A Complete Bibliography of *ACM Transactions on Modeling and Computer Simulation*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
04 February 2019
Version 1.73

Title word cross-reference

1, 2, 3 [SMDS11]. 3 [Pac08]. b [Joh96]. m [MK96, Mat98]. O(1) [TGT05]. q [GDB14].

-Gaussian [GDB14]. -sequence [Mat98]. -sequences [MK96].

623-dimensionally [MN98]. 64-bit [Nis00].

abstraction [LW97a]. Accelerated [MJV+15, HD07, SLCP01]. Accelerating [And99]. acceleration [PF11]. acceptance [Bel05]. acceptance-rejection [Bel05]. access [AZLT10, KHJ+08].

D [Pac08]. DAE [vBBR03]. DAE-based [vBBR03]. Data [EH18, KH19, KW15, KH18, LHJS17, SS14, XGH12, ZCC18, BCD+14, DOD93, FLV01, GBA+14, HBE95, Mat05]. Data-Driven [KH19, ZCC18, SS14]. data-intensive [BCD+14]. database [SSH97]. DDM [PTCL11, RTY05]. Debugging [GRK+15].

foundations [Bal97]. fractional [IFPM12, SS05]. Framework [CDS16, CVS15, WFH12, XLZ17, BCL91, BCD+14, CKP95, HN07, JC11, LSJ10, MBGF11, MY08, OLAM08, SC08, WCLG10]. fully [KN01, Kim05]. function [LG03]. Functional [GDB14, Bha07]. Functions [CFL12]. fuzzy [BB94, MPK06].
Generator [LZW16, Bel05, EHG02, MN98, Pet91, Ros08, SM12]. Generators [Bre04, MZ91, MZ93, Vig16, DX03, Den05, Ent08, GKL03, Joh96, LBC03, LW07b, MK92, MK94, Mat98, MWKA07, PL05, PW95, PJ10, SL14, TL91, TLC93]. Generic [GP11]. geometric [JC11]. Getting [WM90]. GFSR [MK92, MK94]. Gibbs [AQVA10]. Global [PE11, FH97].
graphs [IMW00]. Green [FS17, NL17, GBA+14]. Grid [HYJ+18, VSC13, ZK10]. Grids [YP18]. guarantees [SJSM10].
Guest [ANO18, Bal97, CY10, CL98, DG10, FN03, GH15a, HHL14a, L'E03, MV02, MST17, TR08, TL18]. Guests [BSV16]. GVT [PPT14].

Heteroscedastic [WCCY19]. heuristic [SS03]. heuristics [NZ07]. Hierarchical [BBMK16, CHW98, KK00, SSRT91]. High [KKTM17, LCK11, SNS16, ZZC18, AZLT10, BGH10, BCD+14, DX03, Doo07, Owe98, SQ12, Tuz95]. High-Density [ZZC18].
High-Dimensional [SNS16, DX03, Owe98]. High-Fidelity [KKTM17]. high-level [BGH10, SQ12, Tuz95]. high-performance [BCD+14], high-period [Doo07], high-speed [AZLT10], higher [BGH10].
human [GC95, LSJ10]. hybrid [BL02, EK04, EK07, LL02, SLCP01, VSS+14, ZJTB04, vBBR03, MPW04]. hypercubes [HLC12].
Implementation [BFN92, IMW00].
implementations [NCV06]. Importance [BGL12, DLW07, RDSJ18, AK11, De 06, GK95, HS12, LC01, LV00, MSM10, NZ07, RJ04, RW93, SW13].
importance-sampling [De 06]. Improving [JZTB06, LCT+15, RFA00, WS04]. IMS AT [NB93]. inaccuracies [JZTB06]. Improving [JZTB06, LCT+15, RFA00, WS04].
IMSAT [NB93]. inaccuracies [JZTB06]. Improving [JZTB06, LCT+15, RFA00, WS04]. IMS AT [NB93]. inaccuracies [JZTB06]. Improving [JZTB06, LCT+15, RFA00, WS04].
Incorporating [MCC11, NNB11]. increases [GH03, GH06, GH09]. incremental [BKV04]. Indemics [BCD+14]. independence
[EHN94b, Emm98, Lev01]. Independent [HAK14, De 06]. indices [Owe13]. indifference [KN01]. indifference-zone [KN01]. indirect [Mat05]. Industrial
[XNH10]. Inequalities [BGL12]. Inference [FDP15, JKE14, RL15, SSZ+13, WCS16, WCCY19]. Inference-Based [WCCY19]. infinite
[And06]. Information [RS10].
INFORMS [HHL14a, CY10]. infrastructure [AK02]. Inhibition [RLDH16]. Initial
[WG16, AAAG06, AGT92]. initialization [MWKA07]. initiating [FK91, Nic91]. inland [ZIC06]. innovations [BHL13]. Input
[XNB16, YX17, BN03, DM06, WW95]. inputs [MR02]. insider [MMRC+08]. insider-threat [MMRC+08]. Instability
[SKR97]. instruction [MM07]. Integer
[HWdF13, Lem19, Qua19, WPS13]. Integer-Ordered [WPS13]. integrals
[MX14]. Integrated [HN09, YN15, Cal07, Cal09, Fis92, LDNA03, LSJ01, SB01]. Integrating [LCL16, ZJTB04]. Integration
[LBN+18, EK04]. intelligence [Fis92]. Intelligent [NB93]. Intensional [SU16].
intensive [BCD+14]. interaction
[CS92, WCLG10]. interactions
[BHG10, DG10, SF10]. interactive
[BCL+97, BCD+14, MWMD07, SSH97, WW95]. interactively [QFL+10]. Interest
[LT14]. Interference [WAGP15]. International [LCK11]. Internet
[ABGR01, CK08, KJH+08, Mat05, Nic08]. interoperability [SSH97]. Interpolation
[WPS13]. interruptions [DOD93]. Intersection [LLCC13]. Interval
[Lem19, Qua19, Sin14, PLM94]. Intervals
[Nak14, CH04, CLL09, CN12, FG99, IMW00]. Intractable [JKE14]. Introduction
[DR13, EY11, GH15a, HAA+19, CY10, CL98, DG10, HHL14a, L'E03, TR08, Wil07]. Intrusion [PTE+11]. invalidates [PJ10]. inventory
[Lim12]. Inverse [HLD07]. inversion [DHL10, HD96, HL03]. Inversive
[LW97b, EHG92, EHN94a, Emm98, Nic94]. invoked [LDF91]. IP [LPM+04]. Irreducible [GH15b]. Issue
[Ano18, BS16, DR13, GH15a, MST17, TL18, CY10, CL98, DG10, EY11, HHL14a, MV02, TR08, Wil07]. issues
[SSH97, YJ96].
Jackson [JN05, KN02, MSM10, NZ07]. Joint [SJSM10].
know [MFFR92]. knowledge [BÖ96]. knowledge-based [BÖ96]. known
[DHL10, Ent98]. Kolmogorov [KW15]. Kriging
[NY12, QF14, CAN12, CK14].
L [GH15a]. Ladder [TGT05]. Language
[HWMU17, Hil17, EU14, SRST91, TB08]. Large
[CMZ18, CK08, GJ13, LLC13, PTE+11, WCZ16, WM+18, YP18, Buc98, Den05, FG98, LM94, LPM+04, LLHL00, MR02, SS05, TGT05, UXC+00, ZCLT04]. Large-Deviation-Based [WCZ16].
Large-Scale [LLCC13, PTE+11, WM+18, YP18, CK08, FG98, LM94, LPM+04, LLHL00, TGT05, ZCLT04]. Lateral
[RLDH16]. Latin [Owe98, HLC12]. lattice
[TLC93]. layer [AZK10, BHG10, DG10, SF10, WCLG10, BHG10]. Learning
[SCW13, KT10]. Least [SNS16]. lengths
[SW96]. Level [GLC17, Hil17, WAGP15, BHG10, DOD93, SQ12, SS03, Tuz95].
EY11, Fis92, GDP14, HPA07, KLF02, LL02, MBGF11, MV02, NY04, NCV06, RS94, RFA00, Sch10, TR08, Uhr01, WW95, WPN98, WG04, ZJT04, ZCC+10.

