A Complete Bibliography of ACM Transactions on Modeling and Computer Simulation

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 July 2017
Version 1.67

Title word cross-reference

1, 2, 3 [SMDS11]. 3 [Pac08]. b [Joh96]. m [MK96, Mat98]. O(1) [TGT05]. q [GDB14].
-Gaussian [GDB14]. -sequence [Mat98]. -sequences [MK96].
623-dimensionally [MN98]. 64-bit [Nis00].
Conditional [HHL14b, LG03].
conditioning [LG03]. conditions [PT00].
Conference [LCK11]. Confidence
[CN12, FG99, Nak14, Sin14, CH04, CLL99].
congestion [SJSM10]. congestual
[EHG92, EHN94b, Eat98, LW97b]. conjoint
[HD98]. conservation [HAFDP11].
conservative [BP94]. Consistency
[RNS97, ZCLT04]. constant [RB08].
Constrained [FDP15, PHP’15, BHMI11, MSK10, SF10].
constraint [GH91]. Constraints [HAK14, BK10].
Constructing [HLC12, Nut08]. container [ZIC06].
containment [HN09]. content [SPV+10].
Continuity [CVS15]. Continuous
[HL03, Buc98, LX14, NH95]. Control
[NS06, AHO93, CKP95, DF97, Lim12, RJ04, SJSM10, YL96].
Convergence [LF13, SFM13, And99, And06]. convergent
[HN07]. Conversion [Doo07, SQ12].
Copula [BLST16]. copulas [HE12]. Cores
[PPT14]. Correlated
[HAK14, GH03, GH06, GH09]. correlation
[LCT07, Ros08]. correlations [WM99].
corresponding [QFL+10]. Corrigendum
[GH06, GH09]. Cost
[PBAB+11, FW97, MKPR98, TRK+09].
cost-effectiveness [TRK+09].
cost/performance [FW97]. countably
[And06]. Coupled [KSL+16]. Couplings
[SU16]. creating [NCV06]. Critic [PBB16].
Cross [AZK10, Rub02, SF10, WZ15, DG10, HLC+10, WCLG10]. Cross-Entropy
[WZ15, Rub02, HLC+10]. Cross-layer
[AZK10, SF10, DG10, WCLG10]. Crowd
[LCL16, ZCC+10]. crowded [KZ11]. cryo
[HAFDP11]. cryo-conservation
[HAFDP11]. CUDA [SM12]. Cumulative
[DHK15]. CUSTOMIZATION [RD10]. cut [Rub02]. Cycle
[CMM+16, CKL+13, DX03]. Cycle-Accurate [CMM+16].
Discrete-event [SJY03, HVAPFY10, HG01, MBGF11, MCC11, Nic91, Pag93].

Discrete-time [PJY03, HG01, MBGF11, Nic91, Pag93].

Displacement [SMI15].

Distributed [CTI13, FHG16, Fuj16, LLT07, LT14, Liic16, PE11, BCL91, BCL+97, CTLZ05, CTZ+05, FK91, FG98, LLHL00, MH92, MWMD07, PCT97, RA9+04, SSH97, SJS10, SKR97, SB01, ST13, TTS12, Vak92, ZCLT04].

distribution [LG03, SPV+10].

Distributions [GDB14, Hof11, MJ15, Dev09, FA06, HD96, Ley98, RR93, SZ99, WW95].

domain [EU14].

domain-specific [EU14].

Donald [GH15a].

double [DJ11].

down [CK08].

downlink [AZLT10].

Driven [CVS15, KKE14, CSK10, DJS94, MWM91, MH92, SS14, UNM97].

driving [OLAM08].

Drug [XVN14].

duration [NNB11].

dust [CFW99].

Dynamic [BBMK16, Bar03, Uhr01, Bar97, FSS95, PTC11, QFL+10, VaAE02].

Dynamical [FDM16, BB94, MWM91].

Dynamical-Related [FDM16].

Dynamos [HWF13, MJV+15, MRRC+08].

easy [SMDS11].

Editor [BSV16, GH15a, CY10, CL98, DG10, HHL14a, TR08, W010].

Editorial [BSV16, He97, MHT17, Nic97, Nic04, Wai15, FN03, MV02, B497].

Effect [PBAB+11, RLH16, LM94].

effectiveness [TRK+09].

Effects [ACL15, PLM94, CAN12].

Efficiency [GJ13, VAVA06, And06].

Efficient [BBMK16, BL11, BGL12, CPF99, Den05, FSS95, FFSF13, G03, HWMU17, Hill17, J05, KN02, LX14, Nic08, NZ07, SW13, TL91, WW03, YP15, AZK10, DX03, Kra96, MM07, SMG09].

EIA [Fla02].

EIA/CDIF [Fla02].

Elastic [SR98, PP13].

electronic [SS08].

elements [SLCP01].

Eliminating [LM94].

embedded [LDNA03].

Emergence [ST15, XVN14].

emergency [ZMM+11].

Empirical [BP94, HW03, HIG04, FDD05, IEC99, Joh96, LW97b].

empirically [SS03].

Emulation [ERL15, JN15, CFS08].

end [FHD90].

to-end [FHD90].

Energy [SFM13].

equipment [Fis92, FZ92].

Enhanced [WDYR16].

equal [WNFM04].

Entropy [WZ15, HLC+10, PRO13, Rub02].

Enumeration [WPS13].

environment [CHI98, SB01].

Environments [LT14, CKP95, ZCLT04].

epidemic [BCD+14].

equations [BC93, BHL13].

Equi [SFM13].

Equi-Energy [SFM13].

equidistributed [MN98].

Equine [XVN14].

equivalence [YS92].

equivalent [FMM00].

Error [WG16, WG04, HS94].

estimate [KSW07, SW96].

estimates [CK14, NNB11].

Estimating [LC01, HS94].

Estimation [BLST16, Mat05, VaAE02, WCZ16, AK11, BKM09, DHH93, GAG14, HVA09, HVAPFY10, LCT07, NS06, Owe13, Ra93].

estimator [GK95].

Estimators [BC13, CN15, CERT15, AAG06, AAGM10, AG07, Cal09, HIG04, LBTG10].

evacuation [LSJ10].

Evaluating [CDS16, ZG94].

evaluation [HD98, HD07, ICC99, PT00, SG91].

Event [BBMK16, BC13, CVS15, KSL+16, MJV+15, PTT14, SP11, YP15, AK11, BL11, BHL13, BKV04, EK04, EK07, GLM96, HT99, HVAPFY10, HG01, LBTG10, Lin92, MWM91, MH92, MBGF11, MCC11, NOP99, Nic41, NY04, Nut06, Nut08, Pag93, FB96, RS94, SJY03, TGT05, Vak92, YJ96].

Event-Based [MJV+15].

event-driven [MWM91, MH92].

events [GL05, He95, JB00, LDT07, LDF91, Rub02].

Financial [CFL12]. Finding [BK10, Oso09, PS09, PK11]. Fine [PQ17].

gambler [KCK08]. Game [CN16, TKS16].

games [Vor10], gamma [Ros08]. gap [TTS12]. Gate [GL17]. Gate-Level [GLC17]. Gateway [CK08]. Gaussian [DM06, GDB14, HE12, LX14, YN15].

GDCSim [BGA+14]. Gene [FP05].

Generation [EH95, GL17, LL15, CL08, DHL10, Dev97, Dev90, GH03, GH06, GH09, HD02, HL03, Nie94, PG14, Wn01]. Generator [LZ16, Bel05, EHG92, MN98, Pet91, Ros08, SM12].

Generators [BRC04, M291, MZ93, Vig16, DX03, Den05, Ent98, GK03, Joh96, LBC93, LW97b, MK92, MK94, Mat98, MWK107, PL05, PW95, PJ10, SLF14, TL91, TLC93].

Getting [WM99]. GFSR [MK92, MK94].

Gibbs [AQV10]. Global [PE11, FH97].

Global-Scale [PE11]. good [LBC03].

GPPU [SM12]. GPU [PF11].

GPU-based [PF11]. GPUs [LDLC13].
Gradient [HVA09, HVAPF10, QF14].
Grain [PQ17]. Graph [DKVR09].
Graphical [WW95]. graphs [IMW00].
green [GBA+14]. grid [VSLCL13, ZK10].
guarantees [SJSM10]. Guest
[Bal97, CY10, CL98, DG10, FN03, GH15a, HHL14a, L'E03, MV02, MST17, TR08].
Guests [BSV16].
Halton [FL09, Tez93, TT94]. Hard
[NH15, Kra96]. hard-sphere [Kra96].
hardware [PF11, SV97]. HAVEGE [SS03].
hazard [JS02]. HCSM [CKP95].
healthcare [EY11]. Heavier [MJ15].
high [BL11, BHL13, FA06, HPA07, HS12, JS02, WW03].
high-period [Doo07]. high-speed [AZLT10]. higher [BGH10].
higher [AZLT10]. highly [HSSN94, HD07, Nak94]. Histograms
HLA [CTC+05, LTI07, LCT+15, LHL100, PTCL11, RTY05]. HLA-Based
[LCT+15, CTC+05]. HNS [MPW04].
Hölder [LX14]. holistic [BKV04].
Honoring [GH15a, Wil07]. hospital
[GP11]. household [MCC11]. HPC
[LHJS17]. HSL [SSRT91]. Hub [HHFS16].
hubs [KFL00]. human [GCB95, LSJ10].
hybrid [BL02, EK04, EK07, LL02, SLCP01, VSS+14, ZTTB04, vBBR03, MPW04].
hypercubes [HLC12].
I/O [JSC01]. identification [HAFDP11].
idle [WG04]. Iglesias [GH15a]. II
[Cal09, MK94, UNMS97]. Illustration
[SFM13, WPW09]. Image [SMI15].
Image-Based [SMI15]. impact [ZK10].
Impacts [HAFDP11]. Implementation
[BFN92, IMW00]. implementations
[NCV06]. Importance [BGL12, DLW07, AK11, De 06, GKB05, HS12, LC01, LV00, MSM10, NZ07, RJ04, RW93, SW13].
importance-sampling [De 06]. Improving
[JZTB06, LCT+15, RFA00, WS04]. IMSAT
[NB93]. inaccuracies [JZTB06].
Incorporating [MCC11, NN11].
increases [GH03, GH06, GH09].
incremental [BVK04]. Indemics
[BCD+14]. independence
[EHN94b, Emm98, Lev01]. Independent
[HAK14, De 06]. indices [Owe13].
indifference [KN01]. indifference-zone
[KN01]. indirect [Mat05]. Industrial
[XNH10]. Inequalities [BGL12]. Inference
[FDP15, JKE14, RL15, SSZ+13, WCS16].
infinite [And06]. Information [RS10].
INFORMS [HHL14a, CY10]. infrastructure
[AK02]. Inhibition
[RLDH16]. Initial
[WG16, AAAG06, AGT92]. initialization
[MWKA07]. initiating [FK01, Nic91].
infant [ZIC06]. innovations [BHL13].
Input [XN816, BN03, DM06, WW95].
inputs [MR02]. insider [MMRC+08].
insider-threat [MMRC+08]. Instability
[SKR97]. instruction [MM07]. Integer
[HWdF13, WPS13]. Integer-Ordered
[WPS13]. integrals [LX14]. Integrated
[HN09, YN15, Cal07, Cal09, Fis92, LDNA03, LSJ10, SB01]. Integrating
[LCL16, ZJJTB04]. integration [EK04].
intelligence [Fis92]. Intelligent [NB93].
Intensional [SU16]. intensive [BC+14].
interaction [CS92, WCLG10]. interactions
[BBG10, DG10, SF10]. interactive
[BCL+97, BCD+14, MWMD07, SSH97, WW95]. interactively [QFL+10]. Interest
[LT14]. Interference [WAGP15].
International [LCL11]. Internet
[ABGR01, CK08, KHJ+08, Mat05, Nic08].
interoperability [SSH97]. Interpolation
[WPS13]. interruptions [DOD93].
Intersection [LLCC13]. Interval
[Sin14, PLM94]. Intervals
[Nak14, CH04, CLL99, CN12, FG99, IMW00].
Intractable [JKE14]. Introduction
[DR13, EY11, GH15a, CY10, CL98, DG10,
HHL14a, L'E03, TR08, Wil07]. Intrusion
[PTE+11]. invalidates [PJ10]. inventory
[Lim12]. Inverse [HLD07]. inversion
[DHL10, HD96, HL03]. Inversive
[LW97b, EHG92, EHN94a, Emm98, Nie94].
invoked [LDF91]. IP [LPM+04].
Irreducible [GH15b]. Issue
[BSV16, DR13, GH15a, MST17, CY10, CL98,
DG10, EY11, HHL14a, MV02, TR08, Wil07].
issues [SSH97, YJ96].

Jackson [JN05, KN02, MSM10, NZ07].
Joint [SJS10].

know [MFFR92]. knowledge [BÖ96].
knowledge-based [BÖ96]. known
[DHL10, Ent98]. Kolmogorov [KW15].
Kriging [NY12, QF14, CAN12, CK14].

L [GH15a]. Ladder [TGT05]. Language
[HWMU17, HI17, EU14, SSR09, TB98].
Large [CK08, GJ13, LLCC13, PTE+11,
WCZ16, Buc98, Den05, FG98, LM94,
LPM+04, LLHL00, MR02, SS05, TGT05,
UXC+00, ZCLT04]. Large-Deviation-Based [WCZ16].

Large-Scale
[LLCC13, PTE+11, CK08, FG98, LM94,
PMP+04, LLHL00, TGT05, ZCLT04].
Lateral [RLDH16]. Latin [Owe98, HLC12].
lattice [TLC93]. layer [AZK10, BHG10,
DG10, SF10, WCLG10, BHG10]. Learning
[SCW13, KT10]. Least [SNS16]. lengths
[SW96]. Level [GLC17, HI17, WAGP15,
BHG10, DOD93, SQ12, SS03, Tuz95,
VSCL13, WPN98, WG04]. Lévy [CFL12].

like [LPP13]. likelihood [BG93].

Likelihoods [JKE14]. Limit [CG13]. limits
[SKR97]. Lindley [KC10]. Lindley-type
[KC10]. Linear [SSZ+13, WPS13, Ent98,
Ent99, GAG14, LW97b]. links [KHJ+08].
locally [HN07]. location [PB96]. log
[Ley98]. log-concave [Ley98]. logic
[RS94, SG91, Tuz95]. logic-based [RS94].
Logit [FFSF13]. Logs [CPQ17, TFR07].
long [DX03, GM01]. long-cycle [DX03].
long-range [GM01]. lookahead
[FK91, JB00]. loss
[AO95, CHS95, LC01, LV00]. low
[AG07, BFN92, DOD93, RGTL12, Cal09].
low-bias [AG07]. low-discrepancy
[BFN92, RGTL12]. low-level [DOD93].

Lyapunov [BGL12].

MAC [BGH10]. MAC-layer [BGH10].
Machine [JN15, YP15, RBD97]. MaD0
[LZW16]. maintenance [RNS97]. Major
[HHFS16]. making [LS10]. Management
[LT14, CTLZ05, DF97, FHD09, KM01, LP91,
SQ12, WNFM04, ZLK91]. Manufacturing
[BB93]. Manufacturing-Simulation
[BB93]. many [LPP13, MR02]. Marginal
[WG16, ROS08]. Marine [HHFS16].
Markov [AL09, BHG10, GL05, KW93,
MR02, MBFG11, NH95, R04, SCW13].
Markov-reward [GL05]. Markovian
[HSN94, Nak94]. Marsaglia
[Bre04, PW95, Vig16]. Marshall [BLST16].
Massive [SSZ+13]. Massively
[Vak92, HD98]. Matching
[LT14, PTCL11, RYT05]. Mathematical
[CS08]. max [KT10]. max-norm [KT10].
maximal [GK03, Rub02]. Maximization
[LF13]. maximum [JSDK07]. MAYA
[ZJTB04]. MCMC [FFSF13]. mean
[Hic96]. Means
[AG16, AAA06, Raa93, SLW+05].
measure [HVAPFY10, WCLG10].
measure-valued [HVAPFY10].
measurements [BP94, CF11, LH02].
measures [BK10, De 06, HSN94].
Mechanism [LCT+15, CTLZ05].
Mechanisms [LDF91, ABGR01, LL91a, MH92]. Memory [TKS16, DF97, FH97, LW97a, LP91, UNMS97, UXC+00, ZG94]. Mersenne [MN98, Nis00]. Memory [TKS16, DF97, FH97, LW97a, LP91, UNMS97, UXC+00, ZG94]. Mersenne [MN98, Nis00].

Methods [LDF91, ABGR01, LL91a, MH92].
Methods [LDF91, ABGR01, LL91a, MH92].

Meta [Fla02].
meta [Fla02].
meta-metamodel [Fla02]. Metamodeling [TAO08, Fla02]. Metamodels [YN15, CAN12, DHM93, Fla02]. Methodologies [Fis92, TR08]. Methodology [KPG15, Bal01, FZ92, LDNA03, LF99]. Methodology [KPG15, Bal01, FZ92, LDNA03, LF99].

Model [CVS15, FDD05, GLC17, HZF14, KPG15, SP11, SSZ+13, ZLK91, EK07, FZ92, FSS95, KHI+08, LH02, LS92, LSJ10, MCC11, NOP99, RWK+07, SF10]. Model [CVS15, FDD05, GLC17, HZF14, KPG15, SP11, SSZ+13, ZLK91, EK07, FZ92, FSS95, KHI+08, LH02, LS92, LSJ10, MCC11, NOP99, RWK+07, SF10].

Model-Based [HZF14, LS92]. Model-Based [HZF14, LS92].

Model-Driven [CVS15]. Modeling [BSV16, Bar97, BL02, BHG10, BN03, BKY04, DWM16, FW97, HWMU17, Hi17, HYY11, HM08, KZ11, LDNA03, LPPP13, LHJS17, LDL04, TKS16, Bal01, Bar03, BCD+14, CSK10, DOD03, DG10, DKVR09, EY11, Fis92, GDP14, HPA07, KLF02, LL02, MBGF11, MV02, NY04, NCV06, RS94, RFA00, Sch10, TR08, Uhr01, WW95, WPN98, WG04, ZJTB04, ZC+10].

Models [BBMK16, CVS15, Che13, FFSF13, JKE14, PE11, SABF15, SU16, YN15, BÖ96, BB94, BN09, CS08, FLV01, Hei95, LPM+04, MPK06, MBGF11, MT06, Pac08, PB96, QFL+10, RS10, RB08, SY95, TFR07, VSC113, YS92, ZMM+11, ZG94].

multiclass [KW93, RR00, Tuf97]. Multicore [TKS16, WAGP15, WDY16]. Multidimensional [BCZ14, Lim12, PS09, SS14, VAVA06].

multifaceted [ZLK91]. multihop [NNB11, SF10]. Multilevel [HWMU17, SU16]. Multilevel-DEVS [SU16]. multimodel [FZ92].

multimodeling [LF99]. multinomial [VSS+14]. multiobjective [MSK10].
multiparadigm [Bar03]. Multiple [HAK14, YN93, Bar97, DOD93, DOD03, Den05, KK00, LBC93, Ne93, PTO0, SJY03]. multiple-comparison [DN99]. multiply [GK03].
multiply-with-carry [GK03].
multiprocessor [CG02, SY95].
multiprocessors [DJS94, FH97].
multiresolution [RNS97]. Multiscale [DWM16]. multithreading [KCC10].

multisimulation [MY08]. Multistep [MWM07]. Multistep-ahead [MWM07].

Multitasking [LS92]. Multithreaded [LTM+17].

Multivariate [SDLH12, XNB16, Bha05, Bha07, BN03, Dev97, HBE95, Ley98].

Nearly [LV00, HLC12]. need [MFFR92].
Neighborhood [WPS13]. nets

GK95, KC10, MT06, WW03]. queuing
[DOD93, PF11, RW93, Tu97]. Quick
[KW93]. quickly [Oso09].

R [WPS13]. R-SPLINE [WPS13]. Radio
[SP11, HAFDP11]. radio-identification
[HAFDP11]. Radix [Joh96]. Radix-
[Joh96]. rail [LDL04]. Random
[Bre04, CAN12, Che13, CG13, DHL10,
Dev97, Dev09, HWdF13, HZF14, MZ91,
MZ93, Pet91, STHL13, Wu01, YN15, And99,
Bel05, CL98, DX03, Doo07, DLIW07, Ent99,
ES94, GH03, GH06, GH09, GK03, HN07,
Hö94, HL03, HS12, JKS07, LBC93, LX14,
MN08, Nel93, PL05, PJ10, RR93, RB08,
SMDS11, SS03, TL91, TLC93].
random-number [Pet91]. random-search
[HN07]. randomization [Bac98].
randomized [CO98, Hic96]. randomly
[KHJ+08]. randomness [KCK08, MK96].
range [GMOB01, ST13]. Ranking
[PHP+15, SJY03]. Rapid [LH02]. Rare
[BHL13, BC13, LDT07, AK11, BL11, GL05,
HT99, Hei95, LBTG10, Rub02]. Rare-event
[BHL13, LBTG10]. rate [JS02, LBL01].
rates [CHS95, Mat05]. ratio
[Hö94, LCT07]. ratios
[BG93, CLL99, LC01]. RCR [Hil17, Lü16].
Re [PJ10, XVN14]. Re-Emergence
[XVN14]. Re-seeding [PJ10]. Reaction
[RL15]. Reactions [LTM+17]. Real
[CWF99, LCL16, HBE95, LF99, MY08,
WNFM04]. Real-Time [LCL16, CWF99,
HBE95, LF99, MY08, WNFM04]. Realistic
[SABF15]. reality [QFL+10]. really
[MFFR92]. Rearchitecting [AK02].
reasoning [LS92]. reconfigurable [SV97].
reconstruction [Pas08]. Recovery
[CPQ17]. Recurrence
[GH15b, BC93, BHL13]. Recursive
[CERT15, Den05, KC10, LBC93].
redistribution [HT99]. reduce [CN98].
Reducing [NC06, HIG04]. Reduction
[Nak14, SMG09, AHO93, CN12, JSC01,
KS03, Kaw10, MWMD07, Tu97].
Redundancy [NOP99]. reference
[KSW03]. reflective [Uhr01]. Regenerative
[CN15, HG01, MJ15, CN98, CGN06, HIG04,
KSW07]. regions [And06, KZ11].
Regression [SNS16, CSK10, GAG14].
Regularly [STHL13, DLIW07]. Regulatory
[FDP15]. Rejection
[HD96, Bel05, HLD07, Ley98, SZ99].
Rejection-inversion [HD96]. Related
[FDMS16]. relative [HSN94]. relaxation
[EGLW93]. Relaxing [XCA+17]. relevance
[BCL+97]. Reliability
[BLST16, CERT15, WCZ16, BCL+97, Hei95].
reliable [Nak94]. renewable [PG14].
Repast [NCV06]. Replicated
[AAAG06, Lü16, GH91, Hil17]. Report
[Hil17, Lü16]. representation [FDD05].
representations [KC10]. Resampled
[CN15]. Research [Fuj16, HHL14a, CY10].
Resilience [WAG15]. Resistance
[XVN14]. Resource
[LCT+15, TKS16, AZK10, FSS95, ZK10].
RESTART [VAVA06]. restricted
[VSS+14]. Results [Hil17, Lü16].
retraction [LDF91]. Retrospective
[PS09, WPS13]. Retrospective-approximation
[PS09]. Reverse [GLC17, CF90]. Reversed
[BW15]. Reversibility [CPQ17].
Reversible [PP13, SP11]. Review
[HHL14b]. revolution [PBF+00]. reward
(GL05]. Rewards [DHK15]. rid [WM99].
Risk [FDMS16, HHL14b]. risks
[MMRC+08]. RNGs [Mar03]. Road
[XCA+17]. Robust [Ne93, PBAB+11].
robustness [LBTG10]. rollback
[LL91a, LSW91]. rollback-based [LSW91].
root [PS09, PK11]. root-finding
[PS09, PK11]. routing [BG93, RRP00]. RT
[LF99]. ruin [KCK08]. Rule [WG16]. Rules
[Sin14]. run [HLC12, KSZ11, SW96].
run-variable [HLC12]. running [KFL00].
Runtime [HERU15, CSK10].
safe [JSC01], Sample [LCT07, CK14, HDM03], Sample-based [LCT07], Sampler [SFM13], samplers [AQVA10], Sampling [BGL12, BW15, HAK14, Hof11, De 06, DLW07, GK95, HS12, Kaw10, KSZ11, LC01, LV00, Ley98, MSM10, MT06, NZ07, Owe98, RJ04, RW93, SW13, SZ99, WWFH06], saturate [KHJ+08], SC'11 [LCK11], scalability [JZTB06], Scalable [LPM+, BCL+97, HD98], Scale [LHJS17, LLCC13, PE11, PTE+, AD92, CK08, FG98, LM94, LPM+, LLHL00, PT00, TGT05, WS04, ZCLT04], scale-down [CK08], scanning [KHJ+08, RB08], Scenario [HHFS16, CKP95], scenarios [BHG10, LSJ10], scheduling [AZLT10, HM08, QC02, SJS10], Scheme [WZ15], schemes [SW13], SCORE [PHP+, Scrambled [Vig16], scramblings [Owe03], Screening [ACL15, NS06, SWL09, TRK+09], SDEs [BKM09], Search [Che13, CG13, HZF14, WPS13, And99, HN07, LBC93], Seattle [LCK11], second [DHM93], second-order [DHM93], Sectioning [Nak14], seeding [PJ10], segmentation [A095], select [ICC99], Selecting [Sin14, WFH12], Selection [HAK14, PH+, WHF12, KN01, NS06, SJY03, VSS+14], Self [HWdF13, FK91, FMM00, LALGSG*, Mat98, Nic91, PT00], Self-Avoiding [HWdF13], self-initiating [FK91, Nic91], self-similar [FMM00, LALGSG*, PT00], self-test [Mat98], Semantics [HWMU17, Hill17, HHFS16, JN15, Kiv91, KPG15, KSL+, LL15, LCT17, LHJS17, LCL16, MJ15, MST17, NB93, SNS16, Sch10, SABF15, SW06, Wai15, WPS13, WDR16, XNB16, XCA*, YP15, YN15, ZMM+, AAGM10, AD92, AO95, BC93, BCL91, Bal01, Bar03, BL02, BCL+, Bha05, Bha07, BMN11, BO96, BL11, BHL13, BB94, BB98, CG06, CHS95, CFW99, CTC+05, CH04, CF08, CY10, CG02, CHIW98, DG10, DM06, DHM93, DJS94, EY11, EU14, FDL99, FK91, FA06, Fos92, FSS95, FG98, GMB01, CGB95, GP11, HT09, Hei95, HD98, HG01, HN07, HHY11, HN09, HM08, IMW00, JB00, JZTB06, JSC01, JN05, JKS07, KSW07, KFL00, KW93], simulation [KN01, KLF02, KZ11, KN02, LBTG10, LV00, LW97a, LDNA03, LS92, LF99, LTL07, LP91, LL91b, Lin92, LM94, LALGSG*, LLHL00, LSW91, MWM91, MR02, MPK06, MBGF11]
MCC11, MY08, NOP99, Nic08, NZ07, Nut06, Nut08, OLAM08, Pag93, PCT97, PBF*00, PF11, PN03, RS04, RFA00, RNS97, RAF*04, RKW*07, RD10, RS10, SWL09, SSRT91, SSH97, SLCP01, SS14, SY95, SMG09, SG91, SPV+10, SLW+05, SV97, SC08, SS08, SJY03, TG05, TR08, TSTM12, TB98, UNMS97, Uhr01, Vak92, Vor10, WW95, WS04, WW03, WNF04, WWFH06, XNH10, XGH12, YL96, Yau99, YN93, YS95, SMG09, SG91, SPV+10, SLW+05, SV97, SC08, SS08, SJY03, TG05, TR08, TSTM12, TB98, UNMS97, Uhr01, Vak92, Vor10, WW95, WS04, WW03, WNF04, WWFH06, XNH10, XGH12, YL96, Yau99, YN93, YS95, ZCC+10, Bal97.

Simulation-Based [CG13, ZMM*11, Vor10].
simulation-generated [FA06].
simulationists [MFFR92].
Simulations [GRK*15, HAK14, LCT*15, LLCC13, NY12, NH15, AHO93, BP94, BN09, CTLZ05, CN98, CPF99, CF11, DN99, EGLW93, GH91, GLM96, GAG14, HIG04, HF01, KSW03, KM01, LPM*04, LX14, Nak94, Nic91, Oso09, Owe98, PP13, ST13, Tuz95, VSCL13].
simulator [FW97, GBA+14, RBDH97, UXC+00, WPW09, WPW04]. simulators [NH96, OLAM08, SKR97].
Simultaneous[JBO0, BFMW03, MSK10, Raa93]. single [MM07]. single-pass [MM07]. singularities [EK07]. SIP [HHY11]. Site [SABF15]. Site-Specific [SABF15]. Skeletons [SDZ+15]. Small [BC13, LC01, Owe13].
Smirnov [KW15]. Smoothed [GDB14, Bha07, BG93]. smoothing [AH093]. Sobol’ [Owe13]. Social [CN16].
Source-oriented [KK00]. sources [FMN00, KW93, WG04]. Space [LT14, PLM94, ZCLT04]. Space-Time [LT14]. Spaces [Sch13, LG03]. Spatially [FHG16, Lue16]. Spatiotemporal [LL15].
Standard [SM12, WG16, Kim05].
sstandardized [FG99]. standards [TTSM12]. standards-based [TTSM12].
State [CPQ17, GH15b, MSM10, NH15, PB96, AG07, DN99, De 06, EK07, GAG14, HG01, HIG04, SLW+05, VAVA06, YN93]. State-dependent [MSM10].
state-independent [De 06]. Static [BLST16, SDZ+15, ELL00]. Stationarity [AGT92]. Stationary [BW15]. Statistical[Che13, Emm98, GRK*15, WWFH06, EHN94b, JC11, Lev01]. statistics [HD02, DR13]. Steady [NH15, AG07, DN99, GAG14, HG01, HIG04, SLW+05, YN93].
Steady-State [NH15, AG07, DN99, GAG14, HG01, HIG04, SLW+05, YN93]. Steepest [MSK10]. Steepest-ascent [MSK10].
Stochastic [BHM11, CDS16, CK14, GDB14, GH15b, HZF14, Lim12, LTM+17, LB15, NY12, QF14, RL15, SNS16, SS08, XNB16, And99, BC93, BFMW03, Bha05, BHL13, BN09, BCZ14, CAN12, HDM03, KT10, NC06, PS09, PK11, PG14, RB08].
structures [Uhr01]. Studies [Che13, HHFS16]. study [CFS08, FL09, FDD05, LL91a, NH95, PCT97, RA97, RBDH97, SY95]. substructures [Uhr01].

Studies [Che13, HHFS16]. study [CFS08, FL09, FDD05, LL91a, NH95, PCT97, RA97, RBDH97, SY95].

Synchronization [MH92, XCA+17, MKPR98, QC02, SQ12]. Synchronous [EGLW93]. Synthesis [SDZ+15, Fis92, IFPM12]. System [HHFS16, PQ17, PTE+11, DX03, Fis92, FSS95, FG98, ICC99, KM01, LW97a, LS92, MMRC+08, MKPR98, Nut08, RS10, SB01, WPN98, ZIC06, ZK10, vBBR03].

systematic [BHGO10]. Systems [CTI13, DWYM16, FHG16, GH15b, HWD13, KSL+16, LHJS17, Luc16, ST15, WAGP15, WDYR16, Bar97, BL02, BK10, BKV04, EK04, EK07, HSN94, HVA09, HVAPFY10, HD98, HG01, HM08, LV00, LDNA03, LIT07, LPPP13, Lim12, LL02, MWM91, NC06, Oso09, RBDH97, ST13, Vak92, VAVA06, ZLK91, Nak94].

Tables [Nis00]. tactical [ZMM+11]. TADSim [MJV+15]. Tail [MJ15, JKS07].

tailed [BL11, BHL13, FA06, HPA07, JS02]. tails [DLW07, HS12]. tandem [CS08, De 06, GKH5, HHY11, KC10, KN02, MSM10].

Tapeworm [UNMS97]. targeted [CFS08]. Tausworte [TL91]. TCP [CFS08, NY04, PT00, VSCL13].

TCP-targeted [CFS08]. Technical [CHI98]. technique [BN03, Ley98, MM07, SLCP01, SZ99, WS04]. Techniques [Nak14, SDZ+15, Bal97, CN12].

Terrain [SSH97]. test [Ent99, HN98, Mat98, PW95]. Testing [WG16, CK08]. Tests [KK08, KW15, MZ93, BFN92, Joh96, LW97b, PJ10].

Their [CFL12, HPA07]. Theorems [CG13]. theoretic [MPK06]. theoretical [AG07, WCLG10]. Theory [PW95, HT99, MMRC+08, Pet91]. Third [HHL14a]. threat [MMRC+08, SB01]. three [Bha05, NCV06]. three-timescale [Bha05]. throughput [SJSM10].

Tightly [KSL+16]. Tilted [Hof11, Dev09]. Time [AD92, AO95, BW15, JKE14, LT14, LCL16, PQ17, ZCLT04, BN03, BN09, Buc98, CTLZ05, CO98, CFW99, DF97, DNRD96, FA06, FG99, FG98, FH97, GH91, HBE95, HPA07, KSW07, LF99, LP91, LL91a, LL91b, LDF91, MY08, NH95, PT00, PLM94, QC02, SQ12, SS14, SR98, WNFM04, Yau99].

time-division [LL91b]. time-management [SQ12]. Time-Reversed [BW15].

Time-segmentation [AO95]. time-series [BN03, BN09]. Time-Sharing [PQ17].

Time-space [ZCLT04]. timescale [BMFW03, Bha05]. timing [DJS94]. TLM [SP11]. TLM-Based [SP11]. TOMACS [MST17]. Tool [NB93, SSRT91, SPV+10].

toolkit [NCV06]. tools [KFL00, RD10].

topological [CK08]. topologies [DKVR09]. topology [KK06]. trace [JSC01, KSW03, MM07]. Traffic [HHFS16, LL15, XCA+17, GMOB01, HPA07, LH02, MWM07, NY04, PT00, PRO13, WW03].
train [LDL04]. training [Bal97, SSH97, SB01]. trajectory [KMK09].
Transformations [HLD07]. Transience [GH15b]. Transient [WG16, AAG06, AGT92, HSN94, MR02].
Transmission [PE11]. Transparent [SO12]. Transparently [CPQ17].
twisters [Nis00]. twisting [JS02]. Two [BFMW03, DN99, PPT14, PG14, SWL09], De 06, EH92, KLF02, WPN98].
two-level [WPN98]. two-node [De 06]. Two-phase [SWL09]. Two-Sided [PPT14]. Two-stage [DN99, PG14, KLF02].
Two-timescale [BFMW03]. type [KC10, SS08].

Ultrafast [LZW16]. UML [AK02].
unbounded [HLD07]. Uncertainty [PBAB+11, XNB16, MY08, NC06, PG14].
Undo [CPQ17]. uniform [CL98, DX03, KSZ11, MN98].
Uniformization [DHK15]. uniforms [Hö94]. unifying [BCL91]. unimodal [Dev97, SZ99].
Universal [Bel05]. University [KFL00]. unknowns [vBBR03].
unmodified [KFL00]. use [LALGSG+10].
user [LDF91, SS03]. user-invoked [LDF91].
user-level [SS03]. users [LPPP13]. Using [AG16, CN98, DHK15, GDB14, Nak14, RBDH97, SDLH12, TKS16, AD92, BC93, BFMW03, BN03, BKVO4, BN09, Cal07, Cal09, CPF99, Fis92, FG99, GAG14, HLC+10, HBE95, JS02, LS92, LHLH00, Pac08, PF11, PRO13, RFA00, SJY03, WPS13, WPN98, WPW09, XGH12, Yan99].
Utilization [TKS16, AZK10]. utilizing [MM07]. UWB [AZK10].
Variance-Reduction [NK14, CN12]. variate [DKH10, Dev97, Dev09, HL03].
varies [Enmk98]. VEEs [LCT+15]. vehicle [CFW99]. vehicles [OLAM08].
verification [PCT97]. versatile [SSRT91]. versus [WM99]. Very [SS05, Owe98]. via [ABGR01, BHM11, CK08, CG13, HE12, HN07, KSW07, KFL00, Kim05, LC01, LG03, Os009, PHP+15, PN03, SJY03, XNH10].
view [CS92]. Virtual [JN15, LT14, CKP95, FH97, ZCLT04].
Virtual-Machine-Based [JN15]. visual [GCB95]. visualization [Pac08].
Visualizing [HBE95]. VM [KSW03]. volumes [Pac08].
REFERENCES

[FK91]. workloads [TFR07, WPN98].
workshop [CY10, HHL14a]. world
[CS92, ZJT04]. worms
[KLJ+08, Nic08, RB08]. WPANs [AZK10].
WWW [KFL00].

Xorshift [Bre04, Mar03, PL05, Vig16].

YAWNS [DNRD96].

Zero [CERT15]. Zero-Variance [CERT15].
zone [KN01].

References

Alexopoulos:2006:RBM

[AAAG06] Christos Alexopoulos, Sigrún
Andradóttir, Nilay Tanik Ar
gon, and David Goldsman.
Replicated batch means variance estimators in the presence of an initial transient.
ACM Transactions on Mod
eling and Computer Simula
tion, 16(4):317–328, October
2006. CODEN ATMCEZ.
ISSN 1049-3301 (print), 1558-
1195 (electronic).

Alexopoulos:2010:PFV

[AAGM10] Christos Alexopoulos, Claudia
Antonini, David Goldsman,
and Melike Meterelliyo
z. Performance of folded variance esti
mators for simulation. ACM
Transactions on Modeling and
Computer Simulation, 20(3):
11:1–11:??, September 2010. CO
DEN ATMCEZ. ISSN
1049-3301 (print), 1558-1195
(electronic).

Alexopoulos:2004:BB

[AG04] Christos Alexopoulos and
David Goldsman. To batch
or not to batch? ACM
Transactions on Modeling and
Computer Simulation, 14(1):
REFERENCES

REFERENCES

Balci:2001:MCM

Barros:1997:MFD

Barros:2003:DSM

Bonarini:1994:QSA

Barbe:1999:SEF

Bae:2016:EFA

Baccelli:1993:PSS

REFERENCES

Broniatowski:2013:SVE

Bisset:2014:IH

Bagrodia:1991:UFD

Bassiouni:1997:PRA

Broadie:2014:MSA

Beliakov:2005:UNR

Bhatnagar:2003:TTS
Shalabh Bhatnagar, Michael C. Fu, Steven I. Marcus, and I-Jeng Wang. Two-timescale

[Bratley:1992:ITL]

[BFG92]

[BG93]

[Bhatnagar:2005:AMT]

[Bhatnagar:2007:ANB]

[Begum:2010:MIB]
REFERENCES

3301 (print), 1558-1195 (electronic).

Blanchet:2013:RES

Bhatnagar:2009:OPT

Bhatnagar:2011:SAA

BKV04

Barton:2002:MSS

Blanchet:2011:ERE

Jose Blanchet and Chenxin Li. Efficient rare event sim-

Botev:2016:SNR

Biller:2003:MGM

Brandao:2009:ANS

Birta:1996:KBA

Bailey:1994:EMO

Brent:2004:NMX

feedback shift register generators.

[CG13] Yen Lin Chia and Peter W. Glynn. Limit theorems for simulation-based optimization

[Chen:2013:FSM] Xi Chen and Kyoung-Kuk Kim. Stochastic kriging with

REFERENCES

REFERENCES

[CY10] Stephen E. Chick and Enver Yücesan. Guest editors' introduction to special issue on the first INFORMS simulation society research workshop. ACM
DeBoer:2006:ASI

Deng:2005:EPM

Devroye:2009:RVG

Das:1997:AMM

Devetsikiotis:2010:GEI

Dannenberg:2015:CCR

Frits Dannenberg, Ernst Moritz Hahn, and Marta Kwiatkowska. Computing cumulative re-

Derflinger:2010:RVG

Donohue:1993:SED

Devroye:2011:DCM

Dwarkadas:1994:EDS

Dimitropoulos:2009:GAM

Dupuis:2007:ISS

Dieker:2006:FSO

Damerdji:1999:TSM

Dickens:1996:ABT

Davies:1993:SMM

Doornik:2007:CHP

Doucet:2013:ISI

Dzwinel:2016:PPA

Joel M. Esposito and Vijay Kumar. An asynchronous integration and event detection algorithm for simulat-

[Esposito:2007:SED]

[Erickson:2000:OSC]

[Emmerich:1998:SIP]

[Epstein:1994:GTR]
REFERENCES

3301 (print), 1558-1195 (electronic).

REFERENCES

Paul A. Fishwick. An integrated approach to system

Fujimoto:2016:RCP

Falsafi:1997:MCP

Fishwick:1992:MMQ

Falsaﬁ:1997:MCP

Granieri:1995:PPH

REFERENCES

CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

3301 (print), 1558-1195 (electronic).

Gallardo:2001:FSB

Gunal:2011:DGS

Gore:2015:SDS

Housseman:2011:IRI

Healey:2014:SPS

Healey:1995:VRT
Hormann:1996:RIG

Hormann:2002:FGO

Hsu:2007:AAA

Hein:1998:PDE

Henderson:2012:SCG

Heidelberger:1995:FSR
1995. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

Hong:2011:MSS

Hickernell:1996:MSD

Hsieh:2004:EPB

Hillston:2017:RCR

Hormann:2003:CRV

He:2010:SOU

Hernandez:2012:CNO
[HL12] Alejandro S. Hernandez, Thomas W. Lucas, and

Wolfgang Hörmann. A note on the quality of random variates
REFERENCES

Hellekalek:2003:EEC

Hu:2014:MBA

Hamze:2013:SAR

Inoue:1999:EES

Inacio:2012:FSP

Ingalls:2000:ITI

Jha:2000:SEL

Jin:2011:SEG

Jin:2015:PSV

Jasra:2014:AIO

Juneja:2007:AFS

Juneja:2005:ESB

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

Kapadia:2000:PUN

Kesidis:2008:MSR

Kim:2005:CSF

Kiviat:1991:STD

Korkmaz:2000:SOT

Kim:2002:TSM

Kumaran:2001:PFS
Krishnan Kumaran and Debasis Mitra. Performance and fluid simulations of a

Scott F. Kaplan, Yannis Smaragdakis, and Paul R. Wilson. Flexible reference

[Kang:2007:ERS]

[KSW07]

[KSZ11]

[KT10]

[KW93]

[KW15]

[KZ11]
López-Ardao:2000:USS

Love:2015:OBA

L’Ecuyer:1993:SGM

Li:2001:APF

L’Ecuyer:2010:ARE

L’Ecuyer:2001:ESC

Lathrop:2011:SPI

REFERENCES

Society Press, New York, NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2011. ISBN 1-4503-0771-X. LCCN ????

REFERENCES

Lee:2003:CDF

Lan:2002:RMP

Liu:2017:MSE

Lin:1992:PAP

Lin:1991:STW

Lin:1991:TDA

Lim:2012:SAM

Lees:2007:DSA

Lin:1994:EBE

Lin:1991:OMM

REFERENCES

3301 (print), 1558-1195 (electronic).

[LPM+04]

[Liao:2013:MBL]

[Lubachevsky:1991:ARB]

[Lee:2010:IHD]

[Lee:2014:STM]

[MH92] Vijay K. Madisetti and David A. Hardaker. Synchro-

Moka:2015:RSQ

[Mokas:2015:RSQ]

[MJ15]

Mniszewski:2015:TDE

[MKPR98]

[Mascarenhas:1998:MCA]

Milenko:2007:ESP

Martinez-Moyano:2008:BTI

Matsumoto:1998:MTD

Martens:2006:FST

Melamed:2004:HSH

Mandjes:2002:LDA

McClary:2010:SAC
REFERENCES

[NB93] Gajanana Nadoli and John E. Biegel. Intelligent Manufacturing-Simulation Agents Tool (IM-
Ng:2006:RPU

North:2006:ECT

Nelson:1993:RMC

[Nicol:1995:CSP]

[Nicol:1996:PES]

[Ni:2015:HHS]

[Nicol:1991:PBP]

Nicol:2004:E

Nicol:2008:ESI

Nzouonta:2011:DIM

Nance:1999:RMS

Nelson:2006:CVS

REFERENCES

Owen:1998:LSS

Owen:2003:VAS

Owen:2013:BES

Pachoulakis:2008:RVA

Page:1993:DDE

Park:1996:SEL

Powell:2011:ERD

Prabuchandran:2016:ACA
K. J. Prabuchandran, Shalabh Bhatnagar, and Vivek S.

Pasupathy:2015:SCR

Plesser:2010:RSI

Panneton:2005:XRN

Preiss:1994:ECI

Pichitlamken:2003:CPO

Perumalla:2013:RSE

[Kalyan S. Perumalla and Vladimir A. Protopopescu. Reversible simulations of elastic collisions. ACM Transactions on Modeling and Com-

Perumalla:2014:DEE

Pellegrini:2017:FGT

Petkov:2013:CPA

Pasupathy:2009:RAA

Park:2000:PEM

Pan:2011:DSB

Puzis:2011:DSS
Rami Puzis, Meytal Tubi, Yuval Elovici, Chanan Glezer, and Shlomi Dolev. A decision

Percus:1995:TAM

Quaglia:2002:PSP

Qu:2014:GES

Quarles:2010:MRA

Ronngren:1997:CSP

Raatikainen:1993:SPS

Riley:2004:FAD

Rohloff:2008:DSM

Rosenblum:1997:USM

Robinson:2010:SCS

Reed:2000:IAD

Rainville:2012:EOL

Randhawa:2004:CIS

REFERENCES

Radiya:1994:LBF

Roeder:2010:IMQ

Racy:2005:SBD

Rubinstein:2002:CER

Ross:1993:AOI

Roberts:2007:DSM

Sengul:2015:SSM
REFERENCES

Stytz:2001:DMT

Stopford:2008:FSS

Schruben:2010:SMA

Schafer:2013:PAO

Singh:2013:BLN

Saltzman:2012:SMN

Sottile:2015:SAT

[SDZ+15] Matthew Sottile, Jason Dagit, Deli Zhang, Gilbert Hendry, and Damian Dechev. Static analysis techniques for semi-

Song:2010:CLI

Schreck:2013:AEE

Soule:1991:ECM

Singham:2014:SSR

Sharma:2010:JCC

Swisher:2003:DES

REFERENCES

2009. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

Schwaninger:2015:SOA

Salemi:2016:MLS

Seal:2011:RPD

Stamos:2010:CST

Santoro:2012:TOS

Srinivasan:1998:ET

Seznec:2003:HUL

André Seznec and Nicolas Sendrier. HAVEGE: a user-level software heuristic for generating empirically strong

Sanchez:2005:VLF

Strunz:2008:SFS

Schruben:2014:DDS

Schiavone:1997:TDI

Sanderson:1991:HSL

Suchard:2013:MPS

REFERENCES

REFERENCES

Sacchez:2009:TPS

Sellami:1995:PSM

Stadlober:1999:PRT

Topcu:2008:MFA

Tofts:1998:DSP

Trunfio:2011:NAS

Tezuka:1993:PA

Talby:2007:CP

David Talby, Dror G. Feitelson, and Adi Raveh. A Co-

REFERENCES

Brian Unger, Zhonge Xiao, John Cleary, Jya-Jang Tsai, and Carey Williamson. Parallel shared-memory simulator performance for large ATM networks. ACM Transactions on Modeling and Com-
REFERENCES

Vazquez-abad:2002:EBP

Vakili:1992:MPD

Villen-Altamirano:2006:ERM

vanBeek:2003:DUD

Vigna:2016:EEM

Vorobeychik:2010:PAS

Velho:2013:VFL

Pedro Velho, Lucas Mello Schnorr, Henri Casanova, and Arnaud Legrand. On the validity of flow-level TCP network models for grid and cloud

Vieira:2014:RMH

Wang:2015:AAL

Wadman:2016:LDB

Wang:2016:FEN

Waeb:2012:FSS

Wu:2004:EAB

Wang:2016:MSE

Wilson:2007:EIS

Wegenkittl:1999:GRG

Warren:2004:NSE

REFERENCES

REFERENCES

Wunderlich:2006:SSM

Wang:2015:CES

Xu:2017:RSP

Xue:2012:DAU

REFERENCES

Yau:1999:APS

Yucesan:1996:CIA

Yang:1996:CAV

Yuan:1993:MCB

Yucesan:1992:SBE

Yucesan:1999:APS

Yucesan:2015:CVP

Yoginath:2015:EPD

Zhou:2010:CMS

Zhou:2004:TSC

Zorn:1994:EMM

Zikos:2010:ISD

Zeigler:1991:MBM

[Zeltyn:2011:SBM]