A Complete Bibliography of Publications in *ACM Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

27 October 2016
Version 2.125

Title word cross-reference

| [SRW02], + | [Han81a], T^M [Bla03], $\alpha_{ex}/$ |
| [AW82], || | [DDDCG02], A [DES12], R |
| [JMSY92], R_{Lin} [VR95], ℓ [ADG+94], |
| $O(nm)$ [Pet82], ϕ [CF95, DR05], π [ABL03], |

(k) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3
PHP02, Pa198, PKH07, Ram00, Rep00, RSL10, RD07, RRSY08, RR03, RR05, RLS+01, SRW98, SRW02, STS03, SdSCP13, SS96, ST00a, WP10, WJ98, ZSD09, dHB+96. analyze [DMM01, VBLG04]. analyzer [SMP10]. Analyzing [AW85, Bef+16, CFP+04, GMM99]. And/Or [Har80]. Annotations [Bur84]. AOP [DES12]. APL [Bud84, GD82, Hob84]. Applicability [DAW88, How80, LS98]. Applicable [Gom92]. Application [CD79, DF80, DF81, LR13]. Applications [BLRS12, Bou88, BALP06, CMLC06, NR06]. Applicative [AC94, KS86]. apprentice [MP02]. Approach [ABR81, AR80, BAC16, BP82, Bur90a, CH90, CD79, DS90, Ell82, ES97, FT94, GGL15, Har80, Hes88, KK14, Lam79, Lam80, Lee86, MW80, MDCB91, ND16, OA88, Sam80, Spo86, SM81, SNS+14, Bou05, CRN+08, DHM+12, FGM+07a, JLR10, KV00, LP80, MBT09, PSS05, PCJD08, RC03, SP07, WS97]. approximations [BGP99]. Apt [Moi83]. architected [ZP07]. Architecture [Wal92]. Architectures [Han94, KP95, NSTD+15, PAS+15]. Arising [Bac84]. Arithmetic [Fire0, GNS+15, Hen83, Ldr81, Mos07b]. ARM [FKW98]. Array [CGST95, CG95, LS79, Per79, PW80, JB06, LSLR05, Ni05, PHP02, RMH06, RR05, ZCG+07]. array-valued [RMH06]. Arrays [BBC16]. ASF [VHK00]. aspect [DWW08, Wkd04]. aspect-oriented [DWW08, Wkd04]. AspectML [DWW08]. Aspects [Bor81, Set83]. assembly [AAR+10, MWC99]. Assertions [BKB80]. Assessing [BDH+96, Wey83]. Assignment [BM94, CFR+91, GL80, GPF08, LDK+96]. Assisted [ICHP92]. Assisting [Fea82]. Associated [PPS79]. associativity [Cha02]. Assocs [Rem81]. assume [HQR02]. assume-guarantee [HQR02]. Assumptions [ES97]. AST [GVC15]. Asynchronous [Bag89, GLO88, Mis86, GM12, HR02]. ATL [WSH15]. Atomic [WL85, Wei90, AE01]. Atomicity [JLP+14, Wei89, FFLQ08]. Attribute [CP95, Hud91, JP81, Jon90, Kat84, KR97, MK94, RD87, WW95, Boy96, CP96, Wu04]. Attributes [HT86]. Author [Ano86a, Ano88a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91]. authorization [FGM07a]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b]. auto [ZP10]. auto-addressing [ZP10]. Automata [BMW91, ES97, Pro95, KV00]. Automata-Theoretic [ES97, KV00]. Automated [GRS+11, KZC15, KF00, Sok87, JNGG10]. Automatic [AK87, Ano02a, BBC16, Cat80, CES86, D90, KK98, Le 88, Lk02, LS04, M83, PZJ05, RH87, SSS81, SLC03, She91, Wat91, Wha94, ABH11, ATD08, BdlBH99, CRN+08, ZCG+07]. Automatically [Ska95]. Automating [GKL94, MTSS09]. Avoidance [FGL94]. aware [MQ05]. Axiomatic [AR80, App94a, Bae85, Sou84, YB87, YB88, LP80]. Axioms [Mis86]. B [Han81a]. backpropagator [PS08]. Backtracking [Lin79, VR95, FM87a]. Balanced [AS80, PB80, vHK00]. base [LS98]. Based [BPP16, BGL93, Bur90a, CGJ+97a, Cl84, CP95, CH90, CPS93, DLM15, DLR16, EGP14, GG85, H86, JTM98, K89, KR97, LFF14, PW98, RTD83, SR95, SGL98, SNS+14, Wat94, WGS92, vPS81, BFG08, BMR01, BHM+07, BCG+07, CTT07, DDV99, Eug07, FF99, HBM98, KBC+99, KK07, KC01, LP00, LH08, LGAT00, MTSS09, MH06, Pal98, PPO80, FCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12]. Basic [GLR83]. BDD [LH08]. BDD-based
Behavior [LH08]. Be
[Bee94, Coh91, Wir91, CG04, LP99].
Behavioral [LN94, LW94]. Being [Cop94].
benefits [GMP+00]. Better [Gri79, Lam88].
between [BS88]. Beyond [GSW95]. BI
[BBT07]. BI-hyperdoctrines [BBT07].
Bidirectional
[DP93, MMR95, FGM+07a, GPWZ08].
binaries [STP05]. Binary
[Sip82, DDD05, MMM+07, RC03, YF99].
binding [ACE96]. Birrell [MDJ05].
Bisimulation [FDY12, MH06, San09].
Bisimulation-based [MH06].
bisimulations [SKS11]. Bit [KD94, KK07].
bivector [KSV96]. Bliss [GNS+15]. Block
[LS81, Mnr91]. Block-Structured [LS81].
Blocked [FTJ95]. Blocks [Jag94]. Boolean
[XA07]. Bootstrapping [App94a]. Both
[KZC15]. bottlenecks [RD03]. Bottom
[BGL93, GCRN11]. Bottom-Up
[BGL93, GCRN11]. bound [KK07, NI05].
Bounded [ADG+94]. Bounds
[PW94, BP12, CEI+07, RR05, SS05a]. Box
[WLBF16]. boxed [BCC04]. Branch
[CGJ+97a, CEG07, YUW02, YS99].
Branches [WZ91, RC03]. Broad [DAW88].
Buddy [Kau84]. Buffer [Zic94]. bugs
[HS10]. Building [Jag94]. BURS [Pro95].
Bus [Pur94]. Bytecode
[SA99, BDL+08, CSMC00, FM99, GPF08].
KR01, Qia00, SMP10, WR08]. Byzantine
[LSP82].
°C [PHEK99, BR97, HSS+14, ND16, PKH07].
PFI11, Ven95]. C# [BCF04]. C/C [ND16].
Cache
[GM99, KLS92, MMM+07, SS96, VBLG04].
Caching [ABM93, FK85, KS86, LST98].
Calculational [Bou06]. Calculi [ABS09].
Calculus
[ABL93, BKL+97, BN94, Gom92, Kob98].
MGR88, Ned89, Oh695, WM95, ABL03.
AH10, Bou05, Bou06, BBC04, DES12, HR02.
IPW01, Jay04, TA08a, KPT99]. Call
[DP97, GL80, GC01, HL05, KK07, SW97a].
call-by-value [HL05, SW97a]. Calls
[Coh83, Coh85, FF08]. Can
[Boe85, Coh91, Wir91, CG04]. capabilities
[WCM00]. capability [TA08a]. Carlo
[FL15]. carrying [AM01]. Case
[FTJ95, WW95, BdlBH99, KF03]. Cats
[AMT14]. Cause [Cas96]. CCP [EGM01].
CCured [NCH+05]. Cedar [SZBH86].
Cells [LYS88]. Centered [CHY12]. Centers
[KRS84]. Centralized [HM84]. centric
certified [STP05]. Chaining [LS80].
Chains [HS94]. challenge [MP02]. change
[BA08, CP96, Lee09]. Changes
[Ber94, MTSS09]. changing [MP07].
Chariots [PB97]. Check [AP94]. checked
[KN06]. checker [NP08]. Checking [Car95].
CGL94, ES97, FF08, GL94, ND16, AY01.
ACM11, BGP99, FFLQ08, HQR01, JJD98.
KF10, KV00, NI05, SG04, VJB12.
YM97]. Checks [CG95, CEI+07]. Choice [BN94].
CIRCAL [Mil85]. Circular [Jon90, Pet82].
Circularity [WW95, Wu04]. Clarification
[PA86a]. Class [HKMN94, Han92, SJ03].
SDTF13, HS11, MH04, ST00a]. Classes
[SDTF13, WT11, HHPW96, HMO06].
Classical [JSB+12]. Classification
[KZC15]. Classifying [GS95]. Claus
[WP10]. Cliché [Wat94]. Cliché-Based
[Wat94]. Clique [GSO94]. Closure
[Pal95, SW97b, SA00]. CLP [DHM00].
GLM05, JMSY92, KMM+98, VR95].
Clusters [BGH+13, BGB+09]. coalescing
[GA96, Hai05, PM04]. Code
[AGT89, Cat80, Cop94, DF84, FGL94, GFS85].
Hen82, HG83, JSB+12, KRS94, LR13, ND16.
Rob79, TyS82, Wan82, AM01, DEM00.
Hai98, HBG+09, HK07, JNZ06, LDK+96.
MSRR00, ME97, Oho07, PHEK99, WS97.
vHK00, CM93, Pen83, WST85]. Cohen
[Coh85]. coherence [SS96]. coinduction
[San09]. Collecting [HY91]. Collection
[BA84, CN83, DSW82, Lan80, TM93, WLBF16, BALP06, HDH02, PBK07, Piq96].

collector [BBYG05, LP06, TSBR08].

