A Complete Bibliography of Publications in ACM
Transactions on Programming Languages and Systems
(TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

23 December 2023
Version 2.152

Title word cross-reference

\(k\) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3

[SRW02], + [Han81a]. \(T^M\) [Bla03]. \(\phi\) [AW82].
\(\|\) [DDDCG02]. \(A\) [DES12]. \(\mathcal{R}\) [JMSY92].
\(\mathcal{R}_{\text{Lin}}\) [VR95], \(\ell\) [ADG+94]. \(O(n \log n)\)
[Pet82]. \(\phi\) [CF95, DR05]. \(\pi\) [ABL03].
-calculus [ABL03]. Exclusion [ADG+94].
-Function [DR05]. Nodes [CF95]. Tree [Han81a]. valued [SRW02].

11 [ND16]. 16 [TGT20].

2021 [Yos22]. 256 [App15].

2021 [Yos22]. 256 [App15].

40 [TGT20].
568 [Han81b].
8 [Ano18].
90 [DP99]. 95 [WJS+00].

Abstract [BGL93, BK11, CMB+95, CFG+97, DGG97, DC22, DLR16, ELS+14, EO80, GS89, HL82, JPP91, KRR18, Lan08, LO94, LV94, LM18, LR13, Loe87, MSJ94, MXZ+22, MP88, SS98, She91, TY21, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Abstraction [BNNN22, CGL94, CL94, Der85, GMH81, GKM20, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, Ell82].

Access [ABLP93, BCC04, KS83, Mis86, NBG13, SR21, HR02, HO07, KSK07, PHP02, PSS05].

Account [ABC+21]. Action [ABC+21].

Accumulation [Bir84, Bir85].

Accumulators [Cam89]. Accuracy [LVRG21, CEG07, HDH02].

Accurate [CG04, VBLG04, VALG05].

ACE [Le 88].

ACM [Ano18, TGT20, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92].

Across [NSD+15].

Action [BKS88].

Active [SR21].

Actor [TCP+17].

Ad [MDCB91, PS08].

Ada [Bak82, Dil90, Hil88, LP80, WJS+00].

Adaptation [Dha91].

Adaptive [ABH06, HOYY18, PXL95, TCVB14, UJ92, RD03].

adaptors [YS97].

Addendum [Bir85].

Adding [ACW90, BN94].

Addition [CBMO19].

Addressing [Hol87, ZP10].

Adaptable [ABB+09].

Adaptable [ABB+09].

Adjustable [WF04].

Æminium [SNS+14].

Adjustment [Dha91].

Adaptive [ABH06, HOYY18, PXL95, TCVB14, UJ92, RD03].

agents [BCC04].

aggregate [LSLR05].

Alarms [Bir85].

Alba [Bir85].

Algorithm [AB81, Bak82, BB79, BAC16, BP92, Dan23, DSW82, Dha91, DP93, GHS83, HL22, Hua90, Hud91, JCO91, LY94, LY98, Lei90, LT79, LV91, MM82, MC82a, Pet82, SH89, TB89, Wis79, BKRW98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKRW05].

Algorithmic [BA81, Bak82, BB79, BAC16, BP92, Dan23, DSW82, Dha91, DP93, GHS83, HL22, Hua90, Hud91, JCO91, LY94, LY98, Lei90, LT79, LV91, MM82, MC82a, Pet82, SH89, TB89, Wis79, BKRW98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKRW05].

Alias [Hor97, HBCC99, RRSY08].

Aliasing [Bir85].

Alternative [Gho93, GH80, Zav85].

Alway [Gri79].

Ambiquity [Tho94].

Amalgamation [KSV96].

Amalgamation [KSV96].

Amalgamation [KSV96].

Amalgamation [KSV96].

Amalgamation [KSV96].

Amalgamation [KSV96].
Analysis [AKNP17, ABE+05, AD98, BNN18, BC85b, Blo94, BE13, Bur90a, CFNH18, CFG19, CDK+18, CMN91, DKKL18, DL93, Deb95, DP97, DC22, DAW88, FPS19, FJK+17, GNS+15, GKM20, GDF23, GJ93, HP96, HL22, HOYY18, Hii88, Hor97, ISY88, Jen97, JJCO19, KD94, LLK+17, LTMS20, Lr13, LHR19, LWR21, McG82, MRGP20, MWB94, MOS07b, OHL+14, OLH+16, Pal95, PO95, PCC85, PP91, RW98, Pur91, RDT83, RRB19, RP88, SJW23, SR95, SSS83, SGL98, SS13, ABB+09, BDFZ09, BAL07, Bla03, Blu99, BCG+07, CSW06, Cha02, CGS+03, CKT86, DDV99, GHB+96, GJ05, GZ04, GCRN11, Ham79, Ham80, Lee86, LSL17, LTMS20, MW80, MDCB91, ND16, OA88, Sam80, Spo86, SM81, SNS+14, Bou05, CRN+08, DHM+12, FGM+07a, JLR810, KV00, LP80, MBT09, PSS05, PCJD08, RC03, SP07, WS97].

approximations [BGP99]. Apt [Moi83].

architected [ZP07]. Architecture [Wal92].

Architectures [Han94, KPF95, NSTD+15, PAS+15].

Arising [Bat84]. Arithmetic [Fis80, GNS+15, Hen83, LDR81, MOS07b].

ARM [FKW98, ADG+21]. Armada [LCK+22]. Armed [ADG+21]. Array [CGT95, CG95, LS79, Per79, RW98, JB06, LSL15, N05, PHP02, RMH06, RR05, ZCG+07]. array-valued [RMH06]. Arrays [BBC16]. Article [Ano18, TGT20]. ASF [VHKO02]. aspect [DWWW08, WKD04]. aspect-oriented [DWWW08, WKD04].

AspectML [DWWW08]. Aspects [Set83]. assembly [AAR+10, MWCG99]. Assertions [BKB80].

Associated [PPS79]. associativity [Cha02]. Associons [Rem81]. assume [HQRT02].

assume-guarantee [HQRT02]. Assumptions [ES97]. AST [GVC15].

Asynchronous [Bag89, GLO88, Mis86, GM12, HR02]. ATL [WS15]. Atomic [WL85, Wei90, AE01].

Atomicity [JLP+14, Wei89, FFLQ08]. Attacks [SBE+19]. Attribute [CP95, hud91, JP81, Jon90, Kat84, KR79, MK94, RD87, WW95, Boy96, CP96, Wu04].

Attributes [HT86]. Author [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].

authorization [FGM07b]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b].

auto [ZP10]. auto-addressing [ZP10].

Automata [BMW91, CBMO19, ES97, Pro95, KV00].

Automata-Theoretic [ES97, KV00].

Automated [GRSK+11, KZC15, KF00, LCK+22, SSFZ+23, Sok87, JNGL10].
Automatic
[AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, DS00, KK98, Le 88, LK02, LS04, MS83, PZJ05, RH87, SSS81, SLC03, She91, VS22, Wat91, Wha94, ABHI11, ATD08, BdlBH99, CRN +08, ZCG +07].

Automatically [Slo95].

Automating [GKL94, MTSS09].

Avoidance [FGL94].

Aware [BPRB23, MQ05].

Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80].

Axioms [Mis86].

B [Han81a]. backpropagator [PS08].

Backtracking [Lin79, VR95, FM87a].

Backward [DL18, Mye18]. Balanced [AS80, PB80, vHK00]. Barrier [CHMY19].

Base [NcS20, LS98]. Based [BPP16, BGL93, Bur90a, CGJ +97a, CI84, CP95, CH90, CPS93, DVLMI5, DLRI6, EGP14, GG85, HT86, JTM98, KAI89, KR91, LFF14, PW98, RTD83, SR95, SGL98, Ste18, SNS’14, TY18, WAT94, WGS92, vPS81, BFG08, BMRO1, BH’M+07, BCG’+07, CTT07, DDV99, EUG07, FF99, HBJ98, JKTT23, KB’C+99, KK07, KC01, LP00, LH08, LGATO0, MTSS09, ML21, MTK21, MH06, PAL98, PPT08, PCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12]. Basic [CGG’+19, GLR83]. Bayesian [HOY18].

BDD [LBH08]. BDD-based [LBH08]. Be [Bee94, Coh91, Wir91, CGO4, LP99].

Behavior [KLS92, GMM99, VBLG04].

Behavioral [LN15, LW94]. Behavioural [SV20].

Being [Cop94]. benefits [GMP’+00].

Better [Gri79, Lam88]. between [BS88].

Beyond [GSW95]. BI [BBTS07].

BI-hyperdoctrines [BBTS07].

Bidirectional [DP93, MMR95, FGM’+07a, GPWZ08]. binaries [STSP05]. Binary [Sip82, DDD05, MMM’+07, RC03, YF09].

binding [ACE96]. Birrell [MDJ05].

Bisimulation [FDY12, MH06, San09]. bisimulation-based [MH06].

Bottom [BGL93, GCRN11]. Bottom-Up [BGL93, GCRN11]. bound [KK07, NI05].

Bounded [ADG’+94, ITF’+22, MXZ’+22, LLOY23].

Bounds [CP17, FNBG20, ISIRS22, PW94, BP12, CEI’+07, RR05, SS05a]. Box [WLBF16]. boxed [CCO4]. Branch [CGJ’+97a, CEG07, YUUW02, YS99].

Branches [WZ91, RC03]. Branching [CBM019].

Buddy [Kan84]. Buffer [Zic94]. bugs [HCS10].

[SA99, BDL’+08, CSM00, FM99, GPF08, KR01, Qia00, SMP10, WR08]. Byzantine [LSP82].

Caching [ABM93, FK85, K86, LST98].

Calculus [Brown06]. calculi [ABS09].

Calculus [ABLP93, BKL ’+97, BN94, Gomi92, Kob98, LBMTT22, Mic19, MRG88, Nel89, Oho95, WM95, ABL03, AH10, BG22, Bou05, Bou06, BCC04, DES12, HR02, IPW01, Jay04, TA08a, KPT09]. Call [DP97, GL80, dBH21, GC01, HL05, KK07, SW97a].

Call-by-Value [dBH21, HL05, SW97a].

Calls [BNN18, Coh83, Coh85, FF08]. Can [Boe85, Coh91, Wir91, CGO4].

Capabilities [SDB20, WCM00]. capability [TA08a].

Capturing [BGOL’+23]. Carlo [FL15].

carrying [AM01]. Case
Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers
[BDFH97, DDH84, HP96, Han94, BKGR09,
RD97, SYN06]. Compiling
[Cha93, CH87, Fis80, Set83, VHK02].
Complementation [CFG+97]. Complete
[BDFH97, WM95]. Completeness [LB17,
TB95, WGS92, dBH21, Wu04, WGS93].
Complementation [KB01]. Complexity
[BBG22, Fes95, ISIRS22, Le 88,
dBH21, RRSY08, SSD09]. component
[LS98, YS97]. component-base
[LS98]. Components
[CIJGP18]. Composable [DD21].
Composing [AL93, HKMN94]. Composite
[Fea87]. composition [AH10, Pau01].
Compositional [DSFG21, Fos96, Jon94,
JTM98, LFF14, SZLY21, ZS021].
Compositually [Dan23]. compressed
[BMW91, CSCM00, DKV07].
Computability [HMS06]. Computable
[PK82]. Computation
[AC94, BG22, BOV85, DP82, HS94, LST98,
P97, ABB+99, AE01, DR05, LK02,
SWU10, SGL97, Hal85]. computational
[ATD08, SSD09]. Computations
[DW89, MC82b, VSS94, YS91, LSLR05,
Mon08, YF98]. Computer
[HCHP92, Wol92]. Computer-Assisted
[HCHP92]. Computers
[Fei87, LK02]. Computing
[ANP89, CFR+91, CF95,
KM81, HBV+99, MGG00]. Concept
[Tur86, ST00a]. Concepts
[Eug07]. Concerning
[Sha82]. Concrete
[Bar81]. Concurrency
[ADG+21, BG98a, Lam90, LMM21, SDD21,
Wei89, BCF04, Mil85, TA08a, CPS93].
Concurrent [BC91, Car95, CIJGP18, Cla80,
C86, CPS93, CFM94, DSFG21, DGPM97,
FT94, Hal85, HSP83, HW90, Her93, JTM98,
Kar84, Lam83, LFF14, LCK+22, MSM+16,
OL82, Pet83a, Pet83b, RY88, SZLY21,
Sku95, SNS+14, AE98, AE01, AA04,
BBYG+05, BGP99, CSW06, JPS+08, RS97,
SRM10, YS10]. Concurrent-by-Default
[SNS+14]. Concurrent-Program [FT94].
Condensation [JTM98]. Condition
[HW90]. Conditional
[Boy96, GGSV22, WZ91, Dam03].
Conditioning [OGJ+18]. conditions
[KWL08]. Conference [Wol92]. confined
[GPV07]. Conflict [Cas95]. Conjecture
[KPS92, Sag86]. Conjoining [AL95].
conservative [Hai05]. considered
[Go04]. Consistency [FSH23]. Consistent
[LB22, XBS020]. Constant
[CIJGP18, CCG+19, Coh91, WZ91, Wir91].
Constrained
[BG98a, DAW88, PS96, Zie94, LPP01].
Constraint
[Bo01, DGPM97, DDV99, HHL99,
NSTD+15, Pal95, PW98, Ste18, Apt00,
BMI01, DPPR00, HH04, GHB+96, HPMS00,
SS08, SS09, SP07, SSD09, dHB+96].
Constraint-Based
[PW98, Ste18, DDV99, SP07].
Constraint-Oriented [Bo01].
Constraint-Solving [NSTD+15].
Constraints
[AKP94, DFR15, HG83, Mye90, BA08,
RM10, TFK+11, Van96b, VHM+01, Van96a].
Construct [Ans87, BS83, Kat93].
Construction [ADGM91, HIT97, LaL81,
MB83, RH87, SL92, CMS03, GC01].
Constructions
[LBMTT22]. Constructive
[Loo87]. Constructs
[AR84, DJP+16, Par90]. Containerless
[Ste22]. Context
[GH80, KBB22, LTMS20, LWR21, Ode93,
Pd19, PK80, RMM21, RTD83, VP23, Rep00].
Context-Dependent [Ode93, RTD83].
Context-Free [GR80, Pad19, KBB22].
Context-sensitive [Ram00, VP23, Rep00].
Context-Unbounded [LWR21]. Contexts
[Ode93]. Contextual [TDA+23].
Continuation
[BDM15, Wan82]. Continuation-Passing
[BDM15].
Continuations [BDM15, HF87].

D. [Bur91]. Data [AMT14, ANP89, AM85, Bae84, BNNN22, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, E080, FL81, GMH81, GEGP17, HL82, Hen88, Hol87, Jen97, JCO19, H92, K83, KZC15, KK98, KD94, LaL9, LO94, LN02, LVRG21, Loe87, Mal82, M89, MCT96, MP91, QG95, RCRH95, RP88, SSS81, SGL8, SM81, TWW82, WL85, Wei89, Wet82, Wey83, CFP+04, DHM+12, DGS97, HBJ98, KBC+99, KF00, LK02, Rep00, SP07, VALG05, YUW02, ZGZ05, Pur91].

decrease [LDK+96]. Deducing [TB95].
deduction [LMD98]. Deductive [MW80].
Deep [YW22]. Default [SNS+14, LMM21].
Deferring [MTSS09]. Defined
[Wal92, Wal<80, Wal81]. Defining [Ode93].
definite [RKRR04]. Definition
[Bou92, BWP87, C<84, CD79, Fid93, HS94,
WCW90, WCW91, Wol94]. Definition-Use
[HS94]. Definitions
[BS86, Wil82b, Dam03, VHKO02, Si89].
Delay [BG89b]. Delayed [KPF95, RC03].
Delayed-Load [KPF95]. Delaying [Kau84].
Deleting [GP81]. Delimited [BDM15].
Demand [FPS19, GSW95, PA85, PA86a,
PA86b, PF96, SR95, DGS97]. Demand-Driven
[GSW95, PA85, PA86a, PA86b, PF96, DGS97].
Denali [JNZ06]. Denotational
[AB94, FA93, Gud92, MSJ94, NF89, Sie85, Sch85, dBB85].
Dependence [BGH+13, CFR+91, FOW87,
HGB+09, HRB90, ML21, PB97, PW98,
Wol94, RAB+07]. Dependence-based
[ML21]. Dependencies [PW94].
Dependenc<80, HBS22, CSS99].
Dependency [Blu99]. Dependent [LS80,
Miq19, NBG13, Ode93, RTD83, Rob79].
dequeues [Chi05]. DeRemer [Sag86].
Derivation [BKB80, Cat80, DSW82, Gie83,
HIT97, Kna90, TM93, Ano02a]. Derivative
[JKT23]. Derivative-based [JKT23].
Deriving [Wan82, Bou06]. Describing
[AW85]. Description [McG82].
Descriptions [Boe85, BKL+97, Cat80, Ano02a].
Descriptors [Hol87]. Design [BPP16,
BCD+15, BO94, DF80, DF81, DC22, FT94,
HM84, KKM90, LDM07, ML80, RCS93,
RL98, SYK+05, Bou05, MTSS09, CMLCO6].
design-pattern-based [MTSS09].
Designing [LaL89, ALZ03]. Designs
[AW85]. destructive [SRW98]. Detect
[ISY88]. Detecting
[GSW95, HCS10, Sch85]. Detection
[CM86a, Hua90, MC82a, MC82b, TM93,
AFF06, HDH02, PFH11, PCJD08, XA07].
Determinacy [TK94]. determination
[DS98]. Determining [MF88].
determinism [TA08a]. Deterministic
[KR79, Mye18, YGRBA23, DL18, Tar07].
Development [BKB80, Col84, Fie87,
Jon83, ML80, PPS79, Wil82a]. Diagnosis
[BF87]. Dialect [Mul92]. Dialects [CP95].
dialogue [BCM99]. DIG [FSM87].
difference [BA08]. Differencing
[PK82, RSL10]. Differential
[BKOKB13, TDA+23, ZP07].
Differentiation [Sha82, VS22]. Diffusing
[MC82b]. Dijkstra [BN94, Nel89].
Dimensional [Hi88, GPWZ08]. direct
[YK97]. Directed [BDJ13, DMM88, Gud92,
Han94, Set83, SYHH07, OKN06].
Direction [Dar90]. Directly [Hob84]. Director
[KS88, KS89]. Directory [Han81b].
Discipline [VMLY22, FMG07b].
Disciplines [SS84]. Discovering
[FJK+17]. discovery [PZJ05]. Discrete
[Bar81]. Discrete-Event [Bar81]. Disintegration
[NC20]. Disjunctive [Jen97, JJC019].
dispatch [DAS98, MFRW09]. dispatching
[GZ07]. Distance [Wol94, ZSD09].
distribute [CRN+08]. Distributed
[ABL<93, AF84, Apt86, AW85, BKS88,
BCEM15, Bur84, CJK95, CM86a,
CBDGF95, CS95, DAW88, Dug99, FLBB89,
Fra80b, GHS83, HSG17, Hua90, HM84,
Jon94, Kat93, KK98, KRS84, KKM90,
Lam84, LS83, MC82a, RCRH95, SS84,
Sch82, TM93, TCP+17, Zav85, ABL03,
FM87a, HVB+99, KGM04, LK02, MDJ05,
Pie96, Fra80a, Moh81, VHB+97].
Distributed-Memory [KKB98, RCRH95].
div [Bou92]. Dive [YW22]. Divergence
[SdSCP13]. DJ
[DR05, SGL96, SGL98, UM02]. DJ-graphs
[UM02]. DLLs [Dug02]. do [SS05a].
Documentation [MH86]. does [DMP96].
dolce [MP10a]. Dollars [HL22]. Domain
[LM18, Tra08, RM07, SS05a]. Domains
[CMB+95, ELS+14, GS98, FH04, GLMM05]. **dominance** [Ano02b, DVD07]. **dominator** [SGL97]. **Dominators** [LT79, Ano02b, BKRW98, BKRW05]. Don’t [AKNP17]. **Down** [HL22, SZLY21]. **drf** [MSM+16]. **Driving** [CM84, MS88]. **Drive** [FK80]. Driven [BL87, CS87, GSW95, JJCO19, PA85, PA86a, PA86b, TGT18, YMB97]. Dually [LMI08]. Dummy [Lam88]. During [BKB80]. DyC [GMP+00]. Dyck [LZR22]. Dynamic [ACPP91, AGT89, ASF17, BNNN22, BB79, BDM15, Bre89, CGG+19, CHMY19, CTT07, DS98, Dug99, HSS+14, HK05, KRS90, KTR97, RCRH95, Ven95, WR08, dBB85, ACE96, BP12, CEI+07, DDDCG02, GZ07, MMM+07, PHE99, SJP12, SHB+07, SYK+05, SYN06, WDK04, ZGZ05].

WCW91, ZSS20, ADR06, CP96, CG04, GJ05, LDM07, Leu04, ST00b, SYK+05.

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

Evaluations [BDH+16]. Evaluator
[GD92, JP81, KR79, Le 88]. Evaluators
[CP95]. Event [Bar81, BPRB23, YMW97]. event-driven [YMW97]. Events [Bal94].

F [MWCG99]. Facets [ASF17]. factoring [DRSS96]. Failure
[BN99, Dar90, GHH+19, Kar84]. Failure-Free [Kar84]. Fair [BN94, PR07].

F [MWCG99]. Facets [ASF17]. factoring [DRSS96]. Failure
[BN99, Dar90, GHH+19, Kar84]. Failure-Free [Kar84]. Fair [BN94, PR07].

F [MWCG99]. Facets [ASF17]. factoring [DRSS96]. Failure
[BN99, Dar90, GHH+19, Kar84]. Failure-Free [Kar84]. Fair [BN94, PR07].

F [MWCG99]. Facets [ASF17]. factoring [DRSS96]. Failure
[BN99, Dar90, GHH+19, Kar84]. Failure-Free [Kar84]. Fair [BN94, PR07].

F [MWCG99]. Facets [ASF17]. factoring [DRSS96]. Failure
[BN99, Dar90, GHH+19, Kar84]. Failure-Free [Kar84]. Fair [BN94, PR07].

F [MWCG99]. Facets [ASF17]. factoring [DRSS96]. Failure
[BN99, Dar90, GHH+19, Kar84]. Failure-Free [Kar84]. Fair [BN94, PR07].