Modelling [GZWG18, Lor18]. Models [BBMK16, CVS15, Che13, FFSF13, JKE14, PE11, SABF15, SU16, YN15, BO96, BB94, BN09, CS08, FLV01, He95, LPM+04, MPK06, MBGF11, MT06, Pac08, PB96, QFL+10, RS10, RB08, SY95, TFR07, VSC13, YS92, ZMM+11, ZG94].

Modelling [GZWG18, Lor18]. Models [BBMK16, CVS15, Che13, FFSF13, JKE14, PE11, SABF15, SU16, YN15, BO96, BB94, BN09, CS08, FLV01, He95, LPM+04, MPK06, MBGF11, MT06, Pac08, PB96, QFL+10, RS10, RB08, SY95, TFR07, VSC13, YS92, ZMM+11, ZG94].

Modification [CS92, Mat05]. Modulus [EHG92].

Moment-Matching-Based [ZH17]. Monkey [MZ93, PW95]. Monotone [HD96, HLD07]. Monotone-Carlo [FSS95].

Monte Carlo [FSS95]. Monte-Carlo [FSS95]. Montage [FDMS16].

Motion [BCM18, GCB95, IFPM12]. Movement [GZWG18, Lor18]. movements [LDL04]. Moving [SNS16]. MS [TTSM12].

Multicore [MKG+17, TKS16, WAGP15, WDYR16].

Multidimensional [BCZ14, Lin12, PS09, SS14, VAVA06]. Multifaceted [ZKL01]. multithop [NNB11, SF10]. Multilevel [DJLZ17, HWMU17, SU16].

Multilevel-DEV [SU16]. multimodel [FZ09]. modeling [LF99].

Multinomial [VSS+14]. Multiojective [HAA+19, MSK10]. multiparadigm [Bar03]. Multiple [HAK14, YN93, BK10, DN99, DOD93, Den05, KKK0, LBC93, NL93, PT00, SJY03].

Multiple-comparison [DN99]. multiply [GK03]. multiply-with-carry [GK03].

Multiprocessor [CG02, SY95]. Multiprocessors [LBN+18, DJ94, FH97].

Multiresolution [RNS97]. Multiscale [DWYM16]. Multiserver [KC10].

Multistep [MWM07]. Multistep-ahead [MWM07]. Multitasking [LS92]. Multithreaded [LTM+17]. Multivariate [SDLH12, XNB16, Bha05, Bha07, BN03, Dev97, HBE95, Ley98].

Nearly [LV00, HLC12]. need [MFFR92]. Neighborhood [WPS13]. NeMo [PCGM18]. nets [BC93, BKV04, Hie96, Owe03].

