Title word cross-reference

(2 + e) [PS19], (α, β) [BKMP10], (Δ + 1) [BGK+22, HP22], (h, k) [BEJK19],
(k, t) [BDR23], (k, r) [DFHT05], (min, +) [CMWW19], (n − 1) [RW10a], (s, t) [BBP23], 1 [KN16], 1 − 1/e [HTWZ19], 1.5 [KN16], 1/3 [DFM23], 2
[ERV16, Fuj12, GS17, GILP16, HCT+11, HVV19, KN16, LMM+21, SS18].
2 + e [AGLW18], 2.5545 [HCT+11]. 3 [CLL+12, FLL+19, Heg06]. 4/3
[HVV19], 4k2 [Tho10a, Tho10b]. β [ADGH21]. f1 [WW22]. f1p [Wei22]. F
[ALM+20]. H [BCSV20, VWY10]. K
[DM09, BBB20, ABF+18, AMS06, BH20, BEKN23, BPR+17, CGK20,
Cha10b, CV20, CMVZ16, DKL16, DKN17, FHR07, FN10, FPZ23, FGK+24b,
GIN+17, GHNR10a, GHNR10b, GWZ21, HHL+16, HMS07, LaF23, Lev09,
Li17, LN22, LBSZ21, PT16, RT22, RRS07, RZ12, SST22, WZ16]. k/r
[GWZ21]. L [GGI+21]. l1 [BDW19]. M [HIMZ19]. n [RW10a]. n0.4
[BCAD23]. n4/3 [Bon22]. O(1) [BGK+22]. O(log k) [ACER19]. O(log n)
[KK13]. o(mn) [Cha12]. O(n²) [BS06a]. O(n².75) [AFM08]. O(n³) [GT08].
\(O(n \log^2 n)\) [KMW10]. \(O(n \log n)\) [BKM09b, BKM09a]. \(O(nm)\) [CMA'19, KMMP07]. \(o(\sqrt{n})\) [PS23]. \(O(VE)\) [DC05]. \(O^*(2.7k)\) [LN22]. \(P_3\) [LPS24]. \(P_k\) [GKPP22, LPV18]. \(r\) [GWZ21]. \(s - t\) [CLS+22]. \(st\) [BSWN15, KW16b]. \(t\) [DP06].

-1-center [YLDW08]. -1-median [YLDW08].

-3-approximation [BPGN09]. 3SUM [Cha20]. 3SUM-hard [Cha20].

-4-leaf [BLS08].

