Title word cross-reference

-1/2, 1/2, 3/2, 5/2 [942]. 0 - 1 [498]. 1 [1127], 2 [1059, 1265, 1228, 1590, 1406, 1226, 1161, 1595]. 2^p - 1 [925]. 3 [1758, 792, 1590, 1406, 1403, 1466, 1783]. 64 [1565]. A - B [784]. A - λB [785].
a = ±2^a ± 2^r [995]. ab + cd [1438]. \(Ax = b \) [351]. \(AX^2 + BX + C = 0 \) [415].
\(AXB^T + CXD^T = E \) [1071, 753, 752]. \(β \) [1515]. \(C^1 \) [1114, 660, 683]. \(C^2 \) [683, 682, 286]. \(e^x \) [1656]. \(E_n(x) \) [437]. \(\ell_1 \) [283, 316, 315]. \(F \) [803, 802, 617, 12].
\(f(x) \) [403]. \(F_2 \) [1565]. \(H^2 \) [1609]. \(H_p \) [453, 452]. \(hp \) [1433, 1432]. \(h \to \infty \) [445].
i [105]. \(I_0 \) [150]. \(I_1(x)/I_0(x) \) [336, 332]. \(I_{1.5}(x)/I_{0.5}(x) \) [336, 332]. \(L_{n}(x) \) [126, 125, 207]. \(ith \) [30]. \(J_{n}(x) \) [126, 125, 207]. \(k \) [789, 1515]. k < m [1515].
\(K_{ln}(x) \) [438, 437]. \(L_1 \) [282, 281, 317, 314, 908]. \(l_2 \) [1455]. \(L_{\infty} \) [512]. \(LDL^T \) [1535]. \(m \) [1515]. \(\mathcal{H}_\epsilon \) [1767]. \(MDM^T \) [876]. \(N \) [1180, 1584, 105, 30, 1455, 213].
\(O(\log_2 k) \) [789]. \(O(n(1 + \log(N/n))) \) [841]. \(O(n^{1/2}T) \) [616]. \(\omega \) [1362].
\(\pm 2^k \pm 2^r \) [925]. \(Q \) [1048, 1555, 1420]. \(Q_n \) [1762]. \(QR \) [1732, 1545, 1499, 1460, 1716, 1710, 1505, 1552, 953, 952, 1412]. \(QZ \) [1716]. rc

3

554 [285], 555 [286], 556 [299], 557 [300], 558 [301], 559 [302], 560 [303],
561 [304], 562 [305], 563 [316], 564 [317], 565 [326], 566 [829], 567 [327],
568 [328], 569 [1786], 569 [334], 570 [335], 571 [336], 572 [337], 573 [348], 574 [349], 575 [350], 576 [351], 577 [352], 578 [362], 579 [363], 580 [364], 581 [371], 582 [378], 583 [379], 584 [380], 585 [386], 586 [387], 587 [388], 588 [392], 589 [393], 590 [394], 591 [395], 592 [403], 593 [404], 594 [405], 595 [406], 596 [413], 597 [415], 599 [416], 600 [417], 601 [425], 602 [427], 603 [429], 604 [430], 605 [431], 606 [433], 607 [434], 608 [436], 609 [438], 610 [439], 611 [440], 612 [443], 613 [450], 614 [453], 615 [457], 616 [463], 617 [467], 618 [470], 619 [471], 620 [693], 621 [473], 622 [959], 623 [480], 624 [481], 625 [483], 626 [485], 627 [492], 628 [493], 629 [494], 630 [496], 631 [497], 632 [498], 633 [502], 634 [509], 635 [512], 636 [522], 637 [524], 638 [525], 639 [1066], 640 [529], 641 [530], 642 [541], 643 [804], 644 [551], 645 [554], 646 [553], 647 [560], 648 [563], 649 [567], 650 [570], 651 [577], 652 [580], 653 [581], 654 [582], 655 [589], 656 [592], 657 [594], 658 [596], 659 [599], 660 [1009], 661 [600], 662 [604], 663 [609], 664 [614], 665 [620], 666 [622], 667 [625], 668 [627], 669 [633], 670 [634], 671 [638], 672 [641], 673 [643], 674 [626], 675 [649], 676 [659], 677 [660], 678 [662], 679 [664], 680 [667], 681 [675], 682 [676], 683 [678], 684 [683], 685 [689], 686 [691], 687 [696], 688 [707], 689 [708], 690 [709], 691 [711], 692 [714], 693 [715], 694 [716], 695 [717], 696 [719], 697 [721], 698 [728], 699 [729], 700 [733], 731, 701 [735], 702 [744], 703 [746], 704 [750], 705 [753], 706 [759], 707 [761], 708 [834], 709 [764], 710 [765], 711 [767], 712 [769], 713 [781], 714 [773], 715 [774], 716 [789], 717 [780], 718 [787], 719 [791], 720 [792], 721 [796], 722 [799], 723 [1031], 800, 910, 724 [803], 725 [809], 726 [813], 727 [815], 728 [817], 729 [820], 730 [821], 731 [824], 732 [827], 733 [828], 734 [832], 735 [835], 736 [837], 737 [839], 738 [842], 739 [844], 740 [850], 741 [851], 742 [856], 743 [860], 744 [862], 745 [863], 746 [864], 747 [866], 748 [867], 749 [809], 750 [873], 751 [878], 752 [879], 753 [881], 754 [885], 755 [887], 756 [888], 757 [894], 758 [895], 759 [896], 760 [898], 761 [899], 1002, 965, 762 [900], 763 [901], 764 [911], 765 [915], 766 [916], 767 [917], 768 [920], 769 [905], 921, 77 [1003], 1179, 1485, 1200, 753, 983, 917, 1068, 1071, 839, 1037, 770 [924], 771 [932], 772 [933], 773 [934], 774 [936], 775 [937], 776 [938], 777 [939], 778 [940], 779 [942], 780 [946], 781 [950], 782 [953], 783 [954], 784 [956], 785 [957], 786 [963], 787 [967], 788 [974], 789 [974], 790 [975], 791 [976], 792 [977], 793 [987], 794 [988], 795 [989], 796 [991], 797 [993], 798 [994], 799 [1001], 8.0 [1775], 800 [1003], 801 [1007], 802 [1008], 803 [1015], 804 [1021], 805
1741, 1266, 1228, 301, 1416, 844, 804, 414, 620, 773, 799, 774, 194, 470, 522, 911, 1090, 617, 924, 112, 553, 1209, 827, 991, 650, 104, 415, 1122, 1113, 1160, 1331, 1350, 1400, 1626, 1635, 1781, 1751, 1002]. **Algorithm**

[1309, 998, 1355, 883, 887, 1284, 1073, 884, 1412, 1187, 1388, 1041, 1117, 1399,
Chi-Squared, Choice, Cholesky, Chow, Chow-Yorke, Christoffel, Chow-Yorke, Christoffel, Chvátal, Circuit, Circuits, circular, Clarke, Class, Classes, Classfiles, Classical, Clawpack, Clenshaw, Client, Client-side, Closest, Closest-Point, Clustering, Coarsening, Coates, Cochran, Code, Coded, Codes, Coding, CoDiPack, Coefficient, Coerror, COLAMD, collapsed, collapsed-coordinate, Collection, Collocation, Colored, Coloring, ColPack, COLROW, COLSYS, Colt, Column, Combination, combinations, Combinatorial, Combined, Combining, Combustion, Comment, Comments, Common, Communication, Commuting, Compact, Compactly, Comparative, Comparison, Comparisons, Competitive, Compilation, Compiler, Complement, Complementarity, Complementary, Complete, Completely, Complex, complex-step, Complexity, Component, Composing, Composite, Composing, Comprehensive, Compressing, Compression, Computable, Computation
Convex-Constrained \[1047\]. convexity \[1114\]. convexity-preserving \[1114\]. Convolution \[1665\]. Convolutions \[392, 391\]. Cooley \[1639\]. coordinate \[1300, 1281\]. coordinate-free \[1281\]. Core \[550, 1367, 1581, 1133, 1183, 1282, 1104, 1314, 1724\]. Cornea \[1480, 1438\]. Correct \[1475, 1207\]. Corrections \[487, 1762, 506, 1617\]. Correctly \[1517, 724, 1299\]. Correctness \[70\]. Correlative \[1747\]. Corresponding \[598, 329\]. Corrigenda \[846, 653, 628, 654, 629, 655, 261\]. Corrigendum \[821, 781, 408, 809, 877, 619, 340, 820, 644, 826, 583, 1032, 601, 590, 1351, 1703, 555\]. Cosine \[976, 869\]. Cost \[40\]. Costas \[1336\]. CoStLy \[1196\]. Costs \[290\]. Coupled \[1572, 1033, 1073\]. Coupling \[1572\]. Covariance \[1494, 649\]. CPFloat \[1771\]. CPSC \[363\]. CPU \[1505\]. CPUs \[1724\]. CRAY \[460, 754\]. Criteria \[1019\]. Cross \[541, 343\]. Cross-Bispectrum \[343\]. Cross-Validation \[541\]. Crosscap \[1376\]. Cryptography \[1477, 1607, 1621\]. Crystals \[1692\]. CS \[1747\]. CS-TSSOS \[1747\]. CSHEP2D \[975\]. CSRFPACK \[1114\]. Cubature \[759, 972, 911, 535, 380, 1330, 1090, 958, 1091, 1058\]. Cubic \[270, 136, 1461, 566, 619, 541, 135, 1727, 975, 899, 1002, 1760\]. CUBPACK \[1090, 911\]. CUBTRI \[535, 380\]. CUDA \[1542\]. Cumulative \[630, 1468, 1779, 29, 82\]. Current \[1731\]. Curtis \[229, 17\]. Curvature \[999\]. Curve \[18, 1742, 95, 265, 136, 1607, 173, 435, 135, 778, 172, 1596, 1704, 77, 950, 1280, 893\]. Curve-based \[1742\]. Curve-Fitting \[778\]. Curved \[1631, 100\]. Curves \[1584, 1544, 1459, 547, 1136\]. Customized \[1622\]. Cut \[301, 296, 1092\]. CUTE \[858\]. CUTEr \[1097\]. Cuts \[1594\]. Cyber \[609\]. Cycles \[368, 143\]. Cyclic \[201, 514\]. cylinder \[1165, 1164, 1348\]. Cylinders \[1647\]. Cylindrical \[1244, 1342\].

D
\[1590, 1758, 1059, 1265, 1228, 1590, 1406, 1403, 1466, 1226, 1783, 1595, 92, 1127\].
D/ \[1590\]. D2 \[334, 554, 66, 205\]. D3 \[182, 760, 254, 239, 326, 337, 55, 241, 240, 284\]. D4 \[363\]. D5 \[91, 117, 471\].
DAESA \[1443, 1440\]. DAFNE \[467\]. DAG \[1434\]. Dagwood \[612\].
Dangers \[918\]. Dantzig \[1393\]. Data \[181, 180, 231, 1774, 1641, 1277, 1660, 856, 136, 1427, 9, 581, 375, 115, 1261, 901, 1770, 1735, 1644, 1324, 845, 1603, 505, 479, 604, 605, 603, 934, 977, 975, 976, 278, 462, 1749, 1329, 606, 502, 114, 898, 899, 1356, 1002, 1200, 1011, 1250, 1249, 1163, 879, 1114, 1280, 1210, 1046\].
Data-level \[845\]. Data-Structure-Neutral \[1324\]. database \[1011\].
Davidson \[1413\]. DCUHRE \[728\]. DCUTRI \[759, 958\]. DDE \[1054\].
DDE-BIFTOOL \[1054\]. Dead \[358\]. deal.II \[1218\]. Deciding \[149\].
Decision \[696\]. Decomposition \[1641, 1544, 371, 370, 1721, 1325, 784, 785, 919, 573, 310, 1790, 691, 1743, 876, 1022, 1163, 1226, 1393\]. Decompositions \[1739, 779\]. Decrease \[830\]. Deep \[1665, 1693, 1092\]. deep-cut \[1092\].
Defect \[1383, 1195, 402\]. Deferred \[1617\]. Deficient \[735, 1168\]. Defined \[1631, 1548\].
Definite \[584, 127, 553, 448, 997, 1109, 1247\]. Definition \[684\].
Discrete-Time
Discretisations
Discretization
Discretizations
Discretized
Disk
Disks
DISODE45
DISPMODULE
Distance
distillation
Distributed
Divide
Divide-and-Conquer
Divided
Division
DMNetwork
DNSPLIN1
Do
DOLFIN
Domain
Domain-Specific
Domains
Dominant
Double
Double-Precision
Double-Word
Doubled
Doubled-Precision
Downdate
downdating
Driven
Drivers
DSDP5
DSDP5-software
DSUBSP
Duality
Duration
Dynamic
Dynamically
E1
E2
E3
Early
Economical
Edges
Edition
Editor
Editorial
EFCOSS
Effectively
Effects
Efficiency
Efficient
Efficiently
Eigenfunction
Eigenmodes
eigenpairs
Eigenproblem
Eigenproblems
Eigen solver
eigensolvers
Eigensystem
EIGENTEST
Eigenvalue
Eigenvalues
Eigenvectors

Element

Elemental

Elementary

Elementary-Function

Elimination

Ellipsoids

Elliptic

ELLPACK

Embedded

Emerging

emgr

Empirical

Enabled

Enabling

Encapsulated

Enciphering

Enclosing

Enclosure

Enclosures

Encyclopedia

Equations

Equation

Equality

Equidistributed

Equilibrium

Errata

Error

Errors

ESOLVE

Essential

Estimate

Estimates

Evaluating

Evaluation

EVAL

Evaluate

[139, 393, 765, 1658, 783, 877, 381, 1371, 787, 217, 875, 796, 795, 101, 1003, 1179].

