A Complete Bibliography of Publications in ACM
Transactions on Programming Languages and Systems
(TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

23 November 2019
Version 2.132

Title word cross-reference

(SRW02), + [Han81a], TM [Bla03]..ex/
[AW82], \[DDD]CG02, A [DES12], \(\mathcal{R}\)
[JMSY92], \(\mathcal{R}_{\text{Lin}}\) [VR95], \(\ell\) [ADG+94].
\(O(nn)\) [Pet82], \(\phi\) [CF95, DR05]. \(\pi\) [ABL03].

\(k\) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3
Abstract [BGL93, BK11, CMB+95, CFG+97, DGG97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RR05, HR02, HO07, KSK07, PHP02, PSS05].

Access [ABLP93, BCC04, KS83, Mis86, NBG13, HR02, HO07, KSK07, PHP02, PSS05].

Access-Right [KS83].

Accessing [CB80].

Addendum [Bir85].

Additions [ACW90, BN94].

Accessing [ACW90].

Adjusting [ABB+09].

Algebraic [BP82, BWP87, CIJGP18, CGG+19, Jen97, Lin93, SV19b, JB06, SP07].

Algorithm [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha91, DP93, GHS83, Hua90, Hud91, JJC019, LV94, LY98, Lei90, LT79, LH91, MM82, MC82a, Pet82, SH89, TB98, Wis79, BKR98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKR05].

Alternative [Gho93, GH80, Zav85].

Amalgamation [Tho94].

Amortized [HAH12].

Amulet [VHM+01].

Analysis [AC94, CC95, CFM94, TN19, KSV96, SJ03].

Analysis [AKNP17, ABE+05, AD98, Bae84, BNN18, BC85b, Blo94, BE13, Bur90a, CFH18, CFG19, CDK+18, CM91, DKL18, DL93, Deb95, DP97, DAW88, FPS19, FJK+17, GNS+15, GJ93, HP96, HOY18, Hii88, Hor97, ISY88, Jen97, JJC019, KD94, WJS+00].

Abstract [BGL93, BK11, CMB+95, CFG+97, DGG97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYY+07, SJ03].

Abstraction [CGL94, CL94, Der85, GMH81, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, ELL82].

Access [ABLP93, BCC04, KS83, Mis86, NBG13, HR02, HO07, KSK07, PHP02, PSS05].

Access-Right [KS83].

Accessing [CB80].

Addendum [Bir85].

Additions [ACW90, BN94].

Accessing [ACW90].

Adjusting [ABB+09].

Algebraic [BP82, BWP87, CIJGP18, CGG+19, Jen97, Lin93, SV19b, JB06, SP07].

Algorithm [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha91, DP93, GHS83, Hua90, Hud91, JJC019, LV94, LY98, Lei90, LT79, LH91, MM82, MC82a, Pet82, SH89, TB98, Wis79, BKR98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKR05].

Algorithmic [BP82, CFNH18, GM12, Loe87].

Algorithms [Apt86, BA84, CIJGP18, CGG+19, CS95, CN83, GLO88, KRS84, KKM90, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, MM89, RD87, RH87, RP88, TM93, WW95, Apt00, DAS98, GC01, ZG05].

Alias [Hor97, HBC99, RRSY08].

Allasing [Boe85, Ram94, RLS+01].

All-Purpose [Spo86].

Allocating [ZP07].

Allocation [BB79, Bre89, BCT94, CH90, CS95, FLBB89, GSO94, LCBS19, Rob79, SH89, CGS+03, HCS10, LGAT00, PS99, PF96, RDG08, SRM10, TP04].

Alma [ABPS98].

Alma-O [ABPS98].

Almost [Due08, Ram99].

Alternative [Gha93, GH96, Zav85].

Alway [Gr97].

Ambients [BCC04, LS03, MH06].

Ambiguity [Tho94].

Amortized [HAH12].

Amulet [VHM+01].

Analyses [AC94, CC95, CFM94, TN19, KSV96, SJ03].

Analysis [AKNP17, ABE+05, AD98, Bae84, BNN18, BC85b, Blo94, BE13, Bur90a, CFH18, CFG19, CDK+18, CM91, DKL18, DL93, Deb95, DP97, DAW88, FPS19, FJK+17, GNS+15, GJ93, HP96, HOY18, Hii88, Hor97, ISY88, Jen97, JJC019, KD94, WJS+00].
array-valued [RMH06]. Arrays [BBC16].

Article [Ano18]. ASF [VHKO02]. aspect [DWW08, WKD04]. aspect-oriented [DWW08, WKD04]. AspectML [DWW08]. Aspects [Bor81, Set83]. assembly [AAR+, MWCG99].

Associated [PPS79]. associativity [Cha02]. Associons [Rem81]. assume [HQRT02].

assume-guarantee [HQRT02]. Assumptions [ES97]. AST [GVC15].

Asynchronous [Bag89, GLO88, Mis86, GM12, HR02]. ATL [WSH15]. Atomic [WL85, Wei90, AE01].

Atomicity [JLP+14, Wei89, FFLQ08]. Attacks [SBE+19]. Attribute [CP95, Hud91, Jon90, Kat84, KR79, MK94, RD87, WW95, Boy96, CP96, Wu04].

Attributes [HT86]. Author [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].

authorization [FGM07b]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b].

auto [ZP10]. auto-addressing [ZP10].

Automata [BMW91, CBM019, ES97, Pro95, KV00].

Automata-Theoretic [ES97, KV00].

Automated [GRSK+11, KZC15, KF00, Sok87, JNGG10]. Automatic [AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, DSS90, KK98, Le 88, LK02, LS04, MS83, PZJ05, RH87, SSS81, SL03, She91, Wat91, Wha94, ABH11, ATD08, BdlBH99, CRN+08, ZCG+07].

Automatically [Slo95].

Automating [GKL94, MTSS09]. Avoidance [FGL94]. aware [MQ05]. Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80].

Axioms [Mis86].
B [Han81a], backpropagator [PS08].
Backtracking [Lin79, VR95, FM87a].
Backward [DL18, Mye18]. Balanced [AS80, PB80, vHK00]. Barrier [CHMY19]. base [LS98]. Based [BPP16, BGL93, Bur90a, CGJ+97a, CEG07, YUW02, YS99].
Building [Jag94]. BURS [Pro95]. Bus [Pur94]. Bytecode [SA99, BDL+08, CSMC00, FM99, GPFO8, KR01, Qia00, SMP10, WR08]. Byzantine [LSP82].
Caching [ABM93, FK85, KS86, LST98].
Calculational [Bou06]. calculus [ABS09].
Calculus [ABLP93, BKL+97, BN94, Gom92, Miq19, MRG88, Nel89, Oh95, WM95, AB03, AH10, Bou05, Bou06, BCC04, DES12, HR02, IPW01, Jay04, TA08a, KPT99]. Call [DP97, GL05, GC01, HL05, KK07, SW97a].
call-by-value [IL05, SW97a]. Calls [BN18, Cohn3, Coh85, FF08]. Can [Boe85, Cohn9, Wir91, CG04]. capabilities [WCM00]. capability [TA08a]. Carlo [FL15]. carrying [AM11]. Case [CFG19, FTJ95, WW95, BdlB99, KF03].
Cats [AMT14]. Cause [Cas05]. CCP [EGM01]. Cerged [NCH+05]. Cedar [SBBH86]. Cells [IS88].
Centered [CHY12]. Centers [KR84]. Centralized [HM84].
centric [DHM+12]. Certificate [BGKR09, BK11]. certified [STSP05].
Chaining [LS80]. Chains [H94].
challenge [MP02]. change [BA08, CP96, Lee90]. Changes [Ber94, MTSS09]. changing [MP07].
Coupled [ACW90]. Covariance [Cas95].
covariant [PZJ05]. Creating [Mye90].
criteria [Hai05]. Critical [PS93]. Critique [GM81]. Cross [Ano18, FTJ95, GSS+18].
Cross-Interferences [FTJ95].
Cross-Language [Ano18, GSS+18].
Cryptographic [App15].
CS [CD79]. CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Zic94].
CSP-Like [Hua90].
CSS [HLH19].
currency [DS98]. Curry [LR19].
Curry-Style [LR19].
Custom [DJP+16].
CV3 [CZ84]. Cycle [BG89b, PKB+07].
Cycles [FRW90]. Cyclic [RY88].
D. [Bur91]. Data [AMT14, ANP89, AM85, Bac84, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, Ei82, EO80, FL81, GMH81, GEGP17, HLS82, Her93, Hes88, Hol87, Jen97, JCCO19, KH92, Kam83, KZC15, KK98, KDF94, Lai89, LO94, Loe87, Mal82, MMR95, MCT96, PP91, QG95, RCRH95, RP88, SSS81, Sku95, SGL98, SM81, TWW82, WL85, Wei90, Wet82, Wey83, CFP+04, DMM+12, DGS97, HBJ90, KBC+99, KF00, LK02, Rep90, SP07, VALG05, YUW02, ZGZ05, Pur91].
data-centric [DHM+12]. Data-Driven [BS87, CS87, JCCO19]. Data-Flow [BC85b, Bur90a, Wet82, RP88, KBC+99].
data-independence [Rep90].
data-member [KF00]. Data-Parallel [Cha93, HBJ98].
Dataflow [Deb95, DFR15, MWB94, SS13, SS56, Van90a, Van96b, VHM+01].
datalog [LS09]. datatypes [MBC04].
Deadlock [CHMY19, Hua90, Kob98].
Deadlock-Free [Kob98].
Deadlocks [FKJ+17]. Dealing [GLMM05, GG85].
Debugging [CMN91, CM93, Cop94, Hen82, WST85].
Deciding [GGL15]. Decision [MTG80, NO79].
Decisions [MTSS09].
Declarative [ABPS98, TCVB14, Boun05, MME+10].
Decomposition [BB94].
Decomposing [BDL+08]. decomposition [LKF02].
decrease [LDK+96]. Deducing [TB95].
deduction [LMD98]. Deductive [MW80].
Default [NSN+14]. Deferring [MTSS09].
Defined [Wal92, Wal80, Wal81].
Defining [Ode93]. definite [RKR04].
Definition [Bou92, BWP87, CSS99, Fid93, HS94, WCW90, WCW91, Woi94].
Definition-Use [HS94].
Definitions [BS86, Wil82b, Dam03, VHK02, SI89].
Delay [BG89b].
Delayed [KPF95, RC03].
Delayed-Load [KPF95].
Delaying [Kau84].
Deleting [GP81]. Delimited [BDM15].
Demand [FPS19, GSW95, PA85, PA86a, PA86b, PF96, SR95, DGS97].
Demand-Driven [GWS95, PA85, PA86a, PA86b, FPS19, PF96, DGS97].
Denali [JNZ06].
Denotational [AB94, FA93, Gud92, MSJ94, NF89, Nie85, Sch85, dBB85].
Dependence [BGH+13, CFR+91, FOW87, HBG+09, HBR90, PB97, PW98, Woi94, RAB+07].
Dependences [PW94].
Dependencys [Deb89, CSS99]. Dependency [Blu99].
Dependent [LS80, Miu19, NBG13, Ode93, RTD83, Rob79].
dequeues [Chi05].
DeRemer [Sag86]. Derivation [BBK80, Cat80, DSW82, Gie83, HMP97, Kna90, TM93, Ano02a].
Deriving [Wan82, Boun06].
Describing [AW85].
Description [McG82].
Descriptions [Boe85, BL+97, Cat80, Ano02a].
Descriptors [Hol87].
Design [BPP16, BCD+15, BOA94, DF80, DF81, FT94, HM84, KKM90, LDM07, ML80, RCS93, RL98, SYK+05, Boun05, MTSS09, CMLC06].
design-pattern-based [MTSS09].
Designing [Lai89, ALZ03].
Designs [AW85].
destructive [SRW98].
Detect [ISY88].
Detecting [GWS95, HCS10, Sch85].
Detect [CM86a, Hua90, MCS82a, MCS82b, TM93, AFF06, HDH02, PFH11, PCJD08, XA07].
Determinacy [TK94].
determination
Determining [MF88].

determinism [TA08a]. Deterministic [KR79, Mye18, DL18, Tar07]. Development [BKB80, Col84, Fea87, Jon83, ML80, PPS79, Wil82a].