aggregation [BMSV⁺09]. Agnostic [Wim16]. agreeable [JLSS12]. agreement [KKK⁺10]. Algebraic [AK18, CLL14, Vig14]. Algebras [KW16a]. Algorithm [ACER19, AFS18, AKS17, AKLR20, AER15, BKMV20, BDW19, BLS23, BFPP18, BKN21, CMA⁺19, CLL⁺12, CMV16, CJL17, CI17, CGMY22, DFM23, DKN17, DS19, ERV16, FPS22, FGK⁺16, FGK⁺24b, GKPP22, HHL⁺16, Hir19, Hu20, HVV19, KKK18, KK13, KK16, KKR⁺20, KN16, MMS14, PRS20, PS23, AFM08, And10, AMM07, AR06, BD09, Bla08, BS10, BD11, CCKR11, DC05, CCM10, CKS05, Cla10, CNP⁺11, DMRW09, DS08, Dji10, DV10, EK07, EPR10, EFKN09, Fuj12, HMS07, IM12, JZ06, Kau07, KMW10, RW09, VH05]. Algorithmic [AMS06, BCFN07, GIKW19, HS17, PSZ24]. Algorithms [ASW08, ALM⁺20, ABB⁺18, AMW20, AMNS17, AKS21, ACCE⁺23, AKLS21, ACK18, BGGN16, BBHT17, BKN14, BEKN23, BODD⁺20, BGH19, BR14, BGN⁺18, BM19, BF24, BB12, BCMSM12, Bre23, BSSX20, BF18, CHA18, Cab19, CFY22, CLL14, CV20, CFM21, CMVZ16, CDHW09, CMY11, CD19, DMT24, DGM18, DHH16, DHI18, DPS18, EFM⁺16, EW20, EN19, EHL⁺18, ELR⁺08, FLN14, FLK⁺20, FLPR12, GMP23a, GMP23b, GS17, GKM16, GHG22, GLZ21, HH17, HKKK16, HT21, Har18, Har21, HL13, HK22, ISG07, JPS22, JCCW22, KADK22, KLP⁺16a, KBNvL20, KX19, KLP16b, KMP16, Lac13, LNR⁺14, LMS18, LRS18, LPS⁺20, MV15, MP22, NS16, RS17, SST22, SHH16, Swa16, AAK06, AMR09, AF07, AA14, AR09, AGvS13, AKL10, AKR12, BCD12, BKS12, BAT11, BFK⁺12, BCM11, BF07, CPR⁺11, CMO⁺08]. algorithms [CMM09, CKP12, CJST07, DFHT05, DI06, DJP⁺12, EL12, Elk11, Epp06, FP10, FZ07, GS09, GKL10, GKK⁺09, GHPT05, HSS07, Iba08, IMY10, JR05, KN⁺07, MV08, MZ12, FU07, PR08, RSS06, SZ10, YLW08, CEGK11]. All-Or-Nothing [AFH⁺16]. All-Pairs [KT18, Cha12, RS11a, MTZ10]. Allocation [AKS17, PS16, CCKR11, GN14]. Allocations [AMNS17]. Almost [AL13, BLL⁺24, BDLP23, DH18, CPL12, Elk05, FK11]. Almost-Optimal [BDLP23]. Alphabet [BN14]. Alphabet-Independent [BN14]. Alternating [NRS18]. Alternation [BK08]. amidst [AFS18]. amnesic [GLP08]. among [CW15, FKS08]. Amortized [GHT18]. Analyses [BF24]. Analysis [BBHT17, BCKM20, BKK⁺19, ERV16, ER17, FN20, GHPT05, ScRS17, WNN15, dBBJW21, AAY10, AR09, BK18, BAT11, DMM⁺12, DI06, DK12, EP05, Epp06, FBV09, GN14, GR10]. analytic [SSS⁺11]. Analyzing [CCW18]. Analysis [GHLL16, DHMZ12]. ancestor [GR06]. Ancestors [Gab17]. annotated [GGN06]. Annotations [CCMT14]. anonymity [APF⁺10]. Anonymous [DP14, GMP17, MPY22]. any [FKW11]. apices [SST22]. Application [AFH⁺16, ARS⁺14, Coh18]. Applications [AZBG⁺22, ACE⁺20, BR16, BF23, CmM22, DEK21, DHK16, EK20, GIKW19, Hir19, HJ17, KMS17, KW16a, LPS⁺20, PSZ24, Pre21, Swa16, AAY10, AG10, AZ08, BB08, DMM⁺12, FGPS08, FGTV06, FS08, NW07, RRS07, VY10]. applied [BM08]. Approach [BFGT16, BF21, BFV22, Gab16, LMMW16, AAO⁺06, NW07, V080]. Approximability [BG20, CGNS08]. Approximate
Approximately [FGZ21]. Approximating [AAdFM22, BDR23, CKM
+ 24, CLNV14, CDKL20, Das13, DKR16, FR10, GGI
+ 21, GKK23, GJL12, GGG10, GJNW23, HLS09, KR16, LMM
+ 21, LMMW16, MR09, Mar10, Nut09, Nut12, Oum08, RT13, WY16, Man12]. Approximation [Adj19, ALM
+ 20, ABF
+ 18, AMNS17, AKS21, AGLW18, ABG16, BR14, BHPR19, BKMA15, BCAD23, BPR
+ 17, CMZV16, DHH16, DKN17, EFMI+16, FGL
+ 20, FKRS19, GKK
+ 09, HKKK16, HHL
+ 16, HW19, HL13, HVV19, IMY10, JMR19, JS23, JR05, KK13, KN16, KW16b, KNS
+ 07, MMS14, MV08, NHK08, PS19, Swa16, TY18, BFKS14, BLKP07, BPGN09, Blåö8, BMK09a, BMK09b, CCKR11, CCR08, Cla10, DJP
+ 12, DV10, EFKN09, Fuj12, HMYT07, JZ06, Joh06, Kar08, Kar09, LDL09, RS09, SS08a, VH05, CPR
+ 11]. Approximations [ASS19, FIM
+ 11, HLS09, Jac11, LM11]. Asymmetric [AKS21, Blåö8]. Asymptotic [HJT17, SS08a]. Asymptotically [VF19, GIN
+ 17, HS18]. Asynchronous [KKK
+ 08]. Average [AR08a, AR09, BF24, RKH20, WNN15, IM12]. Average-case [AR08a, AR09, BF24]. Axis [CKS09]. Axis-parallel [CKS09].
[ALM+19, HSS07, Iba08]. CIOQ [AR06]. Circuits [BH19, FGLS19, HS18].
circular [NS10]. Class [HIMZ19]. Classes [CDP19, KRS19, SST22, FP10, GKL09].
Classic [dBBJW21]. Classical [BH19, FGLS19, HS18].
Claus [AFS12]. Clique [CDP19, FGL+19, GHK+24, HKP+18, Oum08].
Clique-Width [GHK+24, CDP19, FGL+19, Oum08]. cliques [II09].
Clones [BG20]. Closed [CMA+19, CEV21, SST22]. closest [AKS08].
Closure [Epp18, Rod08]. Cluster [LPS24]. Clustering [ABS10, BHW20, BDR23, FKRS19, GMP23b, GLS10, RKH20, ZO08, APF+10, CGK+11, Epp09b, EV10, Lev09].
CNF [CDL+16]. CNF-SAT [CDL+16].
coalitions [FKS08]. code [KL06].
Collecting [CJ20, Fuk17, HKKN12]. collections [CHLS07].
collective [GLPP08]. Color [CLL+12]. Colored [EK20]. Coloring [BGK+22, CHL+20, FGL+19, HP22, SW20b, BNS08, CKS09, DKT11, HKS11, PRV11, SS08a].
Colorings [BCSV20]. Colors [DLS14]. Colouring [GHHH22].
Column [BSSX20, Joh05, Joh06, Joh07, Khu05, Khu06, Khu07].
Column-sparse [BSSX20]. combination [GHPT05]. Combinatorial [EF12].
Combinatorics [AKS17, AAdFM22, BST08, CKM+24, FGPS08, GM12, BCN12, FP10].
Compact [AGM+08, BB08, KRX16, CSTW12].
Compactness [BG21, GIKW19, Joh05, Joh06, Joh07]. Completion [BFPP18, BCK+20, GLP06].
Computations [FLS+18, FMS+10]. Computed [BGMW20]. Computing [AFN+18, AFS18, AMNS17, BF09, BCKV06, BLS23, Cab22, CW15, CMV16, DGM18, El05, FGK+16, MA16, NZC11, RW10b, SS18, BB09, Dji10, EPR10].
[BNCS08, CKS09]. **conflict-free** [BNCS08, CKS09]. **conflicting** [GHKS08].

Confusability [CCKN19]. **Congestion** [KK16, CKK10a, FFMI2, FKOS08, Swa12]. **congruent** [CS09]. **conjunctive** [CFK+07]. **Connected** [Bre23, FLST18, HVV19, Lac13, SYZ20].

Connectivity [BK16, CHGG+17, CNP+22, Gab16, GILP16, IIK+23, KN16, MV15, CEGS11, CRV11, EFKN09, Kor10, Nut09, Nut12, VB08]. **Conquer** [GS17, HJT17, FGPS08]. **Consensus** [BBT12, CN14]. **consequence** [BGLZ09]. **Conservative** [BG20].

Constant [AW19, ATG+14, HHL+16, HP22, Jac11, Laf23, AHRT05, VP07]. **constants** [IP11]. **Constant-time** [HP22, AHRT05]. **Constraint** [AZBG+22, GRS17, GM14, CMM09, SS09]. **Constraints** [MS17, DH12, GLP06, JZ06].

Constructing [EN19, GW07, Elk11]. **Construction** [OOB24, AMS06]. **Constructions** [ES16, SCRS17]. **Constructive** [CHL+20]. **contact** [BGPV08]. **content** [BH12]. **Continuous** [CCW18, NW07]. **continuous-discrete** [NW07]. **contractible** [Cab10].

Contract [BL+24, PSZ24]. **Contractions** [CL+21b, FPZ23]. **control** [AA09, Hal12]. **Convergence** [CN14, EDKM07, GN14, FFM12]. **Convex** [BRW16, CDD+15, DEK21, HIM+19, MW24, BB09, CAY10, GJL12, M11].

