A Complete Bibliography of ACM Transactions on Mathematical Software

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/
27 June 2021
Version 3.143

Title word cross-reference

-1/2, 1/2, 3/2, 5/2 [942]. 0 − 1 [498]. 1 [1127]. 2
[1059, 1265, 1228, 1590, 1406, 1226, 1595]. 2p−1 [925]. 3
[792, 1590, 1406, 1403, 1466]. 64 [1565]. A − B [784]. A − AB [785].
a = ±2q ± 2r [995]. ab + cd [1438]. Ax = b [351]. AX2 + BX + C = 0 [415].
AXB + CXD = E [1071, 753, 752]. β [1515]. C1 [1114, 660, 683]. C2
[683, 682, 286]. e−x [1656]. E−n(x) [437]. f1 [283, 316, 315]. F [803, 802, 617, 12].
f(x) [403]. F2 [1565]. H2 [1669]. Hp [453, 452]. hp [1433, 1432]. h → ∞ [445].
i [105]. I0 [150]. I1(x)/I0(x) [336, 332]. I1.5(x)/I0.5(x) [336, 332]. I−n(x)
[126, 125, 207]. ith [30]. Jn(x) [126, 125, 207]. k [789, 1515]. k < m [1515].
[1535]. m [1515]. MDMLT [876]. N [1180, 1584, 105, 30, 1455, 213]. O(log3k)
[789]. O(n(1 + log(N/n))) [841]. O(n1/2τ) [616]. ω [1362]. ±2k1 ± 2k2 [925]. Q
[1048, 1555, 1420]. QR [1545, 1499, 1460, 1505, 1552, 953, 952, 1412]. rc
[804, 19, 79]. r × c [542]. s [1347]. T [1543, 1036, 14, 15, 338, 339, 228].
$U(a, x) [1165, 1164]$. UTV [1587]. $v [566, 619]$. $V(a, x) [1165, 1164]$. \(\varphi \)

$[1285, 1364]$. $W(a, x) [1348]$. \(x_{n+1} = f(x_n) [149] \). \(x \geq 0, \nu \geq 0 [126, 125, 207] \).

- Test [617, 12]. - Vectors [1455].

/MPI [1641].

1 [1006], 100 [62], 1000 [1626], 1001 [1627], 1002 [1628], 1003 [1635], 1004 [1636], 1005 [1637], 1006 [1638], 1007 [1645], 1008 [1646], 1009 [1647], 1010 [1648], 1011 [1657], 1012 [1666], 1013 [1674], 1014 [1675], 1015 [1684], 1016 [1685], 1017 [1695], 13 [583], 149 [3, 174], 1788 [1588], 179 [4, 94].

2-torsion [1621]. 2.0 [1490]. 2.5 [1236]. 2003 [1419, 1365, 1224, 1298]. 2008 [1594]. 219 [5, 155], 236 [6, 58], 246 [7, 60], 259 [8, 141], 284 [9, 115], 299 [10, 116], 2C [387]. 2D [895, 638]. 2Sum [1538].

Bandwidth
Breakthroughs [41]. Brent [276]. BRENTM [285]. BRKF45 [633, 725].
concise [1160]. Concurrency [1373]. Condensed [1374]. Condition
[786, 139, 1328, 1327, 626, 644]. Conditions [1618, 1494, 1176]. Condor
[1000]. Confidence [138, 1676]. Configuration [1583, 1458]. Confluent
[761]. conformal [957]. Congruence [163, 161]. Congruential [995, 925],
CONHYP [761]. Conjugate [280, 1166, 1037]. Conn [908]. connected
[957]. Connections [1575]. Conquer [757, 821, 1056, 1474, 1701, 1219].
Considerations [585, 996]. consistent [1663]. Constant [1554]. Constants
[983]. CONSTR [509]. Constrained [283, 316, 315, 858, 650, 936, 388,
908, 648, 1583, 636, 152, 940, 1228, 1097, 1349, 1540, 879, 878, 1047].
constraint [1167]. Constraints
[302, 297, 1686, 766, 465, 742, 1616, 862, 512, 1221]. Construct [1618].
Construing [48, 1162, 1476, 493]. Construction
[1459, 1691, 969, 1509, 702, 1307]. containment [1177]. CONTEST [1270].
Continuation [1469, 1360, 968, 413, 412, 1043, 989]. continued [1288].
Continuous [867, 1674, 579, 653, 947, 722, 1540, 1036, 1012, 922].
Continuum [1494]. Contour [485, 638, 594, 593, 672, 193]. Contouring
[1241, 1099]. Contours [484]. contraction [1100]. Control [1653, 1383, 766,
1591, 736, 843, 985, 828, 355, 1432, 1486, 1661, 1195, 1045, 1317, 1351, 1237].
Controllable [1270]. Controlling [402]. Controls [566, 619, 1309].
Convective [90]. Convergence [63, 149, 892]. Convergent [580, 939, 1309].
Conversion [831, 1359]. Conversions [1562, 1039]. Converting [598].
Convex [906, 1655, 1483, 164, 162, 1403, 164, 1047]. Convex-Constrained
[1047]. convexity [1114]. convexity-preserving [1114]. Convolution
[1665]. Convolutions [392, 391]. Cooley [1639]. coordinate [1300, 1281].
coordinate-free [1281]. Core [550, 1367, 1581, 1133, 1183, 1282, 1104, 1314].
Cornea [1480, 1438]. Correct [1475, 1207]. Corrections [487, 506, 1617].
Correctly [1517, 724, 1299]. Correctness [70]. Corresponding [598, 329].
Corrigenda [846, 653, 628, 654, 629, 655, 261]. Corrigendum
[821, 781, 408, 809, 877, 619, 340, 820, 644, 826, 583, 1032, 601, 590, 1351, 555].
Coupled [1572, 1033, 1073]. Coupling [1572]. Covariance [1494, 649].
CPU [363]. CRAY [1505]. Criteria [1019]. Cross
[541, 343]. Cross-Bispectrum [343]. Cross-Validation [541]. Crosscap
[1376]. Cryptography [1477, 1607, 1621]. Crystals [1692]. CSHEP2D
[975]. CSRFPACK [1114]. Cubature
[759, 792, 911, 535, 380, 1330, 1090, 958, 1091, 1058]. Cubic
[270, 136, 1461, 566, 619, 541, 135, 975, 899, 1002]. CUBPACK \{1090, 911\].
CUBTRI [535, 380]. CUDA [1542]. Cumulative [630, 1468, 29, 82].
Curiosity [229, 17]. Curvature [999]. Curve
[18, 95, 265, 136, 1607, 173, 435, 135, 775, 172, 1596, 77, 950, 1280, 893].
Curve-Fitting [778]. Curved [1631, 100]. Curves
[1584, 1544, 1459, 547, 1136]. Customized [1622]. Cut [301, 296, 1092].
Cyclic [201, 514]. cylinder [1165, 1164, 1348]. Cylinders [1647].
Cylindrical [1244, 1342].

