A Complete Bibliography of Publications in ACM
Transactions on Programming Languages and Systems
(ACM TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 January 2020
Version 2.135

Title word cross-reference

[SRW02], + [Han81a], \(T^M\) [Bla03], \(5ex/\)

[AW82], || [DDDCG02], \(A\) [DES12], \(R\)

[JMSY92], \(R_{Lin}\) [VR95], \(l\) [ADG94].

\(O(nn)\) [Pet82], \(\phi\) [CF95, DR05], \(\pi\) [ABL03].

(k) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3
Abstract [BGL93, BK11, CMB+95, CFG+97, DGG97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Access [ABLP93, BCC04, KS83, Mis86, NBG13, HR02, HO07, KSK07, PHP02, PSS05].

Adaptation [Dha91].

Alibi [BAC16, BCEM15, CFNH18, DG19, ELS+14, VJB12].

Affix [GF85].

Aggregates [BCC04].

Algorithm [BP82, BWP87, CIJGP18, CGG+19, Jen97, Lin93, SV20, JB06, SP07].

Alma [ABPS98].

Almost [Duc08, Ram99].

Ambiguity [Tho94].

Amortized [HAH12].

Amulet [VHM+01].

Analyses [AC94, CC95, CFM94, TN19, KSV96, SJ03].

Analysis [AKN17, ABE+05, AD98, Bae84, BNN18, BC85b, Blo94, BE13, Bur90a, CFN18, CFG19, CDK+18, CMN91, DKKL18, DL93, Deb95, DP97, DAW88, FPS19, FJK+17, GNS+15, GJ93, HP96, HOYY18, Hil88, Hor97, ISY88, Jen97, JCCO19, KD94].

Abstract

[BGL93, BK11, CMB+95, CFG+97, DGG97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Access

[ABLP93, BCC04, KS83, Mis86, NBG13, HR02, HO07, KSK07, PHP02, PSS05].

Adaptation

[Dha91].

Alibi

[BAC16, BCEM15, CFNH18, DG19, ELS+14, VJB12].

Affix

[GF85].

Aggregates

[BCC04].

Algorithm

[BP82, BWP87, CIJGP18, CGG+19, Jen97, Lin93, SV20, JB06, SP07].
array-valued [RMH06]. Arrays [BBC16].

Article [Ano18]. ASF [VHK00]. aspect
[DWOO8, WK04]. aspect-oriented
[DWOO8, WK04]. AspectML
[DWOO8]. Aspects [Bor81, Set83].

assembly [AAR+10, MWCG99].

Assertions [BK80]. Assessing
[BDH+16, Wey83]. Assignment
[BM94, CFR+91, GL80, GPF08, LDK+96].

Assisted [HCP92]. Assisting [Fen82].

Associated [PPS79]. associativity [Cha02].

Assocs [Rem81]. assume [HQT02].

assume-guarantee [HQT02].

Assumptions [ES97]. AST [GVC15].

Asynchronous
[Bag89, Glo88, Mis86, GM12, HR02].

ATL [WSH15]. Atomic [WL85, Wei90, AE01].

Atomicity [JLP+14, Wei89, FLQ08].

Attacks [SBE+19]. Attribute
[CP95, Hud91, Jon90, Kat84, KR79,
MK94, RD87, WW95, Boy96, CP96, Wu04].

Attributes [HT86]. Author
[Ano86a, Ano88a, Ano89a, Ano91a,
Ano92a, Ano94, Ano95, Ano98].

Authorization [FGM07b]. Authors
[Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87,
Ano88b, Ano90b, Ano91b, Ano92b].

auto [ZP10]. auto-addressing [ZP10].

Automata
[BMW91, CBM019, ES97, Pro95, KV00].

Automata-Theoretic [ES97, KV00].

Automated
[GRSK+11, KZC15, KF00, Sok87, JNGG10].

Automatic [AKNP17, AK87, Ano02a,
BBC16, Cat80, CES86, D90, KK98, Le 88,
LK02, LS04, MS83, PZJ05, RH87, SSS81,
SLC03, She91, Wat91, Wha94, ABHI11,
ATD08, BbIB99, CRN+08, ZCG+07].

Automatically [Slo95]. Automating
[GK94, MTSS09]. Avoidance [FG94].

aware [MQ05]. Axiomatic [AR80, App94a,
Boe85, Sou84, YB87, YB88, LP80].

Axioms
[Mis86].
B [Han81a]. backpropagator [PS08].
Backtracking [Lin79, VR95, FM87a].
Backward [DL18, Mye18]. Balanced
[AS80, PB80, vHK00]. Barrier [CHMY19].
base [LS98]. Based
[BPP16, BGL93, Bur90a, CGJ+97a, CI84, CP95, CH90, CPS93, DYL15, DLR16, EGP14, GG85, HT86, JTM98, Kai89, KH92, KR79, LFF14, PW98, RDI83, SR95, SGL98, Ste18, SNS+14, TY18, Wat94, WGS92, vPS81, BFG08, BMR01, BHM+07, BCG+07, CTT07, DDV99, Eug07, FF99, HBJ98, KBC+99, KK07, KC01, LP00, LH08, LGAT00, MTSS09, MH06, Pa98, PPT08, PCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12]. Basic
[CGG+19, GLR83]. Bayesian [HOYY18].
BDD [LH08]. BDD-based [LH08].
Beh [Bee94, Coh91, Wir91, CG04, LP99].
Behavior [KLS92, GMM99, VBLG04].
Behavioral [LN15, LW94]. Behavioural
[SV20]. Being [Cop94]. benefits [GMP+00].
Better [Gri79, Lam88]. between [BS88].
Beyond [GSW95]. BI [BBTS07].
BI-hyperdoctrines [BBTS07].
Bidirectional
[DP93, MMR95, FGM+07a, GPWZ08].
binary [STSP05]. Binary
[Sip82, DDD05, MMM+07, RC03, YF09].
binding [ACE96]. Birrell [MDJ05].
Bisimulation [FDY12, MH06, San09].
bisimulation-based [MH06].
Bisimulations [SV19, SKS11]. Bit
[CDK+18, KD94, KK07]. Bit-Precise
[CDK+18]. bitvector [KSV96]. Bliss
[GN+15]. Block [LS81, Mur91].
Block-Structured [LS81]. Blocked
[FTJ95]. Blocks [Jag94]. Boolean [XA07].
Bootstrapping [App94a]. Both [KZC15].
bottlenecks [RD03]. Bottom
[BGL93, GCRN11]. Bottom-Up
[BGL93, GCRN11]. bound [KK07, NI05].
Bounded [ADG+94]. Bounds
[CP17, PW94, BP12, CEI+07, RR05, SS05a].
Box [WLBF16]. boxed [BCC04]. Branch
[CGJ+97a, CEG07, YUW02, YS99].
Branches [WZ91, RC03]. Branching
[CBMO19]. Broad [DAW88]. Buddy
[Kan84]. Buffer [Zic94]. bugs [HCS10].
Building [Jag94]. BURS [Pro95]. Bus
[Pur94]. Bytecode
[SAA9, BDL+08, CSM00, FM99, GPF08, KR01, Qia00, SMP10, WR08]. Byzantine
[LSP82].
'C [PHEK99, BR97, HSS+14, ND16, PKH07, PFH11, Ven95]. C# [BCF04]. C/C [ND16].
C11 [JP17]. Cache
[GMM99, KLS92, MMM+07, SS96, VBLG04].
Caching [ABM93, FK85, KS86, LST98].
Calculational [Bout06]. calculi [ABS09].
Calculus [ABLP93, BKL+97, BN94, Gom92, KSB98, MRG88, Ne89, Oh95, WM95, AB03, AI10, Bout05, Bou06, BCC04, DES12, HR02, IPW01, J04, TA08a, KPT99]. Call
[DP97, GL80, GC01, HL05, KK07, SW97a].
call-by-value [HL05, SW97a]. Calls
[BNN18, Coh83, Coh85, FF08]. Can
[Boe85, Coh91, Wir91, CG04]. Capabilities
[SDB20, WCM00]. capability [TA08a].
Carlo [FL15]. carrying [AM01]. Case
[CFG19, FTJ95, WW95, BdlBH99, KF03].
Cats [AMT14]. Cause [Cas05]. CCP
[EGM01]. CCured [NCH+05]. Cedar
[SZBH86]. Cells [IS88]. Centered
[CHY12]. Centers [KR84]. Centralized
[HM84]. centric [DHM+12]. Certificate
[BGKR09, BK11]. certified [STSP05].
Chaining [LS80]. Chains [HS94].
challenge [MP02]. change
[BAP0, CP96, Lee09]. Changes
[Ber94, MTSS09]. changing [MP07].
Chariots [PB97]. Check [AP94]. checked
[KN06]. checker [NP08]. Checking [Car95, CGL94, ES97, FF08, GL94, ND16, AY01, ACM11, BGP99, FFLQ08, HQT02, JJD98, KF10, KV00, NI05, SG04, VJB12, YMW97].
Coupled [ACW90]. Covariance [Cas95].

covariant [PZJ05]. Creating [Mye90].
criteria [Hai05]. Critical [PS93]. Critique
[GM81]. Cross [Ano18, FTJ95, GSS18].
Cross-Interferences [FTJ95].
Cross-Language [Ano18, GSS18].
Cryptographic [App15].

CS [CD79]. CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Zic94].

