A Complete Bibliography of *ACM Transactions on Design Automation of Electronic Systems*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

30 January 2020
Version 1.70

Title word cross-reference

1 [AGM01]. 2 [FWCL05, GH00, RL13]. 2.5 [WCB15, WWCT18]. 3 [ADMM13,
CLT+15, DLC+17, JGM14, KK11, KKH16, KLE18, LLKC13, LDD+18, LDD+19,
LHZ+06, LHC16, LW17, LS19, LS17, OS03, OCK19, SYX12, THM15, TMDF10, WYC10,
XGC+20, YHH09, ZYS12]. 4 [JCGP05]. dd [MLMM08]. DDX [SW04]. \(F_{\text{max}} \) [PMB10].
GF(2\(^m\)) [RMPJ08]. \(H \) [CLT+15], \(k \) [CLH12].
\(k/m \) [CHY05], \(\mu \) [DHZ+11]. \(N \) [Pom16b, CHL12, Pom17a]. \(o(\min(m,n)) \)
[LM05]. \(t/t \) [CH13]. \(V_f \) [KOS09].

-\text{-Ary} [CLH12]. -\text{-based} [SW04]. -\text{-Cubes} [CLH12]. -\text{-D} [OS03, WYC10]. -\text{-Detection}
[Pom17a, Pom16b]. -\text{-Diagnosability} [CH13]. -\text{-distinguishability} [AGM01].
-\text{-domain} [FWCL05]. -\text{-driven} [MSD06].
-\text{-geometry} [JCGP05]. -\text{-macrocell-based} [CHY05]. -\text{-Matrix-Based} [CLT+15].

0.35V [ACF+11]. 0.35V-\text{-Optimized} [ACF+11].

2-stage [KSA+10]. 2.0 [CLYP09, HWGY16, LLL+18]. 2009 [GK09].
252Kgates [CCC+09a].
252Kgates/4.9Kbytes [CCC+09a].

36 [DHZ+11].

4.9Kbytes [CCC+09a]. 40nm [ACF+11].
45-degree [CT13, TP08]. 45nm [BFL10].
71mW [CCC+09a].
90nm [CFD+16].

Accurate [DKZ+15, LJ18, SV16, SKCM06, TWL16, TEK18, MFS09, RCD07, SGD10, XK97]. Achieving [KJT04, STL+13]. ACM [GK09, BC08, CH10a, KLSZ09, QS11, SN10, CPX14]. acoustic [FIR+97]. acquisition [NR03]. across [LBV+06]. action [KC98].

Adaptive [BM11, CB17, CIX15, EW18b, JM14, KKH16, LLKY13, LYSO19, SFM+19, SOS15, TZ17, WTR12, WQC+16, ZLY+15, CCYC14, CR12, CLQ12, DP04, FS13, HCK13, LMB+12, LSL+13, RL13, RAKK12, SCB01]. Adaptively [KLK+17, DL11]. ADC [EO19]. ADCs [BWCL15, PKP+03]. Add [LW+19].

Algorithm [DHVW18, GPRG11, GYT12, HCRK11, HLG+15, KLSZ09, KLSZ11, MA17, MJIB19, TZ17, YVC14, ZLG+19, BDB98, CD09, CT13, CSL+07, CCW08, EK97, GBC07, JT96, KL05, GM10, MB01, MKBS05, MGML08, MWG97, SCB01, SG96, VKK02, XTW05, YM03, YWW10, Zho08]. Algorithmic [AM05, KR18]. Algorithms [ACFM12, GMN+13, SV16, SZB17, TCP97, Das04, Das09, EMO03, GMSS02, JLF+12, LMK04, LIA00, OWW08, PBI4, PW99, TC98, YWW9, YCHT00, ZS10, ZS02].

Aligned [SHL+19, XYG+16]. Allocating [KAKSP16, YHH09]. Allocation [ABC+17, BKO0, BM11, CET16, CARH18, KK14, KKK15, SCK18, ZYS12, AO20, CLM+10, CL19b, KLC+09, SM00].

Alternative [KRL15, SY08]. among [DK08, LYS019]. AMS [CV19]. ADN04, MM+12, GPDG09, ZMS+19].

Analog [ADB+19, BBEM15, CFD+16, DZ18, LYO19, LHW12, LNY18, PT+20, SH17, STGR15, SOS15, TQ17, WY11, ZSY18, BC05, DCA0, DNA04, LON08, KFC+09, LCKT12, LTPR+13, ST99, SC10, WV02].

Analog/Mixed [STGR15].

Analog/Mixed-Signal [STGR15].

Analog/RF [BBEB15, PT+20]. Analyses [BFG17b]. Analysis [BS14b, CZW+03, CL+15, CB17, CH17, CYH19, CLM10, DZ15, GLY+12, HK15, HHL14, JM14, KM97, KOO18, K13, LJ18, LV14, MAS16].
MHA19, NSCM17, OM08, PHKW12, Pie16, PEPP06, QBTM16, SMBT19, STWX12, THT12, WL12, XT16, ZFLS11, ZYW+18, ZS16, ZKS+16, ZMS+19, ZBPF18, AC06, APB+08, BWR14, BK10, CPR+06, Das04, DH06, FZKS11, GM08, GGBZ02, GDG+08, IBMD07, JB98, JT98, KPR+06, KVMH08, LWC07, LCHT02, LON08, LTPR+13, MDG98, MFS09, MCMW08, NM13, QSK12, RMB+10, ST99, VMP+00, WYC10, YWGI09, ZHM07]. Analytic [AMM+18, JP12]. Analytical [HHL14, MA16, SV16, XLL+16, GG04, LON08].

analyzing [LH13]. Android [THC+14]. Ant [WGDK07]. anti-aging [HTCP13]. Application-aware [ZYDP08]. Application-Driven [YP10]. application-oriented [Hsi00]. Application-Specific [HL1+15, HCZ+16, LDP+17, LHYL14, LHF12, LDR15, RCK+15, STJG16, TLC14, VAI1a, XLL+16, XT16, YP10, ZYDP08, ZYPC17, CSC08, HLKN07, Hsi00, JCGP05, LM96, MMP00, MP07, SXZV13, WKR09, WSEA99, ZMTC13]. Application-aware [ZYDP08]. Application-Driven [YP10]. application-oriented [Hsi00]. Application-Specific [HL1+15, HCZ+16, LDP+17, LHYL14, LHF12, LDR15, RCK+15, TLC14, VAI1a, CSC08, WKR09]. Applications [ACF+11, BFV15, BLUS19, ETAV18, EO19, HC17, HAB+17, MAS+20, MLH+17, NTS18, RS18, SBR+17, SVK17, SFM+19, SESN15, WDZG16, WH20, ZLL+16, CCC+09a, DCK09, DCK10, DPNB02, DSH12, DVA02, HG07, KSS+09, KCA04, KFH+08, MHD+04, NT05, PDM97, Ped06, SR12, VCLD03, VMP+00, WLL+11, WG11, ZHM07, ZAZ13]. Applying [CHBK15, WPR+19]. Approach [DZH+18, FG18, GVJ15, HS19, KRH18, LHF12, LMA+16, LTW+16, MDR15, ORGD+15, Pom18a, SHD17, SGGR14, ADS+09, BD08, BMJ13, CBHK11, CHHL96, DDNAV04, DVA02, ETR07, GG04, GABP00, KSS+09, KJJK03, LFG+09, LCT12, MS09, MR96, NR01, SPP04, Vah02]. approaches [KTKO13, LCOM07, Tes02, WAZ98]. approximability [BCC08]. Approximate [JSS+19, MHA19, NRDB19, OHA19, PMP17]. Approximation [DHVW18, HCLK15, HCS01, YWK+03].

Arbiter [NSCM17]. Arbitrarily [WJG+19]. Arbitration [AL19, IHM15]. Architecting [SABSA15]. Architectural [BMdG17, CIB01, DK16, HLG+15, JP12, LWZ+19, LYL+19, LYLW17, MD13, MSD06, MRL+19, MS17, PCT20, PCT+17, SSL17, WKL+18, WWCT18, YKCG14, YMB15, YLP+13, CHY05, GM03, LCOM07, LTPT10, SCCH08, WTL+13, XZC09, ZY+13, RLJ+09]. Architecture-aware [JP12]. Architecture-level [CIB01, LTPT10, WTL+13]. Architectures [AMM+18, CPS16, GADG19, HWX+14, LMP19, LKL+14, RBWB20, VS12a, ACT13, BD08, Cha01, CKAP07, CCL03, DP04, FS13, FRS97, GBK07, JBC+10, JLF+12, Kan06, KLSP11, LP03, LLKY13, LYCP13, OCRS07, PPD09, QMI2, WH05, ZM07, ZHTC09].

Area [EO19, HS18, HCW+16, KKK12, KKLG15, SY07, SS14, TRM+16, TCL14, Yan16, DK08, GS00, HCS01, KL05, KNRK06, LC13, LCL08, MS00, SPMS02, SP+04, XPSE12, ZY+13, ZHTC09]. area-array [LC13, LCL08]. Area-Aware [HCW+16]. Area-Efficient [EO19, SS14]. Area-I [Yan16]. Area-I/O [Yan16]. Areas [WPR+19]. arithmetic [CCL03]. ARM [LLH+17]. ARM-Based [LLH+17], ARM2 [HV98]. Array [CFF+16, KCKG16, RBWB20, SPC+15, AOC02, CZW00, LC13, LCL08, WV02, ZY+13]. array-based [CZW00]. Array-Style [CFF+16]. Arrays [HCW+16, TRM+16, AC06, CH02, CD96,
Artificial [WXH’19].

CZW00, CFHM09, CH02, CBR+05, CD96, CHY05, CFX09, CM13, CCL04, DP02, DCY09, DNAV04, DVA02, EM003, EY12, FS13, GKH14, GP+09, GBC07, GDF09, GPK+09, GH00, HDZ+20, HYK+20, HCK13, HWCL13, JLF+12, KBN09, KK11].

based

[KNRK06, KSA+10, LC13, LB00, LKM04, LW07, LCC11, LWZ+19, LDK99, LCHT02, LOC12, LWK11, LLLC13, MP07, MLC08, OM08, OHA19, OKC08, OK80, PDN00, PRCK08, PMB10, PR09, Pom14b, RL13, RS98, SW04, SGK08, SOC06, SC06, TN99, TBZ13, VGG19, VKT02, WPR+19, WH20, WW04, WC06, WSEA99, Yan00, Yan08, YYY09, ZHM07, AA17, PBZM19, CCQ98, CH00, MW97, MHT14, MWG97, PSSV06].

basic [KNRK06, KSA+10, LC13, LB00, LKM04, LW07, LCC11, LWZ+19, LDK99, LCHT02, LOC12, LWK11, LLLC13, MP07, MLC08, OM08, OHA19, OKC08, OK80, PDN00, PRCK08, PMB10, PR09, Pom14b, RL13, RS98, SW04, SGK08, SOC06, SC06, TN99, TBZ13, VGG19, VKT02, WPR+19, WH20, WW04, WC06, WSEA99, Yan00, Yan08, YYY09, ZHM07, AA17, PBZM19, CCQ98, CH00, MW97, MHT14, MWG97, PSSV06].

Battery [MRL+19, NSS+16, Rak09, SKM+16, CSAHR07, LCZ+08].

battery-powered [CSAHR07].

Bayesian [BLR06, PTS+20].

BDD [CCQ98, VKT02].

BDD-based [CCQ98, VKT02].

BDDs [BC16].

Beam [LZ17].

Behavior [CLMZ10, HXC+18, RGT+14, KRS06].

Behavior-Level [CLMZ10].

Behavioral [APD+11, AA17, CLMZ10, KHP05, Sch17, TN99, WV02, WHRC12, Fuj05, HLKN07, KSS+09, MR06, VKKR02].

beaviors [BG01, KW02].

benchmark [PSK08].

Benchmarking [JBC+10].

Benders [ETAV18].

best [GK09, QS11, SCS10].

between [Fuj05, YRH11].

Beyond [CPX14].

Biased [JCK+18].

biasing [CFHM09].

BICS [RM09, RB10].

BIFFIST [LTH99].

Bifurcation [HH14].

Binary [SV07, BCR+08].

Binding [CET16, KK14, LHF12, ZLQ15, BD97, CLM+10, CFX09, DS06, HLKN07, MKK13, MJM11, XK97].

Bio [BTP+20].

Bio-chemical [BTP+20].

Bio-IP [BTP+20].

Biochemical [RCK+15].

Biochips [GHYR19, LHC16, LSC20, LKC+18, MGR+15, RCK+15, RBWB20, SKS+18, SOC06, SC06].

biomedical [APB+08].

Bipartitioning [RTNL05, DPNB02].

bipolar [YZY+13].

BIST [BBEM15, JNS+17, IWC07, PKP+03, PGB01, SSG03].

Bit [HHK+17, LS13, NDLR03, RMPS08, RM09, RMB10, SBB+06].

bit-width [LYCP13, SBB+06].

Bits [SSS16].

Bitstream [HYK+20].

black [LAS01].

BLAS [CCYC14].

Block [CM19, CCYC14, CCK+18, D16, ZLG+19, KRS06, LPP00, MHD+04, MS00, WCC03].

Block-level [CCYC14].

block-processing [LPP00].

Blockage [JD18].

Blockchain [K19, XRS+19].

Blocks [AFM14, JPM+19, DK08, FLW02, FLWC07, MHD+04, MS00].

BNF [WW04].

BNF-based [WW04].

Board [MW97].

Board-level [MW97].

Boards [GDTF17, BPRR98, OW06].

body [CFHM09].

body-biasing [CFHM09].

BonnRoute [GMN+13].

Boolean [PRCK08, BR12, BD97, BCI1, CCQ98, GPK+09, SGJ96].

Boosting [CMNQ08].

borrowing [LCHT02].

Both [WH20].

bottleneck [NM13].

Bound [JL15, LC96, LTPR+13, YWK+03].

Boundary [Pom19a].

Boundary-Functional [Pom19a].

Bounded [CKKT98, LLLL18].

Bounded-skew [CKKT98].

bounds [TC98].

boxes [LAS01].

BoxRouter [CLYP09].

branch [CBHK11].

branch-and-cut [CBHK11].

Breaking [Che18].

breakpoint [KRK98].

Breakpoints [KRK98].

bridges [LLQ+03, EBR+09].

bridging [LTH99, TCP07].

Broadscale [Pom14a, Pom14b, Pom15a, Pom16a, Pom16c, Pom18a, Pom18b].

BSP [SYHL14].

BTI [GC18].

BTI-Aging [GC18].

bubble [Yan00].

bubble-sorting-based [Yan00].

Budgeting [CXH+16, STGR15, HLHT08, LCHT02].

Budgeting-Based [STGR15].

Buffer [LYLW17, MB04, SAL19, TCL14, WHRC12,
C [LWC18, RMP08]. C-Mine [LWC18].
C-testable [RMP08]. C2RTL [ZLL+16].
Cache [BFA019, CPS16, CAOM19, GG04, HWX+14, JZY15, JKL16, YKL17, MACV14, Mit16, NTSA18, SSS+19, SABSA15, SMBT19, SML19, WDL17, YPFC17, Giv06, JS13, LMW99, LSL+13, PDN97, SLX12, TKVN07, TY97, VSI12b, ZYDP08, NTSA18].
cache-coherence-enabled [LSL+13].
Cacheline [PBL+17]. Caches [CK19, CB17, SYX12, CKX+13, LSDV10, ZP08]. Caching [WQC+16, HCK13]. CAD [BSP+19, KLSZ09, KLSZ11, SB98, Val02].
Cap [HC17]. Capability [EW18b].
 capacitance [XLS15]. capacitive [LXCH04]. Capacitor [HWCL15, HWCL13].
Cayley [CH15b]. CCM [TWL16]. CDTA [YFT17]. Cell [ACF+11, DBK+18, JZY15, KRL15, TRM+16, WPR+19, WC10, XNZ+15, JCS+08, KBN09, LCZ+08, MRR+11, MS00, RS03, SSCS10, dW97].
Cell-based [WPR+19]. Cells [HWGY16, JCK+18, MJB19, SMK+16, GH00, TS96].
cellular [KT01]. Centralised [CK19].
Centric [WGH16, XLLN17, ZS08].
Centroid [WLLH16, HWCL13]. Chain [BSP+19, LHC16, Pom17b, SL+19, XRS+19, YFT17, YSF+18, YFT18, YBS+18, GKM05, RMK03, TY98, WPHL08].
Chained [CK13]. Chains [Pom16b].
Challenges [BRCS18, MRL+19, XLLN17, Ped11, RBA+12]. Change [JSA18, LPP+16]. changes [LG12].
Channel [BDBB19, DZS+18, JMI4, PPP+15, ZBF18, FLW07, HSA+04, LKY13, Yan00, YCHT00]. Channels [JLJ15, DSKB04]. Characteristics [CDF+16, JLF+12]. Characterization [KRL15, SRC15, BW00, JCS+08]. Charge [VA17b]. Chassis [APD+11]. check [CL13, YCHT00]. checker [BZ08].
checkerboard [GC96]. Checking [AA17, KW16, AGM01, BK10, CNQ13, Fu05, HM98, KMS12, YW09].
Chemical [LTW+16, BTP+20]. chief [A013]. Chip [ADB+19, ALL17, BKH17, BD14, BDBB19, CK19, GADG19, GSD+18, HAB+17, HZS+19, IH15, JL15, JNS+17, JZY15, JGM14, KBV+15, LDD+18, LDD+19, LW17, PMT20, PGC16, SCK18, SMBT19, STWX12, SGGR14, WLT08, XSI16, XCF18, Yan16, YKCG14, ZYS12, ZYPC17, AYM05, APB+08, AD+09, BMJ13, Cha01, CKAP07, CSC08, CKX+13, CBR+05, CCL04, HDL+12, JP12, KP13, KYN+12, LCOM07, LKY13, LLK13, LH13, LC13, MD13, NR03, OM08, PDN00, PPD09, PTC05, TDE08, Yan11, YLP+13, ZS10, ZMT13, ZM07, WLL+11, AHL+08].
Chip-Multiprocessors [HAB+17].

Circuit-Averaging [TW16].
Circuit-simulated [SMYH07].
circuit-switched [CSC08]. Circuits [BJX15, KKS16, LD17, PB12, Pom16b, RGM15, SHD17, WTR12, ZS18, BLM00, BLR06, BC05, BASB01, CSKR05, DLLK06, CACOS05, Che96, CPR+02, DC07, DD02, EMO03, HVF+01, HI09, HWCL13, KJKK03, KOS09, KVMH08, LH09, LON08, LFG+09, LTBR+13, NS03, PL08, PS08, PR98, PR09, RTNL05, SN02, ST99, WV02, ZCG06, SCS10]. Clamp [VEO16]. class [SB98]. Classification [MS17, VNS19, RAKK12]. Classifiers [ALL17]. cleaning [JS13]. client [DW07]. client-server [DW07]. CLIP [GH00].

Clock [EK16, HN07, HYN15, KK14, KK11, KKS16, LLL+18, LNG+16, LT11, LS17, OCK19, TWC20, WCC14, WKC12, WWW+12, BDM+99, BDB99, CGN96, CM08, CHH09, CTKK98, GH+12, GWR13, HTPC13, LLHT12, LLC13, PL98, SSGS03, TDF+09, wATK02].

Clock-Aware [LLL+18]. Clock-Gating [WKC12, BDM+99]. Clock-Tree [KKS16].

Clock-Tree-Aware [LNG+16]. clocked [BD00]. Clocking [BPTB17, MR05].

clusters [OWH08]. CMA [Hsi00]. CMOS [ACF+11, ADB+19, CFD+16, GH00, LTH99, PHK12, WSS+18]. CMP [CXX+13, WGS16]. CMPs [CAOM19, SYX12]. Co [CV19, Gua01, JSS+19, SKM+16, WWF12].

Co-Simulation [SKM+16, WWF12, CMVP19].
Co-synthesis [Hua01]. Co-Training [JSS+19]. coarse [KLSP11].

coarse-grained [KLSP11]. cocurrent [Ki01]. Code [AM00, AM98, CL99a, MLH+17, TY97, BH10, DPH+00, KMS12, KNDK96, KH10, LP03, LB00, LKTD98, LDK09, OKC08, SR12, SBH+06, SM00, VMP+00, VLGG01].

Code-Injection [MLH+17]. code-motion [DHV+00]. codes [RM09, WHZ13].

Codings [BM11, CMM00, FIR+97, GABP00, GGB97, HKL+07, SCV06].

Coherence [HWX+14, LSL+13, ZYP08]. coherency [VS12b].

Collection [GSD+18, HCL+14, ZLY+15].

Collection-Induced [GSD+18]. colony [WGD07]. Coloring [ZLY+15, CML98].

Combinationl [CD96, LD17, EMO03, KT96, KOS99, PR98, RBJS09, TN99].

Combinatorial [AM05, VHL04].

Combining [ETAV18, SPG+08]. CoMT [ANR13]. commercial [MPG09].

Common-source-line [YZZ+13]. Communication [CARH18, KPF16, SRTG19, YP10, ADS+09, GBR07, GGG99, LCOM07, MOZ06, PDPD09].
PBSV$^{+06}$, ZM07]. **Compact** [LJ18, MAS16, WTR12, XCW12, HVF$^{+01}$, YHL07]. **Compacting** [PL03]. **Compaction** [Pom15a, Pom15b, Pom20, EM003, MHD$^{+04}$, TBZ13, XLCL13]. **Comparative** [MLG12, PB14]. **Comparing** [VGG19]. **compatible** [SGK08, WWC04]. **compatibility** [CFHM09]. **Compensation** [CFHM09]. **Compilation** [SFM$^{+19}$, SBH$^{+06}$, YHL07, KLSP11, MSR09, VLGG01]. **Compile** [KNRK06]. **Compile-time** [KNRK06]. **compiled** [PHM00]. **Compiler** [LPD$^{+17}$, LLHT03, SMBT19, SYHL14, WKL$^{+18}$, XPSE12, BD08, GGDNO4, HG07, KR506, SSG12]. **Compiler-Assisted** [SMBT19]. **compiler-directed** [HG07]. **Compiler-in-the-loop** [XPSE12]. **Compilers** [YLL06]. **Compiling** [Edw03]. **Complementary** [QSW$^{+15}$]. **Complementation** [Pom15a]. **complete** [AGM01]. **completeness** [LLYW10]. **Complex** [WTR12, TYH08]. **Complex-Valued** [WTR12]. **Complexity** [ASAP17, AL19, LTYW12, WYC10, BCC08, YCCG03]. **Compliance** [HC18, BGM04]. **Component** [LH14, PG15, RSR01]. **Component-Based** [PG15]. **Component-Composition** [LH14]. **Composable** [VGG19, WTL$^{+13}$, HGBH09]. **Composition** [LH14]. **Compositions** [NSCM17]. **compound** [FLWC07]. **Comprehensive** [GSFT16, JNS$^{+17}$, YFT17, ZBP18]. **Compress** [XCW12]. **Compressed** [PBL$^{+17}$]. **Compression** [BLNK14, KE16, BH10, JCS$^{+08}$, LCT03, LDK99, NT05, OKC08]. **CoMPSoc** [HGBH09]. **Computation** [BFG17a, CV17, CARH18, KCKG16, MOZ06, Pom17a, BLM00, GMSSS02, HLCHO7, HW00, Kag05, WYIG07, YH97]. **Computational** [BCC08]. **Computations** [ENP20, ARLJH06, LPP00, PGB01]. **compute** [TCP97]. **Computer** [MFHP12, CSL$^{+07}$, MBB01]. **computer-assisted** [SLT$^{+07}$, MBB01]. **Computing** [BMDG17, CDB11, JSS$^{+19}$, MHA19, NRDB19, SN10, WLH20, XGC$^{+20}$, CLQ12, LC96, NR01]. **Concept** [AM10]. **Concept-based** [AM10]. **Concurrence** [SSG12, Sen11]. **Concurrency-aware** [SSG12]. **Concurrency-oriented** [Sen11]. **Concurrent** [SOC06, WH20, Edw03, EY12, HCLC98, LC13, RBA$^{+12}$]. **Conditional** [CLH12, CCH15b, KW02]. **conditions** [HN07, YH97]. **Confidence** [JT98]. **Configurable** [LSCP14, BD08, LCD07, SPG$^{+08}$]. **Configurations** [HABS15, BHS11]. **Conflict** [GSD$^{+18}$]. **Congestion** [RGM15, SYL09, YWK$^{+03}$, LCJ$^{+10}$, RL13]. **Congestion-Free** [RGM15]. **Connection** [Yan11]. **connections** [YCCG03]. **Conquer** [HPK99, SW12]. **Conscious** [LCP$^{+16}$]. **Consecutive** [Yan17]. **Consideration** [JD18, LLYW17]. **considered** [HN07]. **Considering** [BHLG19, CCK$^{+18}$, GC18, JOK17, WCC14, KPR06, LH13, LTPR$^{+13}$]. **Consistency** [YP10]. **Consolidated** [HC17]. **Constant** [CHC$^{+16}$, GYT12]. **Constant-Cost** [CHC$^{+16}$]. **Constrained** [LLM01, LLL18, Yan18, BG01, GOC02, LSDV10, MMP00, NG06, NR01, OKC08, SCB01, WG11, WLH20, WLCJ09, YWW10, ZHOM08]. **Constraint** [KKK12, MRMP08, RS18, VMP$^{+00}$, YRH11, Dass09, PR96, TF08]. **Constraint-Based** [RS18]. **Constraint-driven** [MRMP08]. **Constraints** [DBK$^{+18}$, Kuc03, MN17, Pom16a, Yan17, BD05, CSAHR07, Hua01, Q509, SPP04, wATK02, VHL98, WFG08, ZA13, ZW98]. **Constraints-driven** [Kuc03]. **Constructing** [DSRV02, JZYZ15]. **Construction** [EK16, HGL16, LLLL18, CM08, LH09, LYK09, YW08, ZCG06]. **Consumption** [FG18, Kan06, TKV07]. **Contact** [YLZ$^{+17}$]. **Contact-Hole**
[YLZ+17]. Containing [WWW+12, LAS01].
Content [HHK+17, RB19, MLC08].
Content-Aware [HHK+17].
content-based [MLC08]. Contention
[KL14, ZYP17]. Contention-Aware
[ZYP17]. Context [RG19, BDC08, JHL02].
context-aware [JHL02].
context-triggered [BDC08].
Context-Varying [RG19]. Contiguous
[KKLG15].
Control
[AVG19, BDB12, JK10, MAS+20, PCT+17, QSW+15, VGG19, ADDM+13, BMJ13, CXX+13, CR12, FRG97, KSA+10, MGW97, MO8, SHL10, ZAJ+12].
control-dominated [FRG97, MGW97].
Controlled [TRM+16, DL11]. CController
[KMR18, SSL17, GF06, HML11, LC14].
Controllers
[LVS16, PDS12, BDM+99, Fuji05, NCP01].
Controlling [KYL16]. controls [YHL07].
conversion [ZLL13]. Converter
[SGGR14, ADS+09]. Converters
[SBB+18, TWL16, WGT+17, JR97].
cooling [ANR13]. Cooperative [LHF12].
coopitimization [ZLL13]. Coordinated
[ANR13, GDJ04]. coprocessor
[GTG07]. coprocessors [SCV06]. Core
[CAOM19, CYH19, ETAV18, LHP16, SEN15, WMT+16, CCL04, LBV+06, RAK12, SEN05, SZV+12, XZC09].
core-based [CCL04]. core-external
[XZC09]. Cores [SFM+19, WGS16, GGG04, LV02, SSGS03, XZC09]. CoreSight
[LLH+17]. Corner
[KQP+19, MHD+04, Mc98]. correct
[ADS+09]. Correcting [PGCB16].
Correction [DZ18, RM09, WHXZ13].
correlated [SVZZ13]. Correlations
[LYS09]. cosimulation [FLPP09]. Cost
[ABC+17, CHC+16, JPH16, MHT14, MJBJ19, QS09, PRR98, BWB14, Giv06, HCK13, LG12]. Cost-Effective
[JPH16, MHT14]. cosynthesis
[Hsi00, Wol96]. Counterfeit [YFT17].
Countermeasure [HYK+20].
Countermeasures [DZS+18]. Counting
[PB12]. coupled [LMB+12]. Coupling
[LDD+19, KJKK03, LQH04, SKC06].
coupling-aware [KJKK03]. covariance
[KPR06]. cover [SB98]. Coverage
[AKAKP18, CYV+14, CM13, IE12, DSH12, FZKS11, GF06, Sen11, SDP+09, TCP07, WPHL08, WPR+19]. Coverage-Directed
[IE12, CM13]. Coverage-Driven [CYV+14].
Covering [BZW17]. CPU
[SEN05, ZBPF18]. CRA [LLH+17]. Crash
[WL12]. Creation [NRZ+18]. criteria
[CGN96]. Critical
[AKAKP18, FYCT15, GC18, IGN18, KMR18, LC14, STJ16, ETR07, HKB+07].
Critical-path-aware [LC14, ETR07].
Criticality
[BB17, CV17, CHY19, SZB17, ZABGZ17].
Cross [VBP+19, WFT+19, XNZ+15].
Cross-level [VBP+19]. Cross-Point
[XNZ+15, WFT+19]. Crossbar
[XGC+20, THL+13]. crossbar-switch
[THL+13]. crossing [SW99]. Crosstalk
[LWH06, HR06, JPCJ06, LCC11, MCMW08, Mut09, ZW98]. cross-talk-driven
[JPCJ06].
cryptographic [DP04]. Cubes
[CLH12, WC10]. cuboidal [WYC10].
Current
[CH10b, MN17, WLLH16, HLCH07, HCN09].
Current-Ratio [WLLH16]. Custom
[AKAS16, LW17, LH12, LF12, TDF+09, AMR00, HMVG13, TS96]. customizable
[MPS10]. customization
[CBMM10, KMK13, MSB+09, YLP+13].
Cut [SHL+19, CBK11]. Cutting [LVS16].
Cyber [SKM+16]. Cyber-Physical
[SKM+16]. Cyberphysical [PGCB16].
Cycle [LVS16, LS11, Das04, Pom14a].
Cycle-Level [LS11]. cycled [JG09].
Cycles [KAKSP16]. Cyclic [BR12, Che18].

D [GH00, WCB15, ADDM+13, CLT+15, DLC+17, JGM14, KK11, KKKH16, KLE18,
LLKC13, LDD+18, LDD+19, LHZ+06, LHC16, LW17, LS19, LS17, OS03, OCK19, RL13, SYX12, THM15, TMDF10, WYC10, WWCT18, XGC+20, YHH09, ZYS12.

D-enabled [LDD+19]. D-ICs [LS17].

D-NoC [ADDM+13], D-Stacked [SYX12].

DAG [WJG+19]. daisy [KC13].

daisy-chained [KC13]. Dark [HAB+17].

DARP [CRC15]. DARP-MP [CRC15].

Data [CPS16, DZC15, JLK15, KW16, LWC18, LL19, NTSA18, OHA19, PCD+01, Pom16c, PAV17, SPC+15, SU01, XCW12, XPZ+18, BHW+13, BK00, BWB14, BHS11, FWCL05, GFC+09, GMN+13, GDF09, IBMD07, JCS+08, KMS12, KI01, KCA04, LSPC14, LCT03, Meh98, NR03, PDN00, PGB01, RMK03, SM00, VCLD03, YG04].

data-dominant [VCLD03]. Data-Driven [DZC15, LL19].

Dataflow [ASAP17, BMdG17, BLUS19, BFG17a, CH17, HPB11, JOH17, SFA+19, SS14, IKB+07, MHF96, MB04]. Datapath [JR97, CL99b, GDTG07, MR05, XPSE12].

data-paths [Fuj05, GK07, GK09, NFC01].

DC [CFD+16, SBB+18, TWL16, WGT+17].

DC-DC [WGT+17]. DCM [TWL16].

DCW [WLZ+19]. Deadlines [ENP20, WJG+19].

deadlock [LM05, TDE08]. deadspace [SY07]. Debug [EY18b, LHLP16, HW14].

Debugging [Ali12, BHK17, RPDK05]. Decade [XJF+16].

decap [LCL08]. decode [TKV07].

decoder [CCC+09a]. decoders [KHW06].

Decomposition [ETAV18, GRB07, HCH+16, KHW06, LZ17, RFG20, YLZ+17, CHHL96, CH00, EM003, LM96, WSEA69].

decomposition-based [EM003].

Decompression [PBL+17]. Decoupling [SCK+18, XLS15].

deduction [DP02].

defect [ACT13, JT98].

defect-level [JT98]. Defective [PB12].

defects [XLCL13]. Defending [YFT18].

deficiency [ZCG06]. Defined [JHMSG18].

Definition [BC16, PNM15, ZLG+19, CCC+09a, VCLD03]. Deflection [LLKC13].

degree [CT13, TP08]. Delay [FYCT15, JL15, JK10, JOH17, MCD12, STJG16, XCW12, ZK15, BBD98, CFHM09, GS00, GMSS02, HR06, KJDDK03, LLHT12, MT02, MKW09, PT06, PMB10, PR98, PR96, RDC07, SC00, SSPO, TD03, WVCY19, XCL13, XPSE12, YH97, YHL+11].

delay-area [XPSE12].

delay-sensitivity-based [PMB10].

Delivery [XL15, ZFLS11, ZL13].

Demand [AAA15, SKS+18, WQ+16].

Demand-Based [WQ+16].

Demand-Driven [SKS+18]. demonstrable [JW08, LP07].

density [FLWC07, OW08, ZYP09].

dependence [DH06]. Dependencies [BR12].

dependent [BLM00]. depth [CH00, LH09, ZCG06].

depth-optimal [CH00]. depth-size [LH09].

derive [GS00]. derived [CACS05, Zho08].

Describing [RAO8].

description [MSD06, PHM00, SSG12].

descriptions [Fuj05, MGW97].

Design [ADB+19, ABC+17, AFM14, BJX15, BS14a, BAZW17, BS14c, BHLG19, CK19, CD09, CH10a, CH10b, CPX14, CHC+16, CRC15, CO18, DZS+18, DHB16, EAP17, GCZ+15, GHY19, HCRK11, HLG+15, JWL+03, JL15, KKL15, KLS09, KLS11, KLV15, KKS16, LLP+16, LW17, LF12, LHK+15, LZZSV15, OT15, OHA19, PNT20, PDS12, Pom14a, Pom16a, Pom18a, RFG20, RS18, SMBT19, Sch17, Shi20, SPO+09, SGGR14, SHN12, SESN15, SYX12, STGR15, TCL14, VGG19, VA17a, VE016, WWCT18, WPR+19, WSS+18, XLS15, XNZ+15, YPCEF17, YD16, ZLG+19, ZYS12, ACT13, AHL+08, APB+08, AMM+06, ADP+07, BC05, BW00, BFPI08, BASB01, CWW96, CIB01, CSL+07, DR09, DTC+09, EK97, FLW02, FLWC07, FW00, FRS97,
GPH+09, GM03, GABP00, HV07, HA05, HJ08, HLCH07, JB98, JP08, KSS+09, KG99, KCA04, LC13, LSL+13, LFG+09, LCL08, MOZ06]. design [MBB01, MP07, MLG12, OCRS07, PB14, Ped96, Ped06, PBSV+06, PW99, RFYL98, RS98, SW12, SGD10, SYL09, SCS10, Suc01, SS11, SZV+12, TW96, THL+13, VAAH+98, Voe01, WAZ08, WKR09, ZHM07].

Design-for-manufacturability [WPR+19]. Design-for-Testability [Pom16a, Pom18a, Pom14a]. design-specific [ACT13]. Designed [KMO+12, SPT+17]. Designer [SS11]. Designing [BLNK14, DZS+18, HBC+08]. Designs [EK16, MACV14, PHKW12, WWW+12, YVC14, Yan16, Yan17, ZK15, CH00, GM08, GOC02, HMB98, KI01, KK11, KHW06, LHW97, LHT02, LAS01, LCKT12, MS00, MR96, RMKP03, Sen11, SCS10, SNL12, WTL+13, Yan11, ZMTC13]. Destination [RL13]. Destination-based [RL13]. Detailed [MJB19, CBHK11, PWY05]. Detection [CBO+18, HDZ+20, KOO18, LL19, Pom16b, Pom17a, WH20, YFT17, ZHC+18, CR12, DHZ+11, FNP09, KI01, KRR98, KSA+10, LM50, PR07, RM09, SCCH08, TDE08]. Determined [Pom18a]. Deterministic [EY12, KBV+15, LB11, KT01]. detour [YW09]. Detours [Yan19]. developing [SMSB05]. Development [THT12]. developments [Lin97]. Device [GHYR19]. Device-Based [GHYR19]. Devices [Kha12, LKH19, SVK17, JCS+08, ZYX+13]. DFT [DDFR13, PTC+15]. Diagnosability [CLH12, CCH15b, CH13, LH14]. Diagnosing [BDBB19]. Diagnosis [Pom17b, SBB+18, WH19, WH20, CML98, KI01, TYH08]. Diagnostic [HVF+01]. diagonal [DSKB04]. Diagrams [CM19, KC98]. dictionaries [LCT03]. dictionary [HH09]. difference [Das09]. differentiable [Con06]. Differential [JD18, LLP+16, DDFR13]. differentiated [WHXZ13]. Digital [CM18, DZCD15, LHC16, LKC+18, MFHP12, MGR+15, PGCB16, RB19, RCK+15, SKS+18, SOS15, VBP+19, CPW04, RS03, SR12, SOC06]. Digitally [ZK15]. Dilution [GHYR19]. Dimension [BC11]. Dimension-reducible [BC11]. Dimensional [RGM15, Karto19, KQ19, WXH+19, YCC07, YCC09]. Directed [IE12, QM12, CM13, HLCH07, HG07, LKTD98, MD08]. Direction [Yan18]. Direction-Constrained [Yan18]. discharging [HLCH07]. Discrete [HLG+15, LGG14, MLG12, SV16]. Disjunctive [WYIG07]. disk [CD09, SLXZ12]. Dispatching [WHRC12]. Displacement [BFG+19]. Dissipative [ZMS+19]. Distance [HRK18]. distinguishability [AGM01]. Distributed [EAP17, HXCH+18, MVK+18, SCK18, WLZ+19, YMB15, CFX09, LC14, PEPP06, Wol96, dw97]. Distribution [JCK+18, SS016, KSA+10, SW99]. Distributions [KY16, STJ16]. Disturbance [SBB+18]. Disturbance-Free [SBB+18]. Divide [SW12, HPK99]. divide-and-conquer [HPK99]. Divided [TMD10]. DME [wATkK02]. DNUCA [DK16]. domain [FWCL05, IAI+09, JBC+10, LTPR+13, SC06]. domain-specific [SC06]. Domains [WWW+12, LBV+06]. dominant [VCLD03]. dominated [FRS97, KI01, MWG97]. domino [KJKK03, ZS02, CLKL06, NTA18]. Don’t [TPC+17, CBMM10, SGK08]. don’t-cares [CBMM10, SGK08]. Dot [RBW9]. Double [SHL+19, XYG+16]. DPRTM [ADDM+13]. DRAM [BLNK14, CJKK19, LYLC17, LMA+16, SSS+19, SAL19, ZZC17]. DRAM/PCM [BLNK14, LLYL17]. DRAMs [LS19]. DRDU [IBMD07]. DReAM [LMA+16]. Drive [CSS15, VA17b]. Driven
Dual-Mode [KKS16], Dual-Edge-Triggered [HS18], Dual-Mode [KKS16], Dual-Phase [BLNK14]. dual-Scanline [CT13]. dual-Vdd [HLHT08]. duplication [CC06, WY06]. During [TPC+17, EW18b, HR06, MR06, PTC+15, RGM09, XPE12, YWK+03, YWW10, ZMTC13]. duty [JSG09], duty-cycled [JSG09], DVFS [CXK+13]. Dynamic [ADDM+13, BMJ13, BLUS19, BHS11, HKL+15, HRP00, IAI+09, LHW+17, LV14, MDR15, ORGD+15, PBL+17, SV11, WMT+16, WGS16, AHAKP08, ADM+13, AMM+06, BLR06, CMMQ08, GK14, GPH+09, KJT04, KSA+10, LTP+10, LLHT12, MR05, VJB07, KMR18].

Dynamically [CRC15, JPHL16, Pom18a, ARLJH06, WLC02, YLLL09]. dynamics [WHXZ13]. DYNASCORE [KMR18].

E-Beam [LZ17]. Early [PBL+17, SZB17, MKBS05, SYL09]. Early-Release [SZB17]. Easy [VS12a].

EBL [YYG+16]. ECC [KRH18]. ECDSA [DHB16]. ECG [APB+08]. echo [FIR+97].

ECO [DVA02, LG12]. ECR [LTYW12].

EDA [JHMSG18]. EDF [GDG+08, SZB17, WDG16]. Edge [BPTB17, HS18, RS98]. edge-based [RS98].

editor [Ano13]. editor-in-chief [Ano13].

Editorial [CH10b, CPX14, Dut05, Dut06, Dut07, Dut08c, Dut08a, Dut08b, Irw00, MD13, Ped08, TK18, SJ02, Mar00].

Effect [LHW+17, NSS+16, WCCC14, WSH+18, WSRH16, LTH99].

Effective [DS06, JPHL16, LCJ+10, LTW+16, LCL08, PCT+17, XLY+18, YVC14, YLZ+17, LPP00, LSPC14, MHT14, SBC08, WSV+14, XCL13]. effectiveness [WAZ98].

Effects [BDB98, BFL10, GC18, MRB+11, RJB09].

Efficiency [KKLG15, LWC18, RB19, TCL14, WH19, KJT04, ZAZ13].

Efficient [BAKAP18, BS14a, BHDS09, BW00, CK19, CAOM19, CV+14, DMR10, EO19, GADG19, GFJ16, HMB98, HAB+17, HKB+07, HCS01, HG07, HWX+14, JSS+19, JLT15, KBN09, KC10, KW02, LHP16, LJ18, LDD+18, LH+06, LWZ+19, LF12, LHCT05, LM06, LB11, NTSA18, PMP17, RM09, RGM15, SV16, SMB19, SP+15, SPMS02, SS14, SRC15, TCL16, VNS19, WKL+18, WJY+07, WWFT12, YPFC17, YCHT00, YP10, ZYW+18, ZLG+19, ARLJH06, CD09, Das09, FNP09, GM03, GBC07, IBM07, JS13, JP08, KL05, LCD07, LH13, MR05, MR05, MP07, MWG97, SGD10, SLXZ12, SHN12, SZV+12, VKKR02, Wu09, ZSZ10, ZYZ+13, Zhou08].

Efficiently [RCG+08, TY19, ADM+13].

Eh [DKT+16, DBK+18].

Elastic [LYL+19, SZB17].

Electron [HCW+16].

Electronic [CH10a, KLSZ09, HV07].

Electronics [BSP+19, CPX14, XRS+19, CH01a].

Electrostatic [LDD+19].

Electrostatics [LCC+15].

Electrostatics-Based [LCC+15].

Element [CLT+15, ZK15].

elements [HMVG13]. eliminate [Mut09].

Eliminating [SHLL98].

Elimination [LHF12].

Elite [ZKS+16].

Embedded [BMdG17, BD14, BS14c, BM11, DFM15, EAP17, HCL+14, IK19, IGN18, KC10, LL15, LHP16, LHK+15, LL19, NSH+16, OHA19,
PG15, RFG20, SPT+17, SL18, VBP+19, WHRC12, XPZ+18, YP10, AM10, BPRR98, BH10, CSAHR07, CMM00, CSL+07, CM13, DCK07, DCK09, DRC98, GTDG07, GPH+09, GG04, GABP00, HKL+07, HV07, HCK13, IAI+09, JS13, KNDK96, LJVO2, LCZ+08, LSDV10, LB00, LMW99, LDK99, MBB01, MDG98, ML09, NG06, NR03, PDN97, PDN00, PCD+01, PHM00, PEPP06, QS09, RSR01, SB12, SUC01, TKV07, WA99, WO96, XZC09, ZYD08, ZP08.

Embedding [CM18]. Embeddings [CM19]. Emerging [BRCS18, SN10, YPCF17, BC08]. Employing [GS13, ZK15]. emulated [THC+14]. emulation [ADP+07, HMVG13, KRK98, MW97]. Enabled [XRS+19, YSF+18, LDD+19, LSL+13, YFT18]. Enabling [IK19, JS13, ZHOM08]. Encoder [QSW+15]. Encoding [MDR15, OT15, PMP17, YMB15, ZLG+19, KJT04, LCD07, LWC07, NT05, RTN05, YGZ04]. Encryption [Che18]. End [ENP20, GABP00]. End-to-end [ENP20]. Endurance [CHC+16, CCK+18, HHK+17]. Energy [BFL10, DMR10, ENP20, GADG19, GFJ16, HXC+18, JSS+19, JPHL16, KC10, LDD+18, LF12, LWC18, LMA+16, MR05, NTS18, PMP17, RB19, SPC+15, TLCF16, TBCH17, WH05, WKL+18, XPZ+18, YPCF17, YP10, ZHTC09, ZMS+19, ANR13, CSAHR07, CLQ12, GBC07, HG07, HW00, JS13, JCS+08, KSK+05, KRS06, KAN06, KC13, KJR+07, LSL+13, LC07, MRC06, OK08, SLXZ12, SHN12, WLL+11, Wu09, ZAZ13].

Energy- [YP10]. Energy-Aware [TBCH17, ENP20, WH05, JCS+08]. Energy-Efficient [DMR10, GFJ16, JSS+19, KC10, LDD+18, NTS18, PMP17, SPC+15, TLCF16, WKL+18, YPCF17, MR05, SLXZ12, SHN12, Wu09]. energy/thermal/cooling [ANR13]. Engine [LLL+18, TMDF10, CNQ13, DP02, DP04].

Excitation [SOS15]. exclusive [DK08].
Execution [APDC17, LSCK20, NRDB19, VGG19].
EXFI [BPRR98]. exhaustive [CMB07].
Expansion [MS17]. experiment [FIR+97].
Experimental [Das04, AYM05].
Experiments [LHK+15, BCR08, CIB01].
Experts [TEK18]. explaining [YYL+15].
Explicit [EK97]. exploitation [GFC+09].
Exploiting [GSD+18, JLK15, OT15, WKC12, WHXZ13, FW00, Kan06].
Exploration [LLLL18, MA16, RFG20, RS18, Sch17, APB+08, CSL+07, EK97, JP08, KSS+09, LCOM07, MBB01, MSD06, PB14, PPDK09, RJL+09, SW12, SUC01, VCLD03, XPS12].
Exploring [CK19, TLCF16, WGD07, YPCF17].
Exponential [APS18]. Express [JSA18].
expressions [SGJ96]. Extended [WWFT12, CK96, YTHC97]. Extensibility [SGC+14]. Extensible [KAKSP16, MP07].
Extension [LF12]. extensions [WKR09].
extensive [CBMM10]. External [KG09, CBMM10, XZC09]. Extra [CVMP19, KAKSP16]. Extra-Functional [CVMP19]. Extraction [HDZ+20].
Extreme [Pom15b].

fabric [MSB+09]. fabrication [WLT08].
factorization [BOC00]. Factory [DZCD15].
FACTS [VMP+00]. Fail [PAV17, BWB14].
Failure [XNZ+15]. Failures [YYL+15].
False [AKAKP18, AL19, GGBZ02, SHL+98].
FH-OAOS [HGLC16]. Field [WSS+18, CH02, CD96, PWY05, Wv02]. field-programmable [CH02, PWY05].
Finite-Element-Based [CLT+15].
Finite-Point [SRC15]. Firmware [KC10, RGT+14]. first [MR96].
first-time-right [MR96]. Fixed [ALL17, WDG16, AM08, CPW09, LCT03, MHQ07].
fixed-length [LCT03]. Fixed-Point [ALL17, AM08, CPW09]. Fixed-Priority [WZG16, MHQ07]. Flash [CCK+18, HCL+14, KC10, PPP+15, WQC+16, WL12, ZLW+15, HCK13, JCS+08, Wu09].
Flash-Based [HCL+14, KC10].
flash-memory [Wu09]. Flattened [ZYP17]. Flexible [BH17, IGN18, LKC+18, RS18, CL99b, MS00]. FlexRay [SGC+14]. Flip [HS18, KMO+12, XCW12, Yan16, KOS09, KSA+10, LLLC13, Yan11, ZMTC13]. Flip-Chip [Yan16, Yan11, ZMTC13].
Flip-Flop [KMO+12, XCW12, LLLC13]. Flip-Flops [HS18, KOS09, KSA+10].
Floating [BS14a, SKCM06, WG11]. floating-point [WG11]. Floorplan [KQP+19, YVC14, YCCG03, HCS01, LCL08, MRMP08, SY07]. Floorplan-Guided [YVC14]. Floorplanning [KQP+19, 19, YVC14, YCCG03, HCS01, LCL08, MRMP08, SY07]. Floorplanning-guided [YVC14]. Flows [HCRK11, HCZ+16, KLE18, HMLL11, LHZ+06, LCC11, LLM01, SYZ08, WLCJ09, YYC07, YYC09]. floorplanning-based [YVC14]. Flop [KMO+12, XCW12, LLLC13]. Flops [HS18, KOS09, KSA+10]. Flow [HMO+14, IGN18, KW16, MBJ19, PJS12, QSW+15, RJ14, BFP08, DTC+09, GDF09, KMS12, LC13, OM08, WC06]. Flooring [KMO+12, XCW12, LLLC13]. Flooding [AFM14, HS18]. Forced [Pom15b]. Forced-Routing [Pom15b]. Forcing [PR07]. Framework [DK16, GDTF17, JSS+19, JPH16, KPB19, LL15, RG19, SKM+16, THT12, WLZ+19, WWFT12, YP10, ZLL+16, ADP+07, HR06, HV07, KKJ+08, KH10, MPJ07, MP07, RPKC05, SB98, SBH+06, SS11, ZM07]. Free [MRG15, SBB+18, BLR06]. frequencies [PL03]. Frequency [GC18, JPH16, WTR12, WGS16, GM08, JDT+08, LTTR+13, ML09]. frequency-based [GC18, JPH16, WTR12, WGS16, GM08, JDT+08, LTTR+13, ML09]. Frequent [YGZ04]. FSM [AGM01]. FSMs [CK16]. fuel [LCZ+08]. fuel-cell-battery [LCZ+08]. Full [STWX12, HSL+12]. Full-Chip [STWX12]. fully [FW00]. Functional [CVMP19, DCK07, FRS97, PR98, Pom15b, Pom15c, Pom16a, Pom16c, Pom18b, Pom19a, VLH98, WSEA99, XLY+18, CMB07, CK96, LOC12, MT02, Pom13, Pom14b, Vah99]. Functionality [BFV15, HCH07]. functionality-directed [HCH07]. functions [BC11, CCQ98, TW96]. Fundamental [HL15, Voe01]. Future [HAB+17, KBV+15, ZZCY17]. FuzzRoute [RGM15]. GALS [SS11]. GALS-Designer [SS11]. game [HR06, RHL+09]. game-theoretic [HR06]. Garbage [GSD+18, HCL+14, ZLL+15]. Gate [CM19, CBB11, CH96, HM+14, KKS16, LGGJ14, SV16, SRC15, CWC08, CH02, CD06, CH00, HH09, LG12, LLYW10, PWY05, RGM09, SC00, WY06]. Gate-Level [CM19, DBB11, CH96, HM+14, KKS16, LGGJ14, SV16, SRC15, CWC08, CH02, CD06, CH00, HH09, LG12, LLYW10, PWY05, RGM09, SC00, WY06].
[BKW15, BFV15, CYV+14, IE12, LCY12, LV14, LCYN18, MFP12, MCD12, PCT+17, Pom17a, Pom17b, SHD17, Shi20, STJG16, SOS15, WWW+12, YLZ+17, YD16, AM98, CK96, Che96, CL99a, CCW08, GF06, HRP00, KKMB02, KJR+07, KNDK96, KH10, LTH99, LP03, LKTD08, MMP00, MSD06, MD08, Pr98, Pr07, Pom13, QM12, SR12, SNL12, SM00, TBZ13, VMP00, dW97].

generator [BCR08, WWC04].
generic [FLWW02, FLWC07].
Genetic [MA16].
Genetic-Algorithm-Based [MA16].
Geometric [CM18, WJYZ11].
geometry [JCGP05].
Global [AOC02, BM11, RGM15, WSH+18, CLYP09, DHV00, SPA+03, ZHTC09].
Global/Local [BM11].
Globally [PMS15].
GMDF [FIR97].
good [GMN+13, YWK+03].
GP [APS18].
GPGPU [SBR+17].
GPGPUs [HIW15, TLCF16].
GPlace3.0 [AMM18].
GPU [CDB11, HCRK11, LH14, LH11].
GPU-Based [LH11].
GPUs [SABSA15, TY19, WKL+18, ZWD11].
Gradient [SV16, GBC07].
gradient-based [GBC07].
grading [PT06].
Grain [LG18].
grained [KLSP11].
Grammar [JHMSG18].
Granularity [RBWB20].
Graph [CH17, JHMGS18, JOH17, LB00, SS14, WYC10, WC06].
Graph-based [LB00].
Graph-Grammar-Based [JHMSG18].
graphene [YMC+13].
graphical [BLR06].
Graphs [ASAP17, BFG17b, CM18, CCH15b, ENP20, HPB11, LH14, CH13, DSK01, HKB+07, LKTD98, MPH96].
Gravity [OS03].
Grid [HXC+18, MN17, SCK18, ZS16, MFS09].
gridless [LCC11].
Grids [BS14b].
GRIP [JHMSG18].
Ground [LHJ12, YHH09].
Grouping [XCW12, KSA+10].
Guarantee [MN17].
Guaranteed [PMS15].
Guest [CH10b, Mar00, SJ02].
Guidance [ZKS+16].
Guided [YVC14].
Guidelines [WPR+19].
Guiding [EW18a].

Hamming [HRK18].
Handling [DH06].
Hard [CHBK15, WDZG16, PW99, QS09].
hard/soft [QS09].
Hardened [BS14c].
hardness [WYC10].
Hardware [BS14a, BM11, CMM00, DZS+18, GFJ16, GQW19, IPWV17, KTKO13, LG18, LHF12, LF12, MRL+20, MPH12, MRL+19, RB19, TY19, XFJ+16, YSF+18, YGH+10, ZLG+19, AM05, BHDS09, BGM04, FNP09, GGB97, GPK+09, HKL+07, HBC+08, JW08, KSK+05, KG99, LP07, LVL03, MSB+09, MLC08, ML09, RHA08, SSG12].
Hardware-accelerated [RB19, MLC08].
Hardware-Assisted [GFJ16].
Hardware-Based [BS14a].
Hardware-Efficient [ZLG+19].
Hardware-Enabled [YSF+18].
Hardware-Software [BM11, GGB97, HHL+07, LVL03].
Hardware/Software [LHF12, CMM00, KTKO13, YGH+10, AM05, ML09].
Harnessing [RBWB20].
Harvesting [SAL19, XPZ+18].
hash [YTHC97].
Hashing [CJKK19, JCK+18].
hazards [HA05].
Heap [JPM+19].
Heaps [KLK+17].
heartbeat [DHZ+11].
heartbeat-detection [DHZ+11].
Heterogeneous [ETAV18, GADG19, RS18, SPT+17, SVK17, SSI17, SAL9, TBCH17, BWB14, CL99a, HV07, KJR+07, LKLY13, PTC05, QSO9, SCB01, SKS12].
Heterogeneously [ZP08].
Heuristic [AKAKP18, HGLC16, CLM+10, LCKT12, OCRS07, SBGD13].
heuristics [TN99].
Hidden [HYK+20].
Hierarchical [CV17, LMB+12, LJ18, MSKBD07, TZ17, WMT+16, WLH20, XT16, BG01, HKV+07, VKKR02, ZM07].
Hierarchy [CM19, FW00].
High [AKAKP18, Ali12, CET16, CK16, DKT+16, DBK+18, DLS+17, GHW+12, HIW15, JD00, LLL+18, LYKW09, MACV14, PTC05, RJ14, Sch17, SS14, VAAH+98, WMT+16, ZYW+18, ZLG+19, ACT13, AYM05].
BHWS BD00, CCC+09a, GDG07, GF06, GDN04, GWR13, HJ08, JP08, KW02, KJT04, LJQ02, LC14, Lin07, LFG+09, MKBS05, MJM11, MLM08, NS03, OW06, OW08, PB14, RFYL98, SW12, SLX12, TC98, VKKR02, XZ97, YWW10.

High-density [OWH08]. High-Level [CET16, RJ14, Sch17, SS14, JD00, PTC05, VAAH+98, AYM05, BD00, GGDN04, HJ08, JP08, KW02, LC14, Lin97, MKBS05, MJM11, MLM08, PB14, RFYL98, SW12, TC98, VKKR02, XZ97, YWW10].

High-Performance [DKT+16, DLC+17, LLL+18, WMT+16, GHW+12, LYK09, GD07, GWR13, LJQV02, LFG+09, NS03, SLX12].

High-quality [BHWS+13]. high-speed [OW06]. High-Throughput [HW07].

Higher [BS14a, LYS019, XPSE12].

History [JM14]. History-Based [JM14].

HoPE [PBL+17]. Hot [PBL+17].

Hot-CacheLine [PBL+17]. Hotspot [HDZ+20]. Huffman [BH10, NT05].

Hybrid [BLNK14, GCL+16, KKK+12, LZZ17, LYLW17, LV14, LGGJ14, MACV14, SLXZ12, WSS+18, CLYP09, KT01, KKM10, LCT+08].

Hypercube [TMDF10].

I/O [LC13, Wu09, Yan16]. IC [ABC+17, BHLG19, EK97, IK19, KK11, KKH+16, LC+10, Ped06, WCBI5, WXH+19, WSS+18, XGC+20, ZLL13].

ICMCM [EK97]. ICOS [HCLC98]. ICs [CM18, CM19, CLT+15, GSFT16, LHJ12, LS17, THM15, WWCT18, YHH09].

ICD [TCP97]. identification [DNA+12, JD+08]. identify [LIA00]. Idle [LC07]. Idleness [GSD+18]. IDs [SOS15].

II [JW08]. ILA [HZS+19]. illegal [LIA00].

ILP [GBK07, MRC06, MCG97, OCRS07, OK08, SR12]. ILP-based [MG97, OK08].

Image [RB19, WYIG07]. Imbalanced [HDZ+20]. Impact [GBK07, LDD+19, MDR15, RB19, TY19, XNZ+15, KTK13].

Implement [ADM+13]. Implementation [ALL17, HCRK11, JM14, KKL15, MAS16, ORGD+15, ZAGBZ17, CD09, JWL+03, KYN+12]. Implementing [HKL+15, KBA08]. Implication [WH20, WC06]. Implication-based [WH20]. implications [BLM00, DNA+12, GGBZ02, ZLL13].

Implicit [PT06]. Imprecise [ENP20, PKP+03]. Improve [KKLG15, Pom19b, WHXZ13]. Improved [HWY16, KKL15, LWC18, Giv06, LV02, PND97, Vah99]. Improvement [JM14, KMO+12, THM15, DD01]. Improvements [KAKSP16, VLH98].

Improving [CL13, CH+16, KRS06, KVL16, RAKK12, WDLD17, WSH+18, WH19]. In-Cache [BFG+19]. In-network [CXK+13].

In-Order [ZBF18]. in-place [KCKG13, YWW10]. In-Scratchpad [DFM15]. In-Situ [SL18]. Incomplete [Pom19b]. Inconsistency [XPZ+18].

Increase [KMR18]. Increasing [HW14].

Incremental [BS14b, EO19, HKV+07, LCP17, LNG+16, SGDR14, DVA02, LG12, LMM01, SMSB05].

indexed [AC06]. indexing [Giv06]. indices [LCT03]. indirectly [AC06]. Indoor [MVK+18]. Induced [CIX15, GSD+18, LS19, TCW20].

Inductive [IPWW17, HMLL11, LXCH04].
Information [HMO+14, ZBPF18].
Informative [TEK18]. Initializability [CPR+02]. Initialization [WL12].
Injection [MLH+17, BPRR98]. Input [JK10, LV14, Pom16a, Pom16c, SRC15, BD05, BH03, CCW08, KM97]. Inputs [Pom18a]. Insertion [HS19, LTW+16, SHL+19, CW01, JHL02, LCH04, LLHT12, LCL08].
insertion/sizing [CW01]. Instinctive [MVK+18]. Instruction [HKL+15, HZS+19, KKMB02, LPD+17, LCD07, LHF12, LF12, OT15, SEN05, AMR00, Hua01, KSK+05, KTKO13, KHW06, LP03, LLHT03, LYCP13, LMW99, WH05].
Instruction-Level [HZS+19, SEN05]. Instruction-Set [HMLL11, HWX+14, HS19, JNCS19, KK14, KLE18, NCP01, RGM15, SHD17, BBW14, LGF+09, XTW05]. Integrating [BMdG17].
Integration [APD+11, BPTB17, BRCS18, IGN18, JHMG18, TMDF10, YD16, DL11, LHZ+06, SSP04]. Integrity [XRS+19, XZC09, YHH09]. intellectual [KHP05]. Intelligence [MVK+18].
Iterative [KLV15, DD02]. iTimerM [LJ18].
AM10, DD02, HH09, MRB+11, SCB01.

Large-Scale [LYL+19, YVC+14, CSX+05].

Last [KLJ14, SABSA15, SAL19, CKX+13].

Last-Level [KLJ14, SABSA15, SAL19].

Latch [JNCS19, LCHT02]. latch-based [LCHT02]. late [LG12]. Latencies [Sch17].

Latency [QBTM16, YKCG14, ZYPC17, PMT20, WHXZ13]. Latency-Minimal [ZYPC17]. Lattices [GSS14, HMO+14].

Launch [PTC+15, WWW+12, XCW12, WPHL08]. launch-off-shift [WPHL08].

Launch-on-Capture [XCW12].

Launch-On-Shift [PTC+15, WWW+12].

Launch-to-Capture [PTC+15]. Layer [LYCP17, WL12, Yan17, CLYPO9, DDNAV04, OW06, Yan00, Yan19]. Layout [CFD+16, DZ18, LZ17, LCYN18, RCK+15, SPC+15, WPHL08, WPR+19, XK97, YLZ+17, ZLY+15, GS00, GH00, KG09, WJYZ11]. Layout-Aware [RCK+15, WPHL08]. Layout-driven [XK97]. layouts [GFC+09, LM96]. Lazy [ZLW+15, ZLY+15]. Lazy-RTGC [ZLW+15]. LBNoc [PTC05]. LDOs [SCK18]. leaf [dW97]. Leak [PCT+17].

Leakage [CFHM09, DBH16, HYN15, JK10, STWX12, SYH14, XT16, YLL09, ZBPF18, CS07, CCW08, KOS09, MLG12, YL06].

Leakage-aware [YYLL09]. Learn [RG19].

Learned [XFJ+16]. Learning [CAOM19, EW1sa, HDZ+20, HXC+18, IE12, LG18, LYHL14, PJL14, TEK18, WH19, WLH20, ZKS+16, ZHC+18, STL+13].

Learning-Based [LG18]. Least [JLJ15].

Legeral [DBK+18, DBK+18]. length [CCC09b, Con06, LCT03]. Lens [KPSW09].

Lessons [XFJ+16]. LET [WLZ+19].

LET-Based [WLZ+19]. Level [CBB11, CBT+16, CLM10, DKLZ+15, HKL+15, HMO+14, HZS+19, KLJ14, LL15, LG18, LS11, PDS12, Pld16, RJ14, SABSA15, Sch17, SS14, SAL19, WLDL17, AYM05, BdM00, BD00, CM19, CCYC14, CIB01, CKX+13, Che96, GM08, GG99, GS00, GD04N04, HJ08, JD00, JR97, JP08, JT98, KI01, KRK98, KW02, LC14, LLQ+03, LTTP10, Lin97, MW97, MOZ06, MKBS05, MT02, MJM11, MLMM08, OCRS07, PB14, PPDK09, PTC05, Pd06, PBSV+06, RFYL98, RFG20, SW12, Sen11, SEN05, TC98, T99, Vah99, VAAH+98, VKKR02, VS126, VBP+19, WTL+13, XK97, YWW10, ZHM07, ZLL13].

Leveling [CCH+15a, CHC+16, Kha12, CD09].

levelized [KPR06]. Levels [BFL10]. LFSR [KJT04, Pm17a, Pm18b]. LFSR-Based [Pm17a, Pm18b]. Libraries [ACF+11]. Library [KR18, KKS16, MCZ+16, BD97, DDNAV04, JD00]. Library-Based [MCZ+16, DDNAV04]. lifecycle [HDL+12].

Lifetime [AAA15, DCL+17, WDL17, MHT14].

Lightweight [MMP+17, NSCM17].

limitations [Voc01]. limited [LLKC13]. line [SNH02, YZ+13]. Linear [ACFM12, ETAV18, MFHP12, TZ17, DSRV02, K98, LWK11, ST99]. Links [KQP+19]. list [HCS01, MHD+04]. list-approximation [HCS01]. lists [HVF+01].

Lithography [HDZ+20, LZ17, ZLY+15]. liveliness [MS08].

LLC [PBZM19]. LLCs [PBL+17]. Load [LLHT12, Pm19a, Pm14b].

Load-balanced [LLHT12]. Local [BM11, KC13].

Locality [MT15, ZFLS11, GFC+09, Kan06].

Locality-Aware [MT15]. Locality-Driven [ZFLS11]. Localization [YYL+15].

localize [CMNQ08]. Locally [PMS15, KC13].

Locating [BTP+20, Mit16].

Logic [BFL10, CBMM10, Che18, CZW19, ETAV18, EKS+14, HS18, HIW15, KKH+02, KMO+12, LWZ+19, LWC18, SLP+19, WB16, WKC12, ZWD11, ARRJH06, BLM00, BDM+99, BOC00, CSM05, CD96, GGBZ02, KJKK03, KMC97, KVMH08].
LWH06, MW97, RJBS09, TW96, TX99, TJ99, VKT02, WVVY99, ZS02, PRCK08. Logic-Based [ETAV18], logics [BD05].

Lookahead [PMT20]. Lookup [CH02, WSEA99]. Loop [AA17, EO19, SXX+06, HKV+07, PCC09, XPSE12], loops [BG01, CL99a, KNDK96, SHLL98]. Lose [KBV+15]. Loss [WSRH16, KC13]. Losses [ZMS+19]. Low [ACF+11, ALL17, BPTB17, CH10b, CM08, CHHL96, CLMZ10, GBR07, HLKN07, HTCP13, LTYW12, LSL+13, LS17, MKK13, MACV14, PMT20, PMB10, Pom14b, RFB10, SESN15, TWL16, TMDF10, WGT+17, WPR+19, YKCG14, ZK15, BD00, BPRR98, CH10a, CXX06, DS06, GOC02, HLCH07, HCK13, JWL+03, KBN09, KKH+02, KJR+07, KHWO6, KYN+12, LLHT03, LYN13, LH97, ML09, RTNL05, SUC01, TJ09, YGZ02, ZYDP08, ZP08].

Low-Complexity [LTYW12]. low-cost [BPBR98, HCK13]. Low-coverage [WPR+19]. Low-energy [LSL+13].

Low-Latency [YKCG14, PMT20]. Low-overhead [PMB10]. Low-Power [ALL17, BPTB17, CH10b, CLMZ10, GBR07, LS17, TWL16, TMDF10, WGT+17, ZK15, CM08, HTCP13, MKK13, Pom14b, RFB10, BD00, CH10a, DS06, GOC02, HLCH07, JWL+03, KBN09, KKH+02, KHWO6, KYN+12, LYP13, ML09, RTNL05, SUC01, ZYDP08, ZP08]. lower [LC96, TC98]. lower-bound [LC96]. Lowering [JLK15].

LUT [CD96, CH00, KNRK06, LKM04, VKT02]. LUT-based [CH00, KNRK06, LKM04, VKT02]. LVS [LBV+06].

MAC [BS14a]. Machine [CAOM19, EW18a, HXC+18, IE12, LYHL14, ZH+18, CK96, KMC97, MMP00, PHM00, MSR09].

Machine-Learning [ZHC+18]. Machines [DMR10, BDC08, CHHL96, MS08, BHDS09]. Macro [LJ18]. macrocell [CH05].

Management [ABC+17, BM11, CHBK15, DLC+17, DMR10, GCL+16, HC17, HXC+18, JPM+19, KKLG15, LH+17, MDR15, PJL14, PBZM19, VA17b, WMT+16, WXH+19, AHAKP08, ADDM+13, AMM+06, ANR13, BHD09, BMJ13, CLQ12, DS05, FHHG12, GK14, HCK13, IBMD07, LMB+12, STL+13].

Many-Core [CAOM19, SESN15, WMT+16]. Manycore-Based [KLK+17]. Manycore-Based [KLK+17]. mapper [YTHC97]. Mapping [CPS16, ETAV18, HABS15, HAB+17, VNS19, XGC+20, ZYPC17, CIL+07, CH02, CH00, CHY05, JP12, JD00, KL05, LKM04, MB01, PL98, SKS12, WY06, WSEA99, ZS02].

MCEnu [THT12]. MCM [EK97].

MCM [EK16]. McPAT [LLK+14]. MCUs [MRB+11]. MDE [ORG+15].

Mechanism [QLW+15, SVK17, WQC+16].
Mechanisms [CBO+18, GBK07]. MEMA [LSCK20].
memetic [LFG+09]. Memories [AAA15, DFM15, JSA18, JD00, MRB+11, NR03, OK08, RMB10, SPC+08]. Memory [BLNK14, BD14, CPS16, CCK+18, CIX15, DFM15, JCK+18, JPM+19, KLSP11, KKLG15, LLP+16, LWZ+19, PDPN97, PPP+15, PBZM19, SSL17, TLF16, TRM+16, TMDF10, WQC+16, WDZG16, WFT+19, WGS16, XNZ+15, ZLW+15, ZZZY17, AMM+06, BD08, BHDS09, BGN+07, CPW04, CJLZ11, HKV+07, IBMD07, JCS+08, KFL06, KG09, LSPC14, MB04, NdLCR03, OKC08, PDP07, SUC01, SM00, WH05, Wu09, ZYZ+13, ZP08]. Memory-Based [BD14, CPS16, LWZ+19].
memories-constrained [OKC08]. Memristive [XGC+20]. MEMS [BHLG19, Kha12]. MEMS-IC [BHLG19].
[JZY15, LKH19, YPCF17, ISE08, JBC10].

MoC [MPSJ07]. Mode

[EK16, JOH17, KKS16, LC07]. Model

[AVG19, CLH12, CCH15b, CB17, EAP17, GF16, GGB97, KW16, LH14, LJ18, LOC12, SZB17, XLN17, YWG109, YMB15, BLR06, BK10, BH03, CNQ13, CH13, CK96, LLQ+03, MP07, MCMW08, PWY05, RS98]. model-based [MP07]. Model-Centric [XLB17]. Model-Driven

[EAP17, LOC12]. modeled [ARLJH06].

Modeling [BKW15, BLUS19, CVMP19, GS00, GCZ+15, LG18, LK+14, PSL+98, QBTM16, RGT+14, SSS+19, TWL16, WTR12, WGT+17, BBD00, JP08, LMW99, LON08, LVL03, MPSJ07, PTC05, RH000, RFY98, Rak9, SKCM06, VAA+98, VLG01, WTL+13, WJY+07, ZM07].

Models

[AP+11, APS18, BBEM15, BFG17a, HHL14, MA16, RG19, ZABG17, GMSS02, LTPT10, MRC06, SG10, SNSB05].

Modern [DK+16, NTSA18].

Modification [JK10, PAV17]. Modular

[ZMS+19]. Module

[LCYN18, SC06, CCX06, SCJ01, TW96]. modules

[CWW96, CZ+03, KT96, OWH08].

Modulo [PG15]. Monitoring [FYCT15, LL15, LHL+16, LL+17, SL18, APB+08, CK+13, CBR+05, KP13, WJY+07].

Monitors [VBP+19]. Monolithic

[LDD+18, LDD+19].

Monotone [DPNB02].

Monte [GLY12]. morphing [RAK12].

MOS [ZK15]. MOSFET [BFL10]. motes

[RFB10]. Motion

[FG18, ZLG+19, DHV+00, KMS12].

Movement [HGW16]. MP [CRC15].

MPSoC

[BG+07, GK14, KJ+08, KH10, SGD10].

MPSoCs [ADP+07, MRL+20, MHT14, RGT+14, SSK12, SSL17, YP10]. MRAM

[JZY15, SMBT19]. MSG [WY06].

MTCMOS [HLCH07]. Multi

[BS14c, CYH19, ETA18, HC17, JOH17, KLE18, SFM+19, ZLY+15, CNQ13, HGBH09, HMB98, KOS09, MPSJ07, PB14, PML14a, RAKK12, SZV+12, W09]. multi-

[KOS09]. multi-bank [W09]. Multi-Core

[CYH19, ETA18, RAKK12, SZV+12].

Multi-Cores [SFM+19]. multi-cycle

[PML14a]. multi-engine [CNQ13].

Multi-FPGA [BS14c]. multi-MoC

[MPSJ07]. Multi-Mode [JOH17].

Multi-Objective [KLE18, SFCM+19, PB14].

multi-phase [HMB98]. multi-processor

[HGBH09]. Multi-Start [ZLY15].

Multi-threaded [HC17]. multibank

[WH05]. Multicast

[WWCT18, XS16, XCF18]. multichip

[OWH08]. Multicore

[BM11, CRC15, DFM15, HWX+14, JPHL16, KLSZ11, LS11, LHK+15, LRA+16, QBTM16, SPT+17, SAL19, THT12, WDGZ16, BHW+13, CNQ13, DSH12, HDL+12, KP13, LPTPT10, Ped11, QM12, SNL12, WTL+13].

Multicycle [PML15a, Pom20, Pom13].

multidimensional [SBGH13].

multidomain [AM10, BMJ13].

multifunctional [AM10]. Multiharmonic

[WGT+17]. Multilayer

[KKH16, LLLL18]. Multilevel

[HBWP14, JZY15, PLJ14, JCS+08, SGK08].

multilevel-cell [JCS+08]. multimedia

[HKL+07, ZHM07, ZH08]. multimetric

[HR06, RGM09]. Multimode [SSG03].

multiplane [AJM13]. Multiple

[BM11, GYT12, KRL15, Pom16b, SRC15, WC06, YLZ+17, CH96, GM08, JR97, KF+08, LBV+06, LHT12, MRB+11, MR05, NDLR03, PT06, PMB10, RMPK03, RM09, SBG13, WLT08, WLCJ09, WSEA99].

multiple-bit [RM09]. multiple-choice

[SBGD13]. multiple-output [WSEA99].

multiple-project [WLT08].

Multiple-Supply [BM11].

Multiple-Transient [KRL15].

Multiplexed [LHC16, LM19]. Multiplexer
[Pom18a]. Multiplication [GYT12].
Multiplierless [ACFM12, AFM14].
multipliers [RMPJ08], multiprocessing [ZM07]. Multiprocessor
[CHBK15, CHJ17, JOH17, KFP+08, NSH+16, APB+14, DCK07, DCK9, DCK10, HCLC98, Kan06, MOZ06, WLL+11, WGL11, ZAJ+12].
Multiprocessors [HAB+17, JGM14, KBV+15, PJJ14, IA+09, PTC05, ZYD08].
Multirate [ZABGZ17]. Multistage [Shi0, LON08], multistandard [CCC+09a].
Multitarget [SK+18], multitasking
[NG06, PW99], multiterminal
[JCPF05, MW97], Multithread [SYHL14].
Multithreaded [HPB11], Multiversion
[HCL+14], multivoltage [CCX06]. Multiway [FW00], mutually
[DK08].

n [RG19, PR07], N-detection [PR07],
NAND [PP+15, WQC+16, ZLW+15].
Nanometer [BFL10, BPBTB17, STWX12].
nanoribbon [YMC+13]. Nanotube
[WSH+18]. Navigation [MVK+18]. NBTI
[BDB12, CMP10]. NBTI-Aware [CMP10].
Near [KCKG13, SHN12]. Near-optimal
[KCKG13]. near/sub [SHN12], Negatives
[AL19]. Nested [AA17, CL.99a]. Nesterov
[LCC+15]. Net [Yan19, LXCH04, MW97].

nets [JCPF05]. Network
[CARR18, HZC+16, HXC+18, KLK+17, LDD+18, LDD+19, LW17, MT15, PMT20, WX+19, XS16, XCF18, YKCG14, ZYS12, CSC08, CL13, CM08, CK+13, CCL04, HW14, KMC97, LDCOM07, LLKY13, LLK13, OCR07, RFB10].

Network-on-Chip
[LDD+18, LW17, PMT20, XS16, XCF18, YKCG14, ZYS12, CSC08, LDCOM07, LLKY13, LLK13].

Network-on-Chips [HCZ+16]. Networked
[KC10]. Networks
[BK15, BDDB9, CZW19, IHM15, JLJ15, KPB9, LYL+19, MAS+20, MPM+17, SRTG19, XLS15, YMB15, ZFLS11, ZYPC17, ZMP16, BLR06, CKX+13, CBR+05, GWR13, HMVG13, JP12, JSG09, MD13, MD07, OM08, RL13, TDE08, VS12a].

Networks-on-Chip
[DDBB9, IHM15, JLJ15, CKX+13, JP12, OM08].

Networks-on-Chips [VS12a]. Neumann
[KT01]. Neural [LY+19, WXH+19].

Neuromorphic [XGC+20]. Neuron [ZK15].
Neuron-MOS [ZK15]. Next [YD16]. NoC
[ADD+13, CAOM19, HWX+14, MHT14, QBTM16, TLC14, SPT+17]. NoC-based
[MHT14, CAOM19, HWX+14, QBTM16].

Noc-HMP [SPT+17]. NoCs [AJM13, AL19, DLC+17, JM14, KPF16, MT15].

Node [BDB12, CZW19, PDS12, DHZ+11, JSG09, ZHOM08].
node-centric [ZHOM08].

Nodes [BPTB17, NSS+16]. noise
[GGBZ02, HR06, HMLL11].
nominations
[An013]. Non [GLY+12, LL15, SL18, STJG16, WDL17, ZYW+18, KCKG13].

Non-enumerative [STJG16].
Non-Gaussian [ZYW+18]. Non-Intrusive
[LL15, SL18]. Non-Monte-Carlo
[GLY+12]. non-overlapping [KCKG13].

Non-Volatile [WDL17].
noncomplementary [RS03].
nonfunctional [HBKW14, RGT+14].
Nonideal [TDL16, WFT+19].
noniterative [MCMW08]. nonlinear
[CCC+09b, Con06]. nonManhattan [Yan00].
nonpreemptive [DG+08]. nonslicing
[LCC+11]. Nonspecified [WC10].
nonstationary [AHA+08], nonuniform
[VCL03].
nonvolatile [SLXZ12, ZY+13].
note [CL+07]. Notions [SGC+14]. Novel
[KKH16, LWZ+19, M17, VNS19, DDFR13, SCCH08, Ped06].
number
[HPK99]. NVM [BRCS18]. NVMe [HC18].

O [LC13, Wu09, Yan16]. OAOS [HGLC16].
OBDD [FWCL05]. Obfuscated [LMS16].
Obfuscation [GDTF17, HYK+20, SL3+19].
Obfuscation-Based [GDTF17, HYK+20].
Object [Wol96, HLC98, Hsi01].
Object-oriented [Wol96, HCLC98, Hsi01].
Objective [KLE18, SFM+19, PB14].
Observability [CLMZ10, CM13].
observability-based [CM13]. Observation [LL15, HW14, Pomi13]. Observing [DBK+18]. Obstacle [HLG+15, HCLC16, LLL18, WSRH16, LYKW09, SMYH07]. Obstacle-Avoiding [HLG+15, HCLC16, LLL18, WSRH16, LYKW09]. obstacle-aware [SMYH07]. obtain [MS00]. Occupancy [ZHC+18]. Octilinear [HGLC16, Yan08]. O [FG18, PDN00, RJL+09, WPHL08]. o-chip [PDN00]. Oce [GCL+16]. Oine [MGR+15]. Oining [JPM+19]. os [FHHG12, PCC09, WVYG99, WGDK07, XPSE12]. OLED [LKH19]. On-Chip [ALL17, JNS+17, JZZY15, SCK18, SMBT19, ZYP17, LCOM07, PDN00, ZSZ10, ADS+09, CCL04, KP13, LH13, NR03, PDPK09, YLL+13, MZ07]. On-Demand [AAA15]. Once [CHBK15]. One [XFJ+16]. Ones [PB12]. Online [ZAJ+12, ADDM+13, CSAHR07, RAKK12]. Only [CHBK15]. Open [Schi20]. open [BCR+08, BD05]. open-source [BCR+08]. OpenCL [TL19]. Operating [TWL16, TL19, PMB10]. Operation [BPTB17, CLMZ10, GDTF17, MACV14, KJR+07]. Operations [BC16, LWZ+19, ARLJH06, BG01, HPK99]. operators [BD05]. opportunities [VCLD03]. Opposite [HCN09]. Opposite-phase [HCN09]. Optical [DZ18]. Optimal [ABC+17, BKW15, BASB01, Cha01, CCX06, CARH18, CH06, FG18, GSS14, HWCL13, KNDK96, LCHT02, OWH08, PL98, SCK18, TS96, TPC+17, ZW98, BW00, BMJ13, CACS05, CGN96, CH00, DSK01, GH00, KCKG13, LH09, MKW08]. Optimization [ACFM12, BZWH17, BHLG19, CZW19, CYH19, CK16, DHVW18, DZCD15, GLY+12, GK07, HLG+15, HS19, JPHL16, JNC19, KKK12, KKS16, LHC16, LZZSV15, LH11, LYCP17, PTS+20, PPP+15, SFM+19, SYHL14, SRTG19, SHL+19, TRM+16, WHRC12, WKC12, WSRH16, BLM00, BDM+99, BdM00, BCC08, BDB98, BFP08, BOCC00, BGN+07, CLLK06, CSC08, CCC09b, CFX09, CJLZ11, Con06, DP02, GG04, GBD07, GDF09, GW+12, HR06, HPG99, HG07, JPCJ06, KJJK03, KLSP11, KCKG13, KSA+10, LLHT03, LCHT02, LC07, LLLC13, MKBS05, MHT14, MKW09, MLG12, OM08, PC+01, PEPP06, RGM09, RJBS09, SB98, SPA+03, THL+13, VFKK02, VJLH04, WGDK07, WLL+11, XZC09, GK09]. optimizations [GGDN04, KRS06, SSG12, SC00, ZHTC09]. Optimized [ACF+11, BC05, HCRK11, MB19, VA17b, ZABGZ17, ZYS12, KCA04, SY07]. Optimizing [GYT12, KSK+05, LPP00, LAS01, RBWB20, SYZ08, ZLW+15]. optimum [Das04]. Orchestrated [SAL19]. Orchestration [EW18a]. Order [DZCD15, KQP+19, LYSO19, SXZV13, ZBPFF18]. Ordered [JD18]. Ordering [AJM13, GKM05, LXCH04, MKW08]. organization [PDN97]. Oriented [RGT+14, HCLC98, Hsi00, Hsi01, LHZ+06, Sen11, Wol06]. Orthogonal [GLY+12]. outbreak [FNP09]. Output [JM14, WSEA99]. Overhead [WLL+11, MIQ07, PIB10]. Overhead-aware [WLL+11]. Overlapping [KCKG16, YY+16, KCKG13]. Overlay [EW18b, LM19]. Overview [SLP+19].
[XYG16, OWH08, XTW05]. Pin-Access
[XYG16]. Pipeline [CRC15, RPKC05]. Pipelined
[CHBK15, LF12, MRL+20, Hua01, MS08, MD08, NS03, RTNL05, YGH+10]. pipelines [HA05]. Pipelining [AA17, KLV15, BG01, BASB01, CACS05, CL99a, HV98]. place
[KCKG13, YWW10]. Placement
[DK16, HWGY16, HWCL15, JNCS19, KRL15, LLL+18, LNG+16, LCC+15, LB11, MCZ+16, MJB19, TRM+16, WSH+18, WSRH16, WLLH16, YVC14, ZSY18, AM05, ACT13, CBKH11, CACS05, CC06, CSX+05, EK97, KPSW09, LCK+09, OS03, RS03, SC06, Tes02, TY97, VLH04, WLC02, WCC03, WLT08, YWK+03]. placements [HWCL13]. Placer
[AMM+18, DKT+16, DKT+16]. Plaintext
[HYK+20]. planar [DPNB02]. Planning
[XYG16, YGG+16, LC13, LHZ+06, MKBS05, SBC08, XTW05]. PLAs [LWH06]. Platform
[APD+11, IGN18, VGG19, FNP09, JCS+08, RFB10, ZHM07, PBSV+06]. Platform-aware [VGG19]. platform-based [ZHM07, PBSV+06]. Platforms
[BS14c, ETAV18, LS11, LMS16, RS18, TBC17, VGG19, WDZG16, YPCF17, BMJ13, CNQ13, JW08, LP07, MPDG09]. Playing [RJL+09]. PMC
[CL12, CCH15b, CH13]. PMU [APD+11]. Point
[ALL17, BS14a, BFL10, SRC15, XNZ+15, AM98, CPW04, DPNB02, LCOM07, WG11, WFT+19, Yan08]. point-to-point [LCOM07]. points
[PMB10, Pom13, TD03]. Poisson [QSK12]. Polar
[JNS+17]. polarity [CH09, LT11]. Policies
[DCYD15, Kha12]. policy
[CKK+13]. Polishing [LTW+16]. polygon
[LL01]. polygons [CT13, LM96, TP08]. Polymerase
[LHC16]. polymorphic
[LLYW10]. polynomial [GK07, GK09]. Polynomials
[GLY+12]. port
[CL13, SBC08]. port-scalable [SBC08]. portable [LCZ+08, Rak09]. POSE [Hsi01]. Positioning
[HK18]. Post
[PTS+20]. Post-silicon
[PTS+20]. Postlayout
[CL11]. Postplacement
[CMB07, LCY12, WWG08, XLL+16]. Postscheduling
[FHHG12]. postsilicon
[MKK13]. Power
[ACF+11, ALL17, BLM00, BS14b, BM11, BPTB17, CMP10, CH10b, CHBK15, CXH+16, CLM10, DLC+17, FG18, GBR07, GCL+16, HPK99, HYN15, JKL15, KKH16, LG18, LKM04, LYHL14, LLK+14, LHJ12, LKH+15, LKH19, LS17, MAS16, MKW09, MN17, PJL14, Pe06, PT15, SCK18, SC00, SBC08, SYHL14, SSC10, SESN15, TTL16, TRM+16, TMD10, TCL14, VNS19, WVVY99, WGT+17, WC10, WSRH16, XLS15, ZFSL11, ZK15, ZS16, ZMTC13, AHAKP08, BDM+99, BdM00, BD00, BMJ13, BBD00, CS07, CI10a, CM08, CIB01, CCX06, CCW08, CHHL96, CCC09b, CCLZ11, CLQ12, DS06, DTC+09, ETR07, GOC02, GDF09, GF10, GS13, HR06, HLCH07, HLT08, HTCP13, JWL+03, KBN09, KKH+02, KOS09, KC13, KHW06, KYN+12, LMB+12, LLHT03, LYCP13, LHW+17, LBV+06, LHWO7, MKK13, ROC06, MKW08, MLG12, MFS09, ML09, NT05, PPDK9, Pom14b, PWY05, PR96]. power
[RFB10, RTNL05, STL+13, SUC01, SPM02, SNL12, SZV+12, TKVN07, TJ99, THC+14, WJY+07, YHL+11, YGZ04, YLL06, YHL07, YHH09, ZHM07, ZLL13, ZYDP08, ZP08, ZYP09]. Power-Aware
[LHK+15, SBC08, SNL12]. Power-dense
[MKW09, SC00, WVVY99]. power-density
[ZYP09]. Power-Efficient
[JL15, SZV+12]. Power-Gating
[KKH16, YHL07]. power-optimal
[MKW08]. Power-safe [ZMTC13]. power-transmission [KCI3]. Power/Ground
[LHJ12]. Powered
[XPS+18, CSAHR07]. Powerful
PowerPC [WAZ98]. Practical [Pie16, VJB07]. Practice [MDM+12, SSCS10]. PRAM [KYL16].

[VGG19, WLZ+19, HGB09]. Prediction [CS07, DKZ+15, FG18, HWX+14, JGM14, PBL+17, CR12, OM08, SYL09].

prediction-based [OM08]. Predictive
[AVG19, HW00, TKVN07]. Preemptive
[IHM15, SSC17, GDG+08]. Preface [YD16].

Preferred [Pom18a]. Prefetching [LV02]. prefix [LH09, ZCG06]. Preparation
[PGCB16, RCK+15, SKS+18]. prescribed
[DSRV02]. Presence [EK+14, MCMW08].

Preserving [HK18]. Prevent [WS+18].

Primary [Pom16a]. Principle [CHBK15].
principles [Ped06]. Print [DZCD15].

Printed [GDTF17, OW06]. Priority
[IHM15, KPF16, LMS16, WDZG16, MHQ07].
Priority-Aware [KPF16].
Priority-Preemptive [IHM]. Privacy
[HK18]. Proactive [KBV+15].

Probabilistic
[APS18, CKAP07, CB17, GQW19, KW16, KVMH08, BLR06, FZKS11]. Probe
[Kha12, BC05]. Probe-Wear [Kha12].
problem [DPNB02, DS+06, FNMS01, LVL03, NR01, PDN00, SW99, YWW10]. problems
[SB08, WGDK07]. Procedure [Vah99].

Process [AKAKP18, BHLG19, GC18, LWZ+19, RJ14, VEO16, CS07, GM08, KTKO13, KPR06, LG12, LH13, LTPR+13].

Process-in-memory [LWZ+19]. processes
[JB98]. Processing
[BM11, GFJ16, LYL+19, MFHP12, HMVG13, JSG09, LPP00, NM13, TYY08, ZHOM08].

Processor [HKL+15, IEO8, LHL16, LYHL14, LF12, NSH+16, NRZ+18, OHA19, SPT+17, VLG01, DHZ+11, GGG04, Giv06, HGBH09, KBA08, LMB+12, OCRS07, PDN97, PDN00, RFB10, SGD10, WKR09].

processor-based [PDN00]. Processors
[CRC15, JZY15, KAKSP16, KLK+17, KLJ+14, LPD+17, LHF12, TY+19, BH10, CL99a, CPW04, Edw03, Hua01, KLJ+07, LJ+02, LCD07, LB00, MD08, PHM00, RAKK12, SR12, TKVN07, LSV07].

product
[DK08]. production [PKP+03]. profile
[ZSZ10]. Profiling
[SMBT19, THC+14].

Profiling-Based [SMTB19]. Program
[HKL+15, BGN+07, RAKK12, WWC04].

Programmable
[GYR19, WSS+18, ZK15, CH02, CD06, LSPC14, MSD06, PTO05, PWY05, WVO2].

Programming
[ETAV18, KLSZ11, TZ17, LWZ+19, ADDM+13, GH00, KLSZ09, KJJ+08, TP08, WJY11]. programming-based
[ADDM+13].

Programs
[PMS15, SYHL14, EY+14, Vah02, YWGI09].

Progressive [KC10]. project [WL08].

projective [DL11]. Prolonging
[AAA+15].

Proof
[IPW17]. Proof-Carrying
[IPW17]. Propagation
[AL19, MCD12, KPR06, RCD07, YH97].

Properties
[CVMP19, HBP14, RGT+14, WFT+19, BDC08, BH03, BFP08, BZ08]. property
[KHP05]. Protect [MLH+17]. protected
[LSDV10, RMB10]. Protecting
[DFM15, GST16, YBS+18]. Protection
[GDTF17, LSP+19, KHP05]. protocol
[ADS+09, BGM04, DP04]. prototype
[APB+08]. Prototyping
[ARLJH06, ORGD+15, JDT+08]. Provably
[ADS+09, Das09, YWK+03]. Provide
[KKLG15]. Providing
[HC18]. Proximity
[DT18]. pruning
[DHV+00]. PSL
[BZ08].

PTM [LH+17]. PUF
[IK19, NSCM17]. PUFs
[HRSK18]. Push
[KMO+12]. PV
[DT18]. PV-Aware
[DT18]. PV
[PPDK09]. PWM
[TWL16, WGT+17].

QoS
[LYLW17]. quad
[LBV+06].

quad-core
[LBV+06]. Quadratic
[AL19].

Quality
[BZWZ17, JSS+19, LKH19, Pom19b, BHW+13, XPSE12].
Quality-Assured [JSS+19].
Quality-Enhanced [LKH19]. Quantifying [SGC+14, YRH11]. quantitative [LCOM07]. Quantization [GYT12].
Queuing [SSL17].

Rare-Event [ZKS+16]. Rate [CJKK19, HDZ+20, LD17, MDG98, PB12, PHKW12, TY97]. rates [ACT13]. Ratio [WLLH16, Das04]. RC [KM97, VEO16].
Read [JSA18, PPP+15, WHXZ13]. Real [CHBK15, CH17, FG18, HX+18, KPF16, LSC20, NSh+16, PSPC18, SSCI17, WLZ+19, WDZG16, WJG+19, YRH11, ZIW+15, APB+08, DRG98,HMVG13, MHQ07, PEPP06, PW99, WLL+11, ZAZ13].
Real-Time [CHBK15, CH17, FG18, HX+18, KPF16, LSC20, NSh+16, PSPC18, SSCI17, WLZ+19, WDZG16, WJG+19, YRH11, ZIW+15, APB+08, DRG98, HMVG13, MHQ07, PEPP06, PW99, WLL+11, ZAZ13].
realistic [MF509]. Reality [XLNB17]. Realization [ACFM12, CHHL96].
reallocation [ZYP09]. realtime [HG07]. reassignment [Yan08]. ReChannel [RHA08]. Recognition [GFJ16, RG19].
recompilation [GF10]. Reconfigurable [ADB+19, AVG19, BKW15, CPS16, EK16, JPHL16, MLC08, MRL+19, ORGD+15, SSCI17, SVK17, ZLQ15, ZMS+19, ARLJH06, GBD+08, HBC+08, HW14, JBC+10, KKB02, KLSP11, LCK+09, RHA08, WKR09, WLC02, YLP+13, YGH+10, YYLL09]. Reconfiguration [CAOM19, MCZ+16]. reconstructions [RCG+08]. reconfigurations [WC06].
Rectilinear [GC96, LLLL18, WCC03, LYKW09, MHD+04, MS00, OWH08]. recursive [LC96]. Recycling [TCW20].
Reduce [CIX15, JK10, Pom16c]. Reduced [PAV17, AMM+06, SBH+06]. reducible [BC11]. Reducing [ASAP17, BFG+19, BWB14, CJKK19, HH09, Kan06, KLJ14, LYCP13, PR11, SYHL14, KTKO13, MB04, PGB01, TKVN07].
Reduction [ABC+17, BDB12, FLWW02, PTC+15, Shi20, WB16, WDLD17, WH19, WHL20, CFHM09, CCW08, DK08, ETR07, GF10, HLHT08, KYN+12, LCC11, LLHT12, LCJ+10, NT05, RMKP03, SY07, SBH+06, SPMS02, TY97, WVVY99, YHL+11, YW+03, YLL06].
Redundancy [CJKK19, JLK15, CYN08].
Redundant [KMO+12, SHL+19, PGB01]. reference [AOC02, SM00]. refinement [CLM+10, GGB97, MS08, MOZ06]. refit [DVA02]. Refresh [CJKK19, LSH+13].
Region [BZWZ17]. Regions [JCK+18].
Register [GF10, HWCL15, LHF12, MHF96, TLCF16, WKL+18, XLL+16, CACS05, CFX09, HCN09, IKi01, KNDK96, LWK11, VKKR02, ZYP09]. register-file [CFX09].
registers [CL99a]. Regression [BB00].
Regression-based [BB00]. Regular [XYG+16, CH13]. regulation [ZLL13].
Reinforcement [PJJL14, STL+13].
Relaxation [LGG14]. Release [SZB17, YA10]. Reliability [APS18, CET16, CCK+18, KMO+12, LHW12, PPP+15, RB10, TK18, WYX+19, XLY+18, GS13, JS13, KVMH08, LH13, ZAZ13].
Reliability-Aware [CET16].
Reliability-Driven [LHJ12]. Reliable
safe [ZMTC13], Safety [MN17, XLY+18, MS08]. Salsa20 [MAS16].
Sample [PGCB16, ZKS+16]. Sampling [WTR12, ZYW+18]. SAT [CLM+10, Che18, CYV+14, DP02, RCD07, SGK08].
SAT-based [CLM+10, SGK08]. Satisfiability [BR12, GMSSS02, PG15, GPK+09, HSA+04]. satisfying [QS09]. saturation [CCL03]. saving [HW00]. Savings [LKH19].
Scalable [AA17, KLK+17, PJL14, SESN15, SKM+16, HG07, KCKG13, SBC08, SBGD13, WSV+14].
Scalable-Throughput [SESN15]. Scale [HC17, LYL+19, YVC14, CSX+05, HCK13, KBA08]. Scaled [PHK12]. Scaling [GC18, HC17, HHL14, LV14, WGS16, IAI+09, KSA+10, ML09].
Scaling-Aware [HC17]. Scan [BKW15, KMO+12, LWC07, LWK11, Pomi16b, Pomi16c, Pomi17b, WC10, WWW+12, XC12, DDFR13, GKM05, KBN09, NT05, PR09, PR11, RKMP03, SSGS03, TYH08, WPHL08]. Scan-based [LWK11, KBN09, PR09]. Scan-BIST [LWC07]. Scan-Cell [WC10]. Scan-In [Pomi16c]. Scan-Shift [WC10]. scanline [CT13]. Scenario [BLUS19, DCK09, EK16, KW16, GPH+09]. Scenario-Aware [BLUS19, KW16].
Scenario-based [DCK09]. Scenarios [NRZ+18, SPG+08]. Schedulability [GDG+08]. Schedule [SGC+14]. Scheduler
[NSH+16, JP08]. schedules [DSRV02, LC96]. Scheduling [ABC+17, BB17, BDBB19, CACS05, CIX15, ENP20, JOH17, KPB19, LHW97, MAS+20, PMS15, SSC17, SAL19, SZB17, WCB15, WDZG16, WWCT18, WJG+19, CLM+10, CILZ11, D505, GBC07, HN07, JR97, KW02, Kuc03, LLHT03, MKBS05, MJM11, MHQ07, MR05, MVGG97, NR01, RCG+08, SXX+06, TC98, WH05, WGD07, YWW10, YGH+10, YUL09]. schematic [KG09]. Scheme [BM11, KKLG15, KLK+17, LTYW12, WHRC12, WH20, XS16, HCK13, KSA+10, XLCL13]. Schemes [MGR+15, CSC08, KCKG13]. Score
Search-space [RFG20]. Searching [DK16, SYZ08]. Section [BMdG17, CO18, KLSZ11, YD16, CH10a, CLQ12, HJ08, JW08, KLSZ09, MD13, RBA+12]. Secure
[BHK17, LSCK20, HBC+08, ISE08, HRK18]. Security [GWW19, HMO+14, LHL16, LZZSV15, LMS16, MAS+20, MPM+17, NSCM17, SLP+19, TK18, YSF+18, DP04, IAI+09]. Security-Aware [LZZSV15, LMS16, MAS+20]. Seeds
[Pomi17a]. Segment [WL12]. Segment-Based [WL12]. Segmented [HSA+04, JWLT+03, YCTH00]. Select
[Pomi18a]. Selection [AKAKP18, CV17, FYCT15, GCS18, JM14, KPF16, STJG16, ZKS+16, CGN96, CCC09b, LB00, PMB10, VLLG01, XLCL13].
Selective [Mut09, NRDB19, LCT03, WY06]. selectively [BD00]. selectively-clocked [BD00]. Self
[CR19, E19, SBB+18, SHL+19, WCB15, XYG+16, SEN05, SZV+12]. Self-Aligned
[WGT+17, XLCL13]. small-delay
[XCLCL13]. Small-Signal [WGT+17].
Smart [AL19, HXC+18, HK18, SKM+16, YMB15, ZHC+18, JS13, AL19].
Smart-Gateway [HXC+18]. Smart-Grid
[HXC+18]. Smart-Hop [AL19]. SmartCap
[LYHL14]. Smartphone [LYHL14].
Smartphones [LYLW17]. SMs [SBR+17].
SMT [AA17]. SMT-Based [AA17]. Snoop
[PCT+17, ZYDP08]. SoC
[HZS+19, GM03, GDF09, XZC09, BHW+13, DCK10, Kan06, LLH+17, LCL08, MOZ06, SBC08, TCL14, WLJC09]. SOC-based
[GDF09]. SoCDAL [AHIL+08]. SOCs
[MSD06, BM11, JHMGS18, JPHL16, ZM07].
Soft [DFM15, LD17, PHK12, TLF16, QS09, RJS09]. Soft-Error Rate [TLF16].
Soft-Error-Rate [LD17]. Software
[BM11, JHMGS18, KMR18, LLP+16, LHF12, THT12, YLY+15, AM005, BSB01, CMM00, CACS05, CM13, FHHG12, GGB07, HKL+07, JW08, KSK+05, KTO13, LMW99, LP07, LVL03, MSD06, ML09, NG06, SS11, WYIG07, WJY+07, YWG09, YGH+10].
Software-Defined [JHMGS18]. Solid
[CSC15, CD09, CCYC14]. Solid-State
[CSC15, CCYC14]. solid-state-disk [CD09].
Solution [GSFT16, JNS+17, YFT17, YFT18, FNMS01, SR12]. Solutions
[WFT+19, CW01, NR01]. solvers
[DP02, QSK12]. Solving
[CYV+14, WGDK07]. Some [KAKSP16].
SOPs [BCC08]. Sorting [ZMP16, Yan00].
Source
[YKCG14, BCR+08, KRRK98, ZYZ+13].
source-level [KRRK98].
Source-Synchronous [YKCG14]. Sources
[DHB16, CH96]. Space
[AKAP18, GCC+15, RS18, Sch17, APB+08, ARLJH06, BV00, EK97, JP08, KSS+09, RFG20, SW12, VCD03].
space-efficient [ARLJH06]. spaces [BC11].
space [MKW09]. spare [ACT13]. Spatial
[GFC+09, RB19, Das09]. Spatio
[SSC17]. Spatio-Temporal [SSC17]. Special
[BJX15, BMDG17, CO18, KLSZ11, TK18, YD16, BC08, CH10a, CLQ12, HJ08, JW08, KLSZ09, LP07, MD13, Pe06, RBA+12].
specialization [ADM+13]. specialized
[BC08]. Specifc [HKL+15, HCZ+16, LPD+17, LHF12, LF12, RCK+15, TCL14, VA17a, ACT13, CSC08, SCV06, WRK09].
Specification [HZS+19, HV98, MD08, VS12a, BD00, BG04, HV07].
Specification-driven [MD08].
Specifications [Pic16, CMM00, DDNA04, MB04, VKKR02]. Spectral [KO018, TN99].
spectral-based [TN99]. Speculative
[NRDB19]. Speed [CK16, PTC+15, TPC+17, NS03, OW06, SXZV13]. Speeding
[CLM+10]. Speeding-up [CLM+10].
Speedup [Ch18, KAKSP16]. Speedups
[GDTG07]. Spill [LHF12]. SPMC
[BD14]. Spread [MJ19]. SQLite
[LLP+16]. SRAM [CCC+9a, HHL14, JLF+12, NdLCR03, ZYW+18].
SRAM-based [JLF+12]. SRAM/71mW
[CCC+9a]. SRAMs [RM09]. SSA
[MHA19]. SSA-AC [MHA19]. SSAGA
[SBR+17]. SSD [WHXZ13]. SSDDs
[GS+18, HC18]. SSER [PHK12].
Stability [HHL14]. Stack [WDTG16].
Stacked [SYX12, THM15, LHZ+06]. Stage
[LZ17, Shi20, KSA+10]. Stage-form [Shi20].
stages [SYL09]. staircases [MKSBD07].
Stairway [MHD+04]. Standard
[ACF+11, DBK+18, KRL15, TRM+16, PR09, SCS10, TS96]. Standard-Cell
[DBK+18, SCS10]. standard-scan [PR09].
Start [ZLY+15]. State [AVG19, CCS15, CK16, Pom15a, BDC08, CD09, CCYC14, CK06, CHHL06, HR00, Pom14a, SNH02].
State-Based [AVG19]. States
[Pom16c, LIA00]. Static
[BDB12, ETA18, LV14, MHA19, Pom15b, ZFLS11, DH06, EM003]. Statically
[KKLG15]. Statistical
[BBEM15, CV17, JGM14, KPR06, PHK12,
SV16, STWX12, XT16, ZKS+16]. statistics
[SNH02, SXZV13]. steering [HKV+07].
Steiner [CKTK08, GC96, HGLC16, LLLLL18, LYKWO9, SMYH07, Yan08].
Steiner-point [Yan08]. Stencil [YYG+16].
Step [HGLC16, Vah02]. stimuli [MFS09].
Stimulus [CYV+14, LV14, BLR06, PKP+03].
stimulus-free [BLR06]. stitching [Meh98].
Stochastic [GLY+12, MMP00, GBC07, NM13].
Stopper [PCT+17]. Storage
[BD14, CCH+15a, Kha12, KCA04, WQC+16, ZLW+15, ZMS+19, BD08, Meh08, Wu09].
storages [HCK13]. Straightforward
[LH09]. Strategies [JM14, XLS15].
Strategy [KKHK16, ADDM+13]. stream
[LWK11, NM13]. Streaming
[RS18, TY19, ZLL+16, ZMP16, FHHG12, KSS+09, WLL+11]. Stress
[LS19, WXH+19]. Stress-Induced [LS19].
striping [CCY14]. Structural [CML98, CH00, AYM05, CL99a, HA05, VHL98].
Structure [KKHK16, FWCL05].
structured [THL+13]. structures
[BK00, DDFR13, GMN+13, Hua01, Meh98].
STT [JZYZ15, LSL+13, SABSA15, SMBT19, WSS+18]. STT-MRAM
[SMBT19]. STT-RAM [SABSA15]. Stuck
[TPC+17, HVF+01, PR09]. Stuck-At
[TPC+17, HVF+01, PR09]. Study
[LLP+16, LC13, MLG12]. Style [CFD+16].
Styles [LCY18]. Sub [BFL10]. Sub-45nm
[BFL10]. sub-threshold [SHN12].
subGraph [YYC07]. subnetworks
[TDF+09]. substrate [LCJ+10, SKCM06].
substrates [SKCM06]. subsystems
[JSG09]. Subthreshold [BFL10].
Successive [HWCL15].
Successive-Approximation-Register
[HWCL15]. sum [DK08]. sum-of-product
[DK08]. SUPERB [EBR+09]. Supply
[BSP+19, BM11, JLK15, SLP+19, WCC14, XRS+19, YFT17, YSF+18, YFT18, YBS+18, Jr97, LLHT12, WLCJ09]. Support
[MCZ+16, WKL+18, ZP08]. Supporting
[LYL+19, ZLL+16]. Supports [MLH+17].
Suppressed [BC16]. Survey
[BFG17a, BRCS18, LM19, Mit16, MRL+19, RJ14, BD07, CEB06, KG99, KP13, SW04].
survivability [ACT13]. suspect [DNA+12].
Suspension [NSH+16]. Sustainable
[CHX+16]. SW
[ADP+07, BFV15, FLPP09, WWFT12].
Swarm [HLG+15]. switch
[CWW96, CZW+03, FLWW02, FLWC07, RFYL98, THL+13, ZHTC09]. switchboxes
[DSK04]. switched [CSC08, HWCL13].
switched-capacitor [HWCL13]. Switching
[AVG19, GSS14, SRC15, BLR06, HCN09, PR11, SXX+06]. switching-activity
[SXX+06]. Symbolic
[BDM+99, BFG17b, MCD12, SHD17, BLM00, FWCL05, KVMH08, YWG09].
Symbolic-Event-Propagation-Based
[MCD12]. symmetric [IAI+09].
Symmetrical [OCH19, CWW00].
symmetries [CMB07]. Synchronizing
[MDM+12]. Synchronous
[CH17, HPB11, PMS15, WWW+12, YKCG14, ZABGZ17, BDM+99, BASB01, CACS05, CPR+02, HKB+07, MB04].
SynergyFlow [LYL+19]. Synthesis
[AA17, BR12, BD00, CSKR05, CET16, CLMZ10, CCL03, EO19, GBR07, HS18, HMVG13, HCZ+16, KK14, KKK12, KKS16, LS17, NG06, OCK19, PDS12, PG15, QSW+15, RJ14, Sch17, SGC+14, SS14, SGG14, SV11, SCCH08, WCC14, YMB15, ADS+09, BDM+99, BZ08, CLLK06, CMM00, CBM10, CL99b, CD96, DDNA04, FHHG12, GG99, GOC02, GH00, GGD04, GWR13, HLKN07, HLC98, Hs01, HLHT08, Hua01, JLF+12, KSS+09, KKH+02, KK11, KW02, KHP05, KF+08, LCD07, LC14, Lin97, LLHT12, LW06, MMP00, MDM07, MKBS05, MM11, MRC06, PBSV+06, RFYL98, RS03, SW12, SCB01, SV07, TN99,
TC98, VLH98, VKT02, VKKR02, WV02, WG11, WKR09, XK97, XPSE12, YWW10.

Synthesized [SBR+17]. Synthesizing [GSS14], synthetic [PSK08]. System [BdM00, CH17, DMR10, GM08, GHP+09, HKL+15, HZS+19, LL15, LG18, NRZ+18, PDS12, PPDk09, Pie16, PBSV+06, RFG20, SL18, SGGR14, TK18, WL12, YYG+16, ZHM07, APB+08, BPPR98, BMJ13, Cha01, CKAP07, CSC08, DC07, GG99, GABP00, HGBH09, HMVG13, HW00, LTH99, LCC11, MOZ06, MPSJ07, OCRS07, Ped06, SPG+08, Sen11, Vah09, ZLL13, dW97, AHL+08, LVL03, WLL+11].

System-Level [HKL+15, LL15, LG18, PDS12, Pie16, BdM00, GM08, PPDk09, RFG20, ZHM07, MOZ06, OCRS07, Ped06, Sen11, Vah09, ZLL13].

System-on-a-chip [Cha01, CKAP07].

System-on-Chip [HZS+19, SGGR14, APB+08, BMJ13, CSC08, WLL+11, AHL+08].

System-scenario-based [GPH+09].

Systematic [AMM+06, SLP+19, KPR06, RPKC05].

SystemC [BK10, CVMP19, HV07, WWFT12, ZMS+19, RHA08].

SystemC-AMS [CVMP19, ZMS+19].

SystemCoDesigner [KSS+09].

SystemJ [MR09, SPT+17]. Systems [BHK17, BLNK14, BJX15, BB17, BS14c, CH10a, CCH+15a, CHBK15, CYH19, DFM15, EAP17, HK18, IGN18, KLSZ09, KC10, KMR18, LL15, LHK+15, LZZS15, LMA+16, LL19, MRL+19, NSH+16, ORGD+15, PPP+15, PSNC18, PG15, PBZM19, QBTM16, RFG20, RG19, SSC17, SPT+17, STWX12, SS14, SAL19, THT12, TL19, WLZ+19, WHRC12, WQC+16, XPZ+18, XGC+20, YRH11, ZLW+15, ZMS+19, ADM+13, AM10, ADDM+13, ARHH06, BD00, BWB14, CSAHR07, CMM00, CSL+07, Con06, CLQ12, CCL04, DCK07, DRG09, DDNAV04, DTC+09, GDTG07, GPH+09, GDF09, HKL+07, HV07, HDL+12, HCLC98, Hsi00, HBC+08, JS13, JWL+03, JW08, KKMB02, KC13, KP13, KFH+08, LCZ+08, LCK+09, LSDV10, LDK99, LP07, MB01, MGD98, MHQ07, ML09, OKC08, PDN00, PCD+01, PSL+98, Ped11, PEPP06, Q509, Rak09, RSR01, SBC01, SLXZ12, Suc01, ShN12, SS11, SZV+12]. Systems [THC+14, Wol96, WU09, ZAJ+12, ZP08, SN10, CPX14].

Systems-on-Chip [BHK17, HDL+12, KP13]. SystemVerilog [CVY+14].

Table [YYC09]. T-trees [YYC09]. table [WSEA99]. table-based [WSEA99]. tables [CH02, YTHC97]. Tag [YBS+18]. tagged [ZP08]. Tailoring [CSC08]. Tampering [HYK+20]. Tandem [MR09]. Tapered [KHK16]. Target [KYL16, Pom20, FS13]. Targeted [SN12]. Targeting [LPD+17, JBC+10, MLM08]. Task [ENP20, LMA+16, SZB17, DCK07, GK14, GBC07, YLL10]. Tasks [CH17, SSC17, WJG+19]. taxonomy [KP13]. TCAM [VNS19]. TCONMAP [HABS15]. tdf [ZMTC13]. TDM [VGG19]. TDM-based [VGG19]. Technique [CV17, JK10, JPM+19, LGGJ14, SBB+18, DHV+00, HLCH07, IBMD07, KL01, LC96, MB04, Mut09, RSR01]. Techniques [MMD07, Mit16, PTC+15, TWL16, WSV+14, YD16, AM05, BD97, BdM00, BH10, BASB01, CLM+10, CSAHR07, CAC05, CFHM09, DS06, DD02, HPK99, HCS01, HCC01, KSK+05, KMS12, KHP05, LSDV10, LB00, LHWH97, LHCT05, LVL03, OCRS07, OK08, PCD+01, RJB09, TY97, TBZ13, TYH08, VMP+00, XK07, ZHOM08].

Technologies [SN10, BC08]. Technology [BFL10, CHY05, DKT+16, DBK+18, HABS15, JZYZ15, SABSA15, YD16, ZS02, BLMO0, CH02, CH00, KL05, LKM04, PL98, WY06, WSEA99, ZLL13]. technology-dependent [BLM00].
Technology-Driven [DKT+16], TEI [LHW+17], TEI-power [LHW+17], Temperature [JGM14, LHW+17, ZYP09, ADP+07, CLQ12, DH06, WJY+07], Temperature-aware [ZYP09, ADP+07, CLQ12]. template [HGBH09], Temporal [Pie16, SSC17, YYC07, BD05, Das09, YYC09]. Temporally [Pie16, SSC17, YYC07, BD05, Das09, YYC09]. Test [AYM05, BDBB19, EMO03, EO19, GF06, IE12, LCT03, LYSO19, MCD12, NSCM17, Pom15a, Pom15b, Pom15c, Pom16b, Pom16c, Pom17a, PAV17, Pom18a, Pom19b, Pom20, RJ14, SBB+18, TBZ13, WCB15, WWCT18, WH19, WH20, WC10, WWW+12, XCI12, XCL13, BC05, BWB14, Cha01, Che96, CCL04, ETR07, FNMS01, GM03, HLKN07, HRPO0, HJ08, KT01, LTH99, MD08, NCP01, NT05, PR08, PR07, PR11, QM12, RMKP03, SW04, SBC08, SEN05, SNL12, TCP97, TD03, WPHL08, WWCT04, XZC09, ZMTC13, SSGS03]. Test-Architecture [WWCT18, XZC09]. Testability [Pom16a, Pom18a, FRS97, PSK08, Pom14a, SCJ01]. Testable [GR07, RMF08]. testbenches [BFP08]. testers [NS03, SBC08]. Testing [NS03, PTC+15, TPC+17, WWCT18, WWW+12, XCI12, XCF18, JT98, KBNO9, LHC05, PKP+03, SEN05, SZX13, SCI10, SOC06, TD03, XZC09]. Tests [Pom15a, Pom16a, Pom16c, Pom18b, Pom19a, Pom19b, Pom20, DNA+12, PR09, Pom13, Pom14a, Pom14b]. text [LDK99], text-compression-based [LDK99]. Theft [BTP+20]. Their [MLH+17, DSK01]. theoretic [HR06]. theoretical [SB98]. Theories [PG15, YW09]. Theory [MDM+12, JWL+03]. Thermal [CK91, CLT+15, CXH+16, CVMP19, CR12, DCK10, JGM14, LCK+09, LHW+17, LDD+18, MDR15, OCK19, WMT+16, ZHC+18, ADDM+13, ANR13, GK14, LH13, LHZ+06, LTPT10, QSK12, WTL+13, WJY+07, YHH09, ZAJ+12, ZSZ10]. Thermal-Aware [SYX12, OCK19]. thermal-oriented [LHZ+06]. Thermal-Sensor-Based [ZHC+18]. Thermally [RGM15]. thermodynamic [VLH04]. Things [TK18]. Thread [CNQ13, SV11, KBA08]. Thread-based [CNQ13]. threaded [HC17]. Three [KQP+19, RGM15, WXH+19, Yan00, Vah02, YYC07, YYC09]. Three-Dimensional [RGM15, KQP+19, WXH+19, YYC07, YYC09]. Three-layer [Yan00]. three-step [Vah02]. Threshold [CZW19, DHW18, SV16, SHN12]. Throughput [HCRC11, HIW15, KJL14, SESN15, CJLZ11, GM08, SSK12, SHN12]. throughput-aware [SKS12]. Throughput-Optimized [HCRC11]. Thwart [BTP+20, LSKC20]. Tier [SSL17]. tightly [LMB+12]. tightly-coupled [LMB+12]. Tightness [APS18]. Tiled [DK16]. Tiled-DNUCA [DK16]. Time [APDC17, BB17, CHK15, CH17, CJKK19, FG18, HXC+18, IGN18, KPF16, KBP19, LM19, LSK20, NSH+16, PSN18, SSC17, WLZ+19, WDZG16, WJG+19, YRH11, ZLW+15, ZZCY17, APB+08, ARLJH06, CSAR07, DP02, DGR98, HMLL11, HLKN07, HMG13, KNK06, LCHT02, LTPR+13, MR96, MHQ07, NG06, PEP06, PW99, SCB01, WGD07, WLL+11, ZAZ13]. time- [ARLJH06]. time-constrained [NG06, SCB01]. time-constraints [CSAR07]. time-domain [LTPR+13]. Time-Multiplexed [LM19]. Time-Triggered [BB17, IGN18, KBP19]. time/resource [WGDK07]. Times [PMS15]. Timing [CZW00, CB17, HIW15, HS19, JNCS19, KKK12, LVS16, LJ18, LWC18, LYCP17, LNG+16, LL19, MJM11, MKW08, VBP+19, WSH+18, WK12, WL12, Yan08, YRH11, DCK09, DGR98, DH06, KPSW09, KPR06, KC98, LC14, LCHT02, MCMW08, QS09, SXX+06, SCCH08, YHL+11].
Timing-aware [MKW08]. Timing-Driven [LN+16, CZW00, Yan08, DRG98].
timing-error [SCCH08]. Timing-Yield [WSH+18]. TinyOS [RFB10], TLB [KSK+05], TLM [BFP08, ZMS+19].
TLM-to-RTL [BFP08]. TODAES [CH10a, KLSZ09, BC08, GK09, QS11, TK18].
Toffoli [MDM07]. Toggles [TPC+17].
Tolerance [GVJ15, JPM+19]. Tolerant [CYH19, LW17, XCF18, CEB06, NdLCR03, SC06]. tolerate [SPG+08]. Tool [BBEM15, JHMGS18, TDE08, VLH98].
Toolchain [GVJ15]. toolkit [MSD06]. tools [BdM00, GS00, MD13, MT02].
Topological [SHD17]. Topology [BDBB19, HCZ+16, TDF+09].
Topology-Agnostic [BDBB19]. Trace [BHK17, BHW+13]. Trace-Based [BHK17].
Traceability [IK19, YFT17]. track [LCC11]. Tracking [HMO+14, FS13].
Trade [PCC09, FHHG12, RJL+09, WVYY09, WGGK07, XPSE12]. trade-off [RS18]. Tradeoff [RS18]. Tradeoffs [LDD+18]. Trading [FG18]. Traffic [QBTM16]. Training [ALL17, JSS+19].
Transactions [CH10a, CPX14, KLSZ09]. Transceiver [JNS+17]. transfer [K101, KVHMO8]. Transform [LCC+15].
Transformation [SPC+15, BGN+07, KKH+02, Vah99, VJBC07]. transformational [Voe01]. transformations [HV+07, LLM01, PCC09, WVYY09].
Transforms [ACFM12, MFHP12]. Transient [KRL15, DC07, MRC06].
Transistor [CFD+16, HCW+16, PP96, RS03, WSH+18].
Transition [JOH17, MHQ07, LHCT05, PL03, PR09, WPHL08]. Transition-overhead-aware [MHQ07].
Transmissions [CBO+18]. Transparency [WHRC12].
Transparent [Pom17b, SV11, PR11]. Transparent-Scan [Pom17b, PR11]. Transposition [CCH15b].
traversal [HRP00]. Tree [HGLC16, KK11, KKS16, LLLL18, LNS+16, LS17, OCK19, WCC14, CHH09, LHT12, LYK09, LLCC13, TDF+09, wATkK02, Yan08, YYYC09]. tree-based [YYC09].
Trees [CCH15b, EK16, GC96, WCC03, YYYC09].
Trends [CH10b, HHL14]. Triggered [BB17, HS18, IGN18, KPB19, BDC08].
Two-sided [Yan19]. two-stacked-die [LHZ+06]. Two-Stage [LZ17].
UCR [YBS+18]. Ultra [ACF+11, CK16, GBC07, MACV14, SESN15, ZLG+19].
Ultra-fast [GBC07].
Ultra-High-Definition [ZLG+19].
Ultra-High-Speed [CK16]. Ultra-Low [ACF+11, MACV14, SESN15]. UltraScale [AMM+18].
Unauthorized [CBO+18, GDTF17, KOO18]. Unbounded [VS12a]. Uncertain [KW16]. uncertainties [CS07]. Uncertainty [GC18, STGR15].
Unclonable [YBS+18]. Uncore [WGH16].
Understanding [HHL14]. Undetectable [Pom19b]. Unicast [XS16, XCF18].
Unicast-Based [XS16, XCF18]. unified [Kag05]. Uniform [HZS+19, KCKG16].
Unique [SOS15]. UNISIM [LS11].
UNISIM-Based [LS11]. Unison [SGJ96].
Unit [BM11, HWCL15, HWCL13].
Unit-Capacitor [HWCL15]. Universal
[CWW96, CJKK19, JCK+18, FLWW02, FLWC07]. universality [RH00].
Unknown [SSO16]. Unknowns [EKS+14].
Unnecessary [Pom15c]. unpredictabilities [DS05].
unpredictability [SPG+08]. unscheduled [MHF96]. Untangling [Yan19, YW09].
untestable [LIA00]. UPaK [WKR09].
Update [KC10]. Upper [JLJ15]. upset
[NdLCR03, RM09]. upset [MBR+11]. Use
[APDC17, APD+11, ASAP17, AVG19, AGM01, BBEM15, BDB12, BS14b, BM11, BLUS19, CM19, CAOM19, CYV+14, CJKK19, DNA+12, EW18a, EW18b, EK16, FWC05, FYCT15, GFJ16, GBG07, GHR19, HS18, JNS+17, JSS+19, KQP+19, LHH+17, LYHL14, LYS09, LSCK20, LLK+14, LCC+15, MA16, PJL14, PML02, PG15, PR09, Pom15a, SKS+18, THM15, TMDF10, TCL14, WKL+18, WXH+19, WSS+18, YHL+11, ZHC+18, ZYS12, ZMS+19, BLR06, BBW14, BK10, BGN+07, BASB01, CACS05, CBMM10, CFHM09, CK96, GGBZ02, GK07, GK09, HVF+01, HMB98, HPK99, HCC01, HW14, KSK+05, KRS06, KPR06, KMS12, KMC07, LCT03, LSL+13, LON08, MHD+04, MSR09, MS08, MR05, MP07, MLCO8, MVK+18, NNZ+18, PRCK08, PKP+03, PMB10, PHM00, RJL+09, RCD07, SGK08, SABS15, SFM+19, STL+13, SBH+06, SCJ01, TLCF16, TWL16, TN99, TD03, TYH08, Val02, WYY08]. using
[WJYZ11, WCC03, XLCL13, XK97, YTHC07, YYY07, ZH008]. UST
[wATkK02]. UST/DME [wATkK02]. utility [BCR+08]. Utilization [KKLG15, KMR18, MT15, GM03, SBC08, SY07]. Utilizing [BLNK14, CK16, EBR+09].

UTPlaceF [LLL+18].
V [MLM08]. Validation
[VS12a, CM13, DRG98, FLPP09, HJ08, MD08, QM12, RPKC05, WAZ08]. value
[YGZ04]. Valued [WTR12]. Values
[Pom18a]. Variability
[CFD+16, NRZ+18, TY19, LON08].
Variable
[PSNC18, ZLG+19, LHH07, WH05]. Variables
[Pic16, CCQ98, Pom14a, SXZ13]. Variation
[APDC17, AKAKP18, FYCT15, RGM09, WCC14, WLDL17, WSH+18, GM08, KTO13, MJM11, PPDK09]. Variation-Aware [FYCT15, WSH+18, RGM09, MJM11, PPDK09]. Variations
[GC18, ZZCY17, KPR06, LH13, LTPR+13, ST99]. various [WAZ08]. Varying
[RG19, SSO16]. VBR [JLJ15]. Vdd
[HLHT08]. Vector
[BSP+19, JK10, CCW08, EM03, KBA08]. vector-thread [KBA08]. Vectorizing
[LPD+17]. Vectors [Pom15c, CK96]. Vehicle [VA17b]. Verification
[Ali12, BKW15, DSH12, EW18a, HZS+19, KYN+12, Ped11, SSS+19, VBP+19, BHW+13, BDC08, BGM04, DCK07, DCK09, DCK10, DCO7, GF06, HA05, HDL+12, HV98, KMS12, KG99, KC98, LBV+06, LOC12, MS08, MPDG09, PRCK08, RFYL08, RBA+12, Sen11, VAAH+98, VS12b, WYIG07, WW04]. Verify
[DDNAV04, GDPRG11, MR96, MWG97]. VHDL-AMS [DDNAV04]. Via
[SBL+19, BZBZ17, CRT19, CCC09b, HHL14, HSA+04, JPWW17, IK19, KOO18, KRL15, KLK+17, LHZ+06, PB12, PTS+20, RAKK12, SAL19, VAAH+98, WB16, WHXZ13, YWIG09]. via [YHH09]. Victim
REFERENCES

X [HLG+15]. X-Architecture [HLG+15]. XFM [SMSB05].

Yield [GLY+12, JGM14, KAKSP16, KMO+12, SV16, THM15, WSH+18, ZYW+18, HWCL13, KPSW09, LCKT12, MHT14].

Zero [BC16, Giv06, JK10, HTCP13, ZCG06].

References

Asadinia:2015:PLP

Agrawal:2017:OSA

Absar:2006:RAI

Abouzeid:2011:COS
Fady Abouzeid, Sylvain Clerc, Fabian Firmin, Marc Renaudin, Tiempo Sas, and Gilles Sicard. 40nm CMOS 0.35V-optimized standard cell libraries for ultralow power applications. *ACM Transactions on Design Automation of Electronic Systems*, 16(3):35:1–35:??, June 2011. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Aksoy:2012:OAM

Agarwal:2013:SDS

Afacan:2019:CR
Engin Afacan, Günhan Dündar, Falk Baskaya, Ali Emre Pusane,

Pranav Ashar, Aarti Gupta, and Sharad Malik. Using complete-1-distinguishability for FSM equivalence checking. *ACM Transactions on Design Au-
REFERENCES

Abbasian:2008:WBD

Ahn:2008:SSC

Abousamra:2013:OCE

Abolmaali:2018:EFP

Asgarieh:2019:SHA

Alizadeh:2012:FVD

Albalawi:2017:TFP

[ALL17] Hassan Albalawi, Yuanning Li, and Xin Li. Training fixed-point

REFERENCES

Aditya:2000:CSM

Anonymous:2013:CNE

Ayoub:2013:CCM

Araujo:2002:GAR

AlKhatib:2008:MSC

Ain:2011:CPV

REFERENCES

[BC16] Anna Bernasconi and Valentina Ciriani. Index-resilient zero-suppressed BDDs: Definition

BD08 Nastaran Baradaran and Pedro C. Diniz. A compiler approach to managing storage and memory bandwidth in configurable architectures.
REFERENCES

Bathen:2014:STS

Bhattacharya:1998:ERS

Bild:2012:SNR

Bhowmik:2019:PA

Banerjee:2008:ASM

Benini:1999:SSC

L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi. Symbolic synthesis of clock-gating logic for power optimization of synchronous controllers. ACM Transactions on
Benini:2000:SLPa

Bouakaz:2017:SPD

Bouakaz:2017:SAD

Bakhshalipour:2019:RWT

Bol:2010:NME

David Bol, Denis Flandre, and Jean-Didier Legat. Nanometer MOSFET effects on the minimum-energy point of sub-45nm subthreshold logic mitigation at technology and circuit levels. *ACM Transactions on Design Automation of Electronic Systems*, 16(1):2:1–2:??, November 2010. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Bombieri:2008:ROT

Nicola Bombieri, Franco Funmi, and Graziano Pravadelli. Reuse and optimization of testbenches and properties in a TLM-to-

Bombieri:2015:MRR

Bakshi:2001:PCH

Bunker:2004:FHS

Bouchebaba:2007:MMO

Blanton:2003:PIP

Bonny:2010:HBC

Bertels:2009:EMM

Peter Bertels, Wim Heirman, Erik D’Hollander, and Dirk

Blanc:2010:RAS

Baranowski:2015:RSN

Bhanja:2006:SFG

Bonna:2019:MSD

REFERENCES

REFERENCES

Constantinides:2003:SSA

Cota:2004:RCN

Cabodi:1998:AVB

Chang:2015:VPI

Cheng:2008:FSI

Chen:2006:OSM

Chang:2014:BBL
REFERENCES

REFERENCES

Amit Chowdhary and John P. Hayes. General technology mapping for field-programmable gate arrays based on lookup tables. *ACM Transactions on Design
Chang:2010:CPA

Chang:2010:GEC

Chen:2013:DRG

Choi:2017:WCR

Chakrabarty:2001:OTA

Chen:2015:APB

REFERENCES

Chen:2001:ALP

Cheng:2015:ABW

Choi:2019:RDR

Cong:2011:AMP

Cheng:1996:AGF

Czerwinski:2016:SAO

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

[CL13] Yen-Jen Chang and Hsiang-Yu

REFERENCES

Chang:2012:CDA

Cao:2006:POS

Cabo:2010:SHA

Cong:2010:BLO

Coskun:2012:ISS

Chen:2015:MBF

REFERENCES

Carchiolo:2000:HSS

Cabodi:2013:TBM

Chu:2018:ISS
[Chris Chu and Mustafa Ozdal. Introduction to the special section on advances in physical design automation. *ACM Transactions on Design Automation of Electronic Systems*, 23(4):41:1–41:??, July 2018. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).]

Constantinides:2006:WLO

Corno:2002:IAS
[F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, and G. Squillero. Initializability...
REFERENCES

Chakraborty:2016:PDM

Cho:2004:FMB

Chang:2014:EBT

Cochran:2012:TPA

Chen:2015:DMD

Carpent:2019:RAS

Chang:2007:PLP

Hongliang Chang and Sachin S. Sapatnekar. Prediction of leakage power under process uncertainties. *ACM Transactions on Design Automation of
REFERENCES

Cai:2007:WAD

Chang:2008:TCS

Cao:2005:SSL

Chen:2007:NMA

Cong:2005:LSC

Chang:2013:PDS

Chithira:2017:HTS

P. R. Chithira and Vinita Vasudevan. A hierarchical technique for statistical path selection and criticality computa-
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yukai Chen, Sara Vinco, Enrico Macii, and Massimo Poncino.</td>
<td>SystemC-AMS thermal modeling for the co-simulation of functional and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>extra-functional properties.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Dastidar:2007:VST]

[Das:2007:FVT]

[Das:2009:SBT]

[Dutt:2002:CAI]

[DaRolt:2013:NDS]

[Doboli:2004:TLL]

Alex Doboli, Nagu Dhanwada, Adrian Nunez-Aldana, and Ranga Venuri. A two-layer library-based approach to synthesis of analog systems.

Delshadtehrani:2015:SMR

Dasdan:2006:HIT

Dubu:2016:EPA

DosSantos:2000:CM

Daboul:2018:AAT

Duarte:2011:HDP

REFERENCES

Gaurav Dhiman, Giacomo Marchetti, and Tajana Rosing.

Dworak:2012:UIC

Dandalis:2002:RTP

Dandalis:2004:ACE

Dasgupta:2002:MBP

Dasdan:1998:TDD

Davoodi:2005:VSU

REFERENCES

Davoodi:2006:ETG

Deniz:2012:VCM

Dasgupta:2001:SRG

Das:2004:MDR

Darte:2002:CEL

Dontharaju:2009:DAP

Dutt:2005:E

Dutt:2006:E

REFERENCES

[Dutt:2007:E]

[Dutt:2008:Ea]

[Dutt:2008:Eb]

[Dutt:2008:E]

[Dutt:2002:SBB]

[DW97]

[Dong:2018:PAA]

[DZCD15] Qing Duan, Jun Zeng, Krishnendu Chakrabarty, and Gary Dispoto. Data-driven optimization of order admission poli-

[DZCD15]

[EK16] Rickard Ewetz and Cheng-Kok Koh. Construction of reconfigurable clock trees for MCMM designs using mode separation and scenario compression. ACM Transactions on Design Automation of Electronic Sys-

Erb:2014:ELF

El-Maleh:2003:TVD

Esmaili:2020:EAS

EL-shoukry:2007:CPA

Elmandouh:2018:GFV

Eslami:2018:RTC

Elwakil:2012:DRM

Fallahzadeh:2018:TPC

Foroozannejad:2012:PBM

Fummi:2009:CMH

Franco Fummi, Mirko Loghi, Massimo Poncino, and Graziano

Fummi:2009:CMH

Franco Fummi, Mirko Loghi, Massimo Poncino, and Graziano

Fan:2007:ECD

Fan:2002:RDG

Flores:2001:ESM

Faezipour:2009:HPE

Fummi:1997:FDT

Forte:2013:RAA

Fujita:2005:ECB

Fang:2000:MFP

Feng:2005:UDP

Firouzi:2015:AVA

Fournier:2011:PAC

Gogniat:2000:CBE
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gong:1997:MRH

Glebov:2002:FNA

Gupta:2004:CPC

Gupta:2000:CIP

Guthaus:2012:HPC

Gupta:2019:DAD

REFERENCES

URL https://dl.acm.org/ft_gateway.cfm?id=3306492.

REFERENCES

Garg:2008:SLT

Gester:2013:BAD

GuerraeSilva:2002:SMA

Goodby:2002:MSP

Gheorghita:2009:SSB

Gulati:2009:FBH

Gong:2019:PEH

[Yanping Gong, Fengyu Qian, and Lei Wang. Probabilistic evaluation of hardware security...]

[GM08], [GMSS02], [GQW19]

Guthaus:2013:RAP

Gately:2012:AJO

Higgins:2005:SDA

Hoveida:2017:EMA

Heyse:2015:TTM

Harris:2005:I

Huffmire:2008:DSS
Huang:2001:VSE

Huang:2013:IBM

Huang:2014:GCM

Huang:2018:PSC

Hankendi:2017:SCS

Huang:2013:IBM

Huang:2014:GCM

Huang:2018:PSC

Hankendi:2017:SCS

Huang:2013:IBM

Huang:2014:GCM

H Huang:2018:PSC

Hankendi:2017:SCS

Huang:2013:IBM

Huang:2014:GCM

H Huang:2018:PSC

Hankendi:2017:SCS

Huang:2013:IBM

Huang:2014:GCM

Hatami:2014:MSN

Hatami:2014:MSN

Hatami:2014:MSN

Hatami:2014:MSN
Hsiung:1998:IIC

Huang:2009:OPR

Han:2011:DIT

Hu:2001:ELA

Ho:2016:AAD

Huang:2016:FTS

REFERENCES

REFERENCES

Ho:2014:USS

Holst:2015:HTL

Hsiao:2008:ISS

Hussain:2018:PPP

Hsu:2007:ESC

Ha:2007:PHS

Heo:2015:IAS
REFERENCES

Healy:2011:IMF

Hu:2014:GLI

Huang:2013:SNC

Huang:2007:CSS

Hsu:2011:MSS

Hong:1999:POU

Hanchate:2006:GTF

Hussain:2018:SSH

Hsiao:2000:DST

Han:2018:FCS

Hyun:2019:IAA

Hung:2004:SCR

Hsiung:2000:CCM

Hsiung:2001:PPO

Huang:2013:LPA

Huang:2001:CSP

Huggins:1998:SVP

Herrera:2007:FHS

[HV07] Fernando Herrera and Eugenio Villar. A framework for heterogeneous specification and de-

[HWGY16] Xu He, Yao Wang, Yang Guo, and Evangeline F. Y. Young. Ripple 2.0: Improved movement of cells in routability-driven placement. *ACM Trans-

Huang:2014:ICP

Huang:2018:DML

Hoque:2020:HPO

Inoue:2009:DSD

Inoue, Hiroaki; Abe, Tsuyoshi; Ishizaka, Kazuhisa; Sakai, Junji; Edahiro, Masato. Dynamic security domain scaling on embedded symmetric multiprocessors. *ACM Transactions on Design Automation of Electronic Systems*, 14(2):24:1–
REFERENCES

24:??, March 2009. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[IHM15]
Issenin:2007:DDR

[IBMD07]
Ioannides:2012:CDT

[IE12]
Ittershagen:2018:IFM

[IGN18]
Indrusiak:2015:FSN

[IK19]
Islam:2019:EIT

[IPWW17]
Irwin:2000:E

[IPW00]
Inoue:2008:PVS

Johnson:1998:MAS

Jan:2005:GMR

Jun:2018:RBD

Joo:2008:ECP

Yongsoo Joo, Youngjin Cho, Donghwa Shin, Jaehyun Park, and Naehyuck Chang. An energy characterization platform for memory devices and energy-aware data compression...

Jayakumar:2010:SIV

Jing:2012:SFE

Jafari:2015:LUD

Jose:2014:IAH

Jung:2019:ILP

Jeong:2017:CSP

Jung:2017:MSM

Johnson:2008:IME

Jang:2012:AAA

Jiang:2006:RCD

Jin:2016:CEE

Jun:2019:FTT

REFERENCES

[102x681] REFERENCES

Ronny Krashinsky, Christopher Batten, and Krste Asanović. Implementing the Scale vector-thread processor. *ACM Transactions on Design Automation
Kavousianos:2009:EPS

Kim:2015:UIL

Khordoc:1998:SVA

Kim:2010:EEP

Kim:2013:AMP

Kjeldsberg:2004:SRE

REFERENCES

Kritikakou:2013:NOS

Kritikakou:2016:ASC

Kumar:2008:MSS

Kern:1999:FVH

Kumar:2009:EML

Kwon:2010:SPC

Khatib:2012:MRP

ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

REFERENCES

Kang:2014:IRA

Kim:2002:LTL

Kim:2016:NAP

Kwon:2008:RPP

Kim:2012:SAH

Kim:2015:MMS

Kahng:2015:IMR
REFERENCES

Kastner:2002:IGH

Kao:2005:EAF

Knechtel:2018:MOF

Kim:2016:SDM

Kim:2017:SBS

Kim:2011:MAO

Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, and Yunheung Kao:2005:EAF

Keutzer:2009:ATD

Keutzer:2011:SSM

Kim:2015:AIP

Kahng:1997:ARI

Kormicki:1997:PLS

Kurimoto:2012:YRI

Masanori Kurimoto, Jun Matsushima, Shigeki Ohbayashi,

Kritikakou:2018:DDS

Karfa:2012:FVC

Kolson:1996:ORA

Kulkarni:2006:CTA

Karabacak:2018:RDU

Kim:2009:MLP

Jaehyun Kim, Chungki Oh, and Youngsoo Shin. Minimizing leakage power of sequential circuits through mixed-Vt flip-

Kornaros:2013:STC

Kukkala:2019:JSF

Kashif:2016:PSR

Kang:2006:STA

Kahng:2009:LAA

Kang:2019:TDF

REFERENCES

K:2018:AAF

Koch:1998:BBD

Kiddie:2015:SEM

Kandemir:2006:IEB

Kurimoto:2010:PAE

Kadayif:2005:OIT

REFERENCES

4309 (print), 1557-7309 (electronic).

Keinert:2009:SAE

Kagaris:1996:FAM

Kagaris:2001:NHC

Kadayif:2013:HSA

Kuchcinski:2003:CDS

Krishnaswamy:2008:PTM

REFERENCES

Koun touris:2002:ESC

Katoen:2016:PMC

Kim:2016:IWP

Kurimoto:2012:VWR

Liu:2001:ODC

Leup ers:2000:GBC

Ludwin:2011:EDP

REFERENCES

2011. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Li:2006:LVA

Langevin:1996:RTC

Liu:2007:IEM

Lee:2013:SRB

Lee:2014:CPA

Li:2011:GRS

Lu:2015:EEB
[LCC+15] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha,
REFERENCES

Lee:2007:CCA

Lee:2007:CCA

Li:2003:TDC

Leung:2012:PVI

Liu:2018:RML

Lee:2008:FCB

Li:2017:ASE

Lee:2018:PTT

Dongjin Lee, Sourav Das, Janardhan Rao Doppa, Partha Pratim Pande, and Krishnendu Chakrabarty. Performance and thermal tradeoffs for energy-efficient monolithic 3D network-on-chip. *ACM Transactions on

REFERENCES

CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Livramento:2014:HTD

Lin:2009:SCD

Liu:2011:GBP

Lee:2013:EMA

Lee:2014:DCC

Li:2016:ODM

Liu:2005:ETT

[LHLP16] Jinyong Lee, Ingoo Heo, Yongje Lee, and Yunheung Paek. Efficient security monitoring with...

[LLHHT03] Chingren Lee, Jenq Kuen Lee, Tingting Hwang, and Shi-Chun Tsai. Compiler optimization on
REFERENCES

REFERENCES

Lee:2005:PDD

Li:2019:TMF

Liu:2016:D

Lari:2012:HPM

Lukasiewycz:2016:SAO

Li:1999:PEE

Livramento:2016:CTA
Vinicius Livramento, Renan Netto, Chrystian Guth, José Luís

Linehan:2012:MDA

Liu:2008:PVA

Lee:2003:ACG

Lim:2007:ISI

Latifis:2017:MVC

Lalgudi:2000:OCE

REFERENCES

REFERENCES

Lee:2014:CRM

Lysecky:2006:WP

Lu:2011:CBP

Lee:1999:BBI

Liu:2013:PBA

Li:2010:P

Liu:2016:ECM
[161] Chuangwen Liu, Peishan Tu, Pangbo Wu, Haomo Tang, Yande Jiang, Jian Kuang, and Evangeline F. Y. Young. An ef-

[Li:2007:SBC] Lei Li, Zhanglei Wang, and Krishnendu Chakrabarty. ScanBIST based on cluster analy-

Lin:2018:CMD

Liu:2006:CML

Liu:2011:SBA

Li:2019:NRM

Lepak:2004:SSI

Lee:2013:RIB

Liu:2017:ILA

Derong Liu, Bei Yu, Salim Chowdhary, and David Z. Pan.

REFERENCES

Mariatos:2001:MAC

Mondal:2012:SEP

Muchherla:2008:NEW

Mao:2016:LBP

Mishra:2008:SDD

Marculescu:2013:ESS

REFERENCES

REFERENCES

Morgado:2009:GRS

Mitra:2015:OWS

Metwalli:2019:SAS

Ma:2004:SCU

Moreno:1996:REU

Mochocki:2007:TOA

REFERENCES

Moiseev:2009:PDO

Mu:2009:AHS

Moscola:2008:RCB

Mok:2012:DSL

Moon:2017:ASP

Mukherjee:2008:HLC

Marculescu:2000:SSM

REFERENCES

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Middelhoek:1996:VEF

Mohanty:2006:IMS

Mohanty:2005:EED

Maestro:2011:MEL

Malekpour:2020:HTM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Ogras:2008:AOP

Ochoa-Ruiz:2015:MAR

Obenaus:2003:GFP

Oboril:2015:EIS

Ozdal:2006:TLB

Ozdal:2008:ORA

Pomeranz:2017:TMR

[PAV17] Irith Pomeranz, M. Enamul Anyeen, and Srikanth Venkataraman. Test modification for reduced volumes of fail

Pan:2012:ERE

Panerati:2014:CEM

Park:2017:HHC

Pinto:2006:SLD

Pourshirazi:2019:WAL

Palkovic:2009:TOL

REFERENCES

REFERENCES

Poddar:2016:ECS

Peng:2012:SSE

Pees:2000:RCS

Pierre:2016:AVT

Pan:2014:SPM

Parthasarathy:2003:PTA

References

Pan:1998:OCP

Pinar:2003:CSI

Paul:2010:LOC

Pom:2013:BGM

Park:2015:SGA

Parane:2020:LDL

Pomeranz:2013:BGM

REFERENCES

Pomeranz:2014:DTM

Pomeranz:2014:LPS

Pomeranz:2015:ETC

Pomeranz:2015:FES

Pomeranz:2015:GDU

Pomeranz:2016:DTF

Pomeranz:2016:DTS

Pomeranz:2016:PSS
Irith Pomeranz. Periodic scan-in states to reduce the input test

REFERENCES

REFERENCES

[RB19] Rajkumar K. Raval and Atta Badli. Investigating the impact of image content on the energy efficiency of hardware-

REFERENCES

Richthammer:2020:SSD

Ranganathan:2009:VAM

Rajan:1998:ASD

Rokni:2019:SLF

Roy:2015:FTE

Rosales:2014:MHA
Rafael Rosales, Michael Glass, Jürgen Teich, Bo Wang, Yang Xu, and Ralph Hasholzner. MAESTRO — holistic actor-oriented modeling of nonfunctional properties and firmware behavior for MPSoCs. *ACM
REFERENCES

REFERENCES

Shaﬁee:2018:DFB

Sehgal:2008:PAS

Shojaei:2013:FSM

Sapatnekar:2000:PDO

REFERENCES

Schaumont:2006:ICE

[SCV06]

Sinha:2009:DIC

[SDP+09]

Sahminshiri:2005:ILT

[SEN05]

Sen:2011:COV

[Sen11]

Srivastav:2015:DUL

[SESN15]

Schwarzer:2019:CDA

[SFM+19]

Schneider:2014:QNE

Reinhard Schneider, Dip Goswami, Samarjit Chakraborty, Unmesh Bordoloi, Petru Eles, and Zebo Peng. Quantifying notions of ex-

Schirner:2010:FAP

Sinha:2014:FAI

Sosic:1996:UAF

Saluja:2008:SBA

Shi:2017:TAA

Shi:2020:ASF

REFERENCES

Song:2019:COR

Su:1998:EFL

Srivastav:2012:DEE

Sarrafzadeh:2002:GE

Su:2006:AMS

Steinhorst:2016:CPC
REFERENCES

REFERENCES

Suresh:2015:AGU

Singhal:2003:SOA

Sharma:2015:AIE

Sanz:2008:CSS

Singh:2002:ECC

Salcic:2017:NHH

Salamy:2012:ISA

Subramaniam:2015:FPM

Smirnov:2019:AOV

Sun:2011:GDD

Sinha:2014:DGP

Saha:2017:STS

Shin:2010:PGC

Saladi:2012:CAC

REFERENCES

[S:2016:EAD

[S:2016:EAD

[S:2016:EAD

[S:2016:EAD

[S:2016:EAD

[S:2016:EAD

[S:2016:EAD

[S:2016:EAD

Yiyu Shi, Jinjun Xiong, Vladimir Zolotov, and Chandu Visweswaran. Order statistics for correlated

Sham:2007:ARD

Shih:2014:COR

Sham:2009:CPE

Sham:2008:OWR

Su:2017:EMC

Jin Sun, Rui Zheng, Jyothi Velmala, Yu Cao, Roman Lysecky,

Tragoudas:2003:PDF

Taktak:2008:TAD

Taskin:2009:CTR

Tu:2014:PPP

Tsai:2013:ROC

[Mei-Hsiang Tsai, Po-Yang Hsu, Hung-Yi Li, Yi-Huang Hung, and Yi-Yu Liu. Routability optimization for crossbar-switch

Taouil:2015:YIW

Tu:2012:MFS

Tseng:1999:TLL

Topaloglu:2018:ETS

Tang:2007:PDF

Tu:2019:AOS

REFERENCES

REFERENCES

Torabi:2017:FHA

Vatanparvar:2017:ASR

Vatanparvar:2017:EVO

VanCampenhout:1998:HLD

Vahid:1999:PCT

Vahid:2002:PSP

REFERENCES

Vinco:2019:CLV

Valencia:2019:CPA

VanAchteren:2003:SSD

Venkatasubramanian:2016:PID

Venkatasubramanian:2016:PPI

Vanbroekhoven:2007:PDS

Venuri:2002:ERO
[VKKT02] Navin Venuri, Priyank Kalla, Russell Tessier, and Russel Tressier. BDD-based...

[VanPraet:2001:PMC]

V. Van Praet: 2001: PMC

[Vahid:1998:FPI]

[VanEijk:2000:CAC]

[Vegesna:2019:NRM]

Voeten:2001:FLT

VerbEEK:2012:EFS

VerbEEK:2012:TFV

Tsao:2002:UDC

Wang:1998:MEV

Wang:2016:ERL

Wu:2006:MWR

REFERENCES

Chengning Wang, Dan Feng, Wei Tong, Jingning Liu, Zheng Li, Jiayi Chang, Yang Zhang, Bing Wu, Jie Xu, Wei Zhao, Yilin Li, and Ruoxi Ren. Cross-point resistive memory:
REFERENCES

REFERENCES

REFERENCES

Wang:2018:ACS

Wang:2020:HER

Wu:2002:PDP

Wu:2009:PCV

Wang:2011:OAE
Yi Wang, Hui Liu, Duo Liu, Zhiwei Qin, Zili Shao, and Edw-in H.-M. Sha. Overhead-aware

Wu:2016:PAC

Wu:2008:CPR

Wan:2019:DRP

Wang:2016:HDT

Wolf:1996:OOC

Wang:2008:LAS

Sying-Jyan Wang, Kuo-Lin Peng, Kuang-Cyun Hsiao, and Katherine Shu-Min Li. Layout-aware scan chain reorder for

[Wang:2016:ADB]

[WQC+16]

[Wang:2018:VA]

[Wu:2016:OA]

[Winograd:2018:PGU]
Ted Winograd, Gaurav Shenoy, Hassan Salmani, Hamid Mah-

REFERENCES

[195] tions on Design Automation of
Electronic Systems, 24(6):69:1–
69:29, November 2019. CO-
DEN ATASFO. ISSN 1084-4309
(print), 1557-7309 (electronic).
URL https://dl.acm.org/
doi/abs/10.1145/3363185.

Yeh. Performance-driven technology mapping with MSG partition and selective gate duplication. ACM Transactions on
Design Automation of Electronic
Systems, 11(4):953–973, October
2006. CODEN ATASFO. ISSN 1084-4309 (print), 1557-
7309 (electronic).

[Wang:2007:DIC] Chao Wang, Zijiang Yang,
Franjo Ivaničić, and Aarti Gupta.
Disjunctive image computation for software verification. ACM
Transactions on Design Automation of
CODEN ATASFO. ISSN 1084-
4309 (print), 1557-7309 (electronic).

[Xiang:2018:FTU] Dong Xiang, Krishnendu Chakrabarty,
and Hideo Fujiwara. Fault-
tolerant unicast-based multicast
for reliable network-on-chip testing. ACM Transactions on
Design Automation of Electronic
Systems, 23(6):73:1–73:??, December 2018. CODEN ATASFO. ISSN 1084-4309 (print), 1557-
7309 (electronic).

[Xiang:2012:SFF] Dong Xiang, Zhen Chen, and
Laung-Tereng Wang. Scan flip-
flop grouping to compress test data and compact test responses for launch-on-capture delay testing. ACM Transactions on
Design Automation of Electronic
Systems, 17(2):18:1–18:??, April
2012. CODEN ATASFO. ISSN 1084-4309 (print), 1557-
7309 (electronic).

[Xiao:2016:HTL] K. Xiao, D. Forte, Y. Jin,
R. Karri, S. Bhunia, and M. Tehranipoor. Hardware Tro-
jans: Lessons learned after one
decade of research. ACM Trans-
actions on Design Automation
of Electronic Systems, 22(1):
6:1–6:??, December 2016. CO-
DEN ATASFO. ISSN 1084-4309
(print), 1557-7309 (electronic).

[Xu:2020:MCM] Qi Xu, Hao Geng, Song Chen,
Bei Yu, and Feng Wu. Mem-
rristive crossbar mapping for neuromorphic computing sys-

REFERENCES

Xu:2015:ICF

Xydis:2012:CLE

Xie:2018:ADI

X:2019:ESC

Xiang:2016:NUB

X:2016:HSL

Xiang:2005:AIP

[XTW05] Hua Xiang, Xiaoping Tang, and Martin D. F. Wong. An algorithm for integrated pin assignment and buffer planning.

Xu:2016:PPA

Xu:2009:STA

Yan:2000:TLB

Yan:2008:TDO

Yan:2011:ICA

Yan:2016:PDA

Yan:2017:LAE

[Yan17] J. Yan. Layer assignment of escape buses with consec-

Yang:2017:CCS

Yang:2018:RRE

Yuan:2010:HSP

Yang:2004:FVE

Yalcin:1997:EPC

Yu:2009:APG

You:2007:CCP

Yi-Ping You, Chung-Wen Huang, and Jenq Kuen Lee. Com-
Yan:2011:MUT

Yang:2014:WLL

Yoon:2013:ACC

Yang:2017:ELD

You:2015:ABE

REFERENCES

[202]

[Yan:2009:TAS]

[YW09]

[YWGI09]

[YWW10]

[YYL09]

[Yuh:2007:TFU]

Bei Yu, Kun Yuan, Jhih-Rong Gao, Shiyan Hu, and David Z.

REFERENCES

Zhu:2006:CZD

Zeng:2011:LDP

Zhao:2018:TSB

Zamora:2007:SLP

Zhou:2008:NER

Zamora:2008:EMU

Zhu:2009:ESA

REFERENCES

Zhang:2015:RLP

Zhao:2016:SRE

Zheng:2019:HEB

Zeng:2013:IPD

Zhang:2016:CFS

Zhang:2015:RBA

Zhang:2015:LRR

Qi Zhang, Xuandong Li, Linzhang Wang, Tian Zhang, Yi Wang,

REFERENCES

Zhao:2002:TMA

Zhang:2016:PPG

Zhou:2018:RRD

Zhu:2011:MPL

Zhou:2008:AAS

Zhou:1998:ORR

ZWD11

Zhou:2008:AAS

ZS02

ZS16

ZSY18

ZWD11

Zhou:2008:AAS
REFERENCES

Zhou:2009:TAR

Zhu:2017:CCA

Zhou:2012:ONC

Zhai:2018:ENG

Zhao:2013:CSL

Zhang:2017:RTV