Coloring [BCT94, CH90, GSO94].

Combining [Ber94, BP82, CC95, CMB95]. Come [LH91].

Comments [AB94, KS79, LaL84, NN86, Sor89].

Communicating [AFdR80, GC86, HM84, MW84, MC82b, Moi83, Oss83, PP91, Pur91, Sou84, Ber80, KS79]. Communicated [LH91].

Communications [RS97].

Communication-Centered [CHY12].

Communication-Centered [RS97].

Communications [RS97].

Communication-Centered [CHY12].

Communications [RS97].

Communications-Centered [CHY12].

Communications [RS97].

Communications [RS97].

Communication-Centered [CHY12].

Communication-Centered [CHY12].

Communication-Centered [CHY12].

Communication-Centered [CHY12].
NSTD+15, Pal95, PW98, Apt00, BMR01, DPPR00, FH04, GHB+96, HPMS00, SS08, SS09, SP07, SSD09, dHB+96.

Constraint-Based [PW98, DDV99, SP07].

Constraint-Oriented [Bor81].

Constraint-Solving [NSTD+15].

Constraints [AKP94, DFR15, HG83, Mye90, BA08, RM10, TFK+11, Van96b, VHM+01, Van96a].

Construct [Ans87, BS83, Kat93].

Constructive [Loe87].

Constructs [AR84, DJP+16, Par90].

Context [GHR80, Ode93, PK80, Ram00, RTD83, Rep00].

Context-Dependent [Ode93, RTD83].

Context-Free [GHR80].

Context-sensitive [Ram00, Rep00].

Contexts [Ode93].

Continuation [BDM15, Wan82].

Continuation-Passing [BDM15].

Continuations [BDM15, HF87].

Continuous [KF03].

Contract [DF11].

Contracts [SDTF13, CGP09].

Contravariance [Cas95].

Control [ABLP93, Bur84, CL94, CFR+91, DP97, FM87b, Kat93, Lam88, Lin79, NGB13, PB97, PBR+15, Set83, SS13, Tur84, Wat83, Wei89, BCM99, BCC04, HO07, PSS05, RAB+07, Zho96].

Controlled [Min84, Tho94, JC97].

Controlling [BALP06, LaL81, LMD98].

Convention [AF84].

Convergence [Bar85].

Conversion [CS87, SW97b, SA00, YK97].

Cooperating [GL87, NO79].

Cooperation [BKS88].

Coordinating [JS94].

Coordination [GLR83].

Copying [TSBR08].

Coroutines [Sam80].

Correct [FA93].

Correctness [Apt86, CM96b, FR90, Gom92, HW90, Lam79, Lam80, Oss83, San96].

Correlated [YS99].

Correspondence [BS88, Bur90b, Bur91, Coh91, CM93, DS88, E111, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tic88, Vol91, WST85, Wir91, YB88].

Corrigenda [WCW91].

Corrigendum [BKRW05, DF81, Fra80a, KS89, Lam80, Pur91, QG95, Van96a, Wal81, WGS93].

Cost [AB81, Bac84, DL93, Hai98, Han81a, ZG95, VALG05].

Cost-optimal [Hai98].

Costs [GMP+00].

Counting [Bal94, LP06].

Counts [Bob80, Wis79].

Coupled [ACW90].

Covariance [Cas95], covariant [PZJ05].

Creating [Mey90], criteria [Hai95].

Critical [PS93].

Critique [GM81].

Cross [FTJ95].

Cross-Interferences [FTJ95].

Cryptographic [App15].

CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Zic94].

CSP-Like [Hua90].

Currency [DS98].

Custom [DJP+16].

Cycle [BG98b, PBR+07].

Cycles [FR90].

Cyclic [RY88].

Data [Bur91].

Data-centric [DHM+12].

Data-Driven [BL87, CS87].

Data-Flow [BC95b, Bur90a, Wet82, RP99, KBC+99].

Data-independence [Rep00].

Data-member [KF00].

Data-Parallel [Cha93, HBJ98].

Database [Bar85, CB80].

Dataflow [Deb95, DFR15, MBW94, SS13, Van96a, Van96b, VHM+01].

Datatypes [MBC04].

Deadlock [Hua90, Kob98].

Deadlock-Free [Kob98].

Debugging [CMN91, CM93, Cop94, Hen82, WST85].
Deciding [GGL15]. Decision [MTG80, NO79]. decisions [MTSS09].
Declarative [ABPS98, TCVB14, Bou05, MME+10].
Decompilation [BB94]. Decomposing [BDL+08]. decomposition [LK02].
decrease [LDK+96]. Deducing [TB95]. deduction [LMD98]. Deductive [MW80].
Default [SNS+14]. Deferring [MTSS09]. Defined [Wal92, Wal80, Wal81].
Defining [Ode93]. definite [RKRR04]. Definition [Bou92, BWP87, CI84, CD79, Fid93, HS94, Wcw90, Wcw91, Wol94].
Definition [Bou92, BWP87, CI84, CD79, Fid93, HS94, WCW90, WCW91, Wol94]. Definition-Use [HS94]. Definitions [BSS6, Wil82b, Dam03, VHK002, Sij89].
Delay [BG89b]. Delayed [KPF95, RC89]. Delayed-Load [KPF95].
Delayed [KPF95, RC89]. Delaying [Kau84].
Deleting [GP81]. Delimited [BDM15].
Demand [GSW95, PA85, PA86a, PA86b, PF96, SR95, DGS97]. Demand-Driven [GSW95, PA85, PA86a, PA86b, PF96, DGS97].
Denali [JN206]. Denotational [AB94, FA93, Gud92, MSJ94, NF89, Nie85, Sch85, dBB85].
Dependence [BGH*13, CFR*91, FOW87, HBG+90, HR90, PB97, PW98, Wol94, RAB+07].
Dependences [PW94]. Dependencies [Deb89, CSS99]. Dependency [Blu99].
Dependent [LS80, NBG13, Ode93, RTDS3, Rob79].
deques [Chi05]. DeRemer [Sag86].
Derivation [BKB80, Cat80, DSW82, Gie83, HIT97, Kna90, TM93, Ano202a]. Deriving [Wan82, Bou06]. Describing [AW58].
Description [McG82]. Descriptions [Boe85, BKL*97, Cat80, Ano202a].
Descriptors [Hol87]. Design [BPP16, BCD+15, BO94, DF08, DF81, FT94, HM84, KKM90, LDM07, ML80, RCS93, RL98, SYK+05, Bou05, MTSS09, CMLC06].
design-pattern-based [MTSS09].
Designing [LaL89, ALZ03]. Designs [AW85]. destructive [SRW98]. Detect [ISY88]. Detecting [GSW95, HCS10, Sch85]. Detection [CM86a, Hua90, MC82a, MC82b, TM93, AFF06, HDH02, PFH11, PCJD08, XA07].
Determinacy [TK94]. determination [DS98]. Determining [MF88].
determinism [TA08a]. Deterministic [KR79, Tar07]. Development [BKB80, Col84, Fea87, Jon83, ML80, PPS79, Wil82a].
Diagnosis [BF87]. Dialect [Mul92].
Dialects [CP95]. dialogue [BCM99]. DIB [FM87a]. difference [BA08]. Differentiating [PK82, RSL10]. Differential [BKOZB13, ZP07]. Differentiation [Sha82].
Directly [Hob84]. Director [KS88, KS89].
Directory [Han81b]. discipline [FGM07b]. Disciplines [SS84]. discovery [PZ05].
Discrete [Bar81]. Discrete-Event [Bar81].
Disjunctive [Jen97]. dispatch [DAS98, MFRW09]. dispatching [GZ07].
Distance [Wol94, ZSD09]. distribute [CRN+08]. Distributed [ABLP93, AF84, APT86, AW85, BKS88, BCEM15, Bur84, CJK95, CM86a, CBDF95, CS95, DAW88, Dug99, FLB89, Fra80b, GHS83, Hua90, HM84, Jon94, Kna93, KKK98, KR88, KKM90, Lam84, LS83, MC82a, RCR95, SS84, Sch82, TM93, Zav85, ABL03, FM87a, HVB+99, KGM004, LC02, MDJ05, Pld96, Fra80a, Mohn81, VHB+97].
Distributed-Memory [KK98, RCR95].
div [Bou92]. Divergence [SidC13]. DJ [DR05, SGL96, SGL98, UMO2].
DJ-graphs [UM02]. DLLs [Dug02]. do [SS05a].
Documentation [MH86]. does [DMP96].
dolce [MP10a]. Domain [Tra08, RM07, SS05a]. Domains [CMB+95, ELS+14, GS89, FH04, GLMM05].
dominance [Ano02b, DVD07]. dominator [SGL97]. Dominators
Exception-Directed [OKN06].
Exception-Handling [YB85, LS98].
Exceptional [WN08]. exceptions [Hau96, LP00]. Exclusion [ADG+94, LH91, ABHI11]. Executable [Hob84]. executables [YF09]. eXecute [BR10]. Execution [CS87, DiI90, JNGG10, JF81, SS98, SS88, BALP06, GPA*01, TSY00, YF98].
Exemplars [LaL89]. Exemplified [DGL+79]. Exercise [Kna90, Mis81].
Exhaustive [GPR97, LH91, ADH91]. Executable [Hob84]. executable [YF09]. eXecute [BR10]. Execution [CS87, DiI90, JNGG10, JF81, SS98, SS88, BALP06, GPA*01, TSY00, YF98].

Fault [CS95, Lam84, LJ99, AAE04].
Fault-Tolerance [LJ99]. Fault-Tolerant [CS95, Lam84, AAE04]. FD} [GLMM05].
FeatherTrait [LS08]. Featherweight [IPW01, LST02, LS08]. feature [AH10].
Feeding [PA86a]. Fickle
[DDECG02, AAD+07]. field [PKH07]. field-sensitive [PKH07]. fields [PZ05].
FIFO [FLBB98]. Final [Kam83]. Finding [KRS84, KKM90, LT79]. Fine
[DBR15, DNS+06]. Fine-Grained [DBR15, DNS+06]. fingerprinting [CTT07]. Finitary [AH98]. Fine
[ACW90, BLH12, CES86, GC86, PK82, PP91, Pur91, RSL10, Zav85]. Finite-State
[ACW90, BLH12, CES86].
Finite-State-Machine [Zav85]. First
[ADG+94, Bre89, DP97, HKMN94, Han92, JPP91, JS94, LH91, MH04, SDTF13].
First-Class [HKMN94, Han92, SDTF13, MH04].
First-Come-First-Served [LH91].
First-Enabled [ADG+94]. First-Fit
[Bre89]. First-In [ADG+94]. First-Order
[DP97, JPP91, JS94]. Fixed [SS98]. Fixed-Order [SS98]. Fixpoint
[AC94, Qia00]. Flexible
[AD98, Hud91, MSM+16, WG98, Wil82b, dJKVS12, IV06, KGMO04]. Floating
[CK94, Fat82, Hau96, Mon08].
Floating-Point
[CK94, Fat82, Hau96, Mon08]. flop
[MMG00]. Flow [AR80, AD98, Bac84, BC87a, Bur90a, DP97, DP93, FJKA06, Hor97, KD94, MMR94, NMG+93, PO95, PP91, PBR+15, Pur91, Set83, SGL98, WS82, DGS97, HR02, HY07, KBZ+99, Pal98, PS03, RRSY88, RP88, TST05, WJ98].
Flow-Insensitive
[Hor97, FJKA06].
Flowback [CMN91]. Flowgraph [LT79].
Flows [Kna90]. Floyd [Yin11]. Fly
[CF95, BA84, LP06, PBK+07]. Folklore
[LY98]. Font [FK85]. Foo [FA93]. foreign
[FF08]. Form [AK87, BOV85, BM94].
Haskell [GRSK+11, HHPW96]. Heap [KSK07, BALP06, KF00, YS10].
heap-manipulating [YS10]. Heavily [BG89a]. Hennessy [CM93, WST85].
Herding [AMT14]. Heuristic [SL92]. hiding [LN02, OYR09]. hierarchic [AG04].
Hierarchical [BA99, CP95, CD79, AW01, CP96]. hierarchically [MBC04].
hierarchies [ST00a, Van96a, Van96b]. hierarchy [KF00]. High [Cam89, Fat82, MSM+16, CMS03, VWJB10].
High-Level [Cam89, Fat82, CMS03, VWJB10]. Higher [AC94, AD98, CJK95, DJP+16, BBTS07, DF11, SKS11, SP97].
Higher-Order [AC94, AD98, CJK95, DJP+16, BBTS07, DF11, SKS11, SP97]. Highly [Her93, Sku95].
Hoare [Apt81, GM81, LS84, Sok87, Yin11]. Hoc [MDCB91]. Homomorphisms [HIT97].
HOP [BLRS12]. Hybrid [KF10, KS10]. hyperdoctrines [BBTS07].
I-Structures [ANP89]. I/O [Car95]. Icon [GHK81, Gri82]. id [Bee94]. idempotency [KOE+06].
Identical [FLBB99]. Identification [BGH+13]. identify [MMM+07]. Identifying [Ram99, SGL96].
Idioms [PP94]. IDL [Lam87]. IEEE [Fat82]. Ignorance [GNS+15]. Illustrative [Oss83].
Impact [OLH+16, CKT86]. Imperative [ABPS98, DFR15, Gro06].
Implementation [AKBLN89, AOC+88, BCD+15, Bou88, Bre89, BS83, CM86b, GMHS81, Gaz83, Lin93, MDCB91, PXL95, RL98, WL85, CMLC06, FM87a, GB99, LDM07, LPS004, Tra08, Zho96].
implementations [BBF+11, BFGT08, DF98]. Implemented [DB85]. Implementing [BR97, Herb93, HW82, Sku95]. Implications [Fat82]. Implicit [BH05b, SJP12]. Implicit-signal [BH05b]. improve [KF00]. Improved [GHR80, Mro91, KK07]. Improvement [MS83, San96].
Improvements [BCT94]. Improving [CK94, CMB+95, MCT96, WS97]. impure [Pip97]. incomplete [GLM05].
Incremental [Bd90a, CP95, DMM88, GM79, HKR92, HKR94, HPMS00, Had91, Kais9, Lar95, LST98, P92, RDT83, RP88, SGL97, W99, YS91, BBYG+05, CP96, Van96a, Van96b].
Incrementally [QL91]. Independence [DHR00, Rep00]. Independent [ML80, Ml92]. Index [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98]. indexed [AM01]. indices [RR05]. Indirect [Piq96, CEG07, YK97]. Induction [GSW95, Sit79]. inefficiencies [MMM+07].
Inessential [SS82, LaL84]. Inference [CEW14, Deb89, Hen93, LO94, LY98, TB98, Wey83, FFLQ08, JB06, PM06, PT00, PS03].
Influence [FT95]. Information [AR80, Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b, BC85b, HR02, NBG13, PBR+15, PS03, GS99, HY07, LN02, OYR09, T207]. Information-Flow [BC85b, T207]. infrastructure [SWU10]. Inheritance [LN15, WT11]. initialization [FM99]. Input [BS83, vPS81]. Input-Output [BS83]. Inputs [PA86a]. Insensitive [Hor97, FJKA06]. insertion [CJ05].
inspection [CF04, FG03]. Instantiation [Der85]. Instead [Lam84, Rem81].
Instruction [KPF95]. Instructions [LS80, PS93, RF97, Rob97, LPP01]. Integer [BAGM12, BFP+16, BGP99].
Integrated [SS13]. Integrating [HPR89, WJS+00].
Integrating [CO90, Leu04]. Intensional [STS03]. Interaction [WSS85, WT11, van88, BCM99].
Interactions [JS94]. Interactive [ACS84, BS86]. Interface [Win87, van88]. Interfaces [DS90, Mye90, TLHL11, WT11].
Interferences [FT95]. Interfering
Linear-Time [YR94, BKRW98, BKRW05].
Link-time [DDD05]. Linking [QL91, Dug02]. LIPS [CDFP89]. LISF [GCRN11].
LISP [Mul92, Pip97, SH89, Wat83]. List [BC79, HIT97, Kau84, Sij89]. listing [MDJ05].
Literature [Oss83]. Live [MWB94]. Live-Structure [MWB94].
Liveness [ACW90, GC86, OL82, RY88, HDH02]. LL [BF87]. Load [KPF95]. Loaded [BG89a].
Local [BDFZ09, CBDFG95, PT00, TSBR08, Wei89, Dam03, San96]. Locality [BAC16, MCT96, VALG05, ZSD09].
Locally [AB81, Bac84, Min84]. locating [JNGG10]. lock [KS10]. lock-freedom [KS10]. locking [AFF06].
LOCKSMITH [PFH11]. Logic [AS89, AVF98, Apt81, BGL93, BL87, BCD90, BDJ13, BMPT94, CS04, CES86, CFM94, DW99, Deb99, DL93, Deb95, DJP+16, JPP91, Kar84, LS84, Lam94, MW84, MSJ94, MMG92, SS98, Sok87, TK94, TB95, BBTs07, BMRO1, BCG+07, BdIb99, C08, CG86, CSS99, DDV99, DPPR00, GHB+96, GW99, HVb+99, HPMs00, KLW09, LMD98, Leu04, PMO6, RKRO04, SRW02, Yin11, dHB+96].
Logical [GG15, GS98, RSL10, Tar07]. Look [DP82]. Look-Ahead [DP82].
Lookahead [KM81, MF88]. Loop [BAC16, CS87, MCT96, Sil79, RKSR12].
Loops [BAGM12, Boo82, CK94, DB85, FTJ95, Hav97, Wat91, Ano02b, LS04, LSLR05, Ram99, RDG08, SGL96, UM02].
low [CSCM00]. low-end [CSCM00]. Lower [PW94]. LR [ADGM91, BL94b, BF87, CPRT02, DMM88, Je03, KC01, La81, La84, SS82, ST00b].
megaflops [MMG00]. member [KF00]. Memory [AMT14, CK94, Cha93, KZC15, KK98, KRS88, MIM+16, Mis86, RCRH95, SS88, ABHI11, BP12, GMM99, GW99, JNGG10, KFO0, LK02, Loc13, QR00, RR05, TSY00, TP04, VBLG04, WCM00, MIM+07]. memory-efficient [TP04]. memory-hierarchy [KF00]. Merge [Ber94]. Merlin [HBM+06]. Message
[CSW06, SS84, Gor04]. Messages [BB79, Jef03]. meta [Tra08].
meta-programming [Tra08]. Metalevel [Jag94]. Metaprogramming [CI84].
Method [BCD90, BF87, HL82, Jon83, Loa87, JJD98].
Methodology [Ban87, Her93, Skr95]. Methods [DAW88, KM81].
METRIC [MMM+07]. Mezzo [BPP16].
Microanalysis [HCP92]. Microcode [MV87]. Middle [BDP14]. Middle-End [BDP14].
Might [Bee94]. migration [Piq96]. Minimal [FKW98, IPW01].
Minimization [RS84a]. minimizing [RMH06]. Minimum [GHS83].
Minimum-Weight [GHS83]. Mining [AMT14]. Misled [Cop94]. miss [GMM99].
Mixin [HL05, RD13]. mixins [ALZ03]. ML [Blu99, EO80].
Model [AY01, Ang89, BK11, BL87, BGP99, CGL94, DLR16, ES97, GS98, GG85, GL94, Han91, HW82, Hol87, KH92, MM92, ND16, VSS94, ACM11, AM01, AE01, JJD98, JPS+08, KN06, KV00, Loc13, NP08, QR00, SG04, VVJ910, VALG05, YMW97].
Model-Checking [ES97, BGP99].
Modelling [AMT14].
Models [GJ93, KZC15]. Modern [BCF04, RAB+07]. Modes [Deb89].
Modules [CL95, HW82, Lam83, HL05]. monadic [MH04]. Monitors [BLH12, BH05b]. Monolingual [HK85].
MPI [TSY00]. multi [MF09]. multi-language [MF09]. Multialgebraic [WM95]. multidimensional [RDG98].
MultiJava [CMLC06]. Multilisp [Hal85].
Multiprocess [Lam79, Lam80].
Multiprocess [ABR81].
Multiprocessor [GP81]. Multiprocessors [Cha93, KRS88]. Multisource [MMR95].
multithreaded [EP914, JSB+12, KKW14, NR06].
Multivariate [Bha12]. Multiway [Cha87, Van96a, Van96b]. munch [Rep98].
Mutual-Exclusion [LH91]. Myths [Gor04].

