Title word cross-reference

1, 2, 3 [SMDS11]. 3 [Pac08]. b [Joh96]. m [MK96, Mat98]. O(1) [TGT05]. q [GDB14].
-Gaussian [GDB14]. -sequence [Mat98]. -sequences [MK96].
623-dimensionally [MN98]. 64-bit [Nis00].
Abstraction [Lor19, MHS19, LW97a].
Accelerated [MJV+15, HD07, SLCP01].
Accelerating [And99]. acceleration [PF11]. Accelerators [RAGN19]. acceptance [Bel05]. acceptance-rejection [Bel05].
Access [CTF+19, AZLT10, KHJ+08].
access/modification [Mat05]. accessibility [YJ96]. accreditation [PCT97].
Accurate [CMM+16, KPG15].
Achieving [LBL01]. Active [LW97a, WG04]. active-idle [WG04].
activities [DOD93]. activity [CKL+13].
Actor [PBB16]. Adaptation [HERU15, PBB16].
Adaptive [Ald18, Bee18, Bha05, Bha07, BCZ14, DHA15, DF97, FHG16, LCT+15, Luc16, SFM13, TL18, VAB+18, WYT+20, HD07, Kaw10, MKPR98, MY08].
add [TLC93].
add-with-carry [TLC93]. address [DJS94].
admission [Lin12]. Adomian [Tur17].
Advanced [Ano18, JW19, MST17, QTP20,
[Ano18, BSV16, Hei97, JW19, MST17, Nic97, Nic04, Qua20, QTP20, TL18, Wai15, FN03, MV02, Bal97]. Effect
[PBAB+11, RLDH16, LM94], effective
[FDL99], effectiveness [TRK+09]. Effects
[ACL15, PLM94, CAN12]. Efficiency
[GGJ13, VAVA06, And06]. Efficient
[AK18, BBMK16, BC13, CVS15, HSL+19, HW19, KSL+16, MJV+15, PPT14, PCGM18, PTD+20, RAGN19, RMWLP21, SP11, WYT+20, WM+18, YP15, AK11, BL11, BHL13, BKV04, DFK04, EK07, GLM96, HT99, HVAPFY10, HG01, LBGT10, Lin92, MWM91, MH92, MBGF11, MCC11, NOP99, Nic91, NY04, Nut06, Nut08, Pag93, PB96, RS04, SJY03, TGT05, Vak92, YJ96].
Event-Based [MJV+15]. event-driven
[MWM91, MH92]. Events [RH19, GL05, Hei95, JB00, LDT07, LDF91, Rub02]. everyone [GDP14]. evidence [HW03]. evolution [PPB+00, SC08]. Evolutionary
[RGTL12, JC11]. Exact
[BW15, DQZ18, DLQ20, HSL+19].
Exact-Differential [HSL+19]. Execution
[DJS94, KPG15, PPT14, SALS18, Van18, NH96]. Execution-driven [DJS94]. Expanded [KSL+16]. Expectation
[LF13, STHL13, LG03]. Expectations [AK18, CLL99]. Experiences [NCV06].
Experiment [RL15]. Experimental
[Vig16, DHM93]. Experiments [BS17, Nel17, EU14, MKPR98, SWL09, YL96]. Explicitly [VVB+20]. Exploiting
[CN16, KSW07]. Exploration
[SU16, Vig16]. Exponential
[MJ15, BB99, LX14]. Exponentially
[Hof11, Dev09]. Exposing [LBEJ19].
Expressive [HWMU17, Hil17]. Extending
[Tuz95, VVB+20]. extensions [Joh06]. Extrapolated [QF14]. Extreme
[AGMW17, LHJS17]. Extreme-Scale
[LHJS17]. Extrinsics [RLDH16].
Fabrics [ZL17]. Factor [XLZ17].
Factor-Based [XLZ17]. factorial [SS05].
factory [K094]. failure [Nak94].
GVT [PPT14].
interactive [BCL+97, BCD+14, MWMD07, SSH97, WW95]. interactively [QFL+10]. Interest [LT14]. Interference [WAGP15].

International [LCK11]. Internet [ABGR01, CK08, KHJ+08, Mat05, Nic08]. interoperability [SSH97]. Interpolation [WPS13]. interruptions [DOD93]. Intersection [LLCC13]. Interval [HHH+19, Lem19, Qua19, Sin14, PLM94].

Interoperability [SSH97]. Interpolation [WPS13]. interruptions [DOD93]. Intersection [LLCC13]. Interval [HHH+19, Lem19, Qua19, Sin14, PLM94].

Irreducible [GH15b]. Issue [Ano18, BSV16, BB19, DR13, GH15a, HT20, JW19, MST17, QTP20, TL18, CY10, CL98, DG10, EY11, HHL14a, MV02, TR08, Wil07]. issues [SSH97, YJ96].

