Title word cross-reference

-1/2, 1/2, 3/2, 5/2 [942], 0 - 1 [498], 1 [1127], 2 [1059, 1265, 1228, 1406, 1226, 1161], 2\nu - 1 [925], 3 [792, 1406, 1403, 1466], 64 [1565], A - B [784], A - \lambda B [785], a = \pm 2^i \pm 2^r [995], ab + cd [1438], Ax = b [351], AX^2 + BX + C = 0 [415], AXB^T + CXD^T = E [1071, 753, 752], \beta [1515], C^3 [1114, 660, 683], C^2 [683, 682, 286], E_n(x) [437], \ell_1 [283, 316, 315], F [803, 802, 617, 12], f(x) [403], F_2 [1565], H_p [453, 452], hp [1433, 1432], h \to \infty [445], i [105], I_0 [150], I_1(x)/I_0(x) [336, 332], I_1,5(x)/I_0,5(x) [336, 332], J_m(x) [126, 125, 207], ith [30], J_{\nu}(x) [126, 125, 207], k [789, 1515], k < m [1515], K_{\nu}(x) [438, 437], L_1 [282, 281, 317, 314, 908], l_2 [1455], L_\infty [512], LDL^T [1535], m [1515], MDM^T [876], N [1180, 105, 30, 1455, 213], O(\log_2 k) [789], O(n(1 + \log(N/n))) [841], O(n^{1/2}\tau) [616], \omega [1362], 2^k_1 \pm 2^k_2 [925], Q [1048, 1555, 1420], QR [1545, 1499, 1460, 1505, 1552, 953, 952, 1412], \rc [804, 19, 79], r \times c [542], s [1347], T [1543, 1036, 14, 15, 338, 339, 228], U(a, x) [1165, 1164], v [566, 619], V(a, x) [1165, 1164], \varphi [1285, 1364].
\(W(a, x) [1348] \). \(x_{n+1} = f(x_n) [149] \). \(x \geq 0, \nu \geq 0 \) [126, 125, 207].

3D [896]. 3m [1541].

Algorithm

Algorithmics

Algorithms

algorithms

algorithms-by-blocks

Algorithms-by-Tiles

Alias

Allocation

Allowing

Almost

Alternate

Alternative

AMD

American

AMG

AMGKQ

AMLS

AMPL

Analogue

Analysis

Analytic

Analytical

ANALYZE

Anasazi

Anatomy

Annealing

Application

Applications

Applied

Approximants

Approximate

Approximating

Approximation

Approximations

Arbitrarily

Arbitrary

Arccosine

ARCECO

Architecture

Architectures

Arclength
[1469]. Arcsine [928]. Area [638]. ARfit [1035]. Argument
[551, 678, 677, 694, 871, 51, 1521, 31, 1244, 1342, 83, 1111]. Arguments
[8, 141, 761, 1386, 1110]. Argyris [1260]. Arising [750, 749, 997].
Arithmetic [772, 171, 170, 257, 276, 799, 534, 1550, 449, 328, 1515, 324, 963, 642, 692, 751, 900, 1299, 1078, 1050, 1038, 1039, 1500].
Arithmetics [225, 1511]. Arising [1260]. Arrows
[135, 634, 135, 1244, 1342, 83, 1111].
Arrows [8, 141, 761, 1386, 1110]. Argyris [1260]. Arising [750, 749, 997].
Arithmetic [772, 171, 170, 257, 276, 799, 534, 1550, 449, 328, 1515, 324, 963, 642, 692, 751, 900, 1299, 1078, 1050, 1038, 1039, 1500].
Arithmetics [225, 1511]. Arising [1260]. Arrows
[135, 634, 135, 1244, 1342, 83, 1111].
Arrows [8, 141, 761, 1386, 1110]. Argyris [1260]. Arising [750, 749, 997].
Arithmetic [772, 171, 170, 257, 276, 799, 534, 1550, 449, 328, 1515, 324, 963, 642, 692, 751, 900, 1299, 1078, 1050, 1038, 1039, 1500].
Arithmetics [225, 1511]. Arising [1260]. Arrows
[135, 634, 135, 1244, 1342, 83, 1111].
Arrows [8, 141, 761, 1386, 1110]. Argyris [1260]. Arising [750, 749, 997].
Arithmetic [772, 171, 170, 257, 276, 799, 534, 1550, 449, 328, 1515, 324, 963, 642, 692, 751, 900, 1299, 1078, 1050, 1038, 1039, 1500].
Arithmetics [225, 1511]. Arising [1260]. Arrows
[135, 634, 135, 1244, 1342, 83, 1111].
Bisection [343]. Bit [724, 1239, 1565]. Bivariate [23, 181, 180, 231, 230, 1265, 505, 683, 682, 604, 975, 976, 1008].

Block [1120, 632, 823, 756, 429, 428, 610, 184, 179, 1056, 329, 1187, 1219, 1492, 750, 749, 688, 851, 456, 1526, 268, 1219, 949, 1202, 1285].

Blended [158, 548]. Block-and-Bound [1527, 358]. Breakthroughs [41]. Brent [276].

CAMP [549]. can [118]. Cancellation [743]. Canonical [493].

Chebyshev [1528, 709, 1579, 1532, 367, 1402, 67, 353]. Check [1439].
Chi-Squared [10, 504, 116]. Choice [410, 367].
Cholesky [1042, 1140, 1266, 1160, 1271, 717, 1202, 1284, 1313, 1381, 850, 849, 539, 657, 1282, 1104, 1424].
Class [1056, 279, 192, 191, 1152, 1211]. Classes [1477, 986, 1194, 1213, 1214, 1102].
Classfiles [1504]. Classical [1580]. Clenshaw [229, 17].
Clustering [571, 590, 26, 606, 81]. Coates [172]. Cochran [1555].
Code [1040, 832, 745, 1387, 864, 209, 969, 1320, 937, 1530, 754, 1301, 1132, 896, 882, 997, 1109, 1118, 961, 1303, 1398, 1189, 1232, 1007, 1221].
Coded [131]. Codes [626, 644, 199, 232, 1453, 247, 145, 580, 939, 1356, 1215, 402, 1290, 1066, 953].
Coding [1471, 643, 1118]. Coefficient [311].
COLAMD [1122]. collapsed [1300]. collapsed-coordinate [1300].
Collection [811, 518, 693, 1057, 473]. Collected [759, 792, 1379, 716, 1551, 1145, 1343, 1146, 958].
Collocation [334, 333, 708, 554, 760, 524, 525, 523, 239, 750, 749, 1432, 1486, 1016, 1127, 1237].
Column [429, 428, 610, 917, 1526, 1230, 1122, 1112]. columns [897]. Combination [321, 553, 500, 221]. combinations [1209].
Combinatorial [1582]. Combined [972, 1301]. Combustion [559].
Comment [983, 1066]. Comments [1588, 74]. Common [1498, 909, 852].
Communication [455, 506]. Commuting [1425]. Compact [297, 539, 1558].
Comparisons [1575, 723]. Competitive [1474]. Compilation [681, 1211].
Compiler [929, 1254, 40, 1549, 1182, 1153]. Complete [464, 1378, 897].
Complete [863, 3, 174, 1390, 1250].
Complexity [1467, 455, 506, 841, 1373, 1406]. Component [1523, 1324].
Composing [1519]. Composite [186, 201, 1395]. Composition [710, 907].
Composition-Alias [907]. Compounding [72]. Comprehensive [395].
Compressing [1417]. Compression [1046, 1163]. Computable [53].

13

[782, 1009, 1444]. EFCOSS [1308]. effectively [1120]. Effects
[1213, 1391, 1579, 880, 63, 597, 930, 1309, 411, 1483, 1484, 1461, 1055, 1241,
123, 1262, 1455, 1359, 570, 1571, 304, 707, 75, 1211, 215, 214, 187, 530, 513,
655, 1495, 1518, 1514, 747, 1583, 358, 666, 682, 1124, 718, 1311, 1564, 385,
1424, 241, 240, 679, 423, 1513, 146, 1372, 1557, 222, 1174, 1118, 1172,
1168, 1236, 1136, 583, 1389, 1304, 242, 261]. Efficiently
[41, 1570, 1063, 1347]. Eigenfunction [732]. Eigenmodes [1034, 1035].
eigenpairs [1094]. Eigenproblem [757, 821, 786]. Eigenproblems
[1485, 1056, 1251]. eigensolver [1316]. eigensolvers [1252]. Eigensystem
[192, 191]. Eigenvalue [732, 1379, 1242, 206, 396, 486, 1499, 613, 797, 57, 118,
124, 447, 1025, 866, 1286, 1093, 1390, 1149, 1144, 1413]. Eigenvalues
[139, 393, 765, 783, 877, 381, 1371, 787, 217, 875, 796, 795, 101, 1003, 1179].
Eigenvectors [139, 765, 217]. Eight [262]. EIGFP [1144]. elegant [1347].
Element [1260, 1371, 1425, 1382, 1537, 1519, 278, 462, 1497, 208, 420, 1301,
1218, 1277, 1356, 1137, 997, 1395, 1130, 1315, 1303, 1217, 1398]. Elementary
[1385]. Elementary-Function [474]. Elements [105, 30, 1137, 1139]. Elimination
[429, 428, 610, 499, 539, 385, 384, 204, 200, 1118, 1246]. Ellipsoids [837, 836].
Elliptic [1568, 709, 352, 827, 568, 272, 1262, 248, 523, 689, 3, 658, 1433, 646,
elrint3d [1330]. Embedded [1577, 1330, 1560]. Empirical [1366, 1216].
Enabled [1497, 1153]. Enabling [1373]. Enciphering [215, 214]. Enclosing
[867]. Enclosure [853]. Enclosures [1576]. Encryption [1580]. end [893].
Energy [435, 547]. Enhance [1239]. Enhanced [922]. Enhancements
Enumerative [406]. Envelope [737, 705, 1092]. Environment
[858, 309, 568, 176, 944, 853, 1097, 1155, 1308, 1052]. EPDCOL [707].
Equality [636]. Equation
[494, 967, 577, 576, 932, 415, 359, 233, 1, 1461, 753, 752, 248, 216, 596, 503,
337, 210, 404, 121, 796, 795, 61, 1128, 1110, 1150, 1071, 884, 1087]. Equations
[282, 281, 696, 467, 466, 624, 668, 91, 88, 1243, 197, 584, 56, 288, 98, 127, 1566,
708, 824, 227, 920, 737, 492, 1579, 43, 163, 161, 633, 746, 148, 1334, 374, 490,
344, 362, 361, 359, 568, 748, 475, 178, 1013, 134, 446, 444, 1241, 1262, 1328,
1237, 1067, 366, 725, 760, 254, 523, 1074, 689, 853, 1498, 445, 1033, 513, 655, 595,
913, 307, 239, 133, 119, 326, 325, 1433, 461, 212, 285, 399, 280, 1457, 1443, 66,
65, 355, 379, 369, 814, 484, 1440, 851, 1536, 646, 801, 585, 669, 1435, 92, 89, 55].
Equations [54, 1554, 476, 540, 533, 241, 132, 512, 240, 284, 279, 622, 621,
330, 246, 1409, 1099, 1416, 889, 1054, 1119, 1204, 1073, 996, 1223, 1310, 1156,
1224, 1189, 205, 1307, 1007, 1283, 1377]. Equidistributed [1565].
Equilibrium [516, 545, 674, 1540, 588]. Errata [242]. Erratum [207]. Error
[53, 1568, 712, 1383, 665, 784, 785, 1178, 1575, 912, 1480, 1550, 405, 1529,
Estimator [463]. estimators [1103]. Euclidean [1559, 166, 223, 1226].
Evaluator [761].
Event [697, 1235]. event-driven [1235].
Exact [1464].
Example [1033]. Examples [1295, 468, 741].
Explicit [964, 1321, 736, 596, 723, 943, 1554, 284, 279]. exploiting [1347]. Exploration [358, 1491].
Exploratory [375]. Expml1 [751]. EXPOKIT [948]. Exponential [299, 294, 441, 437, 678, 677, 1323, 946, 537, 1364, 1341, 642, 679, 1198, 1307, 886].
Expansions [948]. Expression [1426, 1421, 1246, 1281]. expressions [1297].
Extended [1532, 592, 628, 591, 328, 324, 96, 1062].
Extended-Range [328, 324]. Extension [1056, 1192]. Extensions [713].
Extra [1375]. External [1295]. Extra-Precise [1272, 1178].
Factored [1441]. Factoring [109]. Factorization [930, 1266, 1256, 1575, 717, 1535, 1381, 849, 532, 1338, 550, 657, 705, 819, 40, 1255, 718, 1424, 1552, 1042, 1160, 1350, 1076, 1133, 1202, 1284, 1313, 1183, 1352, 1104].
Facilities [704].
Feasibility [420, 1197]. Features [209, 1017]. Feedback [866, 1053, 1169].
Interpolatory

Interval

INTERVAL

Interval

Inversion

Inverses

Inverse

Inverting

Investigation

Investigations

Involving

IQPACK

irbleigs

Irregular

Irregularly

Isolated

Isolation

Isolated

Issue

Issues

Iterated

Iteration

Iterative

Iteratively

ITPACK

IV

Ivie

IVPs

J6

Jacobian

Java

JBESS

Jet

jMarkov

JNF

John

Jordan

K2

Kalman

KBLAS

Kernel

kernels

Kind

King

KLU

Knot

Knowledge

knowledge/database

known

Kohn

Kolmogorov

Kutta

L

L-BFGS

L-BFGS-B

L2A

L2B

L2CXFT

L2WPMA

Lagged

Lagrange

Lanczos

Language

Languages

LAPACK

LAPACK-style

Laplace

Large

Large-Scale

Larger

Larkin

Last

Lattice

Leading

Least

Least-Squares

Legendre

Lehman

Length

Lengths
Level [730, 823, 756, 664, 663, 931, 1381, 690, 1498, 673, 1248, 1014, 956, 955, 845, 1287, 1546, 992, 1287, 1546, 992, 931, 1173]. Level-3 [823, 756, 1381, 1498, 1248].

Mathematical
Mathieu
[1020, 1021, 1184, 1193, 1408, 216, 796, 795]. MATLAB [1351, 1194, 1094, 1198, 1387, 1006, 1360, 1084, 888, 1142, 1428, 1172, 1451, 716, 1571, 1158, 1156, 819, 1144, 1533, 1389, 1432, 1402, 1493, 1317, 1233, 1363, 1134, 1220, 1336, 1024, 1472, 1556, 1283, 1243, 1520, 1176, 1484, 1260, 1208, 1215, 1085, 1582, 1250, 1045, 1422, 1490, 1443, 1440, 1305, 1035, 1116, 1414].
MATLAB/GNU [1493]. MATLAB/Octave [1402]. Matrices
[798, 470, 553, 411, 972, 783, 877, 931, 517, 1026, 206, 396, 486, 97, 917, 1535, 189, 716, 57, 118, 530, 902, 378, 602, 217, 614, 719, 875, 335, 331, 192, 191, 1372, 1304, 1048, 1120, 1003, 1179, 1143, 953, 952, 522, 1093, 1279, 1163].
Matrix
Minor [71], MINRES [1416], MINRES-QLP [1416], Mirroring [855], MISCFUN [894], Mises [150, 336], Mixed
[1239, 1371, 1016, 1157, 1312, 1062], mixed-order [1016], mixed-precision [1312], mixed-volume [1157], MixedVol [1157], Mixture [465, 464], Mixture-plus-Acceptance-Rejection [464], MLD2P4 [1325], Mode [1426, 1172, 1001], Model
[1430, 356, 714, 538, 592, 664, 1543, 440, 742, 532, 1065, 1392, 955, 1232], Model/Trust [440], Model/Trust-Region [440], Modeling [1100, 409, 1507, 1524, 549, 673, 1298], modelling [1208], Models [780, 1494, 400, 1572, 530, 1034, 900, 1035], Moderate [450], Modern [1559], Modification [499, 868], Modified [376, 994, 313, 777, 414, 429, 428, 610, 717, 20, 332, 1553, 196, 1329, 255, 251, 897, 1110, 1107, 1111], modred [1430], Modular [1481, 526, 1240, 1500], Module [901, 1342, 1279], Modules [828], moduli [1311], modulo [1161], modulus [925], molecular [1117], Moment [1494, 1435], Monitoring [51], Monomial [750, 749], monotonic [1200], Monty [960], Morse [1467], Most [460], motions [1318, 1235], Moving [668, 824], Moving-Grid [824], MP [171, 257], MPFR [1207], MPGENR [264], MPI [1436], MRRR [1188, 1296], MSS [1428], MTIEU1 [796], MTIEU2 [796], Multi [1014, 1261, 1136], Multi-Adaptive [1261], multi-dimensional [1136], Multi-level [1014], Multicolor [602], Multicommodity [845], Multicomplex [1358], Multicomputer [944], Multicore [1508, 1561, 1581, 1497, 1505, 1388], Multicore-Enabled [1497], Multidimensional [728, 606], Multidisciplinary [1293], Multifacility [301, 296], Multifrontal
[1508, 656, 972, 422, 550, 578, 657, 1482, 1230, 1113, 1112, 1162, 1350], Multigrill [462, 1567], Multiinput [866], Multilevel [1325, 1536, 1181], multilinear [1158], multimethod [1316], Multimodal [579, 653], Multinomials [509, 508], Multiphysics [1373, 1298], Multiple [410, 727, 171, 170, 257, 276, 33, 323, 587, 1530, 808, 826, 449, 1340, 499, 498, 1432, 715, 963, 1341, 1207, 1317, 1351, 1050], Multiple-Choice [410], Multiple-length [33], Multiple-Phase [1432, 1317, 1351], Multiple-Precision [171, 170, 257, 449, 1340, 715, 963, 1341, 1207], Multiplication [1479, 1481, 1456, 1561, 1525, 623, 189, 690, 1563, 1541, 1304, 1344, 1234], multiplications [1276], Multiplicative [925], multiplicities [1116], multiplicity [1405], multiplier [925], Multipliers [995], multiply [1078], multiply-add [1078], Multiplying [564], Multipoint [169], Multipole [1512], Multiprecision [791, 870, 468, 1227], multiprocessor [1344], Multishift [1460, 1412], Multistep [287, 289, 158, 548, 514, 246, 1307], Multithreaded [1367, 1350], Multivariate
[564, 490, 771, 809, 130, 1571, 1034, 840, 603, 76, 318, 1329, 502, 1402, 1035], MultRoot [1116], MUMPS [1295], NAG [730, 245, 814], Narrow [515], National [431], Natural
One-Dimensional [824, 340, 322, 1560, 669, 684]. One-Norm [626, 644].
One-Pass [135]. one-sided [1073]. One-Way [215, 214]. Online
[1564, 1332]. Open [1240]. Open-Source [1240]. OpenAD [1240].
OpenAD/F [1240]. OpenGL [1115]. Operands [1475]. Operation [1475].
Operations [178, 1394, 1038]. Operator [1472, 1556]. operators
[1106, 1297, 1236]. OPT [1206]. Optimal [1337, 1351, 1308, 1302].
Optimality [1439]. Optimally [1412]. Optimization
[624, 915, 849, 495, 1428, 936, 935, 1577, 234, 465, 986, 985, 156, 375,
1578, 1253, 1582, 853, 1019, 1339, 1537, 1293, 1474, 327, 320, 767, 557, 569,
1540, 862, 1453, 47, 758, 1259, 1452, 673, 940, 1049, 1205, 1000, 1102, 1096,
1185, 1290, 1085, 956, 996, 1041, 1289, 1206, 1349, 1281, 1047].
Optimizations [1254, 1303, 1344]. Optimized [1479, 256, 1398]. Optimizer
[1540]. Optimizing [1456, 1173, 1522]. option [1302]. Orbits
[1360, 1560, 671]. Order [551, 694, 871, 1566, 577, 576, 633, 680, 746, 144,
1543, 1320, 937, 725, 248, 523, 1244, 1342, 1358, 942, 747, 814, 1435, 528, 796,
1593, 1554, 1176, 1152, 1016, 1111, 402, 943, 1237]. Ordered [685]. Ordering
[381, 5, 700, 747, 596, 595, 92, 89, 1554, 1310, 1307]. Oriented
[1412]. Orienting [1539]. Orthogonal
[598, 508, 659, 1532, 813, 1076, 962, 1300, 1221]. ORTHPOL [813, 962].
Oscillating [529, 1066]. Oscillatory [446, 1294]. Osculatory [346, 349].
Other [686, 434]. Out-of-Core [550, 1367, 1133, 1183, 1282, 1104, 1314].
Overhead [290]. Overlapped [1526]. Overlapping [815].
overloaded [1172, 1389]. Overloading [1472, 1556]. overview [1146, 1064, 1151, 1147].
P2MESH [1059]. packable [1201]. Package
[551, 694, 871, 733, 915, 920, 171, 170, 257, 276, 477, 1268, 844, 38, 773, 774,
911, 924, 1325, 991, 1431, 1574, 714, 904, 433, 432, 608, 695, 753, 813, 220, 917,
567, 195, 306, 1441, 675, 387, 1244, 704, 1584, 16, 425, 424, 1489, 186, 404, 974,
973, 778, 50, 1488, 822, 744, 740, 741, 948, 154, 715, 622, 96, 982, 211, 1570,
268, 1191, 1288, 1214, 1198, 1176, 1090, 1160, 1200, 1084, 1089, 1076, 883,
1157, 962, 1197, 887, 1071, 957, 1156, 1275, 894, 878, 1280, 1035, 1306, 1116].
Packages [429, 428, 610, 874, 1263, 562, 654, 1096, 1119]. packed
Parabolic [709, 344, 186, 476, 284, 279, 1165, 1164, 1127, 1348]. paradigm
[1130]. Paradigms [865]. Parallel
[1429, 1469, 1230, 584, 190, 1325, 520, 823, 1026, 1328, 1327, 1460, 1133, 945,
1359, 1478, 1516, 1569, 1434, 1436, 455, 506, 1514, 767, 739, 1503, 845, 801,
Parallelisation [1542], parallelism [1344, 1287], parallelization [1232], Parallelized [1430], Parameter [78, 907, 1408], Parameterized [1467, 1457], Parameters [457, 309, 780, 620, 1034, 1035], Parametrization [176], Parametrized [413, 412], Parameter [78, 907, 1408], Parameterized [1467, 1457], Parameters [457, 309, 780, 620, 1034, 1035], Parametrization [176], Parametrized [413, 412], Parameter [78, 907, 1408], Parameterized [1467, 1457], Parameters [457, 309, 780, 620, 1034, 1035], Parametrization [176], Parametrized [413, 412], Parameter [78, 907, 1408], Parameterized [1467, 1457], Parameters [457, 309, 780, 620, 1034, 1035], Parametrization [176], Parametrized [413, 412]
Polynomials

