A Complete Bibliography of *ACM Transactions on Embedded Computing Systems* (TECS)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

14 May 2024
Version 1.93

Title word cross-reference

(m,k) [NRZ$^+$24]. 2 [LMS$^+$22, VWG$^+$17]. 3 [CCY$^+$13, CLLC17, DSXS$^+$14, HH13, HL14, LQN$^+$13, LMS$^+$22, MSCS16, PRB15, SSPP23, SP19b, SBK$^+$23, SVC$^+$23, WDM17]. 8 [LPO$^+$17, ZSH$^+$19]. 2 [EAAS22]. GF(2^m) [HJ19]. K [KB23]. μ [LN04, WPW$^+$04]. R^3 [WLH$^+$18].

/Divergence [BSV17].

1 [STLX22a, SCZ20a]. 12 [BLG$^+$15]. 16-bit [KG05]. 1s [Ano13, Ano14].

32-bit [SSA21]. 3PXNet [RLG20]. 3s [Ano14].

4.0 [Shu18b]. 4s [Ano14].

5G [SAS$^+$23, VKMP20]. 5s [Ano14].

A9 [SOL$^+$16]. AADL [GGGK08]. abstract
AMS [WZH13]. Analog [AKI+23].
Analysis
[ARJ08, ARP12, AKD+18, ABH+18, AKTM16, ABS+19, BVM19, BKM2G12, BE17, BAG+20, BDG+15, BGO17, BB13, CR14, DHKS15, DHL17, DJZ13, DVCC19, DNT18, EYG+23, FZK+10, FMHS23, FMSS15, GWM16, GZZ+16, GCU+23, GUC+23, HKP18, HFA+14, HFL+19, KB17, LS20, LL15, LCD18, McI13, MHT13, MKM+23a, MWK+24, MAGR15, NS16, NBM+16, PC14, PSD21, RLMP23, SRNW16, SE17, SC17, SR12b, SMZ+21, SISS24, SLE+17, SFX18, SD17, TP19, TEBP16, VA18, VM23, WMRB17, WCM+16, XZK+19, YZZG23, YGW+12, YKD+24, ZLX15, ZLW+19, ZSJ12, AF14, ADI06, AFL13, BAR13c, BGVZ11, BC07, CMV10, CCR+14, CUL13, DNNP14, GW08, GT05, GLYY14, HBB+12, LLLT08, LTL09, MEP04, MMR+10, SD08, SE10, SHME13, SAMR06, SE07, TM07, VAR13, ZSM13, ZB13].

Analytic [WW09]. Analytical [FHK21, JLSP18, MAKO19, LM13, WMZY13].

Analytical [CD12, LLL14]. Air [SRL+17, WHL+18].

Algorithmic [Ahm13, ADH+23, BRA+16, CLS16, KAKSP15, KKD+12, MM16, MSR+17, PJYW12, QP15, SZG+23, SMZ+21, WYL+19, YCK+18, YYYK18, CCH13, DNNP14, GNS04, LHC04, LCH+08, NBS09, PMPP14, PL10, TJ10].

Algorithm-Hardware [ADH+23].

Algorithm/Architecture [KGD+12, YCK+18]. Algorithmic [ORA16]. Algorithms [AMK17, CCP+19, CYH20, DLD+19, FLF+23, GIB+12, LI21, RN14, SSS11, SGW+16, TTB23, GNW05, HABT11, PPB09a, PPB09b, ZCO8].

Aligned [HKL+23]. Alignment [GW15].

all-optical [KYHY14]. Alleria [BP19].

Alloc [WDM17]. Allocation [ADJM19, CKN+20, HZGW18, JLW+15, LOF20, NFI+22, OMH+23, PCGD21, SWX17, SHQX19, XLY18, YWLW23, AF14, ABS02, DF14, ESAS14, KOK05b, LKLX10, LOX13, NDB09, PAP+12, UDB06, ZZZ+12, ZLF13].

Allocator [YC16]. alteration [SKPL10].

alternative [ZNS13]. ambulatory [WYP+10]. Amplification [HWT23].

LKW02, LMA19, LX16, MSCS16, MPFG19, PSZ12a, POG+13, RC08, RWL+18, SCRy16, TBFR17, TKHZ22, USA+22, WWG+18, WP11, WMLM12, ZTZ+19, BMA13, yCBR05, HBSA04, JHPR13, LLR14, MMR+10, NSL11, XWHC06, ZNS13.

Application-adaptive [LKW02].
Application-Aware [KJK17a, BO13].
Application-centric [ESBK23].
Application-Focused [HPBL12].
application-independent [HBSA04].
Application-Specific [DASS12, MPFG19, PSZ12a, TBFR17, TKHZ22, RC08, USA+22, WP11, BM13, yCBR05, JHPR13, XWHC06].
Applications [BZG19, BTA+19, BJCHA17, BYIG21, CBH22a, CBH22b, CAPL11, DNBL22, DVC21, ETAV16, ESBK23, FSB+21, GTH+22, HJ19, KKD+12, KCJ+16, KGT+23, KMP15, LKZ+23, MLR+17, MBCM22, MKD15, MSSP22, MASG15, NZCS19, PX18, PJL+17, RPNA19, RDP17, SLB+15, DFC+19, SPB+17, TDD+16, TBG+17, TP16, UBF+16, VCM19, WZM17, WH17, WZY+23, XDL+18, ZDZ14, ZSH+24, ZSJ12, AMCM06, ABC+07, CMV10, CLK13, CD10, CCAP12, Dea06, DKA05, F003, GFC+10, GHB13, HHB+12, IK04, KV109, KBVD08, KZH+06, LO13, MEP04, MEP08, MAG14, DCM14, PCK+08, QP03, RMM03, SGT+13, SJC+03, SPP+10, UMY+09, YG02, UC1LY+02, ZNS13, ZWY+10, ZXS03].

Applied [BGRV15, LCQ+13].
Applying [LZJ+20].
Approach [APRC16, ABF+21, CMMD24, DMPC23, ETAV16, HDZL20, HB24, KSM+23, KDB19, LYH+15, LLW+19, MRRM24, Mcl13, NBM+16, PHG+17, RSW21, SUK23, SP20, SWX17, TBAS17, WZ12, YF19, ZRF+12, BvB13, CAP+07, CRM14, FZHT13, GNR+10, JHPR13, KKH+12, LLL14, LM13, MSCJ12, MSS+03, OMA+13, PB14, ZCS+05, ZK0K05].
Approaches [CZH+24, FHB+17, GWM16, KOM+23, PKT23, HGL14, LSC14].

Approximate [Ato20, ASJ21, AZS+23, CGSH19, DVC21, DNT18, FMHS23, GRR23, LN19, LPP+21, MDS+21, MMH+23, NBE18, RR17, RSK17, SUK23, TAP23, USA+22, YEK17].
Approximation [ADH+23, BDK+23, PC14, PLT23, SC20, NBGS09, ZXS08].
Approximation-Discovery [SC20].
AQuA [PDHC23].
Arbiter [CCKM16, NBH23, RPB+19, ZTZ+19].
application-independent [HBSA04].
Approach [APRC16, ABF+21, CMMD24, DMPC23, ETAV16, HDZL20, HB24, KSM+23, KDB19, LYH+15, LLW+19, MRRM24, Mcl13, NBM+16, PHG+17, RSW21, SUK23, SP20, SWX17, TBAS17, WZ12, YF19, ZRF+12, BvB13, CAP+07, CRM14, FZHT13, GNR+10, JHPR13, KKH+12, LLL14, LM13, MSCJ12, MSS+03, OMA+13, PB14, ZCS+05, ZK0K05].

Architectural [SPGB24, VGG+13].
Architecture [AMKA17, ADH+23, ARDG16, BBB16, BMP23, BJCHA17, CHS15, CDH+16, DSXS15, DLPK16, FSC+16, GPT+23, KAS+20, KOM+23, LCD18, MG15, MBCM22, MKD15, MKAA17, MKASJ18, NASM14, MMD04, PCK+08, PBP09a, PBP09b, RDM06, RMD09, SKW+07, TKG13, THON12, YFPJ14, ZCK13, ZVL04].

Architecture-Aware [MZG15].
Architecture-Independent [SC20].
Architectures [AMKA17, ADH+23, ARDG16, BBB16, BMP23, BJCHA17, CHS15, CDH+16, DSXS15, DLPK16, FSC+16, GPT+23, KAS+20, KOM+23, LCD18, MG15, MBCM22, MKD15, MKAA17, MKASJ18, NASM14, MMD04, PCK+08, PBP09a, PBP09b, RDM06, RMD09, SKW+07, TKG13, THON12, YFPJ14, ZCK13, ZVL04].
Area-efficient [KSK13]. Areas [PKIT23, SBB19]. ARES [ZZA+22].
Arguments [DHB+23]. ARINC [DLD+19].
ARINC-653 [DLD+19]. Arithmetic [LS17, OP06, RGDZ14, TSG10].
Arithmetic-level [OP06]. ARM [CYH+17, DVC+07, SOL+16, SSA21].
ARM/Thumb [CYH+17]. ARMs [KKS+23, WCB20]. Array [EZL+17, FO03, YZZ+23, ZRZ+19, BDP+13, WL09]. Arrays [TWTH18, WWH21, YCK+18, VSSS13].
Art [Shu15b, WGP04]. Article [BLG+15].
Articles [Shu16c]. Artifact [Shu16c].
Artificial [HZYJ22, Shu18b]. Artistic [SRY13]. ARX [IYL+23, SJLK18].
ARX-Based [SJLK18]. ASIC [AVF+09, MCM+17, MKAA17].
ASIC-Based [MCM+17]. ASIP [SKW+07]. aspect [DRL+10]. aspect-oriented [DRL+10].
Assessment [DHB+23, HPBL12, KAS+20]. Assignment [AR14, LBS15, MBP14, MF12, PLM+15, RN14, SR12a, SEB12, CKIR06, HABT11, LO13, MEP08, OAA10, PL10, QRB10, ZZZ+12]. Assisted [BKS+23, AAR+17, KSY17, PX18, CCY+13, HLD+09, LOG+14, WJJ17]. Association [GZZ+16, YCLV+02]. Association-Rule [GZZ+16]. associative [LPC+07]. Assorted [MS23]. Assume [NLSV+19, STH17].
Assume-Guarantee [STH17].
Assumptions [PMAB19, CJMB05]. Assurance [DHB+23, SSK21, RPHA19].
asynchrony [CW14]. ATCN [BT22].
Atom [UGS+21]. Attack [CZK+22, FXP+17, IYL+23, IPL16, LCLW17, PS08a, YGW+12].
Attention [YZZ+23]. Attestation [CZ23, MGC+23]. Attitude [HCS18].
Audio [TSO22, XYLC23, TKG13].
Auto [RB21, SSA+24]. Auto-Scaling [RB21]. Automata [JFK15, SSBF23, SK19, SH15, BS13b].
Automated [CDD+07, CFGM15, CI17, FC16, LSL20, NNS13, RMK17, TBAS17].
Automatic [BF17, BZ+23, CMK12, DP19, GNP06, GGJ12, HVG13, LSVRFG23, LLC+13, POOR24, SFZX18, TM15, TFL16, VNK+03, YCK+18, AFG08, BAR13c, IBMK10].
Automotive [VA18]. Autonomous [CGZ18, HXH+24, ICW+21, Kha13, MM16, SH23, SAS+23, WMLM12, YKKD23].
Auxiliary [DL12, ZCG+22]. Availability [LAB+23, FF09]. Available [KCJ+16].
WLWS15, WHN+17, WZD+17, YC16, ZZZG24, ZLX+23, AHM19, ABF+21, ACK+13, AZHC19, AZS+23, BCD24, BMP03, BO13, CCSC24, DKV14, DGC+20, DLRTB+19, DJS16, ESM+17, EYG+23, FZJ08, GHB13, GGI13, GNR+10, HSD22, HH13, IVJ+23, JC03, JP14, KBDV08, KYL13, KFY+22, LO13, LQN+13, LCC+23, MS21, MSS+03, MALM04, MAG14, OMH+23, OMA+13, SSK23, SSA+24, SRS03, SPT+21, SPT+23, SR19, XSP22, YW13, ZC04a, ZSEP21, Zhu10, SAS+23.
Aware [LDV12, SAMR06, BJP24].
Awareness [RSW21, ZO16] AXI [RPB+19]. Axiom [TNR17].
Axiomatization [BGGT23], AxOTreeS [SUK23].

Balancing
[CGSH19, CWJ17, FS13, THA+12, Mus10].
BAND [BKMG12]. BAND-AlDe [BKMG12]. Bandwidth
[BKS+23, DF14, FBM16, HHL+23a].
Bandwidth-limited [HHL+23a]. Bank
[TGBT17, LXL13, SBX08, ZP06]. Banks [CI17, MF12]. BarbequeTRM [BMF15].
Bare [BYIG21]. Bare-Metal [BYIG21].
Barrier [HCL+17, ZQD+23]. Baseband [VKMP20].
Based
[ADH+23, ARDG16, AYS15, BCD+22, BCS16, BSA17, BE17, BP12, BS15, BRL16, CSCC17, CPC17, CCM17, CCC+20, CDH+16, CKB17, DWR14, DJZ13, EVS+17, FND+16, GSC19, GMCC18, HPLL12, HSMS16, HZJ22, HPO+15, HTWL23, HLL20, HHL+23b, HPS13, HW17, JKH22, JZL+15, KJS20, KAKSP15, KY17, KKL+16, KH23, KCC+16, KSA+18, Kwo16, LL15, LPFL16, LHP+23, LX22, LZL15, LZS+18, LHL+19, LPO+17, LZZ+19, LSL20, MSS23, MSCS16, MCS+15, MCM+17, MS13b, MKD15, MSSP22, MKAA17, NASM18, NBH23, NYH+20, PYJL15, PJYW12, PGR16, PNRC17, RLL+23, SA18, SLB+15, SILK18, SSA21, SXH+19, SWL+23, SPC+16, SCRY16, SJOL22, SLK+22, SIC19, TBFR17, TNR17, TMXS17, TAMS18, U133, WWY13, WDI+16, WXH+18, WCK+19, WZY+23, WLC+18, WZ12, XHK16, XDL+18, YJD+17, YZZG23, YC12, YLW15, YCT16, YYYK18, ZRZ+19, ZCG+22, ASTPH10, AÖÖ23, AP20, ANARR+19, AZHC19].
Based [ABS02, BGD14, BGK+23, BD14, BZ13, BFQ10, BON2A, BMMV21, CCA+13, CYKH13, CC13a, CDX+19, CCP+19, CMP23, CGV10, DJ23, DEG11, DLN13, DAASP21, FZHT13, FMHS23, FKS+19, FFA+23, FLF+23, GW08, GFC+10, GDD17, GD14, GDN03, HKP18, HZX+14, HPL09, HB23, JKJ+10, JMO14, KKO+06, KPK+19, KKH+12, KGR12, KT14, KKS+23, LQ+13, LPC+07, LS13, LJR14, LC17, LLG+20, LKZ+23, LWZ+24, LCY+22, LHCK04, LLLGR13, LV09, MGC+23, MWK+24, Mus10, NSL11, OMA+13, PBC22, PCK+08, PS08b, PW13, PDBR08, PAS+09, PCD21, PSZ2b, PGR+08, PLT23, QRW+24, RS07, RCDB24, SSK21, SUK23, SGT+13, SCF12, SKH+12, SGSZ21, SBLM13, SB08, SCB+22, SXMX+18, SVS21, SC05, TXL+12, TJ23, THG24, TP20, TAP23, USA+22, VJD+07, VDK+08, WSK14, XQQ+24, YZZ+23, YV23, YRF10, YLY12, ZKKC05, ZJZL20, ZLF13, ETAV16, GZZ+16, SBDK22, CLLC17].
Based [FS14, RS+09, RS09b, VBC09].
Based [MAG15]. Bases [HWC+20].
Basic [HDZL20]. basis [RMH04a]. BASS [VKMP20]. Battery
[AKTM16, CGZ18, FHK21, KCT+16, LOD18, SPT+21, VA18, WXY+18, WLHC18, YTL+20, RV03, ZSM13].
Battery-Aware [VA18, SPT+21].
Battery-Free
[CGZ18, LOD18, WXY+18, WLHC18].
Battery-Less [AKT16].
Battery-powered [YTL+20, RV03].
battery-supported [ZSM13]. Batteryless
[CAN18, GTH+22, HTR+16]. Bayesian
[ADH18, DHJ+17]. BBB [HDZL20].
BBB-CFI [HDZL20]. Be
[JSD23, Val17, GT05]. beamforming
[TKG13]. Become [RH23, Shu18c].
BeepBeep [PSZ12b]. Behavior
[JC12, NS17]. Behaviors [BTD+18]. Belief
[HLLL12]. Benchmark
[LWK+17, MCSW12]. Benchmarked
[MKAA17]. Benchmarking [KS22],
BenchPrime [LWK+17]. Benders
[ETAV16]. benefits [BAR13b]. Berkeley
[SVP05]. best [MAG14, SRM+13].
best-effort [MAG14]. Between
[DPNA16, NNH+14]. Beyond
[KMB07, SRNW16, SGZS21]. Bicriteria
[MG15]. Big [APRC16, CJI17, KSA+18],
PNRC17, Shu15a, Shu16c. big.LITTLE
[HTC+16]. Bilinear [YLW15]. Binaries
[CYH+17]. Binary
[CL13, CYH+17, HLF+18, MBR15, PBC22],
PWL+19, WDM+17, ZSH+24, ZDL22,
ZGH+19, BCDH12, RHM04a). Bio
[BDB+17]. Bio-signal [BDG17]. Biochips
[CKB17, EZL+17, SIC19]. Biological
[BSM+19]. biology [LHM14]. Bionode
[PQA+19]. biopotential [CNC13]. BISDU
[MKS23]. Bit [JNJ15, LPO+17, MKS23],
PYL+23, SJK20, SIS24, ZJZL20, GJ13,
KG05, KKS+23, SSA21, YZZG23, ZSH+19].
Bit-Density [JNJ15]. Bit-flexible [SJ20].
Bit-Serial [MKS23, PYL+23]. Bit-sliced
[SIS24]. Bit-time-based [ZJZL20].
BitSET [PYL+23]. bitwidth [ÖNG08].
Black [BTX+18, SOL+16, SWS23].
Black-Box [BTX+18, SWS23]. BLE
[HLL+23]. Blind [LCLW17]. blinding
[KHHH14]. Block [FMHS23, FXP+17],
HDZL20, KN+17, LCLW17, PBC22,
SJK18, Shu16a, Shu17b, TFL16].
Block-based [FMHS23]. Blockage
[SAS+23]. Blockchain [WLC+22, XQQ+24].
Blockchain-based [XQQ+24]. Blocking
[HG+20, SE17, ZC04a, DW16].
Blocking-Aware [HG+20, ZC04a].
Blocks [BYIG21, JFM23, SWK19].
Blockwise [LY+17]. BlueIO [JAD19].
Bluetooth [KYDC20, LLL14]. BMS
[KNY+17]. Board [CPP+17, CGV10].
Boards [JKH12]. Body [AZHC19],
BKG12, BTL+12, GJJ12, PP12, TLL+12,
ZLL+11, LHX+14, QRB10, WYP+10].
Bonsai [SZG+23]. Boosting [CMV10].
BORPH [SB08]. Both [ZWK23].
Bottleneck [Ahm13]. bound [ZX08].
Bounded
[AFMT17, FS24, KHB+23, KDR13].
Bounded-Rate [AFMT17]. Bounding
[WZ12]. bounds [LA11, NNS13, RM10].
Box [BTX+18, SOL+16, SWS23]. Brain
[KOL+22]. Brain-inspired [KOL+22].
Brake [SA18]. Brake-by-Wire [SA18].
BRAM [PLT23]. Branch
[QZ014, DNP14, P05, ZA07].
branch-and-prune [DNP14]. Branching
[FKS+19, KMP15]. breadcrumb [LHF+14].
Break [BV16]. Breast [GCC17, CCC+14].
Brief [BLG15]. Bringing [MMA+23].
Broadcast [ANARR19, GMV17, PGR16],
SXH+19, DLN13, LN04]. Broadcast-Free
[PE16]. Broken [PL13]. BTMonitor
[ZJZL20]. Budget [BE17]. Budgets
[ABS+19]. Buffer [CWS15, DF08, WBS10],
CH10, LPC+07, LWB13, LO13, PMP14].
buffer-based [LPC+07]. Buffering
[HC16, KB23]. buffers [K19]. Building
[AES+14, LML+23, LWK+17, PL13,
SWK19]. Built [MSHS19]. Built-in
[MSHS19]. burstiness [MRY+10]. Bus
[HH23, RP+19, SGZS21, ZCG+22, BD14],
LC+13, PBR08, PL10]. Bus-based
[SGZS21, BD14, PDR08]. buses [TAYN09].
Bypass [BJP24, JHPR13]. Bypassing
C
[BYIG21, EAAS22, Gar05, LPD+20, LL15].
C-based [RSB+09]. CABArey
[MBJ+23]. Cache
[AHM19, ANARR+19, AB15, Ato20, BHD15,
CHK+14a, CR14, CBRZ19, Cul13, CMP17,
DJ23, LDL+19, GW16, JLS18, JLW+15,
KR18, Kwo16, LPB06, MSHS19, MPT+22,
MGB+21, MBJ+23, NS16, NS17, NYH+20,
QZX014, RP10, SRG+15, SGZS21,
SWL+23, SP20, SJL22, VGN18, WMGR12,
WZJ+18, XSP22, YHL23, ZW17, BJD24,
BGD14, BP05, BO13, GRVD12, GLY+14,
HK05, KV+03, LKW02, RG13, SE07,
VLX07, WAD14, ZVL04, ZVN05, ZKKC05,
ZTRC03, UAK+03]. Cache-Based [Kwo16].
Cache-Partitioned [GWZ16].
Cache-Related [CR14]. Caches
[AK21, CR14, KJK+17b, KRS+16, MMK22,
SMR15, TTA+20, GRCV03, LM13, TM07,
YZ08, YFFJ14]. Caching [AK21, SVS21,
WLZ+23, ZLZ+24, GGI13, UAK+03].
CaffePresso [HSK18]. Calculating
[BCD+22]. Calculation
[BMMV21, ZHCY13]. calculations
[VLX07]. Calculi [BGRV15]. Calculus
[SCG15]. Calibration [WJ17, TXL+12].
Call [SN10]. calls [KMB07, KASD07].
CAM [DEG11]. Camaroptera [DNBL22].
camera [BDP+13, SCF12]. camera-based
[SCF12]. cameras [DZR09, LWK+10].
CAMsure [RSK17]. Can
[YGD+19, GMV17, PS19, SKH+12,
XZK+19, ZCG+22]. Cancer
[PC117, CCC+14]. CAPA’08
[PB09a, PB09b]. CAPA’09 [Pla12].
capable [PMM+13]. Capacity
[HLLL20, WBS10]. CAP’NN [HSD22].
Capping [PHDL18]. Captured [CMP17].
car [SCF12]. Card [SCRY16]. Cardiac
[AAM+17]. Cards [BSJ15]. care [BDP+13].
Career [Shu18a]. CARES [SPGB24].
Carnegie [KCG+05]. carrier [AAPN14].
Carry [AZS+23, GWM16]. Carry-aware
[AZS+23]. CASCADE [WLK+19].
Cascades [BBD23]. Case
[AKI+23, LKZ+23, LOF20, MKE18, MFG17,
NS16, SRR+23, WZ12, BMMV21, DEG11,
FKS+19, KTT14, LHM14, MS+03, PE23,
SKW+07, SPK+12, VJD+07, VDK+08,
WEE+08, YF19, YZ08]. Cash [SBR+15].
Catching [SXH+19]. Causality [ZL08].
Cause [DVCC19, GCU+23, KHB+23].
Cause-Effect
[DVCC19, KHB+23, GCU+23]. causing
[LLP+17]. CCATB [PDBR08]. CDMA
[PGR16]. CDMA-Based [PGR16]. CEDR
[MK+23]. Cell [JN15, LZ+20, YTL+20,
PJL+17, SPK+12, HLLL12]. Cells [PRM21].
center [BDP+13]. Centrality [GAD+24].
Centric [HTC+16, MWW12, KSB21,
ESBK23, LLLT08, LLTL09, SZG+23].
Certificateless [ZSY19]. Certificates
[BP12, HCL+17, ZGD+23]. CéU [SIR+17].
CFI [HDZL20]. CGPredict [WZM17].
CGRA [DMPC23, WLK+19]. CGRAs
[KKL+16, PJS15]. Chains
[DVCC19, GCU+23, KHB+23, SE17,
Shu16a, Shu17b, SWL07]. Chains-Risks
[Shu17b]. Challenge [Shu19b]. Challenges
[FSG23, RR16, DPP14, HKP08, RRKH04].
Challenging [GLY+14]. Chambole
[BRA+16]. Change [AMJ21, SDMK19].
Channel [AAT+21, BS22, BTI+12, GW15,
GWM16, HMLZ21, JGSCS14, MM16, PX18,
SBK+23, SLS+19, ZLSQ17, CW14, IYL+23,
MK+24, RCDB24]. Channel-RAID5
[PX18]. Channels [GAG15].
Characteristics [JLSP18].
Characterization
[CMMD24, FHK21, VGB19].
Characterizing [GG24, SBLM13]. Charge
[WD17]. Charge-Trapping [WD17].
Chargers [LFHS18]. Charging [LZS+18].
Cheap [LPE+23]. Checker [KDR23].
Cognition [KOL+22]. Cognitive [HZGW18, XLY18]. Coherence [CMP17, LPB06, YFPJ14, MMK22].
Coherent [PRSV19, YHL23, HH23].
Collaboration [QRW+24]. Collaborative [AMCM06, HB16, KCCW17, LLG+20, CHTC07, ZHM+14]. Collaborativeness [LZJ17].
Collection [CLL16, CBS19, GMN21, KSY17, LLW+17, CKL04, CW14, CSK+02, DKAL05, SP10].
commodity [WP11]. Communication [APRC16, AZHC19, BHAC15, BLSM19, CCM17, CGZ18, FND+16, GRWV22, HYY+15, LAZ+16, NGL17, PE23, RJM19, SGZS21, TNR17, TKHZ22, VM23, ZDZ14, GHZH14, IS10, KASD07, PDBR08, QR10, SRS03, TKD07].
Communication-Aware [BLSM19]. Communications [HLL+23, LOD18, PS19, AMN+14].
Compact [HKL+23, LTQ+24, RKM24, SJLK18, Seo18, TV19, ONG08, ZRZ+19].
compaction [DVC+07]. Comparative [GHP18]. comparison [AFL13, MLV09].
Comparisons [BBB16]. Compensation [JR20, SGT+13]. Competing [LMK+18].
Compilation [BPP23, CHS15, MRA+17, WWHT21, JMO14, PGS+13, VN1+03].
Compile [AC08, CWX+23, NDB09, UDB06].
Compile-time [AC08, UDB06]. compile-time-unknown [ND09].
Compiled [RG14, RMD09]. Compiler [DJO12, HLD+09, KKC+05, KKK+11, LPD+20, LJLT17, MHK+23, Sus20, ZP11, AMCM06, PBV07, UAK+03, ZKKC05].
Compiler-assisted [HLD+09].

compiler-based [ZKKC05].
Compiler-Directed [LJLT17, KKC+05].
compiler-enabled [UAK+03].
Compiler-integrated [MKH+23].
Compiler-Supported [ZP11]. Compilers [KMS+23, RMBS20, SCZ20a, SCZ20b, GM03, LP09a, Sch07]. Compiling [CJ20, SFB+21, LFO20, NP04].
Complementary [WWY13, PB14]. Complete [BLG+15, BCLS17, GLT+13, XHSS10].
Completion [TJ23]. Complex [SE17, ST17, MG05, VHB+13].
Complexity [BJT+23, FMSS15, UGS+21, DRL+10].
Compliant [DLD+19, MWF+16].
Component [ASTPH10, CKB17, HWC+20, PW13].
Component-based [ASTPH10, PW13].
Components [DHB+23, GSC19].
Composition [PRSV19].

Compositionality [TBG+13].
Comprehension [CLW+20].
Comprehensive [JFM23, YDS+22].
Compressed [CLW+20, HW17].
Compressing [LCS03]. Compress [BLSM19, EAAS22, FFA+23, HKL+23, ICZ+23, JCS+17, KCBM21, LMS+22, MCM+17, MG15, QK+24, ZRZ+19, BCS+06, KD08, PZ12, YDLC01a, YDLC01b].

Compressive [KCCW17]. Computation [BFL18, CL13, DB19, DP19, FGK+23, GRWV22, HLLL20, Li21, PYL+23, RJM19, SA21, VM23, CAP+07, HMM04, HPLD09, WBS10].
Computational [HRT+22, JFM23, TBCB15, WLH+18].

Computer-Aided [CD12]. **Computers** [ANB+20, LP09b, SB08]. **Computing** [ABA+20, AH13, AAR+17, BFW+19, BLG+15, CDBB24, CZH+24, DZL+22, DNT18, GLMP18, GQC+17, GKS+22, GCS24, HLLL20, HWC22, JBI17, KM13, KKL24, KS22, L21, LZW+24, IWS+23, LMW+17, MCP17, MMH+23, Mit21, MEK+22, OHCK24, PL13, PJWY12, RB21, RHG+12, Shu16c, Shu18a, Shu19b, Shu19c, Shu20a, SP12, TP16, WX17, WHL23, YSK23, YEK17, ZLZ+24, ZAL22, DKV14, FZJ08, JGD19, JZL13, JGD19, KAK05, LQN+13, LCC+19, NRZ+24, TSG10, UCK+09, WBS10, YRS12, ZBG20].

