Applications [88, 129, 500, 335, 365, 57, 220, 533, 282, 419, 829, 202, 610, 433, 87, 121, 281, 754].

applied [524].

applying [237].

approach [710, 653, 440, 634, 303, 155, 93, 177, 353, 690, 738, 516, 464, 735, 246, 112, 24, 719, 620, 503, 10, 96, 852, 4, 383, 267, 708, 18, 425, 860, 141, 390, 1, 393, 385, 681, 726, 397, 629, 858, 110, 886, 47, 773, 373, 361, 730, 666, 179, 242].

approaches [218, 67, 288, 356, 346, 357, 212, 41, 673, 649].

Approximate [803, 808, 634, 20, 370].

approximation [187].

April [795].

arbitrarily [547].

area [310, 108, 256, 387].

areas [176].

arm [485, 211, 214, 216, 73, 594, 739, 770].

arm-based [196].

Armitage [795].

arms [659].

array [507].

arthritis [524, 133].

article [473].

ascertained [47].

Ascertaining [233].

ascertainment [402, 167].

ask [15].

aspects [507].

assays [45].

assess [781].

Assessing [688, 297, 892, 644, 877, 315, 494, 493, 863, 403, 54, 30, 42, 303, 249, 614, 361, 875, 505].

Assessments [565].

assignment [382, 345, 373].

assisted [285].

Association [38, 137, 736, 94, 195, 468, 778, 252, 335, 774, 300, 548, 434, 243].

assumption [831, 97].

assumptions [396].

asthma [215].

asthma-related [215].

atherosclerosis [524].

attributable [858].

attribute [209].

AUC [281, 747].

audiology [607].

augmentation [240].

augmented [388].

Aurélien [181].

AUROC [375].

Austin [321].

autoantibodies [714].

auxiliary [777, 37].

average [396, 892, 460, 716, 214].

averaged [733].

averaging [815].

Avoiding [701].

B [326, 328, 705].

Backward [595].

balance [861, 168, 663].

Balancing [218, 589].

bandit [429].

BAREB [147].

baseline [168, 725, 573, 138].

Basic [151].

basket [230, 761].

Bayes [671, 886].

Bayesian

Bayesian-bandit [429].

be [676, 256].

Belgium [251].

benefit [358, 877, 346, 876].

benefits [366].

Bernstein [370].

Best [592, 850].

between [455, 659, 136, 546, 778, 252, 771, 864, 146, 224, 176].
7

[185, 426, 405, 81, 279, 108, 301, 122, 176, 882]. cutoff [426, 603].
cutoff-points [603]. cystic [62].
daily [305]. Data

[312, 592, 786, 722, 109, 719, 494, 202, 875]. decision-analytic [719].
Decision-Theoretic [312]. decisions [423]. decomposition
dependence [427]. dependent
[832, 383, 390, 160, 376]. determining [723]. Developing
[845, 167, 720, 783, 740]. diffusion [84]. dilution [483]. dimensional

[358, 8, 578, 577]. Network [874, 129, 184, 353, 844, 8, 578, 516, 824, 577, 540, 90, 447, 84, 764, 781, 669, 726, 508, 779, 54, 224, 196, 414, 537, 664].

networks [308, 516, 491, 775, 664].

neural [537, 664].

neurobehavioral [778].

neurocysticercosis [216].

neurodegeneration [184].

neuroimaging [541].

neuroscientific [336].

no [618, 616, 619, 683].

node [824].

nodes [491].

noise [109, 445, 191].

noisy [531, 41].

non [780, 643, 787, 823].

non-inferiority [643].

non-normal [787].

non-proportional [780].

non-terminal [823].

noncompliance [892, 96, 599, 347, 293].

nonignorable [118, 330, 379, 174, 126].

nonindependent [42].

noninferiority [346].

noninformative [18].

Nonlinear [638, 313, 257, 143, 514].

nonmonotone [818].

Nonparametric [136, 871, 154, 490, 451, 690, 849, 357, 813, 537, 730, 272].

nonpharmaceutical [893].

nonprobability [647].

nonrandomly [511].

nonrare [102].

nonresponders [255].

nonstationary [784].

normal [787, 71, 427].

normal/independent [511].

normalized [648].

normally [214].

normative [410].

nosocomial [123].

not-at-random [696].

Note [56, 118, 330, 379, 174, 126].

Novel [66, 575, 605, 155, 124, 719, 468, 425, 457, 49].

Nowcasting [554].

null [890].

number [332, 832, 468].

numbers [391].

numerical [179].

Nutrition [789, 876].

observation [137, 242].

observational [311, 337, 171, 308, 5, 269, 613, 227, 460, 151, 104, 748, 152, 678, 699, 381].

observations [824, 200, 135, 623, 612, 655].

observed [534, 445, 459, 165, 727, 758].

observers [832].

occasion [795].

odds [528, 831, 861, 547].

One [170].

one-sided [514].

One-stage [170].

one-way [843].

ongoing [376].

Online [852, 4, 376].

only [88].

onset [85, 343, 865].

One [170].

one-sided [514].

outbreak [85, 145, 554, 852, 4, 706].

outcome [334, 261, 789, 675, 192, 436, 462, 639, 208, 646, 868, 517, 102, 80, 263, 763, 746, 884, 346, 584, 375, 826, 572, 342, 689, 368, 433, 222, 381, 414, 420, 271].

outcome-dependent [572, 433].

quasi-likelihood [634]. questions [317, 403]. Quicker [68].

semi-parametric [887]. semicompeting [207]. semicontinuous [10, 126].
Semiparametric [266, 567, 248, 199, 569, 459, 53, 743, 553, 512, 594, 821, 69,
112, 529, 161, 787, 549, 466, 746, 860, 805, 368, 673, 121]. senior [335]. sense
[136]. sensitivities [546, 740]. Sensitivity
[192, 837, 227, 23, 546, 246, 608, 198]. seq [571]. sequence [123]. Sequential
[841, 525, 888, 382, 345, 144, 250, 785, 461, 168, 792, 877, 465, 663, 34, 627,
652, 114, 122]. sequentially [102]. Serial [360, 427]. series
[701, 854, 441, 72, 612]. seroconversion [191]. Set [754, 850, 834, 397].
Set-regression [754]. sets [873, 538]. setting [735]. settings
[396, 464, 893, 89]. sham [531]. Shan [205]. shapes [398]. Shared
shortest [603]. should [676, 256]. shrinkage [127, 695]. shrinker [302].
significance [45, 6, 16, 361]. SIM [793]. simple [396, 151, 119, 515].
simplified [393, 713]. Simulating [524]. Simulation
[394, 745, 650, 303, 448, 358, 257, 708, 315, 494, 493, 866].
simulation-extrapolation [708]. simulation-free [303]. simulations
[125, 876]. Simultaneous [521]. simultaneously [100, 582, 41, 397].
single-index [186, 731]. Sir [322, 323, 324]. site [847]. Six [264]. Six-way
[264]. size [334, 850, 698, 817, 23, 659, 144, 130, 57, 107, 801, 466, 622, 238,
499, 225, 390, 884, 15, 584, 375, 826, 304, 209, 893, 606, 439, 160, 782, 697,
655, 277, 806, 138, 878]. sizes [424, 229, 782, 833, 214]. skew [511, 427].
skew-normal [511, 427]. skew-normal/independent [511]. skewed [93].
Slaiming [531]. sleep [654]. slope [530]. slope-based [530]. Small
[108, 650, 382, 189, 345, 178, 15, 680, 391]. small-sample [189]. SMARTs
source [640]. sources [640]. South [798]. Space [418, 503]. Space-time
[418]. Sparse [522, 57, 849, 456, 378, 73, 561]. Spatial
[421, 511, 718, 398, 78, 745, 184, 772, 251, 508, 275, 453, 682]. spatially
[562, 717]. Spatio [385, 354]. Spatio-temporal [385, 354]. Spatiotemporal
specification [195]. specificity [546, 604]. spectral [441]. spherical [197].
stage [504, 593, 883, 291, 172, 168, 153, 518, 170, 846, 241, 3, 113]. stagewise

References

REFERENCES

REFERENCES

[42] Ming Wang, Qi Long, Chixiang Chen, and Lijun Zhang. Assessing predictive accuracy of survival regressions subject to nonindependent censor-

REFERENCES

Olive D. Buhule, Hyoyoung Choo-Wosoba, and Paul S. Albert. Modeling repeated labor curves in consecutive pregnancies: Individualized prediction of labor progression from previous pregnancy data. *Statistics in

Peter C. Austin, Douglas S. Lee, and George Leckie. Comparing a multivariate response Bayesian random effects logistic regression model with

REFERENCES

[113] Stephen D. Walter. Correction to Walter SD, Turner RM, Macaskill P. Optimising the two-stage randomised trial design when some participants are indifferent in their treatment preferences (2019). *Statistics in Medicine*
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cespedes:2020:RRC

Austin:2020:GCC

Huang:2020:HDS

Dissanayake:2020:ESA

Stare:2020:RCS

Ford:2020:MVI

Abuzaid:2020:IDB

Teunis:2020:ESR

Cro:2020:SAC

Wang:2020:RBI

Vaughan:2020:EIS

Li:2020:SAC

Wang:2020:ICP

Lee:2020:EUC

Shan:2020:CEI

Gronsbell:2020:RLG

Thomadakis:2020:MCS

Li:2020:SGF

Gruber:2020:UEH

Shams:2020:DSS

Siegel:2020:BMM

Wu:2020:VSH

Robertson:2020:GAC

Tang:2020:CIP

Zhang:2020:CAS

Al-Wahsh:2020:BAP

REFERENCES

[221] Svetlana Cherlin and James M. S. Wason. Developing and testing high-efficacy patient subgroups within a clinical trial using risk scores. *Statistics
REFERENCES

Engebretsen:2020:PLM

Soper:2020:HMM

Hoogland:2020:HMP

Li:2020:SSC

Joseph:2020:TGP

Zhang:2020:PED

REFERENCES

[254] Jaron Arbet, Matt McGue, and Saonli Basu. A robust and unified framework for estimating heritability in twin studies using generalized estima-

[267] Xiang Li, Kevin Liu, and Hong Tian. Comments on “Critical aspects of the Bayesian approach to phase I cancer trials”. *Statistics in Medicine,

REFERENCES

REFERENCES

REFERENCES

Senarathne:2020:BRB

Ozturk:2020:MAQ

Schnitzer:2020:TDT

Grill:2020:ACC

Gueorguieva:2020:TPM

Qu:2020:UAS

[299] Yongming Qu, Yu Du, Ying Zhang, and Lei Shen. Understanding and adjusting for the selection bias from a proof-of-concept study to a more confirmatory study. Statistics in Medicine, 39(30):4593–4604, December
REFERENCES

Sun:2020:GWA

Stevens:2020:CKM

Heo:2020:EMI

Braun:2020:SFA

Rychtar:2020:ESV

Xue:2020:MDW

REFERENCES

[312] Riten Mitra, Peter Müller, and Arijnita Bhattacharyya. Bayesian decision-theoretic methods for survival data using stochastic optimiza-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chaimani:2021:MCA

Lee:2021:CST

Pang:2021:SBA

Martin:2021:CPM

Oganisian:2021:PIB

Giai:2021:NBP

Aouni:2021:MAI

Tran:2021:SCS

Yang:2021:LBA

Loh:2021:CSS

Oh:2021:RRC

Shi:2021:FPCa

[371] Yuhan Zou, Zuoxiang Peng, Jerry Cornell, Peng Ye, and Hua He. A new statistical test for latent class inensored data due to detection
Kim:2021:BGA

Wu:2021:PCD

Zeng:2021:PSW

Riley:2021:NEC

Veres-Ferrer:2021:EMO

Zhang:2021:MES

Liu:2021:SNM

Lihui Liu, Hong Gu, Johan Van Limbergen, and Toby Kenney. SuRF: a new method for sparse variable selection, with application in microbiome

REFERENCES

[397] Di Shu, Peisong Han, Rui Wang, and Sengwee Toh. Estimating the marginal hazard ratio by simultaneously using a set of propensity score

REFERENCES

Webster-Clark:2021:UPS

Kasza:2021:ICS

Lu:2021:ODC

Bantis:2021:LRO

Schumacher:2021:SMS

Jia:2021:CSQ

Shrestha:2021:FMJ

Gupta:2021:FMJ

Sabour:2021:CPM

Martin:2021:ARS

Tao:2021:TWT

Yuan:2021:DRH

[441] Zeda Li, Scott A. Bruce, Clinton J. Wutzke, and Yang Long. Conditional adaptive Bayesian spectral analysis of replicated multivariate time

Conover:2021:PST

Altzerinakou:2021:CPJ

Weibull:2021:MMI

Chen:2021:PNI

Conner:2021:EMR

Utazi:2021:DLE

REFERENCES

REFERENCES

[467] Ryunosuke Machida, Yosuke Fujii, and Takashi Sozu. Predicting study duration in clinical trials with a time-to-event endpoint. *Statistics in
REFERENCES

[468] Zhengbang Li, Sanan Qin, and Qizhai Li. A novel test by combining the maximum and minimum values among a large number of dependent Z-scores with application to genome wide association study. Statistics in Medicine, 40(10):2422–2434, May 10, 2021. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

REFERENCES

[487] Yaoyuan Vincent Tan, Carol A. C. Flannagan, Lindsay R. Pool, and Michael R. Elliott. Accounting for selection bias due to death in estimating the effect of wealth shock on cognition for the health and retirement

[500] Hyunwook Koh, Susan Tuddenham, Cynthia L. Sears, and Ni Zhao. Meta-analysis methods for multiple related markers: Applications to microbiome studies with the results on multiple α-diversity indices. *Statistics
REFERENCES

REFERENCES

Zhou:2021:MOS

Zhang:2021:SYP

Goyal:2021:IPS

Jia:2021:ILH

Pilz:2021:OPA

Kojima:2021:ECP

Zou:2021:CIE

Kühnel:2021:SMA

Feng:2021:SGR

Rossel:2021:CSM

Simonetto:2021:SDA

Kormaksson:2021:SKC

Hemming:2021:CHM

[533] Jialiang Li, Yaguang Li, Baisuo Jin, and Michael R. Kosorok. Multithreshold change plane model: Estimation theory and applications in subgroup

Yi Gao and Lili Tian. Confidence interval estimation for sensitivity and difference between two sensitivities at a given specificity under tree or-
REFERENCES

Wang:2021:RAA
110

Tran:2021:MAA

Jo:2021:BSM

Seaman:2021:UGL

Bhatt:2021:MSM

Soave:2021:STS

[559] Gregory Haber, Yaakov Malinovsky, and Paul S. Albert. Rejoinder to discussion on Is group testing ready for prime-time in disease identifica-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Shen:2021:JML

Tang:2021:RBT

Kaciroti:2021:BSA

Wang:2021:BHM

Shi:2021:IFM

Mainzer:2021:CMI

REFERENCES

Schofield:2021:RRL

Jang:2021:BMI

Liu:2021:PSB

Lawrence:2021:SSA

Walter:2021:EDT

Mallick:2021:RBL

[637] Jing Zhang, Jing Ning, Xuelin Huang, and Ruosha Li. On the time-varying predictive performance of longitudinal biomarkers: Measure and

REFERENCES

REFERENCES

REFERENCES

[663] Mingya Long, Liuquan Sun, and Qizhai Li. k-resolution sequential randomization procedure to improve covariates balance in a randomized ex-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Daisuke Yoneoka, Takayuki Kawashima, Koji Makiyama, Yuta Tanoue, Shuhei Nomura, and Akifumi Eguchi. Geographically weighted generalized farrington algorithm for rapid outbreak detection over short data

REFERENCES

20, 2021. CODEN SMEDDA. ISSN 0277-6715 (print), 1097-0258 (electronic).

REFERENCES

[732] Yolanda M. Gómez, Diego I. Gallardo, Jeremias Leão, and Vinicius F. Calsavara. On a new piecewise regression model with cure rate: Diag-

Zou:2021:BID

vandeVen:2021:CST

Nuno:2021:CRT

Chen:2021:EOT

Yang:2021:SRA

McAndrew:2021:ASE

Arambepola:2022:SSD

REFERENCES

142

Mrkvicka:2022:NMM

Takeda:2022:CHB

Du:2022:ODT

Li:2022:CDF

Ollier:2022:PPM

Kang:2022:JMM

REFERENCES

[772] Jin Jin, Lin Zhang, Ethan Leng, Gregory J. Metzger, and Joseph S. Koopmeiners. Bayesian spatial models for voxel-wise prostate cancer classifica-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yamaguchi:2022:MIL

Razaee:2022:NBM

Grayling:2022:RAI

Shapland:2022:PLB

Hughes:2022:CIE

Chen:2022:LCT

REFERENCES

Wang:2022:BTM

Riley:2022:MSS

Li:2022:EIM

Clements:2022:RSB

Mrkvicka:2022:CDB

Dablander:2022:PPT

154

REFERENCES

[843] Neha Agarwala, Junyong Park, and Anindya Roy. Efficient integration of aggregate data and individual participant data in one-way mixed mod-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Maturo:2022:PRF

Zhang:2022:BHM

Chen:2022:BTS

McMenamin:2022:SSE

Bhaduri:2022:ESE

Tayob:2022:MPE

REFERENCES

[893] Justin K. Sheen, Johannes Haushofer, C. Jessica E. Metcalf, and Lee Kennedy-Shaffer. The required size of cluster randomized trials of non-