A Complete Bibliography of *ACM Transactions on Architecture and Code Optimization*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
05 April 2023
Version 1.83

Title word cross-reference

2 [BSL17, LLC22, SKP+22]. 3
[CAY+18, CWMC16, LGP+16, LLC22, NRQ16b, SZJK18, SKP+22, ZSLX13]. 3
[CCZ13, DDT+17]. K [Abd20]. QR
[BHWN21]. Z [SLM12].
* [SCFD22].

-D [CAY+18]. -means [Abd20]. -polytopes [SLM12].

/channel [LCL+14].

000-core [DAKK19].

2.5D [SKP+22]. **2014** [Aca16, Ano15].

4.0 [KHB+20].

6 [KWM+08]. **64-bit** [BWLR06, VED07].

7 [BKM+17]. **754** [LDG+13].

Approximate
[DS12, SPS23, YPT+16]. Approximation
[SMM+23, LTG12]. Apps
[MPLH22, PCM16]. Arbitrary
[PWE20, RHC15, WMGS19, WWGS22].

arbitration [XCC+13]. Architecture
[CPB+07, NTV+22]. Architectural
[CPS+15, DCF+12, HEMK17, KLA+19, LZZ+22, ME15, QSZ+21, WAST16, WZG+19, YHYBAM20, IMS+08, SB09, ZZQ+05, CWC06]. Architecturally
[KBB+14]. Architecture
[FBC+22, HK14, KAC+18, LWS+19, OK21, PVS+17, SLJ+18, SM19, SHY14, SWF16, VC16, VFJ+17, XMW+21, XVTR20, ZFT+18, ARS04, BVIB12, BWG+12, CPB+07, DJX13, GKP14, GSZI10, JYJ+13, JA14, LNLK13, PM12, STLM12, SNL+04, SRLPV04, SSPL+13, ZK06].

Architecture-Agnostic [SLJ+18]. architecture-independent [BVIB12].

Architectures
[AJE+16, ASK+16, ASP17, CG15a, CEI+16, CDPN16, GR15, HAM17, HAM19, HHW+22, JLJ+18a, LAS+13, LZN14, MST+21, PT17, RMA14, SJL+20, ZLYZ16, ZCQ+19, BBG13, BWLR06, BTS10, CG14, CK11, CDM13, KCP13, LKL+13, OGG+12, RCV+12, SSK11, SD12, SB09, TC07, TDG13, VE13, YXK+12]. Area
[LAS+13, MP22, SB09].

area-efficient [SB09]. Art
[QFLG13].

Arithmetic
[LVR+15, UDDL20, BWG+12].

ARM
[GD16, HZYN+22, LHW+19, SHY14, SPH+17]. ARM-to-x86
[LHW+19].

ArmorAll
[KPRK20]. Array
[DSK19, WG17, XMW+21, BWLR06, KLMP12].

Arrays
[LMSE18, TD16]. Arrival
[PRO21].

ARSE
[DDT+17]. Art
[MWJ19]. As-Is
[SPS23]. ASA
[ZBC+22]. Assembly
[LVR+15]. Assigned
[DCL+22].

Assignment
[JOB+22]. assistance
[JOA+09a]. Assisted
[CDPN16, HNKK17, JDZ+13, KKAR16, PHBC17, CST+06, ZZL+21]. associative
[HL07, KWCL09]. associativity
[YJTF13].

Asymmetric
[ZZQ+19, CG14, CCPG13, PCT12, SW13].

Asymmetry
[LHW+19]. Attack
[DHX+22, LFK19]. Attacks
[BCHC19, ERAG+16, PHBC17, SKS23, ZHS+19, BVIB12, CDD12, DJL+12].

AUKE
[DSK19]. Auto
[CG15a, SAT20, WG17]. Auto-Tuning
[CG15a, WG17]. Auto-Vectorizing
[SAT20]. Automata
[LZZ+22, VW11]. automatable
[AFD07]. Automated
[ASS17, BSSS14, BCHC19]. Automatic
[AMG16, DSK19, HEDH21, JLER12, LBO14, LT13, MGA+17, NC15, RB13, WLZ+13, WGO15, WM10, XZC+20, SPS12, WKCS12].

Automatically
[VZT+20]. Automating
[TWB21]. Automotive
[FWJ+16].

Autonomously
[DGI+14]. Autotuning
[AMP+16, CCCA20, SYE19, YAG+16, KBR+13, LFC13]. Availability
[OK21].

Avionics
[DPBP+19]. AVPP
[OAM19].

Aware
[ACA+19, BB21, DGI+14, CG15a, DTD16, DHX+22, DHD+14, GVT+17, JYW22, KFEG18, KMAK22, LYH16, LRBG15, PVA+17, PG17, RSK+18, SEF+19, SLJ+18, SJD22, SCK+21, SKH+16, SZJ18, SKPD19, SGM+22, UPR22, USCM16, WLZ+13, WJXC17, ZPL+21, ZCQ+19, ZYW17, CPB14, CG14, CHD+23, CLA+19, CWC13, EE09, GGFPRG12, HAM+20, KABS22, NB13, SLS+21, SSS+04, SAL19, SL20, SEP07, WYJL10, WSC+13, WDXJ14, ZYLC10, ZDC+12, ZK06, JZY+22].

Awareness
[HLSW17, LKL+13].

Bahurupi
[PM12]. Balancing
[LLRC17, PGB16, WWH+16]. Band
[SPS17]. Band-Pass
[SPS17]. Banded
[BSL17]. Bandwidth
Bandwidth-Asymmetric [ZCQ+19].

bitwidth-aware [NB13]. Blazo [PWP19]. Block [GFD+14, HAM+20, KTAE16, LLRC17, LTX16, MPPS18, TZK18, TAB+21, ZK06].

bounded [HS06]. Bounding [XMM04].

Bounds [ESR+15, BWLR06, JRH21]. BPM [LCL+14]. BPM/BPM [LCL+14]. Brain [vdVSAAS20]. Brain-Simulation [vdVSAAS20]. Branch [EPAG16, LIS20, LWL18, Mic18, C070, HW+11, Jim09, JSM+04, LB05, MG12, TS05].

Byte-Select [TDS+21].

C [CWW+16, NC15, NED+13, ZBB+19]. C-to-CUDA [NC15]. C/C [NED+13].

C1C [LZL+13]. CACF [ZFT+18]. Cache [CKPH19, CS21, CAGS17, DAD16, GFD+14, HK14, HMYZ15, KR19, KAC+18, KAC15, KDMA23, LLRC17, LWS+19, Mic16, PLK+19, RS21, SSW16, SBS16, SMM+23, SKH+16, SDS+21, SJC+21, SW021, SLJ+19, TWB21, VPTS19, WSJ+21, WJXC17, YDL+17, ZYW17,
Coarse [LMSE18, MAD17, TD16, KCP13].
Coarse-Grain [LMSE18, MAD17].
Coarse-Grained [TD16, KCP13].
Coarsening [SF18]. COBAYN [AMP+16].
CODA [KHN+18]. Code [DKK+21, CZ07, DSK19, HZL+22, CDM+22, KL19, PAVB15, PKPM19, SYE19, ZPH+23, AvRF07, CDM13, GNB08, HLR+13, HS06, JLER12, KBR+13, LKL+13, LBJ05, LZY09, LHY+06, PKC12, RCG+10b, VJC+13, ZK05, ZWH05].
code-positioning [ZWHA05]. Codelet [DAP+15]. Codes [CWMC16, TZK18, AFD07, AFD12].
Colony [SGM+22]. Coloring [YWXW12, LFX09]. Column [ZBC+22].
Column-wise [ZBC+22]. Combination [LDMZ19]. Combinatorial [SKPD19, SSR13]. combined [BWG+12].
Combining [VSP+12, YRGES+19]. CoMeT [SKP+22]. Commodity [GWZ22, WDX15]. common [WK09].
Communication [DSR15, HAM17, TN20, XDXL19, XDW+23, HWX+13, SSPL+13, TC07].
communications [ACGK04]. Compact [HMK+17, SHC13]. compaction [WK09].
Comparability [YWXW12]. Comparative [LAS+08]. Comparators [YIE+14].
comparison [FBWS13]. CompEx [PM17].

[AMP+16, ABP+17, BKS+22, CCD12, DZS+20, DCL+22, DTM+13, EAH+20, EPS17, GGK18, GMZ+21, HNKK17, HYR+15, JRH21, KBR+13, KMM+15, LFX+09, MNC+16, MG12, MPHL22, NCH16, NCH15, PHBC17, ZSM08, ZX16, CYXF13, DC07, HWM14, HLC10, JOA+09a, JOA+09b, KBR+13, KWM+08, LFL+13, LCH+04, TR13, YXK+12, ZHD+04].

Compiler-Assisted [HNK+17, PBH17].
Compiler-based [JRH21, KPRK20, ZHD+04].
Compiler-Directed [HYR+15, LFX09].
compiler-guided [LZL+13].
Compiler-Oriented [GGK18].
Compiler-support [EAI+20].
Compiler/Runtime [KPP+15].

Compilers
[PBCB22, SAT20, CDM13, HEL+09, SD12].
Complex [SHD15, vDVSAAS20, SLA+07].
Complexities [GHH15, ZHU+13].
Complexity [GGK18, KAC15, LNFE22, ZS13].
Communicate [CWW16, DZC+12].
Communications [BC13, KPM17, LMSE18, PM17, RS21, SW17a, TDS+21, KLG10].
Compression-Expansion [PM17].
Compression/Decompression [LMSE18].

Compressive [WCT+16]. Compromising [Bis21].

Computation
[CWW+16, HAM17, JHMM21, KHN+18, VZT+20, DD12, LFC13].
Computational [CRC+21].
Computationally [DSH+18].
Computations [BKS+22, PAVB15, SQZK20, SHS+20, CYXF13].

Conceivable [APG13].
Concurrency
Concurrent [AAI+16, GMGZP14, ME17].
Conditional [Mic18].
Configurable [NRQ16b, TGRK21, XMW+21, HVJ06, LZL+13].
Conflict [JFK20, WZZ+20].
Conflict-based [JFK20].
Conflict-free [WZZ+20].
Consumption [LYYB07, VED07, ZHD20].
Cooling [AEJE16, APS22, CSF16, WYJL10].
Construction [NMPS22, SHLM14].
Cooperation [THA18, Abd22, DNT16, JPS17, JDZ+13, LBM13, NMPS22, SHLM14].
Conditional [LL22].
Connected [CAY+18, DT17, HYYAM16, JPS17, KKW+15, KABS22, MMS15, TCS20, TDO16b, ZCF18, GB06, NTG13, PCT12, SW13, WYJL10, WFKL10].
Core [APBR16].
Correct [BDT+17].
Correct-by-Construction [DPBI19].
Correcting [SPM17, TZW18].
Correction [DG1+14, CWMC16, Lee16, LSC+15, LDC15].
Correctness [PD17], correlating [TKJ13].
Correlation [WPR+22], coscheduling [PGB1].
Cost [KBB+14, LGP+16, SSW16, SKPD19, YEI+14, AGI+12, DC07, FBHN04, MA08, SBC12].
Could [SW17a, ZPR+17].
Counter [WCI16].
Counter-Based [WCI16].
Counters [MPH17, RLS13].
Counting [RBM10].
Coupled [Abd20, PCT12].
Covering [PJ13].
Covert [EPAG16].
Cross [ERAG+16, LGAZ07, LVR+15, OTR+18, SWF16, TBW21, VOK+22, WAST16, ZLY16].
Cross-accelerator [TBW21].
Cross-Architecture [SWF16].
Cross-component [LGAZ07].
Cross-Layer [ERAG+16, OTR+18, WAST16, VOK+22].
Cross-Loop [LVR+15].
Cryptic [JAY16].
Cryptographic [AS13].
Cuda [LDZ+19, UPR22].
Cuda [CUDA].
Customized [CPG21]. cycle
[DEE13, RLS13].

