Title word cross-reference

1, 2, 3 [SMDS11], 3 [JBH+22, Pac08]. b [Joh96]. m [MK96, Mat98]. O(1) [TGT05]. q [GDB14].
-Gaussian [GDB14]. -sequence [Mat98]. -sequences [MK96].

623-dimensionally [MN98]. 64-bit [Nis00].

Abstraction [Lor19, MHS19, LW97a]. Accelerated [MJV+15, HD07, SLCP01].
Accelerating [And99]. acceleration [PF11]. Accelerators [RAGN19]. acceptance [Bel05]. acceptance-rejection [Bel05]. Access
[CTF+19, AZLT10, KHJ+08]. access/modification [Mat05]. accessibility [YJ96]. accreditation
[PCT97]. Accurate [CMM+16, KPG15].Achieving [LBL01]. Active
[LW97a, WG04]. active-idle [WG04]. activities [DOD93], activity [CKL+13].
Actor [PBB16]. Adaptation
[HERU15, PBB16]. Adaptive
[Akl18, Bee18, Bha05, Bha07, BCZ14, DHK15, DF97, ESZH21, FHG16, LCT+15, Lüc16, SFM13, TL18, VAB+18, WYT+20, HD07, Kaw10, MKPR98, MY08].
add
[TLC93]. add-with-carry [TLC93].
address [DJS94]. admission [Lim12].
Balanced [CERT15]. Balancing
[LYT^20]. Bandwidth
[MRB^18, FMN00]. bandwidths [FDL99].
Base [ZLK91]. Based
[CDS16, CG13, FDP15, GJ13, HYJ21,
HERU15, HZF14, JN15, KH19, KW15, LF13,
LCT^15, LI15, LCT17, MAr22, MJV^15,
PE11, RL15, SMII15, SP11, SU16, WCC16,
WCCY19, XLZ17, XCA^17, ZS17, ZL17,
AZK10, Bha05, BÖ96, CTF19, DFD10,
KLF02, LS92, LLT07, LCT07, LL02, LSW91,
MK96, PBF00, PTCL11, PF11, RTY05, RS94,
RRW00, RWU22, RD10, TTSM12, TB98,
Vor10, ZMM^11, vBBR03, Bha07, RFA00].
Batch [AG04, AAAG06, SLW^05]. Batches
[LB15]. Bayesian [AG16, GK19, NY12,
SCW13, LCS16, XL217, YN15, ZS17].
BDI [LS10]. Behavior [GH03, LZ20, ZZC18,
CFW99, CKP95, GH06, GH09].
Benchmark [JC11]. Bernoulli [KO94].
Bernstein [GS12]. best
[ICC99, NS06, OS09, YN93]. Better
[Ow13]. between [BHG10, ZIC06]. Bézier
[WW95]. BGP [CK08]. Bi [FH18].
Bi-objective [FH18]. Bias
[BCM18, YKA^21, AG07, Cal09, HIG04].
Biais-corrected [YKA^21]. bias-reducing
[HIG04]. biased [CK14]. biasing [Nak94].
Bifurcation [ACL15]. Binary [Sch13].
Binomial [FFS13]. Biochemical [RL15].
Biological [DWYM16]. Birth [BK20].
Birth-and-Death [BK20]. Bissection
[RL20]. bit [Nis00]. BitTorrent [LPPP13].
BitTorrent-like [LPPP13]. bivariate
[Ros08, WW95]. black [FDH09]. blending
[QFL^10]. Block [LF13]. blocking
[AO95, KC10, RRP00, SW96, VaAE02].
boiler [LS92]. Bootstrap [CLL99]. Border
[CK08]. borrow [TLC93]. boundary
[LM94]. Boundt
[HSN94, DNRD96, JZTB06]. Bounds
[FK91, Nic91]. Box [LLCC13, FHD09].
Bridging [TTSM12]. broadband
[GMOB01]. Brownian [BCM18, IFPM12].
Bryant [SG91]. Budget
[MH19, YX17, HLC^10]. buffer
[CHS95, HHI11, JN05, KM01]. buffers
[KW93]. built [Mat98]. built-in [Mat98].
bulk [HVA09]. burst [WG04]. bursty
[GMOB01]. Business [BDGP20, RD10].
Cache [TKS16, JSC01]. Calculation
[CH04]. calendar [ELL00]. Calibration
[YN15, YN20]. cancer [RWK^07, TRK^09].
Capabilities [CN16]. care [MBGF11].
Carlo [DR13, Pol21, DJLZ17, FS21, FSS95,
HHL14b, LDT07, LV00, LG03, XGH12].
Carma [Lor18, GZWG18]. carry
[GK03, TLC93]. carrying [GMOB01]. case
[CFS08, PCT97, SY95]. CDIF [Fra02].
CDNSim [SPV^10]. cell [LC01]. cell-loss
[LC01]. Cellular [SV16, GB19, TDR^11,
TKS16, FSS95, Mat98, VaAE02]. center
[GBA^14]. Centers [LHJS17, HAIFP11].
central [SS05]. certification [Bal01].
CFTP [DJ11]. Chain
[MKT21, RK20, AH093]. Chains
[BK019, Buc98, HPA07, NH95, RJ04].
Challenges [Fuj16]. Chauncy [SG91].
Chaundy-Misra-Bryant [SG91]. changing
[RK93]. channel [VaAE02]. chaos [SS08].
Characteristic [CFL12]. Characteristics
[HK20]. characterization [Nak94].
Characterizing [PRO13]. Checking
[AP18, JSD19, LLCC13]. checkpoint
[PLM94]. Chief [Qua20]. Chip
[CMM^16, CG02]. chip-processor
(CG02). ChunkedTejas [KCS20].
Chunking [KCS20]. Chunking-based
[KCS20]. Circuit [GLC17, EGLW93, SS08].
circuit-switched [EGLW93]. Class
[DQZ18, MZ91, GS12, HVA09, VK92].
classes [LPPP13]. classical [BN09].
Cloning [HF01, LCT17, YP18, CTC^05].
closed [CS08, CO98, SMG09]. Closure
[FHG16, Lü16]. Cloud [YP15, VSCL13].
Cyber-Physical Cycle [CMM+16, CKL+13, DX03]. Cycle-Accurate [CMM+16].

DAE [JBH+22, Pac08]. DAE-based [vBBR03]. Data [BMLY19, CTF+19, EH18, FBS20, HT20, HW19, KH19, KW15, KH18, LL20, LHJS17, MD20, San20, SS14, XGH12, ZZC18, ZLH+22, BCD+14, DOD93, FLV01, GBA+14, HBE95, Mat05]. Data-Driven [KH19, ZZC18, CTF+19, SS14, ZLH+22]. Data-intensive [BCD+14].

Database [FS21, Pel21, SSH97]. DDM [PTCL11, RTY05].

Diffusion [RMWLP21]. Diffusions [LTM+17]. Digital [EHN94a, Owe03, SG91]. dimension [GH03, GH06, GH09]. Dimensional [SNS16, DX03, Owe98].

Distributions [DQZ18, GDB14, Hof11, MJ15, QDZ21, Dev09, FA06, HD96, Ley98, RR93, SZ99, WW95]. division [LL91b]. domain [EU14]. domain-specific

easy [SMDS11]. Ecosystem [HT20]. Editor [BSV16, GH15a, CY10, CL98, DG10, HHL14a, TR08, Qua20, Wil07]. Editor-in-Chief [Qua20]. Editorial [Ano18, BSV16, Hei97, JW19, MST17, Nic97, Nic04, Qua20, QTP20, TL18, Wai15, FN03, MV02, Ba97]. Effect [PBAB+11, RLDH16, LM94]. effective [FDL99]. effectiveness [TRK+09]. Effects [ACL15, PLM94, CAN12]. Efficiency [GJ13, VAVA06, And06]. Efficient [AK18, BBMK16, BL11, BGL12, CPF99, Den05, FSS95, FFSF13, GK03, HWMU17, Hi17, JN05, KN02, LJS22, LBEJ19, LX14, Nic08, NZ07, RDSJ18, SW13, TL91, WW03, WCL+19, XY17, YP15, AK10, DX03, Kra96, MM07, SMG09]. EIA [Fla02].

emergency [ZMM+11]. Empirical [BP94, HW03, HIG04, FDD05, ICC99, J0h96, LW97b]. empirically [SS03]. Emulation [ERL15, HYJ+18, JN15, KKT17, LBN+18, CFS08]. enabled [CSRE21]. end [FHD09]. end-to-end [FHD09]. Energy [SFM13]. Engineering [VAB+18, Fis92, FZ92]. Enhanced [WDYR16]. Enhancing [WhN20, WFM04]. Entropy [WZ15, HLC+10, PRO13, RUB02].

