A Complete Bibliography of Publications in the
International Journal on Software Tools for
Technology Transfer (STTT)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

13 May 2021
Version 1.34

Title word cross-reference

* [62, 42], * [751], α [719], ∫ [695], k [637],
LTL(F) [501], μ [406, 407], ω [471], φ [231],
π [149]. || [636].

-automata [471]. -calculus [406, 407, 149].
-induction [637].

1394 [135, 18]. 1394a [79]. 17th [578].
1998 [29].

2 [305]. 2.0 [213, 793]. 2000 [48]. 2003
[583, 584, 530]. 2014 [715, 586]. 2015 [673].
2017 [725]. 2018 [763, 762, 754, 748]. 2019

3 [764, 299, 762, 766, 307, 769, 306, 513, 512,
768, 302, 765, 298, 309, 303, 308, 514, 515].

AADL [761]. AbC [776]. abduction [661].
abort [422]. abort-aware [422]. ABS [455].
Abstract
[435, 620, 132, 419, 481, 425, 131, 122, 551].
Abstraction
[597, 182, 489, 621, 323, 382, 123, 429, 359,
205, 326, 234, 743, 407, 385, 325, 510, 40, 426].
abstraction-based [326, 325].
Abstraction-guided [489].
abstraction-refinement [407].
abstraction/refinement [359].
abractions [406, 217, 618, 664, 751, 321].
ABZ [763, 762, 642]. ABZ-2018 [763].
acceleration [310, 436, 500]. accelerators [199]. access [778, 273, 317].
accompanying [327]. accuracy [655].
ACL2 [48]. action [77, 279, 705, 528].
action-based [705]. active
[531, 361, 670, 534]. activity [522, 472].
actors [704, 785]. actuator [704]. ad [721, 582]. ad-hoc [582]. adaptable [455].
Adapters [254]. adaptive
[727, 771, 775, 606]. address [63].
ADTLang [800]. advanced [481].
advisories [671]. aerospace [357]. against
[608, 770]. AGATHA [129]. agent
[293, 163, 633]. agent-based [163]. AGG
[374]. aggregation [29]. AHB [497]. AI
[502]. aided [142]. airborne [671, 604].
Aircraft [640]. airplane [544]. AJAX
[315]. ALDÉBARAN [12]. algebra
[336, 246]. Algorithm
[599, 759, 141, 176, 202, 142, 73, 490].
Algorithmic [488, 297]. algorithmics [165].
alias-based [466]. alive [181].
ALL-TIMES [463]. allocation [73]. along
[249]. Alternating [446]. alternation [204].
alternation-free [204]. AMBA [497].
among [252]. AMT [793]. analog [479].
analyser [347]. analyses [225]. Analysing
[575, 26, 23, 24, 262, 73, 455]. Analysis
analyzer [17]. Analyzing
[531, 658, 22, 704]. Android [674, 557].
animate [156]. annotated [686].
antecedent [250]. anti [301]. anti-product
[301]. AOP [672]. AOP-specific [672].
API [776]. APIs [602]. Application
[336, 63, 416, 61, 557, 565, 430, 396, 552, 448, 454, 95, 665, 514, 52].
Application-controlled [63]. applications
[759, 355, 700, 188, 316, 356, 774, 786, 411, 674, 484, 315, 531, 41, 57, 312, 801, 308, 398, 724, 576]. applied [189, 197, 315, 449].
Applying [746, 530, 142, 467, 240].
[537, 238, 699, 735, 563, 240, 409, 640, 269].
Approximate [779, 572]. approximated
[426]. Approximating [343]. apps [755].
APSET [557]. arc [703]. Architecture
[465, 774, 68, 162, 22]. architectures
[26, 648]. arithmetic
[203, 56, 326, 50, 491, 613]. arms [334]. art
[450]. ASAP [736]. ASM [645]. Aspect
[428, 254, 340]. Aspect-oriented [254].
aspects [119]. ASPIN [132]. assembly
[148]. assertions [228]. Assessing
[699, 545]. assessment
[461, 372, 798, 378, 540, 719, 801]. assisted
[141]. Assumption [175].
Assumption-based [175]. assurance
[775, 200, 748]. asynchronous [459, 328].
asynchronously [657]. ATL [709].
atomicity [392]. attack [800, 527].
atitudes [99]. attributed [712].
Authorized [501]. Authorship [736]. auto
[670]. auto-active [670]. automata
Automatic [404, 747, 135, 251, 613, 27, 304,

