A Complete Bibliography of *ACM Transactions on Embedded Computing Systems (TECS)*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

03 February 2024
Version 1.91

Title word cross-reference

2 [LMS+22, VWG+17], 3
[CCY+13, CLLC17, DSXS+14, HH13, HL14,
LQN+13, LMS+22, MSCS16, PRB15,
SSPP23, SP19b, SBK+23, SVC+23, WDM17].
8 [LPO+17, ZSH+19].
2 [EAAS22].
[KG05].
1s [Ano13, Ano14].

2 [CBH22b, STLX22b, SCZ20b].
2.0 [CD19].
2011 [SN10].
2015 [EE16, FX17].
2016 [EH18].
256 [ZSH+19].
2s [Ano13, Ano14].

32-bit [SSA21].
3PXNet [RLG20].
3s [Ano14].

4.0 [Shu18b].
4s [Ano14].

5G [SAS+23, VKMP20].
5s [Ano14].

6 [GIA11].
61499 [YRS12].
64-bit [KKS+23].
653 [DLD+19].

A9 [SOL+16].
AADL [GG GK08].
abstract [HDR+06, RRW05, WBF+06].
Abstraction
[CMS17, KB17, LP19, MSS23, SKKR11, VF17, WMRB17, YHL23, ADI06, PDBR08, RS07]. Abstraction-Refinement [KB17].

Abstractions [SPY+10]. Abstracts [Ano13, Ano14, TEC12]. ACAS [CMP23].

Accelerate [XDL+18, LHM14]. Accelerating [CDX+19, DZL+22, HSK18, STLX22a, STLX22b, YZZ+23, ZLSQ17, ZHCY13].

Acceleration [CAN+23, GIA11, GV21a, HZH+18, KSA+18, LMS+19, LZN23, MDW13, PRL+23, QBW+24, SLK+22, SWWW17, WZY+23, ZEJ+23, ZRZ+19].

Accelerator [ASS+23, AP20, ARZ+23, AKI+23, AV20, BTA+19, CS22, FFA+23, GZZ+16, HHL+23a, IVJ+23, JAB+22, MSR+17, SXSS+16a, SXSS+16b, SXMX+18, Sus20, TLSJ23, VKW+17, CCA+13, TLLL09].

Accelerators [BZY+23, CGSH19, DKA+19, HNY18, KMS+23, LG21, LPP+21, LCY+22, NVB+20, PCC17, PVSG22, PMDC17, RR17, RWL+18, TAP23, XCWZ23, YHL23, KJRG13, MSH+14].

Access [BP19, CLLC17, GND03, IFA+16, KCWH14, KKC516, LYH+15, PP19, RB21, TGBT17, WLK+19, WHL23, TVK08]. Access-Aware [LYH+15]. Access-Execute [WLK+19].

Accesses [RC17]. Accountability [KS18]. Accounting [GD19], accrual [WRJL06].

Accumulative [MH19]. Accuracy [JBD20, LSVRFC23, MKR13, OSA+18, WCK+19, AC08, ITO+24, PSZ12b, SD08].

Accurate [KCJ+16, TKT15, VJD+07, VDK+08, WSMF22, LM13, LLC+13].

ACDC [SRG+15]. ACDE [FFA+23]. Achieving [GHZH14, JSZ+19, LPFG13, WCK+19, WHL23].

ACM [BLG+15, DSB19, CJL17, CGZ18, DST19, SCKD23, Mit21, Shu18c]. acoustic [PSZ12b]. acoustic-based [PSZ12b]. across [GKS+22, JSZ+19].

actor [FZK+10, LLN09, ZL08, RBS+10].

Adaptation [HKL+23, MSD17, WLC+18, WLC+18, ASTPH01, WYJ+14, ZC04b].

Adaptations [KRS+16]. Adapting [SCM20]. Adaptive

Adder [DBH14].

Adders [DVC21, DNT18, FMDH23].

Address [CCD+20, SEB12, CKIR06, HABT11, JKJ+10, ZP08].

Address Code [SEB12]. Addressable [RSK17, YCT16].

Addressing [EYR03, YZA13]. adjusting [Wu10].

Adoption [NVB+20]. Advanced [BP19, LAZ+16, PJWY12, SXH+19, BCG+07, ISTE08, SBF+05].

Adversarial [XYLC23]. Adversarially [BMP23].

Adversaries [Shu19a].

Adversary [KFY+22]. Adversary-aware [KFY+22].

Affecting [EV17].

Affine [KDR23, NNS13].

Against [FLF+23, HMR23, HDZL20, KKL+16].

[AMJ21, BTA+19, DBX+22, HXZ15, HZW+23, HB23, LMB+22, TLL+12, WLWS15, ZRF+12, HXZ+13, NRL13].

actor [FZK+10, LLN09, ZL08, RBS+10].

Adaptation [HKL+23, MSD17, WLC+18, WLC+18, ASTPH01, WYJ+14, ZC04b].

Adaptations [KRS+16]. Adapting [SCM20]. Adaptive

Adder [DBH14].

Adders [DVC21, DNT18, FMDH23].

Address [CCD+20, SEB12, CKIR06, HABT11, JKJ+10, ZP08].

Address Code [SEB12]. Addressable [RSK17, YCT16].

Addressing [EYR03, YZA13]. adjusting [Wu10].

Adoption [NVB+20]. Advanced [BP19, LAZ+16, PJWY12, SXH+19, BCG+07, ISTE08, SBF+05].

Adversarial [XYLC23]. Adversarially [BMP23].

Adversaries [Shu19a].

Adversary [KFY+22]. Adversary-aware [KFY+22].

Affecting [EV17].

Affine [KDR23, NNS13].

Against [FLF+23, HMR23, HDZL20, KKL+16].
Application-adaptive [LK02]
Application-Aware [KJK17a, BO13]
Application-centric [ESBK23]
Application-Focused [HPBL12]
applied-independent [HBSA04]
Application-Specific [DASS12, MFPG19, PSZ12a, TBF17, TKH22, RC08, USA22, WP11, BM13, yCB05, JHP13, XWC06].
Applications [BZG19, BTA19, BJCHA17, BYIG12, CBH22a, CBH22b, CAP11, DNB12, DVC11, ETA16, ESBK23, FSB21, GTH22, HJ19, KKD12, KCJ16, KGT23, KMP15, LKZ23, MLC17, BMC12, MKD15, MSSP12, MASG15, NZ19, PX18, PJJ17, RPHA19, RDP17, SLB15, DFC19, SPB17, TDD16, TGB17, TP16, UBF16, VCM19, WM17, WH17, WZY13, XDL18, ZD14, ZSJ12, AMCM06, ABC07, CMV10, CL13, CD10, CCAP12, Dea06, DKAL05, FO03, GFC10, GH13, HHH12, IHK04, KVN09, KBDV08, KZH06, LO13, MEP04, MEP08, MAG14, DWCM14, PCK08, QP03, RMM03, SGT13, SJC03, SPP10, UCH09, YG02, YCLV02, Z013, ZWY13, ZXS03].
Applied [BGRV15, LCQ13]. Applying [LZJ20]. Approach [APRC16, ABF21, DMPC23, ETA16, HDZ11, KMS13, KDB19, LYH15, LLIW17, MC133, NBM16, PHG17, RSW21, SUK23, SP20, SWX17, TBAS17, WZ12, YF19, ZRF12, BV13, CAP07, CRM14, FZHT13, GNR10, JHP13, KKH12, LLI14, LM13, MSCJ12, MSS03, OMA13, PB14, ZCS05, ZKCC05].
Approaches [CZH17, FHB17, GWM16, KOM13, PKT23, HL14, SLC14].
Approximate [ATO20, ASJ21, AZS23, CGSH19, DVC21, DNT18, FMH23, GRR23, LN19, LLP21, MDS21, MMH23, NBE18, RR17, RSK17, SUK23, TAP23, USA22, YEK17].
Approximation [ADH23, BDK23, PC14, PLT23, SC20, NBGS09, ZKX08].
arbitrary [LA11]. Arbitration [BJP24, MBJ23, TTA20, PL10].
ararchical [VGG13]. Architecture [ABF21, AAR17, BDB17, CHK14a, CWX23, DASS12, HW17, KKD12, KY17, KKCS16, MCW12, MSR12, MZG15, MLAD23, OBO23, OSA18, SK13, SJOL22, SLK22, SVS21, SC20, SSS11, TKV18, TKHZ22, TKT15, TLJ123, VKM20, WCB20, YCK18, AP09, AAPN14, BCLN13, Bec09, BO13, CIC18, CIC19, DSW09, GJ13, GD03, GM03, GLVM14, HPLD09, ISE10, KV103, KX10, KYHY14, KGR12, KTT13, LS09, MMS14, MMD04, PKC08, PBP09a, PB09b, RDM06, RMD09, SWK207, TK131, THON12, YFP14, ZCK13, ZVL04].
Architecture-Aware [MZG15].
Architecture-Independent [SC20].
Architectures [AMKA17, ADH23, ARDG16, BBD16, BMDP23, BJCHA17, CHS15, CDH16, DXXS15, DLPK16, FSC16, GPT23, KAS20, KOM23, LCD18, MG15, MBCM22, MKD15, MKAA17, MKAJ18, NAS18, OMMK23, RDP17, SB23, SVC23, SX12, THA12, VCM19, WSHC14, BP14, BV13, BMP03, BCG10, CP13a, GMB013, HG09, IBM10, LOG14, LWK10, LXL13, MF13, NB04, PC12, PDBR08, SBX08, SM13a, ZTD06]. Area [AZHC19, BKMG12, BTL12, GMV17, KSK13, MCM17, TLL12, WH17, ZJZ120, CRM14]. Area-efficient [SK13]. Areas [PK12, SBB19]. ARES [ZAA22].
arithmetic-level [OP06]. ARM
Augmentation [KML+22]. AuthCropper [KLK+19]. Authenticated [DS11, KKK+19]. Authentication [GMV17, SZG+23, SRK+18, DLN13, LN04].

Auto [RB21]. Auto-Scaling [RB21].

Automata [JFK15, SFB23, SK19, SH15, BS13b]. Automated [CDD+07, CFGM15, CI17, FC16, LSL20, NNS13, RMK17, TAB17].

Automatic [BF17, BZY+23, CMK12, DP19, GNP06, GGJ12, HVG13, LVSVRFCG23, LLC+13, SFZX18, TM15, TFL16, VNK+03, YCK+18, AFG08, BAR13c, IBMK10].

Automatically [BTD+18]. Automating [SVC+13]. Automation [CWZ+20, SVZ13, LCQ+13].

automaton [TLL09]. automaton-matching [TLL09].

Automotive [VA18]. Autonomous [CGZ18, HXH+24, ICW+21, XJH13, MM16, SH23, SAS+23, WMLM12, YKD12].

Auxiliary [DL12, ZCG+22]. Availability [LAB+23, FF09]. Available [KCH+16].

AVX512 [LHP+23]. Aware [AMJ21, BMAB16, BZG19, BLSM19, CWH+16, COC22, DAHM16, DHL17, FSG23, FS13, FMSS15, FC16, GGC+17, HGW+20, HDG+14, HPP17, HB16, JRS17, JLW+15, JEP16, KKD+12, KJK17a, KBS17, KJK18, KRS+16, LSC19, LJP17, LYH+15, LIZ+19, MSR+12, MZG15, NASM18, OBO+23, OHCK24, PSZ12a, RR17, RLL+23, RDSS21, SOL+16, SP19b, SXXS+16a, SWX17, SLS+19, SAS+23, TASA17, TEBP16, TELM15, VA18, WLWS15, WHN+17, WZD+17, YCI6, ZGZ24, ZLX+23, AHM19, ABF+21, ACK+13, AZH19, AZS+23, BCDD24, BMP03, BO13, CCS23, DVK14, DGC+20, DLRTB+19, DJS16, ESM+17, EYG+23, FZJ08, GH13, GGI13, GMR+10, HSD22, HI13, IVJ+23, JC03, JP14, KBDV08, KLYL13, KKY+22, LO13, LQN+13.

Bandwidth [BKMG12]. Bandwidth-AiDe [BKMG12]. Bandwidth-limited [HHL+23a]. Band [TGBT17, LX13, SBX08, ZP06]. Banks [CI17, MF12]. BarbequeRTRM [BMF15].

Bare [BYIG21]. Bare-Metal [BYIG21]. Bare [HCL+17, ZQD+23]. Baseband [VKMP20]. Based [ADH+23, ARDG16, AYS15, BCD+22, BCS16, BSA17, BE17, BP12, BSJ15, BRL16, CSCC17, CPC17, CCM17, CCC+20, CDH+16, CKB17, DWRR14, DJZ13, EVS+17, FND+16, GSC19, GMCC18, HPB1L2, HSMS16, HZYJ22, HPO+15, HWTL23, HLLL20, HHL+23b, HPS13, HW17, JKH22, JZL+15, KY17, KKL+16, KH23, KCC+16, KSA+18, Kwo16, LL15, LPFL16, LHP+23, LX22, LZL15, LZS+18, LHL+19, LPO+17, LZZ+19, LS20, MSS23, MCGS16, MCS+15, MCM+17, MS13b, MLD15, MSSP22, MKAA17, NASM18, NBH23, NYH+20, PYJ1L5, PJWT12, PGR16, PNRC17, RLL+23, SA18, SLB+15, SJK18, SSA21, SXY+19, SWL+23, SPC+16, SCRY16, SJOL22, SLK+22, SIC19, TBFR17, TNR17, TMXS17, TAMS18, UM13, WYY13, WDI+16, WXY+18, WCK+19, WZY+23, WLC+18, WZ12, XHK16, XDL+18, YJD+17, YYZG23, YC12, YLF15, YCT16, YYKK18, ZRZ+19, ZCG+22, ASTPH10, AÖZ+23, AP20, ANARR+19, AZHC19].

Battery [ABS02, BGD14, BKG+23, BD14, BZ13, BQF10, BON12, BMMV21, CCA+13, CYKH13, CC13a, CDX+19, CCP+23, CMP23, CV10, DJ23, DEG11, DLN13, DAAAP21, FZHT13, FMHS23, FKS+19, FFA+23, FLF+23, GW08, GFC+10, GDD17, GD14, GDN03, HKP18, HZX+14, HPLD09, HB23, JK+10, JMO14, KKO+06, KPK+19, KKH+12, KGR12, KT14, KKS+23, LQO+13, LPC+07, LS13, LLR14, LC17, LLG+20, LKZ+23, LCY+22, LHCK04, LLGR13, LV09, MGC+23, Mos10, NS11, OM+13, PBC22, PCK+08, PS08b, PW13, PDRB08, PAS+09, PCGD21, PSZ12b, PR+08, PLT23, QR+24, RST1, SSK21, SUK23, SGT+13, SCF12, SKH+12, SGZS21, SBLM13, SB08, SCB+22, SM3X+18, SSVS21, SC05, TXL+12, TJ23, TP020, TAP23, USA+22, VJD+07, VDK+08, WSK14, XQO+24, YZG+23, YV23, YRF10, YLY21, ZKCC05, ZJL20, ZLF13, ETAV16, GZG+16, SBDK22, CLC17, FS14, RBS+10, RSB+09, ZBC09].

Battery-Aware [MAG15]. Bases [HWC+20]. Basic [HDZL20]. basis [RMH04a]. BASS [VVK023]. Battery [AKTM16, CGZ18, FHK12, KJ+16, LOD18, SPT+21, VA18, WXY+18, WLHC18, YTL+20, RV03, ZSM13].

BBB-CFI [HDZL20]. Be [JSD23, Val17, GT05]. beamforming [TKG13]. Become [RH23, Shu18e].

Bluetooth [KDYC20, LLL14]. BMS [KNY+17]. Board [CPP+17, CGV10]. Boards [JKH22]. Body [AZHC19, BKMG12, BTL+12, GGG12, PP12, TLL+12, ZLL+11, LHX+14, QRB10, WYP+10].

Bounded [AFMT17, KHB+23, KDR23]. Bounded-Phase [GT17]. Bounding [WZ12]. bounds [LA11, NNS13, RM10].

Box [BTD+18, SOL+16, SWS23]. Brain [KOL+22]. Brain-inspired [KOL+22].

Braze [SA18]. Brake-by-Wire [SA18].

BRAM [PL+23]. Branch [QZX04, DNN14, PO05, ZA07].

branch-and-prune [DNP14]. Branching [FKS+19, KMP15]. breadcrumb [LHX+14].

Break [BVM19]. Breast [PCC17, CCC+14].

Brief [BLG+15]. Bringing [MMA+23].

Byte-Addressable [YCT16].
QZXO14, RP10, SRG+15, SGZS21, SWL+23, SP20, SJOL22, VGN18, WMGR12, WZJ+18, XSP22, YHL23, ZW17, BJP24, BGD14, BP05, BO13, GRV12, GLY14, HKV105, KVK+03, LKR02, RG13, SE07, VLX07, WAD14, ZVI04, ZVN05, ZKCC05, ZTRC03, UAK+03. Cache-Based [Kwo16]. Cache-Partitioned [GWZ16].

Cascades [BBD23]. Case [AKI+23, LKZ+23, LOF20, MKI18, MF17, NS16, SSR+23, WZ12, BMMV21, DEG11, FKS+19, KT14, LHM14, MSS+03, PE23, SWK+07, SPK+12, VJD+07, VDK+08, WEE+08, YF19, YZ08]. Cash [SBR+13].

Catching [SXH+19]. Causality [ZL08].

Challenging [GLY14]. Chambolle [BRA+16]. Change [AMJ21, SDM19]. Channel [AAT+21, BS22, BTL+12, GW15, GMW16, HMLZ21, MM16, PX18, SBK+23, SLS+19, ZLSQ17, CW14, IYL+23].

Checking [RJS19, SUS+17, SWS23, WZ12, CJMB05, Sch10, ZS05]. Checkpointing [ABA+20, ZWK23]. checks [BCS+06].

Chimp [AZHC19]. Chip [ABF+21, BCBH18, BS22, CPC17, CEC23, DLPK16, DJ16, FLB17, FFGS22, FC16, GIB+12, GPT+23, HMR23, HMLZ21, IB23, K18, LLG+20, MST+16, OMMK23, PVSG22, PSZ12a, PRK15, PGR16, SGZS21, SIC19, SR19, VDKG19, WRK16, AKB14, BP14, BGD14, BD14, BJ3+23, CP13a, CHK14b, CZHK23, L14, GM0B13, GNR+10, HXZ+13, HQB06, Huit13, ISTE08, KHY14, KGR12, LQN+13, PL10, PS10,
SRM+13, SJRS+13b, SJC+03, SAYN09, TSBY13, VNK+03, WYJ+14, WMZY13, XWHC06, YFPJ14, YZA13, ZRZ+19, SSS11. Chip-Free [HMLZ21].

chip-multiprocessor [PS10]. chip-multiprocessors [BD14].

Circuit [IYL+23, MCSW12, LLL14, ZBCM09]. Circuits [ETBK19, LEPP13, SWX17, BvB13].

Clairvoyance [ZZG24]. Class [HSD22, BCLN13, WBF+06]. Class-aware [HSD22]. Classes [LLN09, MAKO19].

Classification [GKS+22, ITO+24, SYS21, SRA12, LCH+08]. Classifier [BBK23, ZCG+22, SM+13a]. Classifiers [ORA16]. Classifying [TKD07].

Coalescing [SR12a, AP09, KG05, OOA+06]. Coarse [BZY+23, JSD23, KMS+23, LCD18, VNK+03]. Coarse-Grained [JSD23, KMS+23, LCD18, BZY+23, VNK+03]. COBRA [BJP24]. Code [BBGT23, CI17, EK12, HDZL20, HY+15, KBS17, KD08, LFC17, LBS15, LZJ+19, MS21, MS23, MBFT09, OSF19, SEB12, TP19, WKJ20, ZXS03, BAR13c, BSB14, CKIR06, CLR05, ELS08, FRRJ07, GRVD12, LLPM07, LSK+08, LCS03, NP04, TBG+13, YW+13, ZBM03]. Code-Inherent [OSF19].

Coding [FS13, PJWY12, KJRG13]. Co-evolution [YLTY21].

Co-evolution-based [YLTY21]. Co-exploration [KKD+12, MMD04].

Cognition [KOL+22]. Cognitive [HZGW18, XLY18]. Coherence [CMP17, LPB06, YFPJ+14, MMK22].

Collection [CLL16, CBS19, GMM21, KSY17, LLW+17, CKL04, CW14, CSK+02, DAK05, SP10].