D [1590, 1599, 1265, 1228, 1590, 1406, 1403, 1466, 1226, 1595, 92, 1127]. D/ [1590]. D2 [334, 554, 66, 205]. D3

DAESA [1443, 1440]. DAFNE [467]. DAG [1434]. Dagwood [612].

Decomposition [1641, 1544, 37, 370, 1325, 784, 785, 919, 573, 310, 1701, 691, 876, 1022, 1163, 1226, 1393]. Decompositions [779]. Decrease [830].

DELAUNAYSPARSE [1666]. delay [1054]. Dense [1479, 564, 929, 1598, 1263, 1575, 613, 1684, 249, 1489, 1551, 1385, 1488, 1667, 1664, 649, 1372, 1304, 897, 1131, 953, 952, 1199, 1352, 885].

Description [400, 896, 1090, 1316]. DESI [903]. Design [914, 209, 1355, 220, 234, 945, 168, 1062, 357, 1293, 1608, 1373, 1291, 462, 1298, 1563, 1581, 1497, 208, 1188, 889, 882, 996, 1308, 1280, 1104, 1231].

Designing [1502, 669]. Detecting [121]. Detection [964, 1555, 1533].

Determinants [97, 385]. Determine [620]. Determining [358].

Deterministic [1682]. Developing [85]. Development [1589, 1181].

Diagrams [1425, 1509]. Dichotomy [1363]. Dictionaries [1690].

DFTI [1154].

Distributed [181, 180, 231, 1051, 945, 1284, 919, 1516, 1512, 1204, 1290, 1083, 1231, 1212, 1314, 1453]. Distributed-Memory [945, 1512, 1489, 1488, 1601, 1083, 1229, 1081].

divided [968]. Divided [856]. Division [33, 941, 468, 511, 555, 1124]. DMNetwork [1633].

Dominant [938, 964]. Double [912, 322, 968, 1550, 1362, 122, 340].

569, 641, 943, 1301, 951, 1228, 1102, 1136, 1023, 1032, 1303, 1398, 1209.

Generator [73, 599, 495, 587, 317, 314, 805, 807, 1696, 769, 768, 264, 1615, 219, 1442, 754, 1698, 1008, 1079, 1251, 1036]. Generators [1700, 1580, 409, 560, 500, 1565, 995, 221, 1491, 1216, 1161, 886, 925].

High-Accuracy [534]. High-Dimensional [994]. High-Level [730, 673].
High-Order [577, 248, 1358, 1634, 943, 1152, 1237].
High-Performance [561, 1257, 1441, 1425, 1507, 1449, 718, 1620, 1549,
1563, 1593, 1326, 1607, 1248, 1669, 1672, 1388, 1346, 1541, 1234, 955, 1229].
High-Precision [941].

Highest [640, 641].

Highly [722, 1108].

Hodograph [1459]. Holonomic [822]. Homoclinic [1360, 1560].

Homogeneous [1388]. Homotopy [580, 939, 893, 1189, 989, 1007].

HOMPACK [639, 580]. HOMPACK90 [939]. honor [1009]. Hopf [968].

Householder [930, 1170, 249, 1346]. Householder-like [1346]. hp [1277].

HSL [1119]. HSL MI28 [1424]. h Tucker [1422]. Huffman [1471, 643]. Hull
[164, 162, 1403]. HULLS [906]. HURRY [427, 426]. Hybrid
[1245, 1483, 113, 382, 1659, 1560, 1140, 1202]. Hybrid-Parallel [1659].

Hyperbolic [1654]. hypercubes [1402]. Hyperelliptic [837, 836].

Hypergeometric [1612, 627, 761, 775, 1353]. HyperNOMAD [1693].
Hyperparameter [1693]. hypot [1675]. hypre [1148].

IBESS [126, 125, 207]. Ideals [493]. Identities [1465]. IDR [1347]. IEEE
[799, 698, 1588, 642, 692, 751]. IEEE754 [1515]. IFISS [1208]. II [37, 1179,
896, 520, 785, 1328, 545, 1011, 1074, 425, 424, 202, 1432, 741, 121, 1039]. IIA
[1661]. III [70]. IIPBF [1414]. IIsignature [1636]. ILDL [1535]. ILLIAC
[310]. ILU [1274]. ILU-type [1274]. Image [1655, 1326]. Imaginary
[1646, 1111, 1110]. Imaging [1210]. Implementation
[757, 821, 1674, 182, 597, 798, 490, 900, 823, 992, 714, 1260, 592, 664, 179, 616,
90, 912, 1607, 1502, 560, 1242, 607, 235, 292, 968, 945, 1559, 289, 808, 570,
1571, 304, 1610, 377, 1523, 557, 311, 741, 384, 373, 1594, 1581, 642, 692, 751,
279, 1139, 1188, 1065, 1355, 1069, 1172, 1055, 1248, 1001, 892, 583, 1062, 1147,
1196, 1393, 1413, 1104, 1126, 826]. Implementations
[1429, 764, 1498, 423, 1505, 955, 996]. Implementing
[1508, 599, 1565, 825, 928, 704, 1072, 1541, 1082, 1079]. Implicit
[597, 843, 210, 1103]. Implicitly [1631, 1548]. Improve [558, 1381].

Improved [1675, 160, 371, 370, 637, 850, 849, 685, 1161, 1677, 1657].

Improvements [1487, 1142]. Improving
[1665, 73, 1614, 393, 178, 711, 1171, 1698]. In-Place [1359]. In-Situ
[128, 258]. Incomplete [1638, 834, 352, 582, 763, 561, 838, 20, 253, 252, 981,
1521, 863, 1535, 150, 850, 849, 1338, 4, 94, 196, 1424, 1386, 1250, 1249].
incompressible [1208]. Incorporated [86]. Increasing [1321, 451].
Incremental [1509]. Indefinite
[98, 1463, 661, 422, 1535, 1462, 1547, 578, 1337, 890, 1109, 1404, 1183, 1352].
Independent [1480, 966, 1038, 1039]. Index [630, 971, 137, 1209]. Induced
[1081]. Industry [474]. Inference [1682]. Infinite
[1658, 529, 1066, 1414, 1190, 1105]. infinity [1159]. infinity-norm [1159].
Influence [656, 40, 1396]. Information [649]. Infrastructure [1478, 1252].
Inherited

Initial [696, 932, 903, 633, 632, 680, 746, 745, 777, 562, 654, 245, 1320, 725, 776, 1554, 402]. Initial-Value

INTCOL [525]. Integer [1020, 1376, 163, 161, 450, 250, 468, 796, 533, 1511, 857, 1021, 1048, 1299].

Integers [52, 111, 1311]. Integer [1020, 1376, 163, 161, 450, 250, 468, 796, 533, 1511, 857, 1021, 1048, 1299].

Integrals [299, 294, 441, 437, 678, 677, 727, 728, 352, 837, 836, 153, 145, 818, 800, 910, 1031, 1190]. Integrands [1571].

Interpolation-Based [1486]. Interpolatory [589, 710, 355, 640, 641].

Interval [477, 984, 566, 619, 675, 901, 1588, 1576, 451, 211, 1069, 1411, 1167, 1177].

INTERVAL_ARITHMETIC [901]. Intervals [1518, 138, 1583, 1676].

Iteration [783, 877, 1702, 149, 1014, 217, 719, 335, 331, 1592, 1604].

J6 [69, 80, 59, 193]. Jacobi [1681, 1680]. Jacobian [470, 469, 1118, 1395].

Java [1644, 1504, 1326]. JBESS [126, 125, 207]. Jet_fitting_3 [1268].
22

1577, 465, 1262, 1531, 400, 788, 71, 1052, 945, 1067, 1684, 581, 742, 1565,
1609, 263, 919, 317, 314, 1547, 387, 995, 62, 238, 237, 609, 108, 750, 749, 357,
133, 119, 461, 280, 557, 1681, 379, 369, 1551, 845, 851, 456]. Linear
[385, 158, 548, 1554, 540, 533, 512, 1683, 514, 1511, 502, 114, 246, 268, 1191,
897, 1132, 1131, 1416, 1400, 889, 890, 1108, 1406, 1119, 1204, 1312, 1083, 1274,
1199, 1281, 1161, 1098, 1189, 1307, 1007]. Linear-quadratic [845].
Linearized [1682]. Linearly [316, 315, 650, 388, 908, 954]. Lines [1621].
Linking [986]. Linnea [1688]. Liouville
[185, 733, 732, 1040, 904, 947, 937, 1156, 1490, 731, 794, 974, 973]. Lisp
[852, 909]. List [93, 87]. Lists [293]. LLDRLF [900]. LLRANDOM [1696].
LMEF [1307]. LMI [1618]. Local
[18, 23, 95, 230, 668, 265, 136, 912, 46, 1102, 1398]. Localization [1369].
Locally [413, 412]. Locating [622, 1570]. Location [301, 296, 138, 463, 697].
Log [1636, 900, 1008, 900]. log-concave [1008]. log-F [900]. log-likelihood
long [1161]. long-period [1161]. Longest [358]. Loops [558, 1537]. LOPSI
[335]. Loss [1006]. Low [564, 1585, 842, 1686, 926, 476, 1513]. Low-discrepancy
[842, 926]. Low-Rank [1585, 1686]. Low-Space [564]. Low-Variance
[1513]. Lower [53]. LSA [1289]. LSNNO [758]. LSQR
[379, 369]. LSTRS [1233]. LU [1230, 1338, 1255]. Lyapunov
[1074, 1498, 1223]. Lyness [567]. LZ [57, 118].

Machine [620, 85, 983, 159, 1174]. machine-efficient [1174]. Machines
MADS [1339]. magnetic [1210]. Magnitudes [761]. Maintenance [304].
MANBIS [1570]. Manifolds [1578, 1560]. Manipulating [612].
Manipulation [1324, 822, 47, 120, 261, 222, 881, 880, 1398]. Many
[1381, 1447, 922, 1581, 1570]. Many-continuous [922]. Many-Core [1581].
Manycore [1492, 1601]. Maple [822]. Mapped [1623, 1624]. mapping
massively [1356]. Matches [142, 703]. Matching [1574, 1690, 1069].
MATCONT [1084]. Math [583]. Mathemagix [1500]. Mathematical
[131, 51, 48, 810, 224, 538, 383, 177, 698, 319, 366, 308, 738, 264, 40, 794, 801,
488, 622, 1472, 1556, 724, 1570, 892, 1389, 37]. Mathematics [1588].
Mathieu [1020, 1021, 1184, 1193, 1408, 216, 796, 795]. MATLAB
[1351, 1194, 1094, 1198, 1627, 1387, 1006, 1400, 1360, 1084, 888, 1142, 1428,
1172, 1451, 716, 1571, 1158, 1156, 819, 1144, 1533, 1389, 1432, 1402, 1493,
1317, 1233, 1363, 1134, 1220, 1270, 1336, 1024, 1472, 1556, 1283, 1243, 1520,
1176, 1646, 1484, 1260, 1208, 1215, 1085, 1582, 1250, 1045, 1422, 1490, 1443,
1440, 1305, 1035, 1116, 1414]. MATLAB/GNU [1493]. MATLAB/Octave
[1402]. Matrices [798, 470, 469, 521, 553, 411, 972, 783, 877, 931, 517, 1026,
[1426, 1637, 1172, 1001]. Model
Modeling [1100, 409, 1426, 1637, 1172, 1001].
Module [1689, 901, 1342, 1279]. Modules [828]. moduli [1311]. Modulo
[1702, 1592, 1161]. modulus [925]. molecular [1117]. Moment [1494, 1435].
Mongoose [1635]. Monitoring [51]. Monodromy [1584]. Monomial
[171, 257]. MPFR [1207]. MPGENR [264]. MPI [1641, 1436]. MRIR
[1188, 1296]. MSS [1428]. MTIEU1 [796]. MTIEU2 [796]. Multi
[1014, 1261, 1625, 1136]. Multi-Adaptive [1261]. Multi-Degree
[1651, 1646, 1535, 1646]. Multicomputer [944]. Multicore
[1651]. Multifacility [301, 296]. Multifrontal
[1508, 1585, 656, 972, 422, 550, 578, 657, 1482, 1230, 1113, 1112, 1162, 1350]. Multigrid [1673, 1691, 462, 1507]. Multiinput
[1325, 1536, 1181]. multilinear [1158]. multimethod [1316]. Multimodal
[579, 653]. Multinomials [509, 508]. Multiphysics [1633, 1373, 1670, 1298].
Multiple [1653, 410, 1652, 727, 171, 170, 257, 276, 33, 323, 587, 1530, 808, 826, 449, 1340, 499, 498, 1432, 715, 963, 1341, 1207, 1317, 1351, 1050].
Multiple-Choice [410]. Multiple-length [33]. Multiple-Phase
[1653, 1432, 1317, 1351]. Multiple-Precision
[171, 170, 257, 449, 1340, 715, 963, 1341, 1207]. Multiplication [1479, 1586, 1481, 1456, 1561, 1525, 623, 189, 690, 1563, 1541, 1678, 1304, 1344, 1234].
multiplications [1276]. Multiplicative
[1702, 1592, 925]. multiplicities
[1116]. multiplicity [1405]. multiplier [925]. Multipliers [995]. multiply
[1512]. Multiprecision [791, 870, 468, 1227]. multiprocessor
[1344]. Multiscale [1591]. Multishift [1460, 1412]. Multistep
[1630, 287, 289, 158, 548, 514, 246, 1307]. Multithreaded [1367, 1350]. Multivariate
[564, 490, 771, 809, 130, 1571, 1034, 840, 603, 76, 318, 1329, 502, 1402, 1035]. MultiZ
[1651]. MultRoot [1116]. MUMPS [1295].

NAG [730, 245, 814]. Narrow [515]. National [431]. Natural
near-optimal [1284]. Nearest [223]. Need [474]. Negative [1521, 1386].
Neighbors [223]. NEOS [1000]. NEP [1689]. Nested [323, 919]. Network
[1633, 401, 262, 41, 1369, 845, 758, 488, 152, 673, 1155]. network-based
[1155]. Networks [586, 1665, 637, 5, 1693, 155]. Neumann [194, 2]. Neural
[1665, 1693]. Neutral [135]. Newton [1645, 1702, 72, 475, 744, 740, 741, 1592, 982].
Newton-Coates [72]. Newton/Bisection [675]. NFFT [1292]. Niederreiter
NOMAD [1339]. Non [1600, 1555]. Non-Asymptotic [1555]. Non-Standard
Nonic [683, 682]. Noninteger [796, 795]. Noniterative [812]. Nonlinear
[1653, 586, 467, 466, 401, 1379, 708, 920, 832, 780, 1689, 490, 1590, 348, 347,
748, 475, 1499, 407, 742, 319, 366, 156, 375, 853, 1019, 78, 168, 513, 655, 1339,
648, 326, 325, 212, 285, 1457, 1432, 1540, 636, 54, 476, 758, 622, 621, 442, 443,
1043, 1096, 1197, 1405, 1150, 961, 1206, 1101]. nonmatching [1406].
Nonnegative [551, 694, 871, 856, 1616, 1244]. Nonnegativity [1686].
Nonorthogonal [1163]. Nonprocedural [865]. Nonrectangular [404].
Nonstandard [225]. Nonstiff [633, 632, 725, 121, 777]. Nonsymmetric
[786, 938, 797]. nonuniform [1175, 1210]. Nonzero [621]. Norm
Normalized [127, 328, 324]. Norms [1455]. normwise [1396]. Note
[500, 981, 243, 1510, 290, 1603, 1028, 548, 893, 511, 555, 1354]. notes [1010].
novel [1117]. NSDTST [563]. NSPIV [204]. Null [833, 1407]. Null-Space
[833]. Number [73, 1700, 1376, 1646, 1580, 587, 805, 704, 1696, 769, 768, 219, 109, 1698, 1216, 1023, 1032, 925]. Numbers
[1651, 786, 293, 139, 52, 159, 1184]. Numeric [581]. Numerical
[696, 1429, 790, 1368, 918, 1544, 43, 1387, 275, 1631, 991, 990, 1658, 793, 999,
1269, 1, 1054, 178, 85, 176, 360, 323, 608, 695, 1294, 100, 985, 1572, 808, 826,
303, 298, 776, 117, 1448, 731, 674, 212, 285, 761, 1457, 747, 1540, 1560, 503, 1447,
471, 472, 210, 482, 636, 723, 453, 865, 169, 28, 129, 421, 988, 1372, 1286, 1084,
1407, 1091, 1119, 1204, 996, 1156, 1274, 1220, 1044, 1307]. Numerically
[1579, 1547].Nyström [634].

Quindiagonal [127]. Quintic [1459, 389, 102, 417, 484, 683]. Quotient [292]. QZ [206, 396, 486, 124].

Remark \[1606, 116, 228, 259, 1107, 1066\]. Remarks \[616\]. Remedy \[1606\].

Renovating \[1057\]. Reordering \[378, 602, 1187\]. Repeated \[153, 145, 1470\]. Replicated \[1444, 1624, 1489\].

Report \[1463, 1624, 1489, 1444, 1624, 1489\]. Reporting \[224\]. Repository \[855\].

Representation \[984, 52, 729, 1518\]. representations \[1303\]. Representing \[1132\]. Reproducible \[1650\]. Require \[44\].

Requirement \[550\]. Requirements \[476, 1277\]. Requiring \[90\]. Research \[853\].

Reservoir \[841, 491, 1175\]. Residual \[652, 1045\]. Residue \[1562\].

Resolution \[1655\]. resonance \[1210\]. Resource \[152\].

Response \[530, 1354\]. Restart \[1322\]. Restructuring \[1418\]. Resulting \[244, 602\].

Results \[1463, 798, 1444, 1463, 155, 978, 372, 129, 81, 982, 1487\]. Retarded \[355\].

Reveal \[52\]. Revealing \[1256, 1587, 953, 952, 1350\]. Reverse \[1426, 1637, 1001\]. Reverse-Mode \[1426\]. Revised \[152, 1048\].

Revisted \[33, 1262, 1027, 1097, 1170\]. Revolve \[1001, 1640\]. Revised \[152, 1048\].

Rcsuite 90 \[932\]. Risch \[520\]. Rksuite 90 \[932\]. robot \[1201\]. robot-packable \[1201\].

Robust \[1618, 784, 1195, 1502, 1262, 1509, 1424, 1312, 785\]. Robustness \[1538, 1614, 451\].

Romberg \[198\]. Root \[510, 570, 941, 1450, 649, 583, 1038\].

rootfinder \[892\]. Roots \[110, 622, 1570, 1116\]. ROPTLIB \[1578\].

Rosenbrock \[104, 21, 559, 373\]. Rotations \[59, 27, 1063\]. Rounded \[1517, 1455, 510, 1649, 724, 1297, 1299\].

Rounding \[806, 1207, 1397\]. Roundoff \[1568, 1575, 187, 242, 1529, 1576, 45, 203, 202, 341\].

Roundoff-Error-Free \[1575\]. Routine \[598, 860, 728, 553, 1330, 1093\].

Routines \[1687, 51, 509, 712, 364, 398, 774, 344, 270, 563, 711, 1257, 340, 322, 813, 245, 1381, 375, 534, 74, 1214, 1318, 1141, 962, 1068, 1075\].

Row \[429, 428, 610, 539\]. Rows \[705, 1667\]. Rule \[449\]. Rules \[1532, 813, 1476, 1330, 640, 641, 962\].

Runge \[197, 1383, 634, 1520, 1176, 632, 680, 964, 546, 1195, 287, 1103, 1320, 736, 843, 516, 545, 722, 121, 232, 528, 723, 943\]. Runtime \[1508, 1367\].

S \[1700\]. S13 \[299\]. S14 \[253, 150, 336, 151, 94, 82, 196, 228\]. S15 \[153, 116\].

S17 \[6, 58\]. S18 \[126, 207\]. S20 \[93\]. S21 \[352, 272, 174\]. S22 \[83\]. SAFE \[1580, 1546, 1096\].

Salesman \[873, 872\]. Sample \[266, 789, 138, 1513\].

Sampled \[1268\]. Samples \[531, 29, 82\]. Sampling \[416, 501, 861, 627, 662, 1464, 1004, 841, 685, 1564, 1513, 491, 565, 1175\].

Sampling-Vectorized \[1564\]. satisfaction \[1167\]. SBA \[1275\]. SBP \[1284\].

SBR \[1030\]. Scalability \[1585, 1049, 1148\]. Scalable \[1633, 1502, 1684, 1232, 1149, 1083, 1023, 1032, 1181\].

ScALAPACK \[1296\]. Scalar \[427, 426, 1492, 1078, 681\]. Scale
34

514, 900, 1066, 1180, 629, 140]. Sort [93, 87]. Sorted [293]. Sorting [267].
Space-filling [950, 1136]. Spaces [1674, 1583, 1596, 452, 1458, 1012, 1081].
Spacetrees [1536]. Spanning [450, 26, 81]. Sparco [1273]

sparse [1274, 1183, 1199, 1282, 1065, 1064].
SPECFUN [774]. Special [1699, 38, 774, 134, 1340, 425, 424, 1475, 697, 1288, 1009, 1060, 1145, 894].
Spectral [1674, 1579, 947, 1701, 1363, 1617, 1258, 1137, 1086, 1203].
Spectrum [904, 458, 394, 1663]. Speed [1588]. SPG [1047]. Sphere [480, 479, 933, 934].
SPRINT2D [970]. SPRITE [1210]. SPRNG [1023, 1032]. Spurious [818].
Square [510, 570, 941, 649, 1003, 583, 1038]. square-reduced [1003].
Steady [100]. Steiner [160, 807]. Stemming [1337]. Stencil [1634, 1423].
systems [135, 1098, 1189, 989, 1007]. Systolic [543].

x [1675]. **XMP** [357]. **XNETLIB** [854]. **xorshift** [1491].

Year [630]. **Yorke** [286].

References

REFERENCES

REFERENCES

Brenner:1973:MTP

Akima:1974:BIS

Loeser:1974:SPT

Wright:1974:VSP

Page:1974:MST

Watkins:1974:MTD

Veillon:1974:NIL

[42] Edward W. Ng. A comparison of computational methods and algorithms for the complex gamma function. *ACM Transactions on Mathematical
REFERENCES

REFERENCES

REFERENCES

Griss:1976:ASS

Duris:1976:GCP

Bays:1976:IPR

Lyness:1976:CNA

Kinsner:1976:AES

Shanno:1976:AMU

Simpson:1976:AFT

REFERENCES

[84] John R. Rice. TOMS policy statement: The rights of program authors in the evaluation of programs. ACM Transactions on Mathematical Soft-
REFERENCES

Ford:1976:DSN

Paul:1976:SEF

Janko:1976:LIS

Atkinson:1976:APL

Shampine:1976:GEE

Ericksen:1976:ICP

Atkinson:1976:AAP

REFERENCES

Shampine:1976:AGG

Janko:1976:ALI

Pike:1976:RIB

Anderson:1976:RIS

Wyatt:1976:PEP

Gentleman:1976:AAC

Barwell:1976:CAS

Bartels:1976:HIU

Hall:1976:NSS

Stewart:1976:AHE

Herriot:1976:APQ

Loeser:1976:SAQ

Davies:1976:RRF

REFERENCES

REFERENCES

[118] Linda Kaufman. Remark on “Algorithm 496: The LZ algorithm to solve the generalized eigenvalue problem for complex matrices [F2]”. *ACM

D. E. Amos, S. L. Daniel, and M. K. Weston. CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$.

[125] D. E. Amos, S. L. Daniel, and M. K. Weston. CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$.

