A Complete Bibliography of *ACM Transactions on Mathematical Software*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 October 2018
Version 3.129

Title word cross-reference

\[-1/2, 1/2, 2/3, 5/2 \] [942]. \(0 - 1 \) [498]. \(1 \) [1127]. 2
\([1059, 1265, 1228, 1406, 1226, 1161]\). \(2^p - 1 \) [925]. \(3 \) [792, 1406, 1403, 1466]. 64
\([1565]\). \(A - B \) [784]. \(A - \lambda B \) [785]. \(a = \pm 2^q + 2^r \) [995]. \(ab + cd \) [1438]. \(Ax = b \) [351]. \(AX^2 + BX + C = 0 \) [415]. \(AXB^T + CXD^T = E \) [1071, 753, 752]. \(\beta \)
\([1515]\). \(C^1 \) [1114, 660, 683]. \(C^2 \) [683, 682, 286]. \(E_n(x) \) [437]. \(\ell_1 \) [283, 316, 315].
\(F \) [803, 802, 617, 12]. \(f(x) \) [403]. \(F_2 \) [1565]. \(H_\rho \) [453, 452]. \(hp \) [1433, 1432].
\(h \to \infty \) [445]. \(i \) [105]. \(I_0 \) [150]. \(I_1(x)/I_0(x) \) [336, 332]. \(I_{1.5}(x)/I_{0.5}(x) \)
\([336, 332]\). \(J_n(x) \) [126, 125, 207]. \(i^{th} \) [30]. \(J_{\nu}(x) \) [126, 125, 207]. \(k \) [789, 1515].
\(k < m \) [1515]. \(K_{\nu}(x) \) [438, 437]. \(L_1 \) [282, 281, 317, 314, 908]. \(l_2 \) [1455]. \(L_\infty \)
\([512]\). \(LDL^T \) [1535]. \(m \) [1515]. \(MDM^T \) [876]. \(N \) [1180, 105, 30, 1455, 213].
\(O(\log_2 k) \) [789]. \(O(n(1 + \log(N/n))) \) [841]. \(O(n^{1/2}) \) [616]. \(\omega \) [1362]. \(\pm 2^{k_1} \pm 2^{k_2} \)
[925]. \(Q \) [1048, 1555, 1420]. \(QR \) [1545, 1499, 1460, 1505, 1552, 953, 952, 1412].
\(rc \) [804, 19, 79]. \(r \times c \) [542]. \(s \) [1347]. \(T \) [1543, 1036, 14, 15, 338, 339, 228].
\(U(a, x) \) [1165, 1164]. \(v \) [566, 619]. \(V(a, x) \) [1165, 1164]. \(\varphi \) [1285, 1364].
\[W(a, x) \] \[= f(x_n) \] \[x_n+1 = f(x_n) \] \[x \geq 0, \nu \geq 0 \] \[[126, 125, 207]. \]

1 \[[1006]. \] 100 \[[62]. \] 13 \[[583]. \] 149 \[[3, 174]. \] 179 \[[4, 94]. \]

2.0 \[[1490]. \] 2.5 \[[1236]. \] 2003 \[[1419, 1365, 1224, 1298]. \] 219 \[[5, 155]. \] 236 \[[6, 58]. \] 246 \[[7, 60]. \] 259 \[[8, 141]. \] 284 \[[9, 115]. \] 299 \[[10, 116]. \] 2C \[[387]. \] 2D \[[895, 638]. \] 2Sum \[[1538]. \]

Algebraic Algorithm [53, 1544, 1325, 71, 1014, 461, 1443, 1440, 47, 120, 109, 1150, 996].

Algorithm [18, 23, 564, 467, 466, 625, 624, 757, 821, 1429, 410, 300, 295, 1469, 182, 584, 906, 401, 11, 1430, 236, 127, 727, 759, 792, 1050, 581, 123, 1460, 742, 395, 2, 10, 14, 15, 1582, 1516, 583, 1571].

19

[1486]. Interpolatory [589, 710, 355, 640, 641]. Interval
[477, 984, 566, 619, 675, 901, 1576, 451, 211, 1069, 1411, 1167, 1177].
[802, 582, 561, 517, 607, 1468, 1441, 706, 552, 868, 719, 1285]. Inverses [336].
Inversion [1429, 991, 990, 1431, 793, 608, 695, 332, 1516, 117, 1335, 676, 471,
472, 28, 129, 1247, 1313]. Invert [1203]. Inverting [1186]. Investigation
irbleigs [1094]. Irregular [827, 233, 602]. Irregularly [181, 180, 231, 505].
Iterated [708, 543]. Iteration [783, 877, 149, 1014, 217, 719, 335, 331]. Iteratively
J6 [69, 80, 59, 193]. Jacobian [470, 469, 1118, 1395]. Java [1504, 1326].
JBESS [126, 125, 207]. Jet_fitting_3 [1268]. jMarkov [1524]. JNF [303].
John [1010, 1009, 487]. Jordan [303, 298].
K2 [115]. Kalman [1306, 1126]. KBLAS [1479]. Kernel [1506]. kernels
[1344]. Key [93, 87]. Keys [93, 87]. Keywords [518, 693, 473]. Kind
[91, 88, 1243, 708, 313, 144, 414, 6, 58]. King [377, 378]. KLU [1331].
Knapsack [410, 1483, 498]. Knot [1376]. Knowledge [905, 1011].
knowledge/database [1011]. known [1102]. Kohn [1283]. Kolmogorov
[123, 151, 29, 82]. Kronrod [1571]. Krylov [1364]. KSSOLV [1283]. Kutta
[634, 1320, 197, 1383, 1520, 1176, 632, 680, 964, 546, 1195, 287, 1103, 736, 843,
516, 545, 722, 121, 232, 528, 723, 943].
Lagrange [1265]. Lanczos [1322, 329]. Language [1569, 673, 1409, 1409].
Languages [409]. LAPACK [881, 1394, 884, 1295]. LAPACK-based [881].
LAPACK-style [884]. Laplace [1429, 494, 967, 991, 990, 1431, 793, 608,
607, 695, 117, 676, 471, 472, 868, 28, 129]. Large
[915, 873, 872, 495, 361, 1428, 613, 387, 1474, 761, 569, 1493, 603, 744, 740,
741, 614, 758, 488, 1094, 1286, 1205, 1108, 1096, 1119, 1204, 1251, 1289,
1349, 1233, 1413, 1311, 1098, 1306, 940]. Large-Scale
[873, 495, 1428, 1474, 569, 744, 740, 741, 758, 488, 1286, 1205, 1096, 1251,
1289, 1349, 1233, 1413, 940]. Larger [8, 141]. Larkin [497, 536]. Last [724].
Lattice [808, 826, 1476, 1330, 1542, 1476]. Leading [311]. Least
[457, 509, 508, 920, 291, 650, 701, 856, 1272, 348, 347, 407, 1531, 388, 742, 319,
435, 648, 379, 369, 851, 255, 251, 1416, 1200, 1168, 1197]. Least-Squares
[509, 508, 348, 407, 1531, 742, 920, 347, 1416, 1200, 1197]. Legendre
[8, 141, 328, 324]. Lehman [463]. Length [358, 33]. Lengths [305, 418].
21

488, 622, 1472, 1556, 724, 1570, 892, 1389, 37. Mathieu
[1020, 1021, 1184, 1193, 1408, 216, 796, 795]. MATLAB [1351, 1194, 1094,
1198, 1387, 1006, 1400, 1360, 1084, 888, 1142, 1428, 1172, 1451, 716, 1571,
1158, 1156, 819, 1144, 1533, 1389, 1432, 1402, 1493, 1317, 1233, 1363, 1134,
1220, 1270, 1336, 1024, 1472, 1556, 1283, 1243, 1520, 1176, 1484, 1260, 1208,
1215, 1085, 1582, 1250, 1045, 1422, 1490, 1443, 1440, 1305, 1035, 1116, 1414].
MATLAB/GNU [1493]. MATLAB/Octave [1402]. Matrices
[798, 470, 469, 521, 553, 411, 972, 783, 877, 931, 517, 1026, 206, 396, 486, 97,
917, 1535, 189, 716, 57, 118, 530, 902, 378, 602, 217, 614, 719, 875, 335, 331, 192,
191, 1372, 1304, 1048, 1120, 1003, 1179, 1143, 953, 952, 522, 1093, 1279, 1163].
Matrix
[1479, 938, 1481, 22, 1239, 929, 139, 112, 1456, 415, 1465, 393, 765, 179, 209,
631, 1561, 178, 1365, 1525, 381, 409, 1543, 753, 752, 220, 329, 1328, 1327, 195,
1359, 306, 395, 626, 644, 600, 143, 1074, 303, 298, 249, 258, 382, 1335, 573, 16,
425, 424, 1489, 706, 552, 1449, 688, 1385, 210, 1367, 250, 718, 1488, 1363, 948,
154, 101, 1270, 1374, 1541, 1024, 1378, 1042, 1094, 1247, 1276, 998, 1344, 1343,
1234, 1071, 1073, 884, 1022, 1251, 1078, 1287, 1072, 1352, 1567].
Matrix-multiplication [1344]. Matrix-Vector [1479, 1525]. MATSLISE
[1156, 1490]. Maximally [1565]. Maximum [780, 262, 345, 966, 1355].
McClellan [1502]. ME28 [359]. Measure [837, 836, 273]. MEBDF
Memory
[1051, 945, 1516, 1512, 1489, 1514, 1385, 718, 1488, 1424, 1162, 1083, 1278, 1229].
Memory-Ecient [1514]. memory-minimizing [1162]. Merge [267].
Mersenne [1565, 1384]. Mesh
[668, 1478, 1454, 1514, 1324, 278, 1442, 1228, 1013]. Mesh-Moving [668].
[1269]. Method [180, 720, 1429, 668, 1469, 656, 994, 576, 680, 777, 490, 991,
990, 972, 531, 1545, 475, 136, 1056, 1242, 608, 607, 695, 329, 805, 135, 1480,
1371, 808, 826, 833, 1527, 464, 513, 655, 1004, 550, 578, 657, 705, 1512, 1018,
399, 1438, 676, 747, 497, 536, 26, 110, 1519, 604, 605, 975, 976, 868, 1553, 907,
385, 1435, 335, 146, 330, 152, 1472, 81, 1322, 1496, 897, 1048, 1003, 1113,
1112, 1055, 1166, 1223, 960, 1183, 1037, 1389, 1235, 1317, 1104, 1351].
Methods [321, 915, 920, 1579, 914, 597, 903, 262, 844, 793, 964, 562, 654, 287,
968, 1052, 1067, 743, 736, 843, 263, 1569, 387, 556, 1457, 42, 1503, 559, 1432,
210, 1291, 121, 373, 158, 423, 201, 1258, 1541, 279, 246, 1301, 897, 1586, 1137,
1016, 1195, 1103, 1162, 996, 1274, 1217, 1072, 1413, 1316, 1307, 1046].
midpoint [1411]. Mildly [777]. MIMD [823]. Minefield [33]. minima
[1102]. Minimal [431, 547, 26, 267, 81, 1140]. Minimization
[625, 496, 832, 104, 130, 440, 21, 44, 744, 740, 741, 526, 76, 318, 982, 961].
Minimizing [579, 922, 1162, 653]. Minimum
[301, 296, 292, 450, 541, 499, 1526, 1123, 1122, 1121]. Minimum-Cut
Minor [71]. MINRES [1416]. MINRES-QLP [1416]. Mirroring [855].
MISCFUN [894]. Mises [150, 336]. Mixed
[1239, 1371, 1016, 1157, 1312, 1062]. mixed-order [1016].
MLD2P4 [1325]. Mode [1426, 1172, 1001]. Model
[1100, 409, 1507, 1524, 549, 673, 1298]. modelling [1208].
Models
[828]. Models
[1351]. moduli [1311]. modulo [1161]. modulus [925]. molecular
[1117]. Moment [1494, 1435]. Monitoring [51]. Monomial
[750, 749]. monotonic [1200].
Monty [960]. Morse [1467]. Most [460]. motions [1318, 1235].
Moving
[1508, 656, 972, 422, 550, 578, 657, 1482, 1230, 1113, 1112, 1162, 1350].
Multigrid [462, 1567]. Multiinput [866]. Multilevel [1325, 1536, 1181].
multilinear [1158]. multimethod [1316]. Multimodal [579, 653].
Multinomials [509, 508]. Multiphysics [1373, 1298]. Multiple
[410, 727, 171, 170, 257, 276, 33, 323, 587, 1530, 808, 826, 449, 1340, 499, 498,
1432, 715, 963, 1341, 1207, 1317, 1351, 1050]. Multiple-Choice [410].
Multiple-length [33]. Multiple-Phase [1432, 1317, 1351].
Multiple-Precision [171, 170, 257, 449, 1340, 715, 963, 1341, 1207].
Multiplication
[1479, 1481, 1456, 1561, 1525, 623, 189, 690, 1563, 1541, 1304, 1344, 1234].
multiplications [1276]. Multiplicative [925]. multiplicities [1116].
multiplicity [1405]. multiplier [925]. Multipliers [995]. multiply [1078].
multiply-add [1078]. Multiplying [564]. Multipoint [169]. Multipole
[1512]. Multiprecision [791, 870, 468, 1227]. multiprocessor [1344].
Multishift [1460, 1412]. Multistep [287, 289, 158, 548, 514, 246, 1307].
Multithreaded [1367, 1350]. Multivariate
[564, 490, 771, 809, 130, 1571, 1034, 840, 603, 76, 318, 1329, 502, 1402, 1035].
MultRoot [1116]. MUMPS [1295].
NAG [730, 245, 814]. Narrow [515]. National [431]. Natural
One-Dimensional [824, 340, 322, 1560, 669, 684]. One-Norm [626, 644].
1259, 1452, 1378, 897, 1238, 1080, 1105]. **Programs**

Projected [648]. **Projection** [1322]. **projections** [1406]. **Prolate** [1137].

Properly [510]. **Properties** [1268, 199, 1347]. **ProtoMol** [1117]. **prototype** [1151].

Projection [1322]. **projections** [1406]. **Protractor** [199]. **PSO** [1448].

Provable [1078]. **Proven** [1311]. **PSE** [1045, 1448]. **PSelInv** [1516]. **PSETM** [326].

Pseudo [1469]. **Pseudo-Arclength** [1469]. **pseudoinverse** [1407].

Pseudoperipheral [235]. **Pseudorandom** [946, 1023, 1032, 886].

Pseudospectral [1317, 1351]. **Psi** [439].

Pthreads [1419]. **PUMI** [1478].

Pyscal [75]. **Python** [960, 1229]. **PyTrilinos** [1229].

QUADLOG [1214]. **QUADPACK** [711]. **Quadrature** [712, 1532, 72, 198, 912, 340, 322, 813, 987, 1470, 229, 17, 1321, 1571, 213, 729, 74, 46, 640, 641, 1432, 70, 451, 1213, 1214, 1137, 1215, 962, 1303].

Quadratures [589, 452]. **Quality** [1442]. **Quantile** [815]. **Quantiles** [15, 339, 228].

Quantitative [420]. **Quartic** [1461]. **Quasi** [780, 743, 1498, 648, 1567].

Quasi-Likelihood [780]. **Quasi-matrix-free** [1567]. **Quasi-Newton** [743, 648].

Quasirandom [599, 560, 1079]. **Query** [1324]. **Quickhull** [906]. **Quicksort** [24, 103, 140].

Quindialgonal [127]. **Quintic** [1459, 389, 102, 417, 484, 683].

Quotient [292]. **QZ** [206, 396, 486, 124].

R [1010]. **r2d2iri** [1058]. **Radiative** [1435]. **Radix** [1480, 468].

Random-Access [614]. **random-number** [925]. **Randomization** [1380, 1489, 1488]. **Randomized** [1523]. **Randomly** [448]. **Range** [772, 1470, 328, 324, 1190, 1038, 1039]. **range-independent** [1038, 1039].

Ranges [85]. **Rank** [735, 1256, 1476, 1143, 953, 952, 1350, 1168, 1407].

Ratios [582, 763, 561, 332].
Ray [684]. Rayleigh [719]. RCR [1463, 1489, 1446]. Real
[860, 859, 1544, 144, 699, 553, 1431, 362, 381, 1257, 31, 41, 626, 644, 49, 83,
217, 762, 875, 101, 335, 331, 1141, 1164, 1165]. Realistic [356]. RealPaver
[1167]. Rearrangement [143]. Reasonably [211]. Recipes [969].
recommendation [1012]. recommending [1011]. Reconstruction
[1548, 1273]. Rectangles [638]. Rectangular [734, 1313, 525, 898].
rectangular-grid-data [898]. Rectilinear [301, 296]. Recurrence
[487, 167]. recurrences [1161]. recursion [950, 1136]. recursion
[950, 1136]. Recursive [266, 981, 1073, 1074, 706, 1551, 1042, 1159]. Reduced
[401, 1543, 168, 1003, 1143]. reducing [1396, 1374]. Reduction
[1430, 1029, 112, 765, 917, 113, 107, 1027, 382, 232, 1106, 1030,
998, 1138, 1388, 1171, 1072, 1311]. reduction/transformation [1106].
Reference [1559, 1065]. References [518, 693, 473]. Refinement
[68, 1272, 1514, 658, 255, 251, 1178]. Refinements [278]. Reformulation
[1566]. Region [1428, 440, 186, 1197, 1233]. Regions [233, 337, 404, 957].
Regression [598, 457, 659, 780, 1221]. Regular [1363, 998, 884]. Regularity
reLAPACK [1551]. Related
[392, 391, 699, 41, 1341, 1213, 1214, 1247, 1401, 1050]. Relations [487, 167].
Relative [560, 405, 1396]. Relatively [1557]. Relaxation [1369, 1259].
Relaxations [1452]. Relaxed [656]. Reliability [1321]. Reliable
[1407, 1449, 697, 1195, 1215]. reliably [1063]. ReLIADiff [1431]. remainder
[1038]. Remark [231, 441, 694, 871, 95, 230, 1031, 829, 79, 257, 105, 398, 651,
487, 804, 194, 617, 1209, 650, 104, 1002, 610, 397, 498, 130, 80, 527, 958, 59,
381, 260, 173, 396, 486, 695, 962, 407, 229, 927, 195, 554, 518, 389, 535, 1559,
306, 1169, 725, 338, 339, 504, 693, 760, 1071, 1095, 115, 141, 1079, 118, 1222,
908, 117, 1534, 258, 959, 382, 1017, 140, 60, 1349, 83, 536, 1471, 503, 418, 458,
472, 94, 82, 505, 891, 353, 909, 965, 979, 980, 196, 672, 318, 154, 58, 174, 910,
1453, 155, 978, 372, 129, 81, 982, 1487]. Remark [116, 228, 259, 1107, 1066].
Remarks [616]. Renewing [1057]. Reordering [378, 602, 1187].
Repeated [153, 145, 1470]. Replicated [1444, 1445, 1446, 1463, 1489].
Report [1463, 1489, 1446]. Reporting [224]. Repository [855].
Representation [984, 52, 729, 1518]. representations [1303].
[476, 1277]. Requiring [90]. Research [853]. Reservoir [841, 491, 1175].
Response [530, 1354]. Restart [1322]. Restructuring [1418]. Resulting
[244, 602]. Results [1463, 798, 1444, 1489, 1475, 1445, 1446]. Retarded
[355]. Reveal [52]. Revealing [1256, 953, 952, 1350]. Reverse [1426, 1001].
Reverse-Mode [1426]. Revised [152, 1048]. Revisited
[33, 1262, 1027, 1097, 1170]. Revolve [1001]. Reweighted [291]. Rice
Right-Hand [680]. Rights [84]. rigid [1318]. Rigorous [1550]. Rings
robot-packable [1201]. Robust
[784, 1195, 1502, 1262, 1509, 1424, 1312, 785]. Robustness [1538, 451].
Romberg [198]. Root [510, 570, 941, 1450, 649, 583, 1038]. rootfinder [892].
Roots [110, 622, 1570, 1116]. ROPTLIB [1578]. Rosenbrock
[104, 21, 559, 373]. Rotations [59, 27, 1063]. Rounded
[1517, 1455, 510, 724, 1297, 1299]. Rounding [806, 1207, 1397]. Roundoff
[1568, 1575, 187, 242, 1529, 1576, 45, 203, 202, 341]. Roundoff-Error-Free
[1575]. Routine [598, 860, 728, 553, 1330, 1093]. Routines
[51, 509, 712, 364, 398, 774, 344, 270, 563, 711, 1257, 340, 322, 813, 245, 1381,
375, 534, 74, 1214, 1318, 1141, 962, 1068, 1075]. Row [429, 428, 610, 539].
[197, 1383, 634, 1520, 1176, 632, 680, 964, 546, 1195, 287, 1103, 1320, 736, 843,
516, 545, 722, 121, 232, 528, 723, 943]. Runtime [1508, 1367].
S17 [6, 58]. S18 [126, 207]. S20 [93]. S21 [352, 272, 174]. SAFE
[1580, 1546, 1096]. salesman [873, 872]. Sample [266, 789, 138, 1513].
Sampled [1268]. Samples [531, 29, 82]. Sampling
[416, 501, 861, 627, 662, 1004, 841, 685, 1564, 1491, 491, 565, 1175].
Sampling-Vectorized [1564]. satisfaction [1167]. SBA [1275]. SBP [1284].
SBR [1030]. scalability [1049, 1148]. Scalable
[1502, 1232, 1149, 1083, 1023, 1032, 1181]. ScALAPACK [1296]. Scalar
[427, 426, 1492, 1078, 681]. Scale [873, 872, 495, 1428, 1474, 569, 744, 740,
741, 758, 488, 1286, 1205, 1096, 1251, 1289, 1349, 1233, 1413, 1306, 940].
Scaling [1546, 1394, 670, 833, 1314, 1124]. Scanning [75]. SCASY [1328].
Scattered [604, 605, 603, 934, 977, 975, 976, 1329, 899, 1002, 879, 1114].
scattered-data [899, 1002]. schedules [1162]. Scheduling [1434, 152, 1284].
Schema [358]. Scheme [539, 646]. Schemas [516, 545, 1558]. Schmidt
[255, 251]. School [1584]. Schrödinger [1156]. Schur
[897, 998, 784, 785, 1285, 1187, 1378]. Schur-complement [897]. Schwarz
[888, 1142, 957]. science [1131]. Scientific [519, 611, 905, 1326, 1401, 1011].
Scope [810, 847, 848, 811, 34]. Scorer [1075]. Scrambled [1491, 1082]. SD
[311]. SD-Formulas [311]. Search [830, 1583, 423, 1185]. Second
[91, 88, 1243, 708, 1484, 856, 1320, 523, 571, 590, 1435]. Second-Degree
[571, 590]. Second-Order [1320, 523]. Secondary [613]. Secure [1580].
SeDuMi [1085]. Select [776, 105, 30]. Selected [783, 877, 1516, 1335, 875].
Self-Adjoint [827]. SelInv [1335]. Semantic [477]. Semi
[1489, 1488, 1423, 1105]. Semi-infinite [1105]. Semi-Separable [1489, 1488].
Semi-Stencil [1423]. Semidefinite
[1369, 1527, 1529, 1576, 1259, 1452, 1378, 1238]. Semidiscrete [284, 1022].
Semiseparable [1482]. SENAC [730]. Sense [509]. Sensitivity
[165, 596, 595]. Sensor [1369]. sep [1285]. sep-inverse [1285]. Separable
[1483, 689, 1489, 1488, 241, 240]. Separably [421]. separation [884].
[148, 226, 532, 385, 1301, 1398]. Symmetric
[584, 98, 1463, 127, 1029, 553, 422, 1056, 623, 1535, 613, 945, 1462, 1547, 1516, 1025, 1335, 573, 1518, 280, 217, 1337, 192, 191, 1372, 1120, 1219, 1416, 1344, 890, 997, 1109, 1119, 1204, 1312, 1252, 1183, 1144, 1352, 1212, 1247].
symmetric-indefinite [1183]. symmetrical [1186]. System
[735, 1380, 870, 56, 291, 1562, 538, 612, 400, 788, 1585, 776, 1340, 308, 455, 506, 1367, 851, 526, 434, 488, 905, 208, 420, 1400, 1011, 1278].

REFERENCES

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[84] John R. Rice. TOMS policy statement: The rights of program authors in the evaluation of programs. *ACM Transactions on Mathematical Soft-
REFERENCES

Ford:1976:DSN

Paul:1976:SEF

Janko:1976:LIS

Atkinson:1976:APL

Shampine:1976:GEE

Ericksen:1976:ICP

Atkinson:1976:AAP

[91] Kendall Atkinson. Algorithm 503: An automatic program for Fredholm integral equations of the second kind [D5]. *ACM Transactions on Mathe-
REFERENCES

References

REFERENCES

REFERENCES

[118] Linda Kaufman. Remark on “Algorithm 496: The LZ algorithm to solve the generalized eigenvalue problem for complex matrices [F2]”. *ACM
REFERENCES

D. E. Amos, S. L. Daniel, and M. K. Weston. CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_{\nu}(x)$ and $J_{\nu}(x)$, $x \geq 0, \nu \geq 0$.
REFERENCES

[126] D. E. Amos, S. L. Daniel, and M. K. Weston. Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_{\nu}(x)$ and $J_{\nu}(x)$, $x \geq 0, \nu \geq 0$ [S18]. *ACM Transactions on Mathematical Software*, 3(1):93–95, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See erratum [207].

S. P. Chan, R. Feldman, and B. N. Parlett. Algorithm 517: a program for computing the condition numbers of matrix eigenvalues without com-

REFERENCES

REFERENCES

REFERENCES

Boyce:1977:IPF

Cabay:1977:CTE

Eddy:1977:NCH

Cabay:1977:AEC

Eddy:1977:ACN

Dinkel:1978:SAP

REFERENCES

REFERENCES

REFERENCES

[186] S. J. Polak, J. Schrooten, and C. Barneveld Binkhuysen. TEDDY2, a program package for parabolic composite region problems. ACM Trans-
REFERENCES

REFERENCES

[207] Donald E. Amos. Erratum: “Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]”. *ACM Transactions on Mathematical Software*, 4(4):411, December 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [126].
REFERENCES

REFERENCES

REFERENCES

DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See corrigenda [261].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

December 1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[306] U. Harms, H. Kollakowski, and G. Möller. Remark on “Algorithm 408: a sparse matrix package (part 1) [F4]”. ACM Transactions on Mathematical...

Machura:1980:SSP

Kurator:1980:PIS

Brown:1980:EPB

Luk:1980:CSV

Sacks-Davis:1980:FLC

Bentley:1980:OET

Campbell:1980:TAM

REFERENCES

REFERENCES

Fritsch:1981:DIU

Friedman:1981:NPP

Smith:1981:ERA

Melgaard:1981:GST

Melgaard:1981:APS

More:1981:AFS

[327] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Algorithm 566: FORTRAN subroutines for testing unconstrained optimization software...

[332] Geoffrey W. Hill. Evaluation and inversion of the ratios of modified Bessel functions, \(I_1(x)/I_0(x) \) and \(I_{1.5}(x)/I_{0.5}(x) \). *ACM Transactions on Mathematical Software*, 7(2):199–208, June 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Stewart:1981:ALS

Hill:1981:ASM

OLeary:1981:ASH

Hill:1981:RSD

Hill:1981:RSQ

Fritsch:1981:CIU

REFERENCES

REFERENCES

Dennis:1981:ANE

McAllister:1981:ASP

Duff:1981:APZ

Barrodale:1981:AFP

Carlson:1981:AAI

Razaz:1981:RAF

Shampine:1981:ETS
[355] Kenneth W. Neves. Control of interpolatory error in retarded differential

REFERENCES

[Buckley:1981:AQS]

[Krogh:1982:AAP]

[Deo:1982:AGF]

[Hiebert:1982:EMS]

[Dunham:1982:CBC]

[DuCroz:1981:ASR]

REFERENCES

REFERENCES

Ahrens:1982:CGP

Lewis:1982:IGP

Lewis:1982:AGP

Paige:1982:ALS

Laurie:1982:ACA

Flamm:1982:RHE

Lewis:1982:RMB

[382] John G. Lewis. Remark on “Algorithms 508 and 509: Matrix bandwidth and profile reduction [F1] and a hybrid profile reduction algorithm [F1]”.
REFERENCES

REFERENCES

Garbow:1982:RQA

Dodson:1982:RBL

Buckley:1982:RQS

Morgan:1983:MCA

Greenberg:1983:FDA

Beck:1983:RGA

Hanson:1983:CDE

[402] P. M. Hanson and W. H. Enright. Controlling the defect in existing variable-order Adams codes for initial-value problems. ACM Transac-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Amos:1983:APF

Amos:1983:APFb

Gay:1983:ASU

Amos:1983:REI

deDoncker:1984:AAI

deDoncker:1984:ATI

REFERENCES

REFERENCES

REFERENCES

[Gill:1984:POP]

[Alu-Pentini:1984:DEA]

[Alu-Pentini:1984:ADD]

[Regener:1984:MID]

[Coleman:1984:SES]

[Coleman:1984:AFS]

REFERENCES

REFERENCES

December 1984. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Norton:1985:AFB

Martello:1985:APM

Liu:1985:MMD

Gan:1985:NCG

Ahrens:1985:SRS

Ward:1985:AAL

REFERENCES

REFERENCES

Hull:1985:PRV

Stewart:1985:NCD

Streit:1985:AAS

Le:1985:EDF

Tischer:1985:ESN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

June 1987. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ammann:1988:RCR

Bratley:1988:AIS

Robertazzi:1988:BOF

Monahan:1988:CAG

Melhem:1988:MRS

Renka:1988:MIL

REFERENCES

Renka:1988:AQQa

Renka:1988:AQQb

Wan:1988:AMD

Garbow:1988:SIW

Garbow:1988:AFS

[609] Margreet Louter-Nool. Algorithm 663: Translation of Algorithm 539: Basic Linear Algebra Subprograms for FORTRAN usage in FOR-
REFERENCES

REFERENCES

[621] Michael N. Vrahatis. Solving systems of nonlinear equations using the nonzero value of the topological degree. *ACM Transactions on Math-
References

Michael N. Vrahatis. Algorithm 666: CHABIS: a mathematical software

REFERENCES

REFERENCES

REFERENCES

Morgan:1989:FAI

Patterson:1989:AGIa

Patterson:1989:AGIb

Tang:1989:TDI

Vitter:1989:ADH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dongarra:1990:SLB

Dongarra:1990:ASL

Cody:1990:PEP

Poppe:1990:MEC

Poppe:1990:AEC

REFERENCES

REFERENCES

September 1990. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Tang:1990:TDI

Hopkins:1990:RRK

Amos:1990:RPP

Garbow:1990:RFS

Addison:1991:ADT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bailey:1991:AFS

Alfeld:1991:EAS

Alfeld:1991:AGE

Gustafsson:1991:CTT

Boubez:1992:PED

Lucks:1992:ASM
REFERENCES

REFERENCES

REFERENCES

Hansen:1992:FSG

Demmel:1992:SBA

Ammar:1992:IDC

Toint:1992:LFS

Berntsen:1992:ADA

REFERENCES

REFERENCES

[817] Paul H. Calamai and Luis N. Vicente. Algorithm 728: FORTRAN sub-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fateman:1995:FFP

Kearfott:1995:FER

Dongarra:1995:SDX

Grosse:1995:RM

Demetriou:1995:ALF

Weber:1995:AIG

REFERENCES

Bongartz:1995:CCU

Barry:1995:RVW

Barry:1995:AWF

Hormann:1995:RTS

Rabinowitz:1995:ASA

Goano:1995:ACC

[863] Michele Goano. Algorithm 745: Computation of the complete and incomplete Fermi–Dirac integral. ACM Transactions on Mathematic-
REFERENCES

REFERENCES

LAPACK-based library for the computer manipulation of tensor prod-
1996. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-

[882] I. S. Duff and J. A. Scott. The design of a new frontal code for solv-
ing sparse, unsymmetric systems. *ACM Transactions on Mathematical
Software*, 22(1):30–45, March 1996. CODEN ACMSCU. ISSN 0098-
citations/journals/toms/1996-22-1/p30-duff/.

[883] Roland W. Freund and Noël M. Nachtigal. QMRPACK: a package of
QMR algorithms. *ACM Transactions on Mathematical Software*, 22
(1):46–77, March 1996. CODEN ACMSCU. ISSN 0098-3500 (print),
journals/toms/1996-22-1/p46-freund/.

[884] Bo Kagström and Peter Poromaa. LAPACK-style algorithms and soft-
ware for solving the generalized Sylvester equation and estimating the
separation between regular matrix pairs. *ACM Transactions on Mathe-
matical Software*, 22(1):78–103, March 1996. CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/
pubs/citations/journals/toms/1996-22-1/p78-kagstrom/.

[885] Mauricio G. C. Resende, Panos M. Pardalos, and Yong Li. Algorithm
754: Fortran subroutines for approximate solution of dense quadratic
assignment problems using GRASP. *ACM Transactions on Mathematical
Software*, 22(1):104–118, March 1996. CODEN ACMSCU. ISSN 0098-
citations/journals/toms/1996-22-1/p104-resende/.

March 1996. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
REFERENCES

REFERENCES

Sosonkina:1996:NEG

Macleod:1996:AMS

Blom:1996:AVV

Blom:1996:AVVb

Andersen:1996:MSM

REFERENCES

REFERENCES

REFERENCES

Bouaricha:1997:ASS

Cabay:1997:AEW

Geurts:1997:AFP

Blackford:1997:PEN

Ho:1997:DND

REFERENCES

[925] Pei-Chi Wu. Multiplicative, congruential random-number generators with multiplier $\pm 2^{k_1} \pm 2^{k_2}$ and modulus $2^p - 1$. *ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[955] Bo Kågström, Per Ling, and Charles Van Loan. GEMM-based level 3 BLAS: high-performance model implementations and performance eval-
REFERENCES

REFERENCES

Atkinson:1998:AAB

Govaerts:1998:IHD

Giering:1998:RAC

Berzins:1998:SAS

Anonymous:1998:AI

Davis:1999:CUM

REFERENCES

Pryce:1999:TPS

Pryce:1999:AST

Renka:1999:ACC

Renka:1999:ATC

[982] Dexuan Xie and Tamar Schlick. Remark on Algorithm 702: The updated truncated Newton minimization package. ACM Transactions on
REFERENCES

Gay:1999:SAF

Flores:1999:CFR

Heinkenschloss:1999:IBO

Gockenbach:1999:CCL

Gautschi:1999:AGG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wenzel:2003:IWD

Hong:2003:AIS

Li:2003:SSD

Dhooge:2003:MMP

Henrion:2003:GGO

Sarra:2003:SSP

Quintana-Ortí:2003:FDA

REFERENCES

REFERENCES

REFERENCES

468, December 2003. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

Tang:2005:DNI

Mu:2005:PMN

Ledoux:2005:MMP

Gao:2005:AMS

Klimke:2005:ASP

Shellman:2005:ARF

Davis:2005:ACS

REFERENCES

REFERENCES

Foster:2006:AEA

Hasselman:2006:RAF

Jorain:2006:AHT

Quintana-Orti:2006:IPR

Forth:2006:EOI

Kirby:2006:OFL

REFERENCES

REFERENCES

September 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

521–532, December 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

2007. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

Beebe:2007:AQP

Espelid:2007:AGD

LEcuyer:2007:TCL

Pesch:2007:HSF

Bangerth:2007:DIG

Bai:2007:PSB
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dominguez:2009:ASM

Jansson:2009:ADS

Gordon:2009:CRR

Dumas:2009:DLA

Linhart:2009:ACL

Caliari:2009:APL

REFERENCES

REFERENCES

REFERENCES

[1285] Souji Koikari. Algorithm 894: On a block Schur–Parlett algorithm for \(\varphi \)-functions based on the sep-inverse estimate. *ACM Transactions on
REFERENCES

REFERENCES

Sarra:2010:AMP

Torres:2010:ADT

Vlachos:2010:ALP

Rasch:2010:EIE

Chen:2010:ECF

Krogh:2010:SSO

Rutten:2010:EFP

REFERENCES

Celledoni:2010:AFF

Haggard:2010:CTP

Gonzalez-Pinto:2010:CBT

Gonnet:2010:IRA

Yamazaki:2010:APS

Anand:2010:UTE

Ollivier-Gooch:2010:IDS

[1324] Carl Ollivier-Gooch, Lori Diachin, Mark S. Shephard, Timothy Tautges, Jason Kraftcheck, Vitus Leung, Xiaojuan Luo, and Mark Miller. An interoperable, data-structure-neutral component for mesh query and

[1330] Tiancheng Li and Ian Robinson. Algorithm 906: *elrint3d* — a three-dimensional nonadaptive automatic cubature routine using a sequence of

REFERENCES

References

REFERENCES

REFERENCES

[1376] Benjamin A. Burton and Melih Ozlen. Computing the crosscap number of a knot using integer programming and normal surfaces. *ACM...

February 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See remark [1534].

REFERENCES

REFERENCES

Seibold:2014:SSO

Langr:2014:APP

Smigaj:2015:SBI

Muller:2015:ECC

Lorenz:2015:SBP

Pryce:2015:DMT

Janna:2015:FSP

[1441] Carlo Janna, Massimiliano Ferronato, Flavio Sartorettto, and Giuseppe Gambolati. FSAIPACK: a software package for high-performance fac-
REFERENCES

REFERENCES

[1454] Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. CGALmesh: a generic framework for Delaunay mesh genera-
REFERENCES

Graillat:2015:ECF

Dalton:2015:OSM

Naumann:2015:ADN

Wang:2015:A

Dong:2015:APL

Granat:2015:A

REFERENCES

[1467] Benjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterized complexity of discrete Morse theory. *ACM Trans-
REFERENCES

Mei:2016:CDC

Sayed:2016:WCR

Lecuyer:2016:ALB

Alvarez-Cubero:2016:AVL

Ibanez:2016:PPU

Abdelfattah:2016:KOL

Jeannerod:2016:RIE
REFERENCES

REFERENCES

REFERENCES

Garrett:2016:NAB

vanderHoeven:2016:MSA

Sukkari:2016:HPQ

Filip:2016:RSI

Ong:2016:ARM

Sluanschi:2016:AAD

Yamazaki:2016:SPV

Rupp:2016:PIS

Low:2016:AME

Agullo:2016:IMS

Lee:2016:TOI

Gould:2016:NPP

REFERENCES

REFERENCES

Margherita Porcelli and Philippe L. Toint. BFO, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

reduce the lattice structure of linear congruential generators, but the second improves both dramatically.