Polytope [1573]. Poole [378, 377]. Poor

PORT [177]. Portability [131, 1473, 956]. Portable

Positive

positive-definite

POSIX [1070]. Postgraduate [1584]. postprocessing [1305]. Potentials [1512].

Portable

Powers

Practical [584, 918, 190, 1573, 1511].

pre [1112]. pre-ordering [1112]. Preassigned [640, 641]. Precise

Presentation

Precision

Precompiler [225, 96, 1227].

Principal [1523]. Principles [1392, 39]. printing [1279]. priori [32].

Probabilities [79, 617, 789, 151, 19, 12]. Problem

Programming [586, 300, 295, 1376, 817, 816, 538, 383, 409, 400, 788, 1369, 1033, 168, 448, 913, 1529, 1576, 357, 702, 1432, 1287, 1367, 636, 488, 1511,
1259, 1452, 1378, 897, 1238, 1080, 1105]. Programs
[967, 791, 474, 487, 635, 665, 699, 700, 165, 592, 612, 919, 167, 39, 304,
277, 308, 108, 750, 552, 557, 569, 84, 434, 1227, 842]. Project [1151].
[892]. Prototyping [737, 837, 1144, 1117]. provably [1078]. proven [1311].
PRS [188]. PSBLAS [1026]. PSE [1045, 1448]. PSelInv [1516]. PSEVM
Pseudoperipheral [235]. Pseudorandom [946, 1023, 1032, 886].
Pure [637]. Purpose [847, 848, 34, 1218, 989]. Pursuing [1148]. Pursuit
Pythagorean-Hodograph [1459]. PYTHIA [1011, 905]. PYTHIA-II
[1011]. Python [960, 1229]. PyTrilinos [1229].

QDWH [1501]. QDWH-SVD [1501]. QLP [1416]. QMR [883].
QMRPACK [883]. QR [364, 398, 930, 1350, 1256, 1133, 797, 819, 691, 1418].
QR-Like [797]. QRUP [364, 398]. QSHEP2D [604]. QSHEP3D [605].
QUADLOG [1214]. QUADPACK [711]. Quadratic
[302, 297, 817, 816, 1483, 742, 1527, 448, 346, 349, 569, 702, 921, 157, 604, 605,
636, 436, 1080, 1390, 1095, 892, 845, 885]. Quadratic-Tensor [742].

Quadrature
[712, 1532, 72, 198, 912, 340, 322, 813, 987, 1470, 229, 17, 1321, 1571, 213, 729,
74, 46, 640, 641, 1432, 70, 451, 1213, 1214, 1137, 1215, 962, 1303].
Quadratures [589, 452]. Quality [1442]. Quantile [815]. Quantiles
[15, 339, 228]. Quantitative [420]. Quartic [1461]. Quasi
Quindimensional [127]. Quintic [1459, 389, 102, 417, 484, 683]. Quotient
[292]. QZ [206, 396, 486, 124].

R [1010]. r2d2iri} [1058]. Radiative [1435]. Radix [1480, 468].
Radix-Independent [1480]. Random
[501, 73, 11, 293, 1588, 531, 1580, 587, 805, 147, 464, 704, 1436, 1584, 769, 768,
Random-Access [614]. random-number [925]. Randomization
[1380, 1489, 1488]. Randomized [1523]. Randomly [448]. Range
[772, 1470, 328, 324, 1190, 1038, 1039]. range-independent [1038, 1039].
Ranges [85]. Rank [735, 1256, 1476, 1143, 953, 952, 1350, 1168, 1407].
Rank-1 [1476]. Rank-Deficient [735, 1168]. Rank-Revealing
[147, 1004, 4, 94]. Ratio-of-Uniforms [1004]. Rational
[735, 1334, 1532, 149, 987, 119, 497, 536, 1258]. Ratios [582, 763, 561, 332].
robot-packable [1201]. Robust
[784, 1195, 1502, 1262, 1509, 1424, 1312, 785]. Robustness [1538, 451].
Romberg [198]. Root [510, 570, 941, 1450, 649, 583, 1038]. rootfinder [892].
Roots [110, 622, 1570, 1116]. ROPTLIB [1578]. Rosenbrock
[104, 21, 559, 373]. Rotations [59, 27, 1063]. Rounded
[1517, 1455, 510, 724, 1297, 1299]. Rounding [806, 1207, 1397]. Roundoff
[1568, 1575, 187, 242, 1529, 1576, 45, 203, 202, 341]. Roundoff-Error-Free
[1575]. Routine [598, 860, 728, 553, 1330, 1093]. Routines
[51, 509, 712, 364, 398, 774, 344, 270, 563, 711, 1257, 340, 322, 813, 245, 1381,
375, 534, 74, 1214, 1318, 1141, 962, 1068, 1075]. Row [429, 428, 610, 539].
Runge [197, 1383, 634, 1520, 1176, 632, 680, 964, 546, 1195, 287, 1103, 1320, 736, 843,
516, 545, 722, 121, 232, 528, 723, 943]. Runtime [1508, 1367].

[1580, 1546, 1096]. Salesman [873, 872]. Sample [266, 789, 138, 1513].
Sampled [1268]. Samples [531, 29, 82]. Sampling
[416, 501, 861, 627, 662, 1004, 841, 685, 1564, 1513, 491, 565, 1175].
Sampling-Vectorized [1564]. satisfaction [1167]. SBA [1275]. SBP [1284].
SBR [1030]. scalability [1049, 1148]. Scalable
[1502, 1232, 1149, 1083, 1023, 1032, 1181]. ScalAPACK [1296]. Scalar
[427, 426, 1492, 1078, 681]. Scale [873, 872, 495, 1428, 1474, 569, 744, 740,
741, 758, 488, 1286, 1205, 1096, 1251, 1289, 1349, 1233, 1413, 1306, 940].
Scaling [1546, 1394, 670, 833, 1314, 1124]. Scanning [75]. SCASY [1328].
Scattered [604, 605, 603, 934, 977, 975, 976, 1329, 899, 1002, 879, 1114].
scattered-data [899, 1002]. schedules [1162]. Scheduling [1434, 152, 1284].
Schema [358]. Scheme [539, 646]. Schemes [516, 545, 1558]. Schmidt
[255, 251]. School [1584]. Schrödinger [1156]. Schur
[897, 998, 784, 785, 1285, 1187, 1378]. Schur-complement [897]. Schwarz
[888, 1142, 957]. science [1131]. Scientific [519, 611, 905, 1326, 1401, 1011].
Scope [810, 847, 848, 811, 34]. Scorer [1075]. Scrambled [1491, 1082]. SD
[311]. SD-Formulas [311]. Search [830, 1583, 423, 1185]. Second
[91, 88, 1243, 708, 144, 856, 1320, 523, 571, 590, 1435]. Second-Order
[571, 590]. Second-Order [1320, 523]. Secondary [613]. Secure [1580].
SeDuMi [1085]. Select [776, 105, 30]. Selected [783, 877, 1516, 1335, 875].
Self-Adjoint [827]. SelInv [1335]. Semantic [477]. Semi
[1489, 1488, 1423, 1105]. Semi-infinite [1105]. Semi-Separable [1489, 1488].
Semi-Stencil [1423]. Semidefinite
[1369, 1527, 1529, 1576, 1259, 1452, 1378, 1238]. Semidiscrete [284, 1022].
Semiseparable [1482]. SENAC [730]. Sense [509]. Sensitivity
[165, 596, 595]. Sensor [1369]. sep [1285]. sep-inverse [1285]. Separable
[1483, 689, 1489, 1488, 241, 240]. Separably [421]. separation [884].
Separators [647]. Sequence [599, 414, 560, 1330, 1079]. Sequences [842, 427, 426, 926, 557, 1082]. Sequential
Service [35, 274]. Set [364, 398, 344, 874, 592, 628, 591, 664, 663, 134, 1257, 703, 966, 354, 1061, 1053, 1141, 1169]. Sets
[361, 164, 162, 280, 1583, 86, 603, 1081]. Several [107, 868]. SFCGen [1136]. SFSDP [1369]. Sham [1283]. Shape [924, 923, 346, 349, 907].
Shape-Preserving [924, 923, 346, 349]. Shaped [1496]. ShearLab [1466]. Shearlet [1466]. Shearlets [1466]. Shepard [994, 604, 605, 975, 976, 1329].
[916, 1562, 1571, 596, 595, 556, 217, 868, 335, 331]. Single
[371, 370, 947, 329, 310, 1505]. Singular-Value [310]. Singularity [1300].
Singularity-free [1300]. singularly [1043]. SIPAMPL [1105]. SIPs [1203].
Situ [128, 258]. Size [1481, 1263, 289]. Skew [1485, 1535, 192, 191, 1372].
Skew-Hamiltonian [1485]. Skew-Hamiltonian/Hamiltonian [1485].
Skew-Symmetric [1535, 192, 191, 1372]. SLEDGE [904]. SLEIGN [731].
SLEIGN2 [1040]. SLEPC [1149, 1413]. SLEUTH [937]. SlideCont [1135].
sliding [1235]. SLTSTPAK [974]. Small [29, 82, 1199, 1311]. Smallest
[105, 30]. Smirnov [123, 151, 29, 82]. Smith [250]. Smooth
[18, 23, 181, 180, 231, 95, 230, 1520, 505, 172, 954]. Smoothing [270, 541].
software [1089, 1076, 1157, 1080, 1405, 1071, 1011, 957, 884, 1275, 894, 1281, 1217, 1317, 1351, 879, 1233, 1050, 1316, 1237, 785, 1102]. Solid [273].
Symmetric-indefinite

Symmetrical

System

Systematic

Systolic

T

T-Concave

Table

Table-Driven

Tables

Tabulated

Tails

Talbot

Tang

Tangent

TAO

Tapenade

Tarjan

Task

Taylor

Technical

Technique

Techniques

TEDDY2

Temme

Template

Template-Driven

Templates

temporal

TENPACK

Tension

Tensor

Terabytes

Tests

TestU01

TetGen

Tetrahedral

Text

Tenth

Their

Them

Theoretic

Theoretical

Theory

Thick

Thick-Restart

Third

Third-Degree

Thoughts

thread

thread-level

thread-safe

threads

Three

Three-Dimensional

Threshold

TIDES

Tight

tile

Tiles

Time

Time-Dependent

Time-Frequency

Time-Stepping

tiny

TMA

TOMP

TOMS

Tool
Toolbox [1006, 888, 1582, 1422, 1490, 1493, 1270, 1336, 1440, 1208, 1402, 1414, 1283, 1030].
toolkit [1149, 1206, 1582, 1422, 1490, 1493, 1270, 1336, 1556, 1142, 1208, 1402, 1414, 1283, 1030].
toolkits [1205]. Tools [1451].

Toolbox [1006, 888, 1582, 1422, 1490, 1493, 1270, 1336, 1440, 1208, 1402, 1414, 1283, 1030].
toolkit [1149, 1206, 1582, 1422, 1490, 1493, 1270, 1336, 1556, 1142, 1208, 1402, 1414, 1283, 1030].
toolkits [1205]. Tools [1451].

Transformation [249, 1472, 1556, 1106, 1118, 957]. transformations [1107, 1170, 1346, 1203]. Transforming [558]. Transforms [392, 391, 1429, 793, 1466, 1493, 1292].

Triangulation [249, 1472, 1556, 1106, 1118, 957]. transformations [1107, 1170, 1346, 1203]. Transforming [558]. Transforms [392, 391, 1429, 793, 1466, 1493, 1292].

Triangulation [249, 1472, 1556, 1106, 1118, 957]. transformations [1107, 1170, 1346, 1203]. Transforming [558]. Transforms [392, 391, 1429, 793, 1466, 1493, 1292].

Transversal [345, 1355]. Travelling [873, 872].

Two- [1539]. Two-Dimensional [911, 827, 326, 325, 1291, 483, 482, 476, 1542, 878, 1058]. Two-Sided [1074]. Two-Stage [1320]. Two-step [1103]. Type [1520, 72, 813, 1328, 1327, 254, 901, 454, 962, 1073, 1274].

UIMP [383]. UMFPACK [1113, 1295]. uncommon [894]. Unconstrained [858, 915, 832, 844, 495, 130, 440, 1474, 327, 320, 767, 44, 526, 76, 318, 1097, 961].
Underdetermined [1526]. Unified [1323, 1409]. Uniform [437, 147].

References

REFERENCES

McNamee:1971:SMP

Gentleman:1972:CCQ

Akima:1972:ISC

March:1972:EPT

Fullerton:1972:MIG

MacHura:1973:RFM

Brenner:1973:MTP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[84] John R. Rice. TOMS policy statement: The rights of program authors in the evaluation of programs. *ACM Transactions on Mathematical Soft-

REFERENCES

Shampine:1976:AGG

Janko:1976:ALI

Pike:1976:RIB

Anderson:1976:RIS

Wyatt:1976:PEP

Gentleman:1976:AAC

REFERENCES

REFERENCES

[118] Linda Kaufman. Remark on “Algorithm 496: The LZ algorithm to solve the generalized eigenvalue problem for complex matrices [F2]”. ACM
McClellan:1977:ESL

Stoutemyer:1977:AEA

Shampine:1977:SND

Tran-Thong:1977:FPF

Gonzalez:1977:EAK

Kaufman:1977:STQ

Amos:1977:CSI

[125] D. E. Amos, S. L. Daniel, and M. K. Weston. CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$.

REFERENCES

[126] D. E. Amos, S. L. Daniel, and M. K. Weston. Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]. ACM Transactions on Mathematical Software, 3(1):93–95, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See erratum [207].

McClellan:1977:CAE

Farden:1977:SSS

Ichida:1977:CFO

Ellis:1977:ANM

Buckles:1977:AGV

McKean:1977:AAO

Chan:1977:APC

[139] S. P. Chan, R. Feldman, and B. N. Parlett. Algorithm 517: A program for computing the condition numbers of matrix eigenvalues without com-

REFERENCES

REFERENCES

Gautschi:1977:ARI

Sipala:1977:RSM

Tenney:1977:RTO

Hillstrom:1977:STA

Powell:1977:PQA

Skeel:1977:BLM

Payne:1977:NRN

REFERENCES

[186] S. J. Polak, J. Schrooten, and C. Barneveld Binkhuysen. TEDDY2, a program package for parabolic composite region problems. *ACM Trans-
REFERENCES

Larson:1978:ECE

Brown:1978:SPA

Gustavson:1978:TFA

Chen:1978:PPB

Ward:1978:ECS

Ward:1978:AAC

Snyder:1978:ACP

REFERENCES

REFERENCES

[207] Donald E. Amos. Erratum: “Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]”. *ACM Transactions on Mathematical Software*, 4(4):411, December 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [126].
REFERENCES

REFERENCES

REFERENCES

DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See corrigenda [261].

REFERENCES

REFERENCES

REFERENCES

December 1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Leathers:1979:RAS

vanSwieten:1979:RAV

Fox:1979:RFP

deBoor:1979:CCM

Cheung:1980:CCE

Ho:1980:CST

Michaels:1980:MPG

REFERENCES

REFERENCES

REFERENCES

Machura:1980:SSP

Kurator:1980:PIS

Brown:1980:EPB

Luk:1980:CSV

Sacks-Davis:1980:FLC

Bentley:1980:OET

Campbell:1980:TAM

REFERENCES

REFERENCES

Akl:1981:CCG

Fritsch:1981:DIU

Friedman:1981:NPP

Smith:1981:ERA

Melgaard:1981:GST

Melgaard:1981:APS

More:1981:AFS

Lozier:1981:AER

Golub:1981:BLM

Wang:1981:PMT

Stewart:1981:SIA

Hill:1981:EIR

[332] Geoffrey W. Hill. Evaluation and inversion of the ratios of modified Bessel functions, $I_1(x)/I_0(x)$ and $I_{1.5}(x)/I_{0.5}(x)$. *ACM Transactions on Mathematical Software*, 7(2):199–208, June 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Ascher:1981:CSB

Ascher:1981:ACC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ahrens:1982:CGP

Lewis:1982:IGP

Lewis:1982:AGP

Paige:1982:ALS

Laurie:1982:ACA

Flamm:1982:RHE

Lewis:1982:RMB

[382] John G. Lewis. Remark on “Algorithms 508 and 509: Matrix bandwidth and profile reduction [F1] and a hybrid profile reduction algorithm [F1]”.
REFERENCES

Ellison:1982:UUI

Schreiber:1982:NIS

Sasaki:1982:EGE

Brezinski:1982:ASG

Kincaid:1982:AIF

Hanson:1982:ATA

REFERENCES

[402] P. M. Hanson and W. H. Enright. Controlling the defect in existing variable-order Adams codes for initial-value problems. *ACM Transac-
REFERENCES

Gaffney:1983:AFS

Proskurowski:1983:APH

Larson:1983:ASR

Martello:1983:AEA

Gay:1983:RNE

Dodson:1983:CRB

Fourer:1983:MLV

REFERENCES

Herriott:1983:ATA

Pape:1983:RSP

Krogh:1983:AAP

Zave:1983:QEF

Watkins:1983:NSS

Duff:1983:MSI

Tarjan:1983:SEI

REFERENCES

REFERENCES

[437] D. E. Amos. Uniform asymptotic expansions for exponential integrals $E_n(x)$ and Bickley functions $K_i_n(x)$. *ACM Transactions on Mathematical
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Piessens:1984:AAN

Piessens:1984:RNI

Rice:1984:ARK

Black:1984:NIS

Eiger:1984:BMS

Sommeijer:1984:ASL

Bundy:1984:GIP

December 1984. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

Norton:1985:AFB

Martello:1985:APM

Liu:1985:MMD

Gan:1985:NCG

Ahrens:1985:SRS

Ward:1985:AAL

REFERENCES

REFERENCES

Hull:1985:PRV

Stewart:1985:NCD

Streit:1985:AAS

Le:1985:EDF

Tischer:1985:ESN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Amos:1986:APP

Nash:1986:AST

Crawford:1986:APR

Hake:1986:RCC

Stewart:1986:CNC

Milovanovic:1986:CEI

REFERENCES

REFERENCES

REFERENCES

June 1987. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

Haas:1987:MPR

Schneider:1987:EEA

Elhay:1987:AIF

Morgan:1987:CBS

Dongarra:1988:ESF

REFERENCES

REFERENCES

REFERENCES

[609] Margreet Louter-Nool. Algorithm 663: Translation of Algorithm 539: Basic Linear Algebra Subprograms for FORTRAN usage in FOR-
REFERENCES

127

[Diaz:1988:RCA]

[Hull:1988:EHS]

[Freeman:1988:DSM]

[Schrauf:1988:AGA]

REFERENCES

[621] Michael N. Vrahatis. Solving systems of nonlinear equations using the nonzero value of the topological degree. *ACM Transactions on Math-
REFERENCES

Vrahatis:1988:ACM

Garavelli:1988:AMS

Aluffi-Pentini:1988:GOA

Aluffi-Pentini:1988:ASE

Higham:1988:AFC

REFERENCES

REFERENCES

[Morgan:1989:FAI]

[Patterson:1989:AGIa]

[Patterson:1989:AGIb]

[Tang:1989:TDI]

[Vitter:1989:ADH]
REFERENCES

REFERENCES

Kachitvichyanukul:1989:ABS

Dongarra:1990:SLB

Dongarra:1990:ASL

Cody:1990:PEP

Poppe:1990:MEC

Poppe:1990:AEC

REFERENCES

REFERENCES

References

Tang:1990:TDI

Hopkins:1990:RRK

Amos:1990:RPP

Garbow:1990:RFS

Addison:1991:ADT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Alfeld:1991:EAS]

[Alfeld:1991:AGE]

[Gustafsson:1991:CTT]

[Boubez:1992:PED]

[Lucks:1992:ASM]
REFERENCES

REFERENCES

REFERENCES

Hansen:1992:FSG

Demmel:1992:SBA

Ammar:1992:IDC

Toint:1992:LFS

Berntsen:1992:ADA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hormann:1993:PRN

Grassmann:1993:REC

Khoury:1993:TPG

Joe:1993:ILM

Drezner:1993:CAC

Boisvert:1994:CST

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>

REFERENCES

REFERENCES

Brown:1994:CAS

Taswell:1994:AWT

Dunkl:1994:CHI

Dunkl:1994:AHI

Fruchtl:1994:NAE

Kearfott:1994:AIP

REFERENCES

Pinar:1994:DPL

Anonymous:1994:C

Boisvert:1995:PST

Hopkins:1995:PSC

Jones:1995:IIC

Jones:1995:AFS

Ray:1995:ALS

Fateman:1995:FFP

Kearfott:1995:FER

Dongarra:1995:SDX

Grosse:1995:RM

Demetriou:1995:ALF

Weber:1995:AIG

REFERENCES

REFERENCES

Dobmann:1995:APF

Sullivan:1995:NAU

Miminis:1995:AFS

Alefeld:1995:AEZ

Rizzardi:1995:MTM

REFERENCES

REFERENCES

Scott:1995:ACC

Kaufman:1995:CMD

Duff:1995:CCS

Renka:1996:ATC

Renka:1996:ASS

Buis:1996:EVP

REFERENCES

T. E. Hull and R. Mathon. The mathematical basis and a prototype implementation of a new polynomial rootfinder with quadratic convergence.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

Bouaricha:1997:ASS

Cabay:1997:AEW

Geurts:1997:AFP

Blackford:1997:PEN

Ho:1997:DND

REFERENCES

[925] Pei-Chi Wu. Multiplicative, congruential random-number generators with multiplier $±2^{k_1} ± 2^{k_2}$ and modulus $2^p - 1$. *ACM Transactions on
Kocis:1997:CIL

Goano:1997:RA7

Hull:1997:ICA

Carr:1997:CBD

Carrig:1997:EHQ

Duff:1997:LBL

REFERENCES

Brankin:1997:ARF

Renka:1997:ASD

Renka:1997:ASI

Facchinei:1997:GBC

Facchinei:1997:AFS

REFERENCES

REFERENCES

Breinholt:1998:AGH

Bik:1998:AGS

Bischof:1998:CRQ

Bischof:1998:ACR

Peters:1998:APF

Kaagstrom:1998:GLB

[955] Bo Kågström, Per Ling, and Charles Van Loan. GEMM-based level 3 BLAS: high-performance model implementations and performance eval-
REFERENCES

187

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Berry:1999:AHD

LEcuyer:1999:BLC

Kees:1999:CIN

Duff:1999:FCS

Dackland:1999:BAS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mascagni:2000:ASS

Weideman:2000:MDM

Kaufman:2000:OBS

Filippone:2000:PLP

Kaufman:2000:BRA

Ramakrishnan:2000:NGE

Bischof:2000:FSB
REFERENCES

200

Bischof:2000:AST

Anderson:2000:RAF

Mascagni:2000:CAS

Langtangen:2001:SSP

Neumaier:2001:EPE

Schneider:2001:AAM

Leydold:2001:SUG

REFERENCES 201

Morales:2001:APF

Verdonk:2001:PRIa

Verdonk:2001:PRIb

Bailey:2001:ASS

Luksan:2001:ANA

Andersen:2001:RFC

REFERENCES

Foster:2006:AEA

Hasselman:2006:RAF

Joffrain:2006:AHT

Quintana-Orti:2006:IPR

Forth:2006:EOI

Kirby:2006:OFL

REFERENCES

521–532, December 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Bader:2006:AMT

Enright:2007:RRD

Neher:2007:CSF

Gould:2007:FFF

Berland:2007:EMP

Morandini:2007:UDS

Demetriou:2007:ALF

2007. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

Beebe:2007:AQP

Espelid:2007:AGD

LEcuyer:2007:TCL

Pesch:2007:HSF

Bangerth:2007:DIG

Bai:2007:PSB

REFERENCES

REFERENCES

Utke:2008:OFM

Goldani-Moghaddam:2008:ECU

Gao:2008:IEA

Atkinson:2008:ASF

Kodama:2008:ASP

Bartlett:2009:HDS

Naumann:2009:OVE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1324] Carl Ollivier-Gooch, Lori Diachin, Mark S. Shephard, Timothy Tangesh, Jason Kraftcheck, Vitus Leung, Xiaojuan Luo, and Mark Miller. An interoperable, data-structure-neutral component for mesh query and

[1330] Tiancheng Li and Ian Robinson. Algorithm 906: elrint3d — a threedimensional nonadaptive automatic cubature routine using a sequence of

REFERENCES

REFERENCES

Rao:2011:CAG

Reid:2011:PFD

Colman:2011:VCC

Beattie:2011:NSH

Duff:2011:DIA

Bangerth:2011:ADS

REFERENCES

REFERENCES

Niesen:2012:AKS

Filippone:2012:OOT

George:2012:EAP

Quintana-Orti:2012:RSP

Birkisson:2012:AFD

Kim:2012:ASS

REFERENCES

[1376] Benjamin A. Burton and Melih Ozlen. Computing the crosscap number of a knot using integer programming and normal surfaces. *ACM
REFERENCES

February 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

July 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[1396] Nicholas J. Dingle and Nicholas J. Higham. Reducing the influence of tiny
normwise relative errors on performance profiles. *ACM Transactions on
ISSN 0098-3500 (print), 1557-7295 (electronic).

[1397] Florent de Dinechin, Christoph Lauter, Jean-Michel Muller, and Serge
Torres. On Ziv’s rounding test. *ACM Transactions on Mathematical
Software*, 39(4):25:1–25:19, July 2013. CODEN ACMSCU. ISSN 0098-
3500 (print), 1557-7295 (electronic).

finite element local assembly using symbolic manipulation. *ACM Trans-
ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[1399] Mani Mehra and Kavita Goyal. Algorithm 929: a suite on wavelet differenti-
ation algorithms. *ACM Transactions on Mathematical Software*, 39
(4):27:1–27:28, July 2013. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

linear system solver for MATLAB. *ACM Transactions on Mathematical
Software*, 39(4):28:1–28:18, July 2013. CODEN ACMSCU. ISSN 0098-
3500 (print), 1557-7295 (electronic).

[1401] Assefaw H. Gebremedhin, Duc Nguyen, Md. Mostofa Ali Patwary, and
Alex Pothen. ColPack: Software for graph coloring and related problems
in scientific computing. *ACM Transactions on Mathematical Software*,
40(1):1:1–1:31, September 2013. CODEN ACMSCU. ISSN 0098-3500
(print), 1557-7295 (electronic).

for fast multivariate integration and interpolation based on Chebyshev

REFERENCES

REFERENCES

Antonelli:2014:ATS

Belson:2014:AMP

DAmore:2014:ARC

Patterson:2014:GIM

Mitchell:2014:CAS

Kim:2014:PSD

REFERENCES

[1441] Carlo Janna, Massimiliano Ferronato, Flavio Sartoretto, and Giuseppe Gambolati. FSAIPACK: a software package for high-performance fac-
REFERENCES

Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. CGALmesh: a generic framework for Delaunay mesh genera-
REFERENCES

[1467] Benjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterized complexity of discrete Morse theory. *ACM Trans-

REFERENCES

[1492] Endre László, Mike Giles, and Jeremy Appleyard. Manycore algorithms for batch scalar and block tridiagonal solvers. *ACM Transactions on

REFERENCES

Yamazaki:2016:SPV

Rupp:2016:PIS

Low:2016:AME

Agullo:2016:IMS

Lee:2016:TOI

Gould:2016:NPP

REFERENCES

REFERENCES

[1540] Margherita Porcelli and Philippe L. Toint. BFO, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables.
REFERENCES

VanZee:2017:IHP

Szo:2017:PET

Ganesh:2017:ATM

Brake:2017:ABN

Drmac:2017:AQP

Anderson:2017:ASS

REFERENCES

[Hogg:2017:NAO]

[Engwer:2017:GRI]

[Springer:2017:THP]

[Joldes:2017:TRE]

[Peise:2017:ARA]

[Yeralan:2017:ASQ]

REFERENCES

REFERENCES

REFERENCES

[Irurozki:2018:APM]

[Ozkan:2018:AEA]

[Learmonth:1973:NPS]

[Hanson:1981:APE]

[Bays:1990:CIR]

reduce the lattice structure of linear congruential generators, but the second improves both dramatically.
