A Complete Bibliography of Publications in ACM
Transactions on Programming Languages and Systems
(TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 October 2018
Version 2.130

Title word cross-reference

[k] [ADGM91, BL94b, KM81]. 2 [Dam03]. 3
DGS97, FF99, GHB+96, GJ05, GZ04, GCRN11, HAM+05, HPMS00, HBCC99, HVDH07, HAH12, IK05, JLRs10, KBC+99, KK07, KS07, LP00, LH08, MPM03, NS13, PHP02, Pa98, PKH07, Ram00, Rep00, RSL10, RD97, RRSY08, RR03, RR05, RLS+01, SRW98, SRW02, STS03, SdSCP13, SS96, ST00a, WP10, WJ98, ZSD09.

analysis [dHB+96]. analyze [DMM01, VBLG04]. analyzer [SMP10].

Analyzing [AW85, BEF+16, CFP+04, GMM99].

And/Or [Har80]. Annotations [Bur84].

AOP [DES12]. APL [Bud84, GD82, Hob84].

Applicability [DAW88, How80, LS98]. applicable [Gom92]. Application [CD79, DF80, DF81, LBN17, LR13].

Applications [BLRS12, Bou88, BALP06, CMLC06, NR06]. Applicative [AC94, KS86]. apprentice [MP02].

Approach [AKNP17, ABR81, AR80, BAC16, BP82, Bur90a, CH90, CD79, DS90, EII82, ES97, FT94, GGL15, Har80, Hes88, KKW14, Lam79, Lam80, Lee86, MW80, MDCB91, ND16, OA88, Sam90, Sp086, SM81, SNS+14, Bou95, CRN+08, DMM+12, FGM+07a, JLRs10, KV00, LP80, MBT09, PSS05, PCJ08, RC03, SP07, WS97]. approximations [BGP99]. Apt [Moi83].

architected [ZP07]. Architecture [Wal92].

Architectures [Han94, KFP95, NSTD+15, PAS+15].

Arising [Bae84]. Arithmetic [Fis80, GNS+15, Hen83, LdR81, MOS07b].

ARM [FKW98]. Array [CGST95, CG95, LS79, Per79, PW98, JB06, LSLR05, NI05, PHP02, RMO6, RR05, ZCG+07].

array-valued [RMH06]. Arrays [BBC16].

ASF [VHK002]. aspect [DWWW08, WK04]. aspect-oriented [DWWW08, WK04]. AspectML [DWWW08]. Aspects [Bor81, Set83].

assembly [AAR+10, MWCG99].

Assessments [BK80]. Assessing [BHH+16, Wey83]. Assignment [BM94, CFR+91, GL80, PFP08, LDK+96].

Assisted [HCHP92]. Assisting [Fen82]. Associated [PPS79]. associativity [Cha02].

Assocs [Rem81]. assume [HQRT02].

Assume-Guarantee [HQRT02].

Assumptions [ES97]. AST [GVC15].

Asynchronous [Bag89, GLO88, Mis86, GM12, HR02].

ATL [WSH15].

Atomic [WL85, Wei90, AE01].

Atomicity [JLP+14, Wei89, FFLQ08].

Attribute [CP95, Hud91, JP81, Jou90, Kat84, KR79, MK94, RD87, WW95, Boy96, CP96, Wu04]. Attributes [HT86]. Author [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].

authorization [FGM07b]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b].

auto [ZP10].

auto-addressing [ZP10].

Automata [BM91, ES97, Pro95, KV00].

Automata-Theoretic [ES97, KV00].

Automated [GRS11, KZC15, KK00, Sok87, JNGG10].

Automatic [AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, DS90, KKW8, Le 88, LK02, LS04, MS83, PZ05, RH87, SSS81, SLC03, She91, Wat91, Wha94, ABH11, ATD08, BubbH99, CRN+08, ZCG+07].

Automatically [Slo95].

Automating [GKL94, MTSS09].

Avoidance [FG14]. aware [MQ05].

Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80].

Axioms [Mis86].
KR79, LFF14, PW98, RTD83, SR95, SGL98, Ste18, SNS+14, Wat94, WGS92, vPS81, BFG08, BMR01, BHM+07, BCG+07, CTT07, DDV99, Eng07, FF99, HBJ98, KBC+99, KK07, KCO1, LP00, LH08, LGAT00, MH06, Pal98, PPT08, PCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12]. Basic [GLR83].

AAE04, BBYG+05, BGP99, CSW06, JPS+08, RS97, SRM10, YS10.
Concurrent-by-Default [SNS+14].
Concurrent-Program [FT94].
Conference [Wol92]. Constrained [BG89a, DAW88, PS96, Zic94]. Constraint [Bor81, DGMP97, DDV99, NSTD+15, Pal95, PW98, Ste18, Apt00, BMR01, DPPR00, FH04, GHB+96, HPMs00, SS08, SS09, SP07, SSD09, dHB+96]. Constraint-Based [PW98, Ste18, DDV99, SP07]. Constraint-Oriented [Bor81]. Constraint-Solving [NSTD+15].
Constraints [AKP94, DFR15, HG83, Mye90, BA08, RM10, TFK+11, Van96b, VHM+01, Van96a].
Construct [Ans87, BS83, Kat93]. Construction [ADGM91, HIT97, LaL81, MB83, RH87, SL92, CMS03, GC01].
Continuous [KF03]. contract [DF11]. Contracts [SIG17, SDTF13, CGP09].
Convention [AF84]. Convergence [Bar85]. Conversion [CS87, SW97b, SA00, YK97].
Corrigenda [WCW91]. Corrigendum [BKRW05, DF81, Fra80a, KS89, Lam80, Pur91, QG95, Van96a, Wal81, WGS93]. Cost [AB81, Bac84, DL93, Hai98, Han81a, ZGZ05, VALG05]. Cost-optimal [Hai98].
Correct [DGMP97, Hen86, JP17, SS88, AAD+07].

D. [Bur91]. Data [AMT14, ANP89, AM85, Bac84, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, Ett82, EO80, FL81, GMH81, GEGP17, HL82, Her93, Hes88, Hol87, Jen97, KH92, Kam83, KZC15, KK98, KD94, LaL89, LO94,
Distributed-Memory [KK98, RCRH95].
div [Bou92]. Divergence [SdSCP13].
DJ [DR05, SGL96, SGL98, UM02]. DJ-graphs [UM02]. DLLs [Dug02].
do [SS05a].
documentation [MH86]. does [DMP96].
dolce [MP10a].
domain [LM18, Tra08, RM07, SS05a]. Domains [CMB+95, ELS+14, GS98, FH04, GLMM05].
dominance [Ano02b, DVD07]. dominator [SGL97].
Dominator [LT79, Ano02b, BKRW98, BKRW05].
Dashed () [AKNP17].
Drf [MSM+16]. Drfan [MSM+16].
Drinking [CM84, MS88]. Drive [PK80].
Driven [BL87, CS87, GF85, GSW95, PA85, PA86a, PA86b, YBL16, DGS97, PF96, YMW97].

