A Complete Bibliography of Publications in the
International Journal on Software Tools for
Technology Transfer (STTT)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

19 January 2019
Version 1.30

Title word cross-reference

* [62, 42]. f [695]. k [637]. LTL(F) [501]. μ
-automata [471]. -calculus [406, 407, 149].
-induction [637].

= [7].

abduction [661]. abort [422]. abort-aware
[422]. ABS [455]. Abstract
[435, 620, 132, 419, 481, 425, 131, 122, 551].
Abstraction
abstraction-based [326, 325].
Abstraction-guided [489].
abstraction-refinement [407].
abstraction/refinement [359].
abstractions [406, 217, 618, 664, 321]. ABZ
[642]. acceleration [310, 436, 500].
accelerators [199]. access [273, 317].
accompanying [327]. accuracy [655].
ACL2 [48]. action [77, 279, 705, 528].
action-based [705]. active
[531, 361, 670, 534]. activity [522, 472].
actors [704]. actuator [704]. ad [582].
ad-hoc [582]. adaptable [455]. Adapters
[254]. adaptive [606]. address [63].
advanced [481]. Advancements [152].
Advances [684, 699, 560, 475, 528, 133, 220, 627, 632, 564, 523]
560, 468, 464, 261, 504, 459, 344, 389, 231, 624, 500, 475, 528, 133, 220, 627, 632, 564, 523].
analytic [474]. analyzer [17]. Analyzing
[531, 658, 22, 704]. Android [674, 557].
animate [156]. annotated [686].
antecedent [250]. anti [301]. anti-product
[301]. AOP [672]. AOP-specific [672].
APIs [602]. Application
[336, 63, 416, 61, 557, 565, 430, 396, 552, 448, 454, 95, 665, 514, 52].
Application-controlled [63]. applications
[355, 700, 188, 316, 356, 411, 674, 484, 315, 351, 41, 57, 312, 308, 398, 576]. applied
[189, 197, 315, 449]. Applying
[530, 142, 467, 240]. approach
[537, 238, 699, 563, 240, 409, 640, 269].
Approximate [572]. approximated [426].
Approximating [343]. APSET [557]. arc
[703]. Architecture [465, 68, 162, 22].
arichitectures [26, 648]. arithmetic
[203, 56, 326, 50, 491, 613]. arms [334]. art
Aspect-oriented [254]. aspects [119].
asPIN [132]. assembly [148]. assertions
[228]. Assessing [699, 545]. assessment
[461, 372, 378, 540]. assisted [141].
Assumption [175]. Assumption-based
[175]. assurance [200]. asynchronous
459, 328]. asynchronously [657]. ATL
[709]. atomicity [392]. attack [527].
attitudes [99]. attributed [712].
Authorized [501]. auto [670]. auto-active
Automatic [404, 135, 251, 613, 27, 304, 565, 91, 316, 655, 313, 129, 672, 169].
automatically [500]. Automating
[396, 300]. Automation
[647, 49, 300, 242, 298]. automaton [34].
auto-pilot [695]. AutoProof [670, 589].
availability [200]. Average [423].
Average-price-per-reward [423].
avoidance [519, 671, 604]. aware [422, 623].
Bander [84]. based
[238, 517, 239, 602, 217, 529, 618, 205, 273, 175, 326, 179, 335, 234, 416, 16, 164, 505, 163, 65, 246, 664, 307, 396, 650, 608, 536, 533, 580, 230, 251, 461, 411, 524, 554, 554, 648,
designs [109, 250]. desktop [398].
diagram [328]. diagrams [380, 56, 460, 55, 608, 522, 311, 58, 669, 120].
digital [509]. Directed [321, 137, 167].
Downward [593]. Driven [540, 486, 608, 258, 692, 591, 526, 644].
DSSs [701]. during [465]. Dynamic [535, 342, 158, 84, 168, 399, 485, 73, 365].
dynamically [622].

E-LOTOS [18]. early [465]. Easy [78].
Encoding [336, 149]. end [196, 475].
end-of-production [196]. end-to-end [475]. enforce [444]. enforcement [650].
enriched [212]. Environment [644, 77, 63, 486, 105, 354, 428].
Environment-driven [644]. environments [196, 626]. equation [204]. equations [32].
event-B [360, 387, 643, 641, 634, 640].
event-condition-action [528].
execution-time [114]. exemplified [560].
experience [113, 689, 144]. Experiences [240, 649, 467]. experiment [332, 18].
explicit [118, 137, 668, 409]. explicit-state [118, 137]. Exploiting [495, 287, 169, 379].
exploration [478, 271, 202, 430, 465, 267, 240].
Exploring [154, 322]. Expressing [84].
Expression [120]. expressions [286].
Extrapolating [433, 348].

