A Complete Bibliography of *ACM Transactions on Modeling and Computer Simulation*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
25 August 2021
Version 1.82

Title word cross-reference

1, 2, 3 [SMDS11]. 3 [Pac08]. b [Joh96]. m [MK96, Mat98]. O(1) [TGT05]. q [GDB14].

-Gaussian [GDB14]. -sequence [Mat98]. -sequences [MK96].

623-dimensionally [MN98]. 64-bit [Nis00].

base [ZLK91]. Based [CDS16, CG13, FDP15, GJ13, HYJ21, HERU15, HZF14, JN15, KH19, KW15, LF13, LCT+15, LL15, LCT17, MJV+15, PE11, RL15, SMI15, SP11, SU16, WC16, WCCY19, XLA17, XCA+17, ZS17, ZL17, AZK10, Bli05, Bha05, BÖ96, CTE+19, CTC+05, KCS20, KLF02, LS92, LTT07, LCT07, LL02, LSW91, MK96, PBF+00, PTCL11, PF11, PH21, RTY05, Rδ94, RRW00, RD10, TTSM12, TB08, Vor10, ZMM+11, vBBR03, Bha07, RFA00].

BitTorrent-like [LPPP13]. bivariate [Roa08, WW95]. black [FHD09]. blending [QFL+10]. Block [LF13]. blocking [AO95, KC10, RR00, SW96, VaAE02].

Bridging [TTSM12]. broadband [GMOB01]. Brownian [BCM18, IFPM12].

Carlo [DR13, Pe21, DJT17, FS21, FSS95, HHL14b, LDT07, LV00, LG03, XGH12]. Carma [Lor18, GZWG18]. carry [GK03, TLC93]. carrying [GMOB01]. case [CS08, PCT97, SY95].

Chunking [KCS20]. Chunking-based [KCS20]. Circuit [GLC17, EGLW93, SS08].

Cloud/Virtual [YP15]. Clouds [SALS18, Van18]. Cluster [LL15].

Cluster-Based [LL15]. Co [TFR07].

Co-Plot [TFR07]. Codes [CSE21].
D [Pac08]. DAE [vBBR03]. DAE-based [vBBR03]. Data [BMLY19, CTF+19, EH18, FBS20, HT20, HW19, KH19, KW15, KH18, LL20, LHJS17, MD20, San20, SS14, XGH12, ZZZ18, BCD+14, DOD93, FLV01, GBA+14, HBE95, Mat05]. Data-Driven [KH19, ZZZ18, CTF+19, SS14].

Data-intensive [BCD+14]. Database [FS21, Pel21, SSH97]. DDM [PTCL11, RTY05]. Death [BK20].

Declaration [vBBR03]. Decomposition [Tur17, AD92]. decoupling [FDL99].

Deriving [CTI13, NN11]. Design [Ald18, Bee18, FG98, NY12, RL15, AZK10, CHI98, DHM93, GBA+14, RSW00, RFA00, SB01, WCLG10]. Design-time [FG98]. designs [SS05].

different [Ros08, Vak92]. Differential [HSL+19, PB96]. differential-algebraic [PB96]. Differentiation [RLDH16, HVAFPY10]. DiffServ [LBL01].

Diffusion [RMWLP21]. Diffusions [LTM+17]. Digital [EHN94a, Owe03, SG91].

dimension [GH03, GH06, GH09].

Dimensional [SS16, DX03, Owe98]. Dimensionally [LZ20, MN98].

Discrete [An18, BBM16, CVS15, HSL+19, HPA07, HW19, JW19, MJV+15, MST17, NY04, PPT14, PCGM18, PTD+20, QTP20, RAGN19, RMWLP21, SP11, SJY03, Wai15, WYT+20, WMC+18, YP15, And99, BKV04, GLM96, HVAFPY10, HG01, HH95, DOD93, FLV01, GBA+14, HBE95, Mat05].

Data-Driven [KH19, ZZZ18, CTF+19, SS14].

data-intensive [BCD+14]. Database [FS21, Pel21, SSH97]. DDM [PTCL11, RTY05]. Death [BK20].

Declaration [vBBR03]. Decomposition [Tur17, AD92]. decoupling [FDL99].

Deriving [CTI13, NN11]. Design [Ald18, Bee18, FG98, NY12, RL15, AZK10, CHI98, DHM93, GBA+14, RSW00, RFA00, SB01, WCLG10]. Design-time [FG98]. designs [SS05].

different [Ros08, Vak92]. Differential [HSL+19, PB96]. differential-algebraic [PB96]. Differentiation [RLDH16, HVAFPY10]. DiffServ [LBL01].

Diffusion [RMWLP21]. Diffusions [LTM+17]. Digital [EHN94a, Owe03, SG91].

dimension [GH03, GH06, GH09].

Dimensional [SS16, DX03, Owe98]. Dimensionally [LZ20, MN98].

Discrete [An18, BBM16, CVS15, HSL+19, HPA07, HW19, JW19, MJV+15, MST17, NY04, PPT14, PCGM18, PTD+20, QTP20, RAGN19, RMWLP21, SP11, SJY03, Wai15, WYT+20, WMC+18, YP15, And99, BKV04, GLM96, HVAFPY10, HG01, HH95, DOD93, FLV01, GBA+14, HBE95, Mat05].

Data-Driven [KH19, ZZZ18, CTF+19, SS14].

data-intensive [BCD+14]. Database [FS21, Pel21, SSH97]. DDM [PTCL11, RTY05]. Death [BK20].

Declaration [vBBR03]. Decomposition [Tur17, AD92]. decoupling [FDL99].

Deriving [CTI13, NN11]. Design [Ald18, Bee18, FG98, NY12, RL15, AZK10, CHI98, DHM93, GBA+14, RSW00, RFA00, SB01, WCLG10]. Design-time [FG98]. designs [SS05].

different [Ros08, Vak92]. Differential [HSL+19, PB96]. differential-algebraic [PB96]. Differentiation [RLDH16, HVAFPY10]. DiffServ [LBL01].
Dynamical
[FDMS16, GHS18, Par18, BB94, MWM91].

Dynamical-Related [FDMS16].

Dynamics [HWdF13, HW21, MJV+15, PH21, MMRC+08].

Ecosystem [HT20].

Editor [BSV16, GH15a, CY10, CL98, DG10, HHL14a, TR08, Qua20, Wil07].

Editor-in-Chief [Qua20].

Editorial [Ano18, BSV16, Hei97, JW19, MST17, Nic97, Nic04, Qua20, QTP20, TL18, Wai15, FN03, MV02, Bal97]. Effect [PBAB+11, RLDH16, LM94].

EIA [Fla02].

EIA/CDIF [Fla02].

Elastic [SR98, PP13].

Electronic [SS08]. Elements [SLCP01].

Eliminating [LM94].

Emergence [ST15, XVN14].

Emergency [ZMM+11].

Empirical [BP94, HW03, HIG04, FDD05, ICC99, Joh96, LW97b].

Empirically [SS03].

Emulation [ERL15, HYJ+18, JN15, KKT17, LB+18, CFS08].

Enabled [CSRE21].

End [FHD09].

Energy [SFM13].

Enhancing [WY16].

Enhancing [Whi20, WMF04].

Entropy [WZ15, HLC+10, PRO13, Rub02].

Enumeration [WPS13]. Environment [CHIW98, SB01].

Environments [LT14, VVB+20, CKP95, ZCLT04].

Epidemic [BC93, BHL13]. Equi [SFM13].

Equi-Energy [SFM13].

Equidistributed [MN98].

Equine [XVN14].

Equivalence [YS92].

Equivalent [FMN00].

Error [WG16, WG04, HSN94].

Estimate [KSW07, SW96].

Estimates [CK14, NNB11].

Estimating [CMZ18, LC01, HSN94].

Estimation [AGMW17, BLST16, JSD19, LN18, Mat05, VaAE02, WCZ16, YKA+21, AK11, BKM09, DHM93, GAG14, HVA09, HVAPFY10, LCT07, NS06, Owe13, Raa93].

Estimator [GK95].

Estimators [BC13, CN15, CERT15, AAAG06, AAGM10, AG07, Cal09, HIG04, LBGT10].

Evaluating [CDS16, ZG94].

Evaluation [DTCU19, HYJ+18, MRB+18, TL18, ZH19, HD98, HD07, ICC99, PT00, SG91].

Event [BBMK16, BC13, CVS15, HSL+19, HW19, KSL+16, MJV+15, PPT14, PCGM18, PTD+20, RAGN19, RMWL21, SP11, WYT+20, WMC+18, YP15, AK11, BL11, BHL13, BKV04, EK04, EK07, GLM96, HT99, HVAPFY10, HG01, LBGT10, Lin92, MWM91, MH92, MBGF11, MCC11, NOP99, Nic91, NY04, Nut06, Nut08, Pag93, PB96, RS94, SJY03, TGT05, Vak92, YJ96].

Event-Based [MJV+15].

Event-Driven [MWM91, MH92].

Events [RH19, GL05, Hei95, JB00, LDT07, LDF91, Rub02].

Everyone [GDP14].

Evidence [HW03].

Evolution [PBF+00, SC08].

Evolutionary [RGTL12, JC11].

Exact [BW15, DQZ18, DLQ20, HSL+19].

Exact-Differential [HSL+19].

Execution [DJS94, KPG15, PPT14, SALS18, Van18, NH96].

Execution-Driven [DJS94].

Expanded [KSL+16].

Expectation [LF13, STHL13, YKA+21, LG03].

Expectations [AK18, CLL99].

Experiences [NCV06].

Experiment [RL15].

Experimental [Vig16, DHM93].

Experiments [FS17, Nel17, EU14, MKPR98, SWL09, YL96].

Explicit [HW21].
Explicitly [VVB+20]. Exploiting [CN16, KSW07]. Exploration [SU16, Vig16]. Exponential [MJ15, QDZ21, BB99, LX14].

Inhibition [RLDH16]. Inhomogeneous [BK20]. Initial [WG16, AAG06, AGT92].
initialization [MWKA07]. initiating [FK91, Nic91]. inland [ZIC06]. innovations [BHL13]. Input [XNB16, YY17, ZLZ20, BN03, DM06, WW95]. inputs [MR02].
insider [MMRC+08]. insides [CTF+19]. Instability [SKR97]. instruction [MM07].
Integer [HWdF13, Lem19, Qua19, WPS13]. Integer-Ordered [WPS13]. integrals [LX14].
Integrated [HN09, YN15, YN20, Cal07, Cal09, FJS02, LSJ10, SB01]. Integrating [LCL16, ZH19, ZTJB04].
Integration [LBN+18, EK04]. interactions [BHG10, DG10, SF10]. interactive [BCL+97, BCD+14, MWMD07, SSH97, WW95]. interactively [QFL+10]. Interest [LT14].
Interference [WAGP15]. International [LCK11]. Internet [ABGR01, CK08, KHJ+08, Mat05, Nich08]. interoperability [SSH97]. Interpolation [WPS13]. interruptions [DOD93].
Intersection [LCC13]. Interval [HHH+19, Lem19, Qua19, Sin14, PLM94]. Intervals [Nak14, CH04, CLL99, CN12, FG99, IMW00].
Intractable [JKE14]. Introduction [BB19, DR13, EY11, GH15a, HT20, HAA+19, TK21, PW21, CY10, CL98, DG10, HHL14a, L'EO3, TR08, WI07].
Intrusion [PTE+11]. invalidates [FTJ16]. inventory [LI12]. Inverse [HLD07]. inversion [DHL10, HD96, HL03]. Inversive [LW97b, EHG92, EHN94a, Ehm98, Nie94].
invoke [LDF91]. IP [LPM+04]. Irreducible [GH15b]. Issue [Ano18, BSV16, BB19, DR13, GH15a, HT20, JW19, JK21, MST17, PW21, QTP20, TL18, CY10, CL98, DG10, EY11, HHL14a, MV02, TR08, WI07]. issues [SSH97, YJ96].
Jackson [JNO5, KN02, MSM10, NZ07]. Joint [SJS10, WhN20].
Kriging [NY12, QF14, CAN12, CK14]. L [GHG15a]. Ladder [RH19, TGT05].
Language [HWMU17, Hill17, EU14, SRT91, TB08]. Large [CMZ18, CK08, GJ13, HSL+19, LLCC13, PTE+11, WC16, WMC+18, WCL+19, YP18, Bu98, Den05, FG98, LM94, LPM+04, LLH100, MR02, SS05, TGT05, UXC+00, ZLCT04].
Large-Deviation-Based [WC16]. Large-Scale [HSL+19, LLCC13, PTE+11, WMC+18, YP18, CK08, WCL+19, FG98, LM94, LPM+04, LLH100, TGT05, ZLCT04].
Learning-enabled [CSRE21]. Least [SNS16]. lengths [SW96]. Level [GLC17, Hill17, WAGP15, BH10, DOD93, SQ12, SS03, Tuz95, VSCL13, WPN98, WG04].
long-range [GMOB01], lookahead [FK91, JB00], loss [AO95, CHS95, LC01, LV00], low [AG07, BFN92, DOD93, RGTL12, Cal09], low-bias [AG07], low-discrepancy [BFN92, RGTL12], low-level [DOD93], Lyapunov [BGL12].

MAC [BHG10], MAC-layer [BHG10].

Machine [CSRE21, JN15, YP15, RBDH97].

MaD0 [LZW16].

Maintenance [RNS97].

Major [HHFS16].

Making [LSJ10].

Malicious [CTF+19].

Management [LT14, MD20, CTLZ05, DF97, FHD09, KM01, LP91, SQ12, WNFM04, ZLK91].

Managing [RH19].

Manufacturing [NB93].

Manufacturing-Simulation [NB93].

Marine [HHFS16].

Markov [AHO93, BDK+19, Buc98, BHH21, GL05, HHH+19, KW93, MR02, MBGF11, NH95, RK20, RJO4, SCW13].

Markov-reward [GL05].

Markovian [HSN94, Nak94, RDSJ18].

Marsaglia [Bre04, PW95, Vig16].

Marshall [BLST16].

Massive [SSZ+13].

Massively [PCGM18, Vak92, HD98].

Matching [LT14, ZS17, PTCL11, RTY05].

Mathematical [CS08].

Max [Ale17, CS17, KT10].

max-norm [KT10].

maximal [GK03, Rub02].

Maximization [LF13].

Maximum [AGMW17, JKS07].

MAYA [ZJTB04].

MCMC [FFSF13].

Mean [BDK+19, Hic96].

Mean-payoff [BDK+19].

Means [AG16, AAAG06, Raa93, SLW+05].

measure [HVAPFY10, WCLG10].

measure-valued [HVAPFY10].

measurements [BP94, CF11, LH02].

measures [BK10, De 06, HAS94].

Mechanism [LCT+15, CTLZ05].

Mechanisms [LDF91, ABGR01, LL91a, MH92].

Memoization [SSDW18].

Memory [HKP21, PTD+20, TKS16, DF97, FH97, LW97a, LP91, MD20, UNMS97, UXC+00, ZG94].

Mersenne [MN98, Nis00].

Mesoscopic [GZGW18, Lor18].

Message [SDZ+15, WDYR16].

meta [Fla02].

meta-metamodel [Fla02].

Metamodel [XYZ21, TA08, Fla02].

Metamodel-assisted [XYZ21].

Metamodeling [Fla02, KDV+20, SNS16, WCCY19].

Metamodels [YN15, CAN12, DHM93, Fla02].

Method [LCL16, Tur17, YN20, CGN06, DJ11, GH03, GH05, HLC+10, Har94, KT10, Nak94, Nic94, Nut06, FDD05].

methodologies [Fis92, TR08].

Microscopic [AXE+20].

Middleware [PTD+20].

Military [PBAB+11, WPW09].

Minimum [MKPR98].

Minority [CN16].

Misra [SG91]. mission [SB01].

Mitigation [FDMS16].

mixed [LL02, QFL+10].

mixed-signal [LL02].

Mixing [CPQ17].

Mixtures [WZ15, HS12].

MNO [Ale17, CS17]. Mobile [KH19, CSK10].

Mode [PH21].

Mode-switching [PH21].

Model [AP18, CVS15, CTF+19, FDD05, GLC17, HZF14, JS919, KKT17, KPG15, MRB+18, PCGM18, SP11, SSZ+13, WhN20, ZLK91, EK07, FZ92, FSS95, KHH+08, LH02, LS92, LS10, MCC11, NOP99, RWK+07, SF10].

Model-Based [HZF14, CTF+19, LS92].

Model-Driven [CVS15].

Modeling [BSV16, Bar97, BL02, BHG10, BMLY19, BN03, BKV04, BDGP20, DWYM16, FW97, HWMU17, HW21, HII17, HHI11, HM08, KH19, KZ11, LDNA03, LZ20, LPPP13, LHJS17, LDLO4, RMWL21, TKS16, WMC+18, ZL17, ZC18, BAL01, B03].
Neurons [LTM+17]. Newton [Bha07].
Newton-based [Bha07]. node [De 06].
Noise [RLDH16]. Noisy [SCW13]. non
[HSN94]. non-Markovian [HSN94].
Nonhomogeneous [SDLH12]. Nonlinear
[EH95, LZW16, EHN94b]. Nonnegativity
[HHN94, HLC12]. Nonlinear
[EH95, LZW16, EHN94b]. Nonnegativity
[HHN94, HLC12].
Nonhomogeneous [SDLH12]. Nonlinear
[EH95, LZW16, EHN94b]. Nonnegativity
[HHN94, HLC12]. Nonlinear
[EH95, LZW16, EHN94b]. Nonnegativity
[HHN94, HLC12].
Nonstationary [BN09]. nonuniform
[Bel05]. norm [KT10]. Normalizing
[DJLZ17]. NORTA [GH03, GH06, GH09].
Note [BSV16, Bre04, CHIW98, Hor94, TT94].
Novel [SSY21, KM01]. November
[LCK11]. Noxin [CMM+16]. Null
[WDYR16]. Null-Message [WDYR16].
Number [Bre04, EH95, LZW16, MZ91,
MZ93, Pet91, AK11, CL98, DX03, EH92,
Ent98, GK03, Joh96, LBC93, LW97b, MN98,
MKWA07, PL05, PW95, PJ10, SM12,
SLF19, TL91, TLC93, Wu01]. Numbers
[GH93, HLC10, Kaw10, LV00, PG14, RW93,
SM12, SLF19, TL91, TLC93, Wu01].
Numerical [ZH19, DHL10, HL03].
numerically [EK07].

O [JSC01]. object [FG98]. Objective
[And21, LZ20, CM21, FH18]. Objectives
[HHH+19]. Observation [JKE14].
Observation-Driven [JKE14]. off [KW93].
Olkin [BLST16]. Omnithermal [Con20].
on-off [KW93]. One [PPT14]. One-Sided
[PPT14]. Online [LF13, PBB16]. only
[DHL10]. OOPM [LF99]. OOPM/RT
[LF99]. open [PK11]. Operational
[ZMM+11]. Operations
PBAB+11, RSG21]. Opportunities
[San20]. Optimal [AZT10, BKM90, LP91,
HLC+10, Kaw10, LV00, PG14, RW93].
optimism [DF97]. Optimistic
[CPQ17, CPF99, Nut08, SQ12].
Optimization [And21, BDK+19, CDS16,
CG13, CM21, GDB14, HKP21, HAA+19,
LL20, Sch13, WPS13, And99, And06, BL02,
Bha05, Bha07, BHM11, CSK10, HLC+10,
HDM03, HN07, HN09, MSK10, PG14, PN03,
RGTL12, SJY03, XNH10].
Optimization-Based [CD16]. Optimizing
[ELL00, LLC13, WPW09]. optimizing-simulator [WPW09].
Optimum [Tsur17]. OR/MS [TTSM12].
order [Den05, DHM93, HD02]. Ordered
[WPS13]. Ordering [Ae17, CS17].
Ordering-Piecewise-Linear [Ae17, CS17].

Packet [FLV01, AZLT10, CHS95]. PADS
[Ano18, JW19, MSH17, QTP20, LK21].
Pairwise [LLCC13]. PAM [DWYM16].
paradigm [MV02]. Parallel [BC93,
BMLY19, CTI13, CG02, Ent99, Fuj16, JN15,
KSL+16, MKG+17, MD20, NH96, PCGM18,
PTD+20, RAGN19, RH19, SMDS11, SP11,
UXC+00, WDYR16, WYT+20, WMC+18,
WCL+19, XCA+17, YP15, ZC18, AO95,
CPF99, EGLW93, FW97, GH91, GLM96,
HD98, HF01, LP91, LL91b, Lin92, MWM91,
Nic91, NH95, RA97, TF0, Vak92, Yan99].
Parallelism [Lin92, SY95]. Parallelization
[SSZ+13]. Parallelizing [KCS20].
Parameter [RL15, SSDW18, WSC16, YN20,
BKM09, NC06]. parameterization [LH02].
Parameterized [CKL+13, BKM09].
parameters [KK00]. Parametric
[BDK+19, LL20]. Parametrized [Tur17].
Parasites [XVN14]. ParaSol [MKPR98].
Pareto [HHH+19]. part [Lev01]. ParTejas
[MKG+17]. Particle
[DWYM16, LF13, Sch13]. Particle-Based
[LF13]. partition [Rub02]. parts [Emm98].
patchwork [SZ99]. path [NBB11, RDSJ18].
Path-ZVA [RDSJ18]. paths [Cal07, Cal09].
patient [MBGF11]. Patterns [GB19].
Pedestrian [GZWG18, Lor18, KZ11].
Penalty [HKS19]. Pending [RH19].
penantennals [Wu01]. per-application [PRO13]. per-flow [LBL01]. Perfect [Con20, MT06]. Performance [AAGM10, AXE+20, BCL+97, BMLY19, CSRE21, HD98, KM01, LCK11, LCT+15, LN18, MRB+18, MJV+15, Nic91, PT00, BK10, BCD+14, FW97, GP11, HIG04, SKR97, UXC+00, WS04]. period [Doo07, Emm98, GKK03, Lev01].
prespecified [Ros08]. Prevention [PT+11]. primitive [Wu01]. Principles [Wi15, ANO18, JW19, MBL+17, QTP20].
priority [RAGN19, TG05]. Probabilistic [ESZH21, GHS18, Par18, RL20, TRK+09, Vor10]. Probabilities [BC13, CMZ18, DM06, JN05, JKS07, RRP00, SW96, VaAE02]. probability [HT99]. probably [Oso09]. Problem [CERT15, AGT92, BG93, HVA09, Kgra96, PS09, PK11, QCO2, WPW09]. Problems [YKA+21, Rub02]. Procedure [GK19, WPH12, BKM09, DHM93, KN01, PN03, Raa93, SWL09, SLW+05, VSS+14]. Procedures [EH21, HAK14, MI19, SN14, DN99, Kim05, SJ03]. Proceedings [LCK11].
Product-Form [MRB+18, CO98, SFS95, RW93]. Production [GCB95]. professional [AGG+07]. Profile [CSK10].
Profile-driven [CSK10]. Programming [GHS18, LZ20, Par18, XYZ21, CS08, HE12].
pseudo [MN98]. pseudo-random [MN98]. Pseudorandom [EH95, LZW16, Nie94].
EHG92, EHN94a, EHN94b, Emm98, Ent98, Joh96, LW97b, Lev01, Mat98, MWKA07, PW95, SM12, SLF14, WM99. public [HVA09]. Purdue [KFL00].

Hil17, KH18, Lor18, Lor19, Par18, Van18].

Replication [Ano21, Pel21]. **Report** [Ale17, And21, Ano21, Bee18, Hil17, KH18, Lor18, Lor19, Liic16, Nel17, Par18, Pel21, Qua19, Van18, Van19]. **representation** [FDD05]. **representations** [KC10].

Resampled [CN15]. **Research** [Fuj16, HHL14a, RSG21, CY10]. **Resilience** [WAGP15]. **Resilient** [VAB+18].

Resistance [XVN14]. **Resource** [LCT+15, TKS16, AZK10, FSS95, ZK10].

Resources [BDGP20]. **Response** [WhN20].

RESTART [VAVA06]. **restricted** [VSS+14]. **Results** [Ale17, And21, Ano21, Bee18, Hil17, KH18, Lor18, Lor19, Liic16, Nel17, Par18, Pel21, Qua19, Van18].

retraction [LDF91]. **Retrospective** [PS09, WPS13].

Retrospective-approximation [PS09]. **Reusing** [EH18, FS17, KH18, Nel17].

Reverse [GLC17, CPF99]. **Reversed** [BW15].

Reversible [PP13, SP11]. **Review** [HHL14b, MKT21, RSG21]. **revolution** [PFH+10]. **reward** [GL05]. **Rewards** [DHK15]. **rid** [WM99].

Risk [FDMS16, HHL14b, XLZ17, ZLZ20]. **risks** [MMRC+08]. **RNGs** [Mar03].

Road [XCA+17]. **Robust** [HHH+19, LL20, Nel93, PBAB+11].

robustness [LBTG10]. **Role** [ZZC18].

Role-Dependent [ZZC18]. **rollback** [LL91a, LS91]. **rollback-based** [LS91].

Root [RL20, PS09, PK11]. **root-finding** [PS09, PK11].

routing [BG93, RRP00]. **RT** [LF99].

run [KCK08]. **Rule** [WG16].

Rules [Sin14].

run-variable [HLC12].

running [KFL00].

Runtime [HERU15, CSK10].

safe [JSC01]. **Sample** [LCT07, CK14, HDM03].

Sample-based [LCT07]. **Sampler** [SFM13].

Samplers [DJLZ17, AQVA10]. **Samples** [DjWS19].

Sampling [BGL12, BW15, HAK14, Hof11, RDSJ18, De 06, DLW07, GK95, HS12, Kaw10, KSTZ11, LC01, LV00, Levy98, MSM10, MT06, NZ07, Owe98, RJ04, RW93, SW13, ZS99, WWFH06].

saturate [KHJ+08].

SC’11 [LCK11]. **scalability** [JZTB06].

Scalable [CSRE21, LPM+04, YP18, BCL+97, HD98].

Scale [HSL+19, LHJS17, LLCC13, PE11, PTE+11, WMC+18, YP18, AD92, CK08, FG98, LM94, LPM+04, Lor19, LLHL00, MHS19, PT00, TGT05, WS04, WCL+19, ZCLT04].

scale-down [CK08]. **scanning** [KHJ+08, RB08]. **Scenario** [HHFS16, LL20, CKP95].

scenarios [BHG10, LSJ10].

SDEs [BKM09]. **Search** [Che13, CG13, EH18, ESZH21, HZF14, KH18, WPS13, And99, HN07, LBC93].

Seattle [LCK11]. **second** [DHM93].

second-order [DHM93].

Sectioning [Nak14].

self [HWdF13, VAB+18, FK91, FMN00, LALGSG+00, Mat98, Nic91, PT00].

Self-Avoiding [HWdF13]. **self-initiating** [FK91, Nic91].

self-similar [FMN00, LALGSG+00, PT00].

Self-Stabilisation [VAB+18].

self-test [Mat98]. **Semantics** [HWMU17, Hil17, TB98].

semi [CGN06].

semi-regenerative [CGN06].

Semiautomatic [SDZ+15]. **semidefinite**
sensitivity [BL02, Owe13, WCLG10]. sensor [SF10]. sequence [Mat98] sequences [BFMW03, BFN92, FL09, MK96, RGTL12, Tez93, TT94]. Sequential [ACL15, DJLZ17, GK19, JSD19, RH19, DHM93, GAG14, KN01, Kim05, Ra93, RA97, SY95, XGH12].

Serial [SZ+13, NH96]. Series [JKE14, BN03, BN09, FG98, KN01, Kim05, JSD19, GAG14, KN01, KL02, KZ11, KN02, LBGT10, LV00, LW97a, LDNA03, LS92, LF99, LL07, LP91, LL91b, Lim12, SESSL [EU14]. set [MPK06] sets [Lim12]. Setwise [AQVA10].

several [ICC99, Raa93]. Shahabuddin [AGG+07, Wil07]. shapes [Ros08]. Shared [MD20, PT+20, CH95, FH97, KM01, UX+00]. Shared-memory [MD20, FH97, UX+00]. Sharing [PQ17, FSS95]. Sharpening [HE12]. Sided [PPT14]. Similar [SP11, LL02]. similar [FMN00, LALGSG+00, LLHL00, LSW91, MWM91, MR02, MK06, MBGF11, MCC11, MY08, NOP99, Nic08, NZ07, Nut06, Nut08, OLAM08, Pag93, PCT97, PBF+00, PF11, PN03, RS94, RFA00, RNS97, RAF+04, RWK+07, RD10, RS10, SWL09, SSS97, SLCPO1, SS14, SY95, SMG09, SG91, SPV+10, SLW+05, SV97, SC08, SS08, SJY03, TGT05, TR08]. simulation [TTSM12, TB98, UNMS97, Uhr01, Vak92, Var04, WW95, WS04, WW03, WNNF04, WWFH06, XNH10, XGH12, YL96, Yau99, YN93, YS92, YJ96, ZCC+10, Bal97].

Simulation-Based [CG13, ZMM+11, Vor10]. simulation-generated [FA06]. simulationists [MFFR92]. Simulations [AXE+20, GB19, GRK+15, HSL+19, HAK14, HW19, LCT+15, LCC13, NY12, NH15, RH19, PZ17, YP18, AHO93, BP94, BN09, CTLZ05, CN98, CPF99, CF11, DN99, EGLW93, GH91, GLM96, GAG14, HIC04, HFO1, KSW03, KM01, LPM+04, LX14, Nak94, Nic91, Oso09, Owe98, PP13, ST13, Tuz95, VSC13]. Simulator [KCS20, MKG+17, FW97, GBA+14, RBDH97, UX+00, WPW09, WPW04]. Simulators [LB+18, NAT+21, NH96, OLAM08, SKR97]. Simulink [ZL17]. Simultaneous
[Che13, HHFS16, SSDW18]. Study
[RK20, CFS08, FL09, FDD05, LL91a, NH95, PCT97, RA97, RBDH97, SY95].

Subordinator [DLQ20]. subsequences [Ent98]. Subset [And21, CM21].

Subsolutions [BGL12]. subtract [TLC93]. subtract-with-borrow [TLC93].

subtract [TLC93]. successes [AK11, TR08]. sums [BL11, DLW07, JKS07].

supercube [Owe98]. Superdense [Nut20]. Superfast [GLM96].

Support [PTE+11, MY08, RD10, Tuz95].

Supporting [LLHL00]. Supremum [BCM18]. surrounding [OLAM08]. Survey [AP18, RD10, SJY03].

Swapping [DjWS19]. switch [CHS95]. switched [EGLW93, HM08]. switches [LC01].

switching [PH21]. Symbiotic [ERL15, MY08]. Synchronised [ST13].

Synchronization [HY21, MH92, XCA+17, MKPR98, QC02, SQ12].

Synchronous [EGLW93]. Synthesis [SDZ+15, Fis92, IFPM12].

System [HHFS16, PQ17, PTE+11, DX03, Fis92, FSS95, FG98, ICC99, KM01, LW97a, LS92, MMRC+08, MKPR98, Nut08, RS10, SB01, WPNS98, ZK10, WK01, vBBR03].

systematic [BHG10]. Systems [Ald18, Ano21, Bee18, BDH21, ÇTI13, DWYM16, ESZH21, FHG16, GHS18, GH15b, HWdF13, HYJ+18, HY21, KH19, KSL+16, LBEJ19, LHJS17, Lr19, Lüe16, MHS19, Par18, RDSJ18, ST15, Van19, VAB+18, VLN+19, WAGP15, WDR16, Bar97, BL02, BK10, BKV04, EK04, EK07, HSN94, HVA09, HVAPFY10, HD98, HG01, HM08, LV00, LDNA03, LLTO7, LPPP13, Lim12, LL02, MWM91, NC06, Oso09, RBHD97, ST13, Vak92, VAVA06, ZLK91, TL18, Nak94].

Tables [Nis00]. tactical [ZMM+11].

TADSIm [MJV+15]. Tail [MJ15, JKS07].

tailed [BL11, BHL13, FA06, HPA07, JS02].

tails [DLW07, HS12]. tandem [CS08, De06, Gk95, HHY11, KC10, KN02, MSM10].

Tapeworm [UNMS97]. targeted [CFS08].

Tausworthe [TL91]. TCP [CFS08, NY04, PT00, VSCL13].

tCP-targeted [CFS08]. Technical [CHIW98]. technique [BN03, Ley98, MM07, SLCP01, SZ99, WS04].

Techniques [Nak14, SDZ+15, Bal97, CN12].

technologies [ZCC+10]. technology [Kiv91].

telecommunications [GMOB01].

teletraffic [AQVA10]. Temperature [MJV+15]. Temperature-Accelerated [MJV+15].

tempering [WM99]. Temporal [GB19, LBN+18, IMW00, Lor19, MHS19, Rj04, Tuz95, VLN+19].

terminals [ZIC06].

Terrain [SSH97]. test [Ent99, HN98, Mat98, PW95]. Testing [WG16, CK08]. Tests [Ano21, BDH21, KCK08, KW15, MZ93, BFN92, Jh96, LW97b, PJ10].

Their [CFL12, HPA07]. Theorems [CG13].

theoretic [MPK06]. theoretical [AG07, WCLG10].

Theory [Nut20, PW95, HT99, MMRC+08, Pet91].

Third [HHL14a]. threat [MMRC+08, SB01]. Three [RH19, Bha05, NC06]. Three-tier [RH19].

three-timescale [Bha05]. throughput [SJS10]. tier [RH19].

Tightly [KSL+16].

Tilted [Hof11, QDZ21, Dev09]. Time [AD92, AO95, BCM18, BW15, HY21, JKE14, LT14, LCL16, Nut20, PQ17, YP18, ZCTL04, BDK+19, BN03, BN09, Buc98, CTLZ05, CO98, CFW99, DF97, DNRD96, FA06, FG99, FG98, FH97, GH91, HBE95, HPA07, KSW07, LF99, LP91, LL91a, LL91b, LDF91, MY08, NH95, PT00, PLM94, QC02, SQ12, SS14, SR98, WNM04, Yan99].

Time-Based [HY21]. time-division [LL91b]. time-management [SQ12].

Time-Reversed [BW15].
Time-segmentation [AO95]. time-series [BN03, BN09]. Time-Sharing [PQ17].
Time-space [ZCLT04]. Time-Stepped [YP18]. timescale [BFMW03, Bha05].
timing [DJ94]. TLM [SP11].
TLM-Based [SP11]. Tolerance [EH21].
TOMACS [Ano18, JW19, MST17]. Tool [NB93, ZL17, SSRT91, SPV+10].
toolkit [NCV06]. Tools [GZGW18, Lor18, KFL00, RD10].
topological [CK08]. topologies [DKVR09].
topology [KK00]. Trace [KCS20, JSC01, KSW03, MM07].
Trace-Driven [KCS20]. Traffic [AXE+20, DTCU19, HHFS16, LL15, XCA+17, GMOB01, HPA07, LH02, MWMD07, NY04, PT00, PRO13, WW03].
train [LDL04]. training [Bal97, SSH97, SB01]. trajectory [BKM09].
Transfer [BG+21]. Transformation [AGMW17]. Transformed [HLD07]. Transience [GH15b].
Transient [WG16, AAAG06, AGT92, HSN94, MR02].
Transitioning [NAT+21]. Transmission [PE11]. Transparent [SQ12].
Transparency [CPQ17]. transport [ZIC06]. transportation [HVA09]. Trap [UNMS97]. Trap-driven [UNMS97].
traveling [CFW99]. Tree [LHJS17]. triangulations [ES94]. trinomials [MK96].
Truncated [DLQ20]. Trusted [Ald18, Bee18]. TSTL [Van19, VLN+19].
tuberculosis [MCC11]. Twisted [MK92, MK94]. twister [MN98]. twisters [Nis09].
twisting [JS02]. Two [BFMW03, CMZ18, DN99, PPT14, PG14, RH19, SWL09, De 06, EHG92, KLF02, WP99].
two-level [WP98]. two-node [De 06].
Two-phase [SWL09]. Two-Sided [PPT14].
Two-stage [DN99, PG14, KLF02].
Two-tier [RH19]. Two-timescale [BFMW03]. type [KC10, SS08].

Ultrafast [LZW16]. UML [AK02].
unbounded [HLD07]. Uncertainty [PBAB+11, XNB16, YX17, ZLZ20, MY08, NC06, PG14].
Undo [CPQ17]. uniform [CL98, DX03, KSB11, MN98].
Uniformization [BK20, DHK15]. uniforms [Hör94]. unifying [BCL91].
immodal [Dev97, SZ99]. Union [AK18]. Universal [Bel05]. University [KFL00]. unknowns [BRR03].
modified [KFL00]. Use [GK19, LALGSG+00]. user [LD91, SS03].
user-invoked [LD91]. user-level [SS03].
users [LPPP13]. Using [AG16, CN08, DHK15, ESZH21, GZGW18, GDB14, Nak14, RH19, RBDH97, SDLH12, TKS16, Van19, VLN+19, WMC+18, AD92, BC93, BFMW03, BN03, BKV04, BN09, Cal07, Cal09, CPF99, DjWS19, Fis92, FG99, GAG14, HLC+10, HBE95, JS02, LS92, Lor18, LLHL00, Pac08, PF11, PRO13, RFA00, SJY03, WPS13, WP98, WP99, XGH12, Yau99].
Utilization [TKS16, AZK10]. utilizing [MM07]. UWB [AZK10].
UWB-based [AZK10].
validate [MPK06]. Validation [YN15, BÖ96, GDP14, PCT97]. validity [VSCL13].
Variable [HDM03, SU16, HLC12].
Variable-sample [HDM03].
Variable-Structure [SU16]. variables [DLW07, KJS07].
Varianc [AHO93, BC13, CERT15, GAG14, LN18, Nak14, Owe03, Tu97, AAAG06, AAGM10, CN08, CN12, Kaw10]. Variance-Reduction [Nak14, CN12]. variant [AK11].
Variate [QDZ21, DHL10, Dev97, Dev09, HL03].
variates [AHO93, Hör94, HD96, NS06, RR93, RJ04, YL96]. variation [KSB11].
Variational [WCCY19]. varying [DL97]. vector
[Bel05, BN03, GH03, GH06, GH09, Nie94].

vectors [Emm98]. VEEs [LCT+15].
vehicle [CFW99]. vehicles [OLAM08].
Verification [Ald18, Bee18, PCT97].
versatile [SSRT91]. versus [WM99]. Very
[SS05, Owe98].

Verification [ALW07].

versus [WM99].

Very [SS05, Owe98].

via

[ABGR01, AGMW17, And21, BMH11, CK08,
CTF+19, CG13, CM21, HKP21, HE12, HN07,
KSW07, KFL00, Kim05, LC01, LG03, Os009,
PHP+15, PN03, SQ12, XYZ21, XNH10].

View [LL20, CS92].

Virtual [HYJ21, JN15, KKTM17, LN18, LT14,
YP15, CKP95, FH97, ZCLT04].

Virtual-Machine-Based [JN15]. Visual
[GB19, GCB95]. visualization [Pac08].

Visualizing [HBE95]. VM [KSW03].

volumes [Pac08]. Volunteer
[SALS18, Van18].

WA [LCK11]. walks [HS12]. Warp
[PQ17, AD92, DF97, DNRD96, LP91, LL91a,
LDF91, PLM94, QC02]. wave [Nut06].

wavelength [RRP00]. Waves [RLDH16].

Weak [ST15]. Web
[KLF02, PBF+00, RRW00, RFA00].

Web-based
[RFA00, KLF02, PBF+00, RRW00].

weighted [FG99, HN98]. well [Ent98].

well-known [Ent98]. Wildfire
[TDR+11, HK09, XGH12]. wimedia
[AZK10]. wind [Pac08]. Wireless
[KKTM17, SABF15, ZJTB06, SJSM10,
SF10]. WiseMove [BLG+21]. WiseSim
[BLG+21]. without [FK91]. WLAN
[KKTM17]. Work [WYT+20].

Work-stealing [WYT+20]. Workload
[SALS18, Van18]. workloads
[TFR07, WPN98]. workshop
[CY10, HHL14a]. world [CS92, ZJTB04].

worms [KJH+08, Nic08, RB08]. WPANs
[AZK10]. Wrong [EH18, KH18]. WSNs
[MRB+18]. WWW [KFL00].

xMAS [ZL17]. xMAS-Based [ZL17].

Xorshift [Bre04, Mar03, PL05, Vig16].

YAWNS [DRNRD96].

Zero [CERT15]. Zero-Variance [CERT15].

zone [KN01]. ZVA [RDSJ18].

References

Alexopoulos:2006:RBM
Christos Alexopoulos, Sigrin
Andradottir, Nilay Tanik Argon,
and David Goldsman. Replicated
batch means variance estimators in
the presence of an initial transient.
ACM Transactions on Modeling
and Computer Simulation, 16(4):
317–328, October 2006. CODEN
ATMCEZ. ISSN 1049-3301 (print),
1558-1195 (electronic).

Alexopoulos:2010:PFV
Christos Alexopoulos, Claudia
Antonini, David Goldsman,
and Melike Metcallyoz. Performance
of folded variance estimators for
simulation. ACM Transactions on
Modeling and Computer Simulation,
CODEN ATMCEZ. ISSN
1049-3301 (print), 1558-1195
(electronic).

Aldini:2001:CQI
Alessandro Aldini, Marco
Bernardo, Roberto Gorrieri,
and Marco Roccetti. Comparing
the QoS of Internet audio
mechanisms via formal
methods. ACM Transactions on
Modeling and Computer
REFERENCES

REFERENCES

Asmussen:1992:SDI

Andradottir:1993:VRT

Atkinson:2002:RUI

Amrein:2011:VIS

Ahn:2018:ESE

Aldini:2018:DVT

Alexopoulos:2017:RCR

REFERENCES

1049-3301 (print), 1558-1195 (electronic). See [CS17].

Andrew:2010:SFG

Andelfinger:2020:FPS

Al-Zubi:2010:CLD

Al-Zubaidy:2010:OSH

Balci:1997:GES

Balci:2001:MCM

Barros:1997:MFD

Fernando J. Barros. Modeling formalisms for dynamic structure systems. *ACM Transac-
REFERENCES

Michel Broniatowski and Virgile Caron. Small variance es-

[BCL91] Mostafa A. Bassiouni, Ming-Hsing Chiu, Margaret Loper, Michael Garnsey, and Jim Williams. Performance and reliability analysis of relevance filtering for scalable distributed interactive simula-

Biewer:2021:DTC

Beliakov:2005:UNR

Baier:2019:MPO

Beek:2018:RCR

Bratley:1992:ITL

Bremaud:1993:DLR
P. Brémaud and W.-B. Gong. Derivatives of likelihood ratios

Blanchet:2012:LIS

Bhatnagar:2005:AMT

Bhatnagar:2007:ANB

Begum:2010:MIB

Butkova:2021:MAM

Blanchet:2013:RES
Bhatnagar:2011:SAA
Shalabh Bhatnagar, N. Hemachandra, and Vivek Kumar Mishra.

Bhatnagar:2009:OPT
Shalabh Bhatnagar, Karmeshu, and Vivek Kumar Mishra.

Batur:2010:FFS
Demet Batur and Seong-Hee Kim.

Bobeanu:2004:MDE

Burak:2020:ICB
Maciej Rafal Burak and Przemyslaw Korytkowski.

Barton:2002:MSS
Paul I. Barton and Cha Kun Lee.
REFERENCES

[BÖ96] Louis G. Birta and F. Nur

REFERENCES

Calvin:2009:SOA

Chen:2012:ECR

Casale:2016:QOB

Cancela:2015:BAZ

Chertov:2011:FDM

Chen:2012:SLP

Chertov:2008:FNS
Roman Chertov, Sonia Fahmy, and Ness B. Shroff. Fidelity of

REFERENCES

[CN98]

Currie:2021:PASS

[CN21]

Catania:2016:CAN

[CMM+16]

Chu:2012:CIQ

[CMZ18]

Calvin:2015:RRE

[CN15]

Cicirelli:2016:ESC

Franco Cicirelli and Libero Nigro. Exploiting social capabilities in the minority game.
Chen:1998:TPT

Connor:2020:OPS

Carothers:1999:EOP

Cingolani:2017:TMU

Cota:1992:MPI

Chan:2008:MPM

Chen:2017:MPM

Huifen Chen and Bruce W. Schmeiser. MNO–PQRS:

Samir R. Das and Richard M. Fujimoto. Adaptive mem-

REFERENCES

Dickens:1996:ABT

Davies:1993:SMM

Doornik:2007:CHP

Dassios:2018:ESC

Doucet:2013:ISI

Deng:2019:KNE

Dzwiel:2016:PPA

REFERENCES

REFERENCES

[EK07] Joel M. Esposito and Vijay Kumar. A state event detection algorithm for numerically simulating hybrid systems with model singularities.

Entacher:1999:PSL

Erazo:2015:SNS

Epstein:1994:GTR

Ernst:2021:FHS

Ewald:2014:SDS

Eldabi:2011:ISI

Fishman:2006:HHT

REFERENCES

REFERENCES

400, October 1998. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

REFERENCES

REFERENCES

Gore:2015:SDS

Goyal:2012:SCB

Galpin:2018:MMP

Housseman:2011:IRI

Healey:2014:SPS

Hunter:2019:IMS
Christopher G. Healey, Kellogg S. Booth, and James T. Enns. Visualizing real-time multivariate data using preat-

[Hormann:1996:RIG]

[HD96]

Hein:1998:PDE

[HD98]

Hormann:2002:FGO

[HD02]

Hsu:2007:AAA

[HD07]

Hormann:1996:RIG

Heinem:1998:PDE

[HDM03]

[Hei95]

Henderson:2012:SCG

[HE12]

Hendelberger:1995:FSR

Heidelberger:1997:E

Helms:2015:ARA

Hybinette:2001:CPS

Henderson:2001:RSS

Huang:2016:MMT

Hahn:2019:IMD

Haas:2014:GEI

Peter J. Haas, Shane G. Henderson, and Pierre L’Ecuyer. Guest editors’ introduction to special issue on the Third INFORMS Simulation Society
REFERENCES

[Hong:2014:MCM]

[Hong:2011:MSS]

[Hic96]

[HIG04]

[Hillston:2017:RCR]

[Han:2021:IPF]
Hormann:2003:CRV

Hormann:2007:ITD

He:2010:SOU

Hernandez:2012:CNO

Hung:2008:MSS

Hellekalek:1998:WST

Hong:2007:FLC

Hu:2009:ISO

Hofert:2011:SET

Hormann:1994:NQR

Hernandez:2007:DTH

Huls:2021:SSC

Hult:2012:ISM

Hanai:2019:EDS
[HSL+19] Masatoshi Hanai, Toyotaro Suzumura, Elvis S. Liu, Geor-
REFERENCES

Peter Hellekalek and Stefan Wegenkittl. Empirical evidence concerning AES.
REFERENCES

Christopher Hannon, Jiaqi Yan, and Dong Jin. Distributed virtual time-based synchronization for simulation of cyber-physical systems. *ACM Transactions on Model-
REFERENCES

Ajay Jasra, Nikolas Kantas, and Elena Ehrlich.

Cyrille Jegourel, Jun Sun, and Jin Song Dong. Sequential

REFERENCES

Seong-Hee Kim. Comparison with a standard via fully sequential procedures. *ACM Transactions on Modeling and

REFERENCES

[Keane1994:BF]

Kristiansen:2015:MME

[KPG15] [KPG15]

Kaplan:2003:FRT

[KSW03] [KSW03]

Kang:2007:ERS

[KSW07] [KSW07]

Krantz:1996:AEA

[Kra96] [Kra96]

Kunz:2016:PEE

[KSL16] [KSL16]

Kunz:2016:PEE

[KSW07] [KSW07]

Kiatsupaibul:2011:AVH

Seksan Kiatsupaibul, Robert L. Smith, and Zelda B. Zabinsky. An analysis of a variation of hit-and-run for uniform sampling from general

Kunnumkal:2010:SM

Kesidis:1993:QSA

Kim:2015:PAK

Lopez-Ardao:2000:USS

Love:2015:OBA

REFERENCES

REFERENCES

Lu:2016:RTC

Lewandowski:2007:SBE

Li:2015:ARP

Lomo w:1991:MUI

Lu:2004:MTM

LCT17

LCT07

LDF91

LDL04

REFERENCES

Ledeczi:2003:MMI

LEcuyer:2007:RES

LEcuyer:2003:GI

Lemire:2019:FRI

Levin:2001:SIC

Leydold:1998:RTS

Lee:1999:ORM

LeCorff:2013:CPB
of the block online expectation maximization algorithm.

[Lee:2003:CDF]

[LH02]

[LHJS17]

[LK21]
REFERENCES

[Lor18] Michele Loreti. Replicated Computations Results (RCR) report for “Mesoscopic Modelling of Pedestrian Movement using Carma and its Tools”.

REFERENCES

3301 (print), 1558-1195 (electronic).

Lassila:2000:NOI

Lebeck:1997:AMN

Leeb:1997:ILC

Liu:2014:ESE

Li:2020:DAM

Li:2016:MUN

Marsaglia:2003:XR

Matloff:2005:EIF

McCLean:2011:MFC

Mellor:2011:IHS

Marzolla:2020:PDD

REFERENCES

REFERENCES

Matsumoto:1994:TGG

Matsumoto:1996:SDR

Malhotra:2017:PPS

Mascarenhas:1998:MCA

Mustafee:2021:DAS

Milenkovic:2007:ESP

Martinez-Moyano:2008:BTI

Ignacio J. Martinez-Moyano,

Matsumoto:1998:MTD

Martens:2006:FST

Melamed:2004:HSH

Mandjes:2002:LDA

Marin:2018:PFM

McClary:2010:SAC

REFERENCES

December 2010. CODEN ATMCEZ.
ISSN 1049-3301 (print), 1558-1195 (electronic).

[MWMD07] Aaron McCoy, Tomas Ward, Seamus Mcloone, and De-

Mitchell:2008:SAM

Marsaglia:1991:NCR

Marsaglia:1993:MTR

Nakayama:1994:CSF

Nakayama:2014:CIQ

Nguyen:2021:TSN

Quang Anh Pham Nguyen, Philipp Andelfinger, Wen Jun Tan, Wentong Cai, and Alois Knoll. Transitioning spiking neural network simulators
REFERENCES

81

Nadoli:1993:IMS

Ng:2006:RPU

North:2006:ECT

Nelson:1993:RMC

Nelson:2017:RCR

Nicol:1995:CSP

Nicol:1996:PES

REFERENCES

Nicol:2004:E

Nicol:2008:ESI

Niederreiter:1994:PV

Nishimura:2000:TBM

Nzouonta:2011:DIM

14:??, February 2011. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic).

REFERENCES

Nicola:2007:EIS

Olstam:2008:FSS

Osogami:2009:FPB

Owen:2003:VAS

Owen:2013:BES

Pachoulakis:2008:RVA

Page:1993:DDE

Parker:2018:RCR

Park:1996:SEL

Powell:2011:ERD

Prabuchandran:2016:ACA

Page:2000:WBS

Plagge:2018:NMP

Page:1997:CSV

Parker:2011:DPG

Pellegrini:2021:RCR

Peterson:1991:NRN

Park:2011:AQN

Phan:2014:TSS

Piho:2021:FAB

REFERENCES

Pasupathy:2015:SCR

Plesser:2010:RSI

Pasupathy:2011:SRF

Panneton:2005:XRN

Preiss:1994:ECI

Pichitlamken:2003:CPO

Perumalla:2013:RSE

Perumalla:2014:DEE

Pellegrini:2017:FGT

Petkov:2013:CPA

Park:2000:PEM

REFERENCES

Principe:2020:DSM

Puzis:2011:DSS

Percus:1995:TAM

Parker:2021:ISI

Quaglia:2002:PSP

Qu:2021:RVG

REFERENCES

REFERENCES

REFERENCES

Rodriguez:2020:GPB

Reppas:2016:ENE

Rajasekaran:1993:FAG

Ramesh:2000:CBP

REFERENCES

Roberts:2007:DSM

Sengul:2015:SSM

Sebastio:2018:HAC

Schruben:2010:SMA

Lee Schruben. Simulation

Schäfer:2013:PAO

Singh:2013:BLN

Saltzman:2012:SMN

Sottile:2015:SAT

Song:2010:CLI

Schreck:2013:AEE

REFERENCES

[Soule:1991:ECM]

[Singh:2014:SSR]

[Sharma:2010:JCC]

[Swisher:2003:DES]

[Shorey:1997:IPL]

[Schormans:2001:HTA]

[Steele:2014:FSP]
REFERENCES

Steiger:2005:ABM

Saito:2012:DCS

Salmon:2011:PRN

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [LCK11], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN [SP11] ?????

Shortle:2009:RCQ

Schwaninger:2015:SOA

Salemi:2016:MLS

Seal:2011:RPD

Sudip K. Seal and Kalyan S. Perumalla. Reversible par-

Stamos:2010:CST

Santororo:2012:TOS

Srinivasan:1998:ET

Seznec:2003:HUL

Sanchez:2005:VLF

Strunz:2008:SFS

REFERENCES

REFERENCES

Szabo:2015:FWE

Sainudiin:2013:PER

Steiniger:2016:ICV

Stiliadis:1997:RHA

Srikant:1996:SRL

Setayeshgar:2013:EIS

Sanchez:2009:TPS

REFERENCES

Uhlig:1997:TDM

Unger:2000:PSM

Vazquez-abad:2002:EBP

Viroli:2018:ERC

Vakili:1992:MPD

Vandin:2018:RCR

Vandin:2019:RRA

[Van19] Andrea Vandin. RCR report for analysis of spatiotemporal properties of stochastic systems using TSTL. *ACM Transactions on Modeling and
REFERENCES

Villen-Altamirano:2006:ERM

vanBeek:2003:DUD

Vigna:2016:EEM

Vissat:2019:AST

Vorobeychik:2010:PAS

Velho:2013:VFL

Vieira:2014:RMH

[VSS+14] Hélcio Vieira, Jr., Susan M.

Dalei Wu, Song Ci, Haiyan Luo, and Hai-Feng Guo. A theoretical framework for interaction measure and sensitivity analysis in cross-layer

Wang:2016:BAP

Wadman:2016:LDB

Wang:2016:FEN

Wang:2020:ERP

[WhN20] Songhao Wang and Szu hui Ng. Enhancing response predictions with a joint Gauss-

Wilson:2007:EIS

Wegenkittl:1999:GRC

[WM99]

[WPN98]

[WNFM04]

REFERENCES

[Wu:2009:OSI]

[Walsh:2004:SSG]

[Wu:2001:RNG]

[Wang:2003:ESQ]

[Wunderlich:2006:SSM]

REFERENCES

Wang:2015:CES

Wang:2015:CES

Xue:2017:DAU

Xue:2012:DAU

Xue:2012:DAU

Xie:2017:FBB

Xie:2016:MIU

Xu:2010:ISC

Xue:2012:DAU

Xue:2014:DRR
Jie Xu, Anand Vidyashankar, and Martin K. Nielsen. Drug resistance or re-emergence?

Jun Yuan and Szu Hui Ng. Calibration, validation, and

Zhou:2010:CMS

Zhou:2004:TSC

Zorn:1994:EMM

Zimmermann:2019:ISN

Zhang:2006:ACT

Zhou:2004:MIH

Zikos:2010:ISD
Stylianos Zikos and Helen D. Karatza. The impact of service demand variability on resource allocation strategies in

Zhao:2017:TXB

Zeigler:1991:MBM

Zhu:2020:RQS

Zeltyn:2011:SBM

Zhang:2017:MMB

Zhao:2018:RDD

Mingbi Zhao, Jinghui Zhong, and Wentong Cai. A role-dependent data-driven approach for high-density crowd