Constraint [COC22, ZSH+19, BvB13, HCQ+14, RS07].

Constraints [CCKM16, LN19, MBKF15, LZS19, PSZ12a, SB23, CCB+08, HLD+09, KDN+07, LSK+08, MBFSV07, MEP08, NP04, PAP+12, RMM03, SRM+13, WRJL06, YRF10].

Construction [JAB+22]. **Constructive** [CMPP23, SMR+18]. **Consumer** [RV07].

Consumption [ANB+20, FLF17, MV16, MSRM24, OBSO16, YCT16, Mus03]. **Contract** [QWY+18]. **Containerized** [BCDD24]. **Containers** [SCA+24]. **Content** [CWH+16, DLD+19, RSK17, TLL10]. **Content-Addressable** [RSK17].

Contention [KBRD22, LES14, LCL+19, RDP17, SP20, ZLX+23, DNNP14, BJJ24]. **COnention-aware** [BJP24].

Contest [Shu19b, WXY+17]. **Context** [AMJ21, LS20, WYS+13]. **Context-Aware** [AMJ21]. **Contextual** [KH18, KP13]. **Contextualized** [YSC22]. **Continual** [LX22], **Continuing** [Shu17a]. **Continuous** [DLRTB+19, ZQD+23]. **Continuum** [CDBB24]. **Contract** [LPFL16, PRSV19]. **Contract-Based** [LPFL16]. **Contractions** [KRHC20]. **Contracts** [LSV+19].

Contrastive [SRB23]. **Control** [BMF15, BF17, BHL+20, BYIG21, DSB17, DHL17, GDD17, GDD20, KKCS16, LJP17, LML20, MBP14, MCG22, MMY+19, MBLA16, PP19, PMP17, RJS19, RLMP23, SSD+19, SE23, SUS+17, SPK+12, SLFC19, TBCB15, TCD+19, TFL16, VA18, VM23, WZH13, YKD+24, ZW13, BMM13, BJM13, CAP+07, FC13, KKH+12, KT14, LK10.##
MTL14, PCM12, RV07, SWT+14, VAHC+06, VGG+13, ZTRC03.

Control-Flow
[DHL17, PMP17, SUS+17, BHL+20, MCG22].

Control-theoretic [SPK+12],
control-theoretical [MTL14].

c/control data [VAHC+06].
c/control-data-flow [VAHC+06].

Controlled [BCS+23, HFL+19, JN15, WMLM12, YDLC10a].

Controllers [ARDG16, BF17, BDG+15, GHP18, HKP18, ICW+21, KML13, NPAG12, SVZ13, YF19, KASD07].

Converging [Gar05].

convex [SJRS+13a].

Convolution [AP20, AABG22, MDWL23].

Convolutional [AP20, HSK18, HY22, MPFG19, NHS20, PYL+23, KSK13].

Cool [UAK+03].

Cool-Cache [UAK+03].

Cooperation [LOD18].

Cooperative [ANARR+19, SHL+17, YLTY21, ZZX+15].

Coordination [PMDC17].

Coprocessor [LRZ16, BZ13].

coprocessors [HMMA04].

copy [AP09].

Core
[CLJ+19, HSM16, HH23, KR18, LKA+18, MKD15, PGR16, RC17, RWL+18, RJM19, SSPP23, SDBD18, SRR+23, TKV+18, TGGT17, VDKG19, VCM19, WHN+17, ACK+13, CCC+14, CLLC17, CMP+07, DPP14, DP19, JAD19, LKB14, LOG+14, LLR14, LLLT08, LTL09, LOF20, MG05, Mus10, PMM+13, PHG+17, RDP17, VKMP20, WBF+06, XSP22, YFPJ14].

core-centric [LLL08, LTL09].

Core-Memory [SSPP23].

Cores
[KRS+16, TDD+16, TMXS17, TAMS18, VSD+17, yCBR05, SM13a].

CORIDOR
[MMK22].

Coroutines [BHXP19].

Correct
[ARDG16, LPFL16, PB14].

Correction
[CGSH19, FNP+16].

Corrections
[FHB+17].

Correctness [ZWK23].

Correlation
[GW15, SMZ+21, TBEP16].

Correlation-Aware [TBEP16].

Correlations [HC16].

Cortex [SOL+16].

Cortex-A9 [SOL+16].

Corunner
[AKD+18].

Corunner-Dependent
[AKD+18].

Coscheduling [LK10].

cosimulation [OP06].

COSMOS
[PMDC17].

Cost
[ABC+17, BLG+15, CS22, GAS+17, LLC+22, LLZ+17, LZZ+19, MGLP19, ZO16, CCH13, CRM14, EHF24, GLT+13, Mus10, SJS+13a, SM13b, YFPJ14, ZCK13, ZP09].

Cost-Effective
[BLG+15, GLT+13, Mus10].

Costs [CGSH19].

cosupplied [MKD13].

cosynthesis [KBDV08].

COTS
[FSB+21, HH23, PSZ12b, PJT+23].

COTS-Coherent
[HH23].

Count
[SIC19].

Counter
[ARLP12, KJLS20, MKASJ18, PMAB19].

Counter-Based
[KJLS20].

Counter-Examples
[PMAB19].

Counterexample
[LP19, ZQD+23].

countermeasure [Geb06].

Counters
[CZ23].

Counting
[PKIT23].

Coupled
[WWHT21].

Course
[Shu17a].

Coverage
[HR18, SKH+19, YGHS08].

CPS
[DCZB19, LML+23, Rru22, SSB24, TBCGO23].

CPU
[BBL09, ISE10, LWB18, OFA23, 2019, 2019, 2019].

Creation
[CD12].

Creating
[HWC+20, YMHB19].

Creation
[SL16].

Crenel
[LZL15].

Crenel-Interval-Based
[LZL15].

CRIMP
[HKL+23].

Crisis
[Shu20b].

Criteria
[SKH+19, CAA+24].

Critical
[BHL+20, CKN+20, HSR18, IPL16, KWK23, LS20, RHG+14, Shu15d, ZYL+17, ASTPH10, PJL+14, SVN04].

Criticality
[AKTM16, BCDD24, GE18, HPP17, HHC+16a, LCP+17, LH18, RC17, TSP15, TGGT17, ZZG24, ZGZ15, ABS+19, FHB+17, HGL14, KGT+23, LDRM12, ZQGZ22].

Criticality-aware
[BCDD24].

Cropper
[KL+19].

Cross
[BDG+15, JCW+16].
SRNW16, WWN23, ZP09, KST+12.
Cross-Layer
[BDG+15, JCW+16, ZP09, KST+12].
Cross-Platform [WWN23]. Cross-Section [SRNW16]. Crossbar [KHL+23, JR20].
Crossbar-Aligned [KHL+23]. Crosstalk [FC16, LPE+23]. Crosstalk-Aware [FC16].
Crowd [DBFHi4, PKIT23].
Crowd-Sourced [DBFHi4].
Crowdsensing [XQ+24]. Cryptographic [AMKA17, ARH+18, Bchl19, Bsj15, EKAK24, MKAA17, ZSY19, RMH04b].
Cryptography [BDR24, DZL+22, LHP+23, LWHS17, LPO+17, MWK+24, NVB+20, SOG15, Seco18, SAKH20, Geb04].
CrySTALs [GJC+24]. CS [KSA+18].
CS-Based [KSA+18]. CSDF [KB23]. CSI [QWY+18]. CSP [Gar05, McId3]. CUDA [DLV16, KSI3, PGS+13]. CURA [LKH16].
CURE [NGL17], current [MG05].
Curriculum [CSVA+05, Svn05, SBF+05].
Curves [DKL17]. curves [BSKB+09, WPW+04]. Custom [KAKSP15, LPD+20, TKG13, HVG13, LSC+14, ONG08].
Customizable [TKV+18], customization [CGV10, PO05, ZP09]. Customized [Rru22, YTL+20]. Cutting [AR14]. CV
[PRB15]. CxDNN [JR20]. Cyber [AFS+13, BHAC15, BKGMR15, DWRM14, DHJ+17, DHPh18, GCGJ20, GSN21, HZLX15, IPI+16, KCC+16, LAB+23, LWZ+16].
LLN+14, MBKF15, MKS+17, NLSV+19, PRS+17, SHL+17, Shul16d, Shul17b, Shul19b, Shul19d, SMR20, TGV12, TCD+19, UGS+21, WYD+16, WZBP19, XKK17, ZYM16, ZYL+17, ZJC+17, BWS+14, DDG+13, Hübl13, LDRM12, SPK+12, TXX+12, WLT12, YRS+12, ZSM13].
Cyber-Physical [AFS+13, BHAC15, BKGMR15, DWRM14, DHJ+17, DHPh18, GCGJ20, GSN21, HZLX15, IPI+16, KCC+16, LAB+23, LWZ+16, LLN+14, MBKF15, MKS+17, NLSV+19, PRS+17, SHL+17, Shul19d, TGV12, TCD+19].
WDY+16, WZBP19, XKK17, ZJC+17, SMR20, WBS+14, DDG+13, Hübl13, LDRM12, SPK+12, TXX+12, WLT12, YRS+12, ZSM13].
Cyber-Physical-Social [ZYM16, ZYL+17].
Cybersecurity [Shu15a], Cycle
[LS12, HHB+12]. Cyclo [DHKS15, SLC16].
Cyclo-Static [DHKS15, SLC16].
D [HL14, CCA+13, DLLC17, DSXS+14, HH13, LQN+13, LMS+22, MSCS16, PRB15, SSPP23, SP19b, SBK+23, SVC+23, SRK+18, WDM17]. D-PUF [SRK+18]. D-Stacked
[SSPP23]. D/ [LMS+22]. DaCapo [KPS23].
DAG [BGS+18, CLJ+19]. DAGs
[CAA+24]. DASS [MLAD23]. Data
[APRC16, AMJ21, ABSZ+19, ASD+24, BGR17, CJL17, CIZ+22, CBS19, CMP23, DBFHi4, FSC+16, GQC+17, GSS+18, HK18, HRT+22, HWC+20, HZ13, HBR24, JRR16, JCS+17, JLV+15, KOK0a, KSA+18, LPD+20, LZ+22, LCC+23, LCJ+13, LLL+14, LLW+17, LSL+20, MM+23, MF12, OHCK24, PE23, PqBM+15, PM19, PNRC17, RP03, SMW+17, SRG+15, SPC+16, SPT+23, SZL+17, SFCW23, Shul15a, SWWH13, SWXW17, VXL07, WKJ20, WWTSM19, WL+22, WQGR22, WLK+19, XQQ+24, YZZG23, YCK+18, YHL23, ZZZ+15, ZW17, BS13a, CC13a, HBSA04, HKV105, LXX10, SAYN09, TGB+13, UAK+03, ZKOK05, ZLF13].
Data-Adaptable [LSL+20, SMW+17].
Data-Cache [ZW+17]. Data-Dependent [HK18]. Data-Driven
[BGR17]. Data-flow [CMP23, VAHC+06].
Data-to-Memory [FSC+16]. Databases
[KCC+16, CH10]. Dataflow
[ABH+18, ADJM19, BPP23, DKA+19, DHKS15, DPN16, ETBK19, FGK+23, GTH+22, KAKSP15, LWB18, MS21, MDWL23, MKD15, SB23, DFC+19, SCB+22, SLC16, YLTY21, FZHT13, GEl10].
Dataflow-based [SCB+22]. Dataflow/von
[SB23]. datapath [HMMA04]. DC4CD
LLN09, LM13, LHM14, MSCJ12, MBFSV07, PGR+08, RP03, RS8+09, R04, RAK14, SVPO5, ST05, STW13, SM13a, WCJ07, XWLC06, ZTRC03, CMP+07, RKKH04.

Design-Level [TP19]. **Design-space** [MPZS13, BFQ10]. **Design-Space-Exploration** [GCJD20]. **Design-Level** [BM17]. **Design-Technology** [TP19].

Design [GAD+24]. **designed** [ZKW+10]. **Designing** [BRL16, DQ14, SRM+13, USA+22, VHB+13]. **Designs** [CJL17, IYL+23, JAB+22, LN19, TAP23, HH13].

Detailed [DLV16, ZLL+18]. **Details** [HKP18]. **Detectable** [LCL+19]. **Detecting** [CCP+19, CMP17, PMP17, HT06].

Detection [AMKA17, AMJ21, CCL21, CZH23, EVS+17, FGL+19, GLS+23, HZYJ22, HMLZ21, HPS13, KJLS20, LX12, LMS+22, LHYQ18, LJLT17, LLP+17, LL18, MYL+22, MKM+23b, MKAA17, MKASJ18, MDD22, MAGR15, PCC17, PKIT23, QWY+18, RCS23, SXH+19, SMZ+21, TMXS17, WYD+16, YZZG23, YHL23, YKK+13, ZCG+22, ZJZL20, CCC+14, HLD+09, KLC+10, KTT13, LHCK04, MVS+13].

Determinant [LZS20, TP16]. **Determinant** [LZZ+23]. **Determinism** [Lee21].

Deterministic [GDA13, LMBL21, SC05].

Development [CWZ+20, MKMGS18, Mos13, RH23, SH23, DSW+09, PJL+14].

Device [ALZR19, ALV+22, CFXY17, JCW+16, KPS23, LHYQ18, MM16, POCR24, SRK+18, WXY+18, WWT+22, WGN23, WT15, YTL+20, ZSH+19, BM13, NRL13, PJL+14, RV07, RBMN19, SKPL10, SC05].

Device-Free [LHYQ18, WXY+18].

Device-to-Device [JCW+16]. **Devices** [AV20, BKMG12, BRA+16, CSCC17, CJL17, CLW+20, CSC23, GLMP18, GRWV22, GAS+17, GDB22, GSN21, GP23, GMCC18, HTR+16, HY22, HTC+16, HLLL20, HLL+23, ICZ+23, JGL21, JRSR17, KRHC20, KKCS16, KNY+17, Kwo16, LMA19, LLL+21, LSL+23, LWHS17, LNA+15, MFG16, MPT+22, MV16, MAA+23, MFG17, RCS23, RSW21, Shu17c, TP19, TP20, WH16, YJD+17, CHCC13, CMS08, LCJ13, NNH+14, PSZ12b, RC08, TSWL10].

Dew [ZLZ+24]. **DFA** [WH17].

DFA-Resistant [WH17]. **DFSynthesizer** [SCB+22]. **DIAC** [LSZ20].

Diagnosability [GHKS15]. **Diagnosis** [GZZ+16, KH23, AKB14]. **Diagonal** [CKB17]. **Diagrams** [BCD+22, CL13, TFL16]. **didactic** [GT05].

Dies [MASG15]. **Different** [HCS18].

Differentiable [MLAD23]. **Differential** [FXP+17, HVG13]. **Digit** [AJ18, RMH04a].

digit-serial [RMH04a]. **Digital** [AIS15, BCBH18, EZL+17, HPO+15, IAS23, LMB+22, JMO14].

Dilithium [LTQ+24, RCD24, SIS24].

Dimensional [WWTSM19, WL09].

Direct [ZP08, LP10, SPK+12]. **Directed** [ADJM19, BGGT23, LJLT17, QZX14, KKC+05].

Directions [MBC22, HKP08].

DirectNVM [ZA122]. **Disassembly** [ITO+24]. **Disclosure** [FLF+23].

Discovery [LAZ+16, SC20].

Discrete [KL13, NDZ13, BB09, TSC05].

discrete-time [TSC05].

Discussion [FHB+17]. **DISE** [CLR05].

Disjunctive [AGG+17].

Disks [WLT24, CCH13, CW14].

Disorder [HYZJ22].

Disparity [LKA+18, TKT15].

Display [MH19, Dea06].

Displays [LKH16].

dissemination [KAK05]. **Distance** [CLS16].

Distill [MPFG19]. **Distill-Net** [MPFG19].

Distortions [HCS18].

distributable [CRAJ10].

Distributed [BHAC15, BWS14, BZG19, BLSM19, CJL17, CZH+24, DVCC19, GLMP18, GCU+23, HRT+22, KSS16, Kha13, LAB+23, LC17].

[YKKD23]. EAVE [LDV12]. EC [DZL+22].
EC-ECC [DZL+22]. ECaX [CGS19].
ECC [DZL+22, FLF+23, HJ19, ZSH+19].
ECG [CNC13, GZZ+16, MVS+13]. ECO
[RSW21]. economic [WCH+23].
Ecosystem [YMHB19]. Ed25519 [TV19].
EDA [FSG23, LAM06]. EDF
[CHTC07, CAA+24, ZB13, ZM07].
EDF-scheduled [ZB13]. Edge
[BKS+23, ASD+24, BT22, BDK+23,
BONA22, CAN+23, CDBB24, CZH+24,
CS22, CMMD24, DZL+22, GK22, GOC+22,
GRWV22, GRR23, GRR24, GDB22,
HRH+22, HY22, HLL+20, LSP+22,
MBCM22, MMA+23, MSSP22, MMD22,
OHCK24, PAF22, PRL+23, QRW+24,
RCS23, RB21, RLG20, STLX22a, STLX22b,
WDM+23, WZG+23, YS23, YV23, ZDL22,
KTT13, SSK+22, BKS+23, PMM+17].
Edge-AI-Driven [WZG+23].
Edge-Assisted [BKS+23]. Edge-Cloud
[BRR24]. Edge-SLAM [BKS+23].
Edge-TM [PMM+17]. EdgeWise
[GRWV22]. Editorial
[BBM15, BE10, Bur05, CS16, CJL17, CGZ18,
DPF14, DST19, EE16, EH18, FGIS12, FX17,
HKP08, IT16, LB04, Leo18, LP09a, MCP17,
Mit21, NSK12, DWC14, PS14, Pla12,
RRM16, Shu14a, Shu14b, Shu15a, Shu15b,
Shu15c, Shu15d, Shu16a, Shu16b, Shu16c,
Shu16d, Shu17a, Shu17b, Shu17c, Shu18a,
Shu18b, Shu18c, Shu18d, Shu19a,
Shu19b, Shu19c, Shu19d, Shu20a, Shu20b,
VP16, WX17, ZQC16, Gup04, JMO6, PBP09a,
PPB09b, Sch07, SL04, ST05, Wha07].
Editors [HM17]. education
[KCG+05, SVP05, SBF+05]. EEG
[CNC13, MM16]. Effect
[DVCC19, KHB+23, GCU+23]. Effective
[BMF15, BLG+15, LMK+18,
LWK+17, VGN18, GLT+13, Mus10].
Effectiveness [SUS+17]. Effects
[DJO12, MGB+21, RP19]. Efficiency
[CRC13, CEC23, HZH+18, LSL+23, LM24,
OSA+18, PC14, PMM+17, SWL+23,
THA+12, YJD+17, YDS+22, KKV+03,
LPFG13, SWL07, SJRS+13b, SKPL10,
SM13b, TVK08]. Efficiency-Driven
[CEC23]. Efficient
[APRC16, ABA+20, AABG22, AJ18,
ARZ+23, ADJM19, BJ23, BRR19, BGS+18,
BCS+23, CAN+23, CHK+14a, CKT+13,
CSH+22, CS22, CI17, CGV10, DCZB19,
DMPC23, DLPK16, EKAK24, FGL+19,
FLF17, GQC+17, GRR23, GSS+18,
GE18, HRT+22, HY22, HLL+23, HB23,
JGL21, JFM23, JAB+22, KIV10, KCC+16,
KASD07, LS12, LX22, LL17, LX16,
LWHS17, LMW+17, LFC17, LBS15,
LZZ+23, MYL+22, MSR+12, MMH+23,
MGLP19, MEK+22, MKASJ18, NSL11,
NFA12, PVSG22, PP19, PCM+15, PGS+13,
PHDL18, PS19, PLM+15, PMP17, PLT23,
PNRC17, RR17, RMH04a, SSD+19, SLB+15,
SK19, SA21, SPM+16, SP19a, SJJ02,
SPB+17, SIC19, SWX17, SHQX19, TLL+12,
TBDd11, TKT15, VKW+17, WCK+19,
WLZ+23, WZG+23, YZS+23, YKKD23,
ZLZ+18, A¨O¨O+23, ABF+21, BCLN13, BT22,
BMP23, CAP+07, yCBR05, DLE+14,
ESAS14, FZK+10, GRWV22, HE12, HQB06].
efficient
[JGD+09, KSK13, LAN06, LK10, LWZ+24,
MPT+22, PO05, QH07, RGS04, RP10,
RKC+22, RMD09, SKW+17, SJRS+13a,
SPT+23, SP20, SAYN09, UAK+03,
WRJ16, WK07, WCH+23, YS23, ZMB03,
ZTRO03, ZPO07, ZC08, KMB07, CH10].
Efficient-Grad [HY22]. Effort
[CRC13, GV+20, MAG14, SRT+13].
eIDs [ASWZ24]. elder [BDP+13].
elder-care [BDP+13]. Electric [VA18].
Electrode [EZL+17, YCK+18]. Elements
[LVSVFCC23, SBDK22, HVG13]. ELF
[ZGH+19]. Eliminate [DJ23]. Eliminating
[RR05]. Elimination [FND+16]. Elliptic
[DZL+22, LWHS17, WPW+04]. Elon
[DLC+14]. ELSA [AV20]. Embedded
[ALZR19, Akd21, AB15, ADJM19, BVM19, BD14, BHX19, BDR24, BLG15, BP12, BJCHA17, CLL12, CS16, CKGN14, CBBH2a, CBBH2b, CJL17, CCC17, CLS16, CFXY17, CQB15, DAHM16, DDC24, DLHR16, DZL22, DBFR14, DQ14, DJS16, GLP11, GDDD17, GV21a, Goe14, HKC18, HJ19, HKP18, HXH24, HSK18, HNY18, HHL23, IPEP12, JGL21, JRR16, JLS18, JW15, JEP16, JAD19, KE15, KML13, KRHC20, KPS23, KSP12, KM13, KCBM21, KBRD22, LS20, LG21, LDV12, LS12, LMA19, LJP17, LWZ24, LWHS17, LLZ17, LSL20, LL18, MTW20, MCP17, MCG22, Mit21, MGLP19, NBE18, OBSO16, PXY17, PCH15, PKIT23, Patu14, PqBM15, QZX104, RRM16, RHG14, SG24, SLB15, SOG15, SDBD18, SCZ20a, SCZ20b, SCKD23, Shu14a, Shu14b, Shu15a, Shu15d, Shu16a, Shu16c, Shu16d, Shu18a, Shu18b, Shu18c, Shu19b, Shu19c, Shu19d, Shu20a].

Embedded

[SRR23, SPQT19, SLE17, SVZ13, TDD16, TSP15, TBAS17, TBDD11, TKL15, USA22, VFS21, VKVG23, VP16, VKW17, WRY16, WZM17, WXY17, WLZ18, WX17, YGD17, ZDZ14, ZDTM19, ZSH19, ZQ16, ZAL22, ARJ08, ARJ11, ASTPH10, ABS02, AEF14, BYD09, BCDH12, BP05, BE10, BMP03, BMM13, BCS06, BMS13, BFQ10, BS13b, CMV10, CSVA05, CKL04, CC13a, CSK02, yCBr05, CRJ10, CVG10, CVG13, DKV14, Dea06, DKAL05, DZR09, DRL10, EAS14, FRRO10, Geb04, Geb06, GGG08, GNP06, GRCV03, GT05, GGI13, GM03, Gup04, GKW08, HCK08, HG09, HFG13, HTLC10, HLD09, HXZ13, HQX14, HB06, HQB07, HKLH05, JC03, JGD09, JKH13, JHP13, KVN09, KST12, KBCL13, KCG05, KASD07, KD08, KGR12, LB04, LS08, LS13, LOG14, LP09a, LCJ13, LOXL13, LHM14, MBFS07, MSB08, MSL13, NRL13, DWCM14, NDB09, NPP13, PCM12, PLKH08].

embedded

[PK13, PAS09, P005, PEP05, RP03, RP11, RV03, RRKH04, RP10, RSB09, SVP05, SWL07, Sch07, SAHE04, SMG04, SL04, Sev05, SJC03, ST05, STW13, SVN04, SGD012, SBF05, TRJ05, TSWL10, TSG10, TVK08, TLLL09, UAK03, VAHC06, VS05, VHB03, WTSR13, WM12, WPW04, WRL06, Wu10, WMZY12, XQ07, YDLC10, ZCS05, ZC04b, ZVL04, ZVN05, ZB13, ZMB03, ZP08, ZP09, ZM07, Znu10, ZP06, ZP07, DEG11, HKP08, Shu18a, KAS20].

embedded-system [BE10].

embedded/multimedia [UA03].

Embedding [HHB12, SWWY13].

emergency [KLC10, WYS13].

Emerging [ZQC16, SRY13].

EMG [WGP13].

Emissions [ISOD21].

eMRTDs [ASWZ24].

EMS [WLZ23].

EMS-i [WLZ23].

Emulation [AAM17, MRA17].

Emulator [MZH14, WT15].

Enable [BGGT23, LLC22].

Enabled [DJJ19, SAS23, VKDG19, RC08, UAK03, CZH24].

Enabling [BCHD12, CCSC23, CCC20, DLC14, JRR16, LYC18, LCC19, PM19, QWY18, SRS13b, SMK19, WDM23].

Encapsulation [AAT21].

Enciphering [MKAS18].

EncoDeep [SJK20].

Encoder [FS13].

Encoder/Decoder [FS13].

Encoding [SJK20, SAYN09, THON12, LDV12].

Encryption [GCS24, MSR17, SXH19, VOG15, SKW07].

End [DVCC19, GRRR24, GCS24, QRM24, SSK22, CZ23].

End-edge-cloud [SSK22].

End-to-End [DVCC19, GRRR24, GCS24].

Endomicroscopy [CL16].

Endurance [GMCC18].

Energy [ABL20, AHM19, ABD19, ANB20, ABA20, ABTS24, AJ18, ARZ23, AKTM16, ABC17, ASJ21, AV20, BCL13, BFW19, BMA16, BSA17, BMP03, BTA19, BGS18, CHK14a,
Estimation [ADH+23, AVR22, CLL21, CYH20, FHK21, HRH+22, LKA+18, OBA+17, PJWY12, RHG+12, SOL+16, SRR+23, TKT15, WZM17, WSMF22, KKC+05, KS13, LSC14, MSL13, ŌNG08].

Expansion [RIMS21, WYSPE23, SK13, SGZS21, SDMK19, SWWW17, XDL+18, ZM07, CLK13, GFC+10, ZA07].

Exploration [ABL+20, BCS16, BJT+23, CDH+16, DJJ+19, FFA+23, FSC+16, FSVG19, GCJD20, GSN21, IVJ+23, JFM23, KAKSP15, KB23, MPT+22, OFA+15, PSZ12a, PWL+19, SLB+15, SXXS+16b, WSHC14, YLTY21, ZEJ+23, ZBG20, BFFQ10, CIC+08, CIC+09, GDN03, JBN+13, KGR12, LM13, MPZ13, OP06, PDBR08, SKW+07, YCLV+02].

Fairness [CLLC17, GHKS15, RPB+19, CJMB05].

Fall [LMS+22]. Falsification [AFS+13].

Family [MFG16]. FARS [BJT+23]. Fast [AP20, ABA+20, AGG+17, CSCC17, CHS15, EKAK24, NS16, PDBR08, YMBH19, YCNC11, BWS14, LM13, LHCK04, TLLL09, VDJ+07, VDK+08, SAMR06].

Faster [LHP+23]. Fault [AMKA17, BVM19, BHD15, CPC17, DSB17, FXP+17, GAS+17, IPEP12, LCD18, LCLW17, LPE+23, MKMGS18, MCPP17, MKAA17, MAGR15, NDZ13, NZ+24, RCD24, Rn022, SA18, SISS24, SSH14, TAP23, TMX17, XKK17, YGD+17, AFG08, BGD14, CMV10].
JGD+09, RMH04b, SHME13, ZC04b.

Fault-injection [RCD24].

fault-tolerance [AFG08]. Fault-Tolerant [BHD15, CPC17, DSB17, IPEP12, MCP17, SA18, SSH14, TMXS17, NRZ+24, TAP23, BGD14, JGD+09, RMH04b]. Faults [EV5+17, VM23, VS08]. Faulty [BVM19].

FELIX [SLK+22]. Fence [Shu16b].

Fencing [FND+16]. Ferroelectric [SLK+22]. FET [SLK+22]. Fetal [FSVG19].

FFConv [AP20]. Fiat [VS08]. Fidelity [HPB12]. FIDES [ISTE08]. Field [NWA12, Shu16b, ITO+24]. fields [RMH04a, RMH04b].

FIFO [GNW05, TBC+17]. File [CCC+17, KSP+12, LCC+23, OBSO16, CWKH12, LS13, PK13].

file-system-aware [LCC+23].

file-system-oriented [CWKH12]. Filed [HCS18]. filling [BSKB+09]. Filter [HZW+23, CMS08].

Filtering [UMZ13, YYYK18, MSH+14, TSG10]. filters [CC13b, FF09]. final [GGGK08]. Finding [VSD+17].

Fine [BHL+20, CAN+23, KJLS20, MSRM24, DFC+19].

Fine-Grained [KJLS20, DFC+19, BHL+20, CAN+23].

Fine-Tuning [MSRM24]. Fingerprinting [BS22, HMLZ21, ISOD21, PRM21].

Fingerprinters [TM15]. Finite [CHS15, DQ14, NWA12, ZPG17, RMH04b].