FASE [253]. FASE'17 [707]. fast [375, 310]. Fate [153]. fault [709, 313, 191]. fault-tolerance [313], FDR3 [600].

feasible [122], feature [247]. Feyerabend [13], field [319]. Fighting [118], filters [509]. Finding [420, 122], Finite
[231, 38, 606, 169, 133, 676]. finite-state
[38, 169, 676]. FireWire [18], firm [477],

first [289, 651, 599, 400]. FISh [37].

Flexibility [334]. Flexible [660, 359].

floating [136, 104], floating-point [104].

Florida [29]. flow [630, 467], fluidic [295].

Flush [349]. fly
[117, 266, 178, 204, 705, 601, 44]. focus
[665], force [527], Formal
[238, 141, 232, 460, 519, 538, 225, 418, 191],

70, 233, 140, 261, 108, 248, 693, 687, 357,

186, 713, 51, 187, 234, 229, 105, 650, 223, 68,

697, 497, 652, 542, 142, 29, 104, 40, 318, 107,

496, 103, 689, 61, 596, 183, 240, 431, 2, 257].

formalism [636]. Formalization [45].

Formalizing [338]. Formally
[411, 143, 671]. formula [85], formulas
[448, 570], formulation [179], fragment
[695]. Framework [308, 102, 487, 666, 442],

234, 271, 361, 313, 109, 660, 252, 452, 270,

67, 381, 629, 440, 311, 348, 516, 222, 669].

frameworks [696, 689, 296], free [153, 204].

FreeRTOS [521], FSAP [244],

FSAP/NuSMV [244],

FSAP/NeoSMV-SA [244]. FTSSyn [313]. Fujaba [161, 377], full [692]. Fully [650].

fUML [487]. Functional
[414, 491, 185, 550, 402, 196, 262, 670, 647, 318, 198]. functions
[414, 597, 613], fundamental [269].

game [382, 246], games
[180, 703, 685, 423, 685]. gap [679], gas
[560], gear [643, 639, 642, 70, 641, 640].

general [666, 322, 391, 45]. generalized
[424, 668], generated [500]. Generating
[77, 580, 115, 502, 610], generation
[565, 91, 158, 386, 271, 338, 611, 543, 68, 448],

524, 542, 671, 597, 129, 692, 124, 131, 672,

340, 591, 242, 634, 304, 216, 526, 532, 199,

364, 605, 604], generator [17], generic
[713, 550, 204, 516], genetic [154, 656].

GenUTest [340]. GIOP [45]. GNATprove
[586]. GNU [118], good [81], GPUs [601].

GrBaTs [377], grade [386], grained
[618, 128], grammars [524]. Graph
[369, 561, 258, 59, 375, 376, 370, 712].

graph-based [376]. graphical [682, 602],

graphics [391]. Graphillion [594], graphs
[630, 594, 528]. Greybox [530].

GrGen.NET [375]. grid [523]. GROOVE
[427], group [691], Guard [617].

Guard-based [617]. Guest
[152, 395, 241, 331], guide [21]. Guided
[618, 286, 489].

Haifa [339], Handel [190]. Handel-C [190].

Handling [637], hard [341], hard-to-reach
[341], hardware
[197, 179, 95, 67, 101, 36, 250]. Haskell
[185]. HASL [575]. HCI [238], heads [318].

Healing [316]. Heerhugowaard [88], held
[29]. Herschel [556], heterogeneous
[429, 486, 107, 121]. Heuristics
[166, 60, 431], Hierarchical [103].

High [696, 49, 674, 200, 73, 358].

High-automation [49], high-availability
[200]. High-level [696, 674, 73, 358].

Higher [101, 550], Higher-level [101],

higher-order [550], Highlights [177],

highly [662]. Hip [521], Hip/Sleek [521].

HiPE [113], History [511], hit [341], hoc
[582]. HOL [415], Hoorn [88].

Hoorn-Kersenboogerd [88], horizon
[231], human [336], human-computer
[336], hybrid
[406, 442, 618, 408, 574, 297, 513, 8, 417, 671],

