A Complete Bibliography of *ACM Transactions on Architecture and Code Optimization*

Nelson H. F. Beebe  
University of Utah  
Department of Mathematics, 110 LCB  
155 S 1400 E RM 233  
Salt Lake City, UT 84112-0090  
USA  
Tel: +1 801 581 5254  
FAX: +1 801 581 4148  
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)  
WWW URL: http://www.math.utah.edu/~beebe/  
20 March 2021  
Version 1.74

**Title word cross-reference**

2 [BSL17], 3 [CAY+18, CWMC16, LGP+16, NRQ16b, SZJK18, ZSLX13].  
[CCZ13, DDT+17].  
K [Abd20].  
Z [SLM12].

-D [CAY+18].  
-means [Abd20].  
-polytopes [SLM12].

/channel [LCL+14].

000-core [DAKK19].

2014 [Aca16, Ano15].

4.0 [KHB+20].

6 [KWM+08].  
64-bit [BWLR06, VED07].

7 [BKM+17].  
754 [LDG+13].

A-DFA [BC13].  
Aborts [RLS15].  
ABS [AGI+12].  
Abstract [LMA+16, PD17].

Abstracting [JSH09].  
Abstraction [RLBBN15, ZM15, RCV+12].  
Accelerate [CNS+16b].

Accelerated [HS05, SWF16, VZT+20, JED19].

Accelerating [BAZ+19, DAKK19, GGYK19, GÁSÁ+13, GR15, JYJ+13, KFJ20, LCP+21, LWF+16, RMA14, TMP16, HWX+13].

Acceleration [Abd20, GáSÁ+16, HAC13, RVKP19, WFKL10].

Accelerator [CLA+19, MCB+12, MMLS21, YCA18, LHWB12, VDSP09].

accelerator-based
Accelerator-bound [CLA+19]. Accelerators [JHHM21, KCA+13, KMG14, MTK18, USCM16, BKA13, CI13]. Access
[CG15b, CSK19, GFD+14, HK14, LGP+16, LHC+17, LWS+19, LTX16, PWE20, SKH+16, XHJY16, XVT20, CLA+19, FTLG11, HLR+13, HCC+14, JSH09, KCKG14, LWH11]. Accesses [CSY20].
Accounting [LMA+16, DEE13, LMCV13]. Accumulate [GG18]. Accuracy
[AAI+16, ASS17]. Accurate
[NDP17, WAST16, LMJ+13b]. ACM
[Aca16, Ano13a, Ano15, Bil19]. Across
[FDF+14, NDP17, SW17a]. activations
[JLCR13]. Active [KHS+14]. Adapt
[DG+14, PGB13]. adaptation
[DBJ13, LGAZ07, SS04]. Adapting
[GH15, LB05]. Adaptive
[CG14, CWMC16, FQRG13, GF+14, HWX+13, JRK16, Lee16, LYH16, Per18, WC+16, WM11, AG+12, JML+20, MAN+08, RBM10, SW13, YRGES+19, ZK05].
Adaptively [ZCF18]. Adaptivity
[DRHK15]. Address [BDB+20, JED19, OAM19, SKEAG16, CCZ+13, VS08, ZPC06].
Address-first [OAM19]. Addressing
[WAO8, CWCS13]. Advancing [TZZ18].
Affine [AP17, NCC13, SL12]. Against
[BCH19, ERAG+16, PHBC17, BVBL12, ZHS+19]. Agent [JPS17]. Aggregate
[LY16]. Aggregation [AYC16].
Aggressiveness [PB15]. Aging
[DGI+14, KK+15, LRGB15].
Aging-Aware [LRBG15]. Agnostic
[SLJ+18, ZDC+16]. agreement
[GWM09].
Ahead [PKP19]. Ahead-of-Time
[PKP19]. Also [CW13, PLL10]. AIM
[AYC16]. ALEA [MPW+17]. Algorithm
[BC13, DGI+14, DTD16, BRSGJ12, CW13, CDPD13, HAJ+12, PLL10, XC06, ZGC+12].
Algorithmic [AAI+16, NCC13]. algorithms
[OGK+12, VTN13]. Allocation
[DHD+14, KPM21, PS12, RTK15, BZS13, CS10, GW09, RB13]. allocator
[DHC+13].
ALP [SLA+07]. Alternative
[Mic18, SKPD19]. Analogue [DSK19].
Analyses [SGS+20]. Analysis
[CLA+19, DZSL20, DSR15, GAM12, JK17, KR19, LmA18, MDM+06, SQZK20, SSW+19, VTN13, VGX16, XFS+19, ARS04, AFD12, FER+13, JOA+09b, Nas13, SV05, SMK10, ZCW10]. analytic [XMM04]. Analytical
[BEE15, AF07, CA11]. Analytics
[KPP21]. Analyzing [WLWB19]. Anatomy
[LCP+21]. Annotation [ZGA+17].
Anomalies [LDC15]. Anticipating
[LJMG12]. API [CI13]. Application
[GTT+16, PLT+15, UDLD20, AS13, GAŠA+13, RCV+12, SB09, TD15].
Application-Guided [GTT+16].
Application-Level [PLT+15].
Application-Specific [UDLD20].
Applications [ASS17, AZG17, DMR+16, DTD16, DP+19, FWJ+16, GR15, HDW21, JYE+16, KPRK20, LWS+19, NKh16, RHLA14, RSU+20, RMA14, RLBRN15, WZG+19, XFS+19, CS13, DWD13, HLR+13, KNBK12, MBKM12, STL12, SV05, SLA+07, SL12, YTL10, ZG05].
Applied [LBO]. applying [ZWHM05].
Approach [AZG17, CNS+16b, EMR14, FDF+14, GKK18, KS16, TS15, WAST16, WZG+19, X16, FT01, SSR13, WYJ10, YJTF13, ZCS06]. approachable
[WHV+13]. Approximate [DS12, YPT+16].
approximation [LTG12]. Apps [PCM16].
Arbitrary [PWE20, RHC15, WMS19].
arbitration [XCC+13]. Architecting
[CPB+07]. Architectural
[CPS+15, DCP+12, HEM17, KLA+19, ME15, WAST16, WZG+19, YHYBAM20, IMS+08, SB09, ZZQ+05, CWC06].
Architecturally [KBB+14]. Architecture
[HK14, KAC+18, LWS+19, PVS+17, SLJ+18, SM19, SHY14, SWF16, VC16, VFJ+17, XVT20, ZFT+18, ARS04, BVIB12, BWG+12, CP+07, DJX13, GKP14, GSZ10, JYJ+13, JA14, LNLK13, PML2, STL12,
SNL+04, SRLPV04, SSPL+13, ZK06.

Architecture-Agnostic [SLJ+18].
architecture-independent [BVIB12].

Architectures
[ÂJE+16, ASK+16, ASP17, CG15a, CEP+16, CDPN16, GR15, HAM17, HAM19, J LJ+18a, LAS+13, LZM14, PT17, RMA14, SJJ+20, ZLYZ16, ZCQ+19, BBG13, BWL06, BTS10, CG14, CK11, CDM13, KCP13, LKL+13, OGG+12, RCV+12, SSK11, SD12, SB09, TC07, TDG13, VE13, YXK+12].

Area [LAS+13, SB09]. area-efficient [SB09]. ARI [FQRG13]. Arithmetic [LVR+15, UDLD20, BWG+12]. ARM [GDL16, LHW+19, SHY14, SPH+17].


Asymmetric
[ZCQ+19, CG14, CCPG13, PCT12, SW13].

Asymmetry [LHW+19]. Attack [LFK19].

Attacks [BCHC19, ERAG+16, PHBC17, ZHS+19, VBVB12, CCD12, DLJ+12].


Automated [ASS17, BSS14, BHC19]. Automatic [AMG16, DSK19, JLR12, LBO14, LT13, MGA+17, NC15, RB13, WLZ+13, WGO15, WM10, XZC+20, SPS12, WKCS12].

Automatically [VZT+20]. Automotive [FWJ+16]. Autonomous [DGI+14].

Autotuning [AMP+16, CCQA20, SYE19, YAG+16, KBR+13, LFC13]. Avionics [DPBI+19]. AVPP [OAM19]. Aware [ACA+19, DGI+14, CG15a, DTD16, DHD+14, GVT+17, KFEG18, LH16, LRBG15, PVA+17, PG17, RSK+18, SEF+19, SLJ+18, SKH+16, SZJK18, SKPD19, USCM16, WLZ+13, WJX17, ZCQ+19, ZWY17, CPB14, CG14, CLA+19, CWCS13, EE09, GGFFP12, HAM+20, NB13, SSS+04, SAL19, SL20, SEP07, WYJ10, WSC+13, WDX13, ZYCC10, ZDC+12, ZK06].

Awareness [HLSW17, LKL+13].


Bandwidth-Asymmetric [ZCQ+19].
Bank [JKF20, LCL+14]. bank- [LCL+14].

banks/channel-level [LCL+14]. banded [AGI+12].

Banks [ZC18]. Based [ÂJE+16, CNS+16b, CG15a, CG15b, DSR15, DAD16, DAP+15, FDF+14, GAM12, HYAM16, JPS17, KS16, LCS+19, LTX16, LY16, MNC+16, MTK18, NC15, SBS16, WGO15, WDX15, WCI+16, WWC+16, WMG19, WLL1W20, XHJ16, XFS+19, YHYB1M20, ZX19, ZLC+15, ZSM+16, A+RF07, BCVT13, CPP08, CW13, GK13, HLR+13, HAJ+12, HWM14, HWX+13, JY+13, JKF20, JML+20, KPRK20, KBR+13, LBO14, LGT12, LCL+14, LHWB12, PLK+19, RLS13, SS04, SKKB18, TKJ13, WSC+13, WFT014, ZHD+04, ZGC+12, ZFT+18].

