A Complete Bibliography of Publications in the
ACM Symposia on Theory of Computing (STOC) for 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 October 2017
Version 1.09

Title word cross-reference

#CSP [DR10].
1 [Bel12]. 2 [CST13, GKL12], $2^{\log^{1-r} n}$ [KPV12]. 3 [ASSS12]. 4 [GKL12], Δ [JJUW10]. ϵ [SA12]. F_p^n [HL11], h [DHK11]. $K_{IP11, ASSS12, BCC10, COP12, LS13, Mol12, MS11, Tho13}$. k^2 [BDF11].

$O(m)$ [OSV12]. $o(n)$ [CS13a]. $o(n^{1/2})$ [iKK11]. $O(n^{1/4})$ [BCC10]. $o(n \log n)$ [GKK10]. $O(nm)$ [Orl13]. $p < 2$ [Kar11]. R^3 [HJN12]. s [AKS12]. t [AKS12].

- [AKS12]. -approximation [iKK11, SA12]. -certificates [Bel12].
base [PDT10]. based
[BSG13, BRS10, DK11, GVW13, IP11, MY11, MV10]. bases [CKN13].
basing [AGG10]. Bayesian [BCGL12, HLT10]. be [RK11].
Beating [HR12]. better [Orl13]. Beyond [HR13, CCD13]. bidders
binomial [DDS12]. bipartite [GKK10, KMT11, MY11, SA12]. Black
[SIV11, CIL12, CPS13, Goy13, WO11, AFW12]. Black-box [SV11, CIL12].
[CR11, FGR13, GW12, GX13, VZ10]. bounded
[BHM10, GHK12, GTW13, Hlr10, KRR13, KMSV10, SS11, Yos11].
bounded-degree [Yos11]. bounded-depth [GHK12]. Bounding
[DHK10b]. bounds [ACER11, ASS12, Ajt13,ACKS13, BDYW11, BBI12,
BDL13, BKS12, B13b, CS13b, CP12, CLP10, FMP12, FHZ11, GHK12,
K13b, LS11, LW11, NN13, Pat10, Raz10, Sh10, Sh13, Wil10, WZ12]. box
[CIL12, CPS13, Goy13, SV11, WO11]. BQP [Aar10]. branching
[DMPY12, ESY12]. Breaking [BDF11, iKK11]. Budget
[BCGL12, BGG10]. buffer [ACER11, ACER12]. buffering [VZ10]. build
[AN12]. Byzantine [KS13, MH13].
computation [Ajt11, Ajt12, BGJK12, CHHKM12, GHW11, GJ10, HR13, HRU13, KLO10, LATV12, RVW13]. computational [AA11, DV12].

[RW13]. dice [VV12]. dichotomy [CGW13]. different [ABW10].
Differential [DNPR10, HRU13, HT10, NTZ13, Ull13]. differentially
[BDKT12]. dimension [GS11]. dimensional [BIKK12, CDW12, Kar11].
dimensionality [BGK12, NN13]. dimensions [COW13]. direct
[Kla10, She11]. Directed [DK11, Ber13]. directional [She13]. discrepancy
[MN12]. discrete [BL13, DMN13]. disjoint [iKK11]. disjointness
[Kla10, She12b]. distance [ACG12, CR11, HPR13, IP11]. distances
[AGMP13]. distortion [Fhs11, LS11, MM13]. Distributed
[KLO10, SHK+11, GHW11, WZ12]. distributions [BL13, DDS12, KMT11].
[LS11]. doubling

earth [IP11]. easy [DFK11, Hae11]. Edge [KL12, iKK11]. edge-disjoint
[iKK11]. edit [AGMP13]. Efficiency [HRV10, BSCGT13]. Efficient
[NRV13, FHS11, FGFL13, ST13]. Efficiently [KMV10]. eigenvalues
[LRTV12]. Eighth [ACM06]. Electrical [CKM+11, LRS13]. elimination
[Ajt13]. ellipsoid [CFJ+10]. embedding [LS11]. embeddings
[FHS11, MM13, SW11]. encryption
[GGSW13, GKP+13, GVW13, LATV12]. enough [CFW12]. entangled
[AGGM10]. err [BCZ13, GHK+12, HL11, KS10, Wos13].
Euclidean [ES13, HPR13]. evasive [DL12]. Every [BFH+13, NS11, Yos11].
Exact [HKL+11, Amb13, BGPW13]. excluded [GM12]. exclusion
[BBJK12, GW12]. exhaustive [Wil10]. existence [KLP12]. expansion
[BY12, RS10]. expected [KS13]. Explicit [BI13b, BDF+11, FHS11].
explicitly [Ta10]. exponential [BNS13, FMP+12, Li13, MV10, OSV12].
exponentially [RK11]. expressions [MMN10]. extended
[Ajt12, BNT13, Bel12, Ber13, BM13, CGW13, FMP+12, HKL+11, Kay12,
KS13, KNP11, LW11, LPS13, NSV11]. Extending [CKM+13]. Extensions
[LM10b]. external [VZ10]. extractors [DV10, Li12, Li13, ZBS11].