103, 155, 6, 708, 483, 595, 423, 309, 409, 643].
machine [643, 676, 364]. machines [606].
magic [590]. Main [110]. maintenance [399]. makes [81]. malware [508].
managed [582]. management [63, 262, 281]. Many [98].
Measurement [464]. Mechanical [79]. mechanisms [264]. Mechanized [52].
mechatronic [293, 24, 292, 294]. mecum [19]. medical [142, 510]. meet [51, 499].
meets [589]. Melbourne [29]. Memory [237, 666, 367, 63, 327]. message [507, 125].
message-passing [507]. meta [161].
meta-model [161]. metabolic [74].
metaSMT [665]. method [336, 266, 291, 360, 216, 281].
metrics [229, 219, 397]. microgrid [577].
microprocessor [102]. MIDAS [649].
middleware [200]. migrating [352].
migration [351]. minimisation [683].
minimization [192, 549]. minimized [34].
Mining [678, 628]. missile [23]. mixed [479]. mixed-signal [479]. ML [185].
Mobile [237, 73, 22, 149]. mock [340].
Model-based [524, 646, 698, 279, 445, 130, 638, 609, 580, 461, 648, 678, 607, 496].
Model-checking [247, 472, 86, 558, 429, 68, 92, 616, 131].
Model-Driven [540, 258, 591, 486].
Modeling [480, 704, 318, 274, 641, 374, 383, 460, 579, 581, 592, 674, 452, 6, 692, 640, 334].
Modelling [262, 577, 283, 427, 73, 264, 688, 387, 541, 260, 160, 455, 523].
Monitoring [603, 479, 412, 553, 157, 443, 562].
Montages [77]. MontiCore [381]. MOP [440]. MTMOT [371]. movement [690].
MSC [459]. MSO [438]. MTL [243, 695].
MTL- [695]. Multi [449, 683, 643, 293, 685, 633, 86, 669].
Multi-objective [449]. multi-player [685].
multi-threaded [86]. multiobjective [294].
mutation [126].

Program
[213, 209, 211]. Program
[89, 14, 82, 518, 492, 517, 134, 713, 531, 488, 16, 661, 520, 287, 481, 17, 370, 493, 710].
Programming [37, 412, 422, 656, 185, 62].
programs
[53, 630, 123, 507, 362, 126, 655, 670, 637, 663, 166, 553, 43, 484, 613, 275, 502, 220, 526, 86].
progress [216]. project [72, 463, 352].
PROMELA [45, 41, 380]. prone [398].
Proof [104, 428, 335]. proof-based [335].
proofs [405, 547, 49, 661, 482, 379].
Properties
[136, 312, 691, 84, 49, 447, 266, 157, 678, 479, 555, 591, 483, 360, 712, 409, 676, 601].
Property [526, 249]. Property-driven [526].
propositions [550]. PROSPER [94].
protocol-extension [631]. protocols [602, 205, 93, 137, 472].
Protos2CPN [284].
prototypes [550]. prototyping [145, 503].
Provably [630]. prove [595]. Proved [360].
prover [50, 48, 415]. Proving [224, 47, 318].
publish [900]. publish [162].
publish/subscribe [162]. Pump [141].
purpose [391, 338]. Pushdown [508].
Putting [232].
QoS [555]. Qualitative [694, 522].
quality [707, 200, 534, 302]. quantified [484].
Quantifying [512]. quantiles [684].
Quantitative
[522, 523, 615, 241, 33, 694, 564]. quantized [509].
race [484]. races [53].
radio [503].
radiotherapy [199].
railway
[88, 538, 542, 541, 540, 688]. railways [689].
RAMBUTANS [672]. random [430, 420].
randomisation [215]. ranking [221].
reach [341]. reachability
[172, 408, 327, 390, 325, 133, 644, 286, 328].
reachable [34].
Reactive
[211, 258, 208, 525, 651, 610, 490, 121]. read [201].
Real
[7, 546, 207, 653, 383, 241, 33, 476, 635, 462, 114, 209, 704, 74, 6, 477, 130, 360, 9, 257].
Real-time
[7, 546, 653, 383, 241, 33, 476, 635, 462, 114, 209, 704, 47, 6, 477, 360, 9, 257]. realistic
[526]. realizability [501]. reasoning
[387, 712]. recognition [466].
reconfigurable [191]. record [280].
recovery [355]. Recovery [412, 650].
recursive [106]. reduce [304].
Reducing [405]. reduction
[176, 322, 35, 167, 368, 571, 617, 133, 365].
reductions [93, 168]. Refactoring
[305, 371, 370]. reference [562].
refined [579]. Refinement [107, 615, 382, 359, 335, 407, 600, 510, 597, 182, 426, 593].
Refinement-based [107]. refinements [349].
registries [626]. regression
[396, 563, 638]. Regular
[432, 438, 436, 435, 434, 437, 433].
reinterpretation [393]. related [420].
Relating [458]. relations [158].
relaxation [615]. Relay [53].
reliability [478, 346].
reordering [684].
repairing [453].
replaying [457].
report [113, 689].
repository [675, 471].
representation [34].
representations [698]. Require [654].
Requirements [145, 265, 675, 197, 49, 539].
Requirements-document-based [145].
RERS [530, 528, 527].
research
[386, 81, 503, 319]. resets [423].
resolution
[405, 204, 379, 149]. resource [134].
Restoring [561].
result [289, 52].
results [389].
resuscitation [141, 142].
reusable [343].
Reviewing [453].
review [537, 548].
revisited [556, 424, 554].
reward [423].
rewrite [375].
rich [319, 636].
Rigorous
[645, 473, 525].
Risk
[534, 537, 536, 533, 560].
Risk-based
[534, 536, 533].
river [701].
robust [361].
Rodin [387].
role [675].
Root [360, 135, 79].
Rubik [215].
Rule [517, 239, 554].
Timed-automata [477]. TIMES [463].
tolerance [313, 191]. too [509]. Tool
tool-integration [160]. toolbox [470].
ToolDAy [410]. toolkit [94]. Tools
[469, 214, 260, 277, 265, 667, 4, 188, 400, 543, 14, 707, 80, 384, 6, 11, 185, 626, 692, 370, 548, 503, 632, 334, 226, 515].
toolset [387, 12, 608, 291]. topics [245]. trace [654].
Traces [287, 658, 153]. tracing [464].
Tradeoff [478]. trail [167]. trajectories
[544]. trajectory [98]. transactional [422].
transfer [47]. transformation
[561, 655, 258, 373, 353, 370, 369].
transformational [550]. Transformations
[249, 709]. transition [158, 274, 169, 528].
translating [252]. translation
[148, 85, 686]. transport [690, 687].
tree [435, 434]. trees [138]. trend [82].
trends [575, 511, 458, 344]. TSTL [677]. TTCN
[569, 595]. two [136, 490]. two-stage [490].
Type [164, 466]. Type-based [164, 466].
typed [550]. types [121]. typestate [442].
typing [116].

UML/OCL [416]. unbounded [570, 614].
Underapproximation [663].
understanding [41]. unfolding [609].
unfolding-based [609]. unfoldings [289].
unified [620]. uniform [406, 311].
uninterpreted [613]. Unit [144, 340]. until
[570]. untimed [347]. updating [353].
upgrade [660]. upon [247]. Uppaal
[10, 569]. Uppaal2k [79]. upper [217, 616].
upper-bound [616]. usability [388]. Usage
[237, 649, 648]. usage-based [648]. use
[357, 537]. user [355, 675, 47, 5]. Using
UWA [355].

V&V [540]. V2 [236]. Vacuity [96, 379].
vade [19]. Validating [210, 15]. Validation
[207, 642, 129, 265, 27, 238, 336, 499, 72, 460, 137, 260, 45, 458, 119]. valued [406].
VAMP [232]. variability
[664, 579, 452, 451]. variable [684].
variables [7]. variants [582]. Variations
[668]. various [666]. VBS [476]. VDM
[686]. vector [326, 69]. vehicular [690].
VeriFast [584]. Verification
verification [693, 604, 509]. Verified
[384, 134, 671]. verifier [231]. verifiers [38].
verify [587, 106, 88, 444]. Verifying
[615, 205, 691, 234, 541, 50, 150]. VerifyThis
[585, 583, 673, 584]. VeriTech [252].
version [511]. very [154, 594]. VHDL [89].
via [615, 414, 661, 664, 637, 520, 280, 178, 393, 534, 342, 502]. viable [475].
VIATRA2 [372]. view [621, 299, 620, 47].
violation [399]. violations [173, 392].
virtual [341, 364]. VIS [97]. vision [632].
Visualization [451, 400, 206]. vs [218].
VSE [51]. vulnerabilities [557].
REFERENCES

wands [590]. waves [363]. WCET [467].
weak [684, 2]. weakest [414]. Web
[395, 400, 239, 355, 316, 396, 75, 315, 314,
397, 472, 353, 350, 354, 198, 352, 308, 398].
Web-based [396, 75]. weight [67].
weighted [616, 311]. Why3 [587].
Widening [268, 434]. wider [357]. will
[153]. wireless [704]. within [181, 560].
Witnessing [590]. word [59]. word-level
[59]. work [264]. workarounds [316, 710].
workbench [626]. workflow [699, 501, 280].
Workflows [564, 628, 625, 629]. workloads
[402]. workshop [177, 29]. Worst [114, 329].
Worst-case [114, 329].
Xenon [418]. XSB [16].
Year [48].
Z [358]. Zero [57]. Zero-suppressed [57].
Zeus [171]. zone [217]. zone-based [217].

References

REFERENCES

Henzinger:1997:HMC

Yovine:1997:KVT

Larsen:1997:UN

Leblanc:1997:OSB

Snelting:1998:PFS

Hankin:1998:PAT

Amtoft:1998:BAV

Codish:1998:SBP

REFERENCES

REFERENCES

[34] Gerard J. Holzmann and Anuj Puri. A minimized automaton representation of

Clarke:1999:SSR

Pixley:1999:MCH

Jay:1999:PF

Avrunin:2000:BFS

Holzmann:2000:SMC

Kesten:2000:CDA

Millett:2000:ISP

Visser:2000:PCM

Havelund:2000:MCJ

[43] Klaus Havelund and Thomas Pressburger. Model checking JAVA programs
REFERENCES

deVries:2000:FCT

Kamel:2000:FVG

Cimatti:2000:NNS

Giunchiglia:2000:TPT

Kaufmann:2000:VYC

DiVito:2000:HAP

Kapur:2000:UIP

Autexier:2000:VFM

Traverso:2000:MRV

Aiken:2000:DRR

Brinksma:2001:VE

Drechsler:2001:BDD

Bryant:2001:VAC

Minato:2001:ZSB

Somenzi:2001:EMD

Horeth:2001:WLG

Harlow:2001:DEE

Mohnke:2001:ABB
REFERENCES

207–216, May 2001. CODEN ????
ISSN 1433-2779 (print), 1433-2787 (electronic).

ISSN 1433-2779 (print), 1433-2787 (electronic).

Massingill:2001:PPP

ISSN 1433-2779 (print), 1433-2787 (electronic).

Bartoli:2001:ACM

ISSN 1433-2779 (print), 1433-2787 (electronic).

Cleaveland:2001:PSE

ISSN 1433-2779 (print), 1433-2787 (electronic).

Delzanno:2001:CBD

ISSN 1433-2779 (print), 1433-2787 (electronic).

Hirschko:2001:BVU

ISSN 1433-2779 (print), 1433-2787 (electronic).

Kern:2001:LWF

ISSN 1433-2779 (print), 1433-2787 (electronic).

Garavel:2001:SDC

ISSN 1433-2779 (print), 1433-2787 (electronic).

Huisman:2001:CSC
Lindahl:2001:FD

Jensen:2001:PSE

Berthelot:2001:SVC

Ojala:2001:MAD

Genrich:2001:EPN

Lindstrom:2001:WBI

Bernardi:2001:ICS

Anlauff:2001:GAN

Aizman:2001:EC

ISSN 1433-2779 (print), 1433-2787 (electronic).

Simons:2001:MVI

Kindler:2001:PNK

Shaw:2002:WMG

Havelund:2002:PMC

Brinksma:2002:VOP

Corbett:2002:ECP

Tauriainen:2002:TLF

Stoller:2002:MCM

Bosnacki:2002:SS

REFERENCES

ISSN 1433-2779 (print), 1433-2787 (electronic).

Kupferman:2003:VDT

Peng:2003:CSV

Ruys:2003:MVT

Wing:2003:PA

Margaria:2003:PSE

Mycroft:2003:HLT

Aagaard:2003:FSM

Kort:2003:HFV

Kaivola:2003:PEL

Copty:2003:EDF

Engblom:2003:WCE

Haakansson:2003:GOT

Debbabi:2003:ST

Ben-David:2003:SDF

Dong:2003:FLG

Margaria:2003:IPS

Williams:2003:SCU

Yavuz-Kahveci:2003:SMA

Pasareanu:2003:FFA

REFERENCES

[131] Gordon Pace, Nicolas Halbwachs, and Pascal Raymond. Counter-example gen-

Gallardo:2004:ATA

Schuppan:2004:ERF

Arts:2004:DVE

Daws:2004:AVI

Boldo:2004:PTC

Edelkamp:2004:DES

Delzanno:2004:CST

Iyer:2004:IP

REFERENCES

Havelund:2004:EMS

Campos:2004:TSG

Dorr:2004:I

Schopfer:2004:CTI

Burmester:2004:TIM

Hansen:2004:TPS

Corradini:2004:ABA

Colaco:2004:TBI

Dwyer:2004:SSA

REFERENCES

REFERENCES

REFERENCES

Blom:2005:DSS

Margaria:2005:IP

Jard:2005:TTP

Viho:2005:TDS

Baldini:2005:SLF

Bunker:2005:LSC

Schieferdecker:2005:DFL
REFERENCES

Turner:2005:TGR

Kellerer:2005:PQA

Garavel:2006:WYS

Ciardo:2006:SAS

Bartzis:2006:EBB

Mateescu:2006:CGL

Bozga:2006:PBA

REFERENCES

Groote:2006:IVL

Graf:2006:PSV

Ober:2006:VTU

deSimone:2006:TSR

REFERENCES

Groce:2006:EED

Sen:2006:OEP

Fang:2006:LIR

Robby:2006:CJS

Fitzgerald:2006:IFM

Miller:2006:PS

Fidge:2006:FCI

[225] C. J. Fidge. Formal change impact analyses for emulated control software. In-
REFERENCES

[232] Sven Beyer, Christian Jacob, Daniel

Margaria:2006:SSL

Carcenac:2006:FFV

Andersen:2006:CSC

REFERENCES

REFERENCES

[258] Reiko Heckel and Marc Lohmann. Model-driven development of reactive

REFERENCES

Hamon:2007:OSS

Breu:2007:MBD

Larsen:2007:MSP

Ranganath:2007:SCJ

Beyer:2007:SMC

Jurjens:2007:TSS

Jensen:2008:SSC

Kristensen:2008:MBD

Jørgensen:2008:TDC

Rozinat:2008:DCP

Gallasc:2008:MDL

Gottschalk:2008:PUC

REFERENCES

[Burmeister:2008:TSD]

[Witting:2008:NAO]

[Stein:2008:CLD]

[Trofin:2008:SVC]

[Frehse:2008:PAV]

Schieferdecker:2008:ISS

Botteck:2008:ITP

Pietschker:2008:ATA

Warcken:2008:TAP

Neukirchen:2008:AQE

Schulz:2008:TSD

Sabiguero:2008:ACG

Deiss:2008:RCT

Glaser:2008:STS

Schieferdecker:2008:THC

Bardin:2008:FAT

Ossowski:2008:UFW

Pelanek:2008:PSS

Ebnenasir:2008:FFA

Marchetto:2008:SST

Marchetto:2008:CSB

Carzaniga:2008:HWA

Hughes:2008:AVA

Kinder:2008:MPF

Valmari:2009:SMC

Melatti:2009:PDM

Drager:2009:DMC

Bosnacki:2009:POR

Anand:2009:SEA

Armando:2009:BMC

[Huth:2009:SSA]

[Bryant:2009:ABD]

[Chatterjee:2009:LLM]

[Yu:2009:DDB]

[Tan:2009:WCE]

[Georgiou:2009:AIC]

Deharbe:2009:SSS

Desmoulin:2009:FIT

Yorav:2009:HVC

Pasternak:2009:GUT

Fine:2009:UBN

Raffelt:2009:DTA

Babic:2009:ASR

REFERENCES

[356] Brian Chan, King Chun Foo, Lionel Marks, and Ying Zou. An approach for estimating the time needed to perform code changes in business applications. International Journal on Software Tools for Technology Transfer (STTT),
Ameur:2010:TWU

Plagge:2010:SOS

Bauer:2010:DCS

Rehm:2010:PDR

Dolev:2010:FRA

Carver:2010:CLI

REFERENCES

REFERENCES

DEN????ISSN1433-2779(print),
1433-2787(electronic).URLhttp://
www.springerlink.com/openurl.
asp?genre=article&issn=1433-2779&
volume=12&issue=6&spage=467.

Corina S. Pasareanu. New results
in software model checking and anal-
ysis. International Journal on Soft-
ware Tools for Technology Transfer
(STTT), 13(1):1–2, January 2011. CO-
DEN????ISSN1433-2779(print),
1433-2787(electronic).URLhttp://
www.springerlink.com/openurl.
asp?genre=article&issn=1433-2779&
volume=13&issue=1&spage=1.

Ernst Moritz Hahn, Holger Hermanns,
and Lijun Zhang. Probabilistic reach-
ability for parametric Markov mod-
els. International Journal on Soft-
ware Tools for Technology Transfer
(STTT), 13(1):3–19, January 2011. CO-
DEN????ISSN1433-2779(print),
1433-2787(electronic).URLhttp://
www.springerlink.com/openurl.
asp?genre=article&issn=1433-2779&
volume=13&issue=1&spage=3.

Dragan Bosnacki, Stefan Edelkamp,
Damian Sulewski, and Anton Wijs.
Parallel probabilistic model checking
on general purpose graphics proces-
sors. International Journal on Soft-
ware Tools for Technology Transfer
(STTT), 13(1):21–35, January 2011. CO-
DEN????ISSN1433-2779(print),
1433-2787(electronic).URLhttp://
www.springerlink.com/openurl.

Nicholas Kidd, Peter Lammich, Tayssir
Touili, and Thomas Reps. A decision
procedure for detecting atomicity vi-
olations for communicating processes
with locks. International Journal on
Software Tools for Technology Trans-
CODEN????ISSN1433-2779(print),
1433-2787(electronic).URLhttp://
www.springerlink.com/openurl.
asp?genre=article&issn=1433-2779&
volume=13&issue=1&spage=21.

Ernst Moritz Hahn, Holger Hermanns,
and Lijun Zhang. Probabilistic reach-
ability for parametric Markov mod-
els. International Journal on Soft-
ware Tools for Technology Transfer
(STTT), 13(1):3–19, January 2011. CO-
DEN????ISSN1433-2779(print),
1433-2787(electronic).URLhttp://
www.springerlink.com/openurl.
asp?genre=article&issn=1433-2779&
volume=13&issue=1&spage=1.

Junghee Lim, Akash Lal, and Thomas
Reps. Symbolic analysis via semantic
reinterpretation. International Journal
on Software Tools for Technology Trans-
CODEN????ISSN1433-2779(print),
1433-2787(electronic).URLhttp://
www.springerlink.com/openurl.
asp?genre=article&issn=1433-2779&
volume=13&issue=1&spage=61.

Sebastian Schmerl, Michael Vogel, and
Hartmut König. Using model checking
to identify errors in intrusion detection
signatures. International Journal on
Software Tools for Technology Trans-
CODEN????ISSN1433-2779(print),
1433-2787(electronic).URLhttp://
www.springerlink.com/openurl.
asp?genre=article&issn=1433-2779&
volume=13&issue=1&spage=89.

REFERENCES

[414] Pascal Cuoq, Benjamin Monate, Anne Pacalet, and Virgile Prevosto. Functional dependencies of C functions

Weber:2011:SSN

Castillos:2011:SBT

Ishii:2011:IBS

Freitas:2011:FMS

Jones:2011:PSS

Kidd:2011:FCR

[427] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zam-
REFERENCES

REFERENCES

Bouajjani:2012:WTR

Bouajjani:2012:ART

Boigelot:2012:DSR

Delzanno:2012:LRM

Abdulla:2012:RMCb

Sokolsky:2012:ISS

Meredith:2012:OMR

Qadeer:2012:RVC

Bodden:2012:CFH

Huang:2012:SMC

Falcone:2012:WCY

Petrenko:2012:MBT

Veeanes:2012:ASI

[465] Reinhold Heckmann, Christian Ferdinand, Daniel Kästner, and Stefana
REFERENCES

References

[493] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-based program verification and program synthesis. *International Journal
REFERENCES

83

Finkbeiner:2013:BS

Filiot:2013:ESL

Konighofer:2013:DFS

Godhal:2013:SAA

Lustig:2013:SCL

Bensalem:2014:VVM

Goldman:2014:LAT

REFERENCES

Zeiss:2014:CTS

Rings:2014:GIT

Alnusair:2014:RBD

Margaria:2014:PVT

Fang:2014:FVS

Gherghina:2014:EPV

Ferreira:2014:AVF

REFERENCES

[528] Markus Schordan and Adrian Prantl. Combining static analysis and state transition graphs for verification of event-condition-action systems in the
REFERENCES

[Beyer:2014:BBS]

[Morse:2014:ASB]

[Bauer:2014:APB]

[Beyer:2014:BBS]

[Felderer:2014:TRB]

[Neubauer:2014:RBT]

[Carrozza:2014:DTP]

REFERENCES

Galler:2014:STD

Quer:2014:MCE

Nilsson:2015:AEI

David:2015:RTS

Chen:2015:TPL

Shafique:2015:SRS

Pulungan:2015:CMS

REFERENCES

Sébastien Salva and Stassia R. Zafimiharisoa. APSET, an Android aPpli-
cation SEcurity Testing tool for de-
tecting intent-based vulnerabilities. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 17(2):
201–221, April 2015. CODEN ????
ISSN 1433-2779 (print), 1433-2787 (elec-
com/article/10.1007/s10009-014-
0303-8.

Farn Wang. Model-checking fair dense-
time systems with propositions and
events. International Journal on Soft-
ware Tools for Technology Transfer
CODEN ???? ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.
com/article/10.1007/s10009-014-
0312-7.

Michael Felderer and Basel Katt. A
process for mastering security evo-
lution in the development lifecy-
CLE. International Journal on Soft-
ware Tools for Technology Transfer
CODEN ???? ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.
com/article/10.1007/s10009-015-
0371-4.

Atle Refsdal, Bjørnarn Solhaug, and Ketil Stølen. Security risk analysis of sys-
tem changes exemplified within the oil
and gas domain. International Journal on Software Tools for Technology Transfer (STTT), 17(3):251–266, June
2015. CODEN ???? ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.com/article/
10.1007/s10009-014-0351-0.

Jens Bürger, Jan Jürjens, and Sven
Wenzel. Restoring security of evolv-
ing software models using graph trans-
formation. International Journal on Soft-
ware Tools for Technology Transfer
CODEN ???? ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.com/article/
10.1007/s10009-014-0364-8.

Dries Vanoverberghe and Frank Piessens.
Policy ignorant caller-side inline refer-
2015. CODEN ???? ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.com/article/
10.1007/s10009-014-0348-8.

Michael Felderer and Elizabeta Fourneret.
A systematic classification of security regres-
sion testing approaches. International Journal on Software Tools for Technology Transfer (STTT), 17(3):
305–319, June 2015. CODEN ???? ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.com/article/

Kenneth J. Turner and Paul S.
Lambert. Workflows for quantita-
tive data analysis in the social sci-
Anielak:2015:ITC

David:2015:SMC

Legay:2015:SMC

Hartmanns:2015:SSM

David:2015:UST

Roohi:2015:SMC

Hartmanns:2015:SSM

[571] Arnd Hartmanns and Mark Timmer. Sound statistical model checking for

REFERENCES

REFERENCES

Hoang:2015:SG

Duc Hoang, Yannick Moy, and An
gela Wallenburg. SPARK 2014 and
GNAProve. International Journal on
Software Tools for Technology Trans-
fer (STTT), 17(6):695–707, November
2015. CODEN ???. ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.com/article/
10.1007/s10009-014-0308-3.

Bobot:2015:LWW

François Bobot and Jean-Christophe
Filliâtre. Let’s verify this with
Why3. International Journal on
Software Tools for Technology Trans-
fer (STTT), 17(6):709–727, November
2015. CODEN ???. ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.com/article/
10.1007/s10009-014-0322-5.

Bruns:2015:ILV

Daniel Bruns and Wojciech Mostowski.
Implementation-level verification of al-
gorithms with KeY. International Jour-
nal on Software Tools for Technol-
ogy Transfer (STTT), 17(6):729–
744, November 2015. CODEN ???.
ISSN 1433-2779 (print), 1433-2787 (elec-
com/article/10.1007/s10009-014-
0314-5.

Tschannen:2015:AMS

Julian Tschannen and Carlo A. Fu-
ria. AutoProof meets some verifica-
tion challenges. International Jour-
nal on Software Tools for Technology Trans-
fer (STTT), 17(6):745–755, November
2015. CODEN ???. ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.com/article/
10.1007/s10009-014-0300-y.

Blom:2015:WEM

Stefan Blom and Marieke Huism-
man. Witnessing the elimination of
magic wands. International Jour-
nal on Software Tools for Technol-
ogy Transfer (STTT), 17(6):757–
781, November 2015. CODEN ???.
ISSN 1433-2779 (print), 1433-2787 (elec-
com/article/10.1007/s10009-015-
0372-3; http://link.springer.com/content/pdf/10.

Pezze:2016:MDG

Mauro Pezzé and Jochen Wuttke.
Model-driven generation of runtime
checks for system properties. Interna-
tional Journal on Software Tools for
Technology Transfer (STTT), 18(1):
1–19, February 2016. CODEN ???.
ISSN 1433-2779 (print), 1433-2787 (elec-
com/article/10.1007/s10009-014-
0325-2.

Hendriks:2016:BSL

Martijn Hendriks and Twan Basten.
A blueprint for system-level perfor-
mance modeling of software-intensive
embedded systems. International Jour-
nal on Software Tools for Technology Trans-
fer (STTT), 18(1):21–40, Febru-
ary 2016. CODEN ???. ISSN 1433-2779
(print), 1433-2787 (electronic). URL
http://link.springer.com/article/
10.1007/s10009-014-0340-3.
REFERENCES

Gibson-Robinson:2016:FPR

Wijs:2016:MCF

Armando:2016:SSB

Kushik:2016:AEN

Huang:2016:CMB

Faria:2016:TCT

deLeon:2016:MBT

Schrammel:2016:GTC

Enoiu:2016:ATG

Bartocci:2016:PSI

Lopes:2016:AEC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zech:2017:MBR

Mammar:2017:MLG

Boniol:2017:LGC

Ladenberger:2017:VAL

Su:2017:ALG

Banach:2017:LGS

REFERENCES

REFERENCES

Jacobs:2017:FRS

Gudemann:2017:PSI

Aichernig:2017:RTT

Damouche:2017:INA

Katz:2017:SCI

Farah:2017:CCM

REFERENCES

Hendriks:2017:AET

Piterman:2017:AVP

Fedyukovich:2017:FSB

Gant:2017:UPS

Abdulla:2017:ISV

Gant:2017:UPS
REFERENCES

[670] Carlo A. Furia, Martin Nordio, Na-
REFERENCES

[676] Vladimir Ulyantsev, Igor Buzhinsky, and Anatoly Shalyto. Exact finite-state machine identification from sce-

Holmes:2018:TTS

Hoxha:2018:MPT

Pantelic:2018:SEP

Mateescu:2018:RAI

Faithfull:2018:C

Groev:2018:TTG

[689] Franco Mazzanti, Alessio Ferrari, and Giorgio O. Spagnolo. Towards formal

REFERENCES

Edelkamp:2018:CSP

Jensen:2018:DCS

Khamespanah:2018:MAR

Mateescu:2018:FMC

Valmari:2018:FTS

Huisman:2018:SQT

Muller:2018:TCC
REFERENCES

Cheng:2018:SAM

Uva:2018:AWJ

Wang:2018:LPM

Schneider:2018:ARA

Asavoae:2018:SFS