Title word cross-reference

1, 2, 3 [SMDS11], 3 [JBH+22, Pac08]. 623-dimensionally [MN98]. 64-bit [Nis00].

-Abstraction [Lor19, MHS19, LW97a].
-Accelerated [MJV+15, HD07, SLCP01].
-Accelerating [And99]. acceleration [PF11].
-Accelerators [RAGN19].
-acceptance [Bel05]. acceptance-rejection [Bel05].
-Access [CTF+19, AZLT10, KHJ+08].
-access/modification [Mat05].
-accessibility [YJ96]. accreditation [PCT97].
-Accurate [CMM+16, KPG15]. Achieving [LBL01].
-Active [LW97a, WG04]. active-idle [WG04].
-activities [DOD93]. activity [CLK+13].
-Actor [PBB16]. Adaptation [HERU15, PBB16].
-Adaption [Di 23, WWH+23].
-Adaptive [Ald18, Bee18, Bha05, Bha07, BBD22, BCZ14, DHK15, DF97, ESZH21, FHG16, LCT+15, Lüc16].
SFM13, SK23, TL18, VAB+18, WYT+20, HD07, Kaw10, MKP+98, MY08, add [TLC93], add-with-carry [TLC93], address [DJS94], admission [Lim12], Adomian [Tur17], Advanced [Ano18, JW19, MST17, QTP20, Wai15, PCT97], Advancement [BN22], Advances [BSV16], Adversarial [FBCS22], AES [HW03], aesthetic [FDD05], affect [FA06], Agenda [RSG21], Agent [And22, KH19, LCT17, LCL16, Mar22, PE11, RWU22, XCA+17, EK04, LTT07, NCV06, RD10], Agent-Based [And22, KH19, LCT17, Mar22, PE11, XCA+17, RWU22, LTT07, RD10], Agents [NB93], aggregation [KK00], ahead [MWMD07], AI [MFR92], AIR [WAGP15], aircraft [RFA00], Airlift [PBAB11, WPW09], Alarms [BDK19], algebraic [PB96], Algorithm [BBMK16, LF13, TDR+11, WYT+20, CO98, EK04, EK07, KCK08, Kra96, KT10, LL91b, PTCL11, RTY05, SG91, XNH10], algorithmic [BKM09], Algorithms [CTC+05, GDB14, HERU15, HWMU17, Hill17, LT14, PPT14, PBB16, Sch13, SM15, SSZ+13, Bha05, Bha07, BHM11, BCZ14, HNO7, MWM91, NH95, Nut08, PS09, RR93, RA97], Allocation [MRB+18, YX17, HLC+10, Kaw10, LBL01, ZK10, ZG94], Allocations [HH18], Alternative [KW15, CTLZ05, Owe03], Alternatives [CT13], amongst [WLM99], analogue [Tez93, TT94], Analysis [BN09, BBCD22, CHA+22, De 06, DNRD96, GCK5, GH91, JBH+22, Kra96, LCK11, N12, PH21, SDZ+15, Van19, VLN+19, XNL16, XLZ17, ZC18, ZL17, ZHI9, AQV10, BLO2, BCL+97, BG93, Buc98, CGN06, Cal07, Cal09, DJS94, GBA+14, KSZ11, LSW91, MR02, PF11, RW00, Sch10, SLW+05, TFR07, VOR10, WG04, WCLG10], Analytics [GB19], analyzers [Lin92], Annealing [HZF14], annotations [DKVR09], anesthetic [YL96], any [HLC12], Application [DTCU19, RSG21, WAGP15, YP18, CKL+13, HT99, PW05, PRO13], Application-Level [WAGP15], Applications [BMLY19, CFL12, Bal01, BCZ14, EGLW93, KT10, Lim12, MWM07, PTC11], applied [Tuf97], Applying [Nak14, CN12], appreciation [AGG+07], Approach [And21, BHH21, CM21, KCS20, SALS18, Van18, WCS16, WCCY19, YY17, ZZC18, BHG10, B096, BKV04, BB94, Buc98, FHD09, Fis92, HD07, LL02, MKP06, MMRC+08, QFL+10, RAFF+04, SV97, TTSM12, Unr01], Approaches [MKT21, SY21], Approximate [CERT15, JKE14, Ros08], Approximation [FHW16, LF13, Lc16, PH21, ZS17, BFMW03, Bha05, BHM11, BCZ14, KT10, LCT07, Lim12, PS09], Approximation-based [PH21], approximations [FK91, MR02], Architectural [KCS20], Architecture [CAT22, CHIW98, SQ12, SB01], Architectures [PCGM18, CG02, TAO08], Area [JBH+22], arithmetic [Tez93, TT94], Arrival [MJ15, WCF23, WP09], artificial [Fis92], ASAP3 [SLW+05], ascent [MSK10], Assessment [LB15], assignment [VaAE02], Assimilation [HW19, XGH12], assisted [XYZ21], astrophysical [Pac08], Asymptotic [GJ13, LBTG10], Asymptotically [Kaw10, RW93], Asymptotics [JJS07], Asynchronous [MWM91, BP94, EK04], ATM [KW93, LC01, SLCP01, UXC+00], attacks [CFS08], audio [ABGR01], Automata [BSV16, BHH21, DWYM16, GB19, TDR+11, TKS16, Mat98], Automated [AGMW17, RDSJ18, SSDW18, ZIC06, MV02], Automatic [FGH16, GLC17, HERU15, LZ20, Lc16, Di 23, WP098, WWH+23], Automating [Yau99], autonomic [MY08].
Autonomous [BLG+21]. Autoregressive [BN03]. available [HD07]. averages [FA06, KSW07]. Averaging [HZF14].

Avoiding [HWdF13]. Aware [LZ20].

Background [LL15, NY04]. Bad [Ent98]. Balanced [CERT15]. Balancing [WYT+20]. Bandwidth [MRB+18, FMN00]. bandwidths [FDL99]. base [ZLK91]. Based [And22, CDS16, CG13, FDP15, GJ13, HYJ21, HERU15, HZF14, JN15, KH19, KW15, LF13, LCT+15, LL15, LCT17, Mar22, MJV+15, PE11, RL15, SMH15, SP11, SU16, WCZ16, WCCY19, XLZ17, XCA+17, ZS17, ZL17, AZK10, Bel05, Bh05, BO96, CAT22, CTF+19, CTC+05, KCS20, KLF02, LS92, LCT07, LL02, LSW91, MK96, PBF+00, PTCL11, PF11, PH21, RTY05, RS94, RRW00, RWU22, RD10, TSTM12, TB98, Vor10, XZY23, ZMM+11, vBBR03, Bha07, RFA00].

Batch [AG04, AAAG06, SLW+05]. Batches [LB15]. Batching [SK23]. Bayesian [AG16, GKh19, NY12, SCW13, UPB22, WCS16, XCA+17, YN15, ZS17]. BDI [LSJ10].

Bernstein [GS12], best [ICC99, NS06, Os09, YN93]. Better [Owe13]. between [BHG10, ZIC06]. Bézier [WW95]. BGP [CK08]. Bi [FH18]. Bi-objective [FH18]. Bias [BCM18, YKA+21, AG07, Cal09, HIG04].

BitTorrent-like [LPPP13]. bivariate [Ros08, WW95]. black [FHD09]. blending [QFL+10]. Block [LF13]. blocking [AO95, KC10, RRP00, SW96, VaAE02].

Bridging [TTSM12]. broadband [GMOB01]. Brownian [BCM18, IFPM12].

Bryant [SG91]. Budget [MH19, YX17, HLC+10]. buffer [CHS95, HHY11, JN05, KMO1]. buffers [KW93]. built [Mat98]. built-in [Mat98].

bulk [HVA90]. burst [WG04]. bursty [GMOB01]. Business [BDGP20, RD10].

Cache [TKS16, JSC01]. Calculation [CH04]. calendar [ELL00]. Calibration [YN15, YN20]. cancer [RWK+07, TRK+09].

Capabilities [CN16]. care [MBGF11].

Carlo [DR13, Pcl21, DJLZ17, FS21, FSS95, HHL14b, LDT07, LV00, LG03, XGH12].

Carma [Lor18, GZWG18]. carry [GK03, TLC93]. carrying [GMOB01]. case [CF08, PCT97, SY95]. CDIF [Fla02].

central [SS05]. certification [Bal01].

CFTP [DJ11]. Chain [MKT21, RK20, AH093]. Chains [BDK+19, Buc98, HAPA07, NH95, RJ04].

Challenges [Fuj16]. Chandy [SG91].

Chandy-Misra-Bryant [SG91]. changing [RR93]. channel [VaAE02]. chaos [SS08].

Characteristic [CFL12]. Characteristics [RK20]. characterization [Nak94].

[AZK10, Rub02, SF10, WZ15, DG10, HLC+10, WCLG10]. Cross-Entropy
[WZ15, Rub02, HLC+10]. Cross-layer
[AZK10, SF10, DG10, WCLG10]. Crowd
[LZ20, LCL16, XZY23, ZSC18, ZHL+22, ZCC+10]. crowded [KZ11]. Crowds
[HW21]. cryo [HAFDP11].
cryo-conservation [HAFDP11]. CTMC
[BK20]. CUDA [SM12]. Cumulative
[DHK15]. CURAND [SM12]. Curves
[HHH+19]. customization [RD10]. cut
[Rub02]. Cyber [Ano21, BDH21, HYJ21].
Cyber-Physical [Ano21, HYJ21, BDH21].
Cycle [CMM+16, CKL+13, DX03].
Cycle-Accurate [CMM+16].

D [JBH+22, Pac08]. DAE [vBBR03].
DAE-based [vBBR03]. Data
[BMLY19, CTF+19, EH18, FBS20, HT20,
HW19, KH19, KW15, KH18, LI20, LHJS17,
MD20, NCN+22, SS20, SS14, XGH12,
ZSC18, ZHL+22, BCD+14, DOD93, FLV01,
GBA+14, HBE95, Mat05]. Data-Driven
[KH19, ZSC18, CTF+19, NCN+22, SS14,
ZHL+22]. data-intensive [BCD+14].
Database [FS21, Pe121, SSS97]. DDM
[PTCL11, RTY05]. Death [BK20].
Debugging [GRK+15, VVB+20]. Decision
[HHH+19, LIS22, PTE+11, SCW13, Kv91,
LSJ10, MY08]. Decision-Making [LJS22].
Decisions [PB96, BBR03]. Declaration
[vBFR03]. Decomposition [Tur17, AD92].
decoupling [FDL99]. defects [MWKA07].
defense [Pag93]. Defined [JN15]. Delay
[CMZ18, FLV01]. delayed [JS02]. Deletion
[GW16]. Demand [WCF23, ZK10]. denial
[CF08]. denotational [TB98]. densities
[Dev97, HLD07]. Density
[YKA+21, ZZC18, DHL10, HLD07].
departments [ZMM+11]. dependability
[HD98]. dependable [HSN94].
 Dependencies [BV22, WJ22]. Dependent
[ZZC18, GMOB01, MSM10]. Deployment
[CTI13]. Depth [JBH+22]. Derivative
[LN18]. Derivatives [BG93]. Deriving
[CTI13, NNB11]. Design
[Ald18, Bee18, FG98, NY12, RL15, AZK10,
CHH98, DNM93, GBA+14, RRW00,
RFA00, SB01, WCLG10]. Design-time
[FG98]. designs [SS05]. Detection
[BK20, CTF+19, PTE+11, AGT92, EK04,
EK07, RB08]. Determination
[SSI15, SSY21]. Deterministic
[RB08, BFMW03]. Development
[CVS15, RY+07]. Deviation
[WCZ16, SM12]. Deviations
[GJ13, MR02, MK96]. Device [KKTM17].
Devices [PTE+11, CF11]. DEVS
[CH+22, SU16]. DEVS[one] [CH+22].
DG[one]P[one]Sim [GP11]. diagram [CKL+13].
diaphony [HN98]. difference [RJ04].
different [Ros08, Vak92]. Differentiable
[And22]. Differential [HS+19, PB96].
differential-algebraic [PB96].
Differentiation [RLDH16, HVAPFY10].
Diff[one]serv [LRL01]. Diffusion [RMWLP21].
Diffusions [DC22, JML+17]. Digital
[EHN94a, Owe03, SG91]. dimension
[GH03, GH06, GH09]. Dimensional
[SNS16, DX03, Owe98]. Dimensionally
[LS20, MN98]. direct [HT99]. Disaster
[LJS22]. discarding [WM99].
Discontinuous [DC22]. Discovery
[FBS20]. discrepancy
[BFN92, Hic96, RGT12]. Discrete
[Alo18, BSMK21, CVS15, HSL+19, HPA07,
HW19, JB22, JW19, Mar22, M3+15,
MST17, NY04, PPT14, PCGM18, PTD+20,
QTP20, RAGN19, RVU22, RMWL21,
SP11, SJ903, VWD22, VXE+22, Wai15,
WYT+20, WMC+18, WZCJ22, YP15,
And99, BKV04, GLM96, HVAPFY10, HG01,
HN07, HD96, Lin12, Lin92, MBGF11,
MCC11, NOP99, Nic91, Nut06, Nut08, Pag93,
RS94, RR93, TGT05, Vak92, YJ96, LG03].
Discrete-Event [Mar22, PCGM18],
RMWL21, VWD22, WMC+18, WZCJ22,
RVU22, SJ903, VXE+22, HVAPFY10,
HG01, MBGF11, MCC11, Nic91, Pag93].

double [DJ11]. down [CK08]. downlink [AZLT10].

Drawing [Gou22]. Driven [CVS15, KJE14, KCS20, KH19, ZZZC18, CTF+19, CSK10, DJ594, MWM91, MH92, NCN+22, SS14, UNMS97, ZLH+22].

Driving [BLG+21, OLAM08]. Drug [XVN14]. duration [NBN11]. dust [CFW99]. Dynamic [BMMK16, Bar03, CKM23, NCN+22, Uhr01, VV B+20, Bar97, FSS95, PTCCL11, QFL+10, VaAE02].

Dynamical [FDMS16, GHS18, Par18, BB94, MWM91]. Dynamical-Related [FDMS16].

Dynamics [HWdF13, HW21, MJV+15, PH21, MMRC+22].

easy [SMDS11]. Ecosystem [HT20].

Editor [BSV16, GH15a, CY10, CL98, DG10, HHL14a, TR08, Qua20, Wil07].

Editor-in-Chief [Qua20]. Editorial [Ano18, BSV16, Hei97, JW19, MST17, Nic97, Nic04, Qua20, QTP20, TL18, Wai15, FN03, MV02, Bal97].

Effect [PBAB+11, RLDH16, LM94]. effective [FDL99]. effectiveness [TRK+09]. Effects [ACL15, PLM94, CAN12]. Efficiency [GJ13, VAVA06, Aand06]. Efficient [AK18, BMMK16, BL11, BGL12, CPF99, Den05, FSS95, FFSF13, GK03, HWMU17, hill7, Jin05, KN02, LJS22, LBEJ19, LX14, MDH+23, Nic08, N1T07, RDSJ18, SW13, TL91, VVE+22, WW03, WCL+19, YX17, YP15, AZK10, DX03, Kra96, MM07, SMG09].

Enhanced [WDYR16]. Enhancing [WBN02, WNF04]. Entropy [WZ15, HLC+10, PRO13, Rub02].

Enumeration [WPS13]. environment [CHIW98, SB01]. Environments [LT14, VV B+20, CKP95, ZCLT04]. epidemic [BCD+14]. equations [BC93, BHL13]. Equi [SMF13].

Estimating [CMZ18, LC01, WC2F3, DSN94]. Estimation [AGMW17, BLST16, JSD19, LN18, Mat05, VaAE02, WC2F16, YKA+21, AK11, BKM09, DHM93, GAG14, HVA09, HVAPFY10, LCT07, NS06, Owe13, Raa93]. estimator [GK95]. Estimators [BC13, CN15, CERT15, AAAG06, AAGM10, AG07, Cal09, HIG04, LBGT10]. evacuation [LSJ10]. Evaluating [CDS16, ZG94].

Evaluation [DTCU19, HYJ+18, KWW22, MRB+18, TL18, ZH19, HD98, HD07, ICC99,
Event [BBMK16, BC13, ČVS15, HSL⁺19, HW19, JB22a, KSL⁺16, Mar22, MJV⁺15, PPT14, PCGM18, PTD⁺20, RAGN19, RMWLP21, SP11, VWD22, VXE⁺22, WYT⁺20, WMC⁺18, WZCJ22, YP15, AK11, BHLZ22, BL11, BHL13, BKY04, EK04, EK07, GLM96, HT99, HVAPFY10, HG01, LTBTG10, Lin92, MWM91, MH92, MBGF11, MCC11, NOP99, Nic91, NY04, Nut06, Nut08, Pag93, PB96, RS94, RWU22, SJY03, TGT05, Vak92, YJ96].

Event-Based [MJV⁺15].

Event-driven [MWM91, MH92].

Event-Based [MJV⁺15].

Events [RH19, GL05, Hei95, JB00, LDT07, LDF91, Rub02].

everyone [GDP14].

evidence [HW03].

Evolution [PBF⁺00, SC08].

Evolutionary [RGTL12, JC11].

Exact-Differential [HSL⁺19].

Execution [DJS94, KPG15, PPT14, Di 23, SALS18, Van18, WWH⁺23, NL96].

Execution-driven [DJS94].

Expanded [KSL⁺16].

Expectation [LF13, STHL13, YKA⁺21, LG03].

Expectations [AK18, CLL99].

Experiences [NCV06].

Experiment [RL15].

Experimental [Vig16, DHM93].

Experiments [FS17, Ne117, Di 23, WWH⁺23, EU14, MKPR98, SWL09, YL96].

Explicit [HW21].

Explicitly [VVB⁺20].

Exploiting [CN16, KSW07].

Exploration [SU16, Vig16].

Exponential [MJ15, QDZ21, BB99, LX14].

Exponentially [Hof11, Dev09].

Exposing [LBEJ19].

Expressive [HWU17, Hili17].

Extending [Tuz95, VVB⁺20].

extensions [Joh96].

Extrapolated [QF14].

Extreme [AGMW17, LHSJ17].

Extreme-Scale [LHSJ17].

Extrinsic [RLDH16].

Fabrics [ZL17].

Factor [XLZ17].

Factor-Based [XLZ17].

factorial [SS05].

factory [K094].

failure [Nak94].

failure-biasing [Nak94].

fair [LBL01].

Falsification [ESZH21].

families [BB99].

Farming [San20].

Fast [AXE⁺20, CHS95, DHK15, DM06, FDL99, GMB01, Hei95, HD02, IFPM12, KWU22, Lem19, Qua19, RR93, SLF14, CFW99, HL03, JKS07, MR02].

Fast-forwarding [AXE⁺20].

FastSlim [JSC01].

Fat [LHJS17].

Fat-Tree [LHJS17].

Feasible [CTI13, And06, BK10].

federated [RAF⁺04].

federation [TAO08].

feed [SW13].

feed-forward [SW13].

feedback [FN05].

feedforward [SKR97].

few [JKS07].

