BC04, CTW+13, CRM91, DFF+13, Dav80b, DK14, ELM11, GSS+74, GZK+07, GSKF03, HCD+94, HS85a, HCG+06, HH93, IMK+13, JnWH97, JSAM10, KTMY91, Kro83, LLD+04, LZZ+07, LLC+14, LDK14, MSB+11, MPM14, NMZ12, New92b, New92a, PMA+13, Phi84, PHB14, PCH+82, QM91, RRT+08, RBW09, RTY+87, Req83, Ros77a, SSD+13, SA10, SHV12, Tak87, TL00, WDC+16, YBM13, ZPS+04]. Managing [DLSW76, DS02, KZ+12, SSZR05, BDA03, GJJ+11, GKL+13, LZC+13, SBIS11, SKI08, ZELV02]. ManArray [PP03]. Manchester [Cha92, Tan78, SK86]. manifesting [GZC+11]. MANIP [WLY84]. manipulation [LLF03, Tob80]. manipulator [MS08, MS82]. Mano [Buc78]. manual [NMZ12]. manufacturing [KMOA07]. Many [HhEH+15, AKJ+09, CCH+87, DIY86, JLZ09, KCE16, MLCW11, MšT07, Mat91b, MTP12, Mus09b, ZSHG07]. many-core [AKJ+09, JLZ09, KCEO16, MLCW11, MšT07, MTP12, Mus09b, ZSHG07]. Manycore [BMF+16, BS08]. Manycores [AVN+16]. Map [JPT14, FFM11, MT13]. Mapped [Zha06, AP93, BLA+94, BLA+98b, BLA+98a, Jou90, Jou98a, Jou98b, WQL92, YE09]. Mapping [AWAG15, BCDO17, EW16, HSBA16, LBvH06, MS87, DZC+13, FKBS11, GH88, HG97, HEK+16, Kuh80, La98,
[Mus09b, SAL+05, BHBL87, DCS+14, Mus09a, SWC+95]. **Mesh-based**

[Mus09b, Mus09a]. **mesh-connected**

[BHBL87, SWC+95]. **Message**

[Ano04c, Ano04d, Ano05c, Ano05e, Ano06b, Ano06c, Ano08c, Ano08d, HWC91, KBS84, LR77, BCG14, Bra77, DCC+87, DCC+98, DRN89, FAB+96, GYV90, GH88, HHSI93, KD06, KL94, MGH+96, PH88, SK85, SHI92, Wit76]. **message-based** [SK85].

Message-driven [BHBL87, SWC+95].

Message-passing [HWC91, FAB+96, GH88]. **messages** [RL74b, vECGS92, vECGS98, vECSG98].

messaging [KC95, Las91]. **Messina** [Ful93].

meta [CCEH00]. **meta-level** [CCEH00].

Metadata [DHR+15, KDL+16]. **metal** [GAH+12, OSK15]. **MetaTM** [RRP+07].

MetaTM/TxLinux [RRP+07]. **Method** [MKM16, LLF03, SCU+14, TM14b, ZAI+16, BDH+99, CTW+13, DSOF11, Ili87, LCED01, Mat92, MS07, PvGS90, SKS+13, Tho12a].

methodological [WOT+95]. **Methodology** [Asl84, CS94, Che92, Kha95a, Kha99a, RCL73].

Methods [BS06, Gau85, BGM04, Chr90, Ej90, GSZ90, Kum87, MT97, ON90, OM94, Sin92b, Tho11a, WJMC04].

metric [DMWS12]. **METRO** [DCB+94].

Metropolis [Wak81]. **MGS** [YKA96].

Michigan [IEE84]. **Micro** [BKSO05, Da89, SCN+10, Wit76, Fos72b, FSS76, KMS+12, Maz77].

micro-architectural [KMS+12].

Micro-Architectures [BKSO05].

Micro-optimization [Da89].

Micro-pages [SCN+10]. **microarchitectures** [HBT1L11].

Microarchitectural [KTS+13, SZBP08, LB06, LB08, PV03, SK13, WHG07, YK05].

Microarchitecture [CFA04, Emm06, KDTG05, SV05, AMPH09, DNS95, KSO2b, MKKU03, OSKA14, SSH+03, WJ98, WWFH03].

microarchitectures [AHKB00, HC88, KFM05, SL05].

microbenchmark [BO01]. **microcode** [AAP76]. **microcodable** [Har86].

microcode [ASH86, BZ87, BS74, Jon83, Lar82].

Microcoded [KSO08, BC90a, DFT86].

Microcoding [HB86, LM76].

Microcomputer [Ben82, Sac83, Che84b, KM74, RM77].

microdrivers [GRB+08]. **Microelectronic** [ABC+94]. **microfluidics** [ATV+07].

microkernel [TOL+11]. **micromachine** [Mu95b].

Micromodules [Coo73].

micron [CCS87]. **micronetworks** [Lip77b].

Microprocessor [DBK+02, Nut77, TLM+04, WEMR04, AA82, AP76, BCL82, Che92, Dav80a, DM87, DMB87b, DMB87a, FGVG13, HP02, HPU+16, HS84, HC88, KKK76, MBB+03, MFF+89, MBB+93, MBB+94, NBO96, OMB91, OCF00, OCL90, RvD77, RZ80, SCP+06, SEI95, Wid76].

microprocessor-based [RZ80].

Microprocessors [Ful91b, LKM+05, Pat06, SABR04, Zak77, AZ05, AL74, Bas77, BFAJ93, BGK96, CGL92, Lin81, Lip78a, Sch77, Ste88, TA03, WOR96, WJMC04].

Microprogram [JK77, FM76].

Microprogrammable [Coo73, NKS86, HvDJI80, TSK+83].

microprogrammed [Arm74, Ker74, MM83, Zak73].

Microprogramming [Gon77, FM76].

Microsequencer [Dvo90]. **microthreading** [CSK+99].

microthreads [CTYP02]. ** middleware** [Nak01].

migrating [KST11]. **Migration** [KGS16, CWS06, CS99, CSM+05, DVT12, Hol89, MS02].

migratory [CF93, SB93].

military [ME78, Sal76].

Mill [God13].

Miller [Ful91a].

Milner [Dik90].

Milutinovic [Col90].

MIMD [BHBL87, EGK+85, GGK+82, GGK98, HRC+90, Joh88, Jor83, KTK+86, MS80, Phi84, RS84].

Minerva [RWA+16, Wid76].

mini
[Adl73, EKW80]. **mini-computer** [Adl73]. mini-sized [EKW80]. minicomputer
[Keh76, Rad82, VHL73]. minicomputers
[KC74]. minimal [CSS+91, HRW09, HP86, HP98, mWHP98, Jon88a, KS95, MPP+08]. minimalists [MC92]. minimize
[AT11, GH86, WS74]. Minimizing
[MZLH15, DD80]. minimum [Rou86].

Minneapolis [IEE81]. Minnesota [IEE81].

Minos [CC05]. **MIPS**
[CH87, CKDK91, SD09, UC94]. MIPS-X
[CH87]. **MIRA** [PED+08]. **Mirv** [FTM99].

misconfiguration [ZRZ+14]. misleading
[Cit03]. mis [AP93, BVGL00, CS06b, Quo94, TASS09, YCT05, ZPS+04]. Misses
[Zha06, DSR+93, GBHS14, HKE+16, LKL+02, LBL02, ST03, TX96]. Missing
[SPN96]. Miss**PECulation** [Cit03].

mistakes [LPS08]. Mitigate
[KSCK17, MDS12a]. Mitigating
[AGS05, YMM15, MHHK+13, RLCV10].

MITTS [ZW16]. **Mixed** [WCS09, GSS12b].

Mixed-mode [WCS09]. **ML** [Dik90].

MLC [HASA14]. **MLP** [QLMP06].

MLP-Aware [QLMP06]. Mnemosyne
[VTS11]. Mobile [KHG+17, LjDl+16, APX12, APX14, CLM07, LHG+16, LZW14, LRS+12, MLN+12, RLCV10, SRSW14, YCMR12, ZR14]. Mode
[SLG+05, De 81, TLD14, TM11, WCs09].

Model
[AHK08, AM06, CKmWHL6, CDG+17, HVML04, KS04, LWPG17, MZLH15, TML+17, Bak91, BKS+94, Che90, DSH+10, FHM+11, GCN+10, GN92, GN98, GMS06, HK09, HK10, JB76, JB97, KBSS84, KDP92, KJT+10, LCWM08, Lor90, MMNBR07, MJ89, NEEJ12, Ni98, Nik09, OCS98, PS77, PS98c, PA88, Quo94, RFS88, SA92, SAR99, SP98a, SMN+11, SL05, SHK+11, TWC+10, UT83, WMW09, WWC+14, Y186].

Model-based [MZLH15]. **Modeling**
[AS91b, Ant91, EBS+04, EE10a, SS98, SH91, TAM+08, Afz95, BTS+11, BD93b, EE10b, GB87, IMC+06, JW95, LB06, LZZ+07, Rid87, ZA98]. **Modelling**
[Nad88a, Nad88b, TBL12, Bec95, KB76].

Models [BKL+16, LCCZ17, SS85, BJ14, BF73, BC90b, GGHH91, HHHB+14, LCENT01, LSF08, NCLJ09, ZB92]. **Modern**
[LSL+17, SDB+15, FA+12, HMM96, KS12, LJK+13, Sib07]. modes
[CCH+87, DMR+11]. **modification** [Kep91].

modifications [GB87]. **modified**
[MAL01, MM14a, Wan01]. **Modular**
[JK77, KNPO6, RV84, SJ86, AJ77, Den03, DV87b, KMC02, MPJ+00, Ru90].

modulated [CJK+05]. **module**
[KHC92, MM83]. Modules
[FFS73, HS74, MGSZ76]. **Moguls** [SHK+11].

Mojim [ZYM15]. Molecular [FPL15, GB01, MScS13, SDD+07, WZL+16, Win08].

Molecular-Size [FPL15]. Mondrian
[WCA02]. **monitor**
[CBK88, Hu85, MR90, MK05, YLP+99].

monitored [OQ91]. **Monitoring** [CKS+08, Ebe02, RSA+15, SH92, YJX+16, GVC+10, JADAD06, MDS12a, NG09, VGK+10].

monitors [MS182]. monolithically
[BSK+10]. Monsoon
[PC90, PC98b, PC98a]. Monte
[CTW+13, SL05]. MonteSim [SL05].

Moonwalk [KZVT17]. Moore [Bre10].

Morning [Su74]. Morphable [QFLMK10].

Morpheus [TZZ+16]. Morris [Buc78].

mortar [KMOA07]. Morton [LW07].

Morton-lyrid [LW07]. Morton-**order** [LW07]. motion [RWB09]. Motorola
[Afz95, Gil80]. move [AL12, EP84, TW91].

move-to-front [TW91]. **Moving**
[Dal10, KE91]. **MP** [VSH01]. MPEG
[Kha99b]. MPEG-2 [Kha99b]. **MPSoC**
[FMB+07]. **MPTLSim** [ZYGP09]. **MRAM**
[GIS10, GGP+13, Wan01]. MS [AZ89].

MU5 [Bra82b]. **MU6** [EK880]. **MU6-G**
[EK880]. **MU6V** [IC885]. much
[Bra80a, KJC06]. Multi
[BFS+09, CGB89, cCh91, CBS98, KTR+04].

Much
ABC97, AS96, BA84, CMC+91, CMC+98, CS80b, DNSD13, Dav80a, DC09, Dow91, Dre94, EP87, GW03, HKN+92, HS85b, HDP+90, mWH98, JSS88, KR85a, LGG92, Lee85a, MJW11, MSS+03, Mar82, NUMS94, OPZ11, PS88, PAVT16, RL74a, RBS00, RF90, SWY10, SA92, SP89, SJH89, Tho13a, TtLC13, VE14, WCT98, WG89b, WJMC04, YM11]. multiple-API [NUMS94].

Multiple-banked [CGVT00].
multiple-banked [SA92]. multiple-context [LGH92]. multiple-instruction [mWH98].
multiple-context [CGVT00]. multiple-FPGA [YM11].
multiple-context [CGVT00]. multiple-instruction [mWH98].
multiple-context [CGVT00]. multiple-issue [AZ05, AS96].
multiple-context [CGVT00]. multiple-precision [JPT14].
multiple-context [CGVT00]. multiple-processor [BA84].
multiple-context [CGVT00]. multiple-processor-array [Mic92].
multiple-context [CGVT00]. Multiprocessor/distributed [Miy85].
multiple-context [CGVT00]. Multiprocessors

[CTTC06, CS06a, CMR+06, JKT05, JKT09, KKS+08, LNR+06, LSH+89, SSZR05, SSt06, TT08, TKJ07, ZA05, AT11, AGS89, BSL08, BD93a, BM09a, BM10, Blu84, BM09w, BNA88, BR92a, BF90, CS89, CJK+05, CK92, CY96, CMT00, DFL05, D90, DN93, DB82, DS86, DS89, DS98, FB08, Fr05, GLL+90, GGH91, GGH92, GLL+98, Gha98, GSVP03, GV89w, GGV90, GSV95, Har91, HGC10, HT14a, HJL89, HGS+07, IKKM07, KEL91, KHN07, KADS04, LW95, LAS+07, LAS85, LS92, MPT91, MHS+03, MC92, MNS97, MBK90, MGBK96, Nad88a, Nad88b, BRA97, PP84, Pri98, Pat98a, PVAL5, Pri91, PZT02, PPR90, Q814, Rat85, RSG93, SGC+05, SD87, SHZ97, SA91, SMH92, SHV+98, SK10, Ste89b, SY89, TBG+97, TD91, Wah83, WM88, WS89a, WAFM07, Wil87, WM88, WZ14].
multiple-processors [ZK90, ZT95, Ber91b, Kry91].

Multiprogramming [GH76, CGL92, DI90, MP86, TG14, XJ+16].

Multiscalar [SBV95, SBV98, S89a]. multistage

[DS85, HJ87, KR85a, SS89, SK80, Ste89b, TYZ85, VR87, WL88]. Multitasking

[Hic77b, PPM15, PPM17, ELN89, QMT89, SMB10]. multithread [DSH+10].

Multithreaded

[KTR+04, ACC+03, BAD+10, BMBW00, BNS11, CL94, CGL92, EJK+96, GL98b,
HF88, JSMP12, JSMP13, LBE†+98, LC13, NPA92, PFV03, PDP+13, PT03, RCM+12, REL00, ST00, TE94, UZU00, VGK+10. Multithreading [PT91, SKA01, BR92a, HCD+94, IAD+94, Luk01, MWP07, MKR02, OAA09, PSG06, RM00, SW16, TSCH99, TEL95, TEE+96, TEL98a, TEL98b, VPC02, WLG+14, WW93, WCG+04]. \textit{MultiTitan} [Jou89], \textit{multivariate} [GLVC13]. München [ACM04]. MuNet [HW80]. Murli [Ful93]. Mushy [Wit16]. mutable [VNN13]. mutation [VE08]. My [Lee72]. Myers [Atk79, Gor83]. Myrias [BBZ88]. myth [KLC+10].

Network [GPY+17, HCJC06, HTM†+05, HSL17, HIT05, KSL08, KMVS12, LER†+17, LRN†+06, LR77, LLN†+17, Mad94b, MCK16, NZO†+05, RL†+17, SAKD06, SLTC16, TQC†+15, ZBBL16, AA86, AJH†+16, AKB†+89, BS87, BLS99, BDH†+99, BSR06, BSD87, BLA†+94, BLA†+98b, BLA†+98a, CG95b, CS13a, CLX†+16, CMP†+88, CKA09, DNSD13, DCS†+14, DSH†+94, DR91, DKCZ93, Est02, FFdDH00, GP88, GHKM11, HS80, HLC†+16, HCV03, yKPR02, KHB814, KMS†+10, KS91a, LH86b, LF82, MS80, MS82, MSZ09, MG91, MFHW96, NS80, NSI94, PPK†+09, PR82, RFS88, RWA†+16, RL74b, RL76, Rui90, SP84, SP85a, Sez86, SNM†+16, SKB09, SVC03, SM89, TF79, TGGS14, TLL07, WL88, YLT06, vIG80].

\textit{Network-in-Memory} [LNR†+06]. \textit{Network-on-Chip} [KSL08, DNSD13, GHKM11, PKK†+09]. networked [HSW†+00, Nak01]. \textit{networking} [SHM94, VGNV05]. Networks [IPWK06, KN06, KDOA08, LNA08, Lev92, MWM04, SAL†+05, APGP07, AMW†+10, AA11a, AS92a, AWV88, Ann91, AAEBAT98, BK11, BK91, BHL87, BAE89, BVR†+00, BG80, BC02, CSJC10, CES16, CK92, CH84, DMMD10, DS85, DCD†+94, EKM04, FWS2, Fra90, FAH83, GH88, GL73, GL98a, GCM85, HJ87, JM88, JMY89, JKDO9, KC02, Kha97a, KLI88, KC96, KDA07, KHS†+97, KDJ83, KRB85b, KMVS12, LH991, LWW84, LC02, LN91, Lip98, LDT†+16, MJW11, MBLZ89, MM87, MM09, NS91, NBKP95, NMTH10, OQ91, OT73, PW97, RHS96, Ros89, SC89, SS89, SH80, Sie77, SDGT03, Sov83, Ste89b, Tem10, TYZ85, VR87, WGO†+13, Wit76, XYM12, Yok94, YA90, nZY84, Mar88, Pen88].

\textit{networks-on-chip} [AA11a, MJW11, WGO†+13]. Neumann [AI83, Ian88, Nik89]. \textit{Neural} [FUL91a, GY†+17, Lev92, Mar88, RLD†+17, SLTC16, AJH†+16, AW88, CSJC10, CES16, CLX†+16, Fra90, GP88, GH88, HLM†+16, Kha97a, Lip88, LDT†+16, NMTH10, RWA†+16, SNM†+16, Tem10, Pen88].

Neurocube [KLC†+16b]. \textit{Neuromorphic}
neuron [AJH +16, YM11]. neurons [Smi+14]. Neurosurgeon [KHG +17]. Next [AYQ +16, CG95a, CCA +11, Lee72, CH04]. Next-Generation [AYQ +16, CCA +11, CH04]. NHT [Fin+93].

NIC [HTM +15, YKD01]. NICE [Ulm+97]. NIFDY [CG95b]. Ninja [SK+12]. NJ [Ber+91b]. No [RRT +08]. NOBLE [ST+08]. NoC [KSL08, GHKM11, DCS +14, PDL +15, YL16]. NoCs [KKP+14, PWA+13].

Node [Emm+06, LSS+04, RSG93, TGS+14, VSM +07a]. nodes [NMS +12, TAV+10]. NoHype [KSRL+10]. Noise [PV+04, PV+03].

non-blocking/lockup-free [BK96a, BK96b]. non-critical [LZC +16]. non-determinism [SK+13].

Non-Deterministic [LL+96]. non-exact [TZH +13]. non-interfering [WGO +13].

Non-redundant [Che+77]. non-software [Mc+77]. Non-SSD [JCSK+14].

Non-uniform [KBK02, SA+92]. Non-Volatile [AMH +16, YNQ+15, ZYS+15, CCA +11, NMS +12, VJ95].

nondeterminism [HBCG+13]. NonStop [HH+90]. num [KKN+00]. NUMA [BSF +91, CSB+17a, DFF +13, FW+97, GTS +15, LL+14, LC96, MNL+97, NDB +14, SKJ +17, SGJ+92, SC+05]. NumaGiC [GTS +15]. number

[DSG+11, Fis+84, GSS+12b, Joh+04, MS+12, Se+96, SGS+11, TS+90a, VLL +92]. numbers

[CS11a, FTP+94, MS+10]. numeric [CLS+13, LWS+75, PSL+80, Zak77]. numerical [Che+90, GRRT+84, HRC +90, MS+76, NNN +91, PB+80]. NV [CCA +11].

null [KKN+00]. O [Aic+92, AAZ+89, ACK+94, CP+96, Coc96, Ebr+96, Fin+93, GAH +12, HY96, HIT+05, JSW+93, JCS +14, Kat+89, KMN+16, L93, Lun+75, MABY+15, NNS +90, PM+92, RB+90, Red+92, SBQZ+14, Se+05, SD+90, ST+94, Sm+89, SKS+88, TOL +11, TtLe+13, V+94].

[50, HNT+11, KKC +16b]. neuron [AJH +16, YM11]. neurons [Smi+14]. Neurosurgeon [KHG +17]. Next [AYQ +16, CG95a, CCA +11, Lee72, CH04]. Next-Generation [AYQ +16, CCA +11, CH04]. NHT [Fin+93].

NHT-1 [Fin+93]. NIC [HTM +15, YKD01]. NIFDY [CG95b]. Ninja [SK+12]. NJ [Ber+91b]. No [RRT +08]. NOBLE [ST+08]. NoC [KSL08, GHKM11, DCS +14, NCL+09, PDL +15, YL16]. NoCs [KKP+14, PWA+13]. Node [Emm+06, LSS+04, RSG93, TGS+14, VSM +07a]. nodes [NMS +12, TAV+10]. NoHype [KSRL+10]. Noise [PV+04, PV+03].

non-blocking/lockup-free [BK96a, BK96b]. non-critical [LZC +16]. non-determinism [SK+13].

Non-Deterministic [LL+96]. non-exact [TZH +13]. non-interfering [WGO +13].

Non-Invasive [BSAD+04]. non-numeric [CLS+13, LWS+75, Zak77]. non-numerical [GRRT+84]. Non-Preemptive [CYMT+16, CYG +17]. Non-race [HHS+13].

Non-redundant [Che+77]. non-software [Mc+77]. Non-SSD [JCSK+14].

Non-uniform [KBK02, SA+92]. Non-Volatile [AMH +16, YNQ+15, ZYS+15, CCA +11, NMS +12, VJ95].

nondeterminism [HBCG+13]. NonStop [HH+90]. num [KKN+00]. NUMA [BSF +91, CSB+17a, DFF +13, FW+97, GTS +15, LL+14, LC96, MNL+97, NDB +14, SKJ +17, SGJ+92, SC+05]. NumaGiC [GTS +15]. number

[DSG+11, Fis+84, GSS+12b, Joh+04, MS+12, Se+96, SGS+11, TS+90a, VLL +92]. numbers

[CS11a, FTP+94, MS+10]. numeric [CLS+13, LWS+75, PSL+80, Zak77]. numerical [Che+90, GRRT+84, HRC +90, MS+76, NNN +91, PB+80]. NV [CCA +11].

O [Aic+92, AAZ+89, ACK+94, BBH+94, CP+96, Coc96, Ebr+96, Fin+93, GAH +12, HY96, HIT+05, JSW+93, JCS +14, Kat+89, KMN+16, L93, Lun+75, MABY+15, NNS +90, PM+92, RB+90, Red+92, SBQZ+14, Se+05, SD+90, ST+94, Sm+89, SKS+88, TOL +11, TtLe+13, V+94].
OF/W [LN75]. Object-based [Kar95, LFH03, NWB+15, RC80, CRM91, DK85, GC86, Go84, HB86, Hya93, IT84, JMK+08, LLF03, NKS86, ON12, SK04, YHF03].

Object-based [RC80]. Object-Bounded [NWB+15]. Object-oriented [Kar95, LFH03, CRM91, GC86, HB86, Hya93, JMK+08, LLF03, NKS86, YHF03]. objects [CCA+11, ES74, GPR87, GSR93, MK84, TZZ+16]. Oblivious [FRK+15, LHM+15, KCW+09, KM10, KKP14, RYF+13]. obvious [WM95].

obviously [MDS90]. Ocean [LC93]. OceanStore [KBC+00]. Oct [Har74].

offloader [NMS+12]. offloading [HEK+16]. offs [MS07, NLS88, SEI+95, SPM+06].

OHMEGA [NNN+91]. old [Bat72, MPH12]. OLTP [ATT+13, KPH98, KADS04, TS90b].

On-Chip [ACAT16, JPL08, KNP06, KDA08, LNA08, MWM04, PED+08, BT13, CHZ+11, CJ88, DMDM10, DJPK16, EPR8, FaR89, HS84, JW94, KK08, KBK02, KN9+07, KM10, KFN02, MDS+11, MVD11, MPSV06, MM09, NUM94, OPZ11, SLQK12, TGGS14, TEL95, TEL98a, TEL98b, VS92, WSY95, WO97, XYM12].

on-demand [NL14]. on-die [NSQ16].

On-line [AA77, OM94]. On-the-Fly [ZS15, ZJG+11, CWS06, Kep91, SZD+08]. one [DSF+09, Wan93, Bow79]. one-step [Wan93]. ongoing [Ano81]. Online [IH80, LABR08, TP15, BM06, DMS+13, LWV+10, LSS04, MSB+11, ROKB95, TASS09, TX09, VLGK+10, WMW09, WJMC04, YBMT13].

only [GS95, Hic77a, Rat85]. onto [FKBS11, LBH06]. Op [HK90, Bra82a, LV88]. op-code [Bra82a].

OPA [SV82]. OPAC [SC92]. Open [BMF+16, HLY+15, dLCKK15, BJL+13, BKB90, GC11, Nae85]. Open-Source [dLCKK15]. OpenCL [MTU+15]. OpenDF [BJB+08]. OpenMP [BO01, MM14b, NAAL01]. OpenPiton [BFM+16]. operand [CD82, Har79, OCB12, WSM96].

operands [Fon03, TW77]. Operating [DKD+15, Ram88, SHP+16, ABR01, ALB01, Bar82, BCL82, CGL+08, CDA14, Dav14, GKT13, GPV04, HDK+11, HKD+13, KON99, Kha99c, LAF04, LAH09, LJS+02, LWZ14, LR77, MMR+13, NUM94, NSI94, PS12, RRP+07, REL00, RO74, Ros06, WDA+08, ZELV02]. Operation [WGA+08, DSF+90, KMI+85, KKK76, Mat91b, SD87].

Operations [KK90, DSF+08, Dal89, Fen84, Hom82, HMMS96, JSBW93, KD06, See89a, See89b, SK92b, SK92a, SFS00, SA10, Tho10b]. operator [Pay78]. Opinion [KWF08]. opinions [FK80]. Opportunistic [GRH06, GVO5, YL16, BHS12, GAS16].

opportunities [Dav14, Mus90a, Siri01]. opportunity [MGBK96]. OPS5 [BAB88].

optic [FR87]. Optical [TM14a, CKA09, Dow91, KM10, LH88, LN92, NP95, Rui90, WZL16, XGC+16].

optically [FAYA78, KW11, WW12]. optically-connected [FAYA87]. optics [BDJ+11, GRD87].

Optimal [BHS91, Gut87, KS86, NUM94, RCM+12, SAL+05, YMST07, ABC97, ABSC98, BBBM94, Bra72, CJC90, HFFA09, HBJ+02, PHH89].

optimisation [AA11a, RCG1]. Optimising [UC01]. Optimistic [KPR+08].

Optimization [ASR+17, CMM95, D’H16, FRP05, GA01, KZVT17, MVH15, NZO+05, OSF+15, Rot05, AV10, Alb98, AMF09, BC90a, CE+12, DET00, Dal89, DSOF11, KPH96, LCC06, McF89, MTG+99, OKN02, OMB92, RYF+13, SDH+14, TL11, TAC08].
Optimizations
[CFA04, BP04, BTM00, DS06, KL02, KMC02, LRV91, LHE+13, LM99, MPS94, ON12, OA08, RBG+01, TASS09, VKI+00, WW13].

optimize [CM00, Kar89]. Optimized
[BHBL87, KK08, PA88, RAM+04, SBS93, SC05, XT96]. Optimizer [PBR05, BS74].

Optimizing
[BVGL00, CPV05, DHT15, IMMC08, LL14, RHR+17, Sch91a, SG95, ACRV12, BC04, Har82, HKM02, HC89, LQL12, SC90, VAV10].

optimum [HP02]. option [Fon03]. Options
[QD98, TTT10]. OR-parallel
[DRR89, ST87]. ORAM [FRK+15]. ORB
[OUY+13]. orbiter [Sat74]. Orchestrated
[JKM+13, RSEW04]. Orchestration
[FKBS11]. Order [KS04, TP08, AIO+11, BM14, CMLV04, HX97, HHS13, HP87, JSL95, Lee85a, LW07, MTZ13, NEEJ12, SW16, SL05, SD90, XDLB13].

order-sensitive [HHS13]. ordered [GB74].

Ordering
[CL04, LSMB16, vPCCR06, AH90, AH98a, AH98b, BMW09, DCS+14, GLL+90, GLL+98, Gha98, LNRG12].

orderings [Jon08]. Orders [BNE16].

ordinary [AS92b, VJ99]. Organization
[CSSP87, GCO+04, WBL89, BC91, CM80, DJ09, Kro98a, Kro98b, KKP14, Nad88a, New92b, New92a, UMC+10, VBE92, Ram78, Co88].

organizational [Jon89].

organizations [EP88, FTP94, HS77, HS93, Nad88b, RB89, Red92, SG83, SSR+13].

organizing [LAK09, PJDL06]. oriented
[ATHM86, ABL+80, CBC+08, CRM91, DK85, Gai83, GC86, GS74, Gra91, HB86, Hea76, HS13, Hir86, Hya93, IT84, JMK+08, Kar95, LLF03, LFH03, MF76, Mye77, NKS86, SM77, Slo74, SEE74, Wel76, YHF03, ZSL10].

Origin [LL97]. origins [HLR98].

orthogonal [HDP+90, SC89].

orthogonal-access [HDP+90]. Orthus
[HDS10]. OS-level [XLWZ15]. OSck
[HDK+11]. other [Bra82b, Hil83].

out-of-core [TBC94]. Out-of-Order
[TP08, HX97, AIO+11, CMLV04, HP87, JSL95, MTZ13, SW16, SD90]. Outlier
[HTM15]. outline [CHJ83]. Output
[KC74, Che90, McD77, PAVT16].

OUTRIDER [CP11]. Outstanding
[LSB15]. overall [Joh04]. overcome [ON12].

Overcoming [KP03, SGH93]. Overflow
[SDLR+15, Ino05]. overhead
[CG95b, CJO1, HC94, JH94, KOAGP12, LW95, LAS85, MCA97, NSH+11, PP84, PP98, Pat98a, RP85, RRP06, RSP05, ROKB95, SSB07, SHV12, WR84, YL16].

Overheads [KSC17, KZT05, DI90, LKY+00, MHIK+13, NSI94]. Overlapped
[DHB89]. Overlay
[EW16, JLFM15, LJF+16]. Overshadow
[CGL+08]. Overview
[PSR05, BS74].

Packard [HC95, JWX17, KZT05, DI90, MP86]. Pair
[MCXS16, BC02]. pairwise [IBC12]. Pallas
[HABZ17]. Palo [IEE79]. Pandore
[APT90]. Panel [vT89, DSF+90, DHR+90].
HCD+94, Hil13, IAD+94, Kav81, Mud96. paper [Lun75, Mac99]. Papers
[Lei91, BGP+01]. PAQ [JWK12]. paradigm [FS92, PPA+13, TL00, VFK+04, VSM+07a, VSM+07b]. Paragon [DK13].

Parallel [YFPR07] Parallel

All92, BGP+01, Ber91c, BFA+15, Bit89, BABB88, Cha92, Fu93, GFT+15, GFN86, HJrCH16, Hib80, Hi91, HCL15, HK90, JWB93, JWB94, Lan90a, Le91, LHPL87, LN92, Mar73, McG78, Mil77b, Par88a, PKB+16, RP85, Rui86, Sav85, SBK77, TS90a, Vra78, YMM15, vdH90, AS91a, APP+14, AS92a, APR89, AR89, AFN90, BM91, Bat80, Bat98b, Bat98a, BBH94, BBZ88, BF87, BWJ+90, CL09, CLVW93, CPdM+96, CO82, CCC+88, Cha90, CKnuWH16, CSY90, CAD09, CG92, CL09, Con88, CB93, CKHM93, DD09, DM91, DRR89, DESE13, DJT94, EK88, EK98a, FDS7, Far05, FR89, FFM11, FR87, FHH+89, FKT+89, Gai83, GKF84, GAG88, GCH+10, GVC+10, GMT89, GKS1, GG+82, GG+98, HaK85, HW80, HF88, HJS86, HW87, HFH+91, HHSI93, HRC+90, HB90, HA90, HCC+88, ICT85. parallel

ISKR86, JSWB93, JDL81, Joe90, KTK12, KFGS84, Kap87, KP89, KM86, KL94, KSS+95, KBR98, L9F95, L888, LWC10, LR19, LR93, LV88, LMRS92, LS92, MT07, MT80, MM87, MFST88, MSS14, Nae85, NNS+90, NK86, NPA92, NOK+83, Nis91, Nut77, PPG90, PPS+12, Qu79, RCL73, RO93, RB89, Rd17, RS84, RA90, SJ1M14, SKC+12, SGG+85, SL92, Sib07, SSDK84, STV94, SWG92, SGS11, SS85, SGS+93, SG95, SPP97, SB77, ST87, SP87, Tad13, TY920, Tan83, TBC85, UCh83, UTS3, VGG+10, VGS85, WWY05, WWW+88, WK80, WSC92, YPD83, Yel09, Yok94, YW89, drBRC93, vT89]. parallel-disk [Yok94]. parallel-pipelined [YPD83]. Parallelism

BCSB11, CFA04, HheH+15, HPJ+15, JHK+16, MM08, OS03, SGS08, TMC+06, ABC08, AKD16, BDA03, BK11, BDMF10, BRY+91, CJK+05, CSS+91, D92, EE14, FFfDH00, FUH00, Fra86, FS92, GTA06, Har78, HDT+13, HK09, JW98, JK92, K92, KMD+98, KSL+12, KTCO0, KPR+08, Kumi87, KH07, LW92, ME92, MP91, NH97, Nt89, PGT99, RVD07, S78, Sur07, TPO06, TSK+83, TSN+86, TEL95, TEL98a, TEL98b, Uht93a, Uht93b, UZ19, W91, WRYS16, YKL+16. Parallelism-Aware

[MM08]. Parallelization

[BS06, RA90, S14, AC90, CBK+14, CMT00, GSM06, HGS+07, LSFK08, NIS94, PGRT01, RKM+10, SAS90]. Parallelizing

[LL93, NPF08, WDC+13, CO03, VW+11, ZWS14]. Paralog

[VGK+10]. parameterized [CM00]. parameterless [NL14]. parameters

[SGH93, LK91, MAD11, T012a]. Park

[MI77b]. PARSEC3.0 [ZB11]. Partial

[SKCY16, AR80, C08, GLH88, G81, JS88, MMH+95, RRP06]. partial-multiple-bus

[JS88]. particle [KW84]. partitioned

[DS85, FP+92]. partitioning

[BG80, CMB+13, D39, GL73, GL08a, HA90, KPR+08, Lip98, LPMZ11, SK11, SC90, WBKR13, XL09, XJK+16, ZA98]. Pascal

[SV82, W80]. Pascal-like [SV82]. PASM

[SSDK84]. Pass [Emm06]. passing

[FAB+96, GY90, GH88, HWC91, Kee79b, KD06, KL94, eHLL89, PH88]. Past

[Ber91c, Hey90, T03, Tha10, VPS01]. PASTIS

[TTCM12]. Pat [Goo88b]. patch

[VNN13]. patents [Pat88]. Path

[BG80, HABZ17, MCV16, MMP+12, CTY02, CK11, CS00, CCB+06, De89, DB00, FBR01, JW97, RYF+13, SK09, UJ92, WCT98]. Path-exploration
Cla87, CBK88, Cra79, CJDM99, CJ01, CB13, CB94b, CKPK90, DSDS94, Dah95, DLL+16, DV87a, DS85, DCH+94, DMS+13, DB07, DJ09, DK89, Dow91, DJT94, ELM10, EKW80, EK89b, EKB9a, EWN05, EC84, EC98a, EC98b, ECX+11, EE93, EEKS06, FatR89, Fat90, FB92, FBJ92, FURM00, FHH+89, FTTG88, GS12, GAH+12, GMT89, GMF+11, HLM+82, HLR98, HHA83, HWI+71, HJB+82, HW87, Hig90, HK10, HBII13, HSIS93, HMMS96, HY96, HP86, HC89, HP98, mWHP98, Hya93, ISL96, IM02, JVJ13, JTESE10, JMY99.

performance [JS99, JMK+98, JKN+13, Joh04, Joh92, Jou90, Jou93, Jou98a, Jou98b, JCSK14, JB97, Kar89, Kat89, KB76, Kha99a, KC96, KSS+95, KFNO2, KS91b, KDL+93, KDL+98, KHCMM11, KKKM11, LRW91, LP80, LP98, LS82, LKB91, LB06, LYB9111, LLJ+92, LLJ+98, LL08, LC82, LB12, LL14, LBE+98, LPH+99, LRHM90, MLC+109, MS13c, MPH12, MCD+08, MR90, MHWO3, MS12a, MTZ13, MB91, Mus09b, NAD88a, NA88b, NRK805, NI85, Ng94, NS86, NP90, NBK95, OMB91, OS91, OA89, Pat82, PS77, PS98c, PAKA13, Pie83, Pie98, PS88, PH90, PT10, PH98, Pr90, QJP+07, QSR09, QFLJ12, RKF88, RBS00, RHZC74, RR77, Reg76, Roc94, SBRM09, SB05, SJ86, SKC+12, SC89, SN90, SRWB14, SRJ+05, SSKP+07, SP98a, SEI+95, SH91, SMB09, SP90, SG94, SZ82, SV87, SV98, Soh98b, SC02, SL05.

performance [SW87, Ste89a, SJK92, SG95, SKC+03, SQP08, SPR00, TYS+94, TF88, TRA91, Ten12, Tie88, Tri80, VGV95, VLZ88, VV14a, VV14b, VGSS85, WBL89, WGH+97, Wl01, WSC29, WBS+8, YTV83, YZ07b, YMHB00, YHZX14, ZS00, Zb08, ZB92, Ber91a, VJE+12].

Performance-Directed [Tab95], performance-optimal [PHH99], performance-transparent [BMW09].

Performance/Watt [Lau05]. period [CHCW10]. periodic [JW95]. peripheral [Bra80b, Cou90b, MS84]. peripherals [VPS01]. permanent [NSH+11].

permutation [Bak94, RE13, Sov83]. Persistence [RCC05, NH12]. persistence [PCW14]. Persistent [IKK16, KPS+16, LHC+97, NHH+17, SKB+17, CLM07, CCA+11, GPR87, KBC+00, LSY+14, VLSI11].

Personal [HLZ+15, Got98, LP80, LP98, Pie83, Pie98].

Perspective [GSN05, ACK+95, Fre87, Hen07c, KR13, Mus09b]. Pervasive [KDL+16]. pessimistic [WW93].

Petri [AF73, Joe09, Zsb80]. Phantom [BM09c].

Phantom-DB [BM09c]. Phase [SSC03, WJZ15, JZY14, LM08, QSR09, QFLMK10, QJFL12, SLW10, SY13, SZ04, ZZY09, dRBC93]. phase-change [QSR09, SLW10]. Phastlane [CKA90].

Philadelphia [ACM06]. Phoenix [Ste81].

phone [KDV11]. Photonic [PDL15, KMS+10, KMS+12, TTCM12].

photronics [BSK+10, UMB+11].

phylogenetic [LH12]. Physical [Dan93, HGS+07, LMG04, Ozt15, SOSD05, AMP09, CCG+14, Oya89, VCK+12]. physically [For94a, For94b, JW12].

physics [KDBA78, YFRP07]. PicoServer [KDS+06]. PICSEL [MCD+08]. Picture [Isa74, AC09, Cal74]. PIE [JVE+12].

Piecewise [Jim05, Reg98]. PIFF [VSCC16]. PIM [ISKR86, SKC+03]. PIM-D [ISKR86].

Pin [MF05], pinning [SK80]. PINS [CHZ+14, PM92].

Pipe [MTU+15, GtHL+85]. Pipeline [MK98, OSF+15, PV03, BM01, CCE+09, GTA06, HP02, HBJ+02, IH80, KMI+85, KDM92, MIO+10, PD76, PD80, Pat98b, SN95, TST07, Wil83a, YMST07]. pipelined [AS91a, BFAJ93, GKF84, GM90, GLV13, Jor83, Kog73, Kog77, LM80, MSB+02, NOK+83, OMB92, RV77, RR77, Rym82, SVC03, SA88a, SA91, SP85b, SS85, SP98b, Sml98d, SV87, SV98, Soh98b, WS84, WS87,
YPD83]. **Pipelines** [MV815, TM805, PGB82, SCP86, SCV82, SRA84]. **Pipelining**

[AB92, Ano89, Cla87, MIT89, CS99, DET89, GHW90, KKS88, LSW89, N901, SF03].

PipeRench [GSM99]. **pipes** [LMS93]. **Pitfalls**

[KBB82, PDD89, LKBM89, LGM85, BDD92, DDL99, ESR89, GSS10].

PipeRench [D'H15, Ste80, YDD06, PDD07, BSS07, DTM05, LB91, SC92, SJ83, TS95, IT10, KBB91, KZL14, NMK10, YCT81, ZYX11].

Point [LWH99, BDD07, SLC91, LM80, MHK10, NS86, TW07].

Policies

[MK11, PWA13, SBS13, WCW11].

PLUS [KL89, PMS [KB76, KB76].

Pocket [KLS92]. **PocketWeb** [LKO08, LK91, SC92].

Point-in-time [YXR06].

Point-to-point [EST89, RHS96].

PMA [BR90]. **PMD** [LHS89].

Platform [WC91, CLC91, CAD91, CKC91, FBF91].

Placable [YXR06].

Power

[FM76, AMG91, KB76].

Power-Aware [ORS94, HSC94].

Power-performance [SRWB14].

Power-efficiency [GW10].

Position-based [FRK15]. **Positional**

[HRT03]. **Post** [SDH14, WIT16].

Post-compiler [SDH14]. **Post-ISA** [WIT16].

Powers [MP12, TM05].

Power-Aware [ORS94, HSC94].

Polycyclic [HNS77].

PolyMorph [KDO08, SMB90].

Polymorphous [SN80, KSN90].

Polynomial [AA91].

PolyPath [PKG92]. **Polyvalent**

[LCL15], **pool** [ZWW05]. **Port**

[BTR815, SWC95, WOR96]. **port/three** [AZ99]. **Portability** [VC72].

Portable [PARKA13, CYH91, HSW91, KJR91, LKB91, NL14].

Portend [KZC12].

POSC [SC09]. **Position** [FRK15].

Position-based [FRK15]. **Positional**

[HRT03]. **Post** [SDH14, WIT16].

Post-compiler [SDH14]. **Post-ISA** [WIT16].

Powers [MP12, TM05].

Power-Aware [ORS94, HSC94].

Power-performance [SRWB14].

Power-efficiency [GW10].

Position-based [FRK15]. **Positional**

[HRT03]. **Post** [SDH14, WIT16].

Post-compiler [SDH14]. **Post-ISA** [WIT16].

Power-Aware [ORS94, HSC94].

Power-performance [SRWB14].

Power-efficiency [GW10].
Precise [Bak91, CYG+17, DS11, GA01, LCS+10b, QTSQ13, SP85b, SP98b, Smi98d, UH93, YBMT13, ZMMT16]. Precision [MCGL17, BdDPT10, JPT14, MPPZ87, SYP+14]. Precomputation [SLG+05, APD01, CWT+01, TS10].

preconditioned [Ch90]. preconstruction [JS00]. predecoration [RSP05].

predicated [ANHN95, ACM+98b, ASP+99, MHM+95].

preconstruction [JS00]. predecryption [RSP05].

predicated [ANHN95, ACM+98b, ASP+99, MHM+95].

predication [JMK+08, RSEW04, SGB00, TL10].

predictability [BS95, EPCP98, SS98, Zha01]. predictable [AJK+09]. predicting [HKM02, JM12].

Prediction [CYG+17, FSR+04, JHK+16, Jim05, SLG+05, ASK85, BWJ+90, BE03, CG94, CG95a, CRT99, CHP97, CTYP02, Che90, CPT08, CE98, DZ99, D191, DH98, DB00, ECP96, FFW98, FRB01, GM98, GYCS06, GL98b, JTSE10, JSN98, KE91, KK99, KJM+07, LF00, LLF01, LB06, LJS+02, MHS+03, MH98, NGS99, PS14, PS94, RBS00, RR06, RE12, SZD04, SSC03, Smi98b, Smi98e, TYS+94, TFWS03, TS99, VSMF03, WHG07, WKLJ12, WK91, WCF01, YP92, YP98a, YP98b, YGS95, ZS01].

preliminary [And90, Ann91, BHS91, CMPZ87, DM74, DM98, Den98, ISKR86, Jon08, KBB+82].

preloading [SDS00]. Prentice [Alv93, Ant91, Ber91b, Buc78, Chr77, Fer88, Fo93b, ful91b, Kri91, Lan90b, Lev92, Mad94a, Ram78, Whi78]. Prentice-Hall [Alv93, Ant91, Buc78, Fer88, Kri91, Lan90b, Mad94a, Ram78, Whi78]. presence [CFG+13, ECP96, RBO07]. Present [Ber91c, Hey90, TH03]. preserving [CMB+13, WW13]. ProSET [QFJ12].

Press [Cha92, Col90, Iva91, Mil77a, Par90, Sch91a, Hol83].

prevent [SWL10]. Preventing [ISGS07]. Prevention [TS05].

Price [Ful76, MPM14, KL03, RLCV10]. Price/performance [Ful76]. pricing [SM12, TTTL10]. primary [OMB92].

prime [Gao93, CLX+16, Feu82]. Primer [Gon77].

Primitive [FSA90, GB74, Hick77b, WW13]. primitives [AL91, AGS89, GVV89, McK74]. principle [CL09, GB83, LAK09, Ran85]. Principled [ZS15, ZWS14]. Principles [Fos93b, CH84, Den03, Phi84, Fer88].

Pringle [KFGS84]. Printers [ASR+17]. prior [TS99]. prioritizing [TLD14].

Priority [BCG+08, SKS88, ELN89, HK89b, LS77, MAL01, NS74]. Priority-driven [SK88]. PriSM [MRG12, KG87].

Problem [VC04, AB84, FAY83, GTL13, Sav85, SNG93, WH97]. Problems [Lan90b, SKCY16, Deb89, Kog73, MS76, NLV86, NP90, RG91, WLY84]. procedure
Procedures [AK81, OM94]. Proceedings [ACM80, IEE76, IEE77, IEE79, IEE81, Kin75, IEE82, IEE83, IEE86, IEE88, IEE05, IEE06, ACM89, ACM91, ACM95, ACM96, ACM98a, ACM01, ACM02a, ACM04, IEE90, IEE94, IEE99, IEE03, JDL81, LS73, ACM97, IEE84, IEE85, IEE87].

Process [Feu84, FG91, KSCK17, BK11, Dev93, FH76, GS80, Hic76, Mus09b, RBOS07, TST07, WW12, XYM12]. process-dependent [Dev93]. processes [Ger81, GLVC13, vdSS79]. Processing [DHR+15, GAR+05, HCJC06, KPS+16a, Mar73, MEB15, MVB15, MKP05, VTGH17, AJ77, ATH86, AAZ89, BMP04a, BLS90, BNA88, Bra77, BC04, CL09, CLX+16, CD77, CLS73, DIY86, ED83, FBF00, Far05, Gai83, GK78, GTH84, GYB+16, Hak85, HC85, HEK+16, HD86, ICT85, IHM89, KS02b, La95, Lor90, MS13b, Miy85, Nae85, Niu85, Qiu79, RCL73, RL74a, RBG+01, RAJ99, RAJ00, Rui90, Sav85, SSDK84, SKC+03, Tan83, Thi12a, VF85, Waj92, WE74, WSC92, WSM+09, WJ85, WLP+14, YY92, Zak73, Zak77, Par88a]. processing-in-memory [CLX+16]. Processor [AK81, BK91, BCG+08, CY06, EBS+04, GCC17, HCC+06, HSKS15, HSS77, KSO4, KDO4, KTG+17, KOA05, ORS+04, Rui86, SKJ+17, SOSD05, Tan78, ZSG+17, ABY+87, AB92, AS91a, ALKK90, AR80, And73, AFNV90, AIK+05, Arm74, APX12, AAr93, AM87, AML+10, BDA01, BA84, Ba80, Bat80, Bat98a, BMP04a, BA82, CO82, CL94, CCE+09, CYL99, CT90, Cla87, CS80b, CGL89, DCC+87, DCC+98, DM74, DM98, Den98, EKMO4, EC84, EC98a, EC98b, EE10b, FP01b, FTP94, FRB01, FS83, FD88, FH76, FG83, FR87, FKT+89, Gai83, GKF84, GLM13, GSS12a, GM82, Go84, GRRT84, Goo83, Goo98a, Goo98b, GDHH89, GKN80, HFR88, HCV03, HS85a, HKK80, HFH+91, HS01, HKN+92, HY85, HHJ90, Hug82, JB82, JMY89, JZL09, JW82, JSL95, Kan74, Kap87, KS84a, KDM+98]. processor [Ker74, KTK+86, KMT91, KR85a, LC92, LP80, LP98, LZZ+16, LKB91, LBvH06, LHL+89, LMS0, LL03, LF03, MM83, Mar82, MK12, Maz77, MST82, MMR10, MS84, MYB89, MFST88, MIT89, NNN+91, NS86, NKS86, Now87, Nut77, PPM96, PN88, Pa80, PC83, Pes74, Phe98, PBGM09, RTJ00, RBH+03, Red73, Ruc89, SBS13, SYH+89, SWY10, SPN96, SGG+85, SN95, SHNS86, SA86, Sin92a, SMN+11, SP89, SSA13, SDV+87, SLH90, ST00, SPS07, SC02, SEE74, SV74, Tab10, TA83, TNY11, TSK13, TOL+11, Tob80, TM80, TLLL07, TEE+96, VIA+05, VSH91, Van81, VFK+04, WCW+04, WJGA12, WBS+88, WZY13, YYX+07, YL84, YHF03, YN09, KYK83, Kro83, SS78]. processor-based [WCW+04]. Processor-Interconnect [SKJ+17]. processor-memory [Goo83, Goo98a, Goo98b]. processor-side [GLM13]. processor/cache [FTP94]. processor/memory [SPN96].

Processors [AW04, AWS16, CDY+17, CBC+05, GAR+05, Lan90b, Loh08, NZO+05, SLFG06, ARJS07, APR89, AS96, BT13, BDOA03, BJ03, BTW77, CMC+91, CMC+98, CW02, CHZ+14, CMLV04, DB07, EKLI01, ER92, EE09, EST89, FCJV97, Fis84, Fis86, FM84, GJT+11, GAG88, GSS12b, GM90, GKB1, GWM03, GRD87, GCTR08, Gup89, HTA08, Hay77, HS13, HKLS00, HR09, HYHD95, HMMS96, HRT03, IT93, IM02, KST11, KS07, KKC+16a, Kog77, KDBA78, KSA03, KP03, LYS07, LHJ92, LWL12, LBE+98, LGKF+12, Luk01, MHM+95, MT84, MS87, MA06, MTPT12, MM87, MA14, NH97, NLV86, OWCL90, PJS97, PS12, PA73, PFF03, PS88, PS94, QD99, RCM+12, RPASA97, RAJ99, RFY+13, RS84, RA90, Rym82, SJ88, SN99, SC01, SVC03, SP85b,
SS85, SP98b, Sni98d, SZ88, SV87, SF91.

processors [SBV95, SV98, SBV98, Soh98b, Soh98a, SPA+98, SD94, SD09, SPR00, Sur07, TS90a, Tho03c, TH76, VBS05, Wei89, YLHL10, YLT06, Yue81, ZYLG05, ZBF10, Lan90b, McG78, Mil77b, Vra78].

Procrastination [PG16].

Procrastination-Based [PG16].

Producing [MDH90]. Production [ACJL13, ZJL17, uAM16, AJL14, LL88].

Production-run [ACJL13, uAM16, AJL14].

Productivity [Wit16]. Products [Ful91a].

Profile [MSS+03, Aic92, BP04].

Profile-based [MSS+03]. profile-driven [BP04]. Profiling [Far05, OSF+15, SOD+14, CL87, DG99, DB00, HC04, JK13, LJK+13, MTG+99, ON12, SBS01, SCH+91b, TL11, WH07].

Program [Ano04d, Ano05c, Ano06c, BS06, CKS+08, HVML04, HGTW05, KTG+17, McF89, NPC05, VSST16, AR83, AC09, ASP+99, BSL08, Bec95, DV87a, Dug83, Hc77b, HT14b, Las89a, Mas87, MTG+99, MTN+00, MCC+06b, PvGS90, PACL05, SS98, SK83, SV06, Sch89, SPHC02, SH92, So74, Sni75a, SLZD04, Tan77, TPO06, WS74, Ano08d].

programmability [LAB+11].

Programmable [CTHV+15, MSS+15, ATV+07, BI12, CLR03, FKM83, FL76, GP76, KKC+16b, KW11, LLZ+13, NMS+00, SYH11, SSAC13, WDA+08, WL10].

programmed [PAA+13]. Programmer [Wit16, HEK+16].

programmer-transparent [HEK+16].

programming [ABD+15, AWS16, CKmWH16, EMZ+16, HCD+94, HCW+04, Hll91, KMC02, LL16, SGH+15, TTPL10, Zho16, ABL+80, BF87, CBC+08, Den03, DBMZ08, DMB87b, DSH+10, DZC+13, ESCB12, Feu76, GMT89, GCTR08, HTA08, HFWZ87, HW87, HY85, HSW+11, HRC+90, HG88, KDS012, KJJ+09, LCWM08, MSS14a, Mad94a, McK74, NYNT12, RG91, Rui86, SKC+12, SKS+92, Sch73a, ST08, Van81, WWW+88, Win08, Wir87, Ben82].

Programs [BS06, NP17, RSA+15, SLFP16, AZ98, AL91, AS92b, BM91, Bic84, BMP+04b, BNS11, CBK+14, CO82, CO03, CA88, DESE13, EK88, EK89a, FKBS11, Far05, GTA06, Han78, KL94, KP05, LM76, LC13, LFH03, MS77, PDF+13, QM91, RRRV09, RG02, SDWF13, SLTB+06, SGS+93, ST87, TBC94, UT83, UC94, VJM99, WOT+95, Bit89, Sch91a, Whi78].

progress [Mii87, Pat87]. project [ABMS7, CJM77, HLT94, Kat89, KGM87, Mo83, Muk97, HMT86, Ste81]. Projection [Ant91, SSK+07]. projects [Dre94, SMRT85].

Prolog/Lisp [TSN+86].

Programs [ACT86a, MAD11, MSS14b].

Protection [SZG+15, HSKS15, LKM+05, LM05, CDA14, KJS+06, RKG14, VBYN+14, ZYLG05, ZZP04].

Protection [AYQ+16, BNZ08, MMT16, McD82b, Ber80, CGL+08, FSC76, HS10, HDS10, Hug82, Jon82, KOAGP12, KSLE16, LLZ+13, SLLG05, SPC+06, WJG12, Wil82, WCA02, YE09].

Protocols [DDK+16].

protocol [BLS99, BK05, CCEH00, DDS94, EK88,
HS74, KEW+85, KKD13, LLG+90, LCED01, LR77, Mic92, QS14, Ste89b, SBS93.

Protocols [CMR+06, Dah95, EK89b, GS95, Hof80, Jai82, MH98, SS86, VL88, VM88].

Prototype [SWY10, Dav80a, DM91, LLJ+92, LLJ+98, LL98, SHNS86].

Providing [CME+12, Gra84, YXR06, HMM96, KD06]. provisioned [GWSU12]. Provisioning [DK16, FWB07, PMZ+10, YKD01].

Prudent [PG16], pruning [BM09b].

Przybylski [Tab95]. PS [Isa74]. PSC [FKMD83]. Pseudo [KTK+86, Ran91, LHL+89, XL09]. pseudo-partitioning [XL09].

Pseudo-randomly [Ran91]. PSI [TNN87].

Publications [Ful91a, Tan78, Tho90a, Sta81]. Publisher [Ano08e]. Publishers [All92, Bit89, Fer88, McD88, Par88a].

Publishing [Fos93a, Mad94b]. PuDianNao [LCL+15]. pump [JZY14]. purpose [CT74, FR89, FK80, FTG88, GCT08, HQW+10, HTC10, HSC+90, KS84a, MK84, MR74, NK86, Now87, RvD77, RAJ99, SDD+07, SYP+14, St77, SKA01, TP00, Woo14].

Puzzling [Jon83]. PVT [YLH10]. pyramidal [Tan83].

Python [Tab10].

Quad [KPH+98]. Qualitatively [Laf03].

Quality [LNA08, PAM+16, RSA+15, KK84, MYP+16]. Quality-of-Service [LNA08].

Quantification [KF79], quantifying [RLCV10].

Quantum [BKSO08, HJ+15, IPKW06, IPWK08, KSO08, KBD+13, TMC+06, VND06, CLM07, OCCK03, SV06, TGP10]. Quasar [DK14].

R [CBS88, Dk90, Goo88b]. R [Dik90].

R256 [FKT+89]. Race [HH08, LHH91, MSS14a, ZLJ16, JL7, AKH08, GMF+11, HHB+14, HHS13, KZC12, MSQ09, VAV10, WDC+13, XHB06, DWS+12].

Race-free [LHH91]. race-freeness [AHK08]. races [AHM91, KZC12, LCS+10, PT03, VAV10, WCG14].

Radio [LLW+06, NNIS16, Wk81, Ebe02, NNS12, SBS13]. RADISH [DWS+12].

RAIDR [LJVM12]. RAIDs [BSAAD04].

Raksha [DKK07]. RAMs [CJ88, FRK+15, GcS84, La00, MDS+11, RYF+13].

RAMs [Mat92]. Random [SOSD05, KMA+12, Osl89, WZL+16].

randomization [KS19a]. randomized [BKMM10, SWL10]. randomly [Ran91]. randomness [PBC+13]. range [CWT+01, Hi81, SIG89]. ranking [CGT+14]. Rapid [ABC+94, DFL05, DS11, EW16, SBS01, CKA09, PWA13, AWS16].

RapidMRC [TASS09]. RASE [DFL05].

Rate [HTM15, WEMR04, AP93, AHK00, Alh98, Kog73, SD09, TASS09]. rates [CMPP95, LCF+14, NQ13, Quo94]. ratio
Reconfigurable

[ABZ07, BCSB11, Göhl14, KGS16, NY14, OUY+13, RAJ00, THNM14, WSC+14, dICKK15, BCDL07, BBJ+08, BSD87, CLC12, DSH+10, FDS88, FH/M+11, GDN+16, GPF13, HBH13, JB82, KTO+12, KDP+16, KW11, MPJ+00, MFST88, NSMK11, NMS+12, NYNT12, OIA+13, PCL10, PM11, PEB+09, PCC+14, SBS13, SSDK84, SSAC13, Sur07, TS10, TUTT10, TBL12, WW12, YMH100].

reconfiguration [GKN80, MK11].

Reconstructing [KTG+17].

reconstruction [Yok94].

Record

[MG7+17, HDT+13, HT14a, PDP+13, QSQ14].

record-replay [HDT+13].

Record/Replay [MG7+17].

recorder [XBH03].

Recording

[MGT+17, HDT+13, HT14b, PDP+13, QSQ14].

record-replay [HDT+13].

Record/Replay [MGT+17].

recording [HH08, MCT08, NPC05, NPC06, GSS05, VAV10, XHB06].

recoverable [LAK09].

recoveries [ISG10].

recovery [LAK09, SZBP08, VTGH17, YXR06, AP95, Con88, GSPV03, PZT02, UVG14, POC10, ZdK+13, dKNS10].

rectangular [JM88, OML83, PB82].

recurrence [Kog73].

recurrent [Qui84].

Recursion

[FRK+15].

Recursive

[SJSK17, AA86, IH80, TH82].

recursively [Har86].

Recycle [TST07].

redesign [CHV04].

RedEye [LHG+16].

REDSPY [WCL17].

Reduce [JHK+16, PV04, WEMR04, BS08, Goo83, Goo98a, Goo98b, KPH96, PM92, PBB+13, PV03, SC05, Wei89, YHL10, YCT05].

Reduced [CS80a, LW85, PD80, PS98b, Sta86, XHT6, PS98a].

Reducing

[BBS12, DW90, HnEH+15, Har91, HASA14, HS06, KT91, LLCP94, LYK+00, MH86, MW98, ROKB95, SSR+13, WAC+10, Zha06, AP93, DMS8, FP91a, FP9+92, FKM+02, GHG+91, HCC89, KD06, KJM+07, LW95, LAS85, LCF+14, PSB13, SDH+14, ST03, SCAP97, VSG+10, WSY95].

Reduction

[ANMF08, Ber74, Hoo77, BT13, BM01, CCC+88, Con88, HBBH02, Hom82, HRT03,
Redundancy [PGS04, SZBP08, PJJ07a], redundant [APX14, Che87, MKR02, PSG06, PR82, RRPP06, SGH03, WLG+14].

ReEnact [PT03], reentrant [Cou90b].

REF [ZL14]. Reference [Hol89, Lof74, MCXS16, BHS12, FKC+06, GS07, JTEE10, JMP09, JmWH97, Kee79b, MF05, SA92, WKS9, Yue84].

reference-counting-based [JMP09]. references [Ger80].

Regarding [Laf00]. Region [LS12a, SBZ+15, ADT13, WBM+03, WW13, WCF01]. region-level [WCF01]. regions [Bre10]. RegionScout [Mos05]. Register [BS04, Cha96, DeM96, DM82, GCO+04, KMC+93, LMG04, QMT89, WW93, AAZ89, BS73, BYG+00, BEH91a, BEH91b, CCV+09, CGVT00, EP87, EP88, FP91a, HKT93, HS85b, HS74, HL85, IGS07, JSL+13, Klu76, LcC92, LH86a, MSAD91, QM91, Req83, TA03, TS99, WS90, kSYHX+11, Yue84].

Registers [HGTW05, BB74, DWW90, GH86, Kar89, KMC+93].

regression [LB06, dOFD+13]. Regular [BTC06, KLMH+88, MS84].

Regular-Expression [BTC06].

Regularities [PBC+13]. regulated [PP88, XH806].

regulation [KOAGP12].

Regulator [BLI17].

Reinforcement [IMMC80, SLT16]. Reinhold [McG78, Vra78]. related

[EGK+85, Smi86, VERJ99]. relating [Bur82, RHZC74]. relation [BSF+91].

relational [BH78, BLL+83, Cha78a, GKF84, KMI+85, MKM+83, YI86, SS78]. Relationship [SOM+08]. relative [Bet73].

Relax [KNS10]. relaxed [DNB+11, HT14a, NCLJ09, QSQ14].

relaxed-consistency [HT14a, QSQ14].

RelaxFault [KE16].

RelaxReplay [HT14a].

relyout [MTN+00]. release [DKCZ93, KCCZ92, Waj92].

Reliability [SDR11].

Reliability-Aware [SABR04]. Reliable [WJZY15, ZYM15, BVR+00, ICY+10, JYZ14, KSL16, MG91, NRS+07, SYL13, YK05, Yok94].

reload [SRB+07].

Relocation [VSST16, LM99, WW93].

Relyzer [HANR12].

Reliable [WJZY15, ZYM15, BVR+00, ICY+10, JZYZ14, KSLE16, MG91, NRS+07, SYL13, YK05, Yok94].

reloaded [SRB+07].

Reliability-Aware [SABR04].

Remote [KLK17, KMN+16, OCY+15, Hm96, KHS+97, PA88].

Remote-memory-access [KHS+15]. Remote-Scope [OCY+15].

Removal [SHP+16].

Removing [PGRT01].

Renewable [GA79].

Renewable-Aware [SABR04].

Renewable/Reliable [WJZY15, ZYM15, BVR+00, ICY+10, JZYZ14, KSLE16, MG91, NRS+07, SYL13, YK05, Yok94].

remodel [SRB+07].

Repair [BRM10, HP87, KE16, SDWF13].

Replacing [QTP05, QLM06, Dev09, DG92, DSN07, JL16, JTEE10, JNaS+12, Kha95b, Kha97a, Kha97c, McF92, PK94, SG83].

Repair [HT14b, NPC05, BRM10, CHCW10, EHA03, HR09, HDT+13, HT14a, LWV+10, MKHT09, PDP+13, QSQ14, VIL+11, VNN13, XBH03].

Repairing [MCT08].

Replica [MK84].

replicated [EST89, IC+10].

Replication [CPV05, ZA05, AZK06, HFFA09, SHV+98].

replication/migration [SHV+98]. Reply [Goo88b, SM77, Woo86].

Report [ABC+94, Mad96, Dic80, Gas88, Mar88, Mil87, Pat87, RVLS14, Ste80, Irw86].

reporting [CCM08].

repository [KBS84].

Representation [Chi89, HS16, Tho76, HS74, SDP85].

Requirements

[CDY+17, Bra77, Cra79, CA88, CHKM93, Joh82, Kus87, Kus86, LFH03, OC78].

ReRAM [CLX+16]. ReRAM-based [CLX+16]. ReRun [HH08]. rescue [SLP+09, SV05]. Rescuing [DJPK16].

Research

[BMF+16, HLL+93, Hill83, Par90, Pat06, CHJ83, Dal10, DCS+14, Est02, FKT+89, Re80, SzUK+04, Tho09a, Tho10a, VR73, We97]. Researchers [Mud96]. Residue [DSG11]. resiliency [HANR12, HVAN14, KCE12]. Resilient [SLSO13, HC99, LRS+08]. resistant [TML+00, VCK+12]. Resistive [GIS10, ICN+10, SLSB10, ZNF+16]. resolution [BYG+00]. Resolved [Woo14, KMT91]. Resolver [Lee85a].

Resonant [PV04]. Resource [CV06, CA88, DK16, OML83, PPM17, PB82, WM16, BMO9a, CMLV04, DK14, ELMP11, FJB85, GST74, GKS+07, HCD+94, JB76, PAVT16, Rey82, RE13, SHV12, Tak87, TMV+11, TA76, TF01, VNM+12, Wah83, XJK+16, ZL14, ZELV02, ZWM+14, ZBF10]. resource-conscious [CMLV04]. Resource-Effective [DK16, DK14].

retrieval [AR80, ERT78, GSR93, Lee85a, Rob78, WW89]. retrofitting [CGL+08].

Retrospective [AH98a, Aga98, BW98b, Bat98a, BS98a, BLA+98b, DCF+98, Den98, DP80, DP98b, DP98a, DS98, EC98b, Fis98a, Gha98, Goc98a, Got98, GL98c, Hen98, mWHP98, mWHP98, Jou98b, Kna98b, Kus98, LL98, Lip98b, N98b, P98a, Pat98b, Pat98a, PS98a, Pie98, RLW98a, SP98a, Smi98c, Sm98d, Sm98b, Soh98b, Soh98b, TEL98a, VYK+98, YP98b, vECSG98, Pie83]. return [CLR05, YK05]. returns [KE91]. reuse [ATT+13, CHCWH00, KOA912, NAAL01, RKM+11, SS97, WCF01, WZY13].

Reverse [LSB15, Sos94]. Review [Alv93, Atk79, Ben82, Bit89, Buc78, Chr77, Fer88, Fos93a, Ful93, Gor83, Hol83, Lan76, Mad94a, Mad94b, MCG78, Mil77a, Mdc88, Mil77b, Par88a, Par90, Sch88, Sch91a, Smo89, Su74, Tak88, Wks81]. Reviewers [Ano04e, Ano05f, Ano06d, Ano08f].

Reviews [Fos93b, Lan93, Mll77a, Benz82, Bit89, Chr77, Hol83, Lan76, Mud980, Sac83, ACM93b, Vra88, Whi78]. revisionist [PT91]. Revisit [WQL92]. Revisiting [AH12, WW+14]. Revivable [SLFG06].

ReViVaL [LWB08]. ReVeV [PZT02].

reviving [ADS+13]. revolution [KFW08].

Revolutions [Emm06, ECX+11]. rewriting [HR07]. REYSM [NS86]. RFID [RSP11].

Ring [MABYT15, SST06, BD93a, Mic92, SGV92]. ring-based [BD93a]. ring-connected [Mic92]. riOMMU [MABYT15]. RISC
[HO91, AZ98, Aßm93, BZ87, BC91, Bha97, BEH91a, BUH87, COS2, CHJ83, Cou89, DeB89, Dow87, Dow88a, Dow88b, DFT86, ELN89, ER92, EE93, FCP92, Grist, Hea84, HLS85, HDP90, Jon88c, Kia87, Lar82, Mil87, PMPM96, PP92, PGH+83, Pat84, PS98b, PS98a, PH90, Sho87, SEI+95, Ste88, UBF+84, Wil83a, WWC+14, Yuen99b].

RISC-based [FCP92, HDP90]. **RISC-like** [AAZ89, Wil83a]. **RISC/CISC** [CHJ83].

RISCs [BCDN87, BEH91b, Jon88b]. **RISCY** [Pat88, FFK+82]. **rise** [Pau13]. **risk** [WWC+14]. **Risks** [Jon88b]. **Rivalling** [CM80]. **RNS** [GGS12a, DSG11, NNI16].

road [AHKB00]. **Roadmap** [GSN05].

Robert [Cha92, Iva91]. **Roberts** [CLC12]. **robin** [VM88]. **Robust** [CMF+13, ES95, PGVB04, QFLMK10, RD01]. **Rochelle** [Mil77]. **Rock** [CCE+99]. **role** [BDJ+11, CR94]. **Rollback** [LS82, PZT02]. **ROM** [Ano89]. **root** [TLLL07].

root-hashing [TLLL07]. **Rotary** [APGP07, OT86]. **Rotating** [KC96].

rotations [KB93]. **round** [Gai80, VM88]. **round-robin** [VM88]. **Router** [BTR805, KDG05, KN06, PED+08, APG07, AGSY94, DCB+94, KNPr07, KSL08, KMC02, KS91b, KS91a, MFB+02, RH96, YKD01]. **Routers** [MW04].

Routing [PGVB04, SAL+05, AEBAT98, BC93, CKA92, CA09, DDS95, DCB94, FHM+11, GN92, GN98, JK09, KLC94, KCW99, KM10, KS91a, LN91, MJW11, MTO9, NS90, NS91, N98, PMZ+10, RFS88, SKA+11, Sez86, SDGT03, TS90a, WIT76].

Row [OSKA14, PBC+13]. **Row-buffer** [OSKA14]. **Rowhammer** [AYQ+16]. **Royal** [IEE83]. **RPC** [CS13b, SADAD02].

RPCNET [F19a]. **RRIP** [JTSE10]. **RSA** [CW02]. **RSIM** [PRA97]. **RT** [BS73]. **RTL** [CWS+11, KIC+16, SRWB14]. **RTR** [XHB06]. **RTX** [KKC92]. **rule** [CHWY13, GFNW86, KOB88, LN92]. **rule-directed** [CHWY13]. **rules** [CHWY13]. **Run** [JnW97, PPR09, SIG99, ACJL13, AJL14, GPV04, HBI13, Mul89, TP90, YMX+10, dRBC93, uAM16].

Run-time [JnW97, PPR09, SIG99, HBI13, Mul89, YMX+10, dRBC93].

Runahead [MKP05]. **Running** [BCG91, IWP08, AS99, KG16, KAD04, MLCW11, RSF11]. **Runtime** [HSK15, HCL15, MAHK16, NW+15, SMB10, WM16, XLWZ15, BAD+10, DZ+14, HTC10, KD92, LDK14, MTG+99, SGB00, SRSW14, VP89]. **runtimes** [RL14, TBW16, WK09]. **Ryan** [Ful91a].

S [Fos72a, L176, Ram78, Sch88, VFCM15, FW97, HS10, NBP95]. **S-COMA** [FW97].

S-connect [NBP95]. **S** [Tan88]. **S/390** [HS01]. **S2E** [CKC11]. **SaberLDA** [LCC16]. **Safe** [CRW+15, GKT13, MS15, ASP+03, CME+12, CFS+12, CCA+11, MSZ09, NMZ12, NYNT12]. **safety** [DBM08, LM99, NMZ12].

SafetyNet [SMH02]. **SALP** [KSL+12]. **salvaging** [PBM09]. **SAM** [LCC98]. **SAMP** [Now87]. **sample** [KIC+16]. **sample-based** [KIC+16].

Sampling [NSH+11, BEL+00, Kha97b, SBS01, WZL16, WWF03]. **San** [ACM93a, IE03]. **Santa** [ACM95]. **Sapper** [LKO+14]. **satellites** [Gai83]. **Satisfaction** [SOM+08]. **saturation** [SSS95]. **Saved** [Wak81]. **saving** [Har78, LH86a, LPMZ11, MAL01, Mus09a, RPSV07, Sta89]. **saving/ restoring** [LH86a]. **SC-DCNN** [RL+17].

SC2 [AS14]. **Scalability** [NCL09, RHR+17, TM05, ACS+12, CGB89, GTSS13, GHKM11, H1090, PGRT01, VIA+05].

Scalable [BTC06, CH04, CKZ12, DS8K04, FBA08, GAR+05, GY+17, HKN+17, IPW108, KDS08, LCL+16, MLCW11, MS15, NP17, QSR09, RLD+17, SAB+05, AGT11, BGM+00, Bay99, BMP04a, BMBW00, CKA91, CMT00, DCS+14, Fra90, GLL+90,
GLL+98, Gha98, GW10, HW80, HG86, HR09, JSL+13, KJJ+09, KMS+10, LL97, LIMB09, Mat91a, MKKU03, MGBK96, MPSIV89, PHH16a, PHH16b, QTS02, RBR02, RAC99, SK11, SWY10, SYH11, SCZM00, TYSK11, TBG+97, TTCC12, UMB+11, WAA+14, scalar [FB92, GL98b, HD86, Skl92b, Skl92a, WS87, ZCSM02]. Scale [Bar11, CYMT16, CYG+17, HLZ+15, LKG+12, Mil77b, NDB+14, PDL15, QTS+13, TQC+15, BTV+11, CY96, FAK+12, FV82, GKL83, GW88, GVW89, Ham09, HSH96, HIM+05, JKD09, Joh92, KBC+00, LAS85, LCG+14, MPT91, Mar00, MTS+90, NP90, OT86, OLJ+14, PCC+14, RSF11, RG93, SPhC02, Smi14, SB77, TMW+13, TD91, WHZ+17, YBMT13, SBK77]. Scale-out [LKG+12, NDB+14, FAK+12]. Scaling [DGT15, EMM06, JS99, KZT05, PTB16, RJK+09, EBS+11, ECX+11, Geh14, LDK14, MSS+03, MCD+08, NQK13, NY+14, PM11, SW+16, WZY13]. Scan [Fis86]. scanning [Lec74]. scarce [ZWM+14]. SCC [Wil88]. schedule [NAAL01]. scheduled [FCJV97, FM84, KMT91, NH97]. scheduler [BMK+10, EHA03, JCS+14, SRB+07, WRSY16]. schedulers [NP11]. Scheduling [JSWB93, KSC17, MT84, MM08, SXYH16, SA91, TT08, VJE+12, AA82, ACS+12, Bak91, BEH91b, CS06b, CNO+87, CCB+06, DK13, DZZ+14, DJT94, EA02, EE10b, GGH92, GLM13, IB12, JW95, JNS+12, JDL81, JSMP12, JKN+13, JKM+13, JSAM10, KD92, KKK+13, LS12a, L90, LRHM90, MSAD91, MDR+00, MSS14b, MSP+06, Mil82, MAL01, OA08, RDK+00, SYK10, STND+13, SBO9, SLH90, ST00, Tho11a, Won16, YERJ99, YKL+16, ZBF10]. Scheme [ES05, AJ77, AP95, AS14, BS87, BBBBB94, CKA91, CHCW10, CV88, HBJ86, HJ87, HSL95, Hs85a, Hic76, Kha97a, Kha97c, KKK76, Lap91, LS92, MP889, MTG+99, MC91, PH88, TYS+94, TTCC12, TYZ85, Wei89, Won89, VP89]. schemes [AAHV91, ASHH88, ASHH98, CB94a, GYCS96, Hen98, HCC89, LM76, MPT91, Rao84, RS84, SL92, VS92, YGS95]. Schneck [McD88]. Schofield [Sch91a]. Schur [Che90]. SCHR USS [GRRT84]. SCI [SGV92]. Science [Col90, DHR+90, FK79, Pau13, KRM83]. scientific [BNA88, Cha90, CHKM93, FKT+89, LS96, SHN86, YXY+07]. SCISM [VBE92]. Scope [OCC+15]. SCORPIO [DS+14]. Scrambled [Lee88]. Scripting [KKK+17]. SD [WJZY15]. SDC [UVG14]. SDF [OLJ+14]. SDR [WSC+14]. SEAI [Ful91a]. Seamless [FPC92]. Search [BTRS05, DGT15, MNS+14, MSH+15, SKY16, CW06+06, RLC10, SKA+11, SG11, TYNM86, WLY84]. Searching [JPT14, BTW77, Cop78]. Seattle [IEE90]. Second [Smi91]. Secondary [DLSW76, EE93, Lip77a, PK94]. Secret [DGT15]. Secretary [Irw86]. Secretary/ Treasurer [Irw86]. Secrets [LKM+05]. section [SMQP09, YL16]. sections [EE10a, HHS13, MBK90]. seco red [Sez94]. Secure [AMH+16, SW74, SLZ04, SOD05, TtLC13, BA84, CS11b, HKD+13, Ino05, KFM05, ML05, NM12, RYF+13, SL12, WGO+13, WWA01]. securing [LWH+16]. Security [Ber80, CWW+08, Che05, CDG+17, FZX+17, HS15, SWL10, SLG+05, YEP+06, ZWSM15, ZSG+17, CC05, DKK07, HS10, Ino05, Kar07, LKC+04, LNBZ08, MPX+13, MK05, MM14a, NPCF08, PL06, TOL+11, VCK+12]. Security-Critical [HSK15]. security-modified [MM14a]. see [AC09]. segment [BLs+76, Hea76, See89a, See89b]. segment-sequential [Hea76]. Sego [KDL+16]. Seitz [Par90]. Selected [Lei91, CH01]. Selection [CKW16, LM76, PR05, BPG+01, ME78]. Selective [CRT99, HC99, KPG98, LF00, RAM+04, ACM02b, CV88, DSBK04, EHA03, GKO99, PT10, ZNF+16].
Selective-set-invalidation [HC99]. Self [IMMC08, CS99, CCV+09, DGY89, LF00, LW95, NS80, Now87, JPDJ06, SLK05, SLP+09, DLSW76]. self-healing [SLK05, SLP+09]. self-invalidation [LF00, LW95]. Self-Optimizing [IMMC08]. self-organizing [PJDJ06]. self-spatial [CS99]. self-test [CCV+09]. self-timed [DGY89, Now87]. Semantic [HABZ17, Lip78b, MTU89]. Semantics [Kav80, MCC+06a, BSLO, Feu76, LCS+10b]. semaphores [DD80]. Semi [SBM02, MSZ09]. semi-automatic [MSZ09]. Semi-hierarchical [SBM02]. Semiconductor [BJ78, Che84a]. Sensing [Ldjl+16, PCDL09]. Sensitive [ZWSM15, HHS13]. sensitivity [BP04, KC07, WW12]. Sensor [HTM+05, NZO+05, EKM04, KC02, LC02, LHG+16, NMS+12, Est02]. sensor-actuator [KC02]. sensors [HSW+00]. sensory [MK84]. Sentry [Bar82, SD10]. Separation [DKD+15, WS90]. sequence [IBC12, Lit94]. sequenced [Wra91]. Sequences [YT04, VM07]. sequencing [Smo89]. sequencing-based [Smo89]. Sequential [BS06, MS05, BS+76, CTM07, CTW+13, Hea76, LS77, LNRG12, QTSG13, QM91, SNM+12, Tice88, Uc83, VLW+11, ZLO+11, ZWS14]. Sequentially [Lec74, HX97, HA90]. Sequoia [Mar85]. serial [LHL+89, SP87]. Serializability [SBZ+15]. Serialization [GMT16, QST14]. serializing [JVV13]. Series [Chr77, Ber76, Cra88]. serve [VM88]. Server [LRC+08, Mad94a, APP+14, DSH+94, GSKF03, GCG+14, HCG+06, IMK+13, yKPR02, LL97, Lan05, LQL12, LL14, MH07, MGW09, NMS+00, SBIS11, Wol89, YCMR12]. server-based [Wol89]. Servers [RLIC06, SKJ+17, BGC+13, CMR+12, JVF13, LCM+09, LMS+13, SSD+13, WGH+97, Won16]. Service [LNA08, GHKM11, Ham09]. serviceability [SBM02]. Services [HhEH+15, JHK+16, KDL+16, MSS+15, MSB+11, PCC+14, SLK05]. Session [NYNT12, Tsan16, DHR+90, HCD+94, IAD+94, SGG+85, SMRT85]. Set [BKS05, Bhu83, CS80a, CBC+05, PS98a, TM14b, AZ89, AAD90, BD84, BEH91a, BA97, Bur82, CG95a, CKDK91, Cra83, DV87a, De 90, DS02, Fos72b, GH90, Gov07, GTL13, HB86, HHL16, HC99, Joh89, KJLH99, KS02b, KMC+93, LDT+16, Man01b, Man01a, Mar83b, MHS+03, McD82a, PD80, PS98b, Sho87, SFS00, SK108, Sta86, SS82, TJS83, WQL92, Wie82, Wil88, HLL+93]. set-associative [WQL92]. set-associativity [KJLH99]. sets [CE98, EP87, GB74, HS85b, Mye77, NA83, RSG93, SM77, Wak80]. Setting [UVG12]. severe [ZSL10]. SGI [LL97]. SH [AIK+05]. SH-X [AIK+05]. Shack [Wak81]. shamer [APX14]. shaders [WL10]. shadow [GHS16, SSC98]. shall [Bak94]. Shallow [SKN+15]. shaping [ZW16]. Shared [DK16, Irw10, Las88b, MRG12, MCT80, MM08, PPM15, WSH+05, ZE16, AGT11, Bay99, BC920, BLS99, BR90, BMP+04b, CHX+11, CA04, CGB89, CFS+12, CMT00, CF93, CTK+94, DLOCO99, DLT90, DDKC93, DSN07, ELMP11, EGK+85, FB08, Far05, FH88, FHH+89, GCM+10, GLL+90, GGH91, GGH92, GLL+98, Gha98, GGK+82, GGK+98, GS95, GN89, Har91, HSH96, HJL89, HX97, ISL06, JB76, KCK92, KL94, KS95, KHS+97, KADS04, LW95, eHLL89, LMRS92, LS92, MHS+03, MBK90, MGBN96, Nad88a, NPC06, NO94, Nik09, Nis91, OZK+12, PGSP00, PH88, PZT02, RPASA97, RLW94, RPW96, RLW98a, RLW98b, Rey82, SRJ+05, SHZ97, SWG92, SPA+98, SMHW02, SK108, ST08, TGB+97, TD91, TA76, Wil87, WCF+93, XL09.
YPD83, YKA96, YN09, ZT95, ZBF10, shared-medium [CHX11], shared-cache [NO94], shared-medium [CHX11].

Shared-Memory
MCT08, BR90, CMT00, CDK+94, EGK+85, FH88, GLL+90, GGH91, GGH92, GLL+98, Gha98, GGK+82, GGK+98, CS95, GN98, HX97, LW95, eHLL89, LMR92, MHS+03, MBK90, PZT02, RPASA97, SWG92, SPA+98, TBB+97, YN09, ZT95. Sharing
Mos05, EK88, EK89a, FH76, Hum96, KS14, KC74, LF99, LCM09, SBS93, ST87, TMV+11, TE94, TtLC13, Wah83, ZL14, ZW14. sharing-based [TE94]. Sheaved
[Sia89]. SherLog [YMX10]. shift [Khu76], Shoestring [FGM10]. Shor [WIPK09].

Shor [HSBA16, KKC+16a, LCL+16, AJL14, CPT08, DCB+94, Gun90, HY85, OCOKC03, Yue81]. Short-circuit
[KKC+16a], short-haul [DCB+94]. Short-Lived [LCL+16]. short-term
[AJL14]. short-wordlength [Yue81]. shortcut [KMA+12]. Should
[Wil88, Muk97, Woo14, dOFP+13].

Shredder [AMH+16]. Shredding
[AMH+16]. SHRIMP [BLA+94, BAC+98, BLA+98b, BLA+98a, FAB+96]. shuffle
[BAES94, BSD87, Sov83, VR87]. shuffle-exchange [Sov83], shuffle/exchange [VR87]. shuttle [Sat74]. SI
[LCF+14]. SI-TM [LCF+14]. Side
[DMWS12, Bra82b, GLM13, MDS12a, WL07, TMW+01]. Side-channel
[DMWS12, MDS12a]. Sidewinder
[LJdL16]. SieveStore [PT10]. SIGARCH
[An99, An00e, Bre72, Die81, Pat91]. SIGMA [Sez86, SHNS86]. SIGMA-1
[SHNS86]. Signal
[Kro83, BMP04a, GSS12a, GSS12b, GWM03, MS13b, Nit89, SKC+03, VF85, WSM+09]. signature
[MSQT09]. signature-based
[MSQT09]. signatures
[MMJ05, SZD+08, TACT08]. significance
[Ros77b, Sit73]. significant [Par95].

SigRace [MSQT09]. silent
[LL02, AMH+16]. Silicon [KMS+10, BSK+10, EBS+11, FGVG13, KMOA07].
Silicon-photonic [KMS+10]. Silver
[IEE77]. SIMD
[BHBL87, BAES89, ED83, HWC91, KCE12, MT97, Par95, P09, PD06, RE13, Se77, TNY11, VSW+13, YL84]. SIMDization
[HCC+10]. Simics
[Far05]. similar
[BC91, BFS+09]. similarity
[Br87, SS+16]. SIMP [MIT89]. simple
[ASP+03, BDLM07, DDS94, FKM+02, HW95, LCE01, RPS07, UM95].

SimplePower [VK1+00]. SimpleScalar
[BA97, Man01a, Man01b]. simplifying
[LC+10]. SimPoint
[LSG05]. SIMT
[KTS+13]. simulate
[MAF+09]. Simulated
[GKO+00]. simulating
[RB07]. Simulation
[DFL05, DBK+02, EBS+04, JKT05, JKT09, Kno73, KMK16, SCU+14, S0+15, T0+07, ALMS82, BC90b, CL01, CB92, DRC05, DSOF11, Fra86, Fra90, GKO+00, GP02, GCL85, HAN14, HRC+90, HOS+07, Kha95a, KIC+16, KEL91, KBR89, LSSG05, LMND76, LSFK08, MS13a, MF05, MESSZ6, Mon98, NK86, OC000, PGSP00, RL76, Rey82, SK13, SDD+07, SL88, TSSK11, TBL12, Van81, WF87, WWH03, YMI1]. simulation-adapted
[GP02].

Simulations
[WN14, BK90, CAD09, GP88, GPF13]. Simulator
[TQC+15, AF95, BBB+11, Cor89, FTC99, MSB+05, PRA97, SRW14, TSC99, WGT+05, ZYG09]. simulators
[Sh87]. Simultaneous
[BCD12, CSK+99, CCE+09, TEL95, TEL98b, HKN+92, LBE+98, Luk01, RL74b, REL00, RM00, SW16, ST00, TSC99, TEE+96, VPC02, TEL98a]. Singh
[Ful11b]. Single
[BTRS05, BYP+91, KTR+04, MI89, COS05, VE14, WHZ+17, BGM+00, CS11a, CS80b, CST+05, FTP94, GCL85, J04, Kuh80, KHC92, KKP14, LH86a,
Software-Controlled
[BCG*08, CSB86, KFN02, KL91, Luk01].
Software-Defined [DHR+15, OLJ+14].
software-exposed [TACT08].
Software-extended [CA94], software-hardware [MHKT09].
software-managed [HR00, NUS+93].
software-only [GS95], solid [CME+12, CS13a, DJ09, JWKC12, JCS+14, PB80].
solid-state [DJ09].
solution [AB84, PP84, Pat98, WH97].
solutions [Kog73].
solve [Deb89].
solver [AOM+14, SKN+15, SKCY16, AL12].
Solvers [GC11, vdHS90].
Solving [AYA83, GSZ90, GLH88, Lan90b, ABKA85, JD88, OT86, WLY84].
Some [BL76, EHA82, Joh82, Las89b, PP88, Sha80, Yue84, Das77, Deb89, Wis86].
Something [Bat72, Fos72b].
Sons [Atk79, Ben82, Ber91a, Bow79, Ful93, Gor83, Mud80].
sorter [DSM82].
Sorting [MCK16, CT08, Gut87, HW95, SP85a].
Sound [CSBA17b, CB13, DWS+12, DP76, DPB76].
Source [BMF+16, dICKK15, ELMP10, ZMMT16].
sources [HWQ+10].
space [BS73, BFPO3, CME+12, CYH+11, CGT+14, Cra79, HIM+05, HH93, Jon08, Kep91, Lof74, LNBO8, NO94, RYF+13, Sat74, SRWB14, XGC+10].
SpaceJMP [EMZ+16].
Spaces [EMZ+16, SSK17, CKZ12, IM+06, PHB14, Wil91].
Spain [Acm98a].
spanning [HDP+90].
SPARC [BKS+94, CKDK91, KK92, LKB91].
Sparc64 [ST03], SPARCcenter [SG94].
sparing [MM92].
SPARK [SW90].
Sparse [AYA83, WZJ15, ABK85, GS290, HMM89, SW90].
Sparsity [LCCZ17].
Sparsity-Aware [LCCZ17].
Spatial [BVCG04, SWA+06, CS99, CES16, CM00, CCB+06, DBMZ08, GB01, KW98, Mar00, MCC+06b].
spatial-lattice [Mar00].
spatially [MSCS13, PPA+13].
spatially-programmed [PPA+13].
Spatio [SWAF09].
Spatio-temporal [SWAF09].
SPEAC [Mar74].
Speakers [Tsa16].
SPEC [AE01, CH01, CSW94, Ci03, CKDK91, CB94b, GP02, GS07, Hen06, Hen07b, Hen07d, Hen07e, KC97, MJP95, PJ07a, PJ07b, PH90, Spr07, Wei97, W07, YRK07].
SPEC95 [PGTM99].
SPECS [AE01, CH01, CSW94, CT08, Gut87, HW95, SP85a].
Special [KSN07a, ABZ07, FK80, FTG88, JKT04, JKT09, K05, KS84a, MK84, Mar74, NK86, SDD+07, TK07, JWB93, JWB94, Pen88, Ram88].
special-purpose [FK80, MK84, SDD+07].
specialization [OKJ+13].
specify [CWS06].
Specialized [NS16, QH+13, Rob78, Tho10b, W01].
specializing [MKGT16].
specific [BS08, CDY+17, KS07, LS12b, MPSiV89, PP92, SY06, WBS+88].
specification [Cra83].
specifying [BKL+16, BNS11, RLS10].
SPECS [HSKS15].
Spectr [BCR11].
Spectrometer [NNIS16].
Speculation [CWY+08, Y04, YERJ99, ZS15, ADT13, DG99, GKMP98, cJC099, LWV+10, MK98, MT02, MTZ13, MBVS97, NZS+07, NZS+09, PT03, RSW04, SB05, SCZM00, ZWS14].
Speculations [Tag85, Cra88].
Speculative [BS06, CTTC06, CWY+08, CWT+01, CASM06, HSS94, LGM+14, MT02, PV02, PV05, RK+10, ANNH95, ACM02b, ACM+98b, BCR11, CCE+09, CMT00, DS06, LF99, LBCG95, LPH+09, MDS12b, OL02, PGRT01, ZCM02, ZS01].
speech [AB86].
Speed [Alv93, IWP08, TM05, AA11b, APR89, BVR+00, CF82, DSG11, Gun90, Gup89, GSKF03, HS85a, KW84, KMK16, LDK14, MIT89, N98+85, PN88, SHMZ94, TDF90, TW77, TLL07, Tur79, Wil83b, ZLZZ09].
Speeding [ZT95, ACF05].
speedup [HRDA85].
speedups [SBV91].
spiking [NMTH10, YM11].
spintronic [VR+14].
spintronic-tape [VR+14].
SpinWise
[ANS+15, FP91b, NP90, BA82, GS95, KDJ83, Prz90, RR77, Smi98b, Smi98c, VGSS85].

Strategy

[BEH91a, Dev93, ELN89, Wan93, dRBC93].

Stratified [ATT+13, SBS01]. **Stream**

[ADK+04, DC09, HCC+06, SKN+15, BYP+91, Dav80a, FKBS11, God13, GTK+02, GTA06, HSW+11, LLC06, MIT89, NRRS+05, PK94, RL74a, RGD09, SKC+03, WS91, YXX+07]. **stream/Multiple**

[MIT89]. **streamed** [SKS+13]. **Streaming**

[Mac98, SWA+06, VX17, WSH+05, BCDL07, BD91, GSM+99, HCW+10, SYH11, SWAF09, VFMC13, Waj92].

streaming-array [SYH11]. **Streamlining**

[APS95]. **StreamRay** [RGD09]. **streams**

[CDS83, CL09, GCTR08, ZFC03, TLM+04]. **Streamware** [GCTR08]. **strength**

[AWC+11]. **STREX** [ATT+13]. **strict**

[KS14, TOL+11]. **stride** [ZFC03]. **stripes**

[VLL+92]. **strike** [HSS12]. **String**

[Cop78, TS05, ACF05, TYNM86, Vin77]. **striped** [CP90, KDSO12]. **striping**

[DS89, HASA14]. **stripped** [HM05]. **Strober** [KIC+16]. **strong**

[MTC+07, NSQ16]. **Strongly** [BNZ08]. **Strongly-Atomic** [BNZ08]. **Structural**

[SABR05, NP90]. **Structure**

[Bow79, JS73, Mud80, BEH91a, Fen84, HG86, HHA83, JS88, KBB02, KTS+13, MS82, Mat78, Now87, PN83, TT82].

Structured

[Ano81, Bou75, PT83, Ram78, CFS+12, Hil83, Kan74, KB80, KKK76, La95, LM74, Lof74, SA86, Ter87, Van81, VH73, WR84].

Structures [BRC+05, CSBA17a, DGT15, All76, BS76, BS08b, DG92, FW82, Gaul85, HM93, Hom82, Klu76, Lec74, RS99, SK86, SDP85, SP07, Iov91, Tak88]. **Structuring**

[Goo88a, Hic77b]. **struggles** [RRT+08].

STT [GIS10, GGP+13, MDS+11].

STT-MRAM [GIS10, GGP+13].

STT-RAM [MDS+11]. **students** [Muk97]. **Studies**

[EBS+04, BC90b, DDP85, FD87, GKZ+07]. **Study** [AOM+14, CTHV+15, LSB15, ZAI+16, BAC+98, BCDN87, BD93b, CB92, CB94a, CY96, Con88, CDK+94, DCW+11, D190, FTP94, FAK+12, GTSS13, KS02a, KW13, KDK+14, KM74, KDL+93, KDL+98, KBD+13, L93, LJK+13, LPSZ08, MSB+02, RB89, RB90, Red92, SL88, SG94, SG83, Smi98b, Smi98c, TEN11, TA76, UC94, VSH91, Wah83, WS87, Wse82, ZB92].

Studying [WZY13]. **style**

[AI83, CLM07, Lip76]. **Sub**

[CASM06, CCS87, ZW14, ZHW16]. **sub-core** [ZW14, ZHW16]. **sub-micron** [CCS87]. **Sub-Threads** [CASM06]. **subarray** [KSL+12]. **subarray-level**

[KSL+12]. **subclass** [Joe90]. **subdivision**

[MTS10]. **subject** [Tri80]. **submicron**

[VBS05]. **subordinate** [CSK+99, CTYP02]. **Subroutine** [WH07, KE91]. **subscript**

[KPK90]. **Subsetting** [PJ07b].

substitution [LH88]. **substrate**

[DRCO05, ELMP10]. **subsumes** [Nik89]. **subsystem** [ACK94, BBH94, CPdM+96, Dug83, SHMZ94, TMV+11]. **subsystems**

[Jag80, Kat89, Yom92]. **Subthreshold**

[NZO+05]. **Subthreshold-Voltage**

[NZO+05]. **Suggested** [Gil80]. **suitable**

[Roe85, SP84]. **Suite**

[ZBBL16, BO01, Hen07c, Joh04, PJ07a, PJ07b, PL06, YLT06]. **Suites**

[LWPG17, Pon91]. **sum** [LLC98]. **sum-addressed** [LLC98]. **Summary**

[HG88, HK77, Kav81]. **Summer** [DK17]. **Sun**

[CCE+09, KKC92]. **Super**

[WJZY15, FB92, ST03]. **super-scalar**

[FB92]. **Supercomputer** [Che90, CKPK90, McD88, ASK85, BDW85, DR91, NBKP95]. **Supercomputer-based** [Che90]. **supercomputers** [HS93, KS86, SL92, VSM+07a, VSM+07b, WS84, WS87]. **Supercomputing**

[Gar94, Hey90, NNS+90, VFK+04]. **superimposed** [AR80]. **superlattice**
Superoptimizer [Mas87].
superoptimizers [BA06]. superpage [ROK95]. superpages [SSC98].
superpipelined [Jou88, JW89, SD94].
Superscalar [Jou88, KS04, CYL99, CWS+11, DSF+90, HKLS00, IT93, JW89, JSL05, KS07, KMT91, LeCC92, Lai92, LKB91, NN+91, OWC190, PJ979, SN99, SLH90, SF91, Sur07, TA03, UH93, VM97, WOR96].
supplant [Woo14]. supplementary [Tho12a]. supply [PV03]. Support [ADP+15, CRW+15, DHR+15, HFL03, JPL08, KKK+17, LER+17, Ozt15, Ram88, Sds08, SA15, ZQL+04, AR83, ADT13, AA82, ALE90, BCL82, BLS99, BF87, BD84, BMA00, BCD89, CMF+13, CL09, CL87, CS99, CZ14, CFS+12, CY96, CMT00, CHCWH00, CSS+01, CR94, DF92, DHB89, DBMZ08, DMB87b, ESCB12, FSC76, FH76, GSR93, Gra84, GKB+13, HTCU10, HM93, HI183, HH93, IHM89, JDL81, Joh82, KC95, KFM05, KM86, KS95, KH07, Lec74, LCS10a, MJW11, MSL82, MWP07, MHH+95, MH07, McD77, MW12, MDS12b, MTG+99, MB90, Mul89, New92b, New92a, OPZ11, PS12, PQC+09, PHE14, PZT02, RSV87, RFS11, RGG82, RGP82, RW96, Ris76, Roc94, Roos89, SM10, SYK10, SV06, SLL05, SH192, SLK05, SMN+11, SG04, SFS00, Sos94, Stua89, ST08, SKA13, SS86, SL12].
support [Tab10, TML+00, TP90, VCK+12, WK08, WDA+08, WIl82, Yeu99a, ZYL05, ZR14]. supported [MPP+08]. Supporting [BCC+90, EW16, MSL+15, MCN+17, MBN+06, PCH+82, WK89, BH78, DG90, Dvo90, FMB+07, HIl81, Nak01, TKH92, WIl91, ZHW16, ZSH07]. Supports [AK81]. SUPRENUM [SH92]. surfer [TMW+01]. SurfNoC [WGO+13]. Surprise [SHP+16]. Survey [Ber91c, Goh14, RO93, ThO11a, CmWH91, GAG88]. Surviving [LDSC08, PM11]. sustained [BCD12, DK89]. SVP [JLZ09]. SVW [Rot05]. SW [FJB85, JMS88, PB82]. SW-banyan [JMS88]. SW-banyans [FJB85]. swapper [ATS14]. SWAR [CL90]. Sweden [IEE83, ACM01]. sweep [CHV04]. switch [BDJ+11, DR91, Fra86, Hai84a, Hai84b, LHL+89, MBL89, MM82, SP97]. switch-based [SSP97]. switch-level [Fra86]. switchable [CHZ+14]. Switched [RL74a, DS85, DR91, KMS+12]. Switcherland [EO98]. switches [ECP96, Kni91, MB91, TF88, YA90].
Switching [HL15, KDJ83, CH84, LIW84, LIW92, PM92, SD95, TGG814]. swizzling [Wil91]. SX [Fat90]. SX-2 [Fat90]. SXA [Ter87]. sylvan [Bur84]. symbiosis [EE10b].
Symbiotic [ST00]. symbol [Lal73, RO74]. SYMBOL-2R [RO74]. symbolic [BKC14, CHWY13, GRDS87, HAI87, Kie87, LH88, OCF00]. Symbolics [Moo85].
symmetric [AAD90, BMA00, KB92, MDS01]. symmetric-key [BA00]. symmetrical [Maz77]. symmetry [TS90b]. Symposium [ACM80, ACM89, ACM91, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, IEE76, IEE77, IEE79, IEE81, IEE82, IEE83, IEE84, IEE85, IEE87, IEE88, IEE90, IEE92, IEE94, IEE99, IEE03, IEE05, IEE06, JDL81, Kni75, LS73, ThO81, IEE86, Lei91]. SYNAPSE [NI85].
Synchronization [ACAAT16, AK16, GMT16, LR90, MCS91, MA15, OCY+15, PG16, SA15, ZSH07, AC89, BD86, CSY90, DESE13, GVW89, GS80, GuP89, Hic76, KBG97, LAS85, MT02, MPTT12, MPSV06, MBVS97, RP85, SGC+05, SY89, TYZ90]. synchronization-induced [MTPT12].
Synchronized [LNA08]. synchronizer [CG92]. Synchronizing [FK83, SJ88]. synchronous [BCD89, IM02]. Synchroscale [ORS+04]. SynFull [BJ14].
synonym [PHH16a, PHH16b]. Synopsis
Synthesis [D'H16, LJF+16, LWPG17, MEB15, PP92, SOD+14, EG97, Gas88, Kin83, LS12b, MPH12, Qui84]. synthesizable [CWS+11]. synthesizer [OUY+13], Synthesizing [NP11], synthetic [BJ14, PBL90]. System [AHC+16, AOM+14, AVN+16, BLC+16, BKL+16, Buc78, Chr77, DDK+15, FL76, HTM+05, HSW+00, HCL15, KDL+16, LHM+15, MAHK16, NMS+14, VSM+08, WHZ+17, ZYS15, AA84, AIO+11, AS91b, ACC+90, And73, And90, ALBL91, APT90, Aßm93, AJC+88, BBFP06, BGB98, Bar82, BLAA99, BBZ88, BCL82, BAD+10, BR90, BAC+08, BC02, BR92b, CD82, CDP82, CJM77, CS13b, CO03, CZ14, C1J99, CSSP87, Che92, CS11b, CLS73, CBF93, Cra85, CJ01, CK00, DSG11, Dst80a, Dst14, DSLW76, D590, Dj09, DP76, DPF77, FCJV97, FR89, FSC76, FSS+09, FR87, FSS76, Gao93, GP88, GMC+09, GSS12b, GA79, GYCS06, GPV04, Gra91, GKN80, HW77, HAO886, Ha87, HFL03, HHA83, HWS7, HDK+11, HKD+13, HBJ+13, HMK02, HSS12, ICT85, JST3, KONA82, KTO+12, KM86, Kor74].

Systems [ANS+15, ABC+94, BNE16, CHLS16, DK16, Goh14, HVML04, Hill91, Koa05, LLLG16, Lev92, LLL+17, MSH+15, MM08, Ozt15, RV+05, SHP+16, SDB+15, SGM+15, WHZ+17, ZE16, ABF01, Adl73, AHMN91, ARJS07, AHJ12, ASP+03, ACS+12, Avi83, BCG14, BA84, BS73, BBFP06, BFGP06, BF07, BSK+10, BF73, BSSM08, BBJ+08, BLS99, BF87, Bra77, Bri87b, BB74, BK90, COH+11, CLC12, CSY90, Che90, CGL+08, CG92, CKS16, CKC11, CS80b, CRBJ12, CBC+08, CDA14, CHY13, CRM91, DFF+13, DIY86, DZZ+14, DSH+10, Ebe02, ELMP10, ELMP11, Est02, EST89, GSZ90, Gau85, GCN+10, GKT13, GL73, GL98a, Gra84, GFNW86, HCTU10, HWI+11, HCG+06, HS73, Hill13, HPF86, Hoo77, HEK+16, HX97, HBCG13, ISL96, ICN+10, IH80, Ias74, JD88, JCSK14, KTMY91, KDM92, Kha99a, Kha99b, Kha99c, Kin83].

systems [KOB88, KMS+10, KR80, KB80, KKMH11, Lee88, LAK09, LAS+07, LZZ+07, LCWM08, Lip98, LN92, LG04, LRHM90, MMR+13, MLA+09, Mal80, MP86, MPS98, MSZ76, MPSV06, MAL01, MHH+13, MMAS08, NUM94, NP95, OIA+13, OLG+14, Oya89, PQ+09, PBC+13, PSG900, PIAS13, PL06, PP92, RWB09, RPASA97, RCCQ05, RRO4, Roc85, RBOS07, Ros06, SMB02, SFS04, Sal76, SK13, SNG00, SL93, STV94, SMO89, SFS91, SPA+98, SK888, Sta89, SHM94, SMRT85, ST77, SSP97, TASS09, Tho09a, TL11, TBL12, UMB+11, UMB+12, VPS01, VGSS85, WS07, WE74, WSC08, XT96, YPD83, Yk04, JFY11, ZVN03, vT88, vIG80, Ant91, Ber91c, Fos93b, JWB93, JWB94, KSN07a, Ram88]. Systolic [TW91, BCC+90, CH58, DV87b, FKMD83,
HS85c, Kun88, Mel85, NLV86, Qui84, VGNL89, nZY84).

T [Zho16, BMM14, ACK+95, NPA92].
T.Node [All92], T3D [KC95], T0000 [LR93].
Tabak [Ber91b, Kri91].
table [BCR10, BE03, HH93, JW97, KE91], tables [Ree82].
Tablets [BCR10, BE03, HH93, JW97, KE91].
Table [Zho16, BMM14, ACK+95, NPA92].
Tags [EA02, HR07, RFS88, Sez94].
Tagged [Feu76, GK85, Har86, SA87].
Tags [SH87, Fon03, Gum83, JW97, SM94, WSY95].
Table [Zho16, BMM14, ACK+95, NPA92].
T3D [KC95].
9000 [LR93].
Tabak [Ber91b, Kri91].
Table [Zho16, BMM14, ACK+95, NPA92].
Tablets [BCR10, BE03, HH93, JW97, KE91].
Table [Zho16, BMM14, ACK+95, NPA92].
Tag [Zho16, BMM14, ACK+95, NPA92]. Tagged [Feu76, GK85, Har86, SA87]. Tags [SH87, Fon03, Gum83, JW97, SM94, WSY95].
Tail [HhEH+15, JHK+16, ZMMT16].
Tailor [LWRC10], tailored [UVG14]. Tailoring [CLM07], tale [Bha97]. Talk [Bra82c].
Tame [AVN+16], taming [HBCG13].
tamper [TML+00].
Tapping [WDA+08, GSU11].
Tarantula [EAE+02].
Tarazu [ACRV12].
Target [CHP97, JHK+16, PAM+16, BM09c, KE91, LNEHR11], Target-Driven [JHK+16].
Targeted [SDLR+15, BTS+11], targets [Dvo90].
Tartan [MCC+06b].
Task [AWAG15, CS89, Pri91, Ste80, BCD89, GVY90, GTA06, Hai84a, Hai84b, KTC00, LRMH90, Mil82, OBRW14, RCA+12, Ros76].
task-based [KTC00], tasking [Roo89].
Tasks [KGS16, ZE16, LRMH90, Mar82, MT84].
Taurus [MAHK16].
Taxonomy [LLDG16, Avi83, Gil83, Joh88, Smo89, TH76].
TCB [MPP+08], TCC [HCW+04].
TCgen [Bur06].
TCI [AZRR07].
TCP [Mad94a, BSR06, LCL+16].
TCP/IP [Mad94a].
TCP/IP [BSR06], team [CR94].
Technical [Fud91a, GA79, CR94].
Technique [AK16, ASh86, AP93, CFSRS99, FP91a, HSS94, IBC12, Jag80, Kee79b, Kha97b, LN07, Lan77, LAS85, MPSV06, PV03, RD01, SFS04, SGS11, UZU00, VLZ88, WSY95].
Techniques [DM06, Mon98, MKP05, WEMR04, ZG16, AAM6, AC89, Arm74, BGP+01, BR92a, CGB89, FKM+02, GSR93, GHK89, GHS+91, HAT90, JNK+13, KDD11, KHCM91, MP91, RGP82, RFSS88, Ria80, TYZ90, Thu78, WSS87, YERJ99, FHL91].
technological [AD98, FBH02].
Technologies [Kni91, LN07, NK01, WLZ+09].
Technology [Ant91, Bre10, Emm06, Her06, IEG83, KDS08, PAD16, VSS+08, ZAI+16, BJ78, DCZ93, FFE+00, HRA85, KDS+06, QSR09, ZY09].
Technology-Driven [KDS08], Teenage [Bar11].
Telecommunicators [Dre94].
telecomuters [Dre94].
Telescope [NNIS16, NNS12].
telling [KZ12].
temperamental [NaR07].
Temperature [GB15, SSH+03, WM09, HCG+06].
Temperature-aware [SSH+03].
Temperature-constrained [WM09].
Tempest [RLW94, RLW98a, RLW98b].
template [CWS+11, FAY87].
Temporal [CWD+06, PGSO4, WSH+05, NMTH10, SWAO9].
Temporally [LL02, MA15].
temporary [SP87].
Ten [Yel99, PSS+11].
Tera [ACC+90].
term [AJL14, CS11a].
terminal [CJM77], terms [PSB13], Terri [Ful91a].
Test [LWP17, YHF03, CCV+09, GH90, GKN80, PKP90, MBL+89].
test-and-test-and-set [GH90].
Testability [SV05].
testbed [RES+13].
testing [DRC05, PPZ96, SGB00, SzUK+04, ZMMT16].
tests [MMP+12].
TETRIS [GPY+17].
Texas [Kin75, IEE82].
Text [BNT78, CL09, RB78, TW91].
Textbook [Su74].
textual [BTW77].
texture [CBS98, HG97].
their [BSF+91, Cra88, Jai82, OC78, PLZ09, RJK88, RAJ00, SS89, SS86, VMS88].
them [KBG97, KDK+14, LBL12].
theorem [Gao93].
theoretic [Nik09].
theory [MPM14, Sov83, XDLB13].
Thermal
Thermostat [AW17]. Thin [LMS+13]. third [JSN98].
thirteenth [IEE86]. thorough [KSLE16].
thoughts [Sha80]. thousand [SK13].
thousand-core [SK13]. Thread
[Bet73, BM09a, FURM00, KBH+04, PR05, RWB09, SKS+92, CSM+05, DG99, EE09, EE14, GJ+11, GP08, HK09, JKN+13, KDM+98, MLC+09, MT02, PT03, SBM09, SLT02, SCZM00, TE94, YKL+16, LWRC10].
Thread-based [SKS+92].
Thread-level [FURM00, BDMF10, DG99, EE14, HK09, MT02, PT03, SCZM00, YKL+16].
Threaded [WCT98, cC91, CSS+91, HS13, KHP+95, LBvH06, MLCW11, OA08, RKM+10, SQP08, VIA+05, Wil98, YZ07b, ZdKL+13].
Threading [BFA+15, CCE+09, MLC+09, RRP06, SQP08, kSYHX+11, CH04].
Threads [CTTC06, CASM06, CPT08, DESE13, HKT93, HKN+92, KST11, LWRC10, LPH+09, OL02, WCW+04, ZCSM02].
Three [PAD16, RFK88, SM14, AZA89, DD90, ES74, Lai92, LSFK08, Teo90].
Three-Dimensional [PAD16, RFK88, ES74]. three-port [AZA89]. three-port/three-access [AZA89].
Thresholding [THM14].
Throttling [AGS05, ELMP10].
Throughput
[BT606, CK+16, SAL+05, SN95, TS05, TP15, AFHM01, CG09, CHK+12, CDS+14, FP91b, GJ+11, HCV03, HS13, yKPR02, KSN07b, LKC+10, PD76, PD98, Pat98b, SL92, SVC03, VFMC13, WBKR13, YJE11].
throughput-oriented [HS13]. Thurbler [Mil78b]. thwarting [WL07].
TickerTAIP [CLVW93]. TIDBITS [HRDA85]. tiered
[AW17, UMB+12]. Tightly
[KHBS14, ALE90, Bri87b, Mar85, NI85, SKS+13, SJ88, YMHB00]. tightly-coupled
[ALE90, Mar85, NI85, SKS+13, YMHB00].
Tile [ORS+04, TYSSK11]. Tile-Based
[ORS+04]. Tiled [SPM+06, ZAT05, MSP+06, New92b, New92a, SKC+03]. Tiles
[WDW10]. Time [Fuj91, HS06, MCGL17, SGS08, Wra91, ABR01, AV10, ASP+03, Bat72, CTC12, CTW+13, CG92, CJS99, DP76, DPB77, ELN89, FF73, FHM+11, FTG88, GPF13, GH76, GWM03, HANN96, HBI113, HRDA85, HW95, Jen74, JnWH97, KD92, KLP2, KPH96, LKY+00, LYBC88, LJK+13, LRHM90, Mar82, MPS94, MAL01, MUL89, NMS+00, PQC+09, PPR09, RB00, RHS96, Rid87, RD01, Roo89, SIG89, See89a, See89b, SA89a, SA91, SBM09, SKS88, TRA91, Thn76, THM14, TP90, Wil91, XFR06, YM11, YFP07, YMX+10, ZW16, dRBC93].
time-constrained [CG92].
time-delay [HRDA85]. Time-sequenced
timebombs [CW+06].
Timed
[Zub80, DGY89, Now87]. Timekeeping
[HKM02, MDS12a]. Timely [XFR06, LF00].
times [May82, QFJL12, SM89, TL14].
Timestamp [MSA+90]. Timetraveler
[VAV10]. TimeWarp [MDS12a].
Timing [GW73, ZWSM15, AZ95, CKS16, HF11, ISG07, KCE12, PS77, PS98c, SP98a, YLHL10]. timing-aware [HF11].
timing-error [KCE12]. Timing-Sensitive
[ZWSM15]. tiny [LC02]. title [Rat85].
TLB [BM10, CBJ92, GBHS14, KS02a, ROKB95, SDS00, ST03, SCS98, TDF90].
TLBs [NUS+93]. TLP [SNL+03].
TLSync [OPZ11].
TM [Feu82, LCF+14]. TMC
[KC95]. together [LWRC10]. Token
[MHW03, Lip77a, PC90, PC98b, PC98a, SA87, TCM12].
token-store [PC90, PC98b, PC98a]. TokenTM
[BGH+08]. Tokyo [IEE86]. Tolerance
[SV05, AA86, Ann91, Avis83, Con88, CP11, HBT11, KR13, KW84, KRS0, MS82, MTS10, PBG09, RR06, SH00, SPR00].
Tolerant [GAR+05, LWB08, PGB04,
AGSY94, BSD87, DDY95, FCP92, FF73, FV82, GKN80, KLC94, KR85b, LS82, LIW82, Mar85, MC93, MKKU03, MGBK96, PA73, PJDL06, SKB09, Tem12, TY85, VBS05, WL88, WIPK09]. **tolerate** [TST07].

Tolerating [ABC97, CASM06, Luk01, QD99, XYM12, BBM94, GHG+91, LKL+02, NKQ13].

TOM [HEK+16]. **Tomasulo** [EKEL01].

tomography [MMAS08].

too [Bra80a].

Tool [HLL+93, TAM+08, BA97, Bur06, Cor89, GBHS14, GSS05, JK13, Man01b, Man01a, MSSZ76, NMS+00, PPZ96, Sch89].

tools [ASK85, HS74, Spr07, Sri01].

toolset [BBJ+08, MSB+05].

top [HS85a, PBWH+11, SW87]. **top-of-stack** [HS85a].

Topic [LCCZ17].

topics [Smi86].

Topologies [PDL15, KMA+12]. **Topology** [KDSA08, KDA07, Tze90].

Toronto [ACM91].

Torte [Dik90].

torus [HWC91, SDGT03].

Totally [HS85a, PBWH+11, SW87].

trace [LF00].

TP [CB94b].

TPC [JHK+16].

Trace [BBK90, GCJ17, JS00, LHM+15, BJ03, BRS99, Bur06, CNO+87, HWI+11, HB90, Kha95a, Kha97b, KEL91, KSA03, LSBG05, PEP98, RB00, RSYP06, TF01].

trace-based [HWI+11]. **Trace-driven** [BBK90, Kha95a, KEL91, LSBG05].

trace-level [KSA03].

Traces [RAM+04, Sto86, ASH86, BKW90, OQ91, RF96, YHZX14].

Tracing [Kha99d, JK13, RGD09].

Tractor [LYMY16].

Tracking [CLS05, CWY+08, YSCC16, BYG+00, JOW+02, SSC03, SLZD04, TWI+09, ZPS+04, uAM16].

Trade [NLS88, SP+06, BDA03, CSM0, MS07, SEI+95]. **trade-off** [BDA03, CSM0].

Trade-offs [NLS88, SP+06, MS07, SEI+95].

tradeoff [CW02, CS94, Ino05, MHS+03, YJE11].

Tradeoffs [CMM+06, JOW94, SV89, TKHP92, AML+10, CH87, CGL89, DMB87b, FJ94, HJB+82, Jou89, JOW+02, LGH92, LAB+11, MYP+16, NUS+93, PN77, PHH88, RCL73, Ran85, Reg76, SFKS02, SLSN14].

Trading [MSU97, WM16, WGA+08, LNBZ08].

traditional [SKC+12]. **Traffic** [DFD+13, JM88, BJ14, CTW+13, Goo83, GHS6, Goo98a, Goo98b, KMVS12, VGNV05, ZW16].

training [GS07, YP98b].

transaction [ATT+13, DIY86, HCS+85, RBG+01].

Transactional [BNZ08, BGH+08, DDY+16, HW+04, HM93, MS15, MCC+06a, NP17, RG02, RHL05, SDS08, ZL16, BDL07, BRM10, BMV+07, CMF+13, COH+11, CNV+06, CMM+06, DCW+11, DFL06, DLNM09, FMB+07, HCH+04, LCF+14, MTC+07, MBM+06, RRP+07, SSH+07, Tab10, VTS12, WS07].

Transactionizing [RVLS14].

Transactions [BGH+08, KPS+16b, LSC+17, MCGL17, QST14, RKM+10].

Transfer [HCL15, BS73, HS74, KD06, MS07].

Transfer-Aware [HCL15].

Transfers [DJT94, Hum96, Lip77a].

Transform [HS86, NNS12, nZY84].

transformation [DJPK16, KSA03, RCC05, SV06].

Transformations [SSK17, AC09, CM00, RP99].

Transformer [Sch83].

transforming [KSE+16].

Transient [GSVP03, GV05, RM00, VPC02, HAN12, YZ07].

Transient-Fault [GV05, GSV03, VPC02].

transients [PM92].

transistors [FTP94].

transit [CA08, Mac98].

transitive [XHB06].

Translation [AKB85, AK01b, AK01a, BCR10, Bha17, BRH89, CB17, ABL+80, ACM02b, AS96, BCR11, CLL01, CFG+13, FPP+92, FBG12, GKM09, HS01, HH93, PHH16a, PHH16b, PHB14, QD98, RLS10, SBS16, TDF90, WEG+86].

translation-aware [RLS10].

Translation-Triggered [Bha17].

Translator [KMK16, SSB07, UC01].

transmission [CHK+12, OPZ11, RL74b].
Transparent
[AZRA07, CBC+05, HEK+16, KP05, VNN13, AW17, BMW09, LLZ+13, ST03].
transputer [LR93, OQ91, WS85].
transputer-networks [OQ91].
transputers [Hey90]. Trap
[BKSO05, KKN00, YXR06]. TRAP-Array
[YXR06], traps [QD99]. Traversing
[Khu76]. Treadmill [ZMMT16]. Treasurer
[Dic80]. Trees
[CKZ12]. Trends
[McD77, BJR82, Dor82, LB08]. Trew
[Ber91c]. Tri
[SYL13]. Tri-level-cell
[SYL13]. TriCheck [TML+17]. Tridiagonal
[MDSO11]. Triebel
[Ful91b]. Triggered
[Bha17, PPA+13]. Triggering
[EW16]. Trigonometric
[dDIS13]. Trimmed
[VGX17]. Triple-A
[JCSK14]. triple-base
[MS12]. TRIPS
[GMC+09, SNL+03]. Trisection
[TML+17]. Trojan
[BGCG14]. true
[Mas04]. True
[MMT16]. Trusted
[KDL+16, KDP02, SRSW14, ZYLG05].
trustzone
[SRSW14]. Truth
[MJP95]. TSO
[DMT13, MA14, MA15, WW13].
TSO-preserving
[WW13]. TSO_ATOMICITY
[WW13]. TSOtool
[HVML04]. Tsunami
[SKN+15]. TUKI
[FG83]. Tuning
[MRH+16, AAM76, CSW94, DL91, LPH+09, SG94]. Tunnel
[HLW94]. Turing
[Laf03]. turn
[FHM+11, GN92, GN98, N98]. tutorial
[SGG+85]. twice
[HSS12]. TwinDrivers
[MSZ09]. twisted
[Rou86]. Two
[AW17, MPT91, PCC+08, SAL+05, Bha97, BSSM08, BKB90, BYP+91, CG91, EPCP98, JWW94, Kha99c, LHH88, ON90, Sez93, SL88, Sta81, TKHH92, WBL89, WQL92, YL84, YP92, YP93, YP98a, YP98b, dRBC93].
Two-Dimensional
[SAL+05, BSSM08, LH88, YL84].
Two-Level
[PCC+08, BKB90, CG91, EPCP98, JWW94, SL88, WBL89, YP92, YP98a, YP98b].
two-phase
[BRDC93]. Two-tiered
[AW17]. two-way
[Sez93, WQL92]. TxRace
[ZLJ16]. type
[BBM14, GSSZ90, Gih98, Sov83, SH87, WW89]. Typed
[KKK+17]. types
[Feu76, GB74, NYNT12, Sic77, ST08, VI94]. typestate
[GZC+11]. Typhoon
[RLW94, RLW98a, RLW98b].
Ubik
[KS14]. ubiquitous
[CDS+14]. Ugly
[SBB+15, Irw10]. Ulisse
[CJM77]. ultimate
[Gri88, Jon88c]. Ultra
[CDY+17, HTM+05, SCP+06, CKS16, EKM04]. Ultra-low
[CDY+17]. ultra-low-power
[CKS16]. ultracomputer
[Got98, EGK+85, GGK+98]. UltraSmall
[TSK13]. ultrasound
[CYH+11]. Unbelievable
[HC15]. Unbounded
[CVN+06, BDM07]. Uncertain
[Zho16, BMM14, BMM14]. uncommon
[BDLM07]. uncomputation
[SV06]. Unconstrained
[ANHN95]. unconventional
[Kha95b]. uncorrectable
[DJPK16]. undefined
[Ger90]. Underprovisioning
[WGS+14]. Understanding
[HQW+10, ISL96, KS12, KZT05, LJS+02, LRS+08, LRC+08, MHK+13, MMSA08, RRP06, ZS00, HSS12]. Unidata
[Ber76]. Unidirectional
[Bos84]. Unification
[Woo86, GK81, SA86, Woo85, WO86, YMST07]. Unified
[Bay99, CS94, DP12, JBW89, LSY+14, PPM96, PHPB14, RIS76, TAK87]. Uniform
[Sov83, ABC97, DN93, KBK02, QUI84, SA92]. uniformly
[SA86]. Unifying
[TGGS14, FW97]. Unikernels
[MMP+13]. unintrusive
[HDT+13]. uniprocessor
[CJ01, RTY+87]. uniprocessors
[EJK+96]. Unit
[Woo86, BNA88, CRM91, GSS12a, GSS12b, HK89a, HSS85c, MS13a, MS13b, MS13c, PS88, SKd92b, SKd92a, TH86, Woo85, WO86, WLP+14, YMHB00]. Units
[AWAG15, THEK16, JSL95, LZR+16, Mat91b, Nad88b, PHB14, RR77, SP89].
Sur07, WZL+16]. universal
[Bra82a, FFW98]. universality [Sie77].
universities [Tho10a, ABC+94].
University [Cha92, LS73, MFST88]. UNIX
[AKB85, AKB86, PVB17]. unknown
[Par75]. unlimited [GXLA12].
unnecessary [Tho10b]. unordered
[SRE+07]. unorthodox [KDBA78].
unresolved [TYS+94]. Untrusted
[KDL+16, CS13b, HKD+13]. update
[GKT13, SLcC12]. update-aware [SLcC12].
update-intensive [SLcC12]. Updates
[IKK16]. upon [Bra82b, RR77]. UPS
[KZA+12]. USA [ACM93a, IEE03, IEE06].
Usability [WSC+14]. usable [TOL+11].
usage [AZ89, CmWH91, Dev90, MW98, Wie82].
usage-based [Dev90]. Use
[BS04, DD90, NH+17, SLSB10, Sho87, ZJL17, BH78, BB74, Cit03, CL82, GeC84, GH86, HCV03, HCBS04, Kee78b, Kee79a, LC82, Maz77, NRKS05, Sez96, SS85, SHV+98, Wei97, YP93]. Use-Based [BS04].
used [Che90, LHL+89, MS13b]. User-Based [BS04].
user-defined [TM80]. user-level
[Par02, RLW94, RLW98a, RLW98b, SLT02, Tab80, TSK+83, TM80, ZYLG05]. user-defined [TM80]. user-level
[Par02, RLW94, RLW98a, RLW98b, SLT02]. user-microprogrammable [TSK+83].
user-perceived [MCD+08]. user-programmable [GP76]. uses
[TPO06]. Using
[A0K00, BNZ08, BL099, BNE16, CFRS99, CWY+08, CCEH00, CLR05, ECP96, GCJ17, Goo83, Goo98b, GSCM16, HVML04, Kar89, LNR+06, LWL08, MHS+03, MF05, MMJ05, MH98, OY+15, PAVT16, SCGA13, SRSW14, SS89, SLFG06, SDLR+15, SLT02, SK10, SOSD05, TM05, ZLJ16, AAM76, Azf95, ASH86, ADT13, AR80, AWAG15, AWC+11, BDH+99, CGS09, CTYP02, CG06, CE98, CKZ12, CHWY13, CB94b, DSG11, Das83, DW90, DSOF11, Don83, Don85, Don88, Don90, Don92, DESE13, EST89, Far05, FFdDH00, FAYA87, GSZ90, GC11, GHHG92, GS12b, GB01, GMF+11, GCTR08, HvDJL80, HJ86, HC04, HTM15, HBHA02, HR07, HY85, HDP+90, JTSE10, JPT14, JG91, KRS13, KST11, KF79, KS84a, KDP92, Kee78a, KPH+98, KDS+06, KM10, KG16, KMK16, KW98, LF00, LSSG05, LS12a, LS12b, LWLZ12, MS13a]. using
[McD82a, McK74, MS80, MM14b, NNIS16, NPC06, OPZ11, PCL10, PGH+87, PT03, QSR09, RBR02, RKM+10, RP99, RLCV10, RLD+17, ROKB95, RVL14, SLP+09, SEI+95, SGS11, SSAC13, SA88b, SSC98, Tab10, TQC+15, TM14a, TPO06, TS10, TS99, VSH91, Van81, VKI+00, VPC02, WP87, WMP07, WZL+16, WR84, WL10, ZRW05, ZLZZ09, ZYZZ09, ZS01, Go08a].
UT1000 [Cor89]. Utility
[JSMP13, JNaS+12]. utility-aware
[JNaS+12]. Utility-based [JSMP13].
Utilization [CYMT16, CYG+17, PPM17, CKDK91, CMB+13, RE13, YBMT13]. utilizing
[CS06b, KKN00].
V [KB76, QTP05]. V-PMS [KB76].
V-Way [QTP05]. V9 [BKS+94]. validation
[DZ09, HYHD95, Kha99d, MMNBR07, TXZ09, VNN13]. validity [KEL91]. Value
[CL04, NGS99, WCL17, BEL+00, CTR99, DG99, GM98, GCG+14, KTS+13, KSA03, Lee85a, LL00, PS14, SB05, SSJ+16, TS99, WCF01, ZCSM02, ZyG00, ZFC03]. Value-Based [CL04]. value-centric
[ZYG00]. value-order [Lee85a]. values
[TSS99]. Vancouver [ACM00]. Vantage
[SK11]. VARAN [HC15]. Variability
[HUK+01, RBOS07]. Variable
[LWB08, AWC+11, CYL99, De 90, IS92, LCS10a, LRHM90, PN77, RL74b, TW77, VHL73, WS91]. variable-length
[RL74b, VHL73]. variable-strength
[AWC+11]. variables
[Bri87b]. Variant
[MRH+16, Tze90]. VariaSim [RBOS07].
[GBH15, LWB08, TT08, Jen78, Pon91, TST07]. Variation-Aware
[GBH15, TT08]. Variation-Tolerant
[LWB08]. variations
[Mus09b, She10, XYL12, YHL10]. various
[Cra79, Don83, Don85, Don88, Don90, Don92, IT93, Sie77]. varistructured
[Lip73]. VAX [BS98a, BB90, CL82, CBK88, De 81, EC84, EC98a, EC98b, GM82, HR91, Lar82, PB80, Wie82]. VAX-11
[CL82, De 81, EC84, EC98a, EC98b, Lar82, Wie82]. VAX-11/780
[CL82, EC84, EC98a, EC98b]. VCLEARIT
[LN07]. VDL [Lee73]. VEAL [CHM08].
[Cha92, Fat90, GP95, KBH+04, KKS+08, MSAD91, PVAL95, SFS00, Wag83, BB90, Bur84, CL89, DD90, Dow87, Dow88a, Dow88b, EAE+02, FP91c, HJ86, HL89, HP+16, HK89c, HS93, ICT85, IHM89, JB89, KDM92, KW84, KP03, MBS87, Skl92b, Skl92a, Sz88, VLL+92, Wei89, YY92, Yue99a, ZK90]. Vector-Thread [KBH+04]. vector/scalar [JBW89]. vectorization
[cC91, PGV02, PSB10, VJM09]. vectors
[DSF+90, KTK12]. Veljko [Col90].
[FX+17, FRK+15, GRH06, MS05, TML+17, ZSG+17, Das83, RKM+11, Sto86]. Verification
[KDL+16]. Verifying
[AHC+16, CHY13, HVM04, LMB16, MPX+13, RLS10]. Verilog [KMK16].
[Bar91c]. versatile
[AAS4, Af93, CHS5, SP5a]. version
[ABK85, Ann91, BHS91, BA97, HC15, Jon98, Mad94a, Nis91]. versus
[AHKBB00, Bha97, BEH91a, Chr76, CDK+94, DHR+90, KKC92, LJF+16, L90, Mui89, PMA+13].
vertical [LLC+14, MLS12]. Very
[Fis98b, AS92a, BKS+94, BTW77, BKW90, KTY91, Tre80, Fis83, Fis98a]. Vesta
[CBF93]. VF [DD90]. VI [ZBJ+02]. Via
[ACM06, APX14, ACJ13, BM01, BYG+00, CY06, DS11, DS02, EGLP10, FBG12, FRB01, GLM13, HRDA85, IMC+06, IJK16, JmWH97, KK99, KJM+07, LWV+10, LS12a, LGR12, LTQZ06, MSS+15, ML05, MAL01, Qto94, QTPO5, RSEW04, RM00, SBS01, SLG+05, SLKQ12, SMB9, SLZD04, ST08, UVG14, VX17, WCW+04, WM16, WZY13, WFFH10, YJX+16, YZP+11, ZdKL+13, ZBF10, dRBC93, uAM16].
Victim [ZA05, BCG99, GAS16, NRK05].
video [BBFP06, MBS+04, RAJ99]. Videos
[JSCM17]. view [Adl73, Dug83, Gil83, KDBA78, Mat90, PT91, Par88b]. violation
[PLZ09, QTSQ13]. Violations
[LDSC08, LTQZ06, LCS10a]. Viper
[PGB12]. Virtual [ASP+03, AL91, BLA+94, BLA+98a, Da90, EMZ+16, HS06, JPO8, MH07, MWM04, NLS07, YKL+16, AR83, AL74, BHS12, BLS99, BB74, CBS88, CWDO+06, Goo87, Goo88b, HW77, ISL96, JADAD06, KTY91, KR13, KKC+16a, KPPK07, LYK+00, LC02, Lip77b, LL14, LSS04, ML05, NOK+85, PHH16a, PHH16b, PGB12, PSB00, RTY+87, RZ80, SKD+10, TrLeC13, WBL89, WCW+04, WK08, WK89, BLA+98b, CDA14, Fuj11].
virtual-cache [KR13]. Virtual-Channel
[MWM04, Da90]. virtual-real [WBL89].
virtual/real [KTY91]. Virtualization
[Her06, HSL17, KGS16, ZAI16, AA06, BSMF08, CFG+13, CGL+08, CMM+06, DLL+16, GAH+12, IMK+13, KSR10, MBB13, Ros06, SL12, WJGA12]. virtualization-based [CGL+08].
Virtualized
[CHM08, YE10, AJH12, ATS14, BSSM08, BM09c, KW13, KSR10, SA10, VNM+12].
Virtualizing
[HR91, KMKH11, RHL05, WRS13, Kar07]. VISA [ASP+03, De 90].
[HLZ+15, LHG+16, RBH+03]. visual [HGS+07]. visualization [Che90].
visualizing [MMS08]. vivo [CKC11].
VLIW [ISJ04, AB92, CNO+87, DSF+90, FBF+00, NGSS9, Now87, PP03, WS91].
VLSI [Tak88, BKT87, BHS91, BLL+83, Bos84, CF82, CMPZ87, DR91, EP84, Ega82, FK83, FFK+82, FK80, FW82, FAH83, FAYA87, FY82, GM84, GtHL+85, GKN80, HS85a, Hs86, Hir86, HRDA85, HS85c, KOBS88, LN07, MS87, MS84, NNN+91, PM92, PGH+83, PS98b, Phi84, SP84, SA84, TYNM86, TF88, Tre80, TH82, WW12, Par90]. VM
[KHS+97, LYK+00, NOK+85, YLP+99].
VM-based [KHS+97]. VM/4 [NOK+85].
VMP [CSB86, CGBG88, CGB89]. VMP-M [CGB89]. VMP-M/C [CGB89]. VMs
[KKJ+13]. Voice [HLZ+15].
Vol [Fos72a, Lan90b, Mud80, Mad94a]. Volatile
[AMH+16, YNQ15, ZYS15, CS11b, CCA+11, NMS+12, VJ95].
Volition
[QTSQ13]. Volleyball [LYM+16]. Voltage
[BLH17, LBW08, NZO+05, NY14, WGA+08, BT13, MSS+03, MTP12, PV03, WJC04].
voltage/frequency [WJC04]. Volume
[Bow79, HC85]. VPC [KJ+07]. VRSync
[MTP12]. vs
[BCD87, BFAJ93, GKO+00, GH86, HJJ89, Jno88, KZ12, LC+10, Mac98, MPM12, SSK+07, SCJLW01, WM16].
VSapper
[ATS14]. vulnerabilities
[BCG14, SP07].
Vulnerability
[BRC+05, LABR08, Rot05, DMWS12, NEEJ12, SK10, WHG07, YZ07a].

W [AMM+12, Alv93, Lun75]. W. [FUL91].
WACI
[Tsa16]. wafer
[Che84b, FV82].
wafer-scale
[FV82]. wait
[WAFM07, JYV13]. Wait-n-GoTM
[JVV13]. Walkerly
[Ben82]. walk
[BCR10].
Walker
[Ful91a, Lan90b]. walks
[AJH12, BSMM08]. wall
[GIS10, Joh95, LAF00, ON12, RKB+09, SPN96, WIL95]. War
[Mas04]. Ward
[Iva91]. Warehouse
[Bar11, CYMT16, CYG+17, HLZ+15, LRC+08, TQC+15, FWB07, MT13, TMW+13, YBM13].
Warehouse-Computing
[LRC+08].
Warehouse-Scale
[Bar11, CYG+17, TQC+15, MT13].
warehouse-sized
[FWB07]. warning
[HC03].
warp
[BCD12, FTG88, MTS10,
VSW+13, AAG+86, AAG+98, GL98c].
Warped
[XJK+16].
Warped-slicer
[XJK+16]. was
[BT72]. Washington
[IEE90]. waste
[Yel09]. watch
[Pat84]. watchdog
[MGH+96, NMZ12].
way-adaptable
[KKT05]. ways
[Yel09].
WBIA'05
[RC05]. WBT
[AK01a].
WBT-2000
[AK01a]. WCET
[BPQ+09].
Weak
[AH90, AH98b, ABD+15, AHMN91, Jno08, AH98a]. wear
[SLW10]. wear-out
[SLW10]. Wearout
[ZSBP08]. weather
[Che90]. weaving
[WR10]. web
[LR+12, yKPR02, OLJ+14, RLV10, ZR14].
Web-scale
[OLJ+14]. WebCore
[ZR14].
Wefence
[DMT13]. weight
[SD10].
Wesley
[Fos93a, Mad94b, Sch88]. Whare
[MT13]. Whare-map
[MT13]. Where
[Pat06]. which
[JC01]. while
[AV10, CMB+13, ZA05]. Whirlpool
[MBS16]. WHISPER
[NHH+17]. white
[WBS+88]. Whole
[HH12, MCC+06b].
Whole-system
[HH12]. Whose
[SGS08].
Wide
[Las87, CYL99, HKL80, HJJ89, KCE12, WD+16]. wide-issue
[CYL99].
wide-SIMD
[KCE12]. wide-window
[HKL80]. wideband
[NNS12]. WiDGET
[WDW10]. width
[FP91a, KT91, PN77, SKA+11]. Wild
References

Ahuja:1982:MMA

REFERENCES

Agrawal:1984:BHH

Agrawal:1986:SIR

Adams:2006:CSH

Agyeman:2011:PAO

Akagic:2011:HSC

Alpert:1990:PCL

Ashraf:1998:IRM

Annaratone:1986:WAI
\[AAG+86\] M. Annaratone, E. Arnould, T. Gross, H. T. Kung, and
REFERENCES

Annaratone:1998:WAI

Adve:1991:CHS

Abd-Alla:1976:LAT

Anido:1989:TPT

Archibald:1984:ESC

Anantharaman:1986:HAS

Abnous:1992:PBV

Allen:1994:RWR

Agarwal:1995:AMA

Alvarez:1997:TMF

Agarwal:1998:AMA

Alglave:2015:GCW

[ABD+15] Jade Alglave, Mark Batty, Alastair F. Donaldson, Gopalkrishnan, Jeroen Ketema, Daniel Fotedz, Tyler Sorensen, and John Wickerson. GPU concurrency: Weak behaviours and programming as-

REFERENCES

References

Asthana:1994:EAM

Arpaci:1995:EEC

ACM:1980:CPA

ACM:1989:PAI

ACM:1991:PIS

REFERENCES

REFERENCES

August:1998:IPS

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[ACM00a] ACM:2000:PIS

[ACM01a] ACM:2001:PIS

REFERENCES

Ashok:2002:CMC

ACM:2004:PAI

Ausavarungnirun:2012:SMS

Abandah:1998:EAT

Ahn:2004:EIS

Ahn:2013:DAS

Aslot:2001:PCS

Agerwala:1973:CCL

Ansari:2010:NES
REFERENCES

Annaratone:1990:KPP

Afzal:1995:PMU

Agarwal:1998:RAM

Aral:1989:EDP

Annavaram:2005:MAL

Allen:1994:AAR

Agarwal:2011:RSC

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Adve:1990:WON

Adve:1998:RWO

Andrus:2014:CNE

Amani:2016:CVH

Abdulla:2008:MCR

REFERENCES

CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Asthana:1988:IMS

Ahn:2012:RHA

Albericio:2016:CIN

Abts:2009:APP

Ahn:2012:RHA

Arulraj:2014:LST

Arvind:1981:MPD

Aydin:2000:UCL

REFERENCES

Altman:2001:WWB

Altman:2001:WBT

Asgharimoghaddam:2016:SPE

Akturk:2017:AAA

Alexander:1985:TBP

Arnould:1989:DNN

Alexander:1986:CMP

Arjomand:2016:BAP

Anderson:1974:VMM

Appel:1991:VMP

Amano:2012:FBC

Albonesi:1998:DIC

Anderson:1991:IAO

Alkalaj:1990:ASM

Agarwal:1990:APA

Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: a processor architecture for multi-
Allen:1976:CCS

Allen:1992:BRC

Abramovici:1982:LSM

Alverson:1993:BRH

Atkinson:1987:DP

Arvind:2006:MMI

Awad:2016:SSZ

Azizi:2010:EPT

Aguilera:2012:AEW

Azizi:2009:AEC

Amsbury:1983:CSA

Abts:2010:EPD

Anderson:1973:IDP

Anderson:1990:ACS

Ando:1995:USE

Agarwal:2008:FCR

Anonymous:1982:LA

Anonymous:1989:PTD

Anonymous:1999:MSF

Anonymous:2004:AI

Anonymous:2004:C

REFERENCES

Anonymous:2004:GCC

Anonymous:2004:PCM

Anonymous:2004:Ra

Anonymous:2005:AI

Anonymous:2005:C

Anonymous:2005:PCM

Anonymous:2005:PCM

Anonymous:2005:R

Anonymous:2006:AI

REFERENCES

Agarwal:2015:PPS

Anthony:1991:BRT

Ando:2014:CSF

Arnold:1976:HRM

Agarwal:1993:CAC

Anjan:1995:EFA

Annavaram:2001:DPD

Abad:2007:RRE

Agrawal:2014:RHD

Annaratone:1989:ICS

Austin:1995:SDC

Andre:1990:PSM

Arnau:2012:BMG

Arnau:2014:ERF

Jose-Maria Arnau, Joan-Manuel Parcerisa, and Poly- chronis Xekalakis. Eliminating redundant fragment shader executions on a mobile GPU via hardware memoiza-

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Alleyne:1992:EDN

Austin:1992:DDA

Austin:1996:HBA

Arelakis:2014:SSC

Agarwal:1986:ANT

Agarwal:1988:EDS

Agarwal:1998:EDS

REFERENCES

Abu-Sufah:1985:PPT

Aslam:1984:MDC

August:1999:PDL

Anantaraman:2003:VSA

Ajay:2017:GIL

Assmann:1993:RPA

Agarwal:2011:FIF

REFERENCES

Islam Atta, Pinar Tözün, Xin Tong, Anastasia Ailamaki, and Andreas Moshovos.

[Ahmad:2010:JOI]

[Amin:2007:APA]

[Aupperle:1980:RIC]

[Ayat*07]
REFERENCES

REFERENCES

REFERENCES

Baron:1974:ELC

Bhuyan:1982:GCP

Banerjee:1984:FSA

Burger:1997:STS

Bansal:2006:AGP

Butler:1988:PAO

Blumrich:1998:DCS

Bergan:2010:CCR

time system for deterministic multithreaded execution.

Ben-Asher:1989:DSA

Baker:1991:PIS

Barroso:2011:WSC

Baskett:1977:MMF

Bataille:1972:SOG

REFERENCES

[Caned2] CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Beltrametti:1988:CMM

Bodin:1990:LOH

Bucher:1990:ACM

Bhandarkar:1991:PAC

Boppana:1993:CAW

Buonadonna:2002:QPI

Brifault:2004:DCM

Borkar:1990:SSM
[BCC+90] Shekhar Borkar, Robert Cohn, George Cox, Thomas Gross, H. T. Kung, Monica Lam,

[BCDN87]

[Burkowski:1989:ASS]

[Brunie:2012:SBW]

[Bahar:1999:CSC]

[Boneti:2008:SCP]
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Beeler:1984:BBB

Bradlee:1991:ERP

Bradlee:1991:IRA

Burrows:2000:EFV

Benzie:1982:BRR

Berkling:1974:RLR

Berndt:1976:ECA

REFERENCES

Berstis:1980:SPD

Bernecky:1991:BRMa

Bettcher:1973:TSR

Bhandarkar:1973:MCM

Bisiani:1987:ASM

Brochard:1990:DAH

Luigi Brochard and Alex Freau. Designing algorithms on hierarchical memory multiprocessors. ACM SIGARCH Computer Architecture News,
REFERENCES

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

REFERENCES

REFERENCES

Bitar:1989:BRR

Bhandarkar:1978:STT

Bhargava:2003:IDC

Badr:2014:SST

Belhadj:2013:CRW

Bekerman:1999:CLA

Beigel:1991:PNI

REFERENCES

Belayneh:1996:DNBa

Belayneh:1996:DNBb

Burnside:2005:CCP

Balevic:2011:KAD

Buyuktosunoglu:2003:EEC

Bugge:1990:TDS

Bucur:2014:PSE

Burger:1997:DA
Doug Burger, Stefanos Kaxiras, and James R. Good-

David Barach, Jaspal Kohli, John Slice, Marc Spaulding, Rajeev Bharadhwaj, Don Hudson, Cliff Neighbors, Nirmal Saxena, and Rolland Crunk. HALSIM—a very fast SPARC V9 behavioral model.

M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki,
REFERENCES

E. W. Felten, and J. Sandberg. Virtual memory mapped network interface for
the SHRIMP multicomputer. ACM SIGARCH Computer
Architecture News, 22(2):142–
153, April 1994. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Blumrich:1998:VMM

[BLA⁺98a] Matthias A. Blumrich, Kai
Li, Richard Alpert, Cezary
Dubnicki, Edward W. Felten,
and Jonathan Sandberg. Virtual memory mapped
network interface for the
SHRIMP multicomputer. In
ACM [ACM98a], pages 473–
484. ISBN 0-8186-8491-7,
0-8186-8492-5, 0-8186-8493-3.
URL http://portal.acm.
org/toc.cfm?id=279358;
cfm?id=285930. ACM Order
Number 414984. IEEE Com-
puter Society Order Number
PR08491; IEEE Order Plan
Catalog Number 98CB36235.

Blumrich:1998:RVM

[BLA⁺98b] Matthias A. Blumrich, Kai
Li, Richard D. Alpert, Cezary
Dubnicki, Edward W. Felten,
and Jonathan Sandberg. Ret-
rospective: Virtual memory
mapped network interface for
the SHRIMP multicomputer.
In ACM [ACM98a], pages 92–
94. ISBN 0-8186-8491-7,
0-8186-8492-5, 0-8186-8493-3.

URL http://portal.acm.
org/toc.cfm?id=279358;
cfm?id=285930. ACM Order
Number 414984. IEEE Com-
puter Society Order Number
PR08491; IEEE Order Plan
Catalog Number 98CB36235.

Barua:1999:MCM

Rajeev Barua, Walter Lee,
Saman Amarasinghe, and
Anant Agarwal. Maps: a
compiler-managed memory
system for raw machines.
ACM SIGARCH Computer
Architecture News, 27(2):4–
15, May 1999. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Bornholt:2016:DBA

James Bornholt, Randolph
Lopez, Douglas M. Carmean,
Luis Ceze, Georg Seelig, and
Karin Strauss. A DNA-based
archival storage system. ACM
SIGARCH Computer Archi-
tecture News, 44(2):637–649,
May 2016. CODEN CANED2.
ISSN 0163-5964 (print), 1943-
5851 (electronic).

Bai:2017:VRE

Yuxin Bai, Victor W. Lee, and
Engin Ipek. Voltage regulator
efficiency aware power man-
agement. ACM SIGARCH
Computer Architecture News,
CODEN CANED2. ISSN
0163-5964 (print), 1943-5851
(electronic).
Barbalace:2017:BBH

Bonuccelli:1983:VTM

Bush:1976:SIS

Bilas:1999:UNI

Bagrodia:1991:EIH

Bahar:2001:PER

Bond:2006:BBE

Bhattacharjee:2009:TCP

[BM09a] Abhishek Bhattacharjee and Margaret Martonosi. Thread

REFERENCES

Bornholt:2014:UFO

Berekovic:2004:SCS

Bronevetsky:2004:ALC

Bobba:2007:PPH

Blundell:2009:IPT

Boku:1988:IHP

Brown:2016:HBS

REFERENCES

[133]

5964 (print), 1943-5851 (electronic).

Burnim:2011:SCS

Bird:1978:TFI

Baugh:2008:UHM

Bull:2001:MSO

Bond:2013:GDG

Bose:1984:UEC

Boulaye:1975:SDS

Bowyer:1979:BRS

REFERENCES

Bartolini:2004:PIS

Bisiani:1990:PDS

Boothe:1992:IMT

Burkhardt:1992:ICA

Brakefield:1972:OFP

Bray:1977:DMR

Brakefield:1980:BAT

Brakefield:1980:PB

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Brakefield:1982:JWO

Brakefield:1982:OSA

Brakefield:1982:TI

Biswas:2005:CAV

Brewer:1972:RDD

Brewer:2010:TDR

Black:1989:TLB

Bril:1987:IIA

REFERENCES

Bril:1987:CLV

Blundell:2010:RTR

Black:1999:BBT

Balakrishnan:2005:IPA

Barbacci:1973:AED

Bondi:1974:HHM

Bell:1976:CSW

Bhatia:1987:MIN

Sanjiv K. Bhatia and A. G. Starling. Multilayered Illiac network scheme. ACM

Bodin:1995:SAE

Bell:1998:RWW

Butts:2002:DDI

Balakrishnan:2006:PDD
REFERENCES

REFERENCES

REFERENCES

Baboescu:2005:TBR

Biswas:2011:FFF

Bird:1977:APP

Buchholz:1978:RCS

Burkowski:1982:ISD

Burkowski:1984:VAM

Burtscher:2002:IIF

Burtscher:2006:TTA

REFERENCES

(3):1–8, June 2006. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

REFERENCES

Chen:2009:SPP

Callan:1974:APS

Carlile:1996:IB

Colohan:2006:TDB

Chen:1994:PSS

Cvetanovic:1994:CAA

Curtsinger:2013:SSS

Cox:2017:EAT

Clark:2005:AFT

Cao:2012:YYP

Chen:1992:SBS

Clark:1988:MVP

Campanoni:2014:HRA
Simone Campanoni, Kevin Brownell, Sviilen Kanev, Timothy M. Jones, Gu-Yeon Wei, and David Brooks. HELIX–RC: an architecture-compiler...
REFERENCES

Cooper-Balis:2012:BBM

Cheriton:1988:CCM

Cox:1998:MLT

Chiueh:1991:MTV

Crandall:2005:SAM

Coburn:2011:NMH

Coons:2006:SPS

Katherine E. Coons, Xia Chen, Doug Burger, Kathryn S. McKinley, and Sundeep K. Kushwaha. A spatial path scheduling algorithm for EDGE architectures. *ACM SIGARCH*
REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Castan:1988:MPG

Chaudhry:2009:SST

Chou:2000:UML

Chow:1987:HMA

Castro:2008:BBR

Chang:1987:CDS

Carretero:2009:EER

REFERENCES

115, June 2009. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Caluwaerts:1983:ISD

Chen:2014:DSF

Cherupalli:2017:DAS

Chrysos:1998:MDP

Chen:2016:ESA

Chu:1982:VAH

Cox:1993:ACC

May 1993. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Chou:2004:MOE

Chen:2012:IOD

Chang:2013:IVP

Casse:1999:UAI

Cheriton:2012:HAS

Cate:1991:CCC

Cheng:1992:TCB

REFERENCES

150

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Calder:1994:FAI

Calder:1995:NCL

Callahan:1995:NLO

Chilimbi:2006:HIH

Cheriton:1988:VMI

Cohn:1989:ACT
REFERENCES

Chen:2008:OVB

Caulfield:2009:GUF

Chen:2014:ARA

Cruz:2000:MBR

Chin:1984:CPM

Chuang:1985:VSA

Chow:1987:ATD
P. Chow and M. Horowitz. Architectural tradeoffs in the design of MIPS-X. ACM

Cantin:2001:CPS

Chaudhuri:2004:SAN

Chang:1978:BRD

Chattergy:1978:CL

Connors:2000:HSD

[CHCmWH00] Daniel A. Connors, Hillery C. Hunter, Ben-Chung Cheng, and Wen mei W. Hwu. Hardware support for dynamic activation of compiler-directed

Chan:1990:HAA

Chalterjee:1992:BRI

Chase:1996:RW

Chen:2010:LPP

Cherniavsky:1981:CMA

Chen:1984:ECC

Chesley:1984:WM

Chen:1990:SBV

Chevance:1992:EMM

Chess:2005:SAC

Chen:2017:BDA

Citron:2006:HGM

Chiu:1989:RLF

Colwell:1983:PTR

Carpenter:2012:EET

Cypher:1993:ARP

Colin:2016:EIF
REFERENCES

Cui:2013:VSR

Carpenter:2011:CGS

Chen:2014:ICB

Citron:2003:MPM

Cortadella:1988:DRC

Cuppu:2001:CLS

Ju:1999:PMD

REFERENCES

[CKA91] David Chaiken, John Kubiatowicz, and Anant Agarwal.
REFERENCES

REFERENCES

Cherupalli:2016:EDT

Clements:2012:SAS

Clark:1982:MAI

Cargill:1987:CHS

Chen:1989:AVA

Chaudhry:1994:CMP

Cain:2004:MOV

REFERENCES

2004. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Eric Chi, Stephen A. Lyon, and Margaret Martonosi. Tailoring quantum architectures to implementation style: a quantum computer for mobile and persistent qubits. *ACM SIGARCH Computer Archi-

[CLX+16] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. *ACM SIGARCH Computer Architecture News*, 44(3):27–39, June 2016. CODEN CANED2. ISSN 0163-
REFERENCES

5964 (print), 1943-5851 (electronic).

Chroust:1980:RMO

Chiang:1987:DEL

Clauss:2000:AML

Cook:2013:HEC

Chang:1991:IAF

Chang:1998:IAF

Caulfield:2012:PSU

Adrian M. Caulfield, Todor I.

Cain:2013:RAS

Cristal:2004:CRC

Chung:2006:TTM

Conte:1995:OIF

Chow:1988:HNH

Civera:1987:EVP

REFERENCES

Cheng:2006:IAC

Chang:2012:TGE

Cintra:2000:ASS

Conte:1991:BSB

Copeland:1978:SSS

Corbett:1989:UMS

Cousins:1989:DCR

Cousins:1990:NAC

Cousins:1990:RPI

Cox:1979:NCA

Chen:1990:MPS

Chung:1998:LBC

Crago:2011:OEM

REFERENCES

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Cuesta:2011:IED

Cunha:1991:AMM

Calder:1999:SVP

Chisnall:2015:BPA

Clark:1980:CCR

Coffman:1980:CBS

Chen:1989:TMH
REFERENCES

111, June 1989. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Chen:1994:UAT

Carr:1999:ISP

Chou:2000:IPC

Chang:2006:CCC

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Chiyonobu:2006:EEI

Chakraborty:2011:CBS

Chhabra:2011:NSN

Caulfield:2013:QSA

[CS13a] Adrian M. Caulfield and Steven Swanson. QuickSAN: a storage area network for fast, distributed, solid state

Checkoway:2013:IAW

Cheriton:1986:SCC

Calciu:2017:BBC

Churchill:2017:SLS

Chakradhar:2010:DCC

Chappell:1999:SSM

Constantinou:2005:PIS

Theofanis Constantinou, Yiannakis Sazeides, Pierre Michaud, Damien Fetis, and Andre

Culler:1991:FGP

Cheung:1987:OAG

Chan:1994:ECF

Chen:1990:ISG

Cornell:1974:CGP

Chuang:1990:DPA

Cederman:2008:SLB

REFERENCES

Chien:2015:CSH

Ceze:2007:BBE

Ceze:2006:BDS

Chau:2013:ASM

Chappell:2002:DPB

Cheong:1988:CCS

Cvetanovic:2003:PAA
Zarka Cvetanovic. Performance analysis of the Alpha
REFERENCES

Chang:2002:ATI

Crandall:2006:TSD

Chakraborty:2006:CSE

Choudhary:2011:FCS

Collins:2001:SPL

Chen:2008:SSP

[CW02]

[CWdO+06]

[CWS06]

REFERENCES

Choi:1996:CHS

Choi:2006:LBS

Chen:2011:DSE

Chen:2016:BQA

Chen:2017:PPQ

Chen:2014:MLC

[175] Chen:2014:MLC

Colp:2015:PDS

Cheng:2016:LLB

Dahlgren:1995:BPH

Dally:1989:MOF

Dally:1990:VCF

Dally:2010:MNC

Danesh:1993:PLC

[Dan93] Iraj Danesh. Physical limitations of a computer. ACM
REFERENCES

Dasgupta:1977:DSL

Dasgupta:1983:VCA

Davidson:1980:MSM

Davies:1980:CAM

Dubois:1982:ECC

Duesterwald:2000:SPH

Deris:2007:ICE

Davis:2014:IWA
REFERENCES

Desikan:2002:EME

Dennis:1980:BBD

Devietti:2008:HAS

Denehy:2004:DSA

Diaz:2009:SCE

DeHon:1994:MRA

Dally:1987:AMD

Dally:1998:AMD

Dally:1998:RJM

Daya:2014:SCR

Dalessandro:2011:HNC

Denning:1980:MCS
Peter J. Denning and T. Don Dennis. On minimizing contention at semaphores. ACM SIGARCH Computer
REFERENCES

Dayde:1990:UPL

deDinechin:2013:FPT

Didona:2016:PAM

Dobry:1985:PSP

Dahlgren:1994:CPG

Dao:1995:CFC

DePrycker:1981:NIM

DeGloria:1990:VVI

Debaere:1989:IPC

DeMone:1996:RWD

Dennis:1976:CAC

Dennis:1980:WIC

Dennis:1998:RPA

Dennis:2003:FBM

DuBois:2013:CSI

REFERENCES

[Dai:2000:LSO]

[Deville:1990:LCU]

[Deville:1993:PDP]

[DeGloria:1992:ILP]

[DFL05]

[Dashti:2013:TMH]

[Dashti:2013:TMH]

[Damron:2006:HTM]
REFERENCES

DuBose:1986:MR

Dai:1990:BAS

Deville:1992:CRP

Diniz:2007:LPC

David:2015:ACS

David:1989:EIB

DeWitt:1999:PTL

Driesen:1998:AIB

[DH98] Karel Driesen and Urs Hölzle. Accurate indirect branch prediction. ACM SIGARCH Computer Architecture News,
D'Hollander: 2016: HLS

Dehnert: 1989: OLS

Ditzel: 1990: BSV

Dhanwan: 2015: ASS

Duan: 2015: AMF

Dimpsey: 1990: PDD

REFERENCES

REFERENCES

Dally:1985:OOA

Dollan:1989:CSP

Delimitrou:2016:HRE

Delimitrou:2017:BKW

Dwarkadas:1993:ERC
REFERENCES

REFERENCES

REFERENCES

REFERENCES

deOliveira:2013:WYS

[Don83]

[Don85]

[Don88]

[Don90]

[Don92]

[Dor75]

REFERENCES

Doran:1982:MFC

Dowd:1987:ERV

Dowd:1988:ERV

Dowd:1988:RVC

Dowd:1991:HPI

Dworak:1976:IIR

Ditzel:1980:RHL

Ditzel:1998:RRH

ACM Order Number 414984. IEEE Computer Society Order Number PR08491; IEEE Order Plan Catalog Number 98CB36235.

REFERENCES

December 1993. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Davis:2005:CPS

Drew:1994:TTM

Driker:1999:DCC

Delgado-Rannauro:1989:MDP

Dubois:1998:RMA

REFERENCES

194

puter Society Order Number PR08491; IEEE Order Plan Catalog Number 98CB36235.

Dhodapkar:2002:MMC

DaSilva:2006:PPA

Demme:2011:RIA

Dubois:1986:MAB

Dubois:1998:MAB

Desikan:2004:SSR

Davidson:1990:BTO

[DSF+90] Edward S. Davidson, Gurindar S. Sohl, Joseph A. Fisher, Greg Grohoski, Yale Pratt, J. E. Smith, and David R. Stiles. Better than one operation per clock (panel): vectors,
REFERENCES

Das:2011:HSR

Drapeau:1994:RIH

Dohi:1982:HSA

Dohi:2010:IPE

REFERENCES

5964 (print), 1943-5851 (electronic).

REFERENCES

PR08491; IEEE Order Plan Catalog Number 98CB36235.

[EE10a] Stijn Eyerman and Lieven Eeckhout. Modeling critical sections in Amdahl’s Law and its implications for multicore design. ACM SIGARCH...
REFERENCES

Eyerman:2010:PJS

Eyerman:2014:BSM

Eyerman:2006:PCA

Emer:1997:LDP

Egan:1982:EVC

Edler:1985:IRM

El-Halabi:1982:SRD

REFERENCES

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

El-Kharashi:2001:ATA

Ekanayake:2004:ULP

Edwards:1980:MGN

Ebrahimi:2010:FST

Ebrahimi:2011:PAS

Elkateeb:1989:PSR

Emma:2006:ESR

REFERENCES

Hajj:2016:SPM

Eberle:1998:SQC

Ebeling:1984:DIV

Eickenmeyer:1988:PEC

Evers:1998:ACP

Esponda:1992:GCR

ElMasri:1978:MIR
REFERENCES

Eastman:1974:CDC

Ekman:2005:DLC

Eslami:2016:IOM

Ezhilchelvan:1989:CRS

Estrin:2002:KAS

Ekman:2005:RMM

Eslami:2016:IOM

Eslam:2016:IOM
Felten:1996:EEM

Fuchs:1983:CED

Ferdman:2012:CCS

Faroughi:2005:PPP

Farrens:1989:IPS

Fatoohi:1990:VPA

Faxen:2008:WWS
REFERENCES

[FCJV97] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic. Memory-system design considerations...

Feustel:1982:PPC

Feustel:1984:PEP

Fischler:1973:FTM

Fernandez:2000:EPN

Fitzpatrick:1982:RAV

Fousek:2011:AFC

Federovsky:1998:BPB

REFERENCES

CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

French:1983:TDF

Freudenthal:1991:PCF

Folegnani:2001:EEI

Feng:2010:SPS

Foutris:2013:DMA

Ford:1976:HSI

Fusaoka:1982:CCH

Finkel:1988:YSM

Raphael Finkel and Debra Hensgen. YACKOS on a shared-memory multiprocessor. *ACM SIGARCH Computer Architecture News*, 16

REFERENCES

Number 414984. IEEE Computer Society Order Number PR08491; IEEE Order Plan Catalog Number 98CB36235.

REFERENCES

Flautner:2002:DCS

Fisher:1983:APP

Fukazawa:1989:RRP

Fournier:1976:SDG

Fuller:1976:IMS

Fortes:1984:DBL

Ferri:2007:HSF

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Fong:2003:CAA

Forsell:1994:MMPa

Forsell:1994:MMPb

Foster:1972:SNI

Foster:1972:SNI

Foster:1974:S

Fostel:1993:BRC

REFERENCES

Fostel:1993:BRP

Farrens:1991:DBR

Fu:1991:DPM

Fromm:1997:EEI

Farrens:1992:PTL

Flynn:1972:CAJ

Frietman:1987:EOD

REFERENCES

Feitelson:1989:AMU

Franchi:1976:DFC

Frailey:1983:WLC

Frank:1986:EPS

Frazier:1990:ASM

Fields:2001:FPP

Freeman:1974:ICE

Freeman:1987:APM
REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

REFERENCES

Fulcher:1991:BRM

Fulcher:1993:BRP

Flautner:2000:TLP

Fusse1:1982:FTW

Franklin:1982:ACC

Falsafi:1997:RND

Fan:2007:PPW
REFERENCES

REFERENCES

[GeC84] James R. Goodman and Men chow Chiang. The use of static column RAM as a memory
REFERENCES

[Gutierrez:2014:ISS]

[Ge:2017:GGC]

[Gonzalez:2004:CAI]

[Gaur:2011:BIA]

Gummaraju:2008:SPG

Grafe:1989:EDP

Gao:2016:DLP

Gehlhaar:2014:NPN

Gerrity:1980:HDU

Gerrity:1981:PI

Gupta:1986:PAA

Guo:2015:PGA

Qing Guo, Xiaochen Guo, Ravi Patel, Engin Ipek, and Eby G. Friedman. AC-DIMM: associative computing with STT-MRAM. *ACM
REFERENCES

Gornish:1990:CDD

Gladney:1976:MRT

Goodman:1986:URV

Ghosh:1988:CIM

Glew:1990:SCT

Gharachorloo:1998:RMC

Gupta:1991:CEL
Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and Wolf-Dietrich Weber. Comparative evaluation of latency reducing and

REFERENCES

REFERENCES

Fei Guo, Hari Kannan, Li Zhao, Ramesh Illikkal, Ravi Iyer, Don Newell, Yan Solihin, and Christos Kozyrakis. From chaos to QoS: case studies in CMP resource management.

Goke:1973:BNP

Goke:1998:BNP

Golla:1998:CEB

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Gross:1998:RRW

Gunadi:2011:CCR

Gaudiot:1988:SPD

REFERENCES

Gabbay:1998:EIF

Gebhart:2009:ETC

Greathouse:2011:DDS

Goto:1989:DPC

Gangwani:2016:CBS

Gunther:1989:PBS

Glass:1992:TMA
Christopher J. Glass and Lionel M. Ni. The turn model for adaptive routing. ACM
REFERENCES

REFERENCES

Goodman:1987:CMV

Good:1988:SIC

Goodman:1988:RDR

Goodman:1998:UCM

Gorsline:1983:RAC

Gottlieb:1998:RPR

Gouda:1978:HCC

Gove:2007:CWS

Gault:1976:DUP

Garth:1988:ISN

Gschwind:1995:VP

Gidenstam:2008:LLF

Giefers:2013:AFD

REFERENCES

Gomez:2002:ASA

Georgiou:1987:ECI

Gomaa:2004:HRL

Gao:2017:TSE

Graham:1984:PAS

Grabienski:1991:FFS

Ganapathy:2008:DIM

Guha:1987:AID

[GRD87] A. Guha, R. Ramnarayan, and M. Derstine. Architectural

=Garg:2006:SMD=

=Griffin:1988:UUR=

=Gonzalez-Rubio:1984:SFP=

=Goldstein:1974:MOR=

=Guillier:1980:ACF=

=Grahn:1995:ESS=

=Gove:2007:ECB=

REFERENCES

Gordon:2006:ECG

Gordon:2002:SCC

Ghosal:1989:ACC

Goodman:1985:PVD

Guo:2013:CAS

Gidra:2015:NGC
Gidra:2013:SSS

Gurtzmann:1987:ODH

Gunther:1990:HSM

Gomaa:2005:OTF

Goodstein:2010:BAA

REFERENCES

PLOS ’12 conference proceedings.

Greathouse:2012:CUW

Gu:2016:BFN

Gloy:1996:ADB

Guha:2013:SEW

Hudak:1990:CTD

Hughes:2004:FAF

REFERENCES

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hoseinzadeh:2014:RAL

Hayes:1977:AAC

Harland:1986:MOO

Hsu:1990:PMT

Hunt:2013:DTN

Heo:2002:DFG

Hong:2013:RTR

Hrishikesh:2002:OLD

Hashmi:2011:AAF

Horst:1985:AHV

Hwu:1988:EPM

Hwu:1989:AHI

Hwang:1999:SSI

Heinrich:2003:OWA

Hauswirth:2004:LOM

[HC04] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak detection using adaptive sta-
REFERENCES

Hosek:2015:VUE

Huh:2004:CDM

Hwu:1989:CSH

Hankins:2006:MIS

Halstead:1994:PCR

Heath:2006:MFT

Hmid:2015:TAR

Hong:2012:GMD

Hasan:2003:EUM

Hammond:2004:PTC

Hormati:2010:MMS

Hammerstrom:1977:ICC
REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Herrod:2006:FVT
Steve Herrod. The future of virtualization technology.
CODEN CANED2.
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hey:1990:STP
Anthony J. G. Hey. Supercomputing with transputers—
September 1990.
CODEN CANED2.
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Halstead:1988:MMP
CODEN CANED2.
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hardavellas:2009:RNN
CODEN CANED2.
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Higuchi:1991:IPA
CODEN CANED2.
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hoang:2011:ECT
CODEN CANED2.
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hau:2003:SJA
CODEN CANED2.
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hayes:1987:ADE
REFERENCES

Stephen Hines, Joshua Green, Gary Tyson, and David Whalley. Improving program efficiency by packing instruc-

[Huck:1993:AST]

[Hower:2008:REE]

[Hayashi:1983:AHP]

[Haque:2015:FMI]

[Horst:1990:MII]

REFERENCES

REFERENCES

1977. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[Hofmann:2013:ISA] Owen S. Hofmann, Sangman Kim, Alan M. Dunn,

Hashemi:2016:ADC

Hercksen:1980:HMS

Henry:2000:CWW

Hu:2002:TMS

Hirata:1992:EPA

Hidaka:1993:MTC

REFERENCES

Huguet:1985:RRF

Harper:1989:DSS

Herbordt:2015:LLG

Hill:1993:WAR

Hansen:1982:PEI

Han:2016:EEI

Haring:1998:IWP

REFERENCES

HAMMERSTROM:1986:CAP

HSIAO:2017:ASI

HASAAN:2015:KDG

HURAKAMI:1977:PPS

HASSAN:2015:KDG

HALL:1991:PCA

HOFFMANN:1980:HIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

5964 (print), 1943-5851 (electronic).

Hemphill:1973:DDG

[HS73] John M. Hemphill and S. A. Szygenda. Deriving design guidelines for diagnos-
able computer systems. ACM SIGARCH Computer Architecture News, 2(4):131–135, De-
cember 1973. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Huen:1974:IPR

Harris:1977:HMO

[HS77] J. Archer Harris and David R. Smith. Hierarchical multipro-
48, March 1977. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hamacher:1980:PCF

87, 1980. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hill:1984:EEC

[HS84] Mark D. Hill and Alan Jay Smith. Experimental evaluation of on-chip microproces-
166, June 1984. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hasegawa:1985:HST

[HS85a] Makoto Hasegawa and Yoshi-
haru Shigei. High-speed top-
of-stack scheme for VLSI pro-
cessor: a management al-
54, June 1985. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hitchcock:1985:AMR

63, June 1985. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hurson:1985:SMU

[HS85c] A. R. Hurson and B. Shiri-
razi. A systolic multiplier unit and its VLSI design. ACM SIGARCH Computer

Hasegawa:1986:FFT

Ho:1990:BAD

Hsu:1993:PCD

Hilgendorf:2001:ITE

Hu:2006:RST

Huang:2010:ICM

Hechtman:2013:EMC

Hasabnis:2016:LAI

Niranjan Hasabnis and R. Sekar. Lifting assembly to intermediate representation: a novel

REFERENCES

Huang:1994:SDC

Hwang:2012:CRD

Hill:2000:SAD

Hormati:2011:SPS

Horita:2010:FBF

Honarmand:2014:RRR

Honarmand:2014:RDL

REFERENCES

5964 (print), 1943-5851 (electronic).

REFERENCES

Herbordt:1991:MPA

Hammond:2004:TMC

Hayashizaki:2011:IPT

Hu:1997:OES

Hor:1985:DPP

Hu:1996:DDC

Hyatt:1993:HPO

<table>
<thead>
<tr>
<th>Year</th>
<th>ISBN</th>
<th>ISSN</th>
<th>LCCN</th>
<th>URL</th>
</tr>
</thead>
</table>

IEEE:1987:AIS

IEEE:1990:PAI

IEEE:1992:PAI

IEEE, editor. Proceedings, the 19th annual International Symposium on Computer Architecture: May 19–21, 1992, Gold Coast, Queens-
REFERENCES

[IEEE:2005:ISC]

[IEEE:2006:ISC]

[Irwin:1980:OPS]

[Ibbett:1989:AMS]

[Izraelevitz:2016:FAP]

[Ipek:2007:CFA]

[Iliiffe:1987:FLM]

REFERENCES

Iyer:2002:PPE

Ipek:2008:SOM

Ipek:2006:EEA

Isci:2013:AEV

Inoue:2005:EST

Isailovic:2006:INS

Irwin:1986:STR
Mary Jane Irwin. Secretary/treasurer’s Report. ACM
REFERENCES

Irwin:2010:SCM

Intrater:1992:PED

Isaacson:1974:PSP

Irie:2007:PTE

Iyer:2004:ESI

Ito:1986:APE

Iftode:1996:UAP

Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Understanding application performance on shared virtual memory systems. ACM SIGARCH Computer Architecture News,
REFERENCES

Ishikawa:1984:DOO

Inoue:1993:PEV

Ivanovic:1991:BRC

Isailovic:2008:RQC

Jones:2006:GMB

Jagannathan:1980:TAI

Jain:1982:DPT

Jensen:1976:MIS

Jenevein:1982:CPR

Jutla:1997:IAP

Jouppi:1989:UVS

Jenevein:1981:EHS

Jung:2014:HHI

Jung:2014:TNS

Jainandunsing:1988:DCC

Jenevein:1981:EHS
REFERENCES

REFERENCES

José A. Joao, Onur Mutlu, and Yale N. Patt. Flexible reference-counting-based hardware acceleration for garbage collection. ACM
REFERENCES

REFERENCES

Johnson:1992:ICL

Johnson:1995:GMW

John:2004:MFS

Jones:1982:SPM

Jones:1983:PM

Jones:1988:MC

Jones:1988:RCR

Jones:1988:UR

Jonsson:2008:SSE

Bengt Jonsson. State-space exploration for concurrent algorithms under weak memory orderings: (preliminary

REFERENCES

Juang:2002:EEC

Jerger:2008:VCT

Joldes:2014:SSH

Jordan:1973:SDS

Jiang:1999:SAP

Jiang:1998:PMB

Jiang:1999:SAP

REFERENCES

[Jacobson:2000:TP] Quinn Jacobson and James E. Smith. Trace preconstruc-

[JSAM10] F. Ryan Johnson, Radu Sto-

tica, Anastasia Ailamaki, and Todd C. Mowry. Decoupling con-

tention management from scheduling. *ACM SIGARCH Com-

[Jevdjic:2017:ASC] Djordje Jevdjic, Karin Strauss,

[Jourdan:1995:ECF] Stéphan Jourdan, Pascal Sain-

rat, and Daniel Litaize. Exploring configurations of func-

[Joao:2012:BIS] José A. Joao, M. Aater Sule-

[Joao:2013:UBA] José A. Joao, M. Aater Sule-

[Juan:1998:DHL] Toni Juan, Sanji Sanjeevan,

and Juan J. Navarro. Dynamic history-length fitting: a third
REFERENCES

Jain:1993:SPO

Jaleel:2010:HPC

Jevdjic:2013:SDC

Jafri:2013:WGI

Johnsson:1982:OMP

Jouppi:1989:AIL

Jouppi:1994:TTL

Jain:1995:AAE

Jokinen:1997:CDP

Jung:2012:PAQ

Jiang:2014:LPR

Krishnaswamy:1988:ALC
Kundu:2004:CSI

Kane:1974:ISI

Kannan:2011:ARH

Kaplan:1987:LLG

Karger:1989:URO

Kerne:1995:OOC

Karger:2007:PSL

Katz:1989:PHP

REFERENCES

[KBD+13] Daniel Kudrow, Kenneth Bier, Zhaoxia Deng, Diana

Kagi:1997:ESL

Krashinsky:2004:VTA

Kim:2002:ANU

Kravitz:1989:LSM

Kavi:1984:MRD

King:1974:ODS

Knott:1982:FDA

J. D. Knott and T. W. Crock-ett. Fair dynamic arbitration

Karamcheti:1995:CAS

Kim:1996:RCQ

Keen:2002:HSC

Kaeli:2005:WIS

Korn:2007:SCS

Krimer:2012:LDI

Kinsy:2009:AAD

REFERENCES

Keleher:1992:LRC

Keckler:1992:PCI

Khunjush:2006:HMD

Kim:2007:FBC

King:2012:AGH

Korfhage:1978:DPU

Kumar:1983:SSC

REFERENCES

Kim:2014:FBM

Kuck:1993:CSI

Kwon:2016:SPT

Keckler:1998:EFG
Stephen W. Keckler, William J. Dally, Daniel Maskit, Nicholas P. Carter, Andrew Chang, and Whay S. Lee. Exploiting fine-grain thread level parallelism on the MIT multi-ALU processor. *ACM SIGARCH*
REFERENCES

Computer Architecture News,

Kechadi:1992:PIV

Kim:2008:PCN

Kirovski:2002:ETS

Koeplinger:2016:AGE

Kgil:2006:PUS

Kim:2008:TDH

Kakimoto:2012:PCG

Kim:2005:MHR

K:2011:LPT

Kaeli:1991:BHT

Kim:2016:RMR

Keedy:1978:EEU

Keedy:1978:USE

Keedy:1979:MUS

REFERENCES

1979. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[Kha97b] Humayun Khalid. A novel trace sampling technique. ACM SIGARCH Computer
Khalid:1997:PKC

Khalid:1999:MPE

Khalid:1999:PEM

Khalid:1999:TMB

Kodama:2014:PFB

Kurian:1992:MLE

Kurian:1991:CPE
Lizyamma Kurian, Paul T. Hulina, Lee D. Coraor, and
REFERENCES

Kang:2017:NCI

Kaxiras:2001:CDE

Kontothanassis:1997:VBS

Kim:2016:SFA

Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer, Yunsup Lee, Jonathan Bachrach, and Krste Asanović. Strober: fast and accurate sample-based energy simulation for arbitrary
REFERENCES

Kim:2007:VPR

Kharbutli:2006:CEP

Kelm:2010:CHM

Kim:2016:NEN

REFERENCES

ISSN 0163-5964 (print), 1943-5851 (electronic).

Keown:1992:PHR

Kim:2016:SCD

Kim:2016:NPD

Kurian:2013:LAA

Kim:2013:DBC

Kuznia:1976:SSM

Kim:2017:TAA

[KKK+17] Channoh Kim, Jaehyeok Kim, Sungmin Kim, Dooyoung

Kawahito:2006:NIR

Kawahito:2000:ENP

Kwon:2014:LOC

Kwon:2011:VPA

Kumar:2008:AVO

Kim:2015:DEF

Kwon:2016:LCI

Kobayashi:2005:LAC

Klaiber:1991:ASC

Klaiber:1994:CMP

Kim:2002:IOD

Kim:2003:HPA

Kim:1994:CRF
REFERENCES

Kim:1988:RCB

Klimovic:2017:RRF

Koukoumidis:2011:PC

Kluge:1976:TBT

Kodres:1974:DSA

Kirner:1986:DDS

Kirman:2010:PEA

Koibuchi:2012:CRS

Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, D. Frank Hsu, and Henri Casanova. A case for random shortcut topologies for HPC interconnects. ACM SIGARCH Computer Ar-
Kiyohara:1993:RCN

Kohler:2002:PLO

Kamiya:1985:HPA

Kobayashi:2016:HSV

Kuperman:2016:PR

Kim:2007:AIB

Koka:2010:SPN

Koka:2012:MAA

Kuga:1991:DDH

Kumar:2012:NLT

Knight:1991:TLL

Knoke:1973:SEC

Kim:2006:GDE

Kim:2007:NDD

Kyo:2005:IMA

Kayaalp:2012:BRL

Kogge:1988:VRB

Kogge:1973:MRP

Kogge:1977:MPP

Kuskin:1994:SFM

Kuskin:1998:SFM

Kamibayashi:1982:HOS

Kornerup:1974:CMS

Kozyrakis:2003:OLC

Kumar:2005:TDD

Klauser:1998:SEE

Kwon:1996:COR

Oh-Young Kwon, Gi-Ho Park, and Tack-Don Han. A com-
piler optimization to reduce execution time of loop nest.

Keeton:1998:PCQ

Kim:1989:PLS

Klappholz:1990:PAA

Kumar:2007:EVC

Kulkarni:2008:OPB

Kaufmann:2016:HPP

Kolli:2016:HPT
Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch. High-

Kuhl:1980:DFT

Kumar:1985:APM

Kumar:1985:DAF

Kaxiras:2013:NPE

Krieger:1991:BRM

Krishnan:1983:ESC

Kgil:2008:INF

Kronlöf:1983:ECM

Kroft:1998:LFI

Kroft:1998:RLF

Kadav:2013:FGF

Kawakami:1984:SPL

Kruskal:1984:IBS

Kunkel:1986:OPS

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Konstantinidou:1991:CRP

Konstantinidou:1991:CRA

Kontothanassis:1995:ESM

Kim:1999:AEA

Kandiraju:2002:GDT

Kim:2002:ISM

Karkhanis:2004:FOS

Karkhanis:2007:ADA

Tejas S. Karkhanis and James E. Smith. Automated design of application specific superscalar processors: an

[KSL+12] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. A case for exploiting subarray-level par-

Kim:2016:AIE

Kise:2007:SIA

Kondo:2007:IFT

Kreger-Stickles:2008:MAI

Keller:2010:NVC

Kodama:1995:EXP

Kamruzzaman:2011:ICP

Yu:2011:SDH

Katevenis:1991:RBP

Kreaseck:2000:LTB

Kim:2017:KPC

Kondo:1986:PMA

Kambadur:2012:HCA

REFERENCES

Kagimasa:1991:ASM

Kinoshita:2012:ARS

Kumar:2004:SIH

Kim:2013:MME

Kuhn:1980:EMA

Kumar:1987:ESA

Kung:1986:MRB
REFERENCES

54, June 1986. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Kung:1988:DAS

Kuskin:1998:RSF

King:1984:CSA

Kumar:1998:ESL

Kubota:2011:MWS

Kang:2013:HPP

Karne:2008:OSC

Ramesh K. Karne, Alexander L. Wijesinha, and George H. Ford, Jr. Opinion: stay on course with an evolution or

Kanev:2017:MAM

Kim:2002:DEC

Kishi:1983:DDD

Kontorinis:2012:MDU

Kasikci:2012:DRV

Kumar:2005:IMC

REFERENCES

Laird:1992:CTC

Lenharth:2009:RDO

Laliotis:1973:IAS

Lampson:1982:FPC

Langdon:1976:BRR

Langdon:1977:CFM

Langdon:1990:BRH

Langdon:1990:BRS

Glen G. Langdon, Jr. Book review: *Solving Problems on Concurrent Processors, Vol II:

Langdon:1993:BR

Laplante:1990:NSI

Laplante:1991:ICB

Larus:1982:CMA

Larus:2011:CWC

Li:1985:TRS

Lass:1987:WCC

Lass:1988:MIO

Lass:1988:SCM

Lass:1989:HES

Lass:1989:SIC

Lass:1991:CCP

Leverich:2007:CMS

Laudon:2005:PWN

Lawson:1976:FDC

Lee:2006:AER
REFERENCES

December 2006. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Lee:2008:ETL

Lee:2008:ETL

Lee:1995:ICF

Lo:1998:ADW

Ling:2012:HPP

Lewis:2002:AIM

Li:2006:MEM

Levy:1982:UBM
Lovett:1996:SCN

Levis:2002:MTV

Lucia:2013:CEF

Lee:1998:ECD

Lai:1992:EBS

Li:2017:SSA

Lie:2001:SME

Litz:2014:STR

Heiner Litz, David Cheriton, Amin Firoozshahian, Omid

Lo:2014:TEP

Lim:2009:DME

Lucia:2010:CAS

Lucia:2010:CES

Lin:2016:SKT

Lee:1985:DMR

Lee:1985:HSC

Lee:1988:SSP

Lesokhin:2017:PFS

Levy:1992:BRN

Levitan:1982:FEN

Lai:1999:MSP

REFERENCES

\[Lai:2000:SAT\]

\[Lai:2001:DBP\]

\[Lun:2003:OOP\]

\[Lebeck:2000:PAP\]

\[Lumb:2004:DSD\]

\[Laudon:1992:AIT\]

\[Lupon:2014:SHS\]

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Lang:1986:RRS

Lee:1986:ESG

Louri:1988:BPA

Leng:2013:GEE

LiKamWa:2016:RAC

Landin:1991:RFI

Litaize:1989:MSM

0163-5964 (ACM), 0884-7495 (IEEE).

Liu:2015:GHS

Levinthal:1987:PCG

Lee:2009:APC

Lindamood:1976:NCA

Lindamood:1977:WN

Lindsay:1981:CMM

Lipovski:1973:VFS

Lipovski:1976:QS
REFERENCES

REFERENCES

REFERENCES

5964 (print), 1943-5851 (electronic).

Lynch:1998:LLL

Lopez-Lagunas:2006:MBO

Liu:2014:GVM

Li:2004:PDE

Lun:2003:MMO

Lenoski:1990:DBC

REFERENCES

Lenoski:1992:DPI

Lenoski:1998:DPI

Leesatapornwongsa:2016:TTN

Liu:2017:ITN

Lin:1982:DFT

REFERENCES

Lipasti:2004:PRI

Leung:1976:CSF

Litaize:1992:TSM

Lin:1991:DFM

Louri:1992:PEO

Lakshmikanthan:2007:VVC

Lim:2013:TSS

Lee:2008:GSF

[LNA08] Jae W. Lee, Man Cheuk Ng, and Krste Asanovic. Globally-synchronized frames

REFERENCES

(1):81, March 1990. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Lampson:1980:PHP

Li:1991:EMS

Lampson:1998:PHP

Luo:2009:DPT

Liu:2011:FSD

Lu:2008:LMC

Li:2012:ICO

Chao Li, Amer Qouneh, and Tao Li. iSwitch: coordinat-

Lymberopoulos:2012:PIW

Lam:1991:CPO

Lipovski:1973:PFA

Lee:1982:RPD

Louri:1992:NCD
REFERENCES

REFERENCES

Lowell:2004:DVM

Laurenzano:2005:LCT

Liu:2014:NDU

Lu:2006:ADA

Luk:2001:TML

Lunde:1975:MDW

Lundstrom:1985:DCH

Lipovski:1988:FOI

Lam:1992:LCF

Lebeck:1995:DSI

Lorton:2007:ABL

Liang:2008:RVT

Li:2016:PAD

Lin:2012:RUL

Lustig:2017:ASC

[LWPG17] Daniel Lustig, Andrew Wright, Alexandros Papaconstantinou, and Olivier Giroux. Automated synthesis of comprehensive memory model litmus

[RZH00]

[LYL87]

[Li:2016:FBV]

[LYMY16]

[Liu:2017:DBD]

Lin:2007:TMM

Miller:2006:SBI

Morrison:2014:FFW

Morrison:2015:TBT

Malka:2015:REI

Machanick:1996:CSM

Machanick:1998:SVL

Machanick:1999:CRA

Manjikian:2001:MESb

Manjikian:2001:MESa

Marvel:1973:HHA

Marvel:1974:SSP

Mark:1985:SCF

REFERENCES

Matthes:1990:HRG

Matloff:1991:AAS

Matthes:1991:HMO

Matsui:1992:DRM

Matthes:2010:RIC

Mayer:1982:ABB

Mazare:1977:FEH

Myers:1980:HIC

Mogul:1991:ECS

REFERENCES

Muralimanohar:2007:IDC

Mittal:2013:EVE

Min:1990:ECS

Martin:1989:FAM

Mizrahi:1989:IMS

Moravan:2006:SNT

Moch:2004:HSM

S. Moch, M. Bereković, H. J. Stolberg, L. Friebe, M. B.

Mukkara:2016:WID

Moshovos:1997:DSS

Min:1991:ECB

Michael:1992:FMB

Menon:1993:AFT

McDonald:2006:ASP

Mishra:2006:TES

Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani, Seth C.

REFERENCES

McGlynn:1978:RCA

McKeeman:1974:CDE

Mashimo:2016:CEH

Mellor-Crummey:1989:SIC

McLaughlin:1990:DFD

McLaughlin:1991:LAB

McMahan:2017:ASF

REFERENCES

Mellor-Crummey:1991:SC

Montesinos:2008:DRD

Mao:2016:RFR

McNiven:1988:AMR

Mytkowicz:2009:PWD

Mattson:2000:CS

Mishra:2011:ACI

Asit K. Mishra, Xiangyu Dong, Guangyu Sun, Yuan Xie, N. Vijaykrishnan, and Chita R. Das. Architecting on-chip interconnects for stacked 3D STT-RAM caches

Martin:2012:TRT

Menon:2012:IES

Matsunobu:2011:DCE

Mountain:1978:AMC

Mefenza:2015:IBM

Melhem:1985:LSS
<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>ISSN/ISBN</th>
</tr>
</thead>
</table>

[Mukundan:2013:UMR] Janani Mukundan, Hillery Hunter, Kyu hyoun Kim, Jeffrey Stuecheli, and José F. Martinez. Understanding and mitigating refresh overheads...

Montesinos:2009:CSH

Mahlke:1995:CFP

Martin:2003:TCD

Michael:1992:DBC

Middelburg:1982:EPA

Miller:1977:BRRb

Edward F. Miller. Book reviews: Review of *High-Level Language Computer Ar-

REFERENCES

Mirghafori:1995:TSB

Ma:2011:DER

Ma:1984:ARS

Moffie:2005:AAS

Meyer:2011:MRP

Mars:2012:BDS

Manne:1998:PGS

Magaki:2016:ACS

Morano:2003:RHI

Murakami:1983:RDB

Mutlu:2005:TEP

Mukherjee:2002:DDE

McGregor:2005:PCK

Madriles:2009:BST

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MLC2011]</td>
<td></td>
</tr>
<tr>
<td>[MLN+12]</td>
<td></td>
</tr>
<tr>
<td>[MM92]</td>
<td></td>
</tr>
<tr>
<td>[MM08]</td>
<td></td>
</tr>
<tr>
<td>[MM82]</td>
<td></td>
</tr>
<tr>
<td>[MM83]</td>
<td></td>
</tr>
<tr>
<td>[MM87]</td>
<td></td>
</tr>
</tbody>
</table>

Madhavapeddy:2013:ULO

Mytkowicz:2014:DPF

Markuze:2016:TIP

Michael:1997:CCA

Mitsuishi:2014:ABF

Moto-oka:1983:OFG

REFERENCES

Moon:1985:AS

Moshovos:2005:REC

Moudgill:1998:TFS

Malik:2012:ERA

Mai:2000:SMM

Muthukaruppan:2014:PTB

[MPM14] Thamirmalai Somu Muthukaruppan, Anuj Pathania, and

Mendelson:1994:CTI

McCune:2008:HLC

Magenheimer:1987:IMD

Mulo:1989:CSV

Mendelson:1989:SCC

Monchiero:2006:EST

Matteo Monchiero, Gianluca Palermo, Cristina Silvano, and Oreste Villa. An efficient synchronization technique for...

Maa:1991:TED

Mai:2013:VSI

Malony:1990:HBP

Muralidharan:2016:AAC

McGill:1976:MAN

McMillen:1980:MMC

REFERENCES

McMillen:1982:PFT

Moeller:1984:PPP

Mendelson:1987:MDF

Meixner:2005:DVS

Miyoshi:2007:FGC

Mukherjee:2010:NAC

Maitra:2012:NAC

Maitra:2013:DSM

Maitra:2013:HEM

Maitra:2013:HPM

Matveev:2015:RHN

Martin:2000:TSA

Mangione-Smith:1991:VRD

Mukherjee:2002:CSA

REFERENCES

234, December 2002. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

June 2013. ICSA ’13 conference proceedings.

REFERENCES

Muzahid:2009:SSB

Magklis:2003:PBD

Madhavan:2014:RLH

Menychtas:2014:DSP

Ma:2015:SDS

Moalla:1976:DTM

McLear:1982>GCD

R. E. McLear, D. M. Scheibel-
REFERENCES

Malita:2007:MMC

Michaud:1997:TCC

Menon:2009:TSA

Mehrotra:1984:STD

Martin:1997:SCM

Martinez:2002:SSA

Mars:2013:WMH

REFERENCES

Minh:2007:EHT

Merten:1999:HDP

Merten:2000:HMD

Miller:2012:VCE

Meng:2010:DWS

Momeni:2015:EEO
McFarlin:2013:DDO

Mudge:1980:BRR

Mudge:1996:RPH

Mueller:2012:ABA

Mukherjee:1997:WSG

Mulder:1989:DBR

Musoll:2009:LSO

Musoll:2009:MBM

Mullapudi:2015:PAO

Martin:1997:ECL

Mishra:2011:CHC

Munsil:1998:RSU

Meisner:2012:DAS

Hwu:1998:RIA

Hwu:1998:RHH

Mullins:2004:LLV

Mahesri:2007:HSS

Mishra:2015:PGM

Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry
REFERENCES

Norton:1983:AIM

Nikolopoulos:2001:EMA

Naderi:1988:MPEb

Naedel:1985:CCA

Nakajima:2001:MCS

Napolitano:1986:CAD

REFERENCES

REFERENCES

Nesbit:2007:VPC

Navarro:1986:CSI

Najjar:1992:ALL

Nanda:2000:MPR

Nomura:2014:PAM

Nuno-Maganda:2010:TCH

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Nishimura:1983:LPP

Nanba:1985:VAV

Nowak:1987:SGP

Noor:1990:SLS

Nowatzyk:1995:CRD

Nguyen:2011:SCS

Nguyen:2017:WSP

REFERENCES

Nikhil:1992:MMP

Narayanasamy:2005:BCR

Narayanasamy:2006:RSM

Nightingale:2008:PSC

Naz:2005:IDC

Neelakantam:2007:HAR

Nisnevich:1974:DPC

Nassimi:1980:SRB

[NS80] David Nassimi and Sartaj Salhi. A self routing Benes

[NSQ16] Prashant J. Nair, Vilas Sridharan, and Moimuddin K. Qureshi. XED: exposing on-die error detection information for strong memory relia-
Nagle:1994:OAC

Nagle:1993:DTS

Nutt:1977:MIP

Nguyen:2015:FCR

Noakes:1993:JMM

Nunez-Yanez:2014:EER

Ng:2012:STT

Nicholas Ng, Nobuko Yoshida, Xin Yu Niu, and Kuen Hung Tsoi. Session types: towards safe and fast reconfigurable programming. *ACM
REFERENCES

[OC78] Allen J. Otis and George P. Copeland. Editing requirements for data base applications and their implementa-

Oudjida:2012:NHR

Oskin:2003:BQW

Oskin:2000:HCS

Oskin:1998:APC

Orr:2015:SUR

Olson:2016:PDW

Lena E. Olson and Mark D. Hill. Probabilistic directed
writebacks for exclusive caches.

Olson:2017:CGM

Olson:2017:CGM

Ogawa:2013:RJA

Ogawa:2013:RJA

Oh:2013:PAL

Oh:2016:AIC

Oplinger:2002:ESR

Ouyang:2014:SSD

Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,

Jungju Oh, Milos Prvulovic, and Alenka Zajic. TLSync: support for multiple fast barriers using on-chip transmission.