Nesting [Hav97, Boy10]. Nests [BAC16].
Net [JTM98]. Network [WGS92, WGS93].
Networks [CGJ97a, GC86, KRS84, dBB85].
Nicholson [FA93]. node [JC97, UM02].
Nodes [CF95, Han81a]. Nomadic [SWU10].
Nominal [CU08]. non [BS88]. non- [BS88].
Noncanonical [Tai79]. Noncorrecting [Ric85].
Nondeterminate [TK94].
Nondeterminism [Ber80, Hes88, WM95].
Nondeterministic [QG95, MT95].
Noninterfering [HPR89]. nonnumerical [ME97].
Nonprocedural [PPS79].
nonrectangular [JLF02]. nonscalars [CRN+08].
Nonsequentiality [Bar81].
Notation [Rem81, Wil82]. Note [Com80, CM93, MS88, WST85, Coh85, Pal11b, YK97].
Notes [Sku95]. Nothing [BDH+16].
Notion [LW94]. NP [Hor97]. NP-Hard
LMD98, Leu04, ST00b. Partially
[BLH12, Kob98, RRSY08].
Partially-flow-sensitive [RRSY08].
Partitioning [RM07, YF09]. Parts [Son87].
Partition [LS79]. Pass [Bak82, BM94].
Passing [BDM15, Gaz83, SS84, CSW06, Gor04, Zho96]. Passive [AKP94]. past
[PM09]. Path [Blo94, SMP10]. path-length
[SMP10]. Pattern
[EGP14, ADR06, Jay04, MTSS09, Van06].
Pattern-Based [EGP14]. Patterns [GH80].
PDS [Han81b]. PEAK [PE08]. Peephole
[DF80, DF81, Pen83, Tv882]. PegaSys
[MH86]. C [ND16]. CS [CD79]. CV3
[CZ84]. fold [RKRR04]. Semantic
[HCW82]. subscribe [Eng07].
time-efficient [YF98]. write [AE01].
Pennello [Sag86]. Perfect [Dnc08].
Performance
[HU96, MS16, PB80, KF00, PE08].
Performed [Coh91, Wir91]. Permission
[BPP16, SNS14]. Permission-Based
[BPP16, SNS14]. permissions [Boy10].
Persistent [AM85]. Petri [JTM98]. Phases
[Bar81]. Philosopher [CM84].
Philosophers [MS88]. pi [HR02, KPT99].
pi-calculus [HR02, KPT99]. pic [SWU10].
Pictures [MH86]. Pipeline [HG83].
Pipelining [BG89b, LPP01, RDG08].
pipelining [ME97]. pitfalls [Mon08]. PL
[CD79, CZ84]. PL/CS [CD79]. PL/CV3
[CZ84]. place [GW99]. Placement
[DP93, GS99, vHK00]. pluggable
[MME10]. Pluto [BAC16]. Point
[CK94, Fat82, GJ05, Han96, Mon08].
Pointer [LS79, RR03, HBCC99, HVDH07, PKH07, RLS01]. Pointers [SS13, RR05]. points
[WKD04]. Pointwise [VSS94].
Policies [NBG13, BDFZ90, FGM07b].
Policy [Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, UJ92, BFG08]. policy-based [BFG08].
Polyhedra [GVC15]. Polyhedral
[GVC15, QR00]. POLYLITH [Pur94].
Polymorphic [BMR05, Dug99, HT04, Hen93, KIU93, LO94, LY98, Oho95, SV96, WJ98, BSvGF03, DWW08].
Polymorphism [Bur90b, MDCB91, HFC09].
polynomial [BAL07]. PolyTOIL
[BSvGF03]. polyvariance [LMD98].
Polyvariant [AC94, WJ98]. Portable
[DDH84, Han81b, HK07]. Postfix [DS83].
Postpass [HG83]. Power [TW82, SS09].
Powerlist [Mis94]. PPMexe [DKV07]. PQ
[GZ05]. PQ-encoding [GZ05]. Practical
[AD98, BAC16, BF87, Dha91, ND16, PBR15, SS13, TSL12, WC97, Bou05, DR05, DVD07, DGS97, JN06, PFH11].
Practice [KRS94, Ryu16, Bla03, DRSS96].
Pragmatic [BDH16]. Pragmatics
[Gom92]. Pre [OLH16]. Pre-Analysis
[OLH16]. Precedence [Hen83, LdR81].
Precise [Hor97, PHP02]. precision
[ZGZ05]. Precondition [Boo82]. Predicate
[Lam90, BMR05, Bou05, Bou06, MFR09, MMS96, PR07]. Predicates
[CBGD95, Lam88]. predictable
[SHB07, HK07]. Prediction
[CGJ97a, CEG07, YSS99]. Preparing
[FK85]. Presence [AWW95, CF94, KIU93].
Preserving [DHS09, LST02]. pretenuring
[BHM07]. Pretty [Chi05]. Prettyprinter
[Wat83]. Prettyprinting [Opp80].
Primitive [App15]. principals [TZ07].
Principles [Bou88, DRSS96]. printing
[Chi05]. Priority [CH90, Fir93].
Priority-Based [CH90]. Privacy
[BKOZB13]. Privileges [Min84].
Probabilistic [BKOZB13, HSP83, MMS96, Rao94, BH99, PPT08]. Problem [ADG+94, CM84, DS88, Gho93, LPS82, MS88, Pet82, Pet83b, PB97, SSW90, FGM+07a, Wu04].
Problems [Bac84, DP93, MMR95, SRW98].
Procedural [HF87, LIN93, VSS94].
Procedure [GS99, GL80]. Procedures
[AM85, KTT84, NO79]. Process
[Kob98, vPS81, WP10]. process-oriented
Processes
[AFdR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oss83, RY88, Sou84, dBB85, AE98, KS10, Ber80, Moi83].

Processing
[GH80, Rei83].

Processor
[BG89b, Bud84].

Processors
[GLR83, Per79, LPP01, ZP10].

Production
[Wad90].

Productivity
[Sij89].

Profile
[BHM+07, YUW02].

Profile-based
[BHM+07].

Profiling
[BL94a, SP97].

Program
[Bal94, Bar85, BAL07, BKB80, Col84, Der85, Fea82, FOW87, FT94, FL91, HSP83, HKR94, Jen97, KKW14, KWL09, Lam83, Lam88, LFF14, MS83, MW80, Mis81, Nie85, PP94, PPS79, Rem81, TSY00, Wat94, Wad90, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NS13, Pau01, RAB+07, SLC03, WZ07, WN08, YF09, DKV07].

Programming
[AGT89, AR84, ABPS98, BS86, BPP16, BL87, Bir84, Bor81, BMPT94, BCEM15, CHY12, CL94, Dar90, DFR15, DGL+79, Dug99, Fos96, FL15, GTWA14, Har80, HK85, HOS2, Kain9, Kh92, Lee86, LVV+83, MK94, Mye90, Pet83b, RCS93, SS84, SNS+14, SZBH86, TK94, ABH06, BMR01, Bou06, BdlBH99, GM12, GPA+01, LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MW94, NF89, Zho96].

Program-in-the-Large
[MK94].

Programs
[AWW95, AK87, AFV98, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BE13, BEF+16, CR87, CS80, CM86a, Cha93, CEW41, CM91, Cla80, CMF94, CS87, DGM97, DW89, Deb89, DL93, Deb95, DP97, Dill90, EGP14, GG85, GM81, Har80, HCHP92, HPR89, How80, HIT97, ISY88, Jon83, Js81, Kna90, Lam79, LS83, MSJ94, MH86, NSZS13, OA88, OL82, PS92, QL91, Rao94, SS98, Sch82, SSS81, SS88, Ven95, Wad90, Web95, Wil82a, AE01, AAE04, BCG+07, CSW06, CSS99, DP99, DV99, DS98, DMM01, EGM01, GM12, GHB+96, GH97, GPA+01, Hau96, HPMS00, JPS+08, KSV96, LMD08, Leu04, LS09, MF09, NR06, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yin11, dHB+96, Bur84, Lam80], PROLOG
[LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MW94, NF89, Zho96].

Promotion
[Bir84, Bir85].

Proof
[AFdR80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Oho07], proof-carrying
[AM01].

Proof-Directed
[BDJ13].

