A Complete Bibliography of ACM Transactions on Mathematical Software

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 May 2019
Version 3.130

Title word cross-reference

-1/2, 1/2, 3/2, 5/2 [942]. 0 – 1 [498]. 1 [1127]. 2
[1059, 1265, 1228, 1590, 1406, 1226, 1161, 1595]. 2^p – 1 [925]. 3
a = ±2^q ± 2^r [995]. ab + cd [1438]. Ax = b [351]. AX^2 + BX + C = 0 [415].
AXB^T + CXD^T = E [1071, 753, 752]. β [1515]. C1 [1114, 660, 683]. C^2
[682, 682, 286]. E_n(x) [437]. f_1 [283, 316, 315]. F [803, 802, 617, 12]. f(x)
[403]. F_2 [1565]. H_p [453, 452]. h_p [1433, 1432]. h → ∞ [445]. i [105]. I_0 [150].
I_1(x)/I_0(x) [336, 332]. I_{1.5}(x)/I_{0.5}(x) [336, 332]. I_p(x) [126, 125, 207]. ith
[30]. J_0(x) [126, 125, 207]. k [789, 1515]. k < m [1515]. K_{i,n}(x) [438, 437]. L_1
MDM^T [876]. N [1180, 1584, 105, 30, 1455, 213]. O(log_2 k) [789].
O(n(1 + log(N/n))) [841]. O(n^{1/2}π) [616]. ω [1362]. ±2^{ki} ± 2^{k_2} [925]. Q
[1048, 1555, 1420]. QR [1545, 1499, 1460, 1505, 1552, 953, 952, 1412]. rc
[804, 19, 79]. r × c [542]. s [1347]. T [1543, 1036, 14, 15, 338, 339, 228].
$U(a, x)$ [1165, 1164]. UTV [1587]. v [566, 619]. $V(a, x)$ [1165, 1164]. ϕ
[1285, 1364]. $W(a, x)$ [1348]. $x_{n+1} = f(x_n)$ [149]. $x \geq 0, \nu \geq 0$ [126, 125, 207].

[789]. -concave [1036]. -D [1059, 1127]. -Dimensional [792, 213].
-Distribution [802, 14, 338, 228]. -Function [1420]. -Functions
-Test [617, 12]. -Vectors [1455].

2.0 [1490]. 2.5 [1236]. 2003 [1419, 1365, 1224, 1298]. 2008 [1594]. 219
[387]. 2D [895, 638]. 2Sum [1538].

3D [896]. 3m [1541].

498 [67]. 499 [75]. 4m [1541].

Ane-Scaling ADOL-C adjustment ADiGator

A1 ACETAF ACM ACRITH ACTS AD ABD ABDPACK ABBPACK Acceptance-Complement Acceptance Accurate Addition Acrith Absolute Acceleration Accelerated Accumulator-Based Accident Aids add Addendum Addition Adaptive ADOL-C Affine Affine-Scaling AdiJaC Adjoint Aided Aids

[1364]. 920 [1369]. 921 [1370]. 922 [1371]. 923 [1372]. 924 [1377]. 925
[1436]. 95 [1325, 1065, 1197, 1202, 1279, 1153, 1224]. 95/2003 [1224]. 954
[1554]. 983 [1555]. 986 [1558].
[821, 781, 408, 809, 877, 619, 340, 820, 644, 826, 583, 1032, 601, 590, 1351, 555].
Coupled [1572, 1033, 1073]. Coupling [1572]. Covariance [1494, 649].
Coupled [1572, 1033, 1073]. Coupling [1572]. Covariance [1494, 649].
downdating [1346]. Driven [790, 642, 692, 751, 1235]. driver [1135].
Dynamically [620, 1567, 1597]. dynamics [1117].

eigenpairs [1094]. Eigenproblem [757, 821, 786]. Eigenproblems [1485, 1056, 1251]. Eigensolver [1604, 1316]. eigensolvers [1252].

Eigenvalues [139, 765, 217]. Eight [262]. EIGIFP [1144]. elegant [1347].
Element [1260, 1371, 1425, 1382, 1537, 1519, 278, 462, 1497, 208, 420, 1301, 1218, 1277, 1356, 1137, 997, 1395, 1130, 1315, 1303, 1217, 1398]. Elemental [1385].

Elementary [474, 773, 1517, 698, 825, 839, 902, 85, 724].

Elementary-Function [474]. Elements [105, 30, 1137, 1139]. Elimination [429, 428, 610, 499, 539, 385, 384, 204, 200, 1118, 1246]. Ellipsoids [837, 836].

elrint3d [1330]. Embedded [1577, 1330, 1560]. Empirical [1366, 1216].

Generation [376, 321, 137, 1517, 143, 1454, 147, 1436, 1449, 569, 641, 943, 1301, 951, 1228, 1102, 1136, 1023, 1032, 1303, 1398, 1209]. Generator [73, 599, 495, 587, 317, 314, 805, 807, 1607, 769, 768, 264, 219, 1442, 754, 1609, 1008, 1079, 1251, 1036].

Generators

Methods

Mildly

MIMD

Minefield

minima

Minimal

Minimization

Minimizing

Minimum

Minimum-Cut

Minimum-Degree

Mining

Minkowski

Minor

MINRES

MINRES-QLP

Mirroring

MISCFUN

Mises

Mixed

mixed-order

mixed-precision

mixed-volume

MixedVol

Mixture

Mixture-plus-Acceptance-Rejection

MLD2P4

Mode

Model

Model/Trust

Model/Trust-Region

Models

Moderate

Modern

Modification

Modified

mixed-precision

mixed-volume

MixedVol

Module

modules

Multidimensional

Multifacility

Multifrontal

Multigrid

Multilevel

multilinear

multimethod

Multinomials

Multiphysics

Multiple

moving

Moving

Moving-Grid

MP

MPFR

MPGENR

MPI

MRIR

MSS

Multi

Multi-Adaptive

Multi-level

Multicolor

Multicommodity

Multicomplex

Multicomputer

Multicore

Multicore-Enabled

Multidisciplinary

Multifacility

Multigrid

Multilevel

multilinear

multimethod

Multinomials

Multiphysics

Multiple
Multiple-length [33]. Multiple-Phase [1432, 1317, 1351].
Multiple-Precision [171, 170, 257, 449, 1340, 715, 963, 1341, 1207].
Multiplication
[1479, 1586, 1456, 1561, 1525, 623, 189, 690, 1563, 1541, 1304, 1444, 1234],
multiplications [1276]. Multiplicative [1613, 1592, 925]. multiplicities
[1116]. multiplicity [1405]. multiplier [925]. Multipliers [995]. multiply
[1078]. multiplying [564]. Multipoint [169].
Multipole [1512]. Multiprecision [791, 870, 468, 1227]. multiprocessor
[1344]. Multiscale [1591]. Multishift [1460, 1412]. Multistep
[287, 289, 158, 548, 514, 246, 1307]. Multithreaded [1367, 1350].
Multivariate
[564, 490, 771, 809, 130, 1571, 1034, 840, 603, 76, 318, 1329, 502, 1402, 1035].
MultRoot [1116]. MUMPS [1295].
NAG [730, 245, 814]. Narrow [515]. National [431]. Natural
[389, 102, 417]. Nature [74]. Naval [1607]. Navier [1224]. Ncpol2sdpa
near-optimal [1284]. Nearest [223]. Need [474]. Negative [1521, 1386].
Neighbors [223]. NEOS [1000]. Nested [323, 919]. Network
[401, 262, 41, 1369, 845, 758, 488, 152, 740, 744, 740, 741, 1592, 982].
Nonadaptive [1330]. Noncommuting [1452]. nondifferentiable [1041].
Nonempty [904]. Nonequispaced [1292]. Nonic [683, 682]. Noninteger
nonmatching [1406]. Nonnegative [551, 694, 871, 856, 1244].
Nonorthogonal [1163]. Nonprocedural [865]. Nonrectangular [404].
Nonstandard [225]. Nonstiff [633, 632, 725, 121, 777]. Nonsymmetric
[786, 938, 797]. nonuniform [1175, 1210]. Nonzero [621]. Norm
[56, 166, 626, 644, 512, 1526, 1159, 1559]. Normal
[376, 11, 1376, 652, 771, 809, 303, 298, 1464, 769, 768, 1264, 159, 250, 786, 886].
Normalized [127, 328, 324]. Norms [1455]. normwise [1396]. Note
[500, 981, 243, 1510, 290, 1603, 1028, 548, 893, 511, 555, 1354]. notes [1010].
novel [1117]. NSDTST [563]. NSPIV [204]. Null [833, 1407]. Null-Space
[833]. Number [73, 1611, 1376, 1580, 1562, 587, 805, 704, 1607, 769, 768, 219, 109, 1609, 1216, 1023, 1032, 925]. Numbers [786, 293, 139, 52, 159, 1184].
Numeric [581]. Numerical [696, 1429, 790, 1368, 918, 1544, 43, 1387, 275,
Numerically [1579, 1547], Nyström [634].

Object [914, 1484, 1365, 1080, 1578, 1033, 913, 1293, 1291, 1218, 1059, 1152, 949, 1400, 1117, 1206, 1181, 1044].

Object-Oriented [914, 1484, 1365, 1033, 913, 1293, 1291, 1218, 1059, 1152, 949, 1400, 1117, 1206, 1181, 1044].

Observation [1025].

Octave [1571, 1547].

Octave/MATLAB [1571].

ODE [333, 290, 776, 354].

ODEs [334, 1566, 1084, 554, 697, 514, 289, 311].

ODESSA [596].

odeToJava [1448].

ODEXPERT [776].

ODRPACK [659].

ODRPACK95 [1221].

Off [1013].

Off-mesh [1013].

One-Dimensional [824, 340, 322, 1591, 1560, 669, 684].

One-Norm [626, 644].

One-Pass [135].

one-sided [1073].

One-Way [215, 214].

Online [1564, 1332].

Open [1240].

Open-Source [1240].

OpenAD [1240].

OpenAD/F [1240].

OpenGL [1115, 1596].

OpenGL- [1596].

OpenMP [1599].

Operands [1475].

Operation [1475, 1589].

Operations [1586, 178, 1394, 1038].

Operator [1472, 1556].

operators [1106, 1297, 1236].

OPT [1206].

Optimal [312, 710, 766, 403, 985, 828, 1246, 1421, 1432, 452, 1337, 1589, 1284, 1317, 1351, 1308, 1302].

Optimality [1439].

Optimally [1412].

Optimizations [1254, 1303, 1344].

Optimized [1479, 256, 1398].

Optimizer [1540].

Optimizing [1456, 1173, 1522].

option [1302].

Orbits [1360, 1560, 671].

Order [551, 694, 871, 1566, 577, 576, 633, 680, 746, 144, 1543, 1320, 937, 725, 248, 523, 1244, 1342, 1358, 942, 747, 814, 1435, 528, 796, 795, 1554, 1176, 1152, 1016, 1111, 402, 943, 1237].

Ordered [685].

Ordering [381, 5, 600, 101, 155, 1123, 1122, 1121, 1112].

Orderings [1547].

Orders [1020, 723, 1021, 1184, 1110].

Ordinary [696, 932, 1579, 43, 633, 746, 374, 178, 446, 444, 725, 596, 595, 92, 89, 1554, 1310, 1307].

Oriented [914, 1484, 1365, 1578, 1033, 1509, 913, 1293, 1291, 1218, 1059, 1152, 949, 1400, 1080, 1117, 1206, 1181, 1044].

Orienting [1539].

Orthogonal [598, 508, 659, 1532, 813, 1076, 962, 1300, 1221].

ORTHPOL [813, 962].

Oscillating [529, 1066].

Oscillatory [446, 1294].

Osculatory [346, 349].

Other [686, 434].

Out-of-Core [550, 1367, 1133, 1183, 1282, 1104, 1314].

Outlier [1533].

OutlierLib [1533].

Overdetermined [282, 281, 56, 1272].

Overhead [290].

Overlapped [1526].

Overlapping [815].

overloaded [1172, 1389].

Overloading [1472, 1556].

overview [1146, 1064, 1151, 1147].
P2MESH \[1059\]. packable \[1201\]. Package
problems [1317, 1351, 885, 993, 1413, 1306]. Procedure [323, 252, 541, 143].

Procedures [18, 23, 95, 230, 197, 165, 465, 389, 102, 417].

Process [413, 412, 201]. Processing [637, 852, 106, 909, 1506, 1326, 1086].

Processor [581, 483, 1015, 1415, 1534]. Processors [930, 823, 992, 1384].

produce [1078]. Product [72, 779, 1189, 1190, 1007]. Product-Type [72].

Products [1605, 261, 222, 881, 880, 1414]. professional [1010].

Profile [112, 113, 107, 382, 1072]. Profiles [1510, 1603, 1396].

Program [803, 91, 88, 494, 351, 316, 166, 160, 69, 139, 301, 80, 59, 234, 431, 689, 498, 264, 461, 186, 485, 638, 413, 70, 84, 1363, 430, 27, 25, 259, 1094, 1132, 1144, 1307, 988].

Prototyping [737, 853, 1194, 1117]. provably [1078]. proven [1311].

PRS [188]. PSBLAS [1026]. PSE [1045, 1448]. PSElInv [1516]. PSETM [326].

Quadrature [712, 1532, 72, 198, 912, 340, 322, 813, 987, 1470, 229, 17, 1321, 1571, 213, 729, 74, 46, 640, 641, 1432, 70, 451, 1213, 1214, 1137, 1215, 962, 1303].

Skew-Hamiltonian [1485]. Skew-Hamiltonian/Hamiltonian [1485].

Skew-Symmetric [1535, 192, 191, 1372]. SLEDGE [904]. SLEIGN [731].

SLEIGN2 [1040]. SLEPe [1149, 1413]. SLEUTH [937]. SlideCont [1135].

Solve [206, 396, 486, 57, 118, 787, 866, 557, 1553, 614, 1199, 1134].

SOLVEBLOK [269, 268]. Solvents [415]. Solver [1463, 1383, 1520, 1331, 359, 1461, 945, 1462, 1434, 455, 506, 596, 1439, 585, 1337, 1501, 1542, 1482, 1378, 895, 896, 1400, 1108, 1167, 1312, 1045, 1083, 1282, 1314, 989]. Solvers [1508, 1051, 190, 827, 563, 1328, 1327, 290, 248, 776, 447, 1498, 1492, 1457, 974, 973, 1536, 1506, 121, 354, 61, 1059, 1150, 1231, 1229, 1098, 1212].

Space [564, 223, 344, 833, 530, 423, 950, 1407, 1136, 1226]. Space-Efficient [423]. space-filling [950, 1136]. Spaces [1583, 1596, 452, 1458, 1012, 1081].

Subprograms
[1061, 1060, 241, 240, 397, 592, 628, 591, 664, 663, 931, 1064, 581, 238, 237, 609].

Subresultant [188]. Subroutine

Subroutines

Subset [457]. Subspace [938, 783, 877, 1364, 1604, 1322]. Subspaces [458, 394]. Successive [484, 1030]. Suitable [1384, 420].

[23, 181, 180, 231, 230, 69, 837, 836, 80, 660, 505, 480, 479, 933, 934, 1596, 25, 259, 898, 899, 1002, 879, 1114, 1115]. Surfaces
[1544, 1376, 1268, 1548, 1495, 594, 593, 672]. Surfacing [954]. Survey
[103, 307, 1336]. SVD [1545, 1612]. Sylvester
[753, 752, 1328, 1327, 1071, 1073, 1074, 884, 1087]. Sylvester-Type [1328, 1327, 1073]. SYM [1535]. SYM-ILDL [1535]. Symbolic
[148, 226, 532, 385, 1301, 1398]. Symmetric
[584, 98, 1463, 127, 1029, 553, 422, 1056, 623, 1535, 613, 945, 1462, 1547, 1516, 1025, 1335, 573, 1518, 280, 1612, 217, 1337, 192, 191, 1372, 1120, 1219, 1416, 1344, 890, 997, 1109, 1119, 1204, 1312, 1252, 1183, 1144, 1352, 1212, 1247].

Symmetric-indefinite [1183]. Symmetrical [1186]. System
[735, 1380, 870, 56, 291, 1562, 538, 612, 400, 788, 1608, 776, 1340, 308, 455, 506, 1367, 851, 526, 434, 488, 905, 208, 1400, 1011, 1278]. Systematic

Two- [1539]. Two-Dimensional [911, 827, 326, 325, 1291, 483, 482, 476, 1542, 1213, 1214, 1068, 1075, 1414, 878, 1058, 654].
Two-Sided [1074]. Two-Stage [1320]. Two-step [1103].

REFERENCES

XMP [357]. XNETLIB [854]. xorshift [1491].

Year [630]. Yorke [286].

References

Pomeranz:1976:REC

Morris:1976:RDF

Rice:1976:TPS

Ford:1976:DSN

Paul:1976:SEF

Janko:1976:LIS

Atkinson:1976:APL

[88] Kendall Atkinson. An automatic program for linear Fredholm integral equations of the second kind. ACM Transactions on Mathematical Soft-
Shampine:1976:GEE

Ericksen:1976:ICP

Atkinson:1976:AAP

Shampine:1976:AGG

Janko:1976:ALI

Pike:1976:RIB

Anderson:1976:RIS

REFERENCES

Wyatt:1976:PEP

Gentleman:1976:AAC

Barwell:1976:CAS

Bartels:1976:HIU

Hall:1976:NSS

Stewart:1976:AHE

REFERENCES

REFERENCES

[125] D. E. Amos, S. L. Daniel, and M. K. Weston. CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_{\nu}(x)$ and $J_{\nu}(x)$, $x \geq 0, \nu \geq 0$. *ACM Transactions on Mathematical Software*, 3(1):76–92, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[126] D. E. Amos, S. L. Daniel, and M. K. Weston. Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_{\nu}(x)$ and $J_{\nu}(x)$, $x \geq 0, \nu \geq 0$ [S18]. *ACM Transactions on Mathematical Software*, 3(1):93–95, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See erratum [207].

REFERENCES

Dunham:1977:RMU

Aird:1977:PMS

Stoutemyer:1977:ASI

McClellan:1977:CAE

Farden:1977:SSS

Ichida:1977:CFO

Ellis:1977:ANM

REFERENCES

REFERENCES

REFERENCES

Powell:1977:PQA

Skeel:1977:BLM

Payne:1977:NRN

Boyce:1977:IPF

Cabay:1977:CTE

Eddy:1977:NCH

Cabay:1977:AEC
1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

Ward:1978:ECS

Ward:1978:AAC

Snyder:1978:ACP

Coleman:1978:RSN

Gustavson:1978:RSM

Schoene:1978:RMI

Baker:1978:SAC

REFERENCES

[207] Donald E. Amos. Erratum: “Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]”. *ACM Transactions on Mathematical Software*, 4(4):411, December 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [126].

REFERENCES

Schrage:1979:MPF

George:1979:DUI

Payne:1979:CG

deBoor:1979:ECM

Cleary:1979:AAF

Crowder:1979:RCE

Crary:1979:VPN

REFERENCES

REFERENCES

Swartztrauber:1979:AEF

Steuerwalt:1979:CEF

Larson:1979:ECE

Gear:1979:EN

Enright:1979:APS

Gladwell:1979:IVR

Zlatev:1979:ASD

Stetter:1979:GEE

Houstis:1979:HOF

Kaufman:1979:ADH

Rayward-Smith:1979:CSN

Wampler:1979:SWL

Gautschi:1979:CPI

REFERENCES

REFERENCES

Fox:1979:RFP

dBoor:1979:CCM

Cheung:1980:CCE

Ho:1980:CST

Michaels:1980:MPG

Chung:1980:ACF

Clark:1980:REV
REFERENCES

Anonymous:1980:AAD

Chan:1980:NLS

Brent:1980:AIB

Kedem:1980:ADC

Rheinboldt:1980:DSA

Verwer:1980:ICS

Munksgaard:1980:SSS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Friedman:1981:NPP

Smith:1981:ERA

Melgaard:1981:GST

Melgaard:1981:APS

More:1981:AFS

Lozier:1981:AER

Golub:1981:BLM

REFERENCES

[332] Geoffrey W. Hill. Evaluation and inversion of the ratios of modified Bessel functions, $I_1(x)/I_0(x)$ and $I_{1.5}(x)/I_{0.5}(x)$. *ACM Transactions on Mathematical Software*, 7(2):199–208, June 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

[336] Geoffrey W. Hill. Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions: $I_1(x)/I_0(x)$, $I_{1.5}(x)/I_{0.5}(x)$ and their inverses [S14]. *ACM Transactions on Mathematical Software*, 7(2):233–238, June
1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

September 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Krogh:1982:AAP

Hiebert:1982:EMS

Dunham:1982:CBC

Deo:1982:AGF

Paige:1982:LAS

Chan:1982:IAC

Chan:1982:AIA

REFERENCES

REFERENCES

[Sasaki:1982:EGE]

[Brezinski:1982:ASG]

[Kincaid:1982:AIF]

[Hanson:1982:ATA]

[Hanson:1982:RPQ]

[Wolfe:1982:CCG]

[Anderson:1982:FHT]
REFERENCES

Anderson:1982:AFH

Dongarra:1982:ASF

VanDooren:1982:ADE

Hemmerle:1982:ACM

Garbow:1982:RQA

Dodson:1982:RBL

Buckley:1982:RQS

REFERENCES

94

Morgan:1983:MCA

Greenberg:1983:FDA

Beck:1983:RGA

Hanson:1983:CDE

Gaffney:1983:AFS

Proskurowski:1983:APH

Larson:1983:ASR

[405] John L. Larson, Mary E. Pasternak, and John A. Wisniewski. Algorithm 594: Software for relative error analysis. ACM Transactions on Mathe-
REFERENCES

Werner C. Rheinboldt and John V. Burkardt. A locally parametrized continuation process. *ACM Transactions on Mathematical Software*, 9

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Amos:1983:REI

deDoncker:1984:AAI

deDoncker:1984:ATI

Gear:1984:SOD

Krogh:1984:ARI

Gaffney:1984:PES

REFERENCES

REFERENCES

[463] John F. Monahan. Algorithm 616: Fast computation of the Hodges-Lehman location estimator. *ACM Transactions on Mathematical Software*, 10(3):265–270, September 1984. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). This paper reduces the previous complexity bound for the Hodges-Lehman location estimator from \(O(n^2 \log n) \) to \(O(n \log n) \).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Houstis:1985:AGC

Houstis:1985:AIIH

Schnabel:1985:MSA

Er:1985:RG

Shampine:1986:FWV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

124

[595] Jorge R. Leis and Mark A. Kramer. The simultaneous solution and sensitivity analysis of systems described by ordinary differential equa-
REFERENCES

Leis:1988:AOO

Butcher:1988:TEI

Ammann:1988:RCR

Bratley:1988:AIS

Robertazzi:1988:BOF
REFERENCES

[607] B. S. Garbow, G. Giunta, J. N. Lyness, and A. Murli. Software for an implementation of Weeks’ method for the inverse Laplace trans-
REFERENCES

Grimes:1988:SLD

Schrauf:1988:AGA

Minh:1988:GGV

Duff:1988:RIN

Cormack:1988:RTP

Krogh:1988:AAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[677] Donald E. Amos. Computation of exponential integrals of a complex argument. *ACM Transactions on Mathematical Software*, 16(2):169–177,

Albrecht Preusser. Algorithm 684: C^1- and C^2-interpolation on triangles with quintic and nonic bivariate polynomials. *ACM Trans-
REFERENCES

140

Higham:1990:EFM

Nicholas J. Higham. Exploiting fast matrix multiplication within the level 3 BLAS. *ACM Transactions on Mathematical Software*, 16(4):352–368, December 1990. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/pubs/citations/journals/toms/1990-16-4/p352-higham/. Describes algorithms based on Strassen’s method which are asymptotically faster than the standard N^3 algorithm, and in practice, faster for $N \approx 100$, and examines their numerical stability. See [664, 756, 823].

Reichel:1990:AFS

Tang:1990:TDI

Hopkins:1990:RRK

Amos:1990:RPP

REFERENCES

REFERENCES

Dax:1991:CAB

Pardalos:1991:CTP

Klier:1991:FCB

L'Ecuyer:1991:IRN

Liu:1991:GEM

Mohideen:1991:RCG

REFERENCES

REFERENCES

[718] Edward Rothberg and Anoop Gupta. Efficient sparse matrix factorization on high-performance workstations—exploiting the memory hi-
REFERENCES

146

REFERENCES

REFERENCES

REFERENCES

[741] Tamar Schlick and Aaron Fogelson. TNPACK—a truncated Newton minimization package for large-scale problems: II. implementation exam-
REFERENCES

REFERENCES

REFERENCES

Toint:1992:LFS

Berntsen:1992:ADA

Hopkins:1992:RPG

Nardin:1992:ACN

Schweikard:1992:RZI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chang:1993:ICR

Cody:1993:AFS

Snyder:1993:AFI

Ribbens:1993:TPM

Abernathy:1993:ASE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kim:1994:PNA

Brown:1994:CAS

Taswell:1994:AWT

Dunkl:1994:CHI

Dunkl:1994:AHI

REFERENCES

REFERENCES

Ray:1995:ALS

Fateman:1995:FFP

Kearfott:1995:FER

Dongarra:1995:SDX

Grosse:1995:RM

Demetriou:1995:ALF

[856] I. C. Demetriou. Algorithm 742: L2CXFT: A Fortran subroutine for least squares data fitting with nonnegative second divided differ-
REFERENCES

REFERENCES

Rizzardi:1995:MTM

Sherlock:1995:AFD

Bailey:1995:FBM

Amos:1995:RAP

Carpaneto:1995:ESL

REFERENCES

REFERENCES

176

REFERENCES

Bruaset:1997:OOD

Bouaricha:1997:ASS

Cabay:1997:AEW

Geurts:1997:AFP

Blackford:1997:PEN

REFERENCES

REFERENCES

Bai:1997:ASF

Watson:1997:ASF

Zhu:1997:ALF

Karp:1997:HPD

References

March 1998. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES
193

REFERENCES

[998] Krister Dackland and Bo Kågström. Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form. ACM

Ferris:2000:NCS

Griewank:2000:ARI

DeTisi:2000:RAS

Benner:2000:AFS

REFERENCES

REFERENCES

//www.acm.org/pubs/citations/journals/toms/2000-26-1/p201-hormann/
p201-hormann.pdf.

REFERENCES

Bischof:2000:AST

Anderson:2000:RAF

Mascagni:2000:CAS

Langtangen:2001:SSP

Neumaier:2001:EPE

Schneider:2001:AAM

Leydold:2001:SUG

REFERENCES

REFERENCES

468, December 2003. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Falgout:2005:PSH

Hernandez:2005:SSF

Hindmarsh:2005:SSN

Heroux:2005:OTP

Castillo:2005:FOO

Naumann:2005:DEF

REFERENCES

Panneton:2006:ILP

Guermouche:2006:CMM

Koyuturk:2006:NDB

Gil:2006:CRP

Gil:2006:ARP

Hager:2006:ACD

Granvilliers:2006:ARI

Laurent Granvilliers and Frédéric Benhamou. Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques.
REFERENCES

REFERENCES

Brisebarre:2006:CME

Kolonko:2006:SRS

Cameron:2006:MPA

Lerch:2006:FFI

Demmel:2006:EBE

Benner:2006:AFS

Sharp:2006:BSP

REFERENCES

521–532, December 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Fousse:2007:MMP

Elman:2007:AIM

Crouse:2007:RAG

Rioux:2007:ANF

Kirby:2007:ECC

Scott:2007:ESD

Ball:2007:EGR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1246] Uwe Naumann and Yuxiao Hu. Optimal vertex elimination in single-expression-use graphs. ACM Transactions on Mathematical Software, 35

REFERENCES

REFERENCES

REFERENCES

Jonasson:2009:ADF

Renka:2009:ATT

Padula:2009:SFA

Reid:2009:CSC

Yang:2009:KMT

Gustavson:2009:DSC

Koikari:2009:ABS

[1285] Souji Koikari. Algorithm 894: On a block Schur–Parlett algorithm for φ-functions based on the sep-inverse estimate. *ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1324] Carl Ollivier-Gooch, Lori Diachin, Mark S. Shephard, Timothy Tautges, Jason Kraftcheck, Vitus Leung, Xiaojuan Luo, and Mark Miller. An interoperable, data-structure-neutral component for mesh query and

[1330] Tiancheng Li and Ian Robinson. Algorithm 906: *elrint3d* — a threedimensional nonadaptive automatic cubature routine using a sequence of

REFERENCES

Dalberto:2011:EPM

Cazals:2011:CVU

VanDeGeijn:2011:HPD

VanGijzen:2011:AEI

Gil:2011:APC

Morales:2011:RAB

Davis:2011:ASM

REFERENCES

Niesen:2012:AKS

Filippone:2012:OOT

George:2012:EAP

Quintana-Orti:2012:RSP

Birkisson:2012:AFD

Kim:2012:ASS

REFERENCES

[1376] Benjamin A. Burton and Melih Ozlen. Computing the crossecap number of a knot using integer programming and normal surfaces. *ACM*
Abad:2012:ATT

Yamashita:2012:APS

Betcke:2013:NCN

Baboulin:2013:ALS

Gustavson:2013:LCF

Knepley:2013:FEI

February 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

July 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Choi:2014:AMQ

Gunther:2014:ACC

Zee:2014:RTB

Awile:2014:PWF

Gil:2014:ACM

Nelson:2014:AOA

REFERENCES

Kressner:2014:AHM

delaCruz:2014:ASS

Scott:2014:HER

Kirby:2014:HPE

Hogan:2014:FRM

Fabregat-Traver:2014:CPT

Erway:2014:AMM

REFERENCES

[1441] Carlo Janna, Massimiliano Ferronato, Flavio Sartoretto, and Giuseppe Gambolati. FSAIPACK: a software package for high-performance fac-
REFERENCES

REFERENCES

[1454] Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. CGALmesh: a generic framework for Delaunay mesh genera-
REFERENCES

REFERENCES

[1467] Benjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterized complexity of discrete Morse theory. *ACM Trans-
Giles:2016:AAI

Aruliah:2016:APP

Gautschi:2016:AER

Novoselsky:2016:RAD

Weinstein:2016:STO

VanZee:2016:BFE

REFERENCES

Zaghloul:2016:RAC

Rouet:2016:DMP

Meiser:2016:RCR

Ledoux:2016:MMT

Vigna:2016:EEM

Laszlo:2016:MAB

[1492] Endre László, Mike Giles, and Jeremy Appleyard. Manycore algorithms for batch scalar and block tridiagonal solvers. ACM Transactions on
Prusa:2016:DWT

Escobar:2016:AES

Lozano-Duran:2016:AEA

daCruz:2016:GTU

Turcksin:2016:WDP

Kohler:2016:BLI

REFERENCES

Garrett:2016:NAB

vanderHoeven:2016:MSA

Sukkari:2016:HPQ

Filip:2016:RSI

Ong:2016:ARM

Sluanschi:2016:AAD

REFERENCES

REFERENCES

REFERENCES

Aurentz:2017:CCS

Magron:2017:CRE

Huckelheim:2017:ADC

Gould:2017:SAP

Deckers:2017:AER

Novoselsky:2017:AOM

[1540] Margherita Porcelli and Philippe L. Toint. BFO, a trainable derivative-free brute force optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables.
REFERENCES

Hanson:2018:RAM

Neirynck:2018:NBA

Elafrou:2018:SLH

Doliskani:2018:SCR

Springer:2018:DHP

Sanders:2018:EPR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1604] Jan Winkelmann, Paul Springer, and Edoardo Di Napoli. ChASE: Chebyshev accelerated subspace iteration eigensolver for sequences of

REFERENCES