Combination [CHK14b]. Combinatorial [PYJ+15]. Combining [EAAS22, GVRD12, Mos13, RBNM19, VGN18, ZS05]. Coming
Comment [BLG+15]. Commodity [WP11]. Communication
Concurrency [BBM15, CFGM15].
Concurrent [BVM19, GHR15, JZL+15, LMBL21, SPB+17, JM06]. Condensed [XYLC23]. Conditional [CLJ+19].
Conditions [ARS16, RKC+22]. Conduction [DST19]. Configurable [CVG+13, LVSVRG23, LLP+17, OP06, PW13, PBP09a, ZVN05, PBP09b].
Configuration [FC13, GPB+17, SL16, SSS11, GRVD12]. Configurations [BCS16, JHPR13]. Configuring [BLG+15, KS22, BHE04, GLT+13, PBP09a, PBP09b].
Conflict [ZCK13]. Conflict-free [ZCK13]. Conflicts [LZS20, TGBT17]. Confluence [Shu18b].
Conformance [WLT12]. Conserving [MRY+10], considering [ZNS13]. Consistency [AbSZ+19, LAB+23, LLN+14, SB23].
Consortium [HKHL05]. Constrained [AV20, BJSJ15, GLMP18, JGL21, KPS23, KKCS16, LWB18, MFG17, MPFG19, Bar13a, KAK05, LQN+13, LCC+19, TSG10, UCK+09, WBS10, YRS12, ZBG20].
Constraint [COC22, ZSH+19, BvB13, HCQ+14, RS07]. Constraints [CCKM16, LNI9, MBKF15, NZS19, PSZ12a, SB23, CCB+06, HLD+09, KDN+07, LSK+08, MBFSV07, MEP08, NP04, PAP+12, RMM03, SRM+13, WRJ06, YRF10].
Consumption [ANB+20, FLF17, MV16, OBSO16, YCT16, Mvso3]. Contactless [QWY+18]. Containerized [BCDD24].
Containers [SAC+24]. Content [CWH+16, DLD+19, RSK17, TLLL09]. Content-Addressable [RSK17].
Contention [KBRD22, LES14, LCL+19, RDP17, SP20, ZLX+23, DNNP14, BJP24].
Content-aware [BJP24]. Contention-Detectable [LCL+19]. Contention-free [LES14].
Contextualized [YSC22]. Continual [LX22]. Continuing [Shu17a]. Continuous [DLRTB+19, ZQD+23].
Contracts [NLSV+19]. Contrastive [SRB23]. Control [BMF15, BF17, BHL+20, BYIG21, DSB17, DHL17, GDD+17, GDD09, KKCS16, LJP17, LML20, MBP14, MCG22, MMV+19, MLB16, PP19, PMP17, RJS19, RLMP23, SSD+19, SE23, SUS+17, SPK+12, SLFC19, TBCB15, TCD+19, TFL16, VA18, VM23, WZH13, YK+24, ZW13, BMM13, BJM13, CAP+07, FC13, KKH+12, KT14, LK10, MTL14, PCM12, RV07, SWT+14, VAHC+06, VGG+13, ZTRC03].
Control-Flow [DHL17, PMP17, SUS+17, BHL+20, MCG22].
Control-theoretic [SPK+12].
control-theoretical [MTL14].
control/data [VAHC+06].
control/data-flow [VAHC+06].
Controlled [BCS+23, HFL+19, JN15, WMLM12, YDLC10a].
Controller [GAG15, GMVV17, HDG+14, HPP17, MSS23, NZS19, ZJZL20, LCQ+13].
Controllers [ARDG16, BF17, BDG+15, GHPP18, HKP18, ICW+21, KML13, NPAG12, SVZ13, YF19, KASD07].
Converging [Gar05]. conversion [AC08].
convex [SJRS+13a].
Convolution [AP20, AABG22, MDWL23].
Convolutional [AP20, HSK18, HY22].
Cooperation [LOD18]. Cooperative [ANARR+19, SHL+17, YLTY+21, ZZX+15].
Coordination [PMDC17]. Coprocessor [LRZ16, BZ13]. coprocessors [HMMMA04].
copy [AP09]. Core [CLJ+19, HSM16, HH23, KR18, LKA+18, MKD15, PGR16, RC17, RWL+18, RJM19, SSPP23, SDBD18, SRR+23, TKV+18, TTG17, VDK19, VCM19, WHN+17, ACK+13, CCC+14, CLLC17, CMP+07, DPP14, DP19, JAD19, LKB14, LOG+14, LLR14, LLLT08, LLLT09, LOF20, MG05, Mus10, PMM+13, PHG+17, RDP17, VKMP20, WBF+06, XSP22, YFJP14]. core-centric [LLLT08, LLLT09].
Correlation [GW15, SMZ+21, TBEP16]. Correlation-Aware [TBEP16].
Correlations [HC16]. Cortex [SOL+16].
cosimulation [OP06]. COSMOS [PMDC17]. Cost [ABC+17, BLG+15, CS22, GAS+17, LLC+22, LLZ+17, LZZ+19, MGLP19, ZO16, CCH13, CRM14, GLT+13, Mus10, SJRS+13a, SM13b, YFJP14, ZCK13, ZP09].
Cost-Effective [BLG+15, GLT+13, Mus10].
Costs [CGSH19]. cosupplied [MKD13].
cosynthesis [KBDV08]. COTS [FSB+21, HH23, PSZ12b, PJT+23].
COTS-Coherent [HH23]. Count [SIC19].
Counter [ARP12, KJLS20, MKASJ18, PMAB19].
Counter-Based [KJLS20].
Counter-Examples [PMAB19].
Counterexample [LP19, ZQD+23].
CPU/GPU [OFA+15]. CPUs [LSC19].
Crab [WCB20]. Crab-tree [WCB20].
Critical [BHL+20, CKN+20, HSR18, IPL16, KWKP23, LS20, RHG+14, Shu15d, ZYL+17, ASTPH10, PJC+14, SVN04]. Criticality [AKTM16, BCDD24, GE18, HPP17, HHC+16a, LCP+17, LH18, RC17, TSP15, TGTT17, ZZG24, ZGZ15, ABS+19, FHB+17, HGL14, KGT+23, LDRM12, ZQGZ22].
Cross-Layer [BDG+15, JCW+16, ZP09, KST+12].
Cross-Platform [WWN23]. Cross-Section [SRNW16]. Crossbar [HKL+23, JR20].
Crossbar-Aligned [HKL+23]. Crosstalk [FC16, LPE+23]. Crosstalk-Aware [FC16].
Crowd [DBFH14, PKIT23].
Crowd-Sourced [DBFH14].
Crowdsensing [XQQ+24]. Cryptographic [AMKA17, ARH+18, BCHL19, BSJ15, MAKA17, ZSY19, RMH04b].
Cryptography [DLZ+22, LHP+23, LWHS17, LPO+17, NVB+20, SOG15, Seo18, SAKH20, Geb04].
CS [KSA+18]. CS-Based [KSA+18].
CURE [NGL17]. current [MG05].
curriculum [CSVA+05, Sev05, SBF+05].
Curve [DZL+22, LWHS+17].

Customizable [TKV+18].

Customized [CGV10, PO05, ZP09].
Customization [Rru22, YTL+20].

Cutting [AR14].

CV [PRB15].

CxDNN [JR20].

Cyber [AFS+13, BHAC15, BKMG12, CKGN14, DWRR14, DHJ+17, DHF18, GCJD20, GSN21, HZX15, IPL16, KCC+16, LAB+23, LWZ+16, LLN+14, MBKF15, MKS+17, NLSV+19, PRS+17, SHL+17, Shu16d, Shu17b, Shu19d, SMR20, TGV12, TCD+19, UGS+21, WDD+16, WZBP19, XKX+16, ZYM16, ZYL+17, ZJC+17, BWS14, BJM13, DGD+13, GMOB13, Hibi3, LDRM12, SPK+12, TXL+12, WLT12, YRS12, ZSM13].

Cyber-Physical [AFS+13, BHAC15, BKMG12, CKGN14, DWRR14, DHJ+17, DHF18, GCJD20, GSN21, HZX15, IPL16, KCC+16, LAB+23, LWZ+16, LLN+14, MBKF15, MKS+17, NLSV+19, PRS+17, SHL+17, Shu19d, TGV12, TCD+19, WDD+16, WZBP19, XKK17, ZYM16, ZYL+17, ZJC+17, BWS14, BJM13, DGD+13, GMOB13, Hibi3, LDRM12, SPK+12, TXL+12, WLT12, YRS12, ZSM13].

Cyber-Physical-Social [ZYM16, ZYL+17].

Cybersecurity [Shu15a].

Cycle [LS12, HHB+12].

Cycle-Static [DHKS15, SLC16].

Cyclo-Static [DHKS15, SLC16].

D [HL14, CCY+13, CLCC17, DSXS+14, HH13, LQN+13, LMS+22, MCS16, PRB15, SSPP23, SP19b, SBK+23, SVC+23, SRK+18, WDM17].

D-PUF [SRK+18].

D-Stacked [SSPP23].

DaCapo [KPS23].

DAG [BGS+18, CLJ+19].

DAGs [CAA+24].

DASS [MLAD23].

Data [APRC16, AMJ21, AbsZ+19, BGJ17, CJI17, CZK+22, CBS19, CMPP23, DBFH14, FSC+16, GGC+17, GSS+18, HKC18, HRT+22, HWC+20, HB23, JRR16, JCS+17, JLIW+15, KKO5a, KSA+18, LPP+20, LLZ+22, LCC+23, LCJ+13, LNN+14, LLN+17, LSL20, MM16, MMF+23, MF12, OHCK24, PE23, PqBM+15, PM19, PNRC17, RP03, SMW+17, SRG+15, SPC+16, SPT+23, SZL+17, SFCW23, Shu15a, SWWY13, SWWW17, VXL07, WJK20, WWTS19, WLC+22, WQGR22, WLK+19, XQQ+24, YZZG23, YCK+18, YHL23, ZZX+15, ZW17, BS13a, CC13a, HBS04, HKV105, LXK10, SAYN09, TBG+13, UAK+03, ZKGC05, ZLF13].

Data-Adaptable [LSL20, SMW+17].

Data-Cache [ZW17].

Data-Dependent [HKC18].

Data-Driven [BGJ17].

Data-flow [CFMP23, VAHC+06].

Data-to-Memory [FSC+16].

Databases [KCC+16, CH10].

Dataflow [ABH+18, ADJM19, BPP23, DKA+19, DHKS15, DPNA16, ETBK19, FGK+23, GTH+22, KAKSP15, LWB18, MS21, MDWL23, MKD15, SB23, DFC+19, SCB+22, SLC16, YLTY21, FZHT13, Gei10].

Dataflow-based [SCB+22].

Dataflow/von [SB23].

datapath [HMMA04].

DC4CD [GLMP18].

DCA [KKCW17].

DCT

Dead [TM15].

Deadline [COO22, HQE20, OHCK24, MPE08, SN10].

Deadline-Aware [OHCK24].

Deadlines [YKDD23].

Deadlock [BS17, DGC+20, HPS13, LX12, WZH13, ZW13, BS17].

Deadlock- [BS17, BS17].

Deadlock-/Divergence [BS17].

Deadlock-free [DGC+20].

Dealing [RSF20].

debug [AKB14].

Debugger [MIG14].

Debugging [DHF18, FLF17, MBLA16, UM13].

Decade [SOG15].

Decentralized [BR19].

Deception [Rru22].

Decision [BCD+22, BGK+23, CL13, CSH+22].

Decisions [PW1+19, SPGT19, UDB06].

Declarative [OSA+18].

Decoded [GGI13].

Decoder [FS13, SHME13].

Decoding [RRC22, WZD+17, LJ14, HE12].
Decompression [CLR05]. Decomposed [AV20, BKMG12, BBM15, BJT+12, BHT04, BRL16, DCZB19, DSI19, DJJ+19, DEG11, DZH13, DNT18, FMHS23, FFA+23, FSVG19, GLP+11, GK22, Geb04, GCJD20, GV21b, GSN21, HFA+14, IT16, IAS23, JFM23, JBD20, JEP16, JBC16, KJRG13, KMS+23, KB17, KDB19, LS20, Leo18, LEPP13, LMW+17, LV09, MSH19, MFG16, MSLS16, MYL+22, MPZS13, NYH+20, NLSV+19, OPA+15, PSZ12a, PDL+23, PRSV19, PGR16, PHG+17, RMP23, SWK19, SIR+17, SLB+15, SFCW23, Shu15d, Shu15e, SPGT19, SBKD22, SM20, SLFC19, SCS16, SR19, TP19, TSP15, TBAS17, TKG22, TKL+15, TLSJ23, TBCG023, UGS+21, VA18, VP16, WWY13, WLZ+23, WWG+18, WMLA16, WZG+23, YGHS08, YLTY21, ZYM16, ZYL+17, ZBG20, ZO16, ARJ08, BDG14, BE10, BMP03, BFQ10, CYKH13, CMS08, CCB+06, DPP14, DDG+13].

Depletion [FHK21]. Depletion-time [FHK21]. Deploying [YLD19]. Deployment [LFS18, LVC+22, MSS23, OBO+23, RMS21, RHL+18, SRA12, CGV10, ZCO4c].

Depth [LGL21, KTT13, YLY13]. Deriving [WWTSM19]. Descent [XCZ23]. description [MMD04]. Descriptor [PRB15]. Design [ABL+20, AHMT17, ADH+23, ARDG16, AV20, BKMG12, BBM15, BJT+12, BHT04, BRL16, DCZB19, DSI19, DJJ+19, DEG11, DZH13, DNT18, FMHS23, FFA+23, FSVG19, GLP+11, GK22, Geb04, GCJD20, GV21b, GSN21, HFA+14, IT16, IAS23, JFM23, JBD20, JEP16, JBC16, KJRG13, KMS+23, KB17, KDB19, LS20, Leo18, LEPP13, LMW+17, LV09, MSH19, MFG16, MSLS16, MYL+22, MPZS13, NYH+20, NLSV+19, OPA+15, PSZ12a, PDL+23, PRSV19, PGR16, PHG+17, RMP23, SWK19, SIR+17, SLB+15, SFCW23, Shu15d, Shu15e, SPGT19, SBKD22, SM20, SLFC19, SCS16, SR19, TP19, TSP15, TBAS17, TKG22, TKL+15, TLSJ23, TBCG023, UGS+21, VA18, VP16, WWY13, WLZ+23, WWG+18, WMLA16, WZG+23, YGHS08, YLTY21, ZYM16, ZYL+17, ZBG20, ZO16, ARJ08, BDG14, BE10, BMP03, BFQ10, CYKH13, CMS08, CCB+06, DPP14, DDG+13].

Design [DBH14, GLC07, GNR+10, HBQ07, HMMA04, HHH+12, JM06, JBN+13, KKO+06, KM09, KKH+12, LAN06, LSK+08, LN09, LM13, LHH14, MJS12, MBSF07, PGR+08, RP03, RS+09, RU04, RAK14, SVP05, ST05, STW13, SM13a, WCJ07, XWH06, ZTRC03, CMP+07, RRKH04].

Detecting [CCP+19, CMP17, PMP17, HT06]. Detection [AMKA17, AMJ21, CLL21, CZHK23, EVS+17, FGL+19, GLS+23, HZY+22].
HMLZ21, HPS13, KJLS20, LX12, LMS+22, LHYQ18, LJT17, LLP+17, LL18, MYL+22, MKM+23b, MKAA17, MKASJ18, MMD22, MAGR15, PCC17, PKIT23, QWY+18, RCS23, SXH+19, SMZ+21, TMXS17, WDY+16, YZZG23, YHL23, YKK+13, ZCG+22, ZJZL20, CCC+14, HLD+09, KLC+10, KTT13, LHC04, MVS+13.

Domain-Specific [BGK+23, KOM+23, OMK+23, SXS+16a, BJT+23].

dominance [WYJ+14]. door [SCF12]. dose [ZHCY13]. Dot [EZL+17, MKS23].

Dot-Product [MKS23]. Downtimeless [SVZ13]. DPM [CHK14b]. DRAM
[CLLC17, GHPF18, HPP17, HKP18, KRRC20, LO13, PMP14, SJ10.22, SRK+18, YWLW23]. DRAM/PRAM
[LO13]. Drift [KH23]. Drive [SYC+17].

Drive-Thru [SYC+17]. Driven
[BGJ17, CWZ+20, CEC23, FJKM18, GLP+11, GTH+22, MKMG18, Rtu22, WQGR22, WCM+16, WZG+23, CHCC13, DRL+10, FRRJ07, FKS+19, HG09, LP10, PEP05, RSB+09, WH16, BE10]. driver
[KXL10]. drivers [BMM13]. Drives
[CCSC23, CCC+20, HWTL23, ISOD21, YWLW23]. Driving [XHR+24, YKKD23].

Dropping [LCP+17]. DSE
[BZY+23, SPGT19]. DSP [FO03, Geb04, KMB07, KGRL12, LWBL13, LPP+21, ZXS03]. DSP-embedded [Geb04]. DSSoC
[MHK+23]. DSTL [CCC+20]. DTLS
[TNR17]. DTLS-Based [TNR17]. DTRL
[BGK+23]. Dual [DCZB19, MF12, SLS+19, GLWM14, LLPM07, ZP06, VAHC+06]. dual-bank [ZP06]. Dual-Channel
[SLS+19]. Dual-Mode [DCZB19]. dual-processor [GLWM14]. DUE
[LJLT17]. Durable [CL16]. During
[SPGT19]. DVFS
[Ack+13, CHCC13, CHK14b, PDL21, YC12]. DVS [QH07, ZM07, ZC08]. dwell [ML08]. DWM
[KY17]. DWM-Based [KY17].

DWMAcc [CDX+19]. DWT [PJ12].

DyCo [YSC22]. Dylog [DLH16]. Dynamic
[ALV+22, CPC17, CLI+19, CRCR13, DJ23, DLH16, EMS08, EMVR23, GVS+20, GE18, GPB+17, HLF+18, HNY18, IKH04, KAK05, KBS17, KG05, KFy+22, LRL15, LNL+14, LLLGR13, MLL+17, MSID17, MKE18, NYH+20, NPAG12, NZS19, OZ22, PqBM+15, PRNC17, QWY+18, QZOX14, SL16, SKPL10, SBK+23, TBE+16, UDB06, WMGR12, YGW+12, YSC22, YKKD23, YKD+24, ZRF+12, ZC04b, ZW17, ASTPH10, ACK+13, BCDH12, CRJ10, CR05, FZHT13, FZ09, HPLD09, ISG03, KR14, MMR+10, NNS13, NS11, NB04, OMA+13, PZ12, SJRS+13b, WYJ+14, ZTD+06, Zhu10, ZC08].

Dynamic-Priority [GE18]. Dynamical
[GD19]. Dynamically
[ARDG16, MZG14, GD14, HMMA04, LB10, FRRJ07, FKS+19, MF12, SLS+19].

Dynamics [ANB+20]. DynO [ALV+22].

DyPo [GPB+17]. DyVEDeep [GVS+20].

E-Cash-Toward [SB+15]. EACAN
[PS19]. Eager [CSC17]. Earliest
[HQE20].

Early [BJT+23, BZY+23, NVB+20, PYL+23, RG14, Shu18a, NKP+12].

Early-stage [BJT+23]. Earthquake
[SK21]. EAST [GQC+17]. EASYR
[YKKD23]. EAVE [LDV12]. EC [DZL+22].

EC-ECC [DZL+22]. ECCa [CNS23].

ECC [DZL+22, FLF+23, HJ19, ZSH+19].

ECG [CNC13, GZZ+16, MVS+13]. ECO
[RSW21]. economic [WCH+23].

Ecosystem [YMH19]. Ed25519 [TV19].

EDA [FSG23, LAN06]. EDF
[CHTC07, CAA+24, ZB13, ZM07].

EDF-scheduled [ZB13]. Edge

Edge-AI-Driven [WZG+23].

Edge-Assisted [BKS+23]. Edge-Cloud
[GRR24]. Edge-SLAM [BKS+23].

Edge-TM [PM+17]. EdgeWise
[GRWV22].

Editorial
Editors [PBP09b, Sch07, SL04, ST05, Wha07, VP16, WX17, ZQC16, Gup04, JM06, PBP09a, Shu19b, Shu19c, Shu19d, Shu20a, Shu20b, Shu18b, Shu18c, Shu18d, Shu19a, Shu19b, Shu19c, Shu19d, Shu20a, Shu20b, VP16, WX17, ZQC16, Gup04, JM06, PBP09a, PBP09b, Shu19a, SL04, ST05, Wha07].

Editors [HM17]. **education** [KCG+05, SVP05, SBF+05]. **EEG** [CNC13, MM16]. **Effect** [DVCC19, KHB+23, GCU+23]. **Effective** [BMF15, BLG+15, CJI17, LMK+18, LWK+17, VGN18, GLT+13, Mus10].

Effectiveness [SUS+17]. **Effects** [DJO12, MGB+21, RP1A19]. **Efficiency** [CRCR13, CEC23, HZH+18, LSL+23, OSA+17, PC14, PMM+17, PWL+23, THA+12, YJG+17, YDS+22, KVX+03, LPGF13, SWL07, SJR+13b, SKP+10, SM13b, TVK08]. **Efficiency-Driven** [CEC23]. **Efficient** [APRC16, ABA+20, AABG22, AJ18, ARZ+23, ADJM19, BJ23, BRR19, BGS+18, BCS+23, CAN+23, CHK+14a, CTK+13, CSH+22, CS22, CI17, CGV10, DCZB19, DMPC23, DLPK16, FGL+19, FLD+17, GQC+17, GK22, GRR23, GSS+18, GE18, HRT+22, HY22, HLL+23, HB23, JGL21, JFM23, JAB+22, KW10, KCC+16, KASD07, LS12, LX22, LL17, LX6, LWHS17, LMW+17, LFC17, LBS15, LZZ+23, MYL+22, MSR+12, MMH+23, MGPL19, MKE+22, MKASJ18, NLS11, NWA12, PVSG22, PP19, PCC+15, PGX+13, PHDL18, PS19, PML+15, PMP17, PLT23, PNR17, RR17, RHM04a, SSD+19, SLB+15, SK19, SA21, SPC+16, SP19a, SJOL22, SPB+17, SC19, SWX17, SHQX19, TLL+12, TBD11, TKT15, VKW+17, WCK+19, WLZ+23, WZG+23, YZZ+23, YKRD23, ZLL+18, AÖÖ23, ABF+21, BCLN13, BT22, BMP23, CAP+07, yCBR05, DLC+14, ESAS14, FZK+10, GRW22, HE12, HQB06, JGD+09].

Efficient [KS13, LAN06, LK10, MPT+22, PO05, QH07, RGSS04, RP10, RKC+22, RMD09, SKW+07, SJR+13a, SPT+23, SP20, SAYN09, UAK+03, WRJ16, WKC07, WCH+23, YS23, ZMB03, ZTR+03, ZP08, ZP07, ZC08, KMB07, CH10]. **Efficient-Grad** [HY22]. **Effort** [CRCR13, GS+20, MAG14, SRM+13]. **elder** [BDP+13]. **elder-care** [BDP+13]. **Electric** [VA18]. **Electrode** [EZL+17, YCK+18]. **Elements** [LVSVRFCC23, SBDK22, HVG13]. **ELFs** [ZGH+19]. **Eliminate** [DJO12]. **Eliminating** [RRW05]. **Elimination** [FND+16]. **Elliptic** [DZL+22, LWHS17, PW+04]. **Elon** [DLC+14]. **ELSA** [AV20]. **Embedded** [ALZR19, Akd21, AB15, ADJM19, BVM19, BD14, BHXP19, BLG+15, BP12, BJCH17, CLL21, CS16, CKGN14, CBH22a, CBH22b, CJL17, CCC+17, CSL16, CFXY17, CBQ+15, DAHM16, DLH16, DZL+22, DBF14, DQ14, DJ16, GLP+11, GDID17, GV21a, Goe14, HK18, HJ19, HKP18, HXH+24, HSK18, HNY18, HHL+23a, IPEP12, JGL21, JRR16, JSP18, JLW+15, JEP16, JAD19, KE15, KML13, KRHC20, KPS+12, KM13, KCBM21, KBRD22, LS20, LG21, LDV12, LS12, LMA19, LJP21, LWHS17, LLZ+17, LSL20, LL18, MTWE20, MPP21, MCIT17, MGP19, NBE18, OBSO16, PXY+17, PCM+15, PKIT23, Pau14, PqBM+15, QZ0X14, RRM16, RHG+14, SLB+15, SOG15, SDB18, SCZ20a, SZZ20b, SKCD23, Shu14a, Shu14b, Shu15a, Shu15d, Shu16a, Shu16d, Shu18a, Shu18d, Shu19c, Shu19d, Shu20a, Shu20b, VP16, WX17, ZQC16, Gup04, JM06, PBP09a, PBP09b, Shu19a, SL04, ST05, Wha07].