D [LLC22, BSL17, CAY18, CWMC16, LGP16, NRQ16b, SZJK18, SKP22, ZSLX13]. d-Packed [BSL17]. D-Stacked [LGP16, NRQ16b]. D/ [LLC22].

DAPSCO [GGFPRG12]. dark [PCT12].

DarkCache [ZCF18]. DASH [MGA17].

Data [ASH20, AMG16, CKP22, CDPN16, DAKK19, EPS18, ESR15, EAH20, FXC15, GAM12, GLTV23, HAM17, HAM9, HLSW17, IPSD21, JYW22, JLJ18a, KPM17, KHN18, LWW18, LLS23, MST21, ME15, ME17, MT18, MNSC16, MGA17, MGSH16, NHK16, NSF21, PD17, RMA14, RTK15, SKH16, SJL20, SJC21, SWQ21, TDP15, VFJ17, WGO15, WZG19, YXS22, YMM15, ZLYW18, AVG12, AGG22, BSWE13, CS10, CA11, CDPD13, CWC06, FER13, FLG12, HLR13, HL07, LWW11, LM12, PC13, RB13, RFD13, STLM12, TG07].

Data-Centric [CKP22]. Data-Driven [ME15, ME17, ASH20]. data-flow [PC13].

Data-Parallel [MGSH16, NHK16].

Data-Race-Free [MNSC16]. Data-Rate [EPS18]. Data-Traversal [RMA14].

Database [BAZ19]. Datacenters [XVT20, ZFL18].

Dataflow [CPG21, DT17, KPP15, MMT12, VTN13].

Datapath [IWP04]. Datasets [WLJWB19].

DawnCC [MGA17]. DCMI [KFJ20].

DCNNs [ESB20]. DDR4 [TKM14].

DDRNoC [EPS18]. Dead [MPPS18].

deaddlock-free [BRSGJ12]. debugging [VDSP09]. decay [JSM04, SS04].

Declarative [CZGC20]. decoders [Zha08].

Decoding [CAMJ15]. Decompression [BHWN21].

Decompression [LMSE18].

Decostructing [CFH12]. Decoupled [VPTS19, BZS13, DHC13, RVOA08].

Decoupling [HAM17]. Decreasing [SWO21]. Deep [ASK16, CKP22, DLS22, JLJ18a, MWJ19, RSK18, WWW21, XDXL19, XDW23]. Deeply [GKCE17].

Defined [DMR16, TGAG12].

Defragmentation [PVS17]. DeFT [VHKP11]. Delay [SKS23].

Delay-on-Squash [SKS23]. Delivery [ZZL21]. Delta [DZC13].

Delta-compressed [DZC13]. Demand [BRJM15]. Dense [CWW16].

Dependence [BRJM15, DHD14, JK17, KABS22, SL09, TG07, VTN13].

Dependence-Aware [DHD14, KABS22]. dependences [BCVT13].

Dependency [WLZ13, ZPL21]. Dependency-Aware [WLZ13, ZPL21]. dependent [ZYL10].

Deployments [vdVSAAS20]. depth [HP04]. Design [CSF20, CKPH19, CPS15, ESB20, HJW15, KWM18, LDY21, MAY23, RLTM15, SJK18, SPH17, SL09, VHKP11, VMM15, WGO15, WZG19, YXS22, YMM15, ZLYW18, AVG12, AGG22, BSWE13, CS10, CA11, CDPD13, CWC06, FER13, FLG12, HLR13, HL07, LWW11, LM12, PC13, RB13, RFD13, STLM12, TG07].

Details [FMY15].

Detecting [DSR15, KS11]. Detection [BDB20, CEP16, LHC17, MNSC16, SLH20, WCI16, WD22, YEL14, KL13, TBS06, TDG13, VHKP11, WFT014].

Deterministic [CCL13, VSDL16, VW11].

Detonation [CAY18]. Devectorization [KMG14].

Development [VCJ17]. Device [MSFC21, RLBBN15]. Device-Level [RLBBN15].

Devices [DKM14, NMS06, ZK05]. DFA [BC13].

Diagnosing [JLJ18b]. diagnosis [BSO07].

DiagSim [JLJ18b]. Die-Stacked [CWMC16]. die-stacking [ZSLX13].
different [YXK+12]. Dimension
[LLC22, RTG+07]. Dimension-Order
[LLC22]. dimensional [LT19, LL22].
Direct [DBK+20, LLRC17, YRGES+19].
Direct-Mapped [LLRC17]. Directed
[HYAR+15, VZS+18, LFX09, NED+13, SEPS07, WM10]. directional [XMW+21].
directives [CW+12]. Directories [PT17].
Dirty [LLRC17]. Dirty-Block [LLRC17].
Disaggregation [MKC+22]. discard
[LWWH12]. Discovering [HYYBAM20].
Discrete [ZSM+16]. DistIRer [HLC10].
Disjoint [SJAI2]. Disk
[LYK+15, WDW+22]. disparate [WLZ+10].
Dispatch [LLRC17]. dispatching [LZ12].
dissemination [LZY09]. Distance
[DAD16, GGFPRG12, KR19, SCMU22,
FER+13, FTLG11]. Distance-aware
[GGFPRG12]. Distance-Based [DAD16].
Distilling [JEBS08]. Distinguished
[Aca16, Ano15, BII19, Ano13a]. distribute
[RFD13]. Distributed [IZY+22. KHS+14,
KAC+18, MMGS21, SSS+23. TPN+20,
XDXLI9, XDW+23, ZPC06]. Divergence
[LWL18, SMKH15]. Divergent [GR15].
Diverse [LP17, SAL19]. diversification
[CMDA3]. Diversity [TD016b, KBNK12].
DJ [DDU12]. DJ-graphs [DDU12]. DL
[THA+21]. DLP [SNL+04]. DNN
[LWC+22, XZC+20]. DNNTune [XZC+20].
Do [ZPR+17]. Document [HKA+19].
Doesnt [LKV12]. Domain [CZGC20,
FBC+22, GâS+16, GMZ+21, GAS+A+13].
Domain-Specific [GMZ+21, CZGC20].
Domains [SW+1a]. DPCs [GB+15].
DPM [GK+13]. Dragonfly [CBV+15].
DRAM
[CKP+19, CAGS+17, HCC+14, JLRC13,
LLRC17, LCL+14, NCQ14, OLK+23,
OTR+18, TKM14, VPTS19, XHJY16].
DRAMCache [PG17]. DRAMs [LSC+15].
Drift [SZK+18]. Drive [MPHL22]. Driven
[ME15, ME17, PB15, ZWS+16, ASH20,
CDM13, FTGL11, SLPO8, WTFO14, XT09,
ZCS06]. Dropping [CNAA+22, GFD+14].
DSL [PBY+17]. DSM [IZY+22].
DSM-aware [IZY+22]. DSPs [VCJ+17].
Dual [EPS18, WZG+19]. Dual-Page
[WZG+19]. DUCATI [JED19].
duplication [KS11, KKL+13]. DVFS
[CS21, EE11, GK13]. DynamAP [LZZ+22].
Dynamic
[BHC+16, CCA+20, DGGL16, DD16, DBJ13,
FER+13, FTGL11, FSYA09, GAM12,
GDL16, GB+15, HWL+19, KE15, KPP+15,
KMG14, KKA16, LKL+13, Lee16, LPZ12,
LSL20, LTX16, LHW+19, LZZ+22, MG19,
MG20, RHC15, SV05, SGS+20, SHD15,
WPH+16, XHY16, ZWY17, BBG13,
DWS813, GHS12, HS06, HWH+11, HVJ06,
JSH09, LWH11, LJM12, LCL+14, MG12,
NED+13, WSC+13, XMM04, ZZQ+05].
Dynamically
[HDW21, LZ12, PGB12, KS11].
E-BATCH [SAG22]. eager [JLCR13].
Early [AKBS+21, ZL+21, JOA+09b, SLPO8].
Early-stage [ZL+21]. Earth [GMZ+21].
Easy [TDG13]. ECC [CWCM+16]. ECCs
[ZWL+19]. Echo [CF+20]. EchoBay
[CF+20]. ECS [SPM17]. Edge [SCK+21].
Editor [Kae20]. Editor-in-Chief [Kae20].
Editorial [CT08, Kae20]. EECache
[CP+15]. Effective [GMZP14, HVJ06,
KH18, PGB16, SSW16, SDD+22, SPS17,
KHW+05, LWH11, RPS06, SBC05].
Effectiveness [JRK+16]. Efficiency
[DRHK+15, MGI+15, CK+11]. Efficiency
[AKJ+12, CAMJ+15, CSG19, GB21,
HLSW17, JHMM17, LMSE18, LAAMJ15,
OTR+18, OAM19, SL20, SCFD22, TCS16,
ZJJ+15, BSWE13, CWS06, RCG+10a,
ZSLX+13]. Efficient
[AYC+16, AEE+19, AKBS+21, BC13, CC13,
CMA+22, CP+15, DDU12, DK+20,
DD16, GâS+16, GNB08, HAM19, HAC13,
HEDH21, HEMK17, IMS+08, JYM120, KR19,
KAC+18, KH18, KMG14, LLL+22, LWH11,
LWS+19, LL22, LDC15, MCB+12, MG19, MMLS21, MKKE15, MAD17, NMKS06, NSF+21, PDY+15, PS15, SYZZ+14, SN17, SAG22, TDP15, TTS19, WZG+19, XZW+22, YMM+15, ZPC06, ZHS+19, ZPL+21, ZLJ18, ZZQ+05, APG13, ARS04, CW13, CNA2+22, CWCS13, DLS22, DCP+12, GW08, JSL13, JOA+09a, KHW+05, LZY09, LZYZ09, LHZ13, Nas13, PLL10, RFD13, SPGE06, SHC13, SB09, TDG13, WWL+21, XCC+13, YSH+22, ZGC+12, FSYA09, SLA+07.

Efficiently [NRQ16a, PCT12, RHC15, ZWL+19].

EFG8R [TKM14]. Elastic [Per18]. Element [LVR+15]. elementary [LDG+13]. Eliminating [RCG+10b, SWO21].

elimination [JLER12, VED07]. Elision [CDM+22]. Embedded [GT+16, GKCE17, KE15, KTA16E, CPP08, CDM13, GHS12, MP13, SHC13, SD12, XT09].

Enabled [TGRK21]. Enabling [BGG+15, CC18, HNKK17, JYM20, KHN+18, SKAE16]. Enclaves [YGB21].

Encoding [PD15, ZX19]. Encryption [LIS20]. End [FFMR21, OLK+23, ZJJ+15]. End-to-End [FFMR21, OLK+23].

Endurance [WDXJ14]. Endurance-aware [WDXJ14]. Energy [ABK21, AKJ+12, AYC16, ASP17, APS22, CMAP22, CPS15, CNA2+22, DLS22, DH16, GKE17, GFD+14, HMYZ15, JHHM21, JOA+09a, KAC+18, LMSE18, LSC+15, LMA+16, MCB+12, MKKE15, MAD17, MPW+17, NMPS22, OTR+18, PM17, RDK15, SW17b, SN17, SAG22, SB09, TCS16, TTS19, YSH+22, ZJJ+15, ZFT+18, ZCF18, AVG12, BSWE13, CWS06, CWCS13, FBWS13, GWS13, GKP14, LTG12, LGAO27, LZY09, LMJ+13b, LHZ13, SPGE06, SHC13, TDG13, ZHD+04, ZVYN05, ZGC+12, ZSLX13].

Energy- [SB09]. Energy-Efficient [AYC16, CPS15, KAC+18, MKKE15, MAD17, SN17, SAG22, TTS19, CNA2+22, DLS22, JOA+09a, YSH+22, CWCS13, LZY09, LHZ13, SPGE06, SHC13, TDG13, ZGC+12].