behaviour [487, 262]. Benchmark [307, 526]. Benchmarking [38, 714].

bit-vector [326]. Blast [276]. blind [274].

business [602, 356, 284, 472]. bytecode [630].

C [727, 123, 190, 332, 414, 637, 739, 550, 333].

CADP [470]. CAESE_SOLVE [204].

Calculus [790, 406, 407, 149]. call [334].

caller [562]. caller-side [562]. can [444].

Capability [263]. capturing [547]. CARA [141, 145, 140, 144, 143]. card [759, 130].

case-centric [623]. CBTC [539]. CC [68].

change [225, 798]. changes [356, 560].

channel [73]. charts [197, 125]. checkable [84]. checker [602, 276, 794, 46, 600, 8, 633].

checking-based [656]. checks [591, 668].

chemical [160, 347]. CHEOPS [160].

Chinese [523]. chip [335]. Chisel [713].
CINCO [692]. circuits [56, 50, 479, 720].
circular [661]. Clara [442]. class
[362, 631, 290, 607, 69, 449]. classification
[563]. clinical [347]. clock [7]. Cloned
[582]. Closed [510]. Closed-loop [510].
cloud [627]. cloud-based [627]. CLP [699].
CLPS [156]. CLPS-B [156]. co [486, 68].
co-simulation [486, 68]. coarse [618, 128].
coarse-grained [618, 128]. COBOL [352].
Code [634, 736, 517, 645, 356, 322, 454, 656,
467, 504, 722, 727, 148, 333, 352, 27].
CoDec [304]. coevolution [775]. collective
[772, 771]. collision [519, 671, 604]. color
[274]. color-blind [274]. Colored
[264, 608, 284, 280, 282, 25, 22]. Coloured
[260, 278, 26, 23, 259, 21, 75, 24, 688].
combinational [61]. combined [537].
Combining
[385, 648, 739, 528, 372, 798, 426].
comeback [738]. commercial [235, 539].
Common [428]. communicating
[657, 208, 392]. communication
[15, 620, 137, 744, 454, 346]. compact [138].
comparative [402]. Comparing [735, 770].
Comparison [97, 466, 185, 315].
competition [585, 651, 715]. compilation
[27]. compiled [148]. complement [136].
Complementary [734]. Complete [607].
completeness [318]. complex [330, 195].
compliance [416]. Component [474, 254,
777, 650, 270, 498, 708, 256, 466, 296, 257].
Component-based [474, 650, 257].
Components [255, 734]. composable
[778, 255]. composed [408]. Composition
[254, 773, 708, 296]. Compositional
[235, 462, 246, 125, 475, 635, 661, 381].
compositionality [76]. compositions [399].
compression [716]. Computational
[184, 180]. computer [336, 141, 142].
computer-aided [142]. computer-assisted
[141]. computing [73]. concatenation
[459]. concept [765]. concepts [6, 3].
conceptual [355]. concurrency
[78, 420, 732, 441]. concurrency-related
[420]. concurrency-specific [441].
Concurrent [599, 662, 72, 362, 168, 260,
484, 169, 275, 502, 614, 532, 609]. condition
[528]. conditioned [250]. conditions
[414, 542]. conference [339, 374, 578].
Configuration [744, 457, 451, 453].
configuring [284]. conflict [108].
confluence [571]. conformance
[608, 515, 44]. Congestion [281].
connection [262, 281]. conquer [691].
considerations [299]. consistency [666].
Consistent [353]. Constraint
[505, 65, 156, 452, 787, 421, 797].
Constraint-based [505, 65, 452].
constraints [203, 735, 616, 742].
construction
[667, 789, 657, 470, 749, 147, 214, 549, 750].
constructions [290]. Constructive [461].
consumption [478]. Contention
[360, 135, 79]. contest [369]. context
[778, 535]. context-dependent [778].
contextual [296]. Continuous
[6, 788, 243, 574, 703, 534, 549, 309].
contract [631, 708]. contracts [235, 258].
contributions [325]. Control
[141, 40, 281, 778, 630, 746, 83, 519, 538, 225,
511, 317, 540, 534, 719, 309]. controllable
[443]. controlled [63]. controller [70].
convenient [375]. conversion [48].
converting [305]. coordinating [776].
coordination [773, 128]. Coping [295].
copy [728]. Coqoon [681]. CORBA [270].
core [750, 749, 601, 669, 683]. cornerstones
[40]. Correct [749, 630, 657, 750].
Correct-by-construction [749, 657, 750].
correcting [656]. Correction [750].
correctness [102, 441]. correlation [270].
cost [378, 304]. cost-optimal [378].
Counter [131, 122]. Counter-example
[131]. counter-examples [122].
counterexample [271]. counterexamples
[580]. counterstrategies [496]. Counting
[758, 622, 318]. course [279]. Coverage
[229, 430, 402, 404, 341, 288, 770].
Coverage-biased [430]. Covering [138].
CPN [260, 265]. Crawlability [397].
Creating [25]. criteria [734, 288, 441].
cyber-physical [753, 678].
Data [382, 380, 662, 675, 138, 543, 448, 484, 40, 623, 731, 627, 564, 784, 215, 151, 121].
Data-abstraction [382]. data-aware [623].
data-intensive [627]. dataflow [164].
Datagram [281]. Debugger [737].
Debugging [496, 403, 738, 362, 388, 105, 737].
dense-time [558]. dependence [698].
dependencies [414]. Dependency [786].
dependent [779]. depth [289, 599].
depth-first [289, 599]. described [653].
Description [255, 252, 101, 545].
Developments [506].
devices [299, 142, 510]. devoted [754].
distributions [549]. Diversity [752, 689, 450]. divide [691].
divide-and-conquer [691]. divider [104].
document [145]. documents [539].
Domain [436, 649, 381, 410, 692, 731, 560].
Downward [593]. DReAM [774]. Driven [540, 486, 608, 258, 726, 692, 591, 526, 644].