Jackson [JN05, KN02, MSM10, NZ07]. Joint [SJSJ10, WhN20].

Kriging [NY12, QF14, CAN12, CK14].

L [GH15a]. Ladder [RH19, TGT05]. Language [HWMU17, Hill17, EU14, SSRT91, TB98]. Large [CMZ18, CK08, GJ13, HSL+19, LLCC13, PTE+11, WCZ16, WMC+18, WCL+19, YP18, Buc98, Den05, FG98, LM94, LPM+04, LLHL00, MR02, SS05, TGT05, UXC+00, ZCLT04].

Logit [FFSF13]. Logs [CTF+19, CPQ17, TFR07]. long [DX03, GMB01]. long-cycle [DX03]. long-range [GMOB01]. lookahead [FK91, JB00]. loss [AO95, CHS95, LC01, LV00]. low [AG07, BFN92, DOD93, RGT12, Cal09]. low-bias [AG07]. low-discrepancy [BFN92, RGT12]. low-level [DOD93].

Lyapunov [BGL12].

Mathematical [CS08]. Max [Ale17, CS17, KT10]. max-norm [KT10]. maximal [GK03, Rub02]. Maximization [LF13]. Maximum [AGMW17, JKS07]. Maximal [GK03, Rub02]. Maximization [LF13]. Maximum [AGMW17, JKS07].

MAYA [ZJTB04]. MCMC [FFSF13]. Mean [BDK+19, Hic96]. Mean-payoff [BDK+19]. Means [AG16, AAAG06, Raa93, SLW+05].

measure [HVAPFY10, WCLG10]. measure-valued [HVAPFY10]. measurements [BP94, CF11, LH02]. measures [BK10, De 06, HSN94]. Mechanism [LCT+15, CTLZ05]. Mechanisms [LDF91, ABGR01, LL91a, MH92]. Memoization [SSDW18]. Memory [PTD+20, TKS16, DF97, FH97, LW97a, LP91, MD20, UNMS97, UXC+00, ZG94].

Mesoscopic [GZWG18, Lor18]. Message [SDZ+15, WDYR16]. meta [Fla02]. meta-metamodel [Fla02]. Metamodel [XYZ21, TAO08, Fl a02]. Metamodel-assisted [XYZ21].

Metamodeling [Fla02, KDV+20, SNS16, WCCY19]. Metamodels [YN15, CAN12, DHM93, Fla02]. Method [LCL16, Tur17, YN20, CGN06, DJ11, GH03, GH06, GH09, HLC+10, Hör94, KT10, Nak94, Nie94, Nut06, FDD05]. methodologies [Fis92, TR08].

Methodology [KPG15, Bal01, FZ92, LDNA03, LF99]. Methods [BMLY19, DR13, EH95, HHL14b, RL15, San20, WG16, ABGR01, And99, HDM03, ICC99, TL18, XGH12]. microarchitecture [WWFH06].

Mixtures [WZ15, HS12]. MNO [Ale17, CS17]. Mobile [KH19, CSK10]. Model [AP18, ÇVS15, CTF+19, FDD05, GLC17, HZF14, JSD19, KKT17, KPG15, MRB+18, PCCM18, SP11, SSZ+13, WhN20, ZLK91, EK07, FZ92, FSS95, KHJ+08, LH02, LS92, LSJ10, MCC11, NOP99, RKW+07, SF10]. Model-Based [HZF14, CTF+19, LS92]. Model-Driven [ÇVS15]. Modeling [BSV16, Bar97, BL02, BGH10, BMLY19, BN03, BKV04, BDGP20, DWYM16, FW97, HWMU17, Hii17, HY11, HM08, KH19, KZ11, LDNA03, LZ20, LPPP13, LHSV17, LDL04, RMWLP21, TKS16, WMC+18, ZL17, ZZZ21, Bal01, Bar03, BCD+14, CSK10, DDD03, DG10, DKV09, EY11, Fis92, GDP14, HPA07, KLF02, LH02, MBGF11, MV02, NY04, NCV06, RS94, RFA00, Sch10, TR08, UHR01, WW95, WPN98, WG04, ZTT10, ZCC+10].

Modelling [VVB+20]. Models [BBMK16, BK20, ÇVS15, Che13, FFSF13, HT20, JKE14, KDV+20, Nut20, PE11, SABF15, SU16, WhN20, YN15, YN20, BÖ96, BB94, BN09, CS08, FLV01, Hei95, LPM+04, MPK06, MBGF11, MT06, Pac08, PB96, QFL+10, RS10, RB08, SY95, TFR07, VSCL13, YS92, ZMM+11, ZG94].

modification [CS92, Mat05]. modulus [EHG92]. Moment [FHZ16, Lüic16, RL15, ZS17].

numerically [EK07].