F [MWCG99]. Facets [ASF17]. factoring [DRSS96]. Failure
[BN99, Dar90, GHH+19, Kar84]. Failure-Free [Kar84]. Fair [BN94, PR07].
Fixpoint [AC94, Qia00]. Flexible
[AD98, Hud91, MSM*16, WG98, Wil82b,
dJKVS12, IV06, KGMO04]. Floating
[CK94, Fat82, SBB*19, Haut96, Mon08].
Floating-Point
[CK94, Fat82, SBB*19, Haut96, Mon08].
Floating-point
[MMG00]. Flow
[AR90, AD98, ASF17, Bac84, BC85b,
Bur90a, DP97, DP93, FJKA06, Hor97, KD94,
MRR95, NBG94, PPR+15, Pur91, RSPS23, Set83, SSFZ23, Wet82,
DGS97, HR02, HY07, KBC+99, Pal98, PS03,
RRSY08, RP88, SCP23, TZ07, WJ98].
Flow-Insensitive [Hor97, FJKA06].
Flowback [CMN91].
Flowgraph [LT79].
Flows [Kna90].
Floyd [Yin11].
Fly [CF95, BA84, LP06, PBK+07, URJ18].
Focusing [EKD23]. fold [RKR+04].
Folklore [LY98].
Font [FK85].
Foo [FA93].
ForeC [YGRBA23].
foreign [FF08].
Foreword [Mye17, Mye18].
Form [AK87, BOV85, BM94, CFR*91, GSW95,
Pal95, PG21, GPFO8, KCL*99].
Formal
[ADG+21, BS86, BDP14, CB80, CD79,
Fid93, Gie83, HIT97, Kna90, Lee86, Mal82,
MH86, SSFZ+23, Sha82, WP10].
Formalism [Pee21]. Formalisms [PCC85].
Formalization [BPP16]. Formally [SP97].
Format [Wat83]. Forms [DS83]. formulas
[RSL10]. formulations [RSO7].
Fortran
[AK87, DP99].
Foundation
[KRR+18, Ban11, RAB*07, Rhi03].
Foundational [HRV+23, AM01].
Foundations
[GTWA14, LW93, AAR*10].
Fractal
[MPM03]. fractional [Boy10].
Frames [MPLM23, SPJ12]. Framework
[BGL93, Gie83, HRV+23, JW17, KRR18,
NSZS13, NSTD+15, OHL+14, SGL98, TN19,
ATD08, DGS97, GM99, GZ04, GC01,
Leu04, PS08, RKKR04, TP04, VBLG04,
X07, ZCG*07, ZP10, vHK00].
Frameworks [MRR95, KK07]. Framing
[BNN18, BNNN22]. Francez
[Fra81, Moh81, Moi83]. Free
[AP94, GEGP17, GHR80, Her91, Kar84,
Kob98, Padi19, JJD98, KPB22, KSV96].
freedom [KS10]. Fresh [GMN+21].
frontiers [ANO2b]. full [GB99]. Fully
[JPP91, TY21]. function [DR05, FF08].
Functional
[AFV98, Ban87, Blo94, Bout05,
Bur84, DW89, FL91, ISY88, JPP91, WM95,
Web95, Wil82a, ABH06, Bou06, DWWW08,
DF98, PS08, San96, SP97]. Functions
[AKP94, AK82, Bou92, PB80, SM99, TY21,
Lee09, MBC04, MB99, MT08, PPT08].
Further [CM93]. Fusion
[JL20, LGAT00]. Fusion-based
[LGAT00].
G. [Tie88]. Garbage
[BA84, CN83, DSW82, ISY88, JCM19, TM93,
URJ18, WLBF16, Wis79, YYW22, BBG+05, BALP06, HDH02,
LP06, Piq96, TSBR08]. Garnet [VHM+01].
General
[BGL93, CHMY19, HSS+14].
General-Purpose
[HSS+14]. Generalization
[NeI89, LMD98]. Generalized
[Ans87, BS83, GKM20, KD94, Lin79].
Generalizing
[BBY87, GSA52, KSW85]. General
[SL98]. Generated
[Sl05, dJKVS12]. Generating
[HB204, HT86, Jef03, LMC13, JNZ06].
Generation
[AGT89, AS80, BOV85, BM94,
DS83, DS90, GF85, GVC15, HRK92, HK94,
Pro95, Rei83, Rob79, She91, ST00h, UJ92,
Das98, MSRR00, PHEK99]. Generative
[Gel85]. Generator
[JKT23, PS79].
Generators
[Cat80, GHK81]. Generic
[LV94, DDM11]. generics [IV06].
Geometry
[CR87]. Geoffrey [N86]. GJ
[IPW01]. Glanville [MSRR00].
Global
[Bac84, Dha91, GHBT96, OHL+14, PK80,
PS92, Sch85, Sor89, DHB+96, CS04,
KBC+99, DS88]. GLR [SJ06]. Goal
[Dar90, Gud92, SYYH07]. Goal-Directed
[Gud92, SYYH07]. Goal-Oriented [Dar90].
Goto
[CF94]. GPU
[BCD+15]. Gradual
[TGT18, TGT20]. Gradualizing
Grammar [CI84, CP95, GF85, JP81, KR79, Web95].
Grammar-Based [CI84].
Grammars [BS88, JKT23, Jon90, Kat84, LaL81, RD87, RH87, Tai79, WW95, Boy96, CP96, Wu04].
Grammatic [Tho94].
Grammers [BB94, MK94].
Granularity [RRB19].
Graph [Ass00, Bee94, BCT94, CFR91, FOW87, KKSD94, KLS92, LZR22, MC82a, Son87, CTT07, GC01].
Graph-based [CTT07].
Graphic [Mal82].
Graphical [VHM01].
Graphs [GKM20, HRB90, KPS92, Kna90, SGL98, DR05, JC97, KSK07, SGL96, UM02].
grid [VWJB10].
Grimmer [Ano18].
groundness [CSS99].
Grover [BH99].
growth [BALP06].
Guarantee [GEGP17, LFF14, HQRT02].
guarantees [LS09], guard [MP07].
guarded [SP07], Guardians [LS83].
Guards [Ber80].
Guest [FP02, OP04, DeM83, Per90, Rep86, Wol92].
Guide [App94a, BDH16].
guided [OLH16].
guiding [VALG05].
Hackers [App94a].
Hancock [CPF04].
handle [VJB12].
Handling [CECE23, Hau96, Ldr81, Pin96, SSS83, UM02, YB85, YB87, YR88, CRN*08, LS98, LP80, SSD09, Hen83].
Hard [Hor97].
Hardware [BKL+97, Mis86].
Hare [Dan23].
harmful [Gor04].
Hashing [PB80, Duc08].
Haskell [GRSK+11, HHPW96].
Heap [KSK07, BALP06, KF00, YS10].
heap-manipulating [YS10].
Heavily [BG89a].
Hennessy [CM93, WST85].
Herding [AMT14].
Heuristic [SL92].
hiding [LN02, OYR09].
hierarchic [AG04].
Hierarchical [BA99, CP95, CD79, AY01, CP96].
hierarchically [MBC04].
hierarchies [ST00a, Van96a, Van96b].
hierarchy [KF00].
High [Cam89, Fat82, LSM*16, URJ18, CMS03, VWJB10].
High-Level [Cam89, Fat82, CMS03, VWJB10].
High-Performance [URJ18].
Higher [AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97].
Higher-Order [AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97].
Highly [Her93, Skn95].
Hoare [Apt81, GM81, LS84, Sok87, Yin11, dBH21].
Hoc [MDCB91].
Holistic [ZMVPJ17].
Homomorphic [LLOY23, VS22].
Homomorphisms [HIT97].
HOP [BLRS12].
Hot [VP23].
Hybrid [KF10, KS10].
Hyperball [LM18].
hyperdoctrines [BBTS07].
I-Structures [ANP89].
I/O [Car95].
Icon [GHK81, Gri82].
id [Bee94].
idempotency [KOE06].
Identical [FLBB89].
Identification [BGH+13, SBE+19].
Identifiers [SSFZ23].
identify [MAM+07].
Identifying [Ram99, SGL96].
Idioms [PP94].
IDL [Lam87].
IEEE [Fat82].
Ignorance [GNS*15].
Illustrative [Oss83].
Immutability [RSPS23].
Impact [BHM+19, OLH+16, CTK86].
Imperative [AB20, ABPS98, DFR15, Gro06].
Implementation [AKBLN89, AOC*88, BCD+15, Bou88, Bre89, BS83, CM86b, GMH81, Gaz83, Lin93, MDCB91, PXL95, RL98, WL85, CMLC06, FM87a, GB99, LDM07, LPS004, Tra08, Zho96].
implementations [BBF+11, BFGT08, DF98].
Implemented [DB85].
Implementing [BR97, Her93, HW82, Skn95].
Implications [Fat82].
Implicit [BH05b, SJP12].
Implicit-signal [BH05b].
Improve [VP23, KF00].
Improved [GHR80, Mur91, KKO7].
Improvement [MS83, San96].
Improvements [BCT94].
Improving [CK94, CMB+95, MCT96, SSFZ+23, TCP+17, WS97]. impure [Pip97].
Incomplete [MRGP20, GLMM05].
BALP06, CGS+03, CMS03, CSCM00, FFLQ08, FM99, GPF08, IPW01, KKN06, KGM004, KN06, KR01, LST02, LP06, LS08, Loc13, MMV+01, MME+10, MFRW09, MMG00, NR06, OKN06, Qia00, RRB19, SLC03, SMP10, SBE+19, SA99, SYK+05, TN19, TSL+02, WR08]. Java-like [KN06]. JavaCOP [MME+10]. JavaGI [WT11]. join [WKD04]. JR [KGMO04]. Jump [LS80, RS84a]. Just [DLR16, TN19, SYK+05]. Just-In-Time [TN19, DLR16, SYK+05]. JVM [HO07].

Language [ACPP91, AO+88, Ano18, ABPS98, BS86, BPP16, BO94, Bor81, BC91, DVL015, Fat82, Foa87, FFF+18, GSS+18, Gud92, Hal85, HSG17, JMSY92, JPP91, Kais91, LVRG21, McG82, Per79, PPS79, RTD83, RCS93, RKW+23, Sp06, SNS+14, SDD16, Tur84, Wet82, Win87, YS91, YBS7, dJKVS12, van88, Bov05, BSVGF03, CFP+04, DWWW08, DF98, FM99, Gro06, HJ98, KN06, LP99, MF09, MMCF99, PPT08, PHEK99, Tra08, VHKO02, HCW82, YBS8]. Language-Based [Kai89, RTD83].

Large-scale [ZSS20]. Lattice [AKBLN89, MMR95, FH04]. Lauer [GM81]. Layout [KK98, LVV+83, GPW08, KV00]. Lazy [AB93, FKW00, HKR94, Huv91, ITF+22, TCVB14, Chi05]. LCF [Sok87]. lead [SS05a]. Leader [Hua93, KKM90]. leak [HH02]. learned [VHM+01].

Learning [CGJ+97a, HOYY18, JJC019, SR21]. Least [AB81, Bac84]. Least-Cost [AB81, Bac84]. Left [FKW98]. Left-Linear [FKW98]. legacy [NCH+05]. length [SMP10].

Live-Structure [MWB94]. Liveness [AC90, GC86, OL82, RY88, HDH02]. LL [BF87]. LLVM [HL22]. Load [KPF95].

Loaded [BG89a]. Local [BDFZ09, CBDGF95, PT00, SDB20, TSBR08, Wei89, Dan03, San96]. Locality [BAC16, MCT96, VALG05, ZSD09]. Locally [AB81, Bac84, Min84]. locating [JNGG10].
O [ABPS98, Car95]. Object
[DF84, HU96, KH92, Ryu16, Ste22, Wcw90, Wcw91, Bsvgf03, DMM01, Dddcg02,
FM99, Gpwzo8, Hbmo6, Jps+08, Lps004, Pqg96, Wjs+00]. Object-Based
[Hu96, Ryu16, Ste22, Bsvgf03, DMM01, Jps+08, Wjs+00]. Object-Oriented
[AM85, CjK95, Hf87, Hw90, Her93, Sm89, VhB+97, Wal80, Wal81, Win84, Gvpv07,
Hbj98, Kfo00, Sto04, Wjs+00, Sku95].

obligations [DSW11]. Observability
[Gap83]. Observation [Lwr21].

Observations [Sha82]. Obsidian
[COE+20]. Occur [AP94]. Occur-Check-Free [AP94]. Octagons
[GMN+21]. Off [Sbb+19]. Offline
[CG04, Gj05]. Old [AL94]. Old-Fashioned
[AL84]. Omnissemanatics [CEG23].

On-Line [Bal94]. On-The-Fly
[CF95, BAH4, Urj18, Lp06, Pbk+07]. One
[Bad82, Bg89b, Vhm+01]. One-Pass
[Bad82]. one-way [Vhm+01]. online
[CG04, Hvhd07]. only [Pzj05]. oo
[Rsps23]. Opacity [Gq95]. OpenJdk
[Yw22]. Operating
[HLH+23, Hm84, Bcp08]. Operational
[Brls12, Han94, Mf90]. Operations
[Akbln89, Ck94, Lee86, Ls79]. Operator
[Cmplp23, Csv01, Hen83, Ldr81].

Operators [Ive79, She91]. Optimal
[Bov85, CGST95, Fk85, Jcmm19, Krs94,
Lar95, Pbh97, Haji98, Jnz06, Ksv96,
Msrr00]. optimality [CP96]. Optimally
[Bl94a]. Optimistic [Pm04].

Optimization [Bprb23, Bee94, Bbc16,
Bl94, Bacr16, Bf93, Df84, Dp97, Ddh84,
Dha91, Dss88, Fow87, Hg83, Hooy18,
Pem83, Pp94, Rrb19, Ss82, Sor89, Tvs82,
Web95, Ass00, Bkh07, Kbc+99, Kf03,
P08, Tva07, Zp10, Cg95, LaLs4, Okn06].

Optimization-Aware [Bprb23].
Optimizations [Cc95, Jsb+12, Cgs+03,
Ckt86, Gmp+00, Syk+05]. optimize
[Dmm01, Vbld04]. Optimized
[Cm93, Cop94, Hen82, Wst85, Ds98, Um02].

Optimizer [Df80, Fss83, Hrl+23, Df81].

Optimizers [Gie83]. Optimizing
[Ceg07, Kmm+98, Lloy23, Lslr05,
Mls0, Ns13, Qr00, Bgkr09].

Or-Parallel [Gj93]. orchestration [Pe08].
Order [Ac94, Ad08, Bur84, CjK95, Dp97,
Djp+16, Jpp91, Js94, Ss98, Bbts07, Df11,
Fps19, Mplm23, Sks11, Sv19, Sp97].

Ordering [Fsh23, Gs99]. Organization
[Han81a]. Oriented
[Bor81, Dar90, Els82, Fff+18, Gtwa14,
Gkl94, Gp81, Hn96, Ryu16, Sm81, Ste22,
Tur84, Yb87, Yb88, Bsvgf03, Dwww08,
Dmm01, Jps+08, Wkd04, Wp10, Wjs+00].
origns [San09]. OSI [Cdfp89]. Output
[Ber80, Bss3]. overflow [Koe+06].
overhead [Bp12, Ss96]. overlays [Swu10].
Overload [Bak82]. overloading [Ss05b].

Overview [Aoc+88]. ownership
[Dmm11, Ss96]. Oz [VhB+97].

Package [Hil88]. Paper [Gm81]. Parallel
[Anp89, Bg22, Bov85, B094, B13,
Cha93, CGST95, Cmmn91, Cl94, Ds83,
Fos96, Glo08, Gj93, Gpa+01, Hcph92,
Htt77, Jf81, Kna90, Lhr19, Mis94,
Ns13, Oa88, Rao94, Ss88, Vmly22,
Ygrba23, Bbyg+05, Cg86, Gb99, Hbj98,
Ksv96, Lk02, Mv+01, Rr03, Yf98].

Parallelism [Burr84, Gp95, Ksv96, Nb99,
Pw94, Tcvb14, Ybl16]. Parallelization
[Bac16, Bdz13, Pp94, Bdbh09, Ham+05].

Parallelizing [Hp96, Me97, R97].

Parameter [Gap83, Zho96].

Parameterization [Tww82].

Parameterized
YS10, Yin11, dHB+96, Bur84, Lam80].

PROLOG
[LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MWB94, NF89, Zho96].

Promotion [Bir84, Bir85].

[AFdR80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Osh07].

Proof-carrying [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, HRV+23, JW17, LY98, Oss83, GRSK+11].

Propagation [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CIJGP18, Kar84, LM18, OL82, RR88, TB95, Wei89, YS10].

Prophecy [LM22].

Proposed [Fat82].

protosima [MP10b].

Protected [PAS+15, WJS+00].

Protocol [SL92, YS97].

Protocols [MB83, RKW+23, BFGT08, SS96].

Prototype [WCW90, WCW91].

Prototypes [HW82].

Provably [SDB20, GB99].

Provenance [ZSS20].

Provenly [AAD+07].

Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Pruning [BN99].

PSG [BS86].

PSO [FSH23].

Publish [Eug07].

Publish/subscribe [Eug07].

Pure [BNN18, HU96, Pip97, Tar07].

Purpose [App94b].

Pushable [HS+14, Sp08].

Pushdown [CBMO19, JKT23].

PYE [TN19].

qualifiers [FJKA06].

Qualitative [CFNH18].

Quality [BHM+19].

Quantification [Vol91, Bur91].

Quantified [Gro06, STS03].

Quantitative [CFNH18].

Quantum [FDY12, HRL+23, BH99, Yin11].

Queries [Bal94, CFG+19].

Queuing [BB79].

Quiescence [CM86a].

R [CKT86, KMM+98, AW82].

race [AFF06, PFH11].

Races [KZC15].

Random [AS80].

Randomized [TOUH21].

Range [CG95].

Rank [Dam03].

Ranking [Lee09, TOUH21].

Ratio [CK94].

rational [GS11].

rationale [CMLC06].

Reach [FKW98].

Reachability [LZ992, NS13, TOUH21].

Reactive [DFR15, AG04, DGG97].

read [AE01, PZJ05].

read/write [AE01].

Readable [Spo86].

Reading [Pet83a].

Real [AL94, MMG92, RS84b, Gh97, HK07, LS98, YMW97].

Real-Time [MMG92, RS84b, Gh97, HK07, LS98, YMW97].

realities [Gor04].

Reals [DK17].

Reasoning [AKOB13, BLRS12, BDG97, Lam88, LN15, Rao94, SDB20, dPBH21, TSB08].

receive [Gor04].

receptive [ABL03].

Recipe [AL94].

reclassification [DDDCG02].

recognition [ATD08].

Recognizer [GHR80].

Recognizing [BL94b].

Recombination [Kau84].

Recombination-Delaying [Kau84].

Recompilation [BT93, SK88, Tic86, Tic88].

Reconciling [HU96].

Reconstruction [YR94].

Record [LS79, Oho95].

Recovery [AB81, ACS84, Bae84, BF87, GH97+19, PK80, Ric85, dJKV12].

recurrences [VJB12].

Recursion [AK82, Col84, Hen93, KTU93, Mis94, YK97].

Recursive [AC93, AK82, Ban87, CFG19, Coh83, Coh85, LBN17, Sij89, ZO22, ABE+05, AM01, CF04, Dug02, Pal98].

Recursively [BE13].

Reduce [BN99, MYD95, BALP06, KOE+06, SS96].

reduced [SG04].

Reducible [Hav97, JC97].

Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mul92, NN86, CSV01].

Redundancies [Sor89, D88].

redundancy [KCL+99].

Redundant [Coh83, Coh85].

Reentrant [Bob80].

Reexamination [CG95].

Refactoring [Ste18, TFK+11].

Reference [Bob80, Pea21, Wis79, KSK07, KOE+06, LP06, MDJ05].

reference-counting [LP06].

References [Han92, TGT18, TGT20, SV96].
Referencing [LS81]. Referential [QG95].

Refinement [BBF+11, BKL+97, BCEM15, CM86a, DGL+79, EKD23, GEGP17, JLP+14, MRG88, SL92, AG04, QG95].

reflecting [HS11], reflection [SW97a].

Regeneration [SR21]. Region

[TB98, SYN06], region-based [SYN06]. regions [RR05]. Register

[BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07].

Reliability [LM18, WN08].

Regenerating [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].

Registering [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].

Register-based [SYN06]. regions [RR05].

Reliably [TCP+17]. Regular

[CC97, HVP05, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07].

Registering [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].

Regularly [ABC+21]. Relation

[BNL17, MTG80].

Relational [BNNN22, BKOZB13, CS80, GS98, TLHL11, JJD98, JLR510]. Relations

[ELS+14, HT86, LH85]. Relationship [BS88]. Reliability [LM18, WN08].

Reliably [TCP+17]. Rely

[GEGP17, LFF14, SZLY21].

Rely-Guarantee [GEGP17, SZLY21].

Rely-Guarantee-Based [LFF14].

Remembrances [PM09]. Remote

[BCP08, SG90]. Removal [AK82].

Rendezvous [Cha87]. Renvoise

[Sor89, Dha91, DSS88]. Reoptimization

[PS92], reordering [YUW02]. Repair

[BN99, MF88, MY995, KC01]. Repairing

[CPRT02]. Replacement [MM89].

Replicate [RB94]. replication [RD03].

Reply

[Bur91, Fra81, La83, Tan83, Wir91, SM82].

Representation [DGL+79, Mul92, SM89, Wad90, Wan82, Mil85].

Representation-Independent [Mul92].

Representations

[Lam87, RF97, Wl80, Wll81, BGP99].

Reproduction [BHM+19]. Repulsing

[TOUH21], reshaping [ZCG+07]. Resilient

[GH+19, WL85]. Resolution

[ABR81, Bk82]. Resolved [SIG17].

Resource [CS95, Cla80, IK05, MQL05, BDFZ09, CEI+07, HR02, HA12].

Resources [And81, FLBB89]. Respect

[Gaz83]. Response [Tic88]. Responsibility

[DC22]. Responsiveness [HU96].

Results

[Ven95, BGP99, SYH07]. Retargetable

[DF80, DFL81, MV87]. Retention [LS81].

Rethinking [LHR19]. retrofitting

[NCH+05]. Return [SDB20]. reuse

[DNS+06, GW99, ZDD09]. Reversal

[ACS84]. Reverse [PS08]. Reverse-mode

[PS08]. Revised [SIG17]. Revision

[FM87b]. revisited [MDJ05, Zh096].

Revisiting [DI09, ZZO22]. Rewrite

[FKW98, Ass00]. Rewriting

[KKSD94, BCM99, DDD05, FKW00, GRSK+11, MRR+07]. Right

[KS83, La83, SJ06]. Rigorous [SBB+19].

Rings [BP89, Hua93]. RISC [PS93].

Rivieres [Hen83]. RM1 [MV+01].

Robust [LS83]. Robustly [PG21]. Roever

[Moi83]. role [Apt00]. Roman [PB97].

Round [SBB+19]. Round-Off [SBB+19].

Rounding [FL15], Row [MM89]. RSMs

[CGG+19]. rule [HQRT02]. Rules

[GL80, JTM98, SSS84, LS09, SSD09]. Run

[ISY88, TZ07, GMP+00]. Run-Time

[ISY88, TZ07, GMP+00]. Runtime

[Ano18, BLH12, BEF+16, FNBG20, GSS+18, ISIRS22, TCVB14, BH05a, TSY00]. Rust

[MKT21, Pea21]. RustHorn [MTK21].

S

[HCW82]. S/SL [HCW82]. Safe

[AW85, Dug82, JW17, LMM21, PG21, SDB20, AFF06, BSsGF03, LS03, Loc13, NCH+05, SA00, ZCG+07, HM06, SHB+07]. Safe-by-default [LMM21]. safe-for-space

[SA00]. Safer [COE+20]. safety

[FF08, YS10]. same [SS05a]. sampling

[PPT08]. Santa [WP10]. Sapphire

[URJ18]. Sather [MOSS96]. Satin

[VWJB10]. satisfaction [DF11].

Satisfiability [FHS23, XA07]. satisfying

[Van96a, Van96b]. Saturn [XAO7].

Scalability [TCP+17]. Scalable

[FT94, GKM20, ZSS20, XA07].
ScalaExtrap [WM12]. scale [ZSS20].
23

[BA08, BEF+16, JB20, Lee09, LDK+96].
Size-change [BA08, Lee09]. Siz[DG19].
Sketches [HSD22]. Slicing
[AB20, AHJR14, CF94, DL18, GH97, HRB90, ML21, Mye18, Veu95, WZ07, BHK07, GZ07, NR06, RAB+07, WR08, ZGZ05]. SLR
[BS88, Tai79]. Small
[BNV+21, FLBB89, LH91, Pet83b]. Smart
[Tic86]. Smarter [SK88, Tic88]. Smooth
[CCEG23, JF81]. Soft [WC97]. Software
[ACM11, AW85, Ber94, DAW88, HSS+14, How80, JW17, PXL95, PPS79, Pur94, Wal92, YBL16, CTT07, HN05, LS98, ME97, NCH+05, RDG08, SHB+07, SRM10]. Solution
[ADG+94, DS88, Gho93, Pet83b, Sor89, WP10]. Solving
[GS11, HLH19, HSD22, NSTD+15, SRW98]. Some
[AB94, AK82, Sha82, Sor89]. Sometimes
[Gri79]. Sound
[LLK+17, LCK+22, RSPS23]. Soundness
[Sok87]. source [HBG+09]. Space
[BP12, BB79, FLBB89, JP81, NB99, RD87, YF98, LS09, SS05a, SA00]. Space-Efficient
[JP81, NB99]. Space/time [YF98]. Space/time-efficient [YF98]. spaces
[JLF02]. Span
[LS09, Rob79]. Span-Dependent
[LS09, Rob79]. Spanning
[GHS83]. Sparse [OHL+14]. Spatial
[NSTD+15]. Special
[Alm20, Müi21, Wöl92, Yos22, Sag07]. Specialization
[AHJR14, BCP08, GJ05, HT04, SLC03]. specialization-point [GJ05]. Specializing
[BDC90]. Specific [ASAVF19, Gie83, Tra08]. Specification
[BCM99, CDFP89, EO80, Fea87, GMH81, Jon94, Kam83, LN15, Lin93, LJ99, Loe87, Mal82, Mor88, PPS79, RY88, TWW82, LP99, LPS004]. Specificational
[MB99]. Specifications
[AL93, AL95, BNN18, CES86, DB85, Gaz83, Loe87, MW84, MB83, Rei83, Sch85, Win87, Zav85, Žic94, vPS81, JJD98, YS97]. Specifying
[GM81, Lam83, RF97]. Speculation
[YBL16, GB99]. speculative
[KOE+06]. SPL [HSG17]. Split [Com80]. splitting
[JC97, UM02, WJ98]. SPMD
[WM12]. Squeeze[ISIRS22]. SR
[AOC+88]. SSA [BDP14, GSW95, KCL+99]. SSA-Based [BDP14]. SSProve [HRV+23]. Stabilization
[Gho93, DHS09]. Stabilizing
[BP89]. Stack
[CGS+93, FLBB89, LH91, Pet83b, Sor89]. Stack-Controlling
[LaL81]. Standard
[Fat82, HM93, Qia00, Blu99]. State
[ACW90, BLH12, CES86, GC86, PP91, Pur91, Zav85, AY01, AX05, MTB09]. Statement
[Ell82, Mor88, SM81]. Statement-Oriented
[Ell82, SM81]. Statements
[CF94]. States
[ADGM91, CBMO19]. Static
[AKNP17, AC94, BM94, CGJ+97a, CF94, CFR+91, DL18, Deb89, HOYY18, LLK+17, LST98, MRGP20, MOS07a, Mye18, PW94, SBE+19, YS99, ZMVPJ17, CET+07, GFP08, GZ04, HO07, PSS05, PFH11, RSL10, VJB12, WCM00, YF09, AFF06, FFLQ08]. Statically
[ACPP91]. Statistical
[LLK+17]. Statistics
[Lan80]. Staveren
[Ped83]. Steensgaard
[Ell82, SM82]. Steensgaard-Madsen
[Ell82, SM82]. stencil
[LS04]. Step
[Col84, TVA07]. Steps
[Jon83]. Stepwise
[CM86a, SL92]. Stevenson
[Ped83]. Storage
[BBC16, Bre89, JP81, LDK+96, Mur91, Rob79, Sip82, KOE+06, TVA07]. Strategies
[Bir84, Bir85, Geo84, NN86]. Strategy
[Bre89, PK80, WSH15, ZSS20, GS11]. Stratified
[SS98]. Stream
[HSG17]. streams
[CFP+04]. strength
[CSV01]. Strict
[Bee94]. Strictness
[Bee94, SR95]. String
[GH80]. Strings
[AS80, KS88, KS89, ADR06, KK07]. Strong
[KZC15, PP22]. Strong-separation
[PP22]. Structural
[SZBH86, MTSS09]. Structurally
[HS11]. Structure
[BC79, GKL94, HM93, Mis94, MWB94, She91, HY07]. Structure-Oriented [GKL94]. Structured [BM94, CHY12, GD82, Har80, LS81, Mur91, RR03].

Structures [ANP89, Bob80, FL81, GEGP17, RCRH95, SSS81, LPS004, RAB+07]. Study [BHM+19, FTJ95, BHK07, BdlBH99, DF98, KF03, LS98]. Style [BDM15, LR19].

Sublanguage [GKL94]. Sublinear [BM94, CHY12, GD82, Har80, LS81, Mur91, RR03]. Study [ANP89, Bob80, FL81, GEGP17, RCRH95, SSS81, LPS004, RAB+07].

Subtyping [AC96, AC93, GGL15, LN15, LR19, LBN17, LW94, XBO80, ZO22, GZ05, IV06]. Subtyping-Relation [LBN17]. SUIF [HAM+05]. Supercompiler [Tur86].

Symbol [ABR81, Rei83]. Symbolic [Di90, HP96, Hali85, Hen82, Ne20, RR05, SBB+19, YMW07, BGP99, MP03, CM93, WST85]. Symmetric [FY85]. Symmetry
[ES97, SG04]. Synchronisation [CHMY19].

Synchronization [Bag89, DJP+16, Her91, KRS88, RS84b, Sch82, CGS+03, DHM+12, Ram00, RD03]. synchronization-sensitive [Ram00].

Synchronizing [And81]. Synchronous [CS87, TLHL11, YGRBA23]. synchrony [CS04]. Syntax [DMM88, Ode93, Rie85, SSS83, BMR01, CPR02, Jef03, HCW82]. Syntax-Directed [DMM88].

Syntax-Error-Handling [SSS83]. Syntax/Semantic [HCW82]. Synthesis [AE98, AE01, AAE04, Ban87, BDJ13, BKL+97, Cla80, DKKL18, HLH+23, LLOY23, WM80, MW84, MV87, SBS22].

System [AFDR80, AW85, BS86, Bv88, CB80, Foa82, GD82, GP81, Han81b, HM84, JMSY92, LR13, ML80, Moli83, MHS6, PO95, RD13, SA99, WC97, BH05a, FH04, FM99, H007, JB06, KS10, MTSS09, NP08, P008, STS05, WMC99].

Systematic [DC22, DF98, PSS05]. Systems [ABLPS93, Ano18, AR84, ACS84, BK88, BG89a, BDP93, CI84, CDFF89, CBDGF95, CHGJ18, CES86, CPS03, CBMO19, DL18, DAW88, Foa87, FK89, Gor21, Hen86, HLH+23, Jag94, Jon94, JMT98, Kar84, Kat93, Kau84, Lam84, LW93, Mis86, Mye18, SZLY21, TGT20, WGS92, WGS93, WCW90, van88, Ass00, AE98, BC08, BCM99, BGP99, CSCM00, DGG97, GS11, TP04, TZ07, YMW97, WCW91].

Systolic [Hen86].

T [Zic94]. Table [BMW91, PK80, DAS98]. Table-Driven [PK80]. Tabled [SS98].

Task-Parallel [NSZ13]. Tasking [Di90].

Tasks [GP81]. Taylor [SB+19]. tcc [PHEK99]. Technical
[BS88, Bur90b, Bur91, Cohn91, CM93, DS88, Ell82, FA93, Fra81, Hen84, LaL83, LaL84, Mol81, Moli83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tze88, Vol91, WST85, Wir91, YBB88, MMG00].

Technique [AW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNGG10, KBC+99, RD97, SYN06]. Techniques [AK82, CMM91, DP99, GLR83, How80, TWW82, WCW90, WCW91].
BHKO7, DDD05, DEMD00, LS98, MSRR00, SS96, TSL+02. technology [L98].
Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KWL09].
temporal-ordering [GS99]. temporaries [RHM06]. Ten [Apt81].
Tensor [RTP17, SBS22]. Tentative [Jon83]. Tenuring [UJ92].
Term [KKSD94, MBT09, GRSK+11]. Termination [AF84, Apt86, BAGM12, BCG+07, CFNH18,
CDK+18, DSFG21, DG19, Fra80b, GJ05, HSP83, JBK18, MC82b, TM93, BAL07,
BA08, DDV99, GRSK+11, Lee09, PR07, SMP10, Fra80a, Moh81]. Test
[Wey83, WW95, Duc08]. Testing [AMT14, GMH81, TK94]. Tests
[Coh91, Koz97, Wir91, GZ05]. Text [CC97]. TF [SBS22]. TF-Coder
[SBS22]. Their [Kam83, LaL84, SS82, PS96]. Theoretic
[ES97, Sha82, KV00]. Theoretical [KRR18]. Theories
[NSTD+15, Bou06]. Theory
[AB20, CZ84, FSH23, KD94, KRS94,
NBG13, Ryu16, TLHL11, CGP09, MH06,
Oho07, Pau01, SS05b, Bia03, FG03].

ThingsLab [Bor81]. things [PM09].
Thinking [WLB16]. Thinning [Web95].
Third [Wol92]. ThisType [Ryu16].
Thread [YBL16]. Thread-Level [YBL16].
Threaded [JBK18, ITF+22, TSY00]. Three
[DPP22, Oss83]. Tichy [Tie88]. Tierless
[RKW+23]. Tile [JB20]. tiling
[JLF02, LS04, RKS12]. Time
[AL94, ABR81, BL94b, BLH12, Coh91,
DLR16, HBS22, Hol87, ISY88, Jef85, Lam84,
LLOY23, MMG92, PS93, RS84a, RS84b,
TN19, Wir91, YR94, Zic94, BAL07, BALP06,
BKRW98, BKRW05, DDD05, GHP97,
GMP+00, GB99, GW99, HK07, LS98, LPP01,
LS09, Mil85, Ram99, Rep98, SYK+05, Tra08,
TZ07, Wu04, YM97W, LW93].

Time-bounded [LLOY23].
Time-Constrained [Zic94, LPP01].
Time-Critical [PS93]. time-efficient
[GB99, YF98]. Time-sensitive [HBS22].
Timed [Zic94]. Timeout [Lam84]. Timing
[LM99]. tokenization [Rep98]. Tolerance
[LM99]. Tolerant [CS95, Lam84, AAE04].
Tool [CPS93]. Toolkit [BDFH97]. toolkits
[VHM+01]. Tools [van88]. Top [SZLY21].
Top-down [SZLY21]. TOPLAS
[Ano18, TGT20, MP10a, MP10b]. topology
[DDM11]. Tortoise [Dan23]. Total [San96].
Trace [ABC+21, FGL94, WGS92, Ban11,
RM07, SJ03, WGS93, WM12]. Trace-Based
[WGS92, WGS93, WM12]. Trace-relating
[ABC+21]. traces [HBM+06, WR08].
Tracing [BL94a, DL16, MMM+07].
tradeoffs [ZGZ05]. Trailing [VR95]. Traits
[DNS+06]. Transactional
[URJ18, ABHI11, CFP+04]. Transactions
[Ano18, HKMN94, TGT20]. Transducer
[DVLM15]. Transducer-Based [DVLM15].
Transformation
[BK80, Fee82, FL91, NSZS13, Wat91,
RKRR04, San96, TSY00, WZ07].
Transformational [BDHF97, Bir84, Bir85,
DSW82, OA88, RC03]. Transformations
[Bar85, EGM01, Geo84, LdR81, LFF14,
MS83, MCT96, Nie85, FG+07a, KWL09,
MO87a, VAL05, WS97, Hen83, NN86].
Transformers [Lam90, MMS96, MBT09].
TransformGen [GKL94]. Transforming
[AWW95, BE94]. Transition [PR07].
Translation [AK87, BK11, Kat84, Son87,
AAD+07, BGK09, DP99, RC03].
Transmission [HL82]. Transparently
[JSB+12]. Transport [Min84]. transpose
[CRN+08]. Traversals [LPS004].
Treatment [YB87, YB88]. Tree
[AGT89, BOV85, BMW91, DLV15, DS83,
Han81a, Hen83, LdR81, FG+07a]. Trees
[Com80, GHS83, MTG80, Sip82, Wad90,
ACM11, SGL97]. Treewidth
[CIJGP18, CGG+19]. trick [DMP96].
Truth [BDH+16]. TSL [LR13]. TSO
[FSH23]. tuning [GMM99, PE08]. Tuples
[Rem81]. Tutorial [GM81]. Two
Two-dimensional [GPWZ08]. Two-variable [FMoPS11].

Type [Bur90b, Car95, CEW14, Coh91, CZ84, Dug02, Eug07, HHPW96, HM93, Hen93, KPS92, KU93, KR01, Lan80, LO94, LST02, LY98, LP00, MRGP20, MP88, NBG13, Pad19, PO95, SA99, SM89, Ste22, TWW82, TGT18, TGT20, Van06, VMLY22, Wal80, WT11, Wir88, WC97, BSvGF03, BCG+07, FJKA06, FM99, FF08, GZ07, GMZ00, HO07, HDH02, HY07, KF10, KS10, NP08, NCH+05, PT00, STSP05, TFK+11, TZ07, Wal81, Wir91].

Type-based [Eug07, LP00, BCG+07]. Type-Driven [TGT18, TGT20]. Type-Extension [Coh91, Wir91]. Type-Graphs [KPS92]. Type-preserving [LST02]. Type-Safe [Dug02, BSvGF03, NCH+05]. Typechecking [CL95, MBC04]. Typed [ACPP91, Geo84, GDF23, Kob98, NN86, WCM00, AA+10, LP99, MWC99].

Typed-Untyped [GDF23]. Types [AFF06, AC93, BG22, BGOL+23, BB94, Bcem15, DDMPP22, DP22, DD85, EO80, FFLQ08, GEGP17, HL82, Hes88, Jen97, Kam83, KPB22, LaL89, LO94, LBN17, Loe87, Mal82, Miq19, MP88, TDA+23, WL85, Wei89, Wei90, AM01, BBF+11, Dam03, DDM11, DMM01, Gro06, GPV07, HPV05, IV06, MME+10, PS96, PaL98, STS03, SP07].

ultimate [PS08]. Ultracomputers [Sch80]. Unassigned [Win84]. Unbounded [LWR21, BCG99, uncought [LP00].
Undecidability [Ram94, Rep00, Cha02]. undecidable [Ram00]. Understandable [MSM+16]. Understanding [ST00a]. Undo [Lee86]. unfold [RKRR04]. unfold/fold [RKRR04]. Unidirectional [Pet82].

Using [AGT89, Bob80, CGJ+97a, CES86, CH87, DP93, Di90, DMM01, DJP+16, FLBB89, GSW95, GSO94, HRB90, ISIRS22, JTM98, Kar84, LaL89, Lam84, LM18, LWR21, Mye90, Ode93, Pet83b, PP94, PBR+15, SFFZ+23, SS84, SS96, Sok87, SGL98, TdS82, ACM11, BH99, CSW06, CGS+03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, SZLY21, ST00a, SGL06, TFK+11, VJB12, XA07, YUW02, ZSD09, Pem83].

Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KC01, MOS07a]. Value [HL82, dHB21, HL05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Han92, HSD22, Wet82]. Variable [MS83, MTG80, FMoPS11, GLMM05]. Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NeS20]. Vector [AK87, Bud84, CBMO19, Fis80, FTJ95, KD94, Per79, KK07]. Verifiable [YB85]. Verification [App15, BDP14, BCD+15, CDFP89, CES86, CPS93, CHMY19, Di90, EGP14, GL94,
REFERENCES

ITF+22, JBK18, Jon94, JTM98, KK14, LFF14, L99, LCK+22, LS79, MTK21,
NBG13, RY88, SZLY21, SFZ+23, BDL+08, CEI+07, GF08, GM12, Qia00]. Verified
[BFGT08, BKL+97, HL22, HRL+23, JLP+14, DSW11]. Verifying
[AS89, BFG08, CGJ97b, DJP+16, GEGP17, LM18, YS10, M08]. Version [YR94].
 Versions [HPR89]. Versus
[DPP22, Pal98, Pip97, UM02]. Vertices
[BGH+13]. Very [GLR83]. VHDL
[BKL+97]. via
[CEI+07, FKW98, GF08, GSO94, HLH19, HOY18, ITF+22, MMM+07, PE08, RTP17, SRW02, SV20, SCP23, Tra08, WCM00]. View
[KBP22, SZBH86, FGM+07a]. view-update [FGM+07a]. Virtual
[Jef85, RRB19, CEG07, KN06]. Visibly
[CBMO19, JKT23]. Visual
[Mye90, BCM99]. vita [MP10a, MP10b]. VLSI [LVV+83]. Volpano
[Bur91]. Volume [Ano18, TGT20]. vs [HR02].

W [Tic88]. Wait [Her91]. Wait-Free
[Her91]. Waitie [BP82]. Warp [LW93]. way
[VHM+01]. Weak [AMT14, KZC15].
weakening [SYYH07]. Weaker [Boo82].
web
[BFG08, BLRS12, CHY12, CGP09, CMS03]. Weight [GHS83]. While
[Pet83a, BC85b, GMS81], while-Programs
[BC85b]. Whole [BDH+16]. Widening
[KKW14, VJB12]. win [Lam90]. Within
[FKW98]. Without
[Cop94, Ode93, AS95, Sto94, VR95].
Witnessing [TA08]. Workbench [CPS93].

X [OLH+16, MSM+16]. X-Sensitive
[OLH+16]. X10 [GHH+19]. XARK

[ATD08]. XML [HVP05, HFC09]. XSL
[MOS07a].

Years [Apt81].

ZGC [YW22]. Zones [GMN+21].

References

Ancona:2007:PCT

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Attie:2004:SFT

Ahmed:2010:SFT

Anam Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. Semantic foundations for typed assembly
REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Anderson:1981:LLC

Arbab:1994:SCD

Amtoft:2020:TSI

Acar:2009:EAS

Abate:2021:EAT

Alur:2005:ARS

Acar:2006:AFP
Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CAC

Afek:1993:LC

Apt:1998:AIL

Andre:1981:MAC

Ariola:2009:SCA

[Zena M. Ariola, Aaron Bohannon, and Amr Sabry. Sequent

[ADR06] Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.

[AL95] Martin Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions on Programming Languages and Systems,
REFERENCES

Anonymous:1983:IA

Anonymous:1984:IA

Anonymous:1985:IA

Anonymous:1986:AI

Anonymous:1986:IA

Anonymous:1987:IA

Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

REFERENCES

Anonymous:1990:AI

Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1991:IA

Anonymous:1992:AI

Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

REFERENCES

Abadi:2007:E

Appel:1993:Ea

Appel:1994:ABG

Appel:1994:PS

Appel:2015:VCP

Apt:1981:TYH

Apt:1986:CPD

Apt:2000:RCC

Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Andersen:2019:FSP

Austin:2017:MFD

Assmann:2000:GRS
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

REFERENCES

Bhaskaracharya:2016:ASO

Bengtson:2011:RTS

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL

Bates:1985:PP

Bergeretti:1985:IFD

REFERENCES

REFERENCES

Bottoni:1999:SDC

Bhatia:2008:RSE

Briggs:1994:IGC

Bertoletti:2009:LPR

Blackburn:2016:TWT

Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney, José Nelson Amaral, Tim Brecht, Lubomír Bulej, Cliff Click, Lieven Eeckhout, Sebastian Fischmeister, Daniel Frampton, Laurie J. Hendren, Michael Hind, Antony L. Hosking, Richard E. Jones, Tomas Kalibera, Nathan Keynes, Nathaniel Nystrom, and

REFERENCES

REFERENCES

[BG89b] David Bernstein and Izidor Gertner. Scheduling expressions
Barbuti:1993:GFS

Roberto Barbuti, Roberto Giacobazzi, and Giorgio Levi. A general framework for semantics-based bottom-up abstract interpretation of logic programs.

Boruch-Gruszecki:2023:CT

Bultan:1999:MCC

Butler:1999:RAG

Michael Butler and Pieter Hartel. Reasoning about Grover’s quantum search algorithm using probabilistic wp.

Back:2005:KJR

Godmar Back and Wilson C. Hsieh. The KaffeOS Java runtime system.

Buhr:2005:ISM

Peter A. Buhr and Ashif S. Harji. Implicit-signal monitors.

ACM Transactions on Programming Languages and Systems, 27(6):1270–1343, November 2005. CODEN ATPSDT. ISSN 0164-
REFERENCES

Binkley:2007:ESO

Blackburn:2007:PBP

Berger:2019:IPL

Bird:1984:PAS

Bird:1985:APA

Barthe:2011:AMC

Broy:1980:DIA
REFERENCES

Ball:1994:OPT

Bates:1994:RSL

Blanchet:2003:EAJ

Boudol:2012:RAW

Blume:1999:DAS

REFERENCES

REFERENCES

Banerjee:2018:LAF

Banerjee:2022:RPL

Busi:2021:SIE

Bohm:1994:TIP

Bobrow:1980:MRS

Boehm:1985:SEA

REFERENCES

Boyland:2010:SFP

Broy:1982:CAA

Burns:1989:USS

Bendersky:2012:SOB

Anna Bendersky and Erez Petrank. Space overhead bounds for dynamic memory management with partial compaction.

Balabonski:2016:DFM

Basso:2023:OAC

Baugnartner:1997:ISC

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

Bruce:2003:PTS
Burke:1993:IOE

Budd:1984:ACV

Burton:1984:ACP

Burke:1990:IBA

Burton:1990:TCT

Burton:1991:TCA

Broy:1987:ADP

Manfred Broy, Martin Wirsing, and Peter Pepper. On the algebraic definition of programming languages. *ACM Transactions on Programming Languages and Systems*, 9(1):54–99, January 1987. CODEN ATPSDT. ISSN 0164-0925
Cameron:1989:EHL

Carlinle:1995:TCC

Castagna:1995:CCC

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Cotton-Barratt:2019:MVP

REFERENCES

REFERENCES

Casey:2007:OIB

Chander:2007:ERB

Clarke:1986:AVF

Chen:2014:ETI

Choi:1994:SSP

Cytron:1995:ECN

Clements:2004:TRM
John Clements and Matthias Felleisen. A tail-recursive machine with stack inspection.

REFERENCES

Clark:1986:PPP

Chin:1995:ROA

Chatterjee:2019:FAD

Calder:1997:EBS

Clarke:1997:VPN

[Cha87] Arthur Charlesworth. The multiway rendezvous. *ACM Transactions on Programming Languages and Systems*, 9(3):

[Cla80] Edmund Melson Clarke, Jr. Syn-

REFERENCES

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC

Carle:1995:MBI

Carle:1996:OCP

Alan Carle and Lori Pollock. On the optimality of change propagation for incremental evaluation of hierarchical attribute grammars. *ACM Transactions on Programming Lan-
REFERENCES

Cohen:2017:LPC

Corchuelo:2002:RSE

Cleaveland:1993:CWS

Carson:1987:GSP

Cooke:2008:NTD

Cuny:1987:CDD

Choy:1995:EFT
Manhoi Choy and Ambuj K. Singh. Efficient fault-tolerant

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Danvy:2023:THA

Darlington:1990:SDG

Dujardin:1998:FAC

Dillon:1988:CET
Laura K. Dillon, George S. Avrunin, and Jack C. Wiledon. Constrained expressions: Toward broad applicability of analysis methods for distributed software systems. *ACM Transactions on Programming Languages and Systems*, 10(3):
REFERENCES

Dunlop:1985:GSU

DeBruin:1985:DSD

DeBoer:2021:CCR

Deng:2022:SDR

Donahue:1985:DTV

DeSutter:2005:LTB

Drossopoulou:2002:MDO
Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-

Dencker:1984:OPT

Dietl:2011:SOT

Das:2022:NST

Decorte:1999:CBT

Debray:1989:SIM

Debray:1995:CDA

DeMillo:1983:GEI

Richard A. DeMillo. Guest Edi-
Debray:2000:CTC

Dershowitz:1985:PAI

DeFraine:2012:EAC

Davidson:1980:DAR

Davidson:1981:CTA

Davidson:1984:CST

Douence:1998:SSF
REFERENCES

Duesterwald:1997:PFD

Dhamdhere:1991:PAG

DeLaBanda:1996:GAC

Dolby:2012:DCA

Dolev:2009:SSP

DeMoura:2009:RC

Dillon:1990:USE

deJonge:2012:NFE

Dodds:2016:VCS

Darulova:2017:TCR

David:2018:PSP

Drinic:2007:PPC

Debray:1993:CAL

REFERENCES

[Diwan:2001:UTA] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schäli, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2): 331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Dhamdhere:1993:EAB

Debray:1997:ICF

DeRose:1999:TTM

Devriese:2022:TPV

Dovier:2000:SCL

Das:2005:PF1

[DR05] Dibyendu Das and U. Ramakrishna. A practical and fast iterative algorithm for ϕ-function computation using DJ graphs. ACM Transactions on Programming Languages and Systems, 27
REFERENCES

Dawson:1996:PPU

Dekel:1983:PGP

Drechsler:1988:TCS

URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/214509.html. See remark [Sor89].

Dewan:1990:ASA

Dhamdhere:1998:DCD

DOsualdo:2021:TLC

[DSFG21] Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner. TaDA live: Compositional reasoning for termination of fine-grained concur-

Debray:1989:FCL

Dantas:2008:APA

Etalle:2001:TCP

Elder:2014:ADA

Economou:2023:FRT

Ellis:1982:TCS
Eilers:2020:MPP

Ernst:1980:SAD

Emerson:1997:USW

Eugster:2007:TBP

Finlay:1993:TCC

Fateman:1982:HLL

Feng:2012:BQP
REFERENCES

Feather:1982:SAP

Feather:1987:LSS

Flanagan:1999:CSB

Furr:2008:CTS

Florence:2018:PPP

Flanagan:2008:TAS

Fournet:2003:SIT
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Greiner:1999:PTE

Gouda:1986:PLN

Grove:2001:FCG

Gulavani:2011:BSA

Gergeron:1982:SAS

Greenman:2023:TUI

Gordon:2017:VIL

Gelernter:1985:GCL

Georgeff:1984:TRS

Ganapathi:1985:AGD

Gini:1985:DWM

Gesbert:2015:LAD

Gorinova:2022:CIT

Griswold:1980:AUP

REFERENCES

Gerber:1997:SRT

GarciaDeLaBanda:1996:GAC

Grove:2019:FRR

Griswold:1981:GI

Ghosh:1993:ASP

Graham:1980:ICF

Gallager:1983:DAM

REFERENCES

Giegerich:1983:FFD

Gupta:1993:APE

Glenstrup:2005:TAS

Garlan:1994:TAM

Gharat:2020:GPG

Gries:1980:APC

Grumberg:1994:MCM

Orna Grumberg and David E. Long. Model checking and modular verification. *ACM Transactions on Programming Languages and Systems*, 16(3):843–871, May 1994. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Gavanelli:2005:DIK

Greenberg:1988:SEA

Gottlieb:1983:BTE

Ghezzi:1979:IP

Greif:1981:SSW

Ganty:2012:AVA

Gannon:1981:DAI
REFERENCES

REFERENCES

Gorlatch:2004:SRC

Gordon:2021:PIS

Grit:1981:DIT

Girkar:1995:ETL

Gupta:2001:PEP

Gal:2008:JBV

Grothoff:2007:EOC
Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects with confined types. ACM Transactions on Programming Languages and Systems
REFERENCES

REFERENCES

Gudjónsson:1999:CTM

Glesner:2004:NSS

Gil:2005:EST

Gil:2007:EDD

Hailperin:1998:COC

Hailperin:2005:CCC

REFERENCES

Halstead:1985:MLC

Hall:2005:IPA

Hansen:1981:CMI

Hanson:1981:APP

Harel:1980:PNA

Hannan:1994:OSD

Hansen:1992:SRF

Hausser:1996:HFP

REFERENCES

REFERENCES

REFERENCES

Hall:1996:TCH

Hilfinger:1988:APD

Hu:1997:FDE

Heering:1992:IGL

Henzinger:2007:EMP

Haines:1994:CFC

Heering:1992:IGL
J. Heering, P. Klint, and J. Rekers. Incremental generation of lexical scanners. *ACM Transactions on Programming Lan-
REFERENCES

Harper:1993:TSS

Harper:1993:TSS

Hamlen:2006:CCE

Hicks:2005:DSU

Hoffman:1982:PE

Higuchi:2007:STS

Hobson:1984:DEE

Holt:1987:DDC

URL http://www.acm.org/
REFERENCES

Horwitz:1997:PFI

Howden:1980:ASV

Heo:2018:ASA

Haghighat:1996:SAP

Hermenegildo:2000:IAC

Horwitz:1989:INV

Henzinger:2002:AGR
REFERENCES

Hennessy:2002:IFV

Horwitz:1990:ISU

Hietala:2023:VOQ

Haselwarter:2023:SFF

Harrold:1994:ECI

Huang:2011:MSS

REFERENCES

Hu:2022:SPS

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD

Huang:1993:LEU

Hudson:1991:IAE

Haridi:1999:ELV

Hirzel:2007:FOP

Hosoya:2005:RET

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27(1):46–90, January 2005. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Holt:1982:MIE

Richard C. Holt and David B. Wortman. A model for implementing Euclid modules and prototypes. *ACM Transactions on Programming Languages and Systems*, 4(4):552–562, Octo-
References

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS

Igarashi:2005:RUA

Igarashi:2001:FJM
Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ish-Shalom:2022:RCB

Inoue:1988:AFP
Inverso:2022:BVM

Igarashi:2006:VPT

Jay:2004:PC

Joisha:2006:AAS

Jangda:2020:EFT
mination verification of single-threaded and multithreaded programs. ACM Transactions on Programming Languages and Systems, 40(3):12:1–12:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. A machine-learning algorithm with disjunctive model for data-driven program analysis. ACM
REFERENCES

REFERENCES

Jeffrey:2010:ESA

Joshi:2006:DPA

Jonsson:1994:CSV

Jazayeri:1981:SES

Jourdan:2017:SPC

Jones:1990:EEC

Jagadeesan:1991:FAS

Radha Jagadeesan, Keshav Pingali, and Prakash Panangaden.

REFERENCES

119

(print), 1558-4593 (electronic).

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO

Keizer:2022:SCC

REFERENCES

REFERENCES

Kaiser:1992:OBP

Kennedy:1998:ADL

Karkare:2007:IBC

Korach:1990:MTD

Kawahito:2006:ESE

Kennaway:1994:AGR

Katzenelson:1992:TMT

Kobayashi:1999:LPC

Kennedy:1979:DAG
REFERENCES

REFERENCES

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Kim:2018:TFS

Kieburtz:1979:CCS

Kruskal:1988:ESM

Knoop:1994:OCM

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1988:DSC

Kennaway:1989:CDS
Richard Kennaway and Ronan Sleep. Corrigendum: “Director Strings as Combinators”.

Kobayashi:2010:HTS

Khedker:2007:HRA

Knoop:1996:PFE
REFERENCES

Kfoury:1993:TRP

Kuperman:2000:ATA

Kalvala:2009:PTU

Kasikci:2015:ACD

LaLonde:1981:CSC

LaLonde:1983:TCL

LaLonde:1984:TCC

LaLonde:1989:DFD

Lamport:1979:NA

Lamport:1980:CN

Lamport:1983:SCP

Lamport:1984:UTI

Lamb:1987:ISI

Lamport:1988:CP

Lamport:1990:WSP

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

Liu:2019:RIP
[132]

Lindstrom:1979:BGC
[132]

Lin:1993:PIA
[132]

Liu:1999:SVF
[132]

Lee:2002:ADC
[132]

Lee:2017:SNS
[132]

Lee:2023:OHE
[132]
REFERENCES

REFERENCES

REFERENCES

Lieberherr:2004:TOS

Lim:2013:TSG

Lepigre:2019:PSC

Luckham:1979:VAR

Leverett:1980:CSD

Lindstrom:1981:RRB

Liskov:1983:GAL

Lamport:1984:HLC

REFERENCES

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3):382–401, July 1982. CODEN ATPSDE. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the encrypting of messages to make them unforgeable, is not used. With unforge-
able messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

\[\text{Liu:1998:SCI} \]

\[\text{League:2002:TPC} \]

\[\text{Lengauer:1979:FAC} \]

\[\text{Li:2020:PAS} \]

\[\text{LeCharlier:1994:EEG} \]

\[\text{Lobo-Vesga:2021:PLD} \]
REFERENCES

Lipton:1983:VLP

Leivent:1993:MFT

Liskov:1994:BNS

Liu:2021:ICU

Lee:1998:PAF

Li:2022:FGS

Mallgren:1982:FSG

REFERENCES

REFERENCES

McKinley:1996:IDL

Morrison:1991:AHA

Moreau:2005:BDR

Moon:1997:PNC

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Mis86] Jayadev Misra. Axioms for memory access in asynchronous hardware systems. *ACM Transactions on Programming Lan-
REFERENCES

Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd Millstein, Chris Andreae, and James Noble. JavaCOP: Declarative pluggable types for Java. *ACM
Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Masticola:1995:LFM

Morgan:1996:PPT

Mohan:1981:TCF

REFERENCES

Moitra:1983:TCA

Monniaux:2008:PVF

Morgan:1988:SS

Moller:2007:SVX

ISSN 0164-0925 (print), 1558-4593 (electronic).

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

REFERENCES

Moore:2002:AC

McKinley:2007:ECG

McKinley:2010:DVT

McKinley:2010:PVT

Murali:2023:FOL

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Melo:2020:TIC

[MRGP20] Leandro T. C. Melo, Rodrigo G. Ribeiro, Breno C. F. Guimarães,
REFERENCES

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Moret:1980:AVR [MTG80] B. M. E. Moret, M. G. Thoma-
son, and R. C. Gonzalez. The activity of a variable and its re-
lation to decision trees. *ACM Transactions on Programming
Languages and Systems*, 2(4): 580–595, October 1980. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Matsushita:2021:RCB [MTK21] Yusuke Matsushita, Takeshi
Tsukada, and Naoki Kobayashi. RustHorn: CHC-based verifica-
tion for Rust programs. *ACM Transactions on Programming
Languages and Systems*, 43(4): 15:1–15:54, December 2021. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). URL

MacDonald:2009:DDP [MTSS09] Steve MacDonald, Kai Tan,
Jonathan Schaeffer, and Duane Szafron. Deferring design pat-
tern decisions and automating structural pattern changes us-
ing a design-pattern-based pro-
gramming system. *ACM Transac-
tions on Programming Lan-
guages and Systems*, 31(3):9:1–
9:49, April 2009. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

sentation-independent di-
acle of LISP with reduction seman-
tics. *ACM Transactions on Programming Lan-
guages and Systems*, 14(4):589–
616, October 1992. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL

Muller:2021:ISS [Mül21] Peter Müller. Introduction to the
special section on ESOP
2020. *ACM Transactions on
Programming Languages and
Systems*, 43(4):13:1, Decem-
ber 2021. CODEN ATPSDT.
ISSN 0164-0925 (print), 1558-
4593 (electronic). URL https:
//dl.acm.org/doi/10.1145/
3484490.

improved storage management
scheme for block structured
languages. *ACM Transactions on Programming Lan-
guages and Systems*, 13(3):
372–398, July 1991. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL

Varghese. Retargetable mi-

Maassen:2001:EJR

Manna:1980:DAP

Manna:1984:SCP

Muller:2001:LSD

Morrisett:1999:SFT

Merkel:2022:BAE

REFERENCES

See failure report [BN99].

See [DL18].

REFERENCES

[FA93] See also remarks in [NF89].

REFERENCES

[V. Krishna Nandivada, Jun Shirako, Jisheng Zhao, and]
REFERENCES

Keshav Pingali and Arvind. Clarification of “Feeding inputs

Jens Palsberg. Editorial. ACM Transactions on Programming Languages and Systems, 35(1):
REFERENCES

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

[156]

Park:1985:NAL

[157]

Preda:2008:SBA

Pan:2008:PFE

Pearce:2021:LFR

Pemberton:1983:TCT

Perrott:1979:LAV

REFERENCES

David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Efficient field-sensitive pointer analysis of C. *ACM Transactions on Programming Languages and Systems*, 30(1):4:1–4:42, Novem-
REFERENCES

[PP04] Park:2004:ORC

[PP06] Payet:2006:NIL

[PP94] Pingali:2009:RTP

[PP94] Pingali:2009:RTP

[PO95] Pinter:1994:POP

[PO95] Pinter:1994:POP

REFERENCES

Park:2008:PLB

Podelski:2007:TPA

Proebsting:1995:BAG

Pollock:1992:IGR

Polletto:1999:LSR

Palem:1993:STC

Palsberg:1996:CTT

Podelski:2007:TPA

Pollock:1992:IGR

Palsberg:1996:CTT

Poletto:1999:LSR

REFERENCES

Benjamin C. Pierce and David N. Turner. Local type inference.

REFERENCES

Pugh:1998:CBA

Palsberg:1995:EIA

Pagel:2022:SSL

Palsberg:2005:ADC

Qian:1995:CRO

Qian:2000:SFI

Quong:1991:LPI
REFERENCES

Quillere:2000:OMU

Ranganath:2007:NFC

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Rao:1994:RAP

REFERENCES

[RD97] Martin C. Rinard and Pedro C. Diniz. Eliminating synchronization bottlenecks using adaptive replication. ACM Trans-
REFERENCES

251–262, July 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

Rugina:2003:PAS

Rugina:2005:SBA

Rosa:2019:AOT

Rinetzky:2008:CPF

Ramanath:1984:JML

Reif:1984:RTS

Raja:1997:CFC

REFERENCES

Shao:2000:ESS

Sager:1986:SPC

Sagiv:2007:I SE

Samet:1980:CAP

Sands:1996: TCL

Sangiorgi:2009:OBC

Solovyev:2019:REF
REFERENCES

REFERENCES

Swalens:2021:CCC

Sampaio:2013:DA

Strickland:2013:CFC

Sethi:1983:CFA

Stamos:1990:RE

Sistla:2004:SRS

Sreedhar:1996:ILU
REFERENCES

Taro Sekiyama, Atsushi Igarashi and Michael Greenberg. Poly-

References

- Sijtsma:1989:PRL

- Sipala:1982:CSB

- Sites:1979:CLI

- Spoto:2003:CAA

- Scott:2006:RNG

- Smans:2012:IDF

- Scott:2023:MIP

- Schwanke:1988:SR

REFERENCES

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

REFERENCES

Steensgaard-Madsen:1989:TRO

Spoto:2010:TAJ

Sonnenschein:1987:GTS

Solworth:1992:E

Sokolowski:1987:SHL

Sorkin:1989:TCS

[Sor89] Arthur Sorkin. Technical correspondence: Some comments on “A Solution to a Problem with
REFERENCES

Morel:1989:GUS

Spooner:1986:MAR

Sekar:1995:FSA

Shen:2021:ALI

Soundararajan:1984:ASC

Sansom:1997:FBP

Simonet:2007:CBA
Suhendra:2010:SAC

Sagiv:1998:SSA

Sagiv:2002:PSA

Soisalon-Soininen:1982:IEE

Shasha:1988:ECE

Skeppstedt:1996:UDA

REFERENCES

179

Sagonas:1998:AMT

Schulte:2005:WDB

Schulte:2009:EEC

Staiger-Stohr:2013:PIA

Sneyers:2009:CPC

REFERENCES

Sanchez-Stern:2023:PIA

Schonberg:1981:ATS

Sippu:1983:SEH

Snelting:2000:UCH

Sperber:2000:GLP

Steimann:2018:CBR

Steimann:2022:CPS

REFERENCES

Stone:2004:EOL

Saha:2003:IAQ

Shao:2005:TSC

Smith:1996:PTV

Sangiorgi:2019:EBP

Simpson:2020:BEM

Sabry:1997:RCV

Steckler:1997:LCC

Sewell:2010:NPP

Suganuma:2005:DED

Suganuma:2006:RBC

Seo:2007:GDW

Swinehart:1986:SVC

Sanan:2021:CCT

[SZLY21] David Sanan, Yongwang Zhao, Shang-Wei Lin, and Liu Yang. CSim 2: Compositional top-down verification of concurrent systems using rely-guarantee. ACM Transactions on Programming Languages and Systems, 43
REFERENCES

Terauchi:2008:CCC

Terauchi:2008:WSE

Tai:1979:NSG

Tanenbaum:1983:TCT

Tardieu:2007:DLS

Tsay:1995:DFP

Tofte:1998:RIA

Trinder:2017:SRI

Phil Trinder, Natalia Chechina, Nikolaos Papaspyrou, Kon-

[Tzannes:2014:LSR]

[Toro:2018:TDG]

[Toro:2020:CTD]
REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Thorup:1994:CGA

Tichy:1986:SR

Tripakis:2011:TSR

Tel:1993:DDT

Thakur:2019:PFP

Manas Thakur and V. Krishna Nandivada. PYE: a framework

REFERENCES

[Van96b] Brad Vander Zanden. An incremental algorithm for satisfying hierarchies of multiway dataflow constraints. ACM Transactions on Programming
REFERENCES

 Vansummeren:2006:TIU

 Vera:2004:FAF

 Venkatesh:1995:ERD

 VanRoy:1997:MOD

 vonHanxleden:2000:BCP

 VanDenBrand:2002:CLD

0164-0925 (print), 1558-4593 (electronic).

References

REFERENCES

Wall:1992:ESD

Wand:1982:DTC

Waters:1983:UFC

Waters:1991:ATS

Waters:1994:CBP

Walker:2000:TMM

Wright:1997:PST
REFERENCES

REFERENCES

Wagner:1998:EFI

Widom:1992:TBN

Widom:1993:CTB

Williams:1982:DAF

Williams:1982:FNS

Winner:1984:UO

REFERENCES

[Wand:2004:SAD] Mitchell Wand, Gregor Kicza-

Weihl:1985:IRA

Wagner:2016:TIB

Walicki:1995:CCM

Wolfe:1994:DDD

Wu:2012:STB

Weimer:2008:ESP

Wolf:1992:GEI

REFERENCES

Welch:2010:SCF

Wang:2008:DSJ

Whitfield:1997:AEC

Wang:2015:EAS

Wall:1985:TCN

Wehr:2011:JIT

Wu:2004:ETC

[Wu04] Pei-Chi Wu. On exponential-time completeness of the circularity problem for attribute grammars. ACM Transactions on Programming Languages and
Wu:1995:WCC

Wegman:1991:CPC

Yemini:1985:MVE

Yemini:1987:ATE

Shaula Yemini and Daniel M. Berry. An axiomatic treatment of exception handling in an expression-oriented language.
REFERENCES

Yemini:1988:TCA

Yiapanis:2016:CDS

Yang:1998:STE

Yardimci:2009:MSP

Yip:2023:SDP

Ying:2011:FHL

Yu:1997:NCI

Yu:1994:LTS

Yang:1997:SMC

Yellin:1991:ILI

Yellin:1997:PSC

Yoshida:2022:ISI

Young:1999:SCB

Cliff Young and Michael D. Smith. Static correlated branch prediction. *ACM Transactions on Programming Languages and Systems*, 21(5):1028–1075, September 1999. CODEN ATPSDT. ISSN
REFERENCES

Yahav:2010:VSP

Yang:2002:EEB

Yang:2022:DDZ

Zave:1985:DAF

Zhao:2007:FFS

Zhang:2005:CPT

Zhou:1996:PPC

[Neng-Fa Zhou. Parameter passing and control stack management in Prolog implementation revisited. ACM Transactions on Programming Languages and Systems, 18(6):752–
REFERENCES

[Zic:1994:TCB]

[Zhang:2017:SSH]

[Zhuang:2007:AAR]

[Zhuang:2010:OFE]

[Zhong:2009:PLA]

[Zhang:2021:CP]

[ZSS20] David Zhao, Pavle Subotić, and Bernhard Scholz. Debugging large-scale Datalog: a scalable provenance evaluation strategy.

[Zhao:2020:DLS]
Zhou:2022:RIR