Estimation [AGM17, BLST16, JSD19, LN18, Mat05, VaAE02, WC16, YKA+21, AK11, BKM09, DHM93, GAG14, HVA09, HVAPFY10, LCT07, NS06, Owe13, RAA93]. estimator [GK95]. Estimators [BC13, CN15, CERT15, AAG06, AAGM10, AG07, Cal09, HIG04, LBTG10]. evacuation [LSJ10]. Evaluating [CDS16, ZG94]. Evaluation [DTCU19, HYJ+18, MRB+18, TL18, ZH19, HD98, HD07, ICC99, PT00, SG91]. Event [BBMK16, BC13, CV15, HSL+19, HW19, KSL+16, Mar22, MJV+15, PPT14, PCGM18, PTD+20, RAG19, RMWLP21, SP11, VWD22, WYT+20, WMC+18, YP15, AK11, BL11, BHL13, BKV04, EK04, EK07, GLM96, HT99, HVAPFY10, HG01, LBGT10, Lin92, MWM91, MH92, MBGF11, MCC11, NOP99, Nic91, NY04, Nut06, Nut08, Pag93, PB96, RS94, RWU22, SJY03, TGT05, Vak92, YJ96].

Event-Based [MJV+15]. event-driven [MWM91, MH92]. Events [RH19, GL05, Hei95, JB00, LDT07, LDF91, Ruh02]. everyone [GDP14]. evidence [HW03].

evolution [PBF+00, SC08]. Evolutionary [RGTL12, JC11]. exact [BW15, DQZ18, DLQ20, HSL+19].

Exact-Differential [HSL+19]. Execution [CS15, XVN14].
Finding Fabrics [ZL17].

Extrapolated [ESZH21].

Fast-forwarding [Tuz95, VVB97].

Fat [Mat05].

Fast Slim [AXE+20].

Fast-Tree [LHJS17].

Feasibility [SSY21].

Factor-Based [XLZ17].

Factor [XZL17].

Factorial [SS05].

factory [KO94].

failure [Nak94].

failure-biasing [Nak94].

fair [LBL01].

Falsification [ESZH21].

families [BB99].

Farming [San20].

Fast [AXE+20, CHS95, DHK15, DM06, FDL99, GMB01, Hei95, HD02, IFPM12, Len19, Qua19, RR93, SLF14, CFW99, HL03, JKS07, MR02].

Fast-forwarding [AXE+20].

FiDielity [AXE+20, CFS08, KKT17].

Field [SSDW18].

Fields [LCL16, SMI15, LX14].

figure [GCB95].

file [Mat05, WPN98].

file-access [Mat05].

file-access/modification [Mat05].

filtered [AQVA10].

filtering [BCL+97].

Financial [CFL12].

Finding [BK10, Oso09, RL20, PS09, PK11].

Fine [PQ17].

Fine-Grain [PQ17].

Finite [GH15b, HMY11, KST07].

Finite-State [GH15b].

Firings [HPS+19], first [CY10, DHM93].

first- [DHM93].

FISTE [FHD09].

Fitting [Che13].

Fixed [AK11, EH21].

Fixed-Confidence [EH21].

Fixed-Tolerance [EH21].

Flattening [BBMK16].

Flexible [KSW03].

floating [Doo07].

Flow [WC16, LBL01, PG14, VSLC13].

flow-level [VSLC13].

Fluid [FDMS16, PH21, KW93, KM01, LPM04, MR02, NY04].

Fly [WM+18].

FN [WDY16].

folded [AA610].

FORECAST [TL18].

Form [MRB+18, CO98, FSS95, RW93, Tu97].

formal [ABGR01, GDP14, TL18].

formalisms [Bar97].

Formalization [ST15].

Formulation [SP11, SS08].

forward [SW13].

Forwarding [CF11, AXE+20].

foundation [B06, RS94].

foundations [Bal97].

FPGAs [RAGN19].

fractional [IFPM12, SS05].

Framework [CDS16, CVS15, HSW19, JHB+22, LJS22, WFH12, XLZ17, BCL91, BCD+14, CKP95, HN07, JC11, LSJ10, MBG11, MY08, OLAM08, SC08, WCLG10].

Frequentist [JSD19].

fully [KN01, Kim05].

Function [HKP21, LG03].

Functional [GDB14, BHA07].

Functions [CFL12].

Future [San20].

fuzzy [BB94, MPK06].

gambler [KCK08].

Game [CN16, TK16].

games [Vor10].

Gamma [QDZ21, Ros98].

gap [TTS12].

Gate [GLC17].

Gate-Level [GLC17].

Gateway [K08].

Gaussian [DM06, GDB14, HE12, KDV+20, LX14, WCCY19, WHN20, YN15].

GDCSim [GMB+14].

Gene [FDP15].

General [RDSJ18, KSZ11, WS04].

Generalized [FL09, KC10, RL20, SSZ+13, ZH19].

generate [BH10, HD96].

generated [CFW99, FA06, H094].

Generating [CFW99, FA06, H094].

Generating
Generation [ES94, BN03, RR93, SS03].

Generators [LZW16, Bel05, EHG92, MN98, Pet91, Ros08, SM12].

Generators [LZW16, Bel05, EHG92, MN98, Pet91, Ros08, SM12].

Gibbs [AQVA10].

Global [PE11, XYZ21].

Global-local [XYZ21].

Guarantees [E11, SJS10].

Guest [Ano18, Bal97, CY10, CL98, DQ10, FN03, GH15a, HHL14a, JW19, L'E03, MV02, MST17, TR08, TL18].

Guarantees [E11, SJS10].

Guest [Ano18, Bal97, CY10, CL98, DQ10, FN03, GH15a, HHL14a, JW19, L'E03, MV02, MST17, TR08, TL18].

Half [AK18].

Half-Spaces [AK18].

Hard [NH15, Kra96].

hazard [J02].

Healthcare [RSG21, EY11].

Heap [RH19].

Heavier [MJ15].

Heavily [BL11, BHL13, FA06, HPA07, HS12, JS02, WW03].

Heavy-tailed [BL11, BHL13, FA06, HPA07].

Heterogeneous [NAT+21].

Heteroscedastic [WWCY19].

Heuristic [SS03].

Hierarchical [BBMK16, KDV+20, LJS22, CHW98, KK00, SSRT91].

High [KKTM17, LCK11, SNS16, ZZC18, AZLT10, BHG10, BCD+14, DX03, Doo07, Owe98, SQ12, Tuz95].

High-Density [ZZC18].

High-Dimensional [SNS16, DX03, Owe98].

High-Fidelity [KKTM17].

High-level [BHG10, SQ12, Tuz95].

High-performance [BCD+14].

High-period [Doo07].

High-speed [AZLT10].

Higher [BHG10].

Highly [RDSJ18, HSJ94, HD07, Nak94].

Histograms [STHL13].

Hit [KSZ11].

Hit-and-run [KSZ11].

HIV [MCC11].

HLA [CTC+05, LLT07, LCT+15, LLHL00, PTCL11, RTY05].

HLA-Based [LCT+15, CTC+05].

HNS [MPW04].

Hölder [LX14].

Holistic [SALS18, van18, BKV04].

Honoring [GH15a, Wil07].

Hospital [GP11].

Household [MCC11].

HPC [LJHS17].

HSL [SSRT91].

Hub [HHFS16].

Hubs [KFL00].

Human [GCB95, LSJ10].

Hybrid [ESZH21, HPS+21, BL02, EK04, EK07, LL02, SLCP01, VSS+14, ZHTB04, vBRR03, MPW04].

Hypercubes [HLC12].

I/O [JSC01].

Identification [HAFDP11].

Identify [GB19, RK20].

Idle [WG04].

Iglehart [GH15a].

II [Cal09, MK94, UNMS97].

IID [DjWS19].

Illustration [SMF13, WPW09].

Image [SMI15].

Image-Based [SMI15].

Impact [YX17, ZK10].

Impacts [HAFDP11].

Implementation [BFN92, IMW00].

Implementations [NCV06].

Improved [RAGN19].

Improvement [BGL12, DLW07, RDSJ18, AK11, De 06, GK95, HS12, LC01, LVO0, MSM10, NZ07, RJ04, RW93, SW13].

Importance-Sampling [De 06].

Improved [HKP21, HW21, KDV+20].

Improving [JZTB06, LCT+15, RFA00, WS04].

IMSAT [NB93].

In-Depth [JBI+22].

Inaccuracies [JZTB06].

Incorporating [MCC11, NNB11].

Increases [GH03, GH06, GH09].

Incremental [KV04].

Independence [BCD+14].

Independent [EHN94b, Emm98, Lev01].
indices [Owe13].

PCGM18, SP11, SSZ+13, WhN20, ZLK91, EK07, FZ92, FSS95, KJH+08, LH02, LS92, LSJ10, MCC11, NOP99, RWK+07, SF10.

Model-Based [HZF14, CTF+19, LS92].

Model-Driven [CVS15].

Modeling [BSV16, Bar97, BL02, BHY19, BS92, LPP13, LHS04, Mar22, RW22, RMLP21, TK01, WMC18, ZL17, ZZC18, ZLH+22, Bal01, Bar03, BCD+14, CS10, DOD03, DG10, DKV09, EY11, Fis92, GDP14, HPA07, KLF02, LL02, MBGF11, MV02, NY04, NCV06, RS94, RFA00, Sch10, TR08, Uhr01, WW95, WPN98, WQ04, ZTTB04, ZCC10].

Modelled [VVB+20].

Modelling [GZWG18, Lor18].

Models [BBMK16, BK20, CVS15, Che13, FFSF13, HT20, JKE14, KDV+20, Nut20, Pe11, SABF15, SU16, WhN20, YN15, YN20, BÖ96, BB94, BN09, CS08, FLV01, Hei95, LPM+04, MPK06, MBGF11, MT06, Pac08, PB96, QFL+10, RS10, RB08, SY95, TFR07, VSL13, YS92, ZMM+11, ZG94].

Modest [BHH21].

Modification [CS92, Mat05].

Modulus [EHG92].

Moment [FG16, Li16, RL15, ZS17].

Moment-Based [RL15].

Moment-Closure [FG16, Li16].

Moment-Matching-Based [ZS17].

Monkey [MZ93, PW95].

Monotone [HD96, HLD07].

Monte [DR13, Pel21, DJLZ17, FS21, FSS95, HHL14b, LDT07, LV00, LG03, XGH12].

Monte-Carlo [FSS95].

 Morphological [FDS16].

Motion [BCM18, GCB95, IPFM12].

Movement [GZWG18, Lor18]. movements [RL04].

Moving [SNS16].

MS [TTSM12].

MTSS [HHFS16].

Multi [And21, Con20, CM21, HL17, LZ20, LHS19, EK04, MV02].

multi-agent [EK04].

Multi-Level [HL17].

Multi-Objective [And21, LZ20, CM21].

multi-paradigm [MV02].

Multi-scale [LV19, MHS19].

Multi-server [Con20].

Multiagent [ST15, ST13].

Multiclass [KW93, RRP00, Tur97].

Multicore [MKG+17, TKS16, WAGP15, WDY16].

Multicores [LBEJ19].

Multidimensional [BCZ14, Lim12, PS90, SS14, VAVA06].

multifaceted [ZLK91].

multihop [NNB11, SF10].

Multi-level [DL17, WH17, SU16].

Multi-level-DEVS [SU16].

Multimodel [FZ92].

multimodeling [LF99].

minimonal [VSS+14].

Multiobjective [HAA+19, MSK10].

multiparadigm [Bar03].

Multiple [HHH+19, HAK14, HPS+21, YN93, BK10, DN99, DOD93, Den05, KK00, LBC93, Nel93, PT00, SY03].

multiple-comparison [DN99].

Multiplex [RMWP21]. multiply [GK03].

multiply-with-carry [GK03].

multiprocessor [CG02, SY95].

Multiprocessors [LBN+18, MD20, DJS94, BHM97].

multiresolution [RNS97].

Multiscale [DWYM16].

multiserver [KC10].

multisimulation [MY08].

Multistep [MWMD07].

multistep-ahead [MWMD07].

Multitasking [LS92].

Multithreaded [LT+17].

Multivariate [SDLH12, XNB16, Bha05, Bha07, BN03, Dev97, HBE95, Ley98].

Nearly [LV00, HL12]. need [MFFR92].

Neighborhood [WPS13].

NeMo [PCGM18].

Nested [DK22, YKA+21].

Nets [HPS+21, VH19, BC93, BKV04, HR96, Owe03].

Network [BLST16, CERT15, CMM+16, DTCU19, ERL15, FDP15, KKT17, KPG15, LBN+18, LL15, MPW04, NAT+21, SABF15, WNFM04, CFS08, DKVR09, HPA07, JZTB06, KFL00, KN02, LM94, LALGSG+00, MWMD07, MSM10, MT06, PF11, PRO13, RRW00, RAF+04, SLCP01, SW13, SV97, VSCL13, ZJTB04].
network-computing [KFL00].

Packet [FLV01, AZLT10, CHS95]. PADS [Ano18, JW19, MST17, QTP20, LK21]. Pairwise [LLCC13]. PAM [DWYM16]. paradigm [MV02]. Parallel [BC93, BMLY19, CTT13, CG02, Ent99, Fuj16, JN15, KSL+16, MKG+17, MD20, NH96, PCGM18, PTD+20, RAGN19, RH19, SMDS11, SP11, UXC+00, WDYR16, WYT+20, WMC+18, WCL+19, XCA+17, YP15, ZC18, AO95, CPF99, EGLW93, FW97, GH91, GLM96, HD98, HF01, LP91, LL91b, Lin92, MWM91, Nic91, NH95, RA97, TFR07, Vak92, Yau99].
Parallelism [Lin92, SY95]. Parallelization [SSZ+13, Parallelizing [KCS20].
Parameter [RL15, SSDW18, WCS16, YN20, BKM09, NC06], parameterization [LH02].
Parameterized [CKL+13, BKM09]. parameters [KK00]. Parametric [BDK+19, LL20]. Parametrized [Tur17].
[DWYM16, LF13, Sch13]. Particle-Based [LF13], partition [Rub02]. parts [Emm98].
pass [MM07]. Passing [SDZ+15]. patchwork [SZ99]. patch [NNB11, RDSJ18].
Path-ZVA [RDSJ18], paths [Cal07, Cal09]. patient [MBGF11]. Patterns [GB19].
Pedestrian [GZWG18, Lor18, KZ11]. Penalty [HKP21]. Pending [RH19].
penomials [Wu01]. per-application [PRO13]. per-flow [LBL01]. Perfect
[Con20, MT06]. Performance [AAGM10, AXE*20, BCL+97, BMLY19, CSRE21, HD98, JBB+22, KM01, LCK11, LCT+15, LN18, MRB+18, M0+15, Nic91, PT00, BK10, BCD+14, FW97, GP11, HIG04, SKR97, UXC+00, WS04]. period
[Doo07, Emm98, GK03, Lev01].
permutations [CN98]. Persistence
[WYT+20]. persistent [IFPM12]. Personal [HW21, LM94]. perspective [Vak92].
perturbation [BFMW03, BG93, MS01].
Perwez [AGG+07, Wil07]. Petri
[BC93, BK04, HPS+21, ZH19]. phase
[SLW09]. phenomena [QFL+10]. Physical
[Ano21, CTF+19, HYJ21, BDH21, Pac08, QFL+10, ZTJ04]. Piecewise
[Ale17, CS17, WPS13]. Piecewise-Linear
[WPS13]. Placement [PTE+11]. places
[KZ11]. Planning [HYJ+18]. Platform
[PE11]. Platforms [YP15, YP18]. playback
[GCB95]. Plot [TFR07]. point [Doo07].
Random [Bre04, CAN12, Che13, CG13, DHL10, Dev97, Dev09, GK19, HWdF13, HZF14, Len19, MZ91, MZ93, Pet91, QDZ21, Qua19, STHL13, Wu01, YN15, And99, Bel05, CL98, DX03, Doo07, DLW07, Ent99, ES94, GH03, GH06, GH09, GK03, HN07, Hörm94, HL03, HS12, JKS07, LBC93, LX14, MN98, Ne93, PL05, PJ10, RR03, RB08, SMD11, SS03, TL91, TJC93].

random-number [Pet91], random-search [HN07], randomization [Buc98], randomized [CO98, Hic96]. randomly [KJH+08], randomness [KCK08, MK96].

range [GMOB01, ST13], range [HVA09].

rates [ABGR01, FHD09, KK00]. rates [AGMW17, Nak14, CN12]. rates [BG93, CLL99, LC01]. ratios [BG93, CLL99, LC01].

RCR [Ale17, And21, Bee18, Hil17, KH18, Lor18, Lor19, Lülc16, Nel17, Par18, Qua19, Van18, Mar22, Van19].

Reduction [NC06, HIG04]. Reduction [Nak14, SMG09, AH093, CN12, JSC01, KSW03, Kaw10, MWMD07, Tuf97].

Redundancy [NOP99], reference
Reactive [DK22, Uhr01]. Reflective [CN15, HG01, MJ15, CN98, CGN06, HIG04, KSW07]. regions
[And06, KSZ11]. Regression
[SNS16, CSK10, GAG14]. Regularly
[STHL13, DLW07]. Regulatory [FDP15].
Reinforcement [BLG+21]. Reaction
[HD96, Bel05, HLD07, Ley98, SZ99].
Rejection-inversion [HD96].
Related [DQZ18, FDMS16]. relative
[HSN94].
Relaxation [EGLW93].
Relaxing [XCA+17].
relevance [BCL+97]. Reliability [BDGP20, BLST16, CERT15, WCZ16, BCL+97, Hei95].
Reliable [RDSJ18, Nak94]. renewable
[PG14]. Repast [NCV06]. Repeated
[FS17, Nel17]. Replicated [AAA06, Ale17, And21, Lič16, Nel17, Qua19, GH96, Bee18, Hi17, KH18, Lor18, Lor19, Par18, Van18].
Replication [Ano21, Pe121]. Report
[Ale17, And21, Ano21, Bee18, Hi17, KH18, Lor18, Lor19, Lič16, Mar22, Nel17, Par18, Pe121, Qua19, Van18, Van19].
representation [FDD05]. representations
[KC10]. Resampled [CN15]. Research
[Fuj16, HHL14a, RSg21, CY10]. Resilience
[WAG15]. Resilient [VAB+18].
Resistance [XV14]. Resource
[LCT+15, TKS16, AZK10, FSS95, ZK10].
Resources [BDGP20]. Response
[WhN20].
RESTART [VAVA06]. restricted
[VSS+14]. Results
[Ale17, And21, Ano21, Bee18, Hi17, KH18, Lor18, Lor19, Lič16, Nel17, Par18, Pe121, Qua19, Van18].
retraction [LDF91]. Retrospective
[PS09, WPS13].
Retrospective-approximation [PS09].
Reusing [EH18, FS17, KH18, Nei17].
Reverse [GLC17, CPF99]. Reversed
[BW15]. Reversibility [CPQ17].
Reversible [PP13, SP11]. Review
[HHL14b, MKT21, RSG21]. revolution
[PBF+00]. reward [GL05]. Rewards
[DHK15]. Risk
[FDMS16, HHL14b, XLZ17, ZLZ20]. risks
[MMRC+08]. RNGs [Mar03]. Road
[XCA+17]. Robust
[HHH+19, LL20, Nel93, PBAB+11].
robustness [LBTG10]. Role
[ZZC18].
Role-Dependent [ZZC18]. rollback
[LL91a, LSW91]. rollback-based
[LSW91]. Root [RL20, PS09, PK11]. root-finding
[PS09, PK11]. routing [BG93, RRP00]. RT
[LF99]. ruin [KCK08]. Rule
[WG16]. Rules
[Si14]. run [HLC12, KSZ11, SW96]. run-variable
[HLC12]. running [KFL00].
Runtime [HERU15, CSK10].
safe [JSC01]. Sample
[LCT07, CK14, HDU03]. Sample-based
[LCT07]. Sampler [SF13]. Samplers
[DJLZ17, AQV10]. Samples
[DJWS19]. Sampling
[BGL12, BW15, HAK14, Hof11, RDSJ18, De 06, DLW07, G095, HS12, Kaw10, KSZ11, LC01, LV00, Ley98, MSM10, MT06, NZ07, Owe98, RJ04, RV93, SW13, SZ99, WWFH06].
saturate [KJH+08].
SC'11 [LCK11]. scalability [JZTB06].
Scalable
[CSRE21, LPM+04, YP18, BCL+97, HD98].
Scale
[HSL+19, LHJS17, LLCC13, PE11, PTE+11, WMC+18, YP18, AD92, CK08, FG98, LM94, LPM+04, Lor19, LLHL00, MHS19, PT00, TG05, WS04, WCL+19, ZCLT04].
scale-down [CK08]. scanning
[KJH+08, RB08]. Scenario
[HHF16, LL20, CKP95]. scenarios
[WHG10, LSJ10]. scheduling
[AZLT10, HM08, QC02, SJSM10]. Scheme
[WZ15]. Schemes
[JSD19, SW13].
Scientific
[CSRE21]. SCORE
[FH18, PHP+15]. Scrumbled
[Vig16]. scramblings
[Owe03]. Screening
[ACL15, NS06, SWL09, TRK+09]. SDEs
[BKM09]. Search
[Che13, CG13, EH18, ESZH21, HZF14, KH18, WPS13, And99, HN07, LBC93].
Seattle [LCK11]. second
[DHM93].
second-order [DHM93]. Sectioning [Nak14], seeding [PJ10], segmentation [AO95], select [ICC99]. Selecting [Sin14, WFH12]. Selection [And21, CM21, EH18, EH21, FH18, GK19, HAK14, KH18, MH19, PHP+15, WFH12, YN20, ZS17, KN01, NS06, SJY03, VSS+14]. Self [HWdF13, VAB+18, FK91, FMN00, LALGSG+00, Mat98, Nic91, PT00]. Self-Avoiding [HWdF13], self-initiating [FK91, Nic91]. self-similar [FMN00, LALGSG+00, PT00]. Self-Stabilisation [VAB+18], self-test [Mat98]. Self-Avoiding [HWdF13]. self-test [Mat98]. Semantics [HWMU17, Hil17, TB98]. semi [CGN06]. semi-regenerative [CGN06]. Semiautomatic [SDZ+15]. semidefinite [HE12]. sensitivity [BL02, Owe13, WCLG10]. sensor [SF10]. sequence [Mat98]. sequences [BFMW03, BFN92, FK91, FMN00, LALGSG+00, PT00]. Sequential [ACL15, DJLZ17, DK22, GK19, JSD19, RH19, DHM93, GAG14, KN01, Kim05, Ra93, RA97, SY95, XGH12]. Serial [SSZ+13, NH96]. Series [JKE14, BN03, BN09, FG99, SS14]. server [Con20, HHY11]. Service [Con20, HHY11]. SERVER [CON20, HHY11]. SESSL [EU14]. set [MPK06]. sets [Lim12]. Setwise [AQVA10]. several [ICC99, Ra93]. Shahabuddin [AGG+07, Wij07]. shapes [Ros08]. Shared [MD20, PTD+20, CHS95, FH97, KM01]. Shared-memory [MD20, FH97, UCX+00]. Sharing [PQ17, FSS95]. Sharpening [HE12]. Sided [PPT14]. Signal [SP11, LL02]. similar [FMN00, LALGSG+00, PT00]. SimOS [RBDH97]. Simple [Mat98, Nak94]. Simplifying [DOD93]. Simulate [BDGP20, RJ04]. Simulated [HW21]. Simulating [CFL12, DTCU19, GL05, JS02, SDLH12, SMI15, TDR+11, EK04, EK07, GS12, LL02, NH95, XVN14]. Simulation [AK18, And21, And06, AG16, ANO18, BB99, Cal07, Cal09, CMM+16, ÇTI13, ÇVS15, Che13, CG13, Con20, CM21, DQZ18, DLQ20, ERL15, FBS20, FS17, FS21, Fui16, GJ13, HHL14a, HT20, HKP21, HSL+19, HJ+18, HYJ21, HLC+10, HERU15, HWMU17, Hil17, HHFS16, HAA+19, JN15, JN19, KH19, Kiv91, KPG15, KSL+16, LL15, LCT17, LHS17, LCL16, MH19, Mar22, MJ15, MST17, MKT21, NB93, NC17, Nut20, Pel21, PGM18, PTD+20, QTP20, RAGN19, RK20, RWU22, RSG21, RMWLP21, SNS16, Sch10, SABF15, SW96, SSDW18, VVB+20, VWD22, Wai15, WPS13, WDRY16, WCCY19, WhN20, WTY+20, WMC+18, WCL+19, XNB16, XYZ21, XCA+17, YKA+21, YX17, YP15, YNI15, ZM+11, ZC18, ZLZ20, ZH19, AAGM10, AD92, AD95, BC93, BCL91, Bal01, Bar03, BL02, BCL+97, Bha05, Bha07, BHMM11, BO96]. simulation [BL11, BHL13, BB94, Bu98, CGN06, CHS95, CFW99, CTC+05, CH04, CFS08, CY10, CG02, CHI98, DG10, DM06, DHM93, DJ94, EY11, EU14, FDL99, FK91, FA06, Fis92, SFS95, FG98, GMOB01, GCB95, GP11, HT99, Hei95, HD98, HG01, HN07, HHY11, HN09, HM08, IMW00, JB00, JZTB06, JSC01, JN05, JKS07, KS07, KFL00, KW93, KN01, KL02, KZ11, KN02, LBGT10, LV00, LW97a, LDNA03, LS92, LF99, LLT07, LF91, LL91b, Lin92, LM94, LALGSG+00, LLH00, LSW91, MM91, MR02, MTK06, MBGF11, MCC11, MY08, NOP99, Nic08, NZ07, Nut06, Nut08, OLAM08, Pag93, PCT97, RBF+00, PP11, PN03, RS94, RFA00, RNS97, RAF+04, RWK+07, RD10, RS10, SWL09, SSRT91, SSH97, SLCP01, SS14, SY95, SMG09, SG91, SPV+10, SLW+05, SV97, SC08, SS08]. simulation [SJY03, TGT05, TR08, TTTM12, TB98, UNMS97, Uhr01, Vak92, Vor10, WW95, WS04, WW03, WNFM04, WWFH06, XNH10, XGH12, YL96, Yau99,
YN93, YS92, YJ96, ZCC\(^{10}\), Bal97.

Simulation-Based

[CG13, ZMM\(^{11}\), Vor10].

simulation-generated [FA06],

simulationists [MFFR92].

Simulations [AXE\(^{20}\), DK22, GB19, GRK\(^{15}\), HSI\(^{19}\), HAK14, HW19, LCT\(^{15}\), LLCC13, NY12, NH15, RH19, XLZ17, YP18, AHO93, BP94, BN09, CTLZ05, CN98, CPF99, CF11, DN99, EGLW93, GH91, GLM96, GAG14, HIG04, HF01, KSW03, LG03, LPM\(^{04}\), LX14, Nak94, Nic91, Oso09, Owe98, PP13, ST13, Tuz95, VSL13].

