Title word cross-reference

(l, d) [Tan14]. 1 [Mun07]. 2 [ASG99, BSM07, BZ98, CR95b, KPR97, KD15, LT90b, OND98, SHCY93, Via02, Via04]. $29.95 [Ano97a]. 3 [BSM07, CJ93, LT90b, TCCK90]. $65.00 [Ano97b]. 2 [Ram94]. 33 [BGFK15]. 4 [ZLN11]. c [WD99]. c^n [Rob79]. d [CGK08, CDEK95, GKP19, dRL95]. δ [CIL03]. ε [Gef03, HM98, HSW01, Lif03]. K [COZ09, LVN87, ALP04, CLZ15, CW18a, CW18b, CN21, FWW13a,
FGKU15, GG86, GU16, GN19, GGF13, Gra15, GL89, HT17, JL93, JL96,
KRS19a, KRS19b, KXY12, LV88, NYuR15, NR17, QQC+13, WD99]. L_1
[LP08, LP11]. L_2 [LP11]. L_k [LP11]. L_p [WC14]. μ [DJ96]. N
[ML96a, ML96b, KST94, KWL07, KWLL08, Wag74]. O(modT mod 3)
KKM′85]. O(log log n) [BG90]. O(n^2 log m) [CNS18]. O(n([m/w]) [GF08].
O(n log^2 (n)) [HM98]. O(n log^3 m) [CH97b]. O(n log n) [Gef03]. O(s^2) [CZ01].
ω [BdFEM′20]. ω^n [Cho78]. ωT [BdFEM′20]. q
[HK14, KPA10, STK06, Sal12, ST95, ST96b, ST04, Ukk92]. r [Pol13]. ρ
[CFK07]. x^m y^n = z^p [NC92].

-automaton [COZ09]. -bit [KVX12]. -calculus [CFK07]. -Cube
[ML96a, ML96b]. -D [SHCY93, BZ98]. -Dimensional
[CWE95, CR95b, KPR97, CGK08]. -dimensions [dRL95]. -expression
[COZ09]. -formulae [WD90]. -Free [HM98, HSW01, Gef03, Lif03]. -Gram
[ST95, HKN14, KST94, KWL07, KWLL08, KPA10, Sal12, KWL07].

-Gram/2L-approximation [KWL07]. -Grams [ST04, STK06, Ukk92].
-Interval [Via02, Via04]. -Like [HK11]. -M [Ram94]. -Matching [CIL′03].
[WC14]. -regular [BdFEM+20, BdFEM+20]. -Samples [ST96b].

.NET [AS04, SM04, Stu07].

'08 [ACM08].

1 [KJS17]. 1003.1-2001 [IEEE01a, IEEE01d, IEEE01c, IEEE01b]. 10th [PC99].
11th [GS00]. 12th [AL01, Bun94]. 13th [AT02]. 14th [AAC+01, BYCC03].
[ACM90b, Cre92a, NEH90]. 1991 [ACM91]. 1992
[ACM92a, ACM92b, ACM93d, Sto92]. 1993 [ACM93a, ACM93b]. 1994
[ACM94a, ACM94d, SW94]. 1995 [ACM95a, ACM95b, ACM95c]. 1997
[ABB93, FL08].

2L-approximation [KWL07].

Abstract [CDL95, Gon02, HOS85b, JO97, LM02, Pre99, AG06, BC93, Chl08, CM95, GPN96, GV00, HOS85a, Pie08, Zei08].
Abstracting [JSH09].
abstraction [Wad87].
Abstractions [Jok90, MNS07].
accelerated [MLC08, SR16].
Accelerating [BBK12, GÁSÁ+13, LLCC13, TT82].
Acceleration [SALP20].
Accelerator [JLK+20, KYG19, TCL15, ZL18, TLLL09].
Accelerators [HLK+14, MGW14].
acceptors [ITT83].
Access [Fal85, MR11, JSH09, KT14, KCK93, KFG15].
accesses [DSv94].
accessible [SBR+07].
According [PV91].
account [KSVJ15].
Accuracy [ZS17, STK20].
achieve [AK08].
Acid [CCL87, LVN87].
ACM [ACM69, ACM74, ACM83, ACM84, ACM86, ACM87, ACM89, ACM90a, ACM90b, ACM91, ACM92a, ACM92c, ACM92b, ACM92d, ACM93a, ACM93b, ACM94a, ACM94c, ACM94d, ACM95a, ACM95b, ACM95b, ACM97b, ACM97a, ACM97c, ACM99a, ACM99b, ACM99b, ACM99c, ACM99d, DGBH93, FMA02, HF13, KLB12, Len11, SW94, Sto92].
ACM-SIAM [ACM97b].
ACM/SIGAPP [DGBH93].
Acquisition [BZ98].
across [DCM15, SWS14].
action [Han92].
actions [CK08].
ActionScript [BWN08].
active [BDMT16].
activity [BWG12].
ActorSpace [AC93].
Ada [Wes97, Wes97].
Ada/Tcl [Wes97].
Adapted [RJK79].
Adapting [DS04, LRV13].
Adaptive [CW84, JP73, NdMM02b, SRR92, SRR95, SW90, HRN+15].
Adding [Sha88].
address [AAK+09, AAB+09, AEK+11, ZZJC20].
addressable [LMT16].
Addressing [RJK79, Lau01].
Adjacencies [LJZ13].
Adjeroh [Neu10].
Administration [Sar02].
Advanced [B+07].
Adversaries [HL10, HT14].
Advisor [Mu 95, MuT95, Mun95].
Affine [DN77, VS01].
afind [GN01].
Against [Bun95, HL10, LA12, BSTU08].
Aggregations [CVW18].
aggressive [Dai09].
Agrep [MW92b, GN01, WM92b].
Ahead
Aho [CW13, NK07, PLL10, TM05b, TZH'13, TVCM12].

Aid [KP15].

Alberto [Ano97b].

Albuquerque [ACM92a].

Algebra [KN12, LRSV18, SS93a, BFS00, Coo86, Fat15, KMPMN85].

Algebraic [ACM94b, Bro93, Cha86, Hea71, Lev95, Ng79, WN90, BD98, Fat15, Mci85, OR11].

Algebras [CM95].

Algol [Bro77].

Algol-based [Bro77].

Algorithm [AR00, AJS92, ACD01, BST'03, BYN96, Bar81, BC13b, Ben94, Bir10, BM77, Bra94, Bre93, BL16, CF06, CLP98, CF85, Col94a, CH02, CGH'98, FL12a, Gal79, GP90, Gal95, GC01, IST05, IS86, KR97, KST94, Küt10, KV15, KZ02, LY17, LLCC13, LHH'17, LLC17, LJJZ13, LCL06, MW94, MR11, MUHT96, ML96a, ML96b, Mye92, NBY01, OR12, PS10, Pou93, PK85, RPE81, Sad96, Ski98, SW09, Sun90, Tak86, VB12, VB98, WPK13, Wat96, WMM95, Yam01, Alb89, AGW13, BGJ89, BG90, Bre96, BC95, Cha93a, CLS95, CW13, CDC96, CNPS15, CN518, CR91, Dai09, DR06, DS04, Der95, Dow91, Gal92, GBY90, GLS92, Han93, HFS05, HR03, IXX15, IP96, IIS6, ISHY88, KKM'85, KR89, KST92, Kim99, KKR'13, KIH15, LV86b, LV87, Lee82, Lin81, LHCK04].

algorithm [Man06, MYB91, Mis93, MS95, Mor90, Mye99, NRO12, Neb06, PLL10, PS90, Per94, Ryt80, SW90, SS94, SGY00, Sto02, Tak96b, Tak93, TZYH14, TJD'17, TM95b, TU88, Tho68, TJMC20, WW03, Wat03, Yam91, YT03, YHV'15, ZC99, dB93].

algorithm [Alb89].

Algorithmic [ABBH'16].

Algorithms [ACM97b, AUH74, ALR08, A94, ADLM96, BY96, BLP94, Bak96, BS97, BH02, BJM79, BCFL12, CPF19, CL92, CL97, CHL14, Clu95, CHZ06, CLR90, CR92, CCG'94, DB86, FL12b, FMMS20, FRU'20, FBY92, Gal76b, GG97, GS85, GIG77, GK86, Gus97, HUN'19, Hig86, HST01, ISN94, JTV96, KKP16, KTU87, KR81a, KR81b, KR87, KP99c, Kha16, KMT'01, Lab12, Lec95, LLLC17, LT16, LS94, Lüt02, MR11, MP05, Mut97, Ott94, Par96, Pol13, RS98, SV94, SN92, Sed83, Sed90, Sed92, Sim94, Ste94, Tar81a, VG01, YD95, ZZ12, de 82, ALP04, AG97, ADLM01, ARS16, BHY96, Bak93, Bar84, CMO'08, CDM05, CLT07, CWZ10, CCG'93, CT96, CR94, CL96, CD94, DV21, EC88, Gal75, Gal76a, Gal84, GG13, HOK18a, HOK18b, HTX17, Ind98, JU91, KN00, KM13].

algorithms [Lec97, MAC14, MW92b, Mha05, MM07, MR13, NR02, Par98, PDC94, QLY07, Sal12, Sch91, Si95, Tan14, THG17, Val99, VHL'12, WZ96, A*08, Len93, Ano97b].

Aligned [LSTW'17, SN94].

Alignment [BLP94, Ben94, BDFW94, HPM94, JWZ94, KK08, LPT12, LPR'08, Pol13, RND97, CLT07, FSL'15, NT20].

Alignments [Cha94].

All-Against-All [LA12, BSTU08].

Allocation [VS87, YD95].

Allowing [FNU02, CCF13, WM92a].

Exports [Man94, Man97].

Almost [CGPS13b, GR99, LMM17].

Almost-linear [CGPS13b].

Almost-optimal [GR99].

Alphabet [AFM94, ABF94a, CR95b, KR94, KKR'17, KMP80, TK91, TP97, AFI98, AGM95, GP92].

Alphabet-Friendly [SJNS19].

Alphabet-Independent [CR95b, KR94, GP92].

Alphabet-Invariant [KMR92].

Alphabets [Bre94a, CLP98, Fre02, KTO6, KST92, Ris16, STK10, Cro92b, Fre03, YHV'15].

Alternating [BL16].

Alternative [Bar81, JWZ94, AP90, Fat15].

Alto

Annual
[ACM81, ACM87, ACM92a, ACM93a, ACM97b, ACM00, ACM08, AP10, AH97, AT02, FC98, FL08, FJ92, GM11, HM96, IEE90, IEE92, IEE93, IEE95a, IEE97, IEE98, IEE09, KS12a, KU09, Len93, LV06, MZ07, NEH90, ACM74, ACM76, ACM84, ACM86, ACM90a, ACM90b, ACM91, ACM92a, ACM93b, ACM94d, ACM95c, ACM97c, ACM99b, AL01, Apo92, Apo93, ACP05, BYCC03, CG94b, DT87, GU95, GS00, IEE98, IEE99b, PC99, SMD04].

Anomaly [GK+10]. Answer [KKSL01, ADT15]. Answering [KKSL01]. answering [ZC ¨OZ12]. Answers [MNNS12]. Antidictionaries [STSA99]. Antisymmetric [Gil70]. Antonio [IEE94b]. Ants [FR17, Jh01]. any [PW93]. Apostolico [Apo92]. Application [GP04, GT90, Hua92, IK83, MGF91, MGW14, NA90, WKA94, AK78, CFK07, Fat15, GÁSÁ+13, Lau00, Man76, MW94, MM30, PA10, SHS14, TIAY90, WKR09, dLFM07]. application-database [SHS14]. application-specific [WKR09]. Applications [AK08, SD01]. Approach [ABF94a, CMF17, CCH99, Cox09, DC94, FKR15, FL12b, GN19, IMR08, KTS99, KS99, LP13, Lut92, NR98, NR99b, RM88, Sha93, Tar81b, AP13, B+05, BGY92, BTO08, BG91a, BCD14, FMdB99, GPR95b, GW92, Goo05, HLN09, KDP15, LBK08, MF96, Mus03, dSOMY15, PP85, PSK17, SVS97, SD91, Sr93]. Approaches [BM08, vNG01, FBMA05, MR13]. Approximate [Aku94, Aku95, AAE+09, AKE+11, ACO01, BHY92, BHY97, BHY98, BHY99, BCP02, BH02, BPPR20, BM00, BK93e, Bun95, CJM12, CLS+10, CL90, CL92, CM94, CL94, CCH99, CN02, CH02, CIM+02, ECM96, FNU02, Fre06, Fu96, GP90, GIMV03, GGF13, HD80, HLS07, HT17, HM00, HHL06, HM02, IMP01, JTWJ96, KYG19, KM92, KM95a, KST16, LSW08, LH03, LPP11, LLW+15, MW92a, MW92b, Mel95, MM02, MIH17, MM94, Mye98, MOG98, Nav98, NBY99a, NBY99b, NBY01, Nav04a, NRS18, OM88, PDM01, Par96, PW95, Phi94, PP09, RONM09, Sad96, STK10, ST95, ST96b, ST04, TT20, Tak94, TU93, Ukk92, Ukk93, UW93,
AT02, ACP05, BYCC03, CG94b, FC98, FL08, GU95, GS00, GM11, HM96, KS12a, KU09, LV06, MZ07, PC99, SMD04, Lab12. **combinators** [LT90a].

Combining [Ber00, JA17, JXA20, HBRV10, NR00]. **command** [Bhn08].

Comments [Akl78, ZZ12, Gro91a].

commerce [ZCT14].

Common [Ale94, FR17, HIRS17, IF94, KRS19b, LGZ14]. **Common** [ACM89]. **Communication** [Bao93, HRN+15, HSL10].

Community [LGZ+14]. **Commutative** [Eke95, HY92].

Compact [Asp12, HAR10, NR01, Ric79, YP12, ZZH16, BFC08, DGM19]. **CompactDFA** [BBHK14]. **Comparative** [JM85, MSZ17, PSK08].

Comparing [Hua94]. **Comparison** [BCT98, JTU96, Lav91, de 82, Bar84, BCT93, CT96, ECSS88, FBMA05, SVS97]. **Comparisons** [Bre93, CL92, GPR95a, Liu86, Bre96, PW06].

Compatible [Anoxx, LT09]. **Competitive** [DV21]. **Compilation** [FU82, KU09, AP90, Dan91, KGP+05, SCH88]. **Compiler** [AJ89, GFH82, Pet92, vNG01, FKSB06, HWF90, Jør92]. **compiler.kit** [Abb77]. compilers [BGNP94].

Compiling [AU72, AU73, PS93b, Sch99, GHR+16]. **Complement** [GN12, Rob79].

Complete [Ano68, BBH+87, Pet02, Sch14, Kin91]. **completeness** [TCC91].

Complex [Gor00, ZL18, LG16, LR14]. **Complexit´e** [Alb89]. **Complexity** [ABBH+16, BKL97, BKL+02, BDFW94, BCT94, BCT98, Col94a, CHP95, CH97a, EZ74, EZ76, FMMS20, GG91, GG92, GKS6, GH15, Hei01, HL92, HST91, KL96, MG90, CF99, CK99, CK01, CK02, CK03, CK04, CK05, SM09, SM10, SM11, AGS96, BFNP10, Ch93b, CDC96, CL96, How96, LHR99, OW03, QZC17, RTT02].

compressible [BFKL13]. **compressing** [WL15a].

Compression [ABF96, BR90, BA16, BKL97, BKL+02, CHLS07, CLS+10, CHP92, FT98, SV94, FT04, GP01, GP03, Gaw12, Gaw13, GV00, GV05, IST05, Jez15, KTS90, Kid90, KS05, LSW08, Loh10, Man94, Man97, MHT09, MMH+01, NR99b, Nav01a, R95, RNM09, SL91, TMS+02, YK11, ZMSD93, ABE94b, BC98, BFG09, BBK12, CP97, FT95, GR99, GO12, HHL96, KTS+98, KMS+03, NKT+01, NT05, SNZBY00, SLZ+20, TM04, TM05b, TM05a].

COMPSAC [IEE95a]. **computable** [EH88]. **Computation** [Bro93, COZ90, Cha86, HU79, HML90, HML07, Lev95, NG79, R94, WN90, CCI+13, Far19, Han02, Maa06, NH+20, NA90, PS93a, QZC17, SASU13, Tak96b, YT03, ACM94b].

Computational [Gus97, Lab12, HRN11, Val09, Via04]. **Computationally** [HT14].

[Bao93, CS18, CFKT17, FHP92, IEE94a]. Engineers [NEH90, Lut02].

Engines [ABBBH+16, TBS06, ZV97], enhancing [FSL+15]. enough [MR09a]. Enriched [MSS+19], enrichment [LGZ+14]. ensembles [Alb89].

Enumerating [McI04, PSP+18]. Enumeration [JA17, JXA20, Tan14]. Environment [LHCH93, LZ96, MM02, SBR+07].

Estimating [TP07a, TP07b]. Estimation [CZW15, KC87, JKN500, KS96, STKD20, TCC90]. Euclidean [GK86].

Eugene [Hig95]. EUODHILOS [OSM94a, OSM94b]. EUODHILOS-II [OSM94a, OSM94b]. European [Len93]. EUROSAM [Ng79]. EUUG [Ano87]. Evaluating [ADR15, FLC+19, RSG+19, SSSS10, LM12].

Evaluation [BC13b, Cha02a, D’A98, GL01, Ses96, Vb98, YJ84, ADR03, ADR06, BSY00, Ch17, CD98, DR06, Hur84, Jay92, JFL14, Jor92, KEG+08, MRA+17, MM03, PSK08, Smi91]. even [LR14]. Event [CvW18, SGCW14, CK08, LG16]. event-processing [CK08]. Events [CEW58, Kie56]. EventScript [CK08]. everyone [Nar91]. Evolution [CS18, Hud89, MS20]. evolvable [LC03]. Exact [AOK02, BCT94, C97, C91, CHP97, C99, FL12a, FNU02, GP99, GG92, KM13, MIIH17, MA12, PP09, ABH+14, Bak78, CH92, CGG90, Dhpt10, FL13, HTX17, Kar82, Lec07, NF04, QWX+13, Tan14, THG17, TZH+13, YHV+15].

Exact-Match [Bak78]. examined [ORT09]. Example [Qui02, Qu00].

Examples [BDD+14, Bra94, BC94, KK08, BGHZ15, GHS12, Kod79, LSO17, SG12, SG16].

experiment [GHS82]. Experimental [ACR01, GIMV03, HBRV10, Lec95, JFL14]. Experiments [Lec98]. expert [WSS94]. experts [B+07]. Explicit [For02, CFK07]. Exploiting [GKW+10, Kul11, MKF91, KKM+06, Rémi17]. exploration

Expression [Anoxx, Asp12, BC13b, Bou07, BTC06, CZ01, CJBW16, CKW09, Cox07, Cox09, Cox10a, Cox12, Dav99, EU98, GJ16, GRS99, GoI93, Han13a, Hol84, Jer09, JKL+20, KM92, KM95a, KN12, Lee09, LT16, LN19, MPN+14, Mye92, MOG98, NR99a, NR01, Nav01c, Nav04a, NR04, OWP16, PPA10, Ric79, Sca11, SD95, SM99, SL17, VCS+12, WPKL13, WMM95, YP12, YQW+16, vNG01, BAC12, BvdM17, BBvdM21, BFC08, BFG09, BFS04, BH07, COZ09, CJBW13, Chi17, CLT07, CGPS13b, Cox10b, DF00, FDG+11, Fos89, Goo05, HN11, Hos06, HVP00, HP01, HP03, HVP05, Hum79, KS08, Kar82, Ker07, Lee82, Lei80, Li03, MM14, Mor90, NT20, ORT08, ORT09, PIR17, PLT14, PCS99, RTO15, SJ13, SCF17, Spe85, Stud03, Stud07, SSYW19, SLZ+20, Tho68, WXZY12, WL15b, WW03, WR15, Yam19]. expression [YKGS11, YCJK08, YB13, ZHZ16, Zia96, ZC99, ZYX+12, dLFM07].

Expressions [ARM+19, AM91, Ano68, Ano12, Anoxx, Ant95, Bac94, BDD+14, BR20, BF97, Ber00, BGNV10, Bra94, BC94, BMMR19, BK93a, BKW92c, Brz62, BP63, Brz64b, Brz64a, Brz65, CDLV99, CDLV02, Cam99, CSY03, Cha01, Cha02a, CLOZ04, CJM12, CDJM15, CGR02, CHP92, CC97, CGS17, CDL95, CDL99, Dav03, Dav04, Dav21, DM11, FLS98, FU82, Fri02, GGM12, GN12, Ghie62, Gil70, Gian67, GH13, GH15, HHH+13, Hab04, HM98, Ham88, HWW06, Han13b, HJ99, Hir96, HK11, HSW97, HSW01, Hum99, IY02a, IY02b, KT06, KTU87, Kea91a, KP99b, KP99c, Kin92, KMRY20, KV15, KZ02, KST12, LS99, LS06, LHZH98, LM01b, LT09, Loh10, Mad01, MNS10, My60, MSZ17, MR09b, MPdS12, MGF97, NM10, Org03, OF61, Pak91, PM78, Pat71, Pet02].

Expressive [BLLW12, HS08, MFRW09]. Extend [Cal00, dLFM07].

Extended [Ano68, BK93a, CTF+98, GoI02, HY90, HL97, KV15, KZ02, NR98, Ym01, YH91, YH92, AM95, BK93b, BK93c, CM95, GV00, JM93, RT18, Rob79, SMT+86]. Extendible [vNG01].

Extendible [vNG01].

Extendible [vNG01].

Extendible [vNG01].

Extendible [vNG01].
Extensible [BAC06, SNM07, BFN+09]. Extension [Liu86, SNM07, MMDdJ11].

Extension [DRW95]. extensions [Mis89, Wea94, WKR09]. External [GIK97, FG99]. extracting [BGHZ15]. Extraction [FKRV15, FKR16, HHM+13, Kea91a, BDMT16, BT21, DLF+15, FKR13, Kit94, KLR+08]. extremely [AK08].

Fascicle [Knu05]. Fast [ADR03, ADR06, BYP92, BYR93, BYP96, BYG96, BYN98, BLP18, BC13b, BS97, BFC08, BM77, Bre95, BL6, BJK+03, Bun95, CLP98, CR95a, Chu95, Cob94, CP10, Cox07, CCG+99, FL12a, Fen01a, FNU02, Gal76b, GS80, Gia93, Gil85, HAR10, HS91, KST94, KSS01, KMP77, KMP94, KVX12, KNM98, KRL09, LV88, LV89, Lec07, LT16, LCL06, Man94, Man97, MUHT96, MPN+14, Mon17, Mye98, NR98, NGR99a, NR99a, NR00, NR01, NR03, Neb06, Ott94, OM88, PPA10, Quo92, Ris16, RpL92, Sen00, ST96a, SNZY00, Sun90, Tar81a, Vis91, WM92b, WM92a, YKGS11, ZS17, Zha17, AK08, AG84, CDC96, CNPS15, CCG+93, Coo89, Der95, DC94, FDG+11, II86, KW19, KTP10, LHCK04, Mye99, NBR99c, Nav01b, P90, RM06, RW10, SW90, Tak93, TLL09, Vis90, WL15b]. Faster [ASM17, ALP04, AKT06, BYN96, BYN99, CH02, DGM90, DGM94, Fre02, GZ94, HN02, Ind98, Jez15, LS09, NKT+01, SB90, FCLST07, Yam19].

Fgrep [As85]. Fibonacci [IMS97]. field [WSW16]. fields [CR06]. Fifth [ACM06, ACM93b, AOV+99]. Fighting [ZGY+16]. File [IK83, Man94, Man97, All82, KCK93]. Files [ABF96, BH85, BBH+87, Man86, Pol01, TMK+02, ZMSD93, CEMW91, TM05b, TM05a]. Filling [LJZZ13]. Filter [CCH09, FU98, KNM98, CM08, ZC89]. Filtering [KVX12, KRL09]. Filters [WZHJ12, ZS17, Hos06, MA12]. Filtration [PW95, ST96b, LLL13]. Finding [ALLT11, Ben94, Hig86, Iba97, KS11a, KF91, PRU11, VB98, ZD95, GHST17, LMM17, Lee82, Yam19]. Fingerprint [DS19]. Fingerprint-Based [DS19]. Fingerprinting [LZ18]. Finite [Ant95, Bow87, CZOHI17, CLOZ04, CM58, Cho78, FG89, Ghi62, Gol93, GH13, GHI15, HSW97, HSW01, JA17, JXA20, KPR97, KPR00, KV15, LY86, Mel95, Pet92, RS59, vNG01, Ant96, BDFR08, BT21, BK93d, Ga04, HW07, Hur84, Kle56, Kod79, Lei80, Lei81, MMS14, Ry89, SLTB06, SH85, VHL+12, VW11]. Finite-State [CZOHI17, vNG01, JXA20, Ga04, HW07, MMS14]. finitely [AFI98]. Finland [GU95, KS12a]. FIRE [KS08]. FIRE/J [KS08]. firmware

General [MR92, NR99b, VCS+12, AAB+86, Cha02c, Sch91, ZHWW12].
general-purpose [AAB+86, Sch91]. Generalization [Shi00, Shi04].
Generalized [Abr87, BK86, GL86, Ham88, Hei01, Hir96, Hol84, MAI+16,
OP16, VHC88, Wen93, FL71, Kin91, SW90]. Generalizing [SKS96].
Generated [AK09b]. Generating [CGP+08, Jør92, Knu05, WXZY12, BJK+12].
Generation [AGT89, GFH82, GWvG10, Ham88, Hei01, Hir96, Hol84, MAI+16,
OP16, VHC88, Wen93, FL71, Kin91, SW90].
Generative [KS08]. Generator [VSM87, XLC19, CLS95, ESL89, RT18].
Generators [Fra83, GHF83a, GHF83b, WNL+83, Gan89b].
Generic [WMGS19, ZKA12]. Genesis [SDA17]. Genetic [GC01, RND97, BDMT16, MMDdJ11, Sel84].
GenMatcher [WMGS19]. Genomic [CCH09].
gemo [ZBST14]. geotextual [ZBST14]. Geometric [AK09a, CK92, DEDK95, FMdB99].
geometrical [Akl78, HLN09, Man76]. geometrically [NA90]. Georgia [ACM99b, IEE09, ACM83].
German [HU92, SM74]. Germany [ACM87, AGS93c, Len93]. Gestalt [RM88]. Gibbs [CRV06].
Given [AW89, Lei80]. Glanville [MSRR00]. Global [ZCS+12]. Glossary [ZV97].
Glossary-based [ZV97]. Glushkov [ZC99]. GNU [OSM94a, OSM94b]. Go [Far19].
Goal [Gud92, Nil90]. Goal-Directed [Gud92, Nil90]. Going [LS06].
Good [BC94, MLM+08, PVA+92]. Google [Cox12]. GOTO [MGF97].
Goyvaerts [Ano12]. GPP [VCS+12]. GPP-Grep [VCS+12].
GPU [DK13, KW19, KMM15, LLCC13, MIH17, SR16, TLS16, ZS13, ZYX+12].
GPU-accelerated [SR16]. GPU-based [ZYX+12]. GPU-to-GPU [ZS13].
GPUs [ARS16, LLCC13, MAC14, YB13]. Grace [HNB+13].
grading [Mor02]. Graham [MSRR00]. Graham-Glanville [MSRR00].
Grails [JNS08]. Gram [ST95, HKN14, KST94, KWL07, KWLL08, KPA10, Sal12].
Gram/2L [KWLL07]. Grami [EASK14]. Grammar [Wat96, Man06, Wat03].
Grammars [BK93a, BKW92c, Pat71, SBHM94, BK93b, BK93c, KGA+12,
MM14, SV09, SH85, Yer09]. Grams [ST04, STK06, Ukk92]. Grand [Bao93].
Graph [AAB+17, BLLW12, BLR14, BGJ01, CFM17, CMNP17, D’A98, Eke95,
FLM+10, Fu97, KS93, MSS+19, RKH92, WHZ+17, Zue96, A+08, BKLE18,
BLR11, BSTU08, BCD14, EASK14, FWV13a, FWV13b, GPTV93, LRV13,
MCF+11, MCF+14, SW93, SGCW14, STH18, SGZ16, ZC+09, ZC+12].
Graph- [CMNP17]. graph-oriented [GPTV93, TG96]. Graph-Structured
[BLW12]. Graphic [LLL17]. graphical [CMW87]. graphics [AK08].
GraphLog [CM90]. Graphs [BJM79, Fu95, Fu96, HPFM94, LMV16, MY60,
TV14, WD99, BBG13, BO13, FFTD15, KC15, QPC+13, SWW+12, ZYX+15].
Graspan [WHZ+17]. great [Sch81]. Greece [Len11]. Greedy
[KR92, TU88, Huc21]. Grep [VCS+12, Hol84, Nav01b]. Groovy [JNS08].
ground [KR95]. Group [DT87, KC99, GMC02]. Grouping [OR12]. groups
[Joh69]. guarantees [FWW12]. guards [GJS20, JMR0, KSVJ15]. Guessing
Pak91]. Guide [GS93a]. guided [FhDAF09, Nav01a]. Guidelines
Interconnect [SRV+19]. Interconnection [KRL87]. Interest [DT87].

interests [SW93]. Interface [IEE01a, IEE01d, IEE01c, IEE01b]. Interfaces [IEE01d, PW06]. Interferences [FTJ95]. Interleaving [CGS17, CGPS13a, Gel10]. International [ACM94b, ABB93, AGS93c, AAC+01, AOV+99, Bao93, B+02, Bro93, Bun94, DMVT13, FMA02, IEE95b, KP15, Lev95, Ng79, SW94, Sto92, WN90, A+08, BGNP94, HF13, MG94].

Interpolation [HW12, Lut02]. Interpretation [HN11, JP11, NC92, SHC93]. Interpretations [MP09]. Interpreter [HOS85b, Mae94, Eck89, HOS85a]. Interprocedural [WHZ+17, FWDL15].

Intersection [GN12, HL10, Pet02, CP10, IEE01c]. Interval [Via02, Via04, WSS94]. Intractable [FLM10]. Introducing [LV86b].

IO [PSK08]. Ireland [ABB93]. Irregular [PCS99]. ISBN [Ano12]. Island [ACP05]. Isomorphism [BJM97, Gro91a, Gro91b, KS91, Mak89], Israel [AL01]. ISSAC [Lev95, WN90]. ISSAC’93 [Bro93]. ISSAC’94. [ACM94b]. Issue [Ano17, Cro92a, IEE01a, IEE01d, IEE01c, AGS93a, AGS93b]. issues [BG91a, IS90, San15]. Istanbul [SMD04]. Italy [AAC+01, Apo93, FL08, GM11]. Iterable [LM02]. iterated [Jan85].

J [KS08]. Jan [An912]. January [ACM85, ACM92a, ACM93a, ACM94a, ACM95a, ACM97b, USE92]. Japan [AT02, EIE94a, WN90]. Java [Ano96, Cal90, CGM06, Dwe00, FR00, Hab04, LM02, MFRW09, Mor02, NAR08, NM10, Sch14, SM04, St07]. Java-based [Ano96]. java.util.regex [Hab04]. JavaScript [KT14]. Jeffrey [An97a].

July [AL01, AH97, AT02, Bro93, Bun94, Cha86, Cro92a, FC98, GU95, KS12a, KP15, Lev95, LV06, MZ07, PC99, SMD04]. Jumbled [BCFL12, GLW15, KRR17, BFKL13, GGI13]. June [ACM92c, ACM92b, ACM95c, ACM98, ACM99a, ACM06, ACM07, AP10, Apo93, AH97, ACP05, BYCC03, Bun94, CG94b, FL08, FMA02, GS00, GM11, HM96, HF13, Hwa85, CVP86, KU09, Len11, Ng79, Sto92].

[TLS16]. kernel [WKR09]. Kernelization [BCKM15]. Key [CG79a, CG79b, Gri79]. Keys [FFTD15].

Kernelization [BCKM15]. Key [CG79a, CG79b, Gri79]. Keys [FFTD15].

Knuth [Bar81, DS04, PV91, Rue15, Ukk10]. Knuth-Morris-Pratt [Bar81]. Komplexitätstheorie [HU92].

Kong [B+02]. Korea [ACP05]. Kumar [Hig95].

Labeled [FK16]. Labels [KMRY20]. Lafayette [Hig95]. Laguna [HM96].

Lambda [Dow91]. lambda-calculi [Dow91]. Languages [ACM92a, ACM93a, ACM94a, ACM95a, AAB+17, BLLW12, CM85, HWW06, HU79, HU92, HU07, HU07, K06, KB16, Kor83, KST12, ND02, SA96, Sch13, Wag74, ACM87, AGM05, AOMC07, BRL13, BdFEM+20, BLSS03, BKW92a, BKW92b, BDM19, Coh90, Dit78, FhD89, HWW07, HW07, HSJ04, HW09, Kes91, LRV13, McJ04, MZZ10, Mye95, PP85, Rah89, Sak21, Sch88, Smi91, dLFM07, BGNP94].

Large [AAC+01, AOV+99, BH85, B+02, BL94, Bre94a, Chu95, LLC17, YJ84, ZGS+15, BFKL13, BGVW12, BC95, HOK18a, HOK18b, KR97, ZHH10].

Left-to-Right [NWE97, Ned98, CWZ10, CA20, HR03, Tak96b]. Lempel [BFG09, FT95, FT98, KKP16, NR99b, Nov01c, NT05]. Length [BL94, Bre94a, Chu95, LLC17, YJ84, ZGS+15, BFKL13, BGVW12, BC95, HOK18a, HOK18b, KR97, ZHH10].

Lexicon [ZMSD93, ZD95]. Libraries [Ano10]. Library [AK09b, CL95, EU98, Nov01c, Cox10b, PSK17].

Lightweight [BFNP10, DA18, SNM07]. Like [GHLW15, Hol84, HK11, AMRV16, BTG83, Mis89, YH91]. Lille [KU09].
Limitation [Kül10]. Limited [HAR10]. Line
[FG98, GG97, Lut02, Pru17, Sno01, Tak86, BEL17, Bhu08, CLP95, CT96, FG95, Fre06, Gal75, Joh95, KNT11, NR02, NEL17, Rot91, TIT83]. Linear
[BJM79, Brz65, CFP19, Cha94, Cha02b, CGS17, CH03, CR95b, CGPR95, GS81a, LK90, LO94, Pat71, PRU11, RE81, SSSS10, CGPS13b, EH88, ETV88, GFG11, GMS12, HKN14, IKX15, KKR13, LK88, Rep98, SGYM00].
linear-space [IKX15]. Linear-Time [CR95b, GS81a, HKN14]. linearised [TJMC20]. Linguistic [Haz01]. Linguistically [GWvG10]. Link [LTLO4].
linked [BAP06]. Local [ABH*14, CM94, DJ96, GHK14, MU02, ZCS+12, GS81a]. Locality [TLC15].
Locality-Centric [TLC15]. locally [Mei08]. locating [Mar89]. Locations
[ST95, GS81a]. Log [DJ96]. LOGCFL [Pet02]. Logic [Bac94, GHK+91, Mac94, BDFEM+20, CDL08, Coh90, Smi91, TPT13, YIAS89]. Logical
[CEW58, Wei84, PP85]. logics [LH03, Pei87, tC09]. London [MZ07]. Long
[CLP98, KGY19, Kha16, ML96a]. Longest [FGKU15, HIRS17, KR92, KRS19b, RT17, BBHK14, Gra15, NHI+20, KRS19a]. LongestMatch
[Huc21]. Look [Yan95, GP96]. Look-Ahead [Yan95]. lookahead [BAC12].
lookup [KW19]. Loops [BF97, FTJ95, KK95, BK86, RP95]. Lossless
[How96, Cha93b]. Lossy [LS94, RT17, How96]. Louis [IEE90]. Louisiana
[BG92, CHPZ95, GG91, GJS20, GKS6, AGW13, BCKM15, BG91b, CJS13, Li03, LP08, SASU13, SV87]. lower-variance [AGW13]. LR [LK06]. LRPD
[RP95]. Lyndon [Fra20, SMD94]. LZgrep [NT05]. LZS [LD10]. LZW
[GR99, Gaw12, Gaw13, KTS+98, KTS499, TM04, TM05b, TM05a]. LZW-Compressed
[Gaw12, GR99].

M
[AC87, Cox09, AG84, Nak14, Ram94, WHZ+17]. Machinery
[DT87]. Machines [AY84, Bow87, BP63, JA17, JXA20, Moo64, OF61, YD95, Aoe89, GOMSJGP08, KAT07, MMS14, Yod91]. macro [Sas79]. Macsyma
[JM85]. Madison
[FMA02]. maintaining [GO12]. Maintenance
[CS18, MG94, KPA10, PA10]. make [JT94, Mei15]. makematch
[Kas08a, Kas08b]. Makinen [Gro91a]. Making [ABBH+16, ATdM07]. Malay
[BSY00]. male [KT90]. Malicious [HL10, HT14]. Manacher
[Akl78]. Management [DT87, FMA02, SW94, Sto92, HF13, WXZ12].
manga [QPWH08]. Manipulate [Ghi62]. Manipulating [VMML15].
Manipulation [Ng79, WEA94, GHS12, GS06, Mal93, MR05, RH81]. Manual
[Mu 95, MuT95, Mun95, SK98]. Many
[JA17, JXA20, TLC15, Wal88, MAC14]. Many-Core [TLC15, MAC14].
Many-Sorted [Wal88]. Many/Multi [JA17, JXA20]. Many/Multi-core

[JA17, JXA20]. **map** [KD15, SASU13, ZBST14]. **map-reduce** [SASU13].

Mapping [CFM17, KYG19]. *maps* [BCWG09]. *March* [ACM83, IEE94b, SC93, SC95, SC96, SC98, SC99, SC01, SC03, SC04, SM09, SM10, SM11].

Marina [ACM69]. *Markov* [KR14, LBK08]. *Marseille* [Ng79]. *Maryland* [ACM90b]. *Mass* [BM08, LZ18]. *masses* [Vol12]. *Massive* [OR12, YDDB15, ZYQ15]. *Massively* [CG87].

Mastering [Fri97a, Fri97b, LR14, Rom97, Ano97a, Hum97a, Hum97b].

Match [GHW05, KR92, LD10, Mor93, Pet92, Ses96, VB98, Zve80, Bak78, BBHK14, DWE89, GJS20, KSVJ15, KCK93, Mei15, ZC09, ZCO12, HC87].

Match-Bounds [GHW05]. *Matcher* [HH83, Coo86, Ker07]. *Matches* [ACM90b].

March [ACM69].

Markov [KR14, LBK08].

Marseille [Ng79].

Maryland [ACM90b].

Mass [BM08, LZ18].

masses [Vol12].

Massive [OR12, YDDB15, ZYQ15]. *Massively* [CG87].

Mastering [Fri97a, Fri97b, LR14, Rom97, Ano97a, Hum97a, Hum97b].

Match [GHW05, KR92, LD10, Mor93, Pet92, Ses96, VB98, Zve80, Bak78, BBHK14, DWE89, GJS20, KSVJ15, KCK93, Mei15, ZC09, ZCO12, HC87].

Match-Bounds [GHW05]. *Matcher* [HH83, Coo86, Ker07]. *Matches* [ACM90b].

March [ACM69].
MPN +14, Mel95, Mey85, MM02, MIH17, Moh97, MS01, Mon17, ML96a, ML96b, Mu 95, MuT95, Mun07, MR92, Mut97, Mut00, Mye92, Mye98, Nao91, NR98, Nav98, NBY99a, NRBY99b, NBY01, NR03, Nav04b, NWE97, Ned98, NdMM02b, ND02, NRS18, NCKL14, NR15, NEL17, OR12, OP16, Ott94, OM88, PDL98, PAMP12, PS10, PLL08, PK95, Par96, PV91, PPA10, PW95, Phi94, Pol13, PP09, Prü17, PS93b, RR90, RR92, Rao95, RM88, RTT02b, RS98, Ric79, Ris16, RKH02, RPE81, RT17, RSG +19, RNOM09, Sad96, SV94, SMD04, STK10, SCFC94, SN92, SP16, Sca11, Sch95, SRR92, SRR95, SD95, Sha93, STSA99, SKF +00, Shi00, Shi04, Shi92, SSSS10].

Matching [Sim83, Sim94, SF01, SdM01, Sli78, Sli83, SW09, Som82, Spì96, Sto96, ST95, ST96b, ST04, Tak86, Tak94, TMK +02, TS05, TZ94, TU93, TP97, TMV +01, TK07, TLC15, TL12a, TL12b, TVCM12, UW93, Ukk10, VSM87, VB12, VWR11, Via02, VG01, VRD01, Vis91, Vis99, VS01, WPKL13, WSW16, WMGS19, Wat96, WKA94, WD99, WBA83, Wrl94, WM92b, WMM95, Xi03, XLZ +19, YP12, YP13, YQW +16, YK11, YJ84, YDW18, Yun12, ZZ12, ZS17, ZS13, ZL18, Zha17, ZLN11, ZT89, Zue96, de 82, van14, AMB +02, ADR03, ADR06, AK08, AK09a, AkI78, Aku95, ASM17, Alb89, ACF05, Asc99, ALV92, AF92, AFM94, ABF94b, AAL +97a, ALLL98b, ALO1, ALP04, ABC +04, AKT06, ALLS07, AAK +09, AAB +09, AEB +11, AHER +14, Ano97b, Ano01, Aoe89, AG84, Apo92, Apo93, AH97, AG97, ACP05].

Matching [ADLM01, AGS96, AD11, AGW13, AG06, BFKL13, BKL18, BYR93, BYP96, BYC03, BSY00, Bak78, Bak93, BDB90, BEM +13, BSTU08, BGFK15, BR09, BA15, BA16, BKBB +14, BBvdM21, BCD14, BPPR20, BLLP90, BLP192, BFC08, BFG09, BGVW12, BrI77a, BGJ93, BO13, BBL98, Bra90, Bra95, BBK12, BBKH14, BG90, BG91b, BCT93, Bre95, Bre96, BGM13, BKS02, BDM19, BFK +03, BC93, BEL04, CADA18, CGK08, CPT92, CCF13, CS98, CPW88, CF88, CK04, CGM10, CL90, Cha93b, Cha93a, CLZ +15, Cha87, Cha02c, CRV06, CJ93, CR95a, CLS95, CDDM05, CW13, CJBW13, CW18a, CW18b, CN21, CFK17, CNPS15, CNS18, CH04, CS11, CR87, CWZ10, CEPR10, CJS13, CDP14, CDP16, CA20, CP10, CH92, CCG +93, CH97b, CCG90, CT96, CD89, Coo89, CM07, Cro92b, CGR93, CG94b].

Matching [CR94, CL96, CGR99, CCG +99, CKC07, Dai09, DR06, DS04, DA18, DGG +19, DGM19, DOS93, Deo06, Der95, DiI76, DiJxx, Dit78, Dow91, Dow93, DC94, DGM90, DNR06, DHPT10, FLM +10, FWW13a, FWW13b, FLC +19, FC98, FCLST07, FT95, FL13, Fat15, FH18, Fen01a, Fen01b, FG95, FMdB99, FDG +11, FBMA05, Fre03, FN04, FM06, Fri97b, Gaá04, Gal75, Gal76a, GS81a, GS81b, GS83, Gal84, GG86, GG87, Gal92, GP92, GU95, GPR95b, GR99, GU16, GGL04, GS00, GGF13, GG13, GMC02, GW92, GBY90, GP96, GF08, GFG11, GGN06, GL89, GV00, GM17, GZ0a, GS06, HWW07, HY92, HLS07, HFS05, HC87, HR03, HH93b, HM96, HOK18a, HOK18b, HM00, HLS +11, HBRV10, HP01, HP03, HK77, How96, HLN09, HHL06, HF05, Hy908, IS96, Ier09].

Matching [Ind97, Ind98, IS90, IIK08, IM13, IIS6, ISHY88, JM93, JP11, JLF93, Joh95,
matching [Neb06, NWE99, NdMM02a, NC92, NR17, Nil90, OK94, dSOMY15, OR11, Oph89, OW03, PS89, PHTT15, Par98, PS90, PHTL14, PC99, PP94, Per94, Pet07, PM99, PP92, PDC94, PA10, QZC17, Quo92, RM06, RT902a, RUG97, RTO15, Rus88, RLP20, Sad93, SVS97, STK06, Sal12, SBB19, Sas79, WA09, Sch81, Sch91, Sch88, SZ05, Sen00, SS94, SGYM00, ST96a, SN94, Shi97, Sil77, SR16, Smi91, SDS14, SGCW14, SHCY93, Spe85, Sp99a, Sri93, SA77, Sto02, SALP20, SWW+12, SLZ+12, SV87, SMN07, Tak96b, Tak93, TBSO6, TZYH14, TJD+17, TM04, TM05b, TM05a, THG17, Tej20, Thi93, TTS83, IT13, TLS16, THMJC20, TLLL07, TLLL09, TCC91, THL+20, Ukk92, Ukk93, Val09, Van06, VLP17, VW11, Via04, Vin77a, Vin77b, Vis90, Vol12, Wad87, WZS95].

Matching-Based [CZCD09]. matchings [iba97, RW10]. matchlib [Ano01].

MatchPy [KB18]. material [RH81]. Mathematica [Har97, Mae94].

Matrices [CIK98, Gia93, PRU11, Lee82]. Matrix [FTJ95, SJNS19, TZW94, Kar82]. Matrix-Vector [FTJ95]. Max [IMP01, WPK13]. Max-Shift [IMP01].

Maximal [BJM79, Fra20, IF94, IS86, BGK+16, Che96, GHST17, IH86, Ukk92, Rep98].

Maximum [ADLM96, ADA17, OF16, ADLM01, LMM07]. May [ACM69, ACM74, ACM76, ACM81, ACM84, ACM86, ACM90b, ACM91, ACM92d, ACM93b, ACM94e, ACM94d, ACM95b, ACM95c, ACM97a, ACM97c, ACM99a, ACM99b, ACM00, ACM08, Ape92, DT87, KLB12, SW94].

Memory [KKK11, LP13, Lee98, SRV+19, TT20, TVCM12, FG99, JSHO9, KFG15, LH13a, LMT16, Nak14, PLL10, YKS11, YIAS98, ZYX+12, OW16].

MEMORY-Based [OWP16]. Memory-Efficient
[CJ93, FMdB99, GG95, GG97, Har02, HUN+19, LY17, LT03, LT90a, NBY99a, OR12, OSSK16, PLL08, TMK+02, WSW16, Alb89, ARS16, CPT92, CCG+99, ETV88, JKN500, KTP10, KPA10, OW03, SDA17, XMLC11, YT03]. Multi-attribute [Har02], Multi-byte [TMK+02], Multi-combinators [LT90a], Multi-Core [LY17, JA17, JXA20], Multi-Dimensional [GG95, GG97, NBY99a, JKN500, XMLC11], Multi-field [WSW16], Multi-keyword [OSSK16], multi-linear [ETV88], Multi-matching [CJ93], Multi-method [FMdB99], multi-pattern [Alb89, CPT92, CCG+99, KTP10], multi-resolution [OW03], multi-striding [ARS16], Multi-String [PLL08, YT03], multi-tenant [SDA17], multi-text [YT03], Multi-Threading [OR12], Multi-Track [HUN+19, LT03], Multi-view [CJ93], Multibox [Dya94], Multicast [Sch95], multicharacter [CW13], Multicore [YP13, ZLN11], Multidimensional [SN92], Multidisciplinary [Kni89], Multidisk [KCK93], multihead [CR87, Pet94], multilingual [ZV97], Multiterm [Bur84, Bur82], Multithreaded [EGP14], Multivariate [CvW18], Multiview [ZCS+12], Munch [Rep98], Munich [ACM87], Music [Cop91], Musical [Cop91], Myhill [WZU14].

Names [VB12], Nancy [Bun94], nanolithography [SS93b], narrowing [AEH94], Nashville [ACM90a], Natural [Fre06, GR96, vNG01], Natural-Language [GR96], Navarro [Hyy08], Navigational [LRSV18], nd [OND98], nd-order [OND98], near [HFFA09], near-optimal [HFFA09], Nearest [CEMW91, QQC+13], Nearest-neighbour [CEMW91], necessary [KT90], Need [Gon02], needed [AEH94], Negative [YQW+16], neighborhood [KS11a], neighbour [CEMW91], Neighbourhoods [NRS18], Nerode [WZU14], nerve [Kle56], nested [Lar98, MZZ10], Nesting [Jed87], net [AB89, PP85], Nets [CEW58, Sim83, BG91a, GR92, Kle56], Network [BNV+13, CFM17, CFS+98, LY17, LN19, Rei03, ZL18, BKLE18, CMS08, GZ10a, LMMN07, LHCK04, SALP20, Tak96a, TLLL07, WXZY12], network-based [BKLE18], Networks [CLP95, DCM15, JGZL12, MSP+17, Ray96, SF01, CEMW91, Kin89, KD15, LLL12, LYWL08, MMDDJ11, SD91, SDA17, VD17], Neural [AB89, CG87, CLP95, SF01, Kin89], neuromata [SW98], neuropsychology [AB89], Nevada [ACM95c], next [KKP92], next-generation [KKP92].
NFA
[ARS16, Cha01, CP97, GS07, HM08, Hyyo08, Li03, PD12, YKGS11, ZYX+12].
NFA-based [ARS16]. NFA-OBDDs [YKGS11]. NFA’s
[CHP92, GLRÁ11, Lau00, IY02a, IY02b]. NIDS [TK07]. NIDS/NIPS [TK07]. Nineteenth [ACM92a, IEE95b]. Ninth [ACM90a, ACM97c]. NIPS [TK07]. nm [SS93b]. NMR [SHCY93]. No [CA20, Edw07, Gro91a]. node
[SWW+12]. noise [ZHWW12]. Noisy [Bra94, KO83]. Nominal [KST12]. Non
[A017, BST+03, CR92, Gra15, Gro91b, Ryt89, Sil77, tC09]. notes [BLPL92]. notion [Cha02c]. Novel [LLCC13, LS99]. November
[A+08, IEE89, IEE93, IEE98, NEH90]. Novice [JNS08, MLM+08, PP94]. NP [TCC91]. NP-completeness [TCC91]. NR
[Nav01b]. NR-grep [Nav01b]. NUCA [HFFA09]. Nucleic [CCL87]. nucleotide [LVN87]. Number [BM00, GPR95a, GS81a, Kod79, LS09]. Numeric [KAN+17]. Nutshell [Gt92, Rob99]. NY [AP10]. O [PSK08, ZYQ+15]. OBDDs [CH04, YKGS11]. obfuscation [OSSK16]. Object
[CJ93, GP93, LT90b, Coo89, GPTV93, LLC03, TG96]. Object-Oriented [GP93, LLC03]. Objects
[BZ89, SP16, Alb89, HNB+13, IM13, Mar89, MR05]. Oblivious
[SV16, HLS+11]. Observations [Hun79, APTS13]. Obtaining
[HW07, DR06]. OCaml [Fro06b]. Occurrence [CIL+03, Cha02c, Mus05]. occurrences [FLSS93a, FLSS93b]. OCR [San95, TIAY90]. October
[Bao93, IEE89, IEE90, IEE92, IEE95a, IEE97, IEE09]. off [MNS07]. offer
[FG98, GG97, Lut02, Pru17, Tak86, BEL17, CLP95, Fre06, Joh95, KNT11, NEL17, CT96, FG95, Gal75, NR02, TTT83]. One
[JKN00, JL96, LY86, Sch91, She59, WC14, Alb89, AGM05, Bak78, CR87, CCG+93, GGL94, JL93, LMNT16]. One-dimensional [JKN00, WC14]. one-letter [AGM05]. One-Way
[JM96, LY86, Sch91, She59, CR87, GGL94, JL93]. Online
[FL12a, LH13b, PS10, CJPS13, FL13, KM13]. only [GS81a]. Ontario
[Cha86]. Open [SDS14, AC93, ZdSO18]. Operating
[IE01a, IE01d, IE01c, IE01b]. Operational [HH83]. Operations
[DJ96, AGM05, Ear74, GW92, GH09]. operator [HC87]. Operators
[Fort2, Kea91a, Sym85, MMDDj11]. Optimal

CCG+93, CR91, CR94, Gal84, Gal92, GS93b, GF08, Hur84, Hyy08, II86, JRV96, KIH15, LV89, MK90, Mis03, MMS14, NYuR15, Ryt89, TLS16, ZC99]. Parallel-Algorithms [SV94]. Parallelism [JA17, JXA20, MKF91, Wri94, ASM17, CFK17, HFN05, LV86b, NR00, RW93, SBB19]. Parallelization [KP93, RP95]. Parallelizing [HN90, MIH17]. Parameter [Jok90]. Parameters [CB91, CB92, CB93, CB94, CB95]. Parameterized [Bak96, BRL13, BDFW94, CHLT14, IS94, OP16, PA10, AFG94, Bak93, BA16, CGK08, FM06, HLS07, IS96, KC21, KPA10]. Parameters [CJBW16, CJBW13]. Parametric [Chl08, HPM94]. parametricity [Rém17]. parentheses [PDC94]. parentheses-matching [PDC94]. Parenthesis [Sto96]. Paris [Cro92a]. Park [IEE89]. Parse [Kea91a, DF00]. Parser [Hol84, TB00, Gan89b, LK06, MLC08]. parsers [Dya94]. Parsing [AU72, AU73, Cam99, DA20, Gor00, MGH97, Rus88, BvdM17, MMI14, Ier09]. Part [KP15, Ku11]. Part-of-Speech [Kul11]. Partial [Ant95, Ant96, CW84, CD89, GL01, KK08, Mor83, Ses96, Smi91, Zve80, ADR03, ADR06, DR06, HR03, Jor92, KCK93, MR95, ST19]. Partial-Match [Mor83, Zve80]. Partially [ZMS93, HY92]. Parties [XZL19]. Partition [CF85, FR17, WL15b]. Partitioning [Fat15, Kim99, LYWL08, Mid96]. Partitions [Knu05]. partners [LLL12]. Pascal [Liu86, Sha88]. Paso [ACM97c]. password [KJS17, MW94]. paste [AM97]. patches [TCCK90]. Path [Bac94, BLLW12, CDLV99, CDLV02, HJ99, LM01b, Tar81a, Tar81b, TPT13, BB13, Che96, CK02b, LM12, MF96, PC02, YCJ08, YT03]. Pathwise [TPT13]. path-wise [MF96]. paths [GLS07, LM13]. Pattern [AMB02, ABM08, ABF94a, ABF96, AAL97b, ALL97, AAL+97a, ALLL98a, ALL00, AAL+00, ALR08, AAB+09, AP10, AWS16, Ano92b, Ano96, Aol17, AYS84, iA94, AG84, AG97, AT02, ADLM96, AW89, Ash85, AJS92, AGS96, AD11, BNY98, Bak96, BCD98, BEM+12, BLP18, Bee81, BKL97, BKL+02, BCKM15, BBL93, BBL98, Bow87, BTC06, BL16, BG01, BCFL12, BC93, BCC+13, CCFG12, CFM17, CSM98, CDM11, CG87, CK04, CLST+13, Cha02b, CZCD90, CK92, CDEK95, CG94a, CLP95, CM08, CL95, CHZ06, CEP90, CJP90, CD04, CH03, Col94b, CG79a, CG79b, Cro92a, CR92, CR95b, CGPR95, CL96, CG+98, D+98, DB86, DWE89, DLG12, DN77, Dit78, DCM15, DGM94, Dwe00, EIV04, EF13, EGP14, Far92, FMMS20, FL08, FR00, For02, FNU02, Fu95, Fu96, Fu97, GHLW15, GPP04, GC01]. Pattern [GAMS99, GI97, GP01, GP03, GIMV03, Gaw12, Gaw13, GP93, GM02, Gia93, GG95, GG97, GM11, GCM02, Gil85, GW92, GKP19, GGN06, Gri79, Gri83, GL01, Gro92, GL86, Har02, Har97, HAR10, HH83, HL10, HT14, Haz01, Hea71, HEWK03, Hei01, HL97, HUN+19, Hig95, HO82, HST01, How97, HW12, CVP86, IMR98, IST05, JLK+20, Jez15, JSC83, KPR97, KPR00, KU99, KS12a, KR81a, KR81b, KR87, KR94, KRS95, KRS97, KN00, KP93, KES91, KES79, KTS99, KMT+01, Kid09, KS99, KKL01, KK11, KS01, KS06, KM92, KM95a, KM95b, KMP77, KRR17, Kor83, Kra08, KB18, KK02, KU09, KNS12, Kiül10, KVX12, KNMH00, KC99, Lab12, LV94, Lav91, LP13, LM01a, LKL02,
LSTW+17, LY17, LT03, Les95, LV06, LTL04, LA12, LLCC13, LJH+17].

Pattern [LLC17, LP11, Liu86, Liu88, LM02, Lut02, MZ07, MS98, MKF91, MU02, MW92a, MW92b, MGW14, MR11, MHT09, MUHT96, Mcl85, MS01, Mon17, Mu 95, MuT95, Mut00, Mye92, Nao91, Nar91, Nav98, NBY99a, NR99b, NBY01, NR03, Nav04b, NWE97, Ned98, NdMM02b, ND02, Neu10, NRS18, NCKL14, OR12, OP16, OW03, Ott94, PDL98, PS10, Par96, PV91, Pet92, PW95, PPZ08, PF09, Pout93, PK85, PS93b, RR90, RR92, Rao95, RM88, Rs98, Rs10, Rs16, RSG+19, SMD04, SCFC94, SN92, SP16, Sch95, SRR95, Sel84, Ses95, Sha93, SN94, STSA99, SKF+00, Shi00, Shi04, SSSS10, Sim83, Spf01, Sm02, SW09, Som82, Spf99b, Tak86, Tak94, TMK+02, TM05a, TMV+01, TSI13, TK07, TL12a, TL12b, Ukk10, VSM87, VWR11, Via02, VG01]. **Pattern**

[VRD01, Vis91, Vis99, Vol12, VS01, VB98, WCM+94b, WZS95, WSW16, Wat96, WKA94, WD09, WBA83, WM92b, Xi03, YP13, YK11, YDW18, ZZ12, ZZH10, Zha17, ZdSO18, ZLN11, ZTS9, Zue96, ADR03, ADR06, AK08, AK09a, Ak178, Alb89, ASC99, AYCLS02, ALV92, ALL99b, AL01, ABC+04, AKT06, ALLS07, ABH+14, Ano10, Ao89, Ao09, Apo92, Apo93, AH97, ACP05, AP90, ADLM01, AG06, BKL18, BY93, BYCO03, Bak93, BDB90, BEM+13, BA15, BA16, BCD14, BPR20, Bir77a, BGJ89, BO13, Bra95, BHK14, BK02, BDM19, CGK08, CPT92, CPW88, CF88, CGM01, Cha93b, Cha93a, Cha87, Cha02c, CRV06, CR95a, CLS95, CFT17, CNPS15, CNS18, CS11, CW20, CIPS13, CDP16, CA20, CCG+93, CH97, CT96, CD89, CCR93, CG94b, CR94, CCG+99, CK07, DS04, DA18, DGG+19, DGM19]. **pattern**

[Dij76, Dijxx, Dow91, Dow93, DGM90, EASK14, FLM+10, FWW13a, FWW13b, FLC+19, FC98, FHV18, Fen01b, FBMA05, Fr97b, Ga94, GP92, GU95, GR99, GU16, GS00, GGF013, GG13, GPN96, GJS20, GZ10a, GS06, HWW07, HC87, HM96, HBRV10, HP01, HP03, HK77, How96, HLN09, Iba97, Ier09, Ind90, IM13, ISH88, JM93, JPI1, Jon07, KPT10, KSV15, KS07, Kas08a, Kas08b, KTS+98, KMS+03, KCK93, Kin99, KS11a, Kin89, KS05, KMP94, KD15, Kos98, Kos94, KM13, Kri09, KKR+13, KG105, LL03, LH13a, LH03, LS10, LS09, LP08, Liu81, LBK08, LO94, MCF+11, MCF+14, MK90, Man76, MMZ10, Mar07, MAI+16, MP05, MHH+01, MR99a, MR13, MA12, Min95, NY95, NY95, NY10b, NR02, NWE99, NDMM02a, NR17, NK07, Ni90, OK94, OR11, Oph89]. **pattern**

[OSS16, Owo93, PPT15, Par98, PS90, PC99, Per94, PMS11, Quo92, RM06, Rus88, SBB19, Sas79, Sch81, Sch91, Sch88, Sen00, SGM90, SII77, Smi91, SRS14, SGCW14, SCY93, Spe85, Spf99a, Srt95, Sto2, SLP20, SM07, TZYH14, TM04, TM05b, Tc20, Thi93, TTT3, IIT3, TLS16, TMC20, Val90, Vam6, VWW1, Via04, Vin77a, Vin77b, Vis90, WAD87, WCM+94a, WMG113, WC14, WLL15b, WZ96, WVO3, Wat03, Wea94, Yao79, YC97, ZC89, ZMAB03, ZA17, ZC09, ZC0912, dRL95, JD98, YIAS89, Ano97b]. **Pattern-Based** [EGP14, Far92, KS07]. **Pattern-Directed** [Kor83]. **Pattern-Match** [Pet92, GJS20]. **Pattern-Matching** [FR00, KPR97, KPR00, KR81a, KR81b, KR87, KRS95, KRS97, KP93, KVX12, LY17, Lut02,
MUHT96, NWE97, Ned98, Ott94, Pou93, SCFC94, Sch95, SSSS10, SW09, WM92b, CL96, GMC02, KN00, CF88, Dijxx, Fri97b, Gaâ04, ler09, KSVJ15, LH13a, Nav01b, NWE99, NdMM02a, OR11, Per94, Sch88, Wea94].

Pattern-Recognition [AWS16]. Patterns [BLR14, BH85, CMNP17, Gim73, HNB+13, IS94, JGZL12, Kha16, Les79, Pru17, SB09, TMV+01, ADT15, Alb89, AG06, BLR11, BSM+07, BFS04, Bro77, CP10, Dan91, ETV88, IS96, JSH09, KPA10, KIH15, KRML09, LM17, MR09a, NdMM02a, Tak93, Ver92, Vou06, Wal89, ZKCY07, ZJL14].

Performance [FWW12, HKL+14, IS90, JLK+20, Lee09, MM02, MM03, RSG+19, Sca11, YP12, YK11, YJ84, CMG10, Fen01b, Hur84, LH13a, SNB+19, SWZ01]. peril [Fen01b]. Periodic [Mat94, CDM11, FLSS93a, FLSS93b, ZKCY07]. Periodicities [Sli83]. Periodicity [GPP04, MAI+16]. Perl [Lab12, Ano97a, Anoxx, Fri97a, Han01, LT09, SPF08, Sno01, SM04, Stu07, Val09].

PMETA [Kes79]. pocket [FPD08, GL03, Stu03, Stu07]. PODS [ACM95b, ACM99a, ACM07, HF13, ACM90a, ACM92b, ACM94c, ACM95b, ACM97a, ACM98]. PODS’11 [Len11]. PODS’12 [KLB12]. PODS’13 [HF13]. Point [CM08, GIMV03, Hig86, MU02, Ukk10, VS01, WKA94, ZHHW12, dRlx95, AK09a, CGK08, CS98, Rot91, TZYH14, WC14].

[GOMSJGP08]. Pushdown [MS98]. Puzzle [BK93c]. pyramid [SS94]. Python [DV21, KB18, LR14, Rom14, SM04, Stu07].

Q [MP88]. Q&A [Cal00]. Q-Coder [MP88]. QED [Ritxx]. quadtree [SS94].

Quantitative [ARM+19, Lia88, Sca11, YPG21, MRA+17]. Quantum [Mon17]. quasi [Kos94, NCV10]. quasi-equally [NCV10]. quasi-real-time [Kos94]. Quebec [ACM94d]. Queries [AKT20, BYCMW94, BLLW12, CDLV99, CDLV02, FLS98, HJ99, Kin92, WWW+16, ADT15, Arn93, BBG13, CK02b, FWW12, FLC+19, IKX15, KC15, LMRT14, MRA+17, ZXL+13, ZCOZ12]. Query [AAB+17, FLS98, KM94, LLS+20, AYCLS02, AL08, BLSS03, BFS00, CDL08, CMW87, FWDL15, HRN+15, KSH+15, LRV13, MZZ10, PC02, QWX+13, RM06, XQW+13, ZCÖ09], query- [FWDL15]. Querying [BLR11, BLR14, CMNP17, LM01b, LMV16, San15, TV14, CM95, GW92]. Question [KKSL01, AFI98, CKC07]. Question-Answering [KKSL01].

queues [SWZ01]. Quick [Rob99]. Quicksan [Sil77]. quirky [MLM+08]. Quoted [PSK17]. Quotient [FPP08].

[Wei84, ACM69, ACM74, ACM76, ACM92a, ACM93a, ACM94a, ACM95a].

Rectilinear [GK86]. **Recursion** [Bir77b, AP13, BFS00, CM90, CMW87]. **Recursive** [FR00, FKP77, JD89, Dow93, GPR95b, HN90, Kra08]. **Reduce** [CKW09, SASU13, Har79, Kes79]. **Reduced** [TJD+17]. **reducibility** [KR95]. **Reduction** [KNMH00, She59, DWE89, RP95]. **redundancy** [Joh94b]. **Redundant** [RJK79]. **reexamined** [ORT08]. **Refactoring** [WGMH13]. **refactorization** [Rém17]. **Reference** [Rob99, Sch14, FPD08, GL03, Mha05, Stu03, Stu07, ZZJC20]. **references** [FS19, WL15a]. **referencing** [Lar98]. **Refined** [Pet94, Sch88]. **reflection** [HS08, Mor02]. **Reflective** [Dwe00]. **refunctionalization** [RTO15]. **Regenerate** [RT18]. **Regexp** [Ano10, BDMT16, Sch13, THL+20]. **Regexp-based** [BDMT16]. **regexes** [MMI14]. **RegExE X** [BH07]. **Regexpcount** [Nic03]. **Region** [Bao93]. **regions** [CM95]. **Register** [VSM87]. **Registration** [DMWW77]. **Regular** [ARM+19, AM91, ADR15, Ano68, Anoxx, Ant95, Asp12, Bac94, BLM14, BTG83, BDD+14, BR20, BC13b, BF97, Ber00, BGNV10, Bra94, BC94, BFS04, BMMR19, BTC06, BK93a, BK93d, Brz62, BP63, Brz64b, Brz64a, Brz65, CDLV99, CDLV02, Cam99, CSY03, CZA01, Cha01, Cha02a, CLOZ04, COZ09, CJM12, CDJM15, CRR02, CJBW16, CHP92, CC97, CKW09, CGLS17, CDL95, CDL99, Cox07, Cox09, Cox10a, Cox12, Dav99, Dav03, Dav04, Dav21, DM11, EU98, FRU+20, FLS98, FU82, Fri02, GJ16, GR90, GMG98, Goe06, GLL+12, Grh13, GH15, HML+13, Hab04, HM98, Ham88, HHW96, Han13a, Han13b, HJW03, HN11, HJ99, Hir96, Hol84, HK11, Hos06, HVP00, HP01, HP03, HPV05, HN00, HSW97]. **Regular** [HSS01, Hum97a, Hum97b, Hum99, IY02a, IY02b, JNK+20, KTO6, Kap69, KTO87, Kea91a, KP99b, KP99c, Kin92, KM92, KM95a, KLMH16, KMRY20, KN12, KV15, KZ02, KST12, LS99, LS06, Lar98, Lee09, LZHZ98, LM01b, LT15, LT16, LN19, LT09, Loh10, Mad01, MS98, Mag81, MNS10, MY60, MN+14, MSZ17, MR909b, MPDS12, MGF97, Mye92, MOG98, NR99a, NR01, Nav91c, Nav94a, NR04, NM10, OWP16, Org03, OF61, OR08, OR09, Pak91, PM78, PPA10, Pat71, Pet02, Pra97, Pre99, Ray96, Raz92, Ric79, SA96, Sca11, Sch99, SD95, SS93a, Sou99, Spe85, SM99, Stu03, Stu07, SL17, TV14, TB00, Uma97, VCS+12, VHCS88, Wag74, WPKL13, Wat96, Wen93, WMM95, WZU14, XK92, XLC19, Yam01, YPG21, YP12, YQW+16, ZGS+15, ZMWL20, Zia96, dLFM07, vNG01, AI98]. **regular** [Ano97a, AGM05, AM95, Ant96, AOMC07, ACM02, BCG07, BYG96, BBG13, BAC12, BR13, BDFEM+20, BG91a, BDFR08, BvdM17, BBvM21, BS86, BNSV10, BFC08, BF90, BK86, Bra95, BH07, BK92a, BK92b, BK93b, BK93c, BDM19, CRR03, CP97, CJBW13, Ch17, Cho78, CK02b, CLT07, CK08, CGPS13b, CGPS13a, Cox10b, CDLM17, DL03, DF00, EZ74, EZ76, FL71, FDG+11, FHW10, Fos89, FS19, Fri97a, Fri06a, GLRA11, GR92, Gef03, Gel10, GL03, GS07, GMS12, GM17, GH09, HW07, HWW07, HY90, HJSJ04, HW09, Hov12, Hun79, Jan85, JSH09, Joh96, Kah06, KS08, Kar82,
Ker07, KGA, Kin91, Lau00, Lau01, Lee82, LSO17, Lei80, Lei81, Lei85, LWS, Li03, L14, LM13, LMN16, Lus94, MMDDJ11, Mcl04, MR05, Mor02, MZZ10, MM89, NT20. regular
[Nic03, PHXD19, PC02, PIR17, PLT14, PIT+03, RT18, Rob79, Rom14, Ryt89, Sak21, SCF, San15, SMS15, SGYM00, Sha88, SY72, SH85, SM04, ST19, SSYW12, SLZ, TN13, TN15, Vou06, WXZY12, WL15b, WW03, Wat03, WR15, XJT+04, Yam19, YKGS11, YH91, YH92, YB13, ZZH16, ZC99, ZYX, tC09, Tho68, Ano12].

Regular-Expression
[BTC06, Han13a, YQW, ORT08, ORT09, SCF, WR15].

Regular-like
[BTG83].

Regulatory
[MMDdJ11].

Reifiable
[dSOMY15].

Reinforcement
[KK02].

Related
[CHZ06, AS85, Gro91b, Sri93].

Relation
[KN12, MR92, Pre99, LSV08].

Relational
[BGHZ15, HC87, KWLL08, MZZ10, DWE89].

Relationship
[XK92, GR92].

Relaxation
[SHCY93].

Reliability
[FO76].

Reliable
[KKSL01, CDC96].

Remark
[Tho81, Pet95, TCC91].

Remarks
[CR87].

Removal
[KK95, MGF97].

Repair
[PHXD19, Huc21].

Repairing
[LWS, L04].

Replacement
[KK06].

Replication
[HFFA09].

REPORT
[GS81b, HJW].

Reporting
[MOG98].

Representable
[Dow93].

Representation
[NR01].

Representations
[KKAN, BLSS03, BO13, MAI].

Required
[MW92b].

requirement
[LH13a, ZKCY07].

requires
[RO79].

Rescuing
[FSL].

Research
[CPW88, IEE89, KL02].

Reseed
[SCF].

Residue
[BM00].

Resilient
[ABBBH, YB13, ZC89, ZZH16].

resiliency
[KIN2, OWP16, Lei81].

Results
[FMMS20, Lec95, WCM, F13, WCM].

Retargetable
[GFH82, BBDB90, Gan89a, Fra83, GHF83a, GHF83b, WNL].

RETE
[Alb89, MK90].

Retrieve
[BBH].

Retrieval
[DS19, FBY92, GR96, L96, M96, MKF91, Mor83, Zve80, All82, BSY00, LMNT16, PDM01, SD91, ZKA12].

Reusability
[PAV91].

Reuse
[HL97, Rem17].

Review
[Ano97a, Ano97b, Ano12, Hig95, Hm97a, Hm97b, Lab12, Neu10, Uma97, FL13].

reviewed
[A08].

revisited
[CCI, GL01, RUG97].

Rewrite
[KN00, Ram94].

Rewriting
[AM95, CDLV99, CDLV02, Dur94, GHW05, Lav91, ND02, GMC02, KR95, PKS17].

Rewriting-Based
[ND02].

REX
[Cam99].

Rexx
[LS06].

Rey
[ACM69].

Richness
[QPWH08].

Richness-preserving
[QPWH08].

RICs
[TJD+17].

RICS-DFA
[TJD+17].

rifarensu
[SM04].

Right
[NWE97, Ned98, Pat71, CWZ10, HR03, Tak96b].

Right-Linear
[Pat71].

right-to-left
[CWZ10, HR03].

Rigid
[JM85].

Rigid-Body
[JM85].

Risk
[Lut02].

Risk-Based
[Lut02].

RNA
[ABH+14, BA15, IMR08, MP05, SBHM94, Shi00, Shi04].

RNAi
[QLY07].

robot
[PS93a].

Robust
[Le 91, LZ18, WZH12, YP13, BFN+09, HLN09].
Roma [AAC+01]. Root [CHZ06, TLLL07]. root-hashing [TLLL07].
Root-To-Frontier [CHZ06], Rosenberg [CR91], Rosser [KKM+85].
Rotation [FU98, HW12, HLN09, TZYH14]. Rotations
[FNU02, ABC+04, AKT06]. Route [Les94].
router [MLC08]. Rule [Stu97].
Rule [Han92, RT17, Gre88, Oph89]. rule-based [Gre88].
Rules [CVW18, GHI62, Lav91, GMC02].
Ruleset [Sca11]. Run
[Chu95, MHT09, BFKL13, BC95, RP95]. Run-Length
[Chu95, BFKL13, BC95]. Run-Time [MHT09, RP95]. Running
[DLG12, Gal79, NAR08]. Runs [BL16]. runtime [Rob92]. Russians
[Mye92]. Rust [Bal15, KN17, KN19].
salute [FvGG00], sam [Pik87, Pik90]. Samples
[GS94, ST96b, Tak94, Kin91]. Sampling
[GPR95a, Lut02, Vis91, WSW16, CGR93, Vis90, ZHWW12]. San
[ACM92c, ACM92b, ACM93b, ACM95a, ACM95b, DT87, IEE94b, KP15, Sto92, USE92].
Sandeep [Hig95]. SAR [B+02]. SASL [LT90a]. Satellite
[Bre93, Bre96, GS80]. Scaffold [LJZZ13]. Scalable
[ARS16, BAC12, BBHK14, BTC06, HSL10, JLK+20, LQL+16, LT16, MT14, SRV+19, VWR11,
YP13, ZLN11, AB09, BGFK15, KTP10, PIR17, TLLL09, VW11, WL15b].
Scale [LP13, LYLW10, TZYH14, WHZ+17]. Scaled [BEL04]. Scaling
[HW12, MS01, YDDB15, ALV92, HLN09]. Scan
[MIIH17, Gre88]. scanner
[Hwe84, ISHY88]. Scanners [HKR92]. scanning [CWZ10, HFI+08]. SCCs
[ZYQ+15]. Scenes [BZ98, BSM+07]. scheduling [LMNN07, Mid98].
schema [IKK08, MNS07, dLFM07]. Schemas [BGNV10, MNS10, KS07].
Scheme
[Bur84, FK16, Man94, Man97, Bur82, Kod79, KRL87, LH13a]. Schemes
[KK08, Pel87, QWX+13]. School
[Cro92a, An92b]. Science
[ACM99, FJ92, GUS97, IEE90, IEE92, IEE93, IEE95a, IEE97, IEE98, IEE99, Ker04, Win78]. Scientific
[WCM+94b, ORPF13, WCM+94a, WZS95].
Scopolapax [ORPF13]. Score
[Ben94]. Scores [CLST+13]. Scoring
[KK08, OSSK16]. Scotland [AVO+99]. Scottsdale [KLB12]. Scratchpad
[JT94]. screening [QPH08]. Scrimshaw
[Arn93]. Scripting
[Fri97b, RB05, BFN+09, Bhu08, FhDAF09, Han01, LS99]. ssh [Sar02].
Search
[AC75, Ber00, BK93c, Cal00, EF13, FG98, GN19, GG97, KR94,
Lut02, Man86, NR99a, NR01, Pol01, SED14, SJNS19, SB09, Sun90,
WWW+16, YDBD15, Zha07, ZGS+15, AB09, BC13a, BC06, FG95, FG99,
GHK14, HH16, JRV96, KJS17, LGZ+14, NR02, OSSK16, QQ+13, QLY07,
SCF+17, Tan14, Tho68, WDG+14, YHV+15, ZBST14, Cox12].
Search-Space
[ZGS+15]. Searches
[GN01, MT14, Fen01a, KS08, MW92b, SMS15, WR15]. Searching
[BS97, BM77, CC97, CCL87, Dav73, EF95, Gon83, HS91, Kmu98, Man94,
Man97, Nav01c, NR03, Nav04a, NR04, Ste94, TT82, ZMSD93, AEMS14,
BYG92, BYG96, Bar84, CD96, CEMW91, HKN14, Han93, KIH15, Mha05,
Mus03, Mus05, Owo93, Per94, Ryt80, SNZBY00, WL15a, WM92a]. Seattle
[ACM74, ACM98]. Sebastopol [Ano97a]. Second
[ACM83, ACM00, Ano12, ACM90b, Dow91, TPT13]. second-order
[Dow91, TPT13]. secondary [BA15, MP05]. Sections [DCM15]. Secure
[DEM+12, DEM+13, EF13, HT14, SBB19, SJNS19, DA18, SCF17].
Security [HL10, LN19, MW94, Rei03, SALP20]. seed [Dow91]. seed
[CCI13]. Seeded [LPR+99]. Seeds [Zha07, FCLST07]. segmentation
[IK08]. Segments [EIV04]. Seiki [SM04]. Selected [Cro92a, Moo64].
Selection [Bon07, CMR18, Gie90, LH13b]. Selections [CvW18]. selectivity
[DKS00, STKD20, TP07a, TP07b]. Self [CG87, CADA18, JP11].
[CADA18]. SeLINQ [SHS14]. Semantic
[Gan89b, Har97, II08, Coo86, Ik08, MP09, SG12]. Semantica [Har97].
Semantics [Dan91, Gud92, Pag78, PAG09, BwdM17, Chl08, Ma193, Sa15].
Semantics-directed [Dan91]. Semi [KV15, TMK+02, BGVH15, Rob97].
Semi-Extended [KV15]. Semi-structured [TMK+02, BGVH15]. semiring
[AS85]. semistructured [BFS00]. Sensemaking [LLS+10]. Sensitive
[CK02a, Sa96, TPT13]. sensor [NC10]. sensors [BWG12]. Separated
[AAC+01, AOV+99, Len93, MG94, Win78]. Seq [SNB+09]. Sequence
[BLP94, BGM91, BDFW94, Bra90, CCL87, GM02, KS99, KK08, LPT12,
MGW14, RND97, CHT07, ESS88, GO12, HAI02, MBB91, NT20, SBS97].
sequenced [GW92]. Sequences [BLP18, BEL17, CvW18, GvS97, Hua94,
IMR08, LTH+17, MT14, NEL17, DKP11, GGN06, KR14, LSVN97, MZZ10,
MR02, NI90, RLP20, Se184, SN94, ZCY07, Lut02]. Sequencing
[RM06, FSL+15, KRL10]. sequentiability [Gaa04]. Sequential
[BP93, BvZ94, Brz65, Dur94, GR99, GPR95a, Man86, Moh94, MR13,
MOO64, OF61, PM78, RS98, Wei83, Zve80, JM90, MMZ10]. SEQUITUR
[MCH+01]. serial [BS93b, LV96b, LV99]. Series [LK02, MR99b].
Series-Parallel [MR99b]. Server [GSL17, SWZ01]. Server-Side [GSL17].
service [CADA18, ZBST14]. Set [HL10, Hig96, Hu92, KF91, CGK80, CP10,
KR97, THL+20, WCR14, dRL95, TJ+17]. Sets
[AGM19, BNV+13, EIV04, Pol13, Pri17, Via02, AK09a, Alb89, CS98, Che96,
CHo78, KIN91, LMM17, Mat94, Rot91, Sta89, TZYH14]. Seventeenth
[ACM89]. seventh [ACM95c, AAC+01]. SGML
[BK93a, BK992c, BK93b, BK93c, MG93, MG97]. SHA [KJS17]. SHA-1
[KJS17]. shading [BSM+07]. Shallow [Cam99]. Shape
[BZ98, CTT98, JY84, DOS93]. Shapes [HH93a, CT96, HH93b]. Shared
[TVC12, VRD01, SW93]. Shared-Forest [VRD01]. shelf [Sri93].
shelf-theoretic [Sri93]. shelf [MNS07]. Shell [IEE01c, RB05, Bla08, Wes97].
Shells [Qui02, Qui90]. Shift [Fre03, IMP01, KTS99, CT96, Per94].
Shift-And [KTS99]. Shift-or [Fre03, Per94]. shifting [WQ+07]. Short
[BLPL92, Han13b, KRS95, KRS97, MR99b, BGF15, Che96, FSL+15].
short-read [FSL+15]. Shorter [GH13, HW07, ZZH10]. Shortest
[Bee81, CS18, FO76, IEE94a, IEE95b, KP99c, KPA10, Lut02, MG94, PAMP12, Cox19, Gre88, Joh01, Jon13, KOI94, MP88, PA10, Spe85]. **Solaris** [Rob99]. **Solution** [Hea71, B+05, BLPL92, Goo05, Sch81, YCJK08]. **Solutions** [Gon02, Sto96, BBHK14, DL03, Sta89, BGG+94]. **solver** [KGA+12]. **Solvers** [ZGS+15]. **Solving** [BK93e, FR17, SED14, Tar81a, Tak96a]. **Some** [Fen01b, Gal76b, Liu86, MW92b, Sli78, WCM+94b, Wol90, San15, WCM+94a]. **Sorted** [Wal88, Gie90, Kes91]. **Sorting** [BS97, CMR18, Chr96, JRV96, Knu98, FCFM00]. **sorting-complexity** [FCFM00]. **Source** [SED14, AG06, Jol94b]. **sources** [ST96a]. **Sourcing** [CDL+15]. **South** [ACM93a]. **Space** [BC13b, Ben94, CF06, CZ01, Cha94, CF85, CDEK95, CJPS13, CGPR95, GS80, GHST17, GPR95a, GP01, GP03, KC87, LT09, SWY75, ZGS+15, AK08, BCWG09, BGM13, CD96, CGR99, GS81b, GS83, GPR95b, GO12, IKX15, KR89, LMRT14, PLT14, Rob79, SW12, TJD+17]. **Space-Efficient** [BC13b]. **space-optimal** [KR89]. **Space-Time** [CF85, GHST17]. **Spaced** [Zha07, FCLST07, NCV10]. **Spafford** [Hig95]. **Spain** [DMVT13, LV06]. **Spam** [ZGY+16, KEG+08]. **Spanners** [ABMN20, FKRV13, FKRV15, FRU+20]. **SPARQL** [LM12, LM13, PAG09]. **Sparse** [WSW16, HSL10, Quo92]. **spatial** [CS98, FLC+19]. **spatio** [PMD01]. **spatio-temporal** [PMD01]. **Speaker** [PG90]. **SPEC** [KL02]. **Special** [ALLL98a, AK09b, AGS93a, AGS93b, Ano17, DT81, ALLL98b, Cro92a]. **specialisation** [Jon07]. **specialized** [GÁSÁ+13]. **Specific** [MGW14, MSS+19, TMV+01, WKR09]. **Specification** [BG91a, Lut02, Sou96, SMT+86, MRA+17]. **specifications** [JM90]. **Specified** [ZMSD93]. **specify** [CFM00]. **Specifying** [Lus94, Lut02]. **Spectra** [BM08, SHCY93]. **spectrum** [ZHWW12]. **Speculation** [JA17, JXA20]. **Speculative** [NYuR15, RP95]. **Speech** [Kul11, PG90, RJK79, AAB+86]. **Speed** [BYHT18, FL12b, JGZL12, LK90, VCS+12, ZL18, LK88, PLT14, TLLL07, XMLC11, ZYX+12]. **Speeding** [CCG+94, Deo06, SKF+00, ACF05]. **spelling** [AB89, BSY00, TIAY90]. **spelling-correction** [BSY00]. **SPIRIT** [GRS99]. **Split** [KKK11, TB06]. **Splitting** [RTT02b]. **Sprachen** [HU92]. **Spreadsheet** [GH12, SG16]. **spreadsheets** [BGHZ15]. **Spring** [Ano87]. **Springer** [Neu10]. **SQL** [BKK+12, FPD08]. **Square** [ACM83, CIK98]. **Squares** [Rao94, IMS97]. **Squib** [SM99]. **St** [IEE90]. **stable** [KT90]. **Stack** [ZG12]. **Stack-based** [ZG12]. **STACS** [FJ92]. **stage** [YCJ08]. **staged** [PSK17]. **Standard** [IEE01a, IEE01d, IEE01c, IEE01b, XLC19, BR09]. **Star** [BMMR19, HY90, Tho81, Yh91, YH92, tC09]. **star-free** [tC09]. **star-height-problem** [Tho81]. **starting** [Mid98]. **State** [Bow87, BDM19, CZ0dH17, CM58, Go093, Han13b, JA17, KLH16, MY60, NRS18, WDG+14, Yun12, vNG01, Gaá04, HW07, Hur84, JX1A20, MMS14, VHL+12, Yod91]. **State-of-the-art** [WDG+14]. **Statements** [JP73]. **States** [DGBH93, LK06]. **Static** [Cha02b, HV93, JGZL12, WHZ+17, ALLS07, Aoe89, FhDAF90, GLS07, HS08, JU91, LYWL08, MP09, PIR17]. **Stationary** [KS96, ST96a].
Statistical [BGJ01, GS93a, GWvG10]. statistics [Maa06, ZZJC20]. Std [IEE01a, IEE01d, IEE01c, IEE01b]. stem [YHV+15]. step [BD09].

Stereovision [PDL98]. Steven [Ano12]. Stieltjes [KC11]. Still [Gon02, LS06]. STOC [ACM08]. Stochastic [SBHM94, YPG21]. Stopper [RTT02b, RTT02a]. Storage [JLK+20, All82, CDC96, GS81a, SCF+17].

Strategic [Vis99]. Strategies [CJ93, MM02, HBRV10, MM03, MLM+08, PSK08, PCS99, iA94]. Strategy [Bon07, EMC96, AHE94, LLI13]. stream [Nil90]. Streamed [DCM15]. Streaming [BG14, GKP19, BGFK15, GHR+16, MRA+17].

String [AOK02, Abr87, AC75, Aku94, AR00, ACR01, ADR15, AYS84, iA94, ACD01, BST+03, BYP92, BYN96, BY96, BYN97, BYN09, BCP02, BEL17, BH02, BH85, Ber00, BLLL90, BL94, BM00, BGVW12, BM77, BG92, Bre93, BCT94, BG95, BCT98, BGG12, BG14, BK93e, BZ98, Bur84, CZ0dI17, CF06, CFP19, CF88, CK02a, CLS+10, CL92, Cha93b, CM94, CL94, CCH09, CL97, CLP98, CN02, CTF+98, CHL14, CH04, Chu95, CW84, Col94a, CHPZ95, CH97a, CH02, CP91, Cro92b, CCG+94, CCG+97, CIK98, CIM+02, Dav73, DW17, EMC96, FT95, FT98, FL12a, FL12b, FR17, FG98, FV16, Fra20, FU98, Fre02, FT04, Fre06, Gal76b, Gal79, GS80, Gal81, GP90, GG91, GG92, Gal95, GPR95a, GW+05, GZ94, Gon02, GFG11, GV05, GMN12].

String [HD80, HH93a, Hu92, HS91, HN02, HO05, IMP01, IK83, JL96, JLF14, JTU96, Kha16, KST94, KKK11, KS11b, KS12b, KMM15, LSW08, LP13, Le 91, Lec95, Lec98, Les94, LY86, LLLL08, LLLC17, LD10, Liu86, Liu88, LCL06, LL+15, LS94, Mel95, Mey85, MM02, MIIH7, Mih97, ML96a, ML96b, Mun07, MR92, Mur97, Mye98, Nao91, NR98, NBY99b, NRI5, NEL17, OM88, PAMP12, PLL08, PK95, PP94, Pet07, Phi94, Rao94, RTT02a, RTT02b, RPK02, RPE81, RON09, Sad96, SV94, STK10, SD95, Shi92, Shi97, Sim94, Sli78, Sli93, Sp99b, Ste94, SJNS19, ST95, ST96b, ST04, TS05, TU93, TP97, TTS2, TMC15, UWW93, VMM15, WR94, YP13, YDW18, ZS17, ZS13, ZGS+15, ZML20, de 82, van14, Aku95, ASM17, AC05, ALP04, AAK+09, AEK+11, Aoe89, AESM14].

String [AGW13, BFKL13, BYP96, BYP96, BSY00, Bak78, Bar84, BR09, BKBB+14, BLPL92, BFG09, BFP+08, BG90, BG91b, BCT93, Bre94b, Bre95, Bre96, BGM13, Bur82, BEL04, ADA18, CCF13, CL90, Cha93a, CDM05, CW13, CW18a, CW18b, CN21, CR87, CH92, CGG90, CD96, CM07, CRR99, Dia09, DR06, Deo06, Der95, DC94, DNR06, DHPT10, FCLST07, FL13, Fen01a, FG95, FMdB99, FG99, FBMA05, Fre03, FN04, FM06, Gal75, Gal76a, GS81a, GS81b, GS83, Gal84, GG86, GG87, Gal92, GPR95b, GGL94, GY90, GF08, GL89, GV00, GHK14, Han93, HY92, HFS05, HR03, HH93b, HOK18a, HOK18b, HM00, HLS+11, HK77, HHLS06, HFN05, Hy908, IP96, IMS97, Ind98, IS90, II08, JL93, Joh95, JU91, KST92, Kim99, KWL07, KC21, KNT11, KS96, KST16, KPA10]. string [LV86a, LV86b, LVN87, LV88, LV89, Lar99,
String-Manipulating [VMML15].

String-Matching [BG14, CCG94, GS80, Gal95, JL96, Kha16, Les94, LY86, Moh97, Mut97, Sli78, Sli83, CH04, Cro92b, BR09, CCF13, CW13, CR87, CGR99, DR06, Gal75, Gal76a, GS81a, Gal92, GPR95b, HY92, HR03, JL93, KST92, LHCK04, PLL10, TBS06, Ukk92, Ukk93, dB93]. string-pattern [Kim99].

string-searching [Mha05, Ryt80].

string-similarity [BSY00].

String-to-Dictionary [KS11b, KS12b].

String-to-string [Mae90].

stringdist [van14].

Strings [Ale94, BS97, BCFL12, Chu95, Col94b, FT98, Gaw13, GNU94, GL01, Gus97, HUN+19, HT17, Huc21, ISNH94, KRS95, KRS97, KAN+17, KMP77, LT03, Lut02, SW09, Ver92, YQW+16, Zha17, ADR03, ADR06, BLSS03, BFK+03, BC95, CD89, CR91, DGG+19, EH88, ETV88, FT95, GO12, JRV96, KGA+12, KMP94, KR97, LMM17, LS10, Mcf04, Mei15, NR02]. Strong [BMMR19, GGM12, LS06, MCF+14, WD99, AW89]. Strongly [Dur94].

Structural [BGJ01, KWLL08, Shi00, Shi04, BFS00]. Structure [CGR02, Gia93, Les79, APTS13, ABH+14, BA15, GMC02, HN90]. stuck [AEK11]. Students [DKA+15]. Studien [SM74]. Studies [JM85, SM56, SM74, SS93a]. Study [CSY03, FTJ95, JM85, MM02, MSZ17, OP16, PV91, Sca11, BG91a, Fen01b, PSK08, SKS06]. Studying [MGH93]. Sturmian [BR09]. Style [Cop91, WW03]. subexpressions [Fat15]. Subgraph [QZC17, XLZ+19, EASK14, KSH+15, LQL+16, SWW+12]. Subgraphs [MSS+19, PSP+18]. subject [ETV88, Sch81]. Sublinear [CL94, FG98, CL90, CWZ10, CGR99, FG95, WZ96]. Sublist [IF94]. Subset [CH03, Kin92, Pag78, AB09, CH97b, HW09]. Substitution [For02, JSC83, Sch81]. substitutions [LVN87, Pie08]. Substring [AKT20, CIL+03, Har71, Joh94a, KO83, KRS19a, KRS19b, Sm90, BGK+16, BSTU08, Gra15, HKN14, HTX17, IKX15, JKN00, Maa06, MAI+16, Sto02, Yam19]. substring-preprocessing [Sto02]. Substrings [Cob94, Fra20, Boo80, FGKU15, GHST17, LO94]. subtree [Gro91a, Gro91b, M¨ak89]. Subtype [WZJH12]. subtypes [JM93]. Succinctness [Gel10, GN12]. sufficient [KT90, MR09a]. Suffix
t [KPP21]. **table** [GHS82]. **tables** [EF95, Mus05, Quo92, SDA17]. **tagged** [Lau00]. **Tagging** [Kul11, KEG+08]. **tale** [VLP17]. **talk** [R´em17]. **Taming** [Hab04, KSH+15]. **tapecs** [Cho78]. **target** [QLY07]. **TASH** [Wes97]. **Task** [YD95]. **TAWK** [Eck89]. **taxonomy** [CWZ10, WZ96]. **TBNF** [Man06]. **TCAM** [MPN+14, PD12, Yun12]. **TCAM-Based** [Yun12, PD12]. **Tcl** [Wes97]. **Teaching** [GOMSJVGP08, Far19]. **Technical** [Spi99b]. **Technique** [Vis91, ZT89, Bak78, Cla88, PC02, Vis90]. **Techniques** [DCM15, GS93a, GL86, HH93a, Kuk92, Mu 95, MuT95, NR04, Th90, Ana97a, DOS93, EF95, Fri97a, HH93b, MSRR00, Mun95]. **technologies** [OKT92]. **Technology** [IEE01a, IEE01d, IEE01c, IEE01b, THG17]. **Template** [SN92, Coo89, FLSS93a, FLSS93b, SS94, SA77]. **Templates** [HL97, ZGY+16]. **temporal** [PMD01]. **tenant** [SDA17]. **TENCON** [Bao93]. **Tennessee** [ACM90a]. **Tenth** [IEE94b]. **ter** [Lia84]. **Term** [Dur94, Lav91, Pet92, PS93B, KN00]. **Termination** [GHW05, JR15b, AP13]. **Terms** [Cha02b, ZMSD93]. **Ternary** [KAN+17]. **Tessellation** [Prü17, TIT83]. **Test** [Har71, AG84, RP95, SMS15]. **testable** [Mei08]. **Testing** [Bre94b, Hei01, Lung02, ZMWL20, GM17, Han92, KKM+85, MF96]. **tests** [Thi93]. **Texas** [ACM97c, NEH90, IEE94b, IEE95b]. **Text** [BBH+87, CC97, DW17, Fa85, GN01, Gon83, Gor00, GV05, GKW+10, How97, KR92, KTS99, KTVX12, Man94, Man97, Nao91, NR99b, Nav01c, Plk87, Plk00, Ritzx, STSA99, SKF+00, TMK+02, TTV02, ZA87, AMB+02, All07, BYG92, BYG96, BCD98, BGFK15, BC13a, BPR20, BFNP10, CL09, CHLS07, CR95a, CM95, CEMW91, CL96, GGF13, Gre88, GV00, How96, Iter09, Il08, KR89, KTS98, KWLL08, MW92b, Mus03, Mus05, NK+01, NQ+01, OK92, RH81, San95, SKS96, SNZBY00, WM92a, YT03]. **Text-Based** [GKW+10]. **text-compression** [CL96]. **Texts** [BBKLP97, BKL+02, BG95, CL95, FT04, Lung02, LMG9a, RAO95, TMK+02, BFKL13, BS90, BFG09, CD96, DSO4, JU91, KS01, NR02, Sen00]. **Textual** [BHS5, Haz01, JCR04, ZBST14]. **Texture** [VB98]. **tf** [TP07a, TP07b]. **tf-idf** [TP07a, TP07b]. **Their** [Brz62, CJM12, Gim73, HN05, MKHR12, OF01, RL59, BRL13, BPFM+20, GR92, KSVJ15, Lan00, NEH90, Pel87]. **Theorem** [GL19, WZU14]. **theoretic** [Pie08, Sri93]. **Theoretical** [CL92, FJ92, MAC14]. **Theorie** [SM74]. **Theory** [ACM69, ACM74, ACM76, ACM81, ACM84, ACM86, ACM90b, ACM91, ACM92d, ACM93b, ACM94d, ACM95c, ACM97c, ACM99b, ACM00, ACM08, AU72, AU73, DMVT13, Gm93, HU79, HU92, HMU01, HMU07, Lung02, Pet09, SW08, AF90, Bak93, Far19, Han02, HR00, SBG+07, VV04]. **third** [ACM91, AGS93c, Apo92]. **Thirteenth** [ACM91, ACM94c]. **thirtieth** [Len11]. **Thirty** [ACM00, ACM99b]. **thirty-first** [ACM99b]. **Thorn** [BFN+09]. **threaded** [MAC14]. **Threading** [OR12]. **Three** [Cha02a, GPP04, GGL94, HEWK03, KR94, Les79, Les95, de 82, AK08]. **Three-Dimensional** [GPP04, HEWK03, Les79, Les95]. **Threeomes** [GP18]. **threshold** [BSTU08]. **thresholds** [AD11, ZA17]. **Throughput** [BTC06, LPT12, TS05, LH13a, LMMN07]. **Thue** [KKM+85]. **TIG**
49

[Mu 95, MuT95, Mun95]. **Tight** [BCT93, Co94a, SV87]. **Tighter**

[CH92, CHPZ95, CHZ97a]. **Time** [BC13b, BGG12, BG14, CZ01, CF85, CGS17, CH03, CR95b, CGPR95, CGG+97, CGH+98, FG98, Gal79, Gal81, GS81b, GS83, Gal95, GP01, GP03, HM98, ISNH94, KU99, LKLO2, MHT09, PRU11, Sli78, Sli83, Sto96, WBA83, BG90, BGM13, CL90, CNS18, CH97b, CD96, CG99, EH88, FLM+10, FG95, Gal75, Gal76a, GS81a, Gal92, GHST17, GPR95b, GF08, GFG11, GMS12, HKN14, IKX15, IP96, Kos94, KRL87, KKR+13, Liu81, RP95, Rep98, TJD+17, TS13]. **Time**- [BC13b].

time-efficient [TJD+17]. **time-optimal** [IKX15]. **time-sliced** [KRL87]. **time-space** [GPR95b]. **Time-space-optimal** [GS81b, GS83]. **Time/Space** [GP01, GP03]. **Timed** [ACM02]. **times** [Mid98]. **Timothy** [Neu10]. **tion** [Lia84]. **title** [LGZ+14]. **titles** [LGZ+14]. **TLA** [Lut02, Lut02]. **TLex** [Kea91b]. TM [BGFK15]. token [WLF14]. **Tokenization** [Kul11, Sca11, Rep98]. Tokyo [IEE94a, WN90]. **tolerant** [BG91a, WLF14, XQW+13]. **Tool** [Pol01, WM92b, Ier09, KOI94, Nav01b, NT05, SCF+17]. **Toolkit** [Lut02, VVV04]. **Tools** [Lut02, PPA10, CGM06, Fr97a, Han02, Ano97a]. **Top** [GN19, QQC+13, Sca11, CLZ+15, FWW13a, OSM94a, OSM94b]. **Top-** [GN19, QQC+13, CLZ+15, FWW13a]. **Top-Performance** [Sca11].

Topological [D’A98, Fu97, KKM+13]. **Topologies** [VG01, NCV10]. **Topology** [ZJL14, MCF+11, MCF+14]. **Topology-constrained** [ZJL14].

tour [Nav01a]. toys [II09, MI07]. trace [ATdM07]. **Track** [HUN+19, LT03]. **Tracking** [CZW15, Joh94a, SHS14]. **tractable** [Lia84]. **Trade** [Abb94, GHST17]. **trade-offs** [GHST17]. traffic

[BBK12, SLZ+20, WXZY12]. **Trajectories** [GVD15]. **transaction** [Lus94]. **transaction-based** [Lus94]. **Transducers** [BR20, Cro86, KMRY20, Moh94, EHS07, Ga’a04, GHR+16, VH+12].

Transducing [KR14]. **Transform** [ABM08, Neu10, DGG+19, TZYH14, ZMAB03]. **Transformation** [BCC+13, Gro92, Kha16, AK08, EHS07, GT90, KH06]. **Transformational** [PV91, PS90]. **Transformations** [ADR15, DW17, DN77, JM90, KC87, SdM01, AK09a, ASJDW18, Arn93, ETV88, Ryt89, SG12, dLFM07].

transformed [AMB+02]. **Transforming** [SG16]. **transit** [BGW12].

transition [BG91a, CW13, GT90]. **transitions** [Gef03, Lut00]. **Transitive** [AS85, LH03]. **Translating** [HSW97, HSW01, Rev91]. **Translation** [AU72, AU73, Gef03, Ver70b, Ver70a, Rot91, TZYH14]. **translational** [Man06]. **translocations** [GFG11]. **Transmission** [Jok90]. **Transposition** [LT03, MNU05, Deo06]. **transposition-invariant** [Deo06]. **transputer**

[CEMW91]. **traversal** [NRO12]. **traversal-based** [NRO12]. **Traversals** [Sto96]. Tree [AGT89, AM91, AYCLS02, Cha02b, Cha02c, CHZ06, CH97b, CH97, CMNP17, DGM94, FV16, GHLW15, GL19, JZ94, Kid09, KM94, KLH16, LPR*08, MS98, MSZ17, RR90, Shi00, Shi04, Sto96, BDB90, BTG83, CGR03, CLZ+15, Cha87, CLS95, DF00, DGM90, EHS07, FCFM00, Far92, FG99, KS11a, Kos89, Mal93, SGYM00, TJMC20, Vou06, CGR02]. **Tree-Like**
50

[BYCMW94, BCP02, FK16, GHKLW15, GO93, Gro92, GV05, Gus97, HO82, JZW94, RR92, SCFC94, Sim83, ACFC+16, CPT92, Gro91a, Gro91b, GV00, JRV96, Kos94, Mäk89, TTPH05, TJMC20, Ukk93, Ver92]. Trial
[LRV13, LRSV18]. Triangle [IEE89]. Triangles [GP18]. trichotomy [BBG13], Tricks [Abb94]. Trie [CCH09, GO12, KW19]. tries [BYG96]. Trigram [Cox12]. Trillion [GOLP+18]. Triplestores [LRSV18]. Truly
[GP92]. trusted [WXZY12]. Tucson [ACM97a, Apo92]. Tumor [WZHJ12]. Turing [GOMSJVGP08]. Tutorial [Lut02]. Twentieth
[ACM93a]. Twenty [ACM06, ACM07, ACFC+16, AOV+99, B+02, ACM90b, ACM91, ACM92d, ACM93b, ACM94d, ACM95c, ACM97c]. Twenty-Eighth
[B+02]. Twenty-Fifth [ACM06, AOV+99, ACM93b]. twenty-fourth
[ACM924]. twenty-ninth [ACM97c]. twenty-second [ACM90b].

Two [KU99]. Two-Dimensional
[AF92, AFB94a, ABC+04, Ano68, ADLM96, BNY98, BR20, BKL97, BKL+02, Bir77a, BGJ01, CL95, CHZ06, CHLT14, CP91, CR92, CRR93, CCG+94, CGPR95, GH+98, CIK98, FU98, FNU02, GA76b, Gia93, HY92, HW12, JSC83, JU91, KPR00, KU99, LY86, Mid96, Ott94, Par96, Pru17, She59, TTT83, XZL+19, ZT89, AK08, AFB94b, AKT06, AGM05, ADLM01, BYR93, Bar84, CK02b, CP10, CCG+93, CR94, GP92, HY90, HLN09, KW07, KM13, dSOMY15, Par98, Rot91, SN94, VLP17]. Two-
[ACM924], two-dimensional [ACM90b], two-dimensional [ACM90b], two-patterns [CP10]. two-point
[Rot91]. Two-Sided [CDJM15]. Two-Way [BR20, CP91, She59]. Type
[JM03, Sou99, Van06, CGPS13a, FF08, J097, Nil90, Pie08, ZBST14].
 type-ahead [ZBST14]. type-checking [CGPS13a]. type-theoretic [Pie08].

UK [AVO+99, PC99]. Ukraine [Bro93]. ultra [KW19]. Unambiguity
[BK93a, BK93b, BK93c]. Unambiguous [BK92e, Pre99, SH85]. Unary
[Huc21]. Unavoidability [Hei01]. Unbounded [Bre94a, Nil90]. uncertain
[HK15]. uncovering [Edw07]. Undecidability
[Hir96, KR95, Dow93, Len97]. Understanding [LLS+20]. Unicode
[Anoxx, Chi17, Dav99, Dav03, Dav04, Dav21, NK07]. Unification
[Kni89, Wal88, DRSS96, OJD98]. Unified

Typography [AGS93a, AGS93b, AGS93c].
Uniform [Bre94a]. Uniform-Length [Bre94a]. Unifying [Wol90, KMS+03, MZZ10]. Unique [AKT20, AG84, GHST17, HTX17, IKX15, Van06]. Unit [Les94]. Units [LLLC17, GÁSÁ+13]. Universal [FK16, GL19, PS10, Sad96, CDDM05, Jon13]. University [Ano97b, Hig95, Hwa85, PC99, HWF90]. UNIX [Ano92a, Gt92, Qui02, Rob99, Fri97b, Hol84]. Unix-Like [Hol84]. Unordered [CGS17]. UnQL [BFS00]. unrestricted [Lei85, Leu97]. Unstructured [Gon83]. Unsupervised [WWW+16]. UPaK [WK90]. Update [FG98, FG95]. updates [Che08]. Upper [CH97a, GG92, Les94, SASU13]. Urbana [Hwa85]. USA [ACM06, AP10, Apo92, BGNP94, CG94b, FC98, KP15, SC04, SM09, SM11, DGBH93, FMA02, HF13, IEE09, KLB12]. Use [IY02a, IY02b, CC97, WSS94, YIAS89]. used [Sch91]. Usefulness [CR91]. USENIX [USE92]. User [KMRY20]. User-Defined [KMRY20]. users [BJK+12]. Using [AGT89, BYCMW94, BCP02, Bow87, BK93e, BZ98, CvW18, CF85, CHP92, CFM00, CW84, Cop91, Dav73, Far19, GHK+91, Gro92, GL86, GH82, HEWK03, How97, JM85, KK+89, Kin89, LW80, LY17, LLLL08, LLCC13, MS98, Mar89, MUHT96, MPN+14, Mei15, Mu95, MuT95, PAMP12, Rez92, SBHM94, Sch95, STSA99, Spi99b, ST95, TMV+01, TB00, WZJH12, WBA83, Ym12, ZGY+16, AG06, BS10, BDB90, BGHZ15, BCD14, BBHK14, BWG12, CADA18, CPW88, CP97, CEMW91, DA18, FL71, GS81a, GHS12, GS06, HM00, HHL06, Io88, JLH92, JSH90, KKM+13, KT14, KAT07, KST94, Kin99, KWLL08, KJS17, KD15, KM13, KMM15, KST16, Lab12, LS09, LT90a, LMT16, MW92b, MLC08, Mun95, Mus05, NYuR15, Neb06, NK07, OK94, PIR17, San15, SD91, SW93, SMS15, STK20, SG16, Spi99a]. using [TM05b, Va90, Vol12, Wr94, ZC99, ZMAB03, ZZH10, ZMSD93]. USL [DWE89]. Utah [SC93, SC04, SM09, SM11, SC95, SC96, SC98, SC99, SC01, SC02, SC03, SM10]. Utilities [ASA17, IEE01c]. Utilizing [KK92, All82].

X [SS93a]. X-ray [SS93b]. XDuce [Fri06b]. Xeon [TLS16]. XML [B+07, ADT15, AL08, BGNV10, B+07, BKS02, Cam99, Che08, CK02b, CGPS13b, CGPS13a, CMRV10, DLG12, Dwe00, EHS07, FK16, GLS07, Hos06, HVP00, HP01, HP03, HVP05, KS07, KH06, KRML09, LMO1b, MNS07, MNS10, MZZ10, RM06, TB00, dLFM07]. XPath [SSSS10]. XSDs [MNNS12].
REFERENCES

Yacc [Cox10c, MD10]. Yates [Hyy08]. years [ACFC+16]. York [AP10, Ano97b, HF13]. yourself [Abb77].

Z [ABF96]. Z-Compressed [ABF96]. Zakopane [Win78]. zippers [DA20]. Ziv [BFG09, FT95, FT98, KKP16, NR99b, Nav01c, NT05]. Zooming [PW06, GPR95b]. zur [SM74]. Zvi [Ano97b].

References

Apers:2001:PTS

Amir:2009:ASM

Amir:1997:PMS

Amir:1997:IPM

Amir:2000:PMS

Auernheimer:1989:NNM

Ahmed:2009:PSP

Abbott:1977:DIY

Agrawal:1993:VLD

Abbott:1994:TT

Abbott:1996:X

References

Afek:2016:MDE

Amir:2004:TDP

Amir:1994:AIA

Amir:1994:OTD

Amir:1996:LSF

REFERENCES

ACM:1981:CPT

ACM:1983:PSA

ACM:1984:PSA

ACM:1986:PEA

ACM:1987:PFA

ACM:1989:SAA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Amir:2006:SME

Amir:1992:TDD

Aceto:1998:QSE

Amir:1994:ADP

Apostolico:1984:PMM

REFERENCES

Apostolico:1997:PMA

Atkinson:2006:EPM

Anselmo:2005:NOR

Anselmo:2019:SPA

Andre:1993:ESIa

Andre:1993:ESIb

REFERENCES

Apostolico:1997:CPM

Aho:1974:DAC

Augustsson:1989:CLM

REFERENCES

Atallah:1992:PMM

Aiger:2008:AGH

Aiger:2009:GPM

Anand:2009:OCS

Andoni:2012:SCE

Akl:1978:CGM

Amir:2006:FTD

Abedin:2020:SSU

Akutsu:1994:ASM

Akutsu:1995:ASM

Amir:2001:CPM

REFERENCES

REFERENCES

Adjeroh:2002:PMB

Arenas:2016:FAC

Andrews:2002:KCD

Anonymous:1968:TCA

Anonymous:1987:ESC

Anonymous:1992:AU

Anonymous:1992:CPM

REFERENCES

DEN TCSCDI. ISSN 0304-3975 (print), 1879-2294 (electronic).

REFERENCES

Abouelhoda:2002:OES

Arbe:2007:FLT

Atkinson:1999:PTF

Arcangeli:1990:PPP

Amir:2010:CPM

REFERENCES

Allauzen:2000:SOS

Abbas:2019:QRE

Arnon:1993:SLD

Avalle:2016:SAN

Abdali:1985:TCR

Archer:2004:EMA

REFERENCES

REFERENCES

Angstadt:2016:RPP

Amer-Yahia:2002:TPQ

Aoe:1984:MIS

Bernstein:2002:VPT

Babin:2005:PRP

Bourret:2007:AXA

REFERENCES

REFERENCES

[BAP06] Amir M. Ben-Amram and Holger Petersen. Backing up in singly linked lists. Journal of the Association for Comput-
References

[Bar81] Barth:1984:ACT

[Bc95] H. Bunke and J. Csirik. An improved algorithm for computing the edit distance of run-length coded strings. Information
REFERENCES

[Burcsi:2012:AJP]

[Baeten:2007:CRE]

[Bliznets:2015:KLB]

[Bartolini:2002:SMM]

[Breslauer:1993:TCB]
REFERENCES

Barozzini:2020:BRL

Ben-David:2008:EFA

Bodlaender:1994:PCS

Brzozowski:2019:SCP

Bartoli:2016:RBE

Beebe:1981:IPM

Butman:2004:SPS

BenNsira:2017:LSM

Baron:2012:SPM

Baron:2013:SPM

Bentley:1986:PP

Benson:1994:SEA

Bentley:2000:PP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Bir77b] Richard S. Bird. Improving programs by the introduction of recursion. *Communications of the Association for Com-
REFERENCES

Bird:2010:PFA

Blunschi:2012:SGS

Beyer:1979:LAI

Brazma:1986:GRE

Burton:1989:FPQ

Brueggemann-Klein:1993:UER

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
| BKL+02 | Piotr Berman, Marek Karpinski, Lawrence L. Larmore, Wojciech Plandowski, and Wojciech Rytter. On the complexity of pattern matching for highly compressed two-dimensional texts. *Journal of Computer and System*
REFERENCES

Baek:2018:EGP

Berman:1997:CPM

Bruno:2002:HTJ

Bruggemann-Klein:1992:DRLa

Bruggemann-Klein:1992:DRLb

Bruggemann-Klein:1992:URE
REFERENCES

[Bertossi:1994:PSM]

[Bruner:2016:FAP]

[Bertossi:1990:SMW]

[Barcelo:2012:ELP]

[Bafna:1994:AAM]

[Barton:2018:FAC]
REFERENCES

REFERENCES

Boyer:1977:FSS

Bertossi:2000:RNS

Bocker:2008:CAM

Broda:2019:ABR

Bex:2010:ICR
[BNSV10] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansummeren. Inference of concise regular expressions and
REFERENCES

Boyen:2013:MMM

Bjorklund:2013:SRP

Bontempi:2007:BSI

Booth:1980:LLC

Bowman:1987:PMU

Brzozowski:1963:CSM

REFERENCES

REFERENCES

REFERENCES

Brownlee:1977:ABI

Bronstein:1993:IPI

Brzozowski:1962:SRE

Brzozowski:1964:RES

Brzozowski:1964:DRE

Brzozowski:1965:REL

Berry:1986:RED

REFERENCES

[BT21] Angelo Borsotti and Ulya Trofimovich. Efficient POSIX sub-match extraction on nondeterministic finite automata. Soft-

Brodie:2006:SAH

Barrero:1983:RLT

Bundy:1994:ADC

Bunke:1995:FAM

Burkowski:1982:HHS

Bur82

REFERENCES

Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to text searching. *Communications of the Association for Computing Machinery*, 35(10):74–82, October 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/jacm/235810.html. This paper describes a new linear-time string search algorithm that can handle limited regular-expression pattern matching without backtracking. See also [KMP77], [BM77], [KR81a], [Sun90], and [WM92a].

Bontupalli:2018:EMB

Baeza-Yates:1996:FAA

Baeza-Yates:1997:MAS

Baeza-Yates:1998:FTD

Baeza-Yates:1999:FAS

Baeza-Yates:1992:FPA

Ricardo A. Baeza-Yates and Chris H. Perleberg. Fast and practical approximate string matching. *Lecture Notes in Com-
REFERENCES

REFERENCES

REFERENCES

Consel:1989:PEP

Colussi:1996:TSE

Cheng:1996:FHR

Chen:2005:ESM

Chew:1995:GPM

REFERENCES

Colussi:1990:ECS

Crochemore:1997:CTR

Crochemore:1998:CTO

Cabello:2008:PCD

REFERENCES

Cohen:2006:JJT

Chandramouli:2010:HPD

Cadar:2008:EAG

Crochemore:1995:TDP

Colazzo:2013:EAI

Colazzo:2013:ALI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

September 2004. CODEN TCSCDI. ISSN 0304-3975 (print), 1879-2294 (electronic).

REFERENCES

[CNPS15] Sukhyeun Cho, Joong Chae Na, Kunsoo Park, and Jeong Seop Sim. A fast algorithm for order-preserving pattern match-
REFERENCES

REFERENCES

Coopman:1986:SMC

Cooper:1989:FHO

Cope:1991:RMU

Cox:2007:REM

REFERENCES

REFERENCES

REFERENCES

Campeanu:2003:FSP

Colussi:1996:HCC

Chen:1998:EAS

IEEE:1986:PCI

Cappers:2018:EME

REFERENCES

REFERENCES

REFERENCES

[Dav21]

[DB86]

[dB93]

[DC94]

[DCM15]

[de 82]

REFERENCES

20, October 16, 2006. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

merly called the Annual Symposium on Switching and Automata Theory. IEEE catalog number 90CH29256. Computer Society order no. 2082.

DeBosschere:1996:EFL

Deo:2013:Psa

DAntoni:2015:HCA

Denning:2011:MIV

DeNicola:2003:NRE

Deng:2015:UFA

REFERENCES

Oliveira:2015:MRM

Das:1994:SAI

Dayal:1987:PAC

Duff:1982:CBS

Durand:1994:BSS

DV21

REFERENCES

REFERENCES

Ellis:1998:REC

Duncan Ellis and Sameer Udeshi. A regular expression class library. *C/C++ Users Journal*, 16(5):??, May 1998. CODEN CCUJEX. ISSN 1075-2838.

Ehrenfeucht:1974:CMR

Ehrenfeucht:1976:CMR

Faloutsos:1985:AMT

Farnum:1992:PBT

Farr:2019:UGT

Fateman:2015:PAS

Richard Fateman. Partitioning of algebraic subexpressions in computer algebra systems: an alternative to matching with an

REFERENCES

[FhDaF09] Michael Furr, Jong hoon (David) An, and Jeffrey S. Foster. Profile-guided static typing for dynamic scripting languages.
REFERENCES

Fraser:1992:ESE

Faust:2018:OPM

Fischer:2010:PRE

Finkel:1992:SAS

Fortnow:1996:RBI

REFERENCES

REFERENCES

Fang:2019:EPM

Fan:2010:GPM

Florescu:1998:QCC

Fischetti:1993:CIP

Fischetti:1993:IPO

Fredriksson:2006:EPS

Franklin:2002:PAS

Ferragina:1999:MMD

Fernau:2020:PMV

Fredriksson:2004:AOS

Faezipour:2009:HPE

Fredriksson:2002:OEF

Fosdick:1976:DFA

Forest:2002:WCE

Foster:1989:ALF

Feuerstein:2008:OPS

Foster:2008:QL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fredriksson:2004:ESM

Fricker:1995:ICI

Floyd:1982:CRE

Fu:1995:PMD

Fu:1996:APM

Fu:1997:DGP

REFERENCES

REFERENCES

[Gal79] Zvi Galil. On improving the worse case running time of the Boyer–Moore string matching algorithm. *Communications*
REFERENCES

of the Association for Computing Machinery, 22(9):505–508, September 1979. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Galil:1981:SMR

Galil:1984:OPA

Galil:1992:CTO

Galil:1995:CTO

Ganapathi:1989:PBR

Ganapathi:1989:SPP

REFERENCES

Gonzalez-Alvarez:2013:AAD

Gawrychowski:2012:SEL

Gawrychowski:2013:OPM

Gonnet:1990:AKR

Garai:2001:CGA

Geffert:2003:TBR

Viliam Geffert. Translation of binary regular expressions into nondeterministic ϵ-free automata with $O(n \log n)$ transitions. *Journal of Computer and System Sciences*, 66(3):451–472, May 2003. CODEN JCSSBM. ISSN 0022-0000 (print),
Gelade:2010:SRE

Grabowski:2008:BPS

Grabowski:2011:SMI

Ganapathi:1982:RCC

Galil:1986:ISM

Galil:1987:PSM

REFERENCES

Gelade:2012:REC

Gramm:2006:PMA

Guoan:1982:USM

Gruber:2009:LOR

Gruber:2013:PSR

Gruber:2015:FAR

Ganapathi:1983:SFRa

Ganapathi:1983:SFRb

Ghiron:1962:RMR

Gokhale:1991:BUH

Guo:2014:LSS

REFERENCES

REFERENCES

[184]

Geser:2005:TPS

Giancarlo:1993:IDS

Giegerich:1990:CSI

Goto:1977:PHA

Gasieniec:1997:EIP

Gill:1970:SAR

Gillogly:1985:FPM

REFERENCES

0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content~content=a741902694~db=all~order=page.

Grigoriadis:1986:LBC

Golan:2019:SPM

Guthle:2010:IAD

Grosky:1986:IIU

Grossi:1989:SES

Grobauer:2001:PEP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Goldberg:1993:FSA

Garcia-Osorio:2008:TPA

Gonnet:1983:UDB

Gonnet:2002:SMP

Good:2005:RER

Gorman:2000:PCT

REFERENCES

Galil:1990:IAA

Galil:1992:TAI

Gemis:1993:OOP

Gasieniec:2001:TSE

Gasieniec:2003:TSE

Gronlund:2018:TDL
Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. *Journal of the Association for Comput-
REFERENCES

ing Machinery, 65(4):22:1–22:??, August 2018. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

Gostanza:1996:NLP

Galil:2004:TDP

Gasieniec:1995:CSS

Gasieniec:1995:ZMR

Gemis:1993:GGO

REFERENCES

REFERENCES

1980. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic).

REFERENCES

REFERENCES

Guenther:1990:EEF

Gusfield:1997:AST

Grossi:2000:CSA

Grossi:2005:CSA

Guting:2015:ST

Ginsburg:1992:PMR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hasan:2017:PSA

Henrich:1999:OQC

Hudak:1992:RPL

Housden:1977:CSP

Holzer:2011:CRL

Heil:2014:APH

REFERENCES

September 2014. CODEN ???? ISSN 2329-4949 (print), 2329-4957 (electronic).

Hanada:2014:ACL

Heering:1992:IGL

Hemer:1997:RVD

Hazay:2010:EPS

Hundt:2009:CGA
REFERENCES

Hazay:2007:APM

Hon:2011:COI

Hoffman:1987:MC

Hirschberg:1996:CPM

Hagenah:1998:CFN

REFERENCES

REFERENCES

Howard:1996:LLC

Howard:1997:TIC

Hosoya:2001:REP

Hosoya:2003:REP

REFERENCES

Huang:1994:PRA

Hung:2000:IVI

Hernandez:2003:DPD

Hammoud:2015:DDR

Hume:1991:FSS

Huang:2008:ESS

Hashiguchi:2004:ERB

[HSJ04] Kosaburo Hashiguchi, Naoto Sakakibara, and Shuji Jimbo. Equivalence of regular binoid expressions and regular expres-

Hoefler:2010:SCP

Hori:2001:FPM

Hromkovic:1997:TRE

Hromkovic:2001:TRE

Hazay:2014:CSP

REFERENCES

REFERENCES

Hendrian:2019:PPM

Hurson:1984:VDP

Horspool:1993:SAP

Hosoya:2000:RET

Hosoya:2005:RET

[Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27(1):46–90, January 2005. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

Han:2007:OSR

Yo-Sub Han, Yajun Wang, and Derick Wood. Infix-free regular expressions and languages. *International Journal of Foun-

IEEE:1995:PNA

IEEE:1997:ASF

IEEE:1998:ASF

IEEE:2001:ISSa

IEEE:2001:ISSd

R. W. Irving and C. B. Fraser. Maximal common subsequences and minimal common supersequences. Lecture Notes
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ilie:2002:CNOb

Jiang:2017:CSM

Jantzen:1985:ERE

Jayaraman:1992:SAL

Jouvelot:1989:RPM

Jedrzejowicz:1987:NSC

REFERENCES

CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Jiang:2014:SSJ

[JLFL14] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. String similarity joins: an experimental evaluation. Proce-

Jambunathan:1992:DIF

Jeong:2020:RSH

Ju:1985:CSF

[JM85] M. S. Ju and J. M. Mansour. Comparative studies of formu-

Janicki:1990:TSS

[JM90] R. Janicki and T. Muldner. Transformations of sequential

Jategaonkar:1993:TIE

[JM93] Lalita A. Jategaonkar and John C. Mitchell. Type infer-

Judd:2008:BGG

[JNS08] Christopher Judd, Joseph Faisal Nusairat, and James Shin-

REFERENCES

230

REFERENCES

http://comjnl.oxfordjournals.org/content/33/2/133.
http://www3.oup.co.uk/computer_journal/hdb/Volume_33/Issue_02/tiff/134.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_33/Issue_02/tiff/135.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_33/Issue_02/tiff/136.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_33/Issue_02/tiff/137.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_33/Issue_02/tiff/138.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_33/Issue_02/tiff/139.tif.

[Kah06] Peter Kahrel. *Automating InDesign with regular expressions*. O’Reilly & Associates, Sebastopol, CA, USA, and Cambridge,

Kim:2017:RTO

Kaplan:1969:REE

Karpinski:1982:DSM

Kastrup:2008:MLP

Kastrup:2008:PML

Khan:2007:NID

Latifur Khan, Mamoun Awad, and Bhavani Thuraisingham. A new intrusion detection system using support vector machines and hierarchical clustering. VLDB Journal: Very Large

REFERENCES

REFERENCES

Koutrika:2008:CST

Kerren:2004:GME

Kernighan:2007:REM

Kessler:1979:PPM

Kesner:1991:PMO

Klier:1991:FCB

Kocberber:2015:AMA

REFERENCES

Kawahito:2006:NIR

Kawahito:2013:IRF

Kim:1992:DSN

Karkkainen:2016:LLZ

Kubica:2013:LTA

Kim:2001:FRQ

[KKSL01] Harksoo Kim, Kyungsun Kim, Jungyun Seo, and Gary Geunbae Lee. A fast and reliable question-answering system

KleinOsowski:2002:MNS

Krotzsch:2012:PPA

Kleene:1956:REN

Ko:2016:SCR

Krishnamurthy:2008:SSD

Knight:1992:ARE

[KM92] James R. Knight and Eugene W. Myers. Approximate regular expression pattern matching with concave gap penalties. *Lec-
REFERENCES

Kilpelainen:1994:QPT

Knight:1995:ARE

Knight:1995:SPM

Kouzinopoulos:2013:EOT

Kouzinopoulos:2015:MSM

Kristensen:1985:APF
REFERENCES

Knuth:1977:FPM

Knuth:1994:FPM

Konstantinidis:2020:RET

Kida:2003:CSU

Kida:2001:MPM

REFERENCES

REFERENCES

Kucherov:2012:CDP

Kiwi:2011:LAS

Knuth:1998:SS

Knuth:2005:ACP

Kashyap:1983:NSM

REFERENCES

Kodratoff:1979:CFS

Kakeshita:1994:FCS

Kornman:1983:PMP

Kosaraju:1989:ETP

Kosaraju:1994:RTP

Kebler:1993:APP

Kernighan:1999:PP

Kernighan:1999:RE

Kernighan:1999:REL

Kroening:2015:CAV

REFERENCES

REFERENCES

REFERENCES

[252]

REFERENCES

CODEN ALGOEJ. ISSN 0178-4617 (print), 1432-0541 (electronic).

REFERENCES

[K12a] Juha Kärkkäinen and Jens Stoye, editors. Combinatorial Pattern Matching: 23rd Annual Symposium, CPM 2012,
Klein:2012:SDM

Kim:2015:TSI

Kim:1992:ASM

Kim:1994:FSM

Kurz:2012:CLI

Kucherov:2016:ASM

Karachalias:2015:GMT

Kamel:1993:SRH

Kuo:1990:NSC

Kaminski:2006:REL

Keil:2014:EDA

REFERENCES

Kandhan:2010:SFS

Kida:1998:MPM

Kida:1999:SAP

Karlin:1987:ACR

Karkkainen:1999:THD

Kucherov:2009:CPM

Kukich:1992:TAC

Kulekci:2010:BNB

Kulick:2011:ESC

Kumar:2015:IAM

Kulekci:2012:FPM

Kaczmarski:2019:GRT

Kim:2007:GAT

Kim:2008:SOF

Kaplan:2019:RRP

Kupferman:2002:IAM

REFERENCES

REFERENCES

Lecroq:2007:FES

Lee:1982:EAF

Lee:1991:DCM

Lee:2009:HAH

Leiss:1980:CFA

Leiss:1981:CRR

REFERENCES

Leiss:1985:CTU

Lengauer:1993:AEF

Lenzerini:2011:PPT

Lesk:1979:DTD

Lestree:1994:URU

Lesk:1995:TDP

REFERENCES

REFERENCES

1104–1116, August 2013. CODEN IEANEP. ISSN 1063-6692 (print), 1558-2566 (electronic).

Li:2013:OPS

Lai:1993:AAD

Liu:2004:FSM

Liang:1984:WHP

Lifshits:2003:LBS

Liu:1981:SPM

REFERENCES

Lenka:2006:SML

Lee:2002:EPM

Lee:2003:HOO

Lin:2017:LBH

Lin:2013:APM

LeBlond:2012:CPB

[Stevens Le Blond, Fabrice Le Fessant, and Erwan Le Merrer. Choosing partners based on availability in P2P networks. *ACM Transactions on Autonomous and Adaptive Sys-
Lu:2013:NFM

Lin:2017:PHB

Lin:2008:USM

Lee:2020:YCA

Lu:2015:BQA

REFERENCES

LeFessant:2001:OPM

Li:2001:IQX

Liu:2002:JIA

Losemann:2012:CEP

Losemann:2013:CRE

Lancia:2017:SSS

Leonardi:2007:OSR

[LMMN07] Emilio Leonardi, Marco Mellia, Marco Ajmone Marsan, and Fabio Neri. Optimal scheduling and routing for maximum net-

REFERENCES

REFERENCES

Lozano:2008:STA

Li:2012:WHT

Lai:2016:SDS

Lopez:2014:MPR

Libkin:2018:TNA

Libkin:2013:TRA

[LRV13] Leonid Libkin, Juan Reutter, and Domagoj Vrgoc. Trial for RDF: adapting graph query languages for RDF data. In Hull

Luczak:1994:LDC

Laird:1999:REN

Laird:2006:RER

Linhart:2009:FPM

Libkin:2010:DPM

1990. CODEN CVGPDB. ISSN 0734-189x (print), 1557-895x (electronic).

REFERENCES

REFERENCES

Landau:1988:FSM

Landau:1989:FPS

Landau:1994:PMD

Lewenstein:2006:CPM

Landau:1987:ESM
Li:2016:RDT

Li:1986:SMC

Lee:2017:FPM

Leonard:2008:SDP

Lucarella:1996:VRE

Li:2018:FWI

REFERENCES

Li:1998:HRE

Moraru:2012:EPM

Maass:2006:MSE

Ma:2014:TAC

Maddock:2001:REC

Maes:1990:CSS

Maeder:1994:MPL

REFERENCES

CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Moia:2020:IEC

Manber:1991:ASM

Ma:2011:CTG

Ma:2014:SSC

McIsaac:1985:PMA

McIlroy:2004:ESR

Moreira:2017:FCR

Might:2010:YD

Margaritis:1997:VPA

Meir:2008:CCL

Meister:2015:USD

Melichar:1995:ASM

Meyer:1985:ISM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mak:1991:EPP

Mossouni:1996:CSM

Moussouni:1996:DSM

Moscola:2008:RCB

Murphy:2008:DGB

Myers:1989:AMR

Michailidis:2002:PSL

Michailidis:2003:PEL

Michailidis:2007:PAP

Mateescu:2011:CEC

Medeiros:2014:RPE

REFERENCES

Mytkowicz:2014:DPF

Mandreoli:2010:PHS

Martens:2012:DAX

Martens:2007:SSA

Martens:2010:CDP

Makinen:2005:TIS

REFERENCES

[Mor90] Joseph M. Morris. Programming by expression refinement: the KMP algorithm. In Feijen et al. [FvGGM90], chapter 37,

modular specification and efficient evaluation of quantitative
queries over streaming data. *ACM SIGPLAN Notices*, 52
(6):693–708, June 2017. CODEN SINODQ. ISSN 0362-1340
(print), 1523-2867 (print), 1558-1160 (electronic).

Moore:1995:COA

[MS95] Dennis Moore and W. F. Smyth. A correction to “An optimal
algorithm to compute all the covers of a string”. *Information
IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Madhavan:1998:ORT

[MS98] M. Madhavan and P. Shankar. Optimal regular tree pattern
matching using pushdown automata. *Lecture Notes in Com-
puter Science*, 1530:122–??, 1998. CODEN LNCSDP. ISSN
0302-9743 (print), 1611-3349 (electronic).

Mongelli:2001:PPM

[MS01] H. Mongelli and S. W. Song. Parallel pattern matching with
CODEN PPLTEE. ISSN 0129-6264.

Monnier:2020:EEL

[MS20] Stefan Monnier and Michael Sperber. Evolution of Emacs
Lisp. *Proceedings of the ACM on Programming Languages
dl.acm.org/doi/abs/10.1145/3386324.

Matsubara:2017:NDI

[MSP+17] Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei
Li, and Christos Faloutsos. Nonlinear dynamics of information
diffusion in social networks. *ACM Transactions on the Web
(TWEB)*, 11(2):11:1–11:??, May 2017. CODEN ????
ISSN 1559-1131 (print), 1559-114X (electronic).

Madhavan:2000:EGG

[MSRR00] Maya Madhavan, Priti Shankar, Siddhartha Rai, and U. Ra-
makrishna. Extending Graham-Glanville techniques for
optimal code generation. *ACM Transactions on Pro-
CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593
REFERENCES

Meysman:2019:MES

Mignot:2017:TAC

Mohanty:2014:SOS

MuQqoz:1995:MTW

Makinen:2002:LSB

REFERENCES

REFERENCES

REFERENCES

Myers:1995:AMC

Myers:1998:FBV

Myers:1999:FBV

Ma:2007:CPM

Mozafari:2010:REN

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

Navarro:2004:ACE

Ng:1979:SAC

Narisada:2020:ECL

Nicodeme:2003:RSP

Nilsen:1990:SDT

Nieminen:2007:EIA

REFERENCES

[Navarro:2001:CDR]

[Navarro:2002:FPM]

[Navarro:2003:FSC]

[Navarro:2004:NTR]

Nicolae:2015:SMM

Nicolae:2017:PMM

Neatherway:2012:TBA

Ng:2018:SCN

Navarro:2005:LBM

Navarrete:2020:PRE

[NWE97] N. Nedjah, C. D. Walter, and S. E. Eldridge. Optimal left-to-
right pattern-matching automata. Lecture Notes in Computer
Science, 1298:273–??, 1997. CODEN LNCSD9. ISSN 0020-
0190 (print), 1872-6119 (electronic).

[NWE99] Nadia Nedjah, Colin D. Walter, and Stephen E. Eld-
dridge. Efficient automata-driven pattern-matching for equa-
tional programs. Software — Practice and Experience, 29
(9):793–813, July 25, 1999. CODEN SPEXBL. ISSN
0038-0644 (print), 1097-024X (electronic). URL http://
www3.interscience.wiley.com/cgi-bin/abstract?ID=
62501864; http://www3.interscience.wiley.com/cgi-
bin/fulltext?ID=62501864&PLACEBO=IE.pdf.

Speculative parallel pattern matching using stride-k DFA
for deep packet inspection. Journal of Network and Com-
puter Applications, 54(??):78–87, August 2015. CODEN
JNCAF3. ISSN 1084-8045 (print), 1095-8592 (electronic).
URL http://www.sciencedirect.com/science/article/
pii/S1084804515000867.

from their regular expressions. Journal of the Association for
Computing Machinery, 8(4):585–600, October 1961. CODEN
JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

[OK94] M. Oda and T. Kakeshita. Pitfall detection of C programs us-
ing pattern matching. Transactions of the Information Pro-
CODEN JSGRD5. ISSN 0387-5806.

[OKT92] R. Ogawa, Y. Kikuchi, and K. Takahashi. Recent develop-
ments in full text database technologies. Journal of the In-
formation Processing Society of Japan = Joho Shori, 33(4):

Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives reexamined. Report, University of Cambridge and University of Chicago and Northeastern University, Cambridge, UK; Chicago, IL, USA; Boston, MA, USA, August 12, 2008. 18 pp. URL http://www.ccs.neu.edu/home/turon/re-deriv.pdf.

Cengiz Orencik, Ayse Selcuk, Erkay Savas, and Murat Kantarcioğlu. Multi-keyword search over encrypted data
REFERENCES

Otto:1994:TFP

Orpaz:2003:PMM

Oram:2007:BC

Owolabi:1993:EPS

Or:2016:MBH

Prasad:2010:PSM
REFERENCES

CODEN SFENDP. ISSN 0163-5948 (print), 1943-5843 (electronic).

REFERENCES

Petersen:2002:MPR

Petersen:2007:SMS

Peacocke:1990:ISS

Phillips:1994:ASM

Pan:2019:ARR

Pientka:2008:TTF

REFERENCES

REFERENCES

Porat:2009:EAP

Pasetto:2010:TVF

Papadopoulos:2015:PAP

Porat:2008:PMP

Prather:1997:REP

Preoteasa:1999:RBU

Pizzi:2011:FSM

REFERENCES

ACM Transactions on Computational Biology and Bioinformatics, 8(1):69–79, January 2011. CODEN ITCBCY. ISSN 1545-5963 (print), 1557-9964 (electronic).

REFERENCES

Patrick:2008:CEO

Parreaux:2017:QSR

Park:2018:ETS

Partsch:1991:ACS

Paredaens:1992:OG

Pitt:1993:MCD
Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot be approximated within any poly-

[Qui00] Ellie Quigley. *Linux shells by example*. Open source technology series. Prentice-Hall PTR, Upper Saddle River, NJ 07458,

REFERENCES

Raymond:1996:RRE

Robbins:2005:CSS

Reid:2003:BNS

Remy:2017:OEP

Reps:1998:MMT

Revesz:1991:TOM

Reznick:1992:URE

REFERENCES

References

Robinson:1992:HSR

Robbins:1999:UND

Romero:2014:MPR

Rote:1991:CMH

Rauchwerger:1995:LTS

Rodeh:1981:LAD

Ramesh:1990:PTP

REFERENCES

Ramesh:1992:NPM

Rabin:1959:FAT

Regnier:1998:CSP

Roy:2019:EHP

Rottenstreich:2017:ORC

REFERENCES

Radanne:2018:RLG

Rendel:2015:ARL

Rautio:2002:SMSa

Rautio:2002:SMSb

Ruckert:2015:MSS

REFERENCES

Stylianopoulos:2020:MPM

Sandberg:1995:COE

Santini:2015:QSU

Sarmiento:2002:SAS

Sassa:1979:PMM

Sarma:2013:ULB

REFERENCES

1444, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, July 1988. 78 pp.

Storer:1993:DDC

Storer:1995:DDC

Storer:1996:DDC

Storer:1998:PDD

REFERENCES

REFERENCES

REFERENCES

[Sch91] Bruce Schneier. One-way hash functions: Probabilistic algorithms can be used for general-purpose pattern matching. *Dr. Dobb’s Journal of Software Tools*, 16(9):148–151, September 1, 1991. CODEN DDJOEB. ISSN 1044-789X.

REFERENCES

(IJFCS), 24(7):1117–??, November 2013. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

REFERENCES

Sestoft:1996:MPM

Singh:2001:PMN

Singh:2012:LSS

Singh:2016:TSD

Song:2014:EPM

Shankar:2000:NAL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sahinalp:2004:CPM

Siromoney:1994:ILW

Smith:1991:PEP

Shahbaz:2015:AGV

Suzuki:1986:SVD

Saoudi:1992:OPA

Sheng:1994:PMB

Shajii:2019:SHP

Syme:2007:EPM

Snow:2001:IAL

REFERENCES

Spinellis:1999:TCD

Sitaridi:2016:GAS

Sridhar:1988:CBG

Srinivas:1993:STA

Sekar:1992:APM

Sekar:1995:APM

Ruxia Sun, Lingfeng Shi, Chunyong Yin, and Jin Wang. An improved method in deep packet inspection based on regular

REFERENCES

Statman:1989:SSC

Stephen:1994:SSA

Salmela:2006:MSM

Salmela:2010:ABM

Shetiya:2020:AAS

Stonebraker:1992:PAS
REFERENCES

[Sun90] Daniel M. Sunday. A very fast substring search algorithm. *Communications of the Association for Computing Machin-
REFERENCES 354

the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990).

Schwartz:1993:DSI

Snodgrass:1994:PAS

Sima:1998:TN

Smyth:2009:AHP

Schafer:2012:DCH

REFERENCES

89, ???? 1985. CODEN COLADA. ISSN 0096-0551 (print), 1873-6742 (electronic).

REFERENCES

REFERENCES

[TJD+17] Qiu Tang, Lei Jiang, Qiong Dai, Majing Su, Hongtao Xie, and Binxing Fang. RICS-DFA: a space and time-efficient signature

REFERENCES

mso-on-words-based-on-derivatives-of-regular-expressions/18DCED718D5D525252C97EFA3501B4A4.

[Toyoda:2013:PDD] Machiko Toyoda, Yasushi Sakurai, and Yoshiharu Ishikawa. Pattern discovery in data streams under the time warping

REFERENCES

REFERENCES

[Val09] Gabriel Valiente. Combinatorial pattern matching algorithms in computational biology using Perl and R. Chapman and

Vansummeren:2006:TIU

VanderLoo:2014:PSR

Vujovic:1998:EAF

Varol:2012:HMA

Valgenti:2012:GGH

Viswam:2017:EBF

REFERENCES

pages 1–4. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, April 2017.

REFERENCES

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Vilares:2001:AVP

Voss:2001:APP

VanBiljon:1987:RAP

Vieira:2004:LEH

Vespa:2011:DFA
REFERENCES

[Wag74] Robert A. Wagner. Order-

REFERENCES

April 18, 2003. CODEN TCSCDI. ISSN 0304-3975 (print), 1879-2294 (electronic).

Wendling:1999:PRS

Wandelt:2014:SAS

Weatherford:1994:HLP

Weiser:1983:RSB

Weiner:1984:LRK

Wentworth:1993:GRE

REFERENCES

Wandelt:2015:MCS

Wang:2015:FPP

Wang:2014:ESS

Wu:1992:FTS
Sun Wu and Udi Manber. Fast text searching allowing errors. Communications of the Association for Computing Machinery, 35(10):83–91, October 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/0001-0782/135244.html. This algorithm in this paper is implemented in the agrep program, publicly available via ANONYMOUS FTP to cs.arizona.edu in the agrep subdirectory. See also [BYG92].

Wu:1992:AFA

Wang:2019:GGC

REFERENCES

REFERENCES

Wright:1994:ASM

Wagman:1994:UIM

Wang:2016:MFP

Watson:2003:BMS

Wang:2016:UHM

WXZY12
Yu Wang, Yang Xiang, Wanlei Zhou, and Shunzheng Yu. Generating regular expression signatures for network traffic

REFERENCES

Yu:2013:EDA

Ye:2008:DSA

Yu:1995:DTA

Yu:2015:ESS

Yuan:2018:ASP

Yoo:1991:EAL

H. Yoo and K. Hashiguchi. Extended automata-like regular expressions of star degree at most (2, 1). *Theoretical Computer
REFERENCES

Yoo:1992:ERE

Yu:2015:EEA

Yasuda:1989:PAM

You:1984:PES

Yoshida:2011:PCP

Yang:2011:FME

Liu Yang, Rezwana Karim, Vinod Ganapathy, and Randy Smith. Fast, memory-efficient regular expression matching with NFA-OBDDs. Computer Networks (Amsterdam,
REFERENCES

[YT03] Yi-Shiung Yeh and Ta-Shan Tsui. A concurrent multi-string matching from multi-text algorithm based on the algorithm

REFERENCES

Zou:2009:DJP

Zou:2012:APM

Zhai:2012:MML

Zhang:2014:EPS

Zobel:1995:FAM

Zhang:2018:PMO
REFERENCES

Zeilberger:2008:FHO

Zaki:1985:PSA

Zheng:2015:ESS

Zhu:2016:BAC

Zhang:2007:SSS

Zhang:2017:FCP
REFERENCES

Zhou:2012:PSG

Ziadi:1996:REL

Zhou:2014:TCS

Zhu:2012:GFE

Zhang:2007:MPP

Zha:2018:CRC

[ZS17] Salih Zengin and Ece Gurcan Schmidt. A fast and accurate hardware string matching module with Bloom fil-
Zhu:1989:TTD

Zuendorf:1996:GPM

Zajac:1997:GBM

Zvegintzov:1980:PMR

Zhao:2013:EPG

REFERENCES