Dually [MT08]. Dummy [Lam88].
During [BKB80].
Dyc [GMP+00]. Dynamic [ACPP91, AGT89, ASF17, BB79, BDM15, Bre89, CTT07, DS98, Dug99, HSS+14, HN05, Kail89, KR79, RCRH95, Ven95, WR08, dBB85, ACE96, BP12, CE1+07, DDDCG02, GZ07, MMM+07, PHEK99, SJP12, SHB+07, SYK+05, SYN06, WDK04, ZGZ05].
eager [FKW00]. Earley [Lei90]. Early [AB81].
ECCS [CDFP89]. Edge [DP93].
Editing [FL81, HT86, Nix85]. Editor [FM87b, DeM83, Mye18, Per90, Rep86, Wol92].
Editorial [AP07, App93, AG93, AF94, MP07, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04].
Editors [DMM88, MM89, RTD83, Wat94]. EDO [OKN06].
effect [RLS+01]. Effective [BS83, Col84, KKN06, NI05, PE08, WJ98, YUW02].
Effectiveness [BdlBH99, SH89].
Effects [Boe85, TA08b]. Efficient [AKBLN98, ADGM91, BB79, BGH+13, Bre89, Cam89, CS95, DP82, DMM88, GZ05, GZ07, GLR83, GLO88, GSO94, HVB+99, HS94, HSS+14, HIT97, JP81, Jon90, KKM90, KRS88, KPF95, MVV+01, MM82, NB99, NP02, PXL95, PKH07, PA85, PA86b, RH87, SS08, SA00, SS88, WG98, YUW02, BCP08, GB99, KSV96, LPSO04, LS09, PBK+07, TP04, VWJB10, YF98, PA86a, SS09]. Efficiently [Bal94, CFR+91, CF95].
Eiffel [ACE96].
elaboration [KR01]. Election [Hua93].
Eliminating [BT93, Cob83, Cohn85, RD03]. Elimination [DP93, SGL98, KKN06, KCL+99].
Elimination-Based [SGL98].
embedded [BCP08, CSCM00, HK07, Rhi03, SRM10, TP04, ZP10].
Embedding [LF87].
Empirical [BHK07, BDH+16].
Empowering [JSB+12]. Emulator [ML80].
Enabled [ADG+94]. Encapsulating [GPV07].
Encapsulation [AR84, DDM11].
Encoding [Hob84, GZ05, ZP07].
Encodings [BC79].
End [BDP14, CSCM00].
enforcement [HMS06].
Enforcing [CE1+07]. engines [SS08, SS09]. enhanced [GH97].
Entries [LaL84, SS82].
Enumeration [BB94, JD98].
Environment [CO90, SZBH86, CKT86].
Environmental [SKS11].
Environments [BS86, GKL94, HK85, HT86, Kail89, dJKVS12]. Epochs [Sol92]. equalities [FMoPS11].
Equality [Pa98].
Equality-based [Pa98].
Equations [H082, B06, G11, GMM99].
equiprobable [PB80]. Equivalence [VJ12, VSS94]. Equivalent [PO95, NP08].
Erlang [TCP+17].
Erratum [SS09].
Error [AB81, Bae84, BN99, BF87, FL15, KCO1, LaL84, MF88, MYD95, PK80, Ric85, SS88, SS88, SS92, W82, ZMVP17, dJKVS12, Jef03, XA07].
Errors [AW95, Wha94, CPRT02, JNGG10].
Escape [Bla03, CGS+03]. **ESOP’05** [Sag07]. **Essential** [DES12], **Esterel** [Tar07]. **Eta** [DMP96]. **Eta-expansion** [DMP96]. **Euclid** [HW82]. **Euclidean** [Tar07]. **Evaluating** [BLH12]. **Evaluation** [AFV98, Bur84, CGST95, CK93, Gri82, Hud91, Jon90, LV94, PA85, PA86a, PA86b, RD87, RL98, Sco95, SG90, Wcw90, Wcw91, ADR06, CP96, CG04, GJ05, Ldm07, Len04, ST00b, SYK+05]. **Evaluations** [BDH+16]. **Evaluator** [Gom92, JP81, KR79, Le 88]. **Evaluators** [CP95]. **Event** [Bar81, YMW97]. **event-driven** [YMW97]. **Events** [Bal94]. **Ever** [Gri79]. **Evidence** [CGJ+97a]. **Evidence-Based** [CGJ+97a]. **Example** [CM86a, Mye90, Nix85]. **Examples** [Oss83, Jef03]. **Exception** [YB85, YB87, YB88, LS98, LP00]. **Exceptional** [WN08]. **Exceptions** [ASF17, Hau96, LP00]. **Exclusion** [ADG+94, LH91, ABHI11]. **Executable** [Hob84]. **executables** [YF09]. **Execution** [BR10]. **Execution** [CS87, Dil90, GJ93, JW17, JNGG10, JF81, SS98, SS88, BALP06, GPA+01, TSY00, YF98]. **Exemplars** [LaL89]. **Exemplified** [DGL+79]. **Exercise** [Kna90, Mis81]. **Exhaustive** [Bur90a]. **Existential** [MP88]. **existing** [LS98]. **expansion** [DMP96]. **Experience** [FSS83, Wal92]. **experiences** [Eug07]. **Experimental** [LV94, SSS83, Ven95, ABB+09, BGP99]. **Experiments** [Tsu84]. **Explanation** [Mis81]. **Exploiting** [KOE+06]. **exploring** [WS97]. **exponential** [Wu04]. **exponential-time** [Wu04]. **Expression** [GP81, YB87, YB88, HVP05]. **Expression-Oriented** [GP81, YB87, YB88]. **Expressions** [BG89b, CGST95, CC97, DAW88, Fis80, Geo84, Gri82, Hen83, HY91, KS83, Ldr81, PK82, Sha82, Sit79, Wat91, Dan03, Nn86]. **Expressive** [MFRW09]. **Expressiveness** [WGS92, WGS93, PS96]. **extended** [KGM004]. **Extending** [CEW14, CMS03, MSRR00, MK94]. **Extensible** [HSG17, St004, ATD08, MBC04]. **Extension** [Bur90b, Coh91, WSH15, Wir91, ALZ03, KKN06, LS08]. **Extensions** [Wir88]. **Extent** [MF88]. **External** [Wall90, Wal91]. **Extracting** [GP95]. **extrapolation** [WM12]. **Extrema** [Pet82]. **F** [MWC99]. **Facets** [ASF17]. **factoring** [DRSS96]. **Failure** [BN99, Dar90, Kar84]. **Failure-Free** [Kar84]. **Fair** [BN94, PR07]. **Fairness** [ES97, OA88, TB95, AH98]. **Families** [LaL89]. **Fashioned** [AL94]. **Fast** [ADR06, DAS98, FMoPS11, HVDH07, LT79, SR95, DR05, PE08, TP04, VBLG04, DVL15]. **Fault** [CS95, Lam84, LJ99, AAE04]. **Fault-Tolerance** [LS99]. **Fault-Tolerant** [CS95, Lam84, AAE04]. **FD** [GLMM05]. **FeatherTrait** [LS98]. **Featherweight** [IPW01, LST02, LS08]. **feature** [AH10]. **Feeding** [PA86a]. **Fence** [AKNP17]. **Fickle** [DDDCG02, AAD+07]. **field** [PKH07]. **field-sensitive** [PKH07]. **fields** [PZ05]. **FIFO** [FLBB89]. **Final** [Kam83]. **Finding** [KRS84, KKM90, LT79]. **Fine** [PBR+15, DNS+06]. **Fine-Grained** [PBR+15, DNS+06]. **fingerprinting** [CTT07]. **Finitary** [AH98]. **Finite** [ACW90, BLH12, CES86, GC86, PK82, PP91, Pur91, RSL10, Zav85]. **Finite-State** [ACW90, BLH12, CES86]. **Finite-State-Machine** [Zav85]. **First** [ADG+94, Bre89, DP97, HKMN94, Han92, JPP91, JS94, LH91, MH04, SDTF13]. **First-Class** [HKMN94, Han92, SDTF13, MH04]. **First-Come-First-Served** [LH91]. **First-Enabled** [ADG+94]. **First-Fit**
First-In [ADG+94]. First-Order [DP97, JPP91, JS94]. Fit [Bre89]. Fixed [SS98]. Fixed-Order [SS98]. Fixpoint [AC94, Qia00]. Flexible [AD89, Hud91, MSM+16, WG98, Wil82b, dJKVS12, IV06, KGMO04]. Floating [CK94, Fat82, Hau96, Mon08].

Floating-Point [CK94, Fat82, Hau96, Mon08]. flop [MMG00]. Flow [AR80, AD98, ASF17, Bac84, BC85b, Bur90a, DP97, DP93, FJKA06, Hor97, KD94, MMR95, NBG13, PO95, PP91, PBR*15, Pur91, Set83, SGL98, SS13, Wet82, DGS07, HR02, HY07, KBC+99, Pal98, PS03, RRSy08, RP88, TZ07, WJ98].

Foundation [KRR18, Ban11, RAB*07, Rhi03]. foundational [AM01]. Foundations [GTWA14, LW93, AAR*10]. Fractal [MPM03]. fractional [Boy10]. frames [SPJ12]. Framework [BGL93, Gie83, JW17, KRR18, NSZ13, NSTD+15, OHL+14, SGL98, ATD08, DGS07, GMM99, GZ04, GC01, Len04, PS08, RRKR04, TP04, VBLG04, XA07, ZCG+07, ZP10, vHK00].

Frameworks [MMR95, KK07]. Framing [BNN18]. Francez [Fra81, Moh81, Moi83]. Free [AP94, GEGP17, GHR80, Her91, Kar84, Kob98, JJD98, KS96]. freedom [KS10]. frontiers [Ano02b]. full [GB99]. Fully [JPP91]. function [DR05, FF08]. Functional [AF98, Ban95, Blo94, Ben05, Bur84, DW98, FL91, ISY88, JPP91, WM95, Web95, Wil98a, ABH06, Bou96, DW08, DF98, PS08, San90, SP97]. Functions [AKP94, AK82, Bou92, PB80, SM98, Lee09, MBC04, MB99, MT08, PPT08]. Further [CM93]. Fusion [LGAT00]. Fusion-based [LGAT00].

G. [Tic88]. Garbage [BA84, CN83, DSW82, ISY88, TM93, WLB16, Wis79, BBYG*05, BALP06, HDH02, LP06, Piq96, TSBR08].

Garnet [VHM+01]. General [BGL93, HSS*14]. General-Purpose [HSS*14]. Generalization [Nei89, LMD98].

Generalized [Ans87, BS83, KD94, Lin79]. Generalizing [DB85]. Generals [SLP82].

Generate [Son87]. Generated [Slo95, dJKVS12]. Generating [HBM*06, HT86, Jef03, LR13, JNZ06].

Generation [AGT89, AS80, BOV85, BM94, DS83, DS90, GF85, GVC15, KHR92, HKR94, Pro95, Rei93, Rob97, She91, ST00b, UJ92, DAS98, MSRR00, PHEK99].

Generative [Ge85]. Generator [PPS79]. Generators [Cat80, GHK81].

Generic [LV94, DDM11]. generics [IV06].

Geometry [CR87]. Geoffrey [NN86]. GJ [IPW01]. Glanville [MSRR00]. Global [Bac84, Dha91, GHB*96, OHL*14, PK80, PS92, Sch85, dHB*96, CS04, KBC*99, DSS88, Sor89]. GLR [SJ06]. Goal [Dar90, Gud92, SYYH07]. Goal-Directed [Gud92, SYYH07]. Goal-Oriented [Dar90].

Goto [CF94]. GPU [BCD+15]. Graham [MROR00]. Graham-Glanville [MSRR00].

Grained [PBR*15, DNS*06]. Grammar [CI84, CP95, GF85, JP91, KR79, Web95].

Grammar-Based [CI84]. Grammars [BS88, Jun90, Kat84, LaL81, RD87, RH87, Tai79, WW95, Boy96, CP96, Wu04].
Grammatic [Tho94]. Grammers [BB94, MK94]. Graph [Ass00, Bee94, BCT94, CFR+91, FOW87, KKSD94, KLS92, MCS2a, Son87, CTT07, GC01].
graph-based [CTT07]. Graphic [Mal82].

growth [BALP06]. Guarantee [GEGP17, LFF14, HQRT02]. guarantees [LS09].
guard [MP07]. guarded [SP07].

Guardians [LS83]. Guards [Ber80].

Guest [FP02, OP04, DeM83, Per90, Rep86, Wol92].