Simulator [KCS20, MKG\(^{17}\), FW97, GBA\(^{14}\), RBDH97, UXC\(^{00}\), WPW09, MPW04].

Simulators [DK22, LBN\(^{18}\), NAT\(^{21}\), NH96, OLAM08, SKR97].

Simulink [ZL17].

Simultaneous [JB00, YN20, BFMW03, MSK10, Raa93].

single [MM07].

single-pass [MM07].

singularities [EK07], SIP [HHY11].

Site [SABF15].

Site-Specific [SABF15].

Skeletons [SDZ\(^{15}\)].

Slim [WMC\(^{18}\)].

Small [BC13, LC01, Owe13].

Smart [HYJ\(^{18}\), Smirnov [KW15].

Smoothed [GBD14, Bha07, BG93].

Smoothing [Ale17, CS17, AHO93].

Sobol’ [Owe13].

Social [CN16, LJS22, WCL\(^{19}\)].

Society [HHL14a, CY10].

Software [CPQ17, JN15, KPG15, SDZ\(^{15}\), Fis92, SS03, SC08, XNH10].

Software-Defined [JN15].

Solution [LB15, YN15].

solutions [PK11].

Solved [BK20].

sort [PTCL11, RTY05].

sort-based [PTCL11, RTY05].

Source [JHJ22, KK00].

Source-oriented [KK00].

sources [FMN00, KW93, WG04].

Space [HW21, LT14, HPS\(^{21}\), PLM94, ZCLT04].

Space-Time [LT14].

Spaces [AK18, Sch13, LG03].

Spatial [LBEJ19].

Spatially [FHG16, Lüc16].

Spatio [Lor19, MHS19, VLN\(^{19}\)].

Spatio-temporal [Lor19, MHS19, VLN\(^{19}\)].

Spatiotemporal [LL15, Vani19].

Special [Ano18, BSV16, BB19, GH15a, HT20, JW19, LK21, MST17, PW21, QTP20, TL18, CY10, CL98, EY11, HHL14a, TR08, DG10, DR13, MV02, Wil07].

Specific [SABF15, EU14].

specification [Nut08, vBBR03].

specifications [NOP99].

spectral [GDB14, Bha07, BGS03].

smoothing [Ale17, CS17, AHO93].

Sobol’ [Owe13].

Spectre [SS08].

SPLINE [WPS13].

spatial [SM12, WG16, Kim05].

standardized [FG99].

standards [TTS12].

standards-based [TTS12].

State [AGMW17, AXE\(^{20}\), BK20, CPQ17, GH15b, HPS\(^{21}\), MS10, NH15, PB96, AG07, DN09, De 06, EK07, GAG14, HG01, HIG04, SLW\(^{05}\), VAYA06, YN93].

State-dependent [MS10].

state-independent [De 06].

State-space [HPS\(^{21}\)].

Static [BLST16, SDZ\(^{15}\), ELL00].

Stationary [AGT92].

Statistical [AGT92].

statistics [HD02, DR13].

Steady [AGMW17, BK20, NH15, AG07, DN99, GAG14, HG01, HIG04, SLW\(^{05}\), YN93].

Steady-State [AGMW17, BK20, NH15, AG07, DN99, GAG14, HG01, HIG04, SLW\(^{05}\), YN93].

stealing [WYT\(^{20}\)].

Steepest [MSK10].

Steepest-ascent [MSK10].

Staged [WS04].

Standard [SM12, WG16, Kim05].

source [Kra96].

SPICE [SS08].

SPICE-type [SS08].

Spiking [NAT\(^{21}\)].

SPLINE [WPS13].

splittable [SLF14].

Spread [TDR\(^{11}\), KHJ\(^{08}\), XGH12].

square [Hic96].

Squares [SNS16].

Stabilisation [VAB\(^{18}\)].

Stable [DQZ18, Hof11, QDZ21, Dev09].

staffing [ZMM\(^{11}\)].

stage [DN99, KLF02, PG14].

Standard [SM12, WG16, Kim05].

statistical [FG99].

standards [TTS12].

standards-based [TTS12].

State [AGMW17, AXE\(^{20}\), BK20, CPQ17, GH15b, HPS\(^{21}\), MS10, NH15, PB96, AG07, DN09, De 06, EK07, GAG14, HG01, HIG04, SLW\(^{05}\), VAYA06, YN93].

State-dependent [MS10].

state-independent [De 06].

State-space [HPS\(^{21}\)].

Static [BLST16, SDZ\(^{15}\), ELL00].

Stationary [AGT92].

Statistical [AGT92].

statistics [HD02, DR13].

Steady [AGMW17, BK20, NH15, AG07, DN99, GAG14, HG01, HIG04, SLW\(^{05}\), YN93].

Steady-State [AGMW17, BK20, NH15, AG07, DN99, GAG14, HG01, HIG04, SLW\(^{05}\), YN93].

stealing [WYT\(^{20}\)].

Steepest [MSK10].

Steepest-ascent [MSK10].

Stepped [YP18].

Stochastic [BHM11, CDS16, CK14, GHS18, GDB14, GH15b, HZF14, HPS\(^{21}\), Lim12, LTM\(^{17}\), LBEJ19, LB15, NY12, Par18, QF14, RL20,
RL15, SNS16, SS08, Van19, VLN⁺19, WhN20, XNB16, XLZ17, XY221, YX17, ZLZ20, ZH19, And99, BC93, BFWMW03, Bha05, BHL13, BN09, BCZ14, CAN12, HDM03, KT10, NC06, PS09, PK11, PG14, RB08.

Supporting [DK22, LLHL00]. Supremum [BCM18]. surrounding [OLAM08]. Survey [AP18, ZLH⁺22, RD10, SJY03]. Swapping [D]KS19]. switch [CHS95]. switched [EGLW93, HM08]. switches [LC01]. switching [PH21]. Symbiotic [ERL15, MY08]. Synchronised [ST13]. Synchronization [HYJ21, MH92, XCA⁺17, MKPR98, QC02, SQ12]. Synchronous [EGLW93]. Synthesis [SDZ⁺15, Fis92, ICPM12]. System [HHFS16, PQ17, PTE⁺11, VWD22, DX03, Fis92, FSS95, FG98, ICC99, KM01, LW97a, LS92, MMRC⁺08, MKPR08, Nut08, RS10, SB01, WPNP98, ZC06, ZK10, vBRR03].

systematic [BH10]. Systems [Ald18, Ano21, Bee18, BDH21, ÇT13]. DWYM16, ESZH21, FHG16, GHS18, GH15b, HWD13, HYJ⁺18, HYJ21, KI91, KSL⁺16, LBE19, LHJS17, Lor19, Lič16, MHS19, Par18, RDSJ18, ST15, Van19, VAB⁺18, VLN⁺19, WAGP15, WDRY16, Bar97, BL02, BK10, BKV04, EK04, EK07, HSN94, HVA09, HVAPFY10, HD98, HG01, HM08, LV00, LDNA03, LL07, LPP13, Lim12, LL02, MWM91, NC06, Oso09, RBDH97, ST13, Vak92, VAVA06, ZLH91, TL18, Nak94].

Tables [Nis00]. tactical [ZMM⁺11]. TADSim [MJV⁺15]. Tail [MJ15, JKS07].

tailed [BL11, BHL13, FA06, HPA07, JS02].

Table [DLW07, HS12]. tandem [CS08, De 06, GK05, HHY11, KC10, KN02, MSM10].

Tapeworm [UNMS97]. targeted [CFS08].

Tausworthe [TL91]. TCP [CFS08, NY04, PT00, VSCL13].

TCP-targeted [CFS08]. Technical [CHIW98]. technique [BN03, Ley98, MM07, SLCP01, SZ99, WS04].

Techniques [Nak14, SDZ⁺15, ZLH⁺22, Bal97, CN12].

technologies [ZCC⁺10]. technology [Kiv91]. telecommunications [GMOB01].

teletraffic [AQVA10]. Temperature [MJV⁺15]. Temperature-Accelerated [MJV⁺15]. Tempered [DZQ18].

tempering [WM99]. Temporal [GB19, LBN⁺18, IMW00, Lor19, MHS19, RJ04, Tuz95, VLN⁺19]. terminals [ZIC06].

Terrain [SSH97]. test [Ent99, HN98, Mat98, PW95]. Testing [WG16, CK08]. Tests [Ano21, BDH21, KCK08, KW15, MZ93, BFN02, JH96, LW97b, P110]. Their [CFL12, HPA07]. Theorems [CG13].

theoretic [MPK06]. theoretical
[AG07, WCLG10]. **Theory**

[AGMW17]. **Transformations** [KW15].

Third [HHL14a]. **threat**

[MMRC+08, SB01]. **Three**

[MMRC+08, NCV06]. **Three-tier** [RH19].

three-timescale [Bha05]. **throughput** [SJSM10]. **tier** [RH19].

Tightly [KSL+16].

Tilted [Hof11, QDZ21, Dev09]. **Time**

[AD92, AO95, BCM18, BW15, HYJ21, JKE14, LT14, LCL16, Nut20, PQ17, YP18, ZCLT04, BDK+19, BN03, BN09, Buc98, CTLZ05, CO98, CFW99, DF97, DNRD96, FA06, FG99, FG98, FH97, GH91, HBE95, HP07, KSW07, LF99, LP91, LL91a, LL91b, LDF91, MY08, NH95, PT00, PLM94, QC02, SQ12, SR98, WNFM04, Yau99].

Time-Based [HYJ21]. **time-division** [LL91b]. **time-management** [SQ12].

Time-Reversed [BW15]. **time-segmentation** [AO95]. **time-series** [BN03, BN09].

Time-Sharing [PQ17]. **Time-space** [ZCLT04].

Time-Stepped [YP18].

Timing [DJS94].

TLM [SP11]. **TLM-Based** [SP11].

Tolerance [SQ12].

TOOMACS [Ano18, JW19, MST17].

Tool [NB93, ZL17, SSRT91, SPV+10].

Toolkit [NCV06].

Tools [GZWG18, Lor18, KFL00, RD10].

topological [CK08].

topologies [DKVR09].

Topology [KK00].

Trace [KCS20, JSC01, KSW03, MM07].

Trace-Driven [KCS20].

Traffic [AXE+20, DTCU19, DK22, HHFS16, LL15, XCA+17, GMDB01, HPA07, LH02, MWM0D7, NY04, PT00, PRO13, WW03].

Train [LDL04].

transfer [Bal07, SSH97, SB01].

trajectory [BKM09].

Transfer [BLG+21].

Transformation [AGMW17].

Transformations [KW15].

transformed [HLD07].

transience [GH15b].

Transient [WG16, AAA06, AGT92, HSN94, MR02].

Transitioning [NAT+21].

Transparent [SQ12].

Transport [ZIC06].

Transportation [HVA09].

Trap [UNMS97].

Trap-driven [UNMS97].

traveling [CFW99].

Tree [LHJS21].

triangulations [ES94].

trinomials [MK96].

Truncated [DLQ20].

TSTL [Van19].

tuberculosis [MCC11].

Twisted [MK92, MK94].

Displacement [MN98].

Displacement [Nis00].

Displacement [JS02].

Displacement [BFMW03].

Displacement [De06].

Displacement [EHG92].

Displacement [KLF02].

Displacement [WPN98].

two-level [WPN98].

two-node [De06].

Two-phase [SWL09].

Two-Sided [PPT14].

Two-stage [DN99, FG14, KLF02].

Two-tier [RH19].

Two-timescale [BFMW03].

type [KC10, SS08].

Ultrafast [LZW16].

UML [AK02].

unbounded [HLD07].

Uncertainty [PBAB+11, VWD22, XNB16, YX17, ZLZ20, MY08, NC06, PG14].

Undo [CPQ17].

uniform [CL98, DX03, KSZ11, MN98].

Uniformization [BK20, DHK15].

Uniforms [Hör94].

unifying [BCL91].

unimodal [Dev97, SZ99].

Union [AK18].

Universal [Bel05].

University [KFL00].

unknowns [BBR03].

Use [GK19, LALGSG+00].

user-invoked [LDF91, SS03].

user-level [LDF91].

Utilization [TKS16, AZK10].

Utilizing [MM07].

UWB [AZK10].

UWB-based [AZK10].

WA [LCK11]. walks [HS12]. Warp [PQ17, AD92, DF97, DNRD96, LP91, LL91a, LDF91, PLM94, QC02]. wavelength [Nut06]. Wavelength [RRP00]. Waves [RLDH16]. Weak [ST15]. Web [KLF02, PBF+00, RRW00, RFA00]. Web-based [AAGM10].

References

Alexopoulos:2006:RBM

Alexopoulos:2010:PFV
Christos Alexopoulos, Claudia...

Aldini:2001:CQI

Ankenman:2015:SDE

Ammar:1992:TWS

Alexopoulos:2004:BB

Awad:2007:TCL

Andradottir:2016:CBM

Andradottir:2007:PSP

Sigrún Andradóttir, Paul Glasserman, Peter W. Glynn, Philip Heidelberger, and

[And06] Sigrún Andradóttir. Simulation optimization with countably infinite feasible regions: Efficiency and convergence.

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISSN 1049-3301 (print), 1558-1195 (electronic).</td>
</tr>
<tr>
<td>[Bal01]</td>
<td>Osman Balci. A methodology for certification of modeling and simulation applications. ACM</td>
</tr>
<tr>
<td></td>
<td>ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).</td>
</tr>
<tr>
<td></td>
<td>on Modeling and Computer Simulation*, 7(4): 501–515, October 1997. CODEN ATMCEZ. ISSN 1049-</td>
</tr>
<tr>
<td></td>
<td>3301 (print), 1558-1195 (electronic).</td>
</tr>
<tr>
<td>[Bar03]</td>
<td>Fernando J. Barros. Dynamic structure multiparadigm modeling and simulation. ACM Transactions</td>
</tr>
<tr>
<td></td>
<td>on Modeling and Computer Simulation*, 13(3): 259–275, July 2003. CODEN ATMCEZ. ISSN 1049-</td>
</tr>
<tr>
<td></td>
<td>3301 (print), 1558-1195 (electronic).</td>
</tr>
<tr>
<td>[BB94]</td>
<td>Andrea Bonarini and Gianluca Bontempi. A qualitative simulation approach for fuzzy dynamical</td>
</tr>
<tr>
<td></td>
<td>CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).</td>
</tr>
<tr>
<td>[BB99]</td>
<td>Philippe Barbe and Michel Broniatowski. Simulation in exponential families. ACM Transactions</td>
</tr>
<tr>
<td></td>
<td>(print), 1558-1195 (electronic).</td>
</tr>
<tr>
<td></td>
<td>CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).</td>
</tr>
<tr>
<td>[BBMK16]</td>
<td>Jang Won Bae, Sang Won Bae, Il-Chul Moon, and Tag Gon Kim. Efficient flattening algorithm for</td>
</tr>
<tr>
<td></td>
<td>hierarchical and dynamic structure.</td>
</tr>
</tbody>
</table>
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

Bratley:1992:ITL

Bratley:1993:DLR

Blanchet:2012:LIS

Bhatnagar:2005:AMT

Bhatnagar:2007:ANB

Begum:2010:MIB

REFERENCES

3301 (print), 1558-1195 (electronic).

Bobeau:2004:MDE

Barton:2002:MSS

Blanc:2011:ERE

Balakrishnan:2021:TRL

Botev:2016:SNR

Bhimani:2019:NPM

Biller:2003:MGM

[BN03] Bahar Biller and Barry L. Nelson. Modeling and generating multivariate time-series

REFERENCES

Blanchet:2015:ESS

Calvin:2007:SOA

Calvin:2009:SOA

Chen:2012:ECR

Casale:2016:QOB

Cancela:2015:BAZ

Chertov:2011:FDM

REFERENCES

12:??, February 2011. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

[CG13] Chen:2012:SLP

[CGN06] Chertov:2008:FNS

[CH04] Chen:1999:RTS

[CG13] Chia:2013:LTS

[CGN06] Calvin:2006:SRM

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

Fang Chu and Marvin K. Nakayama. Confidence intervals for quantiles when applying variance-reduction techniques. *ACM Transactions
Connor:2020:OPS

Carothers:1999:EOP

Cingolani:2017:TMU

Cota:1992:MPI

Bruce A. Cota and Robert G. Sargent. A modification of

Chan:2008:MPM

Chen:2017:MPM

Clary:2010:PDR

Chennupati:2021:MLE

Chen:2005:AHB

Cheh:2019:DDM

Carmen Cheh, Uttam Thakore, Ahmed Fawaz, Binbin Chen, William G. Temple, and William H. Sanders. Data-driven model-based detection of malicious insiders via physical access logs. *ACM Transactions on Modeling and
REFERENCES

REFERENCES

DEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

Devroye:2011:DCM

DelMoral:2017:MSM

Dwarkadas:1994:EDS

Dupuis:2019:ISU

Divis:2022:RNS

Dimitropoulos:2009:GAM

Dassios:2020:EST
REFERENCES

[DN99] Angelos Dassios, Yan Qu, and Hongbiao Zhao. Exact simulation for a class of tempered

Doucet:2013:ISI

Deng:2019:KNE

Dzwinel:2016:PPA

Deng:2003:SHD

Eick:1993:SRP

Eichenauer-Herrmann:1995:PNG

REFERENCES

Eckman:2018:RSD

Echman:2021:FCF

Eichenauer-Herrmann:1992:NIC

Eichenauer-Herrmann:1994:DIP

Eichenauer-Herrmann:1994:SIN

Esposito:2004:AIE

Esposito:2007:SED

Joel M. Esposito and Vijay Kumar. A state event detection algorithm for numerically simulating hybrid systems with model singularities.
REFERENCES

REFERENCES

Ewald:2014:SDS

Eldabi:2011:ISI

Fishman:2006:HHT

Feldkamp:2020:KDS

Fishwick:2005:MRA

Falkner:1999:FSN

Filippone:2016:MCF
Giuseppe Filippone, Donato D’ambrosio, Davide Marocco,

Fioretto:2015:CCB

Fussl:2013:EMB

Frolund:1998:DTS

Foley:1999:CIU

Fujimoto:1997:CGV

Feldman:2018:SAB

REFERENCES

REFERENCES

Fonseca:2000:EBS

Fu:2003:GE

Feng:2017:GSR

Feng:2021:GSD

Fleming:1995:EMC

Fujimoto:2016:RCP

Falsafi:1997:MCP

Babak Falsafi and David A. Wood. Modeling cost/performance...
REFERENCES

REFERENCES

CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

[GH15b] Peter W. Glynn and Peter J. Haas. On transience and recurrence in irreducible finite-state stochastic systems. *ACM

Elsa Gonsiorowski, Justin M. Lapre, and Christopher D. Carothers. Automatic model generation for gate-level cir-

REFERENCES

Hsu:2007:AAA

Heidelberger:1997:E

Hommem-De-Mello:2003:VSM

Henderson:2012:SCG

Hybinette:2001:CPS

Henderson:2001:RSS
Huang:2016:MMT

Hahn:2019:IMD

Hickernell:1996:MSD
REFERENCES

Hsieh:2004:EPB

Hormann:2003:CRV

Hillston:2017:RCR

He:2010:SOU

Han:2021:IPF

Hernandez:2012:CNO

Hormann:2007:ITD

Hung:2008:MSS

Hellekalek:1998:WST

Hong:2007:FLC

Hu:2009:ISO

Hofert:2011:SET

Hormann:1994:NQR

Hernandez:2007:DTH

José Alberto Hernández, Iain W. Phillips, and Javier

[Haas:2020:ISI] Peter J. Haas and Georgios Theodoropoulos. Introduction

Heidergott:2009:GEC

Heidergott:2010:GED

Hellekalek:2003:EEC

[HW03] Peter Hellekalek and Stefan Wegenkittl. Empirical evidence concerning AES.

Hu:2019:DAF

Hesham:2021:EMP

Hamze:2013:SAR

[HWdF13] Firas Hamze, Ziyu Wang, and Nando de Freitas. Self-avoiding random dynamics
REFERENCES

REFERENCES

3301 (print), 1558-1195 (electronic).

REFERENCES

Juneja:2005:ESB

Jin:2015:PSV

Johnson:1996:RES

Juneja:2002:SHT

Jin:2001:FPS

Jegourel:2019:SSF

Jin:2019:GET

REFERENCES

Kapadia:2000:PUN

Kuang:2018:RCR

Keller:2019:TDD

Kesidis:2008:MSR

Kesidis:2008:MSR

Kiviat:1991:STD

Korkmaz:2000:SOT

Turgay Korkmaz and Marwan Krunz. Source-oriented topology aggregation with multiple

Kawai:2017:VWD

Kim:2002:TSM

Kumaran:2001:PFS

Kim:2001:FSP

Kroese:2002:EST

Keane:1994:BF

Kristiansen:2015:MME

Stein Kristiansen, Thomas Plagemann, and Vera Goebel. A methodology to model the execution of communication software for accurate network

Krantz:1996:AEA

Kunz:2016:PEE

Kaplan:2003:FRT

Kang:2007:ERS

Kiatstupaibul:2011:AVH

Kunnunmkal:2010:Sam

Kesidis:1993:QSA

G. Kesidis and J. Walrand. Quick simulation of ATM

[KW15]

[LBC93]

[LBEJ19]

Li:2001:APF

[LBL01] Na Li, Marissa Borrego, and San-Qi Li. Achieving per-
flow fair rate allocation in Diff-
serv. *ACM Transactions on Model-
ISSN 1049-3301 (print), 1558-
1195 (electronic).

Lamps:2018:TIE

[LBN+18] Jereme Lamps, Vignesh Babu, David M. Nicol, Vladimir
Adam, and Rakesh Kumar. Temporal integration of em-
ulation and network simula-
tors on Linux multiprocessors. *ACM Transactions on Mod-
eling and Computer Simula-
ISSN 1049-3301 (print), 1558-
1195 (electronic).

LEcuyer:2010:ARE

[LBTG10] Pierre L’Ecuyer, Jose H. Blanchet, Bruno Tuffin, and
Peter W. Glynn. Asymptotic
robustness of estimators in rare-event simulation. *ACM Trans-
actions on Modeling and Com-
cputer Simulation*, 20(1):
6:1–6:41, January 2010. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

LEcuyer:2001:ESC

[LC01] Pierre L’Ecuyer and Yan-
ick Champoux. Estimating
small cell-loss ratios in ATM
switches via importance sam-
ping. *ACM Transactions on Mod-
eling and Computer Simulation*, 11(1):76–105, January
2001. CODEN ATMCEZ.
ISSN 1049-3301 (print), 1558-
1195 (electronic).

Lathrop:2011:SPI

Scott Lathrop, Jim Costa, and
Press and IEEE Computer Society Press, New York, NY 10036, USA and 1109
Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 2011.
ISBN 1-4503-0771-X. LCCN
????

Lu:2016:RTC

Guanghui Lu, Leiting Chen, and
Weiping Luo. Real-time
crowd simulation integrating
potential fields and agent
method. *ACM Transactions on Modeling and Computer Simula-
tion*, 26(4):28:1–28:??, May 2016. CODEN ATM-
CEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

Lewandowski:2007:SBE

Daniel Lewandowski, Roger M.
Cooke, and Radboud J. Duin-
tjer Tebbens. Sample-based

Li:2015:ARP

Li:2017:CAB

Lomow:1991:MUI

Lu:2004:MTM

Ledecezi:2003:MMI

LEcuyer:2007:RES

Lan:2002:RMP

Liu:2017:MSE

Lim:2012:SAM

Lin:1992:PAP

Lee:2022:HDM

Liu:2021:ISI

Lin:1991:STW

REFERENCES

Lin:1991:TDA

Liu:2002:CBA

Li:2015:CBS

Lam:2020:PSO

Lo:2013:OPB

Lu:2000:SLS

Lees:2007:DSA

Michael Lees, Brian Logan, and Georgios Theodoropoulos. Distributed simulation of agent-based systems with HLA. *ACM Transactions on
Lin:1994:EBE

Lin:1991:OMM

Lin:1997:SFM

Liao:2013:MBL
Wei-Cherng Liao, Fragkiskos Papadopoulos, Konstantinos Liao:2013:MBL

Liu:2004:SFM

Liao:2013:MBL
Wei-Cherng Liao, Fragkiskos Papadopoulos, Konstantinos

Lee:1992:MSB

Lee:2010:IHD

Lubachevsky:1991:ARB

Liu:2014:STM

Lin:2017:MSP

Luck:2016:RCR

REFERENCES

[Bre04] for corrections and the
equivalence of xorshift genera-
tors and the well-understood
linear feedback shift register
generators. See also [SMDS11,
SM12, SLF14] for the failure of
Marsaglia’s xorwow() generat-
or from this paper. See [PL05,
Vig16] for detailed analysis.

References

Marotta:2022:RRL
Romolo Marotta. RCR report
of “A Language for Agent-
Based Discrete-Event Model-
ing and Simulation of Linked
Lives”. ACM Transactions on
Modeling and Computer Sim-
ulation, 32(1):7:1–7:4, January
2022. CODEN ATM-
CEZ. ISSN 1049-3301 (print),
1558-1195 (electronic).

Makoto Matsumoto. Simple
cellular automata as pseudoran-
dom m-sequence genera-
tors for built-in self-test. ACM
Transactions on Modeling and
Computer Simulation, 8(1):
31–42. January 1998. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Matloff:2005:EIF
Norman Matloff. Estima-
tion of Internet file-access/
modification rates from indi-
rect data. ACM Transactions on
Modeling and Computer Sim-
ulation, 15(3):233–253,
July 2005. CODEN ATMCEZ.
ISSN 1049-3301 (print), 1558-
1195 (electronic).

McClean:2011:MFC
Sally McClean, Maria Barton,
Lalit Garg, and Ken Fuller-
ton. A modeling framework
that combines Markov models
and discrete-event simulation
for stroke patient care. ACM
Transactions on Modeling and
Computer Simulation, 21(4):
25:1–25:??, August 2011. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Mellor:2011:IHS
Georgina R. Mellor, Christine
S. M. Currie, and Elizabeth L.
Corbett. Incorporating house-
hold structure into a discrete-
event simulation model of tu-
berculosis and HIV. ACM
Transactions on Modeling and
Computer Simulation, 21(4):
26:1–26:??, August 2011. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Marzolla:2020:PDD
Moreno Marzolla and Gabriele
D’Angelo. Parallel data
distribution management on
shared-memory multiproces-
sors. ACM Transactions on
Modeling and Computer Sim-
ulation, 30(1):5:1–5:25, Febru-
ary 2020. CODEN ATM-
CEZ. ISSN 1049-3301 (print),
1558-1195 (electronic).
REFERENCES

Miller:1992:AWS

Madisetti:1992:SMD

Ma:2019:PSB

Michaelides:2019:SAM

Michalis Michaelides, Jane Hillston, and Guido San-

guinetti. Statistical abstraction for multi-scale spatio-

Moka:2015:RSQ

Mniszewski:2015:TDE

Matsumoto:1992:TGG

Makoto Matsumoto and Yoshiharu Kurita. Twisted GFSR generators. *ACM Trans-

Matsumoto:1994:TGG

Matsumoto:1996:SDR

Malhotra:2017:PPS

Mascarenhas:1998:MCA

Mustafee:2021:DAS

Milenkovic:2007:ESP

Martinez-Moyano:2008:BTI
[MMRC+08] Ignacio J. Martinez-Moyano,

Matsumoto:1998:MTD

Martens:2006:FST

Melamed:2004:HSHEL

Mandjes:2002:LDA

Marin:2018:PFM

McClary:2010:SAC

REFERENCES

December 2010. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

Miretskiy:2010:SDI

Mustafee:2017:GET

Murdoch:2006:PSQ

Mosterman:2002:GES

Matsumoto:2007:CDI

Madisetti:1991:AAP

Mccoy:2007:MAN

[MWMD07] Aaron Mccoy, Tomas Ward, Seamus Mcloone, and De-

Mitchell:2008:SAM

Marsaglia:1991:NCR

Marsaglia:1993:MTR

Nakayama:1994:CSF

Nakayama:2014:CIQ

Nguyen:2021:TSN

Quang Anh Pham Nguyen, Philipp Andelfinger, Wen Jun Tan, Wentong Cai, and Alois Knoll. Transitioning spiking neural network simulators
to heterogeneous hardware.

Nadoli:1993:IMS

Ng:2006:RPU

North:2006:ECT

Nelson:1993:RMC

Nelson:2017:RCR

Nicol:1995:CSP

Nicol:1996:PES

David Nicol and Philip Heidelberger. Parallel execution for serial simulators. *ACM Transactions on Modeling and
Ni:2015:HHS

Nicol:1991:PBP

Nicol:1997:E

Nicol:2004:E

Nicol:2008:ESI

Niederreiter:1994:PVG

Nishimura:2000:TBM

Nzouonta:2011:DIM

Nance:1999:RMS

Nelson:2006:CVS

Nutaro:2006:DEM

Nutaro:2008:COS

Nutaro:2020:TTS

Nicol:2004:DEF

Ng:2012:BKA
Nicola:2007:EIS

Olstam:2008:FSS

Oso09

Owen:2003:VAS

Owen:2013:BES

Pac08

Page:1993:DDE
Parker:2018:RCR

Park:1996:SEL

Powell:2011:ERD

Prabuchandran:2016:ACA

Page:2000:WBS

Plagge:2018:NMP

Perumalla:2014:DEE [PPT14]

Pellegrini:2017:FGT [PQ17]

Petkov:2013:CPA [PRO13]

Pasupathy:2009:RAA [PS09]

Park:2000:PEM [PT00]

Pan:2011:DSB [PTCL11]

Principe:2020:DSM

Puzis:2011:DSS

Percus:1995:TAM

Parker:2021:ISI

Quaglia:2002:PSP

Qu:2021:RV

REFERENCES

[Raa93] Kimmo E. Raatikainen. A sequential procedure for simultaneous estimation of several means. ACM Transactions on Modeling and
REFERENCES

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

Reed:2000:IAD

Rainville:2012:EOL

Rao:2019:MPE

Randhawa:2004:CIS

Rahman:2020:SSI

Ruess:2015:MBM

REFERENCES

Keith W. Ross and Jie Wang. Asymptotically optimal importance sampling for product-form queueing networks. ACM Transactions on
REFERENCES

[Roberts:2007:DSM]

REFERENCES

Schreck:2013:AEE

Soule:1991:ECM

Singham:2014:SSR

Sharma:2010:JCC

Shormans:2001:HTA

Swisher:2003:DES

Shorey:1997:IPL

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

Steele:2014:FSP

Steiger:2005:ABM

Saito:2012:DCS

Salmon:2011:PRN

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [LCK11], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ????

Shortle:2009:RCQ

Schwaninger:2015:SOA

Salemi:2016:MLS

Peter Salemi, Barry L. Nelson, and Jeremy Staum. Moving least squares regression

REFERENCES

Strunz:2008:SFS

Schruben:2014:DDS

Stoers:2018:AMF

Schiavone:1997:TDS

Sanderson:1991:HSL

Solow:2021:NAF

Suchard:2013:MPS
Marc A. Suchard, Shawn E. Simpson, Ivan Zorych, Patrick Ryan, and David Madigan. Massive parallelization of serial inference algorithms for a complex generalized linear model. *ACM Transactions on
REFERENCES

Suryanarayanan:2013:SRQ

Szabo:2015:FWE

Sainudiin:2013:PER

Steiniger:2016:ICV

Stiliadis:1997:RHA

Srikant:1996:SRL

Setayeshgar:2013:EIS

REFERENCES

21:??, October 2013. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

page 248], and [MZ91] for the original work analyzed in this paper.

[Vandin:2018:RCR] Andrea Vandin. Replicated Computations Results
(RCR) report for “A Holis-
tic Approach for Collabora-
tive Workload Execution in
Volunteer Clouds”. ACM
Transactions on Modeling and
Computer Simulation, 28(2):
15:1–15:??, April 2018. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Andrea Vandin. RCR re-
port for analysis of spatiotem-
poral properties of stochastic
systems using TSTL. ACM
Transactions on Modeling and
Computer Simulation, 29(4):
CODEN ATMCEZ. ISSN
1049-3301 (print), 1558-1195
dl.acm.org/ft_gateway.doc?id=
3341093.

Manuel Villén-Altamirano
and José Villén-Altamirano.
On the efficiency of RESTART
for multidimensional state sys-
tems. ACM Transactions on
Modeling and Computer Sim-
ulation, 16(3):251–279, July
2006. CODEN ATMCEZ.
ISSN 1049-3301 (print), 1558-
1195 (electronic).

D. A. van Beek, V. Bos,
and J. E. Rooda. Declaration
of unknowns in DAE-
based hybrid system specifica-
tion. ACM Transactions on
Modeling and Computer Sim-
ulation, 13(1):39–61, January
2003. CODEN ATMCEZ.
ISSN 1049-3301 (print), 1558-
1195 (electronic).

Sebastiano Vigna. An ex-
perimental exploration of Marsaglia’s xorshift
 generators, scrambled. ACM
Transactions on Mathematical
Software, 42(4):30:1–
30:23, July 2016. CO-
DEN ACMSCU. ISSN 0098-
3500 (print), 1557-7295 (elec-
acm.org/citation.cfm?id=
2845077.

Ludovica Luisa Vissat, Michele
Loreti, Laura Nenzi, Jane Hill-
ston, and Glenn Marion. Analy-
sis of spatio-temporal proper-
ties of stochastic systems using
TSTL. ACM Transactions on
Modeling and Computer Sim-
ulation, 29(4):20:1–20:??, De-
cember 2019. CODEN ATM-
CEZ. ISSN 1049-3301 (print),
1558-1195 (electronic).

Yevgeniy Vorobeychik. Prob-
abilistic analysis of simulation-
based games. ACM Transac-
tions on Modeling and Com-
puter Simulation, 20(3):16:1–
16:??, September 2010. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Wu:2019:EPS

Wu:2010:TFI

Wang:2016:BAP

Wadman:2016:LDB

Wang:2016:FEN

Waeb:2012:FSS

Gary Warren, Ronald Nolte, Ken Funk, and Brian Merrell. Network simulation enhancing

Ware:1998:AMF

Wang:2013:IOS

Wu:2009:OSI

Walsh:2004:SSG

Wu:2001:RNG

Wagner:1995:GIS

REFERENCES

[Wang:2003:ESQ]

[Wunderlich:2006:SSM]

[Wang:2015:CES]

[Xu:2017:RSP]

[Wang:2020:APW]

[Wang:2015:CES]

Ran Yang, David Kent, Daniel W. Apley, Jeremy Staum, and David Ruppert. Bias-corrected estimation of the density of a conditional

Yucesan:1992:SBE

Yi:2017:EBA

Zhang:2018:SAS

Zhou:2010:CMS

Zhou:2004:TSC

Zorn:1994:EMM

Zimmermann:2019:ISN

Armin Zimmermann and Thomas Hotz. Integrating simulation and numerical analysis in the evaluation of generalized stochastic Petri nets. *ACM Transactions on Modeling and
Zhang:2006:ACT

Zhang:2004:MIH

Zikos:2010:ISD

Zhao:2017:TXB

Zhong:2022:DDC

Zeigler:1991:MBM

REFERENCES