Energy-Optimal [SW17b]. Energy-Performance [MTK18, ZCF18]. Energy-Proportional [DH16].

Enforcement [AHA+19, GWM07]. Engine [HKA+19, LP17, PB15, RMA14, WLZ+13, CW13]. Engineering [SDS+21]. Engines [MG15, TBS06]. Enhance [GAM12].

Enhanced [GBD21, TKM14, TCR+22]. Entropy [LZW23]. enumeration [SWO21].

Envelope [RWFJ19]. Environment [KMG14]. Environments [KLA+19, SMS23, RGG+12, WWL13].

Evaluation [AK21, BC13, CHE+14, DKB+20, FWJ+16, ZLZ+21, AvRF07, KWT09, LCC11, LAS+08, RGG+12, ZK05].

Evaluator [IJS13]. Evaluator-executor [IJS13].

ExaStencils [KL19]. exception [HWM14]. Exceptionization [YKM17].

Exclusivity [YDL+17]. Execution [AGG22, ASP17, BNS+21, CC18, DT17, GGYK19, GMGZP14, HAC13, HEMK17].
Formation [HWL+19, KTAE16, FSYA09].
FPGA-based [SNK+23, MTK18, MRK+22, OLK+23].
Framework [ASS17, AMP+16, GTT+16, GáSÁ+16, HDW21, KPP+15, LAS+13, LSC+15, OLK+23, PWPD19, SYE19, SM+23, SAL19, WMGS19, WPR+22, WWGS22, ZLY16, ZFT+18, ZLY18, AS13, BCVN10, CS10, DJX13, HEL+09, KKM+13, LCC11, LCH+04, LFC13, LHWB12, PGB13, YXK+12]. Frameworks [WWW+21].
Free [CHD+23, LLC22, MNSC16, YPT+16, BRSJG12, GS12, WZZ+20]. Frequency [BHC+16]. Friendly [LW+22, CRSP09].
Front [ZJJ+15]. Front-End [ZJJ+15]. FSM [SQZK20]. FTL [HWJ+15]. Full [HHC+16, MMT+12, SWF16, TKKM15].
Full-System [SWF16]. Fully [HWJ+15, BRSJG12]. Function [SKPD19].
Functional [GáSÁ+16, SJD22, GÁSÁ+13, YCCY11].
Functions [HLSK22, SSRS15, HWX+13, LDG+13]. fundamental [VE13]. Fuse [NDP17].
Fused [VPTS19]. Fusing [VPTS19, WM10].
Future [GB06, MMS15, DXMJ11, LMJ13a].
Gaming [QYZ+14, RSU+20, UPR22].
GAN [WDW+22]. gap [HCC+14].
Generation [BBB+20, DSK19, CDM+22, HEMK17, ZPH+23, GNB08, HLR+13, JER+12, LBO14, LHY+06, VJC+13]. Generator [KL19, PAVB15]. Generic [WMGS19].
Governors [SW17b]. GP [LRBG15, MYG15, MYKG16]. GP-GPUs [LRBG15]. GP-SIMD [MYK16].
GPGPU [BGG+15, HLSW17, MBKM12, YXK+12]. GPGPUs [ZJJ+15].
GPU [ADGA20, BJWS18, BNS+21, DS16, FBC+22, GGYK19, GMZ+21, HLR+13, HDW21, JED19, JGSM15, JML+20, KPRK20, KHN+18, LCP+21, LHC+17, LWS+19, LMZ18, LWL18, LDMZ19, LAAMJ15, LFK19, LFC13, QYZ+14, RB13, SEF+19, SNN+19, TBC+12, VC16, VZT+20, VZS+18, WGO15, WWL+21, WPR+22, ZPL+21, ZSLX13, vdVSAAS20].
Hadoop [KHS+14], HAIR [MP22], Halide [SSW+19, SSB+20, VJ+17], halting [ZVY05], Halving [MP22], Hammer [GBD21], Hamming [CVB15], handling [HWM14, HWH+11], HAP [WJXC17], Hard [DPBI+19, BS007].

Hardening [PHBC17]. Hardware [BGG+15, BAZ+19, CDPN16, DHK18, DPBI+19, DD16, ELE+23, JDZ+13, KPP21, KAC15, LMJ+13b, MMG21, NLP17, OK21, PVA+17, PLK+19, RHLA14, RAF22, SBC+22, SKAEG16, SDK+22, SWF16, TG+16, USCM16, WCI+16, ZHS+19, ZLC+15, ZSM+16, Abd20, ATGN+13, CS10, CI13, FS8A09, GBN08, HCC+14, MMdS06, OAB12, RLS13, RPE12, YJTF13, ZSCM08].

Hardware-Accelerated [SWF16].

Hardware-Assisted [CDPN16, JDZ+13]. Hardware-Based [ZLC+15, ZSM+16]. hardware/software [CS10, HCC+14, MMdS06]. Hash [SBS16].

Heterogeneous [AEJE16, ASV+16, ANS+22, ASP17, CNS16a, CWW+16, DMR+16, FDF+14, GTT+16, GH15, GSZ+20, HAM17, HAM19, HMYZ+15, HWW+22, KRHK16, LP17, MSFC21, OKJ+22, PG17, PDY+23, PBY+17, QSZ+21, RVP19, SSM23, SCK+21, SAL19, SL20, TDO16a, TDO16b, TTS19, USCM16, WGO15, ZFL18, BBG13, KNBK12, LHZ13, P12, TDG13, VE13, WFK110].

Hierarchy [AYC16, ELE+23, ZDC+16, ZSM+16]. High [CAY+18, CHE+14, DKK+21, CHD+23, CAM15, GGK18, JED19, LNF22, LDY+21, LL22, ME17, OK21, SAG22, SWU+15, SLJ+19, TCS16, THA+21, TM14, ULD20, USCM16, WZZ+20, WVL+21, YRGE+19, ASK13, BCVN10, CK11, CDM13, GW08, KBR+13, OKE+12, SRLP04, SD12, ZVY05].

High-dimensional [LL22].

High-Efficiency [CAMJ15]. High-Level [CHE+14, ULD20, BCV10]. High-Order [CAY+18].

High-Performance [DJK+21, GKK18, LNF22, SLJ+19, TM14, USCM16, CHD+23, JED19, THA+21, WZZ+20, WVL+21, YRGE+19, CK11, CDM13, GW08, KBR+13, SRLP04, SD12, ZVY05].

High-radix [LDY+21, ASK13]. High-Throughput [SAG22, OKE+12]. Higher [SJ122].

Higher-Level [SJ122].

Histogram [FWJ+16]. Hits [CA11]. HMTT [HCC+14].

Holistic [CHD+23, OLK+23].

Homogeneous [CC18]. Hopping [MSFC21]. Hosted [SYZ+14]. HotSpotTM
I-Cache [ZYW17]. I/O
[DCP+12, RHLA14, SLS+21]. IATAC
[AGV005]. Identification [WCT+16].
Idiom [KKM+13, TWB21]. Idioms
[DKK+21]. Idle [SEF+19, WFKL10].
Idle-Time-Aware [SEF+19]. IEEE
[LDG+13]. IEEE-754 [LDG+13]. ILP
[SNL+04]. Image [PHY+17, CI13].
Imaging [VCJ+17]. Imbalanced [Pro21].
Impact [BCVN10, CCM+16, JRK16,
SMKH15, RGG+12, SSC+13]. Impactful
[YHYBAM20]. implants [SSPL+13].
Implement [VOK+22]. Implementation
[BGG+15, MAY23, CDPD13, LHZ13, PLL10,
SSS+04, ZK05, ArvF07]. Implementing
[CWW+16, JSM+04, MAN+08, OAB12].
Implications
[CVB15, HYYAM16, KAC15, LS10].
Implicit [BWL06]. Improve
[CSK19, CDM+22, LMZ18, OTR+18,
VJC+17, ATGN+13, BSWLE13, KGK10,
LB05, LZ12, MG1, RWY13, SP12].
Improved [BCVT13, GMGZP14, NB13,
VZS+18, ZIJ+15]. Improvement
[SKKB18]. Improvements
[LBM13, PM17, SPM17]. Improving
[AKJ+12, CAGS17, CG15b, DHK18,
HWJ+15, HLSW17, JHM21, JK17,
KLM12, LGP+16, LMSE18, LYH16,
LAAM15, OAM19, RJSA18, SL20,
YBS19, ZFT+18, ZWH05]. In-bounds
[JRSH1]. in-flight [SSH+13]. In-Memory
[BAZ+19, WZG+19, YSH+22, ZLY18].
In-Order
[BBVE15, MST+21, MAD17, SPH+17, BB04].
in-order/out-of-order [BB04]. in-place
[GS12]. inclusive [AI13, TK13]. Increasing
[TZK18]. independent
[BVIB12]. indexing [TS05]. Indirect
[CSY20, DGG16, XVT20, HWH+11, MG12].
directions [AFD07, AFD12]. Industrial
[GHH15]. Infer [HJW15]. Inference
[CSR+22, SCK+21, L10]. Influence
[ZWS+16]. Information
[GM12, KHL+13, MM12, SM19, SAT20, LM13a, VSP+12].
Informed
[CSY20, SYX+15]. Infrastructures
[FC17]. Innovative
[BKM+17]. Input [LDY+21]. inputs
[BE13]. Insights
[YHYBAM20]. Instruction
[AGG22, CSK19, HNKK17,
JHQ23, KB+14, SPGE06, SKPD19,
SGM+22, TCS20, ACGK04, AR13, BVIB12,
CS10, SVM04, GWS13, HLS1, KS11,
SSK13, VS11, XL07, ZHD+04, ZK06].
Instruction-Level
[HNKK17]. instructions
[MG12, RFD13, SHC13].
Instrumentations
[JRH21]. Instrumented
[SGS+20]. Integer
[AJE+16, MP22, SLM12, BWG+12].
Integrated
[DJC16, LYK+15, PG17, SKP+22, SPH+17,
TPN+20, VFJ+17, JYFT13]. Integrating
[WSJ+21, WTF014, XZW+22]. Integration
[JDZ+13]. Integrity
[KK15]. Intel
[Akr21]. Intelligent
[JC+21, TCB+12]. Intensity
[LVR+15, SLS+21]. Intensity-aware
[SLS+21]. Intensive
[RHLA14, ZI19, YLTL04]. Inter
[HAM+20, LBM13, TC07]. Inter-cluster
[T07]. Inter-Core
[LBM13]. Inter-kernel
[HAM+20]. Interaction
[FBHN04]. Interactions
[EPS17]. Interactive
[MPL+22, RSU+20]. Intercepting
[SSRS15]. Intercommunication
Interconnect [BK+17]. Interconnection [SMK10, SEP07].

Interconnects

Intermediate [JML+20, RJSA18]. Intermediate-oriented [JML+20].

Internal [HWJ+15]. Internet [AVG12].

Interpreter [ZXX23, RWY13]. interpreters [SYZZ+14]. interprocedural [SV05].

Intersection [MPHL22]. Interval [SKP+22, SV05]. Intra [MKC+22].

Intra-rack [MKC+22]. Intraprogram [XMM04]. Intrinsinc [JRK16]. Introduction
[CT04, CT05, CT06, CT07, SD12].

Intrusion [TBS06]. Intrusive [FPMR21].

IOV [DCP+12]. IP [Bis21, WYJL10]. IR [GMZ+21, SJD22]. Irregular
[KPM21, LWS+19, RMA14, SN17, AFD12].

ISA [CG14, SHC13, VE13]. ISAs [PS15].

Isolation [LDC15, OK21, QYZ+14, SSH19].

Isolation-based [OK21]. Issue
[DD16, MMS15, BB04, CDM13, GWS13, PI12, SD12]. ITAP [SEF+19]. Iteration
[WWC+16, ZPH+23]. Iterative
[CNS+16b, FXC+15, GGS+17, GGS+19, KF+20, LLLW22, SYE19, CFH+12].