E-LOTOS [18]. early [465, 732]. Easy [78].
education [29, 503]. educational [72].
Efficient [203, 93, 105, 664, 792, 230, 157, 616, 133, 58, 286, 151, 359, 794, 674, 17, 220, 720].
electronic [299, 280, 3]. Electrum [765].
elimination [590]. embeddable [364].
Embedded [207, 478, 473, 241, 234, 332, 114, 750, 749, 513, 592, 475, 333, 466].
EMF [374]. empirical [711]. emptiness [668].
emulated [225]. Enabling [788]. Encoding [336, 149]. end [196, 475].
end-of-production [196]. end-to-end [475]. energy [746]. enforce [444].

Environment [644, 77, 63, 486, 105, 727, 354, 428].

event-condition-action [528]. event-driven [608]. events [794, 341, 558].

explicit [118, 137, 668, 409]. explicit-state [118, 137]. Exploiting [495, 287, 169, 379].

exploits [718]. exploration [478, 271, 202, 430, 465, 267, 240].

finite-state [38, 169, 676]. FireWire [18].

firm [477]. First [715, 289, 651, 599, 490].

FISh [37]. Flexibility [334]. Flexible [660, 359]. floating [136, 104].

Formalising [766]. formalism [636].

Formalization [45]. Formalizing [338].