Batched [JYM20].

Bayesian

[AMP+16, MMLS21]. be [SW17a].

Behavior [HPBS21, AFD07, LS10].

Benchmark [ABB+16, AYL+18, CCM+16, DDT+17, DS16, BE13]. Benchmarking [DAP+15, ZXC+20]. benchmarks [JEB08]. benefits [LWWH12]. Benzene

[KAC+18].

BestSF [BJWS18]. better [TBC+12]. Between [EPS17].

Beyond [FER+13, LCP+21]. Bias [Lee16]. Big

ZLY18, ZLC+15. Big-Memory

[AEE+19, WZG+19, DXMJ11]. Chief
[Kae20]. Chip
[BKM+17, CPS+15, CEP+16, DJC16, EPS18, LBM13, VFW16, APG13, BKA13, CK11, EE11, GSZ10, JPS17, LWWH12, LT13, LNLK13, LAS+08, LM05, LPZI12, LMMM08, SSH19, SMK10, TDS13, XCC+13]. Chips
[LCS+19, ZM15]. choices [VE13].

Chunking [MG20]. Circuit
[ZFT+18, DJX13]. circuit-architecture
[DJX13]. Circuits [KKW+15].

Circuits/Cores [KKW+15]. Citadel
[NRQ16a]. Class [AAI+16, PAVB15].

Classification [DRHK15, MCB+12, SNN+19, CDPD13, LMM13a, NCC13]. client
[KWM+08]. Clock [CCL+13]. Cloud
[QYZ+14, XZC+20]. Cluster
[SKKB18, YCA18, TC07]. Clustered
[LZM14, MMS15, ACGK04, SW13].

Clustering
[MNC+16, WMGS19, DS12, JLCR13, SB09].

Clustering-Based [MNC+16, WMGS19].

Clusters [KHS+14, MMS14]. CMP
[CPB+07, LMCV13, SSK11, SLJ+18, WM11].

CMPs [ABK21, LMM13a, LY16]. CNNs
[JML+20]. Co [AAH+19, JPS17, KHN+18, ZFT+18, DJX13, YLW08]. Co-location
[KHN+18, YLW08]. Co-optimization
[JPS17, ZFT+18, DJX13]. Co-Processor
[AHA+19]. coalescing [SSU+13].

coalescing-lowering [SSU+13]. Coarse
[LMSE18, MAD17, TD16, KCP13].

Coarse-Grain [LMSE18, MAD17].

Coarse-Grained [TD16, KCP13].

Coarsening [SF18]. COBAYN [AMP+16].

CODA [KHN+18]. Code
[CZ07, DSK19, KL19, PAVB15, PKPM19, SY19, AvRF07, CDM13, GNB08, HLR+13, HS06, JLER12, KBR+13, KLM+13, LBJ05, LZY09, LHY+06, PKC12, RCG+10b, VJC+13, ZK05, ZWHM05].

code-positioning [ZWHM05]. Codelet
[DAP+15]. Codes
[CWMC16, TZA18, AFD07, AFD12].

Codes
[CWMC16, TZA18, AFD07, AFD12].

Codesign [KCA+13]. Codesigned
[KMG14]. Coding [PM17]. Coherence
[DRHK15, KBB+14, KAC15, MM06, SSH+13, VHKP11]. coherent [APG13].

collaborative [FT10]. collapse [CWCS13].

Collection [ASV+16]. Collective [FT10].

collector [WK09]. colocated [DWDS13].

Colocation [LSL20]. Coloring
[YXW12, LFX09]. Combination
[LMZ19]. Combinatorial
[SKPD19, SS13]. combined [BW+12].

Combining [VSP+12, YRGE+19].

Commodity [WDX15]. common [WK09].

Communication [DSR15, HAM17, TN20, XDLX19, HWX+13, SSPL+13, TC07].

communications [AGK04]. Compact
[HEMK17, SHC13]. compaction [WK09].

Comparability [YXW12]. Comparative
[LAS+08]. Comparators [YEI+14].

comparison [WBWS13]. CompEx [PM17].

Compilation
[DMR+16, LT19, LRBG19, PKPM19, RVKP19, SYE19, SN17, ZC20, CI13, JK13, KHL+13, LBO14, LZY09, PC13]. Compile
[KTA16]. Compile-Time [KTA16].

compiled [NED+13]. Compiler
[AMP+16, ABP+17, CCD12, DZSL20, DMR13, EAH+20, EPS17, GGG18, HHHK17, HYAR+15, KPRK20, KPP+15, LFX09, MNC+16, MG12, NHH16, NCI5, PHBC17, ZSCM08, ZX16, CYXF13, DC07, HWM14, HLC10, JOA+09a, JOA+09b, KBR+13, KWH+08, LZZ+13, LCH+04, TR13, YXK+12, ZH+04].

Compiler-Assisted [HNNK17, PHBC17].

Compiler-based [KPRK20, ZHD+04].

Compiler-Directed [HYAR+15, LFX09].

compiler-guided [LZZ+13].

Compiler-Oriented [GGK18].

Compiler-support [EAH+20].

Compiler/Runtime [KPP+15].

Compilers
[SA20, CDM13, HEL+09, SD12]. Complex
[SHD15, vDVSAS20, SLA+07].
Complexities [GH15, ZBH13].
Complexity [GG18, KAC15, CPP08, DJL12, RPS06, SRLPV04].
complexity-effective [RPS06].
component [LGA07]. Comprehensive [CPS15, HKA19]. Compressed [SSW16, DZC13]. Compression [BC13, KPM17, LMSE18, PM17, SW17a, KG10].
Compression-Expansion [PM17].
Compression/Decompression [LMSE18]. Compressive [WCI16]. Compromising [AVG12, HP04].
considering [HMYZ15, MTK18, LM05]. Considerations [LZYZ09]. Connected [AAI16, Lou19, ME17, PWPD19, SW17b, TCS16, DZSL20, DSH19, DAKK19].
Compute [APG13]. Computation [BNS16, HAM17, JHMH21, KHN18, VZT20, DDU12, LFC13].
Computationally [DSH18].
Computations [PAVB15, SQZK20, SHS20, CYXF13].
Compute [DAKK19]. Computing [DAKK19].
Conflict [DPBI19]. Conflicts [BJK20, WZZ20]. Conflict-based [JK20].
Conflict-free [WZZ20]. connected [RBSJG12]. Context [LZYZ09]. Conserving [LZYB07].
Considerations [HMYZ15, MTK18, LM05]. considering [AVG12, HP04]. Consistency [NJ15].
Constrained [LZM14, MSF07, NMKS06, ZK05].
Constraints [AEJE16, CSF20, KCA13, WYJL10].
Construction [DPBI19]. Consumption [BNS21, FCD17, GFD14, LTG12, LYYB07, VED07, ZHD04].
Continuous [TR13]. Control [AP17, BRJM15, HAC13, HHC16, SMKH15, SKH16, YRGES19, CWC06, FSYA09, IWP04, MBKM12, TG07].
Control-Flow [SMKH15]. Controlled [ASS17, RCV05]. controller [AGI12].
Cores [CAY16, DT17, HYA16, JPS17, KPS16, KML15, HAK19, ZC18, GB06, NTC13, PCT12, SW13, WYJL10, WFKL10].
Correcting [SPM17, TSK18].
Correction [DG11, CWM16, Lee16, LSC15, LDC15].
Correctness [PD17]. correlating [TKJ13].
coscheduling [PGB13]. Cost [KBB14, LAG16, SSW16, SKPD19, YE11, AGI12, DC07, FBH04, MA08].
COTS [RGG12]. Could [SW17a, ZPR17]. Counter [WCI16].
Counter-Based [WCI16]. Counters [NDP17, RLS13]. counting [RBM10].
Coupled [Abd20, PCT12]. covering [PJ13].
Cover [EPA16]. CPU [Abd20, BSS14, LMCV13, PGB16, WLWB19]. CPUs [BHC16]. Creation [THA21].
Critical [EAH20, RGG12]. Criticality [FWJ16].
CRNS [AS13]. Cross [ERAG16, LGJ10, LVR15, OTR18, SW16, WAST16, ZLYZ16].
Cross-Architecture [SWF16].
Cross-component [LGAZ07]. Cross-Layer
[ERAG†+16, OTR†+18, WAST16].
Cross-Loop [LVR†+15]. Cross-Platform
[ZLYZ16]. Crown [MKK†+15].
Cryptographic [Bis21]. cryptography
[AS13]. CTA [LDMZ19]. CUDA
[KBR†+13, NC†+15, VJC†+13, WG17]. cycle
[DEE13, RLS13].
d [BSL17, CAY†+18, CWMC16, LWP†+16,
NRQ16b, SZJK18, ZSLX13]. d-Pack
[BSL17]. D-Stacked [LWP†+16, NRQ16b].
DAPSCO [GGFPRG12]. dark [PCT12].
DarkCache [ZCF18]. DASH [USCM16].
Data [ASH20, AMG16, CDP†+16, DAKK19,
EPS18, ESR†+15, EAH†+20, FXC†+15,
GAM12, HAM17, HAM19, HLSW17,
IPSD21, JLI†+18a, KPM17, KHN†+18,
LWL18, ME†+15, ME†+17, MTK18, MNSC16,
MGA†+17, MGSH16, NKH16, NSF†+21,
PD17, RMA†+14, RTK15, SKH†+16, SJL†+20,
TDP15, VFJ†+17, WGO15, WZG†+19,
YMM†+15, ZLYW18, AVG12, BSWLE13,
CS10, CA11, CDP†+13, CWCO6, FER†+13,
FLG12, HLR†+13, HL07, LWH11, LJMG12,
PC13, RB13, RFD13, STL†M12, TG07].
Data-Driven [ME†+15, ME†+17, ASH20].
data-flow [PC13]. Data-Parallel
[MGSH16, NKH16]. Data-Race-Free
[MSC16]. Data-Rate [EPS18].
Data-Traversal [RMA†+14]. Database
[BAZ†+19]. Datacenters [XVT20, ZFL18].
Dataflow
[DT17, KPP†+15, MMT†+12, VTN13].
Datapath [IWP†+04]. Datasets [WLWB19].
DawnCC [MGA†+17]. DCMI [KJF20].
DCNNs [ESB†+20]. DDR4 [TKM14].
DDRNoC [EPS18]. Dead [MPPS18].
Dead-Block [MPPS18]. Deadline
[LZM14, USCM16]. Deadline-Aware
[USCM16]. Deadline-Constrained
[LZM14]. deadlock [BRSJG12].
deadlock-free [BRSJG12]. debugging
[VDSP09]. decay [JSM†+04, SS04].
Declarative [CZGC20]. decoders [Zha08].
Decompression [CAMJ15]. Decompression
[LMSE18]. Deconstructing [CFH†+12].
Decoupled
[VPT†19, BZS13, DHC†+13, RVOA08].
Decoupling [HAM17]. Deep
[ASK†+16, JLI†+18a, MWJ19, RSK†+18,
WWW†+21, XDL†L19]. Deeply [GKCE17].
DEFCAM [LCC11]. defect [LCC11].
defect-tolerant [LCC11]. Defined
[DMR†+16, TGA†+12]. Defragmentation
[PVS†+17]. DeFT [VHKP11]. Delta
[DZC†+13]. Delta-compressed [DZC†+13].
Demand [BRJM15]. Dense [CWW†+16].
Dependence [BRJM15, DHD†+14, JK17,
SL09, TG07, VTN13]. Dependence-Aware
[DHD†+14]. dependences [BCVT13].
Dependency [WLZ†+13].
Dependency-Aware [WLZ†+13].
dependent [YZL+10]. Deployments
[vdVSAAS20]. depth [HP04]. Design
[CSF†+20, CKPH19, CPS†+15, ESB†+20,
HJW15, KWM†+08, RTK15, SZJK18,
SPH†+17, SL09, VHDP11, VMK†+21,
WLZ†+10, BE13, CPP08, IMS†+08, LB10,
LCC11, LH07, VJ05, ZK05]. Designing
[BKA†+13, BSWLE13, MGSH16]. Details
[FMY†+15]. Detecting [DSR15, KS11].
Detection
[BBB†+20, CEP†+16, LHC†+17, MNSC16,
SLH†+20, WCI†+16, YE†+14, LKL†+13,
TBS06, TDG13, VHDP11, WTOF14].
Deterministic [CCL†+13, VSDL16, VWN11].
Detonation [CAY†+18]. Devectorization
[KMG14]. Development [VCJ†+17]. Device
[RLBN15]. Device-Level [RLBN15].
Devices [TKM14, NMKS06, ZK05]. DFA
[BC13]. Diagnosing [JLI†+18b]. Diagnosis
[BS07]. DiagSim [JLI†+18b].
Die-Stacked [CWMC16]. die-stacking
[ZSLX13]. different [YXK†+12]. dimension
[RTG†+07]. dimensional [LT19]. Direct
[DKB†+20, LLRC17, YRGES†+19].
Direct-Mapped [LLRC17]. Directed [HYAR+15, VZS+18, LF09, NED+13, SE07, WM10]. directives [CXW+12].