IVR [ZZL+21]. IVR-assisted [ZZL+21].

Java [HWM14, KWM+08, LB05, VED07, WHV+13, YKM17, YLW08]. JavaScript
[MGI15, NKH16, PCM16, PKPM19]. JIT
[HWM14, JK13, NED+13]. job [EE12].

Joint [RAF22, TS15, LGAZ07]. jump
[MG12]. Just [HZN+22, KHL+13].

Just-In-Time [HZN+22, KHL+13]. JVM
[SYZZ+14].

Kernel [DSK19, LP17, LDMZ19, MSFC21, SNN+19, HAM+20]. KernelFaRer
[DKK+21]. Kernels
[BNS+21, LCP+21, VZT+20, WLLW20].

Key [CSSU21]. Key-Value [CSSU21]. kilo
[CSVMO4]. kilo-instruction [CSVMO4].

L1 [HK14, LZL+13]. L2
[AGVO05, CST+06, SLP08, SBC05].

L2-miss-driven [SLP08]. Lane [WWC+16].

Language [CNS16a, SNK+23]. Languages
[DHD+14, YKM17, NED+13]. LAPPs
[KFEG18]. Large
[NRQ16a, SKH+16, YGB21, ZPL+21, KWCL09, RCV+12, SMK10]. Large-Scale
[SKH+16, ZPL+21, RCV+12, SMK10].

LargeGraph [ZPL+21]. Last
[CPS+15, LBM13, PLK+19, WSJ+21, WDX14, WJXC17, AGI+12, AIVL13, VSP+12, ZDC+12]. Last-Level
[CPS+15, LBM13, WSJ+21, WDX14, WJXC17, PLK+19, AGI+12, AIVL13, VSP+12, ZDC+12]. Latency
[BAZ+19, HAM17, HK14, KCA+13, PM17, SLS+21, MP13, SW13, WYLJ10, YLTL04].

Latency-Tolerant [HAM17]. Lattice
[CG15b, PAVB15]. Lattice-Based [CG15b].

Lattice-Boltzmann [PAVB15]. Law
[DSH+18]. Layer
[ERAG+16, JML+20, JLJ+18a, LGP+16, OTR+18, WAST16, VOK+22].

Layer-adaptive [JML+20]. Layer-Centric
[HLJ+18a]. Layers [VZT+20]. Layout
[CYXF13, RAF22, WGL17].

Layout-oblivious [CYXF13]. Layouts
[BSL17]. Layup [JML+20]. LD [LHC+17].

LDAC [SKH+16]. Leakage
[Bis21, CS21, JFJK20, HLL07, MSK05].

Learning
[ABP+17, CKP+22, DLS22, JPS17, JLJ+18a, LSL20, LLLW22, MCB+12, RSK+18, WWW+21, XDLX19, XDW+23, DJB13, LBO14, SPS12, TR13, WO13, WFO14].

Learning-Based [JPS17]. Leasing
[DCL+22]. Legacy [MNSC16]. legalization
[AR13]. Less [ZPR+17]. Level [BGG+15, CHE+14, CPS+15, GMZ+21, HNKK17, HK14, JYE+16, LCS+19, LIS20, LMK18,
LBM13, MGI15, PLT+15, RLBBN15, SJD22, SWU+15, UDL20, WSJ+21, WDX14, WJX17, AGI+12, AIVL13, BCVN10, EE09, GMW09, GPL+05, HLSK22, LZW23, LCL+14, Lou19, PLK+19, PCT12, SDK+22, VSP+12, YBSY19, ZDC+12, ZLZ+21.

Level-1 [HK14]. Leveling [JDZ+13]. Levels [RJSA18, RCV+12, SLA+07]. Leveraging [AGG22, GAM12, KS21, LMJ13a, NZ15, SHLM14, SMN22].

Long-tail [SLS+21]. Look [HZN+22]. Lookups [CSSU21]. Loop [ASP17, CZGC20, JK17, LVR+15, PHBC17, BCVT13, NCC13, SHLM14, SLM12, YZL+10]. loop-dependent [YZL+10].

Loops [CNS+16b, CLA+19, KFJ20, SN17, SRC16, JSL13, KLMP12, RTG+07]. Low [AGG21, AGG22, BGG+15, CAMJ15, DJL+12, ESB+20, GG18, GàSÀ+16, GDL16, KBB+14, KDMA23, LNF22, LGP+16, LHC+17, Lou19, OK1, PLK+19, RTK15, SBC+22, SSW16, SLS+21, SW13, SWU+15, YEF+14, AGI+12, BB04, CCZ13, GKP14, MA08, SRLP04, ZVYN05].

Low-Complexity [LNF22, DJL+12, SRLP04]. Low-Cost [KBB+14, SSW16, YEF+14, SBC+22, AGI+12, MA08]. low-energy [GKP14, ZVYN05]. Low-latency [SW13].

Low-Level [BGG+15, Lou19].

LSM-tree [XZW+22]. LSTM [WDW+22].

LSTM-GAN [WDW+22].

Machine
[ABP+17, DJB13, LBO14, SCEG08, SPS12, WO13, WTFO14, WXY+13].

machine-learning-based [WTFO14].

makespan-preserving [CPB14]. Making [CRSP09, PLT+15, PI12, SGS+20].

Malicious [KKW+15]. Malware [WCI+16].

Overlong [ADGA20]. Overlapped [ZC20]. Overlay [CSRP22, JLER12]. Overlong [ZWL+19].

[MG19, MG20, SSW+19, SSB+20].

Pipelining
[LDL22, CPB14, JSL13, RVOA08, RTG+07].

place [GS12].

Placements
[MNSC16, MA08, SSK11].

Places [Per18].

Plane [DSK19, LLS23, ZGC+12].

Platform
[QSZ+21, ZLYZ16].

Platforms
[RVKP19, SCK+21].

PLDS [FLG12].

PM
[CHD+23].

PM-aware [CHD+23].

Point
[ASS17, BWG+12, CS13].

pointer
[SV05, YLTL04].

pointer-intensive
[YLTL04].

points [Nas13].

points-to [Nas13].

Poker [ZX19].

Policies
[GFD+14, LSL20, SYX+15, EE09, SSK11].

Policy
[KMAK22, JK13].

Pollution
[SYX+15].

PolyDL [THA+21].

Polyhedral
[GGS+19, KL19, LT19, PKC12, SYE19, SGS+20, SRC16, THA+21, VJC+13, ZC20, ZPH+23, ZHB18].

Polyhedron [GGS+17].

polymorphic [PM12].

polytopes [SLM12].

Port
[WX14, GKP14].

Portability
[FDF+14].

Portable
[BNS+21, Per18, RMA14, WGO15, KNBK12].

Posit [TGHK21].

positioning [ZWHM05].

Pot [VDL16].

potential [FER+13].

POWAR
[AACE16, ACA+19, BNS+21, CAMJ15, DTD16, DD16, ESB+20, FCD+17, GsSA+16, GBD+15, HYAR+15, HYAM16, HAC13, JYW22, JGSM15, KH18, KMG14, LM05, LAS+13, LWF+16, LZM14, MKS22, RFJ19, SEF+19, SSS+23, WYCC11, ZCF18, ZLL+21, AVG12, AGG22, BB04, CCZ13, HP04, HL07, LYYB07, MP13, MSK05, PLK+19, SW13, SEPO7, WYJ10, XL07, YCCY11].

Power-Aware
[AAC+19, DTD16, SEPO7, WYJ10].

Power-Efficient [HAC13, KH18].

Power-Gated [LZM14].

Power-Gating
[ZCF18].

Power-optimised [RFJ19].

Power-performance [LM05].

Power/Capacity
[GBD+15].

POWER8 [XFS+19].

PowerMorph [JYW22].

Practical
[FXC+15, KWT09, PDY+23, VOK+22, ZGX22, BSWLE13, FT10, ZBH+13].

pre
[YCCY11, XC06].

pre-wakeup [YCCY11].

Preallocation
[SSR13].

Precise [AFD07].

Precision
[ASH20, CCQ20, AGG21, LDG+13].

Precisions
[HDW21].

Predicate [CPB14].

Predicate-aware [CPB14].

Predication
[HAC13].

Predictability
[BB21, LBJ05].

Predictable
[DPB19, SF18, VSM+21, XHHY17].

Predicting
[WLWB19].

Prediction
[AKBS1, BNS+21, EPS17, GAM12, KS21, MKS22, OAM19, PLG19, YPT+16, CST+06, JIM09, MG12, TSO5].

Predictive
[LCP+21, IMS+08, RBM10, YCCY11].

predictive/adaptive [RBMM10].

Predictor
[CNA+22, Mic18, OAM19, AGV05, JSM+04, SL09].

Predictors
[EPAG16, LJS20].

Prefetch
[AKBS1, SPS17].

Prefetch-Fraction
[SPS17].

Prefetched [SYX+15].

Prefetcher
[KPP21, LYM16, PB15, PVE20, SYX+15, LJM12, SBC05].

Prefetcher-Caused
[SYX+15].

Prefetchers
[ELE+23, LBM13].

Prefetching
[CSY20, KFEG18, LK12, OAM19, SPS17, WPJ19, A012, CA11, GB06, SBC05, WFLK10, YLLT04].

Presburger [JRH21].

Preserving
[YXS+22, CPB14].

Pressure [KMAK22, SKPD19, SGM+22, SLP08, SSR13, YZ08].

Pressure-Aware [KMAK22].

Preventing
[WX14].

prevention [TB06].

Primitives
[THA+21].

Priority
[AS+16, XHJY16].

PRISM [OK21].

Private
[DRHK15, SSK11].

Private/Shared
[DRHK15].

Probabilistic [DAD12, EE12].

Problem
[AP+17, DBH16].

Problems
[JOP+22, VFW16].

Process
[LTX16, Pro21, KWCL09].

Processing
[CC13, HNKK17, LT19, LGH+21, MYG15, MYKG16, OLK+23, PBY+17, SNK+23, WZZ+20, WWL+21, ZPL+21, ZLJ18].
Processing-in-DRAM [OLK+23].

Processing-In-Memory
[HNKK17, MYKG16, MYG15]. Processor
[AEJ+16, AHA+19, BEE+15, DSK19,
HMY+15, HWL+19, JYM+20, LP17, LZZ+22,
SKP+22, XFS+19, ZZL+21, CS13, GW08,
LG+07, LYYB07, SJA12, SHC13,
SSPL+13, WFKL10]. Processor-Memory
[SKP+22]. Processor-Tracing [HWL+19].

Processors
[ASV+16, CAMJ15, DBH16, KS16, KK15,
MRK+22, NMPS22, SM19, SCK+21, SHD15,
VFJ+17, YWXW12, YHYB+20, CRSP+09,
CCD12, CSV+04, DEE13, EE09, EE12,
FBWS+13, GMW+09, GWS+13, GKP14,
HWX+13, LKMP12, LMCV+13, PI12,
RGG+12, SLPV+04, SLP08, XT08, YZL+10].

Productive [KJFEG18]. Productivity
[SKAE+16]. Profile
[CS13, SS04, SKK+18, SSU+13, WTF0+14].
Profile-based [SS04, SKK+18].

Profile-driven [WTF0+14]. Profile-guided
[CS13, SSU+13]. Profiling
[CG15a, JRK16, MPW+17, FBHN04,
M+08, NMK+06, ZCW+10].

profit [ZCS06]. profit-driven [ZC06].
Profitability [CLA+19]. Program
[BB21, DSR15, PVA+17, RAF21, ZHB18,
DS12, PJ13]. Programmable
[MCB+12, AS13, Zha08]. Programming
[AJE+16, MGSH16, PBY+17, RAF22,
TBW21, YCA18, NCC13].

Programming-Based [AJE+16].