Convolution [CMWW19, Cha20]. **convolutions** [BF09]. **Coresets** [Cla10]. **Correction** [BPL18, AEL+12]. **Correlation** [BPR+17]. **Correlations** [KKK18].

Corridors [GGG10]. **Corrigendum** [GHKS13]. **Cost** [BFCF+17, HJ15, MV15, AZ08, AKLR20, BKLP07, EKOS05, Fuk12, IMM08, Lev09, Nut12, RS09]. **Cost-Oblivious** [BFCF+17]. **cost-sharing** [IMM08]. **cost-tree** [Fuk12]. **Costs** [Ad19, BRW16, FGK+24a, ELR+08, ST10].

Counting [AFK+15, BCN12, BKK17, CW16, FGZ21, FMR24, GRS17, GS17, GLSY23, LBSZ21, WY18, AC10, BCEG07]. **Cover** [ACS+22, DHK16, DKR16, ER16, INV16, KPR16, MMS14, AAG09, Fuk12, GPK08, HL06a, Kar09, Vis08]. **covered** [DC05]. **Covering** [GSV20, LPS+20, CMA+19, EKOS05, HSM12]. **CoveringLSH** [Pag18].

Covers [Fuk17, GM14]. **Creation** [EFF+15, GHL16, DHMZ12]. **Criteria** [ADV+16, GHKS08]. **cross** [IMM08]. **cross-monotonic** [IMM08].

cryptography [GHPT05]. **CSP** [GS17]. **CSPs** [CRZ20, KKR19, MWSZ23, PZ24]. **Cubic** [BLS23]. **Cuckoo** [Wal23, DK12].

Curse [CJ18]. **Curved** [CW15]. **Curves** [BDR23, BFL+23, CD22, EP12]. **Cut** [BCC21, BSWN15, CKM+24, CMVZ16, ER17, FPZ23, GHT18, KW16b, Wah22, CKL+09, CGR08]. **Cuts** [ACHKP21, BEH+10, BBP23, CKL+09, PT11]. **Cutting** [CF20, SHHA16, EP11]. **Cycle** [AEL+12, BFGT16, CRSS22, FG+19, KW14, CDEM10, GN08, KNS+07, LDX09, MM09, PT11, RW10a, HKM+12].

Cycle-Finding [CRSS22]. **Cycles** [FGK+24a, GLS23, Cab10]. **cyclic** [BS06b].

d [DM09, CLL+12, HCT+11]. **D-Matching** [CLL+12]. **DAGs**

[CDI$^{+}12$, GMS$^{+}19$, PU$^{+}07$, AMM$^{+}07$, CCM$^{+}10$, GMV$^{+}09$, MN$^{+}08$]. **Entropy-based** [PU$^{+}07$, AMM$^{+}07$]. **entropy-compressed** [MN$^{+}08$]. **Enumerating** [BDH$^{+}20$, CMA$^{+}19$]. **Enumeration** [II$^{+}09$]. **Enumerative** [HS$^{+}17$]. **Environments** [NE$^{+}19$]. **Envy** [SHHA$^{+}16$]. **Envy-Free** [SHHA$^{+}16$]. **equal** [GP$^{+}08$, IMY$^{+}10$]. **equal-length** [GP$^{+}08$]. **Equality** [Pre$^{+}21$]. **equals** [FGGV$^{+}06$]. **equations** [Epp$^{+}06$]. **Equilibria** [DFM$^{+}23$, FGK$^{+}16$, BCK$^{+}06$, CV$^{+}07$]. **Equilibrium** [Das$^{+}13$, EDKM$^{+}07$]. **equitable** [CAY$^{+}10$]. **equivalence** [Kau$^{+}07$]. **Equivalences** [AGW$^{+}23$]. **Equivalent** [CMW$^{+}19$, GMW$^{+}20$]. **erg** [PUW$^{+}08$]. **Error** [JW$^{+}13$, AKPS$^{+}10$, RS$^{+}11a$]. **Errors** [KT$^{+}19$]. **Essentially** [KPR$^{+}16$]. **Estimating** [EHL$^{+}18$, CCM$^{+}10$]. **Estimation** [BHPR$^{+}20$, BT$^{+}24$, JW$^{+}23$, GMV$^{+}09$]. **ETH** [BL$^{+}24$, KBNvL$^{+}20$]. **ETH-Tight** [BL$^{+}24$, KBNvL$^{+}20$]. **Euclidean** [AFHS$^{+}20$, BKM$^{+}15$, CS$^{+}08$, LT$^{+}24$, Sol$^{+}13$]. **Eulerian** [FLM$^{+}12$, KK$^{+}13$]. **Evaluation** [DHK$^{+}16$]. **Even** [CP$^{+}12$, KKR$^{+}19$]. **everywhere** [CPL$^{+}12$]. **evolution** [FB$^{+}09$]. **Exact** [AFK$^{+}18$, CMT$^{+}22$, CP$^{+}12$, GHT$^{+}18$, HJ$^{+}17$, Vio$^{+}05$, BFK$^{+}12$]. **Excluded** [FLST$^{+}18$, LR$^{+}15$]. **Excluding** [Neu$^{+}24$, RW$^{+}09$]. **Expansion** [CLL$^{+}12$, PR$^{+}12$]. **Expected** [DHPR$^{+}16$, BS$^{+}06a$]. **Experimental** [DI$^{+}06$]. **Experiments** [FGGV$^{+}06$]. **explicit** [RW$^{+}10a$]. **Exploitation** [GSV$^{+}20$]. **Exploration** [DP$^{+}14$, GP$^{+}19$, TS$^{+}14$, ACP$^{+}11$, CFI$^{+}08$, DKK$^{+}06$]. **Exponential** [ANFS$^{+}17$, CKP$^{+}19$, CNP$^{+}22$, DHM$^{+}14a$, FP$^{+}13$, GKL$^{+}09$, JMR$^{+}22$, KLP$^{+}16a$]. **exponentially** [PR$^{+}08$]. **expression** [BFG$^{+}09$]. **extended** [HPR$^{+}14$]. **extension** [GN$^{+}14$, KMMP$^{+}07$]. **External** [BF$^{+}24$, SSTV$^{+}23$, CFLM$^{+}07$, LK$^{+}08$]. **everywhere** [CPL$^{+}12$].
Graphs [ACGP16, AFT19, ASS19, ADF+15, ADD+18, AKLR20, BLL+24, BGS24, BDI+20, BWSN15, BK16, BDLP23, Cab19, Cab22, CKM+24, CMT22, CEV21, CR18, CDP19, CGH17, DHK14, DPS18, ES16, EP16, EMTG23, EHL+18, ELMR21, FGZ21, FMR24, FLS+18, FLST18, GILP16, GLSY23, GST23, GJNW23, GNSW20, GKPP22, GSW24, JS23, KMTS23, KK13, KKPW24, LR15, LPV18, LMS18, LM19, Neu24, OSSW20, PSZ24, PPSV18, Wan22, WY16, AS07, ALM+12, ASS08, BFKS14, BS06a, BHKK12, BKM09a, BKS09b, BGPV08, BHLR10, Cha12, CEGS11, CSTW12, DS11, DFHT05, Dji10, DKT11, EPR10, Epp09a, Epp09c, GKK10, GT08, HKRL07, HSS07, Iba08, KMW10, KP08, KK06, Lan06, MR09, MZ12, PS10, PRV11, PRS12, RTZ08, RZ12, RST14, VWY10, VH05, YB12].