Guide [App94a, BDH+16]. Guided [OLH+16]. guiding [VALG05].

Hackers [App94a]. Hancock [CFP+04]. handle [VJB12]. Handling [Hau96, LdR81, Piq96, SSSS3, UM02, YB85, YB87, YB88, CRN+08, LS98, LP80, SSD09, Hen83]. Hard [Hor97]. Hardware [BKL+97, Mis86].

harmful [Gor04]. Hashing [PB80, Duc08].

Haskell [GRSK+11, HHPW96]. Heap [KSK07, BALP06, KF00, YS10]. heap-manipulating [YS10]. Heavily [BG98a]. Hennessy [CM93, WST85].

Herding [AMT14]. Heuristic [SL92]. hiding [LN02, OYR09]. hierarchic [AG04].

Hierarchical [BA99, CP95, CD79, YAO1, CP96]. hierarchically [MBC04]. hierarchies [ST00a, Van96a, Van96b]. hierarchy [KF00].

High [Cam89, Fat82, MS+16, CMS03, VWJB10]. High-Level [Cam89, Fat82, CMS03, VWJB10].

Higher [AC94, AD08, CJK95, DJP+16, BBTS07, DF11, SKS11, SP97]. Higher-Order [AC94, AD08, CJK95, DJP+16, BBTS07, DF11, SKS11, SP97]. Highly [Her93, Sku95].

I-Structures [ANP89]. I/O [Car95]. Icon [GKH81, Gri82]. id [Bee94]. idempotency [KOE+06]. Identical [FLBB89].

Identification [BGH+13]. identify [MMM+07]. Identifying [Ram99, SGL96].

Imperative [ABPS98, DFR15, Gro06].

Implementation [AKBLN89, AOC+88, BCD+15, Bou88, Bre89, BS83, CM86b, GMHS81, Gaz83, Lin93, MDCB91, PXL95, RLC98, WL85, CMLLO6, FS78a, GB99, LDM07, LPS004, Tra08, Zho96].

implementations [BBF+11, BFGT08, DF98]. Implemented [DB85]. Implementing [BR97, Her93, HW82, Sku95]. Implications [Fat82]. Implicit [BH05b, SJ12]. Implicit-signal [BH05b]. improve [KF00].

Improved [GHR80, Mur91, KKO7]. Improvement [MS83, Sun96]. Improvements [BCT94]. Improving [CK94, CMB+95, MCT96, TCF+17, WS97].

impure [Pip97]. incomplete [GLM05]. Incremental [Bur90a, CP95, DMM88, GM79, HKR92, HKR94, HPSM00, Hudd91, Kais95, Lar95, LST98, PS92, RTD83, RP88, SGL97, WG98, YS91, BBYG+05, CP96, Van96a, Van96b].

Induction [GSW95, Sit79]. inefficiencies [MMM+07].

Inessential [SS82, LaL84]. Inference [CEW14, Deb89, Hen93, LO94, LY98, TB98].
dJKVS12, van88, Bou05, BSvGF03, CFP+04, DWWW08, DF98, FM99, Gro06, HBJ98, KN06, LP99, MF09, MWCG99, PPT08, PHEK99, Tra08, VHKO02, HCW82, YB88.

Language-Based [Kai89, RTD83].

Languages [AR84, AD98, Bar81, BL94b, Blo94, BM94, BWP87, CDFP89, Dug99, Fos96, FL91, HU96, Lee86, MSM+16, Mur91, Ryu16, TK94, AAR+10, ACM11, DHM00, GW99, RS97, Rhi03, SW98, SKS11, SP97, SWU10, Wol92].

Larch [Win87].

Large [GLR83, MK94, MH86, WCW90, WCW91].

Lattice [AKBLN89, MMR95, FHW99].

Lauer [GM91].

Layout [KK98, LVV+83, GPWZ08, KF00]. Lazy [ABM93, FKW00, HU96, HJ91, TCVB14, Ch105]. LCF [Sok87]. Lead [SS05a]. Leader [Hua93, KKM90]. Least [AB81, Bac84]. Least-Cost [AB81, Bac84].

Left [FKW98]. Left-Linear [FKW98]. legacy [NCH+05]. length [SMP10].

Lessons [VHM+01]. Let [LY98].

Let-Polymorphic [LY98]. Level [Cam89, Fat82, GP95, YBL16, CMS03, VVJB10].

Lexical [HKR92]. libraries [Dug02]. LIFE [AKP94]. lifetime [HBM+06]. Lightweight [SW97b]. Like [Hua90, KN06]. Limitations [CP17]. Linchpin [BGH93]. Linda [Gel85].

Liveness [ACW90, GC86, OL82, RU88, HDHO2]. LL [BF87]. Load [KPF95]. Loaded [BG9a].

Local [BDFZ09, CBDGF95, PT00, TSBR98, Wei98, Dam03, San96]. Locality [BAC16, MCT96, VALG05, ZSD09]. Locally [AB81, Bac84, Min84]. locating [JNGG10].

Logical [AS89, AFV98, APT81, BGL93, BL97, BCD90, BDJ13, BMP94, CSOS, CFS86, CFM94, DW99, Deb99, DL93, Deb95, DJ+16, JPP91, Kar84, LS84, Lam94, MW84, MSJ94, MMG92, SS98, Sok87, TK94, TB95, BBTS, BMR01, BCG+07, BdlBH99, CU08, CG86, CSS99, DDV99, DPR00, GHB+96, GW99, HVB+99, HPMS00, KWL09, LM98, Len04, PM06, RKRR04, SRW92, Yin11, dHB+96].

M [Bur91, Mul92]. M-LISP [Mul92].

Machine [CGJ+97a, Cat80, GNS+15, Gie83, Han94, LR13, ML80, RF97, SS98, Wal92, Zav85, Ano02a, CEG07, CF94, HK07, KN06, Oho07].

Machine-Specific [Gie83]. machinery [FKW00].

Machines [ACW90, Bee94, CGST95, GC86, KK98, PS93, PP91, Rob79, RCRH95, AYO1, AGO4, ...]
ABE+05, ABS09, TSY00, Pur91]. Madsen
Ell82, SM82]. Magna2 [Tur84].
Maintenance [GKL94]. Making
[J97, Loc13]. malware [PCJD08].
Management
JP81, Mur91, van88, BP12, WCM00, Zho96].
Managing [Bob80]. Manifest [SIG17].
manipulating [YS10]. Manipulation
[DVLM15]. many [AE98].
Manipulation [DVLM15]. many [AE98].
massive [BHK07]. Massively [CGST95].
Matching [AC96, AGT89, CP95, KPS92, ADR06, Van06].
Matching-Based [CP95].
materializations [RMH06]. Mathematical
Ban11, Hes88, LW93]. MATLAB [DP99].
MATLAB(R) [JB06]. Matrix [FTJ95].
Matrix-Vector [FTJ95]. Maximal
[BG98]. Maximal-munch [Rep98].
Maximization [GLO88]. Maximum
[Kn90]. May [Hor97]. May-alias [Hor97].
MCALIB [FL15]. Measuring [FL15].
Mechanically [DSW11]. Mechanism
[CO90, YB85, DNS+06]. Mechanisms
[Rei83, HMS06]. Mechanizing [Pau01].
Median [Com80]. Medians [KR84].
megaflops [MMG06]. member [KF00].
Memory
[AMT14, CK94, Cha93, KZC15, KK98,
KR88, MSM+16, Mis86, RCRH95, SS88,
ABH11, BP12, GM99, GW99, JNGG10,
KF00, LK02, Loc13, QR00, RR05, TSY00,
TP04, VBLG04, WCM00, MMM+07].
memory-efficient [TP04].
memory-hierarchy [KF00]. Merge
[Ber94]. Merlin [HBM+06]. Message
[CSW06, SS84, Gor04]. Messages
[BB79, Jef03]. meta [Tra08].
meta-programming [Tra08]. Metalevel
[Jag94]. Metaprogramming [CI84].
Method [BNN18, BCD90, BF87, HL82,
Jon83, Loe87, JJD98]. Methodology
Ban87, Her93, Sku95]. Methods
DAW88, KM81]. METRIC [MMM+07].
Mezzo [BPP16]. Microanalysis [HCHP92].
Microcode [MV87]. Middle [BDP14].
Middle-End [BDP14]. Might [Bee94].
migration [Piq96]. Minimal
[FKW98, IPW01]. Minimization [RS84a].
minimizing [RMH06]. Minimum [GHS83].
Minimum-Weight [GHS83]. Mining
[AMT14]. Misled [Cop94]. Miss [GMM99].
Mixin [HL05, RD13]. Mixins [ALZ03].
ML [Bhu99, HM93, HT04, P903, RD13, Sp08].
Mobile
LS03, VHB+07, BCC04, KS10, SWU10].
mod [Bou92]. mode [PS08, ZP10]. Model
[AY01, Ang89, BK11, BL87, BGP99, CGL94,
DLR16, ES97, GS98, GGS85, GL94, Han81a,
HW82, Hol87, HK92, MM+16, MG92,
ND16, VSS94, ACM11, AM01, AE01, JJD98,
JPS+08, KN06, KV00, Loc13, NP08, QR00,
SG04, WJB01, VALG05, YMW97].
Model-Checking [ES97, BGP99].
Modeling [AF84]. Modelling [AMT14].
Models [GJ93, KZC15]. Modern
[BCF04, RAB+07]. Modes [Dob89].
modest [LS08]. Modification
[Lei90, RLS+01]. Modula [EO80]. Modular
[AG04, BMPT94, CDK+18, GL94, JB018,
Jag94, KKM90, LN15, MBC04, Wei89, YB85,
dJKVS12, KV00, MFRW09, MOS07b].
modularity [BA99]. Module
[PAS+15, RD13]. Modules
[CL95, HW82, Lam83, HL95]. monadic
[HM04]. Monitors [BLH12, BH05b].
Monolingual [HK85]. Monte [FL15].
Morel [Dha91, DS88, Sor89]. Morphing
[HS11]. Morris [Wis79]. Mostly
[Yo90, BBYG+05]. Motion [KRS94, Ha98].
MPI [FKJ+17, TSY00]. Multi
[GS+18, MF09]. Multi-Language
[GS+18, MF09]. Multialgebraic [WM95].
multidimensional [RDG08]. MultiJava
[CMLC06]. Multilisp [Ha85].
multimethod [DAS98]. Multimethods
[CL95]. Multiparty [JS94]. Multiple
[AS17, NSTD+15]. Multiply [FTJ95].
Multiprocess [Lam79, Lam80].
Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors [Cha93, KRS88]. Multisource [MMR95].