Programs
[DKB+20, GKCE17, KPM+21, KP+15,
L+23, MPPS18, MN+16, RHC+15, SGS+20,
WLZ+13, WGO+15, PC13,
PGB13, WO13, YLW08]. Projection
[TTS19]. promotion [LJM12].

Proportional [DH16]. proportionality
[AVG12]. proprietary [JEBJ08]. protect
[BV+12]. Protecting [NRQ16a, W+06].
Protection [AHA+19, BHC+19, BS+21,
ERAG+16, CCZ13, MA08]. protocol
[SSPL+13, SSH+13]. Providing [XHJY17].

Provisioning [BSSS14]. PS [LMJ13a].
PS-TLB [LMJ13a]. pseudo [YJTF13].
pseudo-associativity [YJTF13]. Public
[SDS+21, WLWB+19]. Puppeteer [ELE+23].
Purpose [CAMJ15, SDZ+21]. push
[YLTL04]. Python [ZXX23].

QoS
[ASP+17, JYW+22, LPZ+12, NMPS22, SAL19].
QoS-Aware [JYW+22]. QoS-Constrained
[NMPS22]. QoS-Supervised [ASP+17].
quadruple [LDG+13].
quadruple-precision [LDG+13]. Quality
[APS22, GSZ+10]. Quantifying [LZW23].
Quantitative [TCS+16]. Quantum
[Lou19, SM+19, IWP+04]. quasi [JSM+04].
quasi-static [JSM+04]. Queue
[HLS+17, BB04]. QuMan [SKK+18].

R [VC16]. R-GPU [VC16]. Race
[LHC+17, MNC+16]. Racetrack [KHB+20].
rack [MKC+22]. Radio [DMR+16]. radix
[ASK+13, LDY+21]. RAGuard [ZHS+19].
RAM [CRC+21, LZL+13, PLK+19, RTK15,
WDX14]. Random [ELE+23, VSP+12].
ranges [MAN+08]. Range [AKJ+12]. Rate
[CWMC+16, EPS+18, SOW21, SHD15].
RATT [CWMC+16]. RATT-ECC [CWMC+16].
Reach [JED+19]. Reactions [PBCB+22].
Read [MN+16, RJSA+18, RL+15, JLC+13].

Read-Modify-Write [RLS+15]. read/write
[JLC+13]. Real [CEP+16, DPB+19, KE+15,
KTA+16, GK+13, YZO8, ZGC+12].
Real-Time [CEP+16, DPB+19, KE+15,
KTA+16, GK+13, ZGC+12]. Reasoning
[DKB+20]. reassignment [CH06]. recency
[VSP+12]. recognition [KK+13].
recompilation [NED+13]. Recompute
[EE+19]. Reconciliation [TWB+21].

Reconfigurable [DBH16, KHS+14,
LMSE+18, PT+17, TD+16, VC+16, VKM+21,
AS+13, KLM+12, KCP+13, ZSLX13].

Reconfiguration [DTD+16].

Reconstructability [BRJ+15]. Recovery
[LHY+06, RHLA14]. Recycling [KKAR16].
ReDirect [PT17]. Reduce [ASPT17, DSR15, SLS+21, ZCCD16, YZ08].
Reduced [CS21, VED07]. Reducing [CPP08, GWS13, HL07, JLCR13, SLP08, TS15, TCR+22, ZHD+04, Zha08, ZWS+16, BCM11, MP13, FGB12, ZSCM08].
Reduction [AS17, APS22, KTA16, LSC+15, LWL18, SJJ+20, MSK05, XT09].
RegCPython [ZXX23]. Region [HWL+19].
Register [KPM21, LZM14, MP22, SKPD19, SGM+22, TS15, TWB21, VZS+18, YWXW12, YBSY19, ZXX23, BZS13, CH06, GKP14, JOA+09a, JOA+09b, JA14, SJV08, SLF08, SSR13].
Reinforcement [JPS17, LSL20].
Reliability [NRQ16b, SQZK20, ZFT+18]. Reliable [CWMC16, KS16, KK15, ZLYW18, CPB+07].
Remapping [LWL18, ZPC06].
ReNIC [DCP+12]. reordering [CZ07].
replication [ACGK04, DCP+12].
ReRAM [ZFT+18]. ReRAM-based [ZFT+18]. ReSense [DWDS13]. Reshaping [JYW22]. Resilience [KPRK20, TCS16].
Resilient [OK21, Pro21, SZJ18]. Resistance [RJS18]. Resistive [MYKG16, TZK18]. Resource [APS22, CMP22, JZY+22, LZW23, MRK+22, MKC+22, Per18, PS12, QYZ+14, SAL19, ARS04, DWDS13, GW08, NMKS06, VS11, ZK05]. resource-constrained [NMKS06, ZK05]. resource-efficient [GW08]. Resources [KLA+19, SDS+21, RGG+12].
Retargetable [SHY14, HEL+09, HLC10]. retention [PLK+19]. Rethinking [ERAG+16]. return [VS08]. Reusable [HPBS21].
Reuse [AKBS21, DAD16, GLTV23, HAM+20, JLJ+18a, KE15, KR19, SCMU22, SSW+19, AIVL13, FER+13, YZL+10, YLW08].
Reuse-aware [HAM+20]. ReuseTracker [SCMU22]. Reusing [PKPM19].
Roofline [ESR+15]. ROP [ZHS+19].
router [APG13, ASK13, LDL22]. Routers [LDY+21, LDL22]. routes [KCP13].

Rules [SHS+20]. Runtime [DBH16, DT17, ESB+20, KPP+15, LTG12, MGS21, MSFC21, SSH19, TTS19, YAG+16, YRHB13].

Runtime-Reconfigurable [DBH16]. Runtimes [CMAP22].

Save [ADGA20]. Saving [NMPS22].

Scalability [GVT+17, LMZ18, CWCS13, RVOA08]. Scalability-Aware [GVT+17]. Scalable [ASK13, CNS+16b, KFJ20, MG19, Per18, SM19, SYE19, SG+20, SMM+23, SSS+23, SJL+20, TCS16, ZLYW18, ZLJ18, ZM15, CWCS13, KCKG14, LNLK13, LMJ13a, SSH+13, VW11]. Scalar [SPH+17].

Seamlessly [KNBK12]. Search [HKA+19, KL19, ZC19]. searches [KHW+05]. SecNVM [LLW+22].

SECRET [LSC+15]. Section [DSR15]. Section-Based [DSR15]. Sector [CAGS17].

Selection [MNC+16, SNN+19, ZGP15, MBY13]. Selections [BAZ+19]. Selective [DKB+20, GGYK19, KMG14, LSC+15, WPJ19, LWWH12, MA08, VSP+12].

self-scheduling [BBG13]. SelSmaP [WPJ19]. Semantic [AP17, HCC+14].

Sensible [LMA+16]. Sensing [WCI+16]. sensitive [Nas13]. sensitivity [DWD913].

Sensor [DSK19]. Sensor-Processor [DSK19].

Sequences [ABP+17, MNC+16, KHW+05, PJ13].

Sequential [WLZ+13, LZ12]. series [LTG12]. Server [AVG12, FCD+17, JYW22, LTG12, RPE12].

Servers [LTX16]. Service [APS22, GMW09, JYW22, GSZ10]. Set [KBB+14, AR13, HL07, KWC109, ZK06].

Shadow [ZGC22]. Shape [MWJ19].

Shared [ADGA20, DRHK15, GKP14, GAH22, HMYZ15, KE15, LBM13, PG17, SKEG16, SLJ+19, WJXC17, XHJY16, AGI+12].
Specialization

[CDM13, SHC13, SD12]. Specialization

[ANS17, BB21, FBC17, LLS23, YAG16].

Specialized [GaSA16, RAF22, GASA13].

species [NCC13], Specific

[GMZ17, UDL20, CZGC20, PRMH13].

Specification [ZPH13]. Speciﬁcation

[JHQ23], Spectral [SBC05]. Speculation

[KS21, MG15, GPL15, SHLM14].

Speculative [JHQ23, VS08, GPL15, LCH15, LHY16, LHZ12, NTG13, VS11, XIC12, XCO6, YRHB13, ZSCM08].

speed [GB06, RPE12]. Speeding

[GGS19]. SpGEMM [ZBC17, SpGEMM]

[SSD-SGD Stabilization [SHD15].

[RFD13, TBS06]. splitting [WWY12].

SPM [KE15]. Speciﬁcation

[BJS18, ZLY16].

SpMV [KGK10]. sporadic [ZGC12].

sporadic [BCVT13]. SPX64 [SDZ17].

Squash [SKS13]. SR [DCP12]. SR-IOV

[DCP12]. SRAM [GBD15]. SSA

[AyRF07, BZS13, CBD15, PBCB22].

SSA-based [AvRF07]. SSA-form

[PBCB22], SSD

[HWJ15, KHS14, SLH15, XDW15].

SSD-SGD [XDW16]. SSSD [SLS16].

Stabilization [SHD15]. stack

[CH06, VS08, SICEG08]. Stacked

[CWMC16, LGP16, NRQ16a, NRQ16b].

Stacking [APBR16, ZSLX13]. Stacks

[ZGC12]. stage [ZZL17]. State

[CSF12, GPL15]. Static

[AFD12, BHC16, PLG19, SHY14, JSM14].

statically [NED13]. Stealing

[CG15a, CMAP22, ZCQ19]. Stencil

[CNS16b, DKB15, KFJ20, SHS16, XFS19, LFC13].

Stenciled-Based [XFS19].

Step [Lou19]. Stopping [SKS23]. Storage

[KBR14, LTX16, XZW12]. Store

[KKAR16, XZW12, LHWB12, SL09].

Stores [PLG19]. Strategies

[MRK12, WYCC11]. Strategy

[KFJ20, YCC11, ZHD10]. Stream

[LT19, XCC13, YXW12, MG13, YZL10].

Streaming

[CNS16b, MKKE15, PC13, WO13].

Streaming-Based [CNS16b]. Streams

[SJL10, Strength [GAM12].

Strength-Based [GAM12]. Stride

[WPJ19]. string [CW13, PLL10, TBS06].

string-matching [CW13, PLL10, TBS06].

Strings [SPM17]. Stripped [HASA16].

Strong [OK21]. structure [WWY12].

Structured [BDB16]. Structures

[IPSDB1, FG12]. STT

[LS11, PLK19, RTK15, WDX14].

STT-RAM [LS11, WDX14].

STT-RAM-based [PLK19]. studies

[LB10]. Study

[CPS15, SKEG16, SSRS15, MSF17.]

Studying [CBD15]. Sub [ABP17].

Sub-sequences [ABP17]. Sublining

[HED11]. subranked [CCZ13].

Subsetting [AKJ12]. subwords [SJV08].

Suite [CCM16, DMT17]. Sunway

[AYL18, ZFF18]. Supercomputer

[AYL18, ZFF18]. Superpages [WLL19].

Superscalar [BEE15, MMS15, SRLPV04].

Superscalars [HYAR15]. Supervised

[ASP17]. supplied [ZYL10]. Supply

[HAM17, HAM19, MST17]. Support

[BKS17, KFEG18, LZZ17, ME15].

SBC12, SKEG16, ZZB19, CCW06,

DMG13, EAH10, LMJ13, SLA17.

ZCM08, ZQZ15].

Supporting

[WLL19, SCH13]. Surrogate [GGS19].

SW [RKM14, TS15]. SW/HW [TS15].

SW26010 [JYM20]. switch

[ASK13, BRSJG12, CPB17, GWM07, LS01].

switch-to-switch [BRSJG12].

SWITCHES [DT17]. Switching

[MSFC21, DMG13]. symbiosis [EE12].

Symbolic [LLS13, ZLJ18]. Symmetric

[PS12]. Symmetry [GSC17, ZDC16].

Symmetry-Agnostic [ZDC16].

Synchronization [DAMK19, GWZ22,

MNCS16, SLJ18, CCPZ13, ZCM08].

