Title word cross-reference

2 [BSL17]. 3 [CAY+18, CWMC16, LGP+16, NRQ16b, SZJK18, ZSLX13].
[CCZ13, DDT+17]. Z [SLM12].
-D [CAY+18]. -polytopes [SLM12].

/channel [LCL+14].

000-core [DAKK19].

2014 [Aca16, Ano15].

4.0 [KHB+20].

6 [KWM+08]. 64-bit [BWLR06, VED07]. 7 [BKM+17]. 754 [LDG+13].

Abstracting [JSH09]. Abstraction [RLBBN15, ZM15, RCV+12]. Accelerate
[CNS+16b]. Accelerated [HS05, SWF16, VZT+20, JED19].

Accelerating
[Baz+19, DAKK19, GGYK19, GÁSÁ+13, GR15, JYJ+13, KFJ20, LWF+16, RMA14,
TMP16, HWX+13]. Acceleration
[GÁSÁ+16, HAC13, RVP19, WFKL10].

Accelerator [CLA+19, MCB+12, YCA18,
LHWB12, VDSP09]. accelerator-based
[LHWW12]. Accelerator-bound [CLA+19].

Accelerators [KCA+13, KMG14, MTK18,
USCM16, BKA13, CI13]. Access
Accesses [CSY20]. Accounting
[LMA+16, DEE13, LMCV13]. Accumulate [GG18]. Accuracy [AAL+16, ASS17].
Accurate [NDP17, WAST16, LMI+13b]. ACM [Aca16, Ano13a, Ano15, Bil19].
Across [FDF+14, NDP17, SW17a]. activations [JLCR13]. Active [KHS+14].
Adapt [DGI+14, PGB13]. adaptation [DJB13, LGZ07, SS04]. Adapting [GHH15, LBJ05].
Adaptive [CG14, CWCM16, FQRG13, GFD+14, HWX+13, JKR16, Lec16, LHY16, Per18, WCI+16, WM11, AG1+12, JML+20, MAN+08, RBM10, SW13, YRGES+19, ZK05].
Adaptively [ZCF18]. Adaptivity [DRHK15]. Address [BDB+20, JED19, OAM19, SKEG16, CCZ13, VSO8, ZPC06].
Address-first [OAM19]. Addressing [WA08, CWCS13]. Advancing [TZK18].
Affine [AP17, NCC13, SLM12]. Against [BCHC19, ERAG+16, PHBC17, BVIB12, ZHS+19]. Agent [JPS17]. Aggregate [LY16]. Aggregation [AYC16].
Aggressiveness [PB15]. Aging [DGI+14, KKW+15, LRB15].
Aging-Aware [LRB15]. Agnostic [SLJ+18, ZDC+16]. agreement [GMW09].
Ahead [PKPM19]. Ahead-of-Time [PKPM19]. Also [CW13, PLL10]. AIM [AYC16].
ALEA [MPW+17]. Algorithm [BC13, DGI+14, DTD16, BRSG12, CW13, CDP13, HA1+12, PLL10, XCO6, ZGC+12].
Analogue [DSK19]. Analyses [SGS+20].
Analysis [CLA+19, DZSL20, DSR15, GAM12, JK17, KR19, LMZ18, MMdS06, SSW+19, VTN13, VGX16, XFS+19, ARS04, AFD12, FER+13, JOA+09b, Nas13, SV05, SMK10, ZCW10].
Anomalies [LDC15]. Anticipating [LJMG12]. API [CIL]. Application
[GT+16, PLS+15, UDL20, AS13, GÁSÁ+13, RCV+12, SB09, TD15].
Application-Guided [GT+16]. Application-Level [PLS+15].
Application-Specific [UDL20]. Applications [ASS17, AZG17, DMR+16, DTD16, DPB1+19, FWJ+16, GR15, JYE+16, LWS+19, NKH16, RHA14, RMA14, RLBBN15, WZG+19, XFS+19, CS13, DWDS13, HLR+13, KNBK12, MBKM12, STLM12, SV05, SLA+07, SLM12, YLTL04, ZG05]. Applied [LB10]. applying [ZWH05]. Approach [AZG17, CNS+16b, EMR14, FDF+14, GGK18, KS16, TS15, WAST16, WZG+19, ZK16, FT10, SSR13, WYJ11, YJTF13, ZCS06]. approachable [WHV+13]. Approximate [DS12, YPT+16]. approximation [LTG12]. Apps [PCM16].
Arbitrary [PWE20, RHC15, WMSG19].
arbitration [XCC+13]. Architecting [CPB+07]. Architectural
[CPS+15, DCP+12, HEMK17, KLA+19, ME15, WAST16, WZG+19, YHYBAM20, IAMS+08, SB09, ZOZ+05, CWC06].
Architecturally [KBB+14]. Architecture [HK14, KAC+18, LWS+19, PVS+17, SLJ+18, SM19, SHY14, SWF16, VC16, VFT+17, ZFT+18, ARS04, BVIB12, BWG+12, CPB+07, DJX13, GKP14, GZS10, YJ+13, JA14, LNLK13, PM12, STLM12, SNL+04, SRLP04, SSPL+13, ZK06].
Architecture-Agnostic [SLJ+18]. architecture-independent [BVIB12].
Architectures [AJE+16, ASK+16, ASP17, CG15a, CEP+16, CDPN16, GR15, HAM17, HAM19, JLJ+18a,
LAS$^{+13}$, LZM14, PT17, RMA14, SJL$^{+20}$, ZLYZ16, ZCQ$^{+19}$, BBG13, BWLR06, BTS10, CG14, CK11, CD13, KCP13, LKL$^{+13}$, OGK$^{+12}$, RCV$^{+12}$, SSK11, SD12, SB09, TC07, TD13, VE13, YXK$^{+12}$.

Area [LAS$^{+13}$, SB09]. area-efficient [SB09]. ARI [FQRG13]. Arithmetic [LVR$^{+15}$, UDL12, BWG$^{+12}$]. ARM [GDL16, LHW$^{+19}$, SHY14, SPH$^{+17}$].

ARM-to-x86 [LHW$^{+19}$]. Array [DSK19, WG17, BWLR06, KLP12]. Arrays [LMSE18, TD16]. ARSEC [DDT$^{+17}$]. Auto [MWJ19]. Assembly [LVR$^{+15}$]. assistance [JOA$^{+00}$a]. Assisted [CDPN16, HNKK17, JDZ$^{+13}$, KKK16, PHBC17, CST$^{+06}$]. associative [HL07, KWCL09]. associativity [YJT13].

Asymmetric [ZCQ$^{+19}$, CG14, CCPG13, PCT12, SW13]. Asymmetry [LHW$^{+19}$]. Attack [LFK19]. Attacks [BCH19, ERAG$^{+16}$, PHBC17, ZHS$^{+19}$, BVIB12, CDD12, DJL$^{+12}$].

AUKE [DSK19]. Auto [CG15a, SAT20, WG17]. Auto-Tuning [CG15a, WG17]. Auto-Vectorizing [SAT20]. automata [VVW11]. automatable [AFD07]. Automated [ASS17, BSS14, BCH19]. Automatic [AMG16, DSK19, JLR12, LBO14, LT13, MGA$^{+17}$, NC15, RB13, WLZ$^{+13}$, WGO15, WM10, XZC$^{+20}$, SPS12, WKS12].

Automatically [VZT$^{+20}$]. Automotive [FW13]. Autonomous [DGI$^{+14}$]. Autotuning [AMP$^{+16}$, SYE19, YAG$^{+16}$, KBR$^{+13}$, LFC13]. Avionics [DPBI$^{+19}$].

AVPP [OAM19]. Aware [ACA$^{+19}$, DGI$^{+14}$, CG15a, DTD16, DHD$^{+14}$, GVT$^{+17}$, KFEG18, LYH16, LRBG15, PVA$^{+17}$, PG17, RSK$^{+18}$, SEF$^{+19}$, SLJ$^{+18}$, SKH$^{+16}$, SZJK18, SKPD19, USCM16, WLZ$^{+13}$, WJXC17, ZCQ$^{+19}$, ZYW17, CPB14, CG14, CLA$^{+19}$, CWCS13, EE09, GGFPGR12, NB13, SSS$^{+04}$, SAL19, SL20, SEP07, WYJL10, WSC$^{+13}$, WDXJ14, ZYCY10, ZDC$^{+12}$, ZK06]. Awareness [HL17, KKL$^{+13}$].

Bahurupi [PM12]. Balancing [LLRC17, PGB16, WHH$^{+16}$]. Band [SPS17]. Band-Pass [SPS17]. Banded [BSL17]. Bandwidth [LGP$^{+16}$, LDMZ19, ZCC16, ZCQ$^{+19}$, DZC$^{+13}$, WYJL10, XCC$^{+13}$].

Bandwidth-Asymmetric [ZCQ$^{+19}$]. Bank [JFK20, LCL$^{+14}$]. bank- [LCL$^{+14}$]. bank-/channel-level [LCL$^{+14}$]. banked [AG$^{+12}$]. Banks [ZCF18]. Based [AJE$^{+16}$, CNS$^{+16}$b, CG15a, CG15b, DSR15, DAD16, DAP$^{+15}$, FDF$^{+14}$, GAM12, HYYAM16, JPS17, KS16, LCS$^{+19}$, LTX16, LY16, MNC$^{+16}$, MTK18, NC15, SBS16, WGO15, WDX15, WCI$^{+16}$, WWC$^{+16}$, WMGS19, WLLW20, XHJY16, XFS$^{+19}$, YHYBAM20, ZX19, ZLC$^{+15}$, ZSM$^{+16}$, AvRF07, BCVT13, CPP08, CW13, GKC13, HRL$^{+13}$, HAJ$^{+12}$, HWM14, HWX$^{+13}$, JYJ$^{+13}$, JFK20, JML$^{+20}$, KBR$^{+13}$, LBO14, LG12, LCL$^{+14}$, LHWW12, PLK$^{+19}$, RLS13, SS04, SKKB18, TKJ13, WSC$^{+13}$, WTHO14, ZHD$^{+04}$, ZGC$^{+12}$, ZFT$^{+18}$].

