Title word cross-reference

3 [CWMC16, LGP+16, NRQ16b, ZSLX13]. Z [SLM12].
-polytopes [SLM12].
/channel [LCL+14].
2014 [Aca16, Ano15].
6 [KWM+08]. 64-bit [BWLR06, VED07].
7 [BKM+17]. 754 [LDG+13].
activations [JLCR13]. Active [KHS+14]. Adapt [DGI+14, PGB13].

adaptation [DJB13, LGAZ07, SS04].

Adapting [GHH15, LBj05]. Adaptive
[CG14, CWMC16, FQRG13, GF+14, HWX+13, JRK16, Lee16, LYH16, WCI+16, WM11, AGI+12, MAN+08, SW13, ZK05].

Adaptivity [DRHK15]. Address
[SKAE16, CCZ13, VS08, ZPC06].

Addressing [WA08, CWCS13], affine
[NCC13, SLM12]. Against
[ERAG+16, BVIB12]. Aggregate [LY16].

Aggregation [AYC16]. Aggressiveness
[PB15]. Aging
[DGI+14, KKW+15, LRBG15].

Aging-Aware [LRBG15]. Agnostic
[ZDC+16]. agreement [GMW09]. Aho
[CW13, PLL10]. AIM [AYC16]. ALEA
[MPW+17]. Algorithm
[BC13, DGI+14, DTD16, BRSG12, CW13,
CDDP13, HAJ+12, PLL10, XC06, ZGC+12].

Algorithmic [AA+16, NCC13]. algorithms [OGK+12, VTN13]. Allocation
[DHD+14, FS12, RTK13, BZS13, CS10,
GW09, RB13]. allocator [DHC+13]. ALP
[SLA+07]. Analysis
[DSR15, GAM12, JK17, MMdS06, VTN13,
VGX16, ARS04, AFID12, FER+13,
JOA+09b, Nas13, SV05, SMK10, ZCW10].

analytic [XMM04]. Analytical
[BEE15, AFDO7, CA11]. Annotation
[MGA+17]. Anomalies [LDC15].

Anticipating [LMGJ12]. API [CI13].

Application [GTT+16, PLT+15, AS13,
GASA+13, RCV+12, SB09, TDP15].

Application-Guided [GTT+16].

Application-Level [PLT+15].

Applications [DMR+16, DTD16, FWJ+16,
GR15, JYE+16, NKH16, RHLA14, RMA14,
RLBBN15, CS13, DWDS13, HLR+13,
KNBK12, MBKM12, STL12, SV05,
SLA+07, SLM12, YLTL04, ZG05]. Applied
[LB10]. applying [ZWHM05]. Approach
[CNS+16b, EMR14, FDF+14, KS16, TS15,
WAST16, ZX16, FT10, SSR13, WYJL10,
YJTF13, ZCS06]. approachable
[WHV+13]. Approximate [DS12, YPT+16].
approximation [LTG12]. Apps [PCM16].

Arbitrary [RHC15]. Arbitration
[XCC+13]. Architecting [CPB+07].

Architectural
[CPS+15, DCP+12, HEMK17, ME15,
WAST16, IMS+08, SB09, ZZQ+05, CWC06].

Architecture
[HK14, PVS+17, SHY14, SWF16, VC16,
VFJ+17, ARS04, BVIB12, BWG+12,
CPB+07, DIX13, GKP14, GSZ10, JYJ+13,
JA14, LNLK13, PM12, STLM12, SNL+04,
SRLPV04, SSPL+13, ZK06].

architecture-independent [BVIB12].

Architectures [AEG+16, ASK+16, CG15a,
CEP+16, CDNP16, GR15, HAM17, LAS+13,
RMA14, ZLYZ16, BBG13, BWR06, BBT10,
CG14, CK11, CMD13, KCP13, LKL+13,
OGK+12, RCV+12, SSK11, SD12, SB09,
TC07, TDG13, VE13, YXK+12]. Area
[LAS+13, SB09]. area-efficient [SB09].

ARI [FQRG13]. Arithmetic
[LV+15, BWG+12]. ARM
[GLD16, SHY14, SPH+17]. Array
[WG17, BWW+06, KMP12]. Arrays
[TD16]. Assembly [LV+15]. assistance
[JOA+09a]. Assisted
[CDNP16, DJZ+13, KKAR16, CST+06].

associative [HL07, KWL09].

associativity [YJTF13]. asymmetric
[CG14, CCG13, PCT12, SW13]. Attacks
[ERAG+16, BVIB12, CCD12, DJL+12].

Auto [CG1a5, WG17]. Auto-Tuning
[CG1a5, WG17]. automata [VW11].

automatable [AFDO7]. Automated
[BSSS14]. Automatic
[AMG16, JLRJ12, LBO14, LT13, MGA+17,
NLI15, RB13, WLZ+13, WGO15, WM10,
SPS12, WKCS12]. Automotive [FWJ+16].

Autonomously [DGI+14]. Autotuning
[AMP+16, YAG+16, KBR+13, LFC13].

Aware [DGI+14, CG15a, DTD16, DHD+14,
LYH16, LRBG15, PVA+17, SKH+16, USCM16, WLZ+13, WJXC17, ZWY17, CG14, CWCS13, EE09, GFPRG12, NB13, SSS+04, SEP07, WYJL10, WSC+13, WDXJ14, ZYCY10, ZDC+12, ZK06].

awareness [LKL+13].

Bahurupi [PM12]. Balancing
[LLRC17, PGB16, WHH+16]. Band
[SPS17]. Band-Pass [SPS17]. Bandwidth
[LGP+16, ZCCD16, DZC+13, WYJL10, XCC+13]. bank [LCL+14]. bank-
[LCL+14]. bank-/channel-level [LCL+14].

banked [AGI+12]. Based
[ÂJE+16, CNS+16b, CG15a, CG15b, DSR15, DAD16, DAP+15, FDF+14, GAM12, HYYAM16, KS16, LTGX16, LY16, MNC+16, NC15, SBS16, WGO15, WDX15, WCI+16, WWC+16, XIIJY16, ZLC+15, ZSM+16, AvRF07, BCVT13, CPP08, CW13, GK13, HLR+13, HAJ+12, HWM14, HWX+13, JYJ+13, KBR+13, LBO14, LTC12, LCL+14, LHBW12, RLS13, SS04, TKJ13, WSC+13, WTFO14, ZHD+04, ZGC+12].

Bayesian
[AMP+16]. behavior [AFD07, LS10].

Benchmark
[ABB+16, CCM+16, DS16, BE13].

Benchmarking [DAP+15]. benchmarks
[JEBJ08]. Benefits [LWWH12]. better
[TBC+12]. Between [EPS17]. Beyond
[FER+13]. Bias [Lee16]. Big [ZLC+15].

Big-Memory [ZLC+15]. Bimodal
[TD16]. Binary
[DGGL16, GDL16, HY14, CDM13, GHS12, HS06, HLC10, LWH11, PKC12].

bipartite [BZS13]. Bit
[TBS06, BWLR06, VED07]. Bit-split
[TBS06]. bitwidth [NB13].

bitwidth-aware [NB13]. Block
[GFP+14, KTAE16, LLRC17, LTGX16, ZK06].

Block-aware [ZK06]. Blocks
[HWJ+15, SYX+15]. Boltzmann [PAVB15].

Bones [NC15]. Boosting
[ASV+16, RLS13, BTS10]. both
[BSWLE13, HP04, MP13]. bottlenecks

[MMdS06]. bound [MBKM12]. bounded
[HS06]. Bounding [XMM04]. Bounds
[ESR+15, BWLR06]. BPM [LCL+14].

BPM/BPM [LCL+14]. Branch
[EPAG16, CZ07, HWH+11, Jim09, JSM+04, LB05, MG12, TS05]. branch-predictor
[JSM+04]. branch-target [LB05].

