A Complete Bibliography of ACM Transactions on Design Automation of Electronic Systems

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

17 May 2023
Version 1.87

Title word cross-reference

1 [AGM01]. 2 [FWCL05, GH00, RL13]. 2.5 [WCB15, WWCT18]. 3
[ADDM+13, AJK+21, CLT+15, CBR+22, CXR+23, CWL+22, DLC+17, DHZL23,
JGM14, KKK16, KLE18, LLK13, LDD+18, LDD+19, LHZ+06, LHC16, LW17,
LS19, LS17, OCK19, PRKK21, PKC+21, SKP21, SYX12, THM15, TMDF10,
WYC10, XGC+20, YHH09, ZYS12]. 4
[JCGP05]. 2 [SJL23], [dd [MLMM08], DDX [SW04]. F_{max} [PMB10], g^m [LZ21],
GF(2^m) [RMJ08], H [CLT+15]. I^D [LZ21], k [CLH12, SSN22]. k/m [CHY05]. μ
[DHZ+11]. N [Pom16b, CLH12, Pom17a]. $o(\min(m,n))$ [LM05]. t/t [CH13]. V_t

[AGM01].
-Ary [CLH12]. -based [SW04]. -Cubes [CLH12]. -D [OS03, WYC10]. -Detection
[Pom17a, Pom16b]. -Diagnosability [CH13]. -distinguishability [AGM01].
-domain [FWCL05]. -driven [MSD06]. -geometry [JCGP05]. -macrocell-based
[CHY05]. -Matrix-Based [CLT+15]. -VOR [SJL23].

0.35V [ACF+11]. 0.35V-Optimized [ACF+11].

2-stage [KSA+10]. 2.0
[CLYP09, HWGY16, LLL+18]. 2009 [GK09].
252Kgates [CCC+09a].
252Kgates/4.9Kbytes [CCC+09a].
36 [DHZ+11].

4.9Kbytes [CCC+09a]. 40nm [ACF+11].

45-degree [CT13, TP08]. 45nm [BFL10].

71mW [CCC+09a].

90nm [CFD+16].

A3MAP [JP12]. aberration [KPSW09].

absence [SPA+03]. Abstraction [HZS+19, CMNQ08, CLM+10, HMB98].

Accumulation [EJR22, GYZ+22, LDP+22, WFSS02, GPK+09]. Accelerator [CBC22, FLG+23, HLW+23, KP22, LCJ+22, LYL+19, LJJ+22, LPL+21, OHA19, SKR+22, SHBD21, AHL+08].

Accelerator-rich [SHBD21]. Accelerators [CSO22, HJY23, SYGC22, SV11, TL19, LSPC14, YLP+13]. Access [BSP+22, GSD+18, HWDQ22, OKC08, PTPB22, RPR+21, XYG+16, Cha01, KLSP11, KCKG13]. Accesses [KCKG16].

Accuracy [BH22, EAA+23, HSP+22].

Accurate [DKZ+15, LJJ18, SV16, SKCM06, TWL16, TEK18, MFS09, RCD07, SGD10, XK97].

Accurately [CHA+23]. Achieving [HSP+22, KJT04, SLT+13].

ACM [GK09, BC08, CH10a, KLSZ09, QS11, SN10, CPX14]. acoustic [FIR+97]. acquisition [NP03]. across [LBV+06]. action [KC98].

Activation [WLM21]. Active [LKC+18, VEO16]. Actively [PCT+17].

Activity [GFJ16, KO018, RG19, PR11, SXX+06].

Actor [RGT+14]. Actor-Oriented [RGT+14]. Actuations [RB21]. acyclic [LKTD98]. Adaptable

[A3C15, KKK12, SHN12]. Adaptation [LYHL14, MDR15, RAN+21, TZZH22].

Adapting [SSO16]. Adaptive [BM11, BYT22, CB17, CIX15, EW18b, JM14, KKH16, LKY13, LYS019, LIJ+22, LPY+20, LK22, SFM+19, SOS15, TZ17, WTR12, WQC+16, ZLY+15, CCYC14, CR12, CLQ12, DP04, FS13, HCK13, LMB+12, LSL+13, RL13, RAKK12, SCB01].

Addition [BSP+23]. Address [LP03, SR12].

addressing [SSP04]. Adjustable [LW21, KSA+10, LHT12]. Adjustment [MNMK+21]. ADL [MSD06].

Admission [DSZD15]. advanced [DFR13]. Advances [CO18]. Adversarial [GF+23, LYM+20].

Aerial [HXB+22]. Affine [WK+18, BC11].

after [XFJ+16]. Against [ADB+19, DZS+18, LD22, RNR+21, AYS20, DF15, GDTF17, HLY+20, LQD22, ZLQ15].

AGENTS [dW97]. Agglomerative-based [LLC13].

Algorithm [LLL13]. Aging [ADB+19, DNT20, FYCT15, GC18, OT15, TSW20, HTCP13].

Aging- [FYCT15]. Aging-Aware [OT15].

AIMCU [ZXC+23]. AIMCU-MESO [ZXC+23].

Airgap [HS19]. algebra [GH07, GK09]. Algebraic [LAYZ23, ARLJH06].

Algorithm [DHVW18, GDRG11, GYT12, HOCR11, HLG+15, JHY21, KLSZ09, KLSZ11, MA16, MJB19, TZ17, YVC14, ZLC+21, ZLG+19, ZHJ+23, DBD98, CD09, CT13, CSL+07, CCW08, EK97, GBC07, JHL02, KT96, KL05, LM05, MBB01, MBS05, MLM08, MWG07, SCB01, SGJ96, VKKR02, XTW05, YMC+13, YWW10, Zho08].

Algorithmic [AM05, KR118, LXWC20, RRHB21].

Algorithms [ACFM12, DK22, GMN+13,
GdRJM21, SV16, SZB17, TCP97, Das04, Das09, EMO03, GMSSS02, JLF+12, LKM04, LI11, OWO8, PB14, PW99, TC98, YW09, YCHT00, ZS10, ZS02. Aligned [LJJ+22, SHL+19, XYG+16]. Allocating [KAKSP16, YHH09]. Allocation [ABC+17, BK00, BM11, CET16, CARH18, KK14, KKLG15, SCK18, ZYS12, AOC02, CLM+10, CL99b, LCK+09, SM00].

Alternative [DK08, LYSO19]. Amplifier [RM23]. Amps [AG22]. AMS [CVMP19, DDNAV04, MDM+12, MPDG09, ZMS+19]. Analog [ADB+19, BBEM15, CFD+16, CLC20, DZ18, HRC21, HSP+22, LDP+22, LYSO19, LS22, LLM+23, LZ21, LH12, LCYN18, PHS+20, SHD17, SCK+23, STGR15, SOS15, TZ17, T20, WJY15, XAG+20, ZSY18, BC05, DC07, DDNAV04, LON08, LFG+09, LCKT12, LCPR+13, ST99, SCJ01, WV02].

Algorithm [LDP+22]. Analog-in-Memory [LDP+22]. Analog/Mixed [STGR15]. Analog/Mixed-Signal [STGR15]. Analog/RF [BBEM15, PHS+20]. Analyses [BFG17b, YBM+21]. Analysis [BS14b, CZW+03, CLT+15, CB17, CXLL22, CH17, CYH19, CLM10, DKZ+15, GD20, GLY+12, HLZ+22, HKL+15, HHL14, JIR+21, JM14, KM18, KOO18, KC13, LJ18, LDM20, LV14, MAS16, MHA19, NSCM17, OM08, PHKW12, PIE16, PERP06, QBTM16, RRHB21, SMBT19, STWX12, SYH+22, TH12, VTC20, WL12, XT16, ZFLS11, ZYW+18, ZS16, ZKS+16, ZMS+19, ZBP18, AC06, APB+08, BWB14, BK10, CPR+02, DCK10, Das04, DH06, FZKS11, GM08, GGBZ02, GDG+08, IBMD07, JB98, JHT9, KPR06, KVMH08, LWCO7, LCHT02, LON08, LTPR+13, MDG98, MFS09, MCMW08, NM13, QSK12, RMB10, ST99, VMP+00, WYCO10, YWGI09, ZHM07].

Application-aware [ZYDP08]. Application-Driven [YP10]. application-oriented [Hsi00]. Application-Specific [HKL+15, HMMG+20, HCZ+16, LPD+17, LFH12, LF12, RCK+15, TCL14, VA17a, CSC08, WKR09]. Applications [ACF+11, BFV15, BLUS19, CLE+22, EKEK22, ETAV18, EO19, HC17, HAB+17, LFST21, LDM20, MAS+20, MS23, MLH+17, NTS08, PFHAH22, RM23, RS18, SBR+17, SSK+23, SVK17, SFM+19, SLV+22, SWT23, SESN15, WDMG16, WH20, ZLL+16, CCC+09a, DCK9, DCK10, DPNB02, DSH12, DVA02, HG07, KSS+09, KCA04, KFHP+08, MHD+04, NT05, PDN97, Pe09, SR12, VCD03, VMP+00, WLI+11, WG11, ZHM07, ZAZ13]. Applying [CBHK15, WPR+19]. Approach [DY23, DZS+18, DNT20, FG18, GV15, HS19, KR11, LHF12, LMA+16, LTW+16, MDR15, ORGD+15, PGGD23, POM9a, RRHB21, SH17, SGGR14, SCK+23, ZH+23, ADS+09, BDN08, BMJ13, CBKH11, CHH06, DDNAV04, DVA02, ETR07, GGO4, GABP00, KSS+09, KJKK03, LFH+09, LCKT12, MRO09, MRO16, NRO1, SS04, Vafi02]. Approaches [HMMG+20, KTKO13, LCOM07, Tes02, WAZ98]. approximability [BCC08]. Approximate [ADGSM22, EJRR22, GT21, HWDQ22, JSS+19, LKL12, MED23, MHA19,
NRDB19, OHA19, PMP17, YBM+21.

Architecting [SABSA15]. Architectural [BRCBS81, CXS+23, KGS+20, MA16, MLH+17, APB+08, CL99b, MSD06, VS12b].

Architecture [AJK+21, BMdG17, CM20, CIB01, DK16, HLG+15, JP12, JYY+22, LPLK22, LWZ+19, LYL+19, LJJ+22, LYLW17, MD13, MSD06, MRL+19, MS17, NGL+21, PHT20, PCT+17, SHHB21, SSL17, SJL23, WKL+18, WWCT18, YKCG14, YMB15, YLP+13, CHY05, GM03, LCOM07, LTPT10, SCCH08, WTL+13, XZC09, YBM+21, ZHY+13, RJL+09].

Architecture-aware [JP12].

Architecture-level [CIB01, LTPT10, WTL+13]. Architectures [AMM+18, CPS16, CBR+22, CXR+23, GADG19, GD22, HWX+14, LM19, LLK+14, RBWB20, VS12a, dONH23, ACT13, BD08, Cha01, CKAP07, CL03, DP04, FS13, FRS97, GBK07, JBC+10, JLF+12, Kao06, KLSN11, LP03, LLKY13, LYP+13, OCRS07, PPD09, QM12, WH05, ZM07, ZHTC09].

Area [EO19, HS18, HCW+16, KKK12, KKLG15, SYH07, SS14, TRM+16, TLC14, Yan16, ZHJ+23, DK08, GS00, HCS01, KL05, KNRK06, LC13, LCL08, MS00, SPMS02, SSP04, XPSE12, ZHY+13, ZHTC09].

ARM-Based [LLH+17]. ARM2 [HV08].

Array [CFD+16, KCKG16, RBWB20, RB21, SPC+15, AOC02, CZW00, LC13, LCL08, VW02, ZHY+13]. array-based [CZW00]. Array-Style [CFD+16]. Arrays [HCW+16, TRM+16, AC06, CH02, CD96, LMB+12, PWY05, WAZ98].

Assay [BTP+20, LSK20]. assembled [BC05]. assembly [AMR00]. assertion [BZ08, MPDG09, TBZ13]. assertion-based [TBZ13]. assertion-checker [BZ08].

Assertions [MDM+12, WLM21]. Assessed [LLL18]. Assessment [NPH+20, RNR+21].

Assignment [CK16, KLE18, LYCP17, LMS16, SV16, Yan16, Yan17, Yan20, BDB98, CCX06, CHH09, CPW04, CLYP09, KNDK96, Kuc03, LJIV02, LCC11, LT11, VJBC07, WVG08, WLCJ09, XTW05, Yan11].

Assisted [CCMC20, GFJ16, HRC21, PTC08, WLCJ09, XTW05, Yan11]. Assistive [MKV+18]. Assurance [XLY+18]. Assured [JSS+19]. Asymmetric [SBR+17, RAKK12].

Asynchronous [PMS15, TB20, WWW+12]. At-Speed [PTC+15, TP+17, SXZV13]. ATM [RFYL98]. ATPG [HCC01, MT02, SGK08].

Attack [BSP+19, Che18, GLD+22, JZG21, LTZ22, OK20, YBM+21, DDFR13]. Attacks [AYS02, CPK20, DZS+18, DHB16, HYK+20, JIR+21, LSC20, LYM+20, LQD22, MLH+17, PTPB22, RNR+21, ZLC01, LWK11].

Attestation [CRT19].

Attributed [PRCK08]. Augmented [VPB+19]. Augmenting [TL19].

AutoDSE [YSGC22].

Autogenerated [APD+11]. Automata [BZ08, PSD21, KT01]. Automata-based [BZ08].

Automated [BPTB17, IE12, KLV15, dONH23, GWR13].

Automatic [BFV15, CK96, CS22, CJLZ11, GD20, GYZ+22, MS08, SHD17, SH20, SRTG19, WKR09, ADS+09, KSS+09].
LFG+09, TDE08, WWC04. Automating [HA05, RSR01]. Automation [ADB+19, CH10a, CPX14, CO18, DZS+18, DK22, FZL+23, GHYR19, HHH+21, JDD20, KLSZ09, KAC+23, PSDK21, SSK+23, DTC+09, LOC12]. Automotive [HK18, KPB19, LZSSV15, LMS16, MPM+17, SRTG19, XLY+18]. Autonomous [ML09, STL+13]. Auxiliary [BDC08, CCQ98, Pie16]. Available [TEK18, dONH23]. Average [ZLW+15]. Averaging [TWL16]. Avoiding [AL19, HLG+15, HGLC16, LLLL18, WSRH16, XPZ+18, LYKW09]. award [GK09, QS11]. Aware [AKAKP18, DBBB19, BLUS19, CMP10, CET16, CJKK19, DNT20, DZ18, FYCT15, GV15, HHK+17, HX17, HXB+22, HCW+16, KPF16, KW16, KAC+23, KPB19, LHH+17, LLL+18, LHK+15, LZZSV15, LNG+16, LMS16, MT15, OT15, PBZM19, RS18, RCK+15, SBY+20, SKPB21, SCK+23, SYX12, TBCH17, WSH+18, WDD+23, WLLL16, Yan20, YYG+16, ZYPC17, ADP+07, CHH09, CLQ12, DHX+23, DD02, ETR07, ENP20, FS13, GM08, GKM05, HJJY23, JHL02, JDD20, JP12, JCS+08, KPSW09, KJKK03, LC14, LKLC22, LWX+23, LSZ+21, LZ21, LG23, MAS+20, MBD+20, MJM11, MHQ07, MKW08, OCK19, PSDK21, PPD09, PGGD23, RGM09, SSG12, SBC08, SMYH07, SKS12, SNL12, SWT23, TZ20, VGG19, WH05, WPHL08, WLL+11, YYLL09, ZYDP08, ZYP09]. awareness [RL13]. Ax [EJR22]. Ax-BxP [EJR22].

B* [WCC03]. B*-trees [WCC03]. back [CCK+18, GABP00]. back-end [GABP00]. Backward [BS14b]. balanced [LLHT12]. Balancing [JIR+21, MT15]. Band [WTR12]. Bandwidth [KLK+17, BD08, GM03, LLKC13]. bank [CPW04, Kan06, SM00, Wu09]. banked [OK08]. Base [BSP+19]. Based

[APDC17, ALLE20, ANS+20, ASAP17, AVG19, AKM+22, AJK+21, AAA15, BHK17, BS14a, BD14, CPS16, CCH+15a, CAOM19, CLT+15, CZZYW21, CXL22, DLC+17, ETAV18, EO19, GNGT21, GDTF17, GHYR19, HCL+14, HWX+14, HLG+15, JMMGS18, JPHL16, JM14, KGS+20, KC10, KKL+17, KMO+12, LZZ23, LLH+17, LG18, LDM20, LAYZ23, LZY+23, LSI11, LHK+15, LLLL18, LH11, LPY+20, LQD22, LGGJ14, LCC+15, LKC+18, LPL+21, MMN+21, MCZ+16, MA16, MS23, MCD12, NSP+20, PIK20, PSCN18, PG15, Pom17a, Pom18b, Pom20, PY20, QBTM16, RM23, RS18, SV16, SMBT19, STGR15, TZ17, VEO16, WLZ+19, WCB15, WQC+16, WWCT18, WFS20, WC10, WL12, XS16, XCF18, YMB15, ZS16, ZHC+18, AHAK08, AM10, ADDM+13, BLM00, BPRR98, BC11, BDD00, BOC00, BH10, BZ08, CLM+10, CNQ13, CGN96, CZW00, CFHM09, CBR+22, CH02, CBR+05, CD06, CHY05, CF09, CM13, CCL04].

based [DP02, DCK09, DJP21, DDNAV04, DVA02, EMO03, EY12, FLG+23, FS13, GK14, GQ99, GPH+09, GD20, GBC07, GDF09, GPK+09, GH00, HWDDQ22, HDZ+20, HXY+22, HXY+20, HCK13, HWCL13, HFM20, HXZ+23, IYF+21, JZG21, JHH+12, KBN09, KK11, KSD+22, KNRK06, KSA+10, LC13, LB00, LMK04, LWC07, LCC11, LWZ+19, LLI+22, LDK99, LZ21, LCHT02, LOC12, LWW11, LLCL13, LXW20, LYM+20, LG23, MMM+22, MP07, MS21, MLC08, NAK20, OM08, OHA19, OKC08, OK80, PSDK21, PNN00, PRCK08, PMB10, PR09, Pom14b, RL13, RS98, SW04, SGK08, SWT23, SOC06, SC06, TN99, TBZ13, VGG19, VKT02, WPR+19, WH20, WWC04, WC06, WSEA99, XAG+20, Yan00, Yan08, YYC09, ZHM07, ZHJ+23, AA17, PBZM19, CCQ98, CH00, MW97, MHT14, MWG97, PBSV+06]. Basic [AG22, VMP+00]. Batch [LYL+19]. Battery [MRL+19, NSS+16, Rak09].

[CHBK15, CIX15]. Burst-Writes [CIX15]. Bus [GG99, Yan19, JWL+03, LCOM07, LV02, OW06, SCJ01, YW09]. Bus-based
[GG99]. Buses [Yan17, YGZ04]. Butterfly
[ZYP17], BxP [EJR22]. Bypass
[PMT20, YKCG14].

C [LWC18, RMPJ08]. C-Mine [LWC18]. C-testable [RMPJ08]. C2RTL [ZL+16]. Cache
[AKM+22, BFG+19, CPS16, CAOM19, DJP21, GD22, GG04, HWX+14, JZZY15, JLK15, KLI14, LYLW17, MACV14, Mit16, NTS1A8, NAK20, SSS+19, SABA15, SMBT19, SAL19, TYSF20, WDLD17, YPCF17, Giv06, JS13, LMW99, LSL+13, PDX97, SLZX12, TKVN07, TY97, VS12b, ZYDP08, NTS1A8]. cache-coherence-enabled [LSL+13]. Cacheline [PBL+17]. Caches [CK19, CB17, SYX12, CXK+13, LSDV10, ZP08]. Caching
[WQC+16, HCK13]. CAD
[BS+19, HAW20, KLSZ09, KLSZ11, LZR23, LYM+20, NPH+20, NSP+20, SB98, Vah02]. CAD-Base [BS+19]. CAD/EDA
[LZR23]. calculation [RCD07].

Calibration [CCMC20, PMB10]. Call
[An13, CH10a, Ped11, KLSZ09]. CALM
[ZYP17]. Cameras [YMB15].

Camouflaging [ISK21]. CAN [LMS16].

Cancellation [LTYW12, FIR+97]. Cap
[HC17]. Capability [EW18b]. Capacitance
[XLS15]. capacitive [LXCH04]. Capacitor
[HWCL15, HWCL13]. Capacitors [SCK18].

Capture [PTC+15, XCW12]. Carbon
[WSH+18]. Carbon-Nanotube [WSH+18]. Care
[DV23, TPC+17]. cares
[CBMM10, SGK08]. Carlo
[FZL+23, GLY+12, ZFL22]. Carrying
[IPWW17]. CASCA [DZS+18]. Cascade
[YYL+15]. Case [APDC17, CH17, LLP+16, LYM+20, RCW22, RPR+21]. Cases
[LWC18, KFH+08]. Causal [CBC22].
caused [SLL98]. Cayley [CCH15b]. CCM
[TWL16]. CDTA [YFT17]. Cell

[ACF+11, CZZYW21, DBK+18, JZZY15, KRL15, TRM+16, WPR+19, WC10, XNZ+15, JCS+08, KB90, LCZ+08, MRB+11, MS00, RS03, SSSC10, dW97]. Cell-based [WPR+19]. Cells
[HWGY16, JCK+18, MJ19, SM+16, GH00, TS96]. Cellular
[PSP21, KT01]. CeMux [BH22].

Centralised [CK19]. Centrality [SSN22]. Centric
[WGSH16, XLN17, ZHOM08].

Centroid [WLLH16, HWCL13]. Chain
[BS+19, LHC16, Pom17b, RNR+21, SL+19, XRS+19, YFT17, YSF+18, YFT18, YBS+18, GKM05, RMK03, TYH08, WPHL08]. chained [KC13]. Chains
[Pom16b]. Challenges [BRCS18, MRL+19, XLN17, Ped11, RBA+12]. Change
[JS18, LLP+16]. changes [LG12]. Changing
[MMP+22]. Channel
[BDDB19, CGLH23, DZS+18, JM14, LQD22, PP+15, ZBFP18, FLWC07, HSA+04, LKY13, LM21, NPH+20, Yan00, YCHT00]. Channels
[BS+22, GNGT21, JLJ15, DSKB04].

Chaotic [CSC+21]. Characteristics
[CFD+16, DHZL23, JLF+12].

Characterization
[KRL15, MMP+22, SRC15, BW00, JCS+08]. Charge
[VA17b]. Chassis [APD+11].

check [CL13, YCHT00]. checker [BZ08].

checkerboard [GC96]. Checking
[AA17, KW16, AGM01, BK10, CNQ13, Fuj05, HMB98, KMS12, YWGI09].

Chemical
[LTW+16, BTP+20]. Chief
[An13, Hu20]. Chip
[ADB+19, ALL17, BHK17, BD14, BDBB19, CK19, CM20, FHL+23, GAD19, GSD+18, HAB+17, HZS+19, IHM15, JL15, JNS+17, JZZY15, JMG14, KBV+15, LDD+18, LDD+19, LW17, PMT20, PGC16, SCK18, SMBT19, STWX12, SGGR14, WLT08, XSI6, XCF18, Yan16, YKCG14, ZHC+21, ZYS12, ZYPC17, AYM05, APB+08, ADS+09, BM13, Cha01, CKA07, CSC08, CXK+13, CBR+05, CCL04, DNT20, HDL+12, JP12,
Chip-Multiprocessors [HAB+17].

circadian [CCY22, HCZ+12, SCK]. LYSO19, LH11, LQD22, RJBS09, SMYH07, Sh20, SCK+23, TWL16, WSH+18, WKC12, ZFL22, ADM+13, AJM13, BDB98, CSC08, CBM10, CSX+05, DL11, GMSSS02, HRP00, LLQ+03, OW06, RCD07, SPMS02, YH97, YM+13. Circuit-Averaging [TWL16].

Circuit-simulated [SMYH07].

circuit-switched [CSCO8]. Circuits [BJX15, HDB22, HZL+22, JZG21, KKS16, LD17, LSZ+21, LS22, LLM+23, L2Z1, PB12, Pom16b, RGM15, SHD17, SCK+23, WTR12, XAG+20, ZSY18, ZHJ+23, BLM00, BLR06, BC05, BASB01, CSKR05, KLKK06, CACS05, Che06, CPR+02, DC07, DD02, EM003, HVF+01, HH09, HWC13,

KJK03, KOS09, KVMM08, LH09, LON08, LFG+09, LTPR+13, NS03, PL98, PSK08, PR98, PR09, RNGL05, SNH02, ST99, WV02, ZCG06, SCS10]. Clamp [VEO16].

class [SB98].

Classification [GAT+21, MS17, VNS19, RAKK12].

Classifiers [ALL17].

cleaning [JS13].

clean [DW97].

client-server [DW97].

CLIP [GH00].

Clock [EK16, HN07, HYN15, KK14, KK11, KKS16, LLL+18, LNG+16, LTL1, LS17, OCK19, TCW20, UE22, WCC14, WKC12, WWW+12, BDM+99, BDB98, CGN96, CM08, CHH09, CKKT98, GHW+12, GWR13, HTCP13, LLHT12, LLLC13, PL98, SSGS03, TDF+09, wATK02].

Clock-Aware [LLL+18].

Clock-Gating [WKC12, BDM+99].

Clock-Tree [KKS16].

Clock-Tree-Aware [LNG+16].

clocked [BD00].

Clocking [BPTB17, MR05].

Cloning [JNCS19, Vah99].

Close [Pom18b].

Close-to-Functional [Pom18b].

Closed [CW01].

closure [LC14, YYY07].

Cloud [BD14].

Cluster [CM19, DD02, LJ02, SB98, KJR+07, IWC07].

Cluster-aware [DD02].

Cluster-cover [SB98].

Clustered [CMD10, GKB07].

Clustering [XL+16, CC06, HCL07, MLMM08, SPMS02].

clusters [OWH08].

CMAPS [Hsi00].

CMOS [ACF+11, ADB+19, CFD+16, GH00, LTH99, PHK02, WSS+18].

CMP [CXX+13, WSX16].

CMPS [CA09, SYX12].

CNN [LCJ+22, LYM+20, MS23, TZZH22].

CNN-Based [MS23, LYM+20].

CNNFlow [NM23].

CNNs [PRK02, WDD+23].

Co [CVMP19, CRR+22, Hu01, JSS+19, LCG+22, PGGD23, SKM+16, WWFT12].

Co-design [CRR+22].

Co-optimization [LC+22].

Co-scheduling [PGGD23].

Co-Simulation [SKM+16, WWFT12, CVMP19].

Co-synthesis [Hu01].

Co-Training [JSS+19].

course [KLSP11].

course-grained [KLSP11].

current [K01].

Code [AMR00, AM98, CL99a,

FHHR21, MLH+17, TY97, BH10, DHV+00, KMS12, KNDK96, K10, LP03, LB00, LLTD98, LDLK99, OKC08, SR12, SB+06, SM00, VMP+00, VLOK01].

Code-Injection [MLH+17].

code-motion [DHV+00].

codes [RM09, WHXZ13].

Codesign [BM11, CM00, FIP+97, GABP00, GGB07, HKL+07, SCV09].

Coding [WL+21].

Coefficient [APDC17].

Coexistent [BBEB15].

Coffee [RJL+09].

Cognition [HX+18].

Coherence [GD22, HWX+14, LSL+13, ZYDP08].

coherency [VSL12].

Collection
[GSD+18, HCL+14, ZLW+15].
Collection-Induced [GSD+18]. colony [WGDK07]. Coloring [ZLY+15, CML08].
Combinational [CD96, LD17, EMO03, KT96, KOS09, PR98, RJBS09, TN99].
Combinatorial [AM05, VLH04].
Combining [ETAV18, LFST21, SPG+08].
CoMETC [ANR13]. commercial [MPDG09].
Common [DHB16, LWC18, WLLH16, ZYZ+13, HWCL13].
Common-Centroid [WLLH16].
common-centroid-based [HWCL13].
Common-source-line [ZYZ+13].
Communication [CARH18, KPF16, SRTG19, YP10, ADS+09, GBK07, GG99, LCOM07, MOZ06, PPD09, PBSV*06, ZM07].
Compact [LJ18, MAS16, SYH+22, WTR12, XCW12, HVF+01, YHL07].
Compacting [PL03].
Compression [Pom15a, Pom15b, Pom20, EMO03, MHD+04, TBZ13, XLCL13].
Comparative [MLG12, PB14]. Comparing [VGG19]. Comparisons [PKC+21].
compatible [SGK08, WWC04].
compensation [CFHM09]. Compilation [SFM+19, SBH+06, YHL07, KLS+11, MSR09, VLG01]. Compile [KNRK06].
Compile-time [KNRK06]. compiled [PHM00]. Compiler [LHS20, LPD+17, LLHT03, SMBT19, SYH14, WKL+18, XPSE12, BD08, GGDN04, HG07, KRS06, SGG12].
Compiler-Assisted [SMBT19].
compiler-direct [HG07].
Compiler-in-the-loop [XPSE12].
Compilers [YLL06]. Compiling [Edw03].
Complementary [QSW+15].
Complementation [Pom15a]. Complete [PDS12, AGM01]. complete- [AGM01].
completeness [LLYW10]. Complex [WTR12, TYH08]. Complex-Valued [WTR12]. Complexity [ASAP17, AL19, LTYW12, WYC10, BCC08, YCCG03].
Compliance [HC18, BGM04]. Component [HWL+23, LH14, PG15, RSR01].
Component-Based [PG15].
Component-Composition [LH14].
Composable [VGG19, WTL+13, HGBH09].
Composition [LH14, AG22].
Compression [BLNK14, EK16, BH10, JCS+08, LCT03, LDK99, NT05, OKC08].
Compressors [SMS22]. CoMPSoC [HGBK09]. Computation [BFG17a, CV17, CARH18, EJR22, FHL+23, KCKG16, MOZ06, Pom17a, BL00, GMSSS02, HLCH07, HW00, Kag05, WYIG07, YH97].
Computational [BCC08]. Computations [CXR+22, CXY+23, ENP20, ARLH06, LPP00, PGB01]. Compute [HJY23, LPL+21, TCP07].
Compute-in-Memory [HJY23]. Compute-in-Memory-Based [LPL+21].
Computer [MFHP12, CSL+07, MBB01].
computer-assisted [CSL+07, MBB01].
Computing [BMDG17, CDB11, HXZ+23, JSS+19, MHA19, NRD19, SN10, WLH20, XGC+20, YBM+21, ZXC+23, CLQ12, LC96, NR01].
Concept [AM10]. Concept-based [AM10].
Concurrency [SSG12, SEN11].
Concurrency-aware [SSG12].
Concurrency-oriented [SEN11].
Concurrent [SOC06, WH20, Edw03, EY12, HCLC98, LC13, RBA+12]. Conditional [CLH12, CCH15b, KW02]. Conditionally [CSC+21]. conditions [HN07, YH97].
Confidence [JT98]. Configurable [EAAK+23, LSPC14, BD08, LCD07, SPG+08]. Configurations [HABS15, BHS11]. Conflict [GSD+18].
Congestion [RGM15, SYL09, SAHF+20, YWK+03, LCJ+10, RL13].
Congestion-Free [RGM15]. connection
connections [YCCG03], conquer [HPK99, SW12], Conscious [LLP+16], Consecutive [Yan17], Consideration [JD18, LYLW17], considered [HN07], Considering [BHLG19, CCK+18, GC18, JOH17, WCCC14, KPR06, LH13, LTPR+13], Consistency [YP10], Consolidated [HC17], Constant [CHC+16, GYT12], Constant-Cost [CHC+16], Constrained [LLM01, LLLL18, PBF+22, Yan18, BG01, GOC02, LSDV10, MMP00, NG06, NR01, OKC08, SCB01, WG11, WLH20, WLCJ09, XPK+21, YWW10, ZHOM08], Constraint [KKLG15], Constraint-Based [RS18], Constraint-driven [MRMP08], Constraints [CLC20, DBK+18, Kuc03, MN17, Pom16a, Yan17, BD05, CSAHR07, Hu01, QS09, SSP04, wATkK02, VHLH98, WGWG08, ZAZ13, ZW98], Constraints-driven [Kuc03], Constructed [ZXC+23], Constructing [DSRV02, JZYZ15], Construction [EK16, HGLC16, LLLL18, CM08, LH09, LYKW09, Yan08, ZCG06], Consumption [FG18, Kan06, TKVN07], Contact [YLZ+17], Contact-Hole [YLZ+17], Containing [WWW+12, LAS01], Content [HHK+17, RB19, MLC08], Content-Aware [HHK+17], content-based [MLC08], Contention [CHA+23, DJP21, KLJ14, ZYPY17], Contention-Aware [ZYPY17], Context [RG19, BDC08, JHL02], context-aware [JHL02], context-triggered [BDC08], Context-Varying [RG19], Contiguous [KKG15], Control-Flow [FHHR21], Control-system [CGLH23], Controlled [TRM+16, DL11], CController [KMR18, SSL17, GF06, HMLL11, LC14], Controllers [LVS16, PDS12, BDM+99, Fu05, NCP01], Controlling [KY16], controls [YHL07], conversion [ZLL13], Converter [FZL+23, SGGR14, WDC+22, ADS+09], Converters [SBB+18, TLW16, WGT+17, JR97], Convolution [HLW+23], Convolutional [MNMK+21, NM23, NGL+21], cooling [ANR13], Cooperative [LHF12], cooptimization [ZLL13], Coordinated [ANR13, DJP21, GGDN04], COPE [DJP21], coprocessor [GDTG07], coprocessors [SCV06], Core [CAOM19, CYH19, ETAV18, LHL01, SBV+20, SESN15, WTM+16, WDC+22, WDLX21, CCL04, GD22, LBV+06, LG23, RAKK12, SEN05, SVZ+12, ZXC09], core-based [CCL04], core-external [ZXC09], Cores [SFN+19, WGS16, GG04, LV02, SSGS03, ZXC09], CoreSight [LLH+17], Corner [KQP+19, MHD+04, Meh98], correct [ADS+09], Correcting [PGCB16], Correction [DZ18, RM09, WHXZ13], Correlated [SCL+22, SXZV13], Correlations [LYSO19], cosimulation [FLPP09], Cost [ABC+17, CHC+16, JPHL16, MHT14, MJB19, QS09, BPRR98, BWB14, Giv06, HCK13, LG12], Cost-Effective [JPHL16, MHT14], cosynthesis [Hsi00, Wal96], Counterfeit [YFT17], Countermeasure [HYK+20, OK20], Countermeasures [CPK20, DZS+18], Counting [PB12], coupled [LMB+12], Coupling [LDD+19, KJMK03, LCH04, SKCM06], coupling-aware [KJKK03], covariance [KPR06], cover [SB98], Coverage [AKAKP18, CVY+14, CM13, IE12, Pom22,

Defined [JHMGS18]. Definition [BC16, Pom15c, ZLG+19, CCC+09a, VCLD03].

Deflection [LLKC13]. Degraded [SLC+22]. degree [CT13, TP08]. Delay [EAAK+23, FYCT15, JLJ15, JK10, JOH17, LW21, MCD12, STJG16, XCW12, ZK15, BD98, CFHM09, GS00, GMSSS02, HR06, KJKK03, LLHT12, MT02, MKW09, PT06, PMB10, PR98, PR96, RCD07, SC00, SSP04, TD03, WVVY99, XCLL13, XPSE12, YH97, YHL+11]. Delay-Adjustable [LW21]. delay-area [XPSE12]. Delay-Fault [LW21]. delay-sensitivity-based [PMB10].

Delivery [CAP+23, XLS15, ZFLS11, ZLL13]. Demand [AAA15, PBF+22, SKS+18, WQC+16]. Demand-Based [WQC+16]. Demand-Driven [PBF+22, SKS+18]. demonstrable [JW08, LP07]. Dense [BYT22].

Density [RM23, FLWC07, OWH08, ZYJ09].

dependence [DH06]. Dependencies [BR12]. dependent [BLM00]. depth [CH00, LH09, ZCG06]. depth-optimal [CH00]. depth-size [LH09]. derive [GS00]. derived [CACS05, Zhao08]. Describing [RHA08]. description [MSD06, PHM00, SSG12]. descriptions [Fuj05, MWG97]. Design [ADB+19, ABC+17, AFM14, BJX15, BH22, BS14a, BZWZ17, BS14c, BSP+23, BHLG19, CK19, CD09, CH10a, CH10b, CPX14, CHZ+16, CSC+21, CRC15, CGLH23, CO18, DZS+18, DK22, DNT20, DHB16, EAP17, FZL+23, FHL+23, FLG+23, FCZ+23, GAC2K, GdRM21, GCZ+15, GHYR19, HCRK11, HXB+22, HMMG+20, HLG+15, HHH+21, ISK21, JWA+03, JL15, KKLPI15, KGS+20, KP22, KLZ09, KLZ11, KL15, KKS16, KAC+23, KSD+22, LLP+16, LW17, LIJ+22, LF12, LHK+15, LZZS15, LQD22, LPL+21, MED23, OT15, OHL19, PD21, PMT20, PKC+21, PDS12, Pom14a, Pom16a, Pom18a, RFG20, RS18, SSK+23, SMBT19, Sch17, SBY+20, Shi20, SPD+09, SGGR14, SHBH21, SYGC22, SHN12, SES15, SYX12, STGR15, SCL+22, TYSF20, TCL14, VGG19, VAI17a, VEO16, WWCT18, WPR+19, WS22, WDC+22, WSS+18, XPF+21, XLS15, XNZ+15, YPCF17, YD16, ZLG+19, ZYS12, ACT13, AHL+08, ABP+08]. design [AMM+06, ADP+07, BC05, BW00, BFP08, BASB01, CWW96, CIB01, CSL+07, CBR+22, DRC98, DTC+09, EK97, FLWW02, FLW07, FW00, FR97, GPH+09, GM03, GABP00, HV07, HA05, HLC17, JB08, JP08, KSS+09, KG09, KCA04, LC13, LSL+13, LFG+09, LCL08, MOZ06, MB01, MP07, MLG12, OCRS07, PB14, Ped96, Ped06, PBSV+06, PW99, RFYL98, RS98, SW12, SGB10, SYL09, SSS10, SUC01, SS11, SZV+12, TW96, THL+13, VAAH+98, Voe01, WAQ98, WKR09, ZHM07].

Design-for-manufacturability [WPR+19].

Design-for-Testability [Pom16a, Pom18a, Pom14a].
HMB98, KI01, KK11, KHW97, LCHT02, LLHT12, LAS01, LCKT12, MS00, MR96, RMKP03, Sen11, SSCS10, SNL12, WTL+13, Yan11, ZMTC13. Destination [RL13]. Destination-based [RL13].

Detailed

[DrRJM21, MJB19, CBHK11, PWY05].

Detecting [DY23]. Detection [CBO+18, HDZ+20, JYY+22, KO01, LXWC20, LYM+20, LL19, LM21, PTPB22, Pom16b, Pom17a, VTC20, WH20, YFT17, ZHC+18, CR12, DHZ+11, FNP09, KI01, KRK98, KSA+10, LM05, PR07, RM09, SCCH08, TDE08]. Determined [Pom18a]. Deterministic [EY12, KBV+15, LB11, ZHC+21, KT01]. Deterministic-Path [ZHC+21]. Deterministic-path [YW09].

detour [RL13].

detours [Yan19].

developing [SMSB05]. Development [THT12].

developments [Lin97].

device [GHYR19, HXZ+23, ZXC+23, TZZH22]. Device-Based [GHYR19]. Devices [CLL+22, GAT+21, HSP+22, KP22, Kha12, LPLK22, LKH19, PGGD23, PTPB22, SVK17, XPY+21, JCS+08, ZYX+13].

DFT [DDFR13, PTC+15]. Diagnosability [CLH12, CCH15b, CH13, HLW+23, LH14].

Diagnosing [DDBB19]. Diagnosis [HFMB20, Pom17b, PA21, SBB+18, WH19, WH20, CML98, KI01, TYH08]. Diagnostic [HFV+01, HFMB20]. diagonal [DSKB04].

Diagram [HZL+22]. Diagrams [CM19, KC08]. dictionaries [LCT03].

dictionary [HH09]. Diet [LS23]. difference [Das09]. differentiable [Con06].

Differential [JD18, LLP+16, DDFR13].

Differentialized [WHXZ21].

Digital [CM18, DZCD15, GLD+22, JYYH21, LHC16, LKC+18, MFHP12, MGR+15, MWK21, PGCB16, PBF+22, RB19, RCK+15, RB21, SKS+18, SOS15, VBP+19, CPW04, RS03, SR12, SOC06]. Digitally [ZK15]. Dilution [GHYR19, KGS+20].

Directed [IE12, QM12, WLM21, CM13, HLCH07, HG07, LKTD98, MD08].

Direction [Yan18].

Direction-Constrained [Yan18].

Directives [SCL+22]. Discharging [HLCH07]. Discovering [NGL+21].

Discrete [HLG+15, LGG+14, MLG12, SV16].

Disjunctive [WYIG07]. disk [CD09, SLXZ12]. Dispatching [WHRC12].

Displacement [BFG+19]. Dissipative [ZMS+19]. Distance [HRK18, LKLC22, LDLM20, NAK20].

Distance-aware [LKLC22].

Distance-based [NAK20].

Distinguishability [AGM01]. Distributed [CGLH23, EAP17, HX+18, JJJH21, MKV+18, SCK18, WLM+19, YMB15, CFX09, LC14, PEPP06, Wol96, dW97].

Distribution [JCK+18, SSO16, WDD+23, KSA+10, SW99].

Distribution-Aware [WDD+23].

Distributions [KYL16, STJG16]. Disturb [LHS+21].

Disturbance [SBB+18].

Disturbance-Free [SBB+18].

divider [EKEK22].

Division [PY20].

DME [wATkK02].

dNN [CS02, GYZ+22, HWDQ22]. DNUCA [DK16].

domain [FWCL05, IA01+09, JBC+10, LTPR+13, SCV06].

domain-specific [SCV06].

Domains [WWW+12, LBV+06].

dominant [VCLD03].

dominated [FRS97, KI01, LDKM20, MWG97].

domino [KJJK03, ZS02, CLKL06, NTSA18].

Don't [DY23, TPC+17, CBMM10, SGK08].

don't-cares [CBMM10, SGK08]. Dot [RBWB20, RB21].

Double [HWDQ22, SHL+19, XYG+16].

Double-Shift [HWDQ22].

DPRTM
ZYW+18, ZLG+19, ARLJH06, CD09, Das09, EKEK22, FNP09, GM03, GBC07, IBMD07, JS13, JP08, KL05, LCD07, LH13, MR96, MR05, MP07, MWG97, SGD10, SLXZ12, SKR+22, SHN12, SZV+12, VKKR02, Wu09, ZSZ10, ZYZ+13, Zho08, LCG+22.

Efficiently [RCG+08, TY19, ADM+13]. **Eh** [DKT+16, DBK+18]. **Elastic** [LYL+19, SZB17]. **Electric** [AKM+22, YA17b]. **Electrical** [BHLG19]. **Electrode** [RBWB20]. **Electromagnetic** [JIR+21, WFSS20]. **Electromigration** [DNT20]. **Electron** [HCW+16]. **Electronic** [CH10a, HHH+21, KLSZ09, KAC+23, SSK+23, HV07]. **Electronics** [BSP+19, CPX14, XRS+19, CH10a]. **Electrostatic** [LDD+19]. **Electrostatics-Based** [LCC+15]. **Elements** [HMGV17]. **Eliminate** [Mut09].

Eliminating [SHLL98]. **Elimination** [LHF12]. **Elite** [ZKS+16]. **Embedded** [BMdG17, BD14, BS14c, BM11, BYT22, CHA+23, DFM15, EAP17, GAT+21, HCL+14, IK19, IGN18, JHH21, KC10, LS23, LL15, LHL16, LHK+15, LL19, NSH+16, OHA19, PG15, RFG20, SPT+17, SL18, SLV+22, VBP+19, WHRC12, XPZ+18, XPS+21, YP10, AM10, BPRR08, BHI0, CSHA07, CMM00, CSL+07, CM13, DCC07, DCK09, DRG98, GDTG07, GPH+09, GG04, GABP00, HKL+07, HV07, HCK13, IAI+09, JS13, KNK96, LJ02, LCZ+08, LSDV10, LB00, LMW99, LDK99, MBB01, MDG98, ML09, NG06, NR03, PDN97, PDN00, PCD+01, PHM00, PEPP06, QSO9, RSR01, SR12, SUC01, TKVN07, WAZ98, W096, XZC09, ZYD08, ZP08].

Embedding [CM18]. **Embeddings** [CM19]. **Emerging** [BRCS18, SN10, YPCF17, BC08]. **Employing** [GS13, ZK15]. **emulated** [THC+14]. **Emulation** [ALLE20, LTZ22, ADP+07, HMGV13, KRK98, MW97].

En/Decoder [SJL23]. **Enable** [CLL+22, TZZH22]. **Enabled** [CXR+23, XRS+19, YSF+18, LDD+19, LSL+13, SL+22, YFT18]. **Enabling** [BSP+22, IK19, JS13, SYGC22, ZHOM08]. **Encoder** [CAP+23, QSW+15, SLV+22]. **Encoder-Decoder** [CAP+23]. **Encoding** [MDR15, OT15, PMP17, YMB15, ZLG+19, KJ04, LCD07, LW07, NT05, RTNL05, YGZ+04]. **Encryption** [Che18]. **End** [ENP20, SJL23, GABp00]. **End-to-End** [SJL23, ENP20]. **Ended** [RM23]. **Endurance** [CHC+16, CCK+18, HHK+17]. **Energy** [BFL10, CYY22, CBC22, CSO22, DRM10, EKEK22, ENP20, GAD19, GT21, GFJ16, HXB+22, HSC+18, HSP+22, JDD20, JSS+19, JPHL16, KC10, LDD+18, LW+23, LF12, LW18, LMA+16, MNMK+21, MBD+20, MR05, NTSA18, PMP17, RB19, SMS22, SRC+15, SKR+22, TLC16, TYSF20, TBCH17, WH05, WKL+18, XP+18, XPS+21, YPCF17, YP10, ZHTC09, ZMS+19, ANR13, CSHA07, CLQ12, GBC07, HG07, HW00, JS13, JCS+08, KSK+05, KRS06, Kan06, KC13, KJR+07, LSL+13, LC07, MED23, MRO6, OK08, SLXZ12, SHN12, WLL+11, WU09, ZAS13].

Energy [LWX+23]. **Energy-Aware** [HXB+22, TBC17, ENP20, JDD20, MBD+20, WH05, JCS+08]. **Energy-constrained** [XPS+21]. **Energy-Efficient** [CCY22, CBC22, DRM10, GT21, GFJ16, JSS+19, KJ010, LDD+18, LF12, MNMK+21, NTSA18, PMP17, SRC+15, TLC16, TYSF20, WKL+18, YPCF17, EKEK22, MR05, SKR+22, SLXZ12, SHN12, WU09]. **Energy/thermal/cooling** [ANR13]. **Engine** [LLL+18, TMDF10, CNQ13, DP02, DP04]. **Engineering** [AYS20, CM18, EAP17, GDTF17, WSS+18]. **Engines** [HKL+15]. **Enhance** [DLC+17, GS13]. **Enhanced** [CYH19, LKH19, Pom15a, TWL16, FWCL05].
Enhancement [HWCL13, LCKT12].
Enhancements [Che18, PKC+21, ZAZ13].
Enhancing [CKK+18, NRDB19, PPP+15].
Enlarged [ZS16]. Ensemble [WB16, WH19, WLH20]. Ensure [SLC+22].
Enterprise [DKZ+15]. entries [LCT03]. enumerative [STJG16].
Environment [RHN00, HKL+07, Hsi01, SCV06].
Environmentally [YBS+18]. EPGAs [YTHC97]. EPIC [AMR00]. ePlace [LCC+15]. Equal [Pom21b]. Equation [Shi20].
Estimators [XK97].
Estimating [CM19, GS00].
Estimation [APDC17, APS18, BZWZ17, LD17, LZY+23, NSP+20, PB12, SNH02, SSN22, TC98, WXH+19, ZLG+19, CIB01, DTC+09, FLPP09, HKV+07, JT98, KCA04, KNRK06, LMW99, MHF96, ZSZ10].
estimators [XK97].
Evaluating [JBC+10]. Evaluation [BBEM15, EBR+09, GD20, GQW19, HBFW14, IYF+21, LFS121, LTZZ2, QBTM16, CHY05, JLJ+12, LCM07, PB14, SGJ96, WSV+14]. Event [KRL15, MCD12, RCD07, YH97, ZKS+16, CBR+05, HW00].
event-based [CBR+05]. event-driven [HW00]. Evolution [PSK08]. Evolutionary [JYHY21]. EWD [MPSJ07]. Exact [EAAK+23, EKS+14, Sch17, FLWC07, FNMS01, NR01]. Excitation [SOS15].

exclusive [DK08]. Execution [APDC17, GDD21, HLT+22, LSCK20, NRDB19, VGG19]. EXFI [BPR98].
Exploiting [GSD+18, JKL15, OT15, WKC12, WHXZ13, DSRV02, FW00, Kan06].
Exploration [FLG+23, FCZ+23, GACK22, HMMG+20, LLLL18, MA16, RFG20, RS18, Sch17, WS22, APB+08, CSL+07, EK97, JP08, KSS+09, LCOM07, MBB01, MSD06, PB14, PPDK09, RJL+09, SW12, SUC01, VCLUD3, XPSE12].
Exploring [CK19, TLF16, WGDK07, YPCF17].
Exponential [APS18]. Express [JIA18]. expressions [SGJ06]. Extended [WWFT12, CK96, YTHC97]. Extensibility [SGC+14]. Extensible [KAKSP16, MP07].
Extreme [Pom15b].

fabric [MSB+09]. fabrication [WLT08].
factorization [BOC00]. Factory [DZCD15]. FACTS [VMP+00]. Fail [PAV17, PA21, BBW14]. Failure [XNZ+15].
Failures [YYL+15]. False [AKAKP18, AL19, GGBZ02, SHLL08]. False-noise [GGBZ02]. family [BD05]. fan [LH09]. fan-in [LH09]. Fast [CPW04, DK16, DNT20, GDRJ21, GLY+12, HGLC16, IHM15, JZY15, KKL15, LZY+23, LH11, SMBT19, SGD10, STW12, TES02, TZ17, ZHJ+23, CCW08, GMN+13, GBC07, JHL02, KT96, LC14, LCKT12, NR01, SBGD13, SGJ96, YTHC97].
Formally [KRH18]. formats [AMR00]. Forming [PR07]. FORTIS [CST16]. Forward [GSFT16, LHS20]. Foundation [TB20]. Four [HGLC16]. Four-Step [HGLC16]. Fourier [LCC+15]. FPGA [AMM+18, ACT13, ALLE20, BS14c, BHS11, CWW96, CZW+03, CH00, DP02, EW18b, FW00, FHHR21, GPK+09, GVJ15, HABS15, HYK+20, HLHT08, HW14, JLF+12, KT96, KL05, KFH+08, LKM04, LLL+18, LM19, LZA+21, LDX22, MMM+22, MW97, MA16, MP07, M21, OK20, PSD21, PL98, PIMT20, PSNC18, PFAH22, PY20, SLV+22, SYG22, SAHF+20, TZZH22, TW96, ZLG+15, ZHTC09]. FPGA-based [MW97, ALLE20, PSNC18, DP02, GPK+09]. FPGA/FPIC [CZW03]. FPGAPRO [LDX22]. FPGAs [CZW00, CEB06, CHY05, DVA02, GNGT21, GDG+08, KNRK06, LZY+23, LB11, MCZ+16, MLMM08, SPM02, Tos02, VKT02, WG11, WS22, WLC02, WSEA99, YGH+10, YYL09]. FPIC [CZW+03]. Framework [CSC+21, DK16, DSHD23, GACK22, GDFT17, HWDQ22, HLZ+22, HRC21, JHJ21, JSS+19, JPHL16, KPB19, LL15, LZY+23, LIK22, LTZ22, LDX22, MBB+20, NPH+20, RG19, RB21, SKM+16, THT12, WLZ+19, WWFT12, XPX+21, YP10, ZLL+16, ZFL22, ADP+07, HR06, HV07, KJK+08, KH01, MISP07, MP07, RPSC05, SB98, SBH+06, SS11, ZM07]. Free [RGM15, SBB+18, BLP06]. frequencies [PL03]. Frequency [GC18, JPHL16, WTR12, WGS16, GM08, JDT+08, LTPR+13, ML09]. frequency- [LTPR+13]. Frequent [YGZ04]. FSM [AGM01]. FSMs [CK16]. FTT [NGL+21]. FTT-NAS [NGL+21]. FUBOCO [AG22]. fuel [LCZ+08]. fuel-cell-battery [LCZ+08]. Full [STWX12, HDL+12]. Full-Chip [STWX12]. fully [FW00]. Function [CSC+21]. Functional [CVMP19, DCK06, FRS97, PR98, Pom15b, Pom15c, Pom16a, Pom16c, Pom18a, Pom18b, Pom19a, Pom21a, Vah99, AG22]. Functionality [BFV15, HLCH07]. functionality-directed [HLCH07]. functions [BC11, CCQ98, TW96]. Fundamental [SBY+20, XLSN17, Voe01]. FUNI [LIA00]. Future [HAB+17, KBV+15, ZCY+17]. FuzzRoute [RGM15].
KNDK96, KH10, LTH99, LP03, LKTD98, MMP00, MSD06, MD08, PFHAH22, PR98, PR07, Pom13, QM12, SR12, SNL12, SM00, TBZ13, VMP*00, dW97]. Generative [FLG+23]. generator [BCR+08, WWC04].
generic [FLWW02, FLWC07]. Genetic [MA16]. Genetic-Algorithm-Based [MA16]. Geometric [CM18, WJYZ11].
geometry [JCGP05]. Global [AOC02, BM11, GD22, RGM15, WSH+18, CLYP09, DHV+00, SPA+03, ZHTC09].
grading [PT06]. Grain [LG18]. Grained [BYT22, RCW22, KLSP11, LPY+20].
Grammar [JHMGS18]. Granularity [RBWB20]. Graph [CH17, CBR+22, CXR+23, FCZ+23, HRC21, HLW+23, JHMGS18, JOH17, LB00, LJL+23, OKJH22, SSK+23, SS14, WYCY10, WC06].
Graph-based [LB00].
Graph-Grammar-Based [JHMGS18]. graphene [YMC+13]. graphical [BLR06].
GraphPlanner [LJL+23]. Graphs [ASAP17, BFG17b, CM18, CCH15b, ENP20, HPB11, LH14, CH13, DSK01, HKB+07, LKTD98, MWF96]. Gravity [OS03]. Grid [DNT20, HXC+18, LAYZ23, MN17, SCK18, ZS16, MFS09]. gridless [LCC11]. Grids [BS14b]. GRIP [JHMGS18]. Ground [LHJ12, YHH09]. Grouping [XCW12, KSA+10]. Guarantee [MN17].

Hamming [HRK18]. Handling [DH06, GdRJM21]. Hard [CHBK15, CWL+22, WDZG16, PW99, QS09].
hard/soft [QS09]. Hardened [BS14c]. hardness [WYC10]. Hardware [ANS+20, BS14a, BSH+23, BM11, CMM00, CBR+22, DY23, DZS+18, GFJ16, GQW19, HJY23, IPWW17, KTKO13, KP22, LG18, LHF12, LF12, LPL+21, MED23, MRL+20, MFHP12, MRL+19, PTPB22, RB19, SKR+22, TY19, VTC20, XFJ+16, YSE+18, YCL+20, YBM+21, YG+10, ZLG+19, AMO05, BHDS09, BGM04, FNP09, GGBK, GPK+09, HKL+07, HBC+08, JW08, KSK+05, KG99, LP07, LV03, MSB+09, MLC08, ML09, RHA08, SSG12]. Hardware-accelerated [RB19, MLC08]. Hardware-Assisted [GFJ16]. Hardware-aware [HJY23]. Hardware-Based [BS14a].
Hardware-Efficient [ZLG+19]. Hardware-Enabled [YSF+18]. Hardware-Software [BM11, GGBK, HKL+07, LV03].
Hardware/Software [LHF12, CMM00, KTKO13, YG+10, AMO05, ML09].
Harnessing [RBWB20]. Harvesting [SAL19, XPZ+18]. hash [YTHC97]. Hashing [CJJK19, JCK+18]. hazards [HA05].
heartbeat-detection [DHZ+11]. Height [CZZYW21]. HeM [AJK+21].
Heterogeneous [AKJ+21, ETV18, GAGD19, MB+20, RS18, SPT+17, SVK17, SSL17, SAL19, SWT23, TBC17, XPS+21, BWB14, CL99a, HV07, KJR+07, LKLY13, PTC05, QS09, SCB01, SKS12].
Heterogeneously [ZP08]. Heuristic [AKAP18, HGLC16, CLM+10, LCKT12, OCRS07, SBGD13]. heuristics [TN99].
HEVC [SLV+22]. Hidden [HYK+20].
Hierarchical [CV17, HWL+23, JDD20, 19].
LMB+12, LJ18, MSKBD07, OKJH22, SKR+22, TZ17, WMT+16, WLH20, XT16, BG01, HKV+07, VKK02, ZM07.

Hierarchy [CM19, FW00]. High [AKAKP18, Ali12, CSC+21, CET16, CS22, CK16, DKT+16, DBK+18, DLC+17, EKEK22, FCZ+23, GHW+12, HIW15, HSP+22, ISK21, JD00, LLL+18, LYKW09, LQD22, MACV14, NSF+20, PSD21, PRKK21, PTC05, PFHAH22, RCW22, RJ14, RM23, Sch17, SYH+22, SS14, SLV+22, VAAH+98, WMT+16, WS22, ZYW+18, ZLG+19, ACT13, AYM05, BHW+13, BD00, CCC+09a, GDTG07, GF06, GGDN04, GWR13, HJ08, JP08, KW02, KJT04, LJ02, LC14, Liu97, LFG+09, MKBS05, MJM11, MLMM08, NS03, OW06, OWH08, PB14, RFYL98, SW12, SLXZ12, TC98, VKK02, XK97, YWW10].

High-Dimensional [SYH+22]. High-Level [CET16, CS22, FCZ+23, ISK21, RCW22, RJ14, Sch17, SS14, SLV+22, JD00, NSF+20, PTC05, PFHAH22, VAAH+98, WS22, AYM05, BD00, GGDN04, HJ08, JP08, KW02, LC14, Liu97, MKBS05, MJM11, MLMM08, PB14, RFYL98, SW12, TC98, VKK02, XK97, YWW10].

High-Throughput [DKT+16, DLC+17, LLL+18, WMT+16, GHV+12, LYKW09, GDTG07, GWR13, LJ02, LC14, Liu97, MKBS05, MJM11, MLMM08, NS03, OW06, OWH08, PB14, RFYL98, SW12, SLXZ12].

high-quality [BHW+13]. High-Security [LQD22]. High-speed [PSD21, OW06].

High-Throughput [HIW15, EKEK22, PRKK21]. Higher [BS14a, LYS019, XPE12]. Highly [DONH23]. History [JM14].

History-Based [JM14]. Hits [SAL19].

HLS [SCL+22]. Hmap [YTHC97]. HMP [SPT+17]. Hold [LSZ+21, KSA+10].

Hotspot [HDZ+20, JYY+22, LYM+20].

Human-Readable [BHBS22]. HVAC [JDD20]. HW [ADP+07, FLPP09, WWFT12]. HW-SW [ADP+07]. HW/SW [FLPP09, WWFT12].

Hybrid [BLNKR14, GD22, GCL+16, HRC21, KKK12, LFST21, LZ17, LZ21, LYI17, LV14, LGGJ14, MACV14, NAK20, PA21, SLXZ12, WSS+18, CLYP09, KT01, KKKM02, LCZ+08]. Hypercube [TMDF10].

I/O [LC13, SLC+22, Wu09, Yan16]. IC [ABC+17, AYS20, BHLG19, EK97, IK19, KK11, KKH16, LCJ+10, LTZ22, Ped96, WCB15, WXH+19, WSS+18, XGC+20, ZLL13]. IC/MCM [EK97]. ICOS [HCLC98]. ICs [CM18, CM19, CLT+15, GSFT16, LHY12, LS17, PKC+21, THM15, WWCT18, YHH09].

IDDQ [TCP97]. Identification [VTC20, DNA+12, JDT+08]. identify [LIA00]. Idle [LC07]. Idleness [GSD+18].

IDs [SOS15]. II [JW08]. IoT [PTP22].

ILA [HZS+19]. illegal [LIA00]. ILP [GBK07, MR06, MWG97, OCRS07, OK08, SR12]. ILP-based [MWG97, OK08]. Image [GAT+20, RB19, WY07]. Imbalanced [HDZ+20]. Impact [GBK07, LDD+19, MDR15, RB19, TY19, XNZ+15, KTKO13].

Implication-based [WH20]. implications [BLM00, DNA+12, GGBZ02, ZLL13].

Implicit [PT06]. Imprecise
CLQ12, Har05, HAW20, HJ08, JW08, LP07, LZR23, Ped06, PFHAH22, RW03, RBA+12.
Introspection [KIO1]. Intrusive [LL15, SL18]. Invariant [Pom18b, PL03].
Invariant [IPWU17]. Inversion [LHW+17]. Inversion-Aware [LHW+17].
Kernels [DHEK22, WKR09]. Kernels [MLH+17].
Irregular [KCKG16, KCKG13]. ISAs [SBH+06]. Ising [MS21]. Ising-FPGA [MS21].
JAMS [KB19]. JAMS-SG [KB19]. Java [BHDS09, PSL+98]. JETC [BC08].
Key [ISK21, JZG21]. Key-based [JZG21].
Key-Obfuscated [ISK21]. knapsack [SBGD13]. Knowledge [EO19].
Knowledge- [EO19].
L2 [SYX12, TYSF20]. Lab [PGCB16].
Lab-on-Chip [PGCB16]. Lagrangian [LGGJ14, PY20]. language
[MSD06, MLC08, PHM00, RHN00]. languages [BGM04, Edw03, SSG12]. Large
[CK19, CSX+05, DNT20, GNQ+22, JYZY15, LYL+19, YVC14, ZHC+21, AM10, DD02, HH09, MRB+11, SCB01]. Large-Scale
[LYL+19, YVC14, CSX+05, GNQ+22]. Last
[KLJ14, SABSA15, SAL19, CKX+13].
Last-Level [KLJ14, SABSA15, SAL19].
Latch [JNCS19, LCTHT02]. latch-based [LCTHT02]. late [LG12]. Latencies [Ch17].
Latency [LW+23, QBMT16, YKC14, ZYPC17, PMT20, WHZX13].
Latency-aware [LWX+23]. Latency-Minimal [ZYP17]. Lattices
[GSS14, HMO+14]. Launch [Pom21b, PTC+15, WWW+12, XDW12, WPHL08].
launch-off-shift [WPHL08].
Launch-on-Capture [XDW12].
Launch-On-Shift
[PTC+15, Pom21b, WWW+12].
Launch-to-Capture [PTC+15]. Layer [DHZL23, LYP17, MWS+20, WL12, Yan17, Yan20, CLYP09, DNDV04, EKEK22, OW06, Yan00, Yan19]. Layer-induced [DHZL23]. Layout [CFD+16, DZ18, JYY+22, LZ17, LCYN18, RCK+15, SP+15, TZW20, WPHL08, WPR+19, XJK97, YLZ+17, ZLY+15, GS00, GH00, KG09, WJYZ11].
Layout-Aware [RCK+15, WPHL08].
Layout-driven [XK97]. layouts
[GFC+09, LM96]. Lazy [ZLY+15, ZLY+15]. Lazy-RTGC [ZLY+15]. LBNoC [PMT20].
LDE [TZW20]. LDE-aware [TZW20]. LDOs [SCK18]. LDPC [CW+22, DHZL23]. leaf
[dW97]. Leak [PCT+17]. Leakage
[CFHM09, DHB16, HYN15, JK10, LDX22, PIK20, RHBB21, STWX12, SYHL14, SKP21, XT12, YLYL19, ZBP18, CS07, CCW08, KOS09, MLG12, YL106].
Leakage-Aware [SKP21, YYY09]. Learn
[RG19]. Learned [XJ+F16]. Learning
[ALLE20, CCL+22, CAOM19, CCMC20, DNT20, EW18a, GT21, HDZ+20, HAW20, HMMG+20, HXC+18, HFMB20, HHH+21, IE12, JBJ22, KP22, LG18, LYLH14, LZY+23,

Learning-Based
[LG18, HFM120, LG23, SWT23, XAG+20].

Least
[JLJ15]. Legalizer [CZYYW21]. Legalization [CZZYW21]. Least
[CXX15, DLC15]. Lifetime
[KRH18, KKS16, MCZ16, Library
[XK97, YWW10, ZHM07, ZLL13].

Lessons
[XFJ16]. LET
[VL14]. LET-Based
[WLZ15]. Leveling
[CDB11, CET16, CS22, CLMZ10, DKZ+15, FCZ+23, HKL+15, HMO+14, HZS+19, ISK21, KLJ14, LL15, LG18, LS11, MNMK+21, PDS12, Pie16, RCW22, RJ14, SABSA15, Sch17, SS14, SLV+22, SAL19, TYSF20, VTC20, WDL17, AYM05, BdM00, BD00, CM19, CCYC14, CIB01, CKX+13, Che96, GM08, GG99, GS00, GGD04, HJ08, JD00, JR97, JP08, JI01, KT08, KT09, KWO2, LC14, LLQ+03, LTPT10, Lin97, MW97, MOZ06, MKBS05, MT02, MJM11, MLLM08, NSP+20, OCRS07, PB14, PPDK09, PTC05, Ped06, PFH02, PBSV+06, RFLY98, RFG20, SW12, Sen11, SEN05, TC98, T99, Vah99, VAAH+98, VKKR02, VS12b, VBP+19, WTL+13, WS22, XK97, YWW10, ZHM07, ZLL13].

Leveling
[CCH+15a, CHC+16, HL12, CD09]. levelized
[KPR06]. Levels
[BFL10]. Leveraging
[CS22, DSHD23]. LFSR
[KJ704, Poni17a, Poni18b]. LFSR-Based
[Poni17a, Poni18b]. Libraries
[ACF+11].

Library
[KRH18, KKS16, MCZ+16, BD97, DDNA04, JD00]. Library-Based
[MCZ+16, DDNA04]. lifecycle
[HD12+12]. Lifetime
[AAA15, DLC+17, WDLD17, MHT14].

Lightweight
[MPM+17, NSCM17, MMM+22]. like
[PRK21]. limitations
[Voe01]. limited
[LLKC13]. line
[SNH02, ZYZ+13]. Linear
[ACFM12, ETAV18, MFHP12, TZ17, DSRV02, KC98, LWK11, ST99]. Linking
[HRC21]. Links
[KQP+19]. list
[HCS01, MHD+04]. list-approximation
[HCS01], lists
[HVF+04]. Lithographic
[LYM+20]. Lithography
[HDZ+20, LZ17, ZLY+15]. Liveness
[MS08]. LLC
[PBZM19], LLCs
[PBL+17]. LLR
[CWL+22]. Load
[CLC20, LLHT12, Pom19a, Pom14b]. Load-balanced
[LLHT12]. Local
[BM11, KC13]. Locality
[LDTM20, MT15, TYSF20, ZFLS11, GFC+09, Kan06].

Locality-Aware
[MT15]. Locality-Driven
[ZFLS11]. Localization
[HDB22, YYL+15]. localized
[CMQ08]. Locally
[PSM15, KC13]. Locked
[IYF+21, JZG21]. Locking
[BTP+20, Mit16]. Lockout
[ISK21]. Logic
[ALL20, AYS20, BFL10, CBM10, Che18, CZW19, CXS+23, ETAV18, EKS+14, HS18, HIW15, JZG21, KKH+02, KMO+12, LWZ+19, LZZ+21, LW18, PA21, SLP+19, WB16, WKC12, ZHJ+23, ZWD11, ARLH06, BLM00, BDM+99, BOC00, CSKR05, CD96, GGBZ02, KJJK03, KMC97, KVMH08, LWH06, MW97, RJBS09, TW96, TN99, TJ99, VT02, WYYF99, ZS02, PRCK08].

Logic-Based
[ETAV18]. Logistic
[BD05]. long
[SSP04]. long-path
[SSP04]. Longevity
[KBV+15]. Look
[KSD+22]. Look-up-table-based
[KSD+22]. Lookahead
[PMT20]. lookahead
[CH02, WSEA99]. Loop
[AA17, EO19, GDD21, LDTM20, SXX+06, HKV+07, PCC09, XPSE12].

Loop-dominated
[LDLM20]. Loops
[IYF+21, BG01, CL99a, KNDK96, SHLL98]. Lose
[KBV+15]. Loss
[WSRH16, KC13]. Losses
[ZMS+19]. Low
[ACF+11, AY18, ALL17, BPTB17, CH10b, CM08, CHHL96, CLMZ10, GBR07, GAT+21, HWDQ21, HLKN07, HTCP13, KP22, LTYW12, LS23, LSL+13, LQD22, LS17, MED23, MKK13, MAC14, PMT20,
[APDC17, CRT19, JB98, XAG+20, LG12].

Measurement-Based [APDC17].

Measurements [LFST21, LYSO19].

Measuring [CHA+21, WAZ98].

Mechanical [BHLG19, LTW+16].

Mechanism [QSW+15, SVK17, WQC+16, ZLW+15, ZK15, Wu09].

Mechanisms [CBO+18, PTPB22, GBK07].

MEDA [LSCK20, PBWB21].

Media [SLV+22].

Medium [MED23].

MeF [AKM+22].

MeF-RAM [AKM+22].

memetic [LFG+09].

Memories [AAA15, DFM15, DHZL23, JSA18, LS23, SKP21, JD00, MRB+11, NR03, OK08, RMB10, SPG+08].

Memory [AKM+22, BLNK14, BD14, CPS16, CCK+18, CIX15, DFM15, DHX+23, HJY23, JCK+18, JPM+19, KLSP11, KKLG15, LHS20, LDP+22, LZZ23, LLP+16, LCJ+22, LWZ+19, LPL+21, MWS+20, MS23, NAK20, NM23, PDN97, PPP+15, PRKK21, PBZM19, RPR+21, SHBD21, SSSL, TLCF16, TRM+16, TMDF10, WQC+16, WDZG16, WFT+19, WDD+23, WGS16, WZL+21, XNZ+15, ZXC+23, ZLW+15, ZZCY17, AMM+06, BD08, BHDS09, BGN+07, CPW04, CJLZ11, HKV+07, IBMD07, JCS+08, Kan06, KG09, LSPC14, MB04, NdLRC03, OK08, PDN00, PCD+01, SUC01, SM00, WH05, Wu09, ZYZ+13, ZP08].

Memory-aware [DHX+23].

Memory-Based [BD14, CPS16, LHZW+19].

memory-constrained [OK08].

Memory-driven [NM23].

Memory-Throughput [MS23].

Memristive [XGC+20].

Memristor [LS22].

MEMS [BHLG19, Kh12].

MEMS-IC [BHLG19].

Merging [ASAP17, CZW19, TCL14, LLLL13, MB04].

Mesh [CHA+23, JM14, KK14, GHW+12, RL13].

MESH [ZXC+23].

Message [Hu20, KBPB19, DSH12, EY12].

message-passing-based [EY12].

metamodelling [MPSJ07].

Method [AKAKP18, BZWW17, CZZY21, JSS+19, LCC+15, MNMK+21, RGM15, SYH+22, SRC15, STGR15, WTR12, WMT+16, WZL+21, YLZ+17, ZYW+18, CGN96, CL99b, HW00, Kag05, LH13, LDK99].

Methodologies [BW00, CEB00, MD13, SSCS10].

Methodology [BFV15, DK22, EKEK22, EAP17, HXB+22, KKLPG15, KJR+07, KMO+12, LW17, LZZ+21, LZ21, LZZSV15, LLLL18, NSP+20, SWT23, VA17a, VEO16, VBP+19, XPP+21, AMM+06, DRG98, FLPP09, HDL+12, HCL98, Hs00, KY+14, NR03, PW99, SEN05, SMSB05, SVZ+12].

Methods [CLL+22, EW18a, GDF09, KRL15, ZHC+18, FZKS11, SW04, ZAJ+12].

Metric [YRH11].

Metrics [LIK22].

Micro [RBWB20, YBM+21].

Micro-Electrode-Dot-Array [RBWB20].

Microarchitectural [GOC02, LS11, HMLL1].

Microarchitecture [ZBPFI8, CFX09].

microcontrollers [CD09].

MicroElectrode [RB21].

MicroFix [YHL+11].

Microfluidic [CPK20, CGLH23, GLD+22, GPH19, JHY21, KGS+20, LHC16, LK+18, MGR+15, MWK21, PGC16, PFB+22, RCK+15, RB21, SKS+18].

microfluidics [SOC06, SC06].

microfluidics-based [SOC06, SC06].

Microgrid [VA17a].

Microprocessor [OT15, BPRR98, HV98, LBV+06, WA98, WCC04].

microprocessor-based [BPPR98].

Microprocessors [Ali12, WMT+16, LTPPT10, MKW09, VAAH+98, WTL+13].

Migration [DK16, Kha12, TZ20].

Migration-Resistant [KH12].

million [HH09].

million-gate [HH09].

Min [HS18, SSP04].

Min-Area [HS18, SSP04].

min-delay [SSP04].

Mine [LWC18].

Minimal [MCD12, ZYPC17, KL05].

minimal-area [KL05].

Minimally
Minimization

Minimization

Minimum

Minimum

Minimum

Mixed

Mixed

Mixed

Mixed

Mixed

Mixed

Mixed

Model

Model

Modern

Modification

Moniclithic

Movement

MP

MPSoC

MTCMOS

Muller

Multi

Model-based

Model-Driven

MODELS
[AL19]. Negligible [EAAK+23].
Neighborhood [PSD21].
Neighborhood-aware [PSD21]. Nested
[AA17, CL99a], Nesterov [LCC+15], Net
[Yan19, LXCH04, MW97]. nets [JCP05].
Network [CM20, CARH18, DJP21, DNT20, EJR22, FLG+23, HZL+22, HCZ+16,
HXC+18, KLU+17, LDD+18, LDD+19,
LW17, LJJ+22, LJJ+23, MT15, PTO20,
WXH+19, WDLX21, X16, XCF18,
YKCG14, ZHC+21, ZYS12, CSC08, CL13,
CM08, CXX+13, CCL04, GNQ+22, HW14,
KMC97, LCOM07, LLKY13, LLKC13,
OCSR07, RFBL10, LCG+22].
Network-based [FLG+23].
Network-on-Chip
[CM20, LDD+18, LW17, PTO20, XS16,
XCF18, YKCG14, ZHC+21, ZYS12, CSC08,
LCOM07, LLKY13, LLKC13].
Network-on-Chips [HCZ+16, GNQ+22].
Networked [KC10]. Networks
[BKW15, BDBB19, CZV19, CAP+23,
FCZ+23, GAT+21, HWL+23, HLX+23,
IHM15, JLL15, KBP19, LHS20, LDF+22,
LYL+19, MAS+20, MNNK+21, HMP+17,
NM23, SSS+23, SRTG19, UEE22, XLS15,
YMB15, ZFLS11, ZYPC17, ZMP16, BLR06,
CXX+13, CBR+05, GWR13, HMGV13,
JSP12, JSG09, MD13, MDM07, OM80, RL13,
TDE08, VS12a]. Networks-on-Chip
[BDBB19, IHM15, JLL15, CXX+13, J12P,
OM08]. Networks-on-Chips [VS12a].
Neumann [KT01], NePou [NSP+20].
Neural [EJR22, FLG+23, FCZ+23,
GAT+21, HXZ+23, HLX+23, JYY+22,
LHS20, LDF+22, LPLK22, LYL+19, LJ+22,
LJJ+23, MNNK+21, NM23, NGL+21,
SSK+23, WXH+19, WDLX21].
Neuromorphic [GT21, LS22, XGC+20].
Neuron [ZK15], Neuron-MOS [ZK15].
Next [PFHAH22, YD16]. Next-generation
[PFHAH22]. NMOS [RM23]. NoC
[ADDM+13, CAOM19, CBR+22, CXX+23,
DJP21, HWX+14, JBJ22, MHT14,
QBTM16, TCL14, SPT+17]. NoC-based
[MT14, CAOM19, HWX+14, QBTM16,
CBR+22, DJP21]. NoC-Enabled
[CRX+23], NoC-HMP [SPT+17], NoCs
[AJIM13, AL19, CH+23, DDC+17,
HMMG+20, JM14, KPF16, MT15]. Node
[BBDB12, CZW19, PDS12, DHZ+11, JSG09,
ZHOM08]. Node-centric [ZHOM08].
Nodes [BPTB17, LZA+21, NNS+16]. noise
[GGBZ02, HK06, HML11]. nominations
[ANO13]. Non
[AKM+22, GLY+12, HSP+22, LL15, SL18,
STJG16, WDL17, ZYW+18, KCKG13].
Non-enumerative [STJG16].
Non-Gaussian [ZYW+18]. Non-Intrusive
[LL15, SL18]. Non-Monte-Carlo
[GLY+12]. non-overlapping [KCKG13].
Non-Volatile
[AKM+22, HSP+22, WDL17].
nocomplementary [RS03].
Nonfunctional [HPBW14, RGT+14].
Nonideal [TWL16, WFT+19].
noniterative [MCMW08]. nonlinear
[CC00b, Con06]. nonManhattan [Yan00].
nonpreemptive [GDG+08]. nonslicing
[LCC11]. Nonspec [WC10].
nostationary [AHAK08], nonuniform
[VCLD03]. nonvolatile [SLXZ12, ZYZ+13].
note [CSL+07]. Notions [SGC+14]. Novel
[GD22, KKH16, LWZ+19, LJJ+22, MS17,
VNS19, DDFR13, SCCH08, Pod06]. NP
[DK22], NP-Separate [DK22]. NPU
[LPLK22], number [HPK99]. NVM
[BRC818]. NVMe [HC18].

O [LC13, SLC+22, Wu09, Yan16]. OAOS
[HGLC16]. OBDD [FWCL05]. Obfuscated
[IS21, LMS16, RNR+21]. Obfuscation
[AYS20, GDTF17, HYK+20, KSD+22,
OK20, SLP+19]. Obfuscation-Based
[GDTF17, HYK+20]. Object
[SLJ23, Wol96, HLC98, Hs01].
Object-oriented [Wol96, HLC98, Hs01].
Objective [GACK22, KLE18, SFM+19].
dONH23, LFST21, PB14, SCL+22].
Observability [CLMZ10, CM13].

obtain [MS00]. Obviating [PBWB21]. Occupancy [ZHC+18]. Octilinear [HGLC16, Yan08].

Octilinear [HGLC16, Yan08]. Octilinear [HGLC16, Yan08]. Octilinear [HGLC16, Yan08].

F18, KSD+22, MS23, PDN00, RBJ+09, WPHL08]. o-chip [PDN00]. Oce [GCL+16]. Oine [MGR+15]. Oining [JPM+19]. os [FHHG12, PCC09, WVYG99, WGDK07, XPSE12]. OLED [LKH19]. On-Chip [ALL17, JNS+17, JZYJ15, SCK18, SMBT19, ZYPC17, DNT20, LCOM07, PDN00, WDC+22, ZSZ10, ADS+09, CCL04, KP13, LH13, NR03, PPDK09, YLP+13, ZM07].

On-Demand [AAA15]. On-device [TZZH22]. Once [CHBK15]. One [MKW21, XFJ+16]. One-pass [MKW21].

Ones [PB12]. Online [BYT22, HLW+23, MBD+20, TZZH22, ZAJ+12, ADDM+13, CSAHR07, RAKK12]. Only [CHBK15]. onto [OKJH22, SWT23].

Operating [EAAK+23, TWL16, TL19, PMB10]. Operation [BPTB17, CLMZ10, GDTF17, MACV14, KJIR+07]. Operations [BC16, LXZ+19, LXWC20, ARLJH06, BG01, HPK99]. operators [BD05]. opportunities [VCLD03]. Opposite [HCN09]. Opposite-phase [HCN09].

Optical [DZ18]. Optimal [ABC+17, BKW15, BASB01, Cha01, CCX06, CARH18, CH96, FG18, GSS14, HWCL13, KNDK96, LCHT02, OWH08, PL98, SCK18, TS96, TPC+17, ZW98, BW00, BMJ13, CACS05, CNGN96, CH00, DSK01, GH00, KCKG13, LH09, MKW08]. Optimization [ACFM12, BZWZ17, BHLG19, CZW19, CYH19, CWL+22, CK16, DHVW18, DZCD15, GLY+12, GK07, HRC21, HLG+15, HS19, JBJ22, JPHL16, JNC19, KKK12, KK16, LFST21, LHC16, LZZSV15, LH11, LYPN17, NM23, PPS+20, PPP+15, PY20, SMF+19, SYHL14, SHB21, SRTG19, SHL+19, SCK+23, SCL+22, TRM+16, WHRC12, WFS20, WDC+22, WKC12, WSRH16, WDLX21, XJF+23, ZHJ+23, dONH23, BLM00, BD+99, BD00, BCC08, BDB98, BP05, BOC00, BGN+07, CLK06, CSC08, CCC09b, CFX09, CILJ11, Con06, D02, G04, B07, GDF09, GHW+12, HR06, HPK99, HG07, JPC06, KK03, KLSP11, KCG13, KSA+10, LLH03, LCG+22, LCHT02, LC07, LLLL13, MKB05, MHT14, MKW09, MLG12, OM08, PCD+01, PEPP06, RM09, RJBS09, SB98, SPA+03, THL+13, VIMR02, VLH04, WGDK07, WL+11, XZC09, G09].

optimizations [GGDN04, KRS06, SSG12, SC00, ZHTC09]. Optimized [ACF+11, BC05, HCRK11, MJ19, VA17b, ZABZG17, ZYS12, KCA04, SY07]. Optimizer [LDLM20]. Optimizing [GY12, KSK+05, LPP00, LPLK22, LAS01, RBWB20, SYZ08, ZLW+15]. optimum [Das04]. OR-based [ZHJ+23]. Oracle [RNR+21]. Oracle-guided [RNR+21].

Parallelism

Giv06, GOC02, GHW+12, GWR13, HDL+12, LC96, LJVO2, LYKWO9, LFG+09, LV02, NS03, PDN97, RAKK12, SLXZ12, VLH98, WWG08, ZHM07.

Performance-Aware [BDBB19].
Performance-constrained [BG01, WLC09, GOC02].
Performance-Driven [GDD21, HWCL15, Yan16, GKK+23, WCC03, WLLH16, WDLX21, YVC14, ZSY18, AM05, ACT13, CBHK11, CACS05, CC06, CSX+05, EK97, KPSW09, LCK+09, OS03, RS03, SC06, Tes02, TY97, VLH04, WLC02, WCC03, WLT08, YWK+03].

placements [HWCL13]. Placer [AMM+18, DKT+16, DKT+16]. Plaintext [HYK+20]. planar [DPNB02]. Planning [DSHD23, XYG+16, YYY+16, LC13, LHZ+06, MKBS05, SBC08, XTW05]. PLAs [LWH06]. Plasticine [EKEK22]. Platform [APD+11, IGN18, VGG19, FNP09, JCS+08, RFB10, ZHM07, PBSV+06].
Platform-aware [VGG19]. platform-based [ZHM07, PBSV+06]. Platforms [BS14c, ETA18, LS11, LMS16, MBB+20, RS18, TBCH17, VGG19, WDG16, YPCF17, BMJ13, CNQ13, JW08, LP07, MPDG09].
Playing [RJL+09]. PMC [CL12, CCH15b, CH13]. PMU [APD+11].
Point [ALL17, BS14a, BFL10, SRC15, WZK+23, XNZ+15, AM98, BSB+23, CPW04, DPNB02, LCM07, WG11, WFT+19, YCL+23, Yan08].
point-to-point [LCOM07]. Pointer [RCW22]. points [PMB10, Pom13, TD03].
Poisson [QSK12]. Polar [JNS+17].
Polishing [LTW+16]. Polling [LZZ23].
Polling-Based [LZZ23]. Pollution [DJP21]. polygon [TTL+01]. polygons [CT13, LMK96, TOP08]. Polymerase [LH16].
polymorphic [LLYW10]. polynomial [GK07, GK09]. Polynomials [GLY+12].
port [CL13, SBC08]. port-scalable [SBC08]. portable [LCZ+08, Rak09].
Portion [GD20]. POSE [Hsi01].
Postlayout [CMB07, LZY12, WWG08, XLL+16].
Postscheduling [FHHG12]. post-silicon [MKK13]. Power [ACF+11, ALL17, BLM00, BS14b, BM11, BPTB17, CMP10, CH10b, CHHK15, CXH+16, CAP+F3, CLMZ10, DLC+17, DNT20, FG18, FZL+23, GBR07, GCL+16, GAT+21, HW22, HPK99, HY15, JIR+21, JLL15, KKH16, LG18, LKM04, LYLH14, LAYZ3, LK+14, LJJ12, LHK+15, LK19, LS17, MAS16, MKW09, MN17, NPI+20, NS+F20, PHL14, Pd06, PTC+F15, SCK18, SC00, SBC08, SYH14, SSCS10, SIB15, TWL16, TRM+F16, TMDF10, TCL14, VNS19, WY19, WGT+F17, WZH+F23, WC10, WSR16, XLS15, ZFLS11, ZK15, ZS16, ZMT13, ZF23, AHA19, BDM+F99, BDM00, BDD00, BMJ13, BDD00, CS07, CH10a, CM08, CIB01, CCX06, CCW08, CHH16, CCH09b, CJLZ11, CLQ12, DSO6, DTC+F09, ET10, GOC02, GDF10, GS13, HR06, HLC07, HLH07, HTCP13, JWL+F03, KB00, KKH+F02, KO09, KC13, KHN06, KYN+F12, LMB+F12, LHT03, LYP13, LHC+F17, LLY14, LBV+F06, LHW97].

Power [MKK13, MRC06, MKW08, MLG12, MS09, ML19, NT05, PP09, PM14b, PWH05, PR96, RFB10, RTN10, SMS22, ST+F13, SUC01, SPM02, SN12, SZ+F12, TKV07, T19, THC+F14, WJ+F07, YHL+F11, YGZ14, YLL06, YHL07, YHH09, ZHM07, ZLL13, ZLYP08, ZP08, ZYP09].

LPP00, NM13, TYH08, ZHOM08.

Processing-In-Memory [WDD+23].

Processing-Near-Memory [LCJ+22].

Processor [HKL+15, ISE08, LHLP16, LYYL14, LF12, NSH+16, NRZ+18, OHA19, SPT+17, VLGG01, DHZ+11, GG04, Giv06, HGBH09, KBA08, LMB+12, OCRS07, PDN97, PDN00, RFB10, SGD10, WKR09].

processor-based [PDN00].

Processing-Near-Memory [LSDV10, RMB10].

Processing-Based [LSDV10].

Program [DFM15, GSFT16, RGT+14, WFT+19, BDC08, BH03, BFP08, BZ08].

Programmable [ZKS09, KKJ+08, SR12, KLJ14, LPD+17, LH12, OKJH22, TY19, BH10, CL99a, CPW04, Edw03, Hua01, KJR+07, LJ02, LCD07, LB00, MD08, PHM00, RAKK12, SR12, TKVN07, LSV06].

Programs [KLSZ11, TZ17, WLZ+19, ADDM+13, GH00, KLSZ09, KKJ+08, TP08, WJYZ11].

programming-based [ADDM+13].

Programs [PMS15, SYHL14, EY12, Vahi02, WY09].

Progressive [KKLG15].

Project [LKH16, LHLP16].

Progression-Based [LKH16].

Progressing [BZWZ17, BS14b, BS14a].

Projective [HLX19].

Projecting [KHP05].

Protection [LSDV10, RMB10].

Protect [SABSA15].

protected [LSDV10].

Protecting [DFM15, GSFT16, YBS+18].

Protection [GDF17, SL+19, KHP05].

protocol [ADS+09, BGM04, DP04].

prototype [APB+08].

Prototyping [ARLJH06, ORGD+15, JDT+08].

Provably [ADS+09, Das09, YWK+03].

Provide [KKLG15].

Providing [LCOM07].

Proximity [DZ18].

Pruning [GYZ+22, MNMK+21, DHV+00].

Pseudo [PKC+21].

Pseudo- [PKC+21].

PSL [BZ08].

PS [DS12].

PTA [XJF+23].

PTM [LH+17].

PUF [LQD22].

Pulse [LQD22].

Push [KMO+12].

PV [DZ18].

PV-Aware [DZ18].

PVT [PPDK09].

PWM [TWL16, GWT+17].

QoS [LYLW17].

quad [LBV+06].

quad-core [LBV+06].

Quadratic [AL19].

Quadruple [JIR+21].

QuadSeal [JIR+21].

Quality [BZWZ17, JSS+19, LKH19, LPY+20, LK22, Poin19b, BH+13, XPSE12].

Quality-Assured [JSS+19].

Quality-Enhanced [LKH19].

Quantifying [SGC+14, YR11].

quantitative [LCO07].

Quantization [GYT12, HWQ22, HYJ23, HLX+23, LDP+22].

Quantization/Mapping [HYJ23].

Quantum [HZL+22, LSF+21, ZFL22].

Queuing [SSL17].

Race [BK10, HN07].

Radio [JDT+08, JSG09].

Radix [BS14a].

RAID [SLC+22].

RAID-enabled [SLC+22].

Rail [LQD22, VEO16].

RAM [AKM+22, LSL+13, SABA15].

ramp [KM97].

Random [BZWZ17, BS14b, RPR+21, JT98, KPR06, SXZV13, SNL12].

Range [LDP+22, MS17, CL13, LSPC14].

Rate [SABSA15].

Rapid [KLJ14, LPD+17, LH12, OKJH22, TY19, BH10, CL99a, CPW04, Edw03, Hua01, KJR+07, LJ02, LCD07, LB00, MD08, PHM00, RAKK12, SR12, TKVN07, LSV06].

Rate [KKLG15].

Reactive [XLNB17].

Reacts [ADB+19].

Reactive [LHC16].

Read [WLZ+19, ZABGZ17, PSL+98].

Real [WLLH16, Das04].

Real-Time [ALD+15].

Real-Time [AMD+15].

Real-Time [AMD+15].
[DHZL23, JSA18, LHS+21, PPP+15, WHXZ13]. **Readable** [BHBS22]. **Real** [CHB15, CBC22, CH17, FG18, FHHR21, GYZ+22, HXC+18, KPF16, LSC20, NSH+16, PKJK20, PSNC18, SSC17, SBY+20, SLV+22, SWT23, WLZ+19, WDG16, WJG+19, YRH11, ZLW15, APB+08, DRG98, HMVG13, MHQ07, PEPP06, PW99, WLL+11, ZAZ13]. **Real-Time** [CHB15, CBC22, CH17, FG18, GYZ+22, HXC+18, KPF16, LSC20, NSH+16, PSNC18, SSC17, SBY+20, SLV+22, WLZ+19, WDG16, WJG+19, YRH11, ZLW15, FHHR21, SWT23, APB+08, DRG98, HMVG13, MHQ07, PEPP06, PW99, WLL+11, ZAZ13]. realistic [MF509]. **Reality** [XLB17]. **Realization** [ACFM12, CHHL96]. **reallocation** [ZYP09]. realtime [HG07]. **Reassignment** [Yan20, Yan08]. **ReChannel** [RHA08]. **recompilation** [GF10]. **Reconfigurable** [ADB+19, AVG19, BKW15, CPS16, CM20, DHX+23, EK16, JPHL16, LPL+21, MS21, MLC08, MRL+19, ORGD+15, SSC17, SVK17, UE22, ZLQ15, ZMS+19, ARLJH06, EJR22, GDG+08, HBC+08, HW14, JBC+10, KKB02, KLS11, LCC+09, RA08, WKR09, WLC02, YLP+13, YGH+10, YYL09]. **Reconfiguration** [CAOM19, MCZ+16]. **reconfigurations** [RCG+08]. **reconnections** [WC06]. **reconstruction** [Yan08]. **Recover** [BF15]. **Recovering** [JCK+18]. **Recovery** [NSS+16, WL12, ZAZ13]. **Rectangle** [Yan18]. **rectangular** [DSK01, Meh08]. **Rectilinear** [GC96, LLLL18, WCC03, LLYK09, MHD+04, MS09, OWH08]. **Recurrent** [HLV+23]. **recursive** [LC96]. **Recycling** [TCW20]. **Reduce** [CIX15, JK10, Pom16c]. **Reduced** [PAV17, AMM+06, SBH+06]. reducible [BC11]. **Reducing** [ASAP17, BFG+19, BWB14, CJKK19, DJP21, HH09, Kan06, KLJ14, LYCP13, PR11, SYH14, KTKO13, MB04, PGB01, TKVN07]. **Reduction** [ABC+17, BDB12, FLWW02, PTC+15, Shi20, WB16, WDLD17, WH19, WHL20, CFHM09, CCW08, DK08, ETR07, GF10, HLHT08, KYN+12, LCC11, LLHT12, LCJ+10, NT05, RMPK03, SY07, SBH+06, SPMS02, TY97, WYYG99, YHL+11, YW+03, YLL06]. **Redundancy** [CJKK19, JLK15, CMNQ08]. **Redundant** [KMO+12, SHL+19, PGB01]. **Reed** [ZHJ+23]. **reference** [AOC02, SM00]. refinement [CLM+10, GGB07, MS08, MOZ06]. **refit** [DVA02]. **Refresh** [CJKK19, LSL+13]. **Region** [BZWZ17]. **Regions** [JCK+18]. **Register** [GF10, HWCL15, LHF12, LQD22, MHF96, TLCF16, WKL+18, XLL+16, CACS05, CFX09, HCN09, KI01, KNDF96, LWK11, VFKR02, ZYP09]. **register-file** [CFX09]. **registers** [CL99a]. **Regression** [BB00, GD20]. **Regression-based** [BB00]. **Regular** [XYG+16, CH13]. **regulation** [ZLL13]. **Reinforcement** [BJJ22, PJL14, SKR+22, WDLX21, STL+13]. **Related** [dONH23]. **Relaxation** [LGGJ14, PY20]. **Relaxation-Based** [PY20]. **Release** [SBZ17, YP10]. **Reliability** [APS18, CSC+21, CET16, CCK+18, CXLL22, KMO+12, LHZ12, PPP+15, RMB10, TK18, WXH+19, XLY+18, GS13, JS13, KVMH08, LH13, ZAZ13]. **Reliability-Aware** [CET16]. **Reliability-Driven** [LHJ12]. **Reliable** [BJX15, GC18, JPC06, MACV14, WZL+21, XCF18, XNZ+15]. **rellocation** [LCC13]. **Remote** [BSP+22, CRT19, KOO18, KC10]. **Removal** [GMR+15, CMNQ08]. **reorder** [WPHL08]. **Reordering** [WC10, GFC+09, Hua01, PR96]. **Reorganizing** [JCK+18]. **Repair** [CJKK19, KMO+12, PSNC18, MRMP08, NR03]. **Repairable** [KMO+12]. **repeating** [LWC07]. **Replacement**
[CZW19, JCK+18, CCW08]. Replay
[CET16, CS22, DK08, FS13, HC17, KK14, LZY+23, LF12, MBD+20, PBF+22, TCL14, WG11, WHL20, WGS16, BDB98, CFX09, HLKN07, Kuc03, LSDK10, MKK13, MJM11, NR01, WDGK07, YWW10, ZHM08, KMR18]. Resource-aware [FS13]. Resource-Constrained [PBF+22, WG11, WHL20, LSDK10, NR01, ZHM08]. Resources [JNS+17, PGB01]. Response
[CH17, PMS15, SO016, DC07, SC01]. Responses [XCW12]. Responsiveness [SLC+22]. Restore [ZZCY17]. results
[AYM05]. Resynthesis [WPR+19]. Retargetable
[PHM00, AMR00, KJK+08, VLLG01]. Retargeting [DZ18, WJYZ11]. Retention
[CJKK19]. reticile [WLT08]. Retiming
[BOC00, HMB98, HLHT08, SSP04, Zho08]. Retiming-based [BOC00]. Retracing
[LLLL18]. Reuse [AC06, BFP08, CSO22, LDLM20, NAK20, OHA19, IBM07, LSPC14, RSR01, VCLD03]. Reuse-based
[OHA19]. Reusing [CCL04]. Revealing
[CM19]. Reverse
[AYS20, CM18, GDFT17, WSS+18]. Reversible [HDB22, DMD07]. Review
[IE12]. revisited [RS98, SDP+09]. Revisiting
[GWR13, ZSY18]. Revitalized
[PCT+17]. Rewarding [TEK18]. Rewiring
[LTYW12, CMB07]. rewriting
[RLJH06]. rewriting-logic
[ARLJH06]. RF
[BBE15, HZC+16, LYS019, LZZ21, PTO+20]. RF-Interconnect
[HCZ+16]. RF/Analog
[LYS019]. RFID
[DTC+09, YFT18, YBS+18]. RFID-Enabled
[YFT18]. rhythms
[GS13]. rich
[SHBD21]. right
[MIR96]. ring
[GG07, GG09]. Ripple
[HWWY16]. rISAs
[SBH+06]. RISC
[H98, YCL+23, ZBPF18]. RISCV
[YCL+23]. risk
[DS05]. river
[ZW98]. RL
[NT05]. RL-Huffman
[NT05]. RLC
[MN17]. Robust
[BJX15, CZZYW21, DZ18, GCZ+15, MCD12, PBBW21, STL15, TLF16, ZK15, CLYP09, ST99]. Robustness
[BHLG19]. Role
[CK19]. rotary
[TDF+09]. Routability
[AMM+18, HWWY16, SAH+20, THL+13, ZSY18, CLYP09, HSA+04, SYZ08, WSV+14, YCHT00]. Routability-Driven
[AMM+18, HWWY16, ZSY18]. Routable
[LCYN18]. Router
[PM020, TCI+14, XS16, CLYP09, JCPG05, MLG08, TDF+09, wATK02]. Routers
[JMI+14]. Routing
[CLC20, GdRMJ21, GMM05, JD18, LHJ12, LLLL19, LKC+18, MAS+20, MCZ+16, RGM15, RBWB20, TZ17, TZ20, WLLL16, XYG+16, Yan18, Yan19, Yan20, ZHC+21, CZW00, CKKT08, DSKB04, DVA02, GMN+13, LLKC13, LCC11, LCJ+10, MWW17, OW06, OW08, RLL3, SMYY07, Yan00, YWW9, Yan11, YM+13, YCHT00, ZW98, ZHTC09]. Routing-aware
[GMM05]. Routing-Based
[LLLL18]. Row
[SAL19, LC13]. row-based
safe [ZMTC13]. Safety
[MM17, XLY+18, dONH23, MS08].

Safety-Related [dONH23]. Salsa20 [MAS16]. Sample
[PGCB16, PBWB21, PBF+12, ZKS+16].

Sampling [WTR12, ZYW+18]. SAT
[CLM+10, Che18, CYV+14, DP02, RCD07, SGK08]. SAT-based [CLM+10, SGK08].

Satisfiability [BR12, GMSSS02, OK20, PG15, GPK+09, HSA+04]. satisfying
[QZ09]. saturation [CCL03]. saving
[HW00]. Savings [LKH19]. Scalable
[AA17, KLK+17, LAYZ23, PJJ14, SESN15, SKM+16, ZF23, HG07, KCKG13, SBC08, SBGD13, WSV+14]. Scalable-Throughput
[SESN15]. Scale
[DNT20, HC17, LYL+19, YVC14, ZHC+21, CSX+05, GNQ+22, HCK13, KBA08].

Scaled [PHK12]. Scaling
[GC18, HC17, HHL14, LV14, WSCH16, IAI+09, KSA+10, ML09]. Scaling-Aware
[HC17]. Scan
[BKW15, KMO+12, LWC07, LWK11, PSD21, Pom16b, Pom16c, Pom17b, RNR+21, WC10, WWW+12, XCW12, DDFR13, GKM05, KBN09, NT05, PR09, PR11, RMKP03, SSSG03, TYH08, WPHL08]. Scan-based [LWK11, KBN09, PR09].

Scan-BIST [LWC07]. Scan-Cell [WC10]. Scan-In [Pom16c]. Scan-Shift [WC10].

scanline [CT13]. Scenario
[BLUS19, DCK09, EK16, HLTZ+22, KW16, SWT23, GPH+09]. Scenario-Aware
[BLUS19, KW16, SWT23]. Scenario-based
[DCK09]. Scenarios [MRZ+18, SPG+08].

Schedulability [DG+10]. Schedule
[SNC+14]. Schedules [NSH+16, JP08].

Scheduling
[ABC+17, BB17, BDBB19, CAC15, DNX+23, ENP20, JOH17, KPB19, LWH97, MAS+20, OKJH22, PMS15, SSC17, SL+22, SAL19, SZB17, WCB15, WDZ16, WWCT18, WJG+19, XPS+21, CLM+10, CJKZ11, DS05, DHH+00, GBC07, HN07, JR97, KW02, Kuc03, LHT03, MKBS05, MJ11, MHQ07, MR05, MWG97, NR01, PGGD+23, RCG+08, SXX+06, TC98, WH05, WGDK07, YWW10, YGH+10, YLL09]. schematic
[KG09]. Scheme
[BM11, CWL+22, HDB22, JDD20, KKLG15, KLK+17, LTYW12, WHRC12, WH20, X016, HCK13, KSA+10, XL13].

Schemes
[GYZ+22, MGR+15, CSG08, KCG13].

Scoping [dONH23]. Score [XLL+16].

scratch [IBMD07]. scratch-pad [IBMD07].

Scratchpad [CPS16, DFM15, BD14].

SCRIPT [NPH+20]. Scrubbing [SV17].

SDF [OKJH22]. SDF/L [OKJH22]. Search
[FZL+23, JYY+22, LPLK22, RFG20, VCLD03, ZFL22, CMB07, DVA02, YWW10].

search-based [DVA02]. Search-space
[RFG20]. Searching [DK16, SYZ08]. Secret
[LDX22]. Section [BMG17, CY22, CO18, KLS11, PFHAH22, YD16, CH10a, CLQ12, HJ08, JW08, KLS09, MD13, RBA+12].

Secure
[BHK17, LSC20, YCL+20, HBC+10, ISE08, HRK18]. Security
[CM20, CKN20, GQQ019, GLD+22. HMO+14, KAC+23, KSD+22, LHL+16, LZZS15, LQD22, LMS16, MMM+22, MAS+20, MPM+17, NSCM17, RNR+21, SLP+19, TK18, WLM21, YSF+18, YBM+21, DP04, IAI+09]. Security-Aware
[KAC+23, LZZSV15, LMS16, MAS+20].
Seeds [Pom17a]. Segment [WL12].
Segment-Based [WL12]. Segmentation
[LCG+22]. Segmented
[HSA+04, JWL+03, YCHT00]. Select
[Pom18a]. Selection
[AKAP18, CXS+23, CV17, FYCT15, GC18, JM14, KPF16, STJG16, ZKS+16, CGN96, CCC09b, LB00, PMB10, VLG01, XCL13].
Selective [Mut09, NRDB19, LCT03, WY06]. selectively [BD00]. Self
[CRT19, EO19, IYF+21, LW21, PIK02, SBB+18, SHL+19, WCB15, WZH+23, XYG+16, SEN05, SZV+12].
Self-Aligned [SHL+19, XYG+16].
Self-Measurement [CRT19].
Self-Similarity [PIK20]. Self-Test
[EO19, SBB+18, WCB15, WZH+23, IYF+21].
Self-Testable [LW21]. self-testing
[SEN05]. self-tuning [SZV+12]. Semantic
[Pie16]. Semantics [KC98]. Sense
[ADB+19, RM23]. Sensing
[LSCK20, LTH99, WJY+07]. Sensitive
[CHA+23, YBS+18]. Sensitivity
[LM21, LON08, PMB10, ST99]. Sensor
[CCMC20, NSS+16, PDS12, ZHC+18, DHZ+11, JSG09, LCK+09, RF010, ZSZ10].
sensor-driven [ZSZ10]. Sensors
[FG18, RG19, YHL+11]. Separate
[DK22]. Separation [EK16]. sequence
[GF06, LC07, MMP00]. Sequences
[PKJK20, Pom15b, Pom15c, Pom17b, Pom18a, KT01, LWC07, PL03, PR11].
Sequential
[LVS16, LD17, SPA+03, WKC12, BLR06, BOC00, Che96, CPR+02, Edw03, HVF+01, HRP00, HCC01, JB98, KT96, KOS09, MMP00, PL98, SNH02, Vah02, YWG10].
sequentially [LIA00]. SER [LD17]. Serial
[PMP17]. Serialized [KH10]. Series
[TW96]. Series-parallel [TW96]. server
[dW97]. servers [ANR13]. Service
[DKZ+15, AHAKP08, CBR+05].
Service-Level [DKZ+15]. Set
[HKL+15, LPD+17, LHF12, LF12, MCD12, OT15, Pom19b, Pom22, DPB02, Hua01, LP03, LCD07, LLYW10]. Sets
[Pom16b, YRH11, PR07, TCP97]. SEU
[JLF+12]. SG [KPB19]. SHAIP [HRK18].
Shannon [GBR07]. shaped [Meh98].
shapes [LM96]. Shaping [KLK+17]. Share
[RG19]. Share-n-Learn [RG19]. Shared
[KLJ14, SHBD21, ZAZ13]. Sharing
[CS22, LF12, RG19, TCL14, WGS16, BDB98, DK08, SHLL98]. Sherlock
[GACK22]. shield [LXCH04]. shielding
[Mut09]. Shift
[HWDQ22, Pom21b, PTC+15, WC10, WWW+12, LWK14, WPHL08]. shifter
[Kag05]. Shifts [LS19]. short [SSP04].
short-path [SSP04]. Shuffling
[HHK+17, KJR+07]. shutdown [HW00].
SID [LHK+15]. SID-Based [LHK+15].
Side [BSP+22, DZS+18, LQD22, LM21, NPH+20, ZBF18]. Side-Channel
[DZS+18, LQD22, ZBF18, LM21, NPH+20].
Side-Channels [BSP+22]. sided [Yan19].
Sigma [ZYW+18]. Signal [HRC21, LS22, MFHP12, STGR15, WGT+17, ZSY18, CPW04, LLLC13, SR12, TYH08, XZC09].
signal-integrity [XZC09]. Signals
[Yan16, MKW08]. Significance
[LJ+22, MHA19]. Silicon
[ANS+20, HAB+17, PTS+20]. SIMD
[EKEK22, YCL+23]. Similarity
[PIK20, TYSF20, YRH11]. Simplifying
[HA05]. Simulated [ZYS12, SMY07].
simulating [RHA08]. Simulation
[BLUS19, CDB11, EKS+14, E019, GDRPG11, HBPW14, HIW15, HPB11, IHI15, LS22, MDM+12, PRCK08, ST99, SKM+16, WS20, WWFT12, XJF+23, ZWD11, CVMP19, DCK10, DL11, HVF+01, HKB+07, KMC97, LOC12, PTC05, PH06, RSR01, WTL+13]. Simulation-Based
[EO19, PRCK08, LOC12]. Simulations
[LS11]. Simulator
[LAYZ23, LHK+15, FWCL05, EBR+09].
simulators [RPKC05]. Simultaneous [CC06, CYV+14, CFX09, JK10, LXCH04, SM00, CCX06, CCW08, CW01, MRC06, YHHT09]. simultaneously [HLCH07, SSP04].

Single [BD14, HCW+16, KRL15, LSZ+21, LQD22, RM23, SKS+18, SSL17, VEO16, Yan19, Yan20, PTC05, VJBC07, YW09].

Single-Layer [Yan20, Yan19]. Single-Rail [LQD22]. Single-Tier [SSL17]. Situ [HSP+22, SL18]. Size [KCKG16, YVC14, ZLG+19, AMR00, AM05, FNMS01, HH09, HKV+07, LDK99, LH09, SBH+06]. Sizing [DZ18, KKS16, LLM+23, LZZ1, LGGJ14, SV16, SCK+23, ZLL+16, CW01, HR06, LG12, MLG12, RGM09, SC00].

Skew [CH09, TCW20, CKKT98, HN07, HTCP13, LLHT12, LT11, wATK02]. Skew-aware [CH09].

Skewed [Pom19a, CSK05, Pom14b]. Skewed-Load [Pom19a, Pom14b]. Slack [ASAP17, NRZ+18, CGN96, KSA+10].

Slack-Based [ASAP17, KSA+10]. Slacks [PSNC18]. SLAM [BYT22]. Sleeping [TEK18]. Slew [WCCC14]. Slicible [DSK01]. SLO [HC18]. slow [NS03].

slow-speed [NS03]. Small [WGT+17, XLCL13]. small-delay [XLCL13].

Small-Signal [WGT+17]. Smart [AL19, FHL+23, HXC+18, HK18, JDD20, SKM+16, YMB15, ZHC+18, JS13, AL19].

Smart-Gateway [HCX+18]. Smart-Grid [HCX+18]. Smart-Hop [AL19]. SmartCap [LYHL14]. SmartDR [GdRJM21]. Smarter [HFM20]. Smartphone [LYHL14].

Smartphones [LYLW17]. SMs [SBR+17].

SMT [AA17]. SMT-Based [AA17]. Snoop [PCT+17, ZYPD08]. Snooping [GD22].

SoC [HYS+19, GM03, GDF09, XZC09, BHW+13, DCK10, Kan06, LLH+17, LCL08, MOZ06, SBC08, TCL14, WLCJ09].

SOC-based [GDF09]. SoCDAL [AHL+08].

SOCs [MSD06, BM11, JHMG18, JPHL16, ZM07].

Soft [CWL+22, DFM15, EKEK22, LD17, LW21, PHKW12, SWT23, TLF16, QS09, RJBS09, ANS+20]. Soft-Error [LW21, TLF16]. Soft-Error-Rate [LD17].

Soft-Hat [ANS+20]. Software [ANS+20, BM11, CBR+22, JHMG18, JHH21, KMR18, LLP+16, LHF12, SYGC22, THT12, YYL+15, AM05, BASB01, CMM00, CAC05, CM13, FHHG12, GGB97, HKL+07, JW08, KSK+05, KTKO13, LMW09, LP07, LVL03, MSD06, ML09, NG06, SS11, WYIG07, WYJ+07, WYG09, YGH+10].

Software-Based [ANS+20]. Software-Defined [JHMG18].

Software/Hardware [CBR+22]. Solid [CCS15, CD09, CCY14]. Solid-State [CCS15, CCYC14]. solid-state-disk [CD09].

Solution [GSFT16, JNS+17, YFT17, YFT18, FNMS01, SR12]. Solutions [WFT+19, CW01, NR01].

Solver [MS21, XJF+23]. solvers [DP02, QSK12].

Solving [CYV+14, WGD07]. Some [KAKSP16]. SOPs [BCC08]. Sorting [ZMP16, Yan00]. Source [YKCG14, BCR+08, KRK98, ZYX+13].

source-level [KRK98].

Source-Synchronous [YKCG14]. Sources [DHB16, CH96]. Space [AKAKP18, FLG+23, FCZ+23, GACK22, GCZ+15, HMM+20, PGGD23, RS18, Sch17, SHB21, WS22, APB+08, ARLJH06, BW00, EK07, JP08, KSS+09, RFG20, SW12, VCLD03]. Space-aware [PGGD23].

space-efficient [ARLJH06]. spaces [BC11].

spacing [MKW09]. spare [ACT13]. Spatial [GFC+09, RB19, Das09]. Spatio [SSC17].

Spatial-Temporal [SSC17]. Special [ADGS02, BJKX15, BMdG17, CCY22, CO18, HAW20, KLSZ11, LZR23, PFHAH22, TK18, YD16, BC08, CH10a, CLQ12, HJ08, JW08, JYK12].
specialization [ADM+13]. specialized [BC08]. Specific
substrates [SKCM06].
subsystems [JSG09].
Subthreshold [BFL10].
Subtraction [BSP+23].
Successive-Approximation-Register [HWCL15].
Successive [HWCL15].
Suited [GYZ+22].
sum [DK08].
sum-of-product [DK08].
SUPERB [EBR+09].
Supervised [RNA+21].
Supply [BSP+19, BM11, JLK15, SLP+19, WCCC14, XRS+19, YFT17, YSF+18, YFT18, YBS+18, JR97, LLHT12, WLCJ09].
Support [MCZ+16, WKL+18, ZP08].
Supporting [LYL+19, ZLL+16].
Supports [MLH+17].
Suppressed [BC16].
Surrogate-Based [WFSS20].
Survey [BFG17a, BRCS18, GLD+22, HHH+21, KAC+23, LM19, Mt16, MRL+19, PTPB22, RJ14, SSK+23, BD97, CEB06, KG99, KP13, SW04].
survivability [ACT13].
suspect [DNA+12].
Suspension [NSH+16].
Sustainable [CXH+16].
SW [ADP+07, BFV15, FLPPP09, WWFT12].
Swarm [HLG+15].
Switch [MMM+22, CWW96, CZW+03, FLWV02, FLWC07, RFYL98, THL+13, ZHTC09].
switchboxes [DSKB04]. switched [CSC08, HWCL13]. switched-capacitor [HWCL13].
Switching [AVG19, GSS14, RM23, SRC15, BRL06, HCN09, PR11, SXX+06].
switching-activity [SXN+06].
Symbolic [BDM+99, BFG17b, DY23, MCD12, SHD17, BLM00, FWCL05, KVMHO8, YWGI09].
Symbolic-Event-Propagation-Based [MCD12]. symmetric [IAI+09].
Symmetrical [OCH19, CZW06].
symmetries [CMB07]. Synaptic [HSP+22].
Synchronizing [MDM+12]. Synchronous [CH17, HPB11, PMS15, TB20, WWW+12, YKCG14, ZABGZ17, BDM+99, BASB01, CACS05, CPR+02, HKB+07, MB04].
SynergyFlow [LYL+19].
Synthesis [AG22, AA17, BR12, BD00, BSP+23, CSKR05, CET16, CXS+23, CS22, CLMZ10, CCL03, EO19, FCZ+23, GBR07, HS18, HRC21, HMVG13, HZS+16, ISK21, JHH21, KK14, KKK12, KKS16, LS17, MKW21, NG06, OCK19, PDS12, PG15, PFHAH22, QSW+15, RCW22, RJ14, Sch17, SGC+14, SS14, SGGR14, SLV+22, SV11, SCCH08, UE22, WCCC14, WS22, YMB15, ADS+09, BDM+99, BZ08, CLK06, CMM00, CBMM10, CL99b, CD96, DDNAV04, FHHG12, GG99, GOC02, GH00, GGDN04, GWR13, HLKN07, HLC98, HLS00, HLHT08, Hua01, JLF+12, KSS+09, KKH+02, KK11, KW02, KHP05, KFH+08, LCD07, LC14, Lin97, LLHT12, LWH06, MMP00, DMM07, MKBS05, MJM11, MRC06, PBB+06, RFYL98, RS03, SW12, SCB01, SV07, TN99, TC98, VHLH98, VTK02, VKKR02, WW02, WG11, WKR09, XK97, XPS12, YWW10].
Synthesis-time [BSP+23]. Synthesized [RB21, SBR+17]. Synthesizing [GSS14, GNQ+22].
synthetic [PSK08].
System [BDM00, CH17, DMR10, GM08, GPH+09, HKL+15, HZS+19, LL15, LG18, NAK20, NRZ+18, PDS12, PPDK09, Pie16, PBSV+06, RFG20, SL18, SGGR14, TK18, WL12, YGG+16, ZHM07, APB+08, BPRR98, BMJ13, Cha01, CKAP07, CSC08, CGLH23, DC07, GG99, GABP00, HGBH09, HMVG13, HW00, LTH99, LCC11, MOZ06, MPSJ07, OCRS07, Ped06, SPG+08, Sen11, Vah09, ZLL13, dW97, AHL+08, LVI03, WLL+11].
System-Level [HKL+15, LL15, LG18, PDS12, Pie16, BdM00, GM08, PPDK09, RFG20, ZHM07, MOZ06, OCRS07, Ped06, Sen11, Vah09, ZLL13]. system-on-a-chip [Cha01, CKAP07]. System-on-Chip [HZS+19, SGGR14, APB+08, BMJ13, CSC08, WLL+11, AHL+08].
System-scenario-based [GPH+09].
Systematic [AMM+06, SLP+19, KPR06, RPCK05].
SystemC [BK10, CVMP19, GD20, HV07, WWFT12, ZMS+19, RHA08].
SystemC-AMS [CVMP19, ZMS+19].
SystemC-based [GD20].
SystemCoDesigner [KSS+09]. SystemJ [MR09, SPT+17]. Systems [ALLE20, ADGSM22, BHK17, BLNK14, BJX15, BSP+22, BB17, BS14c, CLL+22, CHA+23, CH01a, CCH+15a, CHBK15, CXLL22, CYH19, DFM15, DHX+23, EAP17, GT21, HXZ+23, HK18, IGN18, JHJH21, KLSZ09, KC10, KMR18, LL15, LWX+23, LH+15, LZZSV15, LMA+16, LL19, LZA+21, MRL+19, NSH+16, ORGD+15, PPP+15, PSNC18, PG15, PZBM19, PY20, QBTM16, RFG20, RG19, RNA+21, SSC17, SPT+17, SBY+20, STWX12, SS14, SHB21, SAL19, TB20, THT12, TL19, WLZ+19, WHRC12, WQc+16, WDD+23, WDLX21, XPZ+18, XGC+20, YBM+21, YRH11, ZLW+15, ZMS+19, ADM+13, AM10, ADDM+13, ARLJH06, BD00, BWB14, CSHR07, CMM00, CSL+07, Con06, CQL12, CCL04, DCK07, DRRG98, DDNAV04, DTC+09, GDG07, GHP+09, GDF09, HKQ+07, HV07, HDL+12, HLCRC98, HS00, HBC+08, JS13, JWL+03, JW08, KKM02, KC13, KP13, KFH+08, LCZ+08, LCK+09, LSDV10, LD09].
systems [LP07, MB01, MDG98, MH07, ML09, OK08, PD00, PCD+01, PSL+98, Pd11, PEP06, Qs09, Rk09, RSR01, SCB01, SLXZ12, SUC01, SHN12, SS11, SZZ+12, THC+14, W096, W097, ZAJ+12, ZP08, SN10, CPX14]. Systems-on-Chip [BHK17, HDL+12, KP13]. Systems-on-Chips [LWX+23]. SystemVerilog [CVY+14].
T [YYC09]. T-trees [YYC09]. TAAL [JZG21]. table [KSD+22, WSEA99]. table-based [WSEA99]. tables [CH02, YTHC97]. Tag [YBS+18]. tagged [ZP08]. Tailoring [CSC08]. Taming [FHHH22]. Tampering [HYK+20, JZG21]. Tandem [MR09]. Tapered [BSP+23, KKH16]. Target [GKS+20, KYL16, PBWB21, PBF+22, Pom20, FS13]. Targeted [SNL12]. Targeting [LPD+17, LZY+23, PTPB22, JBC+10, MLMM08]. Task [ENP20, LMA+16, SZB17, DCK07, GKI4, GBC07, YLYL09]. Tasks [CH17, SSC17, WJG+19]. taxonomy [KP13]. TCAM [VNS19]. TCONMAP [HABS15]. tdf [ZMT13]. TDM [VGG19]. TDM-based [VGG19]. Technique [CV17, JK10, JPM+19, LGG+14, SBB+18, DHV+00, HLC07, IBD07, KI01, LC96, MB04, Mut09, RSR01]. Techniques [GD20, GDG07, MD07, Mit16, PTC+15, TWL16, WSV+14, YD16, AM05, BD97, BD00, BH10, BAS01, CLM+10, CSAHR07, CACS05, CFHM09, DS06, DD02, HP99, HCS01, HCC01, KSK+05, KMS12, KHP05, LSDL0, LBD0, LH07, LHT05, LVL03, OCR10, OK08, PCD+01, RIJS09, TY97, TB13, TYH08, VMP+00, XK97, ZH08]. Technologies [PFHAH22, SN10, BC08]. Technology [BFL10, CHY05, DKT+16, DBK+18, GLD+22, HAB15, JYZ15, SABS15, YD16, ZQ02, BLM00, CH02, CH00, KL05, LKM04, PL08, W06, WSEA99, ZLL13]. technology-dependent [BLM00]. Technology-Driven [DKT+16]. TEI [LHW+17]. TEI-power [LHW+17]. Temperature [JGM14, LHW+17, ZYP09, ADP+07, CLQ12, DH06, WYY+07]. Temperature-aware [ZYP09, ADP+07, CLQ12]. template [HGBH09]. Temporal [Pie16, SSC17, YYC07, BD05, Das09, YYC09]. Temporally [PRCK08]. Tensor [HSL+22, SYH+22]. terminals [ISE08]. Test [AYM05, BDBB19, EM03, EO19, FHL+23, GF06, IE12, LCT03, LYS019, LM21, MCD12, NCM17, PKJK20, Pom15a, Pom15b, Pom15c, Pom16b, Pom16c, Pom17a, PV17, Pom18a, Pom19b, Pom20, Pom21a, Pom22, RJ14, SBB+18, TBZ13,
Test-Architecture \{WWCT18, XZC09\}.
Testability \{LW21, Pom16a, Pom18a, FRS97, PSK08, Pom14a, SCJ01\}.
Testable \{GBR07, LW21, RMPJ08\}.
testbenches \{BFP08\}.
testers \{NS03, SBC08\}.
Testing \{LPY+20, NS03, PTC+15, TPC+17, WWCT18, WWW+12, XCW12, XCF18, JT98, KBN09, LHCT05, PKP+03, SEN05, SXZV13, SCJ01, SOC06, TD03, XZC09\}.
Tests \{Pom15a, Pom16a, Pom16c, Pom18b, Pom19a, Pom19b, Pom20, Pom21a, Pom21b, DNA+12, PR09, Pom13, Pom14a, Pom14b\}.
text \{LDK99\}.
text-compression-based \{LDK99\}.
Thief \{BTP+20\}.
Their \{MLH+17, PTPB22, DSK01\}.
thecoretic \{HR06\}.
Theoretical \{TB20, SB98\}.
Theories \{PG15, YW09\}.
Theory \{CXL22, MDM+12, SSK+23, JWL+03\}.
Thermal \{CK19, CLT+15, CXH+16, CVMP19, CAP+23, CR12, DCK10, JGM14, LCK+09, LHW+17, LDD+18, LZA+21, MDR15, OCK19, SBY+20, SKP21, WMT+16, ZHC+18, ZF23, ADDM+13, ANR13, GKL14, LH31, LHZ+06, LTP10, QS1K12, WTL+13, WJY+07, YHH09, ZAJ+12, ZSZ10\}.
Thermal-Aware \{SBY+20, SYX12, OCK19\}.
thermal-oriented \{LHZ+06\}.
Thermal-Sensor-Based \{ZHC+18\}.
Thermally \{RGM15\}.
thermodynamic \{VLH04\}.
Things \{TK18\}.
Thread \{CNQ13, SV11, KBA08\}.
Thread-based \{CNQ13\}.
threaded \{HC17\}.
Three \{KQP+19, LQD22, RGM15, WXH+19, Yan00, Vah02, YYY07, YYY09\}.
Three-Dimensional \{RGM15, KQZ+19, WXH+19, YYY07, YYY09\}.
Three-layer \{Yan00\}.
Three-Phase \{LQD22\}.
three-step \{Vah02\}.
Threshold \{CZW19, DHVW18, SV16, SHN12\}.
Throughput \{HCRK11, HIW15, KLJ14, MS23, SEN15, CGLZ11, EKEK22, GM08, PRKK21, SKS12, SHN12\}.
throughput-aware \{SKS12\}.
Throughput-Optimized \{HCRK11\}.
Thwart \{BTP+20, LSK20\}.
Tier \{SSL17\}.
TIGFET \{LQD22\}.
TIGFET-Based \{LQD22\}.
tightly \{LMB+12\}.
tightly-coupled \{LMB+12\}.
Tightness \{APS18\}.
tile \{ Djp21\}.
Tiled-DNUCA \{DK16\}.
Time \{APDC17, BB17, CHA+23, CBK15, CBC22, CH17, CJKK19, FG18, GY+22, HXC+18, IGN18, KPF16, KPB19, LM19, LSZ+21, LSK20, NSH+16, PSNC18, PGGD23, PY20, SSC17, SBY+20, SLV+22, WLZ+19, WDZG16, WJG+19, YHR11, ZLY+15, ZZCY17, APB+08, ARLJH06, BSP+23, CSAHR07, DP02, DSG98, FHH21, HMLL11, HLK07, HMVG13, KNRK06, LCHT02, LTP10, MR96, MHQ07, NG06, PEPP06, PW99, SCB01, SWT23, WGD07, WLL+11, ZAV13\}.
Time- \{PGGD23, ARLJH06\}.
time-constrained \{NG06, SCB01\}.
time-constraints \{CSAHR07\}.
Time-Division \{PY20\}.
time-domain \{LTP+13\}.
Time-Multiplexed \{LM19\}.
Time-Sensitive \{CHA+23\}.
Time-Triggered \{BB17, IGN18, KPB19\}.
time/resource \{WGDK07\}.
Times \{PMS15\}.
Timing \{CZW00, CB17, HIW15, HS19, JNCS19, KKK12, LVS16, LJJ18, LWC18, LYCP17, LNG+16, LL19, MJM11, MKW08, TB20, VBP+19, WSH+18, WKC12, WL12, Yan08, WPC16, WSK12\}.
Uncertainties [CS07]. Uncertainty [CXLL22, GC18, STGR15]. Unclonable [CSC +21, YBS +18]. Uncore [WGSH16]. Understanding [HHL14]. Undetectable [Pom19b]. Unicast [XS16, XCF18]. Unicast-Based [XS16, XCF18]. unified [Kag05]. Uniform [HZS +19, KCKG16]. Unique [SOS15]. UNISIM [LS11]. UNISIM-Based [LS11]. Unison [SGJ96]. Unit [BM11, HWCL15, ZXC +23, HWCL13]. Unit-Capacitor [HWCL15]. Units [LCJ +22]. Universal [CW96, CJKK19, JCK +22, FLW02, FLWC07], universality [RHN00]. Unknown [SSO16]. Unknowns [EKS +14]. Unmannned [HXB +22]. Unnecessary [Pom15c]. unpredictabilities [DS05]. unpredictability [SPG +08], unscheduled [MVF96]. Unstructured [VTC20]. Untangling [Yan19, YW09], uncontrollable [LIA00]. UPaK [WR09]. Update [KC10]. Upper [JLJ15], upset [NdLCR03, RM09]. upsets [MRB +11]. Use [KBV +15, KFH +08, MS00]. use-cases [KFH +08]. Useful [TCW20]. Using [APDC17, APD +11, ASAP17, AV19, AGM01, BBEM15, BDB12, BS14b, BM11, BLUS19, CM19, CAOM19, CYV +14, CJKK19, DNA +12, EW18a, EW18b, EK16, FZL +23, FWCL05, FHR21, FYCT15, GF16, GBR07, GNCT21, GD20, GHYR19, HS18, JBJ22, JNS +17, JSS +19, KQP +19, LHS20, LHH +17, LFS21, LYH14, LYS019, LSCK20, LLK +14, LCC +15, LM21, MA16, NPH +20, PJJ14, PMT20, PG15, PR09, Pom15a, SMS22, SKS +18, TB20, TYSF20, THM15, TMD010, TCL14, WKL +18, WXH +19, WSS +18, YHL +11, ZHC +18, ZYS12, ZMS +19, BLR06, BWB14, BK10, BGN +07, BASB01, CACS05, CBMM10, CFHM09, CK96, GGBZ02, GK07, GK09, HVE +01, HMB98, HPK99, HCC01, HW14, KSK +05, KRS06, KPR06, KMS12, KMC97, LCT03, LSL +13, LON08, MHD +04, MSR09, MS08, MR05, MP07, MLC08, MVL +18, NRZ +18, PRCK08, PKP +03, PMB10, PHM0, RJJ +09, RCD07, SGK08, SABS015]. using [SFM +19, STL +13, SYH +22, SBH +06, SCJ01, TLF16, TWL16, TN09, TD03, TYH08, Vah02, WYY99, WJY11, WCC03, XCL13, XK97, YTHC97, YYC07, ZHOM08]. UST [wATkK02]. UST/DME [wATkK02]. Utilisation [NAK02]. utility [BCR +08]. Utilization [KKLG15, KMR18, MT15, GM03, SBC08, SY07]. Utilizing [BLN14, CK16, EBR +09, LQD22]. UTPlaceF [LLL +18].

References

Abouzeid:2011:COS

Aksoy:2012:OAM

Agarwal:2013:SDS

Afacan:2019:CRC

Al-Dujaily:2013:DPB

Alaghi:2022:ISI

Abouelella:2013:HEI

Atienza:2007:HSE

Avnit:2009:PCC

Abel:2022:FSS

Ashar:2001:UCD

Abbasian:2008:WBD

A. Abbasian, S. Hatami, A. Azali-Kusha, and M. Pedram. Wavelet-based dynamic power management for nonstationary service requests. *ACM

REFERENCES

David Atienza, Jose M. Mendias, Stylianos Managkakis, Dimitrios Soudris, and Francky

Abuowaimer:2018:GRD

Anonymous:2013:CNE

Ayoub:2013:CCM

Alam:2020:SSB

Ali:2017:RCD

Amir:2019:SPC

Al-Yamani:2005:TCE

Alasad:2020:SLO

Boyer:2001:ODS

Behera:2017:TTS

Bogliolo:2000:RBR

Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli. Regression-based

Beznia:2015:TAR

Bhattacharya:2005:OWP

Bahar:2008:IJA

Bemasconi:2011:DRB

Bemasconi:2016:IRZ

Bemasconi:2008:OKS

REFERENCES

REFERENCES

[Benini:1999:SSC] Luca Benini and Giovanni de Micheli. System-level power optimization: techniques and tools. ACM Transactions on Design Automation of Electronic Systems,
REFERENCES

REFERENCES

REFERENCES

Balakrishnan:2000:AFS

Blanc:2010:RAS

Baranowski:2015:RSN

Bhanja:2006:SFG

Bhar:2000:POT

Baek:2014:DHD

REFERENCES

Bonna:2019:MSD

Bondade:2011:HSC

Basten:2017:SSI

Bogdan:2013:DPM

Bommu:2000:RBF

Benso:1998:ELC

Bonetti:2017:AID

Backes:2012:SCD

Boghrati:2014:IAP

Bolchini:2014:DHE

Boukhobza:2018:ENS

REFERENCES

REFERENCES

[CAOM19] Vidya A. Chhabria, Vipul Ahuja, Ashwath Prabhu, Nikhil Patil, Palkesh Jain, and Sachin S. Sapatnekar. Encoder-decoder networks for analyzing thermal...

Ciordas:2005:EBM

Choudhury:2022:SHC

Chen:2006:SPC

Chien:2009:SMV

Clarke:2009:WLS

Chang:2015:MBW

Chang:2015:CDC

Da-Wei Chang, Hsin-Hung Chen, and Wei-Jian Su. VSSD:

Chandra:2022:ISS

Chang:2014:BBL

Cong:1996:CLS

Chang:2009:DIE

REFERENCES

Chang:1996:OCP

Cong:1996:OWI

Chowdhary:2002:GTM

Chang:2010:CPA

REFERENCES

[CHC+16] Yu-Ming Chang, Pi-Cheng Hsiu, Yuan-Hao Chang, Chi-Hao Chen, Tei-Wei Kuo, and

Rita Yu Chen, Mary Jane Irwin, and Raminder S. Bajwa. Architecture-level power estimation and design experiments. *ACM Transactions
REFERENCES

Cheng:2015:ABW

Choi:2019:RDR

Cong:2011:AMP

Cheng:1996:AGF

Czerwinski:2016:SAO

Chakraborty:2019:ERL

Shounak Chakraborty and Hemangee K. Kapoor. Exploring the role of large cen-
 REFERENCES

Chakrapani:2007:PSC

Cong:1998:BSC

Cheng:1999:CGN

Choi:1999:FDA

Chang:2013:IPP
REFERENCES

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Charles:2020:RNC

Chang:2007:PRE

Chen:1998:SDI

Carchiolo:2000:HSS

Cabodi:2008:BID

Calimera:2010:NAC

REFERENCES

Chang:2014:EBT

Cochran:2012:TPA

Chen:2015:DMD

Cai:2007:WAD
REFERENCES

[CT13] Yao-Lin Chang and I-Lun Tseng. A parallel dual-scanline...

Guoqing Chen, Yi Xu, Xing Hu, Xiangyang Guo, Jun Ma, Yu Hu, and Yuan Xie. TSocket: Thermal sustainable power budgeting. ACM Transactions on Design Automation of Elec-
REFERENCES

tronic Systems, 21(2):29:1–29:??, January 2016. CO-
DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[CXK+13] Xi Chen, Zheng Xu, Hyungjun Kim, Paul Gratz, Jiang Hu,
Michael Kishinevsky, and Umit Ogras. In-network monitoring
and control policy for DVFS of CMP networks-on-chip and
last level caches. ACM Transactions on Design Automation
of Electronic Systems, 18(4):47:1–47:??, October 2013. CO-
DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

[CXS+23] Si Chen, Guoqi Xie, Renfa Li, and Keqin Li. Uncertainty the-
ory based partitioning for cyber-
physical systems with uncertain
reliability analysis. ACM Trans-
ation on Design Automation
of Electronic Systems, 27(3):
23:1–23:19, May 2022. CO-
DEN ATASFO. ISSN 1084-
4309 (print), 1557-7309 (elec-
.org/doi/10.1145/3490177.

[JYH19] Junchul Choi, Hoeseok Yang, and Soonhoi Ha. Optimization of fault-tolerant mixed-
criticality multi-core systems with enhanced WCRT analy-
sis. ACM Transactions on De-
sign Automation of Electronic
2019. CODEN ATASFO.
ISSN 1084-4309 (print), 1557-
7309 (electronic).

[CXR+23] Dwaipayan Choudhury, Lizhi Xiang, Aravind Rajam, Anan-
tharaman Kalyanaraman, and
Partha Pratim Pande. Accel-
tering graph computations on 3D NoC-enabled PIM ar-
chitectures. ACM Transactions on Design Automation
of Electronic Systems, 28(3):
30:1–30:??, May 2023. CO-
DEN ATASFO. ISSN 1084-
4309 (print), 1557-7309 (elec-
.org/doi/10.1145/3564290.

[CYS+23] An-Che Cheng, Chia-Chih (Jack) Yen, Celina G. Val, Sam Bay-
less, Alan J. Hu, Iris Hui-Ru Jiang, and Jing-Yang Jou. Ef-
ficient coverage-driven stimulus generation using simultaneous
SAT solving, with application
to SystemVerilog. ACM Trans-
REFERENCES

Chen:2021:RMB

Dasdan:2004:EAF

Dasdan:2009:PEA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue/Issue</th>
<th>Pages</th>
<th>Date</th>
<th>Digital Object Identifier (DOI)</th>
</tr>
</thead>
</table>
REFERENCES

[Ding:2023:MAP] Bo Ding, Jinglei Huang, Qi Xu, Jimpeng Wang, Song Chen, and

Duarte:2011:HDP

Duarte:2011:HDP

Du:2023:TLR

Deb:2021:CRC

Monzurul Islam Dewan and Dae Hyun Kim. Design automation algorithms for the NP-separate VLSI design methodology. *ACM Transactions on Design Automation of Elec-
REFERENCES

Dey:2020:MLA

Dandalis:2004:ACE

Dandalis:2002:RTP

Dasgupta:2002:MBP

Dasdan:1998:TDD
REFERENCES

REFERENCES

REFERENCES

Dai:2023:SAD

Dong:2018:PAA

Duan:2015:DDO

Delledonne:2018:CDA

Ebrahimi-Azandaryani:2023:ACA

Enrici:2017:MDE
Andrea Enrici, Ludovic Apvrille, and Renaud Pacalet. A model-driven engineering methodology to design parallel and distributed embedded systems.
Engelke:2009:SSU

Edwards:2003:TCC

Elangovan:2022:ABA

Esbensen:1997:PDI

Ewetz:2016:CR

Ebrahimi:2022:PCL

Zahra Ebrahimi, Dennis Klar, Mohammad Aasim Ekhtiyar, and Akash Kumar. Plasticine: a cross-layer approximation methodology for multi-kernel applications through minimally biased, high-throughput, and energy-efficient SIMD soft

Feng:2022:TTO

Feng:2021:FRT

Fang:2023:ETC

Feng:2023:GGA

Fummi:2009:CMH

REFERENCES

Fan:2007:ECD

Fan:2002:RDG

Flores:2001:ESM

Faezipour:2009:HPE

Fummi:1997:FDT

Forte:2013:RAA
Fujita:2005:ECB

Fang:2000:MFP

Feng:2005:UDP

Firouzi:2015:AVA

Fournier:2011:PAC

Fan:2023:PCC

Gogniat:2000:CBE

[GABP00] G. Gogniat, M. Auguin, L. Bianco, and A. Pegatoquet. A code-

Gautier:2022:SMO

Gade:2019:EEC

Goel:2021:MNN

Gorjiara:2007:UFE

Gangwar:2007:IIC

Ghosh:2007:LPT

Ganley:1996:RST

Gomez:2018:SCP

Gingade:2016:HPM

Guo:2015:RDS

Goli:2020:PAP

Gade:2022:NHC

Sri Harsha Gade and Sujay Deb. A novel hybrid cache coherence

Ghosh:2021:PDP

Grosse:2009:MPO

Guan:2008:SAP

Garcia-Dopico:2011:NA

Goncalves:2021:SA

Guo:2017:OBP

REFERENCES

Galanis:2007:SES

Goren:2006:TSG

Guan:2010:RFP

Geelen:2009:SLE

Ghasemzadeh:2016:HAE

Gasteier:1999:BBC
REFERENCES

citations/journals/todaes/1999-4-1/p1-gasteier/.

Ghosh:2004:COE

GG04

Gong:1997:MRH

GGGB97

Glebov:2002:FNA

GGZB2001

Gupta:2004:CPC

GGDN2004

Gupta:2000:CIP

Gupta:2012:HPC

Sivaram Gopalakrishnan and Priyank Kalla. 2009 ACM TO-DAES best paper award: Optimization of polynomial dat-
Gong:2012:FNM

Goel:2003:STA

Garg:2008:SLT

Gnger:2013:BAD

GuerraSilva:2002:SMA

Gnad:2021:VBC

REFERENCES

Gupta:2013:ECR

Gao:2018:ECI

Guin:2016:FCS

Gange:2014:SOS

Gebregirogis:2021:ALF

Gupte:2015:FAT

Guthaus:2013:RAP

Gately:2012:AJO

Gong:2022:AMB

Higgins:2005:SD

Hovaida:2017:EMA

Heyse:2015:TTM

Harris:2005:I

REFERENCES

[Huang:2013:IBM] Po-Chun Huang, Yuan-Hao Chang, and Tei-Wei Kuo.
REFERENCES

Huang:2014:GCM

Hsiung:1998:IIC

Huang:2009:OPR

Han:2011:DIT

Hu:2001:ELA

Ho:2016:AAD

Ching-Hsuan Ho, Yung-Chih Chen, Chun-Yao Wang, Ching-Yi Huang, Suman Datta, and Vijaykrishnan Narayanan.
References

Huang:2016:FTS

Handique:2022:FLS

Holt:2012:FLP

[He:2020:LHD]

Huang:2020:TSD

Huang:2007:ESC

[HG07] Po-Kuan Huang and Soheil Ghiasi. Efficient and scalable compiler-directed energy optimization for realtime applications. *ACM Transactions on Design Automation of...

REFERENCES

REFERENCES

Hu:2007:IHM

Hsieh:2007:FDC

Hosseinabady:2007:LTA

Hung:2023:DDR

REFERENCES

[HMO+14] Wei Hu, Dejun Mu, Jason Oberg, Baolei Mao, Mohit Ti...

[Hassanpourghadi:2021:MLG] Mohsen Hassanpourghadi, Rezwan A. Rasul, and Mike Shuo-Wei Chen. A module-linking graph assisted hybrid optimization framework for custom analog and mixed-signal circuit param-

Hsiung:2001:PPO

Huang:2022:AHS

Huang:2013:LPA

Hu:2020:EMN

Huang:2001:CSP

Huggins:1998:SVP

James K. Huggins and David Van Campenhout. Specification

Herrera:2007:FHS

Herrera:2007:FHS

Hartanto:2001:DSS

Hung:2014:AFD

Hwang:2000:PSS

Hwang:2013:OCC
Huang:2015:PDU

Han:2022:DSL

He:2016:RIM

Huang:2023:CFD

Huang:2014:ICP

He:2022:DME

Huang:2018:DML

REFERENCES

REFERENCES

2017. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Irwin:2000:E

Inoue:2008:PVS

Islam:2021:HLS

Ince:2021:FBB

Johnson:1998:MAS

Jamieson:2010:BER

Peter Jamieson, Tobias Becker, Peter Y. K. Cheung, Wayne Luk, Tero Rissa, and Teemu Pitkänen. Benchmarking and evaluating reconfigurable architectures targeting the mobile domain. ACM Transactions on Design Automation of
Jagadheesh:2022:NAM

Jan:2005:GMR

Jun:2018:RBD

Jha:2000:HLL

Jiao:2018:OER
DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Jeong:2021:DMB

Jayakumar:2010:SIV

Jafari:2015:LUD

Jung:2015:LMS

Jose:2014:IAH

Jung:2019:ILP

Jinwook Jung, Gi-Joon Nam, Woohyun Chung, and Youngsoo Shin. Integrated latch

Jeong:2017:CSP

Jeong, Jae Woong; Natarajan, Vishwanath; Sen, Shreyas; Mak, Tin; Kitchen, Jennifer; Ozev, Sule. A comprehensive BIST solution for polar transceivers using on-chip resources. *ACM Transactions on Design Automation of Electronic Systems*, 23(1): 2:1–2:??, October 2017. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Jeong:2017:MSM

Jin:2016:CEE

[JT98]

[JYHY21]

[JW08]

[JYY+22]

[JZG21]
Jiang:2015:CLF

Koblah:2023:SPA

Kagaris:2005:UMP

Kamal:2016:YSI

Kandemir:2006:REC

Krashinsky:2008:ISV

Kavousianos:2009:EPS
REFERENCES

REFERENCES

[KGK12] Mohammed G. Khatib. Migration-resistant policies for probe-wear leveling in MEMS stor-

Tak-Yung Kim and Taewhan Kim. Clock tree synthesis

Kang:2014:IRA

Kim:2002:LTL

Kim:2015:MMS

Kurimoto:2012:YRI

Kritikakou:2018:DDS

Karfa:2012:FVC

Kolsen:1996:ORA

Kulkarni:2006:CTA

Karabacak:2018:RDU
REFERENCES

137

[102x681] REFERENCES

137

4309 (print), 1557-7309 (electronic).

Kim:2009:MLP

Kornaros:2013:STC

Kee:2022:LPP

Kukkala:2019:JSF

Kashif:2016:PSR

Kang:2006:STA

Kahng:2009:LAA

[102x681] Andrew B. Kahng, Chul-Hong

Masanori Kurimoto, Hiroaki Suzuki, Rei Akiyama, Tadao Yamanaka, Haruyuki Okkuma, Hidehiro Takata, and Hirofumi Shinohara. Phase-adjustable er-

Kolhe:2022:BDS

Kadayif:2005:OIT

Keinert:2009:SAE

Kagaris:1996:FAM

Kagaris:2001:NHC

REFERENCES

Kadayif:2013:HSA

Kucinski:2003:CDS

Krishnaswamy:2008:PTM

Kountouris:2002:ESC

Katoen:2016:PMC

Kim:2016:IWP

Kurimoto:2012:VWR

REFERENCES

Liu:2007:IEM

Lee:2013:SRB

Lee:2014:CPA

 Li:2022:DDN
Chaojian Li, Wuyang Chen, Yuchen Gu, Tianlong Chen, Yonggan Fu, Zhangyang Wang, and Yingyan Lin. DANCE: DAta-Network Co-optimization for Efficient segmentation model

REFERENCES

Lee:2007:CCA

Li:2003:TDC

Leung:2012:PVI

Liu:2018:RML

Lee:2008:FCB

Li:2017:ASE

Lee:2018:PTT

Dongjin Lee, Sourav Das, Janardhan Rao Doppa, Partha Pratik Pande, and Krishnendu Chakrabarty. Performance and thermal tradeoffs for energy-

Lee:2019:IEC

Liao:1999:TCB

Lee:2020:IEC

Laubeuf:2022:DQR

Luo:2022:FDF

Lin:2012:RSP

Liu:2009:MAA

Liu:2012:ECM

Lee:2018:LBF

Lozano:2023:LBP

REFERENCES

Livramento:2014:HTD

Lin:2009:SCD

Lee:2014:DCC

Li:2016:ODM

Liu:2005:ETT

Lin:2012:HSC

[LHF12] Hai Lin, Tiansi Hu, and Yunsi Fei. A hardware/software coop-

Lee:2017:TPT

Li:2006:ETO

Liu:2022:AAF

Lin:1997:RDH

Lee:2018:ICA

Lapinskii:2002:CAH

Li:2022:NAD

Lu:2018:FDR

Lin:2019:QEO

Lee:2022:DAA

Jaechul Lee, Cédric Killian, Sébastien Le Beux, and Daniel Chillet. Distance-aware ap-

[LL15] Jong Chul Lee and Roman Lysecky. System-level observa-

REFERENCES

April 2003. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Lin:2012:LBC

Lim:2014:PMG

Lee:2013:AVC

Li:2018:UHP

Liu:2013:ABF

Lin:2018:MRB

Liao:2001:CPT

Li:2023:PDW

Lee:2016:DWC

Li:2003:CLF

Lop:1996:EDP

REFERENCES

Lee:2005:PDD

Li:2019:TMF

Lyu:2021:MSC

Lari:2012:HPM

Lukasiewycz:2016:SAO

Li:1999:PEE

LMW99

Livramento:2016:CTA

Liu:2008:PVA

Lee:2003:ACG

Lee:2003:ACG

Lim:2007:ISI

REFERENCES

[Liu:2022:LOH] Yanjiang Liu, Tongzhou Qu, and Zibin Dai. A low-overhead and high-security cryptographic circuit design utilizing the TIGFET-based three-phase single-rail pulse regis-

REFERENCES

REFERENCES

Liu:2013:PBA

Liu:2016:ECM

Liu:2022:FIA

Lyseczy:2002:PIB

[LV02] Roman Lysecky and Frank Vahid. Prefetching for improved bus wrapper performance in cores. ACM Transactions on
References

Liu:2014:SIS

Lopez-Vallejo:2003:HSP

Lee:2016:TPD

Chen-Hsuan Lin, Lu Wan, and Deming Chen. C-Mine: Data mining of logic common cases

[Liu:2006:CML]

[LWH06]

[LWK11]

[Lepak:2004:SSI]

[LXCH04]

[LXWC20]

Lee:2013:RIB

Liu:2017:ILA

Li:2019:SEA

Lin:2017:HDP

Liu:2020:APA

Liao:2021:EPA

Li:2019:ATR

Luo:2021:TMF

Lin:2023:ISI

REFERENCES

Li:2023:MLB

Le:2023:PBM

Lin:2015:SAD

Mehri:2016:GAB

Maric:2014:HCD

Marwedel:2000:GE

Mazumdar:2016:CIS

[Bodhisatwa Mazumdar, Sk. Subidha Ali, and Ozgur Sinanoglu. A compact implementation of Salsa20 and its power analysis vulnerabilities. ACM Transac-
Mahfouzi:2020:SAR

Murthy:2004:BMP

Mariatos:2001:MAC

Mandal:2020:EAO

Mondal:2012:SEP

Muchherla:2008:NEW

Kishore Kumar Muchherla, Pin-
REFERENCES

Subhankar Mukherjee, Pallab Dasgupta, Siddhartha Mukhopadhyay, Scott Little, John Havlicek, and Srikanth Chandrasekaran. Synchronizing AMS assertions with AMS simulation: From theory to practice. *ACM Transactions on De-
REFERENCES

Mirtar:2015:AAA

Mahmoud:2023:LEP

Mehhta:1998:ESR

Milder:2012:CGH

Morgado:2009:GRS

Mitra:2015:OWS
Metwalli:2019:SAS

Ma:2004:SCU

Mittal:2016:STC

Mey:2014:CEL

Mochocki:2007:TOA

Moreno:1996:REU

Monteiro:2019:OCF

[Jucemar Monteiro, Marcelo Johann, and Laleh Behjat. An

Mittal:2011:TV

Memik:2005:SAO

Majzoobi:2013:LPR

Moiseev:2008:TAP

Moiseev:2009:PDO

Mu:2009:AHS
Moscola:2008:RCB

Mok:2012:DSL

Moon:2017:ASP

Mukherjee:2008:HLC

Mahalat:2022:ICA

Marculescu:2000:SSM

REFERENCES

[MPSJ07] Deepak Mathaikutty, Hiren Patel, Sandeep Shukla, and Axel
Jantsch. EWD: a metamodeling
driven customizable multi-MoC
system modeling framework.
*ACM Transactions on Design
Automation of Electronic Sys-
tems*, 12(3):33:1–33:??, August
2007. CODEN ATASFO. ISSN
1084-4309 (print), 1557-7309
(electronic).

Middelhoek:1996:VEF

[MR96] Peter F. A. Middelhoek and
Sreeranga P. Rajan. From
VHDL to efficient and first-
time-right designs: a formal
approach. *ACM Transactions
on Design Automation of Elec-
tronic Systems*, 1(2):205–250,
April 1996. CODEN ATASFO.
ISSN 1084-4309 (print), 1557-
7309 (electronic). URL http://
www.acm.org/pubs/articles/
journals/todaes/1996-1-2/
p205-middelhoek/p205-middelhoek.
pdf; http://www.acm.org/
pubs/citations/journals/todaes/
1996-1-2/p205-middelhoek/.

Mohanty:2006:IMS

Muhammad:2019:RBS

Maestro:2011:MEL

[MRB+11] Juan Antonio Maestro, Pedro
Reviriego, Sanghyeon Baeg, Shi-
jie Wen, and Richard Wong.
Mitigating the effects of large
multiple cell upsets (MCUs)
in memories. *ACM Transactions on Design Automation of
Electronic Systems*, 16(4):45:1–
45:??, October 2011. CODEN
ATASFO. ISSN 1084-4309
(print), 1557-7309 (electronic).

Malekpour:2020:HTM

[Amin Malekpour, Roshan
Ragel, Thu Li, Haris Javaid,
Aleksandar Ignjatovic, and Sri

[MS23] Svetlana Minakova and Todor Stefanov. Memory-throughput...
REFERENCES

Meh:2009:ICH

Mehra:2006:ADL

Majumder:2007:HPV

Malik:2009:SCU

Michael:2002:ATD

More:2015:LAN

Mutyam:2009:SST

Madhu Mutyam. Selective shielding technique to eliminate crosstalk transitions. *ACM
Muztoba:2018:IAI

Mak:1997:BLM

Munch:1997:EIB

Mohammadzadeh:2021:EOP

Ma:2020:MEF

Nath:2020:RDB

Arijit Nath, Sukarn Agarwal,

REFERENCES

Nahiyan:2020:SCF

Nongpoh:2019:ESE

Narasimhan:2001:FAC

Noltsis:2018:RSC

Niggenmeyer:2003:DAM

Nummer:2003:THP

REFERENCES

Ogras:2008:AOP

Ochoa-Ruiz:2015:MAR

Obenaus:2003:GFP

Oboril:2015:EIS

Ozdal:2006:TLB

Ozdal:2008:ORA

Pomeranz:2021:LDH

REFERENCES

Pomeranz:2017:TMR

Pan:2012:ERE

Panerati:2014:CEM

Poddar:2022:DDM

Park:2017:HHC

Pinto:2006:SLD

[Panda:1997:MDO] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Memory data organization for improved cache performance in embedded pro-

Panda:2000:CVC

Pasha:2012:SLS

CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Pedram:1996:PMI

Pedram:2006:ISI

Pedram:2008:E

Pedram:2011:CPV

Pop:2006:AOD

Pilato:2022:ISS

Peter:2015:CBS

Parulkar:2001:IRC

Poddar:2016:ECS

Pereira:2023:IED

REFERENCES

Peng:2012:SSE

Pees:2000:RCS

Pierre:2016:AVT

Pendyala:2020:IAS

Pan:2014:SPM

Park:2021:PPD

Pomeranz:2015:GDU

Pomeranz:2016:DTF

Pomeranz:2016:DTS

Pomeranz:2016:PIP

Pomeranz:2016:GTS

Pomeranz:2017:CSL

Pomeranz:2017:GTS

Pomeranz:2018:DDP

Pomeranz:2018:PIP

Irith Pomeranz. Partially invariant patterns for LFSR-based generation of close-to-functional
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PPDK09]</td>
<td>System-level PVT variation-aware power explo-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sudeep Pasricha, Young-Hwan Park, Nikil Dutt, and Fadi J. Kurdahi. System-level PVT variation-aware power explo-</td>
</tr>
</tbody>
</table>

Pomeranz:2019:BFB

Pomeranz:2019:ITU

Pomeranz:2020:TFT

Pasricha:2009:SLP

Sudeep Pasricha, Young-Hwan Park, Nikil Dutt, and Fadi J. Kurdahi. System-level PVT variation-aware power explo-

Papandreou:2015:ERM

Prasad:1996:TRP

Pomeranz:1998:FTG

Pomeranz:2007:FDT

Pomeranz:2009:UST

Pomeranz:2011:RSA

Panda:2008:SBV

Park:2021:HTN

Palchaudhuri:2021:DAT

Pecenka:2008:ESR

Passerone:1998:MRS

Pereira-Santos:2018:RFB

Padmanaban:2006:IGM

Paul:2005:HLM

Potluri:2015:DAT

Polychronou:2022:CSA

Pan:2020:ARP

Potkonjak:1999:MAD

Miodrag Potkonjak and Wayne Wolf. A methodology and algorithms for the design of hard
REFERENCES

REFERENCES

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Qian:2012:FPS

Qin:2015:CSE

Rakhmatov:2009:BVM

Rodrigues:2012:IPP
Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and Sandip Kundu. Improving performance per watt of asymmetric multi-core processors via online program phase classifica-

Raval:2019:III

Roy:2021:FVS

Ray:2012:ISS
Sandip Ray, Jayanta Bhadra, Magdy S. Abadir, Li-C. Wang, and Aarti Gupta. Introduction to special section on verification challenges in the con-

REFERENCES

[196]

DEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

Richthammer:2020:SSD

[RFG20]

Ranganathan:2009:VAM

[RG19]

[RGT+14]

Rosales:2014:MHA

Rafael Rosales, Michael Glass, Jürgen Teich, Bo Wang, Yang Xu, and Ralph Hasholzner. MAESTRO — holistic actor-oriented modeling of nonfunctional properties and firmware behavior for MPSOcs. *ACM Transactions on Design Au...
REFERENCES

...
REFERENCES

Roy:2005:FSV

Roy:2021:MLS

Roy:2021:FAA

Riepe:1998:EBD

Riepe:2003:TPN

Rosvall:2018:FTA

[RS18] Kathrin Rosvall and Ingo Sander. Flexible and tradeoff-aware constraint-based design

Roop:2001:FST

Ruan:2005:BEL

Rawat:2003:I

Samavatian:2015:ALL

Szentimrey:2020:MLC

Song:2019:HRB

REFERENCES

Su:2001:IRA

Sadat:2018:OAL

Song:2023:MLA

Sun:2022:CMO

Schaumont:2006:ICE

Sinha:2009:DIC

Shamshiri:2005:ILT

Sen:2011:COV

Srivastav:2015:DUL

Schwarzer:2019:CDA

Schneider:2014:QNE

Schirner:2010:FAP

Sinha:2014:FAI

REFERENCES

Sosic:1996:UAF

Saluja:2008:SBA

Sinha:2021:DSO

Shi:2017:TAA

Shi:2020:ASF

Song:2019:COR

REFERENCES

Su:1998:EFL

Srivastav:2012:DEE

Sarrafzadeh:2002:GE

Song:2023:VEE

Su:2006:AMS

Steinhorst:2016:CPC

Siddhu:2021:LAD

Shiri:2022:EEE

Singh:2012:ATA

Shalu:2022:DMB

Seo:2018:NIS

Sha:2022:DMB

Shamsi:2019:IPS

Sjovall:2022:HLS

Shi:2012:HND

Sudarsanam:2000:SRA

Sayed:2019:CAP

Skandha:2022:EEE

Skandha Deeprita S., Dhayala Kumar M., and Noor Muhammad SK. Energy efficient error resilient multiplier using

Suhaib:2005:XIM

Shi:2007:CSO

Singh:2010:AJE

Saxena:2002:ESL

Singh:2012:TRT

Su:2006:CTD

Suresh:2015:AGU

Singhal:2003:SOA

Sharma:2015:AIE

Sanz:2008:CSS

Singh:2002:ECC

Salcic:2017:NHH

Salamy:2012:ISA
Subramaniam:2015:FPM

Smirnov:2019:AOV

Sun:2011:GDD

Sinha:2014:DGP

Saha:2017:STS

Shin:2010:PGC

Saladi:2012:CAC

Singh:2003:MST

Sanchez:2023:CSE

Song:2017:STV

Singh:2022:PFE

Suresh:2016:AVD

Sundararajan:2004:NAI

Sahoo:2019:FMV

[SSS+19] Debiprasanna Sahoo, Swaraj

Shi:1999:SSL

Shi:1999:SSL

Sun:2015:NUB

Shen:2013:AAP

Shen:2012:FSF

Shiue:2001:DMD

Stitt:2007:BS

Stitt:2011:TWD

S:2016:EAD

Santos:2017:SMH

Song:1999:CDP

Sabade:2004:BTM

REFERENCES

[SYY+22] Xiao Shi, Hao Yan, Qiancun Huang, Chengzhen Xuan, Lei He, and Longxing Shi. A compact high-dimensional yield analysis method using low-rank tensor approximation. *ACM
REFERENCES

[SYZ08] Shih:2014:COR

[SYL09] Sham:2009:CPE

[SZB17] Su:2017:EMC

Tadros:2020:TFT

Tang:2017:PPE

Tong:2013:TCT

Tiruvuri:1998:ELB

Tsai:2014:PAE

Thadikaran:1997:ACB

219

Tu:2019:AOS

Tan:2016:ESE

Thorolfsson:2010:LPH

Thornton:1999:BSC

Tseng:2008:PPD

Trinadh:2017:ODC

Teman:2016:PAP

[TRM+16] Adam Teman, Davide Rossi, Pascal Meinerzhagen, Luca

Thanvantri:1996:OFS

Thakur:1996:SPF

Tannir:2016:AMN

Tomiyama:1997:CPT

Tan:2019:EMI

REFERENCES

ISSN 1084-4309 (print), 1557-7309 (electronic).

Vatanparvar:2017:ASR

Vatanparvar:2017:EVO

VanCampenhout:1998:HLD

Vahid:1999:PCT

Vahid:2002:PSP

Vinco:2019:CLV

VanAchtern:2003:SSD

Venkatasubramanian:2016:PID

Valencia:2019:CPA

Vanbroekhoven:2007:PDS

Venkatasubramanian:2016:PID

VanPraet:2001:PMC

Vanpraet:2001:PMC

REFERENCES

Freek Verbeek and Julien Verbeg:2012:ELS
REFERENCES

Verbeek:2012:TFV

Vijayan:2020:RIH

Tsao:2002:UDC

Wang:1998:MEV

Wang:2016:ERL

Wu:2006:MWR

Zhong-Zhen Wu and Shih-Chieh Chang. Multiple wire reconnections based on implication flow graph. *ACM Transactions on Design Automation of
REFERENCES

Shuai Wang, Guangshan Duan, Yupeng Li, and Qianhao Dong.

[Wolinski:2009] Christophe Wolinski, Krzysztof Kuchcinski, and Erwan Raffin. Automatic design of application-specific reconfigurable processor extensions with...
REFERENCES

Wu:2009:PCV

Wang:2011:OAE

Wu:2016:PA

Wu:2012:TAS

Wu:2009:PCV

Wang:2012:TAS

Wang:2020:HER

Wang:2011:OAE

Wu:2016:PA

Witharana:2021:DTG

Wu:2008:CPR

Wan:2019:DRP

Wang:2016:HDT

Wolf:1996:OOC

Wang:2008:LAS

Winograd:2018:PGU

Wei:2014:TSE

Wang:2013:CTM

Wang:2002:BSF

REFERENCES

Cong Xu, Dimin Niu, Yang Zheng, Shimeng Yu, and Yuan Xie. Impact of cell failure on reliable cross-point resistive...

Xydis:2012:CLE

Xie:2021:DFM

Xiang:2016:NUB

Xu:2016:HSL

REFERENCES

Xiang:2005:AIP

Xu:2016:PPA

Xu:2009:STA

Yan:2000:TLB

Yan:2008:TDO

Yan:2011:ICA

Yan:2016:PDA

Jin-Tai Yan. Performance-driven assignment of buffered

REFERENCES

Yao:2003:FRC

Yang:2000:ERC

[REFERENCES] 242

Yang:2023:ATF

[REFERENCES] 242

Yang:2016:PSS

[REFERENCES] 242

Yang:2017:CCS

REFERENCES

Yang:2018:RRE

[102x681]REFERENCES

[162x646]Y

[226x646]ang:2018:RRE

[162x622]Y

[227x622]uan:2010:HSP

Yuan:2010:HSP

[162x571]Y

[227x571]uan:2010:HSP

Yu:2009:APG

YGZ04

[162x547]Y

[227x547]ang:2004:FVE

Guihai Yan, Yinhe Han, Hui Liu, Xiaoyao Liang, and Xiaowei Li. MicroFix: Using timing interpolation and delay sensors for power reduction. *ACM
REFERENCES

Yoon:2014:WLL

You:2006:CLP

Yoon:2013:ACC

You:2017:ELD

Yonga:2015:ABE

Yan:2013:RA

Yu:2010:EPE

Yan:2017:EEE

Yu:2011:MQS

Yang:2018:HEP

Yang:1997:HFM

Yan:2014:EFG

Yan:2009:TAS

Tan Yan and Martin D. F. Wong. Theories and algorithms on single-detour routing for un-

[Yi:2015:ESF] Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Chao

Zhao:2023:MSF

Zhou:2022:QCT

Zeng:2011:LDP

Zhao:2018:TSB

Zhang:2021:DPR

Zhou:2023:FAO

REFERENCES

Zamora:2007:SLP

Zhou:2008:NER

Zamora:2008:EMU

Zhao:2016:SRE

Zheng:2019:HEB

Jianwei Zheng, Chao Lu, Jiefei Guo, Deming Chen, and
REFERENCES

Zeng:2013:IPD

Zhang:2015:LRR

Zhang:2015:LDP

Zhu:2007:HMF

Zuluaga:2016:SSN

Zimmermann:2019:ADL

Zhao:2013:PSA

Zhou:2008:HTC

Zhao:2002:TMA

Zhang:2016:PPG

REFERENCES

Zhao:2013:CSL

Zhang:2017:RTV

Zhu:2017:CCA

Zhou:2012:ONC

Zhai:2018:ENG

Zhu:2017:CCA

Zhou:2012:ONC

Zhai:2018:ENG