A Complete Bibliography of *ACM Transactions on Architecture and Code Optimization*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 March 2019
Version 1.66

Title word cross-reference

2 [BSL17]. 3 [CAY+18, CWMC16, LGP+16, NRQ16b, SZJK18, ZSLX13]. 3 [CCZ13, DDT+17]. Z [SLM12].

-D [CAY+18]. -polytopes [SLM12].

/channel [LCL+14].

000-core [DAKK19].

2014 [Aca16, Ano15].

6 [KWM+08]. 64-bit [BWLR06, VED07].

7 [BKM+17]. 754 [LDG+13].

Abstracting [JSH09]. Abstraction [RLBBN15, ZM15, RCV+12]. Accelerate [CNS+16b]. Accelerated
[HS05, SWF16, JED19]. Accelerating [DAKK19, GASÁ+13, GR15, JYJ+13, LWF+16, RMA14, TMP16, HWX+13].
Acceleration [GáSÁ+16, HAC13, WFKL10]. Accelerator [MCB+12, YCA18, LHWB12, VDSP09].
accelerator-based [LHWB12].
Accelerators [KCA+13, KMG14, MTK18, USCMI6, BKA13, CI13]. Access
[CG15b, CSK19, GFD+14, HK14, LGP+16, LHC+17, LTX16, SKH+16, XHJY16, FTLG11, HLR+13, HCC+14, JSH09,
KCKG14, LWH11]. Accounting
Accumulate [GG18]. Accuracy [AAL+16, ASS17].
Accurate [NDP17, WAST16, LMJ+13b]. ACM [Aca16, Ano13a, Ano15, Bil19].
Across [DFD+14, NDP17, SW17a]. activations [JLCR13]. Active [KHS+14].
Adapt [DGI+14, FGB13]. adaptation [DJB13, LGA07, SS04]. Adapting [GHH15, LB05].
Adaptive [CG14, CWMC16, FQRG13, GFD+14, HWX+13, JRK16, Lee16, LYH16, Per18, WCI+16, WM11, AGI+12, MAN+08, RBM10, SW13, ZK05].
Adaptively [ZCF18]. Adaptness [AEC16]. Address-First [OAM19].
Addressing [WA08, CWCS13]. Advancing [TZK18]. Affine [AP17, NCC13, SLM12].
Against [BCHC19, ERAG+16, PHBC17, BVIB12, ZHS+19]. Agent [JPS17].
Aggregate [LY16]. Aggregation [AYC16]. Aging [DGI+14, KKW+15, LRBG15].
Aging-Aware [LRBG15]. Agnostic [SLJ+18, ZDC+16]. agreement [GMW09].
ALEA [MPW+17]. Algorithm [BC13, DGI+14, DTD16, BRSG12, CW13, CDPD13, HAJ+12, PLL10, XCO6, ZGC+12].
Analogue [DSK19]. Analysis [DSR15, GAM12, JK17, KR19, LMZ18, MMDs06, VTN13, VXG16, XFS+19, ARS04, AFD12, FER+13, JOA+09b, Nas13, SV05, SMK10, ZCW10].
analytic [XMM04].
Anticipating [LJMG12]. API [CI13].
Application [GTT+16, PLT+15, AS13, GASA+13, RCV+12, SB09, TDP15].
Application-Guided [GTT+16]. Application-Level [PLT+15].
Applications [ASS17, AZG17, DMR+16, DTD16, FWJ+16, GR15, JYE+16, NKKH16, RHLA14, RMA14, RLBBN15, WZG+19, XFS+19, CS13, DWDS13, HLR+13, KNBK12, MBKM12, STLM12, SY05, SLA+07, SLM12, YLTL04, ZG05]. Applied
[LB10]. applying [WWM05]. Approach [AZG17, CNS+16b, EMR14, FDF+14, GKK18, KS16, TS15, WAST16, WZG+19, ZX16, FT10, SSR13, WYJL10, YJTF13, ZCS06]. approachable [WHV+13].
Approximate [DS12, YPT+16].
approximation [LTG12]. Apps [PCM16].
Arbitrary [RHC15, WMS19]. arbitration [XCC+13]. Architecting [CPB+07].
Architectural [CPS+15, DCP+12, HEMK17, ME15, WAST16, WZG+19, IMS+08, SB09, ZQZ+05, CWC06].
Architecture [HK14, KAC+18, PVS+17, SLJ+18, SHY14, SWF16, VC16, VFJ+17, ZFT+18, ARS04, BVIB12, BWG+12, CPB+07, DJX13, GKP14, GSZ10, JYJ+13, JA14, LNLK13, PM12, STLM12, SNL+04, SRLPV04, SSPL+13, ZK06].
Architecture-Agnostic [SLJ+18]. architecture-independent [BVIB12].
Architectures [AJE+16, ASK+16, ASP17, CG15a, CEP+16, CDPN16, GR15, HAM17, JMJ+18a, LAS+13, PT17, RMA14, ZLYZ16, ZQZ+19, BBG13, BWLR06, BTS10, CG14, CK11, CDM13, KCP13, KKL+13, OKG+12, RCV+12, SSK11, SD12, SB09, TC07, TDG13, VIE13, YXK+12].
Area [LAS+13, SB09]. area-efficient [SB09].
ARI [FQRG13]. Arithmetic
[LA+15, BWG+12]. ARM
[GDL16, LHW+19, SHY14, SPH+17].
ARM-to-x86 [LHW+19]. Array
[DSK19, WG17, BWLR06, KLMP12].
Arrays [LMSE18, TD16]. ARSEC
[DDT+17]. Art [MWJ19]. Assembly
[LVR+15]. assistance [JOA+09a]. Assisted
[CDPN16, HNKK17, JDZ+13, KKAR16,
PHRC17, CST+06]. associative
[HL07, KWCL09]. associativity [YJTF13].
Asymmetric
[ZCQ+19, CG14, CCPG13, PCT12, SW13].
Asymmetry [LW+19]. Attacks
[BCHC19, ERAG+16, PHRC17, ZHS+19,
BVIB12, CCD12, DYL+12]. AUKE
[DK19]. Auto [CG15a, WG17].
Auto-Tuning [CG15a, WG17]. automata
[VW11]. automatable [AF07].
Automated [ASS17, BSSS14, BCHC19].
Automatic
[AMG16, DS19, JLR12, LBO14, LT13,
MGA+17, NC15, RB13, WLZ+13, WGO15,
WM10, SPS12, KWCS12]. Automatic
[FWJ+16]. Automatically [DGI+14].
Autotuning [AMP+16, SYE19, YAG+16,
KBR+13, LFC13]. AVPP [OAM19]. Aware
[ACA+19, DGI+14, CG15a, DTD16,
DH+14, GVT+17, KFEG18, LYH16,
LRBG15, PVA+17, PG17, RSK+18, SEF+19,
SLJ+18, SKH+16, SZK+18, SKPD19,
USCM16, WLZ+13, WJXC17, ZCQ+19,
ZYY17, CG14, CWC513, EE09, GGFPRG12,
NB13, SSS+04, SEP07, WYLJ10, WSC+13,
WDXJ14, ZYCZ10, ZDC+12, ZK06].
Awareness [HLSW17, LKL+13].
Bahurupi [PM12]. Balancing
[LLRC17, PGB16, HWH+16]. Band
[SPS17]. Band-Pass [SPS17]. Banded
[BLS17]. Bandwidth [LGP+16, ZCCD16,
ZCQ+19, DZC+13, WYLJ10, XCC+13].
Bandwidth-Asymmetric [ZCQ+19]. bank
[LCL+14]. bank- [LCL+14].
bank-/channel-level [LCL+14]. banked
[AGT+12]. Banks [ZCF18]. Based
[AJE+16, CNS+16b, CG15a, CG15b, DSR15,
DAD16, DAP+15, FDF+14, GAM12,
HY16, JPS17, KS16, LCS+19, LTX16,
LY16, MNC+16, MTK18, NC15, SBS16,
WGO15, WDX15, WCI+16, WWC+16,
WMGS19, XHJY16, XFS+19, ZH19,
ZLC+15, ZSM+16, AVRF07, BCVT13,
CPP08, CW13, GK13, HLR+13, HAJ+12,
HW14, HWX+13, JYJ+13, KBR+13,
LBO14, LGT12, LCL+14, LHWB12, RLS13,
SS04, SKKB18, TKJ13, WSC+13, WTP14,
ZHD+04, ZGC+12, ZFT+18]. Bayesian
[AMP+16]. Be [SW17a]. behavior
[AF07, LS10]. Benchmark [ABB+16,
AYL+18, CCM+16, DDT+17, DS16, BE13].
Benchmarking [DAP+15]. benchmarks
[JE18]. Benefits [LW+12]. Benzene
[KAC+18]. BestSF [BJWS18]. better
[TBC+12]. Between [EPS17]. Beyond
[FER+13]. Bias [Lee16]. Big
ZLYW18, ZLC+13]. Big-Memory
ZLC+15]. Bimodal [TD16]. Binary
[DGGL16, GDL16, HWH+19, LHW+19,
SHY14, CDM13, GH12, HS06, HLC10,
LWH11, PKC12]. bipartite [BZS13]. Bit
[TBS06, BWLR06, VED07]. Bit-split
[TBS06]. bitwidth [NB13].
bitwidth-aware [NB13]. Blaze [PWPD19].
Blaze-Tasks [PWPD19]. Block
[GF14, KTA16, LLRC17, LTX16,
MPS18, TJKZ18, ZK06]. Block-aware
[ZK06]. Blocks [HJ+15, SYX+15].
Boltzmann [PAVB15]. Bones [NC15].
Boosting [ASV+16, KH18, RLS13, BTS10].
both [BSWE13, HP04, MP13].
bottlenecks [MM+06]. bound [MBKM12].
bounded [HS06]. Bounding [XM04].
Bounds [ECP+15, BWLR06]. BPM
[LCL+14]. BPM/BPM [LCL+14]. Branch
[EPAG16, LYL18, Mic16, ZC07, HWH+11,
Jim09, JS+04, LB05, MG12, TS05].
branch-predictor [JS+04].
branch-target [LB05]. Branches
[DGGL16]. Breakdown [HYA16].
bridging [HCC+14]. Bringing [DDT+17].
buddy [KW10, ZJJ+15]. Budget
[LWF+16]. buffer [LB05, RB13].
Buffering [YMM+15, GPL+05]. Bugs
[AAI+16]. build [SSH+13]. Building
[KRHK16, WDX15]. Buri [ZLC+15].

C [CWW+16, NC15, NED+13].
C-to-CUDA [NC15]. C/C [NED+13].
C1C [LZL+13]. CACF [ZFT+18]. Cache
[CAGS17, DAD16, GFP+14, HK14, HMY15, KR19, KAC+18, KAC15, LLRC17, Mic16, SSW16, SBS16, SKH+16, SLJ+19, VPTS19, WJX17, YDL+17, ZWY17, ZWL+19, APG13, AGV05, AGI+12, AFD07, BSWL13, C11, CWS06, DJL+12, FTLG11, GGFPR12, GSZ10, HAJ+12, KS11, KWC10, LCC+11, LZL+13, MMdS06, RFD13, SS04, SBC05, SSH+13, TKJ13, VSP+12, WSC+13, WDX14, ZHD+04, ZVYN05, Zha08, NTG13]. cache-coherence
[MMdS06]. cache-coherent [APG13].