Embedded [TDD+16, TSP15, TABS17, TBB111, TNL+15, USA+22, VFS+21, VKG23, VP16, VKW+17, WDD+16, WZM17, WXY+17, WLC+18, WX17,
YGD+17, ZDZ14, ZDT19, ZSH+19, ZQC16, ZL12, ARJ08, ARJ11, ASTPH10, ABS02, AEF+14, BYD09, BCDH12, BP05, BE10, BMP03, BMM13, BCS+06, BMS13, BFQ10, BS13b, CMV10, CSA+05, CKL04, CC13a, CSK+02, yCBR05, CRJ10, CGV10, CVG+13, DKV14, Dea06, DKAL05, DZR09, DRL+10, ESAS14, FRRJ07, Geb04, Geb06, GGGK08, GNP06, GRCV03, GT05, GGI13, GM03, Gup04, GKW08, HCK+08, HG09, HFG13, HTLC10, HLD+09, HXZ+13, HXZ+14, HQB06, HKB07, HKLH05, JC03, JGD+09, JKH+13, JHP13, KVN+09, KST+12, KBC13, KGC+05, KASD07, KD08, KGR12, LB04, LSK+08, LS13, LOG+14, LP09a, LCJ13, LOXL13, LHM14, MBFSV07, MS08, MSL13, NRL13, DBCM14, NDB09, NPP13, PCM12, PLK08, PK13, PAS+09, P07, PEP05, embedded [RP03, RP11, RV03, RRKH04, RP10, RS+09, SVP05, SWL07, Sch07, SAHE04, SMG04, SL04, Sev05, SJC+03, ST05, STW13, SVN04, SGD12, SBF+05, TRJ05, TSWL10, TSG10, TVK08, TLL09, UAK+03, VAHC+06, VSO5, VHB+13, WTSR13, WMT12, WPW+04, WRJL06, Wu10, WMZY13, XQ07, YDLC10b, ZCS+05, ZC04b, ZVL04, ZV05, ZB13, ZMB03, ZP08, ZP09, ZM07, Zhu10, ZP06, ZP07, DEG11, HKP08, Shu18d, KAS+20], embedded/system [BE10], embedded/multimedia [UAK+03], Embedding [HBB+12, SWY13], emergency [KLC+10, WYS+13], Emerging [ZQC16, SRY13], EMG [WGPH13], Emissions [SOD21], EMS [WLZ+23], EMS-i [WLZ+23], Emulation [AAM+17, MRA+17], Emulator [MZG14, WT15], Enable [BGGT23, LLC+22], Enabled [DJJ+19, SAS+23, VKDG19, RC08, UAK+03, CZH+24], Enabling [BCD12, CCSC23, CCC+20, DLC+14, JRR16, LYC+18, LCC+19, PM19, QWY+18, SJRS+13b, SDMK19, WDM+23], Encapsulation [AAT+21], Enciphering [MKASJ18], EncoDeep [SJK20], Encoder [FS13], Encoder/Decoder [FS13], Encoding [SJK20, SAYN09, THON12, LDLV12], Encryption [MSR+17, SXH+19, VOG15, SKW+07], End [DVCC19, GRRR24, QRW+24, SS+22, CZ23], End-edge-cloud [SS+22], End-to-End [DVCC19, GRRR24], Endomicroscopy [CLS16], Endurance [GMCC18], Energy [ABL+20, AHM19, ABD+19, ANB+20, ABA+20, AJ18, ARZ+23, AKTM16, ABC+17, ASJ21, AV20, BCLN13, BFW+19, BMAB16, BSA17, BMP03, BTA+19, BGS+18, CHK+14a, CHK14b, CIL+18, DV14, DAHM16, DJO12, DLPK16, ESAS14, EYG+23, FRRJ07, FS13, FP22, FB16, GRW22, GRR23, GTH+22, GDC19, HPBL12, HDG+14, HSR18, HB16, HNY18, HZGW18, HQB06, HZH+18, HLL+23, HB23, JBDD20, JRSR17, KE15, KY17, KDBV08, KYDC20, KNL12, LDLV12, LS12, LOD18, LYE+18, MLL+17, MPT+22, MSR+12, MMH+23, MLG19, MKE18, PC14, PEC+15, PMM+17, PJ+17, PHDL18, PLM+15, QH07, RGM04, RR17, RV03, RV07, RKC+22, RSW21, SA21, SPC+16, SPT+23, SP19a, SP20, SJOL22, SKN17, SPB+17, SVN04, SAYN09, TRJ05, TLL+12, WDJ+18, WRJL06, XLY18, YJD+17, YCT16, YS23, YKDD23, YW13, YDS+22, ZZG24, Z016, ZC08, BZ13], energy [BBL09, CAP+07, CSK+02, CKL13, FZJ08, GNW05, Geb06, GGI13, GHZH14, HE12, HLD+09, KKC+05, KHS+07, KVK+03, KAK05, KDN+07, LSK+08, LR10, LW13, LPFG13, LOXL13, MRH+10, MKD13, PAP+12, RP10, RMM03, SRS03, SKPL10, SJC+03, SM13b, SC05, TTAG14, TV08, UAK+03, YK03, ZVN05, ZKCC05, ZTD+06, ZA07, Z08, ZP08, Zhu10, CH10].
Energy-Aware [JBDD20]. Energy-Accuracy [BBB+17, CGSH19, DVC21, EZL+17, FND+16, KKD+12, LJT17, MLR+17, MKASJ18, OSA+18, PMM+17, SK13, SUS+17, TP16, WZD+17, YZZG23, YC12, HLD+09, MMK22, LDV12]. Error-Aware [KKD+12, LDV12]. Error-Recovery [EZL+17]. Errors [KKL+16, KJK+17b, LLP+17, RJS19, WCM+16, YZA13].

Estimations [RSF20]. ESTIMedia’08 [BCEP12]. ESTIMedia’09 [PCB12].

ESTIMedia’10 [Edi13]. ESTIMedia’11 [CC14]. ESTIMedia’12 [CP13b].

ESTIMedia’13 [PS14]. ESWEEK [EE16, EH18]. ETAP [EGY+23]. ETC [YKD+24]. Evaluating [BCS+23, HABT11, MMS06, SCS16, Shu20b].

Evaluation [BHET04, FHB+17, HHC+16b, JSLP18, LZS+18, MCSV12, RG14, SMG04, SSS11, WT15, YDS+22, CLR05, HGL14, KJRG13, LSC14]. Event [LC17]. Event [HHC+16b, JZL+15, KL13, MV16, MBLA16, NDZ13, KW10, DAASP21]. Event-B [DAASP21]. Event-Based [JZL+15].

Events [HSR18, ZHI12a]. everyone [Shu14a]. everywhere [Shu14a]. Evaluation [SVZ13]. evolutionary [HMM04]. Evolve [RRM16]. Exact [XZK+19, YLW15]. Examples [PMAB19]. exascale [DBH14].

Exchange [AAT+21]. executables [DVC+07]. Execute [WLK+19]. Executing [DKA+19]. Execution [AKD+18, AARJ12].
ABS+19, BCD+22, BCS+23, BMMV21, CBRZ19, EVS+17, FSB+21, KHB+23, LMA19, MCM+17, MZG15, MBLA16, REPL15, RKK15, TB23, WWG+18, WZ12, HG09, MEP04, WEE+08, YZ08.

Execution-Time [EV+17, WEE+08].

executions [LES14]. **Exotasks** [ABI+09].

Expansion [CKB17, BYD09]. **Experiences** [RIMS21, WYS+13, CLK13, CMP+07].

Experiment [TSY+16]. **Experimental** [BHET04, LKZ+23]. **Explanation** [SRB23].

Explicit [SSD+19, WAD14]. **exploitation** [KVN+09]. **Exploiting** [CKN+20, CFGM15, FS14, HE12, HC16, LPD+20, LPE+23, NBE18, PXY+17, PMS+17, PE23, SK13, SGZS21, SDMK19, SWWW17, XDL+18, ZM07, CLK13, GCF+10, ZA07].

Exploration [ABL+20, BCS16, BJT+23, CDH+16, DJJ+19, FFA+23, FSC+16, FSVG19, GCJZ20, GSN21, IVJ+23, JFM23, KAKSP15, KI23, MPT+22, OFA+15, PSZ12a, PWL+19, SLB+15, SXSS+16b, WSHC14, YLTY21, ZEJ+23, ZBG20, BFQ10, CIC+08, CIC+09, GDN03, JBN+13, KGR12, LM13, MPZS13, OP06, PDBR08, SKW+07, YCLV+02].

Explore [BMP23, CAP15]. **Exploring** [DJ012, IFA+16, WKJ20, WSK14].

Exposing [HKS18, SWL07]. **Expression** [WZG+23]. **Extended** [AJ18, LDV12, WSHC14].

Extending [GMCC18, OFA+15, YGD+19]. **Extensible** [MHK+23].

Extension [LWS+23, PRSV19, MBFT09, RMH04a].

Extensions [KRR20, PJT+23]. **External** [JL21]. **Extractor** [XHK16].

Extreme [RKC+22, YV23]. **Extremely** [CJ17].

F [MSH19]. **Fabrics** [HMR23]. **Facial** [WZG+23]. **Facilitating** [AMJ21].

Factored [JFK15]. **Factors** [Shu19c]. **Fails** [SZL+17].

Failure [BV15, SLS+19, TMXS17]. **failures** [CRAJ10].

Fair [RPB+19, RGSS04].

Fairness [CLLC17, GHKS15, RPB+19, CJMB05].

Fall [LMS+22]. **Falsification** [AFS+13].

Family [MFG16]. **FARSI** [BJJ+23]. **Fast** [AP20, ABA+20, AGG+17, CSCC17, CHS15, NS16, PDBR08, YMHB19, YCNCC11, BWS14, LM13, LHCK04, TLLL09, VJD+07, VDK+08, SAMR06]. **Faster** [LHP+23].

Fault [AMKA17, BVM19, BHD15, CPC17, DSB17, FXP+17, GAS+17, IPEP12, LCD18, LCLW17, LPE+23, MKMS18, MCP17, MKAA17, MAGR15, NDZ13, Rru22, SA18, SSH14, TAP23, TMXS17, XKK17, YGD+17, AFG08, BGD14, CMV10, JGD+09, RMH04b, SHME13, ZC04b].

fault-tolerance [AFG08]. **Fault-Tolerant** [BHD15, CPC17, DSB17, IPEP12, MCP17, SA18, SSH14, TMXS17, TAP23, BGD14, JGD+09, RMH04b].

Faunts [EV+17, VM23, VSO8]. **Faulty** [BVM19].

FD [WZY+23]. **FD-CNN** [WZY+23]. **FDL** [GF21]. **FE** [XKH16]. **FE-SVT** [XKH16].

Feasibility [SGW+16, YRF10]. **feasible** [LA11, RM10].

Federated [GP23, NFS+22, TS+16, TSO22, YS23].

FedHIL [GP23]. **Feedback** [IAS23, KT14, ZM07]. **Feedforward** [YF19].

FELIX [SLK+22]. **Fence** [Shu16b].

Fencing [FND+16]. **Ferroelectric** [SLK+22].

FET [SLK+22]. **Fetal** [FSV19].

FFConv [AP20]. **Fiat** [VS08]. **Fidelity** [HPBL12].

FIDES [ISTE08]. **Field** [NWA12, Shu16b, ITO+24].

fields [RHM04a, RHM04b]. **FIFO** [GNW05, TGB+17].

File [CCC+17, KSP+12, LCC+23, OBSO16, CWKH12, LS13, PK13].

File-system-aware [LCC+23].

file-system-oriented [CWKH12]. **Filed** [HCS18]. **filling** [BSKB+09]. **Filter** [HZW+23, CMS08].

Filtering [UM13, YYKK18, MSH+14, TSG10].

filters [CC13b, FF09]. **final** [GGGK08]. **Finding** [VSD+17]. **Fine**
Frameworks [TP20].

Friendly [LMBL21, LML+23]. Frece

[CGZ18, CLJ+19, CQB+15, HMLZ21,
LOD18, LYC+18, LHYQ18, PGR16,
WXY+18, WLHC18, CRJ10, DGC+20,
HHB+05, LES14, OZ22, PRL+23, RP10,
ZCK13, MMM+19, MSHS19, MFMA17].

Frequency [LOD18, PC14, PHDL18,
SOL+16, WZY+23, YGW+12, SAMR06].

Frequency-Domain [WZY+23]. Frequent

[YG02]. Friendly

[ORA16, GDB22, ZZA+22]. Front [CAP15].

FSIMR [LCC+23]. Csync [SCSC17]. FTL

[CKWH14, KPC+16, KSA+18,
LKH16, LCY+22, LZZ+23, MWF+16,
OBO+23, OMH+23, PRK15, PKL22,
RMK17, SRB23, SL16, SFCW23, DFC+19,
SSH14, SYY+17, SXXS+16a, SXXS+16b,
SVS21, SC20, SCA+24, SRA12, TLSJ23,
VKDG19, WZG+23, XHK16, XKK17,
YDS+22, ZDTM19, ARJ11, BWS14,
CCR+14, DZT09, FZJ08, KKO06, KGR12,
LSK+08, LAHS06, PO05, RDM06, SJRS+13a,
SL08, STY+14, SGDP12, UAK+03, ZW10].

Gains [BZ13], gait [VAR13]. Game

[CZH+24, HLLL20, SR12b, WYD+16].

Game-Based [HLLL20]. Game-Theoretic

[SR12b]. Game-Theory-Based [WYD+16].

Games [CMP23, PHDL18]. GAN

[ZCG+22]. Gana [ZCK13]. Gaps [Akd21].

Garbage [CLL16, GMN21, KSY17, CKL04,
CW14, CSK+02, DKAL05, SP10].

garbage-collection [CW14]. Gateway

[GAD+24, XZK+19, SKH+12].

Gateway-Integrated [XZK+19]. Gating

[WHL23]. Gaussian [TJ23]. GDB

[MZG14]. general

[GBK08, YH313, MTL+14].

general-purpose [GBK08]. Generalized

[PSD21]. Generating [BP12]. Generation

[BZY+23, BMM21, CK12, EK12,
FKS+19, HWC+20, HY+15,
LVSVRCG23, LFC17, MCSW12, MKG14,
SMZ+21, SSB24, SRK+18, CMP23, ISE08,
ISE10, IBMK10, KOL+22, KM09, LCC+13,
NNS13, SRY13, TBG+13]. Generators

[MFG16]. Generic [BGR15, SFCW23].

GENESIS [DSXS15]. Genetic

[Ahn13, SMZ+21]. Genomic [MGLP19].

Get [SPGT19]. Getaway [SL+17].

GHOST [ASS+23]. GIS [MBB+15].

Givens [SPC+16]. Global [DBM+15,
DHL17, PLYJ15, ZLL+19, BMM13].

Globally [YMBH21]. GMAI [CKN+20].

Goal [SSB24, SGDP12]. goal-oriented

[SGD12]. Golden [HMLZ21]. Good

[AR14, MASH15, Shu16a]. Goppa [MBR15].

Governing [HTC+16]. Governor [PDL21].

GP GPUs [Ato20, ASJ21, WZJ+18]. GPU

[PDL21, SPB+17, CNN+20, CCC+14,
DLZ+22, LJ14, HHL+23a, KWP23, LSC19,
LWB18, OBA+17, OFA+15, PHDL18, RC17,
WZM17, YW13, YC16, XZCH13].

GPU-like [LJ14]. GPU-optimized

[XZCH13]. GPUrpc [IFA+16]. GPUs

[BONA22, IF+16, LL17]. Graceful

[ZZG24, RGDZ14]. Grad [HY22].

Gradient [HY22, XZCH23]. Grading
PLM +15, QP15, RC17, RN14, RLP +21, RDSS21, SXSS +16b, THA +12, VFS +21, VKW +17, VSD +17, YHL23, ZDTM19, AP09, BCC +08, FC13, KBDV08, NBGS09, PGR +08, VH3 +13, WSK14, Heuristic [BJ23, FK5 +19, KAKSP15, Li21, SEB12, VSSS13, YCNC11]. Heuristic-guided [FK5 +19]. Heuristics [MG15, OMA +13].

HiCH [AAR +17]. Hidden [GGJ12]. hiding [XHSS10]. Hierarchical [AAR +17, CZH +24, DAHM16, GNR +10, ITO +24, MCSW12, SCA +24, TAMS18, ZEJ +23, AFL13, TBG +13]. Hierarchies [MDS +21].

High-resolution [LG21]. High-Speed [HW17, MSR +17, LLC +13].

High-throughput [AOÖ, THON12].

High-voltage [CCP +19].

Highly [CHK +14a, yCBR05, SPP +10, TTAG14, VH3 +13, ZVN05]. Hijacking [FGL +19].

Hint [WQGR22]. Hint-Driven [WQGR22].

Homomorphic [MSR +17]. Honey [ZGH +19]. Hop [GDD20]. Horizontal [AAT +21, RB21]. Host [RG14].

Host-Compiled [RG14]. HotSpot [WKJ20]. HRT [CQB +15]. Human [AMJ21, BTA +19, DBX +22, HZW +23, HB23, LX22, Shu19c, WXY +18].

I/O [CW16, CCB +06, EAAS22, JAD19, LSL +23, MRY +10, SKPL10, SC05, WGN23].

illegal [HT06]. Image
[CWH^16, DNB^22, KLK^19, KNL^12, PDHC^23, SVC^12, WZY^23, XYLC^23, PZ^12, SCF^12, SY^13, SW^13].
Image-Content-Aware [CWH^16].
image-media [SW^13].
Image-Processing [WZY^16]. Images [CPP^17]. imaging [CCC^14]. Imitation
[SBB^24]. immersive [LAH^06]. Impact
[BTL^12, GM^12, LC^17, WKJ^20, HHB^05].
Implant [PQA^19]. Implementation
[AGG^23, BSM^21, BSJ^15, CD^17, CCP^19, FHB^17, FLF^23, HJ^19, HKP^18, HHL^23b, HGL^14, KY^17, KKS^23, LS^20, LHP^23, MFG^16, RIMS^21, SIR^17, Seo^18, SPC^16, SFC^23, TGT^17, TV^19, CSST^08, CLR^05, HQ^06, KASD^07, LV^09, WL^09, WKC^07, XZS^03].
Implementations
[NP^12, SS^19, SJJ^18, ZSH^19, DP^08, SM^13a, WGP^04, YLC^02]. Implementing
[AFG^08, VO^15, YRS^12, ZPG^17].
Implicit [DAS^12, CHTC^07]. Important
[SP^19]. Imprecise [JFM^23].
impressionist [SY^13]. Improve
[BHD^15, RKK^15, SW^23, FS^14, RP^11].
Improved [SLC^16]. Improvements
[BBC^16, HHC^16b]. Improving
[AK^21, AB^15, CSC^23, GCM^18, HLF^18, HLL^23, KJK^16, LS^17, LLP^21, LLL^21, LSL^23, PE^23, SHM^13, SC^17, TVK^08, WZD^17, XQ^07, YJD^17, AC^08, CW^14].
Imputation [HB^23]. IMS [KBC^13].
In-Memory
[AD^12, HKL^23, SLK^22, YEK^17].
In-Vehicle [XZK^19, SKH^12]. inActive
[LKB^14]. inaugural [Wol^02]. Increase
[PJT^23]. increasing [HJK^06, SLW^07].
Incremental
[CCL^17, DHK^15, Is^17, NK^12].
Independent
[CPP^17, HQE^20, SC^20, HBSA^04]. Index
[KCC^16, LCC^19, LLI^22, MKM^11a].
indexing [PCBW^13]. Individual
[YTL^20]. Indoor
[GP^23, PKIT^23, TSW^17, TM^15, TP^20].
Indoors [LYC^18]. Inductive
[SYY^17].
Industrial
[JG^18, MSM^21, SE^23, UB^16].
Industry
[Akd^21, BCD^24, SX^19, Shu^18b].
Inertial [FGL^19, HCS^18, HX^24, WJ^17].
Inexact [DBB^17, LEP^13, PL^13]. Infer
[AGS^16, WR^15].
Inference
Information
[CBR^19, HDZ^20, LSM^14, GLW^14, KTT^13, YZA^13]. Infrastructure
[BLG^15, GLT^13, JBN^13]. Inherent
[OS^19, YZA^13]. inheritance [LLN^09].
Initiated
[LCL^19]. Injection
[ARP^12, BCS^23, MKMG^18, YGD^17, CMV^0].
Injections
[LCLW^17]. Innovative
[V^16]. Input
[RR^17, SFB^23]. Input-Aware
[RR^17]. Input/ [SFB^23]. Inputs
[DP^16, RLP^21]. Insertion
[LC^22]. inspired [KOL^22]. Installment
[SY^17]. Instant
[LS^12]. Instantaneous
[MG^05].
Instantiation
[PLT^23]. Instantly
[LKZ^23]. Instruction
[AJ^18, ARP^12, AB^15, BCLS^17, Fra^12, ITO^24, KAS^15, QZX^14, SWX^17, WSHC^14, AC^08, BP^05, GRCV^03, KVK^13, LSC^14, LLP^07, LM^13, LXL^13, MBF^09, RDM^06, RMD^09, RAK^14, SD^13, YZ^08].
Instruction-Cache
[AB^15].
instruction-level
[SD^13]. instruction-set
[AC^08, RDM^06, RMD^09]. Instructions
[DASS^12, LP^20, NY^20, GGI^13, KG^05, SB^08]. Instrumenting
[MZG^14].
Integrated
[EK^12, FSC^16, GMN^21, GDD^20, LSC^19, dFMA^112, LL^18, MSCP^16, PDL^21, SXXS^16b, XZK^19, BV^13, MHK^13].
Integrating
[G^12, SP^10]. Integration
SCKD23, TEC12, VP16, WX17, WHSC14, ZQC16, BM13, DPP14, GM03, Gup04, GP07, HCK+08, HTLC10, JC03, KS10, KBCL13, LB04, MS05, DWCM14, PB09a, Sch07, SL04, ST05, Wol02, PB09b. **Issues** [Shu15c, JB02, JB03, iSupplemental1 [TEC12]. **Iterational** [XHSS10]. **Iterative** [NHS20, SAHE04, BWS14, KFY+22, PS08a]. **Itself** [Shu16b]. **ITUbee** [FXP+17]. **IXP** [LCH+08].

Java [ABC+07, BVGVEA10, CWZ+20, CSK+02, CH08, CRAJ10, GW08, HT06, HTLC10, JMO14, KW10, MS13a, PS10, SKKR11, SPP+10, TKL+15]. **Java-based** [GW08, JMO14]. **Jetson** [JKH22]. **Join** [SGW16+16]. **Joint** [HZGW18, HZX15, LMS+22, LXL13, LY+17, PKL22, WC16, YLY18]. **JOM** [WC16]. **JPEG** [THON12]. **JSCD** [YC12]. **Jump** [PP12]. **JVM** [WKJ20].

Karatsuba [MSR+17]. **Keep** [YMKH23]. **Kernel** [CSC23, LL17, WRB15, CDD+07]. **Kernel-Level** [WRB15]. **kernels** [PGS+13]. **Key** [AAT+21, DL12, MKM+23a, PNRC17, Sco18, SAKH20, PS08b]. **Key-Length-Based** [PNRC17]. **Key-value** [MKM+23a]. **Keyword** [GV21a]. **Kit** [JAB+22]. **knapsack** [YCNC11]. **kNN** [SM13a]. **Knowledge** [HWC+20]. **KNOWME** [TL+12]. **Kryptonite** [SRR+23]. **KV** [ZLSQ17].

L [EAAS22]. **L24** [SM13b]. **Lab** [BCHB18]. **Lab-on-Chip** [BCHB18]. **LaDy** [CSCC23]. **Lagrange** [YF19]. **LAMBDA** [KAS+20]. **LanCeX** [XYLC23]. **Lane** [KCBM21]. **Language** [CMPP23, LFC17, SIR+17, MMDO4]. **Languages** [GV21b, SCZ20a, SCZ20b, WWN23, LP09a]. **Large** [CJL17, JGX+18, LZZ+23, MRA+17, PE23, HHH+05, PS08b]. **Large-Scale** [CJL17, JGX+18, LZZ+23, PS08b]. **LARK** [DS11]. **Last** [KRS+16, MPT+22, TTA+20, WZZ+18]. **Last-Level** [KRS+16, WZZ+18, MPT+22]. **Latency** [AYS15, CSC23, GRRR24, HKP18, KSY17, KH23, LPE+23, MV16, ABI+09, SRM+13, XHSS10]. **Latency-Aware** [BZG19]. **Latency-based** [HKP18]. **Latency-Optimized** [AYS15]. **Latent** [VAR13]. **Lattice** [AYS15, BSJ15, HPO+15, LHP+23, LPO+17, VF17]. **Lattice-Based** [AYS15, BSJ15, HPO+15, LHP+23, LPO+17]. **Launch** [KJKM16, CLK13]. **Law** [AKI+23]. **Layer** [BDG+15, CCC+20, CKB17, JCW+16, Kwo16, SKKR11, CYKH13, CCY+13, KST+12, KXL10, LPC+07, PCK+08, WK07, Wu10, ZP09, JKJ+10]. **Layers** [AP20, PBC22, UGS+21, WWT+22, XDL+18]. **Lazy** [KGT+23]. **LCTES** [FX17]. **LCTES’05** [GP07]. **LCTES’11** [DV13]. **LDPC** [LL14, WZD+17]. **Leakage** [CBRZ19, SP19b, CNK04, ZKKC05, ZTD+06, ZA07]. **Leaks** [DLY16]. **LEAP** [MSR+12]. **Learn** [GKS+22]. **Learning** [AHM19, AZHC19, BJ23, BGK+23, BLSM19, CZH23, CK23, DHB+23, GTH+22, GDB22, GLS+23, GP23, HWC+20, HWZ+23, JKH22, KSY17, KPS33, KCBM21, KCCW17, LX22, MTW20, MKE+22, NBB23, NYH+20, OBA+17, ORA16, PVSG22, PDL21, Pau14, RB21, RL20, SFB23, SR12b, SSK+22, SWS23, SSB24, SKN17, Shu18b, TP20, TCD+19, ZQD+23, KR14, SBF+05]. **Learning-Assisted** [KSY17]. **Learning-based** [AZHC19, TP20]. **Lebegue** [MHT13]. **Ledgers** [Shu16a]. **Legacy** [SWL+14, CCAP12]. **legaSCI** [SWL+14]. **LegUp** [CCA+13]. **Length** [PNRC17, Sus20, BAR13b, KD08, PL10]. **LEON** [PDL+23]. **Less** [AKTM16, KML+22, BYD09, PLKH08]. **Let** [JSD23]. **Level** [BRL16, FLF17, KPC+16, KBS17, KHB+23, KRS+16, LN19, LMK+18, LY+15, LZZ+20,
MFMA17, MF12, NBM+16, PKT23, PMDC17, SSA21, SDMK19, TP19, TWTH18, TTA+20, WZJ+18, WRB15, ZRF+12, ZYM16, ZYL+17, AVR22, BAR13b, CCA+13, FO03, IYL+23, JBN+13, KKC+05, KVX+09, MSCJ12, MPT+22, MSS+03, MSL13, OP06, RDSS21, SGT+13, SD08, SD13, VJD+07, VDK+08, YCLV+02, ZEJ+23, ZBG20.

M2M [Pau14, RRM16], MAC [BTL+12, CHTC07, GDA13, LCL+19, ZWY+10].

Machine
- [APRC16, AHM19, CHS15, DHB+23, GTH+22, GDB22, GLS+23, KKC16, KCBM21, KBRD22, LAZ+16, MEK+22, MFG17, NBH23, NYH+20, OBA+17, PDL21, RLG20, Shu18b, ABC+07, CGV10].
- machine-based [CGV10].
- Machine-Learning-Resilient [NBH23].

Machine-to-Machine
- [APRC16, KKC16, LAZ+16].
- Machines [BPP23, CMPP23, DQ14, KCH14, ZPZG17, CH08].
- macromodeling [LBP07, TRJ05].
- made [PDL+23].
- MaGNAS [OBO+23].
- Magnetic [CPP+17, CSSC23, HCS18, ISOD21, LCC+19, LCC+23].
- MAGNETO [ISOD21].
- Main [AVR22, HCS+22, PXY+17, SJOL22, WLWS15, WZJ+18, HXZ+13, PMPP14].
- Maintaining [LLR14, KDN+07].
- Majority [NASM18].
- Majority-Based [NASM18].
- Making [LPE+23, WCH+23].
- Malware [KJLS20, KAS+20, RCS23, Rru22].
- manage [CRM14].
- Managed [HCS+22, LBS15].
- Management [ABD+19, BMF15, CWW15, DAHM16, DSXS15, ESM+17, ESBK23, FBMI6, HBI6, HNY18, HXZ+14, HHC+16a, IDO+22, KNH+17, KBS17, KJK18, KR18, dFMAdN12, LUL15, LLI7, LCC+23, LHL+19, MLL+17, MMY+19, MBJ+23, NEP23, OMKK23, OZ22, PVSG22, PYJL15, Pau14, RC17, RJM19, SPT+21, SSPP23, SKN17, SP19b, SBK+23, TDD+16, TMXS17, TAMS18, VGN18, VCM19, WLWS15, WDM17, WZJ+18, WWT+22, WLC+22, WQGR22, ZP11, AMCM06, ACK+13, BDP+13, BBL09, CCY+13, CH08, EL08, FZJ08, IS03, JKH+13, KHZS07, KR14, KXL10, MPZS13, RV03, SGT+13, SRS03, WYS+13, YCNCC11, ZC04b, Zhu10].
- Manager [DAHM16, MDS+21, CH10].
- Managers [REPL15].
- Many-Accelerator
- [SXXS+16b, SXSS+16b, SXMX+18].
- Many-Core
- [LKA+18, MKD15, RWL+18, RJM19, SDBD18, SXSS+16a, SXSS+16b, SXMX+18, TDD+16, TKV+18, TMXS17, TAMS18, VCM19, VKMP20, ACK+13, DPP14, LKB14, LOG+14, LRL14, YFPJ14].
- Many-Cores
- [TDD+16, TMXS17, TAMS18].
- Manycore
- [DJJ+19, LLG+20, KYL13].
- Map [TKT15].
- MaPHeA [OMH+23].
- Mapping
- [BKS+23, ABF+21, BJ23, BRA+16, CWW15, CWW15, CPC17, CWW15, DMP23, ETAV16, FSC+16, FC16, GIB+12, GAG15, HC16, JRSR17, JS23, LXX16, MSC16, NASM18, OBO+23, PJWY12, QP15, RH23, RLP+21, SB23, SPB+17, TWTH18, WWG+18, YLTY21, ZNS13, DKV14, HH13, LWB13, MEP08, MAG14, OMA+13, WW09].
- Mapping-Aware [OBO+23].
- March [SN10].
- Market [ZLF13].
- Market-based [ZLF13].
- Markov [GGJ12].
- Marriage
[RPHA19]. mask [Geb06]. Masked [WH17].
massive [Edi14, Mus10, ZXCH13].
Massively [GLP+11, TWT18]. Matching
[CYH20, PMP17, LHCK04, TLLL09].
MATLAB [LPD+20]. MATLAB-to-C
[LPD+20]. Matrix [AGG+23, FJKM18,
GOC+22, LZZ+23, IBMK10]. Maximal
[VRF15, HCQ+14]. Maximally [WZH13].
Maximisation [DCZB19]. Maximising
[IDO+22]. maximization [HCQ+14].
Maximizing [MASG15, RMM03]. MC
[LCP+17]. MC-ADAPT [LCP+17].
McEliece [MBR15, VO15]. MCUs
[ABL+20, JRSR17]. MDP [SW23].
MDPC [VO15]. Me [SPGT19]. Measure
[MHT13]. Measurement
[BYIG21, FGL+19, ZO16, LYL13].
Measurements [ITO14]. Measures
[FKJM18]. Measuring
[DW10, YGD+19].
Mechanism
[CAPL11, FFA+23, LCL+19, WLZ+23,
WC16, YZZ+23, CWKH12, RAK14].
Mechanisms [AbSZ+19, CJI17].
Mechanized [RPHA19]. media
[HE12, SWWY17]. Medical
[MS13b, PJJ+14, KL+10]. medicine
[WYS+13]. MEDISN [KLC+10]. Medium
[KKS16]. meet [SRM+13]. meets
[BSKB+09]. Mellon [KCG+05]. MEMMU
[BY09]. MEMOCODE
[DST19].
Memories [CDX+19, KRHC20, KOL+22,
PqBM+15, PRL+23, SP19b, SDMK19,
WLWS15, WCH+23, BMP03, HXZ+13].
Memory
[ADH+23, AVR22, BLSM19, BCS+06, BP19,
BCS+23, CBH22a, CBH22b, C117, DPA16,
DKAL05, EAAS22, FLF17, FSC+16,
FLF+23, FMS15, GIB+12, GAG15,
GAS+17, HCS+22, HKP18, HKL+23,
JGL21, JRSR17, JJJ+15, KPS23, KKK+11,
KS13, KJKM16, KNY+17, KBS17, KRR20,
LSL+23, LYH+15, LWB18, LBS15, LOF20,
MDS+21, MBKF15, MF12, NYH+20,
NDB09, OMH+23, OZ22, PXY+17, PP19,
PMM+17, PMDC17, PRM21, RC17, RRC22,
RKC+22, RSK17, SSK23, SWJ+13, SSD+19,
SSPP23, SJL02, SBK+23, SLK+22, SR19,
Sus20, TDD+16, TBG+17, TGBT17, VCM19,
VKW+17, WDM17, WZJ+18, WCB20,
WWT+22, WLZ+23, WQGR22, WSFM22,
WC16, WHL23, YYYK18, ZDZ14, ZQGZ22,
ZZA+22, ACK+13, AB05, BCLN13, BS13a,
BCDH12, Bar13a, BAR13c, CH10, CDD+07,
CKL04, CWKH12, CYKH13, CC13a,
CSK+02, CH08, CVG+13, EL08, GD03,
HFG13, HH13, HXZ+14, HLI14, JBO2].
memory
[JB03, JKH+13, KKL13, KRR12, LW02,
LO13, LXX10, LXX13, LB06, MMD04,
PLKH08, PK13, PMPP14, RP03, SGT+13,
SE10, SBX08, SJC+03, UDB06, UCK+09,
WAD14, WKC07, XHSS10, YDLC10a,
YDLC10b, YEK17, ZP08, ZP06, BYD09].
Memory- BLMSM19]. memory-based
[CC13a, HXZ+14]. Memory-Constrained
[JGL21, KPS23, LW18, BR13a].
Memory-Efficient [SSD+19].
Memory-Intensive [TDD16].
memory-limited [CH08].
Memory-Model-Aware [FMSS15].
Memristive [YEK17]. Memristor
[MCS+15]. Memristor-Based [MCS+15].
Mental [HYJ22, WGP13]. Merged
[BBY+23]. Merging [PRS19]. Merkle
[SGZ+23]. Mesh
[AKI+23, MDCS16, BP14, BE09, SJRS+13a].
Mesh-Based [MCS16]. mesh-connected
[BE09]. Message
[HM17, KHHH14, LZJ17, XYZ+19, LBP07].
Message-Processing [XYZ+19]. Messages
[ZSEP21]. Metadata [ZZA+22]. Metal
[BYIG21]. METEOR [BP14]. meters
[Edi14]. methanol [SPK+12]. Method
[AGS+16, AGG+17, EVS+17, FGL+19,
FPA+23, GW15, HWIL23, HB23, ITO+24,
KCBM21, SXH+19, XYL23, YZZG23,
CCB+06, KHHH14, LW13, LO13].
Methodologies [IT16, ST05].
Methodology
[FSC+16, GDD17, JKH22, NYH+20, OBSO16, PSZ12a, SK19, TSW+17, TGV12, TAP23, WWG+18, DEG11, KST+12, LAN06, Shu14h, XWHC06]. Methods
[DST19, HHC+16b, JR20, KCCW17, Leo18, Mos13, Pau14, TB23, VP16, AC08, SHME13, WEE+08]. Metric
[GZ12, PDHC23].
metroII [DDG+13]. MHDeep [HZYJ22]. Micro
Microarchitectural
Microcontrollers
[CZ23, CI17, DBX+22, JRR16, LPO+17, MKS23, SWJ+13, YLDM19, Sch10]. Microfluidic
[BCHB18, CKB17, EZL+17, SIC19].
migration [LP10]. Milner [VRF15]. Miniaturized [MVS+13]. Minimal
[CL13, GAD+24, MKM+2b3, SBX08, Edi14, GWN05]. Minimal-Overlap [GAD+24]. Minimally [AARJ12]. Minimising
[TGBT17]. Minimization
[HZX15, SSK21, SIC19, PAP+12, ZX08]. Minimize [YCT16]. Minimizing
[BBL09, GRR24, LLZ+17, SPDLK+17, ZDZ14, ZQGZ22, ZW17, GNS04]. Minimum
[ABD+19, KAK05]. minimum-energy [KAK05]. Mining
[BMNN23, GZZ+16, KDB19, NCJ18, PMAB19, SC17]. MIPS [LCS03].
Mirroring
[PX18]. Mirroring-Assisted [PX18]. Miss [NS17, MEP08]. Misses
[ZLL+18]. Missing [PMAB19]. Mitigate
[KSY17, MMK22, SE23]. Mitigation
[SUS+17]. Mixed
[AKTM16, ABS+19, CYH+17, FHB+17, GE18, HPP17, HHC+16a, KGT+23, LCP+17, LH18, LJVD23, SSD+19, SLK+22, TSP15, TGT17, ZZG24, ZGZ15, ZQGZ22, ZDL22, HGL14, LDRM12].
Mixed-Criticality
[AKTM16, GE18, HHC+16a, LCP+17, LH18, TSP15, TGT17, ZZG24, ZGZ15, ABS+19, FHB+17, KGT+23, ZQGZ22, HGL14, LDRM12].
Mixed-Precision
[SSD+19, ZDL22].
Mixed-Signal
[SLK+22]. Mixture
[BCHB18, TJ23]. ML [TTB23].
MLC [CYKH13, NBE18]. MLC-based [CYKH13].
MLC-PCM [NBE18]. MLOps [MMA+23].
MMU [BYD09, ELS08, PLKH08].
MMU-less [BYD09, PLKH08]. Mobile
[CWH+16, CHJ22, CZH+24, CSC23, EMVR23, GQC+17, GP23, HTC+16, HLLL20, IDO+22, JBDD20, JCS+17, KCJ+16, KJK17a, KJK18, KNL12, LDV12, Li21, LSL+23, LKH16, LMW+17, LNA+15, MV16, PX18, PHDL18, SBR+15, SJOL22, Shu17c, TP20, WTSR13, WLH16, WQGR22, WZG+23, XDL+18, YTL+20, YDS+22, ZLX+23, BO13, CTK+13, CLK13, FZJ08, ISTE08, ISE10, KSK13, KST+12, LLL14, LCJ13, NNH+14, PK13, RC08, VAR13, WRJL06, WYP+10].
MobiSense
[WYP+10]. Modal
[BYV15, SH15, WBS10].
Mode
[ABS+19, DCZB19, JRR16, yCBR05, SR19, YLTY21, ZTRC03].
Mode-dependent
[ABS+19]. Model
[ARS16, ARDG16, AAM+17, AAS18, BLSM19, BRL16, CWZ+20, FKS+19, FSB+21, FGK+23, FSM15, GLP+11, GJ12, IAS23, IVJ+23, JFM23, KML+22, KH23, KFY+22, KDR23, KBRD22, LC17, LAZ+16, LSL20, MTWE20, MV16, MMA+23, PDL21, PNRC17, SSD+19, Sch10, SWL+14, SOL+16, SP20, SSB24, TJ23, TBFR17, TBCB15, WRW+21, WZ12, CJMB05, DRL+10, KKH+12, OMA+13, PJA+14,}
[HWC+20, LOF20]. Multi-tenant
[MKM+23a, MMA+23]. Multi-Threaded
[VCM19]. Multi-user [SSK+22].
Multi-valued [VF17]. multiapplication
[HT06]. Multicast [JCW+16].
Multichannel [CLL16, GAG15, HC16,
ZO16, CCH13, CW14]. multichoice
[YCNCC11]. multiclient [PEP05].
Multicopy [CHK+14a]. Multicore
[AbSZ19, BZ13, CPC17, CQB+15,
ETH16, EVS+17, HGW+20, HDG+14,
HPP17, LLZ+17, MS21, MSD17, OSA+18,
PCM+15, PCCD21, PLM+15, RG14,
RLP+21, SMR15, SP19a, THA+12, TFL16,
UBF+16, WZ12, YKKD23, BP14, BS13a,
CCR+14, HG09, HZ+14, HL14, TKG13].
Multicore-Based [EV5+17, BZ13].
Multicores [LBS15, PM19, RKK15, SP20,
JP14, MPZ13]. multidimension
[YCNCC11]. Multidimensional
[APR16, JBN+13]. multifrequency
[ZWY+10]. MultiLayered [LNA+15].
Multilevel [CR14, LN04, ZLLC15].
Multimedia [CAPL11, Kwo16, YC12,
CLK13, CCAP12, HQB07, HIK04, KBDV08,
KBL13, PK13, PBBW13, QP03, RC08,
SRY13, UAK+03, WMZY13].
multimedia-enabled [RC08]. Multimodal
[TLL+12, AF14]. Multimode
[AFMT17, JEP16]. MultiNets [NH+14].
Multiple [HLL10, LZ+10, MAK09,
NEP23, PXY+17, TBBdD11, WSHC14,
HQB06, ISG03, LSC03, MMSN14, NRR13,
NNH+14, PL10]. multiple-FPGA
[MMSN14]. Multiple-Issue [WSHC14].
multiple-QoS [PL10].
Multiple-Step-Ahead [NEP23].
Multiplication [SAK20]. multiplicative
[KHHH14]. Multiplier [NWA12].
Multipiers
[AZS+23, LPP+21, YF19, RHH04a].
Multiprocessor
[BOG17, CDH+16, DBM+15, LX16, MG15,
WRKG16, ZQGZ22, CHK14b, DZR09,
ESAS14, HQB06, Hüb13, ISTE08, JM06,
KKO+06, LWB13, LES14, LQN+13, OP06,
PS10, SE10, TSBY13, VSSH13].
Multiprocessors [AR14, DBS17, PS12a,
PRK15, PYJL15, RN14, BGD14, Bar13a,
BD14, HFG13, HXZ+13]. Multirate
[TFL16]. multisetence [ZH12b].
multitask [CSS08, DP08, MSB08].
multitask [ZP09]. Multitasking
[BN04, PCGD21, RP10, TM07, WAD14].
Multithreaded [HYY+15, KE15,
SPDLK+17, ZP11, LCH+08, LP09b].
Multithreading [LZR16, PJS15, DFC+19].
Multitask [LC12]. Multiversion
[KCC+16]. muscle [WGPH13]. Must
[Shu18e]. Mutation [FKS+19].
Mutation-driven [FKS+19]. MxU [PP19].
My [BVM19]. Myriad2 [LLP+21].
n [GKS+22]. NAND
[BDG+15, GMCC18, JN15, MSHS19,
MAW22, PCK+08, PK13, WC16, WZD+17].
NAND-Flash [MSH19]. Native
[WVN23]. Near [BCS16, FPGS22, ITO+24,
LFHS18, SWT+14, SFCW23]. Near-Data
[SFCW23]. Near-field [ITO+24].
Near-Optimal [LFH18]. Near-Static
[BCS16]. Necessary [ARS16]. Need
[Shu18c, STH17, TTB23]. Negative
[CLS16]. Nested [DKA+19, WYL+19,
KMB07, NSS13, TKD07], nested-loop
[NSS13, TKD07]. Net [DJJ13, LJJ17,
YKD+24, MPFG19, YLD19]. NetBench
[MMS06]. Nets [ACR17, BS+21, BB13,
BB15, CL13, DLRTB+19, JPK15, NDZ13,
WZH13, ZW13, VAH+06]. Network
[ASS+23, ANRR+19, ABF+21, BS22,
CPC17, CWX+23, CLW+20, DLK16,
ESB23, HMR23, HSD22, HFL+19, ICZ+23,
ICW+21, JAB+22, KJK18, KFY+22,
LLG+20, LMS+22, MST+16, NHS20, PGR16,
SPT+23, TTL+12, VKD19, WCK+19,
WDM+23, WRB15, WZG+23, XCZW23,
YF19, ZRF+12, ZZ+15, ZBG20, ZJZL20,
network-flow [WYJ+14]. Network-Level
[ZRF+12, ZBG20]. Network-on-Chip
[ABF+21, BS22, DLPK16, HMR23, LLG+20, MST+16, VKDG19, BP14, GOMB13, YZA13, SSS11]. Network-on-Chip-Based
[CPC17]. Network-on-Interposer
[SPT+23]. Networked
[DLH16, WLC+18, BWS14, BFQ10, FC13, Gup04, KKH+12, NKP+12]. Networking
[LYC+18, WGN23, ZSE+21, DGC+20].

Networks
[AP20, AABG22, ANARR+19, ALV+22, ARZ+23, AZHC19, ABC+17, BKM+12, BSM+21, BTL+12, CWZ23, DBX+22, DS11, FPGS22, FB16, FC16, GAD+24, GVS+20, GMI2, GOC+22, GDD20, GMV+17, GJG+12, HSR18, HZYJ22, HSK18, HY22, HZGW18, IB23, JR20, JBDD20, JGX+18, JSD23, LMB+22, LFHS18, LAZ+16, LJVD23, LPE+23, MYL+22, MSM21, MPFG19, MLAD23, MAGR15, OHCK24, PBC22, PLY+23, RN18, RLG20, SJK20, SA21, SSK+22, SCB+22, SHK+19, TSW+17, XLY18, YLD19, ZBG20, ZLL+11, ACKB14, CTK+13, DLN13, DLC+14, FZK+10, GHZH14, HBSA04, HHH+05, KHSZ07, KAK05, KXL10, KLC+10, KYHY14, KDN+07, LN04, LAHS06, MLV09, NNS13, PS04, PS08a, PS08b, SRM+13, SKH+12, SGD+12, WYJ+14, XWHC06, YGHS08, ZL08, ZLF13, ZOC4c].

Networks-of-Systems [ZBG20].

Networks-on-Chip
[FPGS22, FC16, IB23, AKB14, KYHY14, SRM+13, WYJ+14, XWHC06]. Neumann
[SB23]. Neural
[CEC23, LMB+22, SCB+22, SBDK22]. Neuron [CPC17]. Neutral
[WDJ+18, BFW+19]. Next
[CMP23, KOL+22, ISTE08, ISE10]. Next-generation
[CMP23, KOL+22, ISE10]. NIST
[SAA21, ZSH+19]. no
[KHHH14, BVGVEA10]. No-Heap
[BVGVEA10]. NoC
[BLG+15, BGD14, CCY+13, CLLC17, DNNP14, DJ23, DJ+19, GLT+13, LLR14, MCV+16, MKD15, MASG15, NAM18, OMA+13, PB14, PCGD21, TKHZ22, TMX17, TAMS18, ZCK13]. NoC-based
[CLLC17, MKD15, TAMS18, BGD14, LLR14, OMA+13, PCGD21]. NoC-Based
[MASG15]. NoCs [MAK09]. Node
[Mcl13, PVSG22, SNN17, ZHI12a, ZHI12b]. Nodes
[GSS+18, SLS+19, ZO16, SGD12]. noise [SBML13]. Noisy [ICZ+23]. NOMA
[CZH+24]. NOMA-Enabled [CZH+24]. Non
[HKL+23]. Non-interference [BHM17]. Non-invasive [FSVG19]. Non-iterative
[HCS+22, ZZA+22, LJI+20, WLWS15, HXZ+13]. Nonblocking [SP10]. noncontact [CNC13]. Nonconverging

On-Accelerator [VKW+17]. On-Board [CPP+17]. on-body [QRB10]. On-Chip [LF17, PVS22, PSZ12a, SGZS21, CZH23, KGR12, YFPJ14, ZRZ+19, CP13a, LJ14, PL10, SJRS+13b, WMZY13].

Optimization [AHM19, CWH+16, CCP+19, CYH20, CAA+24, DJH+17, DJJ+19, DVC21, DASS12, DHL17, FBM16, GB+12, HZG18, IPEP12, JBDB20, JHK22, LKA+18, LYH+15, LX16, LSL20, MWS15, MFG17, PYJL15, PWL+19, PLM+15, PMDC17, SR12a, SEB12, SP12, SBKD22, SR19, TSP15, TJ23, WH17, YDS+22, ZYL+17, ZPZ17, ZZZ+12, BWS14, BMP03, CHK14b, CWX+23].
DVC⁺07, DP08, HZX⁺14, IBMK10, JMO14, KKC⁺05, LXL13, LLLGR13, RFP03, SAHE04, SKK⁺14, YGHS08.

Optimizations [BSA17, BDG⁺15, DJO12, HY22, HYY⁺15, KKK⁺11, MS23].

Optimize [FLF17]. Optimized [ARH⁺18, AYS15, AV20, BRA⁺16, BGGT23, MBR15, ZDL22, JHPR13, ZXCH13].

Optimizer [SBB19]. Optimizing [BP05, BCG10, MDS⁺21, MTWE20, PDHC23, RMBS20, SHQX19, FRRJ07, HMM04]. Optimum [SPGT19].

Optimus [CZW23]. Optode [FSVG19].

Orchestration [BCDD24, SSK⁺22, SCA⁺24]. Order [ACR17, BHM17, JLSP18, JBI17, KE23, LLC⁺13]. Organized [TMX17]. Oriented [BKMG12, SFZX18, CWKH12, DRL⁺10, KK05a, LLN09, SRS21, SGDP12].

Outsourcing [LZZ⁺23]. Over-the-Air [WLH⁺18]. Overbooking [DWR14].

Overlay [CHS15, DFC⁺19]. Overload [LDRM12]. overview [SVP05, WEE⁺08].

Oximetry [FSGV19].

PANDORA [SC20]. Papers [TEC12, SN10]. Parallel [CS16, CD19, DSXS15, GLP⁺11, Goe14, LKA⁺18, LZJ17, LYY⁺17, LFC16, NFL⁺22, PRB15, PJWY12, POG⁺13, RDP17, SWL⁺14, SM13a, TWTH18, WMLA16, GRN⁺10, MMSN14, THON12, WW09].

Parallelism [AMN⁺14, HLF⁺18, JP14, LPD⁺20, SMDK19, SM13b, ZEJ⁺23, CW14, KVN⁺09, MB10, SD13]. Parallelism-aware [JP14].

Pareto-Optimal [GB⁺17, TAP23].

Partitioning [AbsZ⁺19, Bar13a, CWH⁺23, CI17, GRRG24, GTH⁺22, HSM16, KAKSP15, SMR15, SPB⁺17, VGN18, WHN⁺17, XSP22, KP13, LXL13, RP10, SVN04, TJ10, XHS10].

Partitions [LC17, SJRS⁺13a]. PArtNNer
[SP19b, WGPH13, AZ07]. Preemption
[CR14, DBM15, GWZ16, TB23, ZGZ15, ZLL+19, ZP09]. preemptions [RM10].

Preemptive
[DSB17, TM07, WAD14, XSP22].

Prefabrication [CIC+08]. Preface [AL05].

PreFeR [MGC+23]. prefetching
[YZ08, ZP07]. Preorders [BSV17].

Preparation [BCHB18]. Presence
[TBDdD11, LH+14, VS08]. PRESENT
[WH17]. Preservation [HSR18].

Preserving
[ACR17, KLK+19, LTL+17, CSTE08].

Pretrained [JBDD20]. Prevention [ZW13].

pricing [WSK14]. Primary [Shu18e].

Primitives [MCS+15]. Primitives
[BSJ15, LBP07]. Principled [PHG+17].

Prioritizing [SPGT19]. Priority
[DBM15, DHL17, GE18, LH18, MBP14,
MAK09, SD17, WHN+17, DF14, LA11,
MEP08, QH07, YK03, ZZZ+12]. Privacy
[KLK+19, KCCW17, LTL+17]. Proactive
[SWL+23]. PROARTIS [CQV+13].

Probabilistic [AFS+13, CCL21, CCO22,
GUC+23, HQB07, HCL+17, KMI3, LP19,
LEPP13, MHT13, SWJ+13, SCG15, SWS23,
TBEP16, WHN+17]. Probabilistically
[CQV+13]. Probability [MKM+23b].

Problem [SEB12, WEE+08, AH13m].

Problems [KOM+23, TJ10]. procedure
[KMB07, KAS07]. Process
[BGRV15, GM12, MZG14, MAG14,
MASG15, WDM17, NNS13, TKD07].

Process-Variation [WDM17].

Process-variation-aware [MA14].

Processes [LZJ17, PBP09a, PBP09b].

Processing [AOO23, BT22, BDB+17,
DVC21, HRH+22, HKL+23, LVSVRFG23,
MKM+23a, MGLP19, MKE18, SFCW23,
SBDD2, SWWW17, VKMP20, WZY+23,
XZK+19, AMN+14, BCG+07, BCG10,
DSW+09, GHB13, JG13, HVG13, POG+13,
SCF12, VGG+13, ZH12b, ZLF13, MSR+12].

Processor
[AKI+23, BVM19, GOC+22, KRR20,
LWS+23, MLL+17, MBR15, MSD17,
MMD04, PHG+17, SK13, SOL+16, SK19,
SCS16, TWTH18, TKL+15, WWHT21,
ZZA+22, CCA+13, GLWM14, HL14, KGR12,
KT14, LK10, LHCK04, LCH+08, LV09,
MG05, PMM+13, POG+13, ZC04a, LS12].

processor-based [KGR12, LHCK04].

Processor-memory [MDM04].

Processor-transparent [ZZA+22].

processor/accelerator [CCA+13].

Processors [AJ18, GIB+12, HLLL12,
HTC+16, JLSF18, KKS+23, PDL+23,
PCGD21, PJT+23, RC17, SJL18, SSA21,
SCM20, SWX17, TTB23, TDBdD11, WZ12,
YKK23, YC16, ZP11, BS13a, BO13, BM13,
CIC+08, CIC+09, CC13a, DPP14, GB04,
GG13, HXZ+14, JHR13, KD08, KK05b,
LM107, LS13, LPLL08, LLTL09, Mus10,
ÖNO0, PBN07, PO05, RP11, TLLL09,
UAK+03, WW09, YW13, ZMB03, ZP06,
ZP07, LKB14, MMS06]. producer [RV07].

Product [MKS23]. Profile
[OMH+23, WKJ20, WLH16, BAR13c].

Profile-guided [OMH+23]. Profiling
[BP19, FLF17, MGB+21, MSL13, ZLL+18,
LLGR13, NSL11, STY+14]. Program
[AAS18, BVM19, HFK21, KKP+19, OSA+18,
RLP+21, SSR+23, WZD+17, AFG08, MF13].

Programmability [LLP+21, THA+12].

Programmable [GOC+22, LWS+23].

Programmatic [BR21]. Programming
[BBHXP19, WCK+19, WNN23, ABI+09,
BWS14, BB13, BM13, Gar05, LP09b,
LAHS06, POG+13, SGDP12]. Programs
[AGG+17, CJ20, EYG+23, GHR15, KH18,
LL15, LLP+17, LML20, MK13,
SPDLK+17, TWTH18, WMRB17,
WCM+16, AFG08, BS14, CSST08, C13b,
GNP06, KLS13, NNS13, TKD07].

Progress [BHAC15, HLL+23]. Promising [KOM+23].

Proof [DAASP21, MS13b]. Proof-Based
[MS13b]. Propagate [GWM16].

Propagation [HLLL12, RS07].
propagation-based [RS07]. Properties [BFST19, BBDR12, GZ12, CMA05].

Property [BS22, KM09]. Proportional [FPGS22]. Protecting [BS22, HMK23, KJK*17b, LMW*17].

Protection [RLL*23, YC12, BCS*06]. Protocol [AZHC19, CCM17, CBS19, GDA13, KYDC20, LJJ*19, MGc*23, ZSY19, CHTC07, KASD07, PS04, YFPJ14].

QoS-aware [SSK*23]. QR [WL09]. QRD [SPC*16]. Quadrcopter [SHL*17].

Quadratic [AGS*16, AGG*17]. Quadratics [WCH*23]. Quality [BZG19, CLL*18, CYH20, CRCR13, LKH16, MST*16, PDHC23, RDDS21, WKJ20].

Quality/Latency [BZG19]. Quality/Latency-Aware [BZG19]. Quantifying [CBRZ19]. Quantitative [SD08, SR12b]. Quantization [IVJ*23, LJVD23, PKL22].

Quantization-aware [IVJ*23]. Quantized [DBX*22, PKL22, RR17]. Quantum [AAT*21, MKAA17, SWK19, NVB*20].

Race [YHL23]. Racetrack [KRHC20, KOL*22]. radar [BCG*07].

Re-evaluating [Shu20b]. Re-Fusion [LLW*17]. Reach [KDR23]. Reachability [BF17, BB13, FKJM18, HFL*19, JBCS16, MG15, ADI06]. Reachable [DB19, GD19].

ReachNN [HFL*19]. Reaction [GUC*23]. Reactive [JZL*15, Mos13, BCC*08, CJMB05, GNP06]. Read [HCS*22, LLZ*22, MMK22, YJD*17, YCK*18, YWLS23]. Read-Out [YCK*18].
SGDP12, VNK+03, VHB+13, YMKH23.

Reconfiguration [AHM19, CWH+23, DP19, FF09, SA18, WMGR12, YKKD23, GNS04, HMM04, HKVI05, HPLD09, LJRI2, LPFG13, PAS+09, ZBCM09].

Reconfiguration-Based [SA18].

Rectifying [CSC23]. Recurrent [ARZ+23]. Recursive [SCM20]. REDEFINE [AVF+09]. Redirection [MST+16]. reduce [CRM14, LOXL13, Mus03, YFJ+14]. Reduced [RRC22]. Reducing [AS12, BB13, CW14, CKIR06, HWT13, JHK+06, LLC+22, MV16, UCK+09, ZKKC05, ZTD+06, ZA07, ZLX+23, CSK+02].

Reduction [GDC19, LCLW17, PLY+23, SLN+16, TBDD11, WWR+21, WHL23, YCK+18, ZZX+15, CDD+07, HXZ+13, LS13, PKHH08, ZXS03]. Redundancy [BB13, TTAG14, YZA13]. Redundant [AJ18, LPE+23, NWA12, SAA21, MB10]. Redundant-Digit [AJ18]. references [HT06]. Refinement [DJZ13, DAAASP21, KB17, LP19, MS13b, HDR+06, RSO7].

Register-based [FLF+23]. Register-to-Register [FND+16].

Registers [NGL17, LOXL13]. Registration [SVC+23]. RegKey [FLF+23]. Regression [RLP+21, BMS13]. Regular [CWH+23, NCJF18, Shu15c, CMA05, MRT13].

Regularity [LC17]. Regularity-based [LC17]. Regulation [SSPP23, YFJJ14].

relation [VAHC+06]. Relational [CMS17]. Relations [SE17]. Relaying [WLCH23].

Reliability [BHD15, BDG+15, DHB+23, KRS+16, LCY+22, MB10, NASM18, PRK15, SRH+16, WDM17, WLC+18, ZSEP21, Zhu10, CYKH13, RP11].

Reporting [MFW+16]. Representation [ADJM19, CAP15, KPK+19, NWA12, RMB20, YLW15, TKD07].

Representative [LLW+17]. reprogrammable [PO05]. Reprogramming [WLH+18, DLC+14].

Request [BJP24, BCS+23, MBJ+23, SSK23, TTA+20]. Request-Response [BJP24].

Requirement [DHFX18, HPP17, LPFL16, LLN+14].

Requirement-Aware [HPP17].

requirements [GFC+10, UCK+09]. requiring [KHHH14]. ReRAM [LCY+22].

ReRAM-based [LCY+22]. rerouting [SJRS+13].

Research
Schedulability-driven

Scheduling

Satellite

Saturated
screening [GJ13]. Scriptable [MWF+16].
SDC [LJLT17, LLP+17, YZZG23].
SDC-causing [LLP+17]. SDF [TBG+13].
SDmesh [DGC+20]. SDRAM
[SJC+03, TVK08]. Sea [LYL13]. Seamless
[WJ17, ISE10]. SEAMS [MDS+21]. Search
[BJ23, FKS+19, MKM+23a, MLAD23,
OBO+23, RSK17, SUK23, YS23, PCBW13,
TSLW10, VSSS13]. second [NPP13].
Secondary [MKM+23a]. secret [CNK04].
Section [BCEP12, FGIS12, FM12, KM13,
NKS12, PS14, Pla12, SRNW16, CP13a,
CC14, CP13b, DV13, DSD12, Edi13, Hüb13,
JLSK13, PCB12, STW13]. sector [LPC+07].
Secure [ABL+20, AARJ12, CCM17, CBS19,
GCJD20, GSN21, JEP16, LMA19, LJ12,
LMW+17, LZZ+23, MCP17, MKAA17,
PP19, PS08b, PHG+17, RSK17, SYC+17,
TNR17, XQQ+24, YGD+17, ZZA+22,
Geb04, Geb06, ISTE08]. Securely
[WXY+17]. Security
[AYS15, BCHL19, CPP+17, CFXY17,
FGS23, GQC+17, GSC19, KS22, LJP17,
LZZ+17, MCS+15, PKT23, PRNRC17,
RRKH04, RLL+23, SCKD23, Shu15b,
Shu16b, Shu16d, Shu17b, Shu17c, Shu18b,
Shu18e, Shu19b, TP19, TBAS17, TP20,
VKDG19, WGP04, ZYL+17, CVG+13, PS04,
SL04, VS08, XQ07, ZCS+05].
Security-Aware
[FGS23, GQC+17, LJP17, RLL+23, TBAS17].
Security-Critical [ZYL+17]. See
[WXY+18]. See-through-Wall [WXY+18].
Segment [HSMS16, TBEP16].
Segment-Based [HSMS16]. Segmentation
[GGJ12, VAR13]. Segmented [FPGS22].
seizures [MVS+13]. Selection [ABSZ+19,
AABG22, BCLS17, DLD+19, GPB+17,
KAKSP15, KBRD22, MTWE20, RZF+12,
BMS13, LSC14, LXL13, SWT+14, SBX08].
Selective
[CSCC17, KKL+16, LLPM07, Gar05]. Self
[BLG+15, BHET04, CLL+18, DJS16,
LYC+18, MDS+21, RJM19, TMXS17,
TSO22, TBCGO23, WHL23, YYYK18,
DEG11, GLT+13, GNR+10, WYJ+14, Wu10,
ZVL04]. Self-Adaptive
[RJM19, YYYK18, DEG11]. self-adjusting
[Wu10]. Self-aware [DJS16, GNR+10].
Self-Configuring
[BLG+15, BHET04, GLT+13]. Self-Gating
[WHL23]. Self-Optimizing [MDS+21].
Self-Organized [TMXS17]. Self-Sustained
[CLL+18, TBCGO23]. Self-Sustaining
[LYC+18]. Self-Testing
[BLG+15, GLT+13]. Self-training [TSO22].
self-tuning [WYJ+14, ZVL04]. Semantic
[LWZ+16]. Semantics
[BB13, BGGT23, BV15, CSST08, CMPP23].
Semantics-preserving [CSST08]. Semi
[HSMS16, TSO22, ZGZ24].
Semi-Clairvoyance [ZGZ24].
Semi-Partitioning [HSMS16].
Semi-supervised [TSO22]. semiring
[YRF10]. semiring-based [YRF10]. Sense
[RSW21]. Sensing
[ALZR19, CGZ18, DLL+18, DNB122,
HTR+16, HZW18, LYC+18, LLG+20,
LMW+17, LNA+15, MSR+12, VVKG23,
WXY+18, WTSR13, YGHS08]. sensitive
[BO13, ZSEP21]. Sensitivity
[RG13, YGD+17]. SensiX [MMA+23].
Sensor [ABC+17, CZK+22, DNB22, DS11,
GM12, GSS+18, GJG12, HSR18, HCS18,
HB16, IPL16, JGX+18, LX22, LFHS18,
MC13, MAGR15, PE23, RN18, SKN17,
SLS+19, TSW+17, WWTSM19, ZRF+12,
ZZX+15, ZHI12a, ZLL+11, ZO16, ZCO4c,
BS13b, CTK+13, DNL13, DLC+14,
GHZH14, HBSA04, HHHB+05, KHZS07,
KAK05, KKL10, KLC+10, LNO4, LLLGR13,
LAHS06, MLV09, PS04, PS08a, PS08b,
SM13b, SGDP12, VGG+13, WYP+10,
YHGS08, ZHI12b, ZWY+10, ZLF13].
Sensor-Based [LX22]. Sensors [DL12,
GSS+18, HZYJ22, HXH+24, HZW+23,
PP12, WJ17, CNC13, LYL13, NRR13].
Sensory [MMA+23]. Sentries [Shu16b].

Sub-networking [DGC+20]. Subgraph [PMP17]. Subject [PSZ12a, VM23].

Subspace [LYY+17]. Subsystem [SR19, KYL13]. Sufficient [ARS16]. Suite [LWK+17, GGGK08]. Suites [SPDLK+17].

superperfect [LXK10]. supervised [TSO22]. supervisor [ZS05]. Supervisors [WWY13]. Supervisory [DSB17].

Supplemental [TEC12]. Supplements [Ano13, Ano14].

Support [ZJC+17, HT06, NB04, PZ12, SIRJ+13a, VGG+13].

Supported [ZP11, ZSM13]. Supporting [DSXS+14, LDV12, SSH14]. Surrounding [LNA+15].

Surveillance [KLK+19, RMK17, MSCJ12].

Survey [AH13, BMB16, BHX19, BJCHA17, GV21a, MCG22, SP19a, WLC+22, BMP03, WEE+08]. Sustained [CLL+18, TBCGO23].

Sustaining [LYC+18]. SVIT [XHK16].

SVIT-Based [XHK16]. SVM [CWJ17].

SW [ZDTM19]. Swapping [KJH+17a, LSL+23]. SWARAM [GLP19].

Switchable [CI17]. Switched [AGS+16, LS09]. switches [SMG04].

Switching [BF17, MSSP22, NNH+14].

Sybil [DBFH14]. Symbolic [BFL18, CBRZ19, TWTH18, WWHT21].

Synaptic [LMB+22]. Synching [SCCC17].

Synchronization [BGJ17, PE23, WXY+17, ZGZ15, AAP14, CRJ10]. synchronized [GHZH14]. Synchronous [BMM13, BCC+17, BPP23, CMMPP23, DHKS15, Gel10, MS21, SIR+17, WMRB17, ZPZG17, BSB14, CSST08, CC13a, QP03, TGB+13, ZM07].

Synergistic [PHDL18]. Synergy [ZDTM19]. Synterface [SIC19]. Synthesis [BBD23, BF17, BRL16, CWZ+20, yCBR05, CFGM15, CDH+16, EZL+17, FLF17, IYL+23, KMP15, LPFL16, LN19, MSS23, NVB+20, PMDC17, SCB+22, SXXS+16a, TBFR17, VRF15, WWTSM19, ZQD+23, BAR13b, BAR13c, CCA+13, FZK+10, GM03, HG09, HFG13, HVG13, KMB07, MRT13, QP03, SPK+12, ZS05].

Synthesizable [AÖO23]. Synthesizing [LEPP13, SUK23]. Sysfier [RBS+10].

System [AAM+17, AVR22, AKTM16, BTD+18, BMB15, BKG+23, BFQ10, BJ1+23, CD12, CLL+18, DST19, DHB+23, DJS16, GIB+12, GPT+23, HZYJ22, HXH+24, HB16, HHL+23a, HWC22, IT16, JC12, JAD19, KSP+12, KHB+23, LX12, Le18, LKZ+23, LWK+10, LYH+15, MSCJ12, MYL+22, MWS15, MS21, MGLP19, MEK+22, NCJF18, NBM+16, NLSV+19, OMMK23, PKT23, PRSV19, QP03, RG14, SA18, SG13, SRSB23, SSA21, SCR16, SHL+17, SCKD23, SH23, SR19, SSL+19, SVZ13, UGS+21, VFS+21, WXY+18, WLZ+23, WT15, YKDK23, YCLV+02, YKK18, YKD+24, ZMY16, ZYL+17, ZX08, AMCM06, BE10, BDP+13, BJM13, CWKH12, CSK+02, CH14b, Dea06, FRR07, LJ14, GGGK08, HQB06, HVG13, H1i13, JBN+13, KCG+05, KZH+06, KGR12, LCO+13, LW04, LCC+23, LH04K, MMS+03, MLS13, NPP13, NH+14, PK13, PSZ12b, SPV05, Sel05, SPK+12, STY+14, TT141, TSY13, VJD+07].

system [VDK+08, VNK+03, WAD14, YDLIC10a, ZHM+14]. system-driven [FRR07].

System-Level [KHB+23, LHY+15, NBM+16, ZYM16, ZYL+17, AVR22, MSCJ12, SG13, YCLV+02, JBN+13, MSS+03, MSL13, VJD+07, VDK+08].

system-on-a-chip [VKN+03].
System-on-Chip
[DJ05, GIB+06, GPT+06, OMMK23, SR19, BJT+23, CHK14b, HQB06, Hüb13, TSBY13].
System-on-Chips [BGK+23, LX12].
System-wide [ZX08]. System/network [BFQ10]. SystemC [BSM+21, CMK12, CD19, FZK+10, MWF+16, RBS+10, RSF+09, SL16, SWL+14, WMLA16]. SystemC/C [RSB+09]. SystemC/C-based [RSB+09].
SystemJ [MSCJ12]. Systems [AFS+13, AB+19, Abs+19, AGS+16, AFMT17, AB15, BHAC15, BFW+19, BMAB16, BHPX19, BF17, BG17, BGO17, BLG+15, BP12, BHL+20, BV15, CKN+20, CLL21, CS16, CQV+13, CKGN14, CBH22a, CBH22b, CMS17, CLC17, CCC+17, CLJ+19, CLJ22, CW8+23, CS22, CEC23, CBQ+15, DAHM16, DWR14, DJJ+17, DJZJ13, DHF18, DLH16, DBF14, DB19, DQ14, DAASP21, DVCC19, DJ16, EVS+17, GLP+11, GD19, GCDJ20, GRR23, GZ12, Goe14, GTH+22, GSN21, GE18, HCK18, HSMS16, HPP17, HH23, HFA+14, HNY18, HHIC+16a, HLLL20, HZX15, HCL+17, HFL+19, Ise17, IPL16, ICW+21, IPEP12, JR20, JLW+15, JZX+15, JEP16, JAD19, KS18, KSS16, Kha13, KPS23, KY17, KSP+12, KJK17a, KJK18, KLK+19, KWK23, KCBM21, KH12, KCC+16, KNL12, KDR23, KB17, KBRD22, LP19, LS19, LDV12, LS12, LAB+23, LMB+22, dFMAd12, LZZ15].

Systems [LWZ+16, LH18, LSS20, LLL+20, LJMP23, LNN+14, LXX+16, LLZ+17, LSL20, LMBL21, LLI18, LOF20, MLL+17, MS12, MRA+17, MTW20, MBKF15, MKS+17, MH19, MS1b, MCG22, Mit21, MMY+19, Mos13, NDZ13, NBE18, OSF19, OBS16, PXY+17, PCM+15, PDHC23, PqBM+15, PLM+15, PRS+17, PJT+23, QZOX14, REPI15, RHG+12, RRM16, RLP+21, RGH+14, RDS21, SSK23, SE23, SMW+17, SCG15, SMR15, SR12b, SWL+23, SP19a, SSPP23, SDBD18, SCZ20a, SCZ20b, SZL+17, Shu15a, Shu15d, Shu16a, Shu16c, Shu16d, Shu18d, Shu19d, SRR+23, SPGT19, SGJ17, SMR20, SXSS+16b, SLFC19, SCS16, SLE+17, TSP15, TBSA17, TGV12, TJS+19, TFL16, USA+22, VVKG23, VWG+17, VP16, VM23, WDJ+18, WMGR12, WDR+16, WCK+19, WYL+19, WZB19, WRW+21, WRKG16, WLC+18, WLC+22, WQGR22, WSMP22, WMLM12, XP22, XKK17, YC12, YLW15, YCT16, YHL23, ZYM16].

Systems [ZYL+17, ZWK23, ZBG20, ZQD+23, ZJC+17, ZLX+23, ZQIC16, ARJ08, ARJ11, ASTP10, AF14, ADI06, AFL13, ABS20, AEF+14, BYD09, BCDH12, BWS14, BP05, Bar13a, BCC+08, BMM13, BBL09, BCS+06, BFQ10, BCG+07, BHET04, CMA05, CCA+13, CSA+05, CKL04, CWKH12, CYKH13, CCY+13, yCBR05, CRJ10, CMB20, CRM14, CVG10, CVG+13, CHTC07, DKV14, DGD+13, DF14, DEG11, DW10, DRL+10, ELS08, ESAS14, FJZ08, FS14, FC13, GSB06, GJ13, GM0B13, GD14, GRCV03, CT05, GM03, GNR+10, Gup04, GKW08, HCK+08, HK08, HTLC10, HLD+09, HQB07, HZC+14, Hüb13, ISG03, JLSK13, JKH+13, KST+12, KBC13, KKH+12, LB04, LDRM12, LMST04, LSK+08, LK10, LWB13, LP09a, LRL14, LPFG13, LOXL3, LHX+14, LHM14, MBFSV07, MRY+10, MSB08, MLL08, MKD13, MSL13, NK+12, NDB09, PLH08, PE05, QH08, RP03, RV03, RS07, RRKH04, RSB+09].

Systems [SWT+14, Sch07, SE10, SAHE04, SRS03, SL04, SJC+03, ST05, Shu14b, STW13, SVN04, SC05, SBF+05, TRJ05, TM07, TXL+12, TKG13, TSG10, TV08, VAHC+06, VS05, VHB+13, VC+13, WMT12, WP11, WLT12, WRJL06, WKC07, Wai10, WMZY13, XQ07, YDL10b, YRS12, YK03, ZC04b, ZVL04, ZVN05, ZSM13, ZB13, ZP08, ZP09, Zsh10, ZZZ+12, ZC08, KL13].

System-on-Chip
Systolic [YZZ+23, ZRZ+19, WL09].

TAB [ZDL22]. **Table** [KKS+23, PLT23, RR17, VKW+17, WLWS15, YCLV+02]. **Table-based** [KKS+23, PLT23]. **Tableau** [BRR19]. **Tail** [KSY17, LJLT17]. **Tail-DMR** [LJLT17]. **Tailor** [PDL+23]. **Tailor-made** [PDL+23]. **Tailoring** [ZGH+19]. **Taiwan** [HKLH05]. **TAMA** [ABF+21]. **Tame** [BJT+23]. **Taming** [UGS+21].

Tailor [ZC04c]. **Task** [AR14, BGK+23, CPC17, CZH+24, GMS17, HLLL20, LCP+17, dFMAdN12, MTL14, MEP08, NASM18, OHCK24, PCGD21, QP15, RN14, RDSS21, SMW+17, SMR15, SE17, SLS+19, SGW+16, TLBM15, WHN+17, XSP22, ZW17, ZLX+23, Bar13a, DКV14, ESAS14, HWC+20, LK10, LQN+13, LOF20, MEP04, TTAG14, WBS10, ZP09, ZZZ+12, ZC08, TBG+17]. **Task-FIFO** [TBG+17]. **Tasks** [ARS16, AKD+18, BAG+20, BGS+18, CLJ+19, FHB+17, HQE20, LJP17, LLZ+17, MBP14, NFL+22, PSD21, SSK21, SPT+23, SD17, WHN+17, XZK+19, ZLL+19, GNW05, HGL14, LP10, MALM04, SPP+10, XQ07, ZC04a, ZX08].

taught [GT05]. **Taxicab** [ZW+16]. **TBES** [CDH+16]. **TCAM** [SVS21]. **TCAM-based** [SVS21]. **TCX** [LWS+23]. **TDES** [DSB17].

Team [HB16]. **Technique** [BRR19, DJ23, HPS13, LX16, SFB23, YCK+18, BMS13, JGD+09, ÖNG08, RP11, RMD09, ZXS03].

Techniques [ABS+19, JEP16, KKK+11, KKL+16, KDN+07, LEPP13, LBS15, MCG22, OMMK23, SWJ+13, AP09, AFL13, BMP03, ESAS14, KM09, KK05b, SAYN09].

Technologies [ZQC16, BMP03, HTLC10, WP11]. **Technology** [CCSC23, SBDK22, DWC14, SBF+05]. **TECS** [DST19, Mit21, TEC12, CJL17, CGZ18, SCDK23, Shu20b]. telecom [YCLV+02]. **Telomere** [MAW22]. **Temperature** [BG017, HDG+14, JLW+15, NZCS19, SP19b, HCQ+14, KT14, LOXL13, TSBY13]. **Temperature-Aware** [JLW+15]. **temperature-based** [KT14]. **Template** [AOÖ23, CDH+16]. **Template-Based** [CDH+16]. **Temporal** [AFS+13, BMNN23, BTL+12, KDB19, LC17, LJM+23, LNN+14, MKS+17, RLM+23, SRW16, WRW+21, BvB13, LMS+22, MKM22]. **Ten** [PL13].

tenant [MKM+23a, MA+23]. **Tensor** [CLW+20, HRH+22, KRHC20, LMS+22, LWS+23]. **Tensor-Compressed** [CLW+20]. **TensorRT** [JHK22]. **TensorRT-Based** [JHK22]. **Term** [GSS+18, JC12, DLC+14].

Terminal [CLW+20]. **terminals** [ISTE08, ISE10]. **Termination** [PYL+23].

Ternary [ZDL22]. **TESLA** [LN04]. **Test** [CMK12, FKS+19, GE18, KPK+19, MKMG18, MKM+23b, SPDLK+17, SMZ+21, SHK+19, TSW+17, BMS13, KM09].

Test-case [FKS+19]. **Test-Driven** [MKMG18]. **Test-pattern** [KPK+19].

Testing [BLG+15, BS17, DHJ+17, DHF18, FMS15, KH18, LZJ+19, MKS+17, VKDG19, GLT+13, WLT12, BS17]. **Tests** [MKR13]. **TF** [YLD19]. **TF-Net** [YLD19]. **TH** [SFCW23]. **TH-iSSD** [SFCW23].

Theoretic [SR12b, CAP+11, SPK+12]. **Theoretical** [CZH+24, MTL14]. **Theory** [CCKM16, CU13, HB16, KMP15, KB17, MHT13, SCZ20a, SCZ20b, WBD+16, MRT13, BSKB+09]. **Thermal** [ARS16, AHM+17, DAH+16, DLRTB+19, FS13, HFA+14, HH13, LSC19, LQN+13, LLG+20, SSP+23, SP19b, SBK+23, CCY+13].

Thermal-Aware [FS13, LSC19, DLRTB+19, HH13, LQN+13]. **Thermal-Resilient** [HFA+14]. **Things** [BCHL19, BHX+19, BGJ17, RRM16, SXH+19, Shu15a, ZSY19]. **Thou** [Shu15b].

Thread [MFG17, PLM+15, SPB+17, ZP11, CRAJ10, DEA06, KASD07, SD13].
Threaded [VCM19, WZM17]. thReads [LKB14]. Threat [CLL21, Geb04].
Threshold [GWZ16]. Thresholds [ZGZ15].
Through-Silicon [MSCS16]. Throughput [AV20, HG09, HFG13, HCQ+14, KB23, LS17, LX16, MCM+17, WLK+19, ZDTM19, AOO23, THON12, WBS10].
Throughput-Buffering [KB23].
throughput-constrained [WBS10].
Throughput-driven [HG09].
Throughput-memory [HFG13].
Tightening [RM10, RDP17]. Tightly [WWHT21]. tile [Mus10]. tile-based [Mus10].
Tiling [VGN18, KK05a]. Time [ARS16, ABS+19, ACR17, AYS15, BT22, BMA16, BBB16, BE17, BGS+18, BB13, BB15, BYIG21, BMV21, CDB14, CQV+13, CKGN14, CWZ+20, CS+22, CH22, CLS16, CQB+15, DHL17, DJZ13, EIV+17, FBM16, GAD+24, GAG15, GZZ+16, GE18, GUC+23, HGW+20, HSM16, HH23, HFA+14, HHIC+16b, IB23, JSZ+19, JAD19, JGX+18, JB1615, KSS16, KCJ+16, KJMK16, KR18, KMP15, KH23, KHB+23, KB17, LCM18, LN19, dFMA12, L13, LX16, LL18, MM16, MG15, M15, MSS12, MAW22, NPA12, O19, OMMK13, Pau14, PSD21, PJT+23, PNRC17, REP115, RG14, RMK17, SCG15, SM15, SE17, SP19a, Shu20b, SPB+17, SLC16, SCS16, SLE+17, SGW+16, SD17, T15, UBF+16, WDJ+18, WMGR12, W17, WGG18, WGN23, WZ12, XLY18, XQQ+24, YGD+19, Z14, ZPG17, ZJC+17, ZLL+19, ZSEP21, ZSJ12, AC08, AMC06, AF14, AFI13]. time [ABC+07, ABI+09, AFG08, BG19, B19, BFST19, BAG+20, BLO09, BC16, CMT10, CKL04, CHK14b, CR10, CRM14, CHTC07, CCAP12, CAA+24, C10, DVC+07, DLRTB+19, DF14, DSW+09, DW10, ESBK23, FH21, GNW05, GH13, GNS04, HQE20, HM10, HT06, HTLC10, HBB+12, HCQ+14, KBDV08, KW10, KASD07, KTT13, LG21, LSK+08, LES14, LQN+13, L14, LH+14, LOF20, MMS14, M08, MR+10, MVS+13, M14, MAG14, MCG22, MLL08, MMM21, MKD13, DCM14, NBD90, NFF+22, NNH+14, P+12, PL10, PS10, QH07, RMM03, SK23, SE10, SP10, SKPL10, SP20, SL08, SE07, SCA+24, SC05, TM07, TTAG14, TSC05, UDB06, WMT12, WP11, WAD14, WEE+08, XSP22, YZ08, YK03, ZC014b, ZC04b, ZB13, ZWK23, Z18, ZJZL20, Z1n01, ZZZ+12]. time-
portable [ABI+09]. Time-sensitive [ZSEP21]. Timeout [BB16, NPA12].
Time/Run [WWG+18].
Time/Run-Time [WWG+18]. Timed [DLRTB+19, Ise17, NCF18, BS13b].
Timeliness [YGD+19]. Timely [H17, S17]. timeout [KR14].
Times [AKD+18, PE23, DW10, ME04].
Timestamp [MKS+17].
Timing [BS22, CD17, CLJ+19, DVCC19, EYG+23, GCU+23, MBKF15, M+17, SE23, SK13, TM07, TEPB16, WBR21, ZWK23, AEF+14, CCB+06, LRL14, MMR+10, TSB13, VLX07, YRF10, SAM06].
Timing-Anomaly [CLJ+19]. Tiny [GRC03]. TinyOS [GLC07, Me013, MLV09]. TIOA [KSS16].
TLM-2.0 [CD19]. TM [PMM+17].
Tolerance [GAS+17, LPE+23, MAG15, PMM+17, XKK17, AFG08, ZC04b].
Tolerant [BHD15, CPC17, DSB17, IPE12, MCP17, SA18, SSH14, TXM17, WDM17, BGD14, JGD+09, LLR14, P08a, P+12, RMH04b, TAP23, VSSS13]. Tomahawk [AMN+14]. Tool [BKMG12, BGR15].
BMB16, MFMA17, ZLL+18, CCA+13, GGGK08, IBMK10, LAN06, PJL+14. Tools [SCZ20a, SCZ20b, LP09a, WEE+08]. Toolset [LL15]. Topologies [BCS16].

torque [ZBCM09]. Trace [LL15, MZG14, UM13]. Trace-Based [LL15]. Traces [CMP17, MZG15, NCJF18, SFB23].

Tracing [PM19, SK19, ZLL+18, ZXCH13]. tracking [ZH+14]. Tractable [AF14].

Trade [CRCR13, IPEP12, KB23, LDV12, MCM+17, ZRF+12, CLK13, GFC+10, HFG13, SD08, SM13b]. Trade-Off [KB23, ZRF+12, CRCR13, CLK13, HFG13, SD08].

Trade-Offs [IPEP12, MCM+17, LDV12, GFC+10, SM13b]. Tradeoff [JBD20, MLR+17]. tradeoffs [LPB06].

Training [GK22, HY22, HWC+20, PKL22, SA21, WCK+19, WDM+23, TSO22].

Trajectories [ZWH+16]. Trajectory [LHYQ18]. Transaction [HH23, SD08].

Transactional [PMM+17]. Transactions [BLG+15, Mit21, Shu18c]. Transfer [ANARR+19, ZBCM09, WLH+16].

Transfer-based [ANARR+19]. Transform [PBC22]. Transform-based [PBC22].

Transformation [CWZ+20, MFMA17, SPC+16, LLPM07, MBFT09].

transformational [WBF+06]. transformations [AFG08, FRRJ07, FO03].

Transformer [RCS23]. Transient [GSS+18, VS08, YZA13]. Transiently [ANB+20].

Transition [BV15, GZ12, HPS13, MKM+23b, SMW+17].

Transition-Based [HPS13]. Translating [TSCC05]. Translation [CYH+17, CCC+20, HLF+18, JKJ+10, KPK+19, Kwo16, PWL+19, BCDH12, CYKH13, LPC+07, PJJ+14, PCK+08, Wu10, ZP08].

Transmission [GQC+17, QRB10, RN18, WLHC18].

Transparency [IPEP12]. Transparency/Performance [IPEP12].

Transparent [IFA+16, ZZA+22].

Transport [AAPN14, CCY+13].

Transport-layer-assisted [CCY+13].

Transposed [MDWL23]. Trapezius [WGP13]. Trapping [WDM17]. Traveling [AHU13].

Treble [YMB19]. Tree [BGK+23, SUK23, SZG+23, LCC+19, WCB20, WCH+23, WCB20, WKC07].

Tree-based [BGK+23]. Trees [CSH+22, MG15]. Trigger [HMLZ21].

Triggered [BBB16, FND+16, NPAG12, AAP14].

Trinity [Shu15a, LYC+18]. trip [CLLC17].

Tireme [ZEJ+23]. Trivial [ASJ21].

Trojan [CZH23, GLS+23, HMLZ21, MKM+23b, SMZ+21]. Trojans [PMP17, SSK21]. truly [WL09]. Trust [RHG+14, Shu18c].

Trusted [DQ14, ARJ08]. TrustFlow [BHL+20].

TrustFlow-X [BHL+20]. Trustworthy [SH23].

Truthful [XQQ+24]. TSCH [GAD+24]. TSN [PE23]. TTL [MKŚ+17].

Tuning [CSK+02, KST+12, KZH+06, WYJ+14, ZV04]. Turn [ABF+21].

Turn-aware [ABF+21]. Tutorial [CK23, GV21a, GLS+23, PPT23].

Tutorials [SCKD23]. TV [JMO14, KSK13, RIMS21].

Tweakable [MKASJ18]. Two [AR14, LH18, RBNM19, JB02, JB03, WL09].

two-dimensional [WL09]. Two-party [RBNM19]. Two-Phase [LH18].

Two-Type [AR14]. TX2 [DZL+22]. Týcho [CJ20].

Type [AR14]. Types [TBDdD11].

UAV [FG+19]. UBAR [SPT+21].

ubiquitous [BDP+13]. Ultra [ABL+20, BHD15, BDB+17, BTA+19, DBH14, GJ13, JRR16, KIT23, TTB23].

Ultra-Low [BTA+19, JRR16, BDB+17].

REFERENCES

Years [PL13]. Yield [HL14, PRK15]. Yield-enhancement [HL14].

Zeroconf [BGVZ11]. ZigBee [MLV09]. zone [PL10]. ZPP [DJ23].

References

REFERENCES

2014. CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

REFERENCES

[AC08] Tor M. Aamodt and Paul Chow. Compile-time and instruction-set methods for improving floating- to fixed-point conversion accuracy.
Anagnostopoulos:2013:PAD

Andre:2017:PPO

Ahmed:2023:SAH

Alur:2006:PAR

Arrestier:2019:NRD
REFERENCES

Allamigeon:2017:FMC

Alam:2023:RIF

Allamigeon:2016:SAM

Alaghi:2013:SSC

Ahmed:2013:HGA

Ahmed:2019:CRU

Ahmed:2017:DAT

[Rehan Ahmed, Pengcheng Huang, Max Millen, and]

Asyaban:2016:ASB

Alur:2005:P

Almeida:2022:DDO

Abkenar:2019:GRU

AbouGhazaleh:2006:COS

Akbari:2021:FHA

Ahir:2017:LAR

Arnold:2014:TPH

Ali:2019:CCT

Ahmed:2020:DEC

Anonymous:2013:AOS

Anonymous. Abstracts: Online supplements volume 12, number 1s, volume 12, number 2s. *ACM Transac-
REFERENCES

Anonymous:2014:AOS

Ahangari:2023:HBH

Ahn:2009:RCT

Ahangari:2023:HBH

Ahn:2009:RCT

Ahmad:2020:FFB

Ahmad:2016:EMB

Andersson:2014:PGT
Björn Andersson and Gurulingesh Raravi. Probably good task assignment for two-type heterogeneous

Aminabadi:2023:SAE

Atoofian:2021:REG

Atoofian:2020:ACG

Azari:2020:ETO

Elham Azari and Sarma Vrudhula. ELSA: a throughput-optimized design of an

Alle:2009:RRR

Asifuzzaman:2022:PPE

Aysu:2015:FRT

Arghavani:2019:CLB

Awais:2023:TOS

[BBB16] Guillaume Baudart, Albert Benveniste, and Timothy

Baruah:2023:OSR

Boissinot:2012:SPR

Bini:2009:MCE

Barkaoui:2015:GES

Bordoloi:2007:ISA

Benveniste:2008:CHR
REFERENCES

[Bueno:2010:ORA]

[Bhattacharjee:2018:CRM]

[Batina:2019:ISI]

[Baek:2013:EEH]

[Blindell:2017:CPU]

[Biswa:2006:MOP]
Baka:2016:NSS

Brilli:2023:ECM

Bathen:2014:ERC

Basu:2017:IUL

Bertozzi:2015:PRA

Bosio:2023:SIA

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
2015. CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

REFERENCES

Bouraoui:2017:HAE

Bogdan:2013:PCH

Bagchi:2024:CCA

Boroujerdian:2023:FES

Banerjee:2012:BAT

Ali:2023:ESE

Ali J. Ben Ali, Marziye

Bishnoi:2015:BCC

Bhardwaj:2019:MCA

Brisk:2013:ISI

Bambagini:2016:EAS

Bortolotti:2016:VRT

Bellasi:2015:ERR

Berthier:2013:SPD

Bur:2021:WCE

Bartocci:2023:MHU

Benini:2003:EAD

Bhattacharjee:2023:XEA

REFERENCES

Biswa:2013:RTS

Bournoutian:2013:AAA

Bouzidi:2022:PMC

Bartolini:2005:OIC

Blech:2012:GIB

Bahirat:2014:MHP

Brais:2019:AAM
Hadi Brais and Preeti Ranjan Panda. Alleria: an ad-

[BS13a] Ke Bai and Aviral Shrivastava. A software-only scheme for managing heap

Bourke:2013:AES

Biswas:2022:PNC

Bandari:2017:DBE

Brandt:2014:PCS

Boorghany:2015:CIL

Banerjee:2009:FPU

REFERENCES

[CZA+24] Tommaso Cucinotta, Alexandre Amory, Gabriele Ara, Francesco Paladino, and Marco Di Natale. Multi-criteria optimization of real-time DAGs on heterogeneous platforms under P-EDF. *ACM Transactions on Embedded Computing Sys-
Caronti:2023:FGH

Carta:2007:CTA

Catania:2015:PSR

Chang:2022:ISIa

Chattopadhyay:2019:QIL

Cherif:2019:LSD

Che:2013:SSD

Collins:2013:FFS

Chang:2014:ISS

Canis:2013:LOS

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammouna, Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. LegUp:

Chao:2013:TLA

Chaki:2017:FVT

Cheng:2019:AVE

Casini:2024:ISI

REFERENCES

Chanet:2007:ARM

Corre:2016:TTB

Chen:2019:DAS

Clair:2023:SED

Cilardo:2015:ECA

Choo:2017:EDF
REFERENCES

Chen:2022:SRT

Chakraborty:2014:MCH

Chen:2014:EOR

Cooke:2015:FSM

Crenshaw:2007:RIE

Ciszewski:2017:EAC

Chattopadhyay:2008:PPA

[A.CIC+08] A. Chattopadhyay, H. Ishebabi, X. Chen, Z. Rakosi,

Chattopadhyay:2009:PPA

Cedersjö:2020:TFC

Chen:2017:GEA

Chouali:2005:PPM

Chen:2023:TTR

REFERENCES

Crites:2017:DCE

Chang:2014:ISI

Chen:2006:RCS

Chang:2004:RTG

Calderon:2020:GUE

Chen:2013:CMS

Chen:2019:TAF

Chung:2013:EUE

Chang:2016:SGA

Chen:2018:HEW

Carreon:2021:PET

Chen:2017:RTD

[CMP17] Marcos Aurélio Pinto Cunha, Omayma Matoussi, and

Yu M. Chi, Patrick Ng, and Gert Cauwenberghs. Wireless noncontact ECG and

Coron:2004:SSL

Chen:2013:ISS

Cardo:2013:ISS

Chen:2013:ISS

Chatterjee:2017:FTD

Castiglione:2017:BF1

REFERENCES

REFERENCES

bedded real-time systems.

[CSTM22] Christos Stamoulis, Kuan-Hsun Chen, Chiahui Su, Christian Hakert, Sebastian Buschjäger, Chao-Lin Lee, Jenq-Kuen Lee, Katharina Morik, and Jian-Jia Chen. Efficient real-

Chen:2002:TGC

Caspi:2008:SPM

Chen:2013:ELS

Chen:2013:ELS

Yeong-Sheng Chen, Yun-Ju Ting, Chih-Heng Ke, Naveen Chilamkruti, and Jong Hyuk Park. Efficient localization scheme with ring overlapping by utilizing mobile anchors in wireless sensor networks.

Chen:2016:ICA

Chen:2023:RCR

Chang:2014:RAC

Chen:2017:LBD

REFERENCES

Chang:2012:AFS

Chen:2023:FNN

Chen:2020:QEO

Chen:2017:SBT

Chen:2020:DAR

Cai:2023:OOF

REFERENCES

Chang:2013:RED

Chen:2023:ARL

Chen:2024:DTO

REFERENCES

REFERENCES

Dewan:2014:BAF

Silva:2019:RFG

Leyva-del-Foyo:2012:ITI

Das:2020:ALS

Dong:2023:RAS

Dokhanchi:2018:FRD

Deshmukh:2017:TCP

Dietrich:2017:GOF

Deb:2023:ZDT

Deshwal:2019:MMO

References

REFERENCES

Dong:2012:UAS

Dong:2014:EEE

Dugo:2019:CLC

Dong:2016:DLD

Dong:2013:PRS

Duraisamy:2016:HPE
Desirena-Lopez:2019:TAR

DiPietro:2016:CLD

Das:2023:EFS

dl.acm.org/doi/10.1145/3550071.

Desai:2022:CLR

Dasari:2014:NCA

Dutt:2018:ADA
REFERENCES

Gianluca Dini and Ida M. Savino. LARK: a lightweight authenticated ReKeying scheme for clustered wireless sen-
REFERENCES

REFERENCES

Marco Di Natale, Rich West, Jian-Jia Chen, and Rahul

DeNiz:2014:UBR

Dong:2022:EEA

Eldstål-Ahrens:2022:CCL

Editors:2013:ISS

Editors:2014:MMA

[ESBK23] Rolf Ernst, Dominik Stöhrmann, Alex Bendrick, and Adam Kostrzewa. Application-centric network management — addressing safety

REFERENCES

Elfar:2017:SER

Franchino:2016:BOE

Furtado:2013:CON

Fusella:2016:CAA

Ferri:2009:RIF

Feng:2023:ADS

REFERENCES

Fainekos:2012:ESS

Fradet:2023:RRD

Feng:2019:EUH

Fard:2021:APP

Fan:2018:SDR
REFERENCES

21:??, January 2018.
CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

ACM Transactions on Embedded Computing Systems, 16(5s):149:1–149:??, October 2017. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

Foglia:2014:ERI

125

Foglia:2014:ERI

Forsberg:2021:PEM

Filippopoulos:2016:IEM

Feldtkeller:2023:COS

Fong:2019:ODS

Fischmeister:2017:GES

Sebastian Fischmeister and Jason Xue. Guest editorial: Special issue on LCTES
REFERENCES

Fu:2017:DFA

Falk:2013:RBQ

Fei:2008:EAF

Falk:2010:ASA

Gaitan:2024:MOC

Gomony:2015:RTM

Manil Dev Gomony, Benny Akesson, and Kees Goossens. A real-time multichannel memory controller and optimal mapping of memory

Gardner:2005:CCS

Gottscho:2017:LCM

Ghosh:2020:RSD

Gunzel:2023:CTA

Gong:2014:SBF

Ghosh:2019:RRS
REFERENCES

[Godary-Dejean:2013:FVD]

[Goyal:2022:HFU]

[Goncalves:2019:AER]

[Grun:2003:APB]
Geilen:2010:SDS

Geelen:2010:MES

Get:2008:PFE

REFERENCES

[GL+13] Alberto Ghiribaldi, Daniele Ludovici, Francisco Triviño, Alessandro Strano, José Flich, José Luis Sánchez, Francisco Alfaro, Michele Favalli, and Davide Bertozzi.

Garg:2012:IMP

Guan:2014:WAM

Guo:2018:IWP

Garcia:2021:IHG

REFERENCES

REFERENCES

[Gebotys:2008:EAW] Catherine H. Gebotys and

Gebotys:2015:SWP

Gebotys:2016:PCP

Huynh:2011:EAR

Girard:2012:VSL

Gu:2016:RTF

Huynh:2011:EAR

Hilal:2016:CEA

Hussein:2023:CNC

He:2004:AAA

Huang:2016:EPC

Ha:2008:IES

Huang:2017:PSV

REFERENCES

Han:2020:BAP

Hsieh:2013:TAM

Hessien:2023:PPS

He:2005:RFL

Huang:2012:EFP

Hu:2016:AWM

Biao Hu, Kai Huang, Gang Chen, Long Cheng, and Alois Knoll. Adaptive workload management in mixed-

[Huai:2023:CCR] Shuo Huai, Hao Kong, Xiangzhong Luo, Shiqing Li,

Hong:2018:ISP

Hung:2023:EEC

Hsieh:2012:PBP

Hu:2020:GBT

Haar:2017:MGE

He:2021:GCF

Jiaji He, Haocheng Ma, Yan-

Howe:2015:PLB

Hassan:2017:PRA

Hua:2006:EEE

Hua:2007:PDM

Hammadeh:2020:WHR

REFERENCES

Higuera-Toledano:2006:HSD

Hsiu:2016:UCS

Higuera-Toledano:2010:ISI

Hester:2016:PCB

Hubner:2013:ISS

Huang:2013:ASP

[HVG13] Chen Huang, Frank Vahid, and Tony Givargis. Automatic synthesis of physi-

Huang:2022:HFY

Shihua Huang, Luc Waeijen, and Henk Corporaal.

Huang:2022:HFY

Shihua Huang, Luc Waeijen, and Henk Corporaal.

Huang:2022:HFY

Shihua Huang, Luc Waeijen, and Henk Corporaal.

Huang:2022:HFY

Shihua Huang, Luc Waeijen, and Henk Corporaal.
REFERENCES

REFERENCES

Hu:2014:MON

Huang:2015:JWU

Hassantabar:2022:MMH

Ikeda:2023:MDD

Indrusiak:2023:RTG

Irturk:2010:GAG

IBM10 Ali Irturk, Bridget Benson, Shahnam Mirzaei, and Ryan Kastner. GUSTO: an automatic generation and
REFERENCES

Ivanov:2021:VSA

Isik:2023:NNC

Isuwa:2022:QMQ

Iida:2016:GET

Im:2004:DVS

Izosimov:2012:SOF

Ivanov:2016:ARS

Inoue:2010:RSC

Ise17

Irani:2003:OSD

Ibrahim:2021:MFU

[Edahiro:2008:FIDES]

[Ienne:2016:GES]

[Iyer:2024:HCM]

[Inci:2023:QFQ]

[Inagaki:2023:PSC]

Petar Jokic, Erfan Azarkhish, Andrea Bonetti, Marc Pons, Stephane Emery, and Luca Benini. A construction kit for efficient low power neural network accelerator designs. *ACM Transactions on Em-

[Jokic:2022:CKE]
Jiang:2019:BSR

Jacob:2002:ITS

Jacob:2003:ITS

Jayakodi:2020:DOE

Josipovic:2017:OLS

REFERENCES

Jia:2013:SLI

Jacome:2003:SIP

Jeong:2012:PLT

Ji:2017:LDC

Ji:2016:CLO

Jiang:2016:PAD

Jezequel:2015:FPA
Loïg Jezequel, Eric Fabre, and Victor Khomenko. Factored planning: From au-

Javadi:2023:CME

Jafari:2009:EPR

Jackson:2021:EES

Jin:2018:PAR

Jones:2006:RPW

Jia:2015:TAD

Jerraya:2006:GEC

Jung:2014:HCO

Jimenez:2015:LSC

Jin:2014:PPA

Jain:2020:CHS

Jayakumar:2016:SMV

Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. Sleep-mode voltage scaling: Enabling SRAM
REFERENCES

REFERENCES

Kamal:2015:OHC

Kadiyala:2020:LLA

Kumar:2007:ESI

Kurtin:2017:ART

Koh:2023:PST

Kim:2013:SIE

[KBCL13] Jongsung Kim, Javier A. Barria, Morris Chang, and

Kung:2017:CPD

Koopman:2005:UES

Kang:2014:HSA

Kumar:2008:CCP

Kyriakis:2019:SMR

REFERENCES

REFERENCES

Kloda:2023:LLS

Khalgui:2013:DRA

Kohler:2023:RCE

Kim:2014:MBM

Heeseok Kim, Dong-Guk Han, Seokhie Hong, and Jaecheol Ha. Message blinding method requiring no multiplicative inversion for RSA. ACM Transactions on Embedded Computing Systems,
REFERENCES

Kansal:2007:PME

Kim:2007:PMI

Kim:2017:AAS

Kadiyala:2020:HPC
Kim:2013:DER

Kadayif:2005:DSO

Kwon:2005:OVA

Kadayif:2005:CDH

Kim:2016:UMA

Khajeh:2012:EAA

Koutsoukos:2012:PAM

[XKKH12] Xenofon Koutsoukos, Nicholas Kottenstette, Joseph Hall,

Kim:2011:DPT

Kangas:2006:UBM

Kwon:2023:LRT

Khalgui:2013:ISI

1539-9087 (print), 1558-3465 (electronic).

Kang:2022:MLM

Knapik:2015:ASB

Koul:2023:AAA

Kumar:2012:ECI

Kim:2017:PBB

Hong Seok Kim, Eyee Hyun Nam, Ji Hyuck Yun, Sheayun Lee, and Sang Lyul Min. P-BMS: a bad block management scheme in parallelized flash memory stor-
references

Khan:2022:BIC

dl.acm.org/doi/10.1145/3524071.

Khalid:2016:RHL

Krishnakumar:2023:DSA

dl.acm.org/doi/10.1145/3563946.

Kim:2019:OBI

dl.acm.org/ft_gateway. cfm?id=3358186.

ISSN 1539-9087 (print), 1558-3465 (electronic).

[JSP+12] Jaegeuk Kim, Hyotaek Shim, Seon-Yeong Park, Seungry-

Kartal:2016:MDR

KSS16

Kim:2012:XFM

KST+12

Kang:2017:RLA

KSY17

Kumar:2014:WCG

Kyrkou:2013:HAR

KTT13

KVK+03

Soontae Kim, N. Vijaykrishnan, Mahmut Kandemir, Anand Sivasubramaniam, and Mary Jane Irwin. Partitioned instruction cache architecture for energy efficiency. *ACM Transactions
REFERENCES

Kejariwal:2009:ELL

Kim:2010:EAE

Klashtorny:2023:PGW

Kwon:2016:CBF

Klues:2010:LLD

Khouzani:2017:DBS

REFERENCES

1539-9087 (print), 1558-3465 (electronic).

REFERENCES

[LC17] Yu Li and Albert M. K. Cheng. Toward a practical

[Liang:2019:ESW]

[Lien:2023:FFS]

[Lee:2018:FRT]

[Liu:2008:HPP]

[Lim:2013:DRS]
Liu:2019:CDM

Li:2017:RNF

Lee:2017:MAA

Lai:2013:RBR

Lin:2003:CMC

Lin:2022:DRR

REFERENCES

[LFC17] Ivan Llopard, Christian Fabre, and Albert Cohen.

Evangelos Logaras, Orsalia G. Hazapis, and Elias S. Manolakos. Python to ac-
REFERENCES

soft error detection and recovery to avoid DUE and SDC via Tail-DMR. *ACM Transactions on Embedded Computing Systems*, 16(2): 32:1–32:??, April 2017. CODEN ????. ISSN 1539-9087 (print), 1558-3465 (electronic).

[LJMP23]

[LJVP23]

[LK10]

[LKA+18]

Charles Leech, Charan Kumar, Amit Acharyya, Sheng Yang, Geoff V. Merrett, and Bashir M. Al-Hashimi. Runtime performance and power optimization of parallel disparity estimation on many-

Lashgar:2014:HHI

Lin:2016:CFQ

Lee:2002:AAI

Li:2023:EDS

Lazarescu:2015:ITB

Liang:2017:EKM

REFERENCES

REFERENCES

1539-9087 (print), 1558-3465 (electronic).

Donggang Liu and Peng Ning. Multilevel µTESLA:
 REFERENCES

Liu:2013:RAE

Li:2009:ELC

Lubbers:2009:RMP

Lee:2010:IHM

Lal:2019:CGA

Loghi:2006:CCT

Mirko Loghi, Massimo Poncino, and Luca Benini.

REFERENCES

(Liu:2017:HPI)

(LPP+21)

(LS09)

(LS12)
REFERENCES

Lee:2013:SBR

Landy:2017:SAS

Lang:2020:DIE

Lam:2014:REC

Lee:2019:TAS

Lee:2008:DFR
Lizarraga:2020:AMB

Li:2023:IIE

Lysecky:2009:DIM

Leon-Vega:2023:AGR

Lee:2013:HPL

Lin:2018:MCV

REFERENCES

198

REFERENCES

Bo Liu, Xiao-Tong Yuan, Yang Yu, Qingshan Liu, and Dimitris N. Metaxas. Parallel sparse subspace clustering via joint sample and parameter blockwise partition. *ACM Transactions on Embedded Computing Systems*, 16(3):75:1–75:??, July 2017. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

REFERENCES

puting Systems, 13(2s):61:1–61:??, January 2014. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic).

Munir:2015:MAF

[MAGR15] Arslan Munir, Joseph An-
toon, and Ann Gordon-Ross. Modelling and analysis of fault detection and fault tolerance in wireless sensor networks. *ACM Transactions on Embedded Com-
puting Systems*, 14(1):3:1–3:??, January 2015. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic).

Mandal:2019:APM

[MAKO19] Sumit K. Mandal, Raid Ay-
oub, Michael Kishinevsky, and Umit Y. Ogras. Analytical performance models for NoCs with multiple priority traffic classes. *ACM Transactions on Embedded Com-
puting Systems*, 18(5s):52:1–52:??, October 2019. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/ft_gateway.
cfm?id=3358176.

Mejia-Alvarez:2004:ASS

[MALM04] Pedro Mejia-Alvarez, Eugene Levner, and Daniel Mossé. Adaptive scheduling server for power-aware real-time tasks. *ACM Transactions on Embedded Com-
puting Systems*, 3(2):284–306, May 2004. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic).

Mirzoyan:2015:MNG

[Davit Mirzoyan, Benny Akesson, Sander Stuijk, and Kees Goossens. Maximizing the number of good dies for streaming applications in NoC-based MPSoCs under process variation. *ACM Transactions on Embedded Com-
puting Systems*, 14(4):83:1–83:??, December 2015. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic).

Missimer:2022:TRT

[Katherine Missimer, Manos Athanassoulis, and Richard West. Telomere: Real-time NAND flash storage. *ACM Transactions on Embedded Com-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/ 3479157.