O [JSC01]. object [FG98]. Objective [LZ20, FH18]. Objectives [HHH+19].
Observation [JKE14]. Observation-Driven [JKE14]. off [KW93].
Optimization [BDK+19, CDS16, CG13, GDB14, HAA+19, LL20, Sch13, WPS13, And99, And06, BL02, Bha05, Bha07, BHM11, CS10, HLC+10, HDM03, HN07, HN09, MSK10, PG14, PN03, RGT12, SJY03, XNH10].
Optimization-Based [CDS16]. Optimizing [ELL00, LLCC13, WPW09]. optimizing-simulator [WPW09].
Optimum [Tur17]. OR/MS [TTSM12].
order [Den05, DHM93, HD02]. Ordered [WPS13]. Ordering [Ale17, CS17].
Ordering-Piecewise-Quadratic [Ale17, CS17]. Organogenesis [SMI15].
oriented [KK00, SSRT91]. orthogonal [HLC12]. orthonormally [FG99]. Output [FS17, Ncl17, XNB16, ZC18, CGN06, Cal07, Cal09, CH04]. overflow [DM06, JN05, NZ07]. overheads [BP94].
Overlapping [LB15]. Overview [PK11].
Packet [FLV01, AZLT10, CHS95]. PADS [Ano18, JW19, MST17, QTP20]. Pairwise [LLCC13]. PAM [DWYM16]. paradigm [MV02]. Parallel [BC93, BMLY19, CTI13, CG02, Ent99, Fuji16, JN15, KSL+16, MKG+17, MD20, NH96, PCGM18, PTD+20, RAGN19, RH19, SMDS11, SP11, UX7+00, WDRY16, WYT+20, WMC+18, WCL+19, XCA+17, YP15, ZC18, AO95, CPF99, EGLW93, FW97, GH91, GLM96, HD98, HF01, LP91, LL91h, Lia92, MWM91, Nic91, NH95, RA97, TFR07, Vak92, Yau99].
Parallelism [Lin92, SY95]. Parallelization [SSZ+13]. Parallelizing [KCS20].
Parameter [RL15, SSDW18, WCS16, YN20, BKM09, NC06]. parameterization [LH02].
Particle [DWYM16, LF13, Sch13]. Particle-Based [LF13]. partition [Rub02]. parts [Emm98]. pass [MM07]. Passing [SDZ+15].
patchwork [SZ99]. path [NNB11, RDSJ18].
Path-ZVA [RDSJ18]. paths [Cal07, Cal09]. patient [MBGF11]. Patterns [GB19].
Pedestrian [GZWG18, Lor18, KZ11].
Pending [RH19]. pentanomials [Wu01].
per-application [PRO13]. per-flow [LBL01]. Perfect [Con20, MT06].
Performance [AGGM10, AXE+20, BCL+97, BMLY19, HD98, KM01, LCK11, LCT+15, LN18, MRB+18, MJV+15, Nic91, PT00, BK10, BCD+14, FW97, GP11, HIG04, SKR97, UX7+00, WS04]. period [Doo07, Emm98, GK03, Lev01].
perturbation [BFMW03, BG93, MSK10].
Perwez [AGG+07, WIL07]. Petri [BC93, BKV04, ZH19]. phase [SWL09].
phenomena [QFL+10]. Physical [CTF+19, Pac08, QFL+10, ZJTB04].
Piecewise [Ale17, CS17, WPW13].
HAA+19, JN15, JW19, KH19, Kiv91, KPG15, KSL+16, LL15, LCT17, LHJS17, LCL16, MH19, MJ15, MST17, NB93, Neli17, Nut20, Pel21, PCGM18, PTD+20, QTP20, RAGN19, RK20, RSG21, RMWLP21, SNS16, SABF15, SW96, SSDW18, VVB+20, Wai15, WPS13, WYDR16, WCCY19, WhN20, WYT+20, WMC+18, WCL+19, XNB16, XYZ21, XCA+17, XY17, YP15, YN15, ZMM+11, ZC18, ZLZ20, ZH19, AAGM10, AD92, AO95, BC93, BCL91, Bal01, Bar03, BL02, BCL+97, Bha05, Bha07, BHM11, B O96, BL11, BHL13, BB94, Buc98, CGN06, CHS95, CFW99, CTC+05, CH04].

