Title word cross-reference

1 [AGM01]. 2 [FWCL05, GH00, RL13]. 2.5 [WCB15, WWCT18]. 3 [ADDM+13, AJK+21, CLT+15, DLC+17, JGM14, KK11, KKH16, KLE18, LKC13, LDD+18, LDD+19, LHZ+06, LHC16, LW17, LS19, LS17, OS03, OCK19, SP21, SYX12, TLM15, TMDF10, WYC10, XGC+20, YHH09, ZYS12]. 4 [JCGP05]. \(d_d\) [MLMM08].

- \(D\) [OS03, WYC10]. -Detection [Pom17a, Pom16b]. -Diagnosability [CH13]. -distinguishability [AGM01]. -domain [FWCL05]. -driven [MSD06]. -geometry [JCGP05]. -macrocell-based [CHY05]. -Matrix-Based [CLT+15].

-0.35V [ACF+11]. \(0.35V\)-Optimized [ACF+11].

2-stage [KSA+10]. 2.0 [CLYP09, HWGY16, LLL+18]. 2009 [GK09].

252Kgates [CCC+09a]. 252Kgates/4.9Kbytes [CCC+09a].

36 [DHZ+11].

4.9Kbytes [CCC+09a]. 40nm [ACF+11].
45-degree [CT13, TP08]. 45nm [BFL10].

71mW [CCC+09a].

90nm [CFD+16].

A3MAP [JP12]. aberration [KPSW09]. absence [SPA+03]. Abstraction [HZS+19, CMNQ08, CLM+10, HMB98].

abstraction/refinement [CLM+10]. ABW [CIX15]. AC [MHA19]. Accelerated [LD17, BHDS09, MLC08, RB19].

Accelerating [HW14, LS11, SKS12]. Acceleration [WFSS20, GPK+09].

Accelerator [LYL+19, OHA19, AHL+08]. Accelerators [SV11, TL19, LPC14, YLP+13]. Access [GSD+18, OKC08, RPR+21, XYG+16]. Chan[01, KLP11, KCG13].

Accesses [KCG16]. Accurate [DKZ+15, LJ18, SV16, SKCM06, TWL16, TEK18, MFS09, RCD07, SGD10, XK97].

Achieving [KJT04, STL+13]. ACM [PK09, BC08, CH10a, KLSZ09, Q511, SN10, CPX14]. acoustic [FIR+97]. acquisition [NR03]. across [LBV+06]. action [KCG98].

Active [LKC+18, VEO16]. Actively [PCT+17]. Activity [GFJ16, KOO18, RG19, PR11, SX+06].

Adapting [SSO16]. Adaptive [BM11, CB17, CJX15, EW18b, JMI14, KKKH16, LLK13, LYSO19, LPY+20, SFM+19, SOS15, TUI7, WTR12, WQC+16, ZLY+15, CCY+14, CR12, CLQ12, DFP0, FS13, HCK13, LMB+12, LSL+13, RL13, RAKK12, SCB01].

Adaptively [KLK+17, DL11]. ADC [EO19]. ADCs [HWCL15, PKP+03]. Add [LWZ+19].

Adders [KKK12]. Address [LP03, SR12]. addressing [SSP04]. adjustable [KSA+10, LLHT12]. ADL [MSD06].

Agglomerative-based [LLC13]. Aging [ADB+19, DNT20, FYCT15, GC18, OT15, TCW20, HTCP13]. Aging- [FYCT15].

Algorithm [DHVW18, GDPRG11, GYT12, HCRK11, HLG+15, KLSZ99, KLSZ11, MA16, MJB19, TZ17, YVC14, ZHC+21, ZLY+19, BDB98, CD09, CT13, CSL+07, CCW08, EK97, GBC07, JTL+96, KLO5, LM05, MBB01, MKB05, MLLM08, MWG97, SGB01, SJG96, VKKR02, XTW05, YMC+13, YWW90, ZHO08].

Algorithmic [AMO05, KRH18, LXWC20, RRHB21].

Algorithms [ACFM12, GMN+13, GDJRM21, SV16, SZB17, TCP97, Das04, Das09, EMO03, GMS02, JLF+12, LKM04, LIA00, OWH08, PBB14, PWW99, TC92, YW09, YCHT18, ZSS90].

Aligned [SHL+19, XYG+16]. Allocating [KAKSP16, YHH09]. Allocation [ABC+17, BK00, BM11, CET16, CARH18, KK14, KKKL15, SCK18, ZYS12, AOC02, CLM+10, CL99b, LCT+09, SM00].

Alternative [KRL15, SYZ08]. among [DK08, LYO19]. AMS [CVMP19, DDNAV04, DMDG00, MPPD09, ZMS+19].

Analog [ADB+19, BBE15, CFD+16, CLC20, DZ18, LYSO19, LZ21, LHYJ12, LCYN18, PWS+20, SHD17, STGR15, SOS15, TZ17, T20, WYJ11, XAG+20, ZSY18, BC05, DC07, DDNAV04, LON08, LFG+09, LCKT12, LTP+13, ST99, SCJ01, WV02].

Analog/Mixed [STGR15].

Analog/Mixed-Signal [STGR15].
Analyses

Applying

Approaches

approximability

Approximation

Arbitration

Architecting

Architecture

Architecture-aware

Architecture-level

Area
area-array [LC13, LCL08]. Area-Aware [HCW’16]. Area-Efficient [E019, S14]. Area-I [Yan16]. Area-I/O [Yan16]. Areas [WPR’19]. Arithmetic [PIK’20, CCL’03]. ARM [LLH’17]. ARM-Based [LLH’17]. ARM2 [HV98]. Array [CFD’16, KCKG16, RBWB20, SPC’15, AOC02, CZW’00, LC13, LCL08, WV02, ZYZ] array-based [CZW’00]. Array-Style [CFD’16]. Arrays [HCW’16, TRM’16, AC06, CH02, CD96, LMB’12, PWY’05, WAZ’98]. Artiﬁcial [WXH’19]. Ary [CLH’12]. ASIC [KLV’15, THL’13]. ASICs [PW99]. ASIPs [SM00]. ASP [YMB’15]. ASP-Based [YMB’15]. aspects [AMO’05]. Assay [BTP’20, LSCK’20]. assembled [BC05]. assembly [AMR’00]. assertion [BZ08, KT01]. Automata [BZ08, KT01]. Automata-based [BZ08]. Automated [BPTB’17, IE12, KLV’15, GWR’13]. Automatic [BFV’15, CK96, CILZ’11, GD20, MS08, SHD17, Shi20, SRTG’19, WKR’09, ADS’09, KSS’09, LFG’09, TDE’08, WWC’04]. Automating [HA05, RSR’01]. Automation [ADB’19, CH10a, CPX’14, CO18, DZH’18, GHR’19, JDD20, KLSZ’09, DTC’09, LOC’12]. Automotive [HK18, KBP’19, LZZSV’15, LMS’16, MPM’17, SRTG’19, LXY’18]. Autonomous [ML09, STL’13]. Auxiliary [BDC08, CCQ’98, Pie’16]. Available [TEK’18]. Average [ZLW’15]. Averaging [TWL’16]. Avoid [WPR’19]. Avoiding [AL19, HLG’15, HGLC’16, LLLL’18, WSRH’16, XZ’18, LYYW’09]. award [GK’09, QS11]. Aware [AKAK’18, BDBB’19, BLUS’19, CMP’10, CET’16, CJJK’19, DNT’20, DZ18, FVCT’15, GVJ’15, HHH’17, HC17, HCH’16, KPF’16, KW16, KBP’19, LHH’17, LLL’18, LHK’15, LZZSV’15, LNG’16, LMS’16, MT’15, OT’15, PBZM’19, RS18, RCK’15, SKP21, SYX’12, TBCH’17, WSH’18, WLLL’16, Yan20, YYG’16, ZYP’17, ADP’07, CHH’09, CLQ’12, DDO2, ETR07, ENP’20, FS13, GM08, GKM05, JHL’02, JDD20, JP12, JCS’08, KPWS’09, KJKK’03, LC14, LZ21, MAS’20, MBD’20, MJM’11, MHQ’07, MKW’08, OCK’19, PDK’09, RGM’09, SGG’12, SBC08, SMH’07, SLS12, SNL’12, TZ20, VGG19, WH05, WPHL’08, WLL’11, YYLL’09, ZYP08, ZYP09]. awareness [RL13].
[CPW04, Kan06, SM00, Wu09]. **banked** [OK08]. **Base** [BSP+19]. **Based** [APDC17, ALLE20, ANS+20, ASAP17, AVG19, AJK+21, AAA15, BHK17, BS14a, BD14, CPS16, CCH15a, CAOM19, CLT+15, CZYZW21, DLC+17, ETA18, EO19, GDTF17, GHYR19, HCL+14, HWX+14, HLG+15, JHMG18, JPHL16, JM14, KGS+20, KC10, KKK+17, KMO+12, LLH+17, LG18, LDLM20, LS11, LHK+15, LLLL18, LH11, LYY+20, LGGJ14, LCC+15, LKC+18, MCM+16, MA16, MCD12, NSP+20, PIK20, PSNC18, PG15, Pom17a, Pom18b, Pom20, PY20, QBTM16, RS18, SV16, SMBT19, STGR15, TZ17, VEO16, WLZ+19, WCB15, WQ+16, WWCT18, WFS20, WC10, WL12, XS16, XCF18, YMB15, ZS16, ZHC+18, AHAKP08, AM10, ADDM+13, BLM00, BPRR98, BC11, BBD00, BOC00, BH10, BZ08, CLM+10, CNQ13, CGN96, CZZW00, CFHM09, CH02, CBR+05, CD96, CHY05, CML04, DP02, DCK09, DIP21, DDNV04, DVA02, EM03, EV12, Fs13, Gk14, Gg99, GPH09]. **based** [GD20, GBC07, GDF09, GPK+09, GHH0, HDZ+20, HYK+20, HCK13, HWCL13, HFM20, IYF+21, JLH+12, KB10, K111, KNRK06, KSA+10, LC13, LB00, LCM04, LW07, LCC11, LWZ+19, LDG9, LZ21, LCT02, LOC12, LK11, LLCD13, LWX20, LYM+20, MP07, MS12, MLC08, NAK20, OM08, OHA19, OKC08, OK08, PD00, PRCK08, PM010, PR09, Pom14b, RL13, RS98, SW04, SGK08, SOC06, SC06, TN99, TBZ13, VGG19, VKT02, WPR+19, WH20, WWC04, WC06, WSEA99, XAG+20, Yan00, YAN08, YCC09, ZMH07, A117, PZM19, CCQ98, CH00, MW97, MHT14, MW97, PGBS+06]. **basic** [VMP+00]. **Batch** [LYL+19]. **Battery** [MRL+19, NSS+16, Rak09, SKM+16, CSAHR07, LCZ+08]. **battery-powered** [CSAHR07]. **Bayesian** [BLR06, PTS+20]. **BDD** [CCQ98, VKT02]. **BDD-based** [CCQ98, VKT02]. **BDDs** [BC16]. **Beam** [LZ17]. **Behavior** [CLMZ10, HX+18, RGT+14, KRS06]. **Behavior-Level** [CLMZ10]. **Behavioral** [APD+11, AA17, CLMZ10, KHP05, Sch17, TN99, VW02, WHRC12, Fu05, HLK07, KSS+09, MRC06, VKKR02]. **behaviors** [BG01, kW02]. **benchmark** [PSK08]. **Benchmarking** [JBC+10]. **Benders** [ETAV18]. **best** [GK09, QS11, SSCS10]. **between** [Fu05, YR011]. **Beyond** [CPX14]. **Biased** [JKC+18], **biasing** [CFHM09]. **BICS** [RM09, RB10]. **BIFEST** [LTH99]. **Bifurcation** [HHL14]. **Binary** [SV07, BCR+08]. **Binding** [CET16, KK14, LHF12, ZLQ15, BD97, CLM+10, CFX09, DS06, HLK07, MKK13, MJM11, XK97]. **Bio** [BTP+20]. **Bio-chemical** [BTP+20]. **Bio-IP** [BTP+20]. **Biochemical** [KGS+20, RCK+15]. **Biochip** [CPK20]. **Biochips** [GHYR19, KGS+20, LHC16, LSCK20, LKC+18, MGR+15, PBWB21, RCK+15, RBWB9, SKS+18, SOC06, SC06]. **biomedical** [APB+08]. **Bipartitioning** [RTNL05, DPBN02]. **bipolar** [ZY+13]. **BIST** [BBEM15, JNS+17, LWC07, PKP+03, PGB01, SSGS03]. **Bit** [HHK+17, LYP13, NDLCR03, RMPJ08, RM09, RMB01, SBH+06]. **bit-width** [LYP13, SBH+06]. **Bits** [SS016]. **Bitstream** [HYK+20, OK20]. **black** [LAS01]. **BLAS** [CCY14]. **Block** [CM19, CCYC14, CCK+18, DK16, ZLG+19, KRS06, LPP00, MHD+04, MS00, WCC03]. **Block-level** [CCYC14]. **block-processing** [LPP00]. **Blockage** [JD18]. **Blockchain** [K19, XRS+19]. **Blocks** [AFM14, JPM+19, DK08, FLWW02, FLWC07, MHD+04, MS00]. **BNF** [WWC04]. **BNF-based** [WWC04]. **Board** [WWC04]. **Board-level** [WWC04]. **Boards** [GDTF17, BPRR98, OW06]. **body** [CFHM09]. **body-powering** [CFHM09]. **BonniRoute** [GMM+13]. **Boolean**
Channels [JLJ15, DSKB04].
Characteristics [CFD+16, JLF+12].
Characterization [KRL15, SRC15, BW00, JCS+08].
Charge [VA17b].
Chassis [APD+11]. check [CL13, YCHT00].
checker [BZ08]. checkerboard [GC96].
Checking [AA17, KW16, AGM01, BK10, CNQ13, Fuj05, HMB98, KMS12, YWGI09].
Chemical [LTW+16, BTP+20].
Chief [Ano13, Hu20].
Chip [ADB+19, ALL17, BHK17, BD14, BDBB19, CK19, CM20, GADG19, GSD+18, HAB+17, HZS+19, HIM15, JLJ15, JNS+17, JZY15, JGM14, KBV+15, LDD+18, LDD+19, IW17, PMT20, PGCB16, SCK18, SMBT19, STWX12, SGGR14, WLT08, XS16, XCF18, Yan, YKC141, ZHC+21, ZYS12, ZYPC17, AYM05, APB+08, ADS+09, BMJ13, Cha01, CKAP07, CSC08, CKK+13, CBR+05, CCL04, DNT20, HDL+12, JP12, KP13, KYN+12, LCOM07, LLKY13, LLKC13, LH13, LC13, MD13, NR03, OM08, PDDK09, PTC05, TDE08, WDLX21, Yan11, YLP+13, ZSJ10, ZMTC13, ZM07, WLL+11, AHL+08]. Chip-Multiprocessors [HAB+17].
Chip-to-Chip [LON08]. Chiplet [VEO16].
Classiﬁcation [GAT+21, MS17, VNS19, RAKK12].
Classiﬁers [ALL17]. cleaning [JS13].
client [dW97]. server [dW97]. CLIP [GH00].
Clock [EK16, HN07, HYN15, KK14, KK11, KKS16, LLI+18, LNG+16, Lt11, LS17, OCK19, TWC20, WCCC14, WKC12, WWW+12, BDM+99, BDB98, CNG96, CM08, CHH09, CKKT98, GH05, GHR+12, GWC12, HAT+12, HKC12, HLT+11, LLC13, PL98, SSGS03, TDF+09, wATK02].
Clock-Aware [LLL+18]. Clock-Gating [WKC12, BDM+99]. Clock-Tree [KKS16].
Clock-Tree-Aware [LNG+16]. clocked [BD00]. Clocking [BPTB17, MR05].
Cloning [JNCS19, Vah99]. Close [Pom18b].
Cluster [CM19, DD02, LJF02, SB98, KJF+07, LWC07]. Cluster-aware [DD02]. Cluster-cover [SB98]. Clustered [CMP10, GKB07].
Clustering [XLL+16, CC06, HLC07, MLMM08, SPMS02].
clusters [OHH08]. CMAPS [Hsi00].
CMOS [ACF+11, ADB+19, CFD+16, GH00, LTH99, PHK12, WSS+18].
CMP [CXX+13, WGS16].
CMPs [CAOM19, SYX12]. CNN [LMM+20].
CNN-based [LMM+20]. Co [CVMP19, Hu01, JSS+19, SKM+16, WWFT12].
Co-Simulation [SKM+16, WWFT12, CVMP19].
Co-synthesis [Hu01]. Co-Training [JSS+19]. coarse [KLSP11].
course-grained [KLSP11]. cocurrent [KI01].
Code
[AMR00, AM98, CL99a, MLH+17, TY97, BH10, DHV+00, KMS12, KNDK96, KH10, LP03, LB00, LKTD98, LDK99, OKC08, SR12, SBH+06, SM00, VMP+00, VLGG01].

Code-Injection [MLH+17]. codes [RM09, WHXZ13].

Code-motion [DHV+00]. codes [RM09, WHXZ13].

Codesign [BM11, CMM00, FIR+97, GABP00, GGB97, HKL+07, SCV06].

Coefficient [APDC17]. Coexistent [BDBB19]. Coexistent [RJL+09].

Cognition [HXC+18]. Coherence [HWX+14, LSL+13, ZYDP08]. coherence [VS12b].

Collection [GSD+18, HCL+14, ZLW+15].

Collection-Induced [GSD+18]. colony [WGDK07].

Coloring [ZLY+15, CML98].

Combinational [CD96, LD17, EMO03, KT96, KOS09, PR98, RJBS09, TN99].

Combinatorial [AM05, VLH04].

Combining [ETAV18, LFST21, SPG+08].

CoMETC [ANR13]. commercial [MPDG09].

Common [DHB16, LWC18, WLLH16, ZYZ+13, HWCL13].

Common-Centroid [WLLH16]. common-centroid-based [HWCL13].

Common-source-line [ZY+13].

Communication
[CARH18, KPF16, SRTG19, YP10, ADS+09, GBK07, GG99, LCOM07, MOZ06, PPD09, PPSV+06, ZM07].

Compact [JJ18, MAS16, WTR12, XCW12, HV+01, YHL07].

Compacting [PL03]. Compaction [Pom15a, Pom15b, Pom20, EMO03, MHD+04, TBZ13, XLC13]. comparative [MLG12, PB14].

Comparing [VGG19]. compatible [SGK08, WW04].

compensation [CFHM09]. Compilation [SF+19, SBI+06, YHL07, KRLP11, MSR09, VLGG01]. Compile [KNRK06].

Compile-time [KNRK06]. compiled [PHM00]. Compiler [LHS20, LP+17, LLHT03, SMBT19, SYHL14, WKL+18, XPSE12, BD08, GGDN04, HG07, KRS06, SSG12].

Compiler-Assisted [SMBT19]. compiler-directed [HG07].

Compiler-in-the-loop [XPSE12]. Compilers [YLL06]. Compiling [Edw03].

Complementary [LHY+10].

Complex [AM05, VLH04].

Computational [BCC08].

Compute [TCP97].

Computer [MFHP12, CSL+07, MB01].

computer-assisted [CSL+07, MB01].

Computing [BMdG17, CDB11, JSS+19, MHA19, NRDB19, SN10, WLH20, XGC+20, CLQ12, LC96, NR01]. Concept [AM10].

Concept-based [AM10]. Concurrency
[SSG12, Sen11]. Concurrency-aware [SSG12].

Concurrency-oriented [Sen11].

Conditional [CLH12, CCH15b, KW02]. conditions [HN07, YH97]. Confidence [JT98].

Configurable
[LSPC14, BD08, LCD07, SPG+08].
MT02, MKW09, PT06, PMB10, PR98, PR96, RCD07, SC00, SSP04, TD03, WVVY99, XCL13, XPS12, YH97, YHL+11].

delay-area [XPSE12].
delay-sensitivity-based [PMB10].
Delivery [XLS15, ZFLS11, ZLL13].
Demand [AAA15, SSK+18, WQC+16].
Demand-Based [WQC+16].
Demand-Driven [SKS+18].
develop [GS00].
Derived [CACS05, Zho08].
Describing [RHA08].
Design [ADB+19, ABC+17, AFM14, BJX15, BS14a, BZWS17, BS14c, BHLG9, CK19, CD09, CH10a, CH10b, CPX14, CHC+16, CRC15, CO18, DZS+18, DNT20, DHB16, EAP17, GdRJM21, GCZ+15, GHYR19, HCRK11, HMMG+20, HLG+15, ISK21, JWL+03, JK15, KKL15, KG5+20, KL90, KLSZ11, KL15, KKS16, LLP+16, LW17, LF12, LHK+15, LZZS15, OT15, OHA19, PMT20, PDS12, Pom14a, Pom16a, Pom18a, RF20, RS18, SM319, Sh17, SB+20, Shi0, SDP+09, SGGR14, SH12, SES15, SYX12, SGT15, TYSF20, TCM15, VGG19, VA17a, VEO16, WWC18, WPR+19, WSS+18, XLS15, XNZ+15, YPCF17, YD16, ZLG+19, ZSY12, ACT13, AIL+08, APB+08, AMI+06, ADP+07, BC05, BWW0, BFP08, BASB01, CWW06, CIB01, CSL+07, DRG98, DTC+09, EK07, FLW20, FLWS17, FW00, FR97, GPH+09, GM03, GABP00, HV07, HAO5, HJ08, HLC07, JB08, JP08, KSS+09].
design [KG99, KCA04, LC13, LSL+13, LFG+09, LCL08, MOZ06, MB00, MP07, MLG12, OCRS07, PB14, Ped96, Ped06, PBSV+06, PW99, RFY99, RS98, SW12, SGD10, SYL9, SSS10, SEC01, S11].

SZV+12, TW96, THL+13, VAAH+98, Voe01, WA98, WKR99, ZHM07].

Design-for-manufacturability [WPR+19].

Design-for-Testability [Pom16a, Pom18a, Pom14a].
design-specific [ACT13].

designed [KMO+12, SPT+17].

den [SS11].

Designing [BLNK14, DZS+18, HBC+08].

Designs [EK16, GD20, MACV14, PHK12, WWW+12, YVC+14, Yan16, Yan17, ZK15, CH00, GM08, GOC02, HMB98, KI01, KK11, KHW06, LHW97, LCHT02, LLHT12, LAS01, LCT12, MS00, MR96, RMP03, Sen11, SSS10, SNL12, WKL+13, Yan11, ZMT13].

Destination [RL13].

Destination-based [RL13].

Detected [GdRJM21, MJB19, CBH11, PWY05].
[BPTB17, HS18, RS98]. edge-based [RS98].
Editor [Ano13, Hu20]. Editor-in-Chief [Ano13, Hu20]. Editorial
[CH10b, CPX14, Dut05, Dut06, Dut07, Dut08c, Dut08a, Dut08b, Hu20, Irw00, MD13, Ped08, TK18, SJ02, Mar00]. Effect
[LHW+17, NSS+16, WCCC14, WSH+18, WSRH16, LTH99]. Effective
[DS06, JPHL16, LCJ+10, LTW+16, LCL08, NAK20, PCT+17, XLY+18, YVC14, YLZ+17, LPP00, LSPC14, MHT14, SBC08, WSV+14, XLCL13]. effectiveness [WAZ98].
Effect
[BDB98, BFL10, GC18, MRB+11, RJS09].
Efficiency
[KKLG15, LWC18, RB19, TCL14, WH19, KJT04, ZAZ13]. Efficient
[AKAKP18, BS14a, BHDS09, BW00, CK19, CAOM19, CYV+14, DMR10, EO19, GADG19, GT21, GFJ16, HMB08, HAB+17, HKB+07, HCS01, HMMG+20, HWX+14, JSS+19, JJK15, KB09, KC10, LW02, LHP16, LJ18, LDD+18, LHZ+06, LWZ+19, LZ21, LF12, LHCT05, LM96, LB11, MWS+20, NTSA18, PMP17, RM09, RGM15, SV16, SMBT19, SPC+15, SPMS02, SS14, SRC15, TLCF16, TYSF20, VNS19, WKL+18, WJY+07, WWFT12, YPCF17, YCHT00, YP10, ZYW+18, ZLG+19, ARLIH06, CD09, Das09, FN09, GM03, GBC07, IRMD07, JS13, JP08, KLO5, LCO7, LHZ+13, MR96, MR05, MP07, MWG07, SGD10, SLXZ12, SHN12, SZV+12, VKKR02, Wu09, ZS010, ZYX+13, Zho08]. Efficiently
[RCC+08, TY19, ADM+13]. Eh
[DKT+16, DBK+18]. Elastic
[LYL+19, SZB17]. Electric [VA17b].
Electrical
[BHLG19]. Electrode
[RBWB20]. Electromagnetic [WFSS20].
Electromigration
[DNT20]. Electron
[HCW+16]. Electronic
[CH10a, KLSZ09, HV07]. Electronics
[BSP+19, CPX14, XRS+19, CH10a]. Electrostatic
[LDD+19]. Electrostatics
[LCC+15]. Electrostatics-Based
[CLT+15, ZK15]. Element
[HMVG13]. eliminate [Mut09].
Eliminating
[SHLL98]. Elimination
[LHF12]. Elite
[ZKS+16]. Embedded
[BMGd17, BD14, BS14c, BM11, DFM15, EAP17, GAT+21, HCL+14, IK19, IGN18, KC10, LL15, LHP16, HKB+15, LL19, NSH+16, OHA19, PG15, RFG20, SPT+17, SL18, VBP+19, WHRC12, XPS+18, YP10, AM10, BPR98, BH10, CSAHR07, CMM00, CSL+07, CM13, DCK07, DCK09, DRC98, GDTG07, GPH+09, GG04, GAB00, HKL+07, HV07, HCK13, IA1+09, JS13, KNDK06, LJV02, LCZ+08, LSDV10, LB00, LMW99, LDK99, MBB01, MDG98, ML09, NG06, NR03, PND97, PND00, PCD+01, PHM00, PEPP06, Q509, RSR01, SR12, SUC01, TKVN07, WAZ98, WOJ6, XZC09, ZYPD08, ZP08]. Embedding
[CM18]. Embeddings
[CM19]. Emerging
[BRC018, SN10, YPCF17, BC08]. Employing
[GS13, ZK15]. emulated
[THC+14]. Emulation
[ALLE20, ADP+07, HMVG13, KR098, MW97]. Enabled
[XRS+19, YSF+18, LDD+19, LSL+13, YFT18]. Enabling
[IK19, JS13, ZHOM08]. Encoder
[QSW+15]. Encoding
[MDR15, OT15, MPP17, YZG+19, KJT04, LCO7, LWC07, NT05, RTNL05, YGZ04]. Encryption
[Che18]. End
[ENP20, GAB00]. End-to-end
[ENP20]. Endurance
[CHC+16, CCK+18, HHH+17]. Energy
[BFL10, DMR10, ENP20, GADG19, GT21, GFJ16, HXC+18, JDD20, JSS+19, JPHL16, KC10, LDD+18, LF12, LWC18, LMA+16, MBD+20, MR05, NTSA18, PMP17, RB19, SPC+15, TLCF16, TYSF20, TCH17, WH05, WKL+18, XPS+18, YPCF17, YP10, ZHTC09, ZMS+19, ANR13, CSAHR07, CLQ12, GBC07, HG07, HW00, JS13, JCS+08, KSS+05, KRS06, KON06, KC13, KJR+07, LSL+13, LR07, MRC06, OK08, SLXZ12, SHN12, WLL+11, WO09, ZAZ13].

fabric [MSB^+09]. fabrication [WLT08]. factorization [BOC00]. Factory [DZCD15]. FACTS [VMP^+00]. Fail [PAV17, PA21, BWB14]. Failure [XNZ^+15]. Failures [YYL^+15]. False
[AKAKP18, AL19, GGBZ02, SHLL98]. False-noise [GBBZ02]. family [BD05]. fan [LH09]. fan-out [LH09]. Fast [CPW04, DK16, DNT20, GdRJM21, GLY+12, HGLC16, IHM15, JZY15, KKLG15, LH11, SMBT19, SGD10, STWX12, Tes02, TZ17, CCW08, GMN+13, GBC07, JHL02, KT96, LC14, LCKT12, NR01, SBGD13, SGJ96, YTHC97, LCC+15, OS03, QSK12]. fastest [Das04]. Fault [CYH19, EKS+14, GT21, GV15, IYF+21, JPM+19, LW17, LXWC20, RRHB21, XCF18, YYL+15, BPRR98, BH03, CE06, DNA+12, HH09, JLE+12, LTH99, LLQ+03, SC06, TCP97, TD03].

Fault-Aware [GVJ15]. Fault-based [IYF+21]. Fault-Induced [RRHB21]. Fault-Tolerant [CYH19, GT21, LW17, XCF18, SC06].

FaultDroid [RRHB21]. Faults [BDBB19, MCD12, Pom17b, Pom19b, Pom20, ZCH+21, HVT+01, LTH99, LIA00, MT02, PT06, PR98, PR09, TYH08, XZC09].

Faulty [JCK+18, JPM+19]. Feature [HDZ+20, VTC20]. Features [LL19].

Feeding [EKS+14]. Feed [LHS20]. feedback [LWK11]. fetches [KTKO13].

Floorplanning [WHS+18, CH02, CD96, PWY05, VW02]. field-programmable [CH02, PWY05].

FIFO [BK00, ZL+16]. File [TLCF16, CFX09, GF10, ZYP09].

Finite [CLT+15, SRC15, CK96, CHHL96, GK07, GK09]. Finite-Point [SRC15].

Flattened [ZYP09]. Flexible [BHK17, IGN18, KLC+18, RS18, CL99b, MS00].

FlexRay [SBC+14]. Flip [HS18, KMO+12, XCV12, Yan16, KOS09, KSA+10, LLLC13, Yan11, ZMTNC13]. Flip-Chip [Yan16, Yan11, ZMTNC13]. Flip-Flop [KMO+12, XCV12, LLLC13]. Flip-Flops [HS18, KOS09, KSA+10]. Floating [BS14a, SKCM06, WG11].

Floating-point [WG11]. Floorplan [KQP+19, YVC14, YCCG03, HCM11, LCL08, MRMP08, SY07]. Floorplan-Guided [YVC14].

Floorplanning [HCRK11, HCH+16, KLE18, HMLL11, LHZ+06, LCC08, LL01, SYZ08, WLCJ09, YYC07, YYC09]. floorplanning-based [LCC11].

Floorplans [DSK01, MSKB07, MS00, WYC10]. Flop [KMO+12, XCV12, LLLC13]. Flops [HS18, KOS09, KSA+10]. Flow [HMO+14, IG18, KGS+20, KW16, MB19, NPH+20, PDS12, QSW+15, RJ14, BF08, DTC+09, GDF09, KMS12, LC13, OM08, WC06].

Folded [AFM14, HS18]. Folding [Pom15b, BHS11, TS06]. footprint [AMM+06]. Formal [Ali12, BGM04, EWI+18, KMS12, KG99, SSS+19, SGGR14, VS12a, ADS+09, CMM00, MR96, RFYL98, SMSB05, VS12b, Zho08].

Formally [KRH18]. formats [AMR00].
Forming [PR07]. FORTIS [GSFT16].
Forward [GSFT16, GS00, LHS20].
Foundation [TB20]. Four [HGLC16].
Four-Step [HGLC16]. Fourier [LCC+15].
FPGA [AMM+18, ACT13, ALLE20, BS14c, BHS11, CWW96, CZW+03, CH00, DP02, EW18b, FW00, GPK+09, GVJ15, HABS15, HSY+20, HLHT08, HW14, JLF+12, KT96, KL05, KFH+08, LKM04, LLL+18, LM19, LZA+21, MW97, MA16, MP07, MS21, OK20, PL98, PMT20, PSNC18, PY20, SAHF+20, TW96, ZLQ15, ZHTC09].
FPGA-based [MW97, ALLE20, PSNC18, DP02, GPK+09].
FPGA/FPIC [CZW+03]. FPGAs [CZW00, CEB06, CHY05, DVA02, GDG+08, KNRK06, LB11, MLMM08, SPMS02, Tes02, VKT02, WG11, WLC02, WSEA99, YGH+10, YLLO9].
FSM [AGM01]. FSMs [CK16]. fuel [LCZ+08].
fuel-cell-battery [LCZ+08]. Full [STWX12, HDL+12]. Full-Chip [STWX12].
fully [FW00]. Functional [CVMP19, DCK07, FR97, PR98, Pom15b, Pom15c, Pom16a, Pom18b, Pom19a, Pom21, VLFH98, WSEA99, XLY+18, CM07, CK96, LOC12, M02, Pom13, Pom14b, Vah09]. Functionality [BFV15, HLCH07]. functionality-directed [HLCH07]. functions [BC11, CC98, TW96]. Fundamental [SBY+20, XLANB17, Voe01]. FUNI [LIA00]. Future [HAB+17, KBV+15, ZZCY17].
FuzzRoute [RGM15].
GALS [SS11]. GALS-Designer [SS11]. game [HR06, RJL+09]. game-theoretic [HR06]. Garbage [GSD+18, HCL+14, ZLW+15]. Gate [CM19, CDB11, Che96, HMO+14, KKS16, LGJJ14, SV16, SRC15, VTC20, CCW08, CH02, CD96, CH00, HH09, LG12, LLYW10, PWY05, RG09, SC00, WY06].
Gate-Level [CDB11, HMO+14, VTC20, CM19, Che96].
gated [CM08]. Gates [WSS+18, KOS90].
Gateway [HXC+18, JSG09]. Gating [CMP10, CLMZ10, KKHK16, WK12, XLS15, BDM+99, ETR07, HTCP13, KBN09, SSCLS10, YHL07]. Gaussian [ZYW+18].
GBDD [YTHC97]. General [CH02, wATkK02]. Generalized [Pom15c, DS06]. Generated [CCH15b].
Generating [MFS09, MN17, PKJK20, KT01].
Generation [BKW15, BFV15, CYV+14, IE12, LCY12, LV14, LCYN18, MFHP12, MCD12, NPH+20, PCT+17, Pom17a, Pom17b, Pom18b, SHT17, SH10, STG16, SOS15, WWW+12, YLZ+17, YD16, AM98, CK96, Che96, CL99a, CCW08, GF06, HRP00, KKMB02, KJR+07, KNDK96, KH10, LTH09, LP03, LKTD98, MPP00, MSD06, MD08, PR98, PR07, Pom13, QM12, SR12, SNL12, SM00, TBZ13, VMP+00, dW97].
generator [BCR+08, WWC04].
GPGPU [SBR+17]. GPGPUs
[HIW15, TLCF16]. GPlace3.0 [AMM+18].

GPU
[CDB11, HCRK11, LLK+14, LH11, TYSF20].

GPU-Based [LIH1]. GPUs
[SABSA15, TY19, WKL+18, ZWD11].

Gradient [SV16, GBC07]. gradient-based
[GBC07]. grading [PT06]. Grain [LG18].

gained [KLSP11, LPY+20]. Grammar
[JHMS18]. Granularity [RBWB20].

Graph [CH17, JHMS18, JOH17, LB00, SS14, WYC10, WC06]. Graph-based
[LB00]. Graph-Grammar-Based
[JHMS18]. graphene [YMC+13].

Graphical [BLR06]. Graphs
[ASAP17, BFG17b, CM18, CCH15b, ENP20, HPB11, LH14, CH13, DSK01, HKB+07, LKTD09, MFS09]. gridless [LC11]. Grids
[BS14b].

GRIP [JHMS18]. Ground
[LHJ12, YHH09]. Grouping
[XCW12, KSA+10]. Guarantee [MN17].

Guaranteed [PMS15]. Guest
[CH10b, Mar00, SJ02]. Guidance [ZKS+16].

Guided [YVC14]. Guidelines [WPR+19].

Guiding [EW18a].

Hamming [HRK18]. Handling
[DH06, GdRJM21]. Hard
[CHBK15, WDZG16, PW99, QS09].

hard/soft [QSO9]. Hardened [BS14c].

hardness [WYC10]. Hardware
[ANS+20, BS14a, BM11, CMM00, DZS+18, GFJ16, GQW19, IPWW17, KTKO13, LG18, LHF12, LF12, MRL+20, MFHP12, MRL+19, RB19, TY19, VTC20, XFJ+16, YSF+18, YCL+20, YGH+10, ZLG+19, AMO05, BHDS09, BGM04, FNP09, GGB97, GPK+09, HKL+07, HBC+08, JW08, KSK+05, KG99, LP07, LVL03, MSB+09, MLC08, ML09, RHA08, SSG12].

Hardware-accelerated [RB19, MLC08]. Hardware-Assisted [GFJ16].

Hardware-Based [BS14a].

Hardware-Efficient [ZLG+19]. Hardware-Enabled [YSE+18].

Hardware-Software
[BM11, GGB97, HKL+07, LVL03].

Hardware/software
[BM11, CMM00, KTKO13, YGH+10, AMO05, ML09].

Harnessing [RBWB20]. Harvesting
[SAL19, XPZ+18]. hash [YTHC97].

Hashing [CJJK19, JCK+18]. hazards
[HA05]. Heap [JPM+19]. Heaps
[KLK+17].

heartbeat [DHZ+11]. heartbeat-detection [DHZ+11]. Height
[CZZYW21]. HeM [AJK+21].

Heterogeneous
[AJK+21, ETAV18, GADG19, MB+20, RS18, SPT+17, SVK17, SSL17, SAL19, TBCH17, BWB14, CL99a, HV07, KJR+07, LKY13, PTC05, QSO9, SCB01, SKS12].

Heterogeneously [ZP08]. Heuristic
[AKAKP18, HGLC16, CLM+10, LCKT12, OCRS07, SBDG13]. heuristics [TN99].

Hidden [HYK+20]. Hierarchical
[CVM17, JDD20, LMB+12, LJ18, MSKBD07, TZ17, WMT+16, WLH20, XT16, BG01, HKV+07, VKKR02, ZM07].

Hierarchy
[CVM19, FW00]. High
[AKAKP18, Ali12, CET16, CK16, DKT+16, DBK+18, DLC+17, GHW+12, HIW15, ISK21, JD00, LLL+18, LYKW09, MACV14, NSP+20, PTC05, RJ14, Sch17, SS14, VAAH+98, WMT+16, ZYW+18, ZLG+19, ACT13, AYM05, BHW+13, BD00, CCC+09a, GDTG07, GF06, GGDN04, GWR13, HJ08, JP08, KW02, KJT04, LJV02, LCM14, Lin97, LFG+09, MKBS05, MJ11, MLMM08, NS03, OW06, OWH08, PB14, RFYL98, SW12, SLXZ12, TC98, VKKR02, XK97, YWW10].

High-density [OWH08]. High-Level
[CET16, ISK21, RJ14, Sch17, SS14, JD00, NSP+20, PTC05, VAAH+98, AYM05, BD00, GGDN04, HJ08, JP08, KW02, KJT04, LJ02, LCM14, Lin97, MKBS05, MJ11, MLMM08, PB14, RFYL98, SW12, TC98, VKKR02, XK97, YWW10].

High-Performance
[DKT+16, DLC+17, LLL+18, WMT+16, GHW'12, LYKV09, GDTG07, GWR13, LJVO2, LFG'09, NS03, SLXZ12],

high-quality [BHW'13], high-speed [OW06], High-Throughput [HIW15],

Higher [BS14a, LYSO19, XPSE12],

History [JM14], History-Based [JM14],

Hits [SAL19], Hmap [YTHC97], HMP [SPT+17], hold [KSA+10], hold-driven [KSA+10], holding [Pom14a], Hole [YLZ+17], Holes [Pom21], Holistic [RTG+14], Hop [AL19], HoPE [PBL+17],

Hot [PBL+17], Hot-Cacheline [PBL+17],

Hotspot [HDZ+20, LYM+20], HPC [LZA+21], Huffman [BH10, NT05],

Huffman-based [BH10], huge [HCK13],

huge-scale [HCK13], HVAC [JDD20], HW [ADP+07, FLPP09, WWFT12], HW-SW [ADP+07], HW/SW [FLPP09, WWFT12],

Hybrid [BLNK14, GCL+16, KKK12, LSTF21, LZ17, LZ21, LYLW17, LV14, LGJJ14, MACV14, NAK20, PA21, SLXZ12, WSS+18, CLYP09, KT01, KKMB02, LCZ+08],

Hypercube [TMDF10],

I/O [LC13, Wu09, Yan16], IC [ABC+17, AYS20, BHLG19, EK97, IK19, KKI1, KKHK16, LCI+10, Ped06, WCB15, WXH+19, WSS+18, XGC+20, ZLL13],

IC/MCM [EK97], ICOS [HCLC98], ICs [CM18, CM19, CLT+15, GSFT16, LJJ12, LS17, THM15, WWCT18, YHH09],

IDDQ [TCP97],

Identification [VTC20, DNA+12, JDT+08], identify [LIA00],

Idle [LC07], Idleness [GSD+18],

IDs [SOS15], II [JW08], ILA [HZS+19],

illegal [LIA00], ILP [GBK07, MRC06, MWG97, OCRS07, OK08, SR12],

ILP-based [MWG97, OK08], Image [GAT+21, RB19, WYIG07],

Imbalanced [HDZ+20],

Impact [GBK07, LDD+19, MDR15, RB19, TY19, XNZ+15, KTKO13],

Impacts [LHS+21], implement [ADM+13],

Implementation [ANS+20, ALL17, HCRK11, JM14, KKKLP15, MAS16, ORGD+15, ZABBZ17, CD09, JWL+03, KYN+12],

Improving [ALE20, CL13, CHC+16, KRS06, KYL16, RAK12, WDDLD17, WSH+18, WH19],

In-Cache [BFG+19], In-network [CXX+13],

In-Order [ZBP18], in-place [KCSVG13, YWW10],

In-Scratchpad [DFM15], In-Situ [SL18], inclusive [TZ20],

Incomplete [Pom19b], Inconsistency [XPZ+18],

Increase [KMR18], Increasing [HW14],

Incremental [BS14b, DNT20, EO19, HKV+07, LYP17, LMG+16, SGGR14, DVA02, LG12, LLM01, SMSB05],

Independent [Pom16b, VE016],

Index [BC16, HCL+14, HCK13], index-based [HCK13],

Index-Resilient [BC16],

indexed [AC06], indexing [Giv06], indices [LCT03], indirectly [AC06],

Indoor [MVK+18],

Induced [CIX15, GSD+18, LS19, RRHB21, TCW20],

Inductive [PWM17, HML11, LXCH04],

Information [HMO+14, NPH+20, RRHB21, ZBP18],

Informative [TEK18], Initializability [CPR+02], Initialization [WL12],

Injection [MLH+17, BPR98], Input [JK10, LV14, PIK20, Pom16a, Pom16c, SRC15, BD05, BH03, CCW08, KM97],

Inputs [Pom18a], Insertion [HS19, LTW+16, SHL+19, CW01, JHL02],
insertion/sizing [CW01]. Instinctive [MVK+18]. Instruction [HKL+15, HZS+19, KKMB02, LPD+17, LCD07, LHF12, LF12, OT15, SEN05, TYSF20, AMR00, Hua01, KSK+05, KTKO13, KHW06, LP03, LLHT03, LYCP13, LMW99, WH05].

L [LM96, Meh98]. L-shaped [Meh98]. Language [LM96]. LAB [KJR+07]. L2 [SYX12, TYSF20]. Lab [PGCB16]. Lab-on-Chip [PGCB16]. Lagrangian [LGGJ14, PY20]. Language [MSD06, MLC08, PHM00, RHN00]. Languages [BGM04, Edw03, SSG12]. Large [CK19, CSX+05, DNT20, JZYZ15, LYL+19, YVC14, ZHC21, AM10, DD02, HH09, MRB+11, SCB01]. Large-Scale
[LYL+19, YVC14, CSX+05]. Last [KLJ14, SABSA15, SAL19, CKX+13]. Last-Level [KLJ14, SABSA15, SAL19].
Latch [JNCS19, LCHT02]. latch-based [LCHT02]. late [LG12]. Latencies [Sch17].
Latency [QBTM16, YKCG14, ZYPC17, PMT20, WHXZ13]. Latency-Minimal [ZYPC17]. Lattices [GSS14, HMO+14].
Launch [PTC+15, WWW+12, XW+12, WPHL08]. launch-off-shift [WPHL08]. launch-on-Capture [XW+12].
Launch-On-Shift [PTC+15, WWW+12]. Launch-to-Capture [PTC+15]. Layer
[LCP18, MWS+20, WLM12, Ya17, Ya20, CLYF09, DNNV04, OW06, Yan00, Yan19].
LDE-aware [TZ20]. LDOs [SCK18]. leaf [dW97]. Leak [PCT+17]. Leakage [CFHM09, DHB16, HYN15, JK10, PIK20, RRBH21, STWX12, SYHL14, SKP21, XT16, YYLL09, ZBFP18, CS07, CCW08, KOS09, MLG12, YLL06]. Leakage-Aware [SKP21, YYLL09]. Learn [RG19]. Learned [XFJ+16]. Learning [ALLE20, CAOM19, CMMC20, DNT20, EW18a, GT21, HDZ+20, HAW20, HMMG+20, HXC+18, HFBM20, IE12, LG18, LYHL14, MB+20, NSP+20, PJ14, RNA+21, RPR+21, SAHF+20, TEK18, WH19, WLH20, WDLX21, XA+20, ZKS+16, ZHC+18, STL+13]. Learning-Based [LG18, HFMB20, XA+20]. Least [JLJ15].
Legalization [CZZYW21]. Legalizer [DBK+18, DBK+18]. length [CCC09b, Con06, LCT03]. Lens [KPSW09].
Lessons [XFJ+16]. LET [WLZ+19]. LET-Based [WLZ+19]. Level
[CDB11, CET16, CLMZ10, DKZ+15, HKL+15, HMO+14, HZS+19, ISK21, KLJ14, LL15, LG18, LS11, PDS12, Pie16, RJ14, SABSA15, Sch17, SS14, SAL19, TYSF20, VTC20, WDL17, AYM05, BdM00, Bd00, CM19, CCYC14, CB01, CCK+13, Che96, GM08, GG99, GS00, GGDN04, HJ08, JD00, JR97, JP08, JT98, KI01, KRK98, KW02, LC14, LLQ+03, LTPT10, Lin97, MW97, MOZ06, MKBS05, MT02, MJM11, MLMM08, NSP+20, OCRS07, PB14, PPDK09, PTC05, Ped06, PBSV+06, RFYL98, RFG20, SW12, Sen11, SEN05, TC98, TJ99, Val99, VAAH+98, VKKR02, VS12b, VBP+19, WTL+13, XK97, YWW10, ZHM07, ZLL+13].
Leveling [CCH+15a, CHC+16, Kha12, CD09]. levelized [KPR06]. Levels [BFL10]. LFSR
[KJT04, Pom17a, Pom18b]. LFSR-Based [Pom17a, Pom18b]. Libraries [ACF+11].
Library [KRH18, KKS+16, MCZ+19, BD97, DDNAV04, JD00]. Library-Based [MCZ+16, DDNAV04]. lifecycle [HDL+12].
Lifetime [AAA15, DLC+17, WDLD17, MHT14]. Lightweight [MPM+17, NSC17]. limitations [Voe01]. limited [LLK13]. line [SNH02, ZYS+13]. Linear [ACFM12, ETAV18, MFHP12, TZ17, DSRV02, KC98, IKL11, ST09]. Links [KQP+19]. list [HCS01, MHD+04]. list-approximation [HCS01]. lists [HVF+01]. Lithographic [LYM+20]. Lithography [HDZ+20, LZ17, ZLY+15]. liveness [MS08]. LLC [PBZM19]. LLCs [PBL+17]. Load
[CLC20, LLHT12, Pom19a, Pom14b]. Load-balanced [LLHT12]. Local
[PMS15, KC13]. **Locked** [IYF+21]. **Locking** [BTP+20, Mit16]. **Lockout** [ISK21]. **Logic** [ALLE20, AYS20, CBMM10, Che18, CZW19, ETA18, EKS+14, HS18, HIW15, KKH+02, KMO+12, LWZ+19, LWC18, PA21, SLP+19, WB16, WKC12, ZWD11, ARLJH06, BLMO, BDM+99, BOC00, CSKR05, CD96, GGBZ02, KJKK03, KMC97, KVMH08, LWH06, MW97, RBS09, TW96, TX99, TZ99, VKT02, WYYG99, ZS02, PRCK08].

Logic-Based [ETAV18]. logics [BD05].

Longevity [KBV+15]. Lookahead [PMT20]. lookup [CH02, WSEA99]. Loop [AA17, EO19, GDD21, DLDM20, SXX+06, HKY+07, PCC09, XSP12].

Loop-dominated [DLDM20]. Loops [IYF+21, BG01, CL99a, KNDD96, SHLL98]. Lose [KBV+15]. Loss [WSRH16, KC13].

Losses [ZMS+19]. Low [ACF+11, AYS20, ALL17, BPTB17, CH10b, CM08, CHHL96, CMLZ10, GBR07, GAT+21, HLKN07, HTCP13, LTYW12, LSL+13, LS17, M KK13, MACV14, PMT20, PML10, Pomi1b, RFBI0, SESN15, TWL16, TMDF10, WGT+17, WPR+19, YKCG14, ZK15, BD00, BPRR98, CH10a, CCX06, DS06, GOC02, HLCH07, HCK13, JW+03, KBN09, KKH+02, KJR+07, KHW06, KY+12, LLH03, LUCP13, LHW97, ML09, RNLN05, SU01, TC01, YGZ04, ZYDP08, ZP08].

Low-Complexity [LTYW12]. low-cost [BPRR98, HCK13]. **Low-coverage** [WPR+19]. Low-energy [LSL+13].

Low-Latency [YKC14, PMT20].

Low-overhead [PMB10]. **Low-Power** [ALL17, BPTB17, CH10b, CMLZ10, GBR07, GAT+21, LS17, TWL16, TMDF10, WGT+17, ZK15, CM08, HTCP13, MKK13, Pomi1b, RFBI0, BD00, CH10a, DS06, GOC02, HLCH07, JW+03, KBN09, KKH+02, KHW06, KY+12, LUCP13, ML09, RNLN05, SU01, ZYDP08, ZP08]. lower [LC96, TC98]. lower-bound [LC96].

Lowering [JLK15]. **LUT** [CD96, CH00, KNPR06, LKM04, VKT02]. **LUT-based** [CH00, KNPR06, LKM04, VKT02]. **LVS** [LBV+06].

MAC [BS14a]. **Machine** [ALLE20, CAOM19, CCMC20, DNT20, EW18a, HAW20, HMMG+20, HXC+18, IE12, LYHL14, NSP+20, RPR+21, SAHF+20, XAG+20, ZHC+18, CK96, KMC97, MPP00, PHM00, MSR09].

Machine-Learning [ZHC+18]. Machines [DMR10, BDC08, CHHL96, MS08, BHKD09].

Macro [LJ18]. macrocell [CHY05].

Macromodel [SHD17]. MAESTRO [RGT+14].

Machines [DMR10, BDC08, CHHL96, MS08, BHDS09].

Manufacturing [YCL+20]. Many [CAOM19, SESN15, WMT+16, WDLX21, ZHC+21].

Many-Core [CAOM19, SESN15, WMT+16, WDLX21].

Manycore [AKJ+21, KKL+17].

Manycore-Based [KKL+17]. mapper [YTHC97]. **Mapping** [CPS16, ETA18, GT21, HABS15, HAB+17, LFST21, VNS19, XGC+20, ZYPC17, CSL+07, CH02, CH00, CHY05, JP12, J00, KL05, LKM04, MBP01, PL98, S012, WY06, WSEA99, ZS02].

Marching [CCH+15a]. Marching-Based
[CCH+15a], Markov [CB17], Massively
[ZWD11], Matched [LCYN18], Matching
[CLC20, MS17, THM15, WLLH16, ZLG+19,
BD97], MATLAB [LPD+17], matrices
[KVMH08], Matrix
[CLT+15, CZZYW21, LXWC20, LKC+18].
Matrix-Based [LKC+18]. Maximization
[LM21]. Maximizing [HHK+17].
MaxSense [LM21]. Maze
[LLL18, JCGP05]. MCC [YYG+16].
MCEnu [HTH12]. MCM [EK97].
MCMM [EK16]. McPAT [LLK+14].
MCUs [MRB+11]. MDE [ORGD+15].
mean [Das04]. Measurement
[APDC17, CRT19, JB98, XAG+20, LG12].
Measurement-Based [APDC17].
Measurements [LFST21, LYSO19].
measuring [WAZ98]. Mechanical
[BHLLG19, LTW+16]. Mechanism
[QSW+15, SVK17, WQC+16, ZLW+15,
ZK15, Wu09]. Mechanisms
[CBO+18, Gbk07]. MEIDA
[LSCK20, PBWB21]. memetic [LFG+09].
Memories
[AAA15, DFM15, JSA18, SKP21, JD00,
MRB+11, NR03, OK08, RMB10, SPG+08].
Memory [BLNK14, BD14, CPS16, CCK+18,
CIX15, DFM15, JCK+18, JPM+19, KLSP11,
KKL15, LHS20, LLP+16, LWZ+19,
MWS+20, NAK20, PDN97, PPP+15,
PBMZ19, RPR+21, SSSL17, TLCF16,
TRM+16, TMDF10, WQC+16, WDGZ16,
WFT+19, WGS16, XNZ+15, ZLW+15,
ZZCY17, AMM+06, BD08, BHD509,
BGN+07, CPW04, CJLZ11, HKV+07,
IBMD07, JCS+08, Kan06, KG09, LSPC14,
MB04, NDLRC03, OKC08, PDM00, PCD+01,
SOC01, SM00, WH05, Wu09, ZY+13, ZP08].
Memory-Based [BD14, CPS16, LWZ+19].
memory-constrained [OKC08].
Menristive [XGC+20]. MEMS
[BHLG19, Kha12]. MEMS-IC [BHLG19].
Merging
[ASAP17, CZW19, TCL14, LLLC13, MB04].
Mesh [JM14, KK14, GHY+12, RL13].
Message [Hu20, KPB19, DSH12, EY12].
message-passing-based [EY12].
metamodelling [MPS07]. Method
[AKAKP18, BZKZ17, CZZYM21, JS+19,
LCC+15, RGM15, SRC15, STG15, WTR12,
WMT+16, YLZ+17, ZYW+18, GGN96,
CL99b, HW00, KSG05, LH13, LDK99].
methodologies
[BW00, CEB06, MD13, SSCS10].
Methodology [BF15, EAP17, KKLP15,
KJR+07, KMO+12, LW17, LZZV15,
LLL18, NSP+20, VA17a, VEO16, VBP+19,
AMM+06, DRG98, FLP09, HDL+12,
HCLC98, HSG00, KYN+12, NR03, PW99,
SEN05, SMSB05, SVZ+12]. Methods
[EW18a, GDF09, KRL15, ZHC+18, FZS11,
SW04, ZAJ+12]. Metric [YRH11]. Micro
[RBWB20]. Micro-Electrode-Dot-Array
[RBWB20]. Microarchitectural
[GO02, LS11, HML11].
Microarchitecture [ZBF18, CF09].
microcontrollers [CD09]. MicroFix
[YHY+11]. Microfluidic [CPK20, GHY19,
KGS+20, LHC16, LKC+18, MGR+15,
PGB16, RCK+15, SKS+18]. microfluidics
[SOC06, SC06]. microfluidics-based
[SOC06, SC06]. Microgrid [VA17a].
Microprocessor [OT15, BPRR98, HV98,
LVB+06, WAZ09, WWC04].
microprocessor-based [BPRR98].
Microprocessors [Ali12, WMT+16,
LPTT10, MKW09, VAAH+98, WTL+13].
Migration [DK16, Kha12, ZZ20].
Migration-Resistant [Kha12]. million
[HH09]. million-gate [HH09]. Min
[HS18, SSP04]. Min-Area [HS18, SSP04].
min-delay [SSP04]. Mine [LWC18].
Minimal [MCD12, ZYPC17, KL05].
minimal-area [KL05]. Minimally
[RNA+21]. Minimization
[HYN15, PIK20, WB16, AMR00, CSAHR07,
CGN96, CCC09b, HPPK99, HCS01, HCN09,
KC13, LXCH04, LKM04, LDK99, LWH06,
LC07, MRC06, OK08, Ped96, PR96, QS09, SXX+06, Tj99, ZYP09. Minimizing [GSD+18, KO509, PKJK20, TPC+17, WDZG16, WC10, KT96]. Minimum [BFL10, HYN15, JK15, KJKK03, FNMS01, MS00, ZCG06]. minimum-area [MS00].

Moc [MP07]. Mode [EK16, JOH17, KKS16, LC07]. Model [AVG19, CLH12, CHH15b, CBI, EAP17, GF16, GGB97, KW16, LHS+17, LOC12, MS21, SZB17, XBN17, YWGI09, YMB15, BLR06, BK10, BH03, CNQ13, CH13, CK96, LLQ+03, MP07, MCMW08, PWY05, RS09]. model-based [MP07]. Model-Centric [XBN17]. Model-Driven [EAP17, LOC12]. modeled [ARLJH06].

Modeling [BK15, BLUS19, CVMP19, GS00, GCT+15, LG18, LLK+14, PSL+98, QBTM16, RGT+14, RPR+21, SSS+19, TW16, WTR12, WGT+17, BBDO0, JP08, LMW99, LON08, LVL03, MP07, PTC05, RH009, RFL16, Rak09, SKCM06, VAAM+98, VLGG01, WTL+13, WJY+07, ZM07]. Models [APD+10, APS18, BBEM15, BFG17a, HHL14, LFST21, MA16, RG19, ZABGZ17, GMSS20, LTPH10, MRC06, SED10, SMSB05]. Modern [DKT+16, NTSA18]. Modification [JK10, PAV17]. Modular [GAT+21, ZMS+19]. Module [LCYN18, SC06, CCX06, SCJ01, TW96].

optimizations

[GGDN04, KRS06, SSG12, SC00, ZHTC09]. Optimized

[ACF+11, BC05, HCRK11, MJB19, VA17b, ZABGZ17, ZYS12, KCA04, SY07]. Optimizer

[LDLM20]. Optimizing

[GYT12, KSK+05, LPP00, LAS01, RBWB20, SYZ08, ZLW15]. Optimum

[Das04]. Orchestration

[EW18a]. Orchestration

[SAL19]. Orchestration

[DZCD15, KQP+19, LYSO19, SXZV13, ZBPF18]. Ordered

[JD18]. Ordering

[AJM13, GKM05, LCXH04, MKW08]. Organization

[PDN97]. Organization

[PNN06]. Organization

[KLZC11, KSA+10, LLHT03, LCHT02, LC07, LLLC13, MKBS05, MHT14, MKW09, MLG12, OM08, PCD+01, PEPP06, RGM09, RJBS09, SB98, SPA+03, THL+13, VKKR02, VHL04, WGDK07, WLL+11, XZC09, GK09]. Optimizations

[CH10a, KLSZ09, Ped11]. Paradigm

[DS05, TYH08]. Paradigms

[Ped06, PBSV+06]. Parallel

[DL11, EBR+09, EAP17, GDPRG11, KLSZ11, KTK+17, KMC97, LB11, Sch17, ZFLS11, ZS16, ZWD11, CBHK11, CT13, Hsi00, Hsi01, KJK+08, KH10, LM05, LH09, RMPJ08, TW96, ZCG06, KLS09]. Parallel-Programming

[KKJ+08]. Parallelism

[HC18, DSRV02]. Parallelization

[SLP+19]. Parallelizing

[GGDN04]. Parameter

[ZKS+16, ST99]. Parameterised

[BACS15]. Parameterizable

[BH91, FHS11]. Parameters

[BBEM15, BHLG19, KPR06]. Parametric

[BFG17a, LON08, LCKT12]. Parasitic

[LZ21, WLLH16]. Parasitic-Aware

[WK17, LZ21]. Partially

[KQP+19, MCZ+16, ETR07, GDG+08, KBN09, KJT04]. Partially

[TCL16, VLL09]. Partially

[ZS16]. Partitions

[CH10a, KLSZ09, Ped11]. Paradigm

[DS05, TYH08]. Paradigms

[Ped06, PBSV+06]. Parallel
FNMS01, OKC08. pattern-based
[OKC08], Pattern
[LOZ17, SHL+19, XYG+16, YLZ+17, ZLY+15].
Patterns [LM21, Pom18b, ZMTC13], Pay
[CHBK15], Pay-Burst-Only-Once
[CHBK15], PCB [Yan17], PCM
[AAA15, BLNK14, CCh+15a, CCh+16, HHK+17, LYLW17, PBZM19]. PCM-Based
[PBZM19, AAA15, CCh+15a]. PeaCE
[HLK+07], Peak
[JGML14, PTC+15, TPC+17, HCN09]. PeaPaw [TBCH17]. Pegged [IK19].
Penalty [JK10], per-Task [LMA+16].
per-word [RMB10]. Performance
[Ali12, BG01, BBDB19, CCS15, DKT+16, DBK+18, DCC+17, DKZ+15, FG18, GIK14, GDD21, HWCL15, KY16, LHS20, LDD+18, LMW99, LLL+18, LS19, LTP+13, NRR+18, QBTM16, SYX12, TBCH17, TRM+16, TK18, TH12, THC+14, WY06, WMT+16, WLC02, WLC09, Yan16, YP10, ZLW+15, CL13, DP02, EK97, FLPP09, GDTG07, Giv06, GOC02, GHW+12, GWR13, HDL+12, LC96, LJ02, LKY09, LF09+09, LV02, NS03, DPD97, RAKK12, SLXZ12, VHL08, WGG08, ZHM07]. Performance-Aware [BBDB19].
Performance-constrained [BG01, WLCJ09, GOC02].
Performance-Driven [GDD21, HWCL15, Yan16, GK14, WY06, WLC02, EK97].
Performance-Efficient [YP10].
performance/power [ZH07].
Performance/Thermal [SYX12].
Performance/Thermal-Aware [SYX12].
Period [HYN15, BDB98, CGN96, PL98].
Periodic [CHBK15, Pom16c, SYB+20].
Perpendicular [RPR+21]. Perspective
[RJ14, SS14, MOZ06, ZHOM08].
Perturbation [LYM+16]. Pharmaceutical
[YSF+18]. Phase [BLNK14, IYF+21, JSA18, KSA+10, LLP+16, CR12, HMB98, HCN09, KAG05, RAKK12]. Phase-adjustable
[KSA+10]. Phase-Change [LLP+16].
Phenomena [ADB+19]. Physical
[CO18, HNL08, SKM+16, YD16, GWR13, HVMMG13, MLG12, SYL09]. Piecewise
[HPW14]. Pin
[XYG+16, Yan20, OWH08, XTW05].
Pin-Access [XYG+16]. Pipeline
[CRGC15, RPFC05]. Pipelined
[CHBK15, LF12, MRL+20, Hua01, MS08, MD08, NS03, RTN05, YG+10]. pipelines
[HA05]. Pipelining [AA17, KLV15, BG01, BASB01, CACS05, CL99a, HV98]. place
[KCKG13, YWW10]. Placement [DK16, HWG16, HWCL15, NCJ19, KRL15, LLL+18, LNG+16, LCC+15, LBI11, MCZ+16, MJ19, SAHF+20, TRM+16, WSH+18, WSRH16, WLLH16, WDLX21, YV14, ZSY18, AM05, ACT13, CBH11, CACS05, CC06, CSX+05, EK97, KPS09, LCK+09, OS03, RS03, SO6, TES02, TY97, VHL04, WLC02, WCC03, WLT08, YWX+03].
placements [HWCL13]. Placer
[AMM+18, DKT+16, DKT+16]. Plaintext
[HYK+20]. planar [DPBN02]. Planning
[XYG+16, YGG+16, LC13, LHZ+06, MKBS05, SBC08, XTW05]. PLAs [LWH06].
Platform
[APD+11, IGN18, VGG19, FNP09, JCS+08, RFB10, ZHM07, PBSV+06].
Platform-aware [VGG19].
platform-based [ZHM07, PBSV+06]. Platforms
[BS14c, ETA18, LS11, LMS16, MBD+20, RS18, TBCH17, VGG19, WDGZ16, YPCF17, BM13, CNQ13, JW08, LP07, MPDG09].
Playing [RLJ+09]. PMC
[CLH12, CH15b, CH13]. PMU [APD+11].
Point [ALL17, BS14a, BFL10, SRB15, XNZ+15, AM98, CPW04, DPBN02, LCOM07, WGW11, WFT+19, YAN08].
point-to-point [LCM07]. points
[PMB10, Pom13, TD03]. Poisson [QSK12].
Polar [JNS+17]. polarity [CHH09, LT11].
Policies [DZCD15, KHA12]. policy
[CKX+13]. Polishing [LVT+16]. Pollution
polygons [CT13, LM96, TP08].
Polymerase [HLC16].
polyomorphic [LLYW10].
polynomial [GK07, GK09].
Polynomials [GLY12].
port [CL13, SBC08].
port-scalable [SBC08].
portable [LCZ08, Rak09].
Portion [GD20].
POSE [Hsi01].
Positioning [HK18].
Post [GDD21, PTS20].
Post-Processing [GDD21].
Post-silicon [PTS20].
Postlayout [CLLK06].
Postplacement [CMB07, LCY12, WWG08, XLL16].
Postscheduling [FHHG12].
postsilicon [MKK13].
Power [ACF11, ALL17, BLM00, BS14b, BM11, BPTB17, CMP10, CH10b, CHBK15, CXH16, CLMZ10, DLC17, DNT20, FG18, GBR07, GCL16, GAT21, HPK09, HYN15, JLB15, KKHK16, LG18, LMK04, LYHL14, LLK14, LHI12, LHK15, LH19, LS17, M16, MKW09, MN17, NHP12, S120, PJL14, Ped96, PTC15, SCK18, SC00, SBC08, SYHL14, SSS10, SESN15, TWL16, TRM716, TMDF10, TCL14, VNS19, WWY19, WGG19, WGT17, WC10, WSRH16, XLS15, ZFLS11, ZK15, ZS16, ZMTC13, AHAKP08, BDM79, BDM10, BDD0, BM13, BBD00, CS07, CH10a, CM08, CIB01, CCX06, CXX08, CHHL96, CCC09b, C1120, CQ112, DSO6, DTC112, ETR07, GOC12, GDF09, GF10, GS13, HR06, HCL10, HLH08, HTCP13, JWL12, KBN09, KKH12, KOS89, K113, KHH06, KYN12, LMB12, LLH03, LCI13, LHW17, LBV12, LHW97, MKK13, MRC06, MKW08, MLG12, MFS09, ML09, NT05, PPD09].
power [Pom14b, PWFy05, PR96, RFB10, RTNL05, STL13, SUC01, SPMS02, SNL12, SZV12, TKV07, T199, TCH14, WJY07, YHL11, YGZ04, YLL06, YHL07, YHH09, ZHM07, ZL113, ZYDP08, ZP08, ZYP09].
Power-Aware [LHK15, SBC08, SNL12].
Power-delay [MKW09, SC00, WWY19].
power-density [ZYP09].
Power-Efficient [JLK15, SZZ12].
Power-Gating [KKH16, YHL07].
power-optimal [MKW08].
Power-safe [ZMTC13].
power-transmission [KC13].
Power/Ground [LHJ12].
Powered [XPZ18, CSAS07].
Powerful [LTYW12, MB04].
PowerPC [WAZ98].
Practical [CPK20, Pie16, VJB07].
Practice [MDD12, SSS10].
PRAM [KYL16].
PREASC [GDD21].
precedence [ZAZ13].
Precise [Ali12].
predefined [PSK08].
Predictability [NCSM17].
Predictable [VGG19, WLZ19, HGBH09].
Predicting [LHS20].
Prediction [CS07, DNT20, DKZ15, FG18, HXW14, JG14, LPY12, PBL17, SAAH12, CR12, OMS08, SYL09].
prediction-based [OM08].
Predictive [AVG19, HW00, TKV07].
Preemptive [MMT16, SSC17, GDG11].
Preface [YD16].
Preferred [Pom18a].
Prefetching [DJP21, LV02].
prefix [LH09, ZCG06].
Preparation [PGCB16, PBWB21, RCK715, SSK818].
prescribed [DSR02].
Presence [EKS14, MCMW08].
Preserving [HK18].
Prevent [WSS18].
Preventing [YCL20].
Previewer [HFM12].
Primary [Pom16a].
Principle [CHBK15].
Principles [SBY12, Ped96].
Print [DZCD15].
Printed [GDTF17, OW06].
Priority [HMM15, KPF16, LMS16, WDZG16, MHQ07].
Priority-Aware [KPF16].
Priority-Preemptive [HMM15].
Privacy [HK18].
Proactive [KBB15].
Probabilistic [APS18, CKAP07, CB17, GQW19, KW16, KVMH14, BRR06, FZKS11].
Probe [Kha12, BC05].
Probe-Wear [Kha12].
problem [DPNB02, DS06, FNMS01, LVL03, NR01, PDN00, SW99, YWW10].
problems [SB98, WGDK07].
Procedure [Vah99].
Process [AKAKP18, BHLG19, GC18, LWZ19, RJ14, VEO16, CS07, GM08].
Process-in-memory [LWZ+19], processes [JB98], Processing [BM11, GF16, GDD21, LYL+19, MFHP12, HMVG13, JSG09, LPP00, NM13, TYH08, ZHOM08].

Processor [HKL+15, ISE08, LHLP16, LYHL14, LF12, NSH+16, NRZ+18, OHA19, SPT+17, VLGG01, DHZ+11, GG04, Giv06, HGBH09, KBA08, LMB+12, OCRS07, PDN97, PDN00, RFB10, SGD10, WKR09].

processor-based [PDN00].

Processors [CRC15, JZYZ15, KAKSP16, KLK+17, KLJ14, LPD+17, LHF12, TY19, BH10, CL99a, CPW04, Edw03, Hua01, KJR+07, LJV02, LCD07, LB00, MD08, PHM00, RAKK12, SR12, TRVN07, LSV06].

product [DK08].

Production [PBWB21, PKP+03].

profile [ZSZ10].

Profiling-Based [SMBT19, THC+14].

Program [HKL+15, BGN+07, RAKK12, WWC04].

Programmable [GHYR19, WSS+18, ZK15, CH02, CD96, LSPC14, MSD06, PTC05, PWY05, WVO2].

Programming [EAV18, KLSZ11, TZ17, WLZ+19, ADDM+13, GH00, KLSZ09, KKK+08, TP08, WJYZ11].

programming-based [ADDM+13].

Programs [PMS15, SYHL14, EY12, Vah02, YWG10].

Progressive [KC10], project [WLT08].

projective [DL11], Prolonging [AAA15].

Proof [CCMC20, IPWW17].

Proof-Carrying [IPWW17], Propagation [AL19, MCD12, KPR06, RCD07, YH97].

Properties [CVMP19, HBPW14, RGT+14, WFT+19, BDC08, BH03, BF08, BZ08].

property [KHP05], Protect [MLH+17].

protected [LSDV10, RMB10], Protecting [DFM15, GSF16, YBS+18].

Protection [GDTF17, SLP+19, KHP05].

protocol [ADS+09, BGM04, DP04], prototype [APB+08].

Prototyping [ARLJH06, ORGD+15, JDT+08].

Provably [ADS+09, Das09, YWK+03].

Provide [KKLG15], Providing [HC18], Proximity [DZ18].

pruning [DHV+00], PSL [BZ08].

PTM [LLH+17], PUF [CCMC20, IK19, NSCM17].

Push [KMO+12], PV [DZ18], PV-Aware [DZ18], PVT [FDPK09], PWM [TWL16, WGT+17].

QoS [LYLW17], quad [LBV+06].

Quality-Assured [SMBT19].

Quality-Enhanced [KPR06].

Quantifying [SA+14, YRH11], quantitative [LCOM07].

Quantization [GTY12].

Queuing [SSL17].

Race [BK10, HN07].

Radio [JDT+08, JSG09], Radix [BS14a], Rail [VEO16], RAM [LSL+13, SABS15], ramp [KM97].

Random [BZWZ17, BS14b, RPR+21, JT98, KPR06, SXZV13, SNL12].

Range [MS17, CL13, LPC14], Rapid [EW18b, ORGD+15].

Rare [ZKS+16].

Rare-Event [ZKS+16], Rate [CJJK19, HDZ+20, LD17, MDG98, PB12, PHKW12, TY97], rates [ACT13].

Ratio [WLLH16, Das04], RC [KM97, VEO16].

RDL [Yan11], Reachable [XLB17].

React [ADB+19], Reaction [LHC16].

Reactive [WLT+19], ZABG21, PSL+98. Real [JSA18, LHS+21, PPP+15, WHZ13].

Real [CHBK15, CH17, FG18, HXC+18, KPF16, LSCK20, NSH+16, PKJK20, PSNC18, SSC17, SBY+20, WLZ+19, WDZG16, WJG+19, YRH11, ZLW+15, APB+08, DRG98, HMVG13, MQH07, PEPP06, PW99, WLL+11, ZAZ13].

Real-Time [CHBK15, CH17, FG18, HXC+18, KPF16, LSCK20, NSH+16, PSNC18, SSC17, SBY+20, WLZ+19, WDZG16, WJG+19, YRH11, YWK+03].

Provide [KKLG15], Providing [HC18], Proximity [DZ18].

pruning [DHV+00], PSL [BZ08].

PTM [LLH+17], PUF [CCMC20, IK19, NSCM17].

Push [KMO+12], PV [DZ18], PV-Aware [DZ18], PVT [FDPK09], PWM [TWL16, WGT+17].

QoS [LYLW17].

quad [LBV+06].

Quality-Assured [SMBT19].

Quality-Enhanced [KPR06].

Quantifying [SA+14, YRH11], quantitative [LCOM07].

Quantization [GTY12].

Queuing [SSL17].

Race [BK10, HN07].

Radio [JDT+08, JSG09], Radix [BS14a], Rail [VEO16], RAM [LSL+13, SABS15], ramp [KM97].

Random [BZWZ17, BS14b, RPR+21, JT98, KPR06, SXZV13, SNL12].

Range [MS17, CL13, LPC14], Rapid [EW18b, ORGD+15].

Rare [ZKS+16].

Rare-Event [ZKS+16], Rate [CJJK19, HDZ+20, LD17, MDG98, PB12, PHKW12, TY97], rates [ACT13].

Ratio [WLLH16, Das04], RC [KM97, VEO16].

RDL [Yan11], Reachable [XLB17].

React [ADB+19], Reaction [LHC16].

Reactive [WLT+19], ZABG21, PSL+98. Real [JSA18, LHS+21, PPP+15, WHZ13].

Real [CHBK15, CH17, FG18, HXC+18, KPF16, LSCK20, NSH+16, PKJK20, PSNC18, SSC17, SBY+20, WLZ+19, WDZG16, WJG+19, YRH11, ZLW+15, APB+08, DRG98, HMVG13, MQH07, PEPP06, PW99, WLL+11, ZAZ13].

Real-Time [CHBK15, CH17, FG18, HXC+18, KPF16, LSCK20, NSH+16, PSNC18, SSC17, SBY+20, WLZ+19, WDZG16, WJG+19, YRH11, YWK+03].
ZLW+15, APB+08, DRG98, HMVG13, MHQ07, PEPP06, PW99, WLL+11, ZAZ13.
realistic [MF09]. Reality [XLNB17].
Realization [ACFM12, CHHL96].
relocation [ZY09]. realtime [HG07].
ReChannel [RHA08]. Recognition [GFJ16, RG19]. recompilation [GF10].
Reconfigurable [ADB+19, AVG19, BKW15, CPS16, CM20, EK16, JPHL16, MS21, MLC08, MRL+19, ORGD+15, SSC17, SVK17, ZLQ15, ZMS+19, ARLH06, GDG+08, HBC+08, HW14, JBC+10, KKKM02, KLSP11, LCK+09, RHA08, WKR09, WLC02, YLP+13, YGH+10, YULL09]. Reconfiguration [CAOM19, MCZ+16]. reconfigurations [RCG+08]. reconstructions [WC06].
reconstruction [Yan08]. Recover [BFV15].
Recovering [JCK+18]. Recovery [NIS+16, WL12, ZAZ13]. Rectangle [Yan18]. rectangular [DSK01, Meph08].
Rectilinear [GC96, LLLL18, WCC03, LKYW09, MHD+04, MS00, OWH08].
recursive [LC96]. Recycling [TCW20].
Reduce [CIX15, JK10, Pom16c]. Reduced [PAV17, AMM+06, SBH+06]. reducible [BC11]. Reducing [ASAP17, BFG+19, BWB14, CJKK19, DJP21, HHH09, Kan06, KLS+14, LYCP13, PR11, SYHL14, KTKO13, MB04, PGB01, TKW07]. Reduction [ABC+17, BDB12, FLWW02, PTC+15, Shi20, WB16, WDL17, WH19, WLH20, CFHM09, CCW08, DK08, ETR07, GF10, HLHT08, KYN+12, LCC11, LLHT12, LCJ+10, NT05, RMKP03, SY07, SBH+06, SPMS02, TY97, WYYG99, YHL+11, YWK+03, YLL06].
Redundancy [CJJKK19, JKLK15, CMNQ08].
Redundant [KMO+12, SHL+19, PGB01]. reference [AOC02, SM00]. refinement [CLM+10, GGB97, MS08, MOZ06]. refit [DVA02]. Refresh [CJJKK19, LSL+13].
Region [BZBW17]. Regions [JCK+18].
Register [GF10, HWCL15, LHFT12, MHF96, TLCF16, WKL+18, XLL+16, CACS05, CFX09, HCCN09, K101, KNDK96, LWK11, VKKR02, ZYP09]. register-file [CFX09]. registers [CL99a]. Regression [BB00, GD20]. Regression-based [BB00]. Regular [XY+16, CH13].
regulation [ZL12]. Reinforcement [PGJ14, WDLX21, STL+13]. Relaxation [LGG14, PY20]. Relaxation-Based [PY20]. Release [SZB17, YP10].
Reliability [APS18, CET16, CCK+18, KMO+12, LHH12, PPP+15, RMB10, TK18, WXX+19, XLY+18, GS13, JS13, KVMH08, LH13, ZAZ13].
Reliability-Aware [CET16].
Reliability-Driven [LHJ12]. Reliable [BJX15, GC18, JPC06, MACV14, XCF18, XNZ+15]. relocation [LRTC13]. Remote [CRT19, KO01, KC10]. Removal [MGR+15, CMNQ08]. reorder [WPHL08].
Reordering [WC10, GFC+09, Hua01, PR96].
Reorganizing [JCK+18]. Repair [CJJK19, KMO+12, PSNC18, RMMF08, NR03].
Representations [KQP+19, YCCG03]. Representative [FYCT15, PKJ20].
Resistance [KYL16]. Resistant [Kha12].
Resistive [EBR+09, LWZ+19, TLCF16, WFT+19, XNZ+15, LLQ+03, SKCM06].

resolving [Das09]. Resource
[CET16, DK08, FS13, HC17, KK14, LF12, MBD+20, TCL14, WG11, WLH20, WGS16, BDB98, CFX09, HLKN07, Kuc03, LSDV10, MKK13, MJM11, NR01, WDGK07, YWW10, ZHOM08, KMR18]. Resource-aware [FS13].

Resource-constrained [WG11, WLH20, LSDV10, NR01, ZHOM08].

Resources [JNS+17, PGB01]. Response
[CH17, PMS15, SSO16, DC07, SCJ01]. Responses [XCW12]. Restore [ZZCY17]. results [AYM05]. Resynthesis [WPR+19]. Retargetable
[PHM00, AMR00, KKJ+08, VLGG01].

Retargeting [CJJK99]. reticle [WL08]. Retiming [BOC00, HMB98, HLHT08, SSP04, Zho08]. Retiming-based [BOC00]. Retracing [LLL18]. Reuse
[AC06, BFP08, LDLM20, NAK20, OHA19, IBMD07, LSOC14, RSR01, VCLD03].

Reuse-based [OHA19]. Reusing [CCL04]. Revealing [CM19]. Reverse
[LTYW12, CMB07]. rewriting [ARLJH06]. rewriting-logic [ARLJH06]. RF [BBEM15, HCZ+16, LSOS19, LZ21, PTS+20].

RF-Interconnect [HCZ+16]. RF/Analog
[LSO19]. RFID
[DTC+09, YFT18, YBS+18].

RFID-Enabled [YFT18]. rhythms [GS13]. right [MR96]. ring [GK07, GKO9]. Ripple
[HWG16]. riSAs [SBH+06]. RISC
[HV98, ZBPFF18]. risk [DS05]. river [ZW98].

RL [NT05]. RL-Huffman [NT05]. RLC
[MN17]. Robust [BJX15, CZZY21, DJ18, GCZ+15, MCD12, PBWB21, STGR15, TLCF16, ZK15, CLYP09, ST99].

Robustness [BHLG19]. Role [CK19].

rotary [TDF+09]. Routability
[AMM+18, HWGY16, SAHF+20, THL+13, ZSY18, CLYP09, HSA+04, SYZ08, WSV+14, YCHT00]. Routability-Driven
[AMM+18, HWGY16, ZSY18]. Routable
[LCYN18]. Router
[PMT20, TCD14, XSL16, CLYP09, JCGP05, MLC08, TDF+09, wATK02]. Routers
[JM14]. Routing [CLC20, GDJMJ21, GKM05, JD18, LHLJ12, LLLL18, LK+18, MAS+20, MCZ+16, RGM15, RBWB20, TZZ17, TZZ20, WLLH16, XGY+16, Yan18, Yan19, Yan20, ZHC+21, CW00, CCKT98, DSKB04, DVA02, GMN+13, LK13, LCC11, LCJ+10, MW97, OW06, OWH08, RL13, SMYH07, Yan00, YW09, Yan11, YMC+13, YCHT00, ZH08, ZHTC09]. Routing-aware [GKM05]. Routing-Based
[LLL18]. Row [SAL19, LC13]. row-based [LC13]. Row-Buffer [SAL19]. RRAM
[LXWC20]. RRAM-based [LXWC20]. RTGC
[ZLW+15]. RTL
[BK00, BBD00, BFP08, BFV15, Fuji05, GS00, ISK21, LV14, PGB01, PK08, PIK20, XK97]. Rule
[GDJMJ21, KMO+12, MS17, VNS19, RS98]. Run [DP02, HMLL11]. Run-time
[DP02, HMLL11]. Runtime [BH+13, LL15, NRZ+18, VTC20, WXH+19, ADDM+13, GFC+09, GDG+08, HW14, RCG+08, SKS12, WJY+07, YGH+10]. runtime-reconfigurable [GDG+08].

safe [ZMTC13]. Safety
[MN17, XL+18, MS08]. Salsa20 [MAS16]. Sample
[PGCB16, PBWB21, ZKS+16].

Sampling [WTR12, ZYW+18]. SAT
[CLM+10, Che18, CV+14, DP02, RCD07, SGK08]. SAT-based [CLM+10, SGK08]. Satisfiability [BR12, GMS18, OK20, PG15, GPK+09, HSA+04]. satisfying
[QS09]. saturation [CCL03]. saving
Savings [LKH19]. Scalable [AA17, KLK+17, PJL14, SESN15, SKM+16, HG07, KCKG13, SBC08, SBGD13, WSV+14].

Scalable-Throughput [SESN15]. Scale [DNT20, HC17, LYL+19, YVC14, ZHC+21, CSX+05, HCK13, KBA08].

Scalable-Aware [HC17]. Scan [BK15, KMO+12, LWC07, LWK11, Pom16b, Pom16c, Pom17b, WC10, WWW+12, XCW12, DDFR13, GKM05, KBN09, NT05, PR09, PR11, RMKP03, SSGS03, TYH08, WPHL08].

Scan-based [LWK11, KBN09, PR09]. Scan-BIST [LWC07]. Scan-Cell [WC10]. Scan-In [Pom16c]. Scan-Shift [WC10]. scanline [CT13]. Scenario [BLUS19, DCK09, EK16, KW16, GPH09].

Scenario-Aware [BLUS19, KW16]. Scenario-based [DCK09]. Scenarios [NRZ+18, SPG+08]. Schedulability [GDG+08]. Schedule [SGC+14]. Scheduler [NSH+16, JP08]. Schedules [GDD21, DSIR02, LC96]. Scheduling [ABC+17, BB17, BDBB19, CAC05, CIX15, ENP20, JOH17, KPB19, LHW97, MAS+20, PMS15, SSC17, SAL19, SZB17, WCB15, WZD16, WWCT18, WJC+19, CLM+10, CILJ11, DS05, DHV+00, GBC07, HN07, JR97, KW02, Kuc03, LLHT03, MKBS05, MJS11, MHQ07, MR05, MWG97, NROI, RGC+08, SXX+06, TC98, WH05, WGDK07, YWW10, YGH+10, YLL09]. schematic [KG09]. Scheme [BM11, JDD20, KKLG15, KLP+17, LTYW12, WHRC12, WH20, XS16, HCK13, KSA+10, XLC13]. Schemes [MGR+15, CSC08, KCKG13]. Score [XLL+16]. scratch [IBMD07]. scratch-pad [IBMD07]. Scratchpad [CP16, DF15, BD14]. SCRIPT [NPH+20]. Scrubbing [SVK17]. Search [DNG+20, VCL03, CMBO7, DV02, YWW10]. search-based [DVA02].

Search-space [RFG20]. Searching [DK16, SYZ08]. Section [BMDG17, CO18, KLSZ11, YD16, CH10a, CLQ12, HJ08, JW08, KLSZ09, MD13, RBA+12]. Secure [BHK17, LSDK20, YCL+20, HBC+08, ISE08, HRK18]. Security [CM20, CPK20, GQW19, HMO+14, LHL16, LZZSV15, LMS16, MAS+20, MPM+17, NCM17, SLK+19, TK18, YSF+18, DP04, IAI+09].

Security-Aware [LZZSV15, LMS16, MAS+20]. Seeds [Pom17a]. Segment [WL12]. Segment-Based [WL12]. Segmented [HSA+04, JWL+03, YCHT00]. Select [Pom18]. Selection [AKKP18, CV17, FYCT15, GC18, JM14, KPF16, STJG16, ZKS+16, CGN96, CCC09b, LB00, PMB10, VLLG01, XLC13].

Selective [Mut09, NRDB19, LCT03, WY06]. selectively-clocked [BD00]. Self [CRT19, EO19, IYF+21, PIK20, SBB+18, SHL+19, WCB15, XYG+16, SEN05, SZV+12]. Self-Aligned [SHL+19, XYG+16]. Self-Measurement [CRT19]. Self-Similarity [PIK20].

Sequences [PKJK20, Pom15b, Pom15c, Pom18a, KT01, LWC07, PL03, PR11].

Sequential [LVS16, LD17, SPA+03, WKC12, BLR06, BOC00, Che96, CPR+02, Edw03, HVF+01].
HRP00, HCC01, JB98, KT96, KOS09, MMP00, PL98, SNH02, Vah02, YWGI09. sequentially [LIA00]. SER [LD17]. Serial [PMP17]. Serialized [KH10]. Series [TW96]. Series-parallel [TW96]. server [dW97]. servers [ANR13]. Service [DKZ+15, AHAKP08, CBR+05].

SBC08, TCL14, WLCJ09]. **SOC-based** [GDF09]. **SoC-DAL** [AHL+08]. **SOCs** [MSD06, BM11, JHMG18, JPJ16, ZM07]. **Soft** [DFM15, LD17, PHKW12, TCLF16, QS09, RJBS09, ANS+20]. **Soft-Error** [TLCF16]. **Soft-Error-Rate** [LD17]. **Soft-HaT** [ANS+20]. **Software** [ANS+20, BM11, JHMG18, KMR18, LLP12, GGH97, HKL]. **Special** [BC08, BCC08]. **Spintronics** [MS21, BCC08]. **Specification** [HZS+19, HV98, MD08, VS12a, BD00, BGM04, HV07]. **Specification-driven** [MD08]. **Specifications** [Pie16, CMM00, DDNAV04, MB04, VKKR02]. **Spectral** [KOO18, TN99]. **spectral-based** [TN99]. **Speculative** [NRDB19]. **Speed** [CK16, PTC+15, TPC+17, NS03, OW06, SXZV13]. **Speeding** [CLM+10]. **Speeding-up** [CLM+10]. **Speedup** [Che18, KAKSP16]. **Speedups** [GDTG07]. **Spin** [LHF12]. **Spin-Transfer-Torque** [RPR+21]. **Spin-Transfer-Torque** [RPR+21]. **Spintronics** [MS21, BCC08]. **Spintronics-based** [MS21]. **Split** [YCL+20]. **Splitting** [CZYW21]. **SPMCloud** [BD14]. **Spread** [MJB19]. **SQLite** [LLP12]. **Splitting** [NRDB19]. **Stack** [SYX12, THM15, LH+06]. **Stage** [LZ17, Shi20, KSA+10]. **Stage-form** [Shi20]. **Stages** [SYL09]. **staircases** [MSKBD07]. **Static** [AVG19, CCS15, CK16, Pom15a, BDC08, CD09, CCYC14, CK96, CHHL96, HR00, Pom14a, SNH02]. **States** [AVG19]. **States** [Pom16c, LIA00]. **Static** [BDB12, ETAV18, LV14, MHA19, Pom15b, ZFSL11, DH06, EMO03]. **Statically** [KKG15]. **Statistical** [BBEM15, CV17, JMG14, KPR06, LM21, PHKW12, RPR+21, SV16, STWX12, XT16, ZKS+16]. **statistics** [SNH02, SXZV13]. **steering** [HKY+07]. **Steiner** [CKKT98, GC96, HGLC16, LLLL18, LYKW09, SMYH07, Yan08].
Steiner-point [Yan08]. Stencil [YYG+16].
Step [HGLC16, Vah02]. stimuli [MFS09].
Stimulus [CYV+14, LV14, BLR06, PKP+03].
stimulus-free [BLR06]. stitching [Meh98].
Stochastic [GLY+12, MMP00, GBC07, NM13].
Stopper [PCT+17]. Storage [BD14, CCH+15a, Kha12, KCA04, WQC+16, ZLW+15, ZMS+19, BD08, Meh98, Wu09].
storages [Meh98]. Straightforward [LH09]. Strategies [JM14, XLS15].
STT-RAM [SABA15]. Stick [TPC+17, HVF+01, PR09]. Stick-At [TPC+17, HVF+01, PR09]. Study [LLP+16, LYM+20, LC13, MLG12]. Style [CFD+16],Styles [LCYN18]. Sub [BFL10]. Sub-45nm [BFL10]. sub-threshold [SHN12]. subGraph [YYC07].
subnetworks [TDF+09]. Substrate [Yan20, LCJ+10, SKCM06]. substrates [SKCM06]. subsystems [JSG09]. Subthreshold [BFL10]. Successive [HWCL15].
Suppressed [BC16]. Surrogate [WFSS20]. Surrogate-Based [WFSS20]. Survey [BFG17a, BRCS18, LM19, Mit16, MRL+19, RJ14, BD97, CEB06, KG99, KP13, SW04]. survivability [ACT13]. suspect [DNA+12]. Suspension [NSH+16]. Sustainable [CXH+16]. SW [ADP+07, BFV15, FLPP09, WWFT12]. Swarm [HLG+15]. switch [CWW96, CZW+03, FLWW02, FLWC07, RFYL98, THL+13, ZHTC09]. switchboxes [DSKB04], switched [CSC08, HWCL13]. switched-capacitor [HWCL13]. Switching [AVG19, GSS14, SRC15, BLR06, HCN90, PR11, SXX+06]. switching-activity [SXX+06]. Symbolic [BDM+99, BF17b, MCD12, SHD17, BLM00, FWCL05, KVMH08, YW09]. Symbolic-Event-Propagation-Based [MCD12]. symmetric [IAI+09]. Symmetrical [OCK19, CZW00]. symmetries [CMB07]. Synchronizing [MM+12]. Synchronous [CH17, HPB11, PMS15, TB20, WWW+12, YKG14, ZABG17, BDM+99, BASB01, CACS05, CPR+02, HKB+07, MB04]. SynergyFlow [LYL+19]. Synthesis [AA17, BR12, BD00, CCSR05, CET16, CLMZ10, CCL03, EO19, GBR07, HS18, HMVG13, HZC+16, ISK21, KK14, KK12, KKS16, LS17, NG06, OCK19, PDS12, PG15, QSW+15, RJ14, Sch17, SGC+14, SS14, SGGR14, SV11, SCCH08, WCC14, YMB15, ADS+09, BDM+99, BZ08, CLLK06, CM00, CBM10, CL99b, CD96, DNAV04, HHH12, GG99, GOC02, GH00, GGDN04, GWR13, HLKN07, HLC98, HS01, HLHT08, Hua01, JLF+12, KSS+09, KKH+02, KK11, KW02, KHP05, KHF+08, LCD07, LC14, Lin97, LLHT12, LW06, MMP00, MDM07, MKBS05, MJM11, MRC06, PBSV+06, RFYL98, RS03, SW12, SCB01, SV07, TN99.
TC98, VLH98, VKT02, VKKR02, VW02, WGI1, WKR09, XK97, XPSE12, YWW10.

**Synthesized [SBR+17]. Synthesizing [GSS14]. Synthetic [PSK08]. System [BdM00, CH17, DMR10, GM08, GH9+09, HKL+15, HZS+19, LL15, LG18, NAK20, NRZ+18, PDS12, PDPK09, Piel16, PBSV+06, RFG20, SL18, SGGR14, TK18, WL12, YYG+16, ZHM07, APB+08, BPRR98, BMJ13, Cha01, CKAP07, CSC08, DC07, GG99, GABP00, HGBH09, HMVG13, HW00, LTH99, LCC11, MOZ06, MPSJ07, OCRS07, Ped06, SPG+08, Sen11, Vahl99, ZLL13, dW97, AHL+08, LVL03, WLL+11].

System-Level [HKL+15, LL15, LG18, PDS12, Piel16, BdM00, GM08, PDPK09, RFG20, ZHM07, MOZ06, OCRS07, Ped06, Sen11, Vahl99, ZLL13].

**System-on-a-chip [Cha01, CKAP07]. System-on-Chip [HZS+19, SGGR14, APB+08, BMJ13, CSC08, WLL+11, AHL+08].

System-scenario-based [GPH+09].

**Systematic [AMM+06, SLP+19, KPR06, RPKC05]. SystemC [BK10, CVMP19, GD20, HV07, WWFT12, ZMS+19, RHA08]. SystemC-AMS [CVMP19, ZMS+19]. SystemC-based [GD20]. SystemCoDesigner [KSS+09]. SystemJ [MSR09, SPT+17]. Systems [ALLE20, BHK17, BLNK14, BJX15, BB17, BS14c, CH10a, CCH+15a, CBHK15, CYH19, DF15, EAP17, GT21, HK18, IGN18, KLSZ09, KC10, KMR18, LL15, LHK+15, LZZSV15, LMA+16, LL19, LZA+21, MRL+19, NSH+16, ORGD+15, PPP+15, PSCN18, PG15, PBZM15, PY20, QBTM16, RFG20, RG19, RNA+21, SSC17, SPT+17, SBV+20, STWX12, SS14, SAL19, TB20, THT12, TL19, WLZ+19, WHRC12, WQC+16, WDLX21, XPZ+18, XGC+20, YRH11, ZLW+15, ZMS+19, ADM+13, AM10, ADDM+13, ARLJH06, BD00, BWB14, CSAHR07, CMM00, CSL+07, Con06, CLQ12, CCL04, DCK07, DRG98, DDNAV04, DTC+09, GTGTG07, GH9+09, GDF09, HKL+07, HV07, HML+12, HCLC98, Hsi00, HBC+08, JS13, JWL+03, JW08, KKMB02, KC13, KFH+08, LCZ+08, LCK+09, LSDV10, LDK09, LP07, MBB01, MDG98, MHQ07, ML09, OKC08, PDK09, PDC+01, PSL+98, Ped11, PEPP06, QS09].

**Systems [Rak09, RSR01, SCB01, SLXZ12, SUC01, SHN12, SS11, SZV+12, THC+14, Wol96, Wu09, ZAJ+12, ZP08, SN10, CPX14]. Systems-on-Chip [BHK17, HML+12, KP13]. SystemVerilog [CYV+14].

Table [DCH17, YTHC97]. **tag** [WB09]. **T-trees** [YCC09]. **T-trees** [YCC09]. **T-trees** [YCC09].

Task [ENP20, LMA+16, SZB17, DCK07, GK14, GBC07, YYLL09]. **Tasks** [CH17, SSC17, WJG+19]. **taxonomy** [KP13]. **TCAM** [VNS19]. **TCONMAP** [HABS15]. **Tapered** [KHK16]. **Target** [CMS+20, KLYL16, PBWB21, Pom20, FS13].

Targeted [SN10]. **Targeting** [LPD+17, JBC+10, MLMM08]. **Task** [ENT20, LMA+16, SZB17, DCK07, GK14, GBC07, YYLL09]. **Tasks** [CH17, SSC17, WJG+19]. **taxonomy** [KP13]. **TCAM** [VNS19]. **TCONMAP** [HABS15]. **TDF** [ZMTC13]. **TDM** [VGG19].

TDM-based [VGG19]. **Technique** [CV17, JK10, JPM+19, LGGJ14, SBB+18, DHV+00, HLC07, IBMD07, KI01, LC96, MB04, Mut09, RSR01]. **Techniques** [GD20, GDJRM21, MDM07, Mit16, PTC+15, TWL16, WSV+14, YD16, AM05, BD97, BdM00, BHI0, BASB01, CLM+10, CSAHR07, CAC05, CFHM09, DS06, DD02, HPK99, HCS01, HCC01, KSK+05, KMS12, KHP05, LSDV10, LB00, LHW97, LHT05, LVL03, OCRS07, OK08, PDC+01, RJBS09, TY97, TBZ13, TYH08, VMP+00, XK97, ZHOM08]. **Technologies** [SN10, BC08]. **Technology** [BFL10, CHP05, DKT+16, DBK+18, HABS15, JYZX15, SABSA15,
YD16, ZS02, BLM00, CH02, CH00, KL05, LKM04, PL98, WY06, WSEA99, ZLL13. technology-dependent [BLM00].

Technology-Driven [DKT+16]. TEI [LHW+17]. TEL-power [LHW+17].

Temperature [JGM14, LHW+17, ZYP09, ADP+07, CLQ12, DH06, WJY+07].

Temperature-aware

[ZYP09, ADP+07, CLQ12]. template [HGBH09]. Temporal [Pic16, SSC17, YYC07, BD05, Das09, YYC09]. Temporally

[PRCK08]. terminals [ISE08]. Test

[AYM05, BDBB19, EMO03, EO19, GF06, IE12, LCT03, LYS09, LM21, MCD12, NSE07]. Test-Architecture [WWCT18, XZC09].

Testability [Pom16a, Pom18a, FRS97, PSK08, Pom14a, SCJ01]. testbenches [BFP08]. testers [NS03, SBC08]. Testing [LPY+20, NS03, PTC+15, TTC+17, LHW+17, WW+12, XW12, SX16, XCF18, JH98, KB09, LHW+17, PKP+03, SEN05, SXZ12, SCJ01, SOC06, TD03, XZC09].

[MDM+12, JWL+03]. Thermal

[CK19, CLT+15, CXH+16, CVMP19, CR12, DCK10, JGM14, LCK+09, LHW+17, LDD+18, LZA+21, MDR15, OCK19, SBY+20, SKP21, WMT+16, ZHC+18, ADDM+13, ANR13, GK14, LH+06, LTPT10, QSK12, WTL+13, WJY+07, YHH09, ZAJ+12, ZSZ10]. Thermal-Aware

[SBY+20, SYX12, OCK19].

tool-based [LHZ+06].

Thermal-Sensor-Based [ZHC+18]. Thermally [RGM15]. thermodynamic [VLH04]. Things [TK18]. Thread

[CN13, SV11, KBA08]. Thread-based

[CN13]. threaded [HC17]. Three

[KQP+19, RGM15, WXH+19, Yan00, Vah02, YHC07, YHC09]. Three-Dimensional

[RGM15, KQP+19, WXH+19, YHC07, YHC09]. Three-layer

[Yan00]. three-step

[Vah02]. Threshold

[CSZ19, DHVV18, SV16, SHN12]. Throughput

[HCRI11, HIW15, KJL14, SESN15, CJLZ11, GM08, SKS12, SHN12]. throughputs

[SKS12]. Throughput-Optimized [HCRI11]. Thwart

[BTP+20, LSC20]. Tier [SSL17]. tightly

[LMB+12]. tightly-coupled

[LMB+12]. Tightness [APS18]. tile

[JDP21]. Tiled

[DK16]. Tiled-DNUCA

[DK16]. Time

[APDC17, BB17, CHBK15, CH17, CJKK19, FG18, HXC+18, IG18, KPF16, KB19, LM19, LSC20, NIS+16, PSNC18, PY20, SSC17, SBY+20, WLS+19, WDZG16, WJG+19, YHH11, ZLW+15, ZZCY17, APB+08, ARJH06, CSHA07, DP02, DRG98, HMLL11, HLKN07, HMVG13, KNRK06, LCHT02, LTRP+13, MR96, MHHQ07, NG06, PEP06, PW99, SC01, WGD07, WLL+11, ZAZ12]. time-

[ARJH06]. time-constrained

[NG06, SC01]. time-constraints

[CSAHR07]. Time-Division

[PY20]. time-domain

[LTRP+13]. Time-Multiplexed [LM19].

Time-Triggered

[BB17, IG18, KB19].
time/resource [WGDK07]. Times [PMS15]. Timing [CZW00, CB17, HIW15, HS19, JNCS19, KKK12, LVS16, LJ18, LWC18, LYCP17, LNG+16, LL19, MJM11, MKW08, TB20, VBP+19, WSH+18, WKC12, WL12, Yan08, YRH11, DCK09, DRG98, DH06, KPSW09, KPR06, KC98, LC14, LCHT02, MCMW08, Q09, SXX+06, SCCH08, YHL+11].

Timing-aware [MKW08], Timing-Driven [LNG+16, CZW00, Yan08, DRG98].

timing-error [SCCH08]. Timing-Yield [WSH+18]. TinyOS [RFB10], TLB [KSK+05].

TLM-to-RTL [BFP08]. TODAES [CH10a, KLSZ09, BC08, GK09, QS11, TK18].

Tidoff [MDM07]. Toggles [TPC+17].

Tolerance [GVJ15, JPM+19]. Tolerant [CYH19, GT21, LW17, XCF18, CEB06, NdLCR03, SC06]. tolerate [SPG+08].

Tolerating [ZHC+21]. Tool [BBEM15, JHMGS18, TDE08, VLH08].

Toolchain [GVJ15]. toolkit [MSD06]. tools [BdM00, GS00, MD13, MT02].

Topological [SHD17]. Topology [BDBB19, HCZ+16, TDF+09].

Topological-Agnostic [BDBB19]. Torque [RPR+21]. Trace [BH17, BH"W+13].

Trace-Based [BH17]. Traceability [IK19, YFT17]. track [LCC11]. Tracking [HMO+14, NH"P+20, FS13].

Trade [PCC09, FHHG12, RJL+09, WVVY99, WGDK07, XPSE12]. trade-off [RJL+09].

Trade-offs [PCC09, FHHG12, WVVY99, WGDK07, XPSE12]. Tradeoff [RS18].

Tradeoff-Aware [RS18].

Tradeoffs [LDD+18]. Trading [FG18]. Traffic [QBTM16]. Training [ALL17, JSS+19].

Transactions [CH10a, CPX14, KLSZ09]. Transceivers [JNS+17]. Transfer [RNA+21, RPR+21, KL01, KVMH08].

Transform [LCC+15]. Transformation [SPC+15, BGN+07, KKH+02, Vah99, VJBC07]. transformational [Voe01].

transformations [HKV+07, LLM01, PCC09, WVYV99]. Transforms [ACFM12, MFHP12].

Transistor [CFD+16, HCW+16, PR96, RS03, WSH+18].

Transition [JOH17, MHP07, LHCT05, PL03, PR90, WPHL08].

Transition-overhead-aware [MHQ07]. transitions [Mut09]. transitive [YYC07].

Transparency [WHRC12]. Transparent [Pom17b, SV11, PR11]. Transparent-Scan [Pom17b, PR11]. Transposition [CCH15b].

traf orsal [HRP00]. Tree [HGLC16, KK11, KC98, LS17, OCK19, WCCC14, CHH09, LHCT12, LYKW09, LLLC13, TDF+09, wATkK02, Yan08, YYYC09]. tree-based [YYC09].

Trees [CCH15b, EK16, GC96, WCC03, YYC09].

Trends [CH10b, HHL14]. Triggered [BB17, HS18, IGN18, KP19, BDC08].

Triggering [EW18b, HW14]. Triple [LZ17, ZLY+15]. Trojan [ANS+20, LM21, MRL+20, YCL+20].

Tunable [OK20, CFH09]. tuned [RFB10].

Tuning [PTS+20, LT11, SZ+12]. Turbine [WSRH16].

Tutorial [Edw03]. twisted [YW09]. Two [LZ17, OW06, T99, Yan19, CSC08, DDNAV04, LH+06]. Two-stage [LT11, SJ+19].

Two-sided [Yan19]. two-stacked-die [LH+06]. Two-Stage [LZ17].

UCR [YBS+18]. Ultra [ACF+11, CK16, GBC07, MACV14, SESN15, ZLG+19].

Ultra-fast [GBC07].
Ultra-High-Definition [ZLG+19].
Ultra-High-Speed [CK16]. Ultra-Low
[ACF+11, MACV14, SESN15]. UltraScale
[AMM+18]. Unauthorized
[CBO+18, GDTF17, KOO18]. Unbounded
[VS12a]. Uncertain [WK16]. uncertainties
[CS07]. Uncertainty [GC18, STGR15].

Unclonable [YBS+18]. Uncore [WGH16].
Understanding [HHL14]. Undetectable
[Pom19b]. Unicast [XS16, XCF18].

Unicast-Based [XS16, XCF18]. unified
[Kag05]. Uniform [HZS+19, KCKG16].
Unique [SOS15]. UNISIM [LS11].

UNISIM-Based [LS11]. Unison [SGJ96].
Unit [BM11, HWCL15, HWCL13].

Unit-Capacitor [HWCL15]. Universal
[CW96, CJKK19, JCK+18, FLW02, FLW07]. universality [RH00].

Unknown [SSO16]. Unknowns [EKS+14].
Unnecessary [Pom15c].

unpredictabilities [DS05].
unpredictability [SPG+08]. unscheduled
[MHF96]. Unstructured [VTC20].

Untangling [Yan19, YW09]. untestable
[LIA00]. UPaK [WKR09]. Update [KC10].

Upper [JLJ15]. upset [NdLCR03, RM09].
upssets [MRB+11]. Use
[KBV+15, KFH+08, MS00]. use-cases
[KFH+08]. Useful [TCW20]. Using
[APDC17, APD+11, ASAP17, AV199,
AGM01, BBEM15, BDB12, BS14b, BM11,
BLUS19, CM19, CAOM19, CYV+14,
CJKK19, DNA+12, EW18a, EW18b, EK16,
FWCL05, FYCT15, GF16, GBR07, GD20,
GHY19, HS18, JNS+17, JSS+19, KQP+19,
LHS20, LLH+17, LFTS21, LYHL14, LYS019,
LSCK20, LLK+14, LCC+15, LM21, MA16,
NPH+20, PJJ14, PRT20, PG15, PR09,
Pom15a, SSK+18, TB20, TYSF20, THM15,
TMDF10, TCL14, WKL+18, WXH+19,
WSS+18, YHL+11, ZHC+18, ZYS12,
ZMS+19, BLR06, BWB14, BK10, BGN+07,
BSBO1, CACS05, CBM010, CFHM09,
CK96, GGBZ02, GKO7, GKO9, HVF+01,
HMB98, HPK99, HCC01, HW14, KSK+05,
KRS06, KPR06, KMS12, KMC97, LCT03,
LSL+13, LON08, MHD+04, MSR09, MS08,
MR05, MP07, MLC08, MVK+18, NRZ+18,
PRCK08, PKP+03, PMB10, PMH00,
RJL+09, RCD07, SGK08, SABS15,
SFM+19, STL+13, SBH+06, SCJ01].

using [TLCF16, TWL16, TN99, TD03, TY08,
Vah02, VWY99, WJY21, WCC03,
XLCL13, XK07, YTHC07, YYY07,
ZHOM08]. UST [wAtK02]. UST/DME
[wAtK02]. Utilisation [NAK20]. utility
[BCR+08]. Utilization [KKLG15, KMR18,
MT15, GM03, SBC08, SY07]. Utilizing
[BLNK14, CK16, EB+09]. UTPlaceF
[LLL+18].

V [MLM08]. Validation
[VS12a, CM13, DRG98, FLPP09, HJ08,
MD08, QM12, RPCK05, WAZ08]. value
[YGZ04]. Valued [WTR12]. Values
[Pom18a]. Variability
[CFD+16, NRZ+18, TY19, LON08].
Variable
[PSNC18, ZLG+19, LHW97, WH05].

Variables
[Pie16, CCQ98, Pom14a, SXZV13].

Variation [APDC17, AKAKP18, FYCT15,
RGM09, WCC14, WDL17, WSH+18,
GM08, KTKO13, MJM11, PPDK09].

Variation-Aware [FYCT15, WSH+18,
RGM09, MJM11, PPDK09]. Variations
[GCA18, XAG+20, ZZCY17, KPR06, LH13,
LTPR+13, ST99]. various [WAZ08].

Varying [RG19, SS016]. VBR [JL15].

Vdd [HLHT08]. Vector [BSP+19, JK10,
PIK20, CCW08, EM003, KBA08].

vector-thread [KBA08]. Vectorizing
[LPD+17]. Vectors [Pom15c, CK96].

Vehicle [VA17b]. Verification
[Ali12, BKW15, DSH12, EW18a, HZS+19,
KYN+12, PKJK20, Ped11, SSS+19,
VBP+19, BHW+13, BDC08, BGM04,
DCK07, DCK09, DCK10, DCO7, GF06,
Yield
[GLY+12, JGM14, KAKSP16, KMO+12, SV16, THM15, WSH+18, ZYW+18, HWCL13, KPSW09, LCKT12, MHT14].

Zero [BC16, Giv06, JK10, HTCP13, ZCG06]. zero-deficiency
[ZCG06]. Zero-Suppressed [BC16]. Zoom
[EO19]. Zoom-ADC [EO19].

References

Azarbad:2017:SSB

Asadinia:2015:PLP

Agrawal:2017:OSA

Absar:2006:RAI

Abouzeid:2011:COS

Aksoy:2012:OAM
Levent Aksoy, Eduardo Costa, Paulo Flores, and Jose Monteiro. Optimization algorithms for the multiplierless realization of linear transforms. ACM Transactions on Design Automation of Electronic Systems,
Agarwal:2013:SDS

Afacan:2019:CRC

Al-Dujaily:2013:DPB

Abouelella:2013:HEI

Atienza:2007:HSE

Avnit:2009:PCC

Aksoy:2014:MDF

Ashar:2001:UCD

Abbasian:2008:WBD

Ahn:2008:SSC

Abousamra:2013:OCE

Abolmaali:2018:EFP

Sheis Abolmaali, Mehdi Kamal, Ali Afzali-Kusha, and Mas- soud Pedram. An efficient false path-aware heuristic criti-

Asgarieh:2019:SHA

Alizadeh:2012:FVD

Albalawi:2017:TFP

Agnesina:2020:IFB

Araujo:1998:CGF

Adya:2005:CTM

REFERENCES

Ayoub:2013:CCM

Alam:2020:SSB

Araujo:2002:GAR

AliKhatib:2008:MSC

Ain:2011:CPV

Abella:2017:MBW

Arcaro:2018:RTG

[APS18] Luís Fernando Arcaro, Karila Palma Silva, and Rômulo Silva

[AYM05] Ayala-Rincon:2006:PTS

[AYM05] Boyer:2001:ODS

Behera:2017:TTS

Bogliolo:2000:RBR

Beznia:2015:TAR

Bhattacharya:2005:OWP

Bahar:2008:IJA

Bernasconi:2011:DRB

Bernasconi:2016:IRZ

Anna Bernasconi and Valentina Ciriani. Index-resilient zero-suppressed BDDs: Definition

Bernasconi:2008:OKS

Baldassin:2008:OSB

Baldassin, Alexandro; Centoducatte, Paulo; Rigo, Sandro; Casarotto, Daniel; Santos, Max; Schultz, Max; Furtado, Olinto. An open-source binary utility generator. *ACM Transactions on Design Automation of Electronic Systems*, 13(2):27:1–27:??, April 2008. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Benini:1997:SBM

Benini:2000:SLPb

Baradaran:2008:CAM

Baradaran, Nastaran; Diniz, Pedro C. A compiler approach to managing storage and memory bandwidth

Bathen:2014:STS

Bhattacharya:1998:ERS

Bild:2012:SNR

Bhowmik:2019:PA

Banerjee:2008:ASM

Benini:1999:SSC

L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi. Symbolic synthesis of clock-gating logic for power optimization of synchronous controllers. ACM
REFERENCES

REFERENCES

Bertels:2009:EMM

Backer:2017:SFT

Burcea:2019:MIR

Bruneel:2011:DDF

Backasch:2013:RVM

Bahar:2015:ISI

Balakrishnan:2000:AFS

M. Balakrishnan and Heman Khanna. Allocation of FIFO structures in RTL data paths.

Blanc:2010:RAS

Baranowski:2015:RSN

Bhanja:2006:SFG

Baek:2014:DHD

BLN14

Bhanja:2006:SFG
REFERENCES

Bonetti:2017:AID

Backes:2012:SCD

Boukhobza:2018:ENS

BasiriM:2014:EHB

Boghrati:2014:IAP

Bolchini:2014:DHE

Basu:2019:CBA
Kanad Basu, Samah Mohamed Saed, Christian Pilato, Mohammed Ashraf, Mo-

[Noureddine Chabini, El Mostapha Aboulhamid, Ismail Chabini,

Charles:2019:ECR

Chopra:2018:OAC

Chen:2017:AMM

Chang:2010:LSC

REFERENCES

Ciordas:2005:EBM

Chen:2006:SPC

Chien:2009:SMV

Chen:2018:EFM
Tseng-Yi Chen, Yuan-Hao Chang, Yuan-Hung Kuan,

Constantinides:2003:SSA

Cota:2004:RCN

Chatterjee:2020:MLA

Cabodi:1998:AVB

Chang:2015:VP1

Cheng:2008:FSI

Lei Cheng, Deming Chen, and Martin D. F. Wong. A fast simultaneous input vector generation and gate replacement algo-

Chen:2006:OSM

Chang:2009:DIE

Chatterjee:2011:GLS

Cheatham:2006:SFT

Chen:2016:RAR

Chen:2016:DCV

Chen:2009:LRD

Chang:1996:OCP

Chong:2009:SRB

[Cha01] Krishnendu Chakrabarty. Optimal test access architectures for system-on-a-chip. *ACM*

Sue-Hong Chow, Yi-Cheng Ho, TingTing Hwang, and C. L. Liu. Low power realization of finite state machines — a decomposition approach. ACM
REFERENCES

CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic). URL http://

Jason Cong, Hui Huang, and Xin Yuan. Technology mapping and architecture evaluation for
k/m-macrocell-based FPGAs. ACM Transactions on Design Automation of Electric-
tronic Systems, 10(1):3–23, January 2005. CODEN ATASFO. ISSN 1084-4309 (print), 1557-
7309 (electronic).

Rita Yu Chen, Mary Jane Irwin, and Raminder S. Bajwa. Architecture-level power estima-
tion and design experiments. ACM Transactions on Design Automation of Elec-
tronic Systems, 6(1):50–66, January 2001. CODEN ATASFO. ISSN 1084-4309 (print), 1557-
7309 (electronic). URL http://
www.acm.org/pubs/articles/journals/todaes/2001-6-1/p50-chen/p50-chen.pdf; http://
www.acm.org/pubs/citations/journals/todaes/2001-6-1/p50-chen/.

Hsiang-Yun Cheng, Mary Jane Irwin, and Yuan Xie. Adaptive burst-writes (ABW): Mem-
ory requests scheduling to reduce write-induced interference. ACM Transactions on Design
Automation of Electronic Systems, 21(1):7:1–7:??, November 2015. CODEN ATASFO. ISSN 1084-4309 (print), 1557-
7309 (electronic).

Kyu Hyun Choi, Jaeyung Jun, Minseong Kim, and Seon Wook Kim. Reducing DRAM re-
fresh rate using retention time aware universal hashing redundancy repair. ACM Trans-
actions on Design Automation of Electronic Systems, 24(5):53:1–53:31, October 2019. CO-
DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic). URL https://dl.acm.org/
doi/abs/10.1145/3339851.

Jason Cong, Wei Jiang, Bin Lin, and Yi Zou. Automatic memory partitioning and schedul-
ing for throughput and power optimization. ACM Transactions on Design Automation of Elec-

Kwang-Ting Cheng and A. S. Krishnakumar. Automatic gen-

Czerwinski:2016:SAO

Chakraborty:2019:ERL

Chakrapani:2007:PSC

Cong:1998:BSC

Cheng:1999:CGN

REFERENCES

Choi:1999:FD

Chang:2012:CDA

Chang:2013:IPP

Chi:2020:WLO

Cao:2006:POS

Cabo di:2010:SHA
REFERENCES

REFERENCES

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

Cho:2004:FMB

Chang:2014:EBT

Cochran:2012:TPA

Chen:2015:DMD

Carpent:2019:RAS

Chang:2007:PLP

Cai:2007:WAD
REFERENCES

1084-4309 (print), 1557-7309 (electronic).

Cao:2005:SSL

Chen:2007:NMA

Cong:2005:LSC

Chang:2008:TCS

Chithira:2017:HTS

Chen:2019:SA

[CVMP19] Yukai Chen, Sara Vinco, Enrico Macii, and Massimo Poncino. SystemC-AMS thermal modeling for the co-simulation of functional and extra-functional properties. ACM Transactions on Design Automation of
REFERENCES

Chu:2001:CFS

Chang:1996:USM

Chen:2016:TTS

Chen:2013:NMC

Choi:2019:OFT

Cheng:2014:ECD

Chang:2000:TDR

Chen:2003:AFF

Chen:2019:OTL

Dasdan:2004:EAF

Dasdan:2009:PEA

REFERENCES

REFERENCES

[DKT+16]

[DKZ+15]

[DL11]

Das:2017:VBP

Dey:2020:MLA

Dhiman:2010:VSE

Dandanis:2002:RTP

Dandanis:2004:ACE

Dasdan:1998:TDD

Davoodi:2005:VSU

Davoodi:2006:ETG

Deniz:2012:VCM

Dasgupta:2001:SR

Das:2004:MDR

REFERENCES

[Darte:2002:CEL]

[Dontharaju:2009:DAP]

[Dutt:2005:E]

[Dutt:2006:E]

[Dutt:2007:E]

[Dutt:2008:Ea]

[Dutt:2008:Eb]

[Dutt:2008:E]

[Dutt:2002:SBB]
Shantanu Dutt, Vinay Verma, and Hasan Arslan. A search-based bump-and-refit approach to incremental routing for ECO applications in FPGAs. *ACM
REFERENCES

DeAbreuMoreira:1997:ADC

Dong:2018:PAA

Duan:2015:DDO

Delledonne:2018:CDA

Enrici:2017:MDE

Engelke:2009:SSU

[EBR+09] Piet Engelke, Bernd Becker, Michel Renovell, Juergen Schloeffel, Bettina Braitling, and Ilia Polian. SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges. ACM Transactions on Design Automation...
REFERENCES

Edwards:2003:TCC

Erb:2014:ELF

Esmaili:2020:EAS

REFERENCES

[FG18] Ramin Fallahzadeh and Hassan Ghasemzadeh. Trading off power consumption and prediction performance in wear-

Foroozannejad:2012:PBM

Freund:1997:CEA

Fan:2007:ECD

Fan:2002:RDG

Flores:2001:ESM

Faezipour:2009:HPE

Fujita:2005:ECB

Fummi:1997:FDT

Forte:2013:RAA

Fang:2000:MFP

Feng:2005:UDP

REFERENCES

Gangwar:2007:IIC

Ghosh:2007:LPT

Ganley:1996:RST

Gomez:2018:SCP

Gingade:2016:HPM

Guo:2015:RDS

REFERENCES

REFERENCES

Matthew R. Guthaus, Xuchu Hu, Gustavo Wilke, Guilherme Flach, and Ricardo Reis. High-performance clock mesh optimization. ACM Transactions on...
REFERENCES

Fang Gong, Xuexin Liu, Hao Yu, Sheldon X. D. Tan, Junyan Ren, and Lei He. A fast non-Monte-Carlo yield analysis and optimization by stochastic
REFERENCES

Goel:2003:STA

Garg:2008:SLT

Gester:2013:BAD

GuerraeSilva:2002:SMA

Goodby:2002:MSP

Gheorghita:2009:SSB

References

REFERENCES

[Huang:2018:PSC] Sheng-Min Huang and Li-Pin Chang. Providing SLO compliance on NVMe SSDs through parallelism reservation. ACM Transactions on Design Automation of Electronic Systems,
REFERENCES 96

Huang:2001:VSE

Huang:2013:IBM

Hsiung:1998:IIC

Huang:2009:OPR

Han:2011:DIT
Yiding Han, Koushik Chakraborty, Sanghamitra Roy, and Vilasita Kuntanapprk. Design and implementation of a throughput-

REFERENCES

Huang:2007:ESC

Hansson:2009:CTC

Huang:2016:FOF

Hong:2009:RFD

Han:2017:CAB

Ho:2014:USS

Holst:2015:HTL
REFERENCES

Hsiao:2008:ISS

Hussain:2018:PPP

Hsu:2007:ESC

Hu:2007:IHM

Ha:2007:PHS

Heo:2015:IAS

REFERENCEs

Hsieh:2007:FDC

Huang:2015:OAA

Hu:2008:PSF

Hosseinabady:2007:LTA

Hasteer:1998:EEC

Healy:2011:IMF

REFERENCES

CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

REFERENCES

REFERENCES

Herrera:2007:FHS

Hartanto:2001:DSS

Hwang:2000:PSS

Huang:2013:OCC

Huang:2015:PDU
Chien-Chih Huang, Chin-Long Wey, Jwu-E Chen, and Pei-Wen Luo. Performance-driven unit-capacitor placement of successive-approximation-
REFERENCES

He:2016:RIM

Huang:2014:ICP

Huang:2018:DML

Hoque:2020:HPO

Huang:2015:CPM

Huang:2019:ILA

REFERENCES

Inoue:2009:DSD

Issenin:2007:DDR

Ioannides:2012:CDT

Ittershagen:2018:IFM

Indrusiak:2015:FSN

Islam:2019:EIT

Isenberg:2017:PCH

Tobias Isenberg, Marco Platzner, Heike Wehrheim, and Tobias
REFERENCES

Irwin:2000:E

Inoue:2008:PVS

Islam:2021:HLS

Ince:2021:FBB

Johnson:1998:MAS

Jamieson:2010:BER

[Peter Jamieson, Tobias Becker, Peter Y. K. Cheung, Wayne Luk, Tero Rissa, and Teemu

Rajib Lochan Jana, Soumyajit Dey, and Pallab Dasgupta. A hierarchical HVAC control scheme for energy-aware smart building automation. *ACM Transac-
REFERENCES

REFERENCES

Jalili:2018:ERM

Jin:2009:GND

Jiang:2019:EEQ

Jone:1998:CAD

Jone:2003:DTI

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Khordoc:1998:SVA

Kim:2010:EEP

Kim:2013:AMP

Kjeldsberg:2004:SRE

Kritikakou:2013:NOS

Kritikakou:2016:ASC

Kumar:2008:MSS

Kern:1999:FVH

Kumar:2009:EML

Kamal:2020:ADF

Kwon:2010:SPC

Khatib:2012:MRP

Koushanfar:2005:BST

Farinaz Koushanfar, Inki Hong, and Miodrag Potkonjak. Behavioral synthesis techniques for
REFERENCES

Kuo:2006:DID

Karri:2001:IRT

Kim:2003:MDO

Kobayashi:2007:MOS

Krishna:2004:AHE

Kim:2011:CTS

Kang:2014:IRA

Kim:2002:LTL

Kim:2016:NAP

Kwon:2008:RPP

REFERENCES

66:??, September 2015. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Kastner:2002:IGH

Kim:2016:SDM

Kao:2005:EAF

Knechtel:2018:MOF

Kuo:2014:RCS

Kim:2017:SBS

Kim:2011:MAO

Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, and Yum-

Keutzer:2009:ATD

Keutzer:2011:SSM

Kim:2015:AIP

Kahng:1997:ARI

Kormicki:1997:PLS

Kurimoto:2012:YRI

Masanori Kurimoto, Jun Mat-

Kritikakou:2018:DDS

Karfa:2012:FVC

Kolsen:1996:ORA

Kulkarni:2006:CTA

Karabacak:2018:RDU

Kim:2009:MLP

Jaehyun Kim, Chungki Oh, and Youngsoo Shin. Minimiz-

Kornaros:2013:STC

Kukkala:2019:JSF

Kashif:2016:PSR

Kang:2006:STA

Kahng:2009:LAA

Kang:2019:TDF

January 2019. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

REFERENCES

Koun:touris:2002:ESC

Katoen:2016:PMC

Kim:2016:IWP

Kurimoto:2012:VWR

Liu:2001:ODC

Leupers:2000:GBC

Ludwin:2011:EDP

REFERENCES

Li:2006:LVA

Langevin:1996:RTC

Liu:2007:IEM

Lee:2013:SRB

Lee:2014:CPA

Li:2011:GRS

[LCL08] Chao-Hung Lu, Hung-Ming Chen, and Chien-Nan Jimmy

Lee:2007:CCA

Li:2003:TDC

Leung:2012:PVI

Liu:2018:RML

Lee:2008:FCB

Li:2017:ASE

Lee:2018:PTT

[LDD+18] Dongjin Lee, Sourav Das, Janardhan Rao Doppa, Partha Pra-

Letras:2021:MOO

Lee:2012:ECM

Lee:2018:LBF

Livramento:2014:HTD

Lin:2009:SCD

Liu:2011:GBP

Lee:2013:EMA

REFERENCES

Lee:2014:DCC
[130]

Lin:2012:RDP
[102]

Liu:2015:DES
[454]

Lee:2016:ESM
[436]
REFERENCES

David E. Long, Mahesh A. Iyer, and Miron Abramovici. FILL and FUNI: algorithms to identify illegal states and sequentially untestable faults. *ACM Transactions on Design Automation of Electronic Sys-

1084-4309 (print), 1557-7309 (electronic).

Liao:1998:NVC

Lee:2015:SLO

Lee:2017:UCP

Lee:2003:CO

Lin:2012:LBC

REFERENCES

[LLL01] Swanwa Liao, Mario A. Lopez, and Dinesh Mehta. Constrained polygon transformations for incremental floorplanning. *ACM
REFERENCES

Lee:2016:DWC

Li:2003:CLF

Li:2010:CPG

Lopez:1996:EDP

Lee:2005:PDD

Li:2019:TMF

REFERENCES

REFERENCES

Linehan:2012:MDA

Liu:2008:PVA

Lee:2003:ACG

Lim:2007:ISI

Latifis:2017:MVC

Lalgudi:2000:OCE

Jianhua Li, Liang Shi, Qinggan Li, Chun Jason Xue, Yiran Chen, Yinlong Xu, and Wei Wang. Low-energy volatile STT–RAM cache design using

REFERENCES

16:1–16:??, February 2010. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Liu:2016:ECM

Liu:2014:SIS

Lam:2012:EPL

Lopez-Vallejo:2003:HSP

Lee:2016:TPD

Li:2017:DMF

Li:2007:SBC

Li:2018:CMD

Li:2006:CML

Liu:2011:SBA

Liu:2019:NRM

Lepak:2004:SSI

Liu:2020:AFD

Mengyun Liu, Lixue Xia, Yu Wang, and Krishnendu
Chakrabarty. Algorithmic fault
detection for RRAM-based matrix
operations. ACM Transactions on Design Automation of

Lee:2013:RIB
Lee:2013:RIB

Chih-Hung Liu, Shih-Yi Yuan,
Sy-Yen Kuo, and Szu-Chi
Wang. High-performance obstacle-avoiding rectilinear
Steiner tree construction. ACM Transactions on Design Automatic

Li:2019:SEA
Li:2019:SEA

Jiajun Li, Guihai Yan, Wenyan
Lu, Shijun Gong, Shuhao Jiang,
Jingya Wu, and Xiaowei Li.
SynergyFlow: an elastic accelerator architecture supporting batch processing of large-scale deep neural networks. ACM Transactions on Design Automatic

Lin:2017:HDP
Lin:2017:HDP

Ye-Jyun Lin, Chia-Lin Yang,
Hsiang-Pang Li, and Cheng-
Yuan Michael Wang. A hybrid DRAM/PCM buffer cache architecture for Smartphones with QoS considera-
tion. ACM Transactions on Design Automatic
ation of Electronic Systems, 22(2): 27:1–27:??, March 2017. CO-
DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Liu:2020:APA

Liao:2021:EPA

Li:2019:ATR

Luo:2021:TMF

Lin:2015:SAD

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Mandal:2020:EAO

Mondal:2012:SEP

Mishra:2008:SDD

Muccherla:2008:NEW

Mao:2016:LBP

Marculescu:2013:ESS

Mathur:1998:RAE

Maslov:2007:TSR

Mukherjee:2012:SAA

Mirtar:2015:AAA

Mehta:1998:ESR

REFERENCES

Milder:2012:CGH

Morgado:2009:GRS

Mitra:2015:OWS

Metwalli:2019:SAS

Ma:2004:SCU

Moreno:1996:REU

Mochocki:2007:TOA
Bren Mochocki, Xiaobo Sharon

Konstantin Moiseev, Avinoam Kolodny, and Shmuel Wimer.

Moiseev:2009:PDO

Mo:2009:AHS

Moscola:2008:RCB

Mok:2012:DSL

Moon:2017:ASP

Mukherjee:2008:HLC

REFERENCES

Marculescu:2000:SSM

Mohanty:2007:MBE

Moudallal:2017:GCC

Mukhopadhyay:2009:IAA

Mundhenk:2017:SAN

Mathaikutty:2007:EMD

[MPSJ07] Deepak Mathaikutty, Hiren Patel, Sandeep Shukla, and Axel

Middelhoek:1996:VEF

Mohanty:2005:EED

Maestro:2011:MEL

Mohanty:2006:IMS

Muhammad:2019:RBS

Malekpour:2020:HTM

Amin Malekpour, Roshan Ragel, Tuo Li, Haris Javaid, Aleksandar Ignjatovic, and Sri

Moffitt:2008:CDF

Meh 2000:UFR

Manolios:2008:AVS

Murugesan:2017:NRM

Mondal:2021:IFS

Mehta:2009:ICH

Gayatri Mehta, Justin Stander, Mustafa Baz, Brady Hunsaker,

Mishra:2006:ADL

Majumder:2007:HPV

Malik:2009:SCU

Michael:2002:ATD

More:2015:LAN

Mutyam:2009:SST

Muztoba:2018:IAI

Md Muztoba, Rohit Voleti, Fatih Karabacak, Jaehyun Park, and Umit Y. Ogras. Instinctive assistive indoor navigation using distributed in-
 REFERENCES

REFERENCES

Nourani:2005:RHE

Naderan-Tahan:2018:DCE

Oh:2019:TAS

Ostler:2007:IHT

Osawa:2019:ADR

Ozturk:2008:IBE

Olney:2020:TFB
REFERENCES

Ozturk:2008:APB

Ogras:2008:AOP

Ochoa-Ruiz:2015:MAR

REFERENCES

[PDC97] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Memory data organization for improved cache performance in embedded pro-

Panda:2000:CVC

Pedram:1996:PMI

Pedram:2006:ISI

Pedram:2008:E

REFERENCES

[Pom14a] Irit Pomeranz. Design-for-testability for multi-cycle broadside tests by holding of state variables. *ACM Transactions on Design Automation

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[Pom14b] Irith Pomeranz. Low-power skewed-load tests based on func-
tional broadside tests. ACM Transactions on Design Au-

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[Pom15a] Irith Pomeranz. Enhanced test compaction for multicycle broadside tests by using state complementation. ACM Transac-

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[Pom15c] Irith Pomeranz. A generalized definition of unnecessary test vectors in functional test sequences. ACM Transac-

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[Pom16a] Irith Pomeranz. Design-for-testability for functional broad-
side tests under primary input constraints. ACM Transac-

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[Pom16b] Irith Pomeranz. N-detection test sets for circuits with mul-
tiple independent scan chains. ACM Transactions on Design Automation of Electronic Sys-

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[Pom16c] Irith Pomeranz. Periodic scan-in states to reduce the input test data volume for partially functional broadside tests. ACM Transac-

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

Irith Pomeranz and Sudhakar M. Reddy. Using stuck-

Pomeranz:2011:RSA

Panda:2008:SBV

Pecenka:2008:ESR

Passerone:1998:MRS

Pereira-Santos:2018:RFB

Padmanaban:2006:IGM

Paul:2005:HLM

Potluri:2015:DAT

Pan:2020:ARP

Potkonjak:1999:MAD

Poon:2005:DPM

Pui:2020:LRB

ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

References

REFERENCES

Roy:2015:FTE

Rosales:2014:MHA

Raabe:2008:RDS

Raimi:2000:EML

Ravi:2014:HLT

Rao:2009:COT

Raghavan:2009:PTG

Ramanujam:2013:DBC

Reviriego:2009:EED

Reviriego:2010:RAM

Rahaman:2008:CTB

Rokni:2021:TMS

REFERENCES

REFERENCES

Roop:2001:FST

Ruan:2005:BEL

Rawat:2003:I

Samavatian:2015:ALL

Szentimrey:2020:MLC

Song:2019:HRB

[SB98] C.-J. Shi and J. A. Brzozowski. Cluster-cover a theoretical framework for a class of
REFERENCES

[SBH+06] Shaﬁee:2018:DFB

Sehgal:2008:PAS

[SBH+13] Shojaei:2013:FSM

[SBY+20] Sha:2020:FPT

Shi Sha, Ajinkya S. Bankar, Xiaokun Yang, Wujie Wen, and Gang Quan. On fundamental principles for thermal-aware de-
REFERENCES

Sapatnekar:2000:PDO

Su:2006:MPF

Shenoy:2001:ASL

Su:2008:SNT

Schafer:2017:PHL

Su:2001:IRA
Chauchin Su, Yue-Tsang Chen, and Shyh-Jye Jou. Intrinsic response for analog module testing using an analog testabil-

Sadat:2018:OAL

Schaumont:2006:ICE

Sinha:2009:DIC

Shamshiri:2005:ILT

Sen:2011:COV

Srivastav:2015:DUL

Schwarzer:2019:CDA

Schneider:2014:QNE

Schirner:2010:FAP

Sinha:2014:FAI

Sosic:1996:UAF

Saluja:2008:SBA

REFERENCES

Su:2006:AMS

Singh:2012:ATA

Steinhorst:2016:CPC

Shalu:2018:DDS

Siddhu:2021:LAD

Seo:2018:NIS

Shamsi:2019:IPS

[SLP+19] Kaveh Shamsi, Meng Li, Kenneth Plaks, Saverio Fazzari,
REFERENCES

Shi:2012:HND

Sudarsanam:2000:SRA

Sayed:2019:CAP

Suhail:2005:XIM

Shi:2007:CSO

Singh:2010:AJE

Montek Singh and Steven M. Nowick. ACM Journal on

Saxena:2002:ESL

Singh:2012:TRT

Su:2006:CTD

Suresh:2015:AGU

Singhal:2003:SOA

Sharma:2015:AIE

Sanz:2008:CSS

Concepción Sanz, Manuel Prieto, José Ignacio Gómez, Antonis Papanikolaou, Miguel Mi-

Singh:2002:ECC

Salcic:2017:NHH

Salamy:2012:ISA

Subramaniam:2015:FPM

Smirnov:2019:AOV

Sun:2011:GDD

REFERENCES

187

1084-4309 (print), 1557-7309 (electronic).

REFERENCES

Shen:2012:FSF

Shiue:2001:DMD

Stitt:2007:BS

Stitt:2011:TWD

S:2016:EAD

Santos:2017:SMH

Song:1999:CDP

REFERENCES

REFERENCES

CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

REFERENCES

[192]

Taktak:2008:TAD

Taskin:2009:CTR

Truong:2018:LSE

Tessier:2002:FPA

Tu:2014:PPP

Tsai:2013:ROC

Taouil:2015:YIW

REFERENCES

Tu:2012:MFS

Tseng:1999:TLL

Topaloglu:2018:ETS

Tang:2007:PDF

Tu:2019:AOS

Tan:2016:ESE

Thorolfsson:2010:LPH

Thorlindur Thorolfsson, Samson Melamed, W. Rhett Davis,

Thornton:1999:BSC

Tseng:2008:PPD

Trinadh:2017:ODC

Teman:2016:PAP

Thanvantri:1996:OFS

REFERENCES

FRANK VAHID.

[VanEijk:2000:CA]
REFERENCES

REFERENCES

[WDLD17] Shuai Wang, Guangshan Duan, Yupeng Li, and Qianhao Dong. Word- and partition-level write

Wu:2021:CPO

Wang:2016:MSM

Wang:2020:MFS

Wang:2019:CPR

Wang:2011:RCM

Wang:2007:ETR

Gang Wang, Wenrui Gong, Brian Derenzi, and Ryan Kastner. Exploring time/resource trade-offs by solving dual

Christophe Wolinski, Krzysztof Kuchcinski, and Erwan Raffin. Automatic design of application-specific reconfigurable processor extensions with

REFERENCES

Wang:2016:ADB

Wang:2018:VAG

Wurth:1999:FMO

Wu:2016:OAW

Winograd:2018:PGU

Wei:2014:TSE

REFERENCES

Wang:2013:CTM

Wang:2012:CMI

Wu:2009:EER

Wang:2002:BSF

Wang:1999:PRP

Wu:2004:BBA

Wang:2018:MTI

Wu:2012:ESF

Wu:2008:PVA

REFERENCES

Wang:2010:CDF

Wang:2007:DIC

Xiang:2018:FTU

Xiang:2012:SFF

Xiao:2016:HTL

Xu:2020:MCM

Qi Xu, Hao Geng, Song Chen, Bei Yu, and Feng Wu. Memristive crossbar mapping for neuromorphic computing sys-

Xiang:2018:FTU

Xiang:2012:SFF

Xiao:2016:HTL

Xu:2020:MCM

Qi Xu, Hao Geng, Song Chen, Bei Yu, and Feng Wu. Memristive crossbar mapping for neuromorphic computing sys--

Xu:1997:LDR

Xiang:2013:TCS

Xu:2016:ACS

Xue:2017:FCT

Xu:2015:DCD

Xie:2018:TER

Guoqi Xie, Zhetao Li, Na Yuan, Renfa Li, and Keqin Li. Toward effective reliability requirement assurance for automotive functional safety. *ACM Transactions on Design Automation of Electronic Systems*, 23(5):
Xu:2019:ESC

Xiang:2016:NUB

Xu:2016:HSL

Xiang:2005:AIP
Hua Xiang, Xiaoping Tang, and Martin D. F. Wong. An algorithm for integrated pin assignment and buffer planning.
REFERENCES

Xu:2016:PPA

Xu:2009:STA

Yan:2000:TLB

Yan:2008:TDO

Yan:2011:ICA

Yan:2016:PDA

REFERENCES

Yang:2020:HSS

[2016:PSS]

Yang:2017:CCS

[2004:FVE]

REFERENCES

[YSF+18] Kun Yang, Haoting Shen, Domenic Forte, Swarup Blu-

Yang:1997:HFM

Yang:2009:TAS

Yang:2009:MCS

Yang:2003:CRD

Yu:2010:PSA

REFERENCES

Zamora:2007:SLP

Zhu:2009:ESA

Zhang:2015:RLP

Zhao:2016:SRE

Zheng:2019:HEB

Jianwei Zheng, Chao Lu, Jiefeng Guo, Deming Chen, and

Zeng:2013:IPD

Zhang:2016:CFS

Zhang:2015:RBA

Zhang:2015:LRR

Zhang:2015:LDP

Zhu:2007:HMF

Zuluaga:2016:SSN

Zimmermann:2019:ADL

Zhao:2013:PSA

Zhu:2008:HTC

Zhao:2002:TMA

Zhang:2016:PPG

REFERENCES

Zhou:2018:RRD

Zhang:2010:CSD

Zhou:1998:ORR

Zhu:2011:MPL

Zhou:2008:AAS

Zhou:2009:TAR

Zhu:2017:CCA