Gray [KL06, MN18].

Greedy [FN20, LT24, CKS05, Cla10, CNP+11, FP10, GR10, RS11b].

Gromov [AFN+18].

Group [DHK14, KW16a].

Groups [CZ18, Neu22, AMR09, AK12b].

Guarantees [TY18, BST08].

Guarding [AFK+18].

Guessing [AGKS07].

Guest [Buc08].

guided [CFI+08].

Hadamard [CI17].

Half [HJT17].

halfplanes [CKS09].

Hamiltonian [FGL+19].

Hanoi [ASS08, BS06b, DS08].

Hard

[CDL+16, GKM16, BH12, Bon22, Cha20, Vis08].

hard-capacitated [BH12].

Hardness [BM20, BKN21, CMVZ16, DKR16, CPR+11, KNS+07, KM12].

hash [AG10].

Hashing [Pag18, Wal23, DK12, Jan05, Vio05].

Haste [SHHA16].

Hausdorff [AHPSW10, AFN+18].

haystacks [Joh07].

Heap

[CR18].

Heaps [Elm17, HKTZ17, KT08].

heaviest [VWY10].

Heavy [BDW19, BN19].

Helps [CCG+24].

Hermite [BL23].

hidden [FKW11].

Hierarchical [CGMZ16, LK08, ST10].

High

[AFS18, AEP18, Bla20, GHM+24, FR10, GLS10].

High-Dimensional [AEP18, GLS10].

High-Quality [AFS18, GHM+24].

Higher [AEP18, Bla20, GHM+24].

Highway [JS23].

Hinders [CCG+24].

Hitters [BDW19, BN19].

Hitting [ACS+22, FLL+19, GJLS17, GST23].

Hoc [KMPS16].

Holant [BG20, GLZ21].

Hole [CSS21].

Hollow [HKTZ17].

Homomorphic [GLS23].

Homomorphism [GHK+24].

Homomorphisms [FMR24].

hop [FCFM09].

hop-optimal [FCFM09].

Hopcroft [CZ24].

hospitals [KMMP07].

hospitals-residents [KMMP07].

hotlink [Jac11, LM11].

Hub [BGGN16].

Hulls [DEK21, BB09].

Hunt [BDLP23].

Hunts [TSZ14].

Hyperbolic [BFF+22, Epp09b].

Hypergraph [GHM+24, Har19, Neu22, AFS12, LDX09].

Hypergraphs [FPZ23, RKH20].

Hyperplane [AFS20].

hypertree [Mar10].

I/O [AY10, CFR22, MZ12].

I/O-Efficient [CFR22, AY10, MZ12].

Ideal [Mas21].

identical [GP08].

identification [CPR+11].

idle [AA14].

IDs [DLS14].

II [AAHP+16, KKPW24, SST22].

III [FGL+19].

Im [BCKV06].

Image [BMR22].

Images [RT14].

impatient [BCC+10].

Networks

nilpotence

Node

Node-capacitated

node-cost

Node-Weighted

Node-weighted

node-cost

Node-Capacitated

Nilpotence

Non

Non-decreasing

Nondeterminism

Non-Recursive

Non-Uniform

nonabelian

nonavailability

non-recursive

non-Uniform

Nonmetric

Nonmonotone

Non-Efficient

Oblivious

Obstacle

Obstacles

odd

Odd

occurrences

One

One-sided

Online

Order

Order-preserving

Ordering

Ordinal

Oracle

oracles

Order-Preserving

Ordering

Ordinal
[FLM+12, FSP08]. orienteering [CKP12]. Orthogonal
[BRW16, Cha13, CW16, CW21, BLPS13]. Other [BCK+20]. out-trees
[BRFF+12]. Outlier [KKK18]. Outliers [CN19, FKRS19, HPST19]. output
[ST08]. output-density [ST08]. Overhead [ACHM22]. Overlapping
[Wal23].