Network [BLST16, CERT15, CMM+16, ERL15, FDP15, KKT17, KPG15, LBN+18, LL15, MPW04, SABF15, WNF04, CFS08, DKVR09, HPA07, ZJTB06, KFL00, KN02, LM94, LALGSG+00, MM07, MT06, PF11, PRO13, RRV00, RAF+04, SLCP01, SW13, SV97, VSCL13, ZJTB04].

network-computing [KFL00]. Networking [LCK11]. Networks [CDS16, JN15, LH17, MJ15, PTE+11, RL15, WSC16, WMC+18, AZLT10, A095, CS08, CO98, CSK10, DG10, EGLW93, FDL99, FLV01, GM01, JK00, Lin12, LPM+04, LDO4, N207, RRP00, RW93, SLC01, SJS10, SKR97, SMG09, SF10, SV+10, Tuf97, UXC+00, VaAE02].

neural [MWM07]. neural-network [MWM07]. Neuromorphic [PCGM18].

Neurons [LTM+17]. Newton [Bha07].

Nonhomogeneous [SDLH12]. Nonlinear [EH95, LZW16, EHN94b]. Nonnegativity [A17, CS17]. nonsaturated [HLC12].

nonstationary [BN09]. nonuniform [Bel05]. norm [KT10]. Normalizing [DJLZ17]. NORTA [GH03, GH06, GH09].
Note
Noxim [CMM+16]. Null [WDYR16].
Null-Message [WDYR16]. Number [Bre04, EH95, LZW16, MZ91, MZ93, Pet91, AK11, CL98, DX03, EH92, Ent98, GK03, Jph96, LBC93, LW97b, MN98, MWKA07, PL05, PW95, PJ10, SM12, SLF14, TL91, TLC93, Wu01]. Numbers [GK19, Pet91, Doo07, EHN94a, EHN94b, Ent99, Lev01, Nak97, SMDS11, SS03, WM99, CAN12].

Numerical [DHL10, HL03]. Numerically [EK07].

Object [FG98]. objective [FH18]. Observation [JKE14].
Observation-Driven [JKE14]. off [KW93].

Operational [ZMM+11]. Operations [PBAB+11]. Optimality [AZLT10, BKM09, LP91, HLC+10, Kow10, LV00, PG14, RW93].
Optimism [DF97]. Optimistic [CPQ17, CF99, Nut08, SQ12].
Optimization [CDS16, CG13, GDB14, HAA+19, Sch13, WPS13, And99, And06, BL02, Bha05, Bha07, BHM11, CSK10, HLC+10, HDM03, HN07, HN09, MSK10, PG14, PN03, RGT12, SJY03, XNH10].
Optimization-Based [CDS16].
Optimizing [ELL00, LLCC13, WPW09].
optimizing-simulator [WPW09].

Optimum [Tur17]. OR/MS [TSSM12].
order [Den05, DHM93, HD02]. Ordered [WPS13]. Ordering [Ale17, CS17].
Ordering-Piecewise-Quadratic [Ale17, CS17]. Organogenesis [SM15].
oriented [KK00, SSR91]. orthogonal [HLC12]. orthonormally [FG99]. Output [FS17, Ned17, XNB16, ZC18, CGN06, Cal07, Cal09, CH04]. output

Out
[DM06, JN05, NZ07]. overheads [BP94].
Overlapping [LB15]. Overview [PK11].

Packet [FL01, AZLT10, CHS95]. PADS [An18, MST17]. Pairwise [LLCC13].
PAM [DWYM16]. paradigm [MV02].
Parallel [BC93, ÇT10, CG02, Ent99, Fuj16, JN15, KSL+16, MKG+17, NH96, PCGM18, SMDS11, SP11, UXC+00, WDYR16, WMC+18, XCA+17, YP15, ZC18, AO95, CPF99, EGLW93, FW97, GH91, GLM96, HD98, HF01, LP91, LL91b, Lin92, MWM91, Nic91, NH95, RA97, TR07, Vak92, Yu99].
Parallelism [Lin92, SY95]. Parallelization [SSZ+13]. Parameter [RL15, SSDW18, WSC16, BKM09, NC06].
personalization [LH02]. Parameterized [CKL+13, BKM09]. parameters [KK00].
Parametrized [Tur17]. Parasites [XV14].
ParaSol [MKPR98]. Particle [FDY16, LF13, Sch13].
Particle-Based [LF13]. partition [Rub02]. parts [Emm98].

Pass [MM07]. Passing [SDZ+15].

Patchwork [S299]. path [NNB11, RDSJ18].
Path-ZVA [RDSJ18]. paths [Cal07, Cal09].
patient [MBGF11]. Patterns [GB19].
Paved [STHL13]. PDES

[CPQ17, GLC17, LTM+17, WAGP15].

Pedestrian [GZWG18, Lor18, KZ11].

pentanomials [Wu01]. per-application [PRO13].
per-flow [LBL01]. Perfect [MT06].
Performance [AAG10, BCL+97, HD98, KM01, LCK11, LCT+15, LN18, MRB+18, MJ15+17, Nic91, PT00, BK10, BCD+14, FW97, GP11, HIG04, SKR97, UXC+00, WS04]. period

[DO07, Emm98, GKO3, Lev01].

permutations [CN98]. persistent [IFPM12]. personal [LM94]. perspective [Vak92]. perturbation

[BFM03, BG93, MS10]. Perwez [AG+07, W107]. Petri [BC93, BV04].