Simulation [CFS08, CY10, CG02, CHIW98, DG10, DM06, DHM93, DJS94, EY11, EU14, FDL99, FK91, FA06, Fis92, FSS95, FG98, GMOB01, GCB95, GP11, HT99, Hei95, HD98, HG01, HN07, HHY11, HN09, HM08, IMW00, JB00, JZTB06, JSC01, JN05, JK05, KSW07, KFL00, KW93, KN01, KLF02, KZ11, KN02, LBTG10, LV00, LW97a, LDNA03, LS92, LF99, LLT07, LP91, LL91b, Lin92, LM94, LALGSG+00, LLHL00, LW91, MWM91, MR02, MPK06, MBGF11, MCC11, MY08, NOP99, Nic08, N207, Nut06, Nut08, OLAM08, Pag93, PCT97, PBF+00, PF11, PN03, RS94, RFA00, RNS97, RAF+04, RKW+07, RD10, RS10, SWL09, SSRT91, SSH97, SLCP01, SS14, SY95, SMG09, SG91, SP+10, SLW+05, SV97, SC08, SS08, SJY03, TGT05, TR08, TTS12, TB98, UNMS97, Uhr01, Vak92, Vor10].

Simulation-Based [CG13, ZMM+11, Vor10].

Simulation-generated [FA06].

Simulationists [MFFR92]. Simulations [AXE+20, GB19, GRK+15, HSL+19, HAK14, HW19, LCT+15, LLCC13, NY12, NH15, RH19, XLZ17, YP18, AHO93, BP94, BN09, CTLZ05, CN98, CPF99, CF11, DN99, EGLW93, GH91, GLM96, GAG14, HIG04, HF01, KSW03, KM01, LPM+04, LX14, Nak94, Nic91, Oso09, Owe98, PP13, ST13, Tuz95, VSL13]. Simulator [KCS20, MKG+17, FW97, GBA+14, RBDH97, UXC+00, WPW09, MPW04].

Simulators [LBN+18, NH96, OLAM08, SKR97].

Simulink [ZL17]. Simultaneous [JB00, YN20, BFMW03, MSK10, Raa93].

Single [MM07]. single-pass [MM07].

Singularities [EK07]. SIP [HHY11]. Site [SABF15]. Site-Specific [SABF15].

Skeletens [SDZ+15]. Slim [WMC+18].

Small [BC13, LC01, Owe13]. Smart [HYJ+18]. Smirnov [KW15].

Smoothed [GDB14, Bha07, BG93]. Smoothing [Ale17, CS17, AHO93].

Social [CN16, WCL+19].

Solved [BK20]. some [Joh96]. sort [PTCL11, RTY05]. sort-based [PTCL11, RTY05].

Source-oriented [KK00]. sources [FMN00, KW93, WG04].

Space [LT14, PLM94, ZCLT04]. Space-Time [LT14].

Spatial [LBEJ19]. Spatially [FHG16, Lüc16].

Spatio-temporal [Lor19, MHS19, VLN+19].

Spatiotemporal [Lor19, MHS19, VLN+19].

SPICE [SS08]. SPICE-type
Tables [Nis00]. tactical [ZMM+11].
TADSIM [MJV+15]. Tail [MJ15, JKS07].
tailed [BL11, BHL13, FA06, HPA07, JS02]. tails [DLW07, HS12]. tandem [CS08, De 06, GK95, HHY11, KC10, KN02, MSM10].
Tapeworm [UNMS97]. targeted [CFS08].
Tausworthe [TL91]. TCP [CFS08, NY04, PT00, VSC13].
TCP-targeted [CFS08]. Technical [CHIW98].
technique [BN03, Ley98, MM07, SLCP01, SZ99, WS04]. Techniques [Nak14, SDZ+15, Bal97, CN12].
technologies [ZCC+10]. technology [Kiv91]. telecommunications [GMOB01].
teletraffic [AQVA10]. Temperature [MJV+15]. Temperature-Accelerated [MJV+15]. Tempered [DQZ18].
tempering [WM99]. Temporal [GB19, LBN+18, IMW00, Lor19, MHS19, RJ04, Tuz95, VLN+19]. terminals [ZIC06].
Terrain [SSH97]. test [Ent99, HN98, Mat98, PW95]. Testing [WG16, CK08]. Tests [KCK08, KW15, MZ93, BFN92, Joh96, LW97b, PJ10]. Their [CFL12, HPA07]. Theorems [CG13].
theoretic [MPK06]. theoretical [AG07, WCLG10]. Theory [Nut20, PW95, HT99, MMRC+08, Pet91].
Third [HHL14a]. threat [MMRC+08, SB01]. Three [RH19, Bha05, NCV06]. Three-tier [RH19].
three-timescale [Bha05]. throughput [SJSM10]. tier [RH19]. Tightly [KSL+16].
Tilted [Hof11, Dev09]. Time [AD92, AO95, BCM18, BW15, JKE14, LT14, LCL16, Nut20, PQ17, YP18, ZCLT04, BDK+19, BN03, BN09, Buc98, CTLZ05, CO98, CW99, DF97, DNRD96, FA06, FG99, FG98, FH97, GH91, HBE95, HPA07, KSW07, LF99, LP91, LL91a, LL91b, LDF91, MY08, NH95, PT00, PL94, QC02, SQ12, SS14, SR98, WNFM04, Yan99].
time-division [LL91b]. time-management [SQ12]. Time-Reversed [BW15].
Time-segmentation [AO95]. time-series [BN03, BN09]. Time-Sharing [PQ17].
toolkit [NCV06]. Tools [GZGW18, Lor18, KFL00, RD10].
topological [CK08]. topologies [DKVR09]. topology [KK00]. Trace [KCS20, JSC01, KSW03, MM07].
Trace-Driven [KCS20]. Traffic [AXE+20, DTCU19, HHFS16, LL15, XCA+17, GMOB01, HPA07, LH02, MWMD07, NY04, PT00, PRO13, WW03].
train [LDL04]. training [Bal97, SSH97, SB01]. trajectory [BKM09].
Transformation [AGMW17]. Transformations [KW15]. transformed [HLD07]. Transience [GH15b]. Transient [WG16, AAA06, AGT92, HSN94, MR02].
Transmission [PE11]. Transparent [SQ12]. Transparently [CPQ17].
trinomials [MK96]. Truncated [DLQ20].
Trusted [Ald18, Bee18]. TSTL [Van19, VLN+19]. tuberculosis [MCC11].
Twisted [MK92, MK94]. twister [MN98].
twisters [Nis00]. twisting [JS02]. Two
[BFMW03, CMZ18, DN99, PPT14, PG14, RH19, SWL09, De 06, EH92, KLF02, WPN98]. two-level [WPN98]. two-node [De 06]. Two-phase [SWL09]. Two-Sided [PPT14].
Two-stage [DN99, PG14, KLF02].
Two-tier [RH19]. Two-timescale [BFMW03]. type [KC10, SS08].