P2P [NW07]. Packet [KMP16]. packets [JLSS12]. Packing
[AARA23, BSSX20, CZ18, CS07, EPR13, FLL+19, BNL+07, CMS07,
KNS+07, HCT+11]. Packings [KKK17, GGI+21, LPS24]. Paging [JPS22].
pair [AKS08]. Pairs [KT18, Cha12, DI06, MTZ10, RS11a]. Pairwise
[Cab19, GW07]. pants [Epp09b]. Parallel
[CDP21, DH12, FN20, HH17, Har18, Har21, CKS09, GKK+09, Han07].
Parameter [BBT12, CM15, CCHM15, DHM14b, GST23, MV15, DFHT05,
RSS06, CGK+11]. Parameterized [AMW20, BFPP18, BCK+20, BM20,
CFM21, CHLT14, CNP+22, FLS+18, GHK+24, GWZ21, KW16a, LPS24,
LNR+14, LRS18, LPS+20, MP22, PSZ24, RS17, GJL12, HLS07, SST22].
Parametric [Epp18, FBV09]. parentheses [LY08]. Parity [CLL14].
Partial [GMW20, JS07, KMNS17, MSS11]. Partially [ADF+15, HKN17].
Partition [LR15, CLLJ08, CKS05, SS09, ZO08]. Partitioning
passes [DFR09]. Path [ABHS22, AGLW18, AZ08, BCHR20, EK20, EP16,
GWZ21, HMZ16, AT07, DI06, HSB07, MZ12]. Path-Reporting [EP16].
Paths [AFS18, BFF+22, CW15, CR18, GW20, KK13, KK16, LBS21,
WY13, Cha12, CK07, DS11, Elk05, EPR10, GW07, HS06, HSM07, KMW10,
KK06, MTZ10, RS11a, RZ12, Will0]. Pathwidth [GJNW23]. Pattern
[Gaw13, GGN06, Jez15, ALLS07, CS11]. Patterns [BG13]. peeling
[ALLT11]. peg [BS06b]. Perfect
[AKLR20, BCP24, BG21, GKK10, HHM+18, AG10, BCKV06]. perform
[EMS10]. Periods [MPQS20]. Permanent [DHM+14a, And09].
Permanently [BFKR21]. Permutation [Wim16]. Permutation-Invariant
[Win16]. Permutations [BBHT17, EPR13, RW10a]. permuterm [VF10].
Persistent [Cha13]. Perturbation [BHW20]. Phase
Piecewise-Linear [MA16]. Piles [DEK21]. pipelined [CDW09, DH12].
Pivot [ADK16, AD16, WNN15]. Placement [EFM+16, GKK+09]. Planar
[ASS19, AKLR20, BSWN15, BK16, Cab19, Cab22, CMT22, CEV21, DHK14,
EH+18, GST23, KK13, KKR19, KBNvL20, MP22, PPSV18, Wan22, WY16,
AMM07, BLPS13, BKM09a, BKM09b, CDI+12, DS11, DFHT05, Dji10,
DK11, EPR10, GKK09, GKM08, KMW10, KK06, OGGW10, PS10]. Planarity
[ADF+15, ADD+18, BFR23, KR19]. Plane [CW15, GMS19, CS08, Saw06].
Planes [DT16]. Planted [HKP+18]. player [GMT11]. player-specific
[GMT11]. Plurality [ADGH21, DGM18, AR08a, AR08b, AR09]. Point
[AK18, BHPR19, CRZ20, Cha13, CL22, HPJ21, KPR16, AMM07, BCh12, CFH07, CD12]. **Point-Width** [CRZ20]. **Points** [Jan05]. **polygon** [CAY10, CW10]. **Polygonal** [AFS18, BDR23]. **Polygons** [AW19, CDD15, MW24]. **Polylogarithmic** [ALM18, GHT18, Har18]. **Polymer** [BCP24]. **Polynomial** [AARA23, ALM18, BCD12, BKM15, CDP19, DFM23, DHM14a, FLS18, GS17, GKPFP22, KW14, KRS19, Lafort23, LR15, LBSZ21, PRS12, PS16, SS18, AK12b, LDX09, SS09]. **Polynomial-Space** [GS17]. **Polynomial-Time** [BKM15, DFM23, FLS18, BCD12, GKPP22, LDX09]. polynomially [Kau07]. **Polynomials** [Har19, MS17]. **Polytopes** [AAdFM22]. Popular [AAdFM22] **prefix** [RRS07]. **Preimage** [MPQS20]. **Preprocessing** [BSWN15]. **Prescribed** [BH19]. **Preservers** [BW21]. **Preserving** [HL13, IN07]. **Price** [BGH19, GN14, DHMZ12]. **Price-based** [GN14]. **Practical** [SCRS17]. **practically** [ADHY08]. **Practice** [CRTZ24]. **precedence** [DH12, JZ06]. **precise** [DK12]. **Predecessor** [Cha13, GMW20]. **Predictions** [ACE13, JPS22]. **Preemption** [BFS19]. **Preferential** [ELMR21]. **prefix** [RRS07]. **Preimpe** [MPQS20]. **Preprocessing** [BSWN15]. **Prescribed** [BH19]. **Preservers** [BW21]. **Preserving** [HL13, IN07]. **Price** [BGH19, GN14, DHMZ12]. **Price-based** [GN14]. **priced** [CFK07]. Pricing [AR05, BCC10]. **Primal** [DH18, VB08, BCM11]. **Primal-dual** [VB08, BCM11]. **Principal** [KLPP23]. **Principles** [ARS14]. **priority** [AHRT05, ADHY08, EJK08, MTTZ06]. **Privacy** [BNS19, FJS14, JMR22]. **Private** [SCR17]. **Prize** [CJJ20, Fuk17, HKKN12]. **Prize-Collecting** [Fuk17, HKKN12]. **Probability** [Bla20]. **Probably** [LMS18]. **probe** [GGM10]. **Probing** [PT16, Jan05, Vio05]. **Problem** [AKS21, BEJK19, BK16, CGK20, CCW18, CJJ20, CZ24, CMVZ16, CKL21a, DT16, EK20, Epp18, ER17, FGK24b, Fuk17, HW19, HVV19, KK13, KK16, KR18, Kra14, KS16, MMS14, Mas21, MW24, NRS18, SW20a, Soc16, TY18, AMR09, AR08a, BK08, BH12, BHZ13, BPNN09, BG11, BHKK12, BKMSS11, CF05, Cha10b, CEGS11, CCHP12, CLL08, CKS05, CM07, DS08, DV10, E01, EK05, FHR07, FN10, GS09, GKL09, HMY07, HL00a, IMY10, Jac11, JR05, Kar09, KKW12, KMMP07, KMM11, LM11, MV08, NS10, RS09, SZ10]. **Problems** [AZBG22, AGW23, ALM18, AMW20, BG20, BFGT16, BR14, BDW19, BCC21, BR16, BFR23, BCK20, BM20, BSXX20, BF18, CFY22, CN19, Cha20, CLL14, CV20, CFM21, CDL16, CGH17, CMWW19, CNP22, FLN14, FLL19, FLG20, FLL19, GM20, GMP32b, GKM16, GM12, GLLZ21, GWZ21, HPST19, Hir19, HL13, JW13, Knu05, Knu06, Knu07, Knu07, Knu07, MP22, Mas21, PPSV18, Swa16, Wah22, AAA16, AK12, BST08, BRF12, BHL10, CMM09, CEGS11, CKP12, CGNS08, CDH09, CNP11, DFR09, EKS05, FS11, GJL12, HKK12, HLS09, HSB07, Kar08, KNS07, Nut09, Nut12, SS09, ST08, YLW08]. **processes** [EP12, GLPP08, MTZ10]. **Processing** [GPSS15, JMR19]. **processors**
20

[KS08]. **Product** [CDJS17, FLPS17]. **Products** [SWYZ21]. **Programming** [CHA18, CKS19, EW20, LNR+14, MTK+19, RST14]. programs [CMS07, FP10]. **projective** [AGvS13]. **Promise** [VZ21]. propagation [IP11]. **Properties** [BMR22, CDJS17, GIKW19, KRS19, RT14, ABD+08, MR09, PR12]. **Property** [CDJS17]. protocols [GN14, GR10]. **Promise** [VZ21]. propagation [IP11]. **Properties** [BMR22, CDJS17, GIKW19, KRS19, RT14, ABD+08, MR09, PR12]. **Property** [CDJS17]. protocols [GN14, GR10]. **Promise** [VZ21]. propagation [IP11]. **Properties** [BMR22, CDJS17, GIKW19, KRS19, RT14, ABD+08, MR09, PR12].