failure [DP10]. falsifiable [GW11]. families [BDL13]. family [BSGK+13].
fan [GKL12, KMSV10]. fan-in [GKL12, KMSV10]. fanin [SS11]. Fast
[CKL12, CKN13, KNPW11, LPS13, RW13, CHHKM12]. Faster
[KMP12, Mad10, CKM+11, Wil12]. feasible [BCGL12]. few [Hua13].
[PT11a]. Finding [CCVV12, GiKMW11]. Finetti [BH13b]. fingerprints
Gabidulin [GX13]. games
[AGMS11, BGM13, HKL+11, KV11, OW12, RS10]. gap [CR11, KLL+13].
[App12, GMRZ11, HRV10, KNP11, MZ10]. Geometric
[BI11, BI13b, GX13, SA12, Var10]. geometry
[BDYW11, BSGK+13, HT10, NTZ13]. Gibbard [MR12]. Global
[CHHKM12]. Going [COP13]. good [KL12]. gossip [Hae11]. gradient
[CCL13]. grammars [ESY12]. Graph
[RS10, CC13, Chu11, FHHP11, iKW10, iKY13, Mad10, Mil13, Mol12].
graphs [ACG12, AMS12, BHM10, BGT10, Ber13, BP11, CCEL12, Chu12b,
DHik11, DP10, Ek13, GKK10, GM12, GTW13, INSWN11, KL12, KMS13,
NS11, RST10, RW13]. gross [CCL13]. Grothendieck [NRV13]. ground
[BH13a]. group [KNP11]. groups [MV13].

halfspace [MN12]. halfspaces [DDFS12, She10]. Hamiltonicity [CKN13].
Hamming [CR11]. hard [Ull13]. Hardness
[BHP10, AGGM06, AS10, BLP+13, CCEL12, CHSS11, GTW13, HN12,
KM11, KPV12, OW12, SHK+11, Sve10, AGGM10]. hashing [PT11b]. heaps
[BLT12]. heterogeneous [BGGM10]. hidden [AC12]. hierarchy
[Aar10, DvM10]. High [KSY11, BCC+10, HL11, Kar11, KS10]. High-rate
[KSY11]. higher [COW13, KLL+13, LGT12, LRTV12]. higher-order
hitting-sets [ASS12]. holds [BI13a]. HOM [GGR10]. homeomorphism
[AGMS11]. homologous [DHK10a]. Homomorphic [AGMP13, LATV12].
human [FT11]. Hypercontractivity [BBH+12]. hypercube [CS13].
hypergraphic [GORZ12]. hypergraphs [GW10, KKM13]. hypergrids
[CS13].
ideal [HKT11]. identical [Sve10]. identities [HT12]. identity
[FS12, KMSV10, SV11, SS11]. implementations [GHW11]. implies
[BGK12, Wil10]. impossibility [BP13, Dob11]. Improved
[BR12, INSW11, KLL⁺13, Orl10, BGRS10, GX12]. improvement [Li13].
improvements [HRV10]. Improving [AKS12, Wil10]. inapproximability
[Yos11]. incoherent [HR12]. independence [BO10a, Tho13]. independent
[Ch13, CHMS13, Li13]. individual [CCV12]. induced
[AMS12]. inequalities [KW12, LGT12]. inequality [KLL⁺13, NRV13]. information
[Ajt11, Bra12, BM13, BGW13, CFJ⁺10, FHS11]. Inner [CCG⁺11]. input
[CW13, MM13]. input-sparsity [MM13]. inputs [FT11, HW13, Hua13]. instances
[Hua13]. integral [CCEL12]. integrality [GORZ12]. Interactive
[Bra12, KR13a, RR10, RWV13, BCR10, BR11, GW11]. International
[ACM10, ACM11, ACM12]. interpolation [BGT10]. intersection [She10].
invariance [HKM10]. invariant [BFH⁺13, HL11]. Inverting [TS13].
irreducible [Efr12]. isomorphism [CST13, GM12]. isoperimetric [RST10].
item [PP11]. items [BGGM10].

[ACM10, ACM11, ACM13].
k-SAT [COP13]. key [ABW10, LLW11].

labeling [BKS12]. labels [ACG12]. Lanczos [OV12]. lanky [ES13].
Laplacian [CMF⁺11]. Large [CCL13, AMS12, Mill13, OR10, Woo13].
Large-tree-width [CC13]. lattice [CMS13, MV10]. laws [BO10b]. LDPC
[BH11, DDS12, BLP⁺13, KMW10]. Lee [SS13]. lemma [AKS10, HS13].
lifted [BSK13⁺]. limit [AFW12]. Limits
[Pas11, BGT10, CIL12, LM10b, VZ10]. Lindenstrauss [DKS10]. Linear
[EK13, FMP⁺12, AA11, BDKT12, DHK10a, DK11, GMSV12, GHK10,
HP13, HW13, KOS13, KM11, KMS13, KS10, MM13, NSV11, SA12, Woo13].
Linear-time [EK13]. Linearizable [GHW11]. linkage [KW10]. Lipschitz
[CS13b, KM13]. List [GX13, GHK10, GX12, KS10, Woo13].
list-decodability [GKH10]. list-decoding [KS10]. LLL [NSV11].

LLL-reduction [NSV11]. Load [GW10, LW11]. Local
[KS10, AKS10, App12, BH13b, HS13, LS10]. locality [App12]. locally
[BDYW11, BSGK⁺13, BFH⁺13, Efr12]. locking [FHS11]. log [BCC⁺10].
Low [CW13, JNS13, MM13, AN12, App12, BGK12, DDFS12, FHS11, FS12].
low-dimensionality [BGK12]. Low-distortion [MM13, FHS11]. Low-rank
[JNS13, FS12]. low-weight [DDFS12]. Lower
[Ajt13, ASSS12, BBI12, BKS12, BI13b, CR11, FGR⁺13, FMP⁺12, FH11,
GW12, KR13b, NN13, Pat10, Raz10, She13, VZ10, Wil10]. LP [BGRS10].
LP-based [BGRS10]. LPs [MY11].

[LMM13, Vég10]. node-capacitated [LMM13]. node-connectivity [Vég10]. nodes [Chu12a]. noise [DHK10b, She12a]. Non

pricing [AFW12, CHMS10]. principle [HKM10]. Prior
[CHM13, LR12, BCGL12]. Prior-free [LR12, BCGL12].
Prior-independent [CHMS13]. priority [Tho13]. Privacy
[CKOR10, Smi11, DNPR10, HT10, HRSU13, Li12, NTZ13, RR10, Ull13].
Privacy-preserving [Smi11]. private
[BDKT12, HR13, HRSU13, MN12, Woo11]. Privately [HRSU11, KRSU10].
Probabilistic [KLP12]. probabilistically [BSCGT13].
probabilistically-checkable [BSCGT13]. probe [Lar12]. problem
[BGK12, BCY11, BNS13, BKS12, BC10, COW13, Chu11, DDFS12, GGRÂÂÈ0, HWY10, iKK11, KP112]. problems
[HK12, CFW12, HPR13, Hir10, Mad10, MM12, MV10, Mil13, Pat10, Vég12].
Proceedings [ACM06, ACM10, ACM11, ACM12, ACM13]. processes
[ESY12]. Product [BH13a, CCG+11, Kla10, She11]. Product-state
[BH13a]. products [KNP11]. profile [RST10]. programming [DHH10a].
programs [Bel12, DK11, DMPY12]. projections [Kay12]. prone [DLP10].
proof [BHP10, BCCT13, HNN2, iKK10, iKK11]. proof-carrying [BCCT13].
proofs [AM12, BBH+12, BSCGT13, HT12, HNN2, RVW13, Wil13].
propeller [HJN12]. properties [HL11, Mar10]. property
provably [Pas11]. property [AGKM12]. proximity [RVW13]. prune
[VZ12]. Pseudorandom [App12, GMRZ11, KNP11, MZ10, HRV10, VZ12].
PSPACE [JJUW10]. Public [ABW10]. Public-key [ABW10].
QIP [JJUW10]. quadratically [KMP12]. quantifier [Ajt13]. quantitative
[MK12]. Quantum [AC12, BH13b, RK11, AD10, AKS10, Amb13, BCY11, BH13a, DV10, She11, TS13, VV12]. quartic [HS10]. Quasi
quasi-uniform [Var10]. Quasipolynomial [BW13, BCY11, CST13].
Quasipolynomial-time [BW13, BCY11, CST13]. queries
[AdFM11, BDKT12, Mar10, Ull13]. query [DV12, HRSU11, She11].
radius [RW13]. Ramanujan [KL12]. RAMs [Ajt13, Ajt10]. Random
[CMSS13, App12, BGT10, GW10, GKH10, HKT11, KRSU10, KS10, MY11, MM12, Moli2, VV12, W11]. randomized
[DRY11, FHZ11, GW12, GHH11, HR12, LW11]. range [Lar12]. Rank
[AGMS11, BDY11, ALSV13, BI11, CKL12, CW13, FS12, JNS13, Raz10].
Reconstruction [GKL12]. recovery [FS12, GLPS10, IP11]. Recursive
reductions [CIL12]. Reed [GX13]. regime [HL11]. regression
[CW13, MM13]. regular [BI13a, GKK10]. related [RST10]. relations

Simplex [BNS13, FHZ11]. simplifying [VZ12]. simulation [CPS13, Goy13].

sparse [BGT10, DKS10, GLPS10, HIKP12, IP11, LRTV12, NTZ13, RW13]. Sparsest [GTW13, KM13]. sparsification
[DV10, FHHP11, KMST10, LM10b]. sparsifiers [Chu12a]. Sparsity
[NN13, CW13, MM13]. spectra [KRSU10]. Spectral
[Kan10, KLL+13, LGT12, Mil13, OSV12, RST10]. split [CCVV12]. spread
[DF11]. spreading [CHHKM12, CLP10]. squares [BBH+12, HWY10].

stablest [DMN13]. stage [CST13]. standard [Pas11]. state [BH13a]. states
[BH13a]. Statistical [FGR+13, GHRU11, Smi11]. Steiner
[BW13, BHM10, BGRS10, CST13, Chu12a, GORZ12, GGK13]. STOC
STOC’12 [ACM12]. Stochastic [LY13, ESY12, HKL+11]. storage
[DV10]. streaming [MM10]. streams [KNPW11]. stretch [AN12, App12]. Strict
[BLT12]. Strong [BH13a, She11, FMP+12, Kla10]. stronger [RK11].

Strongly [Vég12, MV11]. structural [iKY13]. Structure
[GM12, CMSS13, FG10, HS10]. Structured [KMS13]. structures [KLP12].
subcodes [GX13]. subdivision [iKY13]. subdivision-freeness [iKY13].
Subexponential [FHZ11]. Subgraph [KMST10, BCC+10]. subgraphs
[GiKMW11, GM12]. subgroups [Cha13]. sublinear [KSY11, RVW13].
sublinear-time [KSY11]. sublogarithmic [DF11]. Submodular
[VCZ11, BH11, Dobb11]. subset [Tho13]. Subspace [DL12, SW11, MM13].
subspaces [AC12]. substitutes [CD13]. success [Mon10]. Succinct
[BL13, GW11, GKP+13, HN12]. suffice [GHW11]. sum [BBH+12, HWY10].
sum-of-squares [BBH+12, HWY10]. sums [Tho13]. Superlinear
[Amb13, BBI12]. superpolynomial [BBI12, Wil10]. support [VV11].
switching [CP12]. symmetric [KL12]. Symposium
[ACM06, ACM10, ACM11, ACM12, ACM13]. systems
[CST13, CKM+11, KOSZ13, MH13].

table [LPS13]. tables [KRSU10]. tabulation [PT11b]. take [PT11a].
Tensor-rank [Raz10]. tensors [FS12, Kan10]. test [GM12]. testable
[BFH+13, NS11]. tester [CS13a]. Testing
[iKY13, CS13b, CST13, FS12, HL11, KMSV10, KS10, SV11, SS11]. tests
[Ajt12]. their [AMS12, BBH+12]. theorem
[BP11, GM12, iKW10, Kla10, LMM13, MR12]. theorems
[BH13b, She11, SS13]. theoreticians [Mon10]. Theory [ACM06, ACM10,
ACM11, ACM12, BI11, BI13b, KC10, iKY13, Mil13]. thin [ES13].

Thirty [ACM06]. Thirty-Eighth [ACM06]. threshold
[COP13, COP12, DHK+10b, MZ10, Mol12]. thresholds [GW10]. Tight
[ACKS13, BBJK12, BKS12, CP12, GHK+12, LW11, WZ12, ACER11, CLP10,
GW12, VZ10]. Time [BBI12, AGMS11, BW13, BBJK12, BGK12, BCY11,
BC10, CST13, CW13, DvM10, DFF11, EK13, ESY12, GLPS10, GKK10,
HPR13, HN12, KKM13, KOSZ13, KS13, KMS13, KSY11, MM13, MV10,
NSV11, OSV12, Or113, PT11a, RVW13, SA12, Yos11]. Time-space

Yang [SS13]. York [ACM12].