Synchronization-Aware [SLJ18].
Synchronous [PBCB22]. SynchroTrace [SLJ+18]. Synergistic [VGX16]. Synthesis [DJC16, GSC17, MMLS21, SJD22, SSW+19, SSB+20, UDLD20]. Synthesizer [DS16].

SYRANT [PS12]. System [Abd20, AJK+12, CC18, GBD21, HPBS21, HHC+16, HHW+22, LYK+15, LCS+19, LWc+22, LZW23, MMG21, MGSH16, PDI+23, PLT+15, SBS16, SWF16, Tkm15, VOK+22, VKM+21, ZFT+18, Zzl+21, CDPD13, HCC+14, KBR+13, LWH11, SSPL+13, TBC+12, WSc+13].

Systems [AGG21, ANS+22, Cns16a, CKPH19, FMY+15, FPMR21, Gtt+16, HYY16, JEd19, KEl5, KtAe16, KAc+18, KHN+18, KMAK22, LMa+16, LyH16, MMT+12, MKKE15, MSFC21, NRQ16b, OKJ+22, PLK+19, PG17, PBY+17, PGB16, SKP+22, SPS17, TMP16, TPN+20, TCS16, USCM16, WGo15, WLL+19, XHJ16, ZDC+16, Zm+16, CPP08, CWCS13, DXMJ11, Gk13, GHS12, HS06, HW+11, KNB12, KgK10, Lmj+13b, LCl+14, LHZ13, LFC13, LHW12, MP13, NCQ14, YRHB13, ZVYN05, ZPC06, ZCW10, ZDC+12].

Systolic [SMN22, XMW+21].

Targeting [KPRK20]. Targets [SAL19]. Task [APS22, CCM+16, CMAP22, DHD+14, Gtt+16, KKA16, LLC22, MPSS18, RHC15, SN17, SDH+15, ZCQ+19, ZYW17, CG14, Lmj+13b, VTN13, ZYcz10, APS22].

Technique [HNKK17, PGB16, XT09]. Techniques [AGT+13, DJC16, HAC13, VZS+18, YMM+15, MMD06, MG12, RCG+10].

technologies [WLZ+10]. technology [NED+13, RWY13]. Temperature [CS21, SSS+04, MSF+07].

Tetrax [XT09]. Tetrax-XML [XT09]. Thefts [Gah22]. Their [SKS23, ZG05]. Theory [YDL+17, YDS+19].

Thermal [Mmm08, MKR+22, SKP+22, CK11, Wao8, ZYCZ10].

Thread [CDPN16, DSR15, HAM+20, Lmz18, LWL18, LyH16, MG15, PGB12, RCG+10].

SF18, TAB+21, YBSY19, BTS10, CCGP13, DEE13, GPL+05, LHZ13, MSF+07].

Thread-Aware [LYH16]. Thread-Management [LWL18]. Thread-Level [LWZ18, MIG15, YBSY19, GPL+05].

Thread-management [RCG+10]. Threaded [GVT+17]. Threading [KS16, TCS20]. Threading-Based [KS16].

Threads [BAZ+19, GB06, LZ12, ZSM08]. Three [VFW16]. Threshold [HK14].

Throughput [EMR14, KCA+13, SAG22, BKA13, Bts10, Ogm+12, TBC+12].

throughput-oriented [BTS10]. throughput/watt [TBC+12]. Tiered [CWNC01]. Tightly [Abd20]. Tile [MBY13, MMG21]. Tiled
Tiled-MapReduce [CC13]. Tiles [ZC20].
Tiling [CC13, SHS+20, ZGP+15, BCVT+13].
Time [BC13, BNS+17, CSF+17, CEP+16, DPBI+19, HZS+22, KE15, KTA+16, Nas13, PKPM19, SEF+19, CDD+12, GK13, KHL+13, LGT+12, LMCV+13, RGG+12, ZGC+12].
Time-aware [BC13, Nas13], time-series [LTG12].
timekeeping [WM11]. timestamp [RLS+13].
TLB [DHX+22, JED19, LMKJ19, BLM13].
TLB-pilot [DHX+22]. TLBs [BLM13].
TLC [PM17]. TLP [LMZ18, SNL+04].
Token [RB+10]. token-counting [RB+10].
Tokens [ZFL18]. TokenSmart [SSS+23].
Tolerance [AAI+16, RCV+05]. Tolerant [DSH+18, HAM17, LCC11].
Tolerating [KWCL09, YTLT04]. Tomasulo [WLC+13].
Tomography [MMT+12]. Tool [FP+21, GLD+16, MPW+17, PD17].
Toolchain [SKP+22]. Tools [BKM+17, UDL+20].
Topological [CVB+15, KKM+13]. Topologies
[DJ+16, YRG+19]. Topology [DHD+14].
Topology-Aware [DHD+14].
TornadoNoC [LNK13]. Trace [HWM+14, XDLX+19, CSW06, HCC+14, SWH09].
trace-based [HWM+14]. Traces [HEM+17, SLJ+18, TG07, ZG05]. Tracing [HWM+19, HCC+14]. Tracker [CSS+21].
Tracking [LLC+17, MM+12, KHL+13, VTN+13].
Tracks [SKS+23]. Trade [ABK21, AVG12].
Trade-off [ABK21, AVG12]. Tradeoffs [GPL+05, MAY+23]. Trading [NMP+22].
Traffic [SLH+20, FQR+13, LYY+07].
Training [XDW+23]. Tranquilizer [PG+12].
Transaction [ZCD+16, SSU+13]. Transactional [DHK18, DD16, GMGZP14, CDM+22, IPSD21, NZ15, PD17, RLS15, VSDL+16, ZSB+19, ATGN+13, RLS13, SSU+13, TGAG+12, WKS+12, YJTF+13].
Translations [DD+16, LDC+15, SSU+13].
Transcendental [SSS+15]. Transfer [HHC+16]. transfers [STL+12].
Transformation [BBD+20, CLA+19, JSL+13].
Transformations [RAF+22, BCV+10, RCG+10, SL+12].
transition [CW13]. transitioning [HWM+14]. transitions [SW13].
Translation [HWH+19, JED19, KPM+21, LHW+19, TKK+15, HWH+11, LWH11, LMKJ19].
Translator [SY+14, HLC10]. Translators [DGGL+16, GHS+12]. Transparency [KLCE+17]. Transparent
[MSF+21, RV+19, ZHS+19]. Transport [AJE+16]. transpose [GS12].
transpose-free [GS12]. Traversal [LZZ+22, RMA+14]. Tree
[ZZX+19, CDPD+13, PRM+13, ZZW+22].
Trees [JGSM15, BRSG+12]. Triangle [NCN+22]. Triangular [BSL+17].
Triggered [AJE+16, JHCM+21, YXS+22].
Triple [LP17]. TRIPS [SNL+04]. TSV
[NQ+16a]. Tumbler [PGB+16]. Tumbly
[MGSH+16]. Tuning [CG19a, JGSM15, JAH+14, LL22, MGI+15, WG+17, XFS+19, WKS+12].
Turbo [KH18]. turn [AVG+05]. turn-off
[AVG+05]. Two
[CWMC+16, JY+16, LIS+20]. Two-Level
[JY+16, LIS+20]. Two-Tiered
[CWMC+16]. type [AR19, JML+20]. Types [PD17].
Ultra [ES+20]. Ultra-Low-Power
[ES+20]. UMIF [ZSM+16].
Understanding
[EPAG+16, L+10, MM+12, RS+21, VE+13].
Unified [TG07, WWL+21, ZSM+16, YXS+12, KRHH+16].
Unified-memory-efficient [WWL+21].
Uniform [HK+14]. Units [GG18, GSA+16, SEF+19, GÁSÁ+13, HVJ06, YCC+11].
unloading [ZK05]. Unreliable
[PVA+17, SQZK20]. Unsynchronized
[DSR15]. UPC [SKAEG16]. update
[LZY09]. update-conscious [LZY09].
Upon [YS+22]. usage [SI11]. Use
[SW17a]. Useful [SAT20]. User
[KKAR16, ZHS+19]. User-Assisted
[KKAR16]. User-Transparent [ZHS+19]. uses [GB06]. Using
[AZG17, AMP+16, ABP+17, BSL17,
BAZ+19, CCL+13, DKB+20, DAKK19,
ESR+15, FDF+14, Gsa+16, GR15,
CDM+22, HIJW15, JGSM15, KR19, Lou19,
RLBB15, SS19, SYX+15, SGM+22,
SPS17, SPS12, SSH+20, SSH+13, SSR15,
WO13, YGB21, ZLYW18, ASK13, BZS13,
CAMJ15, DDU12, DWD13, DXMJ11,
DJB13, EE11, HV06, JSH09, JSM+04,
KKM+13, LZM14, MG13, RCY+12, SHLM14,
SWH09, SSR13, TTS19, YRGES+19,
YCCY11, YCA18, ZHD+04, CST+06].
Utility [LDL22, PB15]. Utility-Driven
[PB15]. Utility-of-Allocation [LDL22].
Utilization
[CAG17, LWF+16, SKKB18, TZK18,
VZS+18, YWWX12, ZCCD16, XCC+13].
Utilizing [TBC+12, KCP13]. UVMs
[KRRH16].

V [JHQ23, TGRK21]. v2 [DZSL20]. Value
[CSSU21, EPS17, GAM12, KS21, OAM19,
YPT+16, CST+06]. Value-next [OAM19].
Valued [RSU+20]. variability [LYB07].
Variable [MY16, NB13]. variation
[CK11, PGB12, XL07]. variations
[KWCL09]. Vector
[ASH20, Sph+17, YAG+16]. Vector-Scalar
[SPI+17]. Vectorization
[AGM16, RWY13, SPS12]. Vectorizing
[SA+20]. vectors [SL09]. Verification
[MMGS21]. Versatility [SVJ08].
versioning [NTG13]. versus [SCEG08].
VGRIS [QYZ+14]. via [ADG20, CHD+23,
DSH+18, FBC+22, IMS+08, LFX09,
MNSC16, RCG+10b, SYE19, SCFD22,
XHJ17, XDL19, YCZ10]. viable [PI12].
victim [VSP+12]. Video
[CAJ15, HHW+22]. Virtual
[BSSS14, WJ+15, KBB+14, KRHK16,
SCEG08, JA14, VED07, WHV+13, YZ08].
Virtualization
[HHC+16, SWF16, WWH+16, DCP+12].
Virtualized [QYZ+14, WWWL13].
Virtualizing [WFKL10]. Virtually
[RFD13]. Visible [KBB+14]. Visual
[ZHB18]. Visualizing [MNT+12]. VLIW
[CPP08, GKP14, LKL+13, LDG+13, LZM14,
P12, TC07, XL07, XT09]. VLIW-based
[CPP08]. VM [YKM17]. volatile [RTK15,
WSJ+21, YXS+22, AE+19, WDX14].
Voltage [APBR16, RCG+10b, XMM04].
Voltages [HK14]. vs [LMZ18, SV05]. VSim
[RPE12]. Vulnerability
[TS15, WAST16, LKL+13].