Formally [411, 143, 671]. formula [85]. formulas [448, 570]. formulation [179].

frameworks [696, 689, 296]. free [747, 153, 204]. FreeRTOS [521]. friendly

HYTECH [8, 297].

incrementalization [95]. induction [637, 50]. Inductive [228]. Indus [275].

Infusion [141]. inheritance [785]. inhouse [130]. initialization [164]. inline [562].

Innovation [514]. input [795]. instead [324]. integer [663, 613]. integrate [626].

Integrated [697, 487, 662, 727, 514].
Integrating [4, 28, 701]. Integration
[187, 161, 163, 788, 247, 162, 665, 160, 449, 3].
intelligent [647]. intensive [743, 592, 627].
intent [557]. intent-based [557]. Inter
[45, 744]. Inter-ORB [45]. inter-process
[744]. Interacting [5]. interactions [336].
Interactive [206, 737, 680]. interfaces
[474, 75]. interlocking [542]. interlockings
[541]. interlocking [419, 481]. interval
[336]. interval-based
[417]. interworking [306]. introducing
[545]. Introduction
[374, 781, 299, 762, 159, 725, 754, 253, 292,
298, 439, 269, 488, 241, 331, 39, 152, 463, 395].
Introductory
[177, 139, 119, 193, 227, 127, 186, 170, 165].
intrusion [779, 394]. invariant [148].
Invasive [254]. invisible [221]. involving
[574]. IOA [330]. IOCO [446]. IoT
[799, 801]. ISDN [306]. isolation [476, 420].
Issue [754, 612, 781, 652]. Issues
[171, 41, 110, 485]. ISUP/ISDN [306].
Iterative [403]. iUML [766]. iUML-B
[766]. IVE [386].
jABC [629]. JAVA [43, 630, 645, 386, 126,
166, 726, 69, 351, 275, 143, 86, 686, 710].
Jensen [20]. JML [188, 386, 258, 222, 686].
JML-annotated [686]. Joint [756].

Kaveri [275]. Kermeta [376]. kernel
[728, 80]. Kersenboogerd [88]. KeY [588].
KeYmaera [595]. KIV [585]. Knowledge
[724]. Knowledge-based [724]. KRONOS
[135, 9].

labeled [594]. Ladder [53]. landing
[643, 439, 642, 641, 544, 640]. Language
[307, 777, 164, 330, 800, 677, 674, 512, 62, 84,
255]. languages [16, 579, 581, 381, 185, 334].
large
[429, 430, 154, 206, 594, 104, 572, 295, 453].
large-scale [453]. latencies [475]. Lava
[106]. layer [18]. layered [332]. learned
[343, 377]. Learning
[773, 795, 711, 531, 342, 784].
Learning-based [773]. LearnLib [348].
less [729]. lessons [377]. Let [587]. Level
[764, 762, 766, 769, 768, 765, 196, 588, 161,
696, 327, 767, 592, 59, 674, 467, 128, 101, 73,
358, 720]. Leveraging [233]. libraries
[454, 550, 498, 303]. library
[362, 69, 594, 204]. life [767]. lifecycle [559].
light [67]. light-weight [67]. Lightweight
[128, 573, 437, 596]. like [151]. likely [784].
Line [578, 266, 457, 454, 216, 281]. linear
[405, 408, 547, 730, 491, 425, 787, 797].
linear-constraint [787, 797].
linearizability [615]. lines
[456, 580, 274, 742, 582]. Link [18]. linking
[636]. Linux [728]. lists [614]. literature
[537]. Live [197]. livelock [118]. Liveness
[221, 412, 212]. load [198]. Local [31, 407].
lcomity [169]. localization [709]. locking
[134]. locks [392]. logic
[16, 115, 678, 61, 793, 421, 724, 53].
logic-based [16]. logical [149]. logics [760].
logistics [649, 283]. logs [282]. loop
[500, 510]. loops [547, 637, 787, 797].
LOTOS [18]. low [327]. low-level [327].
Lower [217]. LTL [438, 367, 495, 424, 173,
358, 483, 366, 409, 379, 85]. Lurette [236].
Lustre [349].

