Title word cross-reference

[712]. Authorized [501]. Authorship [736].
auto [670]. auto-active [670]. Automata
[803, 723, 717, 746, 406, 531, 172, 217, 729,
808, 779, 884, 745, 684, 477, 905, 124, 342,
668, 423, 85, 471, 151, 593].
Automata-based [803]. Automated
[611, 521, 330, 810, 542, 317, 900, 399, 124,
242, 216, 712, 686, 710, 598, 332, 650, 506,
842, 291, 397, 680, 373, 722, 502, 516, 898,
121, 693].
Automatic
[404, 833, 747, 135, 251, 613, 27, 304, 565, 91,
316, 655, 313, 129, 896, 672, 169].
automatically [500]. Automating
[396, 300, 791]. Automation
[647, 49, 300, 242, 298]. automaton [34].
automonomically [778]. autonomous [872].
autopilot [695]. AutoProof [670, 589].
availability [200]. Average [423].
Average-price-per-reward [423]. avionics
[864]. avoidance [519]. 671, 871, 604].
Avoiding [813]. aware [422, 623].

B [387, 763, 238, 336, 643, 156, 766, 721, 767,
291, 641, 358, 360, 634, 903, 640, 636].
backjumping [505]. backtracking [732].
bad [896]. Bandera [84]. based
[915, 238, 802, 517, 239, 602, 893, 217, 773,
529, 812, 618, 811, 734, 205, 273, 175, 326, 179,
335, 234, 416, 16, 164, 505, 163, 65, 246, 664,
751, 307, 396, 650, 608, 536, 533, 580, 813, 230,
251, 750, 749, 461, 411, 524, 877, 830, 554, 648,
646, 739, 678, 607, 698, 147, 325, 417, 452, 656,
200, 803, 107, 496, 279, 597, 617, 474, 477, 11,
905, 550, 75, 599, 145, 768, 315, 705, 761, 376,
353, 534, 731, 755, 722, 445, 183, 130, 727, 240,
748, 557, 354, 814, 466, 548, 801, 627, 493].
based
[710, 785, 328, 638, 724, 609, 257, 346, 660].
basin [701]. Bayesian [404, 824, 341]. BDD
[529, 60, 151]. BDD-based [529]. BDD-like
[151]. BDDs [61, 203, 181, 57]. be [42].
Behavior [15, 147, 531]. Behavior-based
[147]. behavioral [416, 348, 551].
behaviour [487, 262]. behavioural [878].
Benchmarks [307, 851, 526].
Benchmarker [38, 714, 885]. benchmarks
[715, 532]. better [287]. between [478].
based [430]. bidirectional [353]. Binary
[55, 863, 858, 56]. binding [399].
bioinformatics [626]. biological [566, 576].
Bisimulation [66, 176, 683]. bit [326, 509].
bit-vector [326]. bitcode [876]. Blast [276].
blind [274]. block [870]. blocks [628, 481].
blueprint [592]. BMC [179, 505, 178, 379].
BMC-based [179]. BMC'03 [177].
Boolean [123, 204, 61, 890, 120]. boosting
[404]. bound [616]. Bounded
[324, 507, 494, 239, 905, 565, 203, 408, 184,
660, 637, 842, 530, 855, 328]. bounds [217].
brainiac [857]. branch [770]. branches
[843]. bridging [679]. Bringing [861].
broadcast [620]. brute [527]. brute-force
[527]. Büchi [884, 684, 668, 85, 471]. bugs
[420]. building [359, 628, 80, 481, 242, 171].
business [18]. bus [18]. bus [102, 356, 862, 284, 472].
bytecode [630].
147, 214, 911, 882, 905, 549, 854, 750.
constructions [290]. Constructive [461].
consumption [478]. Contention
[360, 135, 79]. contest [369], context
[778, 535]. context-dependent [778].
contextual [296]. Continuous
[6, 788, 243, 574, 703, 534, 549, 309, 866].
contract [631, 708]. contracts [235, 258].
contributions [235]. Control [141, 40, 281],
778, 630, 746, 83, 906, 519, 538, 225, 511,
controllable [851, 443]. controlled