McLoughlin:2010:RTR

[Ian Vince McLoughlin and Timo Rolf Bretschneider. Reliability through redundant parallelism for micro-
satellite computing. *ACM Transactions on Embedded Com-
puting Systems*, 9(3):
Matthews:2015:PTS

Mendez:2022:EIC

Mangeruca:2007:USU

Murray:2009:CTI

Modi:2023:CRR

Medhat:2015:RMC

Ramy Medhat, Borzoo Bonakdarpour, Deepak Kumar, and Sebastian Fischmeister. Runtime monitoring of cyber-physical sys-

Murillo:2016:MSD

Mancuso:2014:OPA

Massolino:2015:OSC

Mishra:2022:SCF

McInnes:2013:MAT

Mera:2017:ATP

Maria Isabel Mera, Jonah Caplan, Seyyed Hasan Mozaafari, Brett H. Meyer, and Peter Milder. Area, throughput, and power trade-offs for FPGA- and ASIC-based execution stream compression. *ACM Transactions on...
References

Mathew:2017:GES

Mathew:2015:NMB

Mark:2012:HBC

Mishra:2004:MVP

Maity:2021:SSO

Ma:2023:ICD

Motamedi:2017:MIR

Manilov:2017:FRS

Muresan:2005:ICM

Malik:2015:HRT

Marshall:2021:PCP

Mondal:2023:PPR

REFERENCES

[MK15] Jean-Vivien Millo, Emilien Kofman, and Robert De Simone. Modeling and analyzing dataflow applications on NoC-based many-core ar-

[MK15b] Anindan Mondal, Shubrojyoti Karmakar, Mahabub Hasan Mahalat, Suchismita Roy,
REFERENCES

Maier:2018:FIT

Misailovic:2013:PSP

Mehrabian:2017:TTL

Metz:2023:BBS

Mousavi:2023:DDA

REFERENCES

dl.acm.org/doi/10.1145/3609385.

[MMH+23] Vishesh Mishra, Sparsh Mittal, Neelofar Hassan, Rekha Singhal, and Urbi Chatterjee. VADF: Versatile approximate data formats for energy-efficient computing.

Mishra:2024:PMC

Mishra:2023:VVA

Mukherjee:2022:AFD

Mishra:2020:VVA

Manohar:2022:CUC

Mohan:2010:PTA

Memik:2006:ENP

 REFERENCES

Mahdavikhah:2014:MFP

Moazzemi:2019:HFL

Mosbahi:2013:CFM

Motamedi:2019:DNA

Marinelli:2022:MES

REFERENCES

1539-9087 (print), 1558-3465 (electronic).

[MSR+17] Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand, Caroline Fontaine, Guy Gogniat, and Russell Tessier. A high-speed accelerator for homomor-

[Martin:2015:ROS] Paul Martin, Lucas Wanner, and Mani Srivastava. Runtime optimization of system utility with variable hardware. ACM Transac-
Mao:2022:TEA

Mihajlovic:2014:DIQ

Mihajlovic:2015:AAR

Namazi:2018:MBR

Noguera:2004:MRA

Nodeh:2018:EAM

Mohammad Taghi Teimoori Nodeh, Mostafa Bazzaz, and Alireza Ejlali. Exploiting approximate MLC-PCM in low-power embedded systems. ACM Trans-

Niknafs:2023:RRM

Nie:2022:HRA

Naresh:2017:CCC

Neshatpour:2020:IIC

Nam:2012:MTI

Napapetian:2012:ESS
Nuzzo:2019:SAG

Nirjon:2014:MSR

Nadezhkin:2013:AGP

Naik:2004:CCS

Nghiem:2012:TTI

Nikitakis:2013:NLP
Nam:2013:PAR

Nagar:2016:FPW

Nagar:2017:RCB

Nair:2011:EHB

Nejatollahi:2020:SFA

Namin:2012:EFF

REFERENCES

Owaida:2015:EDS

Oza:2024:DAT

Oh:2023:MFL

Ogras:2023:ISI

Ozer:2008:SBE

Ottoni:2006:OAU

Omar:2018:DRH

Oehlert:2019:CIT

REFERENCES

Ouyang:2022:WWF

Ouyang:2022:WWF

Paissan:2020:PSB

Paissan:2020:PSB

Paterna:2012:VTW

Paterna:2012:VTW

Patterson:2009:SMB

Patterson:2009:SMB

Paul:2014:RTP

Paul:2014:RTP

Parikh:2014:FCF

Parikh:2014:FCF
REFERENCES

Paul:2013:VSI

Pagliari:2017:ABC

Park:2008:RFF

Pajic:2012:RAE

Papagiannopoulou:2015:EEH

Pasricha:2008:FEB

Paul:2023:ANI

Park:2021:IML

Peeck:2023:IWC

Pop:2005:SDF

[PEP05] Paul Pop, Petru Eles, and Zebo Peng. Schedulability-driven frame packing for multicluster distributed embedded systems. *ACM
Popovici:2008:PBS

Poddar:2016:DHP

Papakonstantinou:2013:ECC

Park:2018:SCG

Procter:2017:PAS

Pajic:2014:SCM

Miroslav Pajic, Zhihao Jiang, Insup Lee, Oleg Sokolsky, and Rahul Mangharam. Safety-critical medi-

Park:2017:FPC

Pager:2015:SSM

Pujol:2023:VEC

Paul:2012:PRC

Park:2013:EEN

Papaioannou:2023:ULP

Alexios Papaioannou, Charalampos S. Kouzinopoulos, Dimosthenis Ioannidis, and

Jiyong Park, Jaesoo Lee, Saehwa Kim, and Seongsoo Hong. Quasistatic shared libraries and XIP for memory footprint reduction in

Marco Paolieri, Jörg Mischke, Stefan Metzlaff, Mike

Papagiannopoulou:2017:ETE

Piccolboni:2017:ECF

Park:2014:AWL

Puthal:2017:DDK

Petrov:2005:RCF

Paulin:2013:PPP

[Pierre G. Paulin, Ali Erdem Özcan, Vincent Gagné,

Pradhan:2012:AVJ

Pan:2019:MTP

Pederson:2019:BCL

Palossi:2015:CDP

REFERENCES

[PSZ12a] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. A variability-aware robust design space exploration methodology for on-chip multiprocessors subject

Peng:2012:BHA

Pal:2022:OEI

Pan:2018:MAC

Pan:2017:EMW

Chen Pan, Mimi Xie, Chengmo Yang, Yiran Chen, and Jingtong Hu. Exploiting multiple write modes of nonvolatile main mem-

REFERENCES

[RLL+23] Jiankang Ren, Chunxiao Liu, Chi Lin, Ran Bi, Simeng Li, Zheng Wang, Yicheng Qian, Zhichao Zhao, and Guozhen Tan. Protection window based security-aware

Rodionova:2023:TRT

RibeiroDaSilva:2021:MCH

Reshadi:2009:HCS

REFERENCES

Reyhani-Masoleh:2004:EDS

Reyhani-Masoleh:2004:TFT

Rouhani:2017:RAF

Rusu:2003:MRR

Raravi:2014:TAA

Rajib:2018:PRI

Rabbah:2003:DRD

REFERENCES

REFERENCES

REFERENCES

[SAB18] Belal H. Sababha and Yazan A. Alqudah. A

Servais:2021:ACR

SAMR06

Seth:2006:FFA

Szeto:2023:ABB

Dinesh C. Suresh, Banit Suresh:2009:EEE

Siddhu:2023:DTM

Singh:2013:MCN

Scheir:2015:ASC

Schulze:2017:IIM

REFERENCES

REFERENCES

Shrivastava:2020:ISIb

Schirner:2008:QAS

So:2013:STI

Sun:2017:WHS

Shoushtari:2018:SIS

Song:2019:EEP

Staschulat:2007:SPC
Jan Staschulat and Rolf Ernst. Scalable precision

Schliecker:2010:RTP

Schlatow:2017:RTA

Samaddar:2023:ODS

Shokry:2012:HSS

Seo:2018:CSI

Seviora:2005:CES

REFERENCES

Shukla:2015:ESD

Shukla:2016:EDP

Shukla:2016:EFI

Shukla:2016:ESB

Shukla:2016:ESE

Shukla:2017:ECC

Shukla:2017:ECS

[SIR+17] Francisco Sant’anna, Roberto Jerusalimschy, Noemi Rodriguez, Silvana Rossetto, and Adriano Branco. The

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>CODEN</th>
<th>ISSN (print)</th>
<th>ISSN (electronic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samuel Rodrigo, Alessan-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dro Strano, Tor Skeie, Da-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vide Bertozzi, and Fran-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cisco Gilabert.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kumar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dahi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sung-Ho Hwang, Key Ho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwon, and Jae Wook Jeon.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hakbong Kim, Jehun Lim,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Jihong Kim.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korsholm, Tomas Kalibera,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anders P. Ravn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aki Kondo, and Hiroshi Na-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>koda.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Seo:2010:DAS

Saini:2021:IFC

Scharwaechter:2007:AAE

Serpanos:2004:GES

Shin:2008:CRT

Sauer:2016:LFD

Christian Sauer and Hans-Peter Loeb. A lightweight framework for the dynamic creation and configuration of virtual platforms in Sys-

REFERENCES

Seo:2016:HMR

Su:2019:TFR

Stamoulias:2013:PAK

Stanley-Marbell:2013:LPP

Serpanos:2004:EHS

Sarkar:2015:STP

Smyth:2018:SSC

Steven Smyth, Christian Motika, Karsten Rath-

Sood:2020:RDV

Sandoval:2017:TTS

Shi:2021:TGH

Singh:2010:CPD

Schaumont:2015:IEP

Schurmans:2016:FAE

Stefan Schürmans, Gereon

Schoeberl:2010:NRT

Smith:2012:OSH

Sheikh:2019:EEM

Siddhu:2019:PLA

Sheikh:2020:EER

Singh:2017:EER

Shamsa:2021:UUB

Sharma:2023:FCD

Salamy:2012:SOT

Seshia:2012:QAS

Strobel:2019:PMA

Suris:2012:RSC
Sarwar:2023:CPE

Segarra:2015:ASP

Sutar:2018:DPI

Seiculescu:2013:DBE

Santini:2016:BCS

Singh:2023:KWC

Schurgers:2003:PME

Shulz-Rosengarten:2021:TOO

Seo:2013:AIG

February 2013. CODEN ????. ISSN 1539-9087 (print), 1558-3465 (electronic).

Seo:2021:SBA

Seo:2021:SBA

Salamati:2019:MEM

Mahmoud Salamati, Rocco Salvia, Eva Darulova, Sadegh Soudjani, and Rupak Majumdar. Memory-efficient mixed-precision implementations for robust explicit

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
</tr>
</thead>
</table>
Sangiovanni-Vincentelli:2005:OES

Srinivasavarma:2021:TBC

Sunder:2013:FVD

Salajegheh:2013:HWS

Saeed:2019:LDB

Sassone:2007:SSS

24:??, September 2007. CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

Schumacher:2014:LLS

Sha:2023:PSR

Shijubo:2023:PBB

Saifullah:2014:NOR

Sun:2017:ESD

Sun:2013:DEI
Hung-Min Sun, Chi-Yao Weng, Shiu-Jeng Wang, and Cheng-Hsing Yang. Data embedding in image media using weight-function

Su:2017:EWA

Sha:2019:CED

Sotiriou-Xanthopoulos:2016:FIA

Sotiriou-Xanthopoulos:2016:IEV

Sotiriou-Xanthopoulos:2016:OBV

REFERENCES

REFERENCES

[TEC12] TECS Staff. Abstracts of papers to appear in Special Suplemental Issue of TECS (v11, iSupplemental1). ACM Transactions on
REFERENCES

Tuncali:2016:APM

Tretter:2017:MAC

Trub:2017:IPM

Tang:2012:UMS

Terechko:2012:BPS

Tsutsui:2012:HTP

Hiroshi Tsutsui, Koichi Hatatori, Hiroyuki Ochi, and Yukihiro Nakamura. A high-throughput pipelined parallel architecture for JPEG XR encoding. *ACM Trans-

Tan:2007:TAP

Taniuchi:2015:AUI

Tsoutsouras:2017:SSO

Tiloca:2017:ADB

Thomas:2016:EDP

Tabrizi:2019:DLC

Tiku:2020:OSV

Saideep Tiku and Sudeep Pasricha. Overcoming secu-

REFERENCES

[Tan:2017:ITM]

[Tan:2010:MSE]

[Tan:2016:SSH]

[Tiwari:2020:RRA]

[Tavana:2014:SHT]

[Tabanelli:2023:DAY]
Enrico Tabanelli, Giuseppe Tagliavini, and Luca Benini. DNN is not all you need: Parallelizing non-neural ML

[TWTH18] Theo Ungerer, Christian Bradatsch, Martin Frieb, Florian Kluge, Jörg Mische,

Unnikrishnan:2009:RMR

Udayakumaran:2006:DAS

Ungureanu:2021:FAT

Uzelac:2013:HBL

Ullah:2022:ADA

Salim Ullah, Siva Satyendra Sahoo, Nemath Ahmed,

[VAR+08] Ankush Varma, Eric Debes, Igor Kozintsev, Paul Klein, and Bruce Jacob. Accurate and fast system-level power modeling: an XScale-based

[Voros:2013:MHD] Nikolaos S. Voros, Michael Hübner, Jürgen Becker, Matthias Kühne, Florian Thomäitiv, Arnaud Grasset, Paul Brelet, Philippe Bon-
REFERENCES

Venkataramani:2020:SSD

[VKMP20] [VLDG19] [VLX07] [Vogel:2017:EVM] [Vera:2007:DCL]

[Vreman:2023:SAC

[VM23]

[Vinco:2016:ESI

[VP16]

[VanHulst:2015:MSH

[VRF15]

[Verbauwhede:2005:SES

Voyiatzis:2008:SFS

Vougioukas:2017:NFS

Vasilikos:2013:HSA

Vali:2023:BSD

VanPinxten:2017:OSR

Whitham:2014:ERC

Winter:2006:TPC

Wiggers:2010:BCC

Wu:2016:JJO

Wang:2020:CTC

Wang:2023:WTM

Wagner:2007:HSI

Wang:2019:ALA

Wang:2017:PAP

Wang:2023:EBN

Wu:2016:SAR

Wagemann:2018:OEN

REFERENCES

[WL09] Xiaojun Wang and Miriam Leeser. A truly two-dimensional systolic array FPGA implementation of

Wei:2018:SAE

Wei:2022:SBD

Wang:2022:SBD

Wijerathne:2019:CHT

Wang:2017:TAS

Wandeler:2012:UGS

Wu:2013:AMC

Wolf:2002:III

West:2011:ASS

Wollinger:2004:EHC

Wen:2022:SHD

Fei Wen, Mian Qin, Paul Gratz, and Narasimha Reddy.

Watkins:2015:UNT

Wu:2006:EEU

Wehner:2016:SRM

Wang:2021:VSH

Wu:2014:EIE

Wu:2014:EDF

Chenye Wu, Yiyu Shi, and Soummya Kar. Exploring de-

[Weichslgartner:2018:DTR] Andreas Weichslgartner, Stefan Wildermann, Deepak Gangadharan, Michael Glaß, and Jürgen Teich. A design-time/run-time application mapping methodology for predictable execution time in MPSoCs. *ACM Transactions on Embedded Com-
REFERENCES

Witterauf:2021:SLC

Wen:2023:WCP

Wang:2019:DES

Wang:2013:DLE

Wolf:2017:GES

Wang:2017:SRS

Wang:2018:STW

Wang:2014:STN

Wang:2019:NNA

Waluyo:2010:MMB

Wu:2012:MCB

Wang:2019:SVH

Wu:2013:OSL

Wu:2017:PIE

Wu:2023:EAD

Wu:2013:OSL

Xu:2006:DMA

Xu:2023:LVL

Xie:2019:EWA

Yang:2012:UEP

You:2016:VVA

Chiou:2005:SAS

Yassin:2018:AAC

Ykman-Couvreur:2002:SLE

Ykman-Couvreur:2011:FMM

Yang:2016:BAU

Yang:2010:HPO

Yang:2010:OMC

REFERENCES

27:??, February 2010. CO-
DEN ???. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[YDS+22] Geng Yuan, Peiyan Dong,
Mengshu Sun, Wei Niu,
Zhengang Li, Yuxuan Cai,
Yanyu Li, Jun Liu, Weiwen
Jiang, Xue Lin, Bin Ren,
Xulong Tang, and Yanzhi
Wang. Mobile or FPGA? A
comprehensive evaluation on
energy efficiency and a uni-
fied optimization framework.
ACM Transactions on Em-
bedded Computing Systems,
21(5):65:1–65:??, September
2022. CODEN ???. ISSN
1539-9087 (print), 1558-3465
dl.acm.org/doi/10.1145/
3528578.

[YFPJ14] Qiang Yang, Jian Fu,
Raphael Poss, and Chris
Jesshope. On-chip traffic
regulation to reduce coher-
ence protocol cost on a mi-
crothreaded many-core ar-
chitecture with distributed

[covers Yantir:2017:AMM]

[YEK17] Hasan Erdem Yantir, Ahmed M.
Eltawil, and Fadi J. Kur-
dahi. Approximate memris-
tive in-memory computing.
ACM Transactions on Em-
bedded Computing Systems,
16(5s):129:1–129:??, October
2017. CODEN ???. ISSN
1539-9087 (print), 1558-3465
(electronic).

[YF19] Shakiba Yaghoubi and Georgios
Fainekos. Worst-case
satisfaction of STL specifi-
cations using feedforward
neural network controllers: a La-
grange multipliers approach.
ACM Transactions on Em-
bedded Computing Systems,
18(5s):107:1–107:??, October
2019. CODEN ???. ISSN
1539-9087 (print), 1558-3465
dl.acm.org/ft_gateway.cfm?id=3358239.

Frequent value locality and
its applications. ACM Trans-
actions on Embedded Compu-
ting Systems, 1(1):79–105,
November 2002. CODEN
???. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[YGD+17] Bilgiday Yuce, Nahid Farhady
Ghalaty, Chinmay Deshpande,
Harika Santapuri, Conor Patrick,
Leyla Nazhadali, and Patrick Schaumont.
Analyzing the fault injection

Yan:2019:CAR

Yan:2008:DOD

Yang:2012:PAA

Young:2023:CAD

Yun:2017:FFI

Yun:2003:EOV

Han-Saem Yun and Jihong

Yang:2015:ESV

Yu:2010:FSB

Yoong:2012:ICC

Yang:2023:EEP

REFERENCES

DyCo: Dynamic, contextu-
alized AI models. ACM
Transactions on Embedded
Computing Systems, 21(6):
76:1–76:??, November 2022.
CODEN ??? ISSN
1539-9087 (print), 1558-3465
dl.acm.org/doi/10.1145/
3520131.

[YL20] Kaige Yan, Jingweijia Tan,
Longjun Liu, Xingyao Zhang,
Stanko R. Brankovic, Jinghong
Chen, and Xin Fu. Toward
customized hybrid fuel-
 cell and battery-powered mo-
bile device for individual
users. ACM Transactions on
Embedded Computing Sys-
tems, 18(6):1–20, January
2020. CODEN ??? ISSN
1539-9087 (print), 1558-3465
dl.acm.org/doi/abs/10.
1145/3362033.

[YY23] Jun Yin and Marian Ver-
helst. CNN-based robust
sound source localization
with SRP-PHAT for the ex-
treme edge. ACM Transac-
tions on Embedded Com-
puting Systems, 22(3):55:1–
55:??, May 2023. CODEN
???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic). URL https://

dl.acm.org/doi/10.1145/
3586996.

[YY13] Yi-Ping You and Shen-Hong
Wang. Energy-aware code
motion for GPU shader pro-
cessors. ACM Transac-
tions on Embedded Com-
puting Systems, 13(3):49:1–
49:??, December 2013. CO-
DEN ??? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[YLW23] Po-Chen Yeh, Chin-Hsien Wu,
Yung-Hsiang Lin, and
Ming-Yan Wu. A write-
related and read-related
DRAM allocation strategy
inside solid-state drives
(SSDs). ACM Transactions on
Embedded Computing Sys-
tems, 22(1):17:1–17:??,
January 2023. CODEN
???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3561301.

[YK18] Su-Kyung Yoon, Jitae Yun,
Jung-Geun Kim, and Shin-
Dug Kim. Self-adaptive fil-
tering algorithm with PCM-
based memory storage sys-

tem. ACM Transactions on
Embedded Computing Sys-
tems, 17(3):69:1–69:??, June
2018. CODEN ??? ISSN
1539-9087 (print), 1558-3465
(electronic).
Yan:2008:AWC

Yu:2013:ANC

Ye:2023:AAM

Zou:2022:DHA

REFERENCES

Zhang:2013:SAE

Zhao:2009:STT

Zhao:2020:NLD

Zhang:2004:BAP

Zhang:2004:DAF

Zou:2004:SDT

Zhuo:2008:EED

Zhao:2022:CBI

Zhong:2019:SHS

Zeng:2014:MSC

Haibo Zeng, Marco Di Natale, and Qi Zhu. Mini-

Zacharopoulos:2023:TEH

Zhao:2015:RSP

Zhong:2012:SNL

Zhong:2012:WSN

Zhou:2013:ARD

Bo Zhou, Xiaobo Sharon Hu, Danny Z. Chen, and

Zhu:2014:CCL

Zhu:2010:RAD

Zheng:2017:RTS

Zhang:2005:RDC

Zhou:2008:CIA

[ZL08] Ye Zhou and Edward A. Lee. Causality interfaces for actor networks. *ACM Transactions on Embedded Com-

Zimmerman:2013:MBR

Zhou:2011:ARA

Zhang:2018:PEP

Zhou:2019:RTA

Zhang:2015:MPA

Zhang:2017:FAK
Jiacheng Zhang, Youyou Lu, Jiwu Shu, and Xiongjun Qin. FlashKV: Accelerating KV performance with open-channel SSDs. ACM Transactions on Embedded Computing Systems, 16(5s):
Zheng:2023:IIA

Zhao:2003:SRM

Zhu:2007:ESA

Zhai:2013:MSA

Zhu:2016:SDW

Zhuang:2006:PLS

REFERENCES

[ZQD+23] Hanrui Zhao, Niumiu Qi, Lydia Dehbi, Xia Zeng, and Zhengfeng Yang. Formal synthesis of neural barrier

Zhao:2022:MSM

Zhao:2019:CCL

Ziller:2005:CSS

Zep:2021:RAS

Zhou:2019:LIN

Zhu:2012:PAR

Zhang:2013:RAB

Zhou:2019:LCP

Zhang:2006:RDL

Zhou:2003:AMC

Zhu:2019:SEA

Zhang:2004:STC

Zhang:2005:HCC

Zerzelidis:2010:FFS

Zhang:2013:SCE

Zheng:2017:DDC

Zhang:2016:IRW

REFERENCES

2016. CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

Zeng:2016:SLM

Zou:2022:APS

Zhang:2024:EAA

Zhang:2015:CDR

Zhu:2012:OTA