Diagnosis [BF87]. Dialect [Mul92]. Dialects [BCM99]. DIB [FM87a]. difference [BA08].

Differencing [PK82, RSL10]. Differential [BKOZB13, ZP07]. Differentiation [Sha82].

Discipline [FGM07b]. Disciplines [SS84].

Discovering [FJK+17]. discovery [PZJ05]. Discrete [Bar81]. Discrete-Event [Bar81].

Disjunctive [Jen97, JCC019]. dispatch [DAS98, MFRW09]. dispatching [GZ07].

Distance [Wol94, ZSD09]. distribute [CRN+08]. Distributed [ABLP93, AF84, Apt86, AW85, BKS88, BCDM15, Bur84, CJK95, CMI86a, CMBDF95, CS95, DAW88, Dug99, FLBB99, Fra80b, GHS83, Hig17, Hua90, HM84, Jon94, Kat93, KK98, KRS84, KMK90, Lam84, LS83, MC82a, RCR95, SS84, Sch92, TMK93, TCP+17, Zav95, ABL03, FM87a, HVB+99, KGMO04, LK02, MDJ05, Pqi96, Fra80a, Moh81, VHB+97].

Distributed-Memory [KK98, RCR95].

div [Bou92]. Divergence [SdS93]. DJ [DR05, SGL96, SGL98, UM02]. DJ-graphs [UM02]. DLLs [Dug02]. do [SOS0a].

Documentation [MII86]. does [DMP96].

dolce [MP10a]. Domain [LM18, TDA88, RM07, SS05a]. Domains [CMB+95, ELS+14, GS98, FH04, GLMM05].

dominance [ANO02b, DVD07]. dominator [SGL97]. Dominators [LT97, AN002b, BKR98, BKR05]. Don’t [AKNP17].

drf [MSM+16]. Drinking [CM84, MS88]. Drive [PK80]. Driven [BL87, CS87, GF85, GSW95, JCC019, PA85, PA86a, PA86b, TGT18, YBL16, DGS97, FPS19, PFC96, YM97]. Dually [MT08].

Dummy [Lam88]. During [BKB80]. DyC [GMP+00]. Dynamic [ACP91, AGT89, AS97, BSS97, BD15, BR89, CGG+19, CHMY19, CTT07, DS98, Dug99, HSS+14, HN05, Kais98, KR79, RCR95, Ven95, WR08, dBB85, ACE96, BP12, CEI+07, DDDCG02, GZ07, MMM+07, PHEK09, SJ12, SHB+07, SYK+05, SYN60, WKP04, ZGZ05].

eager [FKW00]. Earley [Lei90]. Early [AB81]. ECCS [CDFP98]. Edge [DP93].

Editing [FL81, HT86, Nix85]. Editor [FM87b, DeM83, Mye18, Per90, Rep86, Wol92]. Editorial [AP07, AP93, AG93, FM87, MP07, Me18, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04]. Editors [DMM88, MM89, RTD83, Wat94].

EDO [OKN06]. effect [RLS+01]. Effective [BS83, Col84, KKN06, N05, PE08, WJ98, YWU02].

Effectiveness [BdBB99, SH89]. Effects [Boe85, SV19b, TA88b]. Efficient [AKB99, ADM01, BB89, BHG+13, Bree89, CAM99, CS95, DP82, DMM88, GZ05, GZ07, GLR83, GLO88, GSO94, HVB+99, HS94, HSS+14, HIT97, JP81, Jon90, KMK90, KRS88, KPF95, MVV+01, MM82, NB99, N05, PHP02, PX95, PKH07, PA85, PA86b, RH87, SS08, SA00, SS88, TN19, WG98, YUW02, BCP08, GB99, KSV96, LPS04, LSG09, LBK+07, TF04, VW10, YFW98, PA86a, SS09]. Efficiently [Bal94, CFR+91, CF95]. Eiffel [ACE96].

elaboration [KR01]. Election [Hua93].

Eliminating [BT93, Coh83, Coh85, RD03].

Elimination [DP93, SGL98, KKN06, KCL+99].

Elimination-Based [SGL98]. embedded [BCP98, CSCM00, HK07, Rhi03, SRM10, TP04, ZP10]. Embedding [HP87].

Empirical [BKH07, DBC+16].

Empowering [JSB+12]. Emulator [ML80].
General-Purpose [HSS+14].
Generalization [Nel89, LMD98].
Generalized [Ans87, BS83, KD94, Lin79].
Generalizing [DB85]. Generals [LSP82].
Generate [Son87].
Generated [Slo95, dJKVS12].
Generating [HBM+06, HT86, Jef03, LR13, JNZ06].
Generation [AGT89, AS80, BOV85, BM94, DSS83, DS90, GF85, GVC15, HKR92, HKR94, Pro95, Rei83, Rob79, She91, ST00b, UJ92, DAS98, MSRR00, PHEK99].
Generative [Gel85].
Generator [PPS79].
Generators [Cat80, GHK81].
Generic [LV94, DDM11]. generics [IV06].
Geometry [CR87].
George [NN86].
GJ [IPW01].
Glanville [MSRR00].
Global [Bac84, Dha91, GHB+96, OHL+14, PK80, PS92, Sch85, dHB+96, CS04, KBC+99, DS88, Sor89].
GLR [SJ06].
Goal [Dar90, Gud92, SYYH07]. Goal-Directed [Gud92, SYYH07]. Goal-Oriented [Dar90].
Goto [CF94].
Guided [SL92].
Guarantee [GEGP17, LFF14, HQRT02]. guarantees [LS09]. guard [MP07]. guarded [SP07].
Guardians [LS83]. Guards [Ber80]. Guest [FP02, OP04, DeM83, Per90, Rep86, Wol92].
Guide [App94a, BDH+16]. Guided [OLH+16]. guiding [VALG05].
Hackers [App94a].
Hancock [CFP+04].
handle [VJB12].
Handling [Han96, LdR81, Piq96, SSS83, UM02, YB85, YB87, YB88, CRN+08, LS98, LP80, SSD09, Hen83]. Hard [Hor97].
Hardware [BKLI+97, Mis86].
harmful [Gor04].
Hasing [PB80, Duc08].
Haskell [GRSK+11, HHPW96].
heap-manipulating [YS10].
Heavily [BG89a].
Hennessy [CM93, WST85].
Herding [AMT14]. Heuristic [SL92].
hiding [LN02, OYR09].
hierarchich [AG04]. Hierarchical [BA99, CP95, CD79, Ay01, CP96]. hierarchically [MBC04].
hierarchies [ST00a, Van96a, Van96b]. hierarchy [KF00].
High [Cam89, Fat82, MSM+16, URJ18, CMS03, VWJB10].
High-Level [Cam89, Fat82, CMS03, VWJB10].
High-Performance [URJ18].
Higher [AC94, AD98, CJK95, DJP+16, FPS19, SV19a, BBTS07, DF11, SKS11, SP97].
Higher-Order [AC94, AD98, CJK95, DJP+16, FPS19, SV19a, BBTS07, DF11, SKS11, SP97].
Highly [Her93, Skn95].
Hoare [Apt81, GM81, LS84, Sok87, Yin11].
Hoc [MDCB91]. Holistic [ZMVPJ17].
Homomorphisms [HIT97].
HOP [BLRS12].
Hybrid [KF10, KS10].
Hyperball [LM18]. hyperdoctrines [BBTS07].
I-Structures [ANP89]. I/O [Car95]. Icon [GHK81, Gri82]. id [Bee94].
idempotency [KOE+06].
Identical [FLBB89].
Identification [BGH+13, SBE+19].
identify [MMM+07]. Identifying [Ram99, SGL96]. Idioms [PP94].
IDL [Lam87]. IEEE [Fat82].
Ignorance [GNS+15].
Illustrative [Oss83].
Impact
[BHM+19, OLH+16, CKT86]. Imperative
[ABPS98, DFR15, Gro06]. Implementation
[AKBLN89, AOC+88, BCD+15, Bou88,
Bre89, BS83, CM86b, GMH81, Gaz83, Lin93,
MDCB91, PXL95, RL98, WSL5, CMLC06,
FM87a, GB99, LDM07, LPS04, Tra08,
Zho96]. implementations
[BBF+11, BFGT08, DF98]. Implemented
[DB85]. Implementing
[BR97, Her93, HW82, Sku95]. Implications
[Fat82]. Implicit
[BH05b, SJP12]. Implicit-signal
[KF00]. Improved
[GHR80, Mur91, KK07]. Improvement
[MS83, San96]. Improvements
[BCT94]. Improving
[QL91]. Independence
[DHM00, Rep00]. Independent
[Ml80, Mul92]. Index
[Ano86a, Ano88a, Ano89a, Ano90a, Ano91a,
Ano92a, Ano94, Ano95, Ano98]. indexed
[AM01]. indices
[Piq97]. incomplete
[GLMM05]. incompleteness
[MM+07]. Inessential
[SSL82, LaL84]. Inference
[CWCE14, Debs89, Hev93, LO94, LY98, Pad19,
TB98, Wey83, FLLQ08, JB06, PM06, PT00,
PS03, Van06]. Influence
[FT95]. Information
[AR80, Ano82, Ano83, Ano84,
Ano85, Ano86b, Ano87, Ano88b, Ano89b,
Ano90b, Ano91b, Ano92b, ASF17, BC85b,
HR02, NBR13, PBR+15, PS03, GS99, HY07,
LN02, OYR09, TZ07]. Information-Flow
[BC85b, TZ07]. infrastructure
[SWU10]. Infrastructure Flow
[FLQ08, JB06]. Initializations
[FM99]. Injection
[SBE+19]. Input
[BSS83, vPS81]. Input-Output
[BS83]. Inputs
[PA86a]. Insensitive
[Hor97, FJKA06]. Insertion
[AKNP17, GJ05]. Inspection
[CF04, FG03]. Instantiation
[Der85]. Instead
[Lam84, Rem81]. Instruction
[KPF95, LCBS19]. Instructions
[LS80, PS93, RF97, Rob79, LPP01]. Integer
[BAGM12, BEF+16, BGP99]. Integrated
[SS13]. Integrating
[HPR89, WJS+00]. Integration
[CO90, Len04]. Intensional
[STS03]. Interaction
[WSH15, WT11, van88, BCM99]. Interactions
[JS94]. Interactive
[ACS84, BS86]. Interconnectability
[MY18]. Interface
[Win87, van88]. Interfaces
[DS90, Mye90, TLHL11, WT11]. Interferences
[FTJ95]. Interfering
[Jon83]. Intermediate
[Lam87, Pem83, Tvs82]. Internal
[Han81a]. International
[Wol92]. Interoperability
[Ano18, GS+18]. interoperable
[BFGT08]. Interpretation
[BGL93, CFG+97, DLR16,
KRR18, LV94, MSJ94, BdlBH99,
DGG97, Len04, SYH07]. Interpretation-Based
[DLR16]. Interpretations
[CMB+95, HY91, SJ03]. Interpreters
[LR13, CEG07]. Interprocedural
[Bur90a, BT93, DP97,
HAM+05, HS94, HBC99, HRB90, NR06,
SH89, CTT86, DVT07, DGS97, FMO11,
JLR90, KK07, RLS+01]. Interprocess
[RS+84b]. Interprocessor
[Ang89]. intersection
[Dam03]. Intertask
[FT95]. Interval
[Bur90a, GNS+15, HF04]. Interval-Based
[Bur90a]. Introduction
[DeM83, HW82, Per90, Rep86, Sag07,
Wol92]. Invariant
[BKB80]. Invariants
[Cla80, GEGP17]. Irreducible
[Hav97, UM02]. Irregular
[YF98]. Irrelevant
[GP81]. Iso
[LBN17]. Iso-Recursive
[LB17]. Isolation
[Wha94]. Isomorph
[JJD98]. Isomorph-free
[JJD98]. Issue
[Ano18, Sag07]. Issues
[BO94]. Iterated
[GA96]. Iteration
[Cam89, MOSS96, GS11, JLF02, Qia00]. Iterative
Jade [RL98]. Jam [ALZ03]. Java [AFF06, ALZ03, ADD+07, BH05a, Bla03, BALP06, CGS+03, CMS03, CSCM00, FFLQ08, FM99, GPF08, IPW01, KKN06, KGM004, KN06, KR01, LST02, LP06, LS08, Loc13, MMV+01, MME+10, MFRW09, MMG00, NR06, OKN06, Qia00, RRK19, SLC03, SMP10, SBE+19, SA99, SYK+05, TN19, TSL+02, WR08]. Java-like [KN06]. JavaCOP [MME+10]. JavaGI [WT11]. join [WKD04]. JR [KGMO04]. Jump [LS08, RS04a]. Just [DLR16, TN19, SYK+05]. Just-In-Time [TN19, DLR16, SYK+05]. JVM [HO07].

labels [Sto04]. Laboratory [Bor81]. LaLonde [Hen83, LaL83]. LALR [DP82, KM81, PCC85]. Lambda [Geo84, Gom92, NN86, PS08]. Laminar [PBR+15]. Lamport [Ang89, Pet83b]. Language [ACPP91, AOC+88, Ano18, ABP98, BS86, BPP16, BO94, Bor81, BC91, DVL15, Fat82, Fea87, FFF+18, GSS+18, Gud92, Hal85, HSG17, JMSY92, JPP91, Kii89, McG82, Per79, PPST9, RTD83, RCS93, Spo86, SNS+14, Tur84, Wet82, Win87, YS91, YB87, dJKVS12, van88, Bon05, BSvGF03, CFP+04, DWW08, DF98, FM99, Gro06, HB98, KN06, LP99, MF90, MWC09, PPT08, PHEK99, Tra08, VHKO02, HCW82, YB88].

Liveness [ACW90, GC86, OL82, RY88, HDH02]. LL [BF87]. Load [KPF95]. Loaded [BG89].

Local [BDF09, CBG95, PT00, TSBR08, Wei89, Dam03, San96]. Locality [BAC16, MCT96, VLA05, ZSD09]. Locally [AB81, Bac84, Min84]. locating [JNGG10].

Locator [ZMVP17]. Lock [GEGP17, KS10]. Lock-Free [GEGP17].
lock-freedom [KS10]. locking [AFF06].
LOCKSMITH [PFH11]. Logic
[AS98, AFV98, Apt81, BGL93, BL87, BCD90,
BDJ13, BMPT94, CS04, CE86, CFM94,
DW89, Deb89, DL93, Deb95, DJP+16,
JPP91, Kar84, LS84, Lam94, MW84, MSJ94,
MMG92, SS98, Sok87, TK94, TB95, BBTS07,
BMR01, BCG+07, BiliBH99, CU08, CG86,
SS99, DDV99, DPPR00, GHB+96, GW99,
HVB+99, HPMS00, KWL99, LMD98, Leu04,
PM06, RKKR04, SRW02, Yin11, dHB+96].
Logical
[BN18, GGL15, GS98, TY18, RSL10, Tar07].
Look [DP82]. Look-Ahead [DP82].
Lookahead [KM81, MF88]. Loop
[BAC16, CS87, MCT96, Sit79, RKSR12].
Loops [BAGM12, Boo82, CK94, DB85,
FTJ95, Hav97, Wat91, Ano02b, LS04,
LSLR05, Ram99, RDG08, SL96, UM02].
low [CSCM00]. low-end [CSCM00].
Lower [PW94]. LR [ADGM01, BL94b, BF87,
CPRT02, DMM88, Je03, JP17, KC01,
LaLS81, LaL84, SS82, ST00b]. LR-based
[KC01].

M [Bur91, Mul92]. M-LISP [Mul92].
Machine [CGJ+97, Cat80, GNS+15, Gie83,
Han94, JCC019, LR13, ML80, RF97, SS98,
Wal92, Zav95, Ano02a, CEG07, CF04, HK07,
KN06, Oho07, RBB99]. machine-checked
[KN06]. Machine-Code [LR13].
Machine-Independent [ML80].
Machine-Learning [JCC019].
Machine-Specific [Gie83]. machinery
[FKW00]. Machines
[ACW90, Bee94, CGST95, GC86, KK98,
PS93, PP91, Rob79, RCR95, AY01, AG04,
ABE+05, ABS09, TSY00, Pur91]. Madsen
[Ell82, SM82]. Magma2 [Tur84].
Maintenance [GKL94]. Making
[JC97, Loc13]. malware [PCJD08].
Management
[JP81, Mur91, van88, BP12, WCM00, Zho96].
Managing [Bob80]. Manifest [SIG17].

manipulating [YS10]. Manipulation
[DVLM15]. many [AE98]. massive
[BHK07]. Massively [CGST95]. Matching
[AC96, AGT89, CP95, KPS92, ADR06,
Van06]. Matching-Based [CP95].
materializations [RMH06]. Mathematical
[Ban11, Hes88, LW93]. MATLAB [DP99].
MATLAB(R) [JB06]. Matrix [FTJ95].
Matrix-Vector [FTJ95]. Maximal
[BG89b, Rep98]. Maximal-munch [Rep98].
Maximization [GLO88]. Maximum
[KN90]. May [Hor97]. May-Alias [Hor97].
MCALIB [FL15]. Measuring [FL15].
Mechanically [DSW11]. Mechanism
[CO90, YB85, DNS+06]. Mechanisms
[Rei83, HSM06]. Mechanizing [Pau01].
Median [Com80]. Medians [KR84].
megaflops [MMG00]. member [KF00].
Memory
[AMT14, CK94, Cha93, CBMO19, KZC15,
KK98, KRS88, MSN+16, Mis86, RCR95,
SS88, ABH11, BP12, GMM09, GW99,
JNGG10, KF00, LR02, Loc13, QR05,
TSY00, TP04, VBL94, WCM00, MMM+07].
memory-efficient [TP04].
memory-hierarchy [KF00]. Merge
[Ber94]. Merlin [HBM+06]. Message
[CSW06, SS84, Gor04]. Messages
[BB79, Je03]. meta [Tra08].
meta-programming [Tra08]. Metalevel
[Jag94]. Metaprogramming [CB84].
Method
[BN18, BCD90, BF87, HL82,
Jon83, Loe87, JDD98]. Methodology
[Ban87, Her93, SKu95]. Methods
[DAW88, KMS81]. METRIC [MMM+07].
Mezzo [BBP16]. Microanalysis [HCHP92].
Microcode [MV87]. Middle [BDP14].
Middle-End [BDP14]. Might [Bee94].
migration [Piq96]. Minification [HLH19].
Minimal [FKW98, IPW01]. Minimization
[RS84a]. minimizing [RMH06]. Minimum
[GHS83]. Minimum-Weight [GHS83].
Mining [AMT14]. Misled [Cop94]. miss
[MMG99]. Mixin [HLO5, RD13]. mixins
[ALZ03]. **ML** [Blu99, CBMO19, HM93, HT04, PS03, RD13, Spo86]. **Mobile** [LS03, VHB+97, BCC04, KS10, SWU10].

Mod [Bon92]. **Modalities** [SV19b]. **mode** [PS08, ZP10]. **Model** [AY01, Ang89, BK11, BL87, BGP99, CGL94, DLR16, ES97, GS98, GG85, GL94, Han81a, HW82, Hol87, JFC019, KH92, MSM+16, MMG92, ND16, VSS94, ACM11, AM01, AE01, JJD98, JPS+08, KN06, Loc13, NP08, QR00, SG04, VWJB10, VALG05, YMW97].

Model-Checking [ES97, BGP99]. **Modeling** [AF84]. **Modelling** [AMT14]. **Models** [GJ93, KZC15]. **Modern** [BCF04, RAB+07]. **Modes** [Deb89].

modest [LS08]. **Modification** [Lei90, RLS+01]. **Modula** [EO80]. **Modular** [AG04, BMPT94, CDK+18, EMH19, GL94, JBK18, Jag94, KKM90, MBC04, Wei89, YB85, dJKVS12, KV00, MFRW09, MOS07b].

modularity [BA99]. **Module** [PAS+15, RD13]. **Modules** [CL95, HW82, Lam83, HL05]. **Monadic** [DG19, MH04]. **Monitors** [BLH12, BH05b]. **Monolingual** [HK85]. **Monte** [FL15].

Morel [Dha91, DS88, Sor89]. **Morphing** [HS11]. **Morris** [Wis79]. ** Mostly** [YF09, BBYG+05]. **Motion** [KR94, Hai98]. **MPI** [FK+17, TSY00]. **Multi-Language** [Ano18, GSS+18, MF09].

Multialgebraic [WM95]. **multidimensional** [RDG08]. **Multijava** [CMLC06]. **Multilisp** [Hal85]. **multimethod** [DAS98]. **Multimethods** [CL95]. **Multiparty** [JS94]. **Multiple** [ASF17, NSTD+15].

Multiprocess [Lam79, Lam80]. **Multiprocessing** [ABR81]. **Multiprocessor** [GP81]. **Multiprocessors** [Cha93, KRS88]. **Multisource** [MMR95].

Multithreaded [EGP14, JBK18, JSB+12, KKW14, NR06]. **Multivariate** [HAH12]. **Multiway** [Cha87, Van96a, Van96b]. **munch** [Rep98]. **Mutandis** [SHB+07]. **Mutatis** [SHB+07].

Mutual [LH91, ABH11]. **Mutual-Exclusion** [LH91]. **Myths** [Gor04]. **n** [CKT86]. **Naming** [BDP93]. **Natural** [GZ04, dJKVS12, ACE96]. **Neighborhood** [BG89a]. **Neighborhood-Constrained** [BG89a]. **Nested** [Cha93, NB99, ACM11].

Nesting [Hav97, Boy10]. **Nests** [BAC16]. **Net** [JTM98]. **Network** [WGS92, WGS93]. **Networks** [CGJ97b, GC86, KRS84, dBB85]. **Newtonian** [RTP17]. **Nicholson** [FA93].

No [Ano18]. **node** [JC97, UM02]. **Nodes** [CF95, Han81a]. **Nomadic** [SWU10].

Nominal [CU08]. **Non** [CFG19, DL18, LLK+17, Mye18, BS88]. **non-** [BS88]. **Non-Deterministic** [Mye18, DL18]. **Non-polynomial** [CFG19]. **Non-Statistical** [LLK+17]. **Noncanonical** [Tai79].

Nondeterminate [TK94]. **Nondeterminism** [Ber80, Hes88, WM95]. **Nonterminating** [QG95, MT08].

Noninterfering [HR89]. **nonnumerical** [ME97]. **Nonprocedural** [PPS79]. **nonrectangular** [JLF02]. **nonscalars** [CRN+08]. **Nonsequentiality** [Bar81].

Nostrict [Blo94]. **Nontermination** [PM06]. **normal** [LMD98]. **Normalize** [CRN+08]. **norms** [BCG+07]. **Notation** [Rem81, Wil82b]. **Note** [Com80, CM93, MS88, WST85, Coh85, Pal11b, YK97].

Notes [Sku95]. **Nothing** [BDH+16]. **Notion** [HW94]. **NP** [Hor97]. **NP-Hard** [Hor97]. **NQLALR** [BS88]. **nulled** [SJ06]. **Numbers** [GLR83]. numeric [Hau96].

O [ABPS98, Car95]. **Object** [DF84, HU96, KH92, Ryu16, WGW90, WC91, BSGF03, DMM01, DDDD02, FM99, GPWZ08, HBM+06, JPS+08, LPS004, Piq96, WJS+00]. **Object-Based** [KH92]. **Object-Oriented** [HU96, Ryu16, BSgf03, DMM01, JPS+08, WJS+00].
Objects
Gor04, Zho96. Passive [APK94]. past
[PM09]. Path [Bl09, CJI9P18, SMP10].
path-length [SMP10]. Patient [FF++18].
Patient-Oriented [FF++18]. Pattern
[EPG14, ADR06, Jay04, MTSS90, Van06].
Pattern-Based [EPG14]. Patterns [GH80].
PDS [Han81b]. PEAK [OE08]. Peephole
[DF80, DF81, Pen83, Tvs82]. PegSys
[MS88]. Pennello [Sag86]. Perfect [Duc08].
Performance [HU96, MSM+16, PB80,
URJ18, KF00, EO8]. Performed
[Coh91, Wir91]. Permission
[BPP16, SN+14]. Permission-Based
[BPP16, SN+14]. permissions [Boy10].
Persistent [AM85]. Petri [JTM98].
Petri-Net-Based [JTM98]. Phases
[Bar81]. Philosopher [CM84].
Philosophers [MS88]. pi [HR02, KPT99].
pi-calculus [HR02, KPT99]. pict [SWU10].
Pictures [MH86]. Pipeline [GG83].
Pipeline [BG89b, LPP01, RDG08].
pipelining [ME97]. pitfalls [Mon08]. PL
[CD79, C84, FF++18]. PL/CS [CD79].
PL/CV3 [CZ84]. place [GW99].
Placement [DP93, GS99, vHK00].
Platform [TCP+17]. pluggable [MME+10].
Pluto [BAC16]. Point [CK94, Fat82,
SSB+19, GJ05, Han96, Mon08]. Pointer
[LHR19, LS79, RR03, HBC99, HVH07,
PKH07, RLS+01]. Pointers [SS13, RR05].
p points [WKD04]. Pointwise [VS94].
Policies [NBG13, BDFZ09, FGM07b].
Policy [Kro82, Kro83, Kro84, Kro85,
Kro87, Kro88, Kro90, Kro91, Kro92,
UJ92, BFG08]. policy-based [BFG08].
Polyhedra [GVC15]. Polyhedral
[GVC15, QR00]. POLYLITH [Pur94].
Polyomorph [BM05, Dug99, HT04,
Hen93, KTU93, LQ94, LLY98, Oho95,
SIC17, SV96, WJ98, BSGF03, DWWW8].
Polyomorphism [Bur90b, MDCB91, HDFC99].
polynomial [BAL07, CFG19]. PolyTOIL
[BSG03]. polyvariance [LMD98].
Polyvariant [AC94, WJ98]. POP
[FF++18]. POP-PL [FF++18]. Portable
[DDH84, Han81b, HK07]. Possibly [JP17].
Postfix [DS83]. Postpass [HG83]. Power
[TW92, SSD90]. Powerlist [Mis94].
PPMx [DKV07]. PQ [GZ05].
PQ-encoding [GZ05]. Practical [AD98,
BAC16, BF87, CPF17, Dha91, LR19, ND16,
PB+15, SS13, TSL+02, WC97, Bou05,
DR05, DVD07, DGS97, JN06, PH11].
Practice [KRS94, Ryu16, Bla03, DRSS96].
Pragmatic [BDH+16]. Pragmatics
[Gon92]. Pre [OLH+16]. Pre-Analysis
[OLH+16]. Precedence [Hen83, LdR81].
Precise
[CDK+18, FJK+17, Hor97, TN99, PHP02].
Precise-Yet-Efficient [TN19]. precision
[ZG05]. Precondition [Boo82]. Predicate
[Lam90, BMR05, Bou05, Bou06, MFRW09,
MMS96, PR07]. Predicates
[CBDGF95, Lam88]. predictable
[SHB+07, HK07]. Prediction
[CJG+97a, CE07, YS99]. Predictive
[FJK+17]. Preparing [FK85].
Prescription [FF++18]. Presence
[AWW95, CF94, KT93]. preserving
[DHS09, LST02]. pretenuring [BHM+07].
Pretty [Chi05]. Prettyprinter [Wat83].
Prettyprinting [Opp80]. Primitive
[App15]. principals [TZ07]. Principles
[Bou88, DRSS96]. printing [Chi05].
Priority [CH90, Fid93]. Priority-Based
[CH90]. Privacy [BKOBZ13]. Privileges
[Min84]. Probabilistic
[BKOZ13, CNFH18, DG19, HSP83, MMS96,
OGJ+18, Rao94, SV919, BH99, PPT08].
Problem [ADG+94, CM84, DSS88, Gho93,
LSP82, MS88, Pet82, Pet83b, PB07, S098,
FGM+07a, W04]. Problems
[Bae84, CFH18, DP09, MMR95, SRW98].
Procedural [HF87, Lin93, VSS94].
Procedure [CDK+18, GS99, GL80].
Procedure-Modular [CDK+18].
Procedures [AM85, Kat84, NO79].
Process [Kob98, vPS81, WP10].
process-oriented [WP10]. Processes [AFdR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oss83, RY88, Sou84, TY18, dBB85, AE98, KS10, Ber80, Moi83].

Processing [GH80, HSG17, Rei83].

Processor [BG89b, Bud84].

Processors [GLR83, Per79, LPP01, ZP10].

Product [EMH19, RTP17].

Productivity [Sij89].

Profile [BHM +07, YUW02].

Profile-based [BHM +07].

Profiling [ASAVF19, BL94a, SP97].

Program [Bal94, Bar85, BAL07, BKB80, Col84, DKKL18, Der85, FPS19, FOW87, FT94, FL91, HISP83, HKR94, Jen97, JJC019, KKW14, KWL09, Lam83, Lam88, LFF14, MS83, MW80, Mis81, Nie85, PP94, PPS79, Rem81, RTP17, TSY00, Wat94, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NS13, Pao11, RABT07, SLC03, WZ07, WN08, YF09, DKV07].

Programming [AGT89, Ano18, AR84, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BE13, BEF+16, CR87, CB80, CM86a, Cha93, CFNH18, CFG19, CEW14, CMN91, Cla80, CFM94, CS87, DL18, DGMP97, DW89, Deb89, DL93, Deb95, DP97, DI90, EMH19, EGP14, FJK+17, GG85, GM81, Har80, HCHP92, HPR89, How80, HIT97, ISY88, JKB18, JW17, Jon83, JF81, Kna90, Lam79, LS83, MSJ94, MH86, Mye18, NSZS13, OA88, OL82, PS92, QL91, RAO94, SS98, Sch82, SSS81, SS88, TN19, Ven95, Wad90, Web95, Wil82a, AE01, AA04, BCG+07, CSW06, CSS99, DP99, DTV99, DS98, DMM01, EGM01, GM12, GHG+96, GH97, GPA+01, Hau96, HPMS00, JPS+08, KSV96, LMD98, Leu04, LS09, MF09, NR06, PM06, RKRR04, RR03, Sam96].

programs [VJB12, WM12, YS10, Yin11, dHB96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MB94, NF89, Zho96].

Promotion [Bir84, Bir85].

Proof [AFdR80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Oho07].

proof-carrying [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, JW17, LY98, OS83, GRSK+11].

Propagation [SR95, WZ91, APT00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CIGGP18, Kar84, LM18, OL82, RR88, TB95, Wei89, YS10].

Proposed [Fat82].

prossima [MP10b].

Protected [PAS+15, WJS+00].

Protocol [SL92, YS97].

Protocols [MB83, BFGT08, SS96].

Prototype [WC90, WCW91].

Prototypes [HW82].

provably [GB99].

provenly [AAD+07].

Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Pruning [BN99].

PSG [BS86].

publish [Eug07].

publish/subscribe [Eug07].

Pure [BNN18, HU96, Pip97, Tar07].

Purpose [App94b, HSS+14, Spo86].

Pushdown [CBM019].

PYE [TN19].

qualifiers [FJKA06].

Qualitative [CFNH18].

Quality [BHM+19].

Quantification [Vol91, Bur91].

Quantified [Gro06, STS03].

Quantitative [CFNH18].

Quantum [FD12, BH99, YS10].

Queries [Bal94, CGG+19].

Queueing [BB79].
Quiescence [CM86a].

[Ven95, BGP99, SYYH07]. Retargetable
[DF80, DF81, MV87]. Retention [LS81].
Rethinking [LHR19]. retrofitting
[NCH'05]. reuse [DNS'06, GW99, ZSD09].
Reversal [ACS84]. Reverse [PS08].
Reverse-mode [PS08]. Revised [SIG17].
Revision [FM87b]. revisited
[MDJ05, Zho96]. Revisiting [DI09].
Rewrite [FKW98, Ass00]. Rewriting
[BKS94, BCM99, DDD05, FKW00,
GRSK'11, MMM'07]. Right
[KS83, LaL81, SJ06]. Rigorous [SBB'19].
Rings [BP89, Hua93]. RISC [PS93].
Rivieres [Hen83]. RMI [MVV'01].
Robust [LS83]. Roever [Moi83]. role
[Apt00]. Roman [PB97]. Round [SBB'19].
Round-Off [SBB'19]. Rounding [FL15].
Row [MM89]. RSMs [CGG'19]. rule
[HQRT'02]. Rules
[GL90, JTM98, SS14, LS09, SS09]. Run
[ISY88, TZ07, GMP'00]. Run-Time
[ISY88, TZ07, GMP'00]. Runtime
[Ano18, BLH12, BEF'16, GSS'18, TCVB14,
BH05a, TSY00].

S [HCW82]. S/SL [HCW82]. Safe
[AWW95, Dug02, JW17, AFF06, BSyGF03,
LS03, Loc13, NCH'05, SA00, ZCG'07,
MH06, SHB'07]. safe-for-space [SA00].
safety [FF08, YS10]. same [SS05a].
sampling [PPT08]. Santa [WP10].
Sapphire [URJ18]. Sather [MOSS96].
Satin [VWJB10]. satisfaction [DF11].
satisfiability [XA07]. satisfying
[Van96a, Van96b]. Saturn [XA07].
Scalability [TCP'17]. Scalable
[FT94, XA07]. ScalaExtrap [WM12].
Scaling [TCP'17]. scan [PS99]. Scanners
[HKR92]. Scanning [GVC15]. Scavengers
[UJ92]. Schanuel [KPS92]. schedulability
[GH97]. schedule [TVA07]. Scheduler
[TCVB14]. schedules [MH04]. Scheduling
[BG98b, FGL94, KR79, KPF95, LPP01,
LJ99, LCBS19, NB09, NSTD'15, PS93,
TCVB14, Ban11, ME97, YF98]. schema
[RLS'01]. Scheme
[Mur91, YR94, IV06, WC97]. Schemes
[Son87, TM93]. Schorr [BP82]. Schwanke
[Tic88]. Scientific [How80]. Scope
[App94]. Scratchpad [SRM10]. Screen
[MM89]. SDF [YHK02]. Search
[Dar90, BH99, SS05a]. Searching [CC97].
Section [Wol92]. Secure
[BCE15, PAS'15, BF'11, HY07].
Securely [RB94]. Security
[TGT18, BFGT08, BF08]. see [BR10].
Selection [DF84, SS81]. Selective
[Min84, OLH'16, ME97]. Self
[BP89, DHS09, Gho93, Gom92, ABB'09].
self-adjusting [ABB'09]. Self-applicable
[Gom92]. Self-Stabilization
[Gho93, DSH09]. Self-Stabilizing [BP89].
Semantic
[AAR'10, AW95, GGL15, MH06, HCW82].
Semantics
[ABHI11, Ans87, AB94, AW82, BGL93,
Ber94, BLRS12, Bou88, Boy10, CPS93, CD79,
FA93, GM81, Gud92, Han94, JPP91, Kai89,
Mul92, NF89, Set83, Son84, WM95, Wan82,
dBB85, ACE96, BMR01, Bou06, GZ04, MF09,
PCJD08, SWU10, SJ03, Tar07, WKD04].
Semantics-Based
[BGL93, CPS93, PCJD08].
Semantics-Directed [Han94, Set83].
Semaphore [CR87]. Semiring [BMR01].
Semiring-based [BMR01]. Send [Gor04].
Send-receive [Gor04]. Sensitive
[OLH'16, PKH07, Ram00, Rep00, RRSY08].
Sensitivity [FL15, KRR18]. Separating
[DDM11]. Separation
[BDJ13, DJP'16, OYR9, BT07].
Separators [GSO94]. Sequences [GSW95].
Sequential
[ABS09, Miq19]. Sequential
[AFdR80, Ber80, GLR83, HM84, KS79,
MC82b, Moi83, Sou84]. Series [Wat91].
Served [LH91]. server [LDM07]. servers
[BBYG'05]. service [CMS03]. Services
[CHY12, RB94, BFG08, CGP09]. Session

Share [SS88]. Shared [Cha93, FLBB89, KH92, KRS88, Pet83b, Dug02, HB398, TSY00, BC91].

Shared-Memory [Cha93, TSY00]. Sharing [CSS99, Lam87]. SHErrLoc [ZMVPJ17].

Shift [BN99, MYD95]. Shift-Reduce [BN99, MYD95]. Short [Sag86]. Should [LP99]. Side [Bol85, KWL9, RLS+01, TA08].

sin] [Lan90]. Single [BM94, CFR+91, JBK98, GPF08].

Size-change [BA08, Lee09]. Sized [DG19].

Slicing [AHJR14, CF94, DL18, GH97, HRR90, M18, Ven95, WZ07, BHK07, GZ07, NR06, RAB+07, WR08, ZGZ05].

SLR [BS88, Ta79]. Small [FLBB89, LH01, Pet83b]. Smart [Tie86]. Smarter [SK88, Tle88]. Smooth [JF81].

Soft [WC97]. Software [ACM11, AW85, Ber94, DAW88, HSS+14, How80, JW17, PXL95, PPS79, Pur94, Wal92, YBL16, CTT07, HN05, LS98, ME97, NCH+05, RDG08, SHB+07, SRM10].

Software-Defined [Wal92]. Soininen [LaL84]. Soisalon [LaL84].

Soisalon-Soininen [LaL84]. Solution [ADG+94, DSS88, Gho93, Pet83b, Sor89, WP10].

Solving [GS11, HLH19, NSTD+15, SRW98]. Some [AB94, AK82, Sha82, Sor89]. Sometimes [Gri79].

Sound [LLK+17]. Soundness [Sok87]. source [HBG+09]. Space [BP12, BB79, FLBB89, JP81, NB99, RD87, YF98, LS09, SS05a, SA00].

Space-Efficient [JP81, NB99]. Space/time [YF98].

Space/time-efficient [YF98]. spaces [JLF02]. Span [LS80, Rob79].

Span-Dependent [LS80, Rob79]. Spanning [GHS83]. Sparse [OHL+14].

Spatial [NSTD+15]. Special [Wol92, Sag07]. Specialization [AHJR14, BCP08, GJ05, HT04, SLC03].

specialization-point [GJ05]. Specializing [BCD90]. Specific [ASA0].

Specifications [BG99]. Specification [AL93, AL95, BNN18, CES86, DB85, Gaz83, Loe87, MW84, MB83, Reis83, Sch85, Win87, Zav85, Zic94, vPS81, JJD98, YS97].

Specifying [GM81, Lan83, RF97].

Speculation [YBL16, GB99]. speculative [KOE+06]. SPL [HSG17]. Split [Com80].

splitting [JC97, UM02, WJ98]. SPMD [WM12].

SR [AOC+88]. SSA [BDP14, GSW95, KCL+99].

SSA-Based [BDP14]. Stabilization [Gho93, DHS09].

Stabilizing [BP89]. Stack [CGS+03, FG03, LaL81, CF04, Zhao96].

Stack-Controlling [LaL81]. Standard [Fat82, HM93, Qiu00, Blu99]. State [ACW90, BLH12, CES86, GC86, PP91, Pur91, Zav95, Ay91, ABE+05, MBT09].

Statement [Ell82, Mor88, SM81].

Statement-Oriented [Ell82, SM81].

Statements [CF94]. States
Table [BMW91, PK80, DAS98].
Table-Drive [PK80].
Tabled [SS98].
Tables [ADGM91, DHH84].
Tail [DP97, CF04].
tail-recursion [CF04].
Tailored [Kau84].
Tailored-List [Kau84].
Tananbaum [Fem83, Tan83].
Target [Wan82].
Task [GP95, NSZS13, RRB19, HB93].
Task-Level [GP95].
Tail-call [DP97].
tail-recursive [CF04].
Tasking [Dil90].
Task-Level [GP95].
Task-Parallel [NSZS13].
Tasking [GP95, NSZS13, RRB19, HBJ98].
task-parallel [HBJ98].
Task-Level [GP95].
Tasking [Dil90].
Tasks [GP81].
Taylor [SBB+19].
tcc [PHEK99].
Technical [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Eli82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tie88, Vol91, WST85, Wir91, YB88, MMG00].
Technique [AW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNG10, KBC+99, SS96, TSL+02].
Techniques [AK82, CMN91, DP99, GLR83, How80, TW882, WCW90, WCW91, BHK07, DDD05, DEMD00, LS98, LPP01, LS09, Mil85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YMW97, LW93].
Time-Constrained [Zic94, LPF01].
Time-Critical [PS93].
time-efficient [GB99, YF98].
Timed [Zic94].
Timeout [Lam84].
timing [LJ99].
tokenization [Rep98].
Tolerance [LJ99].
Tolerant [CS95, Lam84, AAE04].
Tool [CP93].
Tools [van88].
TOPLAS [Ano18, MP10a, MP10b].
topology [DMM11].
Total [San96].
Trace [FG94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].
Trace-Based [WGS92, WGS93, WM12].
traces [HBM+06, WR08].
Tracing [BL94a, DLR16, MMM+07].
tradeoffs [ZG05].
Trailing [VR95].
Traits [DNS+06].
Translational [UR18, ABHI11, CFP+04].
Transactions [Ano18, HKMN94].
Transducer [DVM15].
Transducer-Based [DVM15].
Transformation [BB80, Faa82, FL91, NSZS13, Wat91, RKR04, San96, TS00, WZ07].
Transformational [BDFH97, Bir84, Bir85, DSW82, OA88, RC03].
Transformations [Bar85, GEM01, Geo84, LD81, LFF14, MS83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VAL05, WS07, Hen83, NN86].
Transformers [Lam90, MMS96, MBT09].
TransformGen [GKL94].
Transforming [AW89, BE94].
Transition [PR07].
Translation [AK87, BK11, Kat84, Son87, AAD+07, BGKR09, DP99, RC03].
Transmission [HL82]. Transparently [JSB+12]. Transport [Min84], transpose [CRN+08].
Traversals [LPSO04]. Treatment [YB87, YB88].
Trees [Com80, GHS83, MTG80, Sip82, Wad90, ACM11, SGL97]. Trees [GMM99, PE08].
Tuples [Rem81]. Tutorial [GM81]. Two [BO94, CDFP89, GPWZ08, FMoPS11].
Two-dimensional [GPWZ08].
two-variable [FMoPS11]. Type [Bur90b, Car95, CEF14, Coh91, CZ84, Dug02, Eng07, HHPW96, HM93, Hen93, KPS92, KU93, KR01, Lan80, LQ94, LST02, LY98, LP00, NBG13, Pad19, PO95, SA99, SM98, TWW82, TGT18, Van06, Wal80, WT11, Wir88, WC97, BSGF03, BCG+07, FJKA06, FM07b, FM99, FF08, GZ07, GMZ00, HO07, HDH02, HY97, KS10, NP08, NCH+05, PT00, ST90, TFK+11, T070, Wal81, Wir91].
Type-based [Eng07, LP00, BCG+07].
Type-Driven [TGT18]. Type-Extension [Coh91, Wir91]. Type-Graphs [KPS92].
Type-preserving [LST02]. Type-Safe [Dug02, BSGF03, NCH+05].
Typechecking [CL95, MBC04]. Typed [ACPP91, Geo84, KOB98, NN96, WCM00, AAR+10, LF99, MWGC99]. Types [AFF06, AC93, BB94, BSEM15, DDS8, ESO9, FLFQ08, GEP17, HL82, HS88, JH97, LAM8, LQ94, LBN17, LO87, M82, MQ19, ML85, W89, W89, A01, BBF+11, D103, DM11, DMM01, G06, GPV07, HVP05, IV06, MME+10, PS96, PA98, STS03, SP07]. Typerstate [GTWA14]. Tymepstate-Oriented [GTWA14]. Typing [ACPP91, DG19, Dug99, RM10, SV96].
ultimate [PS08]. Ultracomputers [Sch80].
Unassigned [Win84]. unbounded [BGP99]. uncaught [LP00].
Undecidability [Ram94, Rep00, Cha02].
undecidable [Ram00]. Understandable [ST00a]. Undo [Lee86]. unfold [KKR04]. unfold/fold [KKR04]. Unidirectional [Pet82].
Unification [C82, DRSS96].Unified [VSS94]. Uniform [AS80, BPS9, Hua89, A01, AH0, HY97].
Uniformly [DB85]. unifying [TVA07].
unique [Van06]. UNIITY [Fau01, TB95].
universe [DDM11]. Unnecessary [BT95].
Untrusted [JJ72]. Update [hud90, FMP+07a, GW99]. Updating [HSS+14, HN05, SRW98, SHB+07]. Upper [PW94]. Usage [MS83, BDFZ09, IK05, QR00].
Use [FOW87, GH80, H74, Lea84, PPS87, She91, SS82, CC97]. usefulness [HHD02]. User [ACS84, DS98, M90, Wal80, Wal81, W93, van88]. User-Defined [Wal80, Wal81].
Using [AG89, Bob80, CGJ+97a, CES86, CH87, DI90, DMM01, DDP+16, FLBB89, GSW95, GSO94, HRB90, JTM98, Kar84, LaL89, Lam84, LM10, Mye90, Ode93, Pet83b, PP94, PBR+15, SS84, SS96, Sok87, SGL98, TV82, ACM11, BH99, CSW96, CGS+03, DR05, G99, GCRN11, KWL09, KSK07, M40, RD03, ST00a, SGL96, TFK+11, VJB12, XA07, YUU20, ZD90, Pem83].
Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, K01, MOS07]. Value [HL82, H05, SW89].
valued [RMH06, SRW02]. Values [DD85, Han92, Wet82].
Variable [MS83, M80, FMoPS11, GLMM05]. Variables [GSW95, JPP91, Lam88, LH91].
REFERENCES

Veriﬁed [BFGT08, BKL+97, JLP+14, DSW11].

Verifying [AS89, BFG08, CGJ97b, DJP+16, GEG13, LM18, YS10, Mon08].

Volpano [Bur91]. Volume [Ano18]. vs [HR02].

W [Tie88]. Wait [Her91]. Wait-Free [Her91]. Wait [BP82]. Warp [LW93]. way [VHM+01].

Weak [AMT14, KZC15].

weakening [SYH07]. Weaker [Boo82].

web [BFG08, BLRS12, CHY12, CGP09, CMS03].

Weight [GHS83]. While [Pet83a, BC85b, GM81]. while-Programs [BC85b].

Whole [BDH+16]. Widening [KKW14, VJBJ92]. win [Lam90]. Within [FKW98]. Without [Cop94, Ode93, AS89, Cas95, Sto04, VR95].

Witnessing [TA08b]. Workbench [CP99].

World [GG85]. DF11].

World-Model-Based [GG85]. Worst [CFG19, WW95]. Worst-Case [CFG19].

write [AE01]. Writing [Pet83a, Win87]. WYSINWYX [BR10].

X [OLH+16, M+16]. X-Sensitive [OLH+16]. X10 [GH+19]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].

References

Ancona:2007:PCT

Attie:2004:SFT

Ahmed:2010:SFT

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. Semantic foundations for typed assembly languages. ACM Trans-

Anderson:1981:LLC

Arbab:1994:SCD

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CA

Abek:1993:LC

Apt:1998:AIC

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

REFERENCES

[AD98] J. Michael Ashley and R. Kent Dybvig. A practical and flexible flow analysis for higher-order...
REFERENCES

Afek:1994:BFF

Ancona:1991:ECL

Ager:2006:FPE

Attie:1998:SCS

Attie:2001:SCP

Apt:1984:MDT

REFERENCES

[AH98] Rajeev Alur and Thomas A. Henzinger. Finitary fairness. ACM Transactions on Programming Languages and Systems, 20
REFERENCES

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDI

Atkinson:1985:PPD

Appel:2001:IMR

Alglave:2014:HCM

Anger:1989:LIC

Anonymous:1985:IA

Anonymous:1986:AI

Anonymous:1987:IA
Anon Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

Anonymous:1990:AI

Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1991:IA

Anonymous:1992:AI

Anonymous:1992:IA
REFERENCES

REFERENCES

Andrews:1988:OSL

Apt:1994:OCF

Abadi:2007:E

Andrew:1988:OSL

Apt:1994:OCF

Appel:1994:PS

Appel:2015:VCP

REFERENCES

Alur:2001:MCH

Ben-Ari:1984:AFG

Blume:1999:HM

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

REFERENCES

REFERENCES

Bobrow:1979:CEL

Bates:1985:PP

Bergeretti:1985:IFD

Bugliesi:2004:A

Bossi:1990:MSL

Betts:2015:DIV

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul Thomson, and John Wickerson. The design and imple-
References

REFERENCES

Bergstra:1997:TCT

Bartoletti:2009:LPR

Botincan:2013:PDP

Blackburn:2016:TWT

Botincan:2008:DBV

Bueno:1999:EAI

Biernacki:2015:DCP

Bowman:1993:RAN

Barthe:2014:FVS

Bossi:1994:TAP

Bouajjani:2013:ARP

Beemster:1994:SOG

Brockschmidt:2016:ARS

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[BG89b] David Bernstein and Izidor Gertner. Scheduling expressions on a pipelined processor with a maximal delay of one cycle. ACM Transactions on Programming Languages and Systems, 11
REFERENCES

Binkley:2013:EIL

Bintehe:2009:CTO

Burlan:1999:MCC

Butler:1999:RAG

Back:2005:KJR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Blume:1999:DAS

Brandis:1994:SPG

Brogi:1994:MLP

Bistarelli:2001:SBC

Ball:2005:PPA

Borstler:1991:TCT

Broy:1994:AFC

REFERENCES

(Bor81) Alan Borning. The programming language aspects of ThingLab, a constraint-oriented simulation laboratory. ACM Transactions on Programming Languages and Systems, 3(4):353–387, October 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[BP82] Manfred Broy and Peter Pepper. Combining algebraic and algo-

[Bu93] G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP.
They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Bahlke:1986:PSF

Bermudez:1988:NRB

Bruce:2003:PTS

Burke:1993:IOE

Budd:1984:ACV

Burton:1984:ACP
F. Warren Burton. Annotations to Control Parallelism and Reduction Order in the Distributed Evaluation of Functional Programs. *ACM Transactions on Programming Languages and Systems*, 6(2):159–
REFERENCES

174, April 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Castagna:1995:CCC

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Click:1995:CAC

Clarke:1997:URE

REFERENCES

[Clarke186:AVF]
Chen:2014:ETI

Choi:1994:SSP

Cytron:1995:ECN

Clements:2004:TRM

Cortesi:1997:CAI

Chatterjee:2019:NPW

Codish:1994:SAC

REFERENCES

Calder:1997:EBS

Calder:1997:VPN

Clarke:1994:MCA

Castagna:2009:TCW

Choi:2003:SAS

Chatterjee:1995:OEA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cohen:1983:ERR

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC

Carle:1995:MBI

REFERENCES

Carle:1996:OCP

Cohen:2017:LPC

Corchuelo:2002:RSE

Cleaveland:1993:CWS

Carson:1987:GSP

Cooke:2008:NTD

Cuny:1987:CDD

REFERENCES

Choy:1995:EFT

Chen:2004:LGS

Clausen:2000:JBC

Coop:2001:OSR

Carlsson:2006:MAC
REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Dunlop:1985:GSU

Drossopoulou:2002:MDO

Donahue:1985:DTV

DeSutter:2005:LTB

Dietl:2011:SOT
Werner Dietl, Sophia Drossopoulou, and Peter Müller. Separating ownership topology and encapsulation with generic universe types. *ACM Transactions on Programming Languages and Systems*, 33(6):20:1–
REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

Darulova:2017:TCR

David:2018:PSP

Drinic:2007:PPC

Debray:1993:CAL

Danicic:2018:SBS

Dissegna:2016:AIB

Degano:1988:EIL

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärlí, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Luiz De Rose and David Padua. Techniques for the translation of MATLAB programs into Fortran 90. *ACM Transactions on Programming Languages and Systems*, 21(2):286–323, March 1999. CODEN
REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[DS90] Prasun Dewan and Marvin Solomon. An approach to support automatic generation of user interfaces. *ACM Trans-

REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Eilers:2019:MPP

Ernst:1980:SAD

Emerson:1997:USW

Eugster:2007:TBP

Finlay:1993:TCC

Fateman:1982:HLL

Feng:2012:BQP

REFERENCES

Feather:1982:SAP

Feather:1987:LSS

Flanagan:1999:CSB

Fournet:2003:SIT

Fournet:2008:CTS

Florence:2018:PPP

Flanagan:2008:TAS

Freudenberger:1994:ASC

Foster:2007:CBT

Fournet:2007:TDA

Fernandez:2004:ICS

Fidge:1993:FDP

Fischer:1980:PCA

Forejt:2017:PPA

Foster:2006:FIT

[FJKA06] Jeffrey S. Foster, Robert John-

son, John Kodumal, and Alex

Aiken. Flow-insensitive type

qualifiers. *ACM Transac-

tions on Programming Lan-

guages and Systems*, 28(6):1035–

1087, November 2006. CO-

DEN ATPSDT. ISSN 0164-0925

(print), 1558-4593 (electronic).

Fuchs:1985:OPF

[FK85] David R. Fuchs and Donald E.

Knuth. Optimal prepagging and

font caching. *ACM Transac-

tions on Programming Lan-
guages and Systems*, 7(1):62–

79, January 1985. CODEN

ATPSDT. ISSN 0164-0925

(print), 1558-4593 (electronic).

URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
2367.html.

Fokkink:1998:WAR

[FKW98] Wan Fokkink, Jasper Kamper-

man, and Pum Walters. Within

ARM’s reach: Compilation of

left-linear rewrite systems via

minimal rewrite systems. *ACM

Transactions on Programming Lan-
guages and Systems*, 20(3):

679–706, May 1998. CODEN

ATPSDT. ISSN 0164-0925

(print), 1558-4593 (electronic).

URL http://www.

acm.org:80/pubs/citations/
journals/toplas/1998-20-3/
p679-fokkink/.

Fokkink:2000:LRE

[FKW00] Wan Fokkink, Jasper Kamper-

man, and Pum Walters. Lazy

rewriting on eager machinery.

*ACM Transactions on Program-

ming Languages and Systems*, 22

(1):45–86, January 2000. CO-

DEN ATPSDT. ISSN 0164-0925

(print), 1558-4593 (electronic).

URL http://www.acm.org/
pubs/citations/journals/toplas/
2000-22-1/p45-fokkink/.

Fraser:1981:EDS

[FL81] Christopher W. Fraser and A. A.

Lopez. Editing data structures.

*ACM Transactions on Program-

ming Languages and Systems*, 3

(2):115–125, April 1981. CODEN

ATPSDT. ISSN 0164-0925

(print), 1558-4593 (electronic).

Fradet:1991:CFL

[FL91] Pascal Fradet and Daniel Le

Métaayer. Compilation of func-

tional languages by program

transformation. *ACM Transac-

tions on Programming Lan-
guages and Systems*, 13(1):21–

51, January 1991. CODEN

ATPSDT. ISSN 0164-0925

(print), 1558-4593 (electronic).

URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
102805.html.

Frechtling:2015:MMS

[FL15] Michael Frechtling and Philip

H. W. Leong. MCALIB: Measur-

ing sensitivity to rounding error

with Monte Carlo programming.

*ACM Transactions on Program-

ming Languages and Systems*, 37

(2):5:1–5:??, April 2015. CO-

DEN ATPSDT. ISSN 0164-0925

(print), 1558-4593 (electronic).
REFERENCES

Fischer:1989:DFA

Finkel:1987:DDI

Fraser:1987:ERC

Freund:1999:TSO

Flexeder:2011:FIL

Foster:1996:CPP

Ferrante:1987:PDG

REFERENCES

Fisher:2002:GE

Facchinetti:2019:HOD

Francez:1980:CDT

Francez:1980:DT

Francez:1981:TCR

Farmer:1990:CPC

Freundenberger:1983:ESO

Foster:1994:CAS
Ian Foster and Stephen Taylor. A compiler approach to scal-

REFERENCES

Gesbert:2015:LAD

Griswold:1980:AUP

Gerber:1997:SRT

GarciaDeLaBanda:1996:GAC

Grove:2019:FRR

Griswold:1981:GI
Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ghosh:1993:ASP
Sukumar Ghosh. An alterna-

David Gries and Gary Levin. Assignment and procedure call

Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs. *ACM Transactions on Programming Languages and Systems*, 34
REFERENCES

Gannon:1981:DAI

Ghosh:1999:CME

Grant:2000:BCD

Gomard:1992:SAP

Grossman:2000:STA

Gange:2015:IAM

Gomard:1992:SAP

Transactions on Programming Languages and Systems, 14(2):
147–172, April 1992. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/128864.html.

Gorlatch:2004:SRC

Sergei Gorlatch. Send-receive considered harmful: Myths and
realities of message passing. ACM Transactions on Program-
ming Languages and Systems, 26(1):47–56, January 2004. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Grit:1981:DIT

Dale H. Grit and Rex L. Page. Deleting irrelevant tasks in an
expression-oriented multiprocessor system. ACM Transactions on Programming Languages and Systems, 3(1):49–59, January
1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593
(electronic).

Girkar:1995:ETL

Milind Girkar and Constantine D. Polychronopoulos. Extracting task-level parallelism. ACM Transactions on Programming Languages and Systems, 17(4):600–634, July 1995. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/210189.html.

Gupta:2001:PEP

Gopal Gupta, Enrico Pontelli, Khayri A. M. Ali, Mats Carlsson,
(print), 1558-4593 (electronic).

Gal:2008:JBV

Andreas Gal, Christian W. Probst, and Michael Franz. Java
bytecode verification via static single assignment form. ACM
Transactions on Programming Languages and Systems, 30(4):
21:1–21:21, July 2008. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Grothoff:2007:EOC

(print), 1558-4593 (electronic).

Gil:2008:TDB

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Hall:2005:IPA

Hansen:1981:CMI

Hanson:1981:APP

Hansen:1992:SRF

Hannan:1994:OSD

Harel:1980:PNA

Hauser:1996:HFP

REFERENCES

REFERENCES

REFERENCES

Herlihy:1993:MIH

Hesselink:1988:MAN

Haynes:1987:ECP

Hilfinger:1988:APD

Hosoya:2009:PPX

Hennessy:1983:PCO

Hall:1996:TCH

REFERENCES

[HL82] Maurice P. Herlihy and Barbara Liskov. A value transmission
REFERENCES

Hirschowitz:2005:MMC

Hague:2019:CMC

HN05]

Hicks:2005:DSU

Hoffman:1982:PE

REFERENCES

Hermenegildo:2000:IAC

Horwitz:1989:INV

Henzinger:2002:AGR

Hennessy:2002:IFV

Horwitz:1990:ISU

Harrold:1994:ECI
REFERENCES

Huang:2011:MSS

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD

[Hua90] Shing-Tsaan Huang. A distributed deadlock detection al-

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS

Igarashi:2001:FJM

[Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

Igarashi:2006:VPT

Iverson:1979:O

REFERENCES

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

Jacobs:2018:MTV

Janssen:1997:MGR

Jacek:2019:OCW

Jefferson:1985:VT

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

Jeannet:2010:RAI

Jaffar:1992:CLS

Jerey:2010:ESA

Joshi:2006:DPA

Jones:1983:TST

Jones:1990:EEC

Jonsson:1994:CSV

REFERENCES

Jakobs:2017:PPF

Kaiser:1989:IDS

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO

M. Kandemir, P. Banerjee,..
REFERENCES

Kim:2001:ERV

Kennedy:1999:PRE

Khedker:1994:GTB

Kistler:2000:ADM

Kistler:2003:CPO

REFERENCES

Kennaway:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM

Knapp:1990:EFD

REFERENCES

115

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[KS79] Richard B. Kieburtz and Abra-
[160x646] ham Silberschatz. Comments on “Communicating sequential
[160x646] processes”. ACM Transactions on Programming Languages and
ISSN 0164-0925 (print), 1558-4593 (electronic).

[KS83] Richard B. Kieburtz and Abra-
[160x646] ham Silberschatz. Access-right
[160x646] expressions. ACM Transactions on Programming Languages and
0164-0925 (print), 1558-4593 (electronic).

[KS86] Robert M. Keller and M. Ro-
[160x646] nan Sleep. Applicative caching. ACM Transactions on Programming Languages and Systems, 8
0164-0925 (print), 1558-4593 (electronic).

[KS88] Richard Kennaway and Ronan
[160x646] Sleep. Director strings as combinators. ACM Transactions on Programming Languages and Systems, 10(4):602–
[160x646] 626, October 1988. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

[KS89] Richard Kennaway and Ronan
(print), 1558-4593 (electronic). See [KS88].

[KS10] Naoki Kobayashi and Davide
[160x646] Sangiorgi. A hybrid type sys-
[160x646] tem for lock-freedom of mo-
[160x646] bile processes. ACM Transactions on Programming Languages and Systems, 32(5):16:1–
[160x646] 16:49, May 2010. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

[KSK07] Uday P. Khedker, Amitabha
[160x646] Sanyal, and Amey Karkare. Henp reference analysis using ac-

[KSV96] Jens Knoop, Bernhard Steffen,
[160x646] and Jürgen Vollmer. Paral-

LaLonde:1989:DFD

Lamport:1979:NAP

Leslie Lamport. A new approach to proving the correctness of multiprocess programs. *ACM Transactions on Programming Languages and Systems*, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].

Lamport:1980:CNA

Lamport:1983:SCP

Lamport:1984:UTI

Lamb:1987:ISI

Lamport:1988:CPB

REFERENCES

Lamp:1990:WSP

Lamp:1994:TLA

Landwehr:1980:ATS

Larcheveque:1995:OIP

REFERENCES

[LFF14] Hong Jin Liang, Xinyu Feng, and Ming Fu. Rely-guarantee-based

Zhiming Liu and Mathai Joseph. Specification and verification

REFERENCES

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

Leung:2001:STC

Lieberherr:2004:TOS

Lim:2013:TSG

Lepigre:2019:PSC

Luckham:1979:VAR

Leverett:1980:CSD

Lindstrom:1981:RRB

Liskov:1983:GAL

Barbara Liskov and Robert Scheiber. Guardians and actions: Linguistic support for robust, distributed programs. *ACM Transactions on Programming Languages and Systems*, 5
REFERENCES

Lamp:1984:HLC

Lang:1998:SAE

Levi:2003:MSA

Li:2004:ATI

Liquori:2008:FME

Liu:2009:DRE

Liu:2005:OAA

Lamport:1982:BGP

They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the encrypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

Liu:1998:SCI

League:2002:TPC
Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. *ACM Transactions on Programming Languages and Systems*, 24(2):112–152, March 2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Lengauer:1979:FAF

LeCharlier:1994:EEG

Lipton:1983:VLP

Leivent:1993:MFT
Jonathan I. Leivent and Ronald J.
REFERENCES

REFERENCES

Morris:2009:TTN

Misra:1982:DGA

McGraw:1982:VLD

Merrin:1996:IDL

Morrison:1991:AHA

Moreau:2005:BDR

Moon:1997:PNC
Soo-Mook Moon and Kemal Ebcioglu. Parallelizing non-numerical code with selective

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

Moriconi:1986:PSP

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

George J. Milne. CIRCAL and the representation of communication, concurrency, and time. *ACM Transactions on Programming Languages and Systems*, 7
REFERENCES

Minsky:1984:SLC

Miquey:2019:CSC

Misra:1981:EPE

Misra:1986:AMA

Misra:1994:PSP

Micallef:1994:EAG

Ma:1980:DMI

Martelli:1982:EUA

Myers:1989:RRA

Markstrum:2010:JDP

Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Masticola:1995:LFM

REFERENCES

[Morgan:1996:PPT]

[Moh81]

[Moi83]

[Mor88]

[MOS07a]

[MOS07b]
REFERENCES

Murer:1996:IAS

[MOSS96] Stephan Murer, Stephen Omo-
hundro, David Stoutamire, and
Clemens Szyperski. Iteration
abstraction in Sather. ACM
Transactions on Programming
Languages and Systems, 18(1):
1–15, January 1996. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
225541.html.

