Title word cross-reference

1 [CC19], mod [BS09], λ [KS13b, MP03], λδ [Gui09]. λμ [Van18a, Sau10]. μ [GLSG15, MM07], n! [AI03]. O(m log n) [GJKW17]. ω [BBS07, CHH09]. π [TM10]. qMμ [MM07].

-Calculus [GLSG15, KS13b, MM07, TM10, MP03, Sau10]. -regular [BBS07, CHH09]. -Safe [CC19].

2003 [Kol05]. 2008 [KM10]. 2SAT [Sub04].

3-valued [SG07].

abduction [LS07, LY07]. Abductive [KKLJU14, MSS14, SDSS13, ACG+08]. abelian [MOG05]. Abilities [BJP19]. ability [GS09]. abnormality [CEG05].

Abstract

[BG03a, BG08a, BD07b, FFP15, HCGT18, MZ17, TZ02, TZ04, GRS05, Gur00, MM02].

abstract-state [Gur00]. Abstraction [CGWW15, CV10, LB07, LLM+07, SG07].

abstraction-refinement [CV10, SG07].

abstractions [NNN11, YRSW07]. Access [BBGS20]. accessing [ACW12].

Action [PS17, BG02]. actions [DST13, ILNR09]. Activities [AG19].

Actor [AFMGMM16]. Actor-Based [AFMGMM16]. Acyclic [EEH17a]. Adding

...
[BCEO20, GHK08]. computed [LY07].
Computing [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
concerning [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
concerning [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Concurrency [AFMGMM16, DHL12, DHS16].
Concurrency [BCD13, CJL13, GJKW17, HCMS13].
Concept [DHS16]. Conceptual [AKRZ14, TSH15].
class [CFS10]. concrete [BD07a, Lut04, TZ04].
Conc
Dependence [DHL12, DK12, HLM13].
Dependencies [BB20]. Dependent [LW15, SBTM06]. Depth [BKV15, EEH17b, GK18, BSH10, IS06].
Depth-Bounded [EEH17b]. Description [ACOS17, AKRZ14, DNR02, KRH13, BGL12, CDL08, EILS11, Lut04, ST14, WZ08].
dependent [LW15, SBTM06]. Depth [BKV15, EEH17b, GK18, BSH10, IS06]. Depth-Bounded [EEH17b]. Description [ACOS17, AKRZ14, DNR02, KRH13, BGL12, CDL08, EILS11, Lut04, ST14, WZ08].

Editorial [ALP02, AKS01, Apt05, BMR09].

Field-Sensitive [ZG14]. **Fields** [AVD+19]. **FIFO** [GGKT12]. Finding [DKS17]. **Finitary** [CHH09, Mur05]. **Finite** [Asp15, BBC+16, BKV15, EEH17a, GLSG15, KT18, NV04, NSST18, RS14, AR04, AFIL09, EH01, FD14, GPW10]. **Finite-State** [NNSST18, EH01]. **Finite-Variable** [BKV15]. Finitely [CHH09, Mur05]. Finite [Asp15, BBC+16, BKV15, EEH17a, GLSG15, KT18, NV04, NSST18, RS14, AR04, AFIL09, EH01, FD14, GPW10]. Finite-State [NNSST18, EH01]. Finite-Variable [BKV15]. Finitely [CGT17]. **First** [AZZ14, DG12, DG07, EGT16, FH00, GH08, GJL15, HK15b, Kar13, KT15, MM12, TOD20, WDB13, Avi03, Bau14, GS00, GS02, Lib03, Rat04, Sch05]. First-Order [AZZ14, EG16, GJL15, HK15b, Kar13, KT15, MM12, WDB13, DG07, FH00, GH08, TOD20, Avi03, Bau14, GS00, GS02, Lib03, Rat04, Sch05]. Fixed [Bae12, GGS20, LT03, DGK04, HW10]. Fixed-parameter [LT03]. Fixed-point [GGS20]. Fixpoint [CGWW15, SV18, SV08]. Flat [SV18, SV08]. Flow [NT17, JK09]. **Floyd** [AMMO09]. Floyd-Hoare [AMMO09]. FO [BS09]. Focalization [Sim14]. Formal [Kra15, GMS12, Gui09]. Formalizing [SPNS14]. formally [ADGR07]. formats [BFV04]. Forms [RMV17, HP05]. Formula [HLM13, AI03]. Formula/Literal [HLM13]. formulæ [AI07]. **Formulas** [BLRC+19, DKS17, AD14, GS00, LR06, Sub04]. forth [GHO02]. Foundational [CS08]. foundations [GL13]. Founded [BVD16, EILS11, WZ05]. Fragment [HRW17, KT18, AJ05, Bau14]. Fragments [BKMV+17, CMVT12, CP RW16, AL04, BMS+11]. Framework [TSH15, ACG+08, AAD11, AMMO09, BD07a, CV10, CS08, GNZ08, LA13, Lia05, MM02, RS13, She08, SG07]. Frameworks [FFP15, BCM04]. Free [CCDD20, BGR14, HV05]. Freedom [KE19]. freeze [DL09]. Frege [BB17, BSH10, G1K8, IS06]. fully [LA13]. Function [CGT17, AE09, ES10]. functionals [BK02]. Functions [CGI+18, NSM18, AE09, Avi03, BGV01, Pan06]. Führer [PSS18]. fusion [Lia05]. Fuzzy [FPS14, SJV12].

MM02]. Higher-Order
[AVD+19, CHRW13, JR15, Kar13, LV12,
MP03, Pie09, CPV09, Dal09b, MM02].
highly [GJ12]. Hoare
[AMMO09, CK00, KI17, Koz00, Mam16].
Homological [PDHR14]. homology
[HCMS13]. Homotopies [K515].
Homotopy [Soj16]. Horn [BKMV+17,
HRW17, KRH13, Lib00a, MBN12, MO12].
Hughes [Ham18]. Hybrid [AKS13, Pla17].
Hydra [LOW16]. hypersequent [MOG05].
Hypersequents [CG18]. Hypotheses
[KKLU14]. Hypothesis [LSS04].
Hypothesis-based [LSS04]. Idempotent
[CK20]. Identifying
[KKLU14]. Identity
[Van18b, vdBG12, ST14]. II
[BG07a, Jap06b]. III [BG07b]. Image
[PDHR14]. IMLL [MO06]. Immerman
[PSS18]. Implementation [SS12, MV04].
Incomplete [BLRC+19, YSG09]. incompleteness
[Sal03]. increasing [AS02]. Incremental
[CG18]. independence [Lib03]. Index [FMS16].
indexed [LB07]. indexing [Pie09].
Indistinguishability [BCEO20]. Induction
[FKN17, Sak05]. Inductions [BVD16].
Inductive [WDB13, DBM01, DT08, LF01].
inequality [Rat06]. inexpressibility
[BK10]. Inference [AGM13, Wro19, ZG14,
BD07b, BG09, CM06, GM02, MO12, VV07].
Inferring [GK08]. Infinite
[CHS14, CHS15, Tan13, BMT13, NSV04].
Inflationary [DGK04]. infos [GN11].
Information [FL20, NT17, KB11]. initial
[LvdMR00]. Inner [DD15]. Instances
[DKS17]. Instantiation [EP13]. Integers
[BLRC+19, BJW05]. intelligence [Cha06].
intelligence-related [Cha06]. Interaction
[BFW03, Ham18, Sei18, ACG+08, BG11b,
Gug07]. Interactions [MW15]. Interactive
[Bd12, Kra15, BG06, BG07a, BG07b].
interiors [MO12]. interpolants [CGS10].
interpolating [BGR14]. Interpolation
[BT16, BGR14]. Interpretation [MZ17].
Interpretation-Based [MZ17]. interpretations
[BBC02, MP09].
Intersection
[GN12, Van18a, DCHA03, DCDGT10].
intersection-type [DCHA03]. Interval
[BGL04, BMM+19, BKMV+17, DHS16,
HGS07]. intractability [CFS10]. Intruder
[BCD13]. intuitionism [LM02].
Intuitionistic [AR02, BBDFD20, FFF12,
GGS20, Kra15, DST13, FFF05]. Invariant
[EEH17b, GS00]. invariants [BG01].
Isabelle [Pau00]. Isomorphism [VZ19].
isomorphisms [CDGT10]. issue
[BMR09, GHJP03, KM10, Kol05]. iteration
[HS10]. IV [BG11b].

Jordan [NC12]. judgments [MT05].
Justification [SFL17]. Justified [SFL17].

Karp [BM10]. Kernels [KI17]. key
[CKRT08, CLCZ10]. kinds [Cra07]. Kleene
[DMS06, Koz00]. KLM [GGOP09].
Knowledge [AKS13, BCD13, CKK17,
Kra15, LvdMR00, MBN12, SA13, TSH15,
TOD20, DEPT11, DNR02, EFL+04.
EFST05, LPF+06, Lib00a, Rei01, SBTM06].
knowledge-base [DEPT11].
knowledge-based [Rei01].
knowledge-state [EFL+04]. Knuth
[KV05a].

Labelled [HCGT18]. Labels [BG14].
lambda [AJ05, PQ07, Sal03, Les18].
lambda-calculus [PQ07]. Language
[BMS13, CPV09, GGV02]. Languages
[AMMU19, BL16, EEH17a, Wro19, BLN07,
BS09, CDH10, GL13, GHK08, GMS12,
Mur05]. Lattice [HK15a, BMT13]. lattices
Operational [GF18]. operations [BMT13].
operator [VGD06, VGD07]. Operators [BZWS18, BVD16, HLM13, DST13]. OPL [vHPP00].
Optimal [CDG15, Sub04, CM06, PQ07]. Optimality [GL10]. Optimization [CKK17, ST15, SBSM13]. optimize [Vor01].
Optimizing [CM06]. Oracle [BCP17].
Order [AZZ14, AVD+19, CHRW13, EEH17b, EGT16, FP17, GJJ15, HK15b, JR15, Kar13, KT15, LV12, MM12, WDB13, AJ05, Avi03, BKZ20, Ban14, BB14, CPV09, Dal09b, DG12, DG07, FHK00, GHK08, GS00, GS02, KS13a, Lib03, MM02, MP03, Pie09, Rat04, Sal03, Sch05, Sze11, Tan14, TOD20].
Order-Invariant [EEH17b, GS00].
Ordered [BL16, BGS16, EvdHK+20, NV19, CNRN03]. orderings [BG08b]. orders [KRS05].
Ordinary [BG06, BG07a, BG07b]. Other [CLSZ15, BCM09]. Out-of-order [BKZ20].
Outlier [AGP07]. Output [BCP17].
Overlooked [LW15].

Paraconsistent [Ari07, CLSZ15]. Parallel [AFMGMM16, ACJ+18, GKSN19, SDSS13, BG03a, BG08a, PQ07].
Parallel-Correctness [GKSN19].
parameter [LT03]. Parameterized [AK15, BGL13, DKS17, KE19, LDJ+18].
Parametric [AELP01, BDR08].
Parametrised [LMS17]. Paris [CGL16].
Parity [BPT14, GKI18, AD14, CDH11].
Partial [CD14, BG08b, KT03, TZ04].
Partial-Observation [CD14]. partiality [JNS+06]. Partially [BG16]. passing [Ber04, GM09b]. Path [Van18b, BFW03].
Paths [DMP18]. pattern [MP03]. PCL [GGSO09]. Pebble [BGMZ14, Tan13].
Pebbling [Nor12]. PELCR [PQ07].
Persistent [BG11a, HCMS13]. Perspective [LV12].
Petri [BFHH17, CC19]. Phase [LWG13, WWSL16]. Phylogeny [BJP17].
Piece [NSM18]. Piece-Wise [NSM18].
Piecewise [GGKT12]. Plane [Try16]. planning [AM01, BGLC04, EFL+04, SBTM06]. PLP [She08]. Point [BMM+19, GGS20]. pointer [HS10]. Points [Bae12, DGK04].
Polymorphic [VV07]. Polynomial [GM02, PSS18, AS02, GL10, GNT04].
Preservation [BTV16]. Preserving [BZWS18, TSH15]. prime [ADGR07].
Private [HTAC19]. Probabilistic [CFP+19, DH02, DNS00, EY12, FFP15, HGS07, LT09, LLM+07, Luk01, MSS14, SSS12, SDSS13, SPAV15, BBS07, DKS06, ILNR09, SPSS11]. Probability [BCP17, CR15, TOD20]. Problem [BHM15, DMM17, MMPV14, SJV12, Wro19].
Problems [ADGV14, BB17, BJP17, DHL12, FMS16, GGKT12, PSS18, SBSM13, ABEZIP03, Bal11, CSS10, ET06, GNT04, WZ08].
Processing [PDHR14]. Processor
producing [Ber04]. Product [Soj16]. Program [BD12, BG08b, DHL12, MZ17, GJ12, MP09, Mur05, Zha06].

program-based [Zha06]. Programming [CHR13, DST13, SPNS14, AM01, ACG+08, AGP07, BMR06, BMRS10, DBM01, EFL+04, EFW07, GL13, HVV08, LF01, Luk01, Rei01, SI08]. Programs [AZZ14, BZWS18, CHT17, Dra16, FS15a, FKN17, GS13b, RS14, SBSM13, SDSS13, WWSL16, ZZ17, ACW05, ACW12, BERS04, BDP04, CFS10, DGM04, DEPT11, DBM01, DNS00, ES10, EJLS11, Fer11, GKO8, HVV08, HJS01, LPV01, LT03, LSS04, MR03, RW05, Sak05, SKGT09, SYY+03, VDS01, WZ05].

Progression [PS17]. promise [DT10].

Proof [AO19, BM08, CGL16, ET01, Ham18, HV05, LL15, McC13, SDW14, TM10, TG18, ADGR07, BG09, DST13, MT05, MO06, Sto05, Vor01]. Proof-complexity [ET01].

Proof-Nets [Ham18]. proof-search [Vor01]. Proofs [ALN16, BPT14, BB17, Bd12, BCMS18, GM09b, Kra15, NDH19, BSH10, DT10, SKGT09, VDS01].

Propagated [WDB13, CLS07]. Properties [BH15, CCK16, DHKP17, Van18a, YLYF14, ABN17, BBS07, BCM09, CDMK13, CLCZ10, KK10, Lib00b, Lib01]. property [FFF05, LLM+07]. Proposition [BP11]. Propositional

[BPT14, CPRW16, FFF12, GGS20, HK15b, HKVV18, HLM13, Jap06a, Jap06b, Van18b, BO02, BGV01, CEG05, CK00, DT01, Fer11, GN11, LA13, LS07]. propositions [DST13].

protocol [MN12]. Protocols [CCK16, CDD15, CDD20, AM01, CRKT08, CLCZ10, KK10, SV08]. prove [Hes05]. prover [OPS07]. Proving [DGM04, FMV15, LJM+18, NC12, MR03, Vor01].

QSQR [MBN12]. Quantitative [CDH11, INLR09]. Quantification [SUWC16, KR02]. Quantified

[DMM17, Ari07, BCM09, Rat06]. Quantifier [BK15, BGR14, DL09]. Quantifier-free [BGR14]. Quantifiers [HTAC19, AD14, Rat04, Sch05].

Quantitative [CDH10, Les18, MW15, MM07]. Quantum [ALGN18, FYD14, YLYF14, YFDJ09]. Queries [AKNZ17, CM17, GKS19, NSST18, BDT10, BG11a, Che14, CSM05, DG07, GS02, KS13a]. Query [AKS13, BL16, FGR15, LMT19, SDSS13, BLM07, CDN08, GH08, GGV02]. Query-Driven [AKS13]. queues [RV01].

R [GF18]. Ramsey [CGL16, FKL15]. Ramsey-Based [FKL15]. Random

[BCP17, WWSL16, KHST12, Lyn05]. Randomization [CHS14, CHS15]. randomness [HLT07]. rank [SP09]. rank-1 [SP09]. ranked [BLN07]. Rational

[BM17, ST15, Try16]. RDF [URS10].

Reachability

[CLLM19, GGT12, Tan13, ZG14]. Real

[Try16, Rat06]. Realizers [BD12]. reals

[BJW05]. Reason [FL20].

Reasoning [FL20]. Reasoning

[BM15, BJJ19, CMVT12, EFST05, HK019, ILNR09, KP18, MM02, MHPV14, Sch15, She08, SFL17, TSH15, TOD20, Ari07, BK10, ETD1, FH10, GGP09, LGF0+06, MN12, NT10, YSG09]. Recall [BJP19].

Recognition

[SPAV15]. Reconstruction

[Rab18]. Recursion [HMOS17, Mam16, AE09, BG02, Dal09b, Kaw09]. Recursive

[EF12, She08]. Recycle [LY07]. Reduction

[BB19, PDHR14, CM06, DZ13, PQ07]. reductions [BGV01]. redundancy [Vor01]. redundant [CL07]. refinement

[BG02, CV10, SG07]. Refinements
Refining [GL14]. Reflective [BCM04], refutations [IS06, Sub04].
Region [Try16]. Region-Based [Try16]. Register [QS19, CLLM19, DL09]. Regular [BS09, GN12, BBS07, CHH09, LW10].
Related [KT18, Cha06]. Relating [DMP18]. Relation [KKLJU14]. Relational [NSST18, AMN+03, VV07].
Relations [BM17, CR15, EFH14, GM02, RS13]. Relative [Nor12]. Reliable [YSG09].
Removing [CLS07]. replacement [CT06].
Resource [AG19, ABGM01, LPF+06]. resource [Lib00a]. Representing [MSS14]. Resolution [BCMS18, FLM+15, NDH19, Nor12, DFK06, FDP01, Lib06, Sub04, ZHD14]. Resource [AGM13, BK02, HP03, Moy09].
Resource-bounded [BK02].
Resource-distribution [HP03]. resources [MP09]. result [BM10]. Results [MM07, ABGM01, ABR09, CKRT08, CFS10, DFO06, ET01, Lib06, VGD06, VGD07].
Revision [WWT15, Lib00a]. revisited [DBM01, FHK00]. Revisiting [KR02]. Rewrite [GL14, RMV17, ABR09, CNRN03, GNT04, LY07]. rewrite-based [ABRS09]. Rewriting [FF18, FKN17, Sim15, GK09, KS13b, SKGST09, VH05].
Runtime [BKZ20].
Safe [CC19, AE09, Lib07]. Safety [EFH14, Laz11, LOW16]. sampling [FR10].
SAT [HS15, LOS19]. Satisfaction [BJP17, DMM17, BMT13, BSL11, CSS10]. Satisfiability [CDG15, CGI+18, FCGQ20, HKMV20, KT18, LMS17, Pra13, ABR09, BV02, CGS10, JL11]. satisfy [CHK08, CHK10]. Scenarios [KKW17].
scheduling [SEH04, GKO08]. Schemas [DHL12]. Schemes [EP13, HM07, Mam16]. SCIFF [ACG+08].
Search [BB17, BGL13, CCK17, vHPP00, BM08, ET06, MV04, St005, TM10, Vor01]. Second [EGT16, FP17, AJ05, BB14, KS13a, Sze11]. Second-Order [EGT16, FP17, AJ05, BB14, KS13a].
Secrecy [TSH15]. Secrecy-preserving [TSH15]. Security [CCD15, CCD20, AM01, CKRT08, CLCZ10]. Self [KE19].
Self-Stabilization [KE19]. Semantic [HKV18, WWT15, Ber04, LA13, MP09, EILS11]. Semantical [EFW07]. Semantics [GF18, GS13b, GKR18, Han18, HKMV20, LWG13, ZZ17, AAD11, BFSV04, Dal09a, DH02, EILS11, GM09a, JNS+06, LT03, LSS04, RW05, VGD06, VGD07, WZ05, EFL+04]. semi [BM13]. semi-lattice [BM13]. Semicomplete [DMM17].
sensing [ILN09, Rei01]. Sensitive [ZG14]. Separating [DD16]. Separation [DD15, DD16, DHE16, HC18, PZ20].
sequence [Lyn05]. sequences [KST12].
Sequent [BO02, HC18, LZ19, LP19, MOG05, LA13, OPS07, SP11, Vor01].
Sequential [Gur00]. sequentiality [BKZ20].
Set [AZZ14, BVD16, DSW13, GS13b, KP18, WWS16, EFW07, HVV08, SI08, SBM06].
Set-Inductions [BVD16]. Sets [BG10, BM13, DF006, DPR08, DG12, Sak05].
Shallow [RMV17], Shoham [BKM17]. Short [BCMS18]. signed [Ar07]. signing [KKW10]. Simple [BCMS18, KP18].
Simplicial [vdBG12]. Simplification [FFF12]. simply [BRS04]. simulate [IS06]. Simulation [BG03b, Hes05, Tri09].
Simulation-based [BG03b]. simulations [GV04]. Simultaneous [Bou09]. single [SV08]. singleton [Cra07, SH06]. situation
Size \cite{NV19, AI03, AS02, GL10, KS13b, Kla08}, size-degree \cite{GL10}, Skolem\cite{AVi03, BHM15}, Slicing \cite{MZ17}, Small \cite{DKS17, FLM15, BG06, BG07a, BG07b}, small-step \cite{BG06, BG07a, BG07b}, SMT \cite{BLRC19}, Social \cite{SBSM13}, societies \cite{ASP09}, Soft \cite{BMR06, BMRS10}, soft-constraint \cite{BMRS10}, software \cite{Cha06}, solutions \cite{AP09}, Solve \cite{AVi03, BHM15}, solving \cite{BLRC19, SJV12, BGLC04, DPR08, ET06, KV05a, Rat04, Rat06}, Some \cite{GK18, IS04}, Sound \cite{BMS13, Cra07, SDW14, AMMO09}, Space \cite{FLM15}, Spaces \cite{KNPHZ13, KWS03}, spatio \cite{GHK08}, spatio-temporal \cite{GHK08}, Spawns \cite{CM17}, Special \cite{CC19, GHJP03, KM10, Kol05, BMR09}, specification \cite{CHK08, CHK10, TZ02}, Specifications \cite{BCHK14, Bong09, Hes05, SV10, TM10}, specified \cite{Lyn05}, Specifying \cite{ASP09}, Spectra \cite{KT15}, Splittable \cite{TG18}, Splitting \cite{VGD06, VGD07}, SSReflect \cite{HCM13}, ST \cite{BG02}, Stability \cite{LL15}, Stabilization \cite{KE19}, Stable \cite{ZZ17, JNS06}, standard \cite{OPS07}, State \cite{NSST18, BG03a, BG08a, EFL04, EH01, Gur00, Mur05, NSV04}, Statecharts \cite{LMS02}, static \cite{MP09}, Statistical \cite{DHKP17}, Step \cite{Sim15, BG06, BG07a, BG07b}, steps \cite{LM02}, STGLAs \cite{Ber04}, Stochastic \cite{CD14, HK019, BBD03}, Strategic \cite{BJP19, MW15, GS09}, Strategies \cite{CKPP12, MMPV14, GK09, MV04, vHPP00}, Strategy \cite{HV18, PDHR14, Sim15, KK010}, Streams \cite{BHZ20, San10}, Strength \cite{EFH14, Nor12, CT06}, Strict \cite{HKMV20, Van18a, MP03}, string \cite{EH01}, strings \cite{NSV04}, Strongly \cite{LPV01}, Structural \cite{CR16, KR12, Sim14, LA13}, structure \cite{BG11b, Gug07}, Structured \cite{ACOS17, GJ12}, Structures \cite{EEH17b, Ekv019, SDW14, DG07, GPW10}, Stuttering \cite{GJKW17}, style \cite{GM09b}, Subatomic \cite{TG18}, Subgraph \cite{VZ19}, Subsets \cite{DKS17}, Substitution \cite{NS15, Pie09}, Substructural \cite{KT03}, Substructures \cite{BMM15}, Subsystems \cite{GRK18}, successor \cite{PFZ20}, Succinctly \cite{MSS14}, Succinctness \cite{EEH17b, GN12}, Sup \cite{MP09}, Sup-interpretaions \cite{MP09}, Super \cite{BDP04, MSS14}, Super-Solutions \cite{MSS14}, Superposition \cite{WH10}, Support \cite{CIL13}, suspension \cite{GK08}, Symbolic \cite{BCE020, Ber04, FZD14, HRM05}, Symbols \cite{CGT17, ES10}, Synchronizing \cite{QS19}, syntactic \cite{DZ13}, syntactical \cite{AS02}, Syntax \cite{BZWS18, MM02}, Syntax-Preserving \cite{BZWS18}, Synthesis \cite{CDG15, GS09, NSM18}, System \cite{Sim15, BG11b, CHK08, CHK10, Gug07, Gui09, LPF06}, Systems \cite{ALGN18, CG18, CLLM19, CR15, DMP18, EY12, FZMV15, GS09, GGKT12, GL14, HK019, KR12, RMV17, Sch15, TG18, YLYF14, BBS07, CNR03, GNT04, GSO09, HMR05, IS06, KB11, LA13, LY07, LvdMR00, VH05}, Tableau \cite{CDG15, GS13b, GGS09, GSO09, ST14}, Tableau-based \cite{GS09}, Tableaux \cite{FFF12, GGOP09}, tabling \cite{VDS01}, Taming \cite{CLLS15, FS16}, Tautologies \cite{CGL16}, Team \cite{HKVV18}, Technique \cite{SDW14, VH05}, Techniques \cite{BLRC19}, Temporal \cite{AKRZ14, BBDFD20, BCHK14, BMM19, CDG15, DHPK17, FPS14, GKR18, GC12, HK15b, LOW16, LMS17, MSS14, SSS12, AELP01, BK10, DFK06, DKS06, FDP01, FR10, GL13, GH08, SPSS11, ZHD14}, Term \cite{RMV17, CNR03, GNT04, KS13b, Pie09, RV01, SKGST09, VH05}, Terminating \cite{RS14}, Termination \cite{BERS04, GKO09, JR15, VDS01, BG08b,
MR03, SKGST09, SYY+03. Terms [Les18, DG12, GGSS11, SP11]. Testing [CDG15, LLM+07]. tests [GM09b, Koz00].

their [ACF05, CFS10, KB11]. Theorem [AG19, AMMU19, McK13, PZ20, ADGR07, BAGM10, OPS07, NC12]. Theoretic [DSTW13, GKR18]. Theoretical [NV19].

Theories [EP13, GJL15, LW15, PS17, ST15, BGR14, CEG05, CGS10, DZ13, DLS01, MO12]. Theory [BGM14, Kra15, Rab18, AL10, BG11a, DST13, FR10, GV04, HP05, Mic04, MT05, NPP08, Ser01]. there [LR06].

Three [DZ13, RS14]. Three-Valued [RS14]. Tight [BK12, VZ19, BM10]. Time [CDG15, FPS14, GKR18, YLYF14, A02, ASSB00, BBS07, CDKM13, FR10, GM02, GGV02, KV05b, ZHD14, Lut04].

TIME-complete [Lut04]. Timed [CLLM19, BDR08, DGM04, LW08, Tri09]. Timed-register [CLLM19]. Tool [BCD13].

Transcendental [CGI+18]. transducers [EH01]. transductions [EH01]. Transfer [Kra15, PZ20]. transformation [LF01].

Transition [CR15, DMP18, WWSL16, HMR05]. Transitive [KT18]. transitivity [BV02].

Translating [BK12]. Translation [GF18, SH07]. Tree [BL16, BBGS20, EHE17a, GL14, BS09, BMM12, Sub04].

tree-like [Sub04]. Trees [BBC+16, CHS14, CHS15, CW16, GLSG15, Kar13, BLN07, JL11, KS13a, KRS05, Mic04, Pie09, Tan14].

Treewidth [Pra13, GPW10]. Truly [BJP19]. Trust [HKO19]. Twelf [CS08].

Two [BBC+16, BDM+11, CW16, DD15, KT18, KS17, Soj16, BK02, EH01, Tan14]. Two-Variable [BBC+16, CW16, DD15, KT18, KS17, BDM+11, Tan14]. two-way [EH01]. Type [LW15, Rab18, Soj16, AL10, AD14, BFW03, BK02, CM06, DCHA03, HP05, NPP08, VV07]. type-two [BK02].

Typechecking [AMN+03]. Typed [BBC02, FF18]. Types [Asp15, MNPS20, Van18a, Van18b, vdBG12, DCDGT10, IS04, SH06]. Typing [CCDD20, San10].

Unified [BK12, LA13]. uniform [DPR08]. Unifying [DHS16]. uninterpreted [BGV01]. Union [GKNS19]. Unique [San17]. Uniqueness [RMV17]. unit [HV05]. unit-free [HV05]. UNITY [Pau00].

REFERENCES

[AM01, BBS07, FKN17, SV08]. versus [TZ04]. Via [Asp15, BSH10, FKN17, GM02, GL14, Ham18, HP03, KHST12, MO06]. View [BFHH17]. views [AMN+03, BDT10]. Visibly [FKL15]. vs [BMM+19].

XML [AMN+03, HGS07]. XPath [Fig12, JL11].

YAPA [BCD13].

Zeno [LOW16].

References

Analyti:2011:MPF

Angiulli:2003:CPM

Antoniou:2001:RRD

Armando:2009:NRR

REFERENCES

Alur:2004:DGG

Adams:2010:WPC

Ardeshir-Larijani:2018:AEC

Atserias:2016:NPM

Abadi:2002:E

Aiello:2001:VSP

Arthan:2009:GFS

Adamek:2019:GET

Jirí Adámek, Stefan Milius, Robert S. R. Myers, and
REFERENCES

REFERENCES

Artikis:2009:SNG

Asperti:2015:CCF

Aziz:2000:MCC

Audrito:2019:HOC

Avigad:2003:EDS

Asuncion:2014:PFO

Baelde:2012:LGF

Billington:2010:ITD
REFERENCES

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>YEAR</th>
<th>TITLE</th>
</tr>
</thead>
</table>
REFERENCES

Bortolussi:2019:CLM

Basin:2004:RMF

Bordeaux:2009:GCO

Beyersdorff:2018:SPN

Barmpalias:2017:PCO

Biernacka:2007:CFE

Bonacina:2007:ACI
Berardi:2012:IRN

Bojanczyk:2011:TVL

Brass:2004:SLP

Bruyere:2008:DPM

Betz:2013:LLB

Blondin:2017:LVC

Bloom:2004:PFD

Buneman:2003:IBP

Blass:2001:ICL
Andreas Blass and Yuri Gurevich. Inadequacy of computable loop invariants.

Bravetti:2002:DAW

Blass:2003:ASM

Bustan:2003:SBM
REFERENCES

REFERENCES

REFERENCES

[BK10] Manuel Bodirsky and Jan Kára. A fast algorithm and
REFERENCES

[102x681] datalog inexpressibility for
[172x634] temporal reasoning. *ACM
[172x610] Transactions on Computa-
[172x598] May 2010. CODEN ????
ISSN 1529-3785 (print), 1557-945X (electronic).

[Boker:2012:TCB]

Udi Boker and Orna Kupfer-
man. Translating to Co–
Büchi made tight, unified, and
useful. *ACM Transactions on Computa-
CODEN ???? ISSN 1529-3785 (print), 1557-945X (elec-
tronic).

[BK12]

Davide Bresolin, Agi Ku-
rucz, Emilio Muñoz-Velasco,
Vladislav Ryzhikov, Guido
Sciavicco, and Michael Za-
kharyaschev. Horn fragments
of the Halpern–Shoham in-
terval temporal logic. *ACM
Transactions on Computational Logic*, 18(3):22:1–22:??,
August 2017. CODEN ????
ISSN 1529-3785 (print), 1557-945X (electronic).

[BKMV+17]

Christoph Berkholz, Andreas
Krebs, and Oleg Verbitsky.
Bounds for the quantifier
depth in finite-variable log-
ics: Alternation hierarchy.
*ACM Transactions on Compu-
tational Logic*, 16(3):21:1–
21:??, July 2015. CODEN

[BKV15]

David Basin, Felix Klaedtke,
and Eugen Zalinescu. Run-
time verification over out-of-
order streams. *ACM Transac-
tions on Computational Logic*,
CODEN ???? ISSN 1529-3785 (print), 1557-945X (elec-
tronic).

[Basina:2020:RVO]

Michael Benedikt and Clemens
Ley. Limiting until in or-
dered tree query languages.
*ACM Transactions on Compu-
tational Logic*, 17(2):14:1–
14:??, March 2016. CODEN ????
ISSN 1529-3785 (print), 1557-945X (electronic).

[Benedikt:2007:LDQ]

Michael Benedikt, Leonid
Libkin, and Frank Neven.
Logical definability and query
languages over ranked and un-
ranked trees. *ACM Transac-
tions on Computational Logic*,
8(2):??, April 2007. CODEN ????
ISSN 1529-3785 (print), 1557-945X (electronic).

[Borralleras:2019:IST]

Cristina Borralleras, Daniel
Larraz, Enric Rodríguez-
Carbonell, Albert Oliveras,
and Albert Rubio. Incom-
plete SMT techniques for solv-
ing non-linear formulas over

Bova:2008:PSH

Beyersdorff:2010:TKL

Barcelo:2017:GLR

Bianco:2012:GCT

Benerecetti:2015:RAS

Bozzelli:2019:IVP

Bistarelli:2006:SCC

[Bon09] Adel Bouhoula. Simultaneous checking of completeness and ground confluence for algebraic specifications. ACM Transactions on Com-
REFERENCES

Bergstra:2011:PA

Bekmann:2014:PGP

Benedikt:2016:EIP

Bulatov:2011:CCC

Bryan:2002:BST

Bogaerts:2016:WFS

REFERENCES

Binnewies:2018:SPB

Chalopin:2019:SPN

Chadha:2016:AVE

Chretien:2015:SPP

Chretien:2020:TMF

Chatterjee:2014:POS

Cerrito:2015:OTM

Serenella Cerrito, Amélie David, and Valentin Goranko. Optimal tableau method for constructive satisfiability testing and model synthesis in

Conradie:2019:PEU

Cosmadakis:2010:UIR

Carreiro:2020:PW

Ciabattoni:2018:HSR

Cimatti:2018:ILS

Carlucci:2016:PCP

[CHO17] Charalambidis:2013:EHO

[CHS15] Chen:2013:CLM

Chlebowski:2017:AGE
Szymon Chlebowski, Maciej Komosinski, and Adam Kups. Automated generation of erotetic search scenarios: Classification, optimization, and knowledge extraction. ACM Transactions on Computational Logic, 18(2):8:1–8:??, June 2017. CODEN ????. ISSN 1529-3785 (print), 1557-945X (electronic).

Chatzikokolakis:2012:ESG

Chevalier:2008:CRS

Comon-Lundh:2010:DSP

Clemente:2019:BRT

Choi:2007:RPR
REFERENCES

REFERENCES

Crafa:2015:LCB

Ciabattoni:2016:PLS

Crary:2007:SCE

Crary:2008:FCC

Cohen:2005:EAA

Creignou:2010:NBC

Cook:2006:SRW

Chadha:2010:CGA

[DD16] Stéphane Demri and Morgan Deters. Expressive completeness of separation logic with two variables and no separating conjunction. *ACM
DeBruijn:2011:ENL

Degtyarev:2006:MTR

Dovier:2006:DRS

Durand:2007:FOQ

Dowek:2012:PNL

Dawar:2004:IFP

DeBoer:2004:PCT

REFERENCES

DiGiusto:2012:EPM

Danos:2002:PGS

Daca:2017:FSM

Dix:2006:HTP

Dongol:2016:CUC

Durand:2012:HDL

DeHaan:2017:PCF

[Ronald De Haan, Iyad Kanj, and Stefan Szeider. On the parameterized complexity of finding small unsat-

DeNicola:2004:MLM

Demri:2009:LFQ

Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata. ACM Transactions on Computational Logic, 10 (3):16:1–16:??, April 2009. CODEN ???? ISSN 1529-3785 (print), 1557-945X (electronic).

DeGiacomo:2001:IEG

Dapic:2017:QCS

Dima:2018:RPT

Desharnais:2006:KAD

Donini:2002:DLM

REFERENCES

Davvy:2013:TST

Eberhard:2017:ACF

Eichmeyer:2017:SOI

Eisner:2014:SLW

Eiter:2004:LPA

Eiter:2005:RAE

Eiter:2007:SCC

Elberfeld:2016:WFO

Engelfriet:2001:MDS

Echenim:2013:ISN

Eiter:2010:FDN

Egly:2001:PCR

East:2006:PCB

REFERENCES

Eickmeyer:2020:MCO

Etessami:2012:MCR

Feng:2020:MTO

Fernandez-Duque:2014:NFA

Fisher:2001:CTR

Feng:2014:SBQ
Ferraris:2011:LPP

Fairweather:2018:TNR

Ferrari:2005:CDP

Ferrari:2012:SRI

Ferrari:2015:EDD

Fazzinga:2015:CPA

Friedman:2000:FOC

Figueira:2012:DDX

October 2012. CODEN ???? ISSN 1529-3785 (print), 1557-945X (electronic).

Friedmann:2015:RBI

Fuhs:2017:VPP

Fan:2020:RMB

Filmus:2015:SSS

Facchini:2016:IPG

Felgenhauer:2015:LSP

Fontaine:2015:WIH

Fijalkow:2017:MSO

Frigeri:2014:FTL

Furia:2010:TSC

Furukawa:2015:CDA

Furukawa:2016:TM

Gurfinkel:2012:RNV

Gall:2018:OSC
Ghafari:2012:RPP

Giordano:2009:ATC

Giordano:2009:TCP

Ghilardi:2020:FPE

Gascon:2011:UMC

Gottlob:2002:DLD

Gradel:2003:LSI

Geerts:2008:FOC

Gradel:2002:BFB

Goldblatt:2012:WSP

Groote:2017:ACS

Goller:2015:CDM

Genaim:2008:INS

Gnaedig:2009:TRU

Garlik:2018:SSC

[GK18] Michal Garlik and Leszek Aleksander Kołodzieczyk. Some

Geck:2019:PCC

Goranko:2018:GTS

Galesi:2010:OSD

Gaintzarain:2013:LFM

Goller:2014:RPR

Genevès:2015:EDC

REFERENCES

Ghilardi:2008:CCF

Gottlob:2010:MDF

Giacobazzi:2005:MAD

Grohe:2002:FOT

Goranko:2009:TBD

Gastin:2013:FSA

Gebser:2013:TCL

REFERENCES

REFERENCES

Heras:2013:CPH

Hesselink:2005:EVP

Hung:2007:PIX

Halamish:2015:MDL

Hampson:2015:UPB

Hella:2020:SMI

Huang:2019:RA

Hofmann:2010:PPP

Heule:2015:SAC

Horne:2019:MDN

Hughes:2005:PNU

Huang:2018:ESL

Heymans:2008:OAS

Horbach:2010:SFD

REFERENCES

ISSN 1529-3785 (print), 1557-945X (electronic).

Iocchi:2009:RAA

Ignjatovic:2004:SAL

Impagliazzo:2006:CDF

Japaridze:2006:PCLa

Japaridze:2006:PCLb

Jones:2009:FCM

Jurdzinski:2011:AAD

Janhunen:2006:UPD

[JNS+06] Tomi Janhunen, Ilkka Niemelä, Dietmar Seipel, Patrik Simons, and Jia-Huai You. Unfolding partiality and disjunctions in stable model seman-

Jouannaud:2015:NHO

Kartzow:2013:F

Kawamura:2009:DR

Khan:2011:LIS

Klinkhamer:2019:VL

Kjos-Hanssen:2012:ACE

Kojima:2017:HL

Komosinski:2014:IEA

Maciej Komosinski, Adam Kups, Dorota Leszczyńska-Jasion, and Mariusz Urbański.

REFERENCES

Khan:2018:SML

Kaminski:2002:RQA

Kramer:2015:LII

Krotzsch:2013:CHD

Khoussainov:2005:ALO

Keiren:2012:SAB

Kazana:2013:EMS

Ketema:2013:LUB

Jeroen Ketema and Jakob Grue Simonsen. Least upper bounds on the size of confluence and Church–Rosser diagrams in term rewriting and...

Kraus:2015:HHH

Kraus:2015:HHH

Krebs:2017:ECA

Kozen:2003:SLP

Kopczynski:2015:VHF

Kieronski:2018:FST

Kieronski:2018:FST

Kupferman:2001:WAA

Korovin:2005:KBC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[LF01]</td>
<td>Nada Lavrač and Peter A. Flach. An extended transformation approach to inductive logic programming.</td>
</tr>
</tbody>
</table>
REFERENCES

Paolo Liberatore. Where failsafe default logics fail. ACM Transactions on Computational Logic, 8(2):??, April 2007. CODEN ???? ISSN
1529-3785 (print), 1557-945X (electronic).

Liberatore:2016:BME

Leino:2015:APS

Laplante:2007:PAM

Luttgen:2002:IBS

LMS17

Leone:2019:FQA

Lodha:2019:SAB

REFERENCES

REFERENCES

Loyer:2004:HBS

Lonc:2003:FPC

Lanotte:2009:PBC

Lukasiewicz:2001:PLP
Thomas Lukasiewicz. Probabilistic logic programming with conditional constraints.

Lutz:2004:NTC

Levy:2012:NUH

Lomuscio:2000:KMS
Lasota:2008:ATA

Legay:2010:ORM

Lumsdaine:2015:LUM

Larchey-Wendling:2013:NPS

Lin:2007:RCA

Lynch:2005:CLR

Lahav:2019:PSC

Mamouras:2016:HLD

Konstantinos Mamouras. The Hoare logic of deterministic and nondeterministic monadic recursion schemes.

McKinley:2013:PNH

Mielniczuk:2004:BTF

McDowell:2002:RHO

Mogavero:2014:RAS

More:2012:CCG

Madelaine:2012:CPF

[MM07] Annabelle McIver and Carroll Morgan. Results on the quantitative μ-calculus qMμ. ACM Transactions on Computational Logic, 8(1):??, January 2007. CODEN ???. ISSN 1529-3785 (print), 1557-945X (electronic).

McIver:2007:RQC

REFERENCES

Montenegro:2020:ELT

Mura

Makino:2012:DII

Metcalfe:2005:SHC

Michaliszyn:2015:DEM

Moyen:2009:RCG

Momigliano:2003:HOP

Marion:2009:SIS

Jean-Yves Marion and Romain Péchoux. Sup-interpretations.

REFERENCES

[NSST18] Frank Neven, Nicole Schweikardt, Frederic Servais, and Tony Tan. Finite-state map-reduce

Lawrence C. Paulson. Defining functions on equivalence

Poza:2014:CRS

Pientka:2009:HOT

Peppas:2012:MMB

Platzer:2015:DGL

Platzer:2017:DHG

Pedicini:2007:PPE

Praveen:2013:DTH

Ponomaryov:2017:PDL

REFERENCES

Pakusa:2018:DCF

Place:2020:AST

Quaas:2019:SDW

Rabinovich:2007:CL

Rabe:2015:LTM

Rabe:2018:MTR

Rabe:2018:MTR

Ratschan:2004:CAS

REFERENCES

Ratschan:2006:ESQ

Reiter:2001:KBP

Radcliffe:2017:UNF

Rabe:2013:LRL

Riguzzi:2014:TEL

Rybin:2001:DPT

Rondogiannis:2005:MMS

Sietsma:2013:CKE

REFERENCES

Simari:2013:PAQ

Schellhorn:2014:SCP

Seiller:2018:IGN

Sergot:2001:CTN

Su:2017:PJL

Shoham:2007:GBF

Stone:2006:EES
REFERENCES

3785 (print), 1557-945X (electronic).

Schroder:2009:PBR

Santo:2011:CMS

Skarlatidis:2015:PEC

Son:2014:FNU

Shakarian:2011:APT

Sofronie-Stokkermans:2007:UBD

Shakarian:2012:APT

Schmidt:2014:UTD

Renate A. Schmidt and Dmitry Tishkovsky. Using

Sebastiani:2015:OMT

Stone:2005:DMG

Subramani:2004:OLT

Schubert:2016:HHP

Seidl:2008:FOV

Samer:2010:DLS

Schroder:2018:CFC

Shen:2003:DAC

[SYY+03] Yi-Dong Shen, Jia-Huai You, Li-Yan Yuan, Samuel S. P.

Szeider:2011:MSO

Tan:2013:GRP

Tan:2014:ETV

vandenBerg:2012:TSM

Verbaeten:2001:TPL

Vennekens:2006:SOA

Vennekens:2007:ESO

Verma:2005:NDT

vanHentenryck:2000:SSO

VanDenDries:2009:AC

Voronkov:2001:HOP

VandenBussche:2007:PTI

Verbitsky:2019:TBA

Wittocx:2013:CPF

Wrona:2019:CMI

Wadler:2003:MEM

REFERENCES

3785 (print), 1557-945X (electronic).

[Wolter:2008:UUA]

REFERENCES

