
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

25 August 2017
Version 1.67

Title word cross-reference

#SAT [1026].

(1 + λ) [10]. (1.408 + ε) [529]. (J, K) [360].
(μ, α) [212]. (n, 1) [1296]. (n, k) [696, 1133].
(s, t) [1365]. 1 [473, 288, 1160, 96]. 1.5
[387, 1153]. 1/3 [725]. 13k [948]. 2 [873, 906, 500, 301, 542, 623, 1155, 724, 759, 609,
356, 804, 854, 1137, 1262, 165, 143, 39, 636].
{2, 3} [695]. 2n - 3 [1262]. 3 [351, 542, 869,
724, 545, 776, 287, 464, 1092, 799]. 4
[1210, 1080]. \(K\) [621]. \(\epsilon\) [821]. \(b\) [534]. \(\beta\)
[315]. \(C^\infty\) [89]. \(C_b\) [208]. \(C^*\) [208]. \(D\)
[1120, 707, 383]. \(F_2 \to D\) [1121]. \(c\) [1214]. \(F_1\) [149].
\(g\) [1238, 1133, 799, 361]. \(h\)
[694]. \(H_k\) [59]. \(i\) [808]. \(\varphi\) [854]. \(K\)
[93, 289, 1097, 1126, 752, 707, 851, 1170, 344,
623, 400, 797, 893, 1110, 1079, 325, 1157, 50,
470, 636, 1089, 1353]. \(K_5\) [346]. \(L\) [378, 673].
\(L_1\) [337]. \(\lambda\) [506, 661]. \(\lambda_\beta\) [1163]. \(\log_2 N\)
[586]. \(F_2\) [1258]. \(R^2\) [693]. \(Z^2\) [503]. \(\mu\) [762].
\(N\) [1312, 623, 452, 861, 1349, 114, 799]. \(N^k\)
[54]. \(P\) [563, 1231, 923, 926, 123, 625, 349].
\(P_3\) [521, 134]. \(P_4\) [195]. \(P_k\) [909]. \(\pi\) [672, 787].
\(\Pi_1\) [1017]. \(Q\) [179, 671]. \(s\) [619, 638]. \(s_2\) [156].
\(st\) [953]. \(T\) [129, 619, 25, 638]. \(X^\omega\) [1287].

-abelian [356, 1110]. -agent [301].
-algebras [821]. -approval [383]. -ary
-binomial [143]. -bound [59]. -calculus
[506, 672, 787]. -center [344, 470, 93].
-clique-colouring [724]. -clustering [797].
-coloring [351, 1137]. -connected