Multithreaded [EGP14, JBK18, JSB+12, KKW14, NR06]. Multivariate [HAH12]. Multiway [Cha87, Van96a, Van96b]. munch [Rep98].

Newtonian [RTP17]. Nicholson [FA93]. node [JC97, UM02]. Nodes [CF95, Han81a]. Nomadic [SWU10]. Nominal [UO8]. Non [DL18, LLL+17, Mye18, BS88]. non- [BS88].

Nondeterminate [TK94]. Nondeterminism [Ber80, Hes88, WM95]. Nondeterministic [QG95, MT80].

Noninterfering [HPR89]. nonnumerical [ME97]. Nonprocedural [PS97].

nonrectangular [JLF02]. nonscalars [CRN+08]. Nonsingularity [Bar81].

Nonstrict [Blo94]. Nontermination [FM06]. normal [LMD98]. Normalize [CRN+08]. norms [BCG+07]. Notation [Rem81, Wil82b]. Note [Com80, CM93, MS88, WTS81, Coh85, Paleib, YK97].

Notes [Sku95]. Nothing [BDH+16].

Notion [JW94]. NP [Hor97]. NP-Hard [Hor97]. NQLALR [BS88]. nullled [SJ06]. Numbers [GLR83]. numeric [Hau96].

O [ABPS98, Car95]. Object [DF84, HU96, KH92, Ryu16, WCW90, WCW91, BSgf03, DMM01, DDDCG02, FM99, GPW08, HBM+06, JPS+08, LPSO04, Piq96, WJS+00]. Object-Based [KH92]. Object-Oriented [HU96, Ryu16, BSgf03, DMM01, JPS+08, WJS+00].

Objects [AM85, CJK95, HF87, HW90, Her93, SM89, VHB+97, Wai80, Wai81, Win84, GPV07, HBJ98, KF00, St04, WJS+00, Sku95].

Offline [CG04, GJ05]. Old [AL94]. Old-Fashioned [AL94]. On-Line [Bal94]. On-The-Fly [CF95, BA84, LP06, PBK+07]. One [Bak82, BS98].

One-Pass [Bak82]. one-way [VHM+01]. online [CG04, HVDH07]. only [PF05]. Opacity [QG95]. Operating [HM84, BCP08].

Operational [BLRS12, Han94, MF09].

Operations [AKBLN89, CK94, Lee86, LS79]. Operator [CSV01, Hen83, LD81]. Operators [Ive79, She91]. Optimal [BOV85, CGST95, FK85, KRS94, Lar95, PB97, Hai98, JNZ06, KSV96, MRR00].

optimality [CP96]. Optimally [BL94a].

Optimization [PM04]. Optimization [Bee94, BBC16, Blo94, BAC16, BT93, DF84, DP97, DHDH, Dha91, DSS88, FOW87, HGS83, PEM83, PP94, SS82, Sor89, TVS82, Web95, Ass00, BHK07, KBC+99, KF03, PE08, TVA07, ZP10, CG95, LAL84, OKN06].

Optimizations [CC95, JSB+12, CGS+03, CKT86, GMP+00, SYK+05]. optimize [DMM01, VBLG04]. Optimized [CM93, Cop94, Hen82, WST85, DSS89, UM02].

Optimizer [DF80, FSS83, DF81].

Optimizers [Gie83]. Optimizing [CEG07, KMM+98, LSLR05, ML80, NSZS13, QR00, BGKR09]. Or-Parallel [GJ93].

orchestration [PE08]. Order [AC94, AD98, Bur84, CJK95, DP97, DJP+16, JPP91, JS94, SS98, BBTS07, DF11, SKS11, SP97].

ordering [GS99]. Organization [Han81a].
Oriented
[Bor81, Dar90, Ell82, FFF+18, GTWA14, GKL94, GP81, HU96, Ruy16, SM81, Tur84, YB87, YB88, BsvGF03, DWWW08, DMM01, JPS+08, WKD04, WP10, WJS+00]. origins [San09]. OSI [CDFP89]. Output [Ber80, BS83]. overflow [KOE+06]. overhead [BP12, SS96]. overlays [SWU10]. Overload [Bak82], overloading [SS05b]. Overview [AOC+88]. ownership [DDM11, SS96]. Oz [VHB+97].

Polyvariant \[AC94, WJ98\], POP \[FFF+18\], POP-PL \[FFF+18\]. Portable \[DDBH84, Han81b, HK07\]. Possibly \[JP17\]. Postfix \[DS83\], Postpass \[HG83\]. Power \[TWW82, SSD09\]. Powerlist \[Mis94\]. PPMe [DKV07]. PQ \[GZ05\]. PQ-encoding \[GZ05\]. Portable \[DDH84, Han81b, HK07\]. Possibly \[JP17\]. Post \[DS83\]. Postpass \[HG83\]. Portable \[DDH84, Han81b, HK07\]. Possibly \[JP17\].
Sch82, SSS81, SS88, Ven95, Wad90, Web95, Wil82a, AE01, AAE04, BCG+07, CSW06, CSS99, DP99, DDV99, DS98, DMM01, EGM01, GM12, GH97, GPA+01, Han96, HPMS00, JPS+08, KSV96, LMD98, Leu04, LS09, MF09, NR06, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10.

programs [Yin11, dHB+96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MWB94, NF89, Zho96].

Promotion [Bir84, Bir85].

Proof [AFdR80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Oho07]. proof-carrying [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, JW17, Ly98, Oss83, GRSK+11].

Propagation [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CIJGP18, Kar84, LM18, OL82, RY88, TB95, We99, YS10].

Proposed [Fat82], prossima [MP10b].

Protected [PAS+15, WJS+00]. Protocol [SL92, YS97].

Protocols [MB83, BFGT08, SS96]. Prototype [WCW90, WCW91].

Prototypes [HW82]. provably [GB99]. provenly [AAD+07].

Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82]. Pruning [BN99].

PSG [BS86]: publish [Eng97]. publish/subscribe [Eng97].

Pure [BNN18, HU96, Pip97, Tu07]. Purpose [App94b, HSS+14, Spo86].

qualifiers [FJKA06]. Qualitative [CFNH18]. Quantification [Vol91, Bur91].

Queuing [BB79]. Quiescence [CM86a].

rational [GS11]. rationale [CMLC06].

Reach [FKW98]. Reachability [NS13].

Reactive [DFR15, AG04, DGCG97]. read [AE01, PZJ05]. read-only [PZJ05].

Reasoning [BKOZB13, BLRS12, BDP93, BH99, CB80, Lam88, LN15, Rao94, TSB90].

receive [Gor04]. receptive [ABL03].

Recipe [AL94]. reclassification [DCC02]. recognition [ATD08].

Recognizer [GHR80]. Recognizing [BL94b].

Recombination [Kan84].

Recombination-Delaying [Kan84].

Recompilation [BT93, SK88, Tic86, Tic88].

Reconciling [HU96]. Reconstruction [YR94]. Record [LS79, Oh95]. Recovery [AB81, AC84, Bae84, BF87, PK80, Ric85, dJKVS12]. recurrences [VJB12].

Recursion [AK82, Col84, Hen93, KU93, Mis94, YK97].

Recursive [AC93, AK82, Ban87, Coh83, Coh85, LBN17, Stij99, ABE+05, AM01, CF04, Dug02, Pa98].

Recursively [BE13]. Reduce [BN99, MYD95, BALP06, KEO+06, SS96].

reduced [SG04]. Reducible [Hav97, JC97].

Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mu99, NN86, CSV01].

Redundancies [DS88, Sot89]. redundancy [KCL+99].

Redundant [Coh83, Coh85].

References [Han92, SV96]. Referencing [LS91]. Referential [QG95]. Refinement [BBF+11, BK+97, BCEM15, CM86a].

Semantic [AAH+10, AW95, GGL15, MH06, HWC82]. Semantics [ABHI11, Ans87, AB94, AW82, BGL93, Ber94, BLRS12, Bou88, Boy10, CPS93, CD79, FA93, Gud92, Han94, JPP91, Kai89, Mul92, NF89, Set83, Sou84, WM95, Wan82, dBB85, ACE96, BMR01, Bou06, GZ04, MF09, PCJD08, SWU10, SJ03, Tar07, WKD04].

Span-Dependent [LS80, Rob79].
Spanning [GHS83]. Sparse [OHLª+14].
Spatial [NSTDª+15]. Special
[Vol92, Sag07]. Specialization
[AHJR14, BCP08, GJ05, HT04, SLC03].
specialization-point [GJ05]. Specializing
[BCD90]. Specific
[Gie83, Tra08]. Specification
[BCM99, CDFP89, EO80, Fea87, GMH81, Jon94, Kam83, Lin93, Lj99, Loe87, Mal82, Mor88, PPS79, RY88, TWW82, LP99, LPS004]. Specification
[MB99].
Specifying [GM81, Lam83, RF97].
Speculation [YBL16, GB99]. speculative
[KOEª+06]. SPL [HSG17]. Split [Com80].
splitting [JC97, UM02, WJ98]. SPMD
[WM12].
Stabilization [Gho93, DHS09].
Stabilizing [BP89]. Stack
[CGSª+03, FG03, LaLi81, CF04, Zho96].
Stack-Controlling [LaL81]. Standard
[Fat82, HM93, Qia00, Blu99]. State
[ACW90, BLH12, CES86, GC86, PP91, Pur91, Zav85, Ay01, ABEª+05, MB09].
Statement [Ell82, Mor88, SM81].
Statement-Oriented [Ell82, SM81].
Statements [CF94]. States
[ADGM91]. Static
[AKNP17, AC94, BM94, CGJª+97a, CF94, CFRª+91, DL18, De689, LLKª+17, LST98, MOS07a, Mye18, PW94, YS99, ZMVPJ17, CEIª+07, GPF08, G204, HO07, PSS05, PFH11, RSL10, VJB12, WC00, YF09, AFF06, FFL08]. Statically
[ACPP91]. Statistical [LLKª+17]. Statistics
[Lan80].
Staveren [Pem83]. Steensgaard
[Ell82, SM82]. Steensgaard-Madsen
[Ell82, SM82].
Stevenson [Pem83].
Storage [BBC16, Bre89, JP81, LDKª+96, Mur91, Rob79, Sip82, KOEª+06, TVA07].
Strategies [Bir84, Bir85, Geo84, NN86].
Strategy [Bre89, PK08, WSH15, GS11].
Stratified [SS98]. Stream [HSG17].
streams [CFPª+04]. strength [CSV01].
Strict [Bee94]. Strictness [Bee94, SR95].
String [GH80]. Strings
[AS80, KS80, KS89, ADR06, KK07]. Strong
[KZC15].
Structurally [HS11]. Structure
[BC79, GKL94, HM93, Mis94, Mwb94, She91, HY07]. Structure-Oriented
[GKL94]. Structured [BM94, CHY12, GD82, Har80, LS81, Mur91, RR03].
Structures [ANP89, Bob80, FL81, GEGP17, RCRH95, SSS81, LPS004, RABª+07]. Study
[FTJ95, BHK07, BdlBH99, DF08, KF03, LS98].
Style [BDM15]. Sublanguage
[DGLª+79]. Sublinear [RD87].
Sublinear-Space [RD87]. Submodule
[MB83]. Subroutines [SA99]. subscribe
[Eug07]. Subscript [CC95]. Subsequence
[Han92]. Subset [BL87].
Substrings [BL94b, Han92]. subtype
[Duc08, KR01].
Subtypes [Vol91, Bur91]. Subtyping
[AC96, AC93, GGL15, LN15, LBN17, LW94, GZ05, IV06]. Subtyping-Relation
[LBN17]. SUIF [HAMª+05]. Supercompiler
[Tur86]. Superimposition [Kat93].
Support [Bal94, DS90, Fea87, LS83, MK94, Wei90, TSY00]. Supporting [RCRH95].
Supports [ABPS98]. Suppression
[DS88, FGL94, Sor89, JNGG10]. Survey
[Apt81, GPAª+01]. Suspension
[CFM94]. Symbol
[ABR81, Rei83]. Symbolic
[Di90, HP96, Hal85, Han82, RR05, YMW97, BGP99, MPM03, CM93, WST85].
Symmetric [FY85]. Symmetry
[ES97, SG04].
Synchronization
[Bag89, DJPª+16, Her91, KRS88, RS84b, Sch82, CGSª+03, DHHª+12, Ram00, RD03].
synchronization-sensitive [Ram00].
Synchronizing [And81]. Synchronous
[CS87, TLHL11]. synchrony [CS04].
Syntactic [BF87, GMZ00, MF88, PK80, Wil82b].
Syntax [DM88, Ode93, Ric85, SS83, BMR01, CPR02, Jef03, HC82].
Syntax-Directed [DM88].
Syntax-Error-Handling [SSS83].
Syntax/Semantic [HC82].
Synthesis [AE98, AE01, AAE04, Ban87, BDJ13, BKL+97, Cla80, DKKL18, MW80, MW84, MV87].
System [AFdR80, AW85, BS86, Bou88, CB80, Fea82, GD82, GP81, Han81b, HM84, JMS89, LR13, ML80, Mio83, MH86, PO95, RD13, SA99, WC97, BH05a, FH04, FM99, HO07, JB06, KS10, MTSS09, NP08, PE08, STSP05, MWCG99].
Systolic [Hen86].
T [Zic94].
Table [BMW91, PK80, DAS98].
Table-Drive [PK80].
Tabled [SS98].
Tables [ADGM91, DDH84].
Tail [DP97, CF04].
Tail-Call [DP97].
tail-recursive [CF04].
Tailored [Kau84].
Tailored-List [Kau84].
Tannenbaum [Pem83, Tan83].
Target [Wan82].
Task [GP95, NSZS13, HB98].
Task-Level [GP95].
Task-Parallel [NSZS13].
Tasking [Bor81].
tcc [PHEK99].
Tec[[PHEK99].
Technical [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Eli82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Mio83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tic88, Vol91, WST85, Wir91, YB88, MMG00].
Technique [AWW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNGG10, KBC+99, RD97, SYN06].
Techniques [AK82, CMN91, DP99, GLR83, How80, TWW82, WC90, WC91, BHK07, DDD05, DEMD00, LS98, MSRR00, SS96, TSL+02].
technology [LS98].
Temporal [AS89, CBDG95, CES86, Kar84, Lam94, MW84, GS99, KW09].
temporal-ordering [GS99].
temporary [RMH06].
Ten [AP01].
Tensor [RT01].
Tentative [Jon83].
Tenuring [UJ92].
Term [KKSD94, MB09, GRK+11].
Termination [AF84, AP86, BAGM12, BCG+07, CFN18, CDK+18, Fra80b, GJ05, HSP83, JBK18, MC82b, TM93, BAL07, BA08, DDV90, GRK+11, Lee09, PR07, SMP10, Fau80a, Moh81].
Test [Wey83, WW95, Duc08].
Testing [AMT14, GMH81, TK94].
Tests [Coh91, Ko97, Wir91, GZ05].
Text [CC97].
Their [Kam83, LaL83, SS82, PS96].
Theoretic [ES97, Sh82, KV00].
Theoretical [KRR18].
Theories [STD+15, B06].
Theory [CZ84, KD94, KRS94, NGB13, Ryu16, THL11, CGP09, MO6, Oho07, Fau01, SS05b, BB03, FG03].
ThingLab [Bor81].
things [PM09].
Thinking [WLB16].
Thinning [Web95].
Third [Wo92].
ThisType [Ryu16].
Thread [YBL16].
Thread-Level [YBL16].
Threaded [JBK18, TSY00].
Three [Oss83].
Tichy [Tic88].
tiling [JLF02, LS04, RKS12].
Time [AL94, ABR81, BL94b, BL12, Coh91, DLR16, Hol87, ISY88, Jef85, Lam84, MMG92, PS93, RS84a, RS84b, Wh91, YR94, Zic94, BAL07, BALP06, BKRW98, BKR05, DD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Mii85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YMW97, LW93].
Time-Constrained [Zic94, LPP01].
Time-Critical [PS93].
time-efficient [GB99, YF98].
Timed [Zic94].
Timeout [Lam84].
Timing [LJ99].
tokenization [Rep98].
Tolerance [LJ99].
Tolerant [CS95, Lam84, AAE04].
Tool
Toolkit [BDFH97], toolkits [VHM+01]. Tools [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MMM+07]. tradeoffs [ZG05]. Trailing [VR95]. Traits [van88]. TOPLAS [MP10a, MP10b]. topology [DDM11].
[ACS84, DS90, Mye90, Wal80, Wal81, Wat83, van88]. User-Defined [Wal80, Wal81].

Using
[AGT89, Bob80, CGJ+97a, CES86, CH87, DP93, Di90, DMM01, DJP+16, FLBB89, GSW95, GSO94, HRB90, JTM98, Kar84, LaL99, Lam84, LM18, Mye90, Ode93, Pet83b, PP94, PBR+15, SS84, SSK6, Sok87, SGL98, Tvs82, ACN11, BH99, CSW06, CGS+03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, ST00a, SGL96, TFK+11, VJB12, XA07, YUW02, ZSD09, PEM83].

Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KC01, MOS07a]. Value [HL82, HL05, SW97a]. valued [HL82, HL05, SW97a]. Values [DD85, Han92, Wet82]. Variable [MS83, MTG80, FMOs11, GLMM05]. Variables [GSW95, JPP91, Lam84, LM18, Mye90, Ode93, Pet83b, PP94, PBR+15, SS84, SSK6, Sok87, SGL98, Tvs82, ACN11, BH99, CSW06, CGS+03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, ST00a, SGL96, TFK+11, VJB12, XA07, YUW02, ZSD09, PEM83].

Variations [FG03]. Variational [CEW14]. Vector [AK87, Bud84, Fis80, FT95, KD94, Per79, KK07]. Verifiable [YB85]. Verification [App15, BDP14, BCD+15, CDFP95, CES86, CPS93, DIt90, EGP14, GL94, JBK18, Jon94, JTM98, KKW14, LFF14, LJ99, LS97, NGB13, RY88, BDL+08, CEI+07, GPF08, GM12, Qia00]. Verified [BFT08, BKL+97, JLP+14, DSW11].

W [Tie88]. Wait [Her91]. Wait-Free [Her91]. Waite [BP82]. Warp [LW93]. way [VHM+01]. Weak [AMT14, KZC15]. weakening [SYYH07]. Weaker [Boo82].

web [BFG08, BLRS12, CHY12, CGP09, CMS03]. Weight [GHS83]. While [Pet83a, BC85b, GM81]. while-Programs [BC85b]. Whole [BDH+16]. Widening [KKW14, VJB12], win [Lam90]. Within [FKW98]. Without [Cop94, Ode93, AS89, Cas95, Sto04, VR95].

Witnessing [TA08b]. Workbench [CPS93]. World [GG85, DF11].

X [OLH+16, MSM+16]. X-Sensitive [OLH+16]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].

References

Ancona:2007:PCT

Attie:2004:SFT

AAE04 Paul C. Attie, Anish Arora,

Ahmed:2010:SFT

Anderson:1981:LLC

Arbab:1994:SCD

Acar:2009:EAS

Alur:2005:ARS

Acar:2006:AFP

Abadi:2011:STM

Martín Abadi, Andrew Birrell, Tim Harris, and Michael Iserd. Semantics of transactional memory and automatic mutual exclusion. *ACM Transactions
REFERENCES

Amadio:2003:RDC

Abadi:1993:CAC

Afek:1993:LC

Apt:1998:AIL

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT
Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. *ACM Transactions on Programming Lan-
REFERENCES

Ashley:1994:FCP

[AC94]

Alur:2011:SMC

Abadi:1996:SM

Abadi:1991:DTS
[ACPP91]

Attali:1996:NSE

ACE96

REFERENCES

[AE01] Paul C. Attie and E. Allen Emerson. Synthesis of concurrent programs for an atomic read/write

Apt:1984:MDT

Appel:1994:E

Apt:1980:PSC

Abadi:2006:TSL

Alpuente:1998:PEF

Appel:1993:Eb

Alur:2004:MRH

Aho:1989:CGU

Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K.
REFERENCES

REFERENCES

Ait-Kaci:1994:FPC

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR

Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational proof-carrying code. ACM Transactions on Programming Languages and Systems, 23(5):
REFERENCES

[Alglave:2014:HCM]

[Anger:1989:LIC]

[Anonymous:1982:IA]

[Anonymous:1983:IA]

[Anonymous:1984:IA]

[Anonymous:1985:IA]

[Anonymous:1986:AI]

[Anonymous:1986:IA]

Anonymous:1987:IA

Anonymous:1988:IA

Anonymous:1988:IA

Anonymous:1989:IA

Anonymous:1989:IA

Anonymous:1990:IA

Anonymous:1990:IA

Anonymous:1991:IA

Anonymous:1991:IA

Anonymous:1992:IA

[Ano92a] Anonymous. 1992 author index. ACM Transactions on Programming Languages and Systems, 14
REFERENCES

Andrews:1988:OSL

Apt:1994:OCF

Abadi:2007:E

Appel:1994:ABG

Appel:1994:PS

Appel:2015:VCP

Apt:1981:TYH

REFERENCES

Assmann:2000:GRS

Arenaz:2008:XE

Ashcroft:1982:RS

Avrunin:1985:DAD

Aik

Alur:2001:MCH

Ben-Ari:1984:AFG

Blume:1999:HM

Matthias Blume and Andrew W. Appel. Hierarchical modularity. *ACM Transactions on
REFERENCES

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

[Bal94] Thomas Ball. Efficiently counting program events with support for on-line queries. ACM Transactions on Programming Languages and Systems, 16(5):1399–
Ben-Amram:2007:PTA

Brecht:2006:CGC

Banerjee:2011:MFT

Barstow:1985:CTD

Beyer:1979:SED

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

Bergeretti:1985:IFD

Brogi:1991:CLS

Bugliesi:2004:ACM

Betts:2015:DIV

Bugliesi:2015:ART

Benton:2004:MCA

REFERENCES

REFERENCES

Botincan:2013:PDP

Bernardeschi:2008:DBV

Bueno:1999:EAI

Biernacki:2015:DCP

Bowman:1993:RAN

REFERENCES

Barbuti:1993:GFS

Bultan:1999:MCC

Butler:1999:RAG

Back:2005:KJR

Buhr:2005:ISM

Binkley:2007:ESO

REFERENCES

Buchsbaum:1998:NSL

Buchsbaum:2005:CNS

Bic:1987:DDM

Ball:1994:OPT

Bates:1994:RSL

Blanchet:2003:EAJ
REFERENCES

on Programming Languages and Systems, 25(6):713–775, November 2003. CODEN ATPSDT.
ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Bobrow:1980:MRS

Bob80 Daniel G. Bobrow. Managing
reentrant structures using refer-
ence counts. ACM Trans-
actions on Programming Lan-
guages and Systems, 2(3):269–
273, July 1980. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Boehm:1985:SEA

Boe85 Hans-Juergen Boehm. Side ef-
effects and aliasing can have sim-
ple axiomatic descriptions. ACM
Transactions on Programming
Languages and Systems, 7(4):
637–655, October 1985. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
4474.html.

Boom:1982:WPL

Boo82 H. J. Boom. A weaker precon-
dition for loops. ACM Trans-
actions on Programming Lan-
guages and Systems, 4(4):668–
677, October 1982. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Borning:1981:PLA

Bor81 Alan Borning. The program-
ing language aspects of ThingLab,
a constraint-oriented simulation
laboratory. ACM Trans-
actions on Programming Lan-
guages and Systems, 3(4):353–387, October
1981. CODEN ATPSDT.
ISSN 0164-0925 (print), 1558-
4593 (electronic).

Boute:1988:SSP

Bou88 Raymond T. Boute. System
semantics: Principles, applica-
tions, and implementation. ACM
Transactions on Program-
mLanguages and Systems, 10
(1):118–155, January 1988. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
45067.html.

Boute:1992:EDF

Bou92 Raymond T. Boute. The Eu-
clidean definition of the func-
tions div and mod. ACM
Transactions on Programming
Languages and Systems, 14(2):
127–144, April 1992. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
128862.html.

Boute:2005:FDL

Bou05 Raymond Boute. Functional
declarative language design and
predicate calculus: a practical
approach. ACM Trans-
actions on Programming Lan-
guages and Systems, 27(5):988–
1047, September 2005. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Boute:2006:CSD

Bou06 Raymond T. Boute. Calcula-
tional semantics: Deriv-
ing programming theories from
equations by functional pred-
icate calculus. ACM Trans-

Baumgartner:1997:ISC

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP.

Bahlke:1986:PSF

Bermudez:1988:NRB

REFERENCES

REFERENCES

REFERENCES

[CEI+07] Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and

Clarke:1986:AVF

Chen:2014:ETI

Choi:1994:SSP

Cytron:1995:ECN

Clements:2004:TRM

Cortesi:1997:CAI

REFERENCES

Codish:1994:SAC

Chatterjee:2018:AAQ

Cortes:2004:HLA

Cytron:1991:ECS

Clark:1986:PPP

Chin:1995:ROA

Christensen:2004:OPE

Calder:1997:EBS

Clarke:1997:VPN

Clarke:1994:MCA

Castagna:2009:TCW

Choi:2003:SAS

Chatterjee:1995:OEA

REFERENCES

Cohen:1987:PCU

CH87

CH90

Chow:1990:PBC

Chatterjee:1993:CND

Charlesworth:2002:UA

Chitil:2005:PPL

Carbone:2012:SCC
Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered programming for Web services. ACM Transactions on Programming Languages and Systems, 34...
REFERENCES

(2):8:1–8:78, June 2012. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Cameron:1984:GBD

Chatterjee:2018:AAP

Cejtin:1995:HOD

Consel:1993:PPE

Carr:1994:IRM

Cooper:1986:IIA

Codish:1995:IAI

Clifton:2006:MDR

Christensen:2003:EJH

Choi:1991:TDP

Cohen:1983:CCA

Clemm:1990:MEI

Cohen:1983:ERR

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC

Carle:1995:MBI

Carle:1996:OCP

REFERENCES

Cohen:2017:LPC

Corchuelo:2002:RSE

Cleaveland:1993:CWS

Carson:1987:GSP

Cooke:2008:NTD

Cuny:1987:CDD

Choy:1995:EFT

Chen:2004:LGS

Clausen:2000:JBC

Carlsson:2006:MAC

Collberg:2007:DGB

REFERENCES

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Darlington:1990:SDG

Dujardin:1998:FAC

Dillon:1988:CET

Dunlop:1985:GSU

REFERENCES

Debra 1989: SIM

Debray 1995: CDA

DeMillo 1983: GEI

DeFraine 2012: EAC

Davidson 1980: DAR

REFERENCES

REFERENCES

DeBoer:1997:PCC

Duesterwald:1997:PFD

Dhamdhere:1991:PAG

delaBanda:1996:GAC

DeLaBanda:2000:ICL

Dolby:2012:DCA

Dolev:2009:SSP

DeMoura:2009:RC

Dillon:1990:USE

DeJonge:2012:NFE

Dodds:2016:VCS

Darulova:2017:TCR

David:2018:PSP

Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. Program synthesis for program analysis. ACM Transactions on Programming Languages and Systems, 40(2):5:1–5:??, June 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
REFERENCES

REFERENCES

[DN+S06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärl, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[DR05] Dibyendu Das and U. Ramakrishna. A practical and fast it-
erative algorithm for ϕ-function computation using DJ graphs.

Dawson:1996:PPU

Dawson:1996:PPU

Dekel:1983:PGP

Dewar:1982:TDG

[Derrick:2011:MVP]

[Ducournau:2008:PHA]

[Duggan:1999:DTD]

[Duggan:2002:TSL]

[DeSutter:2007:PID]

[Dantoni:2015:FTB]

[Debray:1989:FCL]

REFERENCES

Eugster:2007:TBP

Finlay:1993:TCC

Fateman:1982:HLL

Feng:2012:BQP

Feather:1982:SAP

Feather:1987:LSS

Flanagan:1999:CSB

Furr:2008:CTS

Michael Furr and Jeffrey S. Foster. Checking type safety of

Florence:2018:PPP

Flanagan:2008:TAS

Fournet:2003:SIT

Fournet:2007:TDA

Foster:2007:CBT

Freudenberger:1994:ASC

Flounder:1994:ASC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

ACM Transactions on Programming Languages and Systems, 3 (1):112–113, January 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [Fra80b, Moh81].

Farmer:1990:CPC

Freedenberger:1983:ESO

Foster:1994:CAS

Fricker:1995:ICI

Francez:1985:SIC

George:1996:IRC

Gazinger:1983:PSP

Harald Gazinger. Parameterized specifications: Parameter pass-
REFERENCES

Greiner:1999:PTE

Gouda:1986:PLN

Grove:2001:FCG

Gulavani:2011:BSA

Gergeron:1982:SAS

Gordon:2017:VIL

Gelernter:1985:GCL
David Gelernter. Generative communication in Linda. *ACM Transactions on Programming Languages and Systems*, 7(1):
REFERENCES

Georgeff:1984:TRS

Ganapathi:1985:AGD

Gini:1985:DWM

Gesbert:2015:LAD

Griswold:1980:AUP

Ralph E. Griswold and David R. Hanson. An alternative to the use of patterns in string processing. ACM Transactions on Programming Languages and Systems, 2(2):153–172, April 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Gerber:1997:SRT

GarciaDeLaBanda:1996:GAC

M. García De La Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, G. Janssens, and W. Simoens. Global analysis of constraint logic programs. ACM
REFERENCES

Griswold:1981:GI

Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).*

Ghosh:1993:ASP

Graham:1980:ICF

Gallager:1983:DAM

Giegerich:1983:FFD

Gupta:1993:APE

Glenstrup:2005:TAS

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

[Garlan:1994:TAM]

[Gries:1980:APC]

[Gottlieb:1983:BTE]

[Greenberg:1988:SEA]

[Ghezzi:1979:IP]
Carlo Ghezzi and Dino Mandrioli. Incremental parsing. *ACM Transactions on Programming Languages and Systems*, 1(1):58–70, July 1979. CO-
GREIF:1981:SSW

GANTRY:2012:AVA

GANNON:1981:DAI

GHOSH:1999:CME

GRANT:2000:BCD

GROSSMAN:2000:STA

REFERENCES

Ga\\wlitza:2011:SSR

Gupta:1994:ERA

Garcia:2014:FTO

Gudeman:1992:DSG

Grosser:2015:PAG

Gudjonsson:1999:CTM

Glesner:2004:NSS

Gil:2005:EST

Gil:2007:EDD

Herrmann:2012:MAR

Hailperin:1998:COC

REFERENCES

Hauser:1996:HFP

Havlak:1997:NRI

Hind:1999:IPA

Harman:2009:DCS

Hassen:1998:TDP

Hertz:2006:GOL
REFERENCES

0925 (print), 1558-4593 (electronic).

REFERENCES

Henglein:1993:TIP

Herlihy:1991:WFS

Herlihy:1993:MIH

Hesselink:1988:MAN

Haynes:1987:ECP

Hosoya:2009:PPX

Hennessy:1983:PCO

Hall:1996:TCH
[HHPW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones,

Heering:1994:LIP

Herlihy:1982:VTM

Hirschowitz:2005:MMC

Hull:1984:CSP

Harper:1993:TSS

Hamlen:2006:CCE

Hicks:2005:DSU

Homan:1982:PE

Higuchi:2007:STS

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

Howden:1980:ASV

Haghighat:1996:SAP

Hermenegildo:2000:IAC

[HPMS00] Manuel Hermenegildo, German Puebla, Kim Marriott, and Peter J. Stuckey. Incremental analysis of constraint logic programs.
REFERENCES

Horwitz:1989:INV

Henzinger:2002:AGR

Hennessy:2002:IFV

Horwitz:1990:ISU

Harrold:1994:ECI

Huang:2011:MSS

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD

REFERENCES

Huang:1993:LEU

Hudson:1991:IAE

Haridi:1999:ELV

Hirzel:2007:FOP

Hosoya:2005:RET

Holt:1982:MIE

Herlihy:1990:LCC

REFERENCES

Hudak:1991:CIE

Honda:2007:UTS

Igarashi:2005:RUA

Igarashi:2001:FJM

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Iverson:1979:O

Jagannathan:1994:MBB

Suresh Jagannathan. Metalevel building blocks for modular systems. *ACM Trans-
REFERENCES

Jay:2004:PC

Joisha:2006:AAS

Jacobs:2018:MTV

Janssen:1997:MGR

Jefferson:1985:VT

Jeffery:2003:GLS

Jensen:1997:DPA

Juelich:1981:CAS

Jackson:1998:IFM

Jimenez:2002:RTN

Jagannathan:2014:ARV

Jeannet:2010:RAI

Jaffar:1992:CLS

Jeffrey:2010:ESA
Dennis Jeffrey, Vijay Nagarakshan, Rajiv Gupta, and Neelam Gupta. Execution suppression: an automated iterative technique for locating

Joshi:2006:DPA

Jones:1983:TST

Jones:1990:EEC

Jazayeri:1981:SES

Jourdan:2017:SPC

Jagadeesan:1991:FAS

REFERENCES

REFERENCES

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO

Kim:2001:ERV

Kennedy:1999:PRE

REFERENCES

Khedker:1994:GTB

Kistler:2003:CPO

Knowles:2010:HTC

Keen:2004:JFD

Kaiser:1992:OBP
Kennedy:1998:ADL

Karkare:2007:IBC

Korach:1990:MTD

Kawahito:2006:ESE

Kennaway:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

[KLSS92] Philip J. Koopman, Jr., Peter Lee, and Daniel P. Siewiorek. Cache behavior of combinator graph reduction. *ACM Transactions on Programming Lan-
Kristensen:1981:MCL

Kelly:1998:OCC

Kobayashi:1998:PDF

Kim:2006:ERI

Kozen:1997:KA

Kurlander:1995:EIS

Katzenelson:1992:TMT

Kobayashi:1999:LPC

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[KRS86] Robert M. Keller and M. Roman Sleep. Applicative caching. ACM Transactions on Programming Languages and Systems, 8

[KS86] Robert M. Keller and M. Roman Sleep. Applicative caching. ACM Transactions on Programming Languages and Systems, 8
REFERENCES

[KV00] Orna Kuperman and Moshe Y. Vardi. An automata-theoretic

Kalvala:2009:PTU

Kasikci:2015:ACD

LaLonde:1981:CSC

LaLonde:1983:TCL

LaLonde:1984:TCC

LaLonde:1989:DFD

Lamport:1979:NAP

[Leslie Lamport. A new approach to proving the correctness of multiprocess programs.
ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].

REFERENCES

Leeman:1986:FAU

Lee:2009:RFS

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB

Lueh:2000:FBR

Lycklama:1991:FCF

Lhoták:2008:RAB

Lindstrom:1979:BGC

Lin:1993:PIA

Liu:1999:SVF

Lee:2002:ADC

Lee:2017:SNS

Lidman:2018:VRP

REFERENCES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume and Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

[Leverett:1980:CSD]

[Liskov:1983:GAL]

[Lamp:1984:HLC]

[Lang:1998:SAE]

[Levi:2003:MSA]

[Li:2004:ATI]

[Liquori:2008:FME]
messages, they show that the problem is solvable for any $n \geq t > 0$, where n is the total number of processes and t is the number of faulty processes.

Liu:1998:SCI

League:2002:TPC

Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. *ACM Transactions on Programming Languages and Systems*, 24(2):112–152, March 2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Lengauer:1979:FAF

REFERENCES

Morris:1999:SF

Millstein:2004:MTH

Morris:2009:TTN

Misra:1982:DGA

Misra:1982:TDD

McGraw:1982:VLD

McKinley:1996:IDL

REFERENCES

Morrison:1991:AHA

Moreau:2005:BDR

Moon:1997:PNC

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

Moriconi:1986:PSP

Mark Moriconi and Dwight Hare. The PegaSys system: Pictures as formal documentation of large programs. ACM Transactions on Programming Languages and Systems, 8(4):
REFERENCES

524–546, October 1986. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

Misra:1981:EPE

Micalef:1994:EAG

[MMM+07] Jaydeep Marathe, Frank Mueller, Tushar Mohan, Sally A. McKeen, Bronis R. De Supinski, and...

Anders Møller, Mads Østerby Olesen, and Michael I. Schwartzbach.