Directories [PT17]. Dirty [LLRCL7].

Dirty-Block [LLRCL7]. discard [LWWH12]. Discovering [HYBAM20].

Discrete [ZSM+16]. DisIRer [HLC10].

Disjoint [SAJ12]. Disk [LYK+15].

disparate [WZ+10]. Dispatch [LLRCL7].

dispatching [LZ12]. dissemination [LZY09]. Distance [DAD16, GGPRG12, KR19, FER+13, FTG11]. Distance-aware [GGPRG12]. Distance-Based [DAD16].

Distilling [JEBJ08]. Distinguished [Aca16, Ano15, Bil19, Ano13a]. distribute [RFD13].

distributed [KHS+14, KAC+18, MMGS21, TP+20, XDL19, ZPC06].

Divergence [LWL18, SMK15]. Divergent [GR15]. Diverse [LP17, SAL19].

diversification [CDM13]. Diversity [TDO16b, KBK12]. DJ [DDU12].


Dragnfly [CVB15]. DRAM [CKPH19, CAGS17, HCC+14, JLCR13, LLRCL7, LCL+14, NCQ14, OTR+18, TKM14, VPTS19, XHYJ16]. DRAMCache [PG17].

DRAMs [LSC+15]. Drift [SZK18]. Driven [ME15, ME17, PB15, ZWS+16, ASH+20, CDM13, FTG11, SL08, WFT014, XT09, ZCS06].

Dropping [GFD+14]. DSL [PB+17]. DSPs [VC+17]. Dual [EPS18, WZG+19].

Dual-Page [WZG+19]. DUCATI [JED19].

duplication [KS11, LKL+13]. DVFS [EE11, GK13].

Dynamic [BHC+16, CCCA20, DGL16, DD16, DBJ13, FER+13, FTG11, FSYA09, GAM12, GDL16, GBD+15, HWL+19, KE15, KPP+15, KMG14, KKA+16, LKL+13, LCL16, LPZ12, LSL20, LTX16, LHW+19, MG19, MG20, RHC15, SV05, SGS+20, SHD15, WWH+16, XHJ16, ZWY17, BBG13, DWDS13, GHS12, HS06, HWH+11, HV06, JS09, LWH11, LJMG12, LCL+14, MG12, NED+13, WSC+13, XMM04, ZZQ+05].

Dynamically [HDW21, LZ12, PGB12, KS11].

eager [JLRC13]. early [OHA+09b, SL08].

Easy [TDG13]. ECC [CWMC16]. ECCs [ZWL+19]. Echo [CSF+20]. EchoBay [CSF+20]. ECS [SPM17]. Editor [Kae20].

Editor-in-Chief [Kae20]. Editorial [CT08, Kae20]. EECache [CPS+15].

Effective [GMEZP14, HV06, KH18, PGB16, SSW16, SPS17, KWH+05, LWH11, RPS06, SBC05].

Effectiveness [JRK16]. Effects [DRHK15, MGI15, CK11]. Efficiency [AJK+12, CAMJ15, CSK19, HSLW17, JHMH21, LMSE18, LAAMJ15, OTR+18, OAM19, SL0, TCS16, ZJ+15, BSWLE13, CWS06, RCG+10a, ZSLX13].

Efficient [AYC16, AEE+19, BC13, CCL13, CPS+15, DDU12, DKB+20, DD16, GAA+16, GN08, HAM19, HAC13, HEMK17, IMS+08, JYM20, KR19, KAC+18, KH18, KMG14, LWH11, LWS+15, LDC15, MCB+12, MG19, MML12, MKK15, MAD17, NMS06, NSE+21, PS15, SYZZ+14, SN17, TDP15, TTS19, WZG+19, YMM+15, ZPC06, ZHS+19, ZLJ18, ZZQ+05, APG13, ARS04, CW13, CWCS13, DCP+12, GW08, JSL13, JOA+09a, KHW+05, LZY09, LMM13a, LH13, Nas13, PLL10, RFD13, SPGE06, SHC13, SB09, TGD13, WWL+25, XCC+13, ZGC+12, FSYA09, SL+07].

Efficiently [NRQ16a, PCT12, RH15, ZWL+19].

EFGR [TKM14]. Elastic [Per18]. Element [LVR+15]. elementary [LDG+13].

Eliminating [RCG+10b]. elimination [JLER12, VED07].