CSP-Like [Hua90].

CSL [HLH19].
currency [DS98].

Curry [LR19].

Curry-Style [LR19].

Custom [DJP16].

CV3 [CZ84]. Cycle [BG89b, PBK07].

Cycles [FRW90]. Cyclic [RY88].

D. [Bur91]. Data

[AMT14, ANP89, AM85, Bac84, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, Ell82, EO80, FL81, GMH81, GEGP17, HLS82, Her93, Hes88, Hol87, Jen97, JCC91, KH92, Kam83, KZC15, KK98, KD94, LaL89, LO94, LN02, Loe87, Mal82, MMR95, MCT96, PP91, QG95, RCRH95, RP88, SSS81, Sku95, SGL98, SM81, TWW82, WL85, Wei90, Wet82, Wey83, CFP+04, DHH+12, DGS97, HB98, KBC+99, KF00, LO94, LP07, VALG05, YUW02, ZGZ05, Pur91].

Data-centric [DHH+12]. Data-Driven
[BL87, CS87, JCC91]. Data-Flow
[BC85b, Bur90a, Wet82, RP88, KBC+99].

data-independence [Rep00].

data-member [KPF95]. Data-Parallel
[Cha93, HBJ98]. Database [Bar85, CB80].

Dataflow [Deb95, DFR15, MWH94, SS13, SS96, Van96a, Van96b, VHM+01].
datalog [LS09].

datatypes [MBC04]. Deadlock
[CHMY19, Hua90, Kob98]. Deadlock-Free
[Kob98]. Deadlocks [FKJ+17]. Dealing
[GLM05, GG85]. Debugging
[CMM91, CM93, Cop94, Hen82, WST85].

Deciding [GGL15]. Decision
[MT80, NO79].

decisions [MTSS09].

Declarative
[AP98, TCVB14, Bout05, MME10].

Decomposition [BB94]. Decomposing
[BDL+08]. decomposition [LK02].
decrease [LDK+96]. Deducing [TB95].
deduction [LMD98]. Deductive [MW80].

Default [SN+14]. Deferring [MTSS09].

Defined [Wai92, Wai80, Wai81]. Defining
[Ode93]. definite [RKRR04].

Definition [Bou92, BWP87, CI84, CD79, Fid93, HS94, WC90, WC91, Wai94].

Definition-Use [HS94].

Definitions
[BS6, Wli82b, VHHK02, SJ89].

Delay [BG98b]. Delayed [KPF95, RC03].

Delayed-Load [KPF95]. Delaying [Kau84].

Deleting [GP81]. Delimited [BDM15].

Demand [FPS19, GSW95, PA85, PA86a, PA86b, PF96, SR95, DGS97].

Demand-Driven [GSH95, PA85, PA86a, PA86b, FPS19, PF96, DGS97].

Denali [JN06].

Denotational [AB94, FA93, Ged92, MSJ94, NF89, Nie85, Sch85, dBB85].

Dependence
[BGG+13, CFR91, FOW97, HBG+09, HRB90, PB97, PW98, Wai94, RAB+07].

Dependences [PW94]. Dependencies
[Deb89, CSS99].

Dependency [Bli99].

Dependent [LS80, Miq19, NBS13, Ode93, RTD83, Rob79].

dequeues [Ch105].

DeRemer [Sag86]. Derivation
[BBK80, Cat80, DSW82, Gie83, HTH97, Kna90, TM93, Ano02a].

Deriving
[Wan82, Bout06]. Describing [AW85].

Description [McG82]. Descriptions
[Boe85, BKL+97, Cat80, Ano02a].

Descriptors [Hol87]. Design
[BPP16, BCD+15, BO94, DF80, DF81, FT94, HM84, KKM90, LDM07, ML80, RCS93, RL98, SYK+05, Bout05, MTSS09, CMLC06].

design-pattern-based [MTSS09].

Designing [LaL89, AL03]. Designs
[AW85]. destructive [SRW98]. Detect
[ISY88].

Detecting
[GSW95, HCS10, Sch85]. Detection
[CM86a, Hua90, MC82a, MC82b, TM93, AFI06, HD02, PFH11, PCJD08, XA07].

Determinacy [TK94]. determination
Enabled [ADG+94]. Encapsulating [GPV07]. Encapsulation [AR84, DDM11].
Encoding [Hob94, GZ05, ZP07].
Encodings [BC79]. End [BDP14, CSCM00].
enforcement [HMS06]. Enforcing [CEI+07]. engines [SS08, SS09]. enhanced [GH77].
Entries [LaL84, SS82].
Environment [BB94, JJD98].
Environmental [SKS11, SV19]. Environments [BS86, GKL94, HK85, HT86, Kai89, dJKVS12]. Epochs [Sol92].
Equivarable [PB80]. Equivalence [SV20, VJB12, VSS94]. Equivalent [PO95, NP08].
Erlang [TCP+17]. Erratum [SS09]. Error [AB81, Bac84, BN99, BF87, FL15, KC01, LaL84, MF88, MYD95, PK80, Ric85, SS83, SS82, Wet82, ZMVPJ17, dJKVS12, Jef03, XA07]. Errors [AWW95, SBB+19, Wha94, CPRT02, JNGG10].
Escape [Bla03, CGS+03]. ESOP [Ahm20]. ESOP’05 [Sag07]. Essential [DES12].
Esterril [Tar07]. Estimation [SBB+19].
Eta [DMP96]. Eta-expansion [DMP96].
Euclid [HW82]. Euclidean [Bou92].
Evaluating [BLH12]. Evaluation [AFV98, Bur84, CGST95, CK93, Gri82, Hud91, Jon90, LV94, PA85, PA86a, PA86b, RD87, RL98, Slo95, SG90, WCW90, WCW91, ADRO6, CP96, CG94, GJ05, LDM07, Len04, ST00b, SYK+05].
Evaluators [BDH+16]. Evaluators [CBM19, KGMO04]. Extending [CEW14, CMS03, MRR00, MK94].
Extensible [HSG17, Sto04, ATD08, MBC04].
Extensions [Bur90b, Coh91, WSH15, Wir91, ALZ03, KKN06, LS08]. Extensions [Wir88].
Expressive [MFRW09]. Expressiveness [WGS92, WGS93, PS96]. Extended [CBMO19, KGMO04]. Extending [CEW14, CMS03, MRR00, MK94].
Explaination [Des81]. Exploiting [KOE+06]. exploring [WS97]. exponential [Wu04].
exponential-time [Wu04]. Expression [GP81, YB87, YB88, HVP05].
Expression-Oriented [GP81, YB87, YB88]. Expressions [BG89b, CGST95, CC97, DAW88, Fis80, Geo84, Gri82, Hen83, HY91, KS83, LdR81, PK82, Sha82, Sit79, Wat91, Dam03, NN86].
Expressiveness [WGS92, WGS93, PS96].
Extending [CBM19, KGMO04]. Extending [CEW14, CMS03, MRR00, MK94].
Fault-Tolerance [LJ99], Fault-Tolerant [CS95, Lam84, AAE04].

Featherweight [GLMM05].

FeatherTrait [LS08].

Feeding [PA86a].

Fence [AKNP17].

Fickle [DDDCG02, AAD07].

Field-sensitive [PKH07].

FIFO [FLBB89].

Final [Kam83].

Finding [KRS84, KKM90, LT79].

Fine [PBR+15, DNS+06].

Fine-Grained [PBR+15, DNS+06].

Fingerprinting [CTT07].

Finitary [AH98].

Finite [ACW90, BLH12, CES86, GC86, PK82, PP91, Pur91, RSL10, Zav85].

Finite-State [ACW90, BLH12, CES86].

Finite-State-Machine [Zav85].

First-Class [HKMN94, Han92, JPP91, JS94, LH91, MH04, SDTF13].

First-Enabled [ADG+94].

First-Fit [Bre89].

First-In [ADG+94].

First-Order [DP97, JPP91, JS94].

Fixed [Bre89].

Fixed-Order [SS98].

Fixpoint [AC94, Qia00].

Flexible [AD98, Hud91, MSM+16, GC86, Wil82b, dJKVS12, IV06, KGM004].

Floating [CK94, Fat82, SBB+19, Haut96, Mon08].

Floating-Point [CK94, Fat82, SBB+19, Haut96, Mon08].

Flow [AR80, AD98, AFV98, AS89, BC85b, Bur90a, DP97, DP93, FJKA06, Hor97, KD94, MMR95, NBA13, PO95, PP91, PBR+15, Pur91, Set83, SGL98, SS13, Wat82, DGS97, HR02, HY07, KBC+99, Pal98, PS03, RRSY08, RP88, TZ07, WJ98].

Flow-Insensitive [Hor97, FJKA06].

Flowback [CMN91].

Flowgraph [LT79].

Flows [Kna90].

Fly [CF95, BA84, LP06, PBK+07, URJ18].
Iterative
[Ans87, Par90, DR05, JNGG10, LS04].

Jade [RL98]. Jam [ALZ03]. Java
[AFF06, ALZ03, AAD+07, BH05a, Bla03, BALP06, CGS+03, CMS03, CSCM00, FFLQ08, FM99, GPF08, IPW01, KJN06, KGMO04, KN06, KR01, LST02, LP06, LS08, Loc13, MVV+01, MME+10, MFRW09, MMG00, NR06, OKN06, QA00, RBB19, SLC03, SMC10, SBE+19, SA99, SYK+05, TN19, TSL+02, WR08]. Java-like [KN06].

labels [Sto04]. Laboratory [Bor81]. LaLonde [Hen83, LaL83]. LALR [DP82, KM81, PCC85]. Lambda [Geo84, GM92, NN86, PS08]. Laminar [PBR+15]. Lamport [Ang89, Pet83b].

Language
[ACP91, AOC+88, ANo18, ABPS98, BS86, BPP16, BO94, BOR81, BC91, DVL15, Fat82, FEA87, FFF+18, GSS+18, GUD92, HAI85, HSG17, JMSY92, JPP91, KAI89, MC82, PER79, PPS79, RCT83, RBC93, SPO86, SNS+14, TUR84, WET82, WIN87, YS91, YB87, dJKVS12, VAN88, BOU05, BSFG03, CFP+04, DWVV08, DF98, FM99, GRO06, HBJ98, KN06, LP99, MF90, MWC99, PPT08, PHEK99, TRA08, VHKO02, HCW82, YB88].

Language-Based [KAI89, RDT83].

Languages [ANO18, AR84, AD98, BM98, BDFZ09, BL94b, BHM+19, BL94a, BM94, BM98, BW87, CDFP89, DUG99, FOS96, FL91, HJ96, Lee86, LR19, MPM+16, MTR91, YUL16, SV19, TK94, AAR+10, ACM11, DHM00, GW99, RS97, RHI03, SRW98, SJS11, SP97, SWU10, WOL92]. Larch [WIN87]. Large [GLR83, MK94, MH86, WCW90, WCW91]. Lattice [AKBLN89, MMR95, FH04]. Lauer [GM13].

Legacy
[KK98, LVV+83, GPW08, KF00]. Lazy [ABM93, FKERW00, KHR94, HU91, TCVB14, CH05]. LCF [SOK87]. lead [SS05a]. Leader [HUA93, KKM90]. leak [HDH02]. learned [VHM+01]. Learning [CGJ+07, NOSY18, JOCO19]. Least [AB81, BAC84]. Least-Cost [AB81, BAC84]. Left [FKW98]. Left-Linear [FKW98].

Lessons [URJ18, VHM+01]. Let [LY98]. Let-Polyorphic [LY98]. Level [CAM89, FAT82, GP92, YBL16, CMS03, WVJ10].

Linguistic [LS83, WE90, FGM+07a]. Link [DDD05]. Link-time [DDD05]. Linking [QL91, DUG02]. LIPS [CDFP89]. LISF [GCR+11].

Lisp
[MB92, PIP97, SH89, WAT83]. List [BC79, HIR87, KAU84, SI98]. listing [JNGG10].

Liveness
[ACW90, GC86, LS82, RY88, HDH02]. LL [BF87]. Load [KPF95]. Loaded [BG89a].

Current
[BDZ09, CBDFG95, PT00, SDB20, TSBR08, WE89, DAM03, SAN96].

Locality
[BAC16, MCT96, VALG05, ZSD09]. Locally [AB81, BAC84, MIN84]. locating [JNGG10].

Locator [ZMVPJ17]. Lock
14

[GEKP17, KS10]. **Lock-Free** [GEKP17].

lock-freedom [KS10]. locking [AFF06].

LOCKSMITH [PFH11]. Logic

[AS89, AFT98, Apt81, BGL93, BL87, BCD90, BD113, BMPT94, CS04, CES86, CFM94, DW89, Deb89, DL93, Deb95, DJP+16, JPP91, Kar84, LS84, Lam94, MW84, MSJ94, MMG92, SS98, Sok87, TK94, TB95, BBTS07, BMR01, BCG+07, BdlBH99, CU08, CG86, CSS99, DDV99, DPPR00, GBH96, GW99, HVE+99, HPMS00, KWL90, LMD98, Leu04, PM06, RKRR04, SRW02, Yin11, dBH96].

Logical [BNN18, GL15, GS98, TY18, RSL10, Tar07].

Look [DP82]. **Look-Ahead** [DP82].

Lookahead [KM81, MF88]. Loop

[BAC16, CS87, MCT96, Sit79, RKSR12].

Loops [BAGM12, Boo82, CK94, DB85, FTJ95, Hav97, Wat91, Ano02b, LS04, LSR05, Ram99, RDG08, SGL96, UM02].

low [CSCM00].

low-end [CSCM00].

Lower [PW94].

LR [ADGM91, BL94b, BF87, CPRT02, DMM88, Jie03, JP17, KC01, LaL81, LaL84, SS82, ST00b].

LR-based [KC01].

M [Bur91, Mul92]. **M-LISP** [Mul92].

Machine [CGJ+97a, Cat80, GNS+15, Gie83, Han94, JOC19, LR13, ML80, RF97, SS98, SDB20, Wai92, Zav85, Ano02a, CEG07, CF04, HK07, KN06, Oho07, RRRB19].

Machine-Learning [JOC19].

Machine-Specific [Gie83]. machinery [FKW00].

Machines

[ACW90, Bee94, CGT95, GCS86, KK98, PS93, PP91, Rob79, RCRH95, AY01, AG04, ABE+05, ABS09, TYS00, Pur91].

Madsen [Ell82, SM82].

Magma2 [Tur84].

Maintenance [GKL94]. Making

[JC97, Loc13].

malware [PCJD08].

Management [JP81, Mur91, SDB20, van88, BP12, WCM00, Zho96].

Managing [Bob80].

Manifest [SIG17]. manipulating [YS10].

Manipulation [DVLM15]. many [AE98].

massive [BHK07]. Massively [CGST95].

Matching [AC96, AGT89, CP95, KPS92, ADR06, Van06].

Matching-Based [CP95].

materializations [RMH06]. Mathematical

[Ban11, Hes88, LW93].

MATLAB [DP99].

MATLAB(R) [JB06].

Matrix [FTJ95].

Matrix-Vector [FTJ95].

Maximal [BG89b, Rep98].

Maximal-munch [Rep98].

Maximization [GLO88]. Maximum

[Kna90].

May [Hor97]. May-Alias [Hor97].

MCALIB [FL15].

Measuring [FL15].

Mechanically [DSW11]. Mechanism

[CO90, YB85, DNS+06].

Mechanisms

[Rei83, HMS06]. Mechanizing [Pau01].

Median [Com80]. Medians [KR84].

megaflops [MMG00]. member [KF00].

Memory

[AMT14, CK94, Cha93, CBMO19, KZC15, KK98, KRS88, MSM+16, Mis86, RCRH95, SS88, ABH11, BP12, GMM99, GW99, JNGG10, KF00, LK02, Loc13, QR00, RR05, TSY00, TP04, VBLG04, WCM00, MMM+07].

memory-efficient [TP04].

memory-hierarchy [KF00]. Merge

[Ber94].

Merlin [HBM+06]. Message

[CSW06, SS84, Gor04]. Messages

[BBS79, Jie03]. meta [Tra08].

meta-programming [Tra08].

Metalevel

[Jag94].

Metaprogramming [CI84].

Method

[BNN18, BCD90, BF87, HL82, Jon83, Loe87, JJD98].

Methodology

[Ban87, Her93, Sku95]. Methods

[DAW88, KMS1].

METRIC [MM+07].

Mezzo [Bee94].

migration [Piq96]. Minification [HLH19].

Minimal [FKW98, IPO01]. Minimization

[RS84a]. minimizing [RMH06]. Minimum

[GIS83]. Minimum-Weight [GIS83].