[823, 63]. controller [70]. convenient [375].
conversion [48]. converting [305].
Cooperative [812]. coordinating [776].
coordination [773, 128]. Coping [295].
copy [728]. Coqoon [681]. CORBA [270].
core [750, 749, 601, 669, 683]. cornerstones
[40]. Correct [831, 749, 630, 657, 813, 750].
Correct-by-construction [749, 657, 750].
correcting [656]. Correction
[836, 835, 885, 817, 750, 837]. correctness
[102, 441]. correlation [270]. cost
[378, 304]. cost-optimal [378]. Counter
[131, 122]. Counter-example [131].
counter-examples [122]. counterexample
[271]. counterexamples [580].
counterstrategies [496]. Counting
[758, 622, 318]. course [279]. Coverage
[229, 430, 402, 404, 341, 288, 770].
Coverage-biased [430]. Covering [138].
CoVeriTest [812, 840]. CPA [841].
CPA/Tiger [841]. CPA/Tiger-MGP
[841]. CPN [260, 265]. CPS [833].
CPSDebug [833]. Crawlability [397].
Creating [25]. criteria [734, 288, 441].
critical [653, 645, 186, 187, 697, 652, 191,
658, 899, 694, 226, 693, 868]. critical-path
[658]. cross [404]. cross-product [404].
CRV [715]. CSP [487, 600, 740, 358, 636].
CTL [249, 175, 751, 88, 616, 42]. CTL*
[290]. CTL-property [249]. cube [215].
current [245]. CVT [27]. cyber
[753, 678, 897]. cyber-physical
[753, 678, 897].
Data [382, 380, 662, 836, 675, 138, 817, 816,
543, 448, 875, 484, 40, 623, 731, 627, 564,
784, 215, 860, 151, 121]. Data-abstraction
[382]. data-aware [623]. data-intensive
[627]. dataflow [164]. Datagram [281].
DBM [905]. DBM-based [905]. Debian
[889]. Debugger [737]. Debugging
[496, 403, 738, 362, 388, 105, 737].
decentralized [861]. decidable [723].
deciding [501]. Decision
[328, 780, 858, 380, 326, 573, 55, 325, 392,
572, 182, 311, 58, 669].
Decision-diagram-based [328]. decisions
[457]. declarative [880]. decomposition
859. Deductive [413, 709, 65, 791]. deep
913. defect [398]. defect-prone [398].
defence [283]. defense [800]. defined [503].
definitely [201]. delta [403, 747, 581, 814].
delta-oriented [747]. demonstration [767].
dense [558]. dense-time [558].
dependence [698]. dependencies [414].
Dependency [786, 856, 878]. dependent
[778]. depth [289, 599]. depth-first
289, 599]. described [653]. Description
255, 252, 101, 545]. descriptions [77, 280].
Design [249, 60, 238, 517, 357, 473, 827, 675,
293, 335, 106, 579, 68, 750, 749, 465, 678, 674,
113, 95, 798, 474, 11, 832, 70, 36, 3, 295, 860].
design-space [579]. designs [109, 250].
desktop [398]. Detecting
[53, 797, 392, 821, 557]. detection
[517, 779, 853, 484, 902, 96, 896, 399, 108,
732, 394, 379, 508]. deterministic
[884, 684, 871]. determination [178].
developer [299, 19]. Development
[134, 251, 645, 299, 273, 187, 559, 682, 258,
454, 113, 277, 381, 279, 349, 545, 360, 516,
240, 303, 301, 226]. Developments [506].
devices [299, 142, 510]. devoted [754].
DFT [869]. Diagnosing [808]. diagnosis
[496]. diagram [328]. diagrams
[796, 780, 858, 380, 56, 460, 55, 608, 522, 311,
HybridUML [213].
hyperproperties [792]. hypervisor [418]. hypothesis [568]. HYTECH [8, 297].
i-protocol [118]. IC3 [757]. identification [676]. identify [394]. identities [867].

service [877, 648, 646, 399, 549].
service-oriented [648]. services
[773, 351, 472, 626, 198, 352]. session [5].
set [343, 841]. sets [594, 491, 706]. setting
[788, 770]. Seven [358, 689]. shalls [224].
shape [821]. shared [238, 367]. sharing
[691, 138]. Should [42, 201]. side [825, 562].
side-channel [825]. signal [479, 793].
signalling [688, 263]. signatures [550, 394].
similarities [396]. simple [547]. simplicity
[692]. simplicity-driven [692]. simulated
[150]. simulating [688]. simulation [486],
894, 519, 68, 901, 11, 75, 41, 210, 160, 446.
simulator [23, 876]. Simulink [679]. single
[63, 787, 797]. single-path [787, 797]. SIP
[306]. SIP-ISUP [306]. SIP-ISUP/ISDN
[306]. site [353]. sites [239, 354]. size [405].
Skeleton [879]. sketching [726, 492].
SL-COMP [849]. SLA [399]. Sleek [521].
Slicing [713, 709, 275, 846, 89, 41, 807, 250].
small [215]. Smart
[573, 759, 777, 702, 861, 523]. SMC [569].
smells [896]. SMT
[915, 324, 359, 699, 388, 597, 903, 917, 415].
SMT-based [915, 597]. SNIP [456]. social
[564]. socket [346]. Software
[612, 578, 443, 707, 237, 679, 450, 866, 319],
226, 469, 324, 889, 276, 529, 839, 838, 363,
187, 561, 456, 400, 337, 246, 165, 225, 580,
413, 697, 750, 749, 288, 385, 592, 454, 594,
168, 384, 757, 274, 458, 145, 140, 761, 485,
545, 256, 344, 389, 445, 222, 582, 748, 466,
81, 13, 503, 632, 453, 269, 22, 605, 257, 346].
software-defined [503].
software-intensive [592]. solution [195].
solutions [714, 885, 579]. solver
[156, 317, 417, 665]. solvers
[324, 359, 388, 849, 415]. Solving
[368, 584, 347, 180, 909, 337, 730, 912, 376,
903, 295, 421, 710]. Some
SOTA [772]. Sound [571, 650]. Soundness
[623]. Source [736, 467, 633, 333, 503].
source-level [467]. space [63, 192, 618, 202,
35, 579, 730, 716, 267, 261, 732, 240, 364].
spaces [176, 154, 206, 312, 295]. SPARK
[586]. Spatial [760, 627]. Spatio [690].
Spatio-temporal [690]. Special
[186, 170, 165, 754, 578, 325, 259, 278, 314],
233, 350, 612, 886, 781, 762, 30, 771, 819,
201, 652, 911, 419, 907, 882, 253, 292, 298,
439, 854, 269, 395]. specific
[436, 381, 692, 672, 441, 860]. Specification
[72, 84, 207, 662, 836, 778, 235, 870, 156, 197,
696, 766, 68, 497, 261, 722]. specifications
[141, 196, 874, 388, 635, 546, 861, 520, 306],
115, 496, 302, 459, 358, 222, 710, 551, 257].
specified [858, 330]. Specifying
[828, 821, 143]. speed [779, 500, 379]. SPIN
[725, 727, 781, 754, 39, 45, 907, 97, 42, 44,
764, 87]. Spin-based [727]. split [691].
SPLs [747]. spontaneous [773]. stage
[490]. standard [769, 768, 185].
Standardized [306]. standards [200].
standards-based [200]. State
[35, 38, 575, 176, 192, 322, 202, 118, 137, 154,
206, 290, 606, 267, 474, 905, 261, 732, 312,
169, 450, 528, 133, 548, 898, 676, 364, 236].
state-based [474, 548]. state-rich [636].
state-space [202]. Stateflow [460, 272].
Stateless [728]. statements [102]. states
[34]. Static [796, 799, 484, 296, 91, 287, 528].
stations [88]. Statistical
[429, 566, 574, 567, 555, 570, 576, 757, 794,
577, 556, 571, 568, 218]. status [511]. steps
[901]. stepwise [351]. still [181]. stochastic
[575, 76, 754, 685, 378, 523]. Store [471].
Storm [881]. strategies
[735, 372, 698, 703, 742]. strategy
[505, 872, 685]. Stream [805]. streaming
[750, 749]. streams [805, 875]. Striver
[805]. stroke [358]. strong [176, 423, 2].
structure [138, 495, 354, 526, 784].
structured [520]. structures
[662, 883, 215, 151, 836]. STTT [30].
stubborn [706]. studies [377, 236]. Study
[852, 763, 639, 762, 535, 118, 702, 861, 536,
497, 69, 142, 477, 315, 370, 130, 784, 711,

Verification [802, 653, 499, 834, 54, 83, 56, 743, 901, 48, 263, 18, 469, 619, 621, 662, 836, 239, 357, 780, 883, 893, 717, 232, 529, 873, 12, 699, 189, 588,
REFERENCES

Cleaveland:1997:E

Wolper:1997:MFW

Steen:1997:ETI

Braun:1997:ITE

REFERENCES

REFERENCES

REFERENCES

Gordon:1998:AMS

Moncelet:1998:AMS

Wagenhals:1998:CEM

Burns:1998:ASP

Pnueli:1998:CVT

Friese:1998:IPO

Johnson:1999:WFM

Cleaveland:1999:PMC

REFERENCES

Kesten:2000:CDA

Millett:2000:ISP

Visser:2000:PCM

Havelund:2000:MCJ

deVries:2000:FCT

Kamel:2000:FV

Cimatti:2000:NNS

Giunchiglia:2000:TPT

Kaufmann:2000:VYC
REFERENCES

DiVito:2000:HAP

Kapur:2000:UIP

Autexier:2000:VFM

Traverso:2000:MRV

Aiken:2000:DRR

Brinksma:2001:VE

Drechsler:2001:BDD

Bryant:2001:VAC

Minato:2001:ZSB

REFERENCES

REFERENCES

Kern:2001:LWF

Garavel:2001:SDC

Huisman:2001:CSC

Lindahl:2001:FDA

Jensen:2001:PSE

Berthelot:2001:SVC

Ojala:2001:MAD

Genrich:2001:EPN

Lindstrom:2001:WBI
REFERENCES

Bernardi:2001:ICS

Anlauf:2001:GAN

Aizman:2001:EC

Simons:2001:MVI

Kindler:2001:PNK

Shaw:2002:WMG

Havelund:2002:PMC

Brinksma:2002:VOP

Corbett:2002:ECP

[84] James C. Corbett, Matthew B. Dwyer, John Hatcliﬀ, and Robby. Express-

Tauriainen:2002:TLF

Stoller:2002:MCM

Bosnacki:2002:SS

Eisner:2002:USC

Clarke:2002:PSV

Graf:2003:PSE

Bozga:2003:USA

Hermanns:2003:TMC

REFERENCES

Aagaard:2003:FSM

Kort:2003:HFV

Kaivola:2003:PEL

Copty:2003:EDF

Claessen:2003:ULD

Kong:2003:RBF

Munoz:2003:FVC

ElGuemhioui:2003:FDO

Hogrefe:2003:MIP
REFERENCES

[119] Tiziana Margaria and Wang Yi. Introductory paper: scalability aspects of

[128] Tiziana Margaria and Bernhard Steffen. Lightweight coarse-grained coor-
REFERENCES

REFERENCES

[153] HoonSang Jin, Kavita Ravi, and Fabio Somenzi. Fate and free will in er-

Godefroid:2004:EVL

Kwiatkowska:2004:PSM

Bouquet:2004:CBC

Havelund:2004:EMS

Campos:2004:TSG

Dorr:2004:I

Schopfer:2004:CTI

Burmester:2004:TIM

Hansen:2004:TPS

Corradini:2004:ABA

Colaco:2004:TBI

Dwyer:2004:SSA

Groce:2004:HMC

Edelkamp:2004:POR

Iosif:2004:SRM

Penna:2004:ETL

[169] Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci, and Marisa Venturini Zilli. Exploiting transition locality in automatic ver-
A reference to a journal article.

REFERENCES

[182] Bing Li, Chao Wang, and Fabio Somenzi. Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure. *International Journal on Soft-

Brucker:2005:VAA

Butterﬁeld:2005:PHC

Hammarberg:2005:FVF

[191] Jerker Hammarberg and Simin Nadjm-

Blom:2005:DSS

Margaria:2005:IP

Jard:2005:TTP

Viho:2005:TDS

REFERENCES

Bartzis:2006:EBB

Bart́iz:2006:EBB

Mateescu:2006:CGL

Graf:2006:PSV

Groote:2006:IVL

Hooman:2006:SCR

[222] Robby, Edwin Rodríguez, Matthew B. Dwyer, and John Hatcliff. Checking JML specifications using an extensible software model checking frame-

Fitzgerald:2006:IFM

Miller:2006:PS

Fidge:2006:FCI

Wassyng:2006:STS

Tronci:2006:IP

Moore:2006:IAO

Chockler:2006:CMF

REFERENCES

Ganai:2006:EDS

Penna:2006:FHA

Beyer:2006:PIA

Margaria:2006:SSL

Carcenac:2006:FFV

REFERENCES

REFERENCES

Braunstein:2007:CPT

Vasudevan:2007:IVH

Gasevic:2007:MBA

Grumberg:2007:VFT

Pezze:2007:ISS

Vanderperren:2007:AOC

REFERENCES

[Sora:2007:CCC]

[Pahl:2007:OSC]

[delBianco:2007:TUB]

[Heckel:2007:MDD]

[Jensen:2007:SSC]

[Jensen:2007:CPN]

[268] Roberto Bagnara, Patricia M. Hill, and

Wermelinger:2007:ISS

Jung:2007:CFC

Chechik:2007:FCG

Hamon:2007:OSS

Breu:2007:MBD

Larsen:2007:MSP

Ranganath:2007:SCJ

Beyer:2007:SMC

Jurjens:2007:TSS

Jensen:2008:SSC

Kristensen:2008:MBD

Jorgensen:2008:TDC

Vanit-Anunchai:2008:ADC

REFERENCES

Rozinat:2008:DCP

Gallasc:2008:MDL

Gottschalk:2008:PUC

Hermanns:2008:IES

Thomas:2008:EGS

Groce:2008:ETS

REFERENCES

REFERENCES

Stein:2008:CLD

Trofin:2008:SVC

Frehse:2008:PAV

Schieferdecker:2008:ISS

Botteck:2008:ITP

Pietschker:2008:ATA

Alessandro Marchetto. Special section on testing and security of Web systems. *International Journal on Software
Marcetto:2008:CSB

Carzaniga:2008:HWA

Hughes:2008:AVA

Valmari:2009:SMC

Melatti:2009:PDM

REFERENCES

[327] Shaumik Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. A low-level memory model

Yu:2009:DDB

Tan:2009:WCE

Georgiou:2009:AIC

Hinchey:2009:GEI

Chetali:2009:ATE

Schlich:2009:MCC

REFERENCES

REFERENCES

REFERENCES

Scanniello:2009:AEB

Bernardi:2009:RUA

Chan:2009:AET

Ameur:2010:TWU

Plagge:2010:SOS

Bauer:2010:DCS
REFERENCES

REFERENCES

Barnat:2010:SSM

Evangelista:2010:SIP

Rensink:2010:GTT

Perez:2010:CSE

Muliawan:2010:MRU

Horvath:2010:EAC

[379] Jocelyn Simmonds, Jessica Davies, Arie Gurfinkel, and Marsha Chechik. Ex-

Beaudenon:2010:DDD

Krahn:2010:MFC

Bakewell:2010:DAR

Bucci:2010:OTM

Kroening:2010:VST

Gurfinkel:2010:CPN

REFERENCES

70

Chalin:2010:TIG

Abrial:2010:ROT

Cok:2010:IUP

Pasareanu:2011:NRS

Hahn:2011:PRP

Bosnacki:2011:PPM

Torchiano:2011:WAM

Mosincat:2011:AMS

DAmbros:2011:PSV

Chockler:2011:P

Adler:2011:EWU

Artho:2011:IDD

Baras:2011:ABC

Guo:2011:FBT

Brukman:2011:ROP

Filliatre:2011:DSV

Cuoq:2011:FDC

Weber:2011:SSN

Castillos:2011:SBT

Ishii:2011:IBS

Godefroid:2011:LGM

Laviron:2011:SFN

Sharygina:2012:ARA

Ghamarian:2012:MAU

Katz:2012:CAP

Basu:2012:SAM

Denise:2012:CBR
[430] Alain Denise, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Richard Lassaigne, Johan Oudinet, et al. Coverage-biased random exploration of large models and application to test-

[437] Giorgio Delzanno and Ahmed Rezine. A lightweight regular model check-

Abdulla:2012:RMCb

Sokolsky:2012:ISS

Meredith:2012:OMR

Qadeer:2012:RVC

Bodden:2012:CFH

Huang:2012:SMC

Falcone:2012:WCY

Petenko:2012:MBT

Veanes:2012:ASI

Falcone:2012:MTP

Gladisch:2012:MGQ

Vergilio:2012:MOO

REFERENCES

Abdulla:2013:TSV

Garavel:2013:CTC

Tsay:2013:BSO

Marques:2013:MCW

Bensalem:2013:RED

Lampka:2013:CBS

Rox:2013:CPA
REFERENCES

[482] Ashutosh Kumar Gupta, Rupak Majumdar, and Andrey Rybalchenko. From tests to proofs. International Journal
REFERENCES

Sohail:2013:SFT

Kuncak:2013:FSL

Solar-Lezama:2013:PS

Srivastava:2013:TBP

Finkbeiner:2013:BS

Filiot:2013:ESL

REFERENCES

REFERENCES

[511] Jens Grabowski, Ina Schieferdecker, and Andreas Ulrich. History, status, and recent trends of the test-

[518] Tiziana Margaria, Zongyan Qiu, and Hongli Yang. Program verification
REFERENCES

REFERENCES

Howar:2014:RER

Steen:2014:PDB

vandePol:2014:TBF

Schordan:2014:CSA

Beyer:2014:BBS

Morse:2014:ASB

Bauer:2014:APB

REFERENCES

Marrone:2014:TMD

James:2014:TMV

Haxthausen:2014:AGF

Galler:2014:STD

Quer:2014:MCE

Nilsson:2015:AEI

David:2015:RTS

Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, Louis-

[553] Sylvain Hallé, Jason Vallet, and Raphaël Tremblay-Lessard. On piggyback runtime monitoring of object-oriented pro-

Havelund:2015:RBR

Nouri:2015:SMC

David:2015:SHR

Salva:2015:AAA

Wang:2015:MCF

Felderer:2015:PMS

Refsdal:2015:SRA

Burger:2015:RSE

Vanoverberghe:2015:PIC

Felderer:2015:SCS

Turner:2015:WQD

Anielak:2015:ITC

David:2015:SMC

Legay:2015:SMC

REFERENCES

Ballarini:2015:AOT

Zuliani:2015:SMC

Chakraborty:2015:MSM

Gnesi:2015:SSI

Eichelberger:2015:MDS

Filho:2015:GCM

Haber:2015:SSD

REFERENCES

Osaiweran:2016:EEL

Kutsuna:2016:ARM

Abraham:2016:SRA

Lowe:2016:CDF

Gibson-Robinson:2016:FPR

Wijs:2016:MCF

Armando:2016:SSB

Schrammel:2016:GTC

Enoiu:2016:ATG

Bartocci:2016:PSI

Lopes:2016:AEC

Sethi:2016:MCU

Adhikari:2016:VQR

Jensen:2016:EMC

Laarman:2016:GBP

Bogomolov:2016:GSH

Abdulla:2016:PV

Delzanno:2016:UVP

Abdulla:2016:PVT

REFERENCES

Su:2017:ALG

Mammar:2017:MLG

Ladenberger:2017:VAL

Banach:2017:LGS

Teodorov:2017:EDR

Arcaini:2017:RDP

REFERENCES

[653] Bogdan Aman and Gabriel Ciobanu. Verification of critical systems described

Aichernig:2017:RTT

Damouche:2017:INA

Katz:2017:SCI

Hendriks:2017:AET

Piterman:2017:AVP

REFERENCES

[666] Tatsuya Abe and Toshiyuki Maeda.
REFERENCES

REFERENCES

Huisman:2017:V

Jaber:2018:HLM

Boukhari:2018:RUR

Ulyantsev:2018:EFS

Holmes:2018:TTS

Hoxha:2018:MPT

REFERENCES

REFERENCES

Huang:2018:MBT

Bride:2018:ASC

Bosnacki:2018:MCR

Gallardo:2018:IRB

Edelkamp:2018:CSP

Jensen:2018:DCS

Khamespanah:2018:MAR

Ehsan Khamespanah, Marjan Sirjani, Kirill Mechetov, and Gul Agha. Modeling and analyzing real-time wireless sen-
References

Mateescu:2018:FMC

Valmari:2018:FTS

Huisman:2018:SQT

Muller:2018:TCC

Cheng:2018:SAM

Uva:2018:AWJ

REFERENCES

REFERENCES

Zech:2019:KBS

Erdogmus:2019:ISP

Hua:2019:EED

Ratiu:2019:IES

Kokologiannakis:2019:SMC

Bloemen:2019:MCG

Fearnley:2019:OAS

[730] John Fearnley, Sanjay Jain, Bart de Keijzer, Sven Schewe, Frank Stephan,

[Hentschel:2019:SED]

[Gibson-Robinson:2019:SRC]

[Becker:2019:SPE]

[terBeek:2019:QVM]

[Herdt:2019:CSB]

[Luthmann:2019:SSP]

REFERENCES

Gioulekas:2020:CCC

Dimovski:2020:CFB

Semerath:2020:DGM

Bur:2020:DGQ

Gallardo:2020:ISI

Panizo:2020:MBT

REFERENCES

[762] Michael Butler, Thai Son Hoang,
REFERENCES

[Abrial:2020:ACS]

[Arcaini:2020:VHE]

[Cunha:2020:VHE]

[Dghaym:2020:FHE]

[Hansen:2020:VRL]

[Mammar:2020:FRB]

REFERENCES

Fotso:2020:MHE

Parsai:2020:CMC

DeNicola:2020:DFD

Gabor:2020:SCP

Thomas Gabor, Andreas Sedlmeier, and Claudia Linhoff-Opheim. The scenario coevolution paradigm: adapt-
References

Alrahman:2020:DAC

Bures:2020:LFD

AlAli:2020:TAC

Ceska:2020:ARF

Amparore:2020:VOM

Biondi:2020:ISI

Metzler:2020:EST

REFERENCES

[790] Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. The Refine-
REFERENCES

Summers:2020:ADV

Finkbeiner:2020:EMH

Nickovic:2020:AQQ

Budde:2020:ESM

Giantamidis:2021:LMM

Alvin:2021:SGU

Yuan:2021:DML
Kammuller:2021:MCC

Ferrara:2021:SAD

Hansen:2021:APL

Shakhov:2021:GBT

Alhawi:2021:VRC

Khoury:2021:ABM

Leucker:2021:P

REFERENCES

REFERENCES

Beyer:2021:CVB

Fritsche:2021:AUI

Schneider:2021:LBI

Schneider:2021:FTT

Dubrulle:2021:PDF

Dubrulle:2021:CPD

Frohme:2021:CLM

REFERENCES

Beyer:2021:FIC

Jakobs:2021:CIV

Ruland:2021:CTM

Gadelha:2021:EAT

Lemieux:2021:FTF

Cadar:2021:KSE

Lemberger:2021:PRT

Chalupa:2021:SGT

Beyer:2021:TIC

Dross:2021:VPV

Sighireanu:2021:SCC

Middeldorp:2021:CRE

Howar:2021:RCT

Kordon:2021:SEM

[859] Martin Blička, Aalke E. J. Hyvärinen, and Natasha Sharygina. Using linear algebra in decomposition of Farkas in-

References

References

880 Back:2022:DAE

881 Hensel:2022:PMC

882 Legay:2022:TAC

883 Antonino:2022:AVC

884 Esparza:2022:LTL

885 Beyer:2022:CRB

[892] Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, and Stijn de Gouw. Verifying OpenJDK’s LinkedList using KeY (extended
REFERENCES

REFERENCES

REFERENCES

Kaufmann:2023:IAV

Sotoudeh:2023:STA

Tan:2023:VPR

Abbasi:2023:CRS

Biewer:2023:RR

Scott:2023:ASS