[Macros listed within curly braces need to be expanded elsewhere in the text.]
Amos:1977:ACS

D. E. Amos, S. L. Daniel, and M. K. Weston. Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]. *ACM Transactions on Mathematical Software*, 3(1):76–92, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Benson:1977:ANA

Cate:1977:AAS

Veillon:1977:RNI

Dunham:1977:RMU

Aird:1977:PMS

Stoutemyer:1977:ASI

REFERENCES

[139] S. P. Chan, R. Feldman, and B. N. Parlett. Algorithm 517: a program for computing the condition numbers of matrix eigenvalues without com-

REFERENCES

REFERENCES

Boyle:1977:IPF

Cabay:1977:CTE

Eddy:1977:NCH

Cabay:1977:AEC

Eddy:1977:ACN

Dinkel:1978:SAP

REFERENCES

REFERENCES

[186] S. J. Polak, J. Schrooten, and C. Barneveld Binkhuysen. TEDDY2, a program package for parabolic composite region problems. *ACM Trans-

REFERENCES

Cohen:1978:RSN

Gustavson:1978:RSM

Schoene:1978:RMI

Baker:1978:SAC

Fairweather:1978:IRQ

Shampine:1978:SPA

Sherman:1978:ASG

[207] Donald E. Amos. Erratum: “Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18].” *ACM Transactions on Mathematical Software*, 4(4):411, December 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [126].
REFERENCES

REFERENCES

REFERENCES

DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See corrigenda [261].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

December 1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

Verwer:1980:ICS

Munksgaard:1980:SSS

Abdelmalek:1980:SOS

Abdelmalek:1980:AFS

Barrodale:1980:ASC

Verwer:1980:AME

More:1980:ABF

REFERENCES

REFERENCES

Bentley:1980:GSL

Amos:1980:CEI

Arthur:1980:PPA

Cheung:1980:MLP

Betts:1980:CAC

Kaagstrom:1980:ANC

Amos:1980:AEI

REFERENCES

Machura:1980:SSP

Kurator:1980:PIS

Brown:1980:EPB

Luk:1980:CSV

Sacks-Davis:1980:FLC

Bentley:1980:OET

Campbell:1980:TAM

REFERENCES

REFERENCES

Akl:1981:CCG

Fritsch:1981:DIU

Friedman:1981:NPP

Smith:1981:ERA

Melgaard:1981:GST

Melgaard:1981:APS

More:1981:AFS

Lozier:1981:AER

Golub:1981:BLM

Wang:1981:PMT

Stewart:1981:SIA

Hill:1981:EIR

[332] Geoffrey W. Hill. Evaluation and inversion of the ratios of modified Bessel functions, $I_1(x)/I_0(x)$ and $I_{1.5}(x)/I_{0.5}(x)$. ACM Transactions on Mathematical Software, 7(2):199–208, June 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Ascher:1981:CSB

Ascher:1981:ACC

REFERENCES

Hill:1981:ASM

OLeary:1981:ASH

Hill:1981:RSD

Hill:1981:RSQ

Fritsch:1981:CIU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ahrens:1982:CGP

Lewis:1982:IGP

Lewis:1982:AGP

Paige:1982:ALS

Laurie:1982:ACA

Flamm:1982:RHE

Lewis:1982:RMB

[382] John G. Lewis. Remark on “Algorithms 508 and 509: Matrix bandwidth and profile reduction [F1] and a hybrid profile reduction algorithm [F1]”.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

97

Gaffney:1983:AFS

Proskurowski:1983:APH

Larson:1983:ASR

Martello:1983:AEA

Gay:1983:RNE

Dodson:1983:CRB

Fourer:1983:MLV

REFERENCES

183, June 1983. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

101

[437] D. E. Amos. Uniform asymptotic expansions for exponential integrals $E_n(x)$ and Bickley functions $K_i(x)$. ACM Transactions on Mathematical...
REFERENCES

REFERENCES

REFERENCES

REFERENCES

December 1984. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hull:1985:PRV

Stewart:1985:NCD

Streit:1985:AAS

Le:1985:EDF

Tischer:1985:ESN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

June 1987. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Pardalos:1987:GLS

Johnson:1987:AES

Morgan:1987:BBS

Monahan:1987:AGC

Liu:1987:PPS

Krogh:1987:AAP

Kearfott:1987:STG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ammann:1988:R

Bratley:1988:AIS

Robertazzi:1988:BOF

Monahan:1988:CAG

Melhem:1988:MRS

Renka:1988:MIL

REFERENCES

[609] Margreet Louter-Nool. Algorithm 663: Translation of Algorithm 539: Basic Linear Algebra Subprograms for FORTRAN usage in FOR-
REFERENCES

REFERENCES

[621] Michael N. Vrahatis. Solving systems of nonlinear equations using the nonzero value of the topological degree. *ACM Transactions on Math-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

method for initial value problems with rapidly varying right-hand sides.
ACM Transactions on Mathematical Software, 16(3):201–222, September
1990. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-
tronic). URL http://www.acm.org/pubs/citations/journals/toms/
1990-16-3/p201-cash/.

[681] Shlomo Weiss and James E. Smith. A study of scalar compilation tech-
niques for pipelined supercomputers. *ACM Transactions on Mathemati-
cal Software*, 16(3):223–245, September 1990. CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/
pubs/citations/journals/toms/1990-16-3/p223-weiss/.

polynomial on triangles. *ACM Transactions on Mathematical Soft-
ware*, 16(3):246–252, September 1990. CODEN ACMSCU. ISSN 0098-
citations/journals/toms/1990-16-3/p246-preusser/.

[683] Albrecht Preusser. Algorithm 684: C^1- and C^2-interpolation on tri-
angles with quintic and nonic bivariate polynomials. *ACM Trans-
CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).
URL http://www.acm.org/pubs/citations/journals/toms/1990-
16-3/p253-preusser/.

[684] Orit Shacham and Mordechai Shacham. Finding boundaries of the do-
main of definition for functions along a one-dimensional ray. *ACM Trans-
actions on Mathematical Software*, 16(3):258–268, September
1990. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-
tronic). URL http://www.acm.org/pubs/citations/journals/toms/
1990-16-3/p258-shacham/.

[685] K. Aiyappan Nair. An improved algorithm for ordered sequential random
sampling. *ACM Transactions on Mathematical Software*, 16(3):269–274,
REFERENCES

September 1990. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Palacios-Velez:1990:DHS

Krogh:1990:AAP

Pothen:1990:CBT

Kaufman:1990:APS

Higham:1990:EFM

Reichel:1990:AFS

REFERENCES

144

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[755] Per Christian Hansen and Tony F. Chan. FORTRAN subroutines for

[756] James W. Demmel and Nicholas J. Higham. Stability of block al-
gorithms with fast level-3 BLAS. *ACM Transactions on Mathe-

[757] G. S. Ammar, L. Reichel, and D. C. Sorensen. An implementa-

[758] Ph. L. Toint and D. Tuyttens. LSNNO, A FORTRAN subrou-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

163

REFERENCES

[817] Paul H. Calamai and Luis N. Vicente. Algorithm 728: FORTRAN sub-

REFERENCES

Dayde:1994:PBI

Blom:1994:AMG

Hull:1994:ICE

Joe:1994:CIL

Cummins:1994:ASS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fateman:1995:FFP

Kearfott:1995:FER

Dongarra:1995:SDX

Grosse:1995:RM

Demetriou:1995:ALF

Weber:1995:AIG

REFERENCES

REFERENCES

Dobmann:1995:APF

Sullivan:1995:NAU

Miminis:1995:AFS

Alefeld:1995:AEZ

Rizzardi:1995:MTM

REFERENCES

Sherlock:1995:AFD

Bailey:1995:FBM

Amos:1995:RAP

Carpaneto:1995:ECS

Carpaneto:1995:ACS

Doman:1995:SAP

REFERENCES

LAPACK-based library for the computer manipulation of tensor prod-
1996. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-

[882] I. S. Duff and J. A. Scott. The design of a new frontal code for solv-
ing sparse, unsymmetric systems. *ACM Transactions on Mathematical
Software*, 22(1):30–45, March 1996. CODEN ACMSCU. ISSN 0098-
citations/journals/toms/1996-22-1/p30-duff/.

[883] Roland W. Freund and Noël M. Nachtigal. QMRPACK: a package of
QMR algorithms. *ACM Transactions on Mathematical Software*, 22
(1):46–77, March 1996. CODEN ACMSCU. ISSN 0098-3500 (print),
journals/toms/1996-22-1/p46-freund/.

[884] Bo Kagström and Peter Poromaa. LAPACK-style algorithms and soft-
ware for solving the generalized Sylvester equation and estimating the
separation between regular matrix pairs. *ACM Transactions on Mathe-
matical Software*, 22(1):78–103, March 1996. CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/
pubs/citations/journals/toms/1996-22-1/p78-kagstrom/.

[885] Mauricio G. C. Resende, Panos M. Pardalos, and Yong Li. Algorithm
754: Fortran subroutines for approximate solution of dense quadratic
assignment problems using GRASP. *ACM Transactions on Mathematical
Software*, 22(1):104–118, March 1996. CODEN ACMSCU. ISSN 0098-
citations/journals/toms/1996-22-1/p104-resende/.

March 1996. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[925] Pei-Chi Wu. Multiplicative, congruential random-number generators with multiplier $\pm 2^{k_1} \pm 2^{k_2}$ and modulus $2^p - 1$. *ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[955] Bo Kågström, Per Ling, and Charles Van Loan. GEMM-based level 3 BLAS: high-performance model implementations and performance eval-
REFERENCES

REFERENCES

REFERENCES

Atkinson:1998:AAB

Govaerts:1998:IHD

Giering:1998:RAC

Berzins:1998:SAS

Anonymous:1998:AI

Davis:1999:CUM

REFERENCES

REFERENCES

[982] Dexuan Xie and Tamar Schlick. Remark on Algorithm 702: The updated truncated Newton minimization package. ACM Transactions on...
REFERENCES

Gay:1999:SAF

Flores:1999:CFR

Heinkenschloss:1999:IBO

Gockenbach:1999:CCL

Gautschi:1999:AGG

REFERENCES

196

REFERENCES

REFERENCES

Mascagni:2000:ASS

Weideman:2000:MDM

Kaufman:2000:OBS

Filippone:2000:PLP

Kaufman:2000:BRA

Ramakrishnan:2000:NGE

Bischof:2000:FSB

REFERENCES

REFERENCES

Morales:2001:APF

Verdonk:2001:PRIa

Verdonk:2001:PRIb

Bailey:2001:ASS

Luksan:2001:ANA

Andersen:2001:RFC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wenzel:2003:IWD

Hong:2003:AIS

Li:2003:SSD

Dhooge:2003:MMP

Henrion:2003:GGO

Sarra:2003:SSP

Quintana-Orti:2003:FDA

REFERENCES

REFERENCES

468, December 2003. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Falgout:2005:PSH

Hernandez:2005:SSF

Hindmarsh:2005:SSN

Heroux:2005:OTP

Castillo:2005:FOO

Naumann:2005:DEF

REFERENCES

REFERENCES

REFERENCES

[1169] Berend Hasselman. Remark on Algorithm 815: FORTRAN subrou-

[1170] Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Orti, Robert van de Geijn, and Field G. Van Zee. Accumulating Householder trans-

[1171] Gregorio Quintana-Orti and Robert van de Geijn. Improving the perfor-
mance of reduction to Hessenberg form. ACM Transactions on Mathe-

[1173] Robert C. Kirby. Optimizing FIAT with Level 3 BLAS. ACM Trans-
REFERENCES

REFERENCES

521–532, December 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

2007. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Huyer:2009:SSN]

[Kirby:2009:BDS]

[Quintana-Orti:2009:ULF]

[Drmac:2009:FRR]

[Fraysse:2009:ASF]

[VanDeun:2009:ANB]

[Waki:2009:ASS]

Chen:2009:ACS

Drake:2009:ASH

Cazals:2009:AJG

Eijkhout:2009:SSN

Taylor:2009:CCT

Davis:2009:DSS

Demmel:2009:EPI

REFERENCES

vandenBerg:2009:AST

Mayer:2009:NEP

Lourakis:2009:SSP

DAlberto:2009:AWM

Bangerth:2009:DSR

Reid:2009:AFV

REFERENCES

REFERENCES

REFERENCES

Celledoni:2010:AFF

Haggard:2010:CTP

Gonzalez-Pinto:2010:CBT

Gonnet:2010:IRA

Yamazaki:2010:APS

Anand:2010:UTE

Ollivier-Gooch:2010:IDS

[1324] Carl Ollivier-Gooch, Lori Diachin, Mark S. Shephard, Timothy Tautges, Jason Kraftcheck, Vitus Leung, Xiaojuan Luo, and Mark Miller. An interoperable, data-structure-neutral component for mesh query and
REFERENCES

Tiancheng Li and Ian Robinson. Algorithm 906: *elrint3d* — a three-dimensional nonadaptive automatic cubature routine using a sequence of

REFERENCES

Rao:2011:CA

Reid:2011:PFD

Colman:2011:VCC

Beattie:2011:NSH

Duff:2011:DIA

Bangerth:2011:ADS

REFERENCES

REFERENCES

[1376] Benjamin A. Burton and Melih Ozlen. Computing the crossecap number of a knot using integer programming and normal surfaces. *ACM*

REFERENCES

February 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[1384] Mutsuo Saito and Makoto Matsumoto. Variants of Mersenne Twister
suitable for graphic processors. *ACM Transactions on Mathematical
0098-3500 (print), 1557-7295 (electronic).

[1385] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond,
and Nichols A. Romero. Elemental: a new framework for distributed
memory dense matrix computations. *ACM Transactions on Mathematical
0098-3500 (print), 1557-7295 (electronic).

[1386] Ian Thompson. Algorithm 926: Incomplete Gamma functions with nega-
14:1–14:9, February 2013. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

The MATLAB code *bvptwp.m* for the numerical solution of two point
boundary value problems. *ACM Transactions on Mathematical Software*,
(print), 1557-7295 (electronic).

[1388] Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. High-performance
bidiagonal reduction using tile algorithms on homogeneous multicore
16:22, April 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic).
[1389] Michael A. Patterson, Matthew Weinstein, and Anil V. Rao. An efficient
overloaded method for computing derivatives of mathematical functions
in MATLAB. *ACM Transactions on Mathematical Software*, 39(3):17:1–
17:36, April 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic).

[1390] Sven Hammarling, Christopher J. Munro, and Françoise Tisseur. An al-
gorithm for the complete solution of quadratic eigenvalue problems. *ACM
CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[1391] Nela Bosner, Zvonimir Bujanović, and Zlatko Drmač. Efficient general-
ized Hessenberg form and applications. *ACM Transactions on Mathe-
matical Software*, 39(3):19:1–19:19, April 2013. CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295 (electronic).

[1392] Laurent Hascoet and Valérie Pascual. The Tapenade automatic differ-
entiation tool: Principles, model, and specification. *ACM Transactions
SCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[1393] Joseph Rios. Algorithm 928: a general, parallel implementation of
Dantzig–Wolfe decomposition. *ACM Transactions on Mathematical Soft-
ware*, 39(3):21:1–21:10, April 2013. CODEN ACMSCU. ISSN 0098-3500
(print), 1557-7295 (electronic).

[1394] Anthony M. Castaldo, R. Clint Whaley, and Siju Samuel. Scaling LA-
PACK panel operations using parallel cache assignment. *ACM Transac-
ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Clarke generalized Jacobian of a composite piecewise differentiable func-
Dingle:2013:RIT

deDinechin:2013:ZR

Russell:2013:OCG

Mehra:2013:ASW

Davis:2013:AFO

Gebremedhin:2013:CSG

Poppe:2013:CMO

Koen Poppe and Ronald Cools. CHEBINT: a MATLAB/Octave toolbox for fast multivariate integration and interpolation based on Chebyshev

REFERENCES

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See remark [1534].

REFERENCES

REFERENCES

[1441] Carlo Janna, Massimiliano Ferronato, Flavio Sartoreto, and Giuseppe Gambolati. FSAIPACK: a software package for high-performance fac-
REFERENCES

REFERENCES

[1454] Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. CGALmesh: a generic framework for Delaunay mesh genera-
REFERENCES

REFERENCES

[1467] Benjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterized complexity of discrete Morse theory. *ACM Trans-
REFERENCES

Giles:2016:AAI

Aruliah:2016:APP

Gautschi:2016:AER

Novoselsky:2016:RAD

Weinstein:2016:STO

VanZee:2016:BFE

REFERENCES

Boyder:2016:MMW

Wang:2016:PGM

Davis:2016:EHA

Delgado:2016:APQ

Benner:2016:AFS

Pew:2016:ABB

Jack Pew, Zhi Li, and Paul Muir. Algorithm 962: BACOLI: B-spline adaptive collocation software for PDEs with interpolation-based spatial...

[1492] Endre László, Mike Giles, and Jeremy Appleyard. Manycore algorithms for batch scalar and block tridiagonal solvers. *ACM Transactions on
REFERENCES

Prusa:2016:DWT

Escobar:2016:AES

Lozano-Duran:2016:AEA

delaCruz:2016:GTU

Turcksin:2016:WDP

Kohler:2016:BLI

REFERENCES

REFERENCES

REFERENCES

Aurentz:2017:CCS

Magron:2017:CRE

Huckelheim:2017:ADC

Gould:2017:SAP

Deckers:2017:AER

Novoselsky:2017:AOM

REFERENCES

Margherita Porcelli and Philippe L. Toint. BFO, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables.
REFERENCES

VanZee:2017:IHP

Szo:2017:PET

Ganesh:2017:ATM

Brake:2017:ABN

Drmac:2017:AQP

Anderson:2017:ASS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1604] Jan Winkelmann, Paul Springer, and Edoardo Di Napoli. ChASE: Chebyshev accelerated subspace iteration eigensolver for sequences of

REFERENCES

REFERENCES

Kirby:2019:CGG

Lindquist:2019:RCR

Speleers:2019:ACM

Davis:2019:ASG

Burgel:2019:AIM

Kara:2019:AGC

Gökçeahan Kara and Can Özturan. Algorithm 1002: Graph coloring based parallel push-relabel algorithm for the maximum flow problem.
REFERENCES

REFERENCES

[1639] Nicolas Brisebarre, Mioara Joldes, Jean-Michel Muller, Ana-Maria Nanes, and Joris Picot. Error analysis of some operations involved in

Amos:2020:AQQ

Casado:2020:AMN

Hawkins:2020:AMO

Orellana:2020:ABE

Lange:2020:FRF

Ahrens:2020:AER

[1656] Timothée Ewart, Francesco Cremonesi, Felix Schürmann, and Fabien Delalandre. Polynomial evaluation on superscalar architecture, applied

REFERENCES

REFERENCES

Naval Postgraduate School, Monterey, CA, USA, 1973. The shuffling algorithm proposed in this report does not lengthen the period, and only marginally reduces the lattice structure of linear congruential generators, despite the apparently tiny difference with the [73] algorithm: see [1698] for a comparison, both mathematical, and graphical.

Hanson:1981:APE

Bays:1990:CIR

ACM:2002:CSE

Brent:2008:SCC

Nakatsukasa:2013:SES