
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

02 August 2023
Version 1.04

Title word cross-reference

analysis

[2766, 3320, 3409, 3349, 1577, 3033, 1217, 1094, 1997, 3187, 3058, 1639, 3078, 1368, 2440, 3158, 1831, 2803, 3081, 3635, 3350, 2199, 316, 3543, 2680, 3292, 3535, 3064, 2063, 2714, 3083, 2020, 2455, 380, 829, 1306, 1363, 1985, 3133, 2991, 2385, 2695, 1641, 456, 589, 1150, 3147, 513, 2386, 2520, 2128, 2130, 130, 133, 2129, 132, 131]

Analytic

[1561, 1059, 1430, 1489, 3298, 2060, 700, 1145, 2197]

Analytical

[1789, 2180, 2878]

analyze

[2218, 3495, 785, 1495, 2855, 3017, 3644, 205, 1264]

analyzed

[366]

Analyzing

[3638, 2036, 215, 583, 3207, 1607, 2184, 2335, 2616, 827, 1342, 2994, 2915, 1427, 982, 2747, 1066, 252, 682, 2737, 1356, 1190, 158, 1364, 191, 2926, 2489]

anatomic

[3153]

ancestry

[284]

Ancillarity

[3262]

and/or

[3584, 1968]

Andersen

[298, 39, 3593]

Andrés

[3096]

Andrew

[900]

androgenetic

[3149]

Anemona

[767]

angle

[547]

angles

[1138]

animal

[3509]

animals

[239]

ankylosing

[1462]

Annual

[107, 6, 2781, 194]

anomalous

[3179]

ANOVA

[1427]

Antedependence

[1243]

anthropometry

[3251]

anti

[262, 3264]

anti-cancer

[262]

anti-infective

[3264]

antibacterial

[1711]

Antibiotic

[1112]

antibiotics

[1662, 3418]

antibody

[3571, 1995]

anticipated

[3396]

antidepressant

[1215]

antidiabetic

[1521]

antigen

[591, 2948]

antigenic

[2949]

antihypertensive

[1070]

antimicrobial

[2530]

antipsychotic

[2277]

antipsychotics

[500]

antiretroviral

[2450, 11, 794]

Antonio

[3096]

any

[2848, 1867]

Apgar

[2263]

Application

application

application

Applications

[566, 3602, 3012, 3496, 1818, 529, 964, 2721, 929, 1631, 2820, 2970, 462, 1767]
7

117, 1754, 2951, 2595, 240, 3577, 465, 2082, 1491, 2057, 1706, 2360, 1298, 2694,
1107, 3001, 3202, 1872, 1308, 1177, 3464, 662, 3368, 954, 1485, 776, 2293, 2120,
1382, 296, 931, 3384, 2678, 1772, 3640, 3116, 1917, 1831, 2622, 1737, 2695.

Applied [460, 3277, 262, 935, 270, 461, 1874, 1079, 583, 2846]. Applying
approach [1142, 640].

approach [2176, 1205, 1517, 3074, 1901, 2641, 3238, 178, 2484,
728, 912, 1595, 3562, 51, 2218, 1430, 2685, 1294, 368, 777, 2293, 2120,
1382, 296, 931, 3384, 2678, 1772, 3640, 3116, 1917, 1831, 2622, 1737, 2695.

approach [3362, 581, 2047, 1124, 471, 3045, 1230, 2940, 193, 1356, 2806, 3235, 123, 113,
656, 17, 3030, 889, 2028, 3545, 3472, 2118, 3360, 631, 3355, 1512, 329, 3396, 2441,
1725, 169, 655, 3335, 2448, 1590, 175, 1712, 933, 2569, 2528, 611, 928, 1407, 1801,
3595, 3518, 2825, 634, 278, 1638, 734, 518, 1719, 301, 1558, 3076, 951, 2502, 2620,
1564, 2632, 2741, 927, 2058, 2001, 3000, 2074, 2967, 54, 1257, 68, 3453, 1533,
3387, 2600, 2231, 625, 1328, 1508, 3319, 2085, 513, 7, 176, 2788, 2712, 2599.

Approaches [3451, 2740, 112, 401, 2624, 3140, 2434, 846, 2644, 3106, 608,
3231, 3431, 2134, 694, 2426, 2984, 1581, 2255, 1928, 1713, 2179, 986, 890, 2217,
1615, 2385, 1641, 1578]. appropriate [2586, 2905]. Approximate
appropriate [221, 162, 1158, 556, 1638]. approximation
approximation [3534, 552, 2443, 3597, 1245, 3317]. approximations [1825, 137, 2337].
arbitrary [774, 1006]. Archimedean [2979]. arcsinh [3492]. area
[2504, 3350, 716, 1768, 454, 2406, 967, 1681, 156, 249, 791, 1255, 484, 2830,
927, 2982, 1479, 2279]. areal [2854, 1022]. areas [1393, 716, 3291, 1372].
ARIC [3391, 2904]. Ariel [2846]. arising [3603]. arithmetic [785]. arm
[147, 1323, 2787, 434, 239, 1580, 798, 1165, 487, 2149, 2987, 341, 1092, 2133,
2604, 5, 348, 1999, 2740, 863, 2194, 3433, 3484, 347, 111, 1699, 1636, 273,
2132, 2826, 2627, 1075, 1714, 3355, 1713, 594, 1152, 1358, 1939, 928, 983, 2545,
985, 1253, 1563, 2620, 2786, 3618]. arm-based [3618]. armed
[1514, 2259, 580]. Armitage [2811, 787, 2319, 593, 1166]. Armitage-type
[645, 2723, 1425]. Ascertainment [2438, 1413]. ask [2061]. aspart
[2676]. assay [2974, 1780, 1872, 1037, 2757, 1306]. assays [2619, 978].
assembled [2820]. assess [3459, 3322, 2342, 323, 1463, 227, 1665, 503, 3247,
3589, 2150, 1050, 1185, 2514, 2610, 2501]. assessed [830]. Assessing
[560, 2641, 3067, 3371, 2354, 2988, 636, 1839, 1027, 3385, 947, 3616, 3236, 487,
3571, 1629, 3422, 2527, 1585, 146, 3309, 1810, 1360, 1780, 168, 3433, 2285, 3541,
3619, 1428, 2790, 192, 245, 480, 2754, 3120, 1179, 1155, 1584, 1917, 1847, 1737,
1534, 1029, 1036, 2380, 1300, 2149, 2403, 1032, 2306, 3218, 3511, 1509, 402,
812, 2552, 679, 1773, 1426, 248, 3184, 695, 1414, 1368, 1034, 1887, 2776, 2011].
Assessment [3285, 418, 1134, 3170, 3557, 484, 828, 2517, 1439, 1337, 2188,

Clustering [1693, 2907, 3132, 1109, 2978, 2259, 1525, 548, 2949, 2999, 240, 3510, 3230, 3254, 2038, 2814, 1856, 2639, 2309, 104]. clusters [1754, 233, 1759, 3486, 425, 958, 1114, 980, 3554, 1635]. CMaxSPRT [3408].
Co [1509, 1608, 2891, 2025, 711, 207, 2314, 485, 3533, 220, 2117]. co-data
[2117]. co-development [711]. Co-infection [1509, 485]. co-occurring
[2025]. co-primary [1608, 2891, 207, 3134, 3533, 220]. co-primary
[207, 2314, 485, 3533, 220]. Coarseness [2018]. Cochran
[2128, 2130, 2129, 2127, 2319, 593]. Cochrane
[1991]. code [3513]. coefficient [1820, 454, 1438, 2481, 3202, 3247, 3154, 682,
3122, 2635, 1527, 1156, 1615, 1757, 68]. coefficients
[1274, 2437, 2643, 217, 525, 2656, 343, 2878, 1081, 2993, 2453, 957]. coexist
[3298]. cognition [1079]. cognitive [321, 267, 2608, 2118, 802, 3144]. coherent
[3097]. Cohort [270, 1928, 583, 3459, 3322, 3417, 2965, 2820, 2200,
141, 1526, 1468, 1685, 1447, 2340, 1730, 1301, 2103, 89, 977, 2957, 3406, 746,
3398, 472, 2748, 95, 274, 2359, 126, 352, 351, 11, 2599, 1509]. cohorts
[453, 603, 2577, 3100, 230]. coin [2059, 922, 698, 2740]. Cole
[1265, 3505, 3504]. Collaboration [569, 1262]. collaborations
[390, 570, 568, 686]. Collaborative [2975]. collapsed
[3415, 1531, 735, 1980, 3364]. colony [2976]. colorectal
[3495, 808, 2371, 678]. combination [3479, 1350, 83, 1147, 2767, 1848, 1795,
174, 2021, 2097, 3196, 502, 612, 1703, 282, 1790, 1793, 2122, 779, 1326, 52,
3343, 486, 157, 1548, 1792, 3281, 1791, 2494]. combinations
[2925, 3344, 1334, 224, 1706, 1023, 2550, 1051, 110, 1377, 2845, 1672, 2583,
1558, 499, 2374, 1510]. combinatory [2985]. combine
[584, 284, 3, 2984, 1]. Combined
[3546, 949, 3406, 2575, 1487, 2990, 1512, 56, 1917]. Combining
[3279, 1333, 2249, 1073, 1502, 2649, 2406, 905, 1665, 2730, 1248, 3398, 3203,
2027, 173, 2062, 2982, 481, 1146, 1361, 1423, 1817, 2809, 102, 1967, 3613, 1371,
940, 1151, 2495, 3356, 2229]. come [2845]. comes
[1682, 1851, 2557, 2833]. commensurate [1466, 2784, 2035]. Comment
[628, 3325, 853, 1085, 854, 541, 2128, 459, 2821, 615, 194, 1320, 1071, 1086,
2142, 542, 3551, 2625, 1046, 3033]. commentaries
[1048, 546, 886]. Commentary
[3503, 882, 545, 2334, 2130, 881, 1947, 3259, 3505, 1866, 2796,
569, 2113, 3504, 570]. Comments
[1281, 3095, 3648, 1057, 2296, 2106, 852, 3444, 2563, 543, 1982, 361, 363, 3354, 584, 1028, 647, 2848, 614, 2219, 3654,
72, 768, 649, 362, 884, 2112, 586, 2011, 2971, 2959, 3656, 3, 3653, 1865, 2539,
130, 347, 3134, 2325, 2574, 2115, 200, 1592, 2562, 3355, 2122, 1945, 2564, 360,
287, 408, 1440, 2807, 2333, 767, 1265, 1889, 132, 3297, 2114, 1558, 1792, 131,
1045, 364, 1974, 1400, 184, 1791, 2220, 3133, 1545, 2520, 3459, 2116, 1283,
1441, 3071, 2903, 2885, 3650, 1793, 1981, 202, 1975, 409, 3021, 1606, 1401].
common [3300, 1072, 2309]. commonality [3348]. commonly
[419]. communities
[3207]. community [3004, 1678, 725, 492, 3348, 1679]. community-based
[492, 1679]. comorbidity [915]. companion
[711, 1950]. Comparability
[1038, 3139]. Comparative
[885, 196, 202, 3089, 1806, 2466, 3178, 3477, 882, 1869, 197, 574, 884, 2021,
1074, 1999, 2154, 198, 881, 622, 1431, 2726, 2485, 2447, 1579, 1842, 2122, 2387,
201, 3145, 3469, 1741, 3330, 1653, 200]. compare
[1899, 2142, 2006, 838, 1090, 1754, 3481, 2141, 1372]. compared
[283, 2301].
condom [0, 503], conduct [918], conducted [675, 2634], Conference [107], Confidence [2045, 1637, 1211, 3204, 3642, 1371, 290, 1569, 616, 16, 906, 1538, 3658, 1593, 1642, 403, 2235, 1113, 635, 1603, 2317, 3136, 3612, 1135, 3303, 1706, 2858, 2781, 314, 1613, 1464, 2169, 2281, 1252, 1174, 1675, 2910, 3494, 2585, 2352, 1614, 617, 958, 3627, 175, 79, 590, 13, 2875, 3295, 1106, 1479, 7, 176, 1372], confidential [1543], confidentiality [2013], configuration [3272], configurations [1314], Confirmatory [2115, 2657, 2111, 3055, 448, 467, 2112, 3306, 2693, 2113, 15, 98, 3165, 2114, 2039, 3133], confirmed [3507], confounded [2966, 997], Confounder [304, 3166, 993], Confounder-adjusted [304], confounders [2469, 1959, 3477, 2866, 1751, 1978, 1359], Confounding [1600, 2176, 3451, 1854, 2182, 188, 417, 1104, 1126, 2380, 3023, 270, 1654, 979, 3446, 2503, 421, 1870, 2356, 2511, 3058, 671, 2769, 3610, 748, 3163, 714, 1786, 1801, 352, 2827, 835, 3594, 2454, 2796], confounding-by-indication [1870], congenital [2321], Connecticut [2854], connection [3582], Connections [1738], connectomes [3635], consensus [3576], consensus-based [3576], consequences [1197, 1483, 2557, 2833, 2736], conservative [2301], Considerations [742, 1092, 3636, 3025, 3550, 2657, 77, 463, 1029, 2098, 3385, 2894, 823, 1060, 1611, 2539, 1031, 2226, 1063, 1049, 3500, 1290, 1014, 1303, 3356, 2286, 2540, 3490, 3133, 3376], considering [471, 2322], consistency [160, 96, 947, 2557, 2833, 2736], consistent [3169, 3197], Consonant [258], CONSORT [875], constant [1057, 1056], constitutes [742], Constrained [483, 3295, 2954, 2224, 2837, 261], constraint [192], constraints [2596, 3036, 1139, 3252], construct [2304], Constructing [2758, 3505, 3503, 3504, 3499], Construction [7, 176, 1121, 2190, 3500, 2352, 1415, 13, 175], consumer [2881, 2255], consumption [1112, 709], contact [426, 2952], contagion [1048, 1044, 1046, 1045], contamination [223], contemplate [3172], content [3584], context [3513, 2707, 1431, 200, 196, 1253, 3367], contextual [2630], contingency [3648, 1828, 1899, 2142, 407, 1519, 3555, 3650, 2141, 406, 3059, 2843], Continual [507, 469, 2584, 989, 510, 1907, 511, 2582, 515, 1009, 1170, 950], continuation [754], Continuous [3560, 1643, 3352, 55, 587, 3067, 2138, 3339, 84, 1173, 2916, 761, 763, 862, 1412, 1147, 2434, 547, 3019, 2000, 3205, 1208, 1206, 660, 2862, 785, 2264, 2398, 3395, 2439, 2960, 1566, 680, 1992, 415, 1491, 1091, 766, 2958, 3293, 2196, 556, 1339, 3231, 2981, 791, 2912, 2877, 3073, 523, 531, 2047, 450, 1840, 1344, 3617, 3102, 17, 1075, 889, 3472, 878, 2698, 1207, 2181, 125, 1285, 1735, 2908, 2441, 619, 1114, 223, 2493, 1345, 1749, 1653, 2230, 665, 1343, 1727, 2878, 481, 334], continuous-monitoring [878], Continuous-time [3560, 3339, 1339, 2908, 2441], contour [2580, 2494], contra [3262], contrast [2584, 1482, 3618], contrast-based [3618], contrast-enhanced [1482].
Contrasting [984]. contrasts [774, 2482]. contribution [2287].
contributions [1452, 1648, 859]. Control
[2547, 189, 389, 1818, 2469, 2676, 1119, 1232, 2323, 101, 448, 2215, 3616, 2844,
3452, 2367, 2271, 2628, 3551, 102, 1195, 808, 3023, 3379, 1269, 2945, 3403, 1808,
2869, 3512, 146, 3561, 1301, 1702, 3186, 314, 1226, 269, 3060, 1026, 252, 87, 930,
1013, 1660, 1308, 1896, 471, 907, 642, 1190, 2734, 1996, 601, 741, 1787, 1537,
2597, 3549, 3548, 1326, 50, 1389, 1164, 352, 3595, 1672, 2827, 3270, 3349, 2741,
828, 1936, 3000, 1855, 2440, 3291, 3294, 2513, 316, 710, 2906, 1328, 2029, 2745].
Controlled [3657, 3040, 2648, 2364, 291, 2765, 1829, 1450, 2779, 888, 1805,
1074, 1331, 1441, 3381, 388, 690, 1411, 1263, 1440, 1632, 689, 3533, 3469, 3384,
115, 2983, 394, 1244, 2922]. Controlling [138, 3048, 1751, 3563, 1136, 2071].
controls [2044, 2710, 3441, 642, 2697, 3208]. controversies [1215].
controversy [3599]. convenience [377, 3131]. conventional [3330].
convolutive [2572]. Copas [1003]. COPD [1128]. Coping [1238]. Copula
[3296, 334, 71, 2979, 3616, 1018, 3293, 3200, 2064, 3492, 3531]. Copula-based
[334, 71]. copulas [1055, 1925, 2989, 1405, 3539, 3091, 1733]. copy
[431, 318, 163]. coregionalization [2408]. coregionalized [2408]. cores
[2120]. Cornfield [855, 850, 852, 853, 860, 854, 856, 859]. coronary
[1632, 2198, 1096]. Correa [1865]. correct [940, 2918, 3475, 1419, 410].
Corrected [2714, 996, 12, 3225, 1811, 3164, 959]. Correcting
[2423, 302, 2762, 1888, 1345, 1855, 2399, 1733, 996, 3562, 3271, 1413].
Correction
[3658, 3657, 1087, 1747, 3530, 1683, 3327, 3432, 1458, 2887, 3652, 1188, 2236,
1191, 1472, 1620, 3655, 1890, 1465, 1402, 218, 3483, 1267, 1746, 1983, 2886, 37,
559, 1442, 3647, 2602, 686, 1658, 63, 219, 3649, 69, 2326, 3651, 1239, 1546, 943,
2438, 920, 403, 1119, 1553, 1557, 778, 1161, 3025, 82, 277, 1213, 668, 2669].
Corrections [2958, 616, 3018]. Correlated [2965, 2439, 2677, 1214, 751,
2451, 3206, 3604, 2588, 2164, 2209, 3361, 898, 1568, 660, 2287, 2398, 2856,
1680, 680, 2436, 3577, 2959, 1838, 1716, 3602, 1225, 3631, 29, 2920, 1177, 3071,
373, 1383, 1714, 357, 3579, 617, 251, 52, 1169, 1875, 1242, 2068, 668, 1372].
correlated-errors-in-variables [2287]. correlates [2403, 3571].
Correlation [2702, 2289, 3427, 3501, 1839, 1899, 2066, 2142, 1311, 1438, 3392,
3395, 2468, 2011, 2245, 378, 3005, 2546, 3122, 3556, 623, 2141, 3396, 2716, 247,
958, 1352, 2179, 1644, 182, 796, 2656, 2718, 1213, 1564, 2366, 957, 2788].
Correlation-adjusted [3427]. correlation-based [2179]. correlations
[275, 814]. correspondence [318, 1677]. correspondences [858]. cortex
[3068]. cosinor [3054]. Cost
[1637, 624, 1205, 1541, 2422, 3279, 1318, 170, 1495, 1138, 2858, 2258, 3449, 1187,
1581, 500, 62, 1364, 727, 726, 532, 144, 2351, 1120, 2513, 2076, 533, 2954, 456].
cost-effective [2513]. cost-effectiveness
[1541, 2422, 3279, 170, 1495, 1138, 1581, 144, 2076]. cost-efficient [62, 2954].
cost-offsets [500]. Costa [1865]. costs
[1541, 2164, 2449, 2935, 500, 3460, 3117, 3143]. could [468]. count
[676, 1309, 2978, 2247, 1105, 2976, 529, 964, 2588, 2320, 2994, 25, 1296, 2307,
coupled course covariance

covariance-adaptive
covariate-adjusted
covariate-balanced
covariate-dependent
covariate-missing
covariates
coverage
cross-over
cross-sectional
cross-validation-based
cross-validatory
crossing
crossover
cubic

cumulative

cronbach
critical
critical

critical

critical

critical

critical

critical

critical

critical

critical

critical

Current [872, 860, 1462, 1113, 3414, 1944, 1948, 2880, 93, 2931, 1684, 1330, 1947, 2159, 1945, 1407, 3514, 1155].

curtailment [501].

curve [2354, 189, 454, 2406, 3014, 2761, 2888, 1764, 156, 2261, 514, 212, 438, 3462, 1649, 249, 1255, 226, 382, 299, 3120, 894, 2583, 927, 3294, 2982, 1880, 1479, 2279, 458, 691]. curves [1593, 2451, 2840, 457, 1393, 2758, 3361, 1580, 2291, 1770, 3217, 149, 1504, 59, 2654, 1573, 1773, 480, 2181, 1118, 2054, 939, 3323, 484, 2135, 374, 1372].

customized [3456].

cusum [3403, 3413, 393, 3105, 2029, 2745].

cystic [2262, 954].

cystitis [1655].

cystitis/painful [1655].

cytokine [1214].

cytostatic [1052].

cytotoxic [1595].
23

1153, 3462, 3484, 1279, 1068, 3298, 480, 455, 1145, 781, 2922.
Decomposition [1385, 3577, 3610]. deconvolution [482, 3183]. decreasing [1096].
definition [113]. definitions [1001]. degradation [1836]. degree [12].
dermoscopic [548]. DerSimonian [134, 2160]. DeSantis [628].
design-by-treatment [1661]. designed [1504, 144]. Designing

dystrophy [962].

each [1136]. Early
[107, 858, 2576, 1082, 3546, 2456, 1619, 3620, 2006, 635, 1560, 466, 3473, 1759, 1216, 674, 3628, 1069, 419, 2578, 848, 591, 1357, 2195, 370, 2668, 3434, 789, 859].

early-phase [2578]. EARS [370]. East [511]. Easy [2279, 252].

easy-to-implement [252]. eBook [2725]. Ecological
[375]. Economic
[2765, 3363, 2443]. Edgewise
[2499]. edition [2725].

Editor [2033, 208, 1497, 557, 1559, 150, 2669, 1058, 727, 175, 253]. Editorial
[320, 2560, 2890]. Editors
[1403, 1774]. eds
[411].

effect [2242, 3075, 530, 708, 632, 3286, 1422, 2828, 3280, 2668, 3434, 2351, 2496, 2400, 2985, 809, 794, 2301, 1102, 3024, 1813, 2066, 3242, 1917, 2622, 3301, 3149, 3543, 2399, 1054, 7, 176]. effect-measure [1054].
effect-modifying [421]. Effective
[419, 2595, 1706, 1284, 2513]. effectively
[3210]. Effectiveness
[202, 3004, 2941, 1541, 2422, 3279, 2308, 170, 3477, 882, 2277, 1869, 197, 1495, 1138, 884, 885, 1999, 198, 881, 2511, 1581, 2485, 200, 1579, 1842, 201, 532, 144, 196, 1653, 2076].

Effects
effects
[2598, 3614, 3489, 3160, 2369, 993, 2068, 1639, 2135, 3078, 420, 1257, 1567, 2326, 2756, 3453, 1831, 497, 1189, 550, 3625, 2085, 537, 104, 2185, 3407, 2712].

efficacy [391, 2911, 2729, 477, 2225, 3473, 108, 2403, 3571, 2527, 673, 1711, 194].
estimation

estimator

estrogen

ethical

ethics

Ethnic

etiologic

etiologies

eUCI

EUR26.40

European

evaluate
evaluating

evaluation

evaluations
even
event
even-dependent
even-related
even-reporting
even-time

Event-weighted
31

[731, 2438, 2347, 211, 3495, 71, 1674, 2813, 3465, 2454, 2615, 2341, 3561, 2503, 1867, 3539, 2609, 3202, 3619, 2186, 2724, 2276, 305, 2275, 1715, 1632, 2690, 3359, 309, 3563, 3593, 1577, 3645, 3124, 1081, 2680, 2455, 561, 1664, 589].

events-add [1867]. every [698]. Evidence [2270, 2998, 2649, 138, 3559, 154, 1395, 3433, 3212, 2629, 199, 3311, 1128, 1179, 3436, 455, 3357, 2229, 3437].

evaluating [330]. examine [135]. examined [228]. Examining [3129, 1452, 1044, 2534, 2088, 2708, 1046, 1045, 2622]. example [345, 547, 905, 649, 3256, 1176]. examples [613, 614]. Excellence [2040].

Explained [841, 3041, 3094, 842, 2436, 2163, 2228]. explanatory [634].

external
Graf [3569], Granger [3069], Granger-causality [3069], Grant [969], Graph [2948, 2770, 3272, 2177], Graph-based [2948], graphic [2009], Graphical [1439, 2342, 2426, 1329, 1319, 3443, 463, 3424, 2457, 3044, 1783, 2150, 1320, 2136, 2168, 1546, 1592], Graphics [567, 749], Graphing [3266], graphs [1137, 3622], gravity [2791], Gray [2882], Greenwood [2049], Gregg [3483], Group [3142, 3069], Group-based [2948], graphic [2009], Graphical [1439, 2342, 2426, 1329, 1319, 3443, 463, 3424, 2457, 3044, 1783, 2150, 1320, 2136, 2168, 1546, 1592], group-based [1264, 1275], group-randomized [1561, 2581, 2728], group-regularized [2117], group-sequential [1608, 3533, 1868, 3162, 796, 797, 2545, 2049, 339, 1264, 3582, 3645, 1275, 865, 2622, 1089, 2538, 1363, 1671, 2117, 1945, 2334], Grouping [3087], groups [1561, 2581, 2728], Growth [1861, 3502, 3505, 3501, 3459, 3322, 1219, 2853, 937, 239, 793, 1222, 1884], growth-scaling [3236], Guest [1774], guidance [1028, 1178, 356], guide [135, 614, 649, 613, 2060], guidelines [742, 799, 2823, 2376], Gumbel [1245], Guttorp [135], GWAS [494], Gyldendal [415], H [3651], H1N1 [905], Haenszel [3465, 1613, 593, 1016], Haihong [2106], Half [3264], Hall [2012, 447, 460, 118, 106, 411, 2591, 412, 2846, 446, 2725, 2691, 3059, 567, 433, 380], Hall/CRC [2012, 447, 460, 118, 106, 411, 2591, 412, 2846, 446, 2725, 2691, 3059, 567, 433, 380], Hamada [1558], Handbook [2558, 411], handle [3363, 1551, 2672], Handling [780, 2398, 892, 2434, 1941, 2862, 1359, 1786, 2830], Hankey [194], Hanson [432], haplotype [1107, 1278], happens [405], happily [3298], harasser [3497], Hardback [460, 2846, 445], hardcover [2591], Hardy [833, 326, 235, 252, 2502], Hardy-Weinberg [833, 326, 235, 252], harm [3434], harmonizing [2035], Harrell [307], Hartung [2848, 2301], having [2668], Hazard [3175, 1212, 2630, 1971, 2349, 1829, 909, 1728, 336, 3157, 2880, 387, 3094, 215, 1724, 1387, 2699, 1951, 3514, 3112, 3091, 3032, 327, 1096], hazards [955, 1087, 3491, 2477, 1844, 2589, 923, 294, 1483, 3374, 1008, 3623, 90, 1097, 520, 1433, 2436, 1734, 2340, 2914, 1056, 2103, 3526, 1327, 387, 1341, 2931, 3509, 193, 2879, 1071, 1176, 126, 535, 2168, 1156, 1407, 1365, 2623, 956, 1975, 801, 1974, 498, 2991, 1451, 1286], HB [3059], head [2489], Health [2439, 1681, 377, 30, 2512, 2077, 259, 443, 344, 1917, 345, 368, 903, 3142, 2820, 1375, 2915, 3385, 911, 105, 849, 501, 423, 427, 2683, 2760, 3422, 3079, 2443, 1494, 3512, 3015, 355, 164, 738, 2665, 3566, 168, 204, 913, 2095, 1551, 1833, 1125, 965, 3636, 1308, 2047, 371, 2350, 1383, 3375, 1022, 2504, 2505, 915, 2038, 2013, 500, 416, 848, 3240, 3550, 268, 997, 57, 1364, 2393, 1222, 167, 1666, 3160, 242, 626], health-related [1375, 738, 1222], healthcare [2700, 1085, 3559, 2304, 994, 1086, 625], healthy [825], heaped [2791], heaping [912], hearing [776], Heart

improvement

Improving

Imputation

Imputed

Imputing

INAR

Incidence

Incomplete

Incomplete-ness

Inconsistent

Inconsistently

Incorporating

Incorporation

Incorporates

Increment

Incremental

Independence

Indifferent

Indirect

Indifference

individual-level

Keen [567]. Kendall [3313]. kernel [241, 3019, 3247, 2932, 3108, 2489, 3319].

Kevin [567]. Key [952, 1098]. KI [3647]. kidney [2182, 300, 3397, 3394, 2867, 3552, 481, 1887].

Kieser [347]. kinetics [3085].

Landmark [1256, 2485]. landmarking [1157]. Lang [446]. language [689].

Laplace [2443, 137, 3317]. Large [1297, 3534, 2183, 1799, 2956, 977, 1308, 416, 1004, 221, 57, 3179, 859, 3000, 2062, 1690].

Latent [2091, 3327, 3310, 1695, 1373, 1529, 1875, 232, 391, 1313, 1710, 2201, 897, 124, 3527, 1698, 1705, 745, 528, 2621, 3233, 3268, 267, 738, 3016, 3288, 2823, 1339, 204, 1649, 397, 696, 3222, 3086, 1660, 646, 2350, 2137, 2086, 3223, 2118, 2003, 2479, 2711, 268, 2708, 333, 1712, 3138, 2794, 1264].

latent-variable [897]. later [1590]. laterality [935]. Latin [2433].

\text{mathematics} [1763, 2530], \text{matrices} [917].
\text{Matsui} [1558].
\text{Matsuyama} [1266].
\text{Maurice} [1380].
\text{max} [502, 612].
\text{maximally} [895, 1708, 2653].
\text{maximin} [1581, 710].
\text{maximisation} [552].
\text{Maximization} [2645, 469].
\text{maximize} [2982].
\text{maximized} [344].
\text{Maximum} [3004, 3568, 476, 3528, 549, 2257, 3238, 963, 3544, 2167, 3110, 3139, 1537, 3598, 2569, 2583, 2580, 2494].
\text{may} [2624, 448, 1073].
\text{McNemar} [2294].
\text{MCP} [2883].
\text{MCP-MOD} [2883].
\text{MD} [1380].
\text{mean} [1651, 1929, 1057, 389, 1430, 744, 1318, 3523, 3652, 12, 2471, 1315, 785, 1871, 1473, 3612, 2621, 3397, 1427, 3097, 3596, 2858, 3194, 3426, 593, 3406, 1540, 449, 3449, 893, 1675, 2762, 535, 2661, 1632, 1856, 2639, 3614, 1997, 2369, 927, 683, 1664, 2695, 332].
\text{mean-association} [744].
\text{mean-covariance} [2695].
\text{meaningfulness} [530].
\text{means} [2738, 898, 785, 2468, 1926, 3619, 601].
\text{Measure} [3021, 2630, 2898, 345, 1748, 1147, 1103, 647, 2291, 2397, 2048, 2236, 3438, 1074, 2316, 1640, 3154, 3020, 322, 2990, 2227, 1953, 2871, 24, 2843, 1054, 2435].
\text{measured} [3213, 2916, 2469, 2066, 3206, 2439, 3001, 3636, 42, 1830, 2536, 3025, 824, 2918, 1718, 3129, 1435, 1749, 3594, 951, 191].
\text{Measurement} [3617, 3074, 996, 920, 1404, 1916, 3445, 2423, 46, 1291, 2200, 2048, 2236, 526, 1553, 3216, 816, 582, 940, 1289, 1557, 1958, 234, 1950, 1448, 3493, 3581, 3416, 259, 3166, 1063, 1876, 2554, 3183, 3251, 2762, 3351, 848, 2531, 1968, 2708, 62, 976, 1720, 3518, 1717, 1222, 831, 2230, 1348, 2943, 2046, 3149, 1903].
\text{measurement-error-driven} [3149].
\text{measurements} [1350, 920, 780, 2839, 547, 3631, 2912, 3464, 620, 312, 2262, 1108, 1378, 1876, 192, 276, 277, 2656, 1343, 2632, 3158, 246, 2788].
\text{Measures} [2978, 3522, 2015, 1053, 1496, 2422, 3069, 636, 699, 2516, 841, 842, 2919, 1208, 235, 2789, 3079, 1486, 800, 2436, 415, 538, 2163, 88, 2512, 605, 2226, 1707, 1354, 1456, 3336, 3556, 261, 834, 3235, 2790, 3368, 623, 3298, 2118, 1487, 774, 230, 2035, 175, 890, 2904, 2713, 1185, 1653, 906, 814, 1129, 2963, 7, 176, 1455].
\text{Measuring} [2458, 369, 2431, 823, 2974, 1378, 3496, 2798, 3554, 2548].
\text{MEBoost} [3445].
\text{mechanism} [2471, 3188, 1616, 351].
\text{mechanisms} [2336].
\text{mechanistic} [1122, 3544, 3280, 2946].
\text{Med} [3185].
\text{media} [1600].
\text{median} [2630, 1515, 1904, 3554, 332].
\text{medians} [1517, 3334, 707].
\text{Mediation} [3374, 3300, 2866, 1749, 3594, 3349, 3560, 3027, 2868, 3487, 1803, 3016, 3181, 2850, 3063, 3052, 2065, 1338, 2631, 891, 1312, 3320, 3292].
\text{mediator} [3027, 2424, 3610, 1749, 1312, 3349].
\text{mediator-outcome} [3610].
\text{mediators} [3374, 3487, 2866, 3610, 3063, 3594].
\text{Medicare} [3380, 3171, 908, 3387].
\text{medication} [1655].
\text{medications} [2277, 901, 500, 1070].
\text{Medicine} [3656, 1325, 41, 692, 688, 690, 696, 1950, 694, 999, 2174, 2986, 879, 3064, 693, 691, 3648, 584, 495, 208, 1497, 72, 557, 459, 586, 150, 2669, 3, 2539, 347, 194, 287, 408, 1440, 175, 3649, 184, 543, 3369].
\text{medicines} [2693].
\text{meet} [1798].
1907, 3511, 1159, 1489, 349, 2485, 646, 907, 511, 1356, 1378, 1876, 684, 2294, 402, 812, 2582, 515, 848, 2705, 2918, 2500, 1426, 414, 1537, 2432, 15, 2152, 1715, 717, 1583, 3461, 2859, 370, 2883, 278, 2905, 3323, 1009, 3439, 2983, 2301.

method [1, 821, 191, 2865, 3367, 1170, 1601, 2399, 950].

methodological [1369, 361, 363, 365, 359, 362, 3500, 360, 364].

methodology [827, 2031, 2004, 465, 2576, 134, 2160, 690, 3499, 2661].

Methods [3307, 3503, 1126, 1941, 1518, 117, 1877, 1681, 1552, 982, 110, 3504, 2552, 2387, 532, 1501, 3496, 2230, 1062, 996, 1454, 731, 1561, 216, 442, 1212, 1496, 1747, 1523, 3087, 586, 563, 1224, 378, 1815, 772, 1922, 799, 1796, 2815, 1867, 622, 977, 1729, 2095, 1656, 1013, 1067, 2258, 2981, 3542, 42, 1431, 231, 830, 2586, 3405, 200, 3234, 2190].

methylation [2423, 1784, 1164].

Metrics [1526, 569, 3538, 2901, 3358, 651, 570, 568, 686, 2280, 2902].

Metz [3080].

mHealth [2256].

MICE [1920].

Michael [882, 1457, 2591, 289].

micro [2256].

micro-randomized [2256].

Microarray [992, 325, 1148].

Microarray-based [992].

microbiome [3207].

microdata [3184].

MIDAS [2416].

midtrial [1132].

Miller [445].

Min [412, 502, 612].

min-max [502, 612].

mine [2970].

mineral [3093].

miners [996].

minimisation [667].

minimization [698, 2539, 2969, 76, 2286, 2540].

Minimum [3352, 3353, 1351, 2594, 2838, 1424, 1696, 814, 3647].

mining [398, 2812].

MIREC [3239].

mis [1984, 1282, 1721].

mis-specified [1984].

mis-substitution [1721].

miscategorized [2353].

misclassification [101, 3637, 637, 302, 2966, 3626, 2869, 3512, 3271, 3633, 1624, 2442, 231, 1383, 2554, 1718, 611, 2230, 3024, 3002, 3400, 1508, 1721].

misclassified [2218, 3197, 1177, 3390, 1902, 2714].

mismeasured [3185, 847, 2750, 3390, 2946].

misreported [1492].

misreporting [1665].

missing-data [1718].

missing-not-at-random [2532].

missingness [346, 3140, 3363, 2783, 29, 144, 2713, 157, 2778, 3640, 1243].

Misspecification [926, 654, 937, 2188, 3570, 1209, 223, 762].

Misspecified

Multi-arm
[2987, 2545, 2787, 434, 239, 1092, 2133, 2604, 1636, 1713, 985, 1253, 1563].

multi-armed [2987, 2545, 2787, 434, 239, 1092, 2133, 2604, 1636, 1713, 985, 1253, 1563].

multi-center [1398, 516].

multi-endpoint [3046]. Multi-Ethnic [1600]. multi-layered [1679].

Multi-regional [1562, 2147, 1133, 518].

multi-response [1757].

Multi-stage [3634, 914, 861, 2037, 1092, 2133, 2604, 521, 985, 1563].

Multi-state [1531, 121, 1637, 2087, 122, 2419, 1388, 730, 1969, 1049, 331, 2139, 2472, 2599].

multicase [1427].

multicenter [1778, 2935, 1373, 1690]. multicentre [1618, 1091].

multicomponent [2892]. multicriteria [455].

Multidimensional [226, 382, 2794, 2950, 925, 2140].

multidistance [1896].

multidose [388].

Multilevel [1674, 738, 3052, 3338, 1368, 2795, 2630, 2978, 2349, 2959, 3389, 1716, 1250, 1540, 3134, 3249, 893, 319, 3071, 1383, 3317, 52, 343]. multimarker [2861].

multimorbidity [2038]. multinomial [3412, 1105, 1585, 645, 538, 190, 2481, 3602, 965, 1823, 2321, 3376].

multiparametric [3153]. multiplatform [3121]. Multiple

outcomes

Pooling [3318, 2636, 3459, 3322, 1555, 899, 1241, 830, 1760, 3102, 2409, 828, 829, 3210].

Pravastatin [1632]. pre [2465, 141, 2149, 476, 174, 1099, 1101, 1100, 2646].

Predict [2664, 1542, 1229, 3014, 1468, 3026, 3462, 3085, 2724, 793, 3280]. Predictive [1053, 2767, 706, 429, 3386, 1857, 3088, 2641, 3502, 777, 1862, 1814, 841, 842].
predominantly [325].

preference [3150, 1870, 743]. preference-based [1870]. preferences [2159, 3421, 3649]. preferential [1684].

pregnancy [2853, 893, 3251, 3129, 2712]. premenopausal [232]. prenatal [793].

preterm [3074, 1162]. Prevalence [2557, 2833, 3012, 1721, 3476, 1160, 124, 1925, 2196, 2154, 168, 2587, 3203, 2030, 642, 3102, 3256, 229, 1432, 2409, 2058, 821]. prevalence-based [2154].

problem [3095, 1710, 315, 1822, 3009, 3096, 1677, 193, 3601, 1718, 2333, 3543].

Problems [3617, 2964, 1586, 755, 285, 1079, 3365, 2500, 3295]. procedural [3217]. procedure [2059, 2307, 819, 3097, 2082, 1516, 1660, 1284, 662, 656, 1367, 2032, 125, 3520,
random-threshold [2698]. randomisation
[2668, 2766, 3437, 1997, 3187, 339, 2366, 859, 3259, 1474, 1855, 865, 1655, 944, 1129, 2399, 1852, 2922, 672, 3143]. randomly
[141]. randomness
[842]. range
[3155]. Rank
[2370, 1895, 3255, 1335, 633, 2365, 3361, 3209, 381, 1549, 593, 2672, 3483, 3011, 173, 2510, 1892, 2716, 1860, 2375, 1042, 2653, 1499, 3305, 710]. Rank-based [1895, 3255, 1335, 2365, 381, 3011]. Rank-preserving
[2977, 2790, 333, 1345, 3090]. raters [3218, 2015, 617]. rates
[646, 2790, 3481, 1257]. Ratio
Re-estimating [1635]. re-estimation [3370, 1296, 2113, 2826, 1397, 1270, 797, 864, 1671].
re-examined [298, 39]. Re-randomization [3419]. reaction [505, 3197].
readmissions [2407]. read [3628, 1900]. reactions [135]. Real [55, 2276, 694, 1579, 3101, 3022, 3282, 3437].
reappearance [431]. reappraisal [1574]. reasoning [3547].
recalibration [1021]. recalibration [1021]. recapture [2140]. received [1384].
recognition [1175]. recombination [1930]. recommendation [2202].
Recommendations [2044, 2648, 2882, 2765]. Recommended [1603, 1331].
Reconciling [3559]. record [1705, 921, 2742, 1797, 1666, 3174]. record-linked [921]. recorded [761]. records [2820, 2760, 3240].

sets [2925, 12, 80, 2468, 1543, 1004, 221, 504]. setting [2873, 1923, 1906, 1771, 2424, 1812, 726, 1868, 68]. settings [1637, 2087, 435, 3225, 3493, 3234, 3579, 3598, 714, 386, 2435]. Seven [1115, 3010]. Seventh [2004]. Several

studies

studies

study

study
[3499, 1200, 3030, 26, 340, 1751, 95, 2874, 2077, 595, 3289, 1245, 2122, 2387, 1285, 1735, 2078, 3145, 2661, 1114, 997, 1128, 443, 3537, 475, 779, 49, 1609, 1389, 1868, 767, 3467, 2104, 2904, 554, 3330, 2723, 351, 2827, 1857, 2229, 782, 258, 2039, 2671, 3349, 1094, 801, 1679, 3543, 497, 2857, 691, 1150, 3115, 1258, 141, 49, 297].

study-level [2343], study-specific [2661], studying [263, 2155, 2899], sub [390, 2040, 2907, 821], sub-phenotypes [2907], sub-population [821], sub-Saharan [390, 2040], subclasses [2495], subclassification [3174], Subcopula [2843], Subcopula-based [2843], subdistribution [2589, 90, 1728, 498, 1286], subgraph [2499], subgraph-level [2499], Subgroup [2225, 578, 2914, 3480, 553, 2733, 3532, 3049, 3064, 2657, 2941, 1542, 1488, 2894, 1420, 1165, 988, 1191, 2367, 2732, 2662, 2022, 2573, 1204, 3589, 3045, 350, 3165, 3162, 3567, 3436, 3439, 3554, 3133, 2934].

Subgroups [3302, 391, 2988, 3288, 3566, 1918, 2486, 3440, 3436, 868].

subject [1381, 3074, 2767, 3205, 2200, 1770, 2966, 910, 2869, 3561, 1611, 249, 549, 2790, 954, 2244, 3315, 3141, 2859, 342, 157, 3594, 831, 2943, 2865, 2600, 2231, 458, 829, 1721, 1776, 537].

subject-specific [1770, 342, 537].

subjective [227], subjects [1561, 217, 1696, 2104, 2309, 2788].

sublingual [3201], submissions [2332], submodels [2929], subpopulation [3227, 1976, 1687, 2405, 2400, 966], subpopulations [553, 1927], subsampling [675], subsample [3000], subset [1073, 3157, 1677, 1168, 2497, 484].

substance [628, 529, 964, 479, 1767, 2622], substantial [3380], substitution [818, 1721], substructure [3605], subtype [2155], subtypes [930, 2554], succeed [1867].

Success [3211, 673, 1809, 3386], successful [2736], successive [1449], sufficiency [3587], Sufficient [824, 536, 1664, 1647], suggests [672], suicide [901, 3611], suitability [2342].

sum [3070, 2307, 1507, 593, 3537, 1625, 1499].
summaries [3107]. Summarising [1929, 1938]. summarize [544, 387].
Sungho [584]. Sungim [3656]. super [3382, 2707]. Superchain [1040].
superimposed [1836]. superiority [759, 3264, 214, 1919, 78, 2620, 2786, 1192]. Supervised [745, 3030].
supplementary [505, 3119]. Supplementation [2628]. support [34, 2151].
surgeries [2036]. surgery [3495, 2388, 1662, 1772]. surgical [1188, 2515, 775, 2906].
surrogate [3285, 2641, 3238, 2973, 3035, 335, 3237, 2180, 3485, 871]. Surrogates [1912, 1817, 2809, 3344, 847].
surveys [905, 3017, 1308, 485, 257, 2726, 3455, 841, 842, 1122, 1580, 3523, 3652, 2291, 2534, 998, 1307, 1779, 1674, 2188, 2919, 702, 172, 1906, 3447, 528, 1518, 1946, 1873, 2317, 2696, 1547, 2789, 206, 1018, 3570, 1871, 1167, 1238, 3587, 1064, 1944, 1948, 3197, 2016, 3379, 516, 1408, 2856, 41, 1552, 397, 85, 3446, 800, 2436, 3097, 816, 2324, 3596, 1523, 663, 3303, 438, 2316, 730, 2880].
synthesis
[138, 855, 2467, 2998, 588, 154, 2874, 357, 3311, 1128, 1583, 2229, 2878].
synthesizing [3437]. synthetic [2911, 1308]. system
systematically [1920, 2457, 1359]. systems
[2427, 3034, 366, 1095, 1185, 2538].

T [3185, 432, 459, 1865, 347, 1144, 2216]. table [981]. Tables
[2202, 3648, 1828, 3443, 3055, 2468, 407, 1519, 3555, 3650, 406, 3059, 2843].
Taguri [1266]. tail [2360]. tailed [3648, 3555, 3650]. Tailoring [1140].
taking [935]. Talbot [1889]. Tango [1106]. target
[2988, 1612, 2048, 2236, 640, 1586, 3286, 3621]. Targeted
[2401, 2611, 3110, 1579, 3470, 2031, 936, 2006, 2838, 1848, 2432, 2975, 3598,
2416, 3456, 2954, 3624]. Targeting [399, 468]. targets [1798].
task [2988, 1612, 2048, 2236, 640, 1586, 3286, 3621].
task-related [2309]. taxonomy [2884, 2331, 2885]. Taylor [1440]. TB [563].
TDT [346]. TDT-type [346]. team [2333]. techniques [1140, 823, 2154].
technologies [192]. technology [848, 2393]. telephone [3586]. tell [3491].
temperature [2802, 3410]. temporal [2247, 233, 803, 2514, 3575, 1847].
temporally [1274, 3399]. Ten [1648]. tensor [2944, 2980]. tensor-based
[2944]. Term
[1264, 2364, 2758, 3114, 1894, 1468, 3397, 1689, 3036, 622, 3101, 98, 2014, 115].
terminal [2347, 3495, 2102, 3178, 3561, 1111, 2917, 1582, 732, 3645, 3124,
2680, 2455, 561, 2616, 589]. Terminating [2104]. termination
[674, 1082, 1200]. terms [587]. ternary [2218]. Test
[463, 2128, 437, 2433, 2129, 491, 3095, 1057, 1059, 2898, 2347, 2738, 2138, 2589,
633, 83, 3604, 1555, 346, 1463, 1534, 1827, 2571, 3070, 3423, 1535, 124, 1698, 838,
264, 3457, 3487, 2924, 2717, 819, 1171, 3204, 2473, 1547, 1754, 3009, 3096, 1829,
3209, 1654, 2780, 3403, 45, 3290, 1186, 3097, 1924, 212, 2319, 2880, 3591, 3655,
675, 551, 161, 338, 2130, 1549, 593, 1327, 3060, 556, 14, 2166, 895, 1708, 33, 1461,
2381, 3154, 3483, 250, 2574, 1582, 817, 1819, 1137, 758, 2627, 1574, 2150, 3102,
2064, 1377, 2294, 137, 1004, 2782, 707, 1892, 1938, 2337, 995, 2754, 617, 3475].
test [1860, 392, 2375, 2211, 3138, 251, 2699, 627, 3012, 2054, 301, 1859, 729,
3226, 258, 56, 3146, 2805, 576, 1033, 3305, 3350, 1129, 332, 1286, 3407, 943,
739, 2325, 2127]. test/estimation [3097]. Testing
[1621, 759, 326, 2300, 1686, 3487, 2759, 2468, 1512, 1771, 1137, 2043, 3065,
820, 26, 1714, 1117, 591, 933, 2418, 1596, 1425, 624, 1205, 160, 2213, 2296,
2518, 902, 2768, 3150, 403, 699, 1466, 2970, 462, 2219, 1894, 108, 27, 214,
1544, 3626, 1097, 3599, 1807, 2324, 473, 2196, 207, 2539, 269, 1391, 1660, 3572,
3636, 1532, 1783, 3048, 464, 642, 656, 2161, 78, 3607, 2387, 3520, 779, 1014,
1436, 251, 222, 796, 797, 1638, 1753, 2905, 831, 805, 2049, 2502, 2929, 1615,
906, 668, 2286, 2540, 3032, 3301, 497, 1963, 1363, 1893, 1054, 104]. Testlet
[205]. Tests [2066, 1906, 2751, 2046, 3479, 3648, 3658, 1710, 1618, 3220, 2182,
2961, 83, 771, 1820, 1899, 2499, 2142, 124, 2384, 18, 1603, 941, 3136, 3264,
2421, 1138, 2595, 156, 1186, 1925, 2989, 645, 1575, 2498, 2468, 3466, 675, 3462,

Time-invariant [2066, 3200, 1739].

Time-lag [3242].

Time-related [1826].

Time-series [1751].

Time-shift [2393].

Time-to-first-event [1268, 2990].

Time-variant [3275].

Time-varying [1651, 1767, 2437, 2246, 1156, 955, 1087, 1350, 23, 294, 3069, 1726, 3477, 2454, 909, 3182, 2992, 1695, 92, 1411, 3001, 2348, 3249, 2866, 1579, 1842, 1416, 1071, 3393, 826, 392, 1221, 1623, 525, 3594, 2280, 343, 2756, 1831, 2622, 1081, 2185].

timeliness [2498].

timely [376].

times [955, 1087, 1393, 3201, 3523, 3652, 941, 3606, 3097, 93, 58, 773, 746, 1225, 3175, 1223, 1071, 1352, 2152, 1006, 121, 1741, 486, 94, 1181, 865, 1847, 1852, 456].

timescale [2052].
	iming [192].

tipping [3309].

tissue [1505, 3364, 1657].

Title [2079, 2282, 2297, 2311, 2327, 2344, 2361, 2377, 2394, 2410, 2428, 2445, 2460, 2474, 2092, 2490, 2506, 2523, 2541, 2108, 2124, 2143, 2156, 2170, 2191, 2206, 2221, 2237, 2252, 2267, 2559].

Tiwari [194].

Tobit [2870, 2496, 2519, 604].

TOC [2081, 2284, 2299, 2313, 2329, 2346, 2363, 2379, 2396, 2412, 2430, 2446, 2462, 2476, 2492, 2508, 2525, 2543, 2094, 2110, 2126, 2145, 2158, 2172, 2193, 2208, 2223, 2239, 2254, 2269].

today [857].

tolerability [297].

tolerance [2287, 3642, 2535].

tolerated [2583, 2580, 2494].

toll [967].

Tom [1648].

Tomasz [2846].

tonsil [340].

Too [2466, 2588].

tool [1420, 2150, 1261, 1163, 2065].

toolkit [1557].

tools [2342, 1329, 3586].

top [3222].

top-ranked [3222].

topical [547].

topics [2795, 2004, 3079, 3134].

total [3449, 371, 2028, 3367].

totality [3178].

totals [375, 1516].

toxicities [1206, 515].

Toxicity [75, 2741, 1396, 2584, 514, 2863, 110, 509, 274, 1039, 1782, 1609, 2579, 2568, 950].

Toxicity-dependent [2741].

Toxicity-evaluation [75].

toxicological [1491].

trace [1351].

trachomatis [1123].

Tracing [3100, 351].

tracking [1368].

tract [2204, 1189, 1601].

tradeoff [2898].

Traditional [1379, 692, 688, 690, 696, 694, 695, 693, 691].

train [2556].

trains [2121, 1421].

trait [1119, 3310, 1041, 2794, 3002, 710, 1425].

trait-based [1425].

traits [836, 3087, 2166, 416, 1093, 316, 3210].

trajectories [3505, 3503, 528, 3402, 2069, 3398, 965, 3247, 3504, 2782, 2622].

trajectory [3459, 3322, 3458, 3215, 1589].

transcriptome [3360].

transfers [2722].
transformation [1281, 2365, 2288, 1211, 1017, 1283, 1908, 2324, 1298, 2746, 1225, 3362, 3581, 2735, 3368, 1282, 1712, 589]. transformations [1280, 415].
transformativ [837]. transformed [2536]. Transforming [1144].
transfused [932]. transfusion [2182, 300, 932].
transient [3613].
transition [2701, 1631, 2919, 1680, 2957, 919, 2137, 1739, 532, 1264, 66, 681].
transition-specific [2919]. transitions [3329].
translational [107, 571]. transmission [3004, 2952, 3544, 753, 206, 916, 2743, 210, 1879]. transmitted [1994, 917].
transplant [3397, 1200, 683, 1732, 1887]. transplantation [2182, 300, 932].
transtheoretical [2047]. trauma [2086].
treatment [2400, 1577, 3160, 2369, 880, 2646, 1193, 3404, 2606, 3242, 3453, 1727, 1917, 3301, 2568, 497, 2257, 984, 2399, 1911, 3625, 246, 3407, 3143, 1733].
treatment-biomarker [2043]. treatment-covariate [2618, 2316, 1935].
treatment-dependent [3143]. treatment-effect-modifying [464].
treatment-induced [1801]. treatment-related [1856, 2639].
treatment-sensitive [3157]. treatment-specific [984].
treatment-subgroup [1420].
treatments [2655, 547, 697, 1141, 2034, 861, 1092, 2604, 863, 2134, 2096, 531, 1251, 631, 1178, 237, 3393, 15, 3474, 1632, 3567, 1936].
tree [563, 1918, 3440, 2152, 293, 1742, 2250].
tree-structured [293, 1742].
trees [2318, 764, 2952, 1420, 2927, 3302, 1346, 2733, 2390, 3532, 3111, 3615, 3567, 3608].
trend [1172, 6, 330, 1693, 2781, 593, 2917, 194, 1010, 257, 374].
trend-renewal [1010].
trends [3476, 3370, 1768, 461, 1124, 1739, 1397, 655, 3436, 2514].
trial [1792, 743, 3421, 3649, 658, 3437, 606, 3259, 1655, 1917, 1791, 436, 1690, 2922, 768, 2325].

trial-level [947, 3344].

trials [3285, 2561, 3546, 1454, 2657, 875, 1561, 639, 1863, 2911, 1608, 3370, 2648, 3513, 1697, 2973, 3035, 1398, 1858, 365, 2401, 3345, 1370, 2764, 3444, 1595, 2563, 2364, 1934, 638, 972, 1806, 244, 1678, 949, 1430, 2210, 2729, 633, 1688, 862, 155, 2259, 291, 1862, 771, 780, 1310, 1612, 3345, 1370, 2764, 3444, 1595, 2563, 15, 1440, 1218, 24, 1632, 1616, 98, 2014, 767, 3469, 2775, 3343, 3211, 2335, 2828, 3357, 1558].

trials [2799, 3089, 3088, 672, 3143, 1635, 107, 1191].

triangular [273]. triggering [3553]. trimmed [325]. trivalent [752].

Trivariate [2555, 752, 1925, 950].

truck [3541].

tune [3206, 12, 733, 788].

truncant [2341].

truncated [1317, 2689, 2246, 2702, 306, 1084, 1442, 1080, 498].

truncation [3135, 954, 3507, 2217].

tuberculosis [2976, 904, 2743].

Tukey [1771].

tumor [239, 963, 2388, 3085, 2554, 1773, 1533].

tumors [735, 163].

tumour [1194, 2912, 1633, 1343].

tumours [935].

tuning [3026].

tunnel
[400, 1516, 2075]. Turner [3649]. Tutorial
[2657, 3019, 869, 2573, 3133, 2264, 2025, 3529, 3110, 1251, 3184]. Tweedie
[3173]. Twenty [2111, 2113, 2112, 2115, 2114]. Twenty-five [2111, 2113, 2112, 2115, 2114]. Twice [1495]. Two
[645, 1493, 793]. Two-weighted [195]. Two

Vaccination [905, 752, 3559, 2956]. Vaccinations [388]. Vaccine [1915, 3004, 768, 752, 3528, 1924, 2468, 1643, 265, 2211, 2942, 2859, 767, 2948, 3346, 394, 1244, 2606, 2085]. vaccines [2566, 2503]. vaginosis [1631].

Vaccine [1915, 3004, 768, 752, 3528, 1924, 2468, 1643, 265, 2211, 2942, 2859, 767, 2948, 3346, 394, 1244, 2606, 2085]. vaccines [2566, 2503]. vaginosis [1631].

variances [910, 2958, 2449, 2935, 245, 2243, 2417, 1725, 1610, 3143]. variant [3275, 2166, 3350]. variants [36, 1535, 1107, 880]. Variation [2679, 1678, 318, 841, 2534, 2048, 2236, 3041, 2436, 2163, 3094, 2174, 272, 3317, 2058, 3090]. Variational [2095, 3545]. variations [537]. various [3122, 1218, 2788].

ventricular [2018]. Verbeke [506]. verification
[491, 1698, 1764, 3398, 250, 3488, 943, 739]. verified [124, 3012]. verifying
[444, 763, 1822, 2062]. wedge [3277, 3245, 3342, 2595, 1805, 2999, 2478, 3584, 2836, 2828, 3107, 2766, 2455]. Weibull [1539, 1669, 1969, 1885]. weight
[3459, 3322, 1219, 3604, 2853, 1895, 3458, 2596, 519, 2707, 1220, 893, 1190]. weight-model [2707]. Weighted [2596, 941, 2966, 2737, 255, 1614, 1715, 1364, 3390, 668, 1651, 3027, 2589, 20, 1325, 1008, 1908, 1495, 224, 240, 1077, 87, 3196, 3191, 2426, 349, 3519, 2831, 217, 256, 2990, 299, 2376, 604, 393, 1940, 50, 1625, 3286, 1338, 157, 2054, 3450, 2322, 3622, 3400, 3305, 3319]. weighting
[2053, 2551, 3429, 2051, 1497, 661, 3023, 3528, 130, 40, 1250, 2726, 231, 3189, 1569, 750, 1084, 1442, 287, 1444, 129, 133, 1498, 1389, 132, 304, 131, 1459, 1733]. weights
[289, 511]. Western [689, 693]. Westreich [1265]. WGEEs [2376]. where
[1696]. whether [2595]. Which [2923, 631, 2049]. while [2740, 1136, 889]. Whitehead [586]. Whitney
[3658, 1499, 18, 3136, 3204, 3290, 1819, 627, 1859]. Who [2454, 2089, 1519].
Wide
[1516, 284, 819, 494, 235, 1536, 2240, 733, 1356, 2060, 717, 1012, 1800, 521, 3210]. widespread [2070]. Wiegand [408]. Wilcoxon
[3658, 18, 3136, 3204, 45, 3290, 593, 1708, 1819, 627, 1499]. wild [1424].
References

[15] Benjamin R. Saville, Amy H. Herring, and Gary G. Koch. A robust method for comparing two treatments in a confirmatory clinical trial via multivariate time-to-event methods that jointly incorporate information...
REFERENCES

REFERENCES

February 20, 2010. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

Stallard:2010:C

Nelson:2010:IRD

Li:2010:MSC

Yu:2010:NMT

Zhang:2010:SMP

Yan:2010:SBA

Wang:2010:CBN

69] Cuiling Wang and Charles B. Hall. Correction of bias from non-random missing longitudinal data using auxiliary information. *Statistics in
REFERENCES

[76] Stephen Senn, Vladimir V. Anisimov, and Valerii V. Fedorov. Comparisons of minimization and Atkinson’s algorithm. Statistics in Medicine,
REFERENCES

Binder:2010:ALC

Hielscher:2010:PVS

Porzelius:2010:GPE

Leffondre:2010:WCM

Laubender:2010:EAR

Laaksonen:2010:EPA

REFERENCES

Mandrekar:2010:MBP

Liu:2010:STS

Benda:2010:MBA

Nie:2010:CAR

Buyze:2010:DSR

Vittinghoff:2010:ELT

REFERENCES

REFERENCES

May 20, 2010. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

gust 15, 2010. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[235] Helmut Finner, Klaus Strassburger, Iris M. Heid, Christian Herder, Wolfgang Rathmann, Guido Giani, Thorsten Dickhaus, Peter Lichtner,

REFERENCES

REFERENCES

[254] Edward H. Kennedy, Jeremy M. G. Taylor, Douglas E. Schaubel, and Scott Williams. The effect of salvage therapy on survival in a longitudinal...

REFERENCES

REFERENCES

REFERENCES

[297] Anastasia Ivanova, Kenneth Liu, Ellen Snyder, and Duane Snavely. Addendum to ‘An adaptive design for identifying the dose with the best

REFERENCES

REFERENCES

[317] Arnost Komárek, Bettina E. Hansen, Edith M. M. Kuiper, Henk R. van Buuren, and Emmanuel Lesaffre. Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects dis-
REFERENCES

REFERENCES

Saha:2011:IED

Gleiss:2011:ATS

Consonni:2011:THW

Yavuz:2011:SES

Chan:2011:LLL

Ray:2011:BAE

Ghosh:2011:BAC

[330] Pulak Ghosh, Kaushik Ghosh, and Ram C. Tiwari. Bayesian approach to cancer-trend analysis using age-stratified Poisson regression mod-
137

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Molinari:2011:QBH

Caudill:2011:IIR

Murphy:2011:BHM

Zhao:2011:PTC

Barker:2011:ETI

Greene:2011:TDL

REFERENCES

Ghosh:2011:JML

Mitra:2011:EPS

Subramanian:2011:ERM

Lau:2011:PMM

Kuhnert:2011:MSC

Bowden:2011:MRA

Gezmu:2011:SBR

Misrak Gezmu, Victor DeGruttola, Dennis Dixon, Max Essex, Elizabeth Halloran, Joseph Hogan, Anneke Grobler, Soyeon Kim, Jeanne McDer-

Altstein:2011:MET

Schoenfeld:2011:TRB

Shu:2011:CWC

Xu:2011:IOR

Zhang:2011:ENB

Masca:2011:PIT

REFERENCES

Carnegie:2011:BCI

Troxler:2011:ELM

Gustafson:2011:BIG

Richardson:2011:ACT

Lydersen:2011:ACT

Sauerbrei:2011:CPU

Wiegand:2011:RCP

894–896, April 15, 2011. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

OMalley:2011:LAL

Brumback:2011:ACN

Cresswell:2011:AJS

Mercer:2011:ERN

Xiang:2011:MCM

Lee:2011:BBU

Tseng:2011:ACE

REFERENCES

Yuan:2011:BRA

Lui:2011:TNI

Jiang:2011:CAN

Wang:2011:ERT

Li:2011:TDR

Wang:2011:MRV

Austin:2011:CPV

REFERENCES

[448] Robert L. Cuffe. The inclusion of historical control data may reduce the power of a confirmatory study. *Statistics in Medicine*, 30(12):1329–1338,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Tournoux-Facon:2011:HNS

Daimon:2011:PMA

Seegers:2011:DFD

Mauguen:2011:DFA

Marti:2011:MIA

Katsahian:2011:ETC

Neuenschwander:2011:PCP

[474] Beat Neuenschwander, Nicolas Rouyrre, Norbert Hollaender, Emmanuel Zuber, and Michael Branson. A proof of concept phase II non-inferiority

REFERENCES

[487] Pulak Ghosh, Farouk Nathoo, Mithat Gönen, and Ram C. Tiwari. Assessing noninferiority in a three-arm trial using the Bayesian ap-
REFERENCES

[494] Laura L. Faye, Lei Sun, Apostolos Dimitromanolakis, and Shelley B. Bull. A flexible genome-wide bootstrap method that accounts for rank-

REFERENCES

REFERENCES

2011. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

Entink:2011:MMJ

Buu:2011:NVS

Snapinn:2011:CMT

Ma:2011:CMR

Soares:2011:MEE

Zhao:2011:SIC

Moore:2011:REC

Royston:2011:URM

Wu:2011:SCC

Zhu:2011:MSS

Jiang:2011:SSP

Molanes-Lopez:2011:IYI

REFERENCES

REFERENCES

REFERENCES

September 30, 2011. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

Govindarajulu:2011:FMA

Viechtbauer:2011:BRG

Rubio:2011:EMB

Kane:2011:EBC

Rubio:2011:EBC

[583] Kjetil Røysland, Jon Michael Gran, Bruno Ledergerber, Viktor von Wyl, James Young, and Odd O. Aalen. Analyzing direct and indirect effects

REFERENCES

REFERENCES

Sattar:2011:ANI

Lorenz:2011:MAM

White:2011:AMO

Schildcrout:2011:ALH

Lee:2011:ICI

Yu:2011:PMC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

McCandless:2012:HPB

vanBreukelen:2012:ELB

He:2012:FJM

Koopmeiners:2012:CEA

Katki:2012:EAD

Altman:2012:LMM

2012. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

Coraline Danieli, Laurent Remontet, Nadine Bossard, Laurent Roche, and Aurélien Belot. Estimating net survival: the importance of allowing

REFERENCES

Maruotti:2012:MNH

Yuan:2012:DCC

Karuri:2012:TSB

Stephens:2012:AGE

Guerra:2012:ABL

Schwartz:2012:SAU

Deng:2012:EIR

[715] Lisha Deng, Peter J. Diggle, and John Cheesbrough. Estimating incidence rates using exact or interval-censored data with an application
REFERENCES

[722] Thu Thuy Nguyen, Caroline Bazzoli, and France Mentré. Design evaluation and optimisation in crossover pharmacokinetic studies analysed by

REFERENCES

[753] Panu Erästö, Fabian Hoti, and Kari Auranen. Modeling transmission of multitype infectious agents: application to carriage of *Streptococcus*

[760] Michael J. Pencina, Ralph B. D’Agostino, Sr., and Liuyi Song. Quantifying discrimination of Framingham risk functions with different survival

REFERENCES

[773] Ning Li, Robert M. Elashoff, Gang Li, and Chi-Hong Tseng. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects. Statist-
REFERENCES

[780] Xun Chen, Zhaoling Meng, and Ji Zhang. Handling of baseline measurements in the analysis of crossover trials. Statistics in Medicine, 31(17):
REFERENCES

Malizia:2012:EJN

Johnson:2012:SES

Emily:2012:INS

Nysen:2012:TGF

Xia:2012:BME

Schisterman:2012:I

Erickson:2012:MMB
REFERENCES

[830] Robert H. Lyles, Li Tang, Ji Lin, Zhiwei Zhang, and Bhramar Mukherjee. Likelihood-based methods for regression analysis with binary exposure

REFERENCES

Liu:2012:CAC

Gail:2012:UMR

Debray:2012:APP

Kipnis:2012:RCM

Postmus:2012:MEH

Elliott:2012:ABV

Anonymous:2012:SIH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Macdonald-Wallis:2012:MMS

Shi:2012:MEG

Laska:2012:MST

Li:2012:TLM

Chen:2012:LVM

Crainiceanu:2012:BBI

Danaher:2012:EGE

REFERENCES

Hedeker:2012:ACL

Leon:2012:TPS

Bilder:2012:PTP

Caudill:2012:UPS

Chen:2012:BAD

Furlow-Parmley:2012:CET

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Buu:2012:SML

Liu:2012:PLT

Zhu:2012:ASR

Furlan:2012:PMF

Palys:2012:UAA

Kuznetsova:2012:RUA

Bacchetti:2012:BUD

[970] Peter Bacchetti, Charles McCulloch, and Mark R. Segal. Being ‘underpowered’ does not make a study unethical. *Statistics in Medicine*, 32...
Gelfond:2012:PEO

Berger:2012:TSR

Tamura:2012:AR

Kim:2012:P

Posch:2012:UAB

Stirnemann:2012:DEB

Lee:2012:CMI

Karlsson:2012:MBP

Williamson:2012:DRE

Ryan:2012:EAM

Rodriguez-Girondo:2012:NTM

Allodji:2012:PFM

Savignoni:2012:EEO

[997] Alexia Savignoni, David Hajage, Pascale Tubert-Bitter, and Yann De Rycke. Effect of an event occurring over time and confounded by health

Crowther:2012:FPJ

Nietert:2013:CRB

Roloff:2013:PFS

Giovane:2013:NMA

Guolo:2013:FMB

Mavridis:2013:FBA

REFERENCES

Paul:2013:SPH

Roberts:2013:DAN

Sperrin:2013:MTE

Lumley:2013:PLR

Darlington:2013:EWP

Wages:2013:UTE

Pietzner:2013:TRP

REFERENCES

Chen:2013:PLE

Landsman:2013:EAC

Chow:2013:ABI

Chow:2013:CFD

Chow:2013:SCA

Kang:2013:SAB

Li:2013:SCB

[1031] Yulan Li, Qing Liu, Patricia Wood, and Anandhi Johri. Statistical considerations in biosimilar clinical efficacy trials with asymmetrical mar-
Hsieh:2013:EBI

Yang:2013:ATH

Zhang:2013:IVC

Endrenyi:2013:IBD

Chow:2013:SMA

Lin:2013:APL

REFERENCES

REFERENCES

[1064] Heiko Götte and Isabella Zwiener. Sample size planning for survival prediction with focus on high-dimensional data. *Statistics in Medicine*,
REFERENCES

Kosinski:2013:WGS

Stock:2013:RPM

Nakas:2013:GYI

Shen:2013:RIC

Yu:2013:SRE

Koopmeiners:2013:ETT

Yang:2013:BRC

REFERENCES

15, 2013. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

March 30, 2013. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

Chen:2013:LIM

Brumback:2013:ACN

Brumback:2013:CPM

Yang:2013:NII

Kuk:2013:FCD

Mun:2013:DRM

Abraham:2013:UCM

1376–1382, April 15, 2013. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

REFERENCES

REFERENCES

Zhu:2013:SAM

Kraemer:2013:DCC

Scala:2013:ENT

Jiang:2013:BDT

Qu:2013:ESM

Wen:2013:AAO

Song:2013:TVC

[1163] Babak Shahbaba and Wesley O. Johnson. Bayesian nonparametric variable selection as an exploratory tool for discovering differentially ex-

Zhang:2013:APV

Fagerland:2013:GFT

Capuano:2013:TOM

Binder:2013:CBS

Ning:2013:ELB

Wang:2013:ECD

Roberts:2013:BMT

[1196] Huiping Xu, Michael A. Black, and Bruce A. Craig. Evaluating accuracy of diagnostic tests with intermediate results in the absence of a gold stan-
Bamia:2013:SCA

Botella-Rocamora:2013:SMA

Ding:2013:BIM

Ouyang:2013:BAR

Nunes:2013:NIE

Liu:2013:PPA

[1215] Eva Petkova, Thaddeus Tarpey, Lei Huang, and Liping Deng. Interpreting meta-regression: application to recent controversies in antidepress-

REFERENCES

Verhagen:2013:LMH

Mostajabi:2013:NRS

Jaki:2013:AMD

Li:2013:STM

Kombrink:2013:DSA

Sjolander:2013:BWM

Kuk:2013:MSC

August 15, 2013. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

REFERENCES

Parast:2013:LRP

Xie:2013:CRE

vanHouwelingen:2013:VCR

Guo:2013:IHP

Liu:2013:IAM

Sansom:2013:CAC

Uddin:2013:MMP

Pressler:2013:UPS

White:2013:UGB

Taguri:2013:CIC

Platt:2013:RTM

Ma:2013:C

Rauch:2013:PEC

Kang:2013:KSC

Kasza:2013:EPA

Wigger:2013:MHF

Lipsky:2013:RAD

Bland:2013:DLT

Alexander:2013:CLT

[1288] Russell T. Shinohara, Anand K. Narayan, Kelvin Hong, Hyun S. Kim, Josef Coresh, Michael B. Streiff, and Constantine E. Frangakis. Estimat-

[Ruth H. Keogh:2013:USB]

[1290] Eva D. Regnier:2013:SSS

[Getachew A. Dagne:2013:BSM]

[Kiranmoy Das:2013:BSM]

[Binbing Yu:2013:PCL]

[Sylwia Bujkiewicz:2013:MMA]
REFERENCES

Tulupyev:2013:BPR

Siewert:2013:MCU

Chung:2013:AZB

Oman:2013:SEU

Zhang:2013:BAC

Crowther:2013:SBP

Loong:2013:DCU

[1308] Bronwyn Loong, Alan M. Zaslavsky, Yulei He, and David P. Harrington. Disclosure control using partially synthetic data for large-scale

REFERENCES

REFERENCES

Carlson:2013:CMA

Wason:2013:UCD

Mbougua:2013:NMI

Sperrin:2013:CRB

Schorgendorfer:2013:RAU

Sjolander:2013:IMV

White:2013:AME
Matthew T. White and Sharon X. Xie. Adjustment for measurement error in evaluating diagnostic biomarkers by using an internal reliability

REFERENCES

Byun:2013:HMC

Quintana:2013:IVS

Zhang:2013:RAM

Sherwood:2013:WQR

Tong:2013:GSH

May:2013:CPM

Pozzi:2013:BAD

REFERENCES

Xanthakis:2013:MMV

Begg:2013:CMF

Bandyopadhyay:2013:CAR

Heinze:2013:CIA

Zou:2013:UCI

Mori:2013:LCM

Rosychuk:2013:SSS

Cottone:2013:AVP

Luo:2013:JAS

Novick:2013:STS

Nawarathna:2013:MAM

Dmitrienko:2013:TMA

Duez:2013:PMS

[1393] Paul Blanche, Jean-François Dartigues, and Hélène Jacqmin-Gadda. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks.
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Start Page</th>
<th>End Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yan:2013:CEB</td>
<td>Comments on ‘Estimation in AB/BA crossover trials with application to bioequivalence studies with incomplete and complete data designs’.</td>
<td>Statistics in Medicine</td>
<td>32</td>
<td>5484</td>
<td>5486</td>
<td>December 30, 2013</td>
</tr>
<tr>
<td>Jaki:2013:ARC</td>
<td>Authors' reply to Comments on ‘Estimation in AB/BA crossover trials with application to bioequivalence studies with incomplete and complete data designs’.</td>
<td>Statistics in Medicine</td>
<td>32</td>
<td>5487</td>
<td>5488</td>
<td>December 30, 2013</td>
</tr>
</tbody>
</table>
REFERENCES

[1420] Elise Dusseldorp and Iven Van Mechelen. Qualitative interaction trees: a tool to identify qualitative treatment-subgroup interactions. *Statistics*

REFERENCES

REFERENCES

Boonstra:2014:PSB

Strand:2014:RCM

Smits:2014:VLT

Xu:2014:OTP

Feng:2014:SNJ

Austin:2014:GAI

[1452] Jonggyu Baek, Brisa N. Sánchez, and Emma V. Sanchez-Vaznaugh. Hierarchical multiple informants models: examining food environment contributions to the childhood obesity epidemic. Statistics in Medicine, 33
REFERENCES

REFERENCES

Chi:2014:PCO

Mendolia:2014:CSA

Havulinna:2014:BAP

Matthews:2014:OMP

Epifanio:2014:HSA

Gasparrini:2014:MEL

Gasparrini:2014:C

REFERENCES

Heroux:2014:MSM

Goldfeld:2014:TWM

Austin:2014:UPS

Doi:2014:LEE

Shuster:2014:EVN

Wu:2014:CIM

Dong:2014:VSA

REFERENCES

REFERENCES

REFERENCES

Weidemann:2014:BPI

Chen:2014:BSM

Teixeira-Pinto:2014:BRM

Hudson:2014:SMM

Pinheiro:2014:MBD

Ceyhan:2014:SID

[1532] Severin Guy Mahiane, Agnès Fianne, and Bertrand Auvert. Mixture models for calibrating the BED for HIV incidence testing. *Statistics in
References

Yang:2014:DCT

Chen:2014:VIM

Cheng:2014:PAT

Freytag:2014:CTS

Salim:2014:MLM

Zhang:2014:CIR

REFERENCES

Zwahlen:2014:CCI

Finkelstein:2014:JTP

Wages:2014:PIA

Kwak:2014:PIC

An:2014:CPD

Li:2014:CST

He:2014:MCC

Farewell:2014:MGE

Andridge:2014:AMI

Quan:2014:MRC

Wason:2014:CBA

Westgate:2014:ICS

Morgan:2014:HFM

He:2014:MIH

[1566] Ren He and Thomas Belin. Multiple imputation for high-dimensional mixed incomplete continuous and binary data. *Statistics in Medicine*,
REFERENCES

[1580] Christophe Combescure, Yohann Foucher, and Daniel Jackson. Meta-
analysis of single-arm survival studies: a distribution-free approach for
estimating summary survival curves with random effects. *Statistics in
0277-6715 (print), 1097-0258 (electronic).

ple size calculation in cost-effectiveness cluster randomized trials: opti-
July 10, 2014. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258
(electronic).

[1582] Sheng Luo, Xiao Su, Stacia M. DeSantis, Xuelin Huang, Min Yi, and
Kelly K. Hunt. Joint model for a diagnostic test without a gold standard
in the presence of a dependent terminal event. *Statistics in Medicine*,
(print), 1097-0258 (electronic).

[1583] Elisa Sheng, Xiao Hua Zhou, Hua Chen, Guizhou Hu, and Ashlee Dun-
can. A new synthesis analysis method for building logistic regression pre-
CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

Benjamin, Joseph M. Massaro, Ralph B. D’Agostino, Sr., and Michael J.
Pencina. Assessing the incremental predictive performance of novel
2584, July 10, 2014. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-
0258 (electronic).

[1585] Kirsten Van Hoorde, Yvonne Vergouwe, Dirk Timmerman, Sabine Van
Huffel, Ewout W. Steyerberg, and Ben Van Calster. Assessing calibration

...

[1599] Nikolaos Sfikas, David Greenhalgh, Wenwen Huo, Janet Mortimer, and Chris. Robertson. Quantifying unrecognised replication present in re-

[1612] Yeh-Fong Chen, Xiangmin Zhang, Roy N. Tamura, and Chiung M. Chen. A sequential enriched design for target patient population in psychiatric

Kliethermes:2014:BAF

Belot:2014:JFM

Andrinopoulou:2014:JMT

Gong:2014:AGF

Gerds:2014:CPR

Cheon:2014:MTM

[1638] Chen-An Tsai, Chih-Yang Huang, and Jen pei Liu. An approximate approach to sample size determination in bioequivalence testing with

REFERENCES

Zhao:2014:SDR

He:2014:CIT

Welch:2014:ETF

Mollica:2014:EPM

Galvis:2014:AMB

Cox:2014:CGG

Kapur:2014:SSD

Zhou:2014:IBS

Tighiouart:2014:DFD

Whitehead:2014:OST

Crowther:2014:MME

OGorman:2014:RCC
Paul:2014:SSG

Hendry:2014:ASC

Boren:2014:SVN

Wu:2014:CIC

Hess:2014:CRD

Ha:2014:MRS

References

Shortreed:2014:MIS

Kim:2014:ASO

Ning:2014:AHB

Kose:2014:ELP

Daggy:2014:ELC

Jankowski:2014:RSA

REFERENCES

2014. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

Kaciroti:2014:BSA

MacNab:2014:C

Baiocchi:2014:CIV

Brockhaus:2014:POR

Valeri:2014:MAW

Smith:2014:MTP

Perrakis:2014:CSP

REFERENCES

Gu:2014:BRC

Polley:2014:TSA

Han:2014:BAF

Dziak:2014:TVE

Congdon:2014:MCS

Long:2014:MZI

Elmi:2014:EBC

Ko:2014:TDA

Wang:2014:ERZ

Rezvin:2014:CQR

Friede:2014:GEI

vanHouwelingen:2014:MBV

Zhao:2014:BAS

REFERENCES

[1789] Willi Sauerbrei, Michal Abrahamowicz, Douglas G. Altman, Saskia le Cessie, James Carpenter, and on behalf of the Stratos initiative. STRengthening analytical thinking for observational studies: the

George:2015:SSP

Huang:2015:IMM

Collins:2015:AR

Hemming:2015:SWC

Bersimis:2015:FDP

Hua:2015:MAT

Helms:2015:SBP

Chen:2015:APM

Gabriel:2015:CCB

Brentnall:2015:CIM

Matsouaka:2015:PSS

Chaurasia:2015:PTM

Lipsitz:2015:UJE

Kapur:2015:BME

He:2015:MTF

Li:2015:BAI

Kang:2015:CTC

Chen:2015:ACC

Mavridis:2015:AUD

[1847] Donglin Zeng, Emil Cornea, Jun Dong, Jean Pan, and Joseph G. Ibrahim. Assessing temporal agreement between central and local progression-free

Barnwell-Menard:2015:ECM

Wu:2015:CNC

Walwyn:2015:MAA

Turner:2015:PDB

Balzer:2015:APM

Vermeulen:2015:IPM

Schmidt:2015:SSC

Muthen:2015:GMM

Cellamare:2015:RTS

Anonymous:2015:IFH

Correa:2015:CLP

Kulldorff:2015:CCL

Correa:2015:RCC

Kuss:2015:SMM

Stratton:2015:SSC

Gajewski:2015:BEC

Li:2015:PBI

Geng:2015:OTR

Lim:2015:RRR

REFERENCES

[1879] Elizabeth A. Teeple and Elizabeth R. Brown. Adjusting for time-dependent sensitivity in an illness-death model, with application to

REFERENCES

Buonaccorsi:2015:SRC

Zhao:2015:DPM

Robertson:2015:CBS

Taguri:2015:CCN

Lagona:2015:C

Dawson:2015:DII

Ramchandani:2015:MIR
[1892] Ritesh Ramchandani, Dianne M. Finkelstein, and David A. Schoenfeld. A model-informed rank test for right-censored data with intermediate
REFERENCES

Zhang:2015:OOH

Fong:2015:CPT

Chiou:2015:RBE

Marozzi:2015:MMT

Feng:2015:SDS

Botella-Rocamora:2015:UMF

Chen:2015:EST

[1899] Fangyao Chen, Yuqiang Xue, Ming T. Tan, and Pingyan Chen. Efficient statistical tests to compare Youden index: accounting for contingency

Zhang:2015:PMP

Alonso:2015:NMA

Tang:2015:BRD

Zou:2015:MSR

Maruo:2015:IMD

Ghosh:2015:PRP

Rodrigues-Motta:2015:MEM

Ferrante:2015:BCF

Hu:2015:VDN

Brodersen:2015:PRO

Yang:2015:APT

Loh:2015:RTA

Nicholas:2015:ICA

Jolani:2015:ISM

Landsman:2015:ESP

Kim:2015:EMB

Cotterill:2015:BMS

Hu:2015:TPT

Hoyer:2015:MAD

Lin:2015:AIM

Voulgaraki:2015:EDR

Oh:2015:APC

Alvarez-Iglesias:2015:SCS

Kleinman:2015:RRE

Nolen:2015:ARL
REFERENCES

REFERENCES

[1957] Sara Geneletti, Aidan G. O’Keeffe, Linda D. Sharples, Sylvia Richardson, and Gianluca Baio. Bayesian regression discontinuity designs: incorporating clinical knowledge in the causal analysis of primary care

REFERENCES

[1977] Elizabeth Colantuoni and Michael Rosenblum. Leveraging prognostic baseline variables to gain precision in randomized trials. Statistics in
REFERENCES

Pfeiffer:2015:UMS

Hermann:2015:FSG

Good:2015:PMC

Talbot:2015:ARC

Bratton:2015:CMP

Marozzi:2015:C

Wei:2015:MAT

McIsaac:2015:AST

Kunz:2015:MAR

DelGrecoM:2015:DPM

Wolfson:2015:NBM

Haines:2015:SDR

References

Lee:2015:VRB

Liu:2015:MDH

Tang:2015:PPD

Gunzler:2015:TSE

Longford:2015:CTS

Morris:2015:CFP

Perez-Jaume:2015:NPA

Zhang:2015:DPC

Miller:2015:EIP

Bansal:2015:BMD

Remontet:2015:FOP

Crowther:2015:RLE

Gutman:2015:ECE

Siddique:2015:MIH

REFERENCES

Freedman:2015:SMM

Wang:2015:GRF

Lyles:2015:NSB

Chen:2015:ISD

Rebora:2015:UMT

Austin:2015:MTB

Uno:2015:VTE

Clemencon:2015:CIS

Magnusdottir:2015:SEP

Ibrahim:2015:PPT

Wirth:2015:CLA

Antognini:2015:EOC

Reed:2015:GGW

[2060] Eric Reed, Sara Nunez, David Kulp, Jing Qian, Muredach P. Reilly, and Andrea S. Foulkes. A guide to genome-wide association analysis and
Referenced articles:

REFERENCES

Branscum:2015:FRM

Wu:2015:PRS

Kuznetsova:2015:BTR

Yee:2015:NIT

Pimentel:2015:VRM

Rua:2015:CPD

Anonymous:2016:IITa

Anonymous:2016:IIIa

Anonymous:2016:IIItb

Huque:2016:VHP

Chen:2016:MAS

Petersen:2016:SPE

Zhou:2016:BAE

Ning:2016:JLC

Anonymous:2016:IITe

Anonymous:2016:IIIc

Anonymous:2016:IITf

Bauer:2016:TFY

Hung:2016:CTF

Mehta:2016:ORE

Vollmar:2016:CTF

REFERENCES

[2121] X. Luo, S. Gee, V. Sohal, and D. Small. A point-process response model for spike trains from single neurons in neural circuits under optogenetic

REFERENCES

[2155] Molin Wang, Donna Spiegelman, Aya Kuchiba, Paul Lochhead, Sehee Kim, Andrew T. Chan, Elizabeth M. Poole, Rulla Tamimi, Shelley S.

Anonymous:2016:IITk

Anonymous:2016:IIIf

Anonymous:2016:IITl

Pullenayegum:2016:KTB

Jackson:2016:EDL

Ogbagaber:2016:DSR

REFERENCES

Li:2016:ECIa

Anonymous:2016:IITm

Anonymous:2016:IIIg

Anonymous:2016:IITn

Heinze:2016:P

Senn:2016:MVV

Nikolakopoulou:2016:PFS

Abrahamowicz:2016:MCA

[2176] Michal Abrahamowicz, Lise M. Bjerre, Marie-Eve Beauchamp, Jacques LeLorier, and Rebecca Burne. The missing cause approach to unmea-

[2182] Florent Le Borgne, Bruno Giraudeau, Anne Héléne Querard, Magali Gir- ral, and Yohann Foucher. Comparisons of the performance of different
REFERENCES

Koopmeiners:2016:GST

derElst:2016:ERB

Yang:2016:PCA

Yin:2016:MIA

Dong:2016:AFT

Barrett:2016:CDR

Busing:2016:TNC

Zhang:2016:SCR

Barcella:2016:VSC

Kim:2016:PSS

Anonymous:2016:IITq

Anonymous:2016:IIIi

Anonymous:2016:IITr

Chen:2016:ICE

Oliver T. Stirrup, Abdel G. Babiker, James R. Carpenter, and Andrew J. Copas. Fractional Brownian motion and multivariate-t models for longi-

2016. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

[2257] Magdalena Zebrowska, Martin Posch, and Dominic Magirr. Maximum type I error rate inflation from sample size reassessment when inves-

Girling:2016:SEO

Huang:2016:TSA

Lok:2016:EPC

Rogers:2016:ARE

Rao:2016:RTS

Ertefaie:2016:QLR

REFERENCES

REFERENCES

[2285] Liu:2016:ACT

[2286] Xu:2016:VPCa

[2287] Francq:2016:HRP

[2288] Chen:2016:HTC

[2289] Nikoloulopoulos:2016:CSV

[2291] Cox:2016:PDM
Trevor F. Cox and Gabriela Czanner. A practical divergence measure for survival distributions that can be estimated from Kaplan–Meier

REFERENCES

REFERENCES

10, 2016. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

Anonymous:2016:IIp

Anonymous:2016:IITbf

Ristl:2016:FTC

Delorme:2016:TIG

Jiang:2016:ITC

Fay:2016:FSP

Sparapani:2016:NSA

REFERENCES

Lui:2016:CTN

Xu:2016:CEI

Anonymous:2016:IITbg

Anonymous:2016:IIIq

Anonymous:2016:IITbh

LaVange:2016:RPM

Permutt:2016:TER

[2338] M. Quartagno and J. R. Carpenter. Multiple imputation for IPD meta-analysis: allowing for heterogeneity and studies with missing covari-

REFERENCES

Anonymous:2016:IIIr

Anonymous:2016:IITbj

Balan:2016:STA

Li:2016:RED

Charvat:2016:MEH

Morrison:2016:LPM

Wang:2016:DRE

[2351] Xuan Wang, Lauren A. Beste, Marissa M. Maier, and Xiao-Hua Zhou. Double robust estimator of average causal treatment effect for censored
REFERENCES

REFERENCES

Anonymous:2016:IIIt

Anonymous:2016:IIITbn

Dorie:2016:FIF

Li:2016:LRS

DiazOrdaz:2016:MIM

Chu:2016:ADM

Dimou:2016:MMM

REFERENCES

References

REFERENCES

Gomes:2016:HIC

Zhang:2016:CTE

Wang:2016:MSS

Balzer:2016:TEI

Westgate:2016:IPS

Gilbert:2016:PSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[2436] Gordon Honerkamp-Smith and Ronghui Xu. Three measures of explained variation for correlated survival data under the proportional hazards

[2442] Juxin Liu, Paul Gustafson, and Dezheng Huo. Bayesian adjustment for the misclassification in both dependent and independent variables with

Shepherd:2016:CRM

Bantis:2016:CTC

Mulatya:2016:ETE

Zhang:2016:BPM

Follmann:2016:WRG

Zhan:2016:ATE

REFERENCES

2016. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

REFERENCES

Anonymous:2016:IITbz

Beesley:2016:MIM

Hooper:2016:SSC

Ren:2016:LLV

Hattori:2016:TDS

Ke:2016:SVC

Valeri:2016:ECC

[2502] Lingxiao Wang, Barry I. Graubard, and Yan Li. A composite likelihood approach in testing for Hardy Weinberg equilibrium using family-based
REFERENCES

REFERENCES

Chiang:2016:BVR

Armero:2016:BJO

Aprahamian:2016:RRW

Dagne:2016:BBC

daSilva:2016:CCE

Wang:2016:CEGb

Held:2016:OBM

Kleinman:2016:MRM

Qin:2016:REP

Roberts:2016:AMV

Shardell:2016:IVA

Cramb:2016:FPA

Zhai:2016:CDD

[2535] Shuyan Zhai, Thomas Mathew, and Yi Huang. Comparison of drug dissolution profiles: a proposal based on tolerance limits. *Statistics in
REFERENCES

Mitchell:2016:ERR

Rhodes:2016:IIP

Yuan:2016:NCS

Kuznetsova:2016:CVP

Xu:2016:VPCb

Anonymous:2016:IITcg
REFERENCES

[2555] Sean Yiu, Brian D. M. Tom, and Vernon T. Farewell. Trivariate mover-stayer counting process models for investigating joint damage in psoriatic

Horton:2017:PTP

Partlett:2017:REM

Morgan:2017:CAA

Mahiane:2017:SPI

Chebon:2017:MZI

Boher:2017:GFT

REFERENCES

REFERENCES

REFERENCES

Anonymous:2017:IIC

Jaki:2017:FVM

Zhang:2017:ISS

Xu:2017:DTC

Lee:2017:MIP

Koerner:2017:CPD

Li:2017:FMR

REFERENCES

[2622] Songshan Yang, James A. Cranford, Jennifer M. Jester, Runze Li, Robert A. Zucker, and Anne Buu. A time-varying effect model for examining group differences in trajectories of zero-inflated count outcomes with applications in substance abuse research. *Statistics in Medicine*, 36...
REFERENCES

[2629] Hisashi Noma, Shiro Tanaka, Shigeyuki Matsui, Andrea Cipriani, and Toshi A. Furukawa. Quantifying indirect evidence in network meta-

Andridge:2017:IER

Wu:2017:LBB

Anonymous:2017:IIf

Walwyn:2017:MAS

Chiang:2017:ASS

Alonso:2017:ASP

Liu:2017:EPD

REFERENCES

Tsai:2017:CCC

Alosh:2017:TSC

Anonymous:2017:Iih

Sugimoto:2017:SCT

Litwin:2017:TSBa

Sangnawakij:2017:SME

Huang:2017:PSI

Lambert:2017:FPM

Barrett:2017:DPU

Krall:2017:HMA

Tang:2017:IAS

Henn:2017:DSC

Walter:2017:QBE

REFERENCES

[2676] Luise Cederkvist, Klaus K. Holst, Klaus K. Andersen, David V. Glidd-

den, Kirsten Frederiksen, Susanne K. Kjær, and Thomas H. Scheike.

Incorporation of the time aspect into the liability-threshold model for

10, 2017. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (elec-

tronic).

[2677] Junbo Son, Patricia Flatley Brennan, and Shiyu Zhou. Correlated

gamma-based hidden Markov model for the smart asthma management

based on rescue inhaler usage. *Statistics in Medicine*, 36(10):1619–1637,

May 10, 2017. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (elec-

tronic).

[2678] Andrew L. Thurman, Jiwoong Choi, Sanghun Choi, Ching-Long Lin,

Eric A. Hoffman, Chang Hyun Lee, and Kung-Sik Chan. Detection of

smoothly distributed spatial outliers, with applications to identifying the

distribution of parenchymal hyperinflation following an airway challenge

CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

[2679] Nicholas T. Longford. Variation of the rates of necrotising enterocolitis

1655–1668, May 10, 2017. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (elec-

tronic).

Regression analysis of mixed panel count data with dependent terminal

SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

May 20, 2017. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (elec-

tronic).
Yang:2017:IER

Ginestet:2017:DRM

Bakbergenuly:2017:BBM

Bryan:2017:BHM

Perera:2017:BSS

Parast:2017:ESM

Bowden:2017:FIP

[2688] Jack Bowden, Fabiola Del Greco M., Cosetta Minelli, George Davey Smith, Nuala Sheehan, and John Thompson. A framework for the inves-

Cortese:2017:RMR

Su:2017:PSS

Robinson:2017:BRE

Anonymous:2017:IIk

Li:2017:ETE

Kondo:2017:ITR

Azarang:2017:DMR

Im:2017:CES

Roberts:2017:WBS

Anonymous:2017:IIl

Rathnayake:2017:SMA

Wu:2017:TPM

Karim:2017:EIP

Sanchez:2017:ELL

Shimura:2017:CCB

Kim:2017:SCC

Rowley:2017:LCM

laCruz:2017:PPO

Tang:2017:CFR

REFERENCES

REFERENCES

Persson:2017:EMC

Maruo:2017:IIM

Tayob:2017:SCS

Luo:2017:WWL

Banerjee:2017:TST

Anonymous:2017:Ilo

Kuznetsova:2017:AET

REFERENCES

Marcia Viviane Rückbeil, Ralf-Dieter Hilgers, and Nicole Heussen. Assessing the impact of selection bias on test decisions in trials with a
REFERENCES

Cabras:2017:VCM

McCandless:2017:CBM

Caimo:2017:BER

Duc:2017:SSN

Yang:2017:EED

Sun:2017:EEO

Anonymous:2017:IIr

Hélio Doyle Pereira da Silva, Carlos Ascaso, Alessandra Queiroga Gonçalves, Patricia Puccinelli Orlandi, and Rosa Abellana. A Bayesian

REFERENCES

REFERENCES

REFERENCES

Anonymous:2017:IIx

Simons-Morton:2017:DSA

Matthews:2017:SWD

Li:2017:ECR

Diaz:2017:DRI

Chen:2017:VSJ

Bantis:2017:ESR

REFERENCES

REFERENCES

REFERENCES

November 10, 2017. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

Anonymous:2017:IIz

REFERENCES

Conlon:2017:LBC

Petropoulou:2017:CHV

Timkova:2017:SCC

Barnett:2017:CSM

Liu:2017:MCR

Yoneoka:2017:MAS

REFERENCES

[2885] Thomas Permutt. Author’s reply to comments on “A taxonomy of estimands for regulatory clinical trials with discontinuations”. *Statistics in
REFERENCES

Matthews:2017:C

Colantuoni:2017:C

Govindarajulu:2017:LCEb

Anonymous:2017:IIbb

Dmitrienko:2017:EMI

Chuang-Stein:2017:CSN

Sankoh:2017:CME
Snapinn:2017:SRC

Dmitrienko:2017:MCS

Pencina:2017:NRI

Chipman:2017:SPI

Pencina:2017:DSI

Baker:2017:STT

vanSmeden:2017:ERN
[2899] Maarten van Smeden and Karel G. M. Moons. Event rate net reclassification index and the integrated discrimination improvement for studying

REFERENCES

[2912] Chien-Ju Lin and James M. S. Wason. Improving phase II oncology trials using best observed RECIST response as an endpoint by modelling

REFERENCES

Crowther:2017:PMS

Liu:2017:GSM

Anonymous:2017:Ibd

Zou:2017:MBC

Molins:2017:TSD

Doi:2017:BNT

REFERENCES

REFERENCES

Jha:2018:CCR

Mozumder:2018:DLI

Andrews:2018:VES

Silva:2018:TEP

Xie:2018:GLM

Giordani:2018:RTB

REFERENCES

[2958] Barbara Kitchenham, Lech Madeyski, and François Curtin. Corrections to effect size variances for continuous outcomes of crossover clinical tri-

REFERENCES

Chernyavskiy:2018:CPM

Gravel:2018:WEC

Wu:2018:DGE

Longford:2018:DTC

Li:2018:ENF

DePalma:2018:BME

Inan:2018:CLB

Deng:2018:HAC

Wu:2018:IGG

Li:2018:TPJ

Yan:2018:CMB

Whitaker:2018:IAS

Lu:2018:MAA

REFERENCES

Zhang:2018:RAI

Keown-Stoneman:2018:EDB

Yue:2018:SBH

Choo-Wosoba:2018:BAA

Proudfoot:2018:JMC

Shardell:2018:JME

An:2018:AUP

REFERENCES

[3004] Kylie E. C. Ainslie, Michael J. Haber, Ryan E. Malosh, Joshua G. Petrie, and Arnold S. Monto. Maximum likelihood estimation of influenza vaccine effectiveness against transmission from the household and from the

REFERENCES

Lyu:2018:ISR

Thomas:2018:PEW

Pateras:2018:DGM

Fournier:2018:CEA

Huang:2018:MST

Kim:2018:BSL

REFERENCES 549

REFERENCES

Lachin:2018:SSE

Powers:2018:SMH

Islas:2018:AES

Park:2018:CMA

Yuan:2018:SAS

Lu:2018:TCE

Martos:2018:DSA

REFERENCES

Liu:2018:PPI

Albert:2018:ERI

Smith:2018:EER

Wan:2018:BRG

Mahar:2018:BML

Wynants:2018:REM

Hatfield:2018:SCM

[3079] Laura A. Hatfield and Alan M. Zaslavsky. Separable covariance models for health care quality measures across years and topics. *Statistics in
REFERENCES

Hillis:2018:RBR

Yang:2018:SIR

Lin:2018:BRL

Zelnick:2018:LBA

Ren:2018:LNV

Krol:2018:MFJ

Li:2018:JAL

Hyun:2018:GME

Zhou:2018:PPM

Zhou:2018:CRN

Zhang:2018:QRV

Xu:2018:PHM

Schomaker:2018:BIW

REFERENCES

Jozani:2018:QRN

Maringe:2018:EVE

Andres:2018:CBO

Gabriel:2018:RLA

Horiguchi:2018:FCT

Pan:2018:SOA

REFERENCES

Tompsett:2018:URF

Moon:2018:TSC

Newsome:2018:ELT

Nguyen:2018:SPE

Su:2018:RAT

Quintero:2018:CHM

Wittenberg:2018:SSR

Jensen:2018:CAS

Thompson:2018:RAS

Sinnott:2018:PAS

Ge:2018:ELT

Luque-Fernandez:2018:TML

Su:2018:RFI

[3124] Cong Xu, Vernon M. Chinchilli, and Ming Wang. Joint modeling of recurrent events and a terminal event adjusted for zero inflation and a matched

Weiss:2018:BMA

Song:2018:UGA

Moellenhoff:2018:RAD

Chen:2018:MSB

Spagnoli:2018:BFM

Chatterjee:2018:GRZ

vanBreukelen:2018:EDC

[3143] Gerard J. P. van Breukelen and Math J. J. M. Candel. Efficient design of cluster randomized trials with treatment-dependent costs and treatment-

REFERENCES

Cameron:2018:ETS

Kimani:2018:PEF

Tang:2018:NSS

Jin:2018:DPC

Liu:2018:MIC

Deng:2018:DDP

REFERENCES

[3181] Geneviève Lefebvre, Mariia Samoilenko, Isabelle Boucoiran, and Lucie Blais. A Bayesian finite mixture of bivariate regression model for causal
References

572

Keogh:2018:MIC

Ngheim:2018:DEP

Taylor:2018:TAD

Anonymous:2018:RLB

Kim:2018:BSR

Wei:2018:BAS

REFERENCES

[3201] Monica Chaudhari, Edwin H. Kim, Prabhashi W. Withana Gamage, Christopher S. McMahan, and Michael R. Kosorok. Study design with staggered sampling times for evaluating sustained unresponsiveness to

Psioda:2018:PBA

Gregg:2018:LRT

Zhang:2018:PSE

Teng:2018:OSP

Lin:2018:QPO

Boatman:2018:ERC

Sperrin:2018:UMS

[3214] Matthew Sperrin, Glen P. Martin, Alexander Pate, Tjeerd Van Staa, Niels Peek, and Iain Buchan. Using marginal structural models to ad-

Klich:2018:UIG

Hoque:2018:MRE

Govindarajulu:2018:SAH

Jang:2018:OIA

Zou:2018:HHB

Bjornland:2018:PEP

Ghosh:2018:RCO

Li:2018:BLV

Ouyang:2018:BSF

Happ:2018:IMA

Ford:2018:CBC

Wan:2018:NNR

Chiu:2018:DEC

REFERENCES

Rhodes:2018:CEM

Korre:2018:GFT

Xu:2018:DCI

Wang:2018:AVE

Kunz:2018:AMA

Girling:2018:REU

Jones:2018:URE

Yu:2019:SIE

Hubbard:2019:BLC

Scosyrev:2019:PAM

Wang:2019:ECP

Lian:2019:BAC

Fellows:2019:RDS

Albert:2019:DAE

[3307] Samantha-Jo Caetano, David Dawe, Peter Ellis, Craig C. Earle, and Gregory R. Pond. Methods to improve the estimation of time-to-event

Yu-Bo Wang, Zhen Chen, Jill M. Goldstein, Germaine M. Buck Louis, and Stephen E. Gilman. A Bayesian regularized mediation analysis with
REFERENCES

He:2019:IUR

Araujo:2019:UWA

Villanueva:2019:MDG

Park:2019:PVS

Bracher:2019:CUR

Fernandez-Fontelo:2019:RLU

REFERENCES

REFERENCES

REFERENCES

Neelon:2019:MDF

Brookmeyer:2019:MML

Cho:2019:MAC

Narisetty:2019:SNI

deJong:2019:SSC

Wang:2019:IGE
REFERENCES

Cruz:2019:AHC

Saint-Hilary:2019:PPS

Ying:2019:TSR

Grand:2019:JMD

Innocenti:2019:RET

Shu:2019:WCI

REFERENCES

Hall:2019:MCT

Xiao:2019:RRO

Morris:2019:USS

Lee:2019:ACI

Zou:2019:SDB

Silva:2019:ASH

Wang:2019:ELM

REFERENCES

[3422] Neung Soo Ha and Joseph Sedransk. Assessing health insurance coverage in Florida using the behavioral risk factor surveillance system. *Statistics*

REFERENCES

Capistrano:2019:BEA

Lin:2019:IAI

Li:2019:ECA

Bretz:2019:C

Leahy:2019:ISA

Walter:2019:RTP

Mondol:2019:BRS

Tanniou:2019:LEP

Wang:2019:BNC

Hayashi:2019:PID

Wang:2019:MBM

Qiu:2019:CIT

REFERENCES

REFERENCES

10, 2019. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

Humphrey:2019:MLI

Cheung:2019:PCI

Zang:2019:BAM

Deng:2019:TER

Cole:2019:RWG

Araujo:2019:RCU

Sverdlov:2019:IUR

[3460] Oleksandr Sverdlov and Yevgen Ryeznik. Implementing unequal randomization in clinical trials with heterogeneous treatment costs. *Statistics in

REFERENCES

REFERENCES

[3512] Tanja Högg, Yinshan Zhao, Paul Gustafson, John Petkau, John Fisk, Ruth Ann Marrie, and Helen Tremlett. Adjusting for differential misclassification in matched case-control studies utilizing health administra-
REFERENCES

REFERENCES

[3525] Maja von Cube, Martin Schumacher, Sébastien Bûilly, Jean-François Timisit, Alain Lepape, Anne Savey, Anaïs Machut, and Martin Wolke-witz. The population-attributable fraction for time-dependent exposures

REFERENCES

20, 2019. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

[3545] Maximilian Pilz, Kevin Kunzmann, Carolin Herrmann, Geraldine Rauch, and Meinhard Kieser. A variational approach to optimal two-stage de-
REFERENCES

[Kim:2019:STC]

[Yarnell:2019:MVB]

[Prescott:2019:TTS]

[Meller:2019:JMP]

[Steyerberg:2019:AHI]

[Mandal:2019:STS]

Cécile Proust-Lima, Viviane Philipps, and Jean-François Dartigues. A joint model for multiple dynamic processes and clinical endpoints: Appli-

[3604] Yi Cai, Jing Huang, Jing Ning, Mei-Ling Ting Lee, Bernard Rosner, and Yong Chen. Two-sample test for correlated data under outcome-dependent sampling with an application to self-reported weight loss data.
REFERENCES

[3617] L. Nab, R. H. H. Groenwold, P. M. J. Welsing, and M. van Smeden. Measurement error in continuous endpoints in randomised trials: Prob-

Zhou:2019:UBB

Zhao:2019:QTE

Han:2019:NTM

Schmidt:2019:SCI

Lancker:2019:EFB

Sewell:2019:ANI

Siriwardhana:2019:PTS

10, 2019. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic). See [3555] and response [3650].

REFERENCES