14

645, 374, 1340, 669, 178, 932, 483, 1163, 412, 107, 1374, 431, 667, 637, 476].
logics [481, 370, 1344, 1055, 371]. long [869].
Longest [889, 1353]. Look [701, 1247, 5, 1329, 1328]. Look-ahead [701].
lookup [1063]. loosely [664]. lost [1334].
Lovász [1180]. Low [221, 653, 738, 748, 12].
low-stretch [653]. Lower [869, 1045, 765, 851, 653, 225, 872, 447].
LSFA [505]. Lunch [442]. Lyndon [1068, 1066].
macros [932]. macro-step-based [932].
made [949]. magic [547]. Magnifying [867].
Mainly [1118]. maintaining [23].
majority [522, 970, 593]. make [396, 63].
makespan [123, 140]. malicious [634].
mammalian [844]. management [381, 298, 1246]. manifolds [738].
manipulation [706, 757]. many [580, 848, 713, 718]. many-to-many [848, 713].
map [990, 912, 685]. mapping [1023, 958]. mappings [1167, 73].
Mathematical [567, 1185]. matrices [1099, 782, 1300, 228]. matrix [1310, 1021, 526, 590, 453, 1032, 1299, 1305, 969].
matrix-merging [526]. matroid [916].
matroids [306, 423]. matter [1222].
maximization [812, 1156, 384, 1079, 1134].
maximum-duo [1023, 958]. MaxSAT [1210]. may [1047]. MCTS [939].
MCTS-based [939]. me [272]. mean [841, 1252, 573]. Means [289, 851, 1299].
method [508, 965, 568, 1302, 416].
Methods [426, 1304]. metric [473, 81, 1199, 739, 815, 615]. micro [932].
microarray [568]. might [396]. migrating [926]. migration [753].
Million [1302]. Min [682, 590, 1030, 638]. Min-max [682, 1030]. min-sum [590].
MINCCA [1368]. Minimal [563, 1248, 1325, 968, 891, 976, 65, 402, 816, 359, 229, 1080].
minimal-interval [976].
Minimax [288]. minimization [457, 239, 598].
Mining [1038, 723]. minmax [548]. minors [1158]. Misère [389]. mismatch [880].
mismatches [893], missing [615].
Mitigating [931]. Mixed [1305, 1296].
mixture [286]. MM* [1238]. mobile
[613, 577, 502, 507, 578, 111, 710]. Modal
[929, 480, 77, 1055]. modalities [877, 1342].
mode [221]. Model
[428, 669, 768, 427, 157, 876, 850, 629, 1142,
1, 984, 771, 567, 986, 119, 1238, 60, 717, 901,
227, 747, 26, 388, 1086, 667, 1237, 656, 637].
Model-order [428]. modeled [562].
modeling [852]. Modelling [767, 763, 563].
Models [285, 666, 1183, 279, 260, 913, 429,
109, 489, 431, 663]. Modification
[941, 1032]. modified [420]. Modular
[832, 211, 150]. Modulated [526]. modulo
[1225]. Molecular [831, 432]. molecules
[945]. monadic [728, 487]. monads
monochromatic [468, 1137, 1242]. Monoid
[1289]. monoids [453]. monophonic [606].
monopolies [1194]. monotone [1028, 287].
monotonic [154, 38]. Monte
[938, 941, 942, 943]. Monte-Carlo
[941, 942]. morphic [908, 461]. Morphism
[1375]. morphisms [690]. morphogenesis
[839]. Morse [356]. motion [1373, 1273].
move [937], Movement [1195, 1012].
moves [293]. moving [950]. MSO [370].
MSOL [1254]. MSVL [1027]. MTL [479].
uu [77]. mu-calculus [77]. Multi
[1131, 840, 262, 478, 1051, 691, 398, 547, 298,
196, 1246, 1321, 115, 1262, 586, 142]. multi-
[586]. multi-broadcast [115].
multi-channel [691]. multi-coloring [398].
multi-dimensional [1262]. multi-domain
[262]. multi-head [1321]. multi-path [196].
Multi-periodic [840]. Multi-player [1131].
multi-tape [298, 1246]. multi-stack
[1051]. multi-tape [478]. multi-type [142].
multi-user [547]. MultiAspect [1001].
multicolorings [532]. multifurcating [55].
Multigames [488]. multigraphs [592].
multigrid [955]. multimatroids [562].
multioperator [371]. multipartite [135].
multiparty [1205]. Multipass [436].
Multiphase [663]. Multiple
[514, 254, 1149, 220, 740, 754, 904, 1303,
1039, 656, 585]. multiple-choice [1039].
multiple-message [656]. multiplicity
[654]. multiprocessor [812]. multisets
[1320]. Multistate [1244]. multithreaded
[1063]. Munkr [718]. Mutation [771, 1185].
NAE [1089]. NAE- [1089]. naming [251].
Naor [1382]. Natural
[99, 789, 258, 1277, 297, 1017]. Nature
[1309]. Near [534, 1295]. near-colliding
[1295]. nearest [382, 46, 1303, 572, 337].
nearest-neighbor [337]. Nearly
[1028, 1300]. neededness [1226]. Negation
[1144]. Negation-limited [1144]. negative
[1345, 644, 540]. Neighbor
[1148, 1238, 596, 572, 337, 917, 1133, 799].
neighborhood [1187]. neighbourhood
[571]. nested [1097, 193, 1244]. net [416].
nets [506, 418, 1173]. Network
[1145, 1195, 666, 148, 1181, 17, 59, 1079,
1236, 832, 1221, 317, 969]. Networking [15].
networks
[164, 1311, 249, 199, 548, 1205, 814, 429, 691,
269, 763, 903, 27, 225, 578, 326, 749, 657,
1162, 109, 565, 545, 246, 801, 503, 921, 1078,
546, 243, 288, 514, 861, 1349, 374, 1244,
1246, 314, 1211, 1020, 1249, 1262, 586, 571,
1008, 907, 233, 1176, 218, 842, 541, 572, 227,
431, 599, 1237, 656, 799, 358, 126, 618, 60].
nearl [767, 1315, 763, 100, 772, 969, 840].
neurons [842]. neuropercolation [841].
Neutral [1108, 924]. Newton [1302]. Next
[372, 1033]. Next-preserving [372]. next/
previous [1033]. NFAs [649]. NIC [348].
Nim [961]. Nintendo [275]. NLC [700].
NLC-width [700]. No [442, 266, 346].
No-Free-Lunch [442]. Node
[235, 1145, 1002, 172]. nodes [759, 58].
nose [1258]. noisy [495, 711, 775, 1142].
Non [213, 1075, 1099, 342, 335, 1362, 245,
955, 1367, 650, 320, 318, 1234, 167, 966, 240,
Non-adaptive [342]. Non-additive [245].
non-automaton [1234]. non-constant [240]. Non-deterministic [213].
non-dynamic [818]. Non-expandable [1075]. non-interactive [348, 947].
Non-interference [1362]. non-iterative [1036]. non-linear [375]. Non-local
[955, 1367, 1380]. non-monotonic [955, 1367, 1380]. Non-recursive
[1362]. Non-interference [1075]. non-interactive [818]. non-dynamic
[240]. Non-deterministic [240]. Non-additive [650]. non-renewable [87]. non-strict [318].
non-termination [1298]. non-uniform [320, 966]. nonadaptive [473]. Nonconvex
[267]. nondeterminism [649]. Nondeterministic
[929, 443, 1230, 1278, 490]. nonequivalent [982]. nonmonotone [253]. nonnesting
[341]. Nonparametric [740]. nonsimultaneous [704]. nonstandard
[982]. normal [727, 1227, 1130, 779, 290]. normalisation [1226]. normalization [789].
note [67, 1138, 119, 917, 460]. notion [1151, 661]. Notions [216, 822, 716]. novel
[1185]. NP [1247, 219, 1137, 434, 1242]. NP-complete [1137]. NP-completeness
[1242]. NP-hard [1247]. NP-hardness
[434]. NP-Intermediate [219]. nucleolus [624]. Number
[817, 1239, 97, 655, 1037, 972, 223, 258, 4, 474, 1191, 65, 195, 909, 777, 801, 872, 611, 982, 554, 122, 944, 1263, 1015, 620].
numbers [1011, 1229, 329, 1305]. Numerical
[1231, 926, 925].

objects [776]. oblivious [248, 111, 533]. observant [962]. Observational [182].
observations [1286, 1085]. Obtaining
[874]. offensive [224]. Offline [399]. offs
[314, 650]. oligopolistic [125]. omega [993]. on-board [27]. once [814]. One
[1321, 470, 33, 743, 480, 1283, 345, 344, 607, 516, 1179, 447, 864, 290, 1302, 293, 118].
one-agent [480]. one-cop-moves [293]. One-dimensional
[470, 344, 447]. one-sided [607, 290]. one-symbol [1179]. One-to-one [33]. one-unambiguous
[1283]. One-way [1321, 743, 345, 516, 118]. Online [320, 381, 398, 253, 469, 598, 446, 714, 142, 141, 360, 995, 1208, 1150, 1006, 551, 1045, 938, 49, 960, 447, 1079, 355, 520, 534].
only [236]. open [297, 1017]. operation
[1172]. Operational [649]. operations
[778, 642, 687, 350, 783]. operator
[1339, 135, 1185, 1122]. opinion [983]. optima [13]. Optimal
[743, 160, 538, 634, 1113, 572, 116, 338, 220, 73, 1028, 64, 1203, 247, 1300, 534, 293].
Optimally [543, 976]. optimisation [12]. Optimistic [26, 35]. optimization
[995, 495, 711, 924, 123, 90, 14, 191, 1369, 102, 13, 925, 420]. optimizations [416]. Optimizing
[802, 10, 276, 57]. option [245]. oracle [342, 603]. oracles [998, 201, 36].
orbits [78]. Order [892, 737, 893, 789, 257, 479, 397, 1198, 728, 72, 1059, 1053, 547, 486, 428, 787, 366, 234, 380]. Order-preserving
[892, 893]. order-theoretic [257]. Ordered
[1051, 1121, 379, 721, 560, 229]. ordering
[607]. orders [477, 871, 795, 585]. ordinary
[430]. Ore [359]. organizing [243].
orientation [97, 899]. orientations [126]. oriented [823, 403]. origami [1223].
oritatami [1220]. other [1141]. otter [962].
outperformer [1003]. outlier [80]. output
[779]. output-sensitive [779]. outsourcing
[30]. Overdetermined [46]. overlapping
[1075, 1099, 394, 167, 335, 1065]. overlay
[3, 68]. OWA [90].
P [1310, 1315, 100, 766, 103, 764, 772].
packet [1381, 1246, 634]. packing [399, 913,
rectilinear rectangle

Query-competitive [679]. querying [971].
queue [298, 1246, 190]. quotient [647].

R [500]. R-LINE [500]. radio [53, 691, 571].
radius [270, 1080]. rainbow [1003, 362].
raised [947]. Random
[1229, 297, 837, 1013, 342, 138, 786, 43, 138, 786, 499, 201, 114, 499, 218, 85, 1017, 36, 973, 466].
randomization [408]. Randomized
[49, 533, 500, 409, 1018, 20, 362].
randomness [1382, 859]. Range
[587, 883, 221, 970, 609, 546, 1058, 1033, 1153].
rank [304, 748, 1032, 1186]. rank-width [304]. Ranking [871]. Rate
[1019, 429, 621, 419]. Rate-limited [1019].
rational [1172, 497, 1112]. ratios [292].
Rauzy [294]. Raw [742]. re [1007].
re-encryption [1007]. Reachability
[211, 71, 565, 827, 1203]. reachability-time
[827]. Reaction [422, 414, 768, 769, 561, 1317, 430, 921, 832, 413, 1325, 1186]. read
[814, 236]. read-once [814]. read-only [236].
Real
[258, 1299, 270, 381, 329, 932, 1303, 1306].
real-time [381, 932]. real-world [270].
Realistic [1245]. Realizability [260].
really [708]. reals [297, 1017]. reasoning
[482]. rebranding [753]. reciprocal [529].
Recognition [1378, 749, 464]. recognize [977]. Recognizing [866, 112]. recoloring
[468]. Recombination [562].
recommendations [733]. recompression
[343]. reconciliation [743].
reconfiguration [898, 1000].
Reconstruction [784]. recovery [1252].
rectangle [1037]. rectangular [1365].
rectilinear [1031, 1245]. recurrence [211].
recursion [489]. recursive
[824, 788, 1020, 369, 650, 58]. recursively
[734, 674]. Red [1369]. Red/Blue [1369].
Red/Blue-split [1369]. reduce [600].
Reducibilities [674]. reducibility [661].
Reducing [1032]. Reduction
[957, 743, 1314, 739, 428, 1163, 169, 716].
Reductions [87, 1113]. Reeb [776]. Rees
[1021]. Refined [677, 881]. refinement
[480, 70, 786, 921]. region [948]. regions
[1111]. register [764]. regression [1087].
regret [711, 548, 288]. regular
[1310, 993, 1281, 1100, 1283, 43, 138, 786, 963, 1366, 617, 497, 646, 189, 648, 717, 805, 798, 1022, 118, 566].
regularity [1266].
Regulated [1324]. regulating [941].
regulatory [110, 374]. rejection [704, 1363].
Rekeying [1274]. relabeling [235].
Related [1077, 1134, 1369]. Relating [717].
relation [1366, 694]. relations
[661, 1172, 1230, 674, 863, 1067, 857].
Relationship [804, 1021]. Relative
[108, 944]. relay [1145]. Reliability
[694, 1211]. relocatable [198]. remainder
[413]. removal [701]. Rendezvous
[578, 746, 1360, 575]. renewable [87].
rental [245]. Repackable [586]. repair
[502, 633]. repetends [725]. repetitions
[858]. repetitive [719]. replacement [235].
replicas [325]. reporter [1223]. Reporting
[890, 364, 998]. representability [200].
representation
[1239, 712, 89, 117, 44, 380, 673].
representations [845, 395, 924, 591, 953, 127, 175, 1122, 1064, 612]. Representing
[1011]. resilience [379]. resilient
[240, 1142]. resisting [1036]. resolution
[1210, 179, 671]. resolving [628]. resource
[262, 247, 319]. resources [686, 87]. respect
[276, 981]. restarting [1324, 857].
restrained [813]. Restricted
[80, 695, 1254, 959, 1010, 419, 1055, 633, 1157, 848, 713, 1363]. restrictions
[467, 1031]. results
[260, 1234, 438, 775, 1279, 32, 162, 146, 791, 1085, 1213, 11, 147, 340]. retrieval
[579, 1142, 864]. return [357]. revenue
Snowman\[1264]. social network\[1264]. smart contracts\[64, 708, 498, 1085, 494\].

smallest\[708\]. smart\[64\]. Smoothed\[635\]. snap\[1359, 793\].

snap-stabilization\[1359, 793\]. SNC\[1293\]. Snowflake\[945\]. Snowman\[1264\]. social network\[1264\]. Sofic\[601\]. software\[493\].

soil\[1327\]. Solomonoff\[286\]. Solution\[39, 1295, 116, 247, 796, 1093\]. solutions\[73, 949, 729, 88\]. solvable\[248, 616\].

solved\[1189\]. Solving\[1258, 1091, 718, 179, 610, 794, 420\]. Some\[860, 162, 96, 291, 65, 195, 501, 1366, 617, 1085, 1114, 455, 1030\]. sort\[952\]. sorting\[462, 529, 350, 1140\]. Soundness\[671\].

source\[1235, 1236\]. Space\[693, 653, 998, 380, 817, 954, 19, 221, 1287, 64, 1063, 1353\].

Space-efficient\[693, 998, 380, 1063\]. spaces\[730\]. spanners\[212\]. spanning\[66, 528, 630, 855, 165, 1008, 798, 1209, 620\].

Sparse\[1167, 775, 341\]. spatial\[922\]. Special\[651, 879, 626, 1039, 1331, 242, 1217, 15, 285, 1012, 3, 68, 1043\].

Specializations\[66\]. specialized\[523\]. specifications\[367, 332\]. specified\[1113\].

spectral\[1080\]. spectrum\[315\]. Specular\[1332\]. speed\[812, 1269, 434, 355\].

speed-scaling\[812\]. speeds\[1360\]. sphere\[778\]. spherical\[503\]. spiking\[767, 1315, 100, 772\].

Spiral\[268\]. splicing\[1107\]. split\[862, 239, 518, 464, 977, 1369, 60\].

Split-Star\[60\]. splitting\[251\]. Spread\[269\]. Sprouts\[936\]. Square\[454, 1314, 547, 1333, 67, 458, 1350, 24, 1061\].

Square-free\[454, 67, 458, 1350\]. squares\[291, 394, 1009, 982, 464, 977, 1087, 143\].

stability\[289, 59\]. stabilization\[1359, 793, 1267, 111\]. stabilizing\[797, 1181, 359, 196, 697, 325\].

Stable\[1016, 1227, 1213, 1204\]. stack\[1051\].

Stackelberg\[66\]. stage\[755, 1354, 1090\].

staged\[1218\]. Standard\[457, 560, 479, 850, 1106, 901, 388, 667\]. star\[199, 1021, 696, 952, 1236, 1238, 1133, 60\].

star-height\[1021\]. stars\[910, 535\]. State\[642, 1316, 1284, 727, 186, 788, 1013, 994, 648, 434, 355, 1277, 1113, 649, 1176\].

states\[416\]. static\[282\]. statistic\[1087\]. statistical\[427, 986\]. steganography\[1379\].

Steiner\[1031\]. step\[932\]. steps

UDGs [697]. ultimate [292, 616].

Ultrafilters [645]. umpire [29].

Yung [1382].

References

26

Anonymous:2015:EBab

Friedrich:2015:GEC

Doerr:2015:OLF

Nguyen:2015:PSM

Oliveto:2015:ADM

Schmitt:2015:PSO

Lissovoi:2015:RAA

REFERENCES

[37] Chenchen Wu, Donglei Du, and Dachuan Xu. Primal-dual approximation algorithm for the two-level facility location problem via a dual

Gavruskin:2015:DAM

Wei:2015:SCW

Heggernes:2015:ISI

Bandyapadhyay:2015:VGG

Bang-Jensen:2015:FSD

DAlessandro:2015:CEBa

Tsur:2015:SRL

REFERENCES

Bermond:2015:DGP

DAlessandro:2015:CES

Chen:2015:PAA

Levin:2015:BAS

Mertzios:2015:OBT

Wang:2015:HBW

Disser:2015:IBP

REFERENCES

Lin:2015:CDS

Fan:2015:ISP

Jing:2015:PA

Meister:2015:USD

Ileri:2015:SYT

Couturier:2015:NMD

Bilo:2015:SGS

REFERENCES

REFERENCES

REFERENCES

Angelini:2015:IBP

Lai:2015:CAS

Krysta:2015:CAV

Auer:2015:UPG

Rytter:2015:SZP

Wang:2015:PMW

Crespelle:2015:TIS

Durocher:2015:GP

REFERENCES

REFERENCES

Anonymous:2015:EBao

Zhang:2015:IQP

Anonymous:2015:EBap

Bezem:2015:KMS

Pal:2015:GEF

Anonymous:2015:EBao

Zhang:2015:IQP

Anonymous:2015:EBap

Bezem:2015:KMS

Pal:2015:GEF
REFERENCES

REFERENCES

[Fellows:2015:THF]

[Anonymous:2015:EBAr]

[Popescu:2015:TGL]

[Janota:2015:EBQ]

[Sevegani:2015:BS]

[Preda:2015:UMA]

[Schmidt-Schauss:2015:OPC]

[Li:2015:SAP]

Qin Li and Zhe Dang. Sampling automata and programs. *Theo-
REFERENCES

Anonymous:2015:EBas

Konstantinidis:2015:IAA

Balkanski:2015:SCP

Caralp:2015:TVP

I:2015:CAD

Jirasek:2015:BRL

Kutrib:2015:DID

---|---

---|---

---|---
[198] Stefan Dobrev, Stephane Durocher, Mohsen Eftekhari, Konstantinos Georgiou, Evangelos Kranakis, Danny Krizanc, Lata Narayanan, Jaroslav Opatrny, Sunil Shende, and Jorge Urutia. Complexity of barrier coverage with relocatable sensors in the

---|---

REFERENCES

REFERENCES

Anonymous:2015:EBaw

Barton:2015:GLS

Harutyunyan:2015:LTA

Dereniowski:2015:DVS

Ho:2015:ETE

Song:2015:FTD

Teh:2015:CWP

Ilic:2015:VCD

REFERENCES

REFERENCES

Brunel:2015:RML

Anonymous:2015:EBba

Widmayer:2015:FA

Brand:2015:NEP

Chen:2015:NCC

Deng:2015:PEL

Albert:2015:MDI

Eberhard:2015:ATL

REFERENCES

Fertin:2015:TA

Cicalese:2015:SIW

Borassi:2015:FDR

Yamanaka:2015:SLT

Georgiou:2015:EMC

Demaine:2015:FFA

Viglietta:2015:LPC
REFERENCES

REFERENCES

REFERENCES

Golovach:2015:EGG

Meer:2015:GFA

Lin:2015:LTA

Reutenauer:2015:SFS

Barash:2015:TSC

Anonymous:2015:EBbg

Chodoriwsky:2015:AAG

Kim:2015:NOI

References

Kamiya:2015:PES

Son:2015:GNN

Gaspers:2015:FOP

Beal:2015:EPM

Uiterwijk:2015:NRD

Confitti:2015:GCL

Bhattacharyya:2015:NAP

Jez:2015:AGB

Chen:2015:EAO

Catalano:2015:ATO

Shan:2015:CCH

Anonymous:2015:EBbh

Kapron:2015:FNI

Rosenbaum:2015:BGE

Lintzmayer:2015:AAS

REFERENCES

Byrka:2015:ICC

Heydrich:2015:DCC

Chang:2015:TCS

Jiang:2015:Q

Kumar:2015:NOA

Greinecker:2015:ACT

Huang:2015:SRW

Zhang:2015:AAH

[374] Sohei Ito, Takuma Ichinose, Masaya Shimakawa, Naoko Izumi, Shigeki Hagihara, and Naoki Yonezaki.

REFERENCES

REFERENCES

Salomaa:2015:ACR

Azimi:2015:DGM

Hutchinson:2015:EOT

Shi:2015:ENM

Echegoyen:2015:CCB

Aman:2015:VMS

Fischer:2015:BCR

Tlili:2015:SDL

Gravier:2015:WOD

Demunzio:2015:RSE

Morton:2015:CTP

Anonymous:2015:EBbn

Kari:2015:Eb

Gilbert:2015:ACM

Ballarini:2015:AES

Islam:2015:MOR

Chaves:2015:ACU

Fages:2015:IRS

Videla:2015:LBL

Angione:2015:ADM

Anonymous:2015:EBb0

Kumar:2015:NHS

REFERENCES

REFERENCES

[465] Bertrand LeCun, Thierry Maurit, Franck Quessette, and Marc-Antoine LeCun. 2015:PF1

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Biswas:2015:DTC

Anonymous:2015:EBbu

Finger:2015:SIS

Accattoli:2015:PNC

Areces:2015:SB

Carnielli:2015:MPR

Ciaffaglione:2015:MTE

DAgostino:2015:IVC

REFERENCES

Olarte:2015:SCC

Anonymous:2015:EBbv

Gu:2015:P

Higashikawa:2015:MSL

Bredereck:2015:CDA

Chin:2015:CAU

Cai:2015:PCF

Guo:2015:OSG

[518] Chengwei Guo and Leizhen Cai. Obtaining split graphs by edge con-
REFERENCES

Chen:2015:CMM

Dereniowski:2015:CZV

Hossain:2015:GST

Jiang:2015:FAS

Li:2015:PCC

Lin:2015:IES

Obata:2015:EAA

Seo:2015:CCF

Chang:2015:CF

Ito:2015:OBG

Armaselu:2015:AFP

Gao:2015:BAC

He:2015:AAT

Duan:2015:IEO

[547] Zhenhua Duan, Jin Liu, Jie Li, and Cong Tian. Improved even order magic square construction algorithms and their applications in multi-user shared electronic accounts. *Theoretical Com-

Bhattacharya:2015:IAC

Abu-Khzam:2015:PCD

Kjos-Hanssen:2015:KSF

Chen:2015:ACS

Kanj:2015:IPE

Song:2015:SCF

Li:2015:PCN

[554] Xueliang Li, Meiqin Wei, and Jun Yue. Proper connection number and connected dominating sets. *Theoretical
REFERENCES

Anonymous:2015:EBby

Anonymous:2015:EBbz

Anonymous:2015:EBca

Kari:2015:E

Merelli:2015:CSB

Ehrenfeucht:2015:SOZ

Dennunzio:2015:ADG

Brijder:2015:RFG

Barbuti:2015:MPS

Macias-Ramos:2015:MFV

Zaccagnino:2015:TDC

Hrydziuszko:2015:MAT

Paun:2015:SMI

Floccchini:2015:P

[569] Paola Flocchini and Jie Gao. Preface. *Theoretical Computer Sci-
Bannoura:2015:WDS

Miller:2015:CNL

Sharma:2015:ONN

Tonoyan:2015:CGS

Ortolf:2015:SPU

Miller:2015:FRA

Halldorsson:2015:GES

REFERENCES

Czyzowicz:2015:BPW

Dereniowski:2015:RHM

Bampas:2015:IPD

Emek:2015:HMA

Hegeman:2015:LCC

Anonymous:2016:EBa

Anonymous:2016:EBb

Anonymous:2016:EBc

102

REFERENCES

vanIersel:2016:STP

Lin:2016:RML

Li:2016:RQU

Susilo:2016:EDT

Sawada:2016:SRF

Fong:2016:ACC

Enright:2016:GIP

[592] Jan Kratochvíl, Jan Arne Telle, and Marek Tesar. Computational

Goles:2016:PCM

Beal:2016:CPP

Yang:2016:ECV

Qu:2016:NSD

Das:2016:AMR

Han:2016:OMK

Wang:2016:EAC

REFERENCES

REFERENCES

Chen:2016:EAO

Blasius:2016:NPC

Golin:2016:ERM

Kratsch:2016:ASM

Gu:2016:PCN

Tian:2016:SRC

Bonnet:2016:TBM

[620] Zhongzhi Zhang, Shunqi Wu, Mingyun Li, and Francesc Comellas. The

Fang:2016:CLC

Gripp:2016:CPB

Cai:2016:SIC

Bera:2016:MAF

[627] Suman K. Bera, Syamantak Das, and Amit Kumar. Minimizing average flow-time under knapsack

REFERENCES

[642] Da-Jung Cho, Yo-Sub Han, Sang-Ki Ko, and Kai Salomaa. State complex-

REFERENCES

Prusa:2016:NRT

Anonymous:2016:GES

Bar-Noy:2016:CGS

Caragiannis:2016:SLB

DAngelo:2016:GRA

Balamohan:2016:EUD

Yu:2016:DMM

Anca Muscholl and Sven Schewe. Controlling loosely cooperating processes.
REFERENCES

[665] *Abdulla:* 2016:PVT

[666] *Xu:* 2016:CHL

[667] *Luttik:* 2016:UPD

[668] *Slivovsky:* 2016:SQR

[669] *Liu:* 2016:LCE

REFERENCES

REFERENCES

Bilo:2016:PEF

Nonner:2016:CMB

Ianni:2016:MMC

Meyer:2016:GPP

Anonymous:2016:EBi

Berline:2016:SAM

Anderson:2016:CLB

Dittmann:2016:GOP

[687] Christoph Dittmann, Stephan Kreutzer, and Alexandru I. Tomescu. Graph operations on parity games and polynomial-time algorithms. Theoretical Computer Science, 614(?):97–
REFERENCES

Anonymous:2016:EBj

Hellmuth:2016:FFC

Klouda:2016:SDB

Chlebus:2016:SWM

Seo:2016:RHI

Bhattacharya:2016:SEA

Zhang:2016:RMR

REFERENCES

[710] Shibata:2016:PGM

[712] Boissonnat:2016:CRS

[713] Park:2016:UMM

[715] Anonymous:2016:EBm

[716] Xia:2016:RSN

[717] Lin:2016:REC
Limei Lin, Li Xu, and Shuming Zhou. Relating the extra connectivity and
the conditional diagnosability of regular graphs under the comparison model.

Zhu:2016:SMM

Schmid:2016:CEF

Okhotin:2016:IDL

Bova:2016:QCQ

Abdessaied:2016:CRC

Nourine:2016:EDA

Filho:2016:HCC

REFERENCES

Hew:2016:WBP

Anonymous:2016:EBn

Attie:2016:FSC

Courcelle:2016:CFA

Jez:2016:LGS

Ziemianski:2016:ESP

Anonymous:2016:EBo

Jain:2016:GEF

Uitto:2016:CR

Gao:2016:PLR

Case:2016:TSI

Shibata:2016:PLC

Darnstadt:2016:OCS

Choromanska:2016:DPL

Gottlieb:2016:AMD

Khaleghi:2016:NMC

[740] Azadeh Khaleghi and Daniil Ryabko. Nonparametric multiple change point

Anonymous:2016:EBp

Leone:2016:GRV

Belazzougui:2016:OLV

Gozupkek:2016:CMC

Keshavarz-Kohjerdi:2016:HPS

Flocchini:2016:RCM

Su:2016:BWT

REFERENCES

REFERENCES

References

[Wu:2016:CLS]

[Karmakar:2016:RGB]

[Anonymous:2016:EBs]

[Frosini:2016:ADG]

[Gerard:2016:TBQ]

[Biswas:2016:PQO]
REFERENCES

REFERENCES

[794] Amaury Pouly and Daniel S. Graça. Computational complexity of solv-
REFERENCES

REFERENCES

Ben-Moshe:2016:OBA

Qiu:2016:ACA

Hao:2016:RBC

Losemann:2016:CPD

Ibarra:2016:EEM

Yang:2016:CFT

Sopena:2016:MNS

Kuo:2016:EPE
REFERENCES

Anonymous:2016:EBw

Angel:2016:TMM

Yen:2016:WRD

Busbait:2016:DTT

Hoffmann:2016:LTA

Golovach:2016:EMC

Wang:2016:SCA

[817] Qi Wang, Xiubin Fan, Hongyan Zang, and Yu Wang. The space complexity analysis in the general num-

[818]

REFERENCES

[833] Rasmus L. Petersen, Matthew R. Lakin, and Andrew Phillips. A

REFERENCES

Leslie Ann Goldberg and Mark Jerrum. The complexity of counting locally maximal satisfying assignments of Boolean CSPs. *The-
REFERENCES

Chen:2016:LBL

Kameda:2016:APE

Bhattacharya:2016:TLB

Mavronicolas:2016:CER

Lin:2016:SCS

Khanteimouri:2016:EAC

Anonymous:2016:EBab

REFERENCES

Anonymous:2016:EBac

Brandenburg:2016:RDI

Dolev:2016:MCG

Serafino:2016:HFL

DiGiacomo:2016:LUB

Kosolobov:2016:FLC

Brandenburg:2016:RCS

Groshaus:2016:TLB

REFERENCES

Benson:2016:LRS

Butman:2016:PSM

Brodal:2016:TDR

Kopelowitz:2016:PST

Klein:2016:CMF

Beigel:2016:SDP

Apostolico:2016:SSM

Munro:2016:FCW

Bille:2016:LCE

Navarro:2016:RCS

Babenko:2016:CMM

Crochemore:2016:OPI

Navarro:2016:RCS

Babenko:2016:CMM

Na:2016:FIA

REFERENCES

Croc

Dehkord

Anonymous

Brewster

Lu

Fernandes

Araujo

REFERENCES

REFERENCES

Kari:2016:Ed

Meunier:2016:USE

Gratie:2016:CCF

Olarte:2016:PTV

Song:2016:CPT

Correia:2016:NIN

Tan:2016:IEL

REFERENCES

Konstantinidis:2016:SMC

Kammer:2016:ATD

Guo:2016:ECB

Evans:2016:SVR

Bauer:2016:SSS

Mazo:2016:NLE

Anonymous:2016:EBam

Kelk:2016:RRM

[957] Steven Kelk, Mareike Fischer, Vincent Moulton, and Taoyang Wu. Re-

[972] L’ubomíra Balková, Michelangelo Bucci, Alessandro De Luca, Jiří Hladký, and Svetlana Puzynina. Aperiodic pseudorandom number generators based on infinite words. *Theo-

REFERENCES

Alvarez:2016:CG

Zhang:2016:LCP

Kociumaka:2016:MND

Ferraroli:2016:DDF

Feigenblat:2016:CFI

Anonymous:2016:EBap

Jegourel:2016:CBI

Ferrarotti:2016:NTC

Anonymous:2016:EBaq

Auer:2016:GEF

Kotzing:2016:MUC

Jain:2016:PLA

Abasi:2016:LBH

Angluin:2016:LRO

Hutter:2016:ESA

Ailon:2016:BOO

Maurer:2016:CRE

Anonymous:2016:EBar

Elkin:2016:SEP

DArco:2016:SCC

Haddadan:2016:CDS

Wehmuth:2016:MG

Hermelin:2016:PCC

REFERENCES

Paul C. Bell, Shang Chen, and Lisa Jackson. On the decidability and complexity of problems for restricted
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Iliopoulos:2016:F

Heliou:2016:EDR

Daykin:2016:BBO

Cordova:2016:SEF

Amir:2016:AJI

Barton:2016:LTC

Kim:2016:SEA
Rytter:2016:TFC

Zohora:2016:EAD

I:2016:FLF

Matsuoka:2016:GPM

Crochemore:2016:DLR

Badkobeh:2016:ECM

Simpson:2016:APL

REFERENCES

REFERENCES

[1089] Aiyong Xian, Kaiyuan Zhu, Daming Zhu, Lianrong Pu, and Hong Liu. Approximating Max NAE-

[1092] Mingyu Xiao and Shaowei Kou. Exact algorithms for the maximum dissociation set and minimum 3-path vertex cover problems. *Theoretical
REFERENCES

REFERENCES

Dolce:2017:NTS

Guaiana:2017:LTW

Karhumäki:2017:CAE

Kleijn:2017:AR

Marsault:2017:SRL

Moreira:2017:OSR

Pin:2017:UCF

Anonymous:2017:EBc

REFERENCES

172

Anonymous:2017:EBd

Adaricheva:2017:F

Wild:2017:JIA

Ausiello:2017:DHI

Adaricheva:2017:DBB

Babin:2017:DLG

Rudolph:2017:STC

[Liu:2017:MPS]

[Xiao:2017:CKB]

[Kintali:2017:DWP]

[Karpinski:2017:VCM]

REFERENCES

REFERENCES

REFERENCES

Anonymous:2017:EBi

Fiadeiro:2017:HAN

Seldin:2017:SRC

Anonymous:2017:EBj

Campadelli:2017:P

Campadelli:2017:ABS

Adamo:2017:SDI

Barcucci:2017:CBF

REFERENCES

180

Anon:2017:EBk

Golovach:2017:GEG

Jez:2017:UCG

Giotis:2017:AEC

Datta:2017:SSS

Lancia:2017:SSS

Al-Bataineh:2017:FMM

Anonymous:2017:EBl

Mishra:2017:MAC

Teh:2017:IRS

Zaitsev:2017:GNC

Durand:2017:ATE

Zheng:2017:PPS

Anonymous:2017:EBm

Chalk:2017:CIR

[1207] Laurent Gourvès, Jérôme Monnot, Fanny Pascault, and Daniel Vanderpooten. Bi-objective matchings

[1214] Yan Lan, Xin Han, Yinling Wang, Min Ge, He Guo, and Xin Chen. Flowshop problem $F_2 \rightarrow D | v = 1, c \geq 1 | C_{max}$ revisited. *Theoretical Computer Science*, 670(??):79–85, March 29, 2017. CODEN TCSCDI. ISSN 0304-3975 (print), 1879-2294 (electronic). URL http:
REFERENCES

185

Anonymous:2017:EBq

Kari:2017:Ea

Patitz:2017:TSI

Demaine:2017:NGA

Ipparthi:2017:DCA

Ota:2017:RSD

Michail:2017:CPN

Derakhshandeh:2017:UCP

REFERENCES

Leporati:2017:TSA

Anonymous:2017:EBt

Brough:2017:ASN

Pan:2017:NSP

Ding:2017:ISS

Kortsarz:2017:ASL

Xu:2017:CDC

[1238] Desai Li and Mei Lu. The \(g \)-good-neighbor conditional diagnosability of star graphs under the PMC and MM*
Ahadi:2017:ACW

Kalimullin:2017:ASC

Fraser:2017:WSD

Shitov:2017:TNC

Kadelka:2017:MNC

Yoon:2017:RRL

Anonymous:2017:EBv

Abello:2017:MRC

Dey:2017:FBV

Chlebikova:2017:FPF

Huang:2017:SPS

Ham:2017:GTR

Badano:2017:CCF

REFERENCES

Prusa:2017:UEP

Fijalkow:2017:PTP

Adiga:2017:ILT

Higgins:2017:LMD

Kehagias:2017:SCP

Anonymous:2017:EBz

Anonymous:2017:EBaa

REFERENCES

195

Verschelde:2017:TSP

[1293] Jan Verschelde, Stephen M. Watt, and Lihong Zhi. TCS SNC pref-

Barkatou:2017:CIA

[1294] Moulay Barkatou, Paola Boito, and Esteban Segura Ugalde. A con-
tour integral approach to the com-
putation of invariant pairs. The-

Batenkov:2017:ASN

Elkadi:2017:MPB

Helmer:2017:DAC

Li:2017:WNT

Pan:2017:RPR

Pan:2017:NOC

[1300] Victor Y. Pan and Elias P. Tsigaridas. Nearly optimal computations with structured matrices. The-
REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Anonymous:2017:EBah

Kothapalli:2017:P

Abraham:2017:TPS

Natarajan:2017:EAA

Altisen:2017:PSS

Feinerman:2017:FR

Hirve:2017:HHP

Kuznetsov:2017:NIL
[1362] Petr Kuznetsov and Sathya Peri. Non-interference and local correct-

Cohen:2017:ACD

Anonymous:2017:EBai

Zhang:2017:CCE

Bilokon:2017:DTA

Vasile:2017:TWT

Rabe:2017:MA

Xu:2017:CBF

Anonymous:2017:EBaj
REFERENCES