Proofs
[Apt86, BC85a, CM86b, LY98, Oss83, GRSK+11].

Propagation
[SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].

Properties
[ACW90, A859, Kar84, OL82, TB95, Wei99, YS10].

Proposed
[Fat82], provably
[MP10b].

Protected
[PAS+15, WJS+00].

Protocol
[SL92, YS97].

Protocols
[MB83, BF908, SS96].

Prototype
[WCW90, WCW91].

Prototypes
[HW82].

Publish
[Eug07].

Publish/subscribe
[Eug07].

Pure
[HU96, Pip07, Tar07].

Purpose
[App94b, HSS+14, Spo86].
[ISY88, TZ07, GMP⁺00]. **Run-Time**
[ISY88, TZ07, GMP⁺00]. **Runtime**
[BLH12, BEF⁺16, TCVB14, BH05a, TSY00].

S [HCW82]. **S/SL** [HCW82]. **Safe** [AWW95, Dug02, AFF06, BSvGF03, LS03, Loc13, NCH⁺05, SA00, ZCG⁺07, MH06, SHB⁺07].
safe-for-space [SA00]. **safety** [FF08, YS10].
same [SS05a]. **sampling** [PPT08]. **Santa** [WP10]. **Sather** [MOSS96]. **Satin** [VWJB10]. **satisfaction** [DF11].
satisfiability [XA07]. **satisfying** [Van96a, Van96b]. **Saturn** [XA07]. **Scalable** [FT94, XA07]. **ScalaExtrapp** [WM12]. **scan** [PS99]. **Scanners** [HKR92]. **Scanning** [GVC15]. **Scavengers** [UJ92]. **Schanuel** [KPS92]. **scheduling** [GH97]. **schedule** [TVA07]. **Scheduler** [TCVB14]. **schedules** [MH04].
Scheduling [BG89b, FGL94, KR79, KPF95, LPP01, LJ99, NB99, NSD⁺15, PS93, TCVB14, Ban11, ME97, YF98]. **schema** [RLS⁺01].
Scheme [Mur91, YR94, IV06, WC97].
Schemes [Son87, TM93]. **Schorr** [BP82].
Schwanke [Tie88]. **Scientific** [How80].
Scope [App94b]. **Scratchpad** [SRM10].
Screen [MM89]. **SDF** [VHK002]. **Search** [Dar90, BH99, SS05a]. **Searching** [CC97].
Section [Wo92]. **Secure** [BCEM15, PAS⁺15, BBF⁺11, HY07].
Securely [RB94]. **security** [BFG08, BFG08]. **see** [BR10].
Selection [DF84, SSS81]. **Selective** [Min84, OLH⁺16, ME97]. **Self** [BP89, DHI09, Gho93, Gom92, ABB⁺09].
self-adjusting [ABB⁺09]. **Self-applicable** [Gom92]. **Self-Stabilization** [Gho93, DHI09]. **Self-Stabilizing** [BP89].
Semantic [AAR⁺10, AWW95, GGL15, MH06].
Semantics [ABHI11, Ans87, AB94, AW82, BGL93, Ber94, BLRS12, Bou88, Boy10, CPS93, CD79, FA93, Gud92, Han94, JPP91, Kai89, Mul92, NF89, Set83, Sou84, WM95, Wan82, dBB85, ACE96, BMR01, Bou06, GZ04, MF09, PCJD08, SWU10, SJ03, Tar07, WKD04].
Semantics-Based [BGL93, CPS93, PCJD08].
Semantics-Directed [Han94, Set83].
Semaphore [CR87]. **Semiring** [BM901].
Semiring-based [BM901]. **Send** [Gor04].
Send-receive [Gor04]. **Sensitive** [OLH⁺16, PKH07, Ram00, Rep00, RRS08].
Sensitivity [FL15]. **Separating** [DDM11].
Separation [BDJ13, DJP⁺16, OYR09, BBT07].
Separators [GSO94]. **Sequences** [GSW95].
Sequential [ABS09]. **Sequential** [AFDR80, Ber80, GLR83, HM84, K79, MC82b, M83, SO4, Series [Wat91].
Served [LH91]. **server** [LDM07]. **servers** [BBY⁺05]. **service** [CMS03].
Services [CHYW12, RB94, BFG08, CGP09]. **Set** [Sha82, FF99]. **set-based** [FF99]. **SETL** [GDL⁺79, FSS83, SSS81]. **Sets** [DP82, DPP00].
Setting [Lin79, Nie85, HL05]. **SHA** [App15].
SHA-256 [App15]. **shape** [GCRN11, JLRS10, JB06, SRW98, SRW02].
shape-analysis [SRW98]. **shaping** [HS11].
Share [SS88]. **Shared** [Cha93, FLBB98, KH92, KRS88, Pet83b, Dug02, BHJ98, TSY00, BC91].
Shared-Memory [Cha93, TSY00]. **Sharing** [CSS99, Lam87]. **Shift** [BN99, MYD95].
Shift-Reduce [BN99, MYD95]. **Short** [Sag86]. **Should** [LP99]. **Side** [Boe85, KWL09, RLS⁺01, TA08b].
side-effect [RLS⁺01]. **sign** [KKN06]. **signal** [BH05b].
Signatures [BR97]. **Signedness** [GNS⁺15]. **similar** [AE98].
Simple [Boe85, GLO88, SH99]. **simpler** [BKRW98, BKRW05]. **Simplification** [NO79]. **Simulat** [Lam80].
Simulating [KKSD94]. **Simulation** [AMT14, Bar81, Bor81, LFF14, HQT02].
sin [Lam90]. **Single**
ThingLab [Bor81]. things [PM09].
Thinking [WLBF16]. Thinning [Web95].
Third [Wol92]. ThisType [Ryu16].
Thread [YBL16]. Thread-Level [YBL16].
threaded [TSY00]. Tichy [Tic88].
tiling [JLF02, LS04, RKSR12].
Time [AL94, ABR81, BL94b, BLH12, Coh91, DLR16, Hol87, ISY88, Jef85, Lam84, MMG92, PS93, RS84a, RS84b, Wir91, YR94, Žic94, BAL07, BALP06, BKRW98, BKRW05, DDD05, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Mil85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YMW97, LW93].
Time-Constrained [ˇZic94, LPP01].
Time-Critical [PS93].
time-efficient [GB99].
Timed [ˇZic94].
Timeout [Lam84].
tokenization [Rep98].
Tolerance [LJ99].
Tolerant [CS95, Lam94, AA04].
Toolkit [BDFH97]. toolkits [VHM+01].
Tools [van88].
Topological [DDM11].
Total [San96].
Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].
Tracing [BL94a, DLR16, MMM+07].
tradeoffs [ZG05].
Trailing [VR95].
Traits [DNS+06].
transactional [ABHI11, CFP+04].
Transactions [HKMN94].
Transducer [DVLM15].
Transducer-Based [DVLM15].
Transformation [BKBR80, FCR91, NSZS13, Wat91, RKRR04, San96, TSY00, WZ07].
Transformational [BDFH97, Bir84, Bir85, DSW82, OA88, RC03].
Transformations [Bar85, EGMO1, Geo84, LDR81, LFF14, MS83, MCT96, NIE85, FGM+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86].
Transformers [Lam90, MMS96, MBT09].
TransformGen [GKL94].
Transforming [AWW95, BE94].
Transition [PR07].
Translation [AK87, BK11, Kat84, Son87, AAD+07, BGRK09, DP99, RC03].
Transmission [HL82].
Transport [Min84].
transpose [CRN+08].
Traversals [LPSO04].
Treatment [YB87, YB88].
Tree [AGT85, BOV85, BMW91, DVLM15, DS83, Han81a, Hen83, LDR81, FGM+07a].
Trees [Con80, GHS83, MTG80, Sip82, Wad90, ACM11, SGL97].
trick [DMP96].
Truth [BDH+16].
TSL [LR13].
tuning [MMM+07].

two-variable [FM09].
Type [Bur90b, Car95, CEW14, Coh91, C84, Dug02, Eun07, HHPW96, HM93, Hen93, KPS92, KRU93, KRU01, Lam80, LO94, LST02, LY98, LP00, MP88, NG13, PO95, SA99, SM89, TWW82, Van06, Wal80, WT11, Wir88, WC97, BSvGF03, BCG+07, FJKA06, FGM07b, FM99, FF08, GZ07, GMZ00, HO07, HD02, HY07, KF10, KS10, NP08, NCH+05, PT00, STS05, TFK+11, TZ07, Wal81, Wir91].
Type-based [Eun07, LP00, BCG+07].
Type-Extension [Coh91, Wir91].
Type-Graphs [KPS92].
Type-preserving [LST02].
Type-Safe [Dug02, BSvGF03, NCH+05].
Typechecking [CL95, MBC04].
Typed [ACPP91, Geo84, Kob98, NN86, WCM00, AAR+10, LP99, MWGC99].
Types [AFF06, AC93, BB94, BCDM15, DD85, EO80, FLQ08, HL82, Hess88, Jen97, Kam83, LaL89, LO94, Lo87, Ma82, MP88, WL85, Wei89, Wei90, AM01, BBF+11, Dam03, DDM11, DMM01, Gre06, GPV07, HVP05, IV06, MME+10, PS96, Pa98, STS03, SP07].
Typestate [GTWA14].
Typestate-Oriented [GTWA14].
Typing [ACPP91, Dug99, RM10, SV96].
ultimate [PS08].

Unassigned [Win84].

unbounded
[BGP99]. uncaught [LP00].

Undecidability [Ram94, Rep00, Cha02].

Unification [MM82, DRSS96]. Unified [VSS94]. Uniform [AS80, BP89, Hua93, AH10, HY07].

Understanding [ST00a]. Understandable [MSM+16]. Unique [Van06]. UNITY [Pau01, TB95].

Understandable [MSM+16]. Unification [MM82, DRSS96]. Unified [VSS94]. Uniform [AS80, BP89, Hua93, AH10, HY07].

Understanding [ST00a]. Understandable [MSM+16]. Unique [Van06]. UNITY [Pau01, TB95].

unique [Van06]. UNITY [Pau01, TB95]. universe [DDM11]. Unnecessary [BT93].

Update [Hud91, FGM+07a, GW99].

Updating [HSS+14, TN95, SRW98, SHB+07].

Upper [PW94]. Usage [MS83, BDFZ09, IK05, QR00]. Use [FOW87, GH80, HS94, LaL84, PPS79, She91, SS82, CC97]. usefulness [HDH02]. User [ACS84, DS90, Mye90, Wal80, Wal81, Wat83, van88].

User-Defined [Wal80, Wal81]. Using [AGT89, Bob80, CGJ+97a, CES86, CH87, DP93, Dil90, DMM01, DJ+16, FLBB89, GSW95, GSO94, HR890, JTM98, Kar84, LaL89, Lam84, Mye90, Ode93, Pet83b, PP94, PBR+15, SS84, SS96, Sok87, SGL98, Tvs82, ACM11, BH99, CSW06, CGS+03, DR05, GSO99, GCRN11, KWL09, KSK07, MTSS09, RD03, ST00a, SGL96, TFK+11, VJB12, XA07, YUW02, ZSD09, Pem83]. Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KC01, MOS07a]. Value [HL82, HL05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Han92, Wet82]. Variable [MS83, MTG80, FMoPS11, GLMM05].

Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Vector [AK87, Bud84, Fis80, FTJ95, KD94, Per79, KK07]. Verifiable [YB85]. Verification [App15, BDP14, BCD+15, CDFP89, CES86, CPS93, Dil90, EGP14, GL94, Jon94, JTM98, KKW14, LFF14, Lj99, LS79, NBG13, RY88, BDL+08, CEI+07, GPF08, GM12, Qia00].

Verified [BFGT08, BKL+97, JLP+14, DSW11]. Verifying [AS89, BFG08, CGJ97b, DJ+16, YS10, Mon08]. Version [YR94]. Versions [HPR89]. versus [Pal98, Pip97, UM02].

Vertices [BGH+13]. Very [GLR83]. VHDL [BKL+97]. via [CEI+07, FK98, GPF08, GSO94, MMM+07, PE08, SRW02, Tra08, WCM00].

W [Tic88]. Wait [Her91]. Wait-Free [Her91]. Waite [BP82]. Warp [LBP+83]. way [VHM+01]. Weak [AMT14, KZC15].

weakening [SYYH07]. Weaker [Boo82].

web [BFG08, BLRS12, CHY12, CGP90, CMS03].

Weight [GHS83]. While [PET83a, BC85b, GMS81]. while-Programs [BC85b]. Whole [BDH+16]. Widening [KKW14, VJB12]. win} [Lam90]. Within [FKW98]. Without [Cop94, Ode93, AS89, Cas95, Sto04, VR95].

Witnessing [TA08b]. Workbench [CP93].

World [GG85, DF11].

World-Model-Based [GG85]. Worst [WW95]. wp [BH99]. Writing [Pet83a, Win87]. WYSINWYX [BR10].

X [OLH+16, MSM+16]. X-Sensitive [OLH+16]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].
References

REFERENCES

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CAC

Afek:1993:LC

Apt:1998:AIL

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

Attali:1996:NSE

Alur:2011:SMC

Abadi:1991:DTS

REFERENCES

Archer:1984:URR

Aggarwal:1990:ALP

Ashley:1998:PFF

Afek:1994:BFF

Ancona:1991:ECL

Ager:2006:FPE

Attie:1998:SCS

[AE98] Paul C. Attie and E. Allen Emerson. Synthesis of concur-

Attie:2001:SCP

Apt:1980:PSC

Apt:1984:MDT

Apt:1993:Eb

Appel:1984:Eb

Appel:1993:E

Abadi:2006:TSL

Alpuente:1998:PEF

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Hassan Aït-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. *ACM Transactions on Programming Languages and Systems*, 16(4):1279–1318, July 1994. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Andrew W. Appel and David McAllester. An indexed model
REFERENCES

Anonymous:1986:IA

Anonymous:1987:IA

Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

Anonymous:1990:AI

Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1991:IA
REFERENCES

Anonymous:1992:AI

Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

Anonymous:2002:LDD

Arvind:1989:SDS

Anson:1987:GIC

REFERENCES

[AS00] Uwe Assmann. Graph rewrite systems for program optimization. ACM Transactions on Pro-
Aiken:1995:SST

Alur:2001:MCH

Ben-Ari:1984:AFG

Blume:1999:HM

REFERENCES

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP
Thomas Ball. Efficiently counting program events with support for on-line queries. *ACM Transactions on Programming Languages and Systems*, 16(5):1399–1410, September 1994. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
REFERENCES

Ben-Amram:2007:PTA

Brecht:2006:CGC

Banerjee:1987:MSR

Banerjee:2011:MFT

Barnden:1981:NCA

Barstow:1985:CTD

Beyer:1979:SED

Breuer:1994:DET
Peter T. Breuer and Jonathan P. Bowen. Decompilation: The

Bhaskaracharya:2016:ASO

Bengtson:2011:RTS

Biering:2007:BHH

Bergeretti:1985:IFD

Jean-François Bergeretti and Bernard A. Carré. Information-

[BCG+07] Maurice Bruynooghe, Michael

Bottoni:1999:SDC

Bhatia:2008:RSE

Bartoletti:2009:LPR

Blackburn:2016:TWT

Botincan:2013:PDP

Bernardeschi:2008:DBV

Bueno:1999:EAI

Biernacki:2015:DCP

Bowman:1993:RAN

REFERENCES

REFERENCES

REFERENCES

Barbuti:1993:GFS

Bultan:1999:MCC

Butler:1999:RAG

Back:2005:KJR

Buhr:2005:ISM

Binkley:2007:ESO

References

REFERENCES

[Bla03] Bruno Blanchet. Escape analysis for Java™: Theory and practice. *ACM Transactions...
REFERENCES

48

REFERENCES

REFERENCES

Ilan Bar-On and Uzi Vishkin. Optimal parallel generation of a

REFERENCES

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

Bruce:2003:PTS
Kim B. Bruce, Angela Schuett, Robert van Gent, and Adrian Fiech. PolyTOIL: a type-safe polymorphic object-oriented language. ACM Transactions on ...
REFERENCES

Burke:1993:IOE

Budd:1984:ACV

Burton:1984:ACP

Burke:1990:IIB

Burton:1990:TCT

Burton:1991:TCA

Broy:1987:ADP

Manfred Broy, Martin Wirsing, and Peter Pepper. On the algebraic definition of program-
REFERENCES

Cameron:1989:EHL

Carlisle:1995:TCC

Castagna:1995:CCC

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Click:1995:CAC

Cliff Click and Keith D. Cooper. Combining analyses, combin-

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

and Frederick Smith. Hancock: a language for analyzing transac-
tional data streams. *ACM Transactions on Programming

Cytron:1991:ECS

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck. Efficiently computing static sin-
gle assignment form and the control dependence graph. *ACM
Transactions on Programming Languages and Systems*, 13(4):
451–490, October 1991. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/115320.html.

Christensen:2004:OPE

Niels H. Christensen and Robert Gl"uck. Offline partial evalua-
tion can be as accurate as online partial evaluation. *ACM Trans-
actions on Programming Languages and Systems*, 26(1):
191–220, January 2004. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Clarke:1986:PPP

Keith Clark and Steve Gre-
gory. Parlog: parallel program-
ing in logic. *ACM Trans-
actions on Programming Lan-
guages and Systems*, 8(1):1–
49, January 1986. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/15390.html.

Clarke:1997:VPN

E. M. Clarke, O. Grumberg,
and S. Jha. Verifying pa-
rameterized networks. *ACM Trans-
actions on Programming Lan-
guages and Systems*, 17(2):217–
227, March 1995. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/201063.html.
REFERENCES

Clarke:1994:MCA

Castagna:2009:TCW

Choi:2003:SAS

Chatterjee:1995:OEA

Cohen:1987:PCU

Chow:1990:PBC
Charlesworth:1987:MR

Chatterjee:1993:CND

Charlesworth:2002:UAC

Chitil:2005:PPL

Carbone:2012:SCC

Cameron:1984:GBD

Cejtin:1995:HOD

Consel:1993:PPE

REFERENCES

Carr:1994:IRM

Cooper:1986:IIA

Crowl:1994:PPC

Chambers:1995:TMM

Clarke:1980:SRI

Chandy:1984:DPP

Chandy:1986:ESR
REFERENCES

Chirica:1986:TCI

Copperman:1993:TCF

Clifton:2006:MDR

Choi:1991:TDP

Christensen:2003:EJH

REFERENCES

Cohen:1983:CCA

Clemm:1990:MEI

Cohen:1983:ERR

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

[Coo08] Daniel E. Cooke, J. Nelson Rushton, Brad Nemanich,
REFERENCES

[CS04] Keith D. Cooper, L. Taylor Simpson, and Christopher A.

Carlsson:2006:MAC

Collberg:2007:DGB

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FAC

References

[DAW88] Laura K. Dillon, George S. Avrunin, and Jack C. Wile-
don. Constrained expressions: Toward broad applicability of
analysis methods for distributed software systems. ACM Trans-
actions on Programming Languages and Systems, 10(3):
374–402, July 1988. CODEN ATPSRT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/44502.html.