machine [463, 676, 784, 364]. machines
[795, 606]. magic [590]. Main [110].
maintenance [399]. makes [81]. malware
[508]. managed [582]. management
[63, 262, 281]. Managing [98].
manipulation [59, 58]. manipulator [121].
Manual [373]. Many [601]. Many-core
[601]. Mapping [579]. March [29].
markings [758]. Markov
[573, 390, 92, 572, 231]. mastering [559].
Masterminding [798]. matching
[372, 61, 256]. mathematical [597].

null
REFERENCES

Cleaveland:1997:E

Wolper:1997:MFW

Steffen:1997:ETI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Holzmann:2000:SMC

Kesten:2000:CDA

Millett:2000:ISP

Visser:2000:PCM

Havelund:2000:MCJ

deVries:2000:FCT

Kamel:2000:FVG

Cimatti:2000:NNS

Giunchiglia:2000:TPT
ISSN 1433-2779 (print), 1433-2787 (electronic).

Kaufmann:2000:VYC

DiVito:2000:HAP

Kapur:2000:UIP

Autexier:2000:VFM

Traverso:2000:MRV

Aiken:2000:DRR

Brinksma:2001:VE

Drechsler:2001:BDD

Bryant:2001:VAC

[56] Randal E. Bryant and Yirng-An Chen. Verification of arithmetic circuits using binary moment diagrams. *International Journal on Software Tools for Technology Transfer (STTT)*, 3(2):137–155,
REFERENCES

May 2001. CODEN ???? ISSN 1433-2779 (print), 1433-2787 (electronic).

Minato:2001:ZSB

Somenzi:2001:EMD

Horeth:2001:WLG

Harlow:2001:DEE

Mohnke:2001:ABB

Massingill:2001:PPP

Bartoli:2001:ACM

Cleaveland:2001:PSE

Delzanno:2001:CBD

[74] Hartmann Genrich, Robert Küffner, and Klaus Voss. Executable Petri net models

Lindstrom:2001:WBI

Bernardi:2001:ICS

Anlau:2001:GAN

Aizman:2001:EC

Simons:2001:MVI

Kindler:2001:PNK

Shaw:2002:WMG

Havelund:2002:PMC

Brinksma:2002:VOP

[83] Ed Brinksma, Angelika Mader, and Ansgar Fehnker. Verification and optimiza-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[18] Yifei Dong, Xiaojun Du, Gerard J. Holzmann, and Scott A. Smolka. Fight-
REFERENCES

[122] Pasareanu:2003:FFA

[123] Ball:2003:BCA

[126] Chevalley:2003:MAT

vandePol:2004:IP

Margaria:2004:LCG

Lugato:2004:VAT

Pretschner:2004:MBT

Pace:2004:CEG

Margaria:2004:LCG

Schuppan:2004:ERF

Arts:2004:DVE

Daws:2004:AV1

Boldo:2004:PTC

Edelkamp:2004:DES

Delzanno:2004:CST

Iyer:2004:IP

Martin:2004:FMS

Alur:2004:FSA

Jetley:2004:CSA

Stark:2004:FSC

CODEN ???. ISSN 1433-2779 (print), 1433-2787 (electronic).

[152] Joost-Pieter Katoen and Perdita Stevens. Guest editors’ introduction: Advancements and extensions of verification

[161] Sven Burmester, Holger Giese, Jörg Niere, Matthias Tichy, Jörg P. Wadsack, Robert Wagner, Lothar Wendehals, and

REFERENCES

[188] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applica-
REFERENCES

Baldini:2005:SLF

Bunker:2005:LSC

Schieferdecker:2005:DFL

Turner:2005:TGR

Kellerer:2005:PQA

Garavel:2006:WYS
REFERENCES

Ciardo:2006:SAS

Bartzis:2006:EBB

Mateescu:2006:CGL

Bozga:2006:PBA

Groote:2006:IVL

Graf:2006:PSV

Hooman:2006:SCR

[215] Antti Valmari. What the small Rubik’s cube taught me about data structures, information theory, and randomisation. *International Journal on
REFERENCES

Schmidt:2006:AGP

Behrmann:2006:LUB

Younes:2006:NVS

Groce:2006:EED

Sen:2006:OEP

Fang:2006:LIR

REFERENCES

[248] Radu I. Siminiceanu and Gianfranco Ciardo. Formal verification of the NASA runway safety monitor. *International Journal on Software Tools...
REFERENCES

Braunstein:2007:CPT

Vasudevan:2007:IVH

Gasevic:2007:MBA

Grumberg:2007:VFT

Pezze:2007:ISS

Vanderperren:2007:AOC

REFERENCES

[268] Roberto Bagnara, Patricia M. Hill, and

Wermelinger:2007:ISS

Jung:2007:CFC

Chechik:2007:FCG

Hamon:2007:OSS

Breu:2007:MBD

Larsen:2007:MSP

REFERENCES

Rozinat:2008:DCP

Gallasc:2008:MDL

Gottschalk:2008:PUC

Hermanns:2008:IES

Thomas:2008:EGS

Groce:2008:ETS

Katrin Witting, Bernd Schulz, Michael Delhitz, Joachim Böcker, and Norbert Fröhleke. A new approach for online multiobjective optimization of mechatronic systems. *International Journal
REFERENCES

Stein:2008:CLD

Trofin:2008:SVC

Frehse:2008:PAV

Schieferdecker:2008:ISS

Botteck:2008:ITP

Pietschker:2008:ATA

Stepien:2008:FTW

Schieferdecker:2008:THC

Bardin:2008:FAT

Ossowski:2008:UFW

Pelanek:2008:PSS

Ebnenasir:2008:FFA

Marchetto:2008:SST

Alessandro Marchetto. Special section on testing and security of Web systems. *International Journal on Software
REFERENCES

Marchetto:2008:CSB

Carzaniga:2008:HWA

Hughes:2008:AVA

Kinder:2008:MPF

Valmari:2009:SMC

Melatti:2009:PDM

REFERENCES

[327] Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamarić. A low-level memory model
REFERENCES

Yu:2009:DDB

Tan:2009:WCE

Georgiou:2009:AIC

Hinchey:2009:GEI

Chetali:2009:ATE

Schlich:2009:MCC

Cansell:2009:SCD

Ait-Ameur:2009:EPA

Deharbe:2009:SSS

Desmoulin:2009:FIT

Yorav:2009:HVC

Pasternak:2009:GUT

REFERENCES

REFERENCES

63

Scanniello:2009:AEB

Bernardi:2009:RUA

Chan:2009:AET

Ameur:2010:TWU

Plagge:2010:SOS

Bauer:2010:DCS

REFERENCES

Barnat:2010:SSM

Evangelista:2010:SIP

Rensink:2010:GTT

Perez:2010:CSE

Muliawan:2010:MRU

Horvath:2010:EAC

Meszaros:2010:MAP

Biermann:2010:IAE

Jakumeit:2010:GNE

Moha:2010:EKS

Geiger:2010:FCS

Mader:2010:SSA

Simmonds:2010:ERP

[379] Jocelyn Simmonds, Jessica Davies, Arie Gurfinkel, and Marsha Chechik. Ex-

Beaudenon:2010:DDD

Krahn:2010:MFC

Bakewell:2010:DAR

Bucci:2010:OTM

Kroening:2010:VST

Gurfinkel:2010:CPN

REFERENCES

DEN ????? ISSN 1433-2779 (print),

REFERENCES

Guo:2011:FBT

Brukman:2011:ROP

Filliatre:2011:DSV

Cuoq:2011:FDC

Weber:2011:SSN

Castillos:2011:SBT

Ishii:2011:IBS

Freitas:2011:FMS

Jones:2011:PSS

Kidd:2011:FCR

Taly:2011:SSL

Etessami:2011:AAM

Rutkowski:2011:APP
REFERENCES

[427] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zam-

[437] Giorgio Delzanno and Ahmed Rezine. A lightweight regular model check-
References:

76

Abdulla:2012:RMCb

Sokolsky:2012:ISS

Meredith:2012:OMR

Qadeer:2012:RVC

Bodden:2012:CFH

Huang:2012:SMC

Falcone:2012:WCY

Petrenko:2012:MBT

Veanes:2012:ASI

Gladisch:2012:MGQ

Vergilio:2012:MOO

REFERENCES

REFERENCES

[482] Ashutosh Kumar Gupta, Rupak Majumdar, and Andrey Rybalchenko. From tests to proofs. *International Journal
REFERENCES

Plaku:2013:FLS

Kahlon:2013:SAC

Nguyen:2013:SDI

Bombino:2013:MDC

Abdelhalim:2013:IFC

Bodik:2013:APS

Vechev:2013:AGS

REFERENCES

Sohail:2013:SFT

Finkbeiner:2013:BS

Kuncak:2013:FSL

Filiot:2013:ESL

Solar-Lezama:2013:PS

Konighofer:2013:DFS

Srivastava:2013:TBP

Go:2013:SAA

Lustig:2013:SCL

Bensalem:2014:VVM

Goldman:2014:LAT

Crampton:2014:AWS

Razavi:2014:GET

Snyder:2014:OSS
REFERENCES

[511] Jens Grabowski, Ina Schieferdecker, and Andreas Ulrich. History, status, and recent trends of the test-
REFERENCES

87

[518] Tiziana Margaria, Zongyan Qiu, and Hongli Yang. Program verification
REFERENCES

REFERENCES

Steen:2014:TGC

Felderer:2014:TRB

Neubauer:2014:RBT

Carrozza:2014:DTP

Felderer:2014:MCS

Erdogan:2014:ACU

Fantechi:2014:FMR

Ferrari:2014:CDS
Alessio Ferrari, Giorgio O. Spagnolo, Giacomo Martelli, and Simone Menabeni.

Marrone:2014:TMD

James:2014:TMV

Haxthausen:2014:AGF

David:2015:RTS

[546] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, Louis-

Chen:2015:TPL

Shafique:2015:SRS

Pulungan:2015:CMS

Lincke:2015:FPG

Wong:2015:TAB

Falcone:2015:RVA

Halle:2015:PRM

Sylvain Hallé, Jason Vallet, and Raphaël Tremblay-Lessard. On piggyback runtime monitoring of object-oriented pro-