Zero [BO10b]. Zero-one [BO10b].
References

REFERENCES

Adsul:2011:RBG

Ajtai:2010:ORC

Ajtai:2011:SCI

Ajtai:2012:DVN

Ajtai:2013:LBR

Ambainis:2010:QLL

An:2012:ICA

REFERENCES

REFERENCES

[BC10] Peter Bürgisser and Felipe Cucker. Solving polynomial equations in smoothed polynomial time and a near solution to Smale’s 17th

REFERENCES

REFERENCES

REFERENCES

1-4503-1245-4. LCCN ???? URL http://www.gbv.de/dms/tib-ub-hannover/63314455x..

Brunsch:2012:ISA

Braverman:2012:IIC

Ben-Sasson:2013:CEP

Ben-Sasson:2013:NFL

Babai:2013:QTC

Bourgain:2012:ME

Cai:2012:CCC

REFERENCES

Chekuri:2013:LTG

Cheung:2013:TBG

Chalermsook:2012:AAH

Cole:2011:IPS

Cebrian:2012:FRB

Cai:2012:ACM

Cardinal:2010:SUP

REFERENCES

REFERENCES

Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching networks via Fourier analysis. In ACM [ACM12], pages
REFERENCES

Chung:2013:NBB

Chen:2013:CNM

Chakrabarti:2011:OLB

Chakrabarty:2013:MTB

Chakrabarty:2013:OBM

Chen:2013:MSD

Clarkson:2013:LRA

De:2012:NOS

Anindya De, Ilias Diakonikolas, Vitaly Feldman, and Rocco A. Servedio. Nearly optimal solutions for the chow parameters

Daskalakis:2012:LPB

Doerr:2011:SNS

Dobzinski:2011:OAC

Demaine:2011:CDH

Dey:2010:OHC

Diakonikolas:2010:BAS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[GKK10] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings in $o(n \log n)$ time in regular bipartite graphs. In ACM
REFERENCES

Gupta:2012:RDM

Goldwasser:2013:RGC

Gilbert:2010:ASR

Grohe:2012:STI

Goel:2012:PCA

Gopalan:2011:PGC

Garg:2012:CPA

[GMSV12] Jugal Garg, Ruta Mehta, Milind Sohoni, and Vijay V. Vazirani. A complementary pivot algorithm for markets under separable,

REFERENCES

Heilman:2012:SPC

Hansen:2011:EAS

Harsha:2010:IPP

Holenstein:2011:ERO

Hartline:2010:BAM

Hatami:2011:CTA

Huynh:2012:VSP

Trinh Huynh and Jakob Nordstrom. On the virtue of succinct proofs: amplifying communication complexity hardness to time-space trade-offs in proof complexity. In ACM [ACM12], pages
REFERENCES

Har-Peled:2013:NPL

Hardt:2012:BRR

Hardt:2013:BWC

Hsu:2013:DPA

Haitner:2010:EIC

Haramaty:2010:SCQ

Harris:2013:CSP
REFERENCES

REFERENCES

REFERENCES

Jain:2013:LRM

Kannan:2010:SMM

Karnin:2011:DCH

Kayal:2012:APP

Kawamura:2010:CTO

Keevash:2013:PTP

Kaufman:2012:ETR

Klauck:2010:SDP
REFERENCES

REFERENCES

Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam Smith, and Jonathan Ullman. The price of privately releasing contingency tables and the spectra of random matrices with correlated

REFERENCES

REFERENCES

REFERENCES

Li:2013:AKM

Lee:2010:MMP

Lee:2010:MMP

[Lenzen:2011:TBP]

Li:2013:SCO

Madry:2010:FAS

Marx:2010:THP

Mendes:2013:MAA

Montanari:2010:MPA

Marx:2011:FPT

Mossel:2012:QGS

Moser:2011:FDS

Micciancio:2010:DSE

Miles:2013:SCG

Mahdian:2011:OBM

REFERENCES

REFERENCES

Orlin:2010:IAC

Orlin:2013:MFN

Orecchia:2012:AEL

ODonnell:2012:NPN

Pass:2011:LPS

Patrascu:2010:TPL

Paturi:2010:CCS

REFERENCES

Papadimitriou:2011:OSI

Patrascu:2011:DRU

Patrascu:2011:PST

Raz:2010:TRL

Regev:2011:QOW

Roth:2010:IPM

Raghavendra:2010:GEU

REFERENCES

REFERENCES

REFERENCES

Verbin:2010:LBT

Vadhan:2012:CPS

Williams:2010:IES

Williams:2012:MMF

Williams:2013:NPV

Woodruff:2011:NOP

Wootters:2013:LDR

Woodruff:2012:TBD