Embedded [GTT+16, GKC17, KE15, KTA16, CPP08,
Factorizations [AP17]. Facts [Mic16].
FailAmp [BDB+20]. Failures [NRQ16a].
Fair [LMCV13]. Fairness [GWM07, LY16].
Falcon [CNS16a]. false [BCVT13]. Fast
[ADGA20, BCI3, BNS+21, CCPG13, KC13, KHW+05, MKKE15, NRQ16b, NTG13, PRMH13, SZJK18, LMJ13a, SPGE06, TDG13]. Fast-Drift-Aware
[SZJK18]. Faster [PCM16]. fat
[BRSGJ12, PRMH13]. Fat-trees [BRSJG12].
Fault
[CEP+16, PHBC17, RHLA14, RCV+05]. faults [BSO07, SSC+13]. FaultSim
[NRQ16b]. Feature [TKM14, LBO14]. Features
[YHYBAM20]. Federation
[BTS10]. Feedback
[CDM13, NED+13, ZWS+16, WM10]. Feedback-directed
[NED+13, WM10]. Feedback-Driven
[ZWS+16, CDM13].
Fence [MNSC16]. fetch
[EE09, GWS13, JLER12, SRLP04]. FFT
[GS12]. File
[TS15, VZS+18, YBSY19, GKP14, SJV08]. Files
[LZM14, YXWW12]. filter
[BWSLE13]. Filtering [ZCCD16].
Financial [ABB+16]. Finding [PJ13]. Fine
[AZG17, BSSS14, EE11, HYYAM16, MG19, MPW+17, TKM14, WM11, YEI+14, LT13]. Fine-Grain
[AZG17, HYYAM16].
Fine-Grained [BSSS14, MG19, MPW+17, YEI+14, EE11, WM11, LT13]. Finite
[LVR+15, VW11]. FinPar [ABB+16]. First
[Lou19, OAM19]. fixed [CS13]. fixed-point
[CS13]. FLARES [DGI+14]. Flash
[DGI+14, SZJK18, ZWL+19]. Flexible
[CC13, ZC20, OAB12, SHC13, ZZQ+05].
FlexSig [OAB12]. Flex-extended [ZC20].
Flight [SSH+13]. Floating
[ASS17, BWG+12, CS13]. floating-point [CS13].
Floating-Point [ASS17, BWG+12]. Flow
[BRJM15, CWW+16, DMR+16, GAM12, HAC13, L16, MMT+12, SMKH15, FSY109, JA14, KHL+13, BMKM12, Nas13, PC13, TG07]. Fluid-Driven [LY16]. Flow-sensitive
[Nas13]. FluidCheck [NS16]. fly
[VHDP11, WY+12]. Focal [DSK19].
Focal-Plane [DSK19]. Format [BJS+18].
Formation [HLW+19, KTAE16, FSY109].
Formulating [MAN+08]. Forwarding
[SL20]. Four [TDO16a]. FPDetector
[DKB+20]. FPGA
[Afd20, CS13, CWW+16, CDPD13, MTK18].
FPGA-Based [MTK18].
FPGA-processor [CS13]. FPGAs
[FBWS13, GNB08, KFJ20, PI12, WZZ+20]. fractal
[JYJ+13]. fractal-based [JYJ+13].
Fraction [SPS17]. frame [GK13].
frame-based [GK13]. Framework [ASS17, AMP+16, GHS+16, HDW21, KPP+15, LAS+13, LSC+15, PWP19, SYE19, SAL19, WMSG19, ZLYZ16, ZFT+18, ZLYW18, AS13, BCVN10, CS10, DJX13, HEL+09, KKM+13, LCC11, LCH+04, LFC13, LHBW12, PGB13, YXK+12].
Frameworks [WWW+21]. Free [MNSC16, YPT+16, BRSGJ12, CS12, WZZ+20].
Frequency [BHC+16]. friendly [CRS109].
Front [JJ+15]. Front-End [JZ+15].
FSM [SQZK20]. FTL [HW+15]. Full
[HHC+16, MMT+12, SWF16, TKKM15].
Full-System [SWF16]. Fully
[HWJ+15, BRSGJ12]. Function [SKPD19].
Functional
[GAS+16, GAS+13, YCC+11].
Functions [SSR15, HWX+13, LDG+13]. fundamental [VE13]. Fuse [NDF17].
Fused [VPTS19]. Fusing [VPTS19, WM10].
Future [GB06, MMS15, DZMJ11, LMJ13a].
Gaming [QYZ+14, RSU+20]. gap
[HCC+14]. Garbage [ASV+16]. Gated
[LZM14]. Gating
[KMG14, ZCF18, WYCC11, YCCY11].
GEMM [SLJ+19]. General
General-Purpose [CAMJ15, SDZ+21].
Generalized [FDF+14, GGK18, SDH+15].
Generalizing [Jim09], generate [KBR+13].
Generating [AZG17, RHC15].
[HSN09].
Generalized [FDF+14, GGK18, SDH+15].
Generalizing [Jim09], generate [KBR+13].
Generating [AZG17, RHC15].
Generation [BDB+20, DSK+17, HEMK17, GBN+08, HLR+13, JLR12, LBO14, LHY+06, VJC+13].
Generator [KL19, PAVB15].
Generic [WMG19].
GenMatcher [WMG19].
Getting [MWJ19].
Global [CCL+13, MPPS18, BZS13].
good [PJ13].
Governors [SW17b].
GP [LRBG15, MYG15, MYK16].
GP-GPUs [LRBG15].
GP-SIMD [MYK16].
GPGPU [BBG+15, HSLW17, MBKM12, YXK+12].
GP-GPUs [ZJJ+15].
GPU [BGG+15, ZLC].
GPU-Based [WGO15].
GPGPU [ADGA20, BJWS18, BNS+21, DS+16, GGY19, HLR+13, HDW21, JED19, JGSM15, JML+20, KPRK20, HHH+18, LCP+21, LHC+17, LWS+19, LMZ18, LWL18, LDMZ19, LAA15, LFK19, LFC13, QYZ+14, RB13, SEF+19, SNN+19, TBC+12, VC16, VZT+20, VZS+18, WGO15, WVL+21, ZSLX13, vdVSAAS20].
GPU-accelerated [JED19].
GPU-Based [WGO15].
GPUs [ASH20, ASS17, CSK19, DS+16, DNT16, FBWS13, JAK17, JK20, KR19, LRBG15, N5F+21, NC15, SML14, SSB+20, WYC11, WLLW+20, YBS19, ZSM+16].
gradient [HAY12].
gradient-based [HAY12].
Gradients [FWJ+16].
Grain [AZG17, HYYAM16, LMKSE18, MAD17].
Grained [BBSS14, MG19, MPW+17, TD16, YEI+14, EE11, KCP13, LT13, WMI11].
GrAM [HDW21].
Granularity [DRHK15, NRQ16a, TKM14].
Graph [CN16a, KPP11, KAR16, WWZ+20, WVL+21, YXXW12, ZLJ18, DS12, LFX09].
Graphics [ASS17, FSYA09, ZSLX13].
Graphs [BRJM15, Lee16, RHC15, VZT+20, VXG16, BZS13, DDU12, MG13].
Gretch [KPP11].
Grus [WVL+21].
gshare [TS05].
Guarded [PS15].
Guided [TGT+16, HWL+19, YHYBAM20, CS13, LZR+13, RCG+10b, SSU+13].
Hadoop [KHS+14].
Halide [SSW+19, SSB+20, VJC+17].
halting [ZVYN05].
Hamming [CIV15].
handling [HWMC14, HWMC+11, LWL11].
HAP [WMG19].
Hard [DPB+19, BSO07].
Hardening [PHBC17].
Hardware [BBG+15, BAZ+19, CDPN16, DHHK18, DPNB+19, DD16, JDZ+13, KPP11, KAC15, LMJ+13b, MMGS21, NPD+17, PVA+17, PLK+19, RHLA14, SKAEG16, SWF16, TGAG+12, USCM16, WCI+16, ZHS+19, ZLC+15, ZSM+16, Ab+20, ATGN+13, CS10, CI13, FSYA09, GBN+08, HCC+14, MMD+06, OAB12, RLS13, RPE12, YJTF13, ZSM+08].
Hardware-Accelerated [SWF16].
Hardware-Assisted [CDPN16, JDZ+13].
Hardware-Based [ZLC+15, ZSM+16].
hardware/software [CS10, HCC+14, MMD+06].
Hash [SBS16].
Hash-Based [SBS16].
HashCache [PG17].
HAWS [GGK19].
HC [CDPD13].
HC-CART [CDPD13].
header [VD07].
Healthy [JLJ+18b].
heap [WWY+12].
Heterogeneity [PG17, SB09].
Heterogeneity-Aware [PG17].
Heterogeneous [AEJE16, AVS+16, ASP17, CNS16a, CWW+16, DMR+16, FDF+14, GTH+16, GH15, GSZ+20, HAM17, HAM19, HMYZ15, KRHK16, LP17, PG17, PBY+17, RVPK19, SAL19, SL20, TDO16a, TDO16b, TTS19, USCM16, WGO15, ZFL18, BBG13, KNBK12, LH213, PM12, TDG13, VE13, WFK10].
Heuristics [MKKE15, TR13].
hide [CST+06].
Hiding [FWJ+16].
Hierarchical [ASK+16, CDPN16, ZGP15, SW13].
Hierarchies [SKH+16, DJX13].
Hierarchy [AYC16, ZDC+16, ZSM+16].
High [CAY+18, CHE+14, CAMJ15, GGK18, JED19, ME17, SWU+15, SLJ+19, TCS16, 11]
THA^+21, TKM14, UDLD20, USCIM6, WZZ^+20, WWL^+21, YRGB^+19, ASK13, BCV10, CK11, CDM13, GW08, KBR^+13, OGK^+12, SRLP04, SD12, ZVYN05.

High-Efficiency [CAMJ15]. High-Level [CHE^+14, UDLD20, BCV10]. High-Order [CAY^+18]. High-Performance [GGK1, SLJ^+19, TKM14, USCIM6, JED19, THA^+21, WZZ^+20, WWL^+21, YRGB^+19, CK11, CDM13, GW08, KBR^+13, SRLP04, SD12, ZVYN05]. High-throughput [OGK^+12]. Highly [JYM20, TMP16, TPN^+20]. Histogram [FWJ^+16]. hits [CA11]. HMTT [HCC^+14]. Homogeneous [CC18]. hosted [SYZZ^+14]. HotSpot^TM [KWM^+08]. HPar [ZBH^+13]. HPC


AR13, CKPH19, CA11, DXMJ11, HWJ^+15, JYE^+16, KAC^+18, WLL^+19, WJXC17, YRGB^+19, CS13, DZC^+13, HCC^+14, MMD06, RBM10, WLZ^+10. Hybrid-Memory-Aware [WJXC17].


CVB15, HYYAM16, KAC15, LS10. Implicit [BWLR06]. Improve [CS19, LMZ18, OTR^+18, VCJ^+17, ATGN^+13, BSWE13, KGG10, LB105, LZ12, MG12, RWHY13, SPS12]. Improved [BCVT13, GMGZP14, NB13, VZS^+18, ZJ^+15]. Improvement [SKKB18]. Improvements [LB13, PM17, SPM17]. Improving [AJK^+12, CAGS17, CG15b, DHH18, HWJ^+15, HLSW17, JHHM21, JK17, KLMP12, LGP^+16, LMSE18, LYH16, LAAMJ15, OAM19, RJSA18, SL20, YBSY19, ZFT^+18, ZWHS05]. in-flight


FCD^+17. Innovative [BKM^+17]. inputs [BE13]. Insights [HYBAM20]. Instruction [CS19, HNKK17, KBB^+14, SPGE06, SKPD19, TC100, ACGK04, AR13, BVIB12, CS10, CSVM04, GWS13, HL07, KS11, SSR13, VS11, XL07, ZED^+04, ZK06]. Instruction-Level [HNKK17].