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

Moore:2002:AC

McKinley:2007:ECG

Mckinley:2010:DVT

Mckinley:2010:PVT

Kathryn S. Mckinley and Ke-shav Pingali. La prossima vita at TOPLAS. *ACM Transactions on Programming Languages and Systems*, 32(6):20:1, August 2010. CODEN ATPSDT. ISSN
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Pages</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Electronic ISSN</th>
<th>Print ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPM03</td>
<td>Vijay Menon, Keshav Pingali, and Nikolay Mateev</td>
<td>Fractal symbolic analysis.</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>2003</td>
<td>776–813</td>
<td>25</td>
<td>6</td>
<td>0164-0925</td>
<td>1558-4593</td>
<td></td>
</tr>
<tr>
<td>MS88</td>
<td>Sandra L. Murphy and A. Udaya Shankar</td>
<td>A note on the drinking philosophers problem (technical correspondence).</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>1988</td>
<td>178–188</td>
<td>10</td>
<td>1</td>
<td>0164-0925</td>
<td>1558-4593</td>
<td></td>
</tr>
<tr>
<td>MQ05</td>
<td>Luc Moreau and Christian Queinnec</td>
<td>Resource aware programming.</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>2005</td>
<td>441–476</td>
<td>27</td>
<td>3</td>
<td>0164-0925</td>
<td>1558-4593</td>
<td></td>
</tr>
<tr>
<td>MS94</td>
<td>Kim Marriott, Harald Søndergaard, and Neil D. Jones</td>
<td>Denotational abstract interpretation of logic programs.</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>1994</td>
<td>607–648</td>
<td>16</td>
<td>3</td>
<td>0164-0925</td>
<td>1558-4593</td>
<td></td>
</tr>
<tr>
<td>MSM+16</td>
<td>Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy</td>
<td>drf x: an understandable, high performance, and flexible memory model for concurrent languages.</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>2016</td>
<td>16:1–16:??</td>
<td>38</td>
<td>4</td>
<td>0164-0925</td>
<td>1558-4593</td>
<td></td>
</tr>
<tr>
<td>MS83</td>
<td>B. Maher and D. H. Sleeman</td>
<td>Automatic program improvement: Variable usage transformations.</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>1983</td>
<td>236–264</td>
<td>5</td>
<td>2</td>
<td>0164-0925</td>
<td>1558-4593</td>
<td></td>
</tr>
<tr>
<td>MSRR00</td>
<td>Maya Madhavan, Priti Shankar, Siddhartha Rai, and U. Ramakrishna</td>
<td>Extending Graham-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Morris:2008:DNF

Moret:1980:AVR

MacDonald:2009:DDP

Muller:1992:MLR

Murtagh:1991:ISM

Mueller:1987:RMS

[Mye90] Brad A. Myers. Creating user interfaces using programming

Myers:2017:F

Myers:2018:EFS

Andrew Myers. Editor’s foreword to “Static Backward Slicing of Non-Deterministic Programs and Systems”. *ACM Transactions on Programming Languages and Systems*, 40(3): 11:1–11:??, August 2018. CODEN ATPSJT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DL18].

Narlikar:1999:SES

Nanevski:2013:DTT

Necula:2005:CTS

Norris:2016:PAM

Nelson:1989:GDC

REFERENCES

Nicolson:1989:DSP

[NF89]

Nguyen:2005:EEA

[NI05]

Nielson:1985:PTD

[Nie85]

Nelson:1979:SCD

[NP08]

Naik:2008:TSE
Nanda:2006:ISM

Nikolic:2013:RAP

Nowatzki:2015:SFS

Nandivada:2013:TFO

Olderog:1988:FPP

Odersky:1993:DCD

Olmedo:2018:CPP

REFERENCES

Ossefort:1983:CPC

O'Hearn:2009:SIH

Pingali:1985:EDD

Pingali:1986:CFI

Pingali:1986:EDD

Palsberg:1995:CA

Palsberg:1998:EBF

REFERENCES

Palsberg:2011:E

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

Papadimitriou:1980:PBH

[PB80] Christos H. Papadimitriou and Philip A. Bernstein. On the performance of balanced hashing functions when the keys

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

Pan:2008:PFE

Pemberton:1983:TCT

Steven Pemberton. Technical correspondence: On Tanen-

Perrott:1979:LAV

Perry:1990:GEI

Peterson:1982:UAC

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

Pratikakis:2011:LPS

[PFH11] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. LOCKSMITH: Practical static

Poletto:1999:CTL

Pai:1980:GCR

Paige:1982:FDC

Pearce:2007:EFS

David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Efi-

Park:2004:ORC

Payet:2006:NIL

Pingali:2009:RTP

Palsberg:1995:TSE

Peng:1991:DF

Pinter:1994:POP

Prywes:1979:UNS

REFERENCES

913, September 1999. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). [PT00]

William Pugh and David Wonncott. Static analysis of upper and lower bounds on dependences and parallelism. *ACM Transactions on Programming Languages and Systems*, 16(4):
REFERENCES

Pugh:1998:CBA

Palsberg:1995:EIA

Palsberg:1995:SFI

Quillere:2000:OMU
Fabien Quilleré and Sanjay Rajopadhye. Optimizing mem-

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ranganath:2007:NFC

Rao:1994:RAP

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Reiter:1994:HSR

Ramsey:2003:TAB

Rogers:1995:SDD

Richardson:1993:DPL

Reps:1987:SSE

Rinard:1997:CAN

Rinard:2003:ESB

Rossberg:2013:MMM

Andreas Rossberg and Derek Dreyer. Mixin’ up the ML
REFERENCES

module system. ACM Transactions on Programming Languages and Systems, 35(1):2:1–2:??, April 2013. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Rong:2008:RAS

Reiss:1983:GCS

Rem:1981:APN

Reps:1986:GEI

Reps:1998:MMT

Reps:2000:UCS

Ramsey:1997:SRM

The article was written using the noweb literate programming system.

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Rinard:1998:DIE

Ryder:2001:SIM

[RLS+01] Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, and Rita Altucher. A schema for interprocedural modification side-effect analysis with pointer aliasing. *ACM Transactions on Programming Languages and Systems*, 23(2):105–
186, March 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Rival:2007:TPA

Ruggieri:2010:TLC

Rosenkrantz:2006:MMA

Robertson:1979:CGS

Ryder:1988:IDF

Rugina:2003:PAS

Rugina:2005:SBA

Rinetzky:2008:CPF

[N. Rinetzky, G. Ramalingam, M. Sagiv, and E. Yahav. On

[San96] David Sands. Total correctness by local improvement in the transformation of functional programs. *ACM Trans-

Sistla:2004:SRS

Sreedhar:1996:ILU

Sreedhar:1997:ICD

Steenkiste:1989:SIR

Sharir:1982:SOC
Stoyle:2007:MMS

Sheard:1991:AGU

Sekiyama:2017:PMC

Sijtsma:1989:PRL

Sipala:1982:CSB

Sites:1979:CLI

Spoto:2003:CAA

Scott:2006:RNG

REFERENCES

2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Smans:2012:IDF

Schwanke:1988:SR

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Shankar:1992:SRH

Schultz:2003:APS

Sloane:1995:EAG

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Suhendra:2010:SA

Sagiv:1998:SSA

Sagiv:2002:PSA

Soisalon-Soininen:1982:IEE

Schlichting:1984:UMP

Shasha:1988:ECE

Skeppstedt:1996:UDA

Jonas Skeppstedt and Per Stenström. Using dataflow analysis techniques to reduce ownership overhead in cache coherence protocols. ACM Trans-
REFERENCES

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of constraint handling rules. *ACM Transactions on Programming Languages and Systems*, 31(2):1, February 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [SS08].
REFERENCES

Schonberg:1981:ATS

Sippu:1983:SEH

Snelting:2000:UCH

Sperber:2000:GLP

Steimann:2018:CBR

Stone:2004:EOL

Saha:2003:IAQ

REFERENCES

Seo:2007:GDW

Swinehart:1986:SVC

Terauchi:2008:CCC

Terauchi:2008:WSE

Tai:1979:NSG

Tanenbaum:1983:TCT

Tardieu:2007:DLS

Tsay:1995:DFP

REFERENCES

Tofte:1998:RIA
Mads Tofte and Lars Birkedal
A region inference algorithm.

Trinder:2017:SRI

Tip:2011:RUT
Frank Tip, Robert M. Fuhrer, Adam Kiežun, Michael D. Ernst, Ittai Balaban, and Bjorn De Sutter. Refactoring using type constraints.

Thorup:1994:CGA
Mikkel Thorup. Controlled grammatic ambiguity.

Tichy:1986:SR
Walter F. Tichy. Smart recompilation.
ACM Transactions on Programming Languages and Systems, 8(3):273–291, July 1986. CODEN

Tzannes:2014:LSR
ACM Transactions on Programming Languages and Systems, 36(3):10:1–10:??, September 2014. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
REFERENCES

167

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/214507.html. See [SK88].

[Torp-Smith:2008:LRA] Noah Torp-Smith, Lars Birkedal, and John C. Reynolds. Lo-

Tip:2002:PET

Tang:2000:PTR

Turc hin:1986:CS

Thies:2007:STU

Tanenbaum:1982:UPO

Thatcher:1982:DTS

REFERENCES

REFERENCES

Vansummeren:2006:TIU

Vera:2004:FAF

Venkatesh:1995:ERD

VonHanxleden:2000:BCP

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdooolaege:2012:ECS

Volpano:1991:TCS

vandenBos:1981:PCB

VanHentenryck:1995:BTC

VonBank:1994:UMP

VanNieuwpoort:2010:SHL

Rob V. Van Nieuwpoort, Gosia Wrzesińska, Ceriel J. H. Jacobs,

REFERENCES

REFERENCES

REFERENCES

[Wis79] David S. Wise. Morris’s garbage

Wright:1998:PSE

Wellings:2000:IOO

Wand:2004:SAD

Weihl:1985:IRA

Wagner:2016:TIB

Walicki:1995:CCM

Michal Walicki and Sigurd Meidal. A complete calculus for the multialgebraic and functional semantics of nondeterminism.
REFERENCES

Wu:2012:STB

Weimer:2008:ESP

Wolf:1992:GEI

Wolfe:1994:DDD

Welch:2010:SCF

Wang:2008:DSJ

Whitfield:1997:AEC

REFERENCES

Wang:2015:EAS

Wall:1985:TCN

Wehr:2011:JIT

Wu:2004:ETC

Wu:1995:WCC

Wegman:1991:CPC

Ward:2007:SPT
Martin Ward and Hussein Zedan. Slicing as a program transformation. *ACM Transactions on Programming Lan-
Xie:2007:SSF

Yemini:1985:MVE

Yemini:1987:ATE

Yemini:1988:TCA

Yiapanis:2016:CDS

Yang:1998:STE

Yardimci:2009:MSP

Efe Yardimci and Michael Franz. Mostly static program partition-
REFERENCES

Ying:2011:FHL

Yu:1997:NCI

Yang:1997:SMC

Yellin:1991:ILI

Yellin:1997:PSC
REFERENCES

Zic:1994:TCB

Zhang:2017:SSH

Zhong:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA