A Complete Bibliography of Publications in ACM Transactions on Programming Languages and Systems (TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

28 May 2020
Version 2.137

Title word cross-reference

[SRW02], + [Han81a], T^M [Bla03] $\cdot \cdot \cdot$
[AW82], $\|$ [DDCG02], A [DES12], R
[JMSY92], R_{Lin} [VR95], ℓ [ADG94].

$O(nm)$ [Pet82], ϕ [CF95, DR05], π [ABL03].

(k) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3
Abstract [BGL93, BK11, CMB+95, CFG+97, DGG97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Abstraction [CG93, CL94, Der85, GMH81, GKM20, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, Ell82].

Access [ABLP93, BCC04, KS83, Mis86, NBG13, HR02, HO07, KSK07, PHP02, PSS05].

Access-Right [KSS83].

Accessing [CB80].

Accumulation [Bar81, Bir85].

Addendum [Bir85].

Adding [ACW90, BN94].

Addressing [Hol87, ZP10].

Adequacy [KKSD94, Wey83].

Adjusting [ABB+99].

Advice [WKG04].

Affine [BAC16, BCEM15, CFNH18, DG19, ELS+14, VJB12].

Affect [GF85].

Agents [BCC04].

Aggregate [LSLR05].

Ahead [BLH12, DP82].

Alarm [LLK+99].

Algebra [Koz97, Wil82, KBC+99].

Algebraic [BP82, BW87, CIJGP18, CGG+19, Jen97, Lin93, SV20, JB06, SP07].

Algorithm [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha91, DP93, GHS83, Hua90, Hud91, JJCO19, LV94, LY98, Lei90, LT79, LH91, MM89, MC82a, Pet82, SH89, TB98, Wle79, BKR98, BH99, DR05, DVO07, JN06, Van96a, Van96b, Han81b, BKR05].

Algorithmic [BP82, CFNH18, GM12, Loe87].

Algorithms [ABP00, BAC16, CIJGP18, CGG+19, CS95, CN83, CLO88, KRS84, KKM90, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro90, Kro91, MM89, RD87, RH87, RP88, TM93, WW95, Aan00, DAS98, GC01, ZGZ05].

Alias [Cor07, HBC09, RRS80].

Aliasing [Boe85, Ram94, RLS+01].

All-Purpose [Spo86].

Allocating [ZP07].

Allocation [BB79, Bre89, BCT94, CH90, CS95, FLBB89, GSO94, LCBS19, Rob79, SH89, CGS+03, HCS10, LGAT00, PS99, PF96, RDG08, SRM10, TP04].

Alma [ABPS98].

Alma-O [ABPS98].

almost [Duc08, Ram99].

Alternative [Gho93, GH80, Zav85].

Always [Gri79].

Ambients [BCC04, LS03, MH06].

Ambiguity [Tho94].

amortized [HAH12].

Amulet [VHM+98].

Analysis [AC94, CC95, CFM94, TN19, KSV96, SJ03].

Analysis [AKN17, AB+18, AD98, Bae84, BNN18, BC85b, Blo94, BE13, Bur90a, CFNH81, CFG19, CDK+18, CMN91, DVL18, DL93, DVB95, DP97, DAW88, FPS19, FJK+17].
array-valued [RMH06]. Arrays [BBC16].

AspectML [DWW08]. Aspects [Bor81, Set83]. assembly [AAR+10, MWC99]. Assertions [BKB80].

Assessing [BDH+16, Wey83]. Assignment [BKB80, CFR+91, Gl80, GPF08, LD+96].

Assisted [BKB80,Assert]. Assuming [FGM07b]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b].

auto [ZP10]. auto-addressing [ZP10].

Automata [BMW91, CBMO19, ES97, Pro95, KV00].

Automata-Theoretic [ES97, KV00].

Automated [GRSK+11, KZC15, KF00, Sok87, JNGG10].

Automatic [AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, D90, K88, Le 88, LK02, LS04, MS83, PZJ05, R87, SSS81, SL03, She91, Wat91, Wha94, ABH11, ATD08, BdIB99, CR+08, ZCG+07].

Automatically [Slo95]. Automating [GKL94, MTSS09]. Avoidance [FGL94].

aware [MQ05]. Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80].

Axioms [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].

authorization [FGM07b]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b].

auto [ZP10]. auto-addressing [ZP10].

Automata [BMW91, CBMO19, ES97, Pro95, KV00].

Automata-Theoretic [ES97, KV00].

Automated [GRSK+11, KZC15, KF00, Sok87, JNGG10].

Automatic [AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, D90, K88, Le 88, LK02, LS04, MS83, PZJ05, R87, SSS81, SL03, She91, Wat91, Wha94, ABH11, ATD08, BdIB99, CR+08, ZCG+07].

Automatically [Slo95]. Automating [GKL94, MTSS09]. Avoidance [FGL94].

aware [MQ05]. Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80].

Axioms
B [Han81a]. backpropagator [PS08].
Backtracking [Lin79, VR95, FM87a].
Backward [DL81, Mye81]. Balanced [AS80, PB80, vHK90]. Barrier [CHMY91].
Base [NeS20, LS98]. Based [BPP16, BGL93, Bur90a, CGJ97a, CI84, CP95, CH90, CPS93, DVL95, DLR96, EGP14, GG85, HT86, JTM98, Kii99, KH92, KR79, LFF14, PW98, RDT83, SR95, SGL98, Ste18, SNS+14, TY18, Wat94, WGS92, vPS81, BFG08, BM01, BHM+07, BCG+07, CTT07, DDV99, Eug07, FF99, HBJ98, KBC+99, KK07, KC01, LP98, LH08, LGAT00, MTSS99, MH06, Pal98, PPT08, PCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12]. Basic [CGG+19, GLR83]. Bayesian [HOY18].
BDD [LH08]. BDD-based [LH08]. Be [Be94, Coh91, Wir91, CG04, LP99].
Behavior [KLS92, GM09, VBLG04]. Behavioral [S15, LW94]. Behavioural [SV20]. Being [Cop94]. benefits [GMP+00].
Better [Gri79, Lam88]. between [BS88].
Beyond [GS95]. BI [BBTS07].
BI-hyperdoctrines [BBTS07].
Bidirectional [DP93, MMR95, FGM+07a, GPWZ08].
binarys [STSP05]. Binary [Sip82, DDD05, MMM+07, RC03, YF09].
binding [ACE96]. Birrell [MDJ05].
Bisimulation [FDY12, MH06, San09]. bisimulation-based [MH06].
Block-Structured [LS81]. Blocked [FTJ95]. Blocks [Jag94]. Boolean [XAO7].
Bounded [ADG+94]. Bounds [CP17, PW94, BP12, CEI+07, RR05, SS05a].
Box [WLBF16]. boxed [BBC04]. Branch [CGJ+97a, CEG07, YUW02, YS99].
Building [Jag94]. BURS [Pro95]. Bus [Pur94]. Bytecode [SAA9, BDL+08, CSMC00, FMO9, GP08, KR01, Qia00, SMP10, WR08]. Byzantine [LSP82].
"C [PHEK99, BR97, HSS+14, ND16, PKH07, PFH11, Ven95]. C# [BCF04]. C/C [ND16].
C11 [JP17]. Cache [GMM99, KLS92, MMM+07, SS96, VBLG04].
Caching [ABM93, FKS+05, LST98].
Calculational [Bou06]. calculi [ABS09].
Calculus [ABLP93, BKL+97, BN94, Gom92, Kob98, Miq99, MRG88, Ne89, Oho95, WM95, AB0L, AHS10, Butt05, Bou06, BCC04, DES12, HR02, IPW01, Jay04, TA08a, KPT99]. Call [DP97, GL80, GC01, HL05,KK07, SW97a].
call-by-value [HL05, SW97a]. Calls [BNN18, Coh83, Coh85, FF08]. Can [Beo85, Coh91, Wir91, CG04].
Capabilities [SDB20, WCM00]. capability [TA08a].
Carlo [FL15]. carrying [AM01]. Case [CGF91, FTJ95, WW95, BDBH90, KF03].
Chaining [LS80]. Chains [HS94].
challenge [MP02]. change [BA08, CP96, Lee09]. Changes [Ber94, MTSS09]. changing [MP07].
Chariots [PB97]. Check [AP94]. checked [KN06]. checker [NP08]. Checking [Car95, CGL94, ES97, FF08, GL94, ND16,AY01].
ACM11, BGP99, FFLQ08, HQRT02, JJD98, KF10, KV00, NI05, SG04, VJB12, YM97.
Checks [CG95, CEI+07]. Choice [BN94, JCM19]. CIRCAL [Mi85].
Circular [Jon90, Pet82]. Circularity [WW95, Wu04]. Clarification [PA86a].
Choice [BN94, JCMM19]. CIRCAL [Mil85].
Circular [Jon90, Pet82]. Circularity [WW95, Wu04]. Clariﬁcation [PA86a].
Class [CBMO19, HKMN94, Han92, SJ03, SDTF13, HS11, MH04, ST00a]. Classes
[SDTF13, WT11, HHP96, HMS06]. Classical [JSB+12, Miq19].
Classiﬁcation [KZC15]. Classifying [GSW95].
Claus [WP10]. Cliche [Wat94]. Cliche-Based [Wat94]. Clique [GS04].
Closure [Pal95, SW07b, SA00]. CLP [DHM00, GLMM05, JMSY92, KMM+98, VR95].
Clustering [LLK+17]. Clusters [BGH+13, HB87+09]. coalescing [GA96, Hai05, PM04]. Code [AGT89, BHM+19, Cop94, DF84, FGL94, GF85, Hen82, HGS83, JSB+12, KRS94, LR13, ND16, Rob79, TV82, Wan82, AM01, DEMD00, Hai98, HB87+09, HK07, JN06, LDK+96, MHH+00, ME97, Ohno07, PHEK99, WS97, vHK00, CM93, Fed83, WST85].
Cohen [Cob85]. coherence [SS96]. coinduction [San09]. Collect [JCM19].
Collecting [HY91]. Collection [BA84, CN83, DSW82, Lan80, TM93, UR18, WLB86, BALP06, HD80, PBK+07, Piq96].
collector [BBYG+05, LP06, TSBR08]. Coloring [BCT04, CH90, GS04].
Comments [AB94, KS79, LA84, NN86, Sor89]. Communicating [AFdR80, GC86, HM84, MW84, MC82b, Moi83, Oss83, PF91, Pur91, Sou84, Ber80, KS79]. Communication
[Ang89, CHY12, FJK8+17, FY85, Gel85, Hua90, LH91, MB83, vPS81, KBC8+99, Mil85, SWU10, WM12]. Communication-Centered [CHY12]. Communications [RS84b].
Commutativity [RD97, Ap00, Cha02]. Compact [BC79, Sip82, Wad90].
Compactification [RH87]. Compacting [CN83]. Compaction [CP17, Wis79, BP12, DDD05, DEMD00]. Comparative [WC90, WC91].
Comparing [Hay95]. Comparison [CN83].
Compile-Time [ABR81, Hol87, GW99, Tra08]. Compiler [App94a, Bud84, CM86b, DK17, DEMD00, FT94, FGL94, JSB+12, Re83, Sl95, Son87, Wha94, YBL16, Ano02a, CML06, DHO99, GMM99, KN06, PE08, PHEK99, SYK+05, VHO02]. Compiler-Driven [YBL16]. Compilers [BDF97, DDH84, HP96, Han94, BGK09, RD97, SY96].
Compiling [Cha93, CH87, Fis80, Set83, VHO02].
Complementation [CFG87]. Complete [BDF97, WM95]. Completeness [LBN17, TB95, WGS92, Wu04, WGS93].
completion [KR01]. Complexity [BEF+16, Deb95, Le88, RRSY08, SSD09].
component [LS98, YS97].
component-base [LS98]. Componential [FF99]. Components [CIJGP18].
Composing [AL93, HMM94]. Composite
[Fsa87]. composition [AH10, Pau01].
Compositional [Fos96, Jon94, JTM98, LFF14]. compressed [DAS98]. Compression
[BMM91, CSM00, DKV07]. Computability [HS96]. Computable
[PK82]. Computation [AC94, BOV85, DP82, HS94, LST98, PB97, ABB8+09, AE01,
DR05, LK02, SWU10, SGL97, Hal85.
computational [ATD08, SSD09].
Computations [DW89, MC82b, VSS94, Y91, LSLR05, Mon08, YF98].
Computing [HCHP92, Wol92].

