A Complete Bibliography of Publications in *ACM Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 August 2022
Version 2.145

Title word cross-reference

(SRW02), + [Han81a], T^M [Bla03], ϕ_{ex} [AW82], $=[$DDDCCG02], A [DES12], \mathcal{R} [JMSY92], \mathcal{R}_{Lin} [VR95], ℓ [ADG+94].

(k) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3

$O(nm)$ [Pet82]. ϕ [CF95, DR05]. π [ABL03].
MS83, PZJ05, RH87, SSS81, SLCo3, Shen91, VS22, Wt91, Wt94, ABH11, ATD08, BdLBH99, CRN+08, ZCG+07.

Automatically [Slo95], **Automating** [GKL94, MTSS09], **Avoidance** [FGL94].

aware [MQ05], **Axiomatic** [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80]. **Axioms** [Mits86].

B [Hans81a], **backpropagator** [PS08].

Backward [DL18, Mye18]. **Balanced** [AS80, PB80, vHK00]. **Barrier** [CHMY91].

Base [NoS20, LS89]. **Based** [BPP16, BGL93, Bur90a, CGJ+97a, CI84, CP95, CH90, CPS89, DVML15, DL16, EGP14, GG85, HT86, JTM98, Kais9, KH92, Kf79, LFF14, PW98, RTD83, SR95, SGL98, Ste18, SNS+14, TY18, Wt94, WGS89, vPS81, BFG08, BM10, BHM+07, BCG+07, CTT07, Dvv09, Eg97, Ff99, HBJ98, KBC+99, KKO7, KCO1, LP00, LHO8, LGAT00, MTSS09, ML21, MTK21, MH06, PL89, PPT89, PCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12]. **Basic** [CG+19, GLR83]. **Bayesian** [HOYI18].

BDD [LHO8]. **BDD-based** [LHO8]. **Be** [Bee94, Coh91, Wt91, CG40, LP99].

Behavioral [KL29, GMM99, VBLG04].

Behavioral [LNI5, LW94]. **Behavioural** [SV20]. **Being** [Cop94]. **benefits** [GMP+00].

Better [Gri79, Lam88]. **between** [BS88].

Beyond [GSW95]. **BI** [BTT907].

BI-hyperdoctrines [BTT907].

Bidirectional [DP93, MMR95, FGM+07a, GPWZ08].

binaries [STSP05]. **Binary** [Sil82, DDD05, MMM+07, RC03, YF09].

binding [ACE96]. **Birrell** [MJD95].

Bisimulation [FDY12, MH06, San09].

bisimulation-based [MH06].

Bisimulations [SV91, SKS11]. **Bit** [CDK+18, KD94, KK07]. **Bit-Precise** [CDK+18]. **bitvector** [KSV96].

Bliss [GNS+15]. **Block** [LS81, Mur91].

Block-Structured [LS81]. **Blockchain** [COE+20]. **Blocked** [FTJ95]. **Blocks** [Jag94]. **Boolean** [AX07]. **Bootstrapping** [App94a]. **Borrowing** [Peer21]. **Both** [KZC15]. **bottlenecks** [RD03]. **Bottom** [BGL93, GCRN11]. **Bottom-Up** [BGL93, GCRN11]. **bound** [KK07, NIO5]. **Bounded** [ADG+94, ITF+22, MXZ+22].

Bounded [CP17, FNB20, ISRS22, PW94, BP12, CEI+07, RR05, SS05a]. **Box** [WLF016]. **boxed** [BCC04]. **Branch** [CGJ+97a, CEG07, YW02, YS99].

Branches [WZ91, RCO3]. **Branching** [CMBO19]. **Broad** [DAW88]. **Buddy** [Kau84]. **Buffer** [Zic94]. **bugs** [HCS10].

Building [Jag94]. **BURNS** [Pro95]. **Bus** [Pur94]. **Bytecode**

[Sa99, BDL08, CSCM00, FM09, GP08, KR01, Qia00, SMP10, WR08]. **Byzantine** [LSP82].

C [PHEK99, BR97, HSS+14, MRGP20, ND16, PH07, PFH11, Ven95]. **C#** [BCF04]. **C/C** [ND16]. **C11** [JP17]. **Cache** [GMM99, KLS92, MMM+07, SS96, VBLG04].

Caching [ABM93, FK85, KS86, LST98].

Calclational [Bou06]. **calculi** [ABS09].

Calculus [ABL93, BKL+97, BN94].

Gom92, Koh98, LBM22, Mio19, MRG88, Nels9, Oh95, Wm5, AB03, Ah10, Bg22, Bv05, Bv06, Bcc04, Des12, Hr02, Iw01, Jey04, Ta08, Ktp99]. **Call [DP97, GL80, DBH21, GC01, HL05, KK07, SW97a].

Call-by-Value [DBH21, HL05, SW97a].

Calls [BNN18, Cox88, Cox85, FFL08]. **Can** [Boe85, Coh91, Wt91, CG04]. **Capabilities** [SDB20, WCM00]. **capability** [TA08a].

Carlo [FL15], **carrying** [AM01]. **Case** [CFG19, FTJ95, Ww95, BdlBH99, KF03].

Cats [AMT14, ADG+21]. **Causally** [LB22].

Cause [Cas95]. **CCP** [EGM01]. **CCured** [NCH+05]. **Cedar** [SZBH86]. **Cells** [IS88].

Centered [CHY12]. **Centers** [KRS84].
completion [KR01]. Complexity
BG22, BEF+16, Deb95, ISIRS22, Le 88, dBH21, RRSY08, SSD09. component
LS98, Y997. component-base LS98. Componential [FF99]. Components
[CIJGP18]. Composable [SDD21]. Composing [AL93, HKMN94]. Composite
[Fea87]. Components [CIJGP18]. Composable [SDD21]. Composing
[AL93, HKMN94]. Composite [Fea87]. composition [AH10, Pau01].
Compositional [DSFG21, Fos96, Jon94, JTM98, LFF14, SZLY21, ZSO21]. compressed [DAS98]. Compression
BMW91, CSCM00, DKV07. Computability [HMS06]. Computable
[PK82]. Computation [AC94, BG22, BOV85, DP82, HS94, LST98, PB97, ABB+09, AE01, DR05, LK02, SWU10, SGL97, Hal85]. computational
[ATD08, SSD09]. Computations [DW89, MC82b, VSS94, YS91, LSLR05, Mon08, YF98]. Computer
HCHP92, Wol92. Computer-Assisted
HCHP92. Computers [Fis80, LK02]. Computing [ANP89, CFR+91, CF95, KM81, HVB+99, MMG00]. Concept
Tur86, ST00a. Concepts [Eug07]. Concerning [Sha82]. Concrete [Bar81].
Concurrency
[ADG+21, BG89a, Lam90, LMM21, SDD21, Wei89, BCF04, Mil85, TA08a, CPS93]. Concurrent
[BC91, Car95, CIJGP18, Cla80, CES86, CPS93, CFM94, DSFG21, DGM97, FT94, Hal85, HSP83, HW90, Her93, JTM98, Kar84, Lam83, LFF14, LCK+22, MSM+16, OL82, Pet83a, Pet83b, Ry88, SZLY21, Sku95, SNS+14, AE98, AE01, AA04, BBYG+05, BGP99, CWS06, JPS+08, RS97, SRM10, YS10]. Concurrent-by-Default
[SNS+14]. Concurrent-Program [FT94]. Condensation [JTM98]. Condition
HW90. Conditional
Boy96, GGVS22, WZ91, Dam03. Conditioning [OGJ+18]. conditions
[KWL09]. Conference [Wol92]. confined [GPV07]. Conflict [Cas95]. Conjecture
KPS92, Sag86]. Conjoining [AL95].
Conservative [Hai05]. considered [Gor04]. Consistent [LB22, XBO20]. Constant
[CIJGP18, CGG+19, Coh91, WZ91, Wir91]. Constrained
BG89a, DAW88, PS96, Žic94, LPP01. Constraint
Bor81, DGM97, DDV99, HLH19, NSTD+15, Pa95, PW98, Ste18, Apt00, BMR01, DPPR00, FH04, GHB+96, HPMS00, SS08, SS09, SP07, SSD09, dHB+96]. Constraint-Based
PW98, Ste18, DDV99, SP07]. Constraint-Oriented [Bor81]. Constraint-Solving [NSTD+15]. Constraints
[AKP94, DFR15, HG83, Mye90, BA08, RM10, TFK+11, Van96b, VHM+01, Van96a]. Construct
[Ans87, BS83, Kat93]. Construction
[ADGM91, HIT97, LaL81, MB83, RH87, SL92, CMS03, GC01]. Constructions [LBMTT22]. Constructive
Loc87. Constructs
[AR84, DJP+16, Par90]. Context
GHR80, KBP22, LTMS20, LWR21, Ode93, Pad19, PK80, Ram00, RTD83, Rep00]. Context-Dependent
[Ode93, RTD83]. Context-Free
[GHR80, Pad19, KBP22]. Context-sensitive
[RR00, Rep00]. Context-Unbounded [LWR21]. Contexts
[Ode93]. Continuation
BDM15, Wan82. Continuation-Passing
BDM15. Continuations
BDM15, HF87. Continuous
[KF03]. contract [DF11]. Contracts
SIG17, SDTF13, CGP09]. Contravariance
[Cas95]. Control
[ALBP93, Bur84, CL94, CFR+91, DP97, FM87b, HBS22, Kat93, Lam88, Lin79, NBG13, PB97, PBR+15, Set83, SS13, Tur84, Wat83, Wei89, BCM99, BCC04, HO07, PSS05, RAB+07, Zho96]. Controlled
[Min84, The94, JC97]. Controlling
BALP06, LaL81, LMD98]. Convention
AF84. Convergence [Bar85]. Conversion

D. [Bur91]. Data [AMT14, ÁNP89, AM85, Bac84, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, El82, EO80, FL81, GMH81, GEGP17, HL82, Her93, Hes88, Hol87, Jen97, JJC019, KH92, Kam83, KKC15, KKH98, KD94, LaL89, LO94, LN02, LVRG21, Loc87, Mal82, MMR95, MCT96, PP91, QG95, RCRH95, RP88, SSS81, Sku95, SGL98, SM81, TWW82, WL85, Wei89, Wei90, Wet82, Wet83, CFP+04, DHM+12, DGS97, HB9J98, KBC+99, KFO0, LK02, Rep00, SP07, VALG05, YUW02, ZGZ05, Pur91].

data-centric [DHM+12]. Data-Driven [BL87, CS87, JJC019]. Data-Flow [BC85b, Bur90a, Wet82, RP88, KBC+99].
data-independence [Rep00].
data-member [KF00]. Data-Parallel [Cha93, HBJ98]. Database [Bar85, CB80]. Databases [SR21]. Dataflow [Deg95, DFR15, MWB94, SS13, SS96, Van96a, Van96b, VH+01].

deduction [LMD98]. Deductive [MW80].

Default [SNS+14, LMD21]. Deferring [MTSS09]. Defined [Wal92, Wal80, Wal81].

Defining [Ode93]. definite [KKR04].

Definition [Bou92, BWP87, CI84, CD79, Fid93, HS94, WCW90, WCW91, Wol94].

Definition-Use [HS94]. Definitions [BS86, WiJ82b, Dam03, VHK802, Sij89].

Delay [BG89b]. Delayed [KPF95, RC03]. Delayed-Load [KPF95]. Delaying [Kau84].

Deleting [GP81]. Delimited [BDM15]. Demand [FPS19, GSW95, PA85, PA86a, PA86b, PF96, SR95, DGS97].

Demand-Driven [GWS95, PA85, PA86a, PA86b, FPS19, PF96, DGS97]. Denali
Editors [FLo81, HT86, Nix85]. **Effective** [FM87b, DeM83, Mye18, Per90, Rep86, Woh92]. **Effect** [AP07, App03, AG93, AF94, MP07, Mye19, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04]. Editors: [MM88, MM89, RTD83, Wat94]. **EDO** [OKN06]. **Editing** [Gor21, RLS+01]. **Effective** [BS83, Col84, JB20, KKN06, NI05, PE08, WJ98, YUW02]. **Effectiveness** [BDdB99, SH89]. **Effects** [Boe85, MXZ+22, SV20, TA08h]. **Efficient** [AKBLN89, ADGM91, BB79, BGH+13, BRE89, Cam89, CS95, DP82, DMM88, GZ05, GZ07, GLR83, GLO88, GSO94, HVB+99, HS94, HSS+14, HIT97, JP81, Jon90, KKM90, KRS88, KPP95, MVV+01, MM82, NB99, NI05, PHP02, PXL95, PG21, PKH07, PA85, PA86b, RHH7, SS08, SA00, SS88, TN19, WG98, YUV02, BCP08, GB99, KS96, LPS04, LS09, PBB+07, TP04, VWB10, YF98, PA86a, SS99]. **Efficiently** [Bal94, CFR+91, CF95]. **Efficient** [ACE96]. **Efficiency** [KR01]. **Election** [Hua93]. **Eliminating** [BT93, Col83, Col85, RD03]. **Elimination** [DP93, SGL98, KKN06, KCL+99]. **Elimination-Based** [SGL98]. **Embedded** [BCP08, CSCM00, HK07, RH93, SRM10, TP04, ZP10]. **Embedding** [HF87]. **Empirical** [BHK07, BDH+16]. **Empowering** [JSB+12]. **Emulator** [ML00]. **Enabled** [ADG+94]. **Encapsulating** [GPV07]. **Encapsulation** [AR84, DDM11]. **Enclaved** [BNV+21]. **Encoding** [Hob84, GZ05, ZP07]. **Encodings** [BC79, TY21]. **End** [BDP14, CSCM00]. **enforcement** [HMS06]. **Enforcing** [CEI+07]. **engines** [SS08, SS99]. **enhanced** [GH97]. **Entries** [LaL84, SS82]. **Enumeration** [BB94, JJ98]. **Environment** [CO90, SZBH86, CTK86]. **Environmental** [SKS11, SV19]. **Environments** [BS86, GKL94, HK85, HT86, KAI89, DJKVS12]. **Epochs** [SOL92]. **equalities** [FMoPS11]. **Equality** [Pal98]. **Equality-based** [Pal98]. **Equations** [H082, BOu06, GS11, GMM99]. **Equiprobable** [PB80]. **Equivalence** [SV20, VB12, VSS94]. **Equivalent** [PO95, NP08]. **Erlang** [TCP+17]. **Erratum** [SS09]. **Error** [AB81, Bac84, BN99, BF87, FL15, KC01, LaL84, MF88, MYD95, PK80, RIC85, SS83, SS82, WET82, ZMVP17, DJKV12, JE03, XA07]. **Errors** [AWW95, SBB+19, Wha94, CPR02, JNGG10]. **Escape** [Bl03, CGS+03]. **ESOP** [AHM20, MIl21, Yos22]. **ESOP’05** [Sag07]. **Essential** [DESI2]. **Esterel** [Tar07]. **Estimation** [SBB+19]. **Estimations** [LVRG21]. **Eta** [DMP96]. **Eta-expansion** [DMP96]. **Euclid** [HW82]. **Euclidean** [Bou92]. **Evaluating** [BLH12]. **Evaluation** [AFV98, Burr84, CGST95, CK93, Gri82, Hud91, Jon90, LV94, PA85, PA86a, PA86b, RD87, RL98, Sl95, SG90, WCW90, WCW91, ZSS20, ADR06, CFP96, CG04, GJ05, LDM07, LEO04, ST00b, SYK+05]. **Evaluations** [BDH+16]. **Evaluating** [Gom92, JP81, KR79, Le88]. **Evaluators** [CP95]. **Event** [Bar81, YMW97]. **event-driven** [YMW97]. **Events** [Bal94]. **Ever** [Gri79]. **Evidence** [CGJ+97a]. **Evidence-Based** [CGJ+97a]. **Example** [CM86a, Mye90, Nix85]. **Examples** [Oss83, Jef03]. **Exception** [YB85, YB87, YB88, LS98, LP80, OKN06]. **Exception-Directed** [OKN06]. **Exception-Handling** [YB85, LS98]. **Exceptional** [WN08]. **Exceptions** [ASF17, Hau96, LP00]. **Exclusion** [ADG+94, LH91, ABH11]. **Executable** [Hob84]. **executables** [YF09]. **Execute** [BR10]. **Execution** [BNV+21, CSS7, Dl90, GJ93, JW17, JG10, JF81, SS98, SS88, BALP06, GPA+01, TS00, YF98]. **Exemplars** [LaL89]. **Exemplified** [DGL+79]. **Exercise** [Kna90, Mis81]. **Exhaustive** [Burm0a]. **Existential** [MP88].
existing [LS98], expansion [DMP96].

Expansions [SBB+19]. Experience [FSS83, Wal92], experiences [Eug07].

Experimental [LV94, SSS83, Ven95, ABB+09, BGPF99].

Experiments [Tur84]. Explanation [Mis81]. Exploiting [KOE+06].

Explanation [WS97]. exponential [Wu04].

Experimental-time [Wu04]. Expression [GP81, YB87, YB88, HVP05].

Expression-Oriented [GP81, YB87, YB88].

Expressions [BG89b, CGST95, CC97, DAW88, Fis80, Geo84, GRI82, Hen83, HY91, KS83, LD81, PK82, Sha82, Sit79, WAT91, Dam03, NN86].

Expressive [MFRW09]. Expressiveness [WGS92, WGS93, PS96]. Extended [ABC+21, CBMO19, KGMO04]. Extending [CEW14, CMS03, MSRR00, MK94].

Extensibility [LCK+22]. Extensible [HGS17, Sto04, ATD08, MBC04].

Extension [Bur90b, Coh91, WSH15, Wir91, ALZ03, KKN06, LS08]. Extensions [Wir88].

Extent [MF88]. Exponential [LS08]. Extrapolation [GP95], extraction [SBS+02].

Extending [WTSL02]. Extrapolation [WM12]. Extrema [Pet82].

F [MWCG99]. Facets [ASF17]. factoring [DRS96]. Failure [BN99, Dar90, GHI+19, Kar84].

Failure-Free [Kar84]. Fair [BN94, PR07].

Fairness [ES97, OA88, TB95, AH98].

Families [LaL89]. Fashioned [AL94]. Fast [ADG+06, DA98, FMS93, HVDH07, LT79, LZR22, SR95, DR05, PE08, TP04, VBLG04, DVL15]. Faster [CGG+19]. Fault [CS95, Lam84, LJ99, AAE04].

Fault-Tolerance [LJ99]. Fault-Tolerant [CS95, Lam84, AAE04]. FD [GLMM05].

FeatherTrait [LS08]. Featherweight [IPW01, LST02, LS08]. Feature [ASAVF19, AH10]. Feature-Specific [ASAVF19]. Feeding [APA6a].

Fence [AKNP17]. Few [HL22]. Fickle [DDDC02, AAD+07]. field [PKH07].

field-sensitive [PKH07]. fields [PZJ05].

FIFO [FLBB89]. Final [Kan83]. Finding [KRS84, KKM90, LT79]. Fine [DSFG21, HL22, PBR+15, DNS+06].

Fine-Grained [HL22, PBR+15, DSFG21, DNS+06]. fingerprinting [CTT07]. Finitary [AH98].

Finite [ACW90, BLH12, CESS86, GC86, PK82, PP91, Pur91, RSL10, Zav85].

First-Class [HKMN94, Han92, SDF13, MH04].

First-Come-First-Served [LH91].

First-Enabled [ADG+94]. First-Fit [Bre89]. First-In [ADG+94]. First-Order [DP97, JPP91, JS94]. Fit [Bre89]. Fixed [SS98]. Fixed-Order [SS98]. Fixpoint [AC94, Qia00]. Flexible [AD98, HU91, MS8+16, WG98, WLS8b, dJKVS12, IV06, KGMO04].

Floating [CK94, Fat82, SBB+19, Hunt96, Mon08].

Floating-Point [CK94, Fat82, SBB+19, Hunt96, Mon08]. flop [MMG00]. Flow [AR80, AD98, ASF17, Bac84, BC85b, Bur90a, DP97, DP93, FJKA06, HR97, KD94, MRR95, NBS13, PO95, PP91, PBR+15, Pur91, Set83, SGL98, SS13, Wet82, DGS97, HR02, HY07, KBC+99, Pal98, PS03, RRSY08, RP08, TZ07, WJ98].

Flow-Insensitive [HR97, FJKA06].

Flowback [CMN91]. Flowgraph [LT79].

Foo [FA93]. foreign [FF08]. Foreword [Mye17, Mye18]. Form [AK87, BOV85, BM94, CFR+91, GSW95, Pal95, PG01, GPF08, KCL+99].

Formal [ZCG+07]. Formal [ADG+21, BS86, BDP14, CB80, CD79, Fid93, Gie83, HIT97, Kna90].
Lee86, Mal82, MH86, Sha82, WP10].
Formalism [Pea21]. Formalisms [PCC85].
Formalization [BBP16]. Formally [SP97].
Format [Wat83]. Forms [DS83]. Formulas [RSL10].
formulations [RS97]. Fortran [AKR87, DP99]. Foundation
[AKR87, Ban11, Rhi03].
formalization [BPP16]. Formally [SP97].
Format [Wat83]. Forms [DS83]. Formulas [RSL10].
formulations [RS97]. Fortran [AKR87, DP99]. Foundation
[AKR87, Ban11, Rhi03].
foundational [AM01]. Foundations
[GTWA14, LW93, AAR+10]. Fractal
[MMP03]. fractional [Boy10]. frames
[SJP12]. Framework [BGL93, Gie83, JW17,
KRR18, NSZS13, NSTD+15, OHL+14,
SGL98, TN19, ATD08, DGS97, GMM99,
GZ04, GC01, Len04, PS08, RKR04, TP04,
VBLG04, XA07, ZCG+07, ZP10, vHK00].
Frameworks [MMR95, KK07].
framing [BNN18]. Francez
[Fra81, Moh81, Moi83].
Free [AP94, GEGP17, GHR80, Her91, Kar84,
Kob98, Pad19, JJJ98, KBB22, KSV96].
freedom [KS10]. Fresh [JJD98, KBP22, KSV96].
frontiers [Ano02b]. full [GB99]. Fully
[JPP91, TY21]. function [DR05, FF08].
Functional [AFV98, Ban87, Blo94, Bu05,
Bur84, DW89, FL91, ISY88, JPP91, WM95,
Web95, Wil82a, ABH06, Bou06, DWWW08,
DF98, PS08, San96, SP97]. Functions
[AKP94, AK82, Bou92, PB08, SM89, TY21,
Lee09, MBO04, MB99, MT08, PPT08].
Further [CM93]. Fusion [JB20, LGAT00].
Fusion-based [LGAT00].

G. [Tic88]. Garbage
[BA84, CN83, DS82, ISY88, JCM89,
TM93, URS18, WLBF16, Wis79, BBYG+05,
BALP06, HDD02, LP06, Pdq06, TSBR08].
Garnet [VHM+01]. General
[BGL93, CMM89, HS+14].
General-Purpose [HSS+14].
Generalization [Nel89, LMD98].
Generalized
[Ans87, BS83, GKM20, KD94, Lin79].
Generalizing [DB85]. Generals [LSP82].
Generate [Son87]. Generated
[Slo95, dJKVS12]. Generating
[HBH+06, HT86, Jef03, LR13, JNZ06].
Generation [AGT89, AS80, BOV85, BM94,
DS83, DS90, GF5, GVC15, HKR92,
HKR94, Proc95, Rei83, Rob79, She91, ST00b,
UJ92, DAS98, MSRR00, PHE99].
Generative [Gel85]. Generator [PPS79].
Generators [Bat80, GHK81]. Generic
[LV94, DDM11]. generics [IV06].
Geometry [CR87]. Georgeff [NN86].
JG
[IPW01]. Glanville [MSRR00]. Global
[BA84, HGA+96, OHL+14, PS92, Sch85,
DHB+96, CS04, KBC+99, DS88, Sor89].
GLR [SJ06]. Goal
[Dar90, Gud92, SYH07]. Goal-Directed
[Gud92, SYH07]. Goal-Oriented [Dar90].
Goto [CF94]. GPU [BCD+15]. Gradual
[TGT18, TGT20]. Gradualizing
[LBMTT22]. Graham [MSRR00].
Graham-Glanville [MSRR00]. Grained
[HL22, PBR+15, DSFG21, DNS+06].
Grammar
[CI84, CP95, GF85, JP81, KR79, Web95].
Grammar-Based [CI84]. Grammars
[BS88, Jon90, Kat84, LaL81, RD87, RH87,
Tal79, WW95, Boy96, CP96, Wu04].
Grammatic [Tho94]. Grammars
[BB94, MK94]. Granularity [RRB19].
Graph [Ass00, Bee94, BCT94, CFR+91,
FOV87, KKS94, LKS92, LRZ22, MC82a,
Son87, TTT07, GC01]. graph-based
[CTT07]. Graphic [Mal82]. graphical
[VHM+01]. Graphs
[GKM20, HBR90, KPS92, Kna90, SGL98,
DR05, JC97, KSK07, SGL96, UM02]. grid
[VWJB10]. Grimmer [Ano18]. groundness
[CSS99]. Grover [BH99]. growth
[BALP06]. Guarantee
[EGG17, LFF14, SZY21, HQR02].
guarantees [LS00]. guard [MP07].
guarded [SP07]. Guardians [LS83].
Guards [Ber80]. Guest
[FP02, OP04, DeM83, Per90, Rep86, Wol92].
Guide [App94a, BDH+16]. Guided
guiding [VALG05].

Hackers [App94a]. Hancock [CFP+04].

handle [VJB12]. Handling [Hau96, LdR81, Pig96, SSS83, UM02, YB85, YB87, YB88, CRN+08, LS98, LP80, SSD09, Hen83]. Hard [Hor97]. Hardware [BKL+97, Mis86].

harmful [Gor04]. Hashing [PB80, Duc08].

Haskell [GRSK+11, HHPW96]. Heap [KSK07, BALP06,KF00,YS10]. heap-manipulating [YS10]. Heavily [BG89a]. Hennessy [CM93, WST85].

Herding [AMT14]. Heuristic [SL92]. hiding [LN02, OYR09]. hierarchic [AG04].

Hierarchical [BA99, CP95, CD79, Ay01, CP96]. hierarchically [MBC04]. hierarchies [ST00a, Van96a, Van96b]. hierarchy [KF00].

High [Cam89, Fat82, MSM+16, URJ18, CMS03, VJJB10]. High-Level [Cam89,Fat82, CMS03, VJJB10].

High-Performance [URJ18]. Higher [AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97].

Higher-Order [AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97].

Highly [Her93, Sku95]. Hoare [Apt81, GM81, LS84, Sok87, Yin11, dBH21].

Hoc [MDCB91]. Holistic [ZMVPJ17].

Homomorphic [VS22]. Homomorphisms [HIT97]. HOP [BLRS12]. Hybrid [KF10, KS10].

hyperdoctrines [BBTS07].

I-Structures [ANP89]. I/O [Car95]. Icon [GHK81, GRS92]. id [Bee94]. idempotency [KOE+06]. Identical [FLBB89].

Implementation [AKBLN89, AOC+88, BCD+15, Bou88, Bre89, BS83, CM86b, GMH81, Gaz83, Lin93, MDCB91, PXL95, RL98, WL85, CMLC06, FM87a, GB99, LDM07, LPS004, Tra08, Zho96].

implementations [BBF+11, BFGT08, DF98]. Implemented [DB85]. Implementing [BR97, Her93, HW82, Sku95]. Implications [Fat82]. Implicit [BH05b, SJ12]. Implicit-signal [BH05b]. improve [KF00]. Improved [GHR80, Mur91, KK07].

Improvement [MS83, San96].

Improvements [BCT94]. Improving [CK94, CM+95, MCT96, TCP+17, WS97].

impure [Pip97]. Incomplete [MRGP20, GLMM05]. Incremental [Bur90a, CP95, DMM88, GM79, HKR92, HKR94, HPMS00, Hud01, Kaj95, Lar95, LST98, LHR19, PS92, RTD83, RP88, SGL97, WC98, YS91, BCG+05, CP96, Van96a, Van96b]. Incrementally [QL91].

Independence [DHM00, GGSV22, Rep00].

Independent [ML80, Mul92]. Index [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98]. indexed [AM01]. indices [RR05]. Direct [Pi96, CEG07, YK97]. Induction [GSW95, Sit79]. Inductive [LBMTT22]. inefficiencies [MMM+07]. Inessential [SS82, LaL84].

Inference [CEW14, Deb89, Hen93, LO94, LY98, MRGP20, PZ19, SR21, TB98, Wey83, FFLQ08, JB06, PM06, PT00, PS03, Van06].

Inferring [FBGB20]. Influence [FT95].

Information [AR80, Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b, ASF17, BC85b, HR02, NGB13, PR+15, PS03, GS99, HY07, LN02, OYR09, TZ07]. Information-Flow [BC85b, TZ07]. infrastructure [SWU10].

Input-Output [BS83].

Inputs [PA86a]. Insensitive [Hor97, FJKA06].

Insertion [AKNP17, GJ05]. inspection [CF04, FG03].

Instantiation [Dev85]. Instead [Lam84, Rem81].

Instruction [KPF95, LCBS19]. Instructions [LS80, PS93, RF97, Rob79, LPP01].

Insensitive [Hor97, FJKA06]. Insertion [AKNP17, GJ05]. inspection [CF04, FG03].

Instantiation [Dev85]. Instead [Lam84, Rem81].

Instruction [KPF95, LCBS19]. Instructions [LS80, PS93, RF97, Rob79, LPP01].

Insensitive [Hor97, FJKA06]. Insertion [AKNP17, GJ05]. inspection [CF04, FG03].

Instantiation [Dev85]. Instead [Lam84, Rem81].

Instruction [KPF95, LCBS19]. Instructions [LS80, PS93, RF97, Rob79, LPP01].
KN06, LP99, MF09, MWCG99, PPT08, PHEK99, Tra08, VHKO02, HCW82, YB88.

Language-Based [Kai89, RTD83].

Larch [Win87].

Large [GLR83, HSD22, MK94, MH86, WCW90, WCW91, ZSS20].

Large-scale [ZSS20].

Lattice [AKBLN89, MMR95, FH04].

Lauer [GM81].

Layout [KK98, LVV’83, GP95, YBL16, CMS03, VWJB10].

Lazy [ABM93, FKW00, HKR94, Hud91, ITF’22, TCVB14, Chi05].

LCF [Sok87].

lead [SS05a].

Leader [Hua93, KKM90].

leak [HDH02].

learned [VHM’01].

Learning [CGJ’97a, HOYY18, JJC019, SR21].

Least [AB81, Bac84].

Least-Cost [AB81, Bac84].

Left [FKW98].

Left-Linear [FKW98].

legacy [NCH’05].

length [SMP10].

Lessons [URJ18, VHM’01].

Let [LY98].

Let-Polymorphic [LY98].

Level [Cam89, Fat82, GP95, YBL16, CMS03, VWJB10].

Lexical [HKR92].

libraries [Dug02].

LIFE [AKP94].

lifetime [HBM’06].

Lifetimes [Pea21].

Lightweight [Pea21, SW97b].

Like [Hua90, KN06].

Limitations [CP17].

Linchpin [BGH’13].

Linda [Gel85].

Line [Bal94].

Linear [BL94b, FKW98, PS99, RS84a, YR94, BKRW98, BKRW05, FMoPS11, KBC’99, Ram99, Rep98, RM10].

Linear-Time [YR94, BKRW98, BKRW05].

Linearity [KPT99].

Linearizability [HW90, DSW11].

Linguistic [LS83, Wei09, FGM’07a].

Link [DDD05].

Link-time [DDD05].

Linking [QL91, Dug02].

LIPS [CDFP89].

LISF [CRN11].

LISP [Mul92, Pip97, SH89, Wat83].

List [BC79, HIT97, Kau84, Sij89].

listing [MDJ05].

Literature [Oss83].

Live [DSFG21, MWB94].

Live-Structure [MWB94].

Liveness [ACW90, GC86, OL82, RY88, HDH02].

LL [BF87].

LLVM [HL22].

Load [KPF95].

Loaded [BG89a].

Local [BDFZ09, CBDFG95, PT00, SDB20, TSBR96, Wei89, Dan03, San96].

Locality [BAC16, MCT96, VALG05, ZSD09].

Locally [AB81, Bac84, Min84].

locating [JNNG01].

Locator [ZMVPJ17].

Lock [GEGP17, KS10].

Lock-Free [GEGP17].

lock-freedom [KS10].

locking [AFF06].

LOCKSMITH [PFH11].

Logic [AS89, AFV98, Apt81, BGL93, BL87, BCD90, BDJ13, BMT94, CS04, CES86, CFM94, DW89, Deb89, DL93, Deb95, DJP’16, JPP91, Kar84, LS84, Lam94, MW84, MSJ94, MMC92, PZ22, SS89, Sok87, TK94, TB95, dHB11, BB07, BM01, BCG’07, BdBIH99, CU08, CG86, CSS99, DDD99, DPP00, GHB’96, GW99, HVB’99, HPMS00, KWL09, LMD98, Leu04, PM06, RKRR04, SRW02, Yin11, dHB’96].

Logical [BNN18, GGL15, GS98, TY18, RSL10, Tar07].

Look [DP82, GMN’21].

Look-Ahead [DP82].

Lookahead [KM81, MF88].

Loop [BAC16, CS87, MCT96, Sit79, RKS12].

Loops [BAGM12, Boo82, CK94, DB85, FTJ95, Hav97, Wat91, Ano02b, LS04, LSL05, Ram99, RDG08, SGL96, UM02].

low [CSCM00].

lower [CSCM00].

low-end [CSCM00].

Lower [FNBG20, PW94].

LR [ADGM91, BL94b, BF87, CPRT02, DMM88, Je03, JP17, KC01, LaL81, LaL84, SS82, ST00b].

LR-based [KC01].

M [Bar91, Mul92].

M-LISP [Mul92].

Machine [CGJ’97a, Cat80, GNS’15, Gie83, Han94, JJC019, LR13, ML80, RF97, SS98, SDB20, Wat92, Zav85, Ano02a, CEG07, CF04, HK07, KN06, Oho07, RRB19].

machine-checked [KN06].

Machine-Code
MPI [FJK+17, TSY00]. Multi
[Ano18, GSS+18, ITF+22, MF09].
Multi-Language [Ano18, GSS+18, MF09].
Multi-threaded [ITF+22, Multialgebraic
[WM95], multidimensional [RDG08].
MultiJava [CMLC06]. Multilisp [Ha85].
multimethod [DAS98]. Multimethods
[CL95]. Multiparty [JS94]. Multiple
[ASF17, NSTD+15]. Multiply [FTJ95].
Multiprocess [Lam79, Lam80].
Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].
Multiprocess [Lam79, Lam80].
Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].
Multiprocess [Lam79, Lam80].
Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].
Multiprocess [Lam79, Lam80].
Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].
Optimistic [PM04]. Optimization
[Beec94, BBC16, Bilo94, BAC16, BT93, DF84,
DP97, DHD84, Dha91, DS88, FOW87,
HG83, HOY18, Pen83, PP94, RRB19,
SS82, Sor89, TsV82, Web95, Ass00, BHK07,
KBC, +99, KF03, PE08, TVA07, ZP10, CG95,
La84, OKN06]. Optimizations
[CC95, JSB, +12, CGS, +03, CKT86, GMP, +00,
SYK, +05]. optimize [DMM01, VBLG04].
Optimized
[CM93, Cop94, Hen82, WST85, DS98, UM02].
Optimizer [DF80, FSS83, DF81].
Optimizers [Gie83].
Optimizing
[CEG07, KMM, +98, LSLR05, ML80, NSZS13,
QR00, BGKR09], Or-Parallel [GJ93].
orchestration [PE08]. Order
[AC94, AD98, Bur84, CJK95, DP97,
DJP, +16, JPP91, JS94, SS98, BBT807, DF11,
FPS19, SKS11, SV19, SP97], ordering
[GS9]. Organization [Han81a]. Oriented
[Bor81, Dar90, Ell82, FFF, +18, GTWA14,
GKL94, GP81, HU96, Ryu16, SM81, Tur84,
Yu87, YB88, BSvGF03, DWWW08,
DMM01, JFS, +08, WKD04, WP10, WJS, +00].
origins [San09], OSI [CDFP89]. Output
[Ber80, BS83], overflow [KOE, +06].
overhead [BP12, SS96], overlays [SWU10].
Overload [Bak82], overloading [SS05b].
Overview [AOC, +88], ownership
[DMM11, SS96]. Oz [VHB, +97].

Package [Hil88], Paper [GM81]. Parallel
[ANP89, BG22, BOV85, BO94, BE13,
Cha93, CGST95, CMN91, CL94, DS83,
Fos96, GLO88, GJ93, GPA, +01, HCHP92,
HIT97, JF81, Kaa90, LHR19, Mis94,
NSZS13, OAA88, Raa94, SS88, BBYG, +05,
CG86, GB99, HBJ98, KS96, LK02,
MV+90, RR03, YF98], Parallelism
[Bur84, GP95, KS96, NB99, PW94,
TCVB14, YBL16]. Parallelization
[BAC16, BDJ13, PP94, BdlBH99, HAM, +05].
Parallelizing [HP96, ME97, RD97].
Parameter [Gaz83, Zho96].
Parameterization [TWW82].
Parameterized
[CGJ97b, CK93, GAZ83, RKSR12].
Parametric
[HFC09, MMG92, SWR02, IV06].
Parenthesis [AS80], Parlog [CG86].
Parsed [Wad90]. Parser
[DDH84, JP17, La84, SS82], Parsers
[BN99, La8L1, MYD95, PK80, CPRT02,
SJ06, ST00b]. Parsing
[CH87, DMM88, Fis80, GM79, Lar95, RH87,
Sam80, WGM98, KCO1]. Part
[La81, PA85, PA86a, PA86b, APT81]. Partial
[AJV98, CP17, CK93, DS88,
Gom92, KCL, +99, Sor89, ADR06, BP12,
CG04, GJ05, LMD98, Leu04, ST00b].
Partially [BLH12, Kob98, RRSY08].
partially-flow-sensitive [RRSY08].
partitioning [RM07, YF99], Parts [Son87].
Pass [Coh91, Wir91]. Permission
[BPP16, SNS, +14]. Permission-Based
[BPB16, SNS, +14], permissions [Boy10].
Persistent [AM85], Petri [JTM98].
Petri-Net-Based [JTM98]. Phases
[Bar81], Philosophers [CM84].
Philosophers [MS88], Pi
[BG22, HR02, KPT99], Pi-calculus
[BG22, HR02, KPT99]. pict [SWU10].
Pictures [MH86], Pipeline [HG83].
Pipephole [BG89b, LPP01, RDG08].
pipelining [ME97], pitfalls [Mon8]. PL

Performance [HU96, MSM, +16, PB80,
URJ18, KFO0, PE08]. Performed
[Coh91, Wir91]. Permission
[BPB16, SNS, +14], Permission-Based
[BPB16, SNS, +14], permissions [Boy10].
Persistent [AM85], Petri [JTM98].
Petri-Net-Based [JTM98]. Phases
[Bar81], Philosophers [CM84].
Philosophers [MS88], Pi
[BG22, HR02, KPT99], Pi-calculus
[BG22, HR02, KPT99]. pict [SWU10].
Pictures [MH86], Pipeline [HG83].
Pipephole [BG89b, LPP01, RDG08].
pipelining [ME97], pitfalls [Mon8]. PL
[CD79, CZ84, FFF+18]. PL/CS [CD79].
PL/CV3 [CZ84]. place [GW99].
Placement [DP93, GS99, vHK00].
Platform [TCP+17], pluggable [MME+10].
Pluto [BAC16]. Point [CK94, Fat82, SBB+19, GJ05, Hau96, Mon08]. Pointer
[LTMS20, LHR19, LS79, RR03, SDB20, HBC99, HVH07, PKH07, RLS+01].
Pointers [SS13, RR05]. Points [GKM20, WKD04]. Points-to [GKM20].
Pointwise [VSS94]. Policies
[NGB13, BDFZ09, FGM07b]. Policy [Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, UJ92, BFG08].
policy-based [BFG08]. Polyhedra
[GVC15]. Polyhedral [GVC15, QR00].
POLYLITH [Pur94]. PolyMage [JB20].
Polymorphic
[BMR05, Dug99, Gor21, HTO4, Hen93, KTU93, LO94, LY98, Oho95, SIG17, SV96, TY21, WJ98, BSVF03, DWWW08].
Polymorphism [Bur90b, MDCB91, HFC09]. polynomial [BAL07, CFG19]. PolyTOIL
[BVSGF03]. polyvariance [LMD98].
Polyvariant [AC94, WJ98]. POP
[FFF+18]. POP-PL [FFF+18]. Portable
[DDH84, Han81b, HK07]. Possibly
[JP17, ML21]. Postfix [DS88]. Postpass
[HG83]. Power [TWW82, SSD90].
Powerlist [Mia94]. PPMex [DKV07]. PQ
[GZ05]. PQ-encoding [GZ05]. Practical
[AD98, BAC16, BF87, CP17, Dha91, LR19, ND16, PBR+15, SS13, TSL+02, WC97, Bou05, DR05, DWD07, DGS97, JNZ06, PFH11]. Practice
[KRS94, Ryu16, Bla03, DRSS96].
Pragma [BDH+16]. Pragmatics
[Gom92]. Pre [OLH+16]. Pre-Analysis
[OLH+16]. Precedence [Hen83, LdR81].
Precise [CDK+18, FJK+17, GKM20, Hor97, TN19, PHP02]. Precise-Yet-Efficient
[TN19]. precision [ZGZ05]. Precondition
[Boo82]. Predicate [Lam90, BMR05, Bou05, Bou06, MFRW09, MMS96, PR07].
Predicates [CBDFG95, Lam88]. predictable [SHB+07, HK07]. Prediction
[CGJ+97a, CEG07, YS99]. Predictive
[FJK+17]. Prepending [FK85].
Prescription [FFF+18]. Presence
[AWW95, CF94, KU93]. preserving
[DHS09, LST02]. pretenuring [BHM+07].
Pretty [Chi05]. Prettyprinter [Wat83].
Prettyprinting [Opp80]. Primitive
[App15]. principals [TZ07]. Principled
[LTMS20]. Principles [Bou88, DRSS96].
Printing [Chi05]. Priority [CH90, Fid93].
Priority-Based [CH90]. Privacy
[BKOZB11, LVR21]. Privileges [Min84].
Probabilistic [AB20, BKOZB13, CFNH18, DG19, HSP83, MMS96, OJ+18, Rao94, SV19, BH99, PPT08]. Problem [ADG+94, CM84, DS88, Gho93, LSP82, MS88, Pet82, Pet83b, PB97, Sor89, FGM+07a, Wu04].
Problems
[Bac84, CFNH18, DP93, MMR95, SRW98].
Procedural [HF87, Lb93, VSS94].
Procedure [CDK+18, GS99, GL80].
Procedure-Modular [CDK+18].
Procedures [AM85, Kat84, NO79].
Process [Kob98, vPS81, WP10].
process-oriented [WP10]. Processes
[AFdR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oss83, RY88, Son84, TY18, dBB85, AE98, KS10, Ber80, Mio83].
Processing [GH80, HSG17, Rei83].
Processor [BG89b, Bud84]. Processors
[GLR83, Per79, LPFP1, ZP10]. Product
[EMH20, RTP17]. Production [Wad90].
Productivity [Sij89]. Profile
[BHM+07, YUUW02]. Profile-based
[BHM+07]. Profiling
[ASAVF19, BL94a, SP97]. Program
[Bal94, Bar85, BAL07, BKB80, Col84, DKKL18, Der85, FPS19, Fsa82, FOW87, FT94, FL91, HSP83, HKR94, HSD22, Jen97, JJC19, KKW14, KWL09, Lam83, Lam88, LFF14, LWR21, MS83, MW80, Mis81, Nie85, PP94, PPS97, Rem81, RTP17, SBS22, TSY00,
Wat94, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NS13, Pau01, RAB+07, SLC03, WZ07, WN08, YF09, DKV07.

Programming [AGT89, Ano18, AR84, ARPS08, BS86, BPP16, BHM+19, BL87, Bir84, Bor81, BMPT94, BWP87, BCEM15, CHY12, COE+20, CL94, Dar90, DGG79, Dug99, FFF+18, Fos96, FL15, GTWA14, Har80, HK85, HO82, Kai89, KH92, Lee86, LMM21, LVRG21, MK94, Mye90, OGJ+18, Pet83b, RCS93, SS84, SNS+14, SZBH86, TK94, TG20, ZSO21, ABH06, BMR01, BdlBH99, CU08, CG86, CKT86, DWWW08, DPPR00, GW99, HBJ98, JPS+08, KSV96, LMD98].

Programming-in-the-Large [MK94].

Programs [AWW95, AK87, AFV98, AB20, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BCE94, BE13, BEF+16, CR87, CB80, CM86a, Cha93, CFNH18, CEW14, CMN91, Cla80, CMF94, CS87, DSFG21, DL18, DGM97, DW99, Deb89, DL93, Deb95, DP97, Di90, EMH20, EGP14, FJK+17, FNDS20, GG85, GM81, Har80, HCHP92, HPR89, How80, HIT97, ISY88, ITF+22, JBK18, JW17, Jon83, JF81, Kna90, Lam79, LS83, MSJ94, ML21, MT92, MRGP20, MHS86, Mye18, NSZS13, OA88, OL82, QL91, Ruo94, SS98, Sch82, SSS81, SS88, TOUH21, TN99, Ven95, Wad90, Web95, Will82a, AE01, AAE04, BCG+07, CSW06, CSS99, DP99, DGV99, D98, DMM01, EGM01, GM12, GH8+96, GH97, GPA+01, Han96, HPSM00, JPS+08, KS96, LM98].

Programs [Leu04, LS09, MO09, NR06, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yin11, dHb96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MWB94, NF89, Zho96].

Promotion [Bir84, Bir85].

Proof [AFdR80, BDJ13, FRW90, GL80, Mii83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Hoo07].

Proof-carrying [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, JW17, LY98, Oss83, GRK+11].

Propagation [SR95, WZ91, Apto00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CLJGP18, Kar84, LM18, OL82, RY88, TB95, Wei89, YS10].

Prophecy [LM22].

Proposed [Fat82].

prossima [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CH87, FA93, GPA+01, MWB94, NF89, Zho96].

Proofs [BHM+19].

Promotion [Bir84, Bir85].

Proof [AFdR80, BDJ13, FRW90, GL80, Mii83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Hoo07].

Proof-carrying [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, JW17, LY98, Oss83, GRK+11].

Propagation [SR95, WZ91, Apto00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CLJGP18, Kar84, LM18, OL82, RY88, TB95, Wei89, YS10].

Prophecy [LM22].

Proposed [Fat82].

Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Pruning [BW99].

PSG [BS86].

publish [Eug07].

publish/subscribe [Eug07].

Pure [BNN18, HU96, Pip97, Tar07].

Purpose [App94b, HSS+14, Spo86].

Pushdown [CBM+19].

PYE [TN19].

Qualifiers [FJKA06].

Qualitative [CFNH18].

Quality [BHM+19].

Quantification [Vol91, Bur91].

Quantified [Gro06, STS03].

Quantitative [CFNH18].

Quantum [FDY12, BH99, Yin11].

Queries [Bal94, CGG+19].

Queuing [BB79].

Quiescence [CM86a].

R [AW82, CKT86, KMM+98].

race [AFF06, PFH11].

Random [AS80].

Randomized [TOUH21].

Rank [CG95].

Rank [Dam03].

Rank [Lee09, TOUH21].

Ratio [CK94] rational [GS11], rationale [CMLC06].

Reach [FKW98].

Reachability [LZR22, NS13, TOUH21].

Reactive [DFR15, AG04, DGG97].

read [AE01, PZJ05].

read-only [PZJ05].

read/write [AE01].

Readable [Spo86].

Reading [AE01].

Real [AL94, MMG92].
RS84b, GH97, HK07, LS98, YMW97].
Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97]. realities [Gor04].
Reasoning [BKOZB13, BLRS12, BPS2, BH99, CB80, DSFG21, Lam88, LN15, Rao94, SBD20, dBB21, TSBR08]. receive [Gor04].
receptive [ABL03]. Recipe [AL94].
Reconciliation [HU96]. Reconstruction [YR94]. Record [LS79, Oho95]. recover [Gor04].
redundant [Coh83, Coh85]. Redundancies [DS88, Sor89]. redundancy [KCL99].
Redundant [Coh83, Coh85]. Reentrant [Bob80]. Reexamination [CG95]. Refactoring [Ste18, TFK11]. Reference [Bob80, Pau21, Wis79, KSK07, KOE+06, LP06, MDJ05].
reference-counting [LP06]. References [Han92, TGT18, TGT20, SV96].
region-based [SYN06]. regions [RR05]. Register [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, KBP22, LaL81]. relating [ABC+21]. Relation [LBN17, MTG80].
Relational [BKOZB13, CB80, GS98, TLLH11, JJD98, JRS10]. Relations [ELS+14, HT86, LH08]. Relationship [BS88]. Reliability [LM18, WN08].
Reliably [TCP+17]. Rely [GEGP17, LFF14, SZLY21]. Rely-Guarantee [GEGP17, SZLY21].
Rely-Guarantee-Based [LFF14]. Remembrances [PM09]. Remote [BCP08, SG90]. Removal [AK82].
Rendezvous [Cha87]. Renvoise [Dha91, DS88, Sor89]. Reoptimization [PS92]. reordering [YUW02]. Repair [BN99, MF88, MYD95, KoC01]. Repairing [CPRT02]. Replacement [MM89].
Representation-Independent [MuL92]. Representations [Lam87, RF97, Wad80, Wad81, BGP99].
Resource [CS95, Cla80, IK05, MQ05, BDFZ09, CEI+07, HR02, HAH12]. Resources [And81, FLBB89]. Respect [Gaz83]. Response [Tic88]. Responsibility [DC22]. Responsiveness [HU96]. Restores [Wis79]. Result [TB95]. Results [Ven95, BGP99, SYH07]. Retargetable [DF80, DF81, MV87]. Retention [LS81].
[PS08]. Revised [SIG17]. Revision
[FM87b]. revisited [MDJ05, Zho96].
Revisiting [DI09]. Rewrite
[FKW98, Ass00]. Rewriting
[KKSD94, BCM99, DDD05, FKW00,
GRS +11, MMM +07]. Right
[KS83, LaL81, SJ06]. Rigorous [SBB +19].
Rings [BP89, Hua93]. RISC [PS93].
Rivieres [Hen83]. RMI [MVV +01].
Robust [LS83]. Robustly [PG21]. Roever
[Moi83]. role [Apt00]. Roman [PB97].
Round [SBB +19]. Round-Off [SBB +19].
Rounding [FL15]. Row [MM89]. RSMs
[CGG +19]. rule [HQRST02]. Rules
[GL00, JTM98, SS84, LS09, SSD09]. Run
[ISY88, TZ07, GMP +00]. Run-Time
[ISY88, TZ07, GMP +00]. Runtime
[Ano18, BLH12, BEF +16, FNBG20, GSS +18,
ISIRS22, TCVB14, BH05a, TSY00]. Rust
[MTK21, Pea21]. RustHorn [MTK21].

S [HCW82]. S/SL [HCW82]. Safe
[AWW95, Dug02, JW17, LMM21, PG21,
SDB20, AFF06, BSvGF03, LS03, Loc13,
NCH +05, SA00, ZCG +07, MH06, SHB +07].
Safe-by-default [LMM21]. safe-for-space
[SA00]. Safer [COE +20]. safety
[FF08, YS10]. same [SS05a]. sampling
[PPT08]. Santa [WP10]. Sapphire [URJ18].
Sather [Moss96]. Satin [VJW10].
satisfaction [DF11]. satisfiability [XA07].
satisfying [Van96a, Van96b]. Saturn
[XA07]. Scalability [TCP +17]. Scalable
[FT94, GKM20, ZSS20, XA07].
ScalExtrat [WM12]. scan [ZSS20].
Scaling [TCP +17]. scan [PS99]. Scanners
[HKR92]. Scanning [GVC15]. Scavengers
[UJ02]. Schauel [KPS92]. schedulability
[GH97]. schedule [TVA07]. Scheduler
[TCVB14]. schedules [MH04]. Scheduling
[BG98b, FGL94, KR79, KPF95, LPP01,
L990, LCBS19, NB99, NSTD +15, PS93,
TCVB14, Ban11, ME97, YF98]. schema
[RLS +01]. Scheme

[Mur91, YR94, IV06, WC97]. Schemes
[Son87, TM93]. Schorr [BP82]. Schwanke
[Tic88]. Scientific [How80]. Scope
[App94b]. Scratchpad [SRM10]. Screen
[MM89]. SDF [VHK00]. Search
[Dar90, BH99, SS05a]. Searching [CC97].
Section [Mūl21, Wol92]. Secure [ABC +21,
BCEM15, PAS +15, PG21, BBF +11, HY07].
Securely [RB94]. Securing [BNV +21].
Security
[TGT18, TGT20, BFGT08, BFG08]. see
[BR10]. Selection [DF84, SSS81]. Selective
[LTMS20, Min84, OLH +16, ME97]. Self
[BP89, DHS09, Gho93, Gom92, ABB +09].
self-adjusting [ABB +09]. Self-applicable
[Gom92]. Self-Stabilization
[Gho93, DHS09]. Self-Stabilizing [BP89].
Semantic [AAR +10, AW95, GGL15,
LCK +22, ML21, MH06, HCW82].
Semantics
[ABHI11, An87, AB94, AW92, BGL93,
Ber94, BLRS12, Bou88, Boy10, CPS93, CD79,
FA93, GM81, Gud92, Han94, JPP91, Kai89,
Mul92, NF89, Set83, Sou84, WM95, Wan82,
dBB85, ACE96, BM01, Bou06, GZ04, MF09,
PCJD08, SWU10, SJ03, Tar07, WKD04].
Semantics-Based
[BGL93, CPS93, PCJD08].
Semantics-Directed [Han94, Set83].
Semaphore [CR87]. Semiring [BM01].
Semiring-based [BM01]. Send [Gor04].
Send-receive [Gor04]. Sensitive [OLH +16,
HBS22, PKH07, Ram00, Rep00, RSY08].
Sensitivity [FL15, KRR18, LTMS20].
Separating [DD01]. Separation
[BDJ13, DJP +16, OYR09, BBT07, PZ22].
Separators [GSO94]. Sequences
[GSW95, IH02]. Sequential [ABS09, Miq19].
Sequential [AFdR80, Ber80, Gor21, GLR32,
HM84, KS79, MC82b, Moi83, Sou84].
Sequentialization [ITF +22]. Series
[Wat91]. Served [LH91]. server [LDM07].
servers [BBYG +05]. service [CMS03].
Services [CHY12, RB94, BFG08, CGP09].
Session [DDMP22, KBP22, Pad19, TY18].
Session-Based [TY18]. Sessions [TY21].
Set [Sha82, FF99]. set-based [FF99].
SETL [DGL+79, FSS83, SSS81]. Sets [DP82, DPPR00]. Setting [Lin79, Nie85, HL05]. SHA [App15].
Share [SS88]. Shared [Cha93, FLBB89, KH92, KRS88, LB22, Pet83b, Dug02, HBJ98, TSY00, BC91].
Shared-Memory [Cha93, TSY00]. Sharing [CSS99, Lam87]. SHErrLoc [ZMVPJ17].
Shift [BN99, MYD95]. Shift-Reduce [BN99, MYD95]. Short [Sag86]. Should [LP99]. Side [Boe85, KWL9, RLS+01, TA08b].
simpler [BKRW98, BKRW05]. Simplification [LZ22, NO79]. Simulat [Lam80]. Simulating [KKSD94].
Simulation [AMT14, Bar81, Bor81, LFF14, HQR02].
sin] [Lam90]. Single [BM94, CFR+91, JBK18, GFP08].
Size-change [BA08, Lee09]. Sized [DG19].
Soisalon-Soininen [LaL84]. Solution [ADG+94, DS88, Gho93, Pet83b, Sor89, WP10]. Solving [GS11, HLH19, HSD22, NSTD+15, SRW98]. Some [AB94, AK82, Sha82, Sor89].
Space/time-efficient [YF98]. spaces [JLF02]. Span [LS08, Rob79]. Span-Dependent [LS80, Rob79].
Spanning [GHS83]. Sparse [OHL+14]. Spatial [NSTD+15]. Special [Ahm20, Mül21, Wol92, Yos22, Sag07]. Specialization
[AJHR14, BC08, GJ05, HT04, SLC03]. specialization-point [GJ05]. Specializing [BCD90]. Specific [ASAVF19, Gie83, Tra08].
Specification [BCM99, CDFP89, EO80, Fea87, GMH81, Jon94, Kam3, LN15, Lin93, LJ99, Loc87, Mai82, Mor88, PPS79, RY88, TWW82, LPP09, LPS004]. Specificational [MB99]. Specifications [AL93, AL95, CBN86, DB95, Gaz83, Loc87, MW84, MB83, Rei83, Sch85, Win87, Zav85, Zie94, vPS81, JDD98, YS97].
Specifying [GM81, Lam83, RF97]. Speculation [YBL16, GB99]. speculative [KOE+06]. SPL [HSG17]. Split [Com80].
[Cho93, DHS09]. Stabilizing [BP89]. Stack [CGS+03, FG03, LaL81, SDB20, CF04, Zho96]. Stack-Controlling [LaL81]. Standard [Fat82, HM93, Qia00, Blu99].
State [ACW90, BLH12, CES86, GC86, PP91, Pur91, Zav85, Ay01, ABEB11, MBD09].
Statement [Ell82, Mor88, SM81].
Statement-Oriented [Ell82, SM81].
Statements [CF94].
States [ADGM91, CBMO19].
Static [AKNP17, AC94, BM94, CGJ97a, CF94, CFR91, DL98, Deb98, HOYY18, LLK+17, LST98, MRGP20, MOS07a, Mye18, PW94, SBE19, YS99, ZMVPJ17, CEI07, GPF08, GZ90, HO07, PSS05, PFH11, RSL10, VJB12, WCM00, YF09, AFF06, FFLQ08].
Statically [ACPP91].
Statistical [LLK17].
Statistics [Lan80].
Staveren [Pem83].
Steensgaard [Ell82, SM82].
Steensgaard-Madsen [Ell82, SM82].
stencil [LS04].
Step [Col84, TVA07].
Steps [Jon83].
Stepwise [CM86a, SL92].
Stevenson [Pem83].
Storage [BBC16, Bre89, JP81, LDK96, Mur91, Rob79, Sip82, KOE10, TVA07].
Strategies [Bir84, Bir85, Geo84, NN86].
Strategy [Bre89, PK80, WSH15, ZS20, GS11].
Stratified [SS98].
Stream [HSG17].
Streams [CFP04].
Strict [Bee94].
Strictness [Bee94, SR95].
String [GH80].
Strings [AS80, KS88, KS89, ADR06, KK07].
Strong [KZC15, PZ22].
Strong-separation [PZ22].
Structural [SZBH86, MTSS09].
Structurally [HS11].
Structure [BC79, GKL94, HM93, Mis94, MBB94, She91, HY07].
Structure-Oriented [GKL94].
Structured [BM94, CHY12, GS82, Har80, LS81, Mur91, RR03].
Structures [ANP89, BBD10, FL81, EGGP17, RCRH95, SSS98, LPS004, RAB+07].
Study [BHM+19, FT98, BH97, BdlBH99, DF98, KF03, LS98].
Style [BDM15, LR19].
Sublanguage [DGL94].
Sublinear [RD87].
Sublinear-Space [RD87].
Submodule [MB83].
Subroutines [SA99].
subscribe [Eug07].
Subscribe [CG95].
Subsequence [Han92].
Subset [BL87].
Substrings [BL94b, Han92].
subtype [Duc06, KR01].
Subtypes [Vol91, Bur91].
Subtyping [AC96, AC93, GGL15, LN15, LR19, LBN17, LW94, XBS00, GZ05, IV05].
Subtyping-Relation [LBN17].
SUIF [HAM+05].
Supercompiler [Tur86].
Superimposition [Kat93].
Supermartingales [TOUH21].
Support [Bai94, DS90, Fea87, LS83, MK94, Wei90, TSY00].
Supporting [RCRH95].
Supports [ABPS98].
Suppression [DS88, FGL94, Sor89, JNGG10].
Survey [Apt81, GPA+01].
Suspension [CFM94].
Symbol [ABR81, Rei83].
Symbolic [Dil90, HP96, Hal85, Hen82, NcS20, RR05, SBB+19, YMW97, BGP99, MPM03, CM93, WST85].
Symmetric [FY85].
Symmetry [ES97, SG04].
Synchronisation [CHMY19].
Synchronization [Bag89, DJP16, Her91, KR88, RS84b, Sch82, CGS+03, DHH12, Ram00, RD03].
synchronization-sensitive [Ram00].
Synchronizing [And81].
Synchronous [CS87, TLHL11].
synchrone [CS04].
Syntactic [BF87, GMZ00, MF88, PK80, WII82b].
Syntax [DMM88, Ode93, Ric85, SSS83, BMR01, CPRT02, Je03, HCW82].
Syntax-Directed [DMM88].
Syntax-Error-Handling [SS83].
Syntax/Semantic [HCW82].
Synthesis [AE98, AE01, AA04, Ban87, BD13, BKL97, Cla80, DKKL18, MW80, MW84, MV87, SBS22].
System [AFdR80, AW85, BS86, Bou88, CB80, Fea82, GD82, GP98, Han81b, HM84, JMY92, LL13, ML80, Moi83, MH86, PO95, RD13, SA99, WC97, BH05a, FF90, HO07, JB06, KS10, MTSS09, NP08, PE08, STS05, MWCG99].
Systematic [DC22, DF98, PSS05].
Systems [ABLP93, Ano18, AR84, ACS84, BKS88, BG9a, BDP93, CI84, CDFP98, CBDGF95, CIJGP18, CES86, CPS93].
CBMO19, DL18, DAW88, Fea87, FKW98, Gor21, Hen86, Jag94, Jom94, JTM98, Kar84, Kat93, Kau84, Lam84, LW93, Mis86, Mye18, SZLY21, TGT20, WGS92, WGS93, WCW90, van88, Ass00, AE98, BCP08, BCM99, BGP99, CSM00, DGG97, GS11, TP04, TZ07, YMW97, WCW91]. Systolic [Hen86].

T [Zic94]. Table [BMW91, PK80, DAS98].

Table-Drive [PK80]. Tabled [SS98].

Table-Drive [PK80]. Tabled [SS98].

Target [Wan82]. Task [GP95, NSZS13, RRB19, HBJ98]. task-HBJ98]. Task-Level [GP95].

Task-Parallel [NSZS13]. Tasking [Dil90]. Tasks [GP95]. Taylor [BBB19]. tcc [PHEK99].

Technical [BS88, Bur91, Bur91, Col89, CM93, DS88, ELL82, FA93, Fra81, Hen83, LA83, La84, Moh81, MO83, MS88, NNS86, PAR90, PEM83, SOR89, SM82, TAN83, TIC88, VOl91, WST85, WIR91, YBB88, MMG00].

Technique [AWW95, BN99, BCD+15, JSB+12, KKM90, NSSS81, SSSS83, JNGG10, KBC+99, RD97, SY09].

Techniques [AK82, CMMN91, DP99, GLR83, HOW80, TWW82, WCC90, WCW91, BHK07, DDD05, DEMD00, LS09, MSR00, SS96, TSL+02]. technology [LS98].

Temporal [AS89, CBDGF95, CSE86, Kar84, Lam94, MW84, GS99, KWL09].

temporal-ordering [GS99]. temporaries [RMH06].

Ten [Apt81]. Tensor [RTP17, SBS22]. Tentative [Jon83].

Tenuring [UJ92]. Term [KKSD94, MBT09, GRSK+11].

Termination [AF84, Apt86, BAGM12, BCG+07, CFNH18, CDF+18, DSFG21, DG19, Fra80b, GJ05, HSP83, JBBK18, M82b, TM93, BAL07, BA08, DDDV99, GRSK+11, Lee09, PR07, SMP10, FM80a, Moh81]. Test [WY83, WW95, DUC08]. Testing [AMT14, GMM81, TK94].

Tests [CH91, Koz97, WIR91, GZ05]. Text [CC97].

TF [SBS22]. TF-Coder [SBS22].

The Boy [Kam83, L284, SS82, PS96]. Theoretic [ES97, Sha82, KV00]. Theoretical [KRR18].

Theories [NSTD+15, Bon06]. Theory [ABB20, CZ84, KDS94, NBG13, Ryu16, TLHL11, CP09, MH06, Obo07, Pan01, SS05b, Bl03, FG03]. ThingLab [Bor81].

things [PM09]. Thinking [WLBF16].

Thinning [Web95].

Third [OSS83].

Tichy [Tic88]. Tile [JB20].

Tiling [JLF02, LS04, RKSR12].

Time [AL94, ABR81, BLM9b, BLH12, Col91, DLR16, HBS22, Hol87, ISY88, JEF85, Lam84, MMG92, PS93, RS84a, RS84b, TN10, WIR91, YR94, Zic94, BAL07, BALP06, BKRW98, BKRW05, DDD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Mi85, Ram99, Rep98, SYK+05, Tra08, TZ10, Wu04, YMW97, LW93].

Time-Constrained [Zic94, LPP01].

Time-Critical [PS93]. time-efficient [GB99, YF98]. Time-sensitive [HS82].

Timed [Zic94]. Timeout [Lam84].

Timing [LJ99]. tokenization [Rep98].

Tolerance [LJ99].

Tolerant [CS95, L84, AAE04].

Tool [CPS93]. Toolkit [BDFH97]. toolkits [VHM+01].

Tools [van88]. Top [SZLY21].

Top-down [SZLY21]. TOPLAS [Ano18, TGT20, MP10a, MP10b]. topology [DDM11].

Total [SAN96]. Trace [ABC+21, FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12]. Trace-Based [WGS92, WGS93, WM12].

Trace-relating [ABC+21]. traces [HB+06, WR08].

Tracing [BL94a, DLR16, M+07]. tradeoffs [ZGZ05].

Tracing [VR95]. Traits [DNS+06].

Transactional
REFERENCES

LWR21, Mye90, Ode93, Pet83b, PP94, PBR+15, SS84, SS96, Sok87, SGL98, TVvS82, ACM11, BH99, CSW06, CGS+03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, SzyL21, ST00a, SGL96, TFK+11, VJB12,XA07, YUW02, ZSD09, Pem83.

Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KC01, MOS07a]. Value [HL82, dBB21, HL05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Han92, HL05, SW97a].

Variable [MS83, MTG80, FMoPS11, GLMM05]. Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NcS20].

ValPan [Bur91]. Volume [Ano18, TGT20].

W [Tie88]. Wait [Her91]. Wait-Free [Her91]. Waite [BP82]. Warp [LW93]. way [VHM+01]. Weak [AMT14, KZC15]. weakening [SYH07]. Weaker [Boo82].

Web [BFG08, BLRS12, CYH12, CGP09, CMS03]. Weight [GHS83]. While [Pet83a, BC85b, GM81]. while-Programs [BC85b]. Whole [BDH+16]. Widening [KKW14, VJB12]. win [Lam90]. Within [FKW98]. Without [Cop94, Ode93, AS89, Cas95, Sto04, VR95].

Witnessing [TA08b]. Workbench [CPS93]. World [GG85, DF11].

X [OLH+16, MSM+16]. X-Sensitive [OLH+16]. X10 [GH+19]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].

Zones [GMN+21].

References

Ancona:2007:PCT

REFERENCES

REFERENCES

REFERENCES

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

Attali:1996:NSE

Alur:2011:SMC

Abadi:1991:DTS

Archer:1984:URR

Aggarwal:1990:ALP

Abadi:1991:DTS

Afek:1994:BFF

Alglave:2021:ACF

REFERENCES

Abadi:2006:TSL

Alpuente:1998:PEF

Appel:1993:Eb

Alur:2004:MRH

Aung:2014:SS

Aho:1989:CGU

Alur:1998:FF

Apel:2010:CUF

Ahmed:2020:ISI

Arsac:1982:STR

Alglave:2017:DSF

Ait-Kaci:1994:FPC

Abadi:1993:CS

 References

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Anger:1989:LIC

Frank D. Anger. On Lamport’s interprocessor communi-

REFERENCES

Anonymous:1989:AI

Anonymous:1989:IA

Anonymous:1990:AI

Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1991:IA

Anonymous:1992:AI

Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI
REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Anonymous:1998:AI

Anonymous:2002:ADC

Anonymous:2002:LDD

Anonymous:2018:CCL

Arvind:1989:SDS

Anson:1987:GIC

Andrews:1988:OSL

REFERENCES

Apt:1994:OCF

Abadi:2007:E

Appel:1993:Ea

Appel:1994:ABG

Appel:1994:PS

Appel:2015:VCP

Apt:1981:TYH

Apt:1986:CPD
REFERENCES

Apt:2000:RCC

Andrews:1980:AAI

Alp:1989:VTP

Arnold:1980:URG

Andersen:2019:FSP

Austin:2017:MFD

Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. Multiple facets for dynamic information flow with exceptions.
REFERENCES

Assmann:2000:GRS

Arenaz:2008:XEF

Ashcroft:1982:RS

Avrunin:1985:DAD

Alur:2001:MCH

Ben-Ari:1984:AFG

REFERENCES

Blume:1999:HM

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

[Bal94] Thomas Ball. Efficiently counting program events with support

Ben-Amram:2007:PTA

Brecht:2006:CGC

Banerjee:1987:MSR

Banerjee:2011:MFT

[BB79] Eric Beyer and Peter Buneman. A space efficient dynamic allocation algorithm for queuing messages. ACM Transactions on Programming Languages and
Breuer:1994:DET

Bhaskaracharya:2016:ASO

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL

Bates:1985:PP

REFERENCES

Bergeretti:1985:IFD

Brogi:1991:CLS

Bugliesi:2004:ACM

Bossi:1990:MSL

Bettis:2015:DIV

Bugliesi:2015:ART

Benton:2004:MCA

Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions for C#.
REFERENCES

Bruynooghe:2007:TAL

Bottoni:1999:SDC

Bartoletti:2009:LPR

Briggs:1994:IGC

Bergstra:1997:TCT

Bhatia:2008:RSE

REFERENCES

Blackburn:2016:TWT

Botincan:2013:PDP

Bernardeschi:2008:DBV

Bueno:1999:EAI

Biernacki:2015:DCP

Bowman:1993:RAN

Barthe:2014:FVS

Bossi:1994:TAP

Bouajjani:2013:ARP

Beemster:1994:SOG

Brockschmidt:2016:ARS

Bernstein:1980:OGN

Berzins:1994:SMS

V. Berzins. Software merge: Semantics of combining changes...

REFERENCES

REFERENCES

Breuer:1997:RCS

Buch:2013:PRR

Buch:1998:NSL

Buch:2005:CNS

Back:1988:DCA

Bic:1987:DDM

(print), 1558-4593 (electronic).

Ball:1994:OPT

Bates:1994:RSL

Blanc:2003:EAJ

Bodden:2012:PEF

Bloss:1994:PAO

Boudol:2012:RAW

Blume:1999:DAS

REFERENCES

REFERENCES

Banerjee:2018:LAF

Busi:2021:SIE

Boehm:1985:SEA

Bohm:1982:WPL

Borning:1981:PLA

Alan Borning. The programming language aspects of ThingLab,
REFERENCES

Brody:1982:CAA

Burns:1989:USS

Bendersky:2012:SOB

Balabonski:2016:DFM

Baumgartner:1997:ISC

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Bahlke:1986:PSF

Bermudez:1988:NRB

Bruce:2003:PTS

Burke:1993:IOE

Budd:1984:ACV

REFERENCES

[Car95] W. H. Carlisle. Type checking concurrent I/O. ACM Transactions on Programming
REFERENCES

[Castagna:1995:CCC]

[Cattell:1980:ADC]

[Casanova:1980:FSR]

[Click:1995:CA]

[Charron-Bost:1995:LTP]

[Cotton-Barratt:2019:MVP]

[CC95]
REFERENCES

Chatterjee:2019:NPW

Codish:1994:SAC

Chatterjee:2018:AAQ

Cortes:2004:HLA

Cytron:1991:ECS

Clark:1986:PPP

Chin:1995:ROA

Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and Samuel P. Midkiff. Stack allocation and syn-

Chatterjee:1995:OEA

Cohen:1987:PCU

Chow:1990:PBC

Charlesworth:1987:MR

Chatterjee:1993:CND

Charlesworth:2002:UAC

REFERENCES

Chitil:2005:PPL

Cogumbreiro:2019:DDV

Carbone:2012:SCC

Chatterjee:2018:AAP

Cejtin:1995:HOD

Consel:1993:PPE

Carr:1994:IRM
S. Carr and K. Kennedy. Im-

Chirica:1986:TCI

Copperman:1993:TCF

Codish:1995:IAI

Clifton:2006:MDR

Choi:1991:TDP

Christensen:2003:EJH

Cohen:1983:CCA

Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms for garbage
REFERENCES

[Com80] Douglas Comer. A note on median split trees. ACM Trans-

Scott D. Carson and Paul F. Reynolds, Jr. The geometry

REFERENCES

Cooper:2001:OSR

Carlsson:2006:MAC

Collberg:2007:DGB

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG
REFERENCES

REFERENCES

REFERENCES

Debray:1989:SIM

Debray:1995:CDA

DeMillo:1983:GEI

Debray:2000:CTC

Dershowitz:1985:PAI

DeFraine:2012:EAC

Davidson:1980:DAR

Davidson:1981:CDA

[DF81] Jack W. Davidson and Christopher W. Fraser. Corrigendum:

[DF80] Davidon:1984:CST

[DF84] Davidson:1984:CST

[DGL+79] Dewar:1979:PRE

Robert B. K. Dewar, Arthur Grand, Ssu-Cheng Liu, Jacob T. Schwartz, and Edmond

REFERENCES

REFERENCES

David:2018:PSP

Drinic:2007:PPC

Debray:1993:CAL

Degano:1988:EIL

Diwan:2001:UT

Danvy:1996:EED

Olivier Danvy, Karoline Malinjkstad, and Jens Palsberg. Eta-expansion does the trick. *ACM
REFERENCES

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärl, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Das:2005:PFI

Dawson:1996:PPU

Dekel:1983:PGP

Dreichsler:1988:TCS

Dewan:1990:ASA

Dhamdhere:1998:DCD
REFERENCES

D'Osualdo:2021:TLC

Dewar:1982:TDG

Duggan:1999:DTD

Duggan:2002:TSL

DeSutter:2007:PID
REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Emilsson:2007:TBP

Eugenio Emils...
REFERENCES

REFERENCES

Foster:2006:FIT

Fuchs:1985:OPF

Fokkink:1998:WAR

Fokkink:2000:LRE

Fraser:1981:EDS

Fradet:1991:CFL

Frechtlings:2015:MMS
REFERENCES

REFERENCES

REFERENCES

Freudenberger:1983:ESO

Foster:1994:CAS

Fricke:1995:ICI

George:1996:IRC

Gazinger:1983:PSP

Greiner:1999:PTE

Ganapathi:1985:AGD

Gini:1985:DWM

Gesbert:2015:LAD

Gorinova:2022:CIT

Griswold:1980:AUP

Gerber:1997:SRT

GarciaDeLaBanda:1996:GAC

Grove:2019:FRR

Griswold:1981:GI

Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. ACM Transactions on Programming Languages and Systems, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Giegerich:1983:FFD

Gupta:1993:APE

Glenstrup:2005:TAS

Garlan:1994:TAM

Gharat:2020:GPG

Gries:1980:APC

Grumberg:1994:MCM

Gavanelli:2005:DIK

Greenberg:1988:SEA

Albert G. Greenberg, Boris D. Lubachevsky, and Andrew M. Odlyzko. Simple, efficient, asynchronous parallel algorithms for maximization. *ACM Transactions on Programming Languages and Systems*, 10(2):313–
REFERENCES

REFERENCES

Grant:2000:BCD

Gange:2015:IAM

Gomard:1992:SAP

Gorlatch:2004:SRC

Gordon:2021:PIS

Colin S. Gordon. Polymorphic iterable sequential effect systems. ACM Transactions on Programming Languages and Systems, 43(1): 4:1–4:79, April 2021. CODEN ATPSDT. ISSN 0164-

Ralph E. Griswold. The evaluation of expressions in Icon.
REFERENCES

Gloy:1999:PPU

Gowlitza:2011:SSR

Gupta:1994:ERA

Giacobazzi:1998:LMR

Giesl:2011:ATP

Gawlitz:2011:SSR

Grossman:2006:QTI

Grove:1999:PPU

Gowlitza:2011:SSR

Gupta:1994:ERA

REFERENCES

Gil:2005:EST

Gil:2007:EDD

Hoffmann:2012:MAR

Hailperin:1998:COC

Hailperin:2005:CCC

REFERENCES

Harman:2009:DCS

Hassen:1998:TDP

Hickey:1992:CAM

Huang:2010:DBR

Yuqiang Huang, Bruce R. Childers, and Mary Lou Soffa. Detecting bugs in register allocation. *ACM Transactions
REFERENCES

Holt:1982:ISS

Hirzel:2002:UTL

Hennessy:1982:SDO

Hennessy:1986:PSS

Henglein:1993:TIP

Herlihy:1991:WFS

REFERENCES

REFERENCES

[HL82] Maurice P. Herlihy and Barbara Liskov. A value transmission

Hirschwitz:2005:MMC

Haslbeck:2022:FDM

Hague:2019:CMC

Hull:1984:CSP

Harper:1993:TSS

Hamlen:2006:CCE

Hicks:2005:DSU

Michael Hicks and Scott Nettles. Dynamic software updat-
Homan:1982:PE

Hoguchi:2007:STS

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

Howden:1980:ASV

Heo:2018:ASA

REFERENCES

REFERENCES

Huang:2011:MSS

Hu:2022:SPS

Hirzel:2017:SEL

Hansen:2004:PSM

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM
REFERENCES

Hudson:1991:IAE

Huang:1990:DDD

Huang:1993:LEU

Hirzel:2007:FOP
REFERENCES

Inoue:1988:AFP

Inverson:1979:O

Igarashi:2006:VPT

Jay:2004:PC

Joisha:2006:AAS
Jangda:2020:EFT

Jacobs:2018:MTV

Janssen:1997:MGR

Jacek:2019:OCW

Jefferson:1985:VT

Jeffery:2003:GLS

Jensen:1997:DPA

REFERENCES

Juelich:1981:CAS

Jeon:2019:MLA

Jackson:1998:IFM

Jimenez:2002:RTN

Jagannathan:2014:ARV

Jeannet:2010:RAI

Jaffar:1992:CLS

REFERENCES

1. **Jerey:2010:ESA**

2. **Joshi:2006:DP**

3. **Jones:1983:TST**

4. **Jones:1990:EEC**

5. **Jonsson:1994:CSV**

7. **Jourdan:2017:SPC**
<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jagadeesan:1991:FAS</td>
<td></td>
</tr>
<tr>
<td>Jacobs:2008:PMC</td>
<td></td>
</tr>
<tr>
<td>Joung:1994:CFO</td>
<td></td>
</tr>
<tr>
<td>Joisha:2012:TTE</td>
<td></td>
</tr>
<tr>
<td>Juan:1998:CVC</td>
<td></td>
</tr>
<tr>
<td>Jakobs:2017:PPF</td>
<td></td>
</tr>
<tr>
<td>Kaiser:1989:IDS</td>
<td></td>
</tr>
<tr>
<td>[Kai89] Gail E. Kaiser. Incremental dynamic semantics for language-based programming environments. *ACM Trans-</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCT

Kaufman:1984:TLR

Kandemir:1999:GCO

Keizer:2022:SCC

[KBP22] Alex C. Keizer, Henning Basold, and Jorge A. Pérez. Session coalgebras: a coalgebraic view on regular and context-free session types. ACM Transactions on Programming Languages and Systems, 44(3):18:1–
REFERENCES

Kim:2001:ERV

Kennedy:1999:PRE

Khedker:1994:GTB

Kistler:2000:ADM

Kistler:2003:CPO

Knowles:2010:HTC
REFERENCES

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM

Knapp:1990:EFD

Kobayashi:1998:PDF

Naoki Kobayashi. A partially deadlock-free typed process cal-
REFERENCES

Kim:2006:ERI

Kobayashi:1999:LPC

Kennedy:1979:DAG

Ken Kennedy and Jayashree Ramanathan. A deterministic attribute grammar evaluator based on dynamic scheduling.
REFERENCES

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

Krogh:1989:AAP

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Kim:2018:TFS

Korach:1984:DAF

Kruskal:1988:ESM

Knoop:1994:OCM

Kieburtz:1979:CCS

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

LaLonde:1989:DFD

Lamport:1979:NAP

Lamport:1980:CNA

Lamport:1983:SCP

Lamport:1984:UTI

Lamb:1987:ISI

Lamport:1988:CPB

Lamport:1990:WSP

[Lam90] Leslie Lamport. win and sin: Predicate transformers for

Lamport:1994:TLA

Landwehr:1980:ATS

Larchevèque:1995:OIP

Lahav:2022:WDA

Lennon-Bertrand:2022:GCI

Ligatti:2017:SRC

Lozano:2019:CRA

Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Christian Schulte.

Lorch:2022:AAV

Liao:1996:SAD

Lee:2007:DIE

LaLonde:1981:HOP

LeMetayer:1988:AAC

Leeman:1986:FAU

Liu:2019:RIP

Lindstrom:1979:BGC

Lin:1993:PIA

Liu:1999:SVF

Lee:2002:ADC

Lee:2017:SNS

Lidman:2018:VRP

Lamp:2022:PMS

Leuschel:1998:CGP

Liu:2021:SDC

Leino:2002:DAI

Leavens:2015:BSS

Laufer:1994:PTI

Lochbihler:2013:MJM

REFERENCES

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

[L98] Jun Lang and David B. Stewart. A study of the applicability of existing exception-handling techniques to component-base real-time software technology. *ACM Transactions on Programming Languages and Systems*, 20
REFERENCES

Levi:2003:MSA

Li:2004:ATI

Liquori:2008:FME

Liu:2005:OAA

Lamport:1982:BGP

They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any $n \geq t > 0$, where n is the total number of processes and t is the number of faulty processes.

Liu:1998:SCI

Yanhong A. Liu, Scott D. Stoller, and Tim Teitelbaum.
REFERENCES

Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. *ACM Transactions on Programming Languages and Systems*, 24(2): 112–152, March 2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

0164-0925 (print), 1558-4593 (electronic).

Leivent:1993:MFT

Liskov:1994:BNS

Liu:2021:ICU

Lee:1998:PAF

Li:2022:FGS

Mallgren:1982:FSG

Merlin:1983:CSS

Philip Merlin and Gregor V. Bochmann. On the construction of submodule specifications and communication protocols.
REFERENCES

Morris:1999:SF

Millstein:2004:MTH

Morris:2009:TTN

Misra:1982:DGA

Misra:1982:TDD

McGraw:1982:VLD

McKinley:1996:IDL

REFERENCES

Morrison:1991:AHA

Moreau:2005:BDR

Moon:1997:PNC

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

Moriconi:1986:PSP

Mark Moriconi and Dwight Hare. The PegaSys system: Pictures as formal documentation of large programs. *ACM
References

REFERENCES

REFERENCES

Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Masticola:1995:LFM

Morgan:1996:PPT

Mohan:1981:TCF

Moitra:1983:TCA

REFERENCES

Monniaux:2008:PVF

Morgan:1988:SS

Moller:2007:SVX

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

Moore:2002:AC

REFERENCES

McKinley:2007:ECG

McKinley:2010:DVT

McKinley:2010:PVT

Kathryn S. Mckinley and Keshav Pingali. La prossima vita at TOPLAS. *ACM Transactions on Programming Languages and Systems*, 32(6):20:1, August 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Melo:2020:TIC

Maher:1983:API

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

Murphy:1988:NDP

Marriott:1994:DAI

Marino:2016:DXU

Madhavan:2000:EGG

Morris:2008:DNF

Moret:1980:AVR

Matsushita:2021:RCB

[Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi.]

MacDonald:2009:DDP

Muller:1992:MLR

Muller:2021:ISS

Maassen:2001:EJR

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Manna:1980:DAP

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

Melicher:2022:BAE

McKenzie:1995:ERS

Myers:1990:CUI

Brad A. Myers. Creating user interfaces using programming

REFERENCES

Norris:2016:PAM

[ND16] Norris:2016:PAM

[Ni85] Nielson:1985:PTD

[FA93] See also remarks in.

[N85] Nix:1985:EE

[FA93] See also remarks in.

[FA93] See also remarks in.

[FA93] See also remarks in.

REFERENCES

REFERENCES

[Oh:2016:SXS] Hakjoo Oh, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. Selective X-sensitive analysis guided by im-

REFERENCES

Odersky:2004:GE

Oppen:1980:P

Ossefort:1983:CPC

O'Hearn:2009:SIH

Pingali:1985:EDD

Pingali:1986:CFI

Pingali:1986:EDD

REFERENCES

REFERENCES

finding the largest of a set of n uniquely numbered processes in a ring. The algorithm requires $O(n \log n)$ messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

Pratikakis:2011:LPS

Patrignani:2021:RSC

Poletto:1999:CTL

Paek:2002:EPA
Yunheung Paek, Jay Hoeflinger, and David Padua. Efficient

REFERENCES

256–289, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-

Pottier:2005:SAS

Pierce:2000:LTI

Pugh:1994:SAU

Pugh:1998:CBA

Palsberg:1995:EIA

Jens Palsberg, Cun Xiao, and Karl Lieberherr. Efficient imple-

Rogers:1995:SDD

Richardson:1993:DPL

Reps:1987:SSE

Rinard:1997:CAN

Rinard:2003:ESB

Rossberg:2013:MMM

Rong:2008:RAS

REFERENCES

Reiss:1983:GCS

Rem:1981:APN

Reps:1986:GEI

Reps:1998:MMT

Reps:2000:UCS

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganaranayanan:2012:PLT

Rinard:1998:DIE

Ryder:2001:SIM

Rival:2007:TPA

REFERENCES

Ramanath:1984:JML

Reif:1984:RTS

Raja:1997:CFC

Reps:2010:FDL

Reps:1983:ICD

Reps:2017:NPA

1. REED:1988:SVL

2. RYU:2016:TOO

Sukyoung Ryu. ThisType for object-oriented languages: From theory to practice. *ACM Transactions on Programming Languages and Systems*, 38(3):8:1–8:??, May 2016. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

3. STA:1999:TSJ

4. SHA:2000:ESS

5. SAG:1986:SPC

6. SAG:2007:ISE

7. SAM:1980:CAP

8. SAN:1996:TCL

David Sands. Total correctness by local improvement in the transformation of functional programs. *ACM Trans-

David A. Schmidt. Detecting global variables in denotational specifications. *ACM Transactions on Programming Languages and Systems*, 7(2):
REFERENCES

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Schwanke:1988:SR

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Shankar:1992:SRH

Schultz:2003:APS

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

REFERENCES

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TRO

Spoto:2010:TAJ

Solworth:1992:E

Sonnenschein:1987:GTS

Suhendra:2010:SAC

Sagiv:1998:SSA

Sagiv:2002:PSA

Soisalon-Soininen:1982:IEE

Schlichting:1984:UMP

Shasha:1988:ECE

Skeppstedt:1996:UDA

Jonas Skeppstedt and Per Stenström. Using dataflow analysis techniques to reduce ownership overhead in cache coherence protocols. *ACM Trans-
REFERENCES

[Sneyers:2009:CPC] Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of constraint handling rules. ACM Transactions on Programming Languages and Systems,

Schonberg:1981:ATS

Sippu:1983:SEH

Snelting:2000:UCH

Sperber:2000:GLP

Steimann:2018:CBR

Stone:2004:EOL

Saha:2003:IAQ

REFERENCES

Shao:2005:TSC

Smith:1996:PTV

Sangiorgi:2019:EBP

Simpson:2020:BEM

Sabry:1997:RCV

Steckler:1997:LCC

Sewell:2010:NPP

REFERENCES

Tip:2011:RUT

Toro:2018:TDG

Toro:2020:CTD

Thorup:1994:CGA

Tichy:1986:SR

Tichy:1988:TCT

REFERENCES

181

URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/214507.html. See [SK88].

[Tick:1994:DTN]

[TLHL11]

[Thakur:2019:PFP]

[Takisaka:2021:RRS]

[Thammanur:2004:FME]

[Tratt:2008:DSL]

Laurence Tratt. Domain specific language implementa-

[Tanenbaum82] Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Stevenson. Using peephole optimization on intermediate code. ACM Transactions on Programming Languages and Systems, 4
REFERENCES

See remarks [Pem83].

Thatcher:1982:DTS

Toninho:2018:ISB

Toninho:2021:PSF

Tse:2007:RTP

Ungar:1992:ATP

Unger:2002:HIL

Ugawa:2018:TSL

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Vera:2005:ACM

vandenBos:1988:AIT

VanderZanden:1996:CIA

VanderZanden:1996:IAS

Vansummeren:2006:TIU

Vera:2004:FAF

Venkatesh:1995:ERD

VanRoy:1997:MOD

vonHanxleden:2000:BCP

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Volpano:1991:TCS

REFERENCES

Peter J. L. Wallis. External representations of objects of user-defined type. *ACM Transactions on Programming Languages and Systems*, 2(2):
REFERENCES

[187]

137–152, April 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Wal81].

[Wall:1992:ESD]

[Wanders:1983:UF]

[Waters:1983:UFC]

[Wright:1997:PST]

[Waters:1994:CBP]

[Wright:1997:PH]

REFERENCES

[Wet82] C. S. Wetherell. Error data values in the data-flow language VAL. ACM Trans-
Weyuker:1983:ATD

Wagner:1998:EFI

Williams:1982:DAF

Widom:1993:CTB

Whalley:1994:AIC

Williams:1982:FNS
REFERENCES

Wing:1987:WLI

Wirth:1991:TCR

Wise:1979:MGC

Wright:1998:PSE

Wellings:2000:IOO

Wand:2004:SAD

Weihl:1985:IRA

Wagner:2016:TIB

Wu:2012:STB

Weimer:2008:ESP

Wolf:1992:GEI

[Wo92] Alexander L. Wolf. Guest Editor’s introduction to the spe-

REFERENCES

[YB85] Shaula Yemini and Daniel M. Berry. A modular verifiable

Yemini:1987:ATE

Yemini:1988:TCA

Yiapanis:2016:CDS

Yang:1998:STE

Yardimci:2009:MSP

Ying:2011:FHL

REFERENCES

REFERENCES

Zhao:2007:FFS

Zhang:2005:CPT

Zhou:1996:PPC

Zic:1994:TCB

J. J. Žíc. Time-constrained buffer specifications in CSP+T