Firmness [BAG+20]. Firmware [MKGMS18, Mc13]. First [HQE20]. Fix [DLV16].

Fixed [DBM+15, DHL17, LH18, LJVD23, SCM20, SD17, WHN+17, ZLL+19, AC08, DF14, LA11, QH07, YK03].

Fixed-Point [LJVD23, SCM20, AC08].

Fixed-Priority [DHL17, LH18, LA11, QH07, YK03].

fixed-priority-scheduled [DF14]. Flash [BGD+15, CSCC17, GMCC18, GKS+22, ISOD21, JGL21, JCS+17, Jnl15, KKK+11, KSP+12, KNy+17, Kwo16, MAW22, OBSO16, PRM21, SWJ+13, WDM17, WC16, WZD+17, CH10, CKL04, CWKH12, CYKH13, LPC+07, PCK+08, PK13, WKC07, Wu10, JKK+10, MSH19].

Flash-Based [SCC17, PCK+08].

flash-memory [KL04, CWKH12, CYKH13, WKC07].

FlashKV [ZLSQ17]. FlashLight [KSP+12].

Flaws [SZL+17]. Flexibility [IAS23, WSK14].

Flexible [ABTS24, BHD15, CC13b, DMC23, HWC22, KKL24, NVB+20, PP19, PJL+17, TV19, VWG+17, ML14, SJK20, ZW10].

FlexRay [SKH+12, TBE16]. FlexWAFE [DSW+09]. Float [WHL23, WHL23].

Floating [LPP+12, MLR+17, AC08, DBH14, YL13].

floating- [AC08]. Floating-point [LPP+12, MLR+17]. FlowFloorplan [SBB19].

FLORA [SBB19]. Florets [SPT+23].

Flow [CKB17, DHL17, PMP17, RJS19, SUS+17, SPC+16, SPT+23, SIC19, VAHC+06, YZZG23, BHL+20, CC13a, CMDP23, LMST04, MCG22, PGR+08, RI04, TBG+13, WYJ+14]. Flow-aware [SPT+23].

Fly [PM19, UMI13]. FMM [HZH+18]. FMSs [HPS13].

Focused [HPBL12, MSRM24].

Fog [AAR+17, Li21, SIK21]. Fog-Assisted [AAR+17].

Footprint [LMB+22, CDD+07, HFG13, PLK08].

Forensics [CFXY17]. ForEVeR [PB14].

Fork [SGW+16]. Fork-Join [SGW+16].

Formal [BGVZ11, CD17, CD10, DSS19].
DHF18, GDA13, Leo18, LML20, MS13b, Mos13, SVZ13, TBFR17, ZQD+23, CCB+06, HHB+12, KST+12, PB14, RBS+10, BVM19.

Formalism [Gar05]. Formalization [MHT13]. Formalized [LFC17]. Formally [CPP+17].

Format-Independent [CPP+17]. Formats [MMH+23]. ForSyDe [UGS+21].

ForSyDe-Atom [UGS+21]. ForWarding [HRR18]. Foundations [BHCL19]. FPGA [AMKA17, AP20, BSKit+09, BFTS19, BRA+16, CCA+13, CCC+14, CHS15, CDH+16, EKAK24, GZZ+16, HJJ19, HNY18, HPLD09, HW17, JSZ+19, LSC14, LSL17, LMS+19, MDWL23, MMSN14, MCSW12, MCM+17, RPV+19, RMK17, SSK21, SUK23, DFC+19, SB08, SM13a, TAP23, TV19, USA+22, WL09, WZY+23, YDS+22, ZBC09, ZHCX13]. FPGA-Formalism [LFC17].

FPGA-Based [GZZ+16, HW17, AP20, CCA+13, HPLD09, SSK21, SUK23, SB08, TAP23, USA+22].

FPGAs [LZN123, AZS+23, DSW+09, HVG13, JS23, KJRG13, LZJ+20, OFA+15, PGS+13, PAS+09, PLT23, QFL+24, RBNN19, SBB19, SWW17, WGP04, YZZ+23]. FRAM [JRS17]. Frame [ESM+17, PEP05, SGT+13]. frame-based [SGT+13]. frames [NPP13]. Framework [BCD+22, BTD+18, BR19, BM15, BJT+23, BP19, BHL+20, CWZ23, C20, CXW+23, DJJ+19, DSS+14, DAASP21, GLP+11, HSS22, HFA+14, IVJ+23, JKH22, JLSP18, KCWH14, KPC+16, KSA+18, LKH16, LCY+22, LZZ+23, MWF+16, OBO+23, OMH+23, PRK15, PKL22, RMM17, SRB23, SL16, SFCW23, DFC+19, SSH14, SYC+17, SXXS+16a, SXXS+16b, SVS21, SC20, SCA+24, SRA12, TLSJ23, VKDG19, WZG+23, XHK16, XKK17, YDS+22, ZDST19, ARJ11, BWS14, CCR+14, DZR09, FZJ08, KKO+06, KGR12, LSK+08, LAHS06, P005, RDM06, SJRS+13a, SL08, STY+14, SGDP12, UAK+03, ZW10].

Frameworks [TP20]. Franca [LMBL21, LML+23]. Free [CGZ18, CLJ+19, CQB+15, HMLZ21, LOD18, LYT+18, LHYQ18, PGR16, WXY+18, WLHC18, CRJ10, DGC+20, HHB+05, LES14, OZ22, PRL+23, RP10, ZCK13, MMY+19, MSHS19, MFMA17].

Frequency [LOD18, PC14, PHDL18, SOL+16, WZY+23, YGW+12, SAMR06].

Frequency-Aware [SOL+16, SAMR06]. Frequency-Domain [WZY+23].

Friendly [ORA16, GDB22, ZZA+22]. Front [CAP15].

Fully [GCS24, XDL+18, LPC+07].

fully-associative [LPC+07]. Function [KBS17, LZJ+19, MGC+23, PLT23, WWTM19, SWWY13]. Function-Level [KBS17].

Functional [CPP+17, Fra12, KM09, AKB14, GD14].

functionality [PB14].

Functions [KLK24, MFMA17, ZWH+16]. Fusing [HXX+24, MS13a].

Fusion [APRC16, CWZ23, CZK+22, DDC+24, HCS18, IPL16, LLW+17, TXL+12].

fusion-based [TXL+12].

Future [AYS15, MBCM22, HKP08, SM13b].

Fuzz [LZJ+19].

Fuzzy [MMY+19, XHK16, LLLGR13]. fuzzy-logic-based [LLLG13].

gains [BZ13].

gait [VAR13]. Game [CZH+24, HLLL20, SR12b, WXY+16].

Game-Based [HLLL20].

Game-Theoretic [SR12b]. Game-Theoretic-Based [WXY+16]. Games [CPP23, PHDL18]. GAN [ZCG+22].

Gana [ZCK13]. Gaps [AKD21].

Garbage [CLL16, GNN21, KSY17, CKL04, CW14, CSK+02, DKAL05, SP10].

garbage-collection [CW14]. Gas [EHF24].

Gateway [GAD+24, XZK+19, SKH+12].

CCB+06, JM06, KTT13, LOG+14, NSL11, OP06, PZ12, PBP09b, RP11, RI04, SMG04, SB08, SVN04, TTAG14, VS08, DEG11. Hardware-accelerated [RRC22, ZAL22].

Hardware-aware [LOG+14].

Hardware-Aware [LKW+24].

Hardware-Based [UM13, NSL11].

Hardware-centric [SZG+23].

Hardware-Efficient [TKT15, BMP23].

Hardware-Friendly [ORA16, GDB22, ZZA+22].

Hardware-Software [LLG+20, JR20].

Hardware/software [WCJ07, ARJ08, SB08, DEG11].

Hardware/Software-Embedded [DEG11].

Hardware/software-embedded [HARS+14, VKB22, ZAL22].

Hardware/software-embedded [AAR14, BCS+23].

Hardware/software-embedded [LKB14].

Hardware-aware [WHN+17].

Hardware-compliant [NH14, LK14].

Harnessing [AAR+13b, CCA+17].

HARS [LOG+14].

Harvest [CLL+18].

Harvesting [ABD+19, ABC+17, BFW+19, HSR18, HZGW18, KY17, LQD18, MLL+17, PJJ+17, SKN17, GHZH14, KHZS07]. Hash [MKAA17, MKASJ18, THG24].

Hash-Based [MKAA17, THG24].

Hash-Counter-Hash [MKASJ18]. Health [BTA+19, HPBL12, HZYJ22, LMW+17, JLSK13, KS10].

Healthcare [AAR+17, CD10].

Heap [OMH+23, BS13a, CH08, BVGVEA10].

Heart [BJM13].

Hennessy [VR15].

Hephaestus [SVC+23].

HESSEL [MMY+19].

Heterogeneity [GP23, AMN+14].

Heterogeneous [AR14, BCS+23, COC22, CEC23, CDH+16, CAA+24, ETAV16, FMHS23, GQC+17, GPB+17, HGW+20, KS18, KGT+23, KSA+18, LLW+17, LLZ+17, MG15, MMY+19, OBO+23, PRB15, PqBM+15, PLM+15, QP15, RC17, RN14, RLP+21, RDSS21, SXXS+16b, THA+12, VFS+21, VKW+17, VSB+17, YHL23, ZDTM19, AP09, BCC+08, FC13, KBDV08, NBGS09, PGR+08, VHB+13, WSK14].

Heuristic [BJ23, FKS+19, KAKSP15, Li21, SEB12, VSSS13, YCNCC11].

Heuristic-guided [FKS+19].

Heuristics [MG15, OMA+13].

HiCH [AAR+17].

Hidden [GGJ12].

Hiding [XHSS10].

Hierarchical [AAR+17, CZH+24, DAHM16, GNR+10, ITO+24, MCSW12, SCA+24, TAMS18, ZEJ+23, AFL13, TBC+13].

Hierarchies [MDS+21].

Hierarchy [GKS+22, OMH+23, TBG+17].

Hierarchy-aware [OMH+23].

High [AÖÖ23, BRL16, CCP+19, DLKP16, FMHS23, FLF17, HHL+23b, HHL+23a, HW17, HZH+18, IYL+23, ITO+24, KCWH14, KPC+16, LG21, LWB13, LN19, LCH+08, LPO+17, MSR+17, NASM18, PCM+15, PKT23, PMDC17, PGR16, QFL+24, RPHA19, SRG+15, SZG+23, SPT+23, SP12, WLK+19, YDLC10a, YCK+18, ZDTM19, ZAL22, BCLN13, BAR13b, CAA+13, FO03, KKC+05, LLC+13, PGS+13, PSZ12b, THON12].

High-accuracy [ITO+24, PSZ12b].

High-assurance [RPHA19].

High-Density [YCK+18].

High-Level [BRL16, FLF17, KPC+16, LN19, PKT23, PMDC17, IYL+23, BAR13b, CAA+13, FO03, KKC+05].

High-Performance [DLKP16, HHL+23b, KCWH14, LPO+17, NASM18, PCM+15, PGR16, SRG+15, SPT+23, SP12, HHL+23a, LWB13, LCH+08, SZG+23, YDLC10a, ZAL22, BCLN13, PGS+13].

High-resolution [LG23].

High-Speed [HW17, MSR+17, LLC+13].

High-throughput [AOÖ23, THON12].

High-voltage [CCP+19].

Highly [CHK+14a, cBFR05, SPP+10, TTAG14, VHB+13, ZVN05].

Hijacking [FGL+19].

Hint [WQGR22].

Hint-Driven [WQGR22].

History [Shu19d].

HLS [AOÖ23].

HLS-based [AOÖ23].

HMAC [GWM16].

HMAC-SHA256 [GWM16].

HMT [SZG+23].

Hoc [KDN+07].

HOL [MHT13].

Holistic [NFL+22, OSA+18].

Home
[LCQ+13]. Homogeneous [NASM18]. Homomorphic [GCS24, MSR+17]. Honey [ZGH+19]. Hop [GDD20]. Horizontal [AAT+21, RB21]. Host [RG14].

Host-Compiled [RG14]. HotSpot [WKJ20]. HRT [CQB+15]. Human [AMJ21, BTA+19, DBX+22, HZW+23, HB23, HB24, LX22, Shu19c, WXY+18].

Humanoid [GPT+23]. Humans [QWY+18]. HW [ZDTM19]. HW/SW [ZDTM19]. Hybrid [AK21, Ahm13, BP14, BF17, CSW15, CMS17, DSSX+14, DB19, DAASP21, HCL+17, JRSR17, JMO14, KCWH14, KDR23, LP19, LWB18, LKG+17, MM16, MRA+17, QP15, RMD09, SFB23, SRB23, SB23, SLN+16, SZG+23, TSY+16, WZJ+18, WRW+21, WQGR22, WMLM12, YTL+20, YLW15, ADI06, HXZ+14, JKJ+10, LMST04, LO13, MLL08, RP11, RS07].

I/O [CWH+16, CCB+06, EAAS22, JAD19, LSL+23, MRY+10, SKPL10, SC05, WGN23]. I4.0 [EHF24]. iAware [ZLX+23]. IBBE [SXH+19]. ICE [SDBD18]. ICN [NHS20].

Industry
[Adk21, BCDD24, SXH+19, Shu18b].

Inequalities [FS24]. Inertial
[FGL+19, HCS18, HXH+24, WJ17]. Inexact
[BDB+17, LEPP+13, PL13]. Infer
[AGS+16, WRB15].

Instantiating
[STB+12]. Instantaneous
[LX12]. Instantiation
[MG05]. Instantiating
[STB+24]. Instantiation
[PLT23]. Instantly
[KZ+23]. Instruction
[AJ18, ARP12, AB15, BCLS17, Fra12,
ITO+24, KAKSP15, LTQ+24, QZXO14,
SWX17, WSHC14, AC08, BP05, GRCV03,
KVK+03, LSC14, LLPM07, LM13, LXL13,
MBFT09, RDM06, RMD09, RAK14, SD13,
YZ08]. Instruction-Cache
[AB15].

instruction-level [SD13]. instruction-set
[AC08, RDM06, RMD09]. Instructions
[DASS12, LPD+20, NYH+20, GG113, KG05,
SBX08]. Instrumenting
[MZG14].

Integrated
[EK12, FSC+16, GMN21, GDD20, LSC19,
dFMArN12, LL18, MSC116, PDL21,
SXSS+16b, XZK+19, BvB13, MHK+23].

Integrating [GIB+12, SPP+10].
Integration
[LWZ+16, MHT13, SWL+14, CCB+06,
Dea06, KASD07, NKP+12, SD13, WCJ07].

Integrity
[BHL+20, DBFH14, MCG22, ZZA+22].
Intel [CMP+07]. Intellectual
[BS22]. Intelligent
[MBCM22, MFG17, Shu18b].

Intelligent
[LHL+19, Pau14, RMK17, ZLZ+24, LKW02].
Intensive
[MLR+17, TDD+16]. Inter
[LZS20, PVSG22]. Inter-app
[LZS20]. Inter-Node
[PVSG22]. Interaction
[ZLX+23]. Interactive
[BC07, Bro21, LL15, KBCL13, KZH+06, LCQ+13, PCBW13].
Interactivity
[WT+22]. interconnect
[JP14]. Interconnection
[SXSS+16a]. Interconnection-Aware
[SXSS+16a].

Interconnects
[CFGM15, RPB+19, WMZY13]. Interface
[SH15, LCQ+13]. interfaces
[NNH+14, ZL08]. Interfacing
[SIC19]. Interference
[NS16, SRR+23, WZD+17, XSP22, BM17, RP10].

Interference-aware
[XSP22]. interference-free
[RP10]. Interleaved
[LCC+23]. Interleaved
[WSMF22]. Interleaving
[BB13, FSC+16].

 Intermediate
[KPK+19, MDWL23, RMBS20].
Intermediate-Centric
[MDWL23]. Intermittent
[ABA+20, ABTS24, CAN+23, EYG+23,
HLL+23, KML+22, KS22, MH19, YMKH23].

Intermittent-Powered
[HLL+23]. Intermittently
[JRSR17, RN18]. Intermittently-Powered
[JRSR17]. Internal
[WC14]. Internals
[CKN+20]. International
[DST19]. Internet
[BCHL19, BHX19, BGJ17, KLK24,
RRM16, SXH+19, Shu15a, SYC+17, ZSY19].

Internet-of-Things
[BGJ17]. Interpolation
[CLS16]. Interposer
[SPT+23]. Interpretable
[RPM21]. Interpretation
[RPL21]. Interpreter
[CMPP23]. interprocess
[TK07]. Interrupt
Interrupt-Driven [WCM+16, LP10].
Interrupt-Triggered [FND+16].
Interruptible [CZ23].
Interruption [LMK+18].
Intersection [LHL+19].
Interval [LZZ15, PLT23, LXK10].
Intrinsically [BFW+19, MFMA17].
Intrinsically [SRK+18].
Introducing [SFR+05].
Introduction
[BBM15, BCHL19, BDR24, BDK17, BCM15, BCHL19, BCEP12, BM13, CP13a, CDBB24, CKGN14, CC14, CBH22a, CBH22b, CP13b, DV13, DSD12, Edi13, FM12, GV21b, Goe14, GP07, HCK+08, HTLC10, Höib13, JB02, JB03, JLSK13, KS10, KL13, KM13, MS05, OMMK23, PCB12, RHG+14, SOG15, STXL22a, STXL22b, SCZ20a, SCZ20b, STW13, TFC24, Wol02, Sch07].

Interrupt
[STLX22a, STLX22b, SCZ20a, SCZ20b, STW13, TFC24, Wol02, Sch07].

Invariants
[BPL2, MS23, SC17].

Invariant-Based
[BP12, AARJ12].

Invariants
[AGS+16, AGG+17].

Invasive [FSDV19].

Investigation
[IBM10, KHHH14].

Invited
[DSXS15].

IOSR
[LSL+23].

IoT
[ABL+20, AAR+17, BZG19, BLSM19, CZ23, CDBB24, CBH22a, CBH22b, CCM17, GAS+17, GSN21, JRSR17, LJS20, LKZ+23, LZZ+19, MFG17, MPFG19, PP19, PJL+17, RSW1, SKS21, SJL18, Shn17b, TTB23, TP19, TNR17, WX17].

IoT-Fog-Cloud
[SKS21].

IoT-to-Edge-to-Cloud
[CDBB24].

IP
[CCB+06, RBNM19, SM13a, TJK+15, WCJ07].

IPs
[BRL16].

IPSec
[SKW+07].

Irons
[Shu16d].

ISA
[CYH+17].

Islands
[FZHT13].

Isolation
[AHMT17, RWL+18].

iSSD
[SFCW23].

Issue
[BBM15, BCHL19, BDR24, BD+23, CDBB24, CS16, CKGN14, CBH22a, CBH22b, CJL17, CGZ18, DST19, DSSX15, EE16, EH18, FX17, GV21b, Goe14, IT16, KL13, Le0, LZNL23, MCP17, OMMK23, RHG+14, STXL22a, STXL22b, SCZ20a, SCZ20b, SCKD23, TEC12, TFC24, VP16, WX17, WSHC14, ZQC16, BM13, DP14, GM03, Gup04, GP07, HCK+08, HTLC10, JC03, KS10, KBCL13, LB04, MS05, DWCM14, PBP09a, Sch07, SL04, ST05, Wol02, PBP09b].

Issues
[Shu15c, JB02, JB03].

iSupplemental
[TEC12].

Iterational
[XHSS10].

Iterative
[NHS20, SAHE04, BWS14, KFY+22, PS08a].

Itself
[Shu16b].

ITUbee
[FX+17].

IXP
[LCH+08].

Java
[ABC+07, BVGVEA10, CWZ+20, CSK+02, CH08, CRAJ10, GW08, HT06, HTLC10, JMO14, KW10, MS13a, PS10, SKR11, SPP+10, TKL+15].

Java-based
[GW08, JMO14].

Jetson
[JKH22].

Join
[SGW+16].

Joint
[HZG18, HZ15, LMS+22, LXL13, LYY+17, PKL22, WC16, XLY18].

JOM
[WC16].

JPEG
[THON12].

JSCD
[YC12].

Jump
[PP12].

JVM
[WKJ20].

Karatsuba
[MSR+17].

Keep
[YMKH23].

Kernel
[CSC23, LL17, WRB15, CDD+07].

Kernel-Level
[WRB15].

Key
[AAT+21, DL12, MMK+23a, PNRC17, Se18, SAKH20, PS08b].

Key-Length-Based
[PNRC17].

Key-value
[MKM+23a].

Keyword
[GV21a].

Kit
[JAB+22].

knapsack
[YNCC11].

IKN
[SM13a].

Knowledge
[HWC+20].

KNOWME
[TL+12].

Kryptonite
[SRR+23].

KV
[ZLSQ17].

Kyber
[GCSC24, RDCB24].

L
[EAAS22].

L24
[SM13b].

Lab
[BCHB18].

Lab-on-Chip
[BCHB18].

LaDy
[CSC23].

Lagrange
[LFY19].

LAMBDA
[KAS+20].

LanCeX
[XYLC23].

Lan
[KCBM21].

Language
[CMPP23, LFC17, SIR+17, MMD04].

Languages
[GV21b, SCZ20a, SCZ20b, WWN23, LP09a].

Large
[CJL17, JGX+18, LZZ+23, MRA+17].
PE23, HHB$^+$05, PS08b]. Large-Scale [CJL17, JGX$^+$18, LZZ$^+$23, PS08b]. LARK [DS11]. Last [KRS$^+$16, MPT$^+$22, TTA$^+$20, WZJ$^+$18]. Last-Level [KRS$^+$16, WZJ$^+$18, MPT$^+$22].

Launch [KJKM16, CLK13]. Law [AKI$^+$23].

Layer [BDG$^+$15, CCC$^+$20, CKB17, JCW$^+$16, Kwo16, SKKR11, CYYH13, CCY$^+$13, KST$^+$12, KXL10, LPC$^+$07, PKC$^+$08, WKC07, Wui10, ZP09, JKJ10].

Layers [AP20, PBC22, UGS$^+$21, WWT$^+$22, XDL$^+$18]. Lazy [KGT$^+$23]. LCTES [FX17]. LCTES$^+$05 [GP07].

LCTES$^+$11 [DV13].

Learning-Assisted [KSY17]. Learning-based [AZHC19, TP20].

Lebesgue [MHT13]. Ledgers [Sha16a].

LEON [PDL$^+$23]. Less [AKTM16, KLML$^+$22, BYD09, PLKH08]. Let [JSD23]. Level [BRL16, FLF17, KPC$^+$16, KBS17, KBH$^+$23, KRS$^+$16, LN19, LMK$^+$18, LYH$^+$15, LZZ$^+$20, MFMA17, MF12, NBM$^+$16, PKT23, PMDC17, SSA21, SDMK19, TP19, TWTH18, TTA$^+$20, WZJ$^+$18, WRRB15, ZRF$^+$12, ZYM16, ZYL$^+$17, AVR22, BAR13b, CCA$^+$13, FO03, IYL$^+$23, JBN$^+$13, KKC$^+$05, KVN$^+$09, MSCJ12, MPT$^+$22, MSL$^+$13, OP06, RDSS21, SGT$^+$13, SD08, SD13, VJD$^+$07, VDK$^+$08, YCLV$^+$02, ZEJ$^+$23, ZBG20].

LIN [SKH$^+$12]. Linear [BF17, GD19, JSZ$^+$19, LZZ$^+$23, KJRG13].

Lingua [LMBL21, LML$^+$23]. Link [DVC$^+$07, KXL10]. Link-time [DVC$^+$07].

Linked [PqBM$^+$15]. links [QRB10]. Linux [BMF15, CDD$^+$07, MZG14].

Literature [RH23]. Live [FND$^+$16].

LMP-based [WSK14]. Load [CW17, JBI17, KGT$^+$23, UM13, Mus10, ZP06].
Load-Balancing [CWJ17, Mus10].
Load-Store [JBI17]. load/stores [ZP06].
loader [WBF*06]. Local
[DNBL22, KAKSP15, LBS15, BS13a].
Locality
[CCSC23, GFC+10, KK05a, YG02, MMK22].
Locality-aware [CCSC23]. Localization
[BKS+23, GP23, MMD22, SHL*17, TP20,
YV23, ZH12a, BHET04, CTK+13, HHH+05,
LLL14, PS08a, PSZ12b, ZH12b, ZC04c].
Location [LLT+17, TM15, ZHM+14].
locations [PS08a]. Lock
[CRJ10, PCM*15, SA18]. Lock-free
[CRJ10]. Locked [SMR15]. Locking [AB15,
DLD+19, QZXO14, SWK19, ZW17, VLX07].
LOCUS [TKV+18]. Log
[LM24, SHQX19, LPC+07, TSG10].
Log-gradient [LM24]. Logging [CSW15,
CS17, DLH16, GSS+18, MWF+16].
Logic [AFS+13, KMP15, KDB19, LJMP23,
MK+17, RLMP23, VR15, WRW+21,
LLLR13, ETA16]. Logic-Based
[ETA16]. Logical
[DGC+20, KHB+23, ZWK23]. Logics
[BMMN23]. Long [DNBL22, GSS+18, JC12,
KSY17, WLTW24, DBC+14]. Long-range
[DNBL22]. Long-Tail [KSY17, WLTW24].
Long-Term [GSS+18, JC12, DBC+14].
Look [BCC+17, KKS+23, WZH13].
Look-Ahead [WZH13]. Look-up
[KKS+23]. Lookup [RR17]. Loop
[MS23, NZCS19, PQA+19, SFZX18,
TWT18, VGN18, WWHT21, DEG11,
GHI13, KVN+09, NNS13, TKG10, XHSS10].
Loop-Invariant [MS23]. loop-level
[KVN+09]. Loop-Oriented [SFZX18].
Loops [DGA+19, EK12, TD505, TDD11,
SVN04, ZA07]. Loosely [BBB16]. Lossless
[EAAS22, KCBM21, WCK+19]. Lossy
[EAAS22, WCK+19]. Low
[AHL+20, ABC+17, ABI+09, BHD15, BTA+19, CZ23,
CS22, EHF24, GAS+17, JRR16, JAB+22,
KYDC20, KSA+18, LMK+18, LZZ+19,
LPE+23, MSRM24, NBE18, PAF22,
QFL+24, RKM24, SWJ+13, SJC+03,
SBK+23, SCM20, SLK+22, SR19, TVK+18,
Y12, ZRZ+19, BBD+17, CCH13, DBH14,
Ge06, GJ13, GRCV03, GLWM14, HK04,
KYHY14, LWB13, NPP13, ÒNG08, PKIT23,
RAK14, SJRS+13a, TTB23, TTAG14,
TVK08, ZCK13, ZVN05, ZP09, MSR+12].
Low-Cost
[ABC+17, CS22, GAS+17, LZZ+19, EHF24,
CCH13, SJRS+13a, ZCK13, ZP09].
Low-end [CZ23]. Low-energy
[SJC+03, Ge06, LWB13]. Low-Latency
[LPE+23, ABI+09]. Low-Level [LMK+18].
Low-Power
[NBE18, TKV+18, YC12, PAF22, RKM24,
SCM20, SR19, GJ13, GLWM14, HK04,
KYHY14, NPP13, ÒNG08, RAK14, TVK08].
Low-Voltage [SWJ+13]. Lower [ZX08].
LPWAN [RIM21]. LRU [GLY14].
LSTM [AV20]. LTE [AAPN14, VKMP20].
LTE/5G [VKMP20]. LTL [BRR19]. Lustre
[BGG13, TCC05]. LWE [NVB+20].
M2M [Pau14, RRM16]. MAC [BTL+12,
C18TC07, GDA13, LCL+19, ZYW+10].
Machine
[APRC16, AHM19, CHS15, DHB+23,
EHF24, GTH+22, GBD22, GLS+23,
KKCS16, KCBM21, KBRD22, LAZ+16,
MEK+22, MFG17, NBH23, NYH+20,
OBA+17, PDL21, RLG20, SSA+24, Shu18b,
STB+24, ABC+07, CGV10].
machine-based [CGV10].
Machine-Learning-Resilient [NBH23].
Machine-to-Machine
[APRC16, KKCS16, LAZ+16]. Machines
[BPP23, CMP23, DQ14, KCH14,
ZPZG17, CH08]. macromodeling
[LB07, TRJ05]. made [PDL+23].
MaGNAS [OBO+23]. Magnetic
[CPP+17, CCSC23, HCS18, ISOD21,
LCC+19]. MAGNETO [ISOD21].
Main [AVR22, HCS+22, PXY+17, SJOL22,
WLWS15, WZJ+13, HXZ+13, PMPP14].
Maintaining [LLR14, KDN+07]. Majority [NASM18]. Majority-Based [NASM18].
Management [ABD+19, BMF15, CSW15, DAE16, DSX15, ESM+17, ESBK23, FBM16, HB16, HNY18, HZ+14, HHC+16a, IDO+22, KNY+17, KBS17, KJK18, KR18, dFmAdN12, LZL15, LL17, LCC+23, LHL+19, MLL+17, MMY+23, MBJ+23, NEP23, NRZ+24, OMMK23, OZ+22, PVSG22, PYJL15, Ptu14, RC17, RJM19, SPT+21, SSPP23, SKN17, SP19b, SBK22, LZZ+22, KNY22, AMCM06, ZC04b, Zhu10].
Manager [DAHM16, MDS+21, CH10]. Managers [REPL15]. Managing [CRCR13, DRL+10, MLR+17, BS13a]. manner [SB13a].
Manual [LL15]. Manufacturing [GM12, VWG+17]. Many [APF24, CCC+14, CLC17, JAD19, LKA+18, MKD15, RWL+18, RJM19, SDBD18, SX+16a, SX+16b, SXMX+18, TDD+16, TKY+18, TXMS17, TAMS18, VCM19, WKMP20, ACK+13, DPF14, LKB14, LOG+14, LLR14, YFPJ14].
Many-Accelerator [SX+16a, SX+16b, SXMX+18].
Many-Core [LKA+18, MDK15, RWL+18, RJM19, SDBD18, TKY+18, VCM19, CCC+14, CLC17, JAD19, WKMP20, ACK+13, DPF14, LKB14, LOG+14, LLR14, YFPJ14].
massive [Edi14, Mus10, ZXC13].
Massively [GLP+11, TWTH18]. Matching [CYH20, PMP17, LHCK04, TLLL09].
Maximisation [DCZB19]. Maximising [IO+22]. maximization [HCQ+14].
Mechanism [CAPL11, FFA+23, LCL+19, WLZ+23, WC16, YZZ+23, CWHK12, RAK14].
MEMOCODE [DST19]. Memories [CDX+19, KRHC20, KOL+22, PBM+15].
PRL+23, SP19b, SDMK19, WLWS15, WCH+23, BMP03, HXZ+13. **Memory**
[ADH+23, AVR22, BLSM19, BCS+06, BP19, BCS+23, CBH22a, CBH22b, CII17, DPNA16, DKAL05, EAAS22, FLF17, FSC+16, FLF+23, FMS15, GIB+12, GAG15, GAS+17, GCS24, HCS+22, HKP18, HKL+23, JGL21, JRSR17, JW+15, KPS23, KKK+11, KS13, KJKM16, KNY+17, KBS17, KRR20, LSL+23, LWZ+24, LYH+15, LWB18, LBS15, LOF20, MDS+21, MBKF15, MF12, NYH+20, NDB09, OMH+23, OZ22, PXY+17, PP19, PMM+17, PMDC17, PRM21, RC17, RRC22, RK+22, RSK17, SSK23, SWJ+13, SSD+19, SSPP23, SJOL22, SBK+23, SLK+22, SR19, Ssn20, TDD+16, TBG+17, TGBT17, VCM19, KV+17, WDM17, WZJ+18, WCB20, WWT+22, WLZ+23, WQGR22, WSMF22, WC16, WHL23, YYYK18, ZDZ14, ZQGZ22, ZZA+22, ACK+13, ABS02, BCLN13, BS13a, BCDH12, Bar13a, BAR13c, CH10, CDD+07, CKL04, CWKH12, CYKH13, CC13a, CSK+02, CH08, CVG+13, ELS08, GDN03, HFG13, HH13, HXZ+14. **memory**
[HL14, JB02, JB03, JKH+13, KYYL13, KGR12, LKW02, LO13, LXX10, LXL13, LPB06, MMD04, PLKH08, PK13, PMP14, RP03, SGT+13, SE10, SBX08, SJC+03, UDB06, UCK+09, WAD14, WC07K, XHS10, YDLC10a, YDLC10b, YEk17, ZP08, ZP06, BYD09. **Memory**
[BLSM19. **memory-based**
[CC13a, HZ+14]. **Memory-Constrained**
[JGL21, KPS23, LWB18, Bar13a]. **Memory-Efficient**
[SSD+19]. **Memory-Intensive**
[MCS16. mesh-connected [Bec09]. Message
[AGS+16, AGG+17, EVS+17, FGL+19, FFA+23, GW15, HWT13, HB23, ITO+24, KCBM21, SXH+19, WLT24, XYL23, YZZG23, CCB+06, KHHH14, LWB13, LO13]. Methodologies [IT16, ST05]. **Methodology**
[FSC+16, GDD17, JKH22, NYH+20, OBSO16, PSZ12a, SK19, TSW+17, TGV12, TAP23, WWG+18, DEG11, KST+12, LAN06, Shu14b, XWH06]. Methods
[DST19, HH1+16b, JR20, KCCW17, LEO18, Mos13, Pau14, TB23, VP16, AC08, SHME13, WEE+08]. Metric [GZ12, PDHC23]. metroII [DDG+13]. MHDeep [HZYJ22]. Micro
[JC12]. Microarchitect [JKK+17b]. Microarchitectural
[DJO12, MPT+22, SGZS21]. microarchitecture [NB04]. MicroBlaze
[CZ23, CI17, DBX+22, JRR16, LPO+17, MKS23, SWJ+13, YLDM19, Sch10]. Microfluidic
[BCHB18, CKB17, EZL+17, SIC19]. Microprocessor [KE15]. microprocessors
[RAK14]. Microsearch [TSLW10]. Microserver [MBB+15]. microthreaded
[CL13, GAD+24, MKM+23b, SBX08, Edi14, GNV05]. Minimal-Overlap [GAD+24]. Minimally
[AARJ12]. Minimising
Minimization [HZX15, SSK21, SIC19, PAP+12, ZX08].

Minimize [YCT16]. Minimizing [BBL09, GRRR24, LLZ+17, SPDKL+17, ZDZ14, ZQGZ22, ZW17, GNS04].

Minimum [abd+19, kak05].

minimum-energy [KAK05]. Mining [BMNN23, GZZ+16, KDB19, NCJF18, PMAB19, SC17]. MIPs [LC03].

Mixed [AKTM16, ABS+19, CYH+17, FHB+17, GE18, HFP17, HHC+16a, KGT+23, LCp+17, LH18, LJVD23, SSD+19, SLK+22, TSP15, TGTT17, ZQGZ22, ZG15, ZQGZ22, ZDL22, HGL14, LDRM12].

Mixed-Criticality [AKTM16, GE18, HHC+16a, LCP+17, LH18, TSP15, TGTT17, ZQGZ22, ZG15, ABS+19, FHB+17, KGT+23, ZQGZ22, HGL14, LDRM12].

Mixed-Precision [SSD+19, ZDL22].

MLC-based [CYKH13]. MLOps [MMA+23].

MMU [BYD09, ELS08, PLK08]. MMU-less [BYD09, PLK08].

Mobile [CWH+16, CHJ22, CZH+24, CSC23, EMMVR23, GQC+17, GP23, HTC+16, HLL20, Ido+22, JBDD20, JCS+17, KCJ+16, KJK17a, KJK18, KNL12, LDV12, Li21, LSL+23, LKH16, LMW+17, LNA+15, MV16, PX18, PHDL18, SBR+15, SJL22, Shu17c, TP20, WTSR13, WLH16, WQGR22, WZG+23, XDL+18, YTL+20, YDS+22, ZLX+23, BO13, CTK+13, CLK13, FZJ08, ISTE08, ISE10, KSK13, KST+12, LLL14, LCJ13, NNH+14, PK13, RC08, VAR13, WRJ10, WYP+10]. MobiSense [WYP+10].

Modal [BV15, SH15, WBS10].

Mode [ABS+19, DCZB19, JRR16, yCBR05, SR19, YLYT21, ZTRC03]. Mode-dependent [ABS+19]. Model [ARS16, ARDG16, AAM+17, AAS18, BLSM19, BRL16, CWZ+20, FKS+19, FSB+21, FGK+23, FMSS15, GLP+11, GG12, IAS23, IVJ+23, JFM23, KML+22, KH23, KFY+22, KDR23, KBRD22, LC17, LAZ+16, LSL20, MTW20, MV16, MMA+23, PDL21, PNRC17, SSD+19, Sch10, SWL+14, SOL+16, SP20, SSB24, TJ23, TBFR17, TBCB15, WRW+21, WZ12, CJMB05, DRL+10, KKH+12, OMA+13, RSB+09, SL08, WMY13, ZS05, BE10].

Model-Based [ARDG16, BRL16, KH23, LSL20, TBFR17, FKS+19, TJ23, KKH+12, OMA+13].

Model-Driven [CWZ+20, GLP+11, DRL+10, RSB+09, BE10].

Model-Predictive [TBCB15].

Modelling [DAAS21].

Models [ABH+18, BTD+18, BHM17, CD12, CD19, DST19, DVC21, HY+15, IT16, JBDD20, LCO18, LMS+22, LJZH17, MAO19, PRSV19, PMP17, SRB23, SBLM13, SGJ17, SL08, WMY13, ZS05, BE10].

Modern [BM16, DFC+19].

Modes [pXY+17].

Modular [IAS23, MRA+17, TGB+13].

Modularization [LPFL16].

Module [BCS16, ARJ08, PAS+09]. module-based [PAS+09]. modulo [SWY13]. Molen [PBV07].

Momentum [BF+19].

Monads [RPHA19].

Monitoring [BCDD24, BRR19, BFST19, Edi14, HHC+16b, MBKF15, SKS21, TLL+12, TBGO23, VFS+21, GJ13].

Mode [ABS+19, DCZB19, JRR16, yCBR05, SR19, YLYT21, ZTRC03]. Mode-dependent [ABS+19]. Model [ARS16, ARDG16, AAM+17, AAS18, BLSM19, BRL16, CWZ+20, FKS+19, FSB+21, FGK+23, FMSS15, GLP+11, GG12, IAS23, IVJ+23, JFM23, KML+22, KH23, KFY+22, KDR23, KBRD22, LC17, LAZ+16, LSL20, MTW20, MV16, MMA+23, PDL21, PNRC17, SSD+19, Sch10, SWL+14, SOL+16, SP20, SSB24, TJ23, TBFR17, TBCB15, WRW+21, WZ12, CJMB05, DRL+10, KKH+12, OMA+13, RSB+09, SL08, WMY13, ZS05, BE10].

Model-Based [ARDG16, BRL16, KH23, LSL20, TBFR17, FKS+19, TJ23, KKH+12, OMA+13].

Model-Driven [CWZ+20, GLP+11, DRL+10, RSB+09, BE10].

Model-Predictive [TBCB15].

Modelling [DAAS21].

Models [ABH+18, BTD+18, BHM17, CD12, CD19, DST19, DVC21, HY+15, IT16, JBDD20, LCO18, LMS+22, LJZH17, MAO19, PRSV19, PMP17, SRB23, SBLM13, SGJ17, SGW+16, TB23, YSC22, CC13a, DP08, HDR+06, HVG13, LLC+10, TLL+12, TBCGO23, VFS+21, GJ13].
NEP23, PXY+17, TBDdD11, WSHC14, HQB06, ISG03, LCS03, MMSN14, NRL13, NNI+14, PL10]. **multiple-FPGA** [MMSN14]. **Multiple-Issue** [WSHC14]. **multiplicative** [NWA12]. **Multiplier** [NWA12]. **Multipliers** [AZS+23, LPP+21, YF19, RMH04a]. **Multiprocessor** [BGO17, CDH+16, DBM+15, LX16, MG15, WRKG16, ZQG22, CHK14b, DZR09, ESAS14, HQB06, Hiib13, ISTE08, JM06, KKO+06, LWB13, LES14, LQN+13, OP06, PS10, SE10, TSBY13, VSSS13]. **Multiprocessors** [AR14, DSB17, PSZ12a, PRK15, PYJL15, RN14, BGD14, Bar13a, BD14, HFG13, HXZ+13]. **Multirate** [TFL16]. **multisequence** [ZH12b]. **Multitask** [CMMD24, CSST08, DP08, MSB08]. **multitasked** [ZP09]. **Multitasking** [NB04, PCGD21, RP10, TM07, WAD14]. **Multithreaded** [HY+15, KE15, SPDLK+17, ZP11, LCH+08, LP09b]. **Multithreading** [LRZ16, PJS15, DFC+19]. **Multitunit** [LX12]. **Multiversion** [KCC+16]. **muscle** [WGPH13]. **Must** [Shu18c]. **Mutation** [FKS+19]. **Mutation-driven** [FKS+19]. **MxU** [PP19]. **My** [BVM19]. **Myriad2** [LLP+21].

n [GKS+22]. **NAND** [BG+15, GMCC18, JN15, MSHS19, MAW22, PCK+08, PK13, WC16, WZD+17]. **NAND-Flash** [MSSH19]. **Native** [WWN23]. **NAVIDRO** [SPGB24]. **Near** [BCS16, FPGE22, ITO+24, LFHS18, LWZ+24, SWT+14, SFWC23]. **Near-Data** [SFCW23]. **Near-field** [ITO+24].

Near-Optimal [LFHS18]. **Near-Static** [BCS16]. **Necessary** [ARS16]. **Need** [Shu18c, STH17, TT2B3]. **Negative** [CLS16]. **Nested** [DKA+19, WYL+19, KMB07, NNS13, TKD07]. **nested-loop** [NNS13, TKD07]. **Net** [DJZ13, LZJ17, YKD+24, MFPFG19, RKMD24, YLDM19]. **Net-V2** [RKMD24]. **NetBench** [MMSN06]. **Nets** [ACR17, BSM+21, BB13, BB15, CL13, DLRTB+19, JF15, NDZ13, WZH13, ZW13, VAHC+06]. **Network** [ASS+23, ANRR+19, ABF+21, BS22, CPC17, CWX+23, CLW+20, DLPK16, ESBK23, FS24, HRMD23, HSD22, HFL+19, ICZ+23, ICW+20, JAY+22, KJK18, KFY+22, LLG+20, LMS+22, MST+16, NHS20, PGR16, SPT+23, TLL+12, VKDG19, WCK+19, WDM+23, WRE15, WZG+23, XCDW23, YF19, ZFR+12, ZZ+15, ZSH+24, ZBG20, ZLZ+24, ZJZL20, ZDL22, ZP11, BP14, BCP10, CP13a, CMS08, GMOB13, HVG13, KJRG13, KYL13, LLG08, LLH08, LLK04, LCH+08, LLGR13, LS09, NNS14, PCMD12, TKD07, WYP+10, WYJ+14, WW09, YCLV+02, YZA13, ZBW+10, MMSN06, SSS11]. **network-flow** [WYJ+14]. **Network-Level** [ZRF+12, ZBG20]. **Network-on-Chip** [ABF+21, BS22, DLPK16, HMRD23, LLG+20, MST+16, VKDG19, BP14, GMOB13, YZA13, SSS11]. **Network-on-Chip-Based** [CPC17]. **Network-on-Interposer** [SPT+23]. **Networked** [DLH16, WLC+18, BWS14, BFQ10, FC13, GUP04, KKH+12, NKP+12]. **Networking** [LYC+18, WGN23, ZSEP21, DGC+20]. **Networks** [AP20, AABG22, ANARR+19, ALV+22, ARZ+23, AZHC19, ABC+17, BKM12, BSM+21, BTL+12, CWZ23, DBX22, DSI1, FPGR22, FB16, FC16, GAD+24, GVS+20, GM12, GOC+22, GDD20, GMV17, GGJ12, HSR18, HZYJ22, HSK18, HY22, HZGW18, IB23, JR20, JBDD20, JG+18, JSD23, LMB+22, LFHS18, LAZ+16, LVJ23, LPE+23, MYL+22, MS21, MFPFG19, MLAD23, MAGR15, OHCK24, PBC22,
Networks-of-Systems [ZBG20].

Networks-on-Chip

Next

[ASWZ24, CMP23, KOL+22, ISTE08, ISE10].

Next-generation

[CMP23, KOL+22, ISE10].

NIST

[SSA21, ZSH+19].

no

[KHHH14, BVGVEA10].

No-Heap

[BVGVEA10].

NoC

[BLG+15, BGD14, CCY+13, CLLC17, DNNP14, DJ23, DJJ+19, GLT+13, LLR14, MSCS16, MKD15, MASG15, NASM18, OMA+13, PB14, PCGD21, TKHZ22, TMXS17, TAMS18, ZCK13].

NoC-based

[CLLC17, MKD15, TAMS18, BGD14, LRL14, OMA+13, PCGD21].

NoC-Based0

[MASG15].

NoCs [MAKO19].

Node

[Mci13, PVSG22, SKN17, ZH12a, ZH12b].

Nodes [GSS+18, SLS+19, ZO16, SGDP12].

noise [SBLM13].

Noisy [ICZ+23].

NOMA [CZH+24].

NOMA-Enabled [CZH+24].

Non [BHMB17, BMP23, FSVG19, HCS+22, HKL+23, KFY+22, LZJ+20, TTB23, WLWS15, XSP22, YHL23, ZZA+22, HXZ+13].

Non-coherent [YHL23].

Non-ideal [BMP23].

Non-ideality [HKL+23].

Non-interference [BHMB17].

Non-invasive [FSVG19].

Non-iterative [KFY+22].

Non-neural [TTB23].

Non-preemptive [XSP22].

Non-Volatile [HCS+22, ZZA+22, LZJ+20, WLWS15, HXZ+13].

Nonblocking [SP10].

noncontact [CNC13].

Nonconverging [BTD+18].

Noninclusive [CR14].

nonintrusive [NSL11].

Nonlinear [CMS17, LLL14].

nonparametric [GKW08].

nonrenewable [MKD13].

Nonutilization [LA11].

Nonvolatile [LKZ+23, MLL+17, PXY+17, RK+22, SLS+19, HXZ+14].

NOR [PRM21, SWJ+13].

normal [RMH04a].

Novel

[AAM+17, CLS16, EVS+17, HB23, HB24, MCS+15, SP20, DZRP09, NRP13, ZCK13].

NQA [WYL+19].

NUCA [FS14].

NUCA-based [FS14].

Nucleus [VSD+17].

Number

[Ano13, Ano14, LCLW17, MFG16, MASG15, SSA21, SISS24, SRK+18, Edi14].

numbers [ZXCH13].

Numerical

[AGG+17, ADJM19].

NVM

[NBH23, SBDK22, WCK+19].

NVM-Based

[SBDK22, NBH23, WCK+19].

NVM-Ensemble

[MAKO19].

NWSLite [GKW08].

O [CWH+16, CCB+06, EAS22, JAD19, LSL+23, MRY+10, SKPL10, SC05, WGN23].

OA [MM16].

Object

[GMCC18, SRSM21, KTT13, MMSN14, NPP13].

Object-Based

[GMCC18].

Object-oriented [SRSM21].

Objective

[BGD+23, DJJ+19, PWL+19].
Objects [BVGVEA10]. Oblivious [ZSH+24]. ObNoCs [HMR23].

Observations [KH23]. Ocarina [GGK08].

On-Accelerator [VKW+17]. On-Board [CPP+17]. on-body [QRB10]. On-Chip [FLF17, PVSG22, PSZ12a, SGZS21, CZHK23, KGR12, YFPJ14, ZRF+12, CP13a, LJ14, PL10, SJRS+13b, WMYZ13].

Onboard [FG+23, BC110]. One [FLF+23, WZH13]. One-shot [FLF+23].

One-Step [WZH13]. Online [ASD+24, Ano13, Ano14, EVS+17, ISG03, KR14, REPI15, SFZB23, SE23, SSK+22, VWG+17, WX+Y+17, YDLC10b, MSL13, TTAG14, YDL+10a].

Open-Channel [ZLSQ17]. open-source [CCA+13]. OpenCL [SPB+17, SMX+18].

OpenCL-based [SXMX+18]. operand [LCS03]. Operating [RKC+22, WDJ+18, AMCM06, BMM13, FRRJ07, TRJ05, WP11, YDL10a].

Operation [BHD15, WC16, FC13].

Operational [SGJ17]. Operations [GSC19, VF17, BAR13b, SWWY13].

Opportunities [FSG23, Shu17b]. OPS [ZCS+05]. Optical [FC16, LLG+20, TGH22, VVGK23, KYHY14]. Optimal [ABB+19, AZS+23, BBD23, GTH+22, GAG15, GPB+17, KK05b, LHOS18, LZS+18, MBP14, ZWK23, ABS02, CH14b, GJ13, GNS04, PL10, RV07, SWT+14, SC05, TAP23, YK03]. optimisation [YCK+18].

Optimization [AHM19, CWH+16, CCP+19, CYH20, CAA+24, DHJ+17, DJJ+19, DVC21, DASS12, DHL17, FB16, GIB+12, HZGW18, IPEP12, JBD20, JKH22, LKA+18, LYH+15, LX16, LSL20, MWS15, MFG17, PYJL15, PWL+19, PLM+15, PDMC17, SR12a, SEB12, SP12, SBDK22, SR19, TSP15, TJ23, WH17, YDS+22, ZYL+17, ZPG17, ZZZ+12, BWS14, BMP03, CHK14b, CWX+23, DVC+07, DP08, HZX+14, IBMK10, JMO14, KKC+05, LXL13, LLLGR13, RP03, SAHE04, SKK+14, YGHS08].

Optimizations [BSA17, BDG+15, DJO12, HY22, HY+15, KKK+11, MS23].

Optimize [FLF17]. Optimized [ARH+18, AYS15, AV20, BMA+16, BGGT23, MB15, ZDL22, JHPR13, ZXCH13].

Optimus [CWZ23]. Optode [FSVG19].

Orchestrating [BCDD24, SKS+22, SCA+24]. Order [ACR17, BHM17, JLS18, JBI17, KH23, LLC+13]. Organized [TMXX17]. Oriented [BMMG12, SFZX18, CWHK12, DRL+10, KK05a, LLN19, SRS22, SGP12].

Outsourcing [LZZ+23]. Over-the-Air [WLH+18]. Overbooking [DWR+14].

PANDORA [SC20]. Papers [TEC12, SN10]. Parallel [CS16, CD19, DJSX15, GLP+11, Goe14, LKA+18, LZJ+17, LYY+17, LFC17, NFL+22, PRB15, PJWY12, POG+13, RDP17, SWL+14, SM13a, TWTH18, WMLA16, GNR+10, MMS14, THON12, WV09].

Partitioning [AbS+19, Bar13a, CWH+23, CI17, GRR+24, GTH+22, HSM+16, KAKS+15, SM+15, SPB+17, VGN18, WHN+17, XSP22, KP13, LXL+13, RP10, SVN04, TJ10, XHSS10].

PCMOS [SBLM13]. PDA [GW08]. PDE [AK+23]. Pedestrian [TM15].

Performance [AK21, AB15, AVR+22, BFW+19, BRA+16, BDG+15, BONA22, CZ23, DCZB19, DJO12,
GMCC18, HHL+23b, IPEP12, JLS18, KJL20, KCWH14, LKA+18, LLP+21, LCC+19, LYH+15, LPO+17, MAKO19, MRL+17, NAS18, NZCS19, NBM+16, OBSO16, OBA+17, PCM+15, PGR16, PP12, PJT+23, RG14, RKK15, SRG+15, SPT+23, SP12, WZM17, WT15, WZD+17, YJD+17, ZRF+12, ZLS17, ZSJ12, BCLN13, BP05, BZ13, CMP+07, HLD+09, HNL+23a, HHB+12, JHK+06, KS13, KD08, LWB13, LCH+08, MSL13, PGS+13, SE10, SZZ+23, SM13b, YDL10a, ZAL22.

Performance-Maximisation [DCZ19].
Performance-Optimised [BRA+16].
Performance-Power-Programmability [LLP+21]. Performance/Error [MLR+17].
Performance/Power [RKK15].

Periodic [ARS16, KB23, LZL15, PSD21, Periodic [FS14].

performances [BRA16].

Performances [KJK15].

Performance-Optimisation [BRA16].
Performance-Maximisation [BRA16].

Periodic [MLR17].

Periodic [LLP13].
Periodic [SŽ13].

Periodically [WML12].

Permutations [ARB18].

Permuta [RLG20].

Perpetually [MBC15].

Perpetual [CUL15].

Persistency [HT16].

Persistency [SŽ13].

Persistency [CUL15].

Personalised [HSD22, SKK+14, YS23].

Personality [DS16, KJK+17b, SG24, SUS+17, BJ13, WBF+06]. pervasive [CD10, TSWL10].

Petri [ACR17, BSM+21, BB13, BB15, CL13, DLRTB+19, DJZ13, FJK15, LHZ17, NDZ13, WZH13, YKD+24, ZW13].

Phase [GW15, LH18, MSD17, SDMK19, ZLLC15].

Phase-Only [GW15].

Phased [GW15]. Thad [TB23].

PHAT [YV23].

Photonic [AKI+23, PGR16, XZCW23, BP14].

Photonic [SA2+23].

Photovoltaic [BGS16].

Physical [AFS+13, ALZR19, BHAC15, BKM12, CKGN14, DWR14, DHJ+17, DHF18, GCJD20, GSN21, HZ15, IPL16, KCC+16, LAB+23, LWZ+16, LLN+14, MBKF15, MKS+17, NRL13, NLSV+19, PRS+17, SRL+17, Shu19d, TGV12, TLL+12, TCD+19, UGS+21, WDN+16, WZPB19, XKK17, YLM16, ZJ+17, BWS14, BZ13, DDG+13, GMB13, HG13, Hüb13, LDRM12, SPK+12, SM20, TXL+12, WLT12, YRS12, ZS13].

Physically [MGC+23].

Physics [PL13, QFL+24, Rru22]. Physics-Driven [Rru22].

Piecewise-Smooth [SG17].

Piecewise-Count [SIC19].

Piecewise-Count [SIC19].
policies [KR14, KBDV08, LA11, RG13]. policing [DW10]. Policy
[HP13, PYJL15, Mus10]. Pollution
[DJ23, SHL+17]. Poly [PZ12]. Poly-DWT
[PZ12]. PolyARBerNN [FS24].
Polyhedral [LP19, NNS13]. polymorphic
[AVF+09, PZ12]. Polynomial
[FS24, MWK+24, TJ10]. Poor [ZLZ+24].
Portability [CHS15]. Portable
[MGLP19, YC12, ABI+09, ELS08]. position
[QRB10]. Positioning [HXH+24]. Post
[AKB14, AKI+23, AAT+21, BDR24,
KSFS24, KKK+11, MKAA17, MWK+24,
NVB+20, RCD24]. Post-Moore [AKI+23],
Post-Pass [KKK+11]. Post-Quantum
[AAT+21, BDR24, KSFS24, MKAA17,
MWK+24, NVB+20, RCD24].
Post-silicon [AKB14]. postfabrication
[CIC+08, CIC+09]. postural [QRB10].
Power
[ABD+19, ABF+21, ARP12, ACK+13,
AHCI19, AVR22, BFW+19, BDB+17,
Bec09, BGO17, FHK21, HRT+22, HZGW18,
IYL+23, JRR16, JC12, JEP16, JAB+22,
KHZS07, LKA+18, LLP+21, LLL+21,
LZL15, LYH+15, LKH16, LBP07, MLL+17,
MV16, MSR+12, MCM+17, NBE18,
OBSo16, OMA+13, PYJL15, Pau14, RKK15,
RSW21, SLB+15, SRS03, SOL+16, SSSP23,
SNK17, SBK+23, SLL+22, SR19, SLS+19,
TKV+18, WWH23, XLY18, YGW+12, YC12,
ZRF+12, ZRZ+19, ZP07, AMCM06, BO13,
CMP+07, DBH14, Geb04, GJ13, GRV03,
GLWM14, IK04, ISG03, JCO3, JHK+06,
KR14, KXL10, KYHY14, MSL+03,
MALM04, MSL13, Mus03, NPP13, ÖNG08,
PFA22, PKit23, QRB10, RKM24, RAK14,
SLW07, SJYS13b, SCM20, TTB23, TVK08,
VJD+07, VDK+08, ZC04b, ZTROC03].
power-attacks [Geb04]. Power-Aware
[JEPI6, ACK+13, AHCI19, OMA+13, JCO3,
MSS+03, MALM04]. Power-Efficient
[HRT+22, SLB+15, ABF+21, ZP07].
Power-mode-aware [SR19].

Power-neutral [BFW+19].
Power-Performance [ZRF+12].
Power-saving [ISG03]. power-sensitive
[BO13]. Power-Temperature [BGO17].
Powered [HLL+23, JRSR17, TSW+17,
XLY18, ANB+20, MBB+15, RV03, YTL+20].
Powerful [SGZS21]. Practical
[BCLS17, BHL+20, HPO+15, LC17,
PWL+19, RMS12]. Practice
[FSB+21, BSKB+09, Cul13]. Practitioners
[Akb11]. PRAM [LO13, MPMP14]. Pre
[CIC+09]. Pre- [CIC+09]. Preaveraging
[GM16]. Precedence [SE17, MBFSV07].
Precise [MGB+21, NS16, ZLL+18].
Prediction [SSD+19, SE07, ZDL22].
Precomputation [HHC18]. Predicate
[AD106]. Predictability
[TSBY13, GLY14]. Predictable [BCS+23,
FSB+21, GHP18, KR18, KWK13, PP19,
PW13, SSK23, SRG+15, TGB+17, VKMP20,
WWG+18, AEF+14, WAD14]. Predicting
[DJ102, EHF24, JC12]. Prediction
[BC16, NS17, NEP23, QXZ014, SKS21,
TKH22, GKW08, HE12].
Prediction-Directed [QXZ014].
Predictive [RN18, SSD+19, TBCB15].
PredictNcool [SP19]. Predictor
[SP19b, WGPH13, ZA07]. Preemption
[CR14, DBM+15, GWZ16, TB23, ZGZ15,
ZLL+19, ZP09]. preemptions [RM10].
Preemptive
[DSB17, TM07, WAD14, XSP22].
Prefabrication [CIC+08]. Preface [AL05].
PReFeR [MG+23]. prefetching
[YZ08, ZP07]. Preorders [BSV17].
Preparation [BCHB18]. Presence
[TBDdD11, LHX+14, VS08]. PRESENT
[WH17]. Preservation [HSR18].
Preserving
[ACR17, KLK+19, LLT+17, CSST08].
Pretrained [JBDD20]. Prevention [ZW13].
pricing [WSK14]. Primary [Shu18e].
Primitive [MCS+15]. Primitives
[BSJ15, LBP07]. Principled [PHG+17].
Prioritizing [SPGT19], Priority
[DBM+15, DHL17, GE18, LH18, MBB14, MAKO19, SD17, WHN+17, DF14, LA11, MEP08, QH07, YK03, ZZZ+12]. Privacy
[KLK+19, KCCW17, LLT+17]. Proactive
[SWL+23]. PROARITIS [CQV+13].

Probabilistic [AFS+13, CLL21, COC22, GUC+23, HQB07, HCL+17, KM13, LP19, LEPP13, MHT13, SWJ+13, SCG15, SWS23, TBE16, WHN+17]. Probabilistically
[CQV+13]. Probability [MKM+23b].

Problem [SEB12, WEE+08, Ahm13]. Problems [KOM+23, TJ10]. procedure
[KMB07, KASD07]. Process
[BGRV15, GM12, MZG14, MAG14, MASG15, WDM17, NNS13, TKD07]. Process-Variation
[LZJ17, PBP09a, PBP09b]. Processing
[AÖÖ23, ASD+24, BT22, BBD+17, DVC21, HRH+22, HKL+23, LVSVRFCCG23, MMK+23a, MGLP19, MKE18, SFCW23, SBDK22, WWW17, VKMP20, WZY+23, XZK+19, AMN+14, BCG+17, BC10, DSW+09, GH13, J13, HVG13, POG+13, SCF12, VGG+13, ZHI2b, ZLF13, MSR+12].

Processor
[AKI+23, BVM19, GOC+22, KRR20, LWS+23, MLL+17, MBR15, MSD17, MMD04, PHG+17, SK13, SOL+16, SK19, SCS16, TWTH18, TKL+15, WHW17, ZZ1+22, CAA+13, GLWM14, HL14, KGR12, KT14, LK10, LHCK04, LCH+08, LV09, MG05, PPM+13, POG+13, ZCO4a, LS12]. processor-based [KGR12, LHCK04].
Processor-memory [MMD04].
Processor-transparent [ZZA+22]. processor/accelerator [CAA+13].

Processors [AJ18, GIB+12, HLL12, HTC+16, JLS18, KKS+23, PDL+23, PCGD21, PJT+23, RC17, SJLK18, SSA21, SCM20, SWX17, TTB23, TBBd11, WZ12, YKKD23, YC16, ZP11, BS13a, BO13, BM13, CIC+08, CIC+09, CC13a, DPP14, Geb04, GGI13, HZX+14, JHPR13, KO08, KK05b, LLP07, LS13, LLL08, LLTL09, Mus10, ÖNG08, PBV07, PO05, RP11, TLLL09, UAK+03, WW09, YW13, ZMB03, ZP06, ZP07, LKB14, MMS06]. producer
[RV07].

Product [MKS23]. Profile
[OMH+23, WKJ20, WLI16, BAR13c]. Profile-guided [OMH+23]. Profiling
[BP19, FLF17, MGB+21, MSR24, MSL13, ZLL+18, LLLGR13, NSL11, STY+14].

Program
[AAS18, BVM19, FHK21, KPK+19, OSA+18, RLP+21, SRR+23, WZD+17, AFG08, MF13]. Programmability
[LLP+21, THA+12]. Programmable
[GOC+22, IWS+23]. Programmatic
[Bro21]. Programming
[BHX19, WCK+19, WNN23, ABI+09, BWS14, BvB13, BM13, Gar05, LP09b, LAHS06, POG+13, SGD12]. Programs
[AGG+17, CJ20, EYG+23, GH15, KH18, LL15, LLL+17, LML20, MKR13, SPDLK+17, TWTH18, WMRB17, WCM+16, AFG08, BS14, CSST08, CC13b, GNP06, KS13, NNS13, TKD07]. Progress
[BHAC15, HLL+23]. Promising
[KOM+23].

Proof [DAASP21, MS13b]. Proof-Based
[MS13b]. Propagate [GWM16].
Propagation [HLLL2, RS07]. propagation-based [RS07]. Properties
[BST19, BB012, GZ12, CMA05].

Property [BS22, KM09]. Proportional
[FPGS22]. Protecting
[BS22, HMR23, KJK+17b, LMW+17].

Protection
[JGCS24, RLL+23, YC12, BCS+06].

Protocol [AZHC19, CCM17, CBS19, GDA13, KY12, LZZ1+19, MGC+23, ZSY19, CHTC07, KASD07, PS04, YFP14].

Protocols [AAT+21, EZL+17], prototype
[GGMK08]. Prototyping
[CS16, DSXS+14, Goe14, KPC+16, SMM+18]. Provably
[AR14]. Providing
[DLN13, KS18, LHX+14]. provisioning
[LDRM12]. Proximity [LNA+15]. prune [DNP14]. Pruned [RLG20].
Pruned-Permuted-Packed [RLG20].
Pruning [KFY+22, PKL22, SC05].

Quadtrees [WCH+23]. Quality [BZG19, CL+18, CYH20, CRCR13, DDC+14, LKH16, MST+16, PDH+23, RDSS21, WK12]. Quality-level [RDSS21].
Quality-of-Service [MST+16].
Quality-Retaining [LKH16].
Quality/Latency-Aware [BZG19].
Quantifying [CBZ19]. Quantitative [SD08, SR12].
Quantization [GG24, IV+23, LJ+23, PKL22].
Quantization-aware [IV+23].
Quantization-aware [IV+23].
Quantized [DBX+22, PKL22, RR17, LM14].
Quantum [ASW24, AAT+21, BDR24, KFS+24, MKAA+17, SWK19, MKW+24, NVB+20, RCDB24]. Quantum-Safe [ASW24].
QUAOREM [IDO+22]. quasi [FZHT13].
quasi-static [FZHT13]. Quasistatic [PLH08]. Query [BMMV21, MKM+23a, WTSR13].
Query-based [BMMV21]. Queue [JB17].
Queues [GHR15]. queuing [RS04].
QUIDAM [IV+23].
Race [YHL23]. Racetrack [KRHC20, KOL+22]. radar [BCG+07].
Rapid [DSX+14, HSR18, KPC+16, LSC14, LP10, ZP09].
RapidIO [BCG+07, BCG10].
Rapidly [STB+24]. RapidRadio [SRA12].
Rare [HBR18]. Rasterization [OBA+17].
Rate [AFM+17, ESM+17, SLS+19, ZPZG17, BJ13, GP06, SWT+14].
Rates [WMS+22]. ratio [MPP08]. ray [ZXCH13].
rays [ZXCH13]. RCML [RHC+12]. RDF [FGK+23]. Re [LLW+17, Sh+20, VWG+17].
Re-evaluating [Sh+20]. Re-Fusion [LLW+17].
Reach [KDR23]. Reachability [BF17, BB13, FKM18, HFL+19, JBCS16, MG15, AD10]. Reacheal [DB19, GD19].
ReachNN [HFL+19]. Reaction [GUC+23].
Reactive [JZL+15, Mos13, BCC+08, CJM05, GP06].
Read [HC+22, LLZ+22, MKM22, YJD+17, YCK+18, YW+23].
Read-Out [YCK+18].
Read-Related [YW+23]. Reads [PM19].
READY [DFC+19]. Real [ARS16, AL+19, AYS15, BMAB16, BZG19, BFST19, BE17, BAG+20, BGS+18, CDB24, CQV+13, CL04, CKGN14, CWZ+20, CS+22, CH22, CLS16, CQB+15, CAA+24, DLRTB+19, DHL7, DJZ13, ESBK23, FS+21, FM16, GAD+24, GG24, GAG15, GZ+16, GE18, HQE20, HG+20, HSMS16, HH23, HFA+14, HH+16b, IB23, JSZ+19, JAD19, JG+18, JBCS16, KSS16, KR18, KH23, KB17, LG21, LN19, dFMA+12, LZL15, LX16, LOF20, MM16,
real-time [CMV10, CHK14b, CRJ10, CRM14, CHTC07, CCAP12, CRAJ10, DF14, DSW, DJZ13, FBM16, GAD, SMR15, SE10, SP19a, SP20, SLCS16, SCS16, SLE+17, SCA+24, SGW+16, SD17, TSP15, TKT15, UBF+16, WDH+18, WMGR12, WHN+17, WGN23, XSP22, XQQ+24, ZDZ14, ZWK23, ZPZG17, ZJC+17, ZSJ12, AMCM06, AF14, AFL13, ABC+07, ABI+09, AFG08, BVGVEA10, BBL09].

real [CMV10, CHK14b, CRJ10, CRM14, CHTC07, CCAP12, CRAJ10, DF14, DSW, DJZ13, FBM16, GAD, SMR15, SE10, SP19a, SP20, SLCS16, SCS16, SLE+17, SCA+24, SGW+16, SD17, TSP15, TKT15, UBF+16, WDH+18, WMGR12, WHN+17, WGN23, XSP22, XQQ+24, ZDZ14, ZWK23, ZPZG17, ZJC+17, ZSJ12, AMCM06, AF14, AFL13, ABC+07, ABI+09, AFG08, BVGVEA10, BBL09].
[LMW+17]. Recoverable [WCB20].
Recovering [CRAJ10]. Recovery [BBD+17, EZL+17, HPS13, HB24, LCD18, LJLT17, SSK21, TMXS17, ZZA+22, FO03].
Rectifying [CSC23]. Recurrent [ARZ+23].
Recursive [SCM20]. REDEFINE.
[AVF+09]. Redirection [MST+16]. Reduce [WLTV24, CRM14, LOXL13, Mus03, YPFIJ14]. Reduced [RRC22]. Reducing [ASJ21, BB13, CW14, CKIR06, HWT23, JHK+06, LLC+22, MV16, UCK+09, ZKKC05, ZTD+06, ZA07, ZLX+23, CSK+02].
Reduction [GDC19, LCLW17, PLY+23, SLN+16, TBB+d11, WRW+21, WHL23, YCK+18, ZZX+15, CDD+07, HXZ+13, LS13, PLKH08, ZXS03]. Redundancy [BB13, TTAG14, YZA13]. Redundant [AJ18, LPE+23, NWA12, SSA21, MB10].
Redundant-Digit [AJ18]. references [HT06]. Refinement [DJZ13, DAASP21, KB17, LP19, MS13b, HDR+06, RS07].
regions [LA11]. Register [AP09, FND+16, FLF+23, LOXL13, SWX17, TBB+d11, YC16, CKIR06, HABT11, LS13].
Register-based [FLF+23].
Register-to-Register [FND+16].
Registers [NGL17, LOXL13]. Registration [SVC+23]. RegKey [FLF+23]. Regression [ASD+24, MSRM24, RLP+21, BMS13].
Regression-Focused [MSRM24]. Regular [CWH+23, NCJF18, Shu15c, CMA05, MRT13]. Regularity [LC17].
Regularity-based [LC17]. Regulation [SSPP23, YPFJ14]. Reimagining [Mit21].
Related [CR14, MGC+23, Shu15c, YYWLW23].
relation [VAHC+06]. Relational [CMS17]. Relations [SE17]. Relaying [WLHC18].
Reliability [BHD15, BDG+15, DBH+23, KRS+16, LCC+22, MB10, NASM18, PRK15, SRN16, WDM17, WLC+18, ZSEP21, Zhu10, CYKH13, RP11].
Reliability-Aware [KRS+16, NASM18, ZSEP21, Zhu10].
renewable [MKD13]. ReNoC [SAS11].
rental [JHK+13]. reordering [GRV12].
reorganization [LCJ13]. Repair [AAS18].
REPAIRS [TJ23]. replacement [RG13].
replay [RAK14]. replication [FS14].
Reporting [MWF+16]. Representation [ADJM19, CAP15, KPK+19, NWA12, RMBS20, YLW15, TKD07].
Representative [LLW+17].
reprogrammable [PO05].
Reprogramming [WLH+18, DLC+14].
Request [BJP24, BCS+23, MBJ+23, SSK23, TTA+20].
Request-Response [BJP24].
Requirement [DFH18, HPP17, LPFL16, LLN+14].
Requirement-Aware [HPP17].
requirements [GFC+10, UCK+09].
requiring [KHH+14]. ReRAM [LCY+22].
ReRAM-based [LCY+22]. rerouting [SJR+13b].
Resistive [JR20].
Resonance [GJ13, LG21, PO05].
ıyor resolution [CPP+17]. Resource
[ADJM19, BT22, BMF15, CKN+20, CWH+23, CZH+24, DCZB19, DWR14, HRH+22, HZI+18, IDO+22, KKCI6, LK12, LX22, LVSRFCG23, LC17, LZJ17, MMY+19, MFG17, MFG19, NFI+22, NP23, PS19, REPL15, SPT+21, SCA+24, TCLB15, TMXS17, TAMS18, ZGZ15, ZBG20, ZLX+23, ZSH+19, AF14, BMM13, CHC13, FF09, GFC+10, HE12, MPZ13, TSG10, UCK+09, WRJL06, Wn10, ZB13, ZMB03, ZLF13]. Resource-Aware
[TCLB15]. Resource-Constrained
[KKCS16, MFG17, MFG19, ZBG20, TSG10, UCK+09]. Resource-Constrained
[ZSH+19]. Resource-demand [HRH+22].
response-driven [CHCC13]. Response-Efficient
[DCZB19, LX22, PS19, BT22]. resource-limited [Wn10].
Resources
[JS23, RJM19, SP12, NGG09]. Resource
[BIP24, BE17, MBJ+23, SE17, ZL+19, FF09]. Response-Time [SE17]. responsive
[SPP+10]. Resprinting [TBCB15].
Restoring [RBP+19]. restricted [LYL13].
Results
[RCDB24, GT05]. Retaining
[LKH16]. Retargetable
[LP+20, RDM06]. Retargeting
[MFMA17]. Retention
[JRR16]. Rethinking
[Shu20b, WWT+22]. retiming[XS3S10]. Retransmissions
[RN18]. Retrieval
[KNL12]. Reuse
[DA16, HDZL20, SA21, BCS+06, HKVI05]. Reverse
[HMR23]. Reverse-Engineering
[HMR23]. Review
[RH23]. Revisited
[BBD12]. rewards
[RMM03]. ReWire
[PHG+17]. Rewiring
[KFY+22]. RF4CE [LCQ+13]. RF4CE-based
[LCQ+13]. RFID
[LHYQ18, WH17, WXY+18, WYL+19]. RFID
[CBS19, WLH+18]. Rich
[GSS+18]. Rider
[MFMA17]. Rigorous
[JKH+13, NBM+16, STW13]. Ring
[NVB+20, BP14, CTK+13]. Ring-LWE
[NVB+20]. ring-mesh
[BP14]. RISC
[KSS24, LWS+23]. RISC-V
[KSS24]. RISE
[RMK17]. Risk
[COC22, LIMP23, RHG+14]. Risk-Aware
[COC22]. Risks
[Sh17b, RLUTs].
RMW [MSH19]. RMW-F
[MSH19]. RMW-Free
[MSH19]. Robot
[GMS17, LWZ+16, SLFC19]. Robotics
[Shu18b]. Robots
[EMVR23, GPT+23]. Robust
[BBD23, BEMP23, CK23, CQ+15, CHTC07, CAPL11, GD19, GPT+23, GP23, HXH+24, KKL+16, KHB+23, KDB19, MKGS18, MEK+22, PC12, PSZ12a, SSD+19, SCF12, SMR20, YV23, FSVG19, ISE10, MRT13]. Robustness
[HK23, LM24, RLP23, Shu19a, ZSM13].
ROS
[SLFC19]. ROSES
[WC+07]. Rotating
[SB+23]. Rotation
[SP+16]. Rotation-Based
[SP+16]. Round
[CLL17]. Round-trip
[CLL17]. Router
[FPSS22, YZA13]. Routerless
[IB23]. Routing
[DGC+20, GDD20, LLT+17, ZSEP21, CCY+13, JGD+09, PS08b, SJJRS+13a].
Rovers
[LSM+19]. RQNoC
[MS+16].
RSA
[KHHH14]. RSim
[LCY+22]. RSU
[SAS+23]. RT
[DSB17, WLC+18]. RT-WiFi-Based
[WLC+18]. RTL
[AGG+23, CMK12, MPM17]. RTOS
[DHL17, DL+19, HDR+06, TPDR17]. RTOS-Aware
[DHL17]. RTSJ
[ZW10]. Rule
[GZZ+16, FZHT13]. rule-based
[FZHT13]. Rules
[STH17]. Run
[MSSP22, OMMP23, SPB+17, YG+19, BCS+06, GNS04, HMM04]. Run-Time
[MSSP22, OMMP23, SPB+17, WWG+18, BCS+06, GNS04, HMM04]. Runs
[ACR17]. RunStream
[KPC+16]. Runtime
[BGK+23, BFM15, CLL21]. DAHM16, DSXS15, GSC19, HKC18, HHC+16b, KML13, LKA+18, LL18, MHH+23, MDS+21, MWS15, MMBK15, MMY+19, NEP23, PRS+17, TDD+16, TAMS18, WWN23, WCM+16,
YMKH23, ZJC+17, CCY+13, LOG+14, LPFG13, MPZS13, MF13, PB14, SB08, STY+14, YCNCC11, ZBCM09, AVF+09. **Runtime-reconfigurable** [YMKH23].

RVSDG [RMBS20].

S [Sus20]. **S3PR** [WWY13]. **SA** [GQC+17]. **Safe** [ASWZ24, RB21, VVKG23, ZCS+05]. **SAFE-OPS** [ZCS+05]. **Safely** [SWL07].

Safety [BHAC15, BGO17, DHB+23, ESBK23, GZ12, HCL+17, IPL16, ICW+21, KWK23, KR20, LS20, PJJ+14, RS07, TCD+19, YLW15, ASTPH10, CMA05, DKAL05]. **Safety-Critical** [IPL16, KWK23, LS20, PJJ+14, ASTPH10].

Salesman [Ahm13]. **Sample** [LYY+17, TZT+19]. **Samples** [PE23]. **Sampling** [CZH23]. **SAT** [AAS18, KDR23]. **SAT-Reach** [KDR23]. **satisfaction** [LYF19].

Saving [LKH16, ISG03]. **savings** [SVN04]. **Saying** [RH23]. **Scaffolded** [GK22].

Scalability [HPBL12, WMRB17, Bec09]. **Scalable** [AGS+16, ABH+18, HPLD09, JAD19, MB15, PAF22, PYJ15, SE07, ZSH+24, KYHY14, LCJ13, RGDZ14, SAHE04, TLL09]. **Scale** [ABH+18, CJL17, JGX+18, MRA+17, QWR+24, HHH+05, LZZ+23, PS08b].

Scaling [BFW+19, CRCR13, GG24, JRR16, LKW+24, RB21, YGW+12, MMR+10].**SCCharts** [SRSM21]. **Scenario** [CBS19, MSF22]. **scenarios** [Gei10].

SCEst [SMR+18]. **Schedulability** [ARS16, AFMT17, AKD+18, GE18, LZS+18, MEP04, PSD21, PEP05, SD17, ZB13, AF14, AFL13, BC07]. **Schedulability-driven** [PEP05]. **Schedule** [RLL+23, SE23, WLC+18, QH07, SAHE04]. **Schedule-Based** [RLL+23]. **scheduled** [DF14, ZB13]. **Scheduler** [SSK23, VGB19]. **schedulers** [SMG04]. **schedules** [KMB07, SKPL10]. **Scheduling**

[ARS16, AKTM16, ABS+19, BMAB16, BZG19, BGK+23, BE17, BGS+18, CPC17, CC13a, CLJ+19, COC22, CHJ22, CAPL11, DBM+15, DLRTB+19, DBS17, EMVR23, FHB+17, GDDD17, GDD20, GWZ16, GE18, HQE20, HGW+20, HSM16, HDR+06, HTC+16, IPEP12, JCW+16, JZL+15, JGZ+18, KGT+23, KB23, LCP+17, LSC19, LJ17, LH18, LSL+23, LLZ+22, LWB18, LHL+19, LLN+14, LX16, LLZ+17, MS21, MG15, MSM21, NFL+22, PCGD21, RLL+23, RDP17, RDDS21, SMW+17, SP19a, SP20, SLC16, SWX17, SD17, SAS+23, TGV12, TBL+17, TLBM15, TGT+17, VVW+17, WHN+17, WZJ+18, ZZG24, ZG15, ZQG22, ZLX+23, ZLL+19, ZSEP21, BvB13, CCAP12, DKV14, FZHT13, GNNW05, HGL14, IHK04, JP14, KBDV08, LP10, LES14, LQN+13, ML14, MFBSV07, MALM04, MKD13, NBS09, NB04, PW13, RGS04, SL08, SC05, TTAG14, WRJL06, XQ07, XHSS10, YK03, ZW10, ZC04a, ZM07, ZC08]. **Scheme** [DS11, HHL+23b, KPS23, KJKM16, KNY+17, KCC+16, LX12, LCC+19, LZS+18, LLC+22, LLL+17, PC14, PJ15, RBNM19, TAM08, WZY+23, WZD+17, YTCT16, ABS02, BS13a, CHCC13, CTK+13, JKJ+10, VS08, WSK14].

Schemes [BSJ15, HPO+15, MKAS18, RCDB24, HL14, SKPL10]. **Schizoid** [Shu15d]. **schizophrenic** [YKK+13]. **Science** [Shu16c]. **SCOPES’09** [FM12]. **ScorePlus** [TSY+16]. **SCPS’09** [SDS12]. **scratch** [ABS02, NDB09, UDB06]. **scratch-pad** [NDB09, UDB06]. **scratch-pad-based** [ABS02]. **Scratchpad** [JLW+15, KBS17, LXX10, PVSG22, SUS20, VCM19, WSMF22, BCDH12, CC13a, EL08, HZX+14]. **Scratchpad-Memory** [VCM19]. **screening** [GJ13]. **Scriptable** [MWF+16]. **SDC** [LB17, LLP+17, YZZG23]. **SDC-causing** [LLP+17]. **SDF** [TBG+13]. **SDmesh** [DGC+20]. **SDRAM** [SJC+03, TVK08]. **Sea** [LYL13]. **Seamless**
[WJ17, ISE10]. **SEAMS** [MDS+21]. Search [BJ23, FKS+19, MKM+23a, MLAD23, OBO+23, RSK17, SUK23, YS23, PCBW13, TSWL10, VSSS13]. second [NPP13].

Secondary [MKM+23a]. secret [CNK04].

Section [BCEP12, FGIS12, FM12, KM13, NKS12, PS14, Pla12, SRNW16, CP13a, CC14, CP13b, DV13, DSD12, Edi13, Hüb13, JLSK13, PCB12, STW13]. sector [LPC+07].

Secure [ABL+20, AARJ12, CCM17, CBS19, GCJD20, GSN21, JEP16, LMA19, LJ12, LMW+17, LZZ+23, MCP17, MKAA17, PP19, PS08b, PHG+17, RSK17, SYC+17, TNR17, XQQ+24, YGD+17, ZZA+22, Geb04, Geb06, ISTE08]. Securely [WXY+17].

Security [AIS15, BCHL19, CPP+17, CFXY17, FSG23, GQC+17, GSC19, KS22, LJP17, LZZ+19, MCS+15, PTK23, PNRC17, RRH04, RLL+23, SCKD23, Shu15b, Shu16b, Shu16d, Shu17b, Shu17c, Shu18b, Shu18e, Shu19b, TP19, TBS17, TP20, VDKG19, WGP04, ZYL+17, CVG+13, PS04, SL04, VS08, XQ07, ZCS+05].

Security-Aware [FSG23, GQC+17, LJP17, RLL+23, TBS17].

Security-Critical [ZYL+17]. See [WXY+18]. See-through-Wall [WXY+18].

Segment [HSMS16, TBEP16].

Segment-Based [HSMS16]. Segmentation [GGJ12, VAR13]. Segmented [FPGS22].

seizures [MVS+13]. Selection [AbSZ+19, AABG22, BCLS17, DLD+19, GPB+17, KAKSP15, KBRD22, MTWE20, ZRF+12, BMS13, LSC14, LXL13, SWT+14, SBX08].

design [SL04, VS08, XQ07, ZYL+17, WYJ+14, ZVL04]. Semantic [LWZ+16]. Semantics [BB13, BGGT23, BV15, CSST08, CMPP23].

Semantics-preserving [CSST08]. Semi [HSMS16, TSO22, ZGZ24].

Semi-Clairvoyance [ZGZ24].

Semi-Partitioning [HSMS16].

Semi-supervised [TSO22]. Semiring [YRF10]. semiring-based [YRF10]. Sense [RWW21]. Sensing [ALZT19, CGZ18, CLL+18, DNBL22, HTR+16, HZGW18, LVC+18, LLW+17, LNA+15, MSR+12, VVKG23, WXY+18, WTSR13, YGHS08].

Sensitive [BO13, ZSEP21]. Sensitivity [RG13, YGD+17]. SensiX [MM+23].

Sensor [ABC+17, CZK+22, DNBL22, DS11, GM12, GSS+18, GJ12, HSR18, HCS18, HB16, IPL16, JGX+18, LX22, LFHS18, Mc13, MAGR15, PM23, RN18, SG24, SKN17, SLS+19, TSW+17, WWTSM29, ZRF+12, ZZX+15, ZH12a, ZLL+15, ZO16, ZQ04c, BS13b, CTK+13, DNL13, DLC+14, GHZH14, HBSA04, HBB+05, KHZS06, KAK05, KXL10, KLC+10, LN04, LLLR13, LAHS06, MLV09, PS04, PS08a, PS08b, SM13b, SGDP12, VGG+13, WYP+10, YGHS08, ZHI12a, ZWY+10, ZLF13].

Sensor-Based [LX22]. SensorGAN [HB24]. Sensors [ABTS24, DL12, EHF24, GSS+18, HYJ22, HXH+24, HZW+23, PP12, WJ17, CNC13, LLY13, NRL13].

Sensory [MMA+23]. Sentries [Shu16b].

Sequence [LL18, ZW13]. Sequential [GH13, LCC+19, MKR13].

Sequential-write-constrained [LCC+19]. Sequentialization [WCM+16].
LLP+21, LHM14, MKMGS18, PÖG+13, RH23, TKL+15, YCNC11, ZDTM19.
Social [ZYM16, ZYL+17]. Society [Shu20a].
Socioecological [LAZ+16]. SoCs
[BCS+23, COC22, DSXS+14, HSK18, ISE10, RPB+19, RJM19, VKW+17, XDL+18]. Soft
[FND+16, KKL+16, KJK+17b, LJLT17, OSA+18, RJS19, SSK3, SUS+17, TP16, WMGR12, HLD+09, MMSN14, MEP08, SM13a]. Soft-Error [OSA+18, SUS+17].
soft-object [MMSN14]. Softcore [AZS+23].
Software-Managed [HCS+22]. Software
[AKo21, BVM19, CAP15, CMP17, Dea06, DBFH14, EMVR23, GLC07, GDC19, HCS+22, JLS18, JNH15, KE15, KKL+16, LS13, LLG+20, LMK+18, LBS15, MBLA16, OBA+17, PJS15, RKM24, SWJ+13, S+10, SIS+24, SCM20, SD13, SLFC19, STB+24, TSY+16, TBBd11, VGN+17, VMK20, WQGR22, YMMB19, YGD+17, ZPZG17, ZQC16, ARJ08, ARJ11, BCLN13, BS13a, BMS13, CMV10, CSV+05, DZR09, FRRJ07, FZJ08, HG09, HGFL13, HQB06, HKLH05, JR20, JM06, KMB07, KASD07, LOG+14, LJRR12, LWR+10, MRT13, MLY09, OQ06, PGR+08, RP11, Sch07, Sch10, SMG04, SB08, SE07, SVN04, SBF+05, WCJ07, ZCS+05, ZX503]. Software-Based
[KKL+16, LS13]. Software-Controlled
[NIU15]. Software-defined
[VMK20, LJRR12]. Software-Embedded
[DEG11]. Software-Hardware [TSTY+16].
Software-Managed [HCS+22]. Software-only [GDC19, BS13a].
software-pipelined [ZX503]. Solar
[ABD+19, JC12, MBB+15, SKN17, SLS+19, TSW+17]. Solar-Powered
[TSTW+17, MBB+15]. Solid
[HWTL23, YW-LW23, CCH13, CW14].
Solid-State
[HWTL23, YW-LW23, CCH13, CW14]. solution [MTL14, ZHYC13]. Solutions
[BCHL19, SEB12, SSH14]. Solver
[CWJ17, FS24]. Solving [AAS18]. Sorting
[JGL21]. SOS [YLF15]. Sound
[LJVD23, YV23]. Source
[MFMA17, MF12, YV23, CCA+13, FRRJ07]. Source-Level [MFMA17, MF12]. Sourced
[DBF14]. sources [MKD13]. Space
[ABL+20, BJST+23, CAP15, CCC+17, DJJ+19, FFA+23, FSV19, GCJD20, GSN21, JFM23, KCC+16, LPL+21, OFA+15, PSZ12a, SLB+15, SHQX19, WCH+23, WLTW24, YLTY21, ZBG20, BS+09, BFC10, BCG+07, JBN+13, KK05a, KASD07, LM13, MPZS13, OP06, RP03, VAR13]. Space-economic
[WCH+23]. Space-Efficient [KCC+16, KASD07]. space-filling [BSK+09]. Space-Grained
[WLTW24]. space-oriented [KK05a].
Spaces [LML20]. Spaces [RMS21].
Sparing [NRZ+24, TTAG14]. Sparse
[LYY+17, MLAD23, PKL22]. Sparsity
[XDL+18]. Spatial
[JI17, RWL+18, BV13, GFC+10]. Spatio
[DDC+24, LMS+22, SRN16]. Spatio-Temporal
[DDC+24, SRN16, LMS+22]. Speaker
[BJCHA17]. Special
[BBM15, BCHL19, BDR24, BDK+23, CDBB24, CS16, CKGN14, CBH22a, CBH22b, CJL17, CGZ18, DPP14, DST19, DSXS15, EE16, EH18, FG12, FX17, GV21b, GM03, IT16, JCV03, KBC13, KM13, Le08, LNZL23, MCP17, NKS12, DWM14, OMKK23, PS14, Pla12, RHG+14, STLX22a, STLX22b, SCZ20a, SCZ20b, SCDK23, Shu15c, TFC24, VP16, WX17, ZQC16, BM13, CP13a, CC14, CP13b, DV13, DSD12, Edi13, GP07, HCK+08, HTLC10, Hüb13, JB02, JB03, JLSK13, KS10, MS05, PCLB2, Sch07, STW13, BCP12, FM12, Goe14, Gup04, KL13, LB04, SL04, ST05, TEC12]. Specialized [WLZ+23]. specially
[ZYW+10]. Specific
[BGK+23, DASS12, KOM+23, LMA19, LW+16, MFMA17, MPFG19, OMKK23, PSZ12a, SXXS+16a, TBFR17, TKHZ22.
ARH+18, BJT+23, BM13, yCBR05, GDB22, JHPR13, RC08, USA+10, WP11, XWHC06].

Specifications [KDB19, MS13b, BGVZ11, CD10, GH13, KW10, GV12].

Specifications [CMK12, LIMP23, NCJF18, OFA+15, RLP23, WR+21, YF19, Gar05, MD04, ZNS13]. **Specified** [TTJ23]. **Speck** [AMKA17]. **SPECTRUM** [VKMP20].

Speculating [Must03]. **Speculation** [PCM+15]. **speculative** [MF13]. **Speech** [RRC22, KP13]. **Speed** [HH23, MSR+17, BBL09, KT14, LLC+13, RV07, SD08].

speed/accuracy [SD08]. **Speeds** [QWY+19]. **Speedup** [JSZ+19]. **speedups** [SVN04]. **SpikeHard** [CEC23]. **Spiking** [LMB09]. **SpinBayes** [ADH19].

Spintronic-Based [ADH19]. **Spintronic** [ADH19]. **Spintronic-Based** [ADH19]. **Split** [HH23, SBR+15, Geb06]. **split-mask** [Geb06]. **Split-Transaction** [HH23].

Splitting [KWKP23, PLT23]. **SPM** [TDD+16]. **SPMPool** [TDD+16]. **SPMs** [SDBD18]. **SPF** [LCLW17]. **Sponge** [ARH+18]. **Sponge-specific** [ARH+18].

Sporadic [BE17, DVCC19, FHB+17, Bar13a, HGL14]. **Spotting** [GV21a]. **Squared** [CLS16].

SRAM [JRR16, JRSR17]. **SRP** [YY23]. **SRP-PHAT** [YY23]. **SSD** [KSY17, MKM+23a, PX18, SWL+23, SHQX19].

SSD-Based [SWL+23]. **SSDs** [YWLW23, CSW15, CLL16, HC16, LLZ+22, ZLSQ17, ZAL22]. **SSI** [BBDR12]. **SSP** [WBF+06]. **Stability** [BGO17, ORA16, REPL15]. **Stable** [CCL16, SWWW17]. **Stack** [KY17, ZDZ14, ZQGZ22, MSB08, RRW05].

Stacked [SSPP23, HLL14]. **STADIA** [XCZW23]. **stage** [BJT+23, DBH14].

Stakeholders [YMHB19]. **Standard** [ABC+17, BCC+17, MWF+16]. **Standard-Compliant** [MWF+16].

Standby [NRZ+24, TTAG14]. **Standby-Sparing** [NRZ+24, TTAG14]. **Stash** [ABTS24]. **State** [ABA20, BPP23, CMPP23, CHS15, DQ14, HWTL23, WRB15, YWLW23, ZPZG17, CCH13, CW14, WGP04]. **State-based** [CMPP23]. **State-of-the-art** [WGP04].

statecharts [MS13a]. **Stateful** [THG24]. **Stateless** [MKAA17]. **statements** [YKK+13]. **States** [SBK+23, ISG03]. **Static** [BCS16, CYH+17, DHKS15, SMR15, SWL07, SC17, SAM10, SLCS16, TBFR17, WCM+16, ZMB03, FZHT13, SHME13, ZTRC03]. **static-power-efficient** [ZTRC03]. **Stations** [LFHS18]. **Statistical** [Fra12, MKR13, RLP+21, WZBP19, SGT+13]. **Statistics** [CNK04]. **STDF** [DLC+14]. **Stealing** [LNA+15]. **STEAM** [HDG+14]. **Step** [NEP23, WZH13]. **Stereo** [CYH20, HLLL12, LMS+19]. **Stignergy** [GSC19]. **Stigenergy-Based** [GSC19]. **STL** [YF19]. **STM** [CQB+15]. **Stochastic** [AH13, BSM+19, DMPC23, GRY22, HCL+17, KDB19, LIMP23, NLSV+19, VM23, WRW+21, XCZW23, MEF04, ONG08]. **Stop** [Val17]. **Storage** [ABTS24, CBH22a, CBH22b, CCC+17, HRT+22, ICZ+23, JCS+17, KCWH14, KYN+17, Kwo16, LCC+19, LLC+22, MSHS19, MAW22, SWJ+13, SR12a, SCR16, WT15, YCT16, YYKK19, BCLN13, CKL04, CWKH12, CYKH13, MYR+10, WKC07].

Store [GKS+22, JBI17]. **Store-n-Learn** [GKS+22]. **stores** [ZP06]. **strands** [SWL07].

Strategies [DB19, GDC19, LS17, RWL+18, ISG03]. **Strategy** [CSCC17, DCZB19, LCY+22, SHQX19, YWLW23, ZWK23]. **Stream** [BFST19, CJ20, KPC+16, MG15, MV16, MCM+17, PNRC17, SWWW17, CCI3b, DSW+09, GHB13, HE12].

Stream-Monitoring [BFST19]. **Streaming** [BZG19, MASG15, TBG+17, WLK+19, ZSJ12, HFG13, HHB+12, LO13, MAG14, ZNS13]. **Streams** [HHC+16b].
stress [WGPS13]. string [LHCK04].
string-matching [LHCK04]. Stripe
[SWL+23]. Structural [SHK+19].
Structure [SGZS21, ZO16]. Structured
[CD12, GDDD17]. Structures [PaBM+15].
STT [ZBCM09, AVR22, LKZ+23, LWZ+24,
MMK22, MPT+22, YJD+17].
STT-MRAM-Based
[YJD+17, LKZ+23, LWZ+24]. Stubborn
[BB15, Val17]. Studies [LKZ+23]. Study
[GHP+18, MSD17, RH23, SZL+17, DEG11,
LHM14, MTS+03, MSH+14, SKW+07,
SPK+12, VJD+07, VDK+08]. Studying
[MGB+21]. Style [LWS+23, SPGB24]. Sub
[DGC+20, YLDM19]. Sub-Byte [YLDM19].
Sub-networking [DGC+20]. Subgraph
[PMP17]. Subject [PSZ12a, VM23].
Subspace [LYY+17]. Subsystem
[SRC+19, KYL13]. Sufficient [ARS16]. Suite
[LWK+17, GGGK08]. Suites [SPDLK+17].
Super [JSZ+19]. Super-Linear
[ZS05]. Superblock [JKJ+10]. super-block-based
[JKJ10]. SuperCISC [JHK+06].
superperfect [LXK10]. supervised
[TSO22]. supervisor [ZS05]. Supervisors
[WWY13]. Supervisory [DSB17].
Supplemental [TEC12]. Supplements
[Ano13, Ano14]. Support [ZJC+17, HT06,
NB04, PZ12, SJRS+13a, VGG+13].
Supported [ZP11, ZSM13]. Supporting
[DSXS+14, LDV12, SHH14]. Surrounding
[LNA+15]. Surveillance
[KLK+19, RMK17, MSCJ12]. Survey
[AH13, ASWZ24, BMAZ16, BHX19,
BJCHA17, GV21a, MCG22, RCD24,
SP19a, WLC+22, BMP03, WEE+08].
Sustained [CLL+18, TBGUI23].
Sustaining [LYC+18]. SViT [XHK16].
SViT-Based [XHK16]. SVM [CWJ17].
SW [ZDTM19]. Swapping
[APF24, KJK17a, LSI+23]. SWARAM
[MGLP19]. Switchable [CL17]. Switched
[AGS+16, LS09]. switches [SMG04].
Switching [BF17, MSSP22, NNH+14].
Sybil [DBFH14]. Symbolic
[BFL18, CBRZ19, TWH18, WWH18].
Synaptic [LMB+22]. Synching [CSCC17].
Synchronization [BGJ17, PE23, WXY+17,
ZGZ15, AAP14, CRJ10]. synchronized
[GHZH14]. Synchronous [BMM13,
BCC+17, BPP23, CMPP23, DHKS15, Gei10,
MS21, SIR+17, WMRB17, ZPZG17, BS14,
CST08, CC13a, QP03, TBJG+13, ZM07].
Synergistic [PHDL18]. Synergy
[ZDTM19]. Synterface [SIC19]. Synthesis
[BBD23, BF17, BRL16, CWZ+20, yCBR05,
CFGM15, CDH+16, EZL+17, FLF17,
IVL+23, KMP15, LPFL16, LN19, MS23,
NVB+20, PMDC17, SCB+22, SXXS+16a,
TBF17, VRF15, WWTS19, ZQD+23,
BAR13b, BAR13c, CAA+13, FZK+10,
GM03, HG09, HFG13, HVG13, KMB07,
MRT13, QP03, SPK+12, ZS05].
Synthesizable [AOO23]. Synthesizing
[LEPP13, SUK23]. Sysfier [RBS+10].
System [AAM+17, AVR22, AKTM16, BTD+18,
BBM15, BGK+23, BFQ10, BJ+23, CD12,
CLL+18, DTS19, DHB+23, DJS16, GIB+12,
GPT+23, HZJ12, HXH+24, HB16,
HHL+23a, HWC22, IT16, JC12, JAD19,
KSP+12, KHB+23, LXX1, Le018, LKZ+23,
LWk+10, LYH+15, MSCJ12, MYL+22,
MWS15, MS21, MGLP19, MEK+22,
NCJF18, NBM+16, NLSV+19, OMMK23,
PKIT23, PRSV19, QP03, RG14, SA18,
SGT+13, SRB23, SSA21, SCR16, SGL+17,
SCKD23, SH23, SR19, SLS+19, SVS13,
USS+21, VFS+21, WXY+18, WLZ+23,
WT15, YKKD23, YCLV+02, YKKG18,
YKD+24, ZYM16, ZYL+17, ZW08,
AMCM06, BE10, BD+13, BJ13M,
CWHK12, CSK+02, CHKI14b, Dea06,
FRRJ07, LJJ14, GGGK08, HBO06, HVG13,
Hüb13, JBN+13, KCG+05, KZH+06, KGR12,
LCQ+13, LKKW02, LCC+23, LHC04,
MSS+03, MSL13, NPP13, NNH+14, PK13,
PSZ12b, SVP05, Sev05, SPK+12, STY+14,
SRS03, SL04, SJC+03, ST05, Shu14b, STW13, SVN04, SC05, SBF+05, TRJ05, TM07, TXL+12, TKG13, TSG10, TVK08, VAHC+06, VS05, VHB+13, VGG+13, WMT12, WP11, WLT12, WRJL06, WKC07, Wu10, WMZY13, XQ07, YDLC10b, YRS12, YK03, ZC04b, ZVL04, ZSM13, ZB13, ZP08, ZP09, Zhu10, ZZZ+12, ZC08, KL13.

Systems-on-Chip

[CEC23, KS18, WRKG16, GN+10].

Systolic [YZZ+23, ZRZ+19, WL09].

TAB [ZDL22].

Table [KK+23, PLT23, RR11, VKW+17, WLWS15, YCLV+02].

Table-based [KK+23, PLT23].

Tableau [BRR19].

Tail [KSY17, WLTW24, LJLT17].

Tail-DMR [LJLT17].

Tailor-made [PDL+23].

Tailoring [ZGH+19].

Taiwan [HKLH05].

TAMA [ABF+21].

Tame [BJT+23].

Taming [UGS+21].

Target [AR14, BGK+23, CPC17, CZH+24, GMS17, HLLL20, LCP+17, dFMA+12, MTL14, MEP08, NASM18, OHCK24, PCGD21, QP15, RN14, RDSS21, SMW+17, SMR15, SE17, SLS+19, SGW+16, TLBM15, WHN+17, XSP22, ZW17, ZLX+23, Bar13a, DKK14, ESAS14, HWC+20, LK10, LQN+13, LOF20, MEP04, TTAG14, WBS10, ZP09, ZZZ+12, ZC08, TGB+17].

Task [TG+17].

Tasks [ARS16, AKD+18, BAG+20, BGS+18, CLJ+19, FHB+17, HQE20, LJP17, LLZ+17, MBP14, NFL+22, PSD21, SS21, SPT+23, SD17, WHN+17, XZK+19, ZLL+19, GW05, HGL14, LP10, MALM04, SPP+10, XQ07, ZC04a, ZX08].

taught [GT05].

Taxicab [ZWH+16].

TBES [CDH+16].

TCAM [SVC21].

TCAM-based [SVS21].

TCX [LWS+23].

TDES [DSB17].

Team [HB16].

Technique [ASD+24, BRR19, DJ23, HPS13, LX16, SFB23, YCK+18, BMS13, JGD+09, ONG08, RP11, RMD09, ZXS03].

Techniques [ABS+19, JEP16, KKK+11, KKL+16, KDN+07, LEPP13, LBS15, MCG22, OMMK23, SWJ+13, AP09, AFL13, BMP03, ESAS14, KM09, KK05b, SAYN09].

Technologies [ZQC16, BMP03, HTL10, WP11].

Technological [CCS23, SBDK22, DWCM14, SBF+05].

TECS [DST19, MJ21, TEC12, CJL17, CGZ18, SCKD23, Shu20b].

telecom [YCLV+02].

Telomere [MAW22].

Temperature

[BGO17, HDG+14, JLW+15, NZCS19, SP19b, HCQ+14, KT14, LOXL13, TSBY13].

Temperature-Aware [JLW+15].

temperature-based [KT14].

Template [AOO23, CDH+16].

Template-Based [CDH+16].

Temporal [AFS+13, BMN23, BTL+12, DDC+24, KDB19, LC17, LJMP23, LLN+14, MKS+17, RLMP23, SRNW16, WRW+21, BvB13, LMS+22, MMK22].

Ten [PL13].

tenant [MKM+23a, MMA+23].

Tensor [CLW+20, HRH+22, KRC20, LMS+22, LWS+23].

Tensor-Compressed [CLW+20].

TensorRT [JHK22].

TensorRT-Based [JHK22].

Term [GSS+18, JC12, DLC+14].

Terminal [CLW+20].

terminals [ISTE08, ISE10].

Termination [YCLV+02].

Ternary [ZDL22].

TESLA [LN04].

Test [CMK12, FKS+19, GE18, KPK+19, MKMS18, MKM+23b, SPDLK+17, SMZ+21, SKH+19, TSW+17, BMS13, KM09].

Test-case [FKS+19].

Test-Driven [MKMGS18].

Test-pattern [KPK+19].

Testing [BLG+15, BSV17, DHJ+17, DHF18, FMS15, KH18, LJJ+19, MKS+17, VDKG19, GLT+13, WLT12, BSV17].

Tests [MKR13].

TF [YLM19].

TF-Net [YLM19].

TH [SFCW23].

TH-iSSD [SFCW23].

Theoretic [SR12b, SIII24, CAP+07, SPK+12].

Theoretical [CZH+24, MTL14].

Theory [CCKM16, Cul13, KB15, KB17, MHT13, SCZ20a, SCZ20b, WYD+16].
MRT13, BSKB+09. Thermal [ARS16, AHMT17, DAHM16, DLRTB+19, FS13, HFA+14, HH13, LSC19, LQN+13, LLG+20, SSPP23, SP19b, SBK+23, CCY+13].

Thermal-Aware
[FS13, LSC19, DLRTB+19, HH13, LQN+13].

Thermal-Resilient [HFA+14]. Things [KLK24, BCHL19, BHXP19, BGJ17, RRM16, SXH+19, Shu15a, ZSY19]. Thou [Shu15b].

Thou [MFG17, PLM+15, SPB+17, ZP11, CRAJ10, Dea06, KASD07, SD13]. Thread [VCM19, WZM17]. thReads [LKB14].

Threat [CLL21, Geb04]. Threshold [GWZ16]. Thresholds [ZGZ15].

Through-Silicon [MSC16]. Throughput [AV20, HG09, HFG13, HCQ+14, KB23, LS17, LX16, MCM+17, WLK+19, ZDM19, AO023, THON12, WBS10].

Throughput-Buffering [KB23]. throughput-constrained [WBS10].

Throughput-driven [HG09].

Throughput-memory [HFG13].

Tightening [RM10, RDP17]. Tightly [WWHT21]. tile [Mus10]. tile-based [Mus10].

Tiling [VGN18, KK05a]. Time [ARS16, AbS+19, ACR17, AY15, BT22, BMAB16, BGBP16, BE17, BGS+18, BB13, BB15, BYIG21, BMV21, CDBB24, CQV+13, CKGN14, CWZ+20, CS+22, CHJ22, CLS16, CQ8+15, DHL17, DJ13, EFS+17, FM16, GAD+24, GG24, GAG15, GZZ+16, GE18, GUC+23, HG+20, HSM16, HHH+14, HHC+16b, IB23, JSZ+19, JAD19, JGK+18, JBCS16, KSS16, KCF1+6, KJMK16, KR18, KMP15, KH23, KEE+23, KB17, LC18, LN19, dFMAAd12, LZZ15, LX16, LL18, MM16, MZG15, MSSP22, MAW22, NPAG12, OSF19, OMMK23, Pau14, PSD21, PJ+23, PNRC17, REPL15, RG14, RMK17, SCG15, SMR15, SE17, SP19a, Shu20b, SPB+17, SLC16, LCS16, SLE+17, SGW+16, SD17, TSP15, TKT15, UFB+16, WDJ+18, WMGR12, WHN+17, WVG+18, WGN23, WZ12, XLY18, XQQ+24, YGD+19, ZD14, ZPZG17, ZJ+17, ZLL+19, ZSEP21, ZSJ12, AC08, AMCM06, AF14].

Time [MFL13, ABC+07, ABR+09, BZG19, BGV0A0, BF19, BAG+20, BBL09, BCS+06, CMV10, CKL04, CHK14b, CRJ10, CRM14, CHTC07, CCP12, CA+24, CRAJ10, DVC+07, DLRTB+19, DF14, DSW+09, DW10, ESBK23, FHK21, GW05, GKB13, GNS04, HQE20, HMM04, HT06, HTLC10, HHH+12, HCC+14, KBDV08, KW10, KASD07, KTT13, LG21, LSK+08, LES14, LQN+13, LLR14, LH+14, LOF20, MMSN14, MEP08, MR+10, MVS+13, MALM04, MAG14, MCG22, MLM08, MMS21, MKD13, DWM14, NDB09, NFL+22, NNN+14, NRM+24, PNM+13, PAP+12, PL10, PS10, QH07, RMM03, SSK23, SE10, SP10, SKPL10, SP20, SL08, SE07, SCA+24, SDE05, TM07, TTAG14, TSC05, UDB06, WMT12, WP11, WAD14, WEE+08, XP22, YZ08, YK03, ZC04a, ZC04b, ZB13, ZW23, ZX08, ZJZ120, Zsh10, ZZZ+12].

Time-portable [ABI+09]. Time-sensitive [ZSEP21].

Time-Triggered [BBB16, NPAG12]. Time/Run [WWG+18].

Time/Run-Time [WWG+18].

Timed [DLRTB+19, Is17, NCJF18, BS13b].

Timeliness [YGD+19].

Timely [HFL+23, NH+17].

timeout [KR14].

Times [AKD+18, PE23, DW10, MEP04].

Timestamp [MKS+17].

Timing [BS22, CD17, CLJ+19, DVCC19, EYG+23, GCU+23, MBKF15, MKS+17, SE23, SK13, TM07, TEBP16, WMRB17, ZW23, AEF+14, CCB+06, LLR14, MMR+10, TSBY13, VLY07, YRF10, SAMR06].

Timing-Anomaly [CLJ+19].

Tiny [EHF24, GRC03, SSA+24].

TinyM
TinyML
[APF24, ASD+24, POCR24, LM24, TFC24].

TinyNS [SSA+24]. TinyOS
[GLC07, McI13, MLV09]. TIOA [KSS16].

Tissue [VVKG23]. TLB [ZLL+18]. TLC
[Kwo16]. TLC-Based [Kwo16]. TLM
[BFQ10, CMK12, CD19, LLC+13]. TCLM-2.0 [CD19]. TM [PMM+17].

Tolerance [GAS+17, LPE+23, MAGR15, PMM+17, XKK17, AF08, ZCO08].

Tolerant [BHD15, CPC17, DSB17, IPEP12, MCP17, SA18, SSH14, TMXS17, WDM17, BGD14, JGD+09, LLR14, RNZ+24, PS08a, PAP+12, RMH04b, TAP23, VSS13].

Tomahawk [AMN+14]. Tool
[BKMG12, BGRV15, BMB16, MFMA17, ZLL+18, CCA+13, GGGK08, IBMK10, LAN06, PJJ+14]. Toolbox [POCR24].

Tools [SCZ20a, SCZ20b, LP09a, WEE10, WRB15, YFPJ14].

Torque [ZBCM09]. Trace
[LL15, MZG14, UM13]. Trace-Based
[LL15]. Traces
[CMP17, MZG15, NCJF18, SFB23].

Tracing [PM19, SK19, ZLL+18, ZXCH13].

tracking [ZHM+14]. Tractable [AF14].

Trade [CRCR13, IPEP12, KB23, LDV12, MCM+17, ZRF+12, CLK13, GFC+10, HFG13, SD08, SM13b]. Trade-Off [KB23, ZRF+12, CRCR13, CLK13, HFG13, SD08].

Trade-Offs [IPEP12, MCM+17, LDV12, GFC+10, SM13b]. Tradeoff
[JBBD20, MLR+17]. tradeoffs [LPB06].

Trades [OSA+18]. Trading [XQQ+24].

Traffic [MAKO19, OSF19, OHCK24, WRB15, YFPJ14]. Trainable [PKL22].

Training [GK22, HY22, HWC+20, PKL22, SA21, WCK+19, WDM+23, TSO22].

Trajectories [ZWH+16]. Trajectory
[LHYQ18]. Transaction
[HH23, SD08].

Transactional [PMM+17]. Transactions
[BLG+15, Mit21, Shu18c]. Transfer
[ANARR+19, ZBCM09, WLH16]. Transferrable [ANARR+19].
Ultra-Low-Energy [YC12].
Ultra-Low-Energy [ABL+20],
Ultra-Low-power [DBH14, PKIT23, TTB23].
Ultra-Low [BTA+19, JRR16, BDB+17].
Ultra-Low-Energy [ABL+20].

Uncertain [CK23, GV21a, GLS+23, PKT23]. Tutorials [SCKD23]. TV [JMO14, KSK13, RIMS21].
Tweakable [MKASJ18]. Two [AR14, LH18, RBMM19, JB02, JB03, WL09].
two-dimensional [WL09]. Two-party [RBMM19]. Two-Phase [LH18]. Two-Type [AR14].

Tycho [CJ20]. Type [AR14]. Types [TBDdD11].

UAV [FGL+19], UBAR [SPT+21].
ubiquitous [BDP+13]. Ultra [ABL+20, BHD15, BDB+17, BTA+19, DBH14, GJ13, JRR16, PKIT23, TTBB23].

Uncontrolled [ZH12a]. Undergraduate [KCG+05]. Underminer [BTD+18].
Understanding [ALZ19, CKN+20]. Unequal [YC12]. Unfoldings [KH18, SPDLK+17].
Unified [CCR+14, FMS515, GOC+22, KKCS16, PKL22, SSP23, TGV12, VDKD19, YDS+22, ZDL22, KXL10, OMA+13, SB08].

Uniform [HG+20]. Unintentional [ISOD21]. Uniprocessor [MBFSV07]. Unit [AGG+23, FGL+19, MKS23].
Units [HRH+22, RKK15, DBH14, RGdZS14].

Universal [BCLS17, SCRY16]. unknown [NDB09], unnecessary [Mus03].

User-aware [ESM+17]. User-Centric [HTC+16]. User-Perceivable [CSC23].
User-Perceived [KJJKM16].

User-Profile-Driven [WLH16]. User-specific [GDB22]. Users [Li21, YTL+20]. Using [AK21, AHM19, ADH+23, AR14, BHD15, BRR19, BMF15, BHXP19, BAR13c, BS22, CL13, CRC13, CMP17, DLRTB+19, DVC21, DL21, FKJM18, FGL+19, FLF17, GSS+18, GZZ+16, GLS+23, GGJ12, HDZL20, HB16, HPS13, HCL+17, HZW+23, IYL+23, JLS+18, KKK+11, LHP+23, LPP+21, LM24, MSH19, MM16, MMK22, MV16, MSD17, NS17, NWA12, NGL17, NDZ13, OHC24, PA14, PRM21, PP12, PLT23, QWY+18, RC17, RB21, SOL+16, SK19, SR12b, SMZ+21, SKN17, SP19b, SIC19, SLE+17, VF17, WWTSM19, WRB15, WZH13, WLD23, YF19, WZH+16, ALZ19, ASS+23, BJ23, BSKB+09, BMNN23, BAR13b, BGVZ11, BCS+06, CLR05, DNNP14, GGGK08, HM04, HPLD09, KBDV08, KMB07, KM09, KAS07, KTT13, LPC+07, LML+23, MSC12, MMS06, MSR+17, MMD04, MRM+23b, MSH+14, NKP+12, NRL13, OBA+17, OMA+13, OAD06, OP06, PJL+14, PSZ12b, SHME13, SSB24, SB08].

using [SW012, TSL0, UDB06, WC07, WMRR17, ZKKC05]. Utility [DWR14, MWS15, GKW08, WRJL06].
Utility-Based [DWR14]. Utilization [ABD+19, BCS+23, CCC+17]. Utilizing [MEK+22, ACK+13, CTK+13].

V2X [ESBK23]. VADF [MMH+23].
Validation [BGGT23, GDA13, KKL+16, SMR20, MF13, MD04]. Value [UM13, MKM+23a, YG02]. valued [VF17].
Variability [PSZ12a, PAP+12, BJM13, SG+13].
Variability-Aware [PSZ12a].
Variability-tolerant [PAP+12]. Variable [CD19, GVS+20, MWS15, SR12a, BAR13b, KD08, KK05b, LXL13, OAA10].
variable-length [BAR13b, KD08]. Variant [WCB20]. Variation [BTL+12, MASC15, WDI17, MAG14].
Variations [GM12, REPL15]. Varying [KH23, GFC+10]. VBN [LLP+21].
Vehicles [CYH20, LHL+19, SAS+23, VA18]. Vehicular [ANARR+19, ASD+24, LLI+14, OHCK24, XQQ+24, ZLZ+24]. Verifiable [LML+23]. Verification [CMA05, CD17, DJZ13, DHF18, GHR15, GZ12, HCL+17, Ise17, KL13, LMK+18, LHL+19, LML20, PNR16, SSB24, SVZ13, TCD+19, WZBP19, WMLM12, YLW15, ZJC+17, ZZA+22, ASTPH10, GD14, PB14, PS08a, RS07, RBS+10]. Verified [BPP23, CMP23, JBCS16, MS23, Shu18c].
VLWV [CIC+08, CIC+09, MG05, SCS16, SWX17, TBDD11, ZTD+06]. Volatile
[HCS+22, ZZA+22, HXZ+13, LZJ+20, WLW15]. Voltage
[BDH15, JRR16, SWJ+13, YGW+12, CCP+19, IIK04, KK05b, LK10, MMR+10, SAHE04, YK03, ZC04a]. voltages [HQB06].
Volume [AON13, Aon14, XCH13]. Voting [Shu18d]. VPO [KZH+06]. vs [CRCR13, LAB+23]. Vulnerabilities
[AAT+21, TP20]. Vulnerability

Wait [CQB+15, OZ22]. Wait-Free
[CQB+15, OZ22]. Waiting [GHR15].
Walking [VKW+17]. Wall
[CDX+19, WX+18]. Walsh [PBC22].
Walsh-Hadamard [PBC22]. Warbler
[MFG16]. WARM [WCH+23].
WARM-tree [WCH+23]. warning [PL10].
warning-zone-length [PL10]. warp [LV09].
WasmAndroid [WWN23]. Water
[CLL+18]. Wavefront [WKWP23]. Wavelet
[CCP+19, MM16, GFC+10, PZ12].
Wavelet-based [CCP+19, GFC+10].
REFERENCES

WCET [BCD +22, BFL18, CCR +14, GLYY14, HZX15, KBS17, SWX17, ZW17].
WCET-Aware [KBS17, SWX17]. WCRT [SSK21, WMRB17, XZK19]. Weak
[GHKS15]. Weakly [HQE20, PSD21, SD17]. Weakly-hard [HQE20]. Wear
[HCS22, JN15, CCH13, PMP14]. Wear-Leveling [HCS22, CCH13, PMP14]. Wearable
[KBS17, SWX17]. WCRT [SSK21, WMRB17, XZK19]. Weak
[GHKS15]. Weakly [HQE20, PSD21, SD17]. Weakly-hard [HQE20]. Wear
[HCS22, JN15, CCH13, PMP14]. Wear-Activity-Aware [KBS17, SWX17]. Write
[GMCC18, HCS22, HWTL23, HXZ13, HC16, PXY17, WLWS15, WCH17, YWLW23, LCC19].
Write-Activity-Aware [WLWS15]. Write-efficient [WCH17]. Write-Related
[YWLW23]. Writing [LLC22]. WRSNs [LZS18]. WSANs [FC13]. WSN [DL12].
WSNs [BSA17, LYC18, LTT17].

X [BHL20, CMP23]. X介质 [TV19]. Xbars [BMP23]. Xilinx [AZS23].
XimSwap [APF24]. XIP [PLKH08]. XML [MSH14]. XOR [RLG20]. XOR
[LC21]. XOR-Based [LC21]. XploreNAS [BMP23]. XR [THON12].
XScale [yap +07, VJD07, VDK08]. XScale-based [VJD07, VDK08].
XTREM [CMP07]. xTune [KST12].

Years [PL13]. Yield [HL14, PRK15].
Yield-enhancement [HL14].

Zeroconf [BGVZ11]. ZigBee [MLV09].
zone [PL10]. ZPP [DJ23].

References

Winograd convolution for deep neural networks: Efficient point selection. ACM
CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic). URL https://
dl.acm.org/doi/10.1145/3524069.

[ABBG22] Syed Asad Alam, Andrew Anderson, Barbara Barabasz, and David Gregg.
Winograd convolution for deep neural networks: Efficient point selection. ACM
CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic). URL https://
dl.acm.org/doi/10.1145/3524069.
Andalam:2017:NEM

Anjum:2014:TTA

Azimi:2017:HHF

Arora:2012:ILM

Attie:2018:MPR

Aydin:2021:HSC

REFERENCES

Anand:2015:ICL

Ahmed:2020:FEE

Armbruster:2007:RTJ

Ateniese:2017:LCS

Ahmed:2019:OPM

Aligholipour:2021:TTA

[ABF+21] Rashid Aligholipour, Mohammad Baharloo, Behnam Farzaneh, Meisam Abdollahi, and Ahmad Khonsari. TAMA: Turn-aware mapping and architecture — a

[Aubach:2009:LLT]

[Awan:2019:TAM]

[Avissar:2002:OMA]

[Aubach:2009:OMA]

[Awan:2019:TAM]

Al-bayati:2019:PSD

Alsubhi:2024:SFE

Aamodt:2008:CTI

Anagnostopoulos:2013:PAD

Andre:2017:PPO

Ahmed:2023:SAH

Soyed Tuhin Ahmed, Kamal Danouchi, Michael Hefenbrock, Guillaume Prehat, Lorena Anghel, and Mehdi B. Tahoori. Spin-Bayes: Algorithm-hardware co-design for uncertainty estimation using Bayesian in-memory approximation on spintronic-based archi-
REFERENCES

Alur:2006:PAR

Arrestier:2019:NRD

Axer:2014:BTP

Ahmed:2014:TSA

Ayav:2008:IFT

Anand:2013:CCS

Madhukar Anand, Sebastian

Ahmed:2013:HGA

Ahmed:2019:CRU

Ahmed:2017:DAT

Ahmed:2013:HGA

Ahmed:2019:CRU

Amanollahi:2018:ERD

Agarwal:2021:IPH

Abdel-Khalek:2014:PSP

Andersson:2018:SAT
Björn Andersson, Hyoseung Kim, Dionisio De Niz, Mark Klein, Ragu
nathan (Raj) Rajkumar, and John Lehoczky. Schedula-
ability analysis of tasks with corunner-dependent execu-
tion times. ACM Transactions on Embedded Com-
puting Systems, 17(3):71:1–
71:??, June 2018. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic).

Akdur:2021:SGI
Deniz Akdur. Skills gaps in the industry: Opinions of embedded software prac-
titioners. ACM Transactions on Embedded Com-
43:39, July 2021. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3463340.

Anderson:2023:VPM
Jeff Anderson, Engin Kayraklioglu, Hamid Reza Imani, Chen Shen, Mario Miscuglio, Volker J. Sorger, and Tarek El-Ghazawi. Virtualizing a post-Moore’s law ana-
log mesh processor: The case of a photonic PDE ac-
celerator. ACM Transactions on Embedded Com-
puting Systems, 22(2):38:1–
38:??, March 2023. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3544971.

Asyaban:2016:ASB
Sedigheh Asyaban, Mehdi Kargahi, Lothar Thiele, and Morteza Mohaqeqi. Analysis and scheduling of a battery-
less mixed-criticality system with energy uncertainty. ACM Transactions on Embedded Com-
puting Systems, 16(1):23:1–23:??, November 2016. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic).

Alur:2005:P
Rajeev Alur and Insup Lee. Preface. ACM Transactions on Embedded Com-
puting Systems, 4(4):707, November 2005. CO-
DEN ???? ISSN 1539-9087 (print), 1558-3465 (elec-
tronic).

Almeida:2022:DDO
Mario Almeida, Stefanos Laskaridis, Stylianos I. Ve-
nieris, Ilias Leontiadis, and Nicholas D. Lane. DynO: Dynamic onloading of deep neural networks from cloud to device. ACM Trans-
actions on Embedded Com-
puting Systems, 21(6):71:1–
Abkenar:2019:GRU

AbouGhazaleh:2006:COS

Akbari:2021:FHA

Ahir:2017:LAR

Arnold:2014:TPH

Ali:2019:CCT

Ahmed:2020:DEC

Anonymous:2014:AOS

Ahangari:2023:HBH

Anonymous:2013:AOS

Ahn:2009:RCT

Ahmad:2020:FFB

Ancilotto:2024:XMM

Ahmad:2016:EMB

Andersson:2014:PGT

An:2016:MBD

Altawy:2018:SLT

Riham Altawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang, and Guang Gong. SLISCP-light: Towards hardware optimized sponge-specific cryptographic permutations. *ACM Transactions on Embedded Com-
Aaraj:2008:ADH

Aaraj:2011:FDE

Ambrose:2012:RII

Ahmed:2016:NSC

Aminabadi:2023:SAE

Andrade:2024:OPV

Pedro Andrade, Ivanovitch Silva, Marianne Diniz, Thomas Flores, Daniel G. Costa, and Eduardo Soares. Online processing of vehicular data on the edge through

[Azari:2020:ETO] Elham Azari and Sarma Vrudhula. ELSA: a throughput-

Alle:2009:RRR

Asifuzzaman:2022:PPE

Aysu:2015:FRT

Arghavani:2019:CLB

Awais:2023:TOS

REFERENCES

Behrouzian:2020:FAR

Baruah:2013:PST

Ben-Asher:2013:UMP

Boucheneb:2013:RIS

Boucheneb:2015:SST

Baudart:2016:LTT
Guillaume Baudart, Albert Benveniste, and Timothy
REFERENCES

Baruah:2023:OSR

Boissinot:2012:SPR

Bini:2009:MCE

Barkaoui:2015:GES

Bordoloi:2007:ISA

Benveniste:2008:CHR
Bourke:2017:SLS

Bai:2022:FCW

Barletta:2024:CAM

Baiocchi:2012:EDB

Berekovic:2012:ISS

Bueno:2007:RRP

REFERENCES

REFERENCES

Alberto Bosio, Lara Dolecek, Alexandra Kourfali, Sri Parameswaran, and Alessandro Savino. Special issue: “Approximation at

Bharanitharan:2013:DMS

Bhasin:2024:SIP

Basten:2010:EMD

Beckert:2017:RTA

Beckett:2009:PSM

Benerecetti:2017:ASS

REFERENCES

1539-9087 (print), 1558-3465 (electronic).

Ballabriga:2018:SWC

Bombieri:2010:SND

Baumeister:2019:FSM

Balsamo:2019:MPN

Banaiyanmofrad:2014:NBF

Brun:2023:EDA

Bennett:2017:DDS
Terrell R. Bennett, Nicholas Gans, and Roozbeh Jafari.

Basaklar:2023:DDT

Bhat:2017:PTS

Borgstrom:2015:PCW

Bhuiyan:2018:EER

Berendsen:2011:FSA
REFERENCES

REFERENCES

[Banerjee:2012:BAT] Ayan Banerjee, Sailesh Kan-
REFERENCES

Ali:2023:ESE

Bishnoi:2015:BCC

Bhardwaj:2019:MCA

Brisk:2013:ISI

Bambagini:2016:EAS

Bortolotti:2016:VRT

Bellasi:2015:ERR

Bartocci:2023:MHU

Benini:2003:EAD

REFERENCES

CODEN ???: ISSN 1539-9087 (print), 1558-3465 (electronic).

Bhattacharjee:2023:XEA

Biswas:2013:RTS

Bournoutian:2013:AAA

Bouzidi:2022:PMC

Bartolini:2005:OIC

Blech:2012:GIB

Bataineh:2019:EDL

Bai:2013:SOS

Bourke:2013:AES

Biswas:2022:PNC

Bandari:2017:DBE

Brandt:2014:PCS

Boorghany:2015:CIL

Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. On constrained implementation of lattice-based cryptographic primitives and schemes on smart cards.
REFERENCES

Banerjee:2009:FPU

Bombieri:2021:SIS

Baharani:2022:ARE

Bhat:2019:ULE

Balkan:2018:UFA

Boulis:2012:IWC

Burns:2005:E

Bujtor:2015:FSM

Beg:2013:CPA

Basanta-Val:2010:NHR

Bajczi:2019:WMP

Levente Bajczi, András Vörös, and Vince Molnár. Will my program break on this faulty processor?: Formal analysis of hardware fault activations in concurrent embedded software.
REFERENCES

[BZ+23] Iulian Brumar, Georgios Zacharopoulos, Yuan Yao, Saketh Rama, David Brooks, and Gu-Yeon Wei. Early DSE and automatic generation of coarse-grained

Cucinotta:2024:MCO

Caronti:2023:FGH

Carta:2007:CTA

Catania:2015:PSR

Cucinotta:2011:RMA

Chuang:2020:DDB

Chang:2013:ALC

Chatterjee:2016:TAD

Chatterjee:2017:PBS

Chen:2019:OIW

Chattopadhyay:2014:UWA

Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter, Peter Marwedel, and Heiko

Chang:2023:LEL

Chao:2013:TLA

Coronato:2010:FSW

Chandraiah:2012:CAR

Chaki:2017:FVT

Cheng:2019:AVE

[AJF+15] Alessandro Cilardo, Edoardo Fusella, Luca Gallo, and Antonino Mazzeo. Exploit-

[CH10] Alexandre Courbot, Gilles Grimaud, and Jean-Jacques Vandewalle. Efficient off-board deployment and customization of virtual machine-based embedded systems.

Chang:2013:RDD

Chen:2022:SRT

Chakraborty:2014:MCH

Chen:2014:EOR

Cooke:2015:FSM

Crenshaw:2007:RIE
Ciszewski:2017:EAC

Chattopadhyay:2008:PPA

Chattopadhyay:2009:PPA

Cedersjö:2020:TFC

Chen:2017:GEA

Chouali:2005:PPM
REFERENCES

REFERENCES

REFERENCES

Chien:2017:RTD

Chien:2012:ART

Cheng:2020:DDT

Cachera:2005:VSP

Chiew:2016:NEI

Corliss:2005:IED

Corliss:2005:IED

Chiew:2016:NEI

Corliss:2005:IED
Cilardo:2024:ASC

Contreras:2007:XPP

Cunha:2017:DSC

Contreras:2007:XPP

Contreras:2007:XPP

Cleaveland:2023:FVN

Colaco:2023:CSB

Cho:2008:DNP

Cunha:2017:DSC

Cunha:2017:DSC
REFERENCES

Chen:2017:CRA

Cabodi:2010:BSF

Chi:2013:WNE

Coron:2004:SSL

Chen:2022:PRA

Cardo:2013:ISS

Chen:2013:ISS

Jian-Jia Chen and Maurizio Palesi. Introduction to

Chatterjee:2017:FTD

Castiglione:2017:BFI

Cotard:2015:SHR

Cazorla:2013:PPA

Chattopadhyay:2014:CRP

REFERENCES

[102x681] REFERENCES

1539-9087 (print), 1558-3465 (electronic).

Curley:2010:RDT

Chippa:2013:MQV

Cho:2010:LFS

Castrillon:2016:GES

Choi:2022:ECA
106

REFERENCES

Chang:2015:PVL

Chen:2013:ELS

Cullmann:2013:CPA

Crenne:2013:CMS

Chang:2014:RAC

Chen:2016:ICA

Renhai Chen, Yi Wang, Jingtong Hu, Duo Liu,
REFERENCES

Chen:2017:LBD

Chen:2023:RCR

Chen:2017:LBD

Chang:2012:AFS

Chen:2023:FNN

Chang:2020:DAR

Chen:2023:ARL

Chen:2022:ARF

Das:2016:AHR

DiBiagio:2012:AOA

Duggirala:2019:ASR

REFERENCES

Dua:2014:CSS

DelBarrio:2014:ULP

Davis:2015:GPM

Daghero:2022:HAR

Dai:2019:DMS

REFERENCES

REFERENCES

REFERENCES

[DLD+19] Alexy Torres Aurora Dugo, Jean-Baptiste Lefoul, Felipe Gohring De Magalhaes.

[Das2023] Satyajit Das, Kevin Martin, Thomas Peyret, and

[Desai:2022:CLR]

[DNBL22]

[DP19]

[DNT18]

[DiNatale:2008:BOM]

[DPNA16]

Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine Aridhi. On memory reuse between inputs and outputs of dataflow

Daneshtalab:2014:ESI

Dunbar:2014:DTE

Driver:2010:MES

Dini:2011:LLA

Devaraj:2017:FTP

Dick:2012:ISS

REFERENCES

REFERENCES

Dharmaraj:2021:OSP
Celia Dharmaraj, Vinita Va-
sudevan, and Nitin Chandrachoodan. Optimization
of signal processing applications using parameterized
error models for approximate adders. *ACM Trans-
actions on Embedded Computing Systems*, 20(2):12:1–
12:25, March 2021. CODEN ????. ISSN 1539-9087
(print), 1558-3465 (electronic). URL https://
dl.acm.org/doi/10.1145/3430509.

Durr:2019:EET
Marco Durr, Georg Von Der
Brüggen, Kuan-Hsun Chen,
and Jian-Jia Chen. End-to-
end timing analysis of spo-
radic cause-effect chains in
distributed systems. *ACM Trans-
actions on Embedded Computing Systems*, 18(5s):
58:1–58:??, October 2019. CODEN ????. ISSN 1539-9087
(print), 1558-3465 (electronic). URL https://
dl.acm.org/ft_gateway. cfm?id=3358181.

DosSantos:2010:MPB
Osmar Marchi Dos Santos
and Andy Wellings. Mea-
suring and policing block-
ing times in real-time sys-
tems. *ACM Transactions on
Embedded Computing Sys-
tems*, 10(1):2:1–2:??, August
2010. CODEN ????. ISSN
1539-9087 (print), 1558-3465
(electronic).

Dharmaraj:2021:OSP
Natale:2014:ESI
Marco Di Natale, Rich West,
Jian-Jia Chen, and Rahul
Mangharam. Editorial: Spe-
cial issue on real-time and
embedded technology and
applications. *ACM Transac-
tions on Embedded Comput-
ing Systems*, 13(4s):119:1–
119:??, April 2014. CO-
DEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

DeNiz:2014:UBR
Dionisio De Niz, Lutz Wrage,
Anthony Rowe, and Ra-
gunathan (Raj) Rajkumar.
Utility-based resource over-
booking for cyber-physical
systems. *ACM Transac-
tions on Embedded Comput-
ing Systems*, 13(5s):162:1–
162:??, September 2014. CO-
DEN ????. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

Dong:2022:EEA
Jiankuo Dong, Fangyu
Zheng, Jingqiang Lin, Zhe
Liu, Fu Xiao, and Guang
Fan. EC-ECC: Accelerat-
ing elliptic curve cryptography
for edge computing on
embedded GPU TX2. *ACM
Transactions on Embedded
Computing Systems*, 20(2):
CODEN ????. ISSN
1539-9087 (print), 1558-3465
(electronic).
REFERENCES

Andreas Doblander, Andreas Zoufal, and Bernhard Rin- [DZR09]
processor smart cameras. ACM Transactions on Em- [EE16]
CODEN ????. ISSN 1539-9087 (print), 1558-3465 [Editors:2014:MMA]
editorial for special issue of ESeweek 2016. ACM [EHF24]
14:???, January 2018. CODEN ????. ISSN 1539-9087 (print), [Edi13]
1558-3465 (electronic).

Editors. Introduction to the special section on ES- [Editors:2013:ISS]
TIMedia’10. ACM Transactions on Embedded Com- [EH18]
???? ISSN 1539-9087 (print), 1558-3465 (electronic).

Petru Eles and Rolf Ernst. Guest editorial for special [Eles:2016:GES]
issue of ESWEEK 2015. ACM Transactions on Embedded [EE16]
CODEN ????. ISSN 1539-9087 (print), 1558-3465 [Editors:2014:MMA]
editorial for special issue of ESWEEK 2016. ACM Trans- [EHF24]
January 2018. CODEN ????. ISSN 1539-9087 (print), 1558-3465 [Edi13]
electronic).

Albin Eldstål-Ahrens, Angelos Arelakis, and Ioannis [EAAS22]
Sourdis. L²C: Combining lossy and lossless compres- [ElAdoui:2024:CTM]
sion on memory and I/O. ACM Transactions on Em- [EHF24]
2022. CODEN ????. ISSN 1539-9087 (print), 1558-3465 [Edi13]

Editors. Monitoring massive appliances by a minimal [Editors:2014:MMA]
number of smart meters. ACM Transactions on Em- [Edi14]
2014. CODEN ????. ISSN 1539-9087 (print), 1558-3465 [Edi14]
electronic).

Petru Eles and Jörg Henkel. Guest editorial for the spe- [Eles:2018:GES]
cial issue of ESWEEK 2016. ACM Transactions on Em- [EHF24]
2018. CODEN ????. ISSN 1539-9087 (print), 1558-3465 [Edi13]
electronic).

Mohammed El Adoui, Thomas Herpoel, and Benoît Frénay. [ElAdoui:2024:CTM]
Constrained tiny machine learning for predicting gas [EHF24]
concentration with I4.0 low-cost sensors. ACM Trans- [ElAdoui:2024:CTM]

[EMVR23]

Eriksson:2012:ICG

[EK12]

Elkhatib:2024:CEF

[EKAK24]

ElYaacoub:2023:SDS

[EMVR23]

Elewi:2014:EET

[ESAS14]

Egger:2008:DSM

[ESBK23]

Ernst:2023:ACN

REFERENCES

Egilmez:2017:UAF

Emeretlis:2016:LBB

Edwards:2019:CDC

Esposito:2017:NMO

Erata:2023:EEA

Elfar:2017:SER

Mahmoud Elfar, Zhanwei Zhong, Zipeng Li, Krish-

REFERENCES

[Fellner:2019:MBM] Andreas Fellner, Willibald...

Fezzardi:2017:UEP

Fu:2023:RRB

Falk:2012:ISS

Farahmand:2023:DAH

Furbach:2015:MMA

REFERENCES

REFERENCES

dl.acm.org/doi/10.1145/3465370.

dl.acm.org/doi/10.1145/3576199.

Fischmeister:2017:GES

Fu:2017:DFA

Falk:2013:RBQ

Gaitan:2024:MOC

REFERENCES

dl.acm.org/doi/10.1145/3610583.

REFERENCES

Gong:2014:SBF

Ghosh:2019:RRS

Godary-Dejean:2013:FVD

Goyal:2022:HFU

Goncalves:2019:AER

Ghosh:2020:PGI

REFERENCES

[Geelen:2010:MES] Bert Geelen, Vissarion Ferentinos, Francky Catthoor, Gauthier Lafruit, Diederik Verkest, Rudy Lauwereins,

Guo:2018:CSP

Geeraerts:2015:VCA

Gu:2014:AES

Gilroy:2011:RHA

Girodias:2012:IMO

Ghasemzadeh:2013:ULP

Abdoulaye Gamatie, Sébastien Le Beux, Éric Piel, Rabie Ben Atitallah, Anne Etien, Philippe Marquet, and Jean-Luc Dekeyser. A model-driven design framework for

REFERENCES

REFERENCES

Girault:2006:ARD

Guang:2010:HAM

Ghiasi:2004:OAM

Gaujal:2005:SPA

George:2022:UPE

Goehringer:2014:ISI

Ghosh:2023:EEA

Ghosh:2024:PPA

Gordon-Ross:2012:CCR

Ghasemi:2022:EEE

Guha:2019:SBS

Gressl:2021:DSE
Lukas Gressl, Christian Steger, and Ulrich Neffe. Design space exploration for secure IoT devices and cyber-
REFERENCES

J. S. P. Giraldo and Marian Verhelst. Hardware acceleration for embedded keyword spotting: Tutorial
REFERENCES

Girault:2021:ISI

Ganapathy:2020:DDV

Gebotys:2008:EAW

Gebotys:2015:SWP

Gebotys:2016:PCP

Gu:2016:CPP

REFERENCES

13:??, November 2016. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

REFERENCES

Hakert:2022:SMR

Hanumaiah:2014:SST

Hessel:2006:SRA

He:2020:BCL

Hamers:2012:EMS

Hettiarachchi:2014:DAF

Hashemi:2013:TMF

Hashemi:2009:TDS

Huang:2019:RRA

Huang:2014:IEM

Han:2020:BAP

Hsieh:2013:TAM

Ang-Chih Hsieh and Tingting Hwang. Thermal-aware memory mapping in 3D de-

Hessien:2023:PPS

He:2005:RFL

Huang:2012:EFP

Hu:2016:AWM

Hu:2016:EIR

Hu:2023:HPR

Xianghong Hu, Hongmin Huang, Xueming Li, Xin Zheng, Qinyuan Ren, Jingyu He, and Xiaoming Xiong. High-performance reconfigurable DNN accelerator on
Hu:2023:HP1

Huai:2023:CCR

Huang:2005:ESC

REFERENCES

CODEN ??? ISSN 1539-9087 (print), 1558-3465 (electronic).

Hu:2005:ADR

CODEN ??? ISSN 1539-9087 (print), 1558-3465 (electronic).

Huang:2014:YES

CODEN ??? ISSN 1539-9087 (print), 1558-3465 (electronic).

Hong:2018:ISP

CODEN ??? ISSN 1539-9087 (print), 1558-3465 (electronic).

Hung:2023:EEC

[HLL+23] Chen-Tui Hung, Kai Xuan Lee, Yi-Zheng Liu, Ya-Shu Chen, and Zhong-Han Chan.

[Huang:2004:DDR] Zhining Huang, Sharad Malik, Nahri Moreano, and

REFERENCES

Huang:2013:TBD

Hua:2006:EEE

Hua:2007:PDM

Hammadeh:2020:WHR

Herzog:2022:RDE

HeydariGorji:2022:LCS
Ali HeydariGorji, Siavash Rezaeifar, Hossein Bobarshad, Vladimir Alves, and Pai H. Chou. Leveraging computational storage for power-efficient...

Hemmat:2022:CCA

Hegde:2018:CAC

Hassan:2016:HSB

Harrison:2018:CPR

Higuera-Toledano:2006:HSD

Hsiu:2016:UCS

Pi-Cheng Hsiu, Po-Hsien Tseng, Wei-Ming Chen, Chin-Chiang Pan, and Tei-Wei Kuo. User-centric scheduling and governing

Luke Hsiao, Sen Wu, Nicholas Chiang, Christopher Ré, and Philip Levis. Creating hardware component knowledge bases with training data generation and multi-task

REFERENCES

REFERENCES

January 2015. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

Hassantabar:2022:MMH

Ikeda:2023:MDD

Indrusiak:2023:RTG

Irturk:2010:GAG

Ivanov:2021:VSA

Isik:2023:NNC

Berivan Isik, Kristy Choi, Xin Zheng, Tsachy Weissman, Stefano Ermon, H.-S. Philip Wong, and Armin Alaghi. Neural network compression for noisy storage de-

[ISE10] Hiroaki Inoue, Junji Sakai, and Masato Edahiro. A robust seamless communication architecture for next-
REFERENCES

REFERENCES

Jacob:2003:ITS

Johnson:2016:RTR

Jayakodi:2020:DOE

Josipovic:2017:OLS

Jia:2013:SLI

Jacome:2003:SIP

Jeong:2012:PLT

Jaein Jeong and David Culler. Predicting the long-

[JGCS24] Arpan Jati, Naina Gupta, Anupam Chattopadhyay, and Somitra Kumar Sanadhya. A configurable CRYSTALS-Kyber hardware implement-
Jafari:2009:EPR

Jackson:2021:EES

Jin:2018:PAR

Jones:2006:RPW

Jungeblut:2013:SAO

REFERENCES

Jeong:2013:RRM

Jeong:2022:TBF

Jung:2010:SFS

Jafari:2013:ISS

Ji:2018:ACP

Jia:2015:TAD

Jerraya:2006:GEC

Jung:2014:HCO

Jimenez:2015:LSC

Jin:2014:PPA

Jain:2020:CHS

Jayakumar:2016:SMV

Jayakumar:2017:EAM

REFERENCES

1539-9087 (print), 1558-3465 (electronic).

[Kadiyala:2020:LLA]

[Kumar:2007:ESI]

[Kurtin:2017:ART]

[Koh:2023:PST]

[Kim:2013:SIE]
Minyoung Kim, Sudarshan Banerjee, Nikil Dutt, and Nalini Venkatasubramanian.

Koopman:2005:UES

Kim:2016:APA

Kumar:2008:CCP

Kyriakis:2019:SMR

Koushanfar:2007:TMC

Farinaz Koushanfar, Abhijit Davare, David T. Nguyen, Alberto Sangiovanni-Vincentelli and Miodrag Potkonjak.

Kundu:2023:SRB

Kerrison:2015:EMS

Kundu:2022:TAA

Krishnaswamy:2005:DCB

Kumar:2012:CMA

Kloda:2023:LLS

REFERENCES

Kim:2017:AAS

Ko:2017:PCS

Kim:2018:OND

Kadiyala:2020:HPC

Kim:2013:DER
REFERENCES

Kadayif:2005:DSO

Kwan:2005:OVA

Kadayif:2005:CDH

Kim:2016:UMA

Khajeh:2012:EAA

Koutsoukos:2012:PAM

Kim:2011:DPT

Ko:2016:SBS

Kangas:2006:UBM

Khalgui:2013:ISI

Ko:2010:MME

Jeonggil Ko, Jong Hyun Lim, Yin Chen, Rvāzvan Musvaloīn-E, Andreas Terzis, Gerald M. Masson, Tia Gao, Walt Destler, Leo Selavo, and Richard P. Dutton.

Kim:2019:AAI

Kornaros:2024:FUI

Koo:2009:FTG

Kirsch:2013:ISS

Ko:2007:BSA

Khalgui:2013:RRE

Mohamed Khalgui, Olfa Mosbah, and Zhiwu Li.

Kang:2022:MLM

Knapik:2015:ASB

Koul:2023:AAA

Kumar:2012:ECI

Kim:2017:PBB

Khan:2022:BIC

Krishnakumar:2023:DSA

Khalid:2016:RHL

Kim:2019:OBI

REFERENCES

CODEN ???, ISSN 1539-9087 (print), 1558-3465 (electronic). URL https://
dl.acm.org/ft_gateway.cfm?id=3358186.

dl.acm.org/doi/10.1145/3609121.

Hyoseung Kim and Raghunathan (Raj) Rajkumar. Predictable shared cache management for multicore real-time virtualization.

dl.acm.org/doi/10.1145/3396235.

dl.acm.org/doi/abs/10.1145/3362064.