phase [SWL09]. phenomena [QFL+10].
physical [Pac08, QFL+10, ZJTB04].
Piecewise [Ale17, CS17, WPS13].
Piecewise-Linear [WPS13].
[HYJ+18]. Platform [PE11]. Platforms
[YP15, YP18]. playback [GCB95]. Plot
[TFR07]. point [Doo07]. Poisson [SDLH12].
Polynomial
[Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98], polynomially
[Dev09]. polynomials [GS12].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
polynomial-time [CO98]. polynomially
[Dev09]. polynomials [GS12].
Polynomial [Tez93, CO98, LCT07, SS08, TT94].
process-based [TB98]. process-oriented
[SSRT91]. Processes
[CFL12, SDLH12, SCW13, BN03, GL05,
JS02, LALGSG+00, WP09]. processing
[HBE95, HM08]. Processor [PPT14, QC02].
Processors [MKG+17]. Product
[MRB+18, CO98, FSS95, RW93, Tu97].
Product-Form
[MRB+18, CO98, FSS95, RW93].
Production [GCB95], professional
[AGG+07]. Profile [CS10].
Profile-driven [CS10]. Programming
[GHS18, Par18, CS08, HE12]. Programs
[LB15]. Projections [SDLH12, KT10].
Propagating [SP11], properties
[Emm98, HPA07]. ProPPA [Par18, GHS18].
Protocol [CK08]. protocols
[JH00, NN11]. Provisioning [LCT+15].
pseudo [MN98], pseudo-random [MN98].
Pseudorandom [EH95, LZW16, Nie94,
EHG92, EHN94a, EHN94b, Emm98, Ent98,
Joh96, LW97b, Lev01, Mat98, MWKA07,
PW95, SM12, SLF14, WMM99]. public
[HVA09]. Purdue [KFL00].
YN15, And99, Bel05, CL98, DX03, Doo07, DLW07, Ent99, ES94, GH03, GH06, GH09, GK03, HN07, Hör94, HL03, HS12, JKS07, LBC93, LX14, MN98, Nel93, PL05, PJ10, RR93, RB08, SMDS11, SS03, TL91, TLC93. random-number [Pet91], random-search [HN07], randomization [Buc98].

randomized [CO98, Hic96]. randomly [KHJ+08]. randomness [KCK08, MK96].

range [GMOB01, ST13]. Ranking [EH18, FH18, GK19, KH18, PHP+15, ZS17, SJY03].

Rapid [LH02]. Rare [BHL13, BC13, LDT07, AK11, BL11, GL05, HT99, Hei95, LBTG10, Rub02]. Rare-event [BHL13, LBTG10]. Rate [Ale17, CS17, SJ02, LBL01]. rates [CHS95, Mat05]. ratio [Hör94, LCT07]. ratios [BG93, CLL99, LC01]. RCR [Ale17, Bee18, Hil17, KH18, Lor18, Liic16, Nel17, Par18, Quai19, Van17].

Re [PJ10, XVN14]. Re-Emergence [XVN14].

redistribution [HT99]. reduce [CN98]. Reducing [NC06, HIG04]. Reduction [Nak14, SMG09, AH093, CN12, JSC01, KSW03, Kow10, MWM07, Tuf97].

Regression [SNS16, CSDK10, GAG14]. Regularly [STHL13, DLW07]. Regulatory [FDP15].

relevance [BCL+97]. Reliability [BLST16, CERT15, WCZ16, BCL+97, He95].

Reliable [RDSJ18, Nak94]. renewable [PG14]. Repast [NCV06]. Repeated [FS17, Nel17]. Replicated [AAAG06, Ale17, Liic16, Nel17, Quai19, GH01, Bee18, Hil17, KH18, Par18, Van18].

Report [Ale17, Bee18, Hil17, KH18, Lor18, Liic16, Nel17, Par18, Quai19, Van18].

representation [FDD05]. representations [KC10]. Resampled [CN15]. Research [Fuj16, HHL14a, CY10].

RESTART [VAVA06]. restricted [VSS+14]. Results [Ale17, Bee18, Hil17, KH18, Lor18, Liic16, Nel17, Par18, Quai19, Van18]. retraction [LDF91].

Retrospective [PS09, WPS13]. Retrospective-approximation [PS09].

Reusing [EH18, FS17, KH18, Nel17].

Reverse [GLC17, CPF99]. Reversed [BW15]. Reversibility [CPQ17].

Reversible [PP13, SP11].

Review [HHL14b]. revolution [PB+F+00]. reward [GL05]. Rewards [DHK15]. rid [WM99].

Risk [FDMS16, HHL14b, XLZ17]. risks [MMRC+08]. RNGs [Mar03].

Road [XCA+17]. Robust [Ne93, PBA3+11]. robustness [LBTG10]. Role [ZZC18].

run [HLC12, KSZ11, SW96]. run-variable [HLC12]. running [KFL00].

Runtime [HERU15, CSK10]. safe [JSC01]. Sample
Sample-based [LCT07, CK14, HDM03].

Saturate [KHJ+08, SC’11 [LCK11].

Scalability [JZTB06].

Scalable [LPM+04, YP18, BCL+97, HD98].

Scale [LHJS17, LLCC13, PE11, PTE+11, WMC+18, YP18, AD92, CK08, FG98, LM94, LPM+04, LLHL00, PT00, TGT05, WS04, ZCLT04].

Scale-down [CK08].

Scanning [KHJ+08, RB08].

Scenario [HHF16, CKP95].

Scenarios [BHG10, LSJ10].

Scheduling [AZL010, HM08, QC02, SJM10].

Scheme [WZ15].

Schemes [SW13].

SCORE [FH18, PHP+15].

Scrambled [Vig16].

Scramblings [Owe03].

Screening [ACL15, NS06, SWL09, TRK+09].

SDEs [BKM09].

Search [Che13, CG13, EH18, HZF14, KH18, WPS13, And99, HN07, LB93].

Seattle [LCK11].

Second [DHM93].

Second-order [DHM93].

Sectioning [Nak14].

Seeding [PJ10].

Segmentation [AO95].

Select [ICC99].

Selecting [Sin14, WFM12].

Selection [EH18, FH18, G19, HAK14, KH18, PH+15, WFH12, ZS17, KN01, NS06, SJY03, VSS+14].

Self [HWdF13, VAB+18, FK91, FMM00, LALGSG+00, Mat98, Nic91, PT00].

Self-avoiding [HWdF13].

Self-initiating [FK91, Nic91].

Self-similar [FMM00, LALGSG+00, PT00].

Self-stabilisation [VAB+18].

Self-test [Mat98].

Semantics [HWMM17, H17, TB98].

Semi [CGN06].

Semi-regenerative [CGN06].

Semiautomatic [SDZ+15].

Semidefinite [HE12].

Sensitivity [BL02, Owe13, WCLG10].

Sensor [SF10].

Sequence [Mat98].

Sequences [BFM03, BF92, FL99, MK06, RGT12, T093, TT94].

Sequential [ACL15, DJLZ17, GK19, DHM93, GAG14, KN01, Kim05, Raa93, RA97, SY95, XCH12].

Serial [SSZ+13, NH96].

Series [JKE14, BN03, BN09, FG99, SS14].

Server [HHY11].

Servers [CFS08, LM94, ZK10].

Services [HVA09, HD97].

Sesssl [EU14].

Set [MPK06].

Sets [Lim12].

Sethwise [AQVA10].

Several [ICC99, Raa93].

Shahabuddin [AGG+07, W017].

Shapes [Ros08].

Shared [CHS95, FH97, KM01, UXC+00].

Shared-memory [FH97, UXC+00].

Sharing [PQ17, FSS95].

Sharpening [HE12].

Sided [PPT14].

Signal [SP11, LL02].

Similar [FMM00, LALGSG+00, PT00].

Simos [RBD97].

Simple [Mat98, Nak94].

Simplifying [DJ93], simulate [RJ04].

Simulating [CFL12, GL05, JS02, SDLH12, SMI15, TDR+11, EK04, EK07, GS12, LL02, NH95, XSN14].

Simulation [AK18, And06, AG16, Ano18, BB99, Cal07, Cal09, CMM+16, CT13, CVS15, Che13, CG13, DQZ18, ER15, FS17, Fuj16, GJ13, HHL14a, HYJ+18, HLC+10, HERU15, HWMU17, H17, HHF16, HAA+19, JN15, KH19, K1V9, KPG15, KSL+16, LL15, LCT17, LHJS17, LCL16, MJ15, MST17, NB93, Nei17, PCGM18, SNS16, Sch10, SABF15, SW96, SSDW18, Wai15, WPS13, WDR16, WCCY19, WMC+18, XNB16, XCA+17, YX17, YP15, YN15, ZMM+11, ZC18, AAGM10, AD92, AO95, BC93, BCL91, Bal01, Bar03, BL02, BCL+97, Bha05, Bha07, BHM11, BO96, BL11, BHL13, BB94, Buc98, CGN06, CHS95, CWF99, CTG+05, CH04, CFS08, CY10, CG02, CHI14, DG10, DM06, DHM93, DJS94, EY11, EU14, FDL99, FK91, FA06, FS92, FSS95, FG98, GM0B01, GCB95, GP11, HT99, He95].

Simulation [HD98, HG01, HN07, HHY11, HN09, HM08,
IMW00, JB00, JZTB06, JSC01, JN05, JKS07, KSW07, KFL00, KW93, KN01, KLF02, KZ11, KN02, LBTG10, LV00, LW97a, LDNA03, LS92, LF99, LL07, LP91, LL91b, Lin92, LM94, LALGS0+00, LLHL00, LSW91, MWM91, MR02, MPK06, MBGF11, MCC11, MY08, NOP99, Nic08, NZ07, Nut06, Nut08, OLAM08, Pag93, PCT97, PBF00, PF11, PN03, RS94, RFA00, RNS97, RAF0+04, RWK0+07, RD10, RS10, SWL09, SSRT91, SSH97, SLCP01, SS14, SY95, SMG09, SPV10, SLW05, SV97, SC08, SS08, SJY03, TGT05, TR08, TTS012, TB98, UNMS97, Uhr01, Vak02, Vor10, WW95, WS04, WW00, WNFM04, WWFH06, XNH10, XGH12, YL96, Yau99, YN93, YS92, YJ96, ZCC10, Bal97.

Steepest-ascent [MSK10].

Stepped [YP18].

Stochastic [BHM11, CDS16, CK14, GHS18, GDB14, GH15b, HZF14, Lim12, LTM +17, LB15, NY12, Par18, QF14, RL15, SNS16, SS08, XNB16, XLZ17, YY17, And99, BC93, BFMW03, Bha05, BHL13, BN09, BCZ14, CAN12, HDM03, KT10, NC06, P09, PK11, PG14, RB08].

Stochastically [PHP +15].

Stopping [Sin14, GAG14].

Storage [LCK11].

strata [Kaw10].

strategic [ZMM +11].

strategies [TRK +09, ZK10].

Strategy [MRB +18], stratified [Kaw10].

streamlined [MPW04].

streams [Ent99, MM07, Yau99].

strength [XNH10].

stroke [MBGF11].

Superfast [GLM96].

superior [Pet91].

supplies [Pet91].

Support [PTE +11, MY08, RD10, Tuz95].

Supporting [LLHL00].

Supremum [BCM18], surrounding [OLAM08].