Eigenvectors [139, 765, 217].

Eight [262].

EIGIFP [1144].

elegant [1347].

Element [1758, 1677, 1697, 1260, 1696, 1519, 278, 462, 1723, 1683, 1724, 1497, 208, 420, 1301, 1218, 1277, 1356, 1137, 997, 1395, 1130, 1315, 1699, 1303, 1217, 1398].

Elemental [1385].

Elementary-Function [474].

Elements [105, 30, 1623, 1137, 1139, 1624].

Elimination [429, 428, 610, 499, 539, 385, 384, 204, 200, 1118, 1246].

Ellipsoids [837, 836].

Elliptic-Parabolic [709].

ELLPACK [568].

e尔rint3d [1330].

Embedded [1577, 1330, 1560].

Emerging [1748].

emgr [1784].

Empirical [1366, 1216, 1784].

Enabled [1497, 1153].

Enabling [1775, 1736, 1373].

Encapsulated [1752].

Enciphering [215, 214].

Enclosing [867, 1609].

Enclosure [853].

Encyclopaedia

Encyclopedia

Equations [474, 967, 577, 576, 932, 415, 359, 233, 1, 1461, 753, 752, 1736, 248, 216, 506, 503, 337, 210, 404, 121, 796, 795, 61, 1128, 1110, 1150, 1071, 884, 1087].

Equidistributed [1565].

Equilibrium [516, 545, 674, 1540, 588].

Erratum [207].

Error [53, 1568, 1665, 712, 1383, 1639, 665, 1752, 784, 785, 1178, 1575, 912, 1591, 1480, 1550, 405, 1529, 1438, 1714, 355, 1486, 667, 666, 92, 89, 247, 120, 1606, 1176, 1103, 1163, 32, 1237].

Errors [487, 806, 743, 187, 242, 1576, 341, 1396].

ESOLVE [163].

Essential [904].

Estimate [403, 1285].

Estimates [912, 138, 89].

Estimating [1268, 470, 469, 521, 626, 644, 1361, 522, 884].

Estimation [712, 780, 266, 964, 1494, 1328, 1327, 815, 626, 644, 1582, 343, 1034, 92, 247, 1035].

Estimator [463].

estimators [1103].

Euclidean [1674, 166, 223, 1559, 1754, 1226].

EVAL [509].

Evaluate [1752].

Evaluating [1249, 1395, 1364, 622].

183, 260, 1640, 1770, 1293, 1524, 1385, 1700, 1601, 1445, 1473, 1678, 1682, 1446, 1706, 1273, 949, 1090, 1136, 1117, 1281, 1217, 1181.

Fredholm [91, 88, 1243].

Free [72, 1723].

Frequencies [1294].

Freudenthal [1192].

Frontal [882, 997, 1098].

FSAIPACK [1441].

Fujitsu [1776].

Full [160, 1658, 361, 1621, 1369, 1313].

Fully [462, 1140].

Function [1638, 439, 860, 859, 302, 297, 474, 770, 781, 672, 667, 666, 1596, 1704, 196, 594, 593, 672, 642, 692, 751, 775, 1557, 1606, 1570, 1348, 1395].

Functional [999, 400, 66, 65].

Functionality [1445, 1446].

Functions [1294].

Generate [1623, 1624].

Generating [293, 817, 816, 531, 368, 72, 936, 935, 789, 813, 464, 1018, 615, 572, 601, 640, 822, 907, 146, 1214, 950, 1176, 962, 960].

General-purpose [1218, 989].

Generalization [1028].

Generalized [1638, 586, 182, 477, 784, 785, 538, 206, 396, 486, 613, 1074, 57, 118, 124, 575, 629, 1498, 168, 705, 706, 552, 217, 1391, 998, 884, 1395, 1187, 1144].

Generally [1623, 1624].

Generate [842].

Generators [73, 599, 495, 587, 317, 314, 805, 807, 1785, 769, 768, 264, 1615, 219, 1442, 754, 1787, 1008, 1079, 1251, 1036].
19

[1702, 1789, 1580, 500, 1565, 995, 221, 1491, 1216, 1161, 886, 925].
Generic [1268, 1778, 1454, 1670, 1356, 1059, 1275].
Genome-Wide [1427].
Genus [1495].
Geometric
[1758, 1673, 165, 1548, 1668, 1536, 1482, 1226].
Geometry [1698].
GERK [92].
GetFEM [1670].
GF [1304].
GFUN [822].
gHull [1403].
Gibbs [378, 377].
Gibbs-King [378, 377].
Gibbs-Poole-Stockmeyer [378, 377].
Ginkgo [1681, 1707, 1708, 1680].
Given [612].
Givens [1063, 1107].
GIZ [1075].
Global
[625, 624, 1383, 853, 46, 569, 862, 92, 89, 451, 1453, 247, 1746, 1102, 1290, 1085].
Globally [922, 580, 939, 1215].
GloptiPoly [1085].
glsurf [1115].
GMRES [1141, 1257].
GNU [1493].
Goal [300, 295].
Goliath [735].
gonal [1584].
Governed [1682].
GPGPUs [1525].
GPU [1479, 1463, 1456, 1517, 1403, 1462, 1735, 1505, 1706, 1552].
GPU-Accelerated [1517].
GPUs [1586, 1598, 1629, 1382].
GQRAT [987].
Gradient [401, 1773, 168, 1166, 1250, 1249, 1037, 454].
Gradient-based [1773].
Gradients [280, 390].
Gram [255, 251].
GRamian [1784].
Graph [1574, 1626, 1635, 1781, 368, 143, 647, 406, 1644, 1373, 423, 1706, 1401, 993, 1628].
Graph-Based [1373].
Graph-Theoretical [143].
GraphBLAS [1626, 1781].
Graphic [1384].
Graphics [1506].
Graphs [292, 1744, 807, 1246].
GRASP [1053, 1169, 1095, 921, 885, 966, 993].
Graycode [7, 527, 60].
Greater [907].
Grid [824, 1514, 646, 1597, 898, 895, 896, 1137, 1406, 1158, 1224, 1435].
grid-free [1224].
Grids [602, 1567].
Group [671].
Growth [1568].
Guaranteed [63, 830, 1166].
Guarantees [1548].
guided [1654].

H [300, 271, 301, 1640, 305, 152].
H-Revolve [1640].
H2Pack [1669].
H2PEC [627].
Hager [1072].
Half [1470].
Half-Range [1470].
Halley [490].
Hamiltonian [1003, 1179, 1485, 1769, 406].
Hamiltonian/Hamiltonian [1485].
Hammarling [1223].
Hand [680, 1118].
hand-coding [1118].
Handling [611, 825, 928, 897].
Handel [392, 391, 173].
Hardware [1501, 420].
Harmonic [1267, 1705].
Harmonics [1435].
Harmanping [1480, 1453].
Having [904, 1378].
HDG [1451].
Heap [304].
Heat [100, 1033].
Helmholtz [577, 576, 254, 1371, 337, 210, 404, 1536].
Helmholtz-Type [254].
HERMCOL [525].
Hermite
[99, 652, 1470, 524, 525, 682].
Hermmitian [1094, 1416, 134, 1604].
Hessenberg [1354, 1391, 1093, 381, 1138, 1171, 1730, 101, 649].
Hessian [522, 521].
Hessians [1410, 1225].
Heteroclinic [1360].
Heterogeneity
[1555].
Heterogeneous [918, 1572].
Heuristic [1439].
Heuristics [451].
hexahedral [1755].
HFFT [577].
Hierarchical
[1586, 798, 1640, 1434, 1422, 686, 1158, 1139, 1046].
Hierarchically
[1489, 1488, 1482].
Hierarchy [718].
HIFIR [1737].
High
[1651, 1707, 1630, 1708, 994, 577, 730, 1666, 1631, 874, 1545, 1561, 1607, 1680, 1257, 1248, 248, 1669, 1441, 534, 941, 1672, 1425, 1358, 1738, 1507, 1388, 1699,

J6 [69, 80, 59, 193]. Jacobi [1681, 1680]. Jacobian [470, 469, 1118, 1395].
Java [1644, 1504, 1326]. JBESS [126, 125, 207]. JetFitting_3 [1268].
Jordan [303, 298].

K2 [115]. Kalman [1306, 1126]. KBLAS [1479]. Kernel [1669, 1506].
Kernels [1598, 1344]. Key [93, 87]. Keys [93, 87]. Keywords [518, 693, 473]. Kind [91, 88, 1243, 708, 313, 144, 414, 6, 58].

Language [1626, 1781, 1569, 1670, 673, 1409, 1409]. Languages [409, 1731].
LAPACK [1687, 881, 1394, 884, 1295]. LAPACK-based [884].
Large [1641, 915, 873, 872, 1590, 495, 361, 1428, 1780, 613, 387, 1745, 1474, 761, 569, 1493, 603, 1596, 1704, 744, 740, 741, 614, 1710, 758, 488, 1682, 1747, 1094, 1286, 1205, 1108, 1096, 1119, 1204, 1251, 1289, 1144, 1349, 1233, 1413, 1311, 1098, 1306, 940].
Large-Scale [873, 1590, 495, 1428, 1780, 1474, 569, 744, 740, 741, 758, 488, 1682, 1747, 1641, 1745, 1710, 1286, 1205, 1096, 1251, 1289, 1349, 1233, 1413, 940].
Larger [8, 141]. Larkin [497, 536]. Last [724]. Lattice [1765, 808, 826, 1476, 1330, 1542, 1476].
Least-Squares [509, 508, 348, 407, 1531, 742, 920, 347, 1667, 1416, 1200, 1197]. Left [1725].
Level-3 [823, 756, 1381, 1498, 1248, 1730]. Leverage [1749].
MGRIT [1685]. midpoint [1411]. Mie [1647]. MieSolver [1647]. Mildly
777. MIMD [823]. Minefield [33]. minima [1102]. Minimal
431, 547, 26, 267, 81, 1140. Minimization
625, 496, 832, 104, 130, 440, 21, 44, 744, 740, 741, 526, 76, 318, 982, 961.
Minimizing [579, 922, 1162, 653]. Minimum
301, 296, 292, 450, 541, 499, 1761, 1526, 1123, 1122, 1121.
Minmax [1671]. Minor [71]. MINRES [1416]. MINRES-QLP [1416].
Mirroring [855]. MISCFUN [894]. Mises [150, 336]. Mixed
1757, 1239, 1697, 1371, 1337, 1683, 1678, 1016, 1157, 1312, 1062.
Mixed-domain [1678]. mixed-order [1016]. Mixed-precision
1757, 1678, 1312. mixed-volume [1157]. MixedVol [1157]. Mixture
Mode [1426, 1637, 1172, 1001]. Model
1430, 356, 1614, 714, 538, 592, 664, 1543, 440, 742, 532, 1065, 1392, 955, 1232.
Model-based [1614]. Model/Trust [440]. Model/Trust-Region [440].
Modeling [1100, 1776, 409, 1507, 1600, 1524, 1670, 1596, 1704, 549, 673, 1298].
modelling [1208]. Models
780, 1494, 1780, 400, 1572, 1770, 530, 1034, 1695, 900, 1035. Moderate
376, 994, 313, 777, 414, 429, 428, 610, 717, 20, 332, 1553, 196, 1329, 255, 251,
897, 1110, 1107, 1111. modred [1430]. Modular [1481, 1240].
Module [1689, 901, 1342, 1279]. Modules [828]. moduli [1311]. Modulo
[1791, 1592, 1161]. modulus [1117]. Moment [1494, 1435].
Mongoose [1635]. Monitoring [51]. Monodromy [1584]. Monomial
Montgomery [1718]. Monty [960]. Morse [1467]. Most [460]. motions
1318, 1235. Moving [668, 824]. Moving-Grid [824]. MP [171, 257].
MPFR [1207]. MPGENR [264]. MPI [1641, 1436]. MQSI [1759].
MQSI-Monotone [1759]. MRRR [1188, 1296]. MSS [1428]. MTIEU1
[796]. MTIEU2 [796]. Multi [1014, 1261, 1716, 1690, 1625, 1717, 1724, 1136].
Multi-Adaptive [1261]. Multi-core [1724]. Multi-Degree [1625, 1717].
multi-dimensional [1136]. Multi-Gabor [1690]. Multi-level [1014].
Multi-shift [1716]. Multicolor [602]. Multicommodity [845].
Multicomplex [1651, 1646, 1358, 1646]. Multicomputer [944]. Multicore
1508, 1585, 1599, 1561, 1497, 1505, 1388. Multicore-Enabled [1497].
Multidimensional [1774, 728, 606]. Multidisciplinary [1293]. Multidual
[1651]. Multifacility [301, 296]. Multifrontal [1508, 1585, 656, 1777, 972,
422, 550, 578, 657, 1482, 1230, 1113, 1112, 1162, 1350]. Multigrid
[1758, 1673, 1691, 462, 1567]. Multimode [866]. Multilevel
1325, 1536, 1181. multilinear [1158]. multimethod [1316]. Multimodal
579, 653. Multinomials [509, 508]. Multiobjective [1741]. Multiphysics
[1633, 1373, 1670, 1298]. Multiple
Multiple-Choice [410]. Multiple-length [33]. Multiple-Phase [1653, 1432, 1317, 1351]. Multiple-Precision [171, 170, 257, 449, 1340, 499, 498, 1432, 1739, 715, 963, 1341, 1207, 1317, 1351, 1050].

Multiplication [1479, 1586, 1456, 1776, 1561, 1525, 623, 189, 690, 1563, 1541, 1678, 1304, 1344, 1234].

Multiplicative [1791, 1592, 925].

Multiprocessor [1344].

Multithreaded [1367, 1350].

Multivariate [564, 490, 771, 809, 130, 1571, 1034, 840, 603, 76, 318, 1329, 502, 1402, 1035].

MultiZ [1651].

MultRoot [1116].

MUMPS [1295].

MUQ [1770].

NAG [730, 245, 814].

Narrow [515].

National [431].

Natural [389, 102, 417].

Nature [74].

Naval [1785].

Naxier [1758, 1224].

Ncpol2sdpa [1452].

NDA [1041].

Near [1258, 1606, 1284].

Near-Best [1258].

near-optimal [1284].

Need [474].

Negative [1521, 1386].

Neighbors [223].

NEOS [1000].

NEP [1689].

Nested [323, 919].

Nets [1760].

Network [1633, 401, 262, 41, 1369, 845, 758, 488, 152, 673, 1155].

network-based [1155].

Networks [586, 1665, 637, 5, 1693, 155].

Neumann [194, 2].

Neural [1665, 1693].

Neutral [1324].

Newly [1763].

Newton [1645, 1791, 72, 743, 675, 648, 744, 740, 741, 1592, 982].

Newton-Coates [72].

Newton/Bisection [675].

NFFT [1292].

Niederreiter [842].

NIST [1522].

NITPACK [433, 432].

NL2SOL [348, 407].

NLEVP [1379].

No [1751, 1648, 583].

Node [235, 532, 647].

Node-Addition [532].

Nodes [640, 641].

Noisy [1253, 1361].

NOMAD [1740, 1339].

Non [1660, 1555].

Non-Asymptotic [1555].

Non-Standard [1660].

Nonadaptive [1330].

Noncommuting [1452].

nondifferentiable [1041].

Nonempty [904].

Nonequispaced [1292].

Nonic [683, 682].

Noninteger [796, 795].

Noniterative [812].

nonmatching [1406].

Nonnegative [551, 694, 871, 856, 1616, 1244].

Nonnegativity [1686].

Nonorthogonal [1163].

Nonprocedural [865].

Nonrectangular [404].

Nonstandard [225].

Nonstiff [633, 632, 725, 121, 777].

Nonsymmetric [786, 938, 797].

nonuniform [1175, 1210].

Nonzero [621].

Norm [56, 166, 626, 644, 512, 1526, 1159, 1559].

Pattern [1497, 1230, 1113, 1112, 1410, 1185]. Patterns [1608, 1298].

PDETWO [326]. PDETWO/PSETM/GEARB [326]. PDFIND [55].

Performance [1585, 1707, 1708, 1239, 635, 665, 699, 558, 1654, 1776, 1561, 563, 1680, 1257, 1643, 446, 1366, 1510, 1381, 375, 1005, 1441, 1425, 1668, 24, 1507, 1634, 140, 1449, 1671, 1681, 1603, 718, 1620, 1549, 1563, 1593, 1501, 1542, 1326, 1505, 1706, 1418, 1140, 1049, 1100, 1396, 1607, 1141, 1234, 1248, 1011, 1669, 955, 1672, 1388, 1171, 1180, 1346, 1229].

Performing [804].

Points [181, 180, 231, 1265, 1013, 750, 499, 505, 481, 286, 1137, 1092].

Pole [1258]. Policy [36, 175, 218, 365, 419, 459, 507, 544, 574, 618, 645, 687, 726, 50, 84].

Polytope [1573, 1657]. Poole [378, 377]. Poor [73]. PORT [177].

Space [564, 1758, 223, 344, 833, 530, 423, 950, 1407, 1136, 1226].
Space-Efficient [423]. space-filling [950, 1136]. Space-Time [1758].
Spaces [1674, 1583, 1596, 1704, 452, 1458, 1012, 1081]. Spacetrees [1536].
Spanning [450, 26, 81]. Sparco [1273]. Sparse
SPECFUN [774]. Special
[1674, 1579, 947, 1790, 1363, 1617, 1258, 1137, 1086, 1203]. Spectrum [904, 458, 394, 1663]. Speed [1588]. SPEx [1725]. SPG [1047]. Sphere
[916, 1790, 201, 1253]. Stage [1320]. Staggered [1435]. Staircase
[263, 919, 456]. Standard
[1646, 489, 289, 1661, 1103, 1088, 1772]. Step-Size [289, 1661]. Stepping
Stiffly [201]. Stiffness [964, 121]. STINT [205]. Stochastic [625, 624, 1645, 1214, 1494, 862, 1676]. Stochastic-Integration [625].
455, 506, 1634, 1367, 851, 526, 434, 488, 905, 208, 420, 1400, 1011, 1278.

Unsymmetric
unsymmetric-pattern up-and-downdating
UPC Updated
Updated
Update/Downdate
Update/Downdate
Updated
Using
Using
UTV
Validated
Validation
Value
Valued
Values
Variable
variable-order
Variables
Variance
Variant
Variants
Variates
Variational
Various
VARMA
Varying
VBF
Vector
Variance
Variant
Variates
Vectorization
Vectors
Verified
Verifier
Versatile
Version
Versus
Versus
Versus
Vertical
Virtual
Visible
Visit
View
Virtual
Visible
Visit
viewing
VLUGR2
VLUGR3
Voigt
Vol
Volterra
Volun
Voronoi
Vortex
VTDIRECT95
VTMOP
VW
W-Function
Wallace
WAPR
Wave
Waveform
Wavelet
Way
Weak
Weakly
Weeks
Weierstrass
Weight
Weighted
References

REFERENCES

REFERENCES

CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See also [196].

[27] S. L. Watkins. ACM Algorithm 483: Masked three-dimensional plot program with rotations. *Communications of the ACM*, 17(9):520–523,
REFERENCES

September 1974. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See also [59].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Morris:1976:RDF

Rice:1976:TPS

Ford:1976:DSN

Paul:1976:SEF

Janko:1976:LIS

Atkinson:1976:APL

Shampine:1976:GEE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Koppelaar:1976:RNI

Kaufman:1976:RLA

McClellan:1977:ESL

Stoutemyer:1977:AEA

Shampine:1977:SND

Tran-Thong:1977:FPF

Gonzalez:1977:EAK

REFERENCES

[125] D. E. Amos, S. L. Daniel, and M. K. Weston. CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$. *ACM Transactions on Mathematical Software*, 3(1):76–92, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[126] D. E. Amos, S. L. Daniel, and M. K. Weston. Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]. *ACM Transactions on Mathematical Software*, 3(1):93–95, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See erratum [207].

[130] Charles Dunham. Remark on “Algorithm 500: Minimization of unconstrained multivariate functions [E4]”. *ACM Transactions on Mathemati-
REFERENCES

Aird:1977:PMS

Stoutemyer:1977:ASI

McClellan:1977:CAE

Farden:1977:SSS

Ichida:1977:CFO

Ellis:1977:ANM

Buckles:1977:AGV

REFERENCES

REFERENCES

December 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

Rice:1978:AAA

Futrell:1978:RTA

Skovgaard:1978:RCE

Krogh:1978:AP

Ford:1978:PET

Fox:1978:PMS

Enright:1978:IEM

Shampine:1978:SPA

Sherman:1978:ASG

Tendler:1978:SSI

Miller:1978:SRA

Miller:1978:ASR

Sherman:1978:ANF

Tendler:1978:ASS

REFERENCES

[207] Donald E. Amos. Erratum: “Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]”. ACM Transactions on Mathematical Software, 4(4):411, December 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [126].

REFERENCES

REFERENCES

Philip E. Gill, Walter Murray, Susan M. Picken, and Margaret H. Wright. The design and structure of a Fortran program library for optimization.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

deBoor:1980:AS

Duris:1980:AFR

Carpaneto:1980:ASA

Eckhardt:1980:AWE

Messner:1980:ASP

Anonymous:1980:AAD

Chan:1980:NLS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

September 1980. CODEN ACMSCE. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

December 1980. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

[332] Geoffrey W. Hill. Evaluation and inversion of the ratios of modified Bessel functions, $I_1(x)/I_0(x)$ and $I_{1.5}(x)/I_{0.5}(x)$. *ACM Transactions on Mathematical Software*, 7(2):199–208, June 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[413] Werner C. Rheinboldt and John V. Burkardt. Algorithm 596: a program for a locally parametrized continuation process. *ACM Transactions on
Cody:1983:ASM

Davis:1983:AAC

Ahrens:1983:ASG

Herriott:1983:ATA

Pape:1983:RSP

Krogh:1983:AAP

Zave:1983:QEF

REFERENCES

[Diaz:1983:FPS]

[Diaz:1983:ACA]

[Sauer:1983:AFP]

[Hopkins:1983:APV]

[Gaffney:1983:NIT]

[434] W. V. Snyder and R. J. Hanson. Algorithm 607: Text exchange system: a transportable system for management and exchange of programs and
REFERENCES

REFERENCES

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [299].

[448] Melanie L. Lenard and Michael Minkoff. Randomly generated test problems for positive definite quadratic programming. ACM Transactions on
REFERENCES

[556] G. V. Milovanović and M. S. Petković. On computational efficiency of the iterative methods for the simultaneous approximation of polynomial

REFERENCES

REFERENCES

REFERENCES

Hanson:1987:ATA

DiDonato:1987:AFS

Johnson:1987:CES

Bar-On:1987:PPA

Schoenauer:1987:SCB

Ahlfeld:1987:NPG

Haas:1987:MPR

Schneider:1987:EEA

Elhay:1987:AIF

Morgan:1987:CBS

Dongarra:1988:ESF

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dadurkevicius:1989:RA

Buckley:1989:RA

Domich:1989:RHN

Corana:1989:CMF

Enright:1989:CFP

Le:1989:CED

REFERENCES

REFERENCES

REFERENCES

Schryer:1990:DSO

Hansen:1990:PES

Snow:1990:WGO

Sewell:1990:RSP

Zenios:1990:INO

REFERENCES

REFERENCES

REFERENCES

Hopkins:1990:RRK

Amos:1990:RPP

Garbow:1990:RFS

Addison:1991:ADT

REFERENCES

Shampine:1991:RSS

Gal:1991:AEM

Cody:1991:PEP

Cody:1991:UTS

Dax:1991:CAB

Pardalos:1991:CTP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Majaess:1992:AAA

Tang:1992:TDI

Gardiner:1992:SSM

Gardiner:1992:AFS

Weerawarana:1992:PCG

REFERENCES 158

REFERENCES

Fisher:1992:DTO

Nash:1992:ABS

Leva:1992:FNR

Leva:1992:ANR

Boisvert:1992:PVS

REFERENCES

[783] I. S. Duff and J. A. Scott. Computing selected eigenvalues of sparse
unsymmetric matrices using subspace iteration. *ACM Transactions on
[877].

[784] James Demmel and Bo Kågström. The generalized Schur decomposi-
tion of an arbitrary pencil $A - \lambda B$: Robust software with error bounds
and applications. Part I: Theory and algorithms. *ACM Transactions on

[785] James Demmel and Bo Kågström. The generalized Schur decomposition
of an arbitrary pencil $A - \lambda B$: Robust software with error bounds and
applications. Part II: Software and applications. *ACM Transactions on

[786] Z. Bai, J. Demmel, and A. McKenney. On computing condition numbers
for the nonsymmetric eigenproblem. *ACM Transactions on Mathematical
Software*, 19(2):202–223, June 1993. CODEN ACMSCU. ISSN 0098-

[787] George Miminis and Michael Reid. Algorithm 718: A FORTRAN sub-
routine to solve the eigenvalues allocation problem for single-input sys-
1993. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-
tronic). URL http://www.acm.org/pubs/citations/journals/toms/1993-
19-2/p224-miminis/.

[788] Harvey J. Greenberg. Enhancements of ANALYZE: a computer-assisted
analysis system for linear programming. *ACM Transactions on Mathe-
matical Software*, 19(2):233–256, June 1993. CODEN ACMSCU. ISSN
REFERENCES

REFERENCES

REFERENCES
165

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Blom:1994:AMG

Hull:1994:ICE

Joe:1994:CIL

Cummins:1994:ASS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fateman:1995:FFP

Kearfott:1995:FER

Dongarra:1995:SDX

Grosse:1995:RM

Demetriou:1995:ALF

Weber:1995:AIG

REFERENCES

REFERENCES

[Dobmann:1995:APF]

[Sullivan:1995:NAU]

[Miminis:1995:AFS]

[Alefeld:1995:AEZ]

[Rizzardi:1995:MTM]

REFERENCES

REFERENCES

REFERENCES

LAPACK-based library for the computer manipulation of tensor prod-
1996. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-

[882] I. S. Duff and J. A. Scott. The design of a new frontal code for solv-
ing sparse, unsymmetric systems. *ACM Transactions on Mathematical

[883] Roland W. Freund and Noël M. Nachtigal. QMRPACK: a package of

[884] Bo Kågström and Peter Poromaa. LAPACK-style algorithms and soft-
ware for solving the generalized Sylvester equation and estimating the
separation between regular matrix pairs. *ACM Transactions on Mathe-

[885] Mauricio G. C. Resende, Panos M. Pardalos, and Yong Li. Algorithm
754: Fortran subroutines for approximate solution of dense quadratic
assignment problems using GRASP. *ACM Transactions on Mathematical

March 1996. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
REFERENCES

180

REFERENCES

REFERENCES

REFERENCES

Eastham:1996:USP

Weerawarana:1996:PKB

Barber:1996:QAC

Sarkar:1996:CAM

Koenker:1996:RBC

REFERENCES

REFERENCES

185

Bouaricha:1997:ASS

Cabay:1997:AEW

Geurts:1997:AFP

Blackford:1997:PEN

Ho:1997:DND

REFERENCES

[925] Pei-Chi Wu. Multiplicative, congruential random-number generators with multiplier $\pm 2^{k_1} \pm 2^{k_2}$ and modulus $2^p - 1$. ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

Greenberg:1997:ACS

Bai:1997:ASF

Watson:1997:ASF

Zhu:1997:ALF

Karp:1997:HPD

MacLeod:1998:AFD

[99] Edmond Chow and Michael A. Heroux. An object-oriented framework for block preconditioning. *ACM Transactions on Mathematical Soft-
REFERENCES

[955] Bo Kågström, Per Ling, and Charles Van Loan. GEMM-based level 3 BLAS: high-performance model implementations and performance eval-
REFERENCES

192

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[982] Dexuan Xie and Tamar Schlick. Remark on Algorithm 702: The updated truncated Newton minimization package. ACM Transactions on
REFERENCES

Gay:1999:SAF

Flores:1999:CFR

Heinkenschloss:1999:IBO

Gockenbach:1999:CCL

Gautschi:1999:AGG

REFERENCES

[998] Krister Dackland and Bo Kågström. Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form. *ACM*

REFERENCES

[1016] Wayne H. Enright and Ramanan Sivasothinathan. Superconvergent inter-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Martins:2003:CSD

Eble:2003:ASP

Cools:2003:ACP

Genz:2003:ANC

Shellman:2003:ADC

Fahey:2003:APE

Baglama:2003:AIM

REFERENCES

468, December 2003. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

Falgout:2005:PSH

Hernandez:2005:SSF

Hindmarsh:2005:SSN

Heroux:2005:OTP

Castillo:2005:FOO

Naumann:2005:DEF
REFERENCES

REFERENCES

587–591, December 2005. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

[1161] François Panneton, Pierre L’Ecuyer, and Makoto Matsumoto. Improved
long-period generators based on linear recurrences modulo 2. ACM
Transactions on Mathematical Software, 32(1):1–16, March 2006. CO-
DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[1162] Abdou Guermouche and Jean-Yves L’Excellent. Constructing memory-
minimizing schedules for multifrontal methods. ACM Transactions on
ISSN 0098-3500 (print), 1557-7295 (electronic).

[1163] Mehmet Koyutürk, Ananth Grama, and Naren Ramakrishnan. Nonorthog-
onal decomposition of binary matrices for bounded-error data compres-
sion and analysis. ACM Transactions on Mathematical Software, 32
(1):33–69, March 2006. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

parabolic cylinder functions \(U(a, x), V(a, x)\). ACM Transactions on
ISSN 0098-3500 (print), 1557-7295 (electronic).

parabolic cylinder functions \(U(a, x), V(a, x)\). ACM Transactions on
ISSN 0098-3500 (print), 1557-7295 (electronic).

a conjugate gradient method with guaranteed descent. ACM Transac-
ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[1167] Laurent Granvilliers and Frédéric Benhamou. Algorithm 852: Re-
alPaver: an interval solver using constraint satisfaction techniques.
REFERENCES

Brisebarre:2006:CME

Kolonko:2006:SRS

Cameron:2006:MPA

Lerch:2006:FFI

Demmel:2006:EBE

Benner:2006:AFS

Sharp:2006:BSP

September 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

521–532, December 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

2007. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Fousse:2007:MMP

Elman:2007:AIM

Crouse:2007:RAG

Rioux:2007:ANF

Kirby:2007:ECC

Scott:2007:ESD

Ball:2007:EGR

REFERENCES

Beebe:2007:AQP

Espelid:2007:AGD

LEcuyer:2007:TCL

Pesch:2007:HSF

Bangerth:2007:DIG

Bai:2007:PSB

REFERENCES

REFERENCES

REFERENCES

Huyer:2009:SSN

Kirby:2009:BDS

Quintana-Orti:2009:ULF

Drmac:2009:FRR

Fraysse:2009:ASF

VanDeun:2009:ANB

Waki:2009:ASS

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Matlab implementation of the Argyris element. ACM Transactions on
ISSN 0098-3500 (print), 1557-7295 (electronic).

multi-adaptive time-stepping. ACM Transactions on Mathematical Soft-
ware, 35(3):17:1–17:24, October 2009. CODEN ACMSCU. ISSN 0098-
3500 (print), 1557-7295 (electronic).

[1262] Dan Gordon and Rachel Gordon. CGMN revisited: Robust and efficient
solution of stiff linear systems derived from elliptic partial differential
18:27, October 2009. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-
7295 (electronic).

[1263] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. Dense linear
algebra over word-size prime fields: the FFLAS and FFPACK pack-
October 2009. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-
7295 (electronic).

[1264] Jean Marie Linhart. Algorithm 885: Computing the logarithm of the normal
distribution. ACM Transactions on Mathematical Software, 35(3):
20:1–20:10, October 2009. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

[1265] Marco Caliari, Stefanode Marchi, and Marco Vianello. Algorithm 886:
Padua2D — Lagrange interpolation at Padua points on bivariate do-
October 2009. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic).

REFERENCES

[1285] Souji Koikari. Algorithm 894: On a block Schur–Parlett algorithm for \(\varphi \)-functions based on the sep-inverse estimate. *ACM Transactions on

REFERENCES

REFERENCES

[1324] Carl Ollivier-Gooch, Lori Diachin, Mark S. Shephard, Timothy Tautges, Jason Kraftcheck, Vitus Leung, Xiaojuan Luo, and Mark Miller. An interoperable, data-structure-neutral component for mesh query and
REFERENCES

[1330] Tiancheng Li and Ian Robinson. Algorithm 906: *elrint3d* — a threedimensional nonadaptive automatic cubature routine using a sequence of

REFERENCES

REFERENCES

[Niesen:2012:AKS]

[Filippone:2012:OOT]

[George:2012:EAP]

[Quintana-Orti:2012:RSP]

[Birkisson:2012:AFD]

[Kim:2012:ASS]

[1376] Benjamin A. Burton and Melih Ozlen. Computing the crosscap number of a knot using integer programming and normal surfaces. *ACM

Boisvert:2013:RKB

Saito:2013:VMT

Poulson:2013:ENF

Thompson:2013:AIG

Cash:2013:AMC

Ltaief:2013:HPB

Dingle:2013:RIT

deDinechin:2013:ZRT

Russell:2013:OCG

Mehra:2013:ASW

Davis:2013:AFO

Gebremedhin:2013:CSG

Poppe:2013:CMO
Koen Poppe and Ronald Cools. CHEBINT: a MATLAB/Octave toolbox for fast multivariate integration and interpolation based on Chebyshev

REFERENCES

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See remark [1534].

Kressner:2014:AHM

delaCruz:2014:ASS

Scott:2014:HER

Kirby:2014:HPE

Hogan:2014:FRM

Fabregat-Traver:2014:CPT

Erway:2014:AMM

REFERENCES

REFERENCES

[1441] Carlo Janna, Massimiliano Ferronato, Flavio Sartoretto, and Giuseppe Gambolati. FSAIPACK: a software package for high-performance fac-

REFERENCES

[1454] Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. CGALmesh: a generic framework for Delaunay mesh genera-
REFERENCES

Robert Granat, Bo Kågström, Daniel Kressner, and Meiyue Shao. Algorithm 953: Parallel library software for the multishift QR algorithm with aggressive early deflation. *ACM Transactions on Mathematical Software*,

[1467] Benjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterized complexity of discrete Morse theory. *ACM Trans-

[Sayed:2016:WCR]

[Lecuyer:2016:ALB]

[Alvarez-Cubero:2016:AVL]

[Ibanez:2016:PPU]

[Abdelfattah:2016:KOL]

[Jeannerod:2016:RIE]

Boyer:2016:MMW

Wang:2016:PGM

Davis:2016:EHA

Delgado:2016:APO

Benner:2016:AFS

Pew:2016:ABB

Zaghloul:2016:RAC

Rouet:2016:DMP

Meiser:2016:RCR

Ledoux:2016:MMT

Vigna:2016:EEM

Laszlo:2016:MAB

[1492] Endre László, Mike Giles, and Jeremy Appleyard. Manycore algorithms for batch scalar and block tridiagonal solvers. ACM Transactions on
REFERENCES

Prusa:2016:DWT

Escobar:2016:AES

Lozano-Duran:2016:AEA

delaCruz:2016:GTU

Turcksin:2016:WDP

Kohler:2016:BLI

REFERENCES

Garrett:2016:NAB

vanderHoeven:2016:MSA

Sukkari:2016:HPQ

Filip:2016:RSI

Ong:2016:ARM

Sluanschi:2016:AAD

REFERENCES

REFERENCES

Margherita Porcelli and Philippe L. Toint. BFO, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Martinsson:2019:RBR

Kulisch:2019:MSI

Wang:2019:PAA

DaSilva:2019:ULS

Green:2019:EBS

Walther:2019:VNR

REFERENCES

REFERENCES

[1604] Jan Winkelmann, Paul Springer, and Edoardo Di Napoli. ChASE: Chebyshev accelerated subspace iteration eigensolver for sequences of

Fackler:2019:AEC

Zaghloul:2019:RO

Faz-Hernandez:2019:HP1

Naumann:2019:ACD

Hashemi:2019:ECE

Lee:2019:ICA

REFERENCES

REFERENCES

Huang:2020:SAR

Arevalo:2020:SPA

Cui:2020:HON

Betcke:2020:PAG

Abhyankar:2020:PDL

REFERENCES

[1639] Nicolas Brisebarre, Mioara Joldes, Jean-Michel Muller, Ana-Maria Nanes, and Joris Picot. Error analysis of some operations involved in
REFERENCES

301

Amos:2020:AQQ

Casado:2020:AMN

Hawkins:2020:AMO

Orellana:2020:ABE

Lange:2020:FRF

Ahrens:2020:AER

REFERENCES

Uphoff:2020:YAT

Williams-Young:2020:SSS

Spring:2020:FCS

Barabasz:2020:EAI

Chang:2020:ADI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Pruua:2021:FMP

Farrell:2021:PST

Lyu:2021:FFA

Lakhmiri:2021:HHO

Slak:2021:MCL

Skrabanek:2021:AFR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2022:CTC

Phipps:2022:ADC

Sobczyk:2022:PPA

Meisrimel:2022:WRA

DeMichele:2022:RAB

Demeure:2022:AEE

[1752] Nestor Demeure, Cédric Chevalier, Christophe Denis, and Pierre Dossantos-Uzarralde. Algorithm 1029: Encapsulated error, a direct ap-
REFERENCES

Brust:2022:ASS

Lefevre:2023:ACE

Reberol:2023:RTC

Bluhdorn:2023:EBA

Amestoy:2023:CSA

REFERENCES

[1775] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van Doornmalen, Leon Eijfer, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf

[1780] Massimo Fioravanti, Daniele Cattaneo, Federico Terraneo, Silvano Seva, Stefano Cherubin, Giovanni Agosta, Francesco Casella, and Alberto

[Davis:2023:ASG]

[Roman:2023:ISR]

[Papanikos:2023:ICL]

[Himpe:2023:EEG]

[Learmonth:1973:NPS]