Sublinear [ELMR21, GMV09, HKN17, LT24, EMS10, RS11a].
Sublinear-Time [HKN17].
Submatrices [HL13].
Submatrix [GMW20, KMNS17].
Submodular [BHZ13, BJLY17, BF18, BFS19, CHJ18, DHK16, Fei17, FGK+24a, GKK23, INV16, WZ16].
Subquadratic [Cab19, FLL19, EMS10, RS11a].
Subsequence [BCAD23].
Subset [ABHS22, CCHM15, KX19, LRS18].
Subspace [WW22].
Substring [Pre21].
Subtree [ABH18, Epp09b].
Suffix [FTK20, OOB24, FGGV06, RNO11].
Sum [ABHS22, BT24, BJLY17, Cab19, HKS11, HKP18, KV19, Epp09b].
Sums [DHS16, RRS07, Vig14].
supporting [BCH12].
Surface [CJL17].
Surfaces [CdM22, RST14].
Survivable [BK16].
Swap [BPL18].
Swap-Insert [BPL18].
Text [BN14, BFG16, Pre21, ALLS07, CHLS07, FMMN07, MN08].
texts [BFG09].
Their [ACE20, KMNS17, AG10].
Theorem [HHM18].
Theoretical [BBB20].
Theory [CRTZ24, HJT17].
Three [DKT11].
Thresholds [Wal23].
Throughput [BNGK09, EMS23, CLT10, GR10].
Tight [BL14, BODD20, BHD20, BD11, CHGG17, CGH17, CV07, DJP12, FN20, FMR24, KPR16, Soc16, WW22, WY18, CDEM10, KBNvL20, MSS11].
Tightening [CdM22].
Tiling [AARA23].
Time [AARA23, AW19, ATG14, BKM20, BGK18, BKK17, Bon22, BS06a, BCKM15, BGM20, BCAD23, CRTZ24, CDJ23, BFG09, CCKN19, CKN19, CEK+21, CRR09, CNP+22, DF19, DHM+14a, FLS+18, GLPS17, GMP17, GSN18, GHT18, HSS22, HKN17, KMTS23, KKR20, KV19, Lf23, LR15, LN22, LRS18, PRS20, RS17, RKH20, SS18, SHH20, WY16, AF07, AHT05, AZ07, AK12b, BD07, BCD12, BNGK16, BS06a, BCKM15, BP09, BKMS11, BCMS12, BSL08, Cha10a, Cha12, DKT11, EPR10, ERM07, GKL10, GN14, GLO06, GKP22, GQ10, HP22, HLN06b, IM12, JS17, KMMP07, KMW10, LD09, MOR13, NZC11, RW09, TM08, V05].
Time- [BKM20, PRS20].
Time-dependent [CRR09].
Time-Energy [CDJ23].
time-space [Cha10a].
time-varying [AZ07].
Tight [BH19, GPSS15, JMR19].
Tiny [Sol13].

Workspace [AW19]. World [DGG+20]. worst [ADHY08, BF07, BM08, CV07]. worst-case [ADHY08, CV07]. Writing [KS08]. Writing-all [KS08].

Yao [BGLZ09].

References

Aamand:2023:TSP

Agarwal:2010:EBU

Alon:2008:OEM

Ahmadian:2018:AAM

Austrin:2016:BBB

Abboud:2018:SIR

Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Or Zamir. Subtree isomorphism

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

(3):32:1–32:??, July 2012. CODEN ???. ISSN 1549-6325 (print),
1549-6333 (electronic).

[AK18] Boris Aronov and Matthew J. Katz. Batched point location in
SINR diagrams via algebraic tools. *ACM Transactions on Algo-
rithms*, 14(4):1–29, October 2018. CODEN ???. ISSN 1549-6325
abs/10.1145/3209678.

[AKL10] Benjamin Aminof, Orna Kupferman, and Robby Lampert. Rea-
soning about online algorithms with weighted automata. *ACM
DEN ???. ISSN 1549-6325 (print), 1549-6333 (electronic).

[AKLR20] Mudabir Kabir Asathulla, Sanjeev Khanna, Nathaniel Lahn, and
Sharath Raghvendra. A faster algorithm for minimum-cost bi-
partite perfect matching in planar graphs. *ACM Transactions on
Algorithms*, 16(1):2:1–2:30, January 2020. CODEN ???. ISSN
org/doi/abs/10.1145/3365006.

[AKM08] William Aiello, Alex Kesselman, and Yishay Mansour. Com-
petitive buffer management for shared-memory switches. *ACM
DEN ???. ISSN 1549-6325 (print), 1549-6333 (electronic).

48:??, June 2010. CODEN ???. ISSN 1549-6325 (print), 1549-
6333 (electronic).

algorithms for multicommodity flow problems via approximate
steepest descent framework. *ACM Transactions on Algorithms*,
9(1):3:1–3:??, December 2012. CODEN ???. ISSN 1549-6325
(print), 1549-6333 (electronic).
REFERENCES

REFERENCES

Amanatidis:2017:AA

Alagic:2009:QAS

Alon:2006:ACS

Alman:2020:DPP

Andoni:2016:WPS

Andrews:2009:IFP

REFERENCES

Alonso:2008:DP

Alonso:2009:ACU

Awerbuch:2014:PRM

Aspnes:2007:SG

Azriel:2008:IFS

Amiri:2019:DDS

Agarwal:2008:ACT

REFERENCES

REFERENCES

REFERENCES

Bhatia:2007:AAB

Bose:2012:SGI

Baswana:2020:ASS

Bose:2023:COS

Bliznets:2020:LBP

Belazzougui:2020:LTS

REFERENCES

[Bhattacharyya:2019:OAH] Arnab Bhattacharyya, Palash Dey, and David P. Woodruff. An optimal algorithm for l_1-heavy hitters in insertion streams and

REFERENCES

[BFGT16] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E. Tarjan. A new approach to incremental cycle detec-
REFERENCES

Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michał Pilipczuk. Subexponential parameterized algorithm for interval
REFERENCES

REFERENCES

REFERENCES

Beame:2020:EEI

Berenbrink:2014:DSL

Balcan:2020:CCU

Bateni:2013:SSP

Bienkowski:2018:DOS

Borodin:2017:MSD

REFERENCES

41:??, August 2017. CODEN ???? ISSN 1549-6325 (print), 1549-6333 (electronic).

