A Complete Bibliography of Publications in Statistics and Computing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

03 October 2019
Version 1.18

Title word cross-reference

21st [85]. 25th [1114]. 2D [824].

3D [824, 359].

4 [230].
Approximations [459, 1334, 1215, 295, 1455, 40, 304, 533, 1366, 990, 1121, 1135, 1152].

AXIOM [381].
calculus [102]. calculus [1386, 577].
bimonotonicity [740]. Binary [456, 282, 370, 1287, 1320, 1216, 168, 826, 204, 1312, 1009, 1443, 951, 1056, 1220, 927, 512, 302].
Bivariate [1135, 1035, 608, 80, 1260, 525, 643, 1054, 1240, 160]. Block [78, 850, 1345, 1455, 1461, 235, 234, 1149, 1312, 1418, 332].
Bootstrap [1349, 454, 191, 1344, 418, 201, 593, 163, 40, 3, 1124, 192, 442, 1291, 1288, 1240, 271, 376, 36, 447, 1171].
bootstrap-based [1288]. Bootstrapping [152, 1000, 573, 19, 445, 555]. Both [401].

calculations [386, 59]. calculator [7]. calculus [381]. Calibrating [1407, 1107].
central [769, 151]. centring [1333].
chains [1157, 424, 212, 517, 1484, 387, 636, 677].
Change [185, 1281, 888, 800, 1172, 1406, 298, 536, 776, 1090, 855, 883, 1050, 1323].
change-over [298]. Change-point [185, 1172, 1090, 883, 1323]. change-points [855]. changepoint [861, 586, 785, 1321, 1274, 1363, 1486].
changepoints [1319, 998]. changes [1418].
channel [94]. Chaos [402, 541, 401].
Chaotic [407, 404]. characteristics [938].
characterization [1415]. chart [727].
charts [45, 569]. chi [1215]. chi-squared [1215].
Cholesky [878, 1395]. Cholesky-GARCH
...
data-adaptive [1022]. Data-driven [869].
database [130]. databases [156, 133, 134, 135]. datasets [692, 627, 471, 1447, 632, 1398].
dating [956]. David [1192]. death [994].
Decision [1465, 446]. Decision-making [1465].
decomposability [395]. decomposable [709, 1250]. decomposed [993].
definition [722]. degrees [1168].
Delaunay [968].
Delaunay-triangulation-based [968].
demand [1357, 19]. demodulation [1051].
Dempster [252]. Deng [504]. densities [1355, 426, 563, 647, 125, 828, 836, 160].
detection/localization [855].
Differential [590, 677, 851, 266, 1307, 1284, 1244, 1471, 1467, 1393, 836, 1098, 1141, 986, 1296].
differentially [1477]. Difficulties [226].
diffusion [121]. diffusions [1421, 598, 863].
Direct [550, 250, 852]. directed [1431, 466, 1208, 1247].
directional [715, 578, 592, 874]. Directions [401, 105, 286, 795].
Dirichlet [797, 1270, 1138, 1160, 571, 1301].
Disclosure [498, 462, 1478].
discontinuities [602]. discrepancy [1297].
hyperbolic [75, 1445, 510]. hypercube [867, 966]. Hypergeometric [797, 529, 962].
implementations [1138]. Implementing [155]. implication [194]. implications [770].
Indian [1316]. indices [361, 1391].
Interactive [305, 249]. interchange [324]. interesting [656]. intermediate [941].
International [87]. Interpolation [258, 867]. interpolatory [1023].
interval-censored [1338]. intervals [982, 1204, 40, 112, 544, 1123, 925, 694, 572].
intractable [1074, 1073, 1078, 1077].
intrinsic [952]. introducing [1307].
Introduction [1069, 1063, 1079, 131, 1073, 1061, 1059, 1067, 1071, 1075, 1065, 1077, 491, 400, 105, 1058].
Inverse [688, 1117, 996, 1446, 1018, 837, 732, 1249, 958]. inversion [1337, 647, 1269].

MLE

Mixtures

MLEC

MLMC

MML

mobility

mode

Mixtures

MLMC
multilabel

Multinomial

multimodal

Multilocus

multi-target

Multi-step

multi-hit

Moulines

Muller

multi-class

Monotone

Monte

Moore

morphology

Morrison

most

motif

motion

Moulines

moves

moving

Müller

Multi

multi-dimensional

multi-factor

multi-hit

multi-label

multi-objective

multi-rater

multi-resolution

multi-state

Multi-step

multi-stratum

multi-target

multidimensional

Multilevel

Multilocus

multimodal

Multinomial
non-centering [567]. non-central [151].
non-crossing [1164]. non-elliptically [687].
non-EM [651]. non-equispaced [574].
non-Gaussian [123, 723, 248, 581, 721].
non-homogeneous [803].
non-iterative [858].
non-linear [730, 706, 122, 1098, 202, 193].
non-negative [43].
non-negativity [944, 695].
non-normal [1223, 288, 1454, 811].
non-normality [35].
Non-parametric [371, 847, 1338, 447, 816, 1350, 808].
non-Poissonian [1475]. non-random [568].
Non-reversible [1234]. non-simplified [1369]. non-spatial [492].
Non-standard [107, 1448]. non-stationary [1335, 884, 274]. noncentral [669, 423].
non-conjugate [1127]. non-conjugate [13].
nonconvex [1081]. non-cyclic [1387].
nondecimated [681]. Nonlinear [1186, 1010, 488, 851, 693, 1053, 954, 598, 551, 848, 539, 1099, 831, 946, 581, 958, 1192].
Nonlinearity [405]. Nonparametric [954, 1108, 703, 970, 413, 920, 1381, 571, 573, 859, 1093, 1356, 419, 611, 608, 602, 934, 824, 524, 1335, 217, 1426, 388, 514, 1183, 1321, 1241, 926, 915, 1033, 841, 765, 582, 828, 980, 971, 1411, 482, 1433].
Nonparametrics [1242]. non-stationary [931, 698, 427].
norm [1281, 1308]. norm-based [1308].
Normal [458, 188, 483, 1455, 952, 1223, 525, 842, 46, 288, 1017, 661, 17, 1445, 465, 1366, 147, 1454, 811, 1135, 43, 810].
normal-based [1366]. normalised [1267].
Normalising [459, 1091]. normality [1425, 662, 35, 809]. normalized [1251].

obfuscation [494]. object [601, 359].
Objective [1382, 1271, 635, 288]. oblique [507].
On-line [861]. one [243, 388, 1219, 476, 1329, 1328, 572].
one-factor [1219]. one-hit [243]. one-step-late [476]. one-way [572].
ongoing [381]. Online [1022, 1130, 580, 1413, 1400, 623].
online-surveillance [1130]. onset [159].
optimized [1355]. Optimizing [966, 635].
average [467, 1141]. Orthant [1438, 1167, 1214]. Orthodox [749].
outcomes [1220, 1008]. Outlier [1012, 712, 1094, 12]. outliers [56].
Outlyingness [1463]. Output [663, 466].
Output-sensitive [663]. outputs [1308].

1154, 391, 394. Practical
[587, 1151, 1162, 842, 1329]. practice
[227, 486]. Pre [1061, 1062, 1222, 164].
Pre-processing [1061, 1062, 164].
pre-smoothed [1222]. precipitation
[1096]. precision [1361]. preconditioning
[1362]. Prediction [1024, 407, 838, 736,
1158, 779, 363, 1392, 1327, 737, 664, 376].
Prediction-based [838]. predictions
[1398]. predictive [426, 919, 263, 167, 1049,
606, 348, 1213, 1368, 1286, 554, 897, 207].
predictor [742]. predictors
[1081, 1473, 745, 1087, 547, 1224].
prescribed [693, 461]. Presence
[407, 188, 1050]. Preserving
500, 494, 179, 1478. Presto [121]. pricing
[426]. primary [443]. Principal [698, 44,
148, 488, 1314, 704, 566, 781, 195, 1341,
1099, 158, 196, 1390, 1186, 200, 930, 193].
Principles [919]. Prior
[1287, 1443, 1270, 952, 846, 1174]. priori
[1197]. Priors
[1122, 346, 1426, 1251, 1484, 1154]. private
[1477]. Probabilistic
[257, 32, 754, 21, 29, 20, 18, 269, 1428, 350].
probabilities
[115, 1455, 1015, 596, 525, 1334, 962, 1167,
1438, 366, 1214, 1135, 151, 241, 694, 874].
Probability
[146, 11, 1281, 872, 935, 595, 1307, 1484, 629,
442, 1123, 194, 382, 59, 1269]. probable
[269]. probit [846, 276, 512, 302, 1439].
problem
[1144, 591, 72, 249, 266, 644, 754, 507].
problematic [532]. problems
[888, 1117, 1210, 663, 1074, 295, 961, 84, 733,
635, 586, 1073, 692, 609, 744, 673, 883, 1428,
31, 12, 1145]. procedure
[1130, 900, 245, 1363, 367, 1206, 901].
Procedures [454, 126, 492, 814]. Process
[456, 1333, 1146, 1462, 1466, 1138, 1160, 182,
1381, 571, 884, 984, 1153, 531, 540, 664,
1236, 1256, 302]. process-based
[1333, 1256]. processed [1165]. processes
[857, 938, 621, 115, 515, 994, 264, 433, 1316,
1024, 1303, 1488, 1452, 1108, 978, 1353, 1432,
1001, 1318, 750, 1078, 719, 1077, 267, 637,
121, 1311, 695]. processing
[178, 1061, 176, 1062, 354, 164]. processor
[181]. Procrustes [266, 299, 507]. product
[546, 1407, 518, 941, 1302]. products
[1165, 752]. Profile [466, 949, 410]. profiles
[1191, 1190]. programming [1144, 1053,
1372, 105, 685, 104, 122, 1173, 1041].
programs [171]. projected [434].
Projection [488, 715, 95, 1444, 756, 981].
projection-based [715]. projections
[784, 1248, 1167, 1438, 747, 1118].
propagation [865, 20, 1386]. proper [112].
properties [1162, 527, 854]. proportional
[201]. proportions [982, 1204, 397, 339].
proposal [928, 718, 700]. proposals
[676, 1179]. protect [233]. protection
[498, 492, 156, 1289, 493]. Proximal
[1205, 1435]. proximal-gradient [1435].
Pseudo [212, 65, 1278, 1228].
Pseudo-likelihood [212].
pseudo-marginal [1228]. pseudo-random
[65]. pseudo-sample [1278].
pseudorandom [177]. Pudlo [1075].
pursuit [787, 95, 1444, 756, 856, 274].
PXEM [476].
quadratic [870, 43]. quadrature
[1355, 1446, 288]. quadrilateral [682].
quality [1262]. quantal [243]. Quantifying
[1458]. Quantile [832, 454, 1276, 699, 1164,
728, 707, 1011, 948, 1111, 987, 471, 908,
1295, 1039, 833, 1110, 1221, 1152]. quantiles
[1082, 632, 538]. Quantitative
[279, 1060, 1059, 358]. Quasi
[1322, 3, 533, 247, 788]. quasi-Newton
[788]. Quasi-random [1322, 3, 533].
quaternary [1173]. quaternary-code
[1173]. Query [135, 176]. queueing [1417].
queues [526]. quick [1292].
QuickMMCTest [1292]. quotient [43].

years [86, 89, 90, 92].

Zero [965]. zeros [693]. zones [776].

References

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>
| [18] Uffe Kjærulff. Optimal decomposition of probabilistic networks by simu-

Hirschberg:1992:CEM

Dawid:1992:AGP

Cowell:1992:FRE

Bedrick:1992:SR

Anonymous:1992:HCa

Anonymous:1992:E

Lorenzen:1992:DES

Raes:1992:ITC

Buntine:1992:LCT

Anonymous:1993:Ec

Anderson:1993:CCB

DeMatteis:1993:LRC

Smith:1993:RCH

Granville:1993:EAE

Aitkin:1993:AMD

Dusoir:1993:SR

Anonymous:1993:HCb

Arslan:1993:DCE

REFERENCES

REFERENCES

Anonymous:1993:FSR

Barndorff-Nielsen:1993:IAF

Chambers:1993:GLS

Copas:1993:SIS

Efron:1993:SC

Gower:1993:NTY

Hibbert:1993:NRE

Legendre:1993:RDM

Moore:1993:SRN
Nelder:1993:MIA

Rubin:1993:FS

Smith:1993:SRN

Anonymous:1993:HCd

Ball:1994:NEO

Eslava:1994:SCP

Stander:1994:TSS

Madigan:1994:SR

Jones:1994:BR

Anonymous:1994:HCa

REFERENCES

Anonymous:1994:HCb

Anonymous:1994:HCc

Carothers:1994:CAC

Brooks:1994:ASP

Dumouchel:1994:ASP

Gray:1994:SPG

Barrett:1994:CFV

Blackwell:1994:EET

Lunneborg:1994:BR

Anonymous:1994:HCc

REFERENCES

REFERENCES

Searle:1995:CJN

Nelder:1995:RCS

Aitkin:1995:PMC

Robert:1995:STN

Zoppe:1995:PPU

Dellaportas:1995:RVT

VanEeuwijk:1995:UDB

Wang:1995:SVN

REFERENCES

REFERENCES

Liu:1996:MIS

Aitkin:1996:NTP

Aitkin:1996:HEG

Barrett:1996:CDS

Modarres:1996:BPG

Hesterberg:1996:CVI

Webb:1996:ANL

Malvestuto:1996:TIH

REFERENCES

REFERENCES

REFERENCES

Mola:1997:FSP

Anonymous:1997:HCc

Ostland:1997:EQM

Lavielle:1997:SAV

Bowman:1997:BBI

Dempster:1997:DUL

Aitkin:1997:CVP

Stone:1997:DPD

Dempster:1997:CPM

REFERENCES

REFERENCES

Gustafson:1998:GWM

Kennedy:1998:BQN

Luan:1998:SDN

Mcdonald:1998:ETT

Anonymous:1998:FDA

Anonymous:1998:SR

Anonymous:1998:HCd

Busing:1999:DJU

Canty:1999:ISA

Chib:1999:MSH

DeBeer:1999:SEN

Eccleston:1999:DOC

Faghihi:1999:PSA

Sahu:1999:CEA

Sardy:1999:WSU

Weir:1999:SMB

Anonymous:1999:HCa

REFERENCES

REFERENCES

Anonymous:1999:HCb

Hand:1999:E

Eccleston:1999:GEC

Burgess:1999:IAF

Dean:1999:SME

Delgado:1999:SOD

Elliott:1999:ADF

John:1999:PLD

REFERENCES

REFERENCES

Jaakkola:2000:BPE

Kontkanen:2000:PDB

Chickering:2000:CSE

Smyth:2000:MSP

Wallace:2000:MCM

Anonymous:2000:HCa

Berman:2000:GEI

Murtagh:2000:IPT

Anonymous:2000:HCb

[371] O. Asparoukhov and W. J. Krzanowski. Non-parametric smoothing of the loca-

Brewer:2000:BML

Goldstein:2000:BLA

Lunn:2000:WBM

Peel:2000:RMM

Steele:2000:IBE

Anonymous:2000:HCd

Stafford:2001:GE

Andrews:2001:AEM

 Bellio:2001:CAP

 Kendall:2001:SIC

 Pistone:2001:GBF

 Stafford:2001:UIM

 Mcleod:2001:MLE

 Ronchetti:2001:BSH

 Smith:2001:SCC

 Kolassa:2001:BCR

Gatto:2001:SCA

Neal:2001:AIS

Cantoni:2001:RSS

Tusell:2001:PTR

Malvestuto:2001:HTA

REFERENCES

REFERENCES

Grund:2001:SLF

Hurn:2001:PED

Gibson:2001:LES

Crowder:2001:CVT

Yao:2001:BEA

Amato:2001:AWS

Anonymous:2001:HCd

Hand:2002:BGF

Anonymous:2002:HCa

Alba:2002:IFE

Molchanov:2002:SDA

DeLuna:2002:SBI

Trendafilov:2002:GRP

Kadane:2002:HMC

Lancaster:2002:LVT

Aitkin:2002:GML

REFERENCES

Zhu:2002:AGL

Anonymous:2002:HCb

Croux:2002:LAM

Lee:2002:HAB

Nason:2002:CWS

Cai:2002:PSC

Mackenzie:2002:MHR

REFERENCES

REFERENCES

[462] Matteo Fischetti and Juan-José Salazar-González. Partial cell suppression: a new methodology for sta-
REFERENCES

Croux:2003:FMM

Oneill:2003:PSR

Ng:2003:CNB

Hojbjerre:2003:PLD

Foster:2003:ARL

Anonymous:2003:HCa

Oldford:2003:ESC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2003:HCd

LECuyer:2004:DLR

Fearnhead:2004:PFM

Gustafson:2004:VDE

Hsiao:2004:BMI

Protassov:2004:EBM

[510] Rostislav S. Protassov. EM-based maximum likelihood parameter estimation for multivariate generalized hy-

Anonymous:2004:HCa

Waddington:2004:UCP

Huang:2004:CSM

Gorsich:2004:DNI

Feuerverger:2004:ALD

Wainwright:2004:TCB

[518] Martin Wainwright, Tommi Jaakkola, and Alan Willsky. Tree consistency and bounds on the performance of the

Anonymous:2004:HCB

Whiley:2004:PAM

Gomez:2004:NDS

Smola:2004:TSV

Tsionas:2004:BIM

DeCanditiis:2004:TAJ

Genz:2004:NCR

Fearnhead:2004:FRC

[526] Paul Fearnhead. Filtering recursions for calculating likelihoods for queues based on inter-departure time

Zhang:2004:LMG

Faraway:2004:MCS

Anonymous:2004:HCd

Zhao:2005:ECQ

Liang:2005:BNN

Shi:2005:HGP

Hilliam:2005:CCS

Langsrud:2005:RT

Anonymous:2004:HCd

REFERENCES

com/article/10.1007/s11222-005-4789-5.

Agarwal:2005:SSS

Kabaila:2005:CEC

Anonymous:2005:HCa

Eckley:2005:ECD

Nott:2005:ESS

Giakoumatos:2005:BAU

DiMarzio:2005:KDC

Fearnhead:2005:DSD

Guo:2005:NSM

Anonymous:2005:HCB

Tutz:2005:LC

Sweeting:2005:APD

Schlattmann:2005:BNC

Desgagne:2005:ISG

Frolich:2005:MEO

Aitkin:2005:BPN

Negassa:2005:TSS

[559] Abdissa Negassa, Antonio Ciampi, Michal Abrahamowicz, Stanley Shapiro, and Jean-François Boivin. Tree-structured subgroup analysis for censored survival data: Validation of com-
Arnold:2005:ESM

Anonymous:2005:HCc

Karlis:2005:MPR

Dunn:2005:SET

Butler:2005:APM

Roca-Pardinas:2005:TIG

Einbeck:2005:LPC

Neal:2005:CSN

Roca-Pardiñas:2005:TIG

Einbeck:2005:LPC

Neal:2005:CSN

Zhang:2005:BMI

Knoth:2005:AAC

Anonymous:2005:HCd

McAuliffe:2006:NEB

Wolfsegger:2006:SCI

Percival:2006:ESG

Amato:2006:WKP

Dellaportas:2006:MMN

REFERENCES

Kume:2006:SCD

Chan:2006:MVU

Zoeter:2006:DAI

Cobb:2006:APD

Demiris:2006:CFO

Anonymous:2006:HCc

Golightly:2006:BSI

Haario:2006:DEA

Corander:2006:BML

Aykroyd:2006:FSE

Bowman:2006:DDN

Gibson:2006:BEP

Anonymous:2006:HCd

Kendall:2007:CBB

Hand:2007:OPP

Goswami:2007:LSE
Bock:2007:EIE

Lee:2007:HLP

Mitra:2007:URF

Azzalini:2007:CND

Anonymous:2007:HCa

Lin:2007:RMM

Meligkotsidou:2007:BMP

Craiu:2007:AMT

Lavielle:2007:PEV

[616] Marc Lavielle and Cristian Meza. A parameter expansion version of
REFERENCES

REFERENCES

Yan:2007:PMB

Choi:2007:OST

Delaigle:2007:FPC

Preisser:2007:DDM

vonLuxburg:2007:TSC

REFERENCES

Anonymous:2007:HCd

Fruhwirth-Schnatter:2008:BPC

Gambini:2008:AED

Karlis:2008:EBM

Hansen:2008:CCA

Johansen:2008:PMM

Pinson:2008:LLR

Dunn:2008:ETE

Boys:2008:BID

Alfo:2008:FMM

Fearnhead:2008:CMC

Daudin:2008:MMR
REFERENCES

Christophe Andrieu and Johannes Thoms. A tutorial on adaptive
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[751] Simon Rogers, Mark Girolami, and Tamara Polajnar. Semi-parametric

Liechty:2010:MSS

Lin:2010:RMM

Sperrin:2010:PRS

Roca-Pardinas:2010:FEG

Lee:2010:PPI

Anonymous:2010:HCc

Sandri:2010:ACB

Puggioni:2010:AST

REFERENCES

Audrino:2010:SPF

Iqbal:2010:MES

Ahn:2010:EMC

Leisch:2010:NGS

Scrucca:2010:DRM

Nott:2010:SBL

Gijbels:2010:PSR

Anonymous:2010:HCd
Weiss:2011:RGC

Kojadinovic:2011:GFT

Poleto:2011:MDM

Basso:2011:PTU

Krampe:2011:AMS

Lau:2011:MCM

Duan:2011:SEI

Kalli:2011:SSM

Gabriel:2011:ETZ

Dupuy:2011:NPE

Anonymous:2011:HCa

Fushiki:2011:EPE

Butler:2011:EDC

Kauermann:2011:FVE

Bellio:2011:RLI

Alfo:2011:FMM
REFERENCES

REFERENCES

[816] Jun Ma, Sigurbjorg Guðlaugsdóttir, and Graham Wood. Generalized EM estimation for semi-parametric mixture distributions with discretized non-

Arlot:2011:SMH

Martino:2011:GAR

Brewer:2011:DNS

Gurevich:2011:TSE

Cho:2011:MIT

Anonymous:2011:HCd

Botev:2012:EMC

Chu:2012:EJL

Lo:2012:FMM

Dinwoodie:2012:SIS

Behrens:2012:TTT

Papageorgiou:2012:MGL

Kottas:2012:BSM

Forster:2012:RJM

Meza:2012:ENM

REFERENCES

[839] Andrew Redd. A comment on the orthogonalization of B-spline basis functions and their derivatives. *Statistics...
REFERENCES

Berrendero:2012:MUT

Ning:2012:CSN

Ho:2012:MLI

Anonymous:2012:HCa

Yao:2012:MBL

Caporale:2012:DVS

Lamnisos:2012:CVP

Kaban:2012:NPD

[847] Ata Kabán. Non-parametric detection of meaningless distances in high dimensional data. Statistics and Computing,
REFERENCES

REFERENCES

Lindstrom:2012:RBS

Anonymous:2012:HCb

Antoniadis:2012:MCE

Pronzato:2012:DCE

Aufray:2012:MDN

Gramacy:2012:CNM

Muehlenstaedt:2012:DDK

Sambucini:2012:CRS

REFERENCES

REFERENCES

REFERENCES

References

Kontorovich:2012:SEB

Anonymous:2012:HCE

Celeux:2012:ABC

Marin:2012:ABC

Jasra:2012:FAB

McVinish:2012:IAQ

Peters:2012:SMC

REFERENCES

Hsieh:2013:NAM

Schafer:2013:SMC

Casarin:2013:IMT

Park:2013:MIA

Trendafilov:2013:EFP

Jin:2013:NFM

Chee:2013:EFM

Botts:2013:TDR

Lykou:2013:BLV

Wiens:2013:DWL

Gatu:2013:FAN

Kuhn:2013:CSE

Montoya:2013:REM

Anonymous:2013:HCc

Hu:2013:BQR

Huang:2013:PEL

Yao:2013:ISI

Iliopoulos:2013:VRE

Xue:2013:SIS

Chung:2013:TRB

Mira:2013:ZVM

Antonietta Mira, Reza Solgi, and Daniele Imparato. Zero variance Markov chain Monte Carlo for

Chen:2013:OLH

Anonymous:2013:HCe

Liebscher:2013:RDT

Welsh:2013:RMB

Jokiel-Rokita:2013:NER

Wang:2013:ECN

Gonzalez:2013:PBI

Zhang:2013:LBB

Yanwei Zhang. Likelihood-based and Bayesian methods for Tweedie com-

REFERENCES

[989] Andreas Groll and Gerhard Tutz. Variable selection for generalized linear

Titman:2014:EPS

Scealy:2014:FKM

Lee:2014:FMM

Browne:2014:OSM

Cahoy:2014:PEF

Lang:2014:MSA

Devroye:2014:RVG

REFERENCES

Aune:2014:PEH

Young:2014:MRC

Anonymous:2014:HCb

Konietschke:2014:BPP

Meligkotsidou:2014:BMD

Cornebise:2014:ASM

Shahbaba:2014:SHM

Ferrari:2014:RIC

REFERENCES

REFERENCES

REFERENCES

[1029] Marc Lavielle and Cyprien Mbogn- ing. An improved SAEM algorithm for maximum likelihood estimation in mix-

[1030] Nial Friel, Merrilee Hurn, and Ja-
son Wyse. Improving power pos-
terior estimation of statistical evi-

[1031] Jianxin Pan and Chao Huang. Ran-
dom effects selection in generalized line-

[1032] Theodoros Economou, Trevor C. Bai-
ley, and Zoran Kapelan. MCMC im-
plementation for Bayesian hidden semi-
Markov models with illustrative applica-

[1034] Alan Ricardo da Silva and Thais Carvalho Valadares Rodrigues. Ge-
ographically weighted negative binom-
ial regression-incorporating overdis-

[1035] Geir Drage Berentsen and Dag Tjøstheim. Recognizing and visualiz-
ing departures from independence in bivariate data using local Gaussian cor-

[1036] Yi Yu and Yang Feng. APPLE: approx-
imate path for penalized likelihood es-
timators. *Statistics and Computing*, 24

References

Lin:2014:SBI

Duarte:2014:SIP

Kauermann:2014:FPC

Yang:2014:ASB

Prates:2014:GLM

Anonymous:2014:HCf

Mira:2015:ISI

Haario:2015:IQB

Durmus:2015:QBC

Friel:2015:IPP

Moores:2015:PPA

Carlin:2015:ICB

Plummer:2015:CBG

Rue:2015:IFM

REFERENCES

156

com/content/pdf/10.1007/s11222-014-9527-4.pdf. See [1066].

Barthelme:2015:FMC

Mueller:2015:ICS

Favaro:2015:CSP

Andrieu:2015:IPM

Dahlin:2015:PMH

Peluso:2015:IUM

Douc:2015:UMC

REFERENCES

Friel:2015:IEC

Caimo:2015:ECS

Robert:2015:IAA

Stoehr:2015:AAM

Ryder:2015:ISI

Owen:2015:SIM

Fox:2015:IEL

REFERENCES

 REFERENCES

Tomasson:2015:SCA

Chakraborty:2015:ASM

Koblents:2015:PMC

Sarkka:2015:PIP

Maronna:2015:RNP

Sansonnet:2015:MPI

Naranjo:2015:BAS

REFERENCES

REFERENCES

[1123] Ying Liu, Andrew Gelman, and Tian Zheng. Simulation-efficient short-

[1130] Matthias Borowski, Dennis Busse, and Roland Fried. Robust online-surveillance of trend-coherence in multivariate data streams: the simi-

REFERENCES

[Hastie:2015:SDP]

[Golightly:2015:DAP]

[Anonymous:2015:HCb]

[Vujacic:2015:TCW]

[Pircalabelu:2015:FIC]

[Nguyen:2015:SBC]

[Ahipasaoglu:2015:FOA]

[1145] Yi Yang and Hui Zou. A fast unified algorithm for solving group-lasso penal-

Kerbín:2015:ESL

Albert:2015:SAA

Robinson:2015:PCF

Waldmann:2015:VAG

Heinzl:2016:AMM

Dubossarsky:2016:WBG

Aletti:2016:KOD

Gagnon:2016:SRA

Bang:2016:SEN

Chowdhary:2016:DFI

Prangle:2016:LA

Nomura:2016:EGO

You:2016:GDF

Simonnet:2016:CAA

Wang:2016:MCA

Wei:2016:SOB

Cleynen:2016:CCP

Phoa:2016:SMG

Viallon:2016:RGF

Malsiner-Walli:2016:MBC

REFERENCES

Griffin:2016:ATM

Azevedo:2016:BLI

Chen:2016:SRR

Pulkkinen:2016:NKD

Zhang:2016:BSC

White:2016:BVS

Ranalli:2016:MMO

Durand:2016:LLS
REFERENCES

[1212] Md. Abul Hasnat, Olivier Alata, and Alain Trémeau. Model-based hierarchical clustering with Bregman divergences and fishers mixture model:

REFERENCES

Hofmeyr:2016:DCH

McGree:2016:PMS

Spence:2016:CRI

Heard:2016:CMC

Tommasi:2016:MMO

Latouche:2016:VBM

Medina-Aguayo:2016:SNM

Arbel:2017:MMF

Ghosh:2017:FAB

Geppert:2017:RPB

REFERENCES

REFERENCES

Cheng:2017:RRS

Alfo:2017:FMQ

Yu:2017:PSE

REFERENCES

Bornn:2017:USP

Maroufy:2017:MMB

Martino:2017:LAI

Amaral:2017:OLN

Romano:2017:SVC

Gregorutti:2017:CVI

Dass:2017:LBA

Devroye:2017:EBC
REFERENCES

Friel:2017:IWA

Esteban-Bravo:2017:EOE

Mkhadri:2017:CDA

Whitaker:2017:IBC

Zhu:2017:DBD

Brockhaus:2017:BFF

Karagiannis:2017:PIS

Zhou:2017:MFF

REFERENCES

REFERENCES

Mrkvicka:2017:MMC

Bodenham:2017:CMC

Austad:2017:ACB

Haynes:2017:CEN

Cambou:2017:QRN

Schwaller:2017:EBI

Wang:2017:PEL

Julian-Moreno:2017:FPA

Kordzakhia:2017:AWK

DeYoreo:2017:BNM

Waldmann:2017:BRG

Dunlop:2017:HBL

Titman:2017:NPM

Otneim:2017:LGD

Same:2017:SDF

Allou Samé and Gérard Govaert. Seg-mental dynamic factor analysis for time series of curves. *Statistics and

Amen:2018:AEN

Wang:2018:NML

Gascon:2018:ASP

Zhang:2018:VCA

Medina-Aguayo:2018:ESN

Wiens:2018:RDR

Tan:2018:GVA

Leimkuhler:2018:EPM

[1362] Benedict Leimkuhler, Charles Matthews, and Jonathan Weare. Ensemble

REFERENCES

198 REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bon:2019:FMP

Schober:2019:PMN

Spiegel:2019:GAM

delBarrio:2019:RCT

Gu:2019:PED

Ma:2019:ISJ

Zuanetti:2019:BNC

Berger:2019:TSM

Fort:2019:SPG

Picheny:2019:ISS

Muller:2019:SSV

Nomura:2019:OPE

Terenin:2019:GAG

Cui:2019:LCS

[1448] María Xosé Rodríguez-Álvarez, María Durban, Dae-Jin Lee, and Paul H. C. Eilers. On the estimation of variance parameters in non-standard generalised linear mixed models: applica-

REFERENCES

Debruyne:2019:OWV

Yue:2019:ODM

Giles:2019:DMU

Hartmann:2019:LAN

Jasra:2019:MPF

Fop:2019:MBC

Sorbye:2019:AFG
REFERENCES

Chen:2019:IER

Jasra:2019:CMP

Macdonald:2019:MSM

Espinosa:2019:CRM

Higson:2019:DNS

Kolev:2019:IEM

REFERENCES

Li:2019:RAM \[1489\] Miaoqi Li and Emily L. Kang. Randomized algorithms of maximum likeli-