WADE [WSC+13]. WaFFle [CS21].
Wakeup [YCCY11]. Walker [TCR+22].
Warmup [HIS05]. Warp [HLSK22, FSYA09].
Warm-level [HLSK22]. walt [TBC+12].
Wave [CAY+18]. Wavefront [GGYK19].
Way [LMZ18, ZZYN05]. way-halting
[ZZYN05]. Ways [CS21, KBB+14]. WC
[ZWHM05]. WCET
[DBH16, KTAE16, ZWHM05, ZY17].
WCET-Aware [ZWHY17]. WCETS
[Lou19]. Wear [JDZ+13]. Wear-Leveling
[JDZ+13]. Weaving [PCB22]. Web [PCN16].
Weight [GG18]. Weight-Sharing [GG18].
Weighting [VS11]. WENO [CAY+18].
while [GBD21]. Whole [ZG05]. Wide
[MMS15, P12]. wide-issue [P12]. Width
[SMKH15, RPS06]. width-partitioned
[RP06]. window [VS11]. wins [ATG+13].
wires [IP+04]. wise [ZBC+22].
Withdrawal [SAT20]. within [BCV10].
Without
[LHC+17, RLS15, BSS15, KRHK16]. Work
[CG15a, CMAP22, HLSW17]. Work-Queue
REFERENCES

[HLSW17]. Workload
[WLWB19, AVG12, CG14]. workload-aware [CG14]. Workloads
[Akr21, GVT+17, LZW23, LYH16, SLJ+18, SJC+21, vdVSAAS20, DWDS13, JEBJ08, LTG12, WA08]. Works [LKV12]. worst
[AFD12]. worst-case [AFD12]. Write
[LLW+22, LWF+16, RJSA18, RLS15, DZC+13, JLCR13]. Write-Friendly
[LLW+22]. Writeback [WSC+13, ZDC+12]. Writeback-aware [WSC+13, ZDC+12]. [Abd20]
WSNs [LZYZ09].

X [QSZ+21, TCS20]. X10 [TN20]. x86
[CCD12, LHW+19, ZGX22]. x86-64
[ZGX22]. XEngine [SMS23]. XL
[XT09, YGB21]. YaConv [KDMA23].
Zero [RSU+20]. Zeroploit [RSU+20].

References

[ABP+17] Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer Kulkarni, and John Cavazos. MiCOMP: Mitigating the compiler phase-ordering problem using optimization sub-

Acacio:2016:LDR

Andujar:2019:PPA

Aleta:2004:RCC

Adamek:2020:GFC

Alshboul:2019:ECR

Adileh:2016:MHP

Andrade:2007:PAA

Diego Andrade, Basilio B.

Leonid Azriel, Lukas Humbel, Reto Achermann, Alex Richardson, Moritz Hoffmann, Avi Mendelson, Timothy Roscoe, Robert N. M. Watson, Paolo Faraboschi, and Dejan Milojicic. Memory-side protection with a capability en-

Albericio:2013:ERL

Aijo:2016:ILP

Ahn:2012:ISE

Alves:2021:EAP

Akram:2021:PEI

Anderson:2016:AVI

Ashouri:2016:CCA

Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo. [AMP+16]

Anonymous:2013:LDR

Anonymous:2013:TR

Anonymous:2015:LDR

Alsop:2022:CFG

Alias:2017:OA

Ardestani:2016:MMV

Abad:2013:LLE

[APG13] Pablo Abad, Valentin Puente, and Jose-Angel Gregorio. LIGERO: a light but efficient router conceived for cache-coherent chip multiprocessors. *ACM Transactions on Architectu-
REFERENCES

Azhar:2022:TRR

Azher:2013:HTL

Akkary:2004:ARE

Antao:2013:CFA

Ahmad:2020:DDM

Ahn:2013:SHR

Anbar:2016:EHL
Ahmad Anbar, Olivier Serres, Engin Kayraklioglu, Abdel-Hameed A. Badawy, and Tarek

Ahn:2016:AEE

Ao:2018:POH

Arteaga:2017:GFG

Budhkar:2019:AMD

Bai:2004:LPO

Benz:2021:SAP

Belviranli:2013:DSS

Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. A dynamic self-scheduling

REFERENCES

REFERENCES

Bayrak:2012:AII

Bruintjes:2012:SLA

Bentley:2006:IAB

Barik:2013:DNS

Chen:2011:HAM

Chaudhuri:2017:MSC

Chi:2015:LPH

REFERENCES

January 2015. CODEN ?.?. ISSN 1544-3566 (print), 1544-3973 (electronic).

REFERENCES

Chasapis:2016:PEI

Cleary:2013:FAT

Chen:2013:CME

Coppens:2013:FDB

Chrysos:2013:HCP

REFERENCES

REFERENCES

Chikin:2019:MAA

Chen:2022:EEE

Cattaneo:2016:HAI

Corbalan-Navarro:2022:TDO

Constantinides:2007:ARC

REFERENCES

[CS10] Chen:2010:HSF

[CS13] Chen:2013:PGF

REFERENCES

Cavus:2021:FKV

Ceze:2006:CUC

Cristal:2004:TKI

Cavus:2020:IP1

Calder:2004:I

Calder:2005:I

Calder:2006:I

Calder:2007:I

REFERENCES

[Calder:2008:E]
REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

REFERENCES

DeOliveiraCastro:2015:CLB

Damschen:2016:EWP

Dou:2007:CCM

Dong:2012:RAE

Do:2016:PEH

DeSensi:2017:BPP

REFERENCES

Das:2012:ELC

DuBois:2013:PTC

Dantras:2016:OIB

Carlo:2014:FAA

Demir:2016:EPP

Diouf:2013:DLM

Drebes:2014:TAD

Andi Drebes, Karine Heydemann, Nathalie Drach, Antoniu Pop, and Albert Co-

[DJC16] Dice:2018:IPH

[DHK18] Di:2022:TPM

[DJC16] Dong:2013:CA

[DHS+22] Dubach:2013:DMA

[DJC16] Dsouza:2016:IMS

REFERENCES

1544-3566 (print), 1544-3973 (electronic).

Didier:2019:CCP

Davari:2015:EGA

Demme:2012:AGC

Deniz:2016:MGM

Deng:2018:EML

Debrunner:2019:AAK

Das:2015:SBP

[Elkhouly:2020:CSC] Reem Elkhouly, Mohammad Alshboul, Akihiro Hayashi,

REFERENCES

[FBHN04] Brian A. Fields, Rastislav Bodik, Mark D. Hill, and

Fowers:2013:PEC

Ferroni:2017:PCM

Fang:2014:PPA

Fauzia:2013:BRD

Feng:2012:PPL

Fang:2015:MMD

Zhenman Fang, Sanyam Mehta, Pen-Chung Yew, Antonia Zhai, James Greensky, Gautam Beeraka, and Binyu
REFERENCES

France-Pillois:2021:NIT

Fedorov:2013:AAL

Feng:2011:DAD

Fernandes:2016:EHO

REFERENCES

Ganser:2017:ISO

Ganser:2019:SIP

Gong:2019:HAG

Gaster:2015:HRA

Guha:2012:MOD

Gerards:2013:ODD

Georgiou:2017:ETD

Goel:2014:SPR

Gondimalla:2023:OOD

Gonzalez-Mesa:2014:ETM

Gabor:2009:SLA

Gysi:2021:DSM

Guo:2008:EHC

Garzaran:2005:TBS
María Jesús Garzarán, Mi-

Georgakoudis:2017:SSA

Golander:2008:HMP

Golander:2009:CAR

Gao:2022:ACM

Han:2013:PEP

Hasenplaugh:2012:GBC

Ham:2017:DDS

Ham:2019:EDS

Huzaifa:2020:IKR

Hoseinzadeh:2016:SSP

Huang:2014:HHH

Ho:2021:GFD

[HDW21] Nhut-Minh Ho, Himeshi De Silva, and Weng-Fai Wong. GRAM: a framework for dy-

Heirman:2021:ASE

Hohenauer:2009:SOF

Hroub:2017:EGC

Hong:2016:OCT

Huang:2022:AVC

Huda:2015:UTM

Hadjilambrou:2019:CCO

Hwang:2007:SSA

Han:2022:CEC
Huang:2017:IEG

Holey:2015:PEC

Hadidi:2017:CCA

Hartstein:2004:OPD

Hassan:2021:RCM

Haskins:2005:AWS

Hazelwood:2006:MBC

<table>
<thead>
<tr>
<th>Reference Code</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume/Issue/Range</th>
<th>Date</th>
<th>ISSN</th>
</tr>
</thead>
</table>

Jatala:2017:SSG

Jiang:2013:HAC

Joshi:2008:DEP

Jaleel:2019:DHP

Jiang:2020:EBC

Jia:2015:GPP

REFERENCES

Jin:2018:LCM

Jo:2018:DSD

Jiang:2020:LLA

Jones:2009:EER

Jones:2009:ELE

Jellum:2022:SSA

Jain:2017:CMA

Rahul Jain, Preeti Ranjan Panda, and Sreenivas Subra-

[KCP13] Wonsub Kim, Yoonseo Choi, and Haewoo Park. Fast modulo scheduler utilizing patternized routes for coarse-grained reconfigurable archi-
REFERENCES

Korostelev:2023:YCL

Kafshdooz:2015:DSS

Kayraklioglu:2018:LLA

Koraei:2020:DSS

Kourtis:2010:ECO

Kondguli:2018:CME

Khan:2020:SMS
Asif Ali Khan, Fazal Hameed, Robin Bläsing, Stuart S. P. Parkin, and Jeronimo Castrillon. ShiftsReduce: Minimizing shifts in Racetrack Memory 4.0. *ACM Transactions...
Kerschbaumer:2013:IFT

Kim:2018:CEC

Kaitoua:2014:HED

Kulkarni:2005:FES

Kanuparthi:2015:RIC

Kurt:2016:UAS

Kawahito:2013:IRF

Karimi:2015:MMA

Kronawitter:2019:PSS

Kannan:2019:CIE

Kim:2012:IPN

Kundan:2022:PAP

Kumar:2014:EPG

Kicherer:2012:SPA

Kanakagiri:2017:MMD

Kim:2021:IRA

Kong:2015:CRF

Kaushik:2021:GHP

Kalra:2020:ACB

Charu Kalra, Fritz Previlon, Norm Rubin, and David Kaeli. ArmorAll: Compiler-based resilience targeting GPU applications. *ACM Transactions on
REFERENCES

Kalayappan:2016:FRT

Kalaitzidis:2021:LVE

Kafshdooz:2016:CTO

REFERENCES

[LB10] Benjamin C. Lee and David Brooks. Applied inference: Case studies in microarchitect-

References

References

Labini:2021:APM

Lee:2019:SLS

Litz:2015:ECA

Li:2022:MRM

Lin:2019:CCC
REFERENCES

Li:2021:CHC

Lee:2016:ACS

Lutz:2013:PAF

Luo:2019:SCT

Li:2009:CDS

Lutz:2013:PAF

Lu:2021:GAG

REFERENCES

REFERENCES

REFERENCES

Yong Li, Rami Melhem, and Alex K. Jones. PS-TLB: Lever-

Louise:2019:FST

Lim:2017:TEP

Li:2012:DQM

Lotfi:2015:AAC

Liu:2010:UBI

Lin:2015:SSE

Li:2020:DCP

Lee:2013:APF

Leben:2019:PCM

Lewis:2012:REC

Liao:2016:DPM

Luporini:2015:CLO

Li:2022:AOM
REFERENCES

//dl.acm.org/doi/10.1145/3535355.

REFERENCES

REFERENCES

Mendonca:2017:DAA

Mendonca:2017:DAA

Martinsen:2015:EPT

Martinsen:2015:EPT

Muralidharan:2016:DTN

Michaud:2016:SMF

Michaud:2018:ATL

Michelogiannakis:2022:CIR

Melot:2015:FCS

Nicolas Melot, Christoph Kessler, Jörg Keller, and...

Bita Mazloom, Shashidhar Mysore, Mohit Tiwari, Banit Agrawal, and Tim Sherwood. Dataflow tomography: Information flow tracking for un-

Martins:2016:CBS

Mcpherson:2016:FPL

Mattheakis:2013:SRM

Michaud:2022:HHA

Mpeis:2022:OIC

Manivannan:2018:GDB

REFERENCES

October 2018. CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

Mukhanov:2017:AFG

Mettler:2022:FBA

Meng:2005:ELL

Manocha:2021:GOD

Metzger:2021:DHT

Meng:2005:ELL

Manocha:2021:GOD

[Mbako:2018:EPC]

[Mammadi:2019:AGD]

[Mehta:2016:VL]

[Morad:2015:GSP]

[Mammadi:2019:AGD]

[Nasre:2013:TSE]

[Nandivada:2013:IBA]

[Nugteren:2015:BAS]

Nugteren:2013:ASC

Nair:2014:RPD

Na:2016:JPC

Neill:2017:FAM

Nagpurkar:2006:ERP

REFERENCES

REFERENCES

[OLK+23] Ataberk Olgun, Juan Gómez Luna, Konstantinos Kanellopoulos, Behzad Salami, Hasan Hassan, Oguz Ergin, and Omer Muthu. PiDRAM:
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>
REFERENCES

Pusukuri:2013:AFC

Pusukuri:2016:TEL

Proy:2017:CAL

Purnaprajna:2012:MWI

Purini:2013:FGO

Pradelle:2012:PPB

Pereira:2019:SPS

Park:2019:MCM

Pao:2010:MEP

Porter:2015:MMS

Pricopi:2012:BPH

Palangappa:2017:CCE

Prisacari:2013:FPS
Bogdan Prisacari, German Rodriguez, Cyriel Minkenberg,
and Torsten Hoe

Proficz:2021:AGA

Premillieu:2012:SSR

Premillieu:2015:EOE

Patsilaras:2017:RRD

Parasyris:2017:SAP

Pathania:2017:DTM

Peled:2020:NNP

Leeor Peled, Uri Weiser, and Yoav Etsion. A neural network prefetcher for arbitrary memory access patterns. *ACM

Pirkelbauer:2019:BTF

Qureshi:2021:GXM

Qi:2014:VV

Rieber:2022:JPL

Ramashekar:2013:ADA

Raghavan:2010:TTP

Rakvic:2010:TMT

Reddi:2010:EVE

Reis:2005:SCF

Rico:2012:SLS

Rolan:2013:VSC

Radojkovic:2012:EIS

REFERENCES

[RLS15] Wenjia Ruan, Yujie Liu, and Michael Spear. Transac-

REFERENCES

REFERENCES

Song:2019:SAR

Siso:2020:EAV

Strozek:2009:EAE

Sharma:2005:SPE

Siso:2020:EAV

Strozek:2009:EAE

Shi:2008:VMS
Yunhe Shi, Kevin Casey, M. Anton Ertl, and David
REFERENCES

Srikanthan:2022:MMA

Seo:2021:SAI

Sasongko:2022:RFY

Stenstrom:2012:ISI

Streit:2015:GTP

So:2022:EES

[SDK+22] Hwisoo So, Moslem Didehban, Yohan Ko, Aviral Shrivastava, and Kyoungwoo Lee. EXPER-TISE: an effective software-level redundant multithreading scheme against hardware

Song:2021:CRE

Singh:2021:SSM

Sadrosadati:2019:IIT

Soteriou:2007:SDP

Stawinoga:2018:PTC

Shobaki:2022:RPA

Ghassan Shobaki, Vahl Scott Gordon, Paul McHugh, Theodore Dubois, and Austin Kerbow. Register-pressure-aware

Selva:2020:BPR

SHC13

SHD15

She:2013:EEM

SHLM14

SHS+20

Sharafeddine:2012:DOE

Srikanth:2021:SIC

Schlaak:2022:MAF

Srikanth:2020:MAS

Shahbahrami:2008:VES

Serres:2016:EPP

Shi:2016:LLA

Qingchuan Shi, George Kurian, Farrukh Hijaz, Srinivas De-

[Sfakianakis:2018:QPB]

[Siddhu:2022:CI]

[SL09]

[SL20]

REFERENCES

REFERENCES

November 2008. CODEN ????
ISSN 1544-3566 (print), 1544-
3973 (electronic).

Sha:2021:LIA
Zhibing Sha, Jun Li, Lihao Song, Jiewen Tang, Min
Huang, Zhigang Cai, Lianju Qian, Jianwei Liao, and Zhiming
Liu. Low I/O intensity-
aware partial GC scheduling
to reduce long-tail latency in
SSDs. ACM Transactions on
Architecture and Code Op-
timization, 18(4):46:1–46:25,
December 2021. CODEN ????
ISSN 1544-3566 (print), 1544-
3973 (electronic). URL
https://dl.acm.org/doi/10.1145/
3460433.

[SLS+21]

Sargaran:2019:SSA
Sahar Sargaran and Naser Moh-
hammadzadeh. SAQIP: a scal-
able architecture for quantum
information processors. ACM
Transactions on Architecture and Code Op-
timization, 16(2):
12:1–12:??, May 2019. CO-
DEN ???? ISSN 1544-3566
(print), 1544-3973 (electronic).

[SM19]

Sanchez:2010:ACI
Daniel Sanchez, George Mich-
elogiannakis, and Christos
Kozyrakis. An analysis of on-
chip interconnection networks
for large-scale chip multipro-
cessors. ACM Transactions on
Architecture and Code Opti-
mization, 7(1):4:1–4:??, April
2010. CODEN ???? ISSN
1544-3566 (print), 1544-3973
(electronic).

[SMK10]

Schaub:2015:ISW
Thomas Schaub, Simon Moll,
Ralf Karrenberg, and Sebastian
Hack. The impact of the SIMD
width on control-flow and
memory divergence. ACM
Transactions on Architecture and Code Optimization, 11(4):
54:1–54:??, January 2015.
CODEN ???? ISSN 1544-3566
(print), 1544-3973 (electronic).

[SMKH15]

Shah:2020:BSA
Nilesh Rajendra Shah, Ashitabh
Misra, Antoine Miné, Rakesh
Venkat, and Ramakrishna
Upadrasta. BullsEye: Scal-
able and accurate approxima-
tion framework for cache miss
calculation. ACM Transac-
tions on Architecture and Code Opti-
mization, 20(1):2:1–2:??,
March 2020. CODEN ????
ISSN 1544-3566 (print), 1544-
3973 (electronic). URL https:
//dl.acm.org/doi/10.1145/
3558003.

[SMM+23]

Soltaniyeh:2022:ASC
Mohamadreza Soltaniyeh,
Richard P. Martin, and Santosh
Nagarakatte. An ac-
celerator for sparse convolu-
tional neural networks lever-
aging systolic general matrix-
matrix multiplication. ACM
Transactions on Architecture and Code Optimization, 19(3):
CODEN ???? ISSN 1544-3566
(print), 1544-3973 (electronic).
URL https://dl.acm.org/
doi/10.1145/3532863.
Schuler:2023:XOT

Manuela Schuler, Richard Membarth, and Philipp Slusallek.

Shrivastava:2017:EEC

Rahul Shrivastava and V. Krishna Nandivada.

Suyeon:2023:FFF

Hur Suyeon, Seongmin Na, Dongup Kwon, Kim Joonsung, Andrew Boutros, Eriko Nurvitadhi, and Jangwoo Kim.

Sankaralingam:2004:TPA

Shekofteh:2019:MSG

S.-Kazem Shekofteh, Hamid Noori, Mahmoud Naghibzadeh, Hadi Sadoghi Yazdi, and Holger Fröning.

Sharkey:2006:IPT

Joseph J. Sharkey, Dmitry V. Ponomarev, Kanad Ghose, and Oguz Ergin.
REFERENCES

Stanic:2017:IVS

Swami:2017:EEC

Stock:2012:UML

Sridhanaran:2017:BPP

Soni:2023:AC

Sabet:2020:RAU

Sukumaran-Rajam:2016:PMN

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

Samih:2011:EPP

Strydis:2013:SAP

Shobaki:2013:PIS

Suresh:2015:IFM

Skadron:2004:TAM

Shah:2023:TDS

Stipic:2013:PGT

Sardashti:2016:YAC

Sioutas:2019:SSH

Saidi:2012:OED

Salami:2005:DMI

Shifer:2013:LLA

Sardashiti:2017:CCG

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

[Sen:2017:PGE

[SWF16

[SWH09

[SWO21

[SWU+15

[SWE19

[SYX+15

Tirumalasetty:2022:RMP

Tan:2016:SEE

Theocaris:2016:BSC

Totoni:2013:EFE

Tomusk:2016:FME

Tomusk:2016:SHC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Venstermans:2007:JOH

Vermij:2017:AIN

Vaish:2016:OMT

Vora:2016:SAE

Venkataramani:2011:DDS

Verdoolaege:2013:PPC

Voss:2021:PRS

Nils Voss, Bastiaan Kwaadgras, Oskar Mencer, Wayne Luk, and Georgi Gaydadjiev. On predictable reconfigurable system design. ACM
Vijaykumar:2022:MPO

Vasilakis:2019:DFC

Vandierendonck:2008:SRA

Vale:2016:PDT

Valero:2012:CRI

REFERENCES

1544-3566 (print), 1544-3973 (electronic).

Vandierendonck:2013:ADT

Vespa:2011:DFA

Voitsechov:2018:SDT

Vasilache:2020:NAL

Winter:2008:ATN

Wibowo:2016:ACL

Wang:2016:HPC

Wang:2016:EA

Wang:2022:OSS

Wang:2014:PSR

Wang:2015:BOM

Woo:2010:CVI

Weber:2017:MAL
REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

[Wang:2019:SSS]

[Wang:2022:MOG]

[Wang:2013:WWA]

[Walden:2021:MIN]

[Wang:2016:IIB]

REFERENCES

[Xu:2023:SSC] Yemao Xu, Dezun Dong, Dongsheng Wang, Shi Xu, Enda Yu, Weixia Xu, and Xiangke Liao. SSD-SGD: Communication sparsification for distributed deep learn-

Xu:2019:SSD

Xu:2019:PTA

Xiong:2017:PPP

Xekalakis:2012:MSM

Xiao:2007:VIS

Xie:2004:IDV

Fen Xie, Margaret Martonosi, and Sharad Malik. Intraprogram dynamic voltage scal-
REFERENCES

Buse Yilmaz, Baris Aktemur, MaríA J. Garzarán, Sam

Yu:2019:ITL

Y:2019:CPU

Yeh:2011:MPP

Ye:2017:CES

Yuan:2019:RTL

Yalcin:2014:EEC

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

Yadalam:2021:SXS

Yasin:2020:MGM

Yan:2013:IPA

Yang:2017:EJV

Yang:2004:TML

Yu:2008:OCL

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ZC20]</td>
<td>Jie Zhao and Albert Cohen. Flextended tiles: a flexible extension of overlapped tiles for...</td>
</tr>
</tbody>
</table>

Zhao:2016:FMR

Zoni:2018:DEP

Zhao:2019:BLA

Zhao:2006:A

Zhao:2010:PPP

Zhao:2012:WAP

Zou:2022:PSB

Zhang:2008:RCM

Zinenko:2018:VPM

Zhang:2004:RIC

Zhang:2019:REU

Zhang:2015:BSS

Zhang:2005:DIE

Lingli Zhang and Chandra Krintz. The design, implementation, and evaluation of adaptive code unloading...

[Zmily:2006:BAI]

[ZK06]

[Zhao:2015:BSB]

[ZLC+15]

[Zheng:2018:ESG]

[ZLJ18]

[Zhang:2018:SSM]

[ZLYW18]

[Zhang:2016:CPS]

[ZLYZ16]

[Zimmer:2015:NSM]
REFERENCES

Zhang:2006:EAR

Zhao:2023:PSC

Zhang:2021:LED

Zivanovic:2017:MMH

Zhai:2008:CHS

Zhao:2013:OGE
REFERENCES

Ziabari:2016:UHB

Zhang:2005:WHC

Zhao:2005:IWA

Zhao:2016:ERI

Zheng:2017:WAD

Zhou:2016:CAE

REFERENCES

1544-3566 (print), 1544-3973 (electronic).

Zhang:2019:PPB

Zhang:2023:RRB

Zhou:2005:EF

Zardošhti:2019:STM

Zou:2021:SLE