REFERENCES

REFERENCES

Biedl:2013:MOP

Brandstadt:2008:SLT

Birmpilis:2023:CAC

Bruss:2009:IAI

Boyar:2008:RWO

Bonnet:2020:PHA

Berman:2022:TTI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

2006. CODEN ???? ISSN 1549-6325 (print), 1549-6333 (electronic).

REFERENCES

REFERENCES

[C Cohen:2016:TBS]

[C Caceres:2024:WHH]

[Chitnis:2015:DSF]

[Chekuri:2012:SMP]

[Chee:2019:DCW]

[Calinescu:2011:IAA]

September 2011. CODEN ???. ISSN 1549-6325 (print), 1549-6333 (electronic).

REFERENCES

REFERENCES

Christiansen:2021:OTD

Chekuri:2021:NWN

Cechlarova:2005:GSR

Cseh:2020:CCC

Chern:2007:PCR

Cohen:2008:LGG

REFERENCES

Cabello:2011:GCF

Chakrabarty:2020:NUC

Chrobak:2022:SAO

Chan:2016:HRD

Chuzhoy:2008:ASN

Chawla:2008:ENT

REFERENCES

REFERENCES

Chan:2020:UPP

Cheng:2017:FSS

Chrobak:2007:IOA

Chekuri:2007:EDP

Caragiannis:2010:TLA

Christodoulou:2010:MDF

Carr:2009:CCN

[CKL+09] Robert D. Carr, Goran Konjevod, Greg Little, Venkatesh Natarajan, and Ojas Parekh. Compacting cuts: a new linear formula-
REFERENCES

REFERENCES

Cheung:2014:AAL

Chen:2008:MCI

Cheriyan:2014:ARS

Chan:2022:NDE

Cormode:2007:SED

Cao:2015:IDF

Cairo:2019:ONA

Massimo Cairo, Paul Medvedev, Nidia Obscura Acosta, Romeo Rizzi, and Alexandru I. Tomescu. An optimal $O(nm)$ algorithm

Charikar:2009:NOA

Chandran:2008:IAO

Chan:2018:SSR

Chekuri:2007:MDF

Charalampopoulos:2022:EDO

Cheng:2016:FAC

REFERENCES

REFERENCES

Chowdhury:2018:COB

Cohen:2009:TDM

Chawla:2013:FSI

Chen:2022:LBC

Cairo:2024:GAP

Chung:2011:CDK

Carbonnel:2020:PWM

REFERENCES

REFERENCES

Chiplunkar:2020:RMA

Cook:2010:GFD

Chen:2015:CSP

Chan:2016:AAO

Chan:2021:DAO

Chechik:2018:NOL

Chen:2018:PGI

Chan:2024:HPL

Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log*
shaving, two-dimensional fractional cascading, and decision trees.

Daskalakis:2013:CAN

Constantinos Daskalakis. On the complexity of approximating a Nash equilibrium.

deBerg:2021:FGC

Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard
Woeginger. Fine-grained complexity analysis of two classic TSP

Carvalho:2005:VAE

Marcelo H. De Carvalho and Joseph Cheriyan. An O(VE) algo-
rithm for ear decompositions of matching-covered graphs.
ACM Transactions on Algorithms, 1(2):324–337, October 2005. CO-
DEN ???. ISSN 1549-6325 (print), 1549-6333 (electronic).

Darwish:2021:MAN

Omar Darwish, Amr Elmasry, and Jyrki Katajainen. Memory-
adjustable navigation piles with applications to sorting and con-
 vex hulls. *ACM Transactions on Algorithms*, 17(2):18:1–18:19,

Demaine:2005:FPA

Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi,
and Dimitrios M. Thilikos. Fixed-parameter algorithms for (k, r)-
center in planar graphs and map graphs. *ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

July 2012. CODEN ???. ISSN 1549-6325 (print), 1549-6333 (electronic).

REFERENCES

REFERENCES

Ehsani:2015:BBN

Even:2009:AAA

Efrat:2016:IAA

Esfandiari:2018:SAE

Emek:2016:SCI

Elmasry:2008:MPQ

References

REFERENCES

[FGGV06] Luca Foschini, Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. When indexing equals compression: Experiments with compressing suffix arrays and applications. ACM Transactions

REFERENCES

Ferragina:2007:CRS

Focke:2024:CLH

Feldman:2010:DSS

Flammini:2010:BSP

Fischer:2020:TAP

Fotakis:2011:MFL

Faigle:2010:TPG

[FP10] Ulrich Faigle and Britta Peis. Two-phase greedy algorithms for some classes of combinatorial linear programs. *ACM Transactions
REFERENCES

[Fraigniaud:2013:DIE]

[Fearnley:2022:FAF]

[Fox:2023:MCM]

[Fattal:2010:ADM]

[Friggstad:2011:MMM]

[Fusy:2008:DOT]
REFERENCES

REFERENCES

Gabo
w:2005:EF

Gabo
w:2009:FSI

Gabo
w:2016:MPA

Gabo
w:2017:DSN

Gawrychowski
w:2013:OPM

Gabow:2007:ISS

Gonzalez-Gutierrez:2010:ACT
Galvez:2021:AGK

Goel:2010:HPE

Gramm:2006:PMA

Graf:2022:AWI

Ganian:2024:FGC

Gandhi:2006:IRD

REFERENCES

[GHPT05] Peter J. Grabner, Clemens Heuberger, Helmut Prodinger, and Jörg M. Thuswaldner. Analysis of linear combination algorithms

REFERENCES

Golovnev:2016:FIS

Grandoni:2008:DWV

Grzesik:2022:PTA

Georgiadis:2011:DSM

Guo:2021:ZHP

Gudmundsson:2008:ADO

REFERENCES

August 2014. CODEN ???? ISSN 1549-6325 (print), 1549-6333 (electronic).

