A Complete Bibliography of Publications in ACM
Transactions on Programming Languages and Systems
(TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

09 March 2023
Version 2.147

Title word cross-reference

[ADG91, BL94b, KM81]. 2 [Dam03]. 3

[SRW02], + [Han81a], TM [Bla03], ex/
[AW82], [DDDGC02], A [DES12], R
[JMSY92], RLin [VR95], t [ADG94].
O(nn) [Pet82]. φ [CF95, DR05]. π [ABL03].

(k) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3
Abstract
[BGL93, BK11, CMB+95, CFG+97, DGG97, DC22, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MXZ+22, Pan89, She91, TY21, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Abstraction
[BNNN22, CGL94, CL94, Der85, GMH81, GKM20, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, Ell82].

Access-Right
[BSS88].

Accessing
[CB80].

Alma-O
[ABPS98].

Alternative
[Gho93, GH80, Zav85].

Amulet
[VHM+01].

Amplitude
[Bar81, MTG80].

Ada
[MDCB91, PS08].

Ada
[Bak82, Dil90, Hil88, LP80, WJS+00].

Adaptation
[Dha91].

Adaptive
[ABH06, HOYY18, PXL95, TCVB14, UJ92, RD03].

Ada
[YS97].

Addendum
[Bir85].

Adding
[ACW90, BN94].

Addition
[CBMO19].

Addressing
[Hol87, ZP10].

Adaptation
[KKSD94, Wey83].

adjusting
[ABB+09].

advice
[WKD04].

minimum
[SNS+14].

Affine
[BAC16, BCGM15, CFNH18, DG19, ELS+14, VJB12].

Affix
[GF85].

agents
[BCC04].

aggregate
[LSLR05].

Ahead
[BLH12, DP82].

al
[Ano18, TGT20].

Alarms
[LLK+17].

Algebra
[Koz97, Wil82a, KBC+99].

Algebraic
[BP82, BWP87, CIJGP18, CGG+19, Jen97, Lin93, SV20, JB06, SP07].

Algorithm
[AB81, Bak82, BB79, BAC16, BP82, Dan23, DSW82, Dha91, DP93, GHS83, HL22, Hua90, Hud91, JJC019, LV94, LY98, Lei90, LT79, LH91, MM82, MC82a, Pet82, SH99, TB98, Wis91, BKR98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKRW05].

Algorithmic
[BP82, CFNH18, GM12, Loe87].

Algorithms
[Apt86, BA84, CIJGP18, CGG+19, CS95, CN83, GLO88, KRS84, KMM90, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro90, Kro91, Kro92, MM89, RD87, RH87, RP88, TM93, WW95, Apt00, DAS98, GC01, ZGZ05].
Analysis
[AKNP17, ABE+05, AD98, Bac84, BNN18, BC85b, Blo94, BE13, Bur90a, CFNH18, CFG19, CDK+18, CM91, DKKL18, DL93, Deh95, DP97, DC22, DAW88, FPS19, FJK+17, GNS+15, GKM20, GDF23, GJ93, HP96, HL22, HOYY18, Hill88, Hor97, ISY88, Jen97, JJCO19, KD94, LKK+17, LTMS20, LR13, LHR19, LWR21, McG82, MRGP20, MWB94, MOS07b, OHL+14, OLH+16, Pal95, PO95, PCC85, PP91, PW94, PW98, Pur91, RTD83, RTP17, RPB19, RP88, SR95, SSS83, SGL98, SS13, ABB+09, BDFZ09, BAL07, Bla03, Bh99, BCG+07, CSLW06, Cha02, CG5+03, CKTS86, DDV99, DF80, DF81, LBN17, LR13, LR95, PCC85, PP91, PW94, PW98, Pur91, RTD83, RTP17, RPB19, RP88, SR95, SSS83, SGL98, SS13, ABB+09, BDFZ09, BAL07, Bla03, Bh99, BCG+07, CSLW06, Cha02, CG5+03, CKTS86, DDV99, DGS97, FF99, GHB+96, GJ05, GZ04, GCRN11, HAM+05, HPMS00, HBCC99, HVHD07, HAH12, IK05, JLR510, KBC+99, KK07, KSK07, LP00, LH08, MPM03, NS13, PHP02, PKH07, Ram00, Rep00, RSL10, RD07].

Analysis [RRSY08, RR03, RR05, RLS+01, SRW98, SRW02, STS03, SdSCP13, SS96, ST00a, WP10, WJ98, ZSD09, dHB+96].

applicable [Gom92]. Application [CD79, DF80, DF81, LBN17, LR13]. Applications [BLRS12, Bou88, MRGP20, SR21, BALP06, CML06, NR96]. Applicative [AC94, KS86]. apprentice [MP02]. Approach [AKNP17, ABR81, AR80, BAC16, BP82, Bur90a, CH90, CTD9, DS90, El82, ES97, FT94, GGL15, Har80, Hes88, KKW14, Lam79, Lam80, Lee86, LTMS20, MW80, MDCB91, ND16, OA88, Sam80, Spo86, SM81, SNS+14, Bou05, CRN+08, DHM+12, FGM+07a, JLR510, KV00, LP80, MBT09, PSS05, PCJD08, RC03, SP07, WS97].

approximations [BGP99]. Apt [Moi83].

authorization [FGM07b]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b].

auto [ZP10]. auto-addressing [ZP10].

Automata [BMW91, CBMO19, ES97, Pro95, KV00].

Automata-Theoretic [ES97, KV00].

Automated [GRSK+11, KZC15, KF00, LCK+22, Sok87, JNGG10].

Automatic [AKNP17, AK87, Ano02a, BBC16, Cat80, Cat80].
Centered [CHY12]. Centers [KRS84].
Centralized [HM84], centric [DHM+12].
Certificate [BGKR09, BK11], certified [STSP05]. CHAD [VS22]. Chaining [LS80]. Chains [HS94], challenge [MP02].
change [BA08, CP96, Lee99]. Changes [Ber94, MTSS09], changing [MP07].
Chariots [PB97], CHC [MTK21].
CHC-based [MTK21]. Check [AP94]. checked [KN06], checker [NP08].
Checking [Car95, CGL94, ES97, FF08, GL94, ND16, Ao11, ACMI11, BGP99, FFLQ08, HQRT02, JJD98, KF10, KV00, N05, SG04, VJB12, YMW97]. Checks [CG95, CEI+07].
Chocola [SDD21]. Choice [BN94, JCM19]. CIRCAL [Mii85].
Circular [Jon90, Pet82]. Circularity [W995, Wu04].
Class [CBM019, HKMN94, Han92, SJ03, SDTF13, HS11, MH04, ST00a]. Classes [SDTF13, WT11, HHPW96, HMS06].
Cliché [Wat94]. Cliché-Based [Wat94]. Clique [GSO94].
Closure [Pab95, SW97b, SA00]. CLP [DHM00, GLMM05, JMSY92, KMM+98, VR95].
Clustering [LKK+17]. Clusters [BGH+13, HBG+09]. coalescing [GA96, Hai05, PM04].
Coalggebraic [KBP22]. Coalgebra [KBP22]. Code [AGT89, BHM+19, Cat80, Cop94, DF84, FGL94, GF85, Hen82, HG83, JSB+12, KRS94, LR13, LCK+22, ND16, Rob79, TV82, Wan82, AM01, DEM00, Hai98, HBG+09, HK07, JNZ06, LDK+96, MSR00, ME07, Oh07, PHEK99, WS07, vHK00, CM03, Pem83, WST85].
Coder [SBS22].
Cohen [Coh85]. coherence [SS96].
coinduction [San09]. Collect [JCM19].
Collecting [HY91]. Collection [BA84, CN83, DSW82, Lan80, TM93, URJ18, WLBF16, BALP06, HD02, PBP+07, Piq96].
Collector [YW22, BBYG+05, LP06, TSB08].
Coloring [BCT94, CH90, GSO94].
combination [BCG+07]. Combinator [FRW90, KLS92]. Combinatorial
[LCBS19]. Combinators
[FGM+07a, KS88, KS89]. Combinatory [RS07, VS22]. Combining
[Ber94, BP82, C95, CMB+95]. Come [LH91]. Comments
[AB94, KS79, LaL84, NN86, Sor89].
Communicating [AFdR80, GC86, HM84, MW84, MC82b, M03, Oss83, P91, Pur91, Sou84, Ber80, KS79]. Communication
[Aug89, CHY12, FJK+17, FY85, Ge885, Hua90, LH91, MB83, vPS81, KBC+99, Mi185, SWU10, WM12].
Communication-Centered [CHY12]. Communications [RS84b].
Commutativity [RD97, Apt00, Cha02].
Compact [BC79, Sip82, Wad90].
Compactification [RH87]. Compacting
[CN83]. Compaction [CP17, Wis79, BP12, DDD05, DEM00].
Comparative [GDF23, WC90, WC91].
Comparing [Hai05]. Comparison [CN83].
Compartmentalized [WLBF16].
CompCert [BDP14]. Compensation
[FGL94].
Compilation [ABC+21, DLR16, FK99, FL91, JLP+14, JF81, O10, PAS+15, PG21, Sit79, KMM+89, LST02, LDM07, SYN06].
Compile [AB81, GW99, Hol87, Tra08].
Compile-Time [AB81, Hol87, GW99, Tra08]. Compiler
[ABC+21, App94a, Bud84, CM86b, DK17, DEM00, FT94, FGL94, JSB+12, Rei83, Slo95, Son87, Wha94, YBL16, A02, CMLC06, DSH09, GMN99, KN06, PE08, PHEK99, SYK+05, VHK02].
Compiler-Driven [YBL16]. Compilers
[BDF97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling
[Cha93, CH87, Fis80, Set83, VHK02].
Complementation [CFG+97]. Complete

D. [Bur91]. Data
Executable [Hob84]. Executables [YF09]. eXecute [BR10]. Execution [BNV+21, CS87, Dil90, GJ93, JW17, JNGG10, JF81, SS98, SS88, BALP06, GPA+01, TSY00, YF98].

Exemplars [LaL89]. Exemplified [DGL+79]. Exercise [Kna90, Mis81].

Exhaustive [Bur90a]. Existential [MP88]. existing [LS98]. expansion [DMP96].

Experiments [Tur84]. Explanation [Mis81]. Exploiting [KOE+06]. exploring [Wu04].

Expression-Oriented [GP81, YB87, YB88]. Expressions [BG89b, CGST95, DAW88, Fis80, Geo84, Grib82, Hen83, KS83, LdR81, PK82, Sha82, Sit79, Wat91, Dam03, NN86].

Expressive [MFRW09]. Expressiveness [WGS92, WGS93, PS96]. Extended [ABC+21, CBMO19, KGMO04]. Extending [CEW14, CMS03, MSRR00, MK94].

Extensible [LCK+22]. Extensible [HSG17, Sto04, ATD08, MBC04].

Extension [Bur90b, Coh91, WH15, Wir91, AL03, KKN06, LS08]. Extensions [Wir88].

Extent [MF88]. External [Wal80, Wal81].

Extracting [GP95]. extraction [TSL+02]. extrapolation [WM12]. Extrema [Pet82].

Failure-Free [Kar84]. Fair [BN94, PR07]. Fairness [ES97, OA88, TB95, AH98].

Families [LaL89]. Fashioned [AL94]. Fast [ADR06, DAS98, FmPsS11, HVHi07, LT79, LZR22, SR95, DR05, PE08, TP04, VBLG04, DVLM15].

Fault [CS95, Lam84, Lj99, AAE04].

Fault-Tolerance [LJ99]. Fault-Tolerant [CS95, Lam84, AAE04].

Feature [LPW01, LST02, LS08]. Feature [ASAVF19, AH10]. Feature-Specific [ASAVF19]. Feeding [PA86a]. Fence [AKNP17]. Few [HL22]. Fickle [DDDGC02, AAD+07]. field [PKH07]. field-sensitive [PKH07]. fields [PZJ05].

FIFO [FLBB89]. Final [Kam83]. Finding [KRS84, KKM09, LT79].

Fine-Grained [HL22, PBR+15, DSGF21, DNS+06].

Finite-State [AC94, Bre89, DP97, JPP91, JS94, LH91, MH04, SDF13].

First-Class [HKMN94, Han92, SDTF13, MH04].

First-Come-First-Served [Li91].

First-Enabled [ADG+94]. First-Fit [Bre89]. First-In [ADG+94]. First-Order [DP97, JPP91, JS94].

Fixed [SS98]. Fixed-Order [SS98]. Fixpoint [AC94, Qia00].

Flexible [AD98, Hud91, MMR+08, Wg98, Wi82b, dJKVS12, IV06, KMS04].

Floating [CK94, Fat82, SBB+19, Hau96, Mon08].

Floating-Point [CK94, Fat82, SBB+19, Hau96, Mon08].

Flow [AR80, AD98, ASF17, Bac84, BC85b, Bur90a, DP97, DP93, FJKAO6, Hor97, KD94, MMR95, NBB13, PO95, PP91, PBR+15, Pur91, RSPS23, Set83, SGL98, SS13, Wet82, DGS07, HR02, HY07, KBC+99, Pal98, PS03, RRSY08, RP88, TZ07, WJ98].

Flow-InSensitive [Hor97, FJKAO6].

Flowback [CMN91]. Flowgraph [LT79].

Foo [FA93]. foreign [FF08]. Foreword [Mye17, Mye18]. Form [AK87, BOV85, BM94, CFR+91, GSW95, PaI95, PC21, GPF08, KCL+99]. Forma [ZCG+07]. Formal [ADG+21, BS86, BDP14, CB80, CD79, Fid93, Gie83, HIT97, Kna90, Lee86, Mal82, MH86, Sha82, WP10].

Formal [ADG+21, BS86, BDP14, CB80, CD79, Fid93, Gie83, HIT97, Kna90, Lee86, Mal82, MH86, Sha82, WP10].

11

I-Structures [ANP89]. I/O [Car95]. Icon [GHR80, Mur91, KK07]. Improvements [BCT94]. Improving [CK94, CMB+95, MCT96, TCP+17, WS97]. Improve [Pip97]. Independent [DHM00, GGSV22, Rep00]. Independent [ML80, Mul92]. Index [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98]. indexed [AM01]. indices [RR05]. Indirect [Piq96, CEG07, YK97]. Induction [GWW95, Sit79]. Inductive [LBMTT22]. inefficiencies [MMM+07]. Inessential [SS82, LdL84]. Inference [CEW14, Deb89, Hen93, LO94, LY98, MRGP20, Pad19, SR21, TB98, Wey83].
Laminar [Geo84, Gom92, NN86, PS08].

Lamport [Ang89, Pet83b].

Language [ACP99, AOC++, Ano98, ABPS98, BS86, BPF16, Bo94, Bor81, BC91, DVL15, Fat82, Fea87, FFF++, GSS++18, Gud92, Hal85, HSG, JMY92, JPP91, Kae98, LVRG21, McG82, Per79, PPS79, RTD83, RSC93, Spo86, SNS++, SDD21, Tur84, Wet82, YS91, YB87, dJKVS12, van88, Bou05, BSvGF03, CFP04, DWWW08, DF98, FM99, Gro06, HBJ98, KN06, LP99, MF09, MWCG99, PPT08, PHEK99, Tra08, VHK00, WC82, YB88].

Language-Based [Kai89, RTD83].

Larch [Win87].

Large [GLR83, HSD22, MK94, MH86, WCW90, WCW91, ZSS20].

Large-scale [ZSS20].

Lattice [AKBLN89, MMR95, FH04].

Lauer [GM81].

Layout [KK98, LVV++, GPW00, KF00].

Lazy [ABM93, FKW00, HKR94, Huh91, ITF22, TCVB14, Chi05].

lead [SS05a].

learned [VHM++01].

Learning [CGJ97a, HOYY18, JCC00, SR21].

Least [AB81, Bac84].

Least-Cost [AB81, Bac84].

Left [FKW98].

Left-Linear [FKW98].

Legacy [NCH**, length [SMP10].

Lessons [URJ18, VHM++01].

Let [LY98].

let [LY98].

Let-Polymorphic [LY98].

Level [Cam89, Fat82, GP95, YBL16, CMS03, VWB10].

Lexical [HKR92].

libraries [Dug02].

LIFE [AKP94].

Lifetime [HBM++, HEB96].

Lifetimes [Pea21].

Lightweight [Pea21, SW97b].

Like [Hua90, KN06].

Limitations [CP17].

Linchpin [BGH++, LDP05].

Linda [Gel85].

Line [Bal94].

Linear [BL94b, FKW98, PSS99, RS84a, YR94, BKRW98, BKRW05, FMoPS11, KBC**, Ram99, Rep98, RM10].

Linear-Time [YR94, BKRW98, BKRW05].

Linearity [KPT99].

Linearizability [HW90, DSW11].

Linguistic [LS83, Wei90, FGM++07a].

Link [DDD05].

Link-time [DDD05].

Linking [QL91, Dug02].

LIPS [CDFP89].

LISP [GCRN11].

List [Bu05, SH98, Wat83].

List [BC79, HIT97, Ka04, Sij89].

listing [MDJ05].

Lists [Dan23].

Literature [Oss83].

Live [DSFG21, MWB94].

Live-Structure [MB94].

Liveness [ACW90, GC63, OL82, RR88, HH82].

LL [BF87].

LIVE [HL22].

Load [KPF95].

Loaded [BG99a].

Local [BDF09, CBDGF95, PT00, SDB20, TSB08, Wei99, Dan03, San96].

Locality [BAC16, MCT96, VALG05, ZSD09].

Locally [AB81, Bac84, Min84].

locating [JNGG10].

Locator [ZMVPJ17].

Lock [GEGP17, KS10].

Lock-Free [GEGP17].

lock-freedom [KS10].

locking [AFF06].

LOCKSMITH [FFH11].

Logic [AS89, AFV98, Apt81, BNN00, BGL93, BL03, BCD90, BDJ13, BMR94, CS04, CES86, CFM94, DW99, De89, DL93, De95, DLP++, JPP91, Kar84, LIN98, Lam94, MW84, MSJ94, MNG91, PZ22, SS98, Sok87, TK94, TD95, dH82].

Local [BG89a].

Locality [AB81, Bac84, Min84].

Load [KPF95].

Loaded [BG99a].

Local [BDF09, CBDGF95, PT00, SDB20, TSB08, Wei99, Dan03, San96].

Locality [BAC16, MCT96, VALG05, ZSD09].

Locally [AB81, Bac84, Min84].

locating [JNGG10].

Locator [ZMVPJ17].

Lock [GEGP17, KS10].

Lock-Free [GEGP17].

lock-freedom [KS10].

locking [AFF06].

LOCKSMITH [FFH11].

Logic [AS89, AFV98, Apt81, BNN00, BGL93, BL03, BCD90, BDJ13, BMR94, CS04, CES86, CFM94, DW99, De89, DL93, De95, DLP++, JPP91, Kar84, LIN98, Lam94, MW84, MSJ94, MNG91, PZ22, SS98, Sok87, TK94, TD95, dH82].

Local [BG89a].

Locality [AB81, Bac84, Min84].

Load [KPF95].

Loaded [BG99a].

Local [BDF09, CBDGF95, PT00, SDB20, TSB08, Wei99, Dan03, San96].

Locality [BAC16, MCT96, VALG05, ZSD09].

Locally [AB81, Bac84, Min84].

locating [JNGG10].

Locator [ZMVPJ17].

Lock [GEGP17, KS10].

Lock-Free [GEGP17].

lock-freedom [KS10].

locking [AFF06].

LOCKSMITH [FFH11].

Logic [AS89, AFV98, Apt81, BNN00, BGL93, BL03, BCD90, BDJ13, BMR94, CS04, CES86, CFM94, DW99, De89, DL93, De95, DLP++, JPP91, Kar84, LIN98, Lam94, MW84, MSJ94, MNG91, PZ22, SS98, Sok87, TK94, TD95, dH82].

Local [BG89a].

Locality [AB81, Bac84, Min84].

Load [KPF95].

Loaded [BG99a].

Local [BDF09, CBDGF95, PT00, SDB20, TSB08, Wei99, Dan03, San96].

Locality [BAC16, MCT96, VALG05, ZSD09].

Locally [AB81, Bac84, Min84].

locating [JNGG10].

Locator [ZMVPJ17].

Lock [GEGP17, KS10].

Lock-Free [GEGP17].

lock-freedom [KS10].

locking [AFF06].

LOCKSMITH [FFH11].

Logic [AS89, AFV98, Apt81, BNN00, BGL93, BL03, BCD90, BDJ13, BMR94, CS04, CES86, CFM94, DW99, De89, DL93, De95, DLP++, JPP91, Kar84, LIN98, Lam94, MW84, MSJ94, MNG91, PZ22, SS98, Sok87, TK94, TD95, dH82].

O [ABPS98, Car95]. Object [DF84, HU96, KH92, Ryu16, Ste22, WC90, WC91, BSvGF03, DMM01, DDDCG02, FM99, GPWZ08, HBM+06, JPS+08, LPS004, Piq96, WJS+00]. Object-Based [KH92]. Object-Oriented [HU96, Ryu16, Ste22, BSvGF03, DMM01, JPS+08, WJS+00]. Objects [AM85, CJK95, HF87, HW90, Her93, SM89, VHB+97, Wal80, Wal81, Win84, GPV07, HBJ96, KF00, Sto04, WJS+00, SKU95]. obligations [DSW11]. Observability [Gaz83]. Observation [LWR21]. Observations [Sha82]. Obsidian [COE+20]. Occur [AP94]. Occur-Check-Free [AP94]. Octagons [GMN+21]. Off [SBB+19]. Offline [CG04, GJ05]. Old [AL94]. Old-Fashioned [AL94]. Omnisemantics [CCEG23].
On-Line [Bal94]. On-The-Fly
[CF95, BA84, URJ18, LP06, PBK+07]. One
[Bak82, BG89b, VHM+01]. One-Pass
[Bak82], one-way [VHM+01]. online
[CG04, HVDH07]. only [PZJ05]. OO
[RSPS23]. Opacity [QG95]. OpenJDK
[YW22]. Operating
[HLH+23, HM84, BCP08]. Operational
[BLRS12, Han94, MF09]. Operations
[AKBLN89, CK94, Lee86, LS79]. Operator
[CSV01, Hen83, LdR81]. Operators
[Ive79, She91]. Optimal
[BOV85, CGST95, FK85, JCMMA9, KRS94, Lar95, PB97,
Hai98, JNZ06, KSV96, MSRR00]. optimality [CP96]. Optimally
[BL94a]. Optimistic
[PM04]. Optimization
[Bee94, BBC16, Blo94, BAC16, BT93, DF84,
DP97, DDH84, Dha91, DSS88, FOW87,
HG93, HOY98, Pem93, PP94, RR98,
SS92, Sor98, TvS82, Web95, Ass00, BHK07,
KBC+99, KF03, PE08, TVA07, ZP10, CG95,
LaL84, OKN06]. Optimizations
[CC95, JSB+12, CGS+03, CKT86, GMP+00,
SYK+05]. optimize [DMM01, VBLG04].
Optimized
[CM93, Cop94, Hen82, WST85, DS98, UM02].
Optimizer [DF80, FSS83, DF81].
Optimizers [Gie83]. Optimizing
[CEG07, KMM+98, LSR05, MLS0, NSZS13,
QR00, BGG09]. Or-Parallel [GJ93].
orchestration [PE08]. Order
[AC94, AD08, Bar84, CJK95, DP97,
DJP+16, JPP91, JS94, SS98, BBTS07,
DF11, FPS19, SKS11, SV9, SP97].
Ordering [FSSH23, GS99]. Organization
[Han81a]. Oriented
[Bor81, Dar90, Eil82, FFP+18, GTWA14,
GKL94, GP81, HU96, Ryu16, SM81, Ste22,
Tur84, YB87, YB88, BsvGF03, DWW08,
DMM01, JPS+08, WKD04, WP10, WJS+00].
origins [San09]. OSI [CFD9P89]. Output
[Ber80, BS83]. overhead [KOE+07].
overhead [BP12, SS96]. overlaid [SWU10].
Overload [Bak82]. overloading [SS05b].
Overview [AOC+88]. ownership
[DDM11, SS96]. Oz [VHB+97].
Package [Hil88]. Paper [GM81]. Parallel
[ANP89, BG22, BOV5, BO94, BE13,
Cha93, CGST95, CMN91, CL94, DS83,
Fos96, GLO88, GJ93, GPA+01, HCHP92,
HIT97, JF81, Kna90, LHR91, Mis94,
NSZS13, OA88, Rau94, SS88, VMLY22,
BBYG+05, CG86, GB99, HBJ98, KSV96,
LK02, MVV+01, RR03, YF98]. Parallelism
[Bur84, GP95, KSV96, NB99, PW94,
TCVB14, YBL16], Parallelization
[BAC16, BDJ13, PP94, BlBH09, HAM+05].
Parallelizing [HP96, ME97, RD97].
Parameter [Gaz83, Zho96].
Parameterization [TWW82].
Parameterized
[CG97b, CK93, Gaz83, RKS12].
Parametric
[HFC09, MMG92, SRW02, IV06].
Parametricities [DPP22]. Parenthesis
[AS80]. Parlog [CG86]. Parsed [Wad90].
Parser [DDH84, JP17, LaL84, SS82].
Parsers [BN99, LaL81, MYD95, PK80,
CPRT02, SJ06, ST00b]. Parsing
[CH87, DMM88, Fis80, GM79, Lar95, RH87,
Sam80, WG98, KCO1]. Part
[LaL81, PA85, PA86a, PA86b, Aopt81].
Partial [AFV98, CP17, CK93, DS88,
Gom92, KCL+99, Sor98, ADR06, BP12,
CG04, GJ05, LMD98, Leu04, ST00b].
Partially [BLH12, Kob98, RRSY08].
partially-flow-sensitive [RYS08].
partitioning [RM07, YF09]. Parts [Son87].
Pascal [LS79]. Pass [Bak82, BM04].
Passing [BDM15, GAZ83, SS84, VMLY22,
CSW06, Gor04, Zho96]. Passive [AKP94].
past [PM09]. Path
[Bl94, CJGP18, SMP10]. path-length
[SMP10]. Patient [FFF+18].
Patient-Oriented [FFF+18]. Pattern
[EGP14, ADR06, Jay04, MTSS09, Van06]
.Pattern-Based [EGP14]. Patterns [GH80].
PDS [Han81b]. PEAK [PE08]. Peephole [DF80, DF81, Pem83, TvS82]. PegaSys [MH86]. Pennello [Sag86]. Perfect [Duc08].
process-oriented [WP10]. Processes [AfDr80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oss83, RY88, Sou84, TY18, dBB85, AE09, KS10, Ber80, Moi83].

Processing [GH80, HSG17, Rei83].

Processor [BG89b, Bud84].

Processors [GLR83, Per79, LPP01, ZP10].

Product [EMH20, RTP17].

Production [Wad90].

Productivity [Sij89].

Profile [BHM+07, YUW02].

Profile-based [BHM+07].

Profiling [ASAVF19, BL94a, SP97].

Program [Bal94, BNN22, Bar85, BAL07, BKB80, Col84, DKKL18, Der85, FPS19, Fea82, FOW87, FT94, FL91, HSP83, HKR94, HSD22, HLH+23, Jen97, JICO19, KKW14, KWL09, Lam83, Lam88, LFF14, LWR21, MS83, MW80, Mis81, Nie85, PP94, PPS79, Rem81, RPT17, SBS22, TSY00, Wad90, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NL13, Pan01, RAB+07, SLC03, WZ07, WN08, YF09, DKV07].

Programming [AGT89, Ano18, AR84, ABPS98, BS86, BPP16, BHM+19, BL94a, Bir84, Bor81, BMPT94, BWP87, BCEM15, CHY12, COE+20, CL94, Dar90, DFR15, DGL+79, Dug99, FFF+18, Fos96, FL15, GTPA14, Har80, HKR94, HSD22, HLH+23, Jen97, JICO19, KKW14, KWL09, Lam83, Lam88, LFF14, LWR21, MS83, MW80, Mis81, Nie85, PP94, PPS79, Rem81, RPT17, SBS22, TSY00, Wad90, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NL13, Pan01, RAB+07, SLC03, WZ07, WN08, YF09, DKV07].

Programming-in-the-Large [MK94].

Program [Aww95, AK87, AFV98, AB20, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Bes94, BCD90, BE94, BE13, BEF+16, CR87, CB80, CM86a, Chat83, CFNH18, CFG19, CEW14, CMN91, Cha80, CFM94, CS87, DSFG21, DL18, DGM97, DW89, Deb89, DL93, Deb95, DP97, Di90, EMH20, EGP14, FJK+17, FNBG20, GG85, GM81, Har80, HCP92, HPR89, How80, HIT97, ISY88, ITF+22, JBBK18, JW17, Jon83, JF81, Kna90, Lam79, LS83, MSJ94, ML21, MTK21, MRGP20, MH86, Mye18, NSZS13, OA88, OL82, PS92, QL91, Rao94, SS98, Sch82, SS81, SS88, TOUH21, TN19, VMLY22, Ven95, Wad90, Web95, Wil82a, AE01, AA04, BCG+07, CSW06, CSS99, DP99, DSV99, DS98, DMMO1, EGM01, GM12, GHB+96, GH7, GPA+01, Hau96, HPMS00, JPS+08, KS96].

programs [LMD98, Leu04, LS09, MF09, NRO6, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yn11, dHB+96, Bir84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MWWB94, NF89, Zho96].

Promotion [Bir84, Bir85].

Proof [AfDr80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, Wad90, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NL13, Pan01, RAB+07, SLC03, WZ07, WN08, YF09, DKV07].

Proof-Directed [BDJ13].

Proofs [AP86, BC85a, CM86b, JW17, LY98, OSS83, GR5K+11].

Propagation [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CIJGP18, Kar84, LM18, OL82, RY88, TB95, WE89, YS10].

Prophecy [LM22].

Proposed [Fat82].

prossima [MP10b].

Protected [PAS+15, WJS+00].

Protocol [SL92, YS97].

Protools [MB83, BFGT08, SS96].

Prototype [WCW90, WCW91].

Prototypes [HW82].

Provably [SDB20, GB99].

Provenance [ZSS20].

provenly [AAD+07].

Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Pruning [BN99].

PSG [BS86].

PSO [FSH23].

publish [Eug07].

publish/subscribe [Eug07].

Pure [BNN18, HU96, Pip97, Tar07].

Purpose [App94b, HSS+14, Spo86].

Pushdown [CBO19].

PYE [TN19].

Reproduction [Lam87, RF97, Wal80, Wal81, BGP99].

Representations [Mul92].

Representation-Independent [Wad90, Wan82, Mil85].

Resilient [GHH+19]. Resolution [Wal81, Bak82]. Resolved [Wad90, Wal82, Mil85].

Rivieres [CGG92]. Rings [MTK21, Pea21].

RustHorn [MTK21].

SA [HCW82]. S/SL [HCW82]. Safe [AWW95, Dug02, JW17, LMM21, PG21, SDB20, AFF06, BSvGF03, LS03, Loc13, NCH+05, SA00, ZCG+07, MH06, SHB+07].

Satisiability [FSPH23, AX07]. satisfying [Van96a, Van96b]. Saturn [AX07].

Scalability [TCP+17]. Scalable [FT94, GKM20, ZSS20, AX07].

ScalaExtrap [WM12]. ScalaExtrap [ZSS20].

Section [Müll21, Wol92]. Secure [ABC+21, BCEM15, PAS+15, PG21, BBF+11, HY07].

Securably [RB94]. Securing [BNV+21].

Semantic [AAC+10, AW95, GGL15, LCK+22, ML21, MH06, HCW82].

Semantics [ABHI+11, Ans87, AB94, AW82, BGL93, Ber94, BLRS12, Bou88, Boy10, CPS03, CD79, FA93, GM81, Gud92, Han94, JPP91, Kai89].
Mul92, NF89, Set83, Sou84, WM95, Wan82, dBBB85, ACE96, BMR01, Bou06, GZ04, MF09, PCJD08, SWU10, SJ03, Tar07, WKD04).

Semantics-Based
[BGL93, CPS93, PCJD08].

Semantics-Directed [Han94, Set83].

Semaphore [CR87].

Semiring [BMR01].

Semiring-based [BMR01].

Send [Gor04].

Send-receive [Gor04].

Sensitive [OLH+16, HBS22, PKH07, Ram00, Rep00, RRSY08].

Sensitivity [FL15, KRR18, LTMS20].

Separating [DDM11, Ste22].

Separation [BDJ13, DJP+16, OYR09, BBTS07, PZ22].

Separators [GSO94].

Sequences [GSW95, LWR21].

Session-Based [TY18].

Sessions [TY21].

Set [Sha82, FF99].

set-based [FF99].

SETL [DGL+79, FSS83, SSS81].

Sets [DP82, DPPR00].

Setting [Lin79, Nie85, HL05].

SHA [App15].

SHA-256 [App15].

shape [GCRN11, JLR50, JB06, SRW98, SRW02].

shape-analysis [SRW98].

shaping [HS11].

Share [SS88].

Shared [Cha93, FLBB89, KH92, KRS88, LB22, Pet83b, Dug02, HB93, TSY00, BC91].

Shared-Memory [Cha93, TSY00].

Sharing [CSS99, Lam87].

SHErrLoc [ZMVPJ17].

Shift [BN99, MYD95].

Shift-Reduce [BN99, MYD95].

Short [Sag86].

Should [LP99].

Side [Boe85, KWL09, RLS+01, TAO8b].

side-effect [RLS+01].

sign [KKN06].

signal [BH05b].

Signatures [BR97].

Signedness [GNS+15].

similar [AE98].

Simple [Boe85, GLO88, JP17, LM22, SH89].

simpler [BKRW98, BKRW05].

Simplification [LZ92, NO79].

Simula [Lam80].

Simulation [AMT14, Bar81, Bor81, LFF14, HQR02].

Single [BM94, CFR+91, JKB18, GPF08].

Single-Assignment [BM94].

Single-Threaded [JB1B8].

Sit [AKNP17].

situations [WN08].

Size [BA08, BEE+16, JB20, Lee09, LDK+96].

Size-change [BA08, Lee09].

Sized [DG19].

Sketches [HSD22].

Slicing [AB20, AHJR14, CF94, DLI8, GH97, HRB90, ML21, Mye18, Ven95, WZ07, BHK07, GE07, NR06, RAB+07, WR08, GZ05].

SLR [BS88, Tai79].

Small [BNV+21, FLBB89, LH91, Pet83b].

Smart [Tic86].

Smarter [SK88, Tic88].

Smooth [CEG23, JF81].

Soft [WC97].

Software [ACM11, AW85, Ber94, DAW88, HSS+14, How80, JW17, PXL95, PPS79, Pur94, Wal92, YBL16, CTT07, HN05, LS98, ME97, NCH+05, RDG08, SHB+07, SMR10].

Software-Defined [Wal92].

Soininen [LaL84].

Soisalon [LaL84].

Soisalon-Soininen [LaL84].

Solution [ADG+94, DS88, Gho93, Pet83b, Sor89, WP10].

Solving [GS11, HLH19, HSD22, NSTD+15, SRW98].

Some [AB94, AK82, Sha82, Sor89].

Sometimes [Gri79].

Sound [LLK+17, LCK+22, RSPS23].

Soundness [Sok87].

source [HBG+09].

Space [BP12, BB79, FLBB89, JP81, NB99, RD87, YF98, LS09, SS05a, SA00].

Space-Efficient [JP81, NB99].

Space/time [YF98].

Space/time-efficient [YF98].

spaces [JLF02].

Span [LS80, Rob79].

Span-Dependent [LS80, Rob79].

Spanning [GHS83].

Sparse [OHL+14].

Spatial [NSTD+15].

Special [Ahm20, Mül21, Wol92, Yos22, Sag07].

Specialization [AHJR14, BCP08, GJ05, HT04, SLC03].
specialization-point [GJ05]. Specializing [BCD90]. Specific [ASAVF19, Gie83, Tra08].

Time-Constrained [Zic94, LPP01].

Time-Critical [PS93].

time-efficient [GB99, YF98].

Time-sensitive [HBS22].

Timed [Zic94].

Timeout [Lam84].

Timing [LJ99].

Tokenization [Rep98].

Tolerance [LJ99].

Tolerant [CS95, Lam84, AE04].

Tool [CPS93].

Toolkit [BDFH97].

toolkits [VHM+01].

Tools [van88].

Top [SZLY21].

Top-down [SZLY21].

TOPLAS [Ano18, TGT20, MP10a, MP10b].

topology [DDM11].

Tortoise [Dan23].

Total [San96].

Trace [ABC+21, FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12].

Trace-relating [ABC+21].

traces [HBM+06, WR08].

Tracing [BL94a, DLR16, MMM+07].

tradeoffs [ZGZ05].

Trailing [VR95].

Traits [DNS+06].

Transaction [URJ18, ABHI11, CFP+04].

Transactions [Ano18, HKMN94, TGT20].

Transducer [DVL15].

Transducer-Based [DVL15].

Transformation [BK80, Foa82, FL91, NSZS13, Wat91, RKKR04, San96, TSY00, WZ07].

Transformational [BDFH97, Bir84, Bir85, DS82, OA88, RC03].

Transformations [Bar85, EGM01, Geo84, Ldr81, Lff14, MS83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VAL95, WS97, Hen83, NN86].

Transformers [Lam90, MMS96, MBBT09].

TransformGen [GKL94].

Transforming [AWP95, BE94].

Transition [PR07].

Translation [AK87, BK11, Kat84, Son87, AAD+07, BGK90, DP99, RC03].

Transmission [HL82].

Transparently [JSB+12].

Transport [Min84].

transpose [CRN+08].

Traversals [LPSO04].

Treatment [YB87, YB88].

Tree [AGT89, BOV85, BW91, DVL15, DS83, Han81a, Hen83, Ldr81, FGM+07a].

Trees [Com80, GSS83, MT80, Sip82, Wad90, ACM11, SGL97].

TreeWidth [CLJGP18, CGG+19].

trick [DMP96].

Truth [BDH+16].

TSL [LR13].

TSO [FSH23].

tuning [GMM99, PE08].

Tuples [Ren81].

Two [BO94, CDFP98, DPP22, GPWZ08, TY21, FM0PS11].

two-dimensional [GPWZ08].

two-variable [FMO011].

Type [Bur90b, Car95, CEW14, Czh91, CZ84, DUG02, Dug07, HHPW96, HM93, Hen93, KPS92, KTM93, KR01, Lan80, LO94, LST02, LY98, LP00, MRG92, MP88, NGB13, Pad19, PO95, SA99, SM89, Ste22, TWW82, TGT18, TGT20, Van06, VMLY22, Wal80, Wi11, Wir88, WC97, BSvGF03, BCG+07, FJKA06, FMO07b, FM99, FO08, GZ07, GMZ00, H007, HDH02, HY07, KF10, KS10, NP08, NCH+05, PT00, STSP05, TFK+11, TZ07, Wal81, Wir91].

Type-based [Eug07, LP00, BCG+07].

Type-Driven [TGT18, TGT20].

Type-Extension [Coh91, Wir91].

Type-Graphs [KPS92].

Type-preserving [LST02].

Type-Safe [Dug02, BSvGF03, NCH+05].

Typechecking [CL95, MBC04].

Typed [ACPP91, Geo84, GDF23, Kob98, NN86, WCM00, AAR+10, LP99, MWC99].

Typed-Untyped [GDF23].

Types [AFF06, AC93, BG22, BB94, BCCM15, DDMP22, DPP22, DSS85, EO80, FFLQ08, GEGP17, HL82, Hes88, Jen97, Kam83, KBP22, LALS9, LO94, LBN17, LOE87, Mal82, Miq19, MP88, WL85, Wei89, Wei90, AM01, BBF+11, Dam03, DD11, DMM01, Gro06, GPV07, HVP05, IV06, MME+10, PS96, Pal98, ST033, SP07].

Typestate [COE+20, GTWA14].

Typestate-Oriented [GTWA14].

Typing [ACPP91, DG19, Dug99, GGSV22, RM10, SV96].

ultimate [PS08].

Ultracomputers [SCH80].

Unassigned [Win84].

Unbounded
Undecidability [Ram94, Rep00, Cha02].
undecidable [Ram00].
Understanding [ST00a, Lee86].
Unidirectional [Pet82].

Unidirectional [Pet82].

Understanding [ST00a, Lee86].

Understanding [ST00a, Lee86].
REFERENCES

X [OLH+16, MSM+16]. X-Sensitive [OLH+16]. X10 [GHH+19]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].

ZGC [YW22]. Zones [GMN+21].

References

Ancona:2007:PCT

Attie:2004:SFT

Ahmed:2010:SFT

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. Semantic foundations for typed assembl-

Afek:1993:LC

Apt:1998:AIl

André:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

REFERENCES

Afek:1994:BFF

Ager:2006:FPE

Alglave:2021:ACF

Ancona:1991:ECL

Attie:1998:SCS

Attie:2001:SCP

Apt:1984:MDT

Krzysztof R. Apt and Nissem Francez. Modeling the distributed termination convention of CSP. *ACM Transactions on Programming Lan-

REFERENCES

REFERENCES

Ait-Kaci:1994:FPC

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR

Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational proof-carrying code. ACM Transactions on Programming Languages and Systems, 23(5):
REFERENCES

REFERENCES

Anonymous:1987:IA

Anonymous:1988:AI

Anonymous:1989:AI

Anonymous:1990:AI

Anonymous:1991:AI

Anonymous:1992:AI

Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

Anonymous. Automatic derivation of compiler machine de-

Anonymous:2002:LDD

Anonymous:2018:CCL

Arvind:1989:SDS

REFERENCES (print), 1558-4593 (electronic).

Appel:2015:VCP

Apt:1981:TYH

Apt:1986:CPD

Apt:2000:RCC

Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

[AS89] Bowen Alpern and Fred B. Schneider. Verifying temporal properties without temporal logic. *ACM Transac-
Andersen:2019:FSP

Austin:2017:MFD

Assmann:2000:GRS

Aik:2019:SST

Alexander Aiken, John H. Williams, and Edward L. Wimmers. Safe: a semantic technique for transforming programs in the presence of errors. *ACM Transactions on Programming Languages and Systems, 17*(1):
REFERENCES

Alur:2001:MCH

Ben-Ari:1984:AFG

Blume:1999:HM

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

REFERENCES

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA

Brecht:2006:CGC

Banerjee:1987:MSR

Banerjee:2011:MFT

Barnden:1981:NCA

REFERENCES

in discrete-event simulation languages. ACM Transactions on Programming Languages and Systems, 3(3):293–317, July 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman, Yoav Ossia, Avi Owshanko, and

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul
Thomson, and John Wickerson. The design and implementation of a verification technique for GPU kernels. ACM Transactions on Programming Languages and Systems, 37(3):10:1–10:??, June 2015. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

Biernacki:2015:DCP

Bowman:1993:RAN

Barthe:2014:FVS

Bossei:1994:TAP

Bouajjani:2013:ARP

Beemster:1994:SOG

Brockschmidt:2016:ARS

BERNSTEIN:1980:OGN

BERZINS:1994:SMS

BURKE:1987:PML

BHS98

BARBOSA:1989:CHL

BERNSTEIN:1989:SEP

David Bernstein and Izidor Gertner. Scheduling expressions

REFERENCES

Barthe:2009:CTO

[Bultan:1999:MCC]ARRAY

Barbuti:1993:GFS

Butler:1999:RAG
REFERENCES

REFERENCES

actions on Programming Languages and Systems, 7(3):490–492, July 1985. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [Bir84].

REFERENCES

[Back:1988:DCA]

[Bic:1987:DDM]

[Blo94]

[BL94b]

[Blanc:2003:EAJ]

[Bodd:2012:PEF]
REFERENCES

Boudol:2012:RAW

Boudol:2012:VLA

Blume:1999:VLA

Bistarelli:2001:SBC

Ball:2005:PPA

Borstler:1991:TCT

Jürgen Börstler, Ulrich Möncke, and Reinhard Wilhelm. Table compression for tree automata.

REFERENCES

REFERENCES

Bobrow:1980:MRS

Boehm:1985:SEA

Boom:1982:WPL

Borning:1981:PLA

Boute:1988:SSP

Boute:1992:EDF

Boute:2005:FDL

REFERENCES

The design and formalization of Mezzo, a permission-based programming language. ACM Transactions on Programming Languages and Systems, 38(4):14:1–14:??, October 2016. CODEN ATPSCT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Baumgartner:1997:ISC

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. ACM Transactions on Programming Languages and Systems, 5(2):223–235, April 1983. CODEN ATPSCT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Bahlke:1986:PSF

Bermudez:1988:NRB

Manuel E. Bermudez and Karl M. Schimpf. On the (non-)relationship between SLR(1) and NQLALR(1) grammars (tech-

Burton:1991:TCA

Brody:1987:ADP

Cameron:1989:EHL

[Robert D. Cameron. Efficient high-level iteration with accumulators. ACM Transactions on Programming Languages and Systems, 11(2):194–211, April 1989. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).] [Cam89]

Carlisle:1995:TCC

Castagna:1995:CCC

Cattell:1980:ADC

Casanova:1980:FSR

[Marco R. Casanova and Phillip A. Bernstein. A formal system for reasoning about programs accessing a relational database. ACM Transactions on Programming Languages and Systems, 2(3):386–414, July 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).][CB80]
Charron-Bost:1995:LTP

Cotton-Barratt:2019:MVP

Click:1995:CAC

Clarke:1997:URE

Charguéraud:2023:OSH

Constable:1979:HAF

Carchiolo:1989:ELT

Vincenza Carchiolo, Antonella Di Stefano, Alberto Faro, and
REFERENCES

Chen:2018:BPP

Casey:2007:OIB

Chander:2007:ERB

[CES86]

Chen:2014:ETI

Choi:1994:SSP

[Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto statements. *ACM Transactions on Programming Languages and Systems*, 16(4):1097–1113, July 1994. CODEN ATPSDT. ISSN 0164-0925.
REFERENCES

[CF95] Cytron:1995:ECN

[CFG+97] Cortesi:1997:CAI

[CFH18] Chatterjee:2018:AAQ

[CFNH18] Chatterjee:2019:NPW

[CFP+04] Cortes:2004:HLA

Chatterjee:2019:NPW

Codish:1994:SA

Cortes:2004:HLA

Cortesi:1997:CAI

Corinna Cortesi, Kathleen Fisher.

Cytron:1991:ECS

Clark:1986:PPP

Chin:1995:ROA

Christensen:2004:OPE

Chatterjee:2019:FAD

Calder:1997:EBS

Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael Mozer, and Benjamin Zorn. Evidence-based static branch prediction

Clarke:1997:VPN

Clarke:1994:MCA

Chatterjee:1995:OEA

Cohen:1987:PCU

REFERENCES

REFERENCES

[CMB+95] Michael Codish, Anne Mulkers, Maurice Bruynooghe, Maria García de la Banda, and Manuel Hermenegildo. Improving abstract interpretations by com-
REFERENCES

[COE+20] Michael Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker, Yannick Bloem, Brad A. Myers, Joshua Sunshine, and Jonathan Aldrich. Obsidian: Typestate and assets for safer blockchain programming. *ACM Transactions on Programming Languages and Systems*, 42(3):14:1–14:82, December 2020. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (elec-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[DAW88] Laura K. Dillon, George S. Avrunin, and Jack C. Wile-
REFERENCES

Dunlop:1985:GSU

DeBruin:1985:DSD

DeBoer:2021:CCR

Deng:2022:SDR

Donahue:1985:DTV

DeSutter:2005:LTB

REFERENCES

Drossopoulou:2002:MDO

Dencker:1984:OPT

Dietl:2011:SOT

Das:2022:NST

Debray:1989:SIM

Debray:1995:CD
REFERENCES

REFERENCES

REFERENCES

DeMoura:2009:RC

Dillon:1990:USE

deJonge:2012:NFE

Dodds:2016:VCS

Darulova:2017:TCR

David:2018:PSP
Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. Program synthesis for program analysis. ACM Transactions on Programming Languages and Systems, 40(2):5:1–5:??, June 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Drinic:2007:PPC
REFERENCES

DeRemer:1982:ECL

Dhamdhere:1993:EAB

Debray:1997:ICF

DeRose:1999:TTM

Devriese:2022:TPV

Dovier:2000:SCL

Das:2005:PFI

Dawson:1996:PPU

Dekel:1983:PGP

Drechsler:1988:TCS

Dewan:1990:ASA

Dhamdhere:1998:DCD

Loris D’antoni, Margus Veanes, Benjamin Livshits, and David

Debray:1989:FCL

Dantas:2008:APA

Etalle:2001:TCP

Esparza:2014:PBV

Ellis:1982:TCS

Elder:2014:ADA

Eilers:2020:MPP

REFERENCES

Ernst:1980:SAD

Emerson:1997:USW

Eugster:2007:TBP

Finlay:1993:TCC

Fateman:1982:HLL

FDY12

Feather:1982:SAP
REFERENCES

REFERENCES

Foster:2007:CBT

Fournet:2007:TDA

Fernandez:2004:ICS

Fidge:1993:FDP

Fischer:1980:PCA

Forejt:2017:PPA

Foster:2006:FIT
REFERENCES

Fisher:2002:GE

Facchinetti:2019:HOD

Francez:1980:CDT

Francez:1980:DT

Francez:1981:TCR

Farmer:1990:CPC

Fan:2023:SMO

[Fan:2023:SMO] Hongyu Fan, Zhihang Sun, and Fei He. Satisfiability modulo ordering consistency theory for SC, TSO, and PSO memory models. ACM Transactions on Programming Languages and Systems, 45
REFERENCES

Freudenberger:1983:ESO

Foster:1994:CAS

Fricker:1995:ICI

Francez:1985:SIC

George:1996:IRC

Gazinger:1983:PSP

Greiner:1999:PTE

John Greiner and Guy E. Blelloch. A provably time-efficient parallel implementation of full speculation. ACM Transactions on Programming Languages and Systems, 21(2):240–
REFERENCES

GarciaDeLaBanda:1996:GAC

Grov:2019:FRR

Giegerich:1983:FFD

Robert Giegerich. A formal framework for the derivation of machine-specific optimizers. *ACM Transactions on Programming Languages and Systems*, 5
REFERENCES

Gupta:1993:APE

Glenstrup:2005:TAS

Garlan:1994:TAM

Gharat:2020:GPG

GL80

Grumberg:1994:MCM

Gavanelli:2005:DIK

Marco Gavanelli, Evelina Lamma, Paola Mello, and Michela Milano. Dealing with incomplete knowledge on CLP(FD) variable domains. *ACM Transactions
REFERENCES

Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient coordination of very large numbers of cooperating sequential processors. ACM Transactions on Programming Languages and Systems, 5(2):164–189, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Gange:2021:FLZ

Grant:2000:BCD

Gange:2015:IAM

Gomard:1992:SAP

Gorlatch:2004:SRC

[Gor04] Sergei Gorlatch. Send-receive considered harmful: Myths and

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Gries:1979:SEB

Griswold:1982:EEI

Grossman:2006:QTI

Giesl:2011:ATP

Giacobazzi:1998:LMR

Gloy:1999:PPU

Gawlitza:2011:SSR
REFERENCES

Gupta:1994:ERA

Grimmer:2018:CLI

Gerlek:1995:BIV

Garcia:2014:FTO

Gudjonsson:1999:CTM
REFERENCES

1999. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). URL http:// ...

100
REFERENCES

REFERENCES

Hickey:1992:CAM

Huang:2010:DBR

Holt:1982:ISS

Hirzel:2002:UTL

Hennessy:1982:SDO

Henderson:1983:TCL

Hennessy:1986:PSS

[HHP96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones,

REFERENCES

[Horwitz:1997:PFI] Susan Horwitz. Precise flow-insensitive may-alias analysis is NP-Hard. *ACM Transactions on Programming Lan-
REFERENCES

Ho

Heo

Haghighat

Hermenegildo

Horwitz

Henzinger

REFERENCES

Matthew Hennessy and James Riely. Information flow vs.
resource access in the asynchronous pi-calculus. ACM
Transactions on Programming Languages and Systems, 24(5):
566–591, September 2002. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Susan Horwitz, Thomas Reps, and David Binkley. Inter-
procedural slicing using dependence graphs. ACM Trans-
actions on Programming Languages and Systems, 12(1):26–
60, January 1990. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/77608.html.

Mary Jean Harrold and Mary Lou
Sofia. Efficient computation of interprocedural definition-
use chains. ACM Transactions on Programming Lan-
guages and Systems, 16(2):175–
204, March 1994. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/174663.html.

Shan Shan Huang and Yannis
Smaragdakis. Morphing: Structurally shaping a class by re-
fecting on others. ACM Transactions on Programming Lan-
guages and Systems, 33(2):6:1–
6:44, January 2011. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Qinheping Hu, Rishabh Singh,
and Loris D’Antoni. Solving program sketches with large
integer values. ACM Transactions on Programming Lan-
guages and Systems, 44(2):
9:1–9:28, June 2022. CODEN ATPSDT. ISSN 0164-
org/doi/10.1145/3532849.

Martin Hirzel, Scott Schneider,
and Bugra Gedik. SPL: an ex-
tensible language for distributed
stream processing. ACM Trans-
actions on Programming Lan-
guages and Systems, 39(1):5:1–
5:??, March 2017. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Sergiu Hart, Micha Sharir, and
Amir Pnueli. Termination of probabilistic concurrent pro-
gram. ACM Transactions on Programming Languages and
0164-0925 (print), 1558-4593 (electronic).
REFERENCES

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Hudson:1991:IAE
REFERENCES

Haridi:1999:ELV

Hirzel:2007:FOP

Hosoya:2005:RET

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27(1):46–90, January 2005. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Holt:1982:MIE

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS

Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow.
REFERENCES

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Kenneth E. Iverson. Operators. *ACM Transactions on Program-
REFERENCES

ming Languages and Systems, 1 (2):161–176, October 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

Jazayeri:1981:SES

Jourdan:2017:SPC

Jagadeesan:1991:FAS

Jacobs:2008:PMC

Joung:1994:CF

Joisha:2012:TTE

REFERENCES

Juan:1998:CVC

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Jakobs:2017:PPF

Kaiser:1989:IDS

Kaufman:1984:TLR

Kandemir:1999:GCO

Keizer:2022:SCC

Kim:2001:ERV

Kennedy:1999:PRE

Khedker:1994:GTB

Kistler:2000:ADM

Thomas Kistler and Michael Franz. Automated data-member layout of heap objects to im-

Kistler:2003:CPO

Knowles:2010:HTC

Keen:2004:JFD

Kennedy:1998:ADL

Karkare:2007:IBC

REFERENCES

Klein:2006:MCM

Knapp:1990:EFD

Kobayashi:1998:PDF

Kim:2006:ERI

Kozen:1997:KA

Kurlander:1995:EIS

Katzenelson:1992:TMT

Jacob Katzenelson, Shlomit S. Pinter, and Eugen Schenfeld.

REFERENCES

Kruskal:1988:ESM

Knoop:1994:OCM

Kieburtz:1979:CCS

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1988:DSC

Kennaway:1989:CDS

Kobayashi:2010:HTS

Knedler:2007:HRA

Knoop:1996:PFE

Kfoury:1993:TRP

Kuperman:2000:ATA

Kalvala:2009:PTU

Kasikci:2015:ACD

REFERENCES

LaLonde:1981:CSC

LaLonde:1983:TCL

LaLonde:1984:TCC

LaLonde:1989:DFD

Lamport:1979:NAP

Lamport:1980:CNA

Lamport:1983:SCP

Lamport:1984:UTI

[Lam84] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems. *ACM Transactions on Programming Languages and Systems*, 6
Lamb:1987:ISI

Lamb:1988:CPB

Lamp:1990:WSP

Lamport:1994:TLA

Landwehr:1980:ATS

Larchevêque:1995:OIP

Lahav:2022:WDA

Ori Lahav and Udi Boker. What’s decidable about causally consistent shared memory? *ACM Transactions on Programming Languages and Systems*, 44 (2):8:1–8:55, June 2022. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (elec-
REFERENCES

Lennon-Bertrand:2022:GCI

Ligatti:2017:SRC

Lozano:2019:CRA

Lorch:2022:AAV

Liao:1996:SAD

Lee:2007:DIE

LaLonde:1981:HOP

LeMetayer:1988:AAC

Leeman:1986:FAU

Lee:2009:RFS

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB

Lueh:2000:FBR

[LGAT00] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Fusion-based register allocation. ACM Transactions on
REFERENCES

Lycklama:1991:FCF

Lindstrom:1979:BGC

Lhotak:2008:RAB

Lin:1993:PIA

Liu:2019:RIP

Lin:1993:PIA

Liu:1999:SVF

Liu:1999:SVF

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Volume and Issue</th>
<th>Year</th>
<th>Pages</th>
<th>Journal</th>
<th>CODEN</th>
<th>ISSN (print)</th>
<th>ISSN (electronic)</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Levanoni:2006:FRC

Leung:2001:STC

Lieberherr:2004:TOS

Lim:2013:TSG

Lepigre:2019:PSC

Luckham:1979:VAR

Leverett:1980:CSD

Lindstrom:1981:RRB

Gary Lindstrom and Mary Lou Sofka. Referencing and retention in block-structured coroutines. *ACM Transactions on Programming Languages and Systems*, 3
REFERENCES

Liskov:1983:GAL

Lamport:1984:HLC

Lang:1998:SAE

Levi:2003:MSA

Li:2004:ATI

Liquori:2008:FME

Liu:2009:DRE

Liu:2005:OAA

Yanhong A. Liu, Scott D. Stoller, Ning Li, and Tom...

Lampot:1982:BGP

They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the encrypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

Liu:1998:SCI

League:2002:TPC

Lengauer:1979:FAF

Li:2020:PAS

LeCharlier:1994:EEG

Baudouin Le Charlier and Pascal Van Hentenryck. Experimen-

Lobo-Vesga:2021:PLD

Lipton:1983:VLP

Leivent:1993:MFT

Liskov:1994:BNS

Liu:2021:ICU

Lee:1998:PAF

REFERENCES

Li:2022:FGS

Mallgren:1982:FSG

Merlin:1983:CSS

Millstein:2004:MTH

Morris:2009:TTN

Misra:1982:DGA

REFERENCES

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

Martelli:1982:EUA

Myers:1989:RRA

Markstrum:2010:JDP

Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Masticola:1995:LFM
REFERENCES

(Morgan:1996:PPT)

(Mohan:1981:TCF)

(Moitra:1983:TCA)

(Monniaux:2008:PVF)

(Morgan:1988:SS)

(Moller:2007:SVX)

(Muller-Olm:2007:AMA)
REFERENCES

REFERENCES

REFERENCES

Morris:2008:DNF

Moret:1980:AVR

Matsushita:2021:RCB

Muller:1992:MLR

Muller:2021:ISS

REFERENCES

REFERENCES

[Nguyen] Thi Viet Nga Nguyen and François Irigoin. Efficient and effective array bound checking. *ACM Transactions on Programming Languages and Systems,*
REFERENCES

REFERENCES

REFERENCES

(151)

Ohori:2007:PTM

Ogasawara:2006:EED

Owicki:1982:PLP

Oh:2016:SXS

Odersky:2004:GE

Oppen:1980:P

Ossefort:1983:CPC

O’Hearn:2009:SIH

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and information hiding. ACM Transactions on Programming Languages and Systems, 31(3):11:1–11:50, April 2009. CODEN ATPSDT. ISSN

[Par97] Keshav Pingali and Gianfranco Bilardi. Optimal control depen-
REFERENCES

Paz:2007:EFC

Porter:2015:PFG

Park:1985:NAL

Pera:2021:LFR

Pemberton:1983:TCT

Steven Pemberton. Technical correspondence: On Tanen-

Perrott:1979:LAV

[Per79]

Perry:1990:GEI

[Per90]

Peterson:1982:UAC

Gary L. Peterson. An $O(n \log n)$ unidirectional algorithm for the circular extrema problem. ACM Transactions on Programming Languages and Systems, 4(4):758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of n uniquely numbered processes in a ring. The algorithm requires $O(n \log n)$ messages in the worst case, and is unidirectional. The number of processes is not initially known.

[Pet82]

Peterson:1983:CRW

[Pet83a]

Peterson:1983:NSL

[Pet83b]

Proebsting:1996:DDR

[PF96]

Pratikakis:2011:LPS

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. LOCKSMITH: Practical static

Patrignani:2021:RSC

Poletto:1999:CTL

Paek:2002:EPA

Pip97

Piquer:1996:IDG

Pai:1980:GCR

REFERENCES

Paige:1982:FDC

Pearce:2007:EFS

Park:2004:ORC

Payet:2006:NIL

Pingali:2009:RTP

Palsberg:1995:TSE

Peng:1991:DF

Pinter:1994:POP

[PP94] Shlomit S. Pinter and Ron Y. Pinter. Program optimization and parallelization using idioms. *ACM Transactions on Programming Languages and Systems*,
REFERENCES

REFERENCES

REFERENCES

Pugh:1994:SAU

Pugh:1998:CBA

Palsberg:1995:EIA

Palsberg:2005:ADC

Qian:1995:CR

Qian:2000:SFI

Zhenyu Qian. Standard fix-point iteration for Java byte-
REFERENCES

Rao:1994:RAP

Reiter:1994:HSR

Ramsey:2003:TAB

Rogers:1995:SDD

Richardson:1993:DPL

Reps:1987:SSE

Rinard:1997:CAN
References

Rinard:2003:ESB

Rossberg:2013:MMM

Rong:2008:RAS

Reiss:1983:GCS

Rem:1981:APN

Reps:1986:GEI

Reps:1998:MMT

Reps:2000:UCS

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

REFERENCES

Rugina:2003:PAS

Rugina:2005:SBA

Rosa:2019:AOT

Rinetzky:2008:CPF

Ramanath:1984:JML

Reif:1984:RTS

Raja:1997:CFC

REFERENCES

[Shao:2000:ESS]

[Sager:1986:SPC]

[Sagiv:2007:ISE]

[Sands:1996:TCL]

[Sagiv:2007:ISE]

Spoto:2019:SII

Shi:2022:TCP

Schwartz:1980:U

Schneider:1982:SDP

Schmidt:1985:DGV

Skorstengaard:2020:RAM

Swalens:2021:CCC

REFERENCES

REFERENCES

Sipala:1982:CSB

Sites:1979:CLI

Spoto:2003:CAA

Scott:2006:RNG

Smans:2012:IDF

Schwanke:1988:SR

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java bytecode based on path-length. *ACM Transactions on Programming Languages and Systems*, 32(3):
REFERENCES

Stork:2014:APB

Sokolowski:1987:SHL

Sorkin:1989:TCS

Solworth:1992:E

Sonnenschein:1987:GTS

Soundararajan:1984:ASC

Sansom:1997:FBP

Patrick M. Sansom and Simon L. Peyton Jones. Formally based

Sagiv:2002:PSA

Soisalon-Soininen:1982:IEE

Schlichting:1984:UMP

Shasha:1988:ECE

Skeppstedt:1996:UDA

Sagonas:1998:AMT

Schulte:2005:WDB

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:EEC

Staiger-Stohr:2013:PIA

Snyers:2009:CPC

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of constraint handling rules. ACM Transactions on Programming Languages and Systems, 31(2):8:1–8:42, February 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Schonberg:1981:ATS

Sippu:1983:SEH

Snelting:2000:UCH

Gregor Snelting and Frank Tip. Understanding class hierarchies using concept anal-
Sperber:2000:GLP

Steimann:2018:CBR

Steimann:2022:CPS

Stone:2004:EOL

Saha:2003:IAQ

Shao:2005:TSC

Smith:1996:PTV

REFERENCES

179

(SYN06) Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A

Seo:2007:GDW

Swinehart:1986:SVC

Sanan:2021:CCT

Terauchi:2008:WSE

Tanenbaum:1983:TCT

REFERENCES

(TFK+11) Frank Tip, Robert M. Fuhrer, Adam Kiežun, Michael D. Ernst, Ittai Balaban, and Bjorn De Sutter. Refactoring using type constraints. *ACM Transactions on Programming Languages and

REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Tip:2002:PET

Tang:2000:PTR

Turcini:1984:MLO

Turchin:1986:CS

Thies:2007:STU

Tanenbaum:1982:UPO

Thatcher:1982:DTS

REFERENCES

[vanden88] Jan van den Bos. Abstract interaction tools: a language for user
interface management systems.

** VanderZanden:1996:CIA **

186

** VanderZanden:1996:IAS **

** Vansummeren:2006:TIU **

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

** Vera:2004:FAF **

** Venkatesh:1995:ERD **

** VanRoy:1997:MOD **

REFERENCES

vonHanxleden:2000:BCP

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Vasconcelos:2022:TDM

Volpano:1991:TCS
vandenBos:1981:PCB
[188]

VanHentenryck:1995:BTC
[191]

Vakar:2022:CCH
[195]

VonBank:1994:UMP
[199]

VanNieuwpoort:2010:SHL
[203]

Waddle:1990:PTC
[207]

Wallis:1980:ERO
[211]
Peter J. L. Wallis. External representations of objects of user-defined type. *ACM Transactions on Programming Languages and Systems*, 2(2): 137–152, April 1980. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

Wallis:1981:CER

Waters:1991:ATS

Waters:1991:ESD

[Wand:1982:DTC]

[Waters:1983:UFC]

[Waters:1994:CBP]

[Wright:1997:PST]

Walker:2000:TMM

Webber:1995:OFP

Wileden:1990:CEO

[WCW91]

Weihl:1990:LSA

Wetherell:1982:EDV

C. S. Wetherell. Error data values in the data-flow language VAL. ACM Trans-
REFERENCES

Weyuker:1983:ATD

Wagner:1998:EFI

Widom:1993:CTB

Whalley:1994:AIC

Williams:1982:DAF

Williams:1982:FNS

M. Howard Williams. A flexible notation for syntactic definitions. *ACM Transactions
REFERENCES

Winner:1984:UO

Wing:1987:WLI

Wirth:1988:TE

Wellings:2000:IOO

Wand:2004:SAD

Weihl:1985:IRA

Wagner:2016:TIB

Walicki:1995:CCM

Wu:2012:STB

Weimer:2008:ESP

Wolf:1992:GEI

Alexander L. Wolf. Guest Editor’s introduction to the spe-

Wehr:2011:JIT

Wu:2004:ETC

Wu:1995:WCC

Yemini:1985:MVE

[YB85] Shaula Yemini and Daniel M. Berry. A modular verifiable

REFERENCES

REFERENCES

Yahav:2010:VSP

Yang:2002:EEB

Yang:2022:DDZ

Zave:1985:DAF

Zhao:2007:FFS

Zhang:2005:CPT

Zhou:1996:PPC

Neng-Fa Zhou. Parameter passing and control stack management in Prolog implementation revisited. *ACM Transactions on Programming Languages and Systems*, 18(6):752–
REFERENCES

Zhou:2022:RIR