Title word cross-reference

1 [AGM01]. 2 [FWCL05, GH00, RL13]. 2.5 [WCB15]. 3 [ADDM+13, CLT+15, JGM14, KK11, KKH16, LLKC13, LHZ+06, LHC16, LS17, OS03, SYX12, THM15, TMDF10, WYC10, YHH09, ZYS12]. 4 [JCGP05]. dd [MLMM08]. DDX [SW04]. \(f_{\text{max}} \) [PMB10]. \(GF(2^n) \) [RMPJ08]. \(H \) [CLT+15]. \(k \) [CLH12]. \(k/m \) [CHY05]. \(\mu \) [DHZ+11]. \(N \) [Pom16b, CLH12, Pom17a]. \(o(\min(m,n)) \) [LM05]. \(t/t \) [CH13]. \(V_t \) [KOS09].

0.35V [ACF+11]. 0.35V-Optimized [ACF+11].

2-stage [KSA+10]. 2.0 [CLYP09, HWGY16]. 2009 [GGK09]. 252Kgates [CC09a]. 252Kgates/4.9Kbytes [CC09a].

36 [DHZ+11].

40nm [ACF+11]. 45-degree [CT13, TP08]. 45nm [BFL10].

90nm [CFD+16].
A3MAP [JP12]. aberration [KPSW09].
absence [SPA+03]. abstraction [CMNQ08, CLM+10, HMB98].
LYHL14, LHF12, LF12, MDR15, RCK+15, STJJG16, TCL14, VA17, XLL+16, XT16, YP10, ZYPD08, ZYPC17, CSC08, HLKN07, Hsi00, JCGP05, LM96, MNP00, MP07, SXZV13, WKR09, WSEA99, ZMTC13].

Applying [CHBK15].

Arbitration [IHM15].

Architecture [SABSA15].

Architecture-aware [JP12].

Architecture-level [CIB01, LTPT10, WTL+13].

Architectures [CPS16, HWX+14, LLK+14, VS12a, ACT13, BD08, Cha01, CKAP07, CCL03, DP04, FS13, FR97, GBK07, JBC+10, JLF+12, Kau06, KLP+11, LP03, LLKY13, LYCP13, OCRS07, PPD09, QM12, WH05, ZM07, ZHTC09].

Area [HCW+16, KKK12, KKKLG15, SY07, SS14, TRM+16, TCL14, Yan16, DK08, GS00, HCS01, KL05, KNK06, LC13, LCL08, MS00, SMPS02, SS04, XPSE12, ZY+13, ZHTC09]. area-array [LC13, LCL08]. Area-Aware [HCW+16].

Area-Ecient [SS14].

Area-I/O [Yan16].

ARM [LLH+17]. ARM-Based [LLH+17].

ARM2 [HV98]. Array [CDF+16, KCKG16, SPC+15, AOC02, CZW00, LC13, LCL08, WV02, ZY+13]. array-based [CZW00]. Array-Style [CDF+16]. Arrays [HCW+16, TRM+16, AC06, CH02, CD96, LMB+12, PWY05, WA98]. Ary [CLH12].

ASIC [KLV15, THL+13]. ASICs [PW99]. ASIPs [SM00]. ASP [YMB15].

ASP-Based [YMB15]. aspects [AM05]. assembled [BC05]. assembly [AM05].

assertion-based [TBZ13].

assertion-checker [BZ08]. Assertions [MDM+12]. Assignment [CK16, LMS16, SV16, Yan16, Yan17, BDB98, CXX06, CHH09, CP04, CLYP09, KNDK96, Kuc03, LVJ02, LCC11, LT11, VJBC07, WWG08, WLCJ09, XTW05, Yan11].

Assigner [GF16, PTC+15, CSL+07, MBB01].

Asymmetric [SBR+17, RAKK12].

Asynchronous [PMS15, WWW+12].

Attributed [PRCK08]. Authentication [MPM+17, YFT17]. Authorization [MPM+17].

Automata [BZ08, KT01].

Automata-based [BZ08].
Automatic
[BFV15, CK96, CJLZ11, MS08, SHD17, WKR09, ADS+09, KSS+09, LFG+09, TDE08, WW04], automating
[HA05, RSR01].

Autonomous
[ML09, STL+13]. Auxiliary
[BDC08, CCQ98, Piel16]. Average
[ZLW+15]. Averaging
[TWL16]. Avoiding
[HLG+15, HGLC16, WSRH16, LYKW09]. award
[GK09, QS11]. Aware
[CMP10, CET16, FYCT15, GVJ15, HKH+17, HC17, HCW+16, KPF16, KW16, LHW+17, LHK+15, LZZSV15, LNG+16, LMS16, MT15, OT15, RCK+15, SYX12, TBCH17, WLLH16, YYG+16, ZYPC17, ADP+07, CHH09, CLQ12, DD02, ETR07, FS13, GM08, GKM05, JHL02, JCS+08, KPSW09, KJJK03, LC14, MJM11, MHQ07, MKW08, PPK09, RGM09, SSG12, SBC08, SMYH07, SKS12, SNL12, WH05, WPHL08, WLL+11, YYLL09, ZYDP08, ZYP09].

awareness
[RL13].

B*
[WCC03]. B*-trees
[WCC03]. back
[GABP00]. back-end
[GABP00]. Balanced
[MT15]. Band
[WTR12]. bandwidth
[BD08, GM03, LLKC13]. bank
[CPW04, Kan06, SM00, Wu09]. banded
[OK08]. Based
[ASAP17, AAA15, BHK17, BS14a, BD14, CPS16, CCH+15a, CLT+15, GDFT17, HCL+14, HWX+14, HLG*15, JPHL16, JMJ14, KC10, KMO+12, LLH+17, LS11, LHK+15, LHJ+14, LGC+15, MCZ+16, MA16, MCD12, PG15, Poin17a, QBTM16, SV16, STGR15, TZ17, VEO16, WCB15, WQC+16, WC10, WL12, XS16, YMB15, ZS16, AHAKP08, AM10, ADDM+13, BLM00, BPRR98, BC11, BBD00, BOC00, BH10, BZO8, CLM+10, CNQ13, CGN96, CZW00, CFHM09, CH02, CBR+05, CD96, CHY05, CFX09, CM13, CCL04, DP02, DCK09, DDNAV04, DVA02, EMO03, EY12, FS13, GIK14, GG99, GPH+09, GBC07, GDF09, GPK+09, GH00, HCK13, HWCL13, JLF+12, KBN09, KK11, KNNR06, KSZ+10, LC13, LB00, LKM04, LWC07, LCC11, LDK99, LCHT02, LOC12, LWW11, LLL13, MPL07, ML08, OM08, OKC08, OK08, PDN00, PRCK08, PBM10, PR09, Pom14b, RL13]. based
[RS98, SW04, SGK08, SOC06, SC06, TN09, TBZ13, VKT02, WW04, WC06, WSEA99, Yan00, Yan08, YCC09, ZHM07, AA17, CCQ98, CH00, MW97, MHT14, MW97, PSSV+06]. basic
[VMP+00]. Battery
[NSS+16, Rakh09, SM+16, CSAHR07, LCZ+08]. battery-powered
[CSAHR07]. Bayesian
[BLR06]. BDD
[CCQ98, VKT02]. BDD-based
[CCQ98, VKT02]. BDDs
[BC16]. Behavior
[CLMZ10, RGT+14, KRS06]. Behavior-Level
[CLMZ10]. Behavioral
[APD+11, AA17, CLMZ10, KHP05, TN99, WV02, WHRC12, Fuoji, HLKN07, KSS+09, MR06, VKK02]. behaviors
[BG01, KW02]. benchmark
[PSK08]. Benchmarking
[JBC+10]. best
[GK09, QS11, SSCS10]. between
[Fu05, YRH11]. Beyond
[CPX14]. biasing
[CFHM09]. BICS
[RM09, RMB10]. BIFEST
[LTH99]. bifurcation
[HHL14]. Binary
[SV07, BCR+08]. Binding
[CET16, KK14, LH12, LQ15, BD97, CLM+10, CFX09, DS06, HLKN07, MKK13, MJM11, XK97]. Biochemical
[RCK+15].

Biochips
[LHC16, MGR+15, RCK+15, SOC06, SC06]. biomedical
[APB+08]. Bipartitioning
[RTN05, DPNB02]. bipolar
[YZ+13]. BIST
[BBE15, LWC07, PKP+03, PGB01, SSGS03]. Bit
[HHK+17, LYCP13, NdLCR03, RMPJ08, RM09, RMB10, SBH+06]. bit-width
[LYCP13, SBH+06]. Bits
[SS016]. black
[LAS01]. BLAS
[CCYC14]. Block
compiled [PHM00]. Compiler
[LPD^+17, LLHT03, SYHL14, XPSE12, BD08, GGDN04, HG07, KRS06, SSG12].
compiler-directed [HG07], Compiler-in-the-loop [XPSE12].
Compilers [YLL06]. Compiling [Edw03].
Complementary [QSW^+15]. Complementation [Pom15a]. Complete
[PDS12, AGM01]. complete- [AGM01]. completeness [LLYW10].
Complex [WTR12, TYH08]. Complex-Valued [WTR12]. Complexity [ASAP17, LTYW12, WYC10, BCC08, YCCC03].
Complete [PDS12, AGM01]. complete- [AGM01].
completeness [LLYW10]. Complexity [WTR12, TYH08]. Complex-Valued [WTR12]. Complexity [ASAP17, LTYW12, WYC10, BCC08, YCCC03].
Complete [PDS12, AGM01]. complete- [AGM01]. completeness [LLYW10]. Complexity [WTR12, TYH08]. Complex-Valued [WTR12]. Complexity [ASAP17, LTYW12, WYC10, BCC08, YCCC03].
[SGGR14, ADS+09]. Converters
[TWL16, JR97]. Cooperative [LHF12].
coopertization [ZLL13]. Coordinated
[ANR13, GGDN04]. coprocessor
[GDTG07]. coprocessors [SCV06]. Core
[LHL16, SESN15, WMT+16, CCL04,
LBV+06, RAHK12, SEN05, SZV+12, XZC09].
core-based [CCL04]. core-external [XZC09].
Core
[WGSH16, GG04, LV02, SSGS03, XZC09].
CoreSight [LLH+17]. corner
[MHD+04, Meh98]. correct [ADS+09].
Correcting [PGCB16]. correction
[RM09, WHXZ13]. correlated [SZXV13].
cosimulation [FLPP09]. Cost
[CHC+16, JPHL16, MHT14, Q809, BRPR98,
BWB14, Giv06, HCK13, LG12]. Cost-Effective
[JPHL16, MHT14].
cosynthesis [HSi00, Wol96].
correcting [ADB+08]. cryptography
[DP04]. Cubes [CLH12, WC10]. cuboidal [WYC10].
Current
[CH10b, WLLH16, HLC07, HCN09].
Current-Ratio [WLLH16]. Custom
[KAKSP16, LH2F12, LF12, TDF+09, AMR00,
HMVG13, TS96]. customizable [MPSJ07].
customization
[CBMM10, MKK13, MSB+09, YLP+13]. cut
[CBHK11]. Cutting [LVS16]. Cyber
[SKM+16]. Cyber-Physical [SKM+16].
Cyberphysical [PGCB16]. Cycle
[LVS16, LS11, Das04, Pom14a].
Cycle-Level [LS11]. cycled [JSG09].
Cycles [KAKSP16]. Cyclic [BR12].

D [GH00, WCB15, ADDM+13, CLT+15,
JGM14, KK11, KKKH16, LHZ+06,
LHC16, LS17, OS03, RL13, SYX12, THM15,
TMDF10, WYC10, YHH09, ZYS12]. D-ICs
[LS17]. D-NoC [ADDM+13]. D-Stacked
[SYX12]. daisy [KC13]. daisy-chained
[KC13]. DARP [CRC15]. DARP-MP
[CRC15]. Data
[CPS16, DZCD15, JKL15, KW16, PCD+01,
Pom16c, SPC+15, SUC01, XCW12,
BHW+13, BK00, BVB14, BHS11, FWCL05,
GFC+09, GNM+13, GDF09, IBMD07,
JCS+08, KMS12, KI01, KCA04, LSPC14,
LCT03, Meh98, NR03, PDN97, PDN00,
PGB01, RMKP03, SM00, VCLD03, YGZ04].
data-dominant [VCLD03]. Data-Driven
[DZCD15]. data-flow-driven [KMS12].
Databases [HCL+14]. Dataflow [ASAP17,
BMD17, BFG17b, BFG17a, CH17, HPB11,
JOH17, SS14, HKB+07, MHF96, MB04].
Datapath
[JR97, CL99b, GDTG07, MR05, XPSE12].
datapaths [Fuj05, GOK7, GOK9, NCP01].
DC [CFD+16, TWL16]. DCM [TWL16].
deadlock [LM05, TDE08]. deadspace
[SY07]. Debug [LHL16, HW14].
Debugging [Ali12, BHK17, RPKC05].
Decade [XFJ+16]. decap [LCL08]. decode
[TKVN07]. decoder [CCC+09a]. decoders
[KHW06]. Decomposition
[GBR07, HCM+16, KHW06, ZLY+15,
CHHL96, CH00, EMO03, LM96, WSEA99].
decomposition-based [EMO03].
Decompression [PBL+17]. Decoupling
deduction [DP02]. defect
[ACT13, JT98]. defect-level [JT98].
Defective [PB12]. defects [XLCL13].
deficiency [ZCG06]. Definition
[BC16, Pom15c, CCC +09a, VCLD03].
Deflection [LLKC13]. degree
[CT13, TP08]. Delay
[FYCT15, JLJ15, JK10, JOH17, MCD12,
STJG16, XCW12, ZK15, BDB98, CFHM09,
GSO0, GMSS02, HR06, KJJKK03, LLHT12,
MT02, MKW09, PT06, PMB10, PR98, PR96,
RCD07, SC00, SSP04, TD03, WVYGG99,
XLCL13, XPE12, YH97, YHL +11].
delay-area [XPE12].
delay-sensitivity-based [PMB10].
Delivery [XLS15, ZFLS11, ZLL13].
Demand [AAA15, WQC +16].
Demand-Based [WQC +16].
demonstrable [JW08, LP07]. density
[FLWC07, OWH08, ZYP09]. dependence
[DH06]. Dependencies [BR12]. dependent
[BLM00]. depth [CH00, LH09, ZCG06].
depth-optimal [CH00]. depth-size [LH09].
derive [GS00]. derived [CAC05, Zho08].
Describing [RHA08]. description
[MD06, PHM00, SSG12]. descriptions
[Fuj05, MWG97]. Design [AFM14, BJX15,
BS14a, BS14c, CD09, CH10a, CH10b,
CPX14, CHC +16, CRC15, DHB16, EAP17,
GCZ +15, HCRK11, HLG +15, JLK15,
KKL15, KLSZ09, KLSZ11, KL15,
KKS16, LL +16, LF12, LHK +15, LZZS15,
OT15, PDS12, Pomi4a, Pomi6a, SDP +09,
SGGR14, SHN12, SESN15, SYX12, STGR15,
TCL14, VA17, VE016, XLS15, XNZ +15,
YD16, ZYS12, ACT13, AHR +08, APB +08,
AMM +06, ADP +07, BC05, BW00, BFP08,
BASB01, CWW06. CIB01, CSL +07, DRC98,
DTC +09, EK07, FLW02, FLWC07, FW00,
FRS97, GPH +09, GM03, GABP00, HV07,
HA05, HJ08, HLCH07, JB08, JP08, KSS +09,
KG99, KCA04, LC13, LSL +13, LFG +09,
LCL08, MOZ06, MB01, MP07, MLG12,
OCR07, PB14, Ped96, Ped06, PBSV +06,
PW99, RFYL98, RS98, SW12, SGD10,
SYL09, SSS10, SUC01, SS11, SZV +12,
TW96, THL +13, VAAH +98, Voe01, WA98].
design [WKR09, ZHM07].
Design-for-Testability [Pom16a, Pom14a].
design-specific [ACT13]. Designed
[KMO +12]. Designer [SS11]. Designing
[BLNK14, HBC +08]. Designs
[EK16, MACV14, PHKW12, WWW +12,
YVC14, Yan16, Yan17, ZK15, CH00, GM08,
GOC02, HMB98, KI01, KK11, KHW06,
LHW97, LCHT02, LHHT12, LAS01,
LCKT12, MS00, MR96, RMKP03, Sen11,
SACS10, SNL12, WTL +13, Yan11, ZMTC13].
Destination [RL13]. Destination-based
[RL13]. detailed [CBHK11, PWY05].
Detection
[Pom16b, Pom17a, YFT17, CR12, DHZ +11,
FNP09, KI01, KRW98, KSA +10, LMO5,
PR07, RM09, SCCH08, TDE08].
Deterministic
[BY12, KBV +15, LB11, KT01].
detour [YW09]. developing [SMSB05].
Development [THT12]. developments
[Lin97]. Devices
[Kha12, SVK17, JCS +08, ZYS +13]. DFT
[DDFR13, PTC +15]. Diagnosability
[CLH12, CCH15b, CH13, LH14]. Diagnosis
[Pom17b, CML98, KI01, TYH08].
Diagnostic [HV +01]. diagonal [DSKB04].
diagrams [KC98]. dictionaries [CTC03].
dictionary [HH09]. difference [Das09].
differentiable [Cont06]. Differential
[LL +16, DDFR13]. differentiated
[WHXZ13]. Digital [D2CD15, LHC16,
MFHP12, MGR +15, PGC16, RCK +15,
SOS15, CPW04, RS03, SR12, SOC06].
Digitally [ZK15]. Dimension [BC11].
Dimension-reducible [BC11].
Dimensional [RGM15, YYYC07, YYYC09].
Directed [IE12, QM12, CM13, HLCH07,
HG07, LKTD98, MD08]. discharging
[HLCH07]. Discrete
[HL +15, LGGJ14, MLG12, SV16].
Disjunctive [WYIG07], disk
[CD09, SLXZ12]. Dispatching [WHRC12].
distinguishing [AGM01]. Distributed
[EAP17, YMB15, CFX09, LC14, PEPP06, Wol06, dW97]. Distribution
[SSO16, KSA+10, SW99]. Distributions [KYL16, STJG16]. Divide [SW12, HPK99],
divide-and-conquer [PK99]. Divided
[TMDF10]. DNUCA [DK16]. domain
[FWCL05, IA+09, JBC+10, LTPR+13, SCV06]. domain-specific [SCV06].
Domains [WWW+12, LBV+06]. dominant
[VCLD03]. dominated
[FRS97, KI01, MWG97]. Domino
[KJJK03, ZS02, CLLK06]. don’t
[CBMM10, SGK08]. don’t-cares
[CBMM10, SGK08]. Double [XYG+16].
DPRTM [ADDM+13]. DRAM
[BLNK14, LYLW17, LMA+16, ZCYY17].
DRAM/PCM [BLNK14, LYLW17].
DRDU [IBMD07]. DReAM [LMA+16].
Drive [CCS15]. Driven
[CCY+14, DKT+16, DZCD15, EAP17, HWGY16, HWCL15, LVS16, LHJ12, LMG+16, Yan16, YP10, ZFLS11, CSATR07, CZW00, DRG98, EK97, GK14, HW00, JPC06, KMS12, Kuc03, KSA+10, LOC12, MPS07, MO8, MRP08, WH06, WLC02, XK97, Yan08, ZS10, MSD06]. drives
[CCY14]. DSP
[AFM14, CL90a, LP03, SXX+06, SESN15].
DPSs [AM98]. Dual
[BLNK14, KKS16, CT13, HLHT08, MLYM08, SM00, WGD07, WY10].
Dual-Mode [KKS16]. Dual-Phase
[BLNK14]. dual-scanline [CT13].
dual-Vdd [HLHT08]. duplication
[CC06, WW06]. during
[HR06, MRC06, PTC+15, RGM09, XPE12, YWK+03, YWH10, ZMTC13]. duty
[JSG09]. duty-cycled [JSG09]. DVFS
[CK+13]. Dynamic [ADDM+13, BMJ13, BHS11, HKL+15, HRP00, IA+09, LHU+17, LV14, MDR15, ORGD+15, PBL+17, SV11, WMT+16, WGS16, AHAKP08, ADM+13, AMM+06, BLR06, CMNQ08, GK14, GPH+09, KJT04, KSA+10, LTPT10, LLHT12, MR05, VBFC07]. Dynamically
[CRC15, JPHL16, ARLH06, WLC02, YYYL09]. dynamics [WHXZ13].
Early [PBL+17, SZB17, MKBS05, SYL09].
Early-Release [SZB17]. Easy [VS12a].
EBL [YYG+16]. ECDSA [DH16]. ECG
[APB+08]. echo [FIR+07]. ECO
[DA02, LG12]. ECR [LTW12]. EDF
[DG+18, SB17, WZG16]. edge [RS98].
edge-based [RS98]. editor [ANO13].
editor-in-chief [ANO13]. Editorial
[CH10b, CPX14, Dut05, Dut06, Dut07, Dut08, Dut08b]. Easy [VS12a].
elastic [KXMLG15, TCL14, JHRT04, ZAZ13].
Efficient [BS14a, BHD09, BW00, CYV+14, DMR10, GFJ16, HMB98, HKB+07, HCS01, HG16, HWX+14, JLSK15, KBN09, KC10, KW02, LHP01, LHZ+06, LF12, LHCT05, LM96, LB11, RM09, RGM15, SV16, SPC+15, SPMS02, SS14, SRC15, TLC16, WJY+07, WWFT12, YHT00, YP10, ARLH06, CD09, Das09, FNP09, GM03, GBC07, IMB07, JS13, JH08, KL05, LCD07, LH13, MR06, MR05, MP07, WYG07, SGD10, SLXZ12, SHN12, SV+12, VQKR02, WU09, ZS10, ZY+13, Zho08]. Effectively
[RCG+08, ADM+13]. Eh [DHT+16].
Elastic [SZB17]. Electron [HCW+16].
Electronic [CH10a, KLSZ09, HV07].
Electronics [CPX14, CH10a].
Electrostatics [LCC+15].

Elimination [LHF12]. Elite [ZKS+16]. Embedded [BMdG17, BD14, BS14c, BM11, DFM15, EAP17, HCL+14, KC10, LL15, LHP16, LHK+15, NSH+16, PG15, WHRC12, YP10, AM10, BPRR98, BH10, CSAHR07, CM00, CSL+07, CM13, DCK07, DCK90, DRG98, GDG07, GPH+09, GG04, GABP00, HKL+07, HV07, HCK13, IAI+09, JS13, KNDK96, LJJV02, LCZ+08, LSDV10, LB00, LMW99, LDK99, MBB01, MDG98, ML09, NG06, NR03, PDN97, PDN00, PCD+01, PHM00, PEPP06, QS09, RSR01, SR12, SU01, TKV07, WAZ98, W096, XZC09, ZYD08, ZP08].

Emerging [SN10, BC08]. Employing [GS13, ZK15]. emulated [THC+14].

evaluation

[ADP+07, HMVG13, KRRK98, MW97], enabled [LSL+13]. Enabling [JS13, ZHOM08]. Encoder [QSW+15].

Encoding [MDR15, OT15, YMB15, KJT04, LCD07, LW07, NT05, RT05L05, YGZ04].

end [GABP00]. Endurance [CHC+16, HHK+17].

Energy [BFL10, DMR10, GFJ16, JPHL16, KC10, LF12, LMA+16, MR05, SPC+15, TLCF16, TBCH17, WH05, YP10, ZHTC09, ANR13, CSAHR07, CLQ12, GBC07, HG07, HW00, JS13, JCS+08, KSK+05, KR06, Kan06, KC13, KJR+07, LSL+13, LC07, MRC06, OK08, SLXZ12, SH12, WLL+11, Wu09, ZAZ13]. Energy- [YP10]. Energy-Aware [TBCH17, WH05, JCS+08].

Energy-Efficient [DMR10, GFJ16, KC10, LF12, SPC+15, TLCF16, MR05, SLXZ12, SH12, Wu09].

temperature/cooling [ANR13].

Engine [TMDF10, CNQ13, DP02, DP04].

Engineering [EAP17, GDTF17]. Engines [HKL+15]. enhance [GS13]. Enhanced [Pom15a, TWL16, FWCL05]. enhancement

[HWCL13, LCKT12]. enhancements

Equivalence [AA17, Fuj05, AGM01, HMB98, HCC01, KMS12]. equivalent [MCMW08]. ERFair [NSH+16]. Error [LTYW12, LD17, PB12, PHK12, PGCB16, TLCF16, KI01, KSA+10, RM09, SCCH08, VAHH+98, WHXZ13]. Error-Correcting [PGCB16]. Errors [DFM15, RJBS09].

Escape [Yan17]. ESL [KSS+09].

Establishing [GSFT16]. establishment [AJM13]. Estimate [LMA+16]. estimates [GS00]. Estimating [Meh98]. Estimation [LD17, PB12, SN02, TC08, CIB01, DTC+09, FLPP09, HKV+07, JT98, KCA04, KNNR06, LMW99, MHF96, ZS10].

estimators [XK97]. evaluating [JBC+10].

Evaluation [BEM15, EBR+09, HBWP14, QBTM16, CHY05, JLF+12, LCOM07, PB14, SGJ96, WSV+14]. Event [KR15, MCD12, RCO07, YH97, ZKS+16, CBR+05, HW00].

event-based [CRR+05]. event-driven [HW00]. Evolution [PSK08]. EWD [MPSJ07].

Exact [EKS+14, FLWC07, FNMS01, NR01].

Excitation [SOS15]. exclusive [DK08].

EXF1 [BPRR98]. exhaustive [CMB07].

experiment [FIR+97]. Experimental [Das04, AYM05]. Experiments [LHK+15, BCC08, CIB01].

Explaining [YLY+15]. explicit [EK97]. exploitation [GFC+09].

Exploiting [JKL15, OT15, WKC12, WHZ13, DSRV02, FW00, Kan06]. Exploration [MA16, APB+08, CSL+07, EK97, JP08, KSS+09, LCOM07, MBB01, MSD06, PB14, PPDK09, RJI+09, SW12, SU01, VCL03, XPSE12].

Exploring [TLCF16, WGD07]. expressions [SGJ96].
Extended [WWFT12, CK96, YTHC97].
Extensibility [SGC′+14]. Extensible
[KAKSP16, MP07]. Extension [LF12].
extensions [WKR09]. extensive
[CBMM10]. External
[KG09, CBMM10, XZC09]. Extra
[KAKSP16]. Extreme [Pom15b].

fabric [MSB′+09]. fabrication [WLT08].
factorization [BOC00]. Factory [DZCD15].
FACTS [VMP′+00]. Fail [BWB14]. Failure
[XNZ′+15]. Failures [YYL′+15]. False
[GGBZ02, SHLL98]. False-noise [GGBZ02].

family [BD05]. fan [LH09]. fan-out [LH09].
Fast [CPW04, DK16, GLY′+12, HGLC16, IHM15, JZY15, KKLG15, LH11, SGGD10, STWX12, Tes02, TZ17, CCW08, GMN′+13, GBC07, JHL02, KT96, LC14, LCKT12, NR01, SBGD13, SGJ96, YTHC97, LCC′+15, OS03, QSK12]. fastest [Das04]. Fault
[EKS′+14, GVJ15, YYL′+15, BPRR98, BH03, CEB06, DNA′+12, HH09, JLF′+12, LTH99, LLQ′+03, SC06, TCP97, TD03]. Fault-Aware [GVJ15]. fault-tolerant
[SC06]. Faults
[MCD12, Pom17b, HVF′+01, LTH99, LIA00, MT02, PT06, PR98, PR09, TYH08, XZC09]. featuring [EK97]. feedback [LWK11]. fetches [KTKO13]. FFT [TMDF10]. FH
[HGLC16]. FH-OAOS [HGLC16]. field
[CH02, CD06, PWY05, WV02].
field-programmable [CH02, PWY05].

FIFO [BK00, ZLL′+16]. File
[TLCF16, CFX09, GF10, ZYP09]. Fill
[LTW′+16, LIA00]. Filter
[PCT′+17, FS13, TKV07]. filtering
[CL13, ZYDP08]. finding [KL05]. FinFET
[WLLH16]. Finite [CLT′+15, SRC15, CK96, CHHL96, GK07, GK09].

Finite-Element-Based [CLT′+15].
Finite-Point [SRC15]. Firmware
[KC10, RGT′+14]. first [MR96].
first-time-right [MR96]. Fixed
[WDZG16, AM98, CPW04, LCT03, MHQ07].

fixed-length [LCT03]. fixed-point
[AM98, CPW04]. Fixed-Priority
[WDZG16, MHQ07]. Flash
[HCL′+14, KC10, PPP′+15, WQC′+16, WL12, ZLW′+15, HCK13, JCS′+08, Wu09]. Flash-Based [HCL′+14, KC10]. flash-memory [Wu09]. Flattened
[ZYP17]. Flexible [BHK17, CL99b, MS00].
FlexRay [SGC′+14]. Flip
[KMO′+12, XCW12, Yan16, KOS09, KSA′+10, LLLC13, Yan11, ZMTC13]. Flip-Chip [Yan16, Yan11, ZMTC13]. Flip-Flop [KMO′+12, XCW12, LLLC13]. flip-flops [KOS09, KSA′+10]. Floating
[BS14a, SKCM06, WG11]. floating-point
[WG11]. Floorplan [YVC14, YCCG03, HCS01, LCL08, MRMP08, SY07]. Floorplan-Guided [YVC14]. Floorplanning [HCRK11, HCZ′+16, HMLL11, LHZ′+06, LCC11, LLM01, SYZ08, WLCJ09, YYY07, YYY09].

floorplanning-based [LCC11]. floorplans
[DSK01, MSKBD07, MS00, WYC10]. Flop
[KMO′+12, XCW12, LLLC13]. flops
[KOS09, KSA′+10]. Flow [HMO′+14, KW16, PDS12, QSW′+15, RJ14, BPRR98, DTF′+09, GDF09, KMS12, LC13, OM08, WC06].

Flows [JLJ15]. Fluids [RCK′+15]. FOLD
[Pom15b]. Folded [AFM14]. Folding
[Pom15b, BHS11, TS96]. footprint
[AMM′+06]. Forced [RSR01]. form
[CW01, PR09]. Formal
[Ali12, BGM04, KLS12, KG99, SGGR14, VS12a, ADS′+09, CMM00, MR96, RFYL98, SMSB05, VS12b, Zho08]. formats [AMR00].
Forming [PR07]. FORTIS [GSFT16].
Forward [GSFT16, GS00]. Four [HGLC16]. Four-Step [HGLC16]. Fourier [LCC′+15].
FPGA
[ACT13, BS14c, BHS11, CWW96, CZW′+03, CH00, DP02, FW00, GPK′+09, GVJ15, HABS15, HLHT08, HW14, JLF′+12, KT96, KL05, KFH′+08, LKM04, MW97, MA16, MP07, PL98, TW96, ZLQ15, ZHTC09].
FPGA-based [MW97, DP02, GPK+09].

FPGA/FPIC [CZW+03], FPGA/FPICs [CZW90, CEB06, CHY05, DVA02, GDG+08, KNRK06, LB11, MCZ+16, MLMM08, SMPS02, Tes02, VKT02, WG11, WLC02, WSEA99, YGH+10, YYLL09]. Framework [DK16, GDFT17, JPHL16, LL15, SKM+16, THT12, WWFT12, YP10, ZLL+16, ADP+07, HR06, HV07, KJJ+08, KH10, MPSJ07, MP07, RPKC05, S98, SBH+06, SS11, ZM07].

free [RGM15, BLR06]. frequencies [PL03]. Frequency [JPHL16, WTR12, WGS16, GM08, JDT+08, LTPR+13]. frequency- [LTPR+13]. Frequent [YGZ04]. FSM [AGM01]. FSMs [CK16]. fuel [LCZ+08]. fuel-cell-battery [LCZ+08]. Full [STWX12, HDL+12]. Full-Chip [STWX12]. fully [FW00]. Functional [DCK07, FRS97, PR98, Pom15b, Pom15c, Pom16a, Pom16c, VHL98, WSEA99, CMB07, CK96, LOC12, MT02, Pom13, Pom14b, Vah09].

Functionality [BFV15, HLCH07]. functionality-directed [HLCH07]. functions [BC11, CCQ98, TW96]. Fundamental [XLNB17, Voe01]. FUNI [LIA00]. Future [KBV+15, ZZCY17].

FuzzRoute [RGM15].

GALS [SS11]. GALS-Designer [SS11]. game [HR06, RJL+09]. game-theoretic [HR06]. Garbage [HCL+14, ZLW+15]. Gate [CDB11, Che96, HMO+14, KKS16, LGGJ14, SV16, SRC15, CCW08, CH02, CD96, CH00, HHO9, LG12, LLYW10, PWY05, RGM09, SC00, WY06].

Gate-Level [CDB11, HMO+14, Che96]. gated [CM08]. gates [KOS09]. gateway [JS09]. Gating [CMP10, CLMZ10, KKHK16, WKC12, XLS15, BDM+99, ETR07, HTCP13, KBN09, SDCS10, YHL07].

GBDD [YTHC97]. General [CH02, wATkK02]. Generalized [Pom15c, DS06]. Generated [CCH15b]. Generating [MFS09, KT01]. Generation [BKW15, BFV15, CYV+14, IE12, LCY12, LV14, MFHP12, MCD12, PCT+17, Pom17a, Pom17b, SHD17, STJG16, SOS15, WWW+12, YD16, AM98, CK96, Che96, CL99a, CCW08, GF06, HRP00, KKMB02, KJR+07, KNKD96, KH10, LTH99, LP03, LKTD98, MPM00, MSD06, MD08, PR98, PR07, Pom13, QM12, SR12, SNL12, SM00, TBZ13, VMP+00, dW97]. generator [BCR+08, WWC04].

Graph [CH17, JOH17, LB00, SS14, WYC10, WC06]. Graph-based [LB00]. graphene [YMC+13]. graphical [BLR06]. Graphs [ASAP17, BFG17b, CCH15b, HCP11, LH14, CH13, DSK01, HKK+07, LKTD98, MHP96].

Guaranteed [PMS15]. Guest [CH10b, Mar00, SJ02]. Guidance [ZKS+16]. Guided [YVC14].

Handling [DH06]. Hard [CHBK15, WDZG16, PW99, QS09]. hard/soft [QS09]. Hardened [BS14c]. hardness [WYC10]. Hardware [BS14a, BM11, CMM00, GFJ16, KTKO13, LHF12, LF12, MFHP12, XFJ+16, YGH+10, AMO05, BHDS09, BGM04, FNP09, GGB97, GM15]. generating [MFS09, KT01]. Generation [BKW15, BFV15, CYV+14, IE12, LCY12, LV14, MFHP12, MCD12, PCT+17, Pom17a, Pom17b, SHD17, STJG16, SOS15, WWW+12, YD16, AM98, CK96, Che96, CL99a, CCW08, GF06, HRP00, KKMB02, KJR+07, KNKD96, KH10, LTH99, LP03, LKTD98, MPM00, MSD06, MD08, PR98, PR07, Pom13, QM12, SR12, SNL12, SM00, TBZ13, VMP+00, dW97]. generator [BCR+08, WWC04].

Graph [CH17, JOH17, LB00, SS14, WYC10, WC06]. Graph-based [LB00]. graphene [YMC+13]. graphical [BLR06]. Graphs [ASAP17, BFG17b, CCH15b, HCP11, LH14, CH13, DSK01, HKK+07, LKTD98, MHP96].

Guaranteed [PMS15]. Guest [CH10b, Mar00, SJ02]. Guidance [ZKS+16]. Guided [YVC14].

Handling [DH06]. Hard [CHBK15, WDZG16, PW99, QS09]. hard/soft [QS09]. Hardened [BS14c]. hardness [WYC10]. Hardware [BS14a, BM11, CMM00, GFJ16, KTKO13, LHF12, LF12, MFHP12, XFJ+16, YGH+10, AMO05, BHDS09, BGM04, FNP09, GGB97, GM15].
GPK+09, HKL+07, HBC+08, JW08, KSK+05, KG99, LP07, LVL03, MSB+09, MLC08, ML09, RHA08, SS09.
hardware-accelerated [MLC08].
Hardware-Assisted [GFJ16].
Hardware-Based [BS14a].
Hardware-Software [BM11, GG97, HKL+07, LV03].
Hardware/Software [LHF12, CMM00, KTK013, YGH+10, AM05, ML09].
hash [YTHC97].
hazards [HA05].
heartbeat [[DHZ+11].
heartbeat-detection [[DHZ+11].
Heterogeneous [SVK17, SSL17, TBCH17, BWB14, CL99a, HV07, KJR+07, LLKY13, PTC05, QS09, SCB01, SKS12].
Heterogeneously [ZP08].
Heuristic [HGLC16, CL+10, LCKT12, OCRS07, SBGD13].
heuristics [TN99].
Hierarchical [LMB+12, MSKBD07, TZ17, WMT+16, XT16, BG01, HKV+07, VKKR02, ZM07].
Hierarchy [FW00].
High [Ali12, CET16, CK16, DKT+16, GHW+12, HIW15, JD00, LYKW09, MACV14, PTC05, RJ14, SS14, VAAH+98, WMT+16, ACT13, AYM05, BHW+13, B000, CCC+99a, GDGT07, GF06, GGDN04, GWR13, HJ08, JP08, KW02, KJTO4, LJVO2, LC14, Lin97, LF+09, MKBS05, MJM11, MLMM08, NS03, OW06, OWH08, PB14, RFYL98, SW12, SLXZ12, TC98, VKKR02, XK97, YWW10].
high-density [OW08].
High-Level [CET16, RJ14, SS14, JD00, PTC05, VAAH+98, AYM05, BD00, GGDN04, HJ08, JP08, KW02, LC14, Lin97, MKBS05, MJM11, MLMM08, PB14, RFYL98, SW12, TC98, VKKR02, XK97, YWW10].
High-Performance [DKT+16, WMT+16, GHW+12, LYKW09, GDGT07, GWR13, LJVO2, LF+09, NS03, SLXZ12].
high-quality [BHW+13].
high-speed [OW06].
High-Throughput [HIW15].
Higher [BS14a, XPSE12].
History [JM14].
History-Based [JM14].
Hmap [YTHC97].
hold [KSA+10].
hold-driven [KSA+10].
holding [Pom14a].
Holistic [RGT+14].
HoPE [PBL+17].
Hot [PBL+17].
Hot-Cacheline [PBL+17].
Huffman [BH10, NT05].
Huffman-based [BH10].
huge [HCK13].
huge-scale [HCK13].
HW [ADP+07, FLFP09, WWFT12].
HW-SW [ADP+07].
I/O [LC13, Wu09, Yan16].
IC [EK97, KK11, KKH16, LCJ+10, Ped96, WCB15, ZL13].
IC/MCM [EK97].
ICOS [HLC98].
ICs [CLT+15, GSFT16, LHJ12, LS17, THM15, YHH09].
IDDQ [TCP97].
identification [DNA+12, JDT+08].
identify [LIA00].
Idle [LC07].
IDs [SOS15].
II [JW08].
illegal [LIA00].
ILP [GBK07, MR06, MWW97, OCRS07, OK08, SR12].
ILP-based [MWW97, OK08].
image [WYI97].
Impact [GBK07, MDR15, XNZ+15, KTK013].
implement [ADM+13].
Implementation [HCRK11, JM14, KKL15, MAS16, ORGD+15, ZABGZ17, CD09, JWL+03, KYN+12].
Implementing [HKL+15, KBA08].
implication [WC06].
implications [BLM00, DNA+12, GGBZ02, ZL13].
Implicit [PT06].
imprecise [PKP+03].
Improve [KKLG15, WHXZ13].
Improved [HWGY16, KKL15, G06, LV02, PDN97, Vah99].
Improvement [JGM14, KMO+12, THM15, DD02].
Improvements [KAKS16, VLB98].
Improving [CL13, CHC+16, KRS06, KLY16, RAK12].
In-network [CKX+13].
in-place [KCKG13, YWW10].
In-Scratchpad [DFM15].
Increasing [HW14].
Incremental [BS14b, HKV+07, LNG+16].

indexed [AC06]. indexing [Giv06]. indices [LCT03]. indirectly [AC06]. Induced [CIX15]. inductive [HMLL11, LXCH04]. Information [HMO+14]. Initializeability [CPR+02]. Initialization [WL12]. injection [BPRR98]. Input [JK10, LV14, Pom16a, Pom16c, SRC15, BD05, BH03, CCW08, KM97]. Insertion [LTW+16, CW01, JHL02, LXCH04, LLHT12, LCL08]. insertion/sizing [CW01].

Instruction [HKL+15, KKMB02, LPD+17, LCD07, LHF12, LF12, OT15, SEN05, AMR00, Huo01, KSK+05, KTKO13, KHW06, LP03, LLHT03, LYP3C, LMW99, WH05].

Instruction-level [SEN05]. Instruction-Set [HKL+15, LP03]. Instructions [KAKSP16]. Instrumenting [MPDG09]. Integer [TZ17, GH00]. integer-programming-based [GH00].

Integrate [LLH+17]. Integrated [HMLL11, HWX+14, KK14, NCP01, RGM15, SHD17, BWB14, LFG+09, LTH99]. Integrating [BMdG17]. Integration [APD+11, TMDF10, YD11, LHZ+06, SSP04]. integrity [XZC09, YHH09].

intellectual [KHP05]. Intelligent [HCLC98]. intensive [KCA04]. intent [SDP+09]. interacting [NCP01]. interactive [SCV06]. intercluster [GBK07]. Interconnect [HCZ+16, MSB+09, WTR12, XS16, HR06, HLHT08, JPCJ06, SY07]. interconnection [CFX09]. interconnections [KM97]. interconnects [CML98, CH06, XZC09].

Introduction [BC08, BJX15, CLQ12, Har05, HJ08, JW08, LP07, Ped06, RW03, RBA+12].

IPs [GSFT16, LLY+17]. Irregular [KCKG16, KCKG13]. ISAs [SBH+06].

Island [LCY12, GM08]. Islands [JPX16]. Isolation [CCS15]. Issue [BJX15, BC08, LP07, Ped06, Ped11]. Iterative [KLV15, DD02].

Java [BHDS09, PSL+98]. JETC [BC08].

L [LM96, Meh98]. L-shaped [Meh98]. L-shapes [LM96]. L0 [KJR+07]. L2 [SYX12]. Lab [PGCB16]. Lab-on-Chip [PGCB16]. Lagrangian [LGGJ14]. language [MSD06, MLC08, PHM00, RHN00].

languages [BGM04, Edw03, SSG12]. Large [CSX+05, JZYZ15, YVC14, AM10, DD02, HH09, MRB+11, SCB01]. Large-Scale [YVC14, CSX+05]. Last [KLJ14, SABA15, CXX+13]. Last-Level [KLJ14, SABA15]. latch [LCHT02].

latch-based [LCHT02]. late [LG12].

Latency [QBTM16, YKCG14, ZYPC17, WHXZ13]. Latency-Minimal [ZYP17]. Lattices [GSS14, HMO+14]. Launch
[PTC+15, WWW+12, XCW12, WPHL08].

launch-off-shift [WPHL08].

Launch-on-Capture [XCW12].

Launch-On-Shift [PTC+15, WWW+12].

Launch-to-Capture [PTC+15].

Layer [WL12, Yan17, CLYP09, DDNAV04, OW06, Yan05].

Layout [CFD+16, RCK+15, SPC+15, WPHL08, XK97, ZLY+15, GS00, GH00, KG09, WJYZ11].

Layout-Aware [RCK+15, WPHL08].

Layout-driven [XK97].

layouts [GFC+09, LM96].

Lazy [ZLW+15, ZLW+15].

Lazy-RTGC [ZLW+15].

leaf [dW97].

Leak [PCT+17].

Leakage [CFHM09, DHB16, HYN15, JK10, STWX12, SYHL14, XT16, YLYL09, CS07, CCCW08, KOS09, MLG12, YLL06].

Leakage-aware [YYLL09].

Learned [XFJ+16].

Learning [IE12, LYHL14, PJL14, ZKS+16, STL+13].

Least [JLJ15].

length [CCC09b, Con06, LCT03].

Lens [KPSW09].

Lessons [XFJ+16].

Level [CDB11, CET16, CLMZ10, DKZ+15, HKL+15, HMO+14, KLJ14, LL15, LS11, PDS12, Ple16, RJ14, SABS15, SS14, AYM05, BdM00, BD00, CCYC14, CIB01, CXX+13, Che96, GM08, GG99, GS00, GGDN04, HJ08, JD00, JR97, JP08, JT98, KI01, KRK98, KW02, LC14, LLQ+03, LTPT10, Lin97, MW97, MOZ06, MKBS05, MT02, MJM11, MLMM08, OCRS07, PB14, PPDK09, PTC05, Ped06, PBSV+06, RFY98, SW12, Sen11, SEN05, TC98, TJJ99, Vah99, VAAH+98, VKK02, VS12b, WTL+13, XK97, YYW10, ZHM07, ZLL13].

Leveling [CCH+15a, CHC+16, Kha12, CD09].

levelized [KPR06].

Levels [BFL10].

LFSR [KJT04, Pom17a].

LFSR-Based [Pom17a].

Libraries [ACF+11].

Library [KKS16, MCZ+16, BD97, DDNAV04, JD00].

Library-Based [MCZ+16, DDNAV04].

lifecycle [HDL+12].

Lifetime [AAA15, MHT14].

Lightweight [MPM+17, NSCM17].

limitations [Voe01].

limited [LLKC13].

line [SNH02, ZYZ+13].

Linear [ACFM12, MFHP12, TZ17, DSRV02, KC98, LWK11, ST99].

list [HCS01, MHD+04].

list-approximation [HCS01].

lists [HVF+01].

Lithography [ZLY+15].

liveness [MS08].

LLCs [PBL+17].

Load [LLHT12, Pom14b].

Load-balanced [LLHT12].

local [KC13].

Locality [MT15, ZFLS11, GFC+09, Kan06].

Locality-Aware [MT15].

Locality-Driven [ZFLS11].

Localization [YLYL15].

localized [CMNQ08].

Locally [PMS15, KC13].

Locking [Mit16].

Logic [BFL10, CBMM10, EKS+14, HI15, KKH+02, KMO+12, WB16, WKC12, ZWD11, ARJH06, BLM00, BMD+99, BOC00, CSKR05, CD96, GGBZ02, KJHK03, KMC97, KVMH08, LW06, MW07, RJBS09, TW96, TN99, TJJ99, VKT02, VWV99, ZS02, PRCK08].

logics [BD05].

long [SSP04].

long-path [SSP04].

Longevity [KBV+15].

lookup [CH02, WSEA99].

Loop [AA17, SX+06, HKV+07, PCC09, XPSE12].

loops [BG01, CL99a, KNK96, SHL98].

Lose [KBV+15].

Loss [WSRH16, KC13].

Low [ACF+11, CH10b, CM08, CHHL06, CLMZ10, GBR07, HLK07, HTCP13, LTYW12, LSL+13, LS17, MKK13, MACV14, PMB10, Pom14b, RFB10, SESN15, TWL16, TMDF10, YKCG14, ZK15, BD00, BPRR98, CH10a, CCX06, DS06, GOC02, HLC07, HKC13, JWL+03, KBB09, KKH+02, KJR+07, KHH06, KYN+12, LLH03, LYP13, LWH97, ML09, RTN05, UC01, TJJ99, YGZ04, ZYD08, ZP08].

Low-Complexity [LTYW12].

low-cost [BPRR98, HCK13].

Low-energy [LSL+13].

Low-Latency [YKCG14].

Low-overhead [PMB10].

Low-Power [CH10b, CLMZ10, GBR07, LS17, TWL16, TMDF10, ZK15, CM08, HTCP13, MKK13, Pom14b, RFB10, BD00, CH10a, DS06, GOC02, HLC07, JWL+03, KBB09].
KHK+02, KHW06, KYN+12, LYPC13,
ML09, RTNL05, SUC01, ZYDP08, ZP08].

lower [LC96, TC98], lower-bound [LC96].
Lowering [JLK15]. LUT
[CD96, CH00, KNRK06, LKM04, VKT02].
LUT-based
[CH00, KNRK06, LKM04, VKT02]. LVS
[LBV+06].

MAC [BS14a]. Machine [IE12, LYHL14,
CK96, KMC97, MMP00, PHM00, MSR09].
Machines
[DMR10, BDC08, CHHL96, MS08, BHDS09].
macrocell [CHY05]. Macromodel
[SHD17]. MAESTRO [RGT+14]. Main
[AAA15, BLNK14]. Making [XLN17].
Management [BM11, CHBK15, DMR10,
GCL+16, HC17, KKLG15, LHW+17,
MDR15, PJL14, WMT+16, AHAKP08,
ADDM+13, AMM+06, ANR13, BHDS09,
BMJ13, CLQ12, DS05, FHHG12, GK14,
HCK13, IBMD07, LMB+12, STL+13].
managing [BD08]. Manhattan [DSKB04].
Manhattan-diagonal [DSKB04].
manipulation [CCQ98, Zho08]. Many
[SESN15, WMT+16]. Many-Core
[SESN15, WMT+16]. mapper [YTHC97].
Mapping [CPS16, HABS15, ZYPC17,
CSL+07, CH02, CH00, CHY05, JP12, JD00,
KL05, LKM04, MBB01, PL98, SKS12,
WY06, WSEA99, ZS02]. Marching
[CCH+15a]. Marching-Based [CCH+15a].
Massively [ZWD11]. Matching
[THM15, WLLH16, BD97]. MATLAB
[LPD+17]. matrices [KVMH08]. Matrix
[CLT+15]. Maximizing [HHK+17]. maze
[JCGP05]. MCC [YYG+16]. MCEmu
[THT12]. MCM [EK16]. McPAT
[LLK+14]. MCUs [MRB+11]. MDE
[ORGD+15]. mean [Das04]. Measurement
[JB98, LG12]. measuring [WAZ98].
Mechanical [LTW+16]. Mechanism
[QSW+15, SVK17, WQC+16, ZLW+15,
ZK15, Wu09]. mechanisms [GBK07].
memetic [LFG+09]. Memories
[AAA15, DFM15, JD00, MRB+11, NR03,
OK08, RMB10, SPG+08]. Memory
[BLNK14, BD14, CPS16, CIX15, DFM15,
KLSP11, KKLG15, LLP+16, PDN97,
PPP+15, SSL17, TLCF16, TRM+16,
TMDF10, WQY+16, WDG+16, WSH16,
XNZ+15, ZLW+15, ZZY17, AMM+06,
BD08, BHDS09, BGN+07, CPW04, CJNI11,
HKV+07, IBMD07, JC+08, Kan06, KG09,
LSPC14, MB04, NdLRC03, OKC08, PDN00,
PCL+01, SUC01, SM00, WH5, Wu09,
ZZ+13, ZP08]. Memory-Based
[BD14, CPS16]. memory-constrained
[OK08]. MEMS [Kha12]. Merging
[ASAP17, TCI14, LLLC13, MB04]. Mesh
[JM14, KK14, GHW+12, RL13]. message
[DSH12, EY12]. message-passing-based
[EY12]. metamodelling [MPS07]. Method
[LCC+15, RGM15, SRC15, STGR15,
WTR12, WMT+16, CNG96, CL99a, HW00,
Kag05, LH13, LDK99]. methodologies
[BW00, CEB06, MD13, SSCS10].
Methodology [BVF15, EAP17, KKL15,
KJR+07, KMO+12, LZZS15, VA17,
VE016, AMM+06, DRG98, FLPP09,
HDL+12, HCLC98, Hs00, KYN+12, NR03,
PW99, SEN05, SMSB05, SZV+12].
Methods
[GDF09, KRL15, FZKS11, SW04, ZAJ+12].
Metric [YRH11]. Microarchitectural
[GOC02, LS11, HM11].
microarchitecture [CFX09].
microcontrollers [CD09]. MicroFix
[YHL+11]. Microfluidic
[LHC16, MGR+15, PGB16, RCK+15].
microfluidics [SOC06, SC06].
microfluidics-based [SOC06, SC06].
Microgrid [VA17]. Microprocessor [OT15,
BPRR98, HV98, LBV+06, WAZ98, WWC04].
microprocessor-based [BPRR98].
Microprocessors [Ali12, WMT+16,
LPTT10, MKW09, VAAH+98, WTL+13].
Migration [DK16, Kha12].
Migration-Resistant [Kha12]. million [HH09]. million-gate [HH09]. min [SSP04]. min-area [SSP04]. min-delay [SSP04].

Minimal [MCD12, ZYPC17, KL05]. minimal-area [KL05]. Minimization [HYN15, WB16, AMR00, CSAHR07, CGN96, CCC98b, HPK99, HCS01, HCN09, KC13, LCX04, LKM04, LDK99, LW06, LC07, MRC06, OK08, PBD96, PR96, Q509, SXX+06, T399, ZYP09]. Minimizing [KOS09, WDBG16, WC10, KT96].

Minimum [BFL10, HYN15, JKL15, KJKK93, FNMS01, MS00, ZCG06]. minimum-area [MS00].

Mitigation [BFL10, KRL15, HMLL11]. Mixed [SZB17, YVC14, ZABGZ17, AM05, KOS09, MS00, YWGI09]. mixed- [KOS09].

MoC [MPSoC]. Mode [EK16, JOH17, KKS16, LC07]. Model [CLH12, CCH15b, EAP17, GFJ16, GBB97, KW16, LH14, LOC12, SZB17, XLBN17, YWGI09, YMB15, BLR06, BK10, BH03, CNQ13, CH13, CK96, LLQ+03, MP07, MCMW08, PWY05, RS08].

model-based [MP07]. Model-Centric [XLBN17]. Model-Driven [EAP17, LOC12]. modeled [ARLJH06].

Modeling [BK15, G800, GCZ+15, LLK+14, PSL+98, QBTM16, RGT+14, TWL16, WTR12, BBD00, JPO8, LWM09, LON08, LVL03, MPSo7, PTC05, RH00, RFYL98, Rak09, SKCM06, VAAH+98, VLGG01, WTL+13, WJY+07, ZM07].

Models [APD+11, BBEM15, BFG17a, HHL14, MA16, ZABGZ17, GMSSS02, LTPT10, MRC06, SGD10, SMSB05].

Modern [DKT+16]. Modification [JK10]. Module [SC06, CCX06, SCJ01, TW96]. modules [CWW96, CZW+03, KT96, OWH08].

Modulo [PG15]. Monitoring [FYCT15, LL15, LHP16, LHH+17, APB+08, CXK+13, CBR+05, KPI3, WJY+07].

Monotone [DPN02]. Monte [GLY+12]. morphing [RAKK12]. MOS [ZK15].

MOSFET [BFL10]. motes [RFB10]. motion [DHV+00, KMS12]. Movement [HWGY16]. MP [CRC15].

MPSoC [BGY+07, G14, KJet+08, KH10, SGD10]. MPSoCs [ADP+07, MHT14, RGT+14, SSK12, SSL17, YP10]. MRAM [JZY15].

MSG [WY06]. MTCMOS [HLC07].

Multi [BS14c, HC17, JOH17, ZLY+15, CNQ13, HGBH09, HMB98, KOS09, MPSo7, PB14, Pom14a, RAK12, ZY+12, Wu09].

multi-processor [HGBH09]. Multi-Start [ZLY+15]. Multi-threaded [HC17].

multibank [WH05]. Multicast [XS16].

multichip [OWH08]. Multicore [BM11, CRC15, DFM15, JNL+16, KLSZ11, LS11, LKH+15, LMA+16, QBTM16, THT12, WDZG16, BWH+13, CNQ13, DSH12, HDL+12, KP13, LTPT10, Ped11, QM12, SNL12, WTL+13].

Multicycle [Pom15a, Pom13].

multidimensional [SBGD13].

multidomain [AM10, BMJ13].

multifunctional [AM10]. Multilayer [KKHK16].

Multilevel [HBPSW14, JZY15, PJL14, JCS+08, SG08].

multilevel-cell [JCS+08]. multimedia [HKL+07, ZHM07, ZHOM08].

multimedia [HR06, RGM09]. Multimode [SSG03].

multiplane [AJM13]. Multiple [BM11, GYT12, KRL15, Pom16b, SRC15].

obstacle-aware [SMYH07], obtain [MS00].

Octilinear [HGLC16, Yan98]. off
[PDN00, RJL+09, WPHL08]. off-chip
[PDN00]. Office [GCL+16]. Offline
[MGR+15]. offs [FFHG12, PCC09,
WVYQ99, WGDK07, XPSE12]. On-Chip
[JYZY15, ZYPC17, LOC07, PDN00,
ZSZ10, ADS+09, CCL04, KPI3, LH13,
NR03, PPDK09, YLP+13, ZM07].

On-Demand [AAA15]. Once [CHBK15].
One [XFI+16]. Ones [PB12]. Online
[ZA+12, ADDM+13, CSAH+07, RAKK12].
Only [CHBK15]. open [BCR+08, BD05].

open-source [BCR+08]. Operating
[TWL16, PMB10]. Operation
[CLMZ10, GDTF17, MACV14, KJR+07].
Operations
[BC16, ARLJH+06, BG01, HPK99].

operators [BD05]. opportunities
[VCLUD03]. Opposite [HCN09].

Opposite-phase [HCN09]. Optimal
[BKWW15, BASB01, Cha01, CCX06, CH96,
GSS14, HWCL13, KNDK96, LCHT02,
OWH08, PL98, TS96, ZW98, BW00, BMJ13,
CACS05, CGN96, CH00, DSK01, GH00,
KC+13, LH09, MKW08]. Optimization
[ACFM12, CK16, DZCD15, GLY+12, GK07,
HLG+15, JPHL16, KKK12, KKS16, LHC16,
LZSV15, LH11, PPP+15, SYHL14,
TRM+16, WHRC12, WKC12, WSRH16,
BML00, BDM+99, BmD00, BCC08, BDB98,
BFP08, BOC00, BGN+07, CLK06, CSCO8,
CC09b, CFX09, CJLZ11, Con+06, DP02,
GG04, GBC07, GDF09, GHW+12, HR06,
HPK99, HG07, JPCJ06, KJKK03, KKL11,
KKG13, KSA+10, LHH03, LCHT02,
LC07, LLLC13, MKBS05, MHT14, MKW09,
MLG12, OM08, PCD+01, PEPP06, RGM09,
RJBS09, SB98, SPA+03, TRL+13, VKKR02,
VLH04, WGD07, WLL+11, XZC09, GK09].

optimizations
[GDN04, KRS06, SSG12, SC00, ZHTC09].
Optimized [ACF+11, BC05, HCRK11,
ZABGZ17, ZYS12, KCA04, SY07].

Optimizing [GYT12, KSK+05, LPP00,
LAM01, SYZ08, ZLW+15]. optimum
[Das04]. Order [DZCD15, SXZ13].

Ordering
[AJJ13, GMK05, LXCH04, MKW08].

organization [PDN97]. Oriented
[RGT+14, HLC09, HS00, HS01, LHZ+06,
S011, Vol96]. Orthogonal [GLY+12].

outbreak [FNP09]. Output
[JM14, WSEA19]. Overhead
[WG+11, MHI10, PMB10].

Overhead-aware [WGL+11]. Overlapping
[KCKG16, YYY+16, KCKG13].

package [BC05, LC13, LCJ+10]. packaging
[VLH98]. packet [CL13]. packings [SYZ08].
Packs [SKM+16]. pad [IBM07]. padding
[SSP04]. Page [AAA15]. Pairing [AAA15].
Pairwise [ZLY+15]. paper [KG09, QS11].

papers [CH10a, KLS09, Ped11].

paradigm [DS05, TYH08]. paradigms
[Ped06, PBS+06]. Parallel
[DL11, EBR+09, EAP17, GDPR11,
KLSS11, KCMC97, LB11, ZSFI11, ZS16,
ZWD11, CBHK11, CT13, HS10, HS10,
KKJ+08, KH10, LM05, LH09, RMPJ08,
TW96, ZCG06, KLS09].

parallel-programming [KKJ+08].
parallelism [DS02]. Parallelization
[LH11, ZLL+16]. parallelizing [GDN04].

Parameter [DSR02]. Parameterized
[LRPT0, CT13, TP08]. Parameters
[BBEM15, KPR06]. Parametric
[BFG17a, LON08, LCKT12]. Parasitic
[WLLH16]. Parasitic-Aware [WLLH16].

parity [RMB10]. PARR [XYG+16]. parser
[MLCO8]. Partial [MCZ+16, ETR07,
GGD+08, KBN09, KJT04]. Partially
[Pom16c, LSDV10, YYLL09]. Particle
[HL15, FS13]. Partition
[ZLL+16, CFHM09, WY06].
Partition-based [CFHM09]. Partitioned [WDZG16, FWCL05]. Partitioning [CPS16, LSDV10, SS14, TBC17, TP08, Vah02, AM10, AMO05, CT13, CILZ11, DCK07, DD02, FW00, GF10, LKY13, LVL03, MSKBD07, ML09, PNN00, VLH98, Vah99, WH05, YGH+10]. Partitions [ZS16].
Performance-Driven [HWCL15, Yan16, GJ14, WY06, WLC02, EK97].
Performance-Efficient [YP10]. performance/power [ZHM07].
Performance/Thermal [SYX12].
Performance/Thermal-Aware [SYX12].
Period [HY15, BDB98, CGN96, PL08].
Periodic [CHBK15, POM16c]. Perspective [RJ14, SS14, MOZ06, ZHM08]. Phase [BLNK14, KSA+10, CR12, HMB98, HCN09, KAG05, RAKK12].
Phase-adjustable [KSA+10].
Phase-Change [LLP+16]. Physical [HLHT08, SKM+16, YD16, GWR13, HMVG13, MLG12, SYL09]. Piecewise [HBPW14].
Pin [XYG+16, OWTH08, XTW05]. Pin-Access [XYG+16].
PipeLine [CRC15, RPKC05].
PipeLined [CHBK15, LFA12, HUA01, MS08, MD08, NS03, RTNL05, YGH+10].
pipelines [HA05]. Pipelining [AA17, KLV15, BG01, BASB01, CACS05, CL99a, HV98]. place [KCKG13, YWW10]. Placement [DK16, HWGY16, HWCL15, KRL15, LNG+16, LCC+15, LB11, MCZ+16, TRM+16, WSRH16, WLLH16, YVC14, AM05, ACT13, CBHK11, CACS05, CC06, CSX+05, EK97, KPSW09, LCK+09, OS03, RS03, SC06, TES02, TY97, VLH04, WLC02, WCC03, WLT08, YWK+03]. placements [HWCL13]. Placer [DKT+16, DKT+16].
planar [DPNB02]. Planning [XYG+16, YGG+16, LC13, LH+06, MKBS05, SBC08, XTW05]. PLAs [LW06].
Platform [APD+11, FNP09, JCS+08, RFB10, ZHM07, PBSV+06].
platform-based [ZHM07, PBSV+06].
Platforms
[BS14c, LS11, LMS16, TBCH17, WDZG16, BMJ13, CNQ13, JW08, LP07, MPDG09].

Playing
[RJL+09, PMC [CLH12, CCH15b, CH13]. PMU [APD+11].

Point
[BS14a, BFL10, SRC15, XNZ+15, AM98, CPW04, DPB02, LCOM07, WG11, Yan08].

point-to-point
[LCOM07]. points
[PMB10, Pom13, TD03]. Poisson [QSK12]. polarity [CHH09, LT11].

Policies
[DZCD15, Kha12]. policy [CXK+13].

Polishing
[LTW+16]. polygon [LLM01]. polygons [CT13, LM96, TP08].

Polymerase
[LHC16]. polymorphic [LLYW10].

Polynomials
[GLY+12]. port [CL13, SBC08]. port-scalable [SBC08].

Power
[ACF+11, BLM00, BS14b, BM11, CMP10, CH10b, CHBK15, CXH+16, CLMZ10, GBR07, GCL+16, HPK99, HYN15, JK15, KKKH16, LKH04, LYHL14, LLK+14, LHJ12, LH+15, LS17, MAS16, MKW09, PJL14, Ped96, PTC+15, SC00, SBC08, SYHL14, SSSC10, SNS15, TWL16, TRM+16, TMDF10, TCL14, WYGV99, WC10, WSRH16, XLS15, ZFLS11, ZK15, ZS16, ZMTC13, AHAKP08, BDM+99, BdM00, BD00, BMJ13, BDD00, CS07, CH10a, CM08, CIB01, CCX06, CCW08, CHHH16, CCC09b, CJLZ11, CLQ12, DS06, DTC+09, ETR07, GOC02, GDF09, GF10, GS13, HR06, HLCH07, HLHT08, HTCP13, JWL+03, KB09, KKH+02, KOS09, KC13, KHW06, KYN+12, LMB+12, LHT03, LYCP13, LHW+17, LBV+06, LHW97, MKK13, MRC06, MKW08, MLG12, MFS09, ML09, NT05, PDK09, Pom14b, PWY05, PR96, RFB10, RTNL05, STL+13, SUC01, SPMS02, SNL12, SZV+12, TKVN07, TJ99, THC+14, WJY+07].

Power-Aware
[LHK+15, SBC08, SNL12].

Power-delay
[MKW09, SC00, WVYG99].

Power-Efficient
[JLK15, SZV+12]. Power-Gating
[KHK16, YHL07]. power-optimal
[MK08]. Power-safe [ZMT13].

Power-transmission
[KC13]. Power/ Ground
[LH12]. powered [CSAHR07].

Powerful
[LTYW12, MB04]. PowerPC
[WAZ98]. Practical
[Pic16, VJBC07].

Practice
[MDM+12, SSCS10]. PRAM
[KYL16]. precedence [ZAZ13]. Precise
[Ali12]. predefined [PSK08].

Predictability
[NSCM17]. predictable
[HGBH09]. Prediction
[CS07, DKK+15, HWX+14, JGM14, PBL+17, CR12, OM08, SYL09].

prediction-based
[OM08]. predictive
[HW00, TKVN07]. Preemptive
[HM15, GDG+08]. Preface
[YD16].

Prefetching
[LV02]. prefix
[HL09, ZCG06]. Preparation
[PGCB16, RCK+15]. prescribed
[DSRV02]. Presence
[EKS+14, MCMW08]. Primary
[Pom16a].

Principle
[CHBK15]. principles
[Ped96].

Print
[DZCD15]. Printed
[GDTF17, OW06]. Priority
[HM15, KFP16, LMS16, WDZG16, MHQ07].

Priority-Aware
[KPF16]. Priority-Preemptive
[HM15]. Proactive
[KBV+15]. Probabilistic
[CKAP07, KW16, KVMH08, BRR06, FZKS11].

Probe
[Kha12, BC05]. Probe-Wear
[Kha12].

problem
[DPB02, DS06, FNMS01, LVL03, NR01, PD00, SW99, YWW10]. problems
[SB08, WGDK07]. Procedure
[Vah99].

Process
[RJ14, VEO16, CS07, GM08, KTKO13, KPR06, LG12, LH13, LTP+13].

processes
[JB98]. Processing
[BM11, GFJ16, MFHP12, HMVG13, JSG09, LPP00, NM13, TYH08, ZHOM08].
Processor
[HKL+15, ISE08, LHLP16, LYHL14, LF12, NSH+16, VLGG01, DHZ+11, GG04, Giv06, HGBH09, KABA08, LMB+12, OCRS07, PDN97, PDN00, RFB10, SGD10, WKR09]. processor-based [PDN00]. Processors
[CRC15, JZY15, KAKSP16, KLJ14, LPD+17, LHF12, BH10, CL99a, CPW04, Edw03, Hua01, KJR+07, LJV02, LCD07, LB00, MD08, PHM00, RAKK12, SR12, TKVN07, LSV06]. product [DK08]. production [PKP+03] profile [ZSZ10]. profiling [THC+14]. Program
[HKL+15, BGN+07, RAKK12, WWC04]. Programmable
[ZK15, CH02, CD96, LSPC14, MSD06, PTC05, PWY05, WV02]. Programming
[KLSZ11, TZ17, ADDM+13, GH00, KLSZ09, KJK+08, TP08, WJYZ11]. programming-based [ADDM+13]. Programs
[PMS15, SYHL14, EY12, Vah02, YWG109]. Progressive
[KC10]. project [WLT08]. projective [DL11]. Prolonging [AAA15]. Propagation
[MCD12, KPR06, RCD07, YH97]. Properties
[HBPW14, RGT+14, BDC08, BH03, BFP08, BZ08]. protected [LSDV10, RMB10]. Protecting
[DFM15, GSFT16]. Protection
[GDTF17, KHP05]. protocol [ADS+09, BGM04, DP04]. prototype [APB+08]. Prototyping
[ARLJH06, ORGD+15, JDT+08]. Provably
[ADS+09, Das09, YWK+03]. Provide
[KKLG15]. pruning [DHY+00]. PSL
[BZ08]. PTM [LLH+17]. PUF [NSCM17]. Push
[KMO+12]. PVT [PPDK09]. PWM
[TWL16].
	QoS
[DYNL17]. quad [LBV+06]. quad-core
[LBV+06]. quality
[BHW+13, XPSE12]. Quantifying
[SGB+14, YRH11]. quantitative
[LCOM07]. Quantization
[GYT12]. Queuing
[SSL17]. Race
[BK10, HN07]. Radio
[JDT+08, JSG09]. Radix
[BS14a]. Rail
[VEO16]. RAM
[LSL+13, SABSA15]. ramp
[KM97]. Random
[BS14b, JT98, KPR06, SXZV13, SNL12]. range
[CL13, LSPC14]. Rapid
[ORGD+15]. Rare
[ZKS+16]. Rare-Event
[ZKS+16]. Rate
[LD17, MDG98, PB12, PHK12, TY97]. rates
[ACT13]. Ratio
[WLLH16, Das04]. RC
[KM97, VEO16]. RDL
[Yan11]. Reachable
[XLN17]. Reaction
[LHC16]. Reactive
[ZABGZ17, PSL+98]. Read
[PPP+15, WHXZ13]. Real
[CHBK15, CH17, KPF16, NSH+16, WDZG16, YRH11, ZLW+15, APB+08, DRC98, HMYV13, MHQ07, PEPP06, PW99, WLL+11, ZAZ13]. Real-Time
[CHBK15, CH17, KPF16, NSH+16, WDZG16, YRH11, ZLW+15, APB+08, DRC98, HMYV13, MHQ07, PEPP06, PW99, WLL+11, ZAZ13]. realistic
[MFS09]. Reality
[XLN17]. Realization
[ACFM12, CHHL96]. reallocation
[ZYP09]. realtime
[LG97]. reassignment
[Yan08]. ReChannel
[RHA08]. Recognition
[GFJ16]. recompilation
[GF10]. Reconfigurable
[BS15, CP16, EK16, JPHL16, MLC08, ORGD+15, SVK17, ZLQ15, ARLJH06, GAGD+08, HBC+08, HW14, JBC+10, KKB10, KLSZ11, LCK+09, RHA08, WKR09, WLC02, YLP+13, YGH+10, YLL10]. Reconfiguration
[MCZ+16]. reconconfigurations
[RGG+08]. reconconnections
[WCO6]. reconstruction
[Yan08]. Recover
[BFV15]. Recovery
[NN+16, WL12, ZAZ13]. rectangular
[DSK01, Meh98]. Rectilinear
[GC96, WCC03, LYKW09, MHD+04, MS00, OWH08]. recursive
[LC96]. Reduce
[CX15, JK10, Pom16c]. reduced
[AMM+06, SBH+06]. reducible
[BC11].
TDF+09, wATkK02. Routers [JM14].
Routing
[GKM05, LHJ12, MCZ+16, RGM15, TZ17,
WLLH16, XYG+16, CZW00, CKKT98,
DSKB04, DVA02, GMN+13, LLKC13,
LCC11, LCJ+10, MW97, OW06, OHW08,
RL13, SMYH07, Yan00, YW09, Yan11,
YMC+13, YCHT00, ZW98, ZHTC09].
Routing-aware [GKM05].
row [LC13].
row-based [LC13].
RTGC [ZLW+15].
RTL [BK00, BBD00, BFP08, BFV15, Fuj05,
GS00, LV14, PGB01, PSK08, XK97].
Rule [KMO+12, RS98].
Run [DP02, HMLL11].
Run-time [DP02, HMLL11].
Runtime [BHW+13, LL15, ADDM+13, GFC+09,
GDG+08, HW14, RCG+08, SKS12,
WJY+07, YGH+10].
runtime-reconfigurable [GDG+08].
safe [ZMTC13]. safety [MS08].
Salsa20 [MAS16].
Sample [PGCB16, ZKS+16].
Sampling [WTR12].
SAT [CLM+10, CYV+14, DP02, RCD07, SGK08].
SAT-based [CLM+10, SGK08].
Satisfiability
[BR12, GMSSS02, PG15, GPK+09, HSA+04].
satisfying [QS09]. saturation [CCL03].
saving [HW00]. Scalable
[AA17, PJL14, SESN15, SKM+16, HG07,
KCKG13, SBC08, SBGD13, WSV+14].
Scalable-Throughput [SESN15].
Scale [HC17, YVC14, CSX+05, HCK13, KBA08].
Scaled [PHKW12].
Scaling [HC17, HHL14, LV14, WGS16, IA1+09, KSA+10, ML09].
Scanning-Aware [HC17].
Scan
[BKW15, KMO+12, LWC07, LWK11,
Pom16b, Pom16c, Pom17b, WC10,
WWW+12, XCW12, DDFR13, GKM05,
KB09, NT05, PR09, PR11, RMKP03,
SSG03, TYH08, WPHL08].
Scan-based
[LWK11, KB09, PR09].
Scan-BIST
[LWC07].
Scan-Cell [WC10].
Scan-In
[Pom16c].
Scan-Shift [WC10].
Scenario
[CT13].
Scenario-Aware [KW16].
Scenario-based
[DCK09]. scenarios [SPG+08].
Schedulability [GDG+08]. Schedule
[SGC+14]. Schedulers [NSH+16, JP08].
schedules [DSRV02, LC96]. Scheduling
[CACS05, CIX15, JOH97, LHW97, PMS15,
SZB17, WC15, WDZ16, CLM+10,
CJLZ11, DS05, DHV+00, GBC07, HN07,
JR97, KW02, Kuc03, LLHT03, MBS05,
MJ11, MHQ07, MR05, MVG97, NR01,
RCG+08, SXX+06, TC98, WH05, WDGT07,
YW10, YGH+10, YALL09]. schematic
[KG09].
Scheme
[BM11, KKL15, LTYW12, WHRC12,
XS16, HCK13, KSA+10, XCL13].
Schemes [MGR+15, CSC08, KCKG13].
Score [XLL+16]. scratch [IBM07].
scratch-pad [IBM07]. Scratching
[CP16, DM15, BD14]. Scrubbing
[SVK17].
Search
[VCLD03, CMB07, DVA02, YW10].
search-based [DVA02]. Searching
[DK16, SYZ08]. Section
[BMD17, KLSZ11, YD16, CH10a, CLQ12,
HJ08, JW08, KLZ90, MD13, RBA+12].
Secure
[BHK17, HBC+08, ISE08]. Security
[HMO+14, LHL16, LZZSV15, LMS16,
MPM+17, NSCM17, DP04, IA1+09].
Security-Aware [LZZSV15, LMS16]. Seeds
[Pom17a]. Segment [WL12].
Segment-Based [WL12]. Segmented
[HSA+04, JWL+03, YCHT00]. Selection
[FYCT15, JM14, KPF16, STJG16, ZKS+16,
CGN96, CCC96b, LB00, MB10, VGG01,
XCL13]. Selective
[Mut09, LTC03, WY06]. selectively [BD00].
selectively-clocked [BD00]. Self
[WCB15, XYG+16, SE05, SZV+12].
Self-Aligned [XYG+16]. Self-Test
[WCB15]. self-testing [SE05]. self-tuning
[SZV+12]. Semantic [Pie16]. Semantics
[JC98]. Sensing [LTH99, WY07].
sensitivity [LON08, PMB10, ST99]. Sensor
solutions [CW01, NR01]. solvers [DP02, QSK12]. Solving [CYV+14, WGD07]. Some [KAKSP16]. SOPs [BCC08]. Sorting [ZMP16, Yan00]. Source [YKCG14, BCR+08, KRK98, ZYZ+13].

source-level [KRK98]. Source-Synchronous [YKCG14]. Sources [DHB16, CH96]. Space [GCZ+15, APB+08, ARLJH06, BW00, EK97, JP08, KSS+09, SW12, VCLUD03]. space-efficient [ARLJH06]. spaces [BC11]. spacing [MKW09]. spare [ACT13]. Spatial [GFC+09, Das09]. Special [BJX15, BMdG17, KLSZ11, YD16, BC08, CH10a, CLQ12, HJ08, JW08, KLSZ09, LP07, MD13, Ped06, RBA+12]. specialization [ADM+13]. specialized [BC08]. Specific [HKL+15, HCZ+16, LPD+17, LHFL12, LF12, RCK+15, TCL14, VA17, ACT13, CSC08, SCV06, WKRO9]. Specification [HV98, MD08, VS12a, BD00, BGM04, HV07]. Specification-driven [MD08].

Statically [KKLG15]. Statistical [BBEM15, JGM14, KPR06, PHKW12, SV16, STWX12, XT16, ZKS+16]. statistics [SNH02, SXZV13]. steering [HKV+07]. Steiner [CKKT98, GC96, HGLC16, LKYW09, SMYH07, Yan08]. Steiner-point [Yan08]. Stencil [YYG+16]. Step [HGLC16, Vah02]. stimuli [MFS09].

STT-RAM [SABSA15]. stuck [HVF+01, PR09]. stuck-at [HVF+01, PR09]. Study [LLP+16, LC13, MLG12]. Style [CFD+16]. Sub [BFL10]. Sub-45nm [BFL10].

subGraph [YYC07]. subnetworks [TDF+09]. substrate [LCJ+10, SKCM06]. substrates [SKCM06]. subsystems [JSG09]. Subthreshold [BFL10].

Successful [HWCL15].

Successive-Approximation-Register [HWCL15]. sum [DK08]. sum-of-product [DK08]. SUPERB [EBR+09]. Supply

Synchronous

[CH17, HPB11, PMS15, WWW+12, YKCG14, ZABGZ17, BDM+99, BASB01, CACS05, CPR+02, HKB+07, MB04].

Synthesis [AA17, BR12, BD00, CSKR05, CET16, CLM10, CLO03, GB07, HMVG13, HCA+16, KK14, KKK12, KKS16, LS17, NG06, PDS12, PG15, QSW+15, RJ14, SGC+14, SSI14, SGGR14, SV11, SCCH08, WCCC14, YMB15, ADS+09, BDM+99, BZ08, CLLL06, CMM00, CBMM10, CL99b, CD96, DNAV04, FHHG12, GG99, GOC02, GH00, GGDN04, GWR13, HLKN07, HLC98, HS00, HLC08, HS00, HBC+08, JS13, JWL+03, JW08, KKMB02, KC13, KP13, KFH+08, LCZ+08, LCK+09, LSDV10, LDK99, LP07, MB01, MDC98, MHQ07, ML09, OKC08, P00, PCD+01, PSL+98, Pd11, PEP06, Q09, Rak09, RSR01, SCB01, SLXZ12, SUC01, SHN12, SS11, SZV+12, THC+14, Wol96, Wu09, ZAJ+12, ZP08, SN10, CPX14].

Synthetized [BDM00, CH17, DMR10, GM08, GPH+09, HKL+15, LL15, PDS12, PDDK09, P09, PBSV+06, SGGR14, WL12, YYG+16, ZHM07, APB+08, BPRR98, BMJ13, Cha01, CKAP07, CSC08, DC07, GG99, GABP00, HGBH09, HMVG13, HW00, LTH09, LCC11, MOZ06, MPSJ07, OCRS07, Ped06, SPG+08, Sen11, Vah09, ZLL13, dW97, AHL+08, LVL03, WLL+11]. System-Level [HKL+15, LL15, PDS12, Pie16, Bdm00, GM08, PDDK09, ZHM07, MOZ06, OCRS07, Ped06, Sen11, Vah09, ZLL13].

System-on-a-chip [Cha01, CKAP07].

System-on-Chip [SGGR14, APB+08, BMJ13, CSC08, WLL+11, AHL+08].

System-scenario-based [GPH+09].

Systematic [AMM+06, KP06, RPFC05].

SystemC [BK10, HY07, WFWT12, RHA08].

SystemCoDesigner [KSS+09].

SystemJ [MSR09].

Systems

[BHK17, BLNK14, BJX15, BS14c, CH10a, CCH+15a, CHF15, DFM15, EAP17, KLSZ09, KCI0, LL15, LHK+15, LZZSV15, LMA+16, NSH+16, ORGD+15, PP+15, PG15, QBTM16, STWX12, SS14, THT12, WRHC12, WQC+16, YRH11, ZLW+15, ADM+13, AM10, ADDM+13, ARLJ06, BD00, BW14, CAHS07, CM00, CSL+07, Con06, CLQ12, CLO04, DCK07, DRC98, DNAV04, DTC+09, GDTG07, GPH+09, GDF09, HKL+07, HY07, HDL+12, HLC98, HS00, HBC+08, JS13, JWL+03, JW08, KKMB02, KC13, KP13, KFH+08, LCZ+08, LCK+09, LSDV10, LDK99, LP07, MB01, MDC98, MHQ07, ML09, OKC08, P00, PCD+01, PSL+98, Pd11, PEP06, Q09, Rak09, RSR01, SCB01, SLXZ12, SUC01, SHN12, SS11, SZV+12, THC+14, Wol96, Wu09, ZAJ+12, ZP08, SN10, CPX14].

Systems-on-Chip

[BHK17, HDL+12, KP13].

SystemVerilog [CYV+14].
T [YYC09]. T-trees [YYC09]. table
[WSE99]. table-based [WSE99]. tables
[CH02, YTHC97]. tagged [ZP08]. Tailoring
[CSC08]. Tandem [MSR09]. Tapered
[KKHK16]. Target [KYLI16, FS13].
Targeted [SNL12]. Targeting
[LPD+17, JBC+10, MLMM08]. Task
[LMA+16, SZB17, DCK07, GK14, GBC07,
YLLL09]. Tasks [CH17]. taxonomy
[KP13]. TCONF [HABS15], tdf
[ZMT13]. Technique
[JK10, LGGJ14, DHV+00, HLCH07,
IBM07, KIO1, LC96, MB04, Mut09, RSR01].
Techniques
[MDM07, Mit16, PTC+15, TWL16,
WSV+14, YD16, AM05, BD97, BuM00,
BH10, BAS01, CLM+10, CAAHR07,
CACS05, CFHM09, DS06, DD02, HPK99,
HCS01, HCC01, KSK+05, KMS12, KHP05,
LSDV10, LB00, LH97, LHTC05, LVL03,
OCR50, OK08, PCD+01, RJBS09, TY97,
TRZ13, TYH08, VMP+00, XK07, ZHOM08].
Technologies [SN10, BC08]. Technology
[BFL10, CHY05, DKT+16, HABS15,
JZZY15, SABA15, YD16, ZS02, BL00,
CH02, CH00, KIO1, KLM04, PL98, WY06,
WSE99, ZLL13]. technology-dependent
[BL00]. Technology-Driven [DKT+16].
TEI [LH97+17]. TEI-power [LH97+17].
Temperature [JGM14, LH97+17, ZYP09,
ADP+07, CLQ12, DH06, WY97].
Temperature-aware
[ZYP09, ADP+07, CLQ12]. template
[HGBH10]. Temporal
[PI16, YYC07, BD05, Das09, YYYC09].
Temporally [PRCK08]. terminals [ISE08].
Test [AYM05, EM003, GF06, IE12, LCT03,
MCD12, NSCM17, Pom15a, Pom15b,
Pom15c, Pom16b, Pom16c, Pom17a, RJ14,
TBZ13, WC15, WQ10, WWW+12,
XCW12, XLCL13, BC05, BWB14, Cha01,
Che96, CCL04, ETR07, FNMS01, GM03,
HLKN07, HRP00, HJ08, KTO1, LTH99,
MD08, NCP01, NT05, PR98, PR07, PR11,
QM12, RMKP03, SW04, SBC08, SEN05,
SNL12, TCP97, TD03, WPHL08, WWC04,
XZC09, ZMT13, SGS03].
test-architecture [XZC09]. Testability
[Pom16a, FRS97, PSH08, Pom14a, SCJ01].
Testable [GRB07, RMPJ08]. testbenches
[BFPO08]. testers [NS03, BCP08]. Testing
[NS03, PTC+15, WWW+12, XSC12, XS16,
JT98, KB09, LHCT05, PKP+03, SEN05,
SXZ13, SCJ01, SOC06, TD03, XZC09].
Tests [Pom15a, Pom16a, Pom16c, DNA+12,
PR09, Pom13, Pom14a, Pom14b]. text
[LDK99]. text-compression-based
[LDK99]. their [DSK01]. theoretic [HR06].
theoretical [SB98]. Theories
[PGB15, YY97]. Theory
[MM+12, JWL+03]. Thermal
[CLT+15, CXH+16, CR12, DCK0, JGM14,
LCR+09, LH97+17, MDR+15, WMT+16,
ADD+13, GKL14, LH13, LH97+06, LTE10,
QSK12, WTL+13, WYJ+07, YH09,
ZAJ+12, ZS10]. thermal-oriented
[LHZ+06]. Thermally [RGM15].
thermodynamic [VH04]. Thread
[CNQ13, SV11, KBA08]. Thread-based
[CNQ13]. threaded [HC17]. Three
[RGMB15, Yan00, Vah02, YYC07, YYC09].
Three-Dimensional
[RGMB15, YYC07, YYC09]. Three-layer
[Yan00]. three-step [Vah02]. Threshold
[SV16, SHN12]. Throughput
[HRCR11, HWW14, KLJ14, SES15, CCLZ11,
GM08, SKS12, SHN12]. throughput-aware
[SKS12]. Throughput-Optimized
[HRKR11]. Tier [SSL17]. tightly
[LMB+72]. tightly-coupled [LMB+72].
Tiled [DK16]. Tiled-DNUCA [DK16].
Time [CHB15, CH17, KFP16, NS+16,
WDA16, YRH11, ZLW+15, ZCY17,
APB+08, ARLJH06, CAAHR07, DP02,
DRG98, HMLL11, HLKN07, HMVG13,
KNRK06, LCHT02, LTPR+13, MR96,
MHQ07, NG06, PEPP06, PW99, SCB01,
WGDK07, WLL+11, ZAZ13]. time-
time-constrained [NG06, SCB01]. time-constraints [CSAHR07]. time-domain [LTPR+13].

Timing [PMS15].

Timing-aware [MKW08]. Timing-Driven [LNG+16, CZW00, Yan08, DRG98].

timing-error [SCCH08]. TinyOS [RFB10].

TLB [KSK+05], TLM [BFP08].

TLM-to-RTL [BFP08]. TODAES [CH10a, MDM07]. Tolerance [GVJ15]. tolerant [CEB06, NDLCR03, SC06]. tolerate [SPG+08]. Tool [BBEM15, TDE08, VLH98].

Toolchain [GVJ15]. tools [BdM00, GS00, MD13, MT02].

Topological [SHD17]. Topology [HCZ+16, TDF+09]. Trace [BHK17, BHW+13]. Trace-Based [BHK17].

Traceability [YFT17]. track [LCC11].

Tracking [HMO+14, FS13]. Trade [PCC09, FHHG12, RJL+09, WYVG99, WGDK07, XPSE12]. trade-off [RJL+09].

Trade-offs [PCC09, FHHG12, WYVG99, WGDK07, XPSE12]. Traffic [QBTM16].

Transactions [CH10a, CPX14, KLSZ09].

transfer [KI01, KVMH08]. Transform [LCC+15]. Transformation [SPC+15, BGN+07, KKH+02, Vah99, VJBC07].

transformational [Voe01].

transformations [HKV+07, LLM01, PCC09, WYVG99].

Transforms [ACFM12, MFHP12].

Transient [KRL15, DC07, MRC06].

Transistor [CFD+16, HCW+16, PR96, RS03].

Transition [JOH17, MHQ07, LHCT05, PL03, PR09, WPHL08].

Transition-overhead-aware [MHQ07]. transitions [Mut09]. transitive [YYC07].

Translation [WL12]. transmission [KC13].

Transparency [WHRC12]. Transparent [Pom17b, SV11, PR11]. Transparent-Scan [Pom17b, PR11].

Transportation [CCH15b]. traversal [HRP00]. Tree [HGLC16, KK11, KKS16, LNG+16, LS17, WCC14, CHH09, LLHT12, LYKW09, LLLC13, TDF+09, wATkK02, Yan08, YYC09]. tree-based [YYC09].

Trends [CH15b, KE16, GC06, WCC03, YYC09].

Tunable [CFH16, CK16].

TSV-based [KK11].

Tunable [CFH16].

Tunable [CFH16].

Tunable [CFH16].

Tunable [CFH16].

Two-layer [OW06, DDNAV04]. Two-level [OW06, DDNAV04].

Two-stacked-die [LHZ+06].

Ultra [ACF+11, CK16, GBC07, MACV14, SESN15].

Uncore [WSG16]. Understanding [HHL14].

Unicat [XS16]. Unicat-Based [XS16].

unified [Kag05].

Uniform [KCKG16].

Unique [SOS15]. UNISIM [LS11].

UNISIM-Based [LS11].

Uniform [SGJ96].

Unit [BM11, HWCL15, HWCL13].

Unit-Capacitor [HWCL15]. Universal [CWW96, FLWW02, FLWC07].

universality [RHN00].

Unknown [SSO16].

Unknowns [EKS+14].

Unnecessary [Pom15c]. unpredictabilities [DS05].

unpredictability [SPG+08]. unscheduled
untangling [YW09]. untestable [LIA00]. UPaK [WKR09]. Update [KC10].
Upper [JLJ15]. upset [NdLCR03, RM09]. upsets [MRB+11]. Use
[KBV+15, KFH+08, MS00]. use-cases [KFH+08]. Using
[APD+11, ASAP17, AGM01, BBEM15, BDB12, BS14b, BM11, CYV+14, DNA+12, EK16, FWCL05, FYCT15, GFJ16, GBR07, LLH+17, LYHL14, LLK+14, LCC+15, MA16, PJL14, PG15, PR09, Pom15a, THM15, TMDF10, TCL14, YHL+11, ZYS12, BLR06, BWB14, BK10, BGN+07, BASB01, CACS05, CBMM10, CFHM09, CK96, GGBZ02, GK07, GK09, HVF+01, HMB98, HPK99, HCC01, HW14, KSK+05, KRS06, KPR06, KMS12, KMC97, LCT03, LSL+13, LON08, MHD+04, MSR09, MS08, MR05, MP07, MLC08, PRC08, PKP+03, PMB10, PHM00, RJJ+09, RCD07, SGK08, SABSA15, STL+13, SBH+06, SCJ01, TLF16, TWL16, TN99, TD03, TYH08, Vah02, VWY99, WJYZ11, WCC03, XLC13, X97, YTHC97, YYC07, ZHOM08]. UST
[wATkK02]. UST/DME [wATkK02]. utility [BCR+08]. Utilization
[KKLG15, MT15, GM03, SBC08, SY07]. Utilizing
[BLNK14, CK16, EBR+09].

V [MLMM08]. Validation
[VS12a, CM13, DRG98, FLPP09, HJ08, MD08, QM12, RPKC05, WAZ98]. value
[YGZ04]. Valued [WTR12]. Variability
[CFD+16, LON08]. variable
[LHW97, WH05]. Variables
[Pie16, CCC98, Pom14a, SXZV13]. Variation
[FYCT15, RGM09, WCCC14, GM08, KTX013, MJM11, PPDK09]. Variation-Aware
[FYCT15, RGM09, MJM11, PPDK09]. Variations
[ZZCY17, KPR06, LH13, LTPR+13, ST99]. various [WAZ98]. Varying [SSO16]. VBR
[JLJ15]. Vdd [HLHT08]. Vector

[JK10, CCW08, EMO03, KBA08]. vector-thread [KBA08]. Vectorizing
[LPD+17]. Vectors [Pom15c, CK96].
Verification [Ali12, BKW15, DSH12, KYN+12, Ped11, BHW+13, BDC08, BGM04, DCK07, DCK09, DCK10, DC07, GF06, HA05, HDL+12, HV98, KMS12, KG99, KC98, LBV+06, LOC12, MS08, MPDG09, PRCK08, RFYL98, RBA+12, Sen11, VAAH+98, VS12b, WYIG07, WWC04]. Verifying
[APD+11, HCC01]. versatile
[TYH08]. vertical [LLKC13]. vGreen
[DMR10]. VHDL
[DDNAV04, GDPGR11, MR06, MWG97]. VHDL-AMS
[DDNAV04]. via
[CCC09b, HHL14, HSA+04, KRL15, LHZ+06, PB12, RAKK12, VAAH+98, WB16, WHXZ13, YWG09]. vias [YH09]. Video
[MDR15, CCC+09a, ZHOM08]. viewpoint
[KKTD98]. violations [Das09]. Virtual
[BHDS09, DMR10, JLJ15, MSR09, SSL17, Fj05, KMC97, LLKY13, ZP08]. virtualization
[ISE08]. visibility [HW14]. visual [FS13]. VLIW
[AMR00, GBK07, KJR+07, LJV02, LLHT03, LYP13, SXX+06]. VLSI
[DPNB02, DD02, GMN+13, GOC02, HLC+15, JT98, LM96, MSKBD07, MKW09, OS03, RS03, STWX12, SB98, SSCS10]. VLSI-CAD
[SB98]. volatile [LSL+13]. Voltage
[DS05, JPHL16, JLK15, LCY12, MACV14, SV16, WCC14, WGSH16, ZLL13, GM08, GBC07, KSA+10, LHW97, LHT12, MHQ07, ML09, Rak09, SHN12, WCG08, WLCJ09]. Voltage-Frequency
[JPHL16, GM08]. voltage/frequency
[M09]. voltages
[JR97, MR05]. Volume
[Pom16c, RMKP03]. vs
[KG09, PDN00]. VSSD
[CCS15]. Vulnerabilities
[MAS16].

W [DHZ+11]. Wafer
[THM15, BC05, WL08, ZMTC13]. wafer-probe
[BC05]. Wafer-to-Wafer
References

Azarbad:2017:SSB

Asadinia:2015:PLP

Absar:2006:RAI

REFERENCES

Aksoy:2014:MDF

Ashar:2001:UCD

Abbasian:2008:WBD

Ahn:2008:SSC

Abousamra:2013:OCE

Alizadeh:2012:FVD

Araujo:1998:CGF

Adya:2005:CTM

Ahmed:2010:CBP

Atienza:2006:SDM

Arato:2005:AAM

Aditya:2000:CSM

Anonymous:2013:CNE

Ayoub:2013:CCM
Raid Ayoub, Rajib Nath, and Tajana Simunic Rosing. CoMETC: Coordinated management of energy/thermal/cooling

Araujo:2002:GAR

AlKhatib:2008:MSC

Ain:2011:CPV

Ayala-Rincon:2006:PTS

Ali:2017:RCD

Al-Yamani:2005:TCE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Bernasconi:2008:OKS

Baldassin:2008:OSB

Benini:1997:SBM

Benini:2000:SLPb

Banerjee:2005:OFT

Baradaran:2008:CAM

Nastaran Baradaran and Pedro C. Diniz. A compiler approach to managing storage and memory bandwidth in configurable architectures. ACM Transactions on Design Automation of Electronic Sys-

REFERENCES

REFERENCES

REFERENCES

[BW00] Blythe:2000:EOD

[BWB14] Sounil Biswas, Hongfei Wang, and R. D. (Shawn) Blanton. Re-

Chien:2009:SMV

Clarke:2009:WLS

Chang:2015:MBW

Chang:2015:CDC

Constantinides:2003:SSA

Cota:2004:RCN

Cabodi:1998:AVB

Chang:2015:VPI

Cheng:2008:FSI

Chen:2006:OSM

Chang:2014:BBL
REFERENCES

REFERENCES

Cong:1996:OWI

Chang:2010:CPA

Chang:2010:GEC

Chen:2013:DRG

[CH13] Chun-An Chen and Sun-Yuan Hsieh. t/t-diagnosability of reg-

Choi:2017:WCR

Chakrabarty:2001:OTA

Chen:2015:APB

Gang Chen, Kai Huang, Christian Buckl, and Alois Knoll. Applying pay-burst-only-once principle for periodic power manage-

Cheng:1996:GLT

Chen:2009:SAP

[RITA96] Kwang-Ting Cheng and A. S. Krishnakumar. Automatic generation of functional vectors using the extended finite state ma-
REFERENCES

REFERENCES

Chang:2013:IPP

Chang:2012:CDA

Cao:2006:POS

Cabodi:2010:SHA

Cong:2010:BLO

Coskun:2012:ISS

Chen:2015:MBF
Hai-Bao Chen, Ying-Chi Li, Sheldon X.-D. Tan, Xin Huang, Hai Wang, and Ngai Wong.
REFERENCES

REFERENCES

CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Chen:2007:NMA

Chang:2005:LSC

Chen:2016:TTS

Chen:2013:NMC

Xi Chen, Zheng Xu, Hyungjin Kim, Paul GratZ, Jiang Hu, Michael Kishinevsky, and Umit Ogras. In-network monitoring and control policy for DVFS

Chang:1996:USM

Chen:2013:PDS

Chen:2016:TTS

Cheng:2014:ECD

Cheng:2014:ECD

Chang:2000:TDR

Chang:2000:TDR

Chang:2003:AFF

Dasdan:2004:EAF

Dasdan:2004:EAF

Dasdan:2009:PEA

Dasdan:2009:PEA

Dastidar:2007:VST

REFERENCES

REFERENCES

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[DKT+16] Nima Karimpour Darav, Andrew Kennings, Aysa Fakheri

REFERENCES

Dasan:1998:TDD

Davoodi:2005:VSU

Davoodi:2006:ETG

Deniz:2012:VCM

Dasgupta:2001:SRG

Das:2004:MDR

REFERENCES

REFERENCES

deAbreuMoreira:1997:ADC

Duan:2015:DDO

Esbensen:1997:PDI

Esbensen:1997:PDI

Engelke:2009:SSU

Edwards:2003:TCC

Edwards:2003:TCC

EAP17

EAP17

Enrici:2017:MDE

REFERENCES

Gogniat:2000:CBE

Gorjiara:2007:UFE

Gangwar:2007:IIC

Ghosh:2007:LPT

Ganley:1996:RST

Gingade:2016:HPM

REFERENCES

Guo:2015:RDS

Grosse:2009:MPO

Guan:2008:SAP

Garcia-Dopico:2011:NAV

Guo:2017:OBP

Galanis:2007:SES

Goren:2006:TSG
Guan:2010:RFP

Geelen:2009:SLE

Ghasemzadeh:2016:HAE

Gasteier:1999:BBC

Ghosh:2004:COE

Gong:1997:MRH

REFERENCES

Ganeshpure:2014:PDD

Gupta:2005:RAS

Gong:2012:FNM

Goel:2003:STA

Garg:2008:SLT

Gester:2013:BAD

GuerraeSilva:2002:SMA

[Luís Guerra e Silva, João Marques-Silva, L. Miguel Silveira, and Kareem A. Sakallah.
REFERENCES

[Goodby:2002:MSP]

[GOC02]

[GPH+09]

[Gelosh:2000:MLT]

[Gupta:2013:ECR]

Ujjwal Guin, Qihang Shi, Domenic Forte, and Mark M. Tehranipoor. FORTIS: a comprehensive solution for establish-

Gange:2014:SOS

Gupte:2015:FAT

Heyse:2015:TTM

Harris:2005:I

REFERENCES

REFERENCES

REFERENCES

Holst:2015:HTL

Hsiao:2008:ISS

Hsu:2007:ESC

Ha:2007:PHS

Hu:2007:IHM

Hsieh:2007:FDC

[HLCH07] Ang-Chih Hsieh, Tzu-Teng Lin, Tsuang-Wei Chang, and Ting-Ting Hwang. A functionality-directed clustering technique for low-power MTCMOS design—computation of simultaneously

Huang:2015:OAA

Hu:2008:PSF

Hosseinabady:2007:LTA

Hasteer:1998:EEC

Healy:2011:IMF

Hu:2014:GLI

[HMO⁺14] Wei Hu, Dejun Mu, Jason Oberg, Baolei Mao, Mohit Tiwari, Timothy Sherwood, and Ryan Kastner. Gate-level information flow tracking for security
REFERENCES

REFERENCES

(Huggins:1998:SVP) James K. Huggins and David

Herrera:2007:FHS

HVF:2001:DSS

Hwang:2000:PSS

Hung:2014:AFD

Huang:2013:OCC

Huang:2015:PDU

He:2016:RIM

Huang:2014:ICP

Huang:2015:CPM

Inoue:2009:DSD

Issenin:2007:DDR

Ioannides:2012:CDT

Ioannides, Charalampos; Eder, Kerstin I. Coverage-directed test generation automated by machine learning —

REFERENCES

Jing:2012:SFE

Jafari:2015:LUD

Jung:2015:LMS

Jose:2014:IAH

Jung:2017:MSM

Johnson:2008:IME

Jang:2012:AAA

REFERENCES

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Jones:2008:ISS

Jone:2003:DTI

Jiang:2015:CLF

Kagaris:2005:UMP

Kamal:2016:YSI

Kandemir:2006:REC

Krashinsky:2008:ISV
Kavousianos:2009:EPS

Kim:2010:EEP

Kim:2015:UIL

Kim:2013:AMP

Kjeldsberg:2004:SRE

Kritikakou:2013:NOS

Angeliki Kritikakou, Francky Catthoor, Vasilios Kelefouras, and Costas Goutis. Near-optimal and scalable intrasignal in-place optimization for non-overlapping and irregular access

Khordoc:1998:SVA

Kritikakou:2016:ASC

Kumar:2008:MSS

Kern:1999:FVH

Khatib:2012:MRP

Koushanfar:2005:BST

[KHP05] Farinaz Koushanfar, Inki Hong, and Miodrag Potkonjak. Behavioral synthesis techniques for

Minseok Kang and Taewhan Kim. Integrated resource allocation and binding in clock

[KKM02] R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bozorgzadeh. In-

Kim:2015:AIP

Kahng:1997:ARI

Kormicki:1997:PLS

Kurimoto:2012:YRI

Karfa:2012:FVC

Kolson:1996:ORA

Kulkarni:2006:CTA

Kim:2009:MLP

Kornaros:2013:STC

Kashif:2016:PSR

Kang:2006:STA

Kahng:2009:LAA

Koc:1998:BBD

Kiddie:2015:SEM

Kandemir:2006:IEB

Kurimoto:2010:PAE

Kadayif:2005:OIT

Keinert:2009:SAE

REFERENCES

Kagaris:1996:FAM

Kagaris:2001:NHC

Kadayif:2013:HSA

Kuchcinski:2003:CDS

Krishnaswamy:2008:PTM

Kountouris:2002:ESC

Katoen:2016:PMC

[KW16] Joost-Pieter Katoen and Hao Wu. Probabilistic model checking for uncertain scenario-aware
REFERENCES

Kim:2016:IWP

Kurimoto:2012:VWR

Liu:2001:ODC

REFERENCES

Lin:2002:OTB

Liu:2010:ECR

Lee:2009:TSA

Liu:2012:FHA

Lu:2008:EDI

Lee:2007:CCA

Liu:2010:ECR

Lee:2009:TSA

Liu:2012:FHA

Lu:2008:EDI

Lee:2007:CCA

REFERENCES

Li:2003:TDC

[102x681] REFERENCES

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Lee:2017:TPT

Li:2006:ETO

Long:2000:FFA

Lapinskii:2002:CAH

Liu:2004:PMA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Livramento:2016:CTA

Linehan:2012:MDA

Liu:2008:PVA

Lee:2003:ACG

Lim:2007:ISI

Latiﬁs:2017:MVC

Lalgudi:2000:OCE

Kumar N. Lalgudi, Marios C. Papaefthymiou, and Miodrag Potkonjak. Optimizing com-

Liao:2011:AUB

Lee:2010:PTP

Li:2013:LEV

Lee:2014:CRM

Lysecky:2006:WP

REFERENCES

Lysecky:2002:PIB

Liu:2014:SIS

Lopez-Vallejo:2003:HSP

Lee:2016:TPD

Lee:2011:SBA

Lepak:2004:SSI

Kevin M. Lepak, Min Xu, Jun Chen, and Lei He. Simultaneous shield insertion and net

REFERENCES

Mirtar:2015:AAA

Mirtar:2012:PEG

Meh
ta:1998:ESR

Meh:1998:ESR

Flore:2009:GSL

Mirtar:2015:OBS

Milder:2012:CGH

Peter Milder, Franz Franchetti, James C. Hoe, and Markus Püschel. Computer generation of hardware for linear digital sig-

Mirtar:2015:OBS

Yuchun Ma, Xianlong Hong, Sheqin Dong, Yici Cai, Chung-Kuan Cheng, and Jun Gu. Stairway compaction using corner block list and its applications with rectilinear blocks. *ACM Transactions on Design Automation of Electronic Sys-
Moreno:1996:REU

Mochocki:2007:TO

Majzoobi:2013:LPR

Mittal:2016:STC

Mittal:2011:TVA

Memik:2005:SAO

Mittal:2011:TV

Mittal:2016:STC

Moiseev:2008:TAP

Moiseev:2009:PDO

Mu:2009:AHS

Moscola:2008:RCB

Mok:2012:DSL

Mukherjee:2008:HLC

Marculescu:2000:SSM

Diana Marculescu, Radu Marculescu, and Massoud Pedram. Stochastic sequential machine
REFERENCES

[Moffitt:2008:CDF]

[Maestro:2011:MEL]

[Manolios:2008:AVS]
Panagiotis Manolios and Sudarshan K. Srinivasan. Automatic verification of safety and liveness

Mehta:2009:ICH

Mishra:2006:ADL

Majumder:2007:HPV

Malik:2009:SCU

Michael:2002:ATD

More:2015:LAN

Mutyam:2009:SST

Madhu Mutyam. Selective shielding technique to eliminate crosstalk transitions. *ACM Transactions on Design Automation of Electronic Systems*,
REFERENCES

Mak:1997:BLM

Munch:1997:EIB

Nourani:2001:ITI

Neuberger:2003:MBU

Nacul:2006:STC

Nadakuditi:2013:BAS

2013. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Ostler:2007:IHT

Ozturk:2008:IBE

Ozturk:2008:APB

Ogras:2008:AOP

Ochoa-Ruiz:2015:MAR

Obenaus:2003:GFP

Oboril:2015:EIS

Palkovic:2009:TOL

Panda:2001:DMO

Peng:2017:LSA

Panda:1997:MDO

Panda:2000:CVC

REFERENCES

Pasha:2012:SLS

Pedram:1996:PMI

Pedram:2008:E

Pedram:2011:CPV

Pedram:2006:ISI

Peter:2015:CBS

Pop:2006:AOD

Parulkar:2001:IRC

Poddar:2016:ECS

Peng:2012:SSE

Parthasarathy:2003:PT

Pierre:2016:AVT

Pan:2014:SPM

Parthasarathy:2003:PTA

REFERENCES

Pomeranz:2014:LPS

Pomeranz:2015:ETC

Pomeranz:2015:FES

Pomeranz:2015:GDU

Pomeranz:2016:DTF

Pomeranz:2016:DTS

Pomeranz:2016:PSS

Pomeranz:2017:CSL

[PTC05] Joann M. Paul, Donald E. Thomas, and Andrew S. Cassidy. High-level modeling and

Potluri:2015:DAT

Potkonjak:1999:MAD

Poon:2005:DPM

Qian:2016:PEN

Qin:2012:DTG

Qiu:2009:CMW

Qiu:2011:ATB

Qian:2012:FPS

Qin:2015:CSE

Rakhmatov:2009:BVM

Rakhmatov:2009:BVM

Rodrigues:2012:IPP

Ray:2012:ISS

Roy:2007:EPA

Raabe:2008:RDS

Raimi:2000:EML

Ravi:2014:HLT

Rao:2009:COT

Raghavan:2009:PTG

Ramanujam:2013:DBC

Rohit Sunkam Ramanujam and Bill Lin. Destination-based congestion awareness for adaptive

Reviriego:2009:EED

Reviriego:2010:RAM

Reddy:2003:TDV

Rahaman:2008:CTB

Roy:2005:FSV

Riepe:1998:EBD

Riepe:2003:TPN

Michael A. Riepe and Karem A. Sakallah. Transistor placement...

Roop:2001:FST

Ruan:2005:BEL

Rawat:2003:I

Samavatian:2015:ALL

Shi:1998:CCT

Sehgal:2008:PAS

REFERENCES

REFERENCES

[SDP+09] Su:2001:IRA

[SES15] Meeta Srivastav, Mohammed Ehteshamuddin, Kyle Stegner, and Leyla Nazhandali. Design of ultra-low power scalable-

Schneider:2014:QNE

Schirner:2010:FAP

Sinha:2014:FAI

Sosic:1996:UAF

Saluja:2008:SBA

Shi:2017:TAA

REFERENCES

Su:1998:EFL

Srivastav:2012:DEE

Sarrafzadeh:2002:GE

Singh:2012:ATA

Shi:2012:HND

[SLXZ12] Liang Shi, Jianhua Li, Chun Jason Xue, and Xuehai Zhou.

Su:2006:AMS

REFERENCES

Subramaniam:2015:FPM

Sun:2011:GDD

Sinha:2014:DGP

Shin:2010:PGC

Saladi:2012:CAC

Singh:2003:MST

Song:2017:STV

REFERENCES

Shen:2012:FSF

Shiue:2001:DMD

Stitt:2007:BS

San+tos:2017:SMH

Song:1999:CDP

Sabad:2004:BTM

Schafer:2012:DCH

Shao:2006:LST

Sham:2007:ARD

Shih:2014:COR

Sham:2009:CPE

Chiu-Wing Sham, Evangeline F. Y. Young, and Jingwei Lu. Congestion prediction in early stages of physical design. ACM Transactions on Design Automation of Electronic Systems, 14(1):12:1–12:??, January 2009. CODEN ATASFO. ISSN 1084-
REFERENCES

Tu:2014:PPP

Tsai:2013:ROC

Taouil:2015:YIW

Tu:2012:MFS

Tseng:1999:TLL

Tang:2007:PDF

Tan:2016:ESE

Jingweijia Tan, Zhi Li, Mingsong Chen, and Xin Fu. Exploring soft-error robust and energy-efficient register file in GPGPUs using resistive mem-
REFERENCES

Thorolfsson:2010:LPH

Thornton:1999:BSC

Tseng:2008:PPD

Teman:2016:PAP

Thanvantri:1996:OFS

Thakur:1996:SPF

Tannir:2016:AMN

Tomiyama:1997:CPT

Tzeng:2008:VPS

VanCampenhout:1998:HLD

[VAAH+98] D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. B. Brown. High-level design verification of mi-

Vahid:1999:PCT

Vahid:2002:PSP

VanAchteren:2003:SSD

Venkatasubramanian:2016:PID

Vanbroekhoven:2007:PDS

Vemuri:2002:ERO

[VKKR02] Ranga Vemuri, Srinivas Katkoori, Meenakshi Kaul, and Jay Roy. An efficient register optimization algorithm for high-level synthesis from hierarchical behav-

References

[Voeten:2001:FLT] Jeroen Voeten. On the fundamental limitations of transfor-

Verbeek:2012:EFS

Verbeek:2012:TFV

Tsao:2002:UDC

Wang:2016:ERL

Wu:2006:MWR

REFERENCES

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Won:2016:RSC

Wang:2005:EAV

Wang:2012:BOD

Wu:2013:EWD

Wu:2007:EPM

Wang:2011:ALR

Weng:2012:TOS

Shih-Hung Weng, Yu-Min Kuo, and Shih-Chieh Chang. Timing optimization in sequential circuit by exploiting clock-gating

REFERENCES

Wu:2016:OA

Wei:2014:TSE

Wang:2012:CMI

Wu:2009:EER

Wang:2002:BSF

Wang:1999:PRP

REFERENCES

[Wu:2004:BBA]

[Wu:2012:ESF]

[Wang:2006:PDT]

[Wu:2012:LST]

[Wang:2010:CDF]

[Wang:2010:CDF]

[Wang:2010:CDF]
DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[Xu:2016:PPA] Xiaqing Xu, Bei Yu, Jhih-Rong Gao, Che-Lun Hsu, and David Z.

REFERENCES

REFERENCES

Yu:2009:APG

You:2007:CCP

Yan:2011:MUT

Yang:2014:WLL

You:2006:CLP

Yoon:2013:ACC

Yeo:2007:CCP

Yonga:2015:ABE

Yan:2013:RAG

Yu:2010:EPE

Yu:2011:MQS

Yang:1997:HFM

Yan:2014:EFG

Yan:2009:TAS

Tan Yan and Martin D. F. Wong. Theories and algorithms on single-detour rout-
REFERENCES

Yang:2009:MCS

Yuh:2007:TFU

Yang:2003:CRD

Yu:2010:PSA

Yuh:2009:TTB

Yu:2016:EOA

Yi:2015:ESF

Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Chao

REFERENCES

Zamora:2007:SLP

Zhou:2008:NER

Zamora:2008:EMU

Zhu:2009:ESA

Zhang:2015:RLP

Zhao:2016:SRE

Zeng:2013:IPD

REFERENCES

Zhang:2016:CFS

[2016:CFS]

Zhang:2015:RBA

[2015:RBA]

Zhang:2015:LRR

[2015:LRR]

Zhang:2015:LDP

[2015:LDP]

Zuluaga:2016:SSN

[2016:SSN]

Zhu:2007:HMF

[2007:HMF]

Zhao:2013:PSA

[2013:PSA] Wei Zhao, Junxia Ma, Mohammad Tehranipoor, and Sreejit

Zhou:2008:HTC

ZP08

ZS02

Zhang:2010:CSD

Zhou:1998:ORR

ZWD11

Xiangrong Zhou, Chenjie Yu, Alokika Dash, and Peter Petrov.

