Title word cross-reference

#SAT [1026, 1616].

\((1 + 1) [2193]\). \((1 + \epsilon) [1953]\). \((1 + \lambda) [10]\).
\((1, \lambda) [2186]\). \((1.408 + \epsilon) [529]\). \((3 + p) [2276]\).
\((J, K) [360]\). \((\mu, \alpha) [212]\). \((n, 1) [1296]\). \((n, 3) [2064]\).
\((n, k) [1484, 696, 1924, 1412, 1133]\). \((n^2 - 1) [1702]\). \((r, t) [1829]\).
\((s, t) [1365]\). \(1 [1641, 473, 2156, 1572, 2057, 288, 1160, 2312, 96]\).
\(1.5 [387, 1153]\). \(1/3^h [725]\). \(13k [948]\). \(2 [873, 906, 1834, 2081, 2310, 500, 301, 542, 623, 1155, 724, 1657, 2108, 759, 1421, 609, 356, 804, 2058, 854, 1137, 1262, 1517, 165, 1717, 143, 39, 1403, 636, 2062, 2121]\). \(\{2, 3\} [695]\). \(2 < p < \infty [1922]\). \(2k [1764]\). \(2n - 3 [1262]\). \(3 [2173, 351, 542, 869, 724, 545, 776, 287, 464, 1509, 2164, 1403, 1092, 799]\). \(4 [1447, 1990, 1210, 1080]\). \(7 [1762]\). \(\frac{R}{621}\). \(\frac{\c}{1772}\). \(\c \in [821]\). \(n [2305]\). \(\alpha [1466, 2146, 1890]\). \(\ast [1927]\). \(b [1893, 534]\). \(\beta [315, 1621]\). \(C^\infty [89]\). \(C_2 [208]\). \(C_2 [208]\). \(C_2 [1498]\). \(D [1120, 707, 383]\). \(\Delta [2281]\). \(DRH [1463]\). \(F_2 \to D|v = 1, c \geq 1|C_{\text{max}} [1214]\). \(F_3 [149]\). \(g [1925, 1913, 1238, 1482, 2237, 1924, 1413, 2051, 1412, 1133, 799, 361]\). \(H [1830, 2174, 1406, 1496, 2342, 694]\). \(H_k [59]\). \(i [808]\). \(\infty [854]\). \(K [93, 289, 2218, 2227, 1097, 1126, 752, 2154, 707, 851, 1665, 1170, 344, 623, 1663, 2313, 400, 797, 1892, 893, 1552, 1110, 1079, 325, 1575, 2174, 2320, 1157, 1532, 50, 2239, 470, 1689, 636, 1861, 1089, 1858, 1353, 2303]\). \(K_5 [346]\). \(\kappa [1463]\). \(L [378, 673, 1922]\). \(L_1 [2240, 337]\). \(\lambda [506, 661]\). \(\lambda_2 [2170]\). \(\lambda\beta [1893, 534]"

-good-neighbor [1925, 1913, 1389, 1413, 2051, 1412, 1133, 799].

-graph [1829]. -graphs [953]. -group [349].

-invariant [149]. -isometric [39, 1403].

-kernel [948, 2303]. -kernelization [1764].

-length [1353]. -level [129]. -Mark [808].

-matching [1893, 534]. -maximal [2156].

-MaxSAT [2064]. -Means [289, 851].

-median [2038, 473, 2312, 1861].

-partitions [873, 906, 1834, 2081, 2310, 625].

-partners [195]. -path [2239, 2164, 1092].

-paths [1365]. -permutation [452].

-regular [1447]. -relation [1796].

-Self-Adaptation [2186]. -server [500].

-set [1665, 1532]. -sets [1498]. -sink [288].

-variables [1210]. -visibility [2227]. -word [1463]. -words [89].

1 [96]. 11th [2225]. 1st [234]. 1st-order

3 [2028]. 3-SAT [2028]. 34-36 [984].

411 [984]. 429 [68].
524 [474]. 552 [1329]. 557 [1004].
702 [2024]. 70th [2261]. 7th [505].

8th [505].

abelian [2272, 908, 2141, 1071, 356, 1110, 130, 455, 456, 1070, 858, 1333, 94].
Abelian-square-rich [1333]. absolute [404].
Accelerate [2220]. Accelerated [1301]. accelerating [969]. acceptors [1819].
access [1338, 254, 108, 2026, 1193, 85].
account [1443]. accounts [547].
ACTL [1385]. Acyclic [1180]. ad [666, 254, 545, 656]. ad-hoc [545].
additionally-secure [947]. adaptivity [56].
addition [1632, 515, 2343]. additive [2234, 212, 1781, 245]. additivity [780].
adjacency [1032]. adjacent [2321, 2311, 1148, 1762]. adjusting [249].
admit [1721]. Advancements [166].
Advances [1169, 1534, 774, 426, 934].
adversarial [2339]. adversaries [248].
Algorithmics [525, 2195].
alignment-free [1425]. aligns [1741].