Branches [DGGL16]. Breakdown
[HYYAM16]. bridging [HCC+14]. buddy
[KWCL09, ZJJ+15]. Budget [LWF+16].

buffer [LB05, RB13]. Buffering
[YMM+15, GPL+05]. Bugs [AAI+16].

build [SS+13]. Building
[KRHK16, WDX15]. Buri [ZLC+15].

C [CWW+16, NC15, NED+13].

C-to-CUDA [NC15]. C/C [NED+13].

C1C [LZL+13]. Cache
[CAGS17, DAD16, GFP+14, HK14, HMYZ15, KAC15, LLRC17, Mic16, SSW16, SBS16, SKH+16, WJXC17, ZWY17, APG13, AGVO05, AGI+12, AFD07, BSWLE13, CA11, CW06, DYL+12, FTLG11, GGFPRG12, GSZ10, HAJ+12, KS11, KWCL09, LCC11, LZL+13, MMdS06, RDF13, SS04, SBC05, SSH+13, TKJ13, WSC+12, WDXJ14, ZHD+04, ZVYN05, Zha08, NTG13]. cache-coherence
[MMdS06]. cache-coherent [APG13].

cache-content-duplication [KS11].

Caches
[CAGS17, CPS+15, GBD15, SBS16, WDX14, AIVL13, DJL+12, HS06, HL07, KS11, KWCL09, LJM012, MSK05, SSK11, SSC+13, VSP+12, WDXJ14, WLZ+10, WM11, ZDC+12].

Caching
[DM16, SYX+15, DZC+13, JOA+09a, WFKL10]. CACTI
[BKM+17].

CAFFEINE
[PB15]. Call [Lee16, MG12].

Capability
[DGI+14]. capacity
[AK11, WM11]. CART
[CDPD13, CDPD13]. Case
[MMS15, SSAEG16, SRS15, AFD12, RPS06, WK09, LB10]. CATCH
[KS11].

Caused
[SYX+15]. CAVA
[CST+06]. CC
[CCZ13]. Cell
[YMM+15, STL12]. cells

Convolutional [TDP15]. cooling [AVG12]. cooling-computing [AVG12].

Cooperative [DT16, JDZ+13, LBM13, SHLM14].

Coordinated [ZDC+16]. coprocessor [LDG+13]. Corasick [CW13, PLL10]. Core [CHE+14, FMY+15, LBM13, PVS+17, SPS17, SPH+17, ZLYZ16, LNLK13, OGK+12, PM12, ZGC+12]. Cores [DT17, HYHAM16, MM15, TDO16b, GB06, NTT13, PCT12, SW13, WYL10, WFKL10].

cryptography [AS13]. CUDA [KBR+13, NC15, VJC+13, WG17]. cycle [DEE12, RLS13].

ESR+15, FXC+15, GAM12, HAM17, ME15, MNSC16, MGA+17, MGSH16, NKH16, RMA14, RTK15, SKH+16, TDP15, VFJ+17, WGO15, YMM+15, AVG12, BSWLE13, CS10, CA11, CDPD13, CW06, FER+13, FLG12, HLR+13, HL07, LWH11, LJM12, PC13, RB13, RGD13, STLM12, TG10].

Data-Driven [ME15]. data-flow [PC13].

Data-Parallel [MGSH16, NKH16]. Data-Race-Free [MNSC16]. Data-Traversal [RMA14]. Dataflow [DT17, KPP+15, MMT+12, VTN13].

debugging [VDP10]. decay [JSM+04, SS04]. decoders [Zha08].

Defined [DMR16, TGAG12].

Defragmentation [PVS17, DefT [VHKP11], Delta [DZC13].

Delta-compressed [DZC13]. Demand [BRJM15]. Dense [CWW16].

Dependence [BRJM15, DHD14, JK17, SL09, TG07, VTN13]. Dependence-Aware [DHD14].

dependences [BCVT13].

Dependency [WLZ13].

Dependency-Aware [WLZ13].
dependent [YZL10].

Design [CPS15, HJW15, KWM+08, RTK15, SPH17, SL09, VHKP11, WLZ10, BE13, CPP08, IMS+08, LB10, LCC11, LHZ13, VE13, ZK05]. Designing [BKA13, BSWLE13, MGSH16]. Details [FMY15].

Devectorization [KMG14]. Development [VCJ17]. Device [RLBBN15].

Device-Level [RLBBN15]. Devices [TKM14, NMKS06, ZK05]. DFA [BC13].

diagnosis [BS07]. Die-Stacked [CWM16].
die-stacking [ZSLX13].
different [YX+12].

dimension [RTG07].

Direct [LLRC17]. Direct-Mapped [LLRC17]. Directed [HYA+15, LFX09, NED+13, SEP09, WM10].
directives [CXW12].

Dirty [LLRC17]. Dirty-Block [LLRC17]. discard [LWWH12].

Discrete [ZSM16].

DisIRer [HLC10].

Disjoint [SAJ12].

Disk [LYK15].

disparate [WLZ10].

Dispatch [LLRC17].

dispatching [LZ12].

dissemination [LZYZ09].

Distance [DAD16, GGFPRG12, FER+13, FTLG11].

Distance-aware [GGFPRG12].

Distance-Based [DAD16]. Distilling [JEBJ08].

Distinguished [ACA16, ANO15, ANO13].
distribute [RFD13].

Distributed [KHS14, ZPC06].

Divergence [SMKH15].

Divergent [GR15].

diversification [CDM13].

Diversity [TDO16b, KBKB12].

DJ [DDU12].

DJ-graphs [DDU12].

DLP [SNL04].

Do [ZPR17].

Doesn't [LKV12].

Domain [GÁSÁ16, GÁSÁ13].

DPCS [GBD15].

DPM [GK13].

Dragonfly [CVB15].

DRAM [CAGS17, HEC14, JLR13, LLLC17, LCL+14, TM14, XHJY16].

DRAMs [LSC+15]. Driven [ME15, PB15, ZWS16, CDM13, FTLG11, SL08, WTH014, X109, ZCS06].

Dropping [GFD14].

DSL [PBY17].

DSPs [VCJ17].

duplication [KS11, LKL13].

DVFS [EE11, GK13].

Dynamic [BHC16, DGGL16, DD16, DJB13, FER+13, FTLG11, FSYA09, GAM12, GDL16, GBD15, KE15, KPP+15, KMG14, KKAR16, LKL13, Lec16, LPZ12, LTX16, RHC15, SV05, SHD15, WWH16, XHJY16, ZYW17, BBG13, DWDS13, GHS12, HS06, HWH11, HVJ06, JSH09, LWH11, LJM12, LCL+14, MG12, NED+13, WSC13, XMM04, ZZQ+05].

Dynamically [LZ12, PGB12, KS11].

eager [JLCR13].
easy [JOA+09b, SLP08].

Easy [TD13].

ECC [CWMC16].

Editorial [CT08].

EECache [CPS15].

Effective [GMGZ14, HVJ06, PGB16, SSW16, SPS17, KHW05, LWH11, RPS06, SBC05].

Effectiveness [JR16].

Effects [DRHK15, MG11, CK11].

Efficiency [AKJ+12, CAM15, LAAM15, TCS16, ZIJ15, BSWLE13, CWS06, RCG+10a, ZSLX13].

Efficient [AYC16, BC13, CC13, CPS15, DDU12, DD16, GÁSÁ16, GNB08, HAC13, HEMK17, IMS+08, KMG14, LWH11, LDC15, MCB12, MKKE15, NMKS06, PS15, TDP15, YMM15, ZPC06, ZZQ+05, APG13, ARS04, CW13, CWS13, DCP+12, GW08, JSL13, JOA+09a, KHW05, LZY09, LM13a, LHZ13, Nas13, PLL10, RFD13, WTS06, WSC05].
SPGE06, SHC13, SB09, TDG13, XCC+13, ZGC+12, FSYA09, SLA+07.
Efficiently [NRQ16a, PCT12, RHC15].
EFGR [TKM14].
Element [LVR+15].
Elementary [LGJ+13].
Eliminating [RGG+10b].
Elimination [JLER12, VED07].
Embedded [GTT+16, GKCE17, KE15, KTAE16, CPP08, CDM13, GHS12, MP13, SHC13, SD12, XT09].
embedding [KKM+13].
Emergencies [RGG+10b].
emerging [DMXJ11, XCC+13].
Empirical [AvRF07].
Emulation [NZ15, TKKM15].
Emulators [HHC+16, TKKM15].
Enabling [BGG+15, SKAE16].
Encoding [TDP15].
End [ZJJ+15].
Endurance [WDXJ14].
Endurance-aware [WDXJ14].
Energy [AJK+12, AYC16, CPS+15, DH16, GKCE17, GFD+14, HMYZ15, JOA+09a, LSC+15, LMA+16, MCB+12, MKKE15, MPW+17, PM17, RTK15, SW17, SB09, TCS16, ZJJ15, AVG12, BSWE13, CWS06, CWCS13, FBWS13, GWS13, GKP14, LTG12, LGAZ07, LZYZ09, LMJ+13b, LHZ13, SPGE06, SHC13, TDG13, ZHD+04, ZVYN05, ZGC+12, ZSLX13].
Energy- [SB09].
Energy-Efficient [AYC16, CPS+15, MKKE15, JOA+09a, CWCS13, ZLYZ09, LHZ13, SPGE06, SHC13, TDG13, ZGC+12].
Energy-Optimal [SW17].
Energy-Proportional [DH16].

enforcement [GWM07].
Engine [PB15, RMA14, WLZ+13, CW13].
Engines [MGI15, TBS06].
Enhance [GAM12].
Enhanced [TKM14].
enumeration [SW09].
Environment [KMG14].
environments [RGG+12, WWWL13].
EOLE [EPS17].
Era [GBD+15, LNK13, PCT12].
Error [DGI+14, CWMC16, LSC+15, YEI+14, CCZ13, LKL+13].
Errors [FWJ+16, ZWS+16].

essence [JB08].
Estimation [WAST16, XHJY17, LTG12].
Evaluate [TDO16a].
Evaluating [CCM+16, CWS06, HWH+11, SSK11].

Evaluation [BC13, CHE+14, FWJ+16, AvRF07, KWT09, LCC11, LAS+08, RGG+12, ZK05].
Evaluator [JSL13].
Evaluator-executor [JSL13].
event [GWM07].
Evolving [VGX16].
Examining [ZWS+16].
exascale [DXMJ11].
exception [HWM14].
Exceptionization [YKM17].
Execution [DT17, GMMGP14, HAC13, HEMK17, KS16, ME15, NZ15, PVA+17, PS15, VSDL16, WLZ+13, ZCCE16, GB06, LZ12, LHZ13, SJA12, VTN13, XIC12, ZG05].
executor [JSL13].
exhaustive [KWT09].
Existing [YE1+14].
Expansion [PM17, ZLC+15].
explicit [STLM12].
Exploit [AA1+16].

Exploiting [AVL13, ASK+16, HWJ+15, KKG10, MA08, NKH16, YEI+14, YZ08, ZYL+10, ZX16, LYYB07, PCT12, RLS13, SNL+04, JOA+09b].
Exploration [BKM+17, MNC+16, CPP08, IMS+08, KWT09, VHKP11, WLZ+10].
Explorations [BGG+15].
Exploring [CK11, JK13, JOA+09b, MBKM12, MK05, BE13, DJX13].
Express [DJ16].
Expression [BC13].
expressions [JSH09].
Expressiveness [PC13].
Extendable [CW+12].
extended [SV08].
Extending [DBH16, VCJ+17].
extension [DCP+12].
Extensions [KHS+14].
Extractor [DAP+15].

Facts [Mic16].
Failures [NRQ16a].
Fair [LMCV13].
Fairness [GWM07, LY16].
Falcon [CMS16].
false [BCVT13].
Fast [BC13, CCPG13, KCP13, KHW+05, MKKE15, NRQ16b, NTG13, PRMH13, LMJ13a, SPGE06, TDG13].
Faster [PCM16].
fat [BRSJG12, PRMH13].
fat-trees [BRSJG12].

Fault [CNP+16, RHLA14, RCV+05].
faults [BS07, SSC+13].
FaultSim [NRQ16b].
Feature [TKM14, LBO14].
Federation [BTS10].
Feedback [CDM13, NED+13, ZWS+16, WM10].
Feedback-directed [NED+13, WM10].
Feedback-Driven [ZWS+16, CDM13].
Fence [MNSC16]. fetch
[EE09, GWS13, JLER12, SRLPV04]. FFT
[GL12]. File [TS15, GKP14, SJV08]. Files
[YWXW12]. filter [BSWLE13]. Filtering
[ZCD16]. Financial [ABB+16]. Finding
[FP13]. Fine [BSSS14, EE11, HYAM16,
MPW+17, TKM14, WM11, YEH+14, LT13].
Fine-Grain [HYAM16]. Fine-Grained
[BSSS14, MPW+17, YEH+14, EE11, WM11,
LT13]. Finite [LRV+15, WW11]. FinPar
[ABB+16]. fixed [CS13]. fixed-point [CS13]. FLARES [DGI+14]. Flash
[DGI+14]. Flexible
[CC13, OAB12, SHC13, ZZQ+05]. FlexSig
[OAB12]. flight [SSS+13]. floating
[BWG+12, CS13]. floating-point [CS13].
Flow [BRJM15, CWW+16, DMR+16, GAM12, HAC13,
LY16, MMT+12, SMKH15, FSAY09, JA14,
KHL+13, MBKM12, Nas13, PCI3, TG07].
Flow-Based [LY16]. flow-sensitive
[Nas13]. FluidCheck [KS16]. fly
[VKHP11, WWY+12]. Formation
[KTA16, FSAY09]. Formulating
[MAN+08]. Four [TDO16a]. FPGA
[CS13, CWW+16, CDPD13].
FPGA-processor [CS13]. FPGAs
[FBWS13, GNBO8, PI12]. fractal [JYJ+13].
fractal-based [JYJ+13]. Fraction [PS17].
frame [GK13]. frame-based [GK13].
Framework [AMP+16, GTT+16, GSS+16,
KPP+15, LAS+13, LSY+16, AS13,
BCVN10, CS10, DJX13, HEL+10, KKM+13,
LCC11, LCH+04, LFC13, LHWB12, PGB13,
YXX+12]. Free
[MNSC16, YPT+16, BRJS12, GS12].
Frequency [HBC+16]. friendly [CRSP09].
Front [JZJ+15]. Front-End [JZJ+15]. FTL
[HWJ15]. Full
[HHC+16, MMT+12, SWF16, TKKM15].
Full-System [SWF16]. Fully
[HWJ+15, BRJS12]. Functional
[GSA+16, GÁSA+13, YCCY11].
Functions [SSRS15, HWX+13, LDG+13].
fundamental [VE13]. fusing [WM10].
Future [GB06, MMS15, DXMJ11, LJM13a].
gap [HCC+14]. Garbage [ASV+16].
Gating [KMG14, WYCC11, YCCY11].
General [CAM15, LHY+06].
General-Purpose [CAM15]. Generalized
[FDF+14, SDH+15]. Generalizing [JM09].
generate [KBR+13]. Generating [RHC15].
Generation [HEMK17, GBN08, HLR+13,
JLER12, LB014, LHY+06, VJC+13].
Generator [PAVB15]. Global
[CCL+13, BZS13]. good [PJ13]. Governors
[SW17]. GP [LRBG15, MYG15, MYK16].
GP-GPUs [LRBG15]. GP-SIMD
[MYK16]. GPGPU
[BGG+15, MBKM12, YXX+12]. GPGPUs
[ZJ+15]. GPU [DS16, HLR+13, JGSM15,
LHC+17, LAAMJ15, LFC13, RB13,
TBC+12, VC16, WGO15, ZSXL13].
GPU-Based [WGO15]. GPUs
[DS16, DNT16, FBWS13, JAK17, LRBG15,
NC15, SHLM14, WYCC11, ZSM+16].
gradient [HA+12]. gradient-based
[HAJ+12]. Gradients [FWJ+16]. Grain
[HYAM16]. Grained
[BSSS14, MPW+17, TD16, YEH+14, EE11,
KCP13, LT13, WM11]. Granularity
[DRHK15, NRQ16a, TKM14]. Graph
[CNS16a, KAR16, YWXW12, DS12,
LFX09]. graphics [FSAY09, ZSXL13].
Graphs [BRJM15, Lee16, RHC15, VGX16,
BZS13, DDU12, MG13]. gshare [TS05].
Guarded [PS15]. Guided [GTT+16, CS13,
LZL+13, RCG+10b, SSU+13].

Hadoop [KHS+14]. Halide [VCJ+17].
halting [ZVYN05]. Hamming [CJBV15].
handling [HWM14, HWH+11, LWH11].
HAP [WJX17]. hard [BS007]. Hardware
[BGG+15, CDPN16, DD16, JDZ+13, KAC15,
LJM+13b, PVA+17, RHLA14, SKAEG16].
HotSpot [KWM+08]. HPar [ZBH+13].

HotSpotTM [KWM+08]. HPar [ZBH+13].

HPF [MP13, PLT+15, ZPR+17]. HRF [GHH15]. HRF-Relaxed [GHH15]. HTML [ZBH+13]. HTML\textsubscript{5} [NKH16]. HW [KMG14, LYK+15]. HW/\textsc{SW} [KMG14]. Hybrid [AR13, CA11, DMXJ11, HWJ+15, JYE+16, WJXC17, CS13, DZC+13, HCC+14, MMdS06, RBM10, WLZ+10].

Hybrid-Memory-Aware [WJXC17].

I-Cache [ZWY17]. I/O

[DCP+12, RHLA14]. I\textsc{atac} [AGVO05].

Identification [WCI+16]. Idiom [KKM+13]. indent [WFKL10]. IEEE

[LDG+13], IEEE-\textsc{754} [LDG+13]. ILP

[SNL+04]. Image [PB+17, CI13]. Imaging

[VCJ+17]. Impact [BCV10, CCM+16, JMK16, SMKH15, RGG+12, SSC+13].

implants [ESP+13]. Implementation

[BGG+15, CDP13, LHJ13, PLL10, SSS+04, ZK05, AVRF07]. Implementing

[CVW+16, JSM+04, MAN+08, OAB12].

Implications

[CVB15, HYYAM16, KAC15, LS10]. Implicit [BWLR06]. Improve

[VCJ+17, ATG+13, BSWLE13, KGG10, LB10, LZ12, MG12, RWY13, SPS12].

Improved

[BCT+13, GMG+14, NB13, ZCC+15].

Improvements [LB10, PM17].

Improving [AKJ+12, CAGS17, CG15b, HWJ+15, JK17, KMP12, LGP+16, LHY16, LAAMJ15, ZWHM05]. in-flight [SSH+13].

In-Order [BEE15, SPH+17, BB04].

in-order/out-of-order [BB04]. in-place

[GS12]. inclusive [AVL+13, TKJ13].

independent [GMB12]. indexing [TS05].

Indirect [DGL+16, HWH+11, MG12].

indirections [AFD07, AFD12]. Industrial

[GH15]. Infer [HWJ15]. inference [LB10].

Influence [ZWS+16]. Information

[GM12, KHL+13, MM+12, LMG+13a, VSP+12]. Informed [SYX+15]. Innovative

[BKM+17]. inputs [BE13]. Instruction

[SPG+06, ACGK04, AR13, BSV12, CS10, CSV04, GWS13, HLN10, KSI11, SSR13, VSI11, XL07, ZKD+04, ZK06]. instructions

[MG12, RDF12, SHC13]. Integer

[AJE+16, SLM12, BBW+12]. Integrated

[DJC16, LYK+15, SPH+17, VFJ+17, YJTF13]. Integrating [WTO14].

Integration [JDZ+13]. Integrity [KK15].

intelligent [TBC+12]. Intensity [LVR+15].

Intensive [RHLA14, YLTL04]. Inter

kilo [CSV04]. kilo-instruction [CSV04].

kilo [CSV04]. kilo-instruction [CSV04].

kilo [CSV04]. kilo-instruction [CSV04].

[JK17, LVR+15, BCEO13, NCC13, SHLM14, SLM12, YZL+10]. loop-dependent
[YZL+10]. Loops [CNS+16b, SRC16, JSL13, KLMP12, RTG+07]. Low
[BGG+15, CAMJ15, DJL+12, GáSÁ+16, GDL16, LJP+16, LHC+17, RTK15, SSW16,
SW13, SWU+15, YEI+14, AGI+12, BB04, CCZ13, GKP14, MA08, SRLPV04, ZVYN05].
Low-complexity [DJL+12, SRLPV04]. Low-Cost
[SSW16, YEI+14, AGI+12, MA08]. low-energy [GKP14, ZYVN05].
Low-latency [SW13]. Low-Level
[BGG+15]. Low-Overhead
[GDL16, LHC+17]. Low-Power
[CAMJ15, GáSÁ+16, BB04, CCZ13]. Lowering
[ESR+15]. lowering [SSU+13]. LP
[GFD+14].

Machine
[ABP+17, DJB13, LBO14, SEC08, SPS12,
WO13, WFTO14, WHV+13]. machine-learning-based [WFTO14].
Machines [BSSS14, JK13, RB13, VED07]. MAGIC
[KKK+15]. Main
[ZPR+17, DZC+13, WSC+13, ZDC+12]. Maintaining [YCCY11]. Making
[CRSP09, PTL+15, PI12]. Malicious
[KKK+15]. Malware [WC+16]. MAMBO
[GDL16]. Managed [YXWW12].

Management
[GTT+16, GMGZ14, HYAR+15, HMZ15,
SPS17, ZDC+16, AVG12, FQRG13, GZS10,
HJG06, KCKG14, LGAZ07, LFX09, LPZI10,
RCG+10a, RB13, SW13, VSO8, WWWL13,
WSC+13, WDXJ14, WM11, ZYCN10].

Managing
[APBR16, ILS06, KNBK12, VS11, SSK11]. Manipulation [CNS16a]. Many
[DT17, FMY+15, PVS+17, ZLYZ16,
LNLK13, OGG+12]. Many-Core [FMY+15,
PVS+17, ZLYZ16, LNLK13, OGG+12].

Many-Cores [DT17]. Manycore
[KS16, LAS+13, MKKE15, BTS10]. map
[WCY10]. Mapped [LLC17]. Mapping
[CDP16, DWS13, DJC16, MKKE15,
SKAEG16, WGO15, YMM+15, CCZ13,
WYJL10, WFTO14]. MapReduce [CC13]. MAPS
[RLBBN15]. Massively
[MCB+12, RLBBN15]. Matching
[HHW15, CW13, PLL10, TBS06, VW11].
Mathematical [Mic16]. MATOG
[WG17]. Matrix [YAG+16, CYXF13, SJV08].
Matrix-Vector [YAG+16]. maximize
[RCG+10a]. Maximizing
[AEJ16, WOF+16]. Maxine [WHV+13].
MaxPB [WOF+16]. McPAT [LAS+13].
Measuring [FMY+15]. Mechanism
[CEP+16, SPS17, ZCC16, GBO6, HWY+13,
KS11, RDF13, SBC05]. mechanisms
[WGW+11, LCL+14, LMM08].
Mechanistic [BEE15, CHE+14]. media
[SLA+07]. meets [KHL+13]. Memoization
[SSRS15]. Memories
[BKM+17, DGI+14, KRRK16, WDX15,
YMM+15, CCZ13, DXMJ11, LCC11].
Memory [AJK+12, AYC16, CWMG16,
CG15b, DD16, DHD+14, ERAG+16, EE09,
FMY+15, GHH15, GMGZ14, GHS12,
HHC+16, HAS16, JDZ+13, LKY+15,
LGP+16, MYG15, MYKG16, NRQ16a,
NRQ16b, NZ15, RLBBN15, SMKH15,
TAKKM15, USCM16, WWH+16, WJCX17,
XHJY16, ZLC+15, ZDC+16, ZSM+16,
ZPR+17, AFD12, ATGN+13, CS10, CCZ13,
DHC+13, DJX13, ZDC+13, FQRG13,
GPL+05, JSH09, JSM+04, KGK10,
KCKG14, LAS+08, LGAZ07, LFX09,
LCL+14, LHWW12, MA08, PLL10, PCT12,
RLS13, SV05, SL09, TBC+12, TGA+12,
VDS09, VED07, WKS12, WWWL13,
WSC+13, WLZ+10, YJFT13, YLT04,
YLF08, ZPC06, ZSLX13, ZDC+12].
Memory-Disk [LKY+15].
memory-efficient [PLL10]. Memory-level
[EE09]. Memory-Reliability [NRQ16b].

Pareto [SLM12]. Parameter [MGI15], parametric
[CCM+16]. PARSEC
[SLM12]. Parsing [PCM16, ZBH+13].
PARESCs [CCM+16], parser
[ZBH+13]. Parsing [PCM16, ZBH+13].
PARTANS [LFC13], Partial [ZX16],
partially [GGFPRG12, JLER12], Partition
[WWC+16, WJXC17, WO13]. partitioned
[RPS06]. Partitioning [CGH15, DAP+14], SBS16, HAJ+12, LCL+14, ZDC+12]. Pass
[SPS17]. Passing [ZM15]. PATCH
[ABP+17]. path [TS05]. paths [PS12].
pattern [CXW+12, PRMHI13, VW11].
pattern-oriented [CXW+12].
pattern-specific [PRMHI13], patternized
[KCP13]. Patterns
[HLR+13, JSH09.]
P CantorSim [JJY+13]. PCM [LWF+16].
penalties [HL07]. penalty [GW08].
adaptive [RBMI0]. BPM [LCL+14]. C
[NED+13]. Capacity [GBD+15].
channel-level [LCL+14]. Cores [KKW+15].
HW [TS15]. out-of-order [BB04].
Runtime [KPP+15]. Shared [DRHK15].
software [CS01, HCC+14, MMdS06]. SW
[KMG14]. TLC [PCX+17]. watt [BCX+12].
write [JLER12], pending [CA11]. per-task
[LJ+13b]. Per-thread [DEE+13, BTS10].
perceptron [TS05]. Perfect [BRJ15M].
Performance
[AEJE16, BEE15, FDF+14, HMYZ15,
JGSM15, LYH16, LY16, RVOA08, TCS16,
TCM14, USCM16, WCI+16, XHJY17,
ZYCZ10, AFD12, ATG+13, BSWLE13,
BTS10, CK11, CRSP09, CDM13, FBWS13,
GW08, HP04, HL07, KBR+13, KJMP12,
KG10, LM05, PGB12, RWW13, SRLPV04,
SD12, WKS12, XT09, YCCY11, ZVYN05].
Performance-aware [ZYCZ10].
performance-driven [XT09].
Performance-Energy [HMYZ15].
performance-friendly [CRSP09].
permanent [SSC+13]. Permissions
[ERAG+16]. Perspectives [PLT+15].
PGAS [SKAE+16].
[AGVO05, JSM+04, SL09]. Predictors [EPAG16]. Prefetch [SPS17].
Prefetch-Fraction [SPS17]. Prefetched [SYX+15]. Preffecher [LYH16, PB15, SYX+15, LJMG12, SBC05].

Purpose [CAMJ15]. push [YLTL04].

Redundant [KS16, JLR12]. references
[YWL+10], referent [WK09]. Refresh
[LSC+15, TKM14]. Register [TS15, YWXYW12, BZS13, CH06, GKP14, JOA+9a, JOA+9b, JA14, SJV08, SL08, SSR13].

reviewers [SCG08, YZ08]. Revisited [AC16, Ano13b, Ano15, Ano13a]. Regression
[JGSM15, CPD13]. Revising
[GFD+16, MBB13, VS08]. Replay
[ACGK04, DCP+16, Mic16, FTLG11, WM11, ZDC+12].

rehearsal [YJTF13]. release
[GW09, JOA+9b, SL08]. Reliability
[NRQ16b]. Reliable
[CWMC16, KS16, KK15, CPB+07].

reordering [TW09]. remote
[NMKS06]. remapping
[ZPC06]. requester
[BE13]. request
[ATGN13]. ReNIC
[DCP+12]. Replaying
[CZ07]. Replacement
[DA16, Mic16, FTGL11, TKJ13, WM11, ZDC+12].

Replica
[CL+13]. REplayer
[DAP+15]. replication
[ACGK04, DCP+12]. representation
[KCKG14]. representative
[BE13]. requester
[ATGN13]. requester-wins
[ATGN13]. ReSense
[DWDS13]. Resilience
[TCS16]. Resistive
[MYKG16]. Resource
[PS12, ARS04, DWDS13, GW08, NMKS06, VS11, ZK05].

resource-constrained
[NSR+16a]. resource-efficient
[GW08]. resources
[RGG+12]. Retargetable
[SHY14, HEL+09, HLC10]. Rethinking
[ERAG+16]. return
[VS08]. Reuse
[DA16, KE15, AIVL13, RF+13, YZL+10, YLW08]. Reviewers
[AC16, Ano13b, Ano15, Ano13a]. Revisited
[AMG16, MBY13, VS08]. Revisiting
[GFD+14, KAC15, MMS15, VWWL13]. RF
[TBC+12]. RF-I
[TBC+12]. RFVP
[YPT+16]. Road
[SWU+15]. ROCCC
[BCV10]. Rollback
[YPT+16]. Rollback-Free
[YPT+16]. Roofline
[ESR+15]. router
[APG13, ASK13]. routes
[KCP13]. Routing
[CVB15, BRSGJ12, PRMH13]. row
[JLIC13]. RTL
[BGG+15]. Runtime
[DBH16, DT17, LTG12, YAG+16, YRHB13].

Runtime-Reconfigurable
[DBH16].

Sabrewing
[BW+12]. Safe
[YPT+16]. Safe-to-Approximate
[YPT+16].

Salvaging
[JDZ+13]. Sampled
[JYE+16, HS05]. Sampling
[LC16, ZWS+16, JYJ+13]. scalability
[CWCS13, RVOA08]. Scalable
[AS13, CNS+16, TCS16, ZM15, CWCS13, KCKG14, LNLK13, LJM13a, SS+13, VW11]. Scalar
[SPH+17]. Scalarization
[LAAMJ15]. Scale
[SKH+16, RCV+12, SMK10]. Scaling
[BHC+14, GBD+15, MKKE15, ZLC+15, XMM04]. Schedule
[GGS+17]. Scheduler
[TD16, UC16, CWCS13, KCP13]. Schedulers
[KKAR16]. Scheduling
[AJ+16, ASV+16, DHD+14, MKKE15, XHJJ16, BBG13, CG14, EE12, MBKM12, SPGE06, SWH09, SSR13, TBC+12, XL07, ZGC+12, ZYJC10].

scheme
[BBG13, CC13]. schemes
[KCKG14]. SCIN
[NTG13]. SCIN-cache
[NTG13]. Scratchpad
[JAK17, RTK15, CS10, LFX09]. script
[KBR+13]. script-based
[KBR+13]. Seamlessly
[KNBK+12]. searches
[KHW+05]. SECRET
[LSC+14]. Section
[DSR15]. Section-Based
[DSR15]. Sector
[CAGS17]. Sectored
[CAGS17]. secure
[CRSP09, SSPL+13]. Selecting
[BE13, TDO16b]. Selection
[MNC+16, ZGP15, MBY13]. Selective
[KMG14, LSC+16, LWKH12, MA08, VSP+12]. Self
[LLRC17, BBG13].

Self-Balancing
[LLRC17]. self-scheduling
[BBG13]. semantic
[HCC+14]. Sensible
[LMA+16]. Sensing
[WCI+16]. sensitive
[Nas13]. sensitivity
[DWDS13]. Sequences
[ABP+17, MNC+16, KHW+05, PJ13].

Sequential
[WLZ+13, LZ12]. series
[LTG12]. Server
[AVG12, LTG12, RE12]. Servers
[LTX16]. Service
[GMW09, GSZ110]. set
[AR13, HL07, KWCL09, ZK06].
set-associative [HL07, KWCL09]. sets [DDU12], setups [RPE12]. sFtree [BRSJG12]. Shared [GKP14, HMYZ15, KE15, LBM13, SKAE16, WJXC17, XHJY16, AGI12, AIVL13, GGFPRG12, GSZI10, HLR13, KGK10, LHWB12, RGG12, WM11, ZPC06].

Simulation [JYJ16, HS05, JYJ13, RCV12]. Simulations [HEMK17]. Simulator [NRQ16b]. Simultaneous [LGP16, EE09, RCG10a].

Skeleton [NC15]. Skeleton-Based [NC15]. Skylake [HYYAM16]. Skylake-Based [HYYAM16]. Slowdown [XHJY17]. SM [ZJJ15]. smart [AGVO05]. SMT [EE12, LMC13, PLT15, SL08, VS11, WA08].

Software [DMR16, GSC17, LCL14, MG15, RCV05, SBS16, SEP07, VCJ17, YWWX12, HWW11, RVOA08, RCG10b, RTG07, TGAG12, YRHBL13]. Software-based [LCL14]. Software-controlled [RCV05].

Software-Defined [DMR16, TGAG12]. Software-directed [SEP07].

software-guided [RCG10b].

Sparse [YAG16, AR13]. Spatiotemporal [LAAMJ15]. SPCM [ASA16]. special [CDM13, SHC13, SD12]. Specialization [YAG16].

Specialized [GÅS16, GÅSÅ13]. species [NCC13]. specific [PRMH13]. Spectral [SBC05].

Speculation [MG15, GPL05, SHLM14]. Speculative [VS08, DC07, GPL05, LCH04, LH06, LZ12, LH13, NTG13, VS11, XC12, XC06, YRHBL13, ZSCM08]. speed [GB06, RPE12]. spill [XT09].

Spilling [CBD15]. split [RFD13, TBS06]. splitting [WYY12].

stack [CH06, VS08, SCEG08].

Stacked [CWMC16, LGP16, NRQ16a, NRQ16b].

Stacking [APBR16, ZSL13]. state [GALP05]. Static [AFD12, BHC16, SHY14, JSM04].

statically [NED13]. Stealing [CG15a].

Stencil [CN16b, LFC13]. Storage [LTX16]. Store [KAR16, LHWB12, SLO9].

strategies [WYCC11]. strategy [YCC11, ZHD04]. Stream [XCC13, YWWX12, MG13, YZL10].

Streaming [CN16b, MKKE15, PC13, WO13].

Streaming-Based [CN16b]. Strength [GAM12].

Strength-Based [GAM12].

string [CWW13, PLL10, TBS06].
token-counting \[\text{RBM10}\]. Tolerance \[\text{AAI+16, RCV+05}\]. Tolerant \[\text{HAM17, LCC11}\]. Tolerating \[\text{KWCL09, YLLT04}\]. Tomasulo \[\text{WLZ+13}\]. Topography \[\text{MMT+12}\]. Tool \[\text{GDL16, MPW+17}\]. Tools \[\text{BKM+17}\]. Topological \[\text{CVB15, KKM+13}\]. Topologies \[\text{DJC16}\]. Topology \[\text{DHD+14}\]. Topology-Aware \[\text{DHD+14}\].

Two-Tiered \[\text{CWMC16}\]. Two-Level \[\text{JYE+16}\]. Two-Tiered \[\text{CWMC16}\]. type \[\text{AR13}\].

UMH \[\text{ZSM+16}\]. Understanding \[\text{EPAG16, LS10, MMT+12, VE13}\]. Unified \[\text{TG07, ZSM+16, YXK+12, KRHK16}\]. Uniform \[\text{HK14}\]. Units \[\text{GAsA+16, GAsA+13, HVJ06, YCCY11}\]. unloading \[\text{ZK05}\]. Unreliable \[\text{PVA+17}\]. Unsynchronized \[\text{DSR15}\]. UPC \[\text{SKAEG16}\]. update \[\text{LZY09}\]. update-conscious \[\text{LZY09}\]. usage \[\text{VS11}\].

User \[\text{KKAR16}\]. User-Assisted \[\text{KKAR16}\]. uses \[\text{GB06}\]. Using \[\text{AMP+16, ABP+17, CCL+13, ESR+15, FDF+14, GAsA+16, GR15, HJW15, JGSM15, RLB15, SYX+15, SPS17, SPS12, SSH+13, SSRS15, WO13, ASK13, BZS13, CAMJ15, DDU12, DWDS13, DXMJ11, DJB13, EEB11, HV106, JBB15, JSPM+14, KK+13, MG13, RC1+12, SLM14, WHS15, SSRS13, YCCY11, ZHD+04, CST+06\]. Utility \[\text{PB15}\]. Utility-Driven \[\text{PB15}\]. Utilization \[\text{CAGS17, LWF+16, YXW12, ZC1+12, XCC+13, Utilizing \[\text{TBC+12, KCP+13}\]. UVMs \[\text{KRHK16}\].

Value \[\text{EPS17, GAM12, YPT+16, CST+06}\]. variability \[\text{LZY07}\]. Variable \[\text{MY16, NB13}\]. variation \[\text{CK11, PGB12, XL07}\]. variations \[\text{KWCL09}\]. Vector \[\text{SPH+17, YAG+16}\]. Vector-Scalar \[\text{SPH+17}\]. Vectorization \[\text{AMG16, RWY13, SPS12}\]. vectors \[\text{SL09}\]. Versatility \[\text{SJV08}\]. versioning \[\text{NTG13}\]. versus \[\text{SEG08}\]. via \[\text{IMS+08, LF09, MNS16, RC+10b, XHJY17, ZY10}\]. viable \[\text{PI12}\]. victim \[\text{VSP+12}\]. Video \[\text{CAMJ15}\]. Virtual \[\text{BSS14, HW+15, KRHK16, SCEG08, JQ14, VED07, WH+13, YZ08}\].

Virtualization \[\text{HHC+16, SWF16, WHH+16, DCP+12}\]. virtually \[\text{WWW13}\]. Virtualizing \[\text{WFKL16}\]. Virtually \[\text{RFD13}\]. Visualization \[\text{MTT+12}\]. VLIW \[\text{CPP08, GKP14, LKL+13, LGD+13, PI12,}

REFERENCES

TC07, XL07, XT09]. VLIW-based
[CPP08]. VM [YKM17]. Volatile
[RTK15, WDXJ14]. Voltage
[APBR16, RCG+10b, XMM04]. Voltages
[HK14]. vs [SV05], VSim [RPE12].
Vulnerability [TS15, WAST16, LKL+13].

WADE [WSC+13]. wakeup [YCCY11].
warmup [HS05], warp [FSYA09], way
[ZVYN05]. way-halting [ZVYN05]. WC
[ZWHM05]. WCET
[DBH16, KTAE16, ZWHM05, ZYW17].
WCET-Aware [ZY17]. Wear [JDZ+13].
Wear-Leveling [JDZ+13]. Web [PCM16].
weighting [VS11]. Whole [ZG05]. Wide
[MMS15, P12]. wide-issue [P12]. Width
[SMKH15, RPS06]. width-partitioned
[RPS06]. window [VS11]. wins [ATGN+13].
wires [IW+04]. within [BCVN10].
Without [LHC+17, RLS15, KRHK16].
Work [CG15a]. workload-aware [AVG12, CG14].
workload-aware [CG14]. Workloads
[LYH16, DWDS13, JEBJ08, LTG12, WA08].
Works [LK12]. worst [AFD12].
worst-case [AFD12]. Write
[LWF+16, RLS15, ZDC+13]. Writeback
[WSC+13, ZDC+12]. Writeback-aware
[WSC+13, ZDC+12]. WSNs [LZY09].
x86 [CCD12]. XL [XT09].

References

Aleta:2004:RCC

Adileh:2016:MHP

Andrade:2007:PAA

Andrade:2012:SAW

Albericio:2012:ALC

Abella:2005:ISP

Albericio:2013:ERL

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

[Ardestani:2016:MMV] Ehsan K. Ardestani, Rafael Trapani Possignolo, Jose Luis Briz,

[ASV+16] Shoaib Akram, Jennifer B. Sartor, Kenzo Van Craeynest, Wim Heirman, and Lieven Eeckhout. Boosting the prior-

Armejach:2013:TIP

Abbasi:2012:TSW

Amme:2007:SBM

Ahn:2016:AEE

Bai:2004:LPO

Belviranli:2013:DSS

REFERENCES

implementation of a GPGPU.

\textbf{Bao:2016:SDF}

\textbf{Bakhoda:2013:DCN}

\textbf{Balasubramonian:2017:CNT}

\textbf{Bahmann:2015:PRC}

[BRJM15] Helge Bahmann, Nico Reis-

\textbf{Bogdanski:2012:SFC}

\textbf{Bower:2007:ODH}

Bartolini:2014:AFG

Bardizbanyan:2013:DPD

Boyer:2010:FBP

Bayrak:2012:AI

Bruintjes:2012:SLA

Bentley:2006:IAB

Barik:2013:DNS

REFERENCES

Chen:2011:HAM

Chaudhuri:2017:MSC

Chi:2015:LPH

Colombet:2015:SOS

Chen:2013:TME

Cleemput:2012:CMT

Chen:2013:DRU

Chasapis:2016:PEI

Cleary:2013:FAT

Chen:2013:CME

Coppens:2013:FDB

Chrysos:2013:HCP

Cruz:2016:HAT
Chrysanthou:2016:ORT

Chen:2012:DIO

Chen:2014:AWA

Chen:2015:LAW

Cilardo:2015:IMM

Choi:2006:ORR

Carlson:2014:EHL

REFERENCES

REFERENCES

REFERENCES

Cui:2012:EPO

Cui:2013:LOC

DeOliveiraCastro:2015:CLB

Das:2016:RDB

Chen:2016:IDO

Co:2006:ETC

Chen:2007:CRL

Cui:2013:LOC

Cui:2012:EPO

Cui:2013:LOC

Chen:2006:ETC

Cui:2012:EPO

Cui:2013:LOC

REFERENCES

[DD16] Stefano Di Carlo, Salvatore Galfano, Marco Indaco, Paolo Prinetto, Davide Bertozzi,
REFERENCES

REFERENCES

Das:2015:SBP

Diavastos:2017:SLR

DeSensi:2016:RAP

Dey:2013:RMD

Dong:2011:HCU

Du:2013:DCC

Du:2013:DCC

Eyerman:2009:MLP

Eyerman:2011:FGD

Eyerman:2012:PMJ

Eyerman:2014:MTM

Evtyushkin:2016:UMC

Endo:2017:IBV

Elwell:2016:RMP

Elango:2015:URM

REFERENCES

Antonio García-Guirado, Ricardo Fernández-Pascual, Alberto Ros, and José M. García. DAPSCO: Distance-aware partially shared cache organization. *ACM Transactions on Architecture and Code Optimiza-
REFERENCES

Ganser:2017:ISO

Gaster:2015:HRA

Guha:2012:MOD

Gerards:2013:ODD

Georgiou:2017:ETD

Goel:2014:SPR

Gonzalez-Mesa:2014:ETM
ISSN 1544-3566 (print), 1544-3973 (electronic).

Gabor:2009:SLA

Guo:2008:EHC

Garzarán:2005:TBS

Grigorian:2015:ADA

Geraci:2012:TFP

Goens:2017:SSS

Guo:2010:QSS

REFERENCES

[Ham:2017:DDS]

[HSA16]

[HCC+14]

[HJW15]
REFERENCES

Hijaz:2014:NLN

Hwang:2007:SSA

Hwang:2010:DCR

Hagiescu:2013:GCG

Holey:2015:PEC

Hartstein:2004:OPD

Haskins:2005:AWS

John W. Haskins, Jr. and Kevin Skadron. Accelerated

Haj-Yihia:2015:CDP

Haj-Yihia:2016:FGP

Ipek:2008:EAD

Isailovic:2004:DCQ

Jothi:2014:TCF

Jatala:2017:SSG

Jiang:2013:HAC

REFERENCES

Joshi:2008:DEP

Jia:2015:GPP

Jimenez:2009:GNB

Jantz:2013:ESM

Jensen:2017:ILD

Jeon:2013:RDR

Jang:2012:ACO

Jones:2009:EER
Timothy M. Jones, Michael F. P. O’Boyle, Jaume Abella,

Jiang:2013:PAP

Komuravelli:2015:RCH

Khan:2013:SBA

Kritikakou:2013:NOM

Kritikakou:2014:SNO

Kim:2013:FMS

Kafshdooz:2015:DSS

REFERENCES

Kourtis:2010:ECO

Kerschbaumer:2013:IFT

Kaitoua:2014:HED

Kulkarni:2005:FES

Kanuparthi:2015:RIC

Kurt:2016:UAS

Kawahito:2013:IRF
Motohiro Kawahito, Hideaki Komatsu, Takao Moriyama, Hiroshi Inoue, and Toshio

Karimi:2015:MMA

Kim:2012:IPN

Kumar:2014:EPG

Kicherer:2012:SPA

Kong:2015:CRF

Koukos:2016:BHU

Kleanthous:2011:CMD

Kalayappan:2016:FRT

Kafshdooz:2016:CTO

Koh:2009:TPV

Kotzmann:2008:DJH

Kulkarni:2009:PEO

Lucas:2015:SSS
Leverich:2008:CEM

Li:2013:MFM

Lee:2010:AIC

Lustig:2013:TIC

Leather:2014:AFG

Lin:2004:CFS

Liu:2014:BBS

Lee:2016:ACS

Lutz:2015:ECA

Lei:2013:VCI

Lee:2016:ACS

Lutz:2013:PAF

REFERENCES

Li:2009:CDS

Li:2007:CCE

Lee:2016:SML

Luo:2013:DIH

Lyons:2012:ASS

Lin:2006:RCG

REFERENCES

REFERENCES

Li:2013:PTL

Liu:2013:HSA

Long:2008:TMM

Lee:2013:TLS

Li:2012:DQM

Lotfi:2015:AAC

Liu:2010:UBI

[LS10] Fang Liu and Yan Solihin. Understanding the behavior and implications of context switch...

Lin:2015:SSE

Lee:2013:APF

Lewis:2012:REC

Liao:2016:DPM

Luporini:2015:CLO

Li:2016:MAP
Li:2011:EEM

Lankes:2012:BSP

Lu:2016:AFB

Liu:2016:TAA

Lee:2015:NMD

Luo:2007:CNP

Luo:2012:DDS

Luo:2013:CCC

[LYZ13] Yong Li, Yaojun Zhang, Hai Li, Yiran Chen, and Alex K.

Matheou:2015:ASD

Mccandless:2012:CTI

Malik:2013:OSG

Mendonca:2017:DAA

Martinsen:2015:EPT

Muralidharan:2016:DTN

Michaud:2016:SMF

Melot:2015:FCS

[MKKE15] Nicolas Melot, Christoph Kessler, Jörg Keller, and
Patrick Eitschberger. Fast
crown scheduling heuristics for
energy-efficient mapping and
scaling of moldable streaming
tasks on manycore systems.
*ACM Transactions on Archi-
tecture and Code Optimiza-
2015. CODEN ???. ISSN
1544-3566 (print), 1544-3973
(electronic).

Jaydeep Marathe, Frank Mueller,
and Bronis R. de Supinski.
Analysis of cache-
coherence bottlenecks with hy-
brid hardware/software tech-
niques. *ACM Transactions
on Architecture and Code Opti-
mization*, 3(4):390–423, De-
cember 2006. CODEN ???.
ISSN 1544-3566 (print), 1544-
3973 (electronic).

Pierre Michaud, Andrea Mon-
delli, and André Seznec.
Revisiting clustered microarchi-
tecture for future superscalar
cores: a case for wide issue clus-
ters. *ACM Transactions on Ar-
chitecture and Code Optimiza-
tion*, 12(3):28:1–28:??, October
2015. CODEN ???. ISSN
1544-3566 (print), 1544-3973
(electronic).

Bita Mazloom, Shashidhar
Mysore, Mohit Tiwari, Banit
Agrawal, and Tim Sherwood.
Dataflow tomography: Infor-
mation flow tracking for un-
derstanding and visualizing full
systems. *ACM Transactions
on Architecture and Code Opti-
mization*, 9(1):3:1–3:??, March
2012. CODEN ???. ISSN
1544-3566 (print), 1544-3973
(electronic).

Luiz G. A. Martins, Ricardo
Nobre, João M. P. Cardoso,
Alexandre C. B. Delbem, and
Eduardo Marques. Cluster-
based selection for the explo-
ratio of compiler optimization
sequences. *ACM Transactions
on Architecture and Code Opti-
mization*, 13(1):8:1–8:??, April
2016. CODEN ???. ISSN
1544-3566 (print), 1544-3973
(electronic).

Andrew J. Mcpherson, Vijay
Nagarajan, Susmit Sarkar, and
Marcelo Cintra. Fence place-
ment for legacy data-race-free
programs via synchronization
read detection. *ACM Transac-
tions on Architecture and Code
January 2016. CODEN ???.
ISSN 1544-3566 (print), 1544-
3973 (electronic).

Pavlos M. Mattheakis and
Ioannis Papaeı̂stathiou. Signif-
ificantly reducing MPI inter-
communication latency and
power overhead in both embed-
ded and HPC systems. *ACM*

Mukhanov:2017:AFG

Michaud:2007:STM

Meng:2005:ELL

Mehta:2016:VL

Morad:2015:GSP

Morad:2016:RGS

Nasre:2013:TSE
REFERENCES

References

Nair:2016:FFC

Negi:2013:SCF

Natarajan:2015:LTE

Orosa:2012:FIF

Orozco:2012:THT

Pananilath:2015:OCG

Panda:2015:CUD
REFERENCES

Pu:2017:PHS

Purnaprajna:2012:MWI

Purini:2013:FGO

Pradelle:2012:PPB

Pao:2010:MEP

Porter:2015:MMS

Pricopi:2012:BPH

Palangappa:2017:CCE

Poovaiah M. Palangappa and Kartik Mohanram. ComEx++: Compression-expansion...

Prisacari:2013:FPS

Premillieu:2012:SSR

Premillieu:2015:EOE

Parasyris:2017:SAP

Pathania:2017:DTM

Ramashekar:2013:ADA

Raghavan:2010:TTP

Arun Raghavan, Colin Blundell, and Milo M. K. Martin. Token tenure and PATCH:

REFERENCES

[RPE12] Frederick Ryckbosch, Stijn Polfliet, and Lieven Eeckhout. VSim: Simulating multi-server setups at near native hardware speed. ACM Transactions on
REFERENCES

Rochecouste:2006:CCE

Rong:2007:SDS

Rodriguez:2015:VSR

Rangan:2008:PSD

Rohou:2013:VTI

Strozek:2009:EAE

Sharma:2005:SPE

[SBC05] Saurabh Sharma, Jesse G. Beu, and Thomas M. Conte. Spectral prefetcher: An effective mechanism for L2 cache prefetching. ACM Transactions on Architecture and Code Op-

Scolari:2016:SCP

Shi:2008:VMS

Stenstrom:2012:ISI

Scolari:2016:SCP

She:2013:EEM

Soteriou:2007:SDP

Suh:2015:DMR

Streit:2015:GTP
REFERENCES

Sasanka:2007:AES

Seghir:2012:IAT

Sharkey:2008:RRP

Sanchez:2010:ACI

Schaub:2015:ISW

Sankaralingam:2004:TPA

Sharkey:2006:IPT

[SPGE06] Joseph J. Sharkey, Dmitry V. Ponomarev, Kanad Ghose, and Oguz Ergin. Instruction pack-

Stanic:2017:IVS

Stock:2012:UML

Sridharan:2017:BPP

Sukumaran-Rajam:2016:PMN

Santana:2004:LCF

Sankaranarayanan:2004:PBA

Sanchez:2013:MIP

Daniel Sánchez, Yiannakis Sazeides, Juan M. Cebrián, José M. García, and Juan L. Aragón. Modeling the impact of permanent faults in caches.
REFERENCES

Subramaniam:2013:UFC

Samih:2011:EPP

Strydis:2013:SAP

Shobaki:2013:PIS

Suresh:2015:IFM

Skadron:2004:TAM

Stipic:2013:PGT

Sardashti:2016:YAC

Saidi:2012:OED

Salami:2005:DMI

Shifer:2013:LLA

Sen:2017:PGE

Spink:2016:HAC

REFERENCES

CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Li Tan, Zizhong Chen, and Shuaiwen Leon Song. Scalable energy efficiency with resilience for high performance computing systems: a quantitative

Ruben Titos-Gil, Manuel E. Acacio, Jose M. Garcia, Tim Harris, Adrian Cristal, Osman Unsal, Ibrahim Hur, and Mateo Valero. Hardware transactional memory with software-defined conflicts. *ACM Transactions on Architecture and Code Opti-
REFERENCES

Tian:2013:TBM

Tong:2015:OMT

Tawa:2014:EEF

Tampouratzis:2016:AIH

Tartara:2013:CLC

Tarjan:2005:MPG

Tabkhi:2015:JSH

REFERENCES

Usui:2016:DDA

VanDenBraak:2016:RGR

Vocke:2017:EHI

Venkataramani:2009:MAM

VanCraeynest:2013:UFD

Venstermans:2007:JOH

Vermij:2017:AIN
REFERENCES

September 2017. CODEN ???. ISSN 1544-3566 (print), 1544-3973 (electronic).

REFERENCES

Valero:2012:CRI

Vandierendonck:2013:ADT

Vespa:2011:DFA

Winter:2008:ATN

Wibowo:2016:ACL

Wang:2016:HPC

Wang:2014:PSR

Wang:2015:BOM

Wang:2014:EAC

Woo:2010:CVI

Weber:2017:MAL

Weber:2015:APM

Wimmer:2013:MAV

Wei:2017:HHM

REFERENCES

Wang:2013:WWA

Wang:2014:IPD

Wang:2016:IBB

Wang:2016:DMB

Wang:2013:RMM

Wang:2012:FSS

Wang:2011:PGS

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

[XL07] Shu Xiao and Edmund M.-K. Lai. VLIW instruction scheduling for minimal power variation. *ACM Transactions on Ar-

[XL07] Shu Xiao and Edmund M.-K. Lai. VLIW instruction scheduling for minimal power variation. *ACM Transactions on Ar-

REFERENCES

[YKM17] Byung-Sun Yang, Jae-Yun Kim, and Soo-Mook Moon. Ex-

Yang:2012:UOC

Yan:2008:EVR

Yang:2010:ERS

Zhao:2013:HPP

Zhao:2016:FMR

Zhao:2006:ATP

Zhao:2010:PPP

Zhou:2012:WAP

Zhou:2016:SAC

Zhang:2005:WET

Zhang:2015:OPS

Zhang:2008:RCM

Zhang:2004:RIC

Zhang:2015:BSS

Zhang:2005:DIE

Zmily:2006:BAI

Zhao:2015:BSB

Zimmer:2015:NSM

Zhao:2015:BSB

Zivanovic:2017:MMH

Zhai:2008:CHS

Zhou:2013:OGE

Ziabari:2016:UHB

Zhai:2005:CHS

Zhao:2005:IWA

Zhao:2016:OGE

Zhang:2005:WHC

Zhao:2005:IWA

Zheng:2017:WAD

Zhou:2016:CAE

Zhou:2010:PAT