Mining

[AMT14]. Misled [Cop94]. miss

[GMM99]. Mixin [HL05, RD13]. mixins
[ALZ03]. ML [Blu99, CBMO19, HM93, HT04, PS03, RD13, Spo86]. Mobile
[LS03, VHB+07, BCC04, KS10, SWU10].
mod [Bon92]. Modalities [SV20]. mode
[PS08, ZP10]. Model [AY01, Ang89, BK11, BL87, BGP99, CGL94, DLR16, ES97, GS98, GG95, GL94, Han81a, HW82, Hol87, JJC019, KH92, MSM+16, MMG92, ND16, VSS94, ACM11, AM01, AE01, JJD98, JPS+08, KN06, KV00, Loc13, NP08, QR00, SG04, VWJB10, VALG05, YMW97].
Model-Checking [ES97, BGP99].
Modeling [AF84]. Modelling [AMT14].
Models [GJ93, KZC15]. Modern
[BCF04, RAB+07]. Modes [Deb89].
modest [LS08]. Modiﬁcation [Lei90, RLS+01]. Modula [EO80].
Modular [AG04, BMPT94, CDK+18, EMH20, GL94, JBEK18, Jag94, KKM90, LN15, MBC04, Wei89, YB85, dJKVS12, KV00, MFRW09, MOS07b]. modularity [BA99]. Module [PAS+15, RD13]. Modules
[CL95, HW82, Lam83, HL05]. Monadic
[DG19, MH04]. Monitors [BLH12, BH05b].
Monolingual [HK85]. Monte [FL15].
Morel [Dha91, DS88, Sor89]. Morphing
[HS11]. Morris [Wis79]. Mostly
[YF09, BBYG+05]. Motion [KR594, Hai98].
MPI [FJK+17, TSY00]. Multi-Language
[Ano18, GS5+18, MF09]. Multilingual
[Ano18, GS5+18, MF09]. Multilanguage
[WM95]. multidimensional [RDG08].
Multijava [CMLC06]. Multilisp [Hal85].
multimethod [DAS98]. Multimethods
[CL95]. Multiparty [JS94]. Multiple
[ASF17, NSTD+15]. Multiply [FTJ95].
Multiprocess [Lam79, Lam80].
Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].
Multithreaded
[EGP14, JBEK18, JSB+12, KKW14, NR06].
Multivariate [HAI2]. Multiway
[Cha87, Van96a, Van96b]. munch [Rep98].
Mutandis [SHB+07]. Mutatis [SHB+07].
Mutual [LH91, ABHH11].
Mutual-Exclusion [LH91]. Myths [Gor04].
n [CKT86]. Naming [BDP93]. Natural
[GZ04, dJKVS12, ACE96]. Neighborhood
[BG89a]. Neighborhood-Constrained
[BG89a]. Nested [Cha93, NP99, ACM11].
Nesting [Hav97, Boy10]. Nets [BAC16].
Net [JTM98]. Nettek [WS92, WGS93].
Networks [CGJ97b, GC86, KRS84, dBBB5].
Newtonian [RTP17]. Nicholson [FA93].
No [Ano18]. node [JC97, UM02]. Nodes
[CF95, Han81a]. Nomadic [SWU10].
Nominal [CU08]. Non
[CFG19, DL18, LLK+17, Mye18, BS88].
non- [BS88]. Non-Deterministic
[Mye18, DL18]. Non-polynomial [CFG19].
Non-Statistical [LLK+17]. Noncanonical
[Tai79]. Noncorrecting [Ric85].
Nondetermine [TK94]. Nondetermination [Ber80, Hes88, WM95].
Nondeterministic [QG95, MT08].
Noninterfering [HPR89]. nonnumerical
[ME97]. Nonprocedural [PPS79].
nonrectangular [JLF02]. nonscalars
[CRN+08]. Nonsequentiality [Bar81].
Nonstrict [Blo94]. Nontermination
[PM06]. normal [LMD08]. Normalize
[CRN+08]. norms [BCG+07]. Notation
[Rem81, Wil82b]. Note [Com81, CM93,
MS88, WST85, Coh85, Pal11b, YK97].
Notes [Sku95]. Nothing [BDH+16].
Notion [LW94]. NP [Hor97]. NP-Hard
[Hor97]. NQLALR [BS88]. nulled [SJ06].
Numbers [GL83]. numeric [Hau96].
O [ABPS98, Car95]. Object
[DF84, HU96, KH92, Ryu16, WCW90,
WCW91, BSvGF03, DMM01, DDDCG02,
FM99, GPWZ08, HBM+06, JPS+08,
LPS004, Piq96, WJS+00]. Object-Based
[KH92]. Object-Oriented [HUB6, Ryu16,
BSvGF03, DMM01, JPS+08, WJS+00].
Objects
[AM85, CJK95, HF87, HW90, Her93, SM89, VHB+97, Wal80, Wal81, Win84, GPV07, HB98, KF00, Sto04, WJS+00, Sku95].

Optimized
[CM93, Cop94, Hen82, WST85, DS98, UM02]. Optimizer [DF80, FSS83, DF81]. Optimizers [Gie83]. Optimizing [CEG07, KMM+98, LSLR95, ML90, NSZZ13, QR00, BGK90]. Or-Parallel [GJ93]. orchestration [PE08]. Order [AC94, AD98, Bur84, CJK95, DP97, DJP+16, JPP91, JS94, SS98, BBT97, DF11, FPS91, SKS11, SV19, SP97]. ordering [GS99]. Organization [Hai81]. Oriented [Bor81, Dar90, Ell82, FFF+98, GTWA14, GKL94, GP81, HU96, Ryu16, SM81, Tur84, YB87, YB88, BSvGF03, DWWW80, DMM01, JPS+98, WKO04, WP10, WJS+00]. origins [San09]. OSI [CDF89]. Output [Be80, BS83]. overhead [BP12, SS96]. overloads [SU10]. Overload [Bak82]. overloading [SS95b]. Overview [AOC+98]. ownership [DDM11, SS96]. Oz [VHB+97].

Parsed [Wad90]. Parser [DDH84, JP17, LaL84, SS82]. Parsers [BN99, LaL81, MY95, PK80, CPT02, SJ06, ST00]. Parsing [CH87, DMM88, Fis80, GM79, Lar95, RH87, Sam80, WG98, KCO1]. Part [LaL81, PA85, PA86a, PA86b, APT81]. Partial [AFV98, CP17, CK93, DS88, Gom92, KCL+99, Sor98, ADR06, BP12, CG04, GJ05, LMD98, Leu04, ST00]. Partially [BHL12, KOB98, RSSY08]. partially-flow-sensitive [RSSY08]. partitioning [RM07, YF09]. Parts [Son87].

Pascal [LS79]. Pass [Bak82, BM94]. Passing [BDM15, Gaz83, SS84, CSW06].
Process [Kob98, vPS81, WP10].

process-oriented [WP10].

Processes [AFdR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oss83, Ry88, Sou84, TY18, DBB85, AE98, KS10, Ber80, Moi83].

Processing [GH80, HSG17, Rei83].

Processor [BG89b, Bud84].

Processors [GLR83, Per79, LPP01, ZP10].

Product [EMH20, RTP17].

Production [Wad90].

Profile [BHM+07, YUW02].

Profile-based [BHM+07].

Profiling [ASAVF19, BL94a, SP97].

Program [Bal94, Bar85, BAL07, BKB80, Col84, DKKL18, Der85, FPS19, FTY9, FT94, FL91, HSP83, HKR94, Jen97, JCO19, KKW14, KLW09, Lam83, Lam88, LFF14, MS83, MW80, Mis81, Nie85, PP94, PPS79, Pet83b, RCS93, SS84, SNS+14, SZBH86, TK94, ABH06, BM01, Bou96, BilBH99, CU08, CG86, CKT86, DWWW08, DPPR00, GW99, HB9J89, JPS+08, KGM004, MVV+01, MTSS09, MQ05, Tra08, VVJB10, WKKD04, WJS+00, Bir85, SWU10].

Programming [AGT89, AN018, AR84, APB89, BS86, BPPF16, BHM+19, BL87, Bir84, Bor81, BMT94, BW987, BCEO15, CHY12, CL94, Dar90, DFR15, DGG+79, Dug99, FFF+18, Fos96, FL15, GTWA14, Har80, HK85, HO82, KAI89, KH92, Lee86, LVS+83, MK94, Mye90, OGIJ+18, Pet83b, RCS93, SS84, SNS+14, SZBH86, TK94, ABH06, BM01, Bou96, BilBH99, CU08, CG86, CKT86, DWWW08, DPPR00, GW99, HB9J89, JPS+08, KGM004, MVV+01, MTSS09, MQ05, Tra08, VVJB10, WKKD04, WJS+00, Bir85, SWU10].

Programming-in-the-Large [MK94].

Programs [AWW95, AK87, AVF98, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BE13, BFR+16, CR87, CB80, CM86a, Cha93, CFNH18, CFG91, CEW14, CMN91, Cla80, CFM94, CS87, DL18, DGM97, DW98, Deb89, DL93, Deb95, DP97, Di90, EMH20, EGP14, FJK+17, GG85, GM81, Har80, HCHP92, HPR89, Hw80, HIT97, ISY88, JBK18, JW17, Jon83, JF81, Kna90, Lam79, L88, MSJ94, MH86, Mye18, NSZ83, OA88, OL82, PS92, QL91, RAO94, SS98, Sch82, SSS81, SS88, TN19, Ven95, Wad90, Weh95, W82a, AE01, AAE04, BCG+07, CSW06, CSS99, DP99, DDB99, DS98, DMM01, EGM01, GM12, GHB+96, GH97, GPA+01, Hau96, HPMS00, JPS+08, KVS96, LMD98, Leu04, LS89, M09, NR06, PM06, RR04, RR03, San96].

Programs [VJB12, WM12, YS10, Yin11, dHB+96, Bur84, Lam80].

Promotion [Bi84, Bir85].

Proof [AFdR80, BD13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Oho07].

proof-carrying [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, JW17, LY98, Oss83, GRSK+11].

Propagation [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CIGP18, Kar84, LM18, OL82, RY88, TB95, Wei89, YS10].

Proposed [Fat82].

prossima [MP10b].

Protected [PAS+15, WJS+00].

Protocol [SL92, YS97].

Protocols [MB83, BFGT08, SS96].

Prototype [WCW90, WCW91].

Prototypes [HW82].

Provably [SDB20, GB99].

provenly [AAD+07].

Proving [DGM97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Pruning [BN99].

PSG [BS86].

publish [Eug07].

publish/subscribe [Eug07].

Pure [BNN18, HU96, Pip97, Tar07].

Purpose [App94b, HSS+14, Sp086].

Pushdown [CBMO19].

PYE [TN19].

qualifiers [FJKA06].

Qualitative [CFNH18].

Quality [BHM+19].

Quantification [Vol91, B91].

Quantified [Gro06, STS03].

Quantitative [CFNH18].

Quantum [FDY12, BH99, Yin11].

Queries
Bal94, CGG+19. Queuing [BB79].
Quiescence [CM86a].

R [AW82, CTK86, KMM+98]. R. [Tic88].
race [AFF06, PFH11]. Races [KZC15].
Random [AS00]. Range [CG95]. Rank
[Dam03]. Ranking [Lee09]. Ratio [CK94].
rational [GS11]. rationale [CMLC06].
Reach [FKW98]. Reachability [NS13].
Reactive [DFR15, AG04, DGG97].
read [AE01, PZJ05]. read-only [PZJ05].
read/write [AE01]. Readable [Spo86].
Reading [Pet83a]. Real
[AL94, MMG92, RS84b, GH97, HK07, LS98, YMW97].
Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].
realities [Gor04]. Reals [DK17].
Reasoning [BKOB13, BLRS12, BDP93, BP82, BH99, CB80, Lam88, LN15, Rao94, SDB20, TSB08]. receive [Gor04].
receptive [ABL03]. Recipe [AL94].
reclassiﬁcation [DDDCG02]. recognition
[ATD08]. Recognizer [GHR80].
Recognizing [BL94b]. Recombination
[Bob80, 8i79, KSK07, KOE+06, LP06, MDJ05]. reference-counting [LP06].
References [Han92, TGT18, SV96].
Referencing [LS81]. Referential [QG95].
Refinement [BBF+11, BKL+97, BCEM15, CM86a, DGL+79, GEGP17, JLP+14, MRG88, SL92, AG04, QG95]. reflecting
[HS11]. reflection [SW97a]. Region
[TB98, SYN06]. region-based [SYN06].
regions [RR05]. Register
[BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LAG00, PM04, PS99, PF96, TP04]. registers
[ZP07]. Regular [CC97, HVP05, LaL81].
Relation [LBN17, MTG80]. Relational
[BKOB13, CB80, G598, TLHL11, JJD98, JLR90]. Relations [ELS+14, HT86, LH08].
Relationship [BS88]. Reliability
[LM18, WN08]. Reliably [TCP+17]. Rely
[GEPP17, LFF14]. Rely-Guarantee
[GEPP17]. Rely-Guarantee-Based
[LFF14]. Remembrances [PM09]. Remote
[BCT08, SG90]. Removal [AK82].
Rendezvous [Cha87]. Renoisse
[Dha91, DS88, Sor89]. Reoptimization
[PS92]. reordering [YUW02]. Repair
[BN99, MF88, MYD95, KC01]. Repairing
[CPRT02]. Replacement [MM89].
Replicate [RB94]. replication [RD03].
Reply
[Bur91, Fra81, LaL83, Tam83, Wir91, SM82].
Representation [DGL+79, Mul92, SM89, Wad90, Wam82, MI85].
Representation-Independent [Mul92].
Representations
[Lam87, RF97, Wad80, Wall81, BGP99].
Reproduction [BHM+19]. reshaping
[ZCG+07]. Resilient [GH+19, WL85].
Resolution [ABRS1, Bak82]. Resolved
[SIG17]. Resource [CS95, C8080, IK05, MQ05, BDFZ09, CEI+07, HR02, HAH12].
Resources [And81, FLBB89]. Respect
[Gaz83]. Response [Tic88].
Responsiveness [HU96]. Restores [Wis79].

Statement-Oriented [Ell82, SM81].

Statements [CF94, States [ADGM91, CBMO91]].

Static [AKNP17, AC94, BM94, CGJ+97a, CF94, CFP+91, DL18, Deb89, HOYY18, LLK+17, LST98, MOS07a, Mye18, PW94, SBE+19, YS99, ZMVPJ17, CEI+07, GPF08, GZ04, HO07, PSS05, PFH11, RSL10, VJB12, WCM10, YF09, AFF06, FFLQ08].

Statically [ACPP91].

Statistical [LLK+17].

Statistics [Lan80].

Staveren [Pem83].

Steensgaard [Ell82, SM82].

Steensgaard-Madsen [Ell82, SM82].

Stencil [LS04].

Step [Col84, TVA07].

Steps [Jon83].

Stepwise [CM86a, SL92].

Stevenson [Pem83].

Storage [BBC16, Bre89, JP81, LDK+96, Mur91, Rob79, Pip82, KOE+06, TVA07].

Strategies [Bir84, Bir85, Geo84, NN86].

Stratified [SS98].

Stream [HSG17], streams [CFP+04], stream [CSV01].

Strict [Bee94].

Strictness [Bee94, SR95].

String [GH80], Strings [AS80, KS88, KS89, ADR06, KK07].

Strong [KZC15].

Structural [SZBH86, MTSS09].

Structurally [HS1].

Structure [BC79, GKL94, HM93, Mis94, MWS94, She91, HY07].

Structure-Oriented [GKL94].

Structured [BM94, CHY12, GD82, Har80, LSN81, Mur91, RR03].

Structures [ANP89, Bob80, FL81, GEGP17, RCH95, SS81, LPS004, RAB+07].

Study [BHM+19, FT95, BHK07, SDLBH09, DFO98, KFO93, FS98].

Style [BDM15, LR19].

Sublanguage [DGL+79].

Sublinear [RD87].

Sublinear-Space [RD87].

Submodule [MB83].

Subroutines [SA99].

subscribe [Eng07].

Subscript [CG95].

Subsequence [Han92].

Subset [BL87].

Substrings [BL94b, Han92].

subtype [Duc08, KR01].

Subtypes [Vol91, Bur91].

Subtyping [AC96, AC93, GGL15, LN15, LR19, LB17, LW94, XBS20, GZ05, IV06].

Subtyping-Relation [LBN17].

SUIF [HAM+05].

Supercompiler [Tur86].

Superimposition [Kat93].

Support [Bal94, DS90, Fea87, LS83, MK94, Wei90, TSY00].

Supporting [RCRH95].

Supports [ABPS98].

Suppression [DS88, FGL94, Sor89, JNGG10].

Survey [Apt81, GPA+01].

Suspension [CFM94].

Symbol [ABR81, Rei83].

Symbolic [Dil90, HP96, Hal85, Hen82, RR05, SBB+19, YMW97, BGP99, MPM03, CM93, WST85].

Symmetric [FY85].

Symmetry [ES97, SG04].

Synchronisation [CHMY19].

Synchronization [Bag89, DJP+16, Her91, KRS88, RS84b, Sch82, CGS+03, DTM+12, Ram00, RD03].

synchronization-sensitive [Ram00].

Synchronizing [And81].

Synchronous [CS87, TLHL11].

synchrony [CS04].

Syntactic [BF87, GMZ00, MF88, PK80, WLV18].

Syntax [DMM88, Oed93, Ric85, SSS83, BMR01, CPRT02, JFO3, HCW82].

Syntax-Directed [DMM88].

Syntax-Error-Handling [SSS83].

Syntax/Semantic [HCW82].

Synthesis [AE98, AE01, AAE04, Ban87, BDJ13, BKL+97, Cla80, DKKL18, MW80, MW84, MV87].

System [AFR80, AW85, BS86, Bou88, CB80, Fea82, GD82, GP81, Han81b, HM84, JMSY92, LR13, ML80, Moe83, MH86, PO95, RD13, SA99, WC97, BH05a, FH04, FM99, HO07, JB06, KS10, MTSS09, NP08, PE08, STSP05, WC99].

systematic [DF89, PSS05].

Systems [ABLP93, ANO18, AR84, ACS84, BKS88, BG89a, BD93, CI84, CFDF98, CBDGF95, CLJGP18, CES86, CPS93, CBMO91, DL18, DAV88, Fea87, FK98, Hen86, JAG94, JON94, JTM98, KAR84, KAT93, KAU84, LAM84, LW93, MIS86, MIE18, WGS92, WGS93, WC90, VA88, ASS00, AE98, BCP08, BCM99, BGP99, CSMC00, DGG97, GS11, TP04, TZ07, YMW97, WC91].
Systolic [Hen86].

T [Zic94]. Table [BMW91, PK80, DAS98]. Table-Drive [PK80]. Tabled [SS98]. Tables [ADGM91, DDH84]. Tail [DP97, CF04]. Tail-Call [DP97].
tail-recursive [CF04]. Tailored [Kau84]. Tailored-List [PK80]. Tabled [SS98]. Tables [ADGM91, DDH84]. Tail [DP97, CF04]. Tail-Call [DP97].
tail-recursive [CF04]. Tailored [Kau84]. Tailored-List [PK80]. Tabled [SS98]. Tables [ADGM91, DDH84]. Tail [DP97, CF04]. Tail-Call [DP97].
tail-recursive [CF04]. Tailored [Kau84]. Tailored-List [PK80]. Tabled [SS98].

Tasks [GP81]. Taylor [SBB+19]. tcc [PHEK99]. Technical [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Ell82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tic88, Vol91, WST85, Wir91, YBS88, MMG00]. Technique [AWW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNMMG11, KBC+99, SS96, TSL+02]. Technology [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Ell82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tic88, Vol91, WST85, Wir91, YBS88, MMG00].

Termination [AF84, Apt86, BAGM12, BCG’+07, CFNH18, CDK+18, DG19, Fra80b, GJ05, HSP83, JBK18, MC82b, TM93, BAL07, BA08, DDV99, GRSK+11, Lee09, PR07, SMP10, Fra80a, Moh81]. Test [Wey83, WW95, DUC08]. Testing [AMT14, GMH81, TK94]. Tests [Coh91, Koz97, Wir91, GZ05]. Text [CC97]. Their [Kam83, LaL84, SS82, PS96].

Theoretic [ES97, Sha82, KV00]. Theoretical [KKR18]. Theories [NSTD+15, Bou06]. Theory [CZ84, KD94, KRS94, NGB13, Ryu16, TLHL11, CGP09, MH06, Oho07, Pau01, SS05b, Bla03, FG03].

ThingLab [Bor81]. things [PM09]. Thinking [WLBF16]. Thinning [Web95]. Third [Wol92]. ThisType [RYU16]. Thread [YBL16]. Thread-Level [YBL16]. Threaded [JBK18, TSY00]. Three [Oss83].

Tichy [Tie88]. tiling [JLF02, LS04, RKS912]. Time [AL94, ABR81, BL94b, BLH12, Coh91, DLR16, Ho87, IS88, Jef85, Lam84, MMG92, PS93, RS84a, RS84b, TN91, Wir91, YR94, Zic94, BAL07, BALP06, BKR98, BKRW05, DDD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS90, Mil85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YMM97, LW93]. Time-Constrained [Zic94, LP01]. Time-Critical [PS93].
tokenization [Rep98]. Tolerance [LJ99].

Tolerant [CS95, Lam84, AAE04]. Tool [CPS93]. Toolkit [BDFH97]. toolkits [VHM*01]. Tools [van88]. TOPLAS [Ano18, MP10a, MP10b]. topology [DDM11]. Total [San96]. Trace [FG94, WGS92, Ban11, RM07, SJ03, WGS93, WM12]. Trace-Based [WGS92, WGS93, WM12]. traces [HBM+06, WR08]. Tracing [BL94a, DLR16, MIM+07]. tradeoffs [ZGZ05]. Trailing [VR95]. Traits [DNS+06]. Transactional [URJ18, ABHI11, CFP+04]. Transactions [Ano18, HKMN94]. Transducer [DVLM15].

Transducer-Based [DVLM15].

Transformation [BBK80, Fea82, FL91, NSZS13, Wat91, RKR04, San96, TSY00, WR07]. Transformational [BDFH97, Bir84, Bir85, DSW82, OA88, RC03]. Transformations [Bar85, EG01, Geo80, LdR81, LFF14, MS83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86].

Transformers [Lam90, MMM96, MBT09].
REFERENCES

[MS83, MTG80, FMoPS11, GLMM05].
Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. **Variant** [IV06]. **variants** [FG03]. **Variational** [CEW14]. **Vector** [AK87, Bud84, CBMO19, Fis80, FTJ95, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. **Variables** [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. **Variant** [IV06]. **variants** [FG03]. **Variational** [CEW14].

W [Tic88]. **Wait** [Her91]. **Wait-Free** [Her91]. **Warp** [BW93]. **way** [VHM+01]. **Weak** [AMT14, KZC15]. **weakening** [SYYH07]. **Weaker** [Boo82].

web [BFG08, BLRS12, CHY12, CGP09, CMS03]. **Weight** [GHS83]. **While** [Pet83a, BC85b, GM81], **while-Programs** [BC85b]. **Whole** [BDH+16]. **Widening** [KKW14, VJB12]. **win** [Lam90]. **Within** [FKW98]. **Without** [Cop94, Ode93, AS89, Cas95, Sto04, VR95]. **Witnessing** [TA08b]. **Workbench** [CPS93]. **World** [GG85, DF11]. **World-Model-Based** [GG85]. **Worst** [CFG19, WW95]. **Worst-Case** [CFG19]. **wp** [BH99]. **write** [AE01]. **Writing** [Pet83a, Win87], **WYSINWYX** [BR10].

X [OLH+16, MSM+16]. **X-Sensitive** [OLH+16]. **X10** [GH+19]. **XARK** [ATD08]. **XML** [HVP05, HFC09]. **XSL** [MOS07a].

Years [Apt81].

References

Ancona:2007:PCT

Attie:2004:SFT

Ahmed:2010:SFT

[Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. Seman-

Anderson:1981:LLC

Arbab:1994:SCD

Acar:2009:EAS

Alur:2005:ARS

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[AFdR80] Abadi:2006:TSL

Alpuente:1998:PEF

Alpuente:1998:PEF

Alur:1998:FF

Apel:2010:CUF

Aung:2014:SS

Ahmed:2020:ISI

Arsac:1982:STR

Allen:1987:ATF

Ait-Kaci:1989:EIL

Alglave:2017:DSF

REFERENCES

Ait-Kaci:1994:FPC

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR
Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational proof-carrying code. ACM Transactions on Programming Languages and Systems, 23(5):

|------------------|------------------|

|------------------|------------------|

|------------------|------------------|

|------------------|------------------|
Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

Anonymous:2002:LDD

Anonymous:2018:CCL

Arvind:1989:SDS

REFERENCES

REFERENCES

Appel:2015:VCP

Apt:1981:TYH

Apt:1986:CPD

Apt:2000:RCC

Apt:2000:RCC

Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Bowen Alpern and Fred B. Schneider. Verifying temporal properties without temporal logic. *ACM Transac-

[AWW95] Alexander Aiken, John H. Williams, and Edward L. Wimmers. Safe: a semantic technique for transforming programs in the presence of errors. *ACM Transactions on Programming Languages and Systems*, 17(1):
Alur:2001:MCH

Ben-Ari:1984:AFG

Blume:1999:HM

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

REFERENCES

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA

Brecht:2006:CGC

Banerjee:1987:MSR

Banerjee:2011:MFT

Barnden:1981:NCA

[J. A. Barnden. Nonsequentiality and concrete activity phases

Barstow:1985:CTD

Barstow:1985:CTD

Beyer:1979:SED

Beyer:1979:SED

Breuer:1994:DET

Breuer:1994:DET

Bhaskaracharya:2016:ASO

Bhaskaracharya:2016:ASO

Bengtson:2011:RTS

Bengtson:2011:RTS

Biering:2007:BHH

Biering:2007:BHH

Barabash:2005:PIM

Barabash:2005:PIM

Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman, Yoav Ossia, Avi Owshankov, and...

[BC85b] Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul

REFERENCES

Biosciences: 2015:DCP

Bowman:1993:RAN

Barthe:2014:FVS

Bossi:1994:TAP

Bouajjani:2013:ARP

Beemster:1994:SOG

Brockschmidt:2016:ARS
Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. Analyzing runtime and size complexity of integer programs. *ACM

Bernstein:1980:OGN

Berzins:1994:SMS

Bhargavan:2008:VPB

Bhargavan:2008:VI

Bhargavan:2008:VII

Barbosa:1989:CHL

Bergman:1989:SEP

David Bernstein and Izidor Gertner. Scheduling expressions

Binkley:2013:EIL

Barthe:2009:CTO

Butler:1999:RA

REFERENCES

Broy:1980:DIA

Broyer:1997:RCS

Bac:1988:DCA

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[BN94] Manfred Broy and Greg Nelson. Adding fair choice to Dijkstra’s calculus. *ACM Trans-

REFERENCES

REFERENCES

Boute:1988:SSP

Boute:1992:EDF

Boute:2005:FDL

Boute:2006:CSD

Bar-On:1985:OPG

Boyland:1996:CAG

Boyland:2010:SFP
REFERENCES

Broy:1982:CAA

Burns:1989:USS

Bendersky:2012:SOB

Brent:1989:EIF

Balabonski:2016:DFM

Balakrishnan:2010:WWY

REFERENCES

Buckley:1983:EIG

G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. *ACM Transactions on Programming Languages and Systems*, 5(2):223–235, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Bahlke:1986:PSF

Bruce:2003:PTS

Burke:1993:IOE

Budd:1984:ACV

REFERENCES

REFERENCES

Castagna:1995:CCC

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Cotton-Barratt:2019:MVP

Click:1995:CA

REFERENCES

Chen:2014:ETI

Choi:1994:SSP

Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto statements. *ACM Transactions on Programming Languages and Systems*, 16(4):1097–1113, July 1994. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Cytron:1995:ECN

Clements:2004:TRM

Cortesi:1997:CAI

Chatterjee:2019:NPW

REFERENCES

Codish:1994:SAC

Chatterjee:2018:AAQ

Cortes:2004:HLA

Cytron:1991:ECS

Clark:1986:PPP

Chin:1995:ROA

REFERENCES

[CGS+03] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and Samuel P. Midkiff. Stack allocation and syn-

REFERENCES

Chitil:2005:PPL

Cogumbreiro:2019:DDV

Carbone:2012:SCC

Chatterjee:2018:AAP

Cejtin:1995:HOD

Consel:1993:PPE

Carr:1994:IRM

[CK94] S. Carr and K. Kennedy. Im-

Cooper:1986:IIA

Crowl:1994:PPC

Chambers:1995:TMM

Clarke:1980:SRI

Chandy:1984:DPP

Chandy:1986:ESR
REFERENCES

Chirica:1986:TCI

Copperman:1993:TCF

Codish:1995:IAI

Clifton:2006:MDR

Choi:1991:TDP

Christensen:2003:EJH

Cohen:1983:CCA
Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms for garbage
REFERENCES

Clemm:1990:MEI

Cohen:1983:ERR

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC

Max Copperman. Debugging optimized code without being misled. *ACM Transactions on Programming Languages and Systems*, 16(3):387–427, May 1994. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

Carle:1995:MBI

Carle:1996:OCP

Cohen:2017:LPC

Corchuelo:2002:RSE

Cleaveland:1993:CWS

Carson:1987:GSP

Cooke:2008:NTD

Daniel E. Cooke, J. Nelson Rushton, Brad Nemanich,
REFERENCES

[CSV01] Keith D. Cooper, L. Taylor Simpson, and Christopher A.
REFERENCES

Carlsson:2006:MAC

Richard Carlsson, Konstantinos Sagonas, and Jesper Wilhelms-

Collberg:2007:DGB

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FAC

[DD84] Peter Dencker, Karl Dürre, and Johannes Heuft. Optimization

REFERENCES

References

DalLago:2019:PTM

Dams:1997:AIR

Dewar:1979:PRE

DeBoer:1997:PCC

Duesterwald:1997:PFD

Dhamdhere:1991:PAG

REFERENCES

Dodds:2016:VCS

Darulova:2017:TCR

David:2018:PSP

Debray:1993:CAL

Danicic:2018:SBS

Dissegna:2016:AIB

7:??, January 2016. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schürrl, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[DP97] Saumya K. Debray and Todd A. Proebsting. Interprocedural control flow analysis of first-order programs with tail-call optimization. *ACM Transactions on Pro-
DeRose:1999:TTM

Dovier:2000:SCL

Das:2005:PFI

Dawson:1996:PPU

Dekel:1983:PGP

Drechsler:1988:TCS

Karl-Heinz Drechsler and Manfred P. Stadel. Technical correspondence: a solution to a problem with Morel and Renvoise’s “Global Optimization

REFERENCES

REFERENCES

Elder:2014:ADA

Eilers:2020:MPP

Ernst:1980:SAD

Emerson:1997:USW

Eilers:2020:MPP

Finlay:1993:TCC

Fateman:1982:HLL

Richard J. Fateman. High-level language implications of the proposed IEEE floating-point standard. ACM Transactions on Programming Lang-

REFERENCES

Feng:2012:BQP

[FDY12]

Feather:1982:SAP

[Fea82]

Feather:1987:LSS

[Fea87]

Flanagan:1999:CSB

[FF99]

Furr:2008:CTS

[FF08]

Florence:2018:PPP

[FFF+18]

Flanagan:2008:TAS

[FFLQ08]
REFERENCES

REFERENCES

Ian Foster. Compositional parallel programming languages. ACM Transactions on Programming Languages and Systems,
REFERENCES

Ferrante:1987:PDG

Fisher:2002:GE

Facchinetti:2019:HOD

Francez:1980:CDT

Francez:1980:DT

Francez:1981:TCR

Farmer:1990:CPC

REFERENCES

Freudenberger:1983:ESO

Foster:1994:CAS

Fricker:1995:ICI

Francez:1985:SIC

George:1996:IR

Gazinger:1983:PSP

Greiner:1999:PTE

John Greiner and Guy E. Blelloch. A provably time-efficient parallel implementation of full speculation. ACM Transactions on Programming Languages and Systems, 21(2):240–
REFERENCES

Michael Georgeff. Transformations and reduction strategies for typed lambda expressions. ACM Transactions on Programming Languages and Systems, 6(4):603–631, October 1984. CODEN ATPS DT. ISSN 0164-0925
REFERENCES

Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Garlan:1994:TAM

Gries:1980:APC

Grumberg:1994:MCM

Gavanelli:2005:DIK

Greenberg:1988:SEA

Gottlieb:1983:BTE

Ghezzi:1979:IP

Carlo Ghezzi and Dino Mandrioli. Incremental parsing. *ACM Transactions on Programming Languages and Systems*, 1(1):58–70, July 1979. CO-
REFERENCES

Greif:1981:SSW

Ganty:2012:AVA

Gannon:1981:DAI

Ghosh:1999:CME

Grant:2000:BCD

Gange:2015:IAM

Gomard:1992:SAP

Gorlatch:2004:SRC

Grit:1981:DIT

Girkar:1995:ETL

Gupta:2001:PEP

Gal:2008:JBV

[GS99] Nikolas Gloy and Michael D. Smith. Procedure placement using temporal-ordering information. *ACM Transactions on Programming Languages and Sys-

REFERENCES

REFERENCES

Hauser:1996:HFP

Havlak:1997:NRI

Hind:1999:IPA

Harman:2009:DCS

Hassen:1998:TDP

Hertz:2006:GOL

REFERENCES

REFERENCES

[Hall:1996:TCH] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones,

Hilfinger:1988:APD

Hilfinger:1988:APD

Hu:1997:FDE

Haines:1994:CFC

Heering:1985:TMP

Henzinger:2007:EMP

Haines:1994:CFC

Heering:1992:IGL

REFERENCES

Heering:1994:LIP

Herlihy:1982:VTM

Hirschowitz:2005:MMC

Hague:2019:CMC

Hull:1984:CSP

Harper:1993:TSS

Hamlen:2006:CCE

Hicks:2005:DSU

Homan:1982:PE

Higuchi:2007:STS

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

Howden:1980:ASV

Heo:2018:ASA

Haghighat:1996:SAP

Hermenegildo:2000:IAC

Horwitz:1990:ISU

Harrold:1994:ECI
Mary Jean Harrold and Mary Lou Soffa. Efficient computation...

Huang:2011:MSS

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

REFERENCES

Huang:1990:DDD

Huang:1993:LEU

Hudson:1991:IAE

Haridi:1999:ELV

Hirzel:2007:FOP

Hosoya:2005:RET

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27(1):46–90, January 2005. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
Holt:1982:MIE

Herlihy:1990:LCC

Igarashi:2005:RUA

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Igarashi:2001:FJM

Hudak:1991:CIE

Honda:2007:UTS

[ISY88] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow.

Inoue:1988:AFP

[HY07] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow.
REFERENCES

Igarashi:2006:VPT

Iverson:1979:O

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

Jacobs:2018:MTV

Janssen:1997:MGR

Jacek:2019:OCW

Nicholas Jacek, Meng-Chieh Chiu, Benjamin M. Marlin, and J. Eliot B. Moss. Optimal choice of when to garbage collect. *ACM
Jefferson:1985:VT

Jefery:2003:GLS

Jensen:1997:DPA

Juelich:1981:CAS

Jeon:2019:MLA

Jackson:1998:IFM

Jimenez:2002:RTN

Marta Jiménez, José M. Llabería, and Agustín Fernández. Register tiling in nonrectangular iteration spaces. *ACM Transactions
REFERENCES

Jagannathan:2014:ARV

Jeannet:2010:RAI

Jaffar:1992:CLS

Jerey:2010:ESA

Joshi:2006:DPA

Jones:1983:TST

Jones:1990:EEC

Jonsson:1994:CSV

Jazayeri:1981:SES

Jourdan:2017:SPC

Jagadeesan:1991:FAS

Jacobs:2008:PMC

Joung:1994:CF

Joisha:2012:TTE

Juan:1998:CVC

Jakobs:2017:PPF

Katayama:1984:TAG

Katz:1993:SCC

REFERENCES

Kaufman:1984:TLR

Kandemir:1999:GCO

Kim:2001:ERV

Kennedy:1999:PRE

Kistler:2000:ADM

REFERENCES

Kistler:2003:CPO

Knowles:2010:HTC

Keen:2004:JFD

Kaiser:1992:OBP

Kennedy:1998:ADL

Karkare:2007:IBC

Korach:1990:MTD

Kawahito:2006:ESE

Kennaway:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM
Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual machine, and compiler. *ACM Transactions on Program-
REFERENCES

Knapp:1990:EFD

Kobayashi:1998:PDF

Kim:2006:ERI

Kozen:1997:KAT

Kurlander:1995:EIS

Katzenelson:1992:TMT

Kobayashi:1999:LPC
Naoki Kobayashi, Benjamin C.
Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

F. T. Krogh. ACM algorithms policy. *ACM Transactions on Programming Langu-
REFERENCES

Krogh:1988:AAP

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Kim:2018:TFS

Korach:1984:DAF

Kruskal:1988:ESM
Knoop:1994:OCM

Kieburtz:1979:CCS

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1988:DSC

Kennaway:1989:CDS

Kobayashi:2010:HTS

REFERENCES

LaLonde:1983:TCL

LaLonde:1984:TCC

LaLonde:1989:DFD

Lamport:1979:NAP
Leslie Lamport. A new approach to proving the correctness of multiprocess programs. ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam79].

Lamport:1980:CNA

Lamport:1983:SCP

Lamport:1984:UTI

Lamb:1987:ISI
David Alex Lamb. IDL: Sharing intermediate representations. ACM Transactions on Programming Languages and Systems, 9
REFERENCES

REFERENCES

Liao:1996:SAD

Lee:2007:DIE

LeMetayer:1988:AAC

Leeman:1986:FAU

Lee:2009:RFS

LaLonde:1981:HOP

Leiss:1990:KME
REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Leroy:2000:TBA] Xavier Leroy and François Pes-

Levanoni:2006:FRC

Leung:2001:STC

Lieberherr:2004:TOS

Lim:2013:TSG

Lepigre:2019:PSC

Luckham:1979:VAR

Leverett:1980:CSD

REFERENCES

REFERENCES

Liu:2005:OAA

Lamport:1982:BGP

Lengauer:1979:FAF

LeCharlier:1994:EEG

League:2002:TPC

Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. *ACM Transactions on Programming Languages and Systems*, 24(2):112–152, March 2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the encrypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any $n \geq t > 0$, where n is the total number of processes and t is the number of faulty processes.
REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Millstein:2004:MTH

Morris:2009:TTN

Misra:1982:DGA

McGraw:1982:VLD

McKinley:1996:IDL

Morrison:1991:AHA
REFERENCES

[MH04] Rajiv Mirani and Paul Hudak. First-class monadic schedules.
Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

Miquey:2019:CSC

Misra:1981:EPE

Misra:1986:AMA

Misra:1994:PSP

REFERENCES

REFERENCES

REFERENCES

Moller:2007:SVX

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

Moore:2002:AC

McKinley:2007:ECG

Mckinley:2010:DVT

REFERENCES

[MS83] B. Maher and D. H. Sleeman. Automatic program improve-

REFERENCES

16:1–16:??, October 2016. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Mueller:1987:RMS

Maassen:2001:EJR

Manna:1980:DAP

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

McKenzie:1995:ERS

REFERENCES

Berry:1992:SM

BN99

Myers:1990:CUI

Myers:2017:F

Myers:2018:EFS
Andrew Myers. Editor’s foreword to “Static Backward Slicing of Non-Deterministic Programs and Systems”. ACM Transactions on Programming Languages and Systems, 40(3): 11:1–11:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DL18].

Myers:2019:E

NB99

Nanevski:2013:DTT

Necula:2005:CTS
REFERENCES

Norris:2016:PAM

Nelson:1989:GDC

Nguyen:2005:EEA

Nielson:1985:PTD

Nix:1985:EE

Nielson:1986:TCC
Nelson:1979:SCD

Naik:2008:TSE

Nanda:2006:ISM

Nikolic:2013:RAP

Nowatzki:2015:SFS

Nowatzki:2015:SFS

Olderog:1988:FPP

Odersky:1993:DCD

Martin Odersky. Defining context-dependent syntax with-
REFERENCES

Olmedo:2018:CPP

OGJ+18

OHL+14

Ogasawara:2006:EED

Owic+16

Ohi:2016:SXS

6:??, January 2016. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

References

Palsberg:1995:CAC

Palsberg:1998:EBF

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

Parnas:1990:TCI

REFERENCES

REFERENCES

Preda:2008:SBA

Pan:2008:PFE

Pemberton:1983:TCT

Peterson:1982:UAC
Gary L. Peterson. An \(O(n \log n)\) unidirectional algorithm for the circular extrema problem. *ACM Transactions on Programming Languages and Systems*, 4(4):758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of \(n\) uniquely numbered processes in a ring. The algorithm requires \(O(n \log n)\) messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW
Gary L. Peterson. Concurrent reading while writing. *ACM Transactions on Programming Languages and Systems*, 5(1):
REFERENCES

Peterson:1983:NSL

Poletto:1999:CTL

Proebsting:1996:DDR

Paek:2002:EPA

Pippenger:1997:PVI

Pratikakis:2011:LPS

Piquer:1996:IDG

José M. Piquer. Indirect distributed garbage collection: Handling object migration. *ACM Transactions on Programming Languages and Systems*,
REFERENCES

Pai:1980:GCR

Paige:1982:FDC

Pearce:2007:EFS

Park:2004:ORC

Payet:2006:NIL

Pingali:2009:RTP

Palsberg:1995:TSE

REFERENCES

[PT00] Benjamin C. Pierce and David N. Turner. Local type inference. *ACM Transactions on Programming Languages and Systems*, 22
REFERENCES

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SAU

Pugh:1998:CBA

Palsberg:1995:EIA

Palsberg:2005:ADC

Qian:1995:CRO
REFERENCES

Qian:2000:SFI

QL91

QR00

Quillere:2000:OMU

Ramalingam:1994:UA

Ramalingam:1999:ILA

REFERENCES

153

Ramalingam:2000:CSS

Rao:1994:RAP

Reiter:1994:HSR

Ramsey:2003:TAB

Rogers:1995:SDD

Richardson:1993:DPL

Reps:1987:SSE

Thomas Reps and Alan Demers. Sublinear-space evaluation algo-

REFERENCES

REFERENCES

Renganarayan:2012:PLT

Rinard:1998:DIE

Rival:2007:TPA

Ruggieri:2010:TLC

Rosenkrantz:2006:MMA

Rob:79

John H. Reif and Paul G. Spirakis. Real-time synchronization of interprocess communications. *ACM Transactions on Programming Languages and Systems*, 6(2):215–238, April 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present probabilistic distributed algorithms for the guard-scheduling problem (Section ??) that guarantee real-time response. A pre-

REFERENCES

Shao:2000:ESS

Sager:1986:SPC

Sagiorgi:2009:OBC

Solovyev:2019:REF
Spoto:2019:SII

Schwartz:1980:U

Schneider:1982:SDP

Schmidt:1985:DGV

Skoestengaard:2020:RAM

Sampaio:2013:DA

Strickland:2013:CFC
REFERENCES

REFERENCES

[SJ06] Scott:2006:RNG

[SLC03] Schultze:2003:APS

[SLC03] Schultz:2003:APS

Ulrik P. Schultz, Julia L. Lawall, and Charles Consel. Automatic program specialization for Java.
REFERENCES

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TRO

Spoto:2010:TAJ

Stork:2014:APB

Sokolowski:1987:SHL

(print), 1558-4593 (electronic).

Solworth:1992:E

Sonnenschein:1987:GTS

Sorkin:1989:TCS

Soundararajan:1984:ASC

Sansom:1997:FBP

Simonet:2007:CBA

Spooner:1986:MAR
REFERENCES

[Sekar:1995:FSA]

[Suhendra:2010:SAC]

[Sagiv:1998:SSA]

[Shasha:1988:ECE] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs that share memory. ACM Transactions on Programming Languages and Systems, 10(2):282–

Stefan Staiger-Stöhr. Practical integrated analysis of pointers, dataflow and control flow.

REFERENCES

Sneyers:2009:CPC

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of constraint handling rules. ACM Transactions on Programming Languages and Systems, 31(2):8:1–8:42, February 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Schonberg:1981:ATS

Sippu:1983:SEH

Snelting:2000:UCH

Sperber:2000:GLP

Steimann:2018:CBR

Stone:2004:EOL

Christopher A. Stone. Extensible objects without labels. ACM

Saha:2003:IAQ

[STS03]

Shao:2005:TSC

[STSP05]

Smith:1996:PTV

[SV96]

Sangioori:2019:EBP

[SV20]

Simpson:2020:BEM

[SV20]

Sabry:1997:RCV

[SV97a]

Steckler:1997:LCC

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Terauchi:2008:WSE] Tachio Terauchi and Alex Aiken. Witnessing side effects. ACM Transactions on Programming Languages and Systems, 30(3):
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Vansummeren:2006:TIU

Vera:2004:FAF

Venkatesh:1995:ERD

VanRoy:1997:MOD

vonHanxleden:2000:BCP

VanDenBrand:2002:CLD

REFERENCES

2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Volpano:1991:TCS

VandenBos:1981:PCB

VanHentenryck:1995:BTC

VonBank:1994:UMP

REFERENCES

VanNieuwpoort:2010:SHL

Waddle:1990:PTC

Wallis:1980:ERO

Wallis:1981:CER

Wallis:1982:DTC

Waters:1983:UFC

Waters:1991:ATS

Wall:1992:ESD

Wand:1982:DTC
REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/102806.html.

pubs/toc/Abstracts/0164-0925/174628.html.

pubs/citations/journals/toplas/1997-19-1/p87-wright/.

pubs/citations/journals/toplas/1997-19-1/p87-wright/.

pubs/citations/journals/toplas/2000-22-4/p701-walker/.

pubs/toc/Abstracts/0164-0925/88639.html. See corrigenda [WCW91].

pubs/toc/Abstracts/0164-0925/201067.html.
REFERENCES

[Wis79] David S. Wise. Morris’s garbage

(W)

REFERENCES

Wu:2012:STB

Weimer:2008:ESP

Wolf:1992:GEI

Wolfe:1994:DDD

Welch:2010:SCF

Wang:2008:DSJ

Whitfield:1997:AEC

Deborah L. Whitfield and Mary Lou Soffa. An approach for exploring code improving transformations. ACM Transactions on Programming Languages and Systems, 19(6):1053–1084, November 1997. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (elec-
REFERENCES

Wang:2015:EAS

Wall:1985:TCN

Wehr:2011:JIT

Wu:2004:ETC

Wu:1995:WCC

Wegman:1991:CPC

Ward:2007:SPT
Martin Ward and Hussein Zedan. Slicing as a program transformation. *ACM Transactions on Program-
REFERENCES

Xie:2007:SSF

Xie:2020:CSA

Yemini:1985:MVE

Yemini:1987:A

Yemini:1988:TCA

Yiapanis:2016:CDS

Yang:1998:STE

Tao Yang and Cong Fu. Space/time-efficient scheduling and

[Yardimci:2009:MSP]

[YF09]

[Yin11]

[Yang:1997:SMC]

[YK97]

[Yellin:1991:IL1]

[YR94]
REFERENCES

Yellin:1997:PSC

Young:1999:SCB

Yahav:2010:VSP

Yang:2002:EEB

Zave:1985:DAF

Zhao:2007:FFS

Zhang:2005:CPT

Zhou:1996:PPC

Zic:1994:TCB

Zhang:2017:SSH

Zhuang:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA