A Complete Bibliography of Publications in *ACM Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

05 February 2021
Version 2.138

Title word cross-reference

(k) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3

[SRW02], + [Han81a], T^M [Bla03].$^{5ex/}$
[AW82], [[DDDCG02], A [DES12], R
[JMSY92], R_{Lin} [VR95]. ℓ [ADG+94].
$O(nn)$ [Pet82]. ϕ [CF95, DR05]. π [ABL03].
Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Adding [ACW90, BN94]. Algorithmic [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha90, DP93, GHS83, Hua90, Hu91, JCC19, LV94, LY98, Lei90, LT79, J01, MM82, MC82a, Pet82, SH89, TB98, Wis97, BKR98, BHH99, DR05, DVD07, JNN06, Van96a, Van96b, Han81b, BKR05].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Accuracy [ACW90, BN94]. Algorithmic [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha90, DP93, GHS83, Hua90, Hu91, JCC19, LV94, LY98, Lei90, LT79, J01, MM82, MC82a, Pet82, SH89, TB98, Wis97, BKR98, BHH99, DR05, DVD07, JNN06, Van96a, Van96b, Han81b, BKR05].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Adding [ACW90, BN94]. Algorithmic [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha90, DP93, GHS83, Hua90, Hu91, JCC19, LV94, LY98, Lei90, LT79, J01, MM82, MC82a, Pet82, SH89, TB98, Wis97, BKR98, BHH99, DR05, DVD07, JNN06, Van96a, Van96b, Han81b, BKR05].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].

Abstract [BGL93, BK11, CMB95, CFG97, DRR16, GHH13, GS98, HL82, JPP91, KR18, Lan80, L94, LV94, LM18, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL08, Bir85, Le88, ACS98, BDL08, BdlBH99, Leu04, ML90, SYYH97, SJ03].
aware [MQ05]. Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80]. Axioms [Mis86].

[DAS98]. Compression
[BMW91, CSCM00, DKV07].
Computability [HMS06]. Computable
[PK82]. Computation [AC94, BOV85, DP82, H594, LST98, PB97, AB59, AE01, DR05, LK02, SWU10, SGL97, Hal85].
computational [ATD08, SSD09].
Computations [DW89, MC82b, VSS94, YS91, LSLR05, Mon08, YF98]. Computer
[HCHP92, Wol92]. Computer-Assisted
[HCHP92]. Computers [Fis80, LK02]. Computing
[ANP89, CFR91, CF95, KM81, HVB99, MMG00]. Concept
[Tur86, ST00a]. Concepts
[Eug07]. Concerning [Sha82]. Concrete [Bar81].
Concurrency [BG89a, Lam90, SDD21, Wei89, BCF04, Mil85, TA08a, CPS93].
Concurrent [BC91, Car95, CIJGP18, Cla80, CES86, CPS93, CFM94, DGMP97, FT94, Hal85, HSP83, HW90, Her93, JTM98, Kar84, Lam83, LFF14, MSM16, OL82, Pet83a, Pet83b, RY88, Sku95, SNS14, AE98, AE01, AAE04, BBYG05, BGP99, CSW06, JPS08, RS97, SRM10, YS10].
Concurrent-by-Default [SNS14].
Concurrent-Program [FT94].
Condensation [JTM98]. Condition
[HW90]. Conditional
[Boy96, WZ91, Dam03]. Conditioning
[OGJ18]. conditions [KWL09].
Conference [Wol92]. confined [GPV07].
Conflict [Cas95]. Conjecture
[KPS92, Sag86]. Conjoining [AL95].
conservative [Hai05]. considered [Gor04].
Consistent [XBO520]. Constant
[CIJGP18, CGG19, Coh91, WZ91, Wir91].
Constrained
[BG89a, DAW88, PS96, Zic94, LPP01].
Constraint
[Bor81, DGMP97, DDV99, HLH19, NSTD15, Pal95, PW98, Ste18, Apt00, BMR01, DPPR00, FH04, GHB96, HPMS00, SS08, SS09, SP07, SSD09, dHB96].
Constraint-Based
[PW98, Ste18, DDV99, SP07].
Constraint-Oriented [Bor81].
Constraint-Solving [NSTD15].
Constraints
[AKP94, DFR15, HG83, Mye90, BA08, RM10, TFK11, Van96b, VH10, Van96a].
Construct [Ans87, BS83, Kat93].
Construction [ADGM91, HIT97, LaL81, BM83, RH87, SL92, CMS03, GC01].
Constructive [Loc87]. Constructs
[AR84, DJP16, Par90]. Context
[GHR80, LTMS20, LWR21, Ode93, Pad19, PK80, Ram00, RTD83, Rep00].
Context-Dependent [Ode93, RTD83].
Context-Free [GHR80, Pad19].
Context-sensitive [Ram00, Rep00].
Context-Unbounded [LWR21]. Contexts
[Ode93]. Continuation [BDM15, Wan82].
Continuation-Passing [BDM15].
Continuations [BDM15, HF87].
Continuous [KF03]. contract [DF11].
Contracts [SIG17, SDF13, CGP09].
Contravariance [Cas95]. Control
Controlling [BALP06, LaL81, LMD98].
Conventional [AF84]. Convergence [Bar85].
Conversion [CS87, SW97b, SA00, YK97].
Cooperating [GLR53, NOS97].
Cooperation [BK88]. Coordinating
[J94]. Coordination [GLR83]. copying
[TSR08]. core [IPW01]. Coroutine
[Sam80]. Coroutines [LS81, D09]. Correct
[DGMP97, Hen86, JP17, SSS8, AAD07].
Correction [FA93]. Correctness
[Apt86, CM86b, FR90, Gom92, HW90, Lam79, Lam80, ML21, Oss83, San96].
correlated [YS99]. Correspondence
[BS88, Bur90b, Bur91, Coh91, CM93, DS88, E182, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moin83, MS88, NN86, Par90, Pem83,
Sor89, SM82, Tan83, Tic88, Vol91, WST85, Wir91, YB88. Corrigenda [WCW91].

Corrigendum [Ano18, BKRW05, DF81, Fra80a, K89, Lam80, Pur91, QG95, TGT20, Van96a, Wal81, WGS93].

Cost [AB81, Bac84, DL93, Hai98, Han81a, ZGZ05, VALG05].

Cost-optimal [Hai98].

Costs [GMP +00].

Counting [Bal94, LP06].

Counts [Bob80, Wis79].

Coupled [ACW90].

Covariance [Cas95].

Covariant [PZJ05].

Creating [Mye90].

Criteria [Hai05].

Critical [PS93].

Critique [GM81].

Cross [Ano18, FTJ95, GSS +18].

Cross-Interferences [FTJ95].

Cross-Language [Ano18, GSS +18].

Cryptographic [App15].

CS [CD79].

CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Zic94].

CSP-Like [Hua90].

CSS [HLH19].

Currency [DS98].

Curry [LR19].

Curry-Style [LR19].

Custom [DJP +16].

CV3 [CZ84].

Cycle [BG98b, PBK +07].

Cycles [FRW90].

Cyclic [RY88].

D. [Bur91].

Data [AMT14, ANP89, AM85, Bac84, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, Ell82, EO80, FL81, GMH81, GEGP17, H82, Her93, Hes88, Hol87, Jen97, JDC91, KH92, Kam83, KZC15, KK98, KKD94, LaL9, LO94, LN02, Loe87, Mal82, MMR95, MCT96, PP91, QG95, RC91, RP98, SSS81, Sku95, SGL98, SM81, TWW82, WL85, Wei89, Wei90, Wet82, Wey83, CFP +04, DHH +12, DGS97, HBJ98, KBC +99, KF00, LK02, Rep00, SP07, VALG05, YUW02, ZGZ05, Pur91].

data-centric [DHH +12].

Data-Driven [BL87, CS87, JDC91].

Data-Flow [BC85b, Bur90a, Wey82, RP88, KBC +99].

data-independence [Rep00].

Data-member [KF00].

Data-Parallel [Cha93, HBJ98].

Database [Bar85, CB80].

Databases [SR21].

Dataflow [Deb95, DFR15, MB94, SS13, SS96, Van96a, Van96b, VHM +01].

data-log [LS09, ZSS20].

Datatypes [MBC04].

Deadlock [CHMY19, Hua90, Kob98].

Deadlock-Free [Kob98].

Deadlocks [FJK +17].

Debugging [CM91, CM93, Cop94, Hen82, WST85, ZS20].

Deciding [GGL15].

Decision [MTG80, NO79].

decisions [MTSS09].

Declarative

Definition

Delay [BG98b].

Delayed [KKF95, P03].

Delayed-Load [KPF95].

Deleting [GP81].

Delimited [BM15].

Demand [FPS19, GSW95, PA85, PA86a, PA86b, PF96, SR95, DGS97].

Demand-Driven [GSS95, PA85, PA86a, PA86b, FPS95, PF96, DGS97].

Denali [JNZ06].

Denotational [AB94, FA93, Gud92, MSJ94, NF89, Nie85, Sch85, dBB85].

Dependence [BGH +13, CFR +91, FOW87, HBG +09, HRB90, ML21, PB97, PW98, Wol94, RAB +07].

Dependence-based [ML21].

Dependences [PF94].

Dependencies [Deb95, CSS99].

Dependency [Blu99].

Dependent [LS80, Miq19, NGB13, Ode93, RTD83, Rob79].

dequues [Chi95].

DeRemer [Sag86].

Derivation [BKB80, Cat80, DSW82, Gie83, HIT97, Kna90, TM93, An02a].

Describing [Wan82, Bou06].

Description [AW85].

Descriptions [Boe85, BKL +97, Cat80, An02a].

Descriptors [Hol87].

Design [BPP16, BCD +15, BO94, DF80, DF81, FT94].
HM84, KKM90, LDM07, ML80, RCS93, RL98, SYK+95, Bou05, MTSS09, CMLC06. design-pattern-based [MTSS09].

Designing [LaL89, ALZ03]. Designs [AW85]. destructive [SRW98]. Detect [ISY88]. Detecting [GSW95, HCS10, Sch85]. Detection [CM86a, Hua90, MC82a, MC82b, TM93, AFF06, HDH02, PFH11, PCJD08, XA07].

Distance [Wo94, ZSD09]. distribute [CRN+08]. Distributed [ABL93, AF84, APT86, AW85, BKS88, BCEM15, Bur84, CJK95, CM86a, CBDGF95, CS95, DAW88, Dug99, FLBB89, Fra80b, GHS83, HSG17, Hua90, HM84, Jon94, KAT93, KK98, KR84, KKK90, Lam84, LS83, MC82a, RCRH95, SS84, Sch82, TM93, TCP+17, Zav85, ABL03, FM87a, HVB+99, KGMO04, LK02, MDJ05, Piq96, Fra80a, Moh81, VHB+97].

Distributed-Memory [KK98, RCRH95]. div [Bou92]. Divergence [SDSCP13]. DJ [DR05, SGL96, SGL98, UM02]. DJ-graphs [UM02]. DLLs [Dug02]. do [SS05a].

Documentation [MH86]. does [DMP96]. dolce [MP10a]. Domain [LM18, Tra08, RM07, SS05a]. Domains [CMB+95, ELS+14, GS08, FH04, GLMM05].

dominance [Ano02b, DVD07]. dominator [SGL97]. Dominators [LT79, Ano02b, BKR98, BKRW05]. Don’t [AKNP17].

Drift [CM84, SS88]. Drive [PK80]. Driven [BL87, CS87, GF85, GSW95, JCO19, PA85, PA86a, PA86b, TGT18, YBL16, DGS97, FPS19, PF96, TGT20, YMW97]. Dually [MT08]. Dummy [Lam88]. During [BKB80].

Dynamic [ACPP91, AGT89, AS17, BB79, BDM15, Bre89, CCG+19, CHMY91, CTT07, DS98, Dug99, HSS+14, HO05, Kuu98, KR79, RCRH95, Ven95, W08, dBB85, ACE96, B12, CEI07, DDDG02, GZ07, MMM+07, PHEK99, SJP12, SH+07, SYK+05, SYN06, WKD04, ZG05].

eager [FKW00]. Earley [Lei90]. Early [AB81]. ECCS [CDFP89]. Edge [DP93].

Editing [FL81, HT86, Nix85]. Editor [FM87b, DeM83, Mye18, Per90, Rep86, Wol92]. Editorial [AP07, App93, AG93, AF94, MP07, Mye19, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04].

Editors [DMM88, MM89, RTD83, Wat94]. EDO [OKN06]. effect [RLS+01]. Effective [BS83, Col84, JB20, KK06, NI05, PE08, WJ98, YUW02]. Effectiveness [BD1BH99, SH89]. Effects [Boe85, SV20, TA08b]. Efficient [AKBLN89, ADGM91, BB79, BGH+13, Bre89, Cam89, CS95, DP82, DMM88, GZ05, GZ07, GLR83, GO88, GSO94, HVB+99, HS94, HSS+14, HIT97, JSP81, Jon90, KKM90, KRS88, KPF95, MV+01, MM82, NB99, NI05, PH02, PX19, PKH07, PA85, PA86b, RH87, SS08, SA00, SS88, TN19, WG98, YUW02, BCP05, GB99, KSV96].
LPS004, LS09, PBK+07, TP04, VWJB10, YF98, PA86a, SS09. Efficiently
[Bal94, CFR+91, CF95]. Eiffel [ACE96].

elaboration [KR01]. Election [Hua93].

Elimination [BT93, Cob83, Cob85, RD03].

Elimination
[DP93, SGL98, KKN06, KCL+99].

Elimination-Based [SGL98]. embedded
[BCP08, CSCM00, HK07, Rhi03, SRM10, TP04, ZP10]. Embedding [HF87].

Empirical [BHK07, BDH+16].

Empowering [JSB+12]. Emulator [ML80].

Enabled [ADG+94]. Encapsulating [GPV07]. Encapsulation
[ADG+94, LH91, ABHI11].

Encoding [Hob84, GZ05, ZP07].

Encodings
[BC79]. End
[BDP14, CSCM00].

equality
[FMoPS11]. Equality
[Pal98].

Equalities
[CP95].

Family
[CP95].

Equations
[HSH15, Wir91, ADG+94].

Expanded
[LS98].

Expanding
[LS98].

Expressive
[MFRW09].

Extended
[CBMO19, KGMO04].

Extending
[CEW14, CMS03, MSRR00, MK94].

Extension
[Bur90b, Cob91, WSH15, Wir91,
ALZ03, KKN06, LS08. Extensions [Wir88].
Extent [MF88]. External [Wai80, Wai81].
Extracting [GP95]. extraction [TSL97].
extrapolation [WM12]. Extrema [Pet82].

F [MWCG99]. Facets [ASF17]. factoring
[DRSS96]. Failure
[BN99, Dar90, GH919, Kar84].
Failure-Free [Kar84]. Fair [BN94, PR07].
Fairness [ES97, OA88, TB95, AH98].
Families [La89]. Fashioned [AL94]. Fast
[ADR96, DAS98, FMPS11, HVDH07, LT79,
SR95, DR05, PE08, TP04, VBLG04,
DVL015]. Faster [CGG19]. Fault
[CS95, Lam84, LJ99, AAE04].

Fault-Tolerance [LJ99]. Fault-Tolerant
[CS95, Lam84, AAE04, FD] [GLM95].

FeatherTrait [LS08]. Featherweight
[IPW01, LST92, LS08]. Feature
[ASAVF19, AH10]. Feature-Specific
[ASAVF19]. Feeding [PA86a], Fence
[AKN17]. Fickle [DDDGC92, AAD97].
field [PKH07]. field-sensitive [PKH07].
fields [PZJ95]. FIFO [FB89]. Final
[Kam83]. Finding [KRS84, KKM90, LT79].
Fine [PBR15, DNS96]. Fine-Grained
[PBR15, DNS96]. fingerprinting
[CTT97]. Finitary [AH98]. Finite
[ACW90, BLH92, CES96, GC86, PK92,
PP91, Pur91, RSL10, Zav85]. Finite-State
[ACW90, BLH92, CES96].

Finite-State-Machine [Zav85]. First
[ADG94, Bre89, DP97, HKMN94, Han92,
JPP91, JS94, LH91, MH04, SDF13].
First-Class
[HKMN94, Han92, SDF13, MH04].
First-Come-First-Served [LH91].
First-Enabled [ADG94]. First-Fit
[Bre89]. First-In [ADG94]. First-Order
[DP97, JPP91, JS94]. Fit [Bre89]. Fixed
[SS98]. Fixed-Order [SS98]. Fixpoint
[AC94, Qia00]. Flexible
[AD98, Hud91, MSM16, WG98, Wil82b,
dJKVS12, IV06, KGM90]. Floating
[CK94, Fat82, SBB919, Hau96, Mon08].

Floating-Point
[CK94, Fat82, SBB919, Hau96, Mon08]. flop
[MMG00]. Flow [AR80, AD98, ASF17,
Bac84, BC85b, Bur90a, DP97, DP93,
FJKA06, Hor97, KD94, MRR95, NGB13,
PO95, PP91, PBR95, Pur91, Set83, SGL98,
SS13, Wet82, DGS97, HRO97, KBC99,
Pal98, PS03, RRSY08, RP88, T207, WJ98].
Flow-InSensitive [Hor97, FJKA06].
Flowback [CMN91]. Flowgraph [LT79].
Floows [Kna90]. Floyd [Yin11]. Fold
[CF95, BA84, LP06, PBK97, URJ18]. fold
[KRRO04]. Folklore [LY98]. Font [FK95].

Foo [FA93]. foreign [FF08]. Foreword
[Mye17, Mye18]. Form
[AK87, BOV85, BM94, CFR91, GSW95,
Pal95, GP08, KCL99]. Forma
[ZGC97]. Formal [BS86, BD14, CB86,
CD79, Fid93, Gie83, HIT97, Kna90, Lee86,
Mal82, MH86, Sha82, WP10]. Formalisms
[PCC95]. Formalization [PPP16].

Formally [SP97]. Format [Wat83]. Forms
[DS83]. formulas [RL10], formulations
[RS97]. Fortran [AK87, DP99].

Foundation
[KRR18, Ban11, RAB97, Rho03].
foundational [AM01]. Foundations
[GTWA14, LW93, AAR91]. Fractal
[MMP03]. fractional [Boy10]. frames
[SJP12]. Framework [BGL93, Gie83, JW17,
KRR18, NSZ93, NSTD15, OHL94,
SL98, T490, ATD98, DGS97, GMM99,
GZ06, GC01, Leu80, PS08, RKRR04, TP04,
VBLG04, XA07, ZGC97, ZP10, vHK90].

Frameworks [MMR95, KK97]. Framing
[BBN18]. Francez [Fra81, Moh81, MOL83].
Free [AP94, GEG97, GHR90, Her91,
Kar84, Koh98, Pad91, JID98, KSV96].

freedom [KS10]. frontiers [Ano92b]. full
[GB99]. Fully [JPP91]. function
[DR05, FF98]. Functional
[AFV98, Ban87, Blo94, Bou85, Bur84,
DW89, FL91, ISY88, JPP91, WM95, Web95].
Wil82a, ABH06, Bou06, DWWW08, DF98, PS08, San96, SP97. **Functions** [AKP94, AK82, Bou92, PB80, SM89, Lee09, MBC04, MB99, MT08, PPT08]. **Further** [CM93]. **Fusion** [JB20, LGAT00]. **Fusion-based** [LGAT00].

G. [Tie88]. **Garbage** [BA84, CN83, DS82, ISY88, JCCM19, TM93, URJ18, WLBF16, Wis79, BBY89+5, BALP06, HDH02, LP06, Piq96, TSBR08]. **Garbage** [BA84, CN83, DS82, ISY88, JCCM19, TM93, URJ18, WLBF16, Wis79, BBY89+5, BALP06, HDH02, LP06, Piq96, TSBR08].

General [BGL93, CHMY19, HSS+14]. **General-Purpose** [HSS+14]. **Generalization** [Nel89, LMD98]. **Generalized** [Ans87, BS83, GKM20, KD94, Lin79]. **Generalizing** [DB85]. **Generals** [LSP82].