cyclicity [1532].
cyclic [1183, 2046, 2028, 612].
Cycles [1274, 600, 2280, 652, 1018, 83, 1241, 2250, 1278, 1138, 2125, 1764, 2063, 2013, 1615, 1622, 2164, 2228, 973, 134, 1092, 819, 1030, 2279].
coverability [1866].
coverage [198, 2221, 1659, 172].
Cover [1530].
Covering [1608, 1420, 164, 1681, 2326, 2181, 2244, 592, 1932, 1787, 553, 535].
coverings [1724].
covert [931].
crash [1532].
crash-prone [1532].
creation [148, 1603].
Crochemore [2235].
Cross [1168, 1653].
Cross-bifix-free [1168].
Cross-Entropy [1653].
crossed [777, 1913, 1406, 1496].
crossing [900, 1554, 117].
crossing-free [1554].
crossings [2173].
crossover [1185].
crown [1764].
CRT [2336].
CRT-exponent [2336].
cryptanalysis [2336].
cryptograms [85].
cryptography [1760, 595].
cryptoscheme [1035].
cryptosystems [1483, 2035].
crystallization [945].
CSP [1917].
CSPs [849, 1259, 1582].
cube [171, 2033, 2320, 1406, 1496, 2241, 799, 1997].
cube-connected [1997].
cubes [623, 1515, 1913, 695, 2174, 143, 1413, 1209, 1689, 1994].
cubic [702, 294, 1948, 2237, 618].
cumulative [711, 1185].
Curry [789].
curvature [1427].
curve [777].
cut [163, 619, 552, 2020, 1502, 1621, 981, 610, 638].
cuts [978, 1400, 1002].
cutting [1700].
CVP [750].
cycle [2306, 2258, 1360, 1030, 2279, 2130].
Cycles [2311, 967, 468, 1789, 910, 1137, 300, 1717, 2211, 1242, 1689, 1643, 1762, 1997].
cyclic [1183, 2046, 2028, 612].
cyclically [2303].
cyclicity [1530].
cycling [652].
cylinder [390, 637].
cylindric [1096].
D [2173, 542, 545, 609, 776, 387, 1153].
D0L [1768, 2242].
D0L-systems [2242].
DAG [1049].
DAG-width [1049].
dagger [491].
dangerous [655].
dark [939].
database [1998, 482, 633, 1376].
Databases [1124, 340].
dataflow [1088].
dataset [1088].
date [229].
DAWG [2273].
DCell [1988, 599].
Deadline [2032].
Deadness [928].
Dealing [1210, 17, 1722].
decay [1, 984].
Decentralized [983, 17].
deceptive [2184].
Decidability [1693, 1010, 406, 1636, 672, 1751, 1864, 190].
Decidable [1865, 153].
decking [1054].
decimation [1295].
Decision [1077, 313, 379, 151, 629, 1875, 994, 2006].
decomposability [1368].
decomposable [2079].
decomposed [1717].
decomposing [2131].
Decomposition [2115, 1167, 1872, 948, 1370, 1174, 1742, 1764, 150, 668, 2016, 1981].
decompositions [2300, 672, 2341, 951, 482, 699, 1305].
decontamination [1047].
decrease [1467, 1047, 2024, 2127].
decreasing [2287].
decryption [818].
dedicated [732].
deduction [789, 1227].
default [80].
defect [1011].
defensive [2297].
definability [2084].
defined [1103, 1344].
defining [1444].
definite [1123, 1908].
definiteness [2255].
definition [1109, 35].
definitional [1198].
degradation [1142].
degrading [1665].
Degree [1834, 2081, 310, 1617, 758, 515, 316, 1194, 1178, 2058, 1770, 1249, 521, 1486, 1302, 973, 1135, 620].
degree-anonymous [758].
degree-bounded [1135].
Degree-constrained [2081].
Degrees [328, 270].
Delay [1688, 2083, 1565, 1240, 690].
delays [418, 1905].
delete [2324].
delletes [63].
deletion [439, 1817, 1830, 2046, 1318, 150, 1855, 2217, 1518].
deliveries [124].
delivery
Existential [2084, 1523]. exists [2140].
expose [1528]. exposes [1528]. exposure [1201]. extends [1528].
exposed [1528]. expressible [1327]. exit [1528]. extensive [1201].
Expressive [1698]. expressivity [1327]. extend [1528]. Extended [1528].
extended [1528]. extending [1528]. extension [1528]. extensions [1528].
external [1201]. Extra [1201]. externalities [1201].
F [2024]. facets [1599]. facilitated [150].
Facility [1076, 1903, 1718, 868, 37, 2067].
factor [135, 529, 314, 1074]. factor- [529].
factorisations [719]. Factorization [817, 2263, 84, 689, 1066, 870, 2115].
factorizations [2074, 2235]. factors [1098, 1793, 1068, 2271, 2257, 1290, 1301].
multiplicative [1623]. multiplicity [654]. multiplier [2047]. multiply [1943].

ext/previous [1033]. NFAs [649]. NIC [348]. Nim [1699, 961, 1949, 1826].
Non-interference [1362, 1501]. non-iterative [1036]. non-linear [375]. Non-local [955, 1367, 1380].
optimum [2027]. option [245]. oracle [342, 603, 1953]. oracles [998, 201, 36].
order-theoretic [257]. Ordered [1051, 1121, 379, 721, 560, 229, 2324].
order-theoretic [257]. Ordered [257]. ordering [1051, 1121, 379, 721, 560, 229, 2324].
order-theoretic [257]. Ordered [1051, 1121, 379, 721, 560, 229, 2324].
ordering [1051, 1121, 379, 721, 560, 229, 2324]. ordered [1051, 1121, 379, 721, 560, 229, 2324].
oracle [342, 603, 1953]. oracles [998, 201, 36].
parameters [438, 1763, 219, 47, 1136, 698, 2179, 118].
Parametric [81, 1841]. parentage [204]. Pareto [123]. paribus [1125]. Parikh [228, 1796, 1619, 1465].
partially [721, 1113]. participants [2026, 2231].
Particle [2045, 13, 420]. partite [2303].
Pascal-like [2126, 1931]. passing [1950].

resolving resources

resource-bounded resources

response response-dependent

restart restart-delete

restrained results

restrictions results

retrieval return

revenue revenue

reversal reversal

reversibly revisited

RFID RGB

RGB-digraphs

Rytter [2261].

SAGBI [149]. salesman [847, 1653].

sampled [1418]. Sampling [1428, 183, 1399, 318, 419, 1614, 986, 633, 466].

Satisfying [585, 849, 1047, 1615].

saturated [2272]. Saving [1930]. scaffold [110, 1223]. scaffolding [384, 1725].

Scalable [691]. Scale [1592, 1249, 1263, 1624, 126]. Scale-free [1592, 1249, 1263, 1624, 126]. scaled [882].

scaling [812, 1269, 1398, 434, 355, 1719].

scan [634]. Scattered [967, 795].

scattering [1755]. scenario [367].

scenario-based [367]. scheduled [2193].

Schedulers [1808]. schedules [2180, 2056].

schema [1185]. scheme [522, 551, 603, 204,
Shinohara [1707]. shop [229, 1040]. shops [1715]. Short
[2322, 2288, 67, 201, 947, 670, 1197].
Shorter [443]. Shortest
[630, 2240, 1235, 1394, 1438, 1860, 1364, 64, 1547, 130, 14, 1551, 1040, 2065]. should
[1443]. shuffles [454]. sibling [944]. side
[2148]. side-channel [2148]. Sided
[1923, 332, 607, 290, 534]. Sierpiński
[1263, 1624]. Sieve [817]. sight [670].
Signal [1454]. signaling [431]. signals
[775, 1884]. signature
[1935, 1683, 901, 1112, 36, 2329]. signatures
[850, 1142, 2322, 201, 947, 2169, 388, 716, 2072]. signed [1937]. signing [2322]. silent
[1181, 1892]. Sillke [1104]. Silver [1699].
similar [895, 1522]. Similarity
Simpler [1660, 1232, 2201]. simplicial
[157, 712]. simplicity [920]. simplification
[2252]. Simplified [1159, 987]. simulating
[764]. Simulation [2344].
Simulation-based [2344]. Simultaneous
[953, 1033]. Simultaneously [950]. Single
[207, 237, 1903, 691, 1235, 61, 1820, 1290, 960, 124, 117, 2158]. single-crossing [117].
single-hop [691]. Single-machine
[207, 237, 124, 2158]. single-source [1235].
single-swap [1903]. sink [288, 514, 2086].
sinks [548]. SINR [573, 656].
SIoN-capacity [573]. six [270, 2026]. size
[1608, 954, 174, 1256, 1026, 619, 896, 724, 1601, 1616, 1137, 765, 1856, 2270, 11, 588].
size-constrained [619]. sized [1365, 631].
sizes [886, 1006, 27, 1318]. skeleton [84].
ski [245]. Skolem [1472]. Skolemization
[2004]. skyline [2222]. slack [2253]. sleep
[434, 355]. slender [1378]. slenderness
[2110]. slicing [1052]. sliding [444]. slime
[2050]. slopes [1578]. SLP [1066]. Small
[1444, 764, 992, 1352, 1026, 1315, 2300, 2250, 1159, 2021, 100, 2336, 907]. small-width
[2300]. smaller [45, 1789, 1033, 2201].
smallest [708, 2270]. smart [1951, 634].
smartphones [1414]. Smoothed [635].
SMT [1798]. snake [1850]. snap [1359, 793].
nap-stabilization [1359, 793]. SNC [1293].
Snowflake [945]. Snowman [1264]. Social
[2330, 1831, 1600, 1968, 246, 243, 1388, 1714].
Sofic [601]. software [493]. solo [1327].
Solomon [1442]. Solomonoff [286, 1591].
Solution [39, 1295, 116, 2322, 1798, 247, 2264, 796, 2158, 1861, 1093]. solutions
solvable [248, 616]. solved [1189]. Solving
[1737, 2232, 1258n1091, 1562, 1716, 718, 179, 610, 794, 420]. Some
[1610]. sort [952, 2130]. sortedness [1397].
Sorting
[1447, 1989, 1583, 462, 529, 350, 1140].
sound [1767]. Soundness [671]. source
[1235, 1236. 2086, 2027].
source-destination [2027]. sources
[2317, 1880, 1905]. Souto [2024]. Space
Space-efficient
[693, 998, 2238, 1899, 380, 1063].
Space-time [1438]. spaced [1424]. spaces
[1757, 1922, 1635, 1450, 1885, 730]. spanner
[2333, 1832]. spanners [1479, 212].
spanning [1656, 2198, 66, 1967, 1756, 1805, 528, 630, 855, 1716, 1520, 165, 1008, 2176, 2027, 798, 1485, 1209, 1569, 620, 2069].
Sparse
[1167, 775, 1421, 2030, 341, 2016, 1410, 2019].
sparse [2031]. spatial [1806, 922].
Special [1879, 651, 879, 626, 2206, 1588, 2261, 505, 1897, 2216, 1863, 1309, 1331, 242, 1727, 1526, 1217, 15, 1416, 2225, 2292, 285, 1012, 3, 68, 732, 1705, 1043].
Specializations [66]. specialized [523].
2341, 1731, 1511, 1246, 894, 1918, 1459, 423, 2048, 568, 1035, 420, 819. utilities [1474]. Utilizing [1880]. UTP [1917].

REFERENCES

[450, 1331, 2267, 2142, 2272, 1803, 291, 1098, 2177, 972, 860, 364, 395, 908, 2288, 2254, 1130, 1793, 457, 1103, 1747, 1792, 1420, 621, 1106, 451, 2102, 1077, 1556, 89, 858, 1333, 2271, 2139, 645, 1570, 1109, 67, 454, 2023, 2249, 1335, 357, 2235, 1791, 1547, 1696, 2117, 1625, 331, 456, 1064, 1557, 458, 378, 228, 94, 1350, 39, 1403, 566, 217, 792].

Yung [1382].

References

Anonymous:2015:EBc

Liu:2015:IDS

Giannakopoulos:2015:CAM

Amir:2015:PST

Fu:2015:EHD

Wang:2015:OFE

Delmas:2015:DFT

Fanelli:2015:RDG

[28] Angelo Fanelli, Dariusz Leniowski, Gianpiero Monaco, and Piotr Sankowski. The ring design game with fair
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Punnen:2015:AVS

Fedou:2015:VRW

Kasperski:2015:COP

Anonymous:2015:EBg

Okhotin:2015:DCU

Chechik:2015:FTC

Turek:2015:APP

Gargano:2015:CCF

REFERENCES

Zhang:2015:SSC

Araujo:2015:PON

Anonymous:2015:EBh

Anonymous:2015:NC

Neary:2015:TSU

Salo:2015:CTS

Popovici:2015:FCO

Song:2015:CEU

REFERENCES

[111] Fukuhito Ooshita and Sébastien Tixeuil. On the self-stabilization of mo-

[149] Marziyeh Boroujeni, Abdolali Basiri, Sajjad Rahmany, and Annick Vali-

REFERENCES

Bezem:2015:KMS

Anonymous:2015:EBp

Pal:2015:GEF

Fujita:2015:OSB

Shinn:2015:VBP

Ghosh:2015:SRP

Blushan:2015:EAM

Akl:2015:CCP

REFERENCES

On the boundary of regular languages.

[191] Andreas Malette.

[193] Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom Sebastian, and Mohamed Zergaoui.

Safe and stabilizing distributed

REFERENCES

[211] Gabriel Istrate. Reachability and recurrence in a modular generalization of annihilating random walks (and lights-out games) to hypergraphs.
REFERENCES

Braunschvig:2015:FTA

Amini:2015:NDG

Anonymous:2015:EBv

Kamae:2015:CEP

D'Arco:2015:APN

deLuca:2015:SWS

Sarma:2015:DCD

Jonsson:2015:CNI

[219] Peter Jonsson, Victor Lagerkvist, and Gustav Nordh. Constructing NP-intermediate problems by blowing holes
REFERENCES

Giannakopoulos:2015:BOR

Durocher:2015:LSD

Anonymous:2015:EBw

Barton:2015:GLS

Harutyunyan:2015:LTA

Dereniowski:2015:DVS

Ho:2015:ETE

REFERENCES

[242] Thomas Moscibroda and Adele A. Rescigno. Guest editorial: Spe-
REFERENCES

71

[Hegde:2015:SOF]

[Clementi:2015:DCD]

[Levi:2015:NAT]

[Gargano:2015:IDS]

[Kniesburges:2015:DWC]

[Coulouma:2015:COM]

[Avin:2015:SAG]

REFERENCES

REFERENCES

REFERENCES

[310] Tatsuya Akutsu, Takeyuki Tamura, Avraham A. Melkman, and Atsuhiro Takasu. On the complexity of finding a largest common subtree of bounded degree. Theoretical Computer Science,
REFERENCES

Boyar:2015:CFC

Casteigts:2015:ETV

Arvind:2015:IPD

Kranakis:2015:CSF

Kowaluk:2015:NSP

Chaplick:2015:LCH

Nikoletseas:2015:SEB

REFERENCES

Kohler:2015:SSL

Dereniowski:2015:SPR

Cicales:2015:CVC

Golovach:2015:EGG

Meer:2015:GFA

Lin:2015:LTA

Reutenauer:2015:SFS

Barash:2015:TSC

REFERENCES

Greinecker:2015:ACT

Huang:2015:SRW

Zhang:2015:AAH

Zhang:2015:OSP

Zhang:2015:ECF

Yuan:2015:RRA

Gordinowicz:2015:PGF

REFERENCES

Biswas:2015:SIR

Anonymous:2015:EBai

Machado:2015:RBT

Akshay:2015:CCT

Nasab:2015:PPC

Matos:2015:EPR

Fulop:2015:CWM

Teichmann:2015:LBM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[401] Gaia Nicosia, Andrea Pacifici, and Ulrich Pferschy. Two agent scheduling
REFERENCES

Anonymous:2015:EBan

Kari:2015:Eb

Gilbert:2015:ACM

Ballarini:2015:AES

Islam:2015:MOR

Chaves:2015:ACU

Fages:2015:IRS

Videla:2015:LBL

[431] Santiago Videla, Carito Guziolowski, Federica Eduati, Sven Thiele, Martin

Angione:2015:ADM

Anonymous:2015:EBao

Kumar:2015:NHS

Hermelin:2015:PCA

Ceccherini-Silberstein:2015:MAG

Christodoulakis:2015:ISP

Coelho:2015:IRG

REFERENCES

Bonomo:2015:CCD

Bougeret:2015:IAA

Gajser:2015:VTC

Alabert:2015:NFL

Chiesa:2015:SAN

Demaine:2015:LTA

REFERENCES

REFERENCES

Anonymous:2015:EBas

Bonsangue:2015:P

Hasuo:2015:GWP

Jacobs:2015:DHM

Lenisa:2015:MSC

TranconyWidemann:2015:ACR

Myers:2015:CCC

Bonchi:2015:KED
Anonymous:2015:EBat

Kempka:2015:DAD

Oliveto:2015:ITC

Akimoto:2015:ARO

Bender:2015:MBP

Holzer:2015:CPC

Klein:2015:LSC

Krzywdzinski:2015:DAR

[499] K. Krzywdzinski and K. Rybarczyk. Distributed algorithms for random
Bang:2015:RLB

Floderus:2015:ISI

DEmidio:2015:ERG

Biswa:2015:DTC

Anonymous:2015:EBau

Finger:2015:SIS

Accattoli:2015:PNC

Areces:2015:SB

Carnielli:2015:MPR

Ciaffaglione:2015:MTE

DAgostino:2015:IVC

Olarte:2015:SCC

Anonymous:2015:EBav

Gu:2015:P

Higashikawa:2015:MSL

REFERENCES

REFERENCES

Zhang:2015:P

Guo:2015:OTM

Kanj:2015:PST

Zhou:2015:TPL

Seo:2015:CCF

Chang:2015:CF

Ito:2015:OBG

REFERENCES

REFERENCES

REFERENCES

Merelli:2015:CSB

Ehrenfeucht:2015:SOZ

Dennunzio:2015:ADG

Brijder:2015:RFG

Macias-Ramos:2015:MFV

Folschette:2015:SCR

REFERENCES

Zaccagnino:2015:TDC

Hrydziuszko:2015:MAT

Paun:2015:SMI

Floccini:2015:P

Bannoura:2015:WDS

Miller:2015:CNL

Sharma:2015:ONN
Tonoyan:2015:CGS

Ortolf:2015:SPU

Miller:2015:FRA

Halldorsson:2015:GES

Czyzowicz:2015:BPW

Dereniowski:2015:RHM

Bampas:2015:IPD

Emek:2015:HMA

[580] Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. How many ants does it take

REFERENCES

REFERENCES

[603] Linming Gong, Shundong Li, Qing Mao, Daoshun Wang, and Jiawei...
REFERENCES

Chang:2016:AAB

Chak:2016:BPL

Benevides:2016:MIT

Chen:2016:EAO

Blasius:2016:NPC

Golin:2016:ERM

REFERENCES

REFERENCES

REFERENCES

D’Angelo:2016:GRA

Balamohan:2016:EUD

Yu:2016:DMM

Eftekhari:2016:SCS

Hasemann:2016:DLA

Anonymous:2016:EBf

REFERENCES

[668] Bas Luttik. Unique parallel decomposition in branching and weak

[683] Bernd Meyer. Generalized Pete’s Pike is PSPACE-complete. *Theoret-
REFERENCES

Berline:2016:SAM

Anderson:2016:CLB

Dittmann:2016:GOP

Anonymous:2016:EBi

Anonymous:2016:EBj

Berline:2016:SAM

Klouda:2016:SDB

Chlebus:2016:SWM

REFERENCES

Dey:2016:KCP

Bereczky:2016:QTG

Jez:2016:RSA

Anonymous:2016:EBI

Shibata:2016:PGM

Astete-Morales:2016:SCR

Boissonnat:2016:CRS

Park:2016:UMM

REFERENCES

Tian:2016:OSU

Anonymous:2016:EBm

Xia:2016:RSN

Lin:2016:REC

Zhu:2016:SMM

Schmid:2016:CEF

Okhotin:2016:IDL

[728] Bruno Courcelle and Irène Durand. Computations by fly-automata beyond

Shibata:2016:PLC

[736] Chihiro Shibata and Ryo Yoshinaka.
Probabilistic learnability of context-free grammars with basic distributional properties from positive examples.

Darnstadt:2016:OCS

Order compression schemes.

Choromanska:2016:DPL

[738] Anna Choromanska, Krzysztof Choromanski, Geetha Jagannathan, and Claire Monteleoni.
Differentially-private learning of low dimensional manifolds.

Gottlieb:2016:AMD

[739] Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer.
Adaptive metric dimensionality reduction.

Khaleghi:2016:NMC

[740] Azadeh Khaleghi and Daniil Ryabko.
Nonparametric multiple change point estimation in highly dependent time series.

Anonymous:2016:EBp

Editorial Board.

Leone:2016:GRV

Geographic routing on Virtual Raw Anchor Coordinate systems.

Belazzougui:2016:OVR

[743] Djamal Belazzougui.
Optimal Las Vegas reduction from one-way set reconciliation to error correction.
Theoretical Computer Science, 621(??):14–21, ???. 2016. CODEN TCSCDI. ISSN 0304-3975 (print),
REFERENCES

REFERENCES

Belikovetsky:2016:LRG

Mizuki:2016:CBP

Chen:2016:TSS

Garnero:2016:PCD

Yang:2016:EAW

Bazgan:2016:FLD

Fuchs:2016:PNR

Anonymous:2016:EBr

Kari:2016:Ea

Garcia-Ramos:2016:LBE

Colvin:2016:MAN

Sosik:2016:SPC

Li:2016:LBS

Pan:2016:FMP

Aman:2016:MVW

[775] Henri-Alex Esbelin and Rémy Malgouyres. Sparse convolution-based digital derivatives, fast estimation for

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Busbait:2016:DTT

Hoffmann:2016:LTA

Golovach:2016:EMC

Wang:2016:SCA

Sakai:2016:CDN

Xu:2016:AAS

Anonymous:2016:EBx

REFERENCES

Alden:2016:MED

Cheney:2016:TEE

Harrington:2016:CBM

Yoo:2016:MPN

Kozma:2016:PBC

Schindewolf:2016:CPN

Betti:2016:PLC

Rodriguez:2016:GMB
REFERENCES

Lin:2016:SCS

Kameda:2016:APE

Khanteimouri:2016:EAC

Anonymous:2016:EBab

Wang:2016:WRA

Fici:2016:APR

Rute:2016:WDR

Barnabei:2016:SPD

REFERENCES

Hu:2016:SMP

Dourado:2016:CRA

He:2016:CRP

Lewenstein:2016:DRO

Anonymous:2016:EBac

Brandenburg:2016:RDI

Dolev:2016:MCG

REFERENCES

Kopelowitz:2016:PST

Klein:2016:CMF

Beigel:2016:SDP

Apostolico:2016:SSM

Munro:2016:FCW

Bille:2016:LCE

Navarro:2016:RCS

Babenko:2016:CMM

Anonymou:2016:EBaf

References

[906] J. Bang-Jensen, Nathann Cohen, and Frédéric Havet. Finding good 2-partitions of digraphs II. Enumer-

Lee:2016:AGA

Zhao:2016:CCH

Li:2016:ACP

Song:2016:NNS

Anonymous:2016:EBah

Kari:2016:Ed

Meunier:2016:USE

Gratie:2016:CCF

REFERENCES

REFERENCES

Anonymous:2016:EBaj

Jaskolka:2016:MCC

Rossi:2016:TLM

Anonymous:2016:EBak

vandenHerik:2016:RAC

Bonnet:2016:CCG

Browne:2016:AIS

Cazenave:2016:PPA

REFERENCES

[945] Jos W. H. M. Uiterwijk. Polymerization and crystallization of Snowflake

Evans:2016:SVR

Bauer:2016:SSS

Mazo:2016:NLE

Anonymous:2016:EBam

Kelk:2016:RRM

Beretta:2016:PTM

Avni:2016:CSS

Kacem:2016:SOS

REFERENCES

166

[968] Manuel Vázquez de Parga, Pedro García, and Damián López. Minimal consistent DFA revisited. *Theo-
REFERENCES

REFERENCES

Boldi:2016:EOL

Le:2016:UAR

Dutta:2016:LCG

Zehavi:2016:PAA

Alvarez:2016:CG

Zhang:2016:LCP

Kociumaka:2016:MND

Ferraioli:2016:DDF

[983] Diodato Ferraioli, Paul W. Goldberg, and Carmine Ventre. Decentralized dy-
REFERENCES

Feigenblat:2016:CFI

Anonymous:2016:EBaq

Auer:2016:GEF

Kotzing:2016:MUC

Ferrarotti:2016:NTC

Jegourel:2016:CBI

REFERENCES

DArco:2016:SCC

Haddadan:2016:CDS

Wehmuth:2016:MG

Hermelin:2016:PCC

Deng:2016:ARC

Pai:2016:CIC

Anonymous:2016:EBas

Cao:2016:SOS

REFERENCES

[1022] Rogério Reis and Emanuele Rodaro. Ideal regular languages and strongly

Beretta:2016:CPT

Anonymous:2016:EBau

Xu:2016:ECC

Chen:2016:CBS

Zhang:2016:MFC

He:2016:NOM

Dang:2016:QCS

 REFERENCES

Uno:2016:MPS

Wang:2016:AAC

Nip:2016:SSC

Ye:2016:ACT

Anonymous:2016:EBav

Fomin:2016:FSI

Bonato:2016:PVG

REFERENCES

Diaconescu:2016:FSF

Basu:2016:DSA

Lellmann:2016:HRR

Anonymous:2016:EBax

Iliopoulos:2016:F

Heliou:2016:EDR

Daykin:2016:BBO

Cordova:2016:SEF

[1064] Rytter:2016:TFC

[1065] Zohora:2016:EAD

[1066] I:2016:FLF

REFERENCES

Anselmo:2016:NEN

Meira:2016:CTC

Du:2016:DAF

Guo:2016:CDR

Kawahara:2016:BBO

Zhang:2016:MLS

Anonymous:2017:EBa

REFERENCES

Wang:2017:P

Furer:2017:ECC

Lin:2017:PTS

Li:2017:IKR

Wang:2017:TAA

Liu:2017:FQA

Cheng:2017:IAI

REFERENCES

Xian:2017:AMN

Dong:2017:FPT

Ivanyos:2017:SSD

Xiao:2017:EAM

Zhang:2017:PSG

Anonymous:2017:EBb

Giammarresi:2017:P

Anselmo:2017:TDC

[1096] Marcella Anselmo and Maria Maddonia. Two-dimensional comma-free and cylindric codes. *Theoretical

Jetty Kleijn, Maciej Koutny, Marta Pietkiewicz-Koutny, and Grzegorz Rozenberg. Applying regions. *Theoretical Computer Science*, 658 (part...

Marsault:2017:SRL

Moreira:2017:OSR

Pin:2017:UCF

Anonymous:2017:EBc

Anonymous:2017:EBd

Adaricheva:2017:F

Wild:2017:JIA

Ausiello:2017:DHI

Kucera:2017:HCG

Sloan:2017:HDH

Anonymous:2017:EBe

Burcsi:2017:PNW

Liu:2017:MPS

Bacquey:2017:LET

Xu:2017:GND

Kellerer:2017:AIU
Hans Kellerer, Rebecca Sarto Basso, and Vitaly A. Strusevich. Approximability issues for unconstrained and

[1149] Ricardo C. Corrêa and Pablo M. S. Farias. Linear time computation of the maximal linear and circular sums of multiple independent insertions into a sequence. *Theoretical Computer Science*, 661(??):
REFERENCES

REFERENCES

References

Campadelli:2017:P

Campadelli:2017:ABS

Adamo:2017:SDI

Barucci:2017:CBF

Bianchi:2017:QFA

Brocchi:2017:EGC

Carpi:2017:ISF

Choffrut:2017:HOR

REFERENCES

REFERENCES

REFERENCES

Anonymous:2017:EBn

Anonymous:2017:EBo

Dekking:2017:CCF

Dvorak:2017:GGC

Charalambidis:2017:ETF

Rao:2017:CFA

Dekking:2017:ICA

Dvorak:2017:GGC

Anon:2017:EBn

Jovanovic:2017:SOE

[1203] Aleksandra Jovanović, Marta Kwiatkowska, Gethin Norman, and Quentin Peyras. Symbolic optimal expected time reachability computation and controller synthesis for probabilistic timed automata.
REFERENCES

REFERENCES

REFERENCES

Ayala-Rincon:2017:IDP

Pan:2017:NSP

Anonymous:2017:EBs

Barmpalas:2017:RNP

Anonymous:2017:EBt

Furusawa:2017:UCR

Anonymous:2017:EBt

REFERENCES

Ding:2017:ISS

Kortsarz:2017:ASL

Xu:2017:CDC

Li:2017:GNC

Ahadi:2017:ACW

Kalimullin:2017:ASC

Fraser:2017:WSD
203

REFERENCES

Chlebikov:2017:FPF

Huang:2017:SPS

Ham:2017:GTR

Badano:2017:CCF

Anonymous:2017:EBw

Li:2017:PDP

Shan:2017:DNM

He:2017:SPC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

215

Anonymous:2017:EBae

Ayala-Rincon:2017:LSF

Alves:2017:GBF

Benevides:2017:BLE

Olarte:2017:CBF

Copello:2017:FML

Veloso:2017:GCM

REFERENCES

Gorzkowska:2017:PBD

Arvind:2017:FFP

Zhui:2017:SEA

Dong:2017:CFP

Anonymous:2017:EBah

Kothapalli:2017:P

Abraham:2017:TPS

Natarajan:2017:EAA

Altisen:2017:PSS

Feinerman:2017:FRC

Hirve:2017:HHP

Kuznetsov:2017:NIL

Zhong:2017:PMS

Hon:2017:PAE

Keshavarz-Kohjerdi:2017:LT

[1373] Paul Bilokon and Abbas Edalat. A domain-theoretic approach to Brownian motion and general continu-

Vasile:2017:TWT

Rabe:2017:MA

Xu:2017:CBF

Anonymous:2017:EBaj

Terrier:2017:RPS

Liskiewicz:2017:SLS

Munaro:2017:BCG

Anta:2017:APS

REFERENCES

Rusu:2017:GMP

Zhang:2017:FTP

Durr:2017:MDA

Anonymous:2017:EBan

Bacher:2017:ERS

Wei:2017:IFI

Bodei:2017:SAB

REFERENCES

Anon

Anonymous:2017:EBaq

Whidden:2017:ROC

Bhakta:2017:SWP

Durant:2017:DBC

Kobayashi:2017:RSC

Shiraga:2017:TVD

Fuentes-Sepulveda:2017:PCS

Fuentes-Sepúlveda:2017: PCS

Lo:2017:OCD

Wang:2017:OAS

Amit:2017:LMA

Lozin:2017:MRW

Ganguly:2017:STT

Jain:2017:EIL

Anonymous:2017:EBas

Kari:2017:Ec
[1441] Lila Kari. Editorial. *Theoretical Computer Science*, 701(??):1,
REFERENCES

Paun:2017:FSG

Marcus:2017:THN

Alhazov:2017:SAS

Azimi:2017:SSC

Boykett:2017:FGS

Brijder:2017:SRT

Calude:2017:QFG

Cho:2017:OGI

Ciobanu:2017:DSM

Genova:2017:GIC

Halava:2017:WTP

Honkala:2017:DWC

Kleijn:2017:SST

Krishna:2017:FRG

Leporati:2017:CPS

Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca, and Claudio Zandron. The counting power of P systems with antimatter.
REFERENCES

Abam:2017:FTS

Jayapaul:2017:FME

Blanchet-Sadri:2017:CGB

Liu:2017:ECD

Bunder:2017:GAR

Li:2017:FTS

Sepasian:2017:UMM

REFERENCES

Kobayashi:2018:ILB

Greenberg:2018:DSC

Chatterjee:2018:NRU

Ning:2018:ECC

Anonymous:2018:EBa

Ebrahimi:2018:SSI

Zhao:2018:FFO

Dimovski:2018:VAP

Li:2018:FTS

Martins:2018:LIC

Karpinski:2018:ECC

Bienkowski:2018:LPB

Li:2018:TPA

Guo:2018:RAT

REFERENCES

[1523] B. Litow. A transfer method from bounded existential Diophantine equations to Tarski algebra formulas. The-
REFERENCES

Mikos:2018:NLB

Anonymous:2018:EBE

Pandurangan:2018:SI

Castaneda:2018:CRM

Czyzowicz:2018:ETR

He:2018:GME

Foerster:2018:LCN

REFERENCES

Bonomi:2018:OSS

Mostefaoui:2018:RSA

Anonymous:2018:EBf

Crochemore:2018:AAC

Aronica:2018:OPL

Bae:2018:FLC

Cho:2018:TAB

[1538] Sukhyeun Cho, Joong Chae Na, and Jeong Seop Sim. An $O(n^2 \log m)$-time algorithm for the boxed-mesh permutation pattern matching problem. *The-
REFERENCES

[1545] Nantia D. Iakovidou, Nikos A. Laskaris, Costas Tsichlas, Yannis Manolopoulos, Manolis Christodoulakis, Eleftherios S. Papathanasiou, Savvas S. Papacostas, and Georgios D. Mitasis. A symbolic dynamics approach to...

[Kociumaka:2018:SCP]

[Kociumaka:2018:EAS]

[Na:2018:FIA]

[Guo:2018:PSC]

[Mozes:2018:FSP]

[Hu:2018:SMP]

REFERENCES

Anonymous:2018:EBh

Lipton:2018:KSH

Kalorkoti:2018:SLT

Avni:2018:SCL

Anonymous:2018:EBi

Jones:2018:CGL

Mao:2018:SMP

Friedman:2018:DNG

Yoon:2018:GMA

Duchene:2018:SOP

Capdevielle:2018:CBA

Anonymous:2018:EB1

Chaudhuri:2018:SIA

Hermo:2018:ELM

Abasi:2018:NAL

REFERENCES

Bazgan:2018:MFU

Bredereck:2018:PCT

Goldwurm:2018:CCR

Georgiou:2018:KWP

Kaklamanis:2018:NFG

Anonymous:2018:EBn

REFERENCES

Bae:2018:CMW

Bae:2018:CPC

Czibula:2018:LRV

Gragera:2018:RTI

Calamoneri:2018:DTG

Hasegawa:2018:OOA

Anonymous:2018:EB0

REFERENCES

[1637] Min Zhang and Kazuhiro Ogata. From hidden to visible: A unified frame-

Kari:2018:Ea

Martinez-del-Amor:2018:P

Zhang:2018:CPE

Wu:2018:SNS

Kantor:2018:CLC

Gheorghe:2018:KSM

Anonymous:2018:EBy

Yamanaka:2018:SCT

Araujo:2018:RFA

Giraudo:2018:AAA

Buning:2018:FRO

Sheikhi:2018:PMB

Bereg:2018:OSC

Anonymous:2018:EBz

REFERENCES

262

He:2018:SME

Case:2018:MDR

Araujo:2018:DIC

Kelk:2018:TDP

Anonymous:2018:EBab

Masse:2018:LRP

vanEe:2018:ACM

Dang:2018:CET

[1698] Chuangyin Dang and Yinyu Ye. On the complexity of an expanded

Farr:2018:SGF

Vagvolgyi:2018:DRT

Dekking:2018:FPH

Demaine:2018:SPP

Halava:2018:FPR

Anonymous:2018:EBac

Zeugmann:2018:GEF

REFERENCES

Peng Zou, Hui Li, Wencheng Wang, Chunlin Xin, and Binhai Zhu. Find-

REFERENCES

Geeraerts:2018:SSS

Hofman:2018:TIO

Jovanovic:2018:PSP

Hunter:2018:MPG

Haddad:2018:IIA

Bazille:2018:CBT

Chistikov:2018:CFC

Kari:2018:Eb
REFERENCES

Buno:2018:SQP

Valencia-Cabrera:2018:DRC

Anonymous:2018:EBaf

Grillo:2018:QQS

Paun:2018:DRT

Rowe:2018:LMO

Regnault:2018:LSS

REFERENCES

Barbuti:2018:PFM

Anonymous:2018:EBag

Polyvyanyy:2018:IIE

Choffrut:2018:TET

DAgostino:2018:CAD

Ayala-Rincon:2018:NEI

Badia:2018:FCG

Ibarra:2018:VCS

Sun:2018:CBO

Anon:2018:EBah

Currie:2018:ABF

Izumi:2018:TCC

Cornelissen:2018:BPM

Anthony:2018:LWN

Dondi:2018:PCA

REFERENCES

Zhivotovskiy:2018:LVC

Sabato:2018:SLC

Kotkowski:2018:MFL

Holzl:2018:LPL

Ferenczi:2018:AWE

Gabric:2018:CBS

Bshouty:2018:ELJ

Anonymous:2018:EBam

REFERENCES

Klouda:2018:FPS

Cicalese:2018:BFN

Carey:2018:PFC

Petersen:2018:TST

Currie:2018:UPU

Teh:2018:OWR

Bertet:2018:LCS

Ge:2018:CEV

Cunjing Ge, Feifei Ma, Peng Zhang, and Jian Zhang. Computing and es-

Bender:2018:RQR

Hendricks:2018:PDS

Anonymous:2018:EBan

Sampaio:2018:TAC

Babari:2018:WRA

Benevides:2018:TRA

Guttmann:2018:AFM

REFERENCES

Bae:2018:GPG

Reddy:2018:PAC

Mezzini:2018:PTA

Cao:2018:VDP

Thorncharoensri:2018:PCS

Ibarra:2018:SLL

Garraffa:2018:EEB

REFERENCES

Laurent Beaudou, Pierre Coupechoux, Antoine Dailly, Sylvain Gravier, Julien Moncel, Aline Parreau, and Éric Sopena. Octal games on graphs: the game 0.33 on subdivided stars and bistars. *Theoret-
REFERENCES

Ibarra:2018:GCN

Anonymous:2018:EBaq

Matt:2018:TAT

Ishii:2018:PLR

Kojima:2018:GHP

Bart:2018:RPI

Moggi:2018:SRR

REFERENCES

Moses:2018:MEM

Fraigniaud:2018:NLL

Censor-Hillel:2018:FRI

Anonymous:2018:EBav

Kari:2018:E

Aerts:2018:SIQ

DiBuccio:2018:USE

Zhang:2018:QIM

Busemeyer:2018:DFU

Bruza:2018:MCP

Yan:2018:FRM

Leporini:2018:QSQ

Danilov:2018:PQB

Coecke:2018:GRL

Aerts:2018:TQW
REFERENCES

REFERENCES

Fotakis:2019:PSI

Golovach:2019:EMI

Hagerup:2019:SEE

DiLuna:2019:PPF

Abed:2019:SMJ

Zhang:2019:EPK

Guo:2019:GNC

Jing:2019:PTA

Anonymous:2019:EBd

Baghoolizadeh:2019:UBA

Ribeiro:2019:APC

Marinkovic:2019:PPC

Anonymous:2019:EBe

[1927] Qiang Zhu, Lili Li, Sanyang Liu, and Xing Zhang. Hybrid fault diagnosis

Sun:2019:EFT

Bonomi:2019:AAU

Escoffier:2019:SCM

Stipulanti:2019:CPL

Li:2019:ACM

Goldberg:2019:AOA

Anonymous:2019:EBg

Huang:2019:LRR

Crespelle:2019:FDR

Lajou:2019:ANS

Wang:2019:MPNb

Libert:2019:ZKA

Faonio:2019:CNM

Anonymous:2019:EBh

Wei:2019:HFD

REFERENCES

REFERENCES

Khonji:2019:CDS

Takayasu:2019:PKE

Gu:2019:CQT

Anonymous:2019:EBj

He:2019:TRB

Sabeti:2019:PEN

Kawachi:2019:GPE

Navarro:2019:UCT

Kucera:2019:LBC

Anon:2019:EBk

He:2019:WAI

deSilva:2019:HLS

Bodei:2019:FAO

Adamek:2019:FPC

Anonymous:2019:EB1

Bilo:2019:E

Calamoneri:2019:SLT

Cordasco:2019:AIS

D’Angelo:2019:RLT

Das:2019:GRR

Vinci:2019:NAO

Bernardo:2019:CLC

Bodei:2019:MSI

REFERENCES

Bozzelli:2019:WFI

Giannini:2019:FRU

Anonymous:2019:EBm

Kari:2019:Ea

Feret:2019:P

Johnson:2019:VCR

Cardelli:2019:CCR

Shin:2019:VCR
Honorato-Zimmer:2019:CLP

Kolcak:2019:PSA

Bernot:2019:GMH

Islam:2019:PRM

Bazgan:2019:PAC

Li:2019:ECE

Chitturi:2019:SPT

Chang:2019:CCA

Henning:2019:AAS

Yang:2019:EFF

Xiao:2019:IPT

Elbassioni:2019:GP

REFERENCES

Zhang:2019:RNV

Jiang:2019:EIB

Ghosal:2019:RMM

Hudry:2019:UOS

Anonymous:2019:EBq

Howe:2019:ICS

Vatandoost:2019:GML

Cintula:2019:SHT

[2004] Petr Cintula, Denisca Diaconescu, and George Metcalfe. Skolemization and

Ja):2019:ICH

Strassburger:2019:DPM

Hirsch:2019:AFQ

Anonymous:2019:EBr

Lafond:2019:WQC

deBerg:2019:CDS

Bazgan:2019:FPC

Dolev:2019:PSM

[2012] Shlomi Dolev, Juan A. Garay, Niv Gilboa, Vladimir Kolesnikov, and

Rusu:2019:MCF

Araujo:2019:WPO

Aung:2019:FHE

Dinesh:2019:ASS

Farbstein:2019:DT

Dong:2019:HMT

Anonymous:2019:EBu

Zhou:2019:GCC

[2035] Yanwei Zhou, Bo Yang, and Yi Mu. The generic construction of contin-

Ehard:2019:VYT

Navarro:2019:DLR

Alizadeh:2019:IOM

Bournat:2019:SSR

Ito:2019:RCS

Xue:2019:ACG

Kolay:2019:HCP

[2050] Ruben Becker, Vincenzo Bonifaci, Andreas Karrenbauer, Pavel Kolev,

Wang:2019:GNE

Doerr:2019:ARS

Pan:2019:EDG

Anonymous:2019:EBw

Zhang:2019:DDL

Mahmoody:2019:OSA

Ding:2019:AR

Huang:2019:MDC

Kawase:2019:PCB

Tian:2019:MCO

Zhao:2019:MCP

Xu:2019:DMM

Miao:2019:VCC

Xu:2019:RLC

Takaoka:2019:ATS
REFERENCES

Armaselu:2019:DMB

Xu:2019:IAA

Anonymous:2019:EBx

Khoshkhah:2019:CAE

Chatterjee:2019:CCT

Ahadi:2019:CGM

Zhang:2019:GCT

REFERENCES

Ausiello:2019:P

Aceto:2019:WPF

Alvim:2019:AIF

Anselmo:2019:FSP

Beaton:2019:EFF

Berthe:2019:BCS

Blanchette:2019:QAS

Brzozowski:2019:SCP

[2096] Janusz A. Brzozowski, Sylvie Davies, and Abhishek Madan. State complexity of pattern matching in regu-

REFERENCES

Kimoto:2019:MCR

Kobayashi:2019:IBF

Okhotin:2019:EDN

Okubo:2019:DFC

Orellana-Martín:2019:PCE

Rampersad:2019:CEI

vanLeeuwen:2019:QAH

Wu:2019:CPA
Tingfang Wu, Linqiang Pan, and Artiom Alhazov. Computation power

Anonymous:2019:EBaa

Zhao:2019:PCG

Giannakopoulos:2019:ASM

Kline:2019:GSH

Mohan:2019:PDC

Kao:2019:TAP

Heckenberger:2019:PLB

Anonymous:2019:EBac

Damaschke:2019:CST

Tsur:2019:SDS

Casteigts:2019:COH

Florian:2019:NTG

Etesami:2019:WOD

Chen:2019:ACG

Ambroz:2019:PLW

[2142] Petr Ambroz, Ondrej Kadlec, Zuzana Masáková, and Edita Pelantová. Palindromic length of words and morphisms in class P. *Theoretical Computer Science, 780(??):74–
REFERENCES

Konstantinidis:2019:SCA

Anonymous:2019:EBad

Nigam:2019:LSF

Ayala-Rincon:2019:FNE

Chaudhuri:2019:FMT

Caleiro:2019:GPS

Arieli:2019:LAD

REFERENCES

[2162] Ling:2019:LBG

[2161] Zhang:2019:EFT

[2158] Dey:2019:PDC

[2155] Ling:2019:LBG
Angelini:2019:VRG

Liu:2019:ECA

Chan:2019:DOS

Pai:2019:TST

Balister:2019:ANP

Merta:2019:CIV

Said:2019:ADD

REFERENCES

REFERENCES

[Xiao:2019:FA]

[Abu-Khzam:2019:EPA]

[Luo:2019:LSM]

[Bereg:2019:SMP]

[Yuasa:2019:DIA]

[Wang:2019:PSZ]

[Li:2019:ILK]
REFERENCES

Szykula:2019:SCB

Han:2019:ADR

Ryzhikov:2019:SPA

Hospodar:2019:NCS

Kutrib:2019:TRF

Anonymous:2019:EBak

Gao:2019:PSI

Miao:2019:TED

Angel:2019:AFR

Duan:2019:ISE

Huang:2019:ACS

Gu:2019:EAR

Anonymous:2019:EBal

REFERENCES

Cano:2019:SDL

Anonymous:2019:EBam

Aziz:2019:ERU

Jahannia:2019:PZL

Covano:2019:IMF

Liu:2019:ECD

Gerdjikov:2019:SEB

Tsur:2019:FDP

REFERENCES

Bae:2019:SPQ

Sun:2019:FTA

Klouda:2019:CCD

Machida:2019:SRC

Chen:2019:KPC

Anonymous:2019:EBan

Jo:2019:MCP

Kante:2019:PCG

[2247] Mamadou Moustapha Kanté, Thiago Marcilon, and Rudini Sampaio. On the parameterized complexity of

Alzamel:2019:LLA

Plandowski:2019:PGS

Plandowski:2019:CCM

Czyzowicz:2019:GSP

Almirantis:2019:OWT

Shallit:2019:SCP

Giancarlo:2019:DCM

Nakashima:2019:SSA

Fici:2019:MFF

Avgustinovich:2019:ASI

Hendrian:2019:EDD

Anonymous:2019:EBap

Gelle:2019:OGO

Wang:2019:SSR

Banik:2019:DVG

REFERENCES

Sakai:2019:MCS

Kuo:2019:AHM

Cho:2019:BDD

Brauner:2019:DBW

Li:2019:DSM

Blanchette:2019:QAG

Anonymous:2019:EBaq

Angelopoulos:2019:PSI

Pralat:2019:HMZ

Bonato:2019:BBN

Alpern:2019:SIH

Coupechoux:2019:FT

Dereniowski:2019:CFR

Bonato:2019:HCR

Coupechoux:2019:FT

Dereniowski:2019:FSW

[2300] Dariusz Dereniowski, Dorota Osula, and Paweł Rzązewski. Finding small-width connected path decomposi-

Anonymous:2019:EBar

Minh:2019:BNM

delaMaza:2019:CKP

Zeng:2019:PKE

Huang:2019:EDG

Akhtar:2019:GCN

Lyu:2019:SPP

[Dolev:2019: AAC]

[Gurski:2019:HPB]

[Bang-Jensen:2019: PCL]

[Kuo:2019: CFH]

[Pham:2019: IMP]

[Chiarelli:2019:NAW]

REFERENCES

[2322] Mojtaba Khalili, Mohammad Dakhilalian, and Carla Rafols. Short tightly secure signatures for signing a vector

REFERENCES

Ferraioli:2019:SPO

Czyzowicz:2019:EOB

Angelini:2019:GRD

Abam:2019:GSG

Bekos:2019:PDF

Khuller:2019:SPI

Peng:2019:GCS

REFERENCES

Amir:2019:PPG

Crampton:2019:PRP

Garnercak:2019:OPS

Kamiyama:2019:DNM

Jansen:2019:CCN

Xu:2019:ETD

Legersky:2019:CAP

Hara:2019:SBR

[2345]