Florian Kriebel, Semeen Rehman, Arun Subramaniyan, Segnon Jean Bruno Ahandagbe,

Kaiser:2010:ISI

Kim:2013:MPE

Kalayappan:2018:PAH

Krishnan:2022:BCS

Kulkarni:2018:LOC

Karl:2024:PQS

REFERENCES

Kang:2013:AEC

Kang:2017:RLA

Kim:2012:FLF

KSS16

Kumar:2014:WCG

Kevin Klues, Guoliang Xing,

Khouzani:2017:DBS

Kynzd:2020:EMB

Koohi:2014:TSL

Kim:2013:NCA

Kulkarni:2006:VVI

REFERENCES

Liu:2011:NBF

Lee:2023:CVA

Luo:2006:EEI

Liu:2016:SMA

Lach:2004:ESI

Loghi:2007:PMM
[LBP07] Mirko Loghi, Luca Benini, and Massimo Poncino. Power

Lu:2015:ECA

Li:2017:TPR

Liang:2019:ESW

Lien:2023:FFS

Lee:2018:FRT

Liu:2008:HPP

Duo Liu, Zheng Chen, Bei

Kelvin Lin, Chung-Ping Chung, and Jean Jyh-Jiun

Lin:2022:DRR

Lee:2012:EEA

Lee:2021:D

Leonard:2018:GES

Lingamneni:2013:SPI

Avinash Lingamneni, Christian Enz, Krishna Palam, and Christian Pignet. Synthesizing parsimonious inexact circuits through prob-

Lin:2019:GBM

Logaras:2014:PAE

Lei:2023:FII

Liang:2018:DFM

Li:2021:HCO

REFERENCES

REFERENCES

Li:2023:EDS

Lazarescu:2015:ITB

Liang:2017:EKM

Lu:2018:TSI

Lo:2013:AGH

Lin:2022:HEI

REFERENCES

REFERENCES

Lu:2017:CDS

Leon:2021:IPP

Lee:2007:SCT

Li:2014:MRT

Liu:2017:PSSa

Lin:2009:MAC
Liu:2017:DMR

Liu:2017:MCS

Liao:2022:RRS

Liang:2013:AAF

Lu:2024:EEE

Lee:2019:ESA

REFERENCES

Li:2022:FDN

Liu:2004:MBA

Leipnitz:2019:HLS

Loke:2015:MCS

Lee:2013:LAB

Li:2018:ECB

Luppold:2020:CWC

Lhuillier:2014:HHA

Liu:2013:RAE

Tiantian Liu, Alex Oraillou, Chun Jason Xue, and Minming Li. Register allocation for embedded systems to simultaneously reduce energy and temperature on registers. *ACM Transactions on Embedded Computing Systems*, 13(3):50:1–50:??, December 2013. CODEN ????. ISSN 1539-9087

[LPD+20] Ioannis Latifis, Karthick Parashar, Grigoris Dimitroulakos, Hans Cappelle,

Loveless:2023:CML

Liu:2013:AEE

Le:2016:CBR

Liu:2017:HP1

Leon:2021:IPD

Vasileios Leon, Theodora Paparouni, Evangelos Petrongonas, Dimitrios Soudris, and Kiamal Pekmeshti. Improving power of DSP and CNN hardware accelerators using approximate floating-point multipliers. *ACM Trans-

Li:2013:TAT

Lu:2016:VCV

Lloyd:2009:PSN

Lee:2012:PPI

Lee:2013:SBR

Landy:2017:SAS

REFERENCES

Li:2024:CIS

Lysecky:2009:DIM

Leon-Vega:2023:AGR

Liu:2016:ETA

Leite:2022:REC

Li:2010:SMA

Liu:2013:JVP

Li:2018:TES

Lin:2015:SLP

REFERENCES

REFERENCES

puting Systems, 13(2s):61:1–
61:??, January 2014. CO-
DEN ???. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[MAGR15] Arslan Munir, Joseph An-
toon, and Ann Gordon-Ross. Model-
ing and analysis of fault detection and fault
tolerance in wireless sensor networks. ACM Trans-
actions on Embedded Com-
3:??, January 2015. CO-
DEN ???. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[MUN15] Arslan Munir, Joseph An-
toon, and Ann Gordon-Ross. Model-
ing and analysis of fault detection and fault
tolerance in wireless sensor networks. ACM Trans-
actions on Embedded Com-
3:??, January 2015. CO-
DEN ???. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[MASG15] Davit Mirzoyan, Benny Akesson, Sander Stuijk, and Kees Goossens. Maximiz-
ing the number of good dies for streaming appli-
cations in NoC-based MPSoCs un-
der process variation. ACM Trans-
actions on Embedded Com-
puting Systems, 14(4):
83:1–83:??, December 2015.
CODEN ???. ISSN
1539-9087 (print), 1558-3465
(electronic).

[MAKO19] Sumit K. Mandal, Raid Ay-
oub, Michael Kishinevsky, and Umit Y. Ogras. An-
alitical performance models for NoCs with multi-
ple priority traffic classes. ACM Trans-
actions on Embedded Com-
puting Systems, 18(5a):52:1–52:??, October
2019. CODEN ???. ISSN
1539-9087 (print), 1558-3465
dl.acm.org/ft_gateway.
cfm?id=3358176.

[MALM04] Pedro Mejia-Alvarez, Eugene Levner, and Daniel Mossé. Adaptive schedul-
ing server for power-aware real-time tasks. ACM Trans-
actions on Embedded Com-
puting Systems, 3(2):284–
306, May 2004. CODEN
???. ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[MALW22] Katherine Missimer, Manos Athanassoulis, and Richard West. Telomere: Real-
time NAND flash storage. ACM Trans-
actions on Embedded Com-
puting Systems, 21(1):
10:1–10:24, January
2022. CODEN ???. ISSN
1539-9087 (print), 1558-3465
dl.acm.org/doi/10.1145/
3479157.

[MB10] Ian Vince McLoughlin and Timo Rolf Bretschneider. Reliability through re-
dundant parallelism for micro-
satellite computing. ACM Trans-
actions on Embedded Com-
puting Systems, 9(3):
REFERENCES

Matthews:2015:PTS

[MBB+15]

Mendez:2022:EIC

[MBCM22]

Mangeruca:2007:USU

[MBFSV07]

Murray:2009:CTI

[MBFT09]

Modi:2023:CRR

[MBJ+23]

Medhat:2015:RMC
Ramy Medhat, Borzoo Bonakdarpour, Deepak Kumar, and Sebastian Fischmeister. Runtime monitoring of cyber-physical sys-

REFERENCES

Mathew:2017:GES

Mathew:2015:NMB

Mark:2012:HBC

Mishra:2004:MVP

Maity:2021:SSO

Ma:2023:ICD
REFERENCES

Morris:2022:HUH

Manolache:2004:SAA

Manolache:2008:TMP

Murray:2012:ASL

MartinezSantos:2013:LSA

Mandal:2016:DIW
REFERENCES

Motamedi:2017:MIR

Manilov:2017:FRS

Muresan:2005:ICM

Malik:2015:HRT

Marshall:2021:PCP

Mondal:2023:PPR

Anupam Mondal, Shreya Gangopadhyay, Durba Chatterjee, Harishma Boyapally, and Debdeep Mukhopadhyay. PReFeR: Physically related function based remote attestation protocol. *ACM Transactions on Embedded Computing Systems*, 22(5s):109:1–109:??, October...

[MKAA17] Mehran Mozaffari-Kermani, Reza Azarderakhsh, and Anita Aghaie. Fault detection architectures for post-quantum cryptographic stateless hash-based secure...

[MKM23b] Anindan Mondal, Shubrojoyoti Karmakar, Mahabub Hasan Mahalat, Suchismita Roy,
REFERENCES

Maier:2018:FIT

Misailovic:2013:PSP

Mehrabian:2017:TTL

Metz:2023:BBS

Mousavi:2023:DDA

REFERENCES

Mitra:2008:VAD

Ma:2017:DPE

Medhat:2017:MPE

Mozumdar:2009:CSP

Majmudar:2016:AOR

Min:2023:SBM

REFERENCES

Mahdavikhah:2014:MFP

Moazzemi:2019:HFL

Mosbahi:2013:CFM

Motamedi:2019:DNA

Marinelli:2022:MES

Ma:2021:CSA

Monniaux:2023:FVL

Middha:2008:MMS

Malik:2012:SLA

Manna:2016:ITS

Micolet:2017:SDP
REFERENCES

Vincent Migliore, Cédric Seguin, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand, Caroline Fontaine, Guy Gogniat, and Russell Tessier. A high-speed accelerator for homomor-

REFERENCES

Maggio:2014:TSC

Marco:2020:ODL

Musoll:2003:SRU

Musoll:2010:CEL

Marz:2016:RPC

Masse:2013:MWE

Meyer:2016:SSC

[MWF+16] Rolf Meyer, Jan Wagner, Bastian Farkas, Sven Horsinka, Patrick Siegl, Rainer Buchty, and Mladen

Namazi:2018:MBR

Noguera:2004:MRA

Nodeh:2018:EAM

Nahapetian:2009:AAS

Nassar:2023:APM

Nouri:2016:ARA

REFERENCES

[Neshatpour:2020:IIC] Katayoun Neshatpour, Houman Homayoun, and Avesta...

Nam:2012:MTI

Napapetian:2012:ESS

Nuzzo:2019:SAG

Nirjon:2014:MSR

Nadezhkin:2013:AGP

Naik:2004:CCS

Nghiem:2012:PTTI

Nikitakis:2013:NLP

Nam:2013:PAR

Niu:2024:EMF

Nagar:2016:FPW

Nagar:2017:RCB

Kartik Nagar and Y. N. Srikant. Refining cache behavior prediction using cache

[Nair:2011:EHB]

[NSL11]

[NVH+20]

[NVB+20]

REFERENCES

Oneal:2017:GPE

Odema:2023:MMA

Owaida:2015:EDS

Oza:2024:DAT

Ost:2013:PAD

Oh:2023:MFL

Ogras:2023:ISI

Ozer:2008:SBE

Ottoni:2006:OAU

Ou:2006:DSE

[OP06] Jingzhao Ou and Vik- tor K. Prasanna. De-

Francesco Paterna, Andrea Acquaviva, Francesco Papariello, Giuseppe Desoli, and Luca Benini. Variability-

Patterson:2009:SMB

Paul:2014:RTP

Parikh:2014:FCF

Pan:2022:BWH

Plaks:2009:GECa

Plaks:2009:GECb

Toomas P. Plaks, Neil Bergmann, and Bernard Pottier. Guest editorial CAPA’08 Configurable com-

Panainte:2007:MCR

Pagani:2014:EEA

Paul:2013:VSI

Pagliari:2017:ABC

Paul:2021:ATA

REFERENCES

REFERENCES

Ponugoti:2019:EFH

Plassan:2019:MMA

Piccolboni:2017:CCH

Paolieri:2013:HRT

Papagiannopoulou:2017:ETE

Piccolboni:2017:ECF

Park:2014:AWL

Puthal:2017:DDK

Petrov:2005:RCF

Paulin:2013:PPP

Pradhan:2012:AVJ

Pan:2019:MTP

Pederson:2019:BCL

Peon-quirós:2015:PLD

Palossi:2015:CDP

Pan:2015:HFY

Ponzina:2023:OFC

Flavio Ponzina, Marco Rios, Alexandre Levisse, Giovanni Ansaloni, and David

Poudel:2021:MFU

Pinisetty:2017:REC

Passerone:2019:CEC

Park:2004:LLS

Park:2008:ATL

Park:2008:SRB

Taejoon Park and Kang G. Shin. Secure routing based on distributed key sharing in

Pitter:2010:RTJ

Palesi:2014:ESS

Park:2019:ERR

Pazzaglia:2021:GWH

Palermo:2012:VAR

Peng:2012:BHA

(print), 1558-3465 (electronic).

Pan:2023:BBS

Pande:2012:PDP

Qu:2007:EED

Qu:2003:SSS

Quan:2015:HTM

REFERENCES

Roy:2019:CPR

Razavi:2010:SAB

Raman:2008:ASW

Rai:2017:UCG

Ravi:2023:VLV

REFERENCES

Romaszkan:2020:PPP

Ren:2023:PWB

Rodionova:2023:TRT

RibeiroDaSilva:2021:MCH

Ramaprasad:2010:TBF

Harini Ramaprasad and Frank Mueller. Tightening the bounds on feasible preemptions. ACM Transactions on Embedded Com-
puting Systems, 10(2):27:1–
27:??, December 2010. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[RMBS20] Nico Reissmann, Jan Chris-
tian Meyer, Helge Bahmann,
and Magnus Själander.
RVSDG: an intermediate
representation for optimiz-
ing compilers. ACM Trans-
actions on Embedded Com-
49:28, November 2020. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3391902.

[RMH04b] Arash Reyhani-Masoleh and
M. Anwar Hasan. Towards
fault-tolerant cryptographic
computations over finite
fields. ACM Transactions on
Embedded Computing Sys-
tems, 3(3):593–613, August
2004. CODEN ???? ISSN
1539-9087 (print), 1558-3465
(electronic).

[RMD09] Mehrdad Reshadi, Prabhat
Mishra, and Nikil Dutt.
Hybrid-compiled simulation:
an efficient technique for
instruction-set architecture
simulation. ACM Trans-
actions on Embedded Com-
puting Systems, 8(3):20:1–
20:??, April 2009. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[RMK17] Bita Darvish Rouhani, Aza-
alia Mirhoseini, and Farinaz
Koushanfar. RISE: an au-
tomated framework for real-
time intelligent video surveil-
lance on FPGA. ACM
Transactions on Embedded
Computing Systems, 16(5s):
CODEN ???? ISSN
1539-9087 (print), 1558-3465
(electronic).

[RMM03] Cosmin Rusu, Rami Mel-
hem, and Daniel Mossé.
Maximizing rewards for real-
time applications with en-
ergy constraints. ACM
Transactions on Embedded
Computing Systems, 2(4):
CODEN ???? ISSN
1539-9087 (print), 1558-3465
(electronic).
REFERENCES

Raha:2017:QIA

Raj:2022:RMV

Ravi:2004:SES

Rho:2016:GEC

Rrushi:2022:PDP

Regehr:2005:ESO

REFERENCES

Ratschan:2007:SVH

Riccobene:2009:SCB

Reghenzani:2020:DUP

Riazi:2017:CSC

Rottleuthner:2021:SYP

Rakhmatov:2003:EMB

Seth:2006:FFA

Szeto:2023:BAB

Suresh:2009:EEE

So:2008:UHS

Schneider:2023:CCM

Seyoum:2019:FFO

Bernhard Scholz, Bernd Burgstaller, and Jingling

Jie Shen, Yingjue Cai, Yang Ren, and Xiao Yang. A universal application storage system based on smart card. *ACM Transactions on
REFERENCES

[SG24] Ramesh Kumar Sah and Hassan Ghasemzadeh. Adversarial transferability in embedded sensor systems:

Subramanian:2012:GOP

Sogokon:2017:OMP

Sanz:2013:SLM

Sun:2016:FFJ

Sepulveda:2021:BCA

Sandeep K. Shukla. Editorial: Embedded every-

Shukla:2015:EOS

Shukla:2015:ERS

Shukla:2015:ESD

Shukla:2016:EDP

Shukla:2016:EFI

REFERENCES

Shukla:2014:EES

Shukla:2015:EBD

Shukla:2015:EOS

Shukla:2015:ESD

Shukla:2016:EFI
2016. CODEN ????. ISSN 1539-9087 (print), 1558-3465 (electronic).

Shukla:2016:ESB

Shukla:2016:ESE

Shukla:2017:ECC

Shukla:2017:ECSS

Shukla:2017:ESM

Shukla:2018:EEC

Shukla:2018:EIC

Shukla:2018:ENA

Shukla:2018:EUE

Shukla:2018:ETS

Shukla:2018:EAR

Shukla:2019:EES

Shukla:2019:EHF

Shukla:2019:ERH
REFERENCES

Shukla:2020:EEC

Shukla:2020:TER

Sridhar:2019:SEC

Santanna:2017:DIS

Singh:2024:AED

John Sartori and Rakesh Kumar. Exploiting timing error resilience in pro-

REFERENCES

Saini:2021:IFC

Scharwaechter:2007:AAE

Serpanos:2004:GES

Shin:2008:CRT

Sauer:2016:LFD

Sayyah:2015:VPB

Spasic:2016:IHR

Stilkerich:2017:PGU

Spellini:2019:CDM

Soliman:2022:FFF

Seo:2016:HMR

Su:2019:TFR

REFERENCES

Sandoval:2017:TTS

[SMW+17]

Shi:2021:TGH

[SOL+16]

Schurmans:2015:IEP

[SOL+16]

Schoeberl:2010:NRT
REFERENCES

2010. CODEN ???. ISSN 1539-9087 (print), 1558-3465 (electronic).

[Sharma:2016:DFT] Namita Sharma, Preeti Ranjan Panda, Francky Catthoor, Min Li, and Prashant Agrawal. Data flow transformation for energy-efficient implementation of Givens

CODEN ??? ISSN 1539-9087 (print), 1558-3465 (electronic).

Sarwar:2023:CPE

Segarra:2015:ASP

Sutar:2018:DPI

Seiculescu:2013:DBE

Santini:2016:BCS

Singh:2023:KWC

REFERENCES

Schurgers:2003:PME

Schulz-Rosengarten:2021:TOO

Seo:2013:AIG

Seo:2021:SBA

Saha:2024:TPA

Shin:2024:VEM

Yong-Jun Shin, Donghwan Shin, and Doo-Hwan Bae. Virtual environment model generation for CPS goal

Shen:2023:TMS

Stuart:2011:RRN

Shukla:2005:GES

Sridhar:2024:SSR

Siirtola:2017:WDW

Shafique:2022:ISIa

Shafique:2022:ISlb

Sifakis:2013:ISS

Su:2014:RVP

Sahoo:2023:ATS

Schuster:2017:DSE

Susu:2020:VLA

Sorrentino:2023:HCA

Stitt:2004:ESS

Sangiovanni-Vincentelli:2005:OES

Srinivasavarma:2021:TBC

Sunder:2013:FVD

Salajegheh:2013:HWS

Mastoorreh Salajegheh, Yue Wang, Anxiao (Andrew)

REFERENCES

Sotiriou-Xanthopoulos:2016:FIA

Sotiriou-Xanthopoulos:2016:IEV

Song:2017:SSI

Shadab:2023:HHC

Shu:2017:WDD

Tsoutsouras:2018:HDR

[Vasileios Tsoutsouras, Irak-

Touati:2011:ESR

Tanasa:2016:CAP

Tigori:2017:FMB

Tripakis:2013:CSD

Tang:2017:TFC

Tran:2019:SVC

Tajik:2016:SRS

Tardieu:2005:LE

Staff:2012:APA

Theocharides:2024:ISI

Tuncali:2016:APM

Tretter:2017:MAC

REFERENCES

Tan:2018:LLP

Tillenius:2015:RAT

Thatte:2012:KEE

Tseng:2009:FSA

Tuli:2023:CNA

Tan:2007:TAP

[TRJ05] T. K. Tan, A. Raghunathan,

Thiele:2013:PTT

Tripakis:2005:TDT

Tichy:2010:GAF

Tsouvalas:2022:FST

Tamas-Selicean:2015:DOM

Tan:2017:ITM

[Turan:2019:CFF] Furkan Turan and Ingrid Verbauwhede. Compact and

Unnikrishnan:2009:RMR

Udayakumaran:2006:DAS

Ungureanu:2021:FAT

Uzelac:2013:HBL

Ullah:2022:ADA

Vatanparvar:2018:DAB

Varea:2006:DFN

Valmari:2017:SIS

Valtazanos:2013:LSS

Venkataramani:2019:SMM

Varma:2008:AFS

Vijzelaar:2017:MVS

Stefan Vijzelaar and Wan Fokkink. Multi-valued simulation and abstraction using lattice operations. *ACM*

Valente:2021:CMS

VanPinxten:2019:PSC

Vyas:2013:HAS

Vasilios:2018:CSC

Voros:2013:MHD

Nikolaos S. Voros, Michael Hübner, Jürgen Becker, Matthias Kühne, Florian Thomaitis, Arnaud Grasset, Paul Brelet, Philippe Bonnot, Fabio Campi, Eberhard Schüler, Henning Sahilbach, Sean Whitty, Rolf Ernst, Enrico Billich, Claudia Tischendorf, Ulrich Heinkel, Frank Iermomimon, Dimitrios Kritharidis, Axel Schneider, Joachim Knaeblein, and Wolfram Putzke-Röming. MORPHEUS: a heterogeneous dynamically reconfigurable platform for designing highly complex

[Vreman:2023:SAC] Nils Vreman and Martina Maggio. Stochastic analy-

Venkataramani:2003:ACC

VonMaurich:2015:IQM

Verbauwhede:2005:SES

Voyiatzis:2008:SFS

Vougioukas:2017:NFS

Vasilikos:2013:HSA

Vali:2023:BSD

VanPinxten:2017:OSR

Whitham:2014:ERC

Winter:2006:TPC
Wiggers:2010:BCC

Wu:2016:JJO

Wang:2020:CTC

Wu:2023:WTM

Wagner:2007:HSI

Wang:2019:ALA
Wei-Chen Wang, Yuan-Hao Chang, Tei-Wei Kuo, Chien-Chung Ho, Yu-Ming Chang, and Hung-Sheng Chang. Achieving lossless accuracy with lossy programming for efficient neural-network training on NVM-based systems. *ACM Trans-

Wu:2016:SAR

Wagemann:2018:OEN

Wang:2017:PAP

Wang:2023:EBN

Wang:2016:GTB

Wang:2016:SAR

Jun-Shen Wu, Tsen-Wei Hsu, and Ren-Shuo Liu. SG-Float: Achieving memory access and computing power reduction using self-gating float in CNNs. *ACM Trans-
Wang:2017:HA T

Wu:2017:SVA

Wu:2007:EBT

Wade:2020:EIP

Wei:2018:SAE

Wu:2024:SGC

Wang:2015:TWA

Wang:2023:EEM

Wang:2012:DCR

Weinstock:2016:PSS

Wongpiromsarn:2012:VPC

Watkins:2015:UNT

Wu:2006:EEU

Wehner:2016:SRM

Wu:2014:EIE

Wu:2014:EDF

[WSK14] Chenye Wu, Yiyu Shi, and Soummya Kar. Exploring de-
CODEN ???? ISSN 1539-9087 (print), 1558-3465 (electronic).

Weichslgartner:2018:DTR Andreas Weichslgartner, Stefan Wildermann, Deepak Gangadharan, Michael Glaß, and Jürgen Teich. A design-time/run-time application mapping methodology for predictable execution time in MPSoCs. *ACM Transactions on Embedded Com-
Witterauf:2021:SLC

Wen:2023:WCP

Wang:2022:RID

Wang:2019:DES

Wang:2013:DLE

Wolf:2017:GES
Marilyn Wolf and Jason Xue.

Wang:2017:SRS

Wang:2018:STW

Wang:2014:STN

Wang:2019:NNA

Waluyo:2010:MMB

Wouhaybi:2013:ECM

[WYS+13] Rita H. Wouhaybi, Mark D.
Wu:2012:MCB

Wang:2019:SVH

Wu:2017:PIE

Wu:2023:EAD

Wu:2013:OSL

Wang:2018:SLL
[1539-9087 (print), 1558-3465 (electronic)].

Wang:2017:CEG

Wang:2023:FCF

Wang:2023:FCF

Xi:2016:FSS

Xie:2018:ESA

Xia:2023:SPS

Xu:2006:DMA

Xu:2023:LVL

Yang:2012:UEP

You:2016:VVA

Chiou:2005:SAS

ISSN 1539-9087 (print), 1558-3465 (electronic).

Yuan:2022:MFC

Yantir:2017:AMM

Yang:2002:FVL

Yuce:2017:AFI

Bilgiday Yuce, Nahid Farhady Ghalaty, Chinmay Deshpande, Harika Santapuri, Conor Patrick, Leyla Nazhandali, and Patrick Schaumont. Analyzing the fault injection

Yan:2019:CAR

Yan:2008:DOD

Yang:2012:PAA

Young:2023:CAD

Yan:2017:FFI

Yun:2003:EOV

Hao-Saem Yun and Jihong

Yu:2024:MAE

Yu:2019:TND

Yuan:2021:CCB

Yang:2015:ESV

Yim:2019:TFS

Yu:2010:FSB

Yoong:2012:ICC

Yang:2023:EEP

Yang:2022:DDC
[YS22] Yi Yang, Murugan Sankaradas, and Srimat Chakradhar. DyCo: Dynamic, contextu-
76:1–76:??, November 2022. CODEN ???? ISSN 1539-9087 (print), 1558-3465
dl.acm.org/doi/10.1145/
3520131.

You:2013:EAC
[YW13] Yi-Ping You and Shen-Hong
Wang. Energy-aware code motion for GPU shader pro-
cessors. *ACM Transactions on Embedded Com-
puting Systems*, 13(3):49:1–
49:??, December 2013. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

Yeh:2023:WRR
[YWLW23] Po-Chen Yeh, Chin-Hsien
Wu, Yung-Hsiang Lin, and
Ming-Yan Wu. A write-
related and read-related
DRAM allocation strategy inside solid-state drives
(SSDs). *ACM Transactions on Embedded Com-
puting Systems*, 22(1):17:1–
17:??, January 2023. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3561301.

Yoon:2018:SAF
[YYKK18] Su-Kyung Yoon, Jitae Yun,
Jung-Geun Kim, and Shin-
Dug Kim. Self-adaptive filter-
ing algorithm with PCM-
based memory storage sys-
tem. *ACM Transactions on
Embedded Computing Sys-
tems*, 17(3):69:1–69:??, June
2018. CODEN ???? ISSN
1539-9087 (print), 1558-3465
(electronic).

Yin:2023:CBR
[YV23] Jun Yin and Marian Ver-
helst. CNN-based robust sound source localization with SRP-PHAT for the ex-
treme edge. *ACM Transactions on Embedded Com-
puting Systems*, 22(3):55:1–
55:??, May 2023. CODEN
???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic). URL https://
dl.acm.org/doi/10.1145/
3586996.

Yeh:2023:WRR
[YL+20] Kaige Yan, Jingwei jia Tan,
Longjun Liu, Xingyao Zhang,
Stanko R. Brankovic, Jinghong
Chen, and Xin Fu. Toward customized hybrid fuel-
cell and battery-powered mo-
bile device for individual
users. *ACM Transactions on Embedded Com-
puting Systems*, 18(6):
1–20, January 2020. CODEN
???? ISSN 1539-9087 (print), 1558-3465
dl.acm.org/doi/abs/10.
1145/3362033.

You:2013:EAC
[YYKK18] Su-Kyung Yoon, Jitae Yun,
Jung-Geun Kim, and Shin-
Dug Kim. Self-adaptive filter-
ing algorithm with PCM-
based memory storage sys-
tem. *ACM Transactions on
Embedded Computing Sys-
tems*, 17(3):69:1–69:??, June
2018. CODEN ???? ISSN
1539-9087 (print), 1558-3465
(electronic).

Zhang:2013:SAE

Zhao:2009:STT

Zhao:2020:NLD

Zhang:2004:BAP

Zhao:2004:DAF

Zou:2004:SDT

Zhuo:2008:EED

Zhao:2022:CBI

Zahavi:2013:GNL

Zambreno:2005:SOA

Zheng:2014:MSC

Zhong:2019:SHS

Zeng:2014:MSC

[ZDZ14] Haibo Zeng, Marco Di Natale, and Qi Zhu. Mini-

Zacharopoulos:2023:TEH

Ziegler:2019:HSE

Zhao:2015:RSP

Zhong:2012:SNL

Zhong:2012:WSN

Zhou:2013:ARD

Bo Zhou, Xiaobo Sharon Hu, Danny Z. Chen, and

Zhu:2014:CCL

Zhu:2010:RAD

Zhou:2020:BBT

Zhang:2005:RDC

Zhou:2008:CIA
Ye Zhou and Edward A. Lee. Causality interfaces for actor networks. *ACM Transactions on Embedded Com-

Zheng:2023:IIA

Zhao:2003:SRM

Zhai:2013:MSA

Zhu:2007:ESA

Zhuang:2006:PLS

Zhuang:2007:PEP

Zhuang:2011:CST

Zhao:2017:ORT
REFERENCES

Zhou:2021:RAS

Zhou:2019:LCP

Zhu:2013:RAB

Zhang:2024:SBN

28:1–28:??, June 2019. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
acm.org/ft_gateway.cfm?
id=3301306.

[ZTD+06] W. Zhang, Y.-F. Tsai,
D. Duarte, N. Vijaykrish-
nan, M. Kandemir, and
M. J. Irwin. Reducing dy-
namic and leakage energy in
VLIW architectures. ACM
Transactions on Embedded
28, February 2006. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[ZTRC03] Huiyang Zhou, Mark C. To-
buren, Eric Rotenberg, and
Thomas M. Conte. Adap-
tive mode control: a static-
power-efficient cache design.
ACM Transactions on Em-
bedded Computing Systems,
CODEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
tronic).

[Zhu:2019:SEA] Siwen Zhu, Yi Tang, Jun-
xiang Zheng, Yongzhi Cao,
Hanpin Wang, Yu Huang,
and Marian Margraf. Sample
essentiality and its applica-
tion to modeling attacks on
arbiter PUFs. ACM Trans-
actions on Embedded Com-
puting Systems, 18(5):42:1–
42:??, October 2019. CO-
DEN ???? ISSN 1539-9087
(print), 1558-3465 (elec-
acm.org/ft_gateway.cfm?
id=3344148.

Vahid, and Roman Lysecky.
A self-tuning cache archi-
tecture for embedded sys-
tems. ACM Transactions on
Embedded Computing Sys-
tems, 3(2):407–425, May
2004. CODEN ???? ISSN
1539-9087 (print), 1558-3465
(electronic).

Vahid, and Walid Najjar. A
highly configurable cache for
low energy embedded sys-
tems. ACM Transactions on
Embedded Computing Sys-
tems, 4(2):363–387, May
2005. CODEN ???? ISSN
1539-9087 (print), 1558-3465
(electronic).

[Zerzelidis:2010:FFS] Alexandros Zerzelidis and
Andy Wellings. A framework
for flexible scheduling in the
RTSJ. ACM Transactions on
Embedded Computing Sys-
tems, 10(1):3:1–3:??, August
2010. CODEN ???? ISSN
1539-9087 (print), 1558-3465
(electronic).
REFERENCES

Zhang:2013:SCE

Zheng:2017:DDC

Zhang:2016:IRW

Zhang:2023:OCS

Zhou:2010:MMS

Zhong:2008:SWE

Zhou:2013:GOV

[ZXCH13] Bo Zhou, Kai Xiao, Danny Z. Chen, and X. Sharon Hu. GPU-optimized volume ray

Zhuge:2003:CSR

Zeng:2017:SLD

Zeng:2016:SLM

Zou:2022:APS

Zhang:2024:EAA

Zhang:2015:CDR

[ZZX+15] Shiwen Zhang, Qingquan
REFERENCES