Computers [HCHP92].
Computer-Assisted [HCHP92].

Concerning [Sha82].
Concrete [Bar81].
Concurrency [BG89a, Lam83, Lam88, Wei89, BC91, Car95, CIJGP18, Cla80, CES86, CFS93, CFM94, DGMP97, FT94, Hal85, HSP83, HW90, Her93, JTM98, Kar84, Lam83, LFF14, OL82, Pet83a, Pet83b, RY88, Sku95, SNS+14, AE98, AE01, AAE04, BBYG+05, BGP99, CSMW06, JPS+08, RS97, SRM10, YS10].

Concurrent-by-Default [SNS+14].
Concurrent-Program [FT94].

Context [GHR80, LTMS20, Ode93, Pad19, PK80, Ram00, RTD83, Rep00].
Context-Free [Bor81].
Context-sensitive [Ram00, Rep00].
Contexts [Ode93].

Continuous [KF03].

Contracts [CS87, SW97b, SA00, YK97].

Correct [DGMP97, Hen86, JP17, SS88, AAD+07].
Correction [FA93].

core [IPW01].

core [IPW01].

correlated [YS99].

Corrigenda [WCW91].
Corrigendum [Ano18, BKRW05, DF81, Fra80a, KS89, Lam80, Pur91, QG95, TGT20, Van96a, Wal81, WGS93].

Cost [AB81, Bae84, DL93, Hai98, Han81a, ZGZ05, VALG05].
Cost-optimal [Hai98]. costs [GMP+00].
Counting [Bal94, LP06]. Counts [Bob80, Wis79]. Coupled [ACW90].
Covariance [Cas95], covariant [PZJ05].
Creating [Myc05], criteria [Hai95].
Critical [PS93]. Critique [GM81]. Cross [Aon18, FTJ95, GSS+18].
Cross-Interferences [FTJ95].
Cross-Language [Aon18, GSS+18].
Cryptographic [App15]. CS [CD79]. CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Zic94].
CSP-Like [Hua90]. CSS [HLH19].
currency [DS98], Curry [LR19].
Curry-Style [LR19], Custom [DJP+16].
CV3 [CZ84]. Cycle [BG89b, PK+07].
Cycles [FRW90]. Cyclic [RY88].

D. [Bur91]. Data [AMT14, ANP99, AM85, Bac84, BC85b, BL87, Bur90a, Cha93, CS87, Deb98, DP93, DD85, Eil82, EO80, FL81, GME81, GEGP17, HL82, Her93, Hes88, Hol87, Jen97, JJC019, KH92, Kam83, KZC15, KK98, KD94, LaL89, LO94, LN02, Loe87, Mal82, MMR95, MCT96, PP91, QG95, RCRH95, RP88, SSS81, Ska95, SGL98, SM81, TWW82, WL85, Wei89, We90, Wet82, Wey83, CFP+04, DHM+12, DGS97, HBJ98, KBC+99, KFO00, LK01, Rep00, SP07, VALG05, YUW02, ZGZ05, Pur91].

data-centric [DHM+12]. Data-Driven [BL87, CS87, JJC019]. Data-Flow [BC85b, Bur90a, Wet82, RP88, KBC+99].
data-independence [Rep00].
data-member [KFO0]. Data-Parallel [Cha93, HBJ98]. Database [Bar85, CB80].
Dataflow [Deb95, DFR15, MWB94, SS13, SS96, Van96a, Van96b, VHM+01]. datalog [LS09, ZSS20].
datatypes [MBC04].
Deadlock [CHMY19, Hua90, Kob98].
Deadlock-Free [Kob98]. Deadlocks [FJK+17]. Dealing [GLMM05, GG85].
Debugging [CM91, CM93, Cop94, Hen82, WST85, ZSS20]. Deciding [GGL15].
Decision [MTG80, NO79]. decisions [MTSS09].

Declarative [ABPS98, TCVB14, Bou05, MME+10].
Decompile [BB94]. Decomposing [BDL+08], decomposition [LK02].
decrease [LDK+96]. Deducing [TB95].
deduction [LMD98]. Deductive [MW80].
Default [SNS+14]. Deferring [MTSS09].
Definitions [BS86, Wit82b, Dam03, VHK02, Sij89].
Delay [BG89b]. Delayed [KPF95, RC03].
Delayed-Load [KPF95]. Delaying [Kau84].
Deleting [GP91]. Delimited [BDM15].
Demand [FPS19, GSW95, PA85, PA86a, PA86b, PF96, SR95, DGS97].
Demand-Driven [GSW95, PA85, PA86a, PA86b, FPS19, PF96, DGS97]. Denali [JNZ06].
Denotational [AB94, FA93, Gu92, MSJ94, NF89, Nie85, Sch85, dBB85].

Dependence [BGH+13, CF91, FOW87, HBG+09, HRR90, PB97, PW98, Wold94, RAB+07].
Dependent [LS80, Miq19, NBG13, Ode93, RDT83, Rob97].
dequeues [Chi05].
DeRemer [Sag86]. Derivation [BKBS0, Cat80, DSW82, Gie83, HIT97, Kna90, TM93, Aon02a]. Deriving [Wan82, Bou06]. Describing [AW85].
Description [McC82]. Descriptions [Bee85, BKLM+97, Cat80, Aon02a].
Descriptors [Hol87]. Design [BPP16, BCD+15, BO94, DF80, DF81, FT94, HM84, KKM90, LDM07, MLD80, RCS93, RL98, SYK+05, Bou05, MTSS09, CMLC06].
design-pattern-based [MTSS09].
Determinacy [DK94].

Deviation [DS98].

Deterministic [TA08a].

Development [BKB80, Col84, Fea87, Jon83, ML80, PPS79, Wil82a].

Differential [BKOZB13, ZP07].

Differential-Theorem [Sha82].

Diagonalization [MC82b].

Diagonalization-Based [MC86a, Hua90, MC82a, Mc82b, TM93, AFF06, HDH92, PFH11, PCJD08, XA07].

Determination [TK94].

Deterministic [KR79, Mye18, DL18, Tar07].

Development [BKB80, Col84, Fea87, Jon83, ML80, PPS79, Wil82a].

Diagnosis [BF87].

Dialect [Mu92].

Dialects [BCM99].

Dialogue [BCM99].

Diierence [BA08].

Diierencing [PK82, RSL10].

Diierential [BKOZB13, ZP07].

Diierential-Theorem [Sha82].

Diierential-Theorem-Based [MC82b].

Dijkstra [BN94, Nel89].

Dimensional [Hil88, GPWZ08].

Directed [BDJ13, DMM88, Gud92, Han94, Set83, SYH97, OK06].

Direction [Dar90].

Directly [Hob84].

Directly-Based [Hob84].

Discipline [FGM07b].

Disciplines [SS84].

Discovering [FJK +17].

Discovery [PZJ05].

Discrete-Event [Bar81].

Disintegration [Ns92].

Disjunctive [Jen97, JCO19].

Dispatch [DAS98, MFRW09].

Dispatching [GZ07].

Distance [Wolf94, ZSD09].

Distributed [ABLP93, AF84, Apl86, AW85, BK88, BCEM15, Bur84, CJK95, CM86a, CBDGF95, CS95, DAW88, Dug99, FLBB89, Fra80b, GHS83, HSG17, Hu89, HM84, Jon94, Kat93, KK89, KRS84, KKK90, Lam84, L883, MC82a, RCRH95, SS84, Sch82, TM93, TCP+17, Zav85, ABL03, FM87a, HBO99, KGM04, LK02, MDJ05, Pk96, Fra80a, Moh81, VHB+97].

Distributed-Memory [KK98, RCRH95].

Divergence [SDSCP13].

DJ [DR05, SGL96, SGL98, UM02].

DJ-Graphs [UM02].

DLLs [Dug92].

dos [SS05a].

Documentation [MH86].

Documents [DMP96].

Dolce [MP10a].

Domain [LM18, Tra08, RM07, SS05a].

Domains [CMB+95, ELS+14, GS98, FH04, GLM05].

dominance [Ano02b, DVD07].

Dominators [LT79, Ano02b, BKR98, BKR05].

Don’t [AKNP17].

Drift [MSM+16].

Drinking [CM84, MS88].

Driven [BL87, CS87, GF85, GSW95, JJO19, PA85, PA86a, PA86b, TGT18, YBL16, DGS97, FPS19, PF96, TGT20, YM97].

Dually [MT08].

Dummy [Lam88].

During [BKB80].

Dynamic [ACPP91, AGT89, ASF17, BB79, BDM15, Bre89, CGG+19, CHMY99, CTT07, DS98, Dug99, HSS+14, HN05, Kais99, KR79, RCRH95, Ven95, WR08, dBB85, ACE06, BP12, CEI+07, DDDCG02, GZ07, MMM+07, PHEK99, SJ12, SHB+07, SYK+05, SYN06, W Kodi04, ZG05].

Eager [FKW00].

Earley [Lei90].

Early [AB81].

ECCS [CDFP89].

Edge [DP93].

Editing [FL81, HT86, Nix85].

Editor [FM87b, DeM83, Mye18, Per90, Rep86, Wol92].

Editorial [AP07, App93, AG93, AF94, MP07, Mye19, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04].

Editors [DMM88, MM89, RTD83, Wat94].

EDO [OK06].

Effect [RLS+01].

Effective [BS83, Col84, KKN06, NIO5, PE08, WJ98, YUW02].

Effectiveness [BdlBH99, SH89].

Effects [Boe85, SV20, TA08b].

Efficient [AKBLN89, ADGM91, BB79, BGH+13, Bre89, Cam89, CS95, DP82, DMM88, G05Z, G07Z, GLR83, GLO88, GSO94, HBO99, H94, HSS+14, HIT97, JP81, Jon90, KK99, KRS88, KPF95, MVV+01, MM82, NB99, NIO5, PHP02, PXL95, PWH07, PA85, PA86b, RH87, S808, SAA0, S888, TN19, WG98, YUW02, BCP08, GB99, KSV96, LPS04, LS09, PBK+07, TP04, V0WB10, VF98, PA86a, SS09].

Efficiently [Bal94, CFR+91, CF95].

Eiffel [ACE96].

Elaboration [KR01].

Election [Hua93].

Eliminating [BT93, Coh83, Coh85, RD03].

Elimination [D93, SGL98, KKN06, KCL+99].

Elimination-Based [SGL98].

Embedded

G. [Tie88]. Garbage
Garnet [VHM*01], Generalization [HSS*14].
Irrelevant [GP81]. Iso [LBN17]. Iso-Recursive [LBN17]. Isolation [Wha94]. Isomorph [JJD98]. Isomorph-free [JJD98]. Issue [Ahm20, Ano18, TGT20, Sag07]. Issues [BO94]. Iterated [GA96]. Iteration [Cam89, MOSS96, GS11, JLF02, Qia00]. Iterative [Ans87, Par90, DR05, JNGG10, LS04].

Java [RL98]. Jam [ALZ03]. Jade [AFF06, ALZ03, AAD07, BH05a, Bla03, BALP06, CGS03, CMS93, CSM00, FFLQ08, FM99, GP08, IPW01, KGN06, KGMO04, KN06, KR01, LST02, LP06, LS08, Loc13, MVM01, MEE10, MFRW09, MGG00, NRG01, NR06, OKN06, Qia00, RRR19, SLC03, SMP10, SBE19, SA99, SYK05, TN19, TSL02, TR08]. Java-like [KN06]. JavaCOP [MME10]. JavaGI [WT11]. Join [WKD04]. JR [KGMO04]. Jump [LS80, RS84a]. Just [DLR16, TN19, SYK05]. Just-In-Time [TN19, DLR16, SYK05]. JVM [HO07].

labels [Sto04]. Laboratory [Bor81].

Language [ACPP91, AOC88, Ano18, ABPS86, BS86, BPP16, BO94, Bor81, BC91, DVL15, Fat82, Fsa87, FFF18, GSS18, Gud92, Hai85, HSG17, JMSY92, JPP91, Kai89, McG82, Per79, PPS79, RDT83, RSC93, Spo86, SNS14, Tur84, Wnt82, Win87, YS91, YB87, dJKVS12, van88, Bou05, BSGF03, CPF04, DWWWO8, DF98, FM99, Gro06, HBJ98, KNO6, LP99, MF09, MWCG99, PPT08, PHEK99, Tra08, VOK02, HC982, YB88].

Language-Based [Kai89, RTD83].

Lazy [ABM93, FK00, HKR94, Hud91, TCVB04, Chi05]. LCF [Sok87]. lead [SS05a]. Leader [Hua93, KKM90]. leak [HDH92]. learned [VHM01]. Learning [CGJ97a, HOY18, JCO99]. Least [AB81, Bac84]. Least-Cost [AB81, Bac84].

Left [FKW98]. Left-Linear [FKW98]. legacy [NCH05]. length [SMP10].

Lessons [URJ18, VHM91]. Let [LY98]. Let-Polymorphic [LY98]. Level [Cam89, Fat82, GP95, YBL16, CMS03, VWJB10].

ACW90, GC86, OL82, RY88, HDH02. LL [BF87], Load [KPF95]. Loaded [BG89a].
Local [BDFZ09, CBDGF95, PT00, SDB20, TSB08, Wei89, Dan03, San96]. Locality
[BAC16, MCT96, VALG05, ZSD09]. Locally
[AB81, Bac84, Min84], locating [JNGG10].
Locator [ZMVPJ17]. Lock
[GEGP17, KS10]. Lock-Free [GEGP17].
lock-freedom [KS10]. locking [AFF06].
LOCKSMITH [PFH11]. Logic
[AS89, AFV98, Apt81, BGL93, BL87, BCD90,
BDJ13, BMPT94, CS04, CES86, CFM94,
DW89, Deb89, DL93, Deb95, DJP+16,
JPP91, Kar84, LS84, MW84, MSJ94,
MMG92, SS98, Sok87, TK94, TB95, BBT87,
BMR01, BCG+07, Dhill99, C08, CG86,
CSS99, DDD99, DPPr00, GHB+96, GW99,
HVB+99, HPMS00, KWLO9, LMD98, Leu04,
PM06, RKR04, SRW02, Yn11, dHB+96].
Logical
[BBN18, GGL15, GS98, TY18, RSL10, Tar07].
Look [DP82], Look-Ahead [DP82].
Lookahead [KM81, MF88]. Loop
[BAC16, CS87, MCT96, Sil79, RKS12].
Loops [BAGM12, Boo82, CK94, DB85,
FTJ95, Hav97, Wat91, Ano02b, LS04,
LSLR05, Ram99, RDG08, SGL96, UM02].
low [CSCM00]. low-end [CSCM00]. Lower
[PW94]. LR [ADGM91, BL94b, BF87,
CPRT02, DMMS88, Jef03, IP17, KC01,
LaL81, LaL84, SS82, ST00b]. LR-based
[KC01].
M [Bur91, Mul92]. M-LISP [Mul92].
Machine [CGJ+97a, Cat80, GNS+15, Gie83,
Han94, JJC019, LR13, ML80, RF97, SS98,
SDB20, Wal92, Zav85, Ano02a, CEG07,
CF04, HK07, Kn06, Oho07, RRB19].
machine-checked [Kn06]. Machine-Code
[LR13]. Machine-Independent [ML80].
Machine-Learning [JJC019].
Machine-Specific [Gie83]. machinery
[FKW00]. Machines
[ACW90, Bee94, CGST95, GC86, KK98,
PS93, PP91, Rob79, RCRH95, AY01, AG04,
ABE+05, ABS09, TSY00, Pur91]. Madsen
[El82, SM82]. Magma2 [Tur84].
Maintenance [GKL94]. Making
[JC97, Loc13], malware [PCJD08].
Management [JP81, Mur91, SDB20, van88,
BP12, WCM00, Zho96]. Managing [Bob80].
Manifest [SIG17], manipulating [YS10].
Manipulation [DVLM15]. many [AE98].
massive [BH07]. Massively [CGT95].
Matching [AC96, AGT89, CP95, KPS92,
ADR06, Van06]. Matching-Based [CP95].
materializations [RH06]. Mathematical
[Ban11, Hes88, LW93]. MATLAB [DP99].
MATLAB(R) [JB06]. Matrix [FTJ95].
Matrix-Vector [FTJ95]. Maximal
[BG89b, Rep98]. Maximal-munch [Rep98].
Maximization [GLO88]. Maximum
[Kna90]. May [Hor97]. May-Alias [Hor97].
MCALIB [FL15]. Measures [Ne20].
Measuring [FL15]. Mechanically
[DSW11]. Mechanism
[CO90, YB85, DNS+06]. Mechanisms
[Rei83, HMS06]. Mechanizing [Pau01].
Median [Com80]. Medians [KR84].
mega-flops [MMG00]. member [KF00].
Memory
[AMT14, CK94, Cha93, CBMO19, KZC15,
KK98, KRS88, MSM+16, Mis86, RCRH95,
SS88, ABH11, BP12, GMM09, GW99,
JNGG10, KF00, LK02, Loc13, QR00, RR05,
TSY00, TP04, VBG04, WCM00, MM+07].
memory-efficient [TP04].
memory-hierarchy [KF00]. Merge
[Ber94]. Merlin [HBM+06]. Message
[CSW06, SS84, Gor04]. Messages
[BB79, Jef03], meta [Tra08].
meta-programming [Tra08]. Meta-level
[Jag94]. Metaprogramming [CI84].
Method [BNN18, BCD90, BF87, HL82,
Jon83, Loe87, JJD98]. Methodology
[Ban87, Her93, Sku95]. Methods
[DAW88, KM81]. METRIC [MM+07].
Mezzo [BPP16]. Microanalysis [HCP92].
Microcode [MV87]. Middle [BDP14].
Middle-End [BDP14]. Might [Bee94].
migration [Pic96]. Minification [HLH19].
Minimal [FKW98, IPW01]. Minimization [RS84a].
minimizing [RMH06]. Minimum [GHS83]. Minimum-Weight [GHS83].
Mining [AMT14]. Misled [Cop94]. miss [GMM99]. Mixin [HL05, RD13]. mixins [AL03].
ML [Blu99, CBMO19, HM93, HT04, PS03, RD13, Spo86]. Mobile [LS03, VHB +97, BCC04, KS10, SWU10].
mod [Bon92]. Modalities [SV20]. mode [Bou92]. Modalities [AMT14].
Models [GJ93, KZC15]. Modern [BCF04, RAB +07]. Modes [Deb89].
modest [LS08]. Modification [Lei90, RLS +01]. Modula [EO80]. Modular [AG04, BMPT94, CDK +18, EMH20, GL94, JKB18, Jag94, KKM90, LN15, MBC04, Wei89, YB85, dJKVS12, KV00, MFRW09, MOS07b]. modularity [BA99]. Module [PAS +15, RD13]. Modules [CL95, HW82, Lam83, HL05]. Monadic [DG19, MH04]. Monitors [BLH12, BH05b].
Monolingual [HK85]. Monte [FL15].
Morel [Dha91, DS88, Sor89]. Morphing [HS11].
Morris [Wis97]. Mostly [YF09, BBYG +05]. Motion [KR94, Hai98].
MPI [FKJ +17, TSY00]. Multi [Ano18, GSS +18, MF09]. Multi-Language [Ano18, GSS +18, MF09]. Multialgebraic [WM95]. multidimensional [RDG08].
Multiprocess [Lam79, Lam80]. Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors [Cha93, KRS88]. Mutlsource [MR95].
Multithreaded [EGP14, JKB18, JSB +12, KKW14, NR06].
Multivariate [HAH12]. Multiway [Cha87, Van96a, Van96b]. munch [Rep98].
Mutandis [SHB +07]. Mutatis [SHB +07].
Mutual [LH91, ABH11].
Mutual-Exclusion [LH91]. Myths [Gor04].

Nesting [Hav97, Boy10]. Nests [BAC16].
Net [JTM98]. Network [WGS92, WGS93].
Networks [CGJ97b, GC86, KRS84, dBB85].
Newtonian [RTP17]. Nicholson [FA93].
No [Ano18, TGT20], node [JC97, UM02].
Nodes [CF95, Han81a]. Nomadic [SWU10].
Nominal [CU08]. Non [CFG19, DL18, LLK +17, Mye18, BS88].
non- [BS88]. Non-Deterministic [Mye18, DL18]. Non-polynomial [CFG19].
Non-Statistical [LLK +17]. Noncanonical [Tai79].
Noncorrecting [Ric85].
Nondeterminate [TK94].
Nondeterminism [Ber80, Hes88, WM95].
Nondeterministic [QC95, MT08].
Noninterfering [HPR89], nonnumerical [ME97]. Nonprocedural [PPS79].
nonrectangular [JLF02]. nonscalars [CRN +08]. Nonsequentiality [Bar81].
Nonstrict [Blo94].
Nontermination [PM06]. normal [LMD98]. Normalize [CRN +08]. norms [BCG +07]. Notation [Rem81, Wil82b]. Note [Com80, CM93, MS88, WST85, Coh85, Pal11b, YK97].
Notes [Sku95]. Nothing [BDH +16].
Notion [LW94]. NP [Hor97]. NP-Hard [Hor97]. NQLALR [BS88]. nulled [SJ06].
Numbers [GLR83]. numeric [Hau96].
Object [ABPS98, Car95].
Object-Based [KH92].
Object-Oriented [HU96, Ryu16, BSvGF03, DMM01, JPS08, WJS00].
Objects [AM85, CJK95, HF87, HW90, Her93, SM89, VHB97, Wal80, Wal81, Win84, GPV07, HB98, KF00, Sto04, WJS00, Sku95].
obligations [DSW11].
Observability [Gaz83].
Observations [Sha82].
Occur [AP94].
Occur-Check-Free [AP94].
O [SBB19].
Oine [CG04, GJ05].
Old [AL94].
Old-Fashioned [AL94].
On-Line [Bal94].
On-The-Fly [CF95, BA84, URJ18, LP06, PBK07].
One [Bak82, BG89b, VHM01].
One-Pass [Bak82].
optimal [DF95, BOV85, JPS08, WJS00, OA88, Rao94, SS88, BHYG05, CG86, GB99, HB98, KSV96, LB02, MVV01, RR03, YF98].
Parallelism [Bur84, GP95, KSV96, NB99, PW94, TCVB14, YBL16].
Parallelization [BAC16, BDJ13, PP94, BdlBH99, HAM05].
Parameter [Gaz83, Zho96].
Parameterization [TWW82].
Parameterized [CGJ97b, CK93, Gaz83, RKSR12].
Parametric [HFC09, MMG92, SRW02, IV06].
Parenthesis [AS80].
Parse [Wad90].
Parser [DDH84, JP17, LaL84, SS82].
Parsers [BN99, LaL81, MYD95, PK80, CPRT02, SJ06, ST00b].
Gom92, KCL’99, Sor89, ADR06, BP12, CG04, GJ05, LMD08, Len04, ST00b.
Partially [BLHL2, Kob98, RRSY08].
Partially-flow-sensitive [RRSY08].
Partitioning [RM07, YF09]. Parts [Son87].
Pascal [LS79]. Pass [Bak82, BM94].
Passing [BDM15, Gaz83, SS04, CSW06, Gor04, Zho96]. Passive [AKP94]. past
[PM09]. Path [Bla94, CIJGP18, SMP10]. path-length [SMP10]. Patient [FFF+18].
Patient-Oriented [FFF+18]. Pattern [EGP14, ADR06, Jay04, MTSS09, Van06].
Pattern-Based [EGP14]. Patterns [GH80].
PDS [Han81b]. PEAK [PE08]. Peephole
[DF80, DF81, Pem83, TVS82]. PegaSys
[MI86]. PenneUel [Sag86]. Perfect [Duc08].
Performance [HU96, MSM’16, PB80, URJ18, KF00, PE08]. Performed
[Coh91, Wir91]. Permission
[BPP16, SNS+14]. Permission-Based
[BPP16, SNS+14]. permissions [Boy10].
Persistent [AM85]. Petri [JTM98].
Petri-Net-Based [JTM98]. Phases
[Bar81]. Philosophers [CM84].
Philosophers [MS88]. pi [HR02, KPT99].
pi-calculus [HR02, KPT99]. pict [SWU10].
Pictures [MI86]. Pipeline [HG83].
Pipelined [BG89b, LPP01, RDG08].
pipelining [ME97]. pitfalls [Mon08]. PL
[CD79, CZ84, FFF+18]. PL/CS [CD79].
PL/CV3 [CZ84]. place [GW90].
Placement [DP93, GS99, vHK00].
Platform [TCP’17]. pluggable [MME+10].
Pluto [BAC16]. Point [CK94, Fat82, SBB’19, GJ05, Hau96, Mon08]. Pointer
[LTMS20, LHR19, LS79, RR03, SDB20, HBC99, HVDH07, PKH07, RLS’01].
Points [SS13, RR05]. Points
[GKM20, WDK04]. Points-to [GKM20].
Pointwise [VSS94]. Policies
[NBG13, BDFZ09, FMM07b]. Policy [Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, UJ92, BFG08].
policy-based [BFG08]. Polyhedra
[GVC15]. Polyhedral [GVC15, QR00].
POLYTH [Pur94]. Polymorphic
[BMR05, Dug99, HT04, Hen93, KTM93, LO94, LY98, Oho95, SIG17, SV96, WJ98, BSvGF03, DWVV08]. Polymorphism
[Bur90b, MDCB91, HFC90]. polynomial
[BAL07, CFG19]. PolyTOIL [BSvGF03].
Polyvariance [LM98]. Polymodular
[AC94, WJ98]. POP [FFF+18]. POP-PL
[FFF+18]. Portable
[DDH84, Han81b, HK07]. Possibly [JP17].
Postfix [DS83]. Postpass [HG83]. Power
[TWW82, SSD09]. Powerlist [Mis94].
PPMxe [DKV07]. PQ [GZ05].
PQ-encoding [GZ05]. Practical [AD98, BAC16, BF87, CP17, Dha91, LR19, ND16, PBR’15, S13, TSL’02, WC97, Bou05, DR05, DVD07, DGS97, JNZ06, PFH11].
Practice [KRS94, Ryu16, Bla03, DRSS96].
Pragmatic [BDH’16]. Pragmatics
[Gom92]. Pre [OLH’16]. Pre-Analysis
[OLH’16]. Precedence [Hen83, LdR81].
Precise [CDK’18, FJK’17, GKM20, Hor97, TN19, PHP02]. Precise-Yet-Eficient
[TN19]. precision [ZG05]. Precondition
[Boo82]. Predicate [Lam90, BMR05, Bou05, Bou06, MFRW09, MMS96, PR07].
Predicates [CBDGF95, Lam88].
predictable [SHB’07, HK07]. Prediction
[CJG’97a, CEG07, YS99]. Predictive
[FJK’17]. Preparing [FK85].
Prescription [FFF+18]. Presence
[AWW95, CF94, KTM93]. preserving
[DHS09, LST02]. pretenuring [BHM’07].
Pretty [Chi05]. Prettyprinter [Wat83].
Prettyprinting [Opp80]. Primitive
[App15]. principals [TZ07]. Principled
[LTMS20]. Principles [Bon88, DRSS96].
Printing [Chi05]. Priority [CH90, Fid93].
Priority-Based [CH90]. Privacy
[BKOZB13]. Privileges [Mia84].
Probabilistic [AB20, BKOZB13, CFNH18, DG19, HSP83, MMS96, OGY+18, Rao94, SV19, BH99, PPT08]. Problem [ADG+94].
Problems
[Bac84, CFNH18, DP93, MMR95, SRW98],
Procedural [HF87, Lin93, VSS94],
Procedure [CDK +18, GS99, GL80],
Procedure-Modular [CDK +18],
Procedures [AM85, Kat84, NO79],
Process [Kob98, vPS81, WP10],
process-oriented [WP10].
Processes [AFdR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oss83, RY88, Sou84, TY18, dBB85, AE98, KS10, Ber80, Moi83],
Processing [GH80, HSG17, Rei83],
Processor [BG89b, Bud84],
Processors [GLR83, Per79, LPP01, ZP10],
Product [EMH20, RTP17],
Productivity [Sij89],
Profile [BHM +07, YUW02],
Profile-based [BHM +07],
Profiling [ASAVF19, BL94a, SP97],
Program [Bal94, Bar85, BAL07, BKB80, Col84, DKKL18, Der85, FPS19, Fea82, FOW87, FT94, FL91, HSP83, HCR94, Jen97, JJC019, KKW14, KWL09, Lam83, Lam88, LFF14, MS83, MS84, Mis81, Nie85, PP94, PPS79, Rem81, RTP17, TSY00, WS94, Wey83, ZSD09, Ass00, DDD05, EAH96, Fos96, FL15, GTWA14, Har80, HK85, HO82, Kai89, KHK92, Lee86, LRV+83, MK94, Mye90, OJG +18, Pet83b, RCS93, SNS +14, SZBH86, TK94, TGT20, ABH06, BM01, BDLH99, CU08, CG86, CKT86, DWW08, DPPR00, GW99, HBJ98, JPS +08, KGMO04, MVV +01, MTSS09, MQ05, Tr08, VWJB10, WKD04, WJS +00, Bir85, SWU10],
Programming [AGT89, An018, AR84, ABPS98, BS86, BP16, BHM +19, BL87, Bir84, Bor81, BMPT94, BWP87, BEM15, CHY12, CL94, Dar90, DFR15, DGL +79, Dug99, FFF +18, Fos96, FL15, GTWA14, Har80, HK85, HO82, Kai89, KHK92, Lee86, LRV +83, MK94, Mye90, OJG +18, Pet83b, RCS93, SNS +14, SZBH86, TK94, TGT20, ABH06, BM01, BDLH99, CU08, CG86, CKT86, DWW08, DPPR00, GW99, HBJ98, JPS +08, KGMO04, MVV +01, MTSS09, MQ05, Tr08, VWJB10, WKD04, WJS +00, Bir85, SWU10],
Programming-in-the-Large [MK94].
publish/subscribe [Eug07]. Pure
[BNN18, HU96, Pip97, Tar07]. Purpose
[App94b, HSS +14, Spo86]. Pushdown
[CBMO19]. PYE [TN19].

qualifiers [FJKA06]. Qualitative
[CFNH18]. Quality [BHM +19].
Quantification [Vol91, Bur91]. Quantified
[Gro06, STS03]. Quantitative [CFNH18].
Quantum [FDY12, BH99, Yin11]. Queries
[Bal94, CGG +19]. Queuing [BB79].
Quiescence [CM86a].

R [AW82, CKT86, KMM +98]. R. [Tie88].
race [AFF06, PFH11]. Races [KZC15].
Random [AS80]. Range [CG95]. Rank
[Dam03]. Ranking [Lee09]. Ratio [CK94].
Rational [GS11]. rationale [CMLC06].
Reach [FKW98]. Reachability [NS13].
Reactive [DFR15, AG04, DGG97]. read
[AEO1, PZJ05]. read-only [PZJ05].
read/write [AE01]. Readable [Spo86].
Reading [Pet83a]. Real [AL94, MMG92,
RS84b, GH97, HK07, LS98, YMW97].
Real-Time [MMG92, RS84b, GH97, HK07,
LS98, YMW97]. realities [Gor04]. Reals
[DK17]. Reasoning [BKOZB13, BLRS12,
BDF93, BP82, BH99, CB80, Lam88, LN15,
Rao94, SDB20, TSB08]. receive [Gor04].
receptive [ABL03]. Recipe [AL94].
reclassification [DDDCG02]. recognition
[ATD08]. Recognizer [GHR80].
Recognizing [BL94b]. Recombination
[Kau84]. Recombination-Delaying
[Kau84]. Recompiilation
[BT93, SK88, Tie86, Tie88]. Reconciling
[HU96]. Reconstruction [YR94]. Record
[LS79, Oh695]. Recovery
[AB81, ACS84, Bae84, BF87, GH919,
PK80, Ric85, dJKVS12]. recurrences
[VJB12]. Recursion
[AK82, Col84, Hen93, KTU93, Mis94, YK97].
Recursive [AC93, AK82, Ban87, CFG19,
Coh83, Coh85, LBN17, Sij89, ABE +05,
AM01, CF04, Dug02, Pal98]. Recursively
[BE13]. Reduce
[BN99, MYD95, BALP06, KOE +06, SS96].
reduced [SG04]. Reducible [Hav97, JC97].
Reduction [Bec94, Bur84, FRW90, Geo84,
KL92, Mul92, NN86, CSV01].
Redundancies [DSS8, Sor89]. Redundancy
[KCL +99]. Redundant [Coh83, Coh85].
Reentrant [Bob80]. Reexamination
[CTG95]. Refactoring [Ste18, TFK +11].
Reference [Bob80, Wis79, KSS07, KOE +06,
LP06, MDJ05]. reference-counting [LP06].
References [Han92, TGT18, TGT20, SY96].
Referencing [LS81]. Referential [QG95].
Refinement [BBF +11, BKL +97, BCE15,
CM86a, DGL +79, GEGP17, JLP +14,
MRG88, SL92, AG04, QG95]. reflecting
[HS91]. reflection [SW97a]. Region
[TB98, SY06]. region-based [SY06].
regions [RR05]. Register
[BCT94, CH90, GSO94, JLF02, LCS19,
RDG08, SH89, GA96, HCS08, LAGT00,
PM04, PS99, PF96, TP04]. registers
[ZP07]. Regular [CC97, HVP05, LLa81].
Relation [LBN17, MTG80]. Relational
[BKOZB13, CB80, GM98, TLHL11, JJD98,
JLR010]. Relations [ELS +14, HT86, LH08].
Relationship [BS88]. Reliability
[LM18, WN08]. Reliably [TCP +17]. Rely
[EGP17, LFF14]. Rely-Guarantee
[EGP17]. Rely-Guarantee-Based
[LFF14]. Remembrances [PM09]. Remote
[BC09, SG90]. Removal [AK82].
Rendezvous [Cha87]. Renvoise
[Dha91, DS88, Sor89]. Reoptimization
[PS92]. reordering [YUW02]. Repair
[BNS99, MF88, MY95, KO91]. Repairing
[CPRT02]. Replacement [MM89].
Replicate [RB94]. replication [RD03].
Repeat
[Bur91, Fra81, LaL83, Tan83, Wir91, SM82].
Representation [DGL +79, Mul92, SM89,
Wad90, Wsn82, Mil85].
Representation-Independent [Mul92].
Representations
[Lam87, RF97, Wal80, Wal81, BGP99].
Reproduction [BHM+19]. Reshaping [ZCG+07], Resilient [GHH+19, WL85].
Resolution [ABR81, Bak82]. Resolved [SIG17].
Resource [CS95, Cla80, IK05, MQ05, BDFZ09, CEI+07, HR02, HAH12].
Resources [And81, FLBB89]. Respect [Gaz83].
Responsiveness [HU96]. Restores [Wis79].
Result [TB95]. Results [Ven95, BGP99, SYYH07].
Retargetable [DF80, DF81, MV87]. Retention [LS81].
Rethinking [LHR19]. Retrofitting [NCH+05]. Return [SDB20], reuse [DNS+06, GW99, ZSD09].
Reversal [ACS84]. Reverse [PS08]. Reverse-mode [PS08]. Revised [SIG17].
Revision [FM87b]. revisited [MDJ05, Zho96]. Revisiting [DI09].
Rewriting [FKW98, Ass00]. Rewriting [KKS94, BCM99, DDD05, FKW00, GRSK+11, MMM+07].
Right [KS3, LaL81, SJ06]. Rigorous [SBB+19].
Rules [BP89, Hua93]. RISC [PS93].
Rivieres [Hen83]. RMI [MVV+01].
Robust [LS83]. Roever [Moi83]. role [Apt00]. Roman [PB97]. Round [SBB+19].
Round-Off [SBB+19]. Rounding [FL15].
Row [MM89]. RSMs [CGG+19]. rule [HQT02].
Rules [GL80, JTM98, SS84, LS09, SDD09]. Run [ISY88, TZ07, GMP+00]. Run-Time [ISY88, TZ07, GMP+00].
Runtime [Ano18, BLH12, BEF+16, GSS+18, TCVB14, BH05a, TSY00].
S [HCW82]. S/SL [HCW82]. Safe [AWW95, Dug92, JW17, SDB20, AFF06, BSvGF03, LS03, Loc13, NCH+05, SA00, ZCG+07, MH06, SHB+07]. safe-for-space [SA00]. safety [FF08, YS10]. same [SS05a].
sampling [PPT08]. Santa [WP10].
Sapphire [URJ18]. Sather [MOSS96].
Satin [VWJB10]. satisfaction [DF11].
satisfiability [XA07]. satisfying [Van96a, Van96b]. Saturn [XA07].
Scalability [TCP+17], Scalable [FT94, GKM20, ZSS20, AX07].
ScalExtrap [WM12]. scale [ZSS20].
SDF [VHKO02]. Search [Dar90, BH99, SS05a]. Searching [CC97].
Section [Wol92]. Secure [BCEM15, PAS+15, BBF+11, HY07].
Semantic [AAR+10, AWW95, GGL15, MH06, HCV82].
Semantics [ABHI11, Ans87, AB94, AW82, BGL93, Ber94, BLS12, Bou88, Boy10, CPS93, CD79, FA93, GM81, Gud92, Han94, JPP91, Kai89, Mull92, NF89, Set83, Son84, WM95, Wan82, dBB85, ACE96, BMR01, Bou06, GZ04, MF09, PCJD08, SWU10, SJO3, Tar07, WKD04].
Semantics-Based [BGL93, CPS93, PCJD08].
Semantics-Directed [Han94, Set83].
Semaphore [CR87]. Semiring [BMR01].
Semiring-based [BMR01]. Send [Gor04]. Send-receive [Gor04]. Sensitive
[OLH+16, PKH07, Ram00, Rep00, RSY08]. Sensitivity [FL15, KRR18, LTMS20].
Separating [DDM11]. Separation [BDJ13, DJP+16, OYR09, BBTS07]. Separators [GSO94]. Sequences [GSW95]. Sequent
[ABS09, Miq19]. Sequential [AFdR80, Ber80, GLR83, HM84, KS79, MC82b, Moi83, Sou84]. Series [Wat91]. Served
[LH91]. server [LDM07]. servers [BBYG+05]. service [CMS03]. Services [CHY12, RB94, BFG08, CGP09]. Session
[Pad19, TY18]. Session-Based [TY18]. Set [Sha82, FF99]. set-based [FF99]. SETL [DG19, FSS83, SSS81]. Sets
[Cha93, FLBB89, KH92, KR83, Pet83b, Dug92, HB98, TSY00, BC91]. Shared-Memory [Cha93, TSY00]. Sharing
[LP99]. Side [Boe85, KW109, RLS+01, TA08b]. side-effect [RLS+01]. sign [KKN06]. signal [BH05b]. Signatures [BR97]. Signedness
[NO79]. Simula [Lan80]. Simulating [KKSD94]. Simulation [AMT14, Bar81, Bor81, LFF14, HQRT02].
[AKNP17]. situations [WN08]. Size [BA08, BEF+16, Lee09, LDK+96]. Size-change [BA08, Lee09]. Sized [DG19].
Slicing [AB20, AJHR14, CF94, DL18, GH97, HRR90, Mye18, Ven95, WZ07, BHK07, GZ07, NR06, RAB+07, WR08, ZGZ05]. SLR [BS88, Tai97]. Small
[ACM11, AW85, Ber94, DAW88, HSS+14, How80, JW17, PXL95, PPS79, Pur94, Wal92, YBL16, CTT07, HN05, LB98, ME97, NCH+05, RD08, SHB+07, SRM10]. Software-Defined [Wal92]. Soininen
[LaL84]. Soisalon [LaL84]. Soisalon-Soininen [LaL84]. Solution
[ADG+94, DS88, Gho93, Pet83b, Sor89, WP10]. Solving
[GS11, HLH19, NSTD+15, SRW98]. Some
[AB94, AK82, Sha82, Sor89]. Sometimes [Gri79]. Sound [LLK+17]. Soundness
[Sok87], source [HBG+09]. Space
[BP12, BB89, BB89, JP81, NB99, RD87, YF98, LS00, SS05a, SA00]. Space-Efficient
[JP81, NB99]. Space/time [YF98]. Space/time-efficient [YF98]. spaces
[JLF02]. Span [LS80, Rob79]. Span-Dependent [LS80, Rob79]. Spanning [GHS83]. Sparse [OHL+14]. Spatial
[NSTD+15]. Special
[Ahm20, Wol92, Sag07]. Specialization
[AJHR14, BCP08, GJ05, HT04, SLC03]. specialization-point [GJ05]. Specializing
[BCD90]. Specific
[ASAFA19, Gie83, Tra08]. Specification
[BCM99, CDFP89, EO80]. Simplication
[NO79]. Simula [Lan80]. Simulating [KKSD94]. Simulation [AMT14, Bar81, Bor81, LFF14, HQRT02]. }
systematic

Pe08, STSP05, MWCG99].