Mitchell:1988:ATE

[MP88] John C. Mitchell and Gor-
don D. Plotkin. Abstract types
have existential type. ACM
Transactions on Programming
Languages and Systems, 10(3):
470–502, July 1988. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
45065.html. Preliminary ver-
ion appeared in Proc. 12th
ACM Symp. on Principles of
Programming Languages, 1985.

Moore:2002:AC

[MP02] J. Strother Moore and George
Porter. The apprentice chal-
lenge. ACM Transactions on
Programming Languages and
Systems, 24(3):193–216, May
2002. CODEN ATPSDT. ISSN
0164-0925 (print), 1558-4593
(electronic).

McKinley:2007:ECG

[MP07] Kathryn S. McKinley and Ke-
shaw Pingali. Editorial: a
changing of the guard. ACM
Transactions on Programming
Languages and Systems, 29(6):
30:1–30:2, October 2007. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Mckinley:2010:DVT

[MP07] Kathryn S. McKinley and Ke-
shaw Pingali. La dolce vita
at TOPLAS. ACM Transactions
on Programming Languages and
Systems, 32(4):10:1–
10:6, April 2010. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Mckinley:2010:PVT

[MP07] Kathryn S. McKinley and Ke-
shaw Pingali. La prossima vita
at TOPLAS. ACM Transactions
on Programming Languages and
Systems, 32(6):20:1,
August 2010. CODEN ATPSDT. ISSN
0164-0925 (print), 1558-4593
(electronic).

Menon:2003:FSA

[MPM03] Vijay Menon, Keshav Pingali,
and Nikolay Mateev. Fractal
symbolic analysis. ACM Trans-
actions on Programming Lan-
guages and Systems, 25(6):776–
813, November 2003. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Moreau:2005:RAP

[MQ05] Luc Moreau and Christian
Queinnec. Resource aware pro-
gramming. ACM Transactions
on Programming Languages and
Systems, 27(3):441–476, May
REFERENCES

2005. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Moret:1980:AVR

MacDonald:2009:DDP

Steve MacDonald, Kai Tan, Jonathan Schaeffer, and Duane Szafron. Deferring design pattern decisions and automating structural pattern changes using a design-pattern-based programming system. ACM Transactions on Programming Languages and Systems, 31(3):9:1–9:49, April 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Muller:1992:MLR

Murtagh:1991:ISM

Mueller:1987:RMS

Maassen:2001:EJR

Manna:1980:DAP

Zohar Manna and Richard Waldinger. A deductive ap-
REFERENCES

Brad A. Myers. Creating user interfaces using programming by example, visual programming, and constraints. *ACM Transactions on Programming Languages and Systems*, 12(2):143–177, April 1990. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Myers:2018:EFS
Andrew Myers. Editor’s foreword to “Static Backward Slicing of Non-Deterministic Programs and Systems”. ACM Transactions on Programming Languages and Systems, 40(3): 11:1–11:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DL18].

Myers:2019:E

Narlikar:1999:SES

Nanevski:2013:DTT

Necula:2005:CTS

Norris:2016:PAM

Nelson:1989:GDC

REFERENCES

Nguyen:2005:EEA

Nielson:1985:PTD

Nix:1985:EE

Nielson:1986:TCC

Nelson:1979:SCD

Naik:2008:TSE

Nanda:2006:ISM

REFERENCES

Languages and Systems, 28(6):1088–1144, November 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Oh:2014:GSA] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, Dae-

Oichi:1982:PLP

Ohori:1995:PRC

Oichi:2007:PTM

Odersky:2004:GE

Ogasawara:2006:EED

Oppen:1980:P
Ossefort:1983:CPC

O’Hearn:2009:SIH

Pingali:1985:EDD

PA86b

Pingali:1986:CFI

Pingali:1986:EDD

Padovani:2019:CFS

Palsberg:1995:CA

Palsberg:1998:EBF

Jens Palsberg. Equality-based flow analysis versus re-

Palsberg:2011:E

Parnas:1990:TCI

Patrignani:2015:SCP

Palsberg:2011:EN

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Paulson:2001:MTP
Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

P BR+15

Park:1985:NAL

Preda:2008:SBA

Pan:2008:PFE

Zhelong Pan and Rudolf Eigenmann. PEAK — a fast and effective performance tuning system via compiler optimization

Pemberton:1983:TCT

Perrott:1979:LAV

Perry:1990:GEI

Peterson:1982:UAC

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

REFERENCES

Pratikakis:2011:LPS

[PFH11] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks.
LOCKSMITH: Practical static race detection for C.
ACM Transactions on Programming Languages and Systems, 33(1):
3:1–3:55, January 2011. CODEN ATPSDT. ISSN 0164-0925 (print),
1558-4593 (electronic).

Poletto:1999:CTL

[PHEK99] Massimiliano Poletto, Wilson C. Hsieh, Dawson R. Engler, and
M. Frans Kaashoek. 'C and tcc: a language and compiler for dynamic code generation.

Paek:2002:EPA

[PHP02] Yunheung Paek, Jay Hoeflinger, and David Padua. Efficient and precise array access analysis.

Pippenger:1997:PVI

Piquer:1996:IDG

Pai:1980:GCR

REFERENCES

REFERENCES

Prywes:1979:UNS

Park:2008:PLB

Podelski:2007:TPA

Proebsting:1995:BAG

Pollock:1992:IGR

Palem:1993:STC

Palsberg:1996:CTT

REFERENCES

[PS99] Poletto:1999:LSR

[PSS05] Pottier:2005:SAS

[PT00] Pierce:2000:LTI

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Rinard:1998:DIE
Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of Jade. *ACM Transactions on Programming Languages and Systems*, 20(3):483–545, May 1998. CODEN ATPS DT. ISSN 0164-
REFERENCES

Ryder:2001:SIM

Rival:2007:TPA

Ruggieri:2010:TLC

Rosenkrantz:2006:MMA

Rugina:2003:PASS

Radu Rugina and Martin C. Rinard. Pointer analysis for structured parallel programs. *ACM Transactions on Programming Languages and Systems*, 25(1):
REFERENCES

[RSL10] Thomas Reps, Mooly Sagiv, and...

[RY88] Thomas J. Sager. A short proof of a conjecture of DeRemer and Pennello. *ACM Trans-
REFERENCES

Schneider:1982:SDP

Schmidt:1985:DGV

Schneider:1982:SDP

Schmidt:1985:DGV

Sampaio:2013:DA

Strickland:2013:CFC

Sethi:1983:CFA

Stamos:1990:RE

Sistla:2004:SRS

Sreedhar:1996:ILU

Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee.
REFERENCES

Sreedhar:1997:ICD

Sreedhar:1998:NFE

Steenkiste:1989:SIR

Sharir:1982:SOC

Stoyle:2007:MMS

Sheard:1991:AGU

Tim Sheard. Automatic generation and use of abstract structure operators. ACM Transactions on Programming Langu-
REFERENCES

REFERENCES

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Shankar:1992:SRH

Schultz:2003:APS

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

J. Steensgaard-Madsen. Technical correspondence: Steensgaard-Madsen’s reply. ACM Transactions on Programming Lan-
REFERENCES

Steensgaard-Madsen:1989:TRO

Spoto:2010:TAJ

Sokolowski:1987:SHL

Solworth:1992:E

Sonnenschein:1987:GTS

Sorkin:1989:TCS

Arthur Sorkin. Technical correspondence: Some comments on “A Solution to a Problem with Morel and Renvoise’s “Global Optimization by Suppression of

Soundararajan:1984:ASC

Sansom:1997:FBP

Simonet:2007:CBA

Sagiv:1998:SSA

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving

[Sagiv:2002:PSA]

[SRW02]

[SS82]

[Schlichting:1984:UMP]

[SS84]

[Skeppstedt:1996:UDA]

REFERENCES

[SV96] Geoffrey Smith and Dennis Vlpano. Polymorphic typing of

REFERENCES

Tsay:1995:DFP

Tofte:1998:RIA

Trinder:2017:SRI

Tzannes:2014:LSR

Tip:2011:RUT

Toro:2018:TDG

Thorup:1994:CGA

Tichy:1986:SR

Tichy:1988:TCT

Tick:1994:DTN

Tripakis:2011:TSR

Tel:1993:DDT

Thakur:2019:PFP

Manas Thakur and V. Krishna Nandivada. PYE: a framework

REFERENCES

[UJ92]
REFERENCES

Venkatesh:1995:ERD

VanRoy:1997:MOD

VonHanxleden:2000:BCP

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Volpano:1991:TCS

VandenBos:1981:PCB

VanHentenryck:1995:BTC

VonBank:1994:UMP

VonNieuwpoort:2010:SHL

Waddle:1990:PTC

Wallis:1980:ERO

Peter J. L. Wallis. External representations of objects of user-defined type. *ACM Transactions on Programming Languages and Systems*, 2(2):137–152, April 1980. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

Wallis:1981:CER

Waters:1991:ATS

Waters:1994:CBP

Wright:1997:PST

REFERENCES

[Wet82] C. S. Wetherell. Error data values in the data-flow language VAL. *ACM Trans-
REFERENCES

M. Howard Williams. A flexible notation for syntactic definitions. ACM Transactions
REFERENCES

REFERENCES

Wand:2004:SAD

Weihl:1985:IRA

Wagner:2016:TIB

Walicki:1995:CCM

Wu:2012:STB

Weimer:2008:ESP

Wolf:1992:GEI

Alexander L. Wolf. Guest Editor’s introduction to the spe-
REFERENCES

REFERENCES

exception-handling mechanism.

Yemini:1987:ATE

Shaula Yemini and Daniel M. Berry. An axiomatic treatment of exception handling in an expression-oriented language.

Yemini:1988:TCA

Shaula Yemini and Daniel M. Berry. Technical correspondence: “An Axiomatic Treatment of Exception Handling in an Expression-Oriented Language”.

ACM Transactions on Programming Languages and Systems, 10(3):503–504, July 1988. CODEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [YB87].

Yin11

Yang:1998:STE

Tao Yang and Cong Fu. Space/time-efficient scheduling and execution of parallel irregular computations.

Yardimci:2009:MSP

Efe Yardimci and Michael Franz. Mostly static program partitioning of binary executables.

Ying:2011:FHL

Mingsheng Ying. Floyd-Hoare logic for quantum programs.

REFERENCES

Yu:1997:NCI

Yu:1994:LTS

Yang:1997:SMC

You:1997:PSC

You:1999:SCB

Yahav:2010:VSP

Yang:2002:EEB

Zave:1985:DAF

Zhao:2007:FFS

Zhang:2005:CPT

Zhou:1996:PPC

Zic:1994:TCB

REFERENCES

pubs/toc/Abstracts/0164-0925/197322.html.

Zhang:2017:SSH

Zhuang:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA