Title word cross-reference

2 [LMS+22, VWG+17]. 3
[CCY+13, CLLC17, DSXS+14, HH13, HL14, LQN+13, LMS+22, MSCS16, PRB15, SSPP23, SP19b, SBK+23, SVC+23, WDM17].
8 [LPO+17, ZSH+19]. 2 [EAAS22]. GF(2^m) [HJ19]. K [KB23]. μ [LN04, WPW+04]. R^3 [WLH+18].

/Divergence [BSV17].

1 [STLX22a, SCZ20a]. 12 [BLG+15]. 16-bit [KG05]. 1s [Ano13, Ano14].

2 [CBH22b, STLX22b, SCZ20b]. 2.0 [CD19].

32-bit [SSA21]. 3PXNet [RLG20]. 3s [Ano14].

4.0 [Shu18b]. 4s [Ano14].

5G [SAS+23, VKMP20]. 5s [Ano14].

A9 [SOL+16]. AADL [GGK08]. abstract [HDR+06, RRW05, WBF+06]. Abstraction
Abstractions [SPP+10]. Abstracts [Ano13, Ano14, TEC12]. ACAS [CMP23].
Accelerate [XDL+18, LHM14].
Accelerated [MMD22, RRC22, ZAL22].
Accelerating [CDX+19, DZL+22, HSK18, STLX22a, STLX22b, YZZ+23, ZLSQ17, ZHCY13].
Accelerator [ASS+23, AP20, ARZ+23, AKI+23, AV20, BTA+19, CS2, FFA+23, GZZ+16, HHL+23a, IVJ+23, JAB+22, MSR+17, SXSS+16a, SXSS+16b, SXMX+18, Sus+20, TLSJ23, VKW+17, CCA+13, TLL09].
Accelerators [BZY+23, CGSH19, DKA+19, HNY18, KMS+23, LG21, LPP+21, LCY+22, NVB+20, PCC17, PVSG22, PMDC17, RR17, RWL+18, TAP23, XCWZ23, YHL23, KJRG13, MSH+14].
Access [BP19, CLLC17, GDN03, IFA+16, KCWH14, KKS16, LYH+15, PP19, RB21, TGBT17, WLK+19, WHL23, TVK08].
Access-Aware [LYH+15].
Access-Execute [WLK+19].
Accesses [RC17].
Accountability [KS18].
Accounting [GD19].
Accrual [WRJL06].
Accumulative [MH19].
Accuracy [JBDD20, LVSVRFCC23, MRR13, OSA+18, WCK+19, AC08, ITO+24, PSZ12b, SD08].
Accurate [KCJ+16, TKT15, VJD+07, VDK+08, WSMF22, LM13, LLC08].
ACDC [SRG+15].
ACDSE [FFA+23].
Achieving [GHZH14, JSZ+19, LPFG13, WCK+19, WHL23].
ACM [BLG+15, DST19, CJI17, CGZ18, DST19, SCKD23, Mit21, Shu18c].
acoustic [PSZ12b].
acoustic-based [PSZ12b].
across [GKS+22, JSZ+19].
Action [KMP15, LFC17].
Activation [HZW+23].
Activations [BVM19, ZRZ+19].
Active [CBS19, SWS23, WDN+16, YMH19, SPK+12].
Activities [ALZR19].
Activity [AMJ21, BTA+19, DBX+22, HZX15, HZW+23, HPB23, LX22, LMB+22, SG24, TLL+12, WLSW15, ZRF+12, HXZ+13, NRL13].
actor [FZK+10, LLN09, ZL08, RBS+10].
Actor-based [RBS+10].
actor-oriented [LLN09].
Actors [DPNA16].
Acyclic [ADJM19].
ad [KDN+07].
ad-hoc [KDN+07].
AdaFT [XKK17].
ADAPT [LCP+17].
Adaptable [ARZ+23, LSL20, SMW+17, LB04, MSL13].
Adaptation [HKL+23, MSD17, WLHC18, WLC+18, ASTPH10, WYJ+14, ZC04b].
Adaptations [KRS+16].
Adapting [SCM20].
Adaptive [CSW15, CLI16, CYH20, CZH23, CEC+20, CAP11, CCA12, DBX+22, DAHM16, FFA+23, FPGS22, GDD17, GRRR24, HHC+16a, IDO+22, KBRD22, LCP+17, MYL+22, MTWE20, MALM04, MSSP22, MKD13, MF12, PMPP14, PCGD21, RJM19, SA21, SKN17, SHH14, TXL+12, WLH16, XKK17, YKK23, YYKK18, ZZG24, ZTRC03, ZL+11, ZSJ12, BO13, CWKH12, CCH13, DEG11, GMOB13, LKW02, TSG10, VSS13, HBSA04].
AdaTest [CZH23].
adder [DBH14].
Adders [DVC21, DT08, FMM23].
Address [CC+20, SEB12, CKIR06, HABT11, JKJ+10, ZP08].
Address-Code [SEB12].
Addressable [RSK17, YCT16].
Addressing [ESBK23, YZA13].
adjusting [Wu10].
Adoption [NVB+20].
Advanced [BP19, LAZ+16, PJWY12, SXH+19, BCG+07, ISTE08, SBF+05].
Adversarial [SG24, XYL23].
Adversarially [BMP23].
Adversaries [Shu19a].
Adversary [KFY+22].
Adversary-aware [KFY+22].
Affecting [EV+17].
Affine
Against SMZ CYH20, DLD KMS MM16, MSR BRA BAR13c, BGVZ11, BC07, CMV10, CCR CMV10, CCR CR14, DHKS15, DHL17, DJZ13, DVCC19, DNT18, EYG+23, FZK+10, FMHS23, FMSS15, GWM16, GZZ+16, GCU+23, GUC+23, HKP18, HFA+14, HFL+19, KB17, LS20, LL15, LCD18, MiI3, MT13, MKM+23a, MWK+24, MAGR15, NS16, NBM+16, PC14, PSD21, RLMP23, SRNW16, SE17, SC17, SR12b, SMZ+21, SIS24, SLE+17, SFZX18, SD17, TP19, TBEP16, VA18, VM23, WMRB17, WCM+16, XZK+19, YZZG23, YGW+12, YKD+24, ZLCC15, ZLL+19, ZSJ12, AF14, ADI06, AFL13, BAR13c, BGVZ11, BC07, CMV10, CCR+14, Cu13, DNNP14, GW08, GT05, GLYY14, HHH+12, LLLT08, LLLT09, MEP04, MMR+10, SD08, SE10, SHME13, SAMR06, SE07, TM07, VAR13, ZSM13, ZB13.

Analytic [WW09]. Analytical [FHK21, JLSP18, MAKO19, LM13, WMZY13].

Analytic [DLPK16, HRT+22, PDHC23].

tanlyzability [NKP+12]. Analyzable [CQV+13, CD12].

Analyzing [BS13b, CD19, HKV105, JZL+15, MKD15, MKE18, PP12, YZ08, YGD+17].

anchors [CTK+13]. Android [CSCC17, ESM+17, SZL+17, SKK+14, STY+14, WNW23, YGD+19].

Annotation [AMJ22]. Anomaly [CLJ+19, LL18].

Anonymous [LM+17, SBR+15]. Anti [SA18, WYL+19].

Anti-collision [WYL+19]. Anti-Lock [SA18].

Antlab [GMS17]. ANV [NBH23].

ANV-PUF [NBH23]. Aperiodic [DSB17].

App [KJKM16, LZS20]. AppAxO [USA+22].

appear [TEC12]. appearance [KMB07].

appliances [Edi14, GLWM14]. Application [AHMT17, BBM15, BO13, CCKM16, CHS15, DGC+20, DASS12, DSXS15, DSW+09, ESBK23, HPBL12, KAKSP15, KJK17a, LKW02, LMA19, LX16, MSCR16, MPFG19, PSZ12a, POG+13, RC08, RWL+18, SCRY16,
Applications [BZG19, BTA+19, BJCHA17, BYIG21, CBH22a, CBH22b, CAPL11, DNBC12, DVC21, ETAV16, ESBK23, FSB+21, GTH+22, HJ19, KKD+12, KJC+16, KGT+23, KMP15, LKZ+23, MLC+17, MBCM22, MKD15, MSSP22, MASG15, NZCS19, PX18, PJL+17, RPH19, RDP17, SLB+15, DFC+19, SPB+17, TDD+16, TKB+17, TP16, UBF+16, VCM19, WZM17, WH17, WZY+23, XDL+18, ZDI+12, AMCM06, ABC+07, CMV10, CLK13, CD10, CCAP12, Dd06, DKAL05, F003, GFC+10, GHIB13, HHB+12, HIK04, KVN+09, KBDV08, KZH+06, LO13, MEP04, MEP08, MAG14, DWC14, PK+08, QP03, RMM03, SGT+13, SJC+03, SP+10, UCK+09, YG02, YCLV+02, ZNS13, ZYW+10, ZXS03].

Applied [BGRV15, LCQ+13]. Applying [LZJ+20].

Approach [APRC16, ABF+21, DMPC23, ETAV16, HDZL20, KMS+23, KDB19, LYH+15, LLIW+17, MC13, NBM+16, PHG+17, RSW21, SUK23, SP20, SWX17, TBAS17, WZ12, YF19, ZRF+12, BV13, CAP+07, CRM14, FZHT13, GNR+10, HJPR13, KKH+12, LLL14, LM13, MSCJ12, MSS+03, OMA+13, PB14, ZCS+05, ZKKC05].

Approaches [CZH+24, FHB+17, GWM16, KOM+23, PTK23, HGL14, LSC14].

Approximate [At20, ASJ21, AZS+23, CGSH19, DVC21, DNT18, FMHS23, GRR23, LN19, LPP+21, MDS+21, MMH+23, NBE18, RR17, RSK17, SUK23, TAP23, USA+22, YEK17].

Approximation [ADH+23, BDK+23, PC14, PLT23, SC20, NBGS09, ZX08].

arbitrary [LA11]. Arbitration [BJP24, MBJ+23, TTA+20, PL10].

architectural [VGG+13]. Architecture [ABF+21, AAR+17, BDB+17, CHK+14a, CWX+23, DASS12, HW17, KKD+12, KY17, KKS16, MCM12, MST+12, MZG15, MLAD23, OBO+23, OSA+18, SK13, SJO+22, SLK+22, SVS21, SC20, SSS11, TKV+18, TKHZ22, TKT15, TLSJ23, VKMP20, WCB20, YCK+18, AP09, AAP14, BLN13, Bec09, BO13, CIC+08, CIC+09, DSW+09, GJ13, GDN03, GM03, GLWM14, HPLD09, ISE10, KVK+03, KXL10, KYHY14, KGR12, KTT13, LS09, MMSN14, MMD04, PCK+08, PBP09a, PBP09b, RMD06, RMD09, SKW+07, TKG13, THON12, YFPJ14, ZCK13, ZVL04].

Architecture-Aware [MZG15].

Architecture-Independent [SC20].

Architectures [AMKA17, ADH+23, ARDG16, BBB16, BMP23, BJCHA17, CHS15, CDH+16, DSXS15, DLPK16, FSC+16, GPT+23, KAS+20, KOM+23, LCD18, MG15, MBCM22, MKD15, MKAA17, MJKAS18, NASM18, OMMK23, RDP17, SB23, SVC+23, SMX+18, THA+12, VCM19, WSCH14, BP14, BV13, BMP03, BCG10, CP13a, GMOB13, HG09, IBMK10, LOG+14, LWK+10, LXL13, MF13, NB04, PC12, PDK+08, SBX08, SM13a, ZTD+06].

Area [AZHC19, BKMK12, BTL+12, GMVV17, KSK13, MCM+17, TLL+12, WH17, ZJZL20, CRM14].

Area-efficient [KSK13]. Areas [PKIT23, SBB19]. ARES [ZZA+22].

Arguments [DHB+23]. ARINC [DLD+19]. ARINC-653 [DLD+19]. Arithmetic
[LS17, OP06, RGdZS14, TSG10].
arithmetic-level [OP06]. ARM
[CYH+17, DVC+07, SOL+16, SSA21].
ARM/Thumb [CYH+17]. ARMv8
[KKS+23, WCR+20]. Array [EKL+17, FO03,
ZZZ+23, ZRZ+19, BDP+13, WL09]. Arrays
[TWTH18, WHHT21, YCK+18, VSSS13].
Art [Shu15b, WGP04]. Article [BLG+15].
Articles [Shu15c]. Artiface [Shu16b]. Artistic
[SRY13]. ArtX [IYL+23, SLJK18].
ARX-Based [SLJK18]. ASIC
[AV+09, MCM+17, MKAA17]. ASIC-Based
[MCM+17]. ASIP [SKW+07]. aspect
[DRL+10]. aspect-oriented [DRL+10]. Assessment
[DHB+23, HPBL+12, Kas+20]. Assignment
[AR+14, LBS+15, MB+14, MF+12, PLM+15,
RN+14, SR12a, SEB+12, CIK+06, HABT11,
LO13, MEP+08, OAL+06, PL10, QRB+10,
ZZZ+12]. Assisted
[BKS+23, AAR+17, KSY+17, PX+18, CCY+13,
HLD+09, LOG+14, WJ+17]. Association
[GZZ+16, YCLV+02]. Association-Rule
[GZZ+16]. associative [LP+07]. Assorted
[MS+23]. Assume [NLSV+19, STH17].
Assume-Guarantee [STH17].
Assumptions [PMAB+19, CJB+05]. Assurance
[DHB+23, SSK+21, RPHA+19].
ASTROLABE [NBM+16]. asymmetric
[ESAS+14, GLWM+14]. Asynchronous
[GCU+23]. Asynchronous
[BHP+19, GHR+15, KW+10, KASD+07, ZM+07].
asynchrony [CW+14]. ATCN [BT+22].
Atom [UGS+21]. Attack
[CZK+22, FXP+17, IYL+23, IPL+16,
LCLW+17, PSO+08a, YGW+12].
Attack-Resilient [PL+16, CZK+22].
Attack-tolerant [PSO+08a]. Attacker
[ZJZL+20]. Attacks [AR+12, BCHL+19,
CBRZ+19, CK+23, DBF+14, HMR+23, HDZL+20,
RLL+23, SE+23, SGZS+21, XLYC+23, ZTZ+19,
ARJ+11, Geb+04, RCD+24, WGP+04].
Attention [ZZZ+23]. Attestation
[CZ+22, MGC+23]. Attitude [HCS+18].
Audio [TSO+22, XLYC+23, TKG+13].
Augmentation [KML+22]. AuthCropper
[KLK+19]. Authenticated
[DS+11, KLK+19]. Authentication
[GMVV+17, SZZ+23, SRK+18, DL+13, LN+04].
Auto [RB+21]. Auto-Scaling [RB+21].

Automata
[JFK+15, SFB+23, SK+19, SH+15, BS+13b].
Automated [CDD+07, CFG+15, CI+17,
FC+16, LSL+20, NNS+13, RMM+17, TAB+17].
Automatic [BF+17, BZY+23, CMK+12, DP+19,
GNP+06, GJJ+12, HVG+13, LVSVRF+23,
LLC+13, SFZ+18, TM+15, TFL+16, VNK+03,
YCK+18, AFG+08, BAR+13c, IBM+10].
Automatically [BD+18]. Automating
[SVC+23]. Automation
[CF+20, SVZ+13, LCQ+13]. automaton
[TL+09]. automaton-matching [TL+09].
Automotive [VA+18]. Autonomous
[CGZ+18, HX+24, ICW+21, Kha+13, MM+16,
SH+23, SAS+23, WL+12, YK+23].
Auxiliary [DL+12, ZCG+22]. Availability
[LAB+23, FF+09]. Available [KCJ+16].
average [MLL+08]. Avionics
[LL+21, ABC+07, NKP+12]. Avoid
[LJT+17]. Avoidance [CMP+23]. AVR
[LPO+17]. AVX512 [LHP+23]. Aware
[AMJ+21, BMA+16, BZG+19, BL+19,
CWH+16, COC+22, DAH+16, DHL+17, FSG+23,
FS+13, FMM+15, FC+16, GQ+17, HG+20,
HDG+14, HPP+17, HB+16, JRSR+17, JL+15,
JEP+16, KKD+12, KJK+17, KJK+18,
KRS+16, LSC+19, LJP+17, LYH+15, LZJ+19,
MSR+12, MZG+15, NAS+18, OBO+23,
OHFC+24, PSZ+22, RR+17, RLL+23, RD+21,
SOL+16, SP+19, SXSS+16a, SWX+17,
SLS+19, SAS+23, TAB+17, TBE+16,
TLM+15, VA+18, WL+15, WNH+17,
WZD+17, YC+16, ZZG+24, ZLX+23, AHM+19,
ABF+21, ACK+13, AZHC+19, AZS+23,
BCCD+24, BMP+03, BO+13, CCSC+23, DKV+14,
DG+20, DLRT+19, DJS+16, ESM+17,
EYG+23, FZJ+08, GHB+13, GHI+13, GNR+10,
HSD22, HH13, IVJ+23, JC03, JP14, KBDV08, KYL13, KFY+22, LO13, LQN+13, LCC+23, MS21, MSS+03, MALM04, MAG14, OMH+23, OMA+13, SSK23, SRS03, SPT+21, SPT+23, SR19, XSP22, YW13, ZC04a, ZSEP21, Zhu10, SAS+23, LDV12, SAMR06.

AxOTreeS [SU23].

based [ABS02, BGD14, BGK+23, BD14, BZ13, BFG10, BONA22, BMV21, CCA+13, CYK13, CC13a, CDX+19, CCP+19, CMPP23, CGV10, DJ23, DEG11, DLN13, DAASP21, FZHT13, FMHS23, FKS+19, FFA+23, FLF+23, GW08, GFC+10, GDD17, GD14, GDN03, HKP18, HZ+14, HPLD09, HB23, JKL+10, JMO14, KKO+06, KPK+19, KKH+12, KGR12, KSI14, KKS+23, LCQ+13, LPC+07, LS13, LLR14, LC17, LLG+20, LKZ+23, LCY+22, LHCK04, LLGR13, LV09, MGC+23, MWK+24, Mus10, SBO11, OMA+13, PBC22, PCK+08, PS08b, PW13, PDBR08, PAS+09, PCD21, PSZ12b, PGR+08, PLT23, QWR+24, RS07, RCD24, SSK21, SU23, SGT+13, SCF12, SKH+12, SGZ21, SBL13, SB08, SBB+22, SXMX+18, SVS21, SC05, TBL+12, TJ23, THG24, TP20, TAP23, USA+22, VJD+07, VDK+08, WSK14, XQQ+24, YZZ+23, YV23, YRF10, YLTY21, ZKKC05, ZJZL20, ZLF13, ETA16, GZZ+16, SBDK22, CLLC17, FS14].

based [RBS+10, RSB+09, ZBMC09].

Based0 [MASG15]. Bases [HWC+20]. Basic [HDZL20]. basis [RMHH04]. BASS [VVKG23]. Battery [AKTM16, CGZ18, FHK21, KCI+16, LOD18, SPT+21, VA18, WXY+18, WLH18, YTL+20, RV03, ZSM13].

Battery-Aware [VA18, SPT+21].

Battery-Free [CGZ18, LOD18, WXY+18, WLH18].

Battery-Less [AKTM16].

Battery-powered [YTL+20, RV03]. battery-supported [ZSM13]. Batteryless [CAN+23, GTH+22, HT1+16]. Bayesian [ADH+23, DJH+17]. BBB [HDZL20].
[AHM19, ANARR+19, AB15, At02, BHD15, CHK+14a, CR14, CRBRZ19, CT13, CMP17, DJ23, DL+19, GW16, JLS18, JW+15, KR18, KW16, LPB06, MSH19, MPT+22, MGB+21, MBJ+23, NS16, NS17, NYH+20, QZIO14, RP10, SR+15, SGZS21, SWL+23, SP20, SJOL22, VGN18, WMGR12, WZ18, XSP22, YHL17, ZW17, BDP24, BGD14, BP05, BO13, GRVD12, GLYY14, HKV05, KKV+03, LKW02, RG13, SE07, VLV07, WAD14, ZVL04, ZVN05, ZKCC05, ZTRC03, UAK+03]. Cache-Based [Kwo16].

Cache-Related [CR14]. Caches

[AK21, CR14, KJK+17b, KRS+16, MMK22, SMR15, TTA+20, GRCV03, LM13, TM07, YZ08, YFJP14]. Caching [AK21, SVS21, WLC+20, ZLC+24, GGI13, UAK+03].

Calj [SN10]. calls [KMB07, KASD07].

CAM [DEG11]. Camarooptera [DNBL22].

camera [BDP+13, SCF12]. camera-based [SCF12]. cameras [DZQ09, LWK+10].

CAMSure [RSK17]. Can

[YGD+19, GMV17, PS19, SKH+12, XZK+19, ZCG+22]. Cancer

[PPC17, CCC+14]. CAPA'08

[PBP09a, PBP09b]. CAPA'09 [Pla12].

capable [PMM+13]. Capacity

[HL11, WBS10]. CAP'NN [HSD22].

Capping [PHDL18]. Captured [CMP17].

car [SCF12]. Card [SCR16]. Cardiac

[AAM+17]. Cards [BSJ15]. care [BDP+13].

Career [Shu18a]. Carnegie [KCG+05].

carrier [AAPN14]. Carry

[AZS+23, GWM16]. Carry-aware

[AZS+23]. CASCADE [WLK+19].

Cascades [BDL23]. Case

[AKI+23, LKZ+23, LOF20, MKE18, MFG17, NS16, SRR+23, WZ12, BMMV21, DEG11, FKS19, KT14, LHM14, MSS+03, PE23, SKW+07, SPK+12, VJG+07, VDK+08, WEE+08, YF19, YZ08]. Cash [SBR+15].

Catching [SXH+19]. Causality [ZL08].

Cause [DVCC19, GCU+23, KHB+23].

Cause-Effect

[DVCC19, KHB+23, GCU+23]. causing

[LLP+17]. CCATB [PDBR08]. CDMA

[PRG16]. CDMA-Based [PRG16]. CEDR

[MHK+23]. Cell [JN15, LZJ+20, YTL+20, PJJ+17, SPK+24, HLL12]. Cells [PRM21].

center [BDP+13]. Centrality [GAD+24].

Centric [HTC+16, MDWL23, SKS21, ESB23, LLLT08, LTL09, SZG+23].

Certificateless [ZSY19]. Certificates

[BP12, HCL+17, ZQD+23]. CEU [SJR+17].

CFI [HZD12]. CGPredict [WZ17].

CGRA [DMPA23, WKL+19]. CGRAs

[KKL+16, PJS15]. Chains

[DVCC19, GCU+23, KHB+23, SE17, Shu16a, Shu17b, SWL07]. Chains-Risks

[Shu17b]. Challenge [Shu17b]. Challenges

[FGS23, RRM16, DPP14, HKP08, RRKH04].

Challenging [GLY14]. Chamboile

[BR+16]. Change [AMJ21, SDM19].

Channel [AAT+21, BSL+12, BW15, GWM16, HMLZ21, JGCS24, MM16, PX18, SBK+23, SLS+19, ZLSQ17, CW14, YL+23, MWK+24, RCDB24]. Channel-RAID5

[PX18]. Channels [GAG15].

Characteristics [JLS18].

Characterization [FHK21, VGB19].

characterizing [SBLM13]. Charge

[WDM17]. Charge-Trapping [WDM17].

Chargers [LFHS18]. Charging [LZS+18].

Cheap [LPE+23]. Checker [KDR23].

Checking [RJS19, SUS+17, SWS23, WZ12, CJMB05, Sch10, ZS05]. Checkpointing

[ABA+20, ZWK23]. checks [BCS+06].

Chimp [AZHC19]. Chip

[ABF+21, BCB18, BS22, CPC17, CEC23, DLPK16, DJS16, FL17, FPG22, FC16, GIB+12, GPT+23, HMR23, HMLZ21, IB23, KS18, LLG+20, MST+16, OMK23,
PVSG22, PSZ12a, PRK15, PGR16, SGZS21, SIC19, SR19, VDKG19, WRKG16, AKB14, BP14, BGD14, BD14, BJT+23, CP13a, CHK14b, CZHK23, LJ14, GMOB13, GNR+10, HXZ+13, HQB06, HUb13, ISTE08, KHY14, KGR12, LQN+13, PL10, PS10, SRM+13, SJRS+13b, SJC+03, SAYN09, TSBY13, VNK+03, WYJ+14, WMZY13, XWHC06, YFPJ14, YZA13, ZRZ+19, SSS11].

Chip-Free [HMLZ21].
chip-multiprocessor [PS10].
chip-multiprocessors [BD14].

Circuit [IYL+23, MCSV12, LLLL14, ZBCM09].

Classification [GKS+22, ITO+24, SVS21, SRA12, LCH+08]. Classifier [BBG23, ZCG+22, SM13a]. Classifiers [ORA16]. Classifying [TKD07].

Cleaning [WLTW24]. Clients [GAG15].
Climate [VA18]. Clinically [FSVG19].

CNN-Based [MSSP22, WZY+23, XDL+18, YV23].

Coalescing [SR12a, AP09, KG05, OOA06]. Coarse [BZY+23, JSD23, KMS+23, LCD23, VNK+03]. Coarse-Grained [JSD23, KMS+23, LCD+23, BZY+23, VNK+03].

COBRA [BGP24]. Code [BGGT23, CI17, EK12, HDZL20, HY+15, KBS17, KD08, LFC17, LBS15, LZZ+19, MS21, MS23, MBFT09, OFS19, SEB12, TP19, WZJ20, ZXS03, BAR13c, BSB14, CKIR06, CLR05, EL08, FRRJ07, GRVD12, LLPM07, LSK+08, LCS03, NP04, TBG+13, YW13, ZMB03].

Code-Inherent [OSF19].

Coding [FS13, PJWY12, KRJ13].
Coaling [YLYT21].
Coevolution [YLYT21].
Coevolution-based [YLYT21].

Coexploration [KOD+12, MMD04].
Cognition [KOL+22]. Cognitive [HZGW18, XLY18]. Coherence [CMP17, LPB06, YFPJ14, MKM22].

Coherent [PRSV19, YHL23, HJ23].

Collaboration [QRW+24]. Collaborative [AMCM06, HB16, KCCW17, LLG+20, CHTC07, ZHM+14]. Collaborativeness [LZJ17].

Collection [CJL16, CBS19, GMN21, KSY17, LLW+17, CKL04, CW14, CSK+02, DKALO5, SP10].
Shu20a, SP12, TP16, WX17, WHL23, YS23, YEK17, ZLZ$^{+14}$, ZAL22, DKV14, FJZ08, JC03, JGD$^{+09}$, LS09, MMSN14, MSS$^{+03}$, MB10, PGS$^{+13}$, PBP09a, PBP09b, TSWL10].
Computing-Based [PJWY12].
Concentration [BCHB18].
Concentration-Resilient [BCHB18].
Concepts [MBCM22].
Concern [Shu18e].
Concurrency [BBM15, CFGM15].
Concurrent [BVM19, GHR15, JZL$^{+14}$, LMBL21, SPB$^{+17}$, JM06].
Condensed [XYLC23].
Conditional [CLJ$^{+19}$].
Conditions [ARS16, RKC$^{+22}$].
Conduction [AAM$^{+17}$].
Conference [DST19].
Configurable [CVG$^{+13}$, JGCS14, LVSVRFM23, LLP$^{+17}$, OPP06, PW13, PBP09a, ZVN05, PBP09b].
Configuration [FC13, GPB$^{+17}$, SL16, SSS11, GrvD12].
Configurations [BCS16, JHPR13].
Configuring [BLG$^{+15}$, KS22, BHET04, GLT$^{+13}$, PBP09a, PBP09b].
Conflict [ZCK13].
Conflict-free [ZCK13].
Conflicts [LZS20, TGBT17].
Confluence [Shu18b].
Conformance [WT12].
Congestion [DGC$^{+20}$, KYL13].
Congestion-aware [DGC$^{+20}$, KYL13].
Connected [RN18, XDL$^{+18}$, Bec09].
Connectivity [ZLZ$^{+24}$, GDN03, KDN$^{+07}$].
Connex [SUS20].
Connex-S [SUS20].
Conquer [CJL17, CWJ17].
Conservation [KLN12].
Conserving [MRY$^{+10}$].
considering [ZNS13].
Consistency [AbSZ$^{+19}$, LAB$^{+23}$, LLN$^{+14}$, SB23].
Consortium [HKLH05].
Constrained [AV20, BSJ15, GLPM18, JGL21, KPS23, KKCS16, LBW18, MFG17, MPFG19,
Bar13a, KAK05, LQN$^{+13}$, LCC$^{+19}$, TSG10, UCK$^{+09}$, WBS10, YRS12, ZBG20].
Constraint [COC22, ZSH$^{+19}$, BvB13, HCQ$^{+14}$, RS07].
Constraints [CCKM16, LN19, MBKF15, NZCS19,
PSZ12a, SB23, CCB$^{+06}$, HLD$^{+09}$, KDN$^{+07}$,
LSK$^{+08}$, MBFSV07, MEP08, NP04, PAP$^{+12}$,
RMM03, SMR$^{+13}$, WRJL06, YRF10].
Construction [JAB$^{+22}$].
Constructive [CPP23, SMR$^{+18}$].
Consumption [ANB$^{+20}$, FLF17, MV16,
OBSO16, YCT16, Mus03].
Contactless [QWY$^{+18}$].
Containerized [BCD24].
Containers [SCA$^{+24}$].
Content [CWH$^{+16}$, DLD$^{+19}$, RSK17, TLLL09].
Content-Addressable [RKS17].
Contention [KBKD22, LES14, LCL$^{+19}$, RDP17, SP20, ZLX$^{+23}$, DNNP14, BJP24].
Content-aware [BJP24].
Contention-aware [NPC24].
Contentions [BCS16, JHPR13].
Content-based [JAB$^{+22}$].
Content-based [LL16].
Content-aware [LL16].
Contexts [Shu19b, WXY$^{+17}$].
Context [AMJ21, LS20, WYS$^{+13}$].
Context-Aware [AMJ21].
Contextualized [YSC22].
Continuous [CLJ$^{+19}$].
Contracts [NLSV$^{+19}$].
Contrastive [SRB23].
Control [BMF15, BF17, BHL$^{+20}$, BYG21, DSB17,
DHL17, GDD17, GDD20, KKCS16, LJP17,
LML20, MBP14, MCG22, MMY$^{+19}$,
MLA16, PP19, PMP17, RJS19, RLMP23,
SDS$^{+19}$, SE23, SUS$^{+17}$, SPK$^{+12}$, SLFC19,
TBCB15, TCD$^{+19}$, TFL16, VA18, VM23,
WZ13, YKD$^{+24}$, VW13, BMM13, BJM13,
CAP$^{+07}$, FC13, KKH$^{+12}$, KT14, KL10,
MTL14, PCMI12, RV07, SWT$^{+14}$,
VAHC$^{+06}$, VGG$^{+13}$, ZTRC03].
Control-flow [BCHB18].
Control-theoretical [MTL14].
control/data [VAHC$^{+06}$].
control/data-flow [VAHC$^{+06}$].
Controlled [BCS$^{+23}$, HFL$^{+19}$, JNI15,
WMLM12, YDLC10a].
Controller [GAG15, GMV17, HDG$^{+14}$, HPP17,
MSS23, NZCS19, ZJZL20, LCQ+13.

Controllers [ARDG16, BF17, BDG+15, GHP18, HKP18, ICW+21, KML13, NPAG12, SVZ13, YF19, KASD07].

Converging [Gar05], conversion [AC08].

convex [SJRS+13a]. Convolution [AP20, AABG22, MDWL23].

Cooperation [LOD18]. Cooperative [ANARR+19, SHL+17, YLTY21, ZZX+15].

Coordination [PMDC17]. Coprocessor [LRZ16, BZ13]. co-processors [HMMA04].

copy [AP09]. Core [CLJ+19, HSM16, HH23, KR18, LKA+18, MKD15, PGR16, RC17, RWL+18, RJM19, SSPP23, SDBD18, SRR+23, TKV+18, TGT17, VDKG19, VCM19, WHN+17, ACK+13, CCC+14, CLLC17, CMP+07, DPP14, DP19, JAD19, LKB14, LOG+14, LLR14, LLLT08, LLLT09, LOF20, LG05, MUS10, PMM+13, PHG+17, RDP17, VKMP20, WBF+06, XSP22, YFPJ14].

core-centric [LLLT08, LLLT09].

Correlation [GW15, SMZ+21, TBE16].

Correlation-Aware [TBE16].

Correlations [HC16]. Cortex [SOL+16].

cosimulation [OP06]. COSMOS [PMDC17].

Cost [ABC+17, BLG+15, CS22, GAS+17, LLC+22, LLZ+17, LZZ+19, MLGP19, ZO16, CCH13, CRM14, GLT+13, Mus10, SJRS+13a, SM13b, YFPJ14, ZCK13, ZP09].

Cost-Effective [BLG+15, GLT+13, Mus10].

Costs [CGH19]. cosupplied [MKD13].

cosynthesis [KBDV08]. COTS [FSB+21, HH23, PSZ12b, PJT+23].

COTS-Coherent [HH23]. Count [SIC19].

Counter [ARP12, KJLS20, MKAS18, PMAB19].

Counter-Based [KJLS20].

Counter-Examples [PMAB19].

Counterexample [LP19, ZQD+23].

Course [Shu17a]. Coverage [HSR18, SHK+19, YGH08]. CPS [DCZB19, LML+23, Rua22, SSB24, TBCGO23]. CPU [BBL09, ISE10, LWB18, OFA+15, PHDL18, PDL21, PDL17, RCI17, DFC+19, SPB+17].

CPU/GPU [OFA+15]. CPUs [LSC19].

Crab [WCB20]. Crab-tree [WCB20].

Critical [BHL+20, CKN+20, HSR18, IPL16, KWK23, LS20, RHG+14, Shu15d, ZYL+17, ASTPH10, PJI+14, SVN04].

Criticality [AKTM16, BCDD24, GE18, HPP17, HHC+16a, LCP+17, LH18, RC17, TSP15, TGT17, ZZG24, ZGZ15, ABS+19, FHB+17, HGL14, KGT+23, LDRM12, ZQGZ22].

Cross-Layer [BDG+15, JCW+16, ZP09, KST+12].

Cross-Platform [WNN23]. Cross-Section [SRNW16]. Crossbar [HKL+23, JR20].

Crossbar-Aligned [HKL+23]. Crosstalk [FC16, LPE+23]. Crosstalk-Aware [FC16].

Crowd [DBFH14, PKIT23].

Crowd-Sourced [DBFH14].

Crowdsensing [XQQ+24]. Cryptographic [AMKA17, ARH+18, BCHL19, BSJ15].
EKAK24, MKAA17, ZSY19, RMH04b].
Cryptography [BDR24, DZL+22, LHP+23, LWH17, LPO+17, MKW+24, NVB+20, SOG15, Sco18, SAKH12, Geb04].
CRSTALS [IGCS24, CS [KSA+18].
CS-Based [KSA+18]. CSDF [KB23]. CSI [QWY+18]. CSP [Gar05, McI13]. CUDA [DLV16, KS13, PGS+13]. CURA [LKH16].
CURE [NGL17]. current [MG05].
curriculum [CSVA+05, Sef05, SBF+05].
Curve [DZL+22, LWH17]. curves [BSKB+09, WPW+04]. Custom [KAKSP15, LPD+20, TKG13, HVG13, LSC14, ÖNG08].
Customizable [TKV18]. customization [CGV10, PO05, ZP09]. Customized [Rru22, YTL+20]. Cutting [AR14]. CV [PRB15].
CxDNN [JR20]. Cyber [AFS+13, BHAC15, BKMG12, CKGN14, DWR14, DJH+17, DFF18, GCDJ20, GSN21, HXZ15, IPL16, KCC+16, LAB+23, LWZ+16, LNL+14, MBKF15, MKS+17, NLSV+19, PRS+17, SHL+17, Shu16d, Shu17b, Shu19b, Shu19d, SMR20, TGV12, TCD+19, UGS+21, WDG+16, WZBP19, XKK17, ZYM16, ZYL+17, ZJC+17, BWS14, BJJ13, DDG+13, GMOB13, Hüb13, LDRM12, SPK+12, TXL+12, WLT12, YRS12, ZSM13].
Cyber-Physical [AFS+13, BHAC15, BKMG12, CKGN14, DWR14, DJH+17, DFF18, GCDJ20, GSN21, HXZ15, IPL16, KCC+16, LAB+23, LWZ+16, LNL+14, MBKF15, MKS+17, NLSV+19, PRS+17, SHL+17, Shu19d, TGV12, TCD+19, WDG+16, WZBP19, XKK17, ZJC+17, SMR20, WBS14, DDG+13, Hüb13, LDRM12, SPK+12, TXL+12, WLT12, YRS12, ZSM13].
Cyber-Physical-Social [ZYM16, ZYL+17].
Cybersecurity [Shu15a]. Cycle [LS12, HHB+12]. Cyclo [DHKS15, SLCS16].
Cyclo-Static [DHKS15, SLCS16].

DAG [BGS+18, CLJ+19]. DAGs [CA+24]. DASS [MLAD23]. Data [APRC16, AMJ21, Abs+19, BG17, CJL17, CZK+22, CBS19, CMPP32, DBFH14, FSC+16, GQC+17, GSS+18, HK18, HRT+22, HWC+20, HB23, JRR16, JCS+17, JLIW+15, KK05a, KSA+18, LPD+20, LLZ+22, LCC+23, LCL13, LLN+14, LLW+17, LSL20, MM16, MMH+23, MF12, OHCK24, PE23, PqBM+15, PM19, PNRC17, RP03, SMW+17, SRS+15, SPC+16, SPT+23, SLZ+17, SFCW23, Shu15a, SWWY13, SWWW17, VLX07, WKJ20, WWTSM19, WLC+22, WQGR22, WLK+19, XQQ+24, YZZG23, YCK+18, YHL23, ZZX+15, ZW17, BS13a, CC13a, HBSA04, HKVI05, LX10, SAYN09, TBY+13, UAK+03, ZKK15, ZLF13].
Data-Adaptable [LSL20, SMW+17]. Data-Cache [ZW17]. Data-Dependent [HK18]. Data-Driven [BG17].
Data-flow [CMPP23, VAC+06]. Data-to-Memory [FSC+16]. Databases [KCC+16, CH10].
Dataflow [ABH+18, ADJM19, BPP23, DKA+19, DHKS15, DPNA16, ETBK19, FGK+23, GTH+22, KAKSP15, LWB18, MS21, MDWL23, MKD15, SB23, DFC+19, SCB+22, SLCS16, YLTY21, FZH+13, Ge10].
Deadline-Aware [OHCK24]. Deadlines [YKKD23]. Deadlock [BSV17, DGC+20, HPS13, LX12, WZ13, ZM19, BSV17].
Decentralized [BCD22].

Deception [Rru22].

Decade [DHF18, FLF17, MBLA16, UM13].

Decision [PWL19, SPGT19, UD06].

Declarative [OSA+18].

Decoded [GGI13].

Decoder [FS13, SHME13].

Decoding [RRC22, WRL+18, SRA12, CGV10, ZC04c].

Depth [LG21, KTT13, LYL13].

Deriving [WWTS19, WZG18].

Description [MMD04].

Descriptor [PRB15].

Defect-tolerant [LLR14, VSSS13].

Defending [LLR14, VSSS13].

Defending [WDY+16, XYL13].

Deferred [DBM+15].

Defined [LJR12, VKMP20].

Deformable [DSC+24].

Deformation [MMSN14].

Degradation [GSC19, ZZG24, RGdZS14].

Deinterleaver [KSK13].

Delay [CCKM16, CR14, KJK18, LLT+17, CLK13, GNS04, KAK05].

Delay-Aware [KJK18].

Delay-constrained [KAK05].

Delayed [IAS23].

Delays [CZK+22, GRWV22, RDP17].

Deletion [LLC+22, SLZ+17].

Delivery [LHX+14].

Demand [CCC+20, KKH+11, ANARR+19, HRRH+22, WK14].

Demand-Based [CCC+20].

Demonstrated [CBS19].

Demonstration [LKL+23].

Demystifying [ANB+20, SUS+17].

Dense [LMS+19].

Density [IN15, YCKR+18].

Dependability [CMV10].

Dependable [BDP+13, Zhu10].

Dependence [SWL07].

Dependencies [CAP15, LCS03].

Dependency [SWWW17].

Dependent [AKD+18, HKC18, ABS+19].

Depletion [FHK21].

Depletion-time [FHK21].

Deploying [YLD19].

Deployment [LFS+18, LCV+22, MSS23, OBO+23, RIMS21, RWL+18, SRA12, CGV10, ZC04c].

Depth [LG21, KTT13, LYL13].

Deriving [WWTS19, XCY23].

Description [MMD04].

Descriptor [PRB15].

Design [ABL+20, AHMT17, ADH+23, ARDG16, AV20, BMK+12, BBM15, BJ+23, BTL+12, BHET04, BRL16, DCZB19, DSG19, DJ+19, DEG11, DJZ+13, DNT18, FMS18, FFA+23, FSV19, GLP+11, GK22, Gb04, GCJD20, GV21b, GSN21, HFA+14, IT16, IAAS23, JFM23, JBD20, JEP16, JBCS16, KJR+13, KMS+23, KB17, KDB19, LS10, Leo18, LEPP13, LMW+17, LV09, MSH19, MFG16, MSC16, MYL+22, MPZS13, NYH+20, NLSV+19, OP06, OFA+15, PSZ21, PDL+23, PRS19, PGR+16, PHG+17, RLP20, SWK19, SIR+17, SLB+15, SFCW23, Shu15d, Shu18e, SPGT19, SRA12, CGV10, ZC04c].

Design-Level [TP19].

Design-space [DBH14, GLC07, GNR+10, HQB07, HMMA04, HHHB+12, JS06, JBN+13, KKO+06, KM09, KKH+12, LAN06, LSK+08, LNN09, LM13, LHM14, MSC12, MBFS+07, PGR+08, RP03, RS+09, RQ04, RAK14, SVP05, ST05, STW13, SM13a, WCJ07, XWHC06, ZTRC03, CMP+07, RHRK04].

Design-Level [TP19].

Design-space [MPZS13, BFQ10].

Design-Space-Exploration [GCJD20].

Design-Technology [SBDK22].

Designation [GAD+24].

Designing [ZWY+10].

Designing [BRL16, DQ14, SRM+13, USA+22, VHB+13].

Details [HKP18]. Detectable [LCL+19].

 Detecting [CCP+19, CMP17, PMP17, HT06].

Detection [AMKA17, AMJ21, CLL21, CZHK23, EVS+17, FGL+19, GLS+23, HZYJ22, HMLZ21, HPS13, KJLS20, LX12, LMS+22, LHYQ18, LJLT17, LLP+17, LL18, MYL+22, MKM+23b, MKAA17, MKASJ18, MMD22, MAGR15, PCC17, PKIT23, QWY+18, RCS23, SXH+19, SMZ+21, TMXS17, WDY+16, YZZG23, YHL23, YKK+13, ZCG+22, ZJZL20, CCC+14, HLD+09, KLC+10, KTT13, LHCK04, MVS+13].

Detector [LZS20, TP16]. Determinant [LZZ+23]. Determinism [Lee21].

Deterministic [GD13, LMBL21, SC05]. Development [CWZ+20, MKMGS18, Mosi3, RH23, SH23, DSW+09, PJL+14].

Device [ALZR19, ALV+22, CFXY17, JCW+16, KPS23, LHYQ18, MM16, SRK+18, WXY+18, WWT+22, WGN23, WT15, YTL+20, ZSH+19, BMM13, NRL13, PJL+14, RV07, RBM19, SKPL10, SC05].

Device-Free [LHYQ18, WXY+18].

Device-to-Device [JCW+16]. Devices [AV20, BKMG12, BRA+16, CSCC17, CJL17, CLW+20, CSC23, GLMP18, GRWV22, GAS+17, GDB23, GSN21, GP23, GMCC18, HTR+16, HY22, HTC+16, HLL20, HLL+23, ICZ+23, JGL21, JRSR17, KRHC20, KKCS16, KNX+17, Kwo16, LMA19, LLP+21, LSL+23, LWHS17, LNA+15, MFG16, MPT+22, MV16, MGA+23, MFG17, RCS23, RSW21, Shu17c, TP19, TP20, WLB16, YJD+17, CHCC13, CMS08, LC13, NNH+14, PSZ12b, RC08, TSWL10].

Dew [LZZ+24]. DFA [WH17].

DFA-Resistant [WH17]. DFR [IAS23].

DFSynthesizer [SCB+22]. DIAC [LZS20].

Dies [MASG15]. Different [HCS18].

Direct [ZP08, LP10, SPK+12]. Directed [ADJM19, BGGT23, LITL17, QZGO14, KKC+05].

Directions [MBCM22, HKP08].

DirectNVM [ZAL22]. Disassembly [ITO+24]. Disclosure [FLF+23].

Discovery [LAZ+16, SC20]. Discrete [KL13, NDZ13, BBL09, TSC05].

discrete-time [TSC05]. Discussion [FHB+17]. DISE [CLR05]. Disjunctive [AGG+17].

Disks [WLTW24, CCH13, CW14]. Disorder [HZYJ22].

Disparity [LKA+18, TKT15].

Display [MH19, Dea06]. Displays [LKH16].

dissemination [AKA05]. Distance [CL16].

Distill [MPFG19]. Distill-Net [MPFG19].

Distillation [MPFG19].

Distortions [HCS18]. distributable [CRAJ10].

Distributed [BHAC15, BWS14, BZG19, BLSM19, CJL17, CZH+24, DVCC19, GLMP18, GCU+23, HRT+22, KSS16, Kha13, LAB+23, LC17, LLW+17, MSM21, REPL15, RDS21, SE23, SLB+15, SBD18, Sh16a, SHQX19, TGV12, TAMS18, YMBH19, BVGVE10, CEAJ10, JGD+09, LMK+10, LN04, MSCI12, PS08b, PEP05, SAHE04, YGHS08, YFP14, ZZZ+12, ZLF13, ZC04c].

distribution [ZCG+22]. Disturb [LLZ+22].

Divide [CJL17, CWJ17].

Divide-and-Conquer [CJL17, CWJ17].

DL [LCY+22]. DL-RSIM [LCY+22].
SPC+16, SPT+23, SP19a, SP20, SJOLL22, SKN17, SPB+17, SVN04, SAYN09, TRJ05, TLL+12, WDJ+18, WRJL06, XLY18, YJD+17, YCT16, YS23, YKKD23, YW13, YDS+22, ZZG24, ZO16, ZC08.

energy [BZ13, BBL09, CAP+07, CSK+02, CLK13, FZJ08, GNW05, Geb06, GGI13, GHZH14, HE12, HLD+09, KKC+05, KHZS07, KVK+03, KAL05, KDN+07, LSK+08, LH+10, LWB13, LPFG13, LOXL13, MRY+10, MKD13, PAP+12, RP10, RMM03, SRS03, SKPL10, SJ+03, SM13b, SC05, TTAG14, TVK08, UAK+03, YK03, ZVN05, YKKD23, YW13, ZTD+06, ZA07, ZX08, ZP08, Zhu10, CH10].

Energy- [FS13]. Energy-Accuracy [JBDD20]. Energy-Aware [BMAB16, DAHM16, HB16, JRSR17, ZZG24, BMP03, DKV14, EYG+23, KBDV08, YW13, FZJ08, GGI13, SRS03].

Energy-Constrained [AV20].

Energy-Efficient [ABA+20, AJ18, ARZ+23, BGS+18, CHK+14a, DLPK16, GRR23, HLL+23, HB23, LS12, MSR+12, MMH+23, PCM+15, PHDL18, PLM+15, RR17, SA21, SPC+16, SP19a, SJOLL22, SPB+17, TLL+12, YKKD23, BCLN13, ESAS14, GRWV22, HQB06, MPT+22, RK+C2, SPT+23, SP20, SAYN09, WRJL06, YS23, ZC08, CAP+07, HE12, LK10, RP10, ZP08, CH10].

Energy-Fidelity [HPBL12]. Energy-Free [LYC+18]. Energy-Harvesting [ABC+17, HSR18, HZW18, GHZH14].

Energy-Neutral [WDJ+18].

energy-optimal [SC05, YK03].

Energy-optimizing [FRRJ07].

Energy-Proportional [FPGS22].

energy-synchronized [GHZH14].

Energy/QoS [LDV12]. Energy-Fidelity [EDF13].

Enforcement [PRS+17]. Enforcer [CD17].

Enforcing [WWY13]. engine [TSWL10].

Engineering [BCHL19, EKAK24, HMR23, PL13, YGW+12, DRL+10, Sev05, SBF+05].

Enhanced [PD12, PK13]. Enhancement [CCC+17, DDC+24, PK15, CYKH13, HL14, KD08].

Enhancing [CLK13, IAS23, OFA+15, KK05a].

Ensemble [HZW+23]. Ensure [NZCS19].

Ensuring [LMA19, WLC+18].

Entanglement [CD19]. Entire [JSD23].

entrant [VWG+17]. Environment [AARJ12, BRL16, RHG+12, SSB24, TSY+16, CSK+02, DDG+13, HT06, SB08, WC07, WTSR13]. environmentally [LAHS06].

Environments [BCDD24, BE17, ZLZ+24, WP11].

EnviroSuite [LAHS06]. epileptic [MVS+13].

Equation [BGGT23, HVG13].

Equation-Directed [BGGT23].

Equations [LZZ+23, WWTSM19].

Equilibrium [YCMB19].

Error [BBD+17, CGSH19, DVC21, EZL+17, FND+16, KKD+12, LJJL17, YLA17, MKASJ18, OSA+18, PMM+17, SK13, SUS+17, TP16, WZD+17, YZGZ23, YC12, HLD+09, MMK22, LDV12]. Error-Aware [KKD+12, LDV12].

Error-Recovery [EZL+17]. Errors [KKL+16, KJK+17, LFP+17, RJS19, WCM+16, YA13].

Essentiality [ZT+19]. Establishment [DL12].

ESTEREL [TaS05, SBR+18, YKK+13]. Estimating [OBSO16]. Estimation [AD+23, ARR2, CL11, CYH20, FHK21, HH+22, LKA+18, OBA+17, PJWY12, RHG+12, SGL+16, SRR+23, TKT15, WZM17, WSMF22, KKC+05, KS13, LSC14, MSL13, ÖNG08].

Estimations [RSF20].

ESTIMedia'08 [BCEP12].

ESTIMedia'09 [PCB12].

ESTIMedia'10 [Edi13].

ESTIMedia'11 [CC14].

ESTIMedia'12 [CP13b].

ESTIMedia'13 [PS14].

ESWEEK [EE16, EHI8].

ETAP [EYG+23].

ETC [YK+24].

Evaluating [BCS+23, HABT11, MMS06, CSC16, Shu20b].

Evaluation [BHT04, FHB+17, HHC+16b].
JLSP18, LZS+18, MCSW12, RG14, SMG04, SSS11, WT15, YDS+22, CLZ05, HGL14, KJRG13, LSC14. Evenly [LC17]. Event
[HHC+16b, JZL+15, KL13, MV16, MLA16, NDZ13, KW10, DAASP21]. Event-B
[DAASP21]. Event-Based [JZL+15]. Events [HSS18, ZH12a]. everyone
[Shu14a]. everywhere [Shu14a]. Evolution [SVZ13]. evolutionary [HMM04]. Evolve
[RIM21, WYSX]. Executive [XZK+19, YLW15]. Examples [PMAB19]. exascale [DBH14]. Exchange [AA+21]. executeables
[DVC+07]. Execute [WL+19]. Executing [AKD+18, AARJ12, ABS+19, BCD+22, BCS+23, BMMV21, CBRR19, EVS+17, FSB+22, KBH+23, LMA19, MCM+17, MZG15, MLA16, REPL15, RRK15, TB23, WWG+18, WZ12, HG09, MEP04, WEE+08, YZ08].
Execution-Time [EVS+17, WEE+08]. executions [LE14]. Exotasks [A+09].
Expansion [CB17, BYD09]. Experiences [RIMS21, WYS+13, CLK13, CMP+07].
Experiment [TSY+16]. Experimental [BHET04, LK+23]. Explanation [SRB23].
Explicit [SSD+19, WAD14]. exploitation [C+19]. Exploiting [CN+20, CFGM15, FS14, HE12, HC16, LPD+20, LPE+23, MWK+24, NBE18, PX+17, PMM+17, PE23, SK13, SGZS21, SDMK19, SWWW17, XDL+18, ZM07, CLK13, GFC+10, ZA07].
Exploration [ABL+20, BCS16, BJ+23, CDH+16, DJJ+19, FFA+23, FSC+16, FSVG19, GCJD20, GSN21, IVJ+23, JFM23, KAKSP15, KB23, MPT+22, OFA+15, PSZ12a, PWL+19, SLB+15, SXXS+16b, WSHC14, YLTY21, Z23, ZB20, BFG10, CIC+08, CIC+09, GDN03, JBN+13, KGR12, LML+13, MPZ13, OP06, PDBR08, SKW+07, YCLV+02]. Explore
[BMP23, CAP15]. Exploring
[DJ012, IFA+16, WKJ20, WSK14].
Exposing [HKP18, SWL07]. Expression
[WZG+23]. Extended
[AJ18, LDV12, WSHC14]. Extending
[GMCC18, OFA+15, YGD+19]. Extensible
[HK+23]. Extension
[LWS+23, PRSV19, MBFT09, RMH04a]. Extensions
[KRR20, LTQ+24, PJS+23]. External
[JGL21]. Extractor [XHK16]. Extreme
[RK+22, YV23]. Extremely
[CJL17].
F [MSHS19]. Fabrics [HMR23]. Facial
[WZG23]. Facilitating [AMJ21].
Factored [JFK15]. Factors [Shu19c]. Fails
[SZL+17]. Failure
[BV15, SLS+19, TMXS17]. failures
[CRA10]. Fair [RPB+19, RGSS04].
Fairness
[CLL17, GHKS15, RPB+19, CJMB05].
Fall
[LMS+22]. Falsification
[AFS+13].
Family
[MFG16]. Farsi
[BJ+23]. Fault
[AP20, ABA+20, AGG+17, CSX17, CHS15, EKAK24, NS16, PDBR08, YMHB19, YCNCC11, BWS14, LM13, LHCK04, TLLL09, VDJ+07, VDK+08, SAMR06].
Faster
[LHP+23]. Fault
[AMKA17, BVM19, BHD15, CPC17, DSB17, FXP+17, GAS+17, IPEP12, LCD18, LCLW17, LPE+23, MKMG15, MCP17, MKA17, MAGR15, NDZ13, RCDB24, Rru22, SA18, SIS24, SSH14, TAP23, TMXS17, KKK17, YGD+17, AFG08, BGD14, CMV10, JGD+09, RMH04b, SHME13, ZC04b]. Fault-injection
[RCDB24].
Fault-tolerance
[AFG08]. Fault-Tolerant
[BHD15, CPC17, DSB17, IPEP12, MCP17, SA18, SSH14, TMXS17, TAP23, BGD14, JGD+09, RMH04b]. Faults
[EVS+17, VM23, VSO8]. Faulty [BVM19].
FD
[WZG+23]. FD-CNN
[WZG+23]. FDL
[GV21b]. FE
[XH16]. FE-SViT
[XHK16].
Feasibility
[SGW+16, YRF10]. feasible
[LA11, RM10]. Federated
[GP23, NFL+22, TSY+16, TSO22, YS23].
FedHIL
[GP23]. Feedback
[IAS23, KT14, ZM07]. Feedforward
[CF23].
FELIX [SLK+22], Fence [Shu16b], Fencing [FND+16], Ferroelectric [SLK+22], FET [SLK+22], Fetal [FSVG19], FFConv [AP20], Fiat [VS08], Fidelity [HPBL12], FIDES [ISTE08], Field [NWA12, Shu16b, ITO+24], fields [RMH04a, RMH04b], FIFO [GNW05, TBG+17], File [CCC+17, KSP+12, LCC+23, OBSO16, CWKH12, LS13, PK13], File-system-aware [LCC+23], file-system-oriented [CWKH12], Filed [HCS18], filling [BSKB+09], Filter [HZW+23, CMS08], Filtering [UM13, YYKK18, MSH+14, TSG10], filters [CC13b, FF09], final [GGGK08], Finding [VSD+17], Fine [BHL+20, CAN+23, KJLS20, DFC+19], Fine-Grained [KJLS20, DFC+19, BHL+20, CAN+23], Fingerprinting [BS22, HMLZ21, ISOD21, PRM21], Fingerprints [TM15], Finite [CHS15, DQ14, NWA12, ZPZG17, RMH04b], Finite-State-Machine [CHS15], FINN [AGG+23], Fire [MMD22, PKIT23], Firmness [BAG+20], Firmware [MKMG518, McI13], First [HQE20], Fix [DLV16], Fixed [DBM+15, DHL17, LH18, LJVD23, SCM20, SD17, WHN+17, ZLL+19, AC08, DF14, LA11, QH07, YK03], Fixed-Point [LJVD23, SCM20, AC08], Fixed-Priority [DHL17, LH18, LA11, QH07, YK03], fixed-priority-scheduled [DF14], Flash [BDG+15, CSCC17, GMCC18, GKS+22, ISOD21, JGL21, JCS+17, JNI15, KKK+11, KSP+12, KNY+17, Kwo16, MAW22, OBSO16, PRM21, SWJ+13, WDM17, WC16, WZD+17, CH10, CKL4, CWKH12, CYKH13, LPC+07, PCK+08, PK13, WKC07, Wu10, JKJ+10, MSH19], Flash-Based [CSCC17, PCK+08], flash-memory [CKL04, CWKH12, CYKH13, WKC07], FlashKV [ZLSQ17], FlashLight [KSP+12], Flaws [SZL+17], Flexibility [IAS23, WSK14], Flexible [ABTS24, BHD15, CC13b, DMPC23, HWC22, KKL24, NVB+20, PP19, PJL+17, TV19, VWG+17, MTL14, SJK20, ZW10], FlexRay [SKH+12, TBEP16], FlexWAFe [DSW+09], Float [WHL23, WHL23], Floating [LPP+21, MLR+17, AC08, DBH14, LYL13], floating- [AC08], Floating-point [LPP+21, MLR+17], Floorplan [SBB19], FLORA [SBB19], Florets [SPT+23], Flow [GBK17, DHL17, PMP+17, RJS19, SUS+17, SPC+16, SPT+23, SIC19, VAAC+06, YZZG23, BHL+20, CC13a, CMPP23, LMST04, MCG22, PGR+08, RI04, TBG+13, WYJ+14], Flow-aware [SPT+23], Flow-Based [GBK17, SIC19], Flow-Layer [GBK17], FlowPaP [YJ+17], FlowReR [YJ+17], Fluid [ARS16], Fly [PM19, UM13], FMM [HZH+18], FMSs [HPS13], Focused [HPBL12], Fog [AAR+17, LI21, SKS21], Fog-Assisted [AAR+17], Footprint [LMB+22, CDD+07, HFG13, PLKH08], Forensics [CFXY17], ForEVeR [PB14], Fork [SGW+16], Fork-Join [SGW+16], Formal [BGVZ11, CD17, CD10, DST19, DHF18, GDA13, Leo18, LYL13, LMB16, SJK20, ZW10], formalism [Gar05], Formalization [HMT13], Formalized [LCF17], Formally [CMP23, MS23], Format [CPP+17], Format-Independent [CPP+17], Formats [MMH+23], ForSyDe [UGS+21], ForSyDe-Atom [UGS+21], Forwarding [HSR18], Foundations [BCHL19], FPGA [AMKA17, AP20, BSKB+09, BFST19, BRA+16, CCA+13, CCC+14, CHS15, CDH+16, EKAK24, GZZ+16, HJ19, HNY18, HPLD09, HW17, JSZ+19, LSC14, LS17, ...
LMS+19, MDWL23, MMSN14, MCSW12, MCM+17, RPB+19, RMK17, SSK21, SUK23, DFC+19, SB08, SM13a, TAP23, TV19, USA+22, WL09, WZY+23, YDS+22, ZBCM09, ZHY13]. FPGA- [MCN+17]. FPGA-Based [GZZ+16, HW17, AP20, CCA+13, HPLD09, SSK21, SUK23, SB08, TAP23, USA+22].

FPGA- [LZNL23, AZS+23, DSW+09, HG13, JSD23, KJRG13, LJZ+20, OFA+15, PGS+13, PAS+09, PLT23, QFL+24, RBNM19, SBB19, SWWW17, WGP04, YZZ+23], FRAM [JRS17]. Frame [ESM+17, PEP05, SG+13]. frame-based [SG+13]. frames [NPP13]. Framework [BCD+22, BTD+18, BRR19, BM15, BJT+23, BP19, BHL+20, CWW23, CJ20, CWX+23, DJJ+19, DSS+14, DAASP21, GLP+11, HSD22, HFA+14, IVJ+23, JKH22, JLS21, KCH14, KPC+16, KSA+18, LKH16, LCY+22, LZZ+23, MWF+16, OBO+23, OMH+23, PRK15, PKL22, RMK17, SRB23, SL16, SFCW23, DFC+19, SSH14, SYC+17, TXXS+16a, TXXS+16b, SVS21, SC20, SCA+24, SRA12, TLS23, VKNG19, WZG+23, XK16, XKK17, YDS+22, ZDTM19, ARJ11, BWS14, CCR+14, DZR09, FZJ08, KKO+06, KGR12, LSK+08, LAHS06, PO05, RDM06, SJRR+13a, SL08, STY+14, SGD12, UAK+03, WZ10].

Frameworks [TP20]. Fracna [LMBL21, LML+23]. Free [CGZ18, CLJ+19, CQB+15, HMLZ21, LOD18, LHY18, LHYQ18, PGR16, WXY+18, WLHC18, CRJ10, DGC+20, HHH+05, LES14, OZ22, PRL+23, RP10, ZKK13, MMY+19, MSG19, MFMA17].

Harmonicity [WHN+17].
Harmonicity-Aware [WHN+17].
Harnessing [LKB14]. HARP [LKB14].
HARS [LOG+14]. Harvest [CLL+18].
Harvesting [ABD+19]. ABC+17. BFw+19.
HSR18, HZGW18. KY17. LOD18. MLL+17.
High-accuracy [ITO+124]. PSZI+12b. THON12.
High-assurance [RPHA19]. High-Density [YCK+18].
BAR13b. CCA+13. FO03. KCC+05. LLC+13. PGS+13. PSZI+12b.
High-density [BFW+17]. High-Throughput [YH+15].
High-performance [BFW+17]. High-Throughput [YH+15].
High-resolution [CMJ+18]. High-Security [CMJ+18].
High-speed [CMJ+18]. High-Security [CMJ+18].
High-throughput [CMJ+18]. High-Security [CMJ+18].
High-voltage [CMJ+18]. High-voltage [CMJ+18].
Hierarchy [AAR+17]. Hidden [GGJ12]. hiding [XHSS10].
Hierarchy [GKS+22]. OMH+23. TBG+17.
LCH+08. LPO+17. MSR+17. NASM18. PCM+15. PTK+23. PMDC+17. PGR16.
KCC+05. LLC+13. PGS+13. PSZI+12b. THON12.
Host [WQGR22]. Hint-Driven [WQGR22].
History [Shu19d]. HLS [AO+23].
HLS-based [AO+23]. HMAC [GWM16].
HMAC-SHA256 [GWM16]. HMT [SZ+23]. hoc [KDN+07]. HOL [MHT+13].
Holistic [NFL+22]. OSA+18. home [LCQ+13]. Homogeneous [NASM18].
Humanoid [GPT+23]. Humans [QWH+18]. HW [ZDTM19]. HW/SW [ZDTM19].

Innovative [VP16]. Input [RR17, SFB23]. Input-Aware [RR17].

Input / [SFB23]. Inputs [DPNA16, RLP+21]. Insertion [LLC+22].

Inspired [KOL+22]. Installment [SYC+17]. Instant [LX12]. Instantaneous [MG05].

Instantiation [PLT23]. Instantly [LKZ+23]. Instruction [LL12].

Instruction-Cache [AB15]. Instruction-level [SD13]. Instruction-set [AC08, RDM06, RMD09].

Instructions [DASS12, LPD+20, NYH+20, GGI13, KG05, SBX08]. Instrumenting [MZG14].

Integrated [EK12, FSC+16, GMN21, GDD20, LSC19, dFMAdN12, LL18, MSCP16, PDL21, SXXS+16b, XZK+19, BvB13, MHK+23].

Integrating [GIB+12, SPP+10].

Integration [LWZ+16, MHT13, SWL+14, CCB+06, Dea06, KASD07, NKP+12, SD13, WCJ07].

Integrity [BHL+20, DBFH14, MGP22, ZZA+22].

Intel [CMP+07]. Intellectual [BS22].

Intelligence [MBCM22, MFG17, Shu18b].

Intelligent [LHL+19, Pau14, RMK17, ZLZ+24, LWK02].

Intensive [MLR+17, TDD+16].

Interrupt [FND+16, LP10, dFMAdN12, WCM+16].

Interrupt-Driven [WCM+16, LP10].

Interrupt-Triggered [FND+16].

Interruptible [CZ23].

Interrupts [LMK+18].

Intersection [LHL+19].

Interval [LZL15, PLT23, LKK10].

Intrusion [CLL21, WDY+16, ZCG+22, ZJZL20, LWK04].

Intrusive [AARJ12].

Invariant
Invariant-Based Invariants [AGS+16, AGG+17].

Inversion [FSVG19].

Investigation [IBMK10, KHHH14].

INVVISIOS [AARJ12].

IoT [ABL+20, AAR+17, BZG19, BLSM19, CZ23, CDBB24, CBH22b, CBH22b, CCM17, GAS+17, GSN21, JRSR17, LZS20, LKZ+23, LZZ+19, MFG17, MPFG19, PP19, PJJ+17, RSW21, SKS21, SJKL18, Shu17b, TTBT23, TP19, TN17, WX17].

IoT-Fog-Cloud [SKS21].

IoT-to-Edge-to-Cloud [CDBB24].

IP [FSVG19].

Islands [FZHT13].

Isolation [AHMT17, RWL+18].

iSSD [SFCW23].

Issue [BBM15, BCHL19, BDR24, BDK+23, CDBB24, CS16, CKG14, CBH22a, CBH22b, CJL17, CGZ18, DST19, DSXS15, EE16, EH18, FX17, GV21b, Goe14, IT16, KL13, Leo18, LZN123, MCP17, OMMM23, RHG+14, STLX22a, STLX22b, SCZ20a, SCZ20b, SCKD23, TEC12, VP16, WX17, WSHC14, ZQC16, BM13, DPP14, GM03, Gup04, GP07, HCK+08, HTLC10, JC03, KS10, KBC113, LB04, MS05, DWC14, PBP09a, Sch07, SLO4, ST05, W002, PBP09b].

Issues [Shu15c, JB02, JB03].

ISUPPLEMENTAL [TEC12].

Iterational [XHSS10].

Iterative [NHS20, SAHE04, BWS14, KFY+22, PS08a].

Itself [Shu16b].

ITUBEE [FXP+17].

IXP [LCH+08].

Java [ABC+07, BVGVEA10, CWZ+20, CSK+02, CH08, CRAJ10, GW08, HT06, HTLC10, JMO14, KW10, MS13a, PS10, SKKR11, SPP+10, TKL+15].

Java-based [GW08, JMO14].

Jetson [JKH22].

Join [SGW+16].

Joint [HZGW18, HZX15, LMS+22, LXL13, LYY+17, PKL22, WC16, XLY18].

JOM [WC16].

JPEG [THON12].

JSCD [YC12].

Jump [PP12].

JVM [WKJ20].

Karatsuba [MSR+17].

Keep [YMKH23].

Kernel [CSC23, LL17, WRB15, CDD+07].

Kernel-Level [WRB15].

Key [PAA+21, DL12, MKM+23a, PNRC17, Seo18, SAKH20, P008b].

Key-Length-Based [PNRC17].

Key-value [MKM+23a].

Key-Value [PGS+13].

Key-Value-Compressed [GSV+13].

Keyword [GV11a].

Kit [JAB+22].

Knapsack [CNCC11].

KNOWME [TLT+12].

Kryptonite [SSR+23].

KV [ZLSQ17].

Kyber [JGCS24, RCB24].

L [EA2S12].

L24 [SM13b].

Lab [BCHB18].

Lab-on-Chip [BCHB18].

LaDy [CCS23].

LaGrange [YF19].

LAMBDA [KAS+20].

LanCE X [XYLC23].

Lane [KCBM21].

Language [CMP23, LFC17, SIR+17, MMD04].

Languages [GV21b, SCZ20a, SCZ20b, WVN23, LOP09a].

Large [CJL17, JG+18, LZZ+23, MRA+17, PE23, HNB+05, PS08b].

Large-Scale [CJL17, JG+18, LZZ+23, PS08b].

LARK [DS11].

Last [KRS+16, MPT+22, TTA+20, WZJ+18].

Last-Level [KRS+16, WZJ+18, MPT+22].

Latency [AYS15, CSC23, GRRR24, HKP18, KSY17, KH23, LPE+23, MV16, QFL+24, WLTW24, ABI+09, SRM+13, XHS10].

Latency-Aware [BZG19].

Latency-based [HKP18].

Latency-Optimized [AYS15].

Latent [VAR13].

Latte [AYS15, BSJ15, HPO+15, LHP+23, LPO+17, MKW+24, RCB24, VF17].

Latte-Based [AYS15, BSJ15, HPO+15, LHP+23, LPO+17, MKW+24, RCB24].

Launch [KJKM16, CLK13].

Law [AK+23].

Layer [BDG+15, CCC+20, CKB17, JCW+16, Kwo16, SKKR11, CYKH13, CCY+13, KST+12, KXL10, LPC+07].
Layers [AP20, PBC22, UGS+21, WTT+22, XDL+18]. Lazy [KGT+23]. LCTES [FX17].

LCTES'05 [GP07]. LCTES'11 [DV13].

Leakage [CBRZ19, SP19b, CNK04, ZKK05, ZTD+06, ZA07].

Learning-Assisted [SKY17].

Learning-based [AZHC19, TP20].

Lebedesque [MHT13]. Ledgers [Shu16a].

LEON [PDL+23]. Less [AKTM16, KML+22, BYD09, PLKH08]. Let [JSD23].

Level [BRL16, FLF17, KPC+16, KBS17, KHB+23, KRS+16, LN19, LMK+18, LHY+15, LZJ+20, MFMA17, MF12, NBM+16, PKT23, PDMC17, SSA21, SDMK19, TP19, TWTH18, TTA+20, WZL+18, WRB15, ZRF+12, ZYM16, ZYL+17, AVR22, BAR13b, CCA+13, FO03, IYL+23, JBN+13, KKC+05, KVN+09, MSCJ12, MPT+22, MSS+03, MSL13, OP06, RDS21, SGT+13, SD08, SD13, VJD+07, VDK+08, YCLV+02, ZEZ+23, ZBG20].

Level-II [SSA21]. Leveling [HCS+22, CCH13, PMP14]. Levels [KS22].

Leveraging [HMLZ21, HRT+22, MF13, MMY+19].

LibRA [GMVV17, JN15]. Libraries [ZGH+19, PLKH08]. Library [BCC+17].

Licensing [BNM19]. LiDAR [HXH+24].

Lifetime [GM12, SHQX19, LO13]. Light [OHCK24, ARH+18]. Lightweight

[AMKA17, AARJ12, BDB+17, BCHL19, CBS19, DS11, GMVV17, HDZL20, JCS+17, KAS+20, KSP+12, KCBM21, KRR20, MFG16, OMH+23, RCS23, SL16, SP19b, XYL23, XQQ+24, ZSY19, ZSH+19, ZGH+19, PS04]. like [BCS16, LJ14]. Limit

[VSD+17]. Limitations [MKE18]. Limited [HLLL20, BSIa, CH08, HHL+23a, Wu10].

LIN [SKH+12]. Linear

[BF17, GD19, JSZ+19, LZJ+23, KJRG13].

Lingua [MLBL21, ML+23]. Link

[DVC+07, KXL10]. Link-time [DVC+07].

Linked [PqBM+15]. links [QRB10]. Linux

[BMF15, CDD+07, MZG14]. LISP [PS04].

Literature [RH23]. Live [FND+16].

Live-Out [FND+16]. Liveness

[GZ12, WWY13]. Liveness-Enforcing

[WWY13]. LL [QFL+24]. LL-GNN

[QFL+24]. LLM [BSa]. LMP [WSK14].

LMP-based [WSK14]. Load [CW17, JBI17, KGT+23, UM13, Mus10, ZP06].

Load-Balancing [CW17, Mus10].

Load-Store [JBI17]. load/stores [ZP06].

loader [WBF+06]. Local

[DNLB22, KAKSP15, LBS15, BS13a].

Locality

[CCSC23, GFC+10, KK05a, YG02, MMK22].

Locality-aware [CCSC23]. Localization

[BKS+23, GP23, MMD22, SHL+17, TP20, YV23, ZH12a, BHET04, CTK+13, HBB+05, LLL14, PS08a, PSZ12b, ZH12b, ZC04c].

Location [LLT+17, TM15, ZHM+14].

locations [PS08a]. Lock

[CRJ10, PCM+15, SA18]. Lock-free

[CRJ10]. Locked [SMR15]. Locking [AB15, DLL+19, QZX014, SWK19, ZW17, VXD07].

LOCUS [TKV+18]. Log

[SHQX19, LPC+07, TSG10]. Logging

[CSW15, CSCC17, DLH16, GSS+18, MWF+16]. Logic

[AFS+13, KMP15, KDB19, LJMP23, MKS+17, RLMP23, VRF15, WRW+21, LLLGR13, ETA16].

Logic-Based [ETA16]. Logical
Low-Power
SBK
YC12, ZRZ
CHTC07, GDA13, LCL+12, DLC+14.

Look [BCC+17, KKS+23, WZH13].
Look-Ahead [WZH13].
Look-up [KKS+23].
Look [BCC+17, KKS+23, WZH13].
Look-Ahead [WZH13].
Look-up [KKS+23].
Lookup [RR17].
Loop [PDL21, RLG20, Shu18b, ABC+07, CGV10].
Machine-based [CGV10].
Machine-Learning-Resilient [NBH23].
Machine-to-Machine
[APRC16, KKCS16, LAZ+16].
Machines
[APRC16, KKCS16, LAZ+16].
Majority-Based [NBH23].
Majority-Based [NBH23].
Making [LPE+23, WCH+23].
Malware [KJLS20, KAS+20, RCU22].
Managed [CRM14].
Managed [HCS+22, LBS15].
Management [ABD+19, BMF15, CSW15, DAIMH16, DSXS15, ESM+17, ESBK23, FBM16, HB16, HNY18, HXZ+14, HHC+16a, IDO+22, KNY+17, KBS17, KJK18, KR18, dFMAdN12, LZL15, LL17, LCC+23, LHL+19, MLL+17, MMY+19, MBJ+23, NEP23, OMMK23, OZ22, PVSG22, PYJL15, Pau14, RC17, RMJ19, SPT+21, SSP23, SKN17, SP19b, SBK+23, TDD+16, TMXS17, TAMS18, VGN18, VCM19, WLWS15, WDM17, WZJ+18, WW+22, WLC+22, WQGR22, ZP11, AMCM06, ACK+22, BD+13, BBL09, CCY+13, CH08, ELS08, FZJ08, ISG03, JKH+13, KHZ07, KR14, KXL10, MPZS13, RV03, SGT+13, SRS03, WWSY+13, YCNC11, ZC04b, Zhu10].
Manager [DAHM16, MDS+21, CH0].
Managers [REPL15].
Managing [CRCR13, DRL+10, MIA+17, BS13a].
manner [SRY13].
MANTIS [MLV09].
Manual [LL15].
Manufacturing
Many
[GM12, VWG+17].

Many
[CCC+14, CLLC17, JAD19, LKA+18, MDK15, RWL+18, RJM19, SDBD18, SXSS+16a, SXSS+16b, SXMX+18, TDD+16, TKV+18, TMXS17, TAMS18, VCM19, VKMP20, ACK+13, DPP14, LKB14, LOG+14, LLR14, YFJP14].

Many-Accelerator
[SXSS+16a, SXSS+16b, SXMX+18].

Many-Cores
[LKA+18, MDK15, RWL+18, RJM19, SDBD18, TKV+18, VCM19, CCC+14, CLLC17, JAD19, VKMP20, ACK+13, DPP14, LKB14, LOG+14, LLR14, YFJP14].

Many-Cores
[TDD+16, TMXS17, TAMS18].

Manycore
[DJJ+19, LLG+20, KYL13].

Map
[TKT15].

MapHeA
[OMH+23].

Mapping
[BSK+23, ABF+21, BJ23, BRA+16, CSW15, CLLC16, CPC17, CCC+20, DMPC23, ETAV16, FSC+16, FC16, GIB+12, GAG15, HC16, JRSR17, JSD23, LX16, MSCS16, NASM18, OBO+23, PJWY12, QP15, RH23, RLP+21, SB23, SPB+17, TWTH18, WWG+18, YLTY21, ZNS13, DKV14, HH13, LWB13, MEP08, MAG14, OMA+13, WW09].

Mapping-Aware
[OBO+23].

March
[SN10].

Market
[ZLF13].

Market-based
[ZLF13].

Markov
[GGJ12].

Marriage
[RPHA19].

Mask
[Geb06].

Masked
[WH17].

Massive
[Edi14, Mus10, ZXC11].

Massively
[GLP+11, TWTH18].

Matching
[CYH20, PMP17, LHK04, TLL09].

MATLAB
[LPD+20].

MATLAB-to-C
[LPD+20].

Matrix
[AGG+23, FJKM18, GOC+22, LZZ+23, IBMK10].

Maximal
[VRF15, HCQ+14].

Maximally
[WZH13].

Maximisation
[DCZB19].

Maximising
[IDO+22].

maximization
[HCQ+14].

Maximizing
[MASG15, RMM03].

MC
[LCP+17].

MC-ADAPT
[LCP+17].

McEliece
[MBR15, VOG15].

MCUs
[ABL+20, JRSR17].

MDP
[SWS23].

MDPC
[VOG15].

Me
[SPGT19].

Measure
[MHT13].

Measurement
[BYIG21, FGL+19, ZO16, LYL13].

Measurements
[ITO+24].

Measures
[FKJM18].

Measuring
[DW10, YGD+19].

Mechanism
[CAPL11, FFA+23, LCL+19, WLZ+23, WC16, YZZ+23, CWKH12, RAK14].

Mechanisms
[AbSZ+19, CJL17].

Mechanized
[RPHA19].

media
[HE12, SWWY13].

Medical
[MS13b, PJL+14, KLC+10].

Medicine
[WYS+13].

Medium
[KKCS16].

meet
[SRM+13].

meets
[BSKB+09].

Mellon
[KGC+05].

MemFHE
[GCS24].

MEMMU
[BYD09].

MEMOCODE
[DST19].

Memories
[CDX+19, KRHC20, KOL+22, PqBM+15, PRL+23, SP19b, SDMK19, WLWS15, WCH+23, BPM03, HXZ+13].

Memory
[ADH+23, AVR22, BLSM19, BCS+06, BP19, BCS+23, CBH22a, CBH22b, CI17, DPNA16, DKL05, EAAAS22, FLF17, FSC+16, FLF+23, FMSS15, GIB+12, GAG15, GAS+17, GCS24, HCS+22, HKP18, HKL+23, JGL21, JRSR17, JLW+15, KPS23, KKK+11, KS13, KJKM16, KNY+17, KBS17, KRR20, LSL+23, LYH+15, LWB18, LSB15, LOF20, MDS+21, MBKF15, MF12, NYH+20, NDB09, OMH+23, OZ22, PXY+17, PP19, PMM+17, PMDC17, PRM21, RC17, RRC22, RKC+22, RSK17, SSK23, SWJ+13, SSD+19, SPP23, SJOL22, SKB+23, SLK+22, SR19, Sus20, TDD+16, TBG+17, TGBT17, VCM19, VKW+17, WDM17, WZJ+18, WCBO2, WWT+22, WLZ+23, WQGR22, WSMF22, WC16, WHL23, YYYK18, ZDZ+14, ZQGZ22, ZZA+22, ACK+13, ABS02, BCLN13, BS13a, BCDH12, Bar13a, BAR13c, CH10, CDD+07, CKL04, CWKH12, CYK13, CC13a, CSK+02, CH08, CVG+13, ELS08, GDN03, HFG13, HH13, HXZ+14, HL14].

memory
[JB02, JB03, JKH02, JKH03, JKH04, KGR12, LKW02, LO13, LXL13, LPB06, MMD04, PLK08, PK13, PMPP14, RP03,
MLC-PCM [NBE18]. MLOps [MMA+23].

MMU [BYD09, ELS08, PLKH08].

MMU-less [BYD09, PLKH08]. Mobile
[CHW+16, CHT22, CZH+24, CSC23, EMVR23, GQC+17, GP23, HTC+16, HLLL20, IDO+22, JBDD20, JCS+17, KCJ+16, KJK+17a, KJK18, KNL12, LDV12, L21, LSL+23, LKH16, LMW+17, LNA+15, MV16, PX18, PHDL18, SBR+15, SJL122, Shu17c, TP20, WTSR13, WLH16, WQGR22, WZG+23, XDL+18, YTL+20, YDS+22, ZLX+23, BO13, CTK+13, CLK13, FZJ08, ISTE08, KSK13, KST+12, LLL14, LCJ13, NNN+14, PK13, RC08, VAR13, WRJL06, WYP+10]. MobiSense
[WYP+10]. Modal [BV15, SH15, WBS10].

Mode [ABS+19, DCZB19, JRR16, yCBR05, SR19, YLTY21, ZTRO03].

Mode-dependent [ABS+19]. Model
[ARS16, ARDG16, AAM+17, AAS18, BLSM19, BRL16, CWZ+19, FKS+19, FSX+21, FKC+23, FMS15, GLL+11, GGJ12, IAS23, IVJ+23, JFM23, KML+22, KH23, KFY+22, KDR23, KBRD22, LC17, LAZ+16, LSL20, MTWE20, MV16, MAA+23, PDL21, PNRC17, SSD+19, Sch10, SWL+14, SOL+16, SP20, SSB24, TJ23, TBF17, TCB15, WRW+21, WZ12, CMB05, DRL+10, KKH+12, OMA+13, PJJ+14, RSB+09, SLO8, WMZY13, ZS05, BE10].

Model-Based
[ARDG16, BRL16, KH23, LSL20, TBF17, FKS+19, TJ23, KKH+12, OMA+13].

Model-Driven [CWZ+20, GLP+11, DRL+10, RSB+09, BE10].

Model-Predictive [TBCB15]. Modeling
[BON22, Bro21, Fra12, GFC+10, HM04, KSS16, KE15, KLYC20, LLLT08, LLTL09, LHL+19, MCI13, MKD15, MD04, MAG15, NKP+12, NDZ13, NBM+16, PJL+17, RHG+12, SRS12, TKHZ22, YKD+24, ZYM16, ZTJ+19, ASTRPH10, MG05, SD08, SPK+12, VJD+07, VDK+08, WW09, VAHC+06]. Modelling [DAASP21].

Models [ABH+18, BTD+18, BHM17, CD12, CD19, Dst19, DVC21, HYY+15, IT16, JBDD20, Lec18, LMS+22, LZZ17, MAKO19, PRS19, PMP17, SRL23, SBLM13, SGJ17, SGW+16, TB23, YSC22, CCl3a, DP08, HDR+06, HVG13, LLC+13, ST05, ZMB03].

Modern [BMB16, DFC+19]. Modes
[PXY+17]. Modular
[IAS23, MRA+17, TBG+13].

Modularization [LPFL16]. Module
[BCS16, ARJ08, PAS+09]. module-based
[PAS+09]. modulo [SWY13]. Molen
[PBV07]. Momentum [BFW+19]. Monads
[RPAH19]. Monitor [PDL+23, MVS+13].

Monitoring [BCDD24, BRR19, BSTF19, Edi14, HHC+16b, MBK15, SKS21, TLL+12, TBCGO23, VSF+21, GJ13, GRN+10, WYP+10]. Monitors [BMMV21].

Montgomery [SLN+16, SAKH20]. Moore
[AKI+23]. MOOS
[DJJ+19].

MORPHEUS [VHB+13]. Motion
[HPBL12, HLYQ18, MS23, PW07, WXY+18, YW13]. Motion-Based
[HPBL12]. mountain [VS05]. Moving
[QWY+18]. MP [JBN+13, YCNCC11].

MP-SoC [JBN+13, YCNCC11]. MPPT
[BFW+19]. MPSoC
[CFMG15, CMP17, IDO+22, LYH+15, LBP07, MLA16, OBO+23, PAP+12, PGR+08, TBAS17].

MPSoCs
[BLG+15, AMN+14, BMB16, CAP+07, DJ23, GLT+13, HHH+12, KBDV08, KGT+23, LPB06, MAG14, MASG15, OMA+13, PQ15, SPB+17, TBF+17, WWG+18, GPB+17].

MPSoCSim [WRK16]. MRAM
[ZBCM09, AVR22, LKZ+23, MPT+22, YJD+17]. MRU
[GLY14]. MSP430X
[Seo18, SAKH20]. MTSS
[SBMS08]. Multi
[ALZR19, ABH+18, BGG+23, CH10, CLJ+19, CAA+24, DJJ+19, DP19, GAD+24, GMS17, GDD20, GIB+12, HSMS16, HH23, HWC+20, JSZ+19, KBR+18, KRS+16, LMS+19, LLW+17, LOF20, MKM+23a, MMA+23, PWL+19, PGR16, PHG+17,

n [GKS+22]. NAND
[BDG+15, GMCC18, JN15, MSHS19, MAW22, PCK+08, PK13, WC16, WZD+17]. NAND-Flash [MSHS19]. Native
[WWN23]. Near [BCS16, FPGS22, ITO+24, LFHS18, SWT+14, SFCW23]. Near-Data
[SFCW23]. Near-field [ITO+24].

Near-Optimal [LFHS18]. Necessary [ARS16]. Need
[Shu18c, STH17, TTB23]. Negative
[CLS16]. Nested [DKA+19, WYL+19, KMB07, NNS13, TKD07]. nested-loop
[NNS13, TKD07]. Net [DJZ13, LBJ17, YKD+24, MPFG19, YLDM19]. NetBench
[MMS06]. Nets [ACR17, BSM+21, BB13, BB15, CL13, DLRTB+19, JKF15, NDD13, WZ13, VAHC+06]. Network
[ASS+23, ANARR+19, ABF+21, BS22, CPC17, CWX+23, CLW+20, DLPK16, ESBK23, FS24, HMR23, HSD22, HFL+19, ICZ+23, ICW+21, JAB+22, KJK18, KFY+22, LLL+20, LMS+22, MST+16, NHS20, PGR16, SPT+23, TLL+12, VKDG19, WCK+19, WDM+23, WRB15, WZG+23, XZCW3, YF19, ZRF+12, ZZX+15, ZBG20, ZLZ+24, ZJZL20, ZDL22, ZP11, BP14, BQF10, CP13a, CMS08, GM0B13, HVG13, KJRG13, KYL13, LLLT08, LLLT09, LHCK04, LCH+08, LLLG13, LS09, NNH+14, PCM12, TKD07, WYP+10, WYJ+14, WW09, YCLV+02, YZ13, ZWY+10, MMS06, SSS11].

Network-flow [WYJ+14]. Network-Level
[ZRF+12, ZBG20]. Network-on-Chip
[ABF+21, BS22, DLPK16, HMR23, LLL+20, MST+16, VKDG19, BP14, GM0B13, YZ13, SSS11].

Network-on-Chip-Based
[CPC17]. Network-on-Interposer
[SPT+23]. Networking
[DLH16, WLC+18, BWS14, BFQ10, FC13, Gup04, KKH+12, NKP+12]. Networking
[LYC+18, WGN23, ZSEP21, DGC+20].

Networks
[AP20, AABG22, ANARR+19, ALV+22, ARZ+23, AZHC19, ABC+17, BKMG12, BSM+21, BTL+12, CWZ+23, DBX+22, DS11, FPGS22, FBM16, FC16, GAD+24, GVS+20, GM12, GOC+22, GDD20, GMV17, GGJ12, HSR18, HZY+22, HSK18, HY22, HZGW18, IB23, JR0, JBD20, JG+18, JSD23, LMB+22, LFHS18, LAZ+16, LJVD23, LPE+23, MYL+22, MSG21, MPFG19, MLAD23, MAGR15, OHC24, PBC22, PYL+23, QFL+24, RN18, RLG20, SJK20, SA21, SSK+22, SCB+22, SHK+19, TSW+17, XLY18, YLM20, ZBG20, ZLL+11, AKB14, CTK+13, DLN13, DLC+14, FKZ+10, GHZH14, HBSA04, HBB+05, HKS07, KAK05, KXL10, KCL+10, KYHY14, KDN+07, LN04, LAHS06, MLV09, NNS13, PS04, PS08a, PS08b, SRR+13, SKH+12, SGD12, WYJ+14, XWCH06, YGHS08, ZL08, ZLF13, ZC04c].

Networks-of-Systems [ZBG20].

Networks-on-Chip
[FPGS22, FC16, IB23, AKB14, KYHY14, SRR+13, WYJ+14, XWCH06]. Neumann
[SB23].

Neural

Neural-Network
[HFL+19, WCK+19].

Neuromodulation
[PQA+19].

Neuromorphic
[CEC23, LMB+22, SCB+22, SBDK22].

Neuron
[CPC+19].

Neutral
[WDJ+18, BFW+19].

Next
[ASWZ24, CMP23, KOL+22, ISTE08, ISE10].
Next-generation
[CMCP23, KOL+22, ISE10]. NIST
[SSA21, ZSH+19]. no
[KKHH14, BVGVEA10]. No-Heap
[BVGVEA10]. NoC
[BLG+15, BGD14, CCY+13, CLLC17,
DNPN14, DJJ+19, GLT+13, LLR14,
MSCS16, MKD15, MASG15, NAM18,
OMA+13, PB14, PCGD21, TKH22,
TMXS17, TAMIS18, ZCK13]. NoC-based
[CLLC17, MKD15, TAMIS18, BGD14,
LLR14, OMA+13, PCGD21]. NoC-Based
[MASG15]. NoCs
[MAKO19]. Node
[MCl13, PVSG22, SKE17, ZH12a, ZH12b].
Nodes
[GSST+18, SLS+19, ZO16, SGD12].
oise
[SBLM13]. Noisy
[LCZ+23]. NOMA
[CZH+24]. NOMA-Enabled
[LCZ+24]. Non
[BHM17, BMP23, FSVG19, HCS+22,
HKL+23, KFY+22, LHZ+20, TTBB23,
WLWS15, XSP22, YHL23, ZZA+22,
HXX+13]. Non-coherent
[YHL23]. Non-ideal
[BMP23]. Non-ideality
[HKL+23]. Non-interference
[BHM17]. Non-invasive
[FSVG19]. Non-iterative
[KFY+22]. Non-neutral
[TTBB3]. Non-preemptive
[XSP22]. Non-Volatile
[HCS+22, ZZA+22, LHZ+20, WLWS15,
HXX+13]. Nonblocking
[SP10]. noncontact
[CNC13]. Nonconverging
[BTD+18]. Noninclusive
[LR14]. nonintrusive
[SSL11]. Nonlinear
[CMS17, LLL14]. nonparametric
[GK10]. nonrenewable
[MKD13]. Nonutilization
[LA11]. Nonvolatile
[LKZ+23, MLL+17,
PX+17, RKF+22, SLZ+19, HZ+14].
NOR
[PRM21, SWJ+13]. normal
[RMO14b]. Novel
[AAM+17, CLS16, EVS+17, HB23, MCS+15,
SP20, DZRN09, NN13, ZCK13]. NQA
[WYL+19]. NUCA
[FS14]. NUCA-based
[FS14]. Nucleus
[VS+17]. Number
[AN03, AN04, LCLW17, MFG16, MASG15,
SSA21, SIS24, SRK+18, Ed14]. numbers
[ZXC13]. Numerical
[AGG+17, ADMJ19]. NVM
[NB23, SBDK22, WCK+19].
NVM-Based
[SBDK22, NB23, WCK+19].
NVMe
[ZAL22]. NWSLite
[GK10]. O
[CWH+16, CCB+06, EAA12, JAD19,
LSL+23, MRY+10, SKE10, SC50, WGN23].
OA
[MM16]. Object
[GMCC18, SRM121, KTT13, MMS14, NPP13].
Object-Based
[CMCC18]. Object-oriented
[SRM121]. Objective
[BKG+23, DJJ+19, PRL19].
Objects
[BVGVEA10]. ObNoCs
[HMR23]. Observations
[KH23]. Ocara
[GGK08]. Off
[KBR23, LKZ+23, ZRF+12, ZP13a,
CR13, CLK13, CGV10, HFG13, OSA+18,
SD08, SJC+03, SAYN09]. off-board
[CG10]. off-chip
[CPI3a, SJ+03, SAYN09]. Offloading
[CZ+24, HLL12, L21, OSH12]. Offs
[IP12, PMC17, GFC+10, LDV12,
SM13b]. Offset
[OOL06, S1R2a, SEB12, HABT11]. Oh
[Shu15b]. OLE
[LK16]. omega
[MRT13]. omega-regular
[MRT13]. omnidirectional
[SCF12]. On-Accelerator
[VKW17]. On-Board
[CPP17]. on-board
[QR10]. On-Chip
[FL17, PVSG22, PSZ12, SGZS21,
CZK13, KGR12, YFPJ14, ZRZ+19, ZP13a,
LJ14, PL10, SJS+13, WMZ13].
On-demand
[ANARR19]. On-Device
[KPS23]. On-the-Fly
[PM19, UM13]. On/Off
[LKZ+23]. Onboard
[FGL+19, BCG10]. One
[FL+23, WZH13]. One-shot
[FL+23]. One-Step
[WZH13]. Online
[ZP13a, ZP14, EVS+17, ISG03,
KR14, REPL15, SFB23, SE23, SSK+22,
VW+17, WXY+17, YDL10b, ML13,
TTA14, YDL10a]. Onloading
[ALV+22]. Only
[GW15, BS13a, GDC19]. OnNetwork
[KJK18]. OnSRAM
[PVS22]. onto
[CC13a, DSVS15, OA+15]. Open
[CWH+23, LZZ10, ZLSQ17]. CCA+13.
Open-Channel
[ZLSQ17]. open-source
[CAC+13]. OpenCL
[SPB+17, SXXM+18].
OpenCL-based [SXMX+18], operand [LCS03]. Operating
[RKC+22, WDJ+18, AMCM06, BMM13, FRRJ07, TRJ05, WP11, YDLC10a].
Operation [BHD15, WC16, FC13].
Operational [SGJ17]. Operations
[OSC19, VF17, BAR13b, SWWY13].
Operator [CWZ23, GK22]. Operators
[PRSV19, SUK23, USA22]. Opinions
[Akd21]. OPLE [KAKSP15]. OPPC
[LZS+18]. Opportunistic [JCW+16].
Opportunities [BCDD24, SSK+22, SCA+24]. Order
[ACR17, BHM17, JLSP18, JBI17, KH23, LLC+13]. Organized [TMXS17]. Oriented
[BKMG12, SFZX18, CWKH12, DRL+10, KK05a, LLN09, SRSM21, SGDP12].
Oscillators [SCM20]. Out-of-distribution
[ZCG+22]. Out-of-Order
[JLSP18, JBI17, KH23, LLC+13]. Output
[KPK+19, SFB23]. Output-based
[KPK+19]. Outputs [DPNA16].
Outsourcing [LZZ+23]. Over-the-Air
[WLH+18]. Overbooking [DWRN14].
Overcoming [TP20]. Overflow
[PRL+23, BCS+06, RRW05]. Overflow-free
[PRL+23]. Overhead [KSA+18]. Overlap
[GAD+24]. overlapping [CTK+13].
Overlay [CHS15, DFC13]. Overlaid
[LDRM12]. overview [SVP05, WEE+08].
Oximetry [FSVG19].

P [CAA+24, KNY+17, WDM17, WPW+04, ZSH+19]. P-256 [ZSH+19]. P-Alloc
[WD17]. P-BMS [KNY+17]. P-EDF
[CAA+24]. P1363 [HHL+23b]. PA
[JGX+18]. Pacemaker [BIM13]. Packed
[RGL20]. Packet [JGX+18, SSV21, CMS08, LCH+08, LS09, Mus10, RGSS04].
packet-switched [LS09]. packing [PEV05].
pad [ABS02, NDB09, UDB06]. Page
[CLL16, CSC23, HCL16, Rn22, VKW+17, WLWS15]. Page-Mapping
[CLL16, HCL16]. Paging
[KKK+11]. pair [RV07]. Pairwise
PANDORA [SC0]. Papers
[TEC12, SN10]. Parallel
[CS16, CD19, DSXS15, GLP+11, Goe14, LKA+18, LZJ17, LYY+17, LFC17, NFL+22, PRB15, PJWY12, POG+13, RDP17, SWL+14, SM13a, TWTH18, WMLA16, GNR+10, MMSN14, THON12, WW09].
Parallelism [AMN+14, HLF+18, JP14, LPD+20, SSDK19, SM13b, ZE+23, CW14, KVN+09, MB10, SD13]. Parallelism-aware
[JP14]. Parallelization
[HLL12, LL15, TFL16]. Parallelized
VJD +07, VDK +08, ZC04b, ZTRC03. **Power-attacks** [Geb04]. **Power-Aware** [JEP16, ACK +13, AZHC19, OMA +13, JC03, MSS +03, MALM04]. **Power-Efficient** [HRT +22, SLB +15, ABF +21, ZP07]. **Power-mode-aware** [SR19]. **Power-neutral** [BFW +19]. **Power-Performance** [ZRF +12]. **power-saving** [ISG03]. **power-sensitive** [BO13]. **Power-Temperature** [BGO17]. **Powered** [HLLX18, ANB +20, MBB +15, RV03, YTL +20]. **Powerful** [SGZS21]. **Practical** [BCLS17, BHL +20, HPO +15, LC17, PWL +19, RIMS21]. **Practice** [FSB +21, BSBBK +19, Ul13]. **Practitioners** [Akd21]. **PRAM** [LO13, PMMP14]. **Pre** [CIC +16]. **Pre-** [CIC +09]. **Preaveraging** [GWM16]. **Precedence** [SE17, MBFSV07]. **Precise** [MGB +21, NS16, ZLL +18]. **Precision** [SSD +19, SE07, ZDL22]. **Precomputation** [HKC18]. **Predicate** [AD106]. **Predictability** [TSBY13, GLYY14]. **Predictable** [BCS +23, FSB +21, GHPP18, KR18, KWWKP23, PP19, PW13, SSK23, SRG +15, TBC +17, VKMP20, WWG +18, AEF +14, WAD14]. **Predicting** [DJO12, JC12]. **Prediction** [KCJ +16, NS17, NEP23, QZXO14, SKS21, TKHZ22, GKW08, HE12]. **Prediction-Directed** [QZXO14]. **Predictive** [RN18, SSD +19, TBCB15]. **PredictNcool** [SP19b]. **Predictor** [SP19b, WGP13, ZA07]. **Preemption** [CR14, DBM +15, GWZ16, TB23, ZGZ15, ZLL +19, ZP09]. **preemptions** [RM10]. **Preemptive** [DSB17, TM07, WAD14, XSP22]. **Prefabrication** [CIC +08]. **Preface** [AL05]. **PReFeR** [MGC +23]. **prefetching** [YZ08, ZP07]. **Preorders** [BSV17]. **Preparation** [BCHB18]. **Presence** [TBDdD11, LHX +14, VS08]. **PRESENT** [WH17]. **Preservation** [HSR18]. **Preserving** [ACR17, KLL +19, LLT +17, CSST08]. **Pretrained** [JBDD20]. **Prevention** [ZW13]. **pricing** [WSK14]. **Primary** [Shu18c]. **Primitive** [MCS +15]. **Primitives** [JBDD20]. **Priority** [SPGT19]. **Priority** [DBM +15, DHL17, GE18, LH18, MBB +14, MAKO19, SD17, WHN +17, DF14, LA11, MEP08, QH07, YK03, ZZG +12]. **Privacy** [KLK +19, KCCW17, LTT +17]. **Proactive** [SWL +23]. **PROARTIS** [CVC +13]. **Probabilistic** [AFS +13, CLL21, COC22, GUC +23, HQB07, HCL +17, KM13, LP19, LEPP13, MIH +13, SWJ +13, SCG15, SWS23, TBE16, WHN +17]. **Probabilistically** [CVC +13]. **Probability** [MKM +23b]. **Problem** [SEB12, WEE +08, Ahm13]. **Problems** [KOM +23, TJ10]. **procedure** [KMB07, KASD07]. **Process** [BGR15, GM12, MZG14, MAG14, MAGS15, WDM17, NNS13, TKD07]. **Process-Variation** [WDM17]. **Process-variation-aware** [MAG14]. **Processes** [LZJ17, PBBP09a, PBBP09b]. **Processing** [AO12, BT22, BBD +17, DVC21, HRH +22, HKL +23, LVSVRFG23, MKM +23a, MGLP19, MKE18, SFCCW3, SBDK22, SWWW17, VKMP20, WZY +23, XZK +19, AMN +14, BCG +07, BCG10, DSW +09, GHB13, GJ13, HVG13, POG +13, SCF12, VGG +13, ZHL12b, ZLF13, MSR +12]. **Processor** [AKI +23, BVM19, GOC +22, KRR +20, LWS +23, MLL +17, MBR15, MSD17, MMD04, PHG +17, SK13, SOL +16, SK19, SCS16, TWTH18, TKL +15, WWH21, ZZG +22, CCA +13, GLW14, HL14, KGR12, KT14, LK10, LHCK04, LCH +08, LV09, MG05, POG +13, POG +13, ZCO4a, LS12]. **processor-based** [KGR12, LHCK04]. **Processor-memory** [MMD04]. **Processor-transparent** [ZZG +22]. **processor/accelerator** [CCA +13].
Processors [AJ18, GIB+12, HLLL12, HTC+16, JLS18, KKS+23, PDL+23, PCDG21, PJT+23, RC17, SJK18, SSA21, SCM20, SWX17, TTB23, TBBdD11, WZ12, YKKD23, YC16, ZP11, BS13a, BO13, BM13, CIC+08, CIC+09, CC13a, DPP14, Geb04, GG13, HZX+14, JHPR13, KD08, KK05b, LLM07, LS13, LLL08, LLLR10, Mus10, ONG08, PBV07, PO05, RP11, TLL09, UK+03, WW09, YW13, ZMB03, ZP06, ZP07, LKB14, MMS06].

Protecting Property [BS22, KM09].

Propagation [HLLL12, RC17, SJK18, SSA21, SWX17, TTB23, TBBdD11, WZ12, YKKD23, YC16, ZP11, BS13a, BO13, BM13, CIC+08, CIC+09, CC13a, DPP14, Geb04, GG13, HZX+14, JHPR13, KD08, KK05b, LLM07, LS13, LLL08, LLLR10, Mus10, ONG08, PBV07, PO05, RP11, TLL09, UK+03, WW09, YW13, ZMB03, ZP06, ZP07, LKB14, MMS06].

Proof [BP19, FLF17, MGB+21, MSL13, ZLL+18, LLLR13, NSL11, STY+14].

Programmability [LL+21, THA+12].

Programmable [GOC+22, LWS+23].

Programmatic [Bro21].

Programming [BHXP19, WCK+19, WNN23, ABI+09, BWS14, BvB13, BMM13, Gar05, LP09b, LAHS06, PÖG+13, SGDP12].

Programs [AGG+17, CJ20, EYG+23, GHR15, KH18, LL+15, LLL+17, ML20, MKR13, SPLDK+17, TWTH18, WMRB17, WCM+16, AFG08, BS13a, CSTM08, CC13b, GNP06, KS13, NNS13, TKD07].

Progress [BHAC15, HLL+23].

Promising [KOM+23].

Proof [DAASP21, MS13b].

Proof-Based [MS13b].

Propagate [GWM16].

Propagation [HLLL12, RS07].

propagation-based [RS07].

Properties [BFST19, BBDR12, GZ12, CMA05].

Property [BS22, KM09].

Proportional [FPGS22].

Protecting [BS22, HMR23, KJK+17b, LMW+17].

Protection [JGCS24, RLL+23, YC12, BCS+06].

Protocol [AZHC19, CCM17, CBS19, GDA13, KYDC20, LJJ+19, MGC+23, ZSY19, CHTC07, KASD07, PS04, YFPJ14].

Protocols [AAT+21, EZL+17].

prototype [GGGK08].

Prototyping [CS16, DSXS+14, Goe14, KPC+16, SXMX+18].

Provably [AR14].

Providing [DLN13, KS18, LHX+14].

provisioning [LDRM12].

Proximity [LNA+15].

prune [DNNP14].

Pruned [RLG20].

Pruned-Permuted-Pack [RLG20].

Pruning [KFY+22, PKL22, SC05].

Pruning-based [SC05].

Pseudorandom [MFG16].

Psi [BGRV15].

Psi-Calculi [BGRV15].

Public [Sco18, SAKH20, Shu16a].

Public-Key [Sco18].

PUF [CCK16, CCM17, NBH23, RBNM19, SRK+18].

PUF-Based [CCM17].

PUFs [LZZ+19, ZTZ+19].

Purchasing [CZH+24].

purpose [GKW08].

PV [PJL+17].

PV-cell [PJL+17].

pWCET [RSF20].

Python [LHM14].

QC [VOG15].

QEMU [MZG14].

qLUT [RR17].

QoE [IDO+22].

QoS [HLLL20, LDV12, PL10, RJM19, SAKH20, ZLL+11].

QoS-aware [SCK23].

QR [WL09].

QRD [SPC+16].

Quadrcopter [SHL+17].

Quadratic [AGS+16, AGG+17].

Quadtrees [WCH+23].

Quality [BZG19, CLL+18, CYH20, CRCR13, DDC+24, LKH16, MST+16, PDHC23, RDS21, WKJ20].

Quality-level [RDS21].

Quality-of-Service [MST+16].

Quality-Retaining [LKH16].

Quality/Latency [BZG19].

Quality/Latency-Aware [BZG19].

Quantifying [CBZR19].

Quantitative [SD08, SR12b].

Quantization [IVJ+23, LJVD23, PKL22].

Quantization-aware [IVJ+23].

Quantized [DBX+22, PKL22, RR17].

Quantum [ASWZ24, AAT+21, BDR24, KSFS24, MKAA17, SWK19, MWK+24, NIB+20, RCDB24].

Quantum-Safe [ASWZ24].

QUAREM [IDO+22].

quasi [FZHT13].

quasi-static [FZHT13].

Quasistatic [PLKH08].

Query
Race [YHL23]. Racetrack
[KKHC20, KOL+22]. radar [BCG+07].
Radiation [MGB+21, ZHC13]. Radio
[HZG18, LOD18, SLA12, XLY+18, ZLL+11, KXL10, JLR12]. Radio-Agnostic
[ZLL+11]. radiotherapy [ZXCH13], RAID
[IA11, SWL+23]. RAID5 [PX18]. RAIDs
[BD14]. RAID-on-chip [BD14]. Rainbow
[KKS+23]. RAM [MK22]. Random
[SRK+18, KJR13]. Randomization
[SE23]. Randomized [ARP12]. Range
[HBB+05, DNB22]. Range-free
[HBB+05]. ranging [PSZ12b]. Rapid
[DSXS+14, HSR18, KPC+16, LSC14, LP10, ZP09]. RapidIO [BCG+07, BCG10].
RapidRadio [SRA12]. Rare [HRS18].
Rasterization [OBA+17]. Rate
[AFMT17, ESM+17, SLS+19, ZPG17,
BJM13, GNP06, SWT+14]. Rates
[WSMF22]. ratio [MEP08]. ray [ZXCH13].
rays [ZXCH13]. RCML [RGH+12]. RDF
[FGK+23]. Re [LLW+17, Shn20b, VWG+17].
Re-evaluating [Shn20b]. Re-Fusion
[LLW+17]. Reach [KDR23]. Reachability
[BF17, BB13, FKJ18, HFL+19, JBCS16,
MG15, AD106]. Reachable [DB19, GD19].
ReachNN [HFL+19]. Reaction [GUC+23].
Reactive
[JZL+15, Mos13, BCC+08, CJMB05, GNP06].
Read [HCS+22, LLZ+22, MMK22, YJD+17,
YCK+18, YWLW23]. Read-Out [YCK+18].
Read-Related [YWLW23]. Reads [PM19].
READY [DFC+19]. Real
[ARS16, AB SZ+19, AYS15, BMAB16,
BZG19, BFST19, BE17, BAG+20, BGS+18,
CDB24, CQV+13, CKL04, CKGN14,
CWZ+20, CSH+22, CHJ22, CLS16,
CQB+15, CAA+24, DLRTB+19, DHL17,
DJZ13, ESBK23, FSB+21, FBMI6, GAD+24,
GAG15, GZZ+16, GE18, HQE20, HGW+20,
HSMS16, HH23, HFA+14, HHC+16b, IB23,
JSZ+19, JAD19, JGX+18, JBCS16, KSS16,
KR18, KH23, KB17, LG21, LNI9,
dFMA+D12, LXL15, LXL16, LOF20, MM16,
MZG15, MCG22, MAW22, MSM21, NFL+22,
OSF19, Pau14, PSDK1, PJT+23, PRNC17,
RG14, RMBK17, SK23, SCG15, SMR15,
SE10, SP19a, SP20, SLCS16, SCS16, SL+17,
SC+24, SGW+16, SD17, TSP15, TKT15,
UBF+16, WDJ+18, WMGR12, WHN+17,
WGN23, XSP22, XQQ+24, ZDZ14, ZWK23,
ZPZG17, ZIC+17, ZSJ12, AMC06, AF14,
AF13, ABC+07, ABJ+09, AGF08,
BVGVEA10, BBL09, CMV10, CHK14b].
real [CRJ10, CRM14, CHTC07, CCA12,
CRAJ10, DF14, DSW+09, DW10, GWN05,
HT06, HTLC10, HBB+12, HOQ+14,
KBDV08, KW10, KTW13, LSK+08, LES14,
LNQ+13, LRL14, LH+14, MMS14,
MEPO8, MRY+10, MVS+13, MALM04,
MAG14, MKD13, DWC14, NNI+14,
PPM+13, PAP+12, PL10, PS10, QH07,
RRM03, SP10, SKPL10, SL08, SE07, SC05,
TM07, WMT12, WP11, WAD14, YK03,
ZC04a, ZC04b, ZB13, ZX08, Zhu10, ZZZ+12,
TTA+20]. Real-Time
[ARS16, AB SZ+19, AYS15, BMAB16,
BGS+18, CDB24, CQV+13, CKGN14,
CWZ+20, CSH+22, CHJ22, CLS16, CQB+15,
DHL17, DJZ13, FM16, GAD+24, GAG15,
GZZ+16, GE18, HGW+20, HSMS16, HH23,
HFA+14, HHC+16b, IB23, JSZ+19, JAD19,
JGX+18, JBCS16, KSS16, KR18, KH23,
KB17, LN19, dFMAdN12, LXL15, LX16, LOF20, MM16,
MZG15, MCG22, MAW22, MSM21, NFL+22,
OSF19, Pau14, PSDK1, PJT+23, PRNC17,
RG14, RMBK17, SK23, SCG15, SMR15,
SE10, SP19a, SP20, SLCS16, SCS16, SL+17,
SC+24, SGW+16, SD17, TSP15, TKT15,
UBF+16, WDJ+18, WMGR12, WHN+17,
WGN23, XSP22, XQQ+24, ZDZ14, ZWK23,
ZPZG17, ZIC+17, ZSJ12, AMC06, AF14,
AF13, ABC+07, ABJ+09, AGF08,
Relation [VAHC+06]. Relational [CMS17].
Relations [SE17]. Relaying [WLHC18].
Reliability [BHD15, BDG15, DHB+23, KRS+16, LCY+22, MB10, NASM18, PRK15, SRNW16, WDM17, WLC+18, ZSEP21, Zhu10, CYKH13, RP11].
Reliability-Aware [KRS+16, NASM18, ZSEP21, Zhu10].
renewable [MKD13]. ReNoC [SSS11].
rental [KHH14]. reordering [GRV12].
reorganization [LCJ13]. Repair [AAS18].
REPAIRS [TJ23]. replacement [RG13].
replay [RAK14]. replication [FS14].
Reporting [MWF+16]. Representation [ADJM19, CAP15, KPK+19, NWA12, RMBS20, YLW15, TKD07].
Representative [LLW+17]. reprogrammable [PO05].
Reprogramming [WLH+18, DLC+14].
Request [BJP24, BCS+23, MBJ+23, SSK23, TTA+20].
Request-Response [BJP24].
Requirement [DHF18, HPP17, LPFL16, LLN+14].
Requirement-Aware [HPP17]. requirements [GFC+10, UCK+09].
requiring [KHH14]. ReRAM [LCY+22].
ReRAM-based [LCY+22]. rerouting [SRJS+13b]. Research
resolution [GJ13, LG21, PO05].
Resonance [CPP+17]. Resource
[ADJM19, BT22, BMF15, CKN+20, CWH+23, CZH+24, DCZB19, DWRR14, HRH+22, HZH+18, IDO+22, KKS16, LX12, LX22, LVSVFRCG23, LC17, LZZ17, MMY+19, MFG17, MPPF19, NFL+22, NEP23, PS19, REPL15, SPT+21, SCA+24, TLM15, TMXS17, TAMS18, ZGZ15, ZBG20, ZLX+23, ZSH+19, AF14, BMM13, CHCC13, FF09, GFC+10, HE12, MPZS13, TSG10, UCK+09, WRJL06, Wu10, ZB13, ZMB03, ZLF13]. Resource-Aware [TLM15]. Resource-Constrained
Resource-Efficient
[DCZB19, LX22, PS19, BT22]. resource-limited [Wu10]. Resources
[JSDF23, RJM19, SP12, NBGS09]. Response
[BJP24, BE17, MBJ+23, SE17, ZLL+19, FF09]. Response-Time [SE17]. responsive
[SPP+10]. Resprinting [TBCB15].
Restoring [RPB+19]. restricted [LYL13].
Results [RCD24, GT05]. Retaining
[LKH16]. Retargetable [LPD+20, RDM06].
Retargeting [MFMA17]. Retention
[JRR16]. Rethinking [Shu20b, WWT+22]. retiming [XHSS10]. Retransmissions
[RN18]. Retrieval [KNL12]. Reuse
[DPNA16, HDZL20, SA21, BCS+06, HKV105]. Reverse [HMR23].
Reverse-Engineering [HMR23]. Review
[HR23]. Revisited [BBD12]. rewards
[RMM03]. ReWire [PHG+17]. Rewiring
[KFY+22]. RF4CE [LCQ+13].
RF4CE-based [LCQ+13]. RFID
[LHYQ18, WH17, WXY+18, WYL+19].
RFIDs [CBS19, WLH+18]. Rich [GSS+18].
Rider [MFMA17]. Rigorous
[JRK+13, NBM+16, STW13]. Ring
[NVB+20, BP14, CKT+13]. Ring-LWE
Robust

[MBKF15, MMY] Robust [RMK17].

Risk

[NVB+20]. ring-mesh [BP14]. RISC

[KSFS24, IWS+23]. RISC-V [KSFS24].

RISE

[COC22, LJMP23, RHG+14]. Risk-Aware

[CO22], Risks [Shu17b], RLUTs

[RBNM19]. RMW [MSHS19]. RMW-F

[MSHS19]. RMW-Free [MSHS19]. Robot

[GMS17, IWL+16, SLFC19]. Robotics

[Shu18b]. Robots [EMVR23, GPT+23].

Robustness

[KH23, RLM+23, Shu19a, ZSM13]. ROS

[SLFC19]. ROSES [WC07], Rotating

[SBK+23]. Rotation [SPC+16].

Rotation-Based [SPC+16]. Round

[CLLC17]. Round-trip [CLLC17]. Router

[FGPS22, YZA13]. Routerless [IB23].

Routing

[DGC+20, GDP+20, LLT+17, ZSEP21, CCY+13, JGD+09, PS08b, SJRS+13a].

Rovers [LMS+19]. RQNoC [MST+16].

RSA [KHHH14]. RSIM [LCY+22]. RSU

[SAS+23]. RT [DSB17, WLC+18].

RT-WiFi-Based [WLC+18]. RTL

[AGG+23, CMK12, PMP17]. RTOS

[DHL17, DLD+19, HDR+06, TBFR17].

RTOS-Aware [DHL17]. RTSJ [ZW10].

Rule [GZZ+16, FZHT13]. rule-based

[FZHT13]. Rules [STH17]. Run

[MSP+22, OMMK23, SPB+17, YGD+19, BCS+06, GNS04, HMMC04]. Run-Time

[MSP+22, OMMK23, SPB+17, WGC+18, BCS+06, GNS04, HMMC04]. Runs [ACR17].

RunStream [KPC+16]. Runtime

[BKG+23, BMF15, CLL21, DAHM16, DSXS15, GSC19, HKC18, HHC+16b, KML13, LKA+18, LL18, MHK+23, MDS+21, MWS15, MBKF15, MMY+19, NEP23, PRS+17, TDD+16, TAMS18, WNW23, WCM+16, YMKH23, ZJC+17, CCY+13, LOG+14, LPGF13, MPZS13, MF13, PB14, SB08, STY+14, YCNCC11, ZBCM09, AVF+09].

Runtime-reconfigurable [YMKH23].

RVS [RMS20].

S [Sus20]. S3PR [WWY13]. SA [GQC+17].

Safe [ASWZ24, RB21, VVKG23, ZCS+05].

SAFE-OPS [ZCS+05]. Safely [SWL07].

Safety

[HHAC15, BGO17, DBH+23, ESBK23, GZ12, HCL+17, IPL16, ICW+21, KWKW23, KRR+20, LS20, PJJ+14, RS07, TCD+19, YLW15, ASTPH10, CMA05, DKAL05].

Safety-Critical

[IPL16, KWKW23, LS20, PJJ+14, ASTPH10].

Salesman [Ahm13]. Sample

[LYY+17, ZTT+19]. Samples [PE23].

Sampling [CZH23]. SAT

[AAS18, KDR23]. SAT-Reach [KDR23].

satellite [MB10]. Satisfaction [YF19].

Saver [LKH16, ISG03]. savings [SVN04].

Saving [RH23]. Scaffolded [GK22].

Scalability [HPBL12, WMRI17, Bec09].

Scalable

[AGS+16, ABH+18, HPLD09, JAD19, MBR15, PAF22, PYJL15, SE07, KYHY14, LCJ13, RGdZ14, SAHE04, TLLL09]. Scale

[ABH+18, CBJ17, JGG+18, MRA+17, QRW+24, HHH+05, LZZ+23, PS08b].

Scaling [BFW+19, CRRC13, JRR+16, RB21, YGW+12, MMR+10]. SCCharts [SROM21].

Scenario

[CBS19, MBBP+22], scenarios

[Ge10]. SCEst [SMR+18]. Schedulability

[ARS16, AFMT17, AKD+18, GE18, LZZ+18, MEF04, PS021, PE05, SD17, ZB13, AF14, AFL13, BC07]. Schedulability-driven

[PE05]. Schedule

[RLL+23, SE23, WLC+18, QH07, SAHE04].

Schedule-Based [RLL+23]. scheduled

[DF14, ZB13]. Scheduler [SSS23, VGB19], schedulers [SMG04], schedules

[KMB07, SKL10]. Scheduling

[ARS16, AKTM16, ABS+19, BMAB16, ...]
BZG19, BGK+23, BE17, BGS+18, CPC17, CC13a, CLJ+19, COC22, CHJ22, CAPI11, DBM+15, DLRTB+19, DSB17, EMVR23, FHB+17, GDD17, GDD20, GWZ16, GE18, HQE20, HGW+20, HSM16, HDR+06, HTC+16, IPEP12, JCW+16, JZL+15, JGQ+18, KGT+23, KB23, LPC+17, LSC19, LJ17, LH18, LSL+23, LLZ+22, LWB18, LHL+19, LNN+14, LX16, LLZ+17, MS21, MG15, MSM21, NPL+22, PCGD21, RLL+23, RDP17, RDS12, SMW+17, SP19a, SP20, SLCS16, SWX17, SD17, SAS+23, TGV12, TBC+17, TLBL15, TGTT17, WVG+17, WHN+17, WJ+18, ZZG24, ZGZ15, ZQGZ22, ZLX+23, ZLL+19, ZSEP21, BvB13, CACP12, DKV14, FZH13, GNW05, HGL14, IHK04, JP14, KBDV08, LP10, LES14, LQN+13, MTL14, MBFSV07, MALM04, MKD13, NBGS09, NB04, PW13, RGSS04, SL08, SC05, TTAG14, WRJL06, XQ07, XHS10, YK03, ZW10, ZC04a, ZM07, ZC08.

Scheme [DS11, HHL+23b, KPS23, KJKM16, KN+17, KCC+16, LX12, LCC+19, LZS+18, LLC+22, LLT+17, PC14, PJS15, RBNM19, TAM18, WZY+23, WZD+17, YCT16, ABS02, BS13a, CHCC13, CTK+13, JKJ+10, VS08, WSK14].

Schemes [BSJ15, HPO+15, MKASJ18, RCD24, HL14, SKPL10]. **Schizoid** [Shu15d]. **schizophrenic** [YKK+13].

Science [Shu16c]. **SCOPES’09** [FM12].

ScorePlus [TSY+16]. **SCPS’09** [DS12].

scratch [ABS02, NDB09, UDB06].

scratch-pad [NDB09, UDB06].

scratch-pad-based [ABS02]. **Scratchpad** [JLW+15, KBS17, LXX10, PVS22, Sus20, VCM19, WSMF22, BCDH12, CC13a, ELS08, HZK+14].

Scratchpad-Memory [VCM19].

screening [GJ13]. **Scriptable** [MWF+16].

SDC [LJLJ17, LLP+17, YZZG23].

SDC-causing [LLP+17]. **SDF** [TBG+13].

SDmesh [DGC+20]. **SDRAM** [SJC+03, TVK08]. **Sea** [LYL13]. **Seamless** [WJ17, ISE10]. **SEAMS** [MDS+21].

Securely [WX+17].

Security [AYS15, BCHL19, CPP+17, CFXY17, FSG23, GQC+17, GSC19, KS22, LJP17, LZZ+19, MCS+15, PTK23, PNRC17, RRKH04, RLL+23, SCDK23, Shu15b, Shu16b, Shu16d, Shu17b, Shu17c, Shu18b, Shu18c, Shu19b, TP19, TAB17, TP20, VKGD19, WGP04, ZY+17, CVG+13, PS04, SL04, VS08, XQ07, ZCS+05].

Security-Aware [FSG23, GQC+17, LJP17, RLL+23, TAB17].

Security-Critical [ZY+17]. **See** [WX+18]. **See-through-Wall** [WX+18].

Segment [HSM16, TBEP16].

Segment-Based [HSM16]. **Segmentation** [GGJ12, VAR13]. **Segmented** [FGPS22].

seizures [MVS+13]. **Selection** [ABSZ+19, AABG22, BCLS17, DLD+19, GPB+17, KAKSP15, KBRD22, MTWE20, ZRF+12, BMS13, LSC14, LXL13, SWT+14, SBX08].

Selective [CSCC17, KKL+16, LLPM07, Gar05].

Self [BLG+15, BHET04, CLL+18, DJS16, LYC+18, MDS+21, RJ19, TMX17, TS12, TBCGO23, WHL23, YYYK18, DEG11, GLT+13, GNR+10, WYJ+14, Wu10, ZVL04]. **Self-Adaptive** [RJM19, YYYK18, DEG11]. **self-adjusting** [Wu10]. **Self-aware** [DJS16, GNR+10].

Self-Configuring

Sensor [ABC+14, BGGT23, BS13b, CTK16]

Sensor-Based [LX22]. Sensors [ABTS24, DL12, GSS+18, HZYJ22, HXH+24, HZW+23, PP12, WJ17, CNC13, LY13, NRL13]. Sensory [MMA+23].

Sentries [Shu16b]. Sequence [LL18, ZW13].

Sequential [GH16b, LCC+19, MKR13].

Sequential-write-constrained [LCC+19].

Sequentialization [WCM+16].

Sequentially [SMR+18]. Serial [LS17, MKS23, PYL+23, RML04a]. Series [BT22]. Server [ABS+19, BE17, GMS17, MALM04].

Serverless [CBS19]. Servers [AHMT17].

Service [LAZ+16, MST+16, WSMF22, BDP+13, LCJ13, WP11]. Services [JCW+16, KBCL13, PCBW13, SRY13, WTSR13]. Serving [MMA+23].

Set [AJ18, DB19, Fra12, GD19, LTQ+24, AC08, LLPM07, MBFT09, RDM06, RMD09]. Sets [BB15]. SFA [PC14]. SG [WHL23].

SG-Float [WHL23]. SHA256 [GWM16].

Shader [YC16, YW13]. Shading [BCS16].

shadowing [LHX+14]. Shamir [VS08].

shapers [WMT12]. Shaping [OSF19, RC08]. Shared [CH08, JSB23, KR18, KRS+16, MBJ+23, NS16, SP12, TGBT17, VGN18, WJZ+18, ZGH+19, LPB06, PLKH08, SE10].

shared-memory [LPB06]. Sharing [LJZ17, RKK15, SDBD18, VKV+17, VSD+17, BZ13, MSB08, PS08b, ZB13].

SHARP [ARZ+23]. ShaVe [SDBD18].

ShaVo-ICE [SDBD18]. Shift [CDX+19].

Shift-based [CDX+19]. Shingled [CCSC23, CCC+20, LCC+19]. Shortest [GNW05]. Shortest-path [GNW05]. shot [FLF+23]. should [GT05].

Shrunk [ZGH+19].

Side [AAT+21, GW15, GW16, HMLZ21, IYL+23, JGCS24, MKW+24, RCD24].

Side-Channel [AAT+21, GW15, GW16, HMLZ21, JGCS24, IYL+23, MKS24, MKW+24, RCD24].

sifting [AP09]. Signal [DVC21, HW17, SLK+22, SRA12, ZO16, AMN+14, BDB+17, GJ13].

Signals [CCP+19]. Signature [FLF+23, HPO+15, HHL+23b, KKS+23, ZSY19, DLN13].

signature-based [DLN13]. Signatures [ABC+17, AYS15, KSFS24, MKAA17, THG24].

SIKE [EKAK24, SSA21].

Silicon [ASS+23, MCM16, THA+12, AKB14].

SIMD [FSC+16, HLF+18, SFZX18].

similarity [HE12, LLR14]. Simon...
[AMKA17]. Simple [SEB12]. Simplex [JBCS16]. Simulating [WRKG16].

Simulation [AVR12, BSM+21, CD19, FKJM18, GD14, LCY+22, MRA+17, RG14, SXM+18, VF17, WMLA16, ZJC+17, MMSN14, RDM06, RMD09].

Simulation-based [GD14]. Simulation-Driven [FKJM18]. simulator [CMP+07]. Simulators [Fra12, SWL+14].

Simulink [BCC+17, DP08, HY+15, TSC05].

Simultaneous [BKS+23, LRZ16, TTAG14, OOA06]. simultaneously [LOXL13]. Single [LMS+19, MM16, PC14, WZM17, ZW17, KMB07]. Single- [LMS+19].

Sleep [JRR1]. Sleep-Mode [JRR1]. sliced [SSS24]. Slicing [YKD+24]. Sliding [GW15]. SLISCP [ARH+18].

SLISCP-light [ARH+18]. Slotless [PAS+09]. SM2 [ZSH+19]. Small [HIJ19, SRG+15, Shu16c].

Smart [BCS16, BSJ15, CYH20, DJS16, HDG+14, LTT+17, MFG16, SCR16, TSY+16, VP16, CHCC13, DEG11, DZR09, Edi14, LWK+10, MSCJ12, SCF12]. SmartLMK [KJKM16].

Smartphone [GW15]. Smartphones [SPT+21, SKK+14, ESM+17].

Smartwatches [AMJ21]. Smooth [SGJ17].

SMR [CCC+20, MS19, WLTW24]. SMT [PMM+13]. Snake [BCS16]. Snake-like [BCS16]. Snapshot [LLN+14]. SoC [DJS16, GSC19, JM06, JBN+13, KKO+06, LLP+21, LHM14, MKMGS18, PÖG+13, RH23, TKL+15, YCNCC11, ZDTM19].

Social [ZYM16, ZYL+17]. Society [Shu20a].

Socioecological [LAZ+16]. SoCs [BCS+23, COC22, DSXS+14, HSK18, ISE10, RPB+19, RJM19, VKW+17, XDL+18]. Soft [FND+16, KKL+16, KJ+17b, LLT17, OSA+18, RJS19, SSK23, SUS+17, TP16, WMGR12, HLD+09, MMSN14, MEP08, SM13a]. Soft-Error [OSA+18, SUS+17]. soft-object [MMSN14]. Softcore [AZS+23].

SoftRM [TMXS17]. Software [Akd21, BVM19, CAP15, CMP17, Dee06, DBFH14, EMVR23, GLC07, GDC19, HCS+22, JLP18, JNI15, KE15, KKL+16, LS13, LLG+20, LMK+18, LBS15, MBLA16, OBA+17, PJS15, SWJ+13, Seo18, SISS24, SCM20, SD13, SLFC19, TSY+16, TBBd11, VGN18, VKMP20, WQGR22, YMBH19, YGD+17, ZPZG17, ZQC16, ARJ08, ARJ11, BCLN13, BSL13a, BMS13, CMV10, CSV+05, DZR09, FRRJ07, FZJO8, HG09, HFG13, HQB06, HKLH05, JR20, JM06, KMB07, KASD07, LOG+14, LJ12, LWK+10, MRT13, MLV09, OP06, PGR+08, RP11, Sdo07, Sch10, SMG04, SB08, SE07, SVN+04, SBF+05, WCJ07, ZCS+05, ZXS03].

Software-Hardware [TSY+16]. Software-Managed [HCS+22].

Software-only [GDC19, BS13a]. software-pipelined [ZXS03]. Solar [ABD+19, JC12, MBB+15, SKN17, SLS+19, TSW+17]. Solar-Powered [TSW+17, MBB+15]. Solid [HWLT23, YWLN23, CCH13, CW14].

REPL15, RHG+12, RRM16, RLP+21, RHG+14, RDDS21, SSK23, SG24, SE23, SMW+17, SCG15, SMR15, SR12b, SWL+23, SP19a, SSPP23, SDBD18, SCZ20a, SCZ20b, SZL+17, Shu15a, Shu15d, Shu16a, Shu16c, Shu16d, Shu18d, Shu19d, SRR+23, SPGT19, SGJ17, SMR20, SXXS+16b, SLFC19, SC816, SLE+17, TSP15, TABS17, TGV12, TJ23, TCD+19, TFL16, USA+22, VVKG23, VWG+17, VP16, VM23, WDJ+18, WMGR12, WDI+16, WCK+19, WYL+19, WZBP19, WRK16, WLC+18, WLC+22, WQGR22, WSMF22, WMLMI2, XSP22, KKK17, YC12, YLW15, YCT16.

Systems

[YHL23, ZYM16, ZYL+17, ZWK23, ZBG20, ZQD+23, ZJC+17, ZLX+23, ZQC16, ARJ08, ARJ11, ASTPH10, AF14, ADJ06, AFL13, ABS02, AEF+14, BYD09, BCDH12, BWS14, BP05, Bar13a, BCC+08, BMM13, BBL09, BCS+06, BFQ10, BCG+07, BHE04, CAM05, CCA+13, CSV+05, CKL04, CWKH12, CYKH13, CCY+13, yCBR05, CRJ10, CMB05, CRM14, CGV10, CVC+13, CHTC07, DKV14, DDG+13, DF14, DEG11, DW10, DRL+10, ELS08, ESAS14, FZJ08, FS14, FC13, Gb06, GJ13, GMOB13, GD14, GRCV03, GT05, GM03, GNR+10, Gup04, GKW08, HCK+08, HK08, HTLC10, HLD+09, HQL07, HCO+14, Hib13, ISG03, JLSK13, JKH+13, KST+12, KBCL13, KKH+12, LB04, LDRM12, LMST04, LS+08, LK10, LWL13, LP09a, LLR14, LPFG13, LOXL13, LHX+14, LHM14, MBFSV07, MRY+10, MSB08, MLL08, MKD13, MSL13, NKP+12, NDB09, PLKH08, PEP05, QH07, RP03, RV03, RS07].

systems [RRKH04, RSB+09, SWT+14, Sch07, SE10, SAHE04, SRS03, SL04, SJC+03, ST05, Shu14b, STW13, SVN04, SC05, SBF+05, TRJ05, TM07, TXL+12, TKG13, TSG10, TVK08, VAH+06, VS05, VHB+13, VGG+13, WMT12, WP11, WLT12, WRJL06, WKC07, Wu10, WMZY13, XQ07, YDLC10b, YRS12, YK03, ZC04b, ZVL04, ZVN05, ZSM13, ZB13, ZP08, ZP09, Zha10, ZZZ+12, ZC08, KL13].

Systems-on-Chip

[CEC23, KS18, WRKG16, GNR+10].

Systolic [YZZ+23, ZRZ+19, WL09].

TAB [ZDL22]. Table [KKS+23, PLT23, RR17, VKW+17, WLW15, YCLV+02].

Table-based [KKS+23, PLT23]. Tableau [BRR19]. Tail [KSY17, WLWT24, LJJT17]. Tail-DMR [LJJT17]. Tailor [PDL+23].

Tailor-made [PDL+23]. Tailoring [ZGH+19].
Taiwan [HKLH05]. TAMA [ABF+21]. Tame [BJT+23]. Taming [UGS+21]. target [ZC04c]. Task

[AR14, BGK+23, CPC17, CZH+24, GMS17, HLLL20, LCP+17, dFAMN12, MTL14, MEO08, NASM18, OHC24, PCDG21, QP15, RN14, RDS21, SMW+17, SMR15, SE17, SLS+19, SGW+16, TLM15, WHN+17, XSP22, ZW17, ZLX+23, Bar13a, DKV14, ESAS14, HWC+20, KL10, LQN+13, LOF20, MEP04, TTAG14, WBS10, ZP09, ZZZ+12, ZC08, TG+17]. Task-FIFO

[TBG+17]. Tasks [ARS16, AKD+18, BAC+20, BGS+18, CLJ+19, FHB+17, HQE20, LJP17, LLZ+17, MBP14, NFL+22, PSD21, SS12, SPT+23, SD17, WHN+17, XZK+19, ZLL+19, GNV05, HGL14, LP10, MALM04, SPP+10, XQ07, CZQ4a, ZQ08].

taught [GT05]. Taxicab [ZWH+16]. TBES [CDH+16]. TCAM [SVS21].

TCAM-based [SVS21]. TCX [LWG+23]. TDES [DSB17].

Team [HB16]. Techniques [BRR19, DJ23, HPS13, LX16, SFB23, YCK+18, BMS13, JGD+09, ÖNG08, RP11, RMD09, ZXS03].

Techniques [ABS+19, JEP16, KKK+11, KKL+16, KDN+07, LEP13, LBS15, MCG22, OMMK23, SWJ+13, AP09, AFL13, BMP03, EAS14, KM09, KK05b, SAYN09].

Technologies

[ZQC16, BMO03, HTLC10, WP11].

Technology
[CCSC23, SBDK22, DWCM14, SBF+05].

TECS [DST19, Mit21, TEC12, CJL17, CGZ18, SCKD23, Shu20b]. telecom [YCLV+02], Telomere [MAW22].

Temperature [BGO17, HDG+14, JLW+15, NZCS19, SP19b, HCQ+14, KT14, LOXL13, TSBY13].

Tensor [CLW+20, HRH+22, KRHC20, LMS+22, LWS+23]. Tensor-Compressed [CLW+20]. TensorRT [JKH22].

TensorRT-Based [JKH22]. Term [GSS+18, JC+12, DLC+14]. Terminal [CLW+20]. terminals [ISTE08, ISE10].

Termination [PYL+23]. Ternary [ZDL22]. TESLA [LN04]. Test [CMK12, FKS+19, GE18, KPK+19, MKMG+18, MKM+23b, SPDLK+17, SMZ+21, SHK+19, TSW+17, BMS13, KM09].

Test-case [FKS+19]. Test-Driven [MKMG+18]. Test-pattern [KPK+19].

Theoretical [CZH+24, MTL14]. Theory [CCKM16, Cul13, HB16, KMP15, KB17, MHT13, SCZ20a, SCZ20b, WDJ+16, MRT13, BSBR+09]. Thermal [ARS16, AHMT17, DAHM16, DLRTB+19, FS13, HFA+14, HH13, LSC19, LQ+13, LLG+20, SSPP+23, SP19b, SBK+23, CCY+13].

Thermal-Aware [FS13, LSC19, DLRTB+19, HH13, LQ+13].

Thermal-Resilient [HFA+14]. Things [KLK24, BCLH19, BHXP19, BGJ17, RRM16, SXH+19, Shu15a, ZSY19]. Thou [Shu15b]. Thread [MFG17, PLM+15, SPB+17, ZP11, CRAJ10, Dea06, KASD07, SD13]. Threaded [VCM19, WZM17]. thReads [LK14].

Threat [CLL21, Geb04]. Threshold [GWZ16]. Thresholds [ZGZ15].

Through-Silicon [MSCS16]. Throughput [AV20, HG09, HFG13, HCQ+14, KB23, LS17, LX16, MCM+17, WLK+19, ZDTM19, AÖÖ+23, THON+12, WBS10].

Throughput-Buffering [KB23]. throughput-constrained [WBS10]. Throughput-driven [HG09].

Throughput-memory [HFG13].

Tightening [RM10, RDP17]. Tightly [WWHT21], tile [Mus10]. tile-based [Mus10].

Tiling [VGN18, KK05a]. Time [ARS16, AbSZ+19, AC17, AYS15, BT22, BMAB16, BB16, BE17, BS18+18, BB13, BB15, BYG21, BMMV21, CDBB24, CQV+13, CKGN14, CWZ+20, CS+22, CHJ22, CLS16, CQB+15, DHL17, DJZ13, EVS+17, FB16, GAD+24, GAG15, GZZ+16, GE18, GUC+23, HGW+20, HSMS16, HH23, HFA+14, HH+16, IB23, JSZ+19, JAD19, JGX+18, JB16, KSS16, KCJ+16, KJKM16, KR18, KMP15, KH23, KKB+23, KB17, LCD18, LN19, dFMAdN12, LSL15, LX16, LL18, MM16, MZG15, MSSP22, MAW22, NPAG12, OSF19, OMMK23, Pau14, PSD21, PJT+23, PNRC17, REPL15, RG14, RMK15, SCG15, SM16, SE17, SP19a, Shu20b, SPB+17, SLCS16, SCS16, SL+17, SGW+16, SD17, TSP+15, TK15, UBF+16, WDJ+18, WMGR12, WNH+17, WWG+18, WGN23, WZ12, XLY18, XQQ+24, YGD+19, ZDT14, ZPG21, ZJC+17, ZLL+19, ZSEP21, ZSJ12.
AC08, AMCM06, AF14, AFL13]. **time**

ABC+07, ABI+09, AFG08, BZG19,
BVGV010, BFST19, BAG+20, BBL09,
BSC+06, CMV10, CKL04, CHK14b, CRJ10,
CRM14, CHTC07, CCAP12, CAA+24,
CRAJ10, DVC+07, DLLRTB+19, DF14,
DSW+09, DW10, ESBD23, FHK21, GNW05,
GHB13, GNS04, HQE20, HMM04, HT06,
HTLC10, HBB+12, HCQ+14, KBDV08,
KW10, KASD07, KTT13, LG21, LSK+08,
LES14, LQN+13, LRR14, LHX+14, LOF20,
MMSN14, MEP08, MRY+10, MMS+13,
MALM04, MAG14, MCG22, MLLO8,
MSS12, MKD13, DWC14, NDB09,
NFL+22, NNI+14, PPM+13, PAP+12,
PL10, PS10, QH07, RMM03, SSK23, SE10,
SP10, SKPL10, SP20, SL08, SE07, SCA+24,
SC05, TM07, TTAG14, TSCC05, UDB06,
WMT12, WP11, WAD14, WEE+08, XSP22,
YZ08, YK03, ZC04a, ZC04b, ZB13, ZW23,
ZX08, ZJZL20, Zhu10, ZZZ+12]. **time-**

KASD07]. **time-aware**

GHB13]. **TinyOS**

GLC07, McI13, MLV09]. **TIOA**

KK16]. **Tissue**

VVKG23], **TLB** [ZLL+18]. **TLC**

Kwo16]. **TLC-Based** [Kwo16]. **TLM**

BQ10, CMK12, CD19, LLCA+13]. **TLM-2.0**

CD19]. **TM** [PMM+17]. **Tolerance**

[GAS+17, LPE+23, MAGR15,
PMM+17, XKK17, AFG08, ZC04b]. **Tolerant**

BHD15, CPC17, DSB17, IPEP12,
MCP17, SA18, SSH14, TMX17, WDM17,
BGD14, JGD+09, LLR14, PS08a, PAP+12,
RMM04b, TAP23, VSS13]. **Tomahawk**

[AMN+14]. **Tool** [BKMG12, BGRV15,
BMB16, MFMA17, ZLL+18, CCA+13,
GGBK08, IBMK10, LAN06, PJL+14]. **Tools**

[SCZ20a, SCZ20b, LP09a, WEE+08]. **Toolset**

[LL15]. **Topologies** [BCS16]. **torque**

[ZBC16]. **Trace**

[LL15, MZG14, UM13]. **Trace-Based**

[LL15]. **Traces**

[ABF15, MZG15, NCJF18, SFB23]. **Tracing**

[PM19, SK19, ZLL+18, ZCHE13]. **tracking**

[ZHM+14]. **Tractable**

[AF14]. **Trade**

[CRCR13, IPEP12, KB23, LDV12,
MCM+17, ZRF+12, CLKR13, GFC+10,
HFG13, SD10, SM13]. **Trade-Off**

[KB23, ZRF+12, CRKR13, CLKR13, HFG13, SD10]. **Trade-Offs**

[IPEP12, MCM+17, LDV12,
GFC+10, SM13]. **Tradeoff**

[JBDD20, MLR+17]. **tradeoffs** [LP06]. **Trades**

[OSA+18]. **Trading** [XQQ+24]. "**Traffic**" [MAK10, OSF19, OHK24,
WRB15, YFPJ14]. **Trainable** [PKL22].
Training [GK22, HY22, HWC12,
MCM+17, ZRF+12, CLKR13, GFC+10,
HFG13, SD10, SM13]. **Transfer**

[BB16, NPAG12]. **Time/Run**

[WWG+18]. **Time/Run-Time**

[WWG+18]. **Timed**

[DLRTB+19, Ise17, NCJF18, BS13b].
Timeliness [YGD+19]. **Timely**

[HIL+23, SHL+17]. **timeout** [KR14].
Times [AKD+18, PE23, DW10, MEP04].
Timestamp [IKS+17]. **Timing**

[BS22, CD17, CLJ+19, DVC19, EYG+23,
GCU+23, MBKF15, MKS+17, SE23, SK13,
TM07, TBP16, WMRB17, ZW23,
AEF+14, CCB+06, LRL14, MRR+10,
TSBY13, VLB07, YRF00, SAM06].
Timing-Anomaly [CLJ+19]. **Tiny**

[CRC03]. **TinyOS**

[GLC07, McI13, MLV09]. **TIOA** [KSS16].
Tissue [VVKG23], **TLB** [ZLL+18]. **TLC**

[Kwo16]. **TLC-Based** [Kwo16]. **TLM**

[BQ10, CMK12, CD19, LLCA+13]. **TLM-2.0**

[CD19]. **TM** [PMM+17]. **Tolerance**

[GAS+17, LPE+23, MAGR15,
Transition-Based [HPS13], Translating [TSCC05]. Translation [CYH+17, CCC+20, HLF+18, JKJ+10, KPK+19, Kwo16, PWL+19, BCDH12, CYKH13, LPC+07, PJL+14, PCK+08, Wu10, ZP08].

Transmission
[GQC+17, QRB10, RN18, WLHC18].

Transparency [IPEP12].

Transparency/Performance [IPEP12].

Transport [AAPN14, CCY+18, LH18, RBNM19, Shu18d, Wk16].

Transport-layer-assisted [CCY+18, RHG+22, MKS+23].

Trusted
[ABF+21, Tutorial [CK23, GV21a, GLS+23, PKT23], Tutorials [SCKD23], TV [JMO14, KSK13, RMS21].

Tweakable [MKASJ18].

Two
[AR14, LH18, RBNM19, JB02, JB03, WL09].

Two-dimensional [WL09].

Two-party [RBNM19], Two-Phase [LH18].

Two-Type [AR14].

TV
[DX2 [DZL+22], Týcho [CJ20].

Type
[AR14].

TPM
[SPT+21].

Truthful
[XQ+24], TSCH [GAD+24], TSN [PE23], TTL [MKJ+17].

Two
[AR14, LH18, RBNM19, JB02, JB03, WL09].

Two-party [RBNM19], Two-Phase [LH18].

Two-Type [AR14].

Type
[AR14].

TV
[SPT+21].

Ubiquitous
[BD+13].

Ultra
[ABL+20, BHD15, BDB+17, BTA+19, DBH14, GJ13, JRR16, PKIT23, TT23].

Ultra-Low
[BTA+19, JRR16, DBB+17].

Ultra-Low-Energy
[ABL+20].

Ultra-low-power
[DBH14, PKIT23, TT23].

ULM
[KKO+06].

Uncertain
[CK+22].

Uncertainties
[GD19].

Undergraduate
[KCG+05].

Underminer
[BD+18].

Understanding
[ALZR+19, CKN+20].

Unequal
[YC12].

Unfoldings
[MBF+17].

Unified
[CC+14, FMS+15, GOC+22, KKS+16, PKL+22, SSPP+23, TVG+12, VDG+19, YDS+22, ZDL+22, KXL+10, OMA+13, SB08].

Uniform
[HWG+20].

Unintentional
[ISOD21].

Uniprocessor
[MBFSV+07].

Units
[AG+23, FGL+19, MKS+23].

Universal
[BCL+17, SCR+16].

Unknown
[NDB+09].

Unnecessary
[Mus+03].

Unreliable
[BHAC+15].

Update
[HZ+15, TM+15, YCT+16, WLH+16].

Uploading
[EMVR+23, YM+19].

Updating
[KLK+24, SH+15, KL+14, OMA+14].

UPP2SF
[P+IL+14].

UPPAAL
[KSSF+16, BGVZ+11, BS+13b].

Usage
[IS+21, WGN+23].

Upon
[Bar13a].

UPPAAL
[KSSF+16, BGVZ+11, BS+13b].

Usage
[IS+21, WGN+23].

Upon
[Bar13a].

User
[U+IA+14].

User-Profile-Driven
[WB+16].

User-specific
[GDB+22].

Users
[WB+16].
[Li21, YTL+20]. Using
[AK21, AHM19, ADH+23, AR14, BHD15, BRR19, BMF15, BHP19, BAR13c, BS22, CL13, CRCR13, CMP17, DLLRT+19, DVC21, DL12, FKJ18, FGL+19, FL17, GSS+18, GZZ+16, GLS+23, GGJ12, HDZL20, HB16, HPS13, HCL+17, HZW+23, IYL+23, JLSF18, KK+11, LHP+23, LPP+21, MSH19, MM16, MMK22, MV16, MSD17, NS17, NWA12, NGL17, NDZ13, OHCK24, Pau14, PRM21, PP12, PLT23, QWY+18, RC17, RB21, SOL+16, SK19, SR12b, SMZ+21, SKN17, SP19b, SIC19, SLE+17, VF17, WWTSM19, WRB15, WZH13, WHL23, YF19, ZWH+16, ALZ19, ASS+23, BJ23, BSKB+09, BMNN23, BAR13b, BGVZ11, BCS+06, CLR05, DNNP14, GGK08, HMM04, HPLD09, KBDV08, KMB07, KM09, KASD07, KTT13, LPC+07, LML+23, MSCJ12, MMS06, MSR+17, MDM04, MKM+23b, MSH+14, NKP+12, NRL13, OBA+17, OMA+13, OOA06, OP06, PJL+14, PSZ12b, SHME13, SSB24, SB08, SWWY13]. Using [TSG10, UDB06, WCJ07, WMRB17, ZKGC05].

Utility

[PSZ12a, PAP+12, BJM13, SGT+13]. Variability-Aware [PSZ12a]. Variability-tolerant [PAP+12]. Variable [CD19, GVS+20, MWS15, SR12a, BAR13b, KD08, KK05b, LXL13, OOA06]. variable-length [BAR13b, KD08]. Variant [WCB20]. Variation
[BTL+12, MASP15, WD17, MAG14]. Variations [GM12, REPL15]. Varying

Verification
[CMA05, CD17, DJZ13, DHP18, GHR15, GZ12, HCL+17, Ise17, KL13, LMK+18, LHL+19, LML20, PNR17, SSB24, SVZ13, TCD+19, WZBP19, WMLM12, YLW15, ZJC+17, ZZA+22, ASTPH10, GD14, PB14, PS08a, RS07, RBS+10]. Verified
[FKS+19, LSL+23, MCS16, AMJ21, AAS18, CZ23, CBRZ19, FS13, Gao05, HLF+18, HKL+23, HZW+23, ISD21, JBD20, LPF16, LXX0, LHYQ18, LLLJ17, LYY+17, MB16, PS08a, SC17, SP13, SSW23, SHQ19, TCB15, VKW+17, WRW+21, WLK+19, WCM+16, ZSQ+23]. Victim
[AK21]. Video [CLW+20, DDC+24, FS13, GDC19, JCW+16, KKD+12, LDV12, MYL+22, PFWY12, PCW13, PDB23, RML17, LC13, PO+13]. viewpoint
[MTL14]. Violations [CMP17]. ViPES
[CS16, Go14]. Virtual
[CMP17, DXXS+14, Go14, KCWH14, MBLA16, SL16, SLB+15, SBB24, SXSS+16b, SXMX+18, VKW+17, ABC+07, CH08, CGV10, NKP+12, ZP08, CS16]. Virtualization
[BE17, CWH+16, JAD19, KR18, LRZ16, PDL+23, SJRS+13a]. Virtualized
[SDBD18]. Virtualizing
[AKI+23]. VirtualSoC [BMB16]. Vision

Voltage [BHD15, JRR16, SWJ+13, YGW’12, CCP’19, IHK04, KK05b, LK10, MMR+10, SAHE04, YK03, ZC04a].

voltages [HQB06]. Volume [Ano13, Ano14, ZXCH13]. Voting [Shu18d].

VPO [KZH+06], vs [CRCR13, LAB+23].

Wait [CQB+15, OZ22]. Wait-Free [CQB+15, OZ22]. Waiting [GHR15].

Walking [VKW+17]. Wall [CDX+19, WXY+18]. Walsh [PBC22].

Walsh-Hadamard [PBC22]. Warbler [MFG16]. WARM [WCH+23].

WARM-tree [WCH’23]. warning [PL10]. warning-zone-length [PL10]. warp [LV09].

Wavelet-based [CCP+19, GFC+10].

WCET [BCD+22, BFL18, CCR+14, GLYY14, HXZ15, KBS17, SWX17].

WCET-Aware [KBS17, SWX17]. WCRT [SSK21, WMRB17, ZXK+19]. Weak [GHKS15]. Weakly [HQE20, PSD21, SD17].

Weakly-hard [HQE20]. Wear [HCS+22, JN15, CCH13, PMPP14].

weight-function [SWXY13]. wfspace [OZ22]. Where [Shu15b]. While [RDP17, JHK+06]. White [RIM21].

WHS’09 [NKS12]. WIA [GJX+18]. Wide [ZWH+16, ZX08]. WiFi [WLC+18].

Wildfire [TBCG03]. Will [BVM19].

Window [GW15, RLL+23]. Winograd [AABG22]. Wire [SA18]. Wireless [AZHC19, ABC+17, BTL+12, CLL+18, CNY13, DS11, FB16, HPBL12, HSR18, JGX+18, KKD+12, LOD18, MS21, MAGR15, PP12, TSW+17, VKDG19, YCK+18, ZZX+15, ZH12b, ZO16, CTK+13, CD10, CHTC07, DMC+14, GW08, GHZH14, HBSA04, JLSK13, KS10, KAK05, KXL10, KDN+07, MVS+13, MLV09, PC12, PS04, QR10, RGSS04, SWT+14, YGH08, ZWY+10, ZLF13]. WirelessHART [ZH+14]. Within [ZGZ15]. without [DKA05]. Witness [BMMV21]. Wits [SWJ+13]. Work [AOO23, LNA+15].

Write-Activity-Aware [WLWS15]. Write-efficient [WCH+23]. Write-Related [YWW23]. Writing [LCC+22]. WRNS [LS+18]. WSN [D12]. WSNs [BSA17, LJC+18, LLT+17].

REFERENCES

[THON12]. XScale
[CMP+07, VJD+07, VDK+08].
XScale-based [VJD+07, VDK+08].
XTREM [CMP+07]. xTune [KST+12].

Years [PL13]. Yield [HL14, PRK15].
Yield-enhancement [HL14].

Zeroconf [BGVZ11]. ZigBee [MLV09].
zone [PL10]. ZPP [DJ23].

References

CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

Ahmed:2019:OPM

Aligholipour:2021:TTA

Ara:2018:SAM

Auerbach:2009:LLT

Aerabi:2020:DSE

Avissar:2002:OMA

Awan:2019:TAM

Al-bayati:2019:PSD

Alsubhi:2024:SFE

Aamodt:2008:CTI

Anagnostopoulos:2013:PAD

REFERENCES

Ahmed:2014:TSA

Ayav:2008:IFT

Anand:2013:CCS

Alur:2017:SBR

Abbas:2013:PTL

Allamigeon:2017:FMC

Alam:2023:RIF

[AGG +23] Syed Asad Alam, David Gregg, Giulio Gambardella, Thomas Preusser, and Michaela
Blott. On the RTL implementa-

Allamigeon:2016:SAM

Ahmed:2013:HGA

Alaghi:2013:SSC

Amanollahi:2018:ERD

(print), 1558-3465 (electronic).

Agarwal:2021:IPH

Abdel-Khalek:2014:PSP

Andersson:2018:SA

Akdur:2021:SGI

Anderson:2023:VPM

Asyaban:2016:ASB

Alur:2005:P

Almeida:2022:DDO

Abkenar:2019:GRU

AbouGhazaleh:2006:COS

Akbari:2021:FHA

Ahir:2017:LAR

Prashant Ahir, Mehran Mozaffari-Kermani, and Reza Azarderakhsh. Lightweight architectures for reliable and fault detection Simon and Speck cryptographic algorithms on FPGA. ACM
Arnold:2014:TPH

Ali:2019:CCT

Ahmed:2020:DEC

Anonymous:2013:AOS

Anonymous:2014:AOS

REFERENCES

Ahangari:2023:HBH

Ahn:2009:R

Ahmad:2020:FFB

Ahmad:2016:EMB

Andersson:2014:PGT

An:2016:MBD
Altawy:2018:SLT

Aaraj:2008:ADH

Aaraj:2011:FDE

Ambrose:2012:RII

Ahmed:2016:NSC

Aminabadi:2023:SAE

REFERENCES

Atoofian:2021:REG

Atoofian:2020:ACG

Atoofian:2020:REG

Alnahawi:2024:TNG

ASS+23

Afifi:2023:GGN

AV20

Arghavani:2019:CLB

Awais:2023:TOS

Aysu:2015:FRT
Aydin Aysu, Bilgiday Yuce, and Patrick Schaumont.

Alle:2009:RRR
Alle:2009:RRR

Asifuzzaman:2022:PPE

Arghavani:2019:CLB

Aysu:2015:FRT

REFERENCES

gust 2016. CODEN ???.
ISSN 1539-9087 (print),
1558-3465 (electronic).

Sanjoy Baruah, Alan Burns,
and Robert Ian Davis. Opti-
mal synthesis of robust IDK
classifier cascades. ACM
Transactions on Embedded
Computing Systems, 22(5s):
CODEN ???. ISSN
1539-9087 (print), 1558-3465
dl.acm.org/doi/10.1145/
3609129.

Benoit Boissinot, Philip
Brisk, Alain Darte, and Fab-
rice Rastello. SSI properties
revisited. ACM Transactions on
Embedded Computing Sys-
CODEN ???. ISSN
1539-9087 (print), 1558-3465
(electronic).

Enrico Bini, Giorgio But-
tazzo, and Giuseppe Li-
pari. Minimizing CPU en-
ergy in real-time systems
with discrete speed manage-
ment. ACM Transactions on
Embedded Computing Sys-
tems, 8(4):31:1–31:??, July
2009. CODEN ???. ISSN
1539-9087 (print), 1558-3465
(electronic).

Kamel Barkaoui, Luca Bernar-
dinello, and Andrey Mokhov.
Guest editorial for special
issue application of concurrency to system design.
ACM Transactions on Em-
bedded Computing Systems,
2015. CODEN ???. ISSN
1539-9087 (print), 1558-3465
(electronic).

Unmesh D. Bordoloi and
Samarjit Chakraborty. Inter-
active schedulability anal-
isis. ACM Transactions on
Embedded Computing Sys-
tems, 7(1):7:1–7:27, December
2007. CODEN ???. ISSN
1539-9087 (print), 1558-3465
(electronic).

Albert Benveniste, Benoît
Caillaud, Luca P. Carloni,
Paul Caspi, and Alberto L. San-
giovanni-Vincentelli. Compos-
ing heterogeneous reactive sys-
tems. ACM Transactions on
Embedded Computing Sys-
tems, 7(4):43:1–43:??, July
2008. CODEN ???. ISSN
1539-9087 (print), 1558-3465
(electronic).

Timothy Bourke, Fran-
cois Carcenac, Jean-Louis
Colaço, Bruno Pagano,
REFERENCES

Bhattarcharjee:2018:CRM

Batina:2019:ISI

Bak:2016:NSS

Blindell:2017:CPU

Biswas:2006:MOP

Baek:2013:EEH

Seungjae Baek, Jongmoo [BCS16]

REFERENCES

REFERENCES

REFERENCES

Bak:2015:SPD

Banaiyanmofrad:2015:UFF

Bresch:2020:TXP

Berard:2017:NIP

Belson:2019:SAP

REFERENCES

/Bakshi:2023:CED

[Bouraoui:2017:HAE]

[Bogdan:2013:PCH]

[Bagchi:2024:CCA]

[Boroujerdian:2023:FES]

[Banerjee:2012:BAT]

[Ayan Banerjee, Sailesh Kandula, Tridib Mukherjee, and Sandeep K. S. Gupta.]

Ali:2023:ESE

Bishnoi:2015:BCC

Bhardwaj:2019:MCA

Brisk:2013:ISI

Bambagini:2016:EAS

REFERENCES

1539-9087 (print), 1558-3465 (electronic).

Bahirat:2014:MHP

Brais:2019:AAM

Bourke:2023:VCS

Beretta:2016:PCA

Broman:2021:IPM

Butt:2016:DPH

Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. On constrained implementation of lattice-based cryptographic primitives and schemes on smart cards.

Banerjee:2009:FPU

Bombieri:2021:SIS

Bujtor:2017:TPD

Baharani:2022:ARE

Bhat:2019:ULE

Balkan:2018:UFA

Boulis:2012:IWC

Burns:2005:E

Bujtor:2015:FSM

Beg:2013:CPA

Basanta-Val:2010:NHR

Bajczi:2019:WMP

Levente Bajczi, András Vörös, and Vince Molnár. Will my program break on this faulty processor?: Formal analysis of hardware fault activations in concurrent embedded software.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN (print)</th>
<th>ISSN (electronic)</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srivastava</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balani:2014:DPF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bai:2009:MME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beldianu:2013:MBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barijough:2019:QLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brumar:2023:EDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruns:2021:TMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Chuang:2020:DDB

Chatterjee:2017:PBS

Chen:2019:OIW

REFERENCES

Alessandro Cilardo, Edoardo Fusella, Luca Gallo, and Antonino Mazzeo. Exploit-

Cho:2017:EDF

Castro-Godinez:2019:EBE

Chen:2018:GEA

Choi:2008:SHM

Cesana:2010:MBM
Chen:2014:EOR

Chen:2022:SRT

Chakraborty:2014:MCH

Crenshaw:2007:RIE
[CI17] Michal Ciszewski and Kon-
rad Iwanicki. Efficient auto-
nated code partitioning for
microcontrollers with switch-
able memory banks. *ACM
Transactions on Embedded
Computing Systems*, 16(4):
CODEN ????? ISSN
1539-9087 (print), 1558-3465
(electronic).

[CJ20] Gustav Cedersjö and Jörn W.
Janneck. Týcho: a frame-
work for compiling stream
programs. *ACM Transactions on Embedded
Computing Systems*, 18(6):
1–25, January 2020. CODEN ???
ISSN 1539-9087 (print),
1558-3465 (electronic). URL
https://dl.acm.org/doi/
abs/10.1145/3362692.

[CJL17] Bo-Wei Chen, Wen Ji, and
Zhu Li. Guest editorial for
ACM TECS special issue
on effective divide-and-
conquer, incremental, or dis-
tributed mechanisms of em-
bedded designs for extremely
big data in large-scale de-
vices. *ACM Transactions on
Embedded Computing Sys-
tems*, 16(3):72:1–72:??, July
2017. CODEN ????? ISSN
1539-9087 (print), 1558-3465
(electronic).

[CJMB05] S. Chouali, J. Julliand, P.-
A. Masson, and F. Belle-
garde. PLTL-partitioned
model checking for reactive
systems under fairness as-
sumptions. *ACM Transac-
tions on Embedded Com-
puting Systems*, 4(2):267–
301, May 2005. CODEN ??
ISSN 1539-9087.

REFERENCES

Chen:2017:RTD

Corliss:2005:IED

Chiew:2016:NEI

Cheng:2020:DDT

Cachera:2005:VSP

Chen:2012:ART

REFERENCES

REFERENCES

Castiglione:2017:BFI

Cotard:2015:SHR

Cazorla:2013:PPA

Chattopadhyay:2014:CRP

Curley:2010:RDT

Chippa:2013:MQV

Cho:2010:LFS

Clemente:2014:AMR

Castrillon:2016:GES

Choi:2022:ECA

Chou:2023:RSK

Chang:2017:ESS

Chen:2022:ERD

Chen:2002:TGC

Caspi:2008:SPM

Caspi:2005:GGC

REFERENCES

[CWH+23] Wei-Ju Chen, Peng Wu, Pei-Chi Huang, Aloysius K. Mok, and Song Han. Regu-

Chen:2017:LBD

Chang:2012:AFS

Chen:2023:FNN

Chen:2017:SBT

[CYH+17] Jiu-n-Yeu Chen, Wuu Yang,

Chen:2020:QEO

Chen:2013:RED

Chen:2024:DTO

Chen:2023:ARL

Chen:2022:ARF

Dupon:t:2021:EBH

Duggirala:2019:ASR

Dua:2014:CSS

DelBarrio:2014:ULP

Davis:2015:GPM

Daghero:2022:HAR

Dai:2019:DMS

Deng:2024:SST

REFERENCES

dl.acm.org/doi/10.1145/3645113.

[dFMAdN12]
REFERENCES

CODEN ???? ISSN
1539-9087 (print), 1558-3465 (electronic).

[Dong:2023:RAS]

[DHKS15]

[DeGroote:2015:IAC]

Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. Global optimization of fixed-priority real-

Dave:2019:DEP

Dhurjati:2005:MSG

Das:2014:EAT

Dong:2012:UAS

Dong:2014:EEE

Dugo:2019:CLC

REFERENCES

References

Desai:2022:CLR

Dasari:2014:NCA

Dutt:2018:ADA

DiNatale:2008:BOM

Durrieu:2019:GAC

Desnos:2016:MRB

Daneshtalab:2014:ESI
Masoud Daneshtalab, Maur-

REFERENCES

DoCarmoLucas:2009:ADF

Diamantopoulos:2014:PFS

Diamantopoulos:2015:GPA

DeSutter:2013:ISS

DeSutter:2007:LTC

[DVC21] Celia Dharmaraj, Vinita Vasudevan, and Nitin Chandrachoodan. Optimization of signal processing appli-

[Doblander:2009:NSF] Andreas Doblander, Andreas

Egger:2008:DSM

ElYaacoub:2023:SDS

Elewi:2014:EET

Ernst:2023:ACN

Egilmez:2017:UAF

Emeretlis:2016:LBB

Edwards:2019:CDC

Esposito:2017:NMO

Erata:2023:EEA

Elfar:2017:SER

Franchino:2016:BOE

Furtado:2013:CON
Pedro Furtado and José Cecilio. Configuration and operation of networked con-
trol systems over heterogeneous WSANs. *ACM Transactions on Embedded Com-

Fusella:2016:CAA

Ferri:2009:RIF
B. H. Ferri and A. A. Ferri. Reconfiguration of IIR filters in response to computer resource availabil-

Feng:2023:ADS

Fainekos:2012:ESS

Fradet:2023:RRD
REFERENCES

dl.acm.org/doi/10.1145/3544972.

[FLF17] Pietro Fezzardi, Marco Latuada, and Fabrizio Ferrandi. Using efficient path

REFERENCES

Forsberg:2021:PEM

Filippopoulos:2016:IEM

Feldtkeller:2023:COS

Fong:2019:ODS

Fischmeister:2017:GES

Fu:2017:DFA

[FXP+17] Shan Fu, Guoai Xu, Juan
REFERENCES

Falk:2013:RBQ

Falk:2010:ASA

Gaitan:2024:MOC

Gomony:2015:RTM

Gar05

William B. Gardner. Con-

[Gottscho:2017:LCM]

[Gottsc:2017:LCM]

Gottsc:{2017:LCM}

[GAS+17]

Gottsc:{2017:LCM}

[GCU+23]

Günzel:{2023:CTA}

[GCJD20]

Ghosh:{2020:RSD}

[GD14]

Gong:{2014:SBF}

[GCS24]

Ghosh:{2019:RRS}
REFERENCES

Godary-Dejean:2013:FVD

Goyal:2022:HFU

Goncalves:2019:AER

Ghosh:2020:PGI

Ghosh:2017:SMP

Grun:2003:APB

Peter Grun, Nikil Dutt,

[GKS+22] Saransh Gupta, Behnam Khaleghi, Sahand Salamat, Justin Morris, Ranganathan Ramkumar, Jeffrey Yu, Aniket Tiwari, Jaeyoung Kang, Mohsen Imani, Baris Akaslanli, and Tajana Simunic Rosing. Store-n-learn: Classification and clustering with hyperdimensional computing across flash hierarchy. ACM Transactions on Em-

Guimbretière:2014:ADP

Guan:2014:WAM

Guo:2018:IWP

Garcia:2021:IHG

REFERENCES

Gohringer:2013:RAN

Gavran:2017:AMR

Groza:2017:LCL

Girault:2006:ARD

Guang:2010:HAM

Ghiasi:2004:OAM
Gaujal:2005:SPA

George:2022:UPE

Goehringer:2014:SI

Gupta:2007:ISL

Gufran:2023:FHR

Gupta:2017:DDP

REFERENCES

Ghasemi:2022:EEE

Guha:2019:SBS

Gressl:2021:DSE

Gomez:2022:DDP

Grimheden:2005:WES

Gomez:2022:DDP

Andres Gomez, Andreas Trettter, Pascal Alexander Hager, Praveenth Sanmugarajah, Luca Benini, and Lothar Thiele. Dataflow

[Gebotys:2008:EAW] Catherine H. Gebotys and

[GZ12]

Gebotys:2015:SWP

[GW15]

Gebotys:2016:PCP

[GWM16]

Girard:2012:VSL

[GZ12]

Gu:2016:RTF

[GZZ]+16

Huynh:2011:EAR

REFERENCES

[HDG+14] Huang:2014:TMP

REFERENCES

Hamers:2012:EMS

Hettiarachchi:2014:DAF

Hashemi:2013:TMF

Huang:2019:RRA

Hashemi:2009:TDS

Huang:2014:IEM
REFERENCES

Han:2020:BAP

Hsieh:2013:TAM

Hessien:2023:PPS

He:2005:RFL

Huang:2012:EFP

Hu:2016:AWM

Biao Hu, Kai Huang, Gang Chen, Long Cheng, and Alois Knoll. Adaptive workload management in mixed-

[HKL⁺23c] Shuo Huai, Hao Kong, Xiangzhong Luo, Shiqing Li,

[Hu2009] Jie Hu, Feihui Li, Vijay Degalalah, Mahmut Kan-

Hong:2018:ISP

Hung:2023:EEC

Hsieh:2012:PBP

Hu:2020:GBT

Haar:2017:MGE

He:2021:GCF

[Jiaji He, Haocheng Ma, Yan-

REFERENCES

Higuera-Toledano:2006:HSD

Hsiu:2016:UCS

Higuera-Toledano:2010:ISI

Hester:2016:PCB

Hubner:2013:ISS

Huang:2013:ASP

[HVG13] Chen Huang, Frank Vahid, and Tony Givargis. Automatic synthesis of phys-

Hu:2013:WAR

Hong:2022:EGE

Huang:2015:COM

Hu:2018:JOS

Huang:2018:HPH

Huang:2023:DEL

References

[IBMK10] Ali Irturk, Bridget Benson, Shahnam Mirzaei, and Ryan Kastner. GUSTO: an automatic generation and

Ienne:2016:GES

Iy[er]:2024:HCM

Inci:2023:QFQ

Inagaki:2023:PSC

Jokic:2022:CKE

Petar Jokic, Erfan Azarkhish, Andrea Bonetti, Marc Pons, Stephane Emery, and Luca Benini. A construction kit for efficient low power neural network accelerator designs. *ACM Transactions on Embr-
Jiang:2019:BSR

Jacob:2002:ITS

Jayakodi:2020:DOE

Josipovic:2017:OLS

REFERENCES

[JFK15] Loïg Jezequel, Eric Fabre, and Victor Khomenko. Factored planning: From au-

Javadi:2023:CME

Jati:2024:CCK

Jafari:2009:EPR

Jackson:2021:EES

Jin:2018:PAR

REFERENCES

[212] Jungeblut:2013:SAO

[433] Jafari:2013:ISS
Ji:2018:ACP

Jia:2015:TAD

Jerraya:2006:GEC

Jung:2014:HCO

Jimenez:2015:LSC

Jin:2014:PPA

Jain:2020:CHS
Shubham Jain and Anand Raghunathan. CxDNN: Hardware-software compensation methods for deep

Jayakumar:2016:SMV

Jayakumar:2017:EAM

Juang:2023:LCG

Jiang:2019:ASL

Jiang:2015:AEB

(print), 1558-3465 (electronic).

Kim:2005:DDC

Kamal:2015:OHC

Kadiyala:2020:LLA

Kumar:2007:ESI

Kurtin:2017:ART

Koh:2023:PST

Kutukcu:2022:CGA

Kim:2013:SIE

Kim:2017:WAF

Kim:2008:EAC

Ko:2021:LCL

REFERENCES

[KD08] Rajeev Kumar and Dipankar Das. Code compression for performance enhancement of variable-length embedded

Kyriakis:2019:SMR

Koushanfar:2007:TMC

Kundu:2022:TAA

Krishnaswamy:2005:DCB

Arvind Krishnaswamy and Rajiv Gupta. Dynamic co-

Kumar:2012:CMA

Kloda:2023:LLS

Kahkonen:2018:TPC

Kohler:2023:RCE

Khalgui:2013:DRA

Köhler:2023:RCE

Leonie Köhler, Phil Hertha, Matthias Beckert, Alex Bendsick, and Rolf Ernst. Robust cause-effect chains with bounded execution time and system-level logical execution time. ACM Trans-

[KGR12]

[KH18]

[KGT+23]

[Kha13]

[KH23]

Kadiyala:2020:HPC

Kim:2013:DER

Kadayif:2005:DSO

Kwon:2005:OVA

Kadayif:2005:CDH

Kim:2016:UMA

REFERENCES

Khajeh:2012:EAA

Koutsoukos:2012:PAM

Kim:2011:DPT

Ko:2016:SBS

Kangas:2006:UBM

Kwon:2023:LRT

[HKS+23] Hyeokdong Kwon, Hyunjun Kim, Minjoo Sim, Wai-Kong Lee, and Hwajeong Seo. Look-up the rainbow: Table-based implementation of rainbow signature on 64-bit ARMv8 processors.
REFERENCES

Kirsch:2013:ISS

Ko:2007:BSA

Khalgui:2013:RRE

Kang:2022:MLM

Knapik:2015:ASB

Koul:2023:AAA

[KMS+23] Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Leonard Truong, Gedeon Nyengele, Keyi Zhang, Qiaoyi Liu, Jeff Setter, Po-Han Chen, Yuchen Mei, Maxwell Strange, Ross Daly, Caleb Donovich, Alex Carsello, Taeyoung Kong, Kathleen Feng, Dillon Huff, Ankita Nayak, Rajsekhar Setaluri, James Thomas, Nikhil Bhagdikar, David Durst, Zachary Myers, Nester Tsiskaridze, Stephen Richardson, Rick Bahr, Kayvon Fatahalian, Pat Hanrahan, Clark Barrett, Mark Horowitz, Christopher

Kumar:2012:ECI

Kim:2017:PBB

Krishnakumar:2023:DSA

Kent:2013:CPS
Khalid:2016:RHL

Kim:2019:OBI

Khan:2014:OLT

Khan:2023:DDL

Khan:2020:OTC

REFERENCES

Krishnakumar:2020:APL

Kriebel:2016:RAA

Kalayappan:2018:PAH

Krishnan:2022:BCS

Kim:2013:MPE

Kaiser:2010:ISI

REFERENCES

???: ISSN 1539-9087 (print), 1558-3465 (electronic). URL https://
dl.acm.org/doi/10.1145/3522748.

[KSA+18] Amey Kulkarni, Colin Shea, Tahmid Abtahi, Houman Homayoun, and Tinoosh Mohsenin. Low overhead CS-

[Kar:2024:PQS] Patrick Karl, Jonas Schupp, Tim Fritzmann, and Georg Sigl. Post-quantum signatures on RISC-V with hard-
(print), 1558-3465 (electronic). URL https://
dl.acm.org/doi/10.1145/3579092.

(electronic).

28:??, February 2013. CODEN ???: ISSN 1539-9087 (print), 1558-3465 (electronic).

[KST+12] Minyoung Kim, Mark-Oliver Stehr, Carolyn Talcott, Nikil Dutt, and Nalini Venkatasubramanian. xTune: a formal methodology for cross-
CODEN ???: ISSN
REFERENCES

1539-9087 (print), 1558-3465 (electronic).

Kang:2017:RLA

Kumar:2014:WCG

Kyrkou:2013:HAR

Kim:2003:PIC

Kejariwal:2009:ELL

Kim:2010:EAE
Klashtorny:2023:PGW

Kwon:2016:CBF

Klues:2010:LLD

Khouzani:2017:DBS

Kindt:2020:EMB

Koohi:2014:TSL

Kim:2013:NCA

Kulkarni:2006:VVI

Liu:2011:NBF

Lee:2023:CVA

Luo:2006:EEI

Lapalme:2006:NEE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

David Langerman and Alan George. Real-time, high-resolution depth upsampling

Li:2018:FPS

Liu:2004:FSM

Lin:2019:GBM

Logaras:2014:PAE

Lei:2023:FII

Liu:2014:PRR
Hengchang Liu, Pan Hui, Zhiheng Xie, Jingyuan Li,

REFERENCES

REFERENCES

Lee:2002:AAI

Li:2023:EDS

Lazarescu:2015:ITB

Liang:2017:EKM

Lu:2018:TSI

Lo:2013:AGH

Lin:2022:HEI

Lizarraga:2013:DPF

Lin:2014:BAM

Lee:2009:CIA

REFERENCES

CODEN ????, ISSN 1539-9087 (print), 1558-3465 (electronic).

Lin:2009:MAC

Liu:2017:DMR

Liao:2022:RRS

Liang:2013:AAF

Lee:2019:ESA

[LML+19] George Lentaris, Konstantinos Maragos, Dimitrios

Loke:2015:MCS

Lee:2013:LAB

Li:2018:ECB

Liu:2013:RAE

Liu, Tiantian, Alex Orailoglu, Chun Jason Xue, and Minming Li. Register allocation for embedded systems to simultaneously reduce energy and temperature on registers. *ACM Transactions on Embedded Computing Systems*, 13(3):50:1–

Luppold:2020:CWC

Loguiillier:2014:HHA

REFERENCES

50:??, December 2013. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

REFERENCES

Latifis:2020:RMC

Loveless:2023:CML

Liu:2013:AEE

Le:2016:CBR

Liu:2017:HPI

Leon:2021:IPD

[LPFG13] Vasileios Leon, Theodora Paparouni, Evangelos Petrongonas, Dimitrios Soudris, and

Li:2013:TAT

Lu:2016:VCV

Lloyd:2009:PSN

Scott Lloyd and Quinn Snell.

Lee:2012:PPI

Lee:2013:SBR

Landy:2017:SAS

REFERENCES

84:??, July 2017. CODEN ????. ISSN 1539-9087 (print), 1558-3465 (electronic).

Lang:2020:DIE

Lam:2014:REC

Lee:2019:TAS

Li:2023:IIE

REFERENCES

Li:2024:CIS

Lysecky:2009:DIM

Leon-Vega:2023:AGR

Lee:2013:HPL

Lin:2018:MCV

Zhe Liu, Jian Weng, Zhi Hu, and Hwajeong Seo. Efficient elliptic curve cryptography for embedded devices. *ACM Transactions on
REFERENCES

Lin:2010:SSA

Liu:2017:BEB

Liang:2023:TRS

Li:2016:USS

Lee:2012:IMR

Liu:2016:ETA
REFERENCES

Leite:2022:REC
[102x681] Clayton Frederick Souza

LX22

[LYC+18]

Li:2010:SMA

LXK10

[LYH+15]

Liu:2013:JVP

LXL13

[LYL13]

Arslan Munir, Joseph Antoon, and Ann Gordon-Ross. Modeling and analysis of fault detection and fault tolerance in wireless sensor networks. *ACM Trans-

Mandal:2019:APM

Mejia-Alvarez:2004:ASS

Mirzoyan:2015:MNG

Missimer:2022:TR

McLoughlin:2010:RTR

Matthews:2015:PTS

Mendez:2022:EIC

Mangeruca:2007:USU

Murray:2009:CTI

Modi:2023:CRR

Medhat:2015:RMC

Murillo:2016:MSD

Luis Gabriel Murillo, Róbert Lajos Bücs, Rainer Leupers, and Gerd Ascheid. MPSoC software debugging on virtual platforms via execution

Mancuso:2014:OPA

Massolino:2015:OSC

Mishra:2022:SCF

McInnes:2013:MAT

Mathew:2017:GES

REFERENCES

Mathew:2015:NMB

Mark:2012:HBC

Mishra:2004:MVP

Ma:2023:ICD

Morris:2022:HUH
Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohen Imani, Baris Aksanli, and Tajana Simunic. HYDREA: Utilizing hyperdimensional computing for a more robust and efficient

Maity:2021:SSO

REFERENCES

Mendis:2019:ADU

[MH19]

Mitra:2021:ERA

Mack:2023:CCI

Mozaari-Kermani:2017:FDA

Mozaari-Kermani:2018:ERE
Mehran Mozaari-Kermani, Reza Azarderakhsh, Ausmita Sarker, and Amir Jalali. Efficient and reliable error detection architectures of

Mohaqeqi:2013:ASR

Millo:2015:MAD

Morse:2018:LAW

Min:2023:MTK

Mondal:2023:HTD

Maier:2018:FIT

Misailovic:2013:PSP

Mehrabian:2017:TTL

Mehrabian, Mohammadreza; Khayatian, Mohammad; Shrivastava, Aviral; Eidson, John C.; Derler, Patricia; Andrade, Hugo A.; Li-Baboud, Ya-Shian; Griffor, Edward; Weiss, Marc; Stanton, Kevin. Timestamp temporal logic (TTL) for testing the timing of cyber-physical systems. ACM Transactions on Embedded Computing Systems, 16(5s):169:1–169:??, October 2017. CODEN ???: ISSN 1539-9087 (print), 1558-3465 (electronic).

Metz:2023:BBS

Mousavi:2023:DDA

Mitra:2008:VAD

Ma:2017:DPE

Medhat:2017:MPE

Majmudar:2016:AOR

Min:2023:SBM

Mishra:2004:PMC

Prabhat Mishra, Mahesh Mamidipaka, and Nikil Dutt.

Behzad Mahdavikhah, Ramin Mafi, Shahin Sirouspour,

Moazzemi:2019:HFL

Moazzemi:2019:HFL

Mosbah:2013:CFM

Marinelli:2022:MES

[Mariani:2013:DSE]
Malik:2017:MCH

Majumdar:2013:TRO

Manzanares:2010:CER

Mery:2013:FSM

Ma:2021:CSA
Mingze Ma and Rizos Sakellariou. Code-size-aware scheduling of synchronous dataflow graphs on multicore systems. *ACM Trans-

Ma:2019:RFD

Mu:2013:POS

Modekurthy:2021:DRT

McIntire:2012:EES

Migliore:2017:HSA

Martin:2003:CSS

Thomas L. Martin, Daniel P. Siewiorek, Asim Smailagic, Matthew Bosworth, Matthew
REFERENCES

Ettus, and Jolin Warren.

Majumdar:2023:NAB

Ma

Minakova:2022:SBR

Malek:2016:RRQ

Maggio:2014:TSC

Marco:2020:ODL

REFERENCES

[MWS15] Paul Martin, Lucas Wan-ner, and Mani Srivastava. Runtime optimization of sys-
tem utility with variable hard-
ware. *ACM Transactions on Embedded Com-
puting Systems*, 14(2):24:1–
24:??, March 2015. CO-
DEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[MZG15] Bojan Mihajlović, Zeljko
Zilić, and Warren J. Gross. Ar-
chitecture-aware real-time
compression of execution
traces. *ACM Transactions on Em-
bedded Computing Systems*, 14(4):
75:1–75:??, December 2015. CO-
DEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[MYL+22] Jiachen Mao, Qing Yang,
Ang Li, Kent W. Nixon, Hai
Li, and Yiran Chen. Toward
efficient and adaptive design
of video detection system
with deep neural networks.
*ACM Transactions on Em-
bedded Computing Systems*, 21(3):
33:1–33:21, May 2022. CO-
DEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3484946.

[NASM18] Alireza Namazi, Meisam Abd-
ollahi, Saeed Safari, and
Siamak Mohammadi. A
majority-based reliability-
aware task mapping in high-
performance homogeneous
NoC architectures. *ACM
Transactions on Embedded
Computing Systems*, 17(1):
CODEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[MZG14] Bojan Mihajlović, Zeljko
Zilić, and Warren J. Gross.
Dynamically instrumenting
the QEMU emulator for
Linux process trace gener-
ation with the GDB de-
bugger. *ACM Transactions on Em-
bedded Computing Systems*, 13(5):
167:1–167:??, November 2014. CO-
DEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[NB04] Juanjo Noguera and Rosa M.
Badia. Multitasking on re-
configurable architectures:
microarchitecture support
and dynamic scheduling.
*ACM Transactions on Em-
bedded Computing Systems*,
CODEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

Payam Nazemzadeh, Abbas Dideban, and Meisam

Payam Nazemzadeh, Abbas Dideban, and Meisam

Niknafs:2023:RRM

Niknafs:2023:RRM

Neshatpour:2020:I

Neshatpour:2020:I

Nam:2012:MTI

Nam:2012:MTI

Naresh:2017:CCC

Naresh:2017:CCC

Napapetian:2012:ESS

Ani Napapetian, William Kaiser, and Majid Sar-

Nuzzo:2019:SAG

Nirjon:2014:MSR

Nadezhkin:2013:AGP

Naik:2004:CCS

Nghiem:2012:TTI

Nikitakis:2013:NLP

Antonis Nikitakis, Savvas Papaioannou, and Ioannis...

Nam:2013:PAR

Nagar:2016:FPW

Nagar:2017:RCB

Nair:2011:EHB

Nejatollahi:2020:SFA

Namin:2012:EFF

Ashkan Hosseinzadeh Namin, Huapeng Wu, and Majid Ahmadi. An efficient finite field multiplier using redun-

Umit Y. Ogras, Radu Marculescu, Trevor N. Mudge, and Michael Kishinevsky.

Ozer:2008:SBE

Ottoni:2006:OAU

Ou:2006:DSE

Oneto:2016:LHF

Omar:2018:DRH

Oehlert:2019:CIT

Dominic Oehlert, Selma Saidi, and Heiko Falk. Code-

Ouyang:2022:WWF

Paissan:2022:PSB

Paterna:2012:VTW

Patterson:2009:SMB

Paul:2014:RTP

Parikh:2014:FCF

Ritesh Parikh and Valeria Bertacco. ForEVeR: a complementary formal and runtime verification approach to correct NoC functionality.
REFERENCES

Pan:2022:BWH

Plaks:2009:GECa

Plaks:2009:GECb

Panainte:2007:MCR

Pagani:2014:EEA

Pimentel:2012:ISS

Andy D. Pimentel, Nae-hyuck Chang, and Mladen Berekovic. Introduction to special section ESTIMedia’09. ACM Transac-

Paul:2013:VSI

Pagliari:2017:ABC

Paul:2021:ATA

Park:2008:RFF

Pajic:2012:RAE

Papagiannopoulos:2015:EEH

[PCM+15] Dimitra Papagiannopoulos, Giuseppe Capodanno, Tali Moreshet, Maurice Herlihy, and R. Iris Bahar. Energy-efficient and high-performance lock specula-

Pasricha:2008:FEB

Paul:2023:ANI

Park:2021:IML

Parra:2023:TMV

Peeck:2023:IWC

REFERENCES

REFERENCES

REFERENCES

2017. CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

Paolieri:2013:HRT

Papagiannopoulou:2017:ETE

Piccolboni:2017:ECF

Park:2014:AWL

Puthal:2017:DDK

Petrov:2005:RCF

REFERENCES

DEN ??? ISSN 1539-9087 (print), 1558-3465 (electronic).

Daniele Palossi, Martino Ruggiero, and Luca Benini.
REFERENCES

[Palermo:2012:VAR]
Gianluca Palermo, Cristina Silvano, and Vittorio Zac-
caria. A variability-aware robust design space explo-
ration methodology for on-
chip multiprocessors subject
to application-specific con-
straints. ACM Transac-
tions on Embedded Com-
puting Systems, 11(2):29:1–
29:??, July 2012. CODEN
???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[Peng:2012:BHA]
Chunyi Peng, Guobin Shen,
and Yongguang Zhang.
BeepBeep: a high-accuracy
acoustic-based system for
ranging and localization us-
ing COTS devices. ACM
Transactions on Embedded Com-
puting Systems, 11(1):
4:1–4:??, March 2012. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[Pal:2022:OEI]
Subhankar Pal, Swagath
Venkataramani, Viji Srin-
ivasan, and Kailash Gopalakris-
ishnan. OnSRAM: Efficient
inter-node on-chip scratch-
pad management in deep
learning accelerators. ACM
Transactions on Embedded Com-
puting Systems, 21(6):
CODEN ???? ISSN
1539-9087 (print), 1558-3465
dl.acm.org/doi/10.1145/
3530909.

[Parmer:2013:PCC]
Gabriel Parmer and Richard
West. Predictable and con-
figurable component-based
scheduling in the Compos-
te OS. ACM Transac-
tions on Embedded Com-
puting Systems, 13(1s):32:1–
32:??, November 2013. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[Park:2019:MOE]
Sunghyun Park, Youfeng
Wu, Janghaeng Lee, Amir
Aupov, and Scott Mahlke.
Multi-objective exploration
for practical optimization de-
cisions in binary translation.
ACM Transac-
tions on Embedded Com-
puting Systems, 18(5s):57:1–
57:??, October 2019. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/ft_gateway.
cfm?id=3358185.

[Pan:2018:MAC]
Wen Pan and Tao Xie. A
mirroring-assisted channel-
RAID5 SSD for mobile ap-
lications. ACM Transac-
tions on Embedded Com-
puting Systems, 17(4):75:1–
75:??, August 2018. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).
Pan:2017:EMW

Pan:2015:SGP

Pan:2023:BBS

Pande:2012:PDP

Que:2024:LGL

Quan:2007:EED

REFERENCES

244

Qu:2003:SSS

Quan:2015:HTM

Quwaider:2010:TPA

Qi:2024:MCS

Qian:2018:ECD

Qiu:2014:BPD
Keni Qiu, Mengying Zhao, Chun Jason Xue, and Alex Oraloglu. Branch prediction-directed dynamic instruction cache locking for embedded systems. ACM Transactions on Embedded Computing Systems, 13(5s):156:1–156:??, September 2014. CODEN ???? ISSN
REFERENCES
1539-9087 (print), 1558-3465 (electronic).

REFERENCES

Reineke:2013:SCR

Razaghi:2014:HCM

Riemens:2014:TSA

Raghunathan:2004:EEW

Rautakoura:2023:DSH

Reardon:2012:REE

REFERENCES

[RKC+22] Salonik Resch, S. Karen Khatamifard, Zamsheed I. Chowdhury, Masoud Zabihi, Zhengyang Zhao, Husrev Cilasun, Jian-Ping Wang, Sachin S. Sapatnekar, and Ulya R. Karpuzcu. Energy-efficient and reliable inference in nonvolatile memory under extreme operating conditions. ACM Trans-
REFERENCES

Rodrigues:2015:DSE

Romaszkan:2020:PPP

Ren:2023:PWB

Rodionova:2023:TRT

RibeiroDaSilva:2021:MCH
REFERENCES

Cosmin Rusu, Rami Melhem, and Daniel Mossé. Maximizing rewards for real-

[RN14]

[RN18]

[RPB19] Restuccia:2019:YBA

[RP03] Rabbah:2003:DRD

REFERENCES

[SAKH20] Hwajeong Seo, Kyuhwang An, Hyeokdong Kwon, and

[Seyoum:2019:FFO] Biruk B. Seyoum, Alessandro Biondi, and Giorgio C.

Song:2022:DTC

Sztipanovits:2005:IES

Siddhu:2023:DTM

Singh:2013:MCN

Scheir:2015:ASC

REFERENCES

85:1–85:??, December 2015. CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

[SCB22] Shihao Song, Harry Chong, Adarsha Balaji, Anup Das, James Shackleford, and Nagarajan Kandasamy. DF-Synthesizer: Dataflow-based synthesis of spiking neural networks to neuromorphic...
REFERENCES

[Sch12]

[Sant15]

[Sche07]

[Bast10]

[SCKD23]

[SCM20]
Shen:2016:UAS

Starke:2016:EDV

Shrivastava:2020:ISIa

Shirner:2008:QAS

So:2013:STI

Sun:2017:WHS

Youcheng Sun and Marco Di
REFERENCES

[SE23] Ankita Samaddar and Arvind Easwaran. Online distributed schedule randomization to mitigate timing attacks in industrial control systems. *ACM Transactions on Embedded Com-

Shokry:2012:HSS

Seo:2018:CSI

Seviora:2005:CES

Saberi:2023:POT

Shu:2023:TID

Sui:2018:LOP

Sah:2024:ATE

Subramanian:2012:GOP

Sogokon:2017:OMP

Sanz:2013:SLM

Sun:2016:FFJ

Sepulveda:2021:BCA
Johanna Sepulveda, Matthieu Gross, Andreas Zankl, and Georg Sigl. Beyond cache attacks: Exploiting the bus-based communication structure for powerful on-chip microarchitectural attacks. *ACM Trans-

[SHL+17]

[SHM13]

[SHQX19]

[Shu18b] Sandeep K. Shukla. Editorial: Industry 4.0 — a

[S]hukla:2018:ENA

[S]hukla:2018:EUE

[S]hukla:2018:ETS

[S]hukla:2019:EAR

[S]hukla:2019:EES

[S]hukla:2019:EHF

Shukla:2019:ERH

Shukla:2020:EEC

Shukla:2020:TER

Sridhar:2019:SEC

Santanna:2017:DIS

Singh:2024:AEF

REFERENCES

CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

Sartori:2013:ETE

Seo:2019:ETM

Song:2014:POA

Schoeberl:2011:HAL

Shresthamali:2017:APM

Seo:2010:DAS

[SKPL10] Euiseong Seo, Sangwon Kim, Seonyeong Park, and Joon-

Parinaz Sayyah, Mihai T. Lazarescu, Sara Bocchio, Emad Ebeid, Gianluca Palermo, Davide Quaglia,

Spasic:2016:IHR

Stilkerich:2017:PGU

Spellini:2019:CDM

Soliman:2022:FFF

Seo:2016:HMR

References

REFERENCES

Sharma:2023:FCD

Salamy:2012:SOT

Seshia:2012:QAS

Strobel:2019:PMA

Suris:2012:RSC

Sarwar:2023:CPE
REFERENCES

vastava. Power manage-
ment for energy-aware com-
munication systems. ACM
Transactions on Embedded
Computing Systems, 2(3):
431–447, August 2003. CO-
DEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

Schulz-Rosengarten:2021:TOO
Alexander Schulz-Rosengarten, Steven Smyth, and Michael
Mendler. Toward object-
oriented modeling in SCCha-
rts. ACM Transactions on
Embedded Computing Sys-
2021. CODEN ????. ISSN
1539-9087 (print), 1558-3465
dl.acm.org/doi/10.1145/
3453482.

Seo:2013:AIG
Sanghyun Seo, Seungtaek
Ryoo, and Kyunghyun Yoon.
Artistic image generation for
emerging multimedia ser-
vice by impressionist man-
ner. ACM Transactions on
Embedded Computing Sys-
tems, 12(2):22:1–22:??,
February 2013. CODEN ????.
ISSN 1539-9087 (print), 1558-3465
(electronic).

Seo:2021:SBA
Hwajeong Seo, Pakize Sanal,
and Reza Azarderakhsh.
SIKE in 32-bit ARM pro-
cessors based on redundant
number system for NIST
level-II. ACM Transac-
tions on Embedded Com-
puting Systems, 20(3):19:1–
19:23, April 2021. CO-
DEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3439733.

Shin:2024:VEM
Yong-Jun Shin, Donghwan
Shin, and Doo-Hwan Bae.
Virtual environment model
 generation for CPS goal
 verification using imitation
 learning. ACM Transactions on
Embedded Computing Sys-
tems, 23(1):13:1–13:??,
January 2024. CODEN ????.
ISSN 1539-9087 (print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3633804.

Salamati:2019:MEM
Mahmoud Salamati, Rocco
Salvia, Eva Darulova, Sadegh
Soudjani, and Rupak Maj-
umdar. Memory-efficient
mixed-precision implementa-
tions for robust explicit
model predictive control. ACM Transactions on
Embedded Computing Sys-
tems, 18(5s):100:1–100:??,
October 2019. CODEN ????.
ISSN 1539-9087 (print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/ft_gateway.
cfm?id=3358223.
Siozios:2014:FSA

Saha:2021:MWR

Shahhosseini:2022:OLO

Shen:2023:TMS

Stuart:2011:RRN

S:2023:PQA

REFERENCES

[SVP05] Alberto L. Sangiovanni-Vincentelli and Alessandro Pinto. An overview of embedded system design edu-

Srinivasavarma:2021:TBC

Sunder:2013:FVD

Salajegheh:2013:HWS

Saeed:2019:LDB

Sassone:2007:SSS

Schumacher:2014:LLS

[SWL+14] Christoph Schumacher, Jan Henrik Weinstock, Rainer Leupers, Gerd Ascheid, Laura
REFERENCES

REFERENCES

REFERENCES

REFERENCES

1539-9087 (print), 1558-3465 (electronic).

REFERENCES

[288]

Tsutsui:2012:HTP

Tahaee:2010:PAD

Terway:2023:RGM

Turjan:2007:CIC

Theodoropoulos:2013:CAM

Trajkovic:2022:PMA

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Journal, Volume(Year):Issue:Pages, Date</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Farid Molazem Tabrizi and Karthik Pattabiraman</td>
<td>Design-level and code-level security analysis of IoT de-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

[TSPC05]

Tiku:2020:OSV

[TP20]

Tan:2005:EME

[TRJ05]

Tichy:2010:GAF

[TSG10]

Tripakis:2005:TDT

[TSCC05]

Tsouvalas:2022:FST

Tamas-Selicean:2015:DOM

Tan:2017:ITM

Tan:2010:MSE

Tan:2016:SSH

Tavana:2014:SHT

Mohammad Khavari Tanava, Nasibeh Teimouri, Meisam Abdollahi, and Maziar Goudarzi. Simultaneous hardware and time redundancy with online task scheduling for low energy highly reliable standby-sparing system. *ACM Transactions on Embedded Computing Systems*, 13(4):86:1–
REFERENCES

Tabanelli:2023:DAY

Turan:2019:CFF

Trajkovic:2008:ISA

Tanase:2018:SML

Tan:2012:ACF

Unsal:2003:CCC

[Uzelac:2013:HBL] Vladimir Uzelac and Aleksandar Milenković. Hardware-based load value trace filtering for on-the-fly debug-

Pirmin Vogel, Andreas Kurth, Johannes Weinbuch, Andrea Marongiu, and Luca Benini. Efﬁcient virtual memory sharing via on-accelerator page table walk-

Vera:2007:DCL

Vreman:2023:SAC

Venkataramani:2003:ACC

VonMaurich:2015:IQM

Vinco:2016:ESI

VanHulst:2015:MSH

Verbauwhede:2005:SES

Voyiatzis:2008:SFS

Vougioukas:2017:NFS

Vasilikos:2013:HSA

Vali:2023:BSD

VanPinxten:2017:OSR

Whitham:2014:ERC

Winter:2006:TPC

Wiggers:2010:BCC

Wu:2016:JJO

Wang:2020:CTC

Wu:2023:WTM

REFERENCES

Yi Wang and Yajun Ha. A DFA-resistant and masked

[Wha07]

[WJ17]

[WKC07]

[WKJ20]

Weinstock:2016:PSS

Wongpiromsarn:2012:VPC

Wang:2017:TAS

Wandeler:2012:UGS

Wu:2013:AMC

Wolf:2002:III

West:2011:ASS

Richard West and Gabriel Parmer. Application-specific

Wollinger:2004:EHC

Wen:2022:SHD

Watkins:2015:UNT

Wu:2006:EEU

Wehner:2016:SRM

Wang:2021:VSH

[WRW+21] Yu Wang, Nima Roohi, Matthew West, Mahesh Viswanathan, and Geir E. Dullerud. Verifying stochastic hybrid systems with tem-

Wu:2014:EIE

Wu:2014:EDF

Wittig:2022:AES

Wu:2015:SDE

Waluyo:2013:MQS

Wu:2010:SAF

REFERENCES

DEN ????. ISSN 1539-9087 (print), 1558-3465 (elec-
tronic).

[WW09] Ning Weng and Tilman Wolf.
Analytic modeling of network processors for parallel
workload mapping. ACM Transactions on Embedded
Computing Systems, 8(3): 18:1–18:??, April 2009. CO-
DEN ????. ISSN 1539-9087 (print), 1558-3465 (elec-
tronic).

Weichslgartner:2018:DTR

[WWG+18] Andreas Weichslgartner, Stefan Wildermann, Deepak
Gangadharan, Michael Gläss, and Jürgen Teich. A design-
time/run-time application
mapping methodology for
predictable execution time in MPSoCs. ACM Trans-
actions on Embedded Computing Systems, 17(5):89:1–
89:??, November 2018. CO-
DEN ????. ISSN 1539-9087 (print), 1558-3465 (elec-
acm.org/ft_gateway.cfm?id=3274665.

Witterauf:2021:SLC

[WWHT21] Michael Witterauf, Dominik
Walter, Frank Hannig, and Jürgen Teich. Symbolic loop
compilation for tightly coupled processor arrays. ACM
Transactions on Embedded
49:1–49:31, July 2021. CO-
DEN ????. ISSN 1539-9087 (print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3468897.

Wen:2023:WCP

[WWN23] Elliott Wen, Gerald Weber,
and Suranga Nanayakkara.
WasmAndroid: a cross-
platform runtime for na-
tive programming languages
on Android. ACM Trans-
4:??, January 2023. CO-
DEN ????. ISSN 1539-9087 (print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3530286.

Wang:2022:RID

[WWT+22] Tse-Yuan Wang, Chun-Feng
Wu, Che-Wei Tsao, Yuan-Hao Chang, Tei-Wei Kuo,
and Xue Liu. Rethinking the interactivity of OS
and device layers in memory management. ACM Trans-
actions on Embedded Computing Systems, 21(4):
42:1–42:??, July 2022. CO-
DEN ????. ISSN 1539-9087 (print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3530876.

Wang:2019:DES

[WWTSM19] Youchao Wang, Sam Willis,
Vasileios Tsoutsouras, and

Xiaokang Wang, Laurence T. Yang, Hongguo Li, Man

REFERENCES

316

You:2016:VVA

Chiou:2005:SAS

Yassin:2018:AAC

Ykman-Couvreur:2002:SLE

Ykman-Couvreur:2011:FMM

Yang:2016:BAU

Yang:2010:HPO

Yang:2010:OMC

Yuan:2022:MFC

Yantir:2017:AMM

Yaghoubi:2019:WCS

Yang:2014:CTR
Qiang Yang, Jian Fu, Raphael Poss, and Chris Jesshope. On-chip traffic regulation to reduce coherence protocol cost on a microthreaded many-core ar-

Yang:2002:FVL

Yuce:2017:AFI

Yan:2019:CAR

Yang:2012:PAA

Young:2023:CAD

May Young, Alan J. Hu, and Guy G. F. Lemieux. Cache abstraction for data race detection in heterogeneous systems with non-coherent ac-
REFERENCES

Yuan:2021:CCB

Yang:2015:ESV

Yu:2019:TND

Yim:2019:TFS

Yen:2023:KBR

Yu:2010:FSB
Yoong:2012:ICC

Yang:2023:EEP

Yang:2022:DDC

Yan:2020:TCH

Yin:2023:CBR

You:2013:EAC

Yeh:2023:WRR

Wei Zhang and Bramha Allu. Reducing branch pre-

Zou:2022:DHA

Zhang:2013:SAE

Zhao:2009:STT

Zhang:2004:BAP

Zhao:2004:DAF

Ying Zhang and Krishnendu Chakrabarty. Dynamic adaptation for fault tolerance and power management in embedded real-time systems. *ACM Transactions on Embedded Computing Sys-

Zhong:2019:SHS

Zeng:2014:MSC

Zacharopoulos:2023:TEH

Ziegler:2019:HSE

Zhao:2015:RSP

Zhong:2012:SNL

Ziguo Zhong and Tian He. Sensor node localization
with uncontrolled events.

Zhong:2012:WSN

ZH12b

Zhou:2013:ARD

ZHCY13

Zh:2014:CCL

ZHM+14

Zh:2010:RAD

Zheng:2017:RTS

Zhou:2020:BBT

Zhang:2005:RDC

Zhou:2008:CIA

Zimmerman:2013:MBR

Zhou:2011:ARA

Zhang:2018:PEP

Zhou:2019:RTA

Zhang:2015:MPA

Zhang:2017:FAK

Zheng:2023:IHA

Zhao:2024:ICV

Zhu:2007:ESA

Zhao:2003:SRM

REFERENCES

Zhai:2013:MSA

Zhu:2016:SDW

Zh:uang:2006:PLS

Zh:uang:2007:PEP

Zhou:2008:DAT

Zhou:2009:CLC

Zh:uang:2011:CST

Zhao:2017:ORT

Zhao:2016:GES

Zhao:2023:FSN

Zappi:2012:NLP

Zhang:2019:CCL

Zhang, Jeff (Jun), Parul Raj, Shuayb Zarar, Amol

Zhang:2006:RDL

Zhang:2004:STC

Zhang:2005:HCC

Zerzelidis:2010:FFS

Zhang:2013:SCE

Zheng:2017:DDC

Zhang:2016:IRW

Zhang:2023:OCS

Zhou:2010:MMS

Zhong:2008:SWE

Zhou:2013:GOV

Zhuge:2003:CSR

Zeng:2017:SLD

Zou:2022:APS

Zhang:2024:EAA

Zhang:2015:CDR

Zhu:2012:OTA