Batched [JYM20]. Bayesian [AMP$^{+16}$]. Be [SW17a]. behavior [AFD07, LS10]. Benchmark [ABB$^{+16}$, AYL$^{+18}$, CCM$^{+16}$, DDT$^{+17}$, DS16, BE13]. Benchmarking [DAP$^{+15}$, XZC$^{+20}$]. benchmarks [JEB08]. Benefits [LWWH12]. Benzene [KAC$^{+18}$]. BestSF [BJW18]. better [TBC$^{+12}$]. Between [EPS17]. Beyond [FER$^{+13}$]. Bias [Lee16]. Big [ZLYW18, ZLC$^{+15}$]. Big-Memory [ZLC$^{+15}$]. Bimodal [TD16]. Binary [DGG16, GDL16, HWL$^{+19}$, LHW$^{+19}$, RKC$^{+20}$, SHY14, CDM13, GHS12, HS06, HLC10, LWH11, PKC12]. bipartite [BZ13]. Bit [TBS06, BWLR06, VED07]. Bit-split [TBS06]. BitSAD [DSZ20]. Bitstream [DSZ20]. bitwidth [NB13]. bitwidth-aware [NB13]. Blaze [PWPD19].
Blaze-Tasks [PWPD19]. Block
[GFD+14, KTA16, LLRC17, LTX16, MPPS18, TJK18, ZK06]. Block-aware
[SK06]. Blocks [HWJ+15, SYX+15].
Boltzmann [PAV15]. Bones [NC15].
Boosting [ASV+16, KH18, RLS13, BTS10]. both [BSWLE13, HP04, MP13].
bottlenecks [MMdS06]. bound [CLA+19, MBKM12]. bounded [HS06].
Bounding [XMM04]. Bounds [ESR+15, BWLR06]. BPM [LCL+14].
BPM/BPM [LCL+14]. Brain [vdVSAAS20]. Brain-Simulation
[vdVSAAS20]. Branch [EPAG16, LWL18, Mic18, CZ07, HWH+11, Jim09, JSM+04, LBJ05, MG12, TS05].
branch-predictor [JSM+04].
branch-target [LBJ05]. Branches [DGGL16]. Breakdown [HYYAM16].
bridging [HCC+14]. Bringing [DWT+17].
buddy [KWCL09, ZJJ+15]. Budget [LWF+16]. Buffer
[SLH+20, SL20, LBJ05, RB13]. Buffering
[YMM+15, GPL+05]. Bugs [AAI+16].
build [SSH+13]. Building [KRHK16, SGS+17, WDX15]. Buri
[ZLC+15]. Burst [SLH+20].

C [CWW+16, NC15, NED+13, ZZB+19].
C-to-CUDA [NC15]. C/C [NEC+13].
C1C [LZL+13]. CACF [ZFT+18]. Cache
[CKPH19, CAGS17, DAD16, GFD+14, HK14, HMYZ15, KR19, KAC+18, KAC15, LLRC17, LWS+19, Mic16, PLK+19, SSW16, SBS16, SKH+16, SLJ+19, VPT19, WJXC17, YDL+17, ZHY17, ZWL+19, APG13, AGVO05, AGI+12, AFD07, BSWLE13, CAI, CWS06, DTL+12, FTLG11, GGFPGR12, GSZ10, HAJ+12, KS11, KWC109, LCC11, LZL+13, MMdS06, RDF13, SS04, SBC05, SSH+13, TJK13, VSP+12, WSC+13, WDXJ14, ZHD+04, ZVYN05, Zha08, NTG13], cache-coherence
[MMdS06]. cache-coherent [APG13].
cache-content-duplication [KS11].
Chashes [CAGS17, CPS+15, GBD+15, JPS17, SBS16, WDX14, AIV13, DJL+12, HS06, HL07, KS11, KWC09, LJM12, MSK05, SSK11, SSS+13, VSP+12, WDXJ14, WLZ+10, WM11, ZDC+12]. Caching
[DNT16, SYX+15, DZC+13, JOA+09a, WFKL10]. CACTI [BKMK+17]. Caffe
[RSK+18]. CAFFEINE [PB15]. CAIRO
[HS17]. Caliper [KLA+19]. Call
[Lee16, MG12]. Capability
[AA+19, DGI+14]. Capacity
[GBD+15, SSK11, WM11]. Capturing
[XDXL19]. CART [CDP13, CDP13].
Case [KH18, MMS15, SKEG16, SSRS15, AF12, RFS06, W09, LB10]. CATCH
[KS11]. Caused [SYX+15]. CAVA
[CT+06]. CC [CCZ+13]. Cell
[YMM+15, STLM12]. cells [JSM+04].
Center [FX+15]. centers [AVG12].
Centric [JLJ+18a, SJL+20]. CERE
[DAP+15]. CG [MAD17]. CG-OoO
[MAD17]. CGRA [HAC13]. chains
[SSH+13]. Chameleon [WFKL10]. Change
[HASA16, JDZ+15, YMM+15, ZDC+12].
Channel
[BHC19, BVB12, DJL+12, JPFK20, LFK19]. channel-level [LCL+14]. Channels
[DJ16, EPAG16]. chaotic [LTG12].
Characterization
[CVB15, HKA+19, DS12, FE+13, VW11].
Characterizing [BM11]. Checking
[KK15, BWLR06, MG13]. Checkpoint
[GW09, ARS04, CST+06].
checkpoint-assisted [CT+06].
Checkpointing
[GT+19, WZG+19, DXMJ11]. Chip
[BKM+17, CPS+15, CEP+16, D1C16, EPS18, LBM13, VFW16, APG13, BKA13, CK11, EE11, GSZ10, JPS17, LWHH12, LT13, LNLK13, LAS+08, LM05, LPZ12, LMM08, SSH19, SMK10, TDG13, XCC+13]. Chips
[CLS+19, ZM15]. choices [VE13].
Chunking [MG20]. Circuit

data-driven
[ME15, ME17, ASH20]. data-flow [PC13].
data-Race-Free [MGSH16, NKH16].
data-Traversal [MNSC16].
data-Parallel [MGSH16, NKH16].
Data-Parallel [MGSH16, NKH16].
Data-Traversal [RMA14].
Database [BAZ+19]. Datacenters [ZFL18].
Dense [VHKP11].
Delta [DZC13].
Decoupled [VPTS19, BZS13, DHC+13, RVOA08].
Decoupling [HAM17]. Deep [ASK+16, JLJ+18a, MWJ19, RSK+18, XDXL19].
Deeply [GKCE17]. DEFCAM [LCC11].
Defined [DMR+16, TGAG+12].
Defragmentation [PVS+17]. DeFT [VHKP11]. Delta [DZC+13].
Delta-compressed [DZC+13]. Demand [BRJM15]. Dense [CWW+16].
Dependence [BRJM15, DHD+14, JK17, SL09, TG07, VTN13].
Dependence-Aware [DHD+14].
dependences [BCVT13].
Dependency [WLZ+13].
Dependency-Aware [WLZ+13].
dependent [YZL+10].
Deployments [vdVSAAS20]. depth [HP04].
Design [CKPH19, CPS+15, HIW15, KWM+08, RTK15, SZK18, SPH+17, SL09, VHKP11, WLZ+10, BE13, CPP08, IMS+08, LB10, LCC11, LHZ13, VE13, ZK05].
Designing [BKA13, BSWE13, MGSH16]. Details [FMY+15].
Detecting [DSR15, KS11].
Detection [BRJM15].
Devices [TKM14, NMKS06, ZK05]. DFA [BC13]. Diagnosing [JLJ+18b].
diagnosis [BS007]. DiagSim [JLJ+18b].
Die-Stacked [CWMC16]. die-stacking [ZSLX13]. different [YYX+12]. dimension [RTG+07].
dimensional [LT19]. Direct [LLRC17, YRGES+19].
Direct-Mapped [LLRC17].
DisIrR [HLC10]. Disjoint [SJ12]. Disk [LYK+15].
disparate [WLZ+10]. Dispatch [LLRC17].
distributing [LTZ12]. dissemination [LZY90].
Distance [DAD16, GGFRG12, KR19, FER+13, FTLG11]. Distance-aware [GGFRG12].
Distance-Based [DAD16]. Distilling [JE08].
Distinguished [Aca16, Aoi15, Bil19, Ano13a]. distribute [RF13].
Distributed [KHS+14, KAC+18, TPN+20, XDXL19, ZPC06]. Divergence [LWL18, SMKH15]. Divergent [GR15].
Diverse [LP17, SAL19]. diversification [CDM13]. Diversity [TDO16b, KNBK12].
DJ [DDU12]. DJ-graphs [DDU12]. DLP
Energy-Performance [MTK18, ZCF18].
Energy-Proportional [DH16].
Enforcement [AHA+19, GW07].
Engine [HKA+19, LP17, PB15, RMA14, WLZ+13, CW13].
Engines [MG15, TS06].
Enhance [GAM12].
Enhanced [TKM14].
enumeration [SWH09].
Enterprise [KM14].
Environments [KLA+19, RGG+12, WWWL13].
EOLE [EPS17].
Era [GBD+15, LNLK13, PCT12].
Error [BD+20, DGI+14, CWM16, DSH+18, LSC+15, SPM17, TZZK18, YEE+14, CCZ13, LKL+13].
Error-Correcting [SPM17].
Error-Tolerant [DSH+18].
Errors [FWJ+16, ZWS+16].

Evaluation
[BC13, CHE+14, FWJ+16, AvRF07, KWT09, LCC11, LAS+08, RGG+12, ZK05].
Evaluator [JSL13].
Evaluator-executor [JSL13].
event [GW07].
Evolving [VGX16].
Examining [ZWS+16].
exascale [DAM11].
ExaStencils [KLA+19].
evaluation [HWM14].
Exceptionization [YK17].
Exclusivity [YDL+17].
Execution
[AS17, CC18, DT17, GGYK19, GMGZP14, HAC13, HEMK17, KS16, LDMZ19, MG19, ME15, MAD17, NZ15, PVA+17, PS15, SEF+19, SYE19, SGS+20, VSDL16, WLZ+13, ZX19, ZCCD16, ZLJ18, GB06, LZ12, LHZ13, SJA12, VTN13, XIC12, ZG05].
Executions [NDP17].
executor [JSL13].
exhaustive [KWT09].
Existing [YEI+14].
Expanding [YBSY19].
Expansion [PM17, ZLC+15].
explicit [STLM12].
Exploit [AAI+16].
Exploiting
[AVL13, ASK+16, HWJ+15, JFK20, KGK10, LHW+19, MA08, NKH16, YEE+14, YZ08, YZL+10, ZX16, LYYB07, PCT12, RLS13, SNL+04, JOA+09b].
Exploration
[BKM+17, KL19, MNC+16, CPP08, IMS+08, KWT09, VHCP11, WLZ+10].
Explorations [BGG+15].
Exploring
[CK11, JK13, JOA+09b, MBK12, MS05, SKPD19, VVIASA20, BE13, DJX13].
Exposing [CS19].
Express [DLC16].
Expression [BC13].
Expressions
[VZT+20, JSH09].
Expressiveness [PC13].
Extendable [CX+12].
extended [SJ08].
Extending
[DBH16, DSH+18, JED19, VCJ+17].
Extension
[ZC20, DCP+12].
Extensions
[KHS+14, KBB+14].
Extractor [DAP+15].
Extreme
[CAY+18, JLJ+18a].
Extreme-Scale
[CAY+18, JLJ+18a].

Factorizations [AP17].
Facts [Mic16].
FailAmp [BD+20].
Failures [NRQ16].
Fair [LMC13].
Fairness [GW07, 1Y16].
Falcon [CNS16], false [BCVT13].
Fast
[BC13, CCPG13, KCP13, KHW+05, MKKE15, NRQ16b, NTG13, PRMH13, SZJ18, LMLJ3a, SPGE06, TDG13].
Fast-Drift-Aware [SZK18].
Faster
[PC016].
fat [BRSJG12, PRMH13].
fat-trees [BRSJG12].
Fault
[CEP+16, PHBC17, RHLA14, RCV+05].
faults
[BS07, SSC+13].
FaultSim [NRQ16b].
Feature
[TKM14, LBO14].
Features
[HYYBAM20].
Federation
[BTS10].
Feedback
[CDF13, NED+13, ZWS+16, W10].
Feedback-directed
[NED+13, W10].
Feedback-Driven
[ZWS+16, CDM13].
Fence
[MNSC16].
fetch
[EE09, GWS13, JLR12, SRLPV04].
FFT
[GS12].
File
[TS15, VZS+18, YBSY19, GKP14, SJ08].
Files
[LZM14, YWXW12].
filter
[BSWLE13].
Filtering [ZCCD16].
Financial
[ABB+16].
Finding
[PJ13].
Fine
[AZG17, BSSS14, EE11, HYYAM16, MG19, MPW+17, TKM14, WM11, YEE+14, LT13].
Fine-Grained [AZG17, HYYAM16].
Fine-Grained [BSSS14, MG19, MPW+17, YEI+14, EE11, WM11, LT13]. Finite
[LVR+15, VW11]. FinPar [ABB+16]. First
[Lou19, OAM19]. fixed [CS13], fixed-point
[CS13], FLARES [DGI+14]. Flash
[DGI+14, SZJK18, ZWL+19]. Flexible
[CC13, ZC20, SHC13, ZZQ+05].
FlexSig [OAB12]. Flexextended [ZC20].
float [SSH+17], Floating
[ASS17, BWG+12, CS13]. floating- [CS13].
Floating-Point [ASS17, BWG+12]. Flow
[BRJM15, CWW+16, DMR+16, GAM12, HAC13, LY16, MMT+12, SMKH15, FSYA09, JA14, KHL+13, MKBM12, Nas13, PC13, TG07]. Flow-Based [LY16]. flow-sensitive
[Nas13]. FluidCheck [KS16]. fly
[VHKP+11, WWY+12]. Focal [DSK19].
Focal-Plane [DSK19]. Format [BJWS18].
Formation [HWL+19, KTA16, FSYA09].
Formulating [MAN+08]. Forwarding
[SL20]. Four [TD016a]. FPGA
[CS13, CWW+16, CDPD13, MTK18].
FPGA-Based [MTK18].
FPGA-processor [CS13]. FPGAs
[FBWS13, GNB08, KFJ20, PJ12]. fractal
[JYJ+13]. fractal-based [JYJ+13].
Fraction [SPS17]. frame [GK13].
frame-based [GK13]. Framework
[ASS17, AMP+16, GTT+16, GASA+16, KPP+15, LAS+13, LSC+15, PWPDI9, SYE19, SAL19, WMGS19, ZLYZ16, ZFT+18, ZLYW18, AS13, BCVN10, CS10, DJX13, HEL+09, KKM+13, LCC11, LCH+04, LFC13, LHWB12, PGB13, YXK+12]. Free
[MNSC16, YPT+16, BRSJG12, GS12].
Frequency [BHC+16]. friendly [CRSP09].
Front [ZJJ+15]. Front-End [ZJJ+15]. FTL
[HJW+15]. Full
[HHC+16, MMT+12, SWF16, TKKM15].
Full-System [SWF16]. Fully
[HJW+15, BRSJG12]. Function [SKPD19].
Functional
[GASA+16, GASA+13, YCCY11].
Functions [SSRS15, HWX+13, LDG+13]. fundamental [VE13]. Fuse [NDP17].
Fused [VPTS19]. Fusing [VPTS19, WM10].
Future [GB06, MMS15, DXMJ11, LMJ13a].
Gaming [QYZ+14]. gap [HCC+14].
Garbage [ASV+16]. Gated [LZM14].
Gating
[KMG14, ZCF18, WYCC11, YCCY11].
GEMM [SLJ+19]. General
[CAMJ15, SW17a, LHY+06].
General-Purpose [CAMJ15]. Generalized
[JDF+14, GGK18, SDH+15]. Generalizing
[Jim09]. generate [KBR+13]. Generating
[AZG17, RHC15]. Generation [BDB+20, DSK19, HEMK17, GNB08, HLR+13, JLER12, LBO14, LHY+06, VJC+13].
Generator [KL19, PAVB15]. Generic
[WMGS19]. GenMatcher [WMGS19].
Getting [MWJ19]. Global
[CCL+13, MPPS18, BZS13], good [PJ13].
Governors [SW17b]. GP
[LRBG15, MYG15, MYKG16]. GP-GPUs
[LRBG15]. GP-SIMD [MYKG16].
GPGPU
[BBG+15, HLSW17, MBKM12, YXK+12].
GPGPUs [ZJJ+15]. GPU
[BJWS18, DS16, GGYK19, HLR+13, JED19, JGSM15, JML+20, KHM+18, LHC+17, IWS+19, LMZ18, LKL18, LDMZ19, LAAMJ15, LFK19, LFC13, QYZ+14, RB13, SEF+19, SNN+19, TBC+12, VC16, VZT+20, VS+18, WGO15, ZSLX13, vLSASA20].
GPU-accelerated [JED19]. GPU-Based
[WGO15, JML+20]. GPUs [ASH20, ASS17, CSK19, DCS16, DNT16, FBWS13, JAK17, JFJ20, KR19, LRBG15, NC15, SHLM14, WYCC11, WLYW20, YBSY19, ZSM+16].
gradient [HJ+12]. gradient-based
[HJ+12]. Gradients [FW+16]. Grain
[AZG17, HYYAM16, LMSE18, MAD17].
Grained [BSSS14, MG19, MPW+17, TD16, YEI+14, EE11, KCP13, LT13, WM11].
Granularity [DRHK15, NRQ16a, TKM14].
Graphs [CNS16a, KAR16, YWXi21, ZLJ18, DS12, LFX09]. Graphics [ASS17, FSYA09, ZSLX13]. Graphs [BRJM15, Lee16, RHC15, VZT+20, VGX16, BZS13, DDU12, MG13]. Graphics [CNS16a, KKAR16, YWXW12, ZLJ18, DS12, LFX09].

Heterogeneous [AEJ16, ASV+16, ASP17, CNS16a, CWV+16, DMR+16, FDF+14, GPT+16, GH15, GSZ20, HAM17, HAM19, HMZ15, KRHK16, LP17, PG17, PBY+17, RVK19, SAL19, SL20, TDO16a, TDO16b, TTS19, USCM16, WGO15, ZFL18, BGG13, KNB12, LHZ13, PM12, TGD13, VE13, WFK10]. Heuristics [MKKE15, TR13]. hide [CST+06]. Hiding [GW08]. Hierarchical [ASK+16, CDPN16, GZP15, SW13]. Hierarchies [SKH+16, DJX13]. Hierarchy [AYC16, ZDC+16, ZSM+16]. High [CAY+18, CHE+14, CAMJ15, GGG18, JED19, ME17, SWU+15, SLJ+19, TCS16, TKM14, ULDL20, USCM16, YRS19, AS13, BCVN10, CK11, CDIM13, GW08, KBR+13, OGK+12, SRLP04, SD12, ZVYN05]. High-Efficiency [CAMJ15]. High-Level [CHE+14, ULDL20, BCVN10]. High-Order [CAY+18]. High-Performance [GGK18, SLJ+19, TKM14, USCM16, JED19, YRS19, CK11, CDIM13, GW08, KBR+13, SRLP04, SD12, ZVYN05].

implants
L1 [HK14, LZL+13]. L2 [AVGO05, CST+06, SLP08, SBC05].
L2-miss-driven [SLP08]. Lane [WWC+16].
Language [CNS16a]. Languages [DHD+14, YKM17, NED+13]. LAPPs
[KFEG18]. Large [NRQ16a, SKH+16, KWCL09, RCV+12, SMK10]. Large-Scale
[SKH+16, RCV+12, SMK10]. Last [CPS+15, LBM13, PLK+19, WD14, WJX17, AGI+12, AIVL13, VSP+12, ZDC+12].
Latency-Driven [CPS+15, LBM13, PLK+19, WD14, WJX17, AGI+12, AIVL13, VSP+12, ZDC+12]. Latency-Tolerant
[HAM17]. Lattice [CG15b, PAVB15]. Lattice-Based [CG15b].
Lattice-Boltzmann [PAVB15]. Law [DSH+18]. Layer [ERAG+16, JML+20, JLJ+18a, LGP+16, OTR+18, WAST+16].
[CYXF13, WG17]. Layout-oblivious [CYXF13]. Layouts [BSL17]. Layup
[JML+20]. LD [LHC+17]. LDAC [SKH+16].
Leakage [JFK+20, HL07, MSK05]. Learning
[ABP+17, JPS17, JLJ+18a, LSL20, MCB+12, RSK+18, XDL19, DJB13, LBO14, SPS12, TR13, WO13, WFO14].
Learning-Based [JPS17]. Legacy
[MNSC16]. legalization [AR13]. Less
[ZPR+17]. Level
[BGG+15, CHE+14, CPS+15, HNKK17, HK14, JYE+16, LCS+19, LMZ18, LBM13, MGI15, PLT+15, RLBBN15, SWU+15, UDL20, WD14, WJX17, AGI+12, AIVL13, BCVN10, EEO9, GMW09, GPL+05, LCL+14, Lou19, PLK+19, PCT12, VSP+12, YBSY19, ZDC+12]. Level-1 [HK14].
Leveling [JDZ+13]. Levels
[RJSA18, RCV+12, SLA+07]. Leveraging
[GAM12, LJMJ31a, NZ15, SLHM14].
Liberalization [MY16]. libraries [BCM11]. Library
[FDF+14]. Library-Based
[FDF+14]. Lifetime
[PM17, SPM17, TZZK18, XC06]. Lift
[SHS+20]. LIGERO [APG13]. Light
[CBDF15, AGP13]. Lightweight
[DT17, SLJ+18, WLL+19, BWG+12, DMG13, LNLK13]. like [Mic18]. limitation
[DZC+13]. Limitations [JKR16]. limited
[CZ07]. limits
[JOA+09b, MBKM12, MSK05]. line
[WDX14]. Linear [AJE+16, MGI19, MG20]. lines [AGVO05]. linked [FLG12]. Links
[AAC+19]. List
[Aca16, Ano13a, Ano15, Bil19]. Live
[ZPR+17]. liveness [BZS13, DDU12]. LLC
[FQRG13, VPTS19, ZCF18]. LLC-memory
[FQRG13]. LLVM
[FQRG13, DAP+15]. LLVM-Based
[DAP+15]. Load
[OAM19, PGB16]. Load-Balancing
[PGB16]. Loading [PCM16]. Loads
[YPT+16]. Local [LVR+15, DHC+13].
Locality
[ASK+16, CG15a, KFEG18, SKH+16, SL20, YDS+19, ZCQ+19, AIVL13, FER+13].
Locality-Aware
[CG15a, KFEG18, SKH+16, SL20].
Localization [CEP+16]. location
[KHN+18, YLW08]. Lock [CWCS13].
Lock-contention-aware [CWCS13].
Locking [ZYY17]. Loop
[ASP17, CZGC20, JK17, LVR+15, PHBC17, BCVT13, NCC13, SHLM14, SL2M12, YZL+10].
loop-dependent [YZL+10]. Loops
[CNS+16b, CLA+19, KFJ20, SN17, SRC16, JSL13, KLMP12, RTG+07]. Low
[BGG+15, CAMJ15, DJL+12, GG18, GáSÁ+16, GDL16, KBB+14, LGP+16, LHC+17, Lou19, PLK+19, RSK15, SSW16, SW13, SWU+15, YEI+14, AGI+12, BB04, CCZ13, GKP14, MA08, SRLPV04, ZVY05].
Low-complexity [DJL+12, SRLPV04].
Low-Cost
[KBB+14, SSW16, YEI+14, AGI+12, MA08]. low-energy [GKP14, ZVY05].
Low-latency [SW13]. Low-Level
[BGG*15, Lou19]. **Low-Overhead**

[GDL16, LHC*17]. **Low-Power** [CAMJ15, GâSÁ*16, PLK*19, BB04, CCZ13]. **Lower**

[ESR*15]. lowering [SSU*13]. **LP** [GFD*14].

Machine

[ABP*17, DJB13, LBO14, SCEG08, SPS12, W013, WTSF014, WHV*13].

machine-learning-based [WTFO14].

Machines [BSSS14, JK13, RB13, VED07].

MAGIC [KKW*15]. **Main**

[AEH*19, ZFT*18, ZPR*17, DZC*13, WSC*13, ZDC*12]. **Maintaining**

[YCCY11]. **makespan** [CPB14].

makespan-preserving [CPB14]. **Making** [CRSP09, PLT*15, PI12, SGS*20].

Malicious [KKW*15]. **Malware** [WCI*16].

MAMBO [GDL16]. Managed [YWXX12].

Management

[GTI*16, GMGZP14, HYAR*15, HMY15, MPPS18, OTR*18, SEF*19, SAL19, SPS17, TTS19, ZDC*16, AVG12, FQRG13, GSV10, HVJ06, KCKG14, LGA07, LFZ09, LPZ12, RCC*10a, RB13, SW13, VS08, WWWL13, WSC*13, WDX14, WM11, ZYCO10].

Manager [Per18]. **Managing** [APBR16, HS06, KNNK12, VS11, ZFL18, SSK11].

Manipulation [CNS16a, ZHB18].

Many

[DT17, FMY*15, JYM20, JLJ*18a, PV*17, ZLYZ16, LNLK13, OGK*12].

Many-Core

[FMY*15, JLJ*18a, PV*17, ZLYZ16, JYM20, LNLK13, OGK*12]. **Many-Cores**

[DT17].

Manycore [KS16, KAC*18, LAS*13, MKKE15, ZCO*19, BTA10]. **map** [WYJL10]. **Mapped** [LLRC17]. **Mapping**

[CDP16, DWDS13, DJC16, MKKE15, SSH19, SKAEG16, WGO15, YMM*15, CCZ13, WYJJ10, WTSF014]. **MapReduce** [CC13]. **MAPS** [RLBBN15]. **Masking**

[BZ*19, WPJ19]. **Masses** [BCHC19].

Massively [MCG*12, RLBBN15].

Matching [HJW15, WMGS19, CW13, PLL10, TBS06, VW11]. **Mathematical**

[Mic16, VZT*20]. **MATOG** [WG17].

Matrix [ASH20, BSL17, JYM20, YAG*16, CYXF13, SJV08]. **Matrix-Vector**

[YAG*16]. maximize [RCG*10a].

Maximizing [AEJE16, LWE*16]. **Maxine**

[WHV*13]. **MaxPB** [LWF*16]. **MBZip** [KPM17]. **McPAT** [LAS*13]. **Measuring**

[FMY*15]. **Mechanism**

[CEP*16, SPS17, ZHS*19, ZZCD16, GB06, HWX*13, KS11, RFD13, SBC05].

mechanisms

[WHW*11, LCL*14, LMMM08].

Mechanistic [BEE15, CHE*14]. **media**

[SLA*07]. meets [KHL*13].

Memoization [SSRS15].

Memories [BKM*17, DGI14, KRHK16, SPM17, ZTK18, WDX15, YM15, CCZ13, DXMLJ11, LCC11].

Memory

[AJK*12, AYC16, AEE*19, AHA*19, BAZ*19, CSY20, CKPH19, CWMC16, CLA*19, CG15b, CSK19, DKH18, DD16, DHD*14, ERA*16, EE09, FMY*15, GG15, GMGZP14, GHS12, HNKK17, HHC*16, HASA16, JDZ*13, JML*20, JLJ*18a, KHB*20, LK*15, LGS16, LWS*19, LP17, MYG15, MKG16, NRQ16a, NRQ16b, NZ15, OTR*18, PWE20, RKC*20, SLBBN15, SW17a, SMK15, SL20, SJZ*20, TTKM15, USCM16, WDX16, WLL*19, WJX17, WZG*19, XHJY16, YBSY19, ZBC*19, ZFT*18, ZLYW18, ZLC*15, ZCO*19, ZDC*16, ZWL*19, ZSM*16, ZPR*17, AFD12, ATGN*13, CS10, CCZ13, DHC*13, DJX13, DZC*13, FQRG13, GPL*15, JSH09, JSM*04, KGK10, KCKG14, LAG*08, LGAZ07, LFZ09, LCL*14, LHWW12, MA08, NCQ14, PLL10, PCT12, RL13, S05, SL09, TBC*12, TGAG*12, VD07, VES07, WKC12, WWNL13, WSC*13, WLZ*10, JYTF13, YLTL04, YLW08, ZPC06, ZSLX13, ZDC*12].

Memory-access-aware [CLA*19].

Memory-centric [SJL*20]. **Memory-Disk**

[LYK*15]. **memory-efficient** [PLL10].
Memory-Reliability [EE09].
Message-Passing [ZM15]. Meta [BJWS18].
Methodology [TCS16]. Metric [SNN+19, SPS17, YHYBAM20].
Metric-Guided [YHYBAM20]. Metrics [EMR14, TDO16a]. MH [PLK+19].
Microarchitectural [FMY+15, DBJ+13, LB10].
Microarchitecture [MMS+15, ASK13, HS05, RPS06, SSS+04]. microarchitectures [ACGK04].
Microbenchmarking [FMY+15].
Microprocessor [KCA+13, BJ13, YCCY11].
Microprocessors [GSZY20, BSO07, RCG+10a]. Migration [JLJ+18a, LT16, WLL+19, LJM12, MSF+07]. Million [CAY+18].
MIMD [FSYA09, GSZY20]. MinGLE [GáSA+16].
minature [JEB08]. minimal [XL07].
MINIME [DS16]. MINIME-GPU [DS16].
misaligned [LWH11]. Mismatches [APBR16].
misprediction [GW08]. miss [SLP08].
misses [CST+06, LS10, VHK11, Zha08].
Mitigating [ABP+17, EPAG16, SYX+15, LCL+14]. mitigation [DHL+12]. mitigations [CCD12]. Mixed [ASH20, XIC12]. MLC [PM17, RJSA18]. MLC/TLC [PM17].
Mobile [PLK+19, XZC+20, AvRF07, TBC+12]. Mobile-cloud [XZC+20]. mode [SW13].
Model [CC18, DAKK19, ESR+15, GGS+17, NZ15, SRC16, WLLW20, XHJY17, YCA18, ZHB18, DC07, MG13]. Model-Based [WLLW20].
Modeling [BEE15, KR19, LAS+13, SSC+13, AFD07, CA11, EE12, IMS+08, XMM04, SSS+04].
Models [CHE+14, FCD+17, GGS+19, GHH15, VFW16, XZC+20, LAS+08, XIC12].
Modern [HYYAM16, CCD12, JK13, KNKB12].
Modification [GDL16]. Modify [RLS15].
Modulo [LMSE18, KCP13]. Moldable [MKKE15].
Monitoring [LHC+17, LMMM08, VDSP09, ZZQ+05].
MPI [HWW+13, MP13].
MPSOcs [DMR+16]. SL20. MRAM [WX15]. MRAM-Based [WX15].
MSHRs [CA11]. Multi [CC18, FMY+15, FCD+17, GVT+17, JPS17, JML+20].
KLA+19, LT19, LGP+16, PKL+19, PGB16, SPS17, ZCF18, vdVSAAS20, CDPD13, GWS13, LFC13, PM12, RB13,
RPE12, ZGC+12]. Multi- [FMY+15].
Multi-Agent [JPS17]. Multi-Core [CC18, SPS17, PM12, ZGC+12].
Multi-Cores [ZCF18]. Multi-CPU [PGB16].
Multi-dimensional [LT19].
Multi-Layer [LGP+16].
Multi-retention [PKL+19]. multi-server [RPE12].
Multi-Tenant [FCD+17, KLA+19]. Multi-Threaded [GVT+17].
Multi-type [JML+20].
Multibank [CG15b]. Multiblock [KPM17].
multicharacter [CW13]. Multicore [ASV+16, BHC+16, CC13, CG15a, CDPN16, DS16, DAKK19, HYMYZ15, HEMK17, KE15,
KK15, LAS+13, LMA+16, LYH16, PT17].
PGB16, SLJ+18, SKH+16, SAL19, ZDC+16, CG14, CK11, CWCS13, DEE13, FBWS13, HWX+13, LMJ+13b, LCL+14, LHZ13, RCG+10a, VE13, WFKL10, ZCW10,

Multiprocessors

[HK14, PB15, TDO16a, TTS19, MSF+07].

multidimensional [RTG+07].

Multigrain [AZG17].

Multilevel [XHJY+16, YMM+15, JK13, TKJ13].

multimedia [SV05].

multiobjective [CPP08].

multiplatform [HLC10].

Multiple [KHN+18, WLLW20, ZSM+16, GB06, HVJ06, RCV+12].

Multiplexing [NPD17].

Multiplication [ASH20, YAG+16].

Multiplications [JYM20].

Multiply-Accumulate [GG18].

multiprocessor [BBG13, GSZ10, LT13].

Multiprocessors

[CP5+15, LB13, APG13, GPL+05, LAS+08, LM05, LPZ12, LMM08, SMK10].

Multiprogram [EMR14].

Multisocket [CG15a].

Multithreaded [AZG17, JYE+16, LYH16, DWDS13, GMW09, NTG13, PGB13, RGG+12, RCG+10a, XIC12].

multithreading [EE09, GW07].

NAND [GDI+14, SZJ18, ZWL+19].

Nanoscale [GBD+15].

native [RPE12].

Near [HK14, KCA+13, LP17, MAD17, VFJ+17, KCKG14, RPE12].

Near-Data [VFJ+17].

Near-Memory [LP17].

Near-Optimal [KCA+13, KCKG14].

Near-Threshold [HK14].

nest [SLM12].

Nested

[GSZY20, MGSH16, KLMP12].

nets [NCC13].

Network

[CEP+16, DJC16, EPS18, JPS17, PWE20, SSH19, TDP15, VFW16, VZT+20, ZCDD16, ZM15, ASK15, LNLK13, LYYB07].

Network-on-Chip

[CEP+16, DJC16, EPS18].

Network-on-Chips [ZM15].

Networks

[ACA+19, AMP+16, CVB15, GG18, GR15, MWJ19, RKC+20, RSK+18, ZFF+18, BKA13, LWWH12, PRMH13, SMK10, SEP07].

networks-on-chip [LWWH12].

Neural

[GG18, GR15, MWJ19, PWE20, RKC+20, RSK+18, TDP15, ZFF+18, Jim09].

Neuromorphic [LCS+19].

Next

[VZT+20, OAM19].

no [HL07].

NoC

[HWX+13].

NoC-based [HWX+13].

NoCMsg [ZM15].

Noise

[AAT+16].

Non [AEE+19, DJL+12, HK14, YKM17, BZS13, WDXJ14].

Non-

[YYK17].

Non-monopolizable [DJL+12].

non-SSA [BZS13].

Non-Uniform [HK14].

Non-volatile [AEE+19, WDXJ14].

Nonaffine [SGS+20].

Nonlinear [SRC16].

nonuniformity [WA08].

Nonvolatile

[SPM17, DXMJ11, DJX13].

Not-taken [PS12].

Novel [LMZ18, TP+20, ZFT+18, ZWL+19, CCZ13].

NUCA

[GFD+14, HK14, LJM12].

NUCA-L1

[HK14].

NUMA

[RSK+18].

NUMA-Aware [RSK+18].

NUMA-Caffe [RSK+18].

NVM

[EAH+20, WSC+13].

NVM-based [WSC+13].

NVMs [PM17].

NVRAM [ZLYW18].

O

[DCP+12, RHLA14].

Object

[YLW08, ZLYW18, TDG13, VED07, WM10].

Objective [SAT20].

objects [WWY+12].

Oblivious [YRGES+19, CXYF13].

Obstruction [WDX14].

Occurring

[LTX16].

ODE [HLR+13].

ODE-based [HLR+13].

Off [ACA+19, BKM+17, DPBI+19, AVG12, AGVO05].

Off-Chip

[BKM+17].

Off-the-Shelf [DPBI+19].

Offloading [HNKK17, MTK18, MGA+17].

offset [CZ07].

On-Chip

[VFW16, JPS17, SSH19, BKA13, CK11, EE11, LNLK13, SMK10, TDG13, XCC+13].

On-GPU [LWL18].

On-the-fly

[WWY+12, VHKP11].

On/Off [ACA+19].

Online

[BSO07, CG15a, CEP+16, TTS19, WAST16].

onto [WYJL10].

OoO [MAD17].

Open
Performance-aware [ZYCZ10].
performance-driven [XT09].
Performance-Energy [HMYZ15].
performance-friendly [CRSP09].
permanent [SSC+13]. Permissions [ERAG+16]. Permutation [ZX19].
Permutation-Based [ZX19]. Persistence [EH19, WZG+19]. Persistent [ZLYW18].
Perspectives [PLT+15]. PGAS [KFEG16]. Phase
[ABP+17, HASA16, JDZ+13, YMM+15, KHW+05, KWTD09, ZDC+12].
Phase-Change [YMM+15].
Phase-Ordering [ABP+17], phased
[HLR+13]. Photonic [DH16]. Piecewise
[DAP+15]. PIMBALL [RKC+20]. PiPA
[ZW+10]. Pipeline [ZJ+15, HP04, JA14].
pipelined [PLL10, ZCW10]. Pipelines
[MG19, MG20, SSW+19]. pipelining
[CPB14, JSL13, RVOA08, RTG+07]. place
[GS12]. Placement
[MNSC16, MA08, SSK11]. Places [Per18].
Plane [DSK19, ZGC+12]. Platform
[ZLYZ16]. Platforms [RVK19]. PLDS
[FLG12]. Point [ASS17, BWG+12, CS13].
pointer [SV05, YLTL04].
pointer-intensive [YLT04]. points
[Nas13]. points-to [Nas13]. Poker [ZX19].
Policies
[GFD+14, LSL20, SYX+15, EE09, SSK11]. policy [JK13]. Pollution [SYX+15].
Polyhedral
[GGS+19, KL19, LT19, PKC12, SYE19, SGS+20, SRC16, VJC+13, ZC20, ZHB18].
Polyhedron [GGS+17]. polymorphic
[PM12]. polymorphous [SNL+04].
polytopes [SLM12]. Port
[WDX14, GKP14]. Portability [DFD+14].
Portable
[Per18, RMA14, WGO15, KNBK12].
positioning [ZWHM05]. Pot [VS+16].
potential [FE+13]. POWER [ACA+19].
Power
[AEJE16, ACA+19, CAMJ15, DTD16, DD16, FCD+17, GÃŠA+16, GB+15,
HYAR+15, HYYAM16, HAC13, JGSM15, KH18, KMG14, LM05, LAS+13, LWF+16,
LM14, RFWFJ19, SEF+19, WYCC11, ZCF18, AVG12, BB04, CCZ13, HP04, HL07,
LYYB07, MP13, MSK05, PLK+19, SW13, SEP07, WYJL10, XL07, YCCY11].
Power-Aware
[ACA+19, DTD16, SEP07, WYJL10].
Power-Efficient [HAC13, KH18].
Power-Gated [LZM14]. Power-Gating
[ZCF18]. Power-optimised [RFWFJ19].
Power-performance [LM05].
Power/Capacity [GBD+15]. POWER8
[XFS+19]. Practical [FXC+15, KWTD09, BSWLE13, FT10, ZBH+13].
pre [YCCY11, XC06]. pre-wakeup [YCCY11].
Preallocation [SSR13]. Precise [AFD07].
Precision [ASH+20, LDG+13]. Predicate
[CPB14]. Predicate-aware [CPB14].
Predication [HAC13]. predictability
[LB+05]. Predictable
[DPBI+19, SF18, XHJY17]. Predicting
[WLWB19]. Prediction
[EPS17, GAM12, OAM19, PLG19, YPT+16, CST+06, Jim09, MG12, TS05]. predictive
[IMS+08, RBM10, YCCY11].
predictive/adaptive [RBM10]. Predictor
[Mic18, OAM19, AGVO05, JSM+04, SL09].
Predictors [EPAG16]. Prefetch [SPS17].
Prefetch-Fraction [SPS17]. Prefetched
[SYX+15]. Prefetcher [LYH16, PB15, PWE20, SYX+15, LJM12, SBC05].
Prefetcher-Caused [SYX+15].
Scale [CAY+18, DAKK19, JLJ+18a, SKH+16, RCV+12, SMK10]. Scaling [BHC+16, GBD+15, MKKE15, ZLC+15, XMM04]. SCALO [GVT+17]. Schedule [GGS+17, GGS+19, LMSE18, SSW+19].

Scheduler
[TD16, USCM16, CWCS13, KCP13].

Schedulers [KKAR16]. Scheduling [AJE+16, ASV+16, DHD+14, LZX14, MKKE15, QYX+14, SKPD19, XHY16, BBG13, CPB14, CG14, EE12, MBK12, SPGE06, SWH09, SSR13, TBC+12, XL07, ZGC+12, ZY10]. Scheme [AE+19, WPJ19, ZWL+19, BBG13, CCZ13].

Schemes [KCKG14]. SCIN [NTG13]. SCIN-cache [NTG13]. SCORE [ZW1+19].

SCP [SL+19]. Scratchpad [JAK17, RTK15, YBS19, CS10, LFX09].

script [KBR+13]. script-based [KBR+13].

Selecting [BE13, TDO16b]. Selection [MNC+16, SNX+19, ZGP15, MBY13].

Selections [BAZ+19]. Selective [GGY19, KMG14, LSC+15, WPJ19, LWLH22, MA08, VSP+12].

Self [LLR17, SAL19, BBG13]. Self-aware [SAL19]. Self-Balancing [LLR17].

self-scheduling [BB13]. SelSMaP [WPJ19].

Semantic [AP17, HCC+14].

Sensible [LMA+16]. Sensing [WCI+16].

sensitive [Ns13]. sensitivity [DWDS13].

Sensor [DSK19]. Sensor-Processor [DSK19].

Sequences [AP+17, MNC+16, KHW+05, PJ13].

Sequential [WLZ+13, LZ12]. series [LGT12]. Server [AVG12, FCD+17, LGT12, RPE12]. Servers [LTX16]. Service [GMW09, GZSI10]. Set [KBB+14, AR13, HL07, KWCL09, ZK06].

set-associative [HL07, KWCL09].

sets [DDU12]. setups [RPE12]. sFtree [BRSJG12]. Shared [DRHK15, GP14, HMYZ15, KE15, LM13, PG17, SKAEG16, SL1+19, WJC17, XHY16, AG1+12, AIVL13, GGPRG12, GZSI10, HLR+13, K1G10, LH1B12, RGG+12, W1M11, ZPC06].

shared-data [HLR+13].

shared-memory [ZPC06].

Shared-port [GKP14].

Sharing [GG18, JAK17, KLA+19, YDL+17, ZJJ+15, SSK11].

Shelf [DPB19]. Shifts [KHB+20].

ShiftsReduce [KHB+20].

shotgun [FBHN04].

showdown [SCEN08].

shuffler [BV12].

Side [AHA+19, BHC19, JF20, LFK19, BV1B12].

Side-Channel [BHC19, JF20, LFK19, BV1B12].

signatures [OAB12]. Significance [PVA+17].

Significance-Aware [PVA+17].

Significantly [MP13].

Silent [PLG19].

silicon [PCT12].

SIMD [AR13, DSK19, FSYA09, GS12, GZSI20, GR15, HEL+09, KMG14, LH1+19, MYG15, MYK16, RMA14, SMKH15, WCC+16, ZX19, Z1X6].

Simplifying [ZB1+19].

SIMPO [LYW18].

SIMT [CC18, LAAM15].

Simulating [RPE12]. Simulation [JYE+16, SLJ+18, vVSAAS20, HS05, JY+13, RCV+12].

Simulations [CAY+18, HEMK17, JLJ+18b].

Simulator [LCS+19, NRQ16b, TPN+20].

Simulators [LJL+18b].

Simultaneous [LGP+16, WLLW20, EE09, RGC+10a].

Simultaneously [LAC+13].

Single [RTG+07, ZWY17, CG14, GB06, JK13, VE13, WK09].

Single-dimension [RTG+07].

single-ISA [CG14, VE13].

single-referent [WK09]. size [MBY13].

Skeleton [NC15].

Skeleton-Based [NC15].

Sketch [XDXL19].

SketchDLC [XDXL19].

Skylake [HYYAM16, YHYBAM20].

Skylake-Based [HYYAM16, YHYBAM20].

SLOOP [ASP17].

Slowdown [XHY17].

SM [ZJJ+15].

smart [AGV05].

SMT [EE12, LMCV13, PLT+15, LSP08, VS11].
SW26010 [JYM20]. switch
[ASK13, BRSJG12, CPB+07, GWM07, LS10].
switch-to-switch [BRSJG12].
SWITCHES [DT17]. switching [DMG13]. symbiosis [EE12].
Symbolic [ZLJ18]. SYMetrics [PS12]. Symmetry
[GSC17, ZDC+16]. Symmetry-Agnostic [ZDC+16].
Synchronization [DAKK19, MNSC16, SLJ+18, CCGP13, ZSCM08].
Synchronization-Aware [SLJ+18]. SynchroTrace [SLJ+18]. Synergistic
[VGX16]. Systematic [EE12]. Systematically
[DJC16, GSC17, SSW+19, UDL20].
Synthesizer [DS16]. SYRANT [PS12].
System [AJK+12, CC18, HHC+16, LY+15, LCC+19, MGSH16, PLT+15, SBS16, SWF16, TKKM15, ZFT+18, CDPD13, HCC+14, KBR+13, LW+11, SSPL+13, TBC+12, WSC+13]. System-Level
[PLT+15]. System-Level
[MDC17, GSC17, ZDC18].
Systematic [EMR14]. Systematically
[CNS16a, CKPH19, FMY+15, GMY+16, HY+16, JED19, KE15, KTA16, KAC+18, KHN+18, LMA+16, LYH16, MMT+12, MKKE15, NRQ16b, PLK+19, PG17, PBY+17, PGB16, SPS17, TMB+16, TPN+20, TCS16, USCM16, WGO15, WLL+19, HXJY16, ZDC+16, ZSM+16, CPP08, WCWS13, XMJ11, GIK13, GHS12, HS06, HW+11, KNKB12, KGK10, LMJ+13b, LCL+14, LHZ13, LFC13, LHNB12, MP13, NCQ14, YRHLB13, ZVYN05, ZPC06, ZCW10, ZDC+12].
tables [CPB14]. TACO
[Aca16, Ano15, Ano13a, Ano13b, Bil19].
TACOMA [AVG12]. Tactics [CZGC20].
TAGE [Mic18]. TAGE-like [Mic18].
TaihuLight [AYL+18, ZFF+18]. taken
[PS12, PS12]. Taking [SWU+15]. taming
[ZBH+13]. target [LB05]. Targets
[SAL19]. Task
[CCM+16, DHD+14, GTH+16, KKA16, MPPS18, RHC15, SN17, SDH+15, ZCQ+19, ZWY17, CG14, LMJ+13b, VTN13, ZYCZ10]. Task-Parallel
[DHD+14, MPPS18, SN17]. Task-stealing [ZCQ+19]. Tasks
[DT17, MKKE15, PVS+17, PWP19, ZGC+12, PWP19]. Technique
[HNK17, PGB16, XT09]. Techniques
[ATGN+13, DJC16, HAC13, VZS+18, YMM+15, MMdS06, MG12, RCG+10a]. technologies [WLZ+10]. technology
[NED+13, RYW13]. Temperature
[SSS+04, MSF+07]. Temperature-aware
[SSS+04]. temperature-constrained
[MSF+07]. Template [HJW15]. Temporal
[TKJ13]. Temporal-based
[TKJ13]. Tenant [FCD+17, KLA+19]. Tensor
[GGK18]. tenuring [RB10]. TEP [LP17]. test
[PS12]. Tetris [XT09]. Tetris-XL
[XT09]. their [ZG05]. Theory
[YDL+17, YDS+19]. Thermal
[LMC17, CK11, WA08, ZCYZ10]. Thread
[CDP16, DSR15, LMI+18, LWH16, LG15, PGB12, RCG+10a, SF18, YBSY19, BTO10, CCGP13, DEE13, GPL+05, LHZ13, MSF+07]. Thread-Aware
[LHY16]. Thread-Data
[LWH18]. Thread-Level
[LZ18, MG15, YBSY19, GPL+05]. Thread-management [RCG+10a].
Threaded [GVT+17]. threading [KS16].
Threading-Based [KS16]. Threads
[BZ+19, GB06, LZ12, ZSCM08]. Three
[VFW16]. Threshold [HK14]. Throughput
[EMR14, KCA+13, BKL13, BTS10, OGK+12, TBC+12]. throughput-oriented
[BTS10]. throughput/watt [TBC+12].
Tiered [CWM16]. Tile [MBY13].
Tiled [KPP15, SY19, ZCF18, CC13].
Tiled-MapReduce [CC13]. Tiles [ZC20].
Tiling [CC13, SHS+20, ZG15, BCT13].
Time
[BCL13, CE16, DB19, KE15, KTA16, NAS13, PKPM19, SEF+19, CDD12, GKH+13, LTO12, LMCV13, RGG+12, ZGC+12]. Time-
[BCL13, Nas13].
time-critical [RGG+12]. time-series
[LTG12]. timekeeping [WM11].
Timing [RLS13]. timestamp [RLS13].

Topology-Aware RLS15, VSDL16, ZZB [DHK18, DD16, GMGZP14, NZ15, PD17].

Transactional [MMT]. Tomography [JED19, LMJ13a, LB13, TLB [LBM13], TLC [PM17], TLP [LMZ18, SNL+04]. Token [RBM10], token-counting [RBM10]. Tokens [ZFL18].

Tolerance [AAI+16, RCV+05]. Tolerant [DSH+18, HAM17, LCC11].

TornadoNoC [LNLK13]. Trace [HWM14, XDLX19, CWS06, HCC+14, SW09].

trace-based [HWM14]. Traces [HEMK17, SL1+18, TG07, ZG05].

Tracing [HWL+19, HCC+14]. Tracking [LRLC17, MMT+12, KHL+13, VTN13].

trade [AVG12]. trade-off [AVG12].

Tradeoffs [GPL+05]. Traffic [SLH+20, FQRG13, LYYB07]. Tranquilizer [PGB12].

Transaction [ZCCD16, SSU+13]. Transactional [DKH18, DD16, GMGZP14, N215, PD17, RLS15, VSDL16, ZZB+19, ATGN+13, RLS13, SSU+13, TGAG+12, WKCS12, YJTF13].

Transactions [DD16, LDC15, SSU+13].

Transcendental [SSRS15]. Transfer [HHC+16]. transfers [STLM12].

transformation [BB+20, CLA+19, JSL13].

transformations [BCVN10, RCG+10b, SLM12]. transition [CW13]. transitioning [HWM14].

transpose [GS12]. transpose-free [GS12].

Traversal [RMA14]. Tree [ZXL19, CDPD13, PRMH13]. Trees [JGSM15, BRSJG12]. Triangular [BSL17].

Triggered [AJE+16]. Triple [LP17].

TRIPS [SNL+04]. TSV [NRQ16a].

Tumbler [PGB16]. Tunable [MGSH16].

Tuning [CG15a, JGSM15, JA14, MG15, WGL17, XFS+19, WKCS12]. Turbo [KH18].

turn [AGVO05]. turn-off [AGVO05]. Two [CWMC16, JYE+16]. Two-Level [JYE+16].

Two-Tiered [CWMC16]. type [AR13, JML+20]. Types [PD17].

UMH [ZSM+16]. Understanding [EPAG16, LS10, MMT+12, VE13]. Unified [TG07, ZSM+16, YXK+12, KRHK+16].

Uniform [HK14]. Units [GG18, GÁSÁ+16, SEF+19, GÁSÁ+13, HV06, YCCY11].

unloading [ZK05]. Unreliable [PVA+17].

Utility-Driven [PB15]. Utilization [CAGS17, LWF+16, SKKB18, TZR18, VZS+18, YWW+12, ZCDD16, XCC+13].

Utilizing [TBC+12, KCP13]. UVMs [KRHK16].

X10 [TN20]. x86 [CCD12, LHW+19]. XL [XT09].

References

[ÅJE+16] Tomi Äijö, Pekka Jääskeläinen, Tapio Elomaa, Heikki Kultala, and Jarmo Takala. Integer linear programming-based scheduling for transport trig-

[Ahn:2012:ISE]

[Anderson:2016:AVI]

[Ashouri:2016:CCA]

[Alias:2017:OAC]

Ardestani:2016:MMV

Abad:2013:LLE

Asher:2013:HTL

Akkary:2004:ARE

Antao:2013:CFA

Ahmad:2020:DDM

Ahn:2013:SHR
Anbar:2016:EHL

Azhar:2017:SQS

Angerd:2017:FAC

Akram:2016:BPG

Armejach:2013:TIP

Abbasi:2012:TSW

Amme:2007:SBM

REFERENCES

[BE13] Maximilien B. Breughe and Lieven Eeckhout. Selecting representative benchmark inputs for exploring micropro-
REFERENCES

Balasubramonian:2017:CNT

Bahmann:2015:PRC

Bogdanski:2012:SFC

Baroudi:2017:OTB

Bower:2007:ODH

Bartolini:2014:AFG

Bardizbanyan:2013:DPD

[BSWLE13] Alen Bardizbanyan, Magnus Sjölander, David Whalley, and Per Larsson-Edefors. Designing a practical data filter cache to improve both energy efficiency and performance. ACM
Boyer:2010:FBP

Bayrak:2012:AII

Bruintjes:2012:SLA

Bentley:2006:IAB

Barik:2013:DNS

Chen:2011:HAM

Chaudhuri:2017:MSC

Mainak Chaudhuri, Mukesh Agrawal, Jayesh Gaur, and

Chi:2015:LPH

Cai:2018:ESH

Colombet:2015:SOS

Chen:2018:ESE

Cleemput:2012:CMT

Chen:2013:DRU

Yunji Chen, Tianshi Chen, Ling Li, Ruiyang Wu, Daofu

Chrysanthou:2016:ORT

Chen:2012:DIO

Chen:2014:AWA

Chen:2015:LA

Cilardo:2015:IMM

Choi:2006:ORR

Carlson:2014:EHL

Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeckhout. An

REFERENCES

Chen:2013:PGF

Crago:2019:EMA

Ceze:2006:CUC

Cristal:2004:TKI

Cavus:2020:IPI

Calder:2004:I

Calder:2005:I

Calder:2006:I
REFERENCES

1544-3566 (print), 1544-3973 (electronic).

REFERENCES

Co:2006:ETC

Chen:2016:IDO

Cui:2012:EPO

Cui:2013:LOC

Chelini:2020:DLT

Das:2016:RDB

Dogan:2019:ASU

[DAKK19] Halit Dogan, Masab Ahmad,

DeOliveiraCastro:2015:CLB

Damschen:2016:EWP

Dou:2007:CCM

Dong:2012:RAE

Do:2016:PEH

DeSensi:2017:BPP

REFERENCES

DEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

REFERENCES

REFERENCES

Das:2015:SBP

Diavastos:2017:SLR

DeSensi:2016:RAP

Dey:2013:RMD

Dong:2011:HCU

Du:2013:DCC

Daruwalla:2020:BVC

Elkhouly:2020:CSC

Eyerman:2009:MLP

Eyerman:2011:FGD

Eyerman:2012:PMJ

Eyerman:2014:MTM

Evtuyushkin:2016:UMC

REFERENCES

Endo:2017:IBV

Ejaz:2018:DDD

Elwell:2016:RMP

Fields:2004:ICS

Fowers:2013:PEC

Ferroni:2017:PCM

Matteo Ferroni, Andrea Corna, Andrea Damiani, Rolando Brondolin, Juan A. Colmenares, Steven Hofmeyr, John D. Kubiatowicz, and Marco D. Santambrogio. Power consumption models for multitenant server infrastructures. *ACM Transactions on Archi-

Fang:2014:PPA

Fauzia:2013:BRD

Feng:2012:PPL

Feng:2015:MMD

Fedorov:2013:AAL

Fung:2009:DWF

Fursin:2010:COP

Feng:2011:DAD

Fernandes:2016:EHO

Fang:2015:PIO

Ghandour:2012:LSB

Gonzalez-Alvarez:2013:AAD

Gonzalez-alvarez:2016:MEF

Marco E. T. Gerards and Jan Kuper. Optimal DPM and DVFS for frame-based real-

Geraci:2012:TFP

Gerzho:2020:NMS

Gaspar:2016:FAG

Georgakoudis:2017:SSA

Golander:2008:HMP

Amit Golander and Shlomo Weiss. Hiding the mispre-

Golander:2009:CAR

Gabor:2007:FES

Gavin:2013:RIF

Ham:2013:PEP

Hasenplaugh:2012:GBC

Ham:2017:DDS

Ham:2019:EDS

Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. Efficient data supply for par-

[He:2015:IHF] Dan He, Fang Wang, Hong Jiang, Dan Feng, Jing Ning Liu, Wei Tong, and Zheng Zhang. Improving hybrid FTL

Jiang:2020:EBC Zhen Hang Jiang, Yusni Fei, and David Kaeli. Exploit-
REFERENCES

Jia:2015:GPP

Jimenez:2009:GNB

Jantz:2013:ESM

Jensen:2017:ILD

Jeon:2013:RDR

Jang:2012:ACO

Jin:2018:LCM

[Hai Jin, Bo Liu, Wenbin Jiang, Yang Ma, Xuanhua Shi, Bingsheng He, and Shaofeng Zhao. Layer-centric memory...

REFERENCES

Jeon:2009:AAP

Jeong:2013:EET

Juang:2004:IBP

Jiang:2016:TLH

Jiang:2013:PAP

Jiang:2020:EHE

Komuravelli:2015:RCH

Kim:2018:BEE

Kluter:2014:VWL

Khan:2013:SBA

Kritikakou:2013:NOM

Kritikakou:2014:SNO

Kim:2013:FMS

[KCP13] Wonsub Kim, Yoonseo Choi, and Haewoo Park. Fast modulo scheduler utilizing patternized routes for coarse-

Kafshdooz:2015:DSS

Kayraklioglu:2018:LLA

Koraei:2020:DSS

Kourtis:2010:ECO

Kondguli:2018:CME

Khan:2020:SMS

Kerschbaumer:2013:IFT

[KHL+13] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and Michael

Kim:2018:CEC

Kaitoua:2014:HED

Kulkarni:2005:FES

Kanuparthi:2015:RIC

Kurt:2016:UAS

Kawahito:2013:IRF

with the following references:

Karimi:2015:MMA

Kronawitter:2019:PSS

Kannan:2019:CIE

Kim:2012:IPN

Kumar:2014:EPG

Kicherer:2012:SPA

Kanakagiri:2017:MMD
Raghavendra Kanakagiri, Biswabandhu Panda, and Madhu

Karimi:2015:MMA
REFERENCES

REFERENCES

Koh:2009:TPV

[102x681] REFERENCES
[102x681] 1544-3566 (print), 1544-3973 (electronic).

[KWCL09]

Kotzmann:2008:DJH

[KWM+08]

Kulkarni:2009:PEO

[KWTD09]

[168x605] Lucas:2015:SSS

[LAA+15]

Leverich:2008:CEM

[LAS+08]

Li:2013:MFM

Lee:2010:AIC

Li:2005:ABT

Lustig:2013:TIC

Lee:2011:DDE

Lin:2004:CFS

Liu:2014:BBS

Lee:2019:SLS

Lee:2016:A

Lin:2019:CCC

Luo:2019:SCT
REFERENCES

[Lin:2006:RCG] Jin Lin, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju,

[REFERENCES]

Luo:2013:DIH

[LHZ13]

[LKV12]

[LLRC17]
REFERENCES

[LMZ18] Zhen Lin, Michael Mantor, and Huiyang Zhou. GPU performance vs. thread-level parallelism: Scalability analysis and a novel way to improve
REFERENCES

Lee:2013:TLS

Louise:2019:FST

Lim:2017:TEP

Li:2012:DQM

Lotfi:2015:AAC

Liu:2010:UBI

Lin:2015:SSE

July 2015. CODEN ????? ISSN 1544-3566 (print), 1544-3973 (electronic).

Li:2020:DCP

Lee:2013:APF

Leben:2019:PCM

Lewis:2012:REC

Liao:2016:DPM

Luporini:2015:CLO

Li:2016:MAP

Zheng Li, Fang Wang, Dan Feng, Yu Hun, Jingning Liu, and Wei Tong. MaxPB: Accelerating PCM write by maximizing the power budget uti-

system with HW optimizer.

Luo:2007:CNP

Luo:2012:DDS

Li:2013:CCC

Liang:2014:DCC

Li:2009:TUC

Mehrara:2008:ESP

Mohammadi:2017:COE

Milad Mohammadi, Tor M. Aamodt, and William J. Dally. CG-OoO: Energy-efficient coarse-grain out-of-

Mysore:2008:FIP

Malits:2012:ELG

Mehta:2013:TSS

Majumdar:2012:MPE

Matheou:2015:ASD

Matheou:2017:DDC

McCandless:2012:CTI

Jason McCandless and David Gregg. Compiler techniques to

[Mic16] Pierre Michaud. Some mathematical facts about optimal

Michaud:2018:ATL

Melot:2015:FCS

Marathe:2006:ACC

Michaud:2015:RCM

Mazloom:2012:DTI

Martins:2016:CBS

REFERENCES

[Mcpherson:2016:FPL]

[Mattheakis:2013:SRM]

[Manivannan:2018:GDB]

[Mukhanov:2017:AFG]

[Michaud:2007:STM]

[Meng:2005:ELL]

[Mbakoyiannis:2018:EPC]
Dimitrios Mbakoyiannis, Othon Tomoutzoglou, and George Kornaros. Energy-performance considerations for data offloading to FPGA-based accelerators over PCIe. *ACM

References

Pananilath:2015:OCG

Panda:2015:CUD

Pu:2017:PHS

Pop:2013:OED

Park:2016:CJP

Patsilaras:2012:EEM

Peterson:2017:TCT

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

Pathania:2017:DTM

Peled:2020:NNP

Pirkelbauer:2019:BTF

Qi:2014:VV

Ramashekar:2013:ADA

Raghavan:2010:TTP

Rakvic:2010:TMT

Ryckbosch:2012:VSM

Rochecouste:2006:CCE

Roy:2018:NCN

Rong:2007:SDS

Rodriguez:2015:VSR

Riebler:2019:TAH

Rangan:2008:PSD

Roberts:2019:POS

Rohou:2013:VTI

Song:2019:SAR

Siso:2020:EAV

Strozek:2009:EAE

Sharma:2005:SPE

Scolari:2016:SCP

Shi:2008:VMS

Stenstrom:2012:ISI

Soteriou:2007:SDP

Stawinoga:2018:PTC

Selva:2020:BPR

She:2013:EEM

Suh:2015:DMR

Samadi:2014:LGU

Stoltzfus:2020:TOS

Shen:2014:RSB

Sharafeddine:2012:DOE

Mageda Sharafeddine, Komal Jothi, and Haitham Akkary.

Subramaniam:2009:DOS

Song:2020:IME

Sasanka:2007:AES

Shi:2020:OSB

Sangaiah:2018:SSA

Su:2019:SSC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Shekofteh:2019:MSG

Sharkey:2006:IPT

Stanic:2017:IVS

Swami:2017:EEC

Stock:2012:UML

Sridharan:2017:BPP

REFERENCES

Strydis:2013:SAP

Shobaki:2013:PIS

Suresh:2015:IFM

Skadron:2004:TAM

Stipic:2013:PGT

Sardashti:2016:YA

REFERENCES

Shobaki:2009:OTS

Simon:2015:STH

Sato:2019:AFS

Seshadri:2015:MPC

Savrun-Yeniceri:2014:EH1

Shihab:2018:RFD

Therdsteerasukdi:2012:URI

Kanit Therdsteerasukdi, Gyungsu Byun, Jason Cong, M. Frank Chang, and Glenn Reinman. Utilizing RF-I and intelligent scheduling for better through-

REFERENCES

Trinh:2015:EDE

Tallam:2007:UCF

Titos-Gil:2012:HTM

Tian:2013:TBM

Tong:2015:OMT

Tawa:2014:EEF

Tampouratzis:2016:AIH
Nikolaos Tampouratzis, Pavlos M. Mattheakis, and Ioannis Papaefstathiou. Accelerating intercommunication in

Thangamani:2020:ORC

Tampouratzis:2020:NHI

Tartara:2013:CLC

Tarjan:2005:MPG

Tabkhi:2015:JSH

Tzilis:2019:EER

Tavana:2018:BCA

[Mohammad Khavari Tavana, Amir Kavyan Ziabari, and...}

REFERENCES

[VPTS19] Evangelos Vasilakis, Vassilis Papaefstathiou, Pedro Tran-
coso, and Ioannis Sourdis. Decoupled fused cache: Fusing a
decoupled LLC with a DRAM cache. *ACM Transactions
January 2019. CODEN ???? ISSN 1544-3566 (print),
1544-3973 (electronic).

[VSDL16] Tiago M. Vale, João A. Silva, Ricardo J. Dias, and João M.
Lourenço. Pot: Deterministic transactional execution.
*ACM Transactions on Architecture and Code Optimiza-
tion*, 13(4):52:1–52:?, December 2016. CODEN ???
ISSN 1544-3566 (print), 1544-3973 (electronic).

[VS08] Hans Vandierendonck and André Seznec. Speculative return
address stack management revisited. *ACM Transactions
November 2008. CODEN ???? ISSN 1544-3566 (print),
1544-3973 (electronic).

[VTN13] Hans Vandierendonck, George Tzenakis, and Dimitrios S.
Nikolopoulos. Analysis of dependence tracking algorithms
for task dataflow execution. *ACM Transactions on Archi-
tecture and Code Optimization*, 10(4):61:1–61:?, December
2013. CODEN ???? ISSN 1544-3566 (print), 1544-3973
(electronic).

[VW11] Lucas Vespa and Ning Weng. Deterministic finite automata

Voitsechov:2018:SDT [VZS+18]

Vasilache:2020:NAL [VZT+20]

Winter:2008:ATN [WA08]

Wibowo:2016:ACL [WAST16]

Wang:2016:HPC [WCI+16]

Wang:2014:PSR [WDX14]

REFERENCES

Wang:2015:BOM

Wang:2014:EAC

Woo:2010:CVI

Weber:2017:MAL

Wang:2015:APM

Wimmer:2013:MAV

Wei:2017:HHM
References

September 2017. CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

Wegiel:2009:SRC

Wang:2012:TMA

Wang:2019:SSL

Wu:2020:MBS

Wang:2019:PNW

Wu:2010:DEH

Wang:2013:MTD

Chao Wang, Xi Li, Junnong Zhang, Xuehai Zhou, and Xiaoning Nie. MP-Tomasulo:
REFERENCES

116

Wimmer:2010:AFD

Wu:2011:ATR

Wang:2019:GGC

Wang:2013:UML

Wang:2019:SSS

Wang:2013:WWA

Wang:2014:IPD
Zheng Wang, Georgios Tournavitis, Björn Franke, and

Song Wu, Fang Zhou, Xiang Gao, Hai Jin, and Jinglei Ren.

REFERENCES

Xekalakis:2012:MSM

Xiao:2007:VIS

Xie:2004:IDV

Xu:2009:TXP

Xia:2020:DAB

Yilmaz:2016:ARS

Yu:2019:ITL

REFERENCES

Yviquel:2018:CPU

Yeh:2011:MPP

Ye:2017:CES

Yuan:2019:RTL

Yalcin:2014:EEC

Yasin:2020:MGM
REFERENCES

Yan:2013:IPA

Yang:2017:EJV

Yan:2004:TML

Yu:2008:OCL

Yoon:2015:EDM

Yazdanbakhsh:2016:RRF

Yebenes:2019:CSA

Pedro Yebenes, Jose Rocher-Gonzalez, Jesus Escudero-Saluquillo, Pedro Javier Garcia, Francisco J. Alfaro, Francisco J. Quiles, Crispin Gomez, and Jose Duato. Combining source-adaptive and obliv-

[YZ08] Yiapanis:2013:OSR

[Yang:2010:ERS]

[Yang:2012:UOC]

[Yan:2008:EVR]

[Yang:2012:CGC]

[Zhao:2013:HPP]

Zhao:2020:FTF

Zhao:2016:FMR

Zoni:2018:DEP

Zhao:2019:BLA

Zhao:2006:A

Zhao:2010:PPP

Zhou:2012:WAP

Miao Zhou, Yu Du, Bruce Childers, Rami Melhem, and Daniel Mossé. Writeback-aware partitioning and replacement for last-level caches

Zhou:2016:SAC

Zhao:2018:OCN

Zahedi:2018:MHD

Zhang:2018:CNC

Zhang:2005:WET

Zhang:2012:TPB

REFERENCES

Zhou:2015:OPS

Zhang:2008:RCM

Zinenko:2018:VPM

Zhang:2004:RIC

Zhang:2019:REU

Zhang:2015:BSS

Zhang:2005:DIE
REFERENCES

2005. CODEN ???. ISSN 1544-3566 (print), 1544-3973 (electronic).

Zmily:2006:BAI

Zhao:2015:BSB

Zheng:2018:ESG

Zhang:2018:SSM

Zhao:2015:BSB

Zhang:2018:ESG

Zhang:2016:CPS

Zimmer:2015:NSM

Zhang:2006:EAR
Lixin Zhang, Mike Parker, and John Carter. Efficient address remapping in distributed

Zivanovic:2017:MMH

Zhai:2008:CHS

Zhao:2013:OGE

Ziabari:2016:UHB

Zhang:2005:WHC

Zhao:2005:IWA

1544-3566 (print), 1544-3973 (electronic).

