Title word cross-reference

#46 [Ano98e].

(b, k) [AC84a], \((r, n_1/2, s_1/2)\) [Hoc85], \((r, n_1/2)\) [Tem89a], \(1/f\) [PN96]. $\textbf{125.00}$ [Ano00a]. 16 \times 16 [GJW91, Has84, LH86a, LH86b, LH86c, LH86d]. $\textbf{20}$ [Ano88q]. 3 \[ACK+95, CGLY96, CS90, CMAS11, DGO90, EFR+05, FDM07, IHE+00, JB90, KSM+08, KTN+14, MKDY90, Mir88, OPR01, PLS20, Pau08, PPM90, WLH00]. $\textbf{55.00}$ [Ano96c]. $\textbf{6}$ [Ano95v]. 6 [FMD07, RWL+98]. TM

[BE92, Blu92, Cyb91b, SSRL91]. \(\gamma\) [Her94]. \(K\) [YZL+20, OGR95]. \(\mu\) [AT93a, AT93b]. \(N\) [Ano94-59, Ano94-141, BAD01, SHMH97, Ano94-116]. II [Rau91]. \(R\) [SB81, SB82a, Rav92, Rav95]. \(s\) [SC92]. \(S_n\) [ARW93a]. SU(3) [MHP84, KM85]. \(\theta\) [Che91]. \(\times\) [FT93a]. \(X + Y\) [AG94]. Z [IMA93].

-Adjacent [AC84b, AC84a]. -Body [Ano94-116, Ano94-59, Ano94-141, BAD01, SHMH97]. -CLF [Her94]. -D [KTN+14, CS90, FMD07, IHE+00, Mir88, Pau08].

/NII [Voi94].

\textbf{0*T} [ACA94]. \textbf{0-8493-4417-4} [Ano94p].

1 [Ano94h, Ano94-135, Ano94-130, Asa93a,
3 TM94a, TM94b. 2D-Position [RDHC94]. 2D/3D [SB94a]. 2nd [Ahm92, AGP96, AB94, HS+91, IEE93b, LCV90b, RMO96, LCV90a].

3 [AGZ94a, Bac88, CGL92, DMPR93, Elm93, Iwa90, KLY94, KG95, KBLD08, MAA99b, RRSS93, Sch97c, SHZK94, TW92, VNV93, VTT98, VH93b, Wat93]. 3-7 [Sig95]. 3-94 [BBDS94]. 3-D [AGZ94a, DMPR93, Elm09, KLY94, MAA99b, Sch97c, SHZK94, VTT98, VH93b]. 3-D-spectral [DP90]. 3-D-spectral/finite [DP90]. 3-Dimensional [Sus93]. 3.0 [CSFS00]. 3.06 [Ano03a]. 3.8GB [RWNJ94]. 3.8GB/ [RWNJ94]. 3.06 [IHE+00]. 300-MHz [IHE+00]. 3090 [Kha09]. 31st [Ano94a]. 32-bit [Has83, Wei91]. 32-GFLOP [Kha92]. 32nd [AIA94]. 3300-Itanium-Prozessoren [Ano01b]. 369 [GKS09]. 36th [Ano98a]. 370 [MPSB87]. 3800 [IAKH92, KISY94, SKY94]. 3D [CGL96, CGLxx, CH12, Ano94-89, Ano97-32, BV96, CS98, CGLxx, CHexx, GD94b, HB93, jJ88, KTKK93, LM93, LX416, PS88, SB94b, SRBL94, WH93, WLK95, Wle83]. 3D-CAD [KTKK93]. 3rd [Ano96a, Hel93, PH95, SC93, LLR93b].

4 [Ano03a, BJ95, BAM93, DH86b, DH86a, HLPP97, HMKI97, Hor97b, Hor97a, KE93, STSK95, TO96, Wat93, YSK+96, YMY92]. 4.0 [Mon88]. 4.5 [TMT+20]. 40 [DAC+18, Habb86, WSL88]. 400 [MM91b]. 416 [VY88]. 48 [K90, HFFH86, HFFH87, Men87, Nag88, VM87]. 4D [Kau93a]. 4M [DT90]. 4th [Ano94a, Goo97, IEE97a, Pow97, SJ96D, USE00a, USE00b]. 4WA [FT93a]. 4WB [FT93a]. 4WD [FT93a]. 4WS [FT93a, YOY97].

5 [C93a, HT93, HP95, KC95, KR94d, Lee96, LW94, Mar95, McB93, PTC+93, PW94, RYXT89, SNS+97]. 5-9 [Ano97t]. 500 [CP13, FB91b, Heg96]. 500-MHz [FB91b]. 5d [GE12]. 5th [Ano01a, IEE96b, ML95b, NBC92, USE01].

'90 [Ano90f, IEE90, Men90, PL91c, SIG90b, CK92a, Car94a, CWLT97, DP96, Fox90a, Lee96, Mar92]. 900 [HE98]. 90D [Ano94-69]. 90er [Kro92]. '90's [Con91, Con90]. '91 [BG91, Men91, Ano94-126, Mye92a]. '92 [He93, Kah92, KK93, Men92, PEH93, Nat91a]. '93 [Ano93-39, Ano93a, IEE93a, IEE93d, KSW93, Meu93, Pel93a, SC93, VO93, Dra94b, Lew93].

Gal96, GCS94, HS93a, JP94, KV96, KCZJ14, LN94, LL08, MS94c, Ost94, RE94, Sch97c, TMAS97, VTT59, WMR96, Zas93, ZM94, Aba09, BTV96, BV96, Bru91, Fuji11, MV16, Use93, MD04]. adaptive-grid
[BT96, BV96]. Adaptivity [PDR94]. Add
[CKS99, PSS+]. addendum
[Ano91n, Ano91n]. Adding
[The90b, Ano91b]. Addison
[Sch88a].

Aeronautical [Pell93b]. Aeronautics [Pell93a]. aerosol [Ano97d, Pan97].
Aerospace [AIA93, AIA94, Ano98a, EEE94, LPC+95, PC94b, Pet89b, RG94, SHMR93, AU87, Uni87a, VV95]. AES
[LFJ+20]. affected [WH94]. Affiliates
[Ano87a, Fer83]. affine [CK90, Kor93].
Affinity
[Ano94e, LS94, Ste99a]. affordable
[AGEL13, Ano88a]. African [New93]. After
[Ano92b, Ano95w]. Afterword
[DM88, DM88]. again [Ano92b, Sch12].
Against
[Ano93-46]. Agarose
[HPLC93]. Age
[Fox89, Gha96, Ren97, Rya90, CCKSS90].
Agency
[Ano93-29]. Agenda
[Ano94w, Inf86]. agents [SNP14]. Ages
[Opp95b]. aggregate [FGC06, YF9+].
Aggregation
[MS96]. agree [Ano93b].
agreement
[Un92c2]. agreements [KW11].
Ahead
[Bel99, Jon96, Zim96, Ano97p, Ano98f, CSFS00, New14]. AHS
[DC93, DCxx]. AI
[Bar00c, Bar00d, HHT+94, Hug93, LFC18, Srl94, Ull84, WZ87]. AI-based
[Srl94]. Aid
[FNK93, SPK94, Ano94-36, KK98a]. Aided
[KC93a, KD93, MM90, RC94, RLC91].
Aiding
[TSSK94, VRSG93]. aids
[Ano95i, Ano96-34, HSW+90]. Aims
[Ano93o]. Air
[AABB93, ABE97, Ano93-46, Ano94-48, Car94a, Car94b, EDJ+10, Fie93, FA93, Hai97, HCV97, KY90, LYKM97, SSK97, SLS96, TMAS97, Zla01, Ano89f, KGERJxx, ODAZ15]. Air-Cleaner
[LYKM97]. Air-Cooled
[Car94a].
Air-Cooling
[Cha94]. air-sea
[KGERJxx]. Airborne
[Rhe90, SK94]. Aircraft
[Law90, RG94, Riz94]. Aircrafts
[NSF90]. Aizu
[M+95, Ike95]. Aizu-Wakamatsu
[M+95]. Alabama
[Alaxx]. Alamos
[AB94, BB+91, CKE99, Met86a, Ano99, Lew17, Mac91b]. Alan
[Ano00a]. ALAS
[Mil97a]. Alaskan
[OLLG96]. Albatross
[KBM+02]. Albuquerque
[Ano94-126, NAS93, Bor92].
Alfred [War03]. Algebra
[ALPP00, Cal81, CDH84, CDW94, Dem91, Don91, Dub87, Ede94a, NJL94, NGDH96, DHD89, DH86a, DS86a, Don93a, GJM86, Gal87, GPS90, Hak89, Ipe19, Sim00].

algebraic
[Ano87d, ARW92, EGK87b, FRW92, Ked94].

Algebra
[Moit93].

Algorithm
[AABB93, AGZ94a, AG94, Ano92e, Ano94-42, Ano94-62, Ano94-92, Ano94-95, Ano94-115, AZ99, Bak93, BE93a, BS94d, CJ93, Cha84, CIIH94, CS93b, DA94, DE84, ES92, EH97c, FC93, Hun94, KMNT95, KMNT96, KK95a, KESH94, LS93b, Mik94, Moh94, MBW01, MM94c, NK94, OF91, OS94, PC93, PK94, Sch96, Str97, SA94, TL96, TH94, TW92, VR94, Vog93, WMKS96, WLK95, WK95, WM91, XCLW93, KC93b, AG94b, ARW93a, Amn90, Amn92, ARE95, AT89, Bis94c, Bra92, Bru91, Cha92b, CK90, CFP20, Dav86b, Dav89, DY90, DS86b, Dra90a, EB18, FMD07, FB91a, Gal87, GS87a, GS88b, GJ87, GS89d, Hog92, Hol90b, HLTZ93, JP90, KN91, KT9+14, Kor93, KM85, KESH95, LS93a, LPS86, LYG93, LUG93, MHP94, Nee90a, Par90c, PS98, Pin91, PK89, Sar91, Sch88b].

algorithm
[SCK+100, TCM95, Ten88, YW94, BTV96, BV96, FGG09, Lev98, RRW84, SZG95].

Algorithmic
[BER89a, SHMR94, SHMR94, HKS93].

Algorithms
[ALPP00, Ano94-44, Ano94-51, Ano94-53, Ano94-57, Ano94-84, Ano94-91, Ano94-141, BOS93, BP86, BHEG94, BS01, Bro96, Cal86, Car93, CH93, CDMW94, CDH84, Che92a, CM94, CCSM97, DHD89, DLLMV95, DT96, Elm95b, FR96b, FR96c, FT94, FWWD95, GS89c, Gen94, HLI93a, HSI94c, HIL94, Hem84, HHK94, JM90, JP94, KN88, LH94, LPV94, Maj94, MP94, MT86, MTH88, M95, MRAR95, NJL94, NGLP96, OLLG96, Pap92, PP93, PS94b, RS94a, Rie93, SH90, Sha94b, Sin94b, SJPS96, TS94, TZ98, WG91, tDv87, Ano97-32, Bad98, BR95, Ber86b, Ber86a, BS88a, Ber90b, Bis93, BS90a, Brui91, Cal96, Car89a, CBCJ92, CLR90, Cho90a, Con87a, CBS9, DH86a, Dra91b, GS90, Hea91, JM89b, Kasi95, Kon91b, Kra89, Lag89, LD90, Li91, Mag10, MS88, ME91, MO88, MP87a, MP87b].

algorithms
[Mik89, MRSB94, MfDA96, Nat88a, Nee90a, ODA95, OW94, Qu98, Ram86, Sam85, SL88, TR86, TT93, TB89, Woo92, Woo94, YFF+13, YHA93, Gip94, Sam91].

Algorithms/Architecture [M+95]. Alias
[WG04, Wou05]. Alignment
[SS93, BS04]. Alignments [GSB95].

Alive [Ano96-39]. All-Port
[TM94a, TM94b, WK95]. ALLIANT
[Ano87d, DD90, ASM68, Ano88b, Ano90b, Bie88, Ban96, GB90, WSL88]. Allocation
[Ano94-84, BBD+08, KKF96, KCZ94, MD94, TF92, WMKS96, ZYL+16, ADG+05, PB87, WWJ90]. Alloy [TSCG94]. Almost
[Ano95z, GP93a]. Alone [DDJ98b]. Alpha
[WAS96b, SW94]. Alphabet [Voi94].

AlphaServer [Was96b]. already
[Ano94-121, Tri95a, Tri95b]. also [Wat92b].

 alternation [Ano90a]. Alternating [YA93].

Alternative
[HC97, St98a, St98b, EKTB99, TF15].

Alternatives [Bel96, EHG01]. Although
[Rya90]. Altix [Fat10]. always [Par94].

Amazon [MDH+16]. AMBER [MM91b].

ambiguity [Car94b]. Ambiguous
[JC94b, YOY97]. Andahl
dRSGS16, Man92]. America
[ANS92, Gra93c, AS93, Sma95]. American
[Kho94, Ano97k, Coh91, Dal84, JT87, Men84].

Ames [AU87, BPM+89, Uni87a, Sim92a].

Ambisbaena [VVKB96]. Amino [TYK93].

AMLCD [KFJ94]. Amon [KMNT95].

Amon2 [KMNT96]. among
[LF16, NMS93]. AMR [NC02].
Amsterdam [ACM90, Emm85, Sig90a, Tru88, tDv87].
Analog [Lan94, MHW94, PB98]. Analogic [Ros93b, Ros95].
Analyser [PNK93]. Analyses [San93].
Analog [Lan94, MHW94, PB98]. Analogic [Ros93b, Ros95].
Analyser [PNK93]. Analyses [San93].
Analysis [AKDM93, ADLL01, ADLL01, AH93, Ano94-50, Ano94-96, Ano94-114, ASNT91, BGS+12, BGIM90, BB93, BB93, BHC97, BK95b, Cal85a, CH94, Che94b, CS84, DZM+13, DH93, DT96, ER94, Eij90a, ES92, ES96, EH01, FBH93, FV94, GG96, GCB92, Glo84, GA84, GW93b, Gu87a, Har94a, Hei89, HL91, HLxx, Hei92, HB08, HMBS93, HHGS93, HK97, Isa93, JB90, JM89a, KKDO97, KKKP93, KB93, KB93, KSTF94, Koc93, KA91, K93b, Kra01a, KK96b, LS92a, LD90, LR92, LPLP97, Lie93, L93, Lim93, LEMS95, MS97, Mah94e, MM93b, Mas92, Mas95, MOOK94, MT91, MC10, MTH93, MDH00, Mil97a, NU91, NS90, Now93, PC94a, PYTL97, Par86, PS88, Psa92, RCK97, Ros93a, SFS93, Sei94, S94, SKSD94, SAGS93, SVD96, SB93a, SA82, SA83].
Analysis [SB94d, SHB+13, TK93, TD90, TP95, WR95, WG90, W90, WOO5, XOZ+20, Yan94, Z95, ZS93, Ade92, Ano93s, Ban88, Bli89, BE92, Bra91a, Bru88, Cha92a, Che89b, CV90, CD90, CGLY96, CGLxx, Chexx, CV88c, Che99, CH92a, DB88, Din92, Dra89, EGP88, FL92, Gal88b, Gal91, GCP90, Gor89, GT91, GE96, HRC09, Hag90, HP91, HP92, JP90, JMB9c, KCOG8, KB+19, KSM+19, KAM99, Kwo87, L98a, LY88b, LY88c, Li89, Lin89, MP88, Mar95, MK29a, MK92b, Mit88, Ng95, ODA15, Par90b, PP29a, PO88, QB92, Ram88, RGH17, Row86, SNS+97, Sch90a, Scr88, SL88, Sb92, Tri85, Xu91, Y92, HS93b].
analysts [Ano94-121].
Analytic [Vog93].
Analytical [GGW93a, JW93c, JCJY94, SS96a, AP91, Ons88].
Analytics [PN13, Ano96n, BWHS18, CP13].
Analyze [Cla96, Ano95-39].
Analyze [Cla96, CBLS13, ER96, FLP+07, HAG+13, SLS96, Che90d, CH92b, Gua88d].
and/or [Ano94-138].
Anemometry [L95].
Analysis [BSJW96, CHL93, PB94a].
Anglo [ANO86a].
Angular [SB81, SB82a, FSY88, KMB09, SB82b].
Angularly [VMS93].
Angularly-Dependent [VMS93].
Animal [Mis90].
Animal [KMB09].
Animation [BS91, CM93, FD97, NT89].
Animations [FCGG90].
Anisotropic [AFML93].
Annaling [Che90e, CBLS13, ER96, FLP+07, HAG+13, SLS96, Che90d, CH92b, Gua88d].
and/or [Ano94-138].
Angueme [Ham94].
Anniversary [SEA84, Str03, Ano93d, Ras91].
Announced [Coc02c, Coc02d, Ano87c, Ano94-86, Ano97c].
Announcement [Mon88].
Annual [Ano93a, BG91, Ann92, EP97, FJSP95, Gra93c, IEE96a, Isk96, LM92, Min88, MP92, Supxgb, SR93b, USE00a, USE01, ACM95b, Cha94a, Gra94, Hei93, JC87, KWW92, NN87, San86, TGERJxx].
Annual [KS93b].
ANSI [KK89c].
Anto [Aus93].
anwer [Wal81].
ANSYS [PHV95].
ant [Ano94-83, Ano03a].
Antenna [MF92].
Antennas [FJSP95].
Anti [Dum97, MS94b].
Anti-dumping [Dum97].
Anti-Skid [MS94b].
Antibacterial [JBI91].
Anticipated [Glo84].
Antifuse [CP94a].
Antilles [HS94b].
Anto [CZR93].
Anto-ignition [CZR93].
Anupam [DRR94].
ANURAG [She93, NEC94].
Anwendung [Meu94a, Meu90, Meu91, Meu92b, Meu93, Meu95, Sch92a].
Any [FC97].
Any [TF95].
AP1000 [IHIS91, SIDH95, SW95, SB96].
APE [MP93].
APE100 [SPGD98].
APE100 [SPGD98].
APEmille [Ano98g].
Aperture [YWD94, YWDxx, Gig94, YW94].
APEX [SS97].
APEX-Map [SS07].
APL [Ano94-49].
APOLLO2 [CTRR93].
App [PS012, Ros09, Car93, Mil93, Noc95].
Appendages [HGC94].
appendix [Kue87].
APPI [Men87]. Apple [Cop93, Gar99].
Application
[Ano93n, Ano94f, Ano94-74, AVS93, BMD+20, BJ93, BSJ+13, BP96, Bur94b, CDMW94, CT93b, DG090, DMPR93, DDB+10, ES96, EH97a, FMD07, Gon93, HT93, IEE95a, IK93, Ik91, JBW97, Kad94, KTKK93, KDBG95, Kos89, LB94b, MLWC20, MM90, LS93b, Lie93, MMK97, Now93, PP93, Ram94, Rig93, Sh91, SLML93, SSB94, Sug94, TGL96, WP94, YK94, Bur91, BMS92, Bl91, BM5, Bru88, Bru91, CS86b, Che90b, Fat10, FGM+08, Fra90, GP90, Gri86, Hab92, HS93a, KSM+08, Kin96, LC91, Lim91b, LSS+20, MLWC20, MMR90b, MRL90a, MKHY95, Mir88, Ng95, PGS03, Ver95, BBC+99, GM93b].
Application-based [IK91].
Application-focused [BMD+20].
Application-level [BSJ+13].
Application-Specific [Ano94f].
Applications
[Abr94, ASS94, ATL90, Ano88e, Ano88d, Ano88c, Ano90f, Ano93c, Ano93t, Ano94g, Ano94h, Ano94-38, Ano94-54, Ano94-103, Ano96c, Ano96f, Ano96i, Ano96-40, Ano97q, Ano97t, Ano97z, Ano97-31, AJ93, Ara97, AZ94, Bar93a, Ber90a, BBC+89, BPD06, CS82, CBCJ92, CC88a, Che83, CKL+13, CP92a, DJM94, De 96, Deg90, Dsz96, DT08, DM96c, D+95, EKTB99, Ede92, Ego10, EMS11, Elm93, Emm84, Emm85, EWS+13, GBFR10, Gau98, Gin93, Gra91, Gua88b, HG98, HK989, IEE91, IE96a, Joh92, JPTE94, Kun91b, Kow85, LA+15, Lan92, LW11, IJS94, M.87, MD04, Mar86, Mar88b, ML98, ME06, McC88, McN78, MDH+16, MO88, Mil90, Mil91, ML95b, Uni91b, NBC92, Num85, OGO+20, Por89, R+00, Rol96, Rol97, Sim92a, Smi81, UL89, Ul84, WJC09, W+12, Wie94, Wil10, WLN+96a, WLN+96b, Woe92, Woo94, WT13, YFY+13, Zec93].
applications [tDv87, Ano94-79, BP89b, BP93, Hab98, Nat86f, WZ97, Ano00a].
Applied
[Ano91c, Ano94v, ALMS92, Fie93, Ham94, HHGS93, OGOR97, RC94, WJ94, GL90, Kav92, LM92, Mil88a, PG+10].
Applying
[Ano94-70, Fox90a, OMR93].
Appreciation [Pin99]. Approach
[ABBB94, Ana94, Ano94-74, Ano96s, AM93c, App95, ACL93, AFT97, BS94c, BHLST94, BCCG97, Bos94b, CJ93, CCZ93, CH94, CP94b, Che92b, CSG99, Dic94, GM94a, HP03, HP93, JC94b, Jia94, JKN93, KHSJ94, KV96, KDSL86, LR92, LC95, OH92, OD01, Opp95a, PCK93, Pas95, Pau09, Rei85, Rui91, Sch95b, Sob93b, TGV08, TY96, TM94b, AP91, Ano93u, Bis94b, BHS92, CCG+17, CV89b, Che92c, EGK87b, Kuc87, LFJ+20, McD90, PB98, RMM87, RM88, Rob87, SEV+09, SA10a, SA10b, SB18, WF08, WD94]. Approaches
[Bar93b, DDLV93, NS93, Rot94, SSM93, WABD97]. approaching [DH86a].
Approximate
[Gur88, IJY+14, PPP94, RT93].
Approximating [Phi85]. Approximation
[Glo89, LM93, GS90, GS92a, S970].
Approximations
[BWGG94, CHL93, Cyb89a, Joh92]. April
Ano97x, Bau96, LQFC18, Nag96a, Ruh95, SDFP93, Vro94, Win02, EMS11. Beach [L+93, Lim93]. beamforming [GMF00].

before [Ano94k, Bro91b, Tec90, Uni92b, Uni86b, Uni89a, Uni86a, Uni86c, Uni92a]. begin [Ano97c]. beginning [Sha95b].

Begins [Pin01]. Behavior [DA97, FZM91, Gib01, LMY88, Lim91a, MS88, Mi90, Mi91]. Behavioral [Edw97, Gal88a, LY91b]. Behaviour [DDF93, Sch90c, VA94, Wie96, WQS92].

Behind [Mur97, Nor97a]. Beijing [Guo94]. Being [RDZ93, Ano88p, Ano92i, Ren97].

Belgium [DDC96, LCHS96]. Bell [Ano97c, Ano90a, KHH95]. belong [Tho93b]. Benard [GW93b]. Benchmark [Gru97].

Benchmark [AGZ94a, AYL+18, BBDS94, CLPV93, EGJ+02, FY92, GGW93b, HLP90, IK91, LMM85b, LM85a, LMxx, MK07, SW88, SPS91, Van91a, Was96b, WGO91, WOK+00, WF94, Ano85a, Ano03a, BCL91, DMW87, GS06, Gib95, GREC91, KB18, LM90b, Oed92a, Oed92b, Eig91, Nai94].

Benchmark [BBC+00]. Benchmarking [BGQ19, DM96c, HHOM92, Jar12, LSW94, Mur91b, UT91, WL83, Wri91, WHMA97, XZC+20, And11, EIG91, GCP90, HL88a, Hoc91, Hoc96].

Benchmarks [Ano94m, Ano94-118, AHOK02, BE92, Blu92, CP94b, Cyb91b, DAF+90, EK96, FBGM93, GGW93a, MNV93, Men84, SCG+08, SSR191, Ste94c, WOG94, Wor84, Ber89b, But92, Fat10, VSH91, WT11, Yi11, CKPK90a, Cyb90, CKPK90b, Cyb91a, CBHS91, Rau91].

benefit [Ber82]. Benefits [Ano94-110, FG92, Ano00b, BFS11]. Benz [Kad94]. Beowulf [AV02, Ano98e, Bec01, Bro00, Bro01, DDJ98a, DWM+01, FDD02, MCB+01, MBR05, MDH00, NCO2, OCVA01, Ote02, Spe00, SSBS99, Ste00, Ste01b, Ste01c, Ste01a, Ste02, UP01, VPG91, WAM+01, YKB+00].

Beowulf-Class [NC02, Ste00]. berechnen [Ano97c]. Berechnung [Wat95]. Berkeley [Ano94n]. Berlin [Stu95]. Berrington [Ano00a].

Best [Ano94-118, Bas95b, SA10a, SA10b]. Better [An11, Ano93-43, MHE97, SKSD94, Str94].

Between [Bel93, Lu93, SH93, Tre97, WD93b, GL89, GE12, HS94a, MT91, RE94, RSRG95, SH94b]. Beware [Eij90b, Eij91].

Beyond [ABCE97, Ano94-110, CCKSS90, Fos96, Get15, Lee89, LCP+11, Mi93, PN13, SF82, Sin18, Ano18, Bel92b, TG95].

beyonds [ARF12]. BFC [HP88b]. Bhabha [M+94]. Bi [JML95, Cha92b, FZM91, Van91b]. Bi-Base [JML95]. Bi-CG [FZM91]. Bi-CGSTAB [Cha92b, Van91b]. Biasing [VNB93].

Bibliography [Ros93a, Lay91a, Mac92, Mac96]. Bicyclic [JBI91]. bidding [Ano92o]. Bidiagonal [LPNRJ94]. bidimensional [Mi87]. bids [Ano96j].

Biennial [ME96]. Bifurcation [BK95b]. Big [Ano87a, BvRS+11, Dav92, LQFC18, PN13, Ano97-28, Gur94, SPS93, Str94, HAG+13].

Big-Time [Dav92]. biggest [Ano97-30, Sha95b]. Bijker [CCKSS90].

Binaries [Mi88b]. Binary [AFAGR96, OY91, PG93, GE12, HM93a, SAB+05].

Binding [Ano94-137]. bio [HR04, RD07].

bio-computing [HR04]. bio-molecules [RD07]. Bioattenuation [WWKR97].

Biochemical [ATL90, Kaz93]. Bioelectric [FWWD95]. bioethics [Ano97p].

Biographies [Wei88]. BioinfoPortal [OGO+20]. Bioinformatics [L+93, Lim93, SJP05, OGO+20]. Biological [CC88b, CV93, Cra96, FCG90, MC10, NB94, STN93, Gre98a, OMM93].
Biologically [Lie93]. Biologists [Cra96].

Biology [AAB06, DLMW95, Fox90a, SGIS93, SR93b, AB03, Ano92l, Bad04, BA08, Gib01, MW88, SSS92]. Biomagnetic [FWWD95]. Biomechanical [FCGG90]. Biomechanics [HTV88, RM92].

Biomedical [Ano94-136, MKHY95, KG95, Ros89]. biomedicine [PH95, Pow97]. Biomembranes [SABK94]. biophysical [FMD07]. biosciences [CCC +89].

Bipartitioning [Pel94]. Biped [KT93b]. bird [Ano97n]. Birdstrike [Sch90c]. Birth [ABHS89a, Coc02a, Coc02b, Rya90, ABHS89b]. birthdays [Rya90]. BIS [MMR96]. Bisection [VR94, CP92c]. Bisectional [GBG89]. Bit [AT93a, AT93b, SI91a, SI91b, Ano01c, GS93, Has84, Hir92c, KM89, Kra93, Mac90, TS91, Wei91, YFY +13]. bit-oriented [TS91]. bit-parallel [Kra93]. Bit-serial [SI90, SI91a, SI91b, GS93]. bit-store [YFY +13]. Bits [Ano94o, Ano02a, Ano02b].

BLAS3 [GJM86]. Blast [VTT98]. blend [Ano96-29]. blends [Ano96-29]. Blind [SR94]. Blitz [HN90]. Block [ASS94, Ano94-51, Bra89a, Cal86, CDW94, Coc02c, Coc02d, DD93, HL96, HKMCS94, KNS95, NHL94, NGLP96, O894, Ret94, Tsu91, VAGRMVA90, VB90, BS88b, CH98, Fra90, GS87a, GS88b, GP93a, GPS86, L90c, Mac97, N95, SZ95, Sch87d, SE98, WB88, JP90]. Block-Cyclic [HKMCS94, KNS95]. Block-oriented [Cal86]. Block-Recursive [Ano94-51].

Blowing [MFK94]. Blue [ABB +13, BSJ +13, BBK +08, BCK13, CCD +13, CP13, CEH +12, CRA10, CKL +13, CNC +08, CHT +13, DT98, DLY +08, EO13, EWS +13, FKL +08, HOF +12, KHZ +08, O0W +13, PMS +08, RIB +13, SCG +13, War03, Bro17, ABC +05, AAC +05, Ano96-31, Ano96-45, AU08, ADG +05, BGH +05, BHD +05, BJ +16, CBB +05, CSFS00, CBC +05, EMS11, EFR +05, Eva97, FGM +03, GBC +05, GS06, GZE +05, GBB +05, HBB +05, HCH95, IBM01a, IBC +11, IBP +05, KBG +13, KBVH14, KH11, KB18, LKFU05, LM13, MSW +05, Mor01, MAA +05, MSA +07, OBB +05, RGL +15, SWG06, SAB +05, SPP +05, Tan95, War10, War00, WAB +05, ZYL +16, IBM01b].

blue-glass [Bro17]. BlueGene [ARF12, ABB +03, CD09, KCM02a, KCM02b].

BlueGene/L [ABB +03, KCM02a, KCM02b].

BlueGene/P [ARF12]. Blueprint [FK04, FK99]. Bu [RM93]. Board [Sul97, Ano94-135, Ano97c, Lie90, TMHH95].

Bodies [HGC94]. Body [Ano92-38, Ano94-116, BJH97, BPUS94, EFM91, HT93, HF93, NAAW97, PYTL97, RCK97, Swe94, Ano93u, Ano94-59, Ano94-141, BAAD +97, BAD01, SHMH97].

Boiling [SKAT93]. BOINC [GHdF10]. Boltzmann [MKND97, MF93, PMS94].

Boltzmann/finite [CRA10].

Bombsight [CKSS90]. Bone [HTV88, HHTD90]. Book [ACH99, ALPP00, Ano94p, Ano94u, Ano96b, Ano96d, Bra94, Bue86a, D999, Haw88, Kaz92, Kow86, MM94a, McD88, No97a, Pap97, Por86, Sch88a, Sim00, Wen94, CCKSS90].

Books [CCKSS90]. Bookshelf [Wil96].

Boolean [CP94a, OIY91]. boom [Ano94s].

Boon [Dal95]. Boost [Ano03b, Coo95, Ano91g, Ano92-46]. boosts [Ano89h]. Bootstrapping [Law89]. boss
Checkpointing [CCR11, MVS94].\textcolor{red}{Chem} [GAB+96]. Chemical
[Ano89r, DS94b, DAF+90, Maa93a, Sta94, WB87, CHWW13, C+97, Heh86, JT87, MCH91, WCHK91, ZMDS96].\textcolor{red}{Chemically} [Ano94b, WABD97]. Chemicals [GD97]. Chemistry [ATL90, Ano96i, FJSP95, Fox90a, SG81, SG82, War93b, Zey91, ARE95, BS00, Bup87, C+97, CCC+89, Dup86, Dup87, GAB+96, Har90, Har91, JT87, Kin96, NRN00, R+00, TF15].\textcolor{red}{Chemists} [Ano90l, Ano02a, Ano02b]. Chen [Ano95p]. Chesapeake [App95]. Chess [HN90, Tan95, Ano96-27]. Chicago [Cul95a, Ano96-115, Con86, EHS94, GHNL87, KESH94, KESH95, Noo95, Rot94].\textcolor{red}{Chooses} [Ano97l]. Cholesterol [Ano97]. Chromodynamics [AGLL98]. Chromosome [FC93, Rig93]. Chronology [CCKSS90]. Chuck [Ano11]. Ciarcia [Cia88a]. CIM [KWW92]. Circle [Su97, Mer86]. Circuit [BAT99, Cia88d, Cia88e, Cia88f, GI93, GS94e, RLC91, SO95, Cha92a, Cia88a, Hum90, HG91, Hum91, Lie90, Sal98, Xia88, YK90, Yan90c, Yan90b, YH90]. Circuit-switched [GS94e]. Circuits [BS94c, PDR91, RL90b, SJA94, Wuo94]. Circulation [AD97, CSR930, DGG92b, DGG93, De 91a, De 91b, DGG92a]. Circulative [Che91]. CI\textcolor{red}{SS} [SE92]. CI\textcolor{red}{SS} [HKR94]. City [ANS92, Ano95-38, DW97, Fra94, Isk96, Uni96]. civil [Kho94]. Claim [Ewa96]. Claims [Bar00c, Bar00d]. Clamping [KTK94]. Clara [Ano93n, KK89a]. Class [DT96, EBS88, Fer86, KN88, NJL94, N+02, Ste00, Ano96r, Arn88, AI92, ARW93b, JOK+18, Lou90a, MKDA96, Pop92, MRS88]. Classes [JML95, Che90a]. classical [Gup88, KA92]. Classification [Kon93, MSGW94, MH96, RPY94, SM94, WWY93, Cre91, Wes89]. Classifier [GCS94]. Classifying [ML95a]. classroom [DS89]. Clean [Ano97a]. Cleaner [LYKM97]. cleans [Ano97w]. cleansups [Ren97]. Clear [Ano90e, Ano94-48, Par90a, Ano96u]. CLF [Her94]. Client [Ano94, Hic18]. Client-side [Hic18]. Client/Server [Ano94]. Climate [ABBB94, Che96, Die90, DFWW93, FT94, Gue90, Hum94, Per93, SBW+19, WMBC97, Ano95w, DTo8, Mec95, SDA8, Str94]. climbing [SL88]. clinical [JD95, KSM+08]. Clinton [Ano93b]. Clock [CWLT97, KS95]. Clone [Rig93]. Clones [LD93a]. Closed [BD93b, GI93]. closely [Ano91h]. closet [Gei16]. Cloth [FDD02]. Cloud [CHWW13, dRSGS16, DXJM93, IJY+14, KHC14, KZJ14, MPT12, PT13, PN13, Ros09, Rya13, W+12, WOS09, AZC13, BWHS18, CBKA09, CBLS13, DSL93, EB18, LC12, MMG+18, Som13, TF15, XZC+20, YFY+13, Kar13, MDH+16]. Cloudy [DXJM93]. Cloudy [SS09]. clout [Tri95a, Tri95b]. Club [Ber89b, VSH91]. Clubs [Ano92z]. Cluster [Ano94-78, Ano94-138, Ano99, Ano01a, Bae01, BB99, BIRB93, BSD+20, CKS90, DD05, DD02, DXJM93, FBJ94a, FDD02, HMS93, Kop00, KR94c, MCB+01, MDH00, PBDM93, Ste01b, Ste01c, Ste01a, US01, WAM+01, YKB+00, AV02, Ano02a, Ano02b, ABMN02, DWM+01, Fat10, Gan86, GB90, IS20, KG95, LM90a, Liu95, MBR05, SNS+97,
Cluster-C0* [TMP94].

Cluster-computing
[Ano02a, Ano02b]. clustered [HRC09].

Clustering
[DDJ98a, Lum01, VYL9+20, KESH95, Sch88b, ZEC+17]. Clusters
[ABGL96, Chio00, DSSS05, GBF93, KMKD97, Kra91a, LC97a, NC92, OCVA01, PB95, Spe00, SSS99, Ste00, UP01, Ano93a, Ano93-41, BMK93, GKV94, Hol95, SA10b, SD92].

Clusters
[ABGL96, Chio00, DSSS05, GBF93, KMKD97, Kra91a, LC97a, NC92, OCVA01, PB95, Spe00, SSS99, Ste00, UP01, Ano93a, Ano93-41, BMK93, GKV94, Hol95, SA10b, SD92].

Clusters
[ABGL96, Chio00, DSSS05, GBF93, KMKD97, Kra91a, LC97a, NC92, OCVA01, PB95, Spe00, SSS99, Ste00, UP01, Ano93a, Ano93-41, BMK93, GKV94, Hol95, SA10b, SD92].

Clustered
[HRC09].

Clustering
[DDJ98a, Lum01, VYL9+20, KESH95, Sch88b, ZEC+17].

Clutches
[ABGL96, Chio00, DSSS05, GBF93, KMKD97, Kra91a, LC97a, NC92, OCVA01, PB95, Spe00, SSS99, Ste00, UP01, Ano93a, Ano93-41, BMK93, GKV94, Hol95, SA10b, SD92].

Clutch
[RCK97].

CM
[But92, CS93a, Hel92, HT93, HP95, KC95, KR94d, Lee96, LW94, Mar95, Mc93, PTC+93, PW94, Ric90b, Ric91a, Ric91b, SNS+97, Sl90, Sl91a, Sl91b, Ste92, VDK91].

CM-2
[But92, Hel92, RC90b, Ric91a, Ric91b, Sl90, Sl91a, Sl91b, VDK91].

CM-200
[McB93].

CM-5
[CS93a, HT93, HP95, KC95, KR94d, Lee96, LW94, Mar95, Mc93, PTC+93, PW94, SNS+97, Ste92].

CMOS
[BS94c, Lan94, TOY96].

CMOS-Based
[TOY96].

CMU
[Ras91].

CNC
[KTK94].

CNN
[Ros93b, RC93, Ros95].

CNS
[Asa93a].

CNS-1
[Asa93a].

CNSF
[Cor87].

Co
[BCK93, GL93b, SES94, YS90, CCG+17, IBM13c, vL99].

Co-design
[BCK93, IBM13c].

co-designed
[CCG+17].

co-operating
[vL99].

Co-operative
[GL93b].

Co-rotating
[YM92].

Co-Scheduling
[SES94].

CO2
[KGERJxx, TGERJxx].

coalescing
[Pol87b].

Coarse
[CWW94, IMA93, Man91, EAMS95a, EAMS95b].

Coarse-grain
[CWW94].

Coarse-Mesh
[IMA93, EAMS95a, EAMS95b].

Coastal
[DA97].

Coatings
[Rit97].

COBOL
[SP94].

COBSQL
[SPK94].

Cockpit
[Kum95].

CoD
[ASSW93, AJ93, AGL98, AK93, CS90, CT993, ER94, Gou93, GMS97a, GMS97b, GD94b, KS94b, MRS94, MN93, MA93b, MB93, MWO95, QD91, RCR93, RDZ93, SBHW80, Swe94, VNB93, Vuj93, WW92, WFT93, WF94, YFOT93, YG92, Ano00a, BWV+17, BAAD+97, BAD01, BV96, BHS92, CmWH91, DS96b, EAMS95a, EAMS95b, EY91, FR95, GAW96a, GA96b, HJ94, KK80c, Mis88, PLS20, PO88, SNK+93, SHMH97, NB92].

Code-Breaking
[QD91].

coder
[Win92].

Codes
[BCR96, Cal81, DMMK93, DR81, DR82, GL93a, KO93a, Kon93, MBK87, PG93, SV93, SM93, VV93, GJS91, L92b, LDF95, Mer86, Par90c, RCB03].

Codevelop
[Ano87a, Ano87b].

coding
[MKRI93, SLML93, Use93].

Coefficient
[Che92a, Gie96].

coefficients
[HA91].

Coevolution
[Die95].

Cognition
[MH95].

Cognitive
[MY92].

Coherence
[QD91].

collaborate
[Ano97k].

collaborate
[Ano97k].

collaborated
[PC94b, LPC95].

Collaboration
[WCZ+18, JG99].

Collaborations
[Cop93].

Collapsing
[ABSS94, PC94b, LPC+95].

Collapse
[Gre90a, CK90].

Collective
[Ano94q, Ano94-124, BGPS94, TM94b, CC96].

College
[TC94, AV02].

Colleges
[Mur06].

Collegiate
[Coc02c, Coc02d].

colliding
[GH90, Gre90a, GH91].

Collision
[MBN93, OMR93, Ste94d, VMS93, Ano00a, Gre90b].

collisionless
[SHMH97].

Colloquium
[Ano97k, tDv87].

Cologna
[ACM91].

Colombia
[LC94].

Color
[Ano89c, Bar00c, Bar90d, FG97, KFF93a, KFF93b].

Colorado
[Bro93, McC88, Nat84].

Colossal
[Lin83].

Colour
[Ano90d].

Comb
[WN10].

COMA
[GB96, XB96].

Combat
[Har94a].

Combination
[FC97, JCV94, Gr92, UP87].
LB96, Li91, Li95, MP87a, MP87b, MTLL94, OB95, PW86b, PW86a, Pol88a, PE95, Rue92, SNS95, SIDH95, SM94, SLRP95, TY90, TCB94, Tsu91, Wei85, ACK+95, BMS92, BGS82, Car88, CS93a, Che92c, Eig90a, Eig90b, EB91, KN86, LY90b, PW86c, Pol87b, Rob87, RCZ93, TMT+20].

compiler-assisted [LY90b].

Compiler-based [LY90b].

Compiler-Directed [LY90b].

Compiler-driven [LY90b].

Compilers [LY90b].

Compiling [LY90b].

Complementarity [LY90b].

Complementary [LY90b].

Complete [LY90b].

completes [LY90b].

Complex [LY90b].

Complexes [LY90b].

Complex-arithmetic [LY90b].

Complexity [LY90b].

Computable [LY90b].

Computable [LY90b].

Computer [LY90b].
[ACM89b, ACM95b, Ahm92, AW93, Ano85b, Ano91c, Ano91b, Ano94w, Ano94-59, Ano94-89, Ano94-111, Ano95c, Ano94-89, Ano94-111, Ano95c, Ano95-34, Ara97, Bal94, Bel86, BP84, Brus88, CCZ93, Car94a, CCKSS90, CS90, Cra96, CSG99, DGO90, Dec90, DRRM94, DMW87, Dun92, DS94c, EFIM91, Edw97, EGJ02, FCGG90, Fie93, FR81, FNK93, Geu97, Gil93, Goi91a, Goi91b, Gre91a, Hab86, Hal87, HHTD90, Hay86, Hel92, HGB90, HP93, HH93, ITOK93, IHIS91, Jab93, KC93a, KD93, KKKP93, KMNT96, Kho94, KHC14, KGS93, Kol81, KB97, KZ94, LB92, MK93, Maj94, MA97, MM90, MB12, Moh94, Nag94, Na94, NW97, Ohr86, PT93, Pin99, PH95, Pow97, PC93, Rie93, Ras78, SEH98, SW10a, Sch88a, Sch95a, SVZ93, SBHW80, SB94a, SC99, SBNN2, SS96c, SR94, SC91b].

Computer [Tan95, TVT+16, Van93, WOS90, Wic92, WF93, WCG94, XM92, YFOTO93, Zbo88, AGEL13, AGZ94b, Ano85a, Ano89d, Ano90a, Ano91i, Ano93a, Ano93g, Ano94-82, AUW08, Asp93, Bas95b, Bha95, Bsl91, Cha94a, Ch89b, CDS98, CK92c, De96, EAMS95a, EAMS95b, EY91, GS89d, GREC91, Hen91, Hoc96, Hog92, Hsi91, IEE89b, IUS7, Jou93, KHS88, KMB90, KTN+14, LC12, Mc92, MSW91, OYK+14, Par90b, Pic92, PMS94, Ras91, Rei88, RD94, SEH99a, SEH99b, SW91, SKB89, Str84, Van86, WH93, Yew88, Pin99, Mah94a, Mut94, Pin91, Pou94b, PH95].

Computer-Aided [KC93a, KD93, MM90].

Computerised [RS94a].

Computerized [OCVG93].

Computers [ADLL01, AFF93, Ano90n, Ano94-46, Ano94-58, Ano94-126, Aft79, Att96, BGM96, Ber82, CCKSS90, DD94, DJSP93, Dem91, DH96, EAMEG91, EBS88, EK96, FG909, FHM99, Gen94, GL93a, GS94d, Hag01, H92, HK93a, JS94c, Kau93b, K98, Kop00, LPV94, Man91, Mes97a, Mes97b, MS93, MBSW01, Rei85, Res01, Sah94a, SPM+10, SF82, Sin94a, SSOH95, TF92, TL96, Tho96a, Tho96b, VB90, WMBC97, Who92, Yan93, ZM94, Aft90, AS88, AP91, Ano97-30, BCC+05, BB92, BGKR99, DL92, Di81, Di82, Don85, DS86a, Don93a, Ece96, Eig92, GM90, Hak89, Kan15, KK82, KA92, Kog91, Kra92, K92, Lan92, Lee90, Mll89, NP90, PBE93, Pol87a, Pol89, Qui87, Sch98b, Sch87c, Scha87, Sha95b, SPS91, Tru88, VDI95, VH95, WLC92].

Computers [Way96, Zor93b, dRC94, dC94, tDv87, ALPP00, Sim90].

Computers/Software [Ano97b].

Computervision [WG94].

Computerworld [Ano97k].

ComputerServer [BBWR90].

Computing [AIA93, APK+12, AS98, Ano94, Ano88g, Ano90g, Ano93t, Ano94-31, Ano94-35, Ano94-33, Ano94-60, Ano94-70, Ano94-71, Ano94-103, Ano94-110, Ano95-34, Ano96t, Ano97j, Ano97l, Ano98, Ano99, Ara97, BGS94, Bad99, BKK11, Bae01, B95, B97, Bak10, BCC+08, BGS+12, BCC+09, BS98a, BS94a, Ber82, BEK02, Ber87, BGM+11, Bha94, BS92, BBHL01, BJ80, BEH+94, BIB+18, BH17, BEGGK07, BGH+02, BNSP99, CLB19, CGF05, CC94a, CCYT05, CH94, CH10, CDPW94, CFS95, CK90, Chr93, Coc02a, Coc02b, CMS11, CBHS91, Cze16, DD05, DCHW07, dRSGS16, Din91, DT97, DFF+02, DSSS95, Ede94a, EBS02, EAGEG90, EGEAH+08, EDJ+10, Els02, EHG01, For02, FJS96, Fos96, FGKT97, Fos93, Fox89, FBJ+94b, FLP+07, FS93b, Gar01, GSG+94, GS01, GEP93, Gen97, GL90, GGY+08, Gre94, GT94].

Computing [Han90, HC99, HHS01a, HB08, Hof94, HG02, HP94, Hol94, Hol94, HNS+10, IEE93b, IE94c, ILY+14, IEH+00, IH94, IBBA20, IJM14, Jar12, JM93, Joh97, JPMG08, Jon96, Kab94, KMKD97, Kau93a, KHC14, KTG08, KWB+10, KT11, KLI99, KRS13, KZC14, KBLD08, LL90, LM08, Lat16, Lew93, Lew17,
LLGS09, Lid99, LCP+11, LB94c, Lum01, Man92, MPT12, MM93a, ML97, MB12, MC10, Mes17, MKR93, Mil97b, MLY10, Moh94, MBD99, MS94d, MRGR12, Mur06, Mur07, Nat91a, OLWW94, OD01, OPR01, OHIB93, OT07, Pap16, PH11, Pe193b, PW05a, Pin01, PSO12, Pro01, RS93, Ros09, Sah94b, Sak92, SBZ+19, Sch94b, SKC02, SBW+19, SN96, SCSL12, SZ11, SL99, S+93, Sm96b, SP12, SW10b, SDK98, SMS95, Ste00, Ste01b, Ste01c, Ste01a, SS09, IEE94d.

Computing
[Str10, Str03, SMDS15, SLS96, SHB+13, TGV08, TAK06, TPJ+19, Van13, VV95+19, WKB06, War03, War07, WFJ+17, War03, WF08, Wil10, YFY+13, Zen99, Zor92a, Bra94, CCKSS90, GMS+11, GL90, Kah97, Kar92, KRS13, Rep92, Pap97, Ano96c].

Concept
[FT93a, Pet97, Tur86, Ano96u].

Concepts
[EJ97, Hel96, MPSB87, Ruh95].

Conceptual
[ESMH93, GY93b].

Concerto
[Ano93y].

Conchology
[Ill96].

Concord
[Lee94].

Concurrency
[NMS93, EBB+20, McC94, McG87, SMR10, UPK87].

Concurrent
[AK95, Ano87a, Ano87b, Ara91, BBC+89, EGH+06, Lie20, Ste94a, Swe94, YMY92, Bra88, Dav86b, HP88a, LA93, Mes93a, Rat87, Sha90, Wij89a].

Condition
[FCD97, KSB94, NG92].

Conditions
[BBL95, JKNK93, Rul93, GP91c, NG92, Per87].

Conductance
[KW95].

Conductivity
[CNC+08].

Conference
[ACM88, ACM90, ACM91, ACM92b, ACM92a, ACM93, ACM94, ACM95a, ACM95c, ACM96, ACM97, ACM98, ACM03, AIA93, AB94, Ano88v, Ano90f, Ano90g, Ano93n, Ano94-107, Ano97l, Ano97t, Ano98b, Ano98c, Ano01a, B+95, Bel86, BP93, BH92b, CL91, CBCH93, CG96, C+97, DDJ98a, DP91, EP 97, Ece96, FJS95, GG+97a, GH94a, GH94b, GH94c, GL90, GT94, GP93c, HKR94, Ham94, HS95b, HS95c, Hol94, HPP88, HBC95, IEE85, IEE93a, IE93c, IE94b, IE94c, IE95b, IE96d, IE97b, Kab92, KK87, KK88, KK89a, KWW92, KSW93, L+93, Lim93,
L+95, Mar86, Mar88b, MW88, McC88, NBC92, Pel93a, PEH93, PL91c, Pit90, PH95, Sch97a, Sha89, Sig89a, Sig95, S+93, Sin94a, SC93, SR93b, Tho93c, Uni87c, USE00a, USE01, Wu94, Zyg93, AU87, AGP96, Ano92y, Ano93a, Ano93g, Ano93i.

conference
[Ano93-39, Ano94-108, Ano94-134, Ano96k, Ano97d, Ara96, Asp93, Bal94, BMM96, BP89b, Bro93, Cha94a, DDC96, De96, DSZ96, EM94b, Goo97, Gra93c, Gra94, HS+91, Hel93, IEE96a, IEE97a, Isk96, JPTE94, KK85, KFF93b, Lid96, LCHS96, LM92, Lun94, ME96, Met86a, Pow97, RD94, RMO96, SN96, SJD96, Suh97, ACM94, ACM95a, IEE95b, II96, Sin94a].

Conferences
[Ano93f, Ano94-126, Ano94a, Dra94a, Dra94b, Dra96b, Dra96a, Edw97, FJSP95, Qui95, Ano94a].

Confidence
[Moh94].

Configurable
[TSG94].

Configuration
[BMSD94, Els89, SKB89, Abr88, GJW91].

Configuration-space
[SKB89].

Conflict
[GL93b, VLA92, Cal88, Fuj99].

Conflict-Free
[VAE92, Fuj99].

Conflicts
[DL96].

Conformal
[CT93b].

Conformations
[Che93a].

Conformity
[DMW93].

Congestion
[SG92d].

Considered
[SCV01].

Consideration
[SNS95, ES88, Li91].

Considerations
[AP90, SB94b, YSL97].

Constraint-Based
[SB94b].

Constraints
[Cla96, DDF93, WN92, ZYL16, HY91, yHY92].

Construct
[AP90, SB94b, YSL97].

Construction
[AFAGR96, AM93b, CCKSS90, SSM93, CKS99].

Constructive
[SB94b].

Constructs
[Zey91, Gal89b].

Consuming
[GBS18].

Consumption
[NW97, SB18].

Contact
[FD93].

Containing
[FSGS93, WNKS96].

Contaminant
[AD97, Ewi97, Ver97, YCC97, Chi86].

Contaminants
[ZL97].

Content
[Asp93, Vet12].

Contention
[CP96, PDR94].

Contest
[Coc02a, Coc02b, DDJ98a, BBD92].

Context
[G97, JC94b, KR94a].

Context-Free
[JC94b].

Contexts
[WMK96].

Continues
[CKS99].

Continuing
[EAR94a].

Continuity
[Poe95].

Continuous
[DNV93, GGG93, IHK93, Uen93].

Continuum
[GIF+12, KY93, W96a, KG98].

contract
[CKS99].

contracts
[Dam11].

Contribution
[Cox88, HB93, Pin99, Gal93, RLKW93].

Contributions
[WG93a].

Control
[AD97, Ano93g, Ano94y, BWO96, BK97].

VDK91, Ano94-99, Hil91, Hil92, LTD+93, LB94c, Mar95, SL93, Sha94b, WZ87, Wun89].

Connectionist
[ABMW93, Asa93a, Asa93b].

Connectivity
[Fri95, GS87c].

Conquer
[DT96, AT89, Don93c, LR88b].

CONSENSUS
[BSKJ93].

Conserved
[HC93].

conserving
[SG92d].

consider
[SCV01].

Conflict
[GL93b, VLA92, Cal88, Fuj99].

Confession
[Ano93f, Ano94-108, Ano94-134, Ano96k, Ano97d, Ara96, Asp93, Bal94, BMM96, BP89b, Bro93, Cha94a, DDC96, De96, DSZ96, EM94b, Goo97, Gra93c, Gra94, HS+91, Hel93, IEE96a, IEE97a, Isk96, JPTE94, KK85, KFF93b, Lid96, LCHS96, LM92, Lun94, ME96, Met86a, Pow97, RD94, RMO96, SN96, SJD96, Suh97, ACM94, ACM95a, IEE95b, II96, Sin94a].

Conferences
[Ano93f, Ano94-108, Ano94-134, Ano96k, Ano97d, Ara96, Asp93, Bal94, BMM96, BP89b, Bro93, Cha94a, DDC96, De96, DSZ96, EM94b, Goo97, Gra93c, Gra94, HS+91, Hel93, IEE96a, IEE97a, Isk96, JPTE94, KK85, KFF93b, Lid96, LCHS96, LM92, Lun94, ME96, Met86a, Pow97, RD94, RMO96, SN96, SJD96, Suh97, ACM94, ACM95a, IEE95b, II96, Sin94a].

Conference
[Ano93-39, Ano94-108, Ano94-134, Ano96k, Ano97d, Ara96, Asp93, Bal94, BMM96, BP89b, Bro93, Cha94a, DDC96, De96, DSZ96, EM94b, Goo97, Gra93c, Gra94, HS+91, Hel93, IEE96a, IEE97a, Isk96, JPTE94, KK85, KFF93b, Lid96, LCHS96, LM92, Lun94, ME96, Met86a, Pow97, RD94, RMO96, SN96, SJD96, Suh97, ACM94, ACM95a, IEE95b, II96, Sin94a].

Confidence
[Moh94].

Configurable
[TSG94].

Configuration
[BMSD94, Els89, SKB89, Ahr88, GJW91].

Configuration-space
[SKB89].

Conflict
[GL93b, VLA92, Cal88, Fuj99].

Conflict-Free
[VAE92, Fuj99].

Conflicts
[DL96].

Conformal
[CT93b].

Conformations
[Che93a].

Confuse
[DMW93].

Consume
[DWM93].

Consuming
[GBS18].

Consumption
[NW97, SB18].

Contact
[FD93].

Containing
[FSGS93, WNKS96].

Contaminant
[AD97, Ewi97, Ver97, YCC97, Chi86].

Contaminants
[ZL97].

Contemporary
[Asp93, Vet12].

Content
[Rig93].

Contention
[CP96, PDR94].

Contest
[Coc02a, Coc02b, DDJ98a, BBD92].

Context
[GT97, JC94b, KR94a].

Context-Free
[JC94b].

Contexts
[WMK96].

Continues
[CKS99].

Continuing
[EAR94a].

Continuity
[Poe95].

Continuous
[DNV93, GGG93, IHK93, Uen93].

Continuum
[GIF+12, KY93, W96a, KG98].

contract
[CKS99].

contracts
[Dam11].

Contribution
[Cox88, HB93, Pin99, Gal93, RLKW93].

Contributions
[WG93a].

Control
[AD97, Ano93g, Ano94y, BWO96, BK97].
DNV93, DHLS97, EHG01, GHZW94, HRC93, HBB+05, HHGS93, HED93, Hug93, KISY94, KWW92, MGA94, MPH93, MS94b, Ost94, PH11, RE94, SBJ90, SR93a, Sta94, WSP95, YOY97, YK94, ZS94a, Amm98, Amm90, Amm92, CV89b, DCG90, DGL89, GP91b, GP91c, HC91, Ji91, Joh88, MCc94, MP91b, Pol90, SFL+94, Uni98, HT72.

control-flow [Amm90, Amm92].

Controlled [FT93a, IHK93, VT95, KFN02].

Controller [HU93, DuB90, DR91, Kon87].

Controlling [Ano94-52, GCS94, KB97, LMD98, Sto95].

Controls [Ram94, Woo96a, Har95].

Controversial [Gar01]. Convection [GWH93, NU91, WG93a, Ha88, Ha90a, NSB96]. Convections [GW93b].

Convective [CS90].

Convention [Ano88v, IEE94a, IEE94b, KK89a].

Convergence [FR96a, FZM91, WR97].

converging [MKDA96]. Conversion [Sha94a, SMH91]. Convertible [Raw97].

CONVEX [BMS92, Ano88g, Cha94b, Jon89, NBGS96, WSL88]. Convexity [EH97c]. Convey [Bak10]. Convolution [Meh94, MB97]. Convolutional [ZFF+18].

Conway [Pev93]. Coolants [VM94].

Cooled [Car94a, CSB99]. cooler [Ano96u].

Cooling [Cha94b, CMAS11, Lam14, TTM+20].

cooperation [Str94, YQTV12].

Cooperative [RWCA94, RL93, Ano93b].

Coordinate [TK93]. coordinates [Hum92].

Coordination [Kho94, BMD+20].

coordinator [Sch90b]. coping [Hil97].

Copper [McC88]. Coprocessor [AT93a, AT93b]. Coprocessing [Mar90].

Copy [OA94]. Copyright [Waz89].

CORAL [Han20, IS20, MLWC20, PLS20, RMM20].

CORBA [LSSR02, CSFS00].

CORBA-based [LSSR02]. Core [BCR96, FBGM93, HM93c, JKNK93, JR94, MTK93, MAA93b, NM93, PP93, PNK93, RMPW93, RRSS93, Smi93, TBC94, WD93b, YZL+20, BC95, KNH91a, Ano98d].

Core-Reflector [JKNK93]. Cores [IHSK93, TKI93, Ano00b, HCD+18]. Cori [DAC+18, HCD+18].

Cornell [Cor89b, Ano89f, Ano02a, Ano02b, Bro91d, BK91b, Cor89b, CR89, Lee89].

Corner [War93a]. cornerstone [Cat92b].

cornerturn [Hol90a]. Corporate [Rei93, AS93].

Corporation [Hab86, Was96b, CCKSS90]. Corrected [JBWB97]. Correcting/Detecting [AC84b, AC84a].

Correction [DS94a, OLLC96, Te98].

Corrections [Ano95-34]. correlated [Shi95].

Correlates [BBL95].

Correlation [Bel93, FBB97, FAM+01, KMB90].

Corrigenda [RL78].

Corrigendum [Gol91a]. Corrosion [VM94].

Cost [FG92, SNS95].

Cost-effective [Poi90, Rob87, Sam85]. Costs [FG92, SNS95].

Cost-Comparison [KV96].

Coupling [ADGA95, HHTD90, HV95, SA95, VT95].

Cosmic [Nor96, Rud90, BP84].

COSMIC/NASTRAN [BP84].

Cosmological [DS96a]. Cost [GSG+94, GGBR95, HV96, KV96, Mah94c, SW10a, AP91, Ano94-82, Ano95-28, Ano97-32, Poi90, Rob87, Sam85, Sma95, TF15].

Coul [Sch12, Ano90e, Gib01, Par90a, Poo96a].

Council [Kho94].

Counting [Cla96, AL92b, SM89].

Country [GV96a, KSB+19]. country-scale [KSB+19].

counts [Sit78].

Coupled [Ko96, CCSR92, CSR90, GIP+12, Ano91h, BDM94, Har86, KDK99, SA90, T). Coupled [ADGA95, DDF93, GD97, RAES96, RSR95, War93b].

Course [Jia94, Nar95, WF08].

Cover [Poo96b, Van97, Ano87c, SL90, Tru88].

covering [Joh86b].

cozy [Ano97k]. CP [Asi98].
CP-PACS [Asi98], CPAR [CC94b], CPROF [SSS90], CPROP [LB93], CPU [Ano01c, EBB+20, Hoc85, PCY+19, WCZ+18], CPU/GPU [EBB+20].

CPU/MIC [WCZ+18], CPUs [Ano91h, Nag88]. Cracks [LDMC96, Ano97i]. Cracow [BBM96]. CRAFT [SZG95], Crandall [Wen94]. Cranking [Div97]. Crankshafts [GA97, TF97].

Crash [AKT90, Ano97n, Jab93, Ano88p, Bin88, Bru88, HG88, HPS88]. Crashes [AVS93]. Crashing [SSP93]. Crashworthiness [LCVR93]. CRAY [EBB+0, Hoc85, Ano89e, Ano91d, Ano93h, Ano94-27, Ano95c, Ano95d, Ano95s, Ano98d, CB99, DBK09, KH87, KG95, LH87, Nor97a, PBK91, RR89, War10, AFT96, ARW93a, ACK+95, AGLL98, ALN+01, BAAD+97, BH92a, Car91, Cha84, C+97, DG090, DD90, Dec90, DH86a, DH86b, DH86c, DH86d, LR90, Lar89, Law96, Lee96, LSK04, Mac90, Mac91a, MW82, ML90b, MRL90a, MR92, MW96, MGP96, Meu87, MH8, Mil93, MW91, MRS88, Mir88, MKB87, Mon88, MSW91, MTK93, MT97, MWO95, Mur97, Nat89b, NSH95, Nag88, Nag90, NR86, Nool95]. Cray [NP94, OL86, Oed92a, Oed92b, Ohr86, OLL96, OD88, Pap92, PS94a, Par94, Par90c, PPR95, PK80, PCM84, Pet83, Pin99, Pin01, Pin91, PBK96, PO88, PHV95, QB92, RM96, Rei85, Rei88, RS95, Rit88b, Rit88a, RT97, SG81, SG82, SW91, SMFG85, Sch89b, SB81, SB82a, ST94, Sea86, SWS+12, SBHW80, SP91, SCK+00, SC99, SHM97, SSLR90, SWL+91, Smi95, Smi96a, Smi96d, Smi01, SI90, SI91a, SI91b, SA82, SA83, SS90c, Str97, Stud95, Sul97, Svo93, THDS88, THHS1, THH82, Tem83, Tem89b, TH19, VSH90, Vaj91, Van95a, VM87, VTSM12, WZ87, WG82, WHBH93, War03, War09, Wat93, Way96, Wes89, WWTE92, WB85, Wil88a, WMK90, WS84d, WLX+96a, WLX+96b, WVB88a, WVB88b, WOK+00, WL83, YQTV12, Yu77, ZH88.
ZCPT00, ZM86, Zey91, van95b, Chi88].

CRAY-1
[Duf82, EM78, Rus78, SB82b, Tem88, Tem89a, BK77, Cal81, Dic81, Dic82, DR81, DR82, FR81, Fin82, Gru82, Hus86a, KJ85, Kol81, MW81, PK80, PCM84, Pet83, SG81, SG82, SMFG85, SB81, SB82a, SBHW80, hTD88, Tem89b, Wg82, WS84d, Yuv77].

CRAY-1M [HL88a].

CRAY-1S [SA82, SA83, THH81, THH82].

CRAY-2 [Car91, DD90, LMP+90, VDK91, Wil90a, Bai88, But92, Cal86, DCG90, DL90, FSY88, KN88, PO88, SI91a, SI91b, WVB88a, WVB88b, ZH88].

CRAY-3 [KH87, Wat93].

CRAY-4 [BJ95, Wat93].

Cray-class [MRS88].

Cray-on-a-chip [Hay89].

CRAY-System [Ent99].

CRAY-T [ACK+95].

CRAY-T3D [FR96b, FR96c, Sch96].

CRAY-T3E [Che99, Ma99].

CRAY-X [HL88a].

CRAY-X/MP [HL88a].

CRAY-YMP [Car91, HP95].

Cray-2 [FG87].

Cray/SGI [Sm95].

Crayons [Sin08a].

CrayPat [KAMB19].

Crays [Ano89k].

Craystack [Bu90, Bu91b, Bu90c, Bu91d, Bu91e, Bu91f, Bu92a].

CRC [WD94].

Create [Law90, Van97, Ano93v].

Creating [KC93c, MB94a, Sch96].

Creation [Lin82].

Creativity [Pin01].

Creator [Coe01].

Creveld [CCSS99].

critic [Ano96o].

critical [Aka91].

Criticality [CLP93, CPR93, LUT96, MNV93, Mon93, PN96, SR95a].

Cross [Ano94-50, App95, Car94b, FH95, GD97, IHS93].

Cross-Loop [Ano94-50].

Cross-Media [App95].

Cross-Platform [FH95].

Cross-Section [IHS93].

Crossbar [Du90, DR91, HM93a].

crossbar-based [HM93a].

Crothers [Ano00a].

Crown [Ano88g].

Cruncher [Ano95-31, Ano97e].

Crunchers [WGOY91].

Crunching [Fri91].

Cryogenic [Ano96u].

Cryptochip [Ano96-32].

Cryptography [DDJ98a].

Crystal [Ano90c, Par90a].

Crystallography [CDMW94, HGB90].

CS [Ano97c, Ano98d, BCM94, BHM94a, Hoc94, SN95a, SN95b, Win02].

CS-2

**BHM94a, Hoc94, SN95a, SN95b].

CSE [Kah94, Voi94].

CSIDC [Pin01].

CSRD [CSR89, CSR90].

CTADEL [VWC96].

CTM [WLH00].

CTSS [Mir88].

Cuban [CE18].

cube [Bue91b, HCL88].

cube-connected-cycles [Bue91b].

cubes [DT96].

cubic [BE93c].

Cryptography [DDJ98a].

Crystal [Ano90e, Par90a].

Crystallography [CDMW94, HGB90].

Cross [Ano94-50, App95, Car94b, FH95, GD97, IHS93].

Cross-Loop [Ano94-50].

Cross-Media [App95].

Cross-Platform [FH95].

Cross-Section [IHS93].

Crossbar [Du90, DR91, HM93a].

crossbar-based [HM93a].

Cut [Ano95-31, Ano97e].

customer [Bel93].

customers [CS82, CS86b].

customizable [RR99].

Customized [Ano00b].

cuts [Ano95l, Ano96u].

cutting [Wat92b].

cutting-edge [Wat92b].

CV [Sch97b].

CV-Joints [Sch97b].

Cyber [TGV08, HL88a, Whe83, Dic81, Dic82, Mil88b, Tem83, Uni87b, WL83].

Cyber-Physical [TGV08].

cyberinfrastructure [NSW08].

Cybernetic [Gib01].

Cybernetic [Gib01].

Cycle [Bel93, RCK97].

Cycles [Ano94-96, HB93, Mye86, Ano96u, Bue91b].

Cyclic [ACL93, HMKMS94, KNS95, SSG93, Gra90, GS87a, GS88b, Sch97d].

Cyclically [GT91].

Cylindrical shell [RYYT98].

Cylinder [AGH+90, YFF95, YYK93, Xu91].

cylinder-to-cylinder [Xu91].

Cystic [MHKY97].

D [Ach99, Ano96c, KTN+14, Kow86, RD94, AGZ94a, AABK95, Ano94-28, Ano94-62, ACK+95, BJ95, Bel99, CGLY96, CS90, CMA11, DGO90, DP90, DMP93, DS94c, EFR+05, Elm93, FMD07, FDM07, GD94a,
D-cache [BJ95].

D2 [SVML95].

DaDianNao [LLL+17].

DAGS’94 [Dra94a].

Daimler [Kad94].

Daimler-Benz [Kad94].

Damage [HMS93, Ano95w].

Damped [Man91].

Damping [IHK93].

Damping-force [IHK93].

DAMQ [Ano94-30].

dannykh [BKM88].

Daresbury [THH81, THH82].

Dark [Ano95l].

DARPA [Ano89f, Coc01].

Darwin [Tre97].

DASH [GM94b].

Data [AW94, A+02, Ano92k, Ano92q, Ano94c, Bel93, BMSP94, Che90e, CMHK92, Che94b, CCSS98, Con94, Den80, DGT84, DLLG98, Dra95, ES92, EBS02, FH95, Fei95, FK93, Fru93, GPKK92, GG96, GS94c, GCY+08, Gao99, GAV95, HMM94, HL95, HB96, HQ91, HRBS93, HM93c, HHGS93, HJT92, IK82, IM96, IBC+11, Jac85, JS86, JHGL93, Jia94, JB90, JM98b, JM99a, Jol90, JM90, KN88, KHSJ94, KC96, KM92, Ker94, KCP95, Kun95, LYL87b, LR92, LZF16, MPT12, Mas91, MTHP93, Natxxe, NGDH96, PN13, Pit89, Pot87, PW94, Psa92, RAES96, RS94a, RWNJ94, Rei85, RW94a, SKSD94, SKLC+03, SIK94, Smi93, SC93, SSOH95, SH8+13, T929, TC95, TG08, TA94, TY96, TC93, UZ95, VW95, VV94, Who92, XL94, Y+92, YKK96].

data [Ano90a, AJF86, Bab90, BAAD+97, BCH+93, BB91a, BWHS18, BV+16, BF92, CD95b, CP13, Che90d, Che96, CV88c, CFP92, DGT82, ESTA94, FL92, GJG98, GZE+05, GP91b, GP91c, GS93, GM93a, Gor89, GGV90, GV92, GE96, Jéz00, JMS94c, KB18, Law89, Lee87b, LL88, LEY86, Li89, LQFC18, LLDF95, MP88, MWRK18, Moo11, NS88, ODAZ15, Pan96, PP91, PP92a, Pol90, Sci86, SF82, SLY89, SC04, SR10, SB18, SGB91, Su92, TZY88, Tan89b, TYZ90, The90b, The91, TJC91a, TJC91b, Tuc91, VM07, WH100, Wi90b, Woo92, Woo94, YH92, GS92b, HAG+13].

Data-Acquisition [Bel93].

Data-Communication [RWNJ94].

data-driven [AJF86, SB18].

Data-flow [Rei85, GS92b].

Data-Intensive [GCY+08, MPT12, SC04].

Data-level [TZY88].

Data-Localization [YKK96].

Data-Parallel [HHM94, HQ91, RAES96, UZ95, Con94, BCH+93, GS93].

Data/control [GP91c].

Database [ALPP00, Bar01, CK92a, CGHL94, CV93, FH95, LS93c, SSS94, Tak93, WWY93, Hsi91, McC94, Wie87, Win02].

databases [Ano99, Mou89, Mou90].

Datacenters [IBBA20].

Dataflow [KNYT95, Mas95, MNB94, Rui91, SA82, YMY92, YKK96, An91, Bro86, th90, Joe87, PSS+19, Sch90b, Sch95c, SMM17, TS90, TS91, Van86].

datasets [CK99].

daunting [Per87].

David [Win02].

Days [Ano95i, LM92].

Dayton [IEE94b].

DB [Win02].

DBC [CK92a, SG92b, GS93].

DBC/1012 [CK92a].

DC [IEE94e, Kho94, ACM92b, ACM92a, An96q, App96, FL92, Gra93c, Sco94].

DCC [SC93].

Deadlock [Tan87].

Death [Ano92d, Smi96a].

Debate [Can92, Con91, Con90].

debis [Har91].

Debugger [Ano94-16, SABJ94, EM91].

Debugging [AP87b, KC93c, Kra01b, LAD+15, LR88a, MB94a, BHS92, EGP88, FP00].

Debuts [Ano93z].

Dec [LP90, Un11b].

Decades [Woo96b].

December [ACM95c, Fox97, HHK94, IEE85, IEE97a, KKX5, Nat84, PL91c, Pra95, Sam91].

Decentralized [XL94].

Decision [ABCE97, BCCG97, BK91a, DGJG93, EFPSS93, OY91, VRSG93, Ano94k].

Decision-Machine [DGJG93].

decisions [RYYT89].

decodable [Mer86].
Decomposition [ABBB94, BHLST94, CHMS94, Kar94, KDBG95, MM94b, TD96, AT89, Bab90, BS79a, Bis94c, Bra91a, BS90a, CS88, Che88, CS89, Che90b, Chl81, Fra90, GL88, HLTZ93, LG87, Lou90b, Nee90a, Scr88, Bis94b].

Decoupled [IT94]. Decoupled [HT94].

Decoupling [SSOH95].

Dedicated [Ano93i, Rit97, Ano94a].

dedication [Deu86].

deduction [LMD98].

Deductive [Tak93].

deep [DA97, Han89, CFP20, KSB +19, Ano96-31, Ano96-45, Eva97, HCH95, Tan95].

deep-learner [CFP20].

defeated [Eva97].

Defense [CKS99, HG02].

Defining [Lun94].

Definition [Sak02, Hus86b, HKP88].

Deflation [Man91].

Deflation [Ano96-45, Eva97, HCH95, Tan95].

deflational [Ano96-45, Eva97, HCH95, Tan95].

deflection [Smi92].

Deformation [FDD02, Ver95].

Degradation [WWKR97].

degree [Ano97r].

delays [Gra92].

defer [Bab94].

deploy [PSS+19].

deployment [KSB+19, SR10].

Depression [SS94].

Depth [BR94c].

Dependent [GH93, GWH93, KG94, Now93, RDZ93, VMS93, Woo92, Woo94].

Depletion [DLG93].

Deploy [PSS+19].

Dependent [Ano94-50, Mas91, Mil87].

Dependent [Ano94-50, Mas91, Mil87].

Dependent [GH93, GWH93, KG94, Now93, RDZ93, VMS93, Woo92, Woo94].

Depletion [DLG93].

Deploy [PSS+19].

Dependent [Ano94-50, Mas91, Mil87].

Dependent [Ano94-50, Mas91, Mil87].
Designers [Bel92a, DWV92]. Designing [Ano94-51, ABMW93, Cyb89b, Gen97, GV96a, GIBGA93, Jen87, KK82, MMR96, Qui87].

Designs
[SW10a, Wea97, Ano96u, Leu90].

Desktops [BH93].

Destination [RFS87].

Details [HN90].

Detect [Mas91, Str94].

Detecting [AC84b, EGP92, GV92, Her95, AC84a].

Detection [BEH94, DKF94, FB97, GMG94, GL93b, MRL+17, SKN96, Ver97, CV88e, NG92, PE88].

Determinant [Mur91a].

Determination [Ano94-89, Ano94-98, EWS’13, HCV97, NBGS96].

Determine [NW97].

Determinating [GS94a].

deterministic [DY90].

Detonics [CNGR90].

Detroit [IEE95b].

Deukmejian’s [Deu86].

Developed
[AHSS93, Ano92h, RS94a, ANo90l, Kel85].

developers [Str94].

Developing [Ano92e, CSM97, DP90, GV96a, PL91a, PL91b, PRS94, DW92, SF82, Woo92, Woo94].

Development
[ASSW93, AKT90, Ano94-32, ATSA93, Asa93b, AA93, Bha94, Cho90a, Cig97, Dav86a, DG90, Dav00, EM94a, FNP+84, FB84a, FNT93, HM93b, Him93, HNST93, ITO93, KG9a3, KTN93, LC90, LKH94, Mac91b, Maj94, MM90, MAA93b, Mit96, MMK97, MT96, NNSY94, New93, Nor97b, Oya99, PZ99, PRSS94, Raa97, Roh94, RDZ93, SN89, Sma93, Swe94, TK93, Uni86b, Uni86a, VD94, VF93, VB90, Y+92, AG90, As91a, CSFS00, Ele93, Gil88, GM87, Gua88c, IKM85, Kh91, Lin96, LSS+20, Mar86, Mar88b, MT13, Nat91a, PATT12, R+00].

Developments [Ano89o, Ano93j, Ano95n, Ano95o, BM96, Fer83, Mar85a].

Develops [Ano97q].

Device
[Ano91c, Ano94-94, KTK94, TTD+11, Ano90e, MS84, Par90a, YKY90].

Devices
[AHSS93, Hes90, Man90, BMW91, Bur93, SF91].

DeWitt [Win02].

DeWiz [Kra01b].

Dfl.180.00 [Tru88].

DFS [SSH96].

Diacid [VM94]

diagnoses [Tze86].

Diagnosis
[Sei94, Rol97, TYZ85].

Diagnostic [KB97].

Diagnostics
[Hei90, OBR94, GBB+05].

diagonal [GP93a].

diagonalizable [LTT92].

diagram
[SCK+00].

Diagrams [OIY91].

dialects
[Guz88, KB88].

Dialing
[Ano93-43, DJ98b].

DIALOG [Bau96].

Dialogue
[Kar93].

Dialogue-Based
[Kar93].

Diameter
[CJ94, DF90a].

Diamond
[MF93].

Diaphragm [SP94].

Diaphragm-Disc [SP94].

DIBU [AK93].

Did [Bel96].

Diego
[ACM95c, AIA93, Ano97g, Ano97u, Deu86, JD95, Lay91a, PBK91, San91, SR93b, Tay94, Ano96z, Ano97-29, Dau97].

dielectric
[GKR91, Lee84].

dies [Coc01].

Diesel
[BK97, BPW97, CER93, GP93b, KKDO97, KR94b, OGOR97].

Difference
[FBH93, KLY94, LC97b, NU91, Bue86b, Che94a, DF90, SA10a, Str94, Vaf88].

Differenced [MF93].

differences
[EGK89a].

Differencing [MDW93, War93a].

Different
[GAV95, MMRL93, WS95, Sno94a, Sno94b].

Differential
[CSSY92, Gal96, GRSS93, Wat91, WS93, Cha90, DGL89, Pet89a, Scr88, TFB94a, TFB94b].

difficult [HHS01b].

Diffraction
[BHHM98, For93, PB94a].

Diffusion
[AK93, CV+90, GW93, IMA93, JV93, Koh96, LM93, MDW93, NU91, Now93, PA93a, RDZ93, SMMG85, War93a, WR95, KC93b, Zas93, CM91, EAMS95a, EAMS95b, Huns92, KIGER+09, SM92].

Diffusion-Accelerated [MDW93].

Diffusion-Synthetic [War93a].

Difusive
[SBY93].

Digest
[Bel86, IEE95c, Wu94].

digit [AW91].

Digital
[Ano91e, Ano91h, CCKSS90, DGJ93, DM88a, DM88b, HU93, LKH94, M93, MD88, MBK+92, NAW97, PRS94, Sin08a,
Wad86, Ada95, Bar88, Wes89, Was96b].

Dimension [DT96, XL94, KS93c, Ree88].

Dimensional [AD97, ACG+90, AK93, BCM90, BSJW96, BY96, DLPQ94, GMBW93, GWH93, HFT94, Hun94, JB90, KO93b, Man90, OK93, Soe94, Sus93, TKM96, VD96, WD93a, Wea97, WFT93, Ach99, BR95, BS91, HP88b, KJ85, LB82, LLDF95, MB97, Nee90b, Nix92, RWL+98, Rav92, Rav95, SBHW80, SM92].

Dimensions [Ano92-38, Cox88, KT93a, OGR95, OMR93].

dimeric [PB98].

dinosaur [Tay95a].

dioxide [CSRB90].

dip [jJ88].

dip [jJ88].

direct [BPJ94, BJLW95, Ger90, HVSB93, KY93, KSP13, LN94, MS94c, RT97, TF96, TYK93, WG93a, Abr90, DD88, GSZ91, GW95, HJZ94, JHZ95, LA93, Sam85, ST90, Wil90b, Yan90a].

Directed [Ano94u, Ano94-56, CV90, CV92a, LY90b, She90].

director [Bro91b, Lew94b, Ano95v].

directories [CV91b].

Direction [YA93, BMS92].

Directional [FCD97].

Directions [Bos94a, CCKSS90, Chi00, DSSS05, MMW86, MSK+02].

Director [Bro91b, Lew94b, Ano95v].

Director [CS82, CS86b, MTLL94, MH94, Tra89, Ano88r, CV90, CV92a, LY90b, She90].

directory-based [CV92a, LY90b].

Dirt [Lew96a, Lew96b].

Dirtology [Jan96].

disappear [WZB86].

disappearance [Tay95a].

Disassembly [TSSK94].

Disaster [RWCA94].

Disc [SP94, Ano02a, Ano02b].

Disciplines [Pet89b].

Discontinuity [GH93].

Discontinuous [MDW93, YA93].

discoveries [PMS+08].

discovery [Mit88, Nat91b, Nat92b].

Discrete [KGKa93, Meh94, MRL+17, Was96a, AZC13, Joh91, Kon91a, KY91a, KY91b, RMM87, RM88].

Discretisation [GW93a].

Discretizations [PA93a].

Discretized [Vui93].

Discs [YMZ90].

Discussion [Kau93b, Mur91b].

diseased [MKHY95].

disjoint [N888].

Disk [KRJ93, Ano95w, BJ84].

dispersion [WQS92].

displacement [CK90].

Display [ABM88, JB90, KFJB94, Kue93, SDB94, Ano90a, Ano97n, Mal89].

Displays [Bar00c, Bar00d, Ano97n].

Disposed [DA97].

dispute [Ano96-35].

Disruptive [JR94].

Dissent [Lew17].

Dissipation [GML90].

Distance [AM94, BBD+08, KH9N9].

Distillation [ZBLZ95].

Distinct [ER94].

Distinguished [Pin01].

Distress [COC93].

Distributed [AW94, Abr94, DLLL01, An94, Ano94-34, Ano94-35, Ano94-49, Ano94-50, Ano94-58, Ano94-84, Ano94-85, Ano94-106, Ano94-103, Ano94-90, Ano94-143, Ano95w, Ano01a, ABSS94, ASNT91, ALMS92, AHH94, AZ94, BAAD92, BIR94, BCHH94, Bee89a, BD93a, Ber95a, BSKJ93, BC95, BNSP99, CGFT05, CD95b, CC94a, CGSG94, CV95, DLLG98, DHWW93, DVWW05, EB02, EKZ90, FB94a, Fos96, FS93, GY92, GY93a, GM94a, GMSS+11, GHe10, Go19, GMG94, GL93a, Gra93b, GL89, GS94d, GR94, HL95, HKT92, Hun94, IEE93b, IK82, Jay88b, KK95a, KV96, KISY94, Kon96, KRS13, Kue93, LK93, Law00, Lee94, LPV94, LCV93, LL94, MNB95, Mah94b, Mes93b, Mes00, MS94c, MRAR95, MS94d, OH92, PR94b, Rag94, RW94a, SEA48, SN95, Sch94c, SSKR97, Sho91, SG94a, IEE94d, SLRP95, SO95, SN96, TH94].

Distributed [TG94, TAAL95, WP94, Who92, YFOT93, AGZ94b, Ara96, AM96, BBH+00, BGRK99, Cal96, Car92, DL92, Dra90a, Du90, DR91, GMF00, Hab92, HPPF94, IEE96a, JH1, KHS88, Kha95, Kim96, KG03, KA96, KG95, Kre95, KSM+19, Li89, Liu95, LA93, RLKW93, SLF+94, SD92, SC04, SY91, War03, WvTB+07, ZEC+17, ZGL14, HB89].

distributed-concurrent [LA93].

Distributed-Memory [Ano94-85, DLLL98, GMG94, GS94d, HKT92, PR94b, SLRP95, Who92, AGZ94b].

Distributes [Kun95].

Distributing
[YTL87]. Distribution
[Ano94-65, Ano94-141, CWLT97, FSGS93, IK82, KKPR93, LMH90, PG93, Ano87c, BAAD + 97, BB91a, Fea94, KS95, Rob89, Who89]. Distribution-Independent
[Ano94-141]. Distributions
[CLPV93, GG96, HKMCS94, KKKP93, KNS95, LD93b, SHG95, USZ96, VW95]. diverged [MT13]. diverse [Kim96].

diversity [Zor92a]. Divide
[DT96, AT89, Don93c, LR88b]. Divide-and-Conquer
[DT96, Don93c, LR88b]. divided [EGK89a].

diving [Wie94]. Division [Bro91b, Has84, Lee94, Age05, Mas93, Nat91a]. dizzying [Kim96].

divided [Zor92a]. Divide
[DT96, AT89, Don93c, LR88b]. Divide-and-Conquer
[DT96, Don93c, LR88b]. divided [EGK89a].

diving [Wie94]. Division [Bro91b, Has84, Lee94, Age05, Mas93, Nat91a]. dizzying [Kim96].

divided [Zor92a]. Divide
[DT96, AT89, Don93c, LR88b]. Divide-and-Conquer
[DT96, Don93c, LR88b]. divided [EGK89a].

diving [Wie94]. Division [Bro91b, Has84, Lee94, Age05, Mas93, Nat91a]. dizzying [Kim96].

divided [Zor92a]. Divide
[DT96, AT89, Don93c, LR88b]. Divide-and-Conquer
[DT96, Don93c, LR88b]. divided [EGK89a].
OP96, PP92a, PR94b, RCK97, VR94, VV94, WQS92, ZBLZ95, BAAD+97, BP92, CGLY96, CGLxx, Chexx, Chiu91, DCG90, Fin82, JG88, Mii87, Ng95, PK91, Ram88, Roj19, SAB+05, WWJ09, ZCPT00.

Dynamical [BY96, BPU94, KLN90a, Nag96c, Pas95, Sing96, KLN90b].

Dynamically [TSCG94].

Dynamics [ADGA95, ATL90, Ano89-137, Ano97l, ABGL96, BHEG94, CFV+90, CH10, CHMS94, DAKM98, ES96, FR81, Fra94, GI93, HP93, Kue93, KK92, LD93b, Law90, LB94c, MAA93b, NCDS97, NS93, Por86, SKVZ93, Sim92b, NCDS97, NS93, Por86, SKVZ93, Sim92b, SFF94, VVK96, Web93, WKFK97, Wil90a, ARF12, BBK+08, COS89, DGL89, DL98, Ece96, Elm93, Elm95a, EFG+05, GKS09, Hea91, Hua92, HKS93, Kha91, KH7+08, Lag89, LM92, Lou92, MCH91, MA85, OYK+14, Ons88, PEH93, PZGL91, PS98, RCB03, Sch98b, SCK+00, Ske89, SPP+05, WCHK91].

E. [Ach99]. Earll [Por86].

Early [ABB+13, GZE+05, HLPP97, Kaz92, RS85, EFR+05, Oed92a, Oed92b, SPP+05].

Earth [Ano93t, Bla93, Bro91d, Fos93, GS87b, NS86, SCI86, TP97, Zygg93, G+97a, BS98a, Zygg93].

ease [TK15].

Eastern [Chi90].

Easy [SFB94].

Easyflow [AJFH86].

Eating [Ano91d].

EBE [HFH86, HFH87].

EC [Ano94s, Pel93b].

ECCO [RCR93].

ECL [LH86a, LH86b, LH86c, LH86d, LH87].

Eclipsing [Mi88b].

ECMWF [HK93b, KH93, DTVO0, Isa93].

Econometric [BBC92].

Economic [LC90, NDLV88].

ECU [VD94].

Ed [Wei90, Ano94p, Kow86].

Eddy [KS93b, PSB01].

eden [Bro01].

Edge [MKF94, TL96, TPJ+19, Wat92b].

edged [RR95].

Edinburgh [Ano94-33, BBC+89, Swe94].

Edited [Ano00a].

Editing [Pau08, Sky94].

Editor [Ano94-28, Ano94-39, Ano94-40, Ano98e, Ken92, AB03, BKK11, Pan93, Pin01, Sul97].

Editor-in [Ano94-39].

Editor-in-Chief [Ano94-40, Sul97].

Editorial [AAB06, Bad99, Fox98, Jar12, KLN99, MH18, Sul97, AB01, DF12].

Editors [AP93, BEGK97, CFS95, HG02, HP04].

Edmonton [Ano88s, Ano88t].

EDN [She90, Tra89].

dn. [Ahl92].

ded [CCKSS90, Por86].

educating [Gra94].

Education [Ano90g, Ano91j, Ano94w, Ano94-71, Bae01, EP 97, Gar01, Joh94, JPM90, LM08, Mah94a, Mur06, SB94a, Sub94, Sun94, Bal94, Gra93c, Gra94, Isk96, NCKM98, SC91a].

educational [CBKA09].

Educator [Ano92f].

EEC [Rep92, Ste85].

EEG [KVP95].

EEGs [Her95].

EFDC [HW97, WHMA97].

EFDC/HEM3D [HW97, WHMA97].

Effect [BJ95, BMP93, BP93, BM90, Hea91, Hua92, HKS93, Kha91, KH7+08, Lam89, LM92, Lou92, MCH91, MA85, OYK+14, Ons88, PEH93, PZGL91, PS98, RCB03, Sch98b, SCK+00, Ske89, SPP+05, WCHK91].

Effective [DP96, GS94b, U94, EB91, Lee87b].

Effects [HV94, KBD97, KW95, S94, TYKE93, KPS88, Seh88, Whe89].

Efficiencies [DZM+13].

Efficiency [FBCB18, GW93a, INKN01, MP94, Aus93, Mir88, New14].

Efficient [AGZ94a, ASS94, AZC13, AG94, Ano94-41, Ano94-42, Ano94-44, Ano94-45, Ano94-46, Ano94-43, CP94a, CH94, CS93b, CS95, EBS02, EH97b, cf03, GS90, GS92a, GW91, Gre90c, HS95a, HE98, IJY+14, KHSJ94, KNS95, Kra93, KM85, LMT95, Lei85, LS93a, LY88a, LFJ+20, Lii89, Mah94c, MCM98, MK94, MHP84, MRGR12, NB93, NG92, NB94, NR86, OA94, Pau08, Sph93b, SY91, TGV08, TL96, TF94, UZ95, US96, VV94, Zha01, Aha09, AM15, ABMN02, BR95, Bsh94a, LJC93, MKIA96, Par90c, Qui87, Ren97, SHM97, TCM95, Woor92, YF98].

Efficiently [AGLL98, MSTK93].

Effort
Encoder [TCJS93]. Encoding [BR95, WD94]. Encouraging [cFC97]. Encryption [WM91]. End [DM88a, DM88b, GF90, MD88, Mou90, Mou90, Ano89k]. End-user [Mou90, Mou90]. ended [Fin94, MSCxx, TR86]. Energie [Pre93b]. energies [Ano94s]. Energy [CTD+16, FSFG93, FBCB18, FLP+07, GGW93b, JBWB97, JR94, Mir90, MRGR12, Nat90, Pan90, SHG95, TGV98, Uni86b, Uni86a, Uen93, A+12, BMR85, For93, KNHN16, MWRK18, RL KW93, Roj19, SNEP14, SN96, Uni93, Uni95]. energy-aware [A+12]. Energy-Efficient [MRGR12, Pan90, T GV98]. Energy-Time [FLP+07]. enforcement [CV88c, Dam11]. Engineer [BCW93, BK97, BPW97, GWG93, GP93b, HK97, KLS C97, KB97, Law90, OGOR97, PB94b, Tak93, TCJS93, VM94, VF93, BCK13, PSO12]. Engineer-manager [Per87]. Engineering [AS98, Ano90g, Ano94-107, BGS+12, GT97, Got91a, GVK98, Gro90, HF93, Hwa85, Jal94, Jon89, KS94a, Lj97, L+95, LCD97, MWS1, MBW01, Nas91, Pin01, Pin90, SC99, Str94, SR93b, Vro94, Ade92, Ano88e, Ano88d, Ano88c, Ano89r, BP98b, BP93, C+97, CCC+89, Crc91, FK98, Fox97, GL90, HS+91, Hrn91, IAIK92, Isk96, JI87, JD95, Kho94, LP90, Mar86, Mar88b, MB98, Som13, SPKR94, Gra93c, Pin01]. engineering-90 [HS+91]. Engineers [Gar99, Kho94, Gra94, HW11]. Engines [AABB93, AGH+90, BSB93, HB93, Pay97, Ano96u, AJFI86, Mar90]. England [ACM94, Ano88d, Ano94p, OMM93, Pit90]. English [NSW08]. Enhance [TJ94, SC91a]. Enhanced [LYKM97, MM93a, McC94, EFH+00, SC20]. Enhancement [Ano88], yHYZ87. Enhancements [Iwa92]. Enhancing [Ano96i, BKM93, Mas95, Pol88a]. Enormous [Lin83]. enough [Ano95v, Bab94, Win02]. Ensemble [Kau93a]. ensuring [Ano97x]. Enterprise [Ano92]. Enter [Ano90p, CCKSS90, Ren97, Opp95b]. entities [Ano96-27]. Entrepreneur [CCKSS90]. Entropy [Lu93, BB87]. entry [Ano94-83, Ano94-120]. entry-level [Ano94-120]. Enumeration [SVD96]. Environment [AW93, Ano94-51, Ano94-114, Ano94-138, ASNT91, AHH94, Bae01, Bha94, CWD+08, DPS97, DHHW93, EGH+06, FCGG90, FG93, Gil93, Gin82, Goe90, GBK+96, IE95a, IJM14, JAB92, KK95a, Kue93, KNWB93, MM90, NU91, OCVG93, OPR01, PS96, Par86, PL91a, PL91b, PK93, RL90a, RLW93, Sat93, SES94, SFB94, SL93, SkL+03, Ste94a, WKFKK7, YJD93, Ano85b, Ano90t, ABGL96, Br90a, Ch90b, Def87, Don85, EB18, GJJ98, GBB+05, Gok92, Gua88b, Gua88c, Gj97, Hb92, IEE91, JG98, JR91, Joh86b, Kha93, Kha95, Kos95, KW11, Lev89, LC12, MP88, McC94, MK92a, MK92b, Mir88, MS91, MAA+05, NRN00, PZGL91, Pol88d, Rob85, SCV01, Sch95c, Ser98, SW99, Tur90, War89, YVC89, YB90, GR94, HB98]. environment/application [Mir88]. Environmental [ABCE97, Ano93-29, Ano94-48, Ano94-110, Ash93, BAAD92, C95b, JBWB97, Koo97, SWSR97, Uni92e, Uni96, GG+97a, MWRK18, NS86, Sc86, Sch94b]. Epilogue [Bur01a]. EPL [ZW02]. EPL-Julia [ZW02]. EPS-APS [GT94]. Equalization [Pan96]. Equalizing [MD04]. Equation
[AFML93, Ano94-61, Cal86, DMPr93, JR94, Pev93, SMFG85, Sus93, KC93b, DGL89, Gao86, Gri86, Scr88, Sta95]. Equations
[AM93a, AGL+99, Ano94-140, CSSY92, Die94, Duf82, Duf91, Gal96, Glo89, GW93a, GRSS93, HO92b, LMM93, McB93, MF93, MDW93, MM94c, Rul93, Sha94b, SC92, Taf96, TYK93, VAGRMVA90, Vui93, War93a, Wat91, WS93, Ach99, And87d, BS87b, Cha90, Che99, Dav86b, DD88, Don85, GS87a, GS88b, GS90, GS92a, Kam86, Ked92, LM90a, Pet89a, PO88, Sch87a, SM92, TFB94a, TFB94b, vdV91, McB92a, McB92b].

Estet-Astrid [GMS97a, GMS97b]. Estimates [KB93, SH91, TDBL13]. Estimating [Gre94, RDHC94, SK92]. Estimation [BB87, Fuji99, Mis90, PC97, RMPW93, Wii94, YOY97, YAG93, YAGxx].

Estonia [KK93]. ETA [CSB89]. ETA10 [Car89b]. ETH [HKR94]. Ethernet [Kon87, OBB+05, WTC+02]. ethical [Chr92]. EU [Ano03a]. Euclidean [Gur88, RW89]. Euclidian [FRW92].

European [Ano92j, Ano97d, DLM99, RMO96, Ano85b, AGL11, DMWK93, LPC+95, LMP+90, Pel93b, PC94b, RCR93, SS90a, SS90b, SSxx, Sta88]. Europort [SS96b]. Eutrophication [HW97, WHMA97]. EUVL [Bar01].

Evacuation [ITOK93, TIOK94]. Evaluate [Bur94a]. Evaluating [DAC+18, EAMEG11, GB96, Ked94, KB96, McK94, PSO12, Srl94, VdSK+05].

Evaluation [All93, Ano94-30, Ano94-54, Ano94-73, Ano94-102, Ano94-103, AC84b, AHOK02, AK93, BK77, BB95, BS94a, Bie88, BD94, CGSG94, CP94b, COC93, CMF94, DVWW05, FR95, GA95, Gin88, HS96, Hxx, HK92, IBC+11, IK91, KCK93c, LM90, LBT94, LMM86, MOWW96, MTLL94, MH94, NH91, PTC+93, RRM94, RLKW93, Rue92, TNA92, TGL96, USZ96, WOG94, AP90, Ano94-100, AC84a, ACK+95, BS94b, Ber89b, Bli89, CC96, CPK90a, Cyb90, CPK90b, Cyr86, DR91, Eog01, Har86, HP88a, HY92, Inf86, JOK+18, JD95, KS87b, LS92b, LC12, LYYC93, Mal86a, MMV86, Mar88c, MI01, MDH+16, OW94, Par90b, PPR95, PP91, PP92a, PP92b, Poi90, RGH17, SCG+08, SNS+97, SWS+12, SHB91, hTD88, Tan89a, TC94, WHL93, YB90, YHA93, YI11].

Evangelizing [Coc01]. Eve [Ano95v]. Even [AFML93, Ano89n, Gib01]. Event [EGP88, Mal91, AZC13, Kon91a, KY91a, KY91b, Li91, Mal89, RMM87, RM88, TS91, WGS91]. Event-based [Mal91]. event-driven [TS91, WGS91]. event-driven/dataflow [TS91]. events [SM89]. ever [Ano96u, DWV92]. ever-higher [DWV92].

Every [Dun92, Gol91a, Gol91b, Wie92, Ano92-47, Ano94k, KAH91]. everything [Way96]. Evidence [RSRG95]. Evolution [CCKSS90, San93, Ano89d, CK92b, IEE89b].
Extracellular [WR95]. Extraction [CDA94, LY90a, UPK87, YKY90]. extremal [BGT90]. Extreme [BCH12, CCR11, WKL+16].
Extremely [LHM95, Luc91]. Extruder [YMZ90]. Eye [BBL95, HA92]. eyes [Ano95-32, Str94].

Facilities [BB98, KA93a, Mon93, Pap16, Fed96, Jor87, Sci86, Sha87]. Facility
[Ano88k, Cor89b, Rit88c, SW10a, And90c, MRM97, Yau88, BK91b, CR99, Lee89, Uni96].
FACOM [MU83, TK185]. Factor [Moh94, RSB94, Tem88]. Factorial [AH93].
Factoring [BrR95, CB98, Luc91].
Factorization
[Ano94-65, Ano94-115, EHS94, GMW94, KESH94, KSH94, MP94, Rag94, Rot94, AZ95, Con86, Con94, Dav89, DY90, DD90, DDT95, GHNL87, Kra92, KCR92, KESH95].
factorizations [Eij90a, Eij90b, Eij91]. Factors [Ano94-52, DCWH07, GH93].
factory [KW92]. faculty [Pan96].
Faddeev [SKB98]. Fail [Bar00c, Bar00d].
Failure [Sei94, WH94]. Failures [Ano94-139, HRC09]. Fail [Mie90, CKS99, Gre89b]. Falling [LMC96].
faller [Ano95a]. Family
[LS93e, NU91, AJFH86, BE93c, WZ87].
farming [Str94]. fashion [Ano99, CKS99].
Fast
[Ano92k, Ano92q, BP90, BHS+02, EGK87a, EGK89a, Elm95b, EHG+79c, Joh92, LH86a, LH86b, LH86c, LH86d, LH87, LM93, LG97, MOOK94, Mik94, Mik89, NS93, RMP93, RT97, SKVZ93, SAGS93, TK93, UP91, VTSM12, WG91, ABP92, BP91a, CHWW13, CC88a, Cat92b, CV88a, Dra90a, EGK89b, GS87a, GS88b, GS89b, Gut95, Heg96, Mas94a, MB97, OYK+14, Sta95, NR86].
Faster [Ano94-110, BGQ19, BBS94, Nag94, Ano91, Bas95b, Ber82, BE88]. Fastest
[Ano93l, Bar00c, Bar00d, Tho96a, Tho96b, Ano90m, Ano97x, Ano97y, Ano90b]. Fat
[Lei85]. Fat-Trees [Lei85]. Fates [ZL97].
Fatigue [Bel93, ES88, JCJ94]. Fault [Ano94-53, BOS93, CRV94, CB94, CJ94, DO89, EK99, GBD93, GBD97, GS89, GMD94, LL08, LLGS90, LT94, TYZ85, Tze86, Con00, Dao88, HCL98, Mit88, OD99, SML92, SO91, T99, TYZ88].
[Gun88b, Gua88c, Ham90]. FCI [ARE95].
FCRC [ACM96]. fears [Ano96-35]. Feature [SCV01, Ano97k]. featured [Bro17]. Features [ara91, AGD93, KZ94, MT93, NW97, Oed92a, Oed92b]. Feb
[B+95, Zy93]. February [Ano96l, Clo96, Don92a, GL90, GE96, JD95, M+94, Wu94].
Federal [Ano95l, MP92, Uni86b, Uni86a, Uni86c, Waz98, Ano95h]. Federated [CGHL94]. Feedback [PH11]. Feeder
[SS94]. Fees [Ano94-129]. Feet
[Ano95s, Bar00c, Bar00d]. FEL [SNK+93].
Fellows [Pin01]. Fellowship [Kah93a].
FEM [HS93b]. FEM-Analysis [HS93b].
FEM5 [KA91]. Fermat [YB86]. Fermilab [Fer83]. Fermions [KLN90a, KLN90b].
Fernbach [Ano16]. FEVS [SZ11]. Fewer
[Ano95-45]. FFMachine [Wun89]. FFT
[AGZ94a, ABB95, Ano94-62, Bue91b, Cal96, DWM+01, DFM07, OLWW94, TEM88].FFTs
[Car91, FE+05, GJ87, Swa86]. Fibonacci [Alu96, AM15, Mas94a, Mas94b].
Fibre [Ano94-104, Gre91a]. Fibre-Optic
[Gre91a]. fibrosis [MHKY97]. FIDAP
Riz94, Saa93b, SS96a, SW96, Soe94, TK93, TOWC15, VM87, VD96, VF93, VH93b, VB90, War93b, WR97, Woo96a, YMZ90, YCC97, YYK93, Amm90, Amm92, CV88c, CRA10, DGT82, DRA80b, Gri86, LXW+16, MB93, MB94b, Ne09b0, Pol90, Rei85, The90b, The91, Wo93, YH92, GS92b].

Flowfield [MKG90]. Flows [Ano94b, Ano94-140, BPJ94, DLPQ94, GFM96, Ger90, Gol96, HGC94, HFT94, KY93, KO90, PPM90, PSB01, RHH96, SHZK94, Tak94, TFO94, BS91, KfGERJxx, Ram86, TR86, ZBN+19]. flowsheet [Har89]. fluent [HP88b]. fluent/BFC [HP88b]. Fluent [Ano94-114, Ano97l, DD93, GI93, GW93a, Har94b, HGC94, Jon19, KLSC97, KK92, MKB87, MI93, MMHM93, Nag96c, NS93, Por86, PC93, RT93, Sch93b, Sim92b, Soe94, VM87, VF93, Web93, WKFFK97, Wil90a, COS89, DGL89, Ece96, HK93, LM92, Lou92, MA85, MB93, MB94b, PEH93, PZGL91, RCB93, Woo93, Ano96u]. Fluid-Dynamical [Nag96c]. Fluidized [NCVG96]. Fluids [Glo89, L+95, Gup88]. Flux [FBH93, U184]. fly [YH90, Y190, BAD01]. flyer [Norxx]. FM [LC97a]. Focus [Ano97f, Cla98, Dav87, HTV88, Tay95a, Voi94]. focused [BMD+20]. Focuses [Pin01]. Folding [Ess90, IMP93, XCLW93, Mil87]. Foods [KS90]. Force [Gro90, Bel92a, IHK93, RD07, Ano93-46]. forced [BJZfDA96]. Ford [Ano96u]. Forecast [BCHH94, Dic90, GJS94, S099, VV95, DTV00]. Forecasting [Dic81, Dic82, Kau93a, WCG94, Sel95]. Forecasts [Koo97, Ano97p]. Forefront [DR93, GLS11, IEE95d]. Foresees [Lew94c]. Forester [CKCS90]. Foreword [MH18]. forges [Fed96]. Forget [Poo96b, Poo96a]. Forging [BMCA93]. Form [AK87, FDD02]. Formal [PGK+10, Roh94]. Formalism [CTR93, JC94a]. Formalizing [GP91a]. Format [EBS02]. Formation [Gre91b, Pan97, Ste94b, SBSR96, Gre89b, Hun92, OMM93, Yos09]. Former [WG93b]. Forming [KD93, Ano93-37]. Forms [NJI94, Ano90n]. Formula [BGQ19]. Formulation [Ano94-91, TYK93]. Formulations [Ano94-116]. Forsees [Lew94a]. Fortran [Ano85b, KK89c, DE84, DON85, KK89c, KBC+74, LK93, SCH89b, WW92, AK87, AP87b, Ano94-69, Bli89, Can92, DP96, E1g90a, E1g90b, FBZ92, Fah94, Fos93, FXAC94, Guz87, Guz88, HWS+88, HK92, KB88, KZ94, Mac91a, Mar92, MWO95, MR95, Pett83, Pol87d, SKP91, SLy90, lTD88, YGSB94, YKK96]. Fortran-style [SKP91]. Fortran/ANSI [KK89c]. Fortran/PVM [MWO95]. Forum [Ano97-31, MP92, Dun92, Str94, Wie92]. Forward [Bar00c, Bar00d]. Forwarding [KCPT95, ABP92]. Fosdick [Ano96c]. Foster [Stu03]. found [HHS01b]. Foundation [Bor94, Jan96, Web91, Ano96-38, NN87, Nat92a, Red91, San86, San90]. foundations [Gib01, Gir91]. Four [GF87, E1g91, EY91, MP91d, SWL+92]. four-processor [EY91]. Fourier [NR86, CC88a, Heg96, HAI91, MB97]. Fourteenth [IEE95d]. Fourth [KK89a, Ano93n, Gra94, RLK993]. fourth-order [RLK993]. FPGA [BCC+09, BB92, CP94a, GM93a, PSS+19]. FPGA-Based [BCC+09]. FPGAs [BS94d, Van13]. FPL [ML95b]. FPS [Ano91f, CG86, WG82]. FPS-164 [CG86, WG82]. FPS-164/MAX [CG86]. FPU [LKFW05, Wai05]. Fractal [KT93a, SLML93]. fraction [Ano94-82]. Fractional [AH93]. Fragment [INNK01]. Framework [Ber07, Bis94d, EAMEG11, GJP96a, MCLK07, PCY+19. SE92, WCZ+18, Abe91, BPD06, CH92b, CH98, EFR+05, FKL+08, FGM+03, GZE+05, GJP96b, Jez00, KCG08, MV16, RG9H7]. Frameworks [Ano94-102, FV94, KRS13].
France [ACM88, GL90, Ham94, JPTE94, Ano96-35, Ano97s]. Francisco [ACM03, B+95, Bel86, IEE95c, IEE94d]. Frank [MP91a, MP91b]. Frank-Wolfe [MP91a, MP91b]. Frank-Wolfe/gradient [MP91b]. Fredericton [BG91]. Free [BBL95, Coc01, FDD02, JC94b, DDJ98b, TK93, VLA92, Fuj99]. Free-Form [FDD02]. FreeBSD [Coc01]. Freeway [HK96, Sug96, WMR96, Gou96]. Freeways [Hal96]. French [Ano86a, Ano96j]. Frequency [AM93b, CBT91, Ano96w]. Fresh [Ano95t]. Friction [Ano92r, KB97]. Fridge [Ano95d]. Friendly [ATSA93, OS93]. Fringe [DR93]. Front [GF90, Van93]. Frontal [GF90, CDS98, DS96b, ZMDS96]. Frontier [Ano92r, GIBGA93]. Frontiers [AB94, Cha94a, EP97, Isk96, Met86b, Met86a, Gra93a, Gra94]. Fronts [Gar99]. fsck [BE88, Bin88]. Fuel [KRJ94, MTK93, MA97, Mon93, NW97, PP93, SS94, SAG93, So93]. Fuels [VA94]. FUJITSU [HL88a, AHOK02, BHS+02, BCHJ94, DTV00, DH86b, Heg96, IUB7, LMM95b, LMM95a, LMM96, MHP84, NNR00, R+00, SWL+91, SW995, SB96, SE98, Uch96, WLK95]. Fukuo [Ano91q]. Fukushina [M+95]. Full [DLPQ94, FT93a, KRJ93, Gep01]. Full-Disk [KRJ93]. Full-Time [FT93a]. Fully [HR94, DS86b]. fun [Faz87]. Function [GBBR95, Lie93, MBN93, RMPW93, Sa95, WG91, XMR92, Cyb89a, Hus86b, HKP88, KMB09, NNS+90, ZAS94]. Functional [DAF+90, Fri95, Gir91, HTV88, KKPP93, KF95, KKP93, Mal94c, PT92, RSRG95, Sei94, SLML93, SB94d, BH92a, EHF+00, GP91a, Gok89, SKP91, SZ91]. Functional-link [PT92]. functionalities [PT92]. Functionality [Wea97]. Functionally [Ano92h]. Functions [CP94a, HM93c, Lan94, NH91, OIY91, Car94b, EFG+05, SA10a]. Fundamental [MR90b, Sah95]. Fundamentals [Mag10, PATT12, WP94]. Funding [Ano88q, Ano92i, Ano93l, Ano97-29, Ano86a, Win02]. Funds [Coc01]. Further [Tem89a, Tem89b, Ano92-45]. Fusion [DH93, YMT93, Ano94a]. Future [Ano92m, Ano93p, Ano95-35, Ano97i, Bos94a, Chi00, DSSS95, Els02, Gal93, GA84, Gre91a, Hin93, IEB93, IBBA20, Lew94a, Lew94c, LEMS95, MSK+02, Oya02, Pay97, RG94, RSB94, VSM+07a, VSM+07b, Wat93, Ano93d, Ano94-119, Ano96w, Hey90, Hol84, Kon91b, KAMB19, Mye92b]. Fuzzy [BJ93, CJ93, CCCC98, DZJG93, HRG93, HHGS93, Her95, Rol96, VRS993, Ano96a]. Fuzzy-Logic [DGJG93]. FX [ASM86, Ano87d, DD90, GB90, WSL88]. FX/8 [ASM86, Ano87d, WSL88]. FX/80 [DD90, GB90]. FY [Ano93t]. FY1989 [Ano88q]. FY90 [Nat91a]. FY91 [Nat91a]. G [GLS11]. GaAs [Cha94b, KH87, MS84, Wat93]. GAIA [Yi11]. Gain [Sch95b, Ano97-30]. Gaining [Buz84]. Gains [Ano93m, Ano92w, His91]. Gaithersburg [Uni91a]. Galaxies [Ste94b]. Galley [NK96]. Gallium [Ano94-55, Buc88, Dey95, FB91b, Zho88]. Gallium-Arsenide [FB91b]. game [Sne94a, Sne94b]. Games [Coc02a, Coc02b]. Gaming [Ros09]. Gamma [BKT94, SVML95, FA93]. Gamma-Camera [SVML95]. Gamma-Ray [BKT94]. gamut [Gre92c]. Gap [HS94a, SH93, SS94, SH94b]. Gara [War10]. Garbage [Ano94-46, GK92, AP87a]. Garmisch-Partenkirchen [SEA84]. Garmisch-Partenkirchen [SEA84]. Garry [Eva97]. Gas [KY93, KK96a, KR94c, MKG90, Nor97b, Ris94, Tho93c, Ano02a, Ano02b, WQS92]. gas-liquid [WQS92]. Gate [Cha94b, Sch90b]. Gated [TP95]. gateway [OGO+90]. Gatlingburg [SJD96]. Gauge [Dec90, GAW96a, GAW96b, ALN+01, KMB5, MHP84, MKT93]. Gauss
Gbit/sec

Gaze-Free

Gaze

Gaussian

Gel

GenBank

GenBank

Gene

Gene

Gene

Gene/L

Gene/Q

Gene/P

Gene/Q

Genecrunch

Genecrunch

GenEng

General

Generate

Generating

Generations

Generators

Generic

Genome-Wide

Genomes

Genetic

Geographical

Geographic

Geometric

Geomechanics

Geophysical
[CU90, Chr93, SKSD94, WR97]. Georgia
Ano94-108, USE00a. Geoscience
LCP+11. Geosciences [PW05a]. German
[Ano97k, Got91b]. Germany
[ACM91, Ano93i, Ano93-31, Ano94a,
Ano94-75, Ano97d, GH94a, GH94b, GH94c,
HK93a, HWP95, SEA84, WSB96, KSW93].
Get [Bac88, BBWR90, Bur00, Bur01b,
Bur01c, Bur01d, Bur01e, Bur01f, Bur01a,
Coc01, Coc02c, Coc02d, DDJ98a, Pau08,
Ano97k, AL92b, Str94]. Gets
[Ano91s, Ano91g]. Getting
[Ano96x, Cor87, Mye86]. GF11 [BDW85].
GFLOP [Kah92, Ano94b]. Gflop/s
[Ano94b]. GFLOPS
IHE+00, Ano92p, TC93, KG95]. GHz
[Ano03a]. Giant
[Ano92-29, ALN+01, Cat92b]. Giants
[Ano92-30, Dey95]. Gigabit
[Mes93b, Ano90i, Ber95a, NC02, WTC+02].
Gigaflap [ACSH90, Ano88a, DH86a].
GigaRing [Sco96, Wi96]. GIS
[CCSM97, Ope96, SCH94d]. git [JKL19].
Gitta [Ano96c]. give [Tri95a, Tri95b].
Given [SNS95, Chi16]. gives
[Ano90a, Ano90e]. Giving
[Boy15, Uni92b, Uni92a]. Glacier
[CCG+17]. glass [ARF12, Bro17, SKK+90].
Glass-Ceramic [SKK+90]. Glen [Pin01].
Glenda [SBF94]. Glimpse [Egg94].
Glimpses [Sin18, Ano18]. Global
[Ano94-46, Ano94-58, BL93, BK93, Ber95a,
Con91, CSRB90, DJS93, D894b, EFH+00,
HV95, Hun94, Kah97, KGKa93, Mas95,
MTHP93, Mi97a, As98, SLB93, SKN96,
TAKb06, Tay95b, TG94, Uni92c, AISS97,
AUW08, Bur91, Con90, Con88, DGG18,
GBS18, HS+91, Kin96, Lun94, STH+98,
Str94, YQTV12]. Global-Local [KGKa93],
global-scale [AUW08]. Globalizer
[GBS18]. Globally [BHS+02]. glossary
[Ins87a, Ins87b, Ins90]. Glow
[Coc02a, Coc02b, KG96]. Glueballs
[Ano96m]. GMB [Jab90]. GMRES
[FGG09, van95b]. GMRES-like [van95b].
GNU [Coc01]. Go [Han89, Bab94]. Goal
[SBW+19]. Goals [Eck93, Gil94a]. Goede
[Ano94-109, Ano97d]. Goldmine [Ano97g]. GONG
[Bro93]. Good [KKB92, Cla97, Win02].
Google [PSO12]. Gordon [Ano97c].
Gordon [KHHS95]. Government
[Ano89i, Bar01, Bro91b, Coc03a, Coc03b,
Joh94, Spe97]. Governor [Deu86]. GPAW
[RGL+15]. GPGPU [MMG+18, WFJ+17].
GPU [AM15, BWV+17, EBB+20, KSP13,
Roj19, SC20, SCSL12, TMT+20].
GPU-Accelerated [SCSL12, BWV+17].
GPU-based [Roj19]. GPUs [ZBN+19].
Gradient
[Ano94-45, Gre90c, JM89a, KJ85, LPV94,
Man91, Meu87, MT97, Sea86, VAGRMVA90,
And88, Bau88, Gib95, HVY91, JM89c, MS88,
ME91, Meu89b, MP91a, MP91b, MP91c,
Nat86h, SZ89, SM92, Yan92]. gradient-like
[Ano92]. gradient-type [SZ9].
Gradients
[FR96b, FR96c, HFH86, HFH87]. Graduate
[Pan96]. GRAIL [UEGM93]. Grain
[MKSF96, CW99, GW95, Mar91, SFL+94,
TS91]. Grained
[INKN01, ZL97, BBK+08, BL91, FMD07].
Gram [JP90, Poo96a]. Grammar [JC94a].
Grammars [JC94b]. Grand
[BEH+94, Con91, Get15, Sha95a, Sha95b,
SMDL90, Ano92l, Con90, Eck92a, Gro92c,
Eck92b, Gen92].
Grant
[Ano90r, Ano92l, Ano97b]. Grantees
[Ano94-107]. grantees [Ano95v]. Granular
[Go96, HFN96, KK96a, KK95b, LDMC96,
RHH96, RRSG96, SW96, SBSB96, VD96,
Was96a]. Granularity
[Cal85b, CDH84, CSY89, HC91, MRSB94].
GRAPE [Ano94-59, EFM91, Ste94b].
GRAPE-4 [Ano94-59]. Graph
[Ano94-57, Ano94-93, CJ94, HB88, Jab90,
Wal92, FP91, JG88, Sar91, Sch90b, CP13].
Graphic [Gon93, PZGL91]. Graphical [Hug93, NB92, OCVG93, RRSS93].
Graphics [AW93, Ano94-120, ABM88, Bor89, CB99, DHM+88, Don93b, GS87b, IHE+00, IS95, Ill96, KCY93, KP95, LMP+90, LM90b, LMxx, MP91e, RL96, SDB94, SJDV90, ACM89b, An89, Ano93-27, Ano93-28, EM78, tHd90, Kha91, Lev89, Pic88, Pic89, Pic91a, Pic92, PF90, WQS92, Ano94-121, Ano96-29, SS96b, SMM88].
Graphics/Cray [CB99]. Graphoelements [Her95].
Graphs [Ano94-56, OGR95, Pel94, SA82, BP92, GS87c, GP91c, Mil87].
Gravitating [KMN+05]. Gravity [BISB96].
Great [Con91, BB91b, Con90]. Greater [Dal84].
Greatest [Ano96u]. Greece [HPP88].
Green [FBCB18, TKM96, A+12, Ano94s]. Green500 [cFC07]. Grenoble [JPTE94].
Grey [Now93]. Grid [Ano94-94, Ano99, BCHH94, BHWH98, Fos03, GHWH94, Kac02, MAFW08, Man91, Mes00, Moi93, Sch97c, WJC09, Wij10, A+02, BTV96, BV96, CF12, Gri92, KDP+14, KTN+14, MNY90, M+09, Mag10, WF08, CKS99, Coc02a, Coc02b, FK99, FK04, GFB+03, IJM14, KBM+02, KHC14, KCoJ14, MNY90, PW05b].
Grid-Based [BCHH94, GHWH94].
grid-computing [KDP+14]. Grids [Ano94-114, BS94e, Ta96, TMA07, FK98, GKS14, Nec09a, Kra01b]. Griding [TF97]. GROMACS [AMS+15, PCY+19].
Grossrechner [Ano96-36]. Ground [GML90, Ver97, Chi86]. Grounding [AFT96].
GTRAN2 [Vuj93]. Guaranteed [CDR96].
Guarded [KKF96]. Guest [AB01, Ken92, Rit88c, AP93, AB03, BKK11, BEGGK07, CF95, KG02, HP04, Pan93].
Guide [Ano85b, BBC+00, F94, MM94a, Sny99, SSBS99, Wn94, Car98b, EM91, Hill97, Nor93c, PW05b, Wom90].
Guided [CWLT97, HS+90, PK87].
Guided-wave [CWLT97]. Guides [BS98b].
guitars [Ano95w]. Guys [BvR8+11].

H [Ahm92, Hill97, Kaz92, MM94a, Wn94, San95]. H-Bombs [San95]. H0* [GMW94].
Hackers [Yuv77]. Hacking [Coc02a, Coc02b]. Hafnian [BGQ19]. Half [GGW93a, Ano96u]. Half-Space [GGW93a].
halo [BBW19]. halo-swapping [BBW19]. halting [Ano95c]. Hamburg [Ano97d].
Hamming [AW91]. Hampton [HK93].
hand [Ano94-63, Che90b, KK89c, SG92c, SG92d].
hand-parallelizing [KK93]. Handbook [A+12, Guz87]. handle [Ano957x, Ano01c].
Hardware [Ano94-110, Ano94-127, CGSG94, CS99, D95, Fer86, GCY+08, Gru97, HW96, Lei85, MOW96, MSA+07, NdMM09, N+95, OGY91, Sch95a, STSK95, Sm96b, Uch96, Uch97, VH93a, WG91, YSK+96, YMY92, And90c, Ano88r, Ano89p, Ano97-28, BP90, CCG+17, Gok89, GV91, Lav89, LY91a, OR90, SWS+12, UPK87, Ano97c, Ano95u, RN00, Oya99].
Hardware-based [WG91].
Hardware-Efficient [Lei85].
Hardware/Software [CS99, GV91].
Harmonic [DC93, DNV93]. harness [Ano97a]. Harnessing [Sun94]. Harold [Sch88a]. Harrar [CCX90]. hash [Kha95].
[ZS94c, dRC94, dC94, Aba09, AGEL13, AGZ94b, A+02, AB03, Ano91x, Ano93-39, Ano95u, Ano96c, Ano3a, AB96, ARA14, AKM+06, ABMN02, Bad04, BG02, BBM19, Bor93, BGKR99, BPD06, CWD+08, CBB+05, CD98, CG+06, Dam11, DHA+13, DRAB08, DF12, DS86a, Don93a, DRSS99, Duf00, Eig92, Fox98, FP00, Fuj11, GFR10, GMF00, GMSS+11, GL96a, GL96b, GL97, HP91, HPPF94, Ipe19, IS20, KHS88, KS+08, KBBR99, KSM+08, KBB01, KBM+09, KKM09, KCG08, KF00, KW11, LaDS+15, LAL02, LG03, LLR02, MI01, MSH16, MUKX06, MMG+00, NR99, OG+09, ODA15, Pei17, PSS+19, PG+10, RAG11, SVO1, SRS04, STH+98, SEV+09, SC04, Sin00, SHB91, SHL+20, SW99, SDMS99, SO07, TTD+11, VDK+05, WW99, WFJ+17, War03, WLL93, Zor92a, Bra94, Edw97, FSJP95, GKB+96, Lid99].

High-performance [GH94a, HS95b].

High-Performance-Computing [BCC+08].

High-Precision [TKI93].

High-resolution [PMS94].

High-Speed [Ano94-104, GS94d, GMMT91, TFO94, Dao88, NGPH99, Shil95, BBBC96, Che83, Fly66, SGS+20, SO91, KA91, MH94].

High-Speed-Grinding [TF97].

High-Tech [Bar01, CCKSS90, Ano93b, She93].

High-Temperature [FP94, WH94].

Highconverter [AK93].

Higher [Cox88, ML95a, SE92, DWV92, NCKMM88].

Highlights [Ano93t, Waz89, Nat91b, Nat92b, Natxxc].

Highly [DO89, GW91, GKH+91, NK94, RS94c, VHG93, WKF07, YFT93, BWHS18, Gok91, MCH91, Wat72, WCH91].

Highway [Jan96].

Highways [Cze93].

Hijacks [Pat08].

Hill [Bel86, SL88].

Hilton [IEE90, L+95].

HiPER [MCW98].

HiPER-P [MCW98].

HIPPI [Kum94, KNWB93, TF95, VDK91].

HIRLAM [WC93].

Hist [Gar01].

Historians [BF92].

Historical [Asp93].

History [Bra91b, CCKSS90, Leu96, SR93a].

Hit [Ano92z, Ano93o, Ano95-30].

HITACHI

[INKN01, Ano03a, DH86b, IAKH92, KA92, KYSY94, LMM85b, LMM85a, LMM86].

hits [Gep01].

Hitting [Ano96-30].

HITACHI. [Ano92-41, Bec01, Bro01, Ano95-32, TAKB06].

homegrown [Ano95-32].

Homogeneity [Asp93].

Homogeneous [PMS97].

Homogenization [HM93b].

Homologous [LS93c, Lu93].

Honeycomb [RS93].

Honeywell [Ho88].

Hong [IEE94a, Honolulu [IEE96c].

Home grown [Cal12].

Homogeneity [Poe95].

Homogeneous [ALMS92, SW96, TGV08, GHS86, Haw86].

Homologization [HM93b].

Homologous [LS93c, Lu93].

Honeycomb [RS93].

Honeywell [Ho88].

Hong [IEE94a, Honolulu [IEE96c].

Home grown [Cal12].

Honeycomb [RS93].

Honeywell [Ho88].
IITA [Voi94]. IJCNN [IEE93a]. IKBS [Ano86a]. II [LHLM95, SA10a]. Ill-Posed [LHLM95, SA10a]. Illiac [Hor82a, Hor82b]. Illinois [Ano97-29, Dau97, Goo88]. Illustrated [CCKSS90]. I'm [HWG98]. IMACS [LLR93b, LCV90a, LCV90b, VAS82]. Image [Ano92-38, Ano94-143, Ara97, BMSD94, CJHH94, Ems11, Eh97c, Gau94b, Gol99, GS9d, Hcl94, IEE94a, IJIM14, JB90, Oywk91, Prrs94, SVML95, Sch93a, Sksd94, Wn10, Wgr93, Y+92, Zm94, Ano90a, BcG14, Hcps95, Oma+96, Sa90, Wes89, Rrss03]. imagery [Gig94]. Images [CDA94, Hes90, Oll96a, Br95]. Imaginary [Arw93b, Cra96, Arn88]. Imagine [Ano94-63]. Imaging [Ano94-136, Egg94, Jbwb97, Pet97, Ano91t, Ano95w, Cnc+08, Dje95, Lm13, Nat85, Yw94]. IMB [Scg+08]. imitations [Pet97]. Immersion [Jlc98]. Immersive [Coc01]. Impact [Ano96t, FNP+84, Fbcb18, Glo84, Gf90, Her89, Hplt01, Lc90, Nat88b, Pie91b, Pou88, Sma93, Td90, Csy97, Cvf92a, Cblys13, Du90, Gal87, Wad+9a, yhy92, Mt13, Nat90, NdLv88, Pol88a, Pol88b, Sta88, Uni92c, Wib88b, Wad+9b]. Impacts [Str94]. imperfect [Gib01]. imperil [Ano95l]. Implement [Hcl94, CdG+06]. Implementation [Ass93, Ahp97, Akg87, Ano94-31, Ano94-45, Ano94-64, Ano94-74, Ac84a, Ac84b, At93a, At93b, Bak99, Be93b, Bs92, Bch+93, Bchj94, Cal96, Cghl94, Cf94, Cbt91, Dl92, Djsp93, Dd99, Dlmw95, Dra95, Efr+05, Fg87, Fktt97, Gg96, Hlds95, Hgs88, Hf94, Hof93, He98, Jab93, Ks95, Kmb90, Knys95, Lq96, Lldf95, Mwb95, Mch94, Ms94b, Mt97, Ms93, Nr86, Pbdm93, Pr94a, Ph94, Sar91, Sl93, Sf93a, Swj95, Ssbs99, So95, Tcjs93, Tem88, Tw92, Tz91, Tze88, VpGG01, Wic96, Wc93, Yw94, Aac+05, Ano88, Ara14, Bar88, Cyg86, Gv96b, Gl96a, Gl96b, Gl97, Ho91, Hol90b, Hltz93, Kan15, Knh16, Lfj+20, Mik89, Mhp84, Ps903, Ram86, Sam85, So91, Tcm95, Tr86, Tmwh95, Zcpt00]. Implementations [Aabk95, Bhec94, Dl90, Mrar95, Saa93a, Sim92b, SB94d, Cgl92, Ecc96, Gir91, Pe93, Su91, Wt11]. Implemented [Kh87, Pk94, Pk89, Whe83]. Implementing [Agel13, Agk+87, Ano94-51, Dk86a, Gl93a, Gl93, Mac96, Pcm84, Shmh97, Wlk95, Wcz+18, Wij89a]. Implications [Gs94d, Mg95, Mk07, Xoz+20, Ke85]. Implicit [Aj93, Bamb93, Hfh86, Hfh87]. Importance [Mb93, Cmwh91]. Important [Pet89b]. imprerecise [Pal15]. Improve [Ct93a, Cb02, Mf97, Ano94-132, Ano95w, Dccf01]. Improved [Ano90k, Ano94u, Ano94-65, Ano97a, BB98, Gw93a, Ima93, Vr94, Ano97-32, Cv91a, Eb18, In86, Nq90]. Improvement [Bkt94, Ihsk93, Wkh00, Jp90, Nns+90, For89]. Improvements [Af97, Ctrr93]. Improves [Jon19]. Improving [Ano94-66, Bjv+16, Ftp96a, Hic18, Lcd97, Mtl19, Ogr95, Yzl+16, Sl92]. IMS [Hms87]. In-Core [Mtk93, Pp93]. In-Cycle [Rck97]. In-Cylinder [Ag+90, Yyk93]. Inaugural [Pin99]. Inclined [Bisb96, Dsb96]. Included [Td90]. including [Rol97]. incomplete [Eij90a, Eij90b, Eij91]. Incomprehensible [Vui93]. Incompressible [Dlpq94, Glo89, Hgc94, Zbn+19]. Incorporating [Wfj+17]. Increase [Ano88q, Jan96]. Increased [Inkn01, Dk90]. Incremental [Ano94-57, Ano94-93]. indefinite [Lon90a, Nan86, Saa88]. Independent [Ano94-141, CGW05, Nms93, Ogr95, Pp92b]. Independent-set [CGW05]. Index [Ano90c, Ebs88, Vv94, Cckss90]. Indexing [Vv94]. India
[Bal94, IEE97a, Pil93, Ano86a, Ano78a, Mah94a, Pra95, SR94]. **Indian** [Ano96o, DB94, SB94a]. **Indiana** [KWW92]. **Indices** [SYG94]. **Indigenous** [Nee94]. **Indirect** [OM91, UT91]. **Indirections** [UZ95]. **indispensable** [Mil88a]. **Individual** [Ano93o]. **Indoor** [WvTB+07]. **Inductances** [NBGS96]. **induction** [AH90]. **Indispensable** [OM91, UT91]. **Indicators** [SYG94]. **Indigenous** [Nee94]. **Indirect** [OM91, UT91]. **Indirections** [UZ95]. **indispensable** [Mil88a]. **Individual** [Ano93o]. **Indoor** [WvTB+07]. **Inductances** [NBGS96]. **induction** [AH90]. **Indispensable** [OM91, UT91]. **Indicators** [SYG94]. **Indigenous** [Nee94].
50

[DD93, HS+91, MRAR95, GL88, LG87].

Integral-based [LG87]. Integrals [EBS88, SB81, SB82a, FSY88, RWL+98, SB82b].

Integrate [LC95]. **Integrate-and-Fire** [LC95].

Integrals [EBS88, SB81, SB82a, FSY88, RWL+98, SB82b].

Integrate [LC95]. Integrate-and-Fire [LC95].

Integrated [EFPSS93, KWH94, KSTF94, NW97, OMA+96, PDR91, PL91a, PL91b, RL90b, SB94b, BMH94b, GV91, Gua88c, HCD+18, Hod87, JG88, PZGL91, YKY90]. **Integrates** [FXAC94].

Integrating [Ano94-102, Bae91, DPS97, HB96, LCH87, PS96, YSL97, OGO+20]. Integration [Ano94-68, ATSA93, CV93, DGBE96, DDLV93, Fri95, Gil93, JG99, Lan93, Leg94, RSB94, Taf96, Par90b, And89].

Intel [Eck93, AABK95, Ano90n, Ano91p, Ano94b, Ano94h, Ano94-117, Ano97k, Ano01c, Ano03a, Bab90, CM95, DAC+18, Fri91, GFM96, GGG+98, Gro93, Gut95, GAW96a, GAW96b, HL96, Hay89, HCD+18, HFCM98, Hoc94, HL93b, IAIK92, JHZ95, Hod87, JG88, PZGL91, YKY90]. Intel/Paragon [Wat95].

Intelligence [Ano93b, SEA84, Siri94, Tho93a, CC88b, HD89]. **Intelligent** [ATSA93, CSPJ97, Cze93, Dil93, FT93a, FNL93, GY93b, GL93b, GBK+96, KA93a, KG94, KTNM93, Siri94, Chan87].

Intensive [Ano94-38, GCY+08, MPT12, MH96, SM17, SC04, UL89, YFY+13]. Inter [DL96]. Inter-Vector-Conflicts [DL96].

Interaction [Dip96, RED94, BB87, LI90c]. Interactions [ML95a]. Interactive [Ano94-28, Bli91, FCCG90, FK93, HED93, LMP+90, RRSS93, SGB91, WKFFK97, Wil92a, YF95, Ano89h, Kha91, MB97, SCH94d, WvTB+07, WTTE92, Wil90b].

InterCom [BGPS94]. **Interconnect** [JS95, KGB+96, BMH94a, SWS+12].

Interconnection [CJ94, CEH+12, CTD+16, GVB95, GS94e, MC98, OA94, Sie90, TVT+16, Abr90, ABC+05, Fid91, yHYZ87, Tur89, TYZ85, Tze86, TYZ88].

Interconnections [DG95, Goo97, Wat92a]. **Interconnects** [ADG+08, CG96, Clo96, Wi96].

Intercooler [BPW97]. **Interdependence** [Mit96]. **Interest** [DAF+90]. **Interface** [Ano94-41, Ano94-74, Ano94-124, Ano97q, BB98, FBA93, G1e93, Gon93, Kar93, Kum94, PR94a, RRSS93, SP94, TYK93, Y+92, YGSB94, Ano94-135, Ano95v, Bru90b, BMH94b, DLM99, FTT97, GG88, KDP+14, KGERJxx, Nag90, SWJ95, Sue89]. Interfaces [Sm95, Sm96b, Sm96c].

Interference [OL86]. Interferometric [SPGD98, YWD94, YWDxx]. **Interim** [Sar90]. **Interior** [Ano94-91, Bro91d, LB94b, SD88].

Interlanguage [Mac91a]. **Interleaved** [SL92]. Interlinked [Kra88]. Intermediate [GP91b]. **Intermediates** [RLKW93].

Internal [Ano90l, GW93, HK97, Tak94]. International [ACM88, ACM90, ACM91, ACM92b, ACM92a, ACM93, ACM94, ACM95a, ACM95b, ACM96, ACM97, ACM03, ANS92, AGP96, Ano88v, Ano90f, Ano91m, Ano91q, Ano92g, Ano93g, Ano93i, Ano93-31, Ano93n, Ano94p, Ano94-75, Ano94-108, Ano94-134, Ano96k, Ano96a, Ano97t, Ano98b, Ano98c, Ara96, Bal94, Bel86, BP93, BH92b, CL91, CBCH93, DSZ96, Elm95a, Emn84, Emm85, FJS95P, GH94a, GH94b, GH94c, GL90, Goo97, GT94, Guo94, HS+91, HMR94, Ham94, HS95b, HS95c, HPP88, HBCN95, IEE85, IEE93a, IEE93b, IEE94a, IEE95b, IEE96b, IEE96c, IEE97a, Ill96, KK87, KK88, KK92a, KK93, KMG96, KSW93, KK92, LP90, Lid96, L+93, Lim93, M.I87, Mar86, Mar88b, MM91a, M+95, MB93, MB94b, NBC92, Pit90, PH95, Pow97, Pra95, Ro596, SN96, Sie94, Sig90a, Sig95, SJ96, IEE94d, SR93b].

International [Tho93c, Uni87c, WG93b, Wuo94, ZAS94, Zyg93, Ano93-39, BBM96, BP89b, Cha94a, DDC96, IEE95d, JPT94E, KK85, LCH96, JIS94, ML95b, Pou88].
Knowledge [KS94a, RC94, SB90, STN93, SK93b, YSL97, Bar88, Cre91, Das94]. Knowledge-Based [STN93, Bar88].

Korea [Ano93-38, Ara93, CC94b, Ele93, Fos93, JAB92, Kar93, KNYT95, NB92, PCM84, Rob94, RCZ93, Tri93, Tzu91, Bec90, BCH+93, CS93a, DHA+13, Gok98, Gua87b, Gua88a, Han94, Joh88, Kei85, LG03, RR99, Rob87, SK93a, Sch94a, Tur79, HAG+13].

Languages [GPKK82, IKM85, JC94a, KRS13, PB90, Zin96, Feo92, PHK88, SWS+12, SMR10]. LANL [Ano95y]. LANs [MKS96]. Lanthanide [CS94b].

LAPACK [AF97, Dem91, Don91, GB90]. Laplacian [Sat93]. laptops [AMS+15].

Large [Ano96q, Ask93, BPJ94, BBC92, BB+89, Cap96, Che83, CDC+87, DAKM98, Ede94a, GG+98, Go99, GZA86, G93, HWS+88, HK93a, HFH86, HFR87, IHSK93, Iwa92, KS93b, Lu93, Ma99, MS97, Mar91, MR87, OS94, PB90, Rui91, SB90, SkLC+03, SKK+90, Sob93a, VAGRMVA90, WB85, WVB88a, WVB88b, YZL+20, Zia01, Zor93b, van95b, BAAD+97, BtR95, B+89, BS90b, BJ84, BY88, CH87, Che90c, Che93b, Che89c, Che99, DSS96, Du90, GW95, GHdF10, GP86, Gra92, GKL+87, HRC09, HOS97, HY89, IU87, Jor87, Kos95, LPD+11, Lee87b, LXW+16, LW94, MP91a, MP91c, NNS+90, NP90, Rob85, Sie90, Sob92, WT11, WT13, YTL87, vdV91, App96].

Large-Eddy [PSB01]. Large-Scale [CDC+87, DAKM98, HWS+88, OS94, Rui91, SkLC+03, WVB88b, YZL+20, Zla01, Ano96q, Che83, GZA86, HFR87, MR87, WVB88a, Che90c, Che93b, Che89c,
Che99, DSZ96, Duf90, GHdF10, Gra92, Jor87, Lee87b, LXW+16, NP90, Sie90, WT11, WT13, YTL87, App96]. Larkfield [Ano94p]. Laser [L+95, Sch92b]. Last [Pou94a, Pou94b, Ano97w, Zen99]. Late [DT96]. Latency [Ano94-124, CMHK92, Sni01, Ano94-135, Lil91]. Lateral [MFK94]. Latest [WJ94, Ano95h]. Lattice [AGLL98, Dec90, GAW96b, KK96a, KMG96, KR94c, MKND97, ALN+01, CRA10, DM96c, KMS5, MHP84, PMS94, GAW96a, KMG96]. lattice-based [DM96c]. lattice-Boltzmann [CRA10]. lattice-Boltzmann/finite [CRA10]. Lattice-Gas [KR94c]. Lattices [RMH93]. launches [Ano03a]. launching [Ano01c]. Lauritzen-Spiegelhalter [Ano94-95]. Lausanne [Ano97-33]. Law [Gar01, Bar01, dRSGS16]. Lawrence [CH89a, WMBC97]. Laws [VMS93, Dum97]. Layer [BNSP99, Ano95w]. Layout [Kul94, SIKD94, BGH+05]. Lead [Bel96, Dau97, Gui05]. leadership [JOK+18]. Leading [Hei89]. Leads [MMRL93, MHE97]. Leakage [BMP93]. Learn [Bur94a]. Learned [Con11, MWO95, SB94c, DRB+20, Gil94a]. learner [CFP20]. Learning [CCKSS90, Che93a, Die95, Eis95, GCS94, GGBR95, HS96, HSxx, KSTB94, KDBG95, MPH93, Opp95a, SR94, EP 97, Ipe19, KSB+19, Ma99, MTK93, Meh94, MM94c, NJL94, NGDH96, OS94, PS94a, PS94b, PK94, RCK97, SC92, Van91b, VD93, VAGRMVA90, WN92, WNKS96, YA93, AD88, And88, AS88, IBC+11, IM96, IMA93, Koc93, KCOP94, KRS13, Rag06, Wal92, AMS+15, Ana91, Ano91h, Ano91v, Ano94-120, BSJ+13, DD90, GP93a, GB92, KW11, Loo84, LM13, MAFW08, RF93, Sch90b, TTD+11, TZY88, VSH00, Vaj91, YKS95, DD99]. levels [FMT91]. Leveraging [BBW19]. Lewis [MF93]. lexically [BG82]. lexicographic [RS94b]. LGA [Cha94b]. liabilities [ZCPT00]. Libraries [CDPW94, IE93c, JM93, PPG94, Bis94a, Don93a, HLJT93, MP92, STH+98, TTD+11]. Library [Ano87a, Ano94q, Ano94-74, BGP94, Dec90, Dem91, Don91, EHG95, GFB+03, Lay91b, RW94a, SL99, WN10, ZW02, AC91, ABMN02, Ham90, Mic90, AF97, BCH94]. Library-Based [Ano94-74]. Life [Che92c, Che92b, ES88, Poo96a, Str94, CCKSS90]. Lifetime [Coc01, Rit97]. Lifts [Bar00c, Bar00d]. ligand [ZEC+17]. Light [Bar00c, Bar00d, Del97, Fei05, Mik88h, Ano94s, Ano92a, Ano92b]. Light-Emitting [Bar00a, Bar00b, Ano90o, Yan92, van95b, WBS5]. Likelihood [Mis90, YOY97]. Limit [PA93a, Ber82, SA10a]. limitations [Blu92]. Limited [PS94b, VW95, WCG94, YJD93, HY92]. Limits [CCKSS90, EM94a, GB96, Moh94, RJ13, TMP94, ARF12, Bel92a]. Line [Bel93, EFPS93, GSG+94, HRG93, RW94b, TW92, Ano94-27, CKS99]. Linear [Ada93, ALPP00, Ano94-61, Ano94-93, Ano94-94, AJ93, Bea90, BCZ95, Cal81, Cal86, CDH84, Che92a, CDW94, Cla96, Dem91, DS86a, Don91, Don93a, Dub87, Duf82, Duf91, Ede94a, GMW94, GT91, Hks89, HL96, HO92b, JML95, JC94c, Lan94, Ma99, MTK93, Meh94, MM94c, NJL94, NGDH96, OS94, PS94a, PS94b, PK94, RCK97, SC92, Van91b, VD93, VAGRMVA90, WN92, WNKS96, YA93, AD88, And88, AS88,
Ano87d, Ano94-109, BR95, Bra89c, BS90b, Che90b, Dav86b, DD88, DHD89, Don85, DH86a, Du00, FJ91, GJM86, Gal87, GPS90, GMW91, Ga06, GW95, HOSZ97, HVY91, Ipe19, KS86a, Kor93, Lou90b, Lou92, Mc85, PK89, Rob85, Saa88, Sam85, Sz89, Sch87a, SG92d, Sim00, SE98, TFB94a, TFB94b, Van95a, WHBH93, Wil90b, Yan92].

Lines [Ano03b, TJ94]. Linguistic [Bar93b, CV93, MGA94]. Link [PDR94, Ano94-135, DFSZ88, Natxxe, PT92].

linked [KG95, TYZ89]. Linking [DLG93]. Links [Cra91, KNWB93]. Linpack [DZM+13, RRMD94]. Linux [Ano01b, USE00a, USE01, Bae01, Bar01, DDJ98a, Luc01, Lum01, Ste01b, Ste02].

Linux-Basis [Ano01b]. Liquid [Gre91b, JYJL94, NCV96, Pop97, WG93a, Gre89b, WQ92, CSB89]. Liquid-Liquidized [NCV96]. Liquid-Nitrogen-Cooled [CSB89]. Liquids [BCCG97, Fin82]. LISP [Ano94d, Ano94-65, BBL95, CR94, CMF94, FT94, HL95, HS93b, K94, KK95b, LH94, Raa97, RS94c, Tri95a, Tri95b, Tr95c, UT91, VR94, YKB+00, BAAD+97, CD09, CG87, EB18, FG06, MD04, Tri95a].

Load-Balancing [CR94, FT94, Tri95b, Tri95c, Tri95a, EB18, Tri95a]. Load/Store [UT91].

Loading [ACL93, BPU94, BPUS94]. loads [CGLY96, CGLxx, Chem]. loan [Ano89].

Local [ALM93, Ano94-35, Ano95-27, AM96, BL93, BW96, BGM+11, Cal86, CSM97, DAF+90, Han03, HV95, HNST93, KG93a, Kon93, KG95, MD94, SVD96, GHLN87, GV91, Han90, KHS88, Kon87].

Local-memory [GHNL87]. Local-memory-based [Cal86]. Locality [Ano94u, GAV95, KM92, OCR95, TJ94, Y90]. Locality-Improving [OCR95].

Localization [YK96]. localized [Ha88, Ha90a]. Locally [BHS+02]. Locating [BCC97]. location [BGT90]. Localized [Hai97]. Lost [Ano94-96].

Lot [HW98]. Lotto [QD91]. loud [Dn92].

love [Day12]. Lovelace [Coc02c, Coc02d].

Lovell [MB93, MB94b]. Low [AM93b, Ano94-124, Ano95-28, BLM95, BS98a, FS93a, For93, Lee84, NW97, SKS04, Str94, Wal92, Ano97-32, Ano02a, Ano02b, DDT95, EO13, KFN02, Sma95, SCG+13, TF15].

Low-cost [Ano95-28, Ano97-32, Sma95, TF15].

Low-energy [For93]. Low-Level [Wal92].

Low-life [Str94]. low-overhead [EO13].

Low-power [SKS04, KFN02]. low-voltage
\[\text{[TSSK94, WD93b, Bru90b, Chexx, Ham90, HA90b, JT91, Kue87, SG92b]. Manu\text{-}facts [Ano95-29]. Manufacture [BJH97]. manufacturer [SH91]. Manufacturing [Ano93b, Ano94-107, Hug93, KWH94, KSTF94, Lj97, Raw97, Bra89d, HG88]. Manuscript [BF91]. Many [Cal85b, EFM91, YZL+20, Ano89a, Ano93u, Che90b, HCD+18, KNHN16, ZBN+19]. Many-Body [EFIM91, Ano93u]. Many-Core [YZL+20, KNHN16]. Many-processor [Cal85b]. Map [OCVG93, RPY94, Rig93, SHA+92, Gla93, SS07]. Maple [Mon88]. Mapper [AM93c]. Mapping [Ano94t, BS94d, CT93b, Cha93, CP94a, CM93, DDLV93, HPLT01, IM96, KK93b, KESH94, LC93, NB93, Pel94, SH90, SGIS93, WAM+01, Who92, Ano91, CD08, KTN+14, KSB+19, SL88, Whe92]. Maps [AGD93, FC93, LB93, Din92]. March [AU87, Ano90f, Ano93a, Ano95u, Ano95-38, Ano96-44, Bel86, HBCN95, IEE95c, JRT87, Joh86b, JD95, LCV90b, LCV90a, M+95, MP92, Uni87a, ROMO96, S+93, SC93, Vag88]. Margherita [ACM95b]. Marine [MMG+18]. Mark [Ano94-130]. Market [Ano90m, Ano90p, Ano92-30, Ano00b, Gre94, Her90b, NDLV98, Ano92w, Ano92-29, Ano95h, Bra89d, Her90a, In81, PF90]. marketplace [SDMS99]. markets [Uni92c]. Markov [BM93b, DS94a]. Mars [Pic92]. Maryland [Uni91a]. Mask [Kok94]. MasPar [Car94b, PS98]. Mass [Ano93t, BOS97, GD97, Hal87, IEE95d, Ano90c, Nat87d, Par90a, SSSS96]. mass-parallel [SDMS99]. Massachusetts [Ano94-107, MB93, MB94b, Lun94]. Masses [DD02]. Massive [ARF12, BS98b, CP13, LHL95, PT93, KTN+14, LA+95, Sim92a]. Massively [AK95, ASS93, AABK95, Ano94-46, AFT97, Bak93, BJIW95, BÇG14, Bur94a, CIN+08, CS94a, DKS93, DXJM93, Eck93, FBZ92, Feli94, FCBH95b, FCBH95a, FM93, Gok92, Goo97, GD97, GVBC95, HL93a, Hel92, HK93a, Hi91, Hi92, HYL+04, Ike95, IGH95, Jab93, JA92a, JA92b, JM93, KNHN16, KC93c, CRJ93, Kra90, MM93b, MOOK94, Mor91, NB94, SAB94, SB96, Tan95, WMBC97, WCG94, XMR92, YWD94, YWDxx, Afu90, Ano92i, Ano93c, Ano95p, Cre91, CK92c, Din93, EAMS95a, EAMS95b, GP90, GH95, HLDS95, Kan15, Kra92, Loo84, LLDF95, PS98, RGL+15, Sca92, Uni93, Was96a, YW94, Zor92a, dR94, dC94]. Massively-Parallel [ASSW93, SB96]. masterPlan [Kul94]. Match [Ano93r]. Matching [Bel93, CP94a, Nat88a]. Matchup [Smi95]. Material [Ano92h, DA97, DH93, SBSR96, CK90, Was96a]. Materials [Ano94-107, Gal93, KK95b, SSJL94, Sil91, WAD+09a, Nat88b, SCK+00, WH94, Wil88b, WAD+89]. Math [DD98b, EFG+05]. Mathematical [Ano97t, DC93, DLMW95, HM97, KSW93, NH1, SKVZ93, Soe94, TYK93, Poo96a]. Mathematics [ALPP00, JM93]. MATLAB [DP96]. Matrices [Ano94-92, Ano94-94, BGQ19, Che92a, ETV6, GG96, ALPP00, Bis94c, Che90a, Che91, Con86, CB98, GSZ91, Gan86, HL92, LTT92, Luc91, Pin91, Wij89]. Matrix [ALPP00, CHL93, CLY+19, CP93a, DD87, DDB+10, DR81, DR82, FY96, GS88a, GS89c, GR94, HS99a, HL93a, HL93b, KSH94, LPV94, L95, Mis90, NGLP96, SL99, TB99, USZS96, WAM+01, AGZ94b, Bai88, CC88a, CS93, Fu99, HL92, Kra90, K92, LC90, Phi85, SW88, SB81, SB82a, SB82b, TT93, Yuan90a]. matrix-multiplication [AGZ94b]. Matrix-Vector [DDB+10, LPV94]. Matter [DCWH07, FGM+03, GZE+05]. Maui [Ano94-77, HBCN95]. MAX [CG86]. maxflow [BÇG14]. maximally [Gao86]. maximin [LR88b]. Maximizing [Bro00, CWW94]. Maximum [Mis90, BB87]. MaxPar [Che92a, Ho92a].}
Maxwell [Taf96]. May
[ACM96, Ano88q, Ano88v, Ano93g, Ano95q, Ano97h, Bar01, COS99, Cra96, De 96, DHT89, Fer83, Gro90, HS95a, HS95b, HS95c, IEE94b, IEE94c, IEE95b, KK99a, LM92, PEH93, Sch97a, Uni91a, Ano95l, Ano95w, Bau96, Gil01, WZB86].
Mazda [AKT90]. Maze [Mik94]. MC2 [DTV00]. McCormick [Wei90]. MCNP4 [SF93a, YFOT93]. MCSPARSE [GMW91]. MCU [Bal93]. mdb [DKF94, EM91]. MDIONS [Fin82]. ME [Wuo94, Bar00c, Bar00d]. ME20 [Ano94p]. mean [DF90a, TFGERJxx]. Meaning [Bar93b]. Means [Hel96, Pay97, YZL+20, Bel93]. Measure [GA95, Lu93, YH90, Yi90]. Measurement [KT94, KNW93, Mit88, NSP94, Wil88a, EHHS89, McG87, OL86]. Measurement-based [Mit88, McG87]. Measurements [CU90, DCW93, KBC+74, RCR93, Ano87c, BL91, EFR+05, GJW91, Hoc85, Mal86b, Riv90, SZG95, Tem89a, Tem89b]. Measuring [Ano88i, DP91, SBZ+08, DMW87]. MECA [Sol84]. Mechanical [BP94, K93a, KWH94, KA93b, Shi95]. Mechanics [Bra93, CNGR90, HFH86, HHH87, MKB87, Nat84, Opp95a, Sch97c, BP86, Hab92, WHBH93, Dra94a]. Mechanism [BCW93, MTLL94, TNIA92]. Mechanisms [Gre88a, GW93b, GW93h, Con00]. Mechanization [Hal87]. Mechatronical [HHGS93, KP94, RW94b, SP94, YS94]. Mechatronically [FT93a]. mechatronics [Ano94a, Ano94-75]. MED [Sal95]. Medal [Ano95w]. Media [Ano93q, App95, GD97, KK96a, OS93, PH97, PC97, WABD97, Bas95b, KMN+05]. Medical [HCPS95, LLSR02, OMA+96, JD95]. medical-image [OMA+96]. Medicine [Ano94v, SR93b]. Meditation [Sal97]. Mediterranean [De 96]. Medium [Bur91, GJS94, GGW93b, GNJW93, JWG93, MH94]. Medium-Range [GJS94, Bur91]. Medium-Scale [MH94]. Meeting [AAIA94, AMS92, Ano95q, Ano97m, Bor92, DLM99, Fry97, SEA84, Ano95-38, Ano98a, Cub95a, FJSP95]. Megaflops [Lee89]. MEIKO [SN95a, SN95b, BCM94, BHM94a, Hoc94]. Melbourne [KM96, ME96]. Melecon [De 96]. Mellon [Ano88m]. Members [Ano97c]. Membership [Fin82]. Memberships [Ano98d]. Membrane [KW95]. Memories [WSP95, Yan93, Bre87, Cat92b]. Memorium [Ber96]. Memory [Abr94, ASSL11, AM15, Ano88j, Ano94f, Ano94t, Ano94-49, Ano94-45, Ano94-43, Ano94-58, Ano94-84, Ano94-85, Ano94-90, Ano94-139, AZ94, BIR94, BCGH94, BGM+11, BC95, Cal85a, CGSG94, CS84, CS86a, CV95, CW95, DL96, DS96a, DLHG98, DHHW93, DVWH95, ELJ90, EHS94, FBH94a, Fr94, GM94a, GB96, GMG94, GL93a, GS94d, HKT92, IG95, JML96, KAB95, KV96, KCP95, KB96, Lee94, LPV94, LM98, LCV93, Mah94b, Mc94, MH96, MS94c, MH94, MK97, OH92, OB95, OB95b, PB95, PR94, PM95, PV95, SK1Y94, SK1Y97, SNS95, ST92, SLRP95, SO95, TSCG94, TH94, VFK+04, WAM+01, Who92, XB96, YFOT93, AP97a, AGZ94b, AP87b, Ano91h, Ano97k, BMD+20, BHM94b, BF92, Cal86, Cal88, Cal96, Car93, CGL92, Che93b, Che93c, CH92a, CH92b, Con88, Cre91, Cr96, DL92, DH91a, DH91b]. memory [DI88, EE93, EHHS89, GJM86, Gal87, Gal88a, GS88a, GJG88, Gal89b, Gal91, GL88, GJS7, GHNLS7, Gle91, Gol92, GH95, GGV90, GTV91, Gra92, GL96a, GL96b, GL97, Hir92c, Hus86b, KFW94, Kon91a, KY91a, KY91b, KFN02, KA96,
Lee86, LYL87b, Lee87b, LR88a, Lil91, Lim91a, MR87, ME87, MS88, ME91, Mit88, NG92, OL86, OWG+13, Par90c, PS88, RMM87, RG92, Saa87, SFL+94, SL92, SG92a, SS90, SO97, SY91, TYZ89, Tho90, TV88, TV89, Tur89, Yan90a, Yan90b, Yan91, YH92.

Memory-Adaptive [EHS94].

memory-conserving [SG92d].

memory-saving [Par90c]. Memristive [Ipe19].

mere [Poo96a, SF82].

merge [WZ87].

Merged [Coc03a, Coc03b].

merging [Ano95p].

Meritorious [Pin99].

Mesh [Ano94-53, BE93b, IMA93, TM94a, YK93, EAMS95a, EAMS95b, FMD07, Fuj11].

Mesh-Generation [YK93].

meshed [Wil90b, Wil92b].

Meshes [Ano94-76, CCSR92, Gal96, JP94, PP90, SJPS94, SJPS96, TS94, TM94b].

Mesoscale [DXJM93, FA93, FM93, Gro92a].

Message [Age95, ABBB94, Ano94-39, Ano94-40, BCM94, DS96a, DHHW93, DFWW93, GB96, Gle93, HLB94, HPLT01, IHIS91, PDR94, PR94a, Sak02, SN95a, SN95b, ZHG94, SABJ94, SSOH95, VSM96, YG92, AA5+05, DLM99, MR87, Saa87, SW94, CO94].

Message-driven [SN95a, SN95b].

Message-Ordering [PDR94].

Message-Passing [ABBB94, DS96a, HPLT01, SABJ94, VSM96, AA5+05, CO94].

messaging [KC95].

Met. [Wil93].

Meta [Ano92s].

Metabolic [OCVG93].

Metabolism [Hei89, HL91, HLxx].

MetaCenter [SSH96, Bor94].

metacomputer [vL99].

Metacomputing [KNS97].

Metal [KD93, Nor97b, Ano93-37].

Metallic [BS97].

metamorphosis [Sha96].

Meteorological [BM93a, Gro92a].

Meteorology [Che94b, HK93b, Kan93b, KH93]. Method [AFT96, AHP97, ABC97, Ano94-45, Ano94-116, BL93, BJLW95, BV93, DD93, DMP93, EJ97, FS93, FBA93, FI93, FZM91, FHT+97, GG96, GW93a, Gre90c, GZA86, HL96, HM93b, HGS88, HC93, JV93, JM93a, JM90, JC94d, KY93, KGK93, KOD93b, LOC97, Men87, ML93, MF92, MKK97, Nag94, NSY94, NdMM09, NBG96, Now93, OMR93, RMP93, SMMG85, SSKa93, SAGS93, SO95, SUS93, TK93, TN93, U93, VAGRVM90, VOG93, W93a, WRW93, XL94, YA93, Zas93, Ano87d, Ano90l, BB87, Bau88, BGT90, BBK+08, BB91b, CH97, CS88, Che88, CS89, CH98, Ce90c, Chi86, Chi89, DL92, EK98b, GZ91, H91, HP95, JM89b, JM89c, KS86a, Kan15, Men89b, MP91a, MP91b, MP91c, Nat86b, OYK+14, PP92a, Roj19, Sch87a, SM92, SG92e, SG92d, St895, Vez95, W83, SYS93].

Method [Wat95].

Methodological [GY93].

Methodologies [EAMEG11].

Methodology [ATSA93, GB92, HCV97, IK82, KHH94, NMS93, Eig92, JY92, TS90, W+12].

Methods [ALM93, Ada93, AKT90, Ano94g, Ano94c, Ano97t, Ber90a, CT93b, CLP93, CPR93, DAF+90, DL90, FS93a, FGKT97, FI93, GT91, IH93, JW97, KSW93, Last92, L98, MKDY90, ML95a, MS94c, MR90b, PHV95, RAP95, RCR93, Saa93a, Sch93b, Sb93a, SC92, TK93, V93, War93a, Wei90, WD93a, Ach99, And88, B+93, Bra89c, BS90b, BS97b, Bur94b, Car89a, D+95, FFM95, Fra90, GS90, GS92a, GL90, HS+91, Ho91, HGS91, J91, Joh91, LG87, Lou90a, Lou90b, Mac96, Mc98, PGK+10, For93, Rob85, Saa87, Saa99, SZ98, SB92, Svo93, Tze88, UP97, Va88, Van95a, WB88, Yan92, Y90, van95b, vdV91].

metric [Mar88a].

Metrology [UU94].

metropolitan [BBBC96].

Mexican [Bar01].

Mexico [New91, Ano94-126, C+97, Fra94, NAS93, Met86a, New95, Sie94].

MFE [Chi86].

MHD [AAS88].

MHz [FB91b, H+00].

MIC [DW97].

MIC [PCY+19, WCZ+18].

Michael [Ano94p].

Michigan [BOS97, IEE95b, University].

Micro
Microprocessor-Based [HMS86a, HMS86b, Hsi91].

Microprocessors [BH93, LCP11, Asa98, Per87, WZB86].

Microscope [Sil91, Ano02a, Ano02b].

Microscopic [BM96, MJH90, BGMR96].

Microsoft [Ano01c].

Microstructure [Sil91, TFVK94].

Microstructures [Gol96].

Microtasked [MSTK93].

Microtasking [MBB91].

Midrange/Mainframe [Ano92q].

Midwest [Ano93a].

Military [Jon96], millennium [Nat95].

Milliarden [Ano97e].

Model [AM93b, AH93, Ano94a, Ano94v, Ano94-58, ABM88, BM93a, BSJW96, BMP93, Ber95b, BPW97, CU90, CGW05, Che90c, CLY19, CSRB90, DJSP93, DXJM93, DS94c, FM93, FI93, HT93, MM93a].

MOC [Chi86].

Mobile [ABM+04, GIBGA93, MGA94, WMMC10, XZC+20, Liu12, MT13].

Mobile-cloud [XZC+20].

MOB [NJJ94].

Mitsubishi [Ano03a].

Miura [War09]. Mix [Ano93r].

Mixed [Ano94y, Div97, LM93, LG03, Ano93v, Roj19].

Mixed-language [LG03].

ML [KSM+19].

MLSL [KSM+19].

MIN [CRV94, TV89].

Mind [Ote02, Tay95b].

Mine [Gal89a].

Mineral [Las92].

Mini [SS96c, WQS92].

Mini-Computer [SS96c].

Mini-supercomputer [WQS92].

Miniaturization [Ano97-32].

Miniaturized [SVML95].

Minisupercomputer [Rav92, Rav95].

Minisupercomputers [Ano88b, HB89, WSL88].

Minisupers [WZ87].

Minneapolis [B+89, JT87, MW88, SF91].

Minnesota [Fin94, B+89, MSCxx, Min88, MW88, Pro94, WL94, Min92].

Mipurac [HA92].

MIPS [Cre91, KFB91].

Mira [CLK+13].

Miracle [Ano94-77].

Mirror [Ano94p].

Misleading [Bai92].

missions [Ano97n].

Mississippi [IEE93c].

MIST [Ano93b].

misunderstanding [DMV87].

Mitaka [MN91].

MITI [NW03].

Mito [Ano90f].

Mitsubishi [Ano03a].

Miura [War09]. Mix [Ano93r].

Mixed [Ano94y, Div97, LM93, LG03, Ano93v, Roj19].

Mixed-language [LG03].

ML [KSM+19].

MLSL [KSM+19].

MIN [JT87].

MOB [NJJ94].

Mobile [ABM+04, GIBGA93, MGA94, WMMC10, XZC+20, Liu12, MT13].

Mobile-cloud [XZC+20].

MOC [Chi86].

MOD2.5 [MM93a].

Mode [Sei94, KB18, VO93].

Model [AM93b, AH93, Ano94a, Ano94v, Ano94-58, ABM88, BM93a, BSJW96, BMP93, Ber95b, BPW97, CU90, CGW05, Che90c, CLY19, CSR90, DC93, DJSP93, DGG92b, DS94b, Den93, DFS93, DFWW93, DXJM93, DS94c, FM93, FI93, HT93, MM93a].
HPLC93, HBDS93, HLxx, Hop93, Joh94, KFJ94, KW95, KB94, Mah94b, MKDY90, MNB94, Mis90, NW97, OK93, RWCA94, RT93, RR89, Ros93c, SPM93+10, SSKR97, Sei94, Sha94a, SR93a, SS96c, Sug96, TKM96, TM94a, VF93, WM96, WFT93, WS84d, WC93, Wool96a, WF94, YJD93, Yan94, AGY+11, AKM+06, BGT90, C891, CGM91, Che90d, Chu87, DP90, DGG92a, DTV00, Fuji11, HLDS95, Kin96, KA96, Law89, MHKY97, NSH95, Nix92, ODAZ15, PSM93, RFS87, Shu88, Ste92, Str94, TS90, WM92, YKY90, ZCP00, HL91].

Model-based [RWCA94].
Model-System [HLxx, HL91].
modeled [Ano95w].
Modeling [AD97, ABCH97, ABB94, ABC97, Ano94w, Ano94-48, Ano95w, AFT97, BOS97, CS94b, DBK09, Deh90, DGT84, DA97, GVC95, Gun88, Heh86, Hun94, JBI91, KLY94, KFJB94, KR94b, LPS90, Mil88b, MRSB94, Mun04, Per93, Pli97, Pop97, Sch97c, SWS97, Ste94d, Str10, TMAS97, IBM13c, TP97, TF94, VA94, WKK97, WMBC97, Wri19, YCC97, ZL97, ZBLZ95, AP91, CC96, De 91a, De 91b, Fox97, Gal89a, Gre88b, Gro92b, HPS88, Kin96, LF03, PL520, SB18, SCH94d, Was96a, WT13].

Modelled [RRSG96].
Modelling [AM93b, Ash93, BPUS94, BM96, CCSS98, Div97, EHHS89, Fra94, Geu97, GW93, He96, Hey96, JJYL94, Jar12, KD93, KSTF94, KDBG95, LC94, LPLP97, LC95, Moit93, OL86, Pal15, PB94b, Pas95, RSB94, Ruh95, Sei94, Soc94, SB94b, Tay95b, WH93, Wie96, WG93a, BWHS18, TM88, WH94].

Models [Ano94-52, BCHH94, BK93, BBC92, BY96, BM93b, Bot96, BB93, BP96, DS94a, DGO90, Die81, Die82, Die90, DH93, Dip96, Fie93, Fos93, FT94, GH93, GP93b, GD97, HW97, JW98, KB93, LS93b, Max81, MCB+01, Nag96b, Nag96c, PPG94, San93, SKVZ93, Tay95b, Van94, WSP95, WHMA97, XZC+20, Zla01, Ano94-120, DLS93, FR5+88, Gib01, Gil94b, KSB+19, LP94, LCV90b, Ous88, Par90b, Pop92, SNP914, YQTV12].

Modem [Bar00c, Bar00d].
Moderator [DB94].
Modern [Lin82, RLC91, Sni93, Gil88, KK82].
Modernizing [Jon96].
Modes [GA97, KO93, SSG93, GH90, GH91].

MODFLOW [MT97].
Modifications [Bin88].
Modified [BE93b, Chi96, Eji90b, Eji91].
MODTRAN [WLCG02].
Modular [BK97, GI93, HS68a, Kra01b, NMM09, OCA01, VD94, Wat72].
Module [BS98a, CMR93, CC94a, He90].
Modules [BLO94, Ano97-32, FGC06].

Modulo [EDA95, Rob99].
Modular [Lin82, RLC91, Smi93, Gil88, KK82].
Modern [Jon96].

Modifications [GA97, KO93, SSG93, GH90, GH91].

Moldflow [Ano93s].
Moldability [CB02, dCCF01].
Moldflow [Ano93s].
Moldmaking [Ano95i].
Molecular-dynamics [SCK+00].
Molecules [Bos94b, DAF+90, WHKS97, Ano02a, Ano02b, Lag89, RD07].
Molina [CCKSS90].
Moment [AFT96].

MOMI-connection [DFSZ88].
MONC [LMT95].
MONC [BBW19].
Mone [SW10a, CK99, Sin08b].
Monitor [Val94, Lav89, War89, Wil88a, WM90].
Monitoring [Ano94c, GSG+94, KSTB94, KB97, SKAT93, UP01, YSS94, Dan91].

Monoacid [VM94].
Monoacid/Diacid [VM94].
Monograph [SG94b].
monomial [CR94].
Monster [Ge16, Moo06].

Monte [Ano87d, AHAM93, BBBS94, HAA93, I9K1, VNB93, ALM93, Ask93, Bak93, BL93, BP94, BJJ95, BLFT84, Bro96, Cha84, DKS93, Dec90, Din93, FBA93, G188, Gup88, HEJM95, KY93, MZ95, MRR96, MRR93, MNV93, MS94e, MB93, NM93, PB88,
Rie93, SF93a, Sol84, TW92, Uen93, YOOT93.
Monte-Carlo [MBN93]. Monteporizo [Vag88]. Monterey [IEE95d].
Montgomery [Alaxx]. month [Ano92-44].
months [Ano96u]. Monterey [IEE95d]. Monteporizo [Vag88].
Monte-Carlo [MBN93]. Monte-Carlo [MBN93].
Monte-Carlo [MBN93]. Monozy [War03]. moon [BK91b]. Moore [Bar01, HA90b].
Mosaic [OLLG96]. Mosaics [OLLG96]. Mosher [Lew96a]. Most [DE84, DKN86, US01, AL92b, DMW87, Gep94, sha95b].
Motifs [HC93]. Motion [AABB93, BSB93, BISB96, DSB96, GGW93b, LJ97, MK93, Sat93, YK94, Ano90b, Ano96u, HAG+13].
Motor [DNV93, KDBG95, Koo97, New93, RSRG95]. Motorola [Ano00b]. Motors [DC93, FS93a]. Motorways [Wie96].
Moving [Ano92s, Ano94-99]. MP [Cra92, CDH84, DH86b, DH86a, Lar84, MSTK93, Oed92a, Oed92b, WB85, ARW93a, And90a, Ano88k, ABH85a, ABH89a, BOS93, Bow88, BH92a, BL91, Cal85a, Cal85b, Car94b, CM84, CM86, Che89b, CS84, CS86a, CK90, CRM94, CS93b, CS95, Dan91, Dai91, Dao88, DO89, DP90, DH91a, DH91b, Dic90, Din92, EE93, EY91, FSY88, GP93a, GS89d, GZA86, Gur88, HL88a, HVY91, Ho91, Hoc85, Hol90b, HIK89, HES93, HSKY94, HSKY95, KN88, Kha93, Kra88, KM85, LS92b, LS93a, ML90b, ML90a, MKB87, MSW91, Nag90, NR90, OL86, OD88, Pap92, PS94a, Par90c, PBK91, Pin91, QB92, Rei85, Rei88, RS85, Rit89b, Rit88a, Sar91, SW91, Sea86, SPS90, SSLR90, SWL+91, SS90c, Svo93, hTD88, Tem89a, Tem89b, VSH90, VSH91, Vaj91, WHB93, Wes89, Wll88a, WMK90, ZM86]. MP [van95b]. MP-2 [Car94b]. MP/2 [Cha84, LMM85b, LMM85a, NSH95].
MP/24 [GKL87, LMM86]. MP/416 [VY88]. MP/48 [CK90, HFH86, HFH87, Meu87, Nag88, VM87]. MP/Model [RR99].
MP1 [RBL94]. MP2 [KNHN16]. MP8/864 [Cho90a, SO91]. MPCU [He90]. MPEG [LC97a]. MPF [MRM87].
MPI [Ano03a, Bis94a, BHS+02, BBW91, CSM97, DLM99, Gle93, GRRM99, GL96a, GL96b, GL97, LC97a, LKJ03, LSK04, PGK+10, SPM+10, SWS+12, SWJ95, WT11, WT13].
MPI-2 [BHS+02, LSK04]. MPI-FM [LC97a]. MPI/OpenMP [WT11, WT13].
MPC [LC97a]. MPMD [KB18]. MPMM [FM93].
MPP [Ano92-29, Ano94-118, Bel96, BD94, FG87, Hoc94, KLY94, KFW94, KG95, WMK96].
MPPs [DSS05]. MRI [TF95]. MS [Ano94-135]. MSFV [HHOM91, HHOM89].
MTA [BS04, Sni01]. MTA-2 [BS04].
Multi-Grid [BHW98]. multi-job [MSW91]. Multi-Level [IMA93, KB96, LM13, RCK97, RR99, VWC96, VB90, XBG6, AM5+15, BAD01, DIA+13, LM90a, LXW+16, MSW91, SY91, Y11].
Multi-Block [VB90]. Multi-Body [RCK97]. Multi-Channel [XBG6].
multi-cluster [LM90a]. Multi-Dimensional [BCM90].
Multi-Grid [BHW98]. multi-job [MSW91]. Multi-Level [IMA93, LM13, AM5+15].
multi-phase [LXW+16]. Multi-Platform [VWC96, BAD01]. Multi-Processors [KB96, SY91].
multi-stage [DIA+13]. Multi-threaded [AACK92]. multi-zone [Y111].
Multicast [Ano94-31, Ano94-88]. multichip [Ano97-32]. Multicluster [Che92a, CWD+08, Fra90, FGM90].
Multicolored [FHKT97]. Multicomputer [AK94, MCW98, Rui91, AP90, SWJ95].

Multicomputers [Ano94-44, Ano94-84, CSSY92, GB92, LB96, Rue92, Ste96, SLRP95]. Multiconference [Chi90].

Multicore [Moo08, MRGR12, KBD10, FBJ94a, GP85, Hwa85, KLN90a, Lar84, LYL7a, PC93, RWNJ94, SLBJ93, Sma95, Sob93a, SB96, Swa86, SO91, TF92, WFL93, ZK95, ASK85, Ban88, BS87a, Ber89a, BB91a, Che83, Che93b, CV88b, Che89c, CG87, Con88, DAV86a, DI88, EO91, Gal88, Gal91, GJ87, GHNL87, Gha84, Gri92, Guz86, Har86, HY89, Kan86, KLN90b, LMY88, Lim91a, LY91b, LPS86, LP86, Mar88a, McG87, ME91, Mil87, Mt88, RG92, SSS90, Sk89, Smi81, Sob92, Su92, Tan89b, Tze86].

Multiprocessors [AAC92, Ano94-30, Ano94-56, Ano94-85, Ano95-30, Ber90b, Ber90a, EHC95, FB94a, GP85, Hwa85, KLN90a, Lar84, LYL7a, PC93, RWNJ94, SLBJ93, Sma95, Sob93a, SB96, Swa86, SO91, TF92, WFL93, ZK95, ASK85, Ban88, BS87a, Ber89a, BB91a, Che83, Che93b, CV88b, Che89c, CG87, Con88, DAV86a, DI88, EO91, Gal88a, Gal89b, Gal91, GJ87, GHNL87, Gha84, Gri92, Guz86, Har86, HY89, Kan86, KLN90b, LMY88, Lim91a, LY91b, LPS86, LP86, Mar88a, McG87, ME91, Mil87, Mt88, RG92, SSS90, Sk89, Smi81, Sob92, Su92, Tan89b, Tze86].

Multilevel-PGAS [AGY+11]. Multimedia [CFS95, Int92, MFB95, Moe06, Ste94c, TF94]. Multinode [Hor97b, Hor97a].

Multidimensional [AFAGR96, Ano94-41, GW93a, ML93, NR86, YYK93]. Multidisciplinary [BWGG94, Ewi97, Kue93, YSS94].

Multidomain [GD94b, LS93b]. Multifrontal [PS94b, ZD96, Lue91]. Multigrid [Ano94-45, Dic94, Hem84, HGS88, McC88, VM87, WLK95, Wei90, Zas93, BW9+17, GKS91, Kan15].

Multiple-instruction-multiple-data [LLDF95].

Multiple-Issue [MD94].

Multirate [Yan94]. Multiresolution [ZM94].

Multiscale [SSR97, TMS97].

Multisplittings [HO92b]. Multistage [Ano94-88, Ano94-105, OA94, JF91].

Multistaged [Kra88].

Multitasked [Mil87]. Multitasking [CM84, Cha84, CM86, FS98, Guz86, HK989, Lar84, Meu87, Rei85, Ros93c, ZH88, DCG90].
Multithreaded
[Ano94-126, FT96a, HMNN91, HHOM91, HHOM92, HLB94, VTSM12, BC94g].

Multithreading [Smi01]. Multitoroidal [ADG+08]. Multitransputer [JMP94].

MuPAD [SW99]. Murman [Por86].

Murray [Nor97a]. MuSE [DGK93].

n [DT96, BAAD+97, Swe94]. n$-SHLFS/ [O92]. N-Body [Swe94, BAAD+97].

cubes [DT96]. N3S [JY92]. nach [Wat95]. Nacional [C+97]. NAECON [EE94b]. Nagoya [EE93a]. NAL [Ano94-32, Kah93a, Sin94c]. NAMD [KHZ+08]. name [Sne94a, Sne94b]. Named [Pin01, Stu03]. Names [Coc01, Pau08].

nanocomputing [WW90]. Nanoelectromechanical [JJ98].

nanoparticles [GE12]. NAO [MN91].

Naples [Pel93a]. narrow [Con87a]. NAS [AG94a, Ano94-78, AK02, BBD94, Gib95, Joh86f, Nai94, Por88, WT11].

NASA [NAS93, AU87, Ano89m, Ano92a, Ano93a, Ano94-73, Ano95b, BPM+89, Gri86, MDH+16, Uni87a, SF82, Sim92a]. Nashville [Ch90].

NASTRAN [BP84, GZ86].

National [Ano91]. Ano94-60, BBB+91, Bor94, BK91b, Cor89b, Ch98a, CK99, CR89, Cul95a, Cul95b, IEE94b, Joh86a, Lee98, Mac91b, Sha89, Str94, Uni92e, WMBC97, AB94, Han03, OGO+20, Pou88, Ste90, YK87, Ano94-79, Ano95w, Ano96-38, Hab89, Joh94, Kah97, Mar85a, Mar85b, Mir90, Nat86, Red91, San86, San90, Uni96, UU94, WZ97, Web91].

nations [Ste85].

Nationwide [Ano95-31, Ano93-40]. Native [EBS02].

Native [BNA94, Coo95, Kow89b, Lag89, OMM93].

Natural [Ano91k, JFC94a, Kar93, Max81, WWK97, WG93a, Ha88, Ha90a, Kel85].

Nature [Ano94-80, PWV95, Ano93e].

Navier [Ano87a, Ano87b, Ano92e, Ano94-140, Ch99, DLP94, Dis94, FY92, Glo99, KR94c, LM90a, MFK94, Riz94, SBHW80, Vui93].

Navier/Stokes [FY92].

NCCS [Ano93i]. NCSA [Ano87a, Lew94b, Nat86e, Nat87d, Nat91b, Nat92b]. NCSC [Norxx]. NCUBE [PC93, Ano94-81]. Near [KY93, WK95, Mit88]. near-coincident [Mit88].

Near-Optimal [WK95].

Nearing [Coc02a, Coc02b]. NEC [Ho88, Ano92o, DT94, Dub87, HLP997, Hib01, Iwa90, j88, MM91b, SWL+91, TW92, Tze88, Wat87].

Necessary [Poe95].

Need [Ano94-110, Coc01, Dal84, Ewi97, PC94a, Sub94, MS84, SSS94, VHV95].

needed [Ano92-42, CK92]. Needleman [AFF93]. Needlemann-Wunsch [AFF93].

Needles [Bor94, Mor1b, Mor1d, Bor1e, Mor1f, Bor1a].

Necessary [Norxx].

NEC [Ano96s].

Nelson [Nor93b]. NEM [MTK93].

Nematode [Dro95].

neocortex [DL]0+08].

NERSC [BAC+18].

Nervous [Dro95].

NESC [Uni92, Uni92e]. Nested [KK92, Lou90a, TMS97, BCH+93, CH90, Fan87, Gan86, HC91, Tan87, TYZ90].

Nests [OSK95, TZ94, GF95]. Net [GVBC95, KLM94, Law90, MBK+92, SDK98, Her94, PT92].

Netherlands [DSZ96, Emm85, Si90a, tDv87, ACM90].

Nets [BKT94, Nor97b, Cas01, Jab88, Str94].

Netsim [TIOK94].

Network [Ano90i, Ano94-30, Ano94-35, Ano94-52, Ano94-104, ABMW93, CCZ93, CPS96a,
CS93b, CS95, CP96, GD94a, GS94e, HL95, Her95, HV95, HNST93, Ho88, KMNT96, KW95, LLR93a, LAPR94, LTD⁺93, LLL⁺17, LA93, MSGW94, NSPF94, Per86, SF93a, Ste96, VDK91, VDK92, VT95, Waz89, XCLW93, ZS94a, ZM86, ZYL⁺16, ABC⁺05, Ano94-135, Ano95-37, Asa93a, Asa93b, BBBC96, BH94b, CPS96b, Cho90a, Coc01, CBM⁺05, DuB90, DR91, FDM07, FR88, Fox98, HCL88, Her94, HY89, yHY92, KTN⁺14, Kon87, KGLA85, Lee87a, LL88, LS93a, LEY86, LC12, LW94, LAL02, McD90, OGO⁺20, PS88, RFS87, SBC91, Smi89, SHB91, Turn9, TYZ85, Way96, WWTE92, YYY93, Yau88, Ano94-105.

Network-Based [Ste96, LAL02].

Network-interface [Ano94-135].

Networked [FGKT97, Ano97h, DB95].

Networking [Ano95-32, Hof94, KEMB99, KNS97, Lid99, N ´C02, OPR01, Pel93b, PC94b, Pre93b, Sch94b, WP94, Ab91, Ano97a, DAC⁺18, Ed92, GH94a, GH94b, GH94c, HS95b, HS95c, LPC⁺95, Lid96, LCHS96, Me95, Uni91b].

Networks [ADGA95, Ano92i, Ano94-35, Ano94-53, Ano94-88, Ano94-143, ALMS92, BGMR96, BGS⁺12, BA95, CJ94, CTD⁺16, COC93, For02, Gre91a, GVC95, HK96, H094, HHK94, HW96, IEE93a, IEE94a, Ik82, LN94, Lan93, Lei85, LBT94, Lie93, MJH90, MPH93, MVS94, NRS95, NB94, NBKP95a, Opp95a, OCVA01, RE94, Ram94, RG94, STN93, SC97, TVT⁺16, TM94a, TPJ⁺19, XB96, Yun94, ZFF⁺18, AP90, ABP92, Ano93-41, Ano95-27, BP91a, Bue91a, Cap96, Cat92b, CF92, CD08, Chi86, Cyb9b, DF90a, Dra90a, Dra90b, Dra91a, Fid90, Fid91, FJ91, HWP95, Hol93, yHYZ87, HY92, KHS88, Mor92a, MP92, N888, NGPH99, NBKP95b, Pou88, RD07, Sch86, Sie90, Smi92, SGS⁺20, Tze86, TYZ88, VO93].

Netze [Meu92a], neuen [Ano01b].

Neumann [Ano87d, Joh86a].

Neumann-Ulam [Ano87d].

Neural [ADGA95, Ano91i, BA95, BKT94, BK95b, COC93, CS93b, CS95, FRS⁺88, GD94a, Her95, HV95, IEE93a, IEE94a, KLM94, Lie93, LLL⁺17, ML95a, MPH93, MHW94, MSGW94, MMK97, MBK⁺92, NB94, Nor97b, Opp95a, OCVA01, Ram94, STN93, SC97, Str94, VT95, WSP95, WWY93, XCLW93, ZS94a, ZFF⁺18, Cho90a, Cyb89b, Her94, HWP95, Jab88, LS93a, LW94, McD90, SBC91, WWTE92].

Neurocognitive [Ruh95].

Neuroimaging [Fri95, MH95].

Neuromodules [Die95, Pas95, Sto95].

Neuromuscular [UR95].

Neuron [Ano92h, KDBG95, LP94].

Neuronal [AB95, RBK95, RSRG95].

Neurone [LC95].

Neurons [Els95, RSRG95].

Neuroscience [KF95].

Neurosciences [MG95].

NeuSim [OCVA01].

Neutral [GGW93a, GGW93b].

Neutron [Bak93, DCW93, HL93a, JV93, JWG93, SMFG85, Uen93, WD93a, WRW93, KC93b, Zas93, EAMS95a, EAMS95b].

Neutrons [FSGS93, GNJW93].

Nevada [ACM89a, Ano96i], never [Gib01].

News [Ano95v, Ano95-36, Ano95w, Ano96u, Ano97k, Ano97m, Ano97n, Ano99, Ano00b, Ano00c, Ano00d, Ano02a, Ano02b, Ano03a, Ano14, Bar00a, Bar00b, Bar00c, Bar00d, Bar01, Bor92, Boy15, Bra94, CK99, CSFS00, Coc01, Coc02a, Coc02b, Coc02c, Coc02d, Coc03a, Coc03b, DDJ98a, Gar99, Gar01, Hsu15, IS95, Lam14, Law00, Nat86b, Natxxb, Pan08, Pan09, DDJ98b, Str94, Sup88a, Ano93b, Ano94-55, Cla97, Moe08, Pit86, Ano95-34, Ano95-35, Ano96t, Ano97, Ano97l, Ano97m].

Newsletter [Ano93-42, Ano95-47, Ano85b, Norxx].

Newton [Xia88, CH87, Che90c, ECK89b, FFM95].

Next [Ano94-76, Ano97o, Ano97p, Ano97r, ACA94, Cla98, EGJ⁺02, FBCB18, Jen88, Mes97a, Mes97b, Spe97, WMMC10, ANS92, Ano95g, Ano95v, BG02, Gha84, Zen99].

Next-Generation
[AW94, WF93, XB96]. Number
[Alu96, And90b, Ano94-64, Ano95-31, Ano97e, Bro96, Ent99, GS94a, IK91, LD93a, WGOY91, AM15, Arn88, AI92, ARW93b, CMP94, FRW92, Gut95, KA92, Mas94a, Mas94b, Pry94, YB86]. Number-Cruncher
[Ano97e]. Numbers
[GW93b, OGY91, Ano91h, ARW92, Fr91, Ked94, OGY90].

Object-based [KNYT95].
Object-Oriented [Ano94-74, CSSY92, GJP96a, Gui96, HP93, MBD99, SK93b, YMY92, CH98, GJP96b, Jéz00]. Objects
[BS97, HB96], obrabotki [BKM88].
observability [Ma90]. observation [AC91].
Observations [Bel96, Gin82]. Observatory
[Ano97l, BK91b]. Obstacles [MMHM93].
Obtaining [ACSH90]. OC [KG95]. OC-3
[KG95]. OCE [Cop93]. Ocean
[Ano94-107, Ano94-140, BB93, Che90f, CSRB90, DGG92b, DGG93, De 91a, De 91b, DGG92a, LCV90b]. ocean-acoustic
[LCV90b]. Oct [Asp93, WS98]. October
[Al93, Ano90g, Ano93n, Ano94a, Ano97t, B 89, GL92, HS94b, IEE93a, IEE93c, Mar86, Mar88b, MB93, MB94b, Pel93a, Pit90, Sin94a, SR93b, USE00a].

tree [BR95]. odd [ARB93]. ODS [Tak93]. Off
[Bar00c, Bar00d, FLP+07, Ano95-31, DM93].
off-the-shelf [Ano95-31]. offer [Ano96r].
offerings [Ano95-32]. offers
[ALPP00, Ano95v]. Office [Wil93]. officers
[Ano97c]. official [Way96]. Offline [Dam11].
offloading [TMT+20, VM07]. offs
[RYYT89]. often [Per87]. often-daunting
[Per87]. OH [IEE94b, Wei88]. Ohio
[Ano98k, Ano92v, Ano97r, AA93, BB90].
OhioLINK [Ano97r]. Oil
[RDZ93, Ano95w, BK89]. OK [Ano91s].
OKs [Ano93a]. Old [Ano97n, Pou94b].
Oligomeric [LD93a]. Oligonucleotide
[KKP93, KKPR93, KT93a, Tak93]. Olsen
[CCKSS90]. Omega [Mor92a]. on-chip
[Ano91h, KFN02]. On-Demand
[Mas95, FK98, VM07]. On-Line
[Bel93, EFS93, GSG+94, HRG93, RW94b].
On-the [YH90]. On-the-fly [Yi90].
on/Roll [DM93]. Oncology [HSW+90].
One
[Ano94-59, Eck93, GMBW93, LB82, Mut94, Tec89, Uni92b, Uni89a, Uni92a, Uni98, Ano92-42, Ano94-121, Ano97w, Ano97v, BMR88, Faz87, LSK04, PGK+10, Rob89].
One-dimensional [LB82], one-sided [LSK04, PGK+10]. One-Tflops [Ano94-59].

one-two [Ano94-121], onEM-4 [YMY92].

Online [Nat89b, AZC13, Ano90t, Nat87c].

Only [Ano94-139], onto [Pau05, WAM+01].

Onward [Bai97]. Open [Ano92r, Coc03a, Coc03b, Her90b, IH94, OGOR97, Ano96],

BEE+20, Her90a, Ano85b, CWD+08].

Open-Source [Coc03a, Coc03b, BBE+20, YMY92].

OpenMP [Ano03a, EO13, EBB+20, TMT+13].

OpenRTE [CWD+08].

Opens [Ano94-72, Ano95v].

operate [Wal85].

Operated [RCK97].

Operating [Chr90, FG93, GGG+98, Hus86a, Koe96, Koe97, Chu87, Kna97, MAA+05, RCZ93, vL99].

Operation [Ano94-33, ESMH93, FCD97, VSH90].

operation-level [VSH90].

Operations [Ano94-31, KS90, Mas92, NJL94, NGDH96, Sah95, Sta94, SKN96, Uni92b, Ano97v, Wal85].

operative [GL93b].

Operator [GW93a, Mor92b, KWW92].

Optimization [BMSD94, EY91, GI93, LB82, RS94a, Van93, VHJ94]. optimised

[BBC+99].

Optimisation [AK5, AKGS87, AYL+18, Ber95b, BCR96, Bro97, BWGG94, Chi95, Deg90, Ede94b, Fah94, GP91c, GM93b, HW97, HM97, IMA93, KR94a, LPLL97, MT93, MTL94, PW86a, Pay97, PP93, RL90b, RW94b, SWG06, SP12, Sob93b, SKN96, WD93b, BSJ+13, BB91a, Chu91, ES88, GBS18, HP92, HES93, KSB+19, McC92, MP91a, MP91c, MP90, MP91d, MM91b, Nin92, PB98, Ren97, RGH17, SC20, SSL90, TMT+20, Win02].

Optimizations [HK5, KK96b, Li95, PW86b, PW86c, Pol87a, Pol87c, Pol88a, Vei85].

Optimize [CC94a, BBW19, WH94].

Optimization [ST94, BHS92, EBB+20, Sch98b].

Optimizing [AGK+87, BGL+05, Dic81, Dic82, EJL90, GSO1, GSO6, HSKY94, HSKY95, JCY94, KM92, SNS95, TY96, ZFF+18, AR95, BGS82, DP90, Eig92, GJG88, HN90, LXW+16].

Optimum [CS90, EDA95, GSO4a, Isa93].

Optoelectronic [CG96, Riu91, SSSS96].

Optoelectronics [Ano93b].

Or-Parallel [VPGG01, Seh98].

Orbit [BS98a].

Orbitals [INNN91].

Organ [GW93a, ML95a, EGO99, Ram88, RLK93, ZBN+19].

Ordering [LD93a, MOW96, PDR94, Rig93, GE12, Wil92b].

Ordinary [KBC+74, Ban79, HHS01b].

Ordinates [KGa93].

Organic [Ver97].

Organisation [FBJ+94b].

Organisation [GD94a].

Organizations [HS93c, KWW92].

Organized [LUT96, PN96, UU94].

Organizing [GY93b, RPY94].

Organs [Ano97a].

Orientation [Ano94-89].

Orchard [Ano94-74, CSSY92, GJP96a, KEE94, KWH94, KP95, KS94a, MBD99, SSS94, ST98a, ST98b, SK93b, YMY92, AGEL13, Cal86, CH98, GJP96b, Jez00, Kar13, TS91, Van88, Pop92].

Origin [LSK04, PHH94].

original [Sch95c].

Origins [Ano97a].

Orlando [Ano94-100, Gig94, Tho93c].

ORM [EH97a].

ORNL [DBK09, LSS+20].

Orthogonal [FBA93, Rag94, SC92, Bra92].

Orthopaedic
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, Bos94b, Bie88, Bis94b, BPL94, BLS94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
Parallel [BS88a, Bha94, Bie92b, BHLST94, BSL94, BJS02, BIB, BSL94, BJS02, BIB + 18, Bos94b, BCHJ94, Bro96, BV93, BS98b, BGWG94, Bur94a, BNP99, Car89a, CLR90, CC94a, CTZ94, CDMW94, Che92a, CBCH93].
FDM07, Feo92, FR95, For93, Fra90, Fuj11, FMT91, GMJ86, GMW91, GS87a, GS88b, GS89a, GS89b, GP88, GP90, Gok91, GC92, Gok92, GS93, GM93a, GS94c, GH95, Goo97, GYL00, GV96b, GM87, Gua87b, Gua88a, Gua88b, Gua88c, Gua88d, Gu88z, HLD95, HJZ94, Han94, HC91, HV91, Hii91, Hii92, Hor98, Hsi91, HR04, Hun90, HLJT93, HLTZ93, IEE96, Jay88a, JM89b, JM89c, Joh90, JHZ95, KPS88, Kan15, KB88, KNHN16, Kha93, KTN14, KG03, KY91b, Kos95, Kra93, Kra90, Kra92, KC92, Kre95, KESH95, LD90, Lan92, LP94, Lee90, Lei89, LR88a, LY88b, LY88c, Li89, LY90c, Lim91a, Parallel [Loo84, LYC93, LM13, LF03, LLDF95, MD04, MCH91, Mar91, Mas94a, McB92a, McC92, MB97, Meu89b, MP91b, MP90, Mik89, Mil93, Mor92a, NNS+90, NPS93, NRR90, Nuu95, OW94, PE88, PHK88, PGS03, PTT89, P98, Pol86, Pol87a, Pol87d, Pol87b, Pol89, Pry94, PM894, QU87, RR99, Re88, R+00, RGL+15, Saa87, SNS+97, SN95a, SN95b, Sar90, Sca92, Sch94c, Se95, SL92, SC04, Shu88, Sie90, Sta95, SJ905, Su91, SE98, Suz89, SSSSE96, Tan87, TY89, TY90, TCM95, TFB94a, TFB94b, TFV94, UL89, Uni93, Vol89, WBB93, WLC92, Was96a, WD94, Woo92, Wook94, WCH91, W91, Supxaa, YYYY93, Yan90a, Yan90c, YF98, YW94, Yew88, YVC89, Y90, ZCP700, ZBN+19, Zor92a, dRC94, dC94, dTv87, DDC96, HK93b, JPT94, PE93, Pra95]. Parallelism [AACK92, An94, BAM93, BEH+94, CWW94, GGG+98, HB96, KP96, KM92, KBC+74, Le96, LPS90, SSG93, SWG06, Uen93, WBP87, AMS+15, An91h, Dak90, FMT91, FP91, GW95, GP91a, Gir91, HC91, Jez90, Jor86, Kim96, Kos95, LY90a, Lil91, MPC89, PB87, Pol88a, Pol88b, RF93, SK92, Sim92a, VSH90, W9e89, Zo92b]. Parallelizable [Dic94, AT91, LTT92]. Parallelization [An94-42, BCHH94, BK93, Ber95b, Den93, FBZ92, Fah94, GJS93, GMS97a, GMS97b, HBDS93, INK901, Me94, ME91, MT96, OPR90, YFOT93, YR93, ARW93a, BMS92, Blu92, BBK+08, Eig91, Gua87a, HA90b, Her94, LY88a, Seh92]. Parallelized [KR94c]. Parallelizing [ASS94, CHMS94, DS94b, Isa93, KLN90a, KLN90b, LXW16, PE95, RAP95, SEA86, TP95, Yan91, BE92, EB91, GF95, Hag90, HP91, HP92, KK98c, Leu90, PP92b, Pol88d, Sch90a, SL90y]. parallel [L90]. Parallelrechner [Sch92a]. Parallelism [AACK92, An94, BAM93, BEH+94, CWW94, GGG+98, HB96, KP96, KM92, KBC+74, Le96, LPS90, SSG93, SWG06, Uen93, WBP87, AMS+15, An91h, Dak90, FMT91, FP91, GW95, GP91a, Gir91, HC91, Jez90, Jor86, Kim96, Kos95, LY90a, Lil91, MPC89, PB87, Pol88a, Pol88b, RF93, SK92, Sim92a, VSH90, W9e89, Zo92b]. Parallelizable [Dic94, AT91, LTT92]. Parallelization [An94-42, BCHH94, BK93, Ber95b, Den93, FBZ92, Fah94, GJS93, GMS97a, GMS97b, HBDS93, INK901, Me94, ME91, MT96, OPR90, YFOT93, YR93, ARW93a, BMS92, Blu92, BBK+08, Eig91, Gua87a, HA90b, Her94, LY88a, Seh92]. Parallelized [KR94c]. Parallelizing [ASS94, CHMS94, DS94b, Isa93, KLN90a, KLN90b, LXW16, PE95, RAP95, SEA86, TP95, Yan91, BE92, EB91, GF95, Hag90, HP91, HP92, KK98c, Leu90, PP92b, Pol88d, Sch90a, SL90y]. parallel [L90]. Parallelrechner [Sch92a]. PARAM [Bha94]. Parameter [PC97, Ji91, YKY90]. parameterized [BE93c, SS07] Parameters [AH93, PA93b, VT95, Hoc91]. Parametric [PPG94]. PARAMICS [An94-99]. Paramid [Ste94c]. PARASPICE [Yan90c, Yan90b]. PARC [Coc02a, Coc02b]. PARCEL [HP98a]. ParCo93 [JTE94]. ParCo95 [DCC96]. Parallel [IGH95]. ParInt [DBG96]. Paris [An90g, GL90, GL94]. Parity [AFML93]. Park [IEE93]. Parker [Bro91c, Haw88]. paralel [Yan90b]. PARMAC [Hof93]. parole [All93]. PARRINELLO [BBK+08]. PARSIM [Bru90b]. Parsing [JC94b]. Part [BV96, Bur01b, Bur01c, Bur01d, Bur01e, Bur01f, Cia88d, Cia88e, Cia88f, Jon96, Zim96, Sci86, AM93b, Mes97a, Mes97b]. Partenkirchen [SEA94]. Partial [An94-100, BS94b, BS94a, CSSY92, EAGEG90, Gal96, GRSS93, GF90, MT96, Wat91, WS93, YKK96, Cha90, CG87].
DGL89, LMD98, Pet89a, Pin91, Scr88,
TFB94a, TFB94b. Partially [RAP95, CH87, Che90c]. Participation [Ano97c]. ParticleLE [KDP+14, ASSW93, ACSh90, BWO96,
BD93a, GGG93a, GGW93b, Gre89a, Kel91,
Koh96, Man90, MMRL93, MR90b, Nag96c,
FBM07, Fu11, LLDF95]. Particle-in-Cell [ASSW93, Man90, Fu11, LLDF95].
Particles [RRSG96, Soe94, ARF12].
Particularly [Ano97c]. Participation [Ano97c]. Participationable [NMS93].
Partitioning [Ano94-57, Ano94-93, CTD+16, Gal96,
GP88, JP94, WF93, Pol88d]. partitions [BBWR90]. Partly [SS99]. partners [Str94]. Partnerships [Ano96t, Ano97l,
Dau96, Dau97, Spe97, Ano98f, Fed96]. Parts [PPG94].
Party [SSP93, WLN+96a, WLN+96b]. Pasadena [Ece96]. PASCAL [Tsu91, PK80].
Pascal-Plus [PK80]. Passby [Wil94]. Passenger [AC93, LB94b]. Passing [ABB94, DS96a, DHHW93, DFWW93,
GB96, Glee93, HPLT01, HHS91, PR94a,
SYG94, SABJ94, SOH95, Sl97, VSM96,
YG92, AAC+05, BCM94, DLM99, MRM87,
SaaS, SW95, CO94]. Past [DLPO94, Els82, HF93, Fer84, Hey90]. Path [LZF16, AGL11, BJZDA96, TYZ85]. Paths [DMW87, BJV+16, Hsu16, NS88]. Patient [MPS+08]. Pattern [DB95, Hum92,
KKKP93, Kok94, SD93, SBSR96, OMM93].
Patterns [DB94, KKPR93, MF92, MK07,
VT95, XCLW93, PB94a]. Paul [Hil97, MM94a, Wen94, McC88]. Pavement [CO93]. Pay [HWG98, Lew89a, Lew96b].
PB [CDW94]. PB-BLAS [CDW94]. PBS [Cla18]. PC [Ano88w, Ano97m, Ano97y, BS00, Chexx,
EKT99, Fr94, MP84, SBS99, Ste00].
PC-based [BS00]. PCB [Guo94]. PCBF [TK93]. PCG [JC94c, Nat86h]. PCs [HHS01b, Mac96, Rya90]. Pda [Ano94-101].
PDE [CMF94, MCB+01, MRL+17, Pet89a,
VWC96]. PDE-Based [VWC96]. PDEs [BTV96, BV96, Gri92]. PDG [KKF96]. PE [KSM+19, HPLT01]. PEACE [BNSP99].
Pentium [Ano97n, Ano03a]. People [CCKSS90, IS95]. Perception [Poe95].
Perceptron [RPY94]. PERCS [RAG11].
Perfect [FR91, Poi89, Use93, Rau91, Ber89b, Ano91n,
Ano91o, BE92, Blu92, CKPK90a, Cyb90,
CKPK90b, Cyb91a, CBH91, Cyb91b,
Eig91, Poi90, Rau91, SSRL91, VSH91].
Perfect-Benchmark [Eig91]. perfectly [Gib01]. Perform [Has84]. Performance [APK+12, Abr94, ASK85, AS98, AP93,
Alm92, AAB06, ABB94, ALPP00,
ACSh90, AF97, Ano88i, Ano94h, Ano94q,
Ano94r, Ano94-34, Ano94-31, Ano94-51,
Ano94-54, Ano94-60, Ano94-61, Ano94-62,
Ano94-70, Ano94-66, Ano94-69, Ano94-71,
Ano94-105, Ano94-102, Ano94-103,
Ano94-104, Ano94-96, Ano94-110,
Ano94-114, Ano99, BCH12, AYL+18, Ara97,
Ata91, AT93a, AT93b, BGM96, BGS94,
BBK11, Bae01, Bai92, BWL11, Bak10,
BCC+08, BHH95, BGS+12, BCC+09, BK97,
BS98a, BEK02, Ber07, BGM+11, BS92,
BHLST94, BBL01, BS02, BE92, BEH+94,
BS01, BIB+18, BD94, BHD94, BH17,
Bro00, BEGGK07, BGG+02, BNS99.
Cal81, CC96, CGF90, CC94a, CGS94,
CCYT95, CH99b, CP94b, CLY+19, Che99,
CH10, Chi95, CDPW94, CFS95, CMF94,
CS90, CB02, CDS98, CMAS11, DDD94,
DD05, DCW90, DBK90, DTV00, DDT95].
Performance
PETASYS [CP93a]. Petersburg
MWO95, PLS20, WLN^+\{96a, WLN^+\{96b\}.
Portland [IEE93d, USE90, Bor93]. Posed
[BM93a, LHLM95, SA10a]. Position
[DNV93, RDHC94]. Positionspapiere
[Kue92, Reu92], Positron [HEJM95].
POSIX [IEE95a, Coc03a, Coc03b].
Possible [Gie96].
Post [KK96b, NG92, Car88]. Post-Mortem
[KK96b]. post-packer [Car88]. Post/Wait
[NG92]. Potassium [KW95].
Potential [Ano94j, BBL95, BM96, Sat93, XMR92,
Din91, Par90b]. Potentials [Ano94-52].
Power-Aware [CGFT05].
Power-of-Two-Strides [VLA92]. Power2
[HF94]. POWER7 [RAG11].
POWER7-IH [RAG11]. Powered [Ris94].
Powerful [MW81, Mor92c, US01, VNB93, Zey91,
Art93, Gep01, Sha95a, WZB86, GRSS93].
PowerPC [Wai95, HF94, SW94]. Powers
[Ano93m]. PowerTools [Ano93v].
Powertrain [EJ97, GA97]. Poznan
[KNS97]. PPS [HERC95]. PR
[AG90, As91a, CGS91, CGL92]. PR-1
[AG90]. PR-2 [As91a, CGS91]. PR-3
[CGL92]. Practical
[B+89, HA93, LC97b, Men89b, PK87,
SLB93, Ste96, Wil95, Ano96d, BH92a,
EGK87a, EGK89b, KA92, KA96, McC92].
Practice [Ker94, Zen94]. Practices
[Kho94]. PRAM [LZ95].
PRAM-Programs [LZ95]. Prandtl
[GW93b]. Pre [LSS^+\{20, PH97].
Pre-Asymptotic [PH97]. Pre-exascale
[SS93]. Precision
[TKI93, Ano87c, Roj19]. Preconditioned
[Ano94-45, DL90, HFF86, HFF87, KLY94,
Nat86h, San93a, SO95, VAGRMVA90,
Yan92, An98, Bau88, Bra89b, HVY91].
preconditioner [Fuj99]. Preconditioners
[Ma99]. Preconditioning
[HO92b, Man91, San88, CH98, Nan86].
Preconditionings [KJ85]. predict
[PS93, Str11]. predictability [GRM99].
Predictable [PH11]. Predicted [CP94b].
Predicting [Abr94, Mir88, Raw97, SSG93].
Prediction
[Ale90, AGKT02, Ano94-96, BM93b, Che90e,
DBK09, DXJM93, FBZ92, Hai97, Hof94,
IK93, KGS93, MKR93, TAKB06, WS84d,
XCL93, AS91, At91, CHWW13,
Che90d, Gal89b, Gle88, MV16, Sar90].
Predictions [Jon19, WB85, ZX95].
Predictive [KSTB94]. Predictor
[TAKB06]. Predicts
[Bar00a, Bar00b, HH93]. Preface
[Ano20, CRG05, HF94]. Prefetch
[Ano94-127, BCK13, Lee87b]. Prefetching
[Dra95, NGDH96, OP96, Bre87, Gor89,
GGV90, LYL87b]. prefine [KK98c].
Prefrontal [KDBG95]. Preliminary
[EHG95, Gal91, GK92, Men84, Par90b,
YJD93, Pad89, SSWA98].
Preloading [CMHK92]. Premixed [HVSB93]. Prepare
[Lat16]. Preparing [ICD+\{18, ODAZ15].
prepass [CLmWH91]. Prepattern
[HKG90]. Prerequisites [Har94a, Poe95].
Presence [WN92, Wea97, Gua87a].
Present [Bur93, Els02, Ano96w, Fer84,
Hey90, CCKSS90]. Presented
[Pin99, Ano95-38, HBCN95, L+95, BM93,
MB89b, Pan96, San98, Uni97c]. Preserving
[IJJ+\{14, KP96]. President
[Age05, Ano97c]. president-elect [Ano97c].
Press [Ano96c]. Pressure
[BJLW95, Hai97, RHH96]. prestack [Tze88].
prestigious [Ano87c]. Prevention
[DM93, Tan87]. Preventive [CCR11].
Previews [Ano95-34, Ano97n]. Price [Ano94p, Jan96]. priced [Ano89l]. Pricing [CCZ93]. primal [CK90, Kor93]. Primary [TY96]. prime [BrTR95, Tem88a]. primes [BY88]. primitives [Wij89a]. Princeton [COS89, LCV90b, LCV90a, Ano87a, Ano87b, Ano93a, Ano94s, TCJS93]. principle [Jor86]. Principles [Eis95, SSJL94, SBN82, BF92]. printed [Lie90]. Priori [MRL+17]. PRISM [Bis93]. Privacy [IJY+14]. Privacy-Preserving [IJY+14]. private [Str94]. Privatization [Li92, RP94]. PRIVATIZING [RP94]. prize [BBD92, Ano97c, KHHS95]. Pro [Cla18]. Probabilistic [AH93, Ano94-95, KGKa93, LD93b, Sol93]. Probabilities [Ano96t, VMS93]. Probability [MBN93, OMR93]. probation [All93]. probation/parole [All93]. probe [Ano92-45, SS07]. probed [Ano90l]. Probes [LD93a]. Probing [Nor96]. Problem [Ano94-59, Ano94-141, AM93c, CJ93, CGW05, CDR96, DGGJ93, FB93, GNN93, Gha96, Iwa92, KS94a, SF93b, BS88a, BGT90, Bra88, Bro91, BY88, DS86b, FGM90, GKR91, GJG93, LP86, Nag88, PB88, SL90, SW99, Gur88, Pop92]. Problem-Oriented [Pop92]. Problems [ALM93, ALPP00, Ano94v, Ano94-110, Ano94-112, Ano96e, Ano96f, BK95a, BL93, CDD93, FD93, FR98, FI93, Geo94, HHGS93, Ike95, KJ85, LHI93, Li95, LS93b, ML93, MRAR95, MR90b, PR94, PC93, RDZ93, VTTS98, WGOY91, Ano93u, Ano96l, Bra92, BJ84, CS88, CS98, CFP20, DGL89, DH89, Du90, Du90, EM94b, FCP20, GBS18, Gra93a, GKL+87, HOSZ97, HHS01b, Ho92a, Ji91, KKO93, Kin96, LD90, Lou92, NP90, Pet83, PZGL91, Poo96a, SBC91, Sha95b, dRC94, dC94, FJSP95]. Procedural [Max81, TS90]. Procedure [JCJY94, AC91, Ked92, Sit78, Sta88]. Procedures [BJ9302]. proceeding [VAS82]. Proceedings [ACM89a, ACMxx, Ano93a, Ano97t, Asp93, DT97, DP91, GL90, Gro90, HSN94b, IE90, IE93b, IE93c, IE93d, Kow89b, KK92, Lag89, ML89, Mc88, Meu90, Meu91, OMM93, Pit90, Por96, RD94, SEA84, Soc94, Uni91a, USE00a, USE00b, USE01, VO93, Zy93, ACM90, ACM91, ACM92b, ACM93, ACM94, ACM95a, ACM95c, ACM96, ACM97, ACM93, AU87, Ano88s, Ano88t, Ano90f, Ano94a, Ano96l, Ano96s, App96, BG91, B*99, BP99b, Bro93, Bup87, CL91, Chi90, C+97, DDC96, DJM94, DLM99, Dup86, Dup87, EP97, Emn85, EM94b, Fer83, Fra94, GG+97a, GH94b, GH94c, Gra94, HKR94, He93, HS95c, HK93b, HHHK94, IE85, IE93a, IE94a, IE95b, IE96d, JP94, KK85, KK87, KK88, KK89a, KH93, KK93, Kh94, KM96, KWW92, LRR93b, LCV90b, LCV90a, LCS96, L*93, Lim93, Lun94]. proceedings [M+94, Mar86, Mar88b, Men87, Met86a, M+95, MP92, MA85, Uni87a, NBC92, Pel93a, PEH93, SF91, Sig89, Sig90a, Sig95, TC94, USE90, Vag88, ZAS94, ACM95b, ANS92, Ano91q, Ano94-107, Ano94-108, B*95, Cha94a, CB93, GT94, Ham94, IE94b, IE94c, IE95d, KSS93, Meu89a, Sie94, S+93, IE94d, SR93b, Th90c, GH94a, HS95b, HPP88, ML95b, VV95]. proceedings [ACM88, ACM92a]. Process [CWLT97, FT96a, FCD97, GL89, GM93b, JML96, KWH94, KCOP94, MDP+00, Nag94, Pel94, Pin01, Sch97b, Sta94, Wea97, ZBL95, Har89, Nat91b, Nat92b, Pol86, SFS82, Shu88, ZMDS96]. Processes [GSG+94, GMBW93, GM93b, Kav93, KB97, LS92a, Man93a, TSSK94, War93b, Ano97-28, Ano00a, Sha90]. Processing [Ano89b, Ano90m, Ano93a, Ano94-107, Ano94-97, Ano94-130, Ano95p, Arah97, Ash93, B+95, BMS94, Bor98, BH17, Bro97, CTM94, CB93, DM88a, DM88b, Eck93, Fet95, FR91, FB91b, Gan94b, GJP94, GH95, Gol99, GP93c, Hay86, HCL94, HAG+13,
HYL+20, IEE94a, IEE95b, IHE+00, IGH95, JC94a, KN88, Kue93, KS90, MD88, Mur91a, NMS93, PRSS94, Rui91, SH90, Sch93a, SKSD94, Sie94, S+93, Ste95, Uni87c, WMBC97, WN10, Y+92, YWD94, YWDxx, ZM94, ASM86, AGP96, Ano88r, Ano92w, Ano92y, Ano93v, Ano94-122, Ano94-123, Ano99, Ara96, Bar88, BF92, Bur93, Bur94b, Con87b, Cho90a, Don92a, DWV92, EMS11, FL92, FMT91, Goo97, HD89, IEE96c, Kha93, McC94, Mil93, MU83, MSW91, MMG+18, Mor92a, Pit89, Pra95, Rei88, RR89, Ros95, Sch89b, SMM17, Sie90].

processing [SA90, WHBH93, Supxxa, YFY+13, Zag82, CKS99]. Processor [Ano94-84, BK77, BBD08, EHG95, GMSB93, HHT94, HMNN91, HHOM92, Kue93, Lil91, MHW94, MDH00, MBSK92, NKTT95, Par86, PB87, SCV01, TF92, VPDA93, Web93, Ano94-127, GHK+91, MS94a, CKM88, Gok91, Kar89, ML95b].

professor [Ano92-42]. Profile [Kop91, TD96, IEE91, PF90, IEE95a]. profiler [SSS90]. Profiles [BGS+12]. Profiling [VS94, Ano88r]. profit [CBLS13]. Program [AHFK93, ACG+90, Ano87a, Ano91j, Ano94-60, Ano96x, AVS93, BE93a, Bra93, Bur94a, CH94, ORS94, Emr89, HMC94, HH93, IM96, ITOK93, Kah93a, KA91, LB93, MG95, OHIB93, ORSS94, OHIB94, PDR91, PZA87, Roh94, SG92a, SS95, TA94, WF93, WWY93, ZK95, Ano94-100, Ano96-38, Bin88, BM85, BHH92a, Bre87, CGL96, CGLxx, Che97, CRM94, CDG+96, Deg90, FP91, HA92, Ke85, KB18, LA88a, LY88b, Lim91a, MLR90b, MRR90a, MSTK93, Na86d, Pad89, Po86, SNS+97, Sch89b, Tan90, Tri85, TJC91a, Whe83, BS92, Joh94, Web91]. Programmable [Ano94-127, GHK+91, MS94a, CKM88, Gok91, Kar89, ML95b]. Programme [Ano94-33]. Programmer [DDJ98a, Sny99, Guz87]. Programmers [Coc01, PB90]. Programming [Ano94-4z, Ano94-28, Ano94-51, Ano94-58, Ano94-74, Ano94-93, AM93c, Ara91, AK94, BAAD92, BK95a, Ber95b, Bha94, Coc02a, Coc02b, Dip96, FHM95, FH95, Fi93, GJ87, GBK+96, HC99, HQ91, Hop93, KBM+92, KB94, KH91, Mah94b, MMRL93, NB92, PL91a, PL91b, PB95, PT93, PK94, Rag96, SPM+90, SBF94, SL99, Sit78, Ste94a, Sug94, TP93, VV95, Wi95, WL96, WLN+96a, WLN+96b, YSL97, ZM86, AGY+11, Ali86, Bea90, BM85, Chu91, DCC90, Ele93, Feo92, Gil94b, Gok92, Gua87b, Gu88b, GSS8, GJ88, KK82, Kor93, KA96, LW11, Mil93, MMG+00, MAA+05, RR10, RPL87, PK98, RR99, SW91, SMR10, TS90, Yiq912, Hii97]. Programs [AK87, Ano94t, Ano94-106, Bie88, BC95, Cla96, FBZ92, Fin82, HMM94, HLL94, KRS94, KBC+74, Mah94c, MB94a, MH96,
FS93b, GB96, KCOP94, MWO95, Sch94c, Sch96, Str94]. PVM/ MPI [DLM99]. PWR [HM93b, MTK93, MAA93b, Ng95].

Pyramidal [Eis95]. Pyrimidine [Hei89]. PYRROS [YG92].

Researchers [Ano97-30, AL92b, Bar00a, Bar00b, CE18, Sh95b, Ano95-31].
Reservoir [SPS90, WG82, Ano94-132, Bri90, Hen91, SPS91]. residence [Ano93b].
resilient [IS20]. Resistance [Gar01].
Resolution [NAAW97]. Resolution [ABC97, BCM90, Ger90, GL93b, MS93, SVM95, Str94, UZ95, PMS94]. resolutions [CR94]. Resolve [HC93]. Resonance [JB90, WRW93]. Resource [ADG+95, GGG+98, KCZJ14, PS94b, WN92, CS82, CS86b, MNV00, Ste90].
Resources [Mor92c, SP12, Cat92a, Jet91, Jet92, Kos95, Naxxxf]. Respond [PB90].
Response [BS97, CHL93, HL93a, IK93, Smi01, AB95, Gou90, TIGERJxx].
Results [Ano94-85, BBDS94, FBGM93, GS93, Gro92a, HLPP97, KA93b, Men84, PC94a, PL94, SS96a, Sim92b, Str97, YJD93, ASM86, Don93c, Ece96, Lon92, Oed92a, Oed92b, PE93, SPP+95, WLN+96a, WLN+96b].
RESY [EFPS93]. rethinking [Win92].
Retina [WR95]. Retire [Can92]. Retrieval [Ber90a, JIM14, Pug94, SG94a, WSP95].
Returns [HED93, Cre91]. reunification [Got91b]. Reveal [Pop91]. reversals [Ano95w]. Reverse [BGS+12, LIM13].
Reversed [Ano95-35]. reversible [Jab88].
Review [Ahn92, Ano91h, Ano93x, Ano94p, Ano95-34, Ano96c, Ano00a, Bue86a, Dm99, Hal96, Har94b, Haw88, Hil97, Kaz92, Kow86, MM94a, Nor97a, Pap97, Por86, Ros93b, Wen94, ACM89b, Sup88b, Hig92, Mc88b, Nat91a, PSOM90, SIG90b, Sch88a, Sim00, Smi88, Resxx, Wa195, TC94]. reviewed [Man89a, Man92]. Reviewer [Pin99].
Reviews [Ach99, ALPP00, Ano93q, Bra94, BBC+95, CCKSS90]. Revisited [XB96].
Revisiting [IBBA20]. Revive [VNO4].
Revolution [Ano91u, Ano91v, CK92b, CCKSS90].
RICIS [UL89]. Ride [PYTL97, Ada95].
Riemann [RT93]. Rifkin [CCKSS90]. right [Che90b, SG92c, SG92d]. right-hand [Che90b, SG92c]. Rigid [Fin82, LF03].
RISC-based [Ano94-120].
‘Roadrunner’ [GKS09]. roads [MT13].
Robin [UO94]. Robinson [The90a, Con87b]. Robocopter [Bar00c, Bar00d]. Robot [Ano96-40, BCT93]. Robotics [MCP93, Coc03a, Coc03b]. Robotict [SB94c]. Robots [Bar90a, Bar90b, Coc01, KA93a, KT93b, MGA94].
Robust [KB94, SHA+92, BB88b]. ROC [COS89].
Rock [Jon91]. ROCKfeller [IEE90].
Rockwell [GZA86]. RODOS [EFPS93].
Scalable-Parallel [DXJM93]. Scalar [CDC+87, Jor87, JC94c, NKTT95, VH93a, Wei89, WS90, BJ95, ST90, WS87a, WS87b, WS87c]. ScalaTrace [NRM+09]. Scale [BCH12, ACL93, BBC92, CCR11, CDC+87, DAKM98, GGG+98, GK93, HWS+88, HK93a, Iwa92, KSM+19, MKND97, MH94, OS94, Rui91, SkLC+03, SKK+90, Sob93a, WKL+16, WVBM88b, YZL+20, Zla01, Ano96q, AUW08, BB+89, BBC89, Che83, CH87, Che90c, Che93b, Che89c, Che99, DSZ96, DLJ+08, Du90, GHdF10, GPS86, Gra92, GZA86, HFH86, HFH87, IU87, Jor87, KNNH16, LPD+11, Lee87b, LXW+16, MP91a, MP91c, MR87, NNS+90, NP90, Sie90, Sob92, WVBM88a, WT11, WT13, YTL87, van95b, DLG93, IMF91, App96]. scaled [MP91c]. Scales [Mil97a, PC97, Ano89n, Ano92p, LAdS+15]. Scaling [CP94b, DT08, HYL+20, LEY86, McE92b, ARF12, CK90, Kor93]. Scan [Bar01, RM96, SJA94]. Scanjet [PRS94]. Scanner [PRS94]. scanning [And90a]. Scattered [Kar94]. Scattering [AFML93, JBWB97, MF92, SE90, PB94a, Ric91b]. Scavenger [SW90]. Scenario [Coo95, SB94a]. Scenarios [RG94]. scene [Wad86]. Scenes [EKZ90, SCF [LA93]. Schauble [Ano96c]. Scheduler [Dow98, WMKS96]. Schedulers [BMSP94, FR96a]. Schedules [EDA95]. Scheduling [Ang91, Ano94e, Ano94-56, Ano94-117, CD92, DA94, DRSS99, GM94a, HED93, HNS+10, Kim96, KCM02a, KCM02b, KCZJ14, LG97, MPT12, OP96, PR94b, PK87, PS94b, RF94, SES94, TGV08, TF92, Wal92, YG92, ZYL+16, Aba09, All93, BP89a, Bec89b, BP91b, BP92, Bro86, CLmWH91, Dan91, EB18, Fan87, LY90c, MiI87, Pol86, Pol88d, Pol88e, Pol90, Tan87, Tan89b, TDBL13, TRLD13, YF98]. Scheme [AM93a, Ano94u, AC84b, FG87, HBDS93, LC97b, MSGW94, MH96, OK93, PK87, RC94, SKIY94, SKIY97, SB94b, TF94, VV94, Wat91, AC84a, BS87a, CV91b, Che94a, CV88a, CH90, yHYZ87, LY90b, LA93]. Schemes [Ano94-43, JML95, LLY92, MS93, NU91, RBL94, SVD96, YS94, Abr90, Bra89b, CV92b, CDS98, GPS86, SL92]. Schmidt [JP90]. Schneck [McD88]. Scholarship [Ano94-33]. Schönau [Tru88]. School [Ano88u, ORS94, ORSS94, Pan96, VV95, New95]. Schools [Murt07]. Schumpeterian [Bla97]. Schwarz [KC93b]. scheren [Ano97e]. sci [Mou89, Mou90]. sci-tech [Mou89, Mou90]. SCIDDLE [ABGL96]. SCIDDLE-PVM [ABGL96]. Science [Ano90u, Ano93e, Ano94w, Ano94-71, Ano95l, Ano96-28, Ano96-27, Ano96-38, Bar01, Bor94, Bro91b, CCD+13, CR89, Cor89a, Cra91, Don94, Duk91, EW90, FHM99, Got91a, GK18, JC87, KS94a, Leu96, Nat92a, Natxxc, Nat95, Nas91, OHIB93, OHHIB94, Pit90, Pref93a, Red91, San96, San90, SHMR93, SC99, UHU09, Web91, Zen94, AGEL13, Ano93g, Ano95w, BFS11, CCC+89, De 96, Eck92a, Ede92, FK98, Fox97, FW90, WAD+89a, HS+91, Hoc96, HK93b, IBM01a, KS93a, KH93, LP90, Lay91a, ML89, MncN87, NS86, Uni91b, Nat91b, Nat92b, Ras91, RD94, Ros89, Sci86, San91, SMDL90, Wil88b, WAD+89b, Zyg93, IBM01b, Ano95w, Coc02a, Coc02b, Eck92b, Mah94a, Mut94]. Science/Technology [Ano96-28]. Sciences [AIA94, Ano91k, Ano93t, Bla93, GS87b, Ano98a, GGL+97a, GL90, Han03, Nat90, Edw97]. Scientific [Abr94, AF97, Ano88o, Ano94-38, Ano94-37, Ano94-103, BCH12, B+95, BPM+89, BCC+09, BS94a, BEK02, Ber07, BCL91, BB92, BLa93, BCHJ94, CGFT05, CCKS90, CG86, Che94b, Cla96, Con90, Con91, Cox88, CM93, DT97, FJS89, Get15, GHZW94, Gup94, Hab89, Hab86, HC99,
scientifc

SPP+05, Wil88a, WMK90, WT13.

Scientist [Dun92, Gol91a, Gol91b, Hil97, MM94a, Wen94, Wis92].

Scientists [Ano98u, Coc01, HHS91b, HW11, Sha95b, Str94].

scientometric [DGG18].

Scope [Geo94, Pap16].

scoped [BGS82].

Scores [Ohr86].

Scottsdale [KFF93b].

scramjet [CYXL18].

Screen [AH93, Coc02a, Coc02b, Rui90].

Screw [YMZ90].

SCRI [Ano95-41, Car89b].

SCS [Ch90, Ano88j, Hab86, WSL88].

SCS-40 [Hab86, WSL88].

SDBS [DA94].

SDM [TS90].

SE FOR [RCR93].

Segmentation [HKG90, BÇG14].

segments [Bra89d].

segregation [GE12].

Seidel [Ano94-92].

Seismic [HYL+20, KN88, Arb92, Bro93, CGLY96, CGLxx, Chexx, Gou90, LS92b, LM13, PLS20, Vaf88, HWS+88].

Seitz [Ano11].

Selected [Ano91r, Pet89b, Pin01, WZ97, Kin96, MW88, Ste85].

Selecting [Ano94-118, SSG93].

Selection [CB00, Lew17, MK07, WH94].

selective [CV88a, WFI+17].

Self [Ano94-30, BA95, CP94b, CTRR93, FSN93, GT91, GD94a, LUT96, OBR94, PN96, PK87, RPY94, Sto95, Tan89b, Zas93, Fan87, KMN+05, Tan87].

Self-Adaptive [BA95].

Self-Compacting [Ano94-30].

Self-Controlling [Sto95].

Self-Explanatory [FKN93].

self-gravitating [KMN+05].

Self-O rganized [LUT96, PN96].

Self-organizing [RPF94].

Self-Scaling [CP94b].

Self-Scheduling [PK87, Tan89b, Fan87, Tan87].

Self-Shielding [CTR93].

Self-Stabilized [Zas93].

Semantic [DKF94, IJM14, Mas92, Pug94, Sha94a, Coc01].

semantics [Ano94-100].

semantics-based [Ano94-100].

Semi [CT94, GGG93b, GJN93, JML95, LMP+90, Rui91, SQM94, Car89b].

Semi-Active [SQM94].

semi-complete [Car89b].

Semi-Dataflow [Rui91].

Semi-Infinite [GGG93b, GJN93].

Semi-Interactive [LMP+90].

Semi-Lagrangian [CT94].

Semi-Linear [JML95].

semiamnual [Sam91].

Semiconductor

[Ano94-94, Ano03a, BMW91, DWV92, SF91].

Semiconductors [MF91, Wat92b].

Seminar [Don92a, M+94, Meu89a, Meu91, Meu92c, Meu93, MB93, MB94b].
Sensed \cite{Ano93b}, Sensing \cite{Luc01, Ano96l}. Sensitivity \cite{AH93, BKT94, CSR90, ODAZ15, Ram88}. Sensor \cite{JK94, Ano02a, Ano02b}. Sensing \cite{Luc01, Ano96l}. Sensitivity \cite{AH93, BKT94, CSRB90, ODAZ15, Ram88}. Sensor \cite{YK94, Ano02a, Ano02b}. Sensed \cite{Y+92}. Sensing \cite{Ano93b}. Seoul \cite{IEE97b}. Separable \cite{CH87, Che90c}. Separated \cite{Rya90}. Separation \cite{CH87, Che90c}. Separators \cite{Kra88}. September \cite{ANS92, Ano88d, Ano91m, Ano93c, Ano93n, Ano94-108, Ano96k, Ano96q, Ano97d, Ano97-33, App96, BBM96, BP93, DMC96, DJM94, DLM99, Guo94, Hel93, HKS93, IEE95d, JPTE94, Kah93a, KWW92, Lag89, MM91a, MW88, ML95b, NN90, SEA84, SN96, VV95}. Sequence \cite{AKDM93, BS04, DLG93, EBS88, HC93, LD93a, Lop89, MC10, MDH00, PRS94, Ros93a, SSM93, Tak93, Tur90, DT96, Han90}. Sequences \cite{AKDM93, BS04, DLG93, EBS88, HC93, LD93a, Lop89, MC10, MDH00, PRS94, Ros93a, SSM93, Tak93, Tur90, DT96, Han90}. Sequencing \cite{AKDM93, BS04, DLG93, EBS88, HC93, LD93a, Lop89, MC10, MDH00, PRS94, Ros93a, SSM93, Tak93, Tur90, DT96, Han90}. Sequential \cite{AKDM93, BS04, DLG93, EBS88, HC93, LD93a, Lop89, MC10, MDH00, PRS94, Ros93a, SSM93, Tak93, Tur90, DT96, Han90}. Sequential-Type \cite{AKDM93, BS04, DLG93, EBS88, HC93, LD93a, Lop89, MC10, MDH00, PRS94, Ros93a, SSM93, Tak93, Tur90, DT96, Han90}. Sessions \cite{AKDM93, BS04, DLG93, EBS88, HC93, LD93a, Lop89, MC10, MDH00, PRS94, Ros93a, SSM93, Tak93, Tur90, DT96, Han90}. Set-top \cite{Way96}. Sets \cite{Ano90b, Ano94-130, Ano95-33, BB92+08, Goll99, Ano95-33, Ano97k, DD88, WiH90b}. settlement \cite{KSB+19}. Setup \cite{Kad94}. Seventeenth \cite{Gro90}. Seventh \cite{B+95, MP92}. Several \cite{Gar99, But92}. Severely \cite{Gou93}, Seville \cite{Mar88}. Seymour \cite{Nor97, Nor97-24, Ano94-119, Ano95-33, BBD+08, Gol99, Ano95-33, Ano97k, DD88, WiH90b}. SGI \cite{THH81, THH81}. Service-oriented \cite{Kar13}. Services \cite{B¨ur88, Coc02c, Coc02d, Lay91b, Mit98, AAC+05, Ano96a, Lin92, Min92, MN90}. sessile \cite{Gre88c}. session \cite{Tec89, Unii92b, Uni86b, Uni89a, Uni86a, Uni86c, Uni92a, Uni98}. sessions \cite{Ano94-126}. Session \cite{BJ93, CDW94, FGG09, TM94a, VRS93, WGW04, Wod95, CGW95, Dra88, Kue87, PJ90, Poo96a, SL90, Way96, YH90}. Set-top \cite{Way96}. Set-top \cite{Kad94}. Set-top \cite{Kar13}. SGI/Cray-T3E \cite{Che99}. Shallow \cite{BB91a, JAB92, Sha94a, SJA94, KK89c, KHN89}. Shallow-Water \cite{BB91a, JAB92, Sha94a, SJA94, KK89c, KHN89}. Shannon \cite{Cra96}. Shape \cite{SBW94, TSC94}. Shapes \cite{MSG94}. Service-oriented \cite{Kad94}. Services \cite{B¨ur88, Coc02c, Coc02d, Lay91b, Mit98, AAC+05, Ano96a, Lin92, Min92, MN90}. sessile \cite{Gre88c}. session \cite{Tec89, Uni892b, Uni86b, Uni89a, Uni86a, Uni86c, Uni92a, Uni98}. sessions \cite{Ano94-126}. Set
Shares [Ano94z]. Sharing [Ano94-138, LHLM95, Fon85, Mir88, Rya90].
Shear [Ano95-35]. Sheared [Ger90]. Sheet [KD93]. Sheet-Metal [KD93]. Sheldon [Ano94p]. Shelf [Ano95-31]. Shell [Xu91]. Shells [Ger90]. Sheet-Metal [KD93]. Sheldon [Ano94]. Sharing [Ano94z]. Shares [Ano94-120, Ano92b, Po00b, Po00a, UHU09, Ano03a, Ano92h, Ano94-121, Ano96-29, CB99, SS96b]. Silicon [Ano94-120, Ano92a, Ano02b, Po00b, Po00a, UHU09, Ano03a, Ano92h, Ano94-121, Ano96-29, CB99, SS96b].
Silver [Ano02a, Ano02b]. SIMD [Bak93, BS94c, CBB+05, CP92b, CP94c, CP92e, Hel92, Hor90, KR94a, Kra92, KC92, LL88, LPS90, PVA94, PL91a, PL91b, SI90, SI91a, SI91b, TL96, Tr90]. SIMD-Type [LPS90]. Similarities [Han90]. Simple [RBK95, RWS94, Ste94b, WMR96, WD93b, Car92, HY89, Lev98, Sch89b]. Simplest [Gil01]. Simplex [TL96]. Simplification [Maa93a, Ano00a]. Simplified [LMM93, Sol93]. Simply [Faz87]. SIMTRAN [MAA93b]. Simulate [Ano93-37, Ano97f, Gil01, RRSS93].
SIMULATE-3 [RRSS93]. Simulated [Abr92, HVC95, Jab88, Rig93, SB96, VT95, Ano95w, Bra88]. Simulating [Ano96t, Dro95, FDD02, GGC+11, ITOK93, PDR91]. Simulation [ALM93, AABB93, AC93, AGH+90, AHFK93, ACSH90, AJ97, AKT90, Ano87a, Ano94b, AAS88, AHH94, Ask93, BCM90, BPJ94, BJL95, BOS93, BAA99, BD93a, BD93b, BMW91, BS98b, CMPR93, Cal85a, CT93a, CRR93, CS86a, CS90, CBT91, DHL97, DO89, DKS93, De97, DCW93, Elm95b, EJ97, FA93, FR81, FD97, FJP94, FK93, GM96, Ger90, Gil92, GW93, GBWM93, GL93a, Gre91b, GF90, GW93c, HHR94, HHTD90, HMG93, HL91, HLLx, HGB90, HVS93, HP93, HFT94, HSB93, Hug93, HKB90, Hun93, IK91, Jab93, Jar12, KY93, KS93b, KSM+08, KB97, KLSC97, KKL96b, KL94, KY90, Kue93, KT93b, Kw94, LC93, LB82, LCD97, Maa93a, MK93, MKG90, MJH90, MA97, MZ95, MJRS94, MKDY90, MHE97, MF92, MI93, MS94c, MBK+92, MMHM93, NT89]. Simulation [NB94, PB94b, Pay97, PA93b, PK80, Raa97, RG94, Ro97, RLW93, Sch97b, SHZK94, SSJL94, SPS90, Sta94, SZ98, Str10, Stu97].
SIMTRAN [MAA93b]. simulate [Ano93-37, Ano97f, Gil01, RRSS93].
SIMULATE-3 [RRSS93]. Simulated [Abr92, HVC95, Jab88, Rig93, SB96, VT95, Ano95w, Bra88]. Simulating [Ano96t, Dro95, FDD02, GGC+11, ITOK93, PDR91]. Simulation [ALM93, AABB93, AC93, AGH+90, AHFK93, ACSH90, AJ97, AKT90, Ano87a, Ano94b, AAS88, AHH94, Ask93, BCM90, BPJ94, BJL95, BOS93, BAA99, BD93a, BD93b, BMW91, BS98b, CMPR93, Cal85a, CT93a, CRR93, CS86a, CS90, CBT91, DHL97, DO89, DKS93, De97, DCW93, Elm95b, EJ97, FA93, FR81, FD97, FJP94, FK93, GM96, Ger90, Gil92, GW93, GBWM93, GL93a, Gre91b, GF90, GW93c, HHR94, HHTD90, HMG93, HL91, HLLx, HGB90, HVS93, HP93, HFT94, HSB93, Hug93, HKB90, Hun93, IK91, Jab93, Jar12, KY93, KS93b, KSM+08, KB97, KLSC97, KKL96b, KL94, KY90, Kue93, KT93b, Kw94, LC93, LB82, LCD97, Maa93a, MK93, MKG90, MJH90, MA97, MZ95, MJRS94, MKDY90, MHE97, MF92, MI93, MS94c, MBK+92, MMHM93, NT89]. Simulation [NB94, PB94b, Pay97, PA93b, PK80, Raa97, RG94, Ro97, RLW93, Sch97b, SHZK94, SSJL94, SPS90, Sta94, SZ98, Str10, Stu97].
SIMTRAN [MAA93b]. simulate [Ano93-37, Ano97f, Gil01, RRSS93].
Software [Ano96a, Rol96]. Software [ABB+03, Ano88o, Ano88n, Ano88l, Ano88m, Ano94-88, Ano97b, AB96, ATSA93, BCC+08, BMSD94, CGSG94, CDPW94, Coc01, Coc02a, Coc02b, CDR96, Fer86, Fer89, FBJ+94b, Gar01, GW91, Gui96, Iwa90, JC94c, KFN02, LS94, Mar85a, MM90, MW81, MP91e, MSA+07, Natxxd, OGY91, Pau08, PL91a, PL91b, PRSR94, Pin01, Por89, DDJ98b, Tho90, Tri95a, Tri95b, Tri95c, VSM96, WH93, WKL+16, WGR93, Y+92, YMY92, Ano88r, Ano92-44, Ano94-97, Ano95u, Ano97n, Ano97y, Ano98g, AG90, Asl91a, CS82, CS86b, CCG+17, CV90, CV91b, CV92b, CV88b, Com92a, Com92b, Don85, Gan88, GBS18, GV91, Hak89, Hug94, IKM85, Kon87, Kue87, KS88, LY91a, MT13, Natxxa, Nag90, Oya99, PATT12, PKG+10, R+00, RIB+13, Sch94c, Som13, Str94, SMH91, UPK87]. Software [Ano85b, Ano01a]. Software-controlled [KFN02]. software-managed [CV88b]. Software/Hardware [YMY92]. Soil [HM97]. solar [NSB96]. solicited [Ano16]. Solid [CJ93, Gre91b, HFFH86, HFFH87, Soe94, Wu94, BJ84, WHBH93]. Solid-State [Wuo94]. Solidification [CS90]. solids [Fin82, Ano96a]. Solitons [BS98b]. Solo [Kop91]. Solution [Cal86, Duf82, Duf91, FBH93, For02, GMW94, GSG+94, GW93a, GRSS93, JC94c, Kam86, KE93, LR88b, MDW93, MR90b, MM94c, PO88, Soe94, Sus93, Taf96, TYK93, Vui93, BBE+20, BGT90, Con87a, DDD88, Duf90, Duf00, GKR91, GS78a, GS89b, GSS9a, GS90, GS92a, GP93a, GV91, Gri92, GKL+87, Gur88, Kra88, Pet89a, SBC91, SCV01, Sam85, Scr88, SE98, TFB94a, TFB94b, Van95a, vdf91]. Solutions [Cla96, HMBS93, JW93, KP95, KTK94, MRL+17, Ano96l, DGL89, Rya13, TTM+20]. Solve [Dic94, DMPR93, DGJ93, PC93, Wat91, Che99, HHS01b, Poo96a, RG92]. Solver [Ano94-61, Ano94-94, BE93b, CSSY92, Far90, HR94, HE98, KR94c, LM93, MT97, RT93, RT97, VB90, BTV96, BV96, BS88b, CRA10, GMW91, Gao86, GW95, Gri86, LG87, Mar91]. Solvers [ADLL01, CMF94, CP94c, DLPQ94, DKH86, LPNRJ94, VY88, WS93, AD88, CP92b, CP92a, FGM90, GS89b, HE996, KA96, Lee96, ZGL14]. Solving [AGL+99, AS88, Ano94-94, Ano94-110, BCZ95, Bra88, BJ84, BV93, Cha90, CGW05, Che92a, Ga196, GZA86, HL96, HOSZ97, HO92b, Iwa92, KS94a, LM90a, LO96, ML93, PS94a, SZ89, SMF985, SL90, SF93b, TFVK94, VAGRMVA90, An88, Ano87d, Che90b, Che94a, Dav86b, DHD98, DS96b, GBS18, HVY91, KS86a, Ked92, Lou90b, Lou92, Nag88, Rob85, SG92d, SW99, WB88]. Some [BCW93, BY88, CCKSS93, DL90, FD93, GJW91, GS89b, GSW93, HG88, Her89, LPNRJ94, Lee86, Lou96, Lou92, LB82, Ul83, VM94, Woo92, Woor4, Bra89b, Hal96, HOSZ97, Ji91, Lee96, PP91, Tem83]. sometimes [Win02]. sonar [GMF00]. soon [Mar90]. Sophisticated [Ano97n, WZ86]. Sopron [VV95]. SORFIND [HH93]. Sorrowful [Ano94-125]. Sorting [AG94, Bue92, YKB+00, Ano97k, BM87, Gre89a, LYC93, Ul84]. Sought [Coo95, Ano92a]. Soup [Voi94]. Source [Coo03a, Coo3b, DCW93, LEMS95, Ano02a, Ano02b, BBE+20]. Sourcebook [DFF+02]. Sources [Ano90q]. South [L+95, New93]. Southampton [BP89b, Ano88d]. Southern [Ano91w]. Soviet [Ano89a, WG93b]. SP [TGL96, WOK+00, WT11]. SP1 [Ber95b, HJZ94, JH95, Nai94, PMS94, SSCH94]. SP1/ [Ber95b]. SP2 [ET96, GYL00, JH95]. Space [Ano93t, Ano94-138, Ano18, AZ94, BGM+11, Bro91b, CHL93, Col94, FS93, FI93, GGG93a, LMP+90, Poe95, SL93, Sin18, SF93b, Taf96, TAAL95, WR95, YF98, Ano96j, Ede92, Hun92, MBR05, SKB89, ...]
SCK+00, Zyg93, YQTV12]. \textbf{Space-Angle} [CHL93]. \textbf{Space-Based} [AZ94].

\textbf{Space-Energy} [FGS93]. \textbf{Space-Time} [Ano18, Col94, Sin18, SF93b]. \textbf{Space/time} [YF98]. \textbf{Space/time-efficient} [YF98].

\textbf{Spaces} [Pet97]. \textbf{Spaceship} [Rud90]. \textbf{Spacetime} [FD97]. \textbf{Spain} [ACM95a, DLM99, Mar88b, Sig95, Ano94s, RMO96].

\textbf{Span} [Che92b, Che92c]. \textbf{Spang} [The90a, Con87b]. \textbf{spanning} [BJZfDA96].

\textbf{SPARC} [Ano91f, Kha93]. \textbf{SPARCstations} [Ano90o]. \textbf{Spark} [Bed93, BSB93]. \textbf{Sparse} [ADLL01, Ano94-65, Ano94-92, Ano94-115, AZ95, Ber90a, CLY+19, DD87, DDB+10, DR81, DR82, Duf82, Duf91, ET96, EHS94, FY96, GMW94, GG96, GS89c, HR94, Kra92, KCH94, KSH94, Mis90, NGL94, PS94b, Rag94, Rot94, UZ95, USZ96, WL83, AD88, And88, A88, Ber90b, BJV+16, CC88a, Con94, Dav86b, DD88, Dav89, DY90, DS96b, GMW91, GS91, GW95, Gri92, HOSZ97, HV91, Ip91, Kra90, KESH95, Luc91, Pin91, Rob95, SW88, SZ89, SZG95, Wij90a, Wij90b, Yan90a, ZGL14].

\textbf{sparse-matrix} [Kra90]. \textbf{Sparsity} [NN98].

\textbf{sparta} [SO95]. \textbf{Spatial} [AM94, CHMS94, CSS98, Dip96, G93a, G93b, Hi93a, War93a, HJ94, JHZ95, Kha91].

\textbf{Spatio} [HV95, RBK95, VT95]. \textbf{Spatio-Temporal} [HV95, RBK95, VT95].

\textbf{speak} [Win02]. \textbf{SPEC} [Ano93a, DDJ98a, EGJ+02, GA95]. \textbf{Special} [AP93, AB03, AAB06, Spe87, Ano88o, Ano94-59, Ano94-126, Ano96e, Ano96f, Ano09, BKK11, Ber07, EFIM91, yFH89, FR98, FT93a, FM99, GS89c, GMSS+11, Kahl93b, KHH95, Ken92, KR93, LQFC18, MB12, MLY10, Mye92b, OS94, PW05a, SCV01, TH19, Tor97, Abe91, Che99a, KAR13, MH18, RF93, Tru88].

\textbf{Special-Purpose} [Ano94-59, FHM99, Abe91]. \textbf{Specialised} [Sub94]. \textbf{specialist} [Ano87c]. \textbf{specialists} [Ano93-41, Hol93]. \textbf{Specialized} [Ano97-32, Mik89]. \textbf{Specific} [Ano94f, EH97a, KRS13, MGA94].

\textbf{Specification} [BSKJ93, Coc03a, Coc03b, Asa93a].

\textbf{Spector} [War03]. \textbf{spectra} [BB95]. \textbf{spectral} [Ano03b, BK93, DJSP93, KO90, KB93, VR94, WF94, DWM+01, FR95].

\textbf{spectral/finite} [DP90]. \textbf{Spectrum} [Bar00a, Bar00b, CCKSS90, Kad94, Ano89d, IEE98].

\textbf{speculation} [Hal96]. \textbf{Speculative} [Col94, YSKS95, OWG+13]. \textbf{Speech} [IEE94a, IEE95b, Mes93b, Ste95, Z94a].

\textbf{Speed} [Abr92, Ano94-104, Ano94-143, Bal93, Bar00c, Bar00d, Che89b, EM94a, GS94d, GW93c, GMMT91, Hal96, KBD97, Lan93, Pre93b, RG94, TFO94, TF97, Woo96a, Z94a, Ano94-132, Ano97a, Ano03a, Bai88, BBBC96, Ber82, Buc83, Che83, Dao88, Fly66, KW92, NGPH99, Pan96, Ram86, Ros95, Shi95, Smit96, SGS+20, SO91, TR86, AM91, KA91, MHW94]. \textbf{Speed-Flow} [Hal96]. \textbf{Speeds} [Ano88l, Ano93-34, Ano94-29, Ano95-30, Wal85]. \textbf{Speedup} [Ban79, WN92, WB85, PB87]. \textbf{Spelling} [DS94a]. \textbf{Spencer} [MF93]. \textbf{spent} [Win02].

\textbf{SPEOS} [Del97]. \textbf{Sperry} [CKKSS90]. \textbf{Sptesimalrionvye} [BKM98]. \textbf{SPH} [HM93b]. \textbf{Sphere} [BIS96, CT94, LC97b].

\textbf{SPICE03} [PDR91]. \textbf{Spice2} [Yan91].

\textbf{Spiegelhalter} [Ano94-95]. \textbf{Spike} [RBK95]. \textbf{Spiking} [ADGA95]. \textbf{Spin} [Pau86, Ano90o, BDM94, Poo96a].

\textbf{spin-polarized} [BDM94]. \textbf{Spinule} [MZ95].

\textbf{Spinule-} [MZ95]. \textbf{SPLASH} [ABD92, Bue92, Gok90a, Hol90a, PTS93].

\textbf{splatting} [Wil92a]. \textbf{Split} [TFVK94]. \textbf{Split-C} [TFVK94]. \textbf{splitting} [Ske87].

\textbf{SPMD} [MVS94]. \textbf{Spokane} [IEE93b]. \textbf{sponsored} [Kho94]. \textbf{Sponsors} [Coc02a, Coc02b]. \textbf{Spot} [Ano92z, YTL87].

\textbf{Spotlight} [Cha97]. \textbf{Spotlights} [Hol95]. \textbf{spots} [Gle91]. \textbf{spotting} [Ano89f]. \textbf{Spray} [CZRB93, KR94b, MA97]. \textbf{Spread}
Stream [Bot96]. Streaming
[HHOM91, HHOM92, OPR01].
Stream/FIFO [HHOM91, HHOM92].
Streamlined [OM91]. Streams
[HAG+13, MM93b, PVA94]. Stream
[ITOK93, TIOK94]. Street
[Ano94-128, Gre88b, SW10b]. Strength
[JCJY94]. Stress
[ER94, JM89a, CY91, JM89c]. Stria
tal [KW95]. stride [Gep01]. Strides
[VLA92]. strikes [Sch18]. Striking
[Lew96a, Lew96b]. Strip
[JC94d, CH89b]. stripped
[Way96]. stripped-down
[Way96]. Stroke
[HB93]. Strong
[Sch92b, KW92]. stronger [Rob89].
Stronghold [Ano93-38]. strongly
[KDK89, Shi95]. Structural
[AK95, AS98, Be93, Bra93, DH93, FV94,
KA91, Law90, MTP93, NS90, QB92, SC97,
Sug96, Ano921, BP96, Che88, CH98b, ES88,
Gou90, Hea91, HE993, Ng95, NP90, PO88].
Structure
[ATL90, Ano94-98, BW94,
HT93, KA93b, Kuw94, Lie93, OS94, Sch98b,
TAK06, Bre87, Gu98d, KGERJ1x,
NPS93, RGL+15, Yos90, ZAS94].
structure-function [ZAS94]. Structured
[ASS94, Ano85b, CRY94, Cy96, Pl97,
Ts91, ALPP00, CB98, SMM17].
Structures
[FCGG90, Ger90, Hun93, JM90, Raa97,
SBN82, Sbo93a, ZM94, Ano95w, Ano96d,
App96, Gou90, JSM98b, KK98a, Lin89, MB98,
PB94a, Pot87, SSLR90, Sbo92, ZSS94b, ZSS94c].
STS [Rig93]. STS-Content
[Rig93]. Study
[Coc02c, Coc02d, Kah93a].
Studies
[Ano88m]. Studies
[BK97, Cal85b, CFV+90, CLP93, Cra96,
HB93, KA93b, LC94, Sj91, SABK94, WR97,
Ano88p, Ano98f, FMD07, GB90, Gre90b,
Ha88, Ha90a, Shi95, Sie90, WHBH93, RD94].
studio [Ano96u]. Study
[AJ97, Ano94-104, CAB93, CS86a, DBK90, DG95, DS96a,
DDF93, GY93b, HS94b, HCL94, HL91,
HLxx, JML95, Kel91, KNS97, LC90, LH94,
LYKM97, MH95, NAAW97, RCK97, SSG93,
Sal95, TIOK94, TOWC15, WS90, YFO93,
ZM86, Bis94a, Bis94c, CS88a, CY91, Das94,
DHT95, DB98, EB91, EMS11, Feo92,
Gal88a, Gan96, GKS94, HS93a, HJ94,
IEE92, JY92, KDE98, LY91b, MEG87,
NDLV88, NW03, PBK91, PGK+10, RR89,
RGL+15, SLY98, SLY90, VSH91, WS87a,
WS87b, WS97, WvTB+07, Wj99a, ZH98].
Studying
[AM93b, Ano95w, Che98a, YB90].
stuff [Poo96a]. Style
[Bro17, SKP91]. Sub
[GP93b]. Sub-Models
[GP93b]. Subcommittee
[Uni86a]. Subcommittee
[Ano88o, Ano91b, CCKSS90, Uni92b, Uni92a,
Ano88h]. Subcontracting
[GT97]. subcycling
[Bu98]. subdivision
[CB90]. Subject
[DDF93, LC12]. submarines
[Ano89f]. submission
[DT96]. submissions
[vL99]. Subprograms
[CDW94, Dub87]. Subroutines
[BCHJ94]. subscripts
[SLS92]. Subspace
[Bis94b, BHLST94,
Saa93a, AT89, Bis98c, HLT93, Saa89].
subspaces [Che90b]. Substitution
[TYKE93]. Substrate
[DDHK94, KMK97, SKK+90, Lee84].
Subsurface
[BCCG97, YCC97]. subsystem
[Con88, OBB+05, OWG+13, WTC+02].
Subsystems
[Ano91b, Ano94-104, FCB95b, FC95a].
succeed [KWW92]. Success
[Blu92]. sufficiently
[ALPP00]. Suggests
[Ano95-45]. Suitable
[MM93a, Ano95-32, Ano93a, SCK+00, SZ11]. Suited
[ACL93]. sum
[Fin82]. Summaries
[MP92, Ano95-38]. Summary
[Ano93b, Ano98a, Man98a, Man92, Ros95].
Summer
[Ano94-33, Kah93a, Wn989].
Summit
[Ano20, BBE+20, CFP20, Lie20,
LSS+20, SGS+20, TTM+20]. sun
[Ano94k, Bro93, Ano90o, Ano91f].
SUNDA
[Sho91]. Sunder
[Ano94-127].
SUNMOS
[Ano94h]. Sunnyvale
[Ara90]. Sunset
[Max81]. Sunway
[AYL+18, CLY+19, HYL+20, LFJ+20, ZFF+18].
Superordenador [Pac85]. Super [Ano89j, Ano90q, Ano92z, Ano93m, Ano94-128, Bar00a, Bar00b, Cas01, Hos95, Koc93, Pic91b, Vag88, VKK80, Ano89j, Don93c, Lee90, Lev89, LQFC18, VVIH95, Wat72, LMT95, LQFC18].

Super-AI [LQFC18].

Super-Computational [Hos95].

super-computers [Lee90].

Super-computing [Vag88].

super-data [LQFC18].

super-priced [Ano89l].

super-workstations [Lee90].

Supercheap [Cas03].

superchip [Ano96p].

superchips [Doz92].

Supercompiler [Tur86, Tur79].

supercomputadora [Pac86].

Supercomputational [BB90, EW90].

Supercomputations [Tou87].

supercomputer [Sug80, Fin94, AM91, AK95, AU91, Alaxx, ATL90, AGKT02, AABK95, Ano87a, Ano87b, Ano88p, Ano88u, Ano88q, Ano88o, Ano88l, Ano88r, Ano88v, Ano88w, Ano89j, Ano89m, Ano89o, Ano89p, Ano90j, Ano90k, Ano90m, Ano90r, Ano90p, Ano90s, Ano91c, Ano91l, Ano91j, Ano91s, Ano91t, Ano91r, Ano91u, Ano91v, Ano91w, Ano92h, Ano92k, Ano92q, Ano92t, Ano92v, Ano92-27, Ano92-28, Ano92-29, Ano92-30, Ano92-31, Ano93z, Ano93w, Ano93-34, Ano93-33, Ano93-35, Ano93-36, Ano93-32, Ano93-33, Ano93-35, Ano93-36, Ano93-32, Ano93p, Ano94l, Ano94i, Ano94d, Ano94-72, Ano94-97, Ano94-120, Ano94-130, Ano95j, Ano95k, Ano95x, Ano95y, Ano95-33, Ano95w, Ano95-42, Ano95-49, Ano96t, Ano96y, Ano96-34, Ano96-35, Ano96-37, Ano97b, Ano97g, Ano97n, Ano97u, Ano97x, Ano97y, Ano91b, Ano93b, ABM88, AC84b, AAS88, ABM93].

Supercomputer [ABHS89a, BM93a, Bar00a, Bar00b, Bar00c, Bar00d, Bar01, BJLW95, BOS93, BR95, BS94a, Bha94, BBC92, BGQ19, B+89, BBC+89, Bor92, Bor89, Bra91a, BB93, Bra91b, BCHJ94, Bro91c, BBW90, Bro91d, Bup87, BK91a, BK91b, BEW82, Cor89b, Com89, CK92a, CSB89, Car94a, Cas03, CCKSS90, CPS96a, CGW05, Cha94b, Che90d, Che90c, CWLT97, CTD+16, CLY+19, Chr90, Chr91, CS93b, Chr89, Cia88d, Cia88e, Cia88f, CB00, CB02, CDC+87, Coc01, Coc02c, Coc92d, CR89, CW89, Con11, Coo95, CM95, Cox88, CS94a, CB91, CKPK90a, Cyb9b, CKPK90b, Cyb91b, DO89, Dan96, DLS93, Dav00, DGL89, Deh90, DGT84, Den86, Dip96, Don94, Dub87, DDB+10, DP91, Dup86, Dup87, DM88a, DM88b, Ede92, Egg94, EFH+00, Elm93, Elm95b, Emn85, MSCxx, Fer83, Fei05, FG92, FB91b, Fox89, Fox90b, FBCB18, FY92, Supercomputer [FHKT97, Gal89a, GFM96, GGG++98, GBG89, GGC+11, Gre88e, Gre88b, GH90, Gre90b, Gre90a, Gre91b, GH91, GML90, GL89, Gro93, Gro90, GG97b, Gun88, GMSB93, GBK+96, HS94a, HLPP97, HHS01a, HHS01b, Har90, Har91, Har94a, Har95, HTV88, HS+W+90, Haw88, HMS+86a, HMS+86b, HCL94, Hei89, HL91, HLxx, HFCM98, HGS88, Hes90, HWG98, HT93, Hir94, HS94d, Ho88, Ho91, Hol90b, HMKI97, Hor97b, Hor97a, HYL+20, HKG90, Hum92, Hum93, Int81, IMF91, Ike95, IS95, III96, INKN01, IMP93, IK82, Iwa90, Joh86a, JA92a, JA92b, JT87, Joh94, JS95, JM98a, JM90, JBI91, KKS9a, KC98, KP95, KFF93a, KFJB94, Kel91, KFB91, KHH7, KHN98, Kir95, KFY94, KGB+96, KLM94, Koe96, Koe97, KA91, Kop91, KRI93, KY90, KMN+05, Kun95, LHM90, Lag96, Lam14, Lan93, LRR93a, LAPR94].

Supercomputer [Lay91a, Lay91b, Lee98, Leg90, Lew96a, Lew96b, Lew17, LO96, Lin89, Lin82, Llo94, LMXx, LLL+17, LCD97, MKG90, MJH90, Mar86, Mar88b, Mar85a, Mar85b, MNR86, MMW86, Mas93, MSW96, MHO98, MCD88, McN87, MM90, MMR96, Meu90, Meu91, Mik94, Mil97b, Mit88b, MRS88, Mir92, Mir90, Mit98, Mit96, MF92, MSA+07, MR90b, Mor92b, MD88, Mor92c, MAT85, MBK92, MK92, Mu91a, MO97, Mur97,
Mye86, Uni91b, Nat86g, Nat85, Nat84, NKTT95, Nas91, Ng95, N+95, NBGS96, NS96, Nor96, NBKP95a, Num85, OLLG96, OD88, Pro94, PB84, PGL87, PB94a, PBK91, PCY+19, PZA86, PZA87, PL91a, PL91b, PS89, Pet89b, Pic91b, PSB01, Pop91, PK94, Rag06, Ram86, Ram88, RWN94, Ren97, Rhe90, RL90a, Riv90, RL90b, Rol96, Ros93b, Rud90, RLV93, Sti84, San91, Saa93a].

Supercomputer

[SKIY94, SKIY97, Sch89a, SKB89, Sch87b, SH93, SH94a, SB01, SSWx, STSK95, SKK+90, SF91, SDFP93, Si91, Sim97, SS96c, Sob93a, Ste96, Ste94c, SPPG98, SYMT92, Str94, Sum82, TAKB05, Tay94, Tho93d, TR86, TOY96, TW92, U93, Uch96, Uch97, US01, Vaf88, VKB96, VAGRMVA90, VTM12, WL94, WLKI95, WCR+18, War89, Wat95, We91, WM91, WS99, WGR93, WOG94, Wor84, XOZ+20, YSK+96, Y+92, YAG93, YAGxx, YR93, YMY92, YWD94, YWDxx, Yos91, YZL+20, del89, ASK85, Ada95, AU90, Afn90, ABB+13, Ali86, AAC+05, And80c, An85b, An86a, An86b, An87c, An88f, An89e, An89h, An89l, An90a, An90e, An90l, An90o, An91f, An91g, An91h, An91l, An92b, An92d, An92l, An92o, An92p, An92w, An92-42].

Supercomputer

[CD09, CGLY96, CGLxx, Chexx, Chi86, Ch90a, Cia88a, Cia88b, Cia88c, CNC+08, Con90, CBC+05, CHT+13, Cre91, CFH+01, CP93b, Dak90, Dan91, Dao88, Dav86a, Deg90, DK91, DGT82, Din91, Din92, DLJ+08, DAC+18, Don93b, DHT89, DWV92, Du90, DR91, Dum97, EFR+05, Ele93, Els89, Emn84, Erc88, Eva97, Fed87a, Fed87b, FDM07, FDM07, Faz87, yFH89, FGC06, Fie86, dCCF01, FFM95, For93, Gan88, GSO6, Gep99, Gep01, GBS18, GKS09, Gha84, Gib01, Gil88, Gil94b, Gil94a, GHdF10, Gle88, Gre88a, Gre88b, Gre89a, Gri86, GL96a, GL96b, GL97, Gro92a, Gui05, Gui06, GHS86, Gut95, GAW96a, GAW96b, Ha88, Ha90a, Han90, HJZ94, Han20, Har89, Hei90, Her94, Hbb01, Hol84, Hor82a, Hor82b, Hsu15, Hu92, IBM01a, IEE92, Inf86, IAKH92, JKL19, J91, J98, J88, J87].

Supercomputer

[Joh88, JM89b, JM89c, Jon03, Kuh92, Kah81, K87a, KN86, KS95, Kha91, KDK89, Kop88, Kor93, Kow85, Kra93, Kra88, KGLA85, KSB+19, LPD+11, Lav89, Law98, Lee84, LS93a, LEY86, LXW+16, LFJ+20, Lie90, LR89, Loo84, LYC93, LM90b, Man92, IJS94, Mai87, Mac97, MP84, MCH91, Mar90, MKHY95, MKHY97, Me92a, Mc92b, Mc94, MB97, MM91b, Moo06, MV16, NW03, Nat89a, Nat89b, NN88, NPS93, New14, NGPH99, Nix92, NBKP95b, Oss94, PIH04, Pan97, Pan96, Par90a, Par90b, PTT89, Per04, Per06, PS98, Pic88, Pic89, Pic91a, PBK96, Poo96a, Poo92, PF90, Por97, Pou94b, Pou88, Pri12, PK98, QB92, RYT89, Ric90b, Ric91a, Ric91b, Rob95, Rol97, RCR93, Ros95, Sci86, Tec89, SN95a,
SN95b, Sam85, SNEP14, Sar91, Sar90, SNK+93, SF82, SH94b, Sch88b, SS90a].

Supercomputer

[SS90b, Sha87, Sha96, SMM17, Shii95, Sho91, SL90, SSLR90, Sin08b, SB18, SG91, SS10, Sob92, Sol84, SCHR94d, SML88, Ste85, SSSS96, Svo93, SO91, TK99, TCM95, TM88, The90b, The91, Tho93b, Tho90, TTM+20, TMHH95, TFB94a, TFB94b, Tre97, Tri95a, Tri95b, Tze88, Uni87b, Uni92b, Uni86b, Uni98a, Uni86a, Uni86c, Uni92a, Uni91c, Uni95, Uni98, Ull83, Ull84, Van97, Vol89, Wal81, Wal85, WZ87, Wal09, WH94, Was96a, Wat87, WQS92, Wes89, Wic83, Wic96, Wit89, Woe92, Woo94, Woo93, WCHK91, Xu91, YYYS93, Yau88, YW94, YHA93, Yi11, Zeg82, ZBN+19, Mob12, IBM01b, Abe90, Abe91, Ano93-31, Ano93-38, Ano93-34, Ano93-35, Ano93-36, Ano93-37, Ano93-38, Ano94r, Ano94-131, Ano94-132, Ano94-128, Ano94-133, Ano94-144, Ano96-40, Ano96-38, Ano18, Ano20, ADG+08, AM94, AL92a, ABM+04, BMR85, BP94, BH93, BAT99, BD93a, Bel92b, BBD+08, Ben90b, Ben90a, BHMH98, BBWR90, Bro17, BS98b, CCR11, CRV94, CS90, Cocc3a, Cocc3b, Com92b, CP94c, CS94b, CK92b, Dal84, Day12, DS89, DLPQ94, Den80, DLLG98, Doz92, Due89, Duf84, Duf91, EM94a, Far90, FCBH95b, FCBH95a, FR96a, Fer84, Fer86, FNP+84, Gar99, GS89c, GW91, Gha96, Glo84, GHW93, Gre94, Grie88, GIF+12, Gre92b, Hay84, Hem84, Her90b, Her89, Hwa84, Hwa85, Jen88, Joh97, KC93c, KT80].

Supercomputers

[Kra01b, Kra01a, Kuw92, Kuw94, Law00, Lev82, Lev94b, Lin83, LMM95b, LMM8a, LMM86, Mal88a, MT86, MTH88, Mb93, MR90a, Men84, MK97, Mul96, Nag96a, Nar95, NB94, Nor84, PW86b, PW86a, Pau05, Pau08, Pil93, Pik90, PK87, PHV95, Pou86, RL96, Ric90a, RG94, SSP93, Sin18, Sol94, SBV94, DDJ98b, SZ98, SHG95, Ste94b, Ste94e, Str11, TP93, TF95, TOWC15, Ts94, WBP87, WNKS96, Wat92a, WS84a, WS90, WMMC10, YMT93, ZM86, ZRLZ95, Zla01, Zor92b, vdSD96a, vdSD96b, AMS+15, And11, Ano88e, Ano88d, Ano88c, Ano88n, Ano93h, Ano93s, Ano93d, Ano94-27, Ano94-36, Ano94-29, Ano94-120, Ano94-125, Ano95c, Ano95g, Ano95h, Ano95l, Ano95-28, Ano95-32, Ano95v, Ano95-39, Ano96n, Ano96u, Ano96-29, Ano97f, Ano97k, AL92b, BS00, BWV+17, Bea90, BAD01].

Supercomputers

[BM90, BB+20, Ber82, Ber89b, Boy15, BP89b, BP93, BMW91, Buc83, BF92, Cal12, Car91, Cas01, CD08, Cla97, CCC+89, Com92a, CP92b, CBM+05, DFSZ88, DHD89, DZM+13, Dz93, Duf85, Du90, DB95, EKTB99, EHHS89, Fer89, Fuji99, FT93b, Gra91, Gro92c, Gup88, GZR89, HOS97, HL88a, Her90a, Hil97, Hoc91, Hos88, HS93c, HD89, HR90, IKM85, JOK+18, Jor87, KNN16, KS13, KA92, Kos89, Kre95, KS86b, Lie20, Lop89, LQFC18, LF03, LM90b, LLD95, Man89a, Mac96, Mar88c, Meu89b, MRSB94, Mo08, MR86, MR87, MS84, NCKM88, ODAZ15,
supercomputers [VSM+07a, VSM+07b, Wal85, WLCG02, Wat93, WS84b, WS84c, WS87b, WS87c, WvTB+07, WWTE92, WT11, WT13, ZEC+17, ZGL14, ZS94b, ZS94c, ZMDS96, vdvV91, Ano96-39, Ano90b, Ano92-40, MM94a, Wen94, Ach99, Bue86a, Kow86].

Supercomputing [ACM88, ACM89a, ACM90, ACM91, ACM92b, ACM92a, ACM93, ACM94, ACM95a, ACM95c, ACM96, ACM97, ACMxx, ACM03, AU87, Ade92, ACKW01, AS93, And89, AW93, Sup87a, Ano88h, Sup88a, Sup88b, Ano88e, Ano88f, Ano89q, Ano89r, Ano90f, New91, Ano91q, Ano91p, Ano91v, Ano92-41, Ano93b, Ano93o, Ano93t, Ano93-39, Ano93-40, Ano93-41, Ano93-46, Ano94-79, Ano94-126, Ano94-135, Ano94-136, Ano95-35, Ano95-40, Ano95-45, Ano96e, Ano96f, Ano96i, Ano96j, Ano96s, Ano96x, Ano96-41, Ano97c, Ano97q, Ano97l, Ano97p, Ano97m, Ano97o, Ano97t, Ano97z, Ano97-28, Ano97-29, Ano98f, Ano99, Ano00c, Ano00d, Ano01a, Ano01c, ASNT91, ALMS92, Att96, Bae88, Bia92, BDM94, BBB+91, BM87, BMR88, Bel96, Bel99, Ben90a, Ber95a, BvRS+11, BG91, Bla93, BB94, Bro91a].

Supercomputing [Bro91b, BBC+05, BB98, BF91, Buz84, CL91, CU90, Cat92a, CBA90, CG96, Che94b, Chi00, C97, Cla98, C9S99, CCC+89, Coc02a, Coc02b, Coh91, Con91, Cor99a, Cra91, CE18, Cul95b, DM96a, DM96b, Dan97, DLKS86, Dav87, DD02, DGG18, DCG93, DCGxx, DPS97, Don92b, Due89, Eid91, Ech92a, Ech92b, ORS94, EVM+98, EGH+06, EKZ90, FCG990, cF03, cFC07, FR98, FV94, FT96b, Fra94, FWS96, Fri91, Fri94, FT91, GG+97a, Gei16, GS87b, G9K2, Gel11, GLS11, Get15, GY93a, GCB92, Glo89, GV96a, GK18, Got91b, Gou90, Gri90, Gri93, GGG9, Gue90, GP96a, Gui96, Gup94, Gur94, HB89, Hab89, HVZ94, Har94b, HS96, HSxx, Hey90, Hof92b, Hol93, Hol94, HK97, Ins87a, IE91, IE95, Ins87b, IEE99, IEE90, IEE90d, IEE94e, IEE95a].

Supercomputing [IEE96d, Iwa92, Jet90, Jet91, Jet92, Jon19, Kac02, Kah92, Kah93b, Kah93c, KK85, KK87, KK88, KK89b, KK89a, KK90, KEMB99, KS93a, Kav92, Ken92, KK95a, Kok94, Kon96, Kon91b, Kow89b, KL99, KNS97, KR94c, KJ94, KDS86, KS92, Kun84, KNWB93, KSW93, KK92, LP90, LW92, LC90, Lei85, Lei91, Lew94a, Lew94c, LS97, LC90, Lim91b, L+93, Lim93, LL94, Lun90, Man89a, Man92, Min86, Mac91b, M94, Man88, Man89b, Mar88b, MW88, MB89, Men87, Mes93b, Mes90, Mil88a, Mil17, MP91e, MCLK07, Mool11, MB93, MB94b, Un97a, Nat89a, Nat87a, Nat91a, Nat86f, Nor89, Nor93b, Nor93a, NU91, Nee94, NSW08, NSF90, OHIB93, ORSS94, OHHIB94, Ope96, OGY90, OGY91, Pit88, PB98, PS96, Pau99, Ple93b, PC94b, Pfe93, PL91c, Por86, Pre93a, RS84].

Supercomputing [Ros89, Ryu92, Soc94, SIG90b, Sch95a, Sch93a, SS96b, SHMR93, SHMR96, SN99, Sig90a, Sig95, SZ97, Sm93, Sm98, SFF94, S94a, S94b, Sta94, Ste94e, St98a, St98b, SABK94, SS95, SGHK97, Tho89, Ta96, Tor87, UL98, Uni92e, Uni96, UH90, UN04, VP93A9, VDK92, VTT98, WZ97, Wal90, Wes96, Woo96b, Supxxa, YXWZ12, YF95, Zen94, ZZ93, AV02, AGY+11, AS99, AB94, AM15, And20, Spe87, Ano90q, Ano90t, Ano94p, Ano94s, Ano94-75, Ano94-119, Ano95v, Ano96h, Ano92a, GKL11, Ban88, Bec89a, Ben90b, BBD92, BF11, Bor94, Bri90, Cal91, Con87b, Car89a, CBCJ92, Che94a, Ch16, CR89, Con90, Cou90, Das94, Doz92, Fed96, FTT97, Gar92,
GW04, GY92, WAD+89a, GE12, GJP96b, HRC09, Han03, Hill91, Hill92, Hir92a.

Supercomputing
[Hir92c, HCP995, Hod87, HK93b, Hor90, Hor93, Hor98, Hsu16, IA92, Int91, Int92, Joh86b, Joh90, KYS88, KH93, Kie85, Kha95, Kim96, Kin96, Kro92, Kuc87, KS87b, KS88, Kun91, LPC+95, LC99b, Lei89, Lev89, LGG+87, Liu95, LA93, Mic90, Min92, Mac92, ML89, McC88, MSK+02, MO88, Men90, Mes93a, Met86b, Met86a, Mil90, Mil91, MK92a, MK92b, MP92, Mun94, MA5, Nat86a, Nat86d, Nat90, Nat88b, NNS+90, NN90, New95, Oya02, Pan93, PSM93, As98, Rat87, Red91, RGH17, Rob87, Sup87b, San90, Sch94c, Sch12, Sch18, SA10a, SAI0b, Ser98, Sha99, SHMR94, Ste90, SC91a, SIR95, Tru88, Un93, VFK+04, Ver95, VDK91, Wal95, WTC+02, Wil88b, WAD+89b, Win02, Wor81, YK87, Zec93, Zhe97, vL99, Ano96-32, Ano96-33, Ano96-34, Ano97j, Ano97-31.

Supercomputing
[Ano98b, Ano98c, BCCP05, BH92b, Dra94a, Dra94b, Dra96b, Dra96a, HWP95, HPP88, JLC98, Lew93, M+94, MN91, MB94b, Mye92a, Mye92b, Qu95, RF93, SSH96, We90, Dun99, Ano00a].

Supercomputing-based [PB98].

Supercomputing-Enabled [GU8].
supercomputer [GL91].
Superconcurrent [NR95].
superconductor [AC84a].
Superconductors [FP94, MK93].
supercooled [ARF12]. SuperCPU [Ano91f]. superfast [MS84]. Superfluids [MK93]. Superhighway [Mye96, IEE95c, IEE97b]. superhighways [MP92]. Superhuman [Ano92-42].

Superimposed [SHA+92]. Supermen [Mur97, Nor97a]. Superminicomputers [Wal85]. Superminis [Gre94]. Supernet [Ano95b, KGB+96, Ano85b, Ano88l, BBBC96]. SuperNetwork [Sho91].

Superordenadora [PBM87].
SuperPascal [Han94]. SUPERPHENIX [CR93]. Superpipelined [DRAB08, CLmWH91]. superpositions [Cy69a]. Superproblems [Nor84].

SuperQuest [Ano88a]. supersafe [Ano96-32]. superscalar [CLmWH91, LY90a]. Superseded [Ano96x].

Supersystem [LCH87]. Supertoroidal [Dra90b, Bue91a, DF90a, Dra91a].

Supertoroids [Bue91b]. SuperWeb [AISS97].

Superworkstations [HB89]. SUPPI [CGL96, CGLxx, Chexx]. Supplement [ACM89b]. Supplier [Vro94]. Suppliers [Ano91r]. supply [Ano92a]. Supplying [EDJ+10]. Support [ASS94, ABCE97, Ano94-112, Ano94-136, ATSA93, AZ94, BK91a, CCSR92, DI93, EFPSS93, FBZ92, FNT93, IJM14, Iwa92, KEMB99, Kue87, KCH14, LB96, MS94c, MR95, PC94a, TBC94, Ano86a, BP92, Das94, GTV91, KC95, Per86]. Supported [Ano94-129].

Support [Ano93t, KWH94, SK93b, Kon87].

Supremium [PTT89, GI94, GI94a, SS90b, SSxx, Mc92a, Mc92b]. Supremium-1 [Mc92a, Mc92b]. Surface [AD97, BSB98, Gre91b, HHSW93, HW97, KT94, Las92, Sky94, SHW4, TIK93, TSCG94, WHMA97, ZL97, CBA90, Ver95].

Surfaces [SE90, SA94]. Surgones [Coc03a, Coc03b]. Surplus [Gre94]. surprising [PF90].

Survey [Ano94j, CLB91, Fet95, PC94a, Pic91b, TVT+16, AS93, Ana91, Ano93b, AB96, Don86, Gha84, LAL02, PF90, Rob85, Rya13].

Surveyor [Dun92, Wic92]. Survivability [SKC02]. Survivability-Lethality [SKC02]. survival [Bla97, Law89]. survive [WZ87].
suspect [Tay95a]. Suspension [JC94, RW94b, SQM94, SP94].

Suspensions [HU93, Ano95-39]. Sustainable [cFC07, TRL13]. SV1
SVD [Ber90b, Ber90a]. Svoboda [Ano98d]. SW4 [PLS20]. swapping [BBW19]. Sweeps [YA93]. Sweet [Ano92z]. Swimming [Ano95-46]. Swirling [Soe94]. Sweet [Ano92z]. Swimming [Ano95-46]. Sweeps [YA93]. Switch [CH90, SSGH94, DuB90, DR91]. Switch-stacks [CH90]. switched [DuB90, DR91, GS94e, Joe87]. switches [MS4]. Switching [Ano94-105, Clo96]. Switzerland [Ano93c, Ano96-44, Ano97-33, Ano97-33, GT94, Hen97, LM92, Mar86, Ano95u, HKR94]. sword [RR95]. SX [DTV00, Dub87, HLPP97, Ho88, HMKI97, Hor97b, Hor97a, Iwa90, jJ88, MM91b, PK89, PK94, STSK95, SWL+91, TOY96, TW92, Tze88, Wat87, YSK+96, Yuan]. SX-2 [Dub87, Ho88, jJ88, MM91b, PK89, PK94, Tze88, Yuan]. SX-2/400 [MM91b]. SX-3 [Iwa90, TW92, SWL+91]. SX-4 [HLPP97, HMKI97, Hor97b, Hor97a, STSK95, TOY96, YSK+96]. SX-4M [DTV00]. SX2 [Sha87]. Sydney [Ano92g]. Symbolic [Ano94-109, GHNL87, Hag90, HP91, HP92, Mur91a, Ste60, TP95, Kog91, PH988, SW99, KDP+14]. Symmetric [BHLST94, Joh97, Wij89b, BS88a, Bis94b, Bis94c, DS86b, HLTT93, LP86, LP86, Nan86, Pin91]. Symmetrized [ML93]. SYMLER [KDP+14]. Symposium [ACM95b, Ano88s, Ano88t, Ano91q, Ano91x, Ano93i, Ano93-31, Ano94-75, Ano96a, Ano96q, BC91, Bup87, Dpp86, Emm85, FJSP95, HHHK94, IEE93b, IEE94a, IEE95d, JT87, KK93, KMG96, LLRR93b, LC90b, LC90a, M+95, MN91, NAS93, SF91, Sie94, IEE94d, TC94, USE00b, ZAS94, Ano91m, Ano92g, App96, Emm84, Guo94, IEE96b, IEE96c, Uni87a, Ras91, Rol96, UL89, Uni91a, Dpp87, FJSP95]. Synapse [UR95]. Synapses [MZ95]. Synaptic [KW95, MZ95]. synchronization [HY89]. Synchronization [OB95]. Synchonization [HY89].
Ano94-63, BAAD+97, Ber86b, Ber86a, BSD+20, Bin88, BS87b, Cra92, Car93, Car92, Che83, Che93b, Chu87, Coc01, Dan91, DKL86, DT08, Don93b, EE93, Ele93, EM78, FKL+08, FTT97, Gal88b, GMW91, Gal91, GBC+05, Gar92, GBS18, GW95, GY92, GTV91, HPPF94, Har89, HCD+18, Hod87, K93a, Kh91, KL90b, KTN+14, Kon87, KS88, KHZ+08, KB18, LM90a, Mar91, MVRK18, ME87, MU83, Nat87d, Nat89b, Ng95, OMA+96, Pad89, PSL03, PMS+08, PT92, Pet89a, RAG11.

\textbf{System} [Rei88, RMM20, RCZ93, RIB+13, SCV01, Sam85, Sha87, SC04, Smi81, SE98, Suz89, TS91, TJC91b, Tuc91, Tur79, TV88, Uch86, Wat87, WWTE92, YKY90, YB90, HWS+88, HL91, MPSB87, Sho91].

\textbf{System}/\textbf{370} [MPSB87]. \textbf{Systematic} [Jan96, Jia94, LFJ+20]. \textbf{Systems} [Age05, AFT96, AFT96, ASSW93, AJ97, Ano94d, Ano94-66, Ano94-143, AC84b, AGLL98, BAAD92, Bec01, BKM93, BBC+00, BP84, Bur94a, CCKSS90, CC94a, Che90e, Che92a, Che94b, CD92, CH10, CMSA11, CBT91, Cze93, DD98a, Dec90, DL96, Del97, Dil93, DAF+90, EFIM91, EFPS93, FBZ92, Fei94, Fer86, Fet95, FGKT97, FBJ+94b, FL92, GJS94, GP85, GMW94, GHZW94, GBG89, GT91, GMG94, GA84, GL93b, Gru97, GZA86, GK93, Hab86, Hal87, HHG93, HO92b, HM97, IE85, IEE95d, IK82, ICB+11, Jar12, JC94c, KG94, KLY94, Kho94, Koe97, KS94a, KZ94, LPNRJ94, Leg94, L97, LB82, Ma99, Mah94b, MM93b, MS94a, Mas93, MRR95, NMS93, OB95, PDR94, PCK93, PS94a, Pas95, PS94b, Pug94, RDH94, RCK97, Raw97, RS94, Sin94a, SC97, S94, Ste94e, SSO95, SC92].

\textbf{Systems} [Tan95, TGL96, TP97, TG94, TVT+16, USE00b, Uch96, Uch97, VRS93, Van91b, VK80, VAGRMVA90, WMBC97, WP94, WF93, Wri91, YK94, YSL97, Z93, And88, AS88, Ang91, Ano87d, Ano93c, Ano93g, Ano95-30, Ano96a, Ano96-29, Ano97k, AC84a, ALN+01, Bal94, Bar88, Bau88, BSJ+13, BBM19, BS88b, Bra89c, BS90b, Bru90a, CS91, Cha92b, CS91, Che90a, Che90d, CV92a, CGLY96, CGLxx, Chexx, Che94c, CC88b, Con87a, CKD+19, Dav86b, DJM94, De 96, DS96, Din93, DvdS12, DS96b, Du00, EO91, Fly66, Ga87, Gal88a, GJS94, GP85, GMW94, GHWZ94, GBG89, GT91, GMG94, GA84, GL93b, Gru97, GZA86, GK93, Hab86, Hal87, HHGS93, HO92b, HVY91, HY89, HY91, Hum92, KS86a, Kam86, KK82, KK85, KK93b, KK90, Kel85, KBVH14, Kim96, KG94, Kra88, Kre95, Lee90, Lou90a, Lou90b, Lou92, L90, LM94, MLWC20, MD04].

\textbf{systems} [McA92, MV16, Nan86, Pol86, PO88, Ram88, Rob85, Rol96, Sci86, Saa88, Sam85, SZ98, Sch94a, SEV+09, Shi95, SG92c, SG92d, SSS90, S89+13, SS07, Sum82, Tan89b, Tho90, TV89, WBS88, W8+13, War03, Wt89, W89, Y92, YVC89, YB90, YQTV12, YK87, Zyg93, vdV91, ALPP00, Kaz92].

\textbf{systems/soft} [Ano96a, Rol89]. \textbf{Systolic} [BE93b, BE93a, KRS94, Kun84, LCH87, Mel88, MM94b, MR94]. \textbf{Systolic/Wavefront} [Kun84]. \textbf{Szczecin} [Elm95a].

\textbf{T} [Ano00a, ACA94, ACK+95, CWLT97]. \textbf{T-90} [CWLT97]. \textbf{T21} [DJSP93]. \textbf{T3D} [KG95, AFT96, AHP97, ARE95, AZ95, BMT96, BAAD+97, Bro97, CC96, CD95a, CSM97, CSS98, CP96, DR93, EAMS95a, EAMS95b, ET96, FR96b, FR96c, Gih95, HS94c, HEB96, KC95, KS93c, Mar95, MPG96, MT97, MWO95, N94, PPR95, Sch96, SZG95, ST94, SWSR97, SHM97, Str97, Stn95, V95, WLN+96a, WLN+96b, WKHS97]. \textbf{T3E} [AZ99, AGLL98, ALN+01, Che99, Dow98, DAKM98, GRRM99, GYL00, HE98, HPLT01, LG97, LSK04, Ma99, PSG03, RT97, SCK+00, WOK+00, ZCPT00]. \textbf{T3E-600} [LSK04]. \textbf{T3E-900} [HE98]. \textbf{T800}
Teraflop [Ano00c, Ano00d, Fox90b, Ano97i, Ano98g, Gar92, MSW96, Ano94-130].
Teraflops [Con00, ACC+96, CSFS00, Ano97k, Bem92].
TeraGrid [BFS11], TeraGyroid [BCCP05].
Terascale [FKL+08].
Terasys [SK94, CP93a, GH95, IGH95].
Terminals [Way96].
terms [Ano97c, Ins87a, Ins87b, Ins90].
TERPSICHORE [ACG+90].
Terra [DHA+13].
Terrain [Nie93, Max81, OLLG96].
Test [Ano94-109, Ano97x, Bel93, BS94c, Gru97, HT93, HED93, OBR94, RP94, SB96, SJA94, CSFS00, HBB+05, Sta88, IK91].
Testbed [KGB+96, SH91, Mes93b].
Testbeds [Ano90i].
Testing [DAF+90, FS93a, HS93b, MMK97, Raa97, Tay95b, Ano91m, Ano96-34, CMP94, Par90b].
Tests [Was96b, Wil94, KB18, PP91].
Tetrahydropyridazinones [JBI91].
TEX [And89].
Texas [HS+91, Nas91, Uni89b].
Text [Deu86, PTS93].
Textbook [Ano85b].
Texts [Pug94, SLML93].
Texture [CM93, RPY94].
TFLOP [MSW96, GKS09].
Tflop/s [GGG+98, HFCM98, MH98, Mit98].
Thailand [US01].
Thalamo-Cortical [VT95].
Thalamo [Ano89a].
Third [ACG+90, Ano92-44, BP93, C+97, DT97, HM93b, IHIS91, KK88, KK89a, McC88, IEE94d, Wei92, WL+96a, WL+96b, Ste01a].
Third-generation [We92], third-party [WL+96a, WL+96b].
Third-party [WLN+96a, WLN+96b].
Third [Ano93p, DCG93, DCGxx, DT96, Ano89a].
throw [Ano94-128, Ano97-28]. TI
[Ano96p, Wat72]. Tianhe
[CYLX18, LXW+16, PCY+19, WCZ+18]. Tianhe-2
[CYLX18, LXW+16, PCY+19, WCZ+18]. tidal [Nix92]. Tie
[Ano93-40]. tier [Sca92]. Tight
[Ano94-137]. Tightly
[ADG+08, GIF+12, Har86]. Tile
[OSKO95]. Tiling
[BDRR94]. Time
[AC93, Ano87a, Ano94-54, Ano94-70, Ano94-138, Ano96n, Bru88, Cho90b, CH92a, Dan91, FB91a, FY96, FP91, GMF00, GBS18, Gor89, GREC91, Hab92, HS94b, Hen91, JOK+18, Lee90, LM13, MP90, Mi87, Mor88, PoI88b, PoI89, RGH17, Sha90, TJC91a, Ver95, YH92, CCKSS90]. time-consuming
[GBS18]. Time-Dependent
[GH93, GWH93, Now93]. time-efficient
[YF98]. Time-Life
[CCKSS90]. Time-parallel
[TBF94a, TBF94b]. Time-sharing
[Fon85, Mir88]. Times
[Ano94p, Ano89n, Bas95b, Ber82, MV16, YAG93, YAGxx]. timing
[BHD+05]. timings [Sit78]. Tire
[Ano93-44]. Titan
[DHM+88, KSB+19, LM90b, Mir92]. Titan-2 [LM90b]. TM
[Gro93, PR94a]. TMAPOL
[Rob87]. TMC
[KC95, SNS+97]. TN
[SJD96]. Toaster
[Sol94]. Today
[Fru93, Gup94, Hag01, HG02, KDSL86, Bel92b, Ber82, Kuc87, Sha95b, Supxxa]. together
[Ano96u, HHS01b, Pol90]. token
[Bro86]. Tokyo
[ACM93, Ano97m]. tolerance
[Con00, The90b, The91]. Tolerant
[Ano94-53, CRV94, CB94, EVM+98, GFB+03, GBG89, LBT94, RWNJ94, HCL88, SHL+20, Tze86, TYZ88]. Tolerating
[Ano94-139, CMHK92]. Tomography
[HEJM95, GS89d, HW95]. Tomorrow
[Bau96, Egg94, Fr93, Hag01, HG02, Gro92c, Min86]. Tonnen
[Ano97e]. Too
[Ano94j, Ano89a]. Tool
[Ano94-28, CT93a, DIF94, Eck93, Gen97, KS94a, LLSR02, MKR93, PC94a, PC93, Rei93, Sea94, TSSK94, Uth94, Ver97, Gan88, JG88, KK89c, MJ91, PST+19, SM89]. Tool-Based
[PC93]. Toolkit
[AGKT02, BS94a, MMRL93]. Tools
[Ano94-102, Ber95b, DT97, GHFD10, GL94, GRSS93, HCM94, KEMB99, MM90, MP91e, Rag06, IBM13c, TF97, ASK85, AB96, CH89a, EO91, IOMS85, Kin96, KAMB19, LP90, MLWC20, Mal86a, MSW+05, Sit78]. toosel
[McC92]. Top
[Ano97e, Way96, WF08]. Top-500
[Ano97e]. top-down
[WF08]. TOP500
[DMZ+13, Str03, SMDS15, Fei05]. Topic
[MBSW01, Res01]. Topical
[ANS92, Ano95-38]. topics
[Spe87, Tru88]. Topographical
[BM93a]. Topological
[Ver95]. Topology
[CTD+16, EH97a, LA94]. Topology-Aware
[CTD+16]. Tori
[CB94]. toroidal
[PS88]. Torque
[DNV93]. Torus
[BS94e, KMTN96, ABC+05, FMD07, FDM07, KT+14, RD07]. Total
[GF90, Rei93, Bue91a]. Touchstone
[HL93b, KRJ93, TBF94a, TBF94b]. Tough
[Ano92x, Ano96-27]. Tour
[Cra96]. Tournament
[Coc02c, Coc02d]. Tower
[Ye92]. Toxic
[GD97]. Toxicant
[Pli97]. trace
[MHJ91, SSS90]. Tracer
[DF04b, SY97]. traces
[NRM+09]. TraceView
[MHJ91]. Tracing
[GMMT91, ML90b, ML90a, An90c, De87]. Track
[Ano92k, Ano92q]. Tracked
[BP94]. Tracks
[Bel93]. Traction
[MS94b]. Tractor
[KB97]. Trade
[Ber95b, FL+07, Sm96c, Tys91, RYYT89]. Trade-Off
[FL+07]. trade-offs
[RYYT89].
Tradeoffs
[Ano94-90, Lin82, WK1+16, DKLS86, Smi89].

Trading [Crec91]. tradition [Min86].

Traditional [LCP+11]. Traffic
[BGM96, BWG96, BY96, Bot96, BM96,
BP96, ER96, He96, Hey96, HK96, Jan96,
KNWB93, Leu96, MJH90, Nag96b, Nag96c,
PN96, SS96a, Sug96, TKM96, Wag96,
WMR96, Woon96, GTV91, Par90b, TV98].

Trailing [HS93b, MFK94]. Trailing-Edge [MFK94]. train [HPS88].

trained [SNEP14]. Training [BBHL01, CS93b,
CS95, JPMM08, CF920, Han93, KSM+99,
Leu96, MJH90, Nag96b, Nag96c,
PN96, SS96a, Sug96, TKM96, Wag96,
WMR96, Woon96, GTV91, Par90b, TV98].

Trains [GW93c, KBD97, RBK95, TFO94].

Traleika [CCG+17]. Trani [MM91a].

transactional [OWG+13]. Transactions [Pin01].

tansducer [Ano90a]. Transfer [MS97, MHE97, Now93, SSOH95, WG94,
A+02, DLS93, KGERJxx, PMS+08, Sha89,
Sut92, VO93]. Transfers
[Ano94-111, GJJG88]. Transform
[ALM93, BL93, BB93, Cla96, WF94, CC88a,
ESTA94, MB97, Sut91]. Transform-Vector
[BB93]. Transformation [Col94, KH89, MLW120, Pre93a, VMS93,
WWKR97, BM85, KS93a, Pol87b, Tan89b].

Transformational [OH92].

Transformations [Ano94-47, BGS94, HS95a, KFF93a, KKB92,
OGR95, Ban90, CDG+06, Pol90, SKP91].
transforming [Bru91]. Transforms
[KFF93b, Heg96, NR86].

TRANSFUSION [RD93].

Transient
[Cha92a, CBT91, FBGM93, GH93, KR94c,
TGERJxx, VVT98, WD93a, WFT93,
Deg90, Elm93, VM07]. Transients
[AFT96, SW96]. Transistor
[Ano92h, Ano93a, MS94]. transistors
[Ano03a]. Transition [LC94, LUT96, Uni93].

Transitions [BY96, TKM96]. Translation
[AK87, RC94, Uch86]. Translator
[DP96, WG94]. Transmission
[KC93a, MZ95, Ano87c]. Transmissions
[Cig97]. transmittance [TM98]. Transonic
[Riz94, SHZK94, Gri86]. transparent
[CWD+08]. Transport [AD97, ALM93,
Ada93, AFM93, Bak93, BL93, DMPR93,
Fic93, FA93, GHH93, HL93a, JWG93,
KE93, MKND97, MS94a, MNR98, MMRL93,
ML93, Nat84, PA93a, PH97, Sus93, TK93,
Uen93, Vuj93, WD93a, WAB97, YA93,
YCC97, ZL97, ARW93a, BLFT84, Chi86].
transportability [KFF93b].

Transportation
[CJ93, FD93, ITO93, ITO94, Ano94a,
Ano94-75, Ano96a, NSH95, Rol96].

Transputer [CM95, MVS94, WH93, BK89,
DJM94, HMSS87, IAK92, MRB94, WB88,
DJM94, Row86]. Transputers
[LW92, Vol89, BBC+89, Hey90, Wal90].

Transtech [Ste94c]. TRANSYT [Par90b].
TRANSYT-7F [Par90b]. Trapezoid
[Mas92].

trash [Dem97]. travel [SCH94].
Traveling [Gurr8, Bra88]. Treat [Ren97].

Treatement [BMP93]. Treatment
[AFM93, Hey96, Zla01, MHKY97,
OMA+96]. Tree
[Cry94, SSM93, BAAD+97, BAD01].

Tree-Structured [Cry94]. Trees
[AFAGR96, Lei85, BJZfDA96, Fid91].

tremendously [HHS1b]. Trend
[Jak94, TK89]. Trends [Ano94-67, Ano95-36,
Ano96p, AGL11, Gar01, IUG7, KYS98, KT11,
Koo97, LQFC18, Meu90a, Meu90, Meu91,
Meu92, Meu93, MG95, Pay97, Sch95a,
Sch93a, SMHR96, SD96, Sme94a, VN04,
Ano95u, Ano96u, Ano97n, Cyb91b, Dufo0,
HKS93, JPE94, SMHR94, Meu92b, Meu95].
trendsetter [Gil88]. triangular
[AS88, RG92]. TrichLOORothene
[WWKR97]. TRICOMM [VOR93].

Tridiagonal
[BY88, BS88b, Gao86, LPS86, SE98, WB88].

Tridiagonalization [BSL94]. tried
[Ano94k]. trillion [Ano97v, Bas95b]. trim
[Bro17]. TRIMARAN [Mon93].

TRIMARAN-1 [Mon93]. triply
TRIPOLI
[RLKW93, MNV93, MBN93, VNB93]. TRIPOLI-2 [MNV93]. TRIPOLI-3 [VNB93].

Trondheim [Kow89b]. trouble [Ano95x].

Troubleshooting [CFP20]. Truck [BPUS94, HRG93]. Trucks [MS97]. Truly [Ano94-141]. Trust [Cla18]. Try [Poo96b, Poo96a, Ano93-41, Hol93]. trying [Ano95a].

TSMC [Ano03a]. Tsukuba [NN90].

Tube [KS93b]. Tunable [WF94, SEV+99]. Tuned [GAV95], tuning [BLW11, Con88].

Turbulent [BD93b, CAB93, FA93, GFM96, GWG93, GWH93, HVS93, KS93b, PSB01, Riz94, KfGERJxx, ZBN+19]. Turing [Hum93].

Turn [Ano88w, Sch12]. Turnaround [Gar99].

Tutor [Ano88m, Pet89a]. Tutorial [FJSP95, Hwa84, Ano88v, Pot88]. TV [Ano90i]. twelfth [Ham94]. Twelve [Ano87c]. twentieth [YB86]. Twenty [Sin94a, Gra94]. Twenty-eighth [Sin94a].

Twinning [GE12]. TWIST [SK94].

Twisted [SIKD94]. Two [AD97, ADLL01, Ano95i, ACL93, AK93, BSJW96, BY96, BSL94, Che90a, DLMW95, EFPS93, EBS88, F93, GMBW93, Hun94, JV93, Lu93, MP94, MT13, MM94c, OK93, OMR93, PC93, RT93, Rei88, RBL94, Saa93b, Sch93b, SW94, TKM96, VLA92, VD96, Fin94, Ano94-120, Ano94-121, BSS91, CC88a, CGL92, MSCxx, KMB90, LM90b, Sca92, SM92, Wil88a, WMK90, WBP87]. Two-Box [OK93]. Two-Dimensional [AD97, AK93, BSJW96, Huh94, TKM96, VD96, BS91, SM92]. Two-electron [EBS88]. Two-Fluid [PC93, RT93, Sch93b]. Two-Group [JV93]. Two-Phase [Saa93b]. two-point [KMB90]. Two-sided [MM94c]. Two-Stage [FI93]. Two-Step [BSL94].

two-tier [Sca92]. Two-Time [ACL93]. TX [HS+91, G97]. Type [BLO94, SKY97, SZ93, KHN93, LPS90]. Types [GAV95, Kim96, WHL93]. Tyre [DM96a, DM96b].

U [CP92c]. U.S. [Por86, Tec89].

[Ano93-46, Ano97x, BS92, BF91, Fed87a, WAD+89a, Hol84, MA85, Nat92a, Nat88b, Tew98, Sch88, Uni92a, Uni92c, Uni98, Wil88b, WAD+89b]. U.S.-Israel [MA85].

Ubiquitous [BGH+02, FT96b, Ano96h, FTT97].

UbiWorld [PS97, P96]. UCAR [Ano97k, Nat86a]. UCITA [Gar01]. UIS [Sch94b].

UK [BP89b, BP93, HK33b, KHN93, Ano92-42, Ano95v, Coo95]. Ulam [Ano87d].

Ultimate [CCKSS90, NW97, BDR94].

Ultra [Car91, FBCB18]. Ultra-Green [FBCB18]. Ultrafast [Gar99, SF82].

Uncertainty [VRSG93]. Uncertainties [VRSG93].

Unconditionally [AABB93]. undecidable [RJ13].

Uncertain [Ano94-98, Ano95-35, Sat93].

Uncertainties [VRSG93].

Understanding [Bar93b, BCC+08, CCKSS90, DDLV93, Dun99, Hor98, KA93a, TMP94, Wor84].

Unesco [Ano90g]. UNI [VD94]. UNI-ECU [VD94].

UNICORE [AS99]. Unicos [Rit88a, Rit88c].

Unification
Unified [Dic94, DFS93, HBDS93, JC94b, Pet97, TAAL95, YS94].

Unimodular [Ano94-47, Ban90].

Union [Ano89o, WG93b].

Uniprocessors [Cal86].

Union [CWW94, KB94, OP96, WRW93, AS99, Rob89].

unifying [CS91].

Uninitiated [Wil96].

Union [AS99, Rob89].

Universal [FJ91, KB97].

Universal [BH17, KB97].

Univ. [Hod87].

Units [BH17, KB97].

Universal [Fra94, WS99, BAD01, Pri12, Yos99].

Universality [CF92].

Universities [Dal84, Fer83, Ano97-30].

University [Ano88d, Ano97f, Asp93, CL91, Cra96, DP91, HS91, NA93, NS91, NBC92, Joh96b, AA93, Cor89b, Goo88, Min92, Pan96, Un98b, US01].

Universidad [C97].

Upset [AM93a].

Urban [SLS96].

US$100M [Ano96-43].

US$867 [Ano90r].

US/ROC [COS89].

USA [Ano93n, IEE85, IEE95a, LLR93b, LCV90a, MB94b, PEH93, S*93, SR93b, ACM96, ACM03, AMS92, Ano95-38, Ano96l, CBCH93, EM94b, HS91, IEE94b, IEE95b, IEE95c, KK89a, LCV90b, L*93, Lim93, MW88, MB93, RD94, USE00a, USE00b, Wuo94].

usable [Po88b].

Usage [BJ93, BHM98, BS01, CU90, DD90, Di93, EM94a, HTV88, HC93, HK93b, Uhu93, LH93, MS94a, PC93, SCH94a, Ste94c, VRSG93, Van91b, Ver97, XCLW93, YS94, Ano90n, Ano92-46, Ano90b, Ano93, Burk93, Duf85, FG06, GJM86, Ghi93, IEE96a, JG88, NP88, Men89b, Pou88, TH98, WH94, Xu91].

Use [Ano97i, Che90c, CLP93, CR93, MS97, Ano88y, Che90d, Ren97, Ruh95].

Useful [JA92b, JA92a].

Usage [EJL90, Nat84, VMS93, Pry94].

Uses [Bel93, BHMH98, BS01, CU90, DD90, Di93, EM94a, HTV88, HC93, HK93b, Hug93, KH93, K93, MS94a, PC93, SCH94d, Ste94e, VRSG93, Van91b, Ver97, XCLW93, YS94, Ano90n, Ano92-46, Ano90b, Ano93, Burk93, Duf85, FG06, GJM86, Ghi93, IEE96a, JG88, NP88, Men89b, Pou88, TK98, WH94, Xu91].

Uses [Ano97l, Che90e, CLP93, CPR94, MS97, Ano88y, Che90d, Ren97, Ruh95].

User [Ano94f, Ano97q, DLM99, KCP94, MH18, Nat86c, RRSS93, TH91, Y92, Brt90b, Che99, EM91, GG88, Ham90, LM92, M98, MRS88, Mou90, Mou90, Nor89, Nor93b, SH91, S90c, Wom90].

User-Interface [Y92].

Users [Ano94f, KCP94].

Users [Ano90k, Ano94j, Erw84, PC94a, Ano92-44, Ano93-40, Ano94-27, Ano94-86, Ano94-131, Ano95g, HCD98, JT91, PF90, Uni91a].

Uses [Sah94a, Ano90a].

ushering [Zor92a].

Using [ABB94, AJ97, AH93, Ano94-89, Ano94-93, Ano94-96, Ano94-140, Ano94-143, Ano95-31, Ano18, AAS88, AM94, AHOK02, AA93, BGM96, BJLW95, BGS92, BS98a, Ber95b, BBH01, BS94d, BSK93, BM93b, BD94, Bre87, BB98, BS98b, BK91b, Cha93, CT94, Che99, CB02, CHMS94, CCS97, Col94, CT94, Fox88, Dip96, DS94c, EJ97, Fah94, dCCF01, FR81, FG92, FV94, FS93b, GMW94, GSG94, GHK91, GI93, GD94a, E94b, EB90b, S92b, S92a, S91b, S91a, S90b, S90a, S89b, S89a, S88b, S88a, S87b, S87a, S86a, S86b, S86c, S86d, S85b, S85a, S84b, S84a, S83b, S83a, S82b, S82a, S81b, S81a, S80b, S80a, S79b, S79a, S78b, S78a, S77b, S77a, S76b, S76a, S75b, S75a, S74b, S74a, S73b, S73a, S72b, S72a, S71b, S71a, S70b, S70a, S69b, S69a, S68b, S68a, S67b, S67a, S66b, S66a, S65b, S65a, S64b, S64a, S63b, S63a, S62b, S62a, S61b, S61a, S60b, S60a, S59b, S59a, S58b, S58a, S57b, S57a, S56b, S56a, S55b, S55a, S54b, S54a, S53b, S53a, S52b, S52a, S51b, S51a, S50b, S50a, S49b, S49a, S48b, S48a, S47b, S47a, S46b, S46a, S45b, S45a, S44b, S44a, S43b, S43a, S42b, S42a, S41b, S41a, S40b, S40a, S39b, S39a, S38b, S38a, S37b, S37a, S36b, S36a, S35b, S35a, S34b, S34a, S33b, S33a, S32b, S32a, S31b, S31a, S30b, S30a, S29b, S29a, S28b, S28a, S27b, S27a, S26b, S26a, S25b, S25a, S24b, S24a, S23b, S23a, S22b, S22a, S21b, S21a, S20b, S20a, S19b, S19a, S18b, S18a, S17b, S17a, S16b, S16a, S15b, S15a, S14b, S14a, S13b, S13a, S12b, S12a, S11b, S11a, S10b, S10a, S9b, S9a, S8b, S8a, S7b, S7a, S6b, S6a, S5b, S5a, S4b, S4a, S3b, S3a, S2b, S2a, S1b, S1a, S0b, S0a].

Upgrades [Fed96].

Uploads [Bar00a, Bar00b].

Upset [AJFH86].

Upper [LZ95, LL94].
GML90, GZA86, HS95a, HB96, Has84, INKN01, IJM14, IHSHK93, IK91, JC94a, Joh97, JML96, Kau93b, KFF93a, KSTB94, Koc93, Kon96, KKF96, KB97, KK06b, KW11, KCZJ14, LMH90, LPLP97, Lu93, LCD97, MKND97, Mas91, Mas92, ME87, Mis90, Mon93, MM94c, Nag88, OK93, OPR01, OLLG96, PH11, PK80, PRS94, PW94, RS94a, RG94, SSG93, SG92a, SNS95, Sha87.

Using [STN93, SAGS93, Sil91, Sin18, SA82, SHG95, SJDV09, SC91a, TJ94, TGL96, Van13, Wag96, WH93, Wal92, WBP87, Web93, WFT93, Wli93, WL96, YOY97, YKK96, YSL97, vdg97, AGZ94b, AZC13, AM93b, ABGL96, AM96, BBC92, Bli91, BMW91, BJV+16, But92, CBA90, Che96, CV88c, Chi86, COC93, CS90, Cla18, CFP20, CNG08, DLPQ94, Din92, Don85, DH86a, EB18, Ece96, cFM07, Fin82, FKL08, For93, GP93a, Gok91, Goo97, HOSZ97, Han03, HBKR96, Hea91, Hun90, Hun91, HP88b, IBM01a, IAIK92, IS20, KWH94, KSP13, KDBG95, Kra88, Kue93, Lan93, Man92, MWB95, Mas94b, MB97, MSW91, NUI9, OYK+14, ODAZ15, PPM90, PE93, RPY94, RW94b, SSG+08, SNS+97, SZ89, SNEP14, Sat93, Sni92, SW99, Svo93, TM88, TF97, TOWC15, VSH91, Ve95, WHB93]. using [Was96a, WQS92, Wil88a, WM90, WQ94, YII11, IBM01b]. USSR [Rya92]. UT [ANS92, Ano95-38, Isk96]. Utah [SC93]. UTCHEM [SPS91]. Utility [FHM95]. Utilization [WOK+00, ADG+05]. Utilizing [HF86, HF87, MTK93, Nor97b, SB01, Roj19]. UX [Ano93m].

V [WFT93, Tem83, Wom90, PPR95]. VA [S+93, HKS93]. vacation [Pic92]. Validate [Wea97]. Validation [CPR93, FD97, GP93b, KE93, MNV93, MAA93b, Con00, IBM13c]. Validity [MF97]. Value [Mas95, BS87a, BS88a, Che94a]. Valve [SP94]. Vancouver [Ano91m]. Vaporization [KR94b]. Variability [FBCB18, Hey96]. Variable [BWGG94, Li91]. Variable-Complexity [BWGG94]. variables [AH90, Jay87, Li89]. Variably [TOWC15]. Variance [Ano94-111, BL93, Mis90]. Variant [AK94, SAGS93, Cha92b]. Variation [Raw97, Wea97]. Variational [DMPR93, HHWS93, Kau93a, Rui93, WLH00]. Variations [RHH96, BrR95]. various [Don85, SPS91]. Varying [PCK93]. VAX [BMSD94, WZ87]. VAX/VMS [BMSD94]. VAXes [WZ87]. vCUDA [SCSL12]. VEC [JML96]. VEC-ANAMES [JML96]. VECFEM [Bra93, GRSS93]. VECFEM-Powerful [GRSS93]. VECFEM/S [Bra93]. VECTIS [MJRS94]. Vector [AK87, And90b, Ano94r, Ano94-122, Ano94-123, Ano94-130, Ano95-33, Asa98, AT93a, AT93b, BOS93, BAT99, BB93, Bra93, BCHJ94, BS98b, CBCJ92, Che98b, CDC+87, CP94c, DL96, DL90, DBB+10, Far90, FR81, FHKT97, GS94b, Gen94, HHOM91, HHOM92, Hos88, IHE+00, IJM14, JC94c, Koe96, Koe97, Kor93, KT80, KZ94, LPV94, MNR86, MNB94, MM91b, MS93, Mur91a, OIY91, PVA94, Pet83, PHV95, SKY94, SKIY97, ST92, Sui91, Uch96, Uch97, UT91, WLKI95, WNS96, Web93, Yan93, ZM86, ASM86, Ano93c, Ano95h, Ano95u, Ano95x, BJ95, Cha92a, CP92b, CP92c, DD90, Def87, Deg90, DB95, EE93, ESTA94, FFM95, Fu99, GJ87, GL96a, GL96b, GL97, Gua87b, GS89d, GZR89, GHS86, Guz88, Haw86, Hea91, HS93c, Jor87, Kha93, McC94, Mil93, MU83, MPSB87, MHP84]. vector [NRN00, Par90c, Rav92, Rav95, R+00, RR89, Sam85, Sch89b, Sch87c, Sch88b, Sch87d, Tan89a, Tho93b, Tru88, TV88, Tur89, WLH00, Wij99a, tDv87]. vector-efficient [Par90c]. vector-multiprocessing [Def87]. Vector-Parallel [Koe96, Koe97, Uch96, Uch97, CBCJ92, NRN00, R+00]. Vector-Processing [IHE+00, McC94]. Vector-Processor [HHOM91, HHOM92].
Vector-supercomputer [Kor93].
Vector-supercomputers [Hos88].
Vectorial [JML96]. vectorised [Fin82].
Vectorizable [VH93a, BTV96, BV96, DO89, hTD88].
Vectorization [DCG90, DMCK92, Gre90c, LKFU05, TG95, WHBH93, Gri86].
Vectorized [AK93, BLFT84, Cha84, CS90, HFH86, HFH87, Max81, Mik94, OD88, PB88, SBHW80, VM87].
Vectorizing [EBS88, Tsu91].
Vectors [FBA93, VLA92, CKS99, Hil97].
Vegas [Ano96l].
Vehicle [AM93b, AJ97, AKT90, AVS93, BJ93, BPU94, Cze93, FT93a, HU93, HTI93, HP94, Koo97, LPLP97, MMK97, PYTL97, Van93, Wil94, YK94, BBC+99, HP88b].
Vehicles [Ano94-99, Bel93, DM93, FCD97, Geu97, NCDS97, Ost94, Ris94, Spe97, Ano91x].
Velocity [BSB93].
Vendor [Ano88r].
Vendors [Ano90s, Ano93-38, Ano88r].
Vents [HCV97].
Venture [Ano94-32].
VER.02.6 [MM93a].
Verification [GM94b, SZ11, WAB+05, YY93, Hin93].
Verified [UU94].
Versatile [Dav00, RDHC94, Vog93, SNK+93].
Version [DFW93, MM93a, ALPP00, CV89b, Fin82, GYL00, GV92, GS99d, MST93, SK93a, SSRL91, Str94].
versus [But92, HA90b, Pol88c].
Vertebrate [HH93].
vertex [GS87c].
Vertical [Fet95, LMH90, RHH96, PB87].
Vertically [Ano97-32].
Vertically-stacked [Ano97-32].
Very [Abr92, DA97, Fly66, NW97, BJ84, Ger90, LW94, Pan96, Ros95, Win02].
Vesta [CF94].
vestiges [Ano97w].
VF [DD90].
Vforce [MCLK07].
VI [Fer86].
Via [DBK09, LMP+90, All93, Ano93-40, Ano94-66, AT89, DB95, FJ91, GB96, Gre88a, KKKP93, Lon90b, Scr88, Ta96, TYZ88, WWJ09].
Viable [ZWP03, Ano03a].
Vibration [GA97, SBSR96].
Vibrations [BPU94, KB97, Ost94, RCK97, HL88b].
Vice [Age05].
victim [WFJ+17].
Video [Ano90j, KFF93a, KFJB94, San95, TCJS93, ACM89b, GW04, SIG90b].
videotape [Mic90].
Vienna [ACM97, Fah94].
View [FI93, Kah93c, Mut94, Qui95, Wil93, HA92, Kah93b, Nat87a, Nat91a].
Viewpoint [Bel96, SS90c].
Viewpoints [TAM+91].
Views [Bar00a, Bar00b, Bar00c, Bar00d, Bar01, Coc01, Coc02a, Coc02b, Coc02c, Coc02d, Coc03a, Coc03b, DDJ98a, DM96, KC93c, MB94a, DDJ98b].
Villa [DJM94].
Village [Con91, Con90].
Viper [Hof93].
Virginia [Cra96].
Virtual [Ano94-144, CMPR93, Dil93, Can94a, He93, Ike95, KTK93, Kub94, KB96, Law90, OB95, PS96, PB95, RE94, SCS12, SDFP93, Ste94e, TSC94, TJ94, Wec97, WKFF97, Zhe97, APS7a, Ano95-31, DLM99, GHdF10, Hirt92e, MNY09, Rol97, Scharc94, Ver95].
Virtualization [MUK06, LPD+11, MMG+18].
Virtually [Ano94k].
Viruses [Ano94-89, Str94].
Vis [Hib01].
viscoelastic [YHA93].
Viscoplastic [ACL93, DH93].
Viscous [BCM90, Glo89, SHZK94].
Visibility [Wil92b].
Vision [Ara97, DM96a, DM96b, DS94c, KRV94, LPNR94, Maj94, Nag94, Gar92, IBM01a, IBM01b].
Visionary [Pin01].
vision [Ano94-119].
VisionSmart [KFB91].
Vista [JT91, Tuc91].
Visual [BPL95, BBC+05, HC93, JR94, Ros93b, VA94, Ros95, GE96].
Visualisation [Bos94b, CTM94, DB94, GW93, JJYL94, SKSD94, Uth94, M+94].
Visualization [ACM89b, AHSS93, Ano90k, BCH12, ABSS94, Arb92, BvRS+11, CH99, Che90e, Che94b, Coxx88, CM93, EGH+06, FK93, Fru93, FW90, FZ91, Ger90, Gra93b, HMM94, HFT94, KA93b, Kuv92, Kuv94, Lan93, LRR93a, LAP94, MKDY90, Men90, Nee90b, NSR90, OP90, OYW91, RW94a, RLW93, SG92a, Soe94, SJDV09, SYMT92, SHB+13, VH93b, WKFF97, AL92b, AL92a, BPM+89, Che90d, Che96, GL92, Gin93, Griz93, Hab89, Hab92, Hib01, Hin93,
WS84d, WCG94, Ano97k, Bur91, Che90d, Che96, Sha95b, Tay95a. Web
[ACKW01, Ano95-32, Ano96h, CLB19, Coc01, Coc02c, Coc02d, CBM+05, FT96b, Ser98, DDJ98b, VSW94, Zhe97].
Web-Based [FT96b, Ano96h]. Weight [HTI93, LHL95, Ano94-128, AW91].
Weighted [AM94, TD96]. Welcomes [Str94]. weld [WH94].
Weighted [HTI93, LHLM95, Ano94-128, AW91]. Weighted [AM94, TD96].
welcomes [Str94]. weld [WH94]. Weighted [AM94, TD96]. Welcomes [Str94].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94].
Weld [Ano96-39, BM93a, RDZ93, DMW87]. Welding [Nor97b, SZ96, SJD96].
Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Weldments [WH94]. Welding [Nor97b, SZ96, SJD96]. Weldments [WH94].
Weld [Ano96-39, BM93a, RDZ93, DMW87]. Welding [Nor97b, SZ96, SJD96].
Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94].
Weld [Ano96-39, BM93a, RDZ93, DMW87]. Welding [Nor97b, SZ96, SJD96].
Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].
Welding [Nor97b, SZ96, SJD96]. Weldments [WH94]. Weld [Ano96-39, BM93a, RDZ93, DMW87].

Wormhole [Ano94-53, Ano94-88, CB94, PDR94, RE94, TM94a, TM94b, WK95]. **Wormhole-Routed** [Ano94-88, PDR94, TM94a, TM94b, WK95]. **Worth** [Mul96]. **Would** [DCG93, DCGxx, Ber82, Poo96a, SF82]. **write** [CV91a, CV92b, MWRK18]. **write-through** [CV91a]. **WSDL** [Bar01]. **Wunsch** [AFF93]. **Wurttemberg** [Sch94b]. **X** [CK90, ALM93, Ano85b, ABHS89b, ABHS89a, BH92a, Cal85a, Cal85b, CDMW94, CM84, Cha84, CM86, CDH84, Che89b, CS84, CS86a, Dao88, DO89, DP90, DH91a, DH91b, DH86b, DH86a, EE93, EY91, FSY88, GKL+87, GS89d, GZA86, Gur88, Ho91, Hoc85, HKN89, HES93, HFFH86, HFFH87, KN88, Kra88, KM85, Lar84, LMM85b, LMM85a, LMM86, MLR90b, MLR90a, Meu87, MKB87, MF93, Nag88, NR86, OL86, OD88, PB94a, Par90c, PBK91, Rei85, RS85, RRSS93, Rit88b, Rit88a, RR89, SW91, Sea86, SSLR90, Svo93, lTDD88, Tem89a, Tem89b, VSH90, VM87, Vol89, VY85, WHBH93, Wes89, WB85, WI88a, WMK90, Y+92, ZM86]. **X-IMAGE** [RRSS93]. **X-MP** [ABHS89b, ABHS89a, BH92a, Cal85a, Cal85b, CM84, Cha84, CM86, Che89b, CS84, CS86a, DO89, DP90, DH91a, DH91b, EE93, EY91, FSY88, GKL+87, GS89d, GZA86, Gur88, Ho91, Hoc85, HKN89, HES93, HFFH86, HFFH87, KN88, Kra88, KM85, LMM85b, LMM85a, LMM86, MLR90b, MLR90a, Meu87, MKB87, Nag88, NR86, OL86, OD88, Par90c, PBK91, Rei85, RS85, Rit88a, RR89, SW91, Sea86, SSLR90, Svo93, lTDD88, Tem89a, Tem89b, VSH90, VM87, VY88, WHBH93, Wes89, WI88a, WMK90, ZM86]. **X-MP/2** [CDH84, Lar84]. **X-MP/4** [DH86b, DH86a]. **X-MP-like** [WB85]. **X-MP/2** [Cha84, LMM85b, LMM85a]. **X-MP/24** [GKL+87, LMM86]. **X-MP/416** [VY88]. **X-MP/48** [HFFH86, HFFH87, Meu87, Nag88, VM87]. **X-MP/Model** [RR89]. **X-Ray** [CDMW94, PB94a]. **X-Window** [Y+92]. **X-Y-Z** [MF93]. **X/MP** [Dao88, HL88a, Rit88b]. **X/OPEN** [Ano85b]. **X1** [DVWW05]. **XC** [CKD+19, DAC+18, MRUK18]. **XC-40** [DAC+18]. **XC40** [Cla18, HCD+18]. **Xcount** [SM89]. **XE6** [KBVH14, KB18]. **XE6/XK7** [KB18]. **XX7** [KB18]. **XLink** [Bar00c, Bar00d]. **XML** [Pox13]. **XMT** [BB13, BC914, VSMS12]. **XMT-2** [BB13, BC914]. **XP** [Ano94h, Bem92, Gro93, Int91, LMM86, SNS+97]. **XP-200** [LMM86]. **XP/S** [Ano94h, Bem92, Gro93]. **XP/S-15** [Ano94h]. **xQard** [SSS94]. **XT** [YQTV12]. **XT4** [DBK09]. **Xylem** [EM91]. **Y-Geometry** [ALM93]. **Y-MP** [Cra92, MSTK93, Oed92a, Oed92b, And90a, Ano88k, BOS93, Bow88, BL91, CRM94, CS93b, CS95, Dan91, DH91a, DH91b, Dic90, Din92, GP93a, HVY91, Hol90b, HKS94, HSKY95, LS92b, LS93a, MSW91, N95, Nag90, Pap92, PS94a, Pn91, QB92, Rei88, SPS90, SWL+91, SS90c, VSH91, Vaj91, van95b]. **Y-MP/2** [NSH95]. **Y-MP8** [Cho90a, SO91]. **Y-MP8/864** [Cho90a, SO91]. **Y/MP** [Suz91]. **Y2K** [Gar99]. **Yao** [War03]. **Yardley** [CCKSS90]. **Year** [Ano90u, Ano92f, Zyg93, Ano95v, Mes93a, Stu03]. **Years** [CCKSS90, Fin94, MSCxx, Zen99]. **Yesterday** [Hag91]. **YH** [HCL94, YJD93]. **Yield** [RL90b, Don93c]. **Yields** [Ano88i, Ano95w]. **YMP** [Car91, HP95]. **York** [Ano97t, Ano00a, IEE90]. **Yourself** [HHS01a, HHS01b, JA92a, JA92b]. **Z** [HA91, War03, MF93]. **Zealand** [Ano97p]. **Zentrum** [Stu95]. **Zeolites** [CFV+90]. **Zero**
REFERENCES

[SA10b]. Zero-clusters [SA10b]. ZeroOne [Ano85b]. Zeuthen [FWS96]. zip [Ano90c].
zone [NSB96, WH94, Yi11]. ZPL [DLMW95,Spy99]. ZS [MSAD91]. ZS-1 [MSAD91].
Zurich [Ano93c, HKR94, Mar86]. Zuse [Stu95]. Zycad [TS90].

References

Allcock:2002:DMT

Ahmad:2012:HEA

Aybar:1993:SDO

Aluru:2006:ESS

Abrugia:1993:USA

An:1995:CFI

REFERENCES

[Almasi:2005:DIM]

[Alverson:1992:EHP]

[Ariel:1988:SMP]

[Ames:1994:FSI]

[Arnoldi:1995:NRS]

[Appelbe:1996:STH]
REFERENCES

[Afsarmanesh:2001:GEH]

[Aluru:2003:GEI]

[Abawajy:2009:EAS]

[Almasi:2003:OBS]

[Alam:2013:EES]

[Ambrosiano:1994:HCS]
REFERENCES

REFERENCES

REFERENCES

Report CSRD 1151, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, January 1992. 32 pp.

REFERENCES

March 1984. CODEN IBM-JAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

Anastasio:1991:OCL

Acevedo:1993:RTD

Arvind:1994:SNG
[ACA94] Arvind, D. Chiou, and Boon Seong Ang. 0*T (Star T) the next generation: In the real world. In Balakrishnan [Bal94], pages 400–406. ISBN 0-7-462044-4. LCCN ???.

Arsenin:1996:STS

Anderson:1990:TTD

Achdou:1999:BRN

Arpaci:1995:EEC
Remzi H. Arpaci, David E. Culler, Arvind Krishnamurthy, Steve G. Steinberg, and Katherine Yelick. Empirical evaluation of the CRAY-

Aloisio:2001:WAS

Arzt:1993:TTS

ACM:1988:ICS

ACM:1989:PSN

ACM:1989:SVR

ACM:1990:CPI

ACM:1991:CP1
REFERENCES

ACM:1996:FCP

ACM:1997:CPI

ACM:19xx:PLA

ACM. Proceedings of the ... ACM/IEEE supercomputing conference, 19xx. On CD-ROM.

ACM:2003:CPI

Anderson:1990:OGP

Abraham:1988:BPS

Abdelrhman:1997:TMC

Adams:1993:NNM

M. L. Adams. New nonlinear methods for linear trans-

[AF97] E. Anderson and M. Fahey. Performance improvements to LAPACK for the Cray Scientific Library. LA
REFERENCES

Al-Furaih:1996:PCM

Anderson:1993:PAN

Akherraz:1993:AST

Ala:1996:IMM

Ashby:1997:SAM

Afuah:1990:RMP

Aslam:1990:ASD

Sohail Aslam and E. J. (Estratios J.) Gallopoulos. The advanced software development and commercialization project: progress report PR-1. Technical Report CSRD 1047, University of Illinois at Urbana-Champaign, Center for Supercomputing Research
and Development, Urbana, IL 61801, USA, September 1990. 49 pp.

Allen:1999:SEE

Attig:2011:TSE

Attig:1998:RCL

Alferov:1996:OIP

Aggarwal:2011:SMP

Agarwal:1994:EPA

R. C. Agarwal, F. G. Gustavson, and M. Zubair. An

REFERENCES

CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic).

Antoun:1993:ADA

Andersson:1997:SCS

Ashcroft:1986:EEL

Allen:1987:ATF

Axmann:1993:DTV

Athas:1994:API

REFERENCES

REFERENCES

Alabama, Dept. of Examiners of Public Accounts, Montgomery, AL, USA.

Alestalo:1990:NWP

Aliabadi:1986:SPS

Allen:1993:EPP

Abotel:1993:LET

Arbenz:1992:ADS

Attig:2001:GEL

Amestoy:2000:BRC

REFERENCES

Abe:1991:UHL

Adams:1993:UAS

Amphlett:1993:SLF

Antoni:1993:HMN

Armstrong:1994:ISI

Armstrong:1996:LIU

Andersen:2015:MEL

Timothy D. Andersen and Michael Mascagni. Mem-

Ammarguellat:1989:NPC

Ammarguellat:1990:CNA

Ammarguellat:1992:CNA

Abraham:2015:GHP

Anastasio:1991:CSL

Ananda:1994:DCC

Anderson:1988:PIP

[And88] Edward Charles Anderson. Parallel implementation of preconditioned conjugate

Andrews:1989:ITG

Phil Andrews. Integration of TeX and graphics at the Pittsburgh Supercomputing Center. TUGboat, 10(2):177–178, July 1989. ISSN 0896-3207.

Andrews:1990:HTF

Anderson:1990:AIS

Anderson:1990:RNG

Anderson:2011:BBS

Anderson:2020:WCA

Angouras:1991:SPP

REFERENCES

[Ano85a] Anonymous. Publications: Software Magazine (IEEE Computer Society); ZeroOne SUPERNET (supercomputer newsletter); technical reports from Argonne; Structured Fortran for Business (textbook); X/OPEN portability guide (common applications environment); Esprit '84 status report (European technology research). ACM Fortran Forum, 4(3):14, October 1985. CODEN ???? ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1988:CPP

Anonymous:1988:CCC

Anonymous:1988:HSP

Anonymous:1988:MES

Anonymous:1988:OFI

Anonymous:1988:SSSb

Anonymous:1988:SST

REFERENCES

Anonymous:1988:SS

Anonymous:1988:SRS

Anonymous:1988:SAI

Anonymous. The supercomputer and the automotive industry: Here’s a look at how the supercomputer is being used in crash simulation studies. *Automotive Engineering*, 96(11):56–62, November 1988. ISSN 0097-711X.

Anonymous:1988:SCF

Anonymous:1988:SVD

Anonymous:1988:SSJ

Anonymous:1988:SSP

Anonymous:1988:SAS

Anonymous:1988:TIC

Anonymous:1988:TPS

Anonymous:1988:TTM

Anonymous:1989:APP

Anonymous:1989:CG

Anonymous:1989:CSP

Anonymous:1989:CUF

Anonymous:1989:DSO

Anonymous:1989:DD

Anonymous:1989:HCD

[Ano89h] Anonymous. High chip density boosts performance of in-
REFERENCES

Anonymous. A huge hoard of real estate will burden the government as it carries out the savings and loan bailout. *Time*, 133(18):54–??, May 1, 1989. CODEN TYMEA9. ISSN 0040-781X. [Ano89p]

Anonymous. Acousto/optical transducer gives holographic display: Experimental system uses a supercomputer and simplification of image
REFERENCES

Anonymous:1990:IVC

Anonymous:1990:IMP

Anonymous:1990:JSM

Anonymous:1990:NRC

Anonymous:1990:SPN

Anonymous:1990:SED

Anonymous:1990:SSW

Anonymous:1990:MSG

Anonymous:1990:VOS

Anonymous:1990:WOD
REFERENCES

National Center for Atmospheric Research, Boulder, CO, USA, 1990.

Anonymous:1990:YSC

Anonymous:1991:CP

Anonymous:1991:CS

Anonymous:1991:CAJ

Anonymous:1991:CED

Anonymous:1991:DH

Anonymous:1991:FRS

Anonymous:1991:HRS

Anonymous:1991:IRD

Anonymous:1991:JSK

Anonymous:1991:NES

Anonymous. National education supercomputer pro-

Anonymous. Supercomputer imaging brings archaeologist face-to-face with mummy.
REFERENCES

Anonymous:1991:SR

Anonymous:1991:SRS

Anonymous:1991:SVS

Anonymous:1991:SHP

Anonymous:1992:W

Anonymous:1992:AS

Anonymous:1992:A

Anonymous:1992:DS

Anonymous:1992:DNA

Anonymous:1992:EY

REFERENCES

[Ano92l] Anonymous. Funding for a massively parallel supercomputer to advance the field of structural biology is being sought through a grand challenge grant proposal. Chemical and engineering news, 70(9):25, March 2, 1992. CODEN CENEAR. ISSN 0009-2347.

REFERENCES

CODEN DIGNAO. ISSN 0011-9407.

Anonymous:1992:MFT

Anonymous:1992:MSO

Anonymous:1992:MM

Anonymous:1992:NSR

Anonymous:1992:NTS

Anonymous:1992:OSC

Anonymous:1992:PPG

Anonymous:1992:PST

Anonymous:1992:SPA

Anonymous:1992:SCH

Anonymous:1992:SCa

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>275(7120):23–??, October 8, 1992.</td>
<td>33–??, November 1992. CODEN CM-</td>
</tr>
<tr>
<td>CODEN ENGIAL. ISSN 0013-7758.</td>
<td>PWAB. ISSN 0010-4841.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>puter giant Cray fights to keep</td>
<td>puters. ComputerWorld, 26(47):</td>
</tr>
<tr>
<td>up in MPP market. Electronics,</td>
<td>35–??, November 1992. CODEN CM-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>puter giants fight for piece</td>
<td>puters. ComputerWorld, 26(47):</td>
</tr>
<tr>
<td>of growing market in Korea.</td>
<td>35–??, November 1992. CODEN CM-</td>
</tr>
<tr>
<td>Electronics, 65(12):10–??,</td>
<td>PWAB. ISSN 0010-4841.</td>
</tr>
<tr>
<td>September 28, 1992. ISSN 0883-4989.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(7121):9–??, October 1992.</td>
<td>105–??, November 1992. CODEN CM-</td>
</tr>
<tr>
<td>CODEN ENGIAL. ISSN 0013-7758.</td>
<td>PWAB. ISSN 0010-4841.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>puters. ComputerWorld, 26(47):</td>
<td>puters image the human body in</td>
</tr>
<tr>
<td>PWAB. ISSN 0010-4841.</td>
<td>October 1992. CODEN SCI-</td>
</tr>
<tr>
<td></td>
<td>EAS. ISSN 0036-8075 (print),</td>
</tr>
<tr>
<td></td>
<td>1095-9203 (electronic).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>puters. ComputerWorld, 26(47):</td>
<td>puters knock at IS doors. *Data-</td>
</tr>
</tbody>
</table>
REFERENCES

Anonymous:1992:SKD
[Ano92-40] Anonymous. Supercomputers Knock At IS Doors. Data-
technology, 38(24):79–??, December 01, 1992. CODEN DTM-
NAT. ISSN 0011-6963.

Anonymous:1992:SAH
[Ano92-41] Anonymous. Supercomputing at home. The Japan eco-

nomic journal. Nihon keizai shimbun, 30(1528):8–??, Au-
ugust 1992. ISSN 0021-4388.

Anonymous:1992:SES
[Ano92-42] Anonymous. Superhuman effort: The story of one pro-

fessor and his supercomputer demonstrates the effort
needed to persevere with an invention while keeping
CODEN ENGIAL. ISSN 0013-7758.

Anonymous:1992:TAN
heights. Electronic Design, 40(26):43–??, December 17,
1992. CODEN ELODAW. ISSN 0013-4872.

Anonymous:1992:TMT
[Ano92-44] Anonymous. Thinking Machines targets commercial
users with a new supercomputer, but commercial soft-
ware packages will not be available for at least a month.
ComputerWorld, XXVI(42): 6–??, October 1992. CODEN
CMPWAB. ISSN 0010-4841.

Anonymous:1992:PF
76–??, September 1992. CODEN IEESAM. ISSN 0018-
9235 (print), 1939-9340 (electronic).

Anonymous:1992:WCB
ISSN 0816-8148.

Anonymous:1992:WAI
[Ano92-47] Anonymous. Wide Area Information Servers: a super-

computer on every desk, 1992. 1 sound cassette.

Anonymous:1993:AMC
[Ano93a] Anonymous, editor. 7th Annual Midwest computer con-
ference: March 1993, Whitewater, WI. University of
Wisconsin, Whitewater, WI, USA, 1993. ISBN ???. LCCN ???.

Anonymous:1993:APH
[Ano93b] Anonymous. Administration pushes high-tech initiative;
NTTC and MIST cooperative for competitiveness; UPS
chairman Kent Nelson receives technology award; US,
Japan agree to optoelectronics project; supercomputing
news; 1992 Manufacturing Intelligence Awards; IEEE
sends technology list to Clinton administration; robot-in-residence and other smart machines; adapting to a changing world: An IEEE survey. IEEE expert: intelligent systems and their applications, 8(2):87–91, April 1993. CODEN IEEXET. ISSN 0885-9000.

Anonymous:1993:AMP

Anonymous:1993:PSW

Anonymous:1993:NR

Anonymous:1993:C

Anonymous:1993:CSC

Anonymous:1993:CUM

Anonymous:1993:DCS

Anonymous:1993:DW

Anonymous:1993:DS

Anonymous:1993:FFC

Anonymous:1993:HUG

Anonymous:1993:SPA

Anonymous:1993:ICM

Anonymous:1993:TSY

Anonymous:1993:MR

Anonymous:1993:MC

Anonymous:1993:MMA

Anonymous:1993:NSH

Anonymous:1993:PAM

Anonymous:1993:PVT

Anonymous:1993:RS

Anonymous:1993:R

Anonymous:1993:RC

Anonymous:1993:RDP

Anonymous:1993:SUG

Anonymous:1993:SUS

Anonymous:1993:SEP

Anonymous:1993:SWb

Anonymous. SSI won’t die. *Information Week*, 411:15–??, February 8, 1993. CODEN INFWE4. ISSN 8750-6874.

Anonymous:1993:SAA

Anonymous:1993:SWa

REFERENCES

Anonymous:1993:SSa

Anonymous:1993:SSL

Anonymous:1993:SSb

Anonymous:1993:SSc

Anonymous:1993:SSM

Anonymous:1993:STC

Anonymous:1993:SEC

Anonymous:1993:SFT

Anonymous:1993:SST

Anonymous:1993:TN

Anonymous:1993:TDB
REFERENCES

Anonymous:1993:TT

Anonymous:1993:U

Anonymous:1993:UAF

Anonymous:1994:IAG

Anonymous:1994:UAF

Anonymous:1994:ADP

Anonymous:1994:ALM

Anonymous:1994:ASU
REFERENCES

Anonymous:1994:APUb

Anonymous:1994:AVP

Anonymous:1994:AHS

Anonymous:1994:B

Anonymous:1994:BBN

Anonymous. Berkeley is building a new supercomputer. The Chronicle of...
REFERENCES

Anonymous:1994:BB

Anonymous:1994:BRP

Anonymous:1994:BHC

Anonymous:1994:CPV

Anonymous:1994:CVS

Anonymous:1994:CMR

Anonymous:1994:CCC
Anonymous. A compiler-directed cache coherence scheme with improved and intertask locality. In IEEE
Anonymous:1994:CSM

Anonymous:1994:CMS

Anonymous:1994:C

Anonymous:1994:CRS

Anonymous:1994:CUF

Anonymous:1994:DEN

REFERENCES

Anonymous:1994:ECA

Anonymous:1994:EIM

Anonymous:1994:EPG

Anonymous:1994:EUT

Anonymous:1994:EMH

Anonymous:1994:EAC

Anonymous:1994:ECD
Anonymous. Expressing cross-loop dependencies through hyperplane data and dependence analysis. In IEEE [IEE94e], pages 508–517.
REFERENCES

Anonymous:1994:EPP

Anonymous:1994:FCG

Anonymous:1994:FRN

Anonymous:1994:FTP

Anonymous:1994:GAM

Anonymous:1994:GMS

Anonymous:1994:GAG

[Ano94-57] Anonymous. Genetic algorithms for graph partitioning and incremental and graph partitioning. In IEEE
Anonymous:1994:GAP

Anonymous:1994:GOS

Anonymous:1994:HPC

Anonymous:1994:HPP

Anonymous:1994:IHS

Anonymous:1994:IPR

Anonymous. Implementation of a portable and reproducible parallel and pseu-
REFERENCES

Anonymous:1994:ILD

Anonymous:1994:IPD

Anonymous:1994:IT

Anonymous:1994:INE

Anonymous:1994:IPH

Anonymous:1994:IAH

Anonymous:1994:IUE

REFERENCES

Anonymous:1994:JOS

Anonymous:1994:JNI

Anonymous:1994:LAP

Anonymous:1994:MSA

Anonymous:1994:MNG

Anonymous:1994:MM

Anonymous:1994:NEP

Anonymous:1994:NCS

REFERENCES

CODEN IWEEA4. ISSN 0039-0895.

Anonymous:1994:NR

Anonymous:1994:NRN

Anonymous:1994:NCW

Anonymous:1994:NCL

Anonymous:1994:NPA

Anonymous:1994:NSR

Anonymous:1994:NAM

[Ano94-86] Anonymous. NSF has announced US$6 million in awards to make supercomputer centers more available to outside users. Federal computer week, 8(33):20–??, November 1994. ISSN 0893-052X.

Anonymous:1994:DCT

Anonymous:1994:OSM

Anonymous:1994:PTD

Anonymous:1994:PFI

Anonymous:1994:PGA

Anonymous:1994:PIG

Anonymous:1994:PIL

Anonymous:1994:PLA

Anonymous:1994:PPPP

Anonymous:1994:PPSa

Anonymous:1994:PPSb

Anonymous:1994:PMV

Anonymous:1994:PEI

Anonymous:1994:PET

Anonymous:1994:PHN

Anonymous:1994:PCM

Anonymous:1994:PND

Anonymous:1994:PTC

REFERENCES

Anonymous:1994:SPF

Anonymous:1994:SUC

Anonymous:1994:SMD

Anonymous:1994:SCO

Anonymous:1994:SGA

Anonymous:1994:SGP

Anonymous. Silicon Graphics is planning a one-two power punch to supercomputer competitors that already has analysts talking ringside. Digital Review, 11(12):3–??, June 1994. CODEN DIRVE5. ISSN 0739-4314.

Anonymous:1994:SCS

Anonymous:1994:SCSa

Anonymous. Single chip supercomputer: Vector processing is key to high performance in floating point calculations. New electronics, 27
REFERENCES

(4):7–??, April 1, 1994. ISSN 0047-9624.

Anonymous:1994:SLL

Anonymous:1994:SS

Anonymous:1994:SIP

Anonymous:1994:SPH

Anonymous:1994:SSI

Anonymous:1994:SSS

Anonymous:1994:SSM

Anonymous:1994:SEU

Anonymous:1994:SSI

Anonymous:1994:SWH

REFERENCES

Anonymous:1994:SIC

Anonymous:1994:SRC
Anonymous. A supercomputing research center ATM network-interface board has a 1-Gbit/s point-to-point link with 1.3-ms latency. Electronic engineering times, ??(813):52–??, September 1994. ISSN 0192-1541.

Anonymous:1994:SSA

Anonymous:1994:TBM

Anonymous:1994:TNF

Anonymous:1994:TCO

Anonymous:1994:TDA
Anonymous. Truly distribution-independent algorithms for the N-body and problem. In IEEE [IEE94e], pages

Anonymous:1994:UHS

Anonymous:1994:VS

Anonymous:1995:OSM

Anonymous:1995:CIS

Anonymous:1995:CCF

Anonymous:1995:CEF

Anonymous:1995:CRR

Anonymous:1995:GRR

Anonymous:1995:CRT
Anonymous:1995:CSS

Anonymous:1995:CCS

Anonymous:1995:CDU

Anonymous:1995:DDS

Anonymous:1995:HS

Anonymous:1995:DWa

Anonymous:1995:DWb

Anonymous:1995:EPC

Anonymous:1995:ESS
REFERENCES

[Ano95x] Anonymous. In the news: Thin-film lubricants may damage disk drives; protein structures calculated quickly; supercomputer looking for oil; modeling ceramics may improve yields; VLSI chip modeled after a leech; US Army studying imaging science; geomagnetic field reversals simulated; single-layer magnetism; National Medal of Science awarded to Herman A. Haus; distributed climate simulation; double bubble area is the smallest; smart guitars. *IEEE Computational Science & Engineering*, 2(4):82–84, Winter 1995. CODEN ISCEE4. ISSN 1070-9924 (print), 1558-190X (electronic).

Anonymous:1995:LSD

Anonymous:1995:PAP

Anonymous:1995:LAN

Anonymous:1995:LCS

Anonymous:1995:M

Anonymous:1995:MSH

Anonymous:1995:NDC

Anonymous:1995:NIU

Anonymous:1995:NNS

Anonymous:1995:NPS

REFERENCES

Anonymous:1995:NSH

Anonymous:1995:NT

Anonymous:1995:NPC

Anonymous:1995:OCS

Anonymous:1995:PSA

Anonymous:1995:PSB

Anonymous:1995:SSC

Anonymous:1995:SB

Anonymous:1995:SCO

Anonymous:1995:SMM

Anonymous:1995:SPS

Anonymous:1995:SAS

Anonymous:1995:USC

Anonymous:1996:ISA

Anonymous:1996:AIS

Anonymous:1996:BRIi

Anonymous:1996:CCU

Anonymous:1996:CPS
[Ano96e] Anonymous. Call for papers: Special issue on irregular

Anonymous:1996:CPSb

Anonymous:1996:ETW

Anonymous:1996:ESC

Anonymous. Enhancing secondary chemistry instruction through supercomputing applications. In IEEE [IEE96a], pages 12–14.

Anonymous:1996:FGS

Anonymous:1996:GIC

Anonymous:1996:GRS

Anonymous:1996:GS

Anonymous:1996:IQR

Anonymous. In an insatiable quest for real-time information, analytics and more power, financial services firms are migrating towards supercomputers. Wall Street and Technology, 14(4):49–??, ????. 1996. CODEN WSTEE5. ISSN 1060-989X.

Anonymous:1996:INC

Anonymous:1996:ITP

Anonymous:1996:LSA

Anonymous:1996:MSO

Anonymous:1996:NAS

Anonymous:1996:NPR

Anonymous:1996:NTP

Anonymous:1996:Q

Anonymous:1996:RFR

Anonymous:1996:RSG

Anonymous:1996:RS

Anonymous:1996:SDS

Anonymous:1996:SIH

Anonymous:1996:SBSa

Anonymous. SGI blends supercomputers — Silicon Graphics’ plan to blend its systems and Cray Research’s supercomputers will take a while. *ComputerWorld*, 30 (21):20–??, ????. 1996. CO-
Anonymous:1996:SBSb

Anonymous:1996:SDB

Anonymous:1996:SCS

Anonymous:1996:SS

Anonymous:1996:SAN

Anonymous:1996:SDH

Anonymous:1996:SIB

Anonymous:1996:SI

Anonymous:1996:SNS

Anonymous:1996:SAW

Anonymous:1996:SGN
Anonymous:1996:SAS

Anonymous:1996:USC

Anonymous:1996:USL

Anonymous:1996:VPC

Anonymous:1996:YMD

Anonymous:1997:CCR

Anonymous:1997:CSS

Anonymous:1997:CUM

Anonymous:1997:EAC

amon, New York, NY, USA, 1997. ISSN 0021-8502.

Anonymous:1997:HTS

Anonymous:1997:FUS

Anonymous:1997:IGS

Anonymous:1997:INI

Anonymous:1997:NSC

Anonymous:1997:NIP

Anonymous:1997:NAG

Anonymous:1997:NNC

Anonymous:1997:NPP

Anonymous:1997:NTW

Anonymous:1997:NWS

Anonymous:1997:NOB

Anonymous:1997:NDA

Anonymous:1997:OOS

Anonymous:1997:OIM

Anonymous:1997:PJI

Anonymous:1997:SFT

Anonymous. Supercomputer faces test — the world’s fastest supercomputer will be put to the test to see if it can handle the job of ensuring the safety of the U.S. nuclear stockpile. Defense news, 12(26):13–??, ???. 1997. ISSN 0884-139X.

Anonymous:1997:SSG

Anonymous:1997:SAT

Anonymous:1997:SCO

Anonymous:1997:SCT

[Anonymous:1997:SRA]

[Anonymous:1997:TAF]

[Anonymous:1997:TBS]

[Anonymous:1997:VPC]

REFERENCES

187

Anonymous:1998:CUS

Anonymous:1998:EBP

Anonymous:1998:SPM

Anonymous:1998:TSA

Anonymous:1999:NFP

Anonymous:2000:BRSb

Anonymous:2000:MNM

Anonymous:2000:NST

Anonymous:2001:CRW

Anonymous:2001:ESL

Anonymous:2001:WSM

Anonymous:2002:MNI

Anonymous. Micro news: IBM’s Cell completes design phase; silver molecules render electroluminescent light source; next-generation disc storage; IBM electron mi-
REFERENCES

Anonymous:2002:MNIIa

Anonymous:2003:SLB

Anonymous:2003:MNIC

Anonymous:2008:EC

Anonymous:2009:CPSa

Anonymous:2011:CSWb

Anonymous:2014:EWS

Anonymous:2016:NSS

Anonymous:2018:EGS

Anonymous:2020:PSS

ANS:1992:TNG

Abraham:1987:PGC

[SAP87a] Santosh G. Abraham and Janak H. Patel. Parallel garbage collection on a virtual memory system. Technical Report CSRD 620; ULLU-ENG-620, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development,
REFERENCES

Allen:1987:DPF

Abraham:1990:CBE

Andrews:1991:AAP

Agrawal:1993:SIP

AbdelBaky:2012:EHP

Appleton:1995:CAS

Elaine Appleton. A cross-media approach to saving the Chesapeake Bay. Environmental science and technology, 29(12):550A–??, December 1, 1995. CODEN ESTTHAG. ISSN 0013-936X.

BMS-CPSMA-NRC:1996:LSS

Board on Mathematical Sciences, Commission on Physical Sciences, Mathematics, and National Research

[Araki:1991:LFC]

[Arabnia:1996:PDP]

[Arabnia:1997:HPC]

[Aragon:2014:CIAb]

[Arbeloa:1992:VFE]

[Ansaloni:1995:POQ]

[Allsopp:2012:MDB]

Nicholas Allsopp, Giancarlo Ruocco, and Andrea Frat- alocci. Molecular dynamics beyond the limits: Mas- sive scaling on 72 racks of

REFERENCES

REFERENCES

Abu-Sufah:1985:PPT

Askew:1993:MCT

Aslam:1991:ASD

Aslam:1991:ETH

Abu-Sufah:1986:ERV

Apduhan:1991:EAT

Aspray:1993:TCC
REFERENCES

Agrawal:1994:ERS

Alef:1993:EPC

Auslander:1991:PE

Awaga:1993:BVC

Awaga:1993:MVB

Atapattu:1991:PPS

REFERENCES

Almlof:1990:SCS

Araya:1993:DSI

Attig:1996:QPC
N. Attig. QCD on parallel computers at the HLRZ Supercomputing Centre. In Borcherds et al. [BBM96], pages 536–545. ISBN 83-902363-3-8. LCCN ???.

ARC-FDD:1987:SAP

Afuah:1990:ENS

Afuah:1991:ENS

AustraliaParliament:1993:AEA
Appavoo:2008:PKB

Adams:2002:SCS

Aparicio:1993:PSI

Arno:1991:SDR

Andrews:1993:PSC

Abdelrahman:1994:DAD

Ao:2018:POH

REFERENCES

Bader:2008:HPC

Babaoglu:1992:PEP

Becciani:1997:PTC

Baber:1990:HAD

Babcock:1994:CBS

Bacon:1988:PSC

Bader:1999:ENA

REFERENCES

Becciani:2001:YRF

Bader:2004:CBH

Baer:2001:LEI

Bailey:1988:EHS

Bailey:1992:MPS

Bailey:1997:TOO

David H. Bailey. Technical opinion: Onward to
 REFERENCES

Baker:1993:IMC

Baker:1993:IMC

Bakos:2010:HPH

Bakos:2010:HPH

Balvers:1993:FPS

Balvers:1993:FPS

Balakrishnan:1994:CSE

Balakrishnan:1994:CSE

Bic:1993:EUI

Bamforth:1997:JSS

Bamforth:1997:JSS

R. Bamforth. Java — from smartcard to supercomputer. In Anonymous [Ano97h], pages 1–?? ISSN 0963-3308.

Banerjee:1979:SOP

Banerjee:1979:SOP

Banerjee:1988:DAS

Banerjee:1988:DAS

REFERENCES

Banerjee:1990:UTD

Barnwell:1988:EID

Barrett:1993:DAA

Barron:1993:LAU

Baran:2000:NVN

[Bar00c] Nicholas Baran. News and views: New modem standards should speed up Internet access; robocopter: AI lifts off; feet don’t fail me now; IBM claims world’s fastest supercomputer; new color displays based on light-emitting polymers; W3C moves forward with XLink. *Dr. Dobb’s Journal of Software Tools*, 25(9):18, September 2000. CODEN DDJOEB. ISSN 1044-789X.
Baran:2000:NVNa
Nicholas Baran. News and views: New modem standards should speed up Internet access; robocopter: AI lifts off; feet don’t fail me now; IBM claims world’s fastest supercomputer; new color displays based on light-emitting polymers; W3C moves forward with XLink. Dr. Dobb’s Journal of Software Tools, 25(9):18, September 2000. CODEN DDJOEB. ISSN 1044-789X.

Baran:2001:NVW

Bass:1995:GG

Bass:1995:GGI

Bataineh:1999:PVI

Baucom:1988:RSP
Christiane Louise Baucom. Reduced systems and the preconditioned conjugate gradient method on a multiprocessor. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, November 1988. ix + 63 pp.

Baum:1996:DBT
Eric Baum. DIALOG BOX — tomorrow’s supercom-
puter processors may be made of DNA. *Windows Magazine*, 7(6):57–??, ???? 1996. CODEN WINMEV. ISSN 1060-1066.

[Bb91b] Barbieri:1987:Ew1

[Bb87] Barbieri:1990:SAM

[Bb90] Berrington:1991:Sod

[Bb91b] Bronson:1992:CSF

Buehlmann:1998:SDI

Baker:1999:CCC

Bokhari:2013:CCX

Barrett:1991:SAA

Bambos:1996:SSS

Booth:1989:LSA

Bianchi:1992:ALS

Carlo Bianchi, Giuseppe Bruno, and Andrea Cividini.

Beccaria:1999:HPR

Brandt:2000:BGC

Brodlie:2005:SAR

Billingsley:1992:SES

Bender:2008:CAP

Bailey:1994:NPB

NAS parallel benchmark results 3-94. In IEEE [IEE94c],
pages 111–120. ISBN 0-8186-
5680-8, 0-8186-5681-6. LCCN
QA76.5 .S244 1994. IEEE
catalog number 94TH0637-9.

Bercea:2020:OSS

[BBE+20] G. T. Bercea, A. Bataev, A. E. Eichenberger, C. Bertolli,
and J. K. O’Brien. An open-
source solution to perform-
ance portability for Summit
and Sierra supercomputers.
IBM Journal of Research and
Development, 64(3/4):12:1–
12:23, May/July 2020. CO-
DEN IBMJAE. ISSN 0018-
8646 (print), 2151-8556 (elec-
tronic).

Baylor:1995:PEP

[BBH95] S. J. Baylor, C. Benveniste,
and Y. Hsu. Performance
evaluation of a parallel I/O
architecture. In Anonymous
[Ano93-31], pages 404–413.
????

Bal:2000:DAS

[BBH+00] Henri Bal, Raoul Bhoe-
djang, Rutger Hofman, Ceriel
Jacobs, Thilo Kielmann,
Jason Maassen, Rob van
Nieuwoort, John Romein,
Luc Renambot, Tim Rühl,
Ronald Veldema, Kees Ver-
stoep, Aline Baggio, Gerco
Ballintijn, Ihor Kuz, Guilla-
ume Pierre, Maarten van
Steen, Andy Tanenbaum,
Gerben Doornbos, Desmond
Germans, Hans Spoelder,
Evert-Jan Baerends, Stan
van Gisbergen, Hamideh Af-
sermanesh, Dick van Al-
bada, Adam Belloum, David
Dubbeldam, Zeger Hen-
drikse, Bob Hertzberger, Al-
fons Hoekstra, Kamil Iskra,
Drona Kandhal, Dennis
Koelma, Frank van der Lin-
den, Benno Overeinder, Peter
Sloot, Piero Spinnato, Dick
Epema, Arjan van Gemund,
Pieter Jonker, Andrei Radu-
lescu, Cees van Reeuwick,
Henk Sips, Peter Kuijnen-
burg, Michael Lew, Floris
Sluiter, Lex Wolters, Hans
Blom, Cees de Laat, and
Aad van der Steen. The
distributed ASCI Supercom-
puter project. Operating
Systems Review, 34(4):76–
96, October 2000. CODEN
OSRED8. ISSN 0163-5980
(print), 1943-586X (elec-
tronic).

Bischof:2001:HTU

[BBHL01] Christian H. Bischof, H. Martin
Bücker, Jörg Henrichs,
and Bruno Lang. Hands-
on training for undergradu-
ates in high-performance
computing using Java. Le-
cure Notes in Computer Scie-
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-
3349 (electronic). URL
com/link/service/series/
0558/bibs/1947/19470306.
REFERENCES

- **[BBW19]** Nick Brown, Michael Belford, and Michèle Weiland. Leveraging MPI RMA

Francesco Belletti, Maria Cotollo, Andres Cruz, Luis Antonio Fernandez, Antonio Gordillo-Guerrero, Marco Guidetti, Andrea Maiorano, Filippo Mantovani, Enzo Marinari, Victor Martin-Mayor, Antonio Munoz-Sudupe, Denis Navarro, Giorgio Parisi, Sergio Perez-Gavirio, Mauro Rossi, Juan Jesus Ruiz-Lorenzo, Sebastian Fabio Schifano, Daniele Sciretti, Alfonso Tarancón, Raffaele (lele) Tripiccione, Jose Luis Velasco, David Yl-

[BCH*93] Borchers:1997:SDA

[BCH12] [BCCP05] Bokhari:2014:MMM

Anonymous:2012:HPV
REFERENCES

[BCZ95] Guy E. Blelloch, Siddhartha Chatterjee, and Marco Za-
REFERENCES

Becker:1993:PSH

Borghi:1993:NST

Boyd:1994:CKM

E. L. Boyd and E. S. Davidson. Communication in the KSR1 MPP: Performance evaluation using synthetic workload experiments. In Anonymous [Ano94-134], pages 166–175. ISBN ???? LCCN ????

Bandyopadhyay:1994:SSS

Boulet:1994:PT

Beetem:1985:GS

Bina:1988:FFB

REFERENCES

REFERENCES

Bednar: 1993: NSP

Buell: 2007: GEI

Blume: 1994: ADP

Bernholdt: 2002: CIH

Bell: 1986: DPC

Bell: 1989: RSD

C. Gordon Bell. The 11 rules of supercomputer de-
sign, July 19, 1989. 1 videocassette (47 min.).

REFERENCES

REFERENCES

[Bergman:1995:GSD]

[Bergmark:1995:OPC]

[Ber96]

[Ber95a]

[Ber95b]

[Ber07]

[Buzzbee82a]

[Bur91]

[Burtsev:1992:AMB]

[Bollen:2011:HWT]
REFERENCES

[BGKR99] Matthias Brune, Jörn Gehring, Axel Keller, and Alexander

Bell:2002:WNH

[BGKR99] Matthias Brune, Jörn Gehring, Axel Keller, and Alexander

Brune:1999:MCG

REFERENCES

Bertran:2011:LMD

Bachem:1996:MTS

Barnett:1994:ICC

Bjorklund:2019:FHF

Brooks:1982:OCL

Bacon:1994:CTH

REFERENCES

Belcastro:2012:REA

Bigildeeva:1990:MSM

Boyle:1992:PFP

Burg:1992:ICS

Baskett:1993:MDS

Britt:2017:HPC

Bhatkar:1994:CDA

V. P. Bhatkar. Centre for development of advanced computing PARAM parallel supercomputer: Architec-
REFERENCES

[Bright:2005:BGC]

[Board:1994:SIM]

[BHM94a]

[BHM94b]

[BHM98]
REFERENCES

Brooks:1992:NAD

Bisseling:2002:FMF

Bhuyan:1995:HPC

Bastian:1998:AMM

Boito:2018:CRP

Bieterman:1988:PPC
REFERENCES

[Bina:1988:MUF]
Eric Jon Bina. Modifications to the UNIX file system check program FSCK for quicker crash recovery. Thesis (m.s.), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, August 1988. iv + 51 pp.

[Bin88]

[Bagheri:1994:CDS]

[BIR94]

[Benodekar:1993:RSC]

[BIR93]

[Bischof:1994:CSPa]

[Bis94a]

[Bischof:1994:PPSa]

[Bis94c]

[Bis94d]

[Bideau:1996:GDM]
D. Bideau, I. Ippolito, L. Samson, and G. G. Ba-

[BJ+16] Huy Bui, Eun-Sung Jung, Venkatram Vishwanath, Andrew Johnson, Jason Leigh, and Michael E. Papka. Improving sparse data move-

Ken Bowler and Richard Kenway. The transputer, the quark and the black, black oil. Physics world, 2(4):28–??, April 1, 1989. CODEN PHWOEW. ISSN 0953-8585.

Scott B. Baden and Scott R. Kohn. Portable parallel programming of numerical problems under the LPAR system. Journal of Paral-
REFERENCES

Borisyuk:1995:SNO

Berglund:1997:MDE

Bader:2011:GEI

Bandman:1988:SPD

Brandli:1993:EPD

Bhat:1994:RNN

Bradley:1991:FML

REFERENCES

William Blume. Success and limitations in automatic
parallelization of the Perfect Benchmarks™ programs. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, July 1992. viii + 86 pp.

REFERENCES

Barbero:1993:AFC

Beckingsale:2020:UAF

Benoist:1993:CEI

Barkai:1985:STH

Bell:1988:SO

Baetke:1992:CAC

Bhatt:1994:OIP

REFERENCES

Borchers:1994:NSF

Bataineh:1993:PVL

Bose:1994:CCF

Bose:1994:PRA

Beletska:1997:HML

Botma:1996:CMI

Bowen:1988:CMV

Boyd:2015:GSS

Brown:1984:CCC

REFERENCES

CODEN NACPDX. ISSN 0191-7811. NTIS. Springfield, VA, USA.

Berry:1986:AES

Beckmann:1989:EBS

Brebbia:1989:ASE

Beckmann:1990:FBS

Beckmann:1991:BNF

Beckmann:1991:ESS

REFERENCES

Beckmann:1992:MSD

Brebbia:1993:ASE

Brilon:1996:ATF

Buis:2006:PCF

Bartel:1994:DMC

Bricolo:1995:RIT

Bancroft:1989:SVC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Brobst:1986:IST

Brock:1991:SISa

Brock:1991:SISb

Brock:1991:SISb

Brookshire:1991:SES

Brown:1991:EEI

Brown:1993:GSI

REFERENCES

Brooks:1997:SPE

Brown:2000:MBP

Brown:2001:EHB

Brock:2017:SCM

Brujs:1988:CTR

Bruner:1990:CPS

REFERENCES

Bramley:1990:RPM

Briscolini:1991:ACS

Bischof:1992:IUH

Berlin:1994:PESb

Berlin:1994:PESa

Bhattacharya:1994:NAT

Biswa:1994:TML

Bjoerstad:1994:UGS

P. E. Bjoerstad and R. Schreiber. Unstructured grids on SIMD torus machines. In IEEE
REFERENCES

Bernocchi:1993:NAI

Besaw:2020:CSM

Bertran:2013:ALP

Baumann:1996:ART

Bokma:1993:SSD

Bischof:1994:PTT

Boender:1995:FIL

Blom:1996:AVVa

Bucher:1983:CSS

Buell:1986:BRBa

Buell:1986:ISC

Buell:1991:BTE

Buell:1991:SFB

Buell:1992:SS

Bupuis:1987:SSC

M. Bupuis, editor. Supercomputer simulations in chemistry: proceedings of the Symposium on Supercomputer Simulations in Chemistry, held in Montreal, August 25-27, 1985, Lecture notes in chemistry; 44. Springer-Verlag, Berlin, Germany /
REFERENCES

[Burkle:1988:BS]

[BMRC-DASETT:1991:MGW]

[Bur91]

[Bur93]

[Burgess:2000:NCW]

[Bur00]

[Burgess:2001:NCW]

[Bur01a]

[Burgess:2001:NCWa]

[Bur01b]
REFERENCES

REFERENCES

Bethel:2011:VSC

Buell:1988:MIA

Bik:1994:NSA

Burgee:1994:PMV

Brown:2018:SDA

Barrtet:1996:ELC

Basu:2017:CBC

[BWV+17] Protonu Basu, Samuel Williams, Brian Van Straalen, Leonid Oliker, Phillip Colella, and

O. Biham and N. Yoran. Dynamical phase transitions in two dimensional traffic models. In Wolf et al. [WSB96], pages 229–238. ISBN 981-02-2635-7. LCCN ????

D. A. Calahan. Block-oriented, local-memory-based linear equation solution on the Cray-2: Uniprocessor algorithms. *Proceedings of
the International Conference
on Parallel Processing, pages
375–378, 1986. CODEN PC-
PADL. ISBN 0-8186-0724-
6. ISSN 0190-3918. IEEE
Service Cent. Piscataway, NJ,
USA.

Calahan:1988:CMC
D. A. Calahan. Characterization
of memory conflict loading on the
Cray-2. Proceedings of the Inter-
national Conference on Par-
allel Processing, 1:299–302,
1988. CODEN PCPADL.
ISSN 0190-3918. Available
from IEEE Service Cent (cat-
n 88CH2625-2). Piscataway,
NJ, USA.

CADOCEOR:1991:SRS
California.Dept.of Commerce.Office
of Economic Research. The
State role in supercomput-
ing. Sunnyvale, CA., June 24,

Calvin:1996:IPF
C. Calvin. Implementation
of parallel FFT algorithms
on distributed memory ma-
chines with a minimum over-
head of communication. Par-
allel Computing, 22(9):1255–
1279, November 1996. CO-
DEN PACOEJ. ISSN 0167-
8191 (print), 1872-7336 (elec-
tronic).

Calamia:2012:CHS
J. Calamia. China’s home-
grown supercomputers. IEEE
Spectrum, 49(1):60–62, Jan-
uary 2012. CODEN IEESAM.
ISSN 0018-9235 (print),
1939-9340 (electronic).

Cann:1992:RFD
David Cann. Retire Fortran?
A debate rekindled. Com-
munications of the ACM,
CODEN CACMA2. ISSN
0001-0782 (print), 1557-
7317 (electronic). URL

Cap:1996:LNW
C. H. Cap. Large networks
of workstations: the myth-
ical poor man’s supercom-
puter? In Dekker et al. [DSZ96], pages 3–4. ISBN 0-
444-82559-2. LCCN ????

Carlson:1988:CCP
William W. Carlson. A
C compiler and post-packer
for horizon. Technical re-
port SRC-TR-88-018, Super-
computing Research Center:
IDA, Lanham, MD, USA,

Carey:1989:PSM
Graham F. Carey. Paral-
lel supercomputing: methods,
algorithms, and applications.
Wiley series in parallel com-
puting. John Wiley and Sons,
Inc., New York, NY, USA,

REFERENCES

REFERENCES

Costa:2013:AIE

Costa:2005:AWT

Crouch:1991:FDT

Carlson:1988:FFT

Clementi:1988:BAI

REFERENCES

Chahande:1994:MAO

Chen:1994:CLE

Calvin:1996:PEM

Clementi:1989:SSS

Carnes:2013:SLI

Cave:2017:TGH

REFERENCES

REFERENCES

Chandra:1994:EBS

Clementi:1987:LSC

Cohen:2006:SPG

Chen:1984:MLA

Chang:1994:APG

CS-CSPUP:1990:CSI

College of Science, California State Polytechnic University, Pomona, Digital Equipment Corporation, and Oak Ridge National Laboratory, editors. *Computational science in industry and the comprehensive university*. California State Polytechnic Uni-
versity, Pomona, Pomona, CA, 1990.

[Robert F. Chamberlain and Charles M. (Charles Michael)

Corbett:1994:DIV

Feng:2003:MCE

Cerin:2012:DGC

Feng:2007:GLE

Csikor:2001:PPP

Feng:2007:HPC

Coletti:2020:TDL

REFERENCES

REFERENCES

Chandra:1994:PEH

Chang:2005:SIS

Chen:1987:PQM

Cabral:1989:VTA

Chen:1989:PFS

Chow:1990:SSM

Chow:1992:CAP

Jyh-Herng Chow and Williams Ludwell Harrison. Compile-time analysis of parallel programs that share memory. Technical Report CSRD 1166, Uni-
versity of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, January 1992. 12 pp.

Abhijeet Chakraborty. Transient circuit analysis on a vector supercomputer. Thesis (m.s. in engineering), University of Texas at Austin, Austin, TX, USA, 1992. ix + 45 pp.

Tony F. Chan. QMR-CGSTAB: a quasi-minimal

Charlebois:1993:PMG

Chan:1994:PIR

Chao:1994:HPA

Chen:1983:LSH

Chen:1988:SDD

Chen:1989:MED

[Che89a] Ding-Kai Chen. MaxPar: an execution driven simulator for studying parallel systems. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, October 1989. vii + 67 pp.
REFERENCES

Cheng:1989:VPC

Cheong:1989:CCC

Chen:1990:TSC

Chen:1990:CSD

Chen:1990:PQM

Chen:1990:SBV

Chen:1990:SVS

REFERENCES

Chervin:1990:NEW

Chen:1991:CMD

Chen:1992:PSM

Cheong:1992:LSSa

Chen:1993:CLP

Chen:1993:CDP

Chen:1994:FDB

Chih-Hsuan Chen. *A finite difference: boundary element scheme for solving parabolic boundary value problems and supercomputing*. Thesis (ph.d.), Texas A&M University, College Sta-
REFERENCES

266

tion, TX, USA, 1994. viii + 89 pp.

REFERENCES

Chiueh:1995:POP

Chien:2000:SWC

Chiu:2016:TGS

Carrico:1993:CSA

Clark:1994:PMD

Chou:1990:DNN

Chow:1990:PEL

Christoph:1990:SCG

[Chr90] G. Christoph. Security considerations of going to a UNIX based supercomputer operating system. In USENIX Association [USE90], pages 129–130.

REFERENCES

Ciarcia:1988:Sa

Ciarcia:1988:Sb

Ciarcia:1988:CCCa

Ciarcia:1988:CCCb

Ciarcia:1988:CCCc

Cigarini:1997:CDD

Cadenas:1993:GAM

Chandru:1994:FDS

Cheng:1994:HAI

Christiansen:1990:CMC

[CK90] E. Christiansen and K. O. Kortanek. Computing ma-
terial collapse displacement fields on a Cray X-MP/48
by the LP primal affine scaling algorithm. Annals
AOREEE. ISSN 0254-5330 (print), 1572-9338 (elec-
tronic).

Exegesis of DBC/1012 and P-90 industrial supercomputer
database machines. Lecture
Notes in Computer Science,
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic).

[CK92b] G. Cybenko and D. J.
Kuck. Supercomputers — revolution or evolution?
IEEE Spectrum, 29(9):39–
41, September 1992. CO-
DEN IEESAM. ISSN 0018-
9235 (print), 1939-9340 (elec-
tronic).

[CK92c] George Cybenko and David J.
Kuck. A computer paradigm
is needed if massively parallel
machines are to live up to their billing. IEEE Spectrum,
CODEN IEESAM. ISSN
0018-9235 (print), 1939-9340
(electronic).

[CKD+19] Brandon Cook, Thorsten
Kurth, Jack Deslippe, Pierre
Carrier, Nick Hill, and Nathan Wichmann. Eigen-
solver performance comparison on Cray XC sys-
tems. Concurrency and Computation: Practice and Ex-
perience, 31(16):e4997:1–
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).

[CKL+13] S. Coghlan, K. Kumaran,
R. M. Loy, P. Messina,
V. Morozov, J. C. Osborn,
S. Parker, K. M. Riley, N. A.
Romero, and T. J. Williams.
Argonne applications for the
IBM Blue Gene/Q, Mira.
IBM Journal of Research and
Development, 57(1/2):12:1–
CODEN IBMJAE. ISSN
0018-8646 (print), 2151-8556
(electronic).

[CM88] Ronald Gary Cytron, Steve
Karlovsky, and Kevin P.
McAuliffe. Automatic man-
agement of programmable caches: (extended abstract).
Technical Report CSRD 780,
University of Illinois at Urbana-Champaign, Center
for Supercomputing Research and Development, Urbana,
REFERENCES

REFERENCES

[Cl98]

[Cl18]

[CL93]

[CLP93]
C. Cavarec, J. C. Lefebvre, J. F. Perron, and D. Verwaerde. Benchmark calcula-

Casanova:2009:PA

Chauvet:1986:MCX

Chauvet:1984:MCX

Cuccu:1993:TMS

Cosshall:1995:PPA

Coskun:2011:ASC

Ayse K. Coskun, Jie Meng, David Atienza, and Mohamed M. Sabry. Attaining single-chip, high-performance computing through 3D systems with active cooling.

Crockett:1994:PPR

Chou:1993:EPD

Cochran:2001:NVS

Cochran:2002:NVCb

Cochran:2002:NVC

REFERENCES

[Com92b] Richard Comerford. Supercomputers — software on the

Conroy:1986:NPC

Conroy:1987:PAS

CSR:1987:SRR

The Spang Robinson report on supercomputing and parallel processing, 1987. ISSN 0897-4047; 1053-1661. Spang Robinson, Manchester, MA, USA.

Conte:1988:STG

Thomas Martin Conte. The simulation and tuning of the global memory subsystem of a multiprocessor. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, September 1988. xi + 80 pp.

Connolly:1990:SSG

Connolly:1991:SSG

Conroy:1994:DSL

Constantinescu:2000:TSA

REFERENCES

[Nick Cook. Supercomputer centre a boost for UK stealth. expanding the scenario system synergy sought in NATO C3I. Jane’s defence weekly, 23(9):25–??, March 4, 1995. ISSN 0265-3818.

[Donna J. Cox. Using the supercomputer to visual-

[Conn:1992:PRSb]

[Conn:1992:PRSa]

[Conn:1993:MMP]

[Cwik:1993:CES]

[Chattopadhyay:1994:ESB]

[Chen:1994:NAI]
REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
Chalasani:1994:FTR

Cheung:1986:SSC

CRI:1986:DSA

Chen:1988:MDM

Cheung:1989:DDM
Hsin-Chu Chen and Ahmed Sameh. A domain decomposition method for 3D elasticity

Chuan:1990:SCS

Carlson:1991:CUM

Chung:1993:ENN

Cross:1994:MMP

Cundari:1994:QML

Chung:1995:ENN

REFERENCES

109–??, 1995. CODEN IH-SCEZ. ISSN 0129-0533.

Carlson:1989:ELS

Clark:2000:NBG

Culler:1999:PCA

Clifton:1997:IBM

UIUC-CSRD:1989:CN

CSRD notes, 1989. University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA.

UIUC-CSRD:19xx:CB

CSRD bulletin, 19xx. University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA.

Cubasch:1990:SGC

Carey:1992:SOF

G. Carey, J. Schmidt, V. Singh, and D. Yelton. A

[CU90] C. R. Case and J. J. Ullo. Use of supercomputing to
REFERENCES

Cullati:1995:NMA

Cullati:1995:UEN

Cheong:1988:CCS

Cheong:1988:PSM

Cheong:1988:SDD

Cheong:1989:CCM

Cheong:1989:VCA

[CV89b] Hoichi Cheong and Alexander Veidenbaum. A version

Chen:1990:CAS

Chen:1991:IWB

Chen:1991:SCS

Chen:1992:DIT

Chen:1992:EWP

Collado-Vides:1993:LIB

Chiuheh:1995:CDS

T.-C. Chiuheh and M. Verma. A compiler-directed dis-
REFERENCES

George Cybenko. Design- ing neural networks. Technical Report CSRD 934, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL
REFERENCES

61801, USA, October 1989. 7 pp.

93SC024 numerical simulation of diesel spray auto-

[DAC+18] Douglas Doerfler, Brian Austin, Brandon Cook, Jack
Deslippe, Krishna Kandalla, and Peter Mendygral. Evaluating
the networking characteristics of the Cray XC-
40 Intel Knights Landing-
based Cori supercomputer
at NERSC. *Concurrency
and Computation: Practice
and Experience*, 30(1):
???, January 10, 2018. CO-
DEN CCPEBO. ISSN 1532-
0626 (print), 1532-0634 (elec-
tronic).

[Dak90] Ravichandran Dakshinamoorthy.
Thirst for parallelism to
increased supercomputer per-
fomance. Technical report,

[DAK98] W. Dzwinel, W. Alda, J. Ki-
towski, and J. Moscin-
ski. Large-scale molecular dynamics experiments on Cray T3E system. Lecture Notes in Computer Science, 1401:881–??, 1998. CO-
DEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Dallaire:1984:AUN

(4):293–298, 1984. CO-
DEN CACMA2. ISSN 0001-
0782 (print), 1557-7317 (electronic).

Daly:1995:HSB

[Dal95] Jim Daly. How to staff IS in the boondocks. Forbes, pages 26–??, April 10, 1995. CO-
DEN FORBA5. ISSN 0015-
6914.

Damevski:2011:OEC

[Dam11] Kostadin Damevski. Offline enforcement of contracts for high-performance computing. Concurrency and Com-
putation: Practice and Ex-
perience, 23(13):1465–1473, September 10, 2011. CO-
DEN CCPEBO. ISSN 1532-
0626 (print), 1532-0634 (elec-
tronic).

Danait:1991:RTE

[Dan91] Sachin W. Danait. A real time expert system for performance monitoring and scheduling of a Cray Y-
MP supercomputer. Thesis (m.s.), Texas A&M University, College Station, TX, 1991. viii + 76 pp.

Daoud:1988:HFS

Das:1994:PKW

[Das94] Amit Das. Productiv-
ity in knowledge work: a study of technical support in supercomputing. Thesis (ph.d.), University of Min-

Daukantas:1996:NSP

[Dau96] Patricia Daukantas. NSF seeks partnerships to replace supercomputer centers. Computers in Physics,
10(1):9–??, January 1996. CO-

Daukantas:1997:SDI

REFERENCES

Davidson:1986:DCM

[Dav86a] Edward Steinberg Davidson. Development of CEDAR multiprocessor supercomputer, 1986. 1 videocassette (50 min.).

Davis:1986:PCA

Davis:1987:FNS

Davis:1989:PAS

Davis:1992:BC

Davis:2000:TVC

Day:2012:SAW

Dharne:1994:VMF

REFERENCES

Dzwinel:1995:PRM

Davis:2009:PPM

DaLiao:1993:MMH

delRosario:1994:HPO

Filho:2001:UMI

DantasDeMelo:1990:VMD

Dietz:1993:WYR

Dietz:19xx:WYR

REFERENCES

Conference on Parallel Processing, ???(???):II–217, ???. 19xx. CODEN PC-PADL. ISSN 0190-3918.

Difilippo:1993:SPN

Davis:2007:HPC

Dave:1987:SMC

Davis:1988:PRD

Dayde:1990:UPL

Decker:1993:BIN

Dayde:1999:RBB

REFERENCES

Decyk:2002:SMP

Dauger:2005:PPC

Dubois:2010:SMV

DHollander:1996:PCS

Donnarumma:1993:CES

A. Donnarumma, S. A. Donnarumma, and E. Freda. Computational and experimental study on kinematic and dynamic behaviour of
REFERENCES

[DDHK94] Dally:1994:RRR

[DDJ98b] DDJ Staff. News and views: Kudos for free software pioneers; PSCs: Personal supercomputers; smart dialing; let it snow...; math for the Web; the taxman changes; advances in nanoelectromechanical technology; Tcl goes it alone. *Dr. Dobb’s Journal of Software Tools*, 23(5):18, May 1998. CODEN DDJOEB. ISSN 1044-789X.

[De 91a] Luiz A. De Rose. Parallel ocean circulation modeling on Cedar. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, December 1991. ix + 77 pp.

[De 91b] Luiz A. De Rose. Parallel ocean circulation modeling on Cedar. Technical
REFERENCES

Report CSRD 1124, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, May 1991. 9 pp.

DeSario:1996:MIA

Dongarra:1984:SMA

Decker:1990:ILM

[Dec90] K. M. Decker. Igtlib — a library for Monte Carlo simulations of lattice gauge theory on CRAY computer systems.

Defend:1987:PRT

Degen:1990:OPT

Dehn:1990:SMT

delGuercio:1989:SS

[Deu86] Governor George Deukmejian. Text of Governor George Deukmejian’s remarks at the dedication of the San Diego Supercomputer Center, September 8, 1986.

REFERENCES

DeRose:1992:EOCb

DeRose:1993:SRP

Dhawan:2018:SSA

Dousse:1993:FBD

[DGJG93] C. Dousse, J. Goette, M. Jaco-

Deegeener:1993:RPM

[DGJG93] C. Dousse, J. Goette, M. Jaco-

Dean:1989:SSP

Davies:1990:DAS

[DGJG93] C. Dousse, J. Goette, M. Jaco-

Deegeener:1993:RPM

Dean:1989:SSP

Davies:1990:DAS

REFERENCES

[DH93] E. Diegel and K. Hornberger. Viscoplastic material models in structural analysis of the first wall in a fusion reactor. In Kusters...

Urbana, IL 61801, USA, 1988. 8 pp.

Dickinson:1981:ONW

Dickinson:1982:ONW

Dickinson:1990:AFC

Dick:1994:CUP

Dieckmann:1995:CAL

Dillmann:1993:UVR

Ding:1991:CQP

Ding:1992:RAV

Ding:1993:MCS

Diplock:1996:BNS

Divins:1997:MAC

DeGloria:1994:TAS

Dash:1993:ITG

Deng:2001:PSB

Damodaran-Kamal:1994:MSR

Dongarra:1986:SME

Davidson:1986:STC

Darema:1993:MCS

Doi:1990:SPV

Daoudi:1992:IBE

DelCorral:1996:RIC

DeLeege:1993:LWS

Djurfeldt:2008:BSS

Ding:1998:ADA

Dongarra:1999:RAP

Dikaiakos:1995:PPI

Deng:1994:CTF

Davis:1993:SSR

REFERENCES

115. ISBN 0-937194-28-X.

[Dyer:1988:AFD]

Stephen A. Dyer and L. Robert
Morris. Afterword: Floating-
Point digital signal processing
chips, the end of the super-
computer era? IEEE
CODEN IEMIDZ. ISSN 0272-
1732 (print), 1937-4143 (electronic).

[Dyer:1988:AFP]

[Dawson:1993:HAP]

D. Dawson and F. W. Margrave. Hazards and accident
prevention in the loading and unloading
of commercial vehicles on roll on/roll off ships. In Anonymous
[Ano93-31], pages 527–534.

[Daminelli:1996:PPSb]

G. Daminelli and F. Mancosu. P-vision — Pirelli super-
computing in tyre technology. In Roller [Rol96], pages
LCCN ????

[Daminelli:1996:PPSb]

[Daminelli:1996:PPSb]

G. Daminelli and F. Mancosu. P-vision — Pirelli super-
computing in tyre technology. In Roller [Rol96], pages
LCCN ????

[Destri:1996:BLA]

G. Destri and P. Marenzoni. Benchmarking lattice-
based applications on parallel architectures. Parallel
Processing Letters, 6
CODEN PPLTEE. ISSN
0129-6264 (print), 1793-642X
electronic).

[Darnell:1992:ASC]

E. Darnell, J. M. Mellor-
Crummey, and K. Kennedy.
Automatic software cache co-
herence through vectorization. In ACM [ACM92b],
pages 129–138. ISBN 0-
89791-485-6 (paperback), 0-
89791-486-4. LCCN QA
76.88 I57 1992. Sponsored by
ACM SIGARCH.

[Destri:1996:BLA]

[Darnell:1992:ASC]

J. Y. Doriath, C. W. Mc-
Callien, E. Kiehhaber, and
U. Wehmann. ERANOS
1: The advanced European
system of codes for reac-
tor physics calculations. In Kusters et al. [KSW93], pages
177–186. ISBN 3-923704-11-
9. LCCN ???? Two volumes.
REFERENCES

REFERENCES

A. M. Davies and R. Proctor. Developing and optimiz-

Duke:1991:PCM

DeRose:1996:MFT

Disz:1997:UEI

Duff:1981:ESM

Duff:1982:ESM

DuBois:1991:DED

Dowd:1993:CTF

Kevin Dowd and David R. Radin. The Cray T3D: From fringe to forefront. *The
REFERENCES

[Draper:1988:CHI]

[Draper:1989:EDA]

[Draper:1990:FDR]

[Draper:1990:SN]

[Draper:1994:CWS]

[Drach:1995:HII]
N. Drach. Hardware implementation issues of data

[ACM95a]

[Draper:1996:CWSa]

[Draper:1996:CWSb]

[delRosario:1994:HIM]

[Drouffe:1995:SNS]

[Dahm:2020:SCE]

[Dahm:2020:SCE]

[Dheke:1994:APC]

Fernando Diaz del Rio, Javier Salmeron-Garcia, and

Dowdy:1999:SIH

[Dowdy:1999:SIH]

Dowdy:1999:SIH

DS94a

[Dongarra:1986:LAC]

Dongarra:1986:LAC

DS94b

[Dongarra:1986:FPA]

Dongarra:1986:FPA

DS96a

[Decyk:1989:SC]

Decyk:1989:SC

DS94a

[DasGupta:1994:SCB]

DasGupta:1994:SCB

DS94b

[Demmel:1994:PGA]

Demmel:1994:PGA

DS94c

[Dwivedi:1994:OIM]

Dwivedi:1994:OIM

DS96a

M. D. Dikaiakos and J. Stadel. A performance study of

REFERENCES

Duff:1990:SLS

Duff:1991:SSL

Duff:2000:IHP

Dumler:1997:ADL

Dunham:1992:SFW

Duncan:1999:BRU

Dozier:1992:TQE

Droegemeier:1993:ESA

Davis:1990:SNP

Deng:2013:ALP

El-Araby:2009:EPR

El-Araby:2011:FEH

Erbacci:1995:PCM
[EAMS95a] G. Erbacci, R. Ansaloni,

Erbacci:1995:PCN

Eigenmann:1991:ESP

Ebadifard:2018:PBT

Eichenberger:2020:HCG

Ernenwein:1988:VSC

Eisenhauer:2002:NDR

Greg Eisenhauer, Fabián E. Bustamante, and Karsten Schwan. Native data representation: An efficient wire

Denise J. Eckland. Supercomputing and the grand challenges of science, 1992. 1 videodisc (50 min.) sd. 1/2 in.

REFERENCES

//dlib.computer.org/pd/books/pd2000/pdf/p0111.pdf

Ebisuzaki:1991:GSP

Ehrhardt:1993:RRT

Eleftheriou:2005:SFF

El-Ghazawi:2008:PHP

Eggers:1994:SCG

Ellsworth:2006:CVP

Eigenmann:2002:SHN

Rudolf Eigenmann, Greg Gaertner, Wesley Jones, Hideki Saito, and Brian Whitney. SPEC HPC2002: The next high-performance

Egecioglu:1987:FPP

Egecioglu:1987:PHI

Egecioglu:1989:FCD

Egecioglu:1989:PMF

Emrath:1988:ESA

Emrath:1992:DNP

[EGP92] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Detecting nondeterminacy in

Eshaghian:1997:ASD

Eshaghian:1997:EEP

Eshaghian:1997:FPI

Eldredge:1997:HPP

Elmasri:1995:TCL

Etter:2001:ECH

Ewinger:1989:MMM

[EHHS89] W. Ewinger, O. Haan, E. Haupenthal, and C. Siemers. Modelling and measurement of memory access in

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eberl:1999:PCP</td>
<td>M. Eberl, W. Karl, C. Trinitis, and A. Blaszczzyk. Parallel computing on PC clusters — an alternative to supercomputers for industrial applications. In Dongarra et al. [DLM99], pages 493–498. ISBN 3-540-66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349 (elec-</td>
</tr>
</tbody>
</table>
REFERENCES

Encarnacao:1990:DSA

Eles:1993:LDS

P. Eles. Language and development system for supercomputer programming. In Anonymous [Ano93g], pages 8–15. ISBN ???. LCCN ????

Elmer:1993:SAT

Elmer:1995:MDP

Elmer:1995:SFA

Els:1989:CCS

Elster:2002:HPC

Ewald:1978:HPG

Robert H. Ewald and Lynn D. Maas. A high performance

Emrath:1991:MXP

Elzen:1994:SLS

Emmen:1984:ISA

Emmen:1985:SAP

Engl:1994:IPO

Emrath:1989:PL

El-Moursy:2011:IPA

Entacher:1999:CSR

Escaig:1991:ATM

Eichenberger:2013:ELO

Egan:1994:PSD

Emmerich:1996:ATF

Ercegovac:1988:HSA

[Erc88] M. D. Ercegovac. Heterogeneity in supercomputer ar-
Erwin:1984:MYC

Dietmar W. Erwin. Making your Cray talk to your IBM and your users. In SEAS [SEA84], pages 342–351. LCCN ????.

El-Sayed:1988:FLC

Eisenbeis:1992:GAD

Eisenhauer:1996:DAP

Endou:1993:CDA

Ess:1990:FRC

El-Sharkawy:1994:SDP

Esposito:1996:PHB

Evans:1997:DBG

Efthivoulidis:1998:FTC

Evans:1990:SS

Ewald:1989:PFC

Ewald:1996:LCR

Ewing:1997:NMI

Evangelinos:2013:DPC
[EW范围内][EWS+2013]

Excell:1991:ONE
[EY91]

Fiedler:1993:NSA
[FA93]

Fahringer:1994:UPG
[Fah94]

Fields:1993:IGG
[FA93]

Fang:1987:DPS
[Fan87]

Farhat:1990:RSS
[Far90]

Fatoohi:2010:ANA
[Fat10]
REFERENCES

Ferguson:1991:PTN

REFERENCES

dtd/2018/07/08081827-abs.html.

Finnemann:1993:RLC

Finnemann:1993:FDS

Fink:1994:CID

Fickett:1993:GAA

Feitelson:1995:PSM

Bin Fang, Yuefan Deng, and Glenn Martyna. Performance of the 3D FFT on the 6D network torus.

Feautrier:1994:TAD

FCCSET-SCEC:1987:USI

FCCSETSSEC:1987:USI

Feder:1996:DUS

Feitelson:1994:TIM

Feitelson:2005:SIL

IEEE Service Cent. Piscataway, NJ, USA.

Finnie:1992:BCU

Fitch:1993:VOE

Feng:2006:APA

Frayssé:2009:ASF

Foster:1997:MMC

Frank:1990:EEP

References

Fiedler, F. Computer models applied to transport of air pollutants over complex terrain [invited]. In Kusters et al. [KSW93], pages 341–352. ISBN 3-923704-11-9. LCCN ???? Two volumes.

Fritz:1992:CVP

Foster:1993:MMP

Fang:2007:FGP

Fukuda:1991:TAP

Akira Fukuda, Kazuaki Murakami, and Shinji Tomita. Toward advanced parallel

Furuta:1993:QIA

Fichtner:1984:ISI

Fukuzaki:1993:DSS

Fong:1985:NCT

Ford:1993:LED

Forsell:2002:SHP

Foster:1993:FML

Foster:1996:HPD

REFERENCES

Computer Science, 1123:3–??, 1996. CODEN LNCS9. ISSN 0302-9743 (print), 1611-3349 (electronic).

REFERENCES

Francioni:2000:DSH

Fincham:1981:MDS

Fiduccia:1991:PS

Floros:1995:ESE

Feitelson:1996:TCJ

Fornasari:1996:CAC

Fornasari:1996:CAC
N. Fornasari and S. Rovida. Conjugate-gradients algorithms on a CRAY-T3D. *Lecture Notes in Computer Science*, 1067:668–??, 1996. CODEN LNCS89. ISSN 0302-
REFERENCES

Ferreira:1998:SII

Frank:1990:ECM
George N. Frank. Experiments on the Cedar multicluster with parallel block cyclic reduction and an application to domain decomposition methods. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, November 1990. vii + 69 pp.

Franco:1994:NSA

Fried:1991:PSI

Fried:1994:SMP

Friston:1995:FIC

Forrest:1988:NNM

Fruhauf:1993:TTT
T. Fruhauf. Today’s and tomorrow’s techniques for the

REFERENCES

C. M. Foley and S. Vinnakota. Nonlinear analysis of structural frameworks using
REFERENCES

[FY92]

Frye:1990:VCS

[FY96]

Friebel:1996:QSA

[FWS96]

Fuchs:1995:ABB

[FWWD95]

Foster:1994:CSI

[FXAC94]

Fujii:1992:NSB

[FY92]

Fu:1996:RCP

[FY96]

Fujino:1991:VCB

[FZM91]

Goyal:1984:PAF

[GA84]

Giladi:1995:SPE

Ran Giladi and Niv Ahituv. SPEC as a performance evaluation measure. Computer,

Gallivan:1991:PBP

Galli:1993:CPM

Galtier:1996:APT

Gannon:1986:RNL

Gannon:1988:STB

Ganapathy:1994:VR

Ganesan:1994:IPA

Gao:1986:MPT

Garrett:1992:VTS

REFERENCES

Garber:1999:NBA

Garber:2001:NBT

Gonzalez:1995:DCM

Gutbrod:1996:SGT

Gutbrod:1996:SLG

Gao:1990:PSL
Hui Gao and Michael Berry. Performance studies of LAPACK on Alliant FX/80 and 1 CEDAR cluster. Technical Report CSRD 1001, University of Illinois at Urbana-
REFERENCES

Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, May 1990. 15 pp.

Gupta:1992:MHS

Ghosh:1996:ELM

Giampapa:2005:BGA

Gara:2005:OBG

Gentzsch:1993:WCB

Ghafoor:1989:BFT

Gokhale:2008:HTH Maya Gokhale, Jonathan Cohen, Andy Yoo, W. Marcus Miller, Arpith Jacob, Craig Ulmer, and Roger

Gowda:1994:ORU

Guillen:1994:CDM

Green:1997:CMC

Geist:2016:SMC

Geller:2011:SET

REFERENCES

REFERENCES

Geuss:1997:EMV

Gruber:1990:NSF

Ghuloum:1995:FPI

Gabriel:2003:FTC

Gabriel:2010:TPP

Garg:1996:SST

Guarna:1988:PUI
REFERENCES

CSRD 749, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, February 1988. 10 pp.

REFERENCES

Gaur:1989:EPE

Yogesh Gaur, Vincent A. Guarna, and David Jablonowski.
An environment for performance experimentation on multiprocessors.
Technical Report CSRD 865, University of Illinois at Urbana-Champaign,
Center for Supercomputing Research and Development, Urbana, IL
61801, USA, April 1989. 8 pp.

Gornish:1990:CDP

Edward H. Gornish, Elana Denise Granston, and Alexander Veidenbaum.
Compiler-directed data prefetching in multiprocessors with memory
hierarchies. Technical Report CSRD 996, University of Illinois
at Urbana-Champaign, Center for Supercomputing Research

Ganapol:1993:ANP

B. D. Ganapol, J. C. Garth, and S. Woolf. Analytical neutral
particle benchmarks in half-space geometry. In Kusters et al. [KSW93],

Ganapol:1993:CEB

B. D. Ganapol, J. C. Garth, and S. Woolf. A continuous energy
benchmark for neutral particle motion in a semi-infinite medium.
LCCN ???? Two volumes.

Greenspan:1990:SDM

Donald Greenspan and Larry F. Heath. Supercomputer simulation
of the modes of colliding microdrops of water. Technical report 273,
University of Texas at Arlington, Dept. of Mathematics, Research
Center for Advanced Study (RCAS), Arlington, TX, USA, 1990. 5 + 9 pp.

Greenspan:1991:SSM

D. Greenspan and L. F. Heath. Supercomputer simulation of the modes
of colliding microdrops of water. Journal of physics D: applied
ISSN 0022-3727.

Gehin:1993:TDF

J. C. Gehin and A. F. Henry. Time-dependent discontinuity factors
for transient nodal models. In Kusters et al. [KSW93], pages

Gentzsch:1994:HCN

Wolfgang Gentzsch and Uwe Harms, editors. High-performance computing
and networking: International Conference and Exhibition,
REFERENCES

REFERENCES

Gokhale:1995:PMT

Gokhale:1991:BUHb

George:1987:SCF

Gustafson:1986:AHV

Goel:1993:NSR

Geuder:1994:SEC

Gordon:1993:OMC

[102x681]REFERENCES

[102x382][102x382]Gibbs:2001:CCS

[102x168]Grinberg:2012:TCA

[Giglio:1994:ASA]

Giloj:1988:STM

Giloj:1994:SSG

Giloj:1994:PSA

Gilg:1992:NSM

Gillevet:1993:MGW

Ginsberg:1982:SOE

Ginsberg:1993:CUS

Girkar:1991:FPT

[Gir91] Milind Girkar. *Functional parallelism theoretical foun-

Gisselquist:1986:ECC

Gannon:1987:IMH

Gallivan:1988:POD

Gallivan:1986:UBL

Ghodgaonkar:1994:MPP

Guidec:1996:OFS

Guidec:1996:OOF

REFERENCES

Gaertel:1993:GIS

Gaertel:1994:MWF

Gallivan:1991:SBP

Gelernier:1992:SRG

Gupta:1993:PPL

Gottlieb:2018:SEA

Grimes:1987:SLD
REFERENCES

Galick:1991:ISE

Germann:2009:TMD

Gmeiner:2014:PMH

Grimsrud:1989:IDP

Glowinski:1990:CMA
REFERENCES

Glasser:1993:RMA

Glenn:1988:PPH

Glenn:1991:CMH

Glendinning:1993:MMP

Grave:1994:VSC

Gloudeman:1984:AIS

Glowinski:1989:SFE

George:2011:NGF

Guarna:1987:IDP

Gokhale:1993:FCD

Groth:1993:PRO

Ghose:1994:UAT

Gopinath:1994:VDC

Goyal:1993:SIP

George:2000:RTS

REFERENCES

Gong:1994:CAF

Greiss:1990:HDC

Gwun:1991:PRM

Gregoire:1997:PEA

Gregoire:1997:PEC

Gunzinger:1993:ASP

Gillan:2011:SIJ

Gallivan:1991:MPS
Kyle A. Gallivan, Bret A. Marsolf, and Harry A. G. Wijshoff. MCSRARSE: a par-

Goldberg:1991:WEC

Goldhirsch:1996:MKR

I. Goldhirsch. Microstructures and kinetics in rapid granular flows. In Wolf et al. [WSB96], pages 251–266. ISBN 981-02-2635-7. LCCN ????.

Goller:1999:PPS

Gonzalez:1993:ASA

Gooley:1988:PAU

Goodman:1997:MPP

Gornish:1989:CTA

Edward H. Gornish. Compile time analysis for data prefetching. Thesis (m.s.),
REFERENCES

University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, December 1989. x + 100 pp.

Goto:1991:CSE

Gottschewski:1991:SDG

Goudreau:1990:SNS

Gajski:1985:EIM

Girkar:1988:PPP

Glenn:1990:IMP

Girkar:1991:FFP

Milind Girkar and C. D. (Constantine D.) Polychronopoulos. Formalizing functional parallelism. Technical Report CSRD 1141, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and

REFERENCES

REFERENCES

DEN AMMODL. ISSN 0307-904X (print), 1872-8480 (electronic).

Greenspan:1990:SSC

Greenspan:1990:SSA

Greenspan:1991:SSL

Greenspan:1991:SSA

Gregoire:1990:EVC

Green:1991:FFC

Greenstein:1994:SSE

Gustafson:1991:DSF

Griffin:1986:EVA
Lisa Ann Willis Griffin. Explicit vectorization and application of a finite volume Euler equation solver on the NASA Langley VPS-32 supercomputer for tran-
sonic flow calculation. Thesis (m.s.), Mississippi State University, Department of Aerospace Engineering, Mississippi State, MS, USA, 1986. ix + 58 pp.

Grier:1988:SMC

Griffith:1990:SSS

Griebel:1992:CTS

Grinstein:1993:SV

Gross:1990:PSI

Gross:1992:RSS

Grossman:1992:SMR

REFERENCES

Gurd:1992:MDP

Gokhale:1993:DBC

[GS93] Maya B. Gokhale and Judith D. Schlesinger. A data-

[GS94c] parallel bit-serial C (dbC). Technical report SRC-TR- 93-096, Supercomputing Re-

Garg:1994:DON

[GS94a] S. Garg and H. A. Sholl. Determining the optimum num-

Gupta:1994:TPS

[GS94e] V. Gupta and E. Schenfeld. Throughput performance of a synchrono-

Garg:2001:TOA

[GS01] Rajat P. Garg and Ilya Shara-

pov. Techniques for Optimiz-

[GS94d] T. Gross and P. Steenkiste. Architecture implications of high-speed I/O for distributed-

Gross:1994:AIH

Gokhale:1994:DPC

Gokhale:1993:DBC

[GS93] Maya B. Gokhale and Judith D. Schlesinger. A data-

[GS94c] parallel bit-serial C (dbC). Technical report SRC-TR- 93-096, Supercomputing Re-

Garg:1994:DON

[GS94a] S. Garg and H. A. Sholl. Determining the optimum num-

Gupta:1994:TPS

[GS94e] V. Gupta and E. Schenfeld. Throughput performance of a synchrono-

Garg:2001:TOA

[GS01] Rajat P. Garg and Ilya Shara-

pov. Techniques for Optimiz-

Garg:2006:OHR

Garza-Salazar:1995:RCH

Garcia:1994:ESU

Gallivan:1991:PDM

Golub:1991:IMC

Gruber:1994:PCI

Gimenez:1997:SES

Granston:1991:DAS

[Elana Denise Granston, Stephen W. Turner, and]

Guelzow:1990:SEC

Guidec:1996:OPS

Guizzo:2005:IRS

Guizzo:2006:DS

Gund:1988:SAM

Guo:1994:MPP

Gupta:1888:CRM

Gupta:1994:SST

Gurke:1988:ASE

Renate Gurke. Approximate solution of the Euclidean Traveling Salesman
Problem on a Cray X-MP. *Parallel Computing*, 8(1-3): 177–183, October 1988. CO-
DEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

Gur94
DEN CANED2. ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

Gut95
science/article/pii/0010465595000052.

Guz86
Mark David Guzzi. Multitasking runtime systems for the Cedar multiprocessor. Thesis (m.s.), University of Illinois at Urbana-
Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, 1986. v + 66 pp.

Guz87
Mark David Guzzi. Cedar Fortran programmer’s handbook. Technical Report CSRD 601, University of Illi-
nois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, 1987. iv + 40 pp.

Guz88
Mark David Guzzi. Cedar Fortran and other vector and parallel Fortran dialects. Technical Report CSRD 731, University of Illi-
nois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, 1988. 8 pp.

GV91
Elana Denise Granston and Alexander Veidenbaum. An integrated hardware/software solution for effective management of local storage in high performance systems. Technical Report CSRD 1073, University of Illinois at Urbana-
Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, August 1991. 32 pp.

GV92
Elana Denise Granston and Alexander Veidenbaum. Detecting redundant accesses to
REFERENCES

Gonzalez-Velez:1996:DSP

H. Gonzalez-Velez. Designing a supercomputing policy for a developing country. In Roller [Rol96], pages 77–86. ISBN 0-947719-81-4. LCCN ????

Grayson:1996:HPP

Gregorio:1995:PNM

Geers:1991:HEB

Graf:1993:IEN

Groetzbach:1993:AFM

Gu:1993:NSA

Geschiere:1995:ELG

REFERENCES

0167-8191 (print), 1872-7336 (electronic).

Arif Ghafoor and Jaehyung Yang. Distributed heterogeneous supercomputing management system. Technical report EE 92-45, Purdue University, School of Electrical Engineering, West Lafayette, IN, USA, October 1992. 32 pp.

REFERENCES

Gupta:1986:SLD

Germain:2005:EPD

Gupta:1989:RMV

Ha:1988:ENS

Ha:1990:ENS

Harrison:1990:CAV

Hejhal:1991:FCM

Harrison:1992:PEV

[HA92]

Hung:1993:PA

[HA93]

Higuchi:1993:EPJ

[HAAS93]

Haberland:1986:SCS

[Hab86]

J. Carl Haberland. Scientific computer systems corporation SCS-40, 1986. 1 videocassette (54 min.).

Haber:1989:SVR

[Hab89]

Haber:1992:DER

[Hab92]

Haghighat:1990:SDA

[Hag90]

Hagersten:2001:HPC

[Hag01]

Hirzel:2013:ISP

Haidar:1997:PFP

Hall:1996:RSS

REFERENCES

REFERENCES

Harrison:1994:CSP

Hartwich:1994:RSF

Hawkinson:1986:HVA

Stuart Hawkinson. A homogeneous, vector architecture for scientific computing, 1986. 1 videocassette (50 min.).

Hawley:1988:BRS

Hayes:1984:ASN

Hayes:1986:PED

Hayes:1989:IC

F. Hayes. Intel’s Cray-on-a-chip. BYTE Magazine, 14...
REFERENCES

Haas:1989:MSD

Habchi:1993:CCS

Hassen:1996:ITD

Hendrickson:2008:GAH

Haring:2005:BGC

Hsu:1995:AEP
REFERENCES

Hawick:1993:PUM

Hartenstein:1996:HPC

Harrison:1991:DCP

Hide:1993:UVC

Haney:1999:SPH

He:2018:PNU

REFERENCES

Healy:1991:PVA

Hu:1996:CPC

Hooper:1993:ITS

Hegland:1996:RCF

Hehre:1986:MCR
[Heh86] Warren J. Hehre. Modeling chemical reactivity, 1986. 1 videocassette (50 min.).

Heinmets:1989:SAP

Heinzl:1990:DST

HerrmannScheurer:1995:MCP
Helin:1992:PAC

Helsel:1993:VBB

Helbing:1996:TMM

Hemker:1984:MAR

Henriquez:1991:SCE

Hensgen:1997:HCW

Herchuelz:1989:SSA

Herbst:1990:MOM

Herbst:1990:JMO

Hernadi:1994:PNB

Herrmann:1995:FNN

Huber:1995:PHP

Hess:1990:SIE

Hsiung:1993:PSO

Hey:1990:STP

Hey:1994:GEP

Heydecker:1996:TRV

Howell:1993:VBE

[HGC94]

[HGS88]

[HGC94]

[HGS91]

[HGS91]

G. G. Hung, Kyle A. Gallivan, and Resve A. Saleh. Parallel circuit simulation based on nonlinear relaxation methods. Technical Report CSRD 1113, University of Illinois at Urbana-Champaign, Center for Supercomputing Re-
search and Development, Urbana, IL 61801, USA, June 1991. 5 pp.

Hutchinson:1993:SCP

Herpel:1993:FLA

Horiguchi:1994:ISP

Hironaka:1991:SVP

Hironaka:1992:BVP

Hargrove:2001:CDI

Hargrove:2001:DIY

William W. Hargrove, Forrest M. Hoffman, and Thomas Sterling. The do-it-yourself supercomputer: Scientists have found a cheaper way to solve tremendously difficult computational problems:

REFERENCES

REFERENCES

[Herrmann:1993:WLS]

[Hoffmann:1993:PSA]

[Hilliges:1996:DTF]

[Huh:1997:SAI]

[Hunding:1990:DSS]

[Hiranandani:1994:CTB]

[Hossfeld:1989:MEA]

F. Heinmets and R. H. Leary. A study of deoxyribonucleotide metabolism and

Hanebutte:1993:MPP

Huss-Lederman:1993:MMI

Hamdi:1995:DLB

Halada:1996:PMS

Heinmets:19xx:SDM

Holm:1994:CSP

Hammard:1995:IP1

Huss-Lederman:1993:CSP

[HLJT93] Steven Huss-Lederman, Elaine M. Jacobson, and Anna Tsao.

Hameetman:1997:EBR

Huss-Lederman:1993:PII

Haff:1993:PCB

Hebert:1993:DTG

Herbst:1993:CFL

Huang:1997:CCA

Henshell:1993:CSA

Hollingsworth:1994:DPI

REFERENCES

QA76.5 S244 1994. IEEE catalog number 94TH0637-9.

REFERENCES

[Ho88] Shou Sin Ho. acceSX network access system for Honeywell NEC SX-2 supercomputer. Thesis (m.s.), Dept. of Computer Science, University of Houston, Houston, TX, USA, 1988. viii + 68 pp.

[Ho91] Chung-Jang Ho. Parallel implementation of iterative methods on the Cray X-MP supercomputer. Where was this work produced??, 1991.

[Hoc85] Roger W. Hockney. \(\left(r_{\infty}, n_{1/2}, s_{1/2} \right) \) measurements on the 2-CPU CRAY X-MP. Parallel Computing, 2(1):1–14, March 1985. CODEN PACOEJ. ISSN 0167-8191
Hockney:1991:PPB

Hockney:1994:CCM

Hockney:1996:SCB

Hodek:1987:UIS

Hoffmann:1993:PVR

Hoffmann:1994:HPC

Haring:2012:IBG

Hoganson:2002:HPC

Kenneth E. Hoganson. High-performance computer architecture and algorithm simula-
REFERENCES

REFERENCES

Hord:1982:IIFb

Hord:1990:PSS

Hord:1993:PSM

Hori:1997:SSMb

Hori:1997:SSMa

Hord:1998:UPS

Hossfeld:1988:VS

Hossfeld:1995:SBR

Hansen:1997:SSL

REFERENCES

Harrison:1988:PPA

Hutchings:1988:CTV

Haghighat:1991:SDA

Haghighat:1992:SPA

Hiller:1993:OAS

Hu:1995:PMC

Hennessy:2003:CAQ

REFERENCES

Holland:2004:GEI

Hasenfeld:1993:NAG

Huestis:1988:SIC

Hariri:1994:CSH
Hock:1988:IMU

Hatcher:1991:DPP

Heath:1994:PFP

Huang:2004:HPP

Hacker:2009:ACF

Halgamuge:1993:ATD

Haji-Sheikh:1991:IMS

Hady:1993:AVN

Frank Hady and David L. Smitley. Adaptive vs. non-...
adaptiverouting:anapplicationdrivencasestudy.TechicalreportSRC-TR-
93-099,SupercomputingResearchCenter:IDA,Lanham,

Horst:1993:STL

HS93bH.D.HorstandM.Saupe.Simulationofatrailingloade
derformedonapulsation
testingstandincompar-
sionwithFEM-Analysis.
InAnonymous[Ano93-31],
pages573–580.ISBN0-
947719-62-8.LCCN???

Hsu:1993:PCD

HS93cW.-C.HsuanDJ.E.
Smith.PerformanceofcachedDRAMorganizations
invecrorsupercomputers.
ACMSIGARCHComputer
ArchitectureNews,21(2):
CODENCANED2.ISSSN0163-5964
(ACM),0884-7495(IEEE).

Hafner:1994:EGB

HS94aH.HafnerandW.Schonauer.
Expandingthegapbetweentheoreticalpeakperformance
for supercomputer architec-
tures.ScientificProgramming,3(2):157–??,Summer
1994.CODENSCIPEV.
ISSN1058-9244(print),
1875-919X(electronic).

Halang:1994:RTC

HS94bWolfgangA.Halangand
AlexanderD.Stoyenko,ed-
itors.Realtimecomput-
ing:Proceedingsof
theNATOAdvancedStudyIn-
ituteonRealTimeCom-
puting,heldinSintMaarten,
DutchAntilles,October5–17,
1992,volume127ofNATO
ASI Series F Computer and
SystemsSciences.Springer-
Verlag,Berlin,Germany/
Heidelberg,Germany/Lon-
don,UK/etc.,1994.ISBN
0-387-57558-8,3-540-57558-
8.ISSNO258-1248.LCCNQA76.54.R42161994.

Harrod:1994:NAC

HS94cW.J.HarrodandM.Sidani.
Numericalalgorithmsonthe
CrayT3D.LectureNotesin
ComputerScience,
CODENLNCSD9.ISSSN0302-
9743(print),1611-3349(elec-
tronic).

Hixon:1994:UCF

HS94dD.HixonandL.N.Sankar.
Unsteadycompressible2-D
flowcalculationsonaMIMD
parallel supercomputer.In
AIAA[AIA94],pages757–
??ISBN????LCCN???
Twelvevolumes.

Hamdi:1995:EEH

HS95aM.HamdiandS.W.Song.
Efficientembeddingsintoth
hypercubeusingmatrix
transformations.InACM
[ACM95a],pages280–288.
ISBN0-89791-728-6.LCCNQA76.881571995.ACMor-
dernumber:415951.
REFERENCES

Hertzberger:1995:HCN

Hertzberger:1995:HPC

Helland:19xx:ATL

Hsiao:1991:PSM

Hu:1995:OIC

REFERENCES

issn=1385-3139&volume=1&issue=3&page=265.

[Hsu2015:WWW]

[Hsu2016:TPE]

[Hausheer:1990:SGR]

[Hintz:1972:CDS]

[HT93]

[Harris:1994:SDM]

[Hausheer:1990:SGR]

A. Hunding. Pattern formation of reaction-diffusion

[HVY91] Michael A. Heroux, Phuong Vu, and Chao Yang. A parallel preconditioned conjugate gradient package for solving sparse linear systems...
REFERENCES

Hamilton:2011:ICH

Haeuser:1994:CSH

Hyder:1996:SHN

Hamrick:1997:CDO

Hager:2011:ICH

Hwang:1984:TSD

Hwang:1985:MSS

Hill:1998:IGP

Jim Hill, Michael Warren, and Pat Goda. I'm not going to pay a lot for this supercomputer! *Linux Journal*, 45:??, January 1998. CODEN LJIOFX. ISSN 1075-3583 (print), 1938-3827
Herrmann:1995:WSB

Hatton:1988:SKS

Hsu:1989:SSN

Hsu:1991:PHS

Hsu:1992:PEW

Hu:2020:MSS

Ido:1992:PSU

Ishii:1992:OHS

Ijaz:2020:RHP

Isaila:2011:DEM

IBGT:2001:BGV

IBGT:2008:OIB

REFERENCES

Team:2013:DIB

Team:2013:IBG

Team:2013:MVC

Iyer:2005:EDT

IEEE:1985:FIC

IEEE:1989:SCR

IEEE-SSS:1989:CSP

IEEE Scientific Supercomputer Subcommittee. The
REFERENCES

IEEE:1990:PSN

IEEE:1991:SAE

IEEE:1992:NSC

IEEE:1993:INP

IEEE:1993:PIS

IEEE:1993:PSPa

IEEE, editor. Proceedings of the Scalable Parallel Libraries Conference: October 6–8, 1993, Mississippi State,
REFERENCES

IEEE:1993:PSPb

IEEE:1994:PIN

IEEE:1994:PSH

IEEE:1994:IIIS

IEEE:1994:HPD

IEEE:1994:PSW

IEEE:1995:ISI

IEEE:1995:CPI

IEEE:1995:DPC

IEEE:1995:PF1

IEEE, editor. *Supercomputing Asia
REFERENCES

[IIJM14] Aun Irtaza, M. Arfan Jaffar, and Muhammad Tariq...

MIT:1994:IJS

Ibrahim:2014:TEY

Irani:1982:MDC

Ito:1991:PEU

Ishigami:1993:AES

Ikedo:1995:ASM

Ina:1985:LSD
[Hiroshi Ina, Sachio Kamiya, and Jiro Mikami. Languages

Illert:1996:ASG

Irvin:1996:MPD

Ivanov:1993:MOI

Ikeda:1991:ASS

Iori:1993:HFA

Infante:1986:AIE

Inadomi:2001:IEP

Yuichi Inadomi, Tatsuya Nakano, Kazuo Kitaura, and Umpei Nagashima. Increased efficiency of parallel calculations of fragment molecular orbitals by using fine-grained parallelization on a HITACHI SR8000 supercomputer. Lecture Notes in Computer Sci-
REFERENCES

CODEN LNCSD9. ISSN
0302-9743 (print). 1611-
3349 (electronic). URL
com/link/service/series/
0558/bibs/2110/21100569.
htm; http://link.springer-
ny.com/link/service/series/
0558/papers/2110/21100569.
pdf.

[Ins87a] Institute of Electrical and
Electronics Engineers. Technical
and Activities Board. Supercom-
puting: an informal glossary of
terms. IEEE Computer Society
Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1987. 20 pp.

[Ins87b] Institute of Electrical and
Electronics Engineers. United
States Activities Board. Super-
computing: an informal glossary of
terms. IEEE Computer Society
Press, 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1987. 20 pp. LCCN
QA76.5 .S896 1987 Bar.

[IEEE:1990:SIG]

[Int81] International Data Corpo-
ration, Framingham, MA, USA. Supercomputer market:

[Int91] Intel Corporation. Santa
Clara, CA. USA. Overview of
the i860 XP supercomputing

[Int:1992:OIX]

[Int92] Intel Corporation. Multimedia and supercomputing
processors. Intel, Santa
Clara, CA, USA, 1992.
ISBN 1-55512-149-7. various
pp. LCCN TK7895.M5 1584

[Ipek:2019:MAD]

E. Ipek. Memristive accel-
erators for dense and sparse
linear algebra: From machine
learning to high-performance
scientific computing. IEEE
Micro, 39(1):58–61, January/February
2019. CODEN IEMIDZ. ISSN 0272-
1732 (print), 1937-4143 (elec-
tronic).

[Illert:1995:NAS]

Chris Illert and Dave Sims.
In the news: Australian su-

Islam:2020:BHP

Isaksen:1993:PEO

Iskander:1996:FET

Ishigami:1993:DCP

Itoh:1987:TFL

Iwaya:1990:NSS

Iwaya:1992:SES

A. Iwaya. Supercomputing enhancements in support of large scale problem solving. In Loffler and Muller [LM92], page 29.1. ISBN ???? LCCN ????
REFERENCES

Jacob:1992:DIY

Jacob:1992:DMP

Jablonski:1988:SAR

Jablonski:1990:GGM

Jezquel:1992:PEE

Jabonsen:1993:CSI

Jackson:1985:DMD

Jalote:1994:SET

James:1995:WG1
REFERENCES

Janosi:1996:HTP

Jarvis:2012:EPM

Jayasimha:1987:PAS

Jayasimha:1988:DS

Johnson:1990:MRI

Jungheim:1991:SHR

DEN JMC MAR. ISSN 0022-2623.

Jennions:1987:DC

Jenkins:1988:NWJ

JPL:1990:SPJ

JPL:1991:SPS

JPL:1992:SPS

Jezquel:2000:OOF

Jablonowski:1988:DGT
REFERENCES

Jackson:1999:ISA

Jia-Hsu:1993:DMR

Joslin:1995:SPS

Ji:1991:BEM

Jian:1994:SAC

Jih:1988:DMN
Tsae jimm Jih. 3D dip move-out on the NEC SX-2 supercomputer. Thesis (m.s.), Dept. of Computer Science, University of Houston, Houston, TX, USA, 1988. viii + 78 pp.

Jain:1994:VML
REFERENCES

Jacobsen:2019:MCS

Joo:1993:NAC

Johnson:1998:PVM

Johnsson:1989:ECGb

Johnsson:1989:DSA

Johnsson:1989:ECGa

Johnsson:1990:DSA

Johnsson:1993:MPC
S. L. Johnsson and K. K. Mathur. Massively parallel...
REFERENCES

Jorda:1995:SBS

Jorda:1996:PVP

Joerg:1987:DPS

JVNNSC:1986:JNN

Johnson:1986:RAN

Johnson:1988:AES

Johnsson:1990:DPS

REFERENCES

[Jon03] Steve Jones. My other computer is a supercomputer.
REFERENCES

Jones:2019:SIP

Jordan:1986:MPU
Harry Frederick Jordan. Multiprocessors and the principle of universal parallelism, 1986. 1 videocassette (50 min.).

Jordan:1987:PCL

Jalby:1990:SAI

Jones:1994:PAA

Joiner:2008:EOT

Joubert:1994:PCT

[JV93] J. Jaffre and J.-L. Vaudescal. Arnoldi’s method for two-
REFERENCES

Brewster Kahle. Wide area information servers a supercomputer on every desk, 1991. 1 videocassette (64 min.) sd. + col. 1/2 in.

REFERENCES

Karimi:1993:GDN

Karia:1994:LBP

Karastoyanova:2013:SCS

Kaufman:1991:VV

Kauranne:1993:VAE

Kauranne:1993:EUP

Kavenoky:1992:SAN

Kazarinoff:1992:BRB

Kazic:1993:RAB

Karp:1988:CPF

Kauranne:1993:SEP

Kohn:1994:RPP

Kumar:1996:EVC

Krasowski:1997:UVD

Kwack:2018:HHB

Kuck:1974:MPO

Khier:1997:NSS

KBD97

Kurzak:2010:SCM

KBD10

Kerbyson:2013:PAT

KBG+13

Kielmann:2002:PEH

KBM+02

Kerbyson:2014:PCC

REFERENCES

REFERENCES

Krevat:2002:JSBb

Konuru:1994:UPP

Koufaty:1995:DFS

Kaufman:1993:VG

Kumar:2014:AQS

Kaftanoglu:1993:CMS

Klaassen:1995:PNM

A. J. Klaassen, B. Delord, Y. Burnod, and E. Guigon.

Kogut:1989:SSS

Kuck:1986:PST

Kauzlaric:2014:SSP

Kedlaya:1992:PSC

Kedlaya:1994:EIP

Kelley:1985:CNL

REFERENCES

REFERENCES

Kelley:1993:NCT

Kelley:1993:TTC

Komori:19xx:TSC

Kelley:1994:DMA

Kondo:2002:SCC

Koeninger:1994:SMM

Kannan:1994:TDI

Kraske:1995:VAD

[KG95] Wolfgang F. Kraske and F. W. George III. VOXAR-all ATM distributed biomedical visualization: (1) lo-
cal OC-3 linked workstation cluster (2) remote OC-3 linked 40 GFlops Cray T3D MPP. IEEE Symposium on Computer-Based Medical Systems, pages 249–257, 1995. CODEN PSCSFM. ISSN 1063-7125. IEEE catalog number 95CH35813.

REFERENCES

Kim:2014:ACT

Karp:1995:SRG

Kulkarni:1994:CPP

Kimura:1989:SDT

Khozeimeh:1994:CCE

Kang:1988:FDA

Kaushik:1994:ACD
S. D. Kaushik, C.-H. Huang,

Kristensen:2011:HPP

Kumar:2008:SMD

Kim:1996:SPD

Kindler:1996:DST

Kirrmann:1989:MSR

Kitai:1994:DSC

Kightley:1985:CCG

J. R. Kightley and I. P. Jones. Comparison of conjugate gradient preconditionings for three-dimensional problems on a Cray-1. *Computer*
REFERENCES

CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

Kremer:1994:SPR

Kartashev:1982:DPM

Kartashev:1985:SSS

Kartashev:1987:SPS

Kartashev:1988:SPN

Kartashev:1989:SSS

Svetlana P. Kartashev and Steven I. Kartashev, edi-
REFERENCES

REFERENCES

Knecht:1995:DLB

Karolyi:1996:LGS

Krishnan:1996:APR

Kumar:1992:DGT

Kato:1997:AFC

Koseki:1996:RAT

Kel:1993:CAR

Kolchanov:1993:POD

References for the images provided.
REFERENCES

Kowalik:1999:EWC

Kocheisen:1994:HPN

Knecht:1990:PQDa

Knecht:1990:PQDb

Kothe:2019:ECU

Kim:1997:NST

Kao:1994:PIF

Kuba:1985:EML

REFERENCES

Kohn:1989:III

Kennedy:1992:OPD

Kindratenko:2009:ITP

Kieu:1996:LPI

Katevenis:1997:TSH

KMB09
REFERENCES

Kuksheva:2005:SSS

Karplus:1986:CDS

Kampe:1988:PCC

Katouda:2016:MPA

REFERENCES

CHDD. ISSN 0192-8651 (print), 1096-987X (electronic).

J. Koclas. Reactor kinetics using a three level time step hierarchy based on super nodal analysis. In Kusters

[ACM95a], [VO93], [Pit90], [KSW93], [Koc93].

Koeda:1996:OSV

Koeda:1997:OSV

Kogge:1991:ASC

Kohring:1996:PDH

Kokosinski:1994:MPG

Z. Kokosinski. Mask and pattern generation for associative supercomputing. In

Hamza [Ham94], pages 324–326. ISBN 0-88986-190-0. ISSN 0013-5704. LCCN ????

Kolodzey:1981:CCT

Konigsfeld:1987:ELA

Kris Gibson Konigsfeld. An Ethernet local area network controller with supporting operating system software. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, 1987. 85 pp.

Konas:1991:PDEa

Kondo:1991:SAA

REFERENCES

[Kos95] Kimmo Koski. A step towards large scale parallelism:
REFERENCES

REFERENCES

Kelly:1996:MCW

Kale:1988:PEP

Kennedy:1994:COS

Klingsporn:1994:NMD

Krafczyk:1994:SWC

Kwan:1994:PCS

Krause:1988:SSS

Kratzer:1990:MPS

REFERENCES

REFERENCES

Krishnamoorthy:2013:SIJ

Kar:1994:VSA

Kamath:1986:PMS

Kunkel:1986:OPS

Karin:1987:SE

Kuck:1987:SPE

Kuehn:1988:HSS

REFERENCES

Kumar:1990:SAT

Kaufmann:1993:STS

Kawamura:1993:LES

Kessler:1993:CTN

Krishnamurthy:1994:OOT

Kulkarni:1994:CCC

Keifer:1995:IOC

Kurte:2019:PAO

[KSB+19] Kuldeep Kurte, Jibonananda Sanyal, Anne Berres, Dalton Lunga, Mark Coletti, Hsiuhan Lexie Yang, Daniel Graves, Benjamin Lieber- sohn, and Amy Rose. Performance analysis and optimization for scalable deployment of deep learning models for country-scale settlement

REFERENCES

Kusters:1993:PJI

Kozdrowicki:1980:SGV

Korolev:1993:FDO

Kume:1993:NSD

Kartsounis:1994:ACM

Kindratenko:2011:THP

Kindratenko:2008:HPC

Kiker:1994:DSC

REFERENCES

Kumar:1991:DHP

Kumar:1994:HIA

Kung:1984:SSW

Kunert:1995:CSD

Kuwahara:1992:FSS

Kuwahara:1994:VCF

Kim:1996:CAA

Knoesche:1995:RBA

Kahaner:1992:SCU

David K. Kahaner and Ulrich Wattenberh. The speed champion in unprocessors, Japan is coming on strong in multiprocessing. IEEE Spectrum, 29(9):42–47, September 1992. CODEN IEEESAM. ISSN 0018-
REFERENCES

Kohn:1993:A

Koetter:1995:EES

Kubert:2011:USL

Kindratenko:2010:HPC

Kanai:1994:ISS

Kwok:1987:PAA

Kompass:1992:TEO

E. J. Kompass, S. K. Whitlock, and T. J. Williams, editors. Technology for empowering the operator: making the new human organizations succeed in the CIM

[Lim:1993:BSC] Hwa A. Lim et al., editors. The Second Interna-
REFERENCES

479

REFERENCES

Supercomputer Algorithms for Reactivity, Dynamics, and Kinetics of
verso. “Published in cooperation with NATO Scientific Affairs Division.”

Lobosco:2002:JHP

M. Lobosco, C. Amorim, and O. Loques. Java for high-performance
URL http://www3.interscience.wiley.com/cgi-bin/abstract/91014114/START;

Lamonica:2014:SCP

2014. CODEN IEESAM. ISSN 0018-9235 (print), 1939-9340 (electronic).

Langhammer:1992:PCA

F. Langhammer. Performance considerations of appl-
plications on second generation parallel computers.
and English.

[Lang:1993:ICS]

In Kusters et al. [KSW93], pages 782–?? ISBN 3-923704-11-9. LCCN ???? Two volumes.

[Landolt:1994:ANF]

[Lang:1994:SVS]

U. Lang, H. Aichele, H. Poehlmann, and R. Ruehle. Scientific visualization in a supercom-
puter network. In Grave et al. [GLH94], pages 3–9. ISBN 3-540-56147-1, 0-387-56147-

[Larson:1984:MCX]

(7):62–69, July 1984. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (elec-
nomic).
Lasaga:1992:IMM

Lathrop:2016:CAP

Lavery:1989:DHP

Lawrence:1989:BPC

Lawson:1990:ESD

Lawton:2000:TND

Layman:1991:CSA

Layman:1991:LSS

[Lay91b] Mary Layman. Library services in a supercomputer center. RSR: Reference Services
REFERENCES

Loveluck:1982:CSC

Letovsky:1993:CRP

Lain:1994:TOC

Lomdahl:1994:SPC

Lain:1996:CSH

Liang:1994:PEF

Lee:1990:NCS

Lyu:1997:IPS

Lin:1987:ISA

Liddell:1996:HPC

Lindtjorn:2011:BTM

Lee:1990:CAP

Lee:1990:CAO

REFERENCES

Lonsdale:1993:CSM

Lakshmivarahan:1990:ADP

Labat:1993:SOS
I. Labat and R. Drmanac. Simulations of ordering and sequence reconstruction of random DNA clones hybridized with a small number of oligomeric probes. In Lim et al. [L*93], pages 555–566. ISBN 981-02-1157-0. LCCN QH445.2 .I57 1992.

Labeau:1993:SDP

Luding:1996:SGF

Lee:1984:LDH

Lee:1986:SIG

Lee:1987:LNN
REFERENCES

CSRD 627, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, 1987. 3 pp.

Bruce P. Leung. Issues on the designs of parallelizing compilers. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, June 1990. iv + 52 pp.

REFERENCES

Lewin:1993:SSP

Lewin:1994:INF

Lewin:1994:NDC

Lewin:1994:NFB

Lewin:1996:ICM

Lewin:1996:SPD

Lewis:2017:PPR

an/2017/03/man2017030025-abs.html.

REFERENCES

[LH87] N. C. Lam and Chuck Hastings. Fast 16 multiplied by 16 ECL Cray MULTIPLIER.

Conference Record — Electro, pages 11. 3. 1–11. 3. 8, 1987. CODEN ELCRDH.

[Li91] Zhiyuan Li. Compiler algorithms for event variable synchronization. Technical Report CSRD 1082, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and
REFERENCES

[Lil88] David J. Lilja. Methods of reducing the branch penalty in pipelined processors. Technical Report CSRD 790, University of Illinois at Urbana-
Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, May 19, 1988. 30 pp.

[Lim91b] Swee Boon Lim. Supercomputing application access characteristics. Thesis (M.S.), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, 1991. x + 93 pp.

REFERENCES

Lin:1989:SAP

Liu:1995:WCD

Liu:2012:HPC

Luecke:2003:CPM

Lee:1988:ADM
Kyungsook Yoon Lee and Daeshik Lee. On the augmented data manipulator

Lundberg:1994:OUB

Lan:2008:AFM

Lyster:1995:ICT

Li:2009:FAR

Luo:2017:DNN

Lloyd:1994:EQS

Lang:1993:SVS

Ulrich Lang, Ruth Lang, and Roland Rühle. Scientific visu-

REFERENCES

[LP90] Domenico Laforenza and Raffaele Perego, editors. Supercomputing tools for science and engineering [Sistemi informatici e calcolo parallela]:

Larriba-Pey:1994:APC

Lang:1995:PCS

Lange:2011:MOV

Lee:1997:MOE

Larriba-Pey:1994:GVS

Lo:1986:MAS

Lytte:1990:MSP

R. W. Lyttle, R. H. Perrott, and P. Sritharan. Mod-

REFERENCES

[LS87]

[LS93a]

[LS93b]

[LS93c]

Leung:1993:ENN

[LS94]

Li:1994:ECA

LSK04

Leuecke:2004:PSS

Glenn R. Luecke, Silvia Spanoyannis, and Marina Kraeva. The performance and scalability of SHMEM

Luo:2020:PEA

Lin:1993:PCC

Lederman:1992:PER

Lu:1993:ESH

Lucas:1991:HMA

Lucas:2001:RSL

REFERENCES

1075-3583 (print), 1938-3827 (electronic).

[Lumb:2001:LCH]

[Lundstrom:1990:SSP]

[Lundstrom:1994:DGI]

[Luebeck:1996:SCP]

[Langhammer:1992:ST]

[Levesque:2011:HPC]

[LyK97]

[LY91a]

[LY91b]

[LYC93]

[Lyu:1997:SAD]

[Lee:1987:MCD]

[Lee:1987:DPS]

Li:2016:ROP

Li:2016:ROP

Mahajan:1994:SSV

Mahajan:1994:SSV

Mirenkov:1995:FAI

Mirenkov:1995:FAI

Magoulès:2009:IGC

Magoulès:2009:IGC

Murman:1985:PSC

Murman:1985:PSC

Marcic:1997:CSC

REFERENCES

Mackerle:1992:FEB

Mackerle:1996:IFE

Machlis:1997:WSB

Mache:2008:GCU

Magoules:2010:FGC

Mahabala:1994:CSE

Mahajan:1994:CPM

Maheshwari:1994:CAP

Majumdar:1994:DPA

Malony:1986:CPE

Malony:1986:CPM

Malaney:1988:SNA

Malony:1988:RPA

Malony:1989:JJE

Malony:1990:PO

Malony:1991:EPP

REFERENCES

REFERENCES

Marino:1986:SAA

Marcovitz:1988:MCP

Marino:1988:SAA

Marcovitz:1988:MCP

Marshall:1990:CRC

Marsolf:1991:LGP

Martin:1992:FPV

REFERENCES

[Marenzoni:1995:PAC]

[Marksteiner:1996:HPC]

[Masdupuy:1992:AOA]

[Masi:1993:ISS]

[Mascagni:1994:FHQ]

[Mascagni:1994:PPN]

[Maslov:1995:EAD]

[Morton:1985:ICT]
Steven G. Morton, Enrique Abreu, and Fred Tse.
REFERENCES

Max:1981:VPM

May:2001:PHP

Melli:1989:SES

Murthy:1993:SFF

May:1994:CVD

[J. May and F. Berman. Creating views for debugging parallel programs. In IEEE [IEE94c], pages 833–]
REFERENCES

REFERENCES

[MC10] Xiandong Meng and Vipin Chaudhary. A high-performance heterogeneous computing...

McAulay:1992:OCA

McBryan:1992:PSW

McGarvey:2001:BCD

McCormick:1988:MMT

REFERENCES

Ryan O. McDonald. A neural network approach to phoneme recognition. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, August 1990. xii + 99 pp.

K. S. McKinley. Evaluating automatic parallelization for efficient execution
REFERENCES

Moore:2007:VEF

McNamara:1987:SES

McT96

May:1998:HPE

Morris:1988:FPD

Meleis:1994:OLR

Mahapatra:2004:AQE
REFERENCES

PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic).

Michalickova:2000:SAP

Mehrotra:2016:PEA

Milojicic:2000:PM

Morel:1993:DSS

McGrath:1987:UMC

Meier:1991:PPC
Ulrike Meier and R. Eigenmann. Parallelization and performance of conjugate gradient algorithms on the Cedar hierarchical memory multiprocessor. Technical Report CSRD 1035, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL
REFERENCES

May:1996:CTA

Mechoso:1995:HPC

Meher:1994:SAA

Mendez:1984:BJA

Mendez:1987:SJP

Mendez:1990:VS

Merkey:1986:UDC
References

Messina:1993:CSC

Messina:1993:KSD

Messina:1997:HPCa

Messina:1997:HPCb

Messina:2000:DSG

Messina:2017:ECP

Metropolis:1986:SCP

Metropolis:1986:FS
N. (Nicholas) Metropolis, editor. Frontiers of supercomputing, volume 7 of Los Alamos series in basic and
REFERENCES

Meurant:1987:MCG

Meuer:1989:SAA

Meurant:1989:PUC

Meuer:1990:SAA

Meuer:1991:SAA

[MF97] G. Malaterre and J. Frechaux. How to assess and improve

REFERENCES

(1):??, January 10, 2018. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

Michaeli:1997:ITM

Malony:1991:TTV

Martonen:1997:CFT

Moriarty:1984:EIL

Masa:1994:HAN

MITPress:1987:IJS

Molvig:1993:DPN

Matsuoka:2001:TPE
MCNC-CC:1990:CCV

Miklosko:1989:FAT

Miki:1994:FVM

Miller:1987:NRS

Miller:1988:SIC

Milone:1988:MAL

Miller:1990:IOB

Ethan L. Miller. Input/output behavior of supercomputing applications: research project. Master of sciences,

[Min92] Minnesota, Legislature, Office of the Legislative Auditor and Program Evaluation Division. University of Minnesota supercomputing ser-
REFERENCES

Mirin:1988:PME

Mirin:1988:PME

Mirin:1990:NER

Mitropolski:1996:ISM

Mitra:1988:MAM

Mitra:1988:MAM

REFERENCES

Mahmassani:1990:MST

Marooney:1994:VPH

Miller:1992:AFMa

Machida:1993:CSV

Moin:1997:TTS

Murphy:2007:MAP

REFERENCES

Mummert:1996:FGP

Martin:1989:SPN

Miften:1993:SQM

Martignon:1995:SIM

Moore:1995:FLA

McCandless:1997:RAH

Malony:1990:TAPb

REFERENCES

[MM93b] Serge M. Manning and David G. Meyer. Analysis of asynchronous execu-

[Mallinckrodt:1994:BRR]

[Murthy:1994:TEA]

[MM94a]

[MM94b]

[Munz:1993:NSF]

[Moon:1997:ANN]
S.-K. Moon, K.-S. Maeng, and Y.-J. Kim. Applica-

Melnikov:1996:DES

Martin:1993:EDP

Martin:1986:SPE

Miyama:1991:SSA

Miller:1994:MDB

Martin:1986:MCP

Maubert:1993:CBV

L. Maubert, A. Nouri, and T. Vergnaud. Criticality

Mendonça:2009:JSA

ePub:2012:SAI

Mohamed:1994:PCA

Moir:1993:AGM

Monagan:1988:AMC

Michael Monagan. Announcement of Maple 4.0 for the Cray 2. Maple Newsletter, 0(2):??, January 1988. ISSN 1074-3790. URL http://www.can.nl/Systems_and_Packages/Per_Purpose/General/Maple/mtn/mtn2.html.

Monnier:1993:CCF

REFERENCES

Moore:2006:MMS

Moore:2008:MBN

Moore:2011:CSP

Matsuda:1994:FPA

Moreira:1992:MON

Morley:1992:EOS
[Mor92b] E. Morley. Empowering the operator with supercomputer technology. In Kompass et al. [KWW92], pages 85–90. ISBN 0-931682-34-7. LCCN ????

Mortensen:1992:JPC

Moreira:2001:BGM

Mount:1989:ETS
[Mou89] Ellis Mount. *End-user training for sci-tech databases*,
REFERENCES

Mount:1990:ETS

McKee:1996:DED

Malitz:1984:SSI

Midkiff:1987:CASa

Meyer:1991:FSG
Gerard G. L. Meyer and Louis J. Podrazik. A Frank-Wolfe / gradient projection

Meyer:1991:PFG

Midkiff:1991:CFS

Malard:1994:EST

versity of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, October 1989. 27 pp.

REFERENCES

Miranker:1988:SCS

Montagne:1994:MOG

Morkoc:1984:HST

Meier:1988:BCG

Munz:1993:HRH

Margrave:1994:ESA

Meo:1994:AIM

[MS94b] S. Meo and M. Scarano. An advanced implementation of a microprocessor anti-skid

Moon:1994:ARS

Moyer:1994:PSP

Mahnke:1996:APF

Maetani:1997:NAF

Moreira:2007:BGS

[MSCxx] *Minnesota Supercomputer Center, Inc. financial audit for the two years ended June 30, 19xx*. Financial Audit Division, Office of the Legislative Auditor State of Minnesota, Saint Paul, MN, USA.

REFERENCES

In Anonymous [Ano94-134], pages 75–84. ISBN ???. LCCN ???.

REFERENCES

[Mur06] Tom Murphy. Education: High-performance computing in community colleges?

REFERENCES

REFERENCES

Myers:1986:GCS

Myers:1992:S

Myers:1992:SSR

Myers:1996:RIS

Marienhagen:1995:MCS

Nodomi:1995:HPV

Noelting:1997:DPR

Nagel:1988:UMC

Nagel:1990:EAC

REFERENCES

[NASA93] NASA, editor. Fifth NASA Symposium on VLSI design, the University of New Mexico, Albuquerque, New Mexico, November 4–5, 1993,
REFERENCES

[Nat86b] News, 1986. National Center for Supercomputing Applications, Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

REFERENCES

NCSA:1986:SA

Nat86g National Center for Supercomputing Applications, Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, Champaign, IL, USA. “Supercomputer Avenue”, November 1986. 1 pp.

Natori:1986:CGM

NCAR-SCD:1987:SVN

NCSA:1987:A

Nat87b Access, 1987. ISSN 1064-9409. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

NCSA:1987:AO

NCSA:1987:NMS

Nat87d National Center for Supercomputing Applications. NCSA mass storage system. Technical Report 10.1, National Center for Supercomputing Applications, Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, Champaign, IL, USA, February 1987. 1 pp.

Natarajan:1988:MNA

NSF-CCSACMP:1988:ISC

NASULGC-HETC:1989:SSR

NCSA:1989:ODC

[Nat89b] Online documentation on the Cray system, 1989. NCSA, Urbana, IL, USA.

NERSC:1990:ESS

NCAR-SCD:1991:SVN

NCSA:1991:PDN

[Nat91b] National Center for Supercomputing Applications, Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, Champaign, IL, USA. The process of discovery: NCSA science highlights, 1991. 32 pp.

NCSA:1992:UBN

NCSA:1992:PDN

NCSAEducation:1995:SM

NCSA:19xx:ASU

[Natxxa] Applications software update, 19xx. National Center
for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA. [NB92]

[Natxxb] News, 19xx. ISSN 0891-0782. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

[NCSA:19xx:N]

[Natxxc] Science highlights, 19xx. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

[NCSA:19xx:SH]

[Natxxd] Software update, 19xx. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

[NCSA:19xx:SU]

[Natxxe] Data link, 19xx. ISSN 1064-9425. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

[NCSAUS:19xx:DL]

[Natxxf] Technical resources catalog, 19xx. ISSN 1064-9417. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

[NCSAUS:19xx:TRC]

REFERENCES

[Science:2018:SAR] Science: annual report to the National Science Foundation, 1987. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

linear equations. Keio University, Tokyo, Japan, March 15, 1988. LCCN QA188 .S62 1988. English or Japanese; summaries in English. Proceedings of a one day symposium held in Keio University, March 15, 1988 and constituting the fourth Symposium of Large Sparse Sets of Linear Equations. PCG.

Nakamura:1990:SRS

Nagashima:1990:IFA

Nakano:1994:DAD

Nool:1995:EPB

Norrie:1984:SSA

NCSC:1989:NCS

NCSC:1993:NCSb

NCSC:1993:NCSa

North Carolina Supercomputing Center, Research

[NSS88] Wayne G. Nation and Howard Jay Siegel. Properties of disjoint paths in data manipulator networks. Technical re-

Ninokata:1993:FRS

Nordlund:1996:SWS

Nilsson:1990:SSA

Nabil:1995:CES

Numrich:1994:MCR

Nielsen:1990:VSC

Neeman:2008:SPE

REFERENCES

Olszanskyj:1994:PWB

OBoyle:1995:CRS

Ohmacht:2005:BGC

Olcbrich:1994:BDM

Orellana:2001:NMN

Ochs:1993:GEC

Ozguner:1988:VFS

F. Ozguner and R. Daoud. Vectorized fault simulation on the Cray X-MP Supercomputer. IEEE, New York,
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Palmer:1993:CGT

Pena:1993:SPS

Packard:1985:S

Packard:1986:S

Padua:1989:DPM

Palmer:2015:MBI

Pancake:1993:GEI

Pandurangan:1996:EVH

Pandis:1997:FPS
[Ano97d], pages S367–S370.
ISSN 0021-8502.

Paprzycki:1992:CGE

Paprzycki:1997:BRI

Papka:2016:ESH

Parkinson:1986:PAP

Parish:1990:CCS

Parker:1990:PTE

Paruolo:1990:VEM

[Par90c] Giuseppe Paruolo. A vector-efficient and memory-saving interpolation algorithm for PIC codes on a Cray X-
REFERENCES

MP. Journal of Computational Physics, 89(2):462–482, August 1990. CO-
DEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic). URL http://www.sciencedirect.com/
science/article/pii/002199919090153R.

[Par94] Franklin J. Parisi. A rose is a rose...but a Cray’s not always a Cray. Computers in Physics,
8(4):380–??, July 1994. CO-
DEN CPHYE2. ISSN 0894-

[Pas95] F. Pasemann. Neuromodules: a dynamical systems approach to brain modelling. In Herrmann et al. [HWP95], pages 331–348. ISBN 981-02-

1273-X. xii + 317 pp. LCCN QA76.642 .F86 2012.

Paulson:2005:SSC

DEN CPTRB4. ISSN 0018-

Paulson:2008:NBG

Linda Dailey Paulson. News briefs: Group releases first 3-D chip standard; supercomputers get energy-efficient; company puts a new spin on music-editing software; attack hijacks domain names of Internet-addressing organization. Computer, 41(9):18–
20, September 2008. CO-
DEN CPTRB4. ISSN 0018-
9162 (print), 1558-0814 (electronic).

Paulson:2009:NBS

21–24, January 2009. CO-
DEN CPTRB4. ISSN 0018-
9162 (print), 1558-0814 (electronic).

Payer:1997:NOE

E. Payer. NVH optimization of engines by means of

Peters:1993:PIN

Pasquale:1991:SDW

Poli:1996:ITA

Packard:1987:S

Pfenning:1995:VSM

Pryor:1993:UGA

Pancake:1994:WUN

C. M. Pancake and C. Cook. What users need in parallel tool support: Survey results and analysis. In IEEE [IEE94c], pages 40–47. ISBN 0-8186-5680-8, 0-8186-5681-6. LCCN QA76.5 .S244

Peltier:1994:NPC

Pilant:1997:PEI

Papelis:1993:TAD

Perrott:1984:IPL

Peng:2019:CMC

Peters:1994:CAE

Pacheco:1991:SPS

REFERENCES

Pellegrini:1994:SMD

Perry:1986:NSS

Perry:1987:WPH

Perry:1993:MC

Petersen:1989:PTS

Petersen:1989:SRS

Victor L. Peterson. Supercomputer requirements for

Power:1995:CSB

Peters:1997:PTT

Park:2011:PHP

Pickover:1988:SRS

Pickover:1989:PRG

Pickover:1991:PRG

Pickover:1991:ISS

Pickover:1992:VMA

Pan:2004:PBC

Pillai:1993:IS

Pini:1991:PAP

Piner:1999:CSCl

[Pin99] Mary-Louise G. Piner. Computer society connection: Inaugural Cray award presented in a November ceremony; meritorious service and outstanding contribution awards show; appreciation of volunteer efforts;

Piner: 2001: CSCb

Pit87

Pit88

Pit89

Pit90

Pit91

Pit92

Pit93

Pit94

Pit95

Pitcher: 1990: SES

PSC: 1987: PSC

PSC: 1988: PSC

PSC: 1989: DBP

Pittelli: 1989: DBP

Pit86

PSC news, 1986. Pittsburgh Supercomputing Center, Pittsburgh, PA, USA.
REFERENCES

Pointer:1990:CSP

Perrott:1980:CSU

Polychronopoulos:1987:GSS

Pyle:1989:EPA

Pyle:1994:EPA

Perrott:1991:SDI

Perrott:1991:SIP

REFERENCES

Phua:1991:SSC

Plank:1994:PRI

Plis:1997:RSP

Pankajakshan:2020:PSM

Punzo:1994:HRL

Pang:2008:EIB

Paczuski:1996:SCF

E. Poeppel. Homogeneity of space and continuity of time: Necessary prerequisites of perception? In Herrmann et al. [HWP95], pages 3–10.

REFERENCES

Polychronopoulos:1987:LCC

Polychronopoulos:1987:MAL

Polychronopoulos:1987:ARF

Polychronopoulos:1988:COE

Polychronopoulos:1988:IRO

Polychronopoulos:1988:MVM

Polychronopoulos:1988:PEP

Polychronopoulos:1988:TAC

Polychronopoulos:1989:CRI

Polychronopoulos:1990:ASC

Pool:1996:FST

Pool:1996:CSF

Pope:1991:WSC

Popova:1992:PSA

[N. N. Popova. Problem-Oriented supercomputer architecture for a class of magnetohydrodynamic models. Computational mathematics and modeling, 3(1):79–83, January 1, 1992. ISSN 1046-283X.

Pope:1997:MDN

[G. A. Pope. Modeling dense nonaqueous phase liq-

Porsching:1986:BRB

Porterfield:1989:SMI

Potter:1987:DSA

Potter:1988:AT

Pountain:1986:PS

Pouzin:1988:INI

Pountain:1994:LB

Pountain:1994:LBC
REFERENCES

Power:1997:CSB

Pozrikidis:2013:XSC

Petersen:1991:EES

Petersen:1992:DDA

Petersen:1992:MEP

Poon:1993:AGA

Pierra:1994:DEP

Peiro:1990:CAF

Pal:1994:CCA

Patron:1995:ECT

Pierce:1994:PIN

Plata:1994:CSD

Prasanna:1995:PP1

Press:1993:STS

Prevost:1993:HSN

Primack:2012:US

J. R. Primack. The universe in a supercomputer.

PED-OLA-SM:1994:MSC

Prokhorov:2001:CPR

Phadke:1994:PPD

Phadke:1994:DPI

Pryor:1994:IUP

Pittelli:1988:ATN

Paprzycki:1994:SLR

REFERENCES

search Center: IDA, Lanham, MD, USA, May 1993. 9 pp.

Puget:1994:IRS

Peiron:1994:SAS

Padua:1986:ACOb

Padua:1986:ACO

Padua:1986:ACOa

Prasanna:1994:SDP

Peszynska:2005:SIH

Plaszczak:2005:GCS

Postma:1995:NMR

Park:1997:RAV

Perry:1989:SEP

Perrott:1986:SL

Perrott:1987:SPD

Piccolo:1991:GWS

Qatu:1992:SAS

REFERENCES

595

Quisquater:1991:CLE

Quinn:1987:DEA

Quinn:1995:CSV

Rendell:2000:CCF

Raath:1997:SLS

Ranganathan:1996:RCD

Raghavan:1994:DSG

P. Raghavan. Distributed sparse Gaussian elimination and orthogonal factorization.
REFERENCES

[Sudarshan Raghunathan:2006:MSD]

[Rajamony:2011:PIP]

[Ramakrishnan:1986:SIF]

[Ramaswamy:1988:SBS]

[Rambabu:1994:ANN]

[Rauchwerger:1995:RMP]

[Rashid:1991:CCS]

[Rattner:1987:ATC]
Justin Rattner. Architecture and technologies for concurrent supercomputing, October 13, 1987. 1 videocassette (VHS) (53 min.).
Rauchwerger:1991:PPP

Ravikumar:1992:PDP

Ravikumar:1995:PDP

Rawlings:1997:PMV

Radons:1995:SRS

Renaud:1994:TPS

Ramani:1994:KRS

Riley:2003:HPJ

Rahnejat:1997:NMD

H. Rahnejat, D. Centea, and P. Kelly. Non-linear multibody dynamic analysis for

[RCR93]

[Roska:1993:LCO]

[Rice:1994:SCS]

[Rissland:2007:EFC]

[Rahali:1994:VES]

[Ruan:1993:DWC]

[Ramany:1994:IBV]
S. Ramany and D. Eager. The interaction between virtual channel flow control and adaptive routing in wormhole networks. In Anonymous
REFERENCES

[Ano94-134], pages 136–145. ISBN ???? LCCN ????

Redelfs:1991:NSF

Red91

Reed:1988:DSA

Reinhardt:1985:DAM

Reinhardt:1988:TPP

Reins:1993:TQT

[Rei93] Rebecca Renner. Pump-and-treat enters the supercomputer age — Rebecca Renner reports on new “optimization techniques” being used to design more efficient cleanups. *Environmental science and technology*, 31(1): 30A, ???? 1997. CODEN ESTHAG. ISSN 0013-936X.

Renner:1997:PES

Report:1992:REW

UIUC-CSRD:19xx:RR

Research review, 19xx. University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA.

Resch:2001:TAH

Michael Resch. Topic 07 applications on high-performance computers. *Lec-
 REFERENCES

MA, USA, September 1990. 26 pp.

Richardson:1991:CPC

Richardson:1991:VQS

Rief:1993:MCP

Rigault:1993:COS

Ristic:1994:EMS

Ritchie:1988:EUC

Ritchie:1988:ECX

Ritchie:1988:GFU

Ritz:1997:ACD

REFERENCES

REFERENCES

[Raghavendara:1996:PGS]

[Rizzoli:1991:MPS]

[Rendell:1993:ECT]

[Ruehle:1993:CVS]

[Reed:1988:PDE]

[Rudderman:1992:BFS]

[Reid-Miller:1996:LRL]

[Roy:1993:CBT]

REFERENCES

REFERENCES

REFERENCES

Roska:1995:CUM

Ross:2009:CCK

Rothnie:1992:KSR

Rothberg:1994:PPB

Roweth:1986:DPA

Rauchwerger:1994:PDT

Raghu:1994:TCU

Robbins:1989:CXM

REFERENCES

REFERENCES

Robic:1993:HPC

Rawat:1994:PAQ

Reeves:1994:SLP

Reinefeld:1994:WBH

Roller:1994:PMM

Riehle:1995:MRN

Raymond:1993:ARS

Rieder:1990:SSC

[RS90] Hanns Ruder. The supercomputer as spaceship — cosmic radiation on the screen. German research: reports of the
REFERENCES

DFG, 1:10–??, 1990. ISSN 0172-1526.

Ruehl:1992:ECG

Ruhna:1995:WLT

Ruighaver:1991:OMP

Rulko:1993:VDM

Russell:1978:CCS

Robinson:1989:ENM

Rowlan:1994:PCL

Rutz:1994:MSD

Ragade:1994:NCM

R. K. Ragade, M. Witten, M. A. Cassaro, and N. Y.

Rasch:1998:DIS

Reese:1994:PDR

Ryan:1990:SBA

B. Ryan.Separated at birth: Although they’re the same age, PCs and supercomputers are now sharing more than just birthdays. BYTE Magazine, 15(5):207–208, 210, May 1990. CODEN BYTED. ISSN 0360-5280 (print), 1082-7838 (electronic).

Ryabov:1992:SU

Ryan:2013:CCS

Rau:1989:CDS

REFERENCES

[Saa87] Y. Saad. On the design of parallel numerical methods in...

Shvedov:1993:COF

Sahasrabuddhe:1994:EUC

Sahni:1994:CRB

Sahni:1995:DAF

Sakamura:2002:EMNb

Saleh:1989:PCS

Salmelin:1995:MSH

Samba:1985:DIC

Sameh:1991:AAG

REFERENCES

REFERENCES

Strassburger:1996:PFH

Sprangers:1994:SOD

Schulthess:2019:RGB

Sayeed:2008:MHP

Stewart:1991:USE

[SC91a] Kris Stewart and Bob Clover. Using supercomputing to enhance undergraduate education, 1991. 1 sound cassette (ca. 60 min.).

Stone:1991:CA

Swanson:1992:OSM

REFERENCES

Storer:1993:DDC

Sorrentino:1997:ANN

Shriver:1999:SCC

Shen:2004:HPD

Sharkawi:2020:CPO

Scanlon:1992:CTA

Saini:2008:PES
[SCG+08] Subhash Saini, Robert Ciotti, Brian T. N. Gunney, Thomas E. Specle, Alice Koniges, Don Dossa, Panagiotis Adamidis, Rolf Rabenseifner, Sunil R. Tiyyagura, and Matthias Mueller. Performance evaluation of supercomputers us-

[Sugavanam:2013:DLP]

[Schaefer:1987:PBI]

[Schneck:1987:SA]

[Schacht:1988:BRH]

Schow:1988:AIC

Schatz:1989:WW5

Schoen:1989:SSM

Schouten:1990:OIA

Schrader:1990:ATD

Schuette:1990:BBD

Schlenz:1992:PKA

Schonfeld:1992:TCL

Schirm:1993:ETS

L. Schirm. Emerging trends in supercomputing, with em-

Schneider:1993:TPS

Schlesinger:1994:LCH

Schmidt:1994:HPC

Schneenman:1994:DSS

Richard D. Schneenman. Distributed supercomputing software: experiences with the parallel virtual machine — PVM. Technical Report NISTIR 5381, U.S. Dept. of Commerce, National Insti-

tute of Standards and Technology, Gaithersburg, MD, USA, 1994. vi + 18 pp.

Souleyrette:1994:USI

Schenfeld:1995:NTC

Schill:1995:IIG

Schroder:1995:AOD

REFERENCES

Schuele:1996:PLA

Schiano:1997:PCC

Schmeisser:1997:PSP

Schmidt:1997:AGM

Schneider:2012:CST

Schneider:2018:USS

SAIC:1986:EES

Shimojo:2000:SMD

REFERENCES

[Seh88] David C. Sehr. OR-parallel execution of Prolog programs with side effects. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, October 1988. vii + 110 pp.

effect analysis and diagnosis with the model based functional analysis tool room. In Anonymous [Ano94-75], pages 75–82. ISBN 0-947719-68-7. LCCN ????

REFERENCES

REFERENCES

Simoncini:1992:IMN

Simoncini:1992:MHM

Srinivasan:1994:DIR

Srinivasan:1994:PAM

Smith:1991:IDE

Summers:1997:ASS

Smith:1993:ARG
REFERENCES

REFERENCES

631

Sharma:1990:RVC

Shimotsuji:1992:RRS

Shah:1994:PNS

Shapiro:1994:CFE

Sharp:1995:GC

Sharp:1995:GCR

Oliver Sharp. The grand challenges: Researchers are beginning to tackle problems in geography, weather, and other areas that require more computing capability than today’s most powerful computers can muster. here’s a look at the biggest of these challenges and the ways in which scientists are attacking them with supercomputers. BYTE Magazine, 20(2): 65–??, February 1995. CODEN BYTEDJ. ISSN 0360-5280 (print), 1082-7838 (electronic).
Shapiro:1996:MS

Smitley:1991:HHN

Szczepanski:2013:DAV

Shear:1990:EDD

Shenoy:1993:AHT

Stanley:1995:UPS

Shiba:1995:HSS

Solt:2020:SFT

Sigurdsson:1997:IEC

Steinn Sigurdsson, Bohr He, Rami Melhem, and Lars Hernquist. Implementing an efficient collisionless N-body code on the Cray T3D. *Computers in Physics*, 11(4):378–??, July 1997. CODEN CPHYE2. ISSN 0894-1866 (print), 1558-4208 (elec-
REFERENCES

Shankar:1993:SSA

Shankar:1994:AAS

Shankar:1996:AAS

Shores:1991:SDA

Shu:1988:RPM

Schwamborn:1994:CNS

Smitley:1990:BSC

REFERENCES

REFERENCES

SIGGRAPH:1990:SVR

SIGGRAPH. SIGGRAPH video review: Supercomputing '90 visualization theater, 1990. 1 videocassette (ca. 100 min.).

SIGARCH:1995:CPI

Shindo:1994:TDL

Silcox:1991:MMS

Simon:1992:EMP

Simon:1992:PCF

Simon:1997:SRR

Simoncini:2000:BRN

REFERENCES

[SK92] David C. Sehr and Laxmikant Vasudeo Kale. Estimating the inherent parallelism in Prolog programs. Technical Report CSRD 1221, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and
REFERENCES

929; Numerical Computing Group 89-5, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, October 1989. 15 pp.

REFERENCES

REFERENCES

Siek:1999:SPM

Shavit:1993:PPR

Solovyev:1993:AFR

Su:1995:ACT

Sydow:1996:HPP

Shen:1989:ESA

Shen:1990:ESF
Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An empirical study of Fortran programs for parallelizing compilers. Technical Report CSRD 983, University of Illinois at Urbana-Champaign, Center for Supercomputing...
Sharma:1989:XTI

Sherman:1992:GRW

Srinivas:1994:CCC

Smarr:1993:IST

Small:1995:MSN

Smarr:1990:GCC

Strohmaier:2015:TLP

Schmidt:1985:ESN

F. Schmidt, P. R. Mayer, G. Frey, and W. Giesser. Experiences in Solving the Neutron Diffusion Equation by the Finite Element Method on
REFERENCES

Norris Parker Smith. The death of Seymour Cray: a personal essay. *Silicon
REFERENCES

Smith:1996:IHH

Smith:1996:IRH

Smith:1996:SCP

Smith:2001:CMM

Sporer:1988:IAS

Shchapov:2017:TPI
Sottile:2010:ICP

Sterling:1995:ETP

Shirley:1989:VVA

Peter Shirley and Henry Neeman. Volume visualization at the center for supercomputing research and development. Technical Report CSRD 849, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, January 1989. 14 pp. [Sne94a]
REFERENCES

REFERENCES

[Soe94] K. Soerli. Chapter 8: Mathematical modelling, numerical solution and visualization of steady three-dimensional swirling fluid

Sorli:1994:SHS

Sitaraman:1993:CBH

Szeto:1993:PAI

Srinivasan:1994:CAL

Shoshani:2010:SDM

Suzuki:1994:PCW

Srivastava:1994:EIA

REFERENCES

Schwister:1990:EMS

Schwister:1990:SEM

Stevens:1990:CYU

Sendyka:1994:AEI

Summers:1995:ASI

Schadschneider:1996:CAT

Schneider:1996:GEE

Skiles:1996:RMM

Schwister:19xx:SEM
REFERENCES

REFERENCES

Skipitaris:1996:EDF

Sikiotis:1990:FEB

Shelton:1994:FPS

Shindyalov:1993:MJC

Segall:1997:SPD

Solovyev:1993:MSA

Stricker:1995:DSD

Sarker:1993:SCB

Sinvhal-Sharma:1991:PBS

Sinvhal-Sharma:1990:CTB

Sander:1992:HGH

Schnupp:1994:XWW

Svede-Shvets:1996:OMO

V. N. Svede-Shvets, V. V. Svede-Shvets, and L. C. Eisymont. Optoelectronic mass-parallel OPTOCOM supercomputer [2969-56]. In Alferov et al. [AGP96], pages 108–111. ISBN 0-8194-2375-0. ISSN 0361-0748. LCCN ????

Shirley:1990:PAD

Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume rendering. Technical Report CSRD 1006, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, June 1990. 8 pp.

Smith:1992:CMP

Scott:1994:ORC

S. Scott and G. Thorsen. Optimized routing
in the Cray T3D. *Lecture Notes in Computer Science*, 853:281–??, 1994. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic).

Stanger:1988:NSP

ing development, pages 9–20. Cray Research, Inc., Min-

Stadtherr:1994:SSS

Stalzer:1995:PFM

SterlingHobe:1985:STS

Stephenson:1990:SCR

Steele:1992:OCM

Steele:1994:ACP

Steinmetz:1994:FGC

M. Steinmetz. The formation of galaxies: a challenge

Stephens:1994:PBT

[Ste94c] R. Stephens. Parallel benchmarks on the transtech paramid supercomputer. In De Gloria et al. [DJM94], pages 136–146. ISBN 90-5199-177-0, 4-274-90004-5. ISSN 0925-4986. LCCN ???.

Stephens:1994:MCC

Stevens:1994:MSU

Stevens:1994:HPC

Sterling:2000:SCB

Sterling:2001:BCCc

[Ste01a] Thomas Sterling. Beowulf cluster computing at
REFERENCES

Sterling:2001:BCCa

[Ste01b]

Sterling:2001:BCCb

[Ste01c]

Sterling:2002:BCC

[Ste02]

Sato:1998:NPL

[SAR:1984:S]

Supercomputer, 1984. ISSN 0168-7875. Amsterdam Universities Computing Centre (SARA), Amsterdam, Netherlands.

Stiff:1998:APS

[Sti98a]

Stift:1998:APS

REFERENCES

Shavlik:1993:UKN

Stollenwerk:1995:SCN

Strohmaier:2003:WWH

Strohmaier:2003:WWH

Strawn:2010:HPC

Strickland:2011:SPS

E. Strickland. Supercomputers predict a stormy hurricane season. IEEE Spectrum,
REFERENCES

Sekiguchi:1995:HTS

Stueben:1995:CTP

Stueben:1997:HS

Studt:2003:IFN

Su:1992:MSD

Subramanian:1994:ISE

Sugarman:1980:TOS

Sugla:1994:PAP

Sugiyama:1996:DMC

Suhir:1997:EPP

[Sub97] E. Suhir, editor. *Electronic and photonic pack-
REFERENCES

[Sup88a] Anonymous. Supercomputing news, 1988. ISSN 0898-1426. Publications and Communications, Austin, TX, USA.

[Supxxa] YIS:19xx:SPP Supercomputing and parallel processing today, 19xx. Yellowstone Information Services, Elkview, WY, USA.
REFERENCES

9162 (print), 1558-0814 (electronic).

Schaefer:1996:THG

Sorgatz:1999:THP

Sartor:2010:MRE

Spiers:2010:HPC

Swarztrauber:1986:MF

Sweatman:1994:DPB

Salapura:2006:EWP

REFERENCES

for message passing parallel programs. In Anonymous [Ano94-134], pages 323–332. ISBN ???? LCCN ????

Stredney:1992:SAB

Sameh:1989:SGS

Simunovic:1996:SAW

Stankova:1998:NSM

Siegel:2011:FFE

Schulz-Ziemer:1995:HIP

Tomko:1994:DPR

K. A. Tomko and S. G. Abraham. Data and program restructuring of irregular applications for cache-coherent multiprocessors. In Anonymous [Ano94-134], pages
REFERENCES

214–225. ISBN ???. LCCN ???.

Tseng:1995:UCT

Taflove:1996:RES

Takagi:1993:OOO

Taklanti:1994:CNS

Taufer:2006:PPS

Treleaven:1991:VC

Tang:1987:DPP

REFERENCES

In Anonymous [Ano94-134], pages 382–391. ISBN ???. LCCN ???.

Turcotte:1993:DDI

Thompson:1994:RPQ

Thakur:1994:RAR

Taylor:1993:MEI

Taraglio:1995:EIB

Tilakasiri:1990:SAS

Tomko:1996:PDW

Tang:2013:JSA

teRiele:1987:AAV

Temperton:1983:CVC

Temperton:1988:IPF

Temperton:1989:FMC
REFERENCES

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokioka:19xx:TCE</td>
</tr>
</tbody>
</table>

| **Tamura:1994:PCV** |

| **Traenkle:1994:SME** |

| **Tomilinson:1994:MGA** |

| **Tang:1995:VBD** |

| **Thakur:1996:EEP** |

| **Tang:2008:EET** |

| **Tiwari:1994:DMA** |
| R. Tiwari and T. L. Huntsberger. A distributed memory algorithm for volume rendering. In IEEE [IEE94c], |
REFERENCES

REFERENCES

REFERENCES

REFERENCES

C. Tristram. Load-Balancing Software: Load-balancing software promises to give you the performance clout of a supercomputer from the workstations you already have. UnixWorld’s Open Computing, 12(8):60–??, 1995. CODEN OPCOEB. ISSN 1072-4044.

REFERENCES

CODEN OPCOEB. ISSN 1072-4044.

[Tristram:1995:TTK]

[Tang:2013:TBS]

[Truhlar:1988:SCV]

[Thistle:1988:PAH]

[Thistle:1990:PPM]

[Thistle:1991:FGM]

[Takkella:1994:CEB]
REFERENCES

[Tsy94] G. Tsyrkov. From the nuclear bomb to supercomputers. International Affairs (Royal Institute of International Affairs 1944–), ??(9):

REFERENCES

[TVT+16] Roman Trobec, Radivoje Vasiljević, Milo Tomasević, Veljko Milutinović, Ramon

[TVT+16] Roman Trobec, Radivoje Vasiljević, Milo Tomasević, Veljko Milutinović, Ramon

REFERENCES

434–??, ???? 1996. CODEN FUJTAR. ISSN 0016-2515.

REFERENCES

US-C-HCST-SSRT:1986:FSP

US-C-HCST-SEDA:1986:FSP

US-C-HCSSST-SSRT:1986:FSP

NASA:1987:SAP

REFERENCES

Space Administration], 1987. 4 microfiches.

[Uni91b] United States. National Aeronautics and Space Administration. Supercomputer

REFERENCES

USC-NCNS:1998:USE

Uthayopas:2001:FSR

REFERENCES

Uht:1987:CHS

Usbeck:1995:NSA

Uthayopas:2001:PCK

USENIX:1990:USI

Usevitch:1993:PRF

USENIX:2000:PAL

USENIX:2000:PUW

REFERENCES

REFERENCES

Vafidis:1988:SFD

Vagnetti:1988:SAP

Vidal-Ascon:1990:PPB

Vajapeyam:1991:ILC

Valauskas:1994:MM

VanZandt:1986:ADC

[Van86] John Van Zandt. The architecture of a dataflow computer, 1986. 1 videocassette (57 min.).

VanderSteen:1991:AEB

VanderVorst:1991:UBU

VanDerSluis:1993:CSV

VanGemund:1994:CPM

REFERENCES

[Ano94-134] In Anonymous [Ano94-134], pages 303–312. ISBN ????. LCCN ????

Veje:1996:KDW

vandeGeijn:1997:UP

Vetter:1991:NSE

Vetter:1992:NS

vanderSteen:1996:ORS

Vetter:2005:EHP

vanderVorst:1991:IMS

Veidenbaum:1985:COA

Alexander Veidenbaum. Compiler optimizations and architecture design issues for multiprocessors. Thesis (ph.d.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Ur-
REFERENCES

[Ver95] Alan Verlo. Topological surface deformation: an application of virtual reality with real-time supercomputing. Thesis (m.s. in electrical engineering and computer science), University of Illinois at Chicago, Chicago, IL, USA, 1995. vi + 66 pp.

[VML07] Sudharshan Vazhkudai and Xiaosong Ma. Recovering

Villarino:1993:HUT

Vogel:1993:NVI

Voigt:1994:FCH

Vollum:1989:XPD

REFERENCES

Venkateswaran:1993:NVP

Villaverde:2001:PPI

VanDriessche:1994:DLB

Vroom:1994:WIS

[Vro94] R. W. Vroom. What is the information that should be generated by the engineering de-

VanCamp:1993:UFS

Vetter:1999:THP

VanVoorst:1994:PCW

REFERENCES

References

VanDrunen:1996:APS

VanEngelen:1995:CPP

VanEngelen:1996:CGM

Vu:1988:CTS

Wang:2012:CCM

Wazlowski:2005:VSB

Wheeler:1997:NCA

M. F. Wheeler, T. Arbegast, S. Bryant, and C. N.

Wacker:1992:EH

Wade:1986:DSS

Mitch Wade. Digital scene simulation at digital productions, 1986. 1 videocassette (50 min.).

Goddard:1989:ISC

Wagner:1996:TSU

Wait:2005:IPF

Walker:1981:JEA

Wallich:1985:MMS

Wallice:1990:ST

Wallace:1992:LSU

Wallich:2009:SGP

Weeks:2001:MCM

Warter:1989:EMC

Wareing:1993:NDA
T. A. Wareing. New diffusion-synthetic acceleration methods for the SN

2003/06/r6089.htm; http://csdl.computer.org/dl/mags/co/2003/06/r6089.pdf

Watson:1972:TAH

Watson:1992:SIP

Watson:1992:PNS

Watts:1993:FGC

Watermann:1995:BKN

Wayner:1996:INN

tronic). Discusses the importance of Java in a Network Computer.

[WZZL18] Zihao Wang, Yu Chen, Jingrong Zhang, Lun Li, Xi-

Waddell:1993:MTT

White:1993:SHB

Womack:1994:PAC

Weaving:1997:VPV

Weber:1991:NSF

Weber:1993:CFD

Weiss:1988:BOP

REFERENCES

[R. W. Wickman. Implementation of optical intercon-

Wiederhold:1987:FOD

Wie87

Wienke:1994:BDP

Wie94

Wiedemann:1996:ERM

Wie96

Wijshoff:1989:ISB

Wij89b

Wijshoff:1989:SOU

Wij89a

Williams:1988:MTS

Wil88a

Wilson:1988:ISC

REFERENCES

[Williams:1990:CFD]

[Williams:1990:IID]

[Williams:1991:ACG]
Peter L. Williams. Applications of computational geometry to volume visualization. Technical Report CSRD 1117, University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, August 1991. 5 pp.

[Williams:1992:ISN]

[Williams:1992:VOM]

[Wiley:1993:UPP]

REFERENCES

[Win02] Marianne Winslett. David DeWitt speaks out: on re-thinking the CS curriculum, why the database community should be proud, why query optimization doesn’t work, how supercomputing funding is sometimes very poorly spent, how he’s not a good coder and isn’t smart enough to do DB theory, and more. *SIGMOD Record (ACM Special Interest Group on Management of Data)*, 31 (2):50–62, June 2002. CODEN SRECDS. ISSN 0163-5808 (print), 1943-5835 (electronic).

REFERENCES

Wesche:1997:HIV

Wu:1997:CRE

Wang:2016:EDT

Woo:1983:BSE

Walstrom:1994:MSC

Wilson:1996:PPU
REFERENCES

chaotic encryption algorithm; non-linear pseudo-random number generator; chaos theory; cycling keys; low-precision arithmetic; numerical investigation; Cray Y-MP machine; cycling problem.

Williams:1992:VDO

Wehner:1997:CSM

Williams:1990:CTS

Wan:1996:BSI

Woh:2010:MSN

Wanschura:1996:EAS

Wang:1992:SBL

REFERENCES

REFERENCES

Woodward:1993:SVS

Woodruff:1994:SCC

S. B. Woodruff. Some computational challenges of developing efficient parallel algorithms for data-dependent computations in thermal-hydraulics supercomputer applications. *Nuclear engineering and design: an international journal devoted to the thermal, mechanical and structural problems of nuclear energy*, 146(1/3):463–??, February 1994. ISSN 0029-5493.

Woods:1996:ESC

Woodward:1996:PST

Woo:2005:SAJ

Worlton:1981:PS

Worlton:1984:USB

Wehner:2009:RCC

Westphal:1994:AFD

H. Westphal and D. Popovic. Application fundamentals of

Webb:1992:DSG

Wichern:1995:ADD

Westerink:1997:ICS

Wright:2019:PMB

Ward:1993:NMC

Weiss:1984:ILa

Weiss:1984:ILb

Simon D. M. White and Volker Springel. Fitting the universe on a supercom-

REFERENCES

FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic). URL http://www.elsevier.com/gej-ng/10/19/19/60/32/33/abstract.html.

REFERENCES

Wallich:1986:MMM

Xiao:1996:MOM

Xin:1993:UBN

Xia:1988:PWC

Xu:1994:DRD

Xue:1992:MLP

Xie:2020:COB

Xu:1991:SAC

[Xu91]

Xia:2020:DAB

[XZC+20]

Y+:92

Y.-K. Yang et al. Development of supercomputer image processing software with X-Window user-interface for the processing of the remotely sensed data. In Fritz and Lucas [FL92], pages 235–239. ISBN ????. ISSN 0256-1840. LCCN ????

[Y+92]

Yang:1993:EET

[YAG93]

Yang:1990:DPD

[YAG93]

Yavuz:1993:ADT

M. Yavuz and C. Aykanat. Alternating direction trans-
REFERENCES

Yang:1990:PPS

Yang:1990:PPP

Yang:1991:PSS

Yang:1992:PCG

Yang:1993:PCM

Yang:1994:AMN

Yau:1988:NOS

[Yau88] Benjamin Oyman Yau. A network oriented SX-2 super-
computer access facility. Thesis (M.S.), Dept. of Computer Science, University of Houston, Houston, TX, USA, 1988. vi + 92 pp.

Yew:1988:ACP

Yew:1990:SSE

Yew:1997:NMF

Yeich:1992:TP

Christopher R. Yeich. Tower of power. Chilton’s automotive industries, 172(6):69–??, June 1, 1992. CODEN CAUIEG. ISSN 0273-656X.

Yeh:1997:NMF

Feng:1989:SIS

Tse yun Feng and A. R. Hurson, editors. Special issue on supercomputer technology, volume 77(12) of Proceedings
REFERENCES

of the IEEE. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1989.

Yamazaki:1993:PSG

Yang:2013:AHA

Yang:1992:PST

Yang:1994:HPF

Yi:1990:OFS

Yi:1992:IDF

Yi:1993:PEV

Hsu:1992:IWC

Yi:1990:OMM

[Kwang Keun Yi. On-the-fly methods to measure the locality of programs. Thesis (m.s.), University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, May 1990. iv + 60 pp.]

 Yi:2011:PEG

Yan:1993:PRL

Yuba:1987:JNP

Yamakado:1994:JSA

[M. Yamakado and Y. Kadowaki. A jerk sensor and its
application to vehicle motion control systems. In Anonymous [Ano94-75], pages 139–146. ISBN 0-947719-68-7. LCCN ????.

Yang:2000:RPS

Yoshida:1996:DFM

Yasugi:1992:AON

Yang:1990:FSDK

REFERENCES

Yoshida:2009:SSS

Yamaguchi:1997:EAC

Yu:2012:HHC

Yasar:1993:PKI

Yan:1994:UUS

Yamada:1996:HTS

Yamana:1995:MUS

REFERENCES

Yvars:1997:UCP

YSL97

Yan:1994:MPM

YSS94

Yew:1987:DHA

YTL87

Yuval:1977:CH

Yuv77

Yew:1989:CPS

YVC89

Yerkes:1994:IWS

YW94

Yerkes:1994:ISA

YWD94

Yerkes:19xx:ISA

[YWDxx] C. Yerkes, E. Webster, and P. D’Arnaud. Interferometric
References

[102x681] REFERENCES

[731]

Yang:2012:RWE

[YWXZ12]

[YYK93]

[YYY93]

[YSZ12]

[Zag82]

[Zas93]

REFERENCES

REFERENCES

Zenios:1999:HPC

Zeyher:1991:CCP

Zhao:2018:OCN

Zhu:2014:MSS

Zabolitzky:1988:MCS

Zheng:1997:VSW

Zhong:1988:CVE

versity of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development, Urbana, IL 61801, USA, May 1988. v + 34 pp.

Zima:1996:TSL

Ziegler:1997:NMT

Zlatev:2001:ETL

Zenios:1986:NNP

Ziavras:1994:AMS

Zitney:1996:MVF

REFERENCES

??, ???? 1996. CODEN CCENDW. ISSN 0098-1354.

Zorpette:1992:RDM

[Zor92a] Glenn Zorpette. A re-
markable diversity of mas-
sively parallel machines is
ushering in a new era in
high-performance computing.
IEEE Spectrum, 29(9):28–
33, September 1992. CO-
DEN IEESAM. ISSN 0018-
9235 (print), 1939-9340 (elec-
tronic).

Zorpette:1992:SPP

[Zor92b] Glenn Zorpette. Supercom-
puters — the power of par-
allelism. IEEE Spectrum, 29
CODEN IEESAM. ISSN 0018-
9235 (print), 1939-9340 (elec-
tronic).

Zorpette:1993:HBI

[Zor93a] Glenn Zorpette. Henry
Burkhardt III. IEEE Spec-
trum, 30(3):62–??, March 1,
1993. CODEN IEESAM.
ISSN 0018-9235 (print),
1939-9340 (electronic).

Zorpette:1993:LC

[Zor93b] Glenn Zorpette. Large com-
puters. IEEE Spectrum, 30
(1):34–37, January 1993. CO-
DEN IEESAM. ISSN 0018-
9235 (print), 1939-9340 (elec-
tronic).

Zitney:1993:SSD

[ZW93] Stephen E. Zitney and
Mark A. Stadtherr. Su-
percomputing strategies for
the design and analysis of
complex separation systems.
Industrial and engineering
chemistry research, 32(4):
604–??, April 1993. CODEN
IECRED. ISSN 0888-5885.

Zadzaonkar:1994:HCN

[A.S. Zadzaonkar and A. Shukla.]
Hidden control neural net-
work architecture for high
speed speech recognition. In
Mahajan et al. [M+94], pages
436–445. ISBN 0-07-462240-
Rs387.00.

Ziavras:1994:HEH

[S. G. Ziavras and D. P.
Shah. High-performance em-
ulation of hierarchical struc-
tures on hypercube super-
computers. Concurrency:
practice and experience, 6(2):
85–100, April 1994. CODEN
CPEXEI. ISSN 1040-3108.

Ziavras:1994:HPE

[S. G. Ziavras and D. P.
Shah. High-performance em-
ulation of hierarchical struc-
tures on hypercube super-
computers. Concurrency:
practice and experience, 6(2):
85–100, April 1994. CODEN
CPEXEI. ISSN 1040-3108.

Zola:2002:EJH

Jaroslaw Zola and Roman
Wyrzykowski. EPL-Julia the
high-performance library for
evolutionary computations.
Lecture Notes in Computer
REFERENCES

Ziavras:2003:VAH

Zhang:1995:MSP

Zygielbaum:1993:ESS

Zhou:2016:IBS