Fidelity [AXE⁺20, CFS08, KKT17].

Field [SSDW18].

Fields [LCL16, SMH15, LX14].

figure [GCB95].

file [Mat05, WPN98].

file-access [Mat05].

file-access/modification [Mat05].

filtered [AQA10].

filtering [BCL⁺97].

Financial [CFL12].

Finding [BK10, OSO09, RL20, PS09, PK11].

Fine [PQ17].

Fine-Grain [PQ17].

Finite [GH15b, HHY11, KSW07].

Finite-State [GH15b].

Firings [FPS⁺21].

First [CY10, DHM93].

First- [DHM93].

FISTE [FHD09].

Fitting [Che13].

Fixed [AK11, EH21].

Fixed-Confidence [EH21].

Fixed-Tolerance [EH21].

Flattening [BBMK16].

Flexible [KSW03].

Floating [Gou22, Doo07].

Floating-point [Gou22].

Flow [WCZ16, LBL01, PG14, VSCL13].

flow-level [VSCL13].

Fluid [FDMS16, PH21, KW93, KM01, LPM⁺04, MR02, NY04].

Fly [WMC⁺18].

FMN [WDYR16].

folded [AAGM10].

FORECAST [TL18].

Forest [BHLZ22].

Form [MRB⁺18, CO98, FSS95, RW93, Tu97].

formal [ABGR01, GDP14, TL18].

formalisms [Bar97].

Formalization [ST15].

Formulation [SP11, SS08].

forward [SW13].

Forwarding [CF11, AXE⁺20].

foundation [BÖ96, RS94].

foundations [Bal97].

FPGAs [RAGN19].

fractional
Frequentist [JSD19].

Fully [KN01, Kim05].

Function [HGP21, LG03]. Functional [KPL14].

Future [San20]. Fuzzy [BB94, MPK06].

Gamma [QDZ21, Ros08].

Gap [TTSM12]. Gate [GLC17].

Gate-Level [GLC17]. Gateway [GLC17].

Gateway [CK08]. Gaussian [DM06, GDB14, HE12, KDV+20, LX14, WCCY19, WhN20, YN15].

GDCSim [GBA+14]. Gene [FDP15].

General [DC22, RDSJ18, KSZ11, WS04].

Generalized [San20].

Geometric [JC11].

GFSR [MK92, MK94].

Gibbs [AQVA10].

Global [PE11, XY21, FH97].

Global-local [XY21].

Global-Scale [PE11].

GPGPU [SM12].

GPUs [LLCC13].

Gradient [HVA09, HVAPFY10, QF14].

Grain [QF14].

Graph [DKVR09].

Graphical [WW95].

Graphs [MDH+23, IMW00].

Green [FS17, FS21, Nel17, Pel21, GBA+14].

Grid [HYJ+18, VSCL13, ZK10].

Grids [YP18].

Guarantees [EH21, SJSM10].

Guest [Ano18, Ba97, CY10, CL98, DG10, FN03, GH15a, HHL14a, JW19, L'E03, MV02, MST17, TR08, TL18].

Guests [BSV16].

Guided [NCN+22].

GVT [PPT14].

Half [AK18].

Half-Spaces [AK18].

Halting [FL09, Tez93, TT94].

Hamming [WJ22, BV22].

Hamming-Weight [WJ22, BV22].

Hard [NH15, Kra96].

Hard-Sphere [Kra96].

Hardware [NAS+21, PF11, SV97].

HAVEGE [SS03].

Hazard [JS02].

HCSM [CPK95].

Healthcare [RSG21, EY11].

Heap [RH19].

Heavier [MJ15].

Heavy [BL11, BHL13, FA06, HPA07, HS12, JS02, WW03].

Heavy-Tailed [BL11, BHL13, FA06, HPA07].

Heterogeneous [NAS+21].

Heteroscedastic [WCCY19].

Heuristic [SS03].

Heuristics [NZ07].

Hierarchical [BBMK16, KDV+20, LJS22, CHW98, KK00, SSRT91].

High [KKTM17, LCK11, SNS16, ZZC18, AZLT10, BCD+14, DX03, Do07, Owe98, SQ12, Tuz95].

High-Density [ZZC18].

High-Dimensional [SNS16, DX03, Owe98].

High-Fidelity [KKTM17].

High-level [BG010, SQ12, Tuz95].

High-performance [BCD+14].

High-period [Do07].

High-speed [AZLT10].

Higher [BG10].

Highly [RDSJ18, HSN94, HD07, Nak94].

Histograms [STHL13].

Hit [KS11].

Hit-and-run [KSZ11].

HIV [MCC11].

HLA [CTC+05, LLLT07, LCT+15, LHL00, PTCL11, RTY05].

HLA-Based [LCT+15, CTC+05].

HNS [MPW04].

Hölder [LX14].

Holistic [SALS18, Van18, BVK04].

Honoring [GH15a, Wil07].

Hospital [GP11].

Household [MCC11].

HPC [LHJS17].

HSL [SSRT91].

Hub [HHFS16].

Hubs [KFL00].

Human [GCB95, LSJ10].

Hybrid [ESZH21,
HPS+21, BL02, EK04, EK07, LL02, SLCP01, VSS+14, ZTJ04, vBBr03, MPW04, hypercubes [HLC12].

I/O [JSC01], identification [HAFDP11]. Identify [GB19, RK20]. idle [WG04].
Iglehart [GH15a]. II [Cal09, MK94, UNMS97]. IID [DjWS19].
III [JB22a, JB22b]. Illustration [SFM13, WPW09]. Image [SM15].
Image-Based [SM15]. Impact [CKM23, YX17, ZK10]. Impacts [HAFDP11]. Implementation [BFN92, IMW00]. implemented [NCV06]. Implemented [RAGN19].
Importance [BGL12, DHN22, DLW07, RDSJ18, AK11, De 06, GK95, HS12, LC01, LV00, MSM10, NZ07, Rj04, RW93, SW13].
importance-sampling [De 06]. Improved [HKP21, HW21, KDV+20]. Improving [JZTB06, LCT+15, RFA00, WS04]. IMSAT [NB93]. In-Depth [JBH+22]. inaccuracies [JZTB06].
Incorporating [MCC11, NNB11]. increases [GH03, GH06, GH09].
incremental [BKV04]. Indemnes [BCD+14]. independence [EHN94b, Emm98, Lev01]. Independent [HAK14, De 06]. indices [Owe13].
difference [KN01]. differentiation [KN01]. indirect [Mat05]. Industrial [XNH10]. Inequalities [BGL12]. Inference [FDP15, JKE14, RL15, SSZ+13, WCS16, WCCY19]. Inference-Based [WCCY19].
Infinite [DjWS19, And06]. Information [LBEJ19, RS10]. INFORMS [HHL14a, CY10]. infrastructure [AK02].
Inhibition [RLDH16]. Inhomogeneous [BK20]. Initial [WG16, AAAG06, AGT92].
initialization [MWKA07], initiating [FK91, Nic91]. inland [ZIC06]. innovations [BHL13]. Input [UPB22, XNB16, YX17, ZLZ20, BN03, DM06, WW95]. inputs [MR02]. insider [MMRC+08].
insider-threat [MMRC+08]. Insiders [CTF+19]. Instability [SKR97].
instruction [MM07]. Integer [HWdF13, Lem19, Qua19, WPS13].
Integer-Ordered [WPS13]. integrals [LX14]. Integrated [HN09, YN15, YN20, Cal07, Cal09, Fis92, LDNA03, LSJ10, SB01]. Integrating [LCL16, ZH19, ZTJ04].
interactive [BCL+97, BCD+14, MWMD07, SSH97, WW95]. interactively [QFL+10].
Interest [LT14]. Interference [WAGP15]. International [LCK11]. Internet [ABGR01, CK08, KHJ+08, Mat05, Nic08]. interoperability [SSH97]. Interpolation [WPS13]. interruptions [DOD93].
Intersection [LLCC13]. Interval [Gou22, HHH+19, Lem19, Qua19, Sin14, PLM94].
Intervals [Nak14, CH04, CLL99, CN12, FG99, IMW00].
Intractable [JKE14]. Introduction [BB19, DT22, DR13, EY11, GC22, GH15a, HT20, HAA+19, LK21, PW21, CY10, CL98, DG10, HHL14a, L'E03, TR08, Wi07].
Intrusion [PTE+11]. invalidates [PJ10]. inventory [Lim12]. Inverse [HLD07].
inversion [DHL10, HD96, HL03]. Inversive [LW97b, EHG92, EHN94a, Emm98, Nie94].
invoked [LDF91]. IP [LPM+04]. Irreducible [GH15b]. Issue [Abo18, BSV16, BB19, DR13, GH15a, HT20, JW19, LK21, MST17, PW21, QTP20, TL18, CY10, CL98, DG10, EY11, HHL14a, MV02, TR08, Wi07].
issues [SSH97, YJ96].

Jackson [JN05, KN02, MSM10, NZ07].
Joint [SJS10, WhN20]. Jointly [NCN+22].

Keddah [DTCU19]. Key [WZCJ22]. know
Knowledge [FBS20, BO96].
knowledge-based [BO96]. known [DHL10, Ent98]. Kolmogorov [KW15].
Kriging [NY12, QF14, CAN12, CK14].

L [GH15a]. Ladder [RH19, TGT05].
Language [HWMU17, Hil17, Mar22, RWU22, EU14, SSRT91, TB98]. Large
[CMZ18, CK08, GJ13, HSL+19, LLCC13, PTE+11, WCZ16, WMC+18, WCL+19, YP18, Buc98, Den05, FG98, LM94, LPM+04, LLHL00, MR02, SS05, TGT05, UXC+00, ZCLT04].

Large-Deviation-Based [WCZ16].

Large-Scale [LLCC13, PTE+11, WMC+18, YP18, CK08, WCL+19, FG98, LM94, LPM+04, LLHL00, TGT05, ZCLT04].

Lateral [RLDH16]. Latin [Owe98, HLC12].

Least [SNS16] lengths [SW96]. Level [GLC17, Hil17, WAGP15, BHG10, DOD93, SQ12, SS03, Tuz95, VSLC13, WP098, WG04].

Lévy [CFL12, DLQ20]. like [LPFP13]. likelihood [BG93]. Likelihoods [JKE14].

log-concave [Ley98]. logic [RS94, SG91, Tuz95]. logic-based [RS94]. Logit [FFSF13]. Logs [CTF+19, CPQ17, TFR07]. Long [NCN+22, DX03, GMOB01]. long-cycle [DX03]. long-range [GMOB01]. lookahead [FK91, JB00]. low [AO95, CHS95, LC01, LV00].

MaD0 [LZW16]. maintenance [RNS97]. Major [HHFS16]. Making [LJS22, LSJ10].

Malicious [CTF+19]. Management [LJS22, LT14, MD20, CTLZ05, DF97, FHD09, KM01, LP91, SQ12, WNFM04, ZLK91].

many [LPPP13, MR02]. Marginal [WG16, Ros08]. Marine [HHFS16]. Markov [AHO93, BD+19, Buc98, BHH21, GL05, HH+19, KW93, MR02, MBGF11, NH95, RK20, RJ04, SCW13].

Markov-reward [GL05]. Markovian [DHN22, HSN94, Nak94, RSDJ18, WCF23].

Mathematical [CS08]. Max [Ale17, CS17, KT10]. max-norm [KT10].

maximal [GK03, Rub02]. Maximization [LF13]. Maximum [AGMW17, JKS07].

MAYA [ZJTB04]. MCMC [FFSF13].

Mean [BDK+19, Hic96]. Mean-payoff [BDK+19]. Means [AG16, AAAG06, Raa93, SLW+05].

measure [HVAPFY10, WCLG10].

measure-valued [HVAPFY10].

measurements [BP94, CF11, LH02].

measures [BK10, De 06, HSN94].

Mechanism [LCT+15, CTLZ05].

Mechanisms [BN22, LDF91, ABGR01, LL91a, MH92].

Memoization [SSDW18]. Memory [HKP21, NCN+22, PTD+20, TKS16, DF97, FH97, LW97a, LP91, MD20, UNMS97].
UXC⁺⁰⁰, ZG⁹⁴.

Mersenne [MN⁹⁸, Nis⁰⁰].

Mesoscopic [GZWG¹⁸, Lor¹⁸].

Message [SDZ⁺¹⁵, WDYR¹⁶].

meta [Fla⁰²].

meta-metamodel [Fla⁰²].

Metamodel [XYZ²¹, TAO⁰⁸, Fla⁰²].

Metamodel-assisted [XYZ²¹].

Metamodelling [Fla²⁰, KDV⁺²⁰, SNS¹⁶, WCCY¹⁹].

Metamodels [YN¹⁵, CAN¹², DHM⁹³, Fla⁰²].

Method [FBCS²², LCL¹⁶, Tur¹⁷, YN²⁰, CGN⁰⁶, DJ¹¹, GH⁰³, GH⁰⁶, GH⁰⁹, HLC⁺¹⁰, Hör⁹⁴, KT¹⁰, Nak⁹⁴, Nie⁹⁴, Nut⁰⁶, FDD⁰⁵].

methodologies [Fis⁹², TR⁰⁸].

Methodology [KPG¹⁵, Bal⁰¹, FZ⁹⁲, LDNA⁰³, LF⁹⁹].

Methods [BMLY¹⁹, DR¹³, EH⁹⁵, HHL¹⁴b, RL¹⁵, San²⁰, WG¹⁶, ABGR⁰¹, And⁰⁹, HDM⁰³, ICC⁹⁹, TL¹⁸, XGH¹²].

Metric [CHA⁺²²].

Metropolitan [CKM²³].

Metropolitan-scale [CKM²³].

microarchitecture [WWFH⁰⁶].

Microscopic [AXE⁺²⁰, NCN⁺²²].

Middleware [PTD⁺²⁰].

Military [PBAB⁺¹¹, WPW⁰⁹].

Minimum [MKPR⁹⁸].

Minority [CN¹⁶].

Misi [SG¹⁹].

Mission [SB⁰¹].

Mitigation [FDMS¹⁶].

modified [LL⁰²].

mixing [CPQ¹⁷].

Mixtures [WZ¹⁵, HS¹²].

MNO [AIC¹⁷, CS¹⁷].

Mobile [KH¹⁹, CSM¹⁰].

Mode [PH²¹].

MODE [PH²¹].

Model [AP¹⁸, CVS¹⁵, CTF⁺¹⁹, DHN²², FDD⁰⁵, GLC¹⁷, HZF¹⁴, JSD¹⁹, KKT¹⁷, KPS¹⁵, MRB⁺¹⁸, PCGM¹⁸, SP¹¹, SSZ⁺¹³, Wh²⁰, XYZ²³, ZLK⁹¹, EO⁰⁷, FZ⁹², FSS⁹⁵, KJS⁺⁰⁸, LH⁰², LS⁹², LSJ¹⁰, MCC¹¹, NOP⁰⁹, RWK⁺⁰⁷, SF¹⁰].

Model-Based [HZF¹⁴, CTF⁺¹⁹, LS⁹²].

Model-Driven [CVS¹⁵].

Modeling [BSV¹⁶, Bar⁹⁷, BLO², BHI⁰, BMYⁱ⁹, BN⁰³, BKV⁰⁴, BDGP²⁰, DYM⁰⁶, FW⁹⁷, HWMU¹⁷, HW²¹, HIL², HHL², HMY⁰⁸, KH¹⁹, KZ¹¹, LDNA⁰³, LZZ⁰, LPPP⁰³, LHJS¹⁷, LDL⁰⁴, Mar²², RWW²², RMYL²¹, TKS¹⁶, WMC⁺¹⁸, ZL¹⁷, ZZC¹⁸, ZLH⁺²², BAL⁰¹, Bar³, BCD⁺¹⁴, CSK¹⁰, DOD⁰⁹, DG¹⁰, DKVR⁰⁹, EY¹¹, Fis⁹², GDP¹⁴, HPA⁰⁷, KLF⁰², LL⁰², MBGF¹¹, MV²⁰, NY⁰⁴, NCV⁰⁶, RS⁹⁴, RFA⁰⁰, SCH¹⁰, TR⁰⁸, UHR⁰¹, WW⁹⁵, WP³⁸, WGO¹⁸, ZJTB⁰⁴, ZC⁺¹⁰].

Modelled [VVB⁺²⁰].

Modelling [GZWG¹⁸, Lor¹⁸].

Models [BMMK¹⁶, BK²⁰, CVS¹⁵, Che¹³, FFSF¹³, HT²⁰, JKE¹⁴, KDV⁺²⁰, Nut²⁰, PE¹¹, SABF¹⁵, SU¹⁶, WHN²⁰, YN¹⁵, YN²⁰, BÖ⁰⁶, BB⁹⁴, BN⁰⁹, CS⁰⁸, FLV⁰¹, Hei⁹⁵, LPM⁺⁰⁴, MKP⁰⁶, MBGF¹¹, MT⁰⁶, Pace⁰⁸, PB⁹⁶, QFL⁺¹⁰, RS¹⁰, RO⁰⁸, SY⁹⁵, TFR⁰⁷, VSCL¹³, YS⁹², ZMM⁺¹¹, ZG⁹⁴].

Modest [BHH²¹].

modelling [CS⁰⁹, Mat⁰⁵].

modulus [EHG⁹²].

Moment [FHG¹⁶, LUC¹⁶, RL¹⁵, ZS¹⁷].

Moment-Based [RL¹⁵].

Moment-Closure [FHL⁰⁶, LUC¹⁶].

Moment-Matching-Based [ZS¹⁷].

Monkey [MZ⁹³, FW⁹⁵].

monotone [HD⁹⁶, HLD⁰⁷].

Monte [DR¹³, Pel²¹, DJLZ¹⁷, FS²¹, FSS⁹⁵, HHL¹⁴b, LDT⁰⁷, LV⁰⁰, LG⁰³, XGH¹²].

Monte-Carlo [FSS⁹⁵].

Morphological [FDMS¹⁶].

Motion [BCM¹⁸, GCB⁹⁵, IFPM¹²].

Movement [GZWG¹⁸, Lor¹⁸].

moving [LDL⁰⁴].

Moving [SNS¹⁶].

MS [TTS⁰¹].

MTSS [HHFS¹⁶].

Multi [And²¹, Con²⁰, CM²¹, HIL², LZ²⁰, Lor¹⁹, MHS¹⁹, EO⁰⁴, MV²⁰].

multi-agent [EK⁰⁴].

Multi-Level [HIL²].

Multi-Objective [And²¹, LZ²⁰, CM²¹].

multi-paradigm [MV²⁰].

Multi-scale [Lor¹⁹, MHS¹⁹].

Multi-server [Con²⁰].

Multiagent [ST¹⁵, ST¹³].

Multiclass [WCF²³, KW⁹³, RRP⁰⁰, Tu⁹⁷].

Multicore [MKG⁺¹⁷, TKS¹⁶, WAGP¹⁵, WDYR¹⁶].

Multicores [LBEJ¹⁹].

Multidimensional [BCZ¹⁴, Lim¹², PS⁰⁹, SS¹⁴, VAV⁰⁶].

multifacetted [ZLK⁹¹].

multihop

Optimisation [UPB22]. optimism [DF97]. Optimistic [CPQ17, JB22b, CPF99, Nut08, SQ12].
Optimization [And21, BDK+19, CDS16, CG13, CM21, FBCS22, GDB14, HKP21, HAA+19, JBH+22, LI20, Sch13, WPS13, And99, And06, BL02, Bha05, Bha07, BHM11, CSK10, HLC+10, HDM03, HN07, HN09, MSK10, PG14, PN03, RGT12, SJY03, XNH10].
Optimization-Based [CDS16].
Optimizations [DK22]. Optimizing [ELL00, LLCC13, WPW09].
optimizing-simulator [WPW09].
Optimum [Tur17]. OR/MS [TTSM12]. order [Den05, DHM93, HD02].
Ordering [WPS13].
Ordering-Piecewise-Quadratic [Ale17, CS17]. Organogenesis [SMI15]. oriented [KK00, SSR91]. orthogonally [HLC12]. orthonormally [FG99]. output [FS17, Ne17, XNB16, ZC18, CGN06, Cal07, Cal09, CH04].
overflow [DM06, JN05, NZ07]. overheads [BP94].
Overlapping [LB15]. Overview [PK11].
Packet [FLV01, AZLT10, CHS95]. PADS [Ano18, JW19, MST17, QTP20, DT22, GC22, LK21]. Pairwise [LLCC13]. PAM [DWM16]. paradigm [MV02]. Parallel [BC93, BMLY19, BCCD22, CTI13, CG02, Ent99, Fuj16, JB22a, JN15, KSL+16, MKG+17, MD20, NH96, PCGM18, PTD+20, RAGN19, RH19, SMDS11, SP11, UXC+00, WDRY16, WYT+20, WMC+18, WCL+19, WZCJ22, XCA+17, YP15, ZC18, A095, CPM99, EGLW93, FW97, GH91, GLM96, HD98, HF01, LP91, LBL91b, Lin92, MWM91, Nic91, NH95, RA97, TFR07, Vak92, Yau99].
Parallelism [Lin92, SY95]. Parallelization [SSZ+13]. Parallelizing [KCS20].
Parameter [RL15, SSDW18, WCS16, YN20, BKM09, NC06]. parameterization [LH02].
Poisson\cite{SDLH12}. Polynomial\cite{Tez93,CO98,LCT07,SS08,TT94}. polynomial-time\cite{CO98}. polynomially\cite{Dev09}. polynomials\cite{GS12}. Pool\cite{TKS16}. Population\cite{PH21,NZ07}. Port\cite{HHFS16,ZIC06}. portable\cite{DX03,Den05,TL91}. Possibly\cite{EH18,KH18}. Posterior\cite{STHL13}. Potential\cite{LCL16}. Power\cite{Dev09}. polynomial-time\cite{CO98}. polynomially\cite{Dev09}. polynomials\cite{GS12}. Pool\cite{TKS16}. Population\cite{PH21,NZ07}. Port\cite{HHFS16,ZIC06}. portable\cite{DX03,Den05,TL91}. Possibly\cite{EH18,KH18}. Posterior\cite{STHL13}. Potential\cite{LCL16}. Power\cite{Dev09}. polynomial-time\cite{CO98}. polynomially\cite{Dev09}. polynomials\cite{GS12}. Pool\cite{TKS16}. Population\cite{PH21,NZ07}. Port\cite{HHFS16,ZIC06}. portable\cite{DX03,Den05,TL91}. Possibly\cite{EH18,KH18}. Posterior\cite{STHL13}. Potential\cite{LCL16}. Power\cite{Dev09}. polynomial-time\cite{CO98}. polynomially\cite{Dev09}. polynomials\cite{GS12}. Pool\cite{TKS16}. Population\cite{PH21,NZ07}. Port\cite{HHFS16,ZIC06}. portable\cite{DX03,Den05,TL91}. Possibly\cite{EH18,KH18}. Posterior\cite{STHL13}. Potential\cite{LCL16}. Power\cite{Dev09}.
R [WPS13], R-SPLINE [WPS13]. Radio [SP11, HAFDP11]. radio-identification [HAFDP11]. Radix [Joh96]. Radix- [Joh96], rail [LDL04]. Railway [DK22]. Random [BHLZ22, Bre04, CAN13, Che13, CG13, DHL10, Dev97, Dev09, GK19, Gou22, HWuF13, HZF14, Lem19, MZ91, MZ93, Pet91, QDZ21, Qua19, STHL13, Wu01, YN15, And99, Bel05, CL98, DX03, Doo07, DLW07, Ent99, ES94, GH03, GH06, GH09, GK03, HN15, Hor94, HL03, HS12, JKS07, LBC93, LX14, MN98, Nel93, PL05, PJ10, RR93, RB08, SMDS11, SS03, TL91, TLC93].

Rejection-inversion [HD96], Related [DQZ18, FDMS16], relative [HSN94]. relaxation [EGLW93]. Relaxing [XCA+17]. relevance [BCL+97].

Reliability [BDGP20, BLST16, CERT15, WCZ16, BCL+97, Hei95]. Reliable [RDSJ18, Nak94]. renewable [PG14]. Repast [NCV06], Repeated [FS17, Nel17]. Replicated [AAAG06, Ale17, And21, Lüci16, Nel17, Qua19, WJ22, GL91, Bee18, Hil17, KH18, Lor18, Lor19, Par18, Van18].

Replication [Ano21, Pel21, Di23]. Report [Ale17, And21, Ano21, Bee18, Hil17, KH18, Lor18, Lor19, Lüci16, MZ92, Nen17, Par18, Qua19, Van18, WJ22, Mar22, Van19]. Re [PJ10, XVN14].

Real-Time [LCL16, CFV99, HBE95, LF99, MY08, WNF04]. Realistic [SABF15]. reality [QFL+10], really [MFFR2].

Rearchitecting [AK02], reasoning [LS92], reconfigurable [SV97]. reconstruction [Pac08]. Recovery [CPQ17]. Recurrence [GH15b, BC93, BHL13]. Recursive [CERT15, Den05, KC10, LBC93].
[MD20, FH97, UXC+00]. Sharing
[PQ17, FSS95]. Sharpening [HE12]. Short
[NCN+22]. Short-Term [NCN+22]. Sided
[PPT14]. Signal [SP11, LL02]. similar
[FMN00, LALGSG+00, PT00]. SimOS
[RBDH97]. Simple [DHN22, Mat98, Nak94]. Simplifying [DOD93]. Simulate
[BDGP20, DC22, RJ04]. Simulated [HW21]. Simulating
[CKM23, CFL12, DTCU19, GL05, JS02, SDLH12, SM115, TDR+11, EK04, EK07, GS12, LL02, NH95, XVN14]. Simulation
[AK18, And21, And22, Ano18, BHLZ22, BB99, Cal07, Cal09, CHA+22, CMM+16, ÇTI13, ÇVS15, CAT22, Che13, CG13, Con20, CM21, DQZ18, DLQ20, ERL15, FBS20, FS17, FS21, Fu16, GJ13, HHL14a, HT20, HKP21, HSL+19, HYJ+18, HYJ19, HLC+10, HERU15, HWW17, Hill17, HHFS16, HAA+19, JB22a, JN15, JW19, KH19, Kiv91, KPG15, KSL+16, LL15, LCT17, LHJS17, LCL16, MH19, Mar22, MDH+23, MJ15, MST17, MKT21, NB93, NCN+22, Ne17, Nut20, Pe21, PCGM18, PTD+20, QTP20, RAGN19, RK20, RWU22, RSG21, RMWL21, SNS16, Di 23, Sch10, SABF15, SW96, SSDW18, VVB+20, VVWD22, Wai15, WPS13, WDRY16, WCCY19, Whn20, WYT+20, WWH+23, WMC+18, WCL+19, WZCJ22, XNB16, XYZZ21, XCA+17, YKA+21, YX17, YP15, YN15, ZMM+11, ZC18, ZLZ20, ZH19, AAGM10, AD92, AO95]. simulation
[BC93, BCL91, Bal01, Bar03, BL02, BCL+97, Bha05, Bha07, BHMN11, BO96, BL11, BHL13, BB94, Buc98, CGN06, CH59, CFW99, CTC+05, CH04, CFS08, CY10, CG02, CHW98, DG10, DM06, DMM93, DJ594, EY11, EU14, FDL99, FK91, FA06, Fis92, FSS95, FG98, GMB01, GCB95, GP11, HT99, Hei95, HD98, HG01, HN07, HY11, HN09, HM08, IMW00, JB00, JZTB06, JSC01, JN05, JKS07, KSW07, KFL00, KW93, KN01, KLF02, KZ11, KN02, LBTG10, LV00, LW97a, LDNA03, LS92, LF99, LLT07, LP91, LL91b, Lin92, LM94, LALGSG+00, LLHL00, LSW91, MWM91, MR02, MPK06, MBGF11, MCC11, MY08, NOP99, Nic08, NZ07, Nut06, Nut08, OLAM08, Pag93, PCT97, PBF+00, PF11, PN03, RS94, RFA00, RNS97, RAF+04, RWK+07, RD10, RS10, SWL09, SSR01, SS019, SSH97]. simulation
[SLCP01, SS14, SY95, SMG09, SG91, SPV+10, SLW+05, SV97, SO08, SJY03, TGT05, TR08, TTM12, TB98, UNMS97, Uhr01, Vak92, Vor10, WW95, WS04, WW03, WNF04, WWFR06, XNH10, XGH12, YL96, Yau99, YNH3, YS92, YJ96, ZCC+10, Bal97]. Simulation-Based
[CG13, ZMM+11, Vor10]. simulation-generated [FA06]. simulationists [MFFR92]. Simulations
[AXE+20, DK22, GB19, GRK+15, HSL+19, HAK14, HW19, LCT+15, LLCC13, NY12, NH15, RH19, VXE+22, XLZ17, XZY+23, YP18, AHO93, BP94, BN09, CTLZ05, CN98, CPF99, CF11, DN09, EWL93, GH91, GLM96, GAG14, HG04, HF01, KSW03, KM01, LPM+04, LX14, Nak94, Nie91, Oso09, Owe98, PP13, ST13, Tuz95, VSC113]. Simulator
[KCS20, MKG+17, FW07, GBA+14, RBDH97, UXC+00, WPW09, MPW04]. Simulators [DK22, KWU22, LB+18, NAT+21, NH96, OLAM08, SKR97]. Simulink [ZL17]. Simultaneous
[GDB14, Bha07, BG93]. Smoothing
[Ale17, CS17, AHO93]. Sobol’ [Owe13]. Social [CN16, LJS22, WCL+19]. Society [HHL14a, CY10]. Software
[CPQ17, JN15, KPG15, SDZ+15, Fis92,
Synchronization [HYJ21, JB22a, JB22b, Tuz95].
Synchronous [EGLW93]. Synthesis [SDZ+15, Fis92, IFPM12]. System [HHFS16, PQ17, PTE+11, VWD22, DX03, Fis92, FSS95, FG98, ICC99, KM01, LW97a, LS92, MMRC+08, MKPR98, Nut08, RS10, SB01, WPN98, ZIC06, ZK10, vBBR03].
systematic [BHG10]. Systems [Ald18, Ano21, Bee18, BDH21, CTI13, CKM23, DWYM16, ESZH21, FHG16, GHS18, GH15b, HWdF13, HYJ+18, HYJ21, KH19, KSL+16, LBE19, LHJS17, Lor19, Lü16, MHS19, Par18, RDSJ18, ST15, Van19, VAB+18, VLN+19, WAGP15, WDYR16, Bar97, BL02, BK10, BKV04, EK04, EK07, HSN94, HVA09, HVAPFY10, HD98, HG01, HM08, LV00, LDNA03, LIT07, LPPP13, Lim12, LL02, MMW91, NC06, Oso09, RBDBH97, ST13, Vak92, VAVA06, ZLK91, TL18, Nak94].

Tables [Nis00]. tactical [ZMM+11]. TADSim [MJV+15]. Tail [MJ15, JKS07].
tailed [BL11, BHL13, FA06, HPA07, JS02].
tails [DLW07, HS12]. tandem [CS08, De 06, GK95, HY11, KC10, KN02, DSM10].
Tapeworm [UNMS97]. targeted [CSF08].
Tausworth [TL91]. TCP [CSF08, NY04, PT00, VSCL13].
TCP-targeted [CSF08]. Technical [CHIHW98].
technique [BN03, Ley98, MM07, SLCP01, SZ99, WS04].
Techniques [Nak14, SDZ+15, ZLH+22, Bal97, CN12].
tempering [WM99]. Temporal [GB19, LBN+18, VXE+22, IMW00, Lor19, MHS19, ROJ04, Tuz95, VLN+19]. Term [NCN+22]. terminals [ZIC06]. Terrain [SSH97]. Test [BV22, WJ22, Ent99, HN98, Mat98, PW95].
Testbed [WZCJ22]. Testing [VXE+22, WG16, CK08]. Tests [Ans01, BDH21, KCK08, KW15, MZ93, BN09, Joh96, LW97b, PJ10].
Their [CFL12, HPA07]. Theorems [CG13].
theoretic [MPK06]. theoretical [AG07, WCLG10]. Theory [Nut20, PW95, HT99, MMRC+08, Pet91].
Third [HHL14a]. threat [MMRC+08, SB01]. Three [RH19, Bha05, NCV06]. Three-tier [RH19].
three-timescale [Bha05]. throughput [SJSM10].
tier [RH19]. Tightly [KSL+16].
Tilted [Hof11, QDZ21, Dev09]. Time [AD92, AO95, BN22, BCM18, BW15, HYJ21, KJE14, JB22a, JB22b, LT14, LCL16, Nut20, PQ17, YP18, ZCLT04, BDK+19, BN03, BN09, Buc98, CTLZ05, CO98, CFWM09, DQ97, DNDR09, FA06, FG99, FG98, FH97, GH91, HBE95, HPA07, KSW07, LF99, LP91, LL91a, LL91b, LDF91, MY08, NH95, PT00, PLM94, QC02, SQ12, SS14, SR98, WNFM04, Yau99].
Time-Based [HYJ21].
Time-Based [HYJ21]. time-division [LL91b]. time-management [SQ12].
Time-Reversed [BW15].
Time-segmentation [AO95]. time-series [BN03, BN09]. Time-Sharing [PQ17].
Time-space [ZCLT04]. Time-Stepped [YP18]. Times [DC22]. timescale [BFMW03, Bha05].
Timestepped [BBDD22]. timing [DJS94]. TLM [SP11].
TLM-Based [SP11]. Tolerance [EH21].

TOMACS [Ano18, JW19, MST17]. Tool [NB03, ZL17, SSRT91, SPV+10]. toolkit [NCV06]. Tools [GZWG18, Lor18, KFL00, RD10].
topological [CK08]. topologies [DKVR09].
topology [KK00]. Trace [KCS20, JSC01, KSW03, MM07]. Trace-Driven [KCS20]. Traffic [AXE+20, CKM23, DTCU19, DK22, HHFS16, LL15, NCN+22, XCA+17, GMOB01, HPA07, LH02, MWMD07, NY04, PT00, PRO13, WW03].
train [LDL04]. Trained [NCN+22]. training [Bal97, SSH97, SB01].
trajectory [BKM09]. Transfer [BLG+21]. Transformation [AGMW17].
Transformations [KW15]. transformed [HLD07]. Transience [GH15b]. Transient [WG16, AAAG06, AGT92, HSN94, MR02].
Transitioning [NAT+21]. Transmission [PE11]. Transparent [SQ12].
Transiently [CPQ17]. transport [ZIC06]. transportation [HVA09]. Trap [UNMS97]. Trap-driven [UNMS97].
traveling [CFW99]. Tree [LHJS17]. triangulations [ES94]. trinomials [MK96].
Truncated [DLQ20]. Trusted [Ald18, Bee18]. TSTL [Van19, VLN+19].
tuberculosis [MCC11]. Twisted [MK92, MK94]. twister [MN98]. twisters [Nis00]. twisting [JS02]. Two [BFMW03, CMZ18, DN99, PPT14, PG14, RH19, SWL09, De06, EH92, KLF02, WP98].
two-level [WP98]. two-node [De06]. Two-phase [SWL09]. Two-Sided [PPT14].
Two-stage [DN99, PG14, KLF02].
Two-tier [RH19]. Two-timescale [BFMW03]. type [KC10, SS08].

Ultrafast [LZW16]. UML [AK02].
unbounded [HLD07]. Uncertain [VXE+22]. Uncertainty [PBAB+11, UPB22, VWD22, XNB16, YX17, ZLZ20, MY08, NC06, PG14]. Undo [CPQ17].
Unification [JB22a]. uniform [CL98, DX03, KSZ11, MN98].
Uniformization [BK20, DHK15]. uniforms [Hör94]. unifying [BCL91]. unimodal [Dev97, SZ99].
Union [AK18]. Universal [Bel05]. University [KFL00]. unknowns [vBRR03]. unmodified [KFL00].
Use [GK19, LALGSG+00]. user [LDJF91, SS03]. user-invoked [LDF91]. user-level [SS03].
users [LPPP13]. Using [AG16, CN08, DHLK15, DHLN22, ESZ91, FBCS22, GZWG18, GDB14, Nak14, RH19, RBDD97, SDLH12, TK16, Van19, VLN+19, VXE+22, WCF23, WMC+18, WZCJ22, AD92, BC93, BFMW03, BN03, BVK04, BN09, Cal07, Cal09, CPF99, DJWS19, Fis92, FG99, GAG14, HLC+10, HHE95, JS02, LS92, Lor18, LLHL00, NCN+22, Pac08, PF11, PRO13, RAF00, SSJ03, WPS13, WP98, WPW09, XGH12, Yau99]. Utilization [TK16, AK10]. utilizing [MM07]. UWB [AK10]. UWB-based [AKZ10].

Variable [HDM03, SU16, HLC12].
Variable-sample [HDM03].
Variable-Structure [SU16]. variables [DLW07, JKS07]. Variance [AHO93, BC13, CERT15, GAG14, LN18, Nak14, Owe03, SK23, Thf97, AAGM06, AAGM10, CN98, CN12, Kaw10].
Variance-Reduction [Nak14, CN12].
variant [AK11]. Variate [QDZ21, DHL10, Dev97, Dev97, HLO03].
variations [AHO93, Hör94, HD96, NS06, RR93, ROY04, YL96]. variation [KSZ11].
Variational [WCCY19]. varying [DLW07].
vector [Bel05, BN03, GH03, GH06, GH09, Nie94].
Vectors [Emm98]. VEEs [LCT+15].
vehicle [CFW99]. vehicles [OLAM08].
Verification [Ald18, Bee18, PCT97].
versatile [SSRT91]. versus [WM99]. Very
[SS05, Owe98]. via
[ABGR01, AGMW17, And21, BMH11, CK08,
CTF+19, CG13, CM21, HKP21, HE12,
HN07, KSW07, KFL00, Kim05, KWU22,
LC01, LG03, Oso09, PHP+15, PN03, SQ12,
Di 23, WWH+23, XYZ21, XNH10]. View
[LL20, CS92]. Virtual [BN22, HYJ21,
JB22a, JB22b, JN15, KKTM17, LN18, LT14,
YP15, CKP95, FH97, ZCLT04].
Virtual-Machine-Based [JN15]. Visual
[GB19, GCB95]. visualization [Pac08].
Visualizing [HBE95]. VM [KSW03].
volumes [Pac08]. Volunteer
[SALS18, Van18]. vs [UPB22].
WA [LCK11]. walks [HS12]. Warp
[PQ17, AD92, DF97, DNR96, LP91, LL91a,
LDF91, PLM94, QC02]. wave [Nut06].
wavelength [RRP00]. Waves [RLDH16].
Weak [ST15]. Web
[KLF02, PBF+00, RRW00, RFA00].
Web-based
[RFA00, KLF02, PBF+00, RRW00]. Weight
[BV22, WJ22]. weighted [FG99, HN98].
well [Ent98]. well-known [Ent98].
Wildfire [TDR+11, HN09, XGH12].
wmmedia [AZK10]. wind [Pac08]. Wireless
[KKTM17, SABF15, JZTB06, SJSM10,
SF10]. WiseMove [BLG+21]. WiseSim
[BLG+21]. within [DK22]. without [FK91].
WLAN [KKTM17]. Work [WYT+20].
Work-stealing [WYT+20]. Workflow
[CAT22]. Workload [SALS18, Van18].
workloads [TFR07, WPN98]. workshop
[CY10, HHL14a]. world [CS92, ZJTBP04].
xMAS [ZL17]. xMAS-Based [ZL17].
Xorshift [Bre04, Mar03, PL05, Vig16].
YAWNS [DNR96].
Zero [CERT15]. Zero-Variance [CERT15].
zone [KN01]. ZVA [RDSJ18].

References

Alexopoulos:2006:RBM

Christos Alexopoulos, Sigrún Andradóttir, Nilay Tank Ar-

Alexopoulos:2010:PFV

Aldini:2001:CQI

Alessandro Aldini, Marco Bernardo, Roberto Gorrieri, and Marco Roccetti. Comparing the QoS of Internet audio mechanisms via formal methods. ACM Transactions on Modeling and Computer
REFERENCES

[A16] Bruce E. Ankenman. 2015:SDE

REFERENCES

CEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

Sigrún Andradóttir and Teunis J. Ott. Time-segmentation parallel simulation of networks
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

acm.org/doi/abs/10.1145/3373758.

Bhimani:2019:NPM

Biller:2003:MGM

Brandao:2009:ANS

Babu:2022:MPV

Birta:1996:KBA

Bailey:1994:EMO

Brent:2004:NMX

http://www.jstatsoft.org/counter.php?id=101&url=v11/i05/v11i05.pdf&ct=1. See [Mar03, PL05, Vig16]. This article shows the equivalence of xorshift generators and the well-understood linear feedback shift register generators.

[Bandini:2016:GEE]

[BSV16]

[Calvin:2007:SOA]

[Calvin:2009:SOA]

Roman Chertov, Sonia Fahmy, and Ness B. Shroff. Fidelity of

Chen:1999:RTS

Chidester:2002:PSC

Cheng:2004:CCI

Cardenas:2022:DMP

Calvin:2006:SRM

REFERENCES

Cheng:2013:FSM

Coe:1998:TNH

Chang:1995:FSP

Carl:2008:LST

Chen:2014:SKB

Choi:2013:PAC

Chan:2023:SID

REFERENCES

REFERENCES

[CN12]

[CN15]

[CN16]

[CO98]

[Con20]

[CPF99]

[CPQ17]
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
DeBoer:2006:ASI

Deng:2005:EPM

Devroye:1997:RVG

Devroye:2009:RVG

Das:1997:AMM

Devetsikiotis:2010:GEI

Dannenberg:2015:CCR

REFERENCES

[DJ11] S. Dwarkadas, J. R. Jump, and J. B. Sinclair. Execution-

Dupuis:2019:ISU

Divis:2022:RNS

Dimitropoulos:2009:GAM

Dassios:2020:EST

Dupuis:2007:ISS

Diekjer:2006:FSO

REFERENCES

[Damerdj:1999:TSM]

[Dickens:1996:ABT]

[Davies:1993:SMM]

[Doornik:2007:CHP]

[Dassios:2018:ESC]

[Doucet:2013:ISI]

[Diallo:2022:ISS]
Eick:1993:SRP

Eichenauer-Herrmann:1995:PNG

Eckman:2018:RSD

Eckman:2021:FCF

[EH21] David J. Eckman and Shane G. Henderson. Fixed-confidence,

Eichenauer-Herrmann:1992:NIC

Eichenauer-Herrmann:1994:DIP

Eichenauer-Herrmann:1994:SIN

Esposito:2004:AIE

Esposito:2007:SED

Erickson:2000:OSC

Emmerich:1998:SIP

Entacher:1998:BSW

Entacher:1999:PSL

Erazo:2015:SNS

Epstein:1994:GTR

Entacher:1999:PSL

Ewald:2014:SDS

Eldabi:2011:ISI

Tillal Eldabi and Terry Young. Introduction to special issue
REFERENCES

REFERENCES

18:??, February 2016. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Fioretto:2015:CCB

[FDP15] Ferdinando Fioretto, Agostino
Dovier, and Enrico Pontelli. Constrained community-
based gene regulatory net-
work inference. ACM Trans-
actions on Modeling and Com-
puter Simulation, 25(2):11:1–
11:??, February 2015. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Fussl:2013:EMB

[FFSF13] Agnes Fussl, Sylvia Frühwirth-
Schnatter, and Rudolf Frühwirth.
Efficient MCMC for binomial
logit models. ACM Transac-
tions on Modeling and Com-
puter Simulation, 23(1):3:1–
3:??, January 2013. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Frolund:1998:DTS

[FG98] Svend Frolund and Pankaj
Garg. Design-time simulation of a large-scale, distributed object system. ACM Transac-
tions on Modeling and Com-
puter Simulation, 8(4):374–
400, October 1998. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Foley:1999:CIU

Robert D. Foley and David
Goldsman. Confidence inter-
vals using orthonormally
weighted standardized time
series. ACM Transactions on
Modeling and Computer Sim-
ulation, 9(4):297–325, Octo-
ber 1999. CODEN ATMCEZ.
ISSN 1049-3301 (print), 1558-
1195 (electronic).

Fujimoto:1997:CGV

Richard M. Fujimoto and
Maria Hybinette. Compute-
global virtual time in shared-
memory multiproces-
sors. ACM Transactions on
Modeling and Computer Sim-
ulation, 7(4):425–446, Octo-
ber 1997. CODEN ATMCEZ.
ISSN 1049-3301 (print), 1558-
1195 (electronic).

Feldman:2018:SAB

Guy Feldman and Susan R.
Hunter. SCORE allocations
for bi-objective ranking and
selection. ACM Transac-
tions on Modeling and Com-
puter Simulation, 28(1):7:1–
7:??, January 2018. CO-
DEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (elec-
tronic).

Feng:2009:FBB

Benjamin Zhong Ming Feng,
Changcheng Huang, and
Michael Devetsikiotis. FISTE: a black box approach for end-to-end QoS management.

Feng:2016:AMC

Fishwick:1992:IAS

Felderman:1991:BAS

Faure:2009:GHS

Flatscher:2002:MEC

Fuks:2001:PDM
Fonseca:2000:EBS

Fu:2003:GE

Feng:2017:GSR

Feng:2021:GSD

Fujimoto:2016:RCP

Falsafi:1997:MCP
Fishwick:1992:MMQ

Gupta:2014:VES

Giabbanelli:2019:VAI

Gupta:2014:GSG

Giabbanelli:2022:ISS

Granieri:1995:PPH

Ghoshdastidar:2014:SFA

Gore:2014:CCM

Glynn:1991:APR

Ghosh:2003:BNM

Ghosh:2006:CBN

Ghosh:2009:CBN

Glynn:2015:GEI

REFERENCES

Glynn:2015:TRI

Georgoulas:2018:PPP

Glynn:2013:ASE

Glasserman:1995:AIS

Goresky:2003:EMC

Gorder:2019:RSN

Grassmann:2005:SMR

Gonsiorowski:2017:AMG

Greenberg:1996:SPD

Gallardo:2001:FSB

Goualard:2022:DRF

Gunal:2011:DGS

Gore:2015:SDS

Goyal:2012:SCB

REFERENCES

[Hein:1998:PDE] Axel Hein and Mario Dal Cin. Performance and dependabil-

[Hormann:2002:FGO]

[Hsu:2007:AAA]

[Homem-De-Mello:2003:VSM]

[Henderson:2012:SCG]

[Heidelberger:1995:FSR]

[Heidelberger:1997:E]

[Helms:2015:ARA]
ISSN 1049-3301 (print), 1558-1195 (electronic).

Hybinette:2001:CPS

Henderson:2001:RSS

Huang:2016:MMT

Hahn:2019:IMD

Haas:2014:GEI

Hong:2014:MCM

Hong:2011:MSS

Yang Hong, Changcheng Huang, and James Yan.

REFERENCES

Hernandez:2012:CNO

Hormann:2007:ITD

Hung:2008:MSS

Hellekalek:1998:WST

Hong:2007:FLC

Hu:2009:ISO

Hofert:2011:SET
Marius Hofert. Sampling exponentially tilted stable distributions. *ACM Transactions on Modeling and Com-
Hormann:1994:NQR

Hernandez:2007:DTH

Huls:2021:SSC

Hult:2012:ISM

Hanai:2019:EDS

Heidelberger:1994:BRE

REFERENCES

Hesham:2021:EMP

Hamze:2013:SAR

Helms:2017:SES

Hannon:2018:CSE

Hannon:2021:DVT

Hu:2014:MBA

Inoue:1999:EES

Koichiro Inoue, Stephen E.

Inacio:2012:FSP

Ingalls:2000:ITI

Jha:2000:SEL

Jefferson:2022:VTIa

Jefferson:2022:VTIb

Joseph:2022:ROS

REFERENCES

Juneja:2002:SHT

Jin:2001:FPS

Jegourel:2019:SSF

Jin:2019:GET

Ji:2006:ISW

Kawai:2010:AOA

Kin:2010:GLT

Wai Kin and Victor Chan. Generalized Lindley-type recursive representations for multiserver tandem queues with blocking. *ACM Transac-
REFERENCES

Kim:2008:TRG

Kalayappan:2020:CCB

Kuang:2018:R

Knudde:2020:HGP

Keller:2019:TDD
Nicholas Keller and Xiaolin Hu. Towards data-driven simulation modeling for mobile agent-based systems. *ACM

Kesidis:2008:MSR

Kim:2005:CSF

Kiviat:1991:STD

Korkmaz:2000:SOT

Kawai:2017:VWD

Kim:2002:TSM

Kumaran:2001:PFS

Krishnan Kumaran and Debasis Mitra. Performance

Kim:2001:FSP

Kroese:2002:EST

Keane:1994:BF

Kristiansen:2015:MME

Krantz:1996:AEA

Kunz:2016:PEE

Kaplan:2003:FRT

Scott F. Kaplan, Yannis Smaragdakis, and Paul R. Wilson. Flexible reference

Kang:2007:ERS

Kang:2007:ERS

Kang:2007:ERS

Kiatsupaibul:2011:AVH

Kiatsupaibul:2011:AVH

Kiatsupaibul:2011:AVH

Kunnumkal:2010:SAM

Kunnumkal:2010:SAM

Kunnumkal:2010:SAM

Koster:2022:GFS

REFERENCES

LUcuyer:2010:ARE

LUcuyer:2001:ESC

Lathrop:2011:SPI

Lu:2016:RTC

Lewandowski:2007:SBE

Li:2015:ARP

Li:2017:CAB

Lomow:1991:MUI

Lu:2004:MTM

Lecuyer:2003:GI

Lecuyer:2007:RES

Lemire:2019:FRI
REFERENCES

Levin:2001:SIC

Leydold:1998:RTS

Lee:1999:ORM

LeCorff:2013:CPB

REFERENCES

3301 (print), 1558-1195 (electronic).

[Lim2012:Sam]

[Lin1992:Pap]

[Lee2022:Hdm]

[Liu2021:isi]

[Lin1991:Stw]

[Lin1991:Tda]

[Liu2002:Cba]
REFERENCES

Li:2015:CBS

[LL15]

Lam:2020:PSO

[LL20]

Lo:2013:OPB

[LLCC13]

Lu:2000:SLS

[LLHL00]

Lees:2007:DSA

[LLT07]

Lin:1994:EBE

[LM94]

Lin:2018:VDE
REFERENCES

Loreti:2018:RCR

Lin:1991:OMM

Liu:2004:SFM

Liao:2013:MBL

Lee:1992:MSB
Lee:2010:IHD

Lubachevsky:1991:ARB

Liu:2014:STM

Lin:2017:MSP

Luck:2016:RCR

Lassila:2000:NOI

Lebeck:1997:AMN

Alvin R. Lebeck and David A. Wood. Active memory: a new abstraction for memory system simulation. *ACM Transactions on Modeling and Com-
REFERENCES

[MFFR92] David P. Miller, R. James Firby, Paul A. Fishwick, and...
REFERENCES

Madisetti:1992:SMD

Ma:2019:PSB

Michaelides:2019:SM

Mok:2015:RSQ

Mniszewski:2015:TDE

Matsumoto:1992:TGG

REFERENCES

3301 (print), 1558-1195 (electronic).

Matsumoto:1998:MTD

Martens:2006:FST

Melamed:2004:HSH

Mandjes:2002:LDA

Marin:2018:PFM

McClary:2010:SAC

REFERENCES

[MWMD07] Aaron McCoy, Tomas Ward, Seamus Mcloone, and Declan Delaney. Multistep-ahead neural-network predictors for network traffic reduction in distributed interactive applications. *ACM Transac-

REFERENCES

[Nadoli:1993:IMS]

[Ng:2006:RPU]

[Naing:2022:DDD]

[North:2006:ECT]

[Nelson:1993:RMC]

[Nelson:2017:RCR]

[Nicol:1995:CSP]
David M. Nicol and Philip Heidelberger. A comparative study of parallel algorithms for simulating continuous time Markov chains. ACM

ISSN 1049-3301 (print), 1558-1195 (electronic).

Nzouonta:2011:DIM

Nance:1999:RMS

Nelson:2006:CVS

Nutaro:2006:DEM

Nutaro:2008:COS

Nutaro:2020:TTS

Nicol:2004:DEF

ISSN 1049-3301 (print), 1558-1195 (electronic).

Ng:2012:BKA

Nicola:2007:EIS

Ow:2013:BES

Pachoulakis:2008:RVA

Page:1993:DDE

Parker:2018:RCR

Park:1996:SEL

Powell:2011:ERD

Prabuchandran:2016:A

Page:2000:WBS

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

[PG14] Dzung Phan and Soumyadip Ghosh. Two-stage stochastic optimization for optimal

Piho:2021:FAB

Pasupathy:2015:SCR

Panneton:2005:XRN

Preiss:1994:ECI

Pichitlamken:2003:CPO

Perumalla:2013:RSE

Perumalla:2014:DEE

Pellegrini:2017:FGT

Petkov:2013:CPA

Pasupathy:2009:RAA

Park:2000:PEM

REFERENCES

[QDZ21] Yan Qu, Angelos Dassios, and Hongbiao Zhao. Ran-

REFERENCES

Daniël Reijsbergen, Pieter-Tjerk De Boer, Werner

Reed:2000:IAD

Rainville:2012:EOL

Rao:2019:MPE

Randhawa:2004:CIS

Rahman:2020:SSI

Ruess:2015:MBM

References

Rodriguez:2020:GPB

Reppas:2016:ENE

Ruiz-Martin:2021:DEM

Reynolds:1997:CMM

Rosenfeld:2008:ABG

Rajasekaran:1993:FAG

REFERENCES

Martin R. Stytz and Sheila B. Banks. The distributed mission training integrated threat environment system architecture and design. *ACM Transactions on Modeling and Com-
REFERENCES

Yang Song and Yuguang Fang. Cross-layer interactions in multihop wireless sensor networks: a constrained queueing model. *ACM Transactions on
REFERENCES

Schreck:2013:AEE

Soule:1991:ECM

Singham:2014:SSR

Sharma:2010:JCC

Swisher:2003:DES

Song:2023:BAV

REFERENCES

Shorey:1997:IPL

Schormans:2001:HTA

Steele:2014:FSP

Steiger:2005:ABM

Saito:2012:DCS

Salmon:2011:PRN

Shortle:2009:RCQ

REFERENCES

2009. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

Schwaninger:2015:SOA

Salemi:2016:MLS

Seal:2011:RPD

Stamos:2010:CST

Santoro:2012:TOS

Srinivasan:1998:ET

Seznec:2003:HUL

André Seznec and Nicolas Sendrier. HAVEGE: a user-level software heuristic for generating empirically strong...

REFERENCES

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

Trunfio:2011:NAS

Tezuka:1993:PAA

Talby:2007:CPA

Tang:2005:LQP

Tsompanas:2016:MCM

Tezuka:1991:EPC

TerBeek:2018:GES

REFERENCES

Tezuka:1993:LSA

Tezuka:1994:NPA

Taylor:2008:GEI

Taylor:2012:BGS

Tafazzoli:2009:PCE

Tafazzoli:1997:VRA
REFERENCES

DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://dl.acm.org/citation.cfm?id=2845077.

[Vissat:2019:AST]

[Vorobeychik:2010:PAS]

[Velho:2013:VFL]

[Vicino:2022:UDE]

REFERENCES

REFERENCES

Wang:2020:ERP

Wilson:2007:EIS

Wu:2022:RCR

Wegenkittl:1999:GRC

Wolfe:2018:MLS

Warren:2004:NSE

Ware:1998:AMF
Peter P. Ware, Thomas W. Page, Jr., and Barry L. Nelson. Automatic modeling
REFERENCES

[XGH12] Haidong Xue, Feng Gu, and Xiaolin Hu. Data assimilation

[102x681] REFERENCES

117

[YN20] Jun Yuan and Szu Hui Ng. An integrated method for simultaneous calibration and parameter selection in com-

REFERENCES

Zhou:2004:TSC

Zorn:1994:EMM

Zimmermann:2019:ISN

Zikos:2010:ISD

Zhao:2017:TXB

Xueqian Zhao and Zhonghai Lu. A tool for xMAS-based modeling and analysis of communication fabrics in Simulink. ACM Transactions on Modeling and Com-
REFERENCES

Zhong:2022:DDC

Zeigler:1991:MBM

Zhu:2020:RQS

Zeltyn:2011:SBM

Zhang:2017:MMB

Zhao:2018:RDD

Mingbi Zhao, Jinghui Zhong, and Wentong Cai. A role-dependent data-driven approach for high-density crowd...