A Bibliography of Publications in ACM SIGARCH

Computer Architecture News

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 October 2017
Version 1.55

Title word cross-reference

#3 [Gal80]. #4 [Fos72a].

+ [AM06, NSF+11]. 0.18µ [WW12]. 1
[SKN+15]. 10 x 10 [CTHV+15]. 2
[BAES89, MIO+10, SA88a]. 2 x 2 [LiW82]. 3
[AA11a, ASR+17, ACK+95, CBS98, FAYA87, GPY+17, GCG+14, HS86, KDS+06,
KNP+07, KKC+16b, LNR+06, Loh08, MK84,
MDS+11, MAS+06, OFS+15, Sib07, SLSN14,
Tad13, THEK16, TSN+86, UMB+11, YA90].
32 [Tad13]. 36 [DCS+14]. 39.95 [Fer88]. 5
[Eij90]. 9 [Eij90]. < [BMM14, Zho16]. =
[AM06]. > [BMM14, Zho16]. ≈ [KKL17].
\(AT^2 = O(N \log^4 N), T = O(\log N) \) [HS86].
\(LU \) [WJZ15]. µ [CO82, Ulm95]. N

[HC15, WN14]. \(N \geq 32 \) [OCBL12]. \(O(1) \)
[See89a, See89b]. \(r_2 \times r_2 \)
[YA90]. \(r \geq 8 \) [OCBL12]. \(r \times r \) [YA90]. \(\Sigma(4) \)
[Sez86].

-bit [Tad13]. -body [WN14]. -core
[DCS+14]. -D [BAES89, FAYA87, OFS+15,
SA88a, Tad13, THEK16, TSN+86].
-dimenional [HS86, MK84]. -EP-1
[Ulm95]. -point [Eij90]. -point / [Eij90].
-stage [YA90]. -version [HC15].

//ELLPACK [HRC+90]. /what [Uht02].

'03 [IEE03].

1 [Dav80a, DM91, Fin93, NOK+83, SHNS86,
SDV+87, Ulm95]. 10 [Ful76]. 100
TJ01, VNM+12, VGK+10, WWFH03.

Acceleration [CKS+08, GPY+17, NS16, NGAS17, SLTC16, TM14b, AIO+11, COH+11, CYH+11, FGV713, GDN+16, GSM+99, JMP09, JSMP13, MS14a, MYP+16, PCL10, SM12, SYP+14].

Accelerator [CHM08, KLKM17, LCL+15, MCK16, OSF+15, OHW17, PRM+17, SFM17, SOD+14, AB66, BJL+13, CDS+14, DP12, HGS+16, KJZ+09, LNEHR11, OIA+13, SNM+16, SRWB14, TYSSK11, Tem12, TPO06]. **Accelerators** [AW17b, CYMT16, CYG+17, KHBS14, dCKK15, KJT+10, KDP+16, LAB+11, LMS+13, MSS14b, OYK+16, PWA13, RWA+16, TTP10].

Access [AWSS17, BC90b, CSGT17, HIT05, KORA17, AAZ89, AKSD16, APX12, APS95, BCL89, BD91, BC04, CME+12, CL89, CFS+12, CN93, Dow91, DS86, DSB98, DSG98, FAS07, Fon03, Fos72a, Fre87, HL89, HK80, HASA14, HDP+90, KD06, KPK89, KHS+97, Las88a, LTQZ06, MSS14b, MC91, ON12, PVAL95, PT86, RDK+00, SD10, Smi82, Smi98a, Smi98c, SSR+13, SCRT78, TLD14, VLL+92, dRBC93].

Access/execute [APX12, BD91, Smi82, Smi98a, Smi98c].

Accesses [CYL99, HJ86, PBC+13].

Accessibility [SSkP+07].

Accessing [ACM02b, Fen84, Gou78, HK89a, KDK+14].

Accurate [CPT08, DFL05, DGH89, EBS+04, KGCG17, LB06, TM14a, VGC17, CG94, EEKS06, KIC+16, LF00, RWA+16, SK13, VLZ88, ZYGP09]. **ACE** [WMP07]. **achieve** [EKW80]. **Achieving** [AKJ+09, HCS9, SNR99, TP08, ACS+12, FP91b, NLS88].

Architecture [PAD16]. **ACISA** [Bha83]. **ACOS** [NOK+85]. **ACOS-4** [NOK+85]. **acoustic** [UVG12, UVG14]. **acquisition** [MF76]. **across** [PM92, PNH91]. **activation** [CHCMW00, ZCX+14]. **Active** [OCS98, vEGS92, vEGS98, ACK94, DMR+11, MK84, SADA02, vEGS98].

ActivePointers [SBS16]. **activity** [YRK07].

actuator [KCO2]. **acyclic** [AVV10]. **ad** [KMVS12]. **Ada** [PCH+82, Roro89].

adaptable [KKT05, vIG80]. **adaptation** [HRT03, TST07, VGLY98]. **adaptations** [SHA02, HA04]. **Adapted** [GPPT02].

Adapting [EKEL01, JLH15, WCSS8, GVC+10]. **Adaptive** [AC89, ABZ07, AW04, BC90, CF93, KTM91, MRH+16, NAA3, NY14, QIP+07, SSZ05, SKJO8, SST06, THMN14, YJE11, AGSY94, AP95, BC93, BKAB03, CYH+11, CK92, GN92, GN98, HC04, HGC10, HBI3, JD09, JMH97, KLC94, KBK02, KKD13, LWRC10, NS91, N98, PIAS13, SDGT03, SBS93, YP92, YP98a, YP98b, ZSKD13, uAM16]. **Adaptiveness** [FK17]. **adaptivity** [JSN98, LB08]. **Add** [THEK16, LGM+14]. **adder** [MS13a].

Adding [Tab10, GCT93, YCT05]. **Addison** [Fos93a, Mad94b, Sch88].

Addison-Wesley [Fos93a, Mad94b, Sch88]. **addition** [Jou90, Jou98a, Jou98b]. **Address** [BRC+05, CB17, EMZ+16, WS90, ASH6, ACM02b, APS95, AS96, BCR11, BJR+99, BYG+00, BDH+99, BKW09, Bra80a, CKZ12, Est02, FP91a, FP91b, Goo87, GUKU90, HK89a, HH93, L0F74, LNBZ08, PHB14, QD98, RLS10, RF96, SWL10, SF03, SBS16, Ste88, TDF90, WSY95, Wil83b, Wil91, WEG+86, WK89, YK05, Y01, ZZ04].

Address-Based [BRC+05]. **Addressable** [Che87, McG78, Vra78, Hie77a]. **Addressed** [JWK12, Goo88b, Hea76, LLC98].

addresses [CBS88, CLR05, HK89c].

Addressing [Fen84, ZBF10, CCH+87, CD82, MB80, SIG89, Won89]. **adequacy** [RE12]. **adequate** [Mat91b]. **Adjustable** [DL92]. **adoption** [YMST07]. **Advanced** [KSN07a, Par90, GB83, OWCL90, TPD+77].

Advances [Atk79, Gor83, AD98, SAT74].
analyze\[Che17, WCX17, OYK+16\]. Analyzers [RR04]. Analyzing [HS95b, LW07, SN16, WZ10, BFT3, Che90].
Ancillary [ACM02a]. Andrew [Ram78].
Android [AHA+14, KDV11]. Animating [AFGM10].
Animation [HGS+07]. App [IEE84]. Anne [Ful91a]. Annotated [HLW94, Pri91, Sta86].
Announcing [AMM+12]. Annual [ACM80, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM04, IEE76, IEE77, IEE79, IEE81, IEE84, IEE85, IEE87, IEE94, IEE03, JDL81, Kin75, LS73, Tho81, ACM89, IEE82, IEE83, IEE86, IEE90, IEE92].
Anomaly [ACM02a].
Anomaly-based [CZ09]. Answers [MPH12, Smi75b]. Antenna [DSOF11]. Anti [BE03]. Anti-aliasing [BE03]. Antivirus [UMK05].
Anywhere [WSM+09]. AP1000 [HHS93, SH92]. Aperiodic [Wei89]. API [CS13b, HFL03, NUMS94]. Appliances [AIK+05, Nak01]. Application [AW17a, BMP+04b, CDY+17b, HSH96, KCW+09, ME78, TT08, TAM+08, DSM82, EK88, EJK+96, EK97, Fin93, Gai83, HANR12, HDT+13, HRT03, ISL96, JS09, cJCO99, KS02a, KS07, KS91a, LS12b, MS76, MK05, MPSIV89, OUY+13, Psov90, PJJ07a, PP92, RSYP06, RA100, TS90b, TZZ+16, VPS01, WBS+88]. Application-aware [KCV+09]. Application-driven [KS02a]. Application-level [BMP+04b, HANR12, HDT+13]. Application-specific [CDY+17b, LS12b, MPSIV89, PP92, WBS+88]. Application-transparent [AW17a]. Applications [CDY+17a, Ful91a, HjRCH16, HTM+05, LLD+17, MAHK16, MEB15, NBW+15, YCR+17, BP04, BFPG06, BF07, BMBW00, BH91, BDMF10, CGS09, CS11a, CG92, Cop78, CLR03, CDA14, CHKM93, ELN89, FF73, FURM00, Fra83, GH76, HKD+13, HCW+10, HB90, HKA+01, JSM12, JSMP13, JB97, Kar95, KTC00, LCB+98, LWRC10, LHPL87, LS96, LZ93, MJW11, MLCW11, Mad94a, MS13c, MT02, MBS+04, MM14a, NNN+91, NKRLO6, OCH78, Par75, PGTM99, QMT89, RBH+03, SJLM14, SRSW14, SKC+12, ST03, SK04, SA91, SWG92, T01, TMV+11, Ten12, TSN+86, VIA+05, VE08, VGNV05, VM88, VGK+10, YYX+07, kSYXH+11, Yue84, ZT95, HA04]. Applicative [SK83]. Applied [Arm74]. Applying [SGB00, VTSL12, MT02]. Approach [CL04, HS16, IMM08, Lev92, MZLH15, PG04, SZBP04, YT04, ASP+99, BK11, BBFP06, BS08, BRGH89, Bri87a, CLL01, CGL+08, CGT+14, Che87, Con88, Con90a, DFF+13, DJ09, EGK+85, FP+92, FFK+82, Ga183, GWM03, Ho80, HY96, KW13, KS07, KMC+93, Mar83b, MSA+00, MTS6, OCL90, RCM+12, RKGM14, SMB02, SBRP11, SSH+07, SCZM00, Tan83, WBM+03, WGO+13, YA90, ZSL10, Tab95, HA04]. Approaches [SH87]. APPROX [BHM+17]. APPROX-NoC [BHM+17]. ApproxHadoop [BBNN15]. Approximate [GSCM16, JSCM17, PAM+16, RSA+15, SLFP16, ESCB12, KPK90, MYP+16]. approximating [TASS09]. Approximation [BHM+17, FKBS11, SJLM14]. Approximations [GBNN15, VX17]. Apps [AHA+14]. APRES [OKY+16]. April [Fos72a, IEE79, IEE82, IEE94, ALKK90]. Aquacore [ATV+07]. Aquarius [DPS+87]. Arbitrary [SA15, WJZ15, CWS+11, Dvo90, KIC+16]. arbitrated [PVAL95]. Arbitration [SK+17, KC82, MSB+02, TTM12, VM88, WS07]. Arbor [IEE84]. Archipelago...
Architecting [LIMB09, MDS+11, BSK+10]. Architectures [SAR99]. Architectural [ADP+15, ALE90, BF87, BRC+05, BMA00, BCD99, CL09, CW02, CRW+15, CSGT17, CH87, CMT00, CHKM93, DHR+15, FSC76, Gal80, GSL17, GRD87, HvDJL80, Hic17, HLL+93, HH93, IAD+94, IJM89, Jou89, KMOA07, KKK+17, LGH92, LABR08, Mas96, MCC+06a, NaR07, Ozt15, PHB14, PCDL09, PBGM09, Ram88, RGG82, Ros96, Sch73b, SG94, SL12, TML+00, Yue99a, ZYLG05, ZQL+04, AD98, BTM00, CLL01, CMF+13, CMC+91, CMC+98, CS94, CFS+12, DLL+16, DF92, DS11, DBM08, EA97, Fre87, GKF84, GB87, Gra84, HO91, Har82, HM93, HS90, HSH96, mWH98, İMC+06, Jago89, Jsh92, KC95, KBS84, KMS+12, KHN07, LCS10a, MSH2, MW12, NEE12, NKQ13, NI85, NWD93, PL06, PGR701, PZT02, RGP82, SYK10, SLLG05, Sta89, SSP79, TNN87, VCK+12, WHG07, ZR14, dKNS10]. Architectural-level [BTM00].

Architecture [ACM80, ACM89, ACM91, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, ACAAT16, ABZ07, BRTR05, BKSO05, Bat80, Bat98b, Ben82, Bh83, BTO6, CTHV+15, Chut77a, CBC+05, CGL89, Co88, DCC+87, DCC+98, DKD+15, ESCB12, FR89, FXZ+17, FKMD83, GSSV00, HMT86, HCJC06, HTM+05, HY98, IEE76, IEE77, IEE79, IEE81, IEE82, IEE83, IEE84, IEE85, IEE86, IEE87, IEE88, IEE90, IEE92, IEE94, IEE99, IEE03, IEE05, IEE06, JLFM15, KK84, KN06, Kin75, KBH+04, KOA05, LKM+05, LWB08, LJD+16, LLW+06, LST7, MSS+15, MCK16, MCN+17, Mil77b, Moo85, Mud96, MRR+16, PED+08, Pat06, PGH+83, PQNT16, Pou77, PZK+17, Rost83, SCU+14, SLG+05, SOM+08, Sin92a, SHMZ94, Tuk88, TS05, TLM+04, Tho81, UBF+84, VRB+17, WJZ15, WCX17, Whi78, YXR06, ZWM+14, ZH17, APGP07, AAM76, ALK90, ABC+95, ABC+98]. architecture [Aga98, AA82, ACC+03, ATV+07, ASP+03, And90, ALBL91, ABL+80, AAG+86, AFNV90, AAG+98, AP76, Asl84, Abn93, ACM+98b, Aup80, AML+10, BGM+00, BGP+01, BFGP06, BFQ70, Ber76, BB90, BC91, Bie84, BSD87, BSF+91, Bon13, Bou75, BC04, BC02, BR92b, Bur84, BAB88, CMF+13, Cal74, CDP82, CBK+14, CLV93, CL94, CEE+09, CES16, Che81, Che92, CLX+16, Chut77b, Ciz03, CNO+87, CmWH91, CLST73, Cox79, Cra85, CCC05, CRM91, DG90, DK58, Dai10, DKK07, Das83, Dav08b, DRC05, De90, DCB+04, Den80, DM74, Den76, DM98, Den98, Den03, DJ09, DP80, DM87a, DP98b, DP98a, DP85, DK95, Dor75, DV78b, Dow87, Dow88a, Dr99, Dug83, Dvo90, Ego98, ED83, EAE+02, Est02, EE93, EEKS06, FD87, FB90, FB92, Fenu76, FCP92, FF73, FR72, Fon03, Fon73].

architecture [FeOBA05, Fra83, FHH+89, FAYA87, FSS73, GAS16, GK78, Gch14, GK85, GSS12b, Gil83, GS12, GS74, G984, GrHL+85, GHK11, GS80, HG97, HR91, HW80, HF88, Har86, HTCU10, Har83, HFW87, Hay77, HJS00, HSW+00, HKN+92, Hir86, HLS05, HSC+90, HK09, HCS8, HK77, HW95, Hu85, HKA+01, HG88, HCS99, HP96, HP86, mWH98, Ian88, In05, IBC12, IT84, ISKR86, JZL09, JSL+13, JVS82, JB09, JHP95, Kec79b, Keh76, KJJ+09, KKC92, Kie87, KL03, KKC+16b, KL91, KPG98, Kno73, KSS+95, KS91b, KACG88, KB+00, KMT91, LAf03, Lap90, Lap91, Las89b, LMND76, LR93, LHC+16, LS12b, LWS75, LNEHR11, LSY+14, LL14, LDT+16, LHS8, MK84, MPPZ87, MPY+00, Mar00, Mar85, MK12, MVCA97, May82, MC93, MSP+06, Mid82, MBS+04, MPBS87, ME78, Muc12, Mue97, MS10, MPSV89]. Architecture [MIT89, MS108, Nae85, NSMK11, NNN+91, NOK+85, Nap86, NPA92, NKS86, OYK+16, PCL10, PMP96, PN88, PSB13,
architecture [Vis76, WLY84, Wan01, WHM02, WE74, WWW +88, WG89b, Wei97, Wel76, WIPK09, Wil87, WJS91, WWA01, WLZ +90, WLP14, Wul88, Wul92, YZ07b, YYX +07, YMHB00, YFPR07, YI86, ZRMH00, Zak73, ZA98, ZV03, ZHW16, vT89, Atk79, Buc78, Col90, Fos93a, Gor93a, Lan76, Mil77a, Sch88, Tab96, Tan78, ADK +04, Bat98a, CH04, JDL81, PT83, Tho81, WGH +97].

architecture-Adaptive [MRH +16].

architecture-compiler [CBK +14].

Architecture-Level [SOM +08].

Architecture(R) [MBBS13].

Architectures [All92, BRUL05, BKSO05, BHM +17, CSBA17a, Cha92, CB17, DFKC17, KKC92, KKK +17, KSL08, KSO08, KTR +04, KZT05, LRC +08, Loh08, SFLG06, SPM +06, AA11a, AAD90, ABC97, ABC98, Bay99, BHBK87, BCDL07, BC90, BHS91, BBBM94, BDK97, Cha92, CLM07, CF82, CCB +06, Cla79, CGVT00, CJDM09, DO82, Das83, DL87, DSBB04, Eij90, FKSBS11, Fis83, Fis98a, Fis98b, FGVG13, FSA90, FPC +97, FV82, GJY90, GTB89, GB83, GL98b, GTK +02, GMT89, GZRC13, GN89, GTHL13, GFNW86, Han78, Hol89, HL85, JH94, Joe90, Kar95, KB92, Kav81, KBB +82, KF79, KS99, KNP +07, KTS +13, KSCE16, KMC +93, KL94, KMS +10, KBR89, KCE12, Kun86, KHC92, LZC +16, Law76, LL88, LS12a, MLCW11, MST07, Mar83a, Mat90, Mei85, MLN97, MPSIV89, Mus09a, NCLJ09, PT91, PPA +13, PSM +12, Pes74, PARKA13, PAVT16, RTY +87].

architectures [RGG82, RGP82, RE12, SGG +85, SRWB14, Sha80, Smi82, Smi98a, Smi98c, Smi14, SV89, SJ92, Str83, SMIQ09, SMJ +10, SGA01, TSSEK11, TH03, TE94, TKG +02, TF79, Tic88, VF +04, Wri87, Woo14, ZYGP09, ZSHG07, RL17, McD88, Lei91].

Archival [BLC +16].

ArchRanker [CGT +14].

ArchShield [NKQ13].

Area-Efficiency [AMPH09].

Area-Efficient [KSL08].

Area-Performance [SPM +06].

Area-time [THNM14].

argument [Mat91a].

Ariadne [AGSY94].

Ariel [Fra90].

Arithmetic [JPT14, VNN06, DSG11, FD88, MIO +10, SNM +16].

ARM [DN14, DLL +16, SRSW14].

ARPS [Thu76].

Array [KR85a, KOA05, YX06, ZH17, AJ77, ABSC98, BT89, Bur84, CP90, CH85, Fis86, FM84, HKK80, HK89a, JB82, JKN +13, JCSK14, KPK89, KTK +86, KW11, MS87, Mic92, NLV86, New92b, New92a, Ng94, OT86, Os89, RV84, Red73, SWY10, SYH11, SV74, TA83, WW12, WJS85, YL84].

array-processor [SWY10].

arrays [DBP +04, FK83, GHKP89, LK91, MM92, Qui84, SFW +04, SAA13, SHG93, Tho13a, TLD14, Tho76, VJ95].

arrival [ZW16].

Art [A08b, L06, YL84].

Arthur [Ber91c].

articles [sta80a, Sta80b].

ASC [WAA +14].

Asian [TTTL10].

ASIC [KZVT17, MKGT16].

aside [SK04].

ASIP [TM11].

ASM [MK05].

aspects [Lal73, Oya89, Rui86].

ASPOLOS [Mac99].

Assembly [HS16, Lar82, SDWF13].
Assessment [KGCG17, CC05, PP82].

assignment
[BJ03, GWM03, Mal80, RCM+12, RP99].

assist
[BKT87, KKM+06]. assistance
[LNEHR11, Sch73b]. Assistant
[HLZ+15].

assisted
[AJH12]. assisting
[NKQ13].

associate
[LS77]. Associative
[BTW77, Mar73, Mil77b, SS78, AP93, AR80, Arm74, BB74, CP98, GGP+13, HR00, HFF+91, Jou90, Jou98a, Jou98b, Mou98, PA73, SFS04, Sez93, WQL92, WHM02].

Associative/parallel
[BTW77, AR80].

Associativity
[QTP05, BS93, SDWF13, SC01, XLWZ15, DZ09, SCGA13, TS90a].

Automatic
[AK17, BA06, Chr77, CM00, FFM11, HBTBL11, KDA12, KDP+16, LSFK08, MVB15, Qui84, SDLR+15, CBK+14, EG97, Fen84, GKT13, MSZ09, OKJ+13, SLP+09].

Automatically
[LLL+17, SPHC02, Bur06, RR04, SW87, WAA+14].

automaton
[NK86].

automatism
[SLP+09].

Automaton
[SJ16, TLL+07].

automated
[BS73, KS07, LWPG17, SDWF13, SC01, XLWZ15, DZ09, SCGA13, TS90a].

Automatically
[LLL+17, SPHC02, Bur06, RR04, SW87, WAA+14].

Automation
[NK86].

automotive
[RBH+03].

autonomic
[Che05, JCSK14].

autonomous
[HGC10].

auxiliary
[NNS+90, SD10].

availability
[ARJS07, SBM02, SMHW02].

Available
[Ber91c, JW89, TMC+06, ZYMS15].

avenues
[RKB+09].

AVF
[SK10].

AVIO
[LTQZ06].

avionics
[And73, KM74, Sat74].

Avoid
[Mud96, BLS99, HC03].

avoidance
[Kun88, LC13].

Axiom
[Mue12].

AXP
[CB94b].

Azure
[Dav14].

B
[McD88, AA84, Aic92, CLC90].

B-HIVE
[AA84].

B-spline
[CLC90].

B.
[Su74].

B5000
[May82].

Back
[JL16, PAY+17, ECX+11].

Backed
[KBG+17, LWH+16, SSC98].

backend
[Cop78, OC78].

backplane
[AKB+89].

backpropagation
[Kha97a].
backs [ZNF+16]. backup [WGS+14]. backward [ZS01]. Bad [SDB+15, CS13b, Irw10]. BadgerTrap [GBHS14]. baked [Chr76]. Balance [HS90, PJJ07a]. Balanced [Zha06, CKZ12, DZC+13, Kun86, SDGT03]. Balancing [TLD14, BM01, CT08, JW97, LS96, QHS+13, SLQK12]. band-limited [OT86]. Bandwidth [HIT05, PGS04, YNQ17, AZK06, BS06, BGK96, CHZ+14, DJ09, DSH+94, FPF+92, GM98, HJ87, HCV03, JVF13, KC96, LLC06, MVCA97, RBIV07, RKB+09, SLQK12, SGK+04, SF91, SHK+11, WH97, WO97, ZCX+14, ZLZZ09]. bang [Gur94]. bank [PBC+13, SSR+13]. Banked [TA03, CGVT00]. banyan [JM88, KLHJ88, GL73, GL98a, Lip98]. banyans [FJB85, OML83, PB82]. Barcelona [ACM98a]. Bare [OSK15, GAH+12]. Bare-metal [OSK15, GAH+12]. barrier [CG92, Gup89, Joh91]. Barriers [STS17, OPZ11]. bars [Gas88]. Bart [Lev92]. Base [GS16, CS11a, Cop78, DSM82, FP91a, MS12, MS10, MKM+83, OC78, Roc85, SGS11, WW89, Y86]. Base-victim [GA16]. Based [AYQ+16, BTR05, BKS05, BRC+05, BLC+16, BS04, CL04, CY06, KRM08, MEB15, Mos05, NSA+17, ORS+04, PCC+08, PS05, PG16, QTP05, SKCY16, SKJ+17, SLTC16, TP15, WM16, YGST17, AL12, AKSD16, ACK94, BS06, BD93a, BGM+00, BR599, BB74, CHK+12, CKnWH16, Che90, CB92, CGL+08, CHCW10, CLX+16, CG06, CNV+06, CP98, CK00, Cve03, DSG11, DG99, Dev09, DZZ+14, DSN07, EKEL01, FFW98, FCP92, FRK+15, FW82, FSA90, GDN+16, GB74, Gil83, GIS10, GFNW86, GKU09, HCJC06, HWI+11, HT10, HDP+90, JSL+13, JMP09, JSMP13, JCSK14, KDVI11, Kha97a, KJM+07, KKKJ+13, KIC+16, KM10, KM86, KHBS14, KOB88, KHS+97, KTC00, LLG+90, LR93, LMY16, LN92, LG04, LSFK08, M9+03, MR90, MM83, Mic92, MNLS97, MA06, MC91, MZLH15, Muc12, MSCR13, Mus09a, Mus09b, MPM14, MSQT09, MB90]. based [NCLJ09, NSI94, Now87, OQ91, PSG06, PQNT16, Phi84, PH88, PEB+09, QST14, RG02, RC80, RFS88, RPR06, RZ80, SMD+13, Sal76, SLM14, SK85, SCU+14, SKN+15, SKS+92, SD00, SD87, SGNG00, SHZ97, SA86, SM12, SGS11, Smo89, SP97, TYSSK11, TNY11, TL10, TE94, TKG+02, TFW03, TS10, TE93, VBS05, WCW+04, WL07, WHZ+17, Woi89, Won89, YMY88, YMY16, YL16, YCMR12, Yue99a, ZWS14, ZAI+16, ZS01]. baseline [LIW84]. bases [BTW77, BLY+83]. basic [DG90, D98, D98, Den98, KSS+95]. Basil [Keh76]. Baskett [Bee84]. BASS [PL06]. Batch [MM08]. battering [Laf00]. Battery [KBG+17, LWH+16]. Battery-Backed [KBG+17, LWH+16]. Baule [ACM80]. Baymax [CYMT16]. BBN [BWJ+90]. BC [FFdDH00]. be [Bak94, SL93, Tho10b, KK08]. beamforming [CYH+11]. Becoming [Mud96]. bedside [CYH+11]. before [Muk97, SBRM09]. Behavior [KGCG17, KTG+17, LB17, NS16, PV04, BSL08, DESE13, HD77, HMK02, KHM01, LJK+13, MP86, MD88, MMR10, NAR07, RB90, REL00, Sch89, She10, SPHC02]. behavioral [BKS+94]. behaviour [BJ14, SH92]. Behaviours [ABD+15]. being [KS84b]. Belady [JL16]. Bell [BM06]. BELLMACTM [BCL82]. BELLMACTM-32 [BCL82]. bench [YHF03]. Benchmark [ZBBL16, Zil01, Bee84, CSW94, CnWH91, Fin93, GN89, Hen06, Joh04, Mas04, PBL90, PJJ07a, PJJ07b, PL06, Pn91, SW90, Sib07, Spr07, WO89, YL06]. benchmarking [CLC12]. benchmarks [AE01, CH01, Car96, CKDK91, GPPT02].
Kha99d, LC82, MJP95, PH90, RB90, VSH91, VE08, Wei97, WH07, Won07, CKPK90.

C [All92, Ano99, Fos93b, Fos72a, Ful91a, McG78, Vra78, BD93b, CGB99, CRW+15, CDG+17, DBMZ08, DM82, DMB87b, Hi83, Won07]. C-21 [Fos72a]. C-240 [BD93b]. C. [Sch91a]. C.mmp [Ful76]. CA [ACM93a]. Cache [AW04, AKCB86, CH01, CCS87, Hai84a, Hai84b, HIT05, JW97, Jou93, KHM01, KTG+17, KORA17, Lin81, LNN+17, MRG12, McF92, MBS16, PH90, QLMP06, SZBP08, Smi85, SZ88, SSZ10, Str76, Tab05, TD91, TBS17, WGA+08, WSC92, YGST17, Zha06, AHHV91, ASH98, AS98, AWC+11, AZ05, AZK06, AB84, AS14, ATT+13, APS95, AK00, BJ14, BW88, BW98a, BW98b, BD93a, BC290, BVGL00, BJ03, BD86, BR99, BC04, Bri87a, BKB90, CG95a, CKA91, CV88, CS06b, CY96, CMB+13, CF93, DSS94, DAF95, DB07, Dev90, Dev93, DM82, DB82, EKB98, EK89a, EP88, EE93, Fon03, FP91c, GAS16, GH90, Goo88a, Goo83, GH86, GW88, GVW89, Goo98a, Goo98b, GMT89, HG97, HR00, HKE+16, Hen98, Hig90, HS84, HIM+05, HC99, IC98, Ino05, IS92, JL16, JJ70, JNAs+12, JVF13].

cache [JS99, Joh89, JW97, JADAD06, Jou90, Jou98a, Jou98b, JN90, JB97, KSI14, KEW+85, KHP+95, KR13, Kha97a, Kha97c, KD06, KS99, KBK02, KRO98a, KRO98b, KAD04, KKD13, KKKP14, LRW91, Las88a, Las88b, Las91, LKL+02, LYL87, LLCP94, LBCG95, LS12a, LLG+90, LS92, MPT91, MAD11, Mat91a, MPS94, Mie92, MC91, MB91, Mou98, NG90, NO94, NRK05, OKY+16, OMB91, OMB92, OA98, PK94,
PP84, PP98, PEP98, Pat98a, PGH+83, PH88, PT10, PHH88, PHH89, PEB+09, RBS00, RC91, RSPY06, RBIV07, RF96, RSG93, RS84, SK11, SD87, SHBS14, SHZ97, SSKP+07, SLQK12, SH91, SA88b, SG83, Smi86, Sos94, SHV+98, Ste89a, Ste89b, SJG92, SBS93, SKD+10, SS86, TK07, TE93, VRR+14, VLV88, WBL89, WL07, WG89a, WAC+10, Wil87, WOR96, WEG+86, WK89, WLZ+09, XT96, YZ07a]. cache [YY92, YPD89, Yue99a, Zah03, ZYG00, ZVN03, ZSKD13, Ili87, QTP05, Smi91, Quo94].

Cache-Based [YGST17, MC91, PH88, PEB+09, SD87, WL07]. cache-coherent [BD93a, GC86, Lam82]. Caches [HS93, MPS89, MC93]. Caches [KRM08, OH16, TVL05, YNQ17, Zha06, AP93, BFG+07, BK96a, BK96b, C3Z+16, CSB86, CB88, CP98, CJS8, CRG+11, DL92, DSN07, FaRP89, FKM+02, FK+06, GCS11, Goo87, Goo88b, HHFA09, Irw10, JV13, KB02, KK05, KW88, LR90, McF89, MDS+11, MB07, NRK85, NKRL06, NLS07, Nik99, PPZ96, RAJ00, SFS04, Sez93, Sez94, SL88, SLSO13, SK10, V95, V95, W95, WSY95, W097, XL9, YE90, ZY09, ZY09].

Caching [BSADAD04, BS04, CS06a, BCR10, HBS12, BFS+09, CG91, CG89, CBS98, FP91a, GUK09, HGC10, HY96, JW94, yKPR02, MA06, MBK90, NH97, PHH16b, QJP+07, WSY95]. CAP [HB90, KB80]. Caddie [PP83]. CAE [GC11]. CAI [Adl73]. calculating [MDSO11]. calculation [AP95, BNA88, Ste88]. California [IEE79, IE03]. call [CS13b, Feu82, Kar89, LY+00, PA88]. calls [GC86, Lam82]. Cambricon [LDT+16].

Cambridge [Par90]. Camino [HMJK05]. CAN [Har74, Mud96, Nis89, SKC+12, BJL+13, MPP+08]. Canada [ACM91, ACM00]. canonical [CWS+11].

Cap [ZH16]. capabilities [AF73].

capability [MB80, WWC+14, Wil82].

capability-based [MB80]. Capabilities [KBG+17].

Capacity [CPV05, WGA+08, YNQ17, ZA05, KMVS12, MSU97, RBIV07, SSKP+07, SLQK12]. Capo [MHKT09].

caging [KZA+12].

CAPRI [RE12]. capturing [ASH86, BJ14]. Carbon [KHN07]. care [dOFD+13].

Carlo [CTW+13, SL05]. cartographic [BF93].

Case [AOM+14, CTHV+15, CS80a, GSN05, JPL08, KSCK17, LS15, QLMP06, SAL+05, SABR04, BDLM07, BCDN87, BK96a, BK05, CHX+11, CL94, Con88, CDK+94, CMLV04, DCG+11, DN93, DI90, DK89, GZL12, GZ7+07, HNTL11, Joh91, KSL+12, KMA+12, KBD+13, KADS04, LZ93, Mac96, MVD11, MM09, Mye77, NKRL06, NP95, OSK14, Par02, PD80, SPN96, SM77, Sez93, SBS16, SG94, TWC+10, WQL92, Wie82, YN09, YHZX14].

CASPAR [GMT16].

CASSM [CLS73].

casual [TMW+01].

CAT [WSY95].

Catalog [Mat78].

Catnap [DNSD13].

Causality [HK+17, KKS+16].

Caxton [Ano99, McC78, Vra78].

CC [FW97, KLHJ88, LC96, MNSL97, OML83, SC05].

CC-banyan [KLHJ88].

CC-banyans [OML83].

CC-NUMA [FW97, LC96, MNSL97, SC05].

ccNUMA [LL97].

CDO [SM12].

cedar [KDL+93, GKL83, ASK85, KDL+98, VYK+98].

cell [CM87, DZC+13, KK08, SYL13, TGP10].

Cells [GSCM16].

cellular [BT89, BG80, CLS73, CT74, Lip73, SM62, SAE6].

center [CFE+12, PMZ+10, RHT+08, WDG+16].

center-wide [WDM+16].

centers [AV10, KZA+12, LWM+16, LDK14].

central [SDV+87].

centralized [KM86].

centrally [BSD87].

centric [STN+13, VB9Y+14, ZYG00].

century [HI13].

chaches [WQL92].

chain [BF73].

chaining [DC09].

chains [RBR02].

Chair
LYBK11, RKB

[Ano06b, Ano06c, Ano04c, Ano04d, Ano05c, Ano05e, Ano08d]. chairman [Har74].

Chairs [Ano08c]. challenge [Har73].

Challenges [Kan11, Wit16, Dav14, Est02, LYBK11, RKB+09]. Challenging [ZWS14].

Chameleon [PS12]. Change

[WJZY15, JZYZ14, Lar11, LIMB09, QSR09, QFLMK10, QFJJ12, SWL10, SYL13, ZZYZ09]. Channel [AN17, WMW04, YGST17, Dal90, DMWS12, Doug83, Isa74, Las87, MDS12a, SKA+11, WL07]. channel-to-channel [Isa74]. channels [Dow91, KPJK07, SSJ+16]. Chaos [KS91b, GKZ+07, KS91a]. character [Cou90a, Hea76, Vin77]. character-oriented [Hea76].

Characteristics [PHH89, AE01, HO91, LCB+98, LPSZ08, NI85, OKY+16].

Characterization

[BCG+08, CB94b, YRK07, ABR01, BGB08, BGM04, EK88, EC84, EC98a, HGS+07, KPH+98, NS94, Shb07, WOT+95, EC98b].

Characterizing

[MMAR10, UMK05, MTPT12, SPHC02]. charge [JZYZ14]. Charles [Par90].

CHARSTAR [RL17]. charting [OT73].

chess [EP84]. Chicago [IEEE94].

Chichester [Ber91a]. chilli [Mid82].

CHIMAERA [YMH00]. Chimera [PPM15]. Chinese [Gao93]. Chip

[ACAAT16, ABC+17, BHM+17, CS06a, CMR+06, FK17, JPL08, JKT05, JKT09, KWY+17, KNP06, KDOA08, KSL08, KKS+08, LNA08, LNR+06, MWM04, PED+08, SSZR05, SOSD05, TT08, TKJ07, VIA+05, ZA05, AA11a, BT13, BSL08, BGM+00, BM09a, BM10, CHX+11, CHJ+05, CH+14, CSM+05, CJ88, DMMD10, DNSD13, DRCO05, DFL05, DCS+14, DVT12, Dux03, DJJP16, DSN07, EP88, FB08, FaRP89, FTP94, FKM+83, FH82, GSVP03, GHKM11, HGC10, HS84, HS10, HGS+07, IKKM07, JW94, KK08, KDS+06, KKB02, KNP+07, KM10, KMS+10, KMS+12, KFN02, KSN07b, KHN07, KADS04, LAS+07, MJS11, MDS+11, MVD11, MPSV06, MM09, NUMS94, OPZ11, PKK+09, SYY+89, SP84, SGC+05, SLQK12, SK10, TGGS14, TEL95, TEL98a, TEL98b, VS92, VT14, WSY95, WMW09, WGO+13, W97, XMY12, XGC+10, Za93].

chip-multiprocessor [DSN07, Za93].

ChipLock [KFM05]. chips [Bha97, FK80, HQW+10, MAS+06]. Chisel [HCJC06]. choice [Smi85, TEE+96].

choices [BAC+98]. choose [KWF08].

chromodynamics [TGP10]. Chu [Mi77a].

Cider [AHA+14]. Circuit [IWPK08, JPL08, NNIS16, AML+10, DGY89, DS85, HF11, KKC+16a, LNN07, LIW84, MS13a].

Circuits [HKLS00, RB08]. CISC

[BC91, Bha97, Jn88a]. CISCs [BCDN08].

CITCAT [RF96]. Clank [Hic17].

class [Bar82, DGC92, FC74, GSKF03, KDJS3, SGBO0, SC89, SH80, SS86, VS92, ZELV02].

classic [Bar82]. Classification

[DM06, KHC+91, MSB+16, SG+85, KK99, Ros77a, TZH+13, VFMC13].

classifier [HT10]. clause [WW99].

Clearing [FAK+12].

Clearwater [IEEE76].

Client [Mad94a, CSBA17b]. Client-Server [Mad94a]. clients [CDL13].

Cliffs [Ber91b, Fer88].

Climbing [CY06].

Clock

[AHKB00, Dav80b, ORS+04, RL17, DSE+90, MSA+03, PP88, WMJ00].

clock-regulated [PP88].

clocked [FW82].

Clos [SAKD06].

close [YCT05].

Closely [Nae85].

closing [GKO+00, VV14a].

Cloud [Che17, DK16].
Comer [Mad94a]. comes [Lor90]. Comics [Wak81]. Coming [Mil87]. Comment [Woo86, HK90, WO86].

Commercial [Rat85, AR89, BGB98, DLMN09, EJK+96, GAG88, Kav81, LC96, RO93, Tab10].

Commodity [GAAD+05, SHP+16, ZLJ16, ARJS07, COH+11, CGL+08, NPCF08, SFV+04, TASS09, UMB+12]. common [BDLM07, TKG+02].

communication-exposed [GTK+02]. communication-parallelism [BDA03]. communications [JMY89, KC82, TF88].

Community [CmWH91]. Commutativity [AC09]. compact [KDS+06, RP99, SM14].

compaction [RE12, VSW+13, WK08]. compaction-adequacy [RE12]. Company [Fos93a, Mad94b, Mil77b, Su74]. Compaq [CK00]. Comparative [GHG+91, SJ92, MSB+02, Wah83, YGS95]. Comparing [HCC89, LL88, LAS+07, BC91, Jon88b].

Comparison [AAHV91, KB92, KKS+15, MM92, ZH16, AA06, AAD90, BCG99, BC93, CS80b, CJDM99, ER92, Fu76, GL98b, HANN96, KDSO12, KC95, KL94, Lai92, LS77, Lar82, MHM+95, Mal80, YP93].

Comparisons [LJF+16]. COMPASS [WL10]. compatibility [EA97, OIA+13].

Compatible [Bhn83, MM14b, LBH12, SS86]. compelling [GK85]. compensation [MS07]. competing [TS90a]. competition [YL16].

Compilation [TBC94, BGP+01, CCEH00, DZZ+14, EA97, GA01, HCD+94, HFJ11, HSS94, TMW+13, WS87]. Compile [MPS94, GW03, KD92, Mul89].

compile-time [GW03, Mul89]. compiled [Las89a]. Compiler [CY96, FH82, GGV90, HPJ+15, HA90, NBW+15, RSEW04, TY90, ZCSM02, ACK+95, BLAA99, BAD+10, CBK+14, CSW94, CGL98, CNO+87, CHcmWH00, CBC+08, CSS+91, FTM99, GTK+02, HC88, HC89, KY02, KPH96, Lal73, Las91, Lee72, LYK+00, LS92, SC90, SDH+14, SAR99, TL00, UZU00, WLG+14, Wie82, ZRMH00, HMJK05, RGP82].

compiler-controlled [CSS+91]. Compiler-directed [GGV90, CHcmWH00, LS92].

compiler-flag [CSW94].

compiler-managed [BLAA99, WLG+14]. Compilers [HS16, Har82]. Compiling [BSUH87]. complement [Chr90].

complementary [YHL10]. Complete [TWM+09, DWS+12]. Completing [Joh88].

Completion [RBS00, HR09]. completion/silent [HR09]. complex [NA83].

Complexity [FJ94, PJS97, PGS04, TP08, ASP+03, DV87a, DZZ+14, Har73, KR85b, SKA01].

Complexity-Effective [PGS04, PJS97, SKA01]. Complexity/performance [FJ94]. component [Nak01].

components [EEKS06, MSCS13, SFV+04]. composing [CWS+11].

composing [CWS+11].

Comprehending [YHZX14]. Comprehending [YHZX14].

Comprehensively [MCN+17].

Comprehending [YHZX14].
Compressed-sparse [PRM+17].

compressors [Bur06]. Computation [BFA+15, CWS06, Chr77, HPJ+15, Hic13, Iva91, LJF+16, LHM+15, LLT+17, Mux80, OSF+15, SKN+15, SOD+14, WL17, BVC04, CLX+16, CHCmWH00, DG90, Fis86, FKT+89, GTBJ89, GKB+13, GIS10, HW80, Kie87, MŞT07, MCC+06b, MS07, Nis91, OCS98, PB80, RSF11, SWY10, SYH11, SH05, SYP+14, WAA+16, WCF01, Yue99a, vECGS92, vECGS98, vECSG98].

Computation-communication [GTBJ89].

Computational [FZL16, RES+13, AIO+11, MSS14b].
Computations [Bow79, VGX17, CH85, FHH+89, IH80, KK08, LS12b, Mar00, ML05, SW90, SHNS86, VSG+10, ZWS14].

Compute [VRB+17, SC92].

comput-bound [SC92]. Computeach [Hol83]. computed [VSMF03]. Computer [ACM80, ACM89, ACM91, ACM93a, ACM95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, AK17, Ant91, Atk97, BS76, BS98b, Buc78, Chr77, CWS06, Chr77, DCM07, CMP+88, Chu77b, CTH74, Cox79, Dal10, Dan93, Das83, Den80, DNB+11, DP80, DP98a, DP98a, DK89, Dor75, Dor82].

computer [Dri99, Ebe02, EKW80, Ega82, EWN05, FWB07, Fos03, Fos72b, Fra83, FSS76, GMC+09, Geh14, GB87, GB74, Gil83, Har73, Har78, Hay77, HJS03, Hi13, HHSI93, HK77, IEE66, Isa74, JD88, JB82, Jen74, JS88, Jor83, KFGS84, Kar95, Ker74, KSLE16, Kn73, KSS+95, Kun96, La07, LPS0, LP98, Lag90, Lai91, Lai89b, Law76, LMN93, Lin76, Lip73, LC96, MK84, Mar85, Mar83b, MT97, Mat90, ME78, Mkn97, Nap86, PD80, PS98b, Pau13, Pay07, Pes74, PN83, Pie83, Pie98, RHZC74, RC80, RL76, Re80, Riv79, Rod78, Ros96, Sal76, Sat74, Sch73a, SGNG00, Sib07, Sio74, Smi75a, Smi75b, Smi82, Smi82a, Ste77, SMRT85, ST77, Su75, Thu76, TPD+77, TF79, TSK+83, TSN+86, TH82, Tre83, Tur79, VR73, VC72, Wak80, WE74, Wei97, Wil83a].

Computers [Wul88, YPD83, Yel90, YSY+90, vT89, KRM83, PS98a, Wit76].

computer-based [Sal76]. Computers [Bow79, CYMT16, CYG+17, Dor75, HLZ+15, HK90, IPWK06, KSO98, MSS+15, Mud80, Wau81, AA86, AS92a, BT89, CT90, Cra88, Don83, Don85, Don90, Don92, EKT+85, EHA82, Fau84, GWT3, GPFT13, HHL16, IS92, Kav81, KBD+13, Las87, Las88b, Las90, LHP87, LV88, MT13, NP90, Phi84, RKF88, Skl92b, Skl92a, Sta86, Str76, SG95, TMW+13, Tho76, TS10, Wra91, YBM13].

Computing [All92, Bani15, Bar11, Ber91c, BRC+05, LRC+09, NLV86, NY14, PAM+16, RLD+17, SCU+14, Teo90, TMC+06, Wil16, ZAI+16, AHH+16, Cha90, Che81, Che05, EEKS06, GB01, GIS10, GGP+13, Hal87, HF88, HSC+11, HBII13, JOW+02, KWF08, Kin83, KFN02, LSS7, LKC+10, Lip88, Lor90, LH88, MS12, Nik89, Par88b, PM11, PCDL09, PEB+09, QHS+13, Ron86, SKS+13, SKC+12, SA87, SKA01, TA76, TZZ+16, ZJ+11, vT88, Ful93, Lan90a, AMM+12].

ConAir [ZdKL+13]. concept
[GSS12a, GB74, GKN80, Hom82, Qui79, TPD+77, TJS83]. Concepts
[Kor74, MPSB87, CG91, Løf74]. concerning [PP88]. Concert [HAO85, Hal87].
conciliating [Sez94]. conclusions [Wis86].
Concurrency
[ABD+15, CJ01, DGT15, LLLG16, LLL+17, CFS+12, DJ09, GZC+11, HHS13, LYBC88,
LPSZ08, PTG13, Tab10, VTS12, WZJ10, ZSL10, ZLO+11, ZKL+13]. concurrency-safe [CFS+12]. Concurrent
[CSBA17a, DGT15, FAH83, Lan90b, Tak88, Whi78, ALE90, AAZ98, Gou78, Han78,
HD86, JD88, Jon08, Kin83, LCS+10b, Lun85, MJW11, NP11, SK83, SCRT78, UJ92,
WK08]. condition [Wil88]. Conditional [SDLR+15, vPCCR06, AS91a, Hum96,
Lap91, MSU97, SFKS02, SFS00, Ulm98]. conditionally [TLD14]. Conditions
[PKM17]. Conery [Bit89]. Conference
[IEE83, IEE87, IEE88, Mar88, ACM97, IEE84, IEE85, ACM80, IEE76, IEE77,
IEE79, IEE81, IEE82, IEE6, Kin75]. conferences [Cit03, Pat91]. Confi de
[GKMP98]. configurability [ZW14]. Configurable [ARJS07, ACF05, DDY95,
PKB+16, WJZ15, WJGA12, CSJC10, ELMP10, SRJ+05, ZVN03, ZHW16]. configuration
[Adl73, DS02, FJB85, FeOBA05, IT93, Oya89, SBRP11]. configurations [JS95, KMC02]. Confined
[VTH17]. confirmation [Lit94]. Conflict
[LC8+10b, Zha06, HL89, HK89c, LNR12, MSU97, QST14, VLL+92]. conflict-free
[HL89, HK89c, VLL+92]. conflicts
[BC90b, HKK80, LCP94, PBC+13, Wei89]. Conjecture
[Sho74a, Sho74b, Chr76]. Conjoined
[WE74]. conjugate
[Chr90, GSZ90]. conjunctoid [TJCC88]. ConMem [ZSL10]. connect [NBKP95].
Connect6 [AL12]. connected
[BHBL87, FAYA87, HS86, Mie92, SWC+95]. connecting [SH80, YMX+10]. Connection
[CH84, KMC+93, Mal80]. Connections
[LCL+16]. conscious [CMLV04]. ConSeq
[ZLO+11]. consequences [LK91]. Conservation [VSG+10]. consideration
[MS07]. Considerations [Lan77, ST77, CY96, CD77, Con89, FCJ97, HvDL80,
LYL87, MB07, WOT+95, ZRMH00]. considered [JM12, PBC+13, Zil01]. Consistency
[BKL+16, HWC+04, HVML04, LB17, MS05, BRGH89, CTMT07, DNB+11, GLL+90,
GGH91, GLL+98, Gla98, HGW+04, HS13, HT14a, KEW+85, KCHZ92, LHH91, LNR12,
NCL09, QTS13, QSO14, RLS10, SNM+12, Ste89b, SS86, VLZ88, ZB92]. consistent
[HRS16, HW95, PSB13]. constants
[VPS01]. Constrained [YCR+17, CG92,
GW10, UMC+10, WMW09, YN09]. Constraint
[STND+13]. Constraints
[CDY+17a, MZLH15, FHB02, Tria80]. Constructing
[EST89, RF96, WJZY15]. constructs [Das77]. consumer [AIK+05]. Consumption
[BCSB11, DGMB07, MS07]. Containerization [HSL17]. Containerized
[HSL17]. containers [SD+13]. containment
[TBG+97, UVG14]. contemplation
[Lin76]. contemporary
[BA74, CJD99]. Content
[GCO+04, P978, Vra78, CJG02, HD77, Hic77a]. content-addressable
[Hic77a]. content-directed
[CJG02]. contention
[DD80, GH90, Har91, JSAM10, Lee85b, MCS91, NSI94, VI94, ZBF10]. contesting
[NaR07]. context
[CF82, ECP96, GJ+11, Hea76, HY85, LHH92, MB91, Yue81]. context-addressed
[Hea76]. context-dependent
[HY85, Yue81]. context-free
[CF82]. contexts
[WW93, WG93b]. Continual
[SRA+04]. Continued
[ABC+17]. Continuous
[BJL+13, FRPL05, LdL+16, ON12, CCV+09, GSR93, LHH+16]. Continuously
[NPC05]. Contrail [KSA03]. Control
[ANMF08, Ano89, EBS+04, GCJ17, SLFP16, AZRAA07, Arm74, BZ87, BBZ88, BWWA05, Chr76, Dal90, DGY95, Dri99, FF73, Font03, Fra76, FW82, GKM98, GSKF03, HS80, HR07, Ili87, JB82, Jen74, KKT05, Kro83, LW92, LJS+02, Lun85, MLCW11, MCD+08, MKG98, Mar82, MF76, NS74, PMPM96, PPA+13, PAVT16, Req83, RE12, SS89, Sez86, SD10, Tak87, Ter87, UZU00, WMW09, WE74, WR84, WJMC04, YA90].

control-divergence [RE12]. control-flow [BWWA05]. Controlled
[BCG+08, BSD87, CSB86, CSS+91, KL91, KFN02, Las91, Luk01, MWP07]. controller
[AKJ+09, BI12, DR91, Fre87, Gou78, HKE+16, eHLL89, MC93, MNLS97, See89a, See89b, UMB+11]. Controllers
[AMH+16, IMM08, LER+17, SSKS88]. Controlling
[PACL05, MYP+16].

conventional
[AHKB00, BMW09, KP03, VV14a].

Conversion
[CS11a, MS10, SGS11].

Convex
[BD93b].

ConvNet
[LHG+16].

Convolution
[QHS+13, SA88a]. Convolutional
[PRM+17, RLD+17, CSJC10, CES16, SNM+16]. convolutions
[DV87b].

Cool
[ACM02b].

CoreSymphony
[NSMK11].

corner
[Sho74a, Sho74b].

Core
[VTGH17].

correction
[SD87, LYBK11].

correctable
[MAD11].

correcting
[AWC+11, Che84a, WAC+10].

Correction
[JHK+16, Mac99, Bos84, GM84, GHKP89, Rao84].

correction/detection
[Bos84].

correctness
[AF73, MHW03].

Correlated
[BJR+99, TFWS03, YGS95]. correlating
[LFF01].

Correlation
[SLM96, DC09, EPCP98, SM12, SLT02, VJ94, ZRZ+14].

correlator
[Mar74].

correspondence
[GS07].

cortical
[HBTL11, Smi14].

cosine
[PSB13].

Cosmic
[AMH+16, CLC90, MCK16, MSH+15, Reg76, YEP+06, AZK06, AML+10, Bet73, CA94, CZ14, CK92, DW90, Den76, Dev90, HCC89, JS88, KC96, KDA07, KJM+07, LSSG05, MH86, MG91, OCL90, PT10, PZT02, Ria80, Sez94, SCP+06, TDF90, Tri80, UVG12, WSY95, WGH+97, WL88, WAC+10, YE09].

Cost-Effective
[MCK16, MG91, OCL90, PZT02, Ria80, WGH+97, WL88].

Cost-efficient
[MAD11].

Cost-performance
[PPB10].

coterries
[HWC91].

Count
[MCXS16].

Counter
[KGG+13, Ric80, SLG+05, EEKS06, MCL89].

IKKM07, KTR+04, KZT05, MGT+17, SHP+16, AJK+09, ARJS07, AIK+05, AMPH09, BM10, CHZ+14, CSM+05, DCS+14, ELMP10, ELMP11, EE14, GW10, HTA08, JLZ09, KST11, KW13, KJJ+09, KSCE16, KKMH11, LCWM08, Loh08, MLCW11, MLC+09, MŠT07, MPT12, MBS+04, Mus09a, Mus09b, NSMK11, PBC+13, PBGM09, RWB09, SK13, SMQP09, SMJ+10, TBC94, TL11, UVG14, XL09, YZ07b, YLHL10, ZW14, ZHW16, ZSHG07].

core-level
[YLHL10].

CoreDet
[BAD+10].

cores
[AFCM10, CWS06, CWS+11, CLG+14, HDS10, Mat10, MAF+09, MPM14, RLCV10, SW16, SDR11, UMC+10, VJ+12, VSG+10].

CoreSymphony
[NSMK11].

Corner
[AMH+16, CWS+11, CLG+14, HDS10, Mat10, MAF+09, MPM14, RLCV10, SW16, SDR11, UMC+10, VJ+12, VSG+10].

Cornering
[AMH+16, CLC90, MCL89, OCL90, PT10, PZT02, Ria80, WGH+97, WL88].

Copy
[MMT16, MPS89, TML+00].

Copy
[MMPM96, PMPM96]. coprocessors
[CSJC10, GPR87, KACG88, RF90, SC92, TLLL07].

coprocessors
[CSJC10, GP89, LACG88, RF90, SC92, TLLL07].

coprocessor
[CSJC10, GP89, KACG88, RF90, SC92, TLLL07].

coprocessing
[Deb89, ML05].

Counter
[KGG+13, Ric80, SLG+05, EEKS06, MCL89].

Cool-Mem
[ACM02b].

CoolAir
[GNB15].

cooperating
[SDWF13].

cooperation
[Rat82].

Cooperative
[CS06a, LC13, PMA+13, BM10, HGC10, JKN+13, WBM+03, WCF+93].

coordinated
[KKJ+13, RRT+08].

Coordinating
[GK81, MAHK16, SCRT78, LQ12, SKD+10].

cooperation
[SDWF13].
KORA17, KDBA78, MS82, MM14a, MBS16, Mul89, MMS14, NWB+15, PH85, RSYP06, RBV07, Req83, SGH97, SMJ+10, Tak88, Tie88, TIVL05, UJ92, VF85, WCX17, Wi98, ZLJ16, ZLJ17, AHMN91, APF+14, AV10, ATHM86, APT90, APS95, BK11, BBK6, Ber80, BTW77, BFS+09, BLL+83, BMM14, CDP82, CDP83, CVC+09, CGS90, Che90, CB94a, CFE+12, CFS+12, Chu77a, CDL13, CJG02, Cop78, CF93, DM74, DBL80, DM98, Den98, DC09, DSM82, DJT94, FF98, Fen84, Fos72a, FG83, FR87, Gau85, GLH88, GK78, Gib83, GRRT84, GTA06, GGV90, GWMO3, GYB+16, HPU+16, HM93, HR09, Hom82, HEK+16, HA90, Hum96, HP86, HP98, mWHP98. data [JW95, cJC099, yKPR02, KSCE16, KL91, KL94, KZA+12, KPR+08, KW98, KHC92, La95, Lec74, LCC94, LAB+11, LW+16, LPMZ11, LJK+13, LDK14, LCS+10b, LM99, Lun75, MMS3, MS80, MSB+11, MS87, MPT89, MS07, MBVS97, MF76, MKM+83, MSQT09, MMAS08, MDHS09, NRKS05, NKRL06, NI85, NS74, Nt89, OZK+12, OC78, PPM96, Puls0, PSH+12, PMZ+10, Pri91, PT03, RL74a, RRT+08, Ros77a, RS99, RVD07, SCL14, SK86, SSJ+16, Sha80, SHNS86, SEI+95, SF91, SY89, SCN+10, ST08, TAS8, Tak87, TK07, TYZ90, TP06, TBC94, TJS83, VS92, WE74, WDC+13, WS90, WLC14, WBKR13, WDG+16, XB03, YTY83, Yok94, YW89, ZY900, Kro83, SHS14]. data-control [PMPM96]. data-driven [GLH88, YTY83].

Data-flow [BS06, CCV+09, DM74, DM98, Gau85, TJS83].

data-intensive [CGS09, MSB+11]. Data-parallel [CKmWH16, MMS14, LAB+11, PSP+12].
data-races [LCS+10b].
data-reconstruction [Yok94].
data-similar [BFS+09]. Database [MM14b, Pra82, BH78, Bra77, Cha78a, Hak85, HK77, KMI+85, LR93, LBE+98, SCR78, WLP+14, ZBJ+02]. databases [BH78, Gou78]. Datacenter [Bia17, JYP+17, KGGS17, LLG16, AMW+10, BTS+11, MKGT16, MLN+12, PCC+14, SA10, TMV+11].

datacenter-scale [BTS+11]. Datacenters [BLJ+17, GNB15, DK13, GKL+13, GSU11, GWSU12, WRS13, WGS+14]. Dataflow [Hu85, NGAS17, SPM+06, YSY+90, BBJ+08, Bie84, Bur82, CES16, CA88, GB87, GTBJ89, GPF13, GVC+10, GDHH89, HG86, HPF86, HG88, Ian88, Kap87, KHP+95, LS12b, MSP+06, NMB92, Nik89, Nit89, PT91, PM11, Roc85, SyYH+89, SK86, SBS+92, SA87, TFW03]. dataflow-based [TFW03]. dataflow/von [Ian88].

DCT [PSB13]. DDA [KSB84a]. DDDP [KSY83]. DDOS [HBG13, PON16].

DDR4 [MHHK+13]. DDRx [BI12].
deactivating [CRG+11]. Dead [LFF01, AFGM10, ADS+13, BS02, NP95].

Dead-block [LFF01]. dead-instruction [BS02]. Deadlock [ED17, Kun88, LN91, AP95, KCW+09, KKK76]. Deadlock-free [ED17, LN91, KCW+09, KKK76].
deadlocks [PW97]. DeAliaser [ADT13].
dealing [BFPG06, BFP07]. Debug [EW16, FGVG13, PT03]. debuggable [MST82]. Debugger [CHLS16]. debuggers [AR83].

Debugging [NPC05, RSA+15, QZL+04, AGS89, CL87, DZ09, DP12, HT14b, Joh82, KP05, LCS10a, Sch73b, VNN13]. Debunking [KLC+10].

Decade [Bar11, Woo14]. decay [KHM01].

December [LS73]. Decentralized [NS74, HW80, LG04, LUN85, RS84].
decimal [Ris76]. decision [ASP+99]. declarative [SBRP11, WWW+88]. Declustered [ABSC98]. declustering [ABC97]. decode [KL02]. decoded [IS92]. decomposed

...
Decomposition [WJZ15, VGSS85]. Deconfigurable [FGVG13]. Deconstructing [DBG+04, GAAD+05]. Decoupled [BS04, GRH06, HR09, RPW96, Sez94, SDS08, Smi82, Smi98a, WL17, WDW10, ZLZZ09, APX12, CP11, GhHL+85, KHC92, SAK01, TJ01, WJK12, Smi98c].

Decoupling [CYL99, HHL16, JSAM10, KBG+17, LHC+17, HCS04, KCE12, MHW03, OSKA14]. dedicated [Sch83, SC92]. Deep [HABZ17, RLD+17, VRB+17, AJH+16, HLM+16, MW12, RWA+16, VBS05].

Defined [DHR+15, TBS17, OLJ+14, SBS13, TM80].

Demultiplexing [BS06]. DeNovoND [SKA13]. DeNovoSync [SA15]. Dense [RLIC06, WJZY15, Rui90]. densities [GM84].

Density [GSCM16, GPV04, GCG+14, KKC+16b, MHK+13, Ste89a, Wan01]. Denver [ACM97]. departments [Slo73].

Dependable [SLFG06, Par88b]. Dependence [GRH06, HNP15, RBK08, APD01, CE98, RBR02, SAS90].

Dependences [CAS06, MBVS97]. dependencies [JVM13, NPC06, RVD07]. dependency [AS92b]. Dependent [YT04, Dev93, HKE+16, HY85, Yue81]. depth [EWN05, HP02, HBJ+02, YMST07]. derivation [MSZ09]. derivative [Ann91].

Deriving [HS73, RR04]. Descent [DFR017]. describe [OT73]. describing [EG97, Wak80]. Description [SC89, Das83, JS73, MSS76, Suts81, WP87].

descriptions [Hen06]. descriptor [BB74, We76]. descriptor-based [BB74]. descriptors [LLC06]. Design [Alv93, AOM+14, AVN+16, BBK76, BAC+98, BD84, CYH+11, CJZ99, DMB87b, DR91, ED17, EBS+04, Fer88, FK80, FTG88, GMT89, JD88, JKTO5, JKTO9, KGS17, KHP+95, KY02, KM86, KM74, KR85b, LNR+06, LIW82, LCL+16, MS13a, McL90, NUS+93, NKK+85, PA73, RL76, RCV+05, RYF+13, Rui86, SFKS02, SOSD05, TAV01, Tab95, TAM+08, TIVL05, TKJ07, VHL73, Woo86, ZWSM15, ZAI+16, AWC+11, ALBL91, Ano81, KAB+89, AMPH09, AML+10, BS73, BA74, BFPO3, BV+00, Blu83, BDJ+11, Bou75, Bra82a, Bra82b, BBK90, BM09c, Bur82, CBK+14, CCS87, CGT+14, CZ14, CY96, CH87, Cra85, CR94, DN14, Das77, DO02, DPB07, EP84, EKW80, EE10a, FW97, FCJV97, FSS+09, FL76, FSS76, Gai83, GRB+08, GP76, GSV00, GB83, HG97, HR00, HAO86, HS73, HS90, HY85, HRDA85, HIM+05]. design [HNS77, HS85c, HSS12, IMC+06, Isa74, IT84, JZY14, Joe90, JW97, Jon82, Jou89, JOW+02, KS07, KCO2, KSK17, Lan77, LGH92, LYL87, LRS+08, LR77, MSAD91, Mar33b, McK74, MD88, Mil82, Mil87].
MSSZ76, MKR02, MB07, NK86, NMS+00, NO94, NH096, OT86, Oya89, Pay78, PP83, Pes74, Phi84, PHH88, RBR02, RCL73, Ran85, RHZC74, Rod85, SYH11, Sav85, Sch89, SRWB14, SC01, Slo74, SS85, SV89, SV74, TA76, TTTL10, Tur79, UMC+10, VT14, VFk+04, VE14, WLG+14, WS74, WF87, Woo85, WO86, WLP+14, YY92, YKD01, ZRMH00, ZYG00, Ho83, Su74, TA83, design-oriented [Slo74]. Designed [HS06, LGM+14]. Designing [BF90, HW87, LRC+08, SNG00, Tri80, WO97, Asl84, CMR+12, DSOF11, GSS12a, GGG+82, GGK+98, GRD87, LMS+13, MST07, PHB14]. Designs [RGSJ17, TMC+06, BJL+13, CWS+11, GGC+14, La92, OCF00, SWC+95, WL07].
desktop [BDMF10, FURM00, LC89+98].
desktops [Dow88b]. Destage [VJ95].
Destination [RFS88, MHS+03].
destination-set [MHS+03]. Detailed [MKR02, ACC+03].
Detecting [AHMN91, LLL+17, LDSC08, ZFC03, CF93, CWdO+06, LTQZ06, ZSL10, ZLO+11].
Detection [GV05, NSA+17, RCV+05, TS05, TP15, ZLJ16, ZLJ17, ACF05, BM06, BWWA05, BS02, CG06, DMS+13, DSR+93, FAH83, Ger80, GMF+11, TC04, HCO4, HHS13, Jai82, LS82, MC91, MSQ09, NS06, NS+11, QTSQ13, RM00, SGK+04, UVG12, WDC+13, WCG14, ZRZ+14, DWS+12]. detections [ISG07].
detectors [UVG12, UVG14]. Determination [PAM+16]. Determining [CDY+17b].
determinism [LWV+10, SKA13].
Deterministic [LB17, LLLG16, NPC05, NLP14, Rid87, TLLL07, BAD+10, Bon13, CHCW10, DLOC09, DNB+11, HR09, MKHT09, OAA09, XBH03].
Deterministically [MCT08]. DEUCE [YNQ15]. Developer [LdJL+16].
developing [Bre10]. development [BS08, BR92b, Coo73, HAOS86, Hen07b, RM77, SBS13, Sch89, TAV10, YHF03, YSY+90].

Deviations [NSA+17]. Device [DFKC17, XLWZ15, DJ09, KS12, KRS13, KTO+12, KHBS14, La98, Laa00, RK+11, SBQZ14, SRBP11, TlLC13, Vi94, YHZX14].
device-driver [YHZX14]. Devices [BCSB11, MABYT15, KC74, LJK+13, LRS+12, NLS88, RSF11, RKGM14, SDWF13, SLSN14, WDA+08, ZLZZ09].
Devirtualizable [LS04]. devirtualization [KJM+07]. DFT [BHS91]. DFTL [GKU09].
DGates [ASR+17]. DIGIT [Sch83].
diagnosable [HS73]. diagnose [AILJ14].
diagnosing [Ebe02, TAV10]. diagnosis [ACJL13, Mal80, FC83, Wan93, YMX+10, uAM16].
DianNao [CDS+14]. DICE [YNQ17]. Dictionary [Fis84, SA84]. Did [DK17].
Die-stacked [JV13, SLS03].
Diego [ACM93a, IEE03]. difference [GPF13, JLN96, KZC12].
difference-bit [JLN96]. different [Reg76]. differential [GLH88].
Differentiated [MSS+15].

Difficult [CTYP02]. Difficult-path [CTYP02]. digit [MS10].
Digital [Alv93, Chr77, BA74, BMP04a, DP76, FSS73, GP76, GSS12a, GSS12b, GWM03, JS73, KKC+16b, KB80, MS13b, OT73, Smi14, Sch83].
digital-signal [GWM03]. digraph [FAY83].
Dijkstra [AMM+12]. Dileep [Tab96].
dimension [Gut87]. Dimensional [PAD16, SAL+05, BSSM08, ES74, HS86, LH88, MK84, RKF88, SM14, YL84, nZY84].
dimensionally [KNP+07].
dimensionally-decomposed [KNP+07].
dimensions [Teo90].
DIMM [GGP+13, ZLZZ09]. DIMMs [YCMR12].
Direct [CM87, Chun77b, HIT05, SCP+82, Zha06, AP93, EHA82, HFWZ87, Jou90, Jou98a, Jou98b, KD06, WQL92, Witt78, YW89, SHBS14].
Direct-execution [Chu77b]. Direct-Mapped [Zha06, AP93, Jou90, Jou98a, Jou98b, WQL92].
direct-to-cache [KD06]. Direct-to-Data
Directed
[OH16, SDLR+15, Tab95, CHCmWH00, CJG02, CHWY13, FAY83, GGV90, LLD+04, LS92, SCP80, SCP+82]. directional
[MM87].

directions
[HLR98, HSW+00, Hil13, vT89]. directories
[CKA91, Mou98, SH91].

Directory
[Mic92, ASHH88, ASHH98, CRG+11, FB08, Hen98, LLG+90, MPT91, ON90, QST14, QSG14, SM94, SHZ97]. Directory-based
[Mic92, LLG+90, QST14, SHZ97]. Dirigent
[ZE16].

dirty
[SBM+14, WK89].

dirty-block
[SBM+14].

Disaggregated
[LCM+09].

Disambiguation
[CTTC06, Iss94, JoC99].

Disbursed
[DH99].

Discerning
[MTZ13].

Discovery
[CLR03, CLR05].

Disengaged
[MSS14b].

DISHA
[AP95].

Disjoint
[Uhr02].

Disk
[GSN05, KRM08, OsL99, Tho13a, WHZ+17, YXR06, ABSC98, BBBM94, CP90, GHKP89, HY96, LK91, MM92, NL88, Ng94, PT10, RB99, SFV+04, SGS08, SGH93, Tho11a, TLD14, VJ95, YK94, Yom92].

Disk-based
[WHZ+17].

disks
[CME+12, CS13a, DJ09, GSKF03, JWK12, JCS+14, LL+04, Tho10b].

Disordered
[KDMP92].

disparate
[WLZ+09].

Dispatch
[KKC+16a, VM97].

dispersed
[VS76].

Dispersing
[VE08].

display
[Est74, GoL84, SE74, TH76].

Display-oriented
[SE74].

Dissecting
[ACC+03].

dissertations
[Bre72].

distance
[KS02a, RN86, WZ13].

distant
[BDA01].

Distributed
[AM+12, DJT94, FHH+89, HJrCH16, KR05, LLL+16, MAMK16, SM94, SBK77, VNNI06, VM88, VTGH17, And73, APR89, BCG14, BCZ90, BR90, CPdM+96, CS13a, Che81, DSG11, DR91, Dkc93, FB08, FJB85, GCN+10, Gou78, HS80, HFFA09, HSH96, HBCG13, Jen74, KCZ92, KS02b, KMS86, KZA+12, Lee85a, Lor90, Mar83a, Mat78, MT84, MIl82, PN83, Phi84, QSF14, RL76, Red73, RPW96, Rey82, RA90, SFV+04, SD90, SA91, SHMZ94, SCRT78, SB77, TB94, WBa83, vT88, vG80, KY83, LR77].

Distributed-memory
[APR89, RA90, SHM94].

Distributing
[LS96].

Distribution
[CY06, Fra76, APT90, GB83, Las89a, Law76, LG04, TF01, WRS13].

Disturbance
[WJZY15, KDK+14].

Ditzel
[CS80a].

Divergence
[IKK07, VT14].

Division
[Atk79, NNIS16, Dow91, MPPZ87].

DIY
[Pau13].

DLCN
[LR77, RL76].

DLP
[SNL+03].

DMA
[Cou89, MMT16, Wra91].

DMark05
[SB07].

DMN
[PMPM96].

DMN-6
[PMPM96].

DMP
[DLCO09].

DMR
[NH+11].

DNA
[BLC+16, MSHC13, Win08].

DNA-Based
[BLC+16, MSHC13].

DNS
[YL+17].

Do
[Azee17, Pat06, DHR+90, KJC06, Par95].

Do-It-Yourself
[Azee17].

doctoral
[Bre72].

document
[VFCM13].

documentation
[Dre94].

does
[CHG06].

doing
[MDH09].

Domain
[ORS+04, SYH11, BS08, GPF13, Kar89, MSS+03, WJM04].

Domain-specific
[SYH11, BS08].

domains
[LAKD99, LWZ14, VBYN+14].

dominant
[MTZ13].

dominated
[KBK02].

Douglas
[Mad94a].

donw
[PBWH+11].

DPP84
[Rui86].

DR
[TM11, YK94].

DR-ASIP
[TM11].

DR-nets
[YK94].

DRACO
[Sc05].

DRAF
[GN+16].

dragon
[AM87].

Dragonfly
[KDS08].

DRAM
[LJVM12, BS+10, CJDM99, CJ01, GDN+16, HS93, HSS12, JVF13, KBG+17].
KSL⁺12, KDK⁺14, KSCK17, LIMB09, LZZ⁺07, LPMZ11, LLZ⁺13, LJK⁺13, MNL⁺12, Mar00, MHHK⁺13, MM08, NQK13, OSAK14, PKM17, SSJ⁺16, SLSO13, SSR⁺13, SKD⁺10, SCN⁺10, UMC⁺10, YNQ17, kSYHX⁺11, ZCX⁺14, ZLZZ09.

DRAM-based [GDN⁺16]. **DRAM-system** [CJ01]. **DRAMsim** [WG05⁺].

DreamWeaver [MW12]. **DRFx** [SMN⁺11].

Drive [GSN05]. **Driven** [JHK⁺16, KDBS08, KYK83, BP04, BKB09, DCC⁺17, DCC⁺18, DRR89, GLH88, GMP⁺11, GKB⁺13, HB90, KS02a, Kha95a, KEL91, LSSG05, MM83, MSB⁺05, MTG⁺99, OT86, RV07, SZD⁺08, SKS88, SQP08, TBL12, VKI⁺00, WW89, YTY83, YW89].

driver [LNEHR11, RKM⁺11, YHXZ14].

drivers [KS12, MS09, RKM14].

drowning [HC03]. **Drowsy** [FKM⁺02].

DRPM [GSN03]. **DS** [ZAG98]. **DSL** [HCSO12, SGM⁺15].

DSM [ZAG98].

DSNS [KMT91]. **DSP** [CS11a, JLFM15, MS13c, McL90, PP03, RP99, SSAC13, TH03].

DSPs [ISJ04]. **Dual** [KKS⁺15, KSL08, KKS⁺16, GM82, MAL01, SC06].

Dual-Function [KSL08]. **dual-link** [ST05]. **DudeTM** [LZC⁺17].

due [DI90, KE91, UVG14].

duet [LSY⁺14].

dumps [WZJ10]. **Duo** [AOM⁺14].

Duplication [Jai82, SAB05, LRHM90].

durability [SWL10]. **Durable** [LZC⁺17, ZMY09].

during [KD06]. **Dusty** [FKC⁺06].

DVFS [KNS07b]. **dwarf** [WBS⁺88].

Dynamic [ADP⁺15, All98, AS92b, BT13, BWWA05, BS02, CKmWH16, CT90, C88, FP91a, FJ85, GSN05, HTC10, HBHA02, HSC⁺11, JSN98, KGCG17, LW95, LPH⁺09, Mat92, MS05, MTS10, MBVS97, MS16, PPM17, PSB10, RS84, SBZ⁺15, SS97, SD09, TS10, VJM99, WHG07, WK09, ZSG⁺17, ZRW05, ZPS⁺04, BJ03, BM90a, CLL01, CKS16, CHCnWH00, D902, EA97, EA02, EHA03, FGB12, Foz72a, GGH92, GTBJ89, GYCS96, GVC⁺10, GA01, GSKF03, HL89, HSS94, JMK⁺08, KJM⁺07, KCS82, KBD⁺13, LJ90, MS14a, MSS⁺03, MCD⁺08, MK12, McD82a, McF92, MTN⁺00, Nap86, OZK⁺12, PTV02, PS12, PMZ⁺10, PS94, QD98, RCC05, SAB⁺05, Sch89, SLN96, SBS07, SLZD04, TFWS03, TL00, UC01, VM97, WRSY16, WOR96, XJK⁺16, YP93, YJSE12, ZJG⁺11, Ano89].

Dynamical [KLKM17, Lev92].

Dynamically [BDA01, BDA03, ICT⁺10, RAM⁺04, SRJ⁺05, CSJC10, CO03, FCJ97, HGC10, KKT05, KMT91, KP05, LWRC10, LM76, LCS10a, PIA13, RRRV09, RLS10, SWL10].

dynamically-hazard-resolved [KMT91].

dynamically-scheduled [FCJ97].

dynamics [AIO⁺11, SDD⁺07].

dynamism [MTZ13].

Dynamo [WD⁺16]. **DySel** [CKMWH16].

E2 [PSB10]. **eager** [KPG98, Uht02].

Early [BYG⁺00, DLMN09, FAB⁺96, JOW⁺02, SDR11].

easy [Hig90, HCSO12].

eat [KDB09].

EbDa [ED17]. **ECC** [BT13, KSE16, SLSB10, UMB⁺12, YE09, YE10].

EGC [TZH⁺13]. **ECMon** [NG09].

economical [AB84, MPT91].

ECOSystem [ZEL02].

ECP [LSB10].

ed [Col88].

EDDIE [NSA⁺17].

Edge [KHG⁺17, CCB⁺06, DSBK04].

edited [All92, Col90, Par90].

Editing [OC78].

editor [Hen07a].

Editors [Ful93, BGP⁺01, BFP⁺05].

eDRAM [JSL⁺13].

eDRAM-based [JSL⁺13].

Eds [Ber91c].

Edsger [AMM⁺12].

education [Har73, Kno73, Ros73].

educational [ZSL10].

EGG [Hu85].

Effect [Kum87, BEH91a, CSW94, DV87a, Ega82, EK89a, GM98, GL89b, Mid82, MB91, OWCL90, RR77, ZSL10].

effect-oriented [ZSL10].

Effective [KKN00, MCK16, PGS04, RS99, SF03, CHK⁺12, FG01, KZA⁺12, MTC⁺07, MG91,
Effects [AD98, DB82, FB92, MVCA97, TMEK16, BTS+11, HGS+07, KHC92, LJS+02, YLHL10]. Efficiency [BL17, Bia17, HGTW05, LB08, MTU+15, SFM17, SLG+05, TM05, WM16, ACM02b, AMPH09, BFS+07, CKS16, CMB+13, CLG+14, FPC+07, Ham09, KSN07b, LAB+11, MS13b, OKY+16, PAVT16, QHS+13, RLCV10, SCN+10, Tan77, WKJ12, WOR96, Won16, YJE11]. Efficiently [AWAG15, AGS89, AK16, BM91, BGC+03, CGS09, CZ14, CES16, CZS+16, CFS+12, CS06b, CP11, DGY89, DK14, FHM+11, GHWO90, GJT+11, GZuRC13, HLM+16, HCJ06, HCS012, HBI13, HDS10, IMK+13, JSL+13, JOW+02, KS14, KR13, KDS+06, KS99, KDA07, KM10, KDP+16, KMS+10, LB06, LWV+10, LWRC10, LS12b, LDK14, MJW11, MGH+96, MBK90, MC91, MSH+15, MSPV06, NSMK11, NY14, ON90, OAA09, OYK+16, PSC06].

Efficiently [IMP+06, KDL+16, MCT08, SW16, BCS91, KJS+06, LS12a, SGB00, TZZ+16, W108, ZZP04]. Effort [MPH12, DCW+11]. EGA [GWM03]. EGPA [HKK80]. EIE [HLM+16].

Electronic [Mar74, Roc94]. electronics [GB01]. elegant [Ulm97]. element [LIW82, Nap86, Waj92]. elementary [HKN+92]. elements [MLZ89, Rui90]. ELI [Fis83, Fis98a, Fis98b, GAH95]. ELI-512 [Fis83, Fis98a, Fis98b].

Eliminating [APX14, WSM96, MGW09, MTPT12]. Elimination [Cha92, BS02, DSR+93, EA02, KKN00, MK12, ZJG+11]. elliptic [BG04, MS13b, SH05]. ELLPACK [HRC+90]. EM-3 [TTY83], EM-4 [SKS+92]. EM-Based [NSA+17]. EM-X [KSS+95]. embarrassingly [ZWS14].

Embedded [CBC+05, KOA05, LNEHR11, ORS+04, PAD16, SST06, AB01, AIK+05, BBFP06, BP04, BGM04, CKS16, FB00, KC02, KKC+16a, KW11, LBvH06, MST07, Mar00, MA06, MBBS13, NKRL06, OIA+13, PP09, RTJ00, RR04, SFS04, SDWF13, SK04, TLLL07, VPS01, ZVN03].

Embedded-Ring [SST06]. Embedding [BT98].

Emergencies [GWSU12, MTPT12, YLHL10]. Emerging [BRUL05, LRC+08, Sr01, VSM+08, DCKZ03, Est02, FAK+12, NK01, Tem12].

EMMA [Str83]. EMMA-an [Str83]. emphasis [Tho12a]. Empirical [ACK+95, S82, BAC+98, LC13, ON90, VSH91].

Employ [MABYT15]. employing [CWS06, GKC09, OWCL90, SLSN14].

emulating [HvDJL10]. emulation [HCG+06, Kha99a, Las89a, NMS+00].

emulations [Ros89]. emulators [MMP+12].
Enable [WGA+08, KDS+06, UMB+11].
Enabling [ISJ04, KDP02, MCGL17, PKM17, TGC+14, WLZJ17, HR09, HEK+16, LHE+13, LSS04, LM99, LM+16, SRE+07, SRWB14, VGBK+10, XBH03, YCMR12].
Enclaves [WBA17].
encoding [BM06, God13, SSJ+16, ST79].
EnCore [ZRZ+14].
Encrypted [JSCM17].
Encryption
[YEP+06, YNQ15, CS11b, Rao84, RSP05].
End [CCV+09, Emmt06, HLZ+15, SBRM09, SNM+12, WCX17, AHKB00, EBS+11, KSL16, OS03, PM11, RAC09, Smi90, Wil95, Zak73].
end-point [Wil95].
End-to-End
[HLZ+15, CVC+09, SBRM09, SNM+12, KSL16].
Energy [AMW+10, ABR01, ASR+17, AWC+11, AK16, AML+10, BCSB11, BKAB03, CDY+17b, CTHV+15, CS06b, CHLS16, Fg01, FeOBA05, GJT+11, HA04, Ino05, JOW+02, KN06, KSL08, LjIj+16, LS12b, MZL15, Nzo+05, NY14, Oik+16, PR05, RPSV07, RL14, SJS+16, VKI+00, ACM02b, BM01, BHS12, CZ14, CES16, CZS+16, CKS16, CMB+13, CLG+14, DNSD13, DB07, FPC+97, GKL+13, GSU11, GWSU12, GZuR13, HRT03, JSL+13, KDS+06, KIC+16, KSN07b, KZA+12, LHE+13, LLD+04, LQ12, LCG+14, MLN+12, MKG98, MAL01, SFS04, SB05, SHA02, SDH+14, SSD+13, TK07, TL00, UMC+10, UMB+11, VSG+10, VE14, Won16, WBKR13, ZELV02, ZZY09].
Energy-Aware [PR05].
energy-constrained [UMC+10].
Energy-driven [VKI+00].
Energy-effective [FG01].
Energy-Effectiveness [PR05].
energy-efficiency [CMB+13, KSN07b].
Energy-Efficient
[AK16, CTHV+15, KNP06, AWC+11, CS06b, GJT+11, JOW+02, LS12b, RL14, CES16, CZS+16, GZuR13, JSL+13, SB05, UMB+11, WBKR13].
Energy-harvesting
[CHLS16].
Energy-interference-free
[CHLS16].
Energy-performance
[AM1+10].
energy-proportional
[AML+12].
Energy-security [Ino05].
Enforcement
[GRH06, SDL+15, CTM10, LKO+14].
Enforcing [ZE16].
Engine
[BRG05, AZ89, CLR03, GLVC13, HvD10, HLM+16, La04, NKB+16, OU8+13, QHS+13, WW89, YW89, DDM+17].
Engineering [LSB15, Adl73, Slo73, Slo74].
Engines
[MKP05, BKC14, HSW+11, SRJ+05].
England [Ber91a].
Englewood
[Ber91b, Fer88].
enhance [CZ14, SK10].
Enhanced
[Rot05, Fos72a, HKE+16, Las89a, PGB12].
Enhancement
[PGS04, SABR05, BB74, GS12, YZP+11].
enhancements [Gil00, Man01b, Man01a].
enhances [BS95].
Enhancing
[CHK+12, LcC92, MM08, OL02, AFGM10, RBS00].
enough [Bre10, CCH+87].
enriching
[TMW+01].
Ensemble
[RLIC06, PT10, Mar73].
Ensemble-level
[RLIC06, PT10].
Ensuring
[HDK+11, RRRV09].
Entering [Bar11].
enterprise
[SFF+13].
Environment
[DFL05, AKB85, AKCB86, DSH+10, Don83, Don85, Don88, FMB+07, GLH88, HRC+09, JD81, JADAD06, KW13, KDO6, Ols89, PPS3, PGSP00, RC91, ST87, VP89, YN14, ZRA+14].
environmental [CMR+12].
Environments
[LRC+08, RGS17, ATS14, BGM04, EJK+96, VNM+12].
EOLE [PS14].
EP [Ul95, TRA91].
EPI [AGS05].
EPIC
[ACM+98b, BC04, SzUK+04].
EPILOG
[Wis06].
Episodes [HH08].
Epsilon
[GDH+89].
Equation
[SK+15, LSF08].
equation-based
[LSF08].
equations
[BVGL00, Chr90, Don83, Don85, Don88, Don90, Don92, GLH88, JD88, OT86, Qui84].
equipped
[HHA+83].
equivalence
[HN12].
Era [Ban15, EE14].
Erol
[Ber91a].
Errata
Error [Ano81, DBK+02, JDL81, Sta81]. Error-correcting [Che84a, AWC+11, Ye09, YMX+10]. Error-prone [YMM15]. Errors [LABR08, SDR+15, YMM15, BWWA05, HSS12, ISGS07, KDK+14, LRS+08, YZ07a, ZLO+11]. ES40 [CK00]. Esterel [LBvH06]. Estimation [LABR08, TM14a, VJE+12, GKM+98, SBM09, WMW09]. Euripus [DKCZ93]. EV [SAF+02]. evaluate [Sho87]. Evaluating [ADK+04, BVR+00, EK98b, GS07, JH94, OA89, PK94, SWC+95, VRB+17, YZ07a, CMR+12, MCC+06b, PL06]. Evaluation [BKS+05, DCS93, EJK+96, HG+16, LP91, MYB98, NHO96, Par75, RCV+05, SHNS86, SAA17, SGS+93, TLI+86, TLM+04, Wul92, YHN+86, ASH98, ASH98, ATMH86, ACK+95, BBB94, BNT78, BWJ+90, CGBG88, Che92, CMB+13, Cra79, CB13, CKPK90, DL87, DNS95, DR91, EK88, EP87, EP88, GMC+09, GHG91, GZuR913, GLV93, GH+91, HLM+82, HANN96, HVAN14, HLR98, HJ86, HJ87, Hea84, HSO4, IT93, IS92, ISKR96, IM02, JLS+99, Kee78a, KKL78b, Ksl79a, KB76, Kla99a, Kha99b, Kha99c, KY82, KCM91, LS82, LK+10, Mck74, MIO+10, MKR02, Nad88a, Nad88b, NDZ10, NWD93, ON90, OQ91, Pat82, SK83, SmI85, SPA+98, SMZ94, SJS92, SCH+91b, SV74, Tab88, Tad13, TNN87, WLG+14, YTY83, Ym92, Zul80, Hen98]. Evaluations [MM14b]. even [DB07].

**EVENODD [BBBM94]. Event [HNK+17, DS11, GSS05, GLL+90, GLL+98, Gha98, GKB+13, OQ91, TBL12]. event-driven [GKB+13]. events [NG09]. everything [Lar11]. Evolution [BDMF10, Cra88, BD86, CR94, KWF08, Pau13, Tag85]. Evolutionary [AWAG15, Ber76]. Evolving [SADAD02]. EX [MH13]. exact [TZH+13]. examination [SLS14, VCK+12]. Examining [WMP07, DZZ+14, Tha10]. Example [FK80, Ric80, Dow88a]. examples [Maz77]. exceeding [ASP+03, GHS16]. exception [MDS12b]. exceptions [GA01, LCS+10, SMN+11, UH93]. excessive [GH90]. exchange [Fen84, Sov83]. exclusion [McF92, SLQK12]. Exclusive [BSADAD04, OH16, GCS11]. Executable [Cra83]. executing [See89a, See89b]. Execution [AWAG15, Bic84, Bit89, BGH+08, CHM08, DVT12, HCL15, HC15, KKS+15, Kno83, KKS+16, LCB+98, MCT08, MKP05, NPC05, NSA+17, PCC+08, PR05, Rot05, STS17, SJA+17, WDM10, YMM15, ZS01, ASh1a, AT11, AIO+11, ANHHN95, AHA+14, ATT+13, ACM+98b, ASP+99, BG84, BAD+10, BFS+09, BKC+14, CO82, CM87, Chn78b, CHW13, DSBK04, EHA82, HFW87, HX87, HKA+01, HP87, KDMP92, KY02, KPG98, KPH96, LBCC05, Lit94, LN92, Luk01, LRM90, MHH+95, MEV92, MSB+05, MPP+08, MDS12b, MCC+06b, MW98, NMB92, POG05, PCC05, PS94, RG02, SCP+82, SLLG05, SDP85, Sos94, SLZD04, SQP08, SMQP09, ST87, SP87, Tak87, TWC+10, Ter78, TXZ09, Ulm98, UM95, UT83, UZU00, WCT98, WY05, WR84, Wie82, Wil87, YHZX14, YW89, ZulKL+13, Ulo02]. Execution-based [Z05]. execution-driven [MSB+05]. execution-time [LRHM90]. executions [APX14, BFS+09]. Exemplar [AD98]. exercises [Kno73]. expandable [AA84, FS92]. Expanded [AS92a, JW95]. expansion [LCM+09]. expansions [SM12]. Expected [Quo94]. expediting [YL16]. experience [CGBG88, DLMN09, FAB+96, RVLS14, Str83, WP87]. Experiences [ZBJ+02, JOW+02, Mat78]. experiment [Ano81, CD82, PP82]. Experimental
fault-injection [WMP07]. Fault-secure [BA84], fault-tolerance [Avi83, KR80].

Fault-Tolerant [PGBV04, FV82, AGSY94, BSD87, DDY95, GKN80, KLC94, KR85b, LS82, LIW82, Mar85, MC93, MGBK96, PA73, TYZ85, WL88]. Faults
[PTS+11, HANR12, WSC08, dKNS10], faulty [BCS91]. FCM [Bur02]. FDTD [DSOF11]. feasibility [DMS+13]. feasible [For94a, For94b]. featherweight [ZdKL+13]. feature [LYBC88]. features
[BCL82, HO91, YK05]. February [Pat87].

Federated [CTHV+15]. Feedback
[SQ08, HMMS96, SS89]. Feedback-driven
[SQ08], Fence [MA14, MA15]. Fence-Free
[MA15, MA14]. Fences
[DHT15, DMT13, SAR99]. Fetch
[ANMF08, HK90, BKAB03, CG94, CMMP95, FG91, GM98, Kro98a, Kro98b, LBCG95, LV88, OKN02, Prz90, RR77, TH86, TEE+96].
fetch-and-increment [FG91].

Fence-and-Op [HK90, LV88]. Fetch-Criticality
[ANMF08]. fetch/prefetch [Kro98a, Kro98b]. fetches [SM89].
fetching [UNM+95]. Few
[HH+15, Lip78a, Mza77]. Few-to-Many
[HH+15]. fflink [dCKK15]. FFT
[GS12, NNI16, SJ86, YL84], fi [MMP+12].
fidelity [RKGM14]. Field
[CLF+17, SzUK+04, Ria80, SSS13, WZL+16].

Field-testing
[SzUK+04]. fields [Lip77a].
fifth
[SMRT85, Mo83]. Fighting
[BTS+11]. figure
[Laan77]. File
[AHC+16, BKL+16, GCO+04, AA289, BNT78, CBF93, CGVT00, DSS9, DSH+94, HLS9, JSL+13, PBL90, SBQZ14, SFKW13, YRK07]. files
[LS86a, TA03, kSYXH+11]. filesystem
[CG91]. filter
[DSG11, GRR84]. filtered
[RFO6]. Filtering
[HTM15, Rot05, SST06, HTC10, HFI+11, PHH16a, PHH16b, RGD09]. filters
[Pra82]. Finding
[BCG14, DZZ+14, HABZ17, LF82, MCXS16, BKM10, Joh04, MPH12, SBRM09]. Fine
[BFP03, CSS+91, KRS13, KKS+15, MS07, OBRW14, SJA+17, WYM+17, ALE90, BK11, FS92, GHW90, GKB+13, HBHA02, KDM+98, KHN07, ML+09, MP91, MFHW96, RWB09, SYK10, SK11, SSD+13, SGS+93, WJGA12, kSYXH+11, ZCX+14, ZSHG07]. Fine-Grain
[SJA+17, BFP03, CSS+91, MS07, OBRW14, ALE90, BK11, FS92, GHW90, HBHA02, KDM+98, MLC+09, MFHW96, SYK10, SK11, WJGA12, ZSHG07]. Fine-Grained
[WYM+17, KRS13, KGB+13, KHN07, MP91, RWB09, SSD+13, SGS+93,
kSYXH+11, ZCX+14]. Fingerprinting
[SGL+04]. finite
[CF82, DGY89, GPF13, MMS14, Nap86, SC01, SLTB+06, ZWS14].
finite-state
[CF82, MMS14]. FIR
[DSA11].
fire
[BTS+11]. Firefly
[PKK+09, TS87].
Firmware
[MS12, KONA82]. First
[KS04, LS73, Mar88, MSH+15, TIVL05, Bak94, BMM14, MBL+89, NEEJ12, VMM8, ZELV02, MKM+83]. first-come
[VM88]. First-Level
[TIVL05]. First-Order
[KS04, BMM14, NEEJ12]. first-serve
[VM88]. fitting
[JSN98]. five
[Kha99d]. Fixed
[dDIS13, VPS01].
fixed-application
[VPS01]. Fixed-point
[dDIS13]. flag
[CSW94]. Flagship
[WWW+88]. Flash
[KRM08, KLK17, CGS09, GKV09, JCSK14, OLI+14, CCEHO0, GKO+00, KOH+94, Kus98, KOH+98]. flat
[ALE90]. Flattened
[KDA07]. FLIP
[WLZJ17]. FLEX
[Mat85, PN88]. FLEX/32
[Mat85].
FlexBulk
[AT11]. FLEXclusion
[SLQK12]. Flexibility
[ISJ04, EE14, QH+13, TM11].
Flexible
[CSK+08, JMR90, QM91, SYK11, SDO8, SHV+98, SOT06, WLZJ17, BEL+10, DKK07, DRDO05, DP12, Nak01, SSH+07, SLQK12, TNY11, WW93, WWA01, YE10]. FlexNIC
[KPS+16]. Flicker
[PIAS13]. flight
[CMLV04, XB03]. Flukker
[LPZ11]. FLIP
[Gra91]. FLIP-FLOP
[Gra91]. Flipping
[KDK+11]. Floating
[D’H16, GSS12a, Sit73, Ste80, THEK16, BdDPT10, Bra72, Dal89, JBW89, LKB91, Lip77a, LGM+14, PB80, RF90, Ris76, SC92].

Floating-Point
[D’H16, THEK16, BdDPT10, Dal89, JBW89, LGM+14, Ris76, SC92].

FLOPS [MIO+10], FLOPS- [MIO+10].

Florida [IEE76, LS73, LS73].

Flow [AK81, CWY’08, EBS’04, FXZ’17, Kro83, TM14a, Ter87, VF85, YSCC16, ZWSM15, ATHM86, BS06, BWWA05, CDP82, CDP83, CCSV’09, Dal90, DKK07, DDY95, DM74, DBL80, DM98, Den98, FG83, Gau85, GK78, HPS6, HP98, mWHP98, LW92, LJS+02, MS87, MMAS08, OT73, PMPM96, PH85, Prf91, Req83, Sla80, SHNS86, SEI’95, SRA+04, SLZD04, TA83, Tak87, TMW+09, TOL+11, TJS83, WR84, Req83].

Flow-control [Ter87].

flows [GCJ17, VE14].

Flowware [OT73].

Fluid [SCU+14, AIO+11].

flung [VJM99].

Fly [KKS+15, ZS15, CWS06, Kep91, SZD+08, ZJG+11].

Flynn [Lau75].

FO4 [HBJ’02].

focus [Lau05].

Focusing [FRB01].

Fog [CHJ83].

folding [DM87, EKEL01].

foo [Gas88].

footprint [CD9+14, Hen07d, JVF13, FK17].

footprints [KW98].

force [Ros76].

forcing [PBC’13].

forecasting [SBRM09].

fork [TLD14].

fork/join [TLD14].

form [Miy85].

Formal
[MCN+17, WJMC04, Hf80, PAVT16, HA04].

format [Bra72, SV99].

forming [AT11].

Forth [Bak94, HFWZ87].

FORTRAN
[Sch91a, Don88, RA90, Don83, Don85, LM76].

forward [Ili87, Reo80].

forward-looking [Ili87].

Forwardflow [GW10].

Forwarding [GRH06, SST06, LM99].

Foster
[Hil91, McG78, Vra78, Ano99].

foundation [PB80].

founder [Ano99].

fountain [WDA+08].

four [EK89b].

Fourier
[HS86, NNS12, zNY84].

Fox [Lau90b].

FP [CO82].

FP-language [CO82].

FPGA

FPGA-based
[AL12, HT10, KHBS14, LYMY16, PQNT16, SCU+14, SNAK+15, TYSK11, TS10].

FPGAs [AIO+11, BdDPT10, GFT+15, LS12b, SWY10, TQC+15, dDIS13].

Fractal
[SJA+17, VV14a, VV14b, VV14a].

fragment [APX12, APX14].

Fragmented
[PHJH17].

frame [Dor82, SWC+95].

Frames [LNA08].

Framework
[AWAG15, Avi83, BKS05, BMF+16, BHM+17, CBC+05, HC15, SLFG06, SOD+14, BTM00, CMC+01, CMC+98, FMB+07, FSS+09, GYB+16, mWH98, KKM+06, KLC94, MPSIV89, NQK13, NS91, TAV10, TZH+13, TTPL10, W005, MKN10].

Frameworks
[GNB15, KDS012].

France
[ACM80].

Free [FRK+15, GMT16, GNB15, MA15, AJH+16, BK96a, BK96b, CF82, CHLS16, DM82, DMT13, ED17, EHA03, GP08, HS80, HL89, HCJC06, HM93, HHH+14, HK89c, KCW+09, Kro89a, Kro98b, KKK76, LHH91, LNN91, MA14, RG02, ST08, VLL+92, WS07, WAFM07, XGC+10].

Free-Cooled [GBN15].

free-space [XGC+10].

Freecursive [FRK+15].

freshness [AHK08].

Freon [HC+76].

frequencies [McD82a].

frequency
[DSN07, M3S+03, MCD+08, PM11, TA03].

Frequent [ZYG00, HA04].

Fresh [Den03].

Friendly [LJdL+16].

front
[OS03, RAC99, TW91, ZAK73].

front-end
[OS03, RAC99].

frontier [Geh4].

frontiers
[HG88].

FSM [ZS15].

FTMR2M [LS82].

Full
[HS11, MMH+95, MMAS08, NMZ12, XBH03, ZYG09].

full-system
[XBH03, ZYG09].

fully
[AP95, HR00, Jou90, Jou98a, Jou98b, SKS+13, SB77, VHL73, SBK77].

fully-associative [Jou90, Jou98a, Jou98b].

currently-associative [SKS+13].

fully-streamed [SKS+13]. Function
[HSL17, KSL08, Law76, RVD07, Bur02, DJ09, GB83, Jen74, NNS+90, SP89].

Functional [Arm74, Har78, Hom82, HG88, JSL95, NK96, PSS88, YMHB90, vIG80].

functionality [HP86, HP98, mWHP98].

Functions [SOSD05, YT04, BLs+76, Chi89, DGY89, Fra76, McD77, SSAC13, dDIS13].

Fused [THEK16]. fusion
[IKKM07, LGM+14]. fusions [FFM11].

Future [Ant91, HLTZ+15, HPU+16, Her06, MC92, Pat06, TAM+08, VSM+07a, VSM+07b, VC04, BDA03, Bas77, BDJ+11, BGK96, Cra88, Hey90, JLI+16, Lip78a, PKK+99, Par95, Sch77, Tha10, Wil01, vT89].

Futurebus [Aic92, SS96]. futures [TH03].

Fuzzy [Lev92, Gup89]. FX [DD90]. FX/80 [DD90].

G [Hol83, Lan90b, Su74, EKW80]. G.

[Sac83]. GaAs [OMB91]. Gainesville [LS73]. gains [DD98].

Galois [CLF+17, NLP14]. Game [FZL16]. gaming
[MS76]. gamma [LH86b, Bat72, PR82].

gang [HVN14]. GangES [HVN14]. Gap
[PVB17, PT83, Quo94, SKC+12, VV14a, Wil01].

Garbage
[GT+15, Hib80, CHV04, FKC+06, GTSS13, HHA83, JMP09, RP85, Rid87].

Gassilloud
[All92]. gate [KW11, WW12]. gates
[TWM+09]. gathering [TMW+01]. gating
[MG98]. Gaussian [Cha92]. GCC
[RLS14]. Geiger [JADAD06]. Gelenbe
[Ber91a]. gem5 [BBB+11]. GEMS
[MSB+05]. Gen3 [dCKK15]. Gene
[SAB+05]. Gene/L [SAB+05]. General
[Ano04c, Ano06b, SY+14, BA82, CT74, FR89, GSZ90, GCTR08, HQW+10, HSC+90, LSS04, MSB+05, Now87, Rvd77, Ran85, RA99, Ree82, Ste77, SKA01, TPO06, WY05].

General-purpose
[SYP+14, FR89, GCTR08, HQW+10, RAJ99, TPO06, Woo14]. generalization
[HT10]. Generalized
[AK81, Gol84, Hi67, LA98]. generalizing
[Mat90]. generate [Bur06, RP99, WSC92].

Generating [PKB+16]. Generation
[AYQ+16, BKW90, HL15, Mo83, BA05, BD91, BEH91a, CCA+11, DP76, DPB77, HK89a, Kar95, KDA12, KDP+16, KBD+13, LYS07, Mid82, PGS90, RGG82, RGP82, Ryu86, SF03, SMRT85, Tse83, VSM+07a, VSM+07b, CH04].

generational
[KHM01, WK80]. generator
[AA11b, EP84, HC88, MF95]. Genetic
[GFT+15]. Genomic [HSBA16].

Geometric
[Sch83, CHG06, Hai84a, Hai84b, LYBC88, Sez05].

George [Lang90a].

Georgia [IE99].

Gerrit [RHR+15].

Ghost Rider [LHM+15].

Gibbs [WZL+16].

Ginger [HOR+07].

Girling [Su74].

Gleipnir
[JK13].

Glen [Hol83].

Glenford
[Atk79, Gor83].

Global
[QTP05, KBC+00, NSI94, OA08, PNB83, SHA02, SMHW02, TFWS03, ZFC03].

global-scale [KBC+00]. Globally
[LNA08, CHX+11, IM02].

Globally-Synchronized [LNA08].

Go
[Pat06, MPP+08].

Goal
[SDLR+15, SGDT03]. Goal-Directed
[SDLR+15]. goals [ALE90].

Going
[KS02a, LLC+14].

Gold [IE92].

Good
[SDB+15, Iw10].

Goodman
[CBS88, Goo88].

Goodput [RHR+17].

Google [CSBA17b].

GOPS [RBP+03].

Gordon [CS90].

Göteborg [ACM01].

Gotlieb [Lang90a].

GoTM [JVV13].

GP1000 [BWJ+90].

GPGPU
[JS+13, JKN+13, PTG13, RE12, VRV+14].

GPGPUs
[JKN+13, LSB15, LHE+13, RE13, VE14].

GPU
[ABD+15, APX12, APX14, ABC+17].
Bon13, BCD12, CPI17, DSOF11, FFM11, GC11, HL15, HK09, HK10, HEK+16, JPT14, KDSO12, KORA17, LKC+10, MDSO11, MNS+14, MSH+15, NMS+14, PPM15, TM14b, WLG+14, WN14, WL10, XJK+16, YKL+16, ZJG+11. **GPUAccelerated** [HSBA16]. **GPUDet** [Bon13]. **GPUs** [ANS+15, ABC+17, CT08, LYBK11, LSL+17, LCCZ17, LBH12, MDS12b, OKY+16, OBRW14, PPM17, PHB14, SBS16, SFKW13, TGC+14, TPO06, TL10, WRSY16, WL17, WYM+17, WLZJ17]. **GPU Wattch** [LHE+13]. Gracefully-degrading [KPS06, CSSP87]. **Grammar-programmable** [FL76]. **Grain** [KKS13, KTO14, ZCX14]. **grammar** [FL76]. **granularity** [THEK16, CSY90, GSM06, RSG09, YJE11, YJSE12, ZSDK13]. **Graph** [HPF86, MM14b, VTHG17, WHZ+17, APD01, CCC+88, Con88, HCSO12, OYK+16, TH86, Tra85, VE14]. **Graphical** [MZH15, ER92]. **graphics** [AAZ89, CBS08, HTA08, HSW+11, Ker74, LHPL87, PN88, Sin92a, TSN+86]. **Graphs** [AWAG15, HNP15, VGX17, FAY83, GGY90]. **Graspan** [WHZ+17]. **greater** [BYP+91]. **greedy** [PMA+13]. **green** [CMR+12, HCSO12]. **Green-Marl** [HCSO12]. **GreenSwitch** [GKL+13]. **Greg** [Ber91c]. **Grid** [WDW10, TKG+02]. **grid-based** [TKG+02]. **GRiFFiN** [GCJ17]. **grips** [Mil87]. **Grosettie** [All92]. **group** [Mil82, Mil87, WL88, ZT95]. **groups** [NH97]. **growth** [EWN05, Gur94, Hen07c]. **GRT** [WSC+14]. **GS1280** [Cve03]. **GS320** [GSSV00]. **GT** [TRA91]. **GT-EP** [TRA91]. **Guaranteed** [LNA08]. guaranteeing [LM99]. **guarantees** [BKMN10, GHKM11, KC96, MYP+16, MTC+07]. **Guard** [OHW17]. **Guarded** [PS94]. **Guarding** [GCJ17]. **Guardrail** [RKG14]. guest [MS09, BGP+01, Hen07a]. **Guests** [BP05]. **Guide** [MAd94b, OCFC00, STND+13]. **Guided** [WBM+03, Den03]. Guidelines [Ano06e, MST82, HS73, Pat91, Rym82]. **H** [Iva91, Su74, Tan78, Cra88]. **H-series** [Cra88]. **H21** [SWW02]. hacker [HLS05]. **Half** [KL03, Chr76, ZCX+14]. **half-baked** [Chr76]. **Half-DRAM** [ZCX+14]. **Half-price** [KL03]. **Hall** [Alv93, Ant91, Ber91b, Buc78, Chr77, Fer88, Fos93b, Ful91b, Hil91, Kri91, Lan90b, Lev92, Mad94a, Ram78, Whi78]. **HALSIM** [BKS+94]. **Halstead** [Iva91, Sch91a]. **Halsted** [Cha92]. **Handbook** [Alv93]. **handheld** [SWW02]. handle [Laf04, SGB00]. **Handling** [Göh14, LSB15, Gau85, GWSU12, Laf95, LLC+14, MGH+96, RE12]. **Hansen** [Whi78]. **Happe** [Mar73]. happen [SBRM09]. **hard** [LRS+08, MAL01, PQC+09, PBGM09, SLSB10]. **hard-error** [PBGM09]. **Hardbound** [DBMZ08]. **Hardware** [AR83, AW17b, AVN+16, BNZ08, BGH+08, COH+11, CJK+05, CKS+08, CWY+08, CPI17, CHLS16, CHCmWH00, DSM82, FXZ+17, FH76, FUL91b, Ger80, GKB+13, HJB+82, HKK80, HOF80, ISJ04, JPL08, KC02, KSCK17, KLKM17, LL+17, LHM+15, LSMB16, MWP07, Mat90, MS15, NRS+07, PQC+09, PN77, PKB+16, RSV87, Ran85, Rat82, RO74, SBV91, SZD+08,
Hardware/software

[KLJ98, THN04, TLM+17, Wil82, Wir87, Woo86, YVCB17, YLP+17, ZWSM15, ZH16, ZLJ16, AA06, AAVH91, APP+14, AJH12, AA82, ACF05, AL12, AB86, AFNV90, APX14, ACJL13, AJL14, Bar82, BC91, BBJ+08, BMV+07, BS74, CBGM12, CL87, CS99, CWS06, CB94a, CHV04, CY96, CM80, Chul7a, CBK88, CMB+13, Coo73, CDK+94, CBS98, CSS+91, DCW+11, DS02, DLMN09, DMB87a, DP12, ECX+11, FAK+12, FM3+07, FTG88, FH82, GMP+11, HVAN14, Har73]. hardware

hardware-assisted

[KKM, AL12]. hardware-accelerated

hardware-supported

hardware-driven

hardware-level

Hardware-measurements [HKK80].

Hardware-modulated [CJK+05].

Hardware-OS [LSMB16].

Hardware-Software [CHLS16, KSKC17, LHM+15, KC02, RO74, SSH+07, VKI+00].

Hardware-speed [CM80].

harmed

[BB87, OUY+13]. harmful

[JM12, PBC+13, Zil01]. harmonic [CHG06].

Harmony [KTK12]. Harnessing

[DFK17, VT14, APP+14]. Harold

[FS72a, Lan76, Sch88]. Harper [Dik90].

HARRIS [KCC92, Cra88]. Harry [Gon77].

HARTS [SD90]. harvesting [CHLS16].

Hash [HCJC06]. Hash-based [HCJC06].

hashing [TLL07]. haul [DCB+94]. having

[HS80, HP86, HP98, mWHP98]. Hawaii

[EE88]. Hawkes [GLVC13]. Hayden

[Mil77b]. Hayes [Co88]. hazard [KMT91].

HC1 [MH13]. HC1-EX [MH13]. HCloud

[DK16]. HDL [KMK16, OUY+13].

HDTrans [SSB07]. Heads [Göhl14].

healing [SLK05, SLP+09].

help [CG06, Hom82, KJS+06, LBL02].

heap-based [CG06]. heap/substitution

[Hom82]. HeapMD [CG06]. Heaps

[CCA+11]. Heart [KONA82]. Heat

[GPV04]. Heat-and-run [GPV04]. Heavy

[TP15]. helix [Rou86, CBK+14]. help

[Laf98, Laf00, Pay78]. Helper

[WCW+04, KST11, SRJ+05]. Hénon

[JPT14]. HEP [Jor83]. Here

[Pat06]. Heritage [Mat78]. heterogeneity [MT13].

Heterogeneous

[ANS+15, AVN+16, BLJ+17, CTHV+15, HCL15, HHB+14, KGS17, KTR+04, Ljdl+16, LL16, SA17, Tho81, VSST16, ZAI+16, AA84, AA11a, ACRV12, AKB+89, ACS+12, BF87, DVT12, DK13, GCN+10, GHHM11, LW14, LCWM08, Mil82, MVD11, MPM14, PARKA13, PP92, TZZ+16, TTP10, TL11, VJE+12, Vl94, VT14].

Heterogeneous-ISA

[BLJ+17, VSST16, DVT12, VT14].

Heterogeneous-race-free [HHB+14].

HeteroOS [KGS17]. Hewlett [HW77]. hi

[MMP+12]. hi-fi [MMP+12]. HIBRID

[MBS+04]. HIBRID-SOC [MBS+04].

HICAMP [CF+12]. hidden

[CWdO+06, GZC+11]. HIDE [ZSP04].

Hiding

[GGH92, KD06, STS17, ZA05].
BR92a, Kee79b, PGV05, PLZ09, RSP05].

Hierarchical [BD93b, Cha90, GB83, HS77, Wil87, AP76, BF90, Gon78, Nae85, PPZ96, RM77, SMR02, Sin92b].

Hierarchies [SSZR05, TAM⁺⁰⁶, TAM⁺⁰⁸, TBS17, BW88, BW98a, BW98b, GGV90, MH07, PHH89, Tri80, VRV⁺¹⁴, WM88].

Hierarchy [BD93b, Cha90, GB83, HS77, Wil87, AP76, BF90, Gou78, Nae85, PPZ96, RM77, SMR02, Sin92b].

Hierarchical [BD93b, Cha90, GB83, HS77, Wil87, AP76, BF90, Gou78, Nae85, PPZ96, RM77, SMR02, Sin92b].
[JK77, Mar73]. **Honolulu** [IEE88]. hop
[KKP14]. **Hopkins** [FR72]. horizontal
[BC90a, Das77, RGG82, RGP82, SV89].
Host [OHW17, JCS+14, TSK+83].
Host-Accelerator [OHW17]. **hostile**
[CTLA14]. hot
[DB00, Lee85b, MTG+99, MTN+00, UC01].
HotCalls [WBA17]. **HOTL** [XDLB13].
Houston [Kin75]. **Howard** [Alv93]. HP
[AD98, Cve03, MPPZ87, SGH97]. HP/
Convex [AD98]. **HPC** [KMA+12]. HPM
[NKH+85]. **HPPAC** [LSF05]. HPSm
[HP86, HP98, mWH98]. HTGL [Bec95].
HTM [HRW09, JVV13]. Hub [HL15]. huge
[Wil91]. Hughes [VF85]. Hybrid
[BNZ08, DCW+11, DFL06, FSR+04, MS15,
PHJl17, RCV+05, SBZ+15, WN14,
WLZ+09, YZ07b, ZH16, BC02, Dah95,
ECP96, lan88, KJ+10, L Zip+16, LW07,
MK12, MTC+07, PHH16a, PHH16b,
SKS+92, SD95, VFCM13, sYHX+11].
Hydras [Gbhl4]. hypercube
[Ann91, CS89, CMP+88, CT90, Eij90, HB90,
KB92, MR90, Txe90]. hypercube-derivative [Ann91].
hypercubes [BCS91, Gut87, Wan93].
hypernet [Kl92]. Hyperswitch
[CMP+88]. hypervisor
[DN14, LZZ+13, MS209, SL12]. hypervisor-secure [SL12].

I-cache [Quo94]. i-NVMM [CS11b]. I.
[lan90b]. **I/O**
[Aic92, AA89, ACK94, BBH94, CPdM+96,
Coc96, Ebr96, Fin93, GAH+12, HY96, HIT05,
JSWB93, JCS+14, Kat89, KMN+16, LT93,
MABYT15, NNS+90, PM92, RB90, Red92,
SBQZ14, SD90, ST94, Smo89, SKS88,
TOL+11, TDec13, V94, YRK07, dRBC93].
IA [ZRMH00]. **IA-64** [ZRMH00]. **IA32**
[ST03]. **IaaS** [ZW14, ZHW16]. Iago
[CS13b]. **Ian** [Hil91]. i**APX**
[HLM+82, PCH+82, Rat82]. i**APX-432**
[PCH+82, Rat82]. **IBM** [Ber80, DD90,
Fer11, GPR87, HO91, SCH+91b]. **IBM**/
6000 [SCH+91b]. **ICL2900** [Dor75]. **Idea**
[SGS08]. ideal [KPJ07, KSL08]. Ideas
[Tsa16]. idempotent [ZdKL+13].
identification [DS11, JSMP12, TFW+03].
Identifying [ZSG+17, CG06, DESE13,
LZC+16, MTG+99]. idiom [KKM+06]. idle
[AV10, MWG09, WL10]. **IEEE**
[Ste80, Mar88, Ros76, Ste80, SS86].
IEEEETC [Fos72a]. if [BG94, Ch91]. **igpu**
[MDS12b]. **II** [Lan90b, ABKA85, BT13,
DSh+94, HCD+94, SBK77, VSM+07b]. II
[Mad94a]. **Iliac** [BS87]. **Illinois** [IEE94].
illuminating [PKK+09]. **ILP** [GSC91].
**BDA01, HANN96, MHM+95, PRA97,
PSG+12, PS94, QD99, RTJ00, RPAS97,
SNL+03, SPA+98, TLM+04, VMJ99, YT04].
Image [GSCM16, KOA05, MEB15, MVB15,
Slm83, THN14, BC04, DV87b, ED83,
F8r6, G83, K84a, L8H+16, L80,
MBS+04, NOK+83, RAJ99, SDK84].
imaginary [Lip77a]. **Imagine** [ADK+04].
imaging [CYH+11]. **Immune** [PVB04].
Impact [BRUL05, BCSB11, Cha92,
LRHM90, ROS96, TE94, VJE+12, AS91b,
CMR+12, CSY90, CJ01, Joh92, Prz90,
Smil5, SA10, Ste89a, SSP07, TYS+94,
TMV+11, VGN05, ACM+98, CMC+91,
CMC+98, SzkU+04, mWH98]. implement
[OCL90]. **Implementability** [DHT15].
implementable [TEE+96].
Implementation [ATHM86, DSH+10,
Eij90, Hih80, HSB16, HK90, ISJ04, Lait73,
LCL+16, MIO+10, SEI+95, SP95b, SP98b,
SOD95, THMN14, VI97, AA86, AIO+11,
AIG+86, AFNV90, AAG+98, Bar82, BHA91,
Bri87a, CLM07, Cop78, CDK+94, DN14,
DO82, DGY89, DLMN09, DSOF11, DPB77,
EPS4, FHS2, GRB+08, GSS12b, GS12,
Hof80, Hom82, IAD+94, Jag80, JLZ09,
LGH92, LLJ+92, LLJ+98, LL98, LV88,
Mar83b, MB80, NMT10, Nut77, OC87,
PSB13, PS14, RV77, Roc85, SP84, SWY10,
SJ86, Sez94, SHZ97, SD95, SGS11, UH93.
Implementations
[AHC+16, Tab96, BLs+76, KJLH89, TW91, Wil82, YP92, YP98a, YP98b].

implemented [CCE+09, Hay77, KON82].
Implementing [CDDP83, Fin93, FM76, KEW+85, KL02, OMB91, SSP97, CW02, GPR87, OM94, SC02, Smi98d].

Implications [HLZ+15, Shn92b, VSM+08, BJ78, CSM+05, DLL+16, EE10a, HKA+01, HSS12, KMOA07, KDBA78, LRS+08, LJK+13, PCDL09, WM05, ZWM+14].
imPLICIT [Yue84]. Implicitly-multithreaded [PFV03].

importance [HCBS04]. Implicitly-multithreaded [PFV03].
incoherence [AJH+77, Aup80, Gal80].

increased [SWL10].

In-Datacenter [JYP85].

Improving

In-Network [LLN+17, DCS+14].

In-Order [TP08, SL05].
in-situ [SNM+16].
in-vivo [CKC11].

IncBricks [LLN+17].
incluSivE [WL+09].

including [NNIS16].

Inexpensive [KJLH89].

Influence [VGS85].

Information
[Ano08e, CWY+08, FXZ+17, HD77, YSCC16, ZWSM15, CS06b, DKK07, DMWS12, ERT78, GLM13, KAN74, Kee79b, KS99, Mac98, NSQ16, SLZD04, TWM+09, TOL+11, TT82, TMW+01, ZRZ+14, ZZP04].

Information-Flow [YSCC16, ZWSM15].
information-hiding [Kee79b].
Informing [HMMS96].

Infrastructure

Ham09, HMKP05, KSSL10, LAf04, UVG12, WGS+14, WGH+97, ZZP04].

Infrastructures [YJX+16].

Initial [CGBG88, KDL+93].

initialization [LSL+09].

Injection [MMJ05, TTCM12, WMP07].

InkTag [HKB+13].

Inlining

[LMG04, AK00].

Innovation

[Aup80, Gal80].

innovations [BD86, Den80, Las89b].

Innovative

[Kav81, SHZ97].

Input
input-output
input-sensitivity
Input/Output
inputs
insertion
Inspection
Inspired
Instability
instead
Institute
Instruction
instructions
Instruction-Grain
instruction-length
Instruction-Level
Instruction-Level
Instruction-Level
Instruction-Level
Instruction-Level
Instruction-Path
Instruction-Path
Instruction-Path
instructions
Instrumen...
interest [Bre72, sta80a, Sta80b].

interesting [SL93]. Interface
[HTM15, LSMB16, MEB15, Vis76, WBA17,
diCKKK15, BLS99, BLA+94, BLA+98b,
BLA+98a, CG95b, CS13b, Coul90b, DP76,
GP76, Isa74, JCS+14, KJJ+09, Kep91,
yKPR02, MHKT09]. Interfaces [Wit16,
BSR06, Chr76, Coul90a, KDA12, MFHW96].

Interfacing [HTM15, LSMB16, MEB15, Vis76, WBA17,
diCKKK15, BLS99, BLA+94, BLA+98b,
BLA+98a, CG95b, CS13b, Coul90b, DP76,
GP76, Isa74, JCS+14, KJJ+09, Kep91,
yKPR02, MHKT09]. Interfaces [Wit16,
BSR06, Chr76, Coul90a, KDA12, MFHW96].

Interferring [WGO+13]. Interleaved
[SL92, YJX+16, CL89, CSSP87, Rau91, WJ85],
interleaving [LTQZ06, NLS88, YN09],

interlock [MEV92]. Intermediate
[HS16, TAV10, WP87]. Intermittent
[CHLS16, Hic17, SBIS11, WCS08].

Intermodule [HS74]. International
[ACM89, ACM91, ACM93a, ACM95,
ACM96, ACM97, ACM98a, ACM00, ACM01,
ACM02a, ACM04, HLR98, IEE83, IEE84,
IEE85, IEE86, IEE87, IEE88, IEE90, IEE92,
IEE94, IEE99, IEE03, IEE05, IEE06, Mar88,
Su74, DOR75]. Internet
[CLF+17, Ham09, OLJ+14, Tho94a, Tho95a,
Tho95b, Tho95c, Tho96a, Tho96b, Tho97a,
Tho97b, Tho97c, Tho97d, Tho98a, Tho98b,
Tho98c, Tho99a, Tho99b, Tho99c, Tho00a,
Tho00b, Tho01a, Tho01b, Tho01c, Tho01d,
Tho02a, Tho02b, Tho02c, Tho03a, Tho03b,
Tho03c, Tho03d, Tho04a, Tho04b, Tho04c,
Tho05a, Tho05b, Tho05c, Tho05d, Tho06c,
Tho06a, Tho06b, Tho07a, Tho07b, Tho07c,
Tho07d, Tho08a, Tho08b, Tho09b, Tho09c,
Tho09d, Tho10c, Tho10d, Tho10e, Tho11b,
Tho11c, Tho11d, Tho12b, Tho12c, Tho12d,
Tho13b, Tho13c, Tho13d, Tho14a, Tho14b,
Tho14c, Tho15a, Tho15b, Tho15c, Tho16].

Internet-scale [Ham09]. Internetworking
[Mad94a]. Interpolation [LWB08].

interpolations [CLC90]. interpretation
[CFRS99, NA83]. interpreted [BKC14].

interpreted [Chu77a, CMPZ87, Fre74, OKN02].

interpreters [Bra82c, KKC+16a].

Interpreting [Car96]. Interprocedural
[WHZ+17]. interrupt
[KBS84, Mar83a, RSV87]. Interprocessor
[APR91, Dow91]. intervals
[Ham09]. Internetworking
[Mad94a]. Interpolation [LWB08].

interpolations [CLC90]. interpretation
[CFRS99, NA83]. interpreted [BKC14].

interpretation [CFRS99, NA83]. interpreted [BKC14].

interpreted [BKC14].
lattice [Mar00, SKS+13, TGP10].
Lavivington [Tan78].
Law [JM12, AGS05, Bre10, EE10a].
Layered [GKU09].
Layout [CM00, LM99, RBG+91, XT96].
Lazy [KCZ92].
Leading [CR94].
Leak [BM90b, BM06, HC04].
Leakage [Mus09a, TK07, DMWS12, FKM+02, GIS10, HBHA02, KHMO1, LN07, SFS04, ZZP04].
Leakage-biased [HBHA02].
Leakage-energy-reduction [SFS04].
Leakage-saving [Mus09a].
Learned [BS76, BS98b, BS98a, Kar07].
Learning [CY06, IMMC08, LCCZ17, LCL+15, LPSZ08, SOM+08, SLTC16, VRB+17, CDS+14, TJCC88].
Learning-Based [CY06].
Legacy [RVLS14].
Lemonade [DFKC17].
Length [DK17, CZS+16].
Less [BNE16, PDL15, WX14, DB00].
Lessons [GC86, Kar07].
Letter [Har74].
Letting [AC09].
Level [ASR+17, AW17b, AOM+14, BCSB11, CFA04, C'90, D'H16, KKGG17, Mil77a, PGS04, PCC+08, SOM+08, SOD+14, TIVL05, TM14b, BW88, BW98a, BW98b, BM91, BBFP06, BDFM10, BD84, BMP+04b, BTM00, BKB90, CG91, CZZ+16, CGB89, CE00, CBS98, DD90, DF02, DG09, DP80, DP98b, DP98a, Eij90, EPCP98, EE14, FTM99, FURM00, FL76, Fra86, GCS11, GUK09, HARN12, HDT+13, HK09, HS74, JW89, JW94, JSN98, KDM+98, KB76, KS02b, KSL+12, KGS+17, KSA03, Lar82, LS12a, LKO+14, LIF+16, LYBC88, MEV92, MPH12, MT02, MC62b, NH97, NK86, NK01, Par02, PP82, PGTM99, PT10, PT03, PHH89, QFLMK10, RRT+08, RLIC06, RLW94, RLW98a, RLW98b, Ris76, RVD07, SYL13, SL88, SLT02, SCZM00, SCH+91b, SKD+10, Sur07, SLSN14, SV74, TMMH80, TSK+83, TSN+86, Tre80, Ulht93a, Ulht93b,
UZ91]. level [Wal91, WBL89, WQL92, WY95, WCG14, WCF01, XLWZ15, YLHL10, YP92, YP98a, YP98b, YE09, YKL+16].
level-two [WQL92]. levels [DC09, LeC73, Reg76, SM14, Tho13a, YP93].
Leveraging [AJL14, GWSU12, HS16, SOM+08, YLHL10, BT13, GPV04, HT14, JL16, KP14].
Lexington [Sac83]. LFTHREADS [GP08]. LGDG [DG90]. Libraries [MM14b, LYBK11]. Library [BFA+15, JPT14, Fx08, GP08, MMR+13, PBWH+11, TG010]. LIDE [PGSP00].
lifecycle [CMR+12]. Lifetime [SBP08, SABR04, SABR05, ADS+13, ZNF+16].
Lifting [HS16, MMP+12]. light [HS66, SD10]. light-weight [SD10].
Lightweight [CKmW16, HS15, HH08, KKK+17, KM16, KKS+16, MCGL17, YLP+09, dCkK15, GSS05, VTS11]. Ligure [ACMG95]. like [AAZ89, W183a, SV82]. likely [SCGA13]. limit [ASP+03, DZZ+14, YKL+16]. Limitations [TE93, AF73, BK96, Don93, GSU11, KP03].
Limited [DFKC17, Su74, OT86, PIAS13, SH91, SY+14]. limited-precision [SUP+14]. Limited-Use [DFKC17].
Limiting [DGMB07]. LimitLESS [CKA91]. Limits [KTC00, LW92, SJH89, Wa91, LB08, PGM99]. Linda [KACG88]. Line [FAY83, HTM15, AAM76, AK00, CG95a, CHK+12, Fis86, HASA14, OM94].
line-based [CHK+12]. Linear [Bak94, Jin05, Don83, Don85, Don88, Don90, Don92, GSG90, HS16, JD88, RV84, Tri80].
linearly [FM84]. lines [OP81]. lingual [TMM98]. link [KR85b, SC05]. linked [RS99]. Linking [ADP+15]. Links [KSL08, EST9, LHL+89, NOK+83].
Links-1 [NOK+83]. LINQits [CD13]. Linux [DN14, PTS+11, ST03]. Lipovski [Sac83]. LIPP [ED83]. LISP [HHA83, SDP85, SH87, W178, CM87, PT86, SCP+82, SIG89, TPL+86, YTY83, YW89, YHN+86].
Lisp-based [TYT83]. LISP-execution [SDP85]. List [Ano82, AT86, PT86, SCP80, SCP+82, SDP85]. list-directed [SCP80, SCP+82].
list-processing-oriented [AT86]. literature [Cha78b, Hakt85, sta79, sta80a, Sta80b].
Litmus [LWPG17]. little [CDL13, DHR+90]. live [GTK13]. Lived [LCL+16]. lo-fi [MMP+12]. Load [DET00, GAR+05, PCC+08, RAKC17, Rot05, YCT05, AAD90, BJ+99, BYG+00, CT08, GLM13, KMVS12, L96, LLLC98, OKY+16, RPSV07, SRE+07, SDG03, YERJ99, Zha01, ZMM16]. load-address [BJR+99]. load-balanced [SDG03].
load-balancing [LS96]. Load-Load [RCAK17]. Load-store [DET00, SRE+07].
Load/Store [PCC+08, AA90]. Loading [HL15]. loads [CS99, CWT+01, FJ94, HHL16, YCT05].
Local [K17, SKC16, THN14, CYL99, HS80, Hol89, MD88, SHA02, TF79, TSK+83].
local/remote [Hol89]. Locality [KKT05, KKP14, LSL+17, PCC+08, SD04, ScJW01, SSK17, WCL17, CM00, Joh92, KW98, KK13, LL00, LW07, PSS06, SLC12, SCN+10, WRSY16, WCF01, XDL13, ZYY00, ZFC03]. Locality-Aware [LSL+17, KK13, SCN+10].
Locality-oblivious [KKP14]. localization [SCGA13]. localized [MSC13, UMB+12]. locally [IM02]. Lock [GMT16, Bri87b, G08, HM93, RG02, ST08].
lock-based [RG02]. Lock-Free [GMT16, G08, HM93, RG02, ST08].
lock-variables [Bri87b]. locking [Wol89].
Lockup [Kro98a, Kro98b]. Lockup-free [Kro98a, Kro98b]. log [YTP+11].
Logarithmic [Tab88]. LogCA [AW17b].
Logging [IKK16, KKB+16, SGH93, VLW+11]. Logic [Bit89, Fer88, HI91, HK89c, KBR89, NY14].
Su74, ALM82, ASP+99, Bak94, Bie84, Chi89, FG01, GMT89, HW87, HBJ+02, MSS14a, NK86, RG91, SV87, SV98, Soh98b, ST87, UT83, WS84, WF87, YCT05. Logs [YJX+16, YMX+10], logTM [MBM+06]. Long [Fis83, KJC06, STS17, BK91, BKW90, CGL89, CWT+01, Fis98a, Fis98b, KGS16, OCK03, OCL90, RSF11, SBV91].

Loops [CHM08, BG84, HAJ+90, LS96, TY290]. loosely [Bhu84]. lossless [Bur06]. Lost [WBA17]. LOT [UMB+12]. LOT-ECC [UMB+12]. Low [AWSS17, HC04, HTM+05, KDV11, KSN07a, LSG05, LW+06, LLC98, MWM04, DFRO17, SHI92, WGA+08, WCG14, CG95b, CZ14, CKS16, CDY+17a, CDY+17b, CK92, DM+11, Dev90, EKM04, GDN+16, GSM06, GIS10, IMK+13, JZY14, KOAGP12, KC96, Ku91, KFN02, KHS+07, KR85b, LWLZ12, MPP+08, NS86, NSH+11, OSKA14, PP84, PP98, Pat98a, RWA+16, RRPO6, Sez94, SCP+06, SLcC12, SB07, SHV12, TDF90, TSK+83, TSN+86, UVG12, WGO+13, WAC+10, YE09, YCMR12, ZCX+14, ZLZZ09, MI87, Sho87]. low-cost [CK92, Dev90, KC96, SCP+06, TDF90, WAC+10, YE09]. Low-Latency [MWM04, SHI92, IMK+13, KHS+07, OSKA14].

M [Dik90, Fos93b, Ful91a, WW12]. M. [Buc78]. M/C [CGB89]. M3 [AVN+16, JK77]. M3L [SCP80]. M68000 [WS90]. M68020 [KKC92]. MA [IEE06, Par90]. MAC [GSS12a, GSS12b, MS13a, MS13b, MS13c]. Mace [Par88a]. Machine [AK81, CRW+15, Lev92, LCL+15, RTY+87, Wag83, ALM82, ABC+95, ABC+98, Aga98, ATHM86, ABKA85, Ano81, Bak91, BH84, BBD+89, BLL+83, CDS+14, Con88, CSS+91, DCF+98, D082, DGY89, DRR89, DMS2, DDP85, DSSM2, Dow87, Dow88a, ERT78, FL76, Fra86, Gil83, GHS74, GKG+82, GGK+98, HHA83, Hi83, Hom82, HY85, HR78, ISKR86, JDL81, JADAD06, KONA82, KKC+16a, KW84, KBD+13, Laf03, LC02, LL14, McL90, MS80, Miy85, MKM+83, NK86, NH+85, NOK+85, Nit89, PH85, Ros77a, RBC84, SK86, SKS+92, SDD+07, SC01, SA87, Sie77, SA84, ST79, SB77, SV74, TNN18, Tan77, TH86, TKG+02, Tra85, TM80, Tre80, Uch83, UJ92, WP87, WY05, WHZ+17, WF87, YTY83, Yue81, YHN+86, ZWS14, AYA83, Fu91, JK77, SBK77, NWD93, SGS+93]. machine-based [ZWS14]. machine-code [KBD+13]. Machine-independent [RTY+87]. machine-learning [CDS+14]. machine-oriented [GS74].

machine-readable [Miy85]. Machines [GTS+15, HS06, BLA99, BBK76, Ber74, BC90a, CWdO+06, Feu82, Fis84, GL98c, HANN96, HSH96, HRC+90, HW95, HH93, HP87, Jou88, JW89, LR93, LSS04, MMS14, NGS99, Par95, Par75, RO93, Smo89,
CH85, NLV86, OT86, RV84]. mature
[CHG06, KJC06]. mature [VSG+10].
Maximal [Kog73]. maximize
[PAVT16, Tri80]. Maximizing
[CP90, RE13, SFM17, ZA05, ZH16, FBH02,
TEL95, TEL98a, TEL98b, YKL+16].
Maximum [HRW09]. MaxSAT [SKY+16].
May [ACM80, ACM89, ACM91, ACM93a,
ACM96, ACM02a, IE88, IE90, IE92, IE99,
SL93, Th01b]. MC68000
[Gil80]. MC88110 [UH93]. McCluskey
[Col88, Gon77, Iva91]. McGraw-Hill
[Col88, Gon77, Iva91]. McGraw-Hill
[Gon77, Iva91]. MCM [ABC+17].
MCM-GPU [ABC+17]. MCS [Fos72b].
MCS-4 [Fos72b]. mean [CHG06]. means
[Mas04, NA83, Yue81]. Measured
[SMB89, ECX+11]. Measurement [CL82,
NI94, VI94, AS91b, HB90, MR86, Sch89].
Measurement-based [NSI94].
Measurements [SON+08, AR89, CPM87,
HK88, Jor83, LSF80, MMN80].
Measuring [CBK88, DBK+02, DM812,
LC82, MCD+08, RDK88]. Mechanism
[BSADAD04, HSK815, PGV804, BCR91a,
BB88, BD91, CJC92, Gun90, Gap89, Hil81,
HK89b, JDL81, Jon82, MTN+00, RPSV07,
SCAP97, Ste88, Tak87, TDF90, VJM99,
WEG+86, vECGS92, vECGS98, vECGS98].
Mechanisms [KZT05, PQT016, SPS07,
SS88, Wagem7, WC+93, Bar82,
CMM95, DDY95, GJT+11, IHM89,
ISG807, KTS+13, LJK+13, MDS12a,
OWC90, PT03, SGS+93, UMB+12].
mechanistic [NEE12]. MEDEA [An05d].
media [RA99, RA00]. MediaBreeze
[TJ01]. Mediating [OHW17]. medical
[CY+11]. medium [CHX+11, DG92].
meetings [TMW+01]. Meets
[DK+16].
Mega [Wit76]. Mega-Micro-Computer
[Wit76]. Mellow [ZNF+16]. Mem
[ACM02b]. membership [Har74].
memcached [LMS+13, RVLS14].
Mementos [RSF11]. MemGuard [CZ14].
memif [LL16]. memoization [APX14].
memoriam [Ano99]. Memories
[AWSS17, BTRS05, KPS+16b, YNQ15,
Bri87a, BC90b, Che84a, CCA+11, Dev90,
Dev93, DJPK16, FSS+09, For94a, For94b,
Fos72a, F91c, GM84, GM803, HJ86, HS84,
HDP+90, ICN+10, JZYZ14, Joli89, KHP+95,
KS99, Klu76, L77a, L77b, MD88,
Nad88a, PP84, PP98, Pat98a, QFLM10,
QFJL12, RC91, Ria80, SLSB10, Smi86,
Smi91, Str76, Wil01, ZNF+16, MPJ+00].
MemorIES3 [NMS+00]. Memory
[AN17, ANS+15, AW17a, AZEE17, Am06,
AMH+16, BGB98, BFGP06, BN208,
BGH+08, BGK96, CL04, CPI17, CRW+15,
CFA04, CE98, Czg+15, DDK+16, DHT15,
DS86, DB89, ES05, FCJV97, GPy+17,
GRH06, GLL+90, GLL+98, GSCM16,
HWC+04, HVML04, HH08, IMMC08,
IKK16, KXW817, KGSS17, Kun86, KHC92,
KO05, L99, LS15, LB17, LNR+06,
L16, LHM+15, LZC+17, Loh08, LLC06,
LM99, LSLB16, LWPG17, MS15, MCC+06a,
MEB15, MCT08, NH+17, New92b,
New92a, NP17, Par88a, PH17, PC14,
PAY+17, PG16, RHL05, RDK+00, RSP05,
RGS17, SKB+17, SD808, SOD+14,
SWA+06, SDB+15, Tab95, TMC+06,
TAM+08, TML+17, VFK+04, WJZY15,
WSH+05, YEP+06, YE09, ZYMS15, ZLJ16,
Z17, vPCCR06, AD98, AR83, AJP+09,
AHMN91, AT17, AKCB86, AT84,
AL74, APR89, AL91, AKSD16, Am74,
AJL14, ACM02b, AJC+88]. memory
[ACK94, ACS+12, ADS+13, BLAA99,
BHS12, BGC+13, Bay99, BS+10, BCZ90,
BMBW00, BF73, BLS99, BR09, BLa+94,
BLA+98a, BLa+98a, BDM07, BMW09,
BMV807, B12, B2F+91, BM06, BCC+90,
Bos84, Bra77, BC04, BF90, BMP+04b,
BB74, CMP+13, CDP82, CDP83, COH+11,
CIS09, CA94, CL89, C14, Ch01, CSSP87,
CS11b, CLX+16, CM87, CNY+06, CMM+06,
CMT00, CM00, CB12, CDK+94, CP11,
OM94, Sin92b, Tho11a, WJMC04. metric [DMWS12]. METRO [DCB+94].
Metropolis [Wak81]. MGS [YKA96].
Michigan [IEE84]. Micro
[BKSO05, Da89, SCN+10, Wit76, Fos72b, FSS76, KMS+12, Maz77].

micro-architectural [KMS+12].
Micro-Architectures [BKSO05].
Micro-optimization [Da89].
Microarchitectural [KTS+13, SZBP08, LB06, LB08, PV03, SK13, WHG07, YK05].
Microarchitecture
[CFA04, Emm06, KGCG17, KDTG05, SV05, AMPH09, DNS95, KS02b, MKKU03, OKSA14, SSH+03, Wil98, WWFH03].
microarchitectures [AHKB00, HC88, KFM05, SL05].
microbenchmark [BO01]. microcapture [AAM76]. microcodable [Har86].
microcode
[ASH86, BZ87, BS74, Jon83, Lmr82].
Microcoded [KS008, BC90a, DFT86].
Microcoding [HB86, LM76].

Microcomputer
[Ben82, Sac83, Che84b, KM74, RM77].
microdrivers [GRB+08]. Microelectronic
[ABC+94]. microfluidics [ATV+07].
microkernel [TOL+11]. micromachine
[McD82b]. Micromodules [Coo73]. micron
[CCS87]. micronetworks [Lip77b].

Microprocessor [DBK+02, Nut77, TLM+04, WEMR04, A82, AP76, BCL82, Che92, Dav80a, DM87, DMB87b, DMB87a, FVG13, HP02, HPU+16, HS84, HC88, KKK76, MSS+03, MBL+89, MF76, NHO96, OMB91, OCRF00, OCL90, RvD77, RZ80, SCP+06, SEI+95, Wd76].
microprocessor-based [RZ80].

Microprocessors [Ful91b, LKM+05, Pat06, SABR04, Zak77, AZ05, AL74, Bas77, BFAJ93, BGK96, CGL92, Lin81, Lip78a, Sch77, Ste88, TA03, WOR96, WJMC04].

Microprogram [JK77, FM76].

Microprogrammable
[Coo73, KNS86, HvDJA80, TSK+83].
microprogrammed
[Arm74, Ker74, MM83, Zak73].

Microprogramming
[Got77, Hic77a, Cor89, Das77, Kog77, MS82, Ros77, VC72]. Microsequencer
[Dve90]. microthreading [CSK+99].
microthreads [CTYP02]. middleware
[Nak01]. migrating [KST11]. Migration
[KGS16, CWS06, CS89, CSM+05, DVT12, Hol89, MSB2]. migratory
[CF93, SBS93].
military
[ME78, Sal76]. Mill
[God13].

Miller [Ful91a], Milner [Dik90].
Milutinovic [Col90]. MIMD
[BHBL87, EGK+85, GGK+82, GGK+88, HRC+90, Joh88, Jor83, KTK+86, MS80, PHI84, RS84].

Minerva [RAW+16, Wd76]. mini
[Adl73, EKW80]. mini-computer [Adl73].
mini-sized [EKW80]. minicomputer
[Keh76, Rad82, VHL73]. minicomputers
[KC74]. minimal
[CSS+91, HRW90, HP86, HP98, mWHP98, Jon88a, KS95, MMP+08].

minimalist [MC92]. minimize
[AT11, GH86, WS74]. Minimizing
[MZLH15, DD80]. minimum
[Rou86].

Minneapolis [IEEE81]. Minnesota [IEEE81].

Minos [CC05]. MIPS
[CH87, CKDK91, SD09, UC94]. MIPS-X
[CH87]. MIRA [PED+08]. Mirv
[FTM99].

misconfiguration [ZRZ+14]. misleading
[Cit03]. miss [AP93, BVGL00, CS06b, Quo94, TASS09, YCT05, ZPS+04]. Misses
[Zha06, DSR+93, GBHS14, KHE+16, LKL+02, LBL02, ST03, XT96]. Missing
[SPN96]. MisSPECulation
[Cit03].
mistakes [LPSZ08]. Mitigate
[KSC17, MDS12]. Mitigating
[AGS05, YMM15, MHHK+13, RLCV10].

Mitigation [PKM17]. MITTS
[ZW16]. Mixed
[WCS09, GSS12b]. Mixed-mode
[WCS09]. ML
[Dik90]. MLC
[HASA14].

MLP
[QLMP06]. MLP-Aware
[QLMP06]. Mnemosyne
[VTS11]. Mobile
[KHG+17,
[THEK16, LGM+14]. **multiply-add** [LGM+14]. **multiport** [For94a, For94b, LHL+89]. **multiported** [TA03]. **multiprocessing** [ALKK90, AI83, BGM+00, DLCO09, Gra91, Las88b, Str83, Wil78]. **Multiprocessor** [Ber91a, BD86, CLS05, Göh14, Han78, LY87, Man01b, Miy85, MCT08, SA88b, ASK85, AR89, BFP03, BKT87, BF73, Bri87b, BC90b, Bur84, CCA+88, CSB86, CBS88, CGBG88, CM80, Cve03, DVT12, Den03, DS89, DI90, DI91, DSN07, ED83, FCP92, FH88, FF73, Fra90, FHH+89, FK91c, GKL83, GL88, GL98a, Goo87, Goo88b, GW88, HA86, Hal87, HS77, Hoo77, HDP+90, JB76, JS99, Joh88, Joh92, KMP92, KDS+06, KC82, KSN07b, KR80, KOH+94, Kus98, KOH+98, LHH91, LS82, eH89, LR90, LWV+10, LLG+90, Lip98, LMR92, Lun85, LRHM90, Mal80, Mar85, MSB+05, MF05, MPS89, Mi82, MBLZ89, MPSV06, MHKT09, NMS+00, NO94, NO96, N85, NK09, NP95, Oya89, PR82, PNB83, Ph84, PP03, PWA13, PP92, PH85, RC91, RTY+87]. **multiprocessor** [RB90, Rod85, SP84, SP85a, SK85, SA92, SC89, SJ88, Sin92b, Tab88, TS87, TS90b, Tob80, TTMH80, TP90, TE93, V14, VT14, VLZ88, VM88, Vin77, VGSS85, WG89b, XBH03, VF85, Zah03]. **multiprocessor-array** [Mic92], **Multiprocessor/distributed** [Miy85].

Multiprocessors

[CTTC06, CS06a, CM+06, JKT05, JKT09, KKS+08, LNR+06, LHL+89, SSZ05, ST06, TT08, TK07, ZA05, AT11, AGS89, BSL08, BD93a, BM09a, BM10, BM84, BMW09, BNA88, BR92a, BR90, CS89, CK92, CY96, CMT00, DFL05, DD90, DN93, DB82, DS86, DS+93, DS89, DS98, FB08, Fr05, GLL+90, GGH91, GGH92, GLL+98, Gha98, GSVP03, GVW89, GGV90, GS95, Har91, HGC10, HT14a, HJL89, HGS+07, IKK07, KEL91, KH07, KADS04, LW95, LAS+07, LAS85, LS92, MPT91, MHS+03, MC92, MNL87, MBK90, MGBK96, Nad88a, Nad88b, PRA97, PP84, PP98, Pat98a, PVAL95, Pri91, PZT92, PPR90, QS94, Rat85, RSC93, SCC+05, SD87, SHZ97, SA91, SMH602, SHV+98, SK108, Ste89b, SY89, TBS+97, TD91, Wah83, WMW09, WG89a, WAFM07, Wil87, WM88, ZL14]. **multiprocessors** [ZK90, ZT95, Ber91b, Kri91]. **Multiprogramming** [GH76, CGL92, DI90, MP86, TGC+14, XJK+16]. **Multiscalar** [SBV95, SBV98, Sim98a]. **multistage** [DS85, HJ87, KR85b, SS89, SKB09, Ste89b, TY85, VR87, WL88]. **Multitasking** [Hie77b, PPM15, PPM17, ELN89, QMT89, SMB10]. **multithread** [DSH+10].

Multithreaded

[KTR+04, ACC+03, BAD+10, BMBW00, BNS11, CL94, CGL92, EJK+96, GL89b, HF88, JSMP12, JSMP13, LBE+98, LC13, NPA92, PFPV03, PD+13, PT03, RC+12, REL00, ST00, TE94, UZU00, VGK+10]. **Multithreading** [PT91, SKA01, BR92a, HCD+94, IAD+94, Luki01, MWP07, MKR02, OA09, PFPV03, RM00, SW16, TCH99, TEL95, TEE+96, TEL98a, TEL98b, VPC02, WLG+14, WW93, WC9+04]. **MultiTitan** [Jou89]. **multivariate** [GLVC13]. **München** [ACM04]. **MuNet** [HW80]. **Murli** [Ful93]. **Mushy** [Wit16]. **mutable** [VNN13]. **mutation** [VE08]. **My** [Lee72]. **Myers** [Atk79, Gor83]. **Myrias** [BBZ88]. **myth** [LKC+10].

N [NI85, JVV13, Sin92b]. **N-body** [Sin92b]. **name** [Lin77]. **NAND** [KRM08]. **nano** [HHL16]. **nano-instruction** [HHL16]. **NanoFabrics** [GB01]. **Nanometer** [Emm06]. **Nanophotonic** [VSM+08, XYM12]. **nanophotonics** [PKK+09]. **nanoscale** [ICN+10, LNO07, PCD09]. **National** [Mat78, TF01]. **Native**
[CSBA17b, AHA+14]. nature
[Cox79, HSS12]. navel [Lin76]. Navigating
[WBKR13, SHBS14]. navigation [KM74].
NCBI [MH13]. NCC [Tan78, Kav81]. Near
[SAL+05, VC04, ABCS98, GYB+16, HFFA09, HEK+16]. near-data
[GYB+16, HEK+16]. Near-Optimal
[SAL+05, ABCS98, HFFA09]. nearby
[BDCA01]. Nearly [FRK+15]. NEC [Fat90].
Necromancer [AFGM10]. nectar
[AKB+89]. Need [NP17]. needle [Dal10].
nearly [PMA+13]. negative [SCAP97].
nest [KPH96]. Nested [DKD+15, NNIS16].
SJA+17, SSK17, GHS16, MBM+06, TYZ90].
nests [CM00]. Net [Ful91a]. nets
[AF73, Lip88, Zsb80, Joe90, Yok94].
Network [BHM+17, GPY+17, HCJC06].
HTM+05, HSL17, HTT05, KSL08, KMVS12.
LER+17, LNR+06, LRL77, LNN+17, Mad94b.
MCK16, NZO+05, RLD+17, SAKD06.
SLTC16, TQC+15, ZBBL16, AA86, AJH+16.
AKB+89, BS87, BLS99, BDH+99, BSR06.
BS87, BLA+94, BLA+98b, BLA+98a.
CC95b, CS13a, CLX+16, CMP+88, CKA09.
DNSD13, DCS+14, DSH+94, DR91.
DKCZ93, Est02, FFdDH00, GP88, GHKM11.
HS80, HLM+16, HCV03, yKPR02, KBS14.
KMS+10, KSN1a, LH6b, LFS2, MS80.
MS22, MSZ09, MG91, MFHW96, NS80.
NIS14, PKK+09, PR82, RFS88, RWA+16.
RL74b, RL76, Rui90, SP84, SP85a, Sez86.
SNM+16, SKB09, SVC03, SM89, TF79.
TGGS14, TLL07, WL88, YLT06, vIG80].
Network-in-Memory [LNR+06].
Network-On-Chip [BHM+17, KSL08].
DNSD13, GHKM11, PKK+09]. networked
[HSW+00, Nak01]. networking
[SHMZ94, VGNV05]. Networks
[ED17, FK17, IPWKO6, KNP06, KDOA08].
LNA08, Lev92, MMO4, PRM+17, PAY+17.
SAL+05, VRB+17, APGP07, AMW+10.
AA11a, AS92a, AWV88, Avm91, AAEBAT98.
BK11, BK91, BHBL87, BAE898, BVR+00.
BG80, BC02, CSJC10, CES16, CK92, CH84.
DMMD10, DS85, DCB+94, EKM04, FW82.
Fra90, FAHS3, GH88, GL73, GL98a.
GCLM85, HJ87, JMK88, JMY89, JKD09.
KC02, Kha97a, KHLJ88, KC96, KDA07.
KHS+97, KDJ83, KR85b, KMVS12, LHH91.
LIW84, LC02, LN91, Lip98, LTD+16.
MJW11, MBLZ89, MM87, MM09, NS91.
NBK95, NMTH10, OQ91, OT73, PW97.
RHS96, Ros89, SC89, SS89, SH80, Si77.
SDGT03, Sov83, Ste89b, Tem10, TYZ85.
VR87, WGO+13, Wit76, XYM12, Yok94.
YA90, nZY84, Mar88, Pen88].
Networks-on-Chip
[FK17, AA11a, MJW11, WGO+13].
Neumann [AI83, Ian88, Nik89]. Neural
[Fl91a, GY+17, Lev92, Mar88, PRM+17].
RLD+17, SLTC16, AJH+16, AWV88.
CSJC10, CES16, CLX+16, Fra90, GP88.
GH88, HLM+16, Haha97a, Lip88, LTD+16.
NMTH10, RWA+16, SNM+16, Tem10.
Pen88]. Neurocube [KCC+16b].
Neuromorphic
[Geh14, HNTL11, KCC+16b]. neuron
[AJH+16, YMI11]. neurons [Sni14].
Neurosurgeon [KHC+17]. Next
[AQQ+16, CG95a, CCA+11, Lee72, CH04].
Next-Generation
[AQQ+16, CCA+11, CH04]. NHT [Fin93].
NHT-1 [Fin93]. NIC [HTM15, YK01].
NICE [Ulm97]. NIFDY [CG95b]. Ninja
[SKC+12]. NJ [Ber91b]. No [RRT+08].
NOBLE [ST08]. NoC [KSL08, GHKM11.
BHM+17, DCS+14, NCLJ09, PDL15, YL16].
NoCs [KKP14, PWA13]. Node [Emm06.
LSS04, RSG93, TGG93, VSM+07a]. nodes
[NMS+12, TAV10]. NoHype [KSR10].
Noise [PV04, PV03]. Non
[AMH+16, BSAAD04, CYM16, CYG+17].
HTA08, HSHS13, JCSK14, LB17, LLLG16.
RCAK17, YNQ15, ZYMS15, BK96a, BK96b.
Che87, CS11b, CCA+11, CLS73, FJ94.
GRR84, KBK92, LZC+16, IWS75, McD77.
NMS+12, SA92, ST08, SKA13, TZH+13.
VJ95, WGO+13, Zak77]. Non-blocking
[HTA08, BK96a, BK96b, FJ94, ST08].
non-blocking/lockup-free
[BK96a, BK96b].
non-critical [LZC+16].
non-determinism [SKA13].

Non-Deterministic [LR17, LLLG16].
non-exact [TZH+13].
non-interfering [WGO+13].
Non-Invasive [BSADAD04].
non-numerical [GRRT84].
Non-Preemptive [CYMT16, CYG+17].
non-redundant [Che87].
non-software [McD77].
Non-Speculative [RCAK17].
Non-race [HHS13].
note [Lun75, Wan93].
Notes [RSLF05].
nondeterminism [HBCG13].
NonStop [HHJ90].
nonuniform [KMT91].
Nostrand [McG78, Vra78].
Non [HL15, WM16, BDA03, CHZ+14, CM80, HS10, WGA+08].

O

[AA92, AAZ89, ACK94, BBH94, CPdM+96, Coc96, Ebr96, Fin93, GAH+12, HY96, HY96, HIT05, JCS+14, Kat89, KMN+16, TOL+11, TtLC+13, VI94, YRK07, dRBC93, Ulm95].

O-GEometric [Sez05].
Obfuscation [AWSS17].
ObfusMem [AWSS17].
Object [CSGT17, Kar95, LFH03, NWB+15, RC80, CRM91, DK85, GC86, Gol84, HB86, Hya93, IT84, JMK+08, LLF03, NKS86, ON12, SK04, YHF03].
Object-based [RC80].

Object-Bounded [NWB+15].
Object-oriented
[Kar95, LFH03, CRM91, GC86, HB86, Hya93, JMK+08, LLF03, NKS86, YHF03].

objects [CCA+11, ES74, GPR87, GSR93, MK84, TZZ+16].

Oblivious [FRK+15, LHM+15, KCW+09, KM10, KKP14, RYF+13].

Off-chip [CHZ+14, CM80, HS10, WGA+08].

ObjectStore [KBC+00].
Oct [Har74].
Octobus [GA79].
Odd [SL93].

Off-chip [CHZ+14, HS10].

Off-Loading [HL15].
offloader [NMS+12]. offloading [HEK+16].
offs [MS07, NLS88, SEI+95, SPN+06].
OHMEGA [NNN+91]. old
[Bat72, MPH12]. OLTP
[ATT+13, KPH+98, KADS04, TS90b].
OmniOrder [QST14]. OMP [HDP+90].
OMP2001 [AE01]. on-board [Gai83].
On-Chip
[ACAAT16, JPL08, KKY+17, KNP06, KDOA08, LNA08, MWM04, PED+08, BT13, CHX+11, CJ88, DMMD10, DJPK16, EPS8, FaRP89, HS84, JW94, KK08, KBK02, KNF+07, KM10, KFNF02, MDS+11, MVD11, MPSV06, MM09, NUMS94, OPZ11, SLK12, TGG14, TEL95, TEL98a, TEL98b, VS92, WSY95, WO97, XYM12].
on-demand [NL14]. on-die [NSQ16].
On-line [AAM76, OM94]. On-the-Fly
[ZEI15, ZJG+11, CW506, KJP+91, SZD+08].
one [DSF+90, Wan93, Bow79]. one-step [Wan93]. ongoing [Ano81]. Online
[HH80, LABR08, TP15, BM06, DSS+13, LWV+10, LSS04, MSB+11, ROKB95, TASS09, TXZ09, VEG+10, WMW09, WJMC04, YBM13].
only [GS95, Hic77a, Rat85]. onto
[FKBS11, LBvH06]. Op
[HK90, Bra82a, LVS88]. op-code [Bra82a].
OPA [SV82]. OPAC [SC92].
Open
[BMF+16, HLZ+15, diCKK15, BJJ+13, BKB90, GC11, Nae85]. Open-Source
[dIIK15]. OpenCL [MT+15]. OpenDF
[BBJ+08]. OpenMP
[BO01, MM14b, NAAL01]. OpenPiton
[BMF+16]. operand
[CD82, Har78, OCB12, WSM96].
operators [Fon03, TW77]. Operating
[DK+15, Ram88, SHP+16, ABR01, ALB01, Bar82, BCL82, CGL+08, CDA14, Dav14, GKT13, GPV04, HDK+11, HKD+13, KONA82, Kha99c, LaF04, LAK09, JS+02, LWZ14, LR77, MMM+13, NUMS94, NSI94, PS12, RRP+07, REL00, RO74, Ros06, WDA+08, ZELV02]. Operation
[WGA+08, DSF+90, KMI+85, KKK76, Mat91b, SD87].

Operations
[KKS+08, Dal89, Fen84, Hom82, HMMS96, JSWB93, KDO6, See89a, See89b, Ski92b, Ski92a, SFS00, SA10, Tho10b]. operator
[Pay78]. Opinion
[KWF08]. opinions
[FK80]. Opportunistic
[GRH06, GV505, YL16, BHS12, GAS16]. opportunities
[Dav14, Must9a, Srl01].
opportunity [MGBK96]. OPS5 [BAB88].
optic [FR87]. Optical
[TM14a, CKA08, Dow91, KM10, LHS88, LN92, NP95, Rui90, WZL+16, XGC+10]. optically
[FAYA87, KV11, WZL12]. optically-connected
[FAYA87]. optics
[BDJ+11, GRD87]. Optimal
[BHS91, Gt87, KS86, NUMS94, RCM+12, SAL+05, YMST07, ABC97, ASC98, BBD94, Bra72, CLC90, HFFA09, HBF+02, PHH89]. optimisation
[AA11a, RCG91]. Optimising
[UC01]. Optimistic
[KPR+08]. Optimization
[ASR+17, CMMP95, D+16, FRP05, GA01, KVA17, MVB15, NZO+05, OSF+15, Rot05, AV10, ABt98, AMPH09, BC90a, CFE+12, DET00, Dal89, DSOF11, KPH96, LLC06, McF89, MTG+99, OKN02, OMB92, RYF+13, SDH+14, TL11, TACT08, TL00, VSW+13, ZCSM02, ZW05].
Optimizations
[CFA04, BP04, BTM00, DSS06, KLO2, KC02, LRW91, LHE+13, LM99, MPS94, ON12, OA08, RBG+01, TASS09, Vsj1*00, WW13].
Optimize
[CMA00, Kar89]. Optimized
[BHBL87, KKH08, PA88, RAM+04, SB093, SC05, XT96]. Optimizer
[PSR05, BS74].

Optimizing
[BVGL00, CPV05, DHT15, IMM08, LL14, PAY+17, RHR+17, DFRO17, Sch91a, SG95, ACRV12, BC04, Har82, HKM02, HCS9, LQL12, SC90, VAV10]. optimum
[HP02]. option
[Fon03]. Options
[QD98, TTT10]. OR-parallel
[DRR89, ST87]. ORAM
[FRK+15]. ORB
[OUY+13]. orbiter
[Sat74]. Orchestrated
[JKM+13, RSW04].
Orchestration
[FKBS11]. Order
ordered [GB74]. Ordering
[CL04, LSMB16, vPCCR06, AH90, AH98a, AH98b, BMW09, DCS+14, GLL+90, GLL+98, Gha98, LGR12]. orderings [Jon08]. Orders [BNE16]. ordinary [CL04, LSMB16, vPCCR06, AH90, AH98a, AH98b, BMW09, DCS+14, GLL+90, GLL+98, Gha98, LGR12]. ordering-sensitive [HHS13].

P [Col88, Tab96, Fos72a, JDL81, PR05]. P-Thread [PR05], PA-8000 [SGH97].

Packard [HW77]. Packet
[KPS+16a, PGVB04, CH84, DMDM10, DR91, KD83, LMND76]. packets [Jai82].

Packing [HGTW05, PE09]. pads [ZWM+14]. Page
[ANS15, Tab96, Fos72a, JDL81, PR05]. Paging [SKB17, GHS16, Lip78b, MP86].

Paper [Lun75, Mac99]. Papers [Lei91, BGP01]. PAQ [JWK12].

Paradigm [FS92, PPA+14, BFA+15, GFNW86, HJrCH16, Hib80, Hili91, HCL15, HK90, JWB93, JWB94, Lan90a, Lei91, LHPL87, LN92, Mar73, Mil77b, Par88a, PKB+16, PZK+17, RP85, Rui86, Sav85, SD17, SBK+77, Ts90a, Vra78, YMM15, vHHS90, AS91a, APP+14, AS92a, APR89, AR89, AFNV90, BM91, Bat80, Bat98b, Bat98a, BBH94, BBZ88, BF87, BJ8+90, CL09, CLVW93, CPdM+96, CO82, CCC+88,
Cha90, CKmWH16, CSY90, CAD09, CG92, CLC90, Con88, CBF93, CHKM93, DDO0, DM91, DRR89, DESE13, DJT94, EK88, EK89a, FD87, Far05, FR89, FFM11, FR87, FHH99, FKT89, Gai83, GKF84, GAG88, GCN10, GVC94, GMT89, GK91, GK93, Hak85, HW80, HF88, HJ86, HW87, HF90+1, HIH93, HRC90, HB90, HA90]. parallel
[JTSE10, JMY89, JS99, JMK+08, JKN+13, Joh04, Joh92, Jou90, Jou93, Jou98a, Jou98b, JCSK14, JB97, Kar89, Kat89, KB76, Kha99a, KC96, KSS+95, KFN02, KS91b, KDL+93, KDL+98, KHC91, KKMH91, LRW91, LP80, LP98, LS82, LKB91, LB06, LVBK11, LLJ+92, LLJ+98, LL98, LC82, LBH12, LL14, LBE+98, LPH+09, LRHM90, MLC+09, MS13c, MPH12, MCD+08, MR90, MHW03, MDS12a, MTZ13, MB91, Mus09b, Nad88a, Nad88b, NRKS05, NIS95, NG94, NIS86, NP90, NBP95, OMB91, OSA97, OSA99, Pat82, PS77, PS98c, PARKA13, Pie83, Pie98, PS88, PH90, PT10, PHHH91, Prz90, QJP+07, QSR99, QFJ12, RFK88, RB800, RHZC74, RR77, Reg76, Roc94, RBC84, SBRM09, SB05, SJ86, SKC+12, SC89, SNN99, SRWB14, SRJ+05, SSK+07, SP98a, SET+95, SH91, SBM09, SP93, SRR94, SZ88, SV78, SV98, Sol98b].

performance

[SC02, SL05, SW87, Ste99a, SJG92, SG95, SKC+03, SQP08, SPR00, TYS+94, TF88, TRA91, Tem12, TEC88, Tri80, VGN95, VLZ88, VV14a, VV14b, VGSS85, WBL89, WGH+97, WIL01, WSC92, WBS+88, YTY83, YZ97b, YMH90, YHZX14, ZS00, ZUB90, ZB92, Ber91a, VJE+12].

Performance-Directed [Tab95].

performance-optimal [PHH98].

performance-transparent [BMW09].

Performance/Watt [Lau05].

period [CHCW10].

periodic [JW95].

peripheral [Bra80b, Cot90b, MS84].

peripherals [VPS91].

permanent [NSh+11].

permutation [Bak94, RE13, Sov83].

Persist [ST517].

Persistence [RCC95, NH12].

persistency [KGS+17, PCW14].

Persistent [IKK16, KPS+16b, LZC+17, NH+17, SKB+17, CLM07, CCA+11, GPR87, KBC+00, LSY+14, VTS11].

Personal [HLZ+15, Got98, LP80, LP98, Pie83, Pie98].

Perspective [GSN05, ACK+95, Fre87, Hen07c, KR13, Mus09].

Pervasive [KDL+16].

pessimistic [Wan93].

Petri [AF73, Joe90, Zob80].

Phantom [BM90].

Phantom-BTB [BM90].

Phase [SSC03, WJZY15, JZYZ14, LIMB09, QSR99, QFLMK10, QFJ12, SWL10, SYL13, SZZD04, ZZYZ90, dRBC93].

phase-change [QSR90, SWL10].

Phastlane [CKA09].

Philadelphia [ACM96].

Phoenix [Ste81].

phone [KDV11].

Photonic [PDL15, KMS+10, KMS+12, TCT12].

photonics [BSK+10, UMB+11].

PHP [GSL17].

phylogenetic [LBH12].

Physical [Dan93, HGS+07, LMG04, Ozt15, SOSD05, AMPH90, CGG+14, Oya99, VCK+12].

physically [For94a, For94b, JWK12].

physics [KDB178, YFP07].

PicoServer [KDS+06].

PICSEL [MCD+08].

Picture [Isa74, AC09, Cal74].

PIE [VJE+12].

Piecewise [Jim05, Req83].

PIF [YSC16].

PIM [ISKR86, SKC+03].

PIM-D [ISKR86].

Pin [MF05].

pinning [SK10].

pins [CHZ+14, PM92].

Pipe [MTU+15, GTHL+85].

Pipeline [MKP98, OFS+15, PV03, BM01, CCE+09, GTA06, HP02, HBJ+92, IH80, KMI+85, KDMP92, MIO+10, PD76, PD98, Pat98b, SN95, TST97, Wil83a, YMST97].

pipelined [AS91a, BFAJ93, GKF84, GM90, GLVC13, Jor83, Kog73, Kog77, LSM0, MSB+02, NOK+83, OMB92, RV77, RR77, Rym82, SVC03, SA88a, SA91, SP85b, SS85, SP98b, Smi98d, SV78, SV98, Sso98, WS84, WS87, YPB83].

Pipelines [MV15, TM05, FGB12, SCP+06, SC02, SRA+04].

Pipelining [AB92, Ano89, Cla77, LLD+17, MIT89, CS99, DET00, GHW90, KKO8, K88, LFSK08, NK01, SF03].

PipeRench [BGM+00].

Pipe [KBG+82].

Pittsburgh [IEE87].

PLA [FM76].

Placement [ANS+15, AJK+09, DFF+13, HFFA09, LK91, SCN+10, TE94].

places [PLZ09].

Planar [CK92].

Planar-adaptive [CK92].

plane [KSCE16, LH88].

Plasticine
[PZK+17]. Platform
[WSC+14, CLC12, CAD09, CKC11, FFB+00, MK11, PWA13, SBS13, WCW+04, YM11].
Platforms [SLTC16, BCDL07, BS08, LSFK08, MBBS13, SM10, Sib07].
plausible [YM11]. Player [LYMY16].
PLUS [BR90]. PMS [KB76, KB76].
Pocket [KLS+11]. PocketWeb [LRS+12].
Point [D’H16, Ste80, YXR06, BdDPT10, Bra72, Dal89, Eij90, Est89, GSS12a, GLVC13, JBW89, LKB91, LGM+14, PB80, RF90, RHS96, Ris76, SC92, Sit73, THEK16, Wil95, dDIS13]. Point-in-time [YXR06].
point-to-point [EST89, RHS96]. point/ [Eij90]. Pointer
[Wil91, CFRS99, D806, KKN00, Se96]. pointers [SH91]. points [DB07, SLP+09].
Policies
[SSZR05, BSF+91, DG92, FRB01, Jou93, KDOA08, SMB10].
Poly [MGH+96]. Poly [HNS77].
Poly-Processor [HNS77]. poly cyclic
[MS84]. polyhedra [BVGLO0].
PolyMage [MB15]. Polymorphic
[KDOA08, SMB10]. polymorphous
[SNL+03]. polynomial [AA11b]. PolyPath
[KPG09]. Polyvalent [LCL+15]. pool
[ZRW05]. Port
[BTRS05, SWC+95, WOR96]. port/three
[AAZ9]. portability [VC72]. Portable
[PARKA13, CYH+11, HSW+11, Kep91, LYB+14, NL14]. Portend [KZC12].
POSC [SC90]. Position [FRK+15].
Position-based [FRK+15]. Positional
[HRT03]. Post [LB17, SDH+14, Wit16].
Post-compiler [SDH+14]. Post-ISA
[Wit16]. Post-Silicon [LB17]. potential
[DG99, DZ+14, GM90, PS88]. potholes
[Coc96, Elbr96, Mas96, Ros96]. ’power
[RRT+08, AA11a, BM01, BLI17, CDY+17a, CDY+17b, FWB07, HTM+05, IM02, KSN07a, LFEZ00, LW+16, MSB+11, MMNBR07, OSF+15, ORS+04, PDL15, PMZ+10, RLIC06, RAM+04, SSD+13, TM05, TT08, TL11, XLWZ15, YCR+17, ZH16, AV10, BSL08, BFG+07, BM09a, BTM00, CBGM12, CGS09, CKS16, DMR+11, DGMB07, EKM04, ECX+11, FKM+02, GDN+16, GW10, GVP04, GWSU12, G10, GSKF03, HSC+11, HK10, IMK+13, JZYZ14, KDV11, KHM01, KMS+10, KFN02, KZA+12, LB06, LLW+06, LWLZ12, LPMZ11, LDK14, MLCW11, MOW09, MS07, MF76, MPM14, NS86, PMA+13, PIA+13, PEB+09, RRT+08, RWB09, RWA+16, SYH11, SRWB14, SBIS11, SMB09, SQP08, Tho03e, TS10, WGM09, WRS13, WGS+14, WAC+10, Wil83b, WD+16, YCMR12, Yue81, ZCX+14, CFM+13, MBBS13].
Power-Aware [ORS+04, HSC+11].
power-constrained [GW10].
power-efficient
[CGS09, K10, KMS+10, SYH11, SQP08].
power-performance [SRWB14].
POWER5 [BCG+08]. PowerChief
[YCR+17]. PowerChop [LZC+16].
powered [GKL+13, LQ12]. powerful
[HY85, Ulm97]. PowerNap
[MGW09].
PowerPC [AFz95, DNS95]. pp
[FER88, P88a, Par90]. PP4 [MS84].
PR1ME [Feu84, ME78]. Practical
[AK16, CWY+08, FXZ+17, Ful93, HM05, Hib80, Mad94b, MGT+17, MCC+06a, OKJ+13, ZIL17, KSN1a, LM80, MHKT09, NSH+11].
Pre
[PR05, KY02, Luk01, VSMF03, SRWB14].
pre-computed [VSMF03]. Pre-Execution
[PR05, KY02, Luk01]. Pre-RTL [SRWB14].
Precise [Bak91, CYG+17, DS11, GA01, LCS+10b, QTSQ13, SP85b, SP98b, Smi98d, UH93, YBM+13, ZMM+16]. Precision
[MCG17, DFRO17, BDPT10, JPT14, MPP+87, SY+14]. Precomputation
[SLG+05, APD01, CWT+01, TS10].
preconditioned [Ch90]. preconstruction
[JS00]. prededuction [RS05].
[ANHN95, ACM+98b, ASP+99, MHM+95].

predication

[JM+K08, RSEW04, SGB00, TL10].

predictability

[BS95, EPCP98, SS98, Zha01], **predictable**

[AJK+09], **predicting**

[HKM02, JM12].

Prediction

[CYG+17, FSR+04, JHK+16, Jim05, SLG+05, ASK85, BWJ+90, BE03, CG94, CG95a, CRT99, CHP97, CTYP02, Che90, CPT08, CE98, DZ09, DJ91, DH98, DB00, ECP96, FFW98, FRB01, GM98, GYS96, GL98b, JTSE10, JSN98, KE91, KK99, KJM+07, LF00, LFF01, LB06, LJ+02, MHS+98, NGS99, PS14, PS94, RBS00, RRP06, RE12, SZD04, SCC03, Sni98b, Sn98e, TYS+94, TFWS03, TS99, VSMF03, WHG07, WKJ+12, WK09, WFC01, YP92, YP98a, YP98b, YGS95, ZS01].

prediction-based

[RRP06].

Predictive

[YSCC16, IMC+06].

Predictor

[BSMF08, Sez05, KSA03, LF99, SFKS02, SCAP97].

Predictors

[RBK08, BJR+99, BM09a, Bur02, EG97, ECP96, JG97, MSU97, SLM96, SLS01, YP93].

predilections

[KBB+82].

Preemption

[CYMT16, CYG+17, SK+88, TGC+14].

Preface

[Pen88, Ram88].

Prefetch

[ELMP11, Skl92b, Skl92a, Jon90, Jon98a, Jon98b, KW13, VS92].

Prefetch-aware

[ELMP11].

prefetchers

[LFF01].

Prefetching

[Bha17, JG97, APD01, CK91, CLS06, CB94a, CHV04, CWT+01, CJG02, DC09, FP91c, GGV90, GP95, JKM+13, Joh89, KST11, KS02a, KL91, LLCP94, RSEW04, RBV07, RPASA97, RS99, SGP97, SLT02, TE93, WBM+03, XTO6, ZT95, ZRW05].

preliminary

[And90, Ann91, BHS91, CMPZ87, DM74, DM98, Den98, Deb89, Deb97, DZ86, GL86, NL86, NP90, RG91, WLY84].

preloading

[SDS00].

Prentice

[Alv93, Ant91, Ber91b, Buc78, Chr77, Fer88, Fos93b, Ful91b, Hii91, Kri91, Lan90b, Lev92, Mad94a, Ram78, Whi78].

Prentice-Hall

[Alv93, Ant91, Buc78, Fer88, Kri91, Lan90b, Mad94a, Ram78, Whi78].

price

[CFG+13, ECP96, RBS07].

present

[BF98, JH03].

preserving

[CMB+13, WW13].

Press

[Cha92, Col90, Iva91, Mil77a, Par90, Sch91a, Hol83].

prevent

[SWL10].

Preventing

[ISGS07].

Prevention

[TS05].

Price

[Ful76, MPM14, KL03, RLCV10].

Price/performance

[Ful76], **pricing**

[SM12, TTTL10].

primary

[OMB92].

prime

[Gao93, CLX+16, Feu82].

Primer

[Gen77].

Primitive

[FSA90, GB74, HiC77b, WW13].

primitives

[AL91, AGS89, GVW89, McK74].

principle

[CL90, GB83, LAK09, Ran85].

Principled

[ZS15, ZWS14].

Principles

[Fos93b, CH84, Den03, Phi84, Fer88].

Pringle

[KFGS84].

Printers

[ASR+17].

prior

[TSA99].

prioritizing

[TLD14].

Priority

[BCG+08, SKS88, ELN89, HK89b, LS77, MAL01, NS74].

Priority-driven

[SK88].

PriSM

[MRG12, KGM87].

privacy

[CCM08, ZYLG05].

private

[CRG+11, NLS07, Nik90, PP84, PP98, Pat98a].

Privilege

[KDP+15].

Prize

[AMM+12].

Proactive

[SZBP08, SLFP16].

Probabilistic

[EE10b, eJCO99, MZLH15, MM82, OH16, BKM10, DS06, FGAM10, MRG12].

Problem

[VC04, AB84, FAY83, GTL13, Sav85, SGH93, WH97].

Problems

[Lan90b, SKCY16, Deb89, Kog73, MS76, NLV86, NP90, RG91, WLY84].

procedure

[AK00, Feu82, GC86, Lan82, OT73, PA88].

Procedures

[AK81, OM94].

Procedings

[ACM80, IEE76, IEE77, IEE79, IEE81, Kin75, IEE82, IEE83, IEE86, IEE88, IEE05, IEE06, ACM89, ACM91, ACM95, ACM96, ACM98a, ACM00, ACM01, ACM02a, ACM04, IEE90, IEE92, IEE94, IEE99, IEE03, JDL81, LS73, ACM97, IEEE84, IEEE85, IEEE87].

Process

[Feu84, FG91, KSCK17, BK11].
Dev93, FH76, GS80, Hic76, Mus09b, RBOS07, TST07, WW12, XYM12].

process-dependent [Dev93]. processes [Ger81, GLVC13, vddS79]. Processing [DHR+15, GAR+05, GSL17, HCJC06, JYP+17, KPS+16a, Mar73, MEB15, MVB15, MKP05, VTGH17, WCX17, AJ77, ATHM86, AAZ89, BMP04a, BL99, BNA88, Bra77, BC04, CL09, CLX+16, CD77, CLS73, DIY86, EDS3, FBF+00, Far05, Gai83, GKH85, Geh14, GRRT84, GYB+16, Hak85, HC85, HEK+16, HD86, ICT85, IHM89, KS02b, Laf95, Lor90, MS13b, Miy85, Nae85, Nit89, Qui79, RCL73, RL74a, RBG+01, RAJ99, RAJ00, Rui90, Sav85, SSDK84, SKC+03, Tan83, Tho12a, VF85, Waj92, WE74, WSC92, WSM+09, WJ85, WLP+14, YY92, Zak73, Zak77, Par88a]. processing-in-memory [CLX+16].

Processor [AK81, BK91, BCG+08, CLF+17, CY06, EBS+04, GCJ17, HCC+06, HSKS15, HNS77, KS04, KD92, KTG+17, KOA05, ORS+04, Rui86, SKJ+17, SD17, SOSD05, Tan78, ZSG+17, ABY+87, AB92, AS91a, ALKK90, Arm74, APX12, Am93, AM87, AML+10, BDA01, BA84, Bat80, Bat98a, BMA04a, BA82, CO82, CL94, CCE+09, CYL99, CT90, Cla87, CS08b, CGL98, DCC+87, DCC+98, DM74, DM98, Den98, EKM04, EC84, EC98a, EC98b, EE10b, FP91h, FTP94, FRB01, FK83, FD88, FH76, FG83, FR87, FKT+89, Gai83, GKF84, GLM13, GSS12a, GM82, Go84, GRRT84, Goo83, Goo98b, GDH89, GKN80, FFH88, HCV03, HK85a, HK80, HFH+91, HS01, HKN+92, HY85, HH90, Hug82, JB2, JMY89, JLZ09, JW82, JSL95, Kan87, Kar07]. processor [KS84a, KDM+98, Ker74, KTK+86, KMT91, KR85a, LC92, LP80, LP98, LZC+16, LKB91, LBvH06, LH+89, LMI80, LF003, MM83, MAR82, MK12, MA77, MST82, MMR10, MS84, MYB89, MFST88, MIT89, NNN+91, NS86, NKS86, NWS87, Nut77, PMPM96, PN88, Pal80, PC83, Pes74, Pie98, PBGM09, RT100, RBU+03, Red73, Roo89, SBS13, SyYH+89, SWY10, SPZ96, SGG+85, SN95, SHNS86, SA86, Sin92a, SMN+11, SP89, SACC13, SDV+87, SLH90, ST00, SPS07, SC02, SEE74, SV74, Tab10, TA83, TNY11, TSK13, TOL+11, Tob80, TM80, TLL107, TEE+96, VIA+05, VSH91, Van81, VKF+04, WCW+04, WJGA12, WBS+88, WY13, YXY+07, YL84, YHF03, YN09, KY83, Kro83, SS78]. processor-based [WCW+04]. Processor-Interconnect [SKJ+17]. processor-memory [Goo83, Goo98a, Goo98b, LHL+89]. processor-side [GLM13]. processor/cache [FTP94]. processor/memory [SPN96].

Processors [AW04, AWS16, CDY+17a, CDY+17b, CBC+05, GAR+05, Lan90b, Loh08, NZO+05, SLFG06, ARJ07, APR89, AS96, BT13, BDA03, BJ03, BTW77, CMC+91, CMC+98, CW02, CHZ+14, CMLV04, DB07, EKEL01, ER92, EE09, EST89, FCJ97, Fin84, Fis86, FM84, GJT+11, GAG88, GSS12b, GM90, GK81, GWM03, GRD87, GCTR08, Gup89, HTA08, Hay77, HS13, HKL80, HR09, HYHD95, HMM86, HRT03, IT93, IM02, KST11, KS07, KKK+16a, Kog77, KDBA78, KSA03, KP03, LYS07, LH92, LWZ12, LBE+98, LGKF+12, Luk01, MHH+95, MT84, MS87, MA06, MTP12, MM87, MA14, NH97, NLV86, OWCL90, PJS97, PS12, PA73, PFV03, PS88, PS94, QD99, RCM+12, RPASA97, RAJ99, RYF+13, RS84, RA90, Rym82, SJ88, SNN99, SC01, SVC03, SP85b, SS85, SP98b, Sm98d, SZ88, SV87].

processors [SF91, SBV95, SV98, SBV98, Soh98b, Soh98a, SPA+98, SD04, SD09, SPR00, Sur07, TS90a, Tho03e, TH76, VBS05, Wei89, YLHL10, YLT06, Yne81, ZYLG05, ZBF10, Lan90b, McG78, Mil77b, Vrt78].

Procrastination [PG16].
Procrastination-Based [PG16].
Producing [MDHS09]. Production [ACJL13, ZJL17, uAM16, AJL14, LL88].
Production-run [ACJL13, uAM16, AJL14].
Productivity [Wit16]. Product [Fal91a].
Profile [MSS+03, Aic92, BP04].
Profile-based [MSS+03]. profile-driven [BP04]. Profiler [PKM17].
Profiling [Far05, OSF+15, PKM17, SOD+14, CL87, DG99, DB00, HC04, JK13, LJK+13, MTG+99, ON12, SBS01, SCH+91b, TL11, WH07]. Program [Ano04d, Ano05e, Ano06c, BS06, CKS+08, HVML04, HGTW05, KTG+17, McF89, NPC05, NSA+17, VSST16, AR83, AC09, ASP+99, BSL08, Bec95, DV87a, Dug83, Hic77b, HT14b, Las89a, Mas87, MTG+99, MCC+06b, PvG590, PACL05, SS98, SK83, SV06, Sch89, SPHC02, SH92, Sl074, Smi75a, SLZD04, Tan77, TPO06, WS74, Ano08d].
programmability [LAB+11].
Programmable [CLF+17, CTH+15, KLKM17, MSS+15, ATV+07, BI12, CLR03, FKMD83, FL76, GP76, KKC+16b, KW11, LLZ+13, NMS+00, SYH11, SSAC13, WDA+08, WL10].
programmed [PPA+13]. Programmer [Wit16, HEK+16].
programmer-transparent [HEK+16].
Programming [ABD+15, AWS16, CKINWH16, EMZ+16, HCD+94, HCW+04, Hi191, KMC02, LL16, SGM+15, TTPL10, Zho16, ABL+80, BF87, CBC+08, Den03, DBMZ08, DMB87b, DSH+10, DZC+13, ESCB12, Feu76, GMT89, GCTR08, HTA08, HFWZ87, HW87, HY85, HSW+11, HRC+90, HG88, KDS012, KIJ+09, LCWM08, MSS14a, Mad94a, McK74, NYNT12, RG91, Rui66, SKC+12, SKS+92, Sch73a, ST08, Van81, WWW+88, Win80, Wir87, Ben82].
Programs [BS06, NP17, RSA+15, SLFP16, AZ89, AL91, AS92b, BM91, Bi84, BMP+04b, BNS11, CBK+14, CO82, CO03, CA88, DESE13, EK88, EK89a, FKBS11, Far05, GTA06, Han78, KL94, KP05, LM76, LC13, LFH03, MS87, PDP+13, QM91, RRRV09, RG02, SDWF13, SLTB+06, SGS+93, ST87, TBC94, UT83, UC94, VJM99, WOT+95, Bit89, Sch91a, Whi78].
progress [Mii87, Pat87]. project [ABM87, CJM77, HLW94, KAT99, KGM87, Mo83, Muk97, HMT86, Ste81].
Projection [Ant91, SSKP+07]. projects [Dre94, SMRT85].
Prolog [ABY+87, ALE90, BCDN87, CMPZ87, DF92, DDP85, FDS87, HSC+90, MYB89, NKh+85, SP89, Tic88, TSN+86, WW89].
Prolog/Lisp [TSM+86]. Promotion [OCY+15, PEP89, ROKB95, XL09].
promotion/insertion [XL09]. Prone [YMM15].
Propagating [VPS01].
propagation [LS82, LRS+08]. Properties [ZSG+17, BW88, BW98a, BW98b, C5Z+16]. property [HT10, Rs82].
Prophet [FSR+04, CYG+17]. Prophet/Critic [FSR+04].
proportional [AMW+10, DMSD13, MLN+12, Won16].
proportionality [LCG+14]. proposal [BP04, Sit73, TT82]. proposals [Mat78]. proposed [Ste80, Tur79]. proprietary [VE08].
PropRI [ZJL17]. protect [CLR05]. Protected [Feu82, MAD11, MSS14b].
Protecting [C5Z+15, HSKS15, LKM+05, ML05, CDA14, KJS+06, RKG84, VB84, ZYL85, ZFP04].
Protection [AYQ+16, BNZ08, MMT16, McD82b, ZH17, Bero80, CGL+08, FSC76, HS10, HDS10, Hug82, Jon82, KOAPG12, KSL16, LLZ+13, SLLG05, SCP+06, WJGA12, WIl82, WCA02, YE09].
ProTeusTM [DDK+16]. protocol [BLS99, BK05, CCEH00, DDS94, EK88, HS74, KEW+85, KKD13, LLG+90, LCED01, LR77, Mic92, Q5914, Ste98b, SBS93].
Protocols [CMR+06, Dah95, EK89b, GS95, Hof80, Jai82, MH98, SS86, VLZ88, VM88].
Prototype [SWY10, DAV80a, DM91, LLJ+92, LLJ+98, LL98, SHNS86].
Providing [CME+12, Gra84, XKR06, HMMMS96, KD06]. provisioned [GWSU12]. Provisioning [DK16, FWB07, PMZ+10, YKD01].
Pseudo-randomly [Rau91]. PSI [TNN18]. Publications [Ful91a, Tan78, Tho09a, Sta81]. Publisher [Ano808e]. Publishers [All92, Bit88, McD88, Par88a].
Quad [KPP+98]. Qualitatively [Laf03]. Quality [LNA08, PAM+16, RSA+15, WYM+17, KK84, MYP+16]. Quality-of-Service [LNA08].
Quantification [KF79]. quantifying [RLC10]. quantile [dODF+13]. Quantum [BKS05, HPJ+15, IPWK06, IWPK08, KS80, KBD+13, TMC+96, VNMI06, CLM07, OCCK03, SV06, TGP10]. Quasar [DK14]. qubits [CLM07]. Queensland [IEE92]. query [GKF84]. question [Lip76, MPH12]. questions [Smi75b].
Queue [BC02, PCC+08, Hic76, HK89b, PN77, PH85, RBR02, SKD+10, TF88].
Queueing [JWK12, BC90b, KC96]. queues [LS77, PPS8, PG+87, SRE+07]. Queueing [Nik09]. Quick [Hig90, WHM02]. QuickSAN [CS13a]. quite [SL93].
R [CBS88, Dik90, Goo88b]. R [Dik90]. R256 [FKT+89]. Race [HH08, LHH91, MSS14a, ZLJ16, ZL17, AKH08, GMF+11, HHB+14, HHS13, KZC12, MSQ+09, VAV10, WDC+13, XHB06, DWS+12]. Race-free [LHH91]. race-freeness [AHK08]. races [AHMN91, KZC12, LCS+10b, PT03, VAV10, WCG14]. Radio [LLW+06, NNIS16, WAK81, Ebe02, NNS12, SBS13]. RADISH [DWS+12]. Radix [GS12, KDTG05, SAKD06, BDJ+11, KDA07, OBCL12].
RAIDR [LJVM12]. RAIDs [BSADAD04]. Raksha [DKK07]. RAM [CJ88, FRK+15, GC84, Lafo0, MDS+11, RYF+13].
RAMpage [Mac99]. RAMPSoC [MK11]. RAMs [Mat92]. Random [SOSD05, KMA+12, OS+89, WZL+16].
randomization [KS91a]. randomized [BKM11, SWL10]. randomly [Rau91].
randomness [PBC+13]. range [CWT+01, Hii81, SIG89]. ranking [CGT+14]. Rapid [ABC+94, DFL05, DS11, EW16, SBS01, CKA09, PWA13, AWS16].
RapidMRC [TASS09]. RASE [DFL05]. Rate [HTM15, WEMR04, AP93, AKHBO0, Alb98, Kog73, SD09, TASS09]. rates [CMMP95, LC+14, NKK13, Quo94]. ratio [JVF+13, ZPS+04]. ratios [Hai84a, Hai84b, Lon75, YCT05]. RAt [SAA17]. Raw [TLM+04, BLAA99]. ray [RGD09, BSADAD04]. rays [HSS12]. RC [CBK+14, GFV99]. RCDC [DNB+11].
RCQ [KC96], RCU [CKZ12]. Re [BSK+10, Hea84, Rot05, DSBK04, JTSE10]. Re-architecting [BSK+10]. Re-evaluation [Hea84]. Re-Execution [Rot05, DSBK04]. re-reference [JTSE10]. Reach [PKM17, SSC98]. Reactive [FW97, TMW+13, HFAA09]. Read [HSBA16, AZK06, Hic77a, Joh91, WSM96]. read-only-memory [Hic77a]. readable [Miy85]. reading [Smi86]. Readings [HJS00]. Real [SBM09, WLG+14, ABR01, ASP+03, Aup80, BJL+13, CLC12, CTW+13, CIZ99, D190, DP76, DBP77, ELN89, FF73, GH76, Jen74, LYBC88, LPSZ08, Mar82, MDSO11, MAL01, NMS+00, NDZ10, PQC+09, RKS96, Rid87, Roo89, SA88a, SA91, SKS88, TRA91, Thu76, WBL89, YMI11, YFPR07, YHZX14]. real-time [ABR01, ASP+03, CLC12, CTW+13, CIZ99, DP76, DBP77, ELN89, FF73, GH76, Jen74, LYBC88, NMS+00, PQC+09, RKS96, Rid87, Roo89, SA88a, SA91, SKS88, TRA91, Thu76, YMI11, YFPR07]. Real-world [WLG+14, BJL+13, YHZX14]. Reality [Wit16, KTO+12]. realization [PSP+12]. Realizing [MKKU03]. really [CHG06, NP95]. realtime [OUE+13]. REAPER [PKM17]. Rearrangeability [VR87]. rearranging [KT91]. Reassignment [WM16]. rebirth [Tem10]. Rebound [AGT11]. ReBudget [WM16]. Rebuild [Tho12a]. receive [KD06]. Recency [SDS00]. Recency-based [SDS00]. recentralization [Lor90]. Reclamation [PG16]. recoding [OCBL12]. Recognition [AWS16, KOA05, AB86, CF82, KKM+06, LNEHR11]. recommendations [MPP+08]. reconcile [SAR99]. reconfigurability [PPR97]. Reconfigurable [ABZ07, BCSB11, Goh14, KGS16, LLD+17, NY14, OUY+13, PZK+17, RAJ00, THNM14, WSC+14, dICKK15, BCDL07, BBJ+08, BSD87, CLC12, DSH+10, FD88, FHM+11, GDN+16, GP13, HBI13, JB82, KTO+12, KDP+16, KW11, MPJ+00, MFST88, NSMK11, NMS+12, NYNT12, OIA+13, PCL10, PM11, PEB+09, PCC+14, SBS13, SSDK84, SAC13, Surf07, TS10, TTTL10, TBL12, WW12, YMB90]. reconfiguration [GKN80, MK11]. Reconstructing [KTG+17]. reconstruction [Yok94]. Record [MGT+17, HDT+13, HT14b, HT14a, PDP+13, QSQ14]. record-replay [HDT+13]. Record/Replay [MGT+17]. recorder [XBH03]. Recording [HH08, MCT08, NPC05, NPC06, GSS05, VAV10, XHB06]. recoverable [LAK99]. recoveries [ISG07]. Recovery [LAK90, SZBP08, VTM17, YXR06, AP95, Con88, GSV03, PZT02, UGV14, VPC02, ZilKL+13, dKN10]. rectangular [JM88, OML83, PB92]. recurrence [Kog73]. recurrent [Qui84]. Recursion [FRK+15]. Recursive [SKK17, AA86, IH80, TH82]. recursively [Har86]. ReCycle [TST07]. redesign [CH04]. RedEye [LHG+16]. REDSPY [WCL17]. Reduce [JJH+16, PV04, WMR04, BSL08, Goo83, Goo98a, Goo98b, KHM01, KPH96, PM92, PBC+13, PV03, SC05, Wei89, YL10, YCT05]. Reduced [CS80a, LHI86a, MS15, HJ87, HL85, PD00, PS98b, Sta86, XT96, PS98a]. Reducing [BHS12, DW90, HH+15, Har91, HASA14, HS06, KT91, LLCF94, LK+70, MI86, MW98, ROKB95, SSR+13, WAC+10, Zha06, AP93, DM87, FP91a, FPF+92, FKM+02, GHG+91, HCSS99, KBD06, KJ+15, LW95, LAS85, LCF+14, PSB13, SDH+14, ST03, SCAP07, VSG+10, WST95]. Reduction [ANMF08, Ber74, Hoo77, BT13, BM01, CCC+88, Con88, HBA01, Hom82, HRT03, LN07, MKG98, PST3, SFS04, TK07, TH86, Tra85, TM08, TS10, WR84, XHB06, YL16]. Redundancy [PGS04, SBP08, CJ07a]. Redundant [ZH17, APX14, Che87, MKR02,
PSG06, PR82, RRP06, SGH93, WLG +14.
ReEnact [PT03]. reentrant [Con90b].
REF [ZL14]. Reference
HoI89, Löf74, MCXS16, BHS12, FKC +06, GS07, JTSE10, JMP09, JwWH97, Kee79b, MF05, SA92, WK89, Yue84.
BS04, Cha96, DeM96, DM82, GCO +04, KMC +93, LMG04, QMT89, WW93, AAZ89, BS73, BYG +00, BEH91a, BEH91b, CCV +09, CGVT00, EP87, EP88, FP91a, HKT93, HS85b, HS74, HFL5, ISG07, JSL +13, Kha76, LeC92, LHS6a, MSAD91, QM91, Req83, TA03, TSS99, WSN90, kSYHX +11, Yue84].
Chi89, HS16, Tho76, HS74, SDP85.
reproduction [WZJ10]. ReQoS [TMW+13]. Request [EAS+17, She10, LG04, SZD+08]. requests [SJ88, TLD14]. required [JH94].

Requirements [CDY+17b, Bra77, Cra79, CA88, CHKM93, Joh82, Kum87, Kun86, LFH03, OC78].

ReRAM [CLX+16]. ReRAM-based [CLX+16]. ReRun [HH08]. resurrection [SLP+09, SV05]. Rescuing [DJPK16].

Resources [KGS16, LSB15, Mat10, BDA01, JDL81, MPH12, Mat90]. Resourcing [MSS+15]. Resourcing-on-Demand [MSS+15]. Respec [LWV+10]. Response [VFHD97, AV10, Lee85a, SM98]. responsive [HSC+11]. Responsiveness [YCR+17, CMB+13]. restartable [PGH+87]. restoration [Sta89]. restricted [BH91, HP96, HP98, mWHP98, SEI+95]. restructurable [AP76]. Results [Mud96, RSA+15, CMPZ87, FSC76, GP76, ISKR86, Kh76, MBL+89, PP88, SzUK+04, WG89b, WH07, Wis86]. RETCON [BRM10]. Retention [PKM17, LJK+13, LJVM12]. Retention-Aware [LJVM12]. Rethinking [PBWH+11, RGSJ17, UMC+10, MDS12a, ZCX+14]. retrieval [AR80, ERT78, GSR93, Lee85a, Rob78, WW89]. retrofitting [CGL+08]. Retrospective [AH98a, Aga98, BW98b, Bat98a, BS98a, BLA+98b, DCF+98, Den98, DP80, DP98b, DP98a, DS98, EC98b, Fis98a, Gha98, Goo98a, Got98, GL98c, Hen98, mWHP98, mWH98, Jou98b, Kro98b, Kus98, LL98, Lip98, Ni98, PC98a, Pat98b, Pat98a, PS98a, Pie98, RLW98a, SP98a, Smi98c, Smi98d, Smi98b, Sot98b, Sot98a, TEL98a, VYK+98, YP98b, vECSG98, Pie83]. return [CLR05, YK05]. returns [KE91]. reuse [ATT+13, CHCMWH00, KOAGP12, NAAL01, RKMK+11, SS97, WCF01, WZY13].

Reverse [LSB15, Gos94]. Review [Alv93, Atk79, Ben82, Bit89, Buc78, Chr77, Fer88, Fos93a, Ful93, Gor83, Hol83, Lan76, Mad94a, Mad94b, MC78, Mil77a, Mud80, Ram78, Ros73, Sac83, Tab96, Tan78, Vra78, Whi78, All92, Ant91, Ber91b, Ber91a, Ber91c, Bow79, Cha92, Col88, Col90, Dik90, Fos72a, Ful91b, Ful91a, Gon77, Hii91, Iva91, Kri91, Lan90a, Lan90b, Lev92, Mc88, Mil77b, Par88a, Par90, Sch88, Sch91a, Smo89, Su74, Tak88, Wak81]. Reviewers [Ano04e, Ano05f, Ano06d, Ano08f]. Reviews [Fos93b, Lan93, Mil77a, Ben82, Bit89, Chr77, Hol83, Lan76, Mud80, Sac83, ACM93b, Vra78, Whi78]. revisionist [PT91]. Revisit [WQL92]. Revisiting [AHJ12, WWC+14]. Revivable [SLFG06].

REVital [LWB08]. ReVive [PZT02]. reviving [ADS+13]. revolution [KWF08].

Revolutions [Emm06, ECX+11]. rewriting [HR07]. REYSM [NS86]. RFID [RSF11].

Ring [MABY15, SST06, BD93a, Mic92, SGV92]. ring-based [BD93a]. ring-connected
[Mic92]. rIOMMU [MABYT15]. RISC
[HO91, AA89, Afhm93, BZ87, BC91, Bha97, BEH91a, BSUH87, CO82, CHJS83, Cou89, Deb89, Dow87, Dow88a, Dow88b, DFT86, ELN89, ER92, EE93, FCP92, Gri88, Hea84, HL85, HDP+90, Jon88c, Kie87, Lar82, Mil87, PMMP96, PP82, PGH+83, Pat84, PS98b, PS98a, PH90, Sho87, SEI*95, Ste88, UBF+84, Wil88a, WWC+14, Yue99b].

RISC-based [FCP92, HDP+90]. RISC-like
[AAZ89, Wil88a]. RISC/CISC [CHJ83].
RISCs [BCD87, BEH91b, Jon88b].
RISCY [Pat88, FFK].

Routing [JunWH97, PPR09, SIG89, ACJL13, AJL14, GPV04, HBI13, Mul89, TP90, YMX+10, dRBC93, uAM16].

Run-time [JunWH97, PPR09, SIG89, HBI13, Mul89, YMX+10, dRBC93].

Runahead [MKP05]. Running
[BCS91, IWPK08, AR89, KGS16, KADS04, MLCW11, RSF11].

S [Fos72a, Lan76, Ram78, Sch88, VFCM13, FW97, HS01, NBK95].

S-CONNECT [FB97].

S/390 [HS01].

S2E [HSKS15, HCL15, MAHK16, NWB10, Saved.

Sampling [KIC*16, sample-based [KIC*16].

San [MWM04].

Sapper [WHR97, SM96].

scalability [ABC+17, NCLJ09, THR+17, TM05, ACS+12, CGB89, GTSS13, GHKM11, Hi90, PGRT01, VIA+05].

Scalable [BTC06, CH04, CJKZ12, DSBB04, EB08, GAR+05, GPY+17, HNK+17, IPWK06, KDS08, LCL+16, MLCW11, MS15, NP17, QSR09, RLD+17, SAB+05, VRB+17, AGT11, KIC*16].

Safe
[MMC05, KIC96, WBC05].

S-Connect [FB97].

Saved.

SafetyNet [BM99, NMZ12].

Safe
[MMC05, KIC96, WBC05].

S-Connect [FB97].

Saved.

SafetyNet [BM99, NMZ12].

Safe
[MMC05, KIC96, WBC05].

S-Connect [FB97].

Saved.
BGM+00, Bay99, BMP04a, BMBW00, CKA91, CMT00, DCS+14, Fra90, GLL+90, GLL+98, Gha98, GW10, HW80, HG86, HR90, JSL+13, KJJ+09, KMS+10, LL09, Mat91a, MKKU03, MGBK96, MPSIV89, PHH16a, PHH16b, QTSQ13, RBR02, RAC99, SK11, SWY10, SYH11, SCZM00, TYSSK11, TBG+97, TTTCM12, UMB+11, WAA+14.

scal[ar [FB92, GL98b, HD86, Skl92b, Skl92a, WS87, ZCSM02]. Scale [Bar11, CYMT16, CYG+17, HLT+15, LKGF+12, Mil77b, NDB+14, PDL15, SCU+14, TQC+15, BTS+11, CY96, FAK+12, FV82, GKL83, GW88, GVW89, Ham09, HSH96, HMI+05, JKD09, Joh92, KBC+00, LAS85, LCG+14, MPT91, Mar00, MT13, MBR90, NNS+90, NP90, OT86, OLJ+14, PCC+14, RFS11, RSG93, SPHC02, Smi14, SB77, TMW+13, T91, WHZ+17, YBTM13, SBK77]. Sc[ale-out [LKGF+12, NDB+14, FAK+12]. ScaleDe[ep [VRB+17]. Sc[aling [DGT15, Emm06, JS99, KZT05, PTB16, RL17, RKB+09, EBS+11, ECX+11, Geh14, LDK14, MSS+03, MCD+08, NQK13, NY14, PM11, SW16, WYZ13]. Scalpel [YL+17]. Scan [Fis86]. s[can ning [Lec74]. s[carce [ZWM+14]. SCC [Wil98]. schedule [NAAL01]. scheduled [FCJV97, FM84, KMT91, NH97]. scheduler [BKMN10, EHA03, JCS+14, SRB+07, WRSY16]. schedulers [NP11]. Scheduling [JSWB93, KSCK17, MT84, MM08, SXYH16, SA91, TT08, VEJ+12, AA22, ACS+12, Bak91, BEH91b, CS06b, CN0+87, CB+06, DK13, DZ+14, DTJ94, EA02, EEl0b, GGH92, GLM13, IBC12, JW95, JNA+12, JDL81, JSMP12, JNK+13, JKM+13, JSAM10, KD92, KJJ+13, LS12a, L90, LRHM90, MSAD91, MDR+00, MSS14b, MSP+06, Mi82, MAL01, OA08, RDK+00, SYK10, STN+13, SMB09, SL90, ST00, Tho11a, Won16, YER99, YKL+16, ZBF10]. Scheme [ES05, AJ77, AP95, AS14, BS87, BBBM94, CKA91, CHCW10, CV88, HJ86, HL89, HS85a, Hic76, Kha97a, Kha97c, KKK76, Lap91, LS92, MPS89, MTG+99, MC91, PH88, TYS+94, TTTCM12, TYZ85, Wei89, Won98, VP89]. schemes [AAH91, ASHH88, ASHH98, CB94a, GYCS96, Hen98, HCC89, LM76, MPT91, Rao84, RS84, SL92, VS92, YGS95]. Sc[neck [McD88]. Schofield [Sch91a]. Schur [Chr90]. SCHUSS [GRR78]. SCI [SGV92]. Science [Col90, DHR+90, KF79, Pau13, KRM83]. scient[ific [BNA08, Cha90, CHKM93, FKT+98, LS96, SHN86, YXX+07]. SCISM [VBE92]. SCNN [PRM+17]. Scope [OCC+15]. SCORPIO [DCC+14]. Scr[ambled [Lee88]. Scr[ipting [CSGT77, KKH+17]. SD [WJZ75]. SDC [UVU14]. SDF [OLJ+14]. SDR [WSC+14]. SEAI [Ful91a]. Se[amless [FCC92]. Se[arch [BTRS05, DGT15, MNS+14, MSH+15, SKC16, CWDO+06, LRC10, SKA+11, SG811, TYN86, WLY84]. Searching [JPT14, BTW77, Cop78]. Seattle [IEE90]. Second [Smif01]. Sec[ondary [DLSW76, EE93, Lip77a, PK94]. Se[cret [DGT15]. Se[cretary [IrW86]. Se[cretary/ Treasurer [IrW86]. Se[crets [LKM+05]. section [SMQ09, YL16]. sections [EE10a, HHS13, MBK90]. sectored [Sez94]. S[ecure [AMH+16, SW74, SLZD04, SOSD05, TIC13, WBA17, YGST17, BA84, CS11b, HKD+13, Ino05, KFM05, ML05, NMZ12, RYF+13, SL12, WGO+13, WAO01]. securing [LWH+16]. S[ecurity [Ber80, CWY+08, Che05, CDG+17, DFK17, FXZ+17, HS815, SL10, SLG+05, YEP+06, ZWSM15, ZSG+17, CC05, DKK07, HS10, Ino05, Kar07, KLO+14, LNBZ08, MPX+13, MK05, MM14a, NPCF08, PL06, TOL+11, VCK+12]. Security-Critical [HSK15]. security-modified [MM14a]. see [AC90]. segment [BLS+76, Hea76, See89a, See90b]. segment-sequential [Hea70]. Sego
Seitz [Par90]. Selected
Lei91, Ch01. Selection
[CKmWH16, LM76, PR05, BGP+01, ME78].
Selective [CRT99, HC99, KPG98, LF00,
RAM+04, ZH17, ACM02b, CV88, DSBK04,
EHA03, GUK09, PT10, ZNF+16].
Selectiv-set-invalidation [HC99]. Self
[IMMC08, CS99, CCV+09, DGY89, LF00,
LW95, NS80, Now87, PJD06, SLK05,
SLP+09, DLSW76]. self-healing
[SLK05, SLP+09]. self-invalidation
[LF00, LW95]. Self-Optimizing [IMMC08].
self-organizing [PJD06]. self-spatial
[CS99]. self-test [CCV+09]. self-timed
[DGY89, Now87]. Semantic
[HABZ17, Lip78b, BNS11, LC92,
PT83, TT82]. Semantic-Aware
[IMMC08, CS99].
Semantic-Aware PT83, TT82.
Semantic [Kav80, MCC+98].
Semantic-Aware [HABZ17].
Semantics [Kav80, MCC+06a, SA17,
BSL08, Feu76, LCS+10b]. semaphores
[DD08]. Semi [SBM02, MSZ09].
semi-automatic [MSZ09].
Semi-hierarchical [SBM02].
Sensor [Bj78, Che84a]. Sensing
[LJdL+16, PCD109]. Sensitive
[ZWSM15, HHS13]. sensitivity
[BP04, KC07, WW12]. Sensor
[HTM+05, NZO+05, EKM04, KC02, LC02,
LGH+16, NMS+12, Est02].
sensor-actuator [KC02]. sensors
[HSW+00]. sensory [MK84]. Sentry
[Bar82, SD10]. Separation
[DKD+15, WS90]. sequence [IBC12, Lit94].
sequenced [Wra91]. Sequences
[YT04, VM97]. sequencing [Smo89].
sequencing-based [Smo89]. Sequential
[BS06, MS05, BLs+76, CTMT07, CTW+13,
Hea76, LS77, LNRG12, QTSG13, QM91,
SNM+12, Tic88, Uch83, VLW+11, ZLO+11,
ZWS14]. Sequentially
[Lec74, HX97, HA90]. Sequoia [Mar85].
serial [LHL+89, SP87]. Serializability
[SBZ+15]. Serialization [GMT16, QST14].
serializing [JVV13]. Series
[Chr77, Ber76, Cra88]. serve [VM88].
Server [GSL17, LRC+08, Mad94a, APP+14,
DSH+94, GSKF03, GCG+14, HCG+06,
IMK+13, yKPR02, LL97, Lan05, LQL12,
LL14, MH07, MGW09, NMS+00, SBIS11,
Wol89, YCMR12]. server-based [Wol89].
Server-Side [GSL17]. Servers
[RLIC06, SKJ+17, BGC+13, CMR+12,
JVF13, LCM+09, LMS+13, SSD+13,
WG+97, Won16]. Service
[LNA08, WYM+17, GHKM17, Ham09].
serviceability [SBM02]. Services
[HhEH+15, JHK+16, KDL+16, MSS+15,
MSB+11, PCC+14, SLK05]. Session
[NVTT12, Tsa16, DHR+94, IAD+94, SGG+85, SMRT85]. Set
[BKSO05, Bu03, CS80a, CBC+05, PS98a, TM14b,
AZ89, AAD90, BD84, BEH91a, BA97,
Bur82, CG95a, CKDK91, Cra83, DV87a,
De 90, DS02, Fos72b, GH90, Gov07, GTL13,
HB86, HHL16, HC99, Joh89, KJLH89,
KS02b, KMC93, LDT+16, Man01b,
Man01a, Mar83b, MHS+03, McDr82a, PD80,
PS98b, Sho87, SFS00, SK108, Sta86, SS82,
TJS83, WQL92, Wic82, Wil88, HLL+93].
set-associative [WQL92].
set-associativity [KJLH89]. sets
[CE98, EP87, GB74, HS85a, Mye77, NA83,
RSG93, SM77, Wbl80]. Setting
[UVG12]. severe [ZSL10]. SGX
[WBA17]. SH [AIIK+05]. SH-X [AIIK+05].
Shack [Wak81]. shader [APX14]. shaders
[WL10]. shadow [GHS16, SCC08]. shall
[Bak94]. Shallow [SKN+15]. shaping
[ZW16]. Shared [DK16, Irw10, Las88b,
MRG12, MCT08, MM08, PPM15, WSH+05,
ZE16, AGT11, Bab99, BCZ90, BLS99, BR90,
BMP+04b, CHX+11, CA94, CGB89,
CFS+12, CMT00, CF93, CDK+94, DLO09,
DJ90, DKCZ93, DSN07, ELMP11, EGK+85,
FB08, Fos05, FH88, FHH+89, GCN+10,
GGL+90, GGH91, GGH92, GLL+98, Gha98,
GGK+82, GGK+98, GS95, GN89, Har91,
HSH96, HJL89, HX97, ISL96, JB76, KCCZ92,
KL94, KS95, KHS+97, KADS04, LW95,
eHLL89, LMRS92, LS92, MHS+03, MBK90, MGBK96, Nad88a, NPC06, NO94, Nik09, Nis91, OZK+12, PGSP00, PH88, PZT02, RPSA97, RLW94, RPW96, RLW98a, RLW98b, Rey82, SRJ+05, SHZ97, SWG92, SPA+98, SMHWO2, SK108, ST08, TBG+97, TD91, TA76, Wil87, WCF88, GLLGha98, GGKSPA

MBK90, PZT02, RPASA97, SWG92, SPA+98, SMHWO2, SK108, ST08, TBG+97, TD91, TA76, Wil87, WCF88, YP83, YKA96, YN09, ZT95, ZBF10.

shared-bus [PH88]. shared-cache [NO94].

Shared-Memory

[CT80, BR90, CMT00, CDK+94, EGK+85, FH88, GLL90, GGH91, GGH92, GLL+98, Gha98, GGK+82, GGLK98, GSN9, GSN9, HX97, LRLW95, cHLL89, LMRS92, MHS+03, MBK90, PZT02, RPASA97, SWG92, SPA+98, TBG+97, YN09, ZT95].

Sharing

[MM05, WYM+17, EK88, EK89a, FH76, Hum96, KS14, KC74, LF96, LCM+09, SBS93, ST87, TMV+11, TE94, TLcC13, Wah83, ZL14, ZW14].

short-circuit [KCC+16a]. short-haul [DCB+94].

Short-Lived [LCL+16]. short-term [AJL14].

short-length [Yue81].

shortcut [KMA+12, CSGT17]. Should

[Wil88, Muk97, Woo14, dOFD+13].

Shredder [AMH+16]. Shredding [AMH+16].

SHRIMP [BLA+94, BAC+98, BLA+98a, FAB+96]. shuffle [BAES89, BSD87, Sov83, VR87].

shuffle-exchange [Sov83]. shuffle/exchange [VR87]. shuttle [Sat74].

SI [LCF+14].

SI-TM [LCF+14]. Side

[AN17, DMWS12, GSL17, YGST17, Bra82b, GLM13, MDS12a, WL07, TMW+01].

Side-channel [DMWS12, MDS12a].

Sidewinder [LJdL+16]. SieveStore [PT10].

SIGARCH

[Ano99, Ano06e, Bre72, Die81, Pat91].

SIGMA [Sez86, SHNS86]. SIGMA-1

[SHNS86].

Signal

[Kro83, BMP04a, GSS12a, GSS12b, GWM03, MS13b, Nit89, SKC+03, VRF85, WSM+09].

signature [MSQ10]. signature-based [MSQ10]. signatures

[MMJ05, SDD+08, TAC89]. significance

[Ros77b, Sit73]. significant [Par95].

SigRACE [MSQ10]. silent

[LL02, AM+16]. Silicon [KMS+10, LB17, BSK+10, EBS+11, FGVG13, KMOA07].

Silicon-photonic [KMS+10]. Silver

[IEE77]. SIMD

[BHBL87, BAES89, ED83, HWC91, KCE12, MT97, Par95, PSE+12, PJD06, RE13, Se77, TNY11, VSW+13, YL84].

SIMDization [HCW+10]. Simics [Far05].

similar [BC91, BFS+09]. similarity

[Bra77, SSJ+16]. SIMP [MIT89]. simple

[ASP+03, BDLM07, DDS94, FK02, HW95, LCM10, RPSV07, Ulm95].

SimplePower [VKI+00]. SimpleScalar

[BA97, Man01b, Man01a]. simplifying

[LC8+06b]. SimPoint [LGG05]. SMIT

[KTS+13, WL17]. simulate [MAF+09].

Simulated [GKO+00]. Simulating

[KLKM17, RBS107]. Simulation

[DLF05, DBK+02, EBS+04, JKT05, KJT09, Kno73, KMK16, SCU+14, SKN+15, TK07, ALM82, BC90h, CBB01, CB92, DBC05, DSO11, Fra86, Fra90, GKO+00, GPPT02, GCL85, HVAN14, HPC+90, HB90, HGS+07, Kha95a, KIC+16, KEL91, KBR89, LSG05, LMN07, LSFK08, MS13a, MF05, Mel85, MSSZ16, MAB98, OC00, PGSP00, RL76, Rey82, SK13, SDD+07, SLS8, TYSK11, TBL12, Van81, WF87, WWF03, YM11]. simulation-adapted

[GPPT02]. Simulations

[WN14, BBK90, CAD09, GP88, GP13].

Simulator [TQC+15, Azf95, BBB+11, Cor89, FTM99, MSB+05, PRA97, SRWB14, TSCH99, WGT+05, ZGY09]. simulators
[Sho87]. **Simultaneous**

[BCD12, CSK+99, CCE+09, TEL95, TEL98b, HKN+92, LBE+98, Luk01, RL74b, REL00, RM00, SW16, ST00, TSC1999, TEE+96, VPC02, TEL98a]. **Singh** [Ful91b].

Single [BTRS05, BYP+91, KTR+04, MIT89, SOSD05, VE14, WHZ+17, BGM+00, CS11a, CS80b, CSM+05, FTP94, GCLM85, Joh04, Kuh80, KHC92, KK14, LH86a, Lap90, Lap91, LSS04, MLC+09, MP89, MS10, SYH+89, SP84, SHBS14, Tob80, VIA+05, VI94, YZ07b, ZdKL+13].

single-bus [GCLM85, VI94]. **Single-Chip** [SOSD05, BGM+00, FTP94, SP84].

single-cycle [KK14]. **Single-graph** [VE14]. **Single-ISA** [KTR+04].

Single-machine [WHZ+17]. **single-node** [LSS04]. **single-processor** [MIT89].

single-stage [Kuh80]. **single-term** [CS11a].

single-thread [MLC+09]. **single-threaded** [VIA+05, YZ07b, ZdKL+13].

single-window [LH86a]. **Sinking** [CDG+17]. **Sinks** [JPT14]. **Sirius** [HLZ+15]. **SISAL** [SC90]. **site** [Dre94]. **situ** [SNM+16]. **Size** [Wil83b, BEH91a, DV87a, DL92, Gov07, Hol89, NLV86, OCB12, Reg76, WS74].

size-independent [NLV86]. **sized** [EKW80, FWB07, SM89]. **Sizes** [CB17, BC07, Prz90, RSG93, TKHP92].

Sketch [TP15]. **sketching** [SLTB13]. **Skewed** [BS95, CL89, HJ86, Sez93].

skewed-associative [Sez93]. **skewing** [JW97]. **skip** [BC10]. **Slack** [EAS+17, CK16, DM20, FB00].

Slackened [GRH06]. **SlackSim** [CAD09].

Slavenburg [Goo88]. **sleep** [LDK14, MW12]. **SleepScale** [LDK14].

slice [PSG06, PC83, TDF00]. **slice-based** [PSG06]. **slicer** [XJ+16]. **slices** [HvD91, ZS00, ZS01]. **slicing** [HRDA89, XJ+16]. **SlicK** [PSG06].

Slipstream [SPR00]. **slope** [LSN14]. **slots** [DeM96]. **Slotted** [SKB+17]. **slow** [ZNF+16]. **SM** [AYA83, ABKA85, XJK+16].

small [CDS+14, DIY86, FarDP89, Fis84, Jouv90, Jou98a, jou98b, RHZC74, SA87, SGH93].

small-footprint [CDS+14]. **smallest** [Mas87]. **Smalltalk** [BSUH87, UBF+84].

Smalltalk-80 [BSUH87]. **Smart** [AN17, MPJ+00, FSS+09, LMS+13].

smartphones [LWLZ12, CZG+15].

SMARTS [WWFH03]. **smashing** [YK05].

Smith [KDSO12]. **SMP** [KPH+98, KKK+13, MNLS97]. **SMP-based** [MNLS97]. **SMPs** [MBA+00]. **SMS** [KKK76]. **SMT** [BPF04a, CY00, EE09, EE10b, EE14, GPV04, VCO4].

SMTp [CH04]. **SNAP** [DM91]. **SNAP-1** [DM91].

Snapshot [CPI17, LCF+14]. **SNMP** [Mad94b]. **SNMPv2** [Mad94b]. **Snoop** [Mos05, BSL08]. **Snoop-Based** [Mos05].

Snooping [SST06, BDH+99, Dah95, EK99, MSA+00, VLZ88]. **Snoops** [SST06].

Snoop [GH90, DCS+14]. **SOAR** [UBF+84]. **SOC** [MBS+04, BFP03, LMS+13]. **Society** [Mud96, Ros76]. **Sockets** [Mad94a].

SOCRATES [Fos74]. **SODA** [LLW+06].

Soft [GM84, LABR08, WEMR04, FGAM10, HH99, LYS07, L73, SG+04, TSK13].

soft-error [SGK+04]. **soft-error-resilient** [HC99]. **SoftSig** [TACT08]. **Software** [AA86, AWV88, AYQ+16, BCG+08, CKP91, CA94, CHV04, CSB86, CHL96, CDF+94, DHR+15, DB00, Ful91b, HSK15, KFN02, KSC17, Lan90b, LLW+06, LHM+15, MA06, TL10, TML+17, TBS17, WCL17, ZH16, ZQL+04, AA06, AAHV91, AC09, ACJL13, AJL14, BCG99, BS08, BC90, BRGH99, CBGM12, CL87, CS99, CFR+13, CB94a, CKC11, DET00, DKK07, Den76, DZ09, Don83, Don85, Don88, Dan90, Don92, DZC93, ELN89, GHV90, GS95, GMF+11, HR00, HDS10, HCC89, IKK07, Jag80, Joh82, KF79, KZ02, KCZ92, KDP02, KL91, Las89a, LRS+08, Luk01, LSFK08, MWP07, }
McD77, MCL89, MP91, MHKT09, NUS+93, NRS+07, NDZ10, OIA+13, OAA09, OL02, OLJ+14, OA89, RK+10, RPA+97, RM77, RO74, SBS13, SCGA13, Sch73b, SDH+14, SBS16, SL+05, SSH+07, SLK05, SLP+09, SH87, TML+00. software

[TACT08, VPS01, VC72, VKI+00, VBYN+14, WL07, Woo14, YHZF03, YZP+11, dKNS10, uAM16, DWS+12].

Software-Based [AYQ+16, MA06, TL10].

Software-Controlled [BCG+08, CSB86, KFN02, KL91, Luk01].

Software-Defined [DHR+15, TBS17, OLJ+14].

software-exposed [TACT08].

Software-extended [CA94].

software-hardware [MHKT09].

software-managed [HR00, NUS+93].

software-only [GS95].

solid [CME+12, CS13a, DJ09, JWK12, JCS+14, PB80].

solid-state [DJ09].

solution [AB84, PP84, PP98, Pat98a, WH97].

solutions [Kog73].

Some [BLs+76, EHA82, Joh82, Las89b, PP88, Sha80, Yue84, Das77, Deb89, Wis86].

something [Bat72, Dat72b, Sons]

Other [Atk79, Ben82, Ber91a, Bow79, Fok93, Gor83, Mud80].

sorter [DSM82].

Sound [CSBA17b, CB13, DWS+12, DP76, DPB77].

Source [BMF+16, diCCK15, ELMP10, ZMT16].

sources [HQW+10].

space

[BS73, BFP03, CME+12, CYH+11, CGT+14, Cra79, HMP+05, HH93, JH08, Kep91, Lök74, LNBZ08, NO94, RYF+13, Sat74, SWB14, XGC+10].

SpaceJMP [EMZ+16].

Spaces [EMZ+16, SSK17, CKZ12, IM+06, PHB14, Wil91].

Spain [ACM98a].

[HM+90]. SPARC

[BKS+94, CKDK91, KKC92, LKB91].

Sparc64 [ST03]. SPARCcenter [SG94].

sparring [MM92].

SPARK [SW90].

Sparse [AY83, WJZ15, ABKA85, GSZ90, IHM89, PRM+17, SW90].

Sparsearity [LCC17].

Sparsity-Aware [LCC17].

Spatial [BVC+04, SWA+06, CS99, CES16, CM00, CCB+06, DB+05, GB01, KW98, Mar00, MCC+06b].

Spatially [Mar00].

spatially [MSCS13, PPA+13].

Spatially-programmed [PPA+13].

Spatio [SWAF09].

Spatio-temporal [SWAF09].

SPEAC [Mar74].

Speakers [Tsa16].

SPEC [AE01, CH01, CSW94, Cit03, CKDK91, CB94b, GPT02, GS07, Hen06, Hen07b, Hen07d, Hen07c, KC07, MPJ95, PJJ07a, PJJ07b, PH90, Spr07, Wei97, Won07, YRK07].

SPEC95 [PTGM99].

Special [KSN07a, ABZ07, FK80, FTG88, JKT05, JKT09, KC05, KS84a, MK84, Mar74, NK86, SDD+07, TKJ07, JWB93, JWB94, Pen88, Ram88].

special-purpose [FK80, MK84, SDD+07].

specialization [OKJ+13].

specify [CWS06].

Specialized

[NS16, QHS+13, Rob78, Tho10b, Woo14].

specializing [MKGT16].

specific [BS08, CDY+17b, KS07, LS12b, MPc989, PP92, RSYP06, SYH11, WBS+88].

specification [Cra83].

Specifying [BS+16, BNS11, RLS10].

SPECS [HSKS15].

SpecTLB [BRC11].

Spectrometer [NNIS16].

Speculation [CWY+08, YT04, YRJ399, ZS15, ADT13, DG99, GKMP98, cJCO99, LWV+10, MKG98, MT02, MTZ13, MBVS97, NRS+07, NDZ10, PT03, RSEW04, SB05, SCZM00, ZWS14].

speculations [Tag85, Cra88].

Speculative [BS06, CTTC06, CWY+08, CWT+01, CASM06, HSS94, LGM+14, MT02, PVG02, PGV05, RK+10, RCAF17, STS17, SJA+17, ANH95, ACM02b, ACM+98b, BRC11, CCE+09, CMT00, DS06, LF99,
LBCG95, LPH+09, MDS12b, OL02,
PGRT01, ZCSM02, ZS01. speech [AB86].

Speed
[Alv93, IWP08, TM05, AA11b, APR89,
BVR+00, CFS2, DS11, Gun90, Gup89,
GSKF03, HS85a, KW84, KMK16, LDK14,
MIT89, NKH+85, PN88, SHMZ94, TDF90,
TW77, TTL07, Tur79, WilG8, ZLZZ09].

Speeding [ZT95, ACF05]. speedup
[HRDA85]. speedups [SBV91]. spiking
[NMTH10, YM11]. spintronic [VRV+14].

spintronic-tape [VRV+14]. SpinWise
[AK16]. SPIRE [Wa92]. SPLASH
[SWG92, WOT95]. SPLASH-2X [ZBBL16]. splline
[Ch90, CLC90]. Split
[ISJ04, FS92, God13, NKRL06].

Split-Issue [ISJ04]. split-stream [God13].
splitting [Ams83]. Sponge [HSW+11].

sponsored [Pat91]. spontaneous
[TMW+01]. spot [Lee85b]. spots
[MTG99, MTN+00]. spreading [CWS06].

Spring [IEE77]. Springer [Ber91c].

Springer-Verlag [Ber91c]. Sprinting
[FZL16, RES+13]. SPTF [LG04]. SPUR
[Pat87, THL+86, WK89]. square [KS84b].

squared [YCT05]. squares [KPK98].

squash [MK12]. squashes [AT11].
squashing [SD94]. SRAM
[Mac96, SZBP08, kSYH9+11]. SSD
[ES+A7+17, JCSK14]. SSDs [DJ09]. SSI
[HC99]. SSMT [CSK+99]. stabilization
[SD09]. STABILIZER [CB13]. Stack
[Yue99b, Ahn93, DM82, Gra91, HS85a,
HHA83, KKC92, MW98, Mye77, SM77,
SW87, Won89, YK05]. stack-oriented
[Gre91, Mye77, SM77].

Stacked
[Loh80, THEK16, GCC+14, JVF13,
MDS+11, SLSO13, Tad13]. Stacked
[THEK16, KDS+06, UMB+11]. Stacks
[ZBBL16, Bak94, DESE13, Kec78a, Kec78b,
Kec79a]. STAG [VRV+14]. Stage
[YCR+17, HBJ+02, Kuh80, LH86b,
YMST07, YA90]. Staged [ACS+12].

Stallings [Mad94b]. Standard
[Dik90, Ste80, Don83, Don85, Don88, Don90,
Don92, Wil91]. standardization [Bet73].

standards [BI12, Mad94b]. Stanford
[KOH+94, Kus98, KOH+98, SWG92].

STARLET [GB74]. Startup [HS06].

Starvation [WS07]. Starvation-free
[WS07]. State
[Jon08, VSST16, ANHN95, CME+12, CS13a,
CF82, DGY89, DJ09, Gur94, Har78, JWK12,
JCS+14, MMS14, RFS88, SC01, Sta89,
WHG07, YL84, ZWS14, ZSHG07].

state-of-the-art [YL84]. State-space
[Jon08]. stateless [CGJ02]. statements
[BG84]. states [IMK+13, LDK14]. Static
[BNE16, FXZ+17, MBS16, SBZ+15,
SYXH16, WHZ+17, Bur82, CFRS99, GcC84,
HP86, KBD+13, LJ90, LRM90, R04,
SLH90, TMW+13]. Static-Dynamic
[SBZ+15]. static-scheduling [LRHM90].
static/dynamic [TMW+13]. Statically
[SBZ+15, ACM02b, KMT91].

statically-code-scheduled [KMT91].

Statistical
[EB5+04, AS14, HC04, MYP+16, OCF00,
RCM+12, TJCC88, WWFH03, ZM16].
statistically [CB13]. status
[Hug82, WLY84]. stay [KWF08]. steady
[Gur94]. stealing
[Fax86, MA14, RL14, TBW16]. Stealth
[CS06]. steep [LSN14]. Stencil
[OSF+15, SOD+14, SWY10, SYH11]. step
[MKM+83, Wan93]. Stephen [iva91].

Steven [Tab95]. Stevens [Mad94a]. still
[May82]. STING [LC96]. Stochastic
[RLD+17, DFRO17, SKCY16, SSA13, Rid87].

Stockholm [IEE83]. Stone
[FS72a, Sch88, Lan76]. stop [GT13].

stop-the-world [GT13]. Storage
[BLG+16, GAAD+05, GSCM16, HCJC06,
JSCM17, Par88a, RP99, Thio10a, ABC07,
CS13a, Cop78, DBP+04, FM76, HJ86, HL89,
Hea76, HKB80, JCSK14, KMT91,
KBC+00, Kum87, Lan77, Lee88, LG04,
NNS+90, OLJ+14, SGNG00, SLcC12, SADAD02, SP87, Tho09a, TT82, Tri80, Wei89, YJE11, ZBJ+02. **Storage-efficient** [HCJC06]. **Storageless** [TS99]. **Store** [AM06, GAR+05, TVL05, CE98, DET00, HG86, HR09, Kee78a, LL00, LSY+14, PC90, PC98b, PC98a, SRE+07, WAFM07, Rot05]. **store-to-store** [Kee78a]. **store-wait-free** [WAFM07]. **Stores** [SK86, GSU11, GWSU12]. **stores** [GCG+14, LL02]. **strands** [CP11]. **strata** [NPC06]. **Strategies** [ANS+15, FP90, BA82, GS95, KDJ83, Prz90, RR77, SM98b, SM98e, VGX17]. **strategy** [BEH91a, Dev93, ELN89, Wan93, dRBC93]. **stratified** [ATT+13, SBS01]. **Stream** [ADK+04, DC09, HCC+06, NGAS17, SKN+15, BYP+91, Dav80a, FKBS11, God13, GKT+02, GTA06, HSW+11, LLC06, MIT89, PC98a, PK94, RL74a, RG09, SKC+03, WS91, YXY+07]. **Stream-Dataflow** [NGAS17]. **stream/Multiple** [MIT89]. **streamed** [SKS+13]. **Streaming** [Mac98, SWA+06, VGX17, WSH+05, BCDL07, BD91, GSM+99, HSW+10, SYH11, SWAF09, VF09, Waj92]. **streaming-array** [SYH11]. **Streamlining** [APS95]. **StreamRay** [RGD09]. **streams** [CDP83, CL09, GCTR08, ZFC+03, TLM+04]. **Streamware** [GCTR08]. **strength** [AWC+11]. **STREX** [ATT+13]. **strict** [KS14, TOL+11]. **strike** [ZFC03]. **strikes** [VLL+92]. **String** [Cop78, TS05, ACF05, TYNM86, Vin77]. **stripped** [CP90, KDS02]. **striping** [DS89, HASA14]. **stripped** [HM05]. **Strober** [KIC+16]. **strong** [MTC+16, NSQ16]. **Strongly** [BNZ08]. **Strongly-Atomic** [BNZ08]. **Structural** [Bw79, JS73, Muc80, BEH91a, Fen84, HG86, HHA83, JS88, KBK02, KTS+13, MSB+2, Mat78, Now87, PNB83, TT82]. **Structured** [An81, Bou75, PT83, Ram78, CFS+12, Hil83, Kan74, KB80, KKK76, Laf95, LM74, Lof74, SA86, Ter87, Van81, VHL73, WR84]. **Structures** [BRC+05, CSBA17a, DGT15, All76, BS76, BS09b, DG92, FW82, Gau85, HM93, Hom82, Klu76, Lec74, RS99, SK86, SDFP85, SP07, Iva91, Tak88]. **Structuring** [Goo88a, Hic77b]. **struggles** [RRT+08]. **STT** [GIS10, GGP+13, MDS+11]. **STT-MRAM** [GIS10, GGP+13]. **STT-RAM** [MDS+11]. **students** [Muk97]. **Studies** [EBS+04, BC90b, DDP85, FDS87, GKZ+07]. **Study** [AOM+14, CTHVV+15, LSB15, ZAI+16, BAC+98, BCDN87, BD93b, CBJ92, CB94a, CY96, Con88, CDK+94, DCW+11, DI90, FTP94, FAK+12, GTSS13, KS02a, KW13, KDK+14, KM74, KDL+93, KDL+98, KBD+13, LZ93, LJK+13, LPS08, MSB+02, RB89, RB90, Red92, SL88, SG04, SG38, Smi98b, Smi98e, TNY11, TA76, UC94, VSH91, Wah83, WS87, WSE82, ZB92]. **Studying** [WZY13]. **style** [AL83, CLM07, Lip76]. **Sub** [CASM06, CCS87, ZW14, ZHW16]. **sub-core** [ZW14, ZHW16]. **sub-micron** [CCS87]. **Sub-Threads** [CASM06]. **subarray** [KSL+12]. **subarray-level** [KSL+12]. **subclass** [Joe90]. **subdivision** [MTS10]. **subject** [Tri80]. **submicron** [VBS05]. **subordinate** [CSK+99, CTYP02]. **Subroutine** [WH07, KE91]. **subscript** [KPK90]. **Subsetting** [PJJ07b]. **substitution** [LH88]. **substrate** [DRC05, ELMP10]. **subsume** [Nik89]. **subsystem** [ACK94, BBH94, CP94+96, Dug83, HM89, TM+11]. **subsystems** [Jag80, Kat89, Yom92]. **Subthreshold** **[NZ6+05]**. **Subthreshold-Voltage** **[NZ6+05]**. **Suggested** [Gil80]. **suitable** [Roe85, SP84]. **Suite** [ZBBL16, BO01, Hen07c, Joh04, PJJ07a, PJJ07b, PL06, YLT06]. **Suites**
sum [LLC98]. sum-addressed [LLC98]. Summary [HG88, HK77, Kav81]. Summer [DK17]. Sun [CCE+09, KKC+22]. Super [WJZY15, FB92, ST03]. super- scalar [FB92]. Supercomputer [Che90, CKPK90, McD88, ASK85, BDW85, DR91, NBK95]. Supercomputer-based [Che90]. supercomputers [HS93, KS86, SL92, VSM+07a, VSM+07b, WS84, WS87]. Supercomputing [Gur94, Hey90, NNS+90, VFK+04]. superimposed [AR80]. superlattice [BTS+11]. Superoptimization [CSBA17b, PTBD16, SSA13]. Superoptimizer [Mas87]. superoptimizers [BA06]. superpage [ROKB95]. superpages [SSC98]. superpipelined [Jou88, JW89, SD94]. Superscalar [Jou88, KS04, CYL99, CWS+11, DSF+90, HKLS00, IT93, JW89, JSL95, KMT91, LcC92, LKB91, NNN+91, OWCL90, PJS97, SNN99, SLH90, SF91, Sur07, TA03, UH93, VM97, WOR96]. supplant [Woo14]. supplementary [Tho12a]. supply [PV03]. Support [ADB+15, CRW+15, CSGT17, DHR+15, GSL17, HFL03, Hic17, JPL08, KKK+17, LER+17, Ozt15, Ram88, SDO8, SA15, WYM+17, ZQL+04, AR83, ADT13, AA82, ALE90, BCL82, BLS99, BFS7, BD84, BMA00, BCD89, CMF+13, CL09, CL87, CS99, CZ14, CFS+12, CY96, CMT00, CHcmWH00, CSS+91, CR94, DF92, DHB89, DBM208, DMB87b, ESCB12, FSC76, FH76, GSR93, Gra84, GKB+13, HTCU10, HM93, Hi93, HH93, HIM89, JDL81, Jof82, KC95, KFM05, KS95, KHN07, Lec74, LCS10a, MJW11, MSI82, MW07, MMH+95, MH07, MdC77, MW12, MDS12b, MTG+99, MBK90, Mui89, New92b, New92a, OPZ11, PS12, PQc+09, PHB14, PZT02, RSV87, RSF11, RGG82, RGP82, RPW96, Ris76, Roc94, Roo89, SMB10, SYK10, SV06, SLLG05, SHI92, SLK05, SMN+11, SG94, SF200, Sos94, Sta89]. support [ST08, SAK13, SS86, SL12, Tab10, TML+00, TP90, VCK+12, WK08, WDA+08, W82, Yue99a, ZYL05, ZR14]. supported [MPP+08]. Supporting [BCC+90, EW16, MSS+15, MCN+17, MBM+06, PCH+82, WK89, BHT8, DG90, Dvo90, FMB+07, Hil81, Nak01, TKHP92, W81, ZWH16, ZSHG07]. Supports [AK81]. SUPRENUM [SH92]. surfer [TMW+01]. SurfNoC [WGO+13]. Surprise [SHP+16]. Survey [Ber91c, G814, Tho89, CnWH91, G888]. Surviving [LDSC08, PM11]. sustained [BCD12, DK89]. SVP [JLZ09]. SVW [Rot05]. SW [FJB85, JM88, PB82]. SW-banyahu [JN88]. SW-banyans [FJB85]. swapper [ATS14]. SWAR [CL09]. Sweden [IE83, AC01]. sweep [CH04]. switch [BDJ+11, DR91, Fra84a, Fra84b, LHL+89, MBLZ89, MM82, Spe97]. switch-based [SP97]. switch-level [Fra86]. switchable [CHZ+14]. Switched [RL74a, DS85, DR91, KMS+12]. Switcherland [EC09]. switches [ECP96, Kni91, MB91, TF88, YA90]. Switching [HL15, KDJ83, CH84, LIW84, LIW82, PM92, SD95, TGS14]. swizzling [W91]. SX [Fat90]. SX-2 [Fat90]. SXA [Ter87]. sylvan [Bur84]. symbiosis [EE10b]. Symbiotic [ST00]. symbol [Lal73, RO74]. SYMBOL-2R [RO74]. symbolic [BKC14, CHWY13, GD89, H87, HF88, Kie87, LH88, OC00]. Symbolics [Moo80]. symmetric [AAD90, BMA00, KB92, MDS01]. symmetric-key [BMA00]. symmetrical [Maz77]. symmetry [TS90b]. Symposium [AC80, AC89, AC91, AC93a, AC95, ACM96, ACM97, ACM98a, ACM00, ACM01, ACM02a, ACM04, IEE76, IEE77, IEE79, IEE81, IEE82, IEE83, IEE84, IEE85, IEE87, IEE90, IEE92, IEE94, IEE99, IEE03, IEE05, IEE06, JDL81, Kin75, LS73,
 SYNAPS E [NI85].
 SYNCHRONIZATION [ACAAT16, AK16, GMT16, LR90, MCS91, MA15, OCY15, PG16, SA15, ZSHG07, AC89, BD86, CSY90, DESE13, GVW89, GS80, Gup89, Hic76, KBG97, LAS85, MT02, MTPT12, MPSV06, MBVS97, RP85, SGC05, SY89, TYZ90].
 synchronization-induced [MTPT12].
 Synchronized [LNA08].
 synchronizer [CG92].
 Synchronizing [FK83, SJ88].
 synchronous [BCD89, IM02].
 Synchroscalar [ORS04].
 SynFull [BJ14].
 synonym [PHH16a, PHH16b].
 Synopsis [Tsa16].
 Synthesis [DH16, LII16, LWPG17, MEB15, PP92, SOD14, EG97, Gas88, Kin83, LS12b, MPH12, Qui84].
synthesizable [CWS11].
 synthesizer [OUY13].
 Synthesizing [NP11].
 synthetic [BJ14, PBL90].
 System [AHC16, AOM14, AVN16, BLC16, BKL16, Buc78, Chr77, DKG15, FL76, HTM05, HSW00, HCL15, KDL16, LHM15, MAHK16, NMS14, VSM08, WHZ17, ZYMS15, AA84, AIO11, AS91b, ACC90, And73, And90, ALBL91, APT90, AFGM10, Afm93, AJC88, BBFP06, BGB98, Bar82, BLAA99, BBZ88, BCL82, BAD10, BR90, BAC08, BC02, BR292, CDP82, CDP83, CJM77, CS13b, CO03, CZ14, CZZ90, CSSP87, Che92, CS11b, CLS73, CBF93, Cra85, CJO1, CK00, DSG11, Dav80a, Dav14, DLSW76, D89, DI90, DJ09, DP76, DPB77, FCJV97, FR89, FSC76, FSS09, FR87, FSS76, Gao93, GP88, GMC09, GSS12b, GA79, GYCS96, GPV04, Gra91, GKN80, HW77, HAO86, Hai87, HFL03, HHA83, HSW7, HKD11, HKD13, HBI13, HKM02, HSS12, ICT85, JS73, KONA82, KTO12, KM86, Kor74].
 system [KRM83, KW11, KDL93, KDL98, KKK76, Lao84, Law76, LL88, Lee73, LC82, LP91, LJS02, LRS08, LWZ14, LR77, LNEHR11, LN92, LC96, MK84, MS12, MM83, Mar82, MTC07, MYB89, MIO10, MF76, NH12, NSI94, NDZ10, NI85, NOK83, OQ91, PS12, PBL90, Pou77, QSR09, QFMMK10, RRP07, RS11, RM77, Rod92, REL00, RR04, RO74, Roc94, Rod85, RZ80, Rui86, SB05, Sat74, SK83, SYL13, SSDK84, SFKW13, SLcC12, SGS11, SG95, SW74, SC05, SLS14, TA83, TS90b, TA76, TOL11, TP90, Van81, VFCM13, V94, VYK98, WGT05, WDA08, Wil78, WO89, Woo14, WDG16, XBH03, YKA96, YJSE12, ZELV02, ZYGP09, ZRZ14, ZLZZ09, Ber80, Cal74, CCS87, Dug83, HO91, HNS77, MPSB87, Mo83, NI85].
 System-Level [AOM14, BBFP06, SLS14].
 System/370 [CCS87, Dug83, MPSB87].
 System/38 [Ber80].
 System/6000 [HO91].
 Systematic [GZuRC13, Jon82, VGNL89, Mar38b].
 Systems [ANS15, ABC94, BNE16, CHLS16, DK16, G6h14, HVML04, Hii91, KKL17, Koa05, LLL16, Lev92, LLI17, MSH15, MM08, Ozt15, RCV05, SHP16, SAA17, SDB15, SGM15, WHZ17, YVVCB17, Z6E16, ABR01, Adl73, AHMN91, ARJS07, AJH12, ASP03, ACS12, Avi83, BCG14, BA84, BS73, BBFP06, BFGP06, BF07, BS10, BF73, BSSM08, BBJ08, BLS99, BF87, Bra77, Bra07b, BB74, BK90, COH11, CLC12, CSY90, Che90, CGL08, CG92, CKS16, CKC11, CS80b, CBK12, CBC08, CDA14, CHWY13, CRM91, DFF13, DI86, DZZ14, DSH10, Ebe02, ELMP10, ELMP11, Est02, EST89, GS290, Gau85, GCN10, GKT13, GL73, GL89a, Gra84, GFNW86, HUTC10, HWI11, HCG06, HS73, Hii13, HPF86, Hoo77, HEK16, HX97, HBCG13, ISL96, ICN10, IH80, Is74, JDS88, JCSK14, KTM91, KDMP92, Kha99a].
 systems [Kha99b, Kha99c, Kin83, KOB88, KMS10, KR80, KB80, KKH11, Lee88, LAK09, LAS07, LZZ07, LCW08, Lip98, LN92, LG04, LRHM90, MMR13, MLC09, Mal80, MP86, MPS89, MSSZ76, MPS06, MAL01,
MHhK+13, MMAS08, NUMS94, NP95, OIA+13, OLJ+14, Oya89, PQC+09, PBC+13, PGSP00, PIA13, PL06, PP92, RW09, RPASA97, RCC05, RR04, Rsc85, RBS07, Ros06, SBF02, SFS04, Sal76, SK13, SGN00, SL93, STV94, Sma89, SF91, SPA+98, SKS88, Sta89, SMZ94, SMRT85, ST77, SPP97, TASS99, Tho09a, TL11, TBL12, UMB+11, UMB+12, VSP01, VGSS85, WS07, WE74, WCS08, XT96, YPDS81, YK94, YJE91, ZVN03, vT88, vIG80, Ant91, Ber91c, Fos93b, JWB93, JWB94, KSN07a, Ram88. **Systolic** [TW91, BCC+90, CH85, DV87b, FKMD83, HS85c, Kun88, Mel85, NLV86, Qui84, VGNL89, nZY84].

T [Zho16, BMM14, ACK+95, NPA92].

T.Node [All92].

T3D [KC95].

T9000 [LR93].

Tabak [Ber91b, Kri91].

Table [BCR10, BE03, HH93, JW97, KE91].

Tables [Ree82].

Tablets [CZG+15].

Table**c** [TW91, BCC+90, CH85, DV87b, FKMD83, HS85c, Kuo88, Mel85, NLV86, Qui84, VGNL89, nZY84].

Taxonomy [LLLG16, Avi83, GHz3, Joh88, Smo89, TH76].

TCB [MPP+08].

TCC [HCW+04].

TCgen [Bur06].

TCI [AZRRA07].

TCP [Mad94a, BSR06, LCL+16].

TCP/IP [Mad94a].

TCP/IP [BSR06].

team [CR94].

Technical [Ful91a, GA79, CR94].

Technique [AK16, ASH86, AP93, CFS99, FP91a, HSS94, IBC12, Jag80, Kee79b, Kha97b, LN07, Lan77, LSS85, MPSV06, PV03, RD01, SFS04, SG11, UZ00, VLS87, WSY95].

Techniques [DM06, Mon98, MKP05, WEMR04, ZH16, AA06, AC89, Arm74, BG+01, BR92a, CGB89, FKM+02, GSR93, GHG89, HL+07, KE91, LAM06, MP91, RGP82, RFS88, Ria80, TYZ90, Tn78, WSY7, YER99, Ful91b].

technological [AD98, FBH02].

Technologies [Kni91, LN07, NK01, WLZ+09].

Technology [Ant91, Bre10, Emm06, Her06, IEE83, KDA08, PAD16, VSM+08, ZAI+16, BJ78, DKL89, RPS88, Ria80, TYZ90, Tn78, WSY7, YER99, Ful91b].

Technology-Driven [KDA08].

Teenage [Bar11].

Telecommunicators [Dre94].

telecommuters [Dre94].

Telescope [NN11, NNS12, telling [KZ12]].

temperamental [NaR07].

Temperature [GB15, SSH+03, WMW09, HCG+06].

Temperature- [GB15].

Temperature-aware [SSH+03].

Temperature-constrained [WMW09].

Tempest [RLW94, RLW98a, RLW98b].

template [CWS+11, FAYA87].

Temporal [CWD+06, PG04, WHS+05, NMT10, SWAF09].

Temporally [L02, MA15].

temporary [SP87], Ten [Ye09, PTS+11].

Tensor [JYP+17].

Tera [ACC+09].

term [AJL14, CS11a].

terminal [CJM77].

terms [PSB13].

Terri [Ful91a].

Test [LWP17, YHF03, CCV+09, GH90, GKN80].
KPK90, MBL98. test-and-test-and-set [GH90]. Testability [SV05]. testbed [RES93]. testing [DRC05, PPZ96, SGB00, SzUK+04, ZMT16]. tests [MMP+12]. TETRIS [GPY17]. Texas [Kin75, IEE82]. Text [BNT78, CL09, Rob78, TW91]. Textbook [Su74]. textual [BTW77]. texture [CBS98, HG97]. their [BSF+91, Cra88, Jai82, OC78, PLZ90, RFK88, RAJ00, SPP97, SS86, VM88]. them [KBG97, KDK+14, LWLZ12]. theorem [Gao93]. theoretic [Nik09]. Theory [ED17, MPM14, Sov83, XDLB13]. There [PAY+17]. Thermal [DM06, GSN05, LZZ+07, BTS+11, MMNB07, MMR10]. Thermally [KWY+17]. Thermally-Aware [KWY+17]. Thermogater [KWY+17]. Thermostat [AW17a]. Thin [LMS+13]. Things [CLF+17]. third [IEEE86]. thorough [KSLE16]. thoughts [Sho80]. thousand [SK13]. thousand-core [SK13]. Thread [Bet73, BM09a, FURM00, KBH+04, PR05, RWW09, SKS+92, BDMF10, CSM+05, DG99, EE09, EE14, GJT+11, GP08, HK90, JKN+13, KDM+98, MLC+09, MTO2, PT03, SBM09, SLTO2, SCZM00, TE94, YKL+16, LWR10]. Thread-based [SKS+92]. Thread-level [FURM00, BDMF10, DG99, EE14, HK90, MTO2, PT03, SCZM00, YKL+16]. Threaded [WCT98, cC91, CSS+91, HS13, KHP+95, LBvH06, MLCW11, OA08, RKM+10, SQP08, VIA+05, Wli98, YZ07b, ZdKL+13]. Threading [BFA+15, CCE+09, MLC+09, RR06, SQP08, kSYHX+11, CH04]. Threads [CTTC06, CASM06, CPT08, DESE13, HKT93, HKN+92, KST11, LWR10, LPH+09, OL02, WCW+04, ZCSM02]. Three [PAD16, RFK88, SM14, AZ89, DD90, ES74, Lai92, LSFK08, Teo90]. Three-Dimensional [PAD16, RFK88, ES74]. three-port [AZ89]. three-port/three-access [AZ89]. Thresholding [THNM14]. Throttling [AGS05, ELMP10]. Throughput [BTC06, MCK16, SAL+05, SN05, TS05, TP15, AFGM10, CG95b, CHK+12, CDS+14, FP91b, GJT+11, HCV03, HS13, yKPR02, KSN07b, LKC+10, PD76, PD98, Pat98b, SL92, SVC03, VFCM13, WBKR13, YJE11]. throughput-oriented [HS13]. Thuburn [MIL77b]. thwarting [WL07]. TickerTAIP [CLVV93]. TIDBITS [HRDA85]. tiered [AW17a, UMB+12]. Tightly [KBH14, ALE90, Brie87b, Mar85, NI85, SKS+13, SJ88, YMB00]. tightly-coupled [ALE90, Mar85, NI85, SKS+13, YMB00]. Tile [ORS+04, TYSSK11]. Tile-Based [ORS+04]. Tiled [RL17, SMP+06, ZA05, MSP+06, New92b, New92a, SKC+03]. Tiles [WDW10]. Time [Fuj91, HS06, MCG17, SGS08, Wra91, AB01, AV10, ASP+03, Bat72, CLC12, CTW+13, CG92, CJJ99, DP76, DPB77, ELN89, FF73, FHM+11, FTG88, GP13, GH76, GWM03, HANN96, HBII13, HRDA85, HWD95, Jeng74, Jinh10, KD92, KL02, KPH96, LKY+00, LYBC88, LJK+13, LRM90, Mal82, Mal94, MAL01, Mul89, NMS+00, PQC+09, PRP09, RB00, RHS06, Rid87, RD01, Ro98, SIG98, See89a, See89b, SA88a, SA91, SBS09, SKS88, TRA91, Thn76, THNM14, TP90, Wli91, YRX06, YM11, YFP07, YMX+10, Zwi16, dRBC93]. time-constrained [CG92]. time-delay [HRDA85]. Time-sequenced [Wra91]. time/space [FHM+11]. timebombs [CWdO+06]. Timed [Zub80, DGY89, Now87]. Timekeeping [HKM02, MDS12a]. Timely [YXR06, LF00]. times [May82, QFJL12, SM89, TLD14]. Timestamp [MSA+00]. Timetraveler [VAV10]. TimeWarP [MDS12a]. Timing [GW73, ZWSM15, Adf95, CKS16, HFJ11,
ISGS07, KCE12, PS77, PS98c, SP98a, YLHL10. timing-aware [HFJ11].
timing-error [KCE12]. Timing-Sensitive [ZWSM15]. tiny [LC02]. title [Rat85]. TLB
[BM10, CBJ92, GBHS14, KS02a, PHJH17, ROKB95, RGSJ17, SD00, ST03, SSC98,
TDF90]. TLBs [NUS93]. TLP [SNL03]. TSync [OPZ11]. TM [Feu82, LCF14].
TMC [KC95]. together [LWRC10]. Token [MHW03, Lip77a, PC90, PC98b, PC98a,
SA87, TTCM12]. token-store [PC90, PC98b, PC98a]. TokenTM [BGH08]. Tokyo [IEE86].
Tolerance [SV05, AA86, Ann91, Avi83, Con88, CP11, HBTL11, KRS13, KW84, KR80,
MS82, MT510, PBGM09, RRP06, SH80, SPR00]. Tolerant [GAR05, IWB08, PGVB04,
AGSY94, BSD87, DDDY95, FCP92, FF73, FY82, GKN80, KLC94, KR85b, LS82,
LIW82, Mar85, MC93, MGBK96, PA73, PJD06, SKB09, Tem12, TY25, VBS05, WL88,
WIPK09]. tolerate [TST07].
Tolerating [ABC97, CASM06, Luk01, QD99, XYM12, BBBM04, GHG91, LKL02, NKQ13].
TOM [HEK99]. Tomasulo [EKEL01].
tomography [MAS08]. too [Bra80a].
Tool [HLL93, TAM08, BA97, Bur06, Cor89, GBHS14, SSS05, JK13, Man01b,
Man01a, MSSZ76, NMS90, PPZ06, Sch89].
tools [ASK85, HS74, Spr07, Srio1]. toolset
[BBJ08, MSB05]. top [HS85a, PBWH11, SW87]. top-of-stack [HS85a]. Topic [LCC98]. topics [Sm86].
Topologies [PDL15, KMA12]. Topology [KDSA08, KDA07, Tze90]. Toronto [ACM91].
Torte [Dik90]. torus [HW91, SDGT03]. Totally [CM12].
touch [LF00]. TP [CB94]. TPC [JHK16].
Trace [BK90, GCJ17, JS00, LHM+15, BJ03, BRS99, Bur06, CNO+87, HIW+11,
HB90, Kha95a, Kha97b, KEL91, KSA03, LSSG05, PEP98, RGB00, RSY06, TF01].
trace-based [HIW11]. Trace-driven [BKB90, Kha95a, KEL91, LSSG05].
trace-level [KSA03]. Traces
[RAM94, St08, ASH86, BKW90, OQ91, RF96, YHZX14]. Tracking
[Kha99d, JK13, RGD09]. Tracker
[LYMY16]. Tracking [CLS05, CWY08, YSCC16, BYG00, JOW02, SCC03,
SLD04, TWM94, ZPS94, uAM16].
Trade [NLS88, SPM06, BDA03, CM80, MS07, SEI95]. trade-off [BDA03, CM80].
Trade-offs [NLS88, SPM06, MS07, SEI95]. tradeoff
[CS02, CS94, Ino05, MHS93, YJE11].
Tradeoffs [CMM06, JW94, SV89, TKHP92, AML10, CH87, CGL89, DMB87b, FJ94, HBJ82,
Jou89, JOW02, LGH92, LA99, SFRK06, RCL73, Ran85, Reg76, SFK02, SLSN14].

delivered as [NLS88, SPM06, BS07, SEI95].
tradeoff
[CS02, CS94, Ino05, MHS93, YJE11].
Tradeoffs [CMM06, JW94, SV89, TKHP92, AML10, CH87, CGL89, DMB87b, FJ94, HBJ82,
Jou89, JOW02, LGH92, LA99, SFRK06, RCL73, Ran85, Reg76, SFK02, SLSN14].

Tradeoffs [CMM06, JW94, SV89, TKHP92, AML10, CH87, CGL89, DMB87b, FJ94, HBJ82,
Jou89, JOW02, LGH92, LA99, SFRK06, RCL73, Ran85, Reg76, SFK02, SLSN14].

traditional [SKC12]. Traffic
[FFF13, JM88, BJ14, CTW13, Goo83, GH86, Goo98a, Goo98b, KMS12, VGNV05,
ZW16]. training [GS07, YP98b].
transaction
[ATT13, DI68, HC85, RGA91].
Transaction [BNA08, BGG08, CP17, DDK16, HMC94, HM93, MS15,
MCC06a, NP17, RG02, RHL05, SSM08, ZL116, BDLM07, BRM10, BMV97,
CMF13, COH11, CNV06, CMM06, DCW11, DFL06, DLN09, FMB97,
HCW04, LCF14, MTC97, MBM96, RRR97, SSH07, Tab10, VTS12, WS07].
Transactionizing [RVL14].
Transactions [BGG08, KPS16, LHC17, MG17, QST14, RK10].
Transfer
[HCL15, BS73, HS74, KD06, MS07].
Transfer-Aware [HCL15]. transfers
[DJT94, Hum96, Lip77a]. Transform
[HS86, NNS12, nZY84]. transformation
[DJP16, KRC84, MCC05, SV06].
Transformations
Transformer [Sch83]. transforming [KSCE16].

Transient [GSVP03, GV05, RM00, VPC02, HANR12, YZ07a]. Transient-Fault [GV05, GSVVP03, VPC02].

transients [PM92]. transistors [FTP94]. transit [CKA09, Mac98].

transitive [XHB06]. translation-aware [RLS10]. Translation-Triggered [Bha17]. Translator [KMK16, SSB07, UC01].

transmission [CHK+12, OPZ11, RL74b]. Transformed [Lyx96].

Transparent [AZRRA07, CBC+05, HEK+16, KP05, VNN13, AW17a, BMW09, LLZ+13, ST03].

transputer [LR93, OQ91, WS85]. transputer-networks [OQ91].

transputers [Hey90]. Trap [BKS005, KKN00, YXR06]. TRAP-Array [YXR06]. traps [QD99].

Traversing [Klu76]. Treadmill [ZMMT16]. Treasurer [Dic80].

tree [BTRS05, JPL08, WN14, BLL+83, Klu76, LŠf74, RP99, SS89, PT83].

trees [CKZ12]. Trends [McD77, BJ78, Dor82, LB08]. Trew [Ber91c].

Tri [SYL13]. Tri-level-cell [SYL13]. TriCheck [TML+17]. tridiagonal [MDS011].

Triebel [Fu91b]. Triggered [Bha17, PPA+13]. Triggering [EW16].

trigonometric [dDIS13]. Trimmed [VGX17]. triple [CS11a, MS12, JCSK14].

Triple-A [JCSK14]. triple-base [MS12].

TRIPS [GMC+09, SNL+03]. Trisection [TML+17]. Trojan [BCG14]. truce [Mas04].

True [MMT16]. Trusted [AWSS17, KDL+16, KDP02, SRSW14, ZYLG05].

trustzone [SRSW14]. Truth [MJP95].

TSO [DMT13, MA14, MA15, RCAK17, WW13]. TSO-preserving [WW13].

TSO-Atomicity [WW13]. TSOtoll [HVML04]. Tsunami [SKN+15]. TUKI [FG83].

Tuning [MRH+16, AAM76, CSW94, DI91, LPH+09, SG94]. Tunnel [HLW94]. Turing [La003]. turn [FHM+11, GN92, GN98, Ni98].

tutorial [SGG+85]. Twice [HSS12]. TwinDrivers [MS09]. twisted [Rou86].

Two [AW17a, MPT91, PCC+08, SAL+05, Bha97, BSSM08, BKB90, BP+91, CG91, EPCP98, JW94, Kha99c, LH88, ON90, Sez93, SL88, Sta81, TKHP92, WBL89, WQL92, YL84, YP92, YP93, YP98a, YP98b, dRBC93].

Two-Dimensional [SAL+05, BSSM08, LH88, YL84].

Two-Level [PCC+08, BKB90, CG91, EPCP98, JW94, SL88, WBL89, YP92, YP98a, YP98b].

Two-Phase [dRBC93]. Two-tiered [AW17a]. two-way [Sez93, WQL92].

TxRace [ZLJ16]. type [BMM14, GSVZ90, Gil83, Sov83, SH87, WW89]. Typed [KKK+17].

types [Feu76, GB74, NYNT12, Sie77, ST08, WW89]. Typestate [GZC+11]. Typhoon [RLW94, RLW98a, RLW98b].

Ultra [CDY+17a, CDY+17b, HTM+05, SCP+06, CKS16, EKM04]. Ultra-low [CDY+17a, CDY+17b]. ultra-low-power [CKS16].

Unbounded [CNV+06, BDLM07].

Uncertain [Zho16, BMM14, BMM14]. uncommon [BDM07].

uncomputation [SV06]. Unconstrained [ANHN95].

unconventional [Kha95b]. uncorrectable
undefined [Ger80]. Underlying [YLP+17]. Underprovisioning [WGS+14]. Understanding [HQQ+10, ISL96, KS12, KZT05, LJS+02, LRS+08, LRc+08, MHitK+13, MMAS08, RRP06, DFO17, ZS00, HSS12]. Unidata [Ber76]. Unidirectional [Bos84]. Unification [Woo86, G8K1, SA86, Woo85, WO86, YMST07]. Uniform [Bay99, CS94, DP12, JBW89, LSY+14, PAMP96, PHB14, Ris76, Tak87]. Unify [Sov83, ABC97, DN93, KBK02, Qui84, SA92]. Unify [TGGS14, FW97]. Unikernels [MM+13]. Unintrusive [HDT+13]. Uniprocessor [CJ01, RTY+87]. Uniprocessors [EJK+96]. Unit [JYP+17, Woo86, BNA88, CRM91, GSS12a, GSS12b, HK89a, HS85c, MS13a, MS13b, MS13c, PS88, SKl92b, SKl92a, TH86, Woo85, WO86, WLP+14, YMHBO0]. Units [AWAG15, THEK16, JSL95, LZZ+16, Mat91b, Nad88b, PHB14, RR77, SP89, Sur07, WZL+16]. universal [Bra82a, FFW98]. universality [Sie77]. Universities [Tho10a, ABC+94]. University [Cha92, LS73, MFST88]. UNIX [AKB85, AKCB86, PVB17]. unknown [Par75]. unlimited [GXL12]. unnecessary [Tho10b]. unordered [SRE+07]. unorthodox [KDBA78]. unresolved [TY8+94]. Untrusted [KDL+16, CS13b, HKD+13]. update [GKT13, SLcC12]. update-aware [SLcC12]. update-intensive [SLcC12]. Updates [IKK16]. upon [Bra82b, RR77]. UPS [KZA+12]. USA [ACM93a, IEE03, IEE06]. Usability [WSC+14]. usable [TOL+11]. usage [AZ89, CW891, Dev90, MW98, Wie82]. usage-based [Dev90]. Use [BS04, DD90, DFKC17, NHH+17, SLS10, Sho87, ZJL17, BHT78, BB74, C1t03, CL82, Gc84, GH86, HCV03, HCB04, Kec7b, Kec79a, LC82, Maz77, NRRK50, Sez96, SS85, SHV+98, Wei97, YP93]. Use-Based [BS04]. used [Che90, LHL+89, MS13b]. useless [DSR+93]. Usenet [Tho90, Tho91a, Tho91b, Tho91c, Tho91d, Tho92a, Tho92b, Tho93a, Tho93b, Tho93c, Tho93d, Tho94b, Tho94c, Tho94d]. User [SOM+15, AL91, CME+12, FR89, GP76, MS82, MCD+08, Nak01, Par02, RLW94, RLW98a, RLW98b, SLT02, Tob80, TSK+83, TM80, ZYLG05]. user-defined [TM80]. user-level [Par02, RLW94, RLW98a, RLW98b, SLT02]. user-microprogrammable [TS+83]. user-perceived [MCD+08]. user-programmable [GP76]. uses [TPO06]. Using [AK00, BNZ08, BLS99, BNE16, CFRS99, CYY+88, CCEH00, CLR05, ECP96, GCJ17, Goo83, Goo98b, GSCM16, HVML04, Kar89, LNR+06, LWB08, MHS+03, MF05, MJM05, MH88, OCM+15, PAVT16, SCA13, SRSW14, SS89, SLFG06, STS17, SDLR+15, SLT02, SK10, SODS05, TM05, ZLJ16, AM76, AF95, ASH86, ADT13, AR80, AWAG15, AWC+11, BDH+99, CGS09, CTYP02, CG06, CE98, CKZ12, CHWY13, CB94b, DSG11, Das83, DW90, DOSF11, Don83, Don85, Don88, Don90, Don92, DESE13, EST89, Far05, FF4D00, FAYA87, G6Z90, GC11, GG92, GSS12b, GB01, GFM+11, GCTR08, HvDJL80, HJ86, HC04, HT15, HBHA02, HR07, HY85, HDP+90, JTE10, JPT14, JG97, KRS13, KST11, KF79, KS84a, KDM92, Kec78a, KPH+98, KDS+06, KM10, KG16, KMK16, KW98, LF00, LSSG05, LS12a, LS12b, LWLZ12]. using [MS13a, McD82a, McK74, MS80, MM14b, NN116, NPC06, OPZ11, PCL10, PGH+87, PT03, QR09, RBR02, RKM+10, RP99, RLC10, RLD+17, ROK95, RVLS14, SLP+09, SEI+95, SGS11, SSA13, SAA8b, SSC98, Tab10, TQC+15, TM14a, TPO06, TS10, TS99, VSH91, Van81, VKI+00, VPC02,
WP87, WMP07, WZL+16, WR84, WL10, ZRW05, ZLZZ09, ZZYZ09, ZS01, Goo98a. **UT1000** [Cor89]. **Utility** [JSMP13, JNaS+12]. **utility-aware** [JNaS+12]. **Utility-based** [JSMP13]. **Utilization** [CYMT16, CYG+17, KORA17, PPM17, CKDK91, CMB+13, RE13, YBM13]. utilizing [CS06b, KKN00]. **V** [KB76, QTP05]. **V-PMS** [KB76]. **V-Utility** [JSMP13, JNaS+12]. utility-aware [JNaS+12]. Utility-based [JSMP13]. Utilization [CYMT16, CYG+17, KORA17, PPM17, CKDK91, CMB+13, RE13, YBM13]. utilizing [CS06b, KKN00]. **V** [KB76, QTP05]. **V-PMS** [KB76]. **V-Utility** [JSMP13, JNaS+12]. utility-aware [JNaS+12]. Utility-based [JSMP13]. Utilization [CYMT16, CYG+17, KORA17, PPM17, CKDK91, CMB+13, RE13, YBM13]. utilizing [CS06b, KKN00]. **V** [KB76, QTP05]. **V-PMS** [KB76]. **V-Utility** [JSMP13, JNaS+12]. utility-aware [JNaS+12]. Utility-based [JSMP13]. Utilization [CYMT16, CYG+17, KORA17, PPM17, CKDK91, CMB+13, RE13, YBM13]. utilizing [CS06b, KKN00]. **V** [KB76, QTP05]. **V-PMS** [KB76]. **V-Utility** [JSMP13, JNaS+12]. utility-aware [JNaS+12]. Utility-based [JSMP13]. Utilization [CYMT16, CYG+17, KORA17, PPM17, CKDK91, CMB+13, RE13, YBM13]. utilizing [CS06b, KKN00]. **V** [KB76, QTP05]. **V-PMS** [KB76]. **V-Utility** [JSMP13, JNaS+12]. utility-aware [JNaS+12]. Utility-based [JSMP13]. Utilization [CYMT16, CYG+17, KORA17, PPM17, CKDK91, CMB+13, RE13, YBM13]. utilizing [CS06b, KKN00].
[PGB12]. Virtual [AZEE17, ASP+03, AL91, BLA+94, BLA+98a, Da90, EMZ+16, HS06, JPL08, MO07, MWM04, NLS07, YKL+16, AR83, AL74, BHS12, BGC+13, BLS99, BB74, CBS88, CWd0+06, Goo87, Goo88b, HW77, ISL96, JADAD06, KTMY91, KR13, KKC+16a, KPKJ07, LYK+00, LC02, Lip77b, LL14, LSS04, ML05, NOK+85, PHH16a, PHH16b, PGB12, PGSP00, RTY+87, RZ80, SKD+10, TlLC13, WBL89, WCW+04, WK08, WK89, BLA+98b, CDA14, Fuj91]. virtual-cache [KR13]. Virtual-Channel [MWM04, Da90]. virtual-real [WBL89]. virtual/real [KTMY91]. Virtualization [Her06, HSL17, KGS16, ZAI+16, AA06, BSMF08, CFG+13, CGL+08, CMM+06, DlL+16, GAH+12, IMK+13, KSR10, MBBS13, Ros06, SL12, WJG12]. virtualization-based [CGL+08]. Virtualized [CHM08, RGSJ17, YVCB17, YE10, AHJ12, ATS14, BSSM08, BM09c, KW13, KSR10, SA10, VNM+12]. Virtualizing [HR91, KKMH11, RHL05, WRS13, Kar07]. VISA [ASP+03, De90]. Vision [HLZ+15, LHC+16, RBH+03]. visual [HGS+07]. visualization [Che90]. visualizing [MMA08]. vivo [CKC11]. Viyojit [KBG+17]. VLII [ISJ04, AB92, CNO+87, DSF+90, FBF+00, NG99, Now87, PP03, WS91]. VLSI [Tak88, BKT87, BHS91, BLL+83, Bos84, CF82, CMPZ87, DR91, EP84, Ega82, FK83, FFK+82, FK80, FW82, FAH83, FAYA87, FY82, GM84, GHL+85, GKN80, HS85a, HS86, HIR86, HRDA85, H85c, KOB88, LN07, MS87, MS84, NNN+91, PM92, PGI+83, PS98b, Phi84, SP84, SA84, TYNM86, TF88, Tre80, TH82, WW12, Par90]. VM [KHS+97, LYK+00, NOK+85, YLP+99]. VM-based [KHS+97]. VM/4 [NOK+85]. VMP [CSB86, CGBG88, CGB89]. VMP-M [CGB89]. VMP-M/C [CGB89]. VMs [KKJ+13]. Voice [HLZ+15]. Vol [Fos72a, Lan90b, Mud80, Mad94a]. Volatile [AMH+16, YNZ15, ZYS15, CS11b, CCA+11, NMS+12, VJ95]. Volition [QTSQ13]. Volleyball [LHYM+16]. Voltage [BL17, KGY+17, LBW08, NZO+05, NY14, WGA+08, BT13, MSS+03, MTP12, PV03, WJMC04]. voltage/fluence [WJMC04]. Volume [Bow79, HC85]. VPC [KJM+07]. VRSync [MTP12]. vs [BCD87, BFAJ93, GKO+00, GH86, HHJ89, Jou88, KZC12, LKC+10, Mac98, MPH12, SSK+07, ScJLW01, WM16]. VSWapper [ATS14]. vulnerabilities [BCG14, SPS07]. Vulnerability [BRC+05, LABR08, Rot05, DMW12, NEEJ12, SK10, WHG07, YZ07a].

REFERENCES

[Laf04, May82, PTS+11]. yield
[Mus09b, WK09]. yin [CBGM12]. YO
[NK86]. York [Mil77a]. Yourself [AZEE17].
Yves [Cha92].

Ziria [SGM+15]. Zombie [ADS+13]. ZS [SDV+87]. ZS-1 [SDV+87]. ZSim [SK13].
Zynq [JLFM15].

References

[Ahuja:1982:MMA] Sudhir R. Ahuja and Abhaya Asthana. A multi-

(ACM), 0884-7495 (IEEE).

[Agrawal:1984:BHH] Keith Adams and Ole Age-

[Akagic:2011:HSC] Amila Akagić and Hide-
REFERENCES

Alpert:1990:PCL

Ashraf:1998:IRM

Annaratone:1986:WAI

Annaratone:1998:WAI

Adve:1991:CHS

Abd-Alla:1976:LAT

Anido:1989:TPT

REFERENCES

Archibald:1984:ESC

Anantharaman:1986:HAS

Abnous:1992:PBV

Allen:1994:RWR

Agarwal:1995:AMA

Alvarez:1997:TMF

Agarwal:1998:AMA

[ABC98] Anant Agarwal, Ricardo Bianchini, David Chaiken,

REFERENCES

REFERENCES

Alverson:1990:TCS

Almasi:2003:DCD

Aldwairi:2005:CSM

Arulraj:2013:PRS

Asthana:1994:EAM

Arpaci:1995:EEC

ACM:1980:CPA

REFERENCES

???? ISSN 0163-5964 (ACM), 0884-7495 (IEEE), 0149-7111.

[ACM95] ACM, editor. Proceedings, the 22nd Annual International
REFERENCES

ACM:1996:PAI

ACM:1997:AIS

ACM:1998:PAI

August:1998:IPS

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Ausavarungnirun:2012:SMS

Abandah:1998:EAT

Ahn:2004:EIS

Adler:1973:MCC

Agrawal:2015:ASD

Azevedo:2013:ZME

REFERENCES

REFERENCES

Aral:1989:EDP

Annavaram:2005:MAL

Allen:1994:AAR

Agarwal:2011:RSC

Adve:1990:WON

Adve:1998:RWO

Adve:1998:WON

IEEE Computer Society Order Number PR08491; IEEE Order Plan Catalog Number 98CB36235.

Andrus:2014:CNE

Amani:2016:CVH

Abdulla:2008:MCR

Agarwal:2000:CRV

Adve:1991:DDR

Arvind:1983:CMN

Aichinger:1992:FBP

Dennis Abts, Natalie D. Enright Jerger, John Kim, Dan Gibson, and Mikko H. Lipasti.

Arulraj:2014:LST

Arvind:1981:MPD

Aydin:2000:UCL

Altman:2001:WBT

Altman:2001:WWB

Asgharimoghaddam:2016:SPE

Akturk:2017:AAA

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

REFERENCES

Albonesi:1998:DIC

Anderson:1991:IAO

Alkalaj:1990:ASM

Agarwal:1990:APA

Allen:1976:CCS

Allen:1992:BRC

Abramovici:1982:LSM

Alverson:1993:BRH

REFERENCES

REFERENCES

Anonymous:1981:ESM

Anonymous:1982:LA

Anonymous:1989:PTD

Anonymous:1999:MSF

Anonymous:2004:AI

Anonymous:2004:C

Anonymous:2004:GCC

Anonymous:2004:PCM

Anonymous:2004:Ra

Anonymous:2005:AI

REFERENCES

Anonymous:2005:C

Anonymous:2005:GCM

Anonymous:2005:MW

Anonymous:2005:PCM

Anonymous:2005:R

Anonymous:2006:AI

Anonymous:2006:MGC

Anonymous:2006:MPC

Anonymous:2006:R

Anonymous:2006:SG
REFERENCES

[Anonymous:2008:AI]

[Anonymous:2008:CA]

[Anonymous:2008:MGC]

[Anonymous:2008:MPC]

[Anonymous:2008:PI]

[Anonymous:2008:R]

[Agarwal:2015:PPS]

[Anthony:1991:BRT]

[Ando:2014:CSF]
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Arelakis:2014:SSC

Agarwal:1986:ANT

Agarwal:1988:EDS

Agarwal:1998:EDS

Abu-Sufah:1985:PPT

Aslam:1984:MDC

August:1999:PDL

Anantaraman:2003:VSA

Ajay:2017:GIL

Assmann:1993:RPA

Agarwal:2011:FIF

Amamiya:1986:IEL

Atkins:1979:RAC

Amit:2014:VMS

Atta:2013:SBI

Amin:2007:APA

Aupperle:1980:RIC

Ahmad:2010:JOI

Avizienis:1983:FTF

Asmussen:2016:MHO

Alameldeen:2004:ACC
REFERENCES

Agarwal:2017:TAT

Altaf:2017:LHL

Al-Wattar:2015:EMA

Alameldeen:2011:EEC

Angstadt:2016:RPP

Awad:2017:OLO

Anderson:1988:SNN
REFERENCES

Amano:1983:SSM

Alam:2017:DIY

Aweke:2016:ASB

Adams:1989:AIS

Al-Zawawi:2007:TCI

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

[Bat72] M. Bataille. Something old: the Gamma 60 the com-

[Binkert:2011:GS] Nathan Binkert, Bradford Beckmann, Gabriel Black,

Blaum:1994:EOS

Benker:1989:KKC

Bardine:2006:AEV

Alessandro Bardine, Alessio Bechini, Pierfrancesco Foglia, and Cosimo Antonio Prete.

Baylor:1994:PEM

Bhattacharyya:2008:ODT

Batson:1976:DDA

Beltrametti:1988:CMM

Bodin:1990:LOH

Bucher:1990:ACM

Bhandarkar:1991:PAC

Boppana:1993:CAW

Buonadonna:2002:QPI

Brifault:2004:DCM
REFERENCES

REFERENCES

Bose:1984:DIS

Bitar:1986:MCS

Benitez:1991:CGS

Barroso:1993:PCC

Boyd:1993:HPM

Balasubramonian:2001:DAP

Balasubramonian:2003:DMC

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Banescu:2010:MFP

Bilir:1999:MSN

Binkert:2011:ROF

Blundell:2007:MFC

Blake:2010:ETL

Beetem:1985:GS

Breen:2003:AAA

Kristopher C. Breen and Duncan G. Elliott. Aliasing and anti-aliasing in branch history table prediction. ACM
REFERENCES

Beckmann:1995:HPM

Beeler:1984:BBB

Bradlee:1991:ERP

Bradlee:1991:IRA

Burrows:2000:EFV

Benzie:1982:BRR

Berkling:1974:RLR

REFERENCES

October 1987. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Brochard:1990:DAH

Bhatotia:2015:ITL

Bunda:1993:BVB

Bartolini:2006:MPD

Bechini:2003:FGD

Bardine:2007:IPE

REFERENCES

[BGK96] Doug Burger, James R. Goodman, and Alain Kägi. Mem-

Barroso:2000:PSA

Branovic:2004:WCE

Bartolini:2001:PAC

Banerjee:1978:UDM

Beth:1991:RCI

Bhandarkar:1997:RVC

Bhattacharjee:2017:TTP

REFERENCES

Beivide:1987:OMC

Boyapati:2017:AND

Bilardi:1991:OVA

Basu:2012:RMR

Bhujade:1983:DAC

Bhuyan:1984:PLC

Bojnordi:2012:PPM

REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic). ISCA ’12 conference proceedings.

Bianchini:2017:IDE

Bic:1984:ELP

Bitar:1989:BRR

Bhandarkar:1978:STT

Bhargava:2003:IDC

Badr:2014:SST

Belhadj:2013:CRW

REFERENCES

[Bugge:1990:TDS] Häkon O. Bugge, Ernst H. Kristiansen, and Bjørn O.

REFERENCES

Beck:1987:VAM

Borg:1990:GAV

Blumrich:1994:VMM

Blumrich:1998:VMM

Blumrich:1998:RVM

Barua:1999:MCM

REFERENCES

[132] CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

[BMBW00] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe,

Boku:1988:IHP

Brown:2016:HBS

Burnim:2011:SCS

Bird:1978:TFI

R. M. Bird, J. B. Newsbaum, and J. L. Trefftzs. Text file in-

Baugh:2008:UHM

Bull:2001:MSO

Bond:2013:GDG

Bose:1984:UEC

Bella Bose. Unidirectional error correction/detection for
REFERENCES

REFERENCES

Bray:1977:DMR

Brakefield:1980:BAT

Brakefield:1980:PB

Brakefield:1982:JWO

Brakefield:1982:OSA

Brakefield:1982:TI

Biswas:2005:CAV

Brewer:1972:RDD

Brewer:2010:TDR

Eric A. Brewer. Technology for developing regions:
REFERENCES

REFERENCES

REFERENCES

Butts:2004:UBR

Balakrishnan:2006:PDD

Bengtsson:2008:DSA

Bairavasundaram:2004:XRN

Biswas:1987:CCS

Bolosky:1991:NPT

Beamer:2010:RAD

Scott Beamer, Chen Sun, Yong-Jin Kwon, Ajay Joshi, Christopher Batten, Vladimir Stojanović, and Krste Asanović. Re-architecting DRAM memory systems with monolithically integrated silicon photonics. *ACM SIGARCH*
REFERENCES

Ballapuram:2008:EAS

Burcea:2008:PV

Binkert:2006:INI

Bhargava:2008:ATD

Bush:1987:CSR

Baleanu:1989:ECC

Bacha:2013:DRV
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Culler:1988:RRD

Chaiken:1994:SEC

Chen:2009:SPP

Callan:1974:APS

Carlile:1996:IB

Colohan:2006:TDB

Chen:1994:PSS

Cvetanovic:1994:CAA

REFERENCES

Curtsinger:2013:SSS

Cox:2017:EAT

Clark:2005:AFT

Cox:2008:XEO

Corbett:1993:OVP

Cao:2012:YYP

Chen:1992:SBS

J. Bradley Chen, Anita Borg, and Norman P. Jouppi. A

Clark:1988:MVP

Campanoni:2014:HRA

Cooper-Balis:2012:BBM

Cheriton:1988:CCM

Cox:1998:MLT

Chiueh:1991:MTV

Crandall:2005:Sam

0163-5964 (ACM), 0884-7495 (IEEE).

Coburn:2011:NHM

Coons:2006:SPS

Castan:1988:MPG

Chaudhry:2009:SST

Chou:2000:UML

Chow:1987:HMA

Castro:2008:BBR

Miguel Castro, Manuel Costa, and Jean-Philippe Martin.

Chang:1987:CDS

Carretero:2009:EER

Conner:1977:IOC

Cook:1982:EIO

Criswell:2014:VGP

Chisnall:2017:CJS

Cox:1994:SVH

George Z. Chrysos and Joel S. Emer. Memory dependence prediction using store sets.
REFERENCES

REFERENCES

[CFS+12]

Cheriton:2012:HAS

[CG91]

Cate:1991:CCC

[CG91]

Cate:1991:CCC

[CG91]

Cate:1991:CCC

[CG92]

Cheng:1992:TCB

[CG92]

Cheng:1992:TCB

[CG92]

Cheng:1992:TCB

[CG96]

Chilimbi:1996:HIH

[CG96]

Chilimbi:1996:HIH

[CG96]

Chilimbi:1996:HIH

REFERENCES

REFERENCES

5964 (print), 1943-5851 (electronic).

Cruz:2000:MBR

Chin:1984:CPM

Chuang:1985:VSA

Chow:1987:ATD

Cantin:2001:CPS

Chaudhuri:2004:SAN

Chang:1978:BRD

Chattergy:1978:CL
REFERENCES

REFERENCES

Carpenter:2012:EET

Cypher:1993:ARP

Colin:2016:EIF

Clark:2008:VVE

Chang:1997:TPI

Chroust:1976:DIV

Chroust:1977:BRR

Christara:1990:SCP

[Chr90] Christina C. Christara. Schur complement preconditioned

REFERENCES

Cortadella:1988:DRC

[CJ88]

Cuppu:2001:CLS

[CJ01]

Ju:1999:PMD

[cJCO99]

Cuppu:1999:PCC

[CJG02]

Cooksey:2002:SCD

[CJG02]

Chen:2005:HMP

[CJK*05]

Cerretti:1977:UIP

REFERENCES

Callahan:1991:SP

Cybenko:1990:SPE

Chen:2008:FHA

Cherupalli:2016:EDT

Clements:2012:SAS

Clark:1982:MAI

Cargill:1987:CHS
[CL87] T. A. Cargill and B. N. Locanthi. Cheap hardware support for software debugging and
REFERENCES

Chen:1989:AVA

Chaudhry:1994:CMP

Cain:2004:MOV

Cameron:2009:ASS

Clark:1987:PPV

Chung:1990:COP

Chau:2012:RRP
REFERENCES

REFERENCES

Caned2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

REFERENCES

Colwell:1988:BRC

Colwell:1990:BRH

Contessa:1988:AFT

Cooper:1973:MMB

Copeland:1978:SSS

Cornett:1989:UMS

Cousins:1989:DCR

Cousins:1990:NAC
Cousins:1990:RPI

Cox:1979:NCA

Chen:1990:MPS

Chung:1998:LBC

Crago:2011:OEM

Carretero:1996:MPD

Chen:2017:AGH

Choi:2008:ABP

REFERENCES

Chishti:2005:ORC

Cunningham:1994:LDT

Cragon:1979:ECS

Cragon:1983:EIS

Cragon:1985:ADS

Crawford:1988:EHH

Cuesta:2011:IED

Cunha:1991:AMM

Alberto R. Cunha, Carlos N. Ribeiro, and José A. Marques. The architecture of a memory management unit
REFERENCES

Calder:1999:SVP

Chisnall:2015:BPA

Clark:1980:CCR

Coffman:1980:CBS

Chen:1989:TMH

Chen:1994:UAT

Carr:1999:ISP

REFERENCES

Chou:2000:IPC

Chang:2006:CCC

Chiyonobu:2006:EEI

Chakraborty:2011:CBS

Chhabra:2011:NSN

Caulfield:2013:QSA

Checkoway:2013:IAW

Cheriton:1986:SCC

REFERENCES

Calciu:2017:BBC

Churchill:2017:SLS

Choi:2017:SAS

Chakradhar:2010:DCC

Chappell:1999:SSM

Constantinou:2005:PIS

Culler:1991:FGP

David E. Culler, Amurag Sah, Klaus E. Schauser,

Cheung:1987:OAG

Chan:1994:ECF

Chien:1990:ISG

Cornell:1974:CGP

Chuang:1990:DPA

Cederman:2008:SLB

Chien:2015:CSH

Andrew A. Chien, Tung Thanh-Hoang, Dilip Vasudevan, Yuanwei Fang, and Amirali Shambayati. 10 × 10: a case study in highly-programmable and energy-efficient heterogeneous fed-

Crandall:2006:TSD

Chakraborty:2006:CSE

Choudhary:2011:FCS

Collins:2001:SPL

REFERENCES

Choi:2006:LBS

Chen:2017:PPQ

Chen:2011:DSE

Chen:2016:BQA

Chen:2014:MLC

178

REFERENCES

REFERENCES

Dasgupta:1983:VCA

Davidson:1980:MSM

Davies:1980:CAM

Davis:2014:IWA

Dubois:1982:ECC

Duesterwald:2000:SPH

Deris:2007:ICE

Desikan:2002:EME

Dennis:1980:BBD

Devietti:2008:HAS

Denehy:2004:DSA

Daly:2019:SCE

DeHon:1994:MRA

Dally:1987:AMD

Dally:1998:AMD

REFERENCES

deDinechin:2013:FPT

Didona:2016:PAM

Drumond:2017:MDE
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[DHT15] Yuelu Duan, Nima Honarmand, and Josep Torrellas. Asymmetric memory fences: Optimizing both performance and implementabil-

Durand:1994:DSA

Dally:1985:OOA

Dollan:1989:CSP

Delimitrou:2013:PQA

Delimitrou:2014:QRE

Delimitrou:2016:HRE

Delimitrou:2017:BKW

REFERENCES

613, March 2017. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

[Dwarkadas:1993:ERC]

[Dautenhahn:2015:NKO]

[Dalton:2007:RFI]

[deKruijf:2010:RAF]

[DeRosa:1987:EBA]

[Dubnicki:1992:ABS]

[delChevallerie:2015:FLH]
REFERENCES

Devietti:2009:DDS

Dall:2016:AVP

Ditchel:2009:EEC

DeMartinis:1976:SMS

Dennis:1974:PAB

Ditzel:1982:RAF

Ditzel:1987:BFC

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Demme:2013:FOM

Duan:2013:WTM

Demme:2012:SCV

Dewan:1993:CUM

Dall:2014:KAD

Devietti:2011:RRC

Diep:1995:PEP

REFERENCES

Das:2013:CEP

Dasgupta:1982:TFL

deOliveira:2013:WYS

Dongarra:1983:PVC

Dongarra:1985:PVC

Dongarra:1988:PVC

Dongarra:1990:PVC
REFERENCES

1990. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

REFERENCES

CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

URL http://portal.acm.org/toc.cfm?id=279358;
http://portal.acm.org/toc.cfm?id=285930. ACM Order
Number 414984. IEEE Computer Society Order Number
PR08491; IEEE Order Plan Catalog Number 98CB36235.

Desikan:2004:SSR

[RDBK04] Rajagopalan Desikan, Simha Sethumadhavan, Doug Burger
and Stephen W. Keckler. Scalable selective re-execution for
EDGE architectures. ACM SIGARCH Computer Archi-
CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Davidson:1990:BTO

[DSF+90] Edward S. Davidson, Gurindar S. Sohl, Joseph A. Fisher, Greg
Grohoski, Yale Pratt, J. E. Smith, and David R. Stiles.
Better than one operation per clock (panel): vectors,
VLIW, and superscalar. ACM SIGARCH Computer Archi-
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Das:2011:HSR

speed residue number system (RNS) based FIR filter
using distributed arithmetic (DA). ACM SIGARCH Com-
puter Architecture News, 39 (5):1–4, December 2011. CO-
DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (elec-
tronic).

Drapeau:1994:RIH

[DSH+94] A. L. Drapeau, K. W. Shirriff, J. H. Hartman, E. L. Miller,
S. Seshan, R. H. Katz, K. Lutz, D. A. Patterson,
E. K. Lee, P. M. Chen, and G. A. Gibson. RAID-
II: a high-bandwidth network file server. ACM SIGARCH
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495
(IEEE).

Dohi:2010:IPE

[DSH+10] Keisuke Dohi, Yuichiro Shibata, Tsuyoshi Hamada,
Tonomari Masada, Kiyoshi Oguri, and Duncan A. Buell.
Implementation of a programming environment with
a multithread model for reconfigurable systems. ACM
SIGARCH Computer Architecture News, 38(4):40–45,
September 2010. CODEN CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

Dohi:1982:HSA

[DSM82] Yasunori Dohi, Akira Suzuki, and Noriyuki Matsui. Hard-
ware sorter and its application to data base machine.
ACM SIGARCH Computer Architecture News, 10(3):218–
225, April 1982. CODEN
REFERENCES

Dybdahl:2007:LBR

Dohi:2011:GIO

Dubois:1993:DEU

Dugan:1983:SEA

Davidson:1987:EIS

Doshi:1987:MSA

Dvorak:1990:MAS
DeVuyst:2012:EMH

Davidson:1990:RCB

Devietti:2012:RAS

Dimitrov:2009:ABB

Du:2013:BMB

Ding:2014:FLE

Ebcioğlu:1997:DDC

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Ernst:2002:EDS

Espasa:2002:TVE

Elyasi:2017:EIR

Eberle:2002:MDC

Espasa:2002:TVE

Ebr96

Eeckhout:2004:CFM

Esmailzadeh:2011:DSE
REFERENCES

DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

[Emer:1998:CPP]

[Emer:1998:RCP]

[Evers:1996:UHB]

[Esmailzadeh:2011:LBL]

[Ericsson:1983:LSM]

Emer:1997:LDP

Egan:1982:EVC

Edler:1985:IRM

El-Halabi:1982:SRD

Ernst:2003:CBF

Lee:1989:MPC

Eijkhout:1990:IPP

Eickemeyer:1996:EMU
[EJK+96] Richard J. Eickemeyer, Ross E. Johnson, Steven R. Kunkel,
References

Eggers:1988:CSP

Eggers:1989:ESC

Eggers:1989:EPF

Ebrahimi:2010:FST

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness via source throttling: a configurable

El-Kharashi:2001:ATA

Ekanayake:2004:ULP

Edwards:1980:MGN

Ebrahimi:2011:PAS

Elkateeb:1989:PSR

Emma:2006:ESR

Hajj:2016:SPM

Eberle:1998:SQC

Ebeling:1984:DIV

Eickemeyer:1987:PEM

REFERENCES

1987. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Eickenmeyer:1988:PEC

Evers:1998:ACP

Esponda:1992:GCR

ElMasri:1978:MIR

Eastman:1974:CDC

Ekman:2005:RMM

Esmailzadeh:2012:ASD

Ezhilchelvan:1989:CRS

P. D. Ezhilchelvan, S. K. Shrivastava, and A. Tully. Constructing replicated systems using processors with point-to-point communication links.
REFERENCES

Estrin:2002:KAS

Eslami:2016:IOM

Ekman:2005:DLC

Felten:1996:EEM

Fuchs:1983:CED

Ferdman:2012:CCS

REFERENCES

REFERENCES

Faraboschi:2000:LTP

Feiner:2012:CKI

Fields:2002:SMP

Farkas:1997:MSD

Fineberg:1992:SLT

Fagin:1987:PSP

Fiske:1988:RAP

Fenwick:1984:AOA
P. M. Fenwick. Addressing operations for automatic data structure accessing. ACM
REFERENCES

Fradj:2005:EAM

Ferguson:1988:BRL

Ferrucci:2011:IWD

Feustel:1976:TAS

Feustel:1982:PPC

Feustel:1984:PEP

Fischler:1973:FTM

Fernandez:2000:EPN

Benjamín Sahelices Fernández, Diego R. Llanos Ferraris, and Agustín de Dios Hernández.

REFERENCES

Foutris:2013:DMA

Ford:1976:HSI

Fusaoka:1982:CCH

Finkel:1988:YSM

Fritsch:1989:DSM

Fu:2011:ATM

Fineberg:1993:INA
REFERENCES

REFERENCES

Fournier:1976:SDG

Fuller:1976:IMS

Fortes:1984:DBL

Ferri:2007:HSF

Fong:2003:CAA

Forsell:1994:MMPa

Forsell:1994:MMPb

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

[Fra83] Dennis J. Frailey. Word length of a computer architecture definitions and applica-
REFERENCES

Frank:1986:EPS

Frazier:1990:ASM

Fields:2001:FPP

Freeman:1974:ICE

Freeman:1987:APM

Fletcher:2015:FON

Fahs:2005:CO

Franklin:1992:ESW

Manoj Franklin and Gurindar S. Sohi. The expandable split
window paradigm for exploiting fine-grain parallelism.

Fritsch:1990:PBA

Fernandez:1976:ASS

Falcon:2004:PCH

Fujimoto:1988:DPS

REFERENCES

REFERENCES

Gandhi:2005:SLS
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Gass:1988:WRS
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Gaur:2016:BVC
CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Gaudiot:1985:MHS
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Giloi:1974:SCC
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Giloi:1983:HFD
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Ghosal:1987:AMA
CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Goldstein:2001:NSC
Seth Copen Goldstein and Mihai Budiu. NanoFabrics: spatial computing using

Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng,

Gharachorloo:1992:HML

Gottlieb:1982:NUD

Gottlieb:1998:NUD

Guo:2013:ADA

Gornish:1990:CDD

Gladney:1976:MRT

Goodman:1986:URV

J. R. Goodman and W. C. Hsu. On the use of registers

REFERENCES

[GK81] Allan Gottlieb and Clyde P. Kruskal. Coordinating parallel processors: a partial unifi-

Gehringer:1985:TAH

Grossman:2013:HSF

Gajski:1984:PPR

Goiri:2013:PGM

Gajski:1983:CLS

Grunwald:1998:CES

Grosspietsch:1980:CTR

K. E. Grosspietsch, J. Kaiser, and E. Nett. A concept

Gibson:2000:FVS

Giuffrida:2013:SAL

Gupta:2009:DFT

Guo:2007:CQC

Goke:1973:BNP

Goke:1998:BNP

PR08491; IEEE Order Plan
Catalog Number 98CB36235.

Golla:1998:CEB

Gross:1998:RRW

Gunadi:2011:CCR

Gaudiot:1988:SPD

Gharachorloo:1990:MCE

Gharachorloo:1998:MCE

REFERENCES

Number 414984. IEEE Computer Society Order Number PR08491; IEEE Order Plan Catalog Number 98CB36235.

REFERENCES

Íñigo Goiri, Thu D. Nguyen, and Ricardo Bianchini. CoolAir: Temperature- and variation-aware management for free-

Godard:2013:MSS

Gohringer:2014:RMS

Goldwasser:1984:GOD

Gonzalez:1977:BRR

Goodman:1983:UCM

Goodman:1987:CMV

Good:1988:SIC

Goodman:1988:RDR

James R. Goodman. Reply to David R. Cheriton’s, Pat Boyle’s, and Gert A. Slavenburg’s “Comments on ‘Coherency for multiprocessor vir-
References

Goodman:1998:RUC

Goodman:1998:UCM

Gorsline:1983:RAC

Gottlieb:1998:RPR

Gouda:1978:HCC

Gove:2007:CWS

Darryl Gove. CPU2006 working set size. ACM SIGARCH
REFERENCES

Gault:1976:DUP

Garth:1988:ISN

Gschwind:1995:VP

Gidenstam:2008:LLF

Giefers:2013:AFD

Gomez:2002:ASA

Georgiou:1987:ECI

[Griffin] Glenn W. Griffin. The ultimate ultimate RISC. *ACM*
REFERENCES

Gonzalez-Rubio:1984:SFP

Goldstein:1974:MOR

Guillier:1980:ACF

Grahne:1995:ESS

Gove:2007:ECB

Giri:2012:FIN

Guo:2016:HDI

Qing Guo, Karin Strauss, Luis Ceze, and Henrique S. Malvar. High-density image storage using approximate memory cells. ACM SIGARCH Computer Architecture News, 44(2):413–426, May 2016. CODEN CANED2. ISSN 0163-
Gurumurthi:2003:DDS

Gope:2017:ASS

Goldstein:1999:PCP

Gontmakher:2006:ILG

Gurumurthi:2005:DDR

Ghandeharizadeh:1993:OTS

Gao:2005:AAL

[Xiaofeng Gao, Beth Simon, and Allan Snively. ALITER: an asynchronous lightweight instrumentation tool for event
Ghosh:2012:FPR

Ghosh:2012:NAF

Gharachorloo:2000:ADA

Govindan:2011:BLT

Gomaa:2003:TFR

Gallivan:1990:SGS

Gordon:2006:ECG

Michael I. Gordon, William Thies, and Saman Arama-

REFERENCES

5964 (print), 1943-5851 (electronic).

James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchronization primitives for large-scale cache-coherent multiprocessors. ACM SIGARCH Computer Ar-
REFERENCES

Gerasoulis:1990:CTG

Gentleman:1973:TC

Goodman:1988:WMN

Gibson:2010:FSC

Grewal:2003:EAC

Govindan:2012:LSE

Greathouse:2012:CUW
REFERENCES

Gu:2016:BFN

Gloy:1996:ADB

Gao:2011:TMH

Guha:2013:SEW

Hudak:1990:CTD

Hughes:2004:FAF
Huang:2017:PSA

Huang:2017:PSA

Halstead:1987:OCM

Haikala:1984:CHR

Hamilton:2009:ISS

Haikala:1984:CHRa

Hansen:1978:MAC

Haikala:1984:CHRb

Hara:1996:PCI

Halstead:1987:OCM

Halstead:1987:OCM

Halstead:1986:CDM

Hartenstein:1973:IHC

Hartenstein:1974:LMI

Hartenstein:1974:RMT

Harper:1991:RMC

Hoseinzadeh:2014:RAL

Haynes:1977:AAC

Harland:1986:MOO

Hsu:1990:PMT

Hunt:2013:DTN

Heo:2002:DFG

Hong:2013:RTR

REFERENCES

[HC04] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead memory leak detection using adaptive sta-
REFERENCES

[Hosek:2015:VUE]

[Huh:2004:CDM]

[Hwu:1989:CSH]

[Hankins:2006:MIS]

[Halstead:1994:PCR]

[Heath:2006:MFT]

REFERENCES

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Herrod:2006:FVT

Hey:1990:STP

Halstead:1988:MMP

Hardavellas:2009:RNN

Higuchi:1991:IPA

Hoang:2011:ECT

Hau:2003:SJA

Hayes:1987:ADE

Hawakami:1986:SDS

Hum:1988:SWF

Hakura:1997:DAC

Herrero:2010:ECC

Hughes:2007:PSA

Huang:2016:EAA

Hines:2005:IPE

[HGTW05] Stephen Hines, Joshua Green, Gary Tyson, and David Whalley. Improving program efficiency by packing instruc-

Huck:1993:AST

Hower:2008:REE

Hayashi:1983:AHP

Hower:2014:HRF

Haque:2015:FMI

Horst:1990:MII
Huang:2016:DLN

Huang:2013:NRC

Horie:1993:IAP

Hibino:1980:PPG

Hicks:1976:GQS

Hicks:1977:MCA

Hicks:1977:MPS

Hicks:2017:CAS

REFERENCES

May 2017. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

REFERENCES

REFERENCES

gov/catdir/toc/e1s033/99044480.html.

[HKA+01] Christopher J. Hughes, Praful Kaul, Sarita V. Adve, Rohit Jain, Chanik Park, and Jayanth Srinivasan. Variability in the execution of multimedia applications and implications for architecture. *ACM

Hofmann:2013:ISA

Hashemi:2016:ADC

Hercksen:1980:HMS

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Henry:2000:CWW

Hu:2002:TMS

Hirata:1992:EPA

REFERENCES

Haring:1998:IWP

Holland:2005:ADK

Hill:1994:WWT

Hauswald:2015:SOE

Herlihy:1993:TMA

Harris:2005:PAS

Hu:2005:CCI

REFERENCES

Hoffmann:1980:HIC

Hoogendoorn:1977:RMI

Hollaar:1983:BRR

Holliday:1989:RHP

Homoines:1982:HSC

Hwu:1986:HHP

Hwu:1987:CRO

Hwu:1998:HHP

[HP98] Wen-Wei Hwu and Yale N. Patt. HPSm, a high performance restricted data flow architecture having minimal functionality. In ACM [ACM98a], pages 300–308.
Hartstein:2002:OPD

Hong:1986:GAS

Heckey:2015:CMC

Hayes:2016:FVM

Hameed:2010:USI

Hutchison:1978:MM

Hall:1991:VVA

Hallnor:2000:FAS

Hilton:2007:GCI

Hilton:2009:DSC

Houstitis:1990:ENS

Hsu:1985:TST

Huang:2003:PAP

REFERENCES

Hofmann:2009:MBM

Hemphill:1973:DDG

Huen:1974:IPR

Harris:1977:HMO

Hamacher:1980:PCF

Hill:1984:EEC

Hasegawa:1985:HST

Hitchcock:1985:AMR

REFERENCES

Hurson:1985:SMU

Hasegawa:1986:FFT

Ho:1990:BAD

Hsu:1993:PCD

Hilgendorf:2001:ITE

Hu:2006:RST

Huang:2010:ICM

Hechtman:2013:EMC

REFERENCES

Honarmand:2014:RDL

Huguet:1982:PPS

Hummel:1996:EDS
Susan Flynn Hummel. Efficient data sharing with condi-
REFERENCES

REFERENCES

Herbordt:1991:MPA

Hammond:2004:TMC

Hayashizaki:2011:IPT

Hu:1997:OES

Hu:1996:DDC

Hyatt:1993:HPO

Craig Hyatt. A high-performance object-oriented memory. ACM SIGARCH Computer Architecture News,
REFERENCES

IEEE:1977:CPA

IEEE:1979:CPA

IEEE:1981:CPA

IEEE:1982:CPA

IEEE:1983:CPA

IEEE:1984:AIS

IEEE:1985:CPT

IEEE:1986:CPT

IEEE:1987:AIS

IEEE:1988:AIS

IEEE:1989:PAI

IEEE:1992:PAI

[IEE92] IEEE, editor. Proceedings, the 19th annual International Symposium on Com-

IEEE:2005:ISC

IEEE:2006:ISC

Irwin:1980:OPS

Ibbett:1989:AMS

Izraelevitz:2016:FAP

Ipek:2007:CFA

Iliffe:1987:FLM

REFERENCES

Iyer:2002:PPE

Ipek:2006:EEA

Isci:2013:AEV

Ipek:2008:SOM

Inoue:2005:EST

Isailovic:2006:INS

Irwin:1986:STR
Mary Jane Irwin. Secretary/treasurer’s Report. *ACM
REFERENCES

Irwin:2010:SCM

Intrater:1992:PED

Isaacson:1974:PSP

Irie:2007:PTE

Iyer:2004:ESI

Ito:1986:APE

Iftode:1996:UAP
Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Understanding application performance on shared virtual memory systems. ACM SIGARCH Computer Architecture News,
REFERENCES

REFERENCES

Jensen:1974:DFC

Jennings:1978:VP

Joseph:1997:PUM

Jensen:1977:HMM

Jennings:1978:VP

Jensen:1977:HMM
Joe:1994:EMO

JH94

Jimenez:2005:PLB

Jimenez:2005:PLB

JHK

[JHK+16]

Jen:1974:DFC

JH94
Janjusic:2013:GMP

Jiang:2009:IAR

Jog:2013:OSP

Jog:2013:OCT

Jouppi:2005:ISI

Jouppi:2009:ISI

Jain:2016:BFL

REFERENCES

puter Architecture News, 44 (3):78–89, June 2016. CO- [JM88]
DEN CANED2. ISSN 0163-5964 (print), 1943-5851 (elec-
tronic).

Abhishek Kumar Jain, Xiang- [JLFM15]
wei Li, Suhaib A. Fahmy, and
Douglas L. Maskell. Adapt-
ing the DySER architecture
with DSP blocks as an over-
lay for the Xilinx Zynq.
ACM SIGARCH Computer
Architecture News, 43(4):28–
33, September 2015. CO-
DEN CANED2. ISSN 0163-
5964 (print), 1943-5851 (elec-
tronic).

Toni Juan, Tomás Lang,
and Juan J. Navarro. The
difference-bit cache. ACM
SIGARCH Computer Archi-
tecture News, 24(2):114–120,
May 1996. CODEN CANED2.
ISSN 0163-5964 (ACM), 0884-
7495 (IEEE).

Chris Jesshope, Mike Lankamp,
and Li Zhang. The imple-
mentation of an SVP many-
core processor and the evalu-
ation of its memory archi-
tecture. ACM SIGARCH
Computer Architecture News, 37
(2):38–45, May 2009. CODEN
CANED2. ISSN 0163-5964
(ACM), 0884-7495 (IEEE).

R. M. Jenevein and T. Mookken.
Traffic analysis of rectangular
SW-banyan networks. ACM
SIGARCH Computer Archi-
tecture News, 16(2):333–342,
ISSN 0163-5964 (ACM), 0884-
7495 (IEEE).

B. H. H. Juurlink and C. H.
Meenderink. Amdahl's law
for predicting the future of
multicores considered harm-
ful. ACM SIGARCH Com-
puter Architecture News, 40
(2):1–9, May 2012. CODEN
CANED2. ISSN 0163-5964
(print), 1943-5851 (elec-
tronic).

Jose A. Joao, Onur Mutlu,
Hyesoon Kim, Rishi Agarwal,
and Yale N. Patt. Improv-
ing the performance of object-
oriented languages with dy-
namic predication of indi-
direct jumps. ACM SIGARCH
Computer Architecture News,
CODEN CANED2. ISSN
0163-5964 (ACM), 0884-7495
(IEEE).

José A. Joao, Onur Mutlu,
and Yale N. Patt. Flexi-
ble reference-counting-based
hardware acceleration for
garbage collection. ACM

Johnson:1997:RTA

Jesshope:1989:HPC

Jaleel:2012:CCR

Joerg:1990:SPN

Johnson:1982:SRA

Johnson:1988:CMM

Johnson:1989:WSP

Johnson:1991:CRB

Douglas Johnson. The case for a read barrier. ACM
REFERENCES

Johnson:1992:ICL

Johnson:1995:GMW

John:2004:MFS

Jones:1982:SPM

Jonsson:2008:SSE
Bengt Jonsson. State-space exploration for concurrent algorithms under weak memory orderings: (preliminary

Jones:1983:PM

Jones:1988:MC

Jones:1988:RCR

Jones:1988:UR
REFERENCES

Jordan:1983:PMH

Jouppi:1988:SVS

Jouppi:1989:AOT

Jouppi:1990:IDM

Jouppi:1993:CWP

Jouppi:1998:IDM

Jouppi:1998:RID
REFERENCES

REFERENCES

Jain:1993:SPO

Jaleel:2010:HPC

Jevdjic:2013:SDC

Jafri:2013:WGI

Johnsson:1982:OMP

Jouppi:1989:AIL

Jouppi:1994:TTL
REFERENCES

Jain:1995:AAE

Jokinen:1997:CDP

Jain:1993:ISI

Jain:1994:SII

Jung:2012:PAQ

Jouppi:2017:DPA

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Haggman, C. Richard Ho, Doug Hogenberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alex Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Details</th>
</tr>
</thead>
</table>
Kumar:1980:SLC

Kaushal:1992:CHH

Kavi:1982:HAP

Kubiatowicz:2000:OAG

Kudrow:2013:QRC

Kagi:1997:ESL

Kateja:2017:VDB

REFERENCES

ISSN 0163-5964 (print), 1943-5851 (electronic).

Krashinsky:2004:VTA

Kim:2002:ANU

Kravitz:1989:LSM

Kavi:1984:MRD

King:1974:ODS

Knott:1982:FDA

Karamcheti:1995:CAS

REFERENCES

[Kim:1996:RCQ]

[Keen:2002:HSC]

[Kaeli:2005:WIS]

[Korn:2007:SCS]

[Krimer:2012:LDI]

[Kinsy:2009:AAD]

[Keleher:1992:LRC]

[Keckler:1992:PCI]
Stephen W. Keckler and William J. Dally. Processor coupling: integrating com-
REFERENCES

[KL+13] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C. Q.
REFERENCES

Kuck:1998:CSI

Kwon:2016:SPT

Keckler:1998:EFG

Kechadi:1992:PIV

Kim:2008:PCN

Kirovski:2002:ETS

Koeplinger:2016:AGE

Kgil:2006:PUS

Kakimoto:2012:PCG

Kim:2008:TDH

Kakimoto:2012:PCG

[KDTG05] John Kim, William J. Dally, Brian Towles, and Amit K. Gupta. Microarchitecture of a high-radix router. *ACM SIGARCH Computer Archi-

Koldinger:1991:VTD

Keppel:1991:PIF

Kerr:1974:MPI

Katz:1985:ICC

Kkvipurapu:1979:QAU

Kapauan:1984:PPC

Kgil:2005:CSS

Kondo:2002:SCC

REFERENCES

Kaliorakis:2017:MED

Kannan:2017:HDH

Kohli:1995:TDS

Kohli:1995:URA
REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Khalid:1997:NCR

Khalid:1997:NTS

Khalid:1997:PKC

Khalid:1999:MPE

Khalid:1999:PEM

Khalid:1999:PET

Khalid:1999:TMB

Kodama:2014:PFB

REFERENCES

Kurian:1992:MLE

Kurian:1991:CPE

Kham:2001:CDE

Kumar:2007:CAS

Kavi:1995:DCM

Kontothanassis:1997:VBS

Leonidas Kontothanassis, Galen Hunt, Robert Stets, Nikolaos Hardavellas, Michal Cierniak,

Kessler:1989:IIS

Kim:2007:VPR

Kharbutli:2006:CEP

Kelm:2010:CHM

Kavi:1984:AQ

Kalamatianos:1999:IAI

Kessler:2008:OCP

[KK08] Christoph W. Kessler and Jörg Keller. Optimized on-chip pipelining of memory-

Kim:2016:NEN

Keown:1992:PHR

Kim:2016:SCD

Kim:2016:NPD

Kurian:2013:LAA

Kim:2013:DBC

Kuznia:1976:SSM

Kim:2017:TAA

Kawahito:2006:NIR

Kwon:2011:VPA

Kawahito:2000:ENP

Kwon:2014:LOC

Kumar:2008:AVO

Sanjeev Kumar, Daehyun Kim, Mikhail Smelyanskiy, Yen-Kuang Chen, Jatin Chhugani.

REFERENCES

Kim:2003:HPA

Kim:1994:CRF

Kim:1988:RCB

Klimovic:2017:RRF

Kung:2017:PHA

Koukoumidis:2011:PC

Kluge:1976:TBT

Kodres:1974:DSA
REFERENCES

Kirner:1986:DDS

Kirman:2010:PEA

Koibuchi:2012:CRS

Kiyohara:1993:RCN

Kohler:2002:PLO

Kamiya:1985:HPA

Kobayashi:2016:HSV
Ryohei Kobayashi, Tomohiro Misono, and Kenji Kise.

Kuperman:2016:PR

Kim:2007:AIB

Koka:2010:SPN

Kuga:1991:DDH

Kumar:2012:NLT

Shiv Kumar, Seshadri Krishna Murthy, G. Varaprasad, and S. Sivasathya. Network load and traffic pattern on the capacity of wireless ad hoc

Knight:1991:TLL

Knoke:1973:SEC

Koagi:2012:BRL

Koya:1988:VRB

REFERENCES

Kogge:1973:MRP

Kogge:1977:MPP

Kuskin:1994:SFM

Kuskin:1998:SFM

Kamibayashi:1982:HOS

Kornerup:1974:CMS

[102x681] REFERENCES

Kumar:2007:EVC

Kulkarni:2008:OPB

Kaufmann:2016:HPP

Kolli:2016:HPT

Kuhl:1980:DFT

Kumar:1985:APM

Kumar:1985:DAF
V. P. Kumar and S. M. Reddy. Design and analysis of fault-tolerant multistage interconnection networks with low link complexity. ACM SIGARCH Computer Architecture News,
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>
Kandiraju:2002:GDT

Kim:2002:ISM

Karkhanis:2004:FOS

Karkhanis:2007:ADA

Kadav:2012:UMD

Kasture:2014:UEC

Koushiro:2003:TLV

Kotra:2017:HSC

Kodi:2008:IIR

Kim:2016:AIE

Kise:2007:SIA

Kondo:2007:IFT

Kreger-Stickles:2008:MAI

Keller:2010:NVC

Kodama:1995:EXP

Kreaseck:2000:LTB

Barbara Kreaseck, Dean Tullsen, and Brad Calder.

KST11

KST08

KST11

Yu:2011:SDH

KT91

Kim:2017:KPC

Kondo:1986:PMA

Kambadur:2012:HCA

Kagimasa:1991:ASM

Kinoshita:2012:ARS

Kumar:2004:SIH

DEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Kim:2013:MME

Kuhn:1980:EMA

Kumar:1987:ESA

Kung:1986:MRB

Kung:1988:DAS

Kuskin:1998:RSF

King:1984:CSA

Kumar:1998:ESL

Kubota:2011:MWS

Kang:2013:HPP

Khatamifard:2017:TTA

Kanev:2017:MAM

Kim:2002:DEC

REFERENCES

REFERENCES

Lafitte:1995:SDH

Lafitte:1998:GMD

Lafitte:2000:RDH

Lafitte:2003:QMC

Lafitte:2004:YLL

Laird:1992:CTC

Lenhart:2009:RDO

Laliotis:1973:IAS

REFERENCES

December 1973. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[Lampson:1982:FPC]

[Langdon:1976:BRR]

[Langdon:1977:CFM]

[Langdon:1990:BRH]

[Lan90b]

[Laplante:1990:NSI]

[Laplante:1991:ICB]
P. A. Laplante. An improved conditional branching scheme for a single instruction computer architecture. *ACM SIGARCH Computer
REFERENCES

[Larus:1982:CMA]

[Larus:2011:CWC]

[Li:1985:TRS]

[Lass:1987:WCC]

[Lass:1988:SCI]

[Lass:1988:MIO]

[Lass:1988:SCM]

[Lass:1989:HES]
REFERENCES

[Lasse:1991:CCP]

[LAS+07]

[Laudon:2005:PWN]

[Lawson:1976:FDC]

[Lee:2008:ETL]

[Lee:2017:MVN]

[LBCG95] Dennis Lee, Jean-Loup Baer, Brad Calder, and Dirk Grunwald. Instruction cache fetch...
REFERENCES

334

[LBE+98]

[LBH12]

[Levett:1996:SCN]
REFERENCES

Lucia:2013:CEF

Lee:1998:ECD

Lai:1992:EBS

Li:2017:SSA

Lie:2001:SME

Litz:2014:STR

Lo:2014:TEP
Liu:2015:PPM

Lin:2016:SKT

Lim:2009:DME

Lucia:2010:CAS

Lucia:2010:CES

Lucia:2010:CES

Linderman:2008:MPM

REFERENCES

REFERENCES

May 2001. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Louri:1988:BPA

Leng:2013:GEE

LiKamWa:2016:RAC

Landin:1991:RFI

Litaize:1989:MSM

Liu:2015:GHS

Levinthal:1987:PCG

REFERENCES

Lee:2009:APC

Lindamood:1976:NCA

Lindamood:1977:WN

Lindsay:1981:CMM

Lipovski:1973:VFS

Lipovski:1976:QS

Lipovski:1977:IFT

Lipovski:1977:VMM

REFERENCES

460, June 2010. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Lotfi-Kamran:2012:SP

Lebeck:2002:LFI

Lee:2005:APC

Li:2014:SLH

Lease:1988:CPS

Laudon:1997:SOC

Lenoski:1998:RDP

[LL98] Daniel E. Lenoski and James P. Laudon. Retrospective: The

Lepak:2000:VLS

Lepak:2002:TSS

Liu:2014:OVM

Lin:2016:MTP

Lynch:1998:LLL

Lopez-Lagunas:2006:MBO

Liu:2014:GVM
Lei Liu, Yong Li, Zehan Cui, Yungang Bao, Mingyu Chen,

[LLF03]

Lee:1994:RCC

[LLCP94]

Li:2004:PDE

[LLD+04]

Li:2017:API

[LLD+17]

Lun:2003:MMO

[LLF03]

Lenoski:1990:DBC

[LLJ+92]

Lenoski:1992:DP1

REFERENCES

Lenoski:1998:DPI

Liu:2017:DAD

Liu:2017:ITN

Lin:1982:DFT

Leesatapornwongsa:2016:TTN

Lee:1984:PAC

Lin:2006:SLP

Liu:2013:CTP

Lawson:1974:ASH

Luk:1999:MFE

Lipasti:2004:PRI

Leung:1976:CSF
Clement K. C. Leung, David P. Misunas, Andrij Neczwid, and Jack B. Dennis. A computer...

Litaize:1992:TSM

Lim:2013:TSS

Lin:1991:DFM

Louri:1992:PEO

Lakshmikanthan:2007:VVC

Lee:2008:GSF

Lvin:2008:ATA

Vitaliy B. Lvin, Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Archipelago: trading address space for reliability and security. *ACM SIGARCH Computer Ar-
REFERENCES

Lampson:1998:PHP

Luo:2009:DPT

Li:2012:ICO

Liu:1977:MCP

REFERENCES

[M] Lam:1991:CPO

[L] Lipovski:1973:PFA

[M] Lee:1982:RPD

[L] Louri:1992:NCD

[L] Ligon:1996:DLB

[L] Lee:2012:RSE

Lin:2012:EED

Lustig:2016:CVM

Lowell:2004:DVM

Laurenzano:2005:LCT

Liu:2014:NDU

Lu:2006:ADA

Luk:2001:TML

Lunde:1975:MDW

Lundstrom:1985:DCH

Lipovski:1988:FOI

Lam:1992:LCF

Lebeck:1995:DSI

Lorton:2007:ABL

Liang:2008:RVT

Li:2016:PAD

Lin:2012:RUL

Lustig:2017:ASC

REFERENCES

[LYBK11]"

REFERENCES

[Meyer:2006:SBI]

[Morrison:2014:FFW]

[Morrison:2015:TBT]

[Malka:2015:REI]

[Machanick:1996:CSM]

[Machanick:1999:CRA]

REFERENCES

REFERENCES

Margolus:2000:EDA

Massalin:1987:SLS

Mashey:1996:AP

Mashey:2004:WBM

Mysore:2006:IC

Matteucci:1978:DSA

Matelas:1985:FM

Matthes:1990:HRG

Wolfgang Matthes. Hardware Resources: a generalizing view on computer architectures. ACM SIGARCH Computer Architecture News, 18

REFERENCES

REFERENCES

Caned2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Michael:1992:FMB

REFERENCES

McDonell:1977:TNS

McDaniel:1982:AMI

McDowell:1982:PML

McDowell:1988:BRS

Mallik:2008:PMU

McFarling:1989:POI

McFarling:1992:CRD

McGlynn:1978:RCA

REFERENCES

Misra:2017:ELT

McKeeman:1974:CDE

Mashimo:2016:CEH

Mellor-Crummey:1989:SIC

McLaughlin:1990:DFD

McLaughlin:1991:LAB

McMahan:2017:ASF
Mellor-Crummey:1991:SC

Montesinos:2008:DRD

Mao:2016:RFR

McNiven:1988:AMR

Mytkowicz:2009:PWD

Mattson:2000:CS

Mishra:2011:ACI

REFERENCES

References

September 1992. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Mashtizadeh:2017:TPD

Meisner:2009:PES

McFarling:1986:RCB

Mukherjee:1998:UPA

Marty:2007:VHS

Mahram:2013:NBC

Mukundan:2013:UMR

Montesinos:2009:CSH

Pablo Montesinos, Matthew Hicks, Samuel T. King, and Josep Torrellas. Capo:

Mahlke:1995:CFP

MHS+03

Mid82

Miel77a

REFERENCES

Miller:1977:BRR

Miller:1982:HMD

Mills:1987:CGR

Morisita:2010:IEA

Murakami:1989:SSI

Miya:1985:MDP

Moskowitz:1989:AMM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>CODEN</th>
<th>ISSN</th>
<th>Year</th>
</tr>
</thead>
</table>
REFERENCES

Magaki:2016:ACS

Morano:2003:RHI

Mukherjee:2002:DDE

McGregor:2005:PCK

Madriles:2009:BST

Murakami:1983:RDB

Mutlu:2005:TEP

Ma:2011:SPC

Malladi:2012:TEP

Mudge:1982:PAC

Marczynski:1983:DDS

Moore:1987:BDN

Menon:1992:CSA

Mutlu:2008:PAB

REFERENCES

[MPM14] Thamirmalai Somu Muthukaruppan, Anuj Pathania, and
REFERENCES

REFERENCES

Robert J. McMillen and Howard Jay Siegel. MIMD machine communication using the augmented data manipulator network. *ACM
McMillen:1982:PFT

Moeller:1984:PPP

Mendelson:1987:MDF

Meixner:2005:DVS

Miyoshi:2007:FGC

Mukherjee:2010:NAC

Maitra:2012:NAC

REFERENCES

REFERENCES

Martin:2005:MGE

Meisner:2011:PMO

Muscat:2013:DBM

Mitsuishi:2015:BFS

Maekawa:1982:FSA

Mercaldi:2006:IST

REFERENCES

Muzahid:2009:SSB

Magklis:2003:PBD

Madhavan:2014:RLH

Menychtas:2014:DSF

Ma:2015:SDS

Moalla:1976:DTM

McLear:1982:GCD

[MST82] R. E. McLear, D. M. Scheibel-
REFERENCES

Minh:2007:EHT

Merten:1999:HDP

Merten:2000:HMD

Matthew C. Merten, Andrew R. Trick, Erik M. Nystrom, Ronald D. Barnes, and Wen-mei W. Hwu. A hardware mechanism for dynamic extraction and relayout of program hot spots. ACM.

Meng:2010:DWS

Momeni:2015:EEO

McFarlin:2013:DDO

Mudge:1980:BRR

Mudge:1996:RPH

Mukherjee:1997:WSG

Mulder:1989:DBR

Musoll:2009:LSO

REFERENCES

PR08491; IEEE Order Plan
Catalog Number 98CB36235.

Hwu:1998:RHH

Mullins:2004:LLV

Mahesri:2007:HSS

Morioka:1989:EMS

Myers:1977:CAS

Mahajan:2016:TSG

Mishra:2015:PGM

Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry

REFERENCES

Najaf-abadi:2007:ACE

Nowatzyk:1995:CNW

Naeem:2009:SRC

Novakovic:2014:SN

Neelakantam:2010:RSE

Nair:2012:FOM

Newman:1992:MMSb
Newman:1992:MMSa

Ng:1994:CDA

Nagarajan:2009:EEC

Nowatzki:2017:SDA

Nakra:1999:VPV

Nair:1997:EIL

Narayanan:2012:WSP

Nalli:2017:APM
REFERENCES

Nakata:1986:FLS

Niemier:2001:EEW

Nakazaki:1985:DHS

Nair:2013:AAF

Naz:2006:MCS

Nojiri:1986:MPO

Nguyen:2014:DGD
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Details</th>
</tr>
</thead>
</table>
REFERENCES

Nuno-Maganda:2010:TCH

Nagarakatte:2012:WHS

Nakahara:2016:FCS

Nakahara:2012:WFF

Nakajima:1991:OVS

Nagashima:1990:IFA

Nayfeh:1994:EDS

Nishimura:1983:LPP

Nanba:1985:VAV

Nowak:1987:SGP

Noor:1990:SLS

Nowatzyk:1995:CRD

Nguyen:2011:SCS

REFERENCES

[Nisnevich:1974:DPC]

[Nassimi:1980:SRB]

[Nicoud:1986:RHP]

[Ngai:1991:FAR]

[Nowatzki:2016:ABS]

[Nazari:2017:EEB]

[Nomura:2011:SDP]

[Natarajan:1994:MBC]
C. Natarajan, S. Sharma, and R. K. Iyer. Measurement-based characterization of

Nagatsuka:2011:CER

Nair:2016:XEE

Nagle:1994:OAC

Nagle:1993:DTS

Nutt:1977:MIP

Nguyen:2015:FCR

Noakes:1993:JMM

Michael D. Noakes, Deborah A. Wallach, and William J.

Oskin:1998:APC

Orr:2015:SUR

Olson:2016:PDW

Olson:2017:CGM

Ogawa:2013:RJA

Oh:2013:PAL

Ogata:2002:BFO

REFERENCES

OKrafka:1990:EET

Odaira:2012:COA

Oh:2011:TSM

Oehlrich:1991:PEC

Oliver:2004:SMC

Oberoi:2003:PFE

Okina:2015:PPP

REFERENCES

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

Pangracious:2016:NTD

Palmer:1980:IND

Park:2016:ATC

Parnas:1975:ECA

Parhami:1988:BRM

Parhami:1988:DFV

Parhami:1990:BRA

Parhami:1995:SMD
Behrooz Parhami. SIMD machines: do they have a significant future? ACM SIGARCH Computer Architecture News,

Parker:2002:CUL

Phothilimthana:2013:PPH

Patterson:1982:PEI

Patterson:1984:RW

Patterson:1987:PRS

Patterson:1988:RP

Patterson:1991:TGS

Patel:1998:RLO

REFERENCES

Patel:1998:RIT

Pat06

Paye:1978:CCD

Poremba:2017:TBA

Pothukuchi:2016:UMI

Pau13

Payne:1980:VFP

Mary Payne and Dileep Bhandarkar. VAX floating point:
REFERENCES

Premkumar:1982:RAR

Park:2013:RCH

Powell:2009:ACS

Park:1990:ISF

Porter:2011:RLT

Park:1983:FDB

Papadopoulos:1990:MET

Gregory M. Papadopoulos and David E. Culler. Monsoon: an explicit token-store architecture. ACM SIGARCH Computer Architecture News,
REFERENCES

18(3a):82–91, June 1990. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Papadopoulos:1998:RME

Papadopoulos:1998:MET

Pericas:2008:TLL

Putnam:2014:RFA

Pistol:2009:AIN
REFERENCES

Pollack:1982:SAM

Paek:2010:BAU

Pelley:2014:MP

Patel:1976:ITP

Patterson:1980:CRI

Patel:1998:ITP

Pang:2015:MLL

Jun Pang, Chris Dwyer, and Alvin R. Lebeck. More is less,

Pokam:2013:QPI

Putnam:2009:PPC

Park:2008:MML

Penn:1988:PSI

Patel:1998:ITC

Peskin:1974:CAD

REFERENCES

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Petit:2000:LSE

Postiff:1999:LIL

Pajuelo:2002:SDV

Pajuelo:2005:SEH

Puente:2004:ICR

Preiss:1985:DFQ

Preiss:1988:CBM

Pnevmatikatos:1990:CPI

Dionisios N. Pnevmatikatos and Mark D. Hill. Cache performance of the integer
SPEC benchmarks on a RISC.

Pichai:2014:ASA

Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. Architectural support for address translation on GPUs: designing memory management units for CPU/GPUs with unified address spaces.

Prybylski:1988:PTC

Prybylski:1989:CPO

Park:2016:ESFa

Chang Hyun Park, TaeKyung Heo, and Jaehyuk Huh. Efficient synonym filtering and scalable delayed translation for hybrid virtual.

Park:2016:ESFb

Chang Hyun Park, TaeKyung Heo, and Jaehyuk Huh. Efficient synonym filtering and scalable delayed translation for hybrid virtual caching.

Philipson:1984:VBD

Lars Philipson. VLSI based design principles for MIMD multiprocessor computers with distributed memory management.

Park:2017:HTC

Chang Hyun Park, TaeKyung Heo, Jungi Jeong, and Jaehyuk Huh. Hybrid TLB
REFERENCES

Petrica:2013:FDA

Pier:1983:RDH

Pier:1998:RPH

Patwardhan:2006:DTS

Phansalkar:2007:ARA

Phansalkar:2007:SSC

Palacharla:1997:CES

Palacharla:1994:ESB

Prabhakar:2016:GCH

Pan:2009:FIF

Patel:2017:RPR

Poe:2006:BBS

Park:2009:CEA

REFERENCES

Park:1992:CRS

Pell:2011:SEF

Paul:2013:CBN

Paez-Monzon:1996:RPD

Pelley:2010:PRD

Parker:1977:HST

Page:1988:FAH

Philipson:1983:CSM

[PNB83] Lars Philipson, Bo Nilsson, and Bjorn Breidegard. A

Ponder:1991:PVA

Poujoulat:1977:ACB

Patterson:1982:RAH

Pehrson:1983:CID

Björn Pehrson and Joachim Parrow. Caddie an interactive design environment.

Papamarcos:1998:LOC

Pehrson:1983:CID

Björn Pehrson and Joachim Parrow. Caddie an interactive design environment.

Papamarcos:1998:LOC

Pitsianis:2003:IVM

Parashar:2013:TIC

Park:2015:CCP

Park:2017:DRM

Purnaprajna:2009:RTR

Pulido:1996:ETT

REFERENCES

Parashar:2017:SAC

Przybylski:1990:PIB

Peuto:1977:ITM

Pleszkun:1988:PPM

Pnevmatikatos:1994:GEB

Patterson:1998:RRR

Patterson:1998:RRI

References

Peuto:1998:ITM

Panneerselvam:2012:COS

Perais:2014:EPW

Putnam:2010:DVE

Pal:2013:FIN

Parashar:2006:SSB

REFERENCES

Park:2012:SDE

Petric:2005:RRB

Plotkin:1983:TSA

Pleszkun:1986:AEL

Papadopoulos:1991:MRV

Prvulovic:2003:RUT

Pritchett:2010:SHS

Phothilimthana:2016:SS

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodík, and Dinakar Dhamjati. Scaling up superopti-
REFERENCES

Pai:2013:IGC

Palix:2011:FLT

Powell:2003:PDM

Peiron:1995:VMA

Powers:2017:BBG

Paalvast:1990:MPP

REFERENCES

Pinkston:1997:DIN

Plumbridge:2013:BPR

Prabhakar:2017:PRA

Prvulovic:2002:RCE

Qiu:1998:ODA

Qiu:1999:TLM

Qureshi:2012:PIP

Xuehai Qian, Benjamin Sabellices, and Depei Qian. Pacifier: record and replay for relaxed-consistency multiprocessors...
REFERENCES

Qureshi:2009:SHP

Qian:2013:VSP

Qureshi:2005:VWC

Queshi:2009:SHP

Qian:2014:ODB

Qureshi:2005:VWC

Queshi:2009:SHP

Quick:1979:IMP

Quinton:1984:ASS

Quong:1994:ECM

Ruhl:1990:PFC

Reinman:1999:SFE

Radin:1982:M

Ranganathan:1999:PIV

Ranganathan:2000:RCT

Ramamoorthy:1978:RSC

Ramachandran:1988:PSI

Rosner:2004:PAT
Roni Rosner, Yoav Almog, Micha Moffie, Naftali
REFERENCES

Randell:1985:HST

Rao:1984:JEE

Rattner:1982:HSC

Rattner:1985:CMT

Reddy:1989:SPD

Reddy:1990:SBP

Rudd:1984:HPF

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Ramirez:2001:CLO

Ramacher:2003:GVP

Ramos:2007:DPC

Roesner:2008:CDP

Romanescu:2007:VSC

Raasch:2002:SIQ

Rakvic:2000:CTM

[RBS00] Ryan Rakvic, Bryan Black, and John Paul Shen. Completion time multiple branch prediction for enhancing trace cache performance. *ACM
REFERENCES

[RC05] Vijay Janapa Reddi, Dan Connors, and Robert S. Cohn. Persistence in dynamic code

REFERENCES

Rege:1976:CPS

Redstone:2000:AOS

Requa:1983:PDF

Raghavan:2013:CSH

Reynolds:1982:SRA

Rauchwerger:1990:MFP

Rose:1996:CIT

Rabbat:1988:TDC

Rau:1988:DTR

Rodohan:1991:OAO

Rajwar:2002:TLF

CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Rajwar:2002:TLF

Ramani:2009:SSF

Rau:1982:ASE

Rau:1982:ECG

REFERENCES

REFERENCES

December 1974. CODEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Romanescu:2010:SDV

Reinhardt:1994:TTU

Reinhardt:1998:RTT

Reinhardt:1998:TFD

REFERENCES

Richards:1974:HSI

Ramanathan:1993:SCP

Roberts:1978:SCA

Rockey:1985:DAS

Rockey:1994:MTE

Rodgers:1985:IMS

Romer:1995:RTM

Roos:1989:RTS

REFERENCES

[Rou86] Larry O’Neal Rouse. The twisted double helix: a minimum distance architecture

Ram:1985:PGC

Rao:1999:SAU

Ranganathan:1997:ISP

Ramirez:2007:EST

Reinhardt:1996:DHS

Rau:1977:EIF

Regehr:2004:HSA

REFERENCES

Reddy:2006:UPB

Ramadan:2007:MTT

Rajamani:2009:IDE

Raghavendra:2008:NPS

Rudolph:1984:DDC

Roth:1999:EJP

Ringenburg:2015:MDQ

Michael Ringenburg, Adrian Sampson, Isaac Ackerman,

Rabbah:2004:COP

Ransford:2011:MSS

Rothberg:1993:WSC

RounTree:2005:NH

Rogers:2005:MPH

Ramachandran:1987:HSI

Ramaswamy:2006:DTC

Subramanian Ramaswamy, Jaswanth Sreeram, Sudhakar Yalamanchili, and Krishna V. Palem. Data trace cache: an

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>ISSN</th>
<th>CODEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA88a</td>
<td>S. B. Shukla and D. P. Agrawal</td>
<td>A kernel-independent pipelined architecture for real-time 2-D convolution</td>
<td>ACM SIGARCH Computer Architecture News</td>
<td>16(2)</td>
<td>160–166</td>
<td>May 1988</td>
<td>0163-5964 (ACM), 0884-7495 (IEEE)</td>
<td>CANED2</td>
</tr>
<tr>
<td>SA10</td>
<td>Vijayaraghavan Soundararajan and Jennifer M. Anderson</td>
<td>The impact of management operations on the virtualized datacenter</td>
<td>ACM SIGARCH Computer Architecture News</td>
<td>16(2)</td>
<td>160–166</td>
<td>May 1988</td>
<td>0163-5964 (ACM), 0884-7495 (IEEE)</td>
<td>CANED2</td>
</tr>
</tbody>
</table>
REFERENCES

Sung:2015:DES

Sinclair:2017:CRS

Schulz:2005:SDB

Srinivasan:2004:CLR

Srinivasan:2005:ESD

Sachs:1983:BRR

Sivathanu:2002:ERA

Muthian Sivathanu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Scott:2006:BHR

Salisbury:1976:MMC

Seo:2005:NOW

Shen:1999:CRF

Smith:1990:IDA

Satterfield:1974:AAS

Savage:1985:PPL

REFERENCES

REFERENCES

Sherwood:2001:ADF

Sprangle:2002:IPP

Suh:2005:DOC

Sprangle:1997:APM

Sahoo:2013:ULI

Schaffner:1973:CAP

Schank:1973:AAS

Schneiker:1977:MF

REFERENCES

Schalkoff:1983:TED

Schachter:1988:BRH

Schwartz:1989:DDD

Schneck:1991:BRO

Sudan:2010:MPI

REFERENCES

REFERENCES

REFERENCES

Sidiroglou-Douskos:2015:TAI

Sohi:1985:ELE

Sudhakrishnan:2011:REB

Singh:2003:GLB

Sudhakrishnan:2011:REB

Schulte:2014:PCS

Saulsbury:2000:RBT

Shriraman:2008:FDT

Smith:1987:ZCP

Schulte:2013:ARB

Staudhammer:1974:FDO

Seebauer:1989:MCEa

Seebauer:1989:MCEb

Simone:1995:ITO
[MSE+95] M. Simone, A. Essen, A. Ike, A. Krishnamoorthy, T. Maruyama, N. Patkar, M. Ramaswami, M. Shebanow, V. Thirumalaiswamy, and D. Tovey. Implementation trade-offs in...

Seznec:1986:ERC

Seznec:1993:CTW

Seznec:1994:DSC

Seznec:1996:DUP

Seznec:2005:AGH

Sohi:1991:HBD

Seznec:2003:EAP

Seznec:2002:DTA

[SFKS02] André Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis Sazeides. Design tradeoffs for the Alpha EV8 conditional branch predictor. ACM
REFERENCES

REFERENCES

Stricker:1995:OMS

Sadler:2000:APE

Sampson:2005:FSC

Schwetman:1985:CPP

Stodolsky:1993:PLO

Santhanam:1997:DPH

Smolens:2004:FBS

Stewart:2015:ZDW

Schlosser:2000:DCS

Spertus:1993:EMF

Sankar:2008:IDP

Singha:2011:NAF

Scott:1992:PSR

Shen:1980:FTC

REFERENCES

Steenkiste:1987:TTC

Simoni:1991:MPL

Siegle:1992:MPB

Shirase:2005:AEC

Sharp:1980:STD

Sasanka:2002:JLG

Sembrant:2014:DDD

Shen:2010:RBV

REFERENCES

REFERENCES

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Per Stenström, Truman Joe, and Anoop Gupta. Comparative performance evaluation of cache-coherent NUMA and

Smith:1989:LMI

Samadi:2014:PPB

Schmittgen:1983:SAC

Sanguinetti:1985:PMB

Sargeant:1986:SDS

Shimizu:2004:JOL

Sridharan:2010:UHV

Sanchez:2011:VSE

Sanchez:2013:ZFA

Sung:2001:MDA

Sawada:2011:PCW

Sung:2013:DEH

Sharma:2009:RPL

Seo:2017:FAS

REFERENCES

REFERENCES

5964 (print), 1943-5851 (electronic).

Seznec:1992:IPS

Seznec:1993:OMS

Srinivasan:2005:MMC

Szefer:2012:ASH

Simha:2012:UAS

Shi:2006:IFD

Sui:2016:PCA

Shi:2005:HEC

Jiang Su, Jianxiong Liu, David B. Thomas, and Peter Y. K. Cheung. Neural network based reinforcement learning acceleration on FPGA platforms. *ACM SIGARCH Com-

Suh:2004:SPE

Schulthess:1977:RCA

Smith:1989:MRT

Saha:1994:DDT

Shun:2012:FAC

Sen:2014:TLT

Sabeghi:2010:RMS

Smith:1991:SBC

Smith:1998:DAE

Smith:1998:RSB

Smith:1998:RIP

Smith:1998:SBP

Smith:2014:EDN

Suleman:2010:DMM

Suleman:2009:ACS

Singh:2011:EPS

Smotherman:1989:SBT

Suleman:2009:DMM

Stone:1985:FGC

Severson:1995:TCP

Sankaralingam:2003:EIT

Singh:2012:EES

Shafiee:2016:ICN

Shahhoseini:1999:ABP

Sohi:1998:RMP

Number 414984. IEEE Computer Society Order Number PR08491; IEEE Order Plan Catalog Number 98CB36235.

REFERENCES

Samatham:1985:BMN

Smith:1985:IPI

Swensen:1987:FTS

Singhal:1989:HPP

Shustek:1998:RIT

Smith:1998:IPI

Sorin:1998:AES
REFERENCES

Sherwood:2002:ACL

Swanson:2006:APT

Saulsbury:1996:MMW

Sundaramoorthy:2000:SPI

Spradling:2007:SCB

Soundararajan:2007:MBV

Suleman:2008:FDT
Srinivasan:2004:CFP

Sassone:2007:MSR

Sethumadhavan:2007:LBE

Srivastava:2001:EOB

Shayesteh:2005:DCS

Santos:2014:UAT

Shao:2014:APR

Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Aladdin: a Pre-RTL, power-performance accelerator simulator enabling

REFERENCES

Schkufza:2013:SS

Sinha:2013:NRA

Sridhar:2007:HLO

Swanson:1998:ITR

Sherwood:2003:PTP

Shen:2013:PCF

Siegel:1984:PRP

References

Skadron:2003:TAM

Shriraman:2007:IHS

Seol:2016:EED

Sundararajah:2017:LTN

Shi:2007:CCP

Stunkel:1997:IMW

Son:2013:RMA

Young Hoon Son, O. Seongil, Yuhwan Ro, Jae W. Lee, and

Sundell:2008:NNB

Staff:1979:CL

Staff:1980:CLAa

Staff:1980:CLAb

Stallings:1986:ABR

Staknis:1989:SMA

Steel:1977:AGP

Stevenson:1980:RPI

[Ste80] David Stevenson. A report on the proposed IEEE Floating

Stevenson:1981:PP

Stenstrom:1989:CCP

Stringa:1983:EIE

Strecker:1976:CMP

Stokes:1986:THV

Sartín-Tarm:2013:CCS

REFERENCES

Shin:2017:HLL

Sinclair:1994:IPS

Su:1974:BRL

Su:1975:ICC

Suri:2007:IIL

Sylvain:1974:DEA

Schulthess:1982:ONA

REFERENCES

[Sohi:1987:IIL]

[Sohi:1989:TIF]

[Sohi:1998:IIL]

[Schuchman:2005:RMT]

[Schuchman:2006:PTA]

[Sherwood:2003:PMA]

[Stryker:1974:SSA]
REFERENCES

[SWL10] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee.

[Seong:2013:TLC] Nak Hee Seong, Sungkap Yeo, and Hsien-Hsin S. Lee. Trilevel-cell phase change mem-

StAmant:2014:GPC

Sakai:1989:ADS

So:1988:CPV

Shin:2008:PWR

Shen:2004:LPP

Shen:2008:HCD

Sias:2004:FTI

John W. Sias, Sain zee Ueng, Geoff A. Kent, Ian M. Steiner, Erik M. Nystrom, and Wen mei W. Hwu. Field-testing

Thomasian:1976:DSS

Takahashi:1983:DFP

Tseng:2003:BMR

Tabak:1988:LIM

Tabak:1995:CMH

Tabak:1996:BRA

Tabba:2010:ACP

REFERENCES

Tanimoto:1983:PAP

Tam:2009:RAL

T:2010:DDF

Thakur:1994:CCD

Teodosiu:1997:HFC

Tsai:2017:JSD

Po-An Tsai, Nathan Beckmann, and Daniel Sanchez.

REFERENCES

Thorson:1993:UNa

Thorson:1993:UNb

Thorson:1993:UNc

Thorson:1993:UND

Thorson:1994:UNa

Thorson:1994:UNb

Thorson:1994:UNc

Thorson:1994:UNd

Thorson:1995:INa

Thorson:1995:INb
REFERENCES

Thorson:1998:INc

Thorson:1999:INa

Thorson:1999:INb

Thorson:1999:INc

Thorson:2000:INa

Thorson:2000:INb

Thorson:2001:INa

Thorson:2001:INb

Thorson:2001:INc

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue/ Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN (ACM)</th>
<th>ISSN (IEEE)</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

Thorson:2014:INb

Thorson:2014:INc

Thorson:2015:INa

Thorson:2015:INb

Thorson:2015:INc

Thorson:2016:INa

Thurber:1976:ANR

Thurber:1978:CCT

Tick:1988:DBP
E. Tick. Data buffer performance for sequential Prolog architectures. *ACM
REFERENCES

REFERENCES

[TLM*04] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker

[TM10] David Lie Chandramohan, Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,

REFERENCES

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

REFERENCES

December 2006. CODEN OS-RED8. ISSN 0163-5980.

Thakkar:1990:POA

Tullsen:1999:SVP

Tan:2005:HTS

Tsang:2010:DPR

Tsafrir:2016:SAW

Torrant:1999:SMS

Tomita:1983:UML

REFERENCES

Tanaka:2013:USP

Tomita:1986:CLL

Tiwari:2007:RPA

Tokoro:1982:SSI

Tiwari:1986:CLL

Tribino:2012:PPA

Tu:2013:SDS
Tokoro:1980:HLM

Tsoi:2010:PFC

Tse:2010:ERD

Turton:1979:PHS

Tredennick:1977:HSB

Thomborson:1991:SIM

Torng:2016:AAW

Tan:2010:CFF
Tiwari:2009:CIF

Tucek:2009:EOV

Takahashi:1986:NSS

Talcott:1994:IUB

Takamaeda-Yamazaki:2011:FBS

Tzeng:1985:FTS

Tang:1990:CTD

REFERENCES

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

[Uchida:1983:IMS]

[Ullah:1993:MIP]

[Uht:2002:DEE]

[Uht:1992:DPI]

[Uht:1993:EMIa]

[Ulmann:1995:ESB]

[Uht:1993:EMIib]

[Ulmann:1997:NEP]

[Ulmann:1998:ILE]

Upasani:2012:SED

Upasani:2014:ACD

Ungerer:1991:MLP

Unger:2000:CCA

VanOost:1981:MPS

Voskuilen:2010:TEA

Vassiliadis:1992:ASO

REFERENCES

Dalibor Vrsalovic, Edward F. Gehringer, Zary Z. Segall, and
REFERENCES

Vora:2017:KFA

Vranesic:1973:DFV

Vanderleest:1994:MBC

Vachharajani:2005:CMP

vonIssendorff:1980:ANF

Vineberg:1977:ICS

Vissers:1976:IDA

Chris A. Vissers. Interface, a dispersed architecture.
REFERENCES

Varma:1995:DAD

VanCraeynest:2012:SHM

Vajapeyam:1999:DVM

Vijaykrishnan:2000:EDI

Valero:1992:INS

Veeraraghavan:2011:DPS

Vernon:1988:AEP

M. K. Vernon, E. D. La-

[VPC02] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault recovery using simultaneous multithread-
REFERENCES

REFERENCES

Venkataramani:2014:STAG

Varma:1992:CPS

Venkatesh:2010:CCR

Vajapeyam:1991:ESC

Venkateswaran:2007:FGSa

Venkateswaran:2007:FGSb

REFERENCES

REFERENCES

Wilkerson:2010:RCP

Wenisch:2007:MSW

Wagner:1983:BVM

Wah:1983:CSD

Wajda:1992:SSP

Wakerly:1980:PED

Wakerly:1981:BRR

REFERENCES

Wall:1991:LIL

Wang:1993:NDH

Wang:2001:MAH

Weisse:2017:RLC

Wu:2013:NBD

Wang:1989:OPT

Wang:2003:GRP

Wolfe:1988:WDH

REFERENCES

Witchel:2002:MMP

Witchel:2002:MMP

Wood:1993:MCS

WCF+93

Wu:2001:BER

WCF01

Wood:2014:LLD

WCG14

Wen:2017:REV

WCL17

Wells:2008:AIF

WCS08

Wells:2009:MMM

WCS09

Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. Mixed-mode multicore reliability. ACM SIGARCH Computer Architecture News,
REFERENCES

WALLACE:1998:TMP

WANG:2004:HTV

WANG:2017:XCE

WEINSBERG:2008:TFC

WESTER:2013:PDR

WU:2016:DFD

REFERENCES

CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

REFERENCES

REFERENCES

[Wit76] Larry D. Wittie. Efficient message routing in Mega-Micro-
REFERENCES

[WK89] D. A. Wood and R. H. Katz. Supporting reference and dirty

Wegiel:2008:MCV

Wegiel:2009:DPC

Wang:2012:IWE

Wei:1988:EGN

Wang:2007:NCD

Woo:2010:CPD

Wang:2017:DAC

REFERENCES

Wadden:2014:RWD

Wu:2014:QAD

Wah:1984:SMM

Wulf:1995:HMW

Wu:2014:QAD

Wu:2017:FEF

Winsor:1988:ABH
Wang:2016:RTE

Wang:2007:EAA

Wang:2009:TCP

Watanabe:2014:GAH

Woo:1986:CHU

Wolman:1989:ISI

Wilson:1997:DHB

Wolman:1989:ASB

REFERENCES

Wong:1989:SAS

Wong:2007:CBS

Wong:2016:PEA

[Won89]

Woo:1986:RCC

[Won07]

Woo:1995:SPC
Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2 programs: characterization and methodological considerations. *ACM
REFERENCES

REFERENCES

Weiss:1984:IIL

Whitby-Strevens:1985:T

Weiss:1987:SSC

Williams:1990:ADR

Wolfe:1991:VIS

Whittenbrink:1992: CWG

Waliullah:2007:SFC

Wittenbrink:1992: CWG

Wang:2014:GRS

[WSC+14] Tao Wang, Guangyu Sun, Jiahua Chen, Jian Gong, Haoyang Wu, Xiaoguang Li, Songwu Lu, and Jason Cong. GRT: a reconfigurable SDR platform with high performance and usability. ACM SIGARCH Computer Ar-
REFERENCES

Wenisch:2005:TSS

Widigen:1996:EOR

Woh:2009:AAA

Wulf:1988:WCA

Wulf:1992:EWA

Wong:1989:TDH

REFERENCES

Wang:2005:GFB

Wang:2017:QSS

Wang:2016:AMR

Wu:2013:SMP

Xu:2003:FDR

Xiang:2013:HHO

REFERENCES

[XYM12] Yi Xu, Jun Yang, and Rami Melhem. Tolerating pro-

References

Yoon:2010:VFE

Yelick:2009:TWW

Yan:2006:ICP

Yoaz:1999:STI

Yeh:2007:PAR

Young:1995:CAS

Yan:2017:SHA

Yu:2003:TBS

[YHF03] Ryan W. S. Yu, Gary K. W. Hau, and Anthony S. Fong. Test bench for software development of object-oriented

REFERENCES

stack: microarchitectural features to defeat stack smashing.

Yeung:1996:MMS

Yum:2001:QPC

Yoon:2016:VTM

Kim:2002:IWS

Yasrebi:1984:SAS

Yao:2016:OCO

Yan:2010:LCL

Guihai Yan, Xiaoyao Liang, Yinhe Han, and Xiaowei Li.

Yang:1999:LMJ

Yu:2017:SCD

Yue:2006:NCB

Yang:2011:BPR

Ye:2000:CHP

Yetim:2015:CMC

Yao:2007:OPD

Yuan:2010:SED

Yu:2009:CIC

Young:2015:DWE

Young:2017:DCD

Yokota:1994:DND

Yomtov:1992:PED

REFERENCES

[YSCC16] Man-Ki Yoon, Negin Salajegheh, Yin Chen, and Mihai Cristodorescu. PIFT: Pre-

REFERENCES

CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Zhang:2005:VRM

Zahran:2003:CMH

Zhao:2016:SHC

Zaks:1973:MAF

Zaky:1977:MNN

Zucker:1992:PSM

Zhan:2016:PMB

[ZBBL16] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai

Zhuravlev:2010:ASR

Zhou:2002:EVC

Zhai:2002:COS

Zhang:2014:HDH

Zhang:2013:CFC

Zhu:2016:DEQ

REFERENCES

5964 (print), 1943-5851 (electronic).

Zeng:2002:EME

Zhou:2003:DGS

Zhang:2016:MPU

Zheng:2017:RMA

Zhang:2001:PLA

Zheng:2016:BCR

Zhou:2016:PUH

Zhou:2016:CSI

REFERENCES

CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Zilles:2001:BHC

Zhang:2011:FED

Zhang:2017:PPD

Zecca:1990:ECV

Zahedi:2014:RRE

Zhang:2016:TDX

Zhang:2011:CDC

REFERENCES

Zheng:2009:DDB

Zhang:2016:TAS

Zheng:2009:DDB

Zhong:2014:WAS

Zahir:2000:CCD

Rumi Zahir, Jonathan Ross, Dale Morris, and Drew Hess. OS and compiler considerations in the design of the
REFERENCES

Zhao:2005:DMO

Zhang:2014:EES

Zilles:2000:UBS

Zilles:2001:EBP

Zhao:2015:FPS

Zhang:2017:ISC

Zhu:2007:SSB

Weirong Zhu, Vugranam C. Sreedhar, Ziang Hu, and Guang R. Gao. Synchronization state buffer: sup-

Zhao:2013:PAG

Zhang:2010:CDS

Zhang:1995:SIA

Zuberek:1980:TPN

Zhang:2003:HCC

Zhou:2014:SAS

Zhou:2016:MMI

Yanqi Zhou and David Wentzloff. MITTS: memory interarrival time traffic shaping. *ACM SIGARCH Computer Architecture News*, 44
REFERENCES

reliable and highly-available non-volatile memory system.