Oehlrich:1991:PEC

Oliver:2004:SMC

Oberoi:2003:PFE

Okina:2015:PPP

Omonte:2015:IAE

O:2014:RBD

REFERENCES

Oslo:1989:DAP

Omohundro:1973:FFC

Onaga:1986:DRA

Ohkawa:2013:RHO

Oyang:1990:EEA

Oyang:1989:MCA

Ozdal:2016:EEA

REFERENCES

May 2016. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Paulos:2013:REA

Pothukuchi:2016:UMI

Payne:1978:CCD

Payne:1980:VFP

Premkumar:1982:RAR

Park:2013:RCH

Powell:2009:ACS

REFERENCES

Park:1990:ISF

Porter:2011:RLT

Papadopoulos:1990:MET

Papadopoulos:1990:FDB

Papadopoulos:1998:MET

Pericas:2008:TLL

Miquel Pericás, Adrian Cristal, Francisco J. Cazorla, Ruben

Putnam:2014:RFA

Pistol:2009:A IN

Pollack:1982:SAM

Paek:2010:BAU

Pelley:2014:MP

Dongkook Park, Soumya Eachempati, Reetuparna Das,

David A. Patterson, Phil Garrison, Mark Hill, Dimitris Lioupis, Chris Nyberg, Tim Sippel, and Korbin Van Dyke. Architecture of a VLSI instruction cache for a RISC.
REFERENCES

Alex Pajuelo, Antonio González, and Mateo Valero. Speculative execution for hiding memory latency. ACM

Puente:2004:ICR

Preiss:1985:DFQ

Preiss:1988:CBM

Pnevmatikatos:1990:CPI

Pichai:2014:ASA

Przybylski:1988:PTC

Przybylski:1989:CPO

REFERENCES

Phansalkar:2007:ARA

Phansalkar:2007:SSC

Palacharla:1997:CES

Palacharla:1994:ESB

Pan:2009:FIF

Poe:2006:BBS

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Park:2009:CEA

Park:1992:CRS

Pell:2011:SEF

Paul:2013:CBN

Paez-Monzon:1996:RPD

Pelley:2010:PRD

Parker:1977:HST

Prakash:1992:SAS

Papamarcos:1998:LOC

Pitsianis:2003:IVM

Parashar:2013:TIC

Park:2015:CCP

Park:2017:DRM

Purnaprajna:2009:RTR

Pulido:1996:ETT

Paolieri:2009:HSW

Pham-Quoc:2016:FBM

Parker:1982:GNM

Petric:2005:EEP

Pramanik:1982:DF

Pai:1997:RRS

[PRA97] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. RSIM: Rice simulator

Price:1991:TAD

Przybylski:1990:PIB

Peuto:1977:ITM

Pleszkun:1988:PPM

Pnevmatikatos:1994:GEB

Patterson:1998:RRR

Patterson:1998:RRI

REFERENCES

Peuto:1998:ITM

Panneerselvam:2012:COS

Putnam:2010:DVE

Pal:2013:FIN

Parashar:2006:SSB

Pai:2013:IGC

Palix:2011:FLT

Palix:2020:VMA

Powers:2017:BBG

Paalvast:1990:MPP

Edwin M. Paalvast, Arjan J. van Gemund, and Henk J. Sips. A method for parallel program generation with

Pinkston:1997:DIN

Plumbridge:2013:BPR

Prvulovic:2002:RCE

Qiu:1998:ODA

Qiu:1999:TLM

Qureshi:2012:PIP

Qureshi:2010:MMS

Moinuddin K. Qureshi, Michele Franceschini, Luis A. Lastras-Montaño, and John P. Karidis.

Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high performance main

Qian:2014:ODB

Qureshi:2005:VWC

Qian:2013:VSP

Quick:1979:IMP

Quinton:1984:ASS

Quong:1994:ECM

Ruhl:1990:PFC

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[Ran85] Brian Randell. Hardware/software tradeoffs: a general design principle? *ACM
REFERENCES

[RBG+01] Alex Ramirez, Luiz André Barroso, Kourosh Gharachorloo, Robert Cohn, Josep Larriba-Pey, P. Geoffrey Lowney, and Mateo Valero. Code layout optimizations for transaction processing workloads. ACM SIGARCH
REFERENCES

[Rattner:1980:OBC] Justin Rattner and George Cox. Object-based computer architecture. ACM SIGARCH Computer Archi-

REFERENCES

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Raghavan:2013:CSH

Rabbat:1988:TDC

Rau:1988:DTR

REFERENCES

REFERENCES

Ruwase:2014:GHP

Raman:2010:SPU

Ryzhyk:2011:IDD

Radoy:1974:SMI

Reames:1974:LNS

Reames:1976:DSD

Ribic:2014:EEW

REFERENCES

[RLW98b] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: user-level shared memory. In
REFERENCES

Rodgers:1985:IMS

Romer:1995:RTM

Roos:1989:RTS

Rossmann:1976:ICS

Rosenthal:1977:DMM

Rosenthal:1977:SM

Rosenberg:1989:EEI

Rosenbaum:1996:AP

REFERENCES

REFERENCES

Reinhardt:1996:DHS

[RPW96]

Rau:1977:EIF

[RR77]

Regehr:2004:HSA

[RRR04]

Ramadan:2007:MTT

[RPR07]

Rajamani:2009:IDE

[RRRV09]

Raghavendra:2008:NPS

[RRT+08]
References

Rudolph:1984:DDC

Roth:1999:EJP

Ringenburg:2015:MDQ

Rabbah:2004:COP

Ransford:2011:MSS

Rothberg:1993:WSC

Rountree:2005:NH
REFERENCES

REFERENCES

Ramakrishnan:1984:MMM

Ramseyer:1977:MMI

Rul:2007:FLP

Ruan:2014:TLC

Reagen:2016:MEL

Rangan:2009:TMF

Ren:2013:DSE
ICSA ’13 conference proceedings.

REFERENCES

References

Sachs:1983:BRR

Sivathanu:2002:ERA

Scott:2006:BHR

Salisbury:1976:MMC

Seo:2005:NOW

Shen:1999:CRF

Smith:1990:IDA

Karan Singh, Major Bhaduria, and Sally A. McKee. Real time power estimation and thread scheduling via performance counters. *ACM
REFERENCES

Seshadri:2014:DBI

Sani:2014:PDF

Saidi:2009:EEP

Sastry:2001:RPS

Schupbach:2011:DLA

Stenström:1993:ACC

Saha:2013:IDP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>ISBN</th>
<th>URL</th>
</tr>
</thead>
</table>

Note: CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).
REFERENCES

Seznec:1992:OAF

Sherwood:2001:ADF

Sprangle:2002:IPP

Suh:2005:DOC

Sprangle:1997:APM

Sahoo:2013:ULI

Schaffner:1973:CAP

Schank:1973:AAS

Schneiker:1977:MF

Schalkoff:1983:TED

Schachter:1988:BRH

Schwartz:1989:DDD

Schneck:1991:BRO

Stephens:1991:ILP

Srinivasan:2001:LVC

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Sudan:2010:MPI

Sansonnet:1980:MLD

Sansonnet:1982:DEL

Shyam:2006:ULC

Stucki:1978:CCA

Sano:2014:FBC

Steffan:2000:SAT

J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. A scalable approach to thread-level speculation. *ACM SIGARCH Computer Architectu-
REFERENCES

Scheurich:1987:CMO

Shin:1989:DAH

Su:1994:BMS

Shin:1995:AIH

Suh:2009:DMR

Shriraman:2010:SLW

Sridharan:2015:MEM

Shaw:2007:ASP

David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H.

Singh:2003:GLB

Schulte:2014:PCS

Sidiroglou-Douskos:2015:TAI

Sohi:1985:ELE

Sudhakrishnan:2011:REB

REFERENCES

Saulsbury:2000:RBT

Shriraman:2008:FDT

Smith:1987:ZCP

Schulte:2013:ARB

[SDWF13] Eric Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie Forrest. Automated repair of binary and assembly programs...

Seznec:2002:DTA

Silberstein:2013:GIF

Smith:2000:VIS

Sakanaka:2004:LER

Saito:2004:FBD

Smith:1983:SIC

Singhal:1994:ASP

Stricker:1995:OMS

[SG95] T. Stricker and T. Gross. Optimizing memory system per-

Sadler:2000:APE

Sampson:2005:FSC

Schwetman:1985:CPP

Stodolsky:1993:PLO

Santhanam:1997:DPH

Smolens:2004:FBS

Stewart:2015:ZDW

Gordon Stewart, Mahanth Gowda, Geoffrey Mainland,
REFERENCES

Schlosser:2000:DCS

Spertus:1993:EMF

Sankar:2008:IDP

Singha:2011:NAF

Scott:1992:PSR

Shen:1980:FTC

Steenkiste:1987:TTC

Simoni:1991:MPL

Siegle:1992:MPB

Shirase:2005:AEC

Sharp:1980:STD

Sasanka:2002:JLG

Sembrant:2014:DDD

Shen:2010:RBV

Soundararajan:1998:FUM

Syed:2012:LOA

Shi:1997:IID

Sibai:2007:PAW

Siegel:1977:UVT

Sato:1989:RTC

Singh:1992:AGP

Singh:1992:IHB

Sites:1973:FPS

Sapiecha:1986:MAH

Seznec:1988:SPT

SanMiguel:2016:AA

Stenstrom:1992:CPE

Smith:1989:LMI

Samadi:2014:PPB

Schmittgen:1983:SAC

Schmittgen:1983:SAC

Sanguinetti:1985:PMB

Sargeant:1986:SDS

Shimizu:2004:JOL

Sridharan:2010:UHV

Sanchez:2011:VSE

Sanchez:2013:ZFA

Michael Sung, Ronny Krashinsky, and Krste Asanović.

[Sawada:2011:PCW]

[SKA+11]

Sung:2013:DEH

[SKA13]

Sharma:2009:RPL

[SKB+12]

[SKB+17]

[Suh:2003:PAP]

Nadathur Satish, Changkyu Kim, Jatin Chhugani, Hideki Saito, Rakesh Krishnaiyer, Mikhail Smelyanskiy, Milind Girkar, and Pradeep Dubey. Can traditional programming bridge the Ninja performance

\cite{Sassa:2016:FSP} \textbf{Sassa:2016:FSP}

\cite{Stuecheli:2010:VWQ} \textbf{Stuecheli:2010:VWQ}

\cite{Srikantaiah:2008:ASP} \textbf{Srikantaiah:2008:ASP}

\cite{Song:2017:HBA} \textbf{Song:2017:HBA}

\cite{Sklenar:1992:PUVa} \textbf{Sklenar:1992:PUVa}

\cite{Sklenar:1992:PUVb} \textbf{Sklenar:1992:PUVb}

\cite{Sano:2015:SCS} \textbf{Sano:2015:SCS}
Kentaro Sano, Fumiya Kono, Naohito Nakasato, Alexander Vazhenin, and Stanislav
REFERENCES

Sprunt:1988:PDP

Sato:1992:TBP

Seznec:1993:OMS

Srinivasan:2005:MMC

Ram Srinivasan and Olaf Lubeck. MonteSim: a Monte

Szefer:2012:ASH

Simha:2012:UAS

Shi:2006:IFD

Sui:2016:PCA

Shi:2005:HEC

Smith:1990:BBS

Sidiroglou:2005:HSS

Stelios Sidiroglou, Michael E. Locasto, and Angelos D. Keromytis. Hardware support for self-healing software services. ACM SIGARCH
REFERENCES

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Swaminathan:2014:EAS

Sim:2013:RSD

Solihin:2002:UUL

Solar-Lezama:2006:CSF

Su:2016:NNB

Suh:2004:SPE

Schulthess:1977:RCA
REFERENCES

REFERENCES

Smith:1975:ACFa

Smith:1975:ACFb

Smith:1982:DAE

Smith:1985:CEI

Smith:1986:BRC

Smith:1990:EA

Smith:1991:SBC

Smith:1998:DAE

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[SNG+12] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and Madan-
lal Musuvathi. End-to-end sequential consistency.

Shafiee:2016:ICN

Sohi:1998:RMP

Sohi:1998:RII

REFERENCES

Singhal:1989:HPP

Shustek:1998:RIT

Sherwood:2002:ACL

Swanson:2006:APT

[SPM+06] Steven Swanson, Andrew Putnam, Martha Mercaldi, Ken Michelson, Andrew Petersen, Andrew Schwerin, Mark Oskin, and Susan J. Eggers. Area-performance trade-offs
REFERENCES

Saulsbury:1996:MMW

Sundaramoorthy:2000:SPI

Sra:2004:CFP

Spradling:2007:SCB

Soudararajan:2007:MBV

Suleman:2008:FDT

Srinivasan:2004:CFP

Sassone:2007:MSR

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Smith:1985:MUD

Sweazey:1986:CCC

Scott:1989:UFC

Sodani:1997:DIR

Sodani:1997:DIR
Swaroop Sridhar, Jonathan S. Shapiro, and Prashanth P.

Sinha:2013:NRA

Sridhar:2007:HLO

Szeides:1998:MPP

References

Swanson:1998:ITR

Sherwood:2003:PTP

Shen:2013:PCF

Siegel:1984:PRP

Skadron:2003:TAM

Shriraman:2007:IHS

Seol:2016:EED

Hoseok Seol, Wongyu Shin,

[SJR⁺13]

Sundararajah:2017:LTN

[SSK17]

Shi:2007:CCP

[SSkP⁺07]

Stunkel:1997:IMW

[SSP97]

Son:2013:RMA

[SST06]

Strauss:2006:FSA

[SSZR05]

Speight:2005:AMP

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Stenström:1989:CCP

Sartin-Tarm:2013:CCS

Stokes:1986:THV

Strecker:1976:CMP

Stringa:1983:EIE

Sinclair:1994:IPS

Su:1974:BRL

Su:1975:ICC

Stephen Y. H. Su. An introduction to CHDL (computer hardware description

Suri:2007:IIL

Sylvain:1974:DEA

Schulthess:1982:ONA

Sohi:1987:IIL

Sohi:1989:TIF

Sohi:1998:IIL

Schuchman:2005:RMT

Schuchman:2006:PTA

Sherwood:2003:PMA

Stryker:1974:SSA

Stanley:1987:PAA

Saad:1990:SBP

Sleiman:2016:ESO

Somogyi:2006:SMS

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Somogyi:2009:STM

Stoll:1995:EMP

Singh:1992:SSP

Seong:2010:SRP

Steele:2002:OHH

Sano:2010:PIA

Sheng:2016:CCF

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Su:1989:DSM

Sano:2011:DSP

Sanchez:2010:FAS

Seong:2013:TLC

Nak Hee Seong, Sungkap Yeo, and Hsien-Hsin S. Lee. Tri-level-cell phase change mem-

StAmant:2014:GPC

Sakai:1989:ADS

So:1988:CPV

REFERENCES

Thakur:1994:CCD

Teodosiu:1997:HFC

Tsoi:2012:MRS

Thapar:1991:CCL

Taylor:1990:TSL

Tullsen:1993:LCP

Thekkath:1994:ISB

Tullsen:1996:ECI

Tullsen:1995:SMM

Tullsen:1998:RSM

Tullsen:1998:SMM

Temam:2010:RNN

Temam:2012:DTA

REFERENCES

Teodosiu:1990:CTD

Terry:1987:FCM

Thurber:1979:BLC

Tamir:1988:HPM

Thornock:2001:NTC

Thomas:2003:IBP

Tanasic:2014:EPM

Towles:2014:UCI
[TGGS14] Brian Towles, J. P. Grossman, Brian Greskamp, and David E. Shaw. Unifying on-

Tadonki:2010:ECL

Trambacz:1976:TDP

Treleaven:1982:RCA

Thakkar:1986:IFU

Tan:2003:DAP

Thacker:2010:IFE

Tada:2016:ESG

REFERENCES

REFERENCES

Thorson:1992:UNa

Thorson:1992:UNb

Thorson:1992:UNc

Thorson:1993:UNa

Thorson:1993:UNb

Thorson:1993:UNc

Thorson:1993:UNd

Thorson:1994:IN

Thorson:1994:UNa
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Thomasian:2009:PSS

Thorson:2009:INa

Thorson:2009:INb

Thorson:2009:INc

Thomasian:2010:SRI

Thorson:2010:WSD

Thorson:2010:INa

Thorson:2010:INb

Thorson:2010:INc

Thomasian:2011:SAD

Thorson:2011:INa

Thorson:2011:INb

Thorson:2011:INc

Thomasian:2012:RPR

Thorson:2012:INa

Thorson:2012:INb

Thorson:2012:INc

Thomasian:2013:DAM

REFERENCES

Thorson:2016:INa

Thurber:1976:ANR

Thurber:1978:CCT

Tick:1988:DBP

Torres:2005:SBD

Talla:2001:MDA

Takefuji:1988:MCS

Tokoro:1983:WSC

Tanaka:2007:LER

Thies:2002:CML

Talluri:1992:TST

Tullsen:2007:ISI

Tyagi:2000:COP

Taylor:2010:SBB

Tsoi:2011:PPO

Thomasian:2014:BDA

Tseng:2007:DHS

Taylor:2004:ERM

Treleaven:1980:MPR

Talpes:2005:ISP

Trouve:2011:ADA

Tanabe:2014:FAO

[TM14a] Yu Tanabe and Tsutomu Maruyama. Fast and accurate optical flow estimation

Tsuyama:2014:GFA

Thaker:2006:QMH

Thekkath:2000:ASC

Touzet:2001:SSE

Trippel:2017:TMM

Tang:2011:IMS

Tang:2013:RRS

Taki:1987:PAE

Tanabe:2011:SFB

Tobias:1980:SUM

Tiwari:2011:CUM

Tsoukarellas:1990:RTS

Tseng:2008:AOP
Francis Tseng and Yale N. Patt. Achieving out-of-order

Tong:2015:HTS

Thurber:1977:ATC

Tarditi:2006:AUD

Tan:2015:DWS

Traub:1985:APG

Tan:1991:GEN

Treleaven:1980:VMA

REFERENCES

September 2010. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

REFERENCES

[Thomborson:1991:SIM]

[TW91]

[TwRB16]

[TWB16]

[Tan:2010:CFF]

[TWC+10]

[Tiwari:2009:CIF]

[TXZ09]

[TXM+09]

[TYS+94]
REFERENCES

Takamaeda-Yamazaki:2011:FBS

Tzeng:1985:FTS

Tzeng:1990:AVH

Tseng:2013:NNE

Tseng:2016:MCA

ulAlam:2016:PRS
Mohammad Mejbah ul Alam and Abdullah Muzahid. Production-run software failure diagnosis.

REFERENCES

[Ump+10] Aniruddha N. Udipi, Naveen Muralimanohar, Niladri Chatterjee, Rajeev Balasubramonian, Al Davis, and Nor-

[Uluski:2005:CAW]

[Unger:2000:CCA]

Valamehr:2012:IRM

VanErtvelde:2008:DPA

Voitsechov:2014:SGM

vanderHouwen:1990:POS

vandeSnepscheut:1979:INP

vonEicken:1992:AMM

vonEicken:1998:AMM

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active messages: a mechanism for integrating communication and computation. In
REFERENCES

REFERENCES

REFERENCES

Vachharajani:2005:CMP

von Issendorff:1980:ANF

Vineberg:1977:ICS

Vissers:1976:IDA

Chris A. Vissers. Interface, a dispersed architecture.

Varma:1995:DAD

Van Craeynest:2012:SHM

Vajapeyam:1999:DVM

REFERENCES

525

VanMeter:2006:DAQ

Viennot:2013:TMR

Vegdahl:1989:RES

Vijaykumar:2002:TFR

T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault recovery using simultaneous multithread-

VonPraun:2006:CMO

Vahid:2001:PCP

Vaucher:1973:HLC

REFERENCES

Varma:1987:RMS

Vranesic:1978:BRR

Venkatesan:2014:SST

Varma:1992:CPS

Venkatesh:2010:CCR

Vajapeyam:1991:ESC

Venkateswaran:2007:FGSa
N. Venkateswaran, Deepak Srinivasan, Madhavan Manivannan, T. P. Ramnath Sai Sagar, Shyamsundar Gopalakrishnan, VinothKrishnan Elangoan, Karthik Chandrasekar, Prem Kumar Ramesh, Viswanath Venkatesan, Arvindakshan Babu, and Sudharshan. Future generation supercomput-

References

December 1988. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

vanTilborg:1989:PFD

Venkat:2014:HID

Vora:2017:CCR

Volos:2011:MLP

Volos:2012:ATM

Voskuilen:2014:FCP

Voskuilen:2014:HPF

Veidenbaum:1998:RCS

Waterland:2014:AAS

Wilkerson:2010:RCP

Wenisch:2007:MSW

Wagner:1983:BVM

Wah:1983:CSD

Wajda:1992:SSP

REFERENCES

REFERENCES

REFERENCES

Wells:2009:MMM

Wallace:1998:TMP

Wang:2004:HTV

Weinsberg:2008:TFC

Wester:2013:PDR

Wu:2016:DFD

REFERENCES

534

CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Weber:1989:ACI

Weber:1989:EBM

Wilkerson:2008:TCC

Weber:1997:MIA

Wassell:2013:SLL

Wang:2014:UBP

Wang:2005:DMS

[WGT+05] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer Jaleel,
and Bruce Jacob. DRAMsim: a memory system simulator.

[WHi78]

[WH97]

[WH07]

[WHG07]

[Wid76]
REFERENCES

Wieck:1982:CSV

Williams:1978:MSD

Wilkes:1982:HSM

Wilkes:1983:KJI

Wilkes:1983:SPS

Wilson:1987:HCB

Williams:1988:SSS

Wilson:1991:PSP

REFERENCES

Wilkes:1995:MWC

Wilmot:1998:DTM

Wilkes:2001:MGF

Williams:2016:BIC

Winfree:2008:TMP

Whitney:2009:FTA

Wirth:1987:HAP

Wise:1986:EES

Wittie:1976:EMR

[Wit76] Larry D. Wittie. Efficient message routing in Mega-Micro-

Witchel:2016:PPW

Wolf:1985:MMI

Wentzlaff:2012:CFG

Wang:2015:CAS

Wang:2015:SPC

Wood:1989:SRD

D. A. Wood and R. H. Katz. Supporting reference and dirty

Wu:2014:QAD

Wah:1984:SMM

Wu:2009:HCA

Wu:2017:FEF

Winsor:1988:ABH

Wulf:1995:HMW

Wang:2016:RTE

REFERENCES

Wang:2007:EAA

Wang:2009:TCP

Watanabe:2014:GAH

Woo:1986:CHU

Wolman:1989:ISI

Wilson:1997:DHB

Wolman:1989:ASB

Wong:1989:SAS
REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Wall:1987:MEU

Wang:1992:RCD

Wedig:1984:RBI

Wray:1991:TSD

Wang:2013:VPD

Wang:2016:LLA

Wade:1974:IDM

Weiss:1984:IIL

Whitby-Strevens:1985:T

Weiss:1987:SSC

Williams:1990:ADR

Wolfe:1991:VIS

Waliullah:2007:SFC

Wittenbrink:1992: CWG

Wang:2014:GRS

Wenisch:2005:TSS
Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardavel-
las, Jangwoo Kim, Anastas- [Wul88] [Wul92] [WW93]
sia Ailamaki, and Babak Fal- Wulf:1988:WCA [Wul88] [Wul92] [WW93]
SIGARCH Computer Archi- Wulf:1992:EWA [Wul92] [WW89] [Wul92] [WW93]
May 2005. CODEN CANED2. Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
ISSN 0163-5964 (ACM), 0884- Woh:2009:AAA [WSM96] [Wul88] [Wul92] [WW89] [Wul92] [WW93]
7495 (IEEE). Woh:2009:AAA [WSM96] [Wul88] [Wul92] [WW89] [Wul92] [WW93]
Larry Widigen, Elliot Sowad- Woh:2009:AAA [WSM96] [Wul88] [Wul92] [WW89] [Wul92] [WW93]
sky, and Kevin McGrath. Elimin- Woh:2009:AAA [WSM96] [Wul88] [Wul92] [WW89] [Wul92] [WW93]
ating operand read latency. ACM Woh:2009:AAA [WSM96] [Wul88] [Wul92] [WW89] [Wul92] [WW93]
1996. CODEN CANED2. ISSN Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
0163-5964 (ACM), 0884-7495 (IEEE). Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
Mark Woh, Sangwon Seo, Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
Scott Mahlke, Trevor Mudge, Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
vanytime anywhere anyway Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
signal processing. ACM AnySP: Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
SIGARCH Computer Architec- Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
June 2009. CODEN CANED2. Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
ISSN 0163-5964 (ACM), 0884-7495 Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
(IEEE). Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
Hong Wang, Tong Sun, and Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
Qing Yang. CAT—caching Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
address tags: a technique for Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
reducing area cost of on- Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
chip caches. ACM SIGARCH Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
K.-F. Wong and M. H. Williams. A type driven hard- Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
ware engine for Prolog clause Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
retrieval over a large knowl- Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]
dge base. ACM SIGARCH Wong:1989:TDH [Wul88] [Wul92] [WW89] [Wul92] [WW93]

Waldspurger:1993:RRF [Wul88] [Wul92] [WW89] [Wul92] [WW93]
Carl A. Waldspurger and William E. Weihl. Register relo- Waldspurger:1993:RRF [Wul88] [Wul92] [WW89] [Wul92] [WW93]
cation: flexible contexts for multithreading. ACM SIGARCH Waldspurger:1993:RRF [Wul88] [Wul92] [WW89] [Wul92] [WW93]
REFERENCES

References

[Weeratunge:2010:AMD]

[Wang:2016:AMR]

[Xu:2003:FDR]

[Xiang:2013:HHO]

[Xue:2010:ICF]

[Wu:2013:SMP]

[Xue:2006:RTR]
Min Xu, Mark D. Hill, and Rastislav Bodik. A regulated

Abdou Youssef and Bruce Arden. A new approach to fast control of $r_2 \times r_2$ 3-stage Benes networks of $r \times r$ crossbar switches. ACM SIGARCH Computer Architecture News, 18(3a):50–59, June 1990. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Hailong Yang, Alex Breslow, Jason Mars, and Lingjia

Yoon:2012:BEM

Yehia:2005:LSA

Yoon:2009:MME

Yoon:2010:VFE

Yelick:2009:TWW

Yan:2006:ICP

Yoaz:1999:STI

REFERENCES

Yoon:2012:DGM

Yu:2016:CWM

Ye:2005:RRA

Yum:2001:QPC

Yoon:2016:VTM

Kim:2002:IWS

REFERENCES

[YMHB00] Zhi Alex Ye, Andreas Moshovos, Scott Hauck, and Prithviraj Banerjee. CHIMAERA: a high-performance architec-

[YN09]

Yetim:2015:CMC

[YMQ15]

Yao:2007:OPD

[Yok94]

Yuan:2010:SED

[YMST07]

Yu:2009:CIC

[YNQ15]

Young:2015:DWE

[Yom92]

Yokota:1994:DND

[Yom92]

Yomtov:1992:PES

May 1992. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Yoon:2016:PPI

Yuba:1990:DCD

Yehia:2004:SDI

Yamaguchi:1983:PEL

Yuen:1981:EPS

Yuen:1984:SAI

Yuen:1999:ASC

Yuen:1999:SR

Zhang:2005:VRM

Zahran:2003:CMH

Zhao:2016:SHC

Zaks:1973:MAF

Zaky:1977:MNN

Zucker:1992:PSM

Zhan:2016:PMB

Zhuravlev:2010:ASR

Zhou:2002:EVC

Zhai:2002:COS

Zhang:2014:HDH

Zhang:2013:CFC

Zhu:2016:DEQ
Zeng:2002:EME

Zhang:2006:BCR

Zhou:2003:DGS

Zhou:2016:PUH

Zhang:2016:MPU

Zhou:2016:CSI

Zilles:2001:BHC

Zhang:2011:FED

Zhang:2017:PPD

Zecca:1990:ECV

Zahedi:2014:RRE

Zheng:2009:DDB

Zhang:2011:CDC

Zhang:2016:TED

Zhang:2011:FED

[ZSKD13] Hongzhou Zhao, Arrvindh Shriraman, Snehasish Kumar,

Zhang:2010:CDS

Zhang:1995:SIA

Zuberek:1980:TPN

Zhang:2003:HCC

Zhou:2014:SAS

Zhou:2016:MMI

Zhang:2014:AIP

373–384, June 2014. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Zhai:2014:CES

Zhang:2015:HDL

Zhang:2000:FVL

Zeng:2009:MCA

Zhang:2005:ASP

Zhang:2015:MRH

Zhuang:2004:HIE

Xiaotong Zhuang, Tao Zhang, and Santosh Pande. HIDE: an infrastructure for efficiently