Title word cross-reference

-1/2, 1/2, 3/2, 5/2 [942]. 0 – 1 [498]. 1 [1127]. 2
[1059, 1265, 1228, 1590, 1406, 1226, 1161, 1595]. 2p – 1 [925]. 3
a = \pm 2^q \pm 2^r [995]. ab + cd [1438]. Ax = b [351]. AX^2 + BX + C = 0 [415].
AXB^T + CXD^T = E [1071, 753, 752]. \beta [1515]. C^1 [1114, 660, 683]. C^2
[683, 682, 286]. E_n(x) [437]. \ell_1 [283, 316, 315]. F [803, 802, 617, 12]. f(x)
[403]. F_2 [1565]. H_p [453, 452]. hp [1433, 1432]. h \rightarrow \infty [445]. i [105]. I_0 [150].
I_1(x)/I_0(x) [336, 332]. I_{1.5}(x)/I_{0.5}(x) [336, 332]. I_p(x) [126, 125, 207]. ith
[30]. J_n(x) [126, 125, 207]. k [789, 1515]. k < m [1515]. Ki_n(x) [438, 437]. L_1
MDM^T [876]. N [1180, 1584, 105, 30, 1455, 213]. O(\log k) [789].
O(n(1 + \log(N/n))) [841]. O(n^{1/2} \pi) [616]. \omega [1362]. \pm 2^{k_1} \pm 2^{k_2} [925]. Q
[1048, 1555, 1420]. QR [1545, 1499, 1460, 1505, 1552, 953, 952, 1412]. rc
[804, 19, 79]. r \times c [542]. s [1347]. T [1543, 1036, 14, 15, 338, 339, 228].
\(U(a, x) [1165, 1164]. \) \(UTV [1587]. \) \(v [566, 619]. \) \(V(a, x) [1165, 1164]. \) \(\varphi [1285, 1364]. \) \(W(a, x) [1348]. \) \(x_{n+1} = f(x_n) [149]. \) \(x \geq 0, \nu \geq 0 \{126, 125, 207\}. \)

Arbitrarily [481]. Arbitrary [784, 785, 93, 87, 151, 68, 747, 468, 13, 1190].
Arccosine [928]. ARCECO [429, 610]. Architecture [1572, 1581, 1458].
Architectures [1508, 1585, 1463, 558, 1462, 515, 1367, 420, 1388].
Arising [750, 749, 997]. Art [1531, 1511]. Average [266]. Avoiding [984, 1012].
AUGMENT [276]. Author [630, 971]. Authors [84]. AUTO97 [1135]. autogeneration [1227].
Automated [738, 1600, 1303, 1315]. Automatic [91, 88, 185, 712, 1029, 190, 1027, 719, 1030].
Average [266]. Avoiding [818]. Aware [1547]. Axis [1226, 1606].

BABDCR [1191]. BACOL [1127]. BACOLI [1591, 1486]. BACOLR [1237].
coordinate [1300, 1281]. coordinate-free [1281]. Core
[550, 1367, 1581, 1133, 1183, 1282, 1104, 1314]. Cornea [1480, 1438].
Correct [1475, 1207]. Corrections [487, 506, 1617]. Correctly
[1517, 724, 1299]. Correctness [70]. Corresponding [598, 329].
Corrigenda [846, 653, 628, 629, 655, 261]. Corrigendum
[821, 781, 408, 809, 877, 619, 340, 820, 644, 826, 583, 1090, 911, 1091, 1058].
Coupled [1572, 1033, 1073]. Coupling [1572]. Covariance [1494, 649].
[541, 343]. Cross-Bispectrum [343]. Cross-Validation [541]. Crosscap
[821, 781, 408, 809, 877, 619, 340, 820, 644, 826, 583, 1090, 911, 1091, 1058].
Cubature [759, 792, 911, 535, 380, 1330, 1090, 958, 1091, 1058].
Curvature [999]. Curve [18, 95, 265, 136, 1607, 173, 435, 135, 778, 172, 1596, 77, 950, 1280, 893].
Curved [100]. Curves [1584, 1544, 1459, 547, 1136].
Cut [301, 296, 1092]. CUTE [858]. CUTEr [1097]. Cuts [1594].
Cylindrical [1244, 1342].
Fortran
FORTRAN-77
Fortran-90
Forum
forward
Fourier
Fourth
Fourth-Order
Fourth-Order-Accurate
Fractional
fractions
Framework
FRB
Frechet
Fredholm
Free
free-form
Frequencies
Functional
Function
Functionalities
Functionality
Functions
Fundamental
FUNPACK
fused
Fusion
Fuzzy
FVM-based
F1
G1
G2
G6
GA
Gabor
GALAHAD
Galerkin
Gallery
game
Gamma
GCD
GEARB
GEMM
GEMM-based
GEMM-like
GENCOL
General
general-purpose
Generalization
Generalized

Kronecker [1605]. Kronrod [1571]. Krylov [1364].
KSSOLV [1283]. Kutta [634, 1320, 197, 1383, 1520, 1176, 632, 680, 964, 546, 1195, 287, 1103, 736, 843, 516, 545, 722, 121, 232, 528, 723, 943].

22

[780, 262, 345, 966, 1355]. McClellan [1502]. ME28 [359]. Measure
Membership [1518]. Memory [1051, 945, 1516, 1512, 1489, 1514, 1385, 718,
1488, 1424, 1162, 1083, 1278, 1229, 1601]. Memory-Efficient [1514].
memory-minimizing [1162]. Merge [267]. Mersenne [1565, 1384]. Mesh
[668, 1478, 1454, 1610, 1600, 1514, 1324, 1615, 278, 1442, 1228, 1013].
Mesh-Moving [668]. Meshes [1539, 1241, 1514, 485, 1059].
Message [1534, 1415]. Metadata [1269]. Method
[180, 720, 1429, 668, 1469, 656, 576, 680, 777, 490, 991, 990, 972, 531,
1613, 1545, 475, 136, 1056, 1424, 608, 607, 695, 329, 805, 135, 1480, 1371, 826,
833, 1527, 464, 513, 655, 675, 707, 1512, 1018, 399, 1438,
676, 747, 497, 536, 26, 110, 1519, 604, 605, 975, 976, 868, 1553, 385, 1435,
335, 146, 330, 152, 1472, 81, 1322, 1496, 897, 1048, 1003, 1113, 1112, 1055,
1166, 1223, 960, 1183, 1037, 1389, 1235, 1317, 1104, 1351]. Methods
[321, 915, 920, 1579, 914, 597, 903, 262, 844, 793, 964, 562, 654, 287, 968, 1052,
1067, 743, 736, 843, 203, 1569, 387, 556, 440, 744, 740, 741, 526, 76, 318, 982,
Minimal [431, 547, 26, 267, 81, 1140]. Minimization
[625, 496, 832, 104, 130, 440, 21, 44, 744, 740, 741, 526, 76, 318, 982, 961].
Minimizing [579, 922, 1162, 653]. Minimum
[301, 296, 292, 450, 541, 499, 1526, 1123, 1122, 1121]. Minimum-Cut
Minor [71]. MINRES [1416]. MINRES-QLP [1416]. Mirroring [855].
MISCFUN [894]. Mises [150, 336]. Mixed
[1239, 1371, 1337, 1016, 1157, 1312, 1062]. mixed-order [1016].
MLD2P4 [1285]. Mode [1426, 1172, 1001]. Model
[1430, 356, 1614, 714, 538, 592, 664, 1543, 440, 742, 532, 1065, 1392, 955, 1232].
Model-based [1614]. Model/Trust [440]. Model/Trust-Region [440].
Modeling [1100, 499, 1507, 1600, 1524, 1596, 549, 673, 1298]. modelling
[1208]. Models [780, 1494, 400, 1572, 530, 1034, 900, 1035]. Moderate [450].
Modern [1559]. Modification [499, 868]. Modified [376, 994, 313, 777, 414,
429, 428, 610, 717, 20, 332, 1553, 196, 1329, 255, 251, 897, 1110, 1107, 1111].
modred [1430]. Modular [1481, 526, 1240, 1500]. Module [901, 1342, 1279].
Modules [828]. moduli [1311]. Modulo [1625, 1592, 1161]. modulus [925].
molecular [1177]. Moment [1494, 1435]. Monitoring [51]. Monodromy
[1467]. Most [460]. motions [1318, 1235]. Moving [668, 824].
Moving-Grid [824]. MP [171, 257]. MPFR [1207]. MPGENR [264]. MPI
[1436]. MRRR [1188, 1296]. MSS [1428]. MTIEU1 [796]. MTIEU2 [796].
Multi [1014, 1261, 1136]. Multi-Adaptive [1261]. multi-dimensional
Multi-level [1014]. Multicolor [602]. Multicommodity [845].
Multicomplex [1358]. Multicomputer [944]. Multicore
[1508, 1585, 1599, 1561, 1497, 1505, 1388]. Multicore-Enabled [1497].
Multidimensional [728, 606]. Multidisciplinary [1293]. Multifacility
[301, 296]. Multifocal
[1358, 1508, 1585, 1599, 1561, 1581, 1497, 1505, 1388]. Multifixed
[1497]. Multifocal
[1508, 1585, 656, 972, 422, 550, 578, 657, 1482, 1230, 1113, 1112, 1162, 1350].
Multigrid [186]. Multiinput [866]. Multilevel [1325, 1536, 1181].
multilinear [1158]. multimethod [1316]. Multimodal
[579, 653]. Multinomials [509, 508]. Multiphysics
Multiple-length [33]. Multiple-Phase [1432, 1317, 1351]. Multiple-precision
[171, 170, 257, 449, 1340, 715, 963, 1341, 1207]. Multithreaded
[1367, 1350]. Multivariate
NAG [730, 245, 814]. Narrow [515]. National [431]. Natural
[389, 102, 417]. Nature [74]. Naval [1619]. Navier [1224]. Ncpol2sdpa
near-optimal [1284]. Nearest [223]. Need [474]. Negative [1521, 1386].
Neighbors [223]. NEOS [1000]. Nested [323, 919]. Network
[401, 262, 41, 1369, 845, 758, 488, 152, 673, 1155]. network-based [1155].
Networks [586, 637, 5, 155]. Neumann [194, 2]. Neutral [1324]. Newton
[1025, 72, 743, 675, 648, 744, 740, 741, 1592, 982]. Newton-Coates [72].
Newton/Bisection [675]. NFFT [1292]. Niederreiter [842]. NIST [1522].
Nonadaptive [1330]. Noncommuting [1452]. nondifferentiable [1041].
Nonempty [904]. Nonequispaced [1292]. Nonic [683, 682]. Noninteger

[709, 970, 895, 896, 1155, 1486, 1012, 1127, 1237]. PDETWO [326].
[1416]. QMR [883]. QMRPACK [883]. QR
[364, 398, 930, 1350, 1256, 1133, 797, 819, 691, 1418]. QR-Like [797]. QRUP
[364, 398]. QSHEP2D [604]. QSHEP3D [605]. QUADLOG [1214].
QUADPACK [711]. Quadratic
[302, 297, 817, 1483, 742, 1527, 448, 346, 349, 569, 702, 921, 157, 604, 605,
636, 436, 1080, 1390, 398, 845, 885]. Quadratic-Tensor [742].

Quadrature
[712, 1532, 72, 198, 912, 340, 322, 813, 987, 1470, 229, 17, 1321, 1571, 213, 729,
74, 46, 640, 641, 1432, 70, 451, 1213, 1214, 1137, 1215, 962, 1303].

Quadratures [1389, 1489, 17, 1321, 1571, 213, 729, 74, 46, 640, 641, 1432, 70, 451, 1213, 1214, 1137, 1215, 962, 1303].

Quadratic [1594, 1442]. Quantile [815]. Quantiles [15, 339, 228].

Quindiagonal [127]. Quintic [1459, 389, 102, 417, 484, 683]. Quotient [292]. QZ [206, 396, 486, 124].

R [1010]. r2d2ri [1058]. Radiative [1435]. Radix [1480, 468].
Radix-Independent [1480]. Random
[501, 73, 11, 293, 1623, 531, 1580, 587, 805, 147, 464, 704, 1436, 1619, 769, 768,
Random-Access [614]. random-number [925]. Randomization
[1380, 1489, 1488]. Randomized [1523, 1587]. Randomly [448]. randUTV
[1587]. Range [772, 1470, 328, 324, 1190, 1038, 1039].
Range-independent [1038, 1039]. Ranges [85]. Rank
[735, 1585, 1256, 1476, 1587, 1143, 953, 952, 1350, 1168, 1407]. Rank-1 [1476].
Rank-Deficient [735, 1168]. Rank-Revealing [1256, 1587, 953, 952, 1350].
[147, 1004, 4, 94]. Ratio-of-Uniforms [1004]. Rational
[735, 1334, 1532, 149, 987, 119, 497, 536, 1258]. Ratios [582, 763, 561, 332].
Ray [684]. Rayleigh [719]. RCR [1463, 1489, 1446]. Real
[860, 859, 1544, 144, 699, 553, 1431, 362, 381, 1257, 31, 41, 626, 644, 49, 83,
217, 762, 875, 101, 335, 331, 1606, 1141, 1164, 1165]. Realistic [356].
RealPaver [1167]. Rearrangement [143]. Reasonably [211]. Recipes
[969]. recommendation [1012]. recommending [1011]. Reconstruction
[1548, 1273]. Rectangles [638]. Rectangular [734, 1313, 525, 898].
rectangular-grid-data [898]. Rectilinear [301, 296]. Recurrence
[487, 167]. recurrences [1161]. recursion [950, 1136]. Recursive
[266, 981, 1073, 1074, 706, 1551, 1042, 1159]. Reduced
[401, 1543, 168, 1003, 1143]. reduced-rank [1143]. Reducible [1584].
reduction/transformation [1106]. Reference [1559, 1065]. References
Refinements [278]. Reformulation [1566]. Region
[1428, 440, 186, 1197, 1233]. Regions [233, 337, 404, 957]. Regression
[598, 457, 659, 780, 1221]. Regular [1363, 998, 884]. Regularity [912].
RelAPACK [1551]. Related
[392, 391, 699, 41, 1341, 1213, 1214, 1247, 1401, 1050]. Relations [487, 167].
Relative [560, 405, 1396]. Relatively [1557]. Relaxation [1616, 1369, 1259].
472, 94, 82, 505, 891, 353, 909, 965, 979, 980, 196, 672, 318, 154, 58, 174, 910.
1453, 155, 978, 372, 129, 81, 982, 1487]. Remark
[1606, 116, 228, 259, 1107, 1066]. Remarks [616]. Remedy [1606].
Renovating [1057]. Reordering [378, 602, 1187]. Repeated
[1463, 1489, 1446]. Reporting [224]. Repository [855]. Representation
[984, 52, 729, 1518]. representations [1303]. Representing [1132]. Require
Research [853]. Reservoir [841, 491, 1175]. Residual [652, 1045]. Residue
[1322]. Restructuring [1418]. Resulting [244, 602]. Results
[1463, 798, 1444, 1489, 1475, 1445, 1446]. Retarded [355]. Reveal [52].
Revealing [1256, 1587, 953, 952, 1350]. Reverse [1426, 1001].
Reverse-Mode [1426]. Revised [152, 1048]. Revisited
[33, 1262, 1027, 1097, 1170]. Revolve [1001]. Reweighted [291]. Rice
Right-Hand [680]. Rights [84]. rigid [1318]. Rigorous [1550]. Rigorously
[1201]. robot-packable [1201]. Robust
[1618, 784, 1195, 1502, 1262, 1509, 1424, 1312, 785]. Robustness
rootfinder [892]. Roots [110, 622, 1570, 1116]. ROPTLIB [1578].
Rosenbrock [104, 21, 559, 373]. Rotations [59, 27, 1063]. Rounded
[1517, 1455, 510, 724, 1297, 1299]. Rounding [806, 1207, 1397]. Roundoff
[1568, 1575, 187, 242, 1529, 1576, 45, 203, 202, 341]. Roundoff-Error-Free
[1575]. Routine [598, 860, 728, 553, 1330, 1093]. Routines
375, 534, 74, 1214, 1318, 1141, 962, 1068, 1075]. Row [429, 428, 610, 539].
[197, 1383, 634, 1520, 1176, 632, 680, 964, 546, 1195, 287, 1103, 1320, 736, 843,
Runtime [1508, 1367].

S [1623], S13 [299], S14 [253, 150, 336, 151, 94, 82, 196, 228], S15 [153, 116], S17 [6, 58], S18 [126, 207], S20 [93], S21 [352, 272, 174], S22 [83], SAFE [1580, 1546, 1096], Salesman [873, 872], Sample [266, 789, 138, 1513], Sampled [1268], Samples [531, 29, 82], Sampling [416, 153, 116], Sampling-Vectorized [1564]. satisfaction [1167], SBA [1275], SBP [1284], SBR [1030], Scalability [1585, 1049, 1148], Scalable [1502, 1232, 1149, 1083, 1023, 1032, 1181], ScaLAPACK [1296], Scalar [427, 426, 1492, 1078, 681], Scale [873, 872, 1590, 495, 1428, 1474, 569, 744, 740, 741, 758, 488, 1286, 1205, 1096, 1251, 1289, 1349, 1413, 1306, 940], Scaling [1546, 1394, 670, 833, 1314, 1124], Scanning [75], SCASY [1328], Scattered [604, 605, 603, 934, 977, 975, 976, 1329, 899, 1002, 879, 1114], scattered-data [899, 1002], schedules [1162], Scheduling [1434, 152, 1284], Schema [358], Scheme [539, 646], Schemes [516, 545, 1558], Schmidt [255, 251], School [1619], Schrödinger [1156], Schur [897, 998, 784, 785, 1285, 1187, 1378], Schur-complement [897], Schwarz [888, 1142, 957], science [1131], Scientific [519, 611, 905, 1326, 1401, 1011], Scope [810, 847, 848, 111, 34], Scorer [1075], Scrambled [1491, 1082], SD [311], SD-Formulas [311], Search [830, 1583, 423, 1185], Second [91, 88, 1243, 708, 144, 856, 1320, 523, 571, 590, 1435], Second-Degree [571, 590], Second-Order [1320, 523], Secondary [613], Secure [1580], SeDuMi [1085], Seismological [1600], Select [776, 105, 30], Selected [783, 877, 1516, 1335, 875], Selection [736, 843, 738, 451, 1310], Self [827, 983], Self-adapting [983], Self-Adjoint [827], SelInv [1335], Semantic [477], Semi [1489, 1488, 1423, 1105], Semi-infinite [1105], Semi-Separeable [1489, 1488], Semi-Stencil [1423], Semidefinite [1369, 1527, 1529, 1576, 1259, 1452, 1378, 1238], Semidiscrete [284, 1022], Semiseparable [1482], SENAC [730], Sense [509], Sensitivity [165, 596, 595], Sensor [1369], sep [1285], sep-inverse [1285], Separable [1483, 689, 1489, 1488, 241, 240], Separably [421], separation [884], Separators [647], Sequence [599, 414, 560, 1330, 1079], Sequences [842, 427, 426, 926, 557, 1604, 1082], Sequential [1508, 501, 1175, 685, 739, 636, 565, 1309], Serial [1453, 1290], Series [1377, 802, 1528, 288, 700, 374, 991, 990, 427, 426, 363, 64, 67, 353, 976], Service [35, 274], Set [364, 398, 344, 874, 592, 628, 591, 664, 663, 134, 1257, 703, 966, 354, 1061, 1053, 1141, 1169], Sets [361, 164, 162, 280, 1583, 86, 603, 1081], Several [107, 868], SFCGen [1136], SFSDP [1369], Sham [1283], Shape [924, 923, 346, 349, 907], Shape-Preserving [924, 923, 346, 349], Shaped [1496], ShearLab [1466], Shearlet [1466], Shearlets [1466], Shepard [994, 604, 605, 975, 976, 1329], Shift [1203], Shift-and-invert [1203], shifted [1354], Shortest [305, 418], Should [86], shuffling [1621], sic [1317], SICEDR [393], side [1602], Sided
transformations [1107, 1170, 1346, 1203]. Transforming [558].
Transforms [392, 391, 1429, 793, 1466, 1493, 1292]. Translation
[176, 434]. Transposition [22, 128, 189, 258]. Transpositions [1549].
Transversal [345, 1355]. Travelling [873, 872]. Traversals [1597].
Tree [696, 160, 1613, 433, 432, 450, 26, 267, 1595, 81]. Trees [539, 1176].
Triangle [535, 380, 442, 443]. Triangles [759, 1371, 683, 682, 958].
Triangular [99, 1598, 190, 1271, 184, 1074, 1498, 1514, 40, 688, 485, 1333, 1554, 1073, 1087].
Triangularization [179]. Triangulation [1450, 481, 933, 878].
Triangulations [686]. TRICP [485]. Tridiagonal
[411, 1613, 765, 1056, 1025, 62, 1492, 61, 330, 1418, 1219, 1252].
Tridiagonalization [1333, 1120]. TRIEX [443]. Trigonometric
[567, 818, 762]. Trilinos [1151]. Trimmed [954]. TRIPACK [878].
Trivariate [605]. Truncated [744, 740, 741, 982]. truncation [1176]. Trust
[1428, 1197, 1233]. Trust-Region [1428, 440, 1233]. TSHEP2D [976].
TSPACK [778, 1280]. TTC [1549]. Tucker [1422]. Turbulent [1495].
Tutte [1319]. Twister [1384]. Two
[1539, 1051, 236, 63, 1387, 911, 553, 827, 650, 562, 9, 1294, 1103, 1320, 189, 388, 263, 115, 1074, 138, 326, 325, 1615, 1291, 483, 482, 796, 476, 1542, 1213, 1621, 1214, 1068, 1075, 1414, 878, 1058, 654]. Two-
[1539]. Two-Dimensional
[911, 827, 326, 325, 1615, 1291, 483, 482, 476, 1542, 878, 1058]. Two-Sided
[1074]. Two-Stage [1320]. Two-step [1103]. Type
[1520, 72, 813, 1328, 1327, 254, 901, 454, 962, 1073, 1274].
UIMP [383]. UMFPACK [1113, 1295]. Uncertain [1618]. Uncertainty
[1589]. uncommon [894]. Unconstrained
[858, 915, 832, 844, 495, 130, 440, 1474, 327, 320, 767, 44, 526, 76, 318, 1097, 961].
Underdetermined [1526]. Unified [1323, 1590, 1409]. Uniform [437, 147].
Uniforms [1004]. Unifrontal [972]. Unifrontal/Multifrontal [972]. union
[1345]. Unitary [757, 821, 902]. Units [1506, 1496]. Univariate
Unordered [542]. Unstructured [1539, 1241, 1478, 1600, 1059].
Unsymmetric
[972, 359, 783, 877, 1067, 875, 1230, 1113, 1112, 889, 882, 1108, 1083, 1274].
unsymmetric-pattern [1230, 1113, 1112]. up-and-downdating [1346].
UPC [1542]. Update [1266, 1271]. Update/Downdate [1266, 1271].
Updated [982, 1061]. Updates [648]. Updating
[364, 398, 1255, 691, 1076, 1133]. Upper [53, 381, 1576, 101]. Usage
[51, 397, 408, 581, 238, 237, 609, 744, 740]. Use
Using [772, 624, 392, 391, 1380, 99, 508, 1205, 994, 227, 915, 920, 1481, 1376, 1239, 265, 374, 1465, 1562, 1599, 783, 877, 904, 136, 1607, 566, 619, 340, 322, 440, 292, 1321, 968, 613, 815, 825, 928, 1292, 147, 1358, 1330, 539, 1529, 1576,
References

REFERENCES

1965. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See also [141].

CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See also [154, 195, 306].

REFERENCES

REFERENCES

REFERENCES

1976. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Duta:1976:RVS

White:1976:RMS

Pomeranz:1976:REC

Morris:1976:RDF

Rice:1976:TPS

Ford:1976:DSN

Paul:1976:SEF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gonzalez:1977:EAK

Kaufman:1977:STQ

Amos:1977:CSI

D. E. Amos, S. L. Daniel, and M. K. Weston. CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$. *ACM Transactions on Mathematical Software*, 3(1):76–92, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Amos:1977:ACS

D. E. Amos, S. L. Daniel, and M. K. Weston. Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]. *ACM Transactions on Mathematical Software*, 3(1):93–95, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See erratum [207].

Benson:1977:ANA

REFERENCES

 REFERENCES

REFERENCES

REFERENCES

[154] Paolo Sipala. Remark on “Algorithm 408: a sparse matrix package (Part I) [F4]”. *ACM Transactions on Mathematical Software*, 3(3):303,
September 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [16].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Schoene:1978:RMI]

[Baker:1978:SAC]

[Fairweather:1978:IRQ]

[Shampine:1978:SPA]

[Sherman:1978:ASG]

[Tendler:1978:SSI]

[Miller:1978:SRA]

[207] Donald E. Amos. Erratum: “Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0 [S18]”$. *ACM Transactions on Mathematical Software*, 4(4):411, December 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [126].

REFERENCES

generalized symmetric matrices by simultaneous iteration [F2]. ACM
Transactions on Mathematical Software, 5(1):118–125, March 1979. CO-
DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[218] Fred T. Krogh. ACM algorithms policy. ACM Transactions on Math-
ematical Software, 5(2):129–131, June 1979. CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295 (electronic).

[219] Linus Schrage. A more portable Fortran random number generator. ACM
DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[220] Alan George and Joseph W. H. Liu. The design of a user interface for
a sparse matrix package. ACM Transactions on Mathematical Software,
5(2):139–162, June 1979. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

[221] W. H. Payne and F. M. Ives. Combination generators. ACM Trans-
ISSN 0098-3500 (print), 1557-7295 (electronic).

[222] Carl de Boor. Efficient computer manipulation of tensor products. ACM
DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See corrigenda [261].

[223] John Gerald Cleary. Analysis of an algorithm for finding nearest neigh-
bors in Euclidean space. ACM Transactions on Mathematical Software,
5(2):183–192, June 1979. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

[224] Harlan Crowder, Ron S. Dembo, and John M. Mulvey. On reporting
computational experiments with mathematical software. ACM Trans-
REFERENCES

Hiroshi Akima. Remark on “Algorithm 526: Bivariate interpolation and smooth surface fitting for irregularly distributed data points [E1]”. ACM

Shampine:1979:SRR

Ehrlich:1979:SBE

Gill:1979:DSF

George:1979:IPN

Bennett:1979:SPE

Lawson:1979:BLA

Lawson:1979:ABL

[238] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Algorithm 539: Basic Linear Algebra Subprograms for Fortran usage [F1]. ACM

Madsen:1979:APG

Swartztrauber:1979:AEF

Steuerwalt:1979:CEF

Larson:1979:ECE

Gear:1979:EN

Enright:1979:APS

REFERENCES

Clark:1980:REV

Power:1980:ISU

deBoor:1980:SPS

deBoor:1980:AS

Duris:1980:AFR

Carpaneto:1980:ASA

Eckhardt:1980:AWE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bartels:1980:LCD

Bartels:1980:APL

Hoffman:1980:ATP

Shanno:1980:RMU

Hiebert:1981:EMS

More:1981:TUO

Akl:1981:CCG

REFERENCES

[328] D. W. Lozier and J. M. Smith. Algorithm 567: Extended-range arithmetic and normalized Legendre polynomials [A1], [C1]. ACM Trans-

[332] Geoffrey W. Hill. Evaluation and inversion of the ratios of modified Bessel functions, $I_1(x)/I_0(x)$ and $I_{1.5}(x)/I_{0.5}(x)$. ACM Transactions on Mathematical Software, 7(2):199–208, June 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

[336] Geoffrey W. Hill. Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions: \(I_1(x)/I_0(x), I_{1.5}(x)/I_{0.5}(x) \) and their inverses \[S14\]. ACM Transactions on Mathematical Software, 7(2):233–238, June 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Lii:1981:CBC

Dew:1981:SLR

Duff:1981:AOM

McAllister:1981:ACS

Dennis:1981:ANL

Dennis:1981:ANE

McAllister:1981:ASP

REFERENCES

Duff:1981:APZ

Barrodale:1981:AFP

Carlson:1981:AAI

Razaz:1981:RAF

Shampine:1981:ETS

Neves:1981:CIE

Brown:1981:SRM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Schreiber:1982:NIS

Sasaki:1982:EGE

Brezinski:1982:ASG

Kincaid:1982:AIF

Hanson:1982:ATA

Hanson:1982:RPQ

Wolfe:1982:CCG

REFERENCES

REFERENCES

DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [238, 408, 581, 609].

REFERENCES

REFERENCES

Winkler:1985:AA

Atkinson:1985:AIE

Dembo:1985:TPG

Buckley:1985:ABE

Norton:1985:AFB

Martello:1985:APM

[505] Albrect Preusser. Remark on “Algorithm 526: Bivariate interpolation and smooth surface fitting for irregularly distributed data points
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Houstis:1985:CSS

Houstis:1985:AGC

Houstis:1985:AICH

SchnABEL:1985:MSA

Er:1985:RG

Shampine:1986:FFV

REFERENCES

Mehta:1986:AFF

McKeown:1986:IUU

Krogh:1986:AAP

Hall:1986:ESR

Enright:1986:IRK

Kallay:1986:PCM

REFERENCES

REFERENCES

118

Hake:1986:RCC

Stewart:1986:CNC

Milovanovic:1986:CEI

Nazareth:1986:IAO

Cowell:1986:TFD

Ostermann:1986:SCP

REFERENCES

REFERENCES

REFERENCES

Corana:1987:MMF

Watson:1987:AHS

Hanson:1987:ATA

DiDonato:1987:AFS

Johnson:1987:CES

REFERENCES

Morgan:1987:CBS

Dongarra:1988:ESF

Dongarra:1988:AES

Sewell:1988:PCS

Sewell:1988:ASP

Leis:1988:SSS

[595] Jorge R. Leis and Mark A. Kramer. The simultaneous solution and sensitivity analysis of systems described by ordinary differential equa-

random variables”. *ACM Transactions on Mathematical Software*, 14(1):
111, March 1988. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-
7295 (electronic). See [572].

[602] Rami G. Melhem and K. V. S. Ramarao. Multicolor reordering of sparse
matrices resulting from irregular grids. *ACM Transactions on Math-
0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/

[603] Robert J. Renka. Multivariate interpolation of large sets of scattered
1988. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-
tronic). URL http://www.acm.org/pubs/citations/journals/toms/
1988-14-2/p139-renka/.

for bivariate interpolation of scattered data. *ACM Transactions on Math-
ematical Software*, 14(2):149–150, June 1988. CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295 (electronic).

[605] Robert J. Renka. Algorithm 661: QSHEP3D; quadratic Shepard method
for trivariate interpolation of scattered data. *ACM Transactions on Math-
ematical Software*, 14(2):151–152, June 1988. CODEN ACMSCU. ISSN

multidimensional data clustering. *ACM Transactions on Mathematical
Software*, 14(2):153–162, June 1988. CODEN ACMSCU. ISSN 0098-
citations/journals/toms/1988-14-2/p153-wan/.

an implementation of Weeks’ method for the inverse Laplace trans-

REFERENCES

Grimes:1988:SLD

Schrauf:1988:AGA

Minh:1988:GGV

Duff:1988:RIN

Cormack:1988:RTP

Krogh:1988:AAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[653] A. Corana, M. Marchesi, C. Martini, and S. Ridella. Corrigenda: “Minimizing multimodal functions of continuous variables with the `simulated

REFERENCES

Montefusco:1989:ASI

Corliss:1989:IIV

Kachitvichyanukul:1989:ABS

Dongarra:1990:SLB

Dongarra:1990:ASL

REFERENCES

REFERENCES

[677] Donald E. Amos. Computation of exponential integrals of a complex argument. *ACM Transactions on Mathematical Software*, 16(2):169–177,
REFERENCES

[683] Albrecht Preusser. Algorithm 684: C^1- and C^2-interpolation on triangles with quintic and nonic bivariate polynomials. *ACM Trans-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[718] Edward Rothberg and Anoop Gupta. Efficient sparse matrix factorization on high-performance workstations—exploiting the memory hi-

REFERENCES

Higham:1991:RBF

Krogh:1991:AAP

Berntsen:1991:AAA

Berntsen:1991:ADA

Krogh:1991:ANR

[741] Tamar Schlick and Aaron Fogelson. TNPACK—a truncated Newton minimization package for large-scale problems: II. implementation exam-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Leva:1992:ANR

Boisvert:1992:PVS

Drezner:1992:CMN

Aberth:1992:PCU

Cody:1993:ACP
REFERENCES

REFERENCES

REFERENCES

Berntsen:1993:AAA

Duffy:1993:NIL

Pruess:1993:MSS

Shirts:1993:CES

Shirts:1993:AMM

Haag:1993:QLA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kim:1994:PNA

Brown:1994:CAS

Taswell:1994:AWT

Dunkl:1994:CHI

Dunkl:1994:AHI

Fruchtl:1994:NAE

REFERENCES

REFERENCES

[856] I. C. Demetriou. Algorithm 742: L2CXFT: A Fortran subroutine for least squares data fitting with nonnegative second divided differ-
REFERENCES

REFERENCES

Rizzardi:1995:MTM

Sherlock:1995:AFD

Bailey:1995:FBM

Amos:1995:RAP

Carpaneto:1995:ESL

REFERENCES

[890] I. S. Duff and J. K. Reid. Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems. ACM Transactions
REFERENCES

Andersen:1996:MSM

Akima:1996:ARS

Akima:1996:ASS

Brown:1996:ALL

Kearfott:1996:IFM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wu:1997:MCR

Kocis:1997:CIL

Goano:1997:RA7

Hull:1997:ICA

Carr:1997:CBD

Carrig:1997:EHQ

REFERENCES

REFERENCES

REFERENCES

March 1998. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

193

Wieder:1999:ANH

Verschelde:1999:APG

DAmore:1999:IFS

DAmore:1999:AFS

Dayde:1999:RBB

Ribeiro:1999:AFS

REFERENCES

REFERENCES

Ferris:2000:NCS

Griewank:2000:ARI

DeTisi:2000:RAS

Benner:2000:AFS

Boisvert:2000:ESI

Anonymous:2000:JRR

Houstis:2000:PIK

Ramakrishnan:2000:MVR

Enright:2000:AAS

Grosz:2000:HVA

Ward:2000:ASM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Smith:2001:AFS

Amestoy:2001:ACT

Gunnels:2001:FFL

Festa:2001:AFS

Engelborghs:2002:NBA

Gockenbach:2002:EAI

Gil:2002:AAB

Ferrando:2002:AFI

Hanson:2002:AFI

Hopkins:2002:RAF

Reid:2002:IHE

Jonsson:2002:RBAa

Jonsson:2002:RBAb

Gil:2002:AGH

Edlund:2002:SPS

Soderlind:2003:DFA

Nievergelt:2003:SFM

Joe:2003:RAI

Gertz:2003:OOS

REFERENCES

Martins:2003:CSD

Eble:2003:ASP

Cools:2003:ACP

Genz:2003:ANC

Shellman:2003:ADC

Fahey:2003:APE

Baglama:2003:AIM

REFERENCES

468, December 2003. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

September 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

521–532, December 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Bader:2006:AMT

Enright:2007:RRD

Neher:2007:CSF

Gould:2007:FFF

Berland:2007:EMP

Morandini:2007:UDS

Demetriou:2007:ALF

REFERENCES

REFERENCES

Beebe:2007:AQP

Espelid:2007:AGD

LEcuyer:2007:TCL

Pesch:2007:HSF

Bangerth:2007:DIG

Bai:2007:PSB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dominguez:2009:ASM

Jansson:2009:ADS

Gordon:2009:CRR

Dumas:2009:DLA

Linhart:2009:ACL

Caliari:2009:APL
REFERENCES

REFERENCES

REFERENCES

[1285] Souji Koikari. Algorithm 894: On a block Schur–Parlett algorithm for φ-functions based on the sep-inverse estimate. *ACM Transactions on
REFERENCES

Celledoni:2010:AFF

Haggard:2010:CTP

Gonzalez-Pinto:2010:CBT

Gonnet:2010:IRA

Yamazaki:2010:APS

Anand:2010:UTE

Ollivier-Gooch:2010:IDS

[1324] Carl Ollivier-Gooch, Lori Diachin, Mark S. Shephard, Timothy Tautges, Jason Kraftcheck, Vitus Leung, Xiaojuan Luo, and Mark Miller. An interoperable, data-structure-neutral component for mesh query and

[1330] Tiancheng Li and Ian Robinson. Algorithm 906: elrint3d — a three-dimensional nonadaptive automatic cubature routine using a sequence of

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Zaghloul:2011:ACF

Lantoine:2012:UMV

Gustavson:2012:PCE

DeWitte:2012:IIC

More:2012:EDN

Lawrence:2012:ACD

Sadkane:2012:ASM

REFERENCES

[Niesen:2012:AKS]

[Filippone:2012:OOT]

[George:2012:EAP]

[Quintana-Orti:2012:RSP]

[Birkisson:2012:AFD]

[Kim:2012:ASS]

REFERENCES

[1376] Benjamin A. Burton and Melih Ozlen. Computing the crosscap number of a knot using integer programming and normal surfaces. *ACM
REFERENCES

Abad:2012:ATT

Yamashita:2012:APS

Betcke:2013:NCN

Baboulin:2013:ALS

Gustavson:2013:LCF

Knepley:2013:FEI

Boisvert:2013:RKB

Saito:2013:VMT

Poulson:2013:ENF

Thompson:2013:AIG

Cash:2013:AMC

Ltaief:2013:HPB

Patterson:2013:EOM

Hammarling:2013:ACS

Bosner:2013:EGH

Hascoet:2013:TAD

Rios:2013:AGP

Castaldo:2013:SLP

Khan:2013:EEC

REFERENCES

July 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See remark [1534].

REFERENCES

[1441] Carlo Janna, Massimiliano Ferronato, Flavio Sartoreto, and Giuseppe Gambolati. FSAIPACK: a software package for high-performance fac-
REFERENCES

REFERENCES

[1454] Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. CGALmesh: a generic framework for Delaunay mesh genera-
REFERENCES

REFERENCES

[1467] Benjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterized complexity of discrete Morse theory. *ACM Trans-
Giles:2016:AAI

Aruliah:2016:APP

Gautschi:2016:AER

Novoselsky:2016:RAD

Weinstein:2016:STO

VanZee:2016:BFE

REFERENCES

REFERENCES

[1492] Endre László, Mike Giles, and Jeremy Appleyard. Manycore algorithms for batch scalar and block tridiagonal solvers. ACM Transactions on

Martin Köhler and Jens Saak. On BLAS level-3 implementations of common solvers for (quasi-) triangular generalized Lyapunov equations.

REFERENCES

Tozoni:2016:API

Malhotra:2016:ADM

Vallivaara:2016:SAS

Meister:2016:PME

Rump:2017:IPK

REFERENCES

REFERENCES

[1527] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. BiqCrunch: a semidefinite branch-and-bound method for solving binary quadratic...

Aurentz:2017:CCS

Magron:2017:CRE

Huckelheim:2017:ADC

Gould:2017:SAP

Deckers:2017:AER

Novoselsky:2017:AOM

[1540] Margherita Porcelli and Philippe L. Toint. BFO, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1604] Jan Winkelmann, Paul Springer, and Edoardo Di Napoli. ChASE: Chebyshev accelerated subspace iteration eigensolver for sequences of

REFERENCES

Kronbichler:2019:FMF

Johansson:2019:CHF

Dieguez:2019:TPR

Cartis:2019:IFR

Pardue:2019:AEP

Ito:2019:ABS

REFERENCES

reduce the lattice structure of linear congruential generators, but the second improves both dramatically.