[Dillon:1988:CET]

[DD85] James Donahue and Alan Demers. Data types are values.
ACM Transactions on Programming Languages and Systems, 7
(3):426–445, July 1985. CODEN ATPSRT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/3987.html.

[Donahue:1985:DTV]

[DB85] Douglas D. Dunlop and Vic-
tor R. Basili. Generalizing spec-
ifications for uniformly imple-
mented loops. ACM Trans-
actions on Programming Lan-
guages and Systems, 7(1):137–
158, January 1985. CODEN
ATPSRT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
2708.html.

[Dunlop:1985:GSU]

[DDD05] Bjorn De Sutter, Bruno De Bus,
and Koen De Bosschere. Link-
time binary rewriting techniques
for program compaction. ACM
Transactions on Programming
Languages and Systems, 27(5):
882–945, September 2005. CO-
DEN ATPSRT. ISSN 0164-0925
(print), 1558-4593 (electronic).

[DeSutter:2005:LTB]

[DDDCG02] Sophia Drossopoulou, Ferruccio
Damiani, Mariangiola Dezani-
Ciancaglini, and Paola Gian-
nini. More dynamic object re-
classification: Fickle. ACM Trans-
actions on Programming Lan-
guages and Systems, 24(2):
153–191, March 2002. CO-
DEN ATPSRT. ISSN 0164-0925
(print), 1558-4593 (electronic).

[Drossopoulou:2002:MDO]

[dBB85] Arie de Bruin and Wim Böhm.
The denotational semantics of
dynamic networks of processes.
ACM Transactions on Programming
Languages and Systems, 7
(4):656–679, October 1985. CO-
DEN ATPSRT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
4473.html.

[DeBruin:1985:DSD]

[DDH84] Peter Dencker, Karl Dürre, and
Johannes Heuft. Optimization

[Dietl:2011:SOT]

[DDM11]

[DDV99]

[Debray:1995:CDA]

[DeMillo:1983:GEI]

[Debray:2000:CTC]

[Dershowitz:1985:PAI]
Nachum Dershowitz. Program abstraction and instantiation.
REFERENCES

DeFraine:2012:EAC

Davidson:1980:DAR

Davidson:1981:CDA

Davidson:1984:CST

Douence:1998:SSF

Dimoulas:2011:CSH

Demetrescu:2015:RIP

Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Reactive imperative programming with dataflow constraints. ACM Transactions on Programming
REFERENCES

DeLaBanda:2000:ICL

Dolby:2012:DCA

Dolev:2009:SSP

DeMoura:2009:RC

Dillon:1990:USE

deJonge:2012:NFE

Dodds:2016:VCS

Mike Dodds, Suresh Jaganathan, Matthew J. Parkinson, Kasper Svendsen, and Lars...

Drinic:2007:PPC

Debray:1993:CAL

Dissegna:2016:AIB

Degano:1988:EIL

Diwan:2001:UTA

Danvy:1996:EED

Ducasse:2006:TMF
Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärl, Roel
Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[DR05] Dibyendu Das and U. Ramakrishna. A practical and fast iterative algorithm for φ-function computation using DJ graphs. *ACM Transactions on Program-
REFERENCES

Dawson:1996:PPU

Dawson:2005:PPU

Dawson:1996:PPU

Dewan:1990:ASA

Dhamdhere:1998:DCD

Dewar:1982:TDG

Derrick:2011:MVP

Ducournau:2008:PHA

Duggan:1999:DTD

Duggan:2002:TSL

DeSutter:2007:PID

Danton:2015:FTB

Debray:1989:FCL

[Ell07] Patrick Eugster. Type-based publish/subscribe: Concepts

Finlay:1993:TCC

Fateman:1982:HLL

Feng:2012:BQP

Flanagan:1999:CSB

Furr:2008:CTS

[FF08] Michael Furr and Jeffrey S. Foster. Checking type safety of foreign function calls. ACM Transactions on Programming Languages and Systems, 30(4):
Flanagan:2008:TAS

Fournet:2003:SIT

Fournet:2007:TDA

Fernandez:2004:ICS

Fidge:1993:FDP

REFERENCES

REFERENCES

[Foster:1996:CPP] Ian Foster. Compositional parallel programming languages. *ACM Transactions on Programming Languages and Systems,*
REFERENCES

REFERENCES

REFERENCES

Grove:2001:FCG

Gulavani:2011:BSA

Gergeron:1982:SAS

Gelernter:1985:GCL

Georgeff:1984:TRS

Ganapathi:1985:AGD

Gini:1985:DWM

Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Gallager:1983:DAM

Giegerich:1983:FFD

Gupta:1993:APE

Gries:1980:APC

Grumberg:1994:MCM

Gavanelli:2005:DIK

[GLMM05] Marco Gavanelli, Evelina Lamma, Paola Mello, and Michela Mi-

REFERENCES

Grant:2000:BCD

Gorlatch:2004:SRC

Grit:1981:DIT

Dale H. Grit and Rex L. Page. Deleting irrelevant tasks in an

Girkar:1995:ETL

Gupta:2001:PEP

Gal:2008:JBV

Grothoff:2007:EOC

Gri82

Griswold:1982:EEI

REFERENCES

Garcia:2014:FTO

Gudeman:1992:DSG

Glesner:2004:NSS

Gil:2005:EST

Gil:2007:EDD

Hoffmann:2012:MAR

Hailperin:1998:COC

Hailperin:2005:CCC

Halstead:1985:MLC

Hall:2005:IPA

Hansen:1981:CMI

Hanson:1981:APP

Hansen:1992:SRF

Havlak:1997:NRI

Hind:1999:IPA

Hauser:1996:HFP

Havel:1997:NRI

Hind:1999:IPA

Hauser:1996:HFP

REFERENCES

Hassen:1998:TDP

Hertz:2006:GOL

Hickey:1992:CAM

Hirzel:2002:UTL

Huang:2010:DBR

Holt:1982:ISS

Hirnessy:1982:SDO
John L. Hennessy. Symbolic debugging of optimized code. *ACM Transactions on Programming Languages and Systems*, 4
REFERENCES

Henderson:1983:TCL

Hennessy:1986:PSS

Henglein:1993:TIP

Herlihy:1991:WFS

Herlihy:1993:MIH

Hesselink:1988:MAN

Haynes:1987:ECP

Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in procedural objects. ACM Trans-
REFERENCES

[Heering:1985:TMP] J

REFERENCES

Hamlen:2006:CCE

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for enforcement mechanisms. ACM Transactions on Programming Languages and Systems, 28(1):175–205, January 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Hicks:2005:DSU

Hoffman:1982:PE

Higuchi:2007:STS

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

REFERENCES

Harrold:1994:ECI

Mary Jean Harrold and Mary Lou Soffa. Efficient computation of interprocedural definition-use chains. *ACM Transactions on Programming Languages and Systems*, 16(2):175–204, March 1994. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Huang:2011:MSS

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Hölzle:1996:RRP

Huang:1990:DDD

[Hua90]

Huang:1993:LEU

[Hua93]

Hudson:1991:IAE

[Hud91]

Hirzel:2007:FOP

[HVDH07]

Hosoya:2005:RET

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27(1):46–90, January 2005. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[HVP05]

Haridi:1999:ELV

[HVB+99]

Holt:1982:MIE

Richard C. Holt and David B. Wortman. A model for im-

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS

Igarashi:2005:RUA

Igarashi:2001:FJM

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, May 2001. CODEN ATPSDL. ISSN 0164-0925 (print), 1558-4593 (electronic).

Inoue:1988:AFP

Igarashi:2006:VPT

Atsushi Igarashi and Mirko Viroli. Variant parametric types: a flexible subtyping scheme
REFERENCES

REFERENCES

Jeffrey:2010:ESA

Joshi:2006:DPA

Jonsson:1994:CSV

Jazayeri:1981:SES

Jones:1990:EEC

REFERENCES

Jacobs:2008:PMC

Joung:1994:CFO

Joisha:2012:TTE

Juan:1998:CVC

Kaiser:1989:IDS

Kamin:1983:FDT

Karp:1984:PFF

REFERENCES

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO

Kim:2001:ERV

Kennedy:1999:PRE

Khedker:1994:GTB

[KD94] Uday P. Khedker and Dhananjay M. Dhamdhere. A generalized theory of bit vector data flow analysis. *ACM Transactions on Programming Lan-

Bageshri Karkare and Uday P. Khedker. An improved bound

Korach:1990:MTD

Kawahito:2006:ESE

Kawahito:2006:ESE

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

REFERENCES

Katzenelson:1992:TMT

Jacob Katzenelson, Shlomit S. Pinter, and Eugen Schenfeld.
Type matching, type-graphs, and the Schanuel conjecture.

Kobayashi:1999:LPC

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner.
Linearity and the Pi-Calculus.
ACM Transactions on Programming Languages and Systems, 21(5):914–947, September 1999. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Kennedy:1979:DAG

Ken Kennedy and Jayashree Ramanathan.
A deterministic attribute grammar evaluator based on dynamic scheduling.

Knoblock:2001:TES

Todd B. Knoblock and Jakob Rehof.
Type elaboration and subtype completion for Java bytecode.

Krogh:1982:AAP

Fred T. Krogh.
ACM algorithms policy.

Krogh:1983:AAP

F. T. Krogh.
ACM algorithms policy.

Krogh:1984:AAP

F. T. Krogh.
ACM algorithms policy.
ACM Transactions on Programming Languages and Systems, 6(3):440–443, July 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
REFERENCES

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Korach:1984:DAF

REFERENCES

Kruskal:1988:ESM

Knoop:1994:OCM

Kieburtz:1979:CCS

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1988:DSC

Kennaway:1989:CDS

REFERENCES

[Lam84] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems. *ACM Transactions on Programming Languages and Systems*, 6
REFERENCES

REFERENCES

115

REFERENCES

REFERENCES

Lee:2002:ADC

Leuschel:1998:CGP

Leino:2002:DAI

Leavens:2015:BSS

Laufer:1994:PTI

Lochbihler:2013:MJM

Loeckx:1987:ASC

REFERENCES

REFERENCES

[LS84] Leslie Lamport and Fred B. Schneider. The “Hoare logic” of CSP, and all that. ACM Transactions on Programming Languages and Systems, 6(2):281–296, April 1984. CODEN ATPSDE. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Li:2004:ATI

Liquori:2008:FME

Liu:2009:DRE

Liu:2005:OAA

Lamport:1982:BGP

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3):382–401, July 1982. CODEN ATPSJT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any $n > t > 0$, where n is the total number of processes and t is the number of faulty processes.

Liu:1998:SCI

League:2002:TPC

Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of
REFERENCES

Lengauer:1979:FAF

LeCharlier:1994:EEG

Lipton:1983:VLP

Lee:1998:PAF

Mallgren:1982:FSG

Merlin:1983:CSS

Morris:1999:SF

Millstein:2004:MTH

Morris:2009:TTN

Misra:1982:DGA

Misra:1982:TDD

McGraw:1982:VLD

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

McKinley:1996:IDL

Morrison:1991:AHA

Moreau:2005:BDR

Moon:1997:PNC

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

Todd Millstein, Christopher Frost, Jason Ryder, and Alessandro Warth. Expressive and mod-

Moriconi:1986:PSP

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

Misra:1981:EPE

Misra:1986:AMA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mckinley:2010:DVT

Mckinley:2010:PVT

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Maher:1983:API

Murphy:1988:NDP

Marriott:1994:DAI
REFERENCES

[MT91] Thomas P. Murtagh. An improved storage management scheme for block structured

Mueller:1987:RMS

Maassen:2001:EJR

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

REFERENCES

[NB99] Narlikar:1999:SES

[NCH+05] Necula:2005:CTS

[ND16] Norris:2016:PAM

REFERENCES

Nanda:2006:ISM

Nikolic:2013:RAP

Nowatzki:2015:SFS

Nandivada:2013:TFO

Olderog:1988:FPP

Odersky:1993:DCD

Oh:2014:GSA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Details</th>
</tr>
</thead>
</table>

REFERENCES
REFERENCES

REFERENCES

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

Patrignani:2015:SCP

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Paz:2007:EFC

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Porter:2015:PFG

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Pan:2008:PFE

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Pemberton:1983:TCT

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [TvS82, Tan83].

Perrott:1979:LAV

Perry:1990:GEI

Peterson:1982:UAC

Peterson presents a deterministic distributed algorithm for finding the largest of a set of \(n\) uniquely numbered processes in a ring. The algorithm requires \(O(n \log n)\) messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

Pratikakis:2011:LPS

Poletto:1999:CTL

Paek:2002:EPA

Piper:1996:IDG

Piac:1980:GCR

Paige:1982:FDC

Pearce:2007:EFS

Park:2004:ORC

Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. ACM Transactions

Payet:2006:NIL

Pingali:2009:RTP

Palsberg:1995:TSE

Peng:1991:DFA

Wuxu Peng and S. Purushothaman. Data flow analysis of communicating finite state machines.

Pingali:2009:RTP

Prywes:1979:UNS

Park:2008:PLB

REFERENCES

[Pottier:2003:IFI] François Pottier and Vincent Simonet. Information flow infer-
REFERENCES

Pearlmutter:2008:RMA

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SAU

Pugh:1998:CBA

William Pugh and David Wonacott. Constraint-based array dependence analysis. *ACM Transactions on Programming Languages and Systems*, 20(3):
REFERENCES

Palsberg:1995:EIA

Palsberg:2005:ADC

Quillere:2000:OMU

Qian:1995:CRO

Quong:1991:LPI

Ranganath:2007:NFC

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Rao:1994:RAP

Reiter:1994:HSR

Ramsey:2003:TAB

REFERENCES

REFERENCES

REFERENCES

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Rinard:1998:DIE

Ryder:2001:SIM

Rival:2007:TPA

Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain. ACM Transactions on Programming Languages and Systems, 29(5):26:1–26:51, August 2007. CO-
REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ruggieri:2010:TLC

Rosenkrantz:2006:MMA

Robertson:1979:CGS

Ryder:1988:IDF

Rugina:2003:PAS

Rugina:2005:SBA

Rinetzky:2008:CPF

Ramanath:1984:JML

REFERENCES

REFERENCES

Schneider:1982:SDP

Schmidt:1985:DGV

Sampaio:2013:DA

Strickland:2013:CFC

Sethi:1983:CFA

Stamos:1990:RE

Sistla:2004:SRS

Sreedhar:1996:ILU

REFERENCES

REFERENCES

Skudlarek:1995:NMI

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TRO

REFERENCES

(S Soundararajan:1984:ASC) N. Soundararajan. Axiomatic semantics of communicating se-

Sansom:1997:FBP

Simonet:2007:CBA

Spooner:1986:MAR

Sekar:1995:FSA

Suhendra:2010:SAC

Sagiv:1998:SSA

REFERENCES

REFERENCES

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:EEC

Staiger-Stohr:2013:PIA

Sneyers:2009:CPC

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of constraint handling rules. ACM Transactions on Programming Languages and Systems, 31(2):8:1–8:42, February 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Schonberg:1981:ATS

Sippu:1983:SEH

Snelting:2000:UCH

Gregor Snelting and Frank Tip. Understanding class hierarchies using concept anal-
REFERENCES

Sperber:2000:GLP

Stone:2004:EOL

Saha:2003:IAQ

Shao:2005:TSC

Smith:1996:PTV

Sabry:1997:RCV

Steckler:1997:LCC

Paul A. Steckler and Mitchell Wand. Lightweight closure
REFERENCES

[TA08b] Tachio Terauchi and Alex Aiken. Witnessing side effects. *ACM
REFERENCES

Thorup:1994:CGA

Tichy:1986:SR

Tichy:1988:TCT

Tick:1994:DTN

Tripakis:2011:TSR

Tel:1993:DDT

Thammanur:2004:FME

[TP04] Sathyarayanan Thammanur and Santosh Pande. A fast, memory-efficient register allocation framework for embedded systems. *ACM Transactions on Programming Languages and
REFERENCES

REFERENCES

[Van96a] Brad Vander Zanden. Corrigendum: “An incremental al-
algorithm for satisfying hierarchies of multiway dataflow constraints. ACM Transactions on Programming Languages and Systems, 18(3):354, May 1996. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [Van96b].

VanderZanden:1996:IAS

Vansummeren:2006:TIU

Vera:2004:FAF

Venkatesh:1995:ERD

VanRoy:1997:MOD

vonHanxleden:2000:BCP

REFERENCES

[166]

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Volpano:1991:TCS

VandenBos:1981:PCB

VanHentenryck:1995:BTC

REFERENCES

VonBank:1994:UMP

VanNieuwpoort:2010:SHL

Waddle:1990:PTC

Wallis:1980:ERO

Wallis:1981:CER

Wall:1992:ESD

Wand:1982:DTC

REFERENCES

Webber:1995:OFP

Web:1989:LAP

Weihl:1990:LSA

Wetherell:1982:EDV

Weyuker:1983:ATD

Wagner:1998:EFI

Widom:1992:TBN
REFERENCES

REFERENCES

46167.html. See remarks [Coh91, Wir91].

Wirth:1991:TCR

Nicklaus Wirth. Technical correspondence: Reply to “Type-
extension tests can be performed in constant time”. ACM
Transactions on Programming Languages and Systems, 13(4):
630, October 1991. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/214521.html. See [Wir88,
Coh91].

Wise:1979:MGC

David S. Wise. Morris’s garbage compaction algorithm restores reference counts. ACM Trans-
actions on Programming Languages and Systems, 1(1):115–
120, July 1979. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Wright:1998:PSE

Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: an effective poly-
variant flow analysis. ACM Transactions on Programming Languages and Systems, 20(1):
166–207, January 1998. CODEN ATPSDT. ISSN 0164-
acm.org:80/pubs/citations/journals/toplas/1998-20-1/
p166-wright/.

Wellings:2000:IOO

A. J. Wellings, B. Johnson, B. Sanden, J. Kienzle, T. Wolf,
and S. Michell. Integrating object-oriented programming and protected objects in Ada 95. ACM Transactions on Programming Languages and Systems, 22(3):506–
539, 2000. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-
4593 (electronic). URL http://www.acm.org/pubs/articles/

pdf; http://www.acm.org/pubs/citations/journals/toplas/

Wand:2004:SAD

Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn.
A semantics for advice and dynamic join points in aspect-
onoriented programming. ACM Transactions on Programming Languages and Systems, 26(5):
890–910, September 2004. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Weihl:1985:IRA

William Weihl and Barbara Liskov. Implementation of re-
silient, atomic data types. ACM Transactions on Programming Languages and Systems, 7(2):
244–269, April 1985. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/3319.html.
REFERENCES

Wang:2008:DSJ

Whitfield:1997:AEC

Wehr:2011:JIT

Wu:2004:ETC

Wu:1995:WCC

REFERENCES

REFERENCES

Yang:1998:STE

Yardimci:2009:MSP

Ying:2011:FHL

Yu:1997:NCI

Yang:1997:SMC

Yue:1994:LTS

Yellin:1991:ILI

REFERENCES

Zhou:1996:PPC

Zic:1994:TCB

Zhuang:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA