A Complete Bibliography of ACM Transactions on Design Automation of Electronic Systems

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

08 November 2023
Version 1.89

Title word cross-reference

1 [AGM01]. 2 [FWCL05, GH00, RL13, ZPLI23]. 2.5 [WCB15, WWCT18]. 3
[ADDM+13, AJK+21, CLT+15, CBR+22, CXR+23, CWL+22, DLC+17, DHZL23,
JGM14, KK11, KKHK16, KLE18, LTK13, LDD+18, LDD+19, LHZ+06, LHC16, LW17,
LS19, LS17, MAL23, OS03, OCK19, PRKK21, PKC+21, SKP21, SYX12, THM15,
TMDF10, VILS23, WYC10, WTW23, XGC+20, YHH09, ZYS12, ZPL123]. 4
[JGP05]. 2 [SJL23]. dd [MLMM08]. DD [SW04]. \(F_{\text{max}} \) [PMB10]. \(g^{m} \) [LZ21].
GF(2\(^m\)) [RMPJ08]. H [CLT+15]. \(I^{D} \) [LZ21].
\(k \) [CLH12, SSN22]. \(k/m \) [CHY05]. \(\mu \)

[DHZ+11]. \(N \) [Pom16b, CLH12, Pom17a]. \(o(\min(m,n)) \) [LM05]. \(t/t \) [CH13]. \(V_{t} \)
[KOS09].

-domain [FWCL05]. -driven [MSD06]. -geometry [JGP05]. -macrocell-based [CHY05]. -Matrix-Based [CLT+15]. -VOR [SJL23].

/Nano [Kha23].

0.35V [ACF+11]. 0.35V-Optimized [ACF+11].
1687 [IIEKS23].

2-stage [KSA+10]. 2.0
[CLYP09, HWGY16, LLL+18, ZZL+23].
2.5D [WTW+23]. 2009 [GK09].
252K gates [CCC+09a].
252K gates/4.9Kbytes [CCC+09a].

36 [DHZ+11].

4.9Kbytes [CCC+09a]. 40nm [ACF+11].
45-degree [CT13, TP08]. 45nm [BLF10].

71mW [CCC+09a]. 7T [RM23a].

90nm [CFD+16]. 9T [PS23].

A3MAP [JP12]. aberration [KPSW09].
absence [SPA+03]. Abstraction [HZS+19,
LXGM23, CMNQ08, CLM+10, HMB98].
abstraction/refinement [CLM+10].
ABW [CIX15]. AC [MHA19]. Accelerated
[CBR+22, LD17, NHS23, XJF+23, BHDS09,
MLC08, RB19]. Accelerating [CXR+23,
CLX+23, HW14, KZKAKP23, LS11, SKS12].
Acceleration [EJR22, GYZ+22, LDQ+22,
WFSS20, GPK+09]. Accelerator
[CBC22, FLG+23, HLW+23, KP22, LCJ+22,
LYL+19, LJ+22, LPL+21, OHA19,
SKR+22, SHBD21, TW3+23, AHT+08].
Accelerator-rich [SHBD21]. Accelerators
[CSO22, HJJY23, SYGC22, SV11, TL19,
LSPC14, YLP+13]. Accuracy
[BSP+22, GSD+18, HWDQ22, OKC08,
PPTB22, RPR+21, XYG+16, Cha01,
KLSP11, KCKG13]. Accesses
[CLX+23, KCKG16]. Accuracy
[BH22, EAIAK+23, HSP+22]. Accurate
[DKZ+15, LJ18, SV16, SKCM06, TWL16,
TEK18, MFS09, RCD07, SGD10, XK97].
Accurately [CHA+23]. Achieving
[HSP+22, KJPT04, STL+13]. ACM
[GG09, BC08, CH10a, KLZS09, QS11, SN10,
CPX14]. acoustic [FIR+97]. acquisition
[NR03]. across [LBV+06]. action [KC98].
Activation [WLM21]. Active
[LKC+18, VEO16]. Actually [PCT+17].

Activity
[GFJ16, KOO18, RG19, PR11, SX7+06].
Actor [RGT+14]. Actor-Oriented
[RGT+14]. Actuations [RB21]. acyclic
[LKTD98]. Adaptable
[CRC15, KKK12, SHN12]. Adaptation
[LYH14, MDR15, RNA+21, TZHH22].

Adapting [SSO16]. Adaptive
[BM11, BYT22, CB17, CIX15, EWI8b,
JM14, KKKH16, LLKY13, LYS019, LJ+22,
LPY+20, LJK22, SFM+19, SJ23, SII5,
TZ17, WTR12, WQC+16, ZLY+15, CCY14,
CR12, CLQ12, DP40, FS13, HCK13,
LMB+12, LSL+13, LRL3, RAKK12, SCB01].

Adaptively [KLK+17, DL11]. ADC
[EO19]. ADDC [HWCL15, PKP+03]. Add
[LWZ+19]. Adders
[BH22, CXX+23, EAAK+23, KKK12].

Addition [BSP+23]. Address
[LP03, SR12]. addressing [SSP04].

Adjustable [LW21, KSA+10, LLHT12].
Adjustment [MNM+21]. ADL [MSI06].

Admission [DZCD15]. ADMM
[WTW+23]. ADMM-based [WTW+23].

Advanced [ATF+23, MCY23, DDFR13].

Advances [CO18, JCPL23]. Adversarial
[Ae23, FLG+23, LYM+20]. Aerial
[HXB+22]. Affine [WK1+18, BC11]. after
[XFJ+16]. Against
[ADB+19, DSI+18, LLQD23, LD2X,
RRN+21, AYS20, CYZL23, DFM15,
GDTF17, HYK+20, LQD22, ZLQ15].
AGENTS [dW97]. Agglomerative
[LLL13]. Agglomerative-based
[LLL13]. Aging
[ADB+19, DNT20, FYC+15, GC18, OT15,
SJ23, TCW20, HTC13]. Aging- [FYC+15].

Aging-Aware [OT15]. Aging-induced
[TCW20]. Agnostic [DBB19]. ahead
[CSAHR07]. AI [CCY22]. Aided
[HWF+23]. AIMCU [XZC+23].
AIMCU-MESO [ZXC+23]. Airgap
[HS19]. algebra [GK07, GK09]. Algebraic
[LAYZ23, ARLJH06]. Algorithm
[DHVV18, GDRPRG11, GYT12, HCRK11,
HNS23, HLG+15, JHYH13, KLSZ09,
KLSZ11, MA16, MJB19, T217, YVC14,
ZH+21, ZLG+19, ZHJ+23, BDB98, CD09,
CT13, CSL+07, CCW08, EK07, GC07,
JHL02, K106, LM05, MBB01, MKBS05,
MLM08, MWC97, SBC01, SGJ96, VKK08,
XTW05, YMC+13, YWW10, Zho08]. Algorithmic
[AMO05, KRH18, LXWC20, RRHB21].

Algorithms
[ACFM12, DK22, EWT23, GdRJM21, SV16,
DGPRG11, DMR23, DMNAV04, FDB98, GgC07,
GMS+23, HC17, HMMG+20, HAB17, HHL14,
HNS23, HSC17, JBB22, LDLM20, LGP+15,
MA16, MJB19, MHS23, NSCM17, OM08, PHK12,
Pie16, PEPP06, QBTM16, RRHB21,
SMBT19, STWX12, SYH+22, THT12,
V210, WYGI09, YHC07, ZS16, ZS02].

Aligned
[LJJ+22, SLH+19, XYG+16]. Allocating
[KAKSP16, YHH09]. Allocation
[ABC+17, BK00, BM11, CET16, CARH18,
DK08, YLSO19]. Amplifier
[DMR23, RM23b]. Amps
[AG22]. AMS
[CVMP19, DDNAV04, DMPG09, ZMS+19]. Analog
[ADD+19, BBEM15, CF+16, CLC20, DZ18,
GMS+23, HRC21, HSP+22, LDP+22, LYSO19,
LS22, LLM+23, L2Z1, LHH12, LCY18, P129,
SHD17, SCK+23, STGR15, S102, T217, T220,
WJY11, XAG+20, ZSY18, BC05, D07,
DDNAV04, LON08, LFG+09, LCST12,
LTPR+13, ST99, SCJ01, WV02]. Analog-in-Memory
[LDP+22]. Analog/Mixed
[GMS+23, STGR15]. Application
[BH22, CGLH23, CYV+14, HKL+15,
HHL14, HMMG+20, HHC+16, JBB22, LGP+15,
LYHL14, LH12, LF12, LIK22, MMM+22,
MDR15, RM23a, RCK+15, STJG16, TCL14,
VA17a, XLL+16, XT16, YP10, ZYPD08,
ZYPD17, CSCO8, HLPN07, Hs100, JCGP05,
LM96, M100, MP07, S1XZ13, WKR09,
WSEA99, ZMT13]. Application-aware
[ZYPD08]. Application-Driven
[YP10]. Application-oriented
[Hs100]. Application-Specific
[HKL+15, HMMG+20, HHC+16, LGP+15,
LYHL14, LH12, LF12, RCK+15, TCL14,
VA17a, CSCO8, WKR09]. Applications
[ACF+11, BFV15, BLUS19, CLL+22,
EKE22, ETAV18, EO19, HC17, HAB+17,
LFPST21, LDLM20, M1A20, MS23,
MLH+17, NTS18, PHPHA22, RM23b,
RS18, SBR+17, SSK+23, SVK17, SPM+19,
SL+22, SWT23, S1XN15, W1Z16, WH20,
ZLL+16, CCC+09a, DCK09, DCK10,
[PTC+15, TPC+17, SXV13]. ATM [RFYL98]. ATPG [HCC01, MT02, SGK08]. Attack [AsC23, BSP+19, CYZL23, Che18, GLD+22, JZG21, LTZ22, LLQD23, OK20, YBM+21, DDFR13]. Attacks [AVS20, CPK20, DZS+18, DHB16, HYK+20, JIR+21, LSCK20, LYM+20, LQD22, MLH+17, PTPB22, RNR+21, ZLQ15, LWK11].

Autogenerated [APD+11]. Automata [BZ08, PSD21, KT01]. Automata-based [BZ08]. Automated [BPTB17, IE12, KLV15, dONH23, GWR13]. Automatic [BFV15, CK96, CS22, CJLZ11, EWT23, GD20, GYZ+22, MS08, SHD17, Shi20, SRTG19, WKR09, ADS+09, KSS+09, LFG+09, TDE08, WWC04]. automating [HA05, RSR01].

Automation [ADB+19, CH10a, CPX14, COI18, DZS+18, DK22, FZL+23, GHYR19, HHH+21, JDD20, JCPL23, KLSZ09, KAC+23, PSD21, SSK+23, DTC+09, LOC12].

Automotive [HK18, KBP19, LZZSV15, LMS16, MPM+17, SRTG19, XLY+18].

Autonomous [ML09, STL+13].

Autotuning [MAL23]. Auxiliary [BDC01, CCQ98, Pie16]. Available [TEK18, dONH23]. Average [ZLW+15].

Averaging [TWL16]. Avoid [WPR+19].

Avoiding [AL19, HLG+15, HGLC16, LLLL18, WSRH16, XP+18, LYKW09].

award [GK09, QS11]. Aware [AKAK18, BDBB19, BLUS19, CMP10, CET16, CJKK19, DNT20, DZ18, FYCT15, GVJ15, HHK+17, HC17, HXB+22, HCW+16, KPF16, KW16, KAC+23, KPB19, LH+17, LLL+18, LHK+15, LZZSV15, LNG+16, LMS16, MT15, OT15, PBZM19, RS18, RCK+15, SBY+20, SKP21, SCK+23, SYX12, TBC17, WHS+18, WDD+23, WLLH16, Yan20, YYG+16, ZYP17, ADP+07, CHH09, CGV+23, CLQ12, DHX+23, DD02, ETR07, ENP20, FS13, GM08, GKM05, HJJY23, JHL02, JDD20, JP12, JCS+08, KPSW09, KJKK03, LC14, LKLC22, LWX+23, LSZ+21, LZ21, LG23, MAS+20, MBD+20, MJMI11, MHQ07, MKW08, OCK19, PSD21, PDPK09, PGG23, RGM09, SSG12, SBC08, SRK23, SMYH07, SKS12, SNL12, SWT23, TZ20, VGG19, WH05, WPHL08, PLL+11, YB23, YYL09, ZYDP08, ZY90]. awareness [RL13]. Ax [EJR22]. Ax-BxP [EJR22].

B* [WCC03]. B*-trees [WCC03]. back [CCK+18, GABP00]. back-end [GABP00].

Backward [BS14b]. balanced [LLH12].

Balancing [JIR+21, MT15]. Band [WTR12].

Bandwidth [KLK+17, BD08, GM03, LLKC13]. bank [CPW04, Kan06, SM00, Wu09]. banked [OK08]. Base [BSP+19]. Based [APDC17, ALLE20, ANS+20, ASAP17, AVG19, AKM+22, AKJ+21, AAI15, AsC23, BHK17, BS14a, BD14, CPS16, CCH+15a, CAOM19, CLT+15, CZZY21, CXLL22, DLC+17, ETA18, EO19, GNT21, GDTF17, GHYR19, HCL+14, HWX+14, HLG+15, HC23, JHMG18, JPHL16, JM14, KGS+20, KC10, KLK+17, KMO+12, LZZ23, LLH+17, LG18, LDLM20, LAYZ23, LZY+23, LS11, LHK+15, LLLL18, LH11, LPY+20, LQD22, LGJ14, LLC+15, LKC+18, LPL+21, MNK+21, MCZ+16, MA16, MS23, MCD12, NSP+20, PK20, PSNC18, PG15, Pom17a, Pom18b, Pom20, PY20, QBTM16, RM23b, RS18, SV16, SMTB19, STGR15, TZ17, VEO16, WLZ+19, WCB15, WQC+16, WWT18, WFSS20, WSY23, WC10, WL12, XS16, XCF18, YMB15, ZS16, ZHC+18, AHAPO8, AM10, ADD+13, BLM00, BPRR98, BC11, BD00, BOC00, BH10, BZ08, CLM+10, CNQ13, CGN96, ...
CZW00, CFHM09, CBR+22, CH02, CBR+05, CD06, CHY05. Based
[CFX09, CM13, CCL04, DP02, DCK09, DJP21, DDNV04, DVA02, EMO03, EY12,
FLG+23, FS13, G14, G149, GPH+09, GD20, GBC07, GDF09, GPK+09, GH00,
HWDQ22, HDZ+20, HWF+23, HZL+22, HYK+20, HZC23, HCK13, HWCL13,
HFBM20, HXZ+23, HCT+23, IIEKS23, IYF+21, JZG21, JHH21, JLF+12, KBN09,
KZKAKP23, K11, KSD+22, KNRK06, KSA+10, LC13, LB00, LKM04, LWC07,
LCC11, LWZ+19, LJ2+22, LDK99, LZ21, LCHT02, LWG+23, LOC12, LWK11,
LLL13, LWXC20, LYM+20, LG23, MMM+22, MP07, MS21, MLC08, NAK20,
OM08, OHA19, OKC08, OK8, PSD21, PDN00, PRCK08, PMB10, PR09, Pom14b,
RL13, R598, SW04, SGK08, SWT23, SOC06, SC06, TN99, TB213, VGG19, VILS23,
VKT02, WPR+21, WH20, WTW+23, WWC04, WC06, WPL23, WSEA99,
XAG+20, Yuan0, Yan08, YLY+23, YWC09, ZHM07, ZHJ+23, AA17, PBZM19, CCQ98,
CH00, MW97]. Based
[MHT14, MWG97, PBSV+06]. Basic
[AG22, VMP+00]. Batch [LYL+19].
Battery [MRI+19, NSS+16, Rak09,
SKM+16, CSAH07, LCC+08].
battery-powered [CSAH07]. Bayesian
[BLR06, Pts+20, XJV+23, ZGB+23]. BDD
[CCQ98, VKT02]. BDD-based
[CCQ98, VKT02]. BDDs [BC16]. Beam
[LZ17]. Behavior
[CLMZ10, HXQ+18, RGT+14, KRS06].
Behavior-Level [CLMZ10]. Behavioral
[APD+11, AA17, CLMZ10, KHP05, Sch17,
TN99, WV02, WHRC12, Fu05, HLK07,
KSS+09, MRC06, VKK02]. behaviors
[BG01, KW02]. benchmark [PSK08].
Benchmarking [JBC+10]. Benders
[ETAV18]. benefited [SLC+22]. Best
[GYZ+22, G109, QS11, SSCS10].
Best-Suited [GYZ+22]. between
[ATF+23, Fu05, YRH11]. Betweenness
[SSN22]. Beyond [CPX14]. Biased
[EKEK22, JCK+18]. biasing [CFHM09].
BICS [RM09, RMB10]. BIFEST [LTH99].
Bifurcation [HHL14]. Binarized [BP23].
Binary [SV07, BCR+08]. Binding
[CET16, KK14, LHF12, ZLLQ15, BD97,
CLM+10, CFX09, DS06, HLKN07, MKK13,
MMJ11, XK97]. Bio [BTP+20].
Bio-chemical [BTP+20]. Bio-IP [BTP+20].
Biochemical [KGS+20, RCK+15]. Biochip
[CP20]. Biochips [CGLH23, GLD+22,
GHR19, JHY21, KGS+20, KR23, LHC16,
LSCK20, LKC+18, MGR+15, MKW21,
PBWB21, PFB+22, RCK+15, RWB20,
RB21, SKS+18, SOC06, SC06]. biomedical
[APB+08]. Bipartitioning
[RTN05, DPN02]. bipolar [ZYZ+13].
BIST [BBEM15, JNS+17, LWC07, PKP+03,
PGB01, SSGS03]. Bit [HHK+17, RM23a,
LYCP13, NdLCR03, RMPJ08, RMO9,
RMB10, SBH+06, VLSL23]. bit-width
[LYCP13, SBH+06]. Bits [SS016].
Bitstream [HYK+20, OK20]. black
[LAS01]. BLAS [CCYC14]. BiOck [AG22,
CM19, CCYC14, CCK+18, DK16, ZLG+19,
KRS06, LPP00, MH+04, MS00, WCC03].
Block-level [CCYC14]. block-processing
[LPP00]. Blockage [JD18]. Blockchain
[KI19, XRS+19]. Blocked [EJR2]. Blocks
[AFM14, JPM+19, DK08, FLYW02,
FLWC07, MH+04, MS00]. BNF [WCC04].
BFN-based [WCC04]. BoA [XJF+23].
BoA-PTA [XJF+23]. Board [MW97].
Board-level [MW97]. Boards
[GDT17, BPR98, OW06]. body
[CFHM09]. body-biasing [CFHM09].
bonding [WPL23]. BonnRoute [GMN+13].
Boolean [PRCK08, BR12, BD07, BC11,
CCQ98, GPK+09, OR20, SGJ96]. Boosting
[C MNQ08, CS022, XAG+20, ZGB+23].
borrowing [LCHT02]. Both [WH20].
bottleneck [NM13]. Bound
[HIEKS3, JLJ15, HWF+23, LC96,
KLE18, LLKC13, LDD+18, LDD+19, LHZ+06, LHC16, LW17, LS19, LS17, MAL23, OS03, OCK19, PRKK21, PKC+21, RL13, SKP21, SYX12, THM15, TMDF10, VILSL23, WYC10, WWCT18, WT+23, XGC+20, YHH09, ZYS12, ZPL123.

D-enabled [LDD+19], D-ICs [LS17].

D-NoC [ADDM+13], D-Stacked [SYX12].

DAG [SRKS23, WJG+19]. DAGSizer [CHK+23]. daisy [KC13]. daisy-chained [KC13]. DANCE [LCG+22]. Dark [HAB+17]. DARP [CRC15]. DARP-MP [CRC15]. Data [CPS16, CCMC20, DZCD15, FHHH22, JLK15, KW16, LWC18, LL19, NTS1A8, NM23, OHA19, PCD01, PPAK17, PA21, SPC+15, SUC01, TYSF20, TZZH22, VT3C0, WDD+23, XWC12, XPZ+18, BHW+13, BK00, BWW14, BHS11, FWC05, GFC+09, GMN+13, GDF09, IBMD07, JCS+08, KMS12, KI01, KCA04, LS23, LSPC14, LCT03, Moh08, NR03, PDN97, PDN00, PGB01, RMKP03, SM00, VCLD03, YGZ04, LCG+22].

Data-Driven Network [LCG+22]. Databases [HCL+14]. Dataflow [ASAP17, BMDG17, BLUS19, BFG17b, BFG17a, CH17, HPBI11, JH21, JOH17, LFS21, SFC+19, SS14, HKB+07, MHHF96, MB04]. Dataflows [LPLK22]. Datapath [JRN97, PIK20, CL99b, GDTG07, MR05, XPSE12]. datapaths [Fu05, GKS07, GKS09, NP01]. DC [CFD+16, SBB+18, TDLW1, WGT+17, WDC+22]. DC-DC [WGT+17, WDC+22].

DCM [TWL16]. DCW [WLZ+19]. DDAM [WDD+23]. Deadlines [ENP20, WJG+19].

deadlock [LM05, TDE08]. deadspace [SY07]. Debug [EW18b, LHL16, HW14].

Debugging [Ali12, BH17, RPC05]. Decade [XFJ+16]. decap [LCL08].

Decomposition [ETAV18, GBR07, HWDQ22, HWC+16, KHW06, L2Z17, RFG20, YLZ+17, ZLY+15, CHHL96, CH00, EM03, LM96, WSEA99]. decomposition-based [EM03].

Decompression [PBL+17]. Decoupled [DMR23]. Decoupling [SK18, XLS15].

deduction [DP02]. Deep [AS23, CLI+22, EJR22, HZC23, HLX+23, KZKAKP23, LYL+19, LPL+21, NRS3, RIA+21, SKR+22, UPV23, ZHC+19, ZBG+23].

Defect [XAG+20, ACT13, JT98].

defect-level [JT98]. Defective [PB12].
defects [XLCL13]. Defending [YFT18].

Defense [GLD+22, LDX22]. deficiency [ZCG06]. Defined [JHMGS18].

Definition [BC16, Pom15c, ZLG+19, CCC+09a, VCLD03]. Deflection [LLKC13].

Deformable [CLX+23]. Degraded [SLC+22].

degree [CT13, TP08]. Delay [EAAK+23, FYCT15, JLX15, JK10, JOH17, LW21, LLQ23, MCD12, STJG16, XWC12, ZK15, BDB98, CFHM09, GSO0, GMSS02, HRO6, KJKK03, LM96, WSEA99].

Delay-Adjustable [LTW16]. delay-area [XPSE12]. Delay-Fault [LTW16]. delay-sensitivity-based [PMB10].

Delayed [SJ23]. Delivery [CAP+23, XLS15, ZFLS11, ZLL13].

Demand [AAA15, PFH+22, SKS+18, WQF+16].

Demand-Based [WQF+16].

Demand-Driven [PFH+22, SKS+18].
demonstrable [JW08, LP07]. Dense [JBY22].

density [RM23b, FLWC07, OWH08, ZYP09].
dependence [DH06]. Dependencies [BR12]. dependent [BLM00].

depth [CH00, LH09, ZCG06]. depth-optimal [CH00].

depth-size [LH09]. derive [GS00].

Direction-Constrained [Yan18]. Directives [SCL+22]. Discharging [HLCHO7]. Discovering [NGL+21].

Distance-aware [LKLC22]. Distance-based [NAK20].

distinguishability [AGM01]. Distributed [CGLH23, EAP17, HXC+18, JJH21, MVK+18, SCK18, SRKS23, WLZ+19, YMB15, CFX09, LC14, PEPP06, Wol96, dW97]. Distribution [JCK+18, SSQ16, WDD+23, KSA+10, SW99].

Distribution-Aware [WDD+23].

Distributions [KYL16, STJG16]. Disturb [LHS+21]. Disturbance [SBB+18].

DME [wATkK02]. DNN [CSO22, GYZ+22, HWDQ22, DNUCA [DK16]. domain [FWCL05, IAI+09, JBC+10, LTFR+13, SCV06]. domain-specific [SCV06]. Domains [WWW+12, LBV+06].

donated [FRS97, KI01, LDLM20, MWG97]. domino [KJKK03, ZSO2, CLIK06, NTSA18]. Don’t [DY23, TPC+17, CBMM10, SGK08].

don’t-cares [CBMM10, SGK08]. Dot [RBWB20, RB21]. Double [HWDQ22, HNS23, SLH+19, XYG+16].

Double-row [HS123]. Double-Shift [HWDQ22]. DPRTM [ADDM+13].

DRAGON [HLW+23]. DRAM [BLNK14, CJKK19, LLYW17, LMA+16, PKJK20, SSS+19, SAL19, ZZCY17].

DRDUs [IBM07]. DReAM [LMA+16]. Drive [CCS15, VA17b]. Driven [AMM+18, CYV+14, DKT+16, DZCD15, EAP17, GDD21, HWGY16, HWCL15, LVS16, LJH12, LNG+16, PBF+22, SSK+18, Yan16, YP10, ZFLS11, ZSY18, CSASR07, CFW00, CXS+23, DRG98, EK07, GK14, HC23, HW00, JPCJ06, KMS12, Kuc03, KSA+10, LLM+23, LOC12, LL19, MPS07, MD08, MRMP08, NM23, WY06, WLC02, X0K7, Yan08, ZS10, MSD06].

Drives [CCYC14]. Driving [dONH23]. Droplet [LKC+18, RBWB20].

DSA [YLZ+17]. DSP [AFM14, CL99a, LP03, SXX+16, SESN15].

DSPs [AM98]. Dual [BLNK14, BPTB17, HS18, KSKS16, CT13, HLHT08, MLMM08, SM00, WGD07, WYC10].

Dual-Edge [BPTB17]. Dual-Edge-Triggered [HS18].

Dual-Mode [KKS16]. Dual-Phase [BLNK14].

dual-scanline [CT13].

Dual-Vdd [HLHT08].

duplication [CC06, WY06]. During [TPC+17, EW18b, HR06, MRC06, PTC+15, RGM09, XPSE12, YWK+03, YWW10, ZMTC13].

Duty [JSG09]. duty-cycled [JSG09].

DVFS [CXK+13]. Dynamic [ADDM+13, BMJ13, BLUS19, BHS11, CLX+23, HKL+15, HRP00, HLX+23, HLW+23, IAI+09, LDP+22, LHW+17, LV14, MNMK+21, MDR15, NDA+23, ORGD+15, PBL+17, RNA+21, SKP21, SV11, WMT+16].
WGSH16, WZL+21, XPF+21, AHAKP08, ADM+13, AMM+06, BRL06, CMNQ08, GK14, GPH+09, KJT04, KSA+10, LTPT10, LLHT12, MR05, VJBC07, KMR18.

Dynamical [CS22]. **Dynamically** [CRC15, DHX+23, DHW+23, JPH16, Pom18a, RNR+21, ARLJH06, WLC02, YPLL09].

dynamics [WHXZ13]. **DYNASCORE** [KMR18].

E-Beam [LZ17]. **E/E** [dONH23]. **E2HRL** [SKR+22]. **Early** [KO23, LTZ22, PBL+17, SZR17, MKBS05, SYL09]. **Early-Release** [SZB17]. **Easy** [VSI12a]. **EBL** [YYG+16].

EC [KRIH18]. **ECDSA** [DHB16]. **ECG** [APB+08]. **echo** [FIR+97]. **ECO** [DVA02, LG12, LNPL23]. **ECO-GNN** [LNPL23]. **ECR** [LYN12]. **EDA** [JHMS18, LZR23]. **EDF** [GDG+08, SZB17, WDLG16]. **Edge** [BPTB17, HS18, KP22, MS23, PGGD23, RS98]. **edge-based** [RS98]. **Editor** [Ano13, Hu20, MYSZ23]. **Editor-in-Chief** [Ano13, Hu20]. **Editorial** [CH10b, CPX14, Dut05, Dut06, Dut07, Dut08c, Dut08a, Dut08b, Hu20, Irw00, MD13, Ped08, TK18, SJ02, Mar00]. **EF** [TLZT22]. **EF-Train** [TLZT22]. **Effect** [LHW+17, NS+16, WCC14, WSH+18, WSRH16, LTH99]. **Effective** [DS06, JPH16, LCJ+10, LTW+16, LCL08, NAK20, PCT+17, XLY+18, YVC14, YLZ+17, YLY+23, LPP00, LSPC14, MHT14, SBC08, WSV+14, XLC14]. **effectiveness** [WA98]. **Effects** [DBD98, BFL10, GC18, JIR+21, VFML23, MRB+11, RJBS09].

Efficiency [HSP+22, KKLG15, LWC18, RB19, TCL14, WH19, KJT04, ZAZ13]. **Efficient** [AKAP18, BS14a, BDHS09, BW00, CK19, CCY22, CAOM19, CBC22, CYV+14, CS022, DMR10, EO19, FHL+23, GAD19, GT21, GF16, HLZ+22, HMB98, HAB+17, HKB+07, HCS01, HMMG+20, HG07, HWX+14, JSS+19, JYY+22, JLK15, KBN09, KC10, KW02, LHLP16, LJ18, LDD+18, LCJ+22, LHZ+06, LWZ+19, LAYZ23, LZ21, LF12, LHCT05, LM96, LB11, MWS+20, MMN+21, MWK21, NTS18, PMP17, RM09, RGM15, SV16, SMS22, SBMT19, SP+15, SPMS02, SS14, SYG22, SCK+23, SJL23, SRC15, TLF16, TYSF20, TZZH22, VNS19, WKL+18, WS22, WJY+07, WWFT12, YFPC17, YCHT00, YP10, ZYW+18, ZLG+19, ZZL+23, ARLJH06, BP23, CD09, Das09, EKEK22, FNP09, GM03, GBC07, IBMD07, JS13, JP08, KL05, LCD07, LH13, MR96, MR05, MP07, MWG97, SGD10, SLXZ21, SKR+22, SN12, SVZ+12, VILS13, VKKR02, Wu09, ZSZ10, ZYZ+13, Zho08, LCG+22].

Efficiently [RCG+08, TY19, ADM+13]. **Eh** [DKT+16, DBK+18]. **Elastic** [LYL+19, SZB17]. **Electric** [AKM+22, VA17b]. **Electrical** [BHLG19]. **Electrode** [RBWB20]. **Electromagnetic** [JIR+21, WFS10]. **Electromigration** [DNT20, HZJC23]. **Electron** [HLY+16].

Electronic [CH10a, HHH+21, KLSZ09, Kha23, KAC+23, SSK+23, HV07]. **Electronics** [BSP+19, CPX14, XRS+19, CH10a]. **Electrostatic** [LDD+19]. **Electrostatics** [LCC+15]. **Electrostatics-Based** [LCC+15]. **Element** [CLT+15, ZK15]. **elements** [HMVG13]. **eliminate** [Mut09].

Eliminating [SHL98]. **Elimination** [LHF12]. **Elite** [ZKS+16]. **Embedded** [BMG17, BD14, BS14c, BM11, BYT22, CHA+23, DF15, EAP17, GAT+21, HCL+14, IK19, IGBN18, JHJH21, KC10, LS23, LL15, LHL16, LHK+15, LL19, NSH+16, OHA19, PG15, RFG20, SPT+17, SL18, SLV+22, VBP+19, WHRC12, XPZ+18, XPF+21, YP10, AM10, BPRR98, BH10, CASHR07, CMM00, CSL+07, CM13, DCK07, DCK09, DRC98, GDTG07, GPH+09, GG04, GABP00, HKL+07, HV07, HCK13, IA+09, JS13, KNDK96, LJ02, ...
LCZ+08, LSDV10, LB00, LMW99, LDK99, MBB01, MDG98, ML09, NG06, NR03, PDN97, PDN00, PCD+01, PMH00, PEPP06, QS09, RSR01, SR12, SUC01, TKVN07, WAZ98, Wo96, XZC09, ZYPD08, ZP08.

Embedding [CM18, ZGB+23], Embeddings [CM19, Emerging [BRCS18, SN10, YPCF17, BC08].

Employing [GS13, ZK15], Emulated [THC+14], Emulation [ALLE20, LTZ22, ADP+07, HMVG13, KRK08, MW97].

energy/thermal/cooling [ANR13].

Enforcing [EWT23]. Engine [LHL+18, TMDF10, CNQ13, DP02, DP04]. Engineering [AYS20, CM18, EAP17, GDTF17, WSS+18].

Engines [HKL+15, VFML23]. Enhance [DLC+17, GS13]. Enhanced [CYH19, CVG+23, LKH19, Pom15a, PS23, TWL16, FWCL05].

Enhancement [HWL+23a, HWCL13, LCKT12].

Enhancements [Che18, PKC+21, ZAZ13].

Enabling [BSP+22, YPCF17, BP23, EKEK22, MR05, SKR+22, VISSL23, SLXZ12, SHN12, Wu09].

End [ENP20, SJL23, GABP00].

End-to-End [SJL23, ENP20].

Endurance [RM23b].

Endurance [CHC+16, CCK+18, HHK+17]. Energy [BP23, BFL10, CCC22, CBC22, CSO22, DMR10, EKEK22, ENP20, GADG19, GT21, GFJ16, HX+38, HX+18, HSP+22, JDD20, JSS+19, JPHL16, KC10, LDD+18, LWX+23, LF12, LW18, LMA+16, MMNK+21, MBD+20, MR05, NTSA18, PMP17, RB19, SMS22, SPC+15, SKR+22, TLCF16, TSF20, TBC17, VILSL23, WH05, WKL+18, XPZ+18, XPF+21, YB23, YPCF17, YP10, ZHTC09, ZMS+19, ANR13, CSAHR07, CLQ12, GBC07, HG07, HW00, JX13, JCS+08, KSK+05, KRS06, Kan06, KC13, KJR+07, LSL+13, LC07, MED23, MR06, OK08, SLXZ12, SHN12, WLL+11, Wu09, ZAZ13].

Energy-Enforcement [LWX+23, YP10].

Energy-Aware [HXB+22, TBC17, ENP20, JDD20, MBD+20, WH05, JCS+08].

Energy-constrained [XPX+21].

Energy-Efficient [CCY22, CBC22, DMR10, GT21, GFJ16, JSS+19, KC10, LDD+18, LF12, MMNK+21, NTSA18, PMP17, SPC+15, TLCF16, TSF20, WKL+18, YPCF17, BP23, EKEK22, MR05, SKR+22, VISSL23, SLXZ12, SHN12, Wu09].

Environmentally [YBS+18].

EPGAs [YTHC97].

EPIC [AMR00]. ePlace [LCC+15].

Equal [Pom21b].

Equation [Shi20, WTW+23].

Equations [HZJ23].

Equipment [GCL+16].

Equivalence [AA17, Fuj05, AGM01, HMB98, HCC01, KMS12].

Equivalent [Pom21b, MCMW08].

Era [HAB+17], ERfai [NSH+16].

Error [CS22, DHZL23, HWL+23a, LTYYW12, LD17, LW18, LW21, PB12, PHKW12, PCGB16, SMS22, TLCF16, WH20, KI01, KSA+10, RM09, SCCH08, VAAH+98, WHXZ13].

Error-Correcting [PCGB16].

Errors [DFM15, RJBS09].

Escape [JD18, Yan17, Yan18].

ESL [KSS+09].

ESP3Sim [LAYZ23].

Establishing [GSFT16].

estimation [AJM13].

Estimate [LMA+16].

Estimates [CM19, GS00].

Estimating [Meh98].

Estimation [APDC17, APS18, BZWX17, Kha23, LD17, LZY+23, NSP+20, PB12, SNH02, SSN22,
TC98, WXH+19, ZLG+19, ZPLI23, CIB01, DTC+09, FLPP09, HKV+07, JT98, KCA04, KNRK06, LMW99, MIF96, ZSZ10.

estimators [XK97].

Exponential [CK19, TLCF16, WGDK07].

Exploring [SW12, SUC01, VCLD03, XPSE12].

evaluating [JBC].

Evaluation [BBEM15, EBR+09, GD20, GQW19, HBFW14, IYF+21, LFST21, LITZ22, QBTM16, CHY05, JLF+12, LCOM07, PB14, SGJ6, WSV+14].

Event [KRL15, MCD12, RCD07, YH97, ZKS+E+16, CBR+05, HW00].

event-based [CBR+05].

event-driven [HW00].

Evolution [PSK08].

Evolutionary [EWT23, JHY21, WSV+23].

EWG.

Exact [EAAK+23, EKS+14, Sch17, FLWC07, FNMS01, NR01].

Excitation [SOS15].

exclusive [DK08].

Execution [APDC17, GDD21, HLZ+22, LSCK20, NRDB19, VGG19].

EXFI [BPRR98].

exhaustive [CMB07].

Expansion [MS17]. experiment [FIR+97].

Experimental [Das04, AYM05].

Experiments [LHK+15, BCC08, CIB01].

Experts [TEK18].

Explaining [YYL+15].

explicit [EK97].

exploitation [GFC+09].

Exploiting [GSD+18, JLK15, OT15, WKC12, WHXZ13, DSRV02, FW00, Kan06].

Exploration [FLG+23, FMRF23, FCZ+23, GACK22, HMMM+20, LLLL18, MA16, RFG20, RS18, Sch17, WS22, APB+08, CSL+07, EKK7, JP08, KSS+09, LCOM07, MB01, MSD06, PB14, PPD09, RJL+09, SW12, SUC01, VCLD03, XPSE12].

Exploring [CK19, TLCF16, WGDG07, YPCF17].

Exponential [APS18].

Express [JSA18].

expressions [SGJ96].

Extended [WWFT12, CK96, YTHC97].

Extensibility [SGC+14].

Extensible [KAKS16, MP07].

Extension [LF12, YCL+23].

extensions [WKR09].

extensive [CBMM10].

External [KG09, CBMM10, XZC09].

Extra [CVMP19, KAKS16].

Extra-Functional [CVMP19].

Extraction [BHBS22, HDZ+20, YLY+23, ZZZ+23].

Extreme [HKJ+23, Pom15b].

fabric [MSB+09].

fabrication [WLT08].

factorization [BOC00].

Factory [DZC15].

FACTS [VMP+00].

Fail [PAV17, PA21, BWWB14].

Failure [XNZ+15].

Failures [YYL+15].

False [AKAP18, AL19, GGBZ2, SHLL98].

False-noise [GGBZ2].

family [BD05].

fan [LH09].

fan-out [LH09].

Fast [ATF+23, CPW04, DK16, DNT20, GdRJM21, GLY+12, HNS23, HGLC16, IIM15, JZY15, KKL15, LZY+23, LH11, SMTB19, SGD10, STWX12, Tes02, TIZ17, ZHJ+23, CCW08, GMN+13, GBC07, JHL02, KT96, LC14, LCRT12, NR01, SBDG13, SGJ6, YTHC97, HHX+23, LCC+15, OS03, QSK12].

FastCFI [FHHR21].

Fast [SSN22].

fastest [Das04].

Fault [CYH19, CGV+23, EKS+14, GT21, GJ15, HDB22, HWL+23, IYF+21, JIR+21, JPM+19, LW17, LW21, LXWC20, LT22, NGL+21, Pom22, RH21, XCF18, YLYL+15, BPRR98, BH03, CEB06, DNA+12, HH09, JLF+12, LTHH90, LLLQ+03, SC06, TCF97, TD03].

Fault-Aware [GVJ15].

Fault-based [IFY+21].

Fault-Induced [RRHB21].

Fault-Tolerant [CYH19, GT21, LW17, XCF18, NGL+21, SC06].

FaultDroid [RRHB21].

Faults [BDBB19, HDB22, MCD12, Pom17b, Pom19b, Pom20, Pom21b, ZHC+21, HVF+01, LTHH90, LIA00, MTT02, PT06, PR98, PR09, TYH08, XZC09].

Faulty [JCK+18, JPM+19].

FBGA [WPL23].

Feature [HDZ+20, VTC20].

Features [LL19].

featuring [EK97].

Federated [ZHC+23].

Feed [SSE23, LSH20].

Feed-Forward [Asc23, LSH20].

Feedback [LK11].

FET [AKM+22].

fetches [KK03].

FET [DZZ+20, TMDF10].

FFT [HDZ+20].

FFH [HGLC16].

FH-OAOS [HGLC16].

Fidelity [WFSS20, SCL+22].

Field [WSH+18, CH02, CD96, PWY05, WV02].

field-programmable [CH02, PWY05].
FIFO [BK00, ZLL+16]. File
[TLCF16, CFX09, GF10, ZYP09]. Files
[WK+18]. Fill [LTW+16, LIA00]. Filling
[TPC+17]. Filter [BH22, EO19, MED23, PCT+17, FS13, TKVN07]. filtering
[CL13, ZYP08]. Filters [RB19]. finding
[KL05]. Fine
[BYT22, LG18, LPY+20, RCW22].
Fine-Grain [LG18]. Fine-Grained
[BYT22, RCW22, LPY+20]. FinPET
[PS23, WLLH16]. Finite [CLT+15, SRC15, CK96, CHHL96, GK07, GK09].
Finite-Element-Based [CLT+15].
Finite-Point [SRC15]. Firmware
[KC10, RGT+14]. first [MR96].
first-time-right [MR96]. Fixed
[ALL17, WDZG16, YCL+23, ZHJ+23, AM98, CPW04, LCT03, MHQ07].
fixed-length [LCT03]. Fixed-Point
[ALL17, YCL+23, AM98, CPW04].
Fixed-Priority [WDZG16, MHQ07].
Fixing [LSZ+21]. Flash
[CK+18, CWL+22, DHLZ23, HCL+14, KC10, MWS+20, PPP+15, WQC+16, WL12, WZL+21, ZLW+15, HCK13, JCS+08, Wu09].
Flash-Based [HCL+14, KC10].
flash-memory [Wu09]. Flattened
[ZYP17]. Flexible [BH17, FMR23, IGN18, LKC+18, RS18, CL99b, MS00].
FlexRay [SGC+14]. Flip
[HS18, HKJ+23, Kha23, KMO+12, LW21, VILSL23, XCW12, Yan16, KOS09, KSA+10, LLLC13, Yan11, ZMTC13]. Flip-Chip
[Yan16, Yan11, ZMTC13].
Flip-Flop
[Kha23, KMO+12, LW21, XCW12, HKJ+23, VILSL23, LLLC13]. Flip-Flops
[HS18, KOS09, KSA+10]. Floating
[BS14a, BS+12, SKCM06, WG11].
Floating-point [BS+23, WG11].
Floorplan [KQP+19, YVC14, YCC03, HCS01, LCL08, MRMP08, SY07].
Floorplan-Guided [YVC14].
Floorplanning
[DHX+23, DHW+23, HCRK11, HCZ+16, KLE18, LJL+23, HMLL11, LHZ+06, LCC11, LLM01, SYZ08, WLCJ09, YYC07, YYC09].
floorplanning-based [LCC11].
floorplans
[DSK01, MSKBD07, MS00, WYC10]. Flop
[Kha23, KMO+12, LW21, XCW12, HKJ+23, LLLC13, VILSL23]. Flops
[HS18, KOS09, KSA+10]. Flow
[FHHR21, HMO+14, IGN18, KGS+20, KW16, LJJ+22, MBJ19, NPH+20, NM23, PKC+21, PDS12, QSW+15, RJ14, XPX+21, ZGB+23, BFP08, DTC+09, FHHH22, GDF09, KMS12, LC13, OM08, WC06].
Flow-Based [KGS+20]. Flows
[JJL15, VGG19]. Fluid [GHYR19, KR23].
Fluids [KGS+20, RCK+15]. Flux [LSZ+21].
Fly [VFML23]. FOLD [Pom15b]. Folded
[AM14, HS18]. Folding
[Pom15b, BHS11, TS96]. footprint
[AMM+06]. Forced [SR01]. Forecasting
[LG23]. form [CW01, PR09, Shi20]. Formal
[Ali12, BGM04, EW18a, KMS12, KG99, SSS+19, SGRG14, VS12a, ADS+09, CMM00, MR96, RFYL98, SMSB05, VS12b, Zhao08].
Formally [KR18]. formats [AMR00].
Forming [PR07]. FORTIS [GSF16].
Forward [Ase23, GSFT16, GS00, LHS20].
Foundation [TB20]. Four [HGLC16].
Four-Step [HGLC16]. Fourier
[LCC+15].
FPGA
[AMM+18, ACT13, ALLE20, BS14c, BHS11, CWW96, CZW+03, CH00, DP02, EW18b, FW00, FHHR21, GPK+09, GVJ15, HABS15, HYK+20, HLHT08, HW14, JLF+12, KT96, KL05, KFH+08, LMK04, LLL+18, LM19, LWG+23, LZA+21, LDX22, MMM+22, MW97, MA16, MP07, MS21, OK20, PSD21, PL98, PPT20, PSNC14, PFFAH22, PY20, SLV+22, SYGC22, SAIH+20, TZHH22, TW96, ZLQ15, ZHTC09]. FPGA-based
[MW97, ALLE20, PSNC18, DP02, GPK+09].
FPGA/FPIC [CZW+03]. FPGApro
[LDX22]. FPGAAs
[CZW00, CEB06, CHY05, DVA02, GNGT21, GDG+08, KNK06, LZY+23, LB11,

GALS [SS11]. GALS-Designer [SS11]. game [HR06, RJL+09]. game-theoretic game [HR06]. GANDSE [FLG+23]. Garbage [GSD+18, HCL+14, ZLW+15]. Gate [CM19, CDB11, CHE96, CHK+23, HDB22, HMO+14, KKS16, LGGJ14, SV16, SRC15, VTC20, CCW08, CH02, CD96, CH00, HH09, LG12, LLYW10, PWY05, RGM09, SC00, WY06]. Gate-Level [CD11, HM0+14, VTC20, CM19, Che96]. gated [CM08]. Gates [WSS+18, KOS09].

Gateway [HXC+18, JSG09]. Gating [CMP10, CLMZ10, KKH16, WKC12, XLS15, BDM+99, ETR07, HTPC13, KBN09, SCS10, YHL07]. Gaussian [ZYW+18]. GBDD [YTHC97]. GEMM [CS02]. General [CH02, HFW+23, wATK02]. Generalized [GMS+23, Pom15c, DS06].

Generated [CCH15b]. Generating [MFS09, MN17, PKJK20, KT01].

Generation [BK15, BTV15, CYV+14, GMS+23, IE12, Kha23, LCY12, LV14, LCY18, MFP12, MCD12, NPH+20, PCT+17, Pom17a, Pom17b, Pom18b, SHD17, Sh120, STJG16, SOS15, VFM123, WLM21, WWW+12, YLZ+17, YD16, ZZL+23, AM98, CK96, Che96, CL99a, CCW08, GF06, HRP00, KKM02, KJR+07, KNDK96, KH10, LTH99, LP03, LKT08, MMP00, MSD06, MD08, PFHAH22, PR98, PR07, Pom13, QM12, SR12, SN12, SM00, TBZ13, VMP+00, dW97]. Generative [FLG+23].

generator [BCR+08, WWC04]. generic [FLW02, FLW07]. Genetic [MA16].

Genetic-Algorithm-Based [MA16]. Geometric [CM18, HFW+23, WJZ11].

geometry [JCPG05]. Global [AOC02, BM11, DHNR23, GD22, RGM15, WSH+18, ZPL21, CLY09, DH0+17, SPA+03, ZHCT09]. Global/Local [BM11].

GNN-based [VILSL23]. Good [GDRJ21, GNN+13, YW+03]. GP [APS18]. GPGPU [SB17]. GPGPUs [HIW15, TLF16]. GPlace3.0 [AMM+18].

GPU [CD11, CBR+22, HCRK11, LLK+14, LH11, NHS23, SSN22, TYSF20].
GPU-Based [LH11]. GPUs [BYT22, SABSA15, TY19, WKL+18, ZWD11].
Gradient [SV16, GBC07], gradient-based [GBC07], grading [PT06]. Grain [LG18].
Grained [BYT22, RCW22, KLSP11, LPY+20].
Grammar [JHMG18]. Granularity [RBWB20].
Graph [CHK+23, CH17, CBR+22, CXR+23, FCZ+23, HR21, HL23, JHMG18, JOH17, LBO0, LJ+23, LNPL23, OKJH22, SSK+23, SS14, WYC10, WC06].
Graph-based [LB00].
Graph-Grammar-Based [JHMG18].
graphene [YMC+13]. graphical [BLR06].
GraphPlanner [LJ+23]. Graphs [ASAP17, BFG17b, CM18, CCH15b, CHK+23, ENP20, HPB11, LH14, CH13, DSK01, HKB07, LKTD98, MHF96].
Gravity [OS03].
Grid [DNT20, HXC18, LAYZ23, MN17, SCK18, ZS16, MFS09].
griddless [LCC11]. Grids [BS14b].
gravity [MV1+13].
HeM [AJK+21].

Guidelines [WPR+19]. Guiding [EW18a].

Hamming [HRK18]. Handling [DH06, GdRJ12]. Hard [CHBK15, CWL+22, CWZG16, PW99, QS09].
hard/soft [QS09]. Hardened [BS14c].

HGB [WY10]. Hardware [AZS+20, BS14a, BS23, BM11, CMM00, CBR+22, DY23, DZS+18, GJF16, GQW19, HJJ23, IPW21, KTKO13, K22, LG18, LH22, LF12, LPL+21, MED23, MRL+20, MFHP12, MCY23, MRL+19, PTPB22, RB19, SKR+22, TY19, VTC20, WSY23, XFJ+16, YSF+18, YCL+20, YBM+21, YGH+10, ZHC+23, ZLG+19, AMO05, BHDS09, BGM04, FNP09, GGB97, GPK+09, HKL+07, HBC+08, JW08, KSK+05, KG99, LP07, LVL03, MSB+09, MLC08, ML09, RHA08, SSG12].
Hardware-accelerated [RB19, MLC08].
Hardware-Assisted [GFJ16].
Hardware-aware. [HJR+23].
Hardware-Based [BS14a].
Hardware-Efficient [ZLG+19].
Hardware-Enabled [YSF+18].
Hardware-Software [BM11, GGB97, HJ+07, LVL03].
Hardware/Software [LHF12, CMM00, KTKO13, YGH+10, AMO05, ML09].

Harmonic [Kha23]. Harnessing [RBWB20].
Hartley [HHX+23]. Harvest [YB23].
Harvesting [SAL19, XPZ+18].

hash. [YTHC97]. Hashing [CJJK19, JCK+18]. hazards [HA05].

HBM [PRKK21].
HBM-like [PRKK21].

Heap [JPM+19]. Heaps [LK+17].
heartbeat. [DHZ+11].
heartbeat-detection [DHZ+11].

Height [CZZYW21]. HeM [AKJ+21].

Heterogeneous [AJK+21, DHZ+23, ETA18, GADG19, MBD+20, RS18, SPT+17, SVK17, SRK23, SSL17, SAL19, SWT23, TBCH17, WTW23, XPX+21, BWWB14, CL99a, HV07, KJR+07, LKY13, PTC05, QS09, SCB01, SKS12].

Heterogeneously [ZP08]. Heuristic [AKAKP18, HGLC16, CLM+10, LCKT12, OCRS07, SBGD13]. heuristics [TN99].

HEVC [SLV+22]. Hidden [HYK+20].
Hierarchical [CV17, HJL+23b, JDD20, LMB+12, LJ18, MSDKD07, OKJH22, SKR+22, TZ17, WMT+16, WLH20, XT16, BG01, HKV+07, VKKR02, ZM09].

Hierarchy [CM19, FW00].

High [AKAKP18, Ali12, CYZL23, CSC+21, CET16, CS22, CK16, DKT+16, DBK+18, DLC+17, EKEK22, FCZ+23, GH+12, HJW15, HSP+22, ISK21, JD00, Kha23, LLL+18, LYK09, LQD22, MACV14, MSP+20, PSD21, PRKK21, PT05, PFHAAH22, RCW22, RJ14, RM23a, RM23b,
Sch17, SYH+22, SS14, SLV+22, VAAH+98, WMT+16, WS22, ZYW+18, ZLG+19, ACT13, AYM05, BHW+13, BD00, CCC+09a, GDTG07, GF06, GGDN04, GWR13, HJ08, JP08, KW02, KJT04, LJV02, LC14, Lin97, LFG+09, MKBS05, MJM11, MLM08, NS03, OW06, OWH08, PB14, RFYL98, SW12, SLXZ12, TC98, VKKR02, XG97, YWW10. **High-density** [OWH08].

High-Dimensional [SYH+22]. **High-Level** [CET16, CS22, FCZ+23, ISK21, RCW22, RJ14, Sch17, SS14, SLV+22, JD00, NSP+20, PTC05, PFHAA22, VAAH+98, WS22, AYM05, BD00, GGDN04, HJ08, JP08, KW02, LC14, Lin97, MKBS05, MJM11, MLM08, PB14, RFYL98, SW12, TC98, VKKR02, XG97, YWW10]. **High-order** [CYZL23]. **High-Performance** [DKT+16, DLT+17, LLY+18, WMT+16, CYZL23, GHW+12, LYK09, GDTG07, GWR13, LJ02, LFG+09, NS03, SLXZ12]. **High-quality** [BHW+13]. **High-Security** [LQD22]. **High-speed** [PSD21, OW06].

High-Throughput [HIW15, EKEK22, PRKK21]. **Higher** [BS14a, LYS019, XPSE12]. **Highly** [dONH23]. **History** [JM14]. **History-Based** [JM14]. **Hits** [SAL19].

HLS [SCL+22]. **Hmap** [YTHC97]. **HMP** [SPT+17]. **Hold** [LSZ+21, KSA+10]. **hold-driven** [KSA+10]. **holding** [Pom14a].

Hole [YLZ+17]. **Holes** [Pom21a]. **Holistic** [RGT+14]. **Hop** [AL19]. **HoPE** [PBL+17].

Hot [PBL+17]. **Hot-Cacheline** [PBL+17].

Hotspot [HDZ+20, JYH+22, LYM+20].

HPC [LZA+21]. **Huffman** [BH10, NAO5, WZL+21]. **Huffman-based** [BH10]. **huge** [HCK13]. **huge-scale** [HCK13]. **Human** [BHBS22].

Human-Readable [BHBS22]. **HVAC** [JDD20]. **HW** [ADP+07, FLPP09, WWFT12]. **HW-SW** [ADP+07]. **HW/SW** [FLPP09, WWFT12]. **Hybrid** [BLNK14, GD22, GCL+16, HRC21, KKK12, LFS21, LZ17, LZ21, LLY17, LV14, LGG14, MACV14, NAK20, PA21, SLXZ12, WSS+18, CLYP09, KTO1, KKK12, LCZ+08]. **Hypercube** [TMDF10].

I/O [LC13, SLC+22, Wu09, Yan16]. **IC** [ABC+17, AYS02, BHLG19, EK97, IK19, KK11, KKH16, LCJ+10. **LTZ22, Ped96, WCB15, WXH+19, WSS+18, XGC+20, ZLL13]. **IC/MCM** [EK97]. **ICOS** [HCLC08]. **ICs** [CM18, CM19, CLT+15, GSFT16, LHJ12, LS17, PKC+21, THM15, VIL23, WWC18, YHH09]. **IDDQ** [TCP09]. **Identification** [LYL+23, VTC20, DNA+12, JDT+08]. **identify** [LIA00]. **Idle** [LC17]. **Idleness** [GS0+18]. **IDs** [SOS15]. **IEEE** [IEK23].

II [JW08]. **IIoT** [PTPB22]. **ILA** [HZS+19]. **illegal** [LIA00]. **ILP** [GBK07, MRC06, MWG17, OCRS07, OK08, SR12, WPL23]. **ILP-based** [MWG17, OK08, WPL23]. **Image** [GAT+21, RB9, WYI07]. **Imbalanced** [HDZ+20]. **Impact** [GBK07, LDD+19, MDR15, RB9, TY19, TWM+23, XNZ+15, KTO13]. **Impacts** [LHS+21]. **implement** [ADM+13].

Implementation [ANS+20, ALL17, BP23, HCRK11, JM14, KKL15, LS22, LGX03, MMM+22, MAS16, OR21, SLV+22, ZABG12, CD09, JWL+03, KYN+12]. **Implementing** [HKL+15, KBA08]. **Implication** [LPLK22, WH20, WC06]. **Implication-based** [WH20]. **implications** [BLM00, DNA+12, GGBZ02, ZLL13].

Implicit [PT06]. **Imprecise** [ENP20, PKP+03]. **Improve** [KKLG15, Pom19b, WHZ13]. **Improved** [DMR23, HWGY16, KKL15, LWC18, GJG06, LV02, PDN97, Vah99, KO23].

Improvement [JGM14, KMO+12, THM15, DED02]. **Improvements** [KAKSP16, VLH89]. **Improving** [ALLE20, CL13, CHC+16,
CWL+22, KRS06, KYL16, RAKK12,
TWM+23, WLDL17, WSH+18, WH19].

In-Cache [BFG+19]. In-Memory
[ZXC+23, HXH+23]. In-network
[CKX+13]. In-Order [ZBP+18]. in-place
[KCKG13, YWW10]. In-Scratchpad
[DFM+15]. In-Situ [SL18]. inclusive [TZ20].

Incomplete [Pom19b]. Inconsistency
[XPZ+18]. Increase [KMR18]. Increasing
[HW14, Pom22]. Incremental [BS14b,
DNT20, EQ19, HKV+07, LYCP17, LG+16,
SLGR14, DVA02, LG12, LLM01, SMSB05].

Independent [Pom16b, VEO16]. Index
[BC16, HCL+14, HCK13]. index-based
[HCK13]. Index-Resilient [BC16].

indexed [AC06]. indexing [GIV06]. indices
[LCT03]. indirectly [AC06]. Indoor
[MVK+18]. Induced [CIX15, GSD+18,
LS19, LDZ22, RRHB21, DZH23, TCW20].
Inductive [IPWW17, HMLL11, LXCH04].

Inductor [WDC+22]. Industry [MCY23].

Inference [CBC22, HTC+23, KZKAKP23,
LCG+22, LPL+21, MNMK+21].

Inferencing [PGGD23]. Information
[HMO+14, NPH+20, RRHB21, ZZZ+23,
ZBP+18]. Informative [TEK18].

Initializability [CPR+02]. Initialization
[WLI12]. Injection [CGV+23, JIR+21,
LTZ22, MLH+17, BPR98]. Input [JK10,
LV14, PIK20, Pom16a, Pom16c, Pom21b,
SRC15, BD03, B03, CC08, KM97].

Inputs [Pom18a]. Insertion [GMS+23,
HS9, LTW+16, PSD21, SHL+19, WZH+23,
CW01, JH02, LX04, LLHT12, L08].

insertion/sizing [CW01]. Inspired
[WSY23, GNQ+22]. Instinctive [MVK+18].

Instruction [HKL+15, HZS+19, KKM02,
LP+17, LCD07, LHF12, LF12, LGM23,
OT15, SEN05, TYSF20, AMR00, Hua01,
KSK+05, KTK013, KHWO6, LP03,
LLHT03, LYCP13, LW99, WH05].

Instruction-Level
[HZS+19, LGM23, TYSF20, SEN05].
Instruction-Set [HKL+15, LP03].

Instructions [KAKSP16].
Instrumentation [FHHR21].
Instrumenting [MPDG09]. Integer
[ETAV18, TZ17, GH00].

integer-programming-based [GH00].

Integrate [LH+17]. Integrated
[HMLL11, HWX+14, HS9, JN19, KK14,
KO23, KLE18, LLM+23, L21, NPC01,
RGM15, SHD17, BWB14, LGF+09, XT05].

Integrating [BMG17]. Integration
[APD+11, AK+21, BPTB17, BCS18,
GIN18, JHMGS18, TDF10, YD16, D11,
LHZ+06, SP04]. Integrity
[DCC+23, FHHR21, FHHH22, XRS+19,
ZF23, XZC09, YHH09]. intellectual
[KHP05]. Intelligence [KAC+23, MVK+18].

Intelligent [KP22, HCLC98]. intensive
[KCA04]. intent [SDP+09]. Inter [DJP21].

Inter-tile [DJP21]. interacting [NC01].

interactive [SCV06]. intercluster
[GBK07]. Interconnect [DHR23,
HCZ+16, LKLC22, MSB+09, WTR12, XS16,
YLY+23, HR06, HLHT08, JPCJ06, SY07].

Interconnection [GADG19, CFX09].

Interconnections [GNQ+22, KM97].

interconnects [CM18, CH96, XZC09].

Interface [LZZ23, LHLP16]. Interfaces
[PMP17]. Interference [CIX15].

Interleaving [SPC+15]. intermediate
[LTH99]. Internal [BBB12, Yan19].

Internet [DP04, TK18]. interpolation
[CMNQ08, YHL+11]. Interposer
[WC05, WWCT18]. Interposer-Based
[WC05, WWCT18]. Interrupt [JP08].

Interrupts [Ali12]. Interval [PI20, ST99].

Intra [SLV+22]. intrasignal [KCKG13].

Intrinsic [HRK18, SCJ01]. Introducing
[PG01].

Introduction
[ADGSM22, BC08, BJ15, CCY22, CO18,
CLQ12, Har05, HAW20, HJ08, JCP13,
JW08, L07, LZR23, MY23, PD06,
PFH12, RW03, RBA+12]. Introspection
[K10]. Invasive [LL15, SL18]. Invariant
[Pom18b, PL03]. Invariants [IPWW17].
Inversion [LHW+17]. Inversion-Aware [LHW+17]. inverted [DH06]. Inverter [VEO16]. Investigating [RB19].

Learning-Based
[LG18, HFM18, LG23, SWT23, XAG+20].

Learning-to-Search [NDA+23].

Least [JLJ15].

Legalization [CZZY18, HNS23].

Legalizer [DBK+18, DBK+18].

length [CCO09, Con06, LCT03].

Lens [KPSW09].

Lessons [XFJ+16].

LET [WLZ+19].

LET-Based [WLZ+19].

Level [CDB11, CET16, CS22, CLMZ10, DKZ+15, FCZ+23, HKL+15, HMD+14, HZS+19, ISK21, KLJ14, LL15, LG18, LS11, LXM23, MNNK+21, PDS12, Pie16, RCW22, RJ14, SABSA15, Sch17, SS14, SLV+22, SAL19, TYSF20, VTC20, WDL17, AYM05, BDL00, BD00, CM19, CCYC14, CIB01, CKK+13, Che06, G08, G09, GGDN04, H08, JD00, JR97, JP08, JTH9, KI01, KRR98, KW02, LC14, LLQ+03, LTPT10, Lin97, MW97, MOZ06, MKBS05, MT02, MJMI1, MLMM08, NSP+20, OCRS07, PB14, PDDK09, PTC05, Ped06, PFHAH22, PBVS+06, RFY9, RFG20, SW12, Sen11, SEN05, TC09, J99, Vah99, VAAH+98, VKK02, VS12b, VB+19, WTL+13, WS22, XK97, YWW10, ZH07, ZL13].

Leveling [CCH+15a, CHC+16, Kha12, CD09].

levelized [KPR06].

Levels [BFL10].

Leveraging [CS22, DSH23].

LSFR [KJT04, Pom17a, Pom18b].

LSFR-Based [Pom17a, Pom18b].

Libraries [ACF+11].

Library [KRH18, KKS16, MCZ+16, BD09, DDNAV04, JD00].

Library-Based [MCZ+16, DDNAV04].

lifecycle [HDL+12].

Lifetime [AAA15, DLC+17, WDL17, MHT14].

Lightweight [MPM+17, NSCM17, MMM+22].

like [PRKK21].

limitations [Voc01].

limited [LLKC13].

line [SNH02, ZYH+13].

Linear [ACFM12, CGV+23, ETAV18, MFHP12, TZ17, DSRV02, K98, LWW1, ST99].

Linking [HRC21].

Links [KQP+19].

list [HCS01, MHD+04].

list-approximation [HCS01].

lists [HVH+01].

Lithographic [LYM+20].

Lithography [HDZ+20, LZ17, ZLY+15].

liveness [MS08].

LLC [PBZM19, SJ23].

LLCs [PBL+17].

LLR [CWL+22].

Load [CLC20, LLHT12, Pom19a, Pom14b].

Load-balanced [LLHT12].

Local [BML11, KIC13].

Locality [LDD21, MT15, TYSF20, ZFLS11, GFC+09, Kan06].

Locality-Aware [MT15].

Locality-Driven [ZFLS11].

Localization [HDB22, YYL+15].

localized [CMN08].

Locally [PMS15, KIC13].

Locked [IY+15, JZG21].

Locking [BTP+20, Mit16].

Lockout [ISK21].

Logic [AL18, AYS20, BFL10, CBMM10, Che18, CZW19, CXT+23, ETAV18, EKS+14, HS18, HIW15, JZG21, KKH+02, KMD+12, LWZ+19, LSZ+21, LWC18, PA21, SL+19, WB16, WKC13, ZHZ+23, ZWD11, ARLJ06, BLM00, BDM+99, BOC0, CSKR05, CD09, GGBZ02, KJKK03, KVM17, KVMH08, LWH06, MW97, RBJS09, TW96, TN99, TJ99, VKT20, WVVY99, ZS02, PRCK08].

Logic-Based [ETAV18].

Logical [SJ23].

logics [BD05].

long [SSP04].

long-path [SSP04].

Longevity [KBV+15].

Look [KSD+22].

Look-up-table-based [KSD+22].

Lookahead [PMT20].

lookup [CH02, WSEA99].

Loop [AA17, EO19, GDD21, LDD20, SXX+06, HKV+07, PCC09, XPSE12].

Loop-dominated [LDD21].

Loops [IYF+15, BG01, CL99a, KNDK96, SHLL98].

Lose [KBV+15].

Loss [WSRH16, KIC13].

Losses [ZMS+19].

Low [ACF+11, AYS20, AL11, BPTB17, CH10b, CM08, CHHL96, CLMZ10, DMR23, GBR07, GAT+21, HWDQ22, HLN07, HTPC13].
Low-Complexity [LTYW12]. low-cost [BPRR98, HCK13].
Low-coverage [WPR+19]. Low-data [LS23]. Low-energy [LSL+13, MED23].
Low-Latency [YKCG14, PMT20]. Low-Overhead [LQD22, PMB10].
Low-Power [ALL17, BPTB17, CH10b, CLMZ10, GBR07, GAT+21, HWDQ22, LS17, TWL16, TMDF10, WGT+17, ZK15, CM08, HTCP13, KP22, MKK13, Pom14b, RFB10, SMS22, BD00, CH10a, DS06, GOC02, HLCH07, HCK13, JWL+03, KBN09, KKH+02, KJR07, KHW06, KYN+12, LLHT03, LYCP13, LHW97, ML09, RTNL05, SUC01, TJ09, YGZ04, ZYDP08, ZP08].
Low-Rank [SYH+22]. Low-Voltage [DMR23, SCK+23].
Lower [HWF+23, LC96]. Lowering [JLK15].
LSTM [CBC22]. LUT [CD06, CH00, KNRK06, LKM04, VKT02].
LUT-based [CH00, KNRK06, LKM04, VKT02]. LVS [LBV+06].

MAC [BS14a]. Machine [ALLE20, BHBS22, CAOM19, CCMC20, CXS+23, DNT20, EW18a, HA920, HMMC+20, HXH+18, HHH+17, HC23, IE12, KP22, LYHL14, LZY+23, LZR23, MYSZ23, NSP+20, RPR+21, SCK+23, SAHF+20, XAG+20, ZHC+18, ZPLI23, CK96, KMC97, MMP00, PHM00, MSR09].
Machine-Learning [ZHC+18].
Machine-learning-driven [CXS+23].

Main [AAA15, BLNK14, NAK20, PBZM19].
Makespan [SRK83]. Making [TCW20, XLB17]. Managed [KLK+17].
Management [ABC+17, BM11, CBK15, DLC+17, DMR10, DLC16, HC17, HXC+18, JPM+19, KKL15, LHW+17, LZA+21, MBD+20, MDR15, NDA+23, PJJ14, PBZM19, SKP21, SAHF+20, VAI7b, WMT+16, WZH+19, YB23, AHAK08, ADDM+13, ANR13, BHDS09, BMJ13, CLQ12, DS05, FHHG12, GKL14, HCK13, IBM07, LMB+12, STL+13].
 Manufacturing [MCY23, YC1+20]. Many [CAOM19, GD22, SESN15, WMT+16, WDLX21, ZHC+21]. Many-Core [CAOM19, SESN15, WMT+16, GD22, WDLX21].
Manycore [AJK+21, KLK+17, NDA+23].
Manycore-Based [KLK+17].
mapper [YTHC97]. Mapping [CPS16, CGLH23, ETA18, GT21, GYZ+22, HAB15, HAB+17, HYJ+23, JB22, LFST21, SWT23, VNS19, WDD+23, XGC+20, ZYP17, CSL+07, CH02, CH00, CHY05, JP12, JD00, KL05, LKM04, MBB01, PL98, SKS12, WY06, WSEA99, ZS02].
Marching [CCH+15a].
Marching-Based [CCH+15a].
Markov [CB17].
Massively [ZWD11].
Matched [LCY08].
Matching [CL20, HFW+23, MS17, THM15, WLLH16, ZLG+19, BD97].
Matching-based [HFW+23].
MATLAB [LPD+17]. matrices [KVM08].
Matrix [CLT+15, CZZYW21, LCJ+22, LXWC20, LKC+18].
Matrix-Based [LKC+18].
Maximization [LM21]. Maximize [CS22].
Memory-aware [DHX+23].
Memory-Based [BD14, CPS16, LWZ+19].
memory-constrained [OKC08].
Memory-driven [NM23].
Memory-Throughput [MS23]. Memristive

[KZKAP23, WSY23, XGC+20]. Memristive-based [KZKAP23].
Memristor [LS22]. MEMS
[BLHLG19, Kha12]. MEMS-IC [BHLG19].
Merging [ASAP17, CZW19, TLC14, LLLC13, MB04].
Mesh
[CHA+23, JM14, KK14, GHW+12, RL13].
MESO [ZXC+23]. Message
[Hz02, KBP19, DSH12, EY12].
messager-passing-based [EY12].
mustametamodeling [MPJ07]. Method
[AKAP18, BZCW17, CZYW21, JSS+19, KO23, LCC+15, MNK+21, RGM15, SYH+22, SRC15, STGR15, WTR12, WMT+16, WZL+21, YLZ+17, ZYW+18, ZPLI23, CGN96, CL99b, HW00, Keg05, LH13, LDK99]. methodologies
[BW00, CEB06, MD13, SSCS10].
Methodology
[BFV15, DK22, EKEK22, EAP17, GMS+23, HXB+22, KKL15, KJR+07, KMO+12, LW17, LSH+21, LZ21, LZZSV15, LLLL18, NSP+20, SWT23, VA17a, VEO16, VBP+19, XPX+21, AMM+06, DRG98, FLP09, HDL+12, HCL08, Hs00, KYN+12, NR03, PW99, SEN05, SMB05, SZV+12].
Methods [CLL+22, EW18a, GDF09, KRL15, ZHC+18, FZKS11, SW04, ZAJ+12].
[Kha23, RBWB20, YBM+21]. Micro-
[Kha23]. Micro-/Nano [Kha23].
Micro-architecture [YBM+21].
Micro-Electrode-Dot-Array [RBWB20].
Microarchitectural
[GOC02, LS11, HMLL11].
Microarchitecture [BPPF18, CFX09].
microcontrollers [CD09]. MicroElectrode
[RB21]. MicroFix [YHL+11]. Microfluidic
[CPK20, CGHL23, GLD+22, GHYR19, JHY21, KGS+20, LHC16, LKC+18, MGR+15, MWK21, PGC16, PB+22, RCK+15, RB21, SKS+18]. microfluidics
[SOC06, SOC06]. microfluidics-based
Monotone [DPNB02]. Monster [FHHH22]. Monte [FZL+23, GLY+12, ZFL22].
morphing [RAKK12]. MOS [ZK15].
MOSFET [BFL10]. motes [RFB10].
Motion [FG18, ZLG+19, DHV+00, KMS12].
Movement [HWGY16]. MP [CRC15].
MPSoC [BGN+07, GK14, KJJ+08, KH10, SGD10].
MPSoCs [ADP+07, DJP21, EWT23, LFST21, MRL+20, MHT14, RGT+14, SKS12, SSL17, SWT23, YP10].
MRAM [JZY15, SMB19]. MSG [WY06].
MTCMOS [HLC07]. Muller [ZHJ+23].
Multi [BS14c, CYH19, EKEK22, ETA18, EWT23, GACK22, HC17, JOH17, KGS+20, KLE18, KR23, LFST21, LWG+23, LG23, PBWB21, PBF+22, PY09, SPM+19, SBY+20, SCL+22, VILSL23, WFSS20, WZH+23, WDLX21, ZLY+15, ZGB+23, ZMJ+23, ZPLI23, dONH23, CNQ13, HGBH09, HMBH09, KOS09, MPS07, PB14, Pom14a, RAKK12, SZV+12, Wn09].
Multi-Core [CYH19, ETA18, SBY+20, LG23, RAKK12, SZV+12]. Multi-Cores [SPM+19].
Multi-Cycle [WZH+23, Pom14a].
multi-engine [CNQ13].
Multi-Fidelity [WFSS20, SCL+22].
Multi-FPGA [BS14c, LWG+23, PY09].
Multi-kernel [EKEK22].
multi-MoC [MPJ07].

Multi-Mode [JHH17].
Multi-Objective [GACK22, KLE18, SPM+19, VONH23, EWT23, LFST21, SCL+22, ZGB+23, PB14].
multi-phase [HMBH09].
multi-processor [HGBH09]. Multi-Resolution [ZPLI23].
Multi-Start [ZLY+15].
multi-strategy [ZHJ+23].

Multi-Target [KGS+20, PBWB21, PBF+22, KR23].

Multi-threaded [HC17].

Multicasting [WH05].
Multicast [WWCT18, XS16, XCF18].
multichip [OHW08].
Multicore [BM11, CRC15, DFM15, HWX+14, JPHL16, KLSZ11, LS11, LHK+15, LMA+16, QBTM16, SPT+17, SAL19, THT12, WZG16, XPX+21, BHW+13, CNQ13, DSH12, HDL+12, KP13, LTPT10, Ped11, QM12, SNL12, WTL+13].

Multicycle [Pom15a, Pom20, Pom13].
multidimensional [SBGD13].
multidomain [AM10, BMJ13].
multifunctional [AM10].
Multigrid [LAYZ23].

Multiharmonic [WGT+17].

Multilayer [KKHK16, LLLL18].

Multilevel [HBPW14, JZY15, PB14, ZF23, JCM+08, SGK08].
multilevel-cell [JCM+08].
multimedia [HKL+07, ZHM07].
multimetric [HH06, RGM09].
multimode [SSG03].
multiplane [AJM13].

Multiple [BM11, GY12, KRC15, OKJH22, Pom16b, SRC15, WC06, YLZ+17, CH69, GM08, JR97, KF+08, LBV+06, LHT12, MRB+11, MR05, NLC03, PTO6, PMB10, RMKP03, RM09, SGBD13, WLT08, WLCJ09, WSA99].
multiple-bit [RM09].
multiple-choice [SBGD13].
multiple-output [WSEA99].
multiple-project [WLT08].

Multiple-Supply [BM11].

Multiple-Transient [KRL15].
Multiplexed [LHC16, LM19].
Multiplexer [Pom18a].
Multiplexing [LWT+23, PY20].

Multiplication [GYT12].

Multiplier [EKEK22, SMS22].

Multiplier-divider [EKEK22].

Multiplierless [ACFM12, AFM14].

Multiplicators [CXS+23, RMP08].
multiprocessing [ZM07].

Multiprocessor [CHBK15, CH17, JOH17, KF+08, NSH+16, APB+08, DCK07, DCK09, DCK10, HLC298, Kan06, MOZ06, WLL+11, WGI11, ZAJ+12].

Multiprocessors [HAB+17, JGM14, KBV+15, PJL14, IAM+09, PTC05, ZYD08].

Multirate [ZABGZ17].

Multistage [SHI20, LON08].
multistandard [CCC+09a].

Multitarget [SKS+18].
multitasking

Network [Ase23, CM20, CHK+23, CARH18, DJP21, DNT20, DCC+23, EJR22, FLG+23, HZL+22, HCZ+16, HXC+18, HC23, KZKAK23, KLC+17, LDD+18, LDD+19, LW17, LJJ+22, LLL+23, MT15, NHC23, PCT20, WXH+19, WDLX21, XSF18, YKCG14, YLY+23, ZHC+21, ZYS12, ZBG+23, CSC08, CL13, CM08, CXK+13, CCL04, GNSQ+22, HW14, KMC97, LCOM07, LLLY13, LLK13, OCR91, RF610, LCG+22].

Network-Based [Ase23, FLG+23, YLY+23].

Network-on-Chip [CM20, LDD+18, LW17, PCT20, XS16, XCF18, YKCG14, ZHC+21, ZYS12, CSC08, LCOM07, LLLY13, LLK13].

Neighborhood [PSD21].

Neighborhood-aware [PSD21]. Nested [AA17, CL99a]. Nesterov [LCC+15]. Net [Yan19, LXC/L04, MW97]. nets [JCGP05].

Network [Ase23, CM20, CHK+23, CARH18, DJP21, DNT20, DCC+23, EJR22, FLG+23, HZL+22, HCZ+16, HXC+18, HC23, KZKAK23, KLC+17, LDD+18, LDD+19, LW17, LJJ+22, LLL+23, MT15, NHC23, PCT20, WXH+19, WDLX21, XSF18, YKCG14, YLY+23, ZHC+21, ZYS12, ZBG+23, CSC08, CL13, CM08, CXK+13, CCL04, GNSQ+22, HW14, KMC97, LCOM07, LLLY13, LLK13, OCR91, RF610, LCG+22].

Network-Based [Ase23, FLG+23, YLY+23].

Network-on-Chip [CM20, LDD+18, LW17, PCT20, XS16, XCF18, YKCG14, ZHC+21, ZYS12, CSC08, LCOM07, LLLY13, LLK13].

non-overlapping, [KCKG13].
Non-uniform, [HKJ+23]. Non-Volatile, [AKM+22, HSP+22, WDDL17].
noncomplementary, [RS03]. Nonfunctional, [RBPW14, RGT+14].
Non-ideal [TWL16, WFT+19]. noniterative [MCMW08]. nonlinear [CCC09b, Con06].
non-Mannhattan [Yan00]. Non-Volatile [AKM+22, HSP+22, WDLD17].
nonslicing [LCC11]. Nonspeciﬁed [WC10]. nonstationary [AHAKP08].
nonvolatile [SLXZ12, ZYZ+13].note [CSL+07]. Notions [SGC+14].
Novel [GD22, KKHK16, LWZ+19, LR+22, LLQD23, MS17, VNS19, DDFR13, SCCH08, Ped06]. NP [DK22]. NP-Separate [DK22].
NPU [LPLK22]. number [HPK99]. NVM [BRCS18, SJ23]. NVMe [HC18].

O [LC13, SLC+22, Wu09, Yan16]. OAOS [HGLC16]. OBDD [FWCL05]. Obfuscated [SK21, LMS16, RNR+21]. Obfuscation [AYS20, GDTF17, HYK+20, KSD+22, OK20, SLP+19]. Obfuscation-Based [GDTF17, HYK+20]. Object [SLJ+23, Wo96, HLC98, Hs01]. Object-oriented [Wo96, HLC98, Hs01].
Objective [GACK22, KLE18, SFM+19, dONH23, EWT23, LFST21, PB14, SCL+22, ZGB+23].
Off [FG18, KSD+22, MS23, PDN00, RJL+09, WPHL08]. off-chip [PDN00].
Office [GCL+16]. Offline [MGR+15].

Offlining [JPM+19]. offs [FHHG12, PCC09, WWG99, WGD07, XPSE12]. OLED [LKH19]. On-Chip [ALL17, JNS+17, JZYZ15, SCK18, SMBT19, ZYPC17, DNT20, LCOM07, PDN00, WDC+22, ZSZ10, ADS+09, CCL04, KP13, LH13, NR03, PPDK09, YLP+13, ZM07]. On-Demand [AAA15]. On-device [TZZH22]. On-the-Fly [VFML23]. Once [CHBK15]. One [MKW21, XFJ+16].
open-source [BCR+08]. OpenCL [TL19]. Operating [EAAK+23, TWL16, TL19, PMB10].
Operation [BPTB17, CLMZ10, GDTF17, MACV14, KJR+07]. Operations [BC16, LWZ+19, LXWC20, ARLJH06, BG01, HPK99]. operators [BD05]. opportunities [VCLD03]. Opposite [HCN09]. Opposite-phase [HCN09].
Optical [DZ18]. Optimal [ABC+17, BKW15, BAS01, Cha01, CCX06, CARH18, CH06, FG18, GSS14, HNS23, HWCL13, IIEKS23, KNDK96, LCHT02, OWH08, PL98, SCK18, TS96, TPC+17, ZW98, BW00, BMJ13, CACS05, CGN06, CH00, DSK01, GH00, KCKG13, LH09, MKW08].
Optimization [ACFM12, BZWZ17, BHLG19, CZW19, CYH19, CWL+22, CK16, DHVW18, DHNR23, DZCD15, GLY+12, GKO7, HRC21, HWF+23, HLG+15, HC23, HS19, HKJ+23, JBJ22, JPHL16, JNCS19, KKK12, KKS16, LFST21, LH1C, LZZSV15, LWG+23, LH11, LYP17, NM23, PHS+20, PPP+15, PY20, SFM+19, SYHL14, SHBD21, SRTG19, SHL+19, SCK+23, SCL+22, TRM+16, VILSL23, WHRC12, WFFS20, WT+23,

30
optimizations [GGDN04, KRS06, SSG12, SC00, ZHTC09].

Optimized [ACF11, BC05, HCRK11, MJB19, VA17b, ZABGZ17, ZYS12, KCA04, SY07].

Optimizer [LDLM20]. Optimizing [GYT12, KSK05, LPP00, LPLK22, LAS01, RBWB20, SYZ08, ZLW15]. optimum [Das04]. Oracle-guided [RNR21].

Orchestration [EW18a]. Ordered [JD18]. Ordering [AJM13, GKM05, LXCH04, MKW08]. organization [PDN97]. Oriented [CLC20, RGT+14, HCLC98, Hsi00, Hsi01, LHZ+06, Sen11, Wol96].

Orthogonal [GLY+12]. outbreak [FNP09]. Outcome [HFMB20]. Output [JM14, LJJ+22, WSEA99]. Outputs [LHS20].

Overhead [AYS20, EAAK+23, FHHH22, LQD22, PKJK20, WLL+11, MHQ07, PMB10].

Overview [SLP+19].

Pairing [AAA15]. Pairwise [ZLY+15]. paper [WK09, QSL11]. papers [DS05, TYH08]. paradigms [Ped06, PBSV+06]. Parallel [DL11, EBR+09, EAP17, FZL+23, GDPRG11, JHH21, KLSZ11, KLM+17, KMC97, LAYZ23, LB11, Sch17, ZFLS11, ZS16, ZWD11, CBHK11, CT13, Hsi00, Hsi01, KKJ+08, KH10, LM05, LH09, RMPJ08, TW96, ZCG06, KLSZ09].

parallel-programming [KKJ+08]. Parallelism [HC18, DSRV02].

Parameterised [HABS15]. parameterizable [BH11]. Parameterized [LTPT10, CT13, TP08]. Parameters [BBEM15, BHLG19, KPR06]. Parametric [BFG17a, LON08, LCKT12].

Particle [HLG+15, FS13]. Partition [WDL17, ZLL+16, CFHM09, WO16].

partition-based [CFHM09].

Partition-Level [WDL17]. Partitioned [WDLZ16, FWCL05]. Partitioning [CPS16, CXLL22, DHH+23, DHH+23, LSV10, SS14, SRTG19, TBCH17, TP08, Vah02, AM10, AM005, CT13, CILZL11, DCK07, DD02, FW00, GF10, LKY13, LVL03, MSKBD07, ML09, PDLN00, VLH98, Vah99, WH05, YGH+10]. Partitions [ZS16]. pass [BWB14, MKW21]. pass-fail
PREASC [GD20]. precedence [ZAZ13].
Precede [Ali12, RCW22]. Precision [EJR22, HLX+23, YCL+23].
Precision-reconfigurable [EJR22]. predefined [PSK08]. Predict [KO23].
Predictability [NSCM17]. Predictable [VGG19, WLZ+19, HGBH09]. Predicting [LHS20].
Prediction [CS07, CBC22, DNT20, DCC+23, DKZ+15, FG18, HWX+14, JGM14, LPY+20, LNPL23, PBL+17, SAHF+20, YB23, CR12, OM08, SYL09]. prediction-based [OM08].
Predictive [AVG19, HW00, TKVN07].
Preemptive [IHM15, SSC17, GDG+08].
Preface [YD16]. Preferred [Pomi1a].
Preventing [YCL+20]. Previewer [HFMB20]. Primary [Pomi16a, Pom21b].
Print [DZCD15]. Printed [GDTF17, OW06]. Priority [IHM15, KPF16, LMS16, WDZG16, MHQ07].
Priority-Aware [KPF16].
Priority-Preemptive [IHM15]. Privacy [HTC+23, HK18]. Privacy-preserving [HTC+23].
Proactive [KBV+15].
Probabilistic [APS18, CKAP07, CB17, GQW19, KW16, KVMH08, BRR06, FZKS11]. Probe [Kha12, BC05]. Probe-Wear [Kha12].
Problem [Asc23, DPNB02, DS06, FNMS01, LVL03, NR01, PDN00, SW99, YWW10].
Problem-tailored [Asc23]. problems [SB98, WGDK07]. Procedure [Vah99].
Process [AKAKP18, BHLG19, GC18, LWZ+19, RJ14, TWM+23, VEO16, CS07, GM08, KTKO13, KPR06, LG12, LH13, LTPR+13].
Process-in-memory [LWZ+19]. processes [JB08]. Processing [BM11, GFJ16, GDD21, HXB+22, LCJ+22, LYL+19, LS22, MFHP12, PRKK21, WDD+23, HMGV13, JSG09, LPP00, NM13, TYH08, ZHOM08].
Processing-In-Memory [WDD+23].
Processing-Near-Memory [LCJ+22].
Processor [HKL+15, ISE08, LHPL16, LLYH14, LF12, NSH+16, NRZ+18, OHA19, SPT+17, VLLG01, DHZ+11, GG04, Giv06, HGBH09, KBA08, LMB+12, OCRS07, PDN97, PDN00, RFB10, SGD10, WKR09]. processor-based [PDN00]. Processors [CRC15, JZY15, KAKSP16, KLK+17, KLJ14, LPD+17, LHF12, OKJH22, TY19, BH10, CL99a, CPW04, Edw03, Hua01, KJR+07, LJ20, LCD07, LB00, MD08, PHM00, RAKK12, SR12, TKVN07, LSV06].
product [DK08]. Production [PBWB21, PKP+03]. profile [ZSZ10].
Profiling [SMBT19, THC+14].
Profiling-Based [SMBT19]. Program [HKL+15, BGN+07, RAKK12, WWC04].
Programmable [GHY19, HHX+23, KP22, WSS+18, ZK15, CH02, CD96, LPC14, MSD06, PTC05, PWY05, VW02].
Programmers [SVC12]. Programming [CGV+23, ETAV18, KLSZ11, TZ17, WLZ+19, ADDM+13, GH00, KLSZ09, KKJ+08, TP08, WJJY11].
programming-based [ADDM+13].
Programs [PMS15, SYHL14, EY12, Vah02, YWGI09].
Proof [CCM19, IP17].
Proof-Carrying [IP17]. Propagation [AL19, MCD12, KPR06, RCD07, YH97].
Properties [CVMP19, HBPW14, RGT+14, WFT+19, BDC08, BH03, BFP08, BZ08]. property [KHP05]. Protect [MLH+17].

QoS [LYLW17]. quad [LBV*06]. quad-core [LBV*06]. Quadratic [AL19]. Quadruple [JIR*21]. QuadSeal [JIR*21].

Quality [BZW17, JSS*19, LKH19, LPY*20, LIK22, Pom19b, BHW*13, XPSE12].

Quantization [GYT12, HWDDQ22, HJY23, HLX*23, LDP*22]. Quantization/Mapping [HJY23].

Quantum [HZL*22, LSV*21, ZFL22].

Quenching [HWL*23a]. Queuing [SSL17].

Real-Time [CHBK15, CBC22, CH17, FG18, FHRH21, GYZ*22, HXC*18, KPF16, LSC20, NSH*16, PKJK20, PSC18, SSC17, SBY*20, SLV*22, SWT23, WLZ*19, WDG16, WJG*19, YRH11, ZLW*15, APB*08, DRG98, HMG13, MHQ07, PEPP06, PW99, WLL*11, ZAZ13].

Real-Time [CHBK15, CBC22, CH17, FG18, GYZ*22, HXC*18, KPF16, LSC20, NSH*16, PSC18, SSC17, SBY*20, SLV*22, WDG16, WJG*19, YRH11, ZLW*15, APB*08, DRG98, HMG13, MHQ07, PEPP06, PW99, WLL*11, ZAZ13].

Realistic [MFS09]. Reality [XLNB17]. Realization [ACFM12, CHHL06].

reconfiguration [YBP09]. realtime [HG07]. Reassignment [Yan20, Yan08].

ReChannel [RHA08]. Recognition [GF16, RGV19, SJL23]. recompilation [GF10]. Reconfigurable [ADB+19, AVG19, BKW15, CPS16, CM20, DNX*23, DHH*23, EK16, JPHL16, LPL*21, MS21, LQD22, MRL*19, ORGD*15, RM23a, SSC17, SVK17, UE22, ZLQ15, ZMS*19, ARLJH06, DJR22, GDG*08, HBC*08, HW14, JBC*10, KKMB02, KLSP11, LCK*09, RHA08, WKR08, WLC02, YLP*13, YGH*10, YYLL09]. Reconfiguration [CAOM15, MZC*16]. reconfigurations [RCG*08].

reconnections [WC06].
reconstruction [Yan08]. Recover [BFV15].
Recovering [JCK18]. Recovery
[NSS16, WL12, ZAZ13]. Rectangle
[Yan18], rectangular [DSK01, Meh98].
Rectilinear [GC96, LLLL18, WCC03,
LYKW09, MHD+04, MS00, OWH08].
Recurrent [HLW10,recursive [LC96].
Recycling [TCW20]. Reduce
[CIX15, JK10, Pom16c]. Reduced
[PAY07, MM+06, SBH+06], reducible
[BC11]. Reducing [ASAP17, BFG+19,
BWB14, CJKK19, DJP21, HH09, Kan06,
KLJ14, LYCP13, PR11, SYHL14, KTKO13,
MB04, PGB01, TKVN07]. Reduction
[ABC+17, BDB12, FLWW02, PTC+15,
PS23, Shi20, WB16, WDL16, WH19,
WLH20, CFHM09, CCW08, DK08, ETR07,
GF10, HLHT08, KYN+12, LCC11, LLHT12,
LCJ+10, NT05, RMKP03, SY07, SBH+06,
SPS02, TY97, WXY97, YHL+11,
YW+03, YLL06]. Redundancy
[CKK19, JLK15, CMNQ08]. Redundant
[KMO+12, SHL+19, PGB10]. Reed
[ZHI+23]. reference [AOC02, SM00].
refinement
[CLM+10, GGB97, MS08, MOZ06]. refit
[DVA02]. Refresh [CKK19, LSL+13].
Region [BZW17, ZGB+23]. Regions
[JCK+18]. Register [GF10, HWC15,
LHF12, LQD22, MHF96, TLC16, WLX+18,
MBS+05, CFX99, HCN09, K01,
KND96, LK11, VKKR02, ZYP09].
register-file [CFX99]. registers [CL99a].
Regression [BB00, GD20].
Regression-based [BB00]. Regular
[XYG+16, CH13]. regulation [ZLI13].
Reinforced [MAL23]. Reinforcement
[JBJ22, PJJ14, SKR+22, WDL21, STL+13].
Related [DONH23]. Relaxation
[LGG14, PY20, ZBG+23].
Relaxation-Based [PY20]. Release
[SZB17, YP10]. Reliability
[APS18, CSC+21, CET16, CCK+18,
CXLL22, KMO+12, LHJ12, PPP+15,
RMB10, TK18, WXH+19, XLY+18, GS13,
JS13, KVMH08, LH13, ZAZ13].
Reliability-Aware [CET16].
Reliability-Driven [LHJ12]. Reliable
[BHX15, GC18, JPC06, MAC14, WLZ+21,
XCF18, XNZ+15]. Relocation
[HJ18+23, LLLLL13]. Remote
[BSP+22, CRT19, KHO18, KC10]. Removal
[MGR+15, CMNQ08]. reorder [WPHL08].
Reordering
[WC10, GF+09, Hua01, PR96].
Reorganizing [JCK+18]. Repair [CKK19,
KMO+12, PSNC18, MRMP08, NR03].
Repairable [KMO+12]. repeating
[LWC07]. Replacement
[CZW19, JCK+18, CCW08]. Replay
[ZLQ15, EY12]. Replication [DFM15].
Representation [HZL+22, CCQ98, YWC09].
Representations [KQP+19, VCCG03].
Representative [FYCT15, PKJ20].
Reprogramming [ANS+20]. Request
[AL19, WU09]. Requests
[CIX15, AHAKP08]. Requirement
[XLY+18, KCA04]. Requirements
[EWT23, Pie16, SL18, Meh98, MB04].
ReRAM [BP23, HXZ+23, LJJ+22].
ReRAM-based [HXZ+23, LJJ+22]. ReSC
[YFT18]. rescheduling [GK14]. Rescuing
[XH+23]. Research
[BRS18, MRL+19, XFX+16]. reseeding
[KJT04]. Reservation [HC18]. Reserved
[KKLG15]. reset [SPA+03]. Reshaping
[TAZ12]. Residential [VA17a]. Residue
[MGR+15]. Resilience [GD20, LWC18].
Resilient
[BHX15, BCI6, CRC15, KKL15, SMS22].
Resistance [KYL16]. Resistant [Kha12].
Resistive [EBR+09, LWZ+19, TLC16,
WFT+19, XNZ+15, LLQ+03, SKCM06].
Resolution [ZPLI23]. resolving [Das09].
Resource [CET16, CS22, DK08, FS13,
HC17, KK14, LZY+23, LF12, MBD+20,
PBFB+22, TLC14, WG11, WHL20, WGS16,
BDB98, CFX09, HLNK07, Kuc03, LSDV10,
MKK13, MJM11, NR01, WGDK07, YWW10, ZHOM08, KMR18.

Resource-aware [FS13].
Resource-Constrained [PBF+22, WG11, WLH20, LSDV10, NR01, ZHOM08].
Resources [DHW+23, JNS+17, PGB01].
Response
[CH17, KS23, PMS15, SSO16, DC07, SCJ01].
Responses [XCW12].
Responsiveness [SLC+22].
result
[AYM05].
Resynthesis [WPR+19].
Retargetable [PHM00, AMR00, KKJ+08, VLGG01].
Retargeting [DZ18, IIEKS23, WJYZ11].
Retention [CJKK19].
reticle [WLT08].
Retiming [BOC00, HMB98, HLHT08, SSP04, Zho08].
Retiming-based [BOC00].
Retracing [LLLL18].
Retrain [ZBG+23].
Retrain-Free [ZBG+23].
Reuse [AC06, BFP08, CSO22, LDLM20, NAK20, OHA19, IBMD07, LSPC14, RSR01, VCLD03].
Reuse-based [OHA19].
Reusing [CCL04].
Revealing [CM19].
Reverse [AYS20, CM18, GDTF17, WSS+18].
Reversible [HDB22, PS23, MDM07].
Review [IE12]. revisited [RS98, SDP+09].
Revisiting [GWR13, ZSY18]. Revitalized [PCT+17].
Rewarding [TEK18]. Rewiring [LTYW12, CMB07]. rewriting [ARLH06].
rewriting-logic [ARLH06]. RF [BBEM15, HCZ+16, LYSO19, LZ21, PTC+20].
RF-Interconnect [HCZ+16]. RF/Analog [LYSO19].
RFID
[DTCT+09, YFT18, YBS+18].
RFID-Enabled [YFT18]. rhythms [GS13].
rich [SHBD21]. right [MR96]. ring [GK07, GSO9]. Ripple [HWGY16]. rISAs [SBH+06].
RL-Huffman [NT05]. RLC [MN17].
Robust
[ATF+23, BJX15, BP23, CZYZW21, DZ18, GCZ+15, MCD12, PBWB21, STGR15, TLCF16, ZK15, ZHC+23, CLYP09, ST99].
Robustness [BHLG19]. Role [CK19].
rotary [TDF+09]. Routability
[AMM+18, HWGY16, HC23, HKJ+23, SAHF+20, THL+13, ZSY18, CLYP09, HSA+04, SYZ08, WSV+14, YCHT00].
Routability-Driven
[AMM+18, HWGY16, ZSY18, HC23]. Routable [LCYN18].
Router
[PMT20, TCL14, XS16, CLYP09, JCGP05, MLC08, TDF+09, wATkK02].
Routers [JM14]. Routing [ATF+23, CLC20].
GdRJMJ1, GKM05, JD18, LHJ12, LLLLL18, LWG+23, LKC+18, MAS+20, MCZ+16, RGM15, RBWB20, TZ17, TZ20, WLLH16, WPL23, XYG+16, Yan18, Yan19, Yan20, ZHC+23, ZPL23, CZW00, CJKKT98, DSKB04, DVA02, GMN+13, LLKC13, LCC11, LCJ+10, MW97, OW06, OWH08, RL13, SMYH07, Yan00, YW09, Yn11, YM+13, YCHT00, ZW98, ZHTC09].
Routing-aware [GKM05]. Routing-Based [LLLL18, LWG+23]. Row
[SAL19, HNS23, LC13]. row-based [LC13].
Row-Buffer [SAL19]. RRAM [LXWC20].
RRAM-based [LXWC20]. RTGC
[ZLW+15]. RTL [BK00, BBD00, BF08, BFV15, Fu05, GS00, ISK21, LYZ+23, LV14, PGB01, PSK08, PIK20, WLM21, XK97].
Rule [GdRJMJ1, KMO+12, MS17, VNS19, ZZL+23, RS98]. Run
[DP02, KS23, HMLL11]. Run-time
[DP02, KS23, HMLL11].
Runtime
[BHW+13, LL15, LPL+21, NRZ+18, VTC20, WXH+19, ADDM+13, GFC+09, GDG+08, HW14, RGC+08, SKS12, WJY+07, YGH+10]. runtime-reconfigurable [GDG+08].
Saber [CYZL23]. safe [ZMTCL3]. Safety
[MN17, XLY+18, dONH23, MS08].
Safety-Related [dONH23]. Salsa20
[MAS16]. Sample
Schedulability

Sampling [WTR12, ZYW18]. SAT

[SAT-based [CLM+10, IIEK23, SGK08]. Satisfiability

[BR12, GMSS02, OK20, PG15, GPK+09, HSA+04]. satisfying [QSH09]. saturation

[CCL03]. Saving [RM23a, HW00]. Savings

[LBK19]. Scanning

[AA17, CLM09, KMO15, HC17, LHW97, MAS, SLC]

Scaling

[LW21, PIK20, WCB15, WZH]

Scenario-Aware

[BK15, KMO+12, IWC07, LWK11, PSC21, Pom16b, Pom16c, Pom17b, RNR+21, WC10, WWW+12, XCW12, DDFR13, GKM05, KBN09, NT05, PR09, PR11, RAM03, SSGS03, TYH08, WPH08].

Scan-based [LWK11, KBN09, PR09].

Scan-BIST [IWC07]. Scan-Cell [WC10].

Scan-In [Pom16c]. Scan-Shift [WC10].

scanline [CT13]. Scenario

[BLUS19, DCK09, EK16, HLZ+22, KW16, SWT23, GPH+09].

Scenario-Aware

[BLUS19, KW16, SWT23]. Scenario-based

[DCF09]. Scenarios [NRL+18, SPG+08].

Schedulability [GDG+08]. Schedule

[SGC+14]. Scheduler

[NSH+16, SRK23, JP08]. Schedules

[GD21, DSRV02, LC96]. Scheduling

[ABC+17, BB17, BDBB19, CAC05, CI5X15, DHX+23, DHH+23, ENP20, JOH17, KPB19, LH97, MAS+20, OKJH22, PMS15, SSC17, SLC+22, SAL19, SZB17, WCB15, WDZ16, WWCT18, WJG+19, XPX+21, CLM+10, CJLZ11, DS05, DHH+00, GBC07, HN07, JR97, KW02, Kuc03, LLHT03, MKB05, MJM11, MHQ07, MR05, MGW97, NR01, PGGD23, RCG+08, SXX+06, TC98, WH05, WGD07, YWW10, YGH+10, YYL09].

Scheduling [GDG+08]. Schedule

[NH+S+16, SRK23, JP08]. Schedules

[GD21, DSRV02, LC96]. Scheduling

[ABC+17, BB17, BDBB19, CAC05, CI5X15, DHX+23, DHH+23, ENP20, JOH17, KPB19, LH97, MAS+20, OKJH22, PMS15, SSC17, SLC+22, SAL19, SZB17, WCB15, WDZ16, WWCT18, WJG+19, XPX+21, CLM+10, CJLZ11, DS05, DHH+00, GBC07, HN07, JR97, KW02, Kuc03, LLHT03, MKB05, MJM11, MHQ07, MR05, MGW97, NR01, PGGD23, RCG+08, SXX+06, TC98, WH05, WGD07, YWW10, YGH+10, YYL09].

Scheduling [GDG+08]. Schedule

[NH+S+16, SRK23, JP08]. Schedules

[GD21, DSRV02, LC96]. Scheduling

[ABC+17, BB17, BDBB19, CAC05, CI5X15, DHX+23, DHH+23, ENP20, JOH17, KPB19, LH97, MAS+20, OKJH22, PMS15, SSC17, SLC+22, SAL19, SZB17, WCB15, WDZ16, WWCT18, WJG+19, XPX+21, CLM+10, CJLZ11, DS05, DHH+00, GBC07, HN07, JR97, KW02, Kuc03, LLHT03, MKB05, MJM11, MHQ07, MR05, MGW97, NR01, PGGD23, RCG+08, SXX+06, TC98, WH05, WGD07, YWW10, YGH+10, YYL09].

Scheduling [GDG+08]. Schedule

[NH+S+16, SRK23, JP08]. Schedules

[GD21, DSRV02, LC96]. Scheduling

[ABC+17, BB17, BDBB19, CAC05, CI5X15, DHX+23, DHH+23, ENP20, JOH17, KPB19, LH97, MAS+20, OKJH22, PMS15, SSC17, SLC+22, SAL19, SZB17, WCB15, WDZ16, WWCT18, WJG+19, XPX+21, CLM+10, CJLZ11, DS05, DHH+00, GBC07, HN07, JR97, KW02, Kuc03, LLHT03, MKB05, MJM11, MHQ07, MR05, MGW97, NR01, PGGD23, RCG+08, SXX+06, TC98, WH05, WGD07, YWW10, YGH+10, YYL09].

Scheduling [GDG+08]. Schedule

[NH+S+16, SRK23, JP08]. Schedules

[GD21, DSRV02, LC96]. Scheduling

[ABC+17, BB17, BDBB19, CAC05, CI5X15, DHX+23, DHH+23, ENP20, JOH17, KPB19, LH97, MAS+20, OKJH22, PMS15, SSC17, SLC+22, SAL19, SZB17, WCB15, WDZ16, WWCT18, WJG+19, XPX+21, CLM+10, CJLZ11, DS05, DHH+00, GBC07, HN07, JR97, KW02, Kuc03, LLHT03, MKB05, MJM11, MHQ07, MR05, MGW97, NR01, PGGD23, RCG+08, SXX+06, TC98, WH05, WGD07, YWW10, YGH+10, YYL09].
[CRT19]. Self-Similarity [PIK20].

Self-Test
[EO19, SBB+18, WCB15, WZH+23, IYF+21].

Self-Testable [LW21], self-testing
[SEN05], self-tuning [SZV+12]. Semantic
[Pie16]. Semantics [KC98]. Sense
[ADB+19, DMR23, RM23b]. Sensing
[DMR23, LSCK20, LTH99, WJY+07].

Sensitive [CHA+23, YBS+18]. Sensitivity
[LM21, LON08, PMB10, ST99]. Sensor
[CCMC20, NSS+16, PDS12, ZHC+18, DHZ+11, JSG09, LCK+09, RFBl0, ZSZ10].
sensor-driven [ZSZ10]. Sensors
[FG18, RG19, YHL+11]. Separate [DK22].

Separation [EK16]. sequence
[GF06, LC07, MMP00]. Sequences
[PKJK20, Pom15b, Pom15c, Pom17b, Pomi8a, KT01, LWC07, PL03, PR11].

Sequential [LVS16, LD17, LWG+23, SPA+03, WKC12, BLR06, BOC00, Che96, CPR+02, Edw03, HVF+01, HRP00, HCC01, JB98, KT96, KOS09, MMR00, PL98, SNH02, Vah02, WYG10]. sequentially [LIA00].

SER [LD17]. Serial [PMP17]. Serialized
[KH10]. Series [TW96]. Series-parallel
[TW96]. server [dW97], servers [ANR13].

Service [DKZ+15, AHAKP08, CBR+05].

Service-Level [DKZ+15]. Set
[HKL+15, LPD+17, LHF12, LFD12, MCD12, OT15, Pom19b, Pom22, DPNB02, Hua01, LP03, LCO7, LLYW10]. Sets
[Pomi16b, YRH11, PR07, TCP97]. Settings
[ZHC+23]. setup [K023]. SEU [JL+12].

SG [KPB19, ZZL+23]. SHAIP [HRK18].

Shannon [GBR07]. shaped [Meh98].

shapes [LM96]. Shaping [KLK+17]. Share
[RG19]. Share-n-Learn [RG19]. Shared
[KLJ14, SHBD21, ZAZ13]. Sharing
[CS22, LF12, RG19, TCI14, WGS16, BDB98, DK08, SHLL98]. Sherlock
[GACK22]. shield [LXCH04]. shielding
[Mut09]. Shift
[HWGDQ22, Pom21b, PTC+15, WC10, WWW+12, LWK11, WPHL08]. shifter
[Kag05]. Shifts [LS19]. short [SSP04].

short-path [SSP04]. Shuffling
[HHK+17, KJR+07]. shutdown [HW00].

SID [LHK+15]. SID-Based [LHK+15].

Side [BSP+22, CYZL23, DZ5+18, LQD22, LM21, NPH+20, ZBF18]. Side-Channel
[DZ5+18, LQD22, ZBF18, CYZL23, LM21, NPH+20]. Side-Channels [BSP+22]. sided
[Yan19]. Sigma [ZYV+18]. Signal
[HRC21, LS22, MFHP12, STGR15, WGT+17, ZSY18, CPW04, GMS+23, KZKAKP23, LLLC13, SR12, TYO08, ZC09].
signal-integrity [XZC09]. Signals
[Yan16, MKW08]. Significance
[LJJ+22, MHA19]. Signoff [LNPL23].

Silicon [ANS+20, HAB+17, PTS+20].

SIMD [EKEK22, YCL+23]. Similarity
[PIK20, TYSF20, YRH11]. Simplifying
[HA05]. Simulated [ZYS12, SMY07].
simulating [RHA08]. Simulation
[BLUS19, CDB11, EKS+14, EO19, GDPBR11, HBP14, HIW15, HBP11, IHHM15, LS22, MDM+12, PRCK08, ST99, SKM+16, WFSS20, WWFT12, XJF+23, ZWD11, CVMP19, DCK10, DL11, HVF+01, HKB+07, KMC97, LOC12, PTC05, PHM00, RSR01, WTL+13]. Simulation-Based
[EO19, PRCK08, LOC12]. Simulations
[LJ15]. Simulator
[LAY23, LHK+15, FWCL05, EBR+09].
simulators [RPK05]. Simultaneous
[CC06, CYV+14, CFX09, JK10, LXCH04, SM00, CCX06, COW08, CW01, MRC06, YHH09]. simultaneously [HLCH07, SSP04].

Single [BD14, HCW+16, KRL15, LSZ+21, LQD22, RM23b, SKS+18, SSL17, VE016, Yan19, Yan20, PTC05, VJBC07, YW09].

Single- [SKS+18]. Single-Chip
[BD14, PTC05]. single-detour [YW09].

Single-Electron [HCW+16]. Single-Event
[KRL15]. Single-Inverter-Based [VE016].

Single-Layer
[Yan20, Yan19]. Single-Rail
[LQD22]. Single-Tier [SSL17]. Situ
[HSP+22, SL18]. Size [KCK16, YVC14].
Sizing [CHK+23, DZ18, KK16, LLM+23, LZ21, LGGJ14, SV16, SCK+23, ZLL+16, CW01, HR06, LG12, MLG12, RGM09, SC00].

Skew [CHH09, TCW20, CKKT98, HN07, HTCP13, LLIHT12, LT11, wATK02].

Skew-aware [CHH09].

Skewed [Pom19a, CSKR05, Pom14b].

Skewed-Load [Pom19a, Pom14b].

Slack [ASAP17, NRZ+18, CGN96, KSA+10].

Slack-Based [ASAP17, KSA+10].

Slacks [PSNC18].

SLAM [BYT22].

Sleeping [TEK18].

Slew [WCCC14].

Slicible [DSK01].

SLO [HC18].

slow [NS03].

small-delay [XLCL13].

Small-Signal [WGT+17].

Smart [AL19, FHL+18, HXC+18, HK18, JDD20, SKM+16, YMB15, ZHC+18, JS13, AL19].

Smart-Gateway [HXc+18].

Smart-Grid [HXC+18].

Smart-Hop [AL19].

SmartCap [LYHL14].

SmartDR [GdRJM21].

Smatrer [HFM20].

Smartphone [LYLW17].

SMs [SBR+17].

SMT [AA17].

SMT-Based [AA17].

Snoop [PCT+17, ZYPD08].

Snooping [GD22].

SoC [HZS+19, GM03, GDF09, XZC09, BHW+13, DCK10, Kan06, LLH+17, LCL08, LXGM23, MOZ06, SBC08, TCL14, WLC09].

SOC-based [GDF09].

SoCDAL [AHL+08].

SOCs [MSD06, BM11, JHMG018, JPH16, ZM07].

Soft [CWL+22, DFM15, EKEK22, HWL+23a, LD17, LW21, PHKW12, SWT23, TCLF16, QS09, RJB09, ANS+20].

Soft-Error [HWL+23a, LW21, TCLF16].

Soft-Error-Rate [LD17].

Soft-HaT [ANS+20].

Software [ANS+20, BM11, CBR+22, JHMG018, JHJ21, KMR18, LLP+16, LHF12, SYGC22, THT12, YYL+15, ZHC+23, AMO05, BASB01, CMM00, CACS05, CM13, FHKG12, GGB97, HKL+07, JW08, KSK+05, KTKO13, LMW99, LP07, IVL03, MSD06, ML09, NG06, SS11, WYG07, WJY+07, YWG09, YGH+10].

Software-Based [ANS+20].

Software-Defined [JHMG018].

Software/Hardware [CBR+22].

Solid [CCS15, CD09, CCYC14].

Solid-State [CCS15, CCYC14].

solid-state-disk [CD09].

Solution [GSFT16, JNS+17, YFT17, YFT18, FNMS01, SR12].

Solutions [WFT+19, CW01, NR01].

Solve [MS21].

Sources [CF02, QSK12].

Solving [CYV+14, HZJC23, WGD07].

Some [KAKSP16].

SOPs [BCC08].

Sorting [ZMP16, Yan00].

Space [AKAKP18, FLG+23, FMR23, FCG+23, GACK22, GCZ+15, HMMG+20, PGGD23, RS18, Sch17, SHBD21, WS22, APB+08, ARJLH06, BW00, EK97, JP08, KSS+09, RFG20, SW12, VCLD03].

Space-aware [PGGD23].

space-efficient [ARJLH06].

spaces [BC11].

spare [MKW09].

specialization [ADM+13].

specialized [BC08].

specific [HKL+15, HMMG+20, HCZ+16, LPD+17, LHF12, LF12, RCK+15, TCL14, VAI7a, ACT13, CSC08, SCV06, WKR09].

Specification [HZS+19, HV98, MD08, VS12a, BD00, BGM04, HV07].

Specification-driven [MD08].

Specifications [DSHD23, LXGM23, Pei16, CMM00, DDNAV04, MB04, VKKR02].

Spectral [KO018, ZF23, TN99].
spectral-based [TN99]. Speculative [NRDB19]. Speed
[CK16, DMR23, Kha23, PTC+15, RM23a, TPC+17, NS03, OW06, PSD21, SXZV13].
Speeding [CLM+10]. Speeding-up [CLM+10]. Speedup [Che18, KAKSP16].
Speedups [DGTG07]. SPICE
[LS22, XJF+23]. Spill [LHF12]. Spin
[RPR+21]. Spin-Transfer-Torque
[RPR+21]. Spintronics [MS21].
Spintronics-based [MS21]. Split
[SJ23, YCL+20]. Splitting [CZZYW21].
SPMCLOUD [BD14]. Spread [MJB19].
SQLite [LLP+16]. SRAM
[CCC+09a, DMR23, HHL14, JLF+12, NdLR03, PS23, RM23a, RM23b, ZYW+18].
SRAM-based [JLF+12]. Sram/T1mW
[CCC+09a]. Srams [RM09]. SSA
[MHA19]. SSA-AC [MHA19]. SSAAGA
[SBR+17]. SSD [WHXZ13]. SSDs
[GS+18, HC18, LHS+21, SLC+22]. Sser
[PHKW12]. Stability [HHL14]. Stack
[WZDG16]. Stacked
[SXY12, THM15, LHZ+06]. Stacking
[HKJ+23]. Stage [LZ17, Shi20, KSA+10].
Stage-form [Shi20]. Stages [KO23, SYL09].
staircases [MSKBD07]. Stairway
[MHD+04]. Standard [ACF+11, DBK+18, KRL15, TRM+16, PR09, SSS10, TS96].
Standard-Cell [DBK+18, SSS10].
standard-scan [PR09]. Start [ZLY+15].
State [AVG19, BHBS22, CCS15, CK16, Pomi15a, BDC08, CD09, CYYC14, CK96, CHHL96, HRP00, Pomi14a, SNH02].
State-Based [AVG19]. States
[Pom16c, LIA00]. Static
[BDB12, ETA18, LV14, MHA19, Pomi15b, XPX+21, ZFLS11, DH06, EMO03].
Statically [KKLG15]. Statistical
[BBEM15, CV17, JGM14, KPR06, LM21, PHKW12, RPR+21, SV16, STWX12, XT16, ZKS+16]. statistics [SNH02, SXZV13].
steering [HKV+07]. Steiner
[CKKT98, GC96, HGLC16, LLLL18, LYKWO9, SMYH07, Yan08]. Steiner-point
[Yan08]. Stencil [YY+16]. Step
[HGLC16, Vah02]. stimuli [MFS09].
Stimulus
[CYV+14, LV14, BLR06, PKP+03].
stimulus-free [BLR06]. stitching [Meh98].
Stochastic
[BB22, GLY+12, MMP00, GBC07, NM13].
Stopper [PCT+17]. Storage
[BD14, CCH+15a, CGLH23, HWQ22, Kha12, KCA04, WQIC+16, ZLW+15, ZMS+19, BD08, Meh98, Wu09]. storages
[HCK13]. Straightforward [LH09].
Strategies [HJY23, JM14, XLS15].
Strategy [KKHK16, ADDM+13, ZHJ+23].
stream [LWK11, NM13]. Streaming
[LWX+23, RS18, TY19, ZLL+16, ZMP16, FFHG12, KSS+09, WLI+11].
Streamlining [LWX+23]. Stress
[HZJC23, LS19, WX+19]. Stress-based
[HZJC23]. Stress-Induced [LS19]. striping
[CCYC14]. Strong [AYS20]. Structural
[CML09, CH00, AYM05, CL99a, HA05, VLH98]. Structure
[AG22, KKH16, FWCL05]. Structured
[HLX+23, THL+13]. Structures [TB20, BK00, DDFR13, GM13, Hua01, Meh98].
STT [JZYZ15, LSL+13, SABSA15, SMBT19, WSS+18]. STT-MRAM
[SMBT19]. STT-ram [SABB15]. Stuck
[TPC+17, HVF+01, PR09]. Stuck-At
[TPC+17, HVF+01, PR09]. Study
[LLP+16, LYM+20, MAL23, LC13, MLG12]. Style [CFD+16]. Styles [LCYN18]. Sub
[BFL10, PS23]. Sub-45nm [BFL10].
Sub-threshold [PS23, SHN12]. Subgraph
[LNP12, YYY07]. subnetworks [TDF+09].
Substrate
[WPL23, Yan20, LCJ+10, SKCM06]. substrates [SKCM06]. subsystems
[JSG09]. Subthreshold [BFL10].
Subtraction [BS+18]. Successful
[HWCL13]. Successful Approximation-Register
Suited [GYZ'22]. sum [DK08].

sum-of-product [DK08]. SUPERB
[EBR'09]. Supervised [RNA'21]. Supply
[BSP'19, BM11, JLK15, SLP'19, WCCC14, XRS'19, YFT17, YSF'18, YFT18, YBS'18, JR97, LLHT12, WLCJ09]. Support
[MCZ'16, WKL'18, ZP08]. Supporting
[LYL'19, ZLL'16]. Supports
[MLH'17]. Suppressed
[BC16]. Surrogate
[WFS20, ZBG'23]. Surrogate-Based
[WFS20]. Survey [BFG17a, BRCs18, GLD'22, HHH'21, KAC'23, LM19, Mit16, MRL'19, PTPB22, RJ14, SSS'23, BD97, CEB06, KG99, KP13, SW04]. survivability
[ACT13]. suspect [DNA'12]. Suspension
[NSH'16]. Sustainable [CXH'16]. SW
[ADP'07, BFV15, FLPP09, WWFT12].

Swarm [HLG'15]. Switch [MMM'22, CW06, CZW'03, FLW02, FLW07, KS23, RFY98, THL'13, ZHTC09].

switchboxes [DSKB04]. switched
[CSC08, HWCL13]. switched-capacitor
[HWCL13]. Switching
[AVG19, BP23, GSS14, RM23b, SRC15, BLR06, HCN09, PR11, SXX'06].

switching-activity [SXX'06]. SwitchX
[BP23]. Symbolic
[BDM'99, BFG17b, DYP23, MCD12, SDH17, BLM00, FWCL05, KVMH08, YWGI09].

Symbolic-Event-Propagation-Based
[MCD12]. symmetric [IAI'09].

Symmetrical [OCK19, CZW00].

symmetries [CMB07]. Synchronous [HSP'22].

Synchronizing [MDM'12]. Synchronous
[CH17, HPB11, PMS15, TB20, WWW'12, YKCG14, ZABGZ17, BDM'99, BASB01, CACS05, CPR'02, HKB'07, MB04].

SynergyFlow [LYL'19]. Synthesis
[AG22, AA17, BR12, BD00, BSP'23, CSKR05, CET16, CSX'23, CS22, CLMZ10, CCL03, EO19, EWT23, FCZ'23, GBR07, HS18, HRC21, HMVG13, HCZ'16, ISK21, JJJH21, KK14, KKX12, KKS16, LS17, MKW21, NG06, OCK19, PDS12, PG15, PFHAH22, QSW'15, RCW22, RJ14, Sch17, SGC'14, SS14, SGGR14, SLV'22, SV11, SCCH08, UE22, WCCC14, WS22, YMIB15, AD'S09, BD1M'99, BZ08, CLLK06, CM00, CRMM10, CL99b, CD96, DNAV04, FFHHG12, GG99, GOC02, GH00, GGDN04, GWR13, HLKN07, HLC98, Hs01, HLHT08, Hua01, JLF'12, KSS'09, KKH'02, KK11, KW02, KHP05, KFC'08, LCD'07, LC14, Lin97, LLHT12, LW06, MPP00, MD07, MKB05, MJ11, MRC06, PBSV'06, RFY98, RS03, SW12, SCB01, SV07, TN99, TC98, VLH98, VTK02, VKK02, VW02, WG11, WKR09, XG09, XPSE12, YW01].

Synthesis-time [BSP'23]. Synthesized
[RB21, SBR'17]. Synthesizing
[GSS14, GNQ'22]. synthetic [PSK08].

System
[BD00, CH17, DMR10, GM08, GPH'09, HKL'15, HZS'19, LL15, LG'18, NA'20, NRZ'18, PDS12, PPDK09, Pie16, PBSV'06, RFC20, SL18, SGGR14, TK18, WL12, YYG'16, ZHM07, APB'08, BPRR98, BMJ13, Cha01, CKAP07, CSC08, CGLH23, DC07, GG99, GABP00, HGBH09, HMVG13, HW00, LTH99, LCC11, MOZ06, MPSJ07, OCHR07, Ped06, SP'08, Sen11, Vah99, ZLL13, dW97, AHL'08, LVL03, WLL'11].

System-Level
[HLK'15, LL15, LG'18, PDS12, Pie16, BD00, GM08, PPDK09, RFC20, ZHM07, MOZ06, OCHR07, Ped06, Sen11, Vah99, ZLL13]. system-on-a-chip
[Cha01, CKAP07]. System-on-Chip
[HZS'19, SGGR14, APB'08, BMJ13, CSC08, WLL'11, AHL'08].

System-scenario-based [GPH'09].

Systematic
[AMM'06, SL'19, KPR06, RPKC05].

SystemC
[BK10, CVMP19, GD20, HV07, WWFT12, ZMS'19, RHA08].

SystemC-AMS
[CVMP19, ZMS'19].

SystemC-based [GD20].

SystemCoDesigner [KSS'09].

Systemization [ZHC'23]. SystemJ
Systems [MSR09, SPT+17]. Systems
[ALLE20, ADGSM22, BHK17, BLNK14, BJX15, BSP+22, BB17, BS14c, CLL+22, CHA+23, CH10a, CCH+15a, CHBK15, CXL22, CYH19, DFM15, DHX+23, DHW+23, EAP17, GT21, HXZ+23, HK18, IGN18, JJH21, KLSZ09, Kha23, KC10, KMR18, LL15, LWX+23, LHK+15, LZZSV15, LWG+23, LMA+16, LL19, LZA+21, MRL+19, NSH+16, NDA+23, ORGD+15, PPP+15, PSNC18, PG15, PBZM19, PY20, QBTM16, RFG20, RG19, RNA+21, SSC17, SPT+17, SRKS23, SYB+20, STWX12, SS14, SBHB21, SAL19, TB20, TH12, TL19, UPV23, WLZ+19, WHRC12, WQC+16, WDD+23, WDXL21, XPZ+18, XGC+20, YBM+21, YRH11, ZLW+15, ZMS+19, ADM+13, AM10, ADDM+13, ARLJH06, BDO0, BWB14, CSAHR07, CMM00, CSL+07, Con06, CLQ12, CCL04, DCK07, DRG98, DNAV04, DTC+09, GDTG07, GPH+09, GDF09, HKL+07, HV07, HDL+12, HCLC08, Hsi00, HBC+08, JS13, JWL+03, JW08, KKMB20, KC13].

Systems-on-Chip [BHKK17, HDL+12, KP13]. Systems-on-Chips [LWX+23].

System Verilog [CYV+14].

T [YYC09]. T-trees [YYC09]. TAAL [JZG21]. table [KSD+22, WSEA99].

TDM-based [VGG19]. Technique [CV17, JK10, JPM+19, LGGJ14, SBB+18, DHV+00, HLCH07, IBMD07, KI01, LC96, MB04, Mut09, RSR01]. Techniques [GD20, GdRJ21, MDM07, Mit16, PTC+15, SJ23, TWL16, WSV+14, YD16, AM05, BD07, BuM00, BH10, BASB01, CLM+10, CSAHR07, CACS05, CFHM09, DS06, DD02, HP99, HCS01, HCC01, KSK+05, KMS12, KHP05, LSDV10, LB00, LHW07, LHTC05, LVL03, OCRS07, OK08, PCD+01, RJJS09, TY97, TB13, TYH08, VMP+00, XK97, ZHOM08].

Technologies [PFH22, SN10, BC08]. Technology [ATF+23, BFL10, CHY05, DKT+16, DBK+18, GLD+22, HABS15, JZY15, PS23, SABS15, YD16, ZS02, BLM00, CH02, CH00, KL05, LKM04, PLO8, WY06, WSEA99, ZLL13].
technology-dependent [BLM00]. Technology-Driven [DKT+16].

TEI [LHW+17]. TEI-power [LHW+17]. Temperature [JGM14, LHW+17, SRKS23, ZYP09, ADP+07, CLQ12, DH06, WJY+07].

Temperature-aware [SRKS23, ZYP09, ADP+07, CLQ12].
template [HGBH09]. Temporal [Pic16, SSC17, YYYL07, BD05, Das09, YYYL09].

Temporally [PRCK08]. Tensor [HZN+22, SYH+22]. terminals [ISE08].

Test [AYM05, BDBB19, EMO03, EO19, FHL+23, GF06, IE12, LCT03, LYS019, LM21, MCD12, NSCM17, PKJK20, Pom15a, Pom15b, Pom15c, Pom16b, Pom16c, Pom17a, PA17, Pom18a, Pom19b, Pom20, Pom21a, Pom22, RJ14, SBB+18, TBZ13,
Test-Architecture [WWCT18, XZC09].

Testability [LW21, Pom16a, Pom18a, FRS97, LW21, RMPJ08].

Tests [Pom15a, Pom13, Pom14a, Pom14b, DNA+12, PR09, Pom13, Pom14a, Pom14b].

Thermal [CK19, CLT+15, CXH+16, CVMP19, MCH+17, CR12, DCK10, JG14, LCK09, LHW+17, LDD+18, LZA+21, MDR15, OCK19, SBY+20, SKP21, WMT+16, ZHC+18, ZF23, ADDM+13, ANR13, GKH14, LHI13, LHZ+06, LTPT10, QSK12, WTL+13, WJY+07, YHH09, ZAJ+12, ZSZ10].

Thermal-Aware [SBY+20, SYX12, OCK19].

Thermal-oriented [LHI+06].

Thermal-Sensor-Based [ZHC+18].

Thermally [RGM15].

Thermodynamic [VLH04].

Thermodynamic [VLH04].

Thread [CNQ13, SV11, KBA08].

Thread-based [CNQ13].

Threaded [HC17].

Three [KQP+19, LQD22, RGM15, WXH+19, Yan00, Vah02, YYY07, YYY09].

Three-Dimensional [RGM15, KQP+19, WXH+19, YYY07, YYY09].

Three-layer [Yan00].

Three-Phase [LQD22].

three-step [Vah02].

Threshold [CLZ19, LHVW18, LLY+23, SV16, PS23, SHN12].

Throughput [HCRK11, HIW15, KLB14, MS23, SESN15, CJLZ11, EKEK22, GM08, PRKK21, SKS12, SHN12].

throughput-aware [SKS12].

Throughput-Optimized [HCRK11].

Thwart [BTP+20, LSC20].

Tier [SSL17].

TIGFET [LQD22].

TIGFET-Based [LQD22], tightly [LMB+12].

tightly-coupled [LMB+12].

Tightness [APS18].

tile [DJP21].

Tiled [DK16].

Tiled-DNUCA [DK16].

Time [APDC17, BB17, CHA+23, CHBK15, CBC22, CH17, CJKK19, FG18, GYX+22, HXC+18, IGN18, KPF16, KPB19, LM19, LSY+21, LSCK20, LGW+23, NSH+16, PSNC18, PGGD23, PY20, SS17, SBY+20, SLV+22, WLZ+19, WDWZ16, WJG+19, YRH11, ZLW+15, ZZY17, APB+08, ARZJH06, BSP+23, CSH10, DPF02, DRG98, FFHR21, HML11, HAFH07, HMAV13, KS23, KNR06, LCHT02, LTTR+13, MR96, MHQ07, NG06, PEPP06, PW99, SCB01, SWT23, WGD07, WLL+11, ZAZ13].

Time- [PGGD23, ARZJH06].

time-constrained [NG06, SCB01].

time-constraints [CSA07].

Time-Division [PY20, LGW+23].

time-domain [LTR13].

Time-Multiplexed [LM19].

Time-Sensitive [CHA+23].

Time-Triggered [BB17, IGN18, KPB19].

time/resource [WGD07].

Times [PMS15].

Timing [CZW00, CB17, HIW15, HS19, JNCS19, KKK12, LVS16, LJJ18, LW1C18, LYCP17, LNY+16, LL19, MJ1M11, MKW08, TB20,
CSC08, DDNAV04, LHZ+06. Two-layer
[OW06, DDNAV04], Two-level [TJ99].
Two-Part [HLZ+22], Two-sided [Yan19],
two-stacked-die [LHZ+06], Two-Stage
[LZ17].

UCR [YBS+18]. Ultra
[ACF+11, CK16, GBC07, Kha23, MACV14,
SESN15, ZLG+19]. Ultra-fast [GBC07].
Ultra-High [Kha23].
Ultra-High-Definition [ZLG+19].
Ultra-Low [ACF+11, MACV14, SESN15]. UltraScale
[AMM+18]. Unavoided
[CBO+18, GDTF17, KOO18]. Unbridled
[VS12a].
uncertainties [CS07]. Uncertainty
[CXLL22, GC18, STGR15, YB23].
Uncertainty-aware [YB23]. Unclonable
[Ase23, CSC+21, LLQD23, YBS+18].
Uncore [WGSH16]. Understanding
[HHL14]. Undetectable [Pom19b].
Unicast [XS16, XCF18]. Unicast-Based
[XS16, XCF18]. unified [Kag05]. Uniform
[HZS+19, KCKG16, HKJ+23]. Unique
[SOS15]. UNISIM. LS11.
UNISIM-Based [LS11]. Unison [SGJ96].
Unit [BM11, HWCL15, ZXC+23, HWCL13].
Unit-Capacitor [HWCL15]. Units
[LCJ+22]. Universal [CWW96, CJKK19,
JCK+18, FLWW02, FLWC07]. universality
[RHN00]. Unknown [SSO16]. Unknowns
[EKS+14]. Unmanned [HXB+22].
Unnecessary [Pom15c].
unpredictabilities [DS05].
unpredictability [SPG+08]. unscheduled
[MHF96]. Unstructured [VTC20].
Untangling [Yan19, YW09]. Unstoppable
[LIA00]. UPaK [WKR09]. Update [KC10].
Upper [IIeks23, JLJ15]. Upper-Bound
[IIeks23]. upset [NdLCR03, RM09].
upsets [MRB+11]. Use
[KBV+15, KFH+08, MS00]. use-cases
[KFH+08]. Useful [TCW20]. Using
[APDC17, APD+11, ASAP17, AVG19,
AGM01, BBEM15, BDB12, BS14b, BM11,
BLUS19, CM19, CAOM19, CVY+14,
CJJK19, DCC+23, DNA+12, EW18a,
EW18b, EW23, EK16, FZL+23, FWCL05,
FHHR21, FYCT15, GFJ16, GBR07,
GNGT21, GD20, GHYR19, HS18, HWF+23,
HWL+23a, JBJ22, JNS+17, JSS+19,
KQP+19, LHS20, LLH+17, LFST21,
LYHL14, LYS019, LSCK20, LLK+14,
LCC+15, LNPL23, LXGM23, LM21, MA16,
NPH+20, PJL14, PSTM20, PG15, PR09,
Pom15a, SMS22, SKS+18, TB20, TYSF20,
THM15, TMDT10, TCL14, WKL+18,
WXH+19, WSS+18, YHL+11, ZHC+18,
ZYS12, ZMS+19, BLR06, BWW14, BK10,
BGN+07, BASB01, CAC05, CBMM10,
CFHM09, CK96, GGBZ02, GKO7, GKO9,
HVF+01, HMB05, HPK09, HCC01, HW14,
KSK+05, KRS06, KPR06, KMS12, KMC97,
LCT03, LSL+13, LON08, MHD+04, MSR09,
MS08, MR05, MP07, MLCO8, MV+18,
NRZ+18, PRCK08, PKP+03, PMB10].
using [PHM00, RJJ+09, RCD07, SGK08,
SABS015, SFM+19, STL+13, SYH+22,
SBH+06, SCJ01, TLCF16, TWL16, TN09,
TD03, TMY08, Vah02, WYY09, WJZ02,
WCC015, XLCL13, XK97, YTHC07, YV07,
ZHOM08, ZHC+23]. UST
[wATK02].
UST/DME [wATK02]. Utilisation
[NAK20]. utility [BCR+08]. Utilization
[HKJ+23, KKKL15, KMR18, MT15, GM03,
SBC08, SY07]. Utilizing
[BLNK14, CK16, EBR+09, LQD22, LQD23].
UTPlaceF. [LLL+18].

V [MLM08, YCL+23]. Validation
[RB21, VS12a, CM13, DRG98, FLPP09,
HJ08, MD08, QM12, RPKC05, WA298].
value [YGZ04]. Valued [WTR12]. Values
[Pom18a]. Variability
[CFF+16, JIR+21, NRZ+18, TY19, LON08].
Variable
[PSNC18, ZLG+19, LHW97, WH05].
Variables
[Piel16, CCQ98, Pom14a, SXZV13].

Variation
[APDC17, AKAKP18, FYCT15, HXZ+23, Lsz+21, RGM09, SCK+23, WCC14, WDL17, WSH+18, GM08, KTKO13, MJM11, PPDK09].

Variation-Aware
[APDC17, FYCT15, SCK+23, WSH+18, Lsz+21, RGM09, MJM11, PPDK09].

Variations
[GC18, TWM+23, XAG+20, ZZCY17, KPR06, LH13, LTPR+13, ST99].

Varying
[RG19, SSO16].

VBR
[JLJ15].

Vdd
[HLHT08].

Vector
[BSP+19, JK10, LCJ+22, PK20, CCW08, EMO03, KBA08].

Vectorizing
[LPD+17].

Vectorless
[ZF23].

Vectors
[BPSP+19, JK10, LCJ+22, PIK20, CCW08, EMO03, KBA08].

Vector-thread
[KBA08].

Vectorized
[BSP+19].

Vectorizing
[LPD+17].

Very
[ZHC+21].

Very-Large-Scale
[ZHC+21].

VFI
[DLC+17].

VFI-Based
[DLC+17].

vGreen
[DMR10].

VHDL
[DDNAV04, GDPRG11, MR96, MWG97].

VHDL-AMS
[DDNAV04].

Via
[SHL+19, WPL23, BZWS17, CR19, CS022, CCO99b, FHL+23, HHL14, HSA+04, IPWW17, IK19, JPYH21, JY+22, KOO18, KRL15, KKL+17, LH0+06, PB12, PTS+20, RAKK12, SAL19, VAAH+98, WB16, WHXZ13, Yan20, YWG09, ZZL+23].

Vias
[YHH09].

Victim
[NAK20, SSS+19].

Video
[MDR15, SJL23, ZLG+19, CCC+09a, ZHOM08].

Videos
[LWX+23].

viewpoint
[LKTD98].

Violations
[KO23, Das09].

Virtual
[BHDS09, DMR10, JLJ15, MSR09, SSL17, Fuji05, KM09, LK13, ZP08].

virtualization
[ISE08].

Virtuoso
[LWX+23].

visibility
[HW14].

visual
[FS13].

VLAN
[SRTC19].

VLIW
[AMR00, GBK07, KJR+07, LJV02, LLHT03, LYCP13, SXX+06].

VLSI
[CK+23, DPNB02, DK22, DD02, GM08, GBC07, KSA+10, LH97, LLHT12, MHQ07, ML09, Rak09, SHN12, WGW08, WLCJ09].

VLSI-CAD
[BSP+19].

Volatile
[AKM+22, HSP+22, WDL17, LSL+13].

Voltage
[CS22, DHVW18, DMR23, RAG05, GNT21, JPL16, JLK15, KLE18, LCY12, MAC14, RM23a, SV16, SCK+23, WCC14, WGW+16, ZL13, GM08, GBC07, KSA+10, LH97, LLHT12, MHQ07, ML09, Rak09, SHN12, WGW08, WLCJ09].

Voltage-Based
[GNT21].

Voltage-Frequency
[JPL16, GM08].

voltage/frequency
[ML09].

voltage
[JR97, MR05].

Volumes
[PAV17].

VS
[SJL23].

VSSD
[CCS15].

Vulnerabilities
[GQW19, MAS16, PTB22].

Vulnerability
[NPH+20].

W
[DHZ+11].

Wafer
[THM15, BC05, WLT08, ZM13].

wafer-probe
[BC05].

Wafer-to-Wafer
[THM15].

Wake
[WSRH16].

Warp
[LS14b].

Warping
[SV11].

Washing
[MGR+15].

Waste
[KR23, PW23].

waveform
[MCMW08].

Wavelet
[AHA08, GFC+09].

Wavelet-based
[AHA08].

WaveSync
[YKCG14].

WCET
[APS18].

WCRT
[CYNH19].

Wear
[CCH+15, CHC+16, Kha12, CD09].

Wear-Leveling
[CCH+15a, CD09].
Wearable [FG18, RG19, RNA+21].

Wearables [GFJ16]. WEB [MS08].

Weights [HWDQ22, VFML23]. Well [GMS+23]. Well-tap [GMS+23], while [QS09]. Wide [WTR12]. width [LYCP13, SBH+06]. Wind [WSRH16].

Wire [CZW19, CLC20, LLM+23, WPL23, Yan20, CW01, HR06, MKW09, WC06].

Wire-bonding [WPL23]. wirelength [LLLC13, SYZ08]. Wireless [CB0+18, GADG19, NSS+16, PDS12, DHZ+11, JSG09, RFB10]. wire sizing [CH06]. with [PS23]. within [CCK18, SAHF+20]. Without [MS17, FHHR21, KKLG15, PTPB22, PR07].

Wolf [ZHJ+23]. Word [CCC09b, Con06, WDLD17, RMB10]. Word-length [CCC09b, Con06]. work [KYN+12].

Workload [CSAHR07, GC18, LG23, PKJK20, TBCH17, CR12, WHXZ13].

Workload-ahead-driven [CSAHR07].

workstations [KMC97]. world [RBA+12].

worm [FNP09]. wormhole [TDE08].

Worst [APDC17, CH17, DCC+23, ZLW+15]. Worst-Case [APDC17, CH17, DCC+23].

wrapper [LV02]. Write [CCK+18, CIX15, KYL16, LLP+16, WDLD17]. Write-back [CCK+18]. Write-Conscious [LLP+16].

Write-Induced [CIX15]. Writeback [PBZM19]. Writeback-Aware [PBZM19].

Writebacks [BFG+19]. Writes [CIX15].

X [HLG+15]. X-Architecture [HLG+15].

Xbars [BP23]. XFM [SMSB05]. XNOR [ZHJ+23]. XNOR/OR [ZHJ+23].

XNOR/OR-based [ZHJ+23].

Yield [GLY+12, JGM14, KAKSP16, KMO+12, SV16, SYH+22, THM15, WSH+18, ZYW+18, HWCL13, KPSW09, LCKT12, MHT14].

References

Azab:2017:SSB

Asadinia:2015:PLP

Agrawal:2017:OSA

Prabhav Agrawal, Mike Broxterman, Biswadeep Chatterjee, Patrick Cuevas, Kathy H. Hayashi, Andrew B. Kahng, Pranay K. Myana, and Siddhartha Nath. Optimal scheduling and allocation for IC design management and

Absar:2006:RAI

Abouzeid:2011:COS

Aksoy:2012:OAM

Agarwal:2013:SDS

Afacan:2019:CR

Al-Dujaily:2013:DPB

Alaghi:2022:ISI

Abouelella:2013:HEI

Atienza:2007:HSE

Avnit:2009:PCC

Aksoy:2014:MDF

Abel:2022:FSS

REFERENCES

Angizi:2022:MRN

Asgarieh:2019:SHA

Alizadeh:2012:FVD

Albalawi:2017:TFP

Agnesina:2020:IFB

Araujo:1998:CGF

Adya:2005:CTM

Ahmed:2010:CBP

Atienza:2006:SDM

Abuowaimer:2018:GRD

Arato:2005:AAH

Aditya:2000:CSM

[AM05] [AMR00] [AMM+06] [AMR00] [AM05] [AM10] [AMM+18] [AM05] [AMR00] [AM05] [AM10] [AMM+06] [AMR00] [AM05] [AM10] [AMM+18] [AM05] [AM10] [AMM+06] [AMR00] [AM05] [AM10] [AMM+18] [AM05] [AM10] [AMM+06] [AMR00]
Anon:2013:CNE

Araujo:2002:GAR

Ayoub:2013:CCM

AlKhatib:2008:MSC

Alm:2020:SSB

Ain:2011:CPV

REFERENCES

Abella:2017:MBW

Ali:2017:RCD

Arcaro:2018:RTG

Aseeri:2023:PTA

Ayala-Rincon:2006:PTS

Aseeri:2023:CFR
REFERENCES

Amir:2019:SPC

Al-Yamani:2005:TCE

Alasad:2020:SLO

Boyer:2001:ODS

Behera:2017:TTS

Bogliolo:2000:RBR
References

Bernasconi:2015:TAR

Bernasconi:2016:IRZ

Bernasconi:2008:OKS

REFERENCES

Baldassin:2008:OSB

Benini:1997:SBM

Benini:2000:SLPb

Banerjee:2005:OFT

Baradaran:2008:CAM

Benini:2000:SLPb

REFERENCES

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

Benini:2000:SLP

Bouakaz:2017:SPD

Bouakaz:2017:SAD

Bakhshalipour:2019:RWT

Bol:2010:NME

David Bol, Denis Flandre, and Jean-Didier Legat. Nanometer MOSFET effects on the minimum-energy point of sub-45 nm subthreshold logic—mitigation at technology and circuit levels. ACM Transactions on Design Automation of Electronic Systems, 16(1):2:1–2:??, November 2010. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Bombieri:2008:ROT

REFERENCES

Brunner:2022:THR

Bertels:2009:EMM

Burcea:2019:MIR

Bruneel:2011:DDF

Backasch:2013:RVM

Bahar:2015:ISI

Balakrishnan:2000:AFS

Blanc:2010:RAS

Baranowski:2015:RSN

Bahar:2000:POT

Baek:2014:DHD

[BLNK14] Seungcheol Baek, Hyung Gyu Lee, Chrysostomos Nicopoulos, and Jongman Kim. Designing hybrid DRAM/PCM main memory systems utilizing...

Bhanja:2006:SFG

Bonna:2019:MSD

Bondade:2011:HSC

Bonnai:2006:SF

Bonna:2019:MSD

Bondade:2011:HSC

Bonnai:2006:SF

Bonna:2019:MSD

Bondade:2011:HSC

Bonnai:2006:SF

Bonna:2019:MSD

Bondade:2011:HSC
REFERENCES

REFERENCES

References

REFERENCES

1084-4309 (print), 1557-7309 (electronic).

Chabini:2005:SOR

Charles:2019:ECR

Chhabria:2023:EDN

Chopra:2018:OAC

Chen:2017:AMM

Chen:2022:EEL

REFERENCES

Chien:2009:SMV

Chang:2015:MBW

Chang:2015:CDC

Chen:2018:EFM

Constantinides:2003:SSA

REFERENCES

REFERENCES

Chandra:2022:ISS

Chang:2014:BBL

Cong:1996:CLS

Chatterjee:2011:GLS

Cheatham:2006:SFT

Chen:2016:RAR
[CET16] Liang Chen, Mojtaba Ebrahimi, and Mehdi B. Tahoori. Reliability-aware resource allocation and

Chen:2016:DCV

Gong Chen, Toru Fujimura, Qing Dong, Shigetoshi Nakatake, and Bo Yang. DC characteristics and variability on 90nm CMOS transistor array-style analog layout. ACM Transactions on Design Automation of Electronic Systems, 21(3):45:1–45:??, July 2016. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Chen:2009:LRD

Cong:2009:SRB

Chen:2023:AMC

Chang:1996:OCP

Chen:2013:DRG

Choi:2017:WCR

Chakrabarty:2001:OTA

Cardona:2023:AMC

Chen:2015:APB

Chang:2016:IPE

Yu-Ming Chang, Pi-Cheng Hsiu, Yuan-Hao Chang, Chih-Hao Chen, Tei-Wei Kuo, and Cheng-Yuan Michael Wang. Improving PCM endurance with a constant-cost wear lev-

Chen:2018:ESA

Chen:2009:SAP

Chow:1996:LPR

Cheng:2023:DDG

Chen:2001:ALP

Cheng:2015:ABW

Cheng:1996:AGF

Czerwinski:2016:SAO

Chakraborty:2019:ERL

Chakrapani:2007:PSC

Cheng:1999:CGN

Choi:1999:FD

Kyumyung Choi and Steven P. Levitan. A flexible datapath allocation method for ar-

Chang:2013:IPP

Chi:2020:WLO

Cao:2006:POS

Cabodi:2010:SHA

[CLM+10] Gianpiero Cabodi, Luciano Lavagno, Marco Murciano, Alex Kondratyev, and Yosinori Watanabe. Speeding-up heuristic allocation, schedul-

Cong:2010:BLO

Coskun:2012:ISS

Chen:2015:MBF

Chu:2023:ADC

Cho:2009:BHR

Chao:2008:LPG

REFERENCES

Costa:2013:CDO

Cakir:2018:RED

Cakir:2019:RCH

Charles:2020:RNC

Chang:2007:PRE

Chen:1998:SDI

REFERENCES

todaes/1998-3-2/p249-chen/.

[CPK20] Huili Chen, Seetal Potluri, and Farinaz Koushanfar. Security of microfluidic biochip:

Corno:2002:IAS

Chakraborty:2016:PDM

Cho:2004:FMB

Chang:2014:EBT

Cochran:2012:TPA

Chen:2015:DMD

REFERENCES

Cao:2005:SSL

Chen:2007:NMA

Cicek:2022:EEB

Cong:2005:LSC

Chang:2013:PDS

Chithira:2017:HTS

Chen:2019:SA

REFERENCES

Chu:2001:CFS

Cui:2022:ILD

Chang:1996:USM

Chen:2016:TTS

Chen:2013:NMC

Chen:2022:UTB

[CXLL22] Si Chen, Guoqi Xie, Renfa Li, and Keqin Li. Uncertainty theory based partitioning for cyber-physical systems with uncertain reliability analysis. *ACM Transactions on De-

[Yao-Wen Chang, Kai Zhu, and D. F. Wong. Timing-

Chang:2003:AFF

Chen:2019:OTL

Chen:2021:RMB

Dasdan:2004:EAF

Dasdan:2009:PEA

Darav:2018:ELH

Nima Karimpour Darav, Ismail S. Bustany, Andrew Kennings, David Westwick, and

DaRolt:2013:NDS

Doboli:2004:TLL

Delshadtehrani:2015:SMR

Daboul:2023:GIO

REFERENCES

REFERENCES

Dong:2011:PCS

Das:2017:VBP

Dhiman:2010:VSE

Dworak:2012:UIC

Dey:2020:MLA

Dahiya:2023:MDS

REFERENCES

4309 (print), 1557-7309 (electronic).

[Davoodi:2006:ETG]

[DSH12]

[Das:2023:CCV]

[DSH:2001:SRG]

[Das:2004:MDR]

[Darte:2002:CEL]

[Dontharaju:2009:DAP]
Swapna Dontharaju, Shenchih Tung, James T. Cain, Leonid Mats, Marlin H. Mickle, and Alex K. Jones. A design automation and power estimation

Dutt:2005:E

Dutt:2006:E

Dutt:2007:E

Dutt:2008:Ea

Dutt:2008:Eb

Dutt:2008:E

[DV:2002:SBB

Dutt:2002:SBB

[deAbreuMoreira:1997:ADC

[DZS+18]
Ruochen Dai and Tuba Yavuz.

[DZ18]
Xuan Dong and Lihong Zhang.

[DZCD15]
Qing Duan, Jun Zeng, Krishnendu Chakrabarty, and Gary Dispoto.

[Delledonne:2018:CDA]
Lorenzo Delledonne, Vittorio Zaccaria, Ruggero Susella, Guido Bertoni, and Filippo Melzani.

[Ebrahimi-Azandaryani:2023:ACA]

[Enrici:2017:MDE]
Andrea Enrici, Ludovic Aprville, and Renaud Pacalet.
A model-driven engineering methodology to design parallel and distributed embedded systems. ACM Transactions on Design Automation of Electronic Sys-
REFERENCES

[EKEK22] Zahra Ebrahimi, Dennis Klar, Mohammad Asaım Ekhtiyar, and Akash Kumar. Plasticine: a cross-layer approximation methodology for multi-kernel

Elshoukry:2007:CPA

Elmandouh:2018:GFV

Eslami:2018:RTC

Espener:2023:ASF

Elwakil:2012:DRM

Ferretti:2023:GNN

Fallahzadeh:2018:TPC

[FG18] Ramin Fallahzadeh and Hassan Ghasemzadeh. Trading off

Foroozannejad:2012:PBM

Feng:2022:TTO

Fang:2023:ETC

Feng:2021:FRT

Freund:1997:CEA

Fummi:1997:FDT

Forte:2013:RAA

Fujita:2005:ECB

Fang:2000:MFP

Feng:2005:UDP

Firouzi:2015:AVA

Farshad Firouzi, Fangming Ye,

REFERENCES

Goel:2021:MNN

Gorjiara:2007:UFE

Gangwar:2007:IIC

Ghosh:2007:LPT

Ganley:1996:RST

Gomez:2018:SCP
REFERENCES

2018. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Gingade:2016:HPM

Guo:2015:RDS

Goli:2020:PAP

Grose:2009:MPO

Gade:2022:NHC

Ghosh:2021:PDP

REFERENCES

[Guan:2008:SAP]

[Garcia-Dopico:2011:NAV]

[Goncalves:2021:SA]

[Guo:2017:OBP]

[Galanis:2007:SES]

[Goren:2006:TSG]

REFERENCES

Glebov:2002:FNA

Gupta:2004:CPC

Gupta:2000:CIP

Guthaus:2012:HPC

Gupta:2019:DAD

Givargis:2006:ZCI

REFERENCES

2003. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Garg:2008:SLT

Gester:2013:BAD

Gopalakrishnan:2023:GMW

GuerraeSilva:2002:SMA

Gnad:2021:VBC

Ge:2022:SBN

Goodby:2002:MSP

Gheorghita:2009:SSB

Gulati:2009:FBH

Gong:2019:PEH

Gelosh:2000:MLT

Gately:2012:AJO

Gong:2022:AMB

Higgins:2005:SDA

Heyse:2015:TTM

Harris:2005:1

Ian G. Harris. Introduction. *ACM Transactions on Design Automation of Electronic Sys-
REFERENCES

Henkel:2020:ISI

Huffmire:2008:DSS

Hatami:2014:MSN

Hankendi:2017:SCS

Huang:2018:PSC

Huang:2023:RDP

REFERENCES

Hu:2001:ELA

Ho:2016:AAD

Huang:2016:FTS

Handique:2022:FLS

Holt:2012:FLP

He:2020:LHD
Xu He, Yu Deng, Shizhe Zhou, Rui Li, Yao Wang, and Yang Guo. Lithography hotspot detection with FFT-based feature extraction and imbalanced

[Huang:2021:MLE] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, Xuefei Ning, Yuzhe Ma, Haoyu Yang, Bei Yu, Huazhong Yang, and Yu Wang. Machine learning for electronic design automa-
REFERENCES

Han:2017:CAB

Ho:2014:USS

Hsiao:2008:ISS

Holst:2015:HTL

Huang:2023:HA
REFERENCES

Hussain:2018:PPP

Hsu:2007:ESC

Hyun:2023:ROE

Ha:2007:PHS

Heo:2015:IAS

Hu:2007:IHM

Kai Huang, Bowen Li, Dongliang Xiong, Haitian Jiang, Xiaowen Jiang, Xiaolang Yan, Luc Claesen, Dehong Liu, Junjian Chen, and Zhili Liu. Structured dynamic precision for deep neural networks quantization. ACM

Han:2022:EEF

Hasteer:1998:EEC

Healy:2011:IMF

Hu:2020:MLA

Hu:2014:GLI

REFERENCES

Huang:2013:SNC

Huang:2007:CSS

Hougardy:2023:FOD

Hanchate:2006:GTF

Hsu:2011:MSS

Hong:1999:POU

[HMVG13]
[HN07]
[HNS23]
[HR06]
REFERENCES

REFERENCES

REFERENCES

REFERENCES

2000. CODEN ATASFO.
ISSN 1084-4309 (print), 1557-7309 (electronic). URL

Hung:2014:AFD

Huang:2013:OCC

Huang:2015:PDU

HWDQ22

He:2023:GLP

He:2016:RIM
Xu He, Yao Wang, Yang Guo,

He:2023:SEM

Huang:2023:CFD

Huang:2014:ICP

He:2022:DME

Huang:2018:DML

REFERENCES

[HZS+19] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta, and Sharad Malik. Instruction-level abstraction (ILA): a uniform specification for system-on-chip (SoC) verification. *ACM Transactions on Design Automa-
REFERENCES

Inoue:2009:DSD

ISSN 1084-4309 (print), 1557-7309 (electronic).

Ittershagen:2018:IFM

Indrusiak:2015:FSN

Ibrahim:2023:OPR
REFERENCES

Islam:2019:EIT

ISE08

Islam:2021:HLS

IPWW17

Irwin:2000:E

Irwin:2021:FBB
Johnson:1998:MAS

Jamieson:2010:BER

Jagadheesh:2022:NAM

Jan:2005:GMR

Jun:2018:RBD

Jiang:2023:ISS

REFERENCES

Joo:2008:ECP

Jha:2000:HLL

Jiao:2018:OER

Jana:2020:HHC

Jones:2008:RFI

Juan:2014:SPT
Da-Cheng Juan, Siddharth Garg, and Diana Marculescu. Statistical peak temperature prediction and thermal yield improvement for 3D chip mul-

Jagannathan:2002:FAC

Jassi:2018:GGB

Jayasinghe:2021:QQB

Jeong:2021:DMB

Jayakumar:2010:SIV

Jing:2012:SFE

Naifeng Jing, Ju-Yueh Lee, Zhe Feng, Weifeng He, Zhigang Mao, and Lei He. SEU fault evaluation and characteristics for SRAM-based FPGA

Jafari:2015:LUD

Jung:2015:LMS

Jose:2014:IAH

Jung:2019:ILP

Jeong:2017:CSP

Jung:2017:MSM

REFERENCES

2017. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Johnson:2008:IME

Jang:2012:AAA

Jiang:2006:RCD

Jin:2016:CEE

Jun:2019:FTT

Johnson:1997:DSM

REFERENCES

Jeyapaul:2013:EEE

Jalili:2018:ERM

Jin:2009:GND

Jiang:2019:EEQ

Jone:1998:CAD

Jones:2008:ISS
Alex K. Jones and Robert Walker. Introduction to the special section on demonstrable software systems and hardware platforms II. *ACM Trans-
REFERENCES

Jone:2003:DTI

Jiang:2021:PDM

Jiang:2022:ELH

Jain:2021:TTA

Jiang:2015:CLF

Koblah:2023:SPA

Kagaris:2005:UMP

Kamal:2016:YSI

Kandemir:2006:REC

Krashinsky:2008:ISV

Kavousianos:2009:EPS

Kim:2015:UIL

REFERENCES

4309 (print), 1557-7309 (electronic).

Khordoc:1998:SVA

Kim:2010:EEP

Kim:2013:AMP

Kjeldsberg:2004:SRE

Kritikakou:2013:NOS

Kritikakou:2016:ASC

Kumar:2008:MSS

Kern:1999:FVH

Kumar:2009:EML

Kamal:2020:ADF

Kwon:2010:SPC

Khatib:2012:MRP

Khan:2023:HEC

Koushanfar:2005:BST

Kuo:2006:DID

Karri:2001:IRT

Kim:2003:MDO

Kobayashi:2007:MOS

Krishna:2004:AHE

C. V. Krishna, Abhijit Jas, and Nur A. Touba. Achieving high encoding efficiency with

[Kim:2011:CTS]

[Kim:2011:CTS]

[Kwon:2008:RPP]

[Kwon:2008:RPP]

[Kim:2012:SAH]

[Myungsun Kim, Jinkyu Koo, Hyojung Lee, and James R.

Kahng:2015:IMR

Kastner:2002:IGH

Kim:2016:SDM

Kao:2005:EAF

Knechtel:2018:MOF

Kuo:2014:RCS

Kim:2017:SBS

Keutzer:2011:SSM

Kim:2011:MAO

Kim:2015:AIP

Kahng:1997:ARI
Kormicki:1997:PLS

Kurimoto:2012:YRI

Kritikakou:2018:DDS

Karfa:2012:FVC

Kolson:1996:ORA

Kulkarni:2006:CTA

Kashyap:2023:IIM

Karabacak:2018:RDU

Kim:2009:MLP

Kornaros:2013:STC

Kee:2022:LPP

Kukkala:2019:JSF

Kashif:2016:PSR

Kang:2006:STA

Kahng:2009:LAA

Kang:2019:TDF

Kundu:2023:MTF

Kuchcinski:2003:CDS

KVMH08

Kountouris:2002:ESC

Katoen:2016:PMC

Kim:2016:IWP

Kurimoto:2012:VWR

Kazerooni-Zand:2023:MBM

Liu:2001:ODC

Li:2023:EES

Leupers:2000:GBC

Ludwin:2011:EDP

Li:2006:LVA

Langevin:1996:RTC

M. Langevin and E. Cerny. A

Liu:2007:IEM

Lee:2013:SRB

Lee:2014:CPA

Li:2011:GRS

Lu:2015:EEB

Lee:2007:ISS

Jong-Eun Lee, Kiyoung Choi, and Nikil D. Dutt. Instruction

Liu:2012:FHA

Li:2003:TDC

Lu:2008:EDI

Leung:2012:PVI

Liu:2018:RML

Lee:2007:CCA

[LCZ+08] Kyungsoo Lee, Naehyuck Chang, Jianli Zhuo, Chaitali Chakrabarti, Sudheendra Kadri, and Sarma Vrudhula. A fuel-cell-battery hybrid for portable...

Laubeuf:2022:DQR

Luo:2022:FDF

Lin:2012:RSP

Liu:2009:MAA

Letras:2021:MOO

Lee:2012:ECM

REFERENCES

Lee:2018:LBF

Lozano:2023:LBP

Livramento:2014:HTD

Lin:2009:SCD

Liu:2011:GBP

Lee:2013:EMA

Lee:2014:DCC

[CWH14] Chia-Wei Lee and Sun-Yuan Hsieh. Diagnosability of component-composition graphs
REFERENCES

REFERENCES

Last:2020:PMC

Li:2021:MNI

Lin:1997:STV

Lee:2017:TPT

Li:2006:ETO

Long:2000:FFA

Liu:2022:AAF

Lin:1997:RDH

Lee:2018:ICA

Li:2022:NAD

Liu:2023:GF

Lapinskii:2002:CAH

[LJV02] Viktor S. Lapinskii, Mar-
garida F. Jacome, and Gust-
tavo A. De Veciana. Cluster as-
ignment for high-performance
embedded VLIW processors.
ACM Transactions on Design
Automation of Electronic Sys-
CODEN ATASFO. ISSN 1084-
4309 (print), 1557-7309 (elec-
tronic).

Lee:2022:DA

[LKLC22] Jaechul Lee, Cédric Killian, Se-
bastien Le Beux, and Daniel
Chillet. Distance-aware ap-
proximate nanophotonic in-
terconnect. ACM Transac-
tions on Design Automation of
Electronic Systems, 27(2):17:1–
17:30, March 2022. CODEN
ATASFO. ISSN 1084-4309
(print), 1557-7309 (electronic).
URL https://dl.acm.org/
doi/10.1145/3484309.

Lu:2018:FDR

[LKC +18] Guan-Ruei Lu, Chun-Hao Kuo,
Kuen-Cheng Chiang, Ansuman
Banerjee, Bhargab B. Bhatta-
tacharya, Tsung-Yi Ho, and
Hung-Ming Chen. Flexible
droplet routing in active
matrix-based digital microflu-
ridic biochips. ACM Transac-
tions on Design Automation of
Electronic Systems, 23(3):
37:1–37:??, April 2018.
CODEN ATASFO. ISSN 1084-
4309 (print), 1557-7309 (elec-
tronic).

Li:2004:PMA

[LKM04] Hao Li, Srinivas Katkoori, and
Wai-Kei Mak. Power minimiza-
tion algorithms for LUT-based
FPGA technology mapping.
ACM Transactions on De-
sign Automation of Electronic
Systems, 9(1):33–51, January
2004. CODEN ATASFO. ISSN
1084-4309 (print), 1557-7309
(electronic).

Lin:2019:QEO

[LKH19] Chun-Han Lin, Chih-Kai Kang,
and Pi-Cheng Hsin. Quality-
enhanced OLED power savings
on mobile devices. ACM Tran-
sactions on Design Automation
of Electronic Systems, 24(1):
1:1–1:??, January 2019. CO-
DEN ATASFO. ISSN 1084-
4309 (print), 1557-7309 (elec-
tronic).

Liao:1998:NVC

[LKTD98] S. Liao, K. Keutzer, S. Tjiang,
and S. Devadas. A new view-
point on code generation
for directed acyclic graphs.
ACM Transactions on De-
sign Automation of Electronic
Systems, 3(1):51–75, January
1998. CODEN ATASFO. ISSN
1084-4309 (print), 1557-
7309 (electronic). URL
http://www.acm.org/pubs/
articles/journals/todaes/
1998-3-1/p51-liao/p51-liao.1
pdf; http://www.acm.org/
pubs/citations/journals/
todaes/1998-3-1/p51-liao/.
Lee:2015:SLO

Lu:2019:DDA

Lee:2017:UCP

Jinho Lee, Dongwoo Lee, Sunwook Kim, and Kiyoung Choi. Deflection routing in

Lim:2012:LBC

Lim:2014:PMG

Lee:2013:DRN

Lee:2013:AVC

Li:2018:UHP

Liu:2013:ABF

Lin:2018:MRB

Liao:2001:CPT

Li:2023:PDW

Jaehwan John Lee and Vincent John Mooney III. An $o(\min(m, n))$ parallel deadlock

REFERENCES

Livramento:2016:CTA

Lu:2023:EGS

Lee:2003:ACG

REFERENCES

4309 (print), 1557-7309 (electronic).

Latifis:2017:MVC

Lu:2021:RRD

Lee:2022:ION

Lalgudi:2000:OCE

Liu:2020:F

Liu:2022:LOH

Liao:2011:AUB

Lu:2017:LPC

Li:2019:SIP

Li:2022:NSI

Last:2023:TPM

Liang:2020:SAE

[LSCK20] Tung-Che Liang, Mohammed Shayan, Krishnendu Chakrabarty, and Ramesh Karri. Secure assay execution on MEDA

[]{[LT11]} Jianchao Lu and Baris Taskin. Clock buffer polarity assignment with skew tuning. *ACM Transactions on Design Automation of Electronic Sys-

Lee:1999:BBI

Liu:2013:PBA

Li:2010:PAL

Liu:2016:ECM

Lam:2012:EPL

Liu:2022:FIA

[LTZ22] Qiang Liu, Honghui Tang, and Peiran Zhang. Fault injection attack emulation framework for

Li:2007:SBC

Lin:2018:CMD

Lin:2023:SRB

Liu:2006:CML

Liu:2011:SBA

Lee:2023:VEL

[LYHL14] Xueliang Li, Guihai Yan, Yinhe Han, and Xiaowei Li. SmartCap: Using machine learning

[LYSO19] Yanjun Li, Ender Yilmaz, Pete

Lin:2015:SAD

Mehri:2016:GAB

Maric:2014:HCD

Murali:2023:PSR

Marwedel:2000:GE

Mazumdar:2016:CIS

Bodhisatwa Mazumdar, Sk. Subidh Ali, and Ozgur Sinanoglu. A compact implementation of Salsa20 and its power analysis

[Mahfouzi:2020:SAR]

[Murthy:2004:BMP]

[Mandal:2020:EAO]

[Mondal:2012:SEP]

REFERENCES

REFERENCES

2012. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[MHT14]

[Mittal:2016:STC]

[Memik:2005:SAO]

[Majzoobi:2013:LPR]

[Moiseev:2008:TAP]

[Monteiro:2019:OCF]

[MKM13]

[Mittal:2011:TVA]
REFERENCES

2008. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Moiseev:2009:PDO

Mu:2009:AHS

Moscola:2008:RCB

Mok:2012:DSL

Moon:2017:ASP

Mukherjee:2008:HLC
Mahalat:2022:ICA

Marculescu:2000:SSM

Moudallal:2017:GCC

Maleki:2021:EEI

Marculescu:2006:CCR

Mohanty:2007:MBE

[MP07] Sumit Mohanty and Viktor K. Prasanna. A model-based

Manolios:2008:AVS

Murugesan:2017:NRM

Mondal:2021:IFS

Minakova:2023:MTT

Mehta:2009:ICH

Mishra:2006:ADL

Majumder:2007:HPV

Subhashis Majumder, Susmita
REFERENCES

Malik:2009:SCU

Michael:2002:ATD

More:2015:LAN

Mutyam:2009:SST

Muztoba:2018:IAI

Mak:1997:BLM

REFERENCES

[Munc:1997:EIB]

[Mohammadzadeh:2021:EOP]

[Ma:2020:MEF]

[Markov:2023:GEI]

[Nath:2020:RDB]

REFERENCES

REFERENCES

34:1–34:??, July 2013. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

Mehrdad Nourani and Mohammad H. Tehranipour. RL-Huffman encoding for test compression and power reduction in scan applications. *ACM Trans-

REFERENCES

194

acm.org/doi/abs/10.1145/3373638.

Ozturk:2008:APB

Oldja:2022:HSS

Ogras:2008:AOP

Ochoa-Ruiz:2015:MAR

Obenaus:2003:GFP

Oboril:2015:EIS

Ozdal:2006:TLB

Muhammet Mustafa Ozdal and Martin D. F. Wong. Two-layer bus routing for high-speed
REFERENCES

Park:2017:HHC

Pinto:2006:SLD

Poddar:2021:RMT

Pourshirazi:2019:WAL

Palkovic:2009:TOL

Panda:2001:DMO

P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni, A. Vanderappelle, and P. G. Kjeldsberg. Data and memory optimization techniques for embedded systems. ACM Transactions on Design Automation of Electronic Sys-
Peng:2017:LSA

Panda:1997:MDO

Pasha:2012:SLS

Pedram:1996:PMI

Massoud Pedram. Power minimization in IC design: principles and applications. [Ped96]

Pedram:2006:ISI

Pedram:2008:E

Pedram:2011:CPV

Pop:2006:AOD

Pilato:2022:ISS

Peter:2015:CBS

References

Parulkar:2001:IR

Poddar:2016:ECS

Pereira:2023:IED

Peng:2012:SSE

Pees:2000:RCS

Pierre:2016:AVT

Pendyala:2020:IAS

Pan:2014:SPM

Park:2021:PPD

Paik:2020:GRT

Parthasarathy:2003:PTA

Pan:1998:OCP

Pomeranz:2014:DTM

Pomeranz:2014:LPS

Pomeranz:2015:ETC

Pomeranz:2015:FES

Pomeranz:2015:GDU

Pomeranz:2016:DTF

Pomeranz:2016:DTS

Pomeranz:2016:PSS

Pomeranz:2017:CSL

Pomeranz:2017:GTS

Pomeranz:2018:DDP

Pomeranz:2018:PIP

Pomeranz:2019:BFB

Pomeranz:2019:ITU

Pomeranz:2020:TFT

Pomeranz:2021:CTH

Pomeranz:2021:EFU

Pomeranz:2022:IFC

Pasricha:2009:SLP

Papandreou:2015:ERM

Prasad:1996:TRP

S. C. Prasad and K. Roy. Transistor reordering for power minimization under delay constraint. *ACM Transactions
REFERENCES

on Design Automation of Electronic Systems, 1(2):280–300, April 1996. CODEN ATASFO.
ISSN 1084-4309 (print), 1557-7309 (electronic). URL

Pomeranz:1998:FTG

Pomeranz:2007:FDT

Pomeranz:2009:UST

Pomeranz:2011:RSA

Panda:2008:SBV

Park:2021:HTN

Naebeom Park, Sungju Ryu, Jaeha Kung, and Jae-Joon Kim. High-throughput near-memory processing on CNNs.

Praveen:2023:DER

Palchaudhuri:2021:DAT

Pecenka:2008:ESR

Passerone:1998:MRS

Pereira-Santos:2018:RFB

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Padmanaban:2006:IGM

Paul:2005:HLM

Potluri:2015:DAT

Polychronou:2022:CSA

Pan:2020:ARP

Potkonjak:1999:MAD

Qian:2012:FPS

Qin:2015:CSE

Rakhmatov:2009:BVM

Rodrigues:2012:IPP

Raval:2019:III

Roy:2021:FVS

Ray:2012:ISS

Sandip Ray, Jayanta Bhadra, Magdy S. Abadir, Li-C. Wang,

Rosales:2014:MHA

Raabe:2008:RDS

Raimi:2000:EML

Ravi:2014:HLT

Rao:2009:COT

Raghavan:2009:PTG

REFERENCES

[RMPJ08] H. Rahaman, J. Mathew, D. K. Pradhan, and A. M. Jabir. C-
REFERENCES

REFERENCES

Mohammad Hossein Samavatian, Mohammad Arjomand, Ramin Bashizade, and Hamid

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Shenoy:2001:ASL

Su:2008:SNT

Schafner:2017:PHL

Sadat:2018:OAL

Song:2023:MLA

Ling-Yen Song, Chih-Yun Chou, Chien-Nan Liu, and Juinn-Dar Huang. Machine learning assisted circuit sizing approach

Sun:2022:CMO

Schaumont:2006:ICE

Sinha:2009:DIC

Schaumont:2006:ICE

Sen:2011:CO

Srivastav:2015:DUL

REFERENCES

Sinha:2021:DSO

Shi:2017:TA

Shi:2020:ASF

Song:2019:COR

Su:1998:EFL

Srivastav:2012:DEE

Meeta Srivastav, M. B. Henry, and Leyla Nazhandali. Design of energy-efficient, adaptable throughput systems at near/sub-threshold voltage. *ACM

Sarrafzadeh:2002:GE

Sivakumar:2023:SAL

Song:2023:VEE

Su:2006:AMS

Steinhorst:2016:CPC

Siddhu:2021:LAD

REFERENCES

Shiri:2022:EEE

Seo:2018:NIS

Sha:2022:DMB

Shamsi:2019:IPS

[SLP+19] Kaveh Shamsi, Meng Li, Kenneth Plaks, Saverio Fazzari, David Z. Pan, and Yier Jin. IP protection and supply chain security through logic obfuscation: a systematic overview. *ACM Transactions on Design
Sjovall:2022:HLS

Shi:2012:HND

Sudarsanam:2000:SRA

Sayed:2019:CAP

S:2022:EEE

REFERENCES

Singhal:2003:SOA

Sharma:2015:AIE

Sanz:2008:CSS

Singh:2002:ECC

Salcic:2017:NHH

Salamy:2012:ISA

Subramaniam:2015:FPM

References

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Sundararajan:2004:NAI

Sahoo:2019:FMV

Shi:1999:SSL

Sun:2015:NUB

Somashekar:2016:NEG

Shen:2013:AAP

Hao Shen, Ying Tan, Jun Lu, Qing Wu, and Qinru Qiu. Achieving autonomous power

Shen:2012:FSF

Shiue:2001:DMD

Stitt:2007:BS

Stitt:2011:TWD

S:2016:EAD

Santos:2017:SMH

[SY07] Chiu-Wing Sham and Evangeline F. Y. Young. Area

REFERENCES

Su:2017:EMC

Sun:2012:STD

Tadros:2020:TFT

Tang:2017:PPE

Tong:2013:TCT

Tiruvuri:1998:ELB
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Torabi:2017:FHA

Torabi:2020:LAA

Tang:2022:ETE

Uysal:2022:SCN

Utyamishev:2023:MPP

Vatanparvar:2017:ASR

REFERENCES

Venkatasubramanian:2016:PID

Venieris:2023:MMW

Valencia:2019:CPA

Vanbroekhoven:2007:PDS

Vemuri:2002:ERO

Li-C. Wang, Magdy S. Abadir,

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

[Wan:2019:DRP] Bo Wan, Xi Li, Bo Zhang,

[Wang:2016:ADB]

[Wang:2018:VAG]

[Wu:2016:OAW]

Winograd:2018:PGU

Wei:2014:TSE

Wang:2013:CTM

Wang:2012:CMI

Wei:2023:BBI

Wang:2023:APP

Min Wei, Xingyu Tong, Yuan Wen, Jianli Chen, Jun Yu, Wenxing Zhu, and Yao-Wen Chang. Analytical placement with 3D Poisson’s equation and ADMM-based optimization for large-scale 2.5D heterogeneous FPGAs. ACM Transactions on Design Automation
REFERENCES

REFERENCES

2012. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Wu:2008:PVA

Wu:2012:LST

Wang:2019:RSE

Wang:2006:PDT

REFERENCES

Wang:2023:TPI

Wu:2021:DHC

Xama:2020:MLB

Xiang:2018:FTU

Xiang:2012:SFF

Xiao:2016:HTL
REFERENCES

Yuankun Xue, Ji Li, Shahin Nazarian, and Paul Bogdan. Fundamental challenges toward making the IoT a reachable reality: a model-centric investigation. *ACM Transactions on Design Automation
Xu:2015:DCD

Xie:2015:ICF

Xydis:2012:CLE

Xie:2018:TER

Xie:2021:DFM

Xie:2018:ADI

Mimi Xie, Chen Pan, Mengying Zhao, Yongpan Liu, Chun Jason Xue, and Jingtong Hu. Avoiding data inconsistency in energy harvesting powered embedded systems. *ACM Transactions on Design Automation of Electronic Systems*, 23(3):
Xin:2019:ESC

Xiang:2016:NUB

Xu:2016:HSL

Xiang:2005:AIP

Xu:2016:PPA

Xu:2009:STA

Yan:2000:TLB
Jin-Tai Yan. Three-layer bubble-sorting-based nonMan-

REFERENCES

Yan:2020:SLO

Yamin:2023:UAE

Yellu:2021:STA

Yang:2018:UUE

Yao:2003:FRC

Yang:2000:ERC

Yang:2020:HSS

Yang:2023:ATF

Yang:2017:CCS

Yang:2018:RRE

Yuan:2010:HSP

[YGH+10] Mingxuan Yuan, Zonghua Gu, Xiuqiang He, Xue Liu, and Lei Jiang. Hardware/software partitioning and pipelined scheduling on runtime reconfigurable FPGAs. ACM Transactions on Design Automation of Elec-
REFERENCES

 Yang:2004:FVE

 Yalcin:1997:EPC

 Yu:2009:APG

 You:2007:CCP

 Yan:2011:MUT

 Yang:2014:WLL

REFERENCES

You:2006:CLP

Yoon:2013:ACC

Yang:2023:CCE

Yang:2017:ELD

Yonga:2015:ABE

Yan:2013:RAG

Yu:2010:EPE

Yan:2017:EEE

Yu:2011:MQS

Yang:2018:HEP

Yang:1997:HFM

Yan:2014:EFG

Yan:2009:TAS

[YW09] Tan Yan and Martin D. F.

1084-4309 (print), 1557-7309 (electronic).

Yi:2015:ESF

Yuh:2009:LAT

Zhao:2017:OIM

Zanini:2012:OTC

Zhao:2013:SRE

Zhou:2023:SLR

Zoni:2018:CSC

Zhu:2006:CZD

Zhao:2023:MSF

Zhou:2022:QCT

Zeng:2011:LDP

Zheng:2023:BVD

Zhao:2018:TSB

Zhang:2021:DPR

Zhang:2023:SKR

Zhou:2023:FAO

Zhang:2023:CCM

Zhamora:2007:SLP
Nicholas H. Zamora, Xiaoping Hu, and Radu Marculescu. System-level per-

REFERENCES

[ZM07] Xinping Zhu and Sharad Malik. A hierarchical modeling framework for on-chip commu-
nunication architectures of multi-
processing SoCs. *ACM Transactions on Design Automation of
Electronic Systems*, 12(1): 6:1–6:??, January 2007. CO-
DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (elec-
tronic).

Zuluaga:2016:SSN

[ZMP16] Marcela Zuluaga, Peter Milder, and Markus Püschel. Streaming sorting networks. *ACM Transactions on Design Au-

Zimmermann:2019:ADL

Zhao:2013:PSA

[ZMTC13] Wei Zhao, Junxia Ma, Moham-
mad Tehranipoor, and Sree-

Zhou:2008:HTC

Zhou:2023:MMR

Zhao:2002:TMA

[ZS02] Min Zhao and Sachin S. Samp-
atekar. Technology mapping algorithms for domino logic. *ACM Transactions on Design
REFERENCES

Zhang:2016:PPG

Zhou:2018:RRD

Zhang:2010:CSD

[ZS16] [ZW98]

Zhu:2011:MPL

Zeng:2023:AMM

Zhou:2008:AAS

Zhou:2009:TAR

Zhou:2012:ONC

Zhai:2018:ENG

Zhao:2013:CSL