Survey [AP18, RD10, SJY03].

switch [CHS95].

switched [EGLW93, HM08].

switches [LC01].

Symbiotic [ERL15, MY08].

Synchronized [ST13].

Synchronization [MH92, XCA +17, MKPR98, QC02, SQ12].

Synchronous [EGLW93].

Synthesis [SDZ +15, Fis92, IFPM12].

System [HHFS16, PQ17, PTE +11, DX03, Fis92, FSS95, FG98, ICC99, KM01, LW97a, LS92, MMRC +08, MKPR98, Nut08, RS10, SB01, WPN98, ZIC06, ZK10, vBBR03].

systematic [BG10].

Systems [Ald18, Bee18, CTI13, DWYM16, FHG16, GHS18, GH15b, HWD3F13, HY +18, KH19, KSL +16, LHJS17, Lü +16, Par18, RDSJ18, ST15, VAB +18, WAGP15, WDYR16, Baz97, BL02, BK10, BKV04, EK04, EK07, HSN94, HVA09, HVAPFY10, HD98, HG01, HM08, LV00, LDNA03, LLT07, LPNP13, Lim12, LL02, MWM91, NC06, Oso09, RBHH97, ST13, Vak92, VAVA06, ZLK91, TL18, Nak94].
References

Alexopoulos:2006:RBM

Christos Alexopoulos, Sigrín Andradótir, Nilay Tanik Ar-
gon, and David Goldsman. Replicated batch means vari-
ance estimators in the presence of an initial transient.
ACM Transactions on Modeling and Computer Simula-
tion, 16(4):317–328, October 2006. CODEN ATMC-EZ.
ISSN 1049-3301 (print), 1558-1195 (electronic).

Alexopoulos:2010:PFV

Christos Alexopoulos, Claudia Antonini, David Goldsman,
and Melike Meterelliyoz. Performance of folded variance
estimators for simulation. ACM Transactions on Model-
CODEN ATMC-EZ. ISSN 1049-3301 (print), 1558-1195
(electronic).

Aldini:2001:CQI

Alessandro Aldini, Marco Bernardo, Roberto Gorrieri,
and Marco Roccetti. Comparing the QoS of Internet
audio mechanisms via formal methods. ACM Transac-
tions on Modeling and Computer Simulation, 11(1):1–42,
January 2001. CODEN ATMC-EZ. ISSN 1049-3301 (print),
1558-1195 (electronic).

Verification [Ald18, Bee18, PCT97].
versatile [SSRT91]. versus [WM99]. Very
[SS05, Owe98]. via
[ABGR01, AGMW17, BHM11, CK08, CG13,
HE12, HN07, KSW07, KFL00, Kim05, LC01,
LG03, Oso09, PHP+15, PN03, SQ12, XNH10].
view [CS92]. Virtual [JN15, KKT-M17,
LN18, LT14, YP15, CKP95, FH97, ZCLT04].
Virtual-Machine-Based [JN15]. Visual
[GB19, GCB95]. visualization [Pac08].
Visualizing [HBE95]. VM [KSW03].
volumes [Pac08]. Volunteer
[SALS18, Van18].

WA [LCK11]. walks [HS12]. Warp
[PQ17, AD92, DF97, DNRD96, LP91, LL91a,
LDF91, PLM94, QC02]. wave [Nut06].
wavelength [RRP00]. Waves [RLDH16].
Weak [ST15]. Web
[KLF02, PBF+00, RRW00, RFA00].
Web-based
[RFA00, KLF02, PBF+00, RRW00].
weighted [FG99, HN98]. well [Ent98].
well-known [Ent98]. Wildfire
[TDR+11, HN09, XGH12]. wimedia
[AZK10]. wind [Pac08]. Wireless
[KKTM17, SABF15, JZTB06, SJS-M10,
SF10]. without [FK91]. WLAN
[KKTM17]. Workload [SALS18, Van18].
workloads [TFR07, WPN98]. workshop
[CY10, HHL14a]. world [CS02, ZJTB04].
worms [KHJ+08, Nic08, RB08]. WPANs
[AZK10]. Wrong [EH18, KH18]. WSNs
[MRB+18]. WWW [KFL00].
xMAS [ZL17]. xMAS-Based [ZL17].
Xorshift [Bre04, Mar03, PL05, Vig16].

YAWNS [DNRD96].

Zero [CERT15]. Zero-Variance [CERT15].
zone [KN01]. ZVA [RDSJ18].
Ankenman:2015:SDE

Ammar:1992:TWS

Alexopoulos:2004:BB

Awad:2007:TCL

Andradottir:2016:CBM

Andradottir:2007:PSP

Alexopoulos:2017:AEE

Asmussen:1992:SDI

Andradottir:1993:VRT

Atkinson:2002:RUI

Amrein:2011:VIS

Ahn:2018:ESE

Aldini:2018:DVT

Alexopoulos:2017:RCR

Andradottir:1999:ACR

Andradottir:2006:SOC

Anonymous:2018:GET

Andradottir:1995:TSP

Agha:2018:SSM

Al-Zubaidy:2010:OSH

Balci:1997:GES

Balci:2001:MCM

Barros:1997:MFD

Barros:2003:DSM

Bonarini:1994:QSA

Barbe:1999:SEF

Bae:2016:EFA

Jang Won Bae, Sang Won Bae, Il-Chul Moon, and Tag Gon Kim. Efficient flattening algorithm for hierar-
chical and dynamic structure
discrete event models. ACM Transactions on Modeling and Computer Simulation, 26(4):

20–41, January 1993. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

REFERENCES

Bhatnagar:2005:AMT

Bhatnagar:2007:ANB

Begum:2010:MIB

Bhatnagar:2011:SAA

Batur:2010:FFS

Bhatnagar:2009:OPT

[311x144] Shalabh Bhatnagar, Karmeshu, and Vivek Kumar Mishra.

REFERENCES

[Cal07] James M. Calvin. Simulation output analysis using integrated paths. ACM
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

17:??, September 2010. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

[Deng:2005:EPM] Lih-Yuan Deng. Efficient and portable multiple recur-

References

Devroye:1997:RVG

Devroye:2009:RVG

Das:1997:AMM

Devetsikiotis:2010:GEI

Dannenberg:2015:CCR

Derflinger:2010:RVG

Donohue:1993:SED
Joan M. Donohue, Ernest C. Houck, and Raymond H. My-

REFERENCES

[Doo07] Jurgen A. Doornik. Conversion of high-period random
REFERENCES

[D ENG:2003:SHD]

[E HICHERN-A UERRMANN:1992:NIC]

[EIC:1993:SRP]

[EICHENAUER-HERRMANN:1994:DIP]

[EICHENAUER-HERRMANN:1995:PNG]

[Emm98]

[Ent98]

[Ent99]

[ERL15]

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

Epstein:1994:GTR

Ewald:2014:SDS

Eldabi:2011:ISI

Fishman:2006:HHT

Fishwick:2005:MRA

Falkner:1999:FSN

Filippone:2016:MCF

Fioretto:2015:CCB

Fussl:2013:EMB

Frolund:1998:DTS

Foley:1999:CIU

Fujimoto:1997:CGV

Feldman:2018:SAB

Feng:2009:FBB

Benjamin Zhong Ming Feng, Changcheng Huang, and Michael Devetsikiotis. FISTE: a black box approach for end-to-end QoS management.

Feng:2016:AMC

Fishwick:1992:IAS

Faulon:1998:GHS

Flatscher:2002:MEC

Fuls:2001:PDM

REFERENCES

|----------------|------------------|

|----------------------|------------------------|

|----------------|-------------|

<table>
<thead>
<tr>
<th>Glynn:1991:APR</th>
</tr>
</thead>
<tbody>
<tr>
<td>[GH91] Peter W. Glynn and Philip Heidelberger. Analysis of par-</td>
</tr>
</tbody>
</table>

Ghosh:2003:BNM

Ghosh:2006:CBN

Ghosh:2009:CBN

Glynn:2015:GEI

Glynn:2015:TRI

Georgoulas:2018:PPP

REFERENCES

2011. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

Healey:2014:SPS

Healey:1995:VRT

Hormann:1996:RIG

Hein:1998:PDE

Hormann:2002:FGO

Hsu:2007:AAA

Homem-De-Mello:2003:VSM

Henderson:2012:SCG

Heidelberger:1995:FSR

Heidelberger:1997:E

Helms:2015:ARA

Hybinette:2001:CPS

Henderson:2001:RSS

Huang:2016:MMT

REFERENCES

[102x681] REFERENCES

Hu:2009:ISO

Hofert:2011:SET

Hormann:1994:NQR

Hernandez:2007:DTH

Hult:2012:ISM

Heidelberger:1994:BRE

Haraszti:1999:TDP

REFERENCES

Heidergott:2009:GEC

Heidergott:2010:GED

Hellekalek:2003:ECC

Hamze:2013:SAR

Helms:2017:SES

Hannon:2018:CSE

Hu:2014:MBA

[HZF14] Jiaqiao Hu, Enlu Zhou, and Qi Fan. Model-based an-

Inoue:1999:EES

Inacio:2012:FSP

Ingalls:2000:ITI

Jha:2000:SEL

Jin:2011:SEG

Jasra:2014:AIO

Juneja:2007:AFS

Juneja:2005:ESB

Juneja:2002:SHT

Jin:2015:PSV

Jin:2001:FPS

Ji:2006:ISW

Johnson:1996:RES

Kawai:2010:AOA

Kin:2010:GLT

Kim:2008:TRG

Kapadia:2000:PUN

Kuang:2018:R

Keller:2019:TDD

Kesidis:2008:MSR
George Kesidis, Ihab Hamadeh.

Kim:2001:FSP

Kroese:2002:EST

Keane:1994:BF

Kristiansen:2015:MME

Krantz:1996:AEB

Kunz:2016:PEE

Kaplan:2003:FRT

Kang:2007:ERS

Kiatsupaibul:2011:AVH

Kunnumkal:2010:SAM

Kesidis:1993:QSA

Kim:2015:PAK

Koh:2011:MSP

Lopez-Ardao:2000:USS

REFERENCES

Love:2015:OBA

LEcuyer:1993:SGM

Li:2001:APF

Lamps:2018:TIE

LEcuyer:2010:ARE

LEcuyer:2001:ESC

Lathrop:2011:SPI

Scott Lathrop, Jim Costa, and William Kramer, editors. *SC’11: Proceedings of

Lu:2016:RTC

Lewandowski:2007:SBE

Li:2015:ARP

Lomow:1991:MUI

Lu:2004:MTM

2004. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

LeCorff:2013:CPB

Lee:2003:CDF

Lan:2002:RMP

Liu:2017:MSE

Lim:2012:SAM

Lin:1992:PAP

Lin:1991:STW

REFERENCES

Lin:1991:TDA

Liu:2002:CBA

Li:2015:CBS

Lo:2013:OPB

Lu:2000:SLS

Lees:2007:DSA

Lin:1994:EBE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>ISSN</th>
</tr>
</thead>
</table>
REFERENCES

3301 (print), 1558-1195 (electronic).

Lubachevsky:1991:ARB

Liu:2014:STM

Lin:2017:MSP

Luck:2016:RCR

Lassila:2000:NOI

Lebeck:1997:AMN

Leeb:1997:ILC

[LW97b] Hannes Leeb and Stefan Wegenkittl. Inversive and linear congruential pseudorandom number generators in em-

Liu:2014:ESE

Li:2016:MUN

Marsaglia:2003:XR

Matsumoto:1998:SCA

Matloff:2005:EIF

McClean:2011:MFC

Makoto Matsumoto and Yoshiharu Kurita. Twisted GFSR

REFERENCES

Martens:2006:FST

Melamed:2004:HSH

Mandjes:2002:LDA

Marin:2018:PFM

McClary:2010:SAC

Miretskiy:2010:SDI

Mustafee:2017:GET

REFERENCES

Murdoch:2006:PSQ

Mosterman:2002:GES

Matsumoto:2007:CDI

Madisetti:1991:AAP

Mccoy:2007:MAN

Mitchell:2008:SAM

Marsaglia:1991:NCR

Nakayama:2014:CIQ

Nadoli:1993:IMS

Ng:2006:RPU

North:2006:ECT

REFERENCES

Nelson:1993:RMC

Nicol:1996:PES

Nicol:1991:PBP

Nicol:1997:E

Nelson:2017:RCR

Nicol:1995:CSP

Nicol:1997:E

Nicol:1996:PES

Nicol:1997:E

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PBB16]</td>
<td>K. J. Prabuchandran, Shalabh Bhatnagar, and Vivek S.</td>
</tr>
</tbody>
</table>

Page:2000:WBS

Page:2018:NMP

Page:1997:CSV

Peterson:1991:NRN

Park:2011:AQN

Juta Pichitlamken and Barry L. Nelson. A combined procedure for optimization via simulation. *ACM Transactions on
REFERENCES

[PRO13] Perumalla:2013:RSE

[PQ17] Pellegrini:2017:FGT

[PTCL11] Pan:2011:DSB

Petkov:2013:CPA

Pasupathy:2009:RAA

Park:2000:PEM

Puzis:2011:DSS

Percus:1995:TAM

Quaglia:2002:PSP

Qu:2014:GES

Quarles:2010:MRA

Quaglia:2019:RCR

Daniël Reijsbergen, Pieter-Tjerk De Boer, Werner Scheinhardt, and Sandeep Juneja. Path-ZVA: General, efficient, and automated importance sampling for highly reliable Markovian systems.

REFERENCES

Rubinstein:2002:CER

Ross:1993:AOI

Roberts:2007:DSM

Sengul:2015:SSM

Sebastio:2018:HAC

Stytz:2001:DMT

Stopford:2008:FSS

3301 (print), 1558-1195 (electronic).

Schruben:2010:SMA

Schafer:2013:PAO

Singh:2013:BLN

Saltzman:2012:SMN

Sottile:2015:SAT

Song:2010:CLI

Schreck:2013:AEE

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

472, October 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Steiger:2005:ABM

Saito:2012:DCS

Salmon:2011:PRN

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1,2,3. In Lathrop et al. [LCK11], pages 16:1–16:12.

ISBN 1-4503-0771-X. LCCN ???.

Shortle:2009:RCQ

Schwaninger:2015:SOA

Salemi:2016:MLS

Seal:2011:RPD

Stamos:2010:CST

Santororo:2012:TOS

Srinivasan:1998:ET

Seznec:2003:HUL

Sanchez:2005:VLF

Strunz:2008:SFS

[SZ15] Claudia Szabo and Yong Meng Teo. Formalization of weak

Hatem Sellami and Sudhakar Yalamanchili. Parallelism in sequential multiprocessor simulation models: a case study.
REFERENCES

Stadlober:1999:PRT

Topcu:2008:MFA

Tofts:1998:DSP

Trunfio:2011:NAS

Tezuka:1993:PAA

Talby:2007:CPA

Tang:2005:LQP

[TGT05] Wai Teng Tang, Rick Siow Mung Goh, and Ian Li-Jin Thng. Ladder queue: an O(1) priority queue structure for large-scale discrete event simulation. ACM Transactions on

Tsompanas:2016:MCM

Tezuka:1991:EPC

TerBeek:2018:GES

Tezuka:1993:LSA

Taylor:2008:GEI

Tafazzoli:2009:PCE

REFERENCES

Tezuka:1994:NPA

Taylor:2012:BGS

Turkyilmazoglu:2017:PAD

Tuzhilin:1995:ETL

Uhrmacher:2001:DSM

Uhlig:1997:TDM

D. A. van Beek, V. Bos, and J. E. Rooda. Declaration of unknowns in DAE-

[Vig16]

[Vor10]

[VSCL13]

[VSS+14]

[WAGP15]

[Wai15]
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPS13</td>
<td>Honggang Wang, Raghu Pasupathy, and Bruce W. Carns.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Wu:2009:OSI

Wang:2003:ESQ

Wunderlich:2006:SSM

Wang:2015:CES

Xue:2012:DAU

Xie:2017:FBB

Xie:2016:MIU

Xue:2012:DAU

Xie:2017:FBB

Xie:2016:MIU

Xue:2012:DAU

Xie:2017:FBB

Xie:2016:MIU

Xue:2012:DAU

Xie:2017:FBB

REFERENCES

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

[ZL17] Zhao:2017:TXB

[ZK10] Zikos:2010:ISD

[ZL17] Zhao:2017:TXB

Zhao:2018:RDD