REFERENCES

Guha:2009:SEE

Gawrychowski:2020:SMQ

Gabo:2008:FLD

Goel:2014:PBP

Gortz:2015:MMM

Gupta:2016:RMO

Grohe:2020:IIT

Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An improved isomorphism test for bounded-tree-width
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Han:2011:NUB

Hegde:2006:FSE

Haeupler:2017:PAC

Hajiaghayi:2016:CFA

Hujdurovic:2018:PPB

Halldorsson:2007:IAR

Hirai:2019:TCB

Hirai:2019:DDA

Hohn:2015:PSR

Hwang:2017:EAS

Hoefer:2022:IAS

Hajiaghayi:2016:AAM

REFERENCES

REFERENCES

Hansen:2017:HH

Hassin:2006:MGV

Huo:2006:MMF

Hochbaum:2013:AAM

Hazay:2007:APM

Hassin:2009:AMQ

Hershberger:2007:FSS

REFERENCES

ber 2007. CODEN ???. ISSN 1549-6325 (print), 1549-6333 (electronic).

REFERENCES

REFERENCES

Hayward:2007:IAW

Haslegrave:2022:TDB

Haeupler:2015:RBT

Hajiaghayi:2010:FSI

Halldorsson:2021:SBO

Huang:2019:OVW

Hsu:2020:NAF

REFERENCES

REFERENCES

41:??, November 2007. CODEN ???? ISSN 1549-6325 (print), 1549-6333 (electronic).

Jacobs:2011:CFA

Janson:2005:IDL

Jin:2022:GSI

Jez:2015:FFC

Jez:2012:OSP

Jansen:2019:ASM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Citation</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Number</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Citation</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Number</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

[Kar08] George Karakostas. Faster approximation schemes for fractional multicommodity flow problems. *ACM Transactions on Algo-
Karakostas:2009:BAR

Kauers:2007:ADZ

Kavitha:2024:PMO

Katriel:2006:OTO

Kisfaludi-Bak:2020:NET

Khuller:2005:PC

Khuller:2006:PC

REFERENCES

Koutis:2016:FSS

Kantor:2023:MPS

Krokhin:2012:HLW

Khuller:2011:FFG

Kavitha:2007:SSM

Kaplan:2017:SMQ

REFERENCES

REFERENCES

Kolluri:2008:PGM

[135x681] REFERENCES
[0x0]136

Korman:2010:LSV

Korman:2008:DRS

Kratsch:2016:PLC

Konrad:2016:ASM

Korman:2018:DDP

Klemz:2019:OLP

the complexity of multistage stochastic IPs. *ACM Transactions
on Algorithms*, 20(3):22:1–22:??, July 2024. CODEN ???. ISSN
org/doi/10.1145/3604554.

[Kra14] Stefan Kratsch. Co-nondeterminism in compositions: a kerneliza-
tion lower bound for a Ramsey-type problem. *ACM Transactions
(print), 1549-6333 (electronic).

Polynomial kernels and wideness properties of nowhere dense
2019. CODEN ???. ISSN 1549-6325 (print), 1549-6333 (elec-

[KRX16] Goran Konjevod, Andréa W. Richa, and Donglin Xia. Scale-free
compact routing schemes in networks of low doubling dimension.
CODEN ???. ISSN 1549-6325 (print), 1549-6333 (electronic).

[KS08] Dariusz R. Kowalski and Alexander A. Shvartsman. Writing-
all deterministically and optimally using a nontrivial number of
asynchronous processors. *ACM Transactions on Algorithms*, 4
(3):33:1–33:??, June 2008. CODEN ???. ISSN 1549-6325 (print),
1549-6333 (electronic).

[KS16] Ravishankar Krishnaswamy and Maxim Sviridenko. Inapprox-
imability of the multilevel uncapacitated facility location prob-
2016. CODEN ???. ISSN 1549-6325 (print), 1549-6333 (elec-
tronic).
REFERENCES

Kao:2009:RFD

Kaplan:2008:THT

Krauthgamer:2018:CLB

Kannan:2019:LEF

Kratsch:2014:CMR

Koutis:2016:LAG

Krauthgamer:2016:CTA

Koiliaris:2019:FPT

Kaltofen:2013:MBM

Lacki:2013:IDA

Lafond:2023:RLP

Lau:2006:BRG

Lokshtanov:2021:ACP

Liu:2019:DFJ

[Lokshtanov:2021:AFV] Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, Gevarghese Philip, and Saket Saurabh. 2-

REFERENCES

Lee:2020:MMO

Le:2024:GSE

Lu:2008:BPS

Moroz:2016:CDB

Manthey:2012:AMT

Marx:2010:AFH

Mastrolilli:2021:CIM

Mathieu:2010:FSI

Mestre:2014:WPM

Mehlhorn:2009:MCB

Makarychev:2014:MQA

Makinen:2008:DEC

MUTZE:2018:ECM

Mahdian:2012:OOU

Makarychev:2017:MPS

Moran:2011:PCR

Makinen:2019:SDP

Mendelson:2006:MPQ

Madani:2010:DDM

Massberg:2008:AAF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pilipczuk:2018:NSS

Pettie:2008:RMS

Panconesi:2012:EPS

Prezza:2021:OSE

Philip:2012:PKD

Pandurangan:2020:TMO

REFERENCES

REFERENCES

Pritchard:2011:FCS

Patrascu:2016:IRL

Pandurangan:2007:EBB

Pruhs:2008:GBR

Pelleg:2024:ASC

Rottenstreich:2020:CHM

Russo:2011:FCS

REFERENCES

REFERENCES

Scott:2009:PCS

Schmid:2018:CWP

Salvy:2011:PFF

Sau:2022:KAM

Shah:2023:RDR

Suzuki:2008:DSP

Svitkina:2010:FLH

Sen:2016:DRB

Svitkina:2010:LBF

Sawada:2020:SST

Solomon:2020:IDG

Swamy:2012:ESS

Swamy:2016:IAA

REFERENCES

Viola:2005:EDI

Vishwanathan:2008:HIA

Voronenko:2007:MMC

Vassilevska:2010:FHS

Viola:2021:CBL

Wahlström:2022:QMM

REFERENCES

REFERENCES