Caches [CAGS17, CPS+15, GBD+15, JPS17, SBS16, WDX14, AI13, DJL+12, HS06, HJ07, KS11, KWC10, LCC11, LZL+13, MMdS06, MS05, SSK+11, SSC+13, VSP+12, WDX14, WLZ+10, WM11, ZDC+12]. Caching
[DNT16, SYX+15, DZC+13, JOA+09, WFKL10]. CACTI [BKM+17]. Caffe
[RSP+18]. CAFFEINE [PB15]. CAIRO
[HNKK17]. Call [Lee16, MG12]. Capability
[AHA+19, DGI+14]. Capacity
[GBD+15, SSK11, WM11]. CART
[CDP13, CDP13]. Case
[KH18, MMS15, SKAEG16, SSRS15, AFD12, FPS06, WK09, LB10]. CATCH [KS11].

Caused [SYX+15]. CAVA [CST+06]. CC
[CCZ13]. Cell [YMM+15, STL12]. cells
[JSN+04]. Center [FXC+15]. centers
[AVG12]. Centric [ILJ+18]. CERE
[DAP+15]. CG [MAD17]. CG-OoO
[MAD17]. CGRA [HAC13]. chains
[SSH+13]. Chameleon [WFKL10]. Change
[HSA16, JDS+13, YMM+15, ZDC+12]. Channel
[BHC19, BVI12, DJL+12]. channel-level [LCL+14]. Channels
[DJC16, EPAG16]. chaotic [LTG12].

Characterization
[CVB15, DS12, FER+13, VW11]. Characterizing [BCM11]. Checking
[KK15, BWLR06, MG13]. Checkpoint
[GW09, ARS04, CST+06]. checkpoint-assisted [CST+06].

Checkpointing [WZG+19, DXM11]. Chip
[BKM+17, CPS+15, CEP+16, DJC16, EPS18, LBM13, VFW16, APG13, BKA13, CK11, EE11, GSZ10, JPS17, LWWH12, LT13, LNLK13, LAS+08, LM05, LPZ12, LMM08, SMK10, TDG13, XCC+13]. Chips
[LCS+19, ZM15]. choices [VE13].

Circuit [ZFT+18, DJX13].

circuit-architecture [DJX13]. Circuits
[KKW+15]. Circuits/Cores [KKW+15].

Citadel [NRQ16a]. Class
[AAI+16, PAVB15]. Classification
[DRHK15, MCB+12, SN+19, CDP13, LMJ13a, NCC13]. client [KWM+08].

Clock
[CCL+13]. Cluster
[SKKB18, YCA18, TC07]. Clustered
[MMS15, ACGK04, SW13]. Clustering
[MNC+16, WMGS19, DS12, JLCR13, SB09].

Clustering-Based
[MNC+16, WMGS19]. Clusters
[KHS+14, MMS15]. CMP
[CPB+07, LMCV13, SSK+11, SLJ+18, WM11].

CMPs
[LMJ13a, LY16]. Co [AHA+19, JPS17, KHN+18, ZFT+18, DJX13, YLW08].

Co-location
[KHN+18, YLW08].

Co-optimization
[JPS17, ZFT+18, DJX13].

Co-Processor
[AHA+19]. coalescing
[SSU+13]. coalescing-lowering
[SSU+13].

Coarse
[LMSE18, MAD17, TD16, KCP13].

Coarse-Grain
[LMSE18, MAD17].

Coarse-Grained
[TD16, KCP13].

Coarsening
[SF18]. COBAYM [AMP+16].

CODA
[KHN+18]. Code
[CZ07, DSK19, KLI, ZAVB, PKPM19, SYE19, AvRF07, CDM13, GNB08, HLR+13, HS06, JLER12, KB+13, LKL+13, LB05, LLYZ09, LHY+06, PK12, RCG+10b, VJ+13, ZK05, ZWHM05].

code-positioning [ZWHM05]. Codelet
[DAP+15]. Codes
[CWMC16, TZEK18, AFD07, AFD12].
Codes [KAC+13]. Codesigned
[KMG14]. Coding [PM17]. Coherence
[DRHK15, KAC15, MMD06, SSH+13, VHKK11]. coherent [APG13].
Collaborative [FT10]. collapse [CWCS13].
Collection [ASV04]. Collective [FT10].
collector [WK09]. colocated [DWDS13].
Coloring [YXW92, LFX09].
Combinatorial [SKP09, SSR13].
combined [BWW+12]. Combining
[VSP+12]. Commodity [WX15].
common [WK09]. Communication
[DSR15, HAM17, HWX+13, SSPL+13, TC07]. communications [ACGK04].
Compact [HEM17, SCH13]. compaction
[WK09]. Comparability [YXW92].
Comparative [ASV+04]. Comparators
[YHI+14]. comparison [FBW13].
CompEx [PM17]. Compilation [DMR+16, LRBG15, PKPM19, SYE19, SN17, CI13, JK13, KHL+13, LBO14, LZY+09, PC13].
Compile [KTAE16]. Compile-Time
[KTAE16]. compiled [NE+13]. Compiler
[AMP+16, ABP+17, CCD12, DMR13, EPS17, GGG18, HNKK17, HYR+15, KPP+15, LFX09, MNC+16, MG12, NKK16, NC15, PHBC17, ZSCM08, ZX16, CYX13, DC07, HWM14, HLC10, JOA+09a, JOA+09b, KBR+13, KW+08, LZZ+13, LCH+04, TR13, YX+12, ZHD+04].
Compiler-Assisted [HNK17, PHBC17].
compiler-based [ZHD+04].
Compiler-Directed [HYAR+15, LFX09].
compiler-guided [LZL+13].
Compiler-Oriented [GGK18].
Compiler/Runtime [KPP+15]. compilers
[CDM13, HEL+09, SD12]. Complex
[SHD15, SLA+07]. Complexities
[GHH15, ZBH+13]. Complexity
[GG18, KAC15, CPP08, DJL+12, RPS06, SRLP04]. complexity-effective [RPS06].
component [LGAZ07]. Comprehensive
[CPS+15]. Compressed [SSW16, DZC+13].
Compression [BC13, KPM17, LMSE18, PM17, SW17, KKG10].
Compression-Expansion [PM17].
Compression/Decompression [LMSE18].
Compressive [WCI+16]. Computation
[CWI+16, HAM17, KHN+18, DDU12, LFC13]. Computationally [DSH+18].
Computations [PAV15, CYX13].
Compute [DAKK9]. Computing
[DSH+18, KHS+14, LCS+19, ME17, PWPD19, SW17, TC16, ZLYW18, ZLC+15, AVG12, LM05]. conceived
[APG13]. Concurrency
[AAI+16, GMS1P14, ME17]. Concurrent
[PC13]. Conditional [Mic18].
Conditionals [JSL13]. Configurable
[NRQ16b, HV09, LZZ+13]. conflicts
[TGC+12]. connected [BRS].
conscious [LZY+09]. Conserving
[LYW07]. Considerations
[HMY15, MTK18, LM05]. considering
[AVG12, HP04]. Consistency [ZGN15].
constrained [MSF+07, NMKS06, ZK05].
Constraints [AEJE16, KCA+13, WYJ10].
Consumption [FCD+17, GFD+14, LTG12, LYY07, VED07, ZHD+04]. Contech
[RHC15]. content [KS11]. contention
[CWCS13]. Context
[EPS17, DGM13, LS11]. continual [JA14].
Continuous [TR13]. Control
[AP17, BRJM15, HAC13, HHC+16, SMK15, KHH+16, CWW+06, FSyA09, IWP+04, MBKM12, TQ07]. Control-Flow
[SMKH15]. Controlled [ASS17, RCV+05].
controller [AGI+12]. Conventional
[NRQ16b]. conversion [CS13]. Converting
[HLC10]. convolution [FBW13].
Convolutional [GG18, TDP15, ZFF+18].
cooling [AVG12]. cooling-computing
[AVG12]. Cooperation [TZK18].
Cooperative
[DNT16, JPS17, JDZ+13, LBM13, SHLM14].
Coordinated [ZDC+16]. coprocessor

d [BSL17, CAY+18, CWMC16, LGP+16, NRQ16b, SZJ18, ZSLX13]. d-Packed [BSL17]. D-Stacked [LGP+16, NRQ16b]. DAPSCO [GGFPRG12]. dark [PCT12].

DarkCache [ZCF18]. DASH [USCM16]. Data [AMG16, CDNP16, DAKK19, EPS18, ESR+15, FXC+15, GAM12, HAM17, HLSW17, JLLJ+18a, KPM17, KHN+18, LWL18, ME15, ME17, MTK18, MNSC16, MGA+17, MSGH16, NKKH16, PD17, RMA14, RTK15, SKH+16, TDP15, VFJ+17, WGO15, WZG+19, YMM+15, ZLYW18, AVG12, BSWLE13, CS10, CA11, CDPD13, CWCC06, FER+13, FLG12, HLR+13, HL07, LWH11, LJM12, PC13, RB13, RFD13, STL12, TG07]. Data-Driven [ME15, ME17].

Dependence [BRJM15, DHD+14, JK17, SL09, TG07, VTN13]. Dependence-Aware [DHD+14]. dependences [BCVT13].

RTK15, SZJ18, SPH+17, SL09, VHKP11, WLZ+10, BE13, CPP08, IMS+08, LB10, LCC11, LHZ13, VE13, ZK05]. Designing [BKA13, BSWLE13, MGSH16]. Details

Direct-Mapped [LLRC17]. Directed [HYAR+15, VZS+18, LFX09, NED+13, SEP07, WM10]. directives [CWX+12]. Directories [PT17]. Dirty [LLRC17].

dispatching [LZ12]. dissemination [LZZB09]. Distance [DAD16, GGFPRG12, KR19, FER+13, FTLG11]. Distance-aware [GGFPRG12]. Distance-Based [DAD16].

Domain [GAS+16, GAS+13]. Domains [SW17a]. DPCS [GBD+15]. DPM [GK13].

Dragonfly [CVB15]. DRAM [CAGS17, HCC+14, LJOR13, LLRC17, LCL+14, OTR+18, TMK14, VTS19, XHJY16].

DRAMCache [PG17]. DRAMS [LSC+15]. Drift [SZJK18]. Driven [ME15, ME17, PB15, ZWS+16, CDM13, FTLG11, SLP08, WTOF014, XT09, ZCS06].

Dropping [GFD+14]. DSL [PBY+17]. DSPs [VCJ+17]. Dual [EPS18, WZG+19].

Dynamically [LZ12, PG12, KS11].

eager [JLCR13]. early [JOA+09b, LSL08]. Easy [TDG13]. ECC [CWM16]. ECCs [ZW+19]. ECS [SPM17]. Editorial [CT08]. EECache [CP+15]. Effective [GMG14, HV06, KHI18, PGB16, SSW16, SPS17, WH+05, LWH11, RPL06, SBC05].

Effectiveness [JK16]. Effects [DRHK15, MGI15, CK11]. Efficiency [AJK+12, CAM15, CSK19, HLSW17, LMSE18, LAAMJ15, OTR+18, OAM19, TCS16, ZJ+15, BSWLE13, CWS06, RCG+10a, ZSLX13].

Efficient [AYC16, BC13, CC13, CPS+15, DDU12, DD16, GASP+16, GBN08, HAC13, HEM17, IMS+08, KR19, KAC+18, KHI18, KMG14, LWH11, LDC15, MCB+12, MKKE15, MAD17, NMKS06, PS15, SN17, TDP15, TTS19, WZG+19, YMM+15, ZPC06, ZHS+19, ZJL18, ZZQ+05, APG13, ARS04, CW13, CWCS13, DCP+12, GW08, JSLS13, JOA+09a, KHK+05, LZZB09, LMJ13a, LHZ13, NAS13, PLL10, RDF13, SPGE06, SHC13, SB09, TDG13, XCC+13, ZGC+12, FSYA09, SLA+07].

Efficiently [NRQ16a, PCT12, RHC15, ZWL+19].

[JLER12, VED07]. Embedded
[GTG+16, GKECE17, KE15, KTA16, CPP08, CDM13, GHS12, MP13, SCH13, SD12, XT09].
embedded [KKM+13], emergences [RG+10b], emerging [DXM11, XCC+13].
empirical [AvRF07]. Emulation
[NZ15, TKKM15]. Emulators
[HHC+16, TKKM15]. Enabling [BGG+15, CC18, HNKK17, KH+18, SKAE16].
Encoding [TDP15, ZX19]. End [ZJ+15].
Endurance [WDXJ14]. Endurance-aware
[WDXJ14]. Energy [AJK+12, AYC16, AS17, CPS+15, DH16, GKE17, GFD+14, HMYZ15, JOA+09a, KAC+18, LMSE18, LSC+15, LMA+16, MCB+12, MTK18, MKKE15, MAD17, MPW+17, OTR+18, PM17, RTK15, SW17b, SN17, SB09, TCS16, TTS19, ZJ+15, ZFT+18, ZCF18, AVG12, BSWE13, CWS06, CWSC13, FBWE13, GWS13, GKP14, LTG12, LG09, LMY+13b, LHZ13, SPGE06, SHC13, TDG13, ZHD+04, ZVYN05, ZGC+12, ZSLX13].
Energy- [SB09]. Energy-Efficient [AYC16, CPS+15, KAC+18, MKKE15, MAD17, SN17, TTS19, JOA+09a, CWSC13, LZY09, LHZ13, SPGE06, SHC13, TDG13, ZGD+12].
Energy-Optimal [SW17b].
Energy-Performance [MTK18, ZCF18].
Energy-Proportional [DH16].
Enforcement [AHA+19, GW07]. Engine
[LP17, PB15, RMA14, WLZ+13, CW13].
Engines [MG15, TBS06]. Enhance [GAM12]. Enhanced [TKM14].
enumeration [SWH09]. Environment
[KMG14], environments
[RG+12, WWWL13]. EOLE [EPS17]. Era
[GBD+15, LNLK13, PCT12]. Error
[DGI+14, CWMC16, DSH+18, LSC+15, SPM17, TJK18, YEI+14, CZZ+13, LKL+13].
Error-Correcting [SPM17].
Error-Tolerant [DSH+18]. Errors
[FWJ+16, ZWS+16]. essence [JEBJ08].
Estimation [WAST16, XHJY17, LG12].
Evaluate [TDO16a]. Evaluating
[CCM+16, CWS06, HWH+11, SSK11, SW17a].
Evaluation
[BC13, CHE+14, FWJ+16, AvRF07, KWT10, LCC11, LAS+08, RGG+12, ZK05].
Evaluator [JSL13]. Evaluator-executor
[JSL13]. event [GW07]. Evolving
[DGX+16]. Examining [WSS+16]. exascale
[DXMJ11]. ExaStencils [KL19]. exception
[HW14]. Exceptionization [YKLM17].
Exclusivity [YDL+17]. Execution
[AS17, CC18, D17, GMGZP14, HAC13, HEM17, KS16, ME15, MAD17, NZ15, PVA+17, PS15, SEF+19, SYE19, VSD16, WLZ+13, ZX19, ZC16, GB06, LZ12, LHZ13, SJA12, VTN13, XIC12, ZG05].
Executions [ND17], executor [JSL13].
Exhaustive [KWT10]. Existing [YEL+14].
Expanding [YBSY19]. Expansion
[PM17, ZLC+15]. explicit [SL12].
Exploit [AAC+16]. Exploiting
[AYV13, ASK+16, HWJ+15, KG10, LW+19, MA08, NKE16, YEL+14, YZ08, YZ+10, ZX16, LYYB07, PCT12, RLS13, SNL+04, JOA+09b]. Exploration
[BKM17, KL19, MNC+16, CPP08, IMS+08, KWT10, VHKP11, WLZ+10].
Explorations [G+15]. Exploring
[CK11, JK13, JOA+09b, MB12, MK05, SKPD19, BE13, DX13]. Exposing
[CSK19]. Express [JDC16]. Expression
[BC13], expressions [JSH19].
Expressiveness [PC13]. Extendable
[CXW+12]. extended [SV08]. Extending
[DBH16, DSH+18, JED19, VC17].
extension [DCP12]. Extensions
[KHS+14]. Extractor [DP15]. Extreme
[CAY+18, JLY+18a]. Extreme-Scale
[CAY+18, JLY+18a].
Factorizations [AP17]. Facts [Mic16].
Failures [NRQ16a]. Fair [LMC13].
Fairness [GW07, LY16]. Falcon
[CNS16a]. false [BCV13]. Fast
[BC13, CCPG13, KCP13, KWH+05].
Finding MPW [AZG17, BSSS14, EE11, HYYAM16, OAM19].

Finite [OAB12]. Fine [AZG17, BSSS14, EE11, HYYAM16, MPWt+17].

Fine-Grained [BSSS14, MPW+17, YEI+14, EE11, WM11, LT13]. Finite [LVR+15, VW11].

Floating-Point [ASS17, BWG+12]. Flow [BRJM15, CWW+16, DMR+16, GAM12, HAC13, LY16, MMT+12, SMKH15, FSAY09, JA14, KHL+13, MBKM12, Nas13, PC13, TG07]. Floating-Plane [DSK19]. Format [BJWS18].

Formulating [MAN+08]. Four [TDO16a].

FPGA [CS13, CWW+16, CDPD13, MTK18].

frame [GK13]. frame-based [SK13].

Fusion [FBWS13, GNB08, PI12]. fractal [YJY+13]. fractal-based [YJY+13]. Fraction [SPS17].

frame [GK13]. frame-based [SK13].

Fusion [FBWS13, GNB08, PI12]. fractal [YJY+13]. fractal-based [YJY+13]. Fraction [SPS17].

frame [GK13]. frame-based [SK13].

Fusion [FBWS13, GNB08, PI12]. fractal [YJY+13]. fractal-based [YJY+13]. Fraction [SPS17].

frame [GK13]. frame-based [SK13].

Fusion [FBWS13, GNB08, PI12]. fractal [YJY+13]. fractal-based [YJY+13]. Fraction [SPS17].

frame [GK13]. frame-based [SK13].

Fusion [FBWS13, GNB08, PI12]. fractal [YJY+13]. fractal-based [YJY+13]. Fraction [SPS17].

frame [GK13]. frame-based [SK13].
[BGG+15, HLSW17, MBKM12, YXK+12].

GPUs [ZJJ+16].

GPU [BJWS18, DS16, HLR+13, JED19, JGSM15, KHN+18, LHC+17, LMZ+18, LAMMJ15, LFCL+13, RBB+19, SNF+19, TBC+12, VC16, VZS+18, WGO15, ZSLX13].

GPU-accelerated [JED19].

GPU-Based [WGO15].

GPUs [ASS17, CSK19, DS16, DNT16, FBWSS+13, JAK17, KR19, LRBG15, NC15, SHLM14, WYCC11, YBSY19, ZSM+16].

gradient [HAJ+12].

gradient-based [HAJ+12].

Gradients [FWJ+16].

Grain [AZG17, HYYAM16, LMESE18, MAD17].

Grained [BSSS14, MPW+17, TD16, YEE+14, EE11, KCP13, LT13, WM11].

Granularity [DRHK15, NRQ16a, TKM14].

Graph [CNS16a, KKA16, YXWY+12, ZLJ18, DS12, LFY09].

Graphics [ASS17, FSYA09, ZSLX13].

Graphs [BRJM15, LC16, RHC15, VGY16, BZS13, DDD12, MG13].

Guarded [TS05].

Guided [GTT+16, HWL+19, CS13, LZL+13, RC+10b, SSU+13].

Hadoop [KHS+14].

Halide [VCJ+17].

halting [ZVY05].

Hamming [CVB15].

handling [HWM14, WHH+11, LW11].

HAP [WJCX17].

Hardening [PHBC17].

Hardware [BGG+15, CDPN16, DHK18, DD16, JDZ+13, KAC15, LMMJ+13b, NDP17, PVA+17, RHLA14, SKAEG16, SWF16, TGAG+12, USCM16, WC+16, ZHS+19, ZLC+15, ZSM+16, ATGN+13, CS10, CI13, FSYA09, GNB08, HCC+14, MMdS06, OAB12, RLS13, REI12, YJFT13, ZSCM08].

Hardware-Accelerated [SWF16].

Hardware-Assisted [CDPN16, JDZ+13].

Hardware-Based [ZLC+15, ZSM+16].

hardware/software [CS10, HCC+14, MMdS06].

Hash [SBS16].

Hash-Based [SBS16].

HASHCache [PG17].

HC [CDPN13].

HC-CART [CDPN13].

header [VED07].

Healthy [JLJ+18b].

heap [WVY+12].

Heterogeneity [PG17, SB09].

Heterogeneity-Aware [PG17].

Heterogeneous

[AEJ+16, ASV+16, ASF17, CNS16a, CWW+16, DMR+16, FDP+14, GAT+16, GHH15, HAM17, HYZ15, KRHK16, LP17, PG17, PBY+17, TDO16a, TDO16b, TTS19, USCM16, WGO15, ZFL18, BBG13, KNBK12, LH13, PM+12, TDG13, VE13, WFKL10].

Heuristics [MKKE15, TR13].

hide [CST+06].

Hiding [GW08].

Hierarchical

[ASK+16, CDPN16, ZGP15, SW13].

Hierarchies [SHE+16, DJX13].

Hierarchy

[AYC16, ZDC+16, ZSM+16].

High

[CAY+18, CHE+14, CAMJ15, GCK18, JED19, ME17, SU+15, SLJ+19, TCS16, TM14, USCM16, ASK13, BCN10, CK11, CD13, GW08, KBR+13, OGK+12, SRLPV04, SD12, ZVYN05].

High-Efficiency [CAMJ15].

High-Level

[CHE+14, BCN10].

High-Order

[CAY+18].

High-Performance

[GGK18, SLJ+19, TM14, USCM16, JED19, CK11, CD13, GW08, KBR+13, SRLPV04, SD12, ZVYN05].

high-radix [ASK13].

high-throughput [OGK+12].

Highly

[TMP16].

Histogram [FWJ+16].

hits [CA11].

HMTT [HCC+14].

Homogeneous

[CC18].

HotSpotT* [KWM+08].

HPAR

[ZBH+13].

HPC

[ACA+19, MP13, PLT+15, SLJ+18, ZPR+17].

HP CG [AYL+18].

HRF [GHH15].

HRF-Relaxed [GHH15].

HTML

[ZBH+13].

HTML5 [NH16].

HW

[KMG14, LKY+15, TS15].

HW/SW

[KMG14].

Hybrid

[AR13, CA11, DXM11, HWJ+15, YJE+16, KAC+18, WJXC17, CS13, DZC+13, HCC+14, MMdS06, RBM010, WLZ+10].

Hybrid-Memory-Aware [WJXC17].

I-Cache [ZWY17].

I/O

[DCP+12, RHLA14].

IATAC [AGVO05].
Identification [WCI+16]. Idiom [KKM+13]. Idle [SEF+19, WFKL10].

Kernel [DSK19, LP17, SNN+19]. kilo [CSVM04]. kilo-instruction [CSVM04]. L1 [HK14, LZL+13]. L2
[AGVO05, CST+06, SLP08, SBC05].

L2-miss-driven [SLP08]. **Lane** [WWC+16].

Language [CNS16a]. **Languages**

[DHD+14, YKM17, NED+13]. **LAPPS** [KFEH18]. **Large** [NRQ16a, SKH+16, KWCL09, RCV+12, SMK10]. **Large-Scale** [SKH+16, RCV+12, SMK10].

Last [CPS+15, LMB13, WDX14, WJXC17, AGI+12, AIVL13, VSP+12, ZDC+12].

Last-Level [CPS+15, LMB13, WDX14, WJXC17, AGI+12, AIVL13, VSP+12, ZDC+12].

Latency [HAM17, HK14, KCA+13, PM17, MP13, SW13, WYJL10, YLTL04].

Latency-Tolerant [HAM17]. **Lattice**

[CG15b, PAVB15]. **Lattice-Based** [CG15b].

Lattice-Boltzmann [PAVB15]. **Law**

[DSH+18]. **Layer** [ERAG+16, JLC+18a, LGC+16, OTR+18, WAST16].

Layer-Centric [JLC+18a]. **Layout**

[CYXF13, WS17]. **Layout-oblivious**

[CYXF13]. **Layouts** [BSL17]. **LD** [LHC+17].

LDAC [SKH+16]. **leakage** [HL07, MSK05].

Learning [ABP+17, JPS17, JLB+18a, MCB+12, RSK+18, DJB13, LBO14, SPS12, TR13, WO13, WFT014]. **Learning-Based** [JPS17]. **Legacy** [MNOC16]. **legalization** [AR13].

Less [ZPR+17]. **Level**

[BGG+15, CHK+14, CPS+15, HNKK17, HK14, JYE+16, LCS+19, LMZ18, LMB13, MG15, PILT+15, RLLBN15, SWU+15, WDX14, WJXC17, AGI+12, AIVL13, BCV110, EE09, GMW09, GPL+05, LCL+14, PCT12, VSP+12, YBSY19, ZDC+12].

Level-1 [HK14]. **Leveling** [JDZ+13].

Levels [RJSA18, RCV+12, SLA+07].

Leveraging

[GAM12, LMJ13a, NZ15, SLM14].

Liberalization [MY16]. **libraries** [BCM11].

Library [FDF+14]. **Library-Based** [FDF+14]. **Lifet ime**

[PM17, SPM17, TJK18, XCO6]. **LIGERO** [APG13].

Light [CBD15, APG13].

Lightweight [DT17, SLJ+18, BWG+12, DMG13, LNLK13]. **like** [Mic18]. **limitation**

[DTZ+13]. **Limitations** [JR16]. **limited** [CZ07]. **limits**

[JOA+09, MBKM12, MSK05]. **line**

[WDXJ14]. **Linear** [AJE+16]. **lines**

[AGVO05]. **linked** [FLG12]. **Links**

[ACA+19]. **List**

[Aca16, Ano13a, Ano15, Bil19]. **Live**

[ZPR+17]. **liveness** [BZS13, DDU12]. **LL**

[FQRG13, VPTS19, ZCF18]. **LLC-memory**

[FQRG13]. **LLVM** [DAP+15].

LLVM-Based [DAP+15]. **Load**

[OAM19, PGB16]. **Load-Balancing**

[PGB16]. **Loading** [PCM16]. **Loads**

[YPT+16]. **Local** [LVR+15, DHC+13].

Locality [ASK+16, CG15a, KFEH18, SKH+16, ZQX+19, AIVL13, FER+13].

Locality-Aware

[CG15a, KFEH18, SKH+16]. **Localization** [CEP+16]. **location** [KHN+18, YLW08].

Lock [CWCS13]. **Lock-contention-aware**

[CWCS13]. **Locking** [ZYW17].

Loop [ASP17, JK17, LVR+15, PHBC17, BCT13, NCC13, SHLM14, SLM12, YZL+10].

loop-dependent [YZL+10]. **Loops**

[CNS16b, SN17, SRC16, JSL13, KLMP12, RTG+07]. **Low** [BGG+15, CAMJ15, DLJ+12, GG18, GSR+16, GLD16, LGC+16, LHC+17, RRTK15, SSW16, SW13, SWU+15, YEI+14, AGI+12, BB04, CCZ13, GKP14, MA08, SRLP04, ZYH05].

Low-complexity [DJL+12, SRLP04].

Low-Cost

[SSW16, YEI+14, AGI+12, MA08].

low-energy [GKP14, ZYH05]. **Low-latency** [SW13]. **Low-Level**

[BGG+15]. **Low-Overhead**

[GLD16, LHC+17]. **Low-Power**

[CAMJ15, GSR+16, BB04, CCZ13]. **Lower**

[ESR+15]. **lowering** [SSU+13]. **LP**

[GFD+14].

Machine

[ABP+17, DJB13, LBO14, SCEO8, SPS12,

Mechanistic [BEE15, CHE+14]. Media

Mechanization [KLM97, [KFL10], [ME01]].

Management [KKW+15]. Malware [WC1+16]. MAMBO [GDL16]. Managed [YWXX+12].

Microarchitectural

Microarchitecture
[MMS15, ASK13, HS05, RPS06, SSS+04].
microarchitectures [ACGK04].
Microbenchmarking [FMY+15].
Microprocessor
[KCA+13, BE13, YCCY11].
microprocessors [BSO07, RCG+10a].
Migration
[JJL+18a, LTX16, LJMG12, MSF+07].
Million [CAY+18], MIMD [FSYA09].
MINiGLE [GâSA+16], miniature [JEBJ08].
minimal [XL07], MINIME [DS16].
MINIME-GPU [DS16], minimization
[CH06, SSR13], mining [CDPD13]. Minos
[CWC06]. MIPS [SHD15]. misaligned
[LWH11]. Mismatches [APBR16].
misprediction [GW08], miss [SLP08].
misses [CST+06, LS10, VHKP11, Zha08].
Mitigating
[ABP+17, EPAG16, SYX+15, LCL+14].
motivation [DJL+12], mitigations
[CDD12]. Mixed [XIC12], MLC
[PM17, RJSA18]. MLC/TLCD [PM17].
Mobile
[AVRF07, TBC+12]. mode [SW13].
Model [CC18, DAKK19, ESR+15, GGS+17,
NZ15, SRC16, XHJJ17, YCA18, ZHB18,
DC07, MG13].
Modelling
[BB15, KR19, LAS+13, SSC+13, AFD07,
CA11, EE12, IMS+08, XMM04, SSS+04].
Models
[CHE+14, FCD+17, GGS+19,
GH15, VFV16, LAS+08, XIC12].
Modern
[KHYAM16, CCD12, JK13, KNBK12].
Modification
[CDL16], Modify [RLS15].
Modulo
[LMSE18, KCP13]. Moldable
[MKKE15]. Monitoring
[LHC+17, LMMM08, VDSP09, ZZQ+05].
monopolizable
[DJL+12]. Moore
[DSH+18]. Most
[PLT+15], Movement
[ESR+15]. Moving
[DAKK19]. MP
[WLZ+13]. MP-Tomasulo
[WLZ+13]. MPI
[HWX+13, MP13]. MPSocs
[DMR+16]. MRAM
[WXD15].
MRAM-Based
[WXD15]. MSHRs
[CA11]. Multi
[CC18, FMY+15, FCD+17, GVT+17,
JPS17, LGP+16, PGB16, SPS17, ZCF18,
CDPD13, GWS13, LFC13, PM12, RB13,
RPE12, ZGC+12]. Multi-
[FMY+15]. Multi-Agent
[JPS17], Multi-Core
[CC18, SPS17, PM12, ZGC+12].
Multi-Cores
[ZCF18]. Multi-CPU
[PG16], multi-FPGA
[CDPD13].
multi-GPU
[LFC13, RB13], multi-issue
[GWS13]. Multi-Layer
[LGP+16]. multi-server
[RPE12]. Multi-Tenant
[FCD+17]. Multi-Threaded
[GVT+17]. Multibank
[CG15b], Multiblock
[KPM17]. multicharacter
[CW13]. Multicores
[AVS+16, BHC+16, CC13, CG15a,
CDP16, DS16, DAKK19, HMYZ15,
HEMK17, KE15, KK15, LAS+13,
LMA+16, LHY16, PT17,
PGB16, SLJ+18, SKH+16,
ZDC+16, CG14,
CK11, CWCS13, DEE13,
FBWS13, HWX+13,
LMJ+13b, LCL+14,
LHZ13, RCG+10a,
VE13, WFKL10, ZCW10].
Multicores
[HK14, PB15, TDO16a,
TTS19, MSF+07].
multidimensional
[RTG+07]. Multigrain
[RTG+07]. Multithreading
[AG17]. Multilevel
[XHJY16, YMM+15, JK13, TKJ13].
multimedia
[SV05], multiobjective
[CPP08]. multiplatform
[HLC10]. Multiple
[KHN+18, ZSM+16, GB06,
HVJ06, RCV+12].
Multiplexing
[NDP17]. Multiplication
[YAG+16]. Multiply
[GG18].
Multiply-Accumulate
[GG18]. multiprocessor
[BBG13, GSZ10, LT13].
Multiprocessors
[CP+15, LBM13, APG13,
GPI+05, LAS+08, LM05,
LPZI12, LMMM08, SM10].
Multiprogram
[EMR14]. Multisocket
[CG15a]. Multithreaded
[AG17, JYE+16,
LHY16, DWDS13, GMW09,
NTG13, PGB13,
RGG+12, RCG+10a, XIC12].
multi-threading
[EE09, GWM07].
NAND
[DG+14, SJK18, ZWL+19].
Nanoscale
[GBD+15]. native
[RPE12].
Near [HK14, KCA+13, LP17, MAD17, VFI+17, KCKG14, RPE12]. Near-Data [VFI+17]. Near-Memory [LP17].
Near-Optimal [KCA+13, KCKG14].
Near-Threshold [HK14]. Need [ZPR+17].
next [SLM12]. Nested [MGSH16, KLMP12].
next [NCC13]. Network [CEP+16, DJC16, EPS18, JPS17, TDP15, VFW16, ZCCD16, ZM15, ASK13, LNLK13, LYYB07].
Network-on-Chip [CEP+16, DJC16, EPS18].
Network-on-Chips [ZM15]. Networks [ACA+19, AMP+16, CVB15, GG18, GR15, MWJ19, RSK+18, ZFF+18, BKA13, LWWH12, PRMH13, SMK10, SEP07].
networks-on-chip [LWWH12]. Neural [GG18, GR15, MWJ19, RSK+18, TDP15, ZFF+18, Jim09].
Neuromorphic [LCS+19].
next [OAM19]. no [HL07]. NoC [HWX+13].
NoC-based [HWX+13]. NoCMsg [ZM15].
NoCs [WYJL10]. Noise [AAI+16]. Non [DJL+12, HK14, YKM17, BZS13, WDXJ14].
Non-Java [YKM17]. Non-monopolizable [DJL+12]. non-SSA [BZS13].
Non-Uniform [HK14]. non-volatile [WDXJ14]. Nonlinear [SRC16].
nonuniformity [WA08]. Nonvolatile [SPM17, DXMJ11, DJX13]. Not-taken [PS12].
Novel [LMZ18, ZFF+18, ZWL+19, CCZ13].
NUCA [GFD+14, HK14, LJM12].
NUCA-L1 [HK14]. NUMA [RSK+18].
NUMA-Aware [RSK+18]. NUMA-Caffe [RSK+18].
NVM [WSC+13]. NVM-based [WSC+13]. NVMs [PM17]. NVRAM [ZLYW18].

O [DCP+12, RHLA14]. Object [YLW08, ZLYW18, TDG13, VED07, WM10]. objects [WWY+12]. oblivious [CYXF13].
Off [ACA+19, BKM+17, AVG12, AGVO05].

O-CHIP [BKM+17]. Off-chip [HNKK17, MTK18, MGA+17]. offset [CZ07].
On-Chip [VFW16, JPS17, BKA13, CK11, EE11, LNLK13, SMK10, TDG13, XCC+13].
Online [BSS07, CG15a, CEP+16, TTS19, WAST16].
on [WYJL10]. OoO [MAD17]. Open [BGG+15]. Open-Source [BGG+15].
OpenCL [WGO15]. OpenMP [PC13].
PC17, YCA18. OpenStream [PC13].
Operating [HK14]. Operations [BSS17, GGK18, LP17]. opportunities [KGG10, XM04].
Optical [CWW+16].
Optimal [CH06, CBD15, GKI3, KCA+13, Mic16, SW17b, SWH09, ZGP15, KCKG14, XCO6].
optimising [AKB+14]. Optimization [AYL+18, ABP+17, BS17, DAP+15, FXC+15, GGS+17, GGS+19, KTA16, LVR+15, MNC+16, RMA14, VFW16, YKM17, YDL+17, ZCF18, CFH+12, CXW+12, CYXF13, DJX13, FT10, GHS12, HS06, HEL+09, HVJ06, JPS17, KHW+05, KWTDO9, P13, SL12, SSR13, SL09, VV11, ZFT+18, ZWHM05, ZCS06].

optimization-phase [KHW+05].
Optimizations [EPS17, JMK16, ZWS+16, LCH+04, LHY+06]. Optimize [BDH16].
Optimized [PKPM19, GS12]. Optimizer [LYK+15].
Optimal [AP17, BJWS18, DGGL16, HHC+16, PAVB15, RLBBN15, STLM12, TJKM15, WDX15, YXW12, YRHLB13, ZSLX13, ZFF+18, YXK+12, WKO9].
Optimum [MP04].
Ordering [GVT+17].
Order [BEE15, CAY+18, HYAM16, MAD17, PS15, SPH+17, BB04, KWTDO9, SJA12, YJTF13].
order/out [BB04].
Ordering [ABP+17].

organization [ASK13, GGFPRG12].
Oriented
Out-of-Order

Overhead

Overheads [BCM11, SSU+13].

Overhead

Overlong [ZWL+19].

P [DDT+17]. Packed [BSL17]. packet

Page [WZG+19, LMJ13a]. Parallel

Parallelism [CCM+16, CG15b, DHK18, GVT+17, HWJ+15, LMZ18, MGA+17, NKH16, SDH+15, YBSY19, ZX16, EE09, FLG12, PCT12, SLA+07, WTP14].

Parallelization [BCM11, GGS+17, KPP+15, DC07, LT13, PKC12, YRHB13].

Parallelizing [NKH16]. Parallelogram

ZGP15. Parameter [MG15]. parametric

SLM12. Pareto [SW17b]. PARSEC

[CCM+16]. PARSECs [CCM+16]. parser

[ZBH+13]. Parsing [PCM16, ZBH+13].

PARTANS [LFC13]. Partial [ZX16].

partially [GGFPRG12, JLER12]. Partition

[WWC+16, WJXC17, WO13]. partitioned

partition [RP06]. Partitioning

[CG15b, FLG12, SBS16, SLJ+19, HAJ+12, LCL+14, ZDC+12]. Pass [SPS17]. Passing

[BM15]. PATCH [RBM10]. Path

ZX9, TS05. paths [PS12]. pattern

[CXW+12, PRMH13, VW11].

pattern-oriented [CXW+12].

pattern-specific [PRMH13]. patternized

[KCP13]. Patterns [CSK19, DDT+17, HJW15, LTX16, HLRR+13, JSH09].

PCantorSim [YJJ+13]. PCiE [MTK18].

PCM [LWF+16, RJS18]. penalties

[Hl07]. penalty [GW08]. pending [CA11].

per-task [LMJ+13b]. Per-thread

[DEE13, BTS10]. perceptron [TS05].

Perfect [BRJM15]. Performance

[AEJE16, AYL+18, BEE15, DFG+14, GGS+19, GGK18, HMYZ15, JGSM15, KR19, LMZ18, LYH16, LY16, ME17, MTK18, MAD17, NDP17, Per18, RVOA08, RJS18, SLJ+19, TCS16, TKM14, USCM16, WCI+16, WLB19, XHY17, XFS+19, ZFT+18, ZYCYZ10, ZCF18, AF12, ATGN+13, BSW13, BTO10, CK11, CRSP09, CDM13, FBWS13, GW08, HP04, HL07, JED19, KBR+13, KMP12, KG10, LM05, PGB12, RWY13, SRLPV04, SD12, WKCS12, XT09, YCC11, ZVYN05].

Performance-aware [ZCYZ10].

performance-driven [XT09].

Performance-Energy [HMYZ15].

performance-friendly [CRSP09].

permanent [SC+13]. Permissions

[ERAG+16]. Permutation [ZX19].

Permutation-Based [ZX19]. Persistence

[WZG+19]. Persistent [ZYW18].

Perspectives [PLT+15]. PGAS

[KFEG18, SAKEG16]. Phase

[ABP+17, HAS16, JDZ+13, YMM+15, KWH+05, KWTD09, ZDC+12].

Phase-Change [YMM+15].

Phase-Ordering [ABP+17]. phased

[HLR+13]. Photonic [DH16]. Piecewise

[DAP+15]. PIPA [ZCW10]. Pipeline

[ZJJ+15, HP04, JA14]. pipelined

[PLL10, ZCW10]. pipelining

[JSL13, RVOA08, RTG+07]. place [GS12].

Placement [MNS16, MA08, SSK11].

Places [Per18]. Plane [DSK19, ZCD+12].

Platform [ZLYZ16]. PLDS [FLG12]. Point

[ASS17, BWG+12, CS13]. pointer

[SV05, YLT04]. pointer-intensive

[YLT04]. points [Nas13]. points-to

[Nas13]. Poker [ZX19]. Policies

[GFD+14, SYX+15, EE09, SSK11]. policy

[JK13]. Pollution [SYX+15]. Polyhedral
Polyhedron [GGS+19], polymorphic [PM12], polymorphous [SNL+04], polytopes [SLM12].

Power-Aware [ACA+19, DTD16, SEP07, WYJL10].

Power-Ecient [HAC13, KH18].

Power-Gating [ZCF18].

Power-performance [YZL10].

Power/Capacity [GBD+15].

Power8 [XFS+19].

Predictable [SF18, XHJY17].

Predicting [WYCC11].

Prediction [LTX16, KWCL09].

Predictive/adaptive [RBM10].

Predictors [EPAG16].

Prefetch-Fraction [SPS17].

Prefetcher-Caused [SYX+15].

Prefetchers [LBM13].

Prefetching [KFG18, LKV12, OAM19, SPS17, WPJ19, AGI+12, CA11, GB06, SBC05, WFKL10, YLTL04].

Pressure [SKP19, SLP08, SSR13, YZ08].

Preventing [WDX14].

Preventing [TBS06].

Priority [ASV+16, XHJY16].

Private [DRH15, SSK11].

Private/Shared [DRHK15].

Probabilistic [DAD16, EE12].

Problem [ABP+17, DBH16].

Process [LTX16, KWCL09].

Processing [CC13, HNKK17, MYG15, MYKG16, PBW17, ZLJ18].

Processing-In-Memory [HNKK17, MYKG16, MYG15].

Processor [AEJE16, AHA+19, BEE+15, DSK19, HMYZ15, HWL+19, LP+17, XFS+19, CS13, GW08, LGAZ07, LYYB07, SJA12, SHC13, SSPL+13, WFK210].

Processor-Tracing [HWL+19].

Processors [ASV+16, CAMJ15, DBH16, KS16, SHD15, VFJ+17, YWXW12, CRS09, CDD12, CSVM04, DEE09, EE12, FBWS13, GMW09, GWS13, GKP14, HWX+13, KLMP12, LMCV13, P12, RGG+12, SRLP+04, SLP08, X09, YZL+10].

Productive [KFG18].

Productivity [SKA16].

Profile [CS13, SS04, SKKB18, SSR13, WFT14].

Profile-based [SS04, SKKB18].

profile-driven [WFT14].

Profiling [CS13, SSR13].

Programming [DSR15, PVA+17, ZHB18, DS12, PJ13].

Programming-Based [AJE16].

Programs [GKCE17, KPP+15, MPPS18, MNSC16, RH15, WLZ+13, WGO15, PC13, PGB13, WO13, YLW08].

Projection [TT19].

Protection [LJMG12].

Proportional [DH16].

proporportionality [AVG12].

proprietary [JEB08].

protect [BVIB2].

Protecting [NRQ16a, CWC06].

Reviewers
[ACa16, Ano13b, Ano15, Bill19, Ano13a].
Revisited [AMG16, MBY13, VS08].
Revisiting [GFD+14, KAC15, MMS15, WWWL13]. RF
[TBC+12]. RF-I [TBC+12]. RFVP [YPT+16]. Road [SWU+15]. ROCCC
[BCVN10]. Rollback [YPT+16].
Rollback-Free [YPT+16]. Rooftine [ESR+15]. ROP [ZHS+19]. router
[APG13, ASK13]. routes [KCP13].
Routing [ACA+19, CVB15, BRSGJ12, PRMH13]. row [JLCR13]. RRAM [LCS+19].
RRAM-Based [LCS+19]. RTL [BGG+15].
Runtime [DBH16, DT17, KPP+15, LTG12, TTS19, YAG+16, YRHBL13].
Runtime-Reconfigurable [DBH16].
Sabrewing [BWG+12]. Safe [YPT+16].
Safe-to-Approximate [YPT+16].
Salvaging [JDZ+13]. Sampled [JYE+16, HS05]. Sampling
[Lee16, ZWS+16, JYJ+13]. Scalability
[GVT+17, LMZ+16, CWCS13, RVOA08].
Scalability-Aware [GVT+17]. Scalable
[ASK13, CNS+16b, Per18, SYE19, TCS16, ZLYW18, ZLJ+18, ZM15, CWCS13, KCKG14, LNLK13, LMK13a, SSH+13, VW11]. Scalar
[SIP+17]. Scalarization [LAAMJ15].
Scale [CAY+18, DAKK19, JLJ+18a, SKH+16, RCV+12, SMK10]. Scaling
[BHC+16, GBD+15, MKKE15, ZLC+15, XM04]. SCALO [GVT+17]. Schedule
[GGS+17, GGS+19, LMSE18]. Scheduler
[TD16, USCM16, CWCS13, KCP13].
Schedulers [KKAR16]. Scheduling
[AJE+16, ASV+16, DHD+14, MKKE15, SKPD19, XHJJ16, BBG13, CG14, EE12, MBKM12, SPGE06, SWH09, SSR13, TBC+12, XL07, ZGC+12, ZYCC10].
Scheme
[WPJ19, ZWL+19, BBG13, CCZ13]. schemes [KCKG14]. SCIN [NTG13].
SCIN-cache [NTG13]. SCORE [ZWL+19].
SCP [SLJ+19]. Scratchpad
[JAK17, RTK15, YBY19, CS10, LFX09].
script [KBR+13]. script-based [KBR+13].
Seamlessly [KNBK12]. Search
[KL19, ZI19]. searches [KHW+05].
SECRET [LSC+15]. Section [DSR15].
Section-Based [DSR15]. Sector [CAGS17].
Sectored [CAGS17]. secure
[CRSP09, SSPL+13]. Selecting
[BE13, TDO16b]. Selection
[MNC+16, SNN+19, ZGP15, MBY13].
Selective [KMG14, LSC+15, WPJ19, LWWH12, MA08, VSP+12]. Self
[LLRC17, BBG13]. Self-Balancing
[LLRC17]. self-scheduling [BBG13].
SelSMaP [WPJ19]. Semantic
[AP17, HCC+14]. Sensible [LMA+16].
Sensing [WCI+16]. sensitive [Nai13].
sensitivity [DWDS13]. Sensor [DSK19].
Sensor-Processor [DSK19]. Sequences
[ABP+17, MNC+16, KHW+05, PJ13].
Sequential [WLZ+13, LZ12]. series
[LTG12]. Server
[AVG12, FCD+17, LTG12, RPE12]. Servers
[LTX16]. Service [GMW09, GSZ10]. set
[A13, H07, KWC09, ZK06].
set-associative [HL07, KWC09]. sets
[DDU12]. setups [RPE12]. sFree
[BRSGJ12]. Shape [MW19]. Shared
[DRHK15, GPK14, HMY15, KE15, LB13, PG17, SAK16, SLJ+19, WJJC17, XHJJ16, AGI+12, AVL13, GGFPRG12, GSZ10, HLR+13, KGK10, LWBB12, RGG+12, WM11, ZPC06]. shared-data
[HLR+13]. shared-memory [ZPC06].
Shared-port [GKP14]. Sharing
[GG18, JAK17, YDL+17, ZJJ+15, SSK11].
shotgun [FBHN04]. showdown [SCG08].
shuffler [BVIB12]. Side
[AHA+19, BHC19, BVIB12, DJL+12].
Side-Channel [BHC19, BVIB12].
signatures [OAB12]. Significance
[PVA+17]. Significance-Aware [PVA+17].
Significantly [MP13]. Silent [PLG19].

Silicon [PCT12]. SIMD [AR13, DSK19, FSYA09, GS12, GR15, HEL+09, KMG14, LHW+19, MYG15, MYKG16, RMA14, SMKH15, WWC+16, ZX19, ZX16]. SIMPO [ZLYW18]. SIMT [CC18, LAAMJ15].

Simulating [RPE12]. Simulation [JYE+16, SLJ+18, HS05, JJ+13, RCV+12]. Simulations [CAY+18, HEMK17, JJL+18b].

Single-referent [WK09]. size [MBY13].Skeleton [NC15]. Skeleton-Based [NC15].

Skyline [HYYA16]. Skylake-Based [HYYA16]. SLOOP [ASPI7]. Slowdown [XHJY17]. SM [ZJJ+15]. Smart [AGVO05].

SMT [EE12, LMCV13, PLT+15, SLP08, VS11, WA08]. Snapshot [LDC15].

Snippets [SWU+15]. Snug [IL07]. SoC [CWW+16]. SoCs [DFD+14]. Soft [FWJ+16, LKL+13]. Software [BCHC19, DMR+16, GSC17, LCL+14, MGI15, RCV+05, SBS16, SE07, VJC+17, VZS+18, YXXW12, CS10, HWH+11, HCC+14, MM506, RVOA08, RCG+10b, RTG+07, TGA12, YRHB13].

Speculation [MI15, GPL+05, SHLM14]. Speculative [VS08, DC07, GPL+05, LCH+04, LHY+06, LZ12, LHZ13, NTG13, VS11, XIC12, XC06, YRHB13, ZSCM08]. speed [GB06, RPE12]. Speeding [GGS+19]. spill [XT09]. Spilling [CBD15]. split [RFD13, TBS06]. splitting [WWY+12].

SPM [KE15]. SpMV [BJWS18, ZLYZ16]. SpMxV [KFG10]. sporadic [ZGC+12].

spurious [BCVT13]. SR [DCP+12].

SR-IOV [DCP+12]. SRAM [GBD+15].

SSA [AVRF07, BZS13, CBD15]. SSA-based [AVRF07]. SSD [HWJ+15, KHS+14].

Stabilization [SHD15]. stack [CH06, VS08, SSM08]. Stacked [CWCM16, LGS+16, NRQ16a, NRQ16b].

Stacking [APBR16, ZSLX13]. state [GPL+05]. Static [AFD12, BHC+16, PGL19, SHY14, JSM+04].

statically [NED+13]. Stealing [CG15a, ZCQ+19]. Stencil [CNS+16b, XFS+19]. Stencil [CNS16b, XFS+19]. Stencil-Based [XFS+19]. Storage [LTX07].

Streaming [CNS+16b, MKKE13, PC13, WO13]. Streaming-Based [CNS+16b]. Strength [GAM12]. Strength-Based [GAM12].

Stride [WPJ19]. string [CW13, PLL10, TBS06]. string-matching [CW13, PLL10, TBS06]. Strings [SM17].

Studying [CBD15]. Sub [ABP+17].

Sub-Sequences [ABP+17]. subranked

Thread-Data [LWL18]. Thread-Level [LMZ18, MG15, YBSY19, GPL+05]. Thread-management [RGC+10a].

Threaded [GVT+17]. thread [KS16]. Threading-Based [KS16]. threads [GB06, LZ12, ZSCM08]. Three [FW16].

[CC13, ZGP15, BCVT13]. **Time**

[BC13, CEP+16, KE15, KTAE16, Nas13, PKPM19, SEF+19, CCD12, GKI3, KHL+13, LTG12, LMCV13, RGG+12, ZGC+12]. **Time**-[BC13, Nas13]. **time-critical**[RGG+12]. **time-series**[LTG12].

timekeeping [WM11]. timestamp [RLS13].

TLBs[LBM13]. **TLC**[PM17]. **TLP**[LMZ18, SNL+04]. Token [RBMI0].
token-counting [RBMI0]. Tokens [ZFL18].

Tolerance [AAI+16, RCV+05]. Tolerant

[DSH+18, HAM17, LCC11]. Tolerating

[KWCL09, YLT04]. Tomasulo [WLZ+13].

Topography[MMT+12]. Tool

[GD16, MPW+17, PD17]. Tools

[BKM+17]. Topological

[CVB15, KKM+13]. Topologies [DJC16].

Topology[DHD+14]. **Topology-Aware**[DHD+14]. TornadoNoC [LNLK13]. Trace

[HWMI14, CWS06, HCC+14, SWH09].

trace-based [HWMI4]. Traces

[HEMK17, SLJ+18, TG07, ZG05]. Tracing

[HHL+19, HCC+14]. Tracking

[LLRC17, MMT+12, KHL+13, VTN13]. trade [AVG12]. trade-off [AVG12].

Tradeoffs [GPI+05]. traffic

[FQRG13, LYYB07]. **Tranquilizer**[PGB12].

Transaction[ZCCD16, SSU+13].

Transactional

[DHK18, DD16, GMSGP14, NZ15, PD17, RLS15, VSD16, ATGN+13, RLS13, SSU+13, TCG+12, WKS12, YJTF13].

Transactions[DD16, LDC15, SSU+13].

Transcendental[SSRS15]. **Transfer**

[HHC+16]. transfers [STLM12].

transformation[JSL13]. transformations

[BCVN10, RCG+10b, SLM12]. transition

[CW13]. transitioning [HWMI4].

transitions [SW13]. Translation

[HHL+19, JED19, LHW+19, TKKM15, HWH+11, LMJ13a]. **Translator**

[SHY14, HLC10]. **Translators**

[DGGL16, GHS12]. Transparency

[GTKC17]. **Transparent**[HS+19].

Transport[AJE+16]. transpose [GS12].

transpose-free [GS12]. **Traversal**

[RMA14]. Tree [ZX19, CDPD13, PRMH13].

Trees [JGSM15, BRSJG12]. **Triangular**

[BSL17]. Triggered [AJE+16]. **Triple**

[LP17]. **TRIPS**[SNL+04]. **TSV**[NRQ16a].

Tumbler[PGB16]. Tunable [MGSH16].

Tuning[CG15a, JGSM15, JA14, MG15, WG17, XFS+19, WKS12]. **Turbo**[KH18].

turn [AVG05]. turn-off [AVG05]. Two

[CWM16, JYE+16]. Two-Level [JYE+16].

Two-Tiered[CWM16]. type [AR13].

Types[PD17].

UMH [ZSM+16]. Understanding

[EPAG16, LS10, MMT+12, VE13]. Unified

[TG07, ZSM+16, YXK+12, KRHK16].

Uniform [HK14]. Units [GG18, GÁSÁ+16, SEF+19, GÁSÁ+13, HVJ06, YCCY11].

unloading [ZK05]. **Unreliable**[PVA+17].

Unsynchronized[DSR15]. **UPC**

[SKAEG16]. update [LYZ09].

Use [SW17a]. User [KKAR16, HS+19].

User-Assisted[KKAR16].

User-Transparent [ZHS+19]. uses [GB06].

Using [AZG17, AMP+16, ABR+17, BSL17, CCL+13, DAKK19, ESR+15, FDI+14].

GÁSÁ+16, GR15, HJW15, JGSM15, KR19, RLBBN15, SYX+15, SPS17, SPS12,

SSH+13, SRS15, WO13, ZLYW18, ASK13, BZS13, CAMJ15, DDU12, DWDS13,

DXMJ11, DJB13, EJ11, HVJ06, JSH09,

JSM+04, KKM+13, MG13, RCV+12,

SHLM14, SWH09, SRS13, TTS19, YCCY11,

YCA18, ZHD+04, CST+06]. **Utility**[PB15].

Utility-Driven[PB15]. **Utilization**

[CAGS17, LWF+16, SKKB18, TQK18, VZS+18, YXWW12, ZCD16, XCC+13].

Utilizing [TBC12, KCP13]. **UVMs**

[KRHK16].
References

Akturk:2016:ABN

Andreetta:2016:FPF

REFERENCES

1544-3566 (print), 1544-3973 (electronic).

ni, and John Cavazos. Mi‐
COMP: Mitigating the com‐
piler phase-ordering prob‐
lem using optimization sub‐
sequences and machine learn‐
ing. ACM Transactions on Ar‐
chitecture and Code Optimi‐
zation, 14(3):29:1–29:??, Sep‐
tember 2017. CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

guished reviewers ACM TACO 2014. ACM Transactions on Architecture and Code Optimi‐
zation, 13(3):31:1–31:??, Sep‐
tember 2016. CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

61:??, January 2019. CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

[Aleta:2004:RCC] Alex Aletà, Josep M. Codina,
Antonio González, and David
Kaeli. Removing communi‐
cations in clustered microarchi‐
tectures through instruction
replication. ACM Transactions on Architecture and Code Optimi‐
zation, 1(2):127–151, June
2004. CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

man, Aamer Jaleel, and Lieven
Eeckhout. Maximizing hetero‐
genous processor performance
under power constraints. ACM Transactions on Architecture and Code Optimization, 13(3):
CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

Fraguela, and Ramón Doallo.
Static analysis of the worst‐
case memory performance for

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>DOIs</th>
</tr>
</thead>
</table>
REFERENCES

Akram:2016:BPG

Amme:2007:SBM

Armejac:2013:TIP

Ahn:2016:AEE

Ao:2018:POH

REFERENCES

References

Benatia:2018:BSM

Bakho:2013:DCN

Balasubramonian:2017:CNT

Bahmann:2015:PRC

Bogdanski:2012:SFC

Baroudi:2017:OTB

Bower:2007:ODH

[BSO07] Fred A. Bower, Daniel J. Sorin, and Sule Ozev. Online diag-

Bartolini:2014:AFG

Bardizbanyan:2013:DPD

Boyer:2010:FBP

Bayrak:2012:AII

Bruintjes:2012:SLA

Bentley:2006:IAB

REFERENCES

[Alessandro Cilardo and Luca Gallo. Improving multibank...

Choi:2006:ORR

Carlson:2014:EHL

Coelho:2013:ACI

Cher:2011:EEC

C:2016:FGM

Cattaneo:2016:HAI

Constantinides:2007:ARC

Kypros Constantinides, Stephen Plaza, Jason Blome, Valeria Bertacco, Scott Mahlke,

REFERENCES

3973 (electronic). URL https://dl.acm.org/ft_gateway.cfm?id=3280851&ftid=2014784\&dnw=1\&CFID=100488884\&CFTOKEN=8001fa53c1103ca2-D7EF9E77-A223-C65F-72CBA8F34752B01E.

REFERENCES

Chen:2013:EMT

Crandall:2006:MAS

Cui:2013:LCA

Chen:2016:RER

Co:2006:ETC

Chen:2016:IDO

Cui:2012:EPO

Cui:2013:LOC

Chen:2007:CRL

Das:2016:RDB

Dogan:2019:ASU

DeOliveiraCastro:2015:CLB

Damschen:2016:EWP

Dou:2007:CCM

Dong:2012:RAE

Do:2016:PEH

DeSensi:2017:BPP

Das:2012:ELC

DuBois:2013:PTC

Dantras:2016:OIB

Carlo:2014:FAA

Stefano Di Carlo, Salvatore Galfano, Marco Indaco, Paolo Prinetto, Davide Bertozzi, Piero Olivo, and Cristian Zambelli. FLARES: an aging aware algorithm to autonomously

Demir:2016:EPP

Diouf:2013:DLM

Drebes:2014:TAD

Dick:2018:IPH

Dubach:2013:DMA

Dsouza:2016:IMS

Domnitser:2012:NMC
[DJL+12] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Non-monopolizable caches: Low-complexity mit-
REFERENCES

Dong:2013:CAC

Dolan:2013:CSL

Dardaillon:2016:NCF

Dublish:2016:CCG

Davari:2015:EGA

Demme:2012:AGC

Deniz:2016:MGM

[DS16] Etem Deniz and Alper Sen. MINIME-GPU: Multicore benchmark synthesizer for GPUs.
REFERENCES

Deng:2018:EML

Debrunner:2019:AAK

Das:2015:SBP

DeSensi:2016:RAP

Dey:2013:RMD

Diavastos:2017:SLR

DeSensi:2016:RAP

REFERENCES

Dong:2011:HCU

Du:2013:DCC

Eyerman:2009:MLP

Eyerman:2011:FGD

Eyerman:2012:PMJ

Eyerman:2014:MTM

Evtyushkin:2016:UMC

Endo:2017:IBV
[FEP17] Fernando A. Endo, Arthur Perais, and André Seznec. On
REFERENCES

Ellango:2015:URM

Fields:2004:ICS

Fowers:2013:PEC

Ferroni:2017:PCM

Kyriakos Georgiou, Steve Keression, Zbigniew Chamski, and

Goel:2014:SPR

Gonzalez-Mesa:2014:ETM

Gabor:2009:SLA

Guo:2008:EHC

Garzaran:2005:TBS

Grigorian:2015:AD

REFERENCES

REFERENCES

REFERENCES

1544-3566 (print), 1544-3973 (electronic).

REFERENCES

Haj-Yihia:2015:CDP

Haj-Yihia:2016:FGP

Ipek:2008:EAD

Isailovic:2004:DCQ

Jothi:2014:TCF

Jatala:2017:SSG

Jiang:2013:HAC

REFERENCES

1544-3566 (print), 1544-3973 (electronic).

Joshi:2008:DEP

Joshi:2008:DEP

Jaleel:2019:DHP

Jia:2015:GPP

Jimenez:2009:GNB

Jensen:2017:ILD

Jeon:2013:RDR

Jang:2012:ACO

Jin:2018:LCM

Jo:2018:DSD

Jones:2009:EER

Jones:2009:ELE

Jain:2017:CMA

Jantz:2016:IIP

Michael R. Jantz, Forrest J. Robinson, and Prasad A.

Jeon:2009:AAP

Jeong:2013:EET

Juang:2004:IBP

Jiang:2016:TLH

Jiang:2013:PAP

Komuravelli:2015:RCH

REFERENCES

CODEN ??? ISSN 1544-3566 (print), 1544-3973 (electronic). URL https://dl.acm.org/ft_gateway.cfm?id=3233299&ftid=2001284&dwn=1&CFID=100488884&CFTOKEN=8001fa53c1103ca2-D7EF9E77-A223-C65F-72CB8F34752B01E

Kourtis:2010:ECO

Kondguli:2018:CME

Kerschbaumer:2013:IFT

Kim:2018:CEC

Kaitoua:2014:HED

Kulkarni:2005:FES

Prasad A. Kulkarni, Stephen R.

Kanuparthi:2015:RIC

Kurt:2016:UAS

Kawahito:2013:IRF

Karimi:2015:MMA

Kronawitter:2019:PSS

Kim:2012:IPN

REFERENCES

Kumar:2014:EPG

Kicherer:2012:SPA

Kanakagiri:2017:MMD

Kleanthous:2011:CMD

Kong:2015:CRF

Kiani:2019:ECP

Koukos:2016:BHU

Kleanthous:2011:CMD

REFERENCES

Kalayappan:2016:FRT

Kafshdooz:2016:CTO

Koh:2009:PEO

Kotzmann:2008:DJH

Kulkarni:2009:PEO

Lucas:2015:SSS

Leverich:2008:CEM

[LAS+08] Jacob Leverich, Hideho Arakida, Alex Solomatnikov, Amin...

Lin:2006:RCG

Luo:2013:DIH

Lira:2012:MPA

Lee:2012:WPW

Lee:2017:DBT

Li:2005:PPC
REFERENCES

Lee:2013:TLS

Lim:2017:TEP

Li:2012:DQM

Lotfi:2015:AAC

Liu:2010:UBI

Lin:2015:SSE

Lee:2013:APF

[LT13] Sanghoon Lee and James Tuck. Automatic parallelization of fine-grained metafunctions on a chip multiprocessor. ACM Transactions on Architecture
REFERENCES

Lewis:2012:REC

Liao:2016:DPM

Luporini:2015:CLO

Li:2016:MAP

Liu:2011:EEM

Lin:2018:GTD

Lankes:2012:BSP
Andreas Lankes, Thomas Wild, Stefan Wallentowitz, and An-
REFERENCES

Lu:2016:AFB

Liu:2016:TAA

Lee:2015:NMD

Luo:2007:CNP

Luo:2012:DDS

Li:2013:CCC

Li:2009:TUC

REFERENCES

Mehrara:2008:ESP

Mohammadi:2017:COE

Mysore:2008:FIP

Malits:2012:ELG

Mehta:2013:TSS

Majumdar:2012:MPE

Matheou:2015:ASD

George Matheou and Paraskevas Evripidou. Architectural support for data-driven execution.

Matheou:2017:DDC

Mccandless:2012:CTI

Malik:2013:OSG

Mendonca:2017:DAA

Martinsen:2015:EPT

Muralidharan:2016:DTN

Michaud:2016:SMF

Pierre Michaud. Some mathematical facts about optimal

Michaud:2018:ATL

Melot:2015:FCS

Marathe:2006:ACC

Michaud:2015:RCM

Mazloom:2012:DTI

Martins:2016:CBS

2016. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Nugteren:2013:ASC

Neill:2017:FAM

Nuzman:2013:JTC

Na:2016:JPC

Nagpurkar:2006:ERP

Nair:2016:CEP

Nair:2016:FFC

REFERENCES

Panda:2015:CUD

Biswabandan Panda and Shankar Balachandran. CAFFEINE: a utility-driven prefetcher aggressiveness engine for multicore.

Pu:2017:PHS

Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-Kelley, and Mark Horowitz. Programming heterogeneous systems from an image processing DSL.

Pop:2013:OED

Park:2016:CJP

Patsilaras:2012:EEM

George Patsilaras, Niket K. Choudhary, and James Tuck. Efficiently exploiting memory level parallelism on asymmetric coupled cores in the dark silicon era.

Peterson:2017:TCT

Christina Peterson and Damian Dechev. A transactional correctness tool for abstract data types.

Pericas:2018:EPA

Patil:2017:HHA

Pusukuri:2012:TTD

Pusukuri:2012:MWI

Pusukuri:2013:AFC

Pusukuri:2016:TEL

Proy:2017:CAL

Purnaprajna:2012:MWI

Pradelle:2012:PPB

Park:2019:ROC

Pereira:2019:SPS

Pricopi:2012:BPH

Poovaiah M. Palangappa and

Prisacari:2013:FPS

Premillieu:2012:SSR

Premillieu:2015:EOE

Patsilasaras:2017:RRD

Parasyris:2017:SAP

Pathania:2017:DTM

Pirkelbauer:2019:BTF

Peter Pirkelbauer, Amalee Wilson, Christina Peterson, and
REFERENCES

Alejandro Rico, Felipe Cabarcas, Carlos Villavieja, Milan Pavlovic, Augusto Vega, Yoav Etsion, Alex Ramirez, and Mateo Valero. On the simulation of large-scale architectures using multiple application abstraction levels. *ACM Transactions on Architecture and Code
REFERENCES

Wenjia Ruan, Yujie Liu, and Michael Spear. Boosting timestamp-based transactional

Ruan:2015:TRM

Ren:2014:POE

Ryckbosch:2012:VSM

Rochecouste:2006:CCE

Roy:2018:NCN

Rong:2007:SDS

Rodriguez:2015:VSR

Gabriel Rodríguez, Juan Touriño, and Mahmut T. Kandemir. Volatile STT–RAM scratchpad design and data allocation for
REFERENCES

Rangan:2008:PSD

Rohou:2013:VTI

Strozek:2009:EAE

Sharma:2005:SPE

Scolari:2016:SCP

Shi:2008:VMS

Stenstrom:2012:ISI

Mehrzad Samadi, Amir Hormati, Janghaeng Lee, and Scott

Shen:2014:RSB

Sharafeddine:2012:DOE

Shahbahrami:2008:VES

Serres:2016:EPP

Shi:2016:LLA

Sfakianakis:2018:QPB

REFERENCES

REFERENCES

Shrivastava:2017:EEC

Sankaralingam:2004:TPA

Shekofteh:2019:MSG

Shrivastav:2008:RRP

Sanchez:2010:ACI

Schaub:2015:ISW

Sankaranarayanan:2004:PBA

Sanchez:2013:MIP

Subramaniam:2013:UFC

Samih:2011:EPP

Strydis:2013:SAP

Shobaki:2013:PIS

Suresh:2015:IFM

[SSRS15] Arjun Suresh, Bharath Narasimhan, Swamy, Erven Rohou, and André Seznec. Interception functions for memoization: a case study using transcenden-

Skadron:2004:TAM

Stipic:2013:PGT

Sardashti:2016:YAC

Saidi:2012:OED

Salami:2005:DMI

Shifer:2013:LLA

Sardashti:2017:CCG

[SW17a] Somayeh Sardashti and David A. Wood. Could compression be

Sen:2017:PGE

Spink:2016:HAC

Shobaki:2009:OTS

Simon:2015:STH

Sato:2019:AFS

Seshadri:2015:MPC

Shihab:2018:RFD

[SZJK18] Mustafa M. Shihab, Jie Zhang, Myoungsoo Jung, and Mahmut

Terdsteerasukdi:2012:URI

Therdsteerasukdi:2012:URI

Terdsteerasukdi:2012:URI

Terdsteerasukdi:2012:URI

Tan:2012:BSS

Tan:2012:BSS

Tan:2012:BSS

Theocharis:2016:BSC

Theocharis:2016:BSC

Theocharis:2016:BSC

Theocharis:2016:BSC

Totoni:2013:EFE

Totoni:2013:EFE

Totoni:2013:EFE

Totoni:2013:EFE

Tomusk:2016:FME

Erik Tomusk, Christophe Dubach, and Michael O’boyle.

[Tawa:2014:EEF] Venkata Kalyan Tawa, Ravi Kasha, and Madhu Mutyam. EFGR: an enhanced fine gran-

Tampouratzis:2016:AIH

Tartara:2013:CLC

Tarjan:2005:MPG

Tabkhi:2015:JSH

Tzilis:2019:EER

Tavana:2018:BCA

dwn=1&CFID=100488884&CFTOKEN=8001fa53c1103ca2-D7EF9E77-A223-C65F-72CBA8F34752B01E.
REFERENCES

Vaish:2016:OMT

Vora:2016:SAE

Venkataramani:2011:DDS

Vasilakis:2019:DFC

Vandierendonck:2008:SRA

Vandierendonck:2011:MSR

Vale:2016:PDT

Valero:2012:CRI

Vandierendonck:2013:ADT

Vespa:2011:DFA

Voitsechov:2018:SDT

Winter:2008:ATN

Wibowo:2016:AACL

Bagus Wibowo, Aishin Agrawal, Thomas Stanton, and James Tuck. An accurate cross-layer approach for online architectural vulnerability estimation. *ACM Transactions on Archi-
REFERENCES

Chao Wang, Xi Li, Junneng Zhang, Xuehai Zhou, and Xiaoning Nie. MP-Tomasulo: a dependency-aware automatic

Wang:2014:IPD

Wang:2016:IB

Wang:2016:DMB

Wang:2013:RMM

Wang:2012:FSS

Wang:2011:PGS

Wang:2010:PAM
Xiaohang Wang, Mei Yang, Yingtao Jiang, and Peng Liu. A power-aware mapping approach to map IP cores onto NoCs under bandwidth and latency constraints. *ACM Transactions on Architecture and
References

Xekalakis:2012:MSM

[XIC12] Polychronis Xekalakis, Niko-
las Ioannou, and Marcelo Cin-
tra. Mixed speculative multi-
threaded execution models.
ACM Transactions on Archi-
tecture and Code Optimiza-
tion, 9(3):18:1–18:??, Septem-
ber 2012. CODEN ????. ISSN
1544-3566 (print), 1544-3973
(electronic).

Xiao:2007:VIS

[XL07] Shu Xiao and Edmund M.-K.
Lai. VLIW instruction schedul-
ing for minimal power variation.
ACM Transactions on Ar-
chitecture and Code Optimiza-
tion, 4(3):18:1–18:??, Septem-
ber 2007. CODEN ????. ISSN
1544-3566 (print), 1544-3973
(electronic).

Xie:2004:IDV

[XMM04] Fen Xie, Margaret Martonosi,
and Sharad Malik. Intrapro-
gram dynamic voltage scal-
ing: Bounding opportunities
with analytic modeling. ACM
Transactions on Architecture
and Code Optimization,
CODEN ????. ISSN 1544-3566
(print), 1544-3973 (electronic).

Xu:2009:TXP

[XT09] Weifeng Xu and Russell
Tessier. Tetris-XL: a performance-
driven spill reduction technique
for embedded VLIW proces-
sors. ACM Transactions on Ar-
chitecture and Code Optimiza-
tion, 6(3):11:1–11:??, Septem-
ber 2009. CODEN ????. ISSN
1544-3566 (print), 1544-3973
(electronic).

Yilmaz:2016:ARS

[YAG+16] Buse Yilmaz, Baris Akte-
mur, MaríA J. Garzarán, Sam
Kamin, and Furkan Kiraç. Au-
totuning runtime specialization
for sparse matrix-vector multi-
lication. ACM Transactions on
Architecture and Code Optimi-
zation, 13(1):5:1–5:??, April
2016. CODEN ????. ISSN
1544-3566 (print), 1544-3973
(electronic).

Yu:2019:ITL

[YBSY19] Chao Yu, Yuebin Bai, Qing-
xiao Sun, and Hailong Yang.
Improving thread-level parallel-
ism in GPUs through expand-
ing register file to scratch-
pad memory. ACM Transac-
tions on Architecture and Code
January 2019. CODEN ????.
ISSN 1544-3566 (print), 1544-
3973 (electronic). URL https:
//dl.acm.org/ft_gateway.
cfm?id=3280849&ftid=2018232
&dwn=1&CFID=100488884&CFTOKEN=8001fa53c1103ca2-
D7EF9E77-A223-C65F-72CBA8F34752B01E.

Yviquel:2018:CPU

[YCA18] Hervé Yviquel, Lauro Cruz,
and Guido Araujo. Cluster
programming using the OpenMP
accelerator model. ACM Transac-
tions on Architecture and Code
Optimization, 15(3):35:1–35:??,
October
REFERENCES

Yeh:2011:MPP

Ye:2017:CES

Yang:2017:EJV

Yang:2004:TML

REFERENCES

REFERENCES

Yang:2010:ERS

Zhao:2013:HPP

Zhao:2016:FMR

Zhao:2019:BLA

Zhao:2006:ATP

Zhao:2010:PPP
[ZCW10] Qin Zhao, Ioana Cutcutache, and Weng-Fai Wong. PiPA:

Zhou:2012:WAP

Zhou:2016:SAC

Zhao:2018:OCN

Zahedi:2018:MHD

Zhang:2018:CNC

Zhang:2005:WET

Zhang:2012:TPB

Zhang:2008:RCM

Zhang:2004:RIC

Zhang:2015:BSS

Zhang:2005:DIE

Zhang:2006:BAI

Zmily:2006:BAI

Zhao:2015:BSB

Zheng:2018:ESG

Zheng:2018:SSM

Zhang:2016:CPS

Zimmer:2015:NSM

Christopher Zimmer and Frank Mueller. NoCMmsg: a scalable message-passing abstraction for network-on-chips. *ACM Transactions on Architecture...
REFERENCES

115

Zhang:2006:EAR

Zivanovic:2017:MMH

Zhai:2008:CHS

Zhao:2013:OGE

Ziabari:2016:UHB

Zhang:2005:WHC

Zhao:2005:IWA

Zhou:2019:SNS

Zhou:2016:ERI

Zhou:2016:CAE

Zhang:2019:PPB

Zhou:2010:PA