A Complete Bibliography of *ACM Transactions on Design Automation of Electronic Systems*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

22 March 2019
Version 1.68

Title word cross-reference

1 [AGM01]. 2 [FWCL05, GH00, RL13]. 2.5 [WCB15, WWCT18]. 3 [ADDM+13, CLT+15, DLC+17, JGM14, KK11, KKHK16, KLE18, LLKC’13, LDD+18, LHZ+06, LHC16, LW17, LS17, OS03, SYX12, THM15, TMDF10, WYC10, YHH09, ZYS12]. 4 [JCPG05]. \(d\) [MLMM08]. \(\text{DDX}\) [SW04]. \(F_{\text{max}}\) [PMB10]. \(\text{GF}(2^n)\) [RMPJ08]. \(H\) [CLT+15]. \(k\) [CLH12]. \(k/m\) [CHY05]. \(\mu\) [DHZ+11]. \(N\) [Pom16a, CLH12, Pom17a]. \(o(\min(m,n))\) [LM05]. \(t/t\) [CH13]. \(V_t\) [KOS09].

-\text{Ary} [CLH12]. -\text{based} [SW04]. -\text{Cubes} [CLH12]. -\text{D} [OS03, WYC10]. -\text{Detection} [Pom17a, Pom16b]. -\text{Diagnosability} [CH13]. -\text{distinguishability} [AGM01]. -\text{domain} [FWCL05]. -\text{driven} [MSD06]. -\text{geometry} [JCGP05]. -\text{macrocell-based} [CHY05]. -\text{Matrix-Based} [CLT+15].

0.35\(V\) [ACF+11]. 0.35\(V\)-\text{Optimized} [ACF+11].

2-stage [KSA+10]. 2.0 [CLYP09, HWGY16, LLL+18]. 2009 [GK09]. 252\text{Kgates} [CCC°09a]. 252\text{Kgates}/4.9\text{Kbytes} [CCC°09a].

36 [DHZ+11].

4.9\text{Kbytes} [CCC°09a]. 40\text{nm} [ACF+11]. 45\text{-degree} [CT13, TP08]. 45\text{nm} [BFL10].
71mW [CCC+09a].

90nm [CFD+16].

A3MAP [JP12]. aberration [KPSW09].
absence [SPA+03]. Abstraction
[HZS+19, CMNQ08, CLM+10, HMB98].
abstraction/refinement [CLM+10]. ABW
[CIX15]. Accelerated
[LD17, BHDS09, MLC08]. Accelerating
[HW14, LS11, SKS12]. acceleration
[GPK+09]. Accelerator
[LYL+19, AHL+08]. Accelerators
[SV11, LSPC14, YLP+13]. Access
[GSB+18, OKC08, YXY+16, Cha01, KLS11, KCKG13]. Accesses
[HPK08, OKC08, XYG+16, Cha01, KLSP11, KCKG13].

Accurate
[DKZ+15, L18, SV16, SKCM06, TWL16, TEK18, MFS09, RCD07, SGD10, XK97].
Achieving [KJT04, STL+13]. ACM
[GBK09, BC08, CH18a, KLSZ09, QS11, SN10, CPX14]. acoustic [FIR+97]. acquisition
[NR03]. across [LBV+06]. action [KC98].

Active [LKC+18, VEO16]. Actively
[PCT+17]. Activity
[GFJ16, KOO18, PR11, SX+06]. Actor
[RTG+14]. Actor-Oriented [RTG+14].
acyclic [LKT98]. Adaptable
[CRC15, KKK12, SHN12]. Adaptation
[LYHL14, MDR15]. Adapting
[SBO16].

Adaptive
[BML11, CB17, CIX15, EW18b, JM14, KKH16, LLKY13, SOS15, TZ17, WTR12, WCQ+16, ZLY+15, CCYC14, CR12, CLQ12, DPO4, FS13, HCK13, LMB+12, LSL+13, RL13, RAKK12, SCB01].
Adaptively [KLK+17, DL11]. ADC
[EO19]. ADCs [HWCL15, PKP+03]. Add
[LWZ+19]. Adders [KKK12]. Address
[LP03, SR12]. addressing [SSP04].

adjustable [KSA+10, LLHT12]. ADL
[MSD06]. Admission [DZCD15]. advanced
[DFFR13]. Advances [CO18]. Affine
[WK1+18, BC11]. after [XFJ+16]. Against
[DZS+18, DF15, GDTF17, ZLQ15].

AGENTS [dW97]. Agglomerative
[LLLC13]. Agglomerative-based
[LLLC13]. Aging
[FYCT15, GC18, OT15, HTCP13]. Aging-
[FYCT15]. Aging-Aware [OT15].
Agnostic [BDBB19]. ahead [CSAHR07].
Airgap [HS19]. algebra
[AMO05, KRH18]. algebraic [ALRJH06]. Algorithm
[DHV18, GDPRG11, GYT12, HCRK11, HLC+15, KLSZ09, KLSZ11, MA16, TZ17, YVC14, ZLG+19, BDB08, CD09, CT13, CSL+07, CCW08, EK97, GBC07, JHL02, KT96, KL05, MB01, MKB05, MLML08, MWG07, SCB01, SG06, VKRR02, XTW05, YMC+13, YYY+10, ZH08]. Algorithmic
[AMO05, KRH18]. Algorithms
[ACFM12, GMN+13, SV16, SZB17, TCP97, Das04, Das09, EMO03, GMSSS02, JLF+12, LKM04, LIA00, OW08, PB14, PW99, TC98, YW09, YCHT00, ZS10, Z02].

Aligned [XYG+16]. Allocating
[KAKSP16, YHH09]. Allocation
[ABC+17, BK00, BM11, CET16, CARH18, KK14, KKL15, SCB18, YZ12, AOC02, CLM+10, CL99b, LCK+09, SM00].

Alternative [KRL15, SYZ08]. among
[DK08]. AMS
[CVMP19, DDNAV04, MDM+12, MPDG09].

Analog [BBEM15, CFD+16, DZ18, LHJ12, LCN18, SHD17, STGR15, SOS15, TZ17, WJYZ11, ZS18, BC05, DC07, DDNAV04, LON08, LFG+09, LCK12, LTPR+13, ST99, SCJ01, WV02]. Analog/Mixed
[STGR15].

Analog/Mixed-Signal [STGR15].

Analog/RF [BBEM15]. Analyses
[BFG17b]. Analysis [BS14b, CZW+03, CLT+15, CB17, CH17, CYH19, CLMZ10, DKZ+15, GLY+12, HKL+15, HHL14, JM14, KM97, KOO18, KC13, LJJ18, LV14, MAS16, NSCM17, OM08, PHK12, Pie16, PEP06, QBTM16, STWX12, THT12, WLT12, XT16, ZFLS11, ZYW+18, KS+16, ZBF18, AC06, APB+08, BWB14, BK10, CTR+02,
DCK10, Das04, DH06, FZKS11, GM08, GGZB02, GDG+08, IBMD07, JB98, JT98, KPR06, KVMM07, LW07, LCHT02, LON08, LTPR+13, MDG98, MFS09, MCMW08, NM13, QSK12, RM10, ST99, VMP+00, WYC10, YWGI09, ZHM07.

Analytic [AMM+18, JP12]. Analytical [HHL14, MA16, SV16, XLL+16, GG04, LON08].

analyzing [LH13]. Android [THC+14]. Annealing [VLH04].

Annotating [BD05]. ant [WGDK07]. anti [HTCP13]. anti-aging [HTCP13].

Application [CYV+14, HKL+15, HCZ+16, LPD+17, LYHL14, LHF12, LF12, MDR15, RCK+15, STJG16, TCL14, VAI7a, XLL+16, XTL16, YP01, ZYPD08, ZYPIC17, CSCO8, HLKN07, Hsi00, JCPG05, LM96, MMP09, MP07, SXZV13, WKR09, WSEA99, ZMTC13].

Application-aware [ZYDP08].

Application-Driven [YP10]. application-oriented [Hsi00].

Application-Specific [HKL+15, HCZ+16, LPD+17, LHF12, LF12, RCK+15, TCL14, VAI7a, CSCO8, WKR09].

Applications [ACF+11, BFV15, ETAV18, EO19, HC17, HAB+17, MLH+17, NTSA18, RS18, SBR+17, SVK17, SESN15, WZDG16, ZLL+16, CCC+09a, DCK09, DCK10, DPNB02, DSH12, DVA02, HG07, KSS+09, KCA04, KFH+08, MHD+04, NT05, PND97, Pedi96, SR12, VCLD03, VMP+00, WLL+11, WGI11, ZHM07, ZAZ13].

Applying [CHBK15].

Arithmetic [BZ08, MPDG09, TBZ13].

ASIC [KLV15, THL+13]. ARM-Based [LLH+17]. ARM2 [HV98].

Array [CDF+16, KCKG16, SP+15, AOC02, CZW00, LC13, LCL08, WV02, ZYZ+13].

array-based [CZW00]. Array-Style [CDF+16]. Arrays [HCW+16, TRM+16, AC06, CH02, CD96, LMB+12, PWY05, WAZ98].

ASICs [PW99].

ASIPs [SM00], ASP [YMB15].

ASP-Based [YMB15]. aspects [AMO05]. assembled [BC05]. assembly [AMR00].

assertion [BZ08, MPDG09, TBZ13].

assertion-based [TBZ13].
Assumption
[CK16, KLE18, LYCP17, LMS16, SV16, Yan16, Yan17, BDB98, CCX06, CHH09, CPW04, CLY09, KNDK06, Kuc03, LJV02, LCC11, LT11, VJBC07, WWG08, WLCJ09, XTW05, Yan11]. Assisted
[GFJ16, PTC+15, CSL+07, MBB01].
Assistive [MVK+18]. Assurance
[XLY+18]. Asymmetric
[SBR+17, RAKK12]. Asynchronous
[PMS15, WWW+12]. At-Speed
[PTC+15, TPC+17, SXZV13]. ATM
[RFY18]. ATPG [HCC01, MT02, SGK08]. Attack [Che18, DDFR13]. Attacks
[DZS+18, DHB16, MLH+17, ZLQ15, LWK11]. Attestation [CRT19]. Attributed
[PRCK08]. Authentication
[HRK18, MPM+17, YFT17]. Authorization
[MPM+17]. Autogenerated [APD+11].
Automata [BZ08, KT01].
Automata-based [BZ08]. Automated
[BPTB17, IE12, KLV15, GWR13].
Automatic [BFV15, CK96, CJLZ11, MS08, SHD17, SRTG19, WKR09, ADS+09, KSS+09, LFG+09, TDE08, WCC04].
Automating [HA05, RSR01]. Automation
[CH10a, CPX14, CO18, DZS+18, GHY19, KLSZ09, DTC+09, LOC12]. Automotive
[HK18, LZSV15, LMS16, MPM+17, SRTG19, XLY+18]. Autonomous
[ML09, STL+13]. Auxiliary
[BDC08, CCQ98, Piel6]. Available
[TEK18]. Average [ZLW+15]. Averaging
[TWL16]. Avoiding [HLG+15, HGLC16, LLLL18, WSRH16, XLP2+18, LYKW09].
Award [GK09, QS11]. Aware
[AKAP18, BDBB19, CMP10, CET16, DZ18, FYCT15, GV15, HHK+17, HC17, HCG+16, KPF16, KWI16, LHW+17, LLL+18, LHIK+15, LZSV15, LNG+16, LMS16, MT15, OT15, PBZM19, RS18, RCK+15, SYX12, TBCH17, WSH+18, WLLH16, YYG+16, ZYPC17, ADP+07, CHH09, CLQ12, DD02, ETR07, FS13, GM08, GKM05, JHL02, JP12, JCS+08, KPSW09, KJJKK03, LC14, MJM11, MHQ07, MKW08, PPDK09, RGM09, SSG12, SBC08, SMYH07, SKS12, SNL12, WH05, WPH08, WLL+11, YYLL09, ZYDP08, ZYP09].
Awareness [RL13].
B* [WCC03]. B*-trees [WCC03]. back
[CK+18, GAB00]. back-end [GAB00].
Backward [BS14b]. balanced [LLHT12].
Balancing [MT15]. Band [WTR12].
Bandwidth
[KLK+17, BD08, GM03, LKLC13]. bank
[CPW04, Kan06, SM00, Wu09]. banked
[OK08]. Based
[APDC17, ASAP17, AVG19, AAA15, BHK17, BS14a, BD14, CPS16, CCH+15a, CLT+15, DLC+17, ETAV18, EO19, GDTF17, GHY19, HCL+14, HWX+14, HLG+15, JHMS18, JPHL16, JM14, KCO10, KLK+17, KMO+12, LLH+17, LG18, LS11, LHK+15, LLLL18, LH11, LGGJ14, LCC+15, LKC+18, MCZ+16, MA16, MCD12, PSNC18, PG15, Pom17a, Pom18b, QBTM15, RSL18, SV16, STGR15, TZ17, VE016, WCB15, WQC+16, WWCT18, WC10, WL12, XS16, XCF18, YMB15, ZS16, ZHC+18, AHA08, AM10, ADDM+13, BLM00, BPR98, BC11, BBD00, BOC00, BH10, BZ08, CLM+10, CN13, CGN96, CZW00, CFHM09, CH02, CBR+05, CD96, CHY05, CFX09, CM13, CCL04, DP02, DCK09, DDNAV04, DVA02, EMO03, EY12, FS13, GK14, GG99, GPH+09, GBC07, GDF09, GPK+09, GH00, HCK13, HWCL13, JLF+12, KBN09, KK11, KNRK06, KSA+10, LC13, LB00, LKM04, LWC07].
Based
[LCL11, LWZ+19, LDK99, LCHT02, LOC12, LWK11, LLLC13, MP07, ML08, OM08, OKC08, OK08, PND00, PRCK08, PMB10, PR09, Pom14b, RL13, RS98, SW04, SGK08, SOC06, SC06, TN99, TBZ13, VKT02, WWC04, WC06, WSEA99, Yan00, Yan08,
YYC09, ZHM07, AA17, PBZM19, CCQ98, CH00, MW97, MHT14, MGW97, PBSV+06. basic [VMP+00]. Batch [LYL+19].
Battery [MRL+19, NSS+16, Rak09, SKM+16, CSAHR07, LCZ+08].
battery-powered [CSAHR07]. Bayesian [BLR06]. BDD [CCQ98, VKT02].
BDD-based [CCQ98, VKT02]. BDDs [BC16]. Beam [LZ17]. Behavior
[CCQ98, VKT02]. Behavior-Level [CCQ98]. Behavioral [APD+11, AA17, CLMZ10, SCH17, KRS06].
BIBN [CLMZ10]. Biased [JCK+18]. biasing [CFHM09]. BICS [RM09, RM10].
BIFEST [LTH99]. Bifurcation [HHL14]. Binary [SV07, BCR+08].
Binding [CET16, KK14, LH12, ZLQ15, BD97, CLM+10, CFX09, DS06, HLKN07, MJK13, MJM11, XK97].
Biochemical [RCK+15]. Biochips [GHR91, LHC16, LKC+18, MGR+15, RCK+15, SKS+18, SOC06, SC06].
biomedical [APB+08]. Bipartitioning [RTNL05, DPN02]. bipolar [ZYZ+13].
BIST [BBEM15, JNS+17, LWC07, PKP+03, PGB01, SSGS03]. Bit
[HHK+17, LYP13, NdL03, RMP08, RM09, RMB10, SBH+06]. bit-width
[LYCP13, SBH+06]. Bits [SSO16]. black [LAS01]. BLAS [CCYC14]. Block
[CCYC14, CCK+18, DK16, ZLG+19, KR506, LPP00, MHD+04, MS00, WCC03].
Block-level [CCYC14]. block-processing [LPP00]. Blockage [JD18]. Blocks
[AFM14, DK08, FLWW02, FLWC07, MHD+04, MS00]. BNF [WWC04].
BNF-based [WWC04]. Board [MW97]. Board-level [MW97]. Boards
[GDTF17, BPRR98, OW06]. body
[CFHM09]. body-biasing [CFHM09]. BonniRoute [GNN+13]. Boolean
[PRCK08, BR12, BD07, BC11, CCQ98, GPK+09, SGJ96]. Boosting [CMNQ08].
borrowing [LCHT02]. bottleneck [NM13]. Bound [JL15, LC96, LTPR+13, YWK+03].
Boundary [Pom19a]. Boundary-Functional [Pom19a].
boxes [LAS01]. BoxRouter [CLYP09]. branch [CBHK11]. branch-and-cut
[LLQ+03, EBR+09]. bridging [LTH99, TCP97]. Broadside
[Pom15a, Pom16a, Pom14b]. BSP [SYHL14]. BTI [GC18]. BTI-Aging
[GC18]. bubble [Yan00].
bubble-sorting-based [Yan00]. Budgeting [CXH+16, STGR15, LLHT08, LCHT02].
Budgeting-Based [STGR15]. Buffer
[LYL17, MB04, SAL19, TCI14, WHRC12, CW01, FHH12, JHL02, LLHT12, LT11, XTW05].
Buffered [Yan16, CM08]. buffering [KRS06, KC13]. Buffers [CK16].
Buildings [ZHC+18]. Built
[EO19, Pom13, SBB+18, WCB15, LTH99]. Built-In
[EO19, SBB+18, WCB15, Pom13, LTH99]. bump [DVA02]. bump-and-refit [DVA02].
Burst [CHBK15, CIX15]. Burst-Writes [CIX15]. Bus [GG99, JWL+03, LCOM07, LV02, OW06, SC01, YW09].
Bus-based [GG99]. Buses [Yan17, YG204]. Butterfly
[YP17]. Bypass [YP17].
C [LWC18, RMP08]. C-Mine [LWC18].
C-testable [RMP08]. C2RTL [ZLL+16]. Cache
[BFG+19, CPS16, GG04, HWX+14, ZYX15, JKL15, KL14, LYL17, MACV14, M16, NTSA18, SSS+19, SABSA15, SAL19, WDL17, YPF17, G16, JS13, LMM99,
[ADS+09]. Correcting [PGCB16].
Correction [DZ18, RM09, WHXZ13].
correlated [SXZV13]. cosimulation
[FLPP09]. Cost
[ABC+17, CHC+16, JPHL16, MHT14, QS09,
BPRR98, WBW14, Giv06, HCK13, LG12].
Cost-Effective [JPHL16, MHT14].
cosynthesis [Hsi00, Wol96].
Counting [YFT17].
countermeasures [DZS+18].
counting [PB12].
coupled [LMB+12].
coupling [KJKK03, LXCH04, SKCM06].
coupling-aware [KJKK03].
covariance [KPR06].
cover [SB98].
coverage [AKAKP18, CYV+14, CM13, IE12, DSH12,
FZKS11, GF06, Sen11, SDP+09, TCP97,
WPHL08]. Coverage-Directed
[IE12, CM13].
coverage-driven [CYV+14].
covering [BZWZ17].
CPU-time [SEN05, ZBP18].
CRA [LLH+17].
Crash [WL12].
Creation [NRZ+18].
criteria [CGN96].
Critical
[AKAKP18, FYCT15, GC18, IGN18,
KMR18, LC14, STJG16, ETR07, HKB+07].
critical-path-aware [LC14, ETR07].
criticality
[BB17, CV17, CYH19, SZB17, ZABGZ17].
Cross [XNZ+15].
Cross-Point [XNZ+15].
crossbar [THL+13].
crossbar-switch [THL+13].
crossing [SW99].
Crossstalk
[LWH06, HR06, JPCJ06, LCC11, MCMW08,
Mut09, ZW98].
crossstalk-driven [JPCJ06].
cryptographic [DP04].
Cubes [CLH12, WC10].
cuboidal [WYC10].
current
[CH10b, MN17, WLLL16, HLC107, HCN09].
current-ratio [WLLL16].
custom [AKAKP16, LW17, LHF12, LF12, TDF+09,
AMR00, HMVG13, TS96].
customizable [MPSJ07].
customization
[CBMM10, MKK13, MSB+09, YLP+13].
cut [CBHK11].
Cutting [LVS16].
Cyber
[SKM+16].
Cyber-Physical [SKM+16].
Cyberphysical [PGCB16].
Cycle
[LVS16, LS11, Das04, Pom14a].
Cycle-Level [LS11].
cycled [JSG09].
Cycles [AKAKP16].
Cyclic [BR12, Che18].
D [GH00, WCB15, ADDM+13, CLT+15,
DLC+17, JGM14, KKHK16, KLE18,
LLKC13, LDD+18, LHZ+06, LHC16, LW17,
LS17, OS03, RL13, SYX12, THM15,
TMDF10, WYCL10, WWC18, YHH09,
YSZ12].
D-ICs [LS17].
D-NoC [ADDM+13].
D-Stacked [STJG16].
daisy [KC13].
daisy-chained [KC13].
Dark [HAB+17].
DARP [CRC15].
DARP-MP [CRC15].
Data [CP16, DZCD15, JLU15,
KJ16, LCW18, NTS+13, PCL+09, Pom16b,
PAV17, SPC+15, SUC01, XCV12, XPZ+18,
BHW+13, BK00, WBW14, BHS11, FWCL05,
GFC+09, GMN+13, GDF09, IBMD07,
JCS+08, KMS12, KI01, KCA04, LSPC14,
LCT03, Meh98, NR03, PDE97, PDN00,
PGB01, RMKP03, SM00, VCLD03, YGZ04].
data-dominant [VCLD03].
Data-Driven
[DZCD15].
data-flow-driven [KMS12].
Databases [HCL+14].
Dataflow [ASA+17,
BMdlG17, BFG17a, BFG17b, CH17, HPB11,
JHC17, SS14, HKB+07, MHF96, MB04].
Datapath
[JR97, CL99b, GDTG07, MR05, XPSE12].
datapaths [Fuj05, Gk07, Gk09, NCP01].
DC [CFD+16, SBB+18, TWL16, WGT+17].
DC-DC [WGT+17].
DCM [TWL16].
deadlock [LM05, TDE08].
deadspace [SY07].
Debug
[EW18b, LHLP16, HW14].
Debugging [Ali12, BHK17, RPKC05].
Decade [XFJ+16].
decap [LCL08].
declare [TKV07].
decoder [CC+09a].
decoders [KHW06].
Decomposition
[ETAV18, GB07, HCD+16, KHW06, LW17,
YLZ+17, ZLY+15, CHHL06, CH00, EM03,
LM06, WSE99].
decomposition-based [EM03].
Decompression [PBL+17].
Decoupling [SCK18, XLS15].
deduction [DP02].
Deep [LYL+19].
defect
[ACT13, JT98].
defect-level [JT98].
defective [PB12].
defects [XLC13].
Defending [YFT18]. deficiency [ZCG06]. Defined [JHMGS18]. Definition [BC16, Pom15c, ZLG+19, CCC+09a, VCLD03]. Deflection [LLKC13]. degree [CT13, TP08]. Delay [FYCT15, JLI15, JK10, JOH17, MCD12, STJG16, XCW12, ZK15, BDB98, CFHM09, GS00, GMSSS02, HR06, KJKK03, LLHT12, MT02, MKW09, PT06, PMB10, PR98, PR96, RCD07, SC00, SSP04, TD03, WYY99, XLC13, XPSE12, YH97, YHL+11]. delay-area [XPSE12]. delay-sensitivity-based [PMB10]. Delivery [XLS15, ZFLS11, ZLL13]. Demand [AAA15, SKS+18, WQC+16]. Demand-Based [WQC+16]. Demand-Driven [SKS+18]. demonstrable [JW08, LP07]. density [FLWC07, OWH08, ZYP09]. dependence [DH06]. Dependencies [BR12]. dependent [BLM00]. depth [CH00, LH09, ZCG06]. depth-optimal [CH00]. depth-size [LH09]. derive [GS00]. derived [CACS05, Zho08]. Describing [RHA08]. description [MSD06, PHM00, SSCG12]. descriptions [Fu05, MWG97]. Design [ABC+17, AFM14, BJX15, BS14a, BZW17, BS14c, CD09, CH10a, CH10b, CPX14, CHC+16, CRC15, CO18, DZS+18, DHB16, EAP17, GCZ+15, GHLR91, HCRK11, HLH+15, JWJ+03, JLI15, KKL15, KLSZ09, KLSZ11, KLV15, KKS16, LLP+16, LW17, LF12, LHK+15, LZSSV15, OT15, PDS12, Poni14a, Pomi16a, Pomi18a, RS18, Sch17, SDP+09, SGGR14, SHN12, SESN15, SYX12, STGR15, TCL14, VAL17, VE016, WWCT18, WSS+18, XLS15, XNZ+15, YPCF17, YD16, ZLG+19, ZYS12, ACT13, AHL+08, APB+08, AMM+06. ADF+07, BC05, BW00, BP08, BASB01, CWW06, CIB01, CSL+07, DRG98, DTC+09, EU97, FLFV02, FLW07, FW00, FR97, GPH+09, GM03, GABP00, HV07, HA05, HJ08, HLCH07, JB98, JP08, KSS+09, KG99, KCA04, LC13, LSL+13, LFG+09, LCL08, MOZ06, MB01, MP07, MLG12, OCRS07, PB14, Ped96, Ped06, PBSV+06, PW99, RFYL98]. design [RS98, SW12, SGD10, SYL09, SSSS10, SUC01, SS11, SZV+12, TW96, THL+13, VAHH+98, Woe01, WAZ98, WR09, ZHH07]. Design-for-Testability [Pomi16a, Pomi18a, Pomi14a]. design-specific [ACT13]. Designed [KMO+12, SPT+17]. Designer [SS11]. Designing [BLNK14, DZS+18, HBC+08]. Designs [EK16, MACV14, PHKW12, VW+12, YVC14, Yan16, Yan17, ZK15, CH00, GM08, GOC02, HMB98, KI01, KK11, KWW06, LHW97, LCHT02, LLHT12, LAS01, LCKT12, MS00, MR96, RMK03, Sen11, SSSS10, SNL12, WTL+13, Yan11, ZMTC13]. Destination [RL13]. Destination-based [RL13]. detailed [CBHK11, PWY05]. Detection [CBO+18, KOO18, Pomi16b, Pomi17a, YFT17, ZHC+18, CR12, DHZ+11, FNP09, KI01, KRK98, KSA+10, LM05, PR07, RM09, SCCH08, TDE08]. Determined [Pomi18a]. Deterministic [YE12, KBV+15, LB11, KT01]. detour [YW09]. developing [SMSB05]. Development [THT12]. developments [Lin97]. Device [GHYR19]. Device-Based [GHYR19]. Devices [Kha12, LKH19, SVK17, JCS+08, ZYX+13]. DFT [DDFR13, PTC+15]. Diagnosability [CLH12, CCH15b, CH13, LH14]. Diagnosing [BDDB19]. Diagnosis [Pomi17b, SBB+18, CML98, KI01, TYH08]. Diagnostic [HVF+01]. diagonal [DSKB04]. diagrams [KC98]. dictionaries [LCT03]. dictionary [HH09]. difference [Das09]. differentiable [Cont06]. Differential [JDI+18, LLP+16, DDFR13]. differentiated [WHXZ13]. Digital [CM18, DZCD15, LHC16, LKC+18, MFHP12, MGR+15, PGCB16, RCK+15, SSS+18, SOS15, CPW04, RS03, SR12, SOC06]. Digitally [ZK15]. Dilution [GHYR19].
[RG15, KSQ+19, YYYC07, YYYC09].
Directed [IE12, QM12, CM13, HLCH07, HG07, LKTD08, MD08]. Direction [Yan18].
Direction-Constrained [Yan18].
discharging [HLCH07]. Discrete
[HLG+15, LGGJ14, MLG12, SV16].
Disjunctive [WYIG07]. Disk
[CD09, SLXZ12]. Dispatching [WHRC12].
Displacement [BFG+19]. Distance
[HRK18]. distinguishability [AGM01].
Distributed [EAP17, HXC+18, MVK18, SCK18, YMB15, CFX09, LC14, PEPP06, Wol96, dW97]. Distribution
[JCK+18, SS010, KSA+10, SW99].
Distributions [KY16, STJG16].
Disturbance [SBB+18]. Disturbance-Free
[SBB+18]. Divide [SW12, HPK99].
divide-and-conquer [HPK99]. Divided
[TMD010]. DME [wATkK02]. DNUCA
[DK16]. domain [FWC105, IAI+09, JBC+10, LTPR+13, SCV06].
domain-specific [SCV06]. Domains
[WWW+12, LBV+06]. dominant
[VCLL03]. dominated
[FRS97, K01, MWG97]. domino
[KJKK03, Z02, CL06, NTA18]. Don’t
[TPC+17, CBM10, SGK08]. don’t-cares
[CBM10, SGK08]. Double [XYG+16].
DPRTM [ADDM+13]. DRAM
[BLNK14, LYLW17, LMA+16, SSS+19, SAL19, ZZC017]. DRAM/PCM
[BLNK14, LYLW17]. DRDU [JMBD07].
DReAM [LMA+16]. Drive
[CCS15, VA17b]. Driven
[AMM+18, CYV+14, DKT+16, DZCD15, EAP17, HWG016, HWC15, LV16, LJJ12, LNC+16, SKS+18, Yan16, YP10, ZFLS11, ZSY18, CSAHR07, CZW00, DRG98, EK97, GK14, HW00, JPCJ06, KMS12, Kuc03, KSA+10, LOC12, MPSJ07, MD08, MRMP08, WY06, WLC02, XK07, Yan08, ZSZ10, MSD06]. drives [CCY14]. Droplet
[LKC+18]. DSA [YLZ+17]. DSP
[AFM14, CL99a, LP03, SXX+06, SES15].
DSPs [AM98]. Dual [BLNK14, BPTB17, HS18, KKS16, CT13, HLHT08, MLM10, SM00, WGD07, WY10]. Dual-Edge
[BPTB17]. Dual-Edge-Triggered [HS18].
Distributed [BLNK14]. dual-scanline [CT13].
dual-Vdd [HLHT08]. duplication
[CC06, WY06]. During [TPC+17, EW18b, HR06, MRC06, PTC+15, RGM90, XPSE12, YW+03, YWW10, ZM10]. duty
[JSG09]. duty-cycled [JSG09]. DVFS
[CKX+13]. Dynamic [ADDM+13, BM13, BHS11, HK15, HRP00, IAI+09, LHW+17, LV14, MDR15, ORGD+15, PBL+17, SV11, WMT+16, WSH16, AAKP08, ADM+13, AMM+06, BLR06, CMNQ10, G14, GP+09, KJ04, KSA+10, LTPT10, LLHT12, MR05, VBC07, KMR18].
Dynamically [CRC15, JPHL16, Pom18a, ARLJH06, WLC02, YLL09].
Dynamically [CRC15, JPHL16, Pom18a, ARLJH06, WLC02, YLL09].
education [CRC15, JPHL16, Pom18a, ARLJH06, WLC02, YLL09].
DynaSCORE [KMR18].
Dynamo [CRC15, JPHL16, Pom18a, ARLJH06, WLC02, YLL09].
DynaSCORE [KMR18].
Dynamo [CRC15, JPHL16, Pom18a, ARLJH06, WLC02, YLL09].
DynaSCORE [KMR18].
DynaSCORE [KMR18].
DynaSCORE [KMR18].
E-Beam [LZ17]. Early
[PBL+17, SZB17, MKBS05, SYL09].
Early-Release [SZB17]. Easy [VS12a].
ECC [KKG+16]. ECDSA
[DHB16]. ECG [APB+08]. echo
[FIR+97].
ECO [DVA02, LG12]. ECR [LTYW12].
EDA [JHMGS18]. EDF
[GDG+08, SB17, WDG16]. Edge
[BPTB17, HS18, R98]. edge-based [RS98].
editor [Ano13]. editor-in-chief [Ano13].
Editorial [CH10b, CPX14, D05, D06, D07, D08c, D08a, D08b, I00, MD13, PD08, TK18, SJ02, Mar00].
Effective
[LWH+17, NSS+16, WCC14, WSH+18, WSRH16, LTH99].
Effect [DS06, JP16, LC+10, LT+16, LCD18, PCT+17, XLY+18, YVC14, YLZ+17, LPP00, LSC14, MHT14, SBC08, WSV+14, XCL13]. effectiveness [WAZ98].
Effects
[BDB98, BFL10, GC18, MRB+11, RJS09].
Efficiency
[KKLG15, LWC18, TCL14, KJT04, ZAZ13].

Efficient
[AKAKP18, BS14a, BHD09, BW00, CYV+14, DMR10, EO19, GFJ16, HMB98, HAB+17, HKB+07, HCS01, HG07, HWX+14, JLK15, KBN09, KC10, KW02, LHLF16, LJ18, LDD+18, LHZ+06, LWZ+19, LF12, LHCT05, LM96, LB11, NTSA18, PMP17, RMR09, RGM15, SPC+15, SPMS02, SS15, SRC15, TLCF16, WKL+18, WJY+07, WWFT12, YPCF17, YCHT00, YP10, ZYW+18, ZLG+19, ARLJH06, Das09, FNP09, GM03, GBC07, IBMD07, JS13, JP08, KL05, LCD07, LH13, MR05, MP07, MWG97, SGD10, SLXX12, SHN12, SZV+12, VKKR02, Wu09, ZSZ10, ZYW+13, Zhao08].

Efficiently
[RCG+08, TY19, ABL+13].

Eh
[DKT+16, DBK+18].

Elastic
[LYL19, SZB17].

Electric
[VA17b].

Electron
[HCW+16].

Electronics
[CPX14, CH10a].

Electrostatics-Based
[CLC+15].

Element
[CLT+15, ZK15].

eliminate
[Mut09].

Elimination
[LHF12].

Embedded
[BMD17, BD14, BS14c, BM11, DFM15, EAP17, HCL+14, IGN18, KC10, LL15, LHLF16, LHK+15, NSH+16, PG15, SPT+17, SL18, WHRC12, XPZ+18, YP10, AM10, BPRR98, BH10, CSAHR07, CMM00, CSL+07, CM13, DCK07, DCK09, DRG98, GDTG09, GPH+99, GG04, GAB00, HKL+07, HV07, HCK13, IAI+09, JS13, KNDK96, LJV02, LCZ+08, LSDV10, LB00, LMW99, LDK99, MB01, MDG98, ML09, NG06, NR03, PDR97, PDB00, PHM00, PEPP06, QS09, RSR01, SR12, SUC01, TKVN07, WAZ98, Wdl06, XZC09, ZYDP08, ZP08].

Embodiment
[CM18].

Emerging
[BRC18, SN10, YPCF17, BC08].

Employing
[GS13, ZK15].

emulated
[THC+14].

encryption
[ADP+07, HMVG13, KRK98, MW97].

Enabled
[YSF+18, LSL+13, YFT18].

Enabling
[JS13, ZHOM08].

Encoder
[QSW+15].

Encoding
[MDR15, OT15, PMP17, YMB15, ZLG+19, KJT04, LCD07, LWC07, NT05, RTNL05, YGZ04].

Encryption
[Che18].

Endurance
[HCW+16].

Employing
[GS13, ZK15].

emulated
[THC+14].

energy/thermal/cooling
[ANR13].

Engine
[LLL+18, TMDF10, CNQ13, DP02, DP04].

Engineering
[CM18, EAP17, GDTF17, WSS+18].

Engines
[HLK+15].

Enhance
[DLC+17, GS13].

Enhanced
[CYM19, LKH19, Pum15a, TWL16, FWC15].

enhancement
[WX13, LCKT12].

Enhancements
[Che18, ZAZ13].

Enhancing
[CCL+16, NRDB19, PPP+15].

Enlarged
[GS13].

Enterprise
[DKK+15].

Enumerative
[STJG16].

Environment
[RHN00, HKL+07, Hsi01, SCV06].

Environmentally
[YBS+18].

EPGAs
[YTHC97].

EPIC
[AMR00].

ePlace
[CLC+15].

Equivalent
[AA17, Fuj05, AGM01].

era
[HAB+17].

ERfair
fixed-length [LCT03]. Fixed-Point [WDZG16, MHQ07].
Fixed-Priority [WDZG16, MHQ07]. Flash [CCK+18, HCL+14, KC10, PPP+15, WQC+16, WL12, ZLW+15, HCK13, JCS+08, Wu09].
Flash-Based [HCL+14, KC10].
Flash-memory [Wu09]. Flattened [ZYPC17]. Flexible [BHK17, IG18, LKC+18, RS18, CL99b, MS00]. FlexRay [SGC+14]. Flip [HS18, KMO+12, XCW12, Yan16, KOS09, KSA+10, LLLC13, Yan11, ZMTC13].
Flip-Chip [Yan16, Yan11, ZMTC13].
Flip-Flop [KMO+12, XCW12, LLLC13].
Flip-Flops [HS18, KOS09, KSA+10].
Floating [BS14a, SKCM06, WG11].
floating-point [WG11].
Floorplan [KQP+19, YVC14, YCCG03, HCS01, LCL08, MRMP08, SY07]. Floorplan-Guided [YVC14].
Floorplanning [HCRK11, HCZ+16, KLE18, HMLL11, LHZ+06, LCC11, LLM01, SYZ08, WLCJ09, YYC07, YYC09].
floorplanning-based [LCC11].
floorplans [DSK01, MSKBD07, MS00, WYC10].
Flops [KMO+12, XCW12, LLLC13].
Flow [HS18, KOS09, KSA+10].
Flow [HMO+14, IG18, KW16, PDS12, QSW+15, RJ14, BFP08, DTC+09, GDF09, KMS12, LC13, OM08, WC06]. Flows [JLJ15].
Fluids [GHYR19].
Fluids [RHK+15]. FOLD [Pom15b]. Folded [AFM14, HS18].
Folding [Pom15b, BHS11, TS96]. footprint [AMM+06]. Forced [RSR01]. form [CW01, PR09]. Formal
[Ali12, BGM04, EW18a, KMS12, KG99, SSS+19, SGGR14, VS12a, ADS+09, CMM00, MR06, RFYL08, SMSB05, VS12b, Zho08].
Formally [KRH18]. formats [AMR00].
Forming [PR07]. FORTIS [GSFT16].
Forward [GSFT16, GS00]. Four [HLC16].
Four-Step [HLC16].
Fourier [LCC+15].
FPGA [AMM+18, ACT13, BS14c, BHS11, CWW96, CZW+03, CH00, DP02, EW18b, FW00, GPK+09, GVJ15, HABS15, HLHT08, HW14, JLF+12, K96, KL05, KFH+08, LKM04, LLL+18, MW97, MA16, MP07, PL98, PSNC18, TW96, ZLQ15, ZHTC09].
FPGA-based [MW97, PSNC18, DP02, GPK+09].
FPGA/FPIC [CZW+03]. FPGAAs [CZW00, CEB06, CHY05, DVA02, GDG+08, KNK06, LB11, MCZ+16, MLMM08, SPMS02, Tes02, VKE02, WGL11, WLC02, WSEA99, YGH+10, YYLL09].
FPGAs [CZW+03]. Framework [DK16, GDTF17, JPH16, LL15, SKM+16, THT12, WWFT12, YP10, ZL+16, ADP+07, HR06, HV07, KJ+08, KH10, MPS07, MP07, RPKC05, SB98, SBH+06, SS11, ZM07]. Free [RGM15, SBB+18, BLR06]. frequencies [PL03]. Frequency [GC18, JPH16, WTR12, WGS16, GM08, JDT+08, LTPR+13, ML09].
freQUENCY [LTPR+13]. frequent [YGZ04]. FSM [AGM01]. FSMs [CK16]. fuel [LCZ+08].
fuel-cell-battery [LCZ+08].
Full [STWX12, HDL+12]. Full-Chip [STWX12].
fully [FW00]. Functional [CVMP19, DCK07, FR97, PR98, Pom15b, Pom15c, Pom16a, Pom16c, Pom18a, Pom18b, Pom19a, VLH98, WSEA99, XLY+18, CMB07, CK96, LOC12, MT02, Pom13, Pom14b, Vah99].
Functionality [BFV15, HLCH07]. functionality-directed [HLCH07].
fundamental [BC11, CCQ98, TW96].
Fundamental [XLNB17, Voe01]. FUNI [LIA00]. Future [HAB+17, KVB+15, ZZZY17].
FuzzRoute [RGM15].
GALS [SS11]. GALS-Designer [SS11].
game [HR06, RJJ+09].
game-theoretic [HR06].
Garbage [GSD+18, HCL+14, ZLW+15].
Gate [CDB11, Che96, HMO+14, KKS16, LGGJ14, SV16, SRC15, CCW08, CH02, CD96, CH00,
Gate-Level [CDB11, HMO+14, Che96].
Gated [CM08].
Gates [WS0+18, KO11].
Gateway [CDB11, HMO+14, Che96].
Gating [CM08].
Gaussian [ZYW+18].
GBDD [YTHC97].
General [CH02, wATkK02].
Generalized [Pom15c, DS06].
Generated [CCH15b].
Generating [MFS09, MN17, K01].
Generation [BKW15, BF15, CV+14, IE12, LCV12, LV14, LCY18, MFH12, MCD12, PCT+17, Pom17a, Pom17b, Pom18b, SH17, STJG16, SOS15, WWW+12, YLZ+17, YD16, AM98, CK96, Che96, CL99a, CCW08, GF06, HR00, KKM02, KJR+07, KNDK96, KH10, LTH99, LKT08, MMP00, MDS06, MD08, PR98, PR07, Pom13, QM12, SR12, SNL12, SM00, TB13, VM+00, dW97].
Generator [BCR+08, WWC04].
generic [FLWW02, FLWC07].
Genetic [MA16].
Genetic-Algorithm-Based [MA16].
Geometric [CM18, WJYZ11].
Geometry [JCGP05].
Global [AOC02, BM11, RGM15, WSH+18, CLY09, SPA+03, ZHTC09].
Global/Local [BM11].
Globally [PMS15].
GMDF [FIR+97].
good [GMN+13, YW+03].
GP [APS18].
GPPU [SBR+17].
GPPUs [HIW15, TLCF16].
GPlace3.0 [AMM+18].
GPU [CDB11, HCRK11, LLK+14, LH11].
GPU-Based [LH11].
GPUs [SABA15, TY19, WKL+18, ZWD11].
Gradient [SV16, GBC17].
gradient-based [GBC17].
grading [PT06].
Grain [LG18].
grained [KLSP11].
Grammar [JHMGS18].
Graph [CH17, JHMGS18, JOH17, LB00, SS14, WYC10, W06].
Graph-based [LB00].
Graph-Grammar-Based [JHMGS18].
graphene [YMC+13].
graphical [BLR06].
Graphs [ASAP17, BFG17b, CM18, CCH15b, HPB11, LH14, CH13, DSK01, HKB+07, KTD98, MAF96].
Gravity [OS03].
Grid [HXC+18, MN17, SCK18, ZS16, MFS09].
gridless [LCC11].
Grids [BS14b].
GRIP [JHMGS18].
Ground [LHJ12, YHH09].
Grouping [XCV12, KSA+10].
Guarantee [MN17].
Guaranteed [PMS15].
Guest [CH10b, Mar00, SJ01].
Guidance [ZKS+16].
Guided [YVC14].
Guiding [EW18a].
Hamming [HRK18].
Handling [DH06].
Hard [CHBK15, WDZ16, PW99, QS09].
hard/soft [QS09].
Hardened [BS14a].
hardness [WYC10].
Hardware [BS14a, BM11, CMM00, DZS+18, GFJ16, GQW19, IPWW17, KTKO13, LG18, LHF12, LF12, MFH12, MRL+19, TY19, XFJ+16, YSF+18, YGH+10, ZLG+19, AM005, BHDS09, BGM04, FNP09, GGB97, GPK+09, HKL+07, HBC+08, JW08, KSK+05, KG09, LP07, LVL03, MSB+09, MLC08, ML09, RHA08, SSG12].
hardware-accelerated [MLC08].
Hardware-Assisted [GFJ16].
Hardware-Based [BS14a].
Hardware-Efficient [ZLG+19].
Hardware-Enabled [YSF+18].
Hardware-Software [BM11, GGB97, HKL+07, LVL03].
Hardware/Software [LHF12, CM00, KTKO13, YGH+10, AM005, ML09].
Harvesting [SAL19, XP+18].
hash [YTHC97].
Hashing [JCK+18].
 hazards [HA05].
Heaps [KLK+17].
heartbeat [DHZ+11].
 heartbeat-detection [DHZ+11].
Heterogeneous [ETAV18, RS18, SPT+17, SVK17, SSL17, SAL19, TBC17, BSW14, CL99a, HV07, KJR+07, LLKY13, PTC05, QS09, SCB01, SJK12].
Heterogeneously [ZP08].
Heuristic [AKAP18, HGLC16, CLM+10, LCKT12, OCRS07, SBGD13].
heuristics [TN99].
Hierarchical
16

[CV17, LMB+12, LJ18, MSKBD07, TZ17, WMT+16, XT16, BG01, HKV+07, VKKR02, ZM07], hierarchy [FW00]. High

[AKAKP18, Ali12, CET16, CK16, DKT+16, DBK+18, DLC+17, GHW+12, HI15, JD00, LLL+18, LYKW09, MACV14, PTC05, RJ14, Sch17, SS14, VAAH+98, WMT+16, ZYW+18, ZLG+19, ACT13, AYM05, BHW+13, BD00, CCC+09a, GDTG07, GF06, GGDN04, GWR13, HJ08, JP08, KW02, KJT04, LJ02, LC14, Lin07, LFG+09, MKBS05, MJM11, MLMM08, NS03, OW06, OWH08, PB14, RFYL98, SW12, SLXZ12, TC98, VKKR02, X97, YWW10],

high-density [OW08]. High-Level

[AKAKP18, Ali12, CET16, CK16, DKT+16, DBK+18, DLC+17, GHW+12, HI15, JD00, LLL+18, WMT+16, ZYW+18, ZLG+19, ACT13, AYM05, BHW+13, BD00, CCC+09a, GDTG07, GF06, GGDN04, GWR13, HJ08, JP08, KW02, KJT04, LJ02, LC14, Lin07, LFG+09, MKBS05, MJM11, MLMM08, NS03, OW06, OWH08, PB14, RFYL98, SW12, SLXZ12, TC98, VKKR02, X97, YWW10],

High-Performance

[DKT+16, DLC+17, LLL+18, WMT+16, GHW+12, LYKW09, GDTG07, GWR13, LJ02, LFG+09, NS03, SLXZ12],

high-quality [BHW+13]. high-speed [OW06]. High-Throughput [HIW15].

Higher [BS14a, XPSE12]. History [JM14].

History-Based [JM14]. High-throughput [SAL19].

Hmap [YTHC97]. HMP [SP+17]. hold [KSA+10]. hold-driven [KSA+10]. holding [Pom14a]. Hole [YLZ+17]. Holistic

[RGT+14]. HoPE [PBL+17]. Hot

[PBL+17]. Hot-Cacheline [PBL+17].

Huffman [BH10, NT05]. Huffman-based [BH10]. huge [HCK13]. huge-scale [HCK13].

HW

[AD+07, FLPP09, WWFT12]. HW-SW [AD+07]. HW/SW [FLPP09, WWFT12].

Hybrid

[BLNK14, GCL+16, KK12, LK17, LYLW17, LV14, LGJJ14, MACV14, SLXZ12, WSS+18, CLYP09, KT01, KKMB02, LCZ+08].

Hypercub [TMDF10].

I/O [LC13, Wu09, Yan16]. IC

[AB+17, EK97, K11, KKHK16, LCJ+10, Ped06, WCB15, WSS+18, ZLL13].

IC/MCM [EK97]. ICOS [HLC98]. ICs

[CM18, CLT+15, GSFT16, LH12, LS17, THM15, WWCT18, YHHO9]. IDDQ

[TCP97]. identification

[DA+12, JD+08]. identify [LIA00]. Idle

[LC07]. Idleness [GSD+18]. IDs [SOS15].

II [JW08]. ILA [HZS+19]. illegal [LIA00].

ILP [GBK07, MRC06, WM97, OCRS07, OK08, SR12]. ILP-based [MWG97, OK08].

image [WYIG07]. Impact

[GBK07, MDR15, TY19, XNZ+15, KTKO13]. implement [ADM+13]. Implementation

[ALL17, HCRK11, JM14, KKLP15, MAS16, ORG+15, ZABGZ17, CD09, JWL+03, KYN+12]. Implementing

[HKL+15, KBA08]. implication [WC06]. implications

[BLM00, DA+12, GGBZ02, ZLL13].

Implicit [PT06]. imprecise [PKP+03].

Improve [KKG15, Pom19b, WHXZ13]. Improved [HWGY16, KKLP15, LW18, Giv06, LV02, PDN97, Vah99].

Improvement

[JGM14, KMO+12, THM15, DD02]. Improvements [AKSP16, VLH98].

Improving [CL13, CHC+16, KRS06, KY16, RAKK12, WDD17, WSH+18].

In-Cache [BFG19]. In-network

[CKX+13]. In-Order [ZBP18]. in-place

[KCKG13, WW10]. In-Scratchpad

[DFM15]. In-Situ [SL18]. Incomplete

[Pom19b]. Inconsistency [XP+18].

Increase [KMR18]. Increasing [HW14].

Incremental

[BS14b, EO19, HKV+07, LYP17, LNG+16, SGGR14, DVA02, LG12, LLM01, SMSB05].

Independent [Pom16b, VEO16]. Index

[BC16, HCL+14, HCK13]. index-based

[HCK13]. Index-Resilient [BC16].

indexed [AC06]. indexing [Giv06]. indices

[LCT03]. indirectly [AC06]. Indoor
Induced [CIX15, GSD+18]. Inductive [IPWW17, HMLL11, LXCX404]. Information [HMO+14, ZBPF18]. Informative [TEK18]. Initializability [CPR+02]. Initialization [WL12].

Injection [MLH+17, BPRR98]. Input [JK10, LV14, Pom16a, Pom16c, SRC15, BD05, BH03, CCW08, KM97]. Inputs [Pom18a]. Insertion [HS19, LTW+16, CW01, JHL02, LXCX404, LLHT12, LCL08]. Insertion/sizing [CW01]. Instinctive [MVK+18]. Instruction [HKL+15, HZS+19, KKMB02, LPD+17, LCD07, LHF12, LF12, OT15, SEN05, AMRO00, Hua01, KSK+05, KTKO13, KW06, LP03, LLHT03, LYCP13, LMG09, WH05].

Instruction-Level [HZS+19, SEN05]. Instruction-Set [HKL+15, LP03]. Instructions [KAKSP16]. Instrumenting [MPDG09]. Integer [ETA18, TZ17, GH00]. Integer-programming-based [GH00]. Integrate [LLH+17]. Integrated [HMLL11, HWX+14, HS19, JNCS19, KK14, KLE18, NCP01, RGM15, SHD17, BWB14, LF12, OT15, SEN05]. AMRO00, Hua01, KSK+05, KTKO13, KW06, LP03, LLHT03, LYCP13, LMW09, WH05].

Interconnection [CFX09]. Interconnections [KM97]. interconnects [CML09, CH06, XZC09]. Interface [LHLP16]. Interfaces [PMP17].

Investigation [XLB17]. IO [Yan11]. IoT [CARH18, XLB17, YFT17, YFT18]. IP [BFV15, JHMG18, SGSS03].

IP-Integration [JHMG18]. IPs [GSFT16, LHX+17, LG18, SCH17]. Irregular [KCKG16, KCKG13]. ISAs [SBH+06]. Island [LCY12, GM08]. Islands [JPH16].

Jointly [CCK+18, GYT12, ZLW+15]. Journal [SN10]. JPEG2000 [GFC+09].

languages [BGM04, Edw03, SSG12]. Large [CSX+05, JZYX15, LYL+19, YVC14, AM10, DD02, HH09, MRB+11, SCB01].

Large-Scale [LYL+19, YVC14, CSX+05].

Last [KLJ14, SABSA15, SAL19, CKX+13].
Last-Level [KLJ14, SABSA15, SAL19].
Latch [JNCS19, LCHT02]. latch-based [LCHT02]. Late [LG12]. Latencies [Sch17].
Latency [QBTM16, YKCG14, ZYPC17, WHXXZ13].
Latency-Minimal [ZYPC17]. Lattices [GSS14, HMO+14].
Launch [PTC+15, WWW+12, XCW12, WPHL08]. launch-off-shift [WPHL08].
Launch-on-Capture [XCW12]. Launch-On-Shift [PTC+15, WWW+12]. Launch-to-Capture [PTC+15].
Layer [LYCP17, WL12, Yan17, CLYP09, DDNAV04, OW06, Yan00]. Layout [CFD+16, DZ18, LZ17, LCYN18, RCK+15, SPC+15, WPHL08, XK97, YLZ+17, ZLY+15, GS00, GH00, KG97, WJJYZ11]. Layout-Aware [RCK+15, WPHL08]. Layout-driven [XK97]. layouts [GFC+09, LM96]. Lazy [ZLW+15, ZLW+15]. Lazy-RTGC [ZLW+15]. LDOs [SCK18].
leaf [dW97]. Leak [PCT+17]. Leakage [CFHM09, DHB16, HYN15, JK10, STWX12, SYHL14, XT16, YLLL09, ZBPF18, CS07, CCW08, KOS09, MLG12, YLL06]. Leakage-aware [YLL09]. Learned [XFJ+16]. Learning [EW18a, HXC+18, IE12, LG18, LYHL14, PJ14, TEK18, ZKS+16, ZHC+18, STL+13]. Learning-Based [LG18]. Least [LLJ15].
Legalizer [DBK+18, DBK+18]. length [CCC09b, Con06, LCT03]. Lens [KPSW09].
Lessons [XFJ+16]. Level [CDB11, CET16, CLMIZ10, DKZ+15, HKL+15, HMO+14, HZS+19, KLJ14, LL15, LG18, LS11, PDS12, Pie16, RJ14, SABSA15, Sch17, SS14, SAL19, WLDL17, AYM05, BdM00, BD00, CCYC14, CIB01, CXX+13, Che96, GM08, GG99, GS00, GGD04, HJ08, JD00, JR97, JP08, JT98, KI01, KRK98, KW02, LC14, LLQ+03, LTPT10, Lin97, MW97, MOZ06, MKBS05, MT02, MJM11, MLM08, OCRS07, PB14, PDPK09, PTC05, Ped06, PBSV+06, RFYL98, SW12, Sen11, SEN05, TC98, TJ99, Vah99, VAAH+98, VKKR02, VS12b, WTL+13, XK97, YWW10, ZHM07, ZLL13].
Leveling [CCH+15a, CHC+16, Kha12, CD09]. levelized [KPR06]. Levels [BFL10]. LFSR [KJT04, Pom17a, Pom18b]. LFSR-Based [Pom17a, Pom18b]. Libraries [ACF+11]. Library [KRH18, KKS16, MCZ+16, BD97, DDNAV04, JD00]. Library-Based [MCZ+16, DDNAV04]. lifetime [HDL+12].
ACF+11, ALL17, BPTB17, CH10b, CM08, CHHL96, CLMZ10, GBR07, HLKN07,
HTCP13, LTYW12, LSL+13, LS17, MKK13, MACV14, PMB10, Pom14b, RFB10, SESN15,
TWL16, TMDF10, WGT+17, YKCG14, ZK15, BD00, BPRR98, CH10a, CCX06, DS06,
GOC02, HLCH07, HCK13, JWL+03, KBN09, KKH+02, KJR+07, KHW06, KYN+12,
LLHT03, LYCP13, LHW97, ML09, RTNL05, SUC01, TJ99, YGZ04, ZYDP08, ZP08].
Low-Complexity [LTYW12]. Low-cost [BPRR98, HCK13]. Low-energy [LSL+13].
Low-Latency [YKCG14]. Low-overhead [PMB10]. Low-Power [ALL17, BPTB17,
CH10b, CLMZ10, GBR07, LS17, TWL16, TMDF10, WGT+17, ZK15, CM08, HTCP13,
MKK13, Pom14b, RFB10, BD00, CH10a, DS06, GOC02, HLCH07, JWL+03, KBN09,
KKH+02, KHW06, KYN+12, LYCP13, ML09, RTNL05, SUC01, ZYDP08, ZP08].
Lower [LC96, TC98]. lower-bound [LC96]. Lowering [JLK15].
LUT [CD96, CH00, KNRK06, LKM04, VKT02].
LUT-based [CH00, KNRK06, LKM04, VKT02]. LVS [LBV+06].
MAC [BS14a]. Machine [EW18a, HXC+18, IE12, LYHL14, ZHC+18, CK96, KMC97, MMP00, PHM00, MSR09].
Machine-Learning [ZHC+18]. Machines [DMR10, BDC08, CHHL96, MS08, BHDS09].
Macro [LJ18], macrocell [CHY05].
Management [ABC+17, BM11, CHBK15, DLC+17, DMR10, GCL+16, HC17, HXC+18,
KKLG15, LHW+17, MDR15, PJL14, PBZM19, VA17b, WMT+16, AHAKP08,
ADDM+13, AMM+06, ANR13, BHDS09, BMJ13, CLQ12, DS05, FHHG12, GK14,
HCK13, IBM07, LMB+12, STL+13].
Many [SESN15, WMT+16]. Many-Core [SESN15, WMT+16]. Manycore [KLK+17].
Manycore-Based [KLK+17]. mapper [YTHC97]. Mapping [CPS16, ETAV18, HABS15, HAB+17, ZYP17, CSL+07, CH02, CH00, CHY05, JP12, JD00, KL05, LKM04, MB01, PL98, SKS12, WY06, WSEA99, ZS02]. Marching [CCH+15a]. Marching-Based [CCH+15a].
MCEmu [THT12]. MCM [EK97]. MCM [EK16]. MPAT [LLK+14].
MCUs [MRB+11]. MDE [ORGD+15].
mean [Das04]. Measurement [APDC17, CRT19, JB98, LG12].
Mechanisms [CBO+18, GBK07]. memetic [LFG+09]. Memories [AAA15, DFM15, JSA18, JD00, MRB+11, NR03, OK08, RMB10, SFG+08]. Memory [BLNK14, BD14, CPS16, CCK+18, CIX15, DFM15, JCK+18, KLSP11, KKLG15, LLL+16, LWZ+19, PND97, PPP+15, PBZM19, SSL17, TLF16, TRM+16, TMDF10, WQC+16, WDZG16, WGS16, XNZ+15, ZLW+15, ZZCY17, AMM+06, BD08, BHDS09, BGN+07, CPW04, CJLZ11, HKV+07, IBM07, JCS+08, Kan06, KG09, LSPC14, MB04, NdLCR03, OK08, PDNO0, PCD+01, SUC01, SM00, WH05, Wu09, ZYZ+13, ZP08]. Memory-Based [BD14, CPS16, LWZ+19].
Modification [JK10, PAV17]. Module
[LCYN18, SC06, CCX06, SCJ01, TW96].
modules
[CWW96, CZW+03, KT96, OWH08].
Modulo [PG15]. Monitoring [FYCT15,
LL15, LHL16, LLH+17, SL18, APB+08,
CXX+13, CBR+05, KP13, WJY+07].
Monolithic [LDD+18]. Monotone
[DPNB02]. Monte [GLY+12]. morphing
[RAKK12]. MOS [ZK15]. MOSFET
[BFL10]. motes [RFB10]. Motion
[FG18, ZLG+19, DHV+00, KMS12].
Movement [HWGY16]. MP [CRC15].
MPSoC
[BGN+07, GK14, KKJ+08, KH10, SGD10].
MPSoCs [ADP+07, MHT14, RGT+14,
SKS12, SSL17, YP10]. MRAM [JZY15].
MSG [WY06]. MTCMOS [HLCH07].
Multi [BS14c, CYH19, ETAV18, HC17,
JOH17, KLE18, ZLY+15, CNQ13, HGBH09,
HMB98, KOS99, MPSJ07, PB14, Pom14a,
RAKK12, SZY+12, Wu09]. multi-
[KOS99]. multi-bank [Wu09]. Multi-Core
[CYGH19, ETAV18, RAKK12, SZY+12].
multi-cycle [Pom14a]. multi-engine
[CNQ13]. Multi-FPGA [BS14c].
multi-MoC [MPJ07]. Multi-Mode
[JOH17]. Multi-Objective [KLE18, PB14].
multi-phase [HMB98]. multi-processor
[HGBH09]. Multi-Start [ZLY+15].
Multi-threaded [HC17]. multibank
[WH05]. Multicast
[WWCT18, XS16, XCF18]. multichip
[OWH08]. Multicore
[BM11, CRC15, DFM15, HWX+14, JPHL16,
KLSZ11, LS11, LHK+15, LMA+16, QBTM16,
SPT+17, SAL19, THT12, WDZG16,
BHV+13, CNQ13, DSH12, HLD+12, KP13,
LPTP10, Pdl11, QM12, SNL12, WTL+13].
Multicycle [Pom15a, Pom13].
multidimensional [SGBD13].
multidomain [AM10, BMJ13].
multifunctional [AM10]. Multiharmonic
[WGT+17]. Multilayer
[KKHK16, LLLL18]. Multilevel
[HPBW14, JZYZ15, PJL14, JCS+08, SGK08].
multilevel-cell [JCS+08]. multimedia
[HLK+07, ZHM07, ZHOM08]. multimetric
[HR06, RGM09]. Multimode [SSG03].
multiplane [AJM13]. Multiple
[BM11, GY12, KRL15, Pom16b, SRC15, WC06,
YLZ+17, CH96, GM08, JH97, KFH+08,
LBV+06, LLHT12, MRB+11, MR05,
NdLCR03, PT06, PMB10, RMKP03, RM09,
SBGD13, WLT08, WLCJ09, WSEA99].
multiple-bit [RM09]. multiple-choice
[SGBD13]. multiple-output [WSEA99].
multiple-project [WLT08].
Multiple-Supply [BM11].
Multiple-Transient [KRL15].
Multiplexed [LHC16]. Multiplexer
[Pom18a]. Multiplication [GYT12].
Multiplierless [ACFM12, AFM14].
multipliers [RMPJ08]. multiprocessing
[ZM07]. Multiprocessor
[CHBK15, CH17, JOH17, KFH+08, NSH+16,
APB+08, DCK07, DCK09, DCK10, HCLC98,
Kan06, MOZ06, WLL+11, WG11, ZAJ+12].
Multiprocessors [HAB+17, JGM14,
KBV+15, PJL14, IAI+09, PT05, ZYDP08].
Multirate [ZAGBZ17]. multistage
[LO08]. multistandard [CCC+09a].
Multitarget [SKS+18]. multitasking
[NG06, PW99]. multiterminal
[JCP05, MW97]. Multithread [SYHL14].
Multithreaded [HPB11]. Multiversion
[HCL+14]. multivoltage [CCX06].
Multiway [FW00]. mutually [DK08].
N [PR07]. N-detection [PR07]. NAND
[PPP+15, WQC+16, ZLY+15]. Nanometer
[BFL10, BPTB17, STWX12]. nanoribbon
[YMC+13]. Nanotube [WSH+18].
Navigation [MV+18]. NBTI
[BDB12, CMP10]. NBTI-Aware [CMP10].
Near [KCKG13, SHN12]. Near-optimal
[KCKG13]. near/sub [SHN12].
near/sub-threshold [SHN12]. Nested
[AA17, CL99a]. Nesterov [LCC+15]. net
[LXCH04, MW97]. nets [JCGP05].

Network
[CARH18, HCZ+16, HXC+18, KLK+17, LDD+18, LW17, MT15, XS16, XCF18, YKCG14, ZYS12, CSC08, CL13, CM08, CKX+13, CCL04, HW14, KMC97, LCOM07, LLKY13, LLKC13, OCRS07, RFB10].

Network-on-Chip [LDD+18, LW17, XS16, XCF18, YKCG14, ZYS12, CSC08, LCOM07, LLKY13, LLKC13]. Network-on-Chips [HCZ+16]. Networked [KC10]. Networks [BKW15, BDBB19, IHM15, JLJ15, LYL+19, MPM+17, SRTG19, XLS15, YMB15, ZFSL11, ZYPC17, ZMP16, BLR06, CKX+13, CBR+05, GWR13, HMVG13, JP12, JSG09, MD13, MDM07, OM08, RL13, TDE08, VS12a].

Networks-on-Chip [BDBB19, IHM15, JLJ15, CKX+13, JP12, OM08]. Networks-on-Chips [BPTB17, CLMZ10, GDTF17, MACV14, KJR+07].

Neumann [KT01]. Neural [LYL+19]. Neuron [ZK15]. Neuron-MOS [ZK15].

Next [YD16]. NoC [ADDM+13, HWX+14, MHT14, QBTM16, TCL14, SPT+17].

NoC-based [MHT14, HWX+14, QBTM16]. NoC-HMP [SPT+17]. NoCs [AJM13, DLC+17, JM14, KPF16, MT15].

Node [BDB12, PDS12, DHZ+11, JSG09, ZHOM08]. node-centric [ZHOM08]. Nodes [BPTB17, NSS+16]. noise [GBBZ02, HR06, HMLL11]. nominations [Ano13]. Non [GLY+12, LL15, SL18, STJG16, WDLD17, ZYW+18, KCKG13].

obstacle-aware [SMYH07]. obtain [MS00]. Occupancy [ZHC+18]. Octilinear [HGLC16, Yan08]. Off [FG18, PDN00, RYL+09, WPHL08]. off-chip [PDN00]. Office [GCL+16]. Offline [MGR+15]. offs [FFHG12, PCC09, WYG99, WGDK07, XPE12]. OLED [LKH19]. On-Chip [ALL17, JNS+17, JZYZ15, SCK18, ZYPC17, LCOM07, PDN00, ZSZ10, ADS+09, CCL04, KP13, LH13, NR03, PPDK09, YLP+13, ZM07].

On-Demand [AAA15]. Once [CHBK15]. One [XFJ+16]. Ones [PB12]. Online [ZAJ+12, ADDM+13, CSAH+07, RAKK12]. Only [CHBK15]. open [BCR+08, BD05]. open-source [BCR+08]. Operating [TWL16, PBM10]. Operation [BPTB17, CLMZ10, GDTF17, MACV14, KJR+07].

Operations [BC16, LWZ+19, ARLJH06, BG01, HPK99]. operators [BD05]. opportunities
Opposite [HCN09]. Opposite-phase [HCN09]. Optical [DZ18]. Optimal
[ABC^17, BKW15, BASB01, Cha01, CCX06, CARH18, CH06, FG18, GSS14, HWCL13, KNDK96, LCHT02, OWH08, PL98, SCK18, TS96, TPC^+17, ZW98, BW00, BMJ13, CACS05, CGN96, CH00, DSK01, GH00, KCKG13, LH09, MKW08]. Optimization
[ACFM12, BZWZ17, CYH19, CK16, DHVW18, DZCD15, GLY^+12, GK07, HLG^+15, HS19, JPCS19, KKK12, KKS16, LHC16, LZZSV15, LH11, LYCP17, PPP^+15, SYHL14, SRTG19, TRM^+16, WHRC12, WK12, WSRH16, BLM00, BDM^+99, BdM00, BCC08, BDB98, BFP08, BOC00, BGN^+07, CL2L06, CSC08, CCC09b, CFX09, CBJL11, Con06, DP02, G04, GBC07, GDF09, GHW^+12, H06, HPK99, HG07, JC06, KJKK03, KLSP11, KCKG13, KSA^+10, LLHT03, LCHT02, LC07, LLC13, MBK05, MHT14, MKW09, MLG12, OM08, PCD^+01, PEPP06, RGM09, RJBS09, SB98, SPA^+03, THL^+13, VKKR02, VLH04, WGD07, WLL^+11, XZC09, G09]. optimizations
[GG04, KRS06, SSG12, SC00, ZHTC09]. Optimized
[ACF^+11, BC05, HCRK11, VA17b, ZABGZ17, ZYS12, KCA04, SY07]. Optimizing
[GYT12, KSK^+05, LPP00, LAS01, SY08, ZLW^+15]. optimum
[Das04]. Orchestrated [SAL19].
Orchestration [EW18a]. Order
[DZCD15, KQP^+19, SXZ13, ZBPF18].
Ordered [JD18]. Ordering
[AJM13, GKM05, LHC04, MKW08]. organization
[PDN97]. Oriented
[RGT^+14, HCLC98, Hsi00, Hsi01, LHZ^+06, Sen11]. Orthogonal [GLY^+12].
outbreak [FNP09]. Output
[JMI4, WSEA99]. Overhead
[WLL^+11, MHQ07, PMB10].
Overhead-aware [WLL^+11]. Overlapping
[KCKG16, YYG^+16, KCKG13]. Overlay
[EW18b].
FYCT15, KPF16, LVS16, LLLL18, MCD12, STJG16, TD03, ETR07, LC14, PT06, PMB10, SHLL98, SSP04, XLCL13, Yan08.
Polynomials [GLY+12]. port
[CL13, SBC08]. port-scalable [SBC08].
portable [LCZ+08, Rak09]. POSE [Hsi01].
Positioning [HK18]. Postlayout [CLLK06].
Postplacement [CMB07, LCY12, WWG08, XLL+16].
Postscheduling [FHHG12]. postsilicon [MKK13].
Power [ACF+11, ALL17, BLM00, BS14b, BM11,
BPTB17, CMP10, CH10b, CHBK15,
CXM+16, CLMZ10, DLC+17, FG18, GBR07,
GCL+16, HPK99, HYN15, JLK15, KKHK16,
LG18, LKM04, LYHL14, LLK+14, LHIJ2,
LHIK+15, LHIK19, LSI7, MAS16, MKW09,
MN17, PJL14, Ped96, PTC+15, SCK18,
SC00, SBC08, SYHL14, SSCS10, SSN15,
TWL16, TRM+16, TMDF10, TLI14,
WVY99, WGT+17, WC10, WSRH16,
XL15, ZFLS11, ZK15, ZS16, ZMTC13,
AHAPK08, BDM+99, BmD00, BD00, BM13,
BBD00, CS07, C10a, CM08, CIB01, CCX06,
CCW08, CHHL96, CCC09b, CJLZ11,
CLQ12, DS06, DTC+09, ETR07, GOC02,
GD09, GF10, GS13, HR06, HLCO7,
HHT08, HTCP13, JWL+03, KBN09,
KKF+02, KOS09, KC13, KHWO6, KYN+12,
LMB+12, LHT03, LCY13, LH+17,
LBV+06, LHV97, MKK13, MRC06,
MKW08, MLG12, MFS09, ML09, NT05,
PPDK09, Pom14b, PWY05, PR96, RFB10].

Power [RTNL05, STL+13, SUC01, SPMS02, SNL12,
SZV+12, TKV07, T199, TH+14, WJY+07,
YHL+11, YGZ04, YL06, YHH09,
ZHM07, ZLL13, ZYDP08, ZP08, ZYP09].

Power-Aware [LHK+15, SBC08, SNL12].

Power-delay [MKW09, SC00, WVY99].

Power-density [ZYP09]. Power-Efficient
[JL15, SZV+12]. Power-Gating
[KKHK16, YHL07]. power-optimal
[MK10]. Power-safe [ZMT13].
power-transmission [KC13].
Power/Ground [LHJ12]. Powered
[XPZ+18, CSAHR07]. Powerful
[LYW12, MB04]. PowerPC [WAZ98].
Practical [Pic16, VJBC07]. Practice
[MDM+12, SSCS10]. PRAM [KYL16].
precedence [ZAZ13]. Precise [Ali12].
prefixed [PSK08]. Predictability
[NSCM17]. predictable [HGBH09].
Prediction
[CS07, DKZ+15, FG18, HWX+14, JGM14,
PBL+17, CR12, OM08, SYL09].
prediction-based [OM08]. Predictive
[AVG19, HW00, TKV07]. Preemptive
[HH15, SS17, GD+08]. Preface [YD16].
Preferred [Pom18a]. Prefetching [LV02].
prefix [LH09, ZCG06]. Preparation
[PGCB16, RCK+15, SKS+18]. prescribed
[DSR02]. Presence [EKS+14, MCM08].
Preserving [HK18]. Prevent [WSS+18].
Primary [Pom16a]. Principle [CHBK15].
principles [Ped96]. Print [DZCD15].
Printed [GDTF17, OW06]. Priority
[HH15, KPF16, LMS16, WDZG16, MHQ07].
Priority-Aware [KPF16].
Priority-Preemptive [HH15]. Privacy
[HK18]. Proactive [KBV+15].
Probabilistic
[APS18, CKAP07, CB17, GQW19, KW16,
KVMH08, LBL06, FZKS11]. Probe
[Kha12, BC05]. Probe-Wear [Kha12].
problem [DPN02, DS06, FMS01, LVL03,
NR01, PDN00, SW99, YW10]. problems
[SB08, WG07]. Procedure [Vah09].
Process [AKAP18, GC18, LWZ+19, RJ14,
VEO16, CS07, GM08, KTK013, KPR06,
LG12, LH13, LT+13].
Process-in-memory [LWZ+19]. processes
[JB08]. Processing
[BM11, GFJ16, LYL+19, MFHP12, HVMG13,
JSG09, LPP00, NM13, TYH08, ZHOM08].
Processor [HHK+15, ISE08, HLP16,
LYHL14, LF12, NSH+16, NRZ+18, SPT+17,
VLLG01, DHZ+11, GGG04, Giv06, HGBH09,
KBA08, LMB+12, OCRS07, PND97, PNN00,
RFN10, SGD10, WKR09]. processor-based
[PD00]. Processors

recompilation [GF10]. Reconfigurable [AVG19, BKW15, CPS16, EK16, JPHL16, MLC08, MRL+19, ORGD+15, SCC17, SVK17, ZLQ15, ARLJH06, GDG+08, HBC+08, HW14, JBC+10, KKMBO2, KSLP11, LCK+09, RHA08, WKRO9, WLC02, YLP+13, YGH+10, YULL09]. Reconfiguration [MCZ+16]. reconstructions [RCG+08]. reconstructions [RCG+08]. reconstructions [WC06]. reconstruction [Yan08]. Recover [BFV15]. Recovering [JCK+18]. Recovery [NSS+16, WL12, ZAZ13]. Rectangle

RL [NT05]. RL-Huffman [NT05]. RLC [MN17]. Robust [BJX15, DZ18, GCZ’15, MCD12, STGR15, TLF16, ZK15, CLYP09, ST99]. rotary [TDF’09]. Routability [AMM’18, HWGY16, THL’13, ZSY18, CLYP09, HSA’04, SYZ08, WSV’14, YCHT00]. Routability-Driven [AMM’18, HWGY16, ZSY18]. Routable [LCYN18]. Router [TCL14, XS16, CLYP09, JCGP05, MLC08, TDF’09, wATkK02]. Routers [JM14]. Routing [GKM05, JD18, LHZJ2, LLLL18, LKC’18, MCZ’16, RGM15, TZ17, WLLH16, XYG’16, Yan18, CZW00, CKK98, DSKB04, DVA02, GMN’13, LLKC13, LCC11, LCJ’10, MW97, OW06, OHW08, RI13, SMYH07, Yan00, YW09, Yan11, YM’13, YCHTO0, ZW98, ZHTC09]. Routing-aware [GKM05]. Routing-Based [LLLL18]. Row [SAL19, LC13]. row-based [LC13]. Row-Buffer [SAL19]. RTGC [ZLW’15]. RTL [BK00, BBD00, BFP08, BFV15, Fu05, GS00, LV14, PGB01, PSK08, XK07]. Rule [KMO’12, MS17, RS08]. Run [DP02, HMLL11]. Run-time [DP02, HMLL11]. Runtime [BHW’13, LL15, NRZ’18, ADDM’13, GFC’09, GDG’08, HW14, RCG’08, SKS12, WJY’07, YGH’10]. runtime-reconfigurable [GDG’08].

safe [ZMTC13]. Safety [MN17, XLY’18, MS08]. Salsa20 [MAS16]. Sample [PGCB16, ZK5’16]. Sampling [WTR12, ZYW’18]. SAT [CLM’10, Che18, CVY’14, DP02, RCD07, SGK08]. SAT-based [CLM’10, SGK08].

Satisfiability [BR12, GMSSS02, PG15, GPK’09, HSA’04]. satisfying [QSS90]. saturation [CCL03]. saving [HW00]. Savings [LKH19].

Schedulability [GDG’08]. Schedule [SGC’14]. Scheduler [NHS’16, JP08]. schedules [DSRV02, LC96]. Scheduling [ABC’17, BB17, BDBB19, CAC505, CX15, JOH17, LHW97, PMS15, SSC17, SAL19, SZB17, WCB15, WDZG16, WWCT18, CLM’10, CJLZ11, DS05, DHV’00, GBC07, HN07, JR97, KW02, Kmc03, LLHT03, MKBS05, MJM11, MHQ07, MR05, MGW97, NR01, RCG’08, SXX’06, TC98, WH05, WGD07, YW10, YGH’10, YLYL09].

schematic [KG09]. Scheme [BM11, KKLG15, KLK’17, LTYW12, WHRC12, XS16, HCK13, KSA’10, XLCL13]. Schemes [MGR’15, CSC08, KCKG13].
Score [XLL+16]. scratch [IBMD07].
scratch-pad [IBMD07]. Scratchpad
[CPS16, DFM15, BD14]. Scrubbing
[SVK17]. Search
[VCLD03, CMB07, DVA02, YWW10].
search-based [DVA02]. Searching
[DK16, SYZ08]. Section [BMDG17, CO18,
KLZ11, YD16, CH10a, CLQ12, HJ08,
JW08, KLSZ09, MD13, RBA+12]. Secure
[BHK17, HBC+08, ISE08, HRK18].
Security [GQW19, HMO+08, HRK18].
Self-Aligned [XYG16]. Self-Measurement
[BHK16, SYZ08]. Self-Alignment
[XYG16]. Self-Test
[EO19, SBB+18, WCB15, XYG+16, SEN05, SZV+12].
Self-Aligned [XYG+16].
Self-Measurement [CRT19]. Self-Test
[EO19, SBB+18, WCB15]. self-testing
[SE05]. self-tuning [SZV+12]. Semantic
[Pie16]. Semantics [KC98]. sensing
[LTH99, WJY+07]. Sensitive [YBS+18].
sensitivity [LON08, PMB10, ST99]. Sensor
[NS+16, PDS12, ZHC+18, DHZ+11, JSG09,
LCK+09, RFB10, ZSZ10]. sensor-driven
[LSZ10]. Sensors [FG18, YHL+11].
Separation [EK16]. sequence
[GF06, LC07, MMP00]. Sequences
[Pom15b, Pom15c, Pom17b, Pom18a, KT01,
LWC07, PL03, PR11]. Sequential
[PLS16, LD17, SPA+03, WK12, BLR06,
BOC00, Che96, CPR+02, Edw03, HVF+01,
HRP00, HCC01, JB98, KT96, KOS09,
MMP00, PL98, SNH02, Vah02, YWW09].
sequentially [LIA00]. SER [LD17]. Serial
[PMP17]. Serialized [KH10]. Series
[TW96]. Series-parallel [TW96]. server
dW97]. servers [ANR13]. Service
[DKZ+15, AHAKP08, CBR+05].
Service-Level [DKZ+15]. Set
[HLK+15, LP+17, LHF12, LF12, MCD12,
OT15, Pom19b, DPNB02, Hua01, LP03,
LDC07, LLYW10]. Sets
[Pom16b, YRH11, PR07, TCP97]. SEU
[MLF+12]. SHAPE [HRK18]. Shannon
[GBR07]. shaped [Meh98]. shapes [LM96].
Shaping [KLK+17]. Shared
[KLJ14, ZAZ13]. Sharing [LF12, TCL14,
WGSH16, BDB98, DK8, SHL98]. shield
[WLX04]. shielding [Mut09]. Shift
[PTC+15, WC10, WWW+12, LWK11,
WPH08]. shifter [Kag05]. short [SSP04].
short-path [SSP04]. Shuffling
[HHK+17, KJR+07]. shutdown [HW00].
SID [LHK+15]. SID-Based [LHK+15].
Side [DZZ+18, ZBF18]. Side-Channel
[DZZ+18, ZBF18]. Sigma [ZYW+18].
Signal
[MFHP12, STGR15, WGT+17, ZSY18,
CPW04, LLLC13, SR12, TYH08, XYZ09].
signal-integrity [XZC09]. Signals
[SMH08, MWK08]. Silicon [HAB+17].
Similarity [YRH11]. Simplifying [HA05].
Simulated [ZYS12, SMYH07]. simulating
[RHA08]. Simulation [CDB11, EKS+14,
EO19, GDPR01, HBPW14, HIW15,
HPB11, HMM15, MDMA+12, PRK08, ST99,
SKM+16, WWFT12, ZWD11, CVMP19,
DCK10, DL11, HVF+01, HKB+07, KMC97,
LOC12, PTC05, PHM00, RSR01, WTL+13].
Simulation-Based
[EO19, PRK08, LOC12]. Simulations
[LS11]. Simulator
[LHK+15, FWCL05, EBR+09]. simulators
[RPKC05]. Simultaneous [CC06, CYV+14,
CFX09, JK10, LHX04, SM00, CCX06,
CCW08, CW01, MRC06, YHH09]. simultaneously
[HLX07, SPS04]. Single
[BD14, HCW+16, KRL15, SKS+18, SSL17,
[AA17, BR12, BD00, CSKR05, CET16, CLMZ10, CCL03, EO19, GB07, HS18, HMVG13, HCZ+16, KK14, KKK12, KKS16, LS17, NG06, PDS12, PG15, QS+W15, RJ14, Sch17, GC+S14, SS14, SGGR08, SV11, SCCH08, WCC14, YMB15, ADS+09, BD+09, BZ08, CLKL06, CM00, CBAM10, CL99b, CD96, DDNAV04, FFHG12, GG99, GOC02, GH00, GGDN04, GWR13, HLKN07, HCLC98, Hsio1, HLHT08, Huo1, JLF+12, KSS+09, KKH+02, KK11, KW02, KHP05, KF+08, LCD07, LC14, Lin97, LLHT12, LW06, MM00, MDM07, MKB05, MJM11, MR06, PBS+06, RFYL98, RS03, SW12, SCB01, SV07, TN99, TC98, VLH98, VKT02, VKK02, WV02, WGI11, WKR09, XK97, XPSE12, YYW10].

Synthesized [SB17]. Synthesizing [SS14].

Systematic [PSK08].

System [BdM00, CH17, DMR10, GM08, GPH+09, HKL+15, HZS+19, LL15, LG18, NRZ+18, PDS12, PPK99, Pie16, PBSV+06, SL18, SGGR14, TK18, WL12, YGY+16, ZHM07, APB+08, BPRR98, BM13, Cha01, CKP07, CSC08, DC07, GG99, GABP00, HGBH09, HMVG13, HW00, LH99, LLCC11, MOZ06, MPSJ07, OCRS07, Ped06, SPG+08, Sen11, Vah09, ZL13, dW07, AHL+08, LVL03, WLL+11].

System-Level [HKL+15, LL15, LG18, PDS12, Pie16, B100, GM08, PPK99, ZHM07, MOZ06, OCRS07, Ped06, Sen11, Vah09, ZL13].

System-on-a-chip [Cha01, CKP07].

System-on-Chip [HZS+19, SGGR14, APB+08, BM13, CSC08, WLL+11, AHL+08].

System-scenario-based [GPH+09].

Systematic [AMM+06, KPR06, RPK05].

SystemC [BK10, CVMP19, HV07, WWFT12, RHA08].

SystemC-AMS [CVMP19].

SystemCoDesigner [KSS+09]. SystemJ [MSR09, SPT+17]. Systems [BHK17, BLNK14, BJX15, BB17, BS14c, CH10a, CCH+15a, CHBK15, CYH19, DF15, EAP17, HK18, IG18, KLSZ09, K10, KMR18, LL15, LHK+15, LZZS15, LMA+16, MRL+19, NSH+16, ORGD+15, PPP+15, PSNC18, PG15, PBZM19, QBTM16, SSC17, SPT+17, STWX12, SS14, SALT19, THT12, WHRC12, WQC+16, XPZ+18, YRH11, ZLW+15, ADM+13, AM10, ADDM+13, ARLJH06, BD00, BWB14, CSAHR07, CMM00, CSL+07, Con06, CLQ12, CCL04, DCK07, DRG98, DDNAV04, DTC+09, GDGD07, GPH+09, GDF09, HKL+07, HV07, HLD+12, HCLC98, Hsio1, HBC+08, JS13, JWL+03, JW08, KKMB02, KQ13, KFH+08, LCZ+08, LCK+09, LSDV10, LDK99, LP07, MBB01, MDG98, MHQ07, ML09, OKC08, PDN00, PCD+01, PSL+98, Ped11, PEP06, Q509, Rak09, RSR01, SCB01, SLXZ12, SUC01, SHN12, SS11, SZV+12, THC+14, W016, W09, ZAJ+12, ZP08, SN10, CPX14].

Systems-on-Chip [BHK17, HLD+12, KP13]. SystemVerilog [CVY+14].

T [YY09]. T-trees [YY09].

[T] [WSEA99]. table-based [WSEA99].

Tasks [CH02, YTC97]. Tag [YBS+18].

Tailoring [CSC08].

Tandem [MSR09].

Target [KYL16, FS13].

Targeted [SNL12].

Targeting [LPD+17, JBC+10, MLMM08].

Task [LMA+16, SZB17, DCK07, GK14, GBC07, YLL09].

Tasks [CH17, SSC17].

taxonomy [KP13].

TCONMAP [HABS15].

ddf [ZMTC13].

Technique [CV17, JK10, LGGJ14, SBB+18, DHV+00, HCH07, IBMD07, K101, LC96, MB04, Mut09, RSR01].

Techniques [MMD07, Mit16, PTC+15, TWL16, WSV+14, YD16, AM05, BD97, BdM00, BH10, BASB01, CLM+10, CSAHR07, CACS05, CFHM09, D06, D02, HPK99, HCS01, HCC01, KSK+05, KMS12, KHP05].
LSDV10, LB00, LHW97, LHCT05, LVL03, OCRS07, OK08, PCD+01, RJBS09, TY97, TBZ13, TYH08, VMP+00, XK97, ZHOM08.

Technologies [SN10, BC08]. Technology [BFL10, CHY05, DKT+16, DBK+18, HABS15, JZYZ15, SABSA15, YD16, ZS02, BM00, CH02, CH00, KL05, LKM04, PL98, WY06, WSEA99, ZLL13]. technology-dependent [BLM00].

Technology-Driven [DKT+16]. TEI [LHW+17]. TEI-power [LHW+17].

Temperature [JGM14, LHW+17, ZYP09, ADP+07, CLQ12, DH06, WJY+07]. Temperature-aware [ZYP09, ADP+07, CLQ12]. template [HGBH09]. Temporal [Pie16, SSC17, YYC07, BD05, Das09, YYC09]. Temporally [PRCK08]. terminals [ISE08].

Test [AYM05, BDBB19, EMO03, EO19, GF06, IE12, LCT03, MCD12, NSCM17, Pom15a, Pom15b, Pom15c, Pom16c, Pom17a, PAV17, Pom18a, Pom19b, RJ14, SBB+18, TBZ13, WCB15, WWCT18, WC10, WWW+12, XCW12, XLCL13, BC05, BWB14, Cha01, Che96, CCL04, ETR07, FNMS01, GM03, HLKN07, HRP00, HJ08, KT01, LTH09, MD08, NCP01, NT05, PR98, PR11, QM12, RMKP03, SW04, SBC08, SEN05, SNC12, TCP07, TD03, WPHL08, WWC04, XZC09, ZMTC13, SSS03].

Test-Architecture [WWCT18, XZC09]. Testability [Pom16a, Pom18a, FRS97, PS08, Pom14a, SCJ01]. Testable [GBR07, RMPJ08]. testbenches [BFP08].

Testing [NS03, SBC08]. Testing [NS03, PTC+15, TPC+17, WWCT18, WWW+12, XCW12, XS16, XCF18, JT98, KB09, LHCT05, PKP+03, SEN05, SXZV13, SCJ01, SOC06, TD03, XZC09]. Tests [Pom15a, Pom16a, Pom16c, Pom18b, Pom19a, Pom19b, DNA+12, PR09, Pom13, Pom14a, Pom14b]. text [LDK99].

Three-layer [Yan00]. three-step [Vah02]. Threshold [DHVW18, SV16, SHN12]. Throughput [HCRK11, HIW15, KLLJ14, SEN15, CJLZ11, GM08, SKS12, SHN12]. throughput-aware [SKS12].

Throughput-Optimized [HCRK11]. Tier [SSL17]. tightly [LMB+12]. tightly-coupled [LMB+12]. Tightness [APS18]. Tiled [DK16]. Tiled-DNUCA [DK16]. Time [APDC17, BB17, CHBK15, CH17, FG18, HXC+18, IGN18, KPF16, NSH+16, PSNC18, SSC17, WZGJ16, YRH11, ZLW+15, ZZC17, APB+08, ARLJH06, CSAHR07, DP02, DRG98, HMLL11, HLKN07, HMGV13, KRRK06, LCHT02, LTPR+13, MR96, MHQ07, NG06, PEP06, PW99, SCB01, WGDK07, WLL+11, ZAD13]. time-[ARLJH06]. time-constrained [NG06, SCB01]. time-constraints [CSAHR07]. time-domain [LTPR+13].

Time-Triggered [BB17, IGN18]. time/resource [WGDK07]. Times [PMS15]. Timing [CZW00, CB17, HIW15, HS19, JNCS19, KKK12, LV16, LJJ18, LWC18, LYCP17, LNG+16, M'M11].
MKW08, WSH+18, WKC12, WL12, Yan08, YRH11, DCK09, DRG98, DH06, KPSW09, KPR06, KC98, LC14, LCHT02, MCMW08, Q09, SX+06, SCCH08, YHL+11.

Timing-aware [MKW08]. Timing-Driven [LNG+16, CZW00, Yan08, DRG98].
timing-error [SCCH08]. Timing-Yield [WSH+18]. TinyOS [RFB10]. TLB [KSK+05]. TLM [BFPO8]. TLM-to-RTL [BFPO8]. TODEAS [CH10a, KLSZ09, BC08, GK09, QS11, TK18].

Tofoli [MDM07]. Toggles [TPC+17].

Tolerance [GVJ15]. Tolerant [CYH19, LW17, XCF18, CEB06, NaLCR03, SC06].
tolerate [SPG+08]. Tool [BBEM15, JHMG18, TDE08, VLH98].

Toolchain [GVJ15]. toolkit [MSD06]. tools [BDm00, GS00, MD13, MT02].

Topological [SHD17]. Topology [BDBB19, HCZ+16, TDF+09].

Topology-Agnostic [BDBB19]. Trace [BHK17, BHW+13]. Trace-Based [BHK17].

Traceability [YFT17]. track [LCC11].

Tracking [HMO+14, FS13]. Trade [PCC09, FHHG12, RJL+09, WYYG99, WGDK07, XPSE12]. trade-off [RJL+09].

Trade-offs [PCC09, FHHG12, WYYG99, WGDK07, XPSE12]. Tradeoff [RS18].

Tradeoff-Aware [RS18].

Transferring [LDD+18]. Trading [FG18]. Traffic [QBTM16]. Training [ALL17].

Transactions [CH10a, CPX14, KLSZ09].

Transceivers [JNS+17]. transform [KLo1, KVMH08]. Transform [LCC+15].

Transformation [SPC+15, BGN+07, KKH+02, Vah99, VJBCC07].

transformational [Voe01].

transformations [HKV+07, LLM01, PCC09, WYYG99].

Transforms [ACFM12, MFHP12].

Transient [KRL15, DC07, MRC06].

Transistor [CFD+16, HCW+16, PR96, RS03, WSH+18].

Transition [JOH17, MHQ07, LHCT05, PL03, PR09, WPHL08].

Transition-overhead-aware [MHQ07].

transitions [Mut09]. transitive [YYC07].

Translation [WL12]. transmission [KC13].

Transmissions [CBO+18]. Transparency [WHRC12].

Transparent [Pom17b, SV11, PR11]. Transparent-Scan [Pom17b, PR11].

Transposition [CCH15b]. traversal [HRP00]. Tree [HGLC16, KK11, KKS16, LLLL18, LNG+16, LS17, WCC14, CHH09, LLHT12, LYKW09, LLLL13, TDF+09, wATkK02, Yan08, YYC09].

tree-based [YYC09]. Trees [CCH15b, KE16, GC06, WCC03, YYC09].

Trends [CH10b, HHL14].

Triggered [BB17, HS18, IGN18, BDC08].

Triggering [EW18b, HW14]. Triple [LZ17, ZLY+15].

Tristate [CK16].

Trojans [XFJ+16].

Trust [GSFT16].

TSocket [CCH15b].

TSV-based [KK11].

tunable [CFHM09], tuned [RFB10].

tuning [LT11, SZV+12].

Turbine [WSRH16].

Tutorial [Edw03].

twisted [YW09].

Two [LZ17, OW06, TJ99, CSC08, DDDN04, LHZ+06].

Two-layer [OW06, DDN04].

Two-level [TJ99].

two-stacked-die [LHZ+06].

Two-Stage [LZ17].

UCR [YBS+18]. Ultra [ACF+11, CK16, GBC07, MACV14, SESN15, ZLG+19].

Ultra-fast [GBC07].

Ultra-High-Definition [ZLG+19].

Ultra-High-Speed [CK16].

Ultra-Low [ACF+11, MACV14, SESN15].

UltraScale [AMM+18].

Unauthorized [CBO+18, GDFT17, K0018].

Unbounded [VSI2a].

Uncertain [KW16].

uncertainties [CS07].

Uncertainty [GC18, STGR15].

Uncloable [YBS+18].

Uncore [WGSH16].

Understanding [HHL14].

Undetectable [Pom19b].

Unicast [XS16, XCF18].

Unicat-Based [XS16, XCF18].

uniform [Kag05].

Uniform [HZS+19, KCG16].
Unique [SOS15]. UNISIM [LS11].
UNISIM-Based [LS11]. Unison [SGJ96].
Unit [BM11, HWCL15, HWCL13].
Unit-Capacitor [HWCL15]. Universal
[CW96, JCK+18, FLW+02, FLWC07].
universality [RHN00]. Unknown [SSO16].
Unknowns [EKS+14]. Unnecessary
[Pom15c]. unpredictability [DS05].
unpredictability [SPG+08]. unscheduled
[MHG96]. untangling [YW09]. untestable
[LI00]. UPaK [WKR09]. Update [KC10].
Upper [JLJ15]. upset [NdLC03, RM09].
upsets [MRB+11]. Use
[KBV+15, KFH+08, MS00]. use-cases
[KFH+08]. Using
[APD17, APD+11, ASAP17, AVG19,
AGM01, BBEM15, BBD12, BS14b, BM11,
CVY+14, DNA+12, EWI8a, EWI8b, EK16,
FWCL05, FVCT15, GFJ16, GB07,
GHYR19, HS18, JNS+17, KQP+19, LLH+17,
LYHL14, LLK+14, LCC+15, MA16, PJL14,
PGL15, PR09, Pom15a, SKS+18, THM15,
TMDFA0, TCI4, WKL+18, WSS+18,
YHL+11, ZHC+18, ZYS12, BLR06, BWB14,
BK10, BGN+07, BASB01, CACS05,
CBM010, CFHM09, CK96, GGBZ02, G0K7,
G0K9, HVF+01, HMB98, HPK99, HCC01,
HW14, KSK+05, KRS06, KPR06, KMS12,
KMC97, LCT03, LSL+13, LNO8, MHD+04,
MSR09, MS08, MR05, MP07, MLC08,
MKV+18, NRZ+18, PRCK08, PKP+03,
PMB10, PHM00, RJL+09, RCD07, SGK08,
SABS15, STL+13, SBH+06, SCJ01,
TLCF16, TWL16, TX99, TD03, TYH08,
Vah02, WVVY99, WYJZ11, WCC03,
XCLC13, XK97, YTH97, YYC07,
ZHOM08]. UST [wATK02]. UST/DME
[wATK02]. utility [BCR+08]. Utilization
[KKL15, KMR18, MT15, GM03, SBC08,
SY07]. Utilizing
[BLN14, CK16, EB+09]. UTPlaceF
[LLL+18].

V [MLMM08]. Validation

[VS12a, CM13, DRG98, FLPP09, HJ08,
MD08, QM12, RPKC05, WAZ98]. value
[YGZ04]. Valued [WTR12]. Values
[Pom18a]. Variability
[CFD+16, NRZ+18, TY19, LON08].
Variable
[PSN18, ZL+19, LHW97, WH05].
Variables
[Pie16, CCQ98, Pom14a, SXZV13].
Variation [APD17, AKAKP18, FVCT15,
RG09, WCC09, WDLD17, WSH+18,
GM08, KTK03, MJM11, PPKD09].
Variation-Aware [FVCT15, WSH+18,
RG09, MJM11, PPKD09]. Variations
[GC18, ZZCY17, KPR06, LH13, LTPR+13,
ST99]. various [WAZ98]. Varying
[SSO16]. VBR [JLJ15]. Vdd [HLHT08].
Vector
[JK10, CCW08, EM03, KBA08].
vector-thread [KBA08]. Vectorizing
[LPD+17]. Vectors [Pom15c, CK96].
Vehicle [VA17b]. Verification
[Ali12, BKW15, DSH12, EWI8a, HZS+19,
KYN+12, PDI11, SSS+19, BHW+13, BDC08,
BG04, DCK07, DCK09, DCK10, DC07,
GF06, HA05, HDL+12, HV98, KMS12, KG99,
KC98, LBV+06, LOC12, MS08, MPDG09,
PRCK08, RFYL98, RBA+12, Sen11,
VAHH+98, VS12b, WYJG07, WCC04].
Verify [KRH18]. Verifying
[APD+11, HCC01]. versatile [TYH08].
vertical [LLK13]. VFI [DLC+17].
VFI-Based [DLC+17]. vGreen [DMR10].
VHDL
[DDNA04, GPRG11, MR96, MWG97].
VHDL-AMS [DDNA04]. via
[BZ17, CRT19, CCC09b, HHL14,
HSA+04, IPW17, KOO18, KRL15,
KLK+17, LHZ+06, PB12, RAKK12, SAL19,
VAHH+98, WB16, WHXZ13, WYG09].
vias [YHH09]. Victim [SSS+19]. Video
[MD15, ZL+19, CCC+09a, ZHOM08].
viewpoint [LKD98]. violations [Das09].
Virtual [BHDS09, DMR10, JLJ15, MSR09,
SSL17, Fj05, KMC97, LLKY13, ZP08].
virtualization [ISE08]. visibility [HW14].
visual [FS13]. VLAN [SRTG19]. VLIW
[AMR00, GBK07, KJR07, LJV02, LLHT03,
LYCP13, SXX06]. VLSI
[DPNB02, DD02, GMN13, GOC02.
HLG15, JT98, LM96, MKSB07, MKW09,
OS03, RS03, STWX12, SB98, SCS10].
VLSI-CAD [SB98]. Volatile
[WDLD17, LSL13]. Voltage
[DHVW18, DSO5, JPHL16, JLK15, KLE18,
LCY12, MACV14, SV16, WCCC14,
WGS16, ZLL13, GM08, GBC07, KSA10,
LHW97, LLHT12, MHQ07, ML09, Rak09,
SHN12, WGW08, WLC09].
Voltage-Frequency [JPHL16, GM08].
voltage/frequency [ML09]. voltages
[JR97, MR05]. Volume [Pom16c, RMKP03].
Volumes [PAV17]. vs [KG09, PDN00].
VSSD [CCS15]. Vulnerabilities
[QGW19, MAS16].
W [DHZ11]. Wafer
[THM15, BC05, WLT08, ZMTC13].
wafer-probe [BC05]. Wafer-to-Wafer
[THM15]. Wake [WSRH16]. Walks
[BS14b]. Warp [LSV06]. Warping [SV11].
Washing [MGR15]. watt [RAKK12].
waveform [MCMW08]. Wavelet
[AHAKP08, GFC09]. Wavelet-based
[AHAKP08]. WaveSync [YKCG14].
WCET [APS18]. WCRT [CYH19]. Wear
[CCH15a, CHC16, Kha12, CD09].
Wear-Leveling [CCH15a, CD09].
Wearable [FG18]. Wearables [GFJ16].
WEB [MS08]. while [QS09]. Wide
[WTR12]. width [LYCP13, SBH06]. Wind
[WSRH16]. wire
[CW01, HR06, MKW09, WC06].
wirelength [LLLC13, SYZ08]. Wireless
[CBO18, SXX16, PDS12, DHZ11, JSG09,
RFB10]. wiringsizing [CH96]. within
[SCK18]. Without [MS17, KKLG15, PR07].
Word [CCC09b, Con06, WDLD17, RMB10].
Word-length [CCC09b, Con06]. work [KYN12].
Workload [CSAH07, GC18, TBCH17,
CR12, WHX13]. Workload-ahead-driven
[CSAH07]. workstations [KMC97]. world
[RBA12]. worm [FNP09]. wormhole
[TDE08]. Worst [APDC17, CH17, ZLW15].
Worst-Case [APDC17, CH17]. wrapper
[LV02]. Write [CCK18, CIX15, KLY16,
LLP16, WDLD17]. Write-back [CCK18].
Write-Conscious [LLP16].
Write-Induced [CIX15]. Writeback
[PBZM19]. Writeback-Aware [PBZM19].
Writebacks [BFG19]. Writes [CIX15].
X [HLG15]. X-Architecture [ILG15].
XFM [SMSB05].
Yield
[GLY12, JGM14, KAKSP16, KMO12,
SV16, THM15, WSH18, ZYW18,
HWCL13, KPSW09, LCKT12, MHT14].
Zero [BC16, Giv06, JK10, HTCP13, ZCG06].
zero-deficiency
[ZCG06]. Zero-Suppressed [BC16]. Zoom
[EO19]. Zoom-ADC [EO19].

References

[AAA15] Marjan Asadinia, Mohammad

Abouelella:2013:HEI

Atienza:2007:HSE

Avnit:2009:PCC

Aksoy:2014:MDF

Ashar:2001:UCD

Abbasian:2008:WBD

Ahn:2008:SSC
[AHL⁺08] Yongjin Ahn, Keesung Han, Ganghee Lee, Hyunjik Song, Junhee Yoo, Kiyoung Choi, and Xingguang Feng. SoCDAL:
REFERENCES

Waseem Ahmed and Douglas Myers. Concept-based partitioning for large multidomain multifunctional embedded sys-

Atienza:2006:SDM

Abuowaimer:2018:GRD

Anonymous:2013:CNE

Ayoub:2013:CCM

ISSN 1084-4309 (print), 1557-7309 (electronic).

[AOC02] Guido Araujo, Guilherme Otti
	oni, and Marcelo Cintra. Global
array reference allocation. *ACM
Transactions on Design Au-

tomation of Electronic Systems,*
7(2):336–357, April 2002. CO-
DEN ATASFO. ISSN 1084-4309
(print), 1557-7309 (electronic).

[APB08] Iyad Al Khatib, Francesco Po-
letti, Davide Bertozzi, Luca
Benini, Mohamed Bechara,
Hasan Khalifeh, Axel Jantsch,
and Rustam Nabie.
A multiprocessor system-from-on-chip for
real-time biomedical monitoring and analysis: ECG prototype ar-
chitectural design space explo-
ration. *ACM Transactions on
Design Automation of Electronic
Systems,* 13(2):31:1–31:??, April
2008. CODEN ATASFO. ISSN 1084-4309
(print), 1557-7309 (electronic).

Dasgupta, Siddhartha Mukhopad-
hyay, Rajdeep Mukhopadhyay,
and John Gough. Chassis: a
platform for verifying PMU inte-
gration using autogenerated be-
havioral models. *ACM Trans-
actions on Design Automation of
Electronic Systems,* 16(3):
33:1–33:??, June 2011. CO-
DEN ATASFO. ISSN 1084-4309
(print), 1557-7309 (electronic).

[ARLJH06] M. Ayala-Rincón, C. H. Llanos,
R. P. Jacobi, and R. W. Harten-
stein. Prototyping time- and
space-efficient computations of
algebraic operations over dy-
namically reconfigurable sys-
tems modeled by rewriting-logic.
*ACM Transactions on Design
Automation of Electronic Sys-
CODEN ATASFO. ISSN 1084-
4309 (print), 1557-7309 (electronic).
REFERENCES

Ali:2017:RCD

Amir:2019:SPC

Behera:2017:TTS

Bogliolo:2000:RBR

Beznia:2015:TAR
Bhattacharya:2005:OWP

Bahar:2008:IJA

Bernasconi:2011:DRB

Bernasconi:2016:IRZ

Bernasconi:2008:OKS

Baldassin:2008:OSB

Benini:1997:SBM

REFERENCES

Benini:2000:SLPb

Banerjee:2005:OFT

Bathen:2014:STS

Bhattachary:1998:ERS

Bild:2012:SNR
David R. Bild, Robert P. Dick, and Gregory E. Bok. Static NBTI reduction using internal
REFERENCES

Bouakaz:2017:SAD

Bakhshalipour:2019:RWT

Bol:2010:NME

Bombieri:2008:ROT

Bombieri:2015:MRR

Bakshi:2001:PCH

Bunker:2004:FHS

Bouchebaba:2007:MMO

Blanton:2003:PIP

Bonny:2010:HBC

Bertels:2009:EMM

Backer:2017:SFT

Bruneel:2011:DDF

REFERENCES

REFERENCES

Benso:1998:ELC

Bonetti:2017:AID

Boukhobza:2018:ENS

BasiriM:2014:EHB

Boghrati:2014:IAP

Bolchini:2014:DHE

Cristiana Bolchini and Chiara Sandionigi. Design of hardened embedded systems on multi-FPGA platforms. *ACM Transactions on Design Automation
Blythe:2000:EOD

Biswas:2014:RTC

Boule:2008:ABA

Bi:2017:OQE

Boule:2008:ABA

Biswas:2014:RTC

Boule:2008:ABA

Biswas:2014:RTC

Biswas:2014:RTC

Biswas:2014:RTC

Biswas:2014:RTC

REFERENCES

Chen:2017:AMM

Cauley:2011:PBC

Chang:2010:LSC

Chen:2006:SPC

Chien:2009:SMV

[Cabodi:1998:AVB] Gianpiero Cabodi, Paolo Camurati, and Stefano Quer. Auxiliary variables for BDD-

Chang:2015:VPI

Cheng:2008:FSI

Chen:2006:OSM
[CCX06] Deming Chen, Jason Cong, and Junjuan Xu. Optimal simultaneous module and multivolt-

Chang:2014:BBL

Cong:1996:CLS

Chang:2009:DIE
[CD09] Li-Pin Chang and Chun-Da Du. Design and implementation of an efficient wear-leveling algorithm for solid-state-disk mi-

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

Choi:1999:FDA

Chang:2013:IPP

Chang:2012:CDA

Cao:2006:POS

Cabodi:2010:SHA

Cong:2010:BLO

Coskun:2012:ISS

Chen:2015:MBF

Cho:2009:BHR

Chao:2008:LPG

Costa:2013:CDO

Cakir:2018:RED

Chang:2007:PRE

REFERENCES

Corno:2002:IAS

Chakraborty:2016:PDM

Cho:2004:FMB

Chang:2014:EBT

Cochran:2012:TPA

Chen:2015:DMD

Carpent:2019:RAS
REFERENCES

Chang:2007:PLP

Cai:2007:WAD

Chang:2008:TCS

Cao:2005:SSL

Chen:2007:NMA

Cong:2005:LSC

Chang:2013:PDS

Choi:2019:OFT

Cheng:2014:EC

Chang:2000:TDR

Chang:2003:AFF

Dasdan:2004:EAF

Dasdan:2009:PEA

Darav:2018:ELH

[DBK+18] Nima Karimpour Darav, Ismail S. Bustany, Andrew Kennings, David Westwick, and Laleh Behjat. Eh?Legalizer:

Delshadtehrani:2015:SMR

Dasdan:2006:HIT

Dubeuf:2016:EPA

DosSantos:2000:CMP

Daboul:2018:AAT

Duarte:2011:HDP

Filipa Duarte, Jos Hulzink, Jun Zhou, Jan Stuijt, Jos Huisken, and Harmke De Groot. A 36μW heartbeat-detection processor for a wireless sensor node. ACM Transactions on Design Automation of Electronic Systems, 16(4):51:1–51:??, October...
Das:2008:RSA

Das:2016:FBP

Dara:2016:EPH

Duan:2015:AAP

Dong:2011:PCS

Das:2017:VBP

Dhiman:2010:VSE

Gaurav Dhiman, Giacomo Marchetti, and Tajana Rosing.
<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
</table>
REFERENCES

Dutt:2007:E

Dutt:2008:Ea

Dutt:2008:Eb

Dutt:2008:E

DVT:2002:SBB

deAbreuMoreira:1997:ADC

Dong:2018:PAA

Duan:2015:DDO
Qing Duan, Jun Zeng, Krishnendu Chakrabarty, and Gary Dispoto. Data-driven optimization of order admission poli-

Delledonne:2018:CDA

Enrici:2017:MDE

Engelke:2009:SSU

Edwards:2003:TCC

Esbensen:1997:PDI

Ewetz:2016:CR

[EK16] Rickard Ewetz and Cheng-Kok Koh. Construction of reconfigurable clock trees for MCMM designs using mode separation and scenario compression. *ACM Transactions on Design Automation of Electronic Sys-
Erb:2014:ELF

El-Maleh:2003:TVD

Erol:2019:KSB

Emeretlis:2018:SMA

Elshoukry:2007:CPA

Elmandouh:2018:GFV

REFERENCES

Eslami:2018:RTC

Elwakil:2012:DRM

Fallahzadeh:2018:TPC

Foroozannejad:2012:PBM

Fummi:2009:CMH

Fan:2007:ECD

[FLWC07] Hongbing Fan, Jiping Liu, Yuliang Wu, and Chak-Chung Cheung. The exact channel density and compound design for...

Fan:2002:RDG

Flores:2001:ESM

Faezipour:2009:HPE

Fummi:1997:FDT

Forte:2013:RAA

Fujita:2005:ECB
Fang:2000:MFP

Feng:2005:UDP

Firouzi:2015:AVA

Fournier:2011:PAC

Gogniat:2000:CBE

Gorjiara:2007:UFE

REFERENCES

Gangwar:2007:IIC

Ghosh:2007:LPT

Ganley:1996:RST

Gomez:2018:SCP

Gingade:2016:HPM

Guo:2015:RDS

Grosse:2009:MPO

[GDF09] Philippe Grosse, Yves Durand, and Paul Feautrier. Methods for power optimization in

Guan:2008:SAP

García-Dopico:2011:NAV

Guo:2017:OBP

Galanis:2007:SES

Goren:2006:TSG

Guan:2010:RFP

REFERENCES

Geelen:2009:SLE

Ghasemzadeh:2016:HAE

Gasteier:1999:BBC

Ghosh:2004:COE

Gong:1997:MRH

Glebov:2002:FNA

Ganeshpure:2014:PDD

Gupta:2005:RAS

Gong:2012:FNM

Goel:2003:STA

Garg:2008:SLT

Gester:2013:BAD

REFERENCES

Gupta:2013:ECR

Gao:2018:ECI

Guin:2016:FCS

Gange:2014:SOS

Gupte:2015:FAT

Guthaus:2013:RAP

Gately:2012:AJO
REFERENCES

REFERENCES

[HNC09] Shih-Hsu Huang, Chia-Ming Chang, and Yow-Tying Nieh. Opposite-phase register switching for peak current minimiza-
REFERENCES

Han:2011:DIT

Hu:2001:ELA

Ho:2016:AAD

Holt:2012:FLP

Huang:2007:ESC
REFERENCES

Hansson:2009:CTC

Huang:2016:FOF

Hong:2009:RFD

Han:2017:CAB

Ho:2014:USS

Holst:2015:HTL

Hsiao:2008:ISS

REFERENCES

[Huang:2015:OAA] Xing Huang, Genggeng Liu, Wenzhong Guo, Yuzhen Niu, and Guolong Chen. Obstacle-

Hu:2008:PSF

Hosseinabady:2007:LTA

Hasteer:1998:EEC

Healy:2011:IMF

Hu:2014:GLI

Huang:2013:SNC

[HMVG13] Chen Huang, Bailey Miller, Frank Vahid, and Tony Givargis. Synthesis of networks of custom processing elements for real-

Huang:2007:CSS

Hsu:2011:MSS

Hong:1999:POU

Hanc_hate:2006:GTF

Hussain:2018:SSH

Hsiao:2000:DST

Han:2018:FCS

Hyun:2019:IAA

Hung:2004:SCR

Hsiung:2000:CCM

Hsiung:2001:PPO

Huang:2013:LPA
Shih-Hsu Huang, Wen-Pin Tu, Chia-Ming Chang, and Song-Bin Pan. Low-power anti-aging zero
REFERENCES

[Huang:2001:CSP]

[Huggins:1998:SVP]

[Herrera:2007:FHS]

[HVF+01]

[Hwang:2000:PSS]

REFERENCES

Hung:2014:AFD

Huang:2013:OCC

Huang:2015:PDU

He:2016:RIM

Huang:2014:ICP

Huang:2018:DML

Huang:2015:CPM

[HYN15] Shih-Hsu Huang, Hua-Hsin Yeh, and Yow-Tyng Nieh. Clock period minimization with minimum leakage power. *ACM Transactions on Design Au-
REFERENCES

[Huang:2019:ILA]

[Inoue:2009:DSD]

[Issenin:2007:DDR]

[Ioannides:2012:CDT]

[Ittershagen:2018:IFM]

[Indrusiak:2015:FSN]
REFERENCES

Irwin:2000:E

Inoue:2008:PVS

Johnson:1998:MAS

Jamieson:2010:BER

Jan:2005:GMR

Jun:2018:RBD

Jaeyung Jun, Kyu Hyun Choi, Hokwon Kim, Sang Ho Yu, Seon Wook Kim, and Youngsun Han. Recovering from biased distribution of faulty cells in memory by reorganizing replacement regions through universal

Joo:2008:ECP

Jha:2000:HLL

Jiao:2018:OER

Jones:2008:RFI

Juan:2014:SPT

Jagannathan:2002:FAC

Jassi:2018:GGB

Jayakumar:2010:SIV

Jung:2015:LMS

Jose:2014:IAH

Jung:2019:ILP

Jinwook Jung, Gi-Joon Nam, Woohyun Chung, and Youngsoo Shin. Integrated latch

Jeong:2017:CSP

Jung:2017:MSM

Johnson:2008:IME

Jang:2012:AAA

Jiang:2006:RCD

Jim:2016:CEE

REFERENCES

Johnson:1997:DSM

Jeyapaul:2013:EEE

Jalili:2018:ERM

Jin:2009:GND

Jone:1998:CAD

Jones:2008:ISS

Angeliki Kritikakou, Francky Catthoor, Vasilios Kelefouras, and Costas Goutis. Array

Kumar:2008:MSS

Kern:1999:FVH

Koushanfar:2005:BST

Kuo:2006:DID

[Wu-An Kuo, Tingting Hwang, and Allen C.-H. Wu. Decompo-

Karri:2001:IRT

Karri:2001:IRT

Karri:2001:IRT

Karri:2001:IRT

Karri:2001:IRT

Krishna:2004:AHE

Kim:2011:CTS

Kang:2014:IRA

Kim:2002:LTL

[Ki-Wook Kim, Taewhan Kim, Ting-Ting Hwang, Sung-Mo Kang, and C. L. Liu. Logic

Kim:2016:NAP

Kwon:2008:RPP

Kastner:2002:IGH

Kahng:2015:IMR

Kim:2012:SAH

Kim:2015:MMS

Kim:2016:NAP

Kwon:2008:RPP

Kastner:2002:IGH

Kahng:2015:IMR

Kim:2012:SAH

Kim:2015:MMS

Kim:2016:SDM

Kao:2005:EAF

Knechtl:2018:MOF

Kuo:2014:RCS

[Keutzer:2009:ATD

REFERENCES

[Keutzer:2011:SSM]

[Kim:2015:AIP]

[Kahng:1997:ARI]

[KMC97]

[KMO+12]

[Kritikakou:2018:DDS]
REFERENCES

Karfa:2012:FVC

Kolson:1996:ORA

Kulkarni:2006:CTA

Karabacak:2018:RDU

Kornaros:2013:STC
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
| [KRL15] | Bradley T. Kiddie, William H. Robinson, and Daniel B. Lim-

Kandemir:2006:IEB

Kurimoto:2010:PAE

Kadayif:2005:OIT

Keinert:2009:SAE

Kagaris:1996:FAM

Kagaris:2001:NHC

Kadayif:2013:HSA

Kuchcinski:2003:CDS

Krishnaswamy:2008:PTM

Kountouris:2002:ESC

Katoen:2016:PMC

Kim:2016:IWP
Kurimoto:2012:VWR

Liu:2001:ODC

Leupers:2000:GBC

Ludwin:2011:EDP

Li:2006:LVA

Langevin:1996:RTC

Liu:2007:IEM

Lee:2013:SRB

Lee:2014:CPA

Li:2011:GRS

Lu:2015:EEB

Lee:2007:ISS

Lin:2002:OTB
REFERENCES

Liu:2010:ECR

Lee:2009:TSA

Liu:2012:FHA

Lu:2008:EDI

Lee:2007:CCA

Li:2003:TDC

Leung:2012:PVI

Liu:2018:RML

Lee:2008:FCB

Li:2017:ASE

Lee:2018:PTT

Liao:1999:TCB

Lin:2012:RSP

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Lee:2012:ECM

Lee:2018:LBF

Livramento:2014:HTD

Lee:2011:GBP

Lee:2013:EMA

REFERENCES

Lee:2014:DCC

Li:2016:ODM

Liu:2005:ETT

Lin:2012:RDP

Lin:2015:DES

Lee:2016:ESM

REFERENCES

[4309] (print), 1557-7309 (electronic).

[4309] (print), 1557-7309 (electronic).

[LJ18] Pei-Yu Lee and Iris Hui-Ru

REFERENCES

[LLL+18] Wuxi Li, Yibo Lin, Meng Li, Shounak Dhar, and David Z.
REFERENCES

Lop:1996:EDP

Lee:2005:PDD

Liu:2016:DAE

Lari:2012:HPM

Lukasiewycz:2016:SAO

Li:1999:PEE
Livramento:2016:CTA

Linehan:2012:MDA

Liu:2008:PVA

Lee:2003:ACG

Lim:2007:ISI

Latifis:2017:MVC

Lalgudi:2000:OCE

Kumar N. Lalgudi, Marios C. Papaefthymiou, and Miodrag Potkonjak. Optimizing com-

REFERENCES

4309 (print), 1557-7309 (electronic).

Lu:2011:CBP

Lee:1999:BBI

Liu:2016:ECM

Lam:2012:EPL

Lysecky:2002:PIB

Liu:2014:SIS

Lopez-Vallejo:2003:HSP

Lee:2016:TPD

Li:2017:DMF

Liao:2007:SBC

Lin:2018:CMD

REFERENCES

Liu:2006:CML

Liu:2011:SBA

Li:2019:NRM

Lepak:2004:SSI

Lee:2013:RIB

Liu:2017:ILA

Li:2014:SUM

REFERENCES

Marwedel:2000:GE

Mazumdar:2016:CIS

Murthy:2004:BMP

Mariatos:2001:MAC

Mondal:2012:SEP

Muchherla:2008:NEW

REFERENCES

Mao:2016:LBP

[Fubing Mao, Yi-Chung Chen, Wei Zhang, Hai (Helen) Li, and Bingsheng He. Library-based placement and routing in FPGAs with support of partial reconfiguration. ACM Transactions on Design Automation of Electronic Systems, 21(4):71:1–71:??, September 2016. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).]

Mishra:2008:SDD

Marculescu:2013:ESS

Mathur:1998:RAE

Maslov:2007:TSR

Mukherjee:2012:SAA

REFERENCES

[MH96] R. Moreno, R. Hermida, and M. Fernández. Register esti-
REFERENCES

Mochocki:2007:TOA

Meyer:2014:CEL

Mittal:2016:STC

Mittal:2011:TVA

Memik:2005:SAO

Majzoobi:2013:LPR

REFERENCES

Marculescu:2000:SSM

Moudallal:2017:GCC

Marculescu:2006:CCR

Mohanant:2007:MBE

Mukhopadhyay:2009:IAA

Mundhenk:2017:SAN

REFERENCES

Moffitt:2008:CDF

Mehta:2000:UFR

Manolios:2008:AVS

Murugesan:2017:NRM

Mehta:2009:ICH

Mishra:2006:ADL
REFERENCES

Munch:1997:EIB

Nourani:2001:ITI

Neuberger:2003:MBU

Nacul:2006:STC

Nadakuditi:2013:BAS

Narasimhan:2001:FAC

Niggemeyer:2003:DAM

Dirk Niggemeyer and Elizabeth M. Rudnick. A data acquisition methodology for on-chip repair of embedded memories. *ACM Transactions on
Nongpoh:2019:ESE

Noltsis:2018:RSC

Nummer:2003:THP

Nguyen:2017:SAA

Nair:2016:ESP

Narayanaswamy:2016:BRE

REFERENCES

Obenaus:2003:GFP

Oboril:2015:EIS

Ozdal:2008:ORA

Ozdal:2006:TLB

Ozdal:2008:ORA

Obenaus:2003:GFP

Oboril:2015:EIS

Pomeranz:2017:TMR

Pan:2012:ERE

Panerati:2014:CEM

REFERENCES

Park:2017:HHC

Pinto:2006:SLD

Pourshirazi:2019:WAL

Palkovic:2009:TOL

Panda:2001:DMO

Peng:2017:LSA

Peng, Yin-Chi, Chien-Chih Chen, Hsiang-Jen Tsai, Keng-
REFERENCES

Panda:1997:MDO

Panda:2000:CVC

Pedram:1996:PMI

Pedram:2006:ISI

Massoud Pedram. Introduction to special issue: Novel paradigms in system-level design. *ACM Transactions on De-
REFERENCES

Pedram:2008:E

Pedram:2011:CPV

Pop:2006:AOD

Peng:2012:SSE

Parulkar:2001:IRC

Poddar:2016:ECS

Paul:2010:LOC

Pagliari:2017:AEE

Park:2015:SGA

Pomeranz:2013:BGM

Pomeranz:2014:DTM

Pomeranz:2014:LPS

Pomeranz:2015:ETC

Pomeranz:2015:FES

Irith Pomeranz. FOLD: Extreme static test compaction by folding of functional test sequences.
REFERENCES

Pomeranz:2015:GDU

Pomeranz:2016:DTF

Pomeranz:2016:DTS

Pomeranz:2016:PSS

Pomeranz:2017:CSL

Pomeranz:2017:GTS

Pomeranz:2018:DDP

REFERENCES

[PPDK09] Sudeep Pasricha, Young-Hwan Park, Nikil Dutt, and Fadi J. Kurdahi. System-level PVT variation-aware power exploration of on-chip communica-

[PPD09] Sudeep Pasricha, Young-Hwan Park, Nikil Dutt, and Fadi J. Kurdahi. System-level PVT variation-aware power exploration of on-chip communica-

[Pom98] Irith Pomeranz and Sudhakar M.

Pomeranz:2007:FDT

Pomeranz:2009:UST

Panda:2008:SBV

Pecenka:2008:ESR

Passerone:1998:MRS
REFERENCES

[PTC05] Paul:2005:HLM

[PWY05] Potluri:2015:DA

[PW99] Potkonjak:1999:MAD

[PWY05] Paul:2005:HLM

REFERENCES

[Rakk12] Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and Sandip Kundu. Improving performance per watt of asymmetric multi-core processors via on-

Ranganathan:2009:VAM

Roy:2015:FTE

Raimi:2000:EML

Ravi:2014:HLT
REFERENCES

Rao:2009:COT

Reviriego:2009:EED

Raghavan:2009:PTG

Ramanujam:2013:DBC

Reddy:2003:TDV

Rahaman:2008:CTB

REFERENCES

Roy:2005:FSV

Riepe:1998:EBD

Riepe:2003:TPN

Rosvall:2018:FTA

Roop:2001:FST

Ruan:2005:BEL

Rawat:2003:I

[RW03] Shishpal Rawat and Hans-Joachim Wunderlich. Introduc-
REFERENCES

Shrivastava:2006:CFC

Saha:2017:SSS

Sapatnekar:2000:PDO

Su:2006:MPF

Shenoy:2001:ASL

Su:2008:SNT

REFERENCES

REFERENCES

Srivastav:2015:DUL

Srinivasan:2014:FAI

Schneider:2014:QNE

Schirner:2010:FAP

Sinha:2014:FAI

Sosic:1996:UAF

Saluja:2008:SBA

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Shi:2017:TAA

Su:1998:EFL

Srivastav:2012:DEE

Sarrafzadeh:2002:GE

Su:2006:AMS

Steinhorst:2016:CPC

REFERENCES

Singh:2010:AJE

Saxena:2002:ESL

Singh:2012:TRT

Su:2006:CTD

Suresh:2015:AGU

Singhal:2003:SOA

Sharma:2015:AIE

REFERENCES

Sanz:2008:CSS

Singh:2002:ECC

Salcic:2017:NHH

Smirnov:2019:AOV

REFERENCES

Suresh:2016:AVD

Sundararajan:2004:NAI

Sahoo:2019:FMV

Shi:1999:SSL

Sun:2015:NUB

Somasekhar:2016:NEG

Shen:2013:AAP

Stitt:2011:TWD

S:2016:EAD

San
tos:2017:SMH

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>

Sham:2009:CPE

Sun:2012:PTA

Sham:2008:OWR

Su:2017:EMC

Sun:2012:STD

Tang:2017:PPE

Tong:2013:TCT

Jason G. Tong, Marc Boulé, and Zeljko Zilic. Test compaction techniques for assertion-based
REFERENCES

REFERENCES

REFERENCES

Topaloglu:2018:ETS

Tang:2007:PDF

Tan:2016:ESE

Thorolfsson:2010:LPH

Thornton:1999:BSC

Tseng:2008:PPD
DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Trinadh:2017:ODC

Teman:2016:PAP

Thanvantri:1996:OFS

Thakur:1996:SPF

Tannir:2016:AMN

Tomiyama:1997:CPT

REFERENCES

REFERENCES

Vahid:1999:PCT

Venkatasubramanian:2016:PID

Vahid:2002:PSP

Vanbroekhoven:2007:PDS

Vemuri:2002:ER

VanAchtern:2003:SSD

REFERENCES

Verbeek:2012:EFS

Verbeek:2012:TFV

Tsao:2002:UDC

Wang:1998:MEV

Wang:2016:ERL

Wu:2006:MWR

Wu:2010:SCR

REFERENCES

Wang:2015:BST

Wu:2003:RBP

Wang:2014:CTS

Wang:2017:WPL

Wang:2016:MSM

Wang:2011:RCM

Wang:2007:ETR
Gang Wang, Wenrui Gong, Brian Derenzi, and Ryan Kastner. Exploring time/resource trade-offs by solving dual scheduling problems with the ant colony optimization. *ACM Transactions on Design Au-
REFERENCES

Shaoxi Wang, Xinzhang Jia, Arthur B. Yeh, and Lihong

Wang:2011:OAE

Wu:2016:PAC

Wu:2008:CPR

Wang:2016:HDT

Wolf:1996:OOC

Wang:2008:LAS

Wang:2016:ADB

[WQC+16] Yi Wang, Zhiwei Qin, Renhai Chen, Zili Shao, and Lau-

Wurth:1999:FMO

Wang:2018:VAG

Wu:2016:OAW

Winograd:2018:PGU

Wei:2014:TSE

REFERENCES

Wu:2012:ESF

Wu:2008:PVA

Wu:2012:LST

Wang:2006:PDT

Wang:2010:CDF

Wang:2007:DIC

REFERENCES

[YLNB17] Yuankun Xue, Ji Li, Shahin Nazarian, and Paul Bogdan. Fundamental challenges toward making the IoT a reachable

[YLNB17] Yuankun Xue, Ji Li, Shahin Nazarian, and Paul Bogdan. Fundamental challenges toward making the IoT a reachable

Xu:2015:DCD

Xie:2018:TER

Xu:2015:ICF

REFERENCES

Xiang:2005:AIP

Xu:2016:PPA

Xu:2009:STA

Yan:2000:TLB

Yan:2008:TDO

Yan:2011:ICA

REFERENCE

Yan:2016:PD

Yan:2017:LAE

Yan:2018:DCR

Yang:2018:UUE

Yao:2003:FRC

Yang:2000:ERC

Young:2016:PSS

Yi-Ping You, Chung-Wen Huang and Jenq Kuen Lee. Com-
REFERENCES

Yonga:2015:ABE

Yoon:2013:ACC

Yang:2014:WLL

REFERENCES

[YYG16] Bei Yu, Kun Yuan, Jhih-Rong Gao, Shiyuan Hu, and David Z.

References

Zanini:2012:OTC

Zhao:2013:SRE

Zoni:2018:CSC

Zhang:2015:RLP

Zhao:2016:SRE

Zheng:2019:HEB

Zeng:2013:IPD

Zhang:2016:CFS

Zhang:2015:RBA

REFERENCES

REFERENCES

196

4309 (print), 1557-7309 (electronic).

Zhang:2016:PPG

Zhang:2010:CSD

Zhou:2018:RRD

Zhang:2011:MPL

Zhou:2008:AAS

Zhou:2009:TAR

Zhu:2011:MPL

REFERENCES

Zhu:2017:CCA

Zhou:2012:ONC

Zhai:2018:ENG

Zhao:2013:CSL

Zhang:2017:RTV