A Complete Bibliography of ACM SIGMETRICS
Performance Evaluation Review

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
Fax: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

12 October 2023
Version 1.55

Title word cross-reference

+ [2080, 2169]. 1/N [2716]. 3
[1970, 3331, 2849, 936, 2706]. 4 [2060]. 5
[2941]. 9.81 [3143]. α [1860].
c [1870].
d [3335, 2884, 2636, 2650, 3063, 1192, 1955,
2651, 2494]. Δ [2010]. G/G/1
[2023]. k [1577, 3343, 2066, 3122, 3315]. $\lambda(n)/C_k/1/N$
[189]. M [2921]. $n \times n$ [3095, 3065].

-Accurate [2716]. -dimensional [1955].
-Graphs [2010]. -optimal [1870]. -th
[2921]. -TLB [1192]. -weighted [1860].

.NET [1821].

1) [1720, 1592, 1915, 1691, 2298, 1170, 671,
198, 2997, 807, 1230, 3343, 3062, 450, 1128,
320, 3024, 2640, 1169, 2289, 1792, 1439].
1-FB [1348]. 1-type [1188, 1267]. 11 [267].
11/780 [267]. 1100' [419, 257]. 1100-0f

2 [1963, 575]. 2-dimensional [2088].
2-Level [1429]. 2.7 [3223]. 2000 [929, 666].
2016 [2693]. 23-3 [310]. 256 [3123].

370 [86]. 370/145 [86]. 3G [2286, 2608].
3G/4G [2608].

42 [257]. 43XX [363]. 4G [2608].

5000 [738]. 52779 [127]. 5890 [555].
2622, 3127, 2930, 1459]. acknowledgement
[483]. acknowledgement-based [483].
acknowledgements [943]. ACM
[645, 3066, 3176, 2865, 2899, 2892]. Acoustic
[2835]. Acquisition [3158, 1143]. Across
[2744, 2131, 2372, 2563, 2905, 2658, 603, 1946].
Action [3329]. Active
[818, 495, 2773, 1394, 1245, 2192]. activities
[1362, 749]. Activity
[2446, 1756, 1884, 1466, 1202]. Ad
[2964, 1212, 2320, 1325, 1115, 2010, 1084].
Ad-Hoc [2964, 1212, 1115]. ADAM [74].
adaptability [3228]. Adaptation
[2846, 1196]. Adaptive
[44, 2713, 231, 1213, 900, 879, 2894, 2596],
1563, 2738, 2774, 2533, 2462, 585, 513, 1163,
1306, 1997, 91, 1276, 773, 1261, 395, 1413,
396, 1809, 1778, 1815, 989, 724, 1879, 2097,
1967, 253, 46, 981, 1435]. added [985].
Addison [606, 608, 645, 700].
Addison-Wesley [606, 608, 645]. addition
[21]. Additional [2829, 800]. additive
[1070, 2695]. Address
[996, 736, 1032, 754, 843, 769, 972, 752].
adiabatic [1763]. adjustment [999].
Admission [2096, 1163, 1778, 1895].
Admit [2557]. Adoption
[2916, 2440, 1607, 2027]. ADP
[164, 84, 214, 2124]. adPerf [3133]. Adrian
[644, 701]. Ads [3133]. adsorption [2424].
Advance [2445, 2577, 1497, 1625].
Advanced [1750, 2894, 3044, 3114, 2939].
Adversarial
[2845, 3060, 2820, 3035, 2957, 3314, 2373].
adversaries [1661, 1297]. advertisement
[1797]. Advertising
[2675, 2984, 2444, 1899, 2329]. advisor [563].
Aeronautical [2943]. affecting [616, 574].
affects [2029, 1022]. affinities [1039].
affinity [833, 741, 2772]. after [2766].
Against [3041, 2015, 2168]. Age
[3055, 3267, 2822, 1761, 2339, 1749].
Age-Based [2822]. Age-of-Information
[3055]. agenda [1819]. Agent
analyst

Analytic

Analytical

Analytics

Analyze

Analyzer

Analyzing

Anarchy

Anatomy

Android

animation

annotating

anomalies

Anomaly

Anonymity

answered

Anthony

Anticipating

Antipattern

anycast

APC

aperiodic

APL

appear

Apples

Apples-to-apples

Applicability

Application

application

application-VM-physical-machine

Application-level

applications

Application/file

Application/file-level

Applications
[1445]. Benefits
[2560, 741, 495, 842, 1334, 2243]. Bernoulli
[321, 728]. Best [2923, 2966, 265, 1167, 998, 1532, 999, 1677, 1712]. best-effort
[998, 1677]. BestFit [2432]. bestseller [2333]. Better
[959, 2482, 2689, 3285, 2592, 1577, 5, 1488].
between [1949, 2805, 2681, 986, 1348, 478, 1822, 2936, 2403, 3142, 2354, 2509, 1855].
Beware [3]. Beyond
[1541, 2344, 3229, 2127, 3247, 117]. BG
[1925]. BG/P [1925]. BGP
[1314, 1315, 2649, 1770]. Bias
[3292, 3318, 3158]. Bias-Variance [3158]. Biased
[3308, 2625, 2418, 2143]. Biases
[2571]. bibliography [358]. Bidding
[2328, 3152, 2670]. Big [2461, 2460, 2514, 2463, 2338, 2501, 2733, 2435, 2337, 1491, 2432, 2339, 2361, 1799, 2341].
BigData [2343]. bigger [1457]. bike [3160]. Bilateral
[2057, 2509]. Billing [2443]. Billion
[2840, 2729]. Billion-Scale [2840, 2729].
Bin [3045, 2692, 2521, 3306, 2494, 2432].
binary [1869, 2061, 2349]. binomial [2919].
binpacking [1167]. biochemical [2685].
biochemical [1641, 1638, 1640]. biology
[1639]. Bipartite
[2104, 3077, 3208, 2759, 1890]. bird [311].
Birkhoff [1164]. birth [2072]. Bistro
[1076, 1174]. bit [1567]. Bitcoin
[3103, 3104, 2446, 3080, 2723]. Bitcoin-NG
BitTorrent-like [1724, 1670, 1973]. Black
[2758, 1816, 3115]. Black-box [2758, 1816].
Blackbox [1834]. BlackjackBench [2174].
BlenX [1641]. boat [2122]. Block
[3086, 3283, 1067, 2952, 2268, 185, 377, 373].
Blockchain
[2955, 3100, 2951, 3101, 3324, 2948].
Blockchains [3201, 3099]. blocked [385].
Blocking [552, 1114, 2612, 2588, 358, 147, 34, 203, 1136, 1556]. BlockSim [2955].
bloom [1852, 2599, 2506, 1569]. Blue [1501].
Bluetooth [1610]. BMAP [1439].
BMAP/MAP/1 [1439]. Book
[641, 750, 640, 595, 594, 596, 598, 597, 604, 607, 606, 605, 608, 751, 746, 745, 654, 653, 663, 700, 701, 705, 117].
Boolean [763].
Boosting [2662, 2738, 2774, 1153].
Bootstrapped [2811]. BoPF [2900]. both
[1154]. Botnet [1753]. bottlenecks
[814, 633, 667, 2277]. Bottom [1577].
Bottom- [1577]. Bought [3143]. Bound
[1646, 2997, 2705, 349, 1965, 376, 639, 260].
Bounded
[2840, 2966, 2550, 1167, 2109, 2367, 2273].
Bounding
[1584, 1482, 1511, 882, 526, 3168, 679, 774].
Bounds
[2790, 2817, 2804, 2921, 3341, 2488, 2487, 2591, 2469, 3178, 3340, 2571, 2495, 2911, 294, 2250, 1306, 1600, 2269, 440, 807, 2198, 1969, 678, 1020, 1671, 1590, 1573, 1397, 1782, 1393].
bowl [1656]. box [2758, 1816, 2366, 3115].
BRADO [1589]. braids [1655]. branch
Breathing [2597]. Bregman [3151].
Bregman-style [3151]. BrickX [2039].
Bridge [1998]. bridges [522]. Bridging
Bringing [839]. broadband
[933, 1362, 2277, 1837]. broadcast
[1132, 289, 924, 612, 535, 1048, 2012].
Broadcasting [3088, 740].
Broadcasting-based [3088]. brokerage
[219]. Brown [2460]. Brownian
[1731, 2069]. Browser [3323]. Browsers
[3009, 3034]. Browsing [2916, 2154]. BSTs
[1330]. BT [1931]. bucket [1034]. budget
[2319, 2396]. budget-constrained [2396].
Budgeted [2664]. Budgets [2488]. Buffer
[1514, 2998, 897, 3198, 2819, 760, 1762, 1389, 1388, 1067, 1612, 562, 627, 491, 1183, 2405, 2120, 864, 923, 732, 670, 1117, 1642, 287, 297]. buffered
[470, 146, 2303, 1419, 619].

classifications [1495, 1537]. classifiers [1382, 1492]. Classifying [2151, 1395, 2878, 2390].

Cluster-based [675, 1040].
Clustered [2128, 1091].
Clustering [1571, 2598, 2512, 401, 2006, 2370, 2349].
Clusters [2460, 2562, 2900, 973, 2372, 1696, 2905, 1831, 2172, 2143, 186, 2035, 988].
CME [3215].
CMG [87].
CMP [1827, 1547].
CMPS [1808, 1675, 1876, 1977].
Co [1702, 3251, 2519, 1625, 2228].
co-allocation [1625].
Co-designing [1702].
co-generation [2228].
Co-Location [2519].
Co-Simulation [3251].
Coalition [2666, 3199, 2573].
CoBF [3330].
Code [121, 2184, 327, 1850].
Coded [3276, 3259, 2415, 798, 1907].
CodeMRI [1708].
codes [1688, 2383, 2111, 2376].
CODESTAR [485].
coding [1359, 2007, 1652].
coefficient [1348].
Coflows [2705].
coherence [814, 813].
coherent [565].
coincident [2228].
collaboration [1388].
Collaborative [2579, 2564, 2604, 1039, 1693].
Collaboratively [2966].
Collapse [3073, 3028, 2913, 200].
Collected [3258].
Collecting [2348].
Collection [2976, 671, 2546, 1287, 37, 1193, 1335, 1715, 166, 2418, 2239, 2334].
collective [1872].
collision [3058, 298, 1902, 1674].
collusions [2162].
Colocation [2459, 2559].
Coloring [1854].
columns [2349].
Combination [89].
Combinatorial [3117, 3263].
Combinatorics [3037].
Combined [1686, 176, 271, 1675].
Combining [2493, 1245, 1333, 684].
Come [3326].
comes [1638].
command [355].
Comments [30, 47].
Commerce [2639, 1363, 1077, 958, 1027, 1364, 2877].
commercial [1588, 565, 674, 1174, 1238].
Commitment [2656].
commodity [2388, 1853].
common [747, 3209].
Commons [2451, 2321].
communicating [157].
Communication [2681, 1400, 2844, 640, 596, 646, 3149, 2449, 663, 3023, 2093, 321, 1254, 2050, 2178, 821, 1756, 249, 784, 851, 1698, 1160, 299, 305, 1111, 833, 483, 2418, 1404, 220, 2175, 1202, 915].
Communication-Aware [3023].
Communications [2946, 2944, 175, 2943, 10, 248, 2429, 396, 693, 612, 2407].
Community [2779, 2632, 3262, 3202].
CoMoM [1730].
Compact [2501, 843].
compaction [552, 532].
Companies [2674].
Comparative [652, 1581, 3298, 2386, 249, 22, 47].
Comparing [1525, 2758, 1036, 1992, 2135, 229, 5, 2154].
Comparison [505, 1607, 2161, 2394, 2050, 1511, 247, 395, 1826, 106, 458, 783, 1113, 1563, 1168, 435, 1472, 26, 771, 23, 775, 82, 2177, 682, 24, 1272, 727, 2163].
Comparisons [2512].
Competitivities [3336].
Compatibility [3139, 386, 1848].
compensating [1653].
compensation [295].
competing [2676].
Competition [2473, 2667, 2740, 2331, 2949, 3176].
Competitions [2611].
Competitive [3055, 3182, 2665, 2983, 1543, 2982, 3147, 2321, 593, 2421].
competitiveness [2250, 2136, 1681].
compilation [877].
compile [668].
compile-time [668].
Compiler [2847].
Compiler-Inserted [2847].
Complementarities [2573].
complementary [792, 2220].
Complete [660, 1335, 778, 186, 944].
Completely [2751].
Completion [2705, 757, 862, 1527, 1459].
Complex [2520, 3012, 2094, 1830, 753, 2208, 2215, 1840, 1709].
Complexity [2687, 3076, 325, 2815, 2936, 2861, 2860, 2121, 2142, 247, 1203, 394, 2186, 392, 324, 2403].
component [1365].
components-based [1365].
components [2074, 397].
Composed [3217].
Composite [648, 892, 188, 742].
Compositional [2095].
compressed [2076, 980].
Compression [1927, 2620, 294, 1300, 996, 1970, 752, 1764].
Compression-Aware [2620].
compressive
[1982]. Compromise [3322, 2026].
Computable [2495]. Computation
[3244, 2786, 2745, 889, 1355, 2000, 2216, 2041, 1599, 2414]. Computationally
[178, 644, 2254, 701, 1247, 347, 1248]. Computations
[945, 931, 540, 1104, 155, 2039]. Compute
[3216, 2690, 3054, 1437, 1060, 1831]. Compute-Sync-Merge
[2690]. Computer
Computers
[1751, 10, 640, 594, 596, 643, 654, 663]. Computing
concatenation [1134]. Concave [2357].
Content
[2713, 2914, 1353, 2149, 2455, 2453, 2565, 2015, 87, 2899]. Conferencing
Criticality [2615, 2360, 2020, 2209].
Critically [3140]. Cross [1518, 1285, 2852, 68, 1426, 1404].
Cross-architecture [1285]. Cross-layer [1518, 2852, 1404], cross-traffic [1426].
Crossbar [2689, 1419]. Crowd [2753, 2486].
Crowd-Sourced [2733]. Crowd-Sourcing [2486].
crowded [2225]. Crowdsensing [2684]. Crowdsourcing [2485, 2230, 2428].
Crypto [3100]. Crypto-Hotwire [3100].
Cryptocurrency [2810, 3131, 2954, 3323, 2949].
Cryptocurrency-themed [3323]. Crypto [3100], Crypto-Hotwire [3100].
Cyber [2894, 2898, 1905, 2339], cyber-insurance [1905].
Cyber-Physical [2766, 2893]. Cyber-Security [2806].
Cyberinfrastructure [2159].
CyberInsurance [2202]. cybersecurity [2202].
cyberspace [2166]. Cycle [439, 217].
cyclic [2076, 453, 32, 673]. cyclic-service [453].
Cypress [1930].

D
[644, 701, 2934, 2854, 3140, 3325, 2928, 1266, 2123, 3331, 2849, 936, 3277, 790, 2706, 3152].
dampening [2073]. Dancing [2623, 812]. Dandelion [2810, 2723]. Dangling [3321].
Data-flow [3300]. Data-intensive [3256, 945, 505, 1965]. data-locality [1390].
Database [3031, 750, 657, 694, 574, 457, 458, 415, 832, 524, 378, 442, 444, 505, 150, 204, 255, 444, 708, 403]. databases [575, 2220].
Datacenter [3279, 3090, 2500, 3192, 2705, 3281, 2833, 2831, 2253, 3233, 2252, 2315, 3171].
Datasets [3301, 2045]. day [2670].
Deadline-aware [2558]. Deadline-Sensitive [2699]. Deadlines [3206, 2880, 600]. death [2072]. debate
distributed

Distributing

Distribution

Distribution-free

Diversity

Diverse

dual-bus
Formalizing [1346]. format [1098].

Formation [2568, 2666, 3235, 3199, 2170]. formed [829].

forming [3088]. forms [3017, 1842, 1241].

formula [1420]. formula-based [1420].

formulae [85]. Fortier [658]. FORTRAN [316, 317].

Forums [3322]. Forward [2603].

Forwarders [1216]. Forwarding [2711, 3283, 2133, 1783, 2043, 1333).

foster [2350]. Foundation [647]. Foundations [323, 365].

Fragmentation [2813, 1868, 1785]. frame [1008, 848, 513].

frame-based [848]. Frameworks [1365, 2216].

gang [966]. gang-scheduling [966]. GAO [66].

Gap [3015, 827]. Garbage [2976, 2546, 1287, 1193, 2239].

Gate [2706, 1896]. gate-limited [1896]. gateway [572, 573].

GB [3123, 2772]. GB-PANDAS [2772]. Gbps [3247].

GDM [2387]. Gelenbe [604].

GemDroid [2374]. Gemini [2177]. GEMM [310].

Gene/L [1501].

Gene [3063, 3065, 3122, 2439, 2928, 370, 2298, 340, 2074, 1863, 1182, 691, 36, 2750, 2281, 619, 549, 348, 414, 148, 1865].

general-purpose [36]. generalised [1746].

Generalization [2643, 441]. Generalized [1171, 2589, 3073, 3028, 1252, 2434, 670, 429, 947].

Generalizing [2450]. generally [2046]. generally-timed [2046]. generated [3337, 2327].

Generating [927, 1583, 951, 1820, 360, 2065, 1247].

Generation [2946, 2493, 2518, 116, 2156, 2034, 1056, 2178, 2310, 2256, 2228, 917].

Generative [3112, 3060, 765, 2957, 259].

Generator [3220, 764, 2309, 1321, 1156].

GENI [2159]. Geo [2973, 2754, 2794, 2798, 2624, 2278, 2253, 2272].

Geo-Distributed [2624, 2973, 2754, 2794, 2798, 2253, 2272].

Geographically [2563, 2045]. geolocation [2160, 1980].

Geometric [3033, 2208, 2249]. geometry
[1994, 2505, 2590, 2749, 2902, 3073, 3265, 3028, 2549, 2587, 2803, 3061, 3064, 1893, 2503, 3194, 1792, 2800, 3344, 3240, 2715, 2858, 2860, 2855, 2913, 2968, 1357, 2285, 1475, 1995, 1512, 2287, 1438, 1019, 1892, 2279, 2289, 2305, 2772]. Heavy-Tailed
[2595, 1357, 2289]. heavy-tails
[1512, 1438, 2279]. Heavy-Traffic
[2549, 2587, 2800, 3344, 2860, 3073, 3028, 1893, 1792, 2855, 2913, 2968, 1892, 2772]. Hegemony
[3153]. held
[2240]. Help
[2592, 2363]. HEMI [39]. Hershel [2362]. heSRPT [3022, 3074]. Heterogeneity
[3141, 2498, 2466, 2417, 2273, 2027]. Heterogeneous
[3141, 3276, 2505, 3020, 3075, 3063, 3259, 2707, 2815, 2756, 3256, 2653, 2883, 2637, 2471, 3338, 3079, 3231, 1171, 2036, 2103, 1866, 2302, 2104, 1936, 438, 2048, 494, 1977, 1946, 1697, 2327]. HeteroScouts [1977]. Heuristic
[2682, 2531, 1167, 261, 348]. heuristically
[45]. Heuristics [2097, 434]. Hewlett [904]. HFTraC [2712]. Hidden
[1111, 2915, 1261, 1614, 1855]. Hierarchical
[329, 2932, 3183, 1651, 988, 2193, 627, 855, 906, 388, 564, 302]. hierarchies
[331, 349, 183, 376]. hierarchy
[951, 1391]. Hieroglyph [2690]. High
[2836, 2944, 1619, 1194, 2923, 3000, 2100, 690, 2171, 599, 2244, 3007, 1030, 2712, 3281, 735, 2121, 692, 1503, 969, 1061, 360, 291, 1569, 1776, 1665, 678, 2262, 976, 1053, 2380, 1633, 1137, 2263, 1174, 20]. High-capacity
[1030]. High-density
[1194]. high-dimensional
[2380]. high-end
[1633]. High-Endurance
[2836]. High-Frequency
[2712]. High-level
[1619, 599, 360]. high-order
[2262]. High-Performance
[3000, 2100, 692, 969]. high-reliability
[1503, 1665]. high-speed
[678]. High-Throughput
[3281, 2244, 2121]. high-variability
[1776]. high-volume
[1174]. HighEnd
[2049]. higher
[1597, 441, 1395]. Highleyman
[605, 653]. Highlight
[2936]. highly
[994, 250, 634, 767]. highly-associative
[634]. Hill
[745]. Hints
[2580]. histograms
[1289]. history
[1420, 312]. history-based
[1420]. Hit
[2544, 2742, 2907]. HMTT
[1664]. Hoc
[2964, 1212, 1325, 1115, 2010, 1084]. holding
[2356]. Holland
[647]. home
[2134, 1802]. homogeneity
[198]. homogeneous
[2022, 350, 437, 622, 289, 296]. Homophilous
[3153]. hop
[1664]. Hopping
[2456, 1115, 2247]. hops
[3152]. Horizon
[3309, 3270, 3320]. Horwood
[656]. Host
[3185, 1450, 1274, 1914, 3246]. host-based
[3246]. Hosting
[3268, 3321, 1407]. Hosting-Based
[3321]. hosts
[1479, 1138, 300]. HostView
[1914]. Hot
[2708, 2702, 1686, 2114, 500, 1313]. Hot-Data
[2708]. hot-potato
[1686, 1313]. hot-spot
[500]. Hotwire
[3100]. Hound
[2831]. Hour
[2701]. Hour-Ahead
[2701]. Howarth
[594]. HPCC
[1501]. HPDC
[2037]. HPDC/SIGMETRICS
[2037]. HSLAN
[492]. HTTP
[2406, 2533]. httperf
[960]. hub
[1839]. Human
[97, 61]. Hurst
[934]. Hurt
[3193]. Hybrid
[735, 2976, 2758, 2673, 2905, 2945, 2509, 2003, 1338, 1254, 1276, 1658, 1050, 759, 1926, 2309, 19, 2341, 1931, 2039, 39]. Hyper
[2501, 2996, 987, 3228]. Hyper-Compact
[2501]. Hyper-Scalable
[2996]. hyper-scale
[3228]. HyperBench
[3002]. hyperbolic
[1783]. hyperchannel
[408]. hypercube
[498, 496, 623, 778, 629]. Hyperexponential
[2996]. hypergraph
[2344]. Hyperscale
[2524]. hysteresis
[882, 1059].
I/O [2836, 340, 938, 977, 422, 713, 720, 796, 1809, 100, 901, 256, 674, 918, 2280, 194, 1153, 1228, 1429], IaaS [1976, 2470], IBM [868, 86, 363, 310, 789, 162, 24], Iconic [61], ICPE [2015], IBUG [118], Idealized [3085, 1965], Identifiability [2776], Identification [2937, 2493, 2004, 1181, 2279, 2048, 2247, 1759], Identify [3135, 1291], Idle [2750, 2882, 889, 945, 973, 801], idleness [1586, 1769], IEEE [611, 588, 1691, 1298, 2677, 1385, 1993, 1919, 2535], If [3009, 1527, 2215], Ignite [2564], II [2868, 2875], Illegal [3100], Illuminating [3301], Image [1701], Images [3294], Imbalance [2617, 2855], Impact [1110, 2523, 2671, 2565, 2765, 2838, 2498, 2577, 2408, 2389, 2841, 2093, 1314, 2190, 1287, 1389, 1610, 1834, 2241, 1766, 2226, 485, 2001, 179, 1473, 624, 1057, 2150, 1942, 1077, 1940, 1835, 2370, 755, 918, 1408, 966, 2375, 1919, 968, 2433, 2073, 2145], Impacts [1470, 824, 1624, 1340], impaired [1789], impatience [2029], imperfect [1477], Implementation [3258, 1690, 334, 1132, 529, 224, 1332, 989, 1930, 2132, 1926, 1652, 93, 152, 1108], implementations [1148, 1931], implemented [2394], Implementing [225, 634, 916, 67], implication [1960], Implications [2481, 2322, 2028, 1038, 1755, 528, 2122, 1767, 1889, 1442, 1045, 2240, 2154, 2099, 1753], Implicit [1368, 935], Implied [2469], imply [2122], importance [2143], Impossibility [3101, 2547], Improbability [3220], Improve [2620, 2556, 1183, 1972, 1498, 1219], Improved [1793, 3188, 2591, 368, 3192, 2705, 2999, 1979], Improvement [3326, 105, 42, 74, 253], Improving [3141, 1155, 3231, 1997, 2044, 3071, 2661, 1063, 3120, 3228, 1200, 920, 2042, 3094, 2043, 2486, 1107, 2849, 1513, 2806, 3205, 1006, 2435, 3109, 1832, 940, 1078, 1545, 1770], IMS [421], In-degree [1913], In-depth [2850], Incentive [1848, 1265, 3080, 2607, 2327, 1302, 2676, 2428], Incentives [2436, 2452, 2320, 1571], incentivize [2024], Incentivized [2781], Incentivizing [2703, 1858, 3070], including [613], inclusion [716], inclusions [1989], Incompletely [2587], Incorporating [369], Increase [2700], Increasing [2748, 2780, 731, 1159, 887, 731], Increasingly [3126], Incremental [2916, 1053], Independent [2518, 1664, 1094, 1120, 360, 1908, 1312], Index [2474, 2823, 307, 3111, 2356, 1895, 2001, 1774, 707, 1516, 3172], indexing [545], Indicators [2684, 2038], indices [402], indirect [1338, 1502], individual [1802, 2530], Indoor [2475], Induced [2720, 2312, 1653], Industrial [2797, 2694], industry [1925], inefficiencies [1965], Inequalities [3051, 2889, 2904], inexact [1526, 1647], infection [2119], infer [1867, 1918], Inference [3249, 2601, 2730, 3284, 2888, 2512, 3037, 1014, 1449, 2365, 1453, 1410, 1412, 1782, 1329], Inferring [3072, 1872, 1195, 2975, 1754], infinite [2294, 208, 1343, 954, 2919], infinite-server [2919], infinite-state [954], Influence [2442, 3286, 2729, 3262, 718, 2340], Information [2441, 3294, 2781, 3055, 2816, 2643, 2499, 2916, 2477, 3118, 3267, 2577, 2497, 2992, 2711, 683, 935, 736, 2005, 1839, 1154, 2325, 1705, 2220, 7, 783, 865, 2111, 4, 1819, 2153, 2259, 1561, 1386, 1265, 1142, 1905, 2329, 2300, 220, 2685, 1526, 1647, 1521, 1477], Information-based [2499], Informed [878], informing [1683], Infrastructure [2769, 2770, 2583, 2894, 2700, 2763, 2898, 3039, 2892, 2939, 869, 1275, 1351, 1244, 1960], Infrastructures [3100, 2897, 2768].
M/G/1 \{1720, 1592, 1691, 2298, 671, 198, 1348, 1188, 3024\}. M/G/1-FB \{1348\}
M/G/1-type \{1188\}. M/G/1./EDF \{856\}. M/G/1/SRPT \{1158\}. M/G/m \{384\}. M/G/s} \{1597\}. M/G/1 \{1230\}
M/M \{2066\}. M/M-JSQ \{2066\}. M/M/\{3315\}. M/M/1 \{1128\}. M/M/1/SRPT \{1269\}. M/M/k \{1904\}. M/M/k/N \{2295\}
M/M/k/setup \{2236\}. M/M/m \{461, 338, 286\}. M/PH/1 \{1792\}. M68020 \{666\}. MAC \{1900, 1443, 2677, 2407\}
machine-based \{270\}. machine-learning \{1228\}. machine-to-machine \{2106\}
Machines \{2681, 2468, 497, 2095, 2183\}. Machuel \{746\}. Macmillan \{598\}. macro \{2155\}
machine-based \{270\}. machine-learning \{1228\}. machine-to-machine \{2106\}
March \{1371, 992, 2682, 1099, 1613, 3015, 2081, 2287, 1261, 2826, 209, 2236, 1187, 772, 208, 2262, 1020, 3345, 1522, 3218, 728, 618, 1060, 2526, 1343, 723, 2155, 1188, 1111, 1614, 3027, 2041, 708, 2830, 3005, 2915, 2877, 2919, 2416, 680\}
Markov-modulated \{2287, 2826, 728, 2919\}. Markov-regulated \{2416\}. Markovian \{3224, 1985, 2090, 2234, 1612, 807, 952, 2061, 2062, 3318, 3013, 2087, 1128, 724, 3222, 188, 823, 656\}
MaRS \{682, 3279\}. MART \{1685\}. MART-aided \{1685\}. martingale \{2301\}. martingale-envelope \{2301\}. martingales \{2157\}. mass \{855\}. massive \{2128\}
Mass \{3297, 2461, 2944, 103, 2661, 594, 2868, 2555, 3182, 2068, 2961, 2873, 2797, 2594, 2990, 2725, 3251, 3254, 3036, 2819, 3048, 528, 1024, 1040, 2284, 331, 1839, 1067, 1766, 1676, 773, 2266, 2114, 980, 574, 2186, 175, 1983, 1833, 1827, 66, 1673, 2115, 466, 873, 748, 1836, 1027, 1586, 1876, 1284, 2147, 1486, 204, 1899, 690, 561, 1938, 1701, 749, 1952, 1498, 2387, 2272, 2013, 1133, 988, 224\}
manager \{906\}. Managing \{49, 1407, 1875, 2815, 1424, 1559, 1692, 880, 1458\}. MANET \{1432\}. MANETs \{1867, 2070\}
Manipulation \{2655\}. Mankind \{2597\}. manufacturing \{449, 503, 1653\}. Many \{2816, 2204, 2552, 1924, 2302, 2086, 1474, 2527\}. many-core \{1924\}. many-flows \{1474\}. many-server \{2302, 2086, 2527\}
Many-Sources \{2816\}. manycore \{2290\}. MAP \{2087, 1439, 2467, 2213, 2056, 1482, 2289\}
MAP-modulated \{2056\}. MAP/G/1 \{2289\}. MapReduce \{2044, 2045, 2372, 2679, 2563, 2292, 1816, 1777, 2101, 2360, 2213, 2464, 2466\}. MAPs \{1602\}. March \{710\}. Margaret \{645\}. marginal \{2308\}. Marker \{3094\}. Market \{2700, 2454, 2916, 2560, 2624, 3068, 2701, 2925\}. Market-Driven \{2454\}. Marketing \{2489\}. Marketplace \{3278, 2333\}
Marketplaces \{2981, 2626\}. Markets \{3029, 3237, 2754, 2794, 2740, 2798, 2714, 2506, 2965, 3068, 3144, 2670, 2354\}
marking \{1034\}. Markov \{1371, 992, 2682, 1099, 1613, 3015, 2081, 2287, 1261, 2826, 209, 2236, 1187, 772, 208, 2262, 1020, 3345, 1522, 3218, 728, 618, 1060, 2526, 1343, 723, 2155, 1188, 1111, 1614, 3027, 2041, 708, 2830, 3005, 2915, 2877, 2919, 2416, 680\}
Markov-modulated \{2287, 2826, 728, 2919\}. Markov-regulated \{2416\}. Markovian \{3224, 1985, 2090, 2234, 1612, 807, 952, 2061, 2062, 3318, 3013, 2087, 1128, 724, 3222, 188, 823, 656\}
MaRS \{682, 3279\}. MART \{1685\}. MART-aided \{1685\}. martingale \{2301\}. martingale-envelope \{2301\}. martingales \{2157\}. mass \{855\}. massive \{2128\}
massively \{632\}. Match \{3051, 3137\}. Matching \{3090, 3193, 2591, 3091, 3237, 3144, 2664, 3317, 2759, 3152, 2294, 1890, 2550, 1709, 3111\}. Mathematical \{1012, 1087, 1157, 1227, 2876, 3016, 3053, 3156, 3234, 3332, 1237, 1096, 132, 1433\}. mathematics \{2054\}. MATLAB \{2090\}. matrices \{3166, 1412, 2349, 1411\}. Matrix \{3008, 3215, 2728, 3338, 1915, 2089, 2057, 2077, 3337, 1613, 2060, 2065, 1736, 2173,
1006, 128, 788, 791]. Methods
[2730, 2844, 2778, 321, 1185, 2089, 1734, 652, 106, 1638, 536, 624, 1239, 1420, 2065, 208, 212, 368, 703, 154, 89, 763, 2175, 1888].
metric [1826, 1783, 1579, 1882, 2182].
Metrics
[2815, 2972, 2250, 244, 229, 317, 865, 227, 313, 1908, 126, 1936, 1838, 230, 1587].
metro [2135]. metro-area [2135].
Metropolis [2127]. metropolitan [1980].
MH [59]. MH-TSS [59]. mHTTP [2406].
Micro [852, 2155, 216, 458, 447, 94, 1800].
Micro-architecture [852, 1800].

micro-processor [94]. micro-processors [447]. Microarchitectural [2420].
microprocessor [1504, 1963].
microprocessors [1002, 1062]. microscopic [1212]. microsensors [1135]. Microservice [3273]. Middle [3003]. middleware [1030].
might [2114]. migrating [495]. migration [2191, 1910, 1690, 626, 1459].
migration-based [1690]. MIL [127].
MIL-S-52779 [127]. Millimeter [3277].
Millimeter-Wave [3277]. MIMD [632, 344]. Min [2891, 2994, 639].
minicomputer [79, 166].
minicomputer-based [166]. Minimal [3047, 2880, 2929, 3192]. Minimal-Variance [2929, 2880].
Mining [3100, 2949, 2343]. minutes [1430].
Mirror [3046]. mirrored [631]. MIS [172].
Misses [2990]. missing [7]. mission
[576, 763]. mitigate [1887]. Mitigating [2900].
Mitigation
[2739, 2799, 2505, 2802, 2386, 2768]. Mix
[3137, 3]. Mixed [2988, 1270, 2397, 2053, 68].
mixed-exponential [2053]. Mixing
[3101, 2233]. mixtures [3337]. ML
[3284, 3110]. ML-based [3110]. MLC
[2834]. mmWave [3331, 3330]. Mobile
[3123, 2618, 2734, 2661, 3107, 2454, 1082, 2608, 3300, 3304, 2837, 3177, 2536, 1216, 1986, 1910, 1325, 1114, 2333, 1866, 1874, 2120, 1386, 2100, 2374, 2255, 1990, 2026, 2375, 1726, 374, 2334, 1960, 2399, 2212, 2684].
mobile-application [2399]. Mobility
[2608, 2962, 2813, 3232, 1531, 911, 2389].
Mobility-on-Demand [2813]. Möbius
[1743, 3114]. mode [3202]. Model
Model-based [1004, 1117, 3254, 771].
Model-driven [1956, 1861]. Modeling
[285, 345, 641, 1687, 729, 2429, 399, 340, 938, 977, 2579, 422, 834, 1937, 2578, 837, 2200, 2770, 3214, 302, 598, 658, 655, 931, 1253, 1037, 1825, 664, 1080, 1598, 2176, 2493, 1545, 1235, 2763, 2533, 2139, 1386, 431, 476, 953, 3114, 1788, 1813, 1548, 586, 2677, 1775, 3001, 2329, 785, 2936, 1236, 1255, 2627, 2339, 1528, 1012, 1887, 1157, 1184, 1227, 1433, 2876, 3016, 3053, 3156, 3234, 3332, 3159, 1824, 915, 2694, 3109, 1259, 3211, 2428, 2878, 155, 1250, 1096,
Monitor

Monitoring

Modified

Modular

Money

Moments

Mothers

Movement

Movers

Motion

Motivated

Motivated

MPEG-coded

MPI

MPI/OpenMP

MPI/CUDA

MPI/CUDA

MPI/CUDA

MPI/CUDA

MPTCP

MP

MSR

MSR

MSR-based

Mt

Mt/Gt/1

MTOOL

MTS

Much

Multi

Multi

Multi

Multi

Multi-access

Multi-Agent

Multi

Mul
Neighbor Nelson [1770]. NAND [2384, 2405, 3094, 2849, 2706].
Nassi [114]. national [581]. native [1390].
Natural [3041]. naughty [934]. NBS [248].
NDT7 [3298]. Neal [592]. Near [3279, 3024, 2513]. nearest [496].
Near-complete [186]. near-linear [575].
Near-Optimal [3279, 3024, 2513].
Necessary [2588, 2968]. need [3017, 2186, 355]. negatives [2129].
negotiating [2444]. Nehalem [1998].
Neighbor [2384, 1770, 496, 1973].
nesting [392]. Net [3097, 829, 3223].
NetBSD [888]. NetEcon [2436]. NetFlow [1451].
Network-assisted [2533].
network-attached [893, 855].
Network-Caching [3052].
network-wide [1550, 1756, 1810].
Networking [2810, 2721, 2793, 2871, 746, 2475, 849, 3011, 738, 1710, 2265].
networkload [765].
Networks [2442, 3279, 2862, 382, 2823, 1793, 2946, 2980, 2809, 3090, 2816, 3026, 2528, 2785, 2914, 1400, 2436, 3076, 2661, 2698, 2642, 2662, 2956, 643, 644, 658, 3149, 3316, 3170, 2644, 2473, 2634, 2522, 2964, 3060, 2505, 2894, 3260, 2596, 2857, 2477, 2608, 2962, 2665, 3087, 3186, 3054, 2803, 2565, 3218, 2508, 654, 2594, 2729, 2677, 2765, 3039, 2942, 3042, 3230, 2669, 3205, 2705, 2498, 3256, 3222, 2909, 3199, 3183, 2837, 3043, 3324, 3159, 701, 2926, 2957, 2622, 2939, 2727, 3037, 2458, 2588, 2858, 2476, 2833, 3153, 3330, 370, 735, 294, 2003, 2032, 1212, 1687, 1999, 919, 1842, 340, 3232, 2412].
Oblivious [1574, 1309, 2136]. Observations [1451, 2829, 2906, 1425, 2369, 2347].
Observe [2906]. observed [1619].
Offering [2701]. Offloading [3107, 2536]. Offs [2824, 1672, 2924, 2014, 3158, 1336, 2936, 2877, 2349]. offset [1693]. old [1345],
One [2832, 2822, 1450, 1078, 2151, 1578, 1335, 2319, 1693, 2885].
one-dimensional [2885]. one-way [2151, 1578, 1693]. ones [3275]. ongoing [1246]. OnLine [3238, 2981, 3151, 3309, 3045, 3305, 3052, 3090, 3119, 2484, 2603, 2989, 3030, 1144, 1047, 2890, 3018, 2409, 2521, 3263, 2931, 1068, 3182, 3118, 2206, 2983, 3049, 2486, 2633, 3174, 3181, 2228, 3253, 2827, 2283, 2714, 2267, 3333, 3268, 3269, 3313, 3252, 2982, 3183, 3147, 3307, 3019, 3050, 3242, 3227, 2664, 3006, 2830, 3046, 2825, 2819, 3048, 3314, 2470, 2519, 2558, 2726, 1711, 1167, 1598, 2358, 2328, 1515, 1543, 1899, 2246, 2352, 1823, 1464, 2343].
[888, 611, 601, 959, 222, 613, 624, 1001, 1605, 769, 1853, 510, 535, 1484, 447, 253, 917, 152].
Operator [2678, 3114]. operators [317].
Opinion [2625]. OPNET [2006].
opportunist [1949, 2026, 1956, 1459].
Opportunities [2655, 1121]. OPSS [1616].
Opteron [1934]. optical [1262, 415, 924, 2110]. Optics [3057].
Optimal
Optimistic
[529, 3312, 910, 527, 784, 418, 2183, 1414].
Optimization [2823, 3151, 3029, 3057, 2613, 2484, 2603, 2791, 1400, 205, 2989, 3030, 3076, 3244, 2844, 2506, 2891, 3169, 2744, 2890, 3018, 2724, 3096, 3182, 2983, 3049, 2605, 3181, 2745, 1401, 2945, 2714, 3333, 3313, 2888, 2982, 2940, 2861, 3048, 1464, 1592, 1250, 1744, 44, 1632, 1686, 2415, 1731, 2295, 2358, 2238, 2206, 2292, 2216, 2396, 1878, 1956, 1777, 372, 89, 2403, 1404, 1205, 1435, 2020, 523, 812, 1366, 2430].
Optimizations [2728, 1121]. Optimize [2963, 2466, 1447, 1870]. Optimized [2921, 3243, 1436, 2143]. Optimizing [2988, 2284, 2656, 2335, 2595, 1501, 2480, 2173, 1557, 1323, 2910, 2776, 744, 2699, 938,
Patching [2694, 1132, 1026]. Path
[1661, 3284, 2707, 3300, 2017, 3070, 3185, 3125, 1867, 340, 1134, 1997, 1231, 100, 2153, 1070, 2273, 1410, 1105, 2179, 1374, 1326].
pathologies [2124]. Paths [2707, 1134, 2184]. pathways [546]. pathclock [1000].
PCA-based [1806]. pClock [1546]. PCMARK(R)05 [1644]. PCs [1035]. PDE [2862]. PEACH [3294]. Peak [2452, 2256, 580, 590]. peaks [2252].
peer-assisted [1671, 1858]. peer-supported [2196]. Peer-to-Peer [2579, 3271, 1502, 3324, 2573, 1352, 1616, 1659, 1341, 1379, 1507, 1658, 1378, 1206, 1813, 2028, 1415, 1858, 1508, 1523, 1854, 2196, 2033, 1428, 1304, 1521, 1973].
Per-Link [2477]. Per-queue [1264]. per-session [678]. perceived [1486].
Priority-based [1562, 435]. Privacy [3155, 2568, 2581, 3158, 3034, 2569, 2248, 3101, 2607, 2219, 2218].

Probabilistic [2752, 3259, 1370, 1226, 554, 2247, 3337, 1374, 391, 535, 1327, 1311]. probabilities [1170, 189, 1117].

Probabilities [2790, 2682, 3143, 2840, 3307, 2382, 687, 2346, 275, 2081, 1167, 1419, 2141, 1905, 339, 1604, 1779, 1642, 1435, 523, 487].

ProbMela [1371]. procedure [1438, 360]. procedures [50].

PROFEN [360]. Profile [2976, 3206].

Profitability [2952]. Profitable [2806].

Program/architecture [386].

Progress [2899, 2468, 364]. Project [224, 393, 520].

projects [241]. proliferation [1494].

PROLOG [521]. PROLOG-based [521].

prologue [251]. promoting [2059].

Property [2783, 1885]. Prophesy [1244].

Prophet [3051, 2889, 2904, 3006].

Proportional [1015, 2821, 2689, 2477, 2471, 2071, 451, 1487].
Redesigning [2723, 1699]. Redirection [1155, 1634]. Redistribution [2764].
Redullce [2467, 2556, 2553, 1249, 2262]. Reduced [2718, 469]. Reduced-Voltage [2718]. Reducing [2496, 1902, 2594, 2452, 3344, 1203, 2401].
[2043, 1921]. [177]. satisfying [1711, 1144, 1886].
Satellite-Terrestrial [2947]. Satellites [2941, 2944, 2942, 869].
Sample [3250, 3270, 3220, 620]. Sample-Efficient [3270, 3320]. sampled [1451, 1774]. SAMPLER [266].
San [637]. Sandy [1998]. SAP [2584].
SARA [154]. SATCOM [2947]. Satellite [2941, 2944, 2942, 869].
scaled-down [1635]. scales [1221, 1396, 934, 1803]. scaleup [575].
Scaling [2816, 2426, 2587, 2815, 3187, 3164, 3339, 3081, 3195, 2577, 2999, 2585, 1791, 1843, 3337, 2531, 713, 2203, 3089, 176, 1490, 893, 2409, 2268, 1675, 1107, 941, 2102].
Schedulers [2460, 3266, 1607]. Schedules [3071, 2593]. Scheduling [2474, 3241, 935, 2285, 2856, 3022, 3074, 3203, 1539, 1762, 1540, 2234, 2760, 969, 2659, 3184, 3204, 2507, 2689, 3327, 1215, 1694, 2870, 3032, 3288, 3259, 2563, 3272, 615, 1856, 2654, 3065, 499, 817, 2929, 936, 3180, 2834, 1104, 2539, 1160, 2463, 833, 2747, 2822, 3024, 3064, 3248, 964, 2705, 2403, 2503, 3183, 3023, 3157, 3255, 3043, 686, 3326, 1647, 758, 777, 1293, 1949, 2121, 1418, 2805, 1159, 1185, 1463, 2291, 1129, 1534, 1373, 1869, 2205, 1538, 1525, 1861, 967, 1349, 91, 1722, 757, 1766, 751, 841, 1535, 804, 1015, 1738, 1270, 465, 1271, 839, 2051, 1809, 624, 1760, 1678, 1563, 1552].
scheduling [45, 2262, 1179, 433, 570, 1472, 1447, 2228, 1674, 1769, 535, 2141, 2880, 600, 380, 1543, 1294, 3233, 918, 1337, 2257, 1572, 1356, 2048, 2195, 978, 726, 966, 541, 1860, 917, 2235, 2309, 626, 968, 1174, 1977, 848, 1697, 2101, 1224, 1210, 741, 1499, 254, 1599, 2213, 1346, 1395, 1393, 2125, 2772, 569, 1464, 1429, 1862, 625, 1081]. Scheme [2836, 2438, 473, 1503, 2316, 1972, 2120, 1264,
Scoring scrubbing

Schemes

Science

Scientific

Score

Scoring

scrubbing

SDA

SDP

SDRAWKCAB

SDNet

Search

Searcher

secant

sector

Secure

Security

Securely

Select

Selected

Selecting

Selection

Selectivity

Self

Self-adaptive

Self-assembly

Self-constructing

Self-configuring

Self-learning

Self-monitoring

Self-optimizing

Self-promoting

Self-Regulating

Self-scaling

Self-similar

Self-similarity

Self-sufficiency

Self-synchronizing

Self-tuning

Selfish

Selfishness

Self-tuning

Semantically-smart

Semantics

Semi

Semi-Bandits

Semi-empirical

Semi-homogeneous

Semi-Markov

Semi-Markovian

Semi-supervised

Semidefinite

Send-receive

Sender

Sensing

Sensitivity

Sensor

Sensors

Sentiment

Separable

Separation

Sequence

Sequential

Sequential-write

Serialization

Series

serpentine

Served

Server

Serverless

server-limited

Service

Senders

Served

Served
sharing/batch [68]. Sharma [656]. Sharp [2269, 3341, 2051, 3178]. SHARPE [1749]. packing [2517, 2692, 2449, 2473, 2574, 2502, 3010, 2813, 3101, 2462, 3148, 3254, 2907, 2440, 3283, 1132, 1151, 1086, 407, 63, 991, 1833, 66, 1077, 1875, 2169, 2100, 1226, 1858, 2421, 2147, 69, 2097, 2253, 1703, 2146, 1406].

Serving [3284, 2380, 2617, 2538, 2401].

Session [2867, 2868, 2869, 226, 2870, 2871, 2872, 2807, 2873, 2874, 2875, 1041, 1047, 292, 1045, 1050, 1049, 678, 1044, 2899, 236, 1048, 822, 1051, 1046, 1043, 1042].

sessions [1079, 1357, 932, 1652].

Simplications [829].

simplifies [2242].

simulations [716, 1808, 725, 548, 1640, 974, 489, 911, 133, 1105, 388, 2183, 1709, 1794].

simulator [1279, 1616, 692, 766, 154, 35].

simulators [3275].

Simultaneous [556, 101, 2250, 336, 1408, 1186, 272].

Simultaneously [3181].

Single
Stochastically [3120]. stop [237].

Stopping [3005, 2412]. Storage [3123, 2578, 2719, 1983, 2753, 2623, 3287, 895, 2556, 2717, 1331, 2637, 2701, 2190, 268, 1266, 2415, 331, 1388, 2306, 1503, 2187, 796, 1037, 1546, 1630, 1286, 1665, 1288, 2120, 2180, 183, 1907, 2238, 2168, 855, 906, 1461, 1548, 1137, 896, 2099, 1467, 1689, 34, 1205, 21, 1466, 894, 2116, 1850, 2035, 513, 2018].

Storage-as-a-Service [2578].

Storage-Assisted [2753]. storages [2405].

Store [3000, 2105]. stored [1670, 1502, 859, 1952]. stores [329].

Strategies [2457, 3182, 2797, 2896, 3039, 2838, 3084, 3068, 2701, 1309, 2394, 1280, 815, 737, 2952, 1085, 2028, 533, 556, 2353, 380, 813, 2390].

Strategy [2437, 2961, 1232, 2417, 2167, 535].

Strategy-proof [2437]. stratified [1957].

Stream [2678, 1505, 1218, 2212].

Streams [2507, 736, 1950, 2129, 1045, 798, 886, 752, 903, 1323]. strength [2226].

stretch [1955]. Strict [3139, 1472, 2880].

Strided [3189]. strip-integral [1594].

Striping [810, 1036]. Strong [2572, 1173]. Strongly [2737, 186]. Structural [2697, 1290, 2789, 281, 2985, 1140, 2259, 1928].

Structure [2590, 1950, 2646, 266, 3270, 3320, 3262, 124, 64, 1663, 413].

Structure-aware [1950]. Structured [217, 225, 1613, 2506, 1643, 185, 1303, 1121].

Structures [3000, 1368, 2306, 1679, 2104, 371, 3111].

Stubborn [2625]. Student [3176, 2037].

studies [993, 1594, 98, 136, 1370]. Study [2500, 2732, 2581, 3012, 2704, 2710, 2483, 2756, 81, 1726, 2830, 3124, 86, 1222, 244, 1234, 2122, 1022, 888, 401, 815, 91, 1178, 405, 493, 990, 1808, 76, 1365, 582, 2006, 975, 531, 782, 406, 478, 1925, 1113, 2214, 221, 1191, 2386, 2210, 2087, 635, 767, 637, 1005, 813, 372, 1768, 1006, 1919, 770, 21, 1122, 2364, 788, 791, 1328, 59, 214, 1798, 831].

Subexponential [672, 1170, 1251].

subgraph [2433]. subject [2062, 1070].

Subjects [2607]. Sublinear [3181].

Submodular [3310, 3146, 3145, 2593].

subnetworks [411]. subpopulation [1381].

subprograms [16]. Subscriber [2452].

subscripted [662]. Subscription [2453].

subsumes [982]. subsystem [33].

subsystems [422, 404, 256]. successes [2052]. Successful [3239, 130]. Successful [1870].

sufficiency [2661]. Sufficient [2690, 2588, 2968, 125]. SUGAR [3136].

suitability [1479]. Suite [3175, 3002, 1278, 650]. suites [603]. Sum [2844, 3195, 10]. summaries [1383].

Summarization [3146]. Summary [2753, 963, 706, 710, 938, 611, 310, 517, 738, 1802, 1582, 1884, 84, 741]. Sun [666].

Supercomputer [637, 1501].

supercomputers [1931]. superhashing [2953]. Supermarket [3129].

supermartingales [1600]. superpage [1047].

Supporting [998, 859, 2837, 1535].
Surprising [1776]. surrogate [272].
Survey [149, 390, 221]. Survivability [2192]. survivable [2062].
susceptibility [2367]. Sustainability [2965, 2271, 1839, 1835]. Sustainable [2454, 2115].
SVR4 [828]. SW [3083].
SW-QPS [3083]. Swapping [2759, 257].
swarming [1788, 1813, 2028]. swarms [1962, 2270].
sweep [1729].
sweep-and-sleep [1729]. Switch [3073, 3265, 3028, 2549, 2587, 3025, 3085, 2315, 2833, 453, 1151, 834, 891, 837, 557, 1003, 2110]. switch-over [453]. switched [1847, 778, 586, 1294, 2102, 848, 194].
Switches [3302, 2689, 3091, 2654, 3095, 3065, 3083, 2999, 2205, 1164, 1790, 1419, 502].
Synchronization [1906, 1413, 624, 1001, 972, 1611, 413, 1653, 1136, 443, 2035].
Synchronized [1709]. synchronizing [89, 826, 1846]. Synchronous [2886, 248].
system-level [2240]. system-wide [1938]. Systematic [3135, 1005]. Systematically [1832].
Systems [3249, 641, 2955, 3029, 2696, 1927, 2678, 2730, 3276, 2436, 3031, 750, 640, 2659, 595, 594, 596, 643, 657, 647, 310, 2586, 3029, 3280, 2525, 2686, 2879, 2912, 3334, 2895, 2901, 3140, 3134, 2902, 2704, 3063, 2555, 3259, 3096, 3219, 901, 3258, 789, 2485, 3056, 2680, 2467, 2478, 2945, 654, 2688, 895, 3004, 2965, 2529, 3150, 2621, 663, 3128, 2874, 2495, 2448, 3339, 3168, 964, 2577, 306, 2653, 3035, 2717, 2940, 2971, 2928, 2694, 2877, 3336, 3314, 2471, 3338, 2855, 2968, 3079, 2029, 857, 343, 461, 477, 505, 1780, 2098, 3160, 1262, 2190, 935, 1462, 167, 426, 838].
Threshold-Based [2589, 882, 1059, 1089].
Thresholds [3159, 2051]. Throughput
[3279, 3188, 3096, 3329, 1500, 2677, 3200].
374, 2772, 2588, 2858, 3281, 2913, 2121, 589,
938, 977, 2142, 1275, 621, 1469, 1420, 2413,
920, 1470, 809, 1553, 1468, 1727, 1385, 1236,
1255, 2244, 1697, 2788, 1256, 2213.
Throughput-delay [374].
throughput-fairness [1697].
throughput-oriented [621]. Throughput
[2622, 1596, 1992, 1901]. Tie [2760].
Tie-Line [2760]. tier
[1222, 1781, 1851, 1427, 1406, 1915]. Tier-1
[1915]. Tiered [2642, 1332, 1351, 1624, 1364].
tiers [2180]. Tight [1969]. Tighter
[3027, 1773]. tightest [1326]. Time
[2474, 3008, 370, 382, 3117, 2650, 3342, 3112,
3140, 3181, 2551, 2789, 2751, 776, 3180, 3009,
3162, 2649, 2706, 3235, 3027, 2940, 2787, 601,
2637, 3109, 2830, 1794, 2536, 3344, 3239,
1221, 729, 1155, 830, 1269, 730, 216, 1564,
453, 1863, 2346, 350, 1482, 1997, 2234, 631,
856, 1613, 2411, 1203, 2014, 111, 1078, 731,
1144, 2400, 1807, 1061, 298, 77, 80, 807,
2126, 1252, 2310, 1413, 862, 1249, 839, 1187,
2299, 2581, 1396, 1497, 1625, 2153, 666, 1383,
207, 2067, 2379, 201, 1453, 433, 883, 615,
1892, 1565, 2086, 1109, 1447, 68, 679, 2087,
809, 1693, 899, 934, 542, 1895]. time
[1590, 1195, 1486, 3150, 356, 543, 876, 1446,
1604, 1978, 1803, 73, 269, 752, 1653, 33, 439,
2363, 1527, 414, 203, 254, 3033, 668, 1395, 744,
1823, 881, 59, 1459, 1403, 1081, 685, 773, 622].
Time-Average [3342]. Time-Based [2637].
time-correlated [1604]. time-critical
[254]. time-dependent [809].
time-memory [2014]. Time-parallel [776].
Time-Series [3112]. time-sharing
[68, 269, 33]. time-sharing/batch [68].
time-stamping [1109]. Time-Varying
[2551, 2789, 2751, 2940, 2474, 3181, 1564,
2234, 1565, 2086, 2087]. time-windows
[1497, 1625]. timed [1373, 2046, 429].
Timeline [2669]. Timelines
[2931, 3061, 2669]. Timepatch [835]. Times
[2970, 3343, 3043, 3315, 1592, 718, 2298,
1355, 925, 2412, 384, 2233, 453, 1056, 2200,
1807, 3184, 2750, 3103, 622, 2302, 2053, 1596,
914, 3104, 2249, 2141, 1251]. timescale
[2754, 2794, 2798]. Timescales [2744].
timesharing [93]. Timing
[2835, 1750, 1190, 1180, 20]. timing-first
[1190]. TIPME [1063]. TLB [1192]. Token
[382, 491, 381, 1034, 439]. tolerance [801].
Tolerant [2842, 898, 1771, 2337, 577, 448].
Tolerating [2273, 2849]. Tomographic
[2838]. Tomography [2499, 2775, 2776,
1982, 1182, 2153, 1454, 2137]. Tool
[2956, 2702]. Too
[3217, 110, 2448, 559, 1744, 1741, 1741, 1509, 814,
3224, 1839, 2091, 1746, 118, 1617, 36, 1851,
326, 250, 475, 1748, 322, 3223, 335, 960, 266,
324, 2016, 142, 1278, 3216]. Toolbox
[3248, 1987, 1712, 2090]. Toolkit
[3125, 3224, 1928]. Tools [1277, 2801, 1742,
2089, 83, 1740, 210, 120, 802, 734, 3214].
Top [2674]. Topic [2395]. Topics [2942].
Topological [1758, 2202]. Topologies
[2864, 3192, 1182, 1217, 1826, 2413, 2237,
1583]. Topology [1958, 3200, 2846, 1014,
1181, 1409, 1739, 2319, 2010, 1427].
TOSME [3214]. Total
[2646, 2705, 943, 2012]. Total-Cost [2646].
TPC [660, 699, 790]. TPC-C [699].
TPC-D [790]. Trace [3155, 714, 1927, 974,
552, 1664, 1300, 993, 996, 725, 877, 1335,
734, 532, 35, 752, 267, 550, 620, 1422].
trace-compression [1300]. trace-driven
[725, 35, 550]. trace-sample [620]. traces
[1341, 2178, 1193, 2365, 674, 752, 530].
Tracing [110, 551, 578, 983]. track [355].

Type [3207, 1592, 2058, 2090, 2079, 2063, 2086, 1443, 2155, 1188, 1229, 1267, 696, 1169, 2289]. types [808, 2295].

underlying [2258, 2306]. understand [1965]. Understanding [2275, 3232, 2613, 2718, 1767, 2274, 2650, 1230, 2150, 2276, 1124, 1486, 1551, 2375, 2511, 3011, 2258, 1974, 1812, 2245].

undesirable [1754]. undetectable [2767].

unification [315]. Unified [382, 3250, 644, 2404, 3050, 701, 467, 1562, 1268, 2249, 1865].

Uniform [3045, 2109, 2549].

uniformization [724]. unifying [2935, 1842]. Unique [3040]. uniqueness [1385]. Unit [2438, 14, 72, 142]. units [68].

Unknown [3204, 3316, 2964, 3064, 3314, 1215, 1088, 2380]. Unleashing [2390].

user-level [784, 1153]. User-Provided [2570].

Utilities [3316, 2695, 1399, 355]. Utility [1659, 3204, 2742, 2439, 889, 973, 1399, 1288, 212, 1447, 1350]. Utilization [2700, 1832, 498, 43, 2335, 2051, 1769, 1116, 19].

utilizing [1154].

virtual-disk [906]. Virtualization [2171, 3002, 3003, 1910, 1286, 1429].

warehouses [1006]. Warp [685, 773, 622].

wavelength [2110]. wavelets [970]. Way [2585, 1490, 2151, 1578, 920, 1693, 3317].

Wear [3011]. Weaving [3000]. Web [1071, 2326, 3126, 1221, 1222, 1155, 850, 1010, 1079, 1024, 927, 1011, 1073, 1074, 957, 1151, 1083, 1154, 900, 1025, 853, 1150, 1078, 2520, 986, 1271, 1080, 872, 1974, 1045, 2916, 1332, 1196, 871, 941, 960, 2594, 3304, 1195, 1051, 2154, 3009, 962, 1220, 1126, 1021, 1102, 1174, 2277, 1125, 1272, 1075, 1152, 1628, 3109, 1091, 1238, 1039, 988, 1031].

Web-based [1221]. WebRTC [2777].

Webrtc-based [2777]. Websites [2566].

Wechat [3124]. Weight [3091, 1621].

well [829, 2112]. well-formed [829].

Wiley [641, 595, 597, 604].

Wiley-Interscience [595]. Will [2633, 312].

Wind [717, 2187]. Window [3083, 2346, 298, 29, 482, 585, 583, 695]. windowing [954]. windows [1497, 1625].

Without [3343, 2994, 3001, 2816, 1567, 1069, 1790, 3265, 1180, 2363]. WILANS [1680, 1384, 2457, 1385, 2535]. WOJ [2922].

Wolfe [655]. Work [2446, 2899, 2884, 939, 1841, 85, 68, 572, 573, 2360, 2035].

Workstation [611, 973, 1200].

workstations [889, 825]. World [3299, 1700, 1821, 790, 853, 1150, 1075].

worry [1933]. Worst [2921, 3056, 3236].

Worst-case [2921, 3236]. Worth [2675, 1231]. would [2062]. WPI [650].

WPIN [2436]. Write [2976, 2922, 714, 2241, 199, 1191, 355, 628].

REFERENCES

WWW [997, 1127].
x [3328, 780, 695, 637]. x-haul [3328].
X-MP [637]. x86 [888].XA [521].
XACML [1667]. Xen [1607]. Xengine
[1667]. XML [1242]. XML-RPC [1242].
Xprof [695]. XRAY [180].
YOUQMON [2286]. YouTube
[2286, 2960].
Z [809]. Z-iteration [809]. Zero
[3097, 3100, 3178, 3258, 3121, 3127].
Zero-Queueing [3178]. Zero-Rating
[3097]. Zigbee [2006].
Zipf [1580]. Zipf-like [1580]. zone
[1304]. zone-balancing [1304].

References

[1] Ralph E. Keirstead and Donn B.
Parker. Software testing and certifi-
cation. ACM SIGMETRICS Per-
formance Evaluation Review, 1(1):3–8,
March 1972. CODEN ???? ISSN 0163-
5999 (print), 1557-9484 (electronic).

[2] Thomas E. Bell. Computer measure-
ment and evaluation: artistry, or sci-
ence? ACM SIGMETRICS Per-
formance Evaluation Review, 1(2):4–10,
June 1972. CODEN ???? ISSN 0163-
5999 (print), 1557-9484 (electronic).

mix. ACM SIGMETRICS Per-
formance Evaluation Review, 1(2):10–11,
June 1972. CODEN ???? ISSN 0163-
5999 (print), 1557-9484 (electronic).

toward an information system perfor-
man ce theory. ACM SIGMET-
RICS Performance Evaluation Review,
1(3):4–15, September 1972. CODEN
???? ISSN 0163-5999 (print), 1557-
9484 (electronic).

[5] B. W. Kernighan, P. J. Plauger, and
D. J. Plauger. On comparing apples and
oranges, or, my machine is better than
your machine. ACM SIGMET-
RICS Performance Evaluation Review,
1(3):16–20, September 1972. CODEN
???? ISSN 0163-5999 (print), 1557-
9484 (electronic).

ACM SIGMETRICS Performance
Evaluation Review, 1(4):3–16, Decem-
ber 1972. CODEN ???? ISSN 0163-
5999 (print), 1557-9484 (electronic).

[7] M. H. Halstead. Language level, a
missing concept in information the-
ory. ACM SIGMETRICS Performance
Evaluation Review, 2(1):7–9, March
1973. CODEN ???? ISSN 0163-5999
(print), 1557-9484 (electronic).

[8] M. H. Halstead. An experimental de-
termination of the ‘purity’ of a trivial
algorithm. ACM SIGMETRICS Per-
formance Evaluation Review, 2(1):10–
15, March 1973. CODEN ???? ISSN
0163-5999 (print), 1557-9484 (elec-
tronic).

REFERENCES

[47] H. W. Barry Merrill. Further comments on comparative evaluation of Kiviat
REFERENCES

REFERENCES

REFERENCES

Luderer:1976:CPM

Oatey:1976:STM

Gutsche:1976:UE

Anonymous:1976:PC

Luderer:1976:DCR

Roehr:1976:PIT

Collins:1976:PIC

Brandwajn:1976:SLI

Coppens:1976:QER

Estell:1976:HFRa

REFERENCES

0163-5999 (print), 1557-9484 (electronic).

REFERENCES

Duran:1978:TMP

Yin:1978:EUM

Pierce:1978:RTT

Davis:1978:RLP

Peters:1978:RSR

Stavely:1978:DFU

Yoder:1978:NSC

Benson:1978:SQA

Bauer:1978:AGE

REFERENCES

References

Southworth:1978:RM

Tighe:1978:VPS

Belford:1978:QEE

Kacik:1978:ESQ

Kreutzer:1979:CSM

Turner:1979:ISM

Sauer:1979:CIQ

Kleijnen:1979:NCS

Rajaraman:1979:PPV

REFERENCES

Jain:1979:GSA

Schwartz:1979:DCC

Clark:1979:CPE

Willis:1979:TSW

Blake:1979:TSM

Strecker:1979:ACP

Wiecek:1979:PST

Bennett:1979:SDS

Lazowska:1979:BTA

Marshall:1979:AMW

Briggs:1979:EBM

Raffi:1979:ECB

Zahorjan:1979:ESM

Kienzle:1979:SAQ

Landry:1979:SEP

Langan:1979:SED

Unger:1979:OSI

Sanguinetti:1979:TIS

Razouk:1979:EMS

REFERENCES

Kumar:1980:PRB

Vantilborgh:1980:NCD

Brandwajn:1980:FRE

Stewart:1980:ECF

Lo:1980:CCP

Kurinckx:1980:OVC

REFERENCES

Upton:1980:ADA

Balkovich:1980:PDS

Grit:1980:PMA

Dhas:1980:PEF

Bryant:1980:HMG

Coffman:1980:ORP

Shore:1980:LRO

Lam:1980:RTD

Wang:1980:AIO

Smith:1980:ASD
Connie Smith and J. C. Browne. Aspects of software design analysis: Concurrency and blocking. *ACM
REFERENCES

Coffman:1980:ONC

Ruschitzka:1980:RJC

Kim:1980:PTO

King:1980:NMI

Fayolle:1980:SCT

Clark:1980:EIE

Estell:1980:BW

Kleijnen:1980:SMM

Fredrick:1981:PIS

Berlack:1981:ISC

Gross:1981:PCV

Henry:1981:RAT

Szulewski:1981:MSS

Basili:1981:ECS

Ronback:1981:TMS

Benson:1981:AST

Paige:1981:DST

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

REFERENCES

Browne:1981:DSP

Reiner:1981:MAP

Wang:1981:VVT

Soderlund:1981:ECP

Lazowska:1981:AMD

Dowdy:1981:MUS

Turner:1981:SFP

Ferrari:1981:GMW

Zahorjan:1981:BJB

Neuse:1981:SHA

REFERENCES

Fall 1981. CODEN ???? ISSN 0163-5999 (print), 1557-9484 (electronic).

Zahorjan:1981:SSQ

Thomasian:1981:ASQ

Schwetman:1981:CSM

Denning:1981:PEE

Rafii:1981:SAM

Tolopka:1981:ETM

Artis:1981:LFD

Sanguinetti:1981:ESS

Wang:1981:VMB
REFERENCES

Huslende:1981:CEP

Jacobson:1981:MSD

Jacobson:1981:AAM

Briggs:1981:PCB

Bryant:1981:QNA

Marathe:1981:AME

Pechura:1981:PLM

Clark:1981:UES

Janusz:1981:GMS

Cox:1981:DDD

REFERENCES

Muramatsu:1981:SVQ

Sauer:1981:NSS

Nemeth:1981:AIP

Knudson:1981:CPE

Afshari:1981:MNT

Lazar:1981:OCM

Spirn:1981:NMB

Lam:1981:ORN

Livny:1981:LBH

REFERENCES

Sherman:1981:DVH

Brice:1981:NPA

DuBois:1981:HMS

Terplan:1981:NPR

Spiegel:1981:QLA

Roehr:1981:PALb

Sternick:1981:SAD

Anonymous:1981:AI

Rajaraman:1982:PET

Mager:1982:TPA

Cox:1982:DDD

Perros:1982:QLD

Anderson:1982:BMP

Laurmaa:1982:AHT

Beser:1982:FES

Schnurer:1982:PAP

Gross:1982:CME

Hartman:1982:CTR

Naib:1982:ASS

REFERENCES

Blake:1982:OCT

Babaoglu:1982:HRD

Hagmann:1982:PPR

Bunt:1982:EMP

Hodges:1982:WCP

Haring:1982:SDW

Bolzoni:1982:PIS

McDaniel:1982:MSI

Hercksen:1982:MSE

REFERENCES

REFERENCES

REFERENCES

Marrevee:1982:PRT

Perros:1982:MPR

Augustin:1982:CCD

Perros:1984:QNB

DeMarco:1984:ASS

Fishwick:1984:PPG

Rajaraman:1984:PML

Jones:1984:PEJ

Clark:1984:NCP

Coffman:1984:RPP

REFERENCES

[373] Rollins Turner, Jeffrey Schriesheim, and Indrajit Mitra. Performance of a DECanet based disk block server. ACM
REFERENCES

Stavenow:1984:TDC

Williams:1984:PQD

Stephens:1984:CBH

Suri:1984:NBB

Lavenberg:1984:SAE

Becker:1984:MMS

Peachey:1984:EIS

Menasce:1984:PEI

Agrawal:1984:UAS

[382] Subhash C. Agrawal, Jeffrey P. Buzen, and Ashok K. Thareja. A unified ap-
REFERENCES

REFERENCES

Gong:1985:CMB

Knudson:1985:PMS

Ejiogu:1985:SMS

Eager:1985:CRI

Gelernter:1985:ACP

Gelenbe:1985:ADC

Conway:1985:RNE

Balbo:1985:MPS

Walstra:1985:NNQ
REFERENCES

REFERENCES

[Thomasian:1985:ASO](#) Alexander Thomasian and In Kyung Ryu. Analysis of some optimistic con-

REFERENCES

1986. CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

REFERENCES

REFERENCES

REFERENCES

Shenker:1987:SCB

Mathys:1987:ECE

Fisher:1987:IIA

Körner:1988:EED

Sharma:1988:TSA

Covington:1988:RPP

Lubachevsky:1988:EDE

Lucier:1988:PEM

Ganz:1988:QAF

REFERENCES

[501] S. C. Kothari, A. Jhunjhunwala, and A. Mukherjee. Performance analysis of multipath multistage intercon-
REFERENCES

REFERENCES

Hac:1989:DAA

Schneider:1989:AHS

Domanski:1989:PBE

Irvin:1989:QML

Wolf:1989:POP

Kearns:1989:DDR

Hellerstein:1989:SAD

Muntz:1989:BAR

Bubenik:1989:POM

Anderson:1989:PIT
REFERENCES

Carter:1989:OIB

Stunkel:1989:TPT

Gallivan:1989:BCM

Samples:1989:MNL

Mukherjee:1989:ERS

Danzig:1989:FBF

Mukherjee:1989:PDB

Greenberg:1989:SCP

Paterok:1989:FQP

REFERENCES

Wagner:1989:PSQ

Mitra:1989:CCP

Nicol:1989:AMP

Sevcik:1989:CPA

Nelson:1989:ART

Raatikainen:1989:ART

Mitra:1989:CND

Glew:1990:EII

Gunther:1990:PP

Gonzales:1990:CHL

REFERENCES

1990. CODEN ???. ISSN 0163-5999 (print), 1557-9484 (electronic).

REFERENCES

Gelenbe:1990:PAC

Willick:1990:AMM

Dussa:1990:DPT

Zahorjan:1990:PSS

Leutenegger:1990:PMM

Dawkins:1990:ESM

Shenker:1990:MFC

Shenker:1990:MGW

Ghandeharizadeh:1990:FAP

REFERENCES

Englert:1990:BNS

Somani:1990:PMR

Mitchell:1990:PAF

Jensen:1990:RTD

Mirchandani:1990:CME

McGehearty:1990:COPa

Heimlich:1990:TCN

Davidson:1990:EEA

Waclawsky:1990:DQB

REFERENCES

Garofalakis:1990:PMI

Vasilakos:1990:AWF

Nussbaum:1990:MCS

Gaither:1990:ER

Vance:1990:ARM

Allen:1990:AMS

McGehearty:1990:COPb

Gaither:1990:SVP

Taheri:1990:ANN

0163-5999 (print), 1557-9484 (electronic).

Thiebaut:1990:FDC

Ponder:1990:PVA

Finkel:1991:BRMa

Finkel:1991:BRPb

Finkel:1991:BRPa

Finkel:1991:BRMb

Finkel:1991:BRPc

Johari:1991:POH

Ponder:1991:BS
REFERENCES

Cabrera:1991:TSS

Melliar-Smith:1991:PAB

Danzig:1991:AMO

Harinarayan:1991:LSL

Lin:1991:SPA

Berry:1991:ADC

Bodnarchuk:1991:SWM

Merchant:1991:MCA

Lin:1991:PAF

Wood:1991:MET
[620] David A. Wood, Mark D. Hill, and R. E. Kessler. A model for estimat-

REFERENCES

REFERENCES

Pu:1991:EMA

Yang:1991:PBB

Epema:1991:BRC

Al-Jaar:1991:BRA

Finkel:1991:BRPd

Finkel:1991:BRC

Finkel:1991:BRQ

Finkel:1991:BRPe
REFERENCES

REFERENCES

Finkel:1992:BRS

Finkel:1992:BRMa

Finkel:1992:BRB

Finkel:1992:BRMb

Berry:1992:SWC

[659] Michael W. Berry. Scientific workload characterization by loop-based analy-

Council:1992:CTR

Deike-Glindemann:1992:SPE

Dujmovic:1992:UMS

Pooley:1992:BRC

Hac:1992:MDF

Molloy:1992:ANB

Keown:1992:RTP

Martonosi:1992:MAM

Whalley:1992:FIC

LaRowe:1992:ADP

Nicola:1992:AGC

Borst:1992:CCC

Jacquet:1992:STD

REFERENCES

REFERENCES

REFERENCES

CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

REFERENCES

[718] Vikram S. Adve and Mary K. Vernon. The influence of random delays on par-

Rosti:1993:KEM

Ganger:1993:PFM

Lee:1993:APM

Tang:1993:MMB

Ramesh:1993:STS

Nicol:1993:PSM

Goldschmidt:1993:ATD

Setia:1993:PSM

Wu:1993:PCT

[727] Kun-Lung Wu, Philip S. Yu, and James Z. Teng. Performance comparison of thrashing control policies...

Becker:1993:AIC

Ghandeharizadeh:1993:EAV

Kay:1993:STI

Lewandowski:1993:AAP

Shin:1993:ELS

Torrellas:1993:BCA

Vetland:1993:CMA

Wagner:1993:AMV

Williamson:1993:OFT

0163-5999 (print), 1557-9484 (electronic).

Lipsky:1993:BRI

Kinicki:1993:BRT

Cao:1993:SCM

Maffeis:1993:CMA

UI:1993:PMA

Dujmovic:1994:BRB

Finkel:1994:BRE

Schieber:1994:RRT

Gupta:1994:SCQ
[753] Surendra M. Gupta and Fikri Karaesmen. Solution to complex queueing systems: a spreadsheet approach. ACM
REFERENCES

Denning:1994:FLK

Peris:1994:AIM

McCann:1994:PAP

Chiang:1994:UAC

Wolf:1994:SMQ

Patel:1994:AMH

Bittan:1994:APB

Petriu:1994:AMV

Balbo:1994:ATP

REFERENCES

REFERENCES

Horton:1994:MLS

Das:1994:AMM

Zhang:1994:PEE

Pingali:1994:CSI

Worthington:1994:SAM

Nicol:1994:OMC

Temam:1994:CIP

Danskin:1994:PXP

REFERENCES

[789] S. S. Lavenberg. Selected publications of the Systems Analysis and
REFERENCES

Shanley:1995:TDM

Wabnig:1995:PPP

Gupta:1995:QMS

Keehn:1995:VPF

Chapin:1995:MSP

Bedichek:1995:TFA

Golubchik:1995:RDV

Ghandeharizadeh:1995:CSD

Krunz:1995:TMC

[798] Marwan Krunz and Herman Hughes. A traffic for MPEG-coded VBR

Williamson:1995:NTM

Gelenbe:1995:GNN

Tridandapani:1995:FPF

Malony:1995:DIE

Vaidya:1995:CTL

Epema:1995:ADU

Elwalid:1995:FRP

Knightly:1995:FLT

Fang:1995:EBW

[807] Youjian Fang, Michael Devetsikiotis, Ioannis Lambadaris, and A. Roger Kaye. Exponential bounds for the

Borst:1995:OPA

Matta:1995:ZIS

Chen:1995:SRL

Worthington:1995:LES

Wolf:1995:DDD

Sandhu:1995:ASD

Brorsson:1995:SPT

Cao:1995:SIP

Sivasubramaniam:1995:CBR

McCann:1995:SMC

Lebeck:1995:AMN

deSouzaeSilva:1995:CTD

Carrasco:1995:RRT

Greenberg:1995:CTA

Ott:1995:IET

Trivedi:1995:NMP

Erramilli:1995:PIS

REFERENCES

REFERENCES

Dinda:1996:FMA

Parsons:1996:CAM

Witchel:1996:EFF

Brakmo:1996:ENS

Greenberg:1996:AUL

Stiliadis:1996:DAF

Yates:1996:NSL

Arlitt:1996:WSW

Martonosi:1996:IPM

Krishnaswamy:1996:MAE

Crovella:1996:SSW

Hillyer:1996:MPC

Menasce:1996:AMH

Chen:1996:AAW

Aggarwal:1996:OPM

Gerber:1996:EDV

Salehi:1996:SSV

Varki:1996:ABF

Carrasco:1996:EEA

Garg:1996:MCT

Kimbrel:1996:IPP

Leutenegger:1996:BME

Hellerstein:1996:ASM

Courtright:1996:RRP

Ramany:1996:QAR

Hotovy:1996:AEW

REFERENCES

Braun:1997:APL

Balakrishnan:1997:ASW

Maltzahn:1997:PIE

Heyman:1997:NMA

Ma:1997:QME

Ott:1997:TAA

Kasera:1997:SRM

Rajamony:1997:PDS

Herbordt:1997:PSC

REFERENCES

June 1997. CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

Tomkins:1997:IMP

Glass:1997:APR

Voelker:1997:MSL

Woodward:1997:SLB

Golubchik:1997:BPM

Lehoczky:1997:URT

Nahum:1997:CBN

Knightly:1997:SMR

Krunz:1997:CVM

REFERENCES

[904] Rajesh Bordawekar, Steven Landherr, Don Capps, and Mark Davis. Experimental evaluation of the Hewlett–
References

REFERENCES

[922] O. J. Boxma and V. Dumas. The busy period in the fluid queue. *ACM
REFERENCES

Li:1998:TLP

McKinnon:1998:QBA

Bavier:1998:PME

Gribble:1998:SSF

Barford:1998:GRW

Ji:1998:PMM

Jiang:1998:MES

Shriver:1998:ABM

REFERENCES

Fraguela:1998:MSA

Jiang:1998:IRF

Courcoubetis:1998:AEL

Neidhardt:1998:CRT

Arpaci-Dusseau:1998:SII

Nguyen:1998:SPS

Moritz:1998:LMN

Barve:1998:MOT
REFERENCES

Blumofe:1998:PWS

Crovella:1998:TAD

Manley:1998:SSS

Rousskov:1998:PCP

Waldby:1998:TAE

Willis:1998:PCR

Acharya:1998:UIM

Aboutabl:1998:TDD

Marsan:1998:MGS

Bause:1998:SPN

Lindemann:1998:PMD

Lindemann:1998:SIS

Buchholz:1998:GHG

Fricks:1998:ANM

Marsan:1998:MAS

Ost:1998:AWM

Dujmovic:1998:EES

Cao:1998:GEI

REFERENCES

Caceres:1998:WPC

Krishnamurthy:1998:PQE

Bangs:1998:BOS

Mosberger:1998:HTM

Ward:1998:ISP

Sayal:1998:SAR

Hillingsworth:1999:SSS

Sevcik:1999:SIS

Downey:1999:EGW
REFERENCES

REFERENCES

Douceur:1999:LSS

Martin:1999:NSH

Barve:1999:MOT

Sethuraman:1999:OSS

Varki:1999:MVT

Franaszek:1999:MFS

Smaragdakis:1999:ESE

Lee:1999:ESP

Ludwig:1999:MLT

REFERENCES

Anjum:1999:BDT

Sripanidkulchai:1999:TPV

Fan:1999:WPB

Barford:1999:PEH

Zhu:1999:HRM

Liao:1999:AGS

Chou:1999:PSD

Dovrolis:1999:RDS

REFERENCES

[1000] Allen B. Downey. Using pathchar to estimate Internet link character-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

June 2000. CODEN ????? ISSN 0163-5999 (print), 1557-9484 (electronic).

[1044] Emmanuel Léty, Thierry Turletti, and François Baccelli. Cell-based multicast
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Squillante:2001:SIWa] Mark S. Squillante. Special issue on the Workshop on MAthematical perfor-

[Harchol-Balter:2001:JPU] Mor Harchol-Balter. Job placement with unknown duration and no pre-

[Golubchik:2001:OPT] Leana Golubchik and John C. S. Lui. Open problems for threshold-based sys-

[Coffman:2001:TPS] E. G. Coffman, Jr. and Predrag Je-

lenković. Threshold policies for single-

[Chang:2001:LDA] Cheng-Shang Chang, Yuh ming Chiu, and Wheyming Tina Song. Large devi-

ation analysis for multiplexing independent regulated inputs. ACM SIGMET-

[Kuang:2001:CSA] Lei Kuang and Armand M. Makowski. Convex stability and asymptotic con-

REFERENCES

REFERENCES

Kumar:2001:CEF

Qiu:2001:NPF

Paschalidis:2001:MBE

Dutta:2001:OTG

LeBoudec:2001:SPV

Chang:2001:PMI

Shuf:2001:CMB

Sohoni:2001:SMS

Bu:2001:FPAb

REFERENCES

[1132] Michael K. Bradshaw, Bing Wang, Subhabrata Sen, Lixin Gao, Jim Kurose, Prashant Shenoy, and Don

Yang:2001:TSR

Bremler-Barr:2001:RPC

Savvides:2001:MNW

Tsigas:2001:EPN

Ng:2001:OHP

Padamanabban:2001:DGL

Mandjes:2001:LCA

Downey:2001:SCF

Bhargava:2001:UAM

Mellor-Crummey:2001:PUI

Shahabi:2001:ATE

Dinda:2001:OPR

Almeida:2001:ARB

Almeida:2001:CUA

Bonald:2001:PME

Qiu:2001:FFI

Kant:2001:CRT
Dalal:2001:OSO

Cardellini:2001:WSS

Voigt:2001:KBC

Wang:2001:BPI

Chen:2001:CDP

Ardaiz:2001:IST

Jin:2001:GGI

Squillante:2001:SIWb

Bansal:2001:AMG

Nikhil Bansal and Mor Harchol-Balter. Analysis of M/G/1/SRPT under tran-
REFERENCES

186

Bachmat:2001:ACA

Riabov:2001:SPT

Fourneau:2001:GNR

Shalmon:2001:QAP

Bain:2001:MPD

Chang:2001:LBB

Kogan:2001:AEP

Baryshnikov:2001:KLM

Gamarnik:2001:SOB

[1167] David Gamarnik. Stochastic online binpacking problem: exact conditions

Lam:2001:SCS

Szlavik:2001:GGT

Boots:2001:STP

Borst:2001:GPS

Liu:2001:MSL

Lu:2001:PAA

Squillante:2001:OSQ

Sevcik:2002:SPC

REFERENCES

Williamson:2002:CCA

Menasce:2002:SAM

Cheng:2002:PSB

Lawson:2002:MQB

Coates:2002:MLN

Bu:2002:NTG

Jiang:2002:LEL

Squillante:2002:MAD

REFERENCES

[1202] Jeffrey Vetter. Dynamic statistical profiling of communication activity in dis-
Cook:2002:TRP

Shih:2002:ETC

Sivan-Zimet:2002:WBO

Lv:2002:SRU

Chandramouli:2002:ALT

Williamson:2002:CAT

Barakat:2002:IBT

Thomasian:2002:SND

Lee:2002:SCC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

Wang:2003:MAU

Liu:2003:FMS

Harrison:2003:GNP

Wierman:2003:MTV

Gamarnik:2003:WIS

Duarte:2003:AFA

Andrew:2003:AOG

Marbukh:2003:TMF

Lam:2003:PQS

REFERENCES

[1282] Greg Hamerly, Erez Perelman, and Brad Calder. How to use SimPoint to
REFERENCES

REFERENCES

2004. CODEN ????? ISSN 0163-5999 (print), 1557-9484 (electronic).

[1308] Kartikeya Chandrayana and Shivkumar Kalyanaraman. Uncooperative

[1334] Shu Tao, Kuai Xu, Ying Xu, Teng Fei, Lixin Gao, Roch Guerin, Jim Kurose,
REFERENCES

Osogami:2004:RAT

daSilva:2004:EAT

Kogan:2004:TPI

Wierman:2004:FSS

Raz:2004:HFQ

Feng:2004:RBC

Chang:2004:DSM

Marbukh:2004:KPP

Lin:2004:CMM
REFERENCES

[1360] Xuan Li and David D. Yao. Control and pricing in stochastic networks with

REFERENCES

[1378] Derek Leonard, Vivek Rai, and Dmitri Loguinov. On lifetime-based node fail-

REFERENCES

[1395] Adam Wierman and Mor Harchol-Balter. Classifying scheduling policies

Jiang:2005:WIT

Roughan:2005:FBA

Jain:2005:EEE

Chiang:2005:NUM

Chiang:2005:OCC

Low:2005:OMI

Mitra:2005:JPN

Musacchio:2005:AFR

Shroff:2005:OBA

REFERENCES

Ciucu:2005:NSC

Urgaonkar:2005:AMM

Chen:2005:MSE

Ruan:2005:EIS

Donnet:2005:EAL

Mao:2005:LPI

Zhao:2005:DSA

Soule:2005:TMB
Ganeriwal:2005:RAT

Wang:2005:IPS

Mickens:2005:PNA

Qiu:2005:TMW

Raz:2005:FOM

Anderson:2005:DSA

He:2005:SSP

He:2005:PTT

Chua:2005:SFE

Zhu:2005:TSA

Sarat:2005:UAD

Mudigonda:2005:MMA

Bharambe:2005:SOB

Machiraju:2005:TPC

Stutzbach:2005:CTT

Tewari:2005:ASR

Zhang:2005:ILS

Wenisch:2005:TAM

[1430] Thomas F. Wenisch, Roland E. Wunderlich, Babak Falsafi, and James C.

REFERENCES

Zhang:2005:MDP

Ramachandran:2005:PBA

Kamra:2005:DPS

Jiang:2005:ION

Ma:2005:CNC

Covell:2005:PMS

Harchol-Balter:2005:RTP

Raz:2005:LRU

Lu:2005:DSO

REFERENCES

Riska:2006:GEF

Keeton:2006:CMD

Zhang:2006:ACT

Thomasian:2006:MLR

Mesnier:2006:RFM

Arpaci-Dusseau:2006:SSD

Bachmat:2006:BDS

Zarandoon:2006:OOD

Reed:2006:PRU

Thereska:2006:STA
Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-Malek, Julio Lopez, and Gregory R.

Pinheiro:2006:ERC

Modiano:2006:MTW

Gao:2006:DEE

Koksal:2006:ICV

Mishra:2006:POC

Lieshout:2006:GSS

Gromoll:2006:IRP

Yang:2006:TAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

Wierman:2007:FC

Boxma:2007:TS

Biersack:2007:SP

Bonald:2007:SNT

Aalto:2007:BPS

Squillante:2007:SAM

Pruhs:2007:COS

Li:2007:AMJ

Kadayif:2007:MID

Gulati:2007:PAC

Iyer:2007:QPA

Mesnier:2007:MRF

Wen:2007:FFI

Huang:2007:DND

Pucha:2007:UND

Kashyap:2007:TPR

Mirza:2007:MLA

Ringberg:2007:SPT

Lee:2007:BCS
REFERENCES

Xia:2007:SFJ

Osogami:2007:OSC

Wang:2007:SSR

Park:2007:MEP

Cvetkovski:2007:AAC

Lee:2007:SDN

Feng:2007:PUP

Jelenkovic:2007:ASC

Bhadra:2007:OCP

[1564] Sandeep Bhadra, Yingdong Lu, and Mark S. Squillante. Optimal capac-

Liu:2007:FLS

Smirni:2007:FDP

Dong:2007:WSP

Hirzel:2007:DLO

Hao:2007:BHA

Bairavasundaram:2007:ALS

Legout:2007:CSI

Sanghavi:2007:DLS

REFERENCES

Nurmi:2007:QQB

Deng:2007:PDS

Aalto:2007:MDO

Squillante:2007:F

Gianini:2007:PNR

Marbukh:2007:FBS

Osogami:2007:AMT

Gupta:2007:EHM

Hossfeld:2007:MOT
REFERENCES

[1607] Ludmila Cherkesova, Diwaker Gupta, and Amin Vahdat. Comparison of the

REFERENCES

Vicari:2007:DRP

Papadopoulos:2007:PPI

Shamsi:2007:PPS

Gilmore:2008:F

Gilmore:2008:PEC

Kwiatkowska:2008:UPM

Jeschke:2008:PDD

Dematte:2008:MSB

Sommers:2008:SPR

Gilmore:2008:PEC
Korzun:2008:DMR

Sibai:2008:EPS

Bordenave:2008:PRM

Casale:2008:BAC

Wierman:2008:SDI

Lelarge:2008:NED

Brosh:2008:DFT

Kim:2008:SVR

Tschopp:2008:HRD

Rayanchu:2008:LAN

Schmid:2008:EMV

Cohen:2008:CEM

Lu:2008:CBN

Anandkumar:2008:TSB

Singhal:2008:OSS

Ioannidis:2008:DHP

Chen:2008:UMP
REFERENCES

REFERENCES

REFERENCES

REFERENCES

CODEN ???. ISSN 0163-5999 (print), 1557-9484 (electronic).

REFERENCES

REFERENCES

Curry:2008:RAE

Zhang:2008:KTB

DeVera:2008:AQE

Rossi:2008:PS

Ormont:2008:CMW

Anouar:2008:OOW

Jiang:2008:NPN

Garikiparthi:2008:BPA

[1728] Varun Gupta and Peter G. Harrison. Fluid level in a reservoir with
REFERENCES

Kwak:2008:SAS

Casale:2008:CCO

Dieker:2008:COF

Haverkort:2008:QAG

Katoen:2008:HMA

Crouzen:2008:AFM

Kwiatkowska:2008:AGP

Krieger:2008:VPM

Bakhshi:2008:MAE

[1737] Rena Bakhshi, Lucia Cloth, Wan Fokkink, and Boudewijn R. Haverkort. MeanField analysis for the evaluation

[Estrada:2008:DEM]

[Eddy:2008:BPI]

[Casale:2009:SIT]

[Baarir:2009:GTR]

[Bertoli:2009:JPE]

[Gaonkar:2009:PDM]

[Arns:2009:OTO]

[Tribastone:2009:PEP]

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Marta Kwiatkowska, Gethin Norman, and David Parker | 2009 | Kwiatkowska:2009:PPM

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Kisho S. Trivedi and Robin Sahner | 2009 | Trivedi:2009:SAT

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Gianfranco Ciardo, Andrew S. Miner, and Min Wan | 2009 | Ciardo:2009:AFS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Marc Lelarge | 2009 | Lelarge:2009:ECE

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>

REFERENCES

[1762] Shreeshankar Bodas, Sanjay Shakkottai, Lei Ying, and R. Srikant. Schedul-
REFERENCES

255

[1771] Chen:2009:UIC

[1772] Schroeder:2009:DEW

REFERENCES

Wang:2009:NSB

Laoutaris:2009:DTB

Jiang:2009:CCD

Cohen:2009:LDS

Loiseau:2009:MLE

Qiu:2009:MCP

Harchol-Balter:2009:SRT

Sandholm:2009:MOU

Gupta:2009:SAA

Scheuermann:2009:WSS

Anandkumar:2009:SRM

Dubey:2009:PMD

Wang:2009:DCR

Krioukov:2009:GFS

Cho:2009:BTB

Nair:2009:OJF

Jayakrishnan Nair and Steven H. Low. Optimal job fragmentation. *ACM
REFERENCES

Yao:2009:EAL

Korzun:2009:LEM

Menasche:2009:MCAa

Hohlfeld:2009:VIV

Gupta:2009:WOS

Andrew:2009:OSS

Verloop:2009:HTA

Anselmi:2009:IAS

REFERENCES

Riska:2009:EDL

Reddy:2009:MDC

Borst:2009:SOA

Rubinstein:2009:SPA

Down:2009:SDR

Chen:2009:SPP

Gulati:2009:EAP

Liu:2009:DDS

REFERENCES

REFERENCES

Dube:2010:PLL

Zhu:2010:ROW

Doebel:2010:TVP

Mishra:2010:TCC

Arlitt:2010:SIQ

Hu:2010:PMI

Chen:2010:BPI

Marwah:2010:QSI

REFERENCES

[1862] Haoqiang Zheng and Jason Nieh. RSIO: automatic user interaction de-
REFERENCES

REFERENCES

[Cuevas:2010:DDB]

[Jin:2010:IAN]

[Anselmi:2010:PAP]

[Khouzani:2010:OPS]

[Le:2010:MCE]

[Mishra:2010:CPM]

[Nguyen:2010:RSA]

[Osogami:2010:SOT]

REFERENCES

[1896] Philippe Robert and Jim Roberts. A mean field approximation for the capacity of server-limited, gate-limited multi-server polling systems. *ACM
REFERENCES

Liu:2010:FAL

Gast:2010:MFL

Radovanovic:2010:RMT

Cho:2010:VFP

vandeVen:2010:ETR

Marot:2010:RCP

Lu:2010:AMM

Gandhi:2010:DRM

Pal:2010:EIS
[1905] Ranjan Pal and Leana Golubchik. On the economics of information secu-

Dube:2010:RDC

Li:2010:RAD

Kulkarni:2010:TAI

Shepard:2010:LMW

Hahn:2010:UVL

Shakkottai:2010:TCD

Gopalakrishnan:2010:AVG

Yao:2010:DDL

REFERENCES

[1922] Aruna Prem Bianzino, Anand Kishore Raju, and Dario Rossi. Apples-
REFERENCES

274

[Janssen:2011:USD]

[Giles:2011:PAO]

[Herdman:2011:BMP]

[Pennycook:2011:PAH]

[Budanur:2011:MTC]

[Rodrigues:2011:SST]

[Karlin:2011:PMP]

[Nakasato:2011:FGI]
Wu:2011:PCH

Hsieh:2011:FAL

Perks:2011:SWW

Cook:2011:SPM

Tabbal:2011:PDE

McIntosh-Smith:2011:EAM

Chen:2011:MPR

Sharifi:2011:MME
REFERENCES

Zhang:2011:SIC

Liu:2011:SIH

Alizadeh:2011:SAQ

Joseph:2011:SNM

Alizadeh:2011:ADS

Suh:2011:SEB

Suchara:2011:NAJ

Subhraveti:2011:RTP

Tsitsiklis:2011:PEL

REFERENCES

CODEN ???? ISSN 0163-5999 (print), 1557-9484 (electronic).

Nguyen:2011:WPA

Aalto:2011:OTB

Cohen:2011:SAS

Korada:2011:GP

Urgaonkar:2011:OPC

Liu:2011:GGL

Nguyen:2011:SP

Lam:2011:GRD

Rozner:2011:MDO

[1956] Eric Rozner, Mi Kyung Han, Lili Qiu, and Yin Zhang. Model-driven optimization of opportunistic routing. *ACM SIGMETRICS Perfor-

Kurant:2011:WGM

Anandkumar:2011:TDS

Shafiq:2011:CMI

Xu:2011:CDN

Lee:2011:FGL

Zhou:2011:SOU

Eibl:2011:FBE

Zhang:2011:RKD

Krevat:2011:AIL

Han:2011:HPC

Rao:2011:SAP

Li:2011:CAR

Gupta:2011:TMB

Lee:2011:SMT

Adhikari:2011:HDY

Kant:2011:CSB

REFERENCES

Zhang:2011:ONS

Ihm:2011:TUM

Akella:2011:OIR

Hong:2011:DSP

Srinivasan:2011:HHA

Ribeiro:2011:CCT

Chen:2011:AAN

Singh:2011:IGM

Chen:2011:TBS

REFERENCES

References

performance, Modeling, Measurement and Evaluation.

Altman:2011:PAC

Bokharaei:2011:PTN

Bosman:2011:POD

Dong:2011:PPS

Lubben:2011:PCD

Marbukh:2011:PTE

Massey:2011:PSV

Rahman:2011:PGF

Rahman:2011:PCM

Romano:2011:PSB

Czekster:2011:EVD

Lilja:2011:PAS

Squillante:2011:IBT

[2016] Mark S. Squillante. Instrumentation-based tool for latency measurements

[2025] Osman T. Akgun, Rhonda Righter, and Ronald Wolff. The power of partial

Brown:2011:RPS

Yan:2011:CRS

Gupta:2011:APR

Casale:2011:HSS

Chen:2011:UCG

Zhang:2011:BBH

Blackburn:2011:CGS

Stefanek:2011:FCP
Kim:2011:IHP

Lee:2011:IPE

Choi:2011:IPM

Gadre:2011:IMF

Hayden:2011:MFA

Gandhi:2011:MMV

Sawalha:2011:TSH

Li:2011:EDH

Burdette:2012:ECJ

[2050] Philip F. Burdette, William F. Jones, Brian C. Blose, and Gregory M.
REFERENCES

Gopalakrishnan:2012:SUT

Coffman:2012:SLR

Kou:2012:FPT

Neuts:2012:AMS

Shah:2012:PFD

Baek:2012:FPM

Bladt:2012:BME

Bladt:2012:MDP

Drekic:2012:SPP

REFERENCES

Fackrell:2012:CME

Hautphenne:2012:EAM

Hautphenne:2012:MTS

He:2012:DMV

He:2012:MEP

Horvath:2012:ARM

Kobayashi:2012:TAS

Krishnamoorthy:2012:SDP

Latouche:2012:TDF

REFERENCES

Ramaswami:2012:FIB

Sonenberg:2012:NFM

Stanford:2012:NPP

Toyozumi:2012:ADS

VanHoudt:2012:IDD

Bean:2012:AQR

Bean:2012:SFM

Bini:2012:CCR

Bladt:2012:OMG

[2077] Mogens Bladt and Bo Friis Nielsen. An overview of multivariate gamma

Mahmud:2012:CST

Abundo:2012:ACP

Persona:2012:HQM

Anceaume:2012:PEL

Patel:2012:PIF

Liu:2012:HPC

Tan:2012:DTM

Shah:2012:OQS

Hyytia:2012:MSH

Leconte:2012:BGS

[2104] Mathieu Leconte, Marc Lelarge, and Laurent Massoulié. Bipartite graph
REFERENCES

Atikoglu:2012:WAL

Shafiq:2012:FLC

Han:2012:BPB

Gan:2012:EEC

Jelenkovic:2012:UAD

VanHoudt:2012:FLA

Hua:2012:TOE

Vulimiri:2012:HWC

REFERENCES

REFERENCES

Alizadeh:2012:VRL

Bhattacharya:2012:DLI

Lim:2012:DFQ

Yoo:2012:AAD

Xu:2012:PFS

Figueiredo:2012:CCT

Lee:2012:BRW

Song:2012:CEM
REFERENCES

Cohen:2012:DLN

Ammar:2012:ERA

Duffield:2012:FSA

Peng:2012:TBN

Anshelevich:2012:SEP

DiCioccio:2012:MCH

Sommers:2012:CMA

Nemeth:2012:TSC

Zarifzadeh:2012:RT

REFERENCES

[2163] Seung Min Yu and Seong-Lyun Kim. Guaranteeing user welfare in network

Berry:2012:NMC

Ma:2012:PDK

Houidi:2012:PTB

Lodhi:2012:PSA

Mastroeni:2012:PIP

Lee:2012:IVI

Gulyas:2012:GNF

Ramakrishnan:2012:EIV

Mudalige:2012:PMA

Mateescu:2012:OMT

Danalis:2012:BPH

Tineo:2012:TAA

Iakymchuk:2012:MPT

Shan:2012:PEH

Deshpande:2012:AGC

Su:2012:CPB

REFERENCES

Lee:2012:BMD

Wang:2012:TEG

Sun:2012:APM

Vitali:2012:LSO

Hahnel:2012:MEC

Mazzucco:2012:EEP

Ghumre:2012:ENC

Gast:2012:OSP

Bernstein:2012:SAP
Ardakanian:2012:RDC

Ardakanian:2012:ISR

Chiu:2012:EGB

Menasche:2012:SAP

Coffman:2012:UDA

Avrachenkov:2012:OCC

Schorgendorfer:2012:TLB

Rochman:2012:ERM
0163-5999 (print), 1557-9484 (electronic).

REFERENCES

[214] Qun Huang and Patrick P. C. Lee. An experimental study of cascading

Singh:2013:AMW

Liu:2013:DCR

Casale:2013:MEV

Mahmood:2013:TNE

Hutton:2013:AEP

Gupta:2013:LCI

Tschorsch:2013:HBT

Prabhakar:2013:DLS

REFERENCES

CODEN ???? ISSN 0163-5999 (print), 1557-9484 (electronic).

REFERENCES

Andrew:2013:TTM

Yu:2013:AGA

Wang:2013:AAC

Potharaju:2013:EAI

Mazauric:2013:CAC

Nelson:2013:DCA

Liu:2013:DCD

[2256] Zhenhua Liu, Adam Wierman, Yuan Chen, Benjamin Razon, and Niangjun Chen. Data center demand response: avoiding the coincident peak

Saez:2013:DFP

Arvidsson:2013:DUD

Kong:2013:DMD

Pescerico:2013:EP

Gan:2013:ECR

Kwak:2013:EPR

Paredes-Oliva:2013:FFR

Ghiassi-Farrokhfal:2013:FSP

Dai:2013:UAC

Balachandran:2013:UIV

Jiang:2013:USS

Sundaresan:2013:WPB

Aguilera:2013:TGR

Nair:2013:FHT

Schindler:2013:PAP

Gao:2013:SOC

Jelenkovic:2013:RCC

REFERENCES

REFERENCES

Bachmat:2013:AGD

Lin:2013:JOO

Ghaderi:2013:RAW

Adan:2013:QSB

Feinber:2013:DPO

Urgaonkar:2013:PSC

Lim:2013:PTM

Antunes:2013:PMG

Harrison:2013:STD

William G. Temple and Richard T. B. Ma. Monotonic marginal pricing: demand response with price cer-
REFERENCES

Singla:2013:BPS

Gan:2013:RTD

Yang:2013:OCT

Chan:2013:CVI

Wang:2013:ESG

Pervilä:2013:HHU

Widjaja:2013:SSE

Hou:2013:HHE
REFERENCES

Abbassi:2014:DCC

Xu:2014:IDH

Jiang:2014:BLS

Rallapalli:2014:MVI

Chiang:2014:SSD

Anselmi:2014:ECP

Berbeglia:2014:PMD

Ifrach:2014:PBS

Wagner:2014:DAL

REFERENCES

March 2014. CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

Feinberg:2014:OCU

Yilmaz:2014:FDK

Madan:2014:ATA

Suthaharan:2014:BDC

Sharma:2014:MAC

Hu:2014:AIM

Whitworth:2014:SPC

Savas:2014:TBD

Zhang:2014:FOL
REFERENCES

Stoica:2014:CBD

Shamsi:2014:HSP

Shahzad:2014:NCH

Viennot:2014:MSG

Kim:2014:ITC

Suneja:2014:NIB

Krishnasamy:2014:BEU

Gabielkov:2014:SSN

Buccapatnam:2014:SBS

REFERENCES

CODEN ???? ISSN 0163-5999 (print), 1557-9484 (electronic).

Khan:2014:EEM

Wang:2014:GDM

Diegues:2014:EPC

Wang:2014:ICM

Tavakkol:2014:UPD

Mandayam:2014:TCM

Mukhopadhyay:2014:RRS

Tarvo:2014:AAM

Arora:2014:CCP

[2394] Manish Arora, Srilatha Manne, Yasuko Eckert, Indrani Paul, Nuwan Jayasena,

Ray:2014:TMN

Mahmud:2014:BBC

Ammar:2014:WYC

Shafiq:2014:RCC

Xu:2014:FSL

Dong:2014:ART

Zhang:2014:EPS

Kong:2014:OES

Shin:2014:SUI

Rallapalli:2014:ULF

Kang:2014:TCT

Kim:2014:MSM

Vlachou:2014:PAM

Vu:2014:IDC

Guo:2014:OAJ

Liu:2014:DOL

[2419] Majed Haddad, Oussama Habachi, Piotr Wiecêk, and Yezekael Hayel. Spec-
References

Zhang:2014:MCI

Nair:2014:CPC

Bosman:2014:PCT

Gelenbe:2014:SNE

Meyfroyt:2014:CSA

Tune:2014:MET

Bradonjic:2014:SCR

Rochman:2014:ERP

Xie:2014:MCS

[2428] Hong Xie and John C. S. Lui. Modeling crowdsourcing systems: design

Asadi:2014:MDC

Zheng:2014:EFF

Goldberg:2014:AOC

Ghaderi:2014:AOB

Tizghadam:2014:ISI

Miyazawa:2014:TAS

Squillante:2014:ISS

Chuang:2014:JWP

REFERENCES

CODEN ?? ?? ISSN 0163-5999 (print), 1557-9484 (electronic).

Kamble:2014:SMP

Manickam:2014:ITM

Sinha:2014:GMD

Weber:2014:FAS

Ajourlou:2014:SID

Acemoglu:2014:HIL

Raja:2014:FFF

Gyarmati:2014:APB

Simhon:2014:ARG

Bentov:2014:PAE

Acemoglu:2014:NSC

Roth:2014:DPT

Georgiadis:2014:DEC

Kazumori:2014:GDA

AlDaoud:2014:GUS

Poularakis:2014:QPQ

Lotfi:2014:NNI

Joseph:2014:MFT

Jalali:2014:ECC

Miwa:2014:ECH

Debele:2014:ERS

Yi:2014:MEC

Ren:2014:FLC

Cavdar:2014:QBS

Ardagna:2015:SIP

REFERENCES

Tan:2015:ALA

Rosa:2015:DCE

Ying:2015:EAE

Tan:2015:MRF

Zhang:2015:ECH

Malekimajd:2015:OMR

Zhang:2015:MIM

Hajek:2015:BID

Zhang:2015:OAI
REFERENCES

15, June 2015. CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

[2479] Nicolas Gast and Benny Van Houdt. Transient and steady-state regime of

Kandemir:2015:MRR

Chen:2015:SED

Chen:2015:NSB

Meza:2015:LSS

Chen:2015:OCO

Lee:2015:RMC

Liu:2015:OLA

Combes:2015:LRR

0163-5999 (print), 1557-9484 (electronic).

REFERENCES

REFERENCES

REFERENCES

Chen:2015:GMT

Zhang:2015:PSD

Ren:2015:SAC

Wang:2015:MLE

Kesidis:2015:NCP

Fiorini:2015:EAS

Joshi:2015:QRL

Berger:2015:MCH

Yang:2015:OGG

Spencer:2015:ILM

Gast:2015:PTC

Maguluri:2015:HTB

Busic:2015:AOB

Lu:2015:CEL

Canini:2015:HMP

Wang:2015:USR

Gandhi:2015:ANA

Anshul Gandhi and Justin Chan. Analyzing the network for AWS distributed

REFERENCES

Le:2015:ECA

Bhojwani:2015:IDC

Maille:2015:ICD

Ahuja:2015:PDW

Luo:2015:PPP

Acemoglu:2015:PCN

Ramachandran:2015:NEP

Afrasiabi:2015:CBP

Meir:2015:PWG

[2571] Reshef Meir and David Parkes. Playing the wrong game: Smoothness

Feldman:2015:CSE

Touati:2015:CSA

Kilcioglu:2015:RMC

Kulkarni:2015:DCM

Simhon:2015:ISI

Ceppi:2015:PPS

Benjaafar:2015:MAC

Krishnamurthy:2016:PCC

[2580] Diwakar Krishnamurthy and Anne Koziolek. Performance challenges,

Garetto:2016:GTB

Buchnik:2016:RRG

Cullina:2016:IAC

Harchol-Balter:2016:BMT

Venkatakrishnan:2016:CCS

Narayanan:2016:RLT

Ferragut:2016:OTC

Ioannidis:2016:ACN

REFERENCES

Jacquet:2016:BMT

Shamsi:2016:UCU

Dai:2016:NBF

Fanti:2016:RSO

Avrachenkov:2016:IOL

Gabielkov:2016:SCW

Chen:2016:UPO

Bresler:2016:CFL

Liu:2016:ALD

REFERENCES

Zheng:2016:VCV

Wang:2016:VPS

Li:2016:IDM

Ludwig:2016:TSN

Ying:2016:AEM

Jiang:2016:DIC

Jonckheere:2016:AIL

Chang:2016:ULV

VanHoudt:2016:EBR

Liu:2016:FDR

Ren:2016:JDP

Mukhopadhyay:2016:MRB

Raja:2016:MFE

Shafaei:2016:MSD

Combes:2016:MSF

Shekaramiz:2016:NCA

Ahmed:2016:QAL

REFERENCES

REFERENCES

Debankur Mukherjee, Sem Borst, Johan van Leeuwaarden, and Phil Whiting. Universality of power-of-d load balancing schemes. ACM SIGMETRICS Performance Evaluation Review,
Comden:2016:OLC

Zhou:2016:EDR

Neglia:2016:GLB

Facchini:2016:ESB

Rossi:2016:AEE

Dalmasso:2016:RRM

Fan:2016:BSA

Lu:2016:TPE

Vaze:2016:OBT

0163-5999 (print), 1557-9484 (electronic).

Lim:2016:CRS

Goel:2016:NFC

Harder:2016:TSG

Hota:2016:STG

Reiffers-Masson:2016:TPD

Shan:2016:SFU

L’Ecuyer:2016:SNN

Ma:2016:PSE

Gregoire:2016:PHD

Antonopoulos:2016:ISP

Xia:2016:HMY

Nguyen:2016:PFR

Onderwater:2017:TMI

Cardellini:2017:OOR

Gianniti:2017:FPN

Longo:2017:ARQ

Canali:2017:ICP

Bianchi:2017:MRB

Donatiello:2017:ASL

Pinciroli:2017:CEM

Golubchik:2017:DSM

Avrachenkov:2017:LCA

Mukherjee:2017:OSE

Gong:2017:QPS
REFERENCES

4, June 2017. CODEN ???. ISSN 0163-5999 (print), 1557-9484 (electronic).

Ju:2017:HLS

[2690] Xiaoen Ju, Hani Jamjoom, and Kang G. Shin. Hieroglyph: Locally-
sufficient graph processing via compute-

Li:2017:SYE

Cohen:2017:OCS

[2692] Maxime C. Cohen, Philipp Keller, Vahab Mirrokni, and Mortez A Zadi-

Quach:2017:ILT

Wang:2017:CMP

Wang:2017:SGN

Braverman:2017:FMB

Kuhnle:2017:PSA

Deng:2017:CRA

[2698] Han Deng and I-Hong Hou. On the capacity requirement for arbitrary end-
REFERENCES

REFERENCES

June 2017. CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

[2715] Lei Ying. Stein’s method for mean-field approximations in light and heavy traffic regimes. *ACM SIGMETRICS Per-

Gast:2017:EVE

Sun:2017:ASM

Chang:2017:URV

Choi:2017:EDL

Lee:2017:DIL

Gibbens:2017:HND

Wang:2017:UBI

Venkatakrishnan:2017:DRB

[2723] Shaileshh Bojja Venkatakrishnan, Giulia Fanti, and Pramod Viswanath. Dan-
REFERENCES

[2732] David Fornby, Anwar Walid, and Raheem Beyah. A case study in power
REFERENCES

Doan:2017:DLM

Islam:2017:FLP

Pang:2017:LSF

Kelic:2017:ICI

Guo:2017:MPS

Oostenbrink:2017:CID

Soltan:2017:APG

Bienstock:2017:CUA

Stergiopoulos:2017:IAJ

Chen:2017:DGA

Ding:2017:CBT

Zhou:2017:WIC

Yekkehkhany:2017:GPT

Goldsztajn:2017:CNA

Joshi:2017:SRB

He:2017:DLA

Tootaghaj:2017:PTO

Jansen:2017:PEW
REFERENCES

cember 2017. CODEN ???. ISSN 0163-5999 (print), 1557-9484 (electronic).

Moka:2017:APS

Hollocou:2017:MLC

Baryshnikov:2017:LDIb

Bhatt:2017:IIF

Abbe:2017:LGD

Sun:2017:SPW

Cecchi:2017:MFL

Cecchi:2017:SMF

Juneja:2017:CDU

Telek:2017:RTD

Tay:2017:TES

Lu:2017:ELS

Allybokus:2017:LBF

Chen:2017:ODU

Yang:2017:ORC

Greenberg:2017:AN

Le:2017:OEPb

Cetinay:2017:ACF
REFERENCES

Deiana:2017:FFM

Mitra:2017:MSI

Lu:2017:OEP

Aktas:2017:SMD

Wang:2017:HTD

Casale:2017:PEJ

Nannicini:2017:SMD

Maguluri:2017:DMH

Braverman:2017:SMS

Anton Braverman and Jim Dai. Stein’s method for steady-state approxima-

Avrachenkov:2018:EBM

Pal:2018:ICS

Misra:2018:SDP

Dai:2018:SSA

Banerjee:2018:SDC

Fanti:2018:DLC

Buchnik:2018:BGD

Hoffmann:2018:CUC

Sejourne:2018:PFM

REFERENCES

Amjad:2018:CDE

Martonosi:2018:NMM

Borst:2018:DSM

Berger:2018:PBO

Tan:2018:RPS

Yang:2018:ORO

Liang:2018:MQL

Freeman:2018:DPS

Scully:2018:SOC

Anand:2018:WIB

Kleinberg:2018:ITO

Yang:2018:OAO

Duran:2018:AOC

Magureanu:2018:OLO

Talebi:2018:LPF

Yun:2018:MAB

Wei:2018:OLW

REFERENCES

Vlachou:2018:LTL

Kuhnle:2018:NRL

Yang:2018:PIA

Subramanian:2018:SFT

Xu:2018:RFM

Doan:2018:CRD

Chen:2018:DSM

Wang:2018:NNM

Schardl:2018:CFC

[2847] Tao B. Schardl, Tyler Denniston, Damon Doucet, Bradley C. Kuszmaul, I-Ting Angelina Lee, and Charles E. Leiserson. The CSI framework for

Zhou:2018:DQI

Berg:2018:TOP

Jiang:2018:CSM

Zeng:2018:FJQ

Bonald:2018:PBF

Zhou:2018:DLC

Wang:2018:TFC

Aghajani:2018:PMA

Yang:2018:SRL

Mukherjee:2018:AOL

Hegde:2018:ASP

Golubchik:2018:DFR

Fanti:2018:SDL

Gast:2018:SDR

Ren:2018:SDS

REFERENCES

Ayesta:2018:RDC

Panigrahy:2018:QTM

Gast:2018:RMFb

Shneer:2018:SSD

Sabnis:2018:OOB

Qin:2018:CPIa

Goel:2018:SOC

Ghosh:2018:MMO

Thai:2018:ASI

REFERENCES

[2911] Zuo:2018:OBP

[2912] Ruan:2018:EVV

[2913] Qin:2018:CPIb

[2914] Le:2018:AAA

REFERENCES

REFERENCES

REFERENCES

Zocca:2018:TSM

Vasantam:2018:MFB

Nakahira:2018:MVDb

Zeballos:2018:AFE

Hargreaves:2018:FOS

Floquet:2018:HBR

Raaijmakers:2018:DPP

Hellemans:2018:ARD

Ayesta:2018:UPF
REFERENCES

(3):80–81, December 2018. CODEN ???? ISSN 0163-5999 (print), 1557-9484 (electronic).

Grunspan:2018:PBW

Bruschi:2018:MIS

Smuts:2018:WDC

Alharby:2018:BSF

Fedchenko:2018:FNN

Trevisan:2018:RUC

Marin:2018:DMR

Piskozub:2018:MDM

Wassermann:2018:MLM

REFERENCES

155–158, December 2018. CODEN ????. ISSN 0163-5999 (print), 1557-9484 (electronic).

[2968] Xingyu Zhou, Jian Tan, and Ness Shroff. Heavy-traffic delay optimality in pull-based load balancing systems: Necessary and sufficient condi-
REFERENCES

397

[2976] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven
REFERENCES

[2983] Qiulin Lin, Hanling Yi, John Pang, Minghua Chen, Adam Wierman, Michael Honig, and Yuanzhang Xiao. Competitive online optimization under

Yu:2019:ALB

Vial:2019:SRP

Cayci:2019:LCR

Henzinger:2019:EDR

Ambati:2019:OCE

Comden:2019:OOC

Quan:2019:NFM

REFERENCES

Zarchy:2019:ACC

Xu:2019:IMC

Amjad:2019:MMD

Jose:2019:DAC

VanHoudt:2019:GAO

vanderBoor:2019:HSJ

Ciucu:2019:TEK

Ciucu:2019:QLD

[2998] Florin Ciucu, Felix Poloczek, and Amr Rizk. Queue and loss distributions in finite-buffer queues. ACM
Xu:2019:IQS

Han:2019:TWD

Radulovic:2019:PMS

Wei:2019:HBS

Zhang:2019:AMD

Ngoc:2019:EYS

Wei:2019:QMO

Honghao Wei, Xiaohan Kang, Weina Wang, and Lei Ying. QuickStop: a Markov optimal stopping approach

Lee:2019:NMM

Dai:2019:ACL

Combes:2019:CEE

Squillante:2019:SIW

Abuthahir:2019:DWN

Goel:2019:OAS

Tan:2019:OPP

Gardner:2019:SDH

REFERENCES

REFERENCES

REFERENCES

Bhattacharjee:2020:FLR

Squillante:2020:SIW

Lu:2020:UGC

Bhattacharjee:2020:CAM

Levy:2020:WCA

Bachmat:2020:PAO

Datar:2020:RPC

Fricker:2020:MFA

Haverkort:2020:MLD

Menasche:2020:CTO

Kesidis:2020:TGQ

Jaleel:2020:GPD

Scully:2020:OMS

Lu:2020:ODC

Araldo:2020:ASI

REFERENCES

REFERENCES

[3081] Rahul Vaze and Jayakrishnan Nair. Network speed scaling. *ACM SIG-
Pokhrel:2020:RSF

Meng:2020:SWQ

Quan:2020:PCM

Vardoyan:2020:EAI

Gilman:2020:DPP

Liu:2020:FCN

Shioda:2020:DCB

Elahi:2020:FSM

Bienkowski:2020:ODB

Huang:2020:HTA

Malik:2020:RSI

Pourghassemi:2020:ORS

Kim:2020:RIP

Lu:2020:OCF

Kar:2020:TOL

Sounak Kar, Robin Rehrmann, Arpan Mukhopadhyay, Bastian Alt, Florin

Bayat:2020:ZRN

Knottenbelt:2021:MC

Weber:2021:KAD

Coutinho:2021:CHI

Simoes:2021:BPT

Oliveira:2021:ATC

Gundlach:2021:PCT

REFERENCES

Higuchi:2021:FLP

Gonzalez:2021:UGM

Marin:2021:CCQ

Masetti:2021:EMM

Arora:2021:OBB

Zhu:2021:FBG

Cuvelier:2021:SEP

Li:2021:IAC

[3118] Tongxin Li, Yue Chen, Bo Sun, Adam Wierman, and Steven Low. Information aggregation for constrained online control. *ACM SIGMETRICS Per-
Buchbinder:2021:OVM

Grosof:2021:NSI

Wang:2021:ZQM

Scully:2021:GPN

Bijlani:2021:WDM

Zhang:2021:MSW

Singh:2021:PNP

REFERENCES

[3133] Behnam Pourghassemi, Jordan Bonecutter, Zhou Li, and Aparna Chandramowlishwaran. adPerf: Character-

Tassiulas:2021:EIS

Foerster:2021:IDD

Perivier:2021:RTA

Asgari:2021:BSO

Yu:2021:PDH

Zhang:2021:CHE

Hazimeh:2021:MGT

Abanto-Leon:2021:SCL

[3155] Luis F. Abanto-Leon, Andreas Bäuml, Gek Hong (Allyson) Sim, Matthias Hollick, and Arash Asadi. Stay connected, leave no trace: Enhancing security and privacy in WiFi

Tavori:2021:CVO

Ancel:2021:MFA

Miguelez:2021:RSG

Scully:2021:WDG

Ziv Scully and Lucas van Kreveld. When does the Gittins policy have asymptotically optimal response time tail? *ACM SIGMETRICS Performance Evaluation Review, 49*(2):18–20, September 2021. CODEN ????. ISSN 0163-5999 (print), 1557-9484 (elec-
REFERENCES

Lu:2021:PAQ

Rutten:2021:CSA

Ferragut:2021:EVC

Bayat:2021:REA

Ramtin:2021:CDA

Scully:2021:BMS

Ghosh:2021:UGE

Gast:2021:SIW

REFERENCES

Hong:2021:SZQ

Ghasemi:2021:ASA

Peng:2021:ERT

Liu:2021:SAS

Lee:2021:CBS

Song:2021:OLH

Ferragut:2021:SEC

Scherrer:2021:APP

REFERENCES

Cadas:2021:FCH

Varma:2021:HTT

Vaze:2021:SSM

Casale:2021:FLD

Zubeldia:2021:LTC

Spang:2021:UTB

Singhal:2021:CFR

Sivaraman:2021:ENT

REFERENCES

Vardoyan:2021:CRB

Harchol-Balter:2022:MCQ

Tan:2022:VCA

Xia:2022:TPM

Boudec:2022:PEP

Serazzi:2022:UCP

Donatelli:2022:SIW

Almousa:2022:CME

Salah Al-Deen Almousa, G’a bor Horv’ath, Ill ‘es Horv’ath, András M’ész’ aros, and Miklós Telek. The CME method: Efficient numerical

REFERENCES

Lladó:2022:POP

Carnevali:2022:OTA

Amparore:2022:SME

Vassio:2022:MOO

Tao:2022:LAO

Hao:2022:IAA

Ketabi:2022:CAF

Pujol-Perich:2022:UPG
[3230] David Pujol-Perich, Jose Suarez-Varela, Albert Cabellos-Aparicio, and Pere Barlet-Ros. Unveiling the potential of graph neural networks for ro-
[3231] Gustavo de Carvalho Bertoli, Lourenço Alves Pereira Júnior, and Osamu Sato-
tome. Improving detection of scanning attacks on heterogeneous net-
works with Federated Learning. ACM SIGMETRICS Performance Evalua-
tion Review, 49(4):118–123, March 2022. CODEN ????. ISSN 0163-5999 (print),

Mellia, Jussara M. Almeida, and Bruno Pereira dos Santos. Understanding mobility in
networks: a node embedding approach. ACM SIGMETRICS Performance Evalua-
tion Review, 49(4):124–130, March 2022. CODEN ????. ISSN 0163-5999 (print),

[3233] James Roberts and Dario Rossi. Size-based scheduling vs fairness for data-
center flows: a queuing perspective. ACM SIGMETRICS Performance Evalua-
tion Review, 50(2):2–10, September 2022. CODEN ????. ISSN 0163-5999 (print),
REFERENCES

Jiang:2022:DDO

Yao:2022:STM

Ye:2022:ORR

Anton:2022:SUR

Tan:2022:OSC

Horvath:2022:ONI

Ding:2022:COM

Kalantzis:2022:QAR

UlGias:2022:MBR

Sun:2022:RAS

Shang:2022:EDI

Marin:2023:PFN

Kumar:2023:ADC

Jinan:2023:AAP

Hwang:2023:AEM

Biswas:2023:EDT

[3261] Sudeshna Biswas, Himanshu , Sushmita Ghosh, Payali Das, Kaushik Saha, and Swades De. Efficient data transfer mechanism for DLMS/COSEM enabled smart energy metering plat-

REFERENCES

Regmi:2023:TDL

Maruf:2023:MMD

Addanki:2023:MNO

Giannoula:2023:ASE

Zerwas:2023:DHT

Lin:2023:TAD

Zhu:2023:DBF

REFERENCES

Kumar:2023:EOP

Lu:2023:DMA

Hsu:2023:FLI

Chiesa:2023:NMM

Wang:2023:RTS

Naseer:2023:JCF

Banerjee:2023:OFA

Liu:2023:DPP

[3314] Jing Yu, Dimitar Ho, and Adam Wierman. Online adversarial stabilization of unknown networked sys-

[Williams:2023:MMK]

[Wei:2023:CRP]

[Huo:2023:BEM]

Sam:2023:OLHb

Zhang:2023:DMS

Goldberg:2023:BTU

Wang:2023:CCT

Tang:2023:SLR

Varma:2023:PDC

VanHoudt:2023:SAI

Grosof:2023:OSM

Kadota:2023:SRP

REFERENCES

Runhan Xie, Kristen Gardner, and Rhonda Righter. Insensitivity for loss systems with compatibilities. *ACM SIGMETRICS Performance Evalua-
REFERENCES

Bor:2023:FME

Zhao:2023:ORM

Rutten:2023:DRS

Jhunjhunwala:2023:ETB

Ciucu:2023:USQ

Gast:2023:WOP

Hong:2023:PGP

Xie:2023:RHT

Runhan Xie and Ziv Scully. Reducing heavy-traffic response time with asym-
Lu:2023:MDP