Ultrafast [LZW16]. UML [AK02].
unbounded [HLD07]. Uncertainty
[PBAB+11, XNB16, YY17, ZLZ20, MY08].

Uncertainty [PBAB+11, XNB16, YY17, ZLZ20, MY08].
NC06, PG14. **Undo** [CPQ17]. uniform [CL98, DX03, KSS11, MN98]. Uniformization [BK20, DHK15]. uniform [BCL91]. unimodal [CL98, DX03, KSZ11, MN98]. Uniform [AK18]. Universal [Bel05]. University [KFL00]. unknowns [vBBR03]. unmodified [KFL00]. Use [BG19, LALSG*00]. user [LDF91, SS03]. user-invoked [LDF91]. user-level [SS03]. users [LPPP13]. Use [GK19, LALSG*00]. user [LDF91, SS03]. user-invoked [LDF91]. user-level [SS03]. users [LPPP13]. Using [AG16, CN98, DHK15, GZWG18, GDB14, Nak14, RH19, RBDH97, SDLH12, TKS16, Van19, VLN+19, WMC+18, AD92, BC93, BFMW03, BN03, BKV04, BN09, Cal07, Cal09, CPF99, DjWS19, Fis92, FG99, GAG14, HLC+10, HBE95, JS02, LS92, Lor18, LLHL00, Pac08, PF11, PRO13, RFA00, SJY03, WPS13, WP98, WPW09, XGH12, Yan99]. Utilization [TKS16, AZK10]. utilizing [MM07]. UWB [AZK10]. UWB-based [AZK10].

xMAS [ZL17]. xMAS-Based [ZL17]. Xorshift [Bre04, Mar03, PL05, Vig16].

YAWNS [DNRD96].

Zero [CERT15]. Zero-Variance [CERT15]. zone [KN01]. ZVA [RDSJ18].
References

Alexopoulos:2006:RBM

Alexopoulos:2010:PFV

Aldini:2001:CQI

Ankenman:2015:SDE

Ammar:1992:TWS

Alexopoulos:2004:BB

Awad:2007:TCL

Andradottir:2016:CBM

Andradottir:2007:PSP

Alexopoulos:2017:AEE

Amrein:2011:VIS
REFERENCES

Ahn:2018:ESE

Aldini:2018:DVT

Alexopoulos:2017:RCR

Andradottir:1999:ACR

Andradottir:2006:SOC

Anonymous:2018:GET

Andradottir:1995:TSP

[Bal01] Osman Balci. A methodology for certification of modeling and simulation applica-
REFERENCES

Barros:1997:MFD

Barros:2003:DSM

Bonarini:1994:QSA

Barbe:1999:SEF

Bortolussi:2019:ISI

Bae:2016:EFA

Baccelli:1993:PSS
Francois Baccelli and Miguel Canales. Parallel simulation of stochastic Petri nets using...

Broniatowski:2013:SVE

Bisset:2014:IH

Bagrodia:1991:UFD

Bassiouni:1997:PRA

Bisewski:2018:CTD

Broadie:2014:MSA

REFERENCES

Blanc het:2012:LIS

Bhatnagar:2005:AMT

Bhatnagar:2007:ANB

Begum:2010:MIB

Blanchet:2013:RES

Bhatnagar:2011:SAA

REFERENCES

[BLST16] Zdravko I. Botev, Pierre L’Ecuyer, Richard Simard, and Bruno Tuffin. Static net-

Bhimani:2019:NPM

Biller:2003:MGM

Brandao:2009:ANS

Birta:1996:KBA

Bailey:1994:EMO

Brent:2004:NMX

alence of xorshift generators and the well-understood linear feedback shift register generators.

Bandini:2016:GEE

Buchholz:1998:NAC

Blanchet:2015:ESS

Calvin:2007:SOA

Calvin:2009:SOA

Chen:2012:ECR

Casale:2016:QOB

Yen Lin Chia and Peter W. Glynn. Limit theorems for simulation-based optimization applications.

Calvin:2006:SRM

Cheng:2004:CCI

Cheng:2013:FSM

Coe:1998:TNH

Carl:2008:LST

Chen:2014:SKB

Xi Chen and Kyoung-Kuk Kim. Stochastic kriging with
REFERENCES

Choi:2013:PAC

Cremer:1995:HFB

Couture:1998:GEI

Choquet:1999:BCI

Catania:2016:CAN

Cahen:2018:ELD

REFERENCES

REFERENCES

REFERENCES

Diekjer:2006:FSO

Damerdji:1999:TSM

Dickens:1996:ABT

Davies:1993:SMM

Doornik:2007:CHP

Dassios:2018:ESC

Doucet:2013:ISI

REFERENCES

REFERENCES

Niclas Feldkamp, Soeren Bergmann, and Steffen Strassburger. Knowledge discov-

Benjamin Zhong Ming Feng, Changcheng Huang, and Michael Devetsikiotis. FISTE: a black box approach for end-to-end QoS management.

REFERENCES

REFERENCES

Granieri:1995:PPH

Ghoshdastidar:2014:SFA

Gore:2014:CCM

Glynn:1991:APR

Ghosh:2003:BNM

Ghosh:2006:CBN
REFERENCES

CEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

Ghosh:2009:CBN

Ghosh:2009:CBN

Glynn:2015:GEI

Glynn:2015:TRI

Glynn:2015:TRI

Glynn:2013:ASE

Glasserman:1995:AIS

Goresky:2003:EMC

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

[Gorder:2019:RSN]

[Grassmann:2005:SMR]

[Gonsiorowski:2017:AMG]

[Greenberg:1996:SPD]

[Gallardo:2001:FSB]

[Gunal:2011:DGS]

[Gore:2015:SDS]
Ross Gore, Paul F. Reynolds Jr., David Kamensky, Saikou Diallo, and Jose Padilla. Statistical debugging for simulations. *ACM Transactions on
REFERENCES

Goyal:2012:SCB

Galpin:2018:MMP

Hun
ter:2019:IMS

Housseman:2011:IRI

Healey:2014:SPS

Healey:1995:VRT

REFERENCES

Heidelberger:1997:E

Helms:2015:ARA

Hybinette:2001:CPS

Henderson:2001:RSS

Huang:2016:MMT

Hahn:2019:IMD

Haas:2014:GEI

Hong:2014:MCM

Hong:2011:MSS

Hickernell:1996:MSD

Hsieh:2004:EPB

Hillston:2017:RCR

Hormann:2003:CRV

He:2010:SOU

Donghai He, Loo Hay Lee, Chun-Hung Chen, Michael C. Fu, and Segev Wasserman.
REFERENCES

REFERENCES

[HT99] Zsolt Haraszt and J. Keith Townsend. The theory of direct probability redistribution and its application to rare event simulation. ACM Transactions on Modeling and
REFERENCES

Haas:2020:ISI

Heidergott:2009:GEC

Heidergott:2010:GED

Hellekalek:2003:EEC

Hu:2019:DAF

Hamze:2013:SAR

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

Helms:2017:SES

Hannon:2018:CSE

Hu:2014:MBA

Inoue:1999:EES

Inacio:2012:FSP

Ingalls:2000:ITI

Jha:2000:SEL
Vikas Jha and Rajive Bagrodia. Simultaneous events and...

[JN05]

[JC11]

[JKE14]

[JJS07]

[JN15]

[Joh96]

Sandeep Juneja and Perwez Shahabuddin. Simulating

Jin:2001:FPS

JSC01

Jegourel:2019:SSF

JZTB06

Ji:2006:ISW

Kawai:2010:AOA

Kim:2008:TRG

Kalayappan:2020:CCB

Kuang:2018:RCR

Keller:2019:TDD

REFERENCES

Kim:2001:FSP

Kroese:2002:EST

Keane:1994:BF

Kaplan:2003:FRT

Krantz:1996:AEA

Kunz:2016:PEE

Kang:2007:ERS

Kiatsupaibul:2011:AVH

Kunnumkal:2010:SAM

Koh:2011:MSP

Kesidis:1993:QSA

Kim:2015:PAK

Lopez-Ardao:2000:USG
José C. López-Ardao, Cándido López-García, Andrés Suárez-González, Manuel Fernández-Veiga, and Raúl Rodríguez-

REFERENCES

Lu:2004:MTM

Ledecki:2003:MMI

L'Ecuyer:2003:GI

Lemire:2019:FRI

Levin:2001:SIC

Leydold:1998:RTS

Yi-Bing Lin. Parallelism analyzers for parallel discrete event simulation. *ACM

Lin:1991:STW

Lin:1991:TDA

Liu:2002:CBA

Li:2015:CBS

Lam:2020:PSO

Lo:2013:OPB

Lu:2000:SLS

[Tainchi Lu, Chungnan Lee,

REFERENCES

Luck:2016:RCR

Lassila:2000:NOI

Lebeck:1997:AMN

Leeb:1997:ILC

Li:2016:MUN
Jie Li, Jianliang Zheng, and Paula Whitlock. MaD0: an

Marsaglia:2003:XR

Matloff:2005:EIF

McCLean:2011:MFC

Mellor:2011:IHS

Marzolla:2020:PDD
Moreno Marzolla and Gabriele D’Angelo. Parallel data distribution management on shared-memory multiprocessors. ACM Transactions on Modeling and Computer Sim-
REFERENCES

Miller:1992:AWS

Madisetti:1992:SMD

[Madisetti:1992:SMD]

Ma:2019:PSB

[Ma:2019:PSB]

Mokaa:2015:RSQ

[Mokaa:2015:RSQ]

Mniszewski:2015:TDE

[Mniszewski:2015:TDE]
REFERENCES

Matsumoto:1992:TGG

Matsumoto:1994:TGG

Matsumoto:1996:SDR

Malhotra:2017:PPS

Mascarenhas:1998:MCA

Milenkovic:2007:ESP

Martinez-Moyano:2008:BTI

REFERENCES

ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

[Ng:2006:RPU] Szu Hui Ng and Stephen E. Chick. Reducing parameter

REFERENCES

[102x681] 79

Barry L. Nelson and Jeremy Staum. Control variates for

Nutaro:2006:DEM

Nutaro:2008:COS

Nutaro:2020:TTS

NY04

NY12

NZ07

OLAM08
Johan Janson Olstam, Jan Lundgren, Mikael Adlers, and Pontus Matstoms. A framework for simulation of surrounding vehicles in driving simulators. ACM Transactions on Modeling and
Osogami:2009:FPB

Owen:1998:LSS

Owen:2003:VAS

Owen:2013:BES

Pachoulakis:2008:RVA

Page:1993:DDE

Parker:2018:RCR

Jon Parker and Joshua M. Epstein. A distributed platform for global-scale agent-based models of disease transmis–
REFERENCES

Pellegrini:2021:RCR

Peterson:1991:NRN

Park:2011:AQN

Phan:2014:TSS

Pasupathy:2015:SCR

Plesser:2010:RSI

REFERENCES

S0096300310006259. See [KCK08].

Pasupathy:2011:SRF

Panneton:2005:XRN

Preiss:1994:ECI

Pichitlamken:2003:CPO

[Juta Pichitlamken and Barry L. Nelson. A combined proce-

Perumalla:2013:RSE

Perumalla:2014:DEE

Pellegrini:2017:FGT

Petkov:2013:CPA

Pasupathy:2009:RAA

Park:2000:PEM

Pan:2011:DSB

Principe:2020:DSM

Puzis:2011:DSS

Percus:1995:TAM

Ora E. Percus and Paula A. Whitlock. Theory and application of Marsaglia’s monkey

REFERENCES

Ronngren:1997:CSP

Raatikainen:1993:SPS

Riley:2004:FAD

Rahman:2019:PAP

Rohloff:2008:DSM

Rosenblum:1997:USM

Robinson:2010:SCS

REFERENCES

Reijsbergen:2018:PZG

Reed:2000:IAD

Rainville:2012:EOL

Rao:2019:MPE

Randhawa:2004:CIS

Rahman:2020:SSI

REFERENCES

Ruess:2015:MBM

Rodriguez:2020:GPB

Reppas:2016:ENE

Ruiz-Martin:2021:DEM

Reynolds:1997:CMM

Rosenfeld:2008:ABG

Rajasekaran:1993:FAG
Sanguthevar Rajasekaran and

Ramesh:2000:CBP

Rao:2000:WBN

Radiya:1994:LBF

Roeder:2010:IMQ

Roy:2021:ASH

Raczy:2005:SBD

Rubinstein:2002:CER

Reuven Y. Rubinstein. Cross-entropy and rare events for...

Ross:1993:AOI

Roberts:2007:DSM

Sengul:2015:SSM

Sanchez:2020:DFM

Stytz:2001:DMT

Stopford:2008:FSS

Schruben:2010:SMA

Schafer:2013:PAO

Saltzman:2012:SMN

Sottile:2015:SA

Song:2010:CLI

Schreck:2013:AEE

Soule:1991:ECM

Singham:2014:SSR

Sharma:2010:JCC

Swisher:2003:DES

Shorey:1997:IPL

Schormans:2001:HTA

ISSN 1049-3301 (print), 1558-1195 (electronic).

Steele:2014:FSP

Steiger:2005:ABM

Saito:2012:DCS

Salmon:2011:PRN

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [LCK11], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ????

Shortle:2009:RCQ

Schwaninger:2015:SOA

Salemi:2016:MLS

Peter Salemi, Barry L. Nelson, and Jeremy Staum. Moving least squares regression
Seal:2011:RPD

Stamos:2010:CST

Santero:2005:VLF

Srinivasan:1998:ET

Seznec:2003:HUL

Sanchez:2005:VLF

Marc A. Suchard, Shawn E. Simpson, Ivan Zorych, Patrick Ryan, and David Madigan. Massive parallelization of serial inference algorithms for a complex generalized linear model. *ACM Transactions on

Suryanarayanan:2013:SRQ

Sainudiin:2013:PER

Steiniger:2016:ICV

Stiliadis:1997:RHA

Srikant:1996:SRL

Setayeshgar:2013:EIS

REFERENCES

21:??, October 2013. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

Sanchez:2009:TPS

Sellami:1995:PSM

Stadlober:1999:PRT

Topcu:2008:MFA

Tofts:1998:DSP

Trunfio:2011:NAS

Tezuka:1993:PAA

Talby:2007:CPA

Tang:2005:LQP

Tsompanas:2016:MCM

Tezuka:1991:EPC

TerBeek:2018:GES

Tezuka:1993:LSA

REFERENCES

page 248], and [MZ91] for the original work analyzed in this paper.

REFERENCES

[Vandon:2018:RGR] Andrea Vandin. Replicated Computations Results

REFERENCES

[Wu:2019:EPS] Yulin Wu, Wentong Cai,

Wu:2010:TFI

[WCLG10]

Wang:2016:BAP

[WCS16]

Wadman:2016:LDB

[Wadman:2016:LDB]

Wang:2016:FEN

[Wang:2016:FEN]

Waeber:2012:FSS

[Waeber:2012:FSS]

Wu:2004:EAB

REFERENCES

3301 (print), 1558-1195 (electronic).

[Wang:2016:MSE]

[Wegenkittl:1999:GRC]

[Wolfe:2018:MLS]

[Warren:2004:NSE]

[WPN98] Peter P. Ware, Thomas W. Page, Jr., and Barry L. Nelson. Automatic modeling.

REFERENCES

REFERENCES

Xu:2010:ISC

Xu:2014:DRR

Xie:2021:GLM

Yau:1999:APS

Yucesan:1996:CIA

Yang:1996:CA

Yuan:1993:MCB

Mingjian Yuan and Barry L. Nelson. Multiple comparisons with the best for steady-state simulation. *ACM Transactions on Modeling and Computer Simulation*, 3(1):66–79,
Yuan:2015:CVP

Yuan:2020:IMS

Yoginath:2015:EPD

Yoginath:2018:SCL

Yucesan:1992:SBE

Yi:2017:EBA

Zhang:2018:SAS
Chen Zhang and Nan Chen. Statistical analysis of simula-

Zhou:2010:CMS

Zhou:2004:TSC

Zorn:1994:EMM

Zimmermann:2019:ISN

Zhang:2006:ACT

Zhou:2004:MIH

Zikos:2010:ISD

Zhao:2017:TXB

Zeigler:1991:MBM

Zikos:2010:ISD

Zhao:2017:TXB

Zeigler:1991:MBM

Zhang:2017:MMB

Zeltyn:2011:SBM

Zhao:2017:TXB

Zeltyn:2011:SBM

Zhang:2017:MMB

Zhu:2020:RQS

Zhao:2017:TXB

Zeltyn:2011:SBM

Zhu:2020:RQS

Zeltyn:2011:SBM

Zhu:2020:RQS
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>