[DF98, PSS05].

Systems

[ABLP93, Ano18, AR84, ACS84, BKS88, BG89a, BDP93, CR84, CDLP99, CLGP98, CES86, CPS93, CBMO91, DL18, DAW88, Fca87, FKW98, Hen86, Jag94, Jon94, JTM98, Kar84, Kat93, Kau84, Lam84, LW93, Mis86, Mve18, TGT20, WGS92, WGS93, WCW90, van88, Ass00, AE98, BCP08, BCM99, BGP99, CSCM00, DGG97, GS11, TP04, TZ07, YMW97, WCW91].

Systolic [Hen86].

T [Zic94]. Table [BMW91, PK80, DAS98].

Table-Drive [PK80].

Table-driven [PK80].

Tabled [SS98].

Table-Driven [PK80].

Tail [DP97, CF04].

Tail-Call [DP97].

tail-recursive [CF04].

Tailored [Kau84].

Tailored-List [Kau84].

Tanenbaum [Pem83, Tan83].

Target [Wan82].

Task [GP95, NSZS13, RSBJ98].

Task-Level [GP95].

Task-Parallel [NSZS13].

Tasks [GP81].

Taylor [SBB+19].

tcc [PHEK99].

Technical

[BS88, Bur90b, Bur91, Coh91, CM93, DAS88, El182, Faa93, Fra81, Hen83, LaL83, LaL84, Moh81, Moi83, MS88, NN86, Par79, Pem83, Sor89, SM82, Tan83, Tie88, Vol91, WST85, Wir91, YBS88, MGG90].

Technique [AW95, BN90, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNNG10, KBC+99, RD97, SYN06].

Techniques [AK82, CMM91, DP99, GLR83, How80, TWW82, WCW90, WCW91, BHK87, DEDD05, DEMD00, LS89, MSRR80, SS96, TSL+02].

technology [LS98].

Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KWL09].

temporal-ordering [GS99].

temporaries [RMH06].

Ten [Apt81].

Tensor [RTP17].

Tentative [Jon83].

Tenuring [UJ92].

Term [KKSD94, MBTO9, GRSK+11].

Termination [AF84, Apt86, BAGM12, BCG+07, CFNH18, CDK+18, DG19, Fra80b, GJ05, HSP83, JBBK18, MCD2b, TM93, BAL07, BA08, DDV99, GRSK+11, Lee09, PR07, SMP10, Fra80a, Moh81].

Test [Wey83, WW95, Duc08].

Testing [AMT14, GMH81, TK94].

Tests [Coh91, Koz97, Wir91, GZ05].

Theoretic [ES97, Sha82, KV00].

Theoretical [KRR18].

Theories [CZ92, CMN91, DP99, GLR83, How80, TWW82, WCW90, WCW91, BHK07, DDD05, DEMD00, LS98, MSRR00, SS96, TSL+02].

Theories [AK82, CMN91, DP99, GLR83, How80, TWW82, WCW90, WCW91, BHK07, DDD05, DEMD00, LS98, MSRR00, SS96, TSL+02].

Theory [LS98].

time-constrained [Zic94, LPP01].

time-critical [PS93].

time-efficient [GB99, YF98].

timed [Zic94].

timeout [Lam84].

timing [LJ99].

tokenization [Rep98].

tolerance [LJ99].

Tolerant [CS95, Lam84, AAE04].

Tool [CP89].

Toolkit [BDHF97].

toolkits [VHM+01].

Tools [van88].

TOPLAS

[Ano18, TGT20, MP10a, MP10b].

topology [DDM11].

Total [San96].

Trace [FL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12].

traces [HBM+06, WR08].

Tracing [BL94a, DL16, MMT+07].

tradeoffs [ZGZ05].

Trailing [VR95].

Traits [DNS+06].

Transaction [URJ18, ABHI11, CPF+04].

Transactions
24

[Ano18, HKMN94, TGT20]. Transducer [DVLM15]. Transducer-Based [DVLM15].

Transformation

[BKB80, Fen82, FL91, NSZS13, Wat91, RKRR04, San96, TSY00, WZ07].

Transformational [BDHF97, Bir84, Bir85, DS82, OA88, RC03].

Transformations

[Bir85, EGM01, Geo84, LdR81, LFF14, MS83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86].

Transformers [Lam90, MMS96, MBT09].

Transformers [Lam90, MMS96, MBT09].

TransformGen [GKL94].

Transforming [AWW95, BE94].

Transition [PR07].

Translation [AK87, BK11, Kat84, Son87, AAD+07, BGKR09, DP99, RC03].

Transmission [HL82].

Transmission [HL82].

Transter [DVLM15].

Transparently [JSB+12].

Transparently [JSB+12].

Transter [DVLM15].

Transter-Based [DVLM15].

Transformation

[BKB80, Fen82, FL91, NSZS13, Wat91, RKRR04, San96, TSY00, WZ07].

Transformational [BDHF97, Bir84, Bir85, DS82, OA88, RC03].

Transformations

[Bir85, EGM01, Geo84, LdR81, LFF14, MS83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86].

Transformers [Lam90, MMS96, MBT09].

Transformers [Lam90, MMS96, MBT09].

TransformGen [GKL94].

Transforming [AWW95, BE94].

Transition [PR07].

Translation [AK87, BK11, Kat84, Son87, AAD+07, BGKR09, DP99, RC03].

Transmission [HL82].

Transmission [HL82].

Transter [DVLM15].

Transparently [JSB+12].

Transparently [JSB+12].

Transter [DVLM15].

Transter-Based [DVLM15].
REFERENCES

PP94, PBR+15, SS84, SS96, Sok87, SGL98, TyS82, ACM11, BH99, CSW06, CGS+03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, ST00a, SGL96, TFK+11, VJB12, XA07, YUW02, ZSD09, Pem83. Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KC01, MOS07a]. Value [HL82, HL05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Hn92, Wet82]. Variable [MS83, MTG80, FMoPS11, GLMM05]. Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NcS20].

Variable [MS83, MTG80, FMoPS11, GLMM05]. Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NcS20].

Validation [How80, KC01, MOS07a]. Value [HL82, HL05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Hn92, Wet82]. Variable [MS83, MTG80, FMoPS11, GLMM05]. Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NcS20].

Validation [How80, KC01, MOS07a]. Value [HL82, HL05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Hn92, Wet82]. Variable [MS83, MTG80, FMoPS11, GLMM05]. Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NcS20].

Value [HL82, HL05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Hn92, Wet82]. Variable [MS83, MTG80, FMoPS11, GLMM05]. Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NcS20].

Utilizing [ES97].

References

Ancona:2007:PCT

Attie:2004:SFT

AAE04 Paul C. Attie, Anish Arora, and E. Allen Emerson. Synthesis of fault-tolerant concurrent programs. ACM Transactions
Ahmed:2010:SFT

Anderson:1981:LLC

Arbab:1994:SCD

Acar:2006:AFP

Amtoft:2020:TSI

Acar:2009:EAS

Alur:2005:ARS

REFERENCES

Languages and Systems, 28(6): 990–1034, November 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Abadi:2011:STM

Abadi:1993:CA

Abadi:1993:CAC

Apt:1998:AIL

Andre:1981:MAC

Ariola:2009:SCA

Zena M. Ariola, Aaron Bohannon, and Amr Sabry. Sequent

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

Attali:1996:NSE

Alur:2011:SMC

Abadi:1991:DTS

REFERENCES

REFERENCES

REFERENCES

Alur:2004:MRH

Aho:1989:CGU

Alur:1998:FF

Apel:2010:CUP

Aung:2014:SS

Ahmed:2020:ISI

Arsac:1982:STR

Allen:1987:ATF
REFERENCES

Ait-Kaci:1989:EIL

Alglave:2017:DSF

Ait-Kaci:1994:FPC

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam—designing a Java extension

Atkinson:1985:PPD

Appel:2001:IMR

Alglave:2014:HCM

Anger:1989:LIC

Anonymous:1982:IA

Anonymous:1983:IA

Anonymous:1984:IA

Anonymous. Information for authors. ACM Transactions
REFERENCES

Anonymous:1985:IA

Anonymous:1986:AI

Anonymous:1986:IA

Anonymous:1987:IA

Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

Anonymous:1990:AI

REFERENCES

[Ano02b] Anonymous. On loops, dominators, and dominance frontiers. *ACM Transactions on Programming Languages and Systems,*
Anonymous:2018:CCL

Arvind:1989:SDS

Anson:1987:GIC

Andrews:1988:OSL

Apt:1994:OCF

Abadi:2007:E

1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[Bac84] Roland Backhouse. Global data flow analysis problems arising in
locally least-cost error recovery. ACM Transactions on Programming Languages and Systems, 6 (2):192–214, April 1984. CODEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage collection and heap growth to reduce the execution time of Java applications. ACM Transactions on Programming Languages and Systems, 28(5):908–941, September 2006.
REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Bengtson:2011:RTS

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL

Bates:1985:PP

Bergeretti:1985:IFD

Brogi:1991:CLS

REFERENCES

Bhatia:2008:RSE

Briggs:1994:IGC

Bergstra:1997:TCT

Botincan:2013:PDP

Matko Botincan, Mike Dodds, and Suresh Jagannathan. Proof-
directed parallelization synthesis by separation logic. *ACM Transactions on Programming Languages and Systems*, 35(2): 8:1–8:??, July 2013. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Bouajjani:2013:ARP

Beemster:1994:SOG

Brockschmidt:2016:ARS

Bernstein:1980:OGN

Berzins:1994:SMS

Burke:1987:PML

Bhargavan:2008:VPB

REFERENCES

REFERENCES

Butler:1999:RAG

Back:2005:KJR

Buhr:2005:ISM

Binkley:2007:ESO

Blackburn:2007:PBP

Berger:2019:IPL

REFERENCES

Buchsbaum:2005:CNS

Back:1988:DCA

Bic:1987:DDM

Ball:1994:OPT

Bates:1994:RSL

Blanchet:2003:E AJ

Bodden:2012:PEF

Eric Bodden, Patrick Lam, and Laurie Hendren. Partially evaluating finite-state runtime monitors ahead of time. ACM Transactions on Programming Languages and Systems, 34(2):

[BMR05] Thomas Ball, Todd Millstein, and Sriram K. Rajamani. Poly-
morphic predicate abstraction.

Boehm:1985:SEA Hans-Juergen Boehm. Side effects and aliasing can have simple axiomatic descriptions. ACM
REFERENCES

Ilan Bar-On and Uzi Vishkin. Optimal parallel generation of a computation tree form. ACM Transactions on Programming Languages and Systems, 7(2):
REFERENCES

Boyland:1996:CAG

Boyland:2010:SFP

Broy:1982:CAA

Burns:1989:USS
James E. Burns and Jan Pachl. Uniform self-stabilizing rings.

Bendersky:2012:SOB

Balabonski:2016:DFM

Baumgartner:1997:ISC
URL http://www.acm.org/
REFERENCES

REFERENCES

Burke:1993:IOE

Budd:1984:ACV

Burton:1984:ACP

Burke:1990:IBA

Burton:1990:TCT

Burton:1991:TCA

Broy:1987:ADP
Manfred Broy, Martin Wirsing, and Peter Pepper. On the algebraic definition of programming languages. *ACM Transactions on Programming Lan-

Cameron:1989:EHL

Carlisle:1995:TCC

Castagna:1995:CCC

Cotton-Barratt:2019:MVP

Conrad Cotton-Barratt, Andrzej S. Murawski, and C.-H. Luke Ong. ML, visibly pushdown class memory automata,
REFERENCES

[CDFP89] Click:1995:CAC

[CC95] Clarke:1997:URE

[CC97] Constable:1979:HAF

[CDK+18] Chen:2018:BPP

Kevin Casey, M. Anton Ertl, and David Gregg. Optimizing indirect branch prediction accuracy in virtual machine interpreters. *ACM Transactions on Programming Languages and Systems*, 29(6):37:1–37:36, October 2007. CODEN ATPSDT. ISSN 0164-
REFERENCES

0925 (print), 1558-4593 (electronic).

Chander:2007:ERB

Clarke:1986:AVF

Chen:2014:ETI

Choi:1994:SSP

Cytron:1995:ECN

Clements:2004:TRM

Cortesi:1997:CAI

REFERENCES

CG95

CGG+19

CG04

CGJ97a

CGJ97b

CGJ97b
REFERENCES

Castagna:2009:TCW

Choi:2003:SAS

Chatterjee:1995:OEA

Cohen:1987:PCU

Chow:1990:PBC

Charlesworth:1987:MR

Chatterjee:1993:CND

Siddhartha Chatterjee. Compiling nested data-parallel programs for shared-memory mul-

Charlesworth:2002:UA

Chitil:2005:PPL

Cogumbreiro:2019:DDV

Carbone:2012:SCC

Cameron:1984:GBD

Chatterjee:2018:AAP

Cejtin:1995:HOD

Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-order distributed objects. *ACM Transactions on Programming Languages and Systems*, 17(5): 704–739,

[CM84] K. M. Chandy and Jayadev Misra. The drinking philoso-
REFERENCES

REFERENCES

Carson:1987:GSP

Cooke:2008:NTD

Cuny:1987:CDD

Choy:1995:EFT

Chen:2004:LGS

Clausen:2000:JBC

Codish:1999:SGD
REFERENCES

[Dar90] Jared L. Darlington. Search direction by goal failure in goal-oriented programming. ACM Transactions on Programming Languages and Systems, 12(2):
Dujardin:1998:FAC

Dillon:1988:CET

Dunlop:1985:GSU

Drossopoulou:2002:MDO

Dencker:1984:OPT

Dietl:2011:SOT

Decorte:1999:CBT

Debray:1989:SIM

Debray:1995:CDA

DeMillo:1983:GEI

REFERENCES

Dhamdhere:1991:PA

DeLaBanda:1996:GAC

Dolby:2012:DCA

DeMoura:2009:RC

Dillon:1990:USE

deJonge:2012:NFE

Dodds:2016:VCS

Darulova:2017:TCR

David:2018:PSP

Drinic:2007:PPC

Debray:1993:CAL

Danicic:2018:SBS

Sebastian Danicic and Michael R. Laurence. Static backward slice-
ing of non-deterministic programs and systems. *ACM Transactions on Programming Languages and Systems*, 40(3): 11:1–11:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See Editor’s foreword [Mye18].

Dissegna:2016:AIB

Degano:1988:EIL

Diwan:2001:UTA

Danvy:1996:EED

Ducasse:2006:TMF

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schäli, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DeRemer:1982:ECL

Dhandhere:1993:EAB

Dhananjay M. Dhandhere and Harish Patil. An elimina-

Debray:1997:ICF

DP97

Das:2005:PFI

Dawson:1996:PPU

DeRose:1999:TTM

REFERENCES

REFERENCES

References

[Finlay:1993:TCC] Alan Finlay and Lloyd Allison. Technical correspondence: A correction to the denotational se-

Fateman:1982:HLL

Feng:2012:BQP

Feather:1982:SAP

Flanagan:1999:CSB

Furr:2008:CTS

Florence:2018:PPP

[FFF+18] Spencer P. Florence, Burke Fetscher, Matthew Flatt, William H. Temps, Vincent St-Amour, Tina Kiguradze, Dennis P. West, Charlotte Niznik, Paul R.

Flanagan:2008:TAS

Fournet:2003:SIT

Fidge:1993:FDP

C. J. Fidge. A formal defini-

REFERENCES

Flexeder:2011:FIL

Foster:1996:CPP

Ferrante:1987:PDG

Fisher:2002:GE

Facchinetti:2019:HOD

Francez:1980:CDT

Francez:1980:DT

REFERENCES

REFERENCES

REFERENCES

Gelernter:1985:GCL

Georgeff:1984:TRS

Ganapathi:1985:AGD

Gini:1985:DWM

Gesbert:2015:LAD

Griswold:1980:AUP

Gerber:1997:SRT

GarciaDeLaBanda:1996:GAC

Grove:2019:FRR

Griswold:1981:GI

Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ghosh:1993:ASP

Graham:1980:ICF

Gallager:1983:DAM

Giegerich:1983:FFD

REFERENCES

Gupta:1993:APE

Glenstrup:2005:TAS

Garlan:1994:TAM

Gharat:2020:GPG

Gries:1980:APC

Grumberg:1994:MCM

Gavanelli:2005:DIK

Grant:2000:BCD

Gomard:1992:SAP

Gorlatch:2004:SRC

Grit:1981:DIT

references

REFERENCES

Hansen:1992:SRF

Hannan:1994:OSD

Harel:1980:PNA

Hauser:1996:HFP

Havlak:1997:NRI

Hind:1999:IPA

Harman:2009:DCS
Mark Harman, David Binkley, Keith Gallagher, Nicolas Gold, and Jens Krinke. Dependence...

Hassen:1998:TDP

Hertz:2006:GOL

Hickey:1992:CAM

Huang:2010:DBR

Holt:1982:ISS

Hirzel:2002:UTL

REFERENCES

REFERENCES

[HM84] M. Elizabeth C. Hull and R. M. McKeag. Communicating se-
sequential processes for centralized and distributed operating system design. *ACM Transactions on Programming Languages and Systems*, 6(2):175–191, April 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Harp:1993:TSS

Hamlen:2006:CCE

Hicks:2005:DSU

Hoffman:1982:PE

Higuchi:2007:STS

Hobson:1984:DEE

Holt:1987:DDC

REFERENCES

[HQR02] Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani, and Serdar Tasiran. An assume-guarantee rule for checking sim-
REFERENCES

[HS&14] Christopher M. Hayden, Karla Saur, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. Kit-sune: Efficient, general-purpose dynamic software updating for

Horwitz:1986:GEE
Susan Horwitz and Tim Teitelbaum. Generating editing environments based on relations and attributes. ACM Transactions on Programming Languages and Systems, 8(4):577–608, October 1986. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD

Huang:1993:LEU

Hudson:1991:IAE

Haridi:1999:ELV
Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer, and Gert

Hirzel:2007:FOP

Hosoya:2005:RET

Honda:2007:UTS

REFERENCES

Igarashi:2005:RUA

Igarashi:2001:FJM

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Inoue:1988:AFP

Igarashi:2006:VPT

Iverson:1979:O

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

REFERENCES

REFERENCES

Jackson:1998:IFM

Jimenez:2002:RTN

Jagannathan:2014:ARV

Jaffar:1992:CLS

Jeffrey:2010:ESA

Joshi:2006:DPA

Jones:1983:TST

Jones:1990:EEC

Jonsson:1994:CSV

Jazayeri:1981:SES

Jourdan:2017:SPC

Jagadeesan:1991:FAS

Jacobs:2008:PMC

[BJS+08] Bart Jacobs, Frank Piessens, Jan Smans, K. Rustan M. Leino,

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO

Kim:2001:ER

Kennedy:1999:PRE

REFERENCES

Khedker:1994:GTB

Kistler:2003:CPO

Kistler:2000:ADM

Kistler:2004:JFD

Kaiser:1992:OBP

Kennedy:1998:ADL

Knowles:2010:HTC

REFERENCES

[KM81] Bent Bruun Kristensen and Ole Lehmann Madsen. Meth-

Kobayashi:1998:PDF

Knapp:1990:EFD

Kozen:1997:KA

Kurlander:1995:EIS

Katzenelson:1992:TMT

Kobayashi:1999:LPC

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP
REFERENCES

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Kim:2018:TFS

Se-Won Kim, Xavier Rival, and Sukyoung Ryu. A theoretical foundation of sensitivity

Korach:1984:DAF

Kruskal:1988:ESM

Knoop:1994:OCM

Kieburtz:1979:CCS

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1988:DSC

REFERENCES

Sara Kalvala, Richard Warburton, and David Lacey. Program transformations using tem-

Kasikci:2015:ACD

LaLonde:1981:CSC

LaLonde:1983:TCL

LaLonde:1984:TCC

LaLonde:1989:DFD

Lamport:1979:NAP

Lamport:1980:CNA

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Lee86] George B. Leeman, Jr. A formal approach to undo operations in programming languages. ACM Transactions on Programming Languages and Systems, 8
REFERENCES

Lee:2009:RFS

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB

Lueh:2000:FBR

Lycklama:1991:FCF

Lhotak:2008:RAB

Ondřej Lhoták and Laurie Hendren. Relations as an ab-

References

REFERENCES

Lamport:1999:SYS

Leroy:2000:TBA

Levanoni:2006:FRC

Leung:2001:STC

Lieberherr:2004:TOS

Lim:2013:TSG

Lepigre:2019:PSC

REFERENCES

 Luckham:1979:VAR

 Leverett:1980:CSD

 Lindstrom:1981:RRB

 Liskov:1983:GAL

 Lamport:1984:HLC

 Lang:1998:SAE

 Levi:2003:MSA

 Li:2004:ATI

[LS04] Zhiyuan Li and Yonghong Song. Automatic tiling of iterative...

[Liquori:2008:FME]

[Liu:2009:DRE]

[Liu:2005:OAA]

[LSP82]
Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3):382–401, July 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

[League:2002:TPC]
Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. *ACM Transactions on Programming Languages and Systems*, 24(2):112–152, March 2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
Lengauer:1979:FAF

Li:2020:PAS

LeCharlier:1994:EEG

Lipton:1983:VLP

Leivent:1993:MFT

Liskov:1994:BNS

Lee:1998:PAF

Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type inference al-
REFERENCES

Mallgren:1982:FSG

Mallgren:1982:FSG

Merlin:1983:CSS

Merlin:1983:CSS

Morris:1999:SF

Millstein:2004:MTH

Morris:2009:TTN

Morris:2009:TTN

Misra:1982:DGA

Misra:1982:DGA

Misra:1982:TDD

Jayadev Misra and K. M. Chandy. Termination detection of diffusing computations in communicating sequential processes. *ACM Transactions on
REFERENCES

McGraw:1982:VLD

McKinley:1996:IDL

Morrison:1991:AHA

Moreau:2005:BDR

Moon:1997:PNC

Mauney:1988:DEL

Matthews:2009:OSM

Jacob Matthews and Robert Bruce Findler. Operational semantics

Millstein:2009:EMP

Moriconi:1986:PSP

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CR

Minsky:1984:SLC

Miquey:2019:CSC

Étienne Miquey. A classical sequent calculus with dependent types. ACM Transactions on Programming Languages and Systems, 41(2):8:1–8:??, June 2019. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

REFERENCES

Markstrum:2010:JDP

Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Masticola:1995:LFM

Morgan:1996:PPT

Mohan:1981:TCF

Moitra:1983:TCA

Monniaux:2008:PVF

Morgan:1988:SS

Moller:2007:SVX

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

REFERENCES

Moore:2002:AC

McKinley:2007:ECG

Mckinley:2010:DVT

Mckinley:2010:PVT

Kathryn S. McKinley and Keshav Pingali. La prossima vita at TOPLAS. ACM Transactions on Programming Languages and Systems, 32(6):20:1, August 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Maher:1983:API

Murphy:1988:NDP

Marriott:1994:DAI

Marino:2016:DXU

Madhavan:2000:EGG

Morris:2008:DNF

Morris:2008:DNF

MacDonald:2009:DDP
Steve MacDonald, Kai Tan, Jonathan Schaeffer, and Duane Szafron. Deferring design pattern decisions and automating structural pattern changes using a design-pattern-based programming system. *ACM Trans-

[MWB94] Anne Mulkers, William Winsborough, and Maurice Bruynooghe. Live-structure dataflow analysis for Prolog. *ACM Trans-

Morrisett:1999:SFT

McKenzie:1995:ERS

Myers:1990:CUI

Myers:2017:F

Myers:2018:EFS

Myers:2019:E

Narlikar:1999:SES

[NB99] Girija J. Narlikar and Guy E. Blelloch. Space-efficient schedul-
REFERENCES

[102x681]

[Ni05] Thi Viet Nga Nguyen and François Irigoin. Efficient and

REFERENCES

REFERENCES

Ohori:2007:PTM

Ogasawara:2006:EED

Owicki:1982:PLP

Oh:2016:SXS

Odersky:2004:GE

Oppen:1980:P

Ossefort:1983:CPC

O'Hearn:2009:SIH

Peter W. O'Hearn, Hongseok Yang, and John C. Reynolds. Separation and information hiding. *ACM Transactions on Programming Languages and Sys-

Pingali:1985:EDD

Pingali:1986:CFI

Pingali:1986:EDD

Padovani:2019:CFS

Palsberg:1995:CA

Palsberg:1998:EBF

Palsberg:2011:E

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

Papadimitriou:1980:PBH

REFERENCES

Perrott:1979:LAV

Perry:1990:GEI

Peterson:1982:UAC

Gary L. Peterson. An $O(n \log n)$ unidirectional algorithm for the circular extrema problem. *ACM Transactions on Programming Languages and Systems*, 4(4):758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of n uniquely numbered processes in a ring. The algorithm requires $O(n \log n)$ messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

Pratikakis:2011:LPS

REFERENCES

Poletto:1999:CTL

Paek:2002:EPA

Pippenger:1997:PVI

Piquer:1996:IDG

Pai:1980:GCR

Paige:1982:FDC

Pearce:2007:EFS

Palsberg:1995:TSE

Prywes:1979:UNS

Park:2008:PLB

Pinter:1994:POP

Payet:2006:NIL

Pingali:2009:RTP

Peng:1991:DFA

Pinter:1994:POP

Prywes:1979:UNS

Park:2008:PLB

Park:2004:ORC

REFERENCES

Podelski:2007:TPA

Proebsting:1995:BAG

Pollock:1992:IGR

Palem:1993:STC

Palsberg:1996:CTT

Poletto:1999:LSR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Rinard:1998:DIE

Ryder:2001:SIM

REFERENCES

REFERENCES

Rinetzky:2008:CPF

Ramanath:1984:JML

Reif:1984:RTS

Raja:1997:CFC

Reps:2010:FDL

REFERENCES

Reps:2017:NPA

Reed:1988:SL

Ryu:2016:TOO

Stata:1999:TSJ

Shao:2000:ESS

Sager:1986:SPC

Sagiv:2007:ISE

Samet:1980:CAP

[Sam80] Hanan Samet. A coroutine approach to parsing. *ACM
Sands:1996:TCL

Sangiorgi:2009:OBC

Solovyev:2019:REF

Schwartz:1980:U

Schneider:1982:SDP

Schmidt:1985:DGV

REFERENCES

REFERENCES

Sekiyama:2017:PMC

Sijtsma:1989:PRL

Sipala:1982:CSB

Sites:1979:CLI

Spoto:2003:CAA

Scott:2006:RNG

Smans:2012:IDF

Schwanke:1988:SR

REFERENCES

[SM89] J. Steensgaard-Madsen. Type representation of objects by

Spoto:2010:TAJ

Stork:2014:APB

Sokolowski:1987:SHL

Sok87

Sonnenschein:1987:GTS

Sorkin:1989:TCS

REFERENCES

Sagiv:2002:PSA

Soisalon-Soininen:1982:IEE

Schlichting:1984:UMP

Shasha:1988:ECE

Skeppstedt:1996:UDA

Sagonas:1998:AMT

Schulte:2005:WDB

Christian Schulte and Peter J. Stuckey. When do bounds and domain propagation lead to the

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:EEC

Staiger-Stohr:2013:PIA

Sneyers:2009:CPC

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of constraint handling rules. ACM Transactions on Programming Languages and Systems, 31(2):8:1–8:42, February 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Schonberg:1981:ATS

Sippu:1983:SEH

REFERENCES

[Sangiorgi:2019:EBP] Davide Sangiorgi and Valeria Vignudelli. Environmental bisim-

Seo:2007:GDW

Swinehart:1986:SVC

Terauchi:2008:CCC

Terauchi:2008:WSE

Tai:1979:NSG

Tanenbaum:1983:TCT

Tardieu:2007:DLS

Tsay:1995:DFP

REFERENCES

Tofte:1998:RIA

Trinder:2017:SRI

Tzannes:2014:LSR

Tip:2011:RUT

Toro:2018:TDG

Toro:2020:CTD
Matías Toro, Ronald Garcia, and Éric Tanter. Corrigendum to “Type-driven Gradual Security with References,” by Toro et

Thorup:1994:CGA

Tichy:1986:SR

Tichy:1988:TCT

Tick:1994:DTN

Tripakis:2011:TSR

Tel:1993:DDT
Gerard Tel and Friedmann Mattern. The derivation of distributed termination detection algorithms from garbage collection schemes. ACM Transactions on Programming Languages and Systems, 15(1):1–35, January 1993. CODEN ATPSIT. ISSN 0164-0925

REFERENCES

[UM02] Sebastian Unger and Frank Mueller. Handling irreducible loops: optimized node splitting versus DJ-graphs. ACM

[VBLG04] Xavier Vera, Nerina Bermudo, Josep Llosa, and Antonio González. A fast and accurate framework to analyze and optimize cache memory behavior.

REFERENCES

Venkatesh:1995:ERD

VanRoy:1997:MOD

vonHanxleden:2000:BCP

VandenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

[VJB12] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence checking of static affine programs using widening to handle recurrences. ACM Trans-

Wallis:1980:ERO

Wallis:1981:CER

Wall:1992:ESD

Wand:1982:DTC

Waters:1983:UFC

Waters:1991:ATS

Waters:1994:CBP

Wright:1997:PST

Andrew K. Wright and Robert Cartwright. A practical soft type system for Scheme. *ACM Transactions on Programming Languages and Systems*, 19(1):
REFERENCES

REFERENCES

Wetherell:1982:EDV

Weyuker:1983:ATD

Wagner:1998:EFI

Widom:1992:TBN

Widom:1993:CTB

Whalley:1994:AIC

Williams:1982:DAF

REFERENCES

REFERENCES

[WN08] Westley Weimer and George C. Necula. Exceptional situations and program reliability. ACM Transactions on Programming Languages and Systems, 30(2):
REFERENCES

REFERENCES

Wehr:2011:JIT

Wu:2004:ETC

Wu:1995:WCC

Wegman:1991:CPC

Ward:2007:SPT

Xie:2007:SSF

Xie:2020:CSA

Ningning Xie, Xuan Bi, Bruno C. D. S. Oliveira, and Tom Schrijvers. Consistent subtyping for all. ACM Transactions on Programming Languages and Systems, 42(1):2:1–2:??, January 2020. CODEN ATPSDT. ISSN 0164-0925

Mingsheng Ying. Floyd-Hoare logic for quantum programs. *ACM Transactions on Programming Languages and Systems*, 33
REFERENCES

Yahav:2010:VSP

Yang:2002:EEB

Zave:1985:DAF

Zhao:2007:FFS

Zhang:2005:CPT

Zhou:1996:PPC

Zic:1994:TCB

Zhang:2017:SSH

Zh:2007:AAR

Zh:2010:OFE

Zh:2009:PLA

Zhao:2020:DLS