Havelund:2015:RBR

Nouri:2015:SMC

David:2015:SHR

Salva:2015:AAA

Wang:2015:MCF

Felderer:2015:PMS

Refsdal:2015:SRA

Burger:2015:RSE

Vanoverberghe:2015:PIC

Felderer:2015:SCS

Turner:2015:WQD

Anielak:2015:ITC

David:2015:SMC

Legay:2015:SMC

REFERENCES

(102x681) REFERENCES

REFERENCES

REFERENCES

Rubin:2015:CPV

Huisman:2015:V

Jacobs:2015:SVC

Ernst:2015:KOV

Hoang:2015:SG

Bobot:2015:LVW

Bruns:2015:ILV

Tschannen:2015:AMS

REFERENCES

[596] Ammar Osaiweran and Mathijs Schuts. Evaluating the effect of a lightweight

Kutsuna:2016:ARM

Abraham:2016:SRA

Lowe:2016:CDF

Gibson-Robinson:2016:FPR

Wijs:2016:MCF

Armando:2016:SSB

Decker:2016:MMT

[603] Normann Decker, Martin Leucker, and

Enoiu:2016:ATG

Bartocci:2016:PSI

Lopes:2016:AEC

Sethi:2016:MCU

Jensen:2016:EMC

Adhikari:2016:VQR

Laarman:2016:GBP

Bogomolov:2016:GSH

Abdulla:2016:PV

Delzanno:2016:UVP

Abdulla:2016:PVT

Ganjei:2016:CDS

REFERENCES

Lamprecht:2016:SWJ

Amighi:2016:PCC

Gupta:2016:ECV

Steffen:2017: PST

Lomuscio:2017: MOS

Rivera:2017:CGE

REFERENCES

Hillah:2017:AIS

Herbold:2017:CUB

Barcelona:2017:PEU

Falcone:2017:FAR

Jacobs:2017:FRS

Gudemann:2017:PSI

Aman:2017:VCS

Aichernig:2017:RTT

Damouche:2017:INA

Katz:2017:SCI

Farah:2017:CCM

Hendriks:2017:AET

Piterman:2017:AVP

Fedyukovich:2017:FSB

REFERENCES

[673] Marieke Huisman, Vladimir Klebanov,

Vera Pantelic, Steven Postma, Mark Lawford, Monika Jaskolka, Bennett Mackenzie, Alexandre Korobkine, Marc Bender, Jeff Ong, Gordon Marks, and Alan Wassyng. Software engineering practices and Simulink: bridging

Mateescu:2018:RAI

Faithfull:2018:C

Grov:2018:TTG

vanDijk:2018:MCS

Klein:2018:APM

Kwiatkowska:2018:PGV

Tran-Jorgensen:2018:ATV

terBeek:2018:FMT

Vanit-Anunchai:2018:MST

Mazzanti:2018:TFM

Ciancia:2018:STM

Cabodi:2018:SGD

Naujokat:2018:CSD

[692] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard Steffen. CINCO: a simplicity-driven approach to

[705] Radu Mateescu and José Ignacio Requeno. On-the-fly model checking

Valmari:2018:FTS

Huisman:2018:SQT

Muller:2018:TCC

Cheng:2018:SAM

Uva:2018:AWJ

Wang:2018:LPM

REFERENCES

REFERENCES

STTT-1207100005

Routhier:2019:QAR

Zaraket:2019:HLM

Fu:2019:FMA

Perez:2019:FSI

Andre:2019:WDA

Zech:2019:KBS
REFERENCES

REFERENCES

Nikravan:2019:RBA

Parizek:2019:FDC

Gurung:2019:PRA

Botella:2019:CTS

Busard:2019:CAM

Tennyson:2019:ASC

Hentschel:2019:SED

REFERENCES

Herrmann:2019:CIP

Fahrenberg:2019:QPF

Basile:2019:ASC

Damiani:2019:ARD

Russo:2020:MBS

Gioulekas:2020:CCM

Gioulekas:2020:CCC

[750] Fotios Gioulekas, Peter Poplavko, Panagiotis Katsaros, Saddek Bensalem, and Pedro Palomo. Correction to: Correct-by-construction model-based design of

Dimovski:2020:CFB

Semerath:2020:DGM

Bur:2020:DGQ

Gallardo:2020:ISI

Panizo:2020:MBT

Chalupa:2020:JFM

REFERENCES

Lange:2020:ISM

Berthomieu:2020:CPN

Allawi:2020:GPS

Buonamici:2020:SLM

Mkaouar:2020:FAA

Butler:2020:ISS

REFERENCES

[769] Steve Jeffrey Tueno Fotso, Marc Frappier, Régine Laleau, and Amel Mammar. Modeling the hybrid ERTMS/ETCS Level 3 standard using a formal

Parsai:2020:CMC

DeNicola:2020:DFD

Abeywickrama:2020:SAE

BenMahfoudh:2020:LBC

DeNicola:2020:REC

Gabor:2020:SCP

Alrahman:2020:DA

[776] Yehia Abd Alrahman and Giulio Garbi. A distributed API for coordinating

Bures:2020:LFD

AlAli:2020:TAC

Ceska:2020:ARF

Amparore:2020:VOM

Biondi:2020:ISI

Metzler:2020:EST

Defrancisco:2020:SMC

Ferrara:2021:SAD

Hansen:2021:APL

Shakhov:2021:GBT