HAM^+20, LBM13, TC07. Inter-cluster [TC07]. Inter-Core [LBM13]. Inter-kernel
Library [FDF+14]. Library-Based [FDF+14]. Lifetime
[PM17, SPM17, TZZK18, XCO06]. Lift
[SHS+20]. LIGERO [APG13]. Light
[CB15, APG13]. Lightweight
[DT17, SLJ+18, WLL+19, BWG+12, DMG13, LNLK13]. like
[Mic18]. limitation
[DZC+13]. Limitations [JRK16]. limited
[CCZ13, GKP14, MA08]. Low-complexity
[DJL+13, SW13, SWU]. Low-cost
[KBB+14, SSW16, YEI+14, AGI+12, MA08]. Low-energy
[GKP14, ZVYN05]. Low-latency
[SW13]. Low-Level
[BGG+15, Lou19]. Low-Overhead
[GDL16, LHC+17]. Low-Power [CAMJ15, GaSA+16, PLK+19, BB04, CCZ13]. Lower
[ESR+15]. lowering [SU+13]. LP
[GFD+14].

Machine
[ABP+17, DJB13, LBO14, SCEG08, SPS12, WO13, WTF014, WHV+13]. machine-learning-based [WTF014]. Machines [BSSS14, JK13, RB13, VED07]. MAGIC [KKW+15]. Main
[AAE+19, ZFT+18, ZPR+17, DZC+13, WSC+13, ZDC+12]. Maintaining
[YCCY11]. makespan [CPB14]. makespan-preserving [CPB14]. Making

Management
[DT17, FMY+15, JYM20, LNLK13, OGK+15, HMYZ15, MPPS18, OTR+18, SEF+19, SAL19, SPS17, TTS19, ZDC+16, AVG12, FQRG13, GSZ10, HVJ+06, KCKG14, LGAZ07, LFX09, LPZI12, RCG+10a, BB13, SW13, VS08, WWWL13, WSC+13, WDXJ14, WM11, ZYCZ10]. Manager [Per18]. Managing [APBR16, HS06, KBNK12, VS11, ZFL18, SSK11]. Manipulation [CNS16a, ZBH18]. Many
[DT17, FMY+15, JYM20, JYL+18a, PVS+17, ZLYZ16, LNLK13, OGK+12]. Many-Core
[FMY+15, JLY+18a, PVS+17, ZLYZ16, JYM20, LNLK13, OGK+12]. Many-Cores
[DT17]. Manycore [KSS16, KAC+18, LAS+13, MKKE15, ZCQ+19, BTS10]. map
[WYJL10]. Mapped [LLRC17]. Mapping
[BCHC19]. Massively
[MBC+12, RLBB15]. Matching [HJW15,..]


Multiproprocessors [CPS+15, LBM13, APG13, GPL+05, LAS+08, LM05, LPZI12, LMMM08, SMK10]. Multiprogram [EMR14]. Multithreaded [AZG17, JYE+16, LYH16, DWDS13, GMW09, NTG13, PGB13, RGG+12, RCG+10a, XIC12].

Near-Threshold [HK14]. Nearest-Neighbor [NSF+21].

Objective [SAT20]. objects [WWY+20].

Oblivious [YRGES+19, CYXF13].


On-Chip [KD+17]. Off-the-Shelf [DPB+19]. Offloading [HSKK17, MTK18, MGA+17]. offset [CZ07]. On-Chip


Online

Optimizations [LD17]. Optimizing [PKPM19, GSH12]. Optimizer [LYK+15]. Optimizing [AP17, BJW18, DGLL16].
HHC+16, PAVB15, RLBBN15, STLM12, SLH+20, TN20, TKKM15, WDX15, YWXW12, YRHB13, ZSLX13, ZFF+18, YXX+12, WK09, optimum [HP04].

Orchestrating [MG13]. Orchestrating [GVT+17]. Order

[BE15, CAY+18, HY16, MAD17, PS15, SPH+17, TCS20, BB04, GGYK19, KWT09, SJA12, YJT13]. order/out [BB04]. Ordering [ABP+17]. organization [ASK13, GGFPRG12]. Oriented [FW+16, GGYK18, BTS10, CXW+12, JML+20].

Orlando [ESB+20]. OS- [CRS09].

Out-of-Order [HY16, MAD17, PS15, TCS20, GGYK19, BB04, SJA12].

overcoming [DZC+13]. overflow [CH06].

Overhead

[DSR15, GDL16, KRHK16, LHC+17, MP13].


Overlong [ZWL+19].

P [DDT+17]. Packed [BSL17]. packet [LWH12]. packing [NB13, SPGE06].

Page [WLL+19, WZG+19, LMJ13a]. Pages [YGB21].

Parallel

[ASK+16, ABB+16, DTD16, DDT+17, DHD+14, HAM19, HWJ15, MCB+12, MPPS18, MGSH16, NKH16, PWP19, RHIC15, RLBBN15, SN17, TMP16, TPN+20, WLZ+13, WGO15, ZLJ18, CDPD13, JYJ+13, LM05, NCC13, STLM12, VJC+13, ZBH+13].

Parallelism

[CCM+16, CCI+16, DHI+18, GVT+17, HWJ+15, LMZ18, MGA+17, NKH16, SDH+15, WWW+21, YBSY19, ZXL16, EE09, FLG12, PCT12, SLA+07, WTFO14].

Parallelization

[BCM11, DPB1+19, GGS+17, GSZ+20, KPP+15, DC07, LT13, PKC12, YRHB13].

Parallelizing [NKH16]. Parallelogram

[ZGP15]. Parameter [MG15]. parametric [SLM12]. Pareto [SW17b]. PARSEC

[CCM+16]. PARSECSs [CCM+16]. parser [ZBH+13]. Parsing [PCM16, ZBH+13].


[CG15b, FLG12, LDMZ19, PBS16, SLJ+19, HAJ+12, LCL+14, ZDC+12]. Pass [SIPS17].


pattern-oriented [CXW+12]. pattern-specific [PRMH13]. patternized.

[KCP13]. Patterns

[CSK19, DDT+17, HJW15, LWS+19, LTX16, PWE20, HLR+13, JSH09]. pausing [NCQ14]. PCantorSim [JY+13]. PCIe

[MTK18]. PCM [LWF+16, RJS18]. penalties [HL07]. penalty [GW08].

pending [CA11]. per-task [LMJ+13].

Per-thread [DEE13, BTA10]. perceptron [TSO5]. Perfect [BRJM15]. Performance

[AKB21, AEE16, AY+18, B21, BEE15, FDF+14, GGS+19, GKH18, HMYZ15, JGSM15, KR19, LMB18, LHY16, LY16, ME17, MTK18, MAD17, NDP17, P18, ROA08, RJS18, SLJ+19, TCS16, TKM14, USCM16, WCI+16, WLBB19, XHJY17, XFS+19, YG21, ZFT+18, ZYC10, ZCF18, AF12, ATGN+13, BWLE13, BTA10, CK11, CRSP09, CD11, FBWS13, GW08, HP04, HL07, JED19, KBR+13, KLM12, KGK10, LM05, PGB12, RY13, SRLPV04, SD12, THA+21, WKS12, WZZ+20, WWL+21, XT09, YRGE+19, YCCY11, ZYN05]. Performance-aware [ZYC10].

performance-driven [XT09].

Performance-Energy [AKB21, HMYZ15].

performance-friendly [CRS09].

permanent [SSC+13]. Permissions

[ERAG+16]. Permutation [ZX19].

Permutation-Based [ZX19]. Persistence

[EAH+20, WZG+19]. Persistent

[IPD21, ZLYW18]. Perceptron

[ZX19]. Performance-Aware [ZYC10].

performance-driven [XT09].

Performance-Energy [AKB21, HMYZ15].

performance-friendly [CRS09].

permanent [SSC+13]. Permissions

[ERAG+16]. Permutation [ZX19].

Permutation-Based [ZX19]. Persistence

[EAH+20, WZG+19]. Persistent
PBY\textsuperscript{+}17, WZZ\textsuperscript{+}20, WWL\textsuperscript{+}21, ZLJ18].

**Processing-In-Memory**

[HNKK17, MYKG16, MYG15]. **Processor**

[AEJE16, AHA\textsuperscript{+}19, BEE15, DSK15, HMYZ15, HWL\textsuperscript{+}19, JYM20, LP17, XFS\textsuperscript{+}19, CS13, GW08, LGAZ07, LYYB07, SJA12, SHC13, SSPL\textsuperscript{+}13, WFKL10].

**Processor-Tracing** [HWL\textsuperscript{+}19]. **Processors**

[ASV\textsuperscript{+}16, CAMJ15, DBH16, KS16, KK15, SM19, SHD15, VFI\textsuperscript{+}17, YWXW12, YHYBAM20, CRSP09, CDD12, CSV04, DEE13, EE09, EE12, FBWS13, GMW09, GWS13, GPK14, HWX\textsuperscript{+}13, KLMP12, LMCV13, PI12, RGG\textsuperscript{+}12, SRLPV04, SLPO8, XT09, YZL\textsuperscript{+}10]. **Productive** [KFEG18].

**Productivity** [SKAE16]. **Profile**

[CS13, SS04, SKKB18, SSU\textsuperscript{+}13, WFT014].

**Profile-based** [SS04, SKKB18].

**profile-driven** [WFT014]. **Profile-guided** [CS13, SSU\textsuperscript{+}13]. **Profiling**

[CG15a, JRK16, MPW\textsuperscript{+}17, FBHN04, MAN\textsuperscript{+}08, NMK06, ZCW10]. **profit** [ZCS06]. **profit-driven** [ZCS06].

**Profitability** [CLA\textsuperscript{+}19]. **Program**

[DSR15, PVA\textsuperscript{+}17, ZHB18, DS12, PJ13].

**Programmable** [MCB\textsuperscript{+}12, AS13, Zha08].

**Programming** [AJE\textsuperscript{+}16, MGSH16, PBY\textsuperscript{+}17, YCA18, NCC13].

**Programming-Based** [AJE\textsuperscript{+}16].

**Programs** [DKB\textsuperscript{+}20, GKE17, KPM21, KPP\textsuperscript{+}15, MPPS18, MNSC16, RHC15, SGS\textsuperscript{+}20, WLZ\textsuperscript{+}13, WGO15, PC13, PGB13, WO13, YLW08]. **Projection** [TTS19].

**promotion** [LJMG12]. **Proportional** [DH16].

**proportionality** [AVG12].

**proprietary** [JEBO8]. **protect** [BVIB12].

**Protecting** [NRQ16a, CWC06].

**Protection** [AHA\textsuperscript{+}19, BHC19, Bis21, ERAG\textsuperscript{+}16, CC13, MA08]. **protocol** [SSPL\textsuperscript{+}13, SSH\textsuperscript{+}13]. **Providing** [XHJ17].

** Provisioning** [BSSS14]. **PS** [LMJ13a].

**PS-TLB** [LMJ13a]. **pseudo** [YJTF13].

**pseudo-associativity** [YJTF13]. **Public** [WLWB19]. **Purpose** [CAMJ15, SDZ\textsuperscript{+}21].

**push** [YLTL04].

**QoS** [ASP17, LPZI12, SAL19].

**QoS-Supervised** [ASP17]. **quadruple** [LDG\textsuperscript{+}13]. **quadruple-precision** [LDG\textsuperscript{+}13].

**Quality** [GSZ10]. **Quantitative** [TCS16].

**Quantum** [Lou19, SM19, IWP\textsuperscript{+}04]. **quasi** [JSM\textsuperscript{+}04]. **quasi-static** [JSM\textsuperscript{+}04]. **Queue** [HLSW17, BB04]. **QuMan** [SKKB18].

**R** [VC16]. **R-GPU** [VC16]. **Race** [LHC\textsuperscript{+}17, MNSC16]. **Ratetrack** [KHB\textsuperscript{+}20].

**Radio** [DMR\textsuperscript{+}16]. **radix** [ASK13].

**RAGuard** [ZHS\textsuperscript{+}19]. **RAM**

[LZL\textsuperscript{+}13, PLK\textsuperscript{+}19, RKT15, WDX14].

**random** [VSP\textsuperscript{+}12]. **ranges** [MAN\textsuperscript{+}08].

**Rank** [AJK\textsuperscript{+}12]. **Rate**

[CWMC16, EPS18, SHD15]. **RATT** [CWMC16]. **RATT-ECC** [CWMC16].

**Reach** [JED19]. **Read**

[MNSC16, RJSA18, RLS15, JLC13].

**Read-Modify-Write** [RLS15]. **read/write** [JLR13].

**Real** [CEP\textsuperscript{+}16, DPB19, KE15, KTAE16, GK13, YZ08, ZGC\textsuperscript{+}12].

**Real-Time** [CEP\textsuperscript{+}16, DPB19, KE15, KTAE16, GK13, ZGC\textsuperscript{+}12].

**Reasoning** [DKB\textsuperscript{+}20].

**reassignment** [CH06].

**recency** [VSP\textsuperscript{+}12].

**recognition** [KKM\textsuperscript{+}13].

**recompilation** [NED\textsuperscript{+}13].

**Recompute** [AEE\textsuperscript{+}19].

**Reconfigurable**

[DBH16, KHS\textsuperscript{+}14, LMSE18, PT17, TD16, VC16, VKM\textsuperscript{+}21, AS13, KLMP12, KCP13, ZSLX13].

**Reconfiguration** [DTD16].

**Reconstructability** [BRSJ15].

**Recovery** [LHY\textsuperscript{+}06, RHLA14].

**Recycling** [KKAR16].

**RedDirect** [PT17]. **Reduce**

[ASP17, DSR15, ZCDD16, YZ08]. **reduced** [VED07].

**Reducing**

[CPP08, GWS13, HL07, JLC13, SLP08, TS15, ZHD\textsuperscript{+}04, Zha08, ZWS\textsuperscript{+}16, BCM11, MP13, PGB12, ZCM08].

**Reduction**

[ASS17, KTAE16, LSC\textsuperscript{+}15, LWL18, SRL\textsuperscript{+}20, MSK05, XT09].

**Reductions** [PWPD19].

**Redundant** [KS16, JLER12].

**references**
WZZ+20, CWCS13, KCP13]. Schedulers [KKAR16]. Scheduling [AJE+16, ASV+16, DHD+14, HAM+20, LZX14, MKKE15, QYZ+14, SKPD19, XHJY16, BBG13, CPB14, CG14, EE12, MBKM12, SPGE06, SWH09, SSR13, TBC+12, XL07, ZGC+12, ZYCZ10].


Selecting [BE13, TD016b]. Selection [MNC+16, SNN+19, ZGP15, MBY13].


Sensible [LMA+16]. Sensing [WCI+16]. sensitive [NAS13]. sensitivity [DWS13].

Sensor [DSK19]. Sensor-Processor [DSK19]. Sequences [ABP+17, MNC+16, KHW+05, PJ13].

Sequential [WLZ+13, LZ12]. series [LTG12]. Server [AVG12, FCD+17, LTG12, RPE12]. Servers [LTX16]. Service [GMW09, GSZ10]. Set [KBR+14, AR13, HL07, KWCL09, ZK06].

set-associative [HL07, KWCL09]. sets [DDU12]. setups [RPE12]. sFree [BRSJG12]. SG [YGB21]. Shape [MWJ19].

Shared [ADGA20, DRHK15, GKP14, HMYZ15, KE15, LBMI3, PG17, SKAEG16, SLJ+19, WJXC17, XHJY16, AGI+12, AIVL13, GFFPRG12, GSZI10, HLR+13, KGK10, LHWB12, RGG+12, WM11, ZPC06].


Silicon [PCT12]. SIMD [AR13, DSK19, FSYA09, GS12, GSZY20, GR15, HEL+09, KMG14, LHW+19, MYG15, MYK16, RMA14, SMKH15, WWC+16, ZX19, ZX16].

Simple [BNS+21]. Simplifying [ZZB+19].

SIMPO [ZLYW18]. SIMT [CC18, LAAMJ15, TCS20]. SIMT-X [TCS20]. Simulating [RPE12]. Simulation [JYE+16, SLJ+18, vdVSSAAS20, IS05, JYJ+13, RCV+12]. Simulations [CAY+18, HEMK17, JLJ+18b]. Simulator [LCS+19, NRQ16b, TP21+20]. Simulators [JLJ+18b]. Simultaneous [LGP+16, WL1W20, EE09, RCG+10a].


Snapshot [LDC15]. Snippets [SWU+15].

Snug [HL07]. SoC [CWW+16, ESB+20].

SoCs [FDF+14, SAL19]. Soft
[BDB+20, FWJ+16, LKL+13]. Software
[Abd20, BCHC19, Bis21, DMR+16, GSC17, LCL+14, MGI15, RCV+05, RWFJ19, SBS16, SEPO7, VJC+17, VZS+18, WLLW20, YXWX12, CPB14, CS10, HW+11, HCC+14, MMdS06, RVOA08, RCG+10b, RTG+07, TGAG+12, YRHB113].

Software-based [LCL+14].
Software-controlled [RCV+05].
Software-Defined [DMR+16, TGAG+12].
Software-Directed [VZS+18, SEPO7].
software-guided [RCG+10b].
Software-hardware [Abd20].

Software-Managed [YXWX12]. Solution
[WLLW20]. Some [KAC15, Mic16]. Source
[BGG+15, HK+19, YRGE+19].
Source-adaptive [YRGE+19]. Space
[BC13, CAGS17, ESB+20, KL19, CPP08, IMS+08, Nas13, P113, VHKB11].
Space-Efficient [BC13, Nas13]. spaces
[BE13].
Sparse
[ASH20, BJWS18, SJL+20, YAG+16, AR13].

Spatiotemporal [LAAMJ15]. SPCM
[HASA16]. SPEC2006 [HPBS21].
SPEC2017 [HPBS21]. special
[CDM13, SCH13, SD12]. Specialization
[YAG+16]. Specialized
[GáSÁ+16, GÁSÁ+13]. species [NCC13].

Specific [UDLD20, CZGC20, FRMH13].
Spectral [SBC06]. Speculation
[KS21, MGI15, GPL+05, SHLM14].

Speculative [VS08, DC07, GPL+05, LCH+04, LHY+06, LZ12, LHZ13, NTG13, VS11, XIC12, XC06, YRHB13, ZSCM08]. speed
[GB06, RPE12]. Speeding
[GGS+19]. spill [XT09]. Spilling [CBD15].

Spintronic [RKC+20]. split
[rFD13, TBS06]. splitting [WWY+12].

SPM [KE15]. SpMV [BJWS18, ZLYZ16].

SpMxV [KGK10]. sporadic [ZGC+12].
spurious [BCVT13]. SPX64 [SDZ+21].

[DCP+12]. SR-IOV [DCP+12]. SRAM
[GBD+15]. SSA [AvRF07, BZS13, CBD15].

SSA-based [AvRF07]. SSD
[HWJ+15, KHS+14, SLH+20].
Stabilization [SHD15]. stack
[CH06, VS08, SCEG08]. Stacked
[CWC16, LGF+16, NRQ16a, NRQ16b].

Stacking [APBR16, ZSLX13]. State
[CSF+20, GPL+05]. Static
[AFD12, BHC+16, PLG19, SHY14, JSM+04].

statically [NED+13]. Stealing
[CG15a, ZCQ+19]. Stencil [CNS+16b, DKB+20, KFJ20, SHS+20, XFS+19, LFC13].

Stencil-Based [XFS+19]. Step [Lou19].

Storage [KKB+14, LTX16]. Store
[KKAR16, LWHB12, SL09]. Stores
[PLG19]. strategies [WYCC11]. Strategy
[KFJ20, YCCY11, ZHD+04]. Stream
[LT19, XCC+13, YXWX12, MG13, YZL+10].

Streaming
[CNS+16b, MKKE15, PC13, WO13].

Streaming-Based [CNS+16b]. Streams
[SJL+20]. Strength [GAM12].

Strength-Based [GAM12]. Stride
[WPJ19]. string [CW13, PLL10, TBS06].

string-matching [CW13, PLL10, TBS06].

Strings [SPM17]. Striped [HASA16].

structure [WWY+12]. Structured
[BDB+20]. Structures [IPSD21, FLG12].

STT [LZL+13, PLK+19, RTK15, WDX14].

STT-RAM [LZL+13, WDX14].

STT-RAM-based [PLK+19]. studies
[LB10]. Study
[CPSt+15, SKEG16, SSRS15, MSF+07].

Studying [CBD15]. Sub [ABP+17].

Sub-Sequences [ABP+17]. subranked
[CCZ13]. Subsetting [AJK+12]. subwords
[SJV08]. Suite [CCM+16, DDT+17].

Sunway [AYL+18, ZFF+18].

Supercomputer [AYL+18, ZFF+18].

Superpages [WLL+19]. Superscalar
[BEE15, MMS15, SRLPV04]. Superscalars
[HYAR+15]. Supervised [ASP17].

supplied [YZL+10]. Supply

tables [CPB14]. TACO [Aca16, Ano15, Ano13a, Ano13b, Bil19]. TACOMA [AVG12]. Tactics [CZGC20].


Utility-Driven [PB15]. Utilization [CAGS17, LWF+16, SKKB18, TZEK18, VZS+18, YWWX12, ZCCD16, XCC+13]. Utilizing [TBC+12, KCP13]. UVMs [KDHK16].


X [TCS20]. X10 [TN20]. x86 [CC12, LWL+19]. XL [XT09, YGB21].

Zero [RSU+20]. Zeroploit [RSU+20].
References


[30]


REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).


Andrew Anderson, Avinash Malik, and David Gregg. Automatic vectorization of inter-
Asher:2013:HTL


Akkary:2004:ARE


Antao:2013:CFA


Ahmad:2020:DDM


Ahn:2013:SHR


Anbar:2016:EHL


Azhar:2017:SQS

REFERENCES


Bhattacharjee:2011:PLC


Buyukkurt:2010:IHL


Baghdadi:2013:ILT


Briggs:2020:FRT


Breughe:2013:SRB


Breugh:2015:MAM


Balasubramanian:2015:EGL

[BGG+15] Raghu Ramana Balasubramanian, Vinay Gangadhar, Ziliang Guo, Chen-Han Ho, Cherin Joseph, Jaikrishnan


Braun:2021:SMP


Barnou:2017:OTB


Bower:2007:ODH


Bartolini:2014:AFG


Bardizbanyan:2013:DPD

Alen Bardizbanyan, Magnus Själander, David Whalley, and
REFERENCES


**Boyer:2010:FBP**


**Bayrak:2012:AII**


**Bruintjes:2012:SLA**


**Bentley:2006:IAB**


**Barik:2013:DNS**


**Chen:2011:HAM**


Cleemput:2012:CMT


Chen:2013:DRU


Chasapis:2016:PEI


Cleary:2013:FAT


Chen:2013:CME


Coppens:2013:FDB


Chrysos:2013:HCP

Grigoris Chrysos, Panagiotis Dagritzikos, Ioannis Papaefstathiou, and Apostolos Dollar.


REFERENCES

Cattaneo:2016:HAI


Constantinides:2007:ARC


Carle:2014:PAM


Catania:2008:RCM


Cheng:2015:ECS


Chhabra:2009:MSP

ISSN 1544-3566 (print), 1544-3973 (electronic).


Cui:2013:LCA


Chen:2016:RER


Cui:2012:EPO


Cui:2013:LOC


Chen:2006:ETC


Chen:2007:CRL

REFERENCES


Chelini:2020:DLT


Das:2016:RDB


Dogan:2019:ASU


DeOliveiraCastro:2015:CLB


Damschen:2016:EWP


Dou:2007:CCM


Dong:2012:RAE

Yaozu Dong, Yu Chen, Zhenhao Pan, Jinquan Dai, and Yunhong Jiang. ReNIC: Architectural extension to SR-IOV

Do:2016:PEH


DeSensi:2017:BPP


Carlo:2014:FAA

REFERENCES


REFERENCES


[DRHK15] Mahdad Davari, Alberto Ros, Erik Hagersten, and Stefanos Kaxiras. The effects of granularity and adaptivity on pri-

Demme:2012:AGC


Deniz:2016:MGM


Deng:2018:EML


Debrunner:2019:AAK


Das:2015:SBP


Diavastos:2017:SLR


DeSensi:2016:RAP

Daniele De Sensi, Massimo Torquati, and Marco Danellutto. A reconfiguration algo-


Erdem:2020:RDS


Elango:2015:URM


Fields:2004:ICS


Fowers:2013:PEC


Ferroni:2017:PCM


Fang:2014:PPA

REFERENCES

1544-3566 (print), 1544-3973 (electronic).


REFERENCES


REFERENCES


REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

[Georgiou:2017:ETD]

[Goel:2014:SPR]


[Guo:2008:EHC]

[Garzaran:2005:TBS]

[Grigorian:2015:ADA]
REFERENCES


[GW08] Amit Golander and Shlomo Weiss. Hiding the misprediction penalty of a resource-efficient high-performance processor. *ACM Transactions on
REFERENCES


Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. Efficient data supply for parallel heterogeneous architectures. ACM Transactions on Architecture and Code Optimization, 16(2):9:1–9:??, May 2019. CODEN ????. ISSN


Hong:2016:OCT


Huda:2015:UTM


Hijaz:2014:NLN


Hadjilambrou:2019:CCO


Hwang:2007:SSA


Hwang:2010:DCR


Hagiescu:2013:GCG


**REFERENCES**

[Hazelwood:2006:MBC]

[HVJ06]

[Hiser:2011:EIB]

[He:2015:IHF]

[Hong:2019:PTG]

[Haubl:2014:TTE]

[Huang:2013:ACM]
Libo Huang, Zhiying Wang, Nong Xiao, Yongwen Wang, and Qiang Dou. Adaptive communication mechanism for accelerating MPI functions in NoC-based multicore processors. *ACM Transactions on...*


REFERENCES


Jimenez:2009:GNB


Jantz:2013:ESM


Jensen:2017:ILD


Jeon:2013:RDR


Jang:2012:ACO


Jin:2018:LCM


Jo:2018:DSD

Jae-Eon Jo, Gyu-Hyeon Lee, Hanhwi Jang, Jaewon Lee, Mohammadamin Ajdari, and Jangwoo Kim. DiagSim: Systematically diagnosing simulators for healthy simulations. ACM Transactions on Architecture and Code Opti-

Jiang:2020:LLA


Jones:2009:EER


Jones:2009:ELE


Jain:2017:CMA


Jantz:2016:IP


Jeon:2009:AAP

Jeong:2013:EET


Juang:2004:IBP


Jiang:2016:TLH


Jiang:2013:PAP


Jiang:2020:EHE


Komuravelli:2015:RCH


Kim:2018:BEE

[KAC+18] Namhyung Kim, Junwhan Ahn, Kiyong Choi, Daniel Sanchez, Donghoon Yoo, and Soojung Ryu. Benzene: an

**Kaeli:2020:EME**


**Kluter:2014:VWL**


**Khan:2013:SBA**


**Kritikakou:2013:NOM**


**Kritikakou:2014:SNO**


**Kim:2013:FMS**


**KCP13**

ISSN 1544-3566 (print), 1544-3973 (electronic).

Kafshdooz:2015:DSS


Kayraklioglu:2018:LLA


Koraei:2020:DSS


Kourtis:2010:ECO


Kondguli:2018:CME


Khan:2020:SMS


Kerschbaumer:2013:IFT


KHN+18


Kaitoua:2014:HED


Kulkarni:2005:FES


Kanuparthi:2015:RIC


Kurt:2016:UAS


Kawahito:2013:IRF

Karimi:2015:MMA


Kronawitter:2019:PSS


Kannan:2019:CIE


Kim:2012:IPN


Kumar:2014:EPG


Kicherer:2012:SPA


Kanakagiri:2017:MMD

Raghavendra Kanakagiri, Biswabandhan Panda, and Madhu
REFERENCES


Kim:2021:IRA


Kong:2015:CRF


Kaushik:2021:GHP


Kalra:2020:ACB


Kiani:2019:ECP


Koukos:2016:BHU

REFERENCES


[LAS+08] Leverich:2008:CEM

[LAS+13] Li:2013:MFM


[LBJ05] Li:2013:ABT

[LBM13] Lustig:2013:TIC


DEN ???. ISSN 1544-3566 (print), 1544-3973 (electronic).


References

Li:2007:CCE


Lee:2016:SML


Liu:2019:ESA


Lyons:2012:ASS


Lin:2006:RCG


Luo:2013:DIH

Yangchun Luo, Wei-Chung Hsu, and Antonia Zhai. The design and implementation of

Lee:2020:SBP


Lee:2012:WPW


Lee:2017:DBT


LLRC17


Li:2005:PPC


LM05

REFERENCES


[LMZ18] Zhen Lin, Michael Mantor, and Huiyang Zhou. GPU performance vs. thread-level parallelism: Scalability analysis and a novel way to improve
REFERENCES


REFERENCES

July 2015. CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).


[LW+16] Zheng Li, Fang Wang, Dan Feng, Yu Hu, Jingning Liu, and Wei Tong. MaxPB: Accelerating PCM write by maximizing the power budget utili-


**Mysore:2008:FIP**


**Malits:2012:ELG**


**Mehta:2013:TSS**


**Majumdar:2012:MPE**


**Matheou:2015:ASD**


**Matheou:2017:DDC**


**Mccandless:2012:CTI**

Jason Mccandless and David Gregg. Compiler techniques to

**Malik:2013:OSG**


**Mastoras:2019:ESE**


**Mastoras:2020:CDL**


**Mendonca:2017:DAA**


**Martinsen:2015:EPT**


**Muralidharan:2016:DTN**


**Michaud:2016:SMF**

Pierre Michaud. Some mathematical facts about optimal


REFERENCES


REFERENCES

[MSF+07] Pierre Michaud, André Seznec, Damien Fetis, Yiannakis Sazeides, and Theofanis Constanti- 


REFERENCES


REFERENCES


REFERENCES

CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).


Pusukuri:2013:AFC


Pusukuri:2016:TEL


Proy:2017:CAL


Purnaprajna:2012:MWI


Purini:2013:FGO


Pradelle:2012:PPB


Park:2019:ROC


Pereira:2019:SPS

Fernando Magno Quintão Pereira, Guilherme Vieira

**Park:2019:MCM**


**Pao:2010:MEP**


**Porter:2015:MMS**


**Pricopi:2012:BPH**


**Palangappa:2017:CCE**


**Prisacari:2013:FPS**

REFERENCES

**Premillieu:2012:SSR**

[PS12] Nathanael Premillieu and André Seznec. SYRANT: SYm-
metric Resource Allocation on Not-taken and Taken paths. *ACM Transactions on Archi-
1544-3566 (print), 1544-3973 (electronic).

**Premillieu:2015:EOE**

[PS15] Nathanael Prémillieu and André Seznec. Efficient out-
of-order execution of guarded ISAs. *ACM Transactions on Architecture and Code Op-
timization*, 11(4):41:1–41:??, January 2015. CODEN ????. ISSN 1544-3566 (print),
1544-3973 (electronic).

**Patsilaras:2017:RRD**

[PT17] George Patsilaras and James Tuck. ReDirect: Recon-
figurable directories for multi-
core architectures. *ACM Transac-
tions on Architecture and Code Op-
timization*, 14(4):50:1–50:??,
December 2017. CODEN ????. ISSN
1544-3566 (print), 1544-3973 (electronic).

**Parasyris:2017:SAP**

[PVA+17] Konstantinos Parasyris, Vasilis Vassiliadis, Christos D.
Antonopoulos, Spyros Lalis, and Nikolaos Bellas. Significance-
aware program execution on unreliable hardware. *ACM Transac-
tions on Architecture and Code Optimization*, 14(2):
12:1–12:??, July 2017. CODEN ????. ISSN
1544-3566 (print), 1544-3973 (electronic).

**Pathania:2017:DTM**

[PVS+17] Anuj Pathania, Vanchinathan Venkataramani, Muhammad
Shafique, Tulika Mitra, and Jörg Henkel. Defragmentation of tasks in multi-core architecture. *ACM Transactions on Architecture and Code Optimi-
zation*, 14(1):2:1–2:??, April 2017. CODEN ????. ISSN
1544-3566 (print), 1544-3973 (electronic).

**Peled:2020:NNP**

[PWE20] Leeor Peled, Uri Weiser, and Yoav Etsion. A neural net-
work prefetcher for arbitrary memory access patterns. *ACM Transac-
tions on Architecture and Code Optimi-
zation*, 16(4):
37:1–37:27, January 2020. CODEN ????. ISSN

**Pirkelbauer:2019:BTF**

[PWPD19] Peter Pirkelbauer, Amalee Wilson, Christina Peterson,
and Damian Dechev. Blaze-
Tasks: a framework for comput-
ing parallel reductions over tasks. *ACM Transactions on Architecture and Code Optimi-
1544-3566 (print), 1544-3973 (electronic).


[Rico:2012:SLS] Alejandro Rico, Felipe Cabarcas, Carlos Villavieja, Milan Pavlovic, Augusto Vega, Yoav Etsion, Alex Ramirez, and Ma-
REFERENCES


Rubin:2015:MOM


Ruan:2013:BTB


Ruan:2015:TRM


Ren:2014:POE


Ryckbosch:2012:VSM


Rochecouste:2006:CCE


Roy:2018:NCN

REFERENCES


[RWY13] Erven Rohou, Kevin Williams, and David Yuste. Vectoriza-


Per Stenström and Koen De Bosschere. Introduction to

Streit:2015:GTP


Singh:2021:SSM


Sadrosadati:2019:IIT


Soteriou:2007:SDP


Stawinoga:2018:PTC


Selva:2020:BPR

REFERENCES


<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Song and Lin</td>
<td>2020</td>
<td>Improving memory efficiency in heterogeneous MPSoCs through row-buffer locality-aware forwarding.</td>
</tr>
<tr>
<td>Sasanka et al.</td>
<td>2007</td>
<td>ALP: Efficient support for all levels of parallelism for complex media applications.</td>
</tr>
<tr>
<td>Shi et al.</td>
<td>2019</td>
<td>Optimizing the SSD burst buffer by traffic detection.</td>
</tr>
<tr>
<td>Sangaiah et al.</td>
<td>2018</td>
<td>SynchroTrace: Synchronization-aware architecture-agnostic traces for lightweight multicore simulation of CMP and HPC workloads.</td>
</tr>
<tr>
<td>Su et al.</td>
<td>2019</td>
<td>SCP: Shared cache partitioning for high-performance GEMM.</td>
</tr>
<tr>
<td>Seghir et al.</td>
<td>2012</td>
<td>Integer affine transformations of parametric Z-polytopes and applications to loop nest optimization.</td>
</tr>
</tbody>
</table>
REFERENCES


REFERENCES


REFERENCES


REFERENCES


Stipic:2013:PGT

Sardashti:2016:YAC


Sioutas:2019:SSH


Saidi:2012:OED


Salami:2005:DMI


Shifer:2013:LLA


Sardashti:2017:CCG


Sen:2017:PGE

REFERENCES

Spink:2016:HA

Shobaki:2009:OTS

Simon:2015:STH

Sato:2019:AFS

Seshadri:2015:MPC

Savrun-Yeniceri:2014:EHI

Shihab:2018:RFD
REFERENCES


Therdsteerasukdi:2012:URI


Tan:2016:SEE

[TDG13] Ehsan Totoni, Mert Dikmen, and Maria Jesus Garzaran. Easy, fast, and energy-efficient

Tino:2020:SXE


Tan:2012:URI


Tan:2006:BSS


Tereschko:2007:ICC


Tino:2020:SXE


Theocharis:2016:BSC


Totoni:2013:EFE


Theoc

[TDG13] Ehsan Totoni, Mert Dikmen, and Maria Jesus Garzaran. Easy, fast, and energy-efficient


REFERENCES

Tian:2013:TBM


Tong:2015:OMT


Tawa:2014:EEF


Tampouratzis:2016:AIH


Thangamani:2020:ORC


Tampouratzis:2020:NHI


Tartara:2013:CLC

January 2013. CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

Tarjan:2005:MPG


Tabkhi:2015:JSH


Uguen:2020:ASA


Usui:2016:DD


VanDenBraak:2016:RGR

Gert-Jan Van Den Braak and Henk Corporaal. R-GPU: a


[Vocke:2017:EHI]


[Venkataramani:2009:MAM]


[vanderVlag:2020:ECB]


Vandierendonck:2011:MSR

Valero:2012:CRI

Vandierendonck:2013:ADT

Vale:2016:PDT

Vespa:2011:DF

Voitsechov:2018:SDT

Vasilache:2020:NAL
Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary Devito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. The next 700 accelerated layers: From mathematical expressions of network computation


**Weber:2017:MAL**


**[WG17]**


**Wang:2015:APM**


**[WK09]**


**Wang:2012:TMA**

Xiaoyuan Wang, Haikun Liu, Xiaofei Liao, Ji Chen, Hai Jin,


REFERENCES


1544-3566 (print), 1544-3973 (electronic).


REFERENCES

[102x681] ISSN 1544-3566 (print), 1544-3973 (electronic).


REFERENCES


REFERENCES


**Yoon:2015:EDM**


**Yazdanbakhsh:2016:RRF**


**Yebenes:2019:CSA**


**Yiapanis:2013:OSR**


**Yang:2012:CGC**


**Yang:2012:UOC**

REFERENCES


Yan:2008:EVR


Yang:2010:ERS


Zhao:2013:HPP


Zhao:2016:FMR


Zoni:2018:DEP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>


Zhang:2019:REU


Zhang:2015:BSS


Zhang:2005:DIE


Zmily:2006:BAI


Zhao:2015:BSB


Zheng:2018:ESG

Zhang:2018:SSM


Zhang:2016:CPS


Zimmer:2015:NSM


Zhai:2008:CHS


Zhao:2013:OGE

REFERENCES


Ziabari:2016:UHB


Zhang:2005:WHC


Zhao:2005:IWA


Zhou:2019:SNS


Zhou:2016:ERI


Zheng:2017:WAD


Zhou:2016:CAE

Hao Zhou and Jingling Xue. A compiler approach for exploit-
Zhang:2019:PPB


Zhou:2010:PAT


Zardoshti:2019:STM


Zhang:2019:PPB