Generation [AGT89, AS80, BOV85, BM94, DS83, DS08, GF85, GVC15, HKR92, HKR94, Pro95, Rei83, Rob79, She91, ST00b, UJ92, DAS98, MSRR00, PHEK99]. **Generative** [Ge85]. **Generator** [PPS79]. **Generators** [Cat80, GHK81]. **Generic** [LV94, DDM11]. **generics** [IV06].

Geometry [CR87]. **Geoffre** [NN86]. **GJ** [IPW01]. **Glanville** [MSRR00]. **Global** [Bac84, Dha91, GH86*9, OHL+14, PK80, PS92, Sch85, dHB+96, CS04, KBC+99, DS88, Sor89]. **GLR** [SJ06]. **Goal** [Dar90, Guo92, SYY90]. **Goal-Directed** [Gud92, SYY90]. **Goal-Oriented** [Dar90].

Goto [CF94]. **GPU** [BCD+15]. **Gradual** [TGT18, TGT20]. **Graham** [MSRR00]. **Graham-Glanville** [MSRR00].

Grammar [CL84]. **Grammars** [BS88, Jou90, Kat84, LaLS1, RD87, RH87, Tai79, WW95, Boy96, CP96, Wu04]. **Grammatic** [Th04]. **Grammars** [BB94, MK94]. **Granularity** [RRB19].

Graph [Ass80, Bee94, BCT94, CFR+91, FOW87, KKS94, KLS92, MC82a, Son87, CT07, GC01]. **graph-based** [CT07]. **Graphic** [Ma82]. **graphical** [VHM+01].

Graphs [GKM20, HRB90, KPS92, Kna90, SGL98, DR05, JC97, KSK07, SGL96, UM02]. **grid** [VWJB10]. **Grimmer** [An08].

groundness [CSS99]. **Grover** [BH99]. **growth** [BALP06]. **Guarantee** [GEGP17, LFF14, HQT10]. **guarantees** [LS09]. **guard** [MP07]. **guarded** [SP07]. **Guards** [LS83]. **Guest** [FP02, OP04, DeM83, Per90, Rep86, Wol92].

Guide [App94a, BDH+16]. **Guided** [OLH+16], **guiding** [VALG05].

Hackers [App94a]. **Hancock** [CFP+04]. **handle** [VJB12]. **Handling** [Hau96, Lr81, Piq96, SSS83, UM02, YB85, YB88, CRN+08, LS98, LP06, SS09, Hen83]. **Hard** [Hor97]. **Hardware** [BKL+97, Mis86].

harmful [Gor04]. **Hashing** [PB80, Duc08]. **Haskell** [GRSK+11, HHPW96]. **Heap** [KSK07, BALP06, KFP0, YS10].

heap-manipulating [YS10]. **Heavily** [BG89a]. **Hennessy** [CM93, WST85].

Herding [AMT14]. **Heuristic** [SL92]. **hiding** [LN02, OYR09]. **hierarchic** [AG04]. **Hierarchical** [BA99, CP95, CD79, AV01, CP96].

hierarchically [MBC04]. **hierarchies** [ST00a, Van96a, Van96b]. **hierarchy** [KF00].

High [Cam89, Fat82, MSM+16, URJ18, CMS03, VWHB10]. **High-Level** [Cam89, Fat82, CMS03, VWHB10].

High-Performance [URJ18]. **Higher** [AC94, AD98, CJK95, DHP+16, FPS19, SV19, BBTS07, DFI11, SKS11, SP97].

Higher-Order [AC94, AD98, CJK95, DHP+16, FPS19, SV19, BBTS07, DFI11, SKS11, SP97]. **Highly** [Her93, Skn95]. **Hoare** [Apt81, GS81, LS84, Sks87, Yin11]. **Hoc**
MDCB91. Holistic [ZMVPJ17].
Homomorphisms [HIT97]. HOP [BLRS12]. Hybrid [KF10, KS10].
Hyperball [LM18]. hyperdoctrines [BBTS07].
I-Structures [ANP89]. I/O [Car95]. Icon [GHK81, Gri82]. id [Bee94]. idempotency [KOE*+06]. Identical [FLBB89].
Identification [BGH*+13, SBE*+19]. identify [MMM*+07]. Identifying [FLBB89].
Idioms [PP94]. IDL [Lam87]. IEEE [Fat82]. Ignorance [GNS*+15].
Illustrative [Oss83]. Impact [BHM*+19, OLH*+16, CKT86]. Imperative [AB20, ABPS98, DFR15, Gro06].
Implemented [BBF*+11, BFGT08, DF98]. Implemented [DB85]. Implementing [BR97, Her93, HW82, Sku95].
Implications [Fat82]. Implicit [BH05b, SJP12]. Implicit-signal [BH05b]. improve [KF00].
Improved [GHR80, Mun91, KK07]. Improvement [MS83, San96]. improvements [BCT94]. Improving [CK94, CB*+95, MCT96, TCP*+17, WS97].
impure [Pip97]. Incomplete [MRGP20, GLMM05]. Incremental [Bur90a, CP95, DMM88, GM79, HKR92, HR94, HPMS00, Hud91, Kai95, Lar95, LST98, LHR19, PS92, RTDS83, RP88, SGL97, WG98, YS91, BYBG*+05, CP96, Van96a, Van96b]. Incrementally [QL91].
Independence [DHM00, Rep00].
Independent [ML80, Mul92]. Index [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98]. indexed [AM01]. indices [RR05]. Indirect [Piq96, CEG07, YK97]. Induction [GSW95, Sit79]. inefficiencies [MMM*+07].
Inessential [SS82, LaL84]. Inference [CEW14, Deb89, Hen93, LO94, LY98, MRGP20, Pad19, SR21, TB98, Wey83, FFLQ08, JB06, PM06, PT00, PS03, Van06].
Inferring [FNBG20]. Influence [FTJ95].
Information [AR80, Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b, Asf17, BC85b, HR02, NGB13, PBR*+15, PS03, GS99, HY07, LN02, OYR09, TZ07]. Information-Flow [BC85b, TZ07]. infrastructure [SWU10].
Inputs [PA86a]. Insensitive [Hor97, FJKA06]. Insertion [AKNP17, GJ05]. inscription [CF04, FG03].
Instantiation [Der85]. Instead [Lam84, Rem81]. Instruction [KPF95, LCBS19]. Instructions [LS80, PS93, RF97, Rob79, LPP01]. Integer [BAGM12, BEF*+16, FNBG20, BGP99].
Integrated [SS13]. Integrating [HPR89, WJS*+00]. Integration [CO90, Leu04]. Intensational [STS03].
Interfaces [DS90, Mye90, TLHL11, WT11]. Interferences [FTJ95]. Interfering [Jon83]. Intermediate [Lam87, Pem83, TvS82]. Internal [Han81a].
International [Wol92]. Interoperability [Ano18, GS8*+18]. interoperable [BFGT08].
Interpretation [BGL93, CFG*+97, DLR16, KRR18, LV94, SJ03]. Interpretations [BGL93, CFG*+97, DLR16].
Interpretative [BGL93, CFG*+97, DLR16].
Interpreters [LYR13, CEG07]. Interprocedural [Bur90a, BT93, DP97].
HAM+05, HS94, HBCC99, HRB90, LWR21, ML21, NR06, SH89, CKT86, DV07, DGS97, FMOs11, JLRS10, KK07, RLS+01.

Interprocess [RS84b]. Interprocessor [Ang89]. Intersection [Dan03]. Intertask [FY85]. Interval [Bur90a, GSP84, FH04].

Interval-Based [Bur90a]. Introduction [Ahm20, DMR83, HC82, Per90, Rep86, Sag07, Wol92]. Invariant [BK80].

Invariants [Clu80, GEGP17]. Irreducible [Hav97, UM02]. irregular [YF98]. Irrelevant [GP81]. Iso [LB17].

Iterated [GA96]. Iteration [Cam89, MOSS96, GS11, JLF02, Qia00]. Iterative [Ans78, Par90, DR05, JNC10, LS04].

Jade [RL98]. Jam [ALZ03]. Java [AFF06, ALZ03, AAD+07, BH05a, Bla03, BALP06, CGS+03, CMS03, CSMC00, FFLQ08, FM99, GFP08, IPW01, KKN06, KGM00, KN06, KR01, LST02, LP06, LS08, Loc13, MVV+01, MME+10, MFRW09, MGO01, NR06, OKNO6, Qia00, RR19, SLC03, SMP10, SBE+19, SA99, SYK+05, TN19, TSL+02, WR08]. Java-like [KN06].

JavaCOP [MME+10]. JavaGI [WT11].

Knot [MC82a]. knowledge [GLM05].

labels [Sto04]. Laboratory [Bor81]. LaLonde [Hua83, LaL83]. LALR [DP82, KM81, PCC85]. Lambda [Geo84, Gom92, NN86, PS08]. Laminar [PBR+15]. Lamport [Ang89, Pet83b].

Language [ACPP91, AOC+88, Ana18, ABPS98, BS86, BPP16, BO94, Bor81, BC91, DVL15, Fat82, Fea87, FFF+18, GSS+18, Gud92, Hal95, HSG17, JMSY92, JPP91, Kai89, McG82, Per79, PPS97, RTD83, RCS93, Spo86, SNS+14, SDD21, Tur84, Wet92, Win87, YS91, YB87, dJKS12, van88, Bot05, BSF03, CPF+04, DWW08, DF98, FM99, Gro06, HB98, KN06, LP99, MF09, MWCH99, PPT08, PHEK99, Tra80, VHHK02, HCW92, YB88].

Language-Based [Kai89, RTD83].

Languages [Ana18, AR84, AD98, Bar81, BL94b, BHM+19, Bla94, BM94, BPW87, CDF99, Dug99, Fos96, FL91, HU96, Lee86, LR19, MFM+16, Mur91, Ruy95, SV19, TK94, TGT20, AAR+10, AC11, DHHM00, GW99, RS97, Rhi03, SRW98, SKS11, SP97, SWW10, Wol92]. Larch [Win87]. Large [GLR83, MK94, MH86, WCW90, WCW91, ZSS20]. Large-scale [ZSS20].

Layout [AKBL89, MMR95, FH04]. Lauer [GM81].

Left [BFK98]. Left-Linear [BFK98]. legacy [NCH+05]. length [MP10].

Lessons [URJ+18, VHM+01]. Let [LY98].

Let-PolyFormic [LY98]. Level [Cam89, Fat82, GP95, YBL16, CMS03, VJW10].

Lexical [HKS92]. libraries [Dug02]. LIFE [AKP94]. lifetime [HBM+06]. Lightweight [SW97b].

memory-hierarchy [KF00]. Merge [Ber94]. Merlin [HBM+06]. Message [CSW06, SS84, Gor04]. Messages [BB79, Je03]. meta [Tra08].

mod [Bon92]. Modalities [SV20]. mode [PS08, ZP10]. Model [AY01, Ang89, BK11, BL87, BGP99, CG194, DLR16, ES97, GS98, GG85, GL94, Han81a, HW82, Hol87, JB20, JJC019, KH92, MSM+16, MMG92, ND16, VSS94, ACM11, AM01, AE01, JJD98, JRS+98, KN06, KV00, Loc13, NP08, QR00, SG04, VWJB10, VALG05, YMW97].

Morel [Dha91, DS88, Sor89]. Morphing [HS11]. Morris [Wis79]. Mostly [YF09, BBYG+05]. Motion [KRS94, Hai98].

MPI [FKJ+17, TSY00]. Multi [Ano18, GSS+18, MF09]. Multi-Language [Ano18, GSS+18, MF09]. Multialgebraic [WM95]. multidimensional [RDG08].

Multiprocess [Lam79, Lam80]. Multiprocessing [ABR81]. Multiprocessor [GP81]. Multiprocessors [Cha93, KRS88]. Multisource [MMR95].

Multithreaded [EJP14, JBK18, JSB+12, KK14, NR06]. Multivariate [HAH12]. Multway [Ch87, Van96a, Van96b]. munch [Rep98].

Nesting [Hav97, Boy10]. Nests [BAC16]. Net [JTM98]. Network [WGS92, WGS93]. Networks [CGJ97b, GC86, KRS84, dBB85].

Newtonian [RTP17]. Nicholson [FA93]. No [Ano18, TGT20]. node [JC97, UM02].

Nondeterminate [TK94]. Nondeterminism [Ber80, Hes88, WM95]. Nondeterministic [CG95, MT08].

Noninterfering [HPR89]. nonnumerical [ME97]. Nonprocedural [PPS79].

Parameter [Gaz83, Zho96].
Parameterization [TWW82].
Parameterized
[CGJ97b, CK93, Gaz83, RKS12].
Parametric
[HFC09, MMG92, SRW02, IV06].
Parenthesis [AS80]. Paral [CG86].
Parsed [Wad90]. Parser
[DDH84, JP17, LaL84, SS82]. Parsers
[BN99, LaL81, MYD95, PK80, CPR02, SJ06, ST00b]. Parsing
[CH87, DMM88, Fis80, GM79, Lar95, RH87, Sam80, WG98, KC01]. Part
[LaL81, PA85, PA86a, PA86b, Apt81].
Partial [AFV98, CP17, CK93, DS88, Gom92, KCL+99, Sor89, ADR06, BP12, CG04, GJ05, LMD08, Leu04, ST00b].
Partially
[BLH12, Kob98, RSSR08]. partially-flow-sensitive [RRSY08].
partitioning [RM07, YF09]. Parts [Son87].
Pascal [LS79]. Pass [Bak82, BM94].
Passing [BDM15, Gaz83, SSW06, Gor04, Zho96]. Passive [AKP94]. past
Patient-Oriented [FFF+18]. Pattern
[EGP14, ADR06, Jay04, MTSS09, Van06].
Pattern-Based [EGP14]. Patterns [GH80].
PDS [Han81b]. PEAK [PO08]. Peephole
[DF80, DF81, Pen83, TsS82]. PegaSys
[MH86]. Pennello [Sad86]. Perfect [Duc08].
Performance [HJU96, MSA16, PB80, URJ18, KF00, PE08]. Performed
[Coh91, Wi91]. Permission
[BPP16, SNS+14]. Permission-Based
[BPP16, SNS+14]. permissions [Boy10].
Persistent [AM85]. Petri [JTM98].
Petri-Net-Based [JTM98]. Phases
[Bar81]. Philosopher [CM84].
Philosophers [MS88]. pi [HR02, KPT99].
pi-calculus [HR02, KPT99]. pict [SUW01].
Pictures [MH86]. Pipeline [HG83].
Pipelined [BG89b, LPP01, RDG08].
pipelining [ME97]. pitfalls [Mon08]. PL
[CD79, CZ84, FFF+18]. PL/CS [CD79].
PL/CV3 [CZ84]. place [GW99].
Placement [DP93, GS99, vHK00].
Platform [TCP+17]. pluggable [MME+10].
Pluto [BAC16]. Point [CK94, Fat82].
SBB+19, GJ05, Hau96, Mon08]. Pointer
[LTMS20, LHR19, LS79, RR03, SDB20, HBC99, HVDH07, PKH07, RLS+01].
Pointers [SS13, RR05]. Points
[GKM20, WKD04]. Points-to [GKM20].
Pointwise [VSS94]. Policies
[NBG13, BDFZ09, FGM07b]. Policy [Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, UJ92, BFG08].
policy-based [BFG08]. Polyhedra
[GVC15]. Polyhedral [GVC15, QR00].
POLYLITH [Par94]. PolyMage [JB20].
Polymorphic [BMR5, Dug99, HT04, Hen93, KUTU93, LO94, LY98, Ono95, SIG17, SV96, WJ98, BSvGF03, DWWW08].
Polymorphism [Bur90b, MDCB91, HFC09].
polynomial [BAL07, CFG19]. PolyTOIL
[BSvGF03]. polyvariance [LMD08].
Polyvariant [AC94, WJ98]. POP
[FFF+18]. POP-PL [FFF+18]. Portable
[DDH84, Han81b, HK07]. Possibly
[JP17, ML21]. Postfix [DS83]. Postpass
[HG83]. Power [TWW82, SSD09].
Powerlist [Mis94]. PPMexec [DKV07]. PQ
[GZ05]. PQ-encoding [GZ05]. Practical
[AD98, BAC16, BF87, CP17, Dha91, LR19, ND16, PBR+15, SS13, TSL+02, WC97, Bou05, DR05, DVD07, DG59, JNZ06, PFH11]. Practice
[KRS94, Ryn16, Blo03, DRSS96].
Pragmatic [BDH+16]. Pragmatics
[Go92]. Pre [OLH+16]. Pre-Analysis
[OLH+16]. Precedence [Hen83, LdR81].
Precise [CDK+18, FJK+17, GKM20, Hor97, TN19, PHP02]. Precise-Yet-Efficient
[TN19]. precision [ZGZ05]. Precondition
[Bo82]. Predicate [Lam90, BMR05, Bou05, Bou06, MFRW09, MMS96, PR07]. Predicates [CBDFG95, Lam88].
Prescription [FFF+18]. Presence [AWW95, CF04, KTU93]. preserving [DHS09, LST02]. pretenuring [BHM+07].
printing [Chi05]. Priority [CH90, Fid93]. Priority-Based [CH90]. Privacy [BKOZB13]. Privileges [Min84].
Probabilistic [AB20, BKOZB13, CNH18, DG19, HSP83, MMS96, OGJ+18, Rao94, SV19, BHF99, PPT08].
Problem [ADG+94, CM84, DS88, Gho93, LSP82, MS88, Pet82, Pet83b, PB97, Sor89, FGM+07a, Wu04].
Problems [Bac84, CNH18, DP93, MMR95, SRW98].
Procedural [HF87, Lin93, VSS94].
Procedure [CDK+18, GS99, GL80].
Procedure-Modular [CDK+18]. Procedures [AM85, Kat84, NO79].
Process [Kob98, vPS81, WP10].
process-oriented [WP10]. Processes [AFDR80, Bag89, FDR12, HM84, KS79, MW84, MC82b, Oss83, RY88, Sou84, TY18, dBBS85, AE08, KS10, Ber80, Mio83].
Processing [GHSO, HSG17, Rei83].
Processor [BG89b, Bud84]. Processors [GLR83, Per79, LPP01, ZP10].
Product [EMH20, RTP17]. Production [Wad90].
Productivity [Sij89]. Profile [BHM+07, YUW02]. Profile-based [BHM+07]. Profiling [ASAFV19, BL94a, SP97]. Program [Bal94, Bar85, BAL07, BKB80, Col84, DKKL18, Der85, FPS19, Fea82, FOW87, FT94, FL91, HSP83, HKR94, Jen97, JJC019, KKW14, KWL09, Lam83, Lam88, LFF14, LWR21, MS83, MW80, Mis81, Nie85, PP94, PPS79, Rem81, RTP17, TSY00, Wat94, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NS13, Pau01, RAB+07, SLC03, WZ07, WN08, YF09, DKV07].
Programming [AGT89, An108, AR84, ABPS98, BS86, BPP16, BHM+19, BL87, Bir84, Bor81, BMPT94, BW87, BCEM15, CHY12, COE+20, CL94, Dar90, DFR15, DGL+79, Dug99, FFF+18, Fos96, FL15, GTWA14, Har80, HK85, HO82, Kii89, KH92, Lee86, LVV+83, MK94, Mye90, OGJ+18, Pet83b, RCS93, SS84, SNS+14, SZBH86, TK94, TGT20, ABH06, BMR01, BnlBH99, CU08, CG86, CKT86, DW1W08, DPPP00, GW99, HBJ98, JPS+08, KGM004, MVV+01, MTSS09, MQ05, Tra08, VWJB10, WKD04, WJS+00, Bir85, SWU10].
Programming-in-the-Large [MK94]. Programs [AWW95, AK87, AFV98, AB20, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BE13, BEF+16, CR87, CB80, CM86a, Cha93, CNH18, CFG19, CEW14, CMN91, Cla80, CFM94, CS87, DL18, DGMP97, DW98, Deb89, DL93, Deb95, DP97, DiI90, EMH20, EGP14, FJK+17, FNBG20, GG85, GM81, Har80, HCHP92, HPR89, How80, HIT97, ISY88, JKB18, JW17, Jon83, JF81, Kna90, Lam79, LS83, MSJ94, ML21, MRGP20, MHS86, Mye18, NSZS13, OAS88, OL82, PNS92, QL91, Rao94, SS88, Sch82, SS81, SS88, TN19, Ven95, Wad90, Web95, Wil82a, AE01, AAE04, BCG+07, CSW06, CSS99, DP99, DDV99, DS98, DMM01, EGM01, GM12, GHB+96, GH97, GPA+01, Han66, HPM000, JPS+08, KSV96, LMD98, Leu04, LS09, MF09, NR06]. programs [PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yin11, dHB+96, Bur84, Lam80].
PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MBW94, NF89, Zho96].
Promotion [Bir84, Bir85]. Proof [AFDR80, BDJ13, FRW90, GL80, Mio83, Sag86, SS84, Sok87, WGS92, WGS93, AM01,
CB80, GS98, TLHL11, JJD98, JLRS10.
Relations [ELS’14, HT86, LH08].
Relationship [BS88]. Reliability
[LM18, WN08]. Reliably [TCP’17]. Rely
[GEKP17, LFF14]. Rely-Guarantee
[GEKP17]. Rely-Guarantee-Based
[LFF14]. Remembrances [PM09]. Remote
[BCP08, SG90]. Removal [AK82].
Removal [Cha81]. Reoptimization
[PS92]. reordering [YUW02]. Repair
[BN99, MF88, MYD95, KC01]. Repairing
[CPRT02]. Replacement [MM89].
Replicate [RB94]. replication [RD03].
Reply [Bur91, Fra81, LaL83, Tan83, Wir91, SM82].
Representation [DGL’79, Mul92, SM89, Wad90, Wan82, Mil85].
Representation-Independent [Mul92]. Representations
[Lam87, RF97, Wal80, Wal81, BGP99].
Reproduction [BHM’19], reshaping
[ZCG’07]. Resilient [GHH’19]. Resolution
[ABR81, Bak82]. Resolved [SIG17]. Resource
[CS95, Cla80, IK05, MQ05, BDFZ09, CEI+07, HR02, HAH12].
Resources [And81, FLBB89]. Respect
[Gaz83]. Response [Tic83]. Responsiveness
[HU96]. Restores [Wis79].
Result [TB95]. Results
[Ven95, BGP99, SYYH07]. Retargetable
[DF80, DF81, MV87]. Retention [LS81].
Rethinking [LHR’19]. retrofitting
[NCH’05]. Return [SDB20]. reuse
[DNS+06, GW99, ZSD09]. Reversal
[AC84]. Reverse [PS08]. Reverse-mode
[PS08]. Revisited [SIG17]. Revision
[FM87b]. revisited [MDJ05, Zho96].
Revisiting [DI09]. Rewrite
[FKW98, Ass00]. Rewriting
[KKSD94, BCM99, DDD05, FKW00, GRSK+11, MMM+07]. Right
[KS83, LaL81, SJ06]. Rigorous [SBB+19].
Rings [BP89, Hua93]. RISC [PS93].
Rivieres [Hen83]. RMI [MVV’01].
Robust [LS83]. Roever [Moi83]. role
[Apt00]. Roman [PB97]. Round [SBB+19].
Round-Off [SBB+19]. Rounding [FL15].
Row [MM89]. RSMs [CGG+19]. rule
[HQRT02]. Rules
[GL80, JTM98, SS84, LS09, SSD09]. Run
[ISY88, TZ07, GMP+00]. Run-Time
[ISY88, TZ07, GMP+00]. Runtime
[Ano18, BLH12, BEF+16, FNBG20, GSS+18, TCVB14, BH05a, TSY00].
S [HCW82]. S/SL [HCW82]. Safe
[AW95, Dug02, JW17, SDB20, AFF06, BSvGF03, LS03, Loc13, NCH’05, SA00, ZCG’07, MH06, SHB+07]. safe-for-space
[SA00]. Safer [COE+20]. safety
[FF08, YS10]. same [SS05a]. sampling
[PPT08]. Santa [WP10]. Sapphire [URJ18].
satisfying [Van96a, Van96b]. Saturn
[AX07]. Scalability [TCP’17]. Scalable
[FT94, GKM20, ZSS20, AX07].
ScalaExtrap [WM12]. scale [ZSS20].
Scaling [TCP’17]. scan [PS99]. Scanners
[HKR92]. Scanning [GVC15]. Scavengers
[UJ92]. Schanuel [KPS92]. schedulability
[GH97]. schedule [TVA07]. Scheduler
[TCVB14]. schedules [MH04]. Scheduling
[BG99b, FGL94, KR79, KP95, LPP01, LJ99, LCB919, NB99, ASTD+15, PS93, TCVB14, Ban11, ME97, YF98]. schema
[RLS’01]. Scheme
[Mur91, YR94, IV06, WC97]. Schemes
[Son87, TM93]. Schorr [BP82]. Schwanke
[Tic88]. Scientific [How80]. Scope
[App94b]. Scratchpad [SRM10]. Screen
[MM89]. SDF [VHK02]. Search
[Dar90, BH99, SS05a]. Searching [CC97].
Section [Wol92]. Secure
[BCEM15, PAS+15, BBF+11, HY07]. Securely [RB94]. Security
[TGT18, TGT20, BFGT08, BFG08]. see

Semantic [AA+10, AW95, GGL15, ML21, MH06, HWC82]. Semantics [ABHI11, Ans87, AB94, AW82, BGL93, Ber94, BLRS12, Bou88, Boy10, CPS93, CD79, FA93, GM81, Gud92, Han94, JPP91, Kai89, Mul92, Set83, Sou84, WM95, Wan82, dBB85, ACE96, BMR01, Bou06, GZ04, MF09, PCJD08, SWU10, SJ03, Tar07, WKD04].

Semantics-Based [BGL93, CPS93, PCJD08]. Semantics-Directed [Han94, Set83].

Semaphore [CR87]. Semiring [BMR01]. Semiring-based [BMR01]. Send [Gor04]. Send-receive [Gor04].

Sensitive [OLH+16, PKH07, Ram00, Rep00, RRSY08]. Sensitivity [FL15, KRR18, LTMS20].

Sequential [AFrR80, Ber80, GLR83, HM84, KS79, MCh82b, Moi83, Sou84]. Series [Wat91]. Served [LH91]. server [LDM07]. servers [BBY+07]. service [CMS03].

Services [CHY12, RB94, BFG08, CGP09]. Session [Pad19, TY18]. Session-Based [TY18]. Set [Sho82, FF99]. set-based [FF99]. SETL [DGL+79, FSS83, SSS81].

Sets [DP82, DPPR00]. Setting [Lin79, Nie85, HL05]. SHA [App15].

Share [SS88]. Shared [Cha93, FLBB89, KH92, KRS88, P83b, Dug02, HB98, TSY00, BC91].

Shared-Memory [Cha93, TSY00]. Sharing [CSS99, Lam87]. SHErrLoc [ZMVPJ17].

Size-change [BA08, Lee09]. Sized [DG19]. Slicing [AB20, AHJR14, CF94, DL18, GH97, HR90, ML21, Mye18, Ven95, WZ07, BHK07, GZ07, NR06, RA+07, WR08, ZG05]. SLR [BS88, Tai79]. Small [FLBB89, LH91, Pet83b]. Smart [Tic86]. Smarter [SK88, Tic88]. Smooth [JF81].

Soft [WC97]. Software [ACM11, AW85, Ber94, DAW88, HSS+14, How80, JW17, PXL95, PPS79, Pur94, Wal92, YBL16, CTT07, HN05, LS98, ME97, NCH+05, RDG08, SHB+07, SRM10].

Solving [GS11, HLH19, NSTD+15, SRW98]. Some [AB94, AK82, Sha82, Sor89]. Sometimes [Gri79]. Sound [LLK+17]. Soundness [Sok87]. source [HBBG+09]. Space [BP12, BB79, FLBB89, JP81, NB99, RD87, YF98, LS09, SS05a, SA00]. Space/time-efficient [JF98].

Space/time-efficient [YF98]. spaces
synchronization-sensitive [Ram00].
Synchronizing [And81]. Synchronous [CS87, TLHL11]. synchrony [CS04].
Syntactic [BF87, GMZ00, MF88, PK80, Wil82b].
Syntax [DMM88, Ode93, Ric85, SSS83, BMR01, CPRR02, Jef03, HCW82].
Syntax-Directed [DMM88].
Syntax-Error-Handling [SSS83].
Syntax/Semantic [HCW82].
Synthesis [AE98, AE01, AAE04, Ban87, BDJ13, BKL97, Cla80, DKKL18, MW80, MW84, MV87]. System [AFdR80, AW85, BS86, Bou88, CB80, Fae82, GD82, GP81, Han81b, HM84, JMSY92, LR13, ML80, Mie83, MH86, PO95, RD13, SA99, WC97, BH05a, FH04, FM99, HO07, JB06, KS10, MTSS09, NP08, PE08, STSP05, MWC99].
Systematic [DF98, PSS05].
Systems [ABLP93, Ano18, AR84, ACS84, BKS88, BG89a, BDP93, CI84, CDFP89, CBDGF95, CIIJP98, CE86, CPS93, CBO919, DL18, DAW88, FEA87, FK98, HL86, JG94, JG94, JTM98, Kar84, Kt93, Kau84, Lam84, LW93, Mie86, Mye18, TG920, WGS92, WGS93, WC90, van88, Ass00, AE98, BCP08, BCM99, BCP08, CECM94, DGG97, GC99, JN99, JG94, JC99, JS96, KWL09].
Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, LW80, LW84, LW84, MV87]. Temporal-ordering [GS99].
T [Zic94]. Table [BMW91, PK80, DAS98]. Table-Drive [PK80].
Tables [ADGM91, DH84]. Tail [DP97, CF04]. Tail-Call [DP97].
tail-recursive [CF04]. Tailored [Kau84].
Tailored-List [Kau84].
Tanchenbaum [Pem83, Tan83]. Target [WS82].
Task [GP95, NSZ913, RRRB919, HJ98].
Task-Level [GP95].
Task-Parallel [NSZ913].
Tasking [Dil90].
Tasks [GP95].
Taylor [SBB19].
tcc [PHEK99]. Technical

[Bag89, DJP16, Her91, KRS88, RS84b, Sch82, CGS93, DHM12, Ram90, RD03].

[Bag89, DJP16, Her91, KRS88, RS84b, Sch82, CGS93, DHM12, Ram90, RD03].
GW99, HK07, LS98, LPP01, LS09, Mil85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YMW97, LW93. **Time-Constrained** [Zic94, LPP01], **Time-Critical** [PS93], **time-efficient** [GB99, YF98]. **Timed** [Zic94]. **Timeout** [Lam84]. **Timing** [LJ99]. **tokenization** [Rep98]. **Tolerance** [LJ99]. **Tolerant** [CS95, Lam84, AAE04]. **Tool** [CPS93]. **Toolkit** [BDFH97]. **toolkits** [VHM+01]. **Tools** [van88]. **TOPLAS** [Ano18, TGT20, MP10a, MP10b]. **topology** [DDM11]. **Total** [San96]. **Trace** [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12]. **Trace-Based** [WGS92, WGS93, WM12]. **traces** [HBM+06, WR08]. **Tracing** [BL94a, DLR16, CMM+07]. **tradeoffs** [ZG05]. **Trailing** [VR95]. **Traits** [DNS+06]. **Transaction** [URJ18, ABHI11, CFP+04]. **Transactions** [Ano18, HKMN94, TGT20]. **Transducer** [DVLM15]. **Transducer-Based** [DVLM15]. **Transformation** [BKKB80, Fea82, FL91, NSZS13, Wat91, RRK90, San96, TSY00, WZ07]. **Transformational** [BDFH97, Bir84, Bir85, DSW82, OA88, RC03]. **Transformations** [Bar85, EGM01, Geo84, LdR81, LFF14, MSS3, MCT96, Nie85, GFM+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86]. **Transformers** [Lam90, MMS96, MBT09]. **TransformGen** [GKL94]. **Transforming** [AWW95, BE94]. **Transition** [PR07]. **Translation** [AK87, BK11, Kat84, Son87, AAD+07, BGKR09, DP09, RC03]. **Transmission** [HL82]. **Transparency** [JSB+12]. **Transport** [Min84]. **transpose** [CRN+08]. **Traversals** [LPSO04]. **Treatment** [YB87, YB88]. **Tree** [AGT89, BOV85, BMW91, DVLM15, DSS3, Han81a, Hen83, LdR81, GFM+07a]. **Trees** [Com80, GHS33, MTC80, Sip82, Wad90, ACM11, SGL97]. **Treewidth** [CIJP18, CGG+19]. **trick** [DMP96]. **Truth** [BDH+16]. **TSL** [LR13]. **tuning** [GMM99, PE08]. **Tuples** [Rem81]. **Tutorial** [GM81]. **Two** [BO94, CDFP89, GPZ08, FMoPS11]. **Two-dimensional** [GPZ08]. **two-variable** [FMoPS11]. **Type** [Bur90, Car95, CWW14, Coh91, CZ84, Dug02, Euk07, HHPW96, HM93, Hen93, KPS92, KU93, KR01, Lam80, LO94, LST02, LY98, LPP0, MG20, MP88, NBB13, Pad19, PO95, SA99, SM89, TWW82, TGT18, TGT20, Van06, Wal80, Wt11, Wir88, WC97, BSvGF03, BCG+07, FJA06, FGMO7b, FM09, FOO, GZ07, GMZ00, HO07, HHDH02, HY07, KLF0, KS10, NP08, NCH+05, PO00, STSP05, TFK+11, TZ07, Wal81, Wir91]. **Type-based** [Euk07, LPP80, BCG+07]. **Type-Driven** [TGT18, TGT20]. **Type-Extension** [Coh91, Wir91]. **Type-Graphs** [KPS92]. **Type-preserving** [LST02]. **Type-Safe** [Dug02, BSGF03, NCH+05]. **Typechecking** [CL95, MBC04]. **Typed** [ACPP91, Geo84, Koh88, NN86, WCM00, AAR+10, LP99, MWC99]. **Types** [AFF06, AC93, BBN94, BEM15, DD85, EO80, FLQ08, GEGP17, HL82, Hes88, Jen97, Kam83, LaL93, LOR94, LBN17, Loe87, Mal82, MiQ98, WLS5, Wei90, AM01, BBF+11, Dam03, DDM11, DMM01, Gro06, GPV07, HV05, IV06, MME+10, KS96, Pal98, STS03, SP07]. **Typestate** [COE+10, GTWA14]. **Typestate-Oriented** [GTWA14]. **Typing** [ACPP91, DG19, Dug99, RM10, SV96]. **ultimate** [PS08]. **Ultracomputers** [Sch80]. **Unassigned** [Win84]. **Unbounded** [LWR21, BGP99]. **uncaught** [LP00]. **Undecidability** [Ram94, Rep00, Cha02]. **undecidable** [Ram00]. **Understandable** [MMS+16]. **Understanding** [ST00a]. **Undo** [Lee86]. **unfold** [RKR04]. **unfold/fold** [RRK04]. **Unidirectional** [Pet82].
Unification [MM82, DRSS96]. Unified [VSS94]. Uniform [AS80, BP89, Hua93, AH10, HY07].

Uniformly [DB85]. Unifying [TVA07]. unique [Van06]. UNITY [Pan01, TB95].

universe [DDM11]. Unnecessary [BT93]. Untrusted [JW17]. Update [Hud91, FGM*07a, GW99]. Updating [HSS*14, HN05, SRW98, SHB*07]. Upper [PW94]. Usage [MS83, BDFZ09, IK05, QR00]. Use [FOW87, GH80, HS94, LaL84, PPS79, She91, SS82, CC97]. usefulness [HDH02].

User [ACS84, DS90, Mye90, Wal80, Wal81, van88]. User-Defined [Wal80, Wal81]. Using [AGT89, Bob80, CGJ*97a, CES86, CH87, DP93, Di90, DMM01, DJP*16, FLBB89, GSW95, GSO94, HBB90, JTM98, Kar84, LaL89, Lam84, LM18, LWR21, Mye90, Ode93, Pet83b, PP94, PBR*15, SS84, SS96, Sok87, SGL89, TVS82, ACM11, BH99, CSW06, CGS*03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, ST00a, SGL96, TFK*11, VJB12, XA07, YUW02, ZSD09, Pem83]. Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KC01, MOS07a]. Value [HL82, HL05, SW97a]. valued [RMH06, SRW92]. Values [DD55, Han92, Wet82]. Variable [MS83, MTG80, FMoPS11, GLMM05].

Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP09, HBB*99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NC20]. Vector [AK87, Bud84, CBMO19, Fis80, FT95, KD94, Per79, KK07].

Verifiable [YB85]. Verification [App15, BDP14, BCD+15, CDFP89, CES86, CPS93, CHMY19, Di90, EGP14, GL94, JBK18, JON94, JTM98, KKW14, LFF14, LL99, LS79, NGB13, RY88, BD1+08, CEI*07, GPF08, GM12, Qia00]. Verified [BFGT08, BKL*97, JLP*14, DSW11].

Verifying [AS89, BFG08, CGJ97b, DJP*16, GEGP17, LM18, YS10, Mon08]. Version [YR94]. Versions [HRP89]. versus [Pal98, Pip97, UM02]. Vertices [BGH+13].

Volpano [Bur91]. Volume [Ano18, TGT20]. vs [HR02].

W [Tie88]. Wait [Her91]. Wait-Free [Her91]. Waite [BP82]. Warp [WL03]. way [VHM*01]. Weak [AMT14, KZC15].

weakening [SYH07]. Weaker [Boo82]. web [BFG08, BSR12, CHY12, CGP09, CMS03].

Weight [GHS83]. While [Pet83a, BC85b, GM81]. while-Programs [BC85b]. Whole [BDH*16]. Widening [KKW14, VJB12]. win [Lam90]. Within [FKW98]. Without [Cop94, Ode93, AS89, Cas95, Sto04, VR95].

Witnessing [TA08b]. Workbench [CP93]. World [GG85, DF11].

X [OLH+16, MSM+16]. X-Sensitive [OLH+16]. X10 [GH+19]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].
References

REFERENCES

Alur:2005:ARS

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CAC

Afek:1993:LC

Apt:1998:AIL

REFERENCES

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

Attali:1996:NSE

Alur:2011:SMC
REFERENCES

REFERENCES

Ager:2006:FPE

Attie:1998:SCS

Attie:2001:SCP

Apt:1980:PSC

Abadi:2006:TSL

Alpuente:1998:PEF

REFERENCES

Arsac:1982:STR

Allen:1987:ATF

Ait-Kaci:1989:EIL

Alglave:2017:DSF

Ait-Kaci:1994:FPC

Abadi:1993:CS

Abadi:1994:OFR

REFERENCES

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR

Alglave:2014:HCM

Anger:1989:LIC

Anonymous:1982:IA

REFERENCES

1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Anonymous:1983:IA

Anonymous:1984:IA

Anonymous:1985:IA

Anonymous:1986:IA

Anonymous:1986:IA

Anonymous:1987:IA

Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

REFERENCES

Anonymous:1990:AI

Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1991:IA

Anonymous:1992:AI

Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

[Ano02a] Anonymous. Automatic derivation of compiler machine de-

Abadi:2007:E

Appel:1993:Ea

Appel:1994:ABG

Appel:1994:PS

Appel:2015:VCP

Appel:1994:PS

Apt:1981:TYH

Apt:1986:CPD

Apt:2000:RCC
Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Andersen:2019:FSP

Austin:2017:MFD

Assmann:2000:GRS

REFERENCES

Arenaz:2008:XEF

Ashcroft:1982:RS

Avrunin:1985:DAD

Ben-Ari:1984:AFG

Blume:1999:HM

Aiken:1995:SST

Alur:2001:MCH

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA
on Programming Languages and Systems, 29(1):5:1–5:37, January 2007. CODEN ATPSDT.
ISSN 0164-0925 (print), 1558-4593 (electronic).

Brecht:2006:CGC

[BALP06] Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage collection and heap growth to reduce the execution time of Java applications.

Banerjee:1987:MSR

Beyer:1979:SED

Barston:1985:CTD

Banerjee:2011:MFT

Barsten:1985:CTD

Breuer:1994:DET

URL http://www.acm.org/
Bhaskaracharya:2016:ASO

Bengtson:2011:RTS

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL

Bates:1985:PP

Bergeretti:1985:IFD
REFERENCES

Brogi:1991:CLS

Bugliesi:2004:ACM

Bossi:1990:MSL

Betts:2004:MCA

Bruynooghe:2007:TAL

Bugliesi:2015:RT

Betts:2015:DIV
REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[BDH+16] Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney, José Nelson Amaral, Tim Brecht, Lubomír Bulej, Cliff Click, Lieven Eeckhout, Sebastian Fischmeister, Daniel Frampton, Laurie J. Hendren, Michael Hind, Antony L. Hosking, Richard E. Jones, Tomas Kalibera, Nathan Keynes, Nathaniel Nystrom, and

REFERENCES

REFERENCES

REFERENCES

Berger:2019:IPL

Bird:1984:PAS

Bird:1985:APA

Barthe:2011:AMC

Broy:1980:DIA

Breuer:1997:RCS

Barthe:2013:PRR

Buchsbaum:1998:NSL

Buchsbaum:2005:CNS

Bic:1987:DDM

Ball:1994:OPT

Bates:1994:RSL

REFERENCES

REFERENCES

Bistarelli:2001:SBC

Ball:2005:PPA

Borstler:1991:TCT

Broy:1994:AFC

Bertsch:1999:FPT

Banerjee:2018:LAF

Bohm:1994:TIP

REFERENCES

Bobrow:1980:MRS

Boehm:1985:SEA

Boom:1982:WPL

Borning:1981:PLA

Boute:1988:SSP

Boute:1992:EDF

Boute:2005:FDL

REFERENCES

REFERENCES

Baumgartner:1997:ISC

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Bahlke:1986:PSF

Bermudez:1988:NRB

[Bermudez:1988:NRB] Manuel E. Bermudez and Karl M. Schimpf. On the (non-)relationship between SLR(1) and NQLALR(1) grammars (tech-
REFERENCES

REFERENCES

Burton:1991:TCA

Broy:1987:ADP

Cameron:1989:EHL

Carlisle:1995:TCC

Castagna:1995:CCC

Cattell:1980:ADC

Casanova:1980:FSR

REFERENCES

Charron-Bost:1995:LTP

Cotton-Barratt:2019:MVP

Click:1995:CAC

Clarke:1997:URE

Constable:1979:HAF

Carchiolo:1989:ELT

Chen:2018:BPP

Casey:2007:OIB

Chander:2007:ERB

Clarke:1986:AVF

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Charlesworth:1987:MR

Chatterjee:1993:CND

Charlesworth:2002:UAC

Chitil:2005:PPL

Cogumberiro:2019:DDV

Carbone:2012:SCC

Cameron:1984:GBD

REFERENCES

[Cham95] Craig Chambers and Gary T. Leavens. Typechecking and modules for multimethods. *ACM
REFERENCES

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC

Carle:1995:MBI

Carle:1996:OCP

REFERENCES

Chen:2004:LGS

Clausen:2000:JBC

Coop:2001:OSR

Carlsson:2006:MAC

Collberg:2007:DGB

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FAC

Dillon:1988:CET

Dunlop:1985:GSU

REFERENCES

dBruin:1985:DSD

Donahue:1985:DTV

DeSutter:2005:LTB

Drossopoulou:2002:MDO

Dencker:1984:OPT

Dietl:2011:SOT

Decorte:1999:CBT

Debray:1989:SIM

Debray:1995:CDA

DeMillo:1983:GEI

DeFraine:2012:EAC

Davidson:1980:DAR

Dershowitz:1985:PAI

Davidson:1981:CDA

Davidson:1984:CST

Douence:1998:SSF

Dimoulas:2011:CSH

Demetrescu:2015:RIP

DalLago:2019:PTM

Dams:1997:AIR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. ACM Transactions on Programming Languages and Systems, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

Debray:1989:FCL

Dantas:2008:APA

Etalle:2001:TCP

Elder:2014:ADA

Eilers:2020:MPP

Ellis:1982:TCS

Ernst:1980:SAD

Emerson:1997:USW

Eugster:2007:TBP

Finlay:1993:TCC

Fateman:1982:HLL

Feng:2012:BQP

Feather:1982:SAP

Feather:1987:LSS
Martin S. Feather. Language support for the specification
REFERENCES

Flanagan:1999:CSB

FF99

Furr:2008:CTS

Flanagan:2008:TAS

Fournet:2003:SIT

Freudenberger:1994:ASC

REFERENCES

[Fuchs:1985:OPF] David R. Fuchs and Donald E. Knuth. Optimal prepping and
Fokkink:1998:WAR

Fokkink:2000:LRE

Fischer:1989:DF

Finkel:1987:DDI

Fraser:1987:ERC

Freund:1999:TSO

Flexeder:2011:FIL

Frohn:2020:ILR

Foster:1996:CPP

Ferrante:1987:PDG

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FT94]</td>
<td>Ian Foster and Stephen Taylor. A compiler approach to scalable concurrent-program design.</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

[Gho93] Sukumar Ghosh. An alterna-

[GKM20] Pritam M. Gharat, Uday P. Khedker, and Alan Mycroft.
REFERENCES

Irene Greif and Albert R. Meyer. Specifying the semantics of while
program: a tutorial and critique of a paper by Hoare and Lauer.
ACM Transactions on Programming Languages and Systems, 3 (4):484–507, October 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs.

John Gannon, Paul McMullin, and Richard Hamlet. Data abstraction, implementation, specification, and testing.
ACM Transactions on Programming Languages and Systems, 3(3):211–223, July 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Somnath Ghosh, Margaret Martinosi, and Sharad Malik. Cache miss equations: a compiler framework for analyzing and tuning memory behavior.

Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eggers. The benefits and costs of DyC’s runtime optimizations.

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J.

Gomard:1992:SAP

Gorlatch:2004:SRC

Grit:1981:DIT

Girkar:1995:ETL

Gupta:2001:PEP

Gal:2008:JBV

Grothoff:2007:EOC

[GVC15] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. Polyhedral AST generation is more than scanning polyhedra. *ACM Transactions on Programming Languages and Systems*, 37(4):12:1–12:??, August 2015. CODEN ATPSDT. ISSN 0164-
Gudjónsson:1999:CTM

Gil:2007:EDD

Glesner:2004:NSS

Hailperin:1998:COC

Gil:2005:EST

Hailperin:2005:CCC

REFERENCES

[Hau96] John R. Hauser. Handling floating-point exceptions in numeric programs. ACM Trans-

REFERENCES

Hilfinger:1988:APD

Hilfinger:1994:LIP

Haines:1994:CFC

Haines:1997:FDE

Heering:1985:TMP

Heering:1992:IGL

Henzinger:2007:EMP

REFERENCES

Herlihy:1982:VTM

Hirschowitz:2005:MMC

Hague:2019:CMC

Hull:1984:CSP

Harper:1993:TSS

Hamlen:2006:CCE
Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for enforcement mechanisms. ACM Transactions on Programming Languages and Systems, 28(1):175–205, January 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Hicks:2005:DSU
Michael Hicks and Scott Nettles. Dynamic software updating. ACM Transactions on Programming Languages and Systems, 27(6):1049–1096, Novem-
REFERENCES

Homan:1982:PE

[HO82]

Higuchi:2007:STS

[H07]

Hobson:1984:DEE

[Hob84]

Horwitz:1997:PFI

[Hor97]

Haghighat:1996:SAP
Mohammad R. Haghighat and Constantine D. Polychronopou-

Huang:2011:MSS

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP
REFERENCES

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS

Igarashi:2001:FJM

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Inoue:1988:AFP

Igarashi:2006:VPT

REFERENCES

Iverson:1979:O

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

Jangda:2020:EFT

Jacobs:2018:MTV

Janssen:1997:MGR

Jacek:2019:OCW

Nicholas Jacek, Meng-Chieh Chiu, Benjamin M. Marlin, and J. Eliot B. Moss. Optimal choice

Jefferson:1985:VT

Jeffery:2003:GLS

Jensen:1997:DPA

Juelich:1981:CAS

Jeon:2019:MLA

Jackson:1998:IFM

Jimenez:2002:RTN

Jagannathan:2014:ARV

Jeannet:2010:RAI

Jaffar:1992:CLS

Joshi:2006:DP

Jones:1983:TST

Jones:1990:EEC

[Larry G. Jones. Efficient evaluation of circular attribute

Jonsson:1994:CSV

Jazayeri:1981:SES

Joung:1994:CF

Jourdan:2017:SPC

Joisha:2012:TTE

Jacobs:2008:PMC

Jagadeesan:1991:FAS

REFERENCES

Kaufman:1984:TLR

Kandemir:1999:GCO

Khedker:1994:GTB

Kim:2001:ERV

Kennedy:1999:PRE

Kistler:2000:ADM

REFERENCES

Kistler:2003:CPO

Knowles:2010:HTC

Keen:2004:JFD

Kaiser:1992:OBP

Kennedy:1998:ADL

Karkare:2007:IBC

Korach:1990:MTD

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Kawahito:2006:ESE

Kennaway:1994:AGR

Kaiser:2014:WAM

Klein:2006:MCM

Gerwin Klein and Tobias Nipkow. A machine-checked model

Koopman:1992:CBC

URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/128867.html. Also see [KLS92].

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM

Kobayashi:1999:LPC

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

F. T. Krogh. ACM algorithms policy. ACM Transactions on Programming Languages and Systems, 8(3):408–411, July 1986. CODEN
REFERENCES

REFERENCES

Knoop:1994:OCM

Kieburtz:1979:CCS

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1988:DSC

Kennaway:1989:CDS

Kobayashi:2010:HTS

Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of mobile processes. ACM Transactions on Programming Lan-
REFERENCES

Khedker:2007:HRA

Knoop:1996:PFE

Kfoury:1993:TRP

Kuperman:2000:ATA

Kalvala:2009:PTU

Kasikci:2015:ACD

LaLonde:1981:CSC

Wilf R. LaLonde. The construction of stack-controlling LR parsers for regular right part grammars. ACM Transactions
LaLonde:1983:TCL

LaLonde:1984:TCC

LaLonde:1989:DFD

Lamport:1979:NAP

Leslie Lamport. A new approach to proving the correctness of multiprocess programs. *ACM Transactions on Programming Languages and Systems*, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].

Lamport:1980:CNA

Lamport:1983:SCP

Lamport:1984:UTI

REFERENCES

REFERENCES

Lozano:2019:CRA

Liao:1996:SAD

Lee:2007:DIE

LeMetayer:1988:AAC

Leeman:1986:FAU

Lee:2009:RFS

REFERENCES

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB

Lueh:2000:FBR

Lycklama:1991:FCF

Lhotak:2008:RAB

Liu:2019:RIP

Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. Re-thinking incremental and parallel pointer analysis. ACM Transactions on Programming Languages and Systems, 41(1):6:1–6:??, March 2019. COD-
Lindstrom:1979:BGC

Lin:1993:PIA

Liu:1999:SVF

Lee:2002:ADC

Lee:2017:SNS

Lidman:2018:VRP

Leuschel:1998:CGP

REFERENCES

[Lero:2000:TBA]

[Leavenoni:2006:FRC]

[Leung:2001:STC]

[Luckham:1979:VAR]

[Lero:2000:TBA]

[Leavenoni:2006:FRC]

[Leung:2001:STC]

[Luckham:1979:VAR]

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Liu:2009:DRE

Liu:2005:OAA

Lamp:1982:BGP

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3): 382–401, July 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any $n \geq t > 0$, where n is the total number of processes and t is the number of faulty processes.

Lengauer:1979:FAF

REFERENCES

REFERENCES

131

REFERENCES

McGraw:1982:VLD

McKinley:1996:IDL

Morrison:1991:AHA

Moreau:2005:BDR

Moon:1997:PNC

Mauney:1988:DEL

Matthews:2009:OSM

Jacob Matthews and Robert Bruce Findler. Operational semantics

Millstein:2009:EMP

Moriconi:1986:PSP

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CR

Minsky:1984:SLC

Miquey:2019:CSC

Étienne Miquey. A classical sequent calculus with dependent types. *ACM Transactions on Programming Languages and Systems*, 41(2):8:1–8:??, June 2019. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

[134]

[Mis81]

[Mis86]

[Mis94]

[MK94]

[ML80]

[ML21]

[Martelli:1982:EUA]

Ma:1980:DMI
REFERENCES

REFERENCES

REFERENCES

Melo:2020:TIC

Maher:1983:API

Murphy:1988:NDP

Marriott:1994:DAI

Marino:2016:DXU

Madhavan:2000:EGG

Morris:2008:DNF

Joseph M. Morris and Malcolm Tyrrell. Dually nondeterminis-

REFERENCES

Manna:1980:DAP

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

McKenzie:1995:ERS

Myers:1990:CUI

Myers:2017:F

REFERENCES

REFERENCES

Naik:2008:TSE

Nanda:2006:ISM

Nikolic:2013:RAP

Nowatzki:2015:SFS

Nowatzki:2015:SFS

Olderog:1988:FPP

Odersky:1993:DCD

Olmedo:2018:CPP

Oh:2014:GSA

Ogasawara:2006:EED

Owicki:1982:PLP

Ohori:1995:PRC

Ohori:2007:PTM

Ohori:2007:PTM

Odersky:2004:GE

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Palsberg:1998:EBF

Palsberg:2001:E

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens. Secure compilation to protected module architectures. *ACM Transactions on Programming Languages and Systems*, 37(2):
Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

0925 (print), 1558-4593 (electronic).

Pan:2008:PFE

Pemberton:1983:TCT

Perrott:1979:LAV

Perry:1990:GEI

Peterson:1982:UAC

Gary L. Peterson. An $O(n \log n)$ unidirectional algorithm for the circular extrema problem. *ACM Transactions on Programming Languages and Systems*, 4(4):758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of n uniquely numbered processes in a ring. The algorithm requires $O(n \log n)$ messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW

Peterson:1983:NSL

REFERENCES

[Pai80] Ajit B. Pai and Richard B. Kieburtz. Global context re-

Pinter:1994:POP

Prywes:1979:UNS

Park:2008:PLB

Podelski:2007:TPA

Proebsting:1995:BAG

Pollock:1992:IGR

Palem:1993:STC

REFERENCES

Palsberg:1996:CTT

Poletto:1999:LSR

Pottier:2003:IFI

Pearlmutter:2008:RMA

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF
1991. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [PP91].

Purtilo:1994:PSB

Pugh:1994:SAU

Pugh:1998:CBA

Palsberg:1995:EIA

Palsberg:2005:ADC

Qian:1995:CR

Qian:2000:SFI

Zhenyu Qian. Standard fixpoint iteration for Java bytecode verification. *ACM Transactions on Programming Languages and Systems*, 22(4):
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Rinard:1998:DIE
Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of Jade.
REFERENCES

[RP03] Radu Rugina and Martin C. Rinard. Pointer analysis for structured parallel programs. ACM
REFERENCES

Rugina:2005:SBA

Rosa:2019:AOT

Rinetzky:2008:CPF

Ramanath:1984:JML

Reif:1984:RTS

Raja:1997:CFC

REFERENCES

journals/toplas/1997-19-6/p899-raja/.

REFERENCES

REFERENCES

Schwartz:1980:U

Schneider:1982:SDP

Schmidt:1985:DGV

Sampaio:2013:DA

Strickland:2013:CFC

Sethi:1983:CFA

Ravi Sethi. Control flow aspects of semantics-directed compiling.

REFERENCES

REFERENCES

Scott:2006:RNG

Smans:2012:IDF

Schwanke:1988:SR

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Shankar:1992:SRH

Schultz:2003:APS
Sloane:1995:EA

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TRO

[Ell82]

[Sok87]

Solworth:1992:E

Sonnenschein:1987:GTS

Sorkin:1989:TCS

Soundararajan:1984:ASC

Sansom:1997:FBP

Simonet:2007:CBA

Spooner:1986:MAR

REFERENCES

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

REFERENCES

ACM Transactions on Programming Languages and Systems, 31(2):1, February 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [SS08].

Staiger-Stohr:2013:PIA

Sneyers:2009:CPC

Schonberg:1981:ATS

Sippu:1983:SEH

Snelting:2000:UCH

Sperber:2000:GLP

REFERENCES

Terauchi:2008:WSE

Tai:1979:NSG

Tanenbaum:1983:TCT

Tardieu:2007:DLS

Tsay:1995:DFP

Tofte:1998:RIA

Trinder:2017:SRI

Phil Trinder, Natalia Chechina, Nikolaos Papaspyrou, Konstantinos Sagonas, Simon Thompson, Stephen Adams, Stavros Aronis, Robert Baker, Eva Bihari, Olivier Boudeville, Francesco Cesarini, Maurizio Di Stefano, Sverker Eriksson, Viktória Fördös, Amir Ghaffari, Aggelos Giatsios, Rickard Green, Csaba Hoch, David Klaftenegger, Huiqing Li, Kenneth
REFERENCES

Tzannes:2014:LSR

Tip:2011:RUT

Toro:2018:TDG

Toro:2020:CTD

Thorup:1994:CGA

Tichy:1986:SR

Toro:2020:CTD

Thorup:1994:CGA

Tichy:1986:SR

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Tichy:1988:TCT]
URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/214507.html. See [SK88].

[Tick:1994:DTN]

[Tripakis:2011:TSR]

[Tel:1993:DDT]

[Thakur:2019:PFP]
URL https://dl.acm.org/ft_gateway.cfm?id=3337794.

[Thammanur:2004:FME]
REFERENCES

REFERENCES

Thatcher:1982:DTS

Toninho:2018:ISB

Tse:2007:RTP

Ungar:1992:ATP

Unger:2002:HIL

Ugawa:2018:TSL

Vera:2005:ACM

References

vandenBos:1988:AIT

VanderZanden:1996:CIA

VanderZanden:1996:IAS

Vansummeren:2006:TIU

Vera:2004:FAF

Venkatesh:1995:ERD

VanRoy:1997:MOD
REFERENCES

vonHanxleden:2000:BCP

VandenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Volpano:1991:TCS

vandenBos:1981:PCB
REFERENCES

REFERENCES

Wand:1982:DTC

Waters:1983:UFC

Waters:1991:ATS

Waters:1994:CBP

Wright:1997:PST

Walker:2000:TMM

Wileden:1990:CEO
REFERENCES

88639.html. See corrigenda [WCW91].

REFERENCES

[WL85] William Weihl and Barbara
REFERENCES

[WP10] Peter H. Welch and Jan B. Pedersen. Santa Claus: Formal

Wang:2008:DSJ

Whitfield:1997:AEC

Wang:2015:EAS

Wu:2004:ETC

Wu:1995:WCC

Pei-Chi Wu and Feng-Jian Wang. A worst case of circularity test algorithms for attribute grammars. *ACM Transactions on Programming Lan-
REFERENCES

languages and Systems, 17(2):228–
232, March 1995. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/201064.html.

Wegman:1991:CPC

Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches. ACM Transactions on Programming Languages and Systems, 13
(2):181–210, April 1991. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/103136.html.

Ward:2007:SPT

Martin Ward and Hussein Zedan. Slicing as a program transformation. ACM Transactions on Programming Languages and Systems, 29(2):7:1–
7:53, April 2007. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Xie:2007:SSF

Yichen Xie and Alex Aiken. Saturn: a scalable framework for error detection using Boolean satis-
fiability. ACM Transactions on Programming Languages and Systems, 29(3):16:1–16:43, May
2007. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Xie:2020:CSA

Ningning Xie, Xuan Bi, Bruno C. D. S. Oliveira, and Tom Schrijvers. Consistent sub-
typing for all. ACM Transactions on Programming Languages and Systems, 42(1):2:1–
2:??, January 2020. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL https://dl.acm.org/ft_gateway.cfm?id=3310339.

Yemini:1985:MVE

Shaula Yemini and Daniel M. Berry. A modular veri-
fyable exception-handling mechanism. ACM Transactions on Programming Languages and Systems, 7
(2):214–243, April 1985. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/3320.html.

Yemini:1987:ATE

Shaula Yemini and Daniel M. Berry. An axiomatic treat-
ment of exception handling in an expression-oriented language. ACM Transactions on Programming Languages and Systems, 9
(3):390–407, July 1987. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/24052.html. See remarks
[YB88].

Yemini:1988:TCA

Shaula Yemini and Daniel M.

Yiapanis:2016:CDS

YB16

YF98

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Zhao:2007:FFS

Zhang:2005:CPT

Zhuang:2010:OFE

REFERENCES

Zhong:2009:PLA

Zhao:2020:DLS