A Complete Bibliography of Publications in ACM
*Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

19 June 2024
Version 2.154

**Title word cross-reference**

(k) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3

[SRW02], + [Han81a], $T^M$ [Bla03]./ [AW82].
∥ [DDDCG02]. A [DES12]. $\mathcal{R}$ [JMSY92].
$\mathcal{R}_{\text{Lin}}$ [VR95]. $\ell$ [ADG+94]. $O(n \log n)$
[Pet82]. $\phi$ [CF95, DR05]. $\pi$ [ABL03].
-calculus [ABL03]. -Exclusion [ADG+94].
-function [DR05]. -Nodes [CF95]. -Tree [Han81a]. -valued [SRW02].

11 [ND16]. 16 [TGT20].


40 [TGT20].

568 [Han81b].

8 [Ano18].

90 [DP99]. 95 [WJS+00].

Abstract
[BGL93, BKL11, CM+95, CFG+97, DGG97, DC22, DHF+24, DL+16, ELS+14, EO80, GS98, GMP24a, HL82, JPP91, KRR18, Lan80, LO+94, LV94, LM18, LR13, Loe87, MSJ94, MXZ+22, MP+88, SS98, She91, SCS24, TY21, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYH07, SJ03].

abstractions [BCF04]. Access [ABLP93, BCC04, KS83, Mis86, NBN13, SR21, HO02, KSK07, PHP02, PSS05].


Accumulation [BGL93, BCC04, KSS83, Mis86, NBN13, SR21, HR02, HO07, KSK07, PHP02, PSS05].

Accumulators [Cam89]. Accuracy [LVRG21, CEG07, HDH02]. accurate [CG04, VBLG04, VALG05]. ACE [Le 88].

ACM [Ano18, TGT20, KRO2, KRO3, KRO4, KRO5, KRO6, KRO7, KRO8, KRO9, KRO10, KRO11, KRO12]. Across [NSTD+15].

Action [BKL93]. Actions [Lam94, LS83].

Active [SR21]. Activity [Bar81, MTG80].

Actor [TCP+17]. Acyclic [BE94, JF81].

Ad [MDCB91, PS08]. Ada [Bak82, Dil90, Hii88, LP90, WJS+00].

Adaptation [Dha91]. Adaptive [ABH06, HOYY18, PXL95, TCVB14, UJ92, RD03].

adaptors [YS97]. Addendum [Bir85].

Adding [ACW90, BN94]. Addition [CM+95]. Addressing [Hol87, ZP10].

Adequacy [KKS94, Wey83]. adjusting [ABB+09]. Adversities [GMP24a]. advice [WKG04].

Æminimim [SNS+14]. Affine [BAC16, BTEM15, CFNH18, DG19, ELS+14, VJ12]. Affix [GF85]. agents [BCC04]. aggregate [LSL05]. Ahead [BLH12, DP82]. al [Ano18, TGT20].

Alarms [LL+17]. Algebra [Koz97, Wil82a, KBC+99].

Algebraic [BP82, BWVP97, CIGJ18, CGG+19, Jen97, Lin93, SV92, JB06, SP07].

Algorithm [AB81, Bak82, BB97, BAC16, BP92, Dan23, DSW82, Dha91, DP93, GH93, HL12, Hua90, Hu91, JJC10, LV94, LY98, Leu90, LT79, LH91, MM82, MC82a, Pet82, SH89, TB98, Wis79, BKR98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKR95].

Algorithmic [BP82, CFNH18, GM12, JZX+24, Loe87].

Algorithms [Apt86, BA84, CIJGP18, CGG+19, CS95, CN83, GLO88, KRS84, KKM90, KRO2, KRO3, KRO4, KRO5, KRO6, KRO7, KRO8, KRO9, KRO10, MM89, RD87, RH87, RP88, TM93, WW95, Apt00, DAS98, GC10, ZGZ05].

Alias [Hor97, HBC99, RRSY08]. Allasing [Boe85, Ram94, RLS+01]. All-Purpose [Spo86]. Allocating [ZP07].

Allocation [BB79, Bre89, BCT94, CH90, CS95, FLBB89, GSO94, LCB19, Rob79, SH99, CGS+03, HCS10, LGAT00, PS99, PF96, RDG08, SRM10, TP04].

Alma [ABPS98]. Alma-O [ABPS98]. almost [Duc08, Ram99].

Alternative [Gho93, GH80, Zav85]. Alway [Gri79]. ambients [BCC04, LS03, MH06].

Ambiguity [Tho94]. amortized [HAH12].
Amulet [VHM+01]. Analyses [AC94, CC95, CFM94, TN19, KSV96, SJ03]. Analysis [AKNP17, ABE+05, AD98, Bac84, BNN18, BC85b, BLo94, BE13, Bur90a, CFNH18, CFG19, CDK+18, CMN91, DKL18, DL93, Deb95, DP97, DC22, DAW88, FPS19, FJK+17, GNS+15, GKM20, GDF23, GJ93, HP96, HL22, HOY18, HIl88, Hor97, ISY88, Jen97, JJC019, K94, LLK+17, LTMS20, LR13, LHR19, LWR21, McG82, MRGP20, MWB94, MOS07b, OHL+14, OLH+16, Pal95, PO95, PCC85, PP91, PW94, PW98, Pur91, RDT83, RRSY08, RR03, RR05, RLS+01, SRW98, SRW02, STS03, SdSCP13, SS96, ST00a, WP10, WJ98, ZSD09, dHB+96]. analysing [RD97, RRSY08, RR03, RR05, RLS+01, SRW98, SRW02, STS03, SdSCP13, SS96, ST00a, WP10, WJ98, ZSD09, dHB+96]. analyze [DMM01, VBLG04]. analyzer [SMP10]. Analyzing [AW85, BEF+16, CFP+04, GMM99]. And/Or [Har80]. Annotations [Bur84]. AOP [DES12]. APL [Bud84, GDB2, Hob84]. Applicability [DAW88, How80, LS98]. applicable [Gom92]. Application [CD79, DF80, DF81, LB17, LR13]. Applications [BLRS12, Bou88, MRGP20, RK+23, SR21, BALP06, CMLC06, NR06]. Applicative [AC94, KS86]. Applying [JZX+24]. apprentice [MP02]. Approach [AKNP17, ABR81, AR80, BAC16, BP82, Bur90a, CH90, CD79, DS90, EIl82, ES97, FT94, GGL15, Har80, Hes88, KKW14, Lam79, Lam80, Moo86, LTS20, MW80, MDCB91, ND16, OA88, Sam80, Spo86, SM81, SNS+14, Bou05, CRN+08, DHM+12, FGM+07a, JLR+10, KV00, LP80, MBT09, PSS05, PCJD08, RC03, SP07, WS97]. approximations [BG99]. Apt [Moi83]. architected [ZP07]. Architecture [Wal92]. Architectures [Han94, KPF95, NSTD+15, PAS+15]. Arising [Bac84]. Arithmetic [Fis80, GNS+15, Hen83, LdR81, MOS07b]. ARM [FKW98, ADG+21]. Armada [LCK+22]. Armed [ADG+21]. Array [CGST95, CG95, LS79, Per79, PW98, JB06, LSLR05, N05, PHP02, RH06, R05, ZCG+07]. array-valued [RMH06]. Arrays [BBC16]. Article [Ano18, TGT20]. ASF [VHK00]. aspect [DWW08, WK04]. aspect-oriented [DWW08, WK04]. AspectML [DWW08]. Aspects [Bor81, Set83]. assembly [AAR+10, WMCG99]. Assertions [BKB80]. Assessing [BDH+16, Wey83]. Assets [COE+20]. Assignment [BM94, CFR+91, GL80, GP08, LDK+96]. Assisted [HCP92]. Assisting [Feo82]. Associated [FPS79]. associativity [Cha02]. Associons [Rem81]. assume [HQRT02]. assume-guarantee [HQRT02]. Assumptions [ES97]. AST [GVC15]. Asynchronous [Bag89, GLO88, Mis86, GM12, HR02]. ATL [WSH15]. Atomic [WL85, Wei90, AE01]. Atomicity [JLP+14, Wei89, FFLQ08]. Attacks [SBE+19]. Attribute [CP95, Hud01, JP81, Jon90, Kat84, KR79, MK94, RD87, WW95, Boy96, CP96, Wu04]. Attributes [HT86]. Author [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91]. authorization [FGM07]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b]. auto [ZP10]. auto-addressing [ZP10]. Automata [BMW91, CBMO19, ES97, Pro95, KV00]. Automata-Theoretic [ES97, KV00].
Automated [GRSK+11, KZC15, KF00, LCK+22, SSFZ+23, Sok87, JNGG10].

Automatic [AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, DS90, KK98, Le 88, LK02, LS04, MS83, PZJ05, RH87, SSS81, SLC03, She91, VS22, Wat91, Wha94, ABHI11, ATD08, BdlBH99, CRN+08, ZCG+07].

Automatically [Slo95].

Automating [GKL94, MTSS09].

Avoidance [FGL94].

Aware [BPRB23, MQ05].

Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80].

Axioms [Mis86].

B [Han81a].

backpropagator [PS08].

Backtracking [Lin79, VR95, FM87a].

Backward [DL18, Mye18].

Balanced [AS80, PB80, vHK00].

Barrier [CHMY19].

Base [NcS20, LS98].

Based [BPP16, BGL93, Bur90a, CGJ+97a, CI84, CP95, CH90, CPS93, DLVM15, DLR16, EGP14, GG85, HT86, JTM98, KS92, KR79, LFF14, PW98, RGD83, SR95, SGL98, Ste18, SNS+14, TY18, Wat94, WGS92, vPS11, BFG08, BMRO1, BHM+07, BCG+07, CTT07, DDV99, Eug97, FF99, HB98, JZX+24, JKT23, KBC+99, KK07, KC01, LP00, LH08, LGAT00, MTSS09, ML21, MTK21, MHO6, Pa98, PPT08, PCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12].

Basic [CGG+19, GLR83].

Bayesian [HOYY18].

BDD [LH08].

BDD-based [LH08].

Be [Bee94, Coh91, WR91, CG04, LP99].

Behavior [KLS92, GMM99, VBLG04].

Behavioral [LN15, LW94].

Behavioural [SV20].

Being [Cop94].

benefits [GMP+00].

Better [Gri79, Lam88].

between [BS88].

Beyond [GWS95].

BI [BBTS07].

BI-hyperdoctrines [BBTS07].

Bidirectional

[DP93, MMR95, FGM+07a, GPWZ08].

binaries [STSP05].

Binary [Sip82, SCR24, DDD05, MMM+07, RC03, YF09].

binding [ACE96].

Birrell [MDJ05].

Bisimulation [FDY12, MH06, San09].

bisimulation-based [MH06].

Bisimulations [SV19, SKS11].

Bit [CDK+18, KD94, KK07].

Bit-Precise [CDK+18].

bitvector [KSV96].

Bliss [GNS+15].

Block [LS81, Mur91].

Block-Structured [LS81].

Blockchain [COE+20].

Blocked [FTJ95].

Both [KF00, bottlenecks [RD03].

Bottom [BGL93, GCRN11].

Bottom-Up [BGL93, GCRN11].

bound [KK07, NI05].

Bounded

[ADG+94, ITF+22, MXZ+22, LLOY23].

Bounds [CP17, FNGB20, ISIRS22, PW94, BP12, CEI+07, RR05, SS05a].

Box [WLBF16].

boxed [BCC04].

Branch [CGJ+97a, CEG07, YUW02, YS99].

Branches [WZ91, RC03].

Branching [CBMO19].

Broad [DAW88].

Buddy [Kau84].

Buffer [Zie94].

bugs [HCS10].

Building [Jag94].

BURS [Pro95].

Bus [Pur94].

Bytecode

[SA99, BDL+08, CSCM00, FM99, GPF08, KR01, Qia00, SMP10, WR08].

Byzantine [LSP82].

'C [PHEK99, BR97, HSS+14, MRG20, ND16, PKH07, PFH11, Ven95].

C# [BCF04].

C/C [ND16].

C11 [JP17].

Cache [GMM99, KLS92, MMM+07, SS96, VBLG04].

Caching [ABM93, FK85, KS86, LST98].

Calculational [Bou06].

calculus [ABS09].

Calculus [ABL93, BKL+97, BN94, Gom92, Kob98, LBMTT22, Miq19, MRG88, Nel89, Oho95, WM95, ABL03, AH10, BG22, Bou05, Bou06, BCC04, DES12, HR02, IPW01, Jay04, TA08a, KPT99].

Call [DP97, GL80, dBH21, GC01, HL05, KK07, SW97a].

Call-by-Value [dBH21, HL05, SW97a].

Calls [BNN18, Coh83, Coh85, FF08].

Can [Boe85, Coh91, WR91, CG04].

Capabilities
Capturing [BGOL+23]. Carlo [FL15].

Carrying [AM01]. Case

[CDFG19, FTJ95, WW95, BdlB99, KF03].

Cats [AMT14, ADG+21]. Causally [LB22].

Cause [Cas95]. CCP [EGM01]. CCured

[NCH+05]. Cedar [SZBH86]. Cells [ISY88].

Centered [CHY12]. Centers [KRS84].

Centralized [HM84]. centric [DHM+12].

Certificate [BGKR09, BK11]. certified

[STSP05]. CFLOBDDs [SCR24]. CHAD

[VS22]. Chaining [LS80]. Chains [HS94].

challenge [MP02]. change

[BA08, CP96, Lee09]. Changes

[Ber94, MTSS99]. changing [MP07].

channel [SCP23]. Chariots [PB97].

CHC

[MTK21]. CHC-based [MTK21]. Check

[AP94]. checked [KN06]. Checker

[CMPP23, NP08]. Checking [Car95, CGL94, ES97, FF08, GL94, ND16, AY01, ACM11, BGP99, FFLQ08, HERT02, JJD98, KF10, KVO00, NI05, SG04, VJB12, YMW97].

Checks [CG95, CEI+07]. Chocola [SDD21].

Choice [BN94, JCM19]. Choral

[GMP24b]. Choreographic [GMP24b].

CIRCAL [Mil85]. Circuits

[HRL+23, LLOY23]. Circular

[Jon90, Pet82]. Circularity [WW95, Wu04].

Clarification [PA86a]. Class

[CBMO19, HKMN94, Han92, SJ03, SDF13, HS11, MH04, ST00a]. Classes

[SDFT13, WTI11, HHPW96, HMS06].

Classical [JSB+12, Miq19].

Classification

[KZC15]. Classifying [GSW95]. Claus

[WB10]. Classé [Watt94]. Classé-Based

[Watt94]. client [RKW+23]. Clique

[GSO94]. Closure [Pah95, SW97b, SA00].

CLP [DHM00, GLMM05, JMSY92, KMM+98, VR95]. Clustering [LLK+17].

Clusters [BGH+13, HBG+09]. coalescing

[GA96, Hai05, PM04]. Coalgebraic

[KBP22]. Coalgebra [KBP22]. Code

[AGT89, BHM+19, Cat80, Cop94, DF84, FGL94, GF85, Hen82, HG83, JSB+12, KRS94, LR13, LCK+22, ND16, Rob79, TvS82, VP23, Wan82, AM01, DEMD00, Hai98, HBG+09, HK07, JZNO6, LDK+96, MSRR00, ME97, Oho07, PHEK99, W97, vHK00, CM93, Pen83, WST85].

Coder

[SBS22]. Cohen [Coh85]. coherence [SS96].

coinduction [San09]. Collect

[MCMM19].

Collecting [HY91]. Collection

[BA08, CN93, DS82, Lan80, TM93, URJ18, WLF16, BALP06, HDH02, PK+97, P]q96].

Collector

[WW22, BYTG+05, LP06, TSB08].

Coloring [BTC94, CH90, GSO94].

combination [BCG+07]. Combinator

[FRW90, KL92]. Combinatorial

[LCBS19]. Combinators

[FGRM+07a, KS88, KS98]. Combinatory

[RS97, VS22]. Combining

[Ber94, BP92, CC95, CM9+95]. Come

[HL91]. Comments

[AB94, KS79, LA84, NN86, Sor89].

Communicating [AFdR80, GC86, HM84, MW84, MC82b, Moi83, Oss83, PP91, Pur91, Sou84, Ber80, KS79].

Communication

[Ang89, CHY12, FJK+17, FY85, Gel85, Hu90, LH91, MB83, vPS81, KBC+99, Mil85, SWU10, WM12].

Communication-Centered [CHY12].

Communications [RS84b].

Communitativity [RD97, Apt00, Cha02].

Compact [BC79, Sip82, Wad90].

Compactification [RH87]. Compacting

[CN83]. Compaction

[CP17, Wis79, BP12, DED00, DEMD00].

Comparative [GDF23, WCW90, WC91].

Comparing [Hai05]. Comparison [CN83].

Compartmentalized [WLF16].

CompCert [BDP14]. Compensation

[FGL94]. Compilation

[ABC+21, DL16, FKW98, FL91, JLP+14, JF81, Oho95, PAS+15, PG21, SiT79, KMM+98, LST02, LDM07, SY06].

Compile [ABR81, GW99, Hol87, Tra08].

Compile-Time
Context-Dependent [Ode93, RTD83].
Context-Free [GHR80, Pad19, KPB22].
Context-Free-Language [SCR24].
Context-sensitive [Ram00, VP23, Rep00].
Context-Unbounded [LWR21].
Contexts [Ode93].
Contextual [TDA+23].
Contextual-Continuation [BDM15].
Contextual-Continuation-Passing [BDM15].
Contextual-Continuations [BDM15, HF87].
Continuous [KF03].
Contract [RKW23, DF11].
Contract-client [RKW23].
Contracts [SIG17, SDTF13, CGP09].
Contravariance [Cas95].
Control-flow [SCP23].
Controlled [Min84, Tho94, JC97].
Controlling [BALP06, LaL81, LMD98].
Convention [AF84].
Coq [HRV+23].
Core [IPW01].
Cores [YGRBA23].
Coroutine [Sam80].
Coroutines [LS81, DIO9].
Correct [DGMP97, Hen86, JP17, SS88, AAD+07].
Correction [FA93].
Correctness [ABC+21, Ap86, CM86b, FR90W, Gom92, HW90, Lam79, Lam80, ML21, Oss83, San96].
Correlated [YS99].
Correspondence [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Elsi82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moli83, MS88, NN86, Par90, Pen83, Sor89, SM82, Tan83, Tie88, Voi91, WST85, Wir91, YB88].
Corrigenda [WCW91].
Corrigendum [Ano18, BKRWO5, DF81, Fra80a, KS89, Lam80, Pur91, QG95, TGT20, Van96a, Wal81, WGS93].
Cost [AB81, Bac84, DL93, Hai98, Han81a, ZGZ05, VALG05].
Cost-optimal [Hai98].
Costs [GMP+00].
Counting [Bai94, LP06].
Counts [Bob80, Wis79].
Coupled [ACW90].
Covariance [Cas95].
Covariant [PZJ05].
Creating [Mye90].
Criteria [Hai98].
Cross [Ano18, FTJ95, GSS+18].
Cross-Interferences [FTJ95].
Cross-Language [Ano18, GSS+18].
Cryptographic [App15, HRV+23].
CS [CD79].
CSim [SZLY21].
CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Zic94].
CSP-Like [Hua90].
CSS [HLH19].
currency [DS98].
Curry [LR19].
Curry-Style [LR19].
Custom [DJP+16].
CV3 [CS84].
Cycle [BG89b, PBK+07].
Cycles [FRW90].
Cyclic [RY88].
D. [Bur91].
Data [AMT14, ANP89, AM85, Bae84, BNN22, BC85b, BL7, Bur90a, Cha93, CS87, Deb89, DP93, DD85, Eil82, EO80, FL81, GMP+00].
Data-driven [BC85b, Bur90a, Wat82, RP88, KBC+99].
Data-centric [DHH+12].
Data-Driven [BL7, CL94, JCO19].
Data-Flow [BC85b, Bur90a, Wat82, RP88, KBC+99].
data-independent [Rep00].
data-member [KF00].
data-Parallel [Cha93, HBJ98].
Database [Bar85, CB80].
Databases [SR21].
Dataflow [Deb95, DFR15, MBW94, SS13, SS96, Van96a, Van96b, VHM+01].
datalog [LS09, ZSS20].
datatypes [MBC04].
Deadlock [CHMY19, Hua90, Kob98].
Deadlock-Free [Kob98].
Deadlocks [FJK+17].
Dealing [GLM05, GG85].
Debugging [CMN91, CM93, Cop94, Hen82, WST85, ZSS20].
Decentralized [RKW+23].
Decidable [LB22].
Decision [MTG80, NO79, SCR24].
decisions [MTSS09].
Decomposition [BB94].
Decomposing [BDL+08].
Decomposition-based [JZX+24].
Decomposition-based decrease [LDK+96].
Deducing [TB95].
Deductive [GGL15].
Detect [ISY88].
Detecting [GSW95, HCS10, Sch85].
Detection [CM86a, Hua90, MC82a, MC82b, TM93, AFF06, HDH02, PFH11, PCJD08, XA07].
Determinacy [TK94].
Deterministic [KR79, Mye18, YGRBA23, DL18, Tar07].
Development [BKB80, Col84, Fea87, Jon83, ML80, PPST97, Wil82a].
Diagnosis [BF87].
Diagrams [SCR24].
Dialect [Mul92].
Dialects [CP95].
dialogue [BCM99].
DIB [FM87a].
Difference [BA08].
Differencing [PK82, RSL10].
Differential [BKOB13, TDA+23, ZP07].
Differentiation [Sha82, VS22].
Diffusing [MC82b].
Dijkstra [BN94, Nel89].
Dimensional [Hil88, GPWZ08].
direct [YK97].
Directed [BDJ13, DMM88, Gud92, Han94, Set83, SYYH07, OKN06].
Direction [Dar90].
Directly [Hob84].
Director [KS88, KS89].
Directory [Han81b].
Discipline [VMLY22, FGM07b].
Disciplines [SS84].
Discovering [FKJ+17].
discovery [PZJ05].
Discrete [Bar81].
Discrete-Event [Bar81].
Disintegration [NC820].
Disjunctive [Jen97, JIJO19].
dispatch [DAS98, MFRW09].
distributing [GZ07].
Distance [Wol94, ZSD09].
distribute [CRN+08].
Distributed [ABLP93, APF84, APT86, AW85, BKS88, BCGM15, Bur84, CJK95, CM86a, CBDGF95, CS95, DAW88, Dug99, FLBB89, Fra80b, GHSS83, HSG17, Hua90, HM84, Jon94, Kat93, KK98, KRS84, KKM90, Lam84, LS83, MC82a, RCRH95, SSS84, Sch82, TM93, TCP+17, Zav85, ABLO3,}
Distributed-Memory [KK98, RCRH95].
div [Bou92], Dive [YW22], Divergence [SiSCP13]. Divide [JZX+24].
Divide-and-Conquer-like [JZX+24]. DJ [DR05, SGL96, SGL98, UM02]. DJ-graphs [UM02]. 
DLLs [Dug02]. do [SS05a].
Documentation [MH86]. does [DMP96]. dolce [MP10a]. Dollars [HL22].
Domain [LM18, Tra08, RM07, SS05a]. Domains [CMB+95, ELS+14, GS98, FH04, GLMM05].
dominance [Ano02b, DVD07]. dominator [SGL97]. Dominators [LT79, Ano02b, BKRW98, BKRW05]. Don’t [AKNP17]. Down [HL22, SZLY21].
drf [MSM+16]. Drinking [CM84, MS88]. Drive [PK80].
BL87, CS87, GF85, GSW95, JCC019, PA85, PA86a, PA86b, TGT18, YBL16, DGS97, 
FPS19, PF96, TGT20, YMW97]. Dually [MT08]. Dummy [Lam88]. During [BKB80]. DyC [GMP+00]. Dyck [LZR22].
Dynamic [ACPP91, AGT89, ASF17, BNNN22, BB79, BDM15, Bre89, CGG+19, CHMY99, CTT07, 
DS98, Dug99, HSS+14, HN05, Kai89, KR79, RCRH95, Ven95, WR08, dBB85, ACE96, 
BP12, CEI07, DDDCG02, GZ07, MMM+07, PHEK99, SJP12, SHB+07, SYK0+05, SYN06, WKD04, ZGZ05].
eager [FKW00]. Earley [Lei90]. Early [AB81]. ECCS [CDFP89]. Edge [DP93].
Editing [FL81, HT86, Nix85]. Editor [FM87b, DeMS3, Mye18, Per90, Rep86, Wol92].
Editorial [AP07, App93, AG93, AF94, MP07, Mye19, Pal11a, Pal1b, Pal12, 
Pal13, Pal15, FP02, OP04]. Editors [DMM88, MM89, RTD83, Wat94]. EDO [OKN06]. Effect [Gor21, RLS+01]. 
Effective [BS83, Col84, JB20, KKN06, N05, PE08, WJ98, YUW02]. Effectiveness [BdLBH99, SH89]. Effects

FM87a, HVB+99, KGO04, LK02, MDJ05, Piq96, Fra80a, Moh81, VHB+97].
Efficient [AKBLN99, ADGM91, BB79, BGH+13, Bre89, Cam89, CS95, DP82, DMM88, GZ05, 
GZ07, GLR83, GLO88, GSO94, HVB+99, HS94, HSS+14, HIT97, JP81, Jon90, 
KKM90, KRS88, KPF95, MMV+01, MM82, NB99, N05, PHP02, PXL95, PG21, PKH07, 
PA85, PA86b, RH87, SS08, SA00, SS88, TN19, WG98, YUW02, BCP08, GB99, 
KSV96, LPS004, LS09, PBK+07, TP04, VWJB10, YF98, PA86a, SS09]. Efficiently [Bal94, CEF+91, CF95]. Eiffel [ACE96].
elaboration [KR01]. Election [Hua93]. Eliminating [BT93, Coh83, Coh85, RD03].
Elimination [DP93, SCP23, SGL98, KKN06, KCL+99].
Elimination-Based [SGL98]. embedded [BCP08, CSM00, HK07, Rhi03, SRLM10, 
TP04, ZP10]. Embedding [HF87]. Empirical [HJK07, BDH+16].
Empowering [JSB+12]. Emulator [ML08]. Enabled [ADG+94]. Encapsulating [GPV07].
Encapsulation [AR84, RSPS23, DDM11]. Enclaved [BNV+21]. Encoding [Hob84, GZ05, ZP07].
Encodings [BC79, YT12]. End [BDP14, CSM00]. enforcement [HMS06].
Enforcing [CEI07, RKW+23]. engines [SS08, SS09]. enhanced [GH97]. Entries 
[LaL84, SS82]. Enumeration [BB04, JJD98]. Environment 
[CO90, SZBH86, CKT86]. Environmental [SKS11, SV19]. Environments [BS86, 
GKL94, HK85, HT86, Kai89, dJKVS12].
Epochs [Sol92]. equalities [FMP0811].
Equations [HO92, Bou06, GS11, GMM99].
equiprobable [PB80]. Equivalence 
[SV20, VJB12, VSS94]. Equivalent 
[PO95, NP08]. Erlang [TCP+17]. Erratum 
[SS09]. Error [AB81, Bac84, BN99, BF87, 
FL15, KC01, LaL84, MF88, MYD95, PK80, 
Ric85, SS83, SS82, Wet82, ZMVPJ17, 
JKVS12, Jef03, AX07]. Errors [AWW95,
Finite-State [ACW90, BLH12, CES86].
First-Come-First-Served [LH91].
First-Enabled [ADG’94, Bre89]. First-Fit [Bre89]. First-In [ADG’94]. First-Order [DP97, JPP91, JS94, MPLM23]. Fit [Bre89].
Fixed [SS98]. Fixed-Order [SS98]. Fixpoint [AC94, Qia00]. Flexible [AD98, Hud91, MSM’+16, WG98, Wil82b, dJKVS12, IV06, KGMO04]. Floating [CK94, Fat82, SBB’+19, Han96, Mon08].
Floating-Point [CK94, Fat82, SBB’+19, Han96, Mon08]. flop [MMG00]. Flow [AR80, AD98, ASF17, Bac84, BC85b, Bur90a, DP97, DP93, FJKA06, Hor97, KD94, MMR95, NBG13, PO95, PP91, PBR’+15, Pur91, RSPS23, Set83, SGL98, SS13, Wet82, DGS97, HR92, HY07, KBC’+99, Pal98, PS03, RRSY08, RP88, SCP23, TZ07, WI98].
Foreword [Mye17, Mye18]. Fors [AK87, BOV85, BM94, CFR’+91, GS95, Pa195, PG21, GPF08, KCL’+99]. Forma) [ZCG’+07]. Formal [ADG’+21, BS86, BDP14, CB80, CD79, Fid93, Gie83, HHT97, Kna90, Lee86, Mal82, MH86, SSFZ’+23, Sha82, WP10].
Foundational [HRV’+23, AM01]. Foundations [GTWA14, LW93, AAR’+10]. Fractal [MPM03]. fractional [Boy10]. Frames [PLM23, SJP12]. Framework [BG93, Gie83, HRV’+23, JW17, KRR18, NSZS13, NSTD’+15, OHL’+14, SGL98, TN19, ATD08, DGS97, GM99, GZ04, CO01, Lee04, PS08, RKR07, TP04, VBLG04, XA07, ZCG’+07, ZP10, vHK00].
Frameworks [MMR95, KK07]. Framing [KNN18, BNNN22]. Francez [Fra81, Moh81, Moi83]. Free [AP94, GECP17, GMR80, Her91, Kue84, Koh98, Pad19, SCR24, JJD98, KBP22, KS96].
freedom [KS10]. Fresh [GMN’+21]. frontiers [An02b]. full [GB99]. Fully [JPP91, TY21]. function [DR05, FF08]. Functional [AFV98, Ban87, Blo94, Bou05, Bur84, DW99, FL91, ISY88, JPP91, WM95, Web95, Wil82a, ABH06, Bou06, DWWW08, DF98, PS08, San96, SP97]. Functions [AKP94, AK82, Bou92, PB80, SM89, TY21, Lee09, MBC04, MB99, MT08, PPT08].
Further [CM93]. Fusion [JL20, LGAT00]. Fusion-based [LGAT00].
G. [Tie88]. Garbage [BA84, CN83, DS82, ISY88, JCM91, TM93, URJ18, WLBF16, Wis79, YW22, BAYG’+05, BALP06, HDH02, LP06, PIQ96, TSBR08]. Garnet [VHM’+01]. General [BG93, CHMY19, HSS’+14].
General-Purpose [HSS’+14]. Generalization [Nel89, LMD98].
Generalized [Ans87, BS83, GKM20, KD94, Lin79]. Generalizing [DB85]. Generals [LSP82]. Generate [Son87]. Generated [Slo95, dJKVS12]. Generating [HBB’+06, HT86, JEF03, LR13, JZ06].
Generation [AGT89, AS80, BOV85, BM94, DS83, DS90, GF85, GVC15, KRR92, KRR94, Pro95, Rei83, Rob79, She91, ST00b, U92, DAS98, MSRR00, PHEK99].
Generative [GE85]. Generator
GMH81, Gaz83, Lin93, MDCB91, NN24, PXL95, RL98, WL85, CMLC06, FM87a, GB99, LDM07, LPSO04, Tra08, Zho96.

Implementations
[BBF+11, BFST08, DF08]. Implemented [DB85]. Implementing [BR97, Her93, HW82, Sku95]. Implications [Fat82]. Implicit [BH05b, SJP12]. Implicit-signal [BH05b]. Improve [VP23, KF00]. Improved [GHR80, Mur91, KK07]. Improvement [MS83, San96]. Improvements [BCT94]. Improving [CK94, CMB95, MCT96, SSFZ+23, TCP+17, WS97]. impure [Pip97].

Incomplete [MRGP20, GLMM05]. Incremental [Bur90a, CP95, DMM88, GMT97, HKR92, HKR94, HPMS00, Hud91, Kai89, Lar95, LST98, LHR19, PS92, RTD83, RP88, SGL97, WG98, YS91, BBYG+05, CP96, Van96a, Van96b]. Incrementally [QL91]. Independence [DHM00, GGSV22, Rep00]. Independent [ML80, Mul92].

Indices [AM01]. Indirect [Piq96, CEG07, YK97]. Induction [GSW95, SiT79]. Inductive [LBMTT22]. inefficiencies [MMM+07]. Inessential [SS82, LaL84]. Inference [CEW14, Deb89, Hen93, LO94, LK98, MRGP20, Pad19, SR21, TB98, Wey83, FFLQ08, JH06, PM06, PT00, PS03, Van06]. Inferring [FNBG20]. Influence [FTJ95].

Information [AR80, Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b, ASF17, BC85b, HRO2, NBG13, PBR+15, PS03, RSPS23, GS99, HY07, LN02, OYR09, TZ07]. Information-Flow [BC85b, TZ07]. infrastructure [SWU10]. Inheritance [LN15, WT11]. initialization [FM99].


Interpretation [BGL93, CFG+97, DC22, DLR16, GMP24a, KRR18, LV94, MSJ94, SCS24, BDL+08, BddBH99, DGG97, Leu04, SYH07]. Interpretation-Based [DLR16]. Interpretations [CMB+95, HY91, SJ03].

Interpreters [LR13, CEG07]. Interprocedural [Bur90a, BT93, DP97, HAM+05, HS94, HBC99, HRB90, IWR21, ML21, NR06, SH89, CKT86, DVD07, DGS97, FMoPS11, JLRS01, KKO7, RLS+01]. Interprocess [RS48b]. Interprocessor [Ang89]. Interruptible [BNV+21]. intersection [Dan03]. Intersect [FY85].

Interval [Bur90a, GNS+15, FH04]. Interval-Based [Bur90a]. Introduction [Ahm20, DeM83, HC82, Mul21, Per90, Rep86, Sag07, Wol92, Yos22]. Invariant [BKB80]. Invariants [Cla80, GEGP17]. Irreducible [Hav97, UM02]. irregular

[MDJ05]. Lists [Dan23]. Literature [Oss83]. Live [DSFG21, MWB94].
Live-Structure [MWB94]. Liveness [ACW90, GC86, OL82, RY88, HDH02]. LL [BF87]. LLVM [HL22].
Load [KPF95]. Loaded [BG89a]. Local [BDFZ09, CBDGF95, HMY+24, PT00, SDB20, TSBR08, We89, Dam03, San96].
Local-first [HMY+24]. Locality [BAC16, MCT96, VALG05, ZSD09]. Locally [AB81, BAC16, MCT96, VALG05, ZSD09].
Locally [AB81, BAC16, MCT96, VALG05, ZSD09]. Locally [AB81, BAC16, MCT96, VALG05, ZSD09].
locating [JNGG10]. Locator [ZMVPJ17]. Lock [GEP17, KS10]. Lock-Free [GEP17].
lock-freedom [KS10]. locking [AFF06]. LOCKSMITH [PFH11]. Logic [AS89, AFV98, Apt81, BNNN22, BGL93, BL87, BCD90, BDJ13, BMPT94, HMY+24, PT00, SDB20, TSBR08, We89, Dam03, San96].
Logical [BNN18, GGL15, GS98, TY18, RSL10, Tar07]. Look [DP82, GMN+21]. Look-Ahead [DP82].
Lookahead [KM81, MF88]. Loop [BAC16, CS87, MCT96, Si79, RRS92].
Loops [BAGM12, Boo82, CK94, DB85, FTJ95, Havan, Wat91, Ano02b, LS04, LSL05, Ram99, RDG08, SGL96, UM02].
LoRe [HMY+24]. low [CSCM00]. low-end [CSCM00]. Lower [FNBG20, PW94]. LR [La84, ADGM91, BL94b, BF87, CPRT02, DMM88, Je03, JP17, KC01, LaL81, SS82, ST00b]. LR-based [KC01].
M [Bur91, Mul92]. M-LISP [Mul92]. Machine [CGJ+97a, Cat80, GNS+15, Gie83, Han94, JJC09, LR13, ML80, RF97, SS98, SDB20, Wa92, Zav85, Ano02a, CEG07, CF04, HK07, KN06, Oh07, RR19].
Machine-Learning [JJC09]. Machine-Specific [Gie83]. machinery [FKW00]. Machines [ACW90, Bee94, CGST95, GC86, KK98, PS93, PP91, Rob79, RCRH95, Ay01, AG04, ABE+05, ABS09, TSY00, Pur91]. Made [LM22].
Management [JP81, Mur91, SDB20, van88, BP12, WCM00, Zho96]. Managing [Bob80].
Massively [CGST95]. Matching [AC96, AGT89, CP95, KPS92, AD06, Van06].
Matching-Based [CP95]. materializations [RM06]. Mathematical [Ban11, Hes88, LW93]. MATLAB [DP99].
Maximization [GLO88]. Maximum [Kna90]. May [Hor97]. May-Alias [Hor97].
Median [Com80]. Medians [KRS84]. megaflops [MMG00]. member [KF00].
Memory [AMT14, CKB94, Cha93, CBMO19, FSH23, KZC15, KK98, KRS88, LB22, MSM+16, Mis86, RCRH95, SS88, ABHI11, BP12, GMM99, GW99, JNNG10, KF00, KJ02, Loc13, QR00, RR05, TSY00, TP04, VBLG04, WCM00, MMM+07].
memory-efficient [TP04].
memory-hierarchy [KF00]. Merge
[Ber94]. Merlin [HBM+96]. Message
[CSW06, SS84, VMLY22, Gor04]. Messages
[BB79, Jef03], meta [Tra08].
meta-programming [Tra08]. Metalevel
[Jag94]. Metaprogramming [CL84].
Method [BNN18, BCD90, BF87, HL82,
Jon83, Loe87, JJD98]. Methodology
[Ban87, Her93, Sku95]. Methods
[DAW98, KM81]. METRIC [MM+07].
Mezzo [BPP16]. Microanalysis [HCHP92].
Microcode [MV87]. Microprocessors
[BVN+21]. Middle [BDP14]. Middle-End
[BDP14]. Might [Bee94]. migration
[Fin96]. Minification [HLH19]. Minimal
[FKW98, IPW01]. Minimization [RS84a].
minimizing [RMH06]. Minimum [GHS83].
Minimum-Weight [GHS83]. Mining
[AMT14]. Misled [Cop94]. miss [GMM99].
Mixin [HL05, RD13], mixins [ALZ03]. ML
[Blu99, CBM01, HM93, HT04, PS03,
RD13, Spo86]. Mobile
[LS03, VHB+97, BCC04, KS10, SWU10].
mod [Bou92]. Modalities [SV20]. mode
[PS08, ZP10]. Model [AY01, Ang89, BK11,
BL87, BGP99, CMP23, CGL94, DLR16,
ES97, GS98, GGG85, GL94, HMY+24,
Han81a, HW82, Hoi87, JB20, JJC09,
KH92, MSM+16, MMR92, ND16, VSS94,
ACM11, AM01, AE01, JJD98, JPS+08,
KN06, KV00, Loc13, NP08, QR00, SG04,
VWJB10, VALG05, YMW97].
Model-Checking [ES97, BGP99].
Modeling [AF84]. Modelling
[AMT14, ADG+21]. Models
[FSI23, GJ93, KZC15]. Modern
[BCF04, LMM21, YW22, RAB+07]. Modes
[Deb89], modest [LS08]. Modification
[Lei90, RLS+01]. Modula [EO80]. Modular
[AG04, BMPT94, CDK+18, EMH20, GL94,
HRV+23, JBK18, Jag94, KKM90, LN15,
MBC04, Wei89, YBB5, DJKVS12, KV00,
MFRW09, MOS07b]. modularity [BA99].
Module [PAS+15, RD13]. Modules
[CL95, HW82, Lam83, HL05]. Modulo
[FSH23]. Monadic [DG19, MH04].
Monitors [BLH12, BH05b]. Monolingual
[HK85]. Monte [FL15]. Morel
[Sor89, Dha91, DS88]. Morphing [HS11].
Morris [Wis79]. Mostly [YF09, BBYG+05].
Motion [KRS94, Hai98]. MPI
[FKJ+17, TSY00]. Multi
[Ano18, GSS+18, ITF+22, YGRBA23, MF09].
Multi-Cores [YGRBA23].
Multi-Language [Ano18, GSS+18, MF09].
Multi-threaded [ITF+22]. Multialgebraic
[WM95]. multidimensional [RDG08].
MultiJava [CMLC06]. Multilisp [Hal85].
multimethod [DAS98]. Multimethods
[CL95]. Multiparty [JS94]. Multiple
[ASF17, NST+15, SJW23]. Multiply
[FTJ95]. Multiprocess [Lam79, Lam80].
Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].
Multithreaded
[EGP14, JBB18, JSB+12, KKW14, NR06].
Multivariate [HAH12]. Multitaski
[Cha87, Van96a, Van96b]. munch [Rep98].
Mutandis [SHB+07]. Mutatis [SHB+07].
Mutual [LH91, ABH11].
Mutual-Exclusion [LH91]. Myths [Gor04].
n [CKT86]. Naming [BP93]. Natural
[GS04, dJKVS12, ACE96]. Neighborhood
[BG89a]. Neighborhood-Constrained
[BG89a]. Nesting
[Cha93, DDMP22, NB99, ACM11]. Nesting
[Hav97, Boy10]. Novation [BAC16]. Net
[JT98]. Network: [WGS92, WGS93].
Networks [CGJ97b, CG86, KRS84, dBB85].
Newtonian [RTP17]. Nicholson [FA93].
No [Ano18, TGT20]. node [JC97, UM02].
Nodes [CF95, Han81a]. Nomadic [SWU10].
Nominal [CU08]. Non
[CFG19, DL18, LLK+17, Mye18, BS88].
non- [BS88]. Non-Deterministic
Package [Hil88]. Paper [GM81].
Paradigms [JZX+24]. Parallel
[ANP89, BG22, BOV85, BO94, BE13,
Cha93, CGST95, CMM91, CI94, DS83,
Fos96, GLO88, GJ93, GPA+01, HCHP92,
HIT97, JF81, Kna90, LHR919, Mis94,
NSZS13, OA88, Rao94, SS88, VMLY22,
YGRBA23, BYBG+05, CG86, GB99, HBJ98,
KSV96, LK02, MVV+01, RR03, YF08].
Parallelism [Bur84, GP95, KSV96, NB99,
PW94, TCVB14, YBL16]. Parallelization
[BAC16, BDJ13, PP94, BdlBH99, HAM
+05]. Parallelizing [HP96, ME97, RD97].
Parameter [GAZ83, Zho96]. Parameterization
[TWW82]. Parameterized [CGJ97b, CK93, Gaz83, RKSR12].
Parametric [HFC09, MMG92, SRW02, IV06].
Parametricities [DPP22]. Parenthesis
[AS80]. Parlog [CG86]. Parsed [Wad90].
Parser [DDH84, JKT23, JP17, LAI84, SS82].
Parsers [BN99, LS81, MYD95, PK80,
CPRT02, SJ06, ST00b]. Parsing
[CH87, DMM88, Fis80, GM79, Lar95, RH87,
Sam80, SJW23, WG98, KCO1]. Part
[LS81, PA85, PA86a, PA86b, Apt81].
Partial [AFV98, CP17, CK93, DS88,
Gom92, KCL+99, SCP23, Sor89, ADRO6,
BP12, CG04, GJ05, LMD98, Len04, ST00b]. Partially
[BLH12, KOB98, VP23, RRSY08]. partially-flow-sensitive
[RRSY08]. partitioning [RM07, YF09]. Parts [Son87].
Pascal [LS79]. Pass [Bak82, BM94].
Passing [BDM15, Gaz83, SS84, VMLY22,
CSW06, Gor04, Zho96]. Passive [AKP94].
Passport [SSFZ+23]. past [PM09]. Path
[BL04, CIGP18, SMP10]. path-length
[SMP10]. Patient [FFF+18]. Patient-Oriented
[FFF+18]. Pattern
[EGP14, ADRO6, Jay04, MTSS09, Van06].
Pattern-Based [EGP14]. Patterns [GH80].
PDS [Han81b]. PEAk [PE08]. Peephole
[DF80, DF81, Pem83, TVS82]. PegaSys
[MI86]. Pennello [Sag86]. Perfect [Duc08].
Performance [HU96, MSM+16, PB80,
URJ18, VP23, KF00, PE08]. Performed
[Coh91, Wir91]. Permission
[BPP16, SNS+14]. Permission-Based
[BPP16, SNS+14]. permissions [Boy10].
Persistent [AM85]. Petri [JTM98].
Petri-Net-Based [JTM98]. Phases
[Bar81]. Philosopher [CM84].
Philosophers [MS88]. Pi
[BG22, HR02, KPT99]. Pi-calculus
[BG22, HR02, KPT99]. pict [SWU10].
Pictures [MH86]. Pipeline [HG83].
Pipeined [BG98b, LPP01, RDG08].
pipelining [ME97]. pitfalls [Mon08]. PL
[CD79, CZ84, FFF+18]. PL/CS [CD79].
PL/CV3 [CZ84]. place [GW99].
Placement [DP93, GS99, vHK00].
Platform [TCP+17]. pluggable [MME+10].
Plurals [Ste22]. Pluto [BAC16]. Point
[CK94, Fat82, SBB+19, GJ05, Han96,
Mon08]. Pointer
[LTMS20, LHR19, LS79, RR03, SDB20,
HBCC99, HVDH07, PKH07, RLS+01].
Pointers [SS13, RR05]. Points
[GKM20, WKD04]. Points-to [GKM20].
Pointwise [VSS94]. Policies
[NBG13, BDFZ09, FGM07b]. Policy [KRO82,
policy-based [BF08]. Polyhedra
[GVC15]. Polyhedral [GVC15]. QR00].
POLYLITH [Pur94]. PolyMage [JB20].
Polymorphic
[BMR05, Dug99, Gor21, HT04, Hen03,
KTU93, LO94, LY98, Oho95, SIG17, SV96,
TY21, WJ98, BSvGF03, DWWW08].
Polymorphism [Bur90b, MDCB91, HFC09].
polynomial [BAL07, CFG19]. PolyTOIL
[BSvGF03]. polyvariance [LMD98].
Polyvariant [AC94, WJ98]. POP
BEF\textsuperscript{+}16, CR87, CB80, CM86a, Cha93, CFNH18, CFG19, CEW14, CMN91, Cla80, CFM94, CS87, DSFG21, DL18, DGMP97, DW89, Deb89, DL93, Deb95, DP97, Di90, EMH20, FJK+17, FNBG20, GG85, GM81, Harr80, HCP92, HPR89, How80, HIT97, ISY88, ITF+22, JBK18, JW17, Jon83, JF81, Kna90, Lam79, LS83, MSJ94, ML21, MTK21, MRGP20, MH86, Mye18, NSZS13, OA88, OL82, PS92, QL91, Rao94, SS98, Sch82, SSS81, SS88, TOUH21, TN19, VMLY22, Ven95, Wad90, Web95, Wil82a, AE01, AAE04, BCG+07, CSW06, CSS99, DP99, DDV99, DS98, DMM01, EGM01, GM12, GHB+96, GH97, GPA+01, Hau96, HPM00, JPS+08, KSV96]. programs [LMD98, Leu04, LS09, MF09, NR06, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yin11, dHB+96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MWB94, NF89, Zho96].

Promotion [Bir84, Bir85].

Proof [AFdR80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WQS92, WGS93, AM01, DSW11, Ohko07]. proof-carrying [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, HRV+23, JW17, LY98, Oss83, GRSK+11]. Propagation [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09]. Properties [ACW90, AS89, CLJGP18, Kar84, LM18, OL82, RY88, TB95, Wei89, YS10].

Prophecy [LM22]. Proposed [Fat82].

prossima [MP10b]. Protected [PAS+15, WJS+00]. Protocol [SL92, YS97].

Protocols [MB83, RKW+23, BFGT08, SS96].

Prototype [WCW90, WCW91].

Prototypes [HW82]. Provably [SDB20, GB99]. Provenance [ZSS20].

provenly [AAD+07]. Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Pruning [BN99].

PSG [BS86].

PSO [FSH23]. publish [Eng07].

publish/subscribe [Eng07].

Pure [BNN18, HU96, Pip97, Tar07]. Purpose [App94b, HSS+14, Spo86]. Pushdown [CBMO19, JKT23].

PYE [TN19].

qualifiers [FJKA06]. Qualitative [CFNH18]. Quality [BHM+19].

Quantification [Vol91, Bur91]. Quantified [Gro06, STS03]. Quantitative [CFNH18].

Quantum [FDY12, HRL+23, BH99, Yin11]. Queries [Bal94, CGG+19]. Queuing [BB79].

Quiescence [CM86a].

R [CKT86, KMM+98, AW82]. R. [Tie88].

race [AFF06, PFH11]. Races [KZC15].

Random [AS80]. Randomized [TOUH21].

Range [CG95]. Rank [Dam03]. Ranking [Lee09, TOUH21]. Ratio [CK94].

rational [GS11]. rationale [CMLC06]. Reach [FKW98].

Reachability [LZR22, NS13, TOUH21]. Reactive [DFR15, AG04, DGG97]. read [AE01, PZJ05]. read-only [PZJ05].

read/write [AE01].

Readable [Spo86].

Reading [Pet83a]. Real [AL94, MMG92, RS84b, GH97, HK07, LS98, YMW97].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

realities [Gor04]. Reals [DK17].

Reasoning [BKOZB13, BLRS12, BDP93, BP82, BH99, CB80, DSFG21, Lam88, LN15, Rao94, SDB20, dBH21, TSBR08]. receive [Gor04].

receptive [ABL03]. Recipe [AL94].

reclassification [DDDCG02]. recognition [ATD08]. Recognizer [GHR80].

Recognizing [BL94b]. Recombination [Kau84].

Recombination-Delaying [Kau84].

Recompilation [BT93, SK88, Tie86, Tie88]. Reconciling [HU96].

Reconstruction [YR94]. Record [LS79, Ohko95].

 Recovery [AB81, ACS84, Bac84, BF87, GHH+19, PK80, Ric85, dJKVS12]. recurrences
Recursion [VJB12]. Recursive [AK82, Ban87, CFG19, Coh83, Coh85, LBN17, Sij89, ZZO22, ABE+05, AM01, CF04, Doug92, Pal98].

Recursively [BE13]. Reduce [BN99, MYD95, BALP06, KOE+06, SS96]. Reducible [SG04]. Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mul92, NN86, CSV01]. Redundancies [Sor89, DS88]. Redundancy [KCL+99]. Redundant [Coh83, Coh85].

Reentrant [Bob80]. Reexamination [CG95]. Refactoring [Ste18, TFK+11]. Reference [Bob80, Pea21, Wis79, KSK07, KOE+06, LP06, MDJ05]. Reference-counting [LP06]. References [Han92, TGT18, TGT20, SV96].


Regeneration [SR21]. Region [TB98, SYN06]. region-based [SYN06]. regions [RR05]. Register [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, KKB22, LaL81]. relating [ABC+21]. Relation [LBN17, MTG80].

Relational [BNN22, BKOZB13, CB80, GS98, TLHL11, JJD98, JLRS10]. Relations [ELS+14, HT86, LH08]. Relationship [BS88]. Reliability [LM18, WN08].

Reliably [TCP+17]. Rely [GEGP17, LFF14, SZLY21]. Rely-Guarantee [GEGP17, SZLY21]. Rely-Guarantee-Based [LFF14].

Remembrances [PM09]. Remote [BCP08, SG90]. Removal [AK82].

Rendezvous [Cha87]. Renvoise [Sor89, Dha91, DS88]. Reoptimization [PS92]. reordering [YUW02]. Repair [BN99, MF88, MYD95, KC01]. Repairing [CPRT02]. Replacement [MM89].


Resource [CS95, Cla80, IK05, MQ05, BDFZ09, CEI+07, HR02, HA912]. Resources [And81, FLBB89]. Respect [Gaz83]. Response [Tie88]. Responsibility [DC22]. Responsiveness [UH06]. Restores [Wis79]. Result [TB95].


Revisiting [DI09, ZZO22]. Rewrite [FKW98, Ass00]. Rewriting [FKW98, Ass00].

Rewriting [FKW98, Ass00]. Right [KS83, LaL81, SJ06]. Rigorous [SBB+19]. Rings [BP89, Hua93]. RISC [PS93].

Rivieres [Hen83]. RMI [MVV+01]. Robust [LS83]. Robustly [PG21].


Rounding [FL15]. Row [MM89]. RSMs [CGG+19]. rule [HQRT02]. Rules [GL80, JTM98, SS84, LS09, SSD09].

Run [ISY88, TZ07, GMP+00]. Run-Time
23

[CSS99, Lam87]. SHErrLoc [ZMVPJ17].
WCM00, YF09, AFF06, FFLQ08.

Statically [ACPP91]. Statistical [LLK+17].

Statistics [Lan80]. Staveren [Pem83].

Steensgaard [Ell80, SM82].

Steensgaard-Madsen [Ell82, SM82].

cstencil [LS04]. Step [Col84, TVA07]. Steps [Jon83]. Stepwise [CM86a, SL92].

Stevenson [Pem83]. Storage [BBC16, Bre89, JPD96, Mur91, Rob79, Sip82, KOE+06, TVA07].

Strategies [Bir84, Bir85, Geo84, NN86]. Strategy [Bre89, PK80, WSH15, ZSS20, GS11].

Stratified [SS98]. Stream [HSG17]. streams [CFP+04]. strength [CSV01].

Strict [Bee94]. Strictness [Bee94, SR95].

String [GH80]. Strings [AS80, KS89, ADR06, KS89, ADR06, KK07]. Strong [KZC15, PZ22]. Strong-separation [PZ22].

Structural [SZBH86, MTSS09].

Structurally [HS11]. Structure [BC79, GKL94, HM93, Mis94, MWB94, She91, HY07]. Structure-Oriented [GKL94]. Structured [BM94, CHY12, GD82, Har80, LS81, Mur91, RR03].

Structures [ANP89, Bob80, FL81, GEGP17, RCRR95, SSS81, LPS004, RAB+07]. Study [BHM+19, FTJ95, BHK07, BLB99, DF98, KF03, LS98]. Style [BDM15, LR19].

Sublanguage [DGL+79]. Sublinear [RD87]. Sublinear-Space [RD87].

Submodule [MB83]. Subroutines [SA89].

subscribe [Eug07]. Subscribe [CG95].

Subsequence [Han92]. Subset [BL87].

Substrings [BL94b, Han92]. subtype [Duc08, KRO1]. Subtypes [Vol91, BUR91].

Subtyping [AC06, AC93, GGL15, LN15, LR19, LBN17, LW94, XBO820, ZZO22, GZ05, IV06].

Subtyping-Relation [LBN17]. SUIF [HIM+05]. Summarization [SCS24].

Supercompiler [Tur86]. Superimposition [Kat93]. Supermartingales [TOU92].

Support [Bal94, DS90, Fea87, LS83, MK94, Wef90, TSY00]. Supporting [RCH95].

Supports [ABPS98]. Suppression [DS88, FGL94, Sor89, JNGG10]. Survey [APT81, GPA+01]. Suspension [CFM94].

Symbol [ABR81, Rei83]. Symbolic [Dil90, HP96, Hal85, Hen82, NSC20, RR05, SBB+19, YMW97, BGP99, MPM03, CM93, WST85].

Symmetric [FY85]. Symmetry [ES97, SG04]. Synchronisation [CHMY19].

Synchronization [Bag89, DJP+16, Her91, KRS88, RS84b, Sch82, CGS+03, DHH+12, Ram00, RD03]. synchronization-sensitive [Ram00].

Synchronizing [And81]. Synchronous [CS87, TLHL11, YGRBA23]. synchrony [CS04]. Syntactic [BF87, GMZ00, MF88, PK80, Wils82].

Syntax [DMM88, Ode93, Ric85, SSS83, BMR01, CPR02, Jel03, HCW82]. Syntax-Directed [DMM88]. Syntax-Error-Handling [SSS83].

Syntax/Semantic [HCW82]. Synthesis [AE98, AE01, AAE89, Bau87, BDJ13, BKL+97, Cla80, DKKL18, PLL+23, JZX+24, LLOY23, MW80, MW84, MV87, SBS22].

System [AFdR80, AW85, BS86, Brou88, BKL+97, Cla80, DKKL18, PLL+23, JZX+24, LLOY23, MW80, MW84, MV87, SBS22].

Systems [AM83, Ano18, AR84, ACS84, BKS88, BG89a, BDP93, C184, CDFP98, CBJDF95, C1JGP18, CES86, CPS93, CBMO19, DL18, DAW88, Fea87, FKW98, Gor21, Hen86, HLM+23, Jag94, Jon94, JTM98, Kar84, Kat93, Kau84, Lam84, LW93, Mis86, Mye18, SLYZ21, TGT20, WGS92, WGS93, WC90, van88, Ass00, AE98, BCP08, BCM99, BGP99, CSMC00, DGG97, GS11, TP04, TZO7, YMW97, WCW91]. Systolic [Hen86].

T [Zic94]. Table [BMW91, PK80, DAS98]. Table-Drive [PK80]. Tabled [SS98].

Target [Wan82]. Task [GP95, NSZS13, RRB19, HBJ98]. task-HB-98. Task-Level [GP95].

Task-Parallel [NSZS13]. Tasking [Dil90].

Tasks [GP81]. Taylor [SBB+19].

tcc [PHEK99]. Technical [BS88, Bur90b, Bur91, Coh91, Coh91, CM93, DS88, Ell92, Fra93, Hen93, LaL83, LaL84, Moh81, Mol83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tie88, Vol91, WST85, Wir91, YB88, MMG00].

Technique [AWW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNNG10, KBC+99, RD97, SYN06]. Techniques [AK92, CMN91, DP99, GLRG83, How80, TWW82, WCW90, WCW91, BHK07, DDD05, DEMD00, LS98, MSRR00, SS96, TSL+02].

technology [LS98].

Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KWL09].

temporal-ordering [SG99].
temporaries [RMH06]. Ten [Apt81].

Tensor [RTP17, SBS22].

Tentative [Jon83].

term [UJ92].

Term [KKSD94, MBT09, GRSK+11].

Termination [AF84, Apt86, BAGM12, BCG+07, CFNH18, CDK+18, DSFG21, DG19, Fra80b, GJ05, HSP93, JBK18, MC82b, TM93, BAL07, BA68, YD99, GRSK+11, Lee09, PR07, SMP10, Fra80a, Moh81].

Test [Wey83, WW95, Duc08].

Testing [AMT14, GMH81, TK94]. Tests [Coh91, Koz97, Wir91, (GZ05)]. Text [CC97].

TF [SBS22].

TF-Coder [SBS22]. Their [Kam83, LaL84, SS82, PS96].

Theoretic [ES97, Sha82, KV00].

Theoretical [KRR18].

Theories [NSTD+15, Bou06].

Theory [AB20, CZ84, FSH23, KD94, KRS94, NBG13, Ryu16, TLHL11, CGP09, MH06, Oho07, Pau01, SS05b, Bla03, FG03].

ThingLab [Bor81]. things [PM09].

Thinking [WLB016]. Thinning [Web95].

Third [Wol92].

Thread [YBL16]. Thread-Level [YBL16].

Threaded [GBK18, IF+22, TSY00].

Three [DPP22, OSS83].

Tichy [Tic88].

Tierless [RKW+23].

Tiling [JLF02, LS04, KRSR12].

Time [AL94, ABR81, BL94b, BLH12, Coh91, DLR16, HBS22, Hoi87, ISY88, Je85, Lam84, LLOY23, MMG92, PS93, RS84a, RS84b, TN19, Wir91, YR94, Zic94, BAL07, BALP06, BKR98, BKR05, DDD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Mil85, Ram99, Rep98, SYK+05, Tra08, T207, Wu04, YMW97, LW93].

Time-bounded [LLOY23].

Time-Constrained [Zic94, LPP01].

Time-Critical [PS93].

time-efficient [GB99, YF98].

Time-sensitive [HBS22].

Timed [Zic94].

Timeout [lam84].

Turing [LJ99].

tokenization [Rep98].

Tolerance [LJ99].

Tolerant [CS95, Lam84, AAE04].

Tool [CPS93].

Toolkit [BDFH97].

toolkits [VHM*01].

Tools [van88].

Top [SZLY21].

Top-down [SZLY21].

TOPLAS [Ano18, TGT20, MP10a, MP10b].

topology [DDM11].

Tortoise [Dan23].

Total [San96].

Trace [ABC+21, FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].

Trace-Based [WGS92, WGS93, WM12].

Trace-relating [ABC+21].

traces [HBM+06, WR08].

Tracing [BL94a, DLR16, MMM+07].

tradeoffs [ZGZ05].

Trailing [VR95].

Traits [DNS+06].

Transactional [URJ18, ABHI11, CFP+04].

Transactions [Ano18, HKMN94, TGT20].

Transducer [DVLM15].

Transducer-Based [DVLM15].

Transformation [GBK80, Fea82, FL91, NSZS13, Wat91, RKRR04, San96, TSY00, WZ07].

Transformational [BDFH97, Bir84, Bir85, DSW20, OA88, RC03].

Transformations
Bar85, EGM01, Geo84, LdR81, LFF14, MS83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86, Transformers [Lam90, MMS96, MBT09], TransformGen [GKL94], Transforming [Lam90, MMS96, MBT09], Translation [AK87, BK11, Kat84, Son87, AAD+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86], Transmission [HL82], Transparently [JSB+12], Transport [Min84], transpose [CRN+08], Traversals [LPSO04], Treatment [YB87, YB88], Tree [AGT89, BOV85, BMW91, DS83, Han81a, Hen83, LdR81, FGM+07a], Trees [Com80, GHS83, MTG80, Sip82, Wad90, ACM11, SGL97], Treewidth [CIJGP18, CGG+19], trick [DMP96], Truth [BDH+16], Understanding [ST00a], Undo [Lee86], unfold [RKRR04], unfold/fold [RKRR04], Unidirectional [Pet82], Unification [MM82, DRSS96], Unified [VSS94], Uniform [AS80, BP98, Hua93, AH10, HY07], Uniformly [DB85], unifying [TV07], unique [Van96], UNITY [Pan01, TB95], Universal [PDP22], universe [DMM11], Unnecessary [BT93], Untrusted [JW17], Untyped [GDF23], Update [Hud91, FGM+07a, GW99], Updating [HSS+14, HN05, SRW98, SHB+07], Upper [PW94], Usage [MS83, BDFZ09, IK05, QR00], Use [FOW87, GH80, HS94, LaL84, PPS79, She91, SS82, CC97], usefulness [HDH02], User [ACS84, DSR90, Mye90, Wal80, Wal81, Wat83, van88], User-Defined [Wal80, Wal81], Using [AGT89, Bob80, CGJ+97a, CES86, CH87, DP93, Dii90, DMM01, DJP+16, FLBB89, GS95, GSO94, HRB90, ISIRS22, JTM98, Kar84, LaL89, Lam84, LM18, IWR21, Mye90, Ode93, Pet83b, PP94, PBR+15, SSFZ+23, SS84, SS96, Sok87, SGL98, Tvs82, ACM11, BH99, CSW06, CGS+03, DR05, ultimate [PS08], Ultracomputers [Sch80], Unassigned [Win84], Unbounded [LWR21, BGP99], uncaught [LP00], Undecidability [Ram94, Rep00, Cha02], undecidable [Ram00], Understandable [MSM+16], Understanding [ST00a], Undo [Lee86], unfold [RKRR04], unfold/fold [RKRR04],
REFERENCES

GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, SZLY21, ST00a, SGL96, TFK+11, VJB12, XA07, YUW02, ZSD09, Pens83.

Utilizing [ES97].

VAL [McG82, Wet82]. Validation
[How80, KC01, MOS07a]. Value
[HL82, dBH21, HL05, SW97a]. valued
[RMH06, SRW02]. Values
[DD55, Han92, HSD22, Wet82]. Variable
[MS83, MTG80, FMoPS11, GLMM05]. Variables
[GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB99, NS13, SV96]. Variant
[IV06]. variants
[FG03]. Variational
[CEW14]. Variety
[NC520]. Vector
[AK87, Bud84, CBMO19, Fis80, FTJ95, KD94, Per79, KK07]. Verifiable
[YB85]. Verifiably
[HM+24]. Verification
[App15, BDP14, BCD+15, CDPF89, CES86, CPS93, CHMY19, Di90, EGP14, GL94, ITF+22, JBK18, Jon94, JTM98, KKW14, LFF14, L99, LCK+22, LS79, MTK21, NGB13, RY88, SZLY21, SSFZ+23, BDL+08, CEI+07, GPFO8, GM12, Qia00]. Verified
[BFGT08, BKL+97, HL22, HRL+23, JLP+14, DSW11]. Verifying
[AS89, BFG08, CGJ97b, DJP+16, GEGP17, LM18, YS10, Mon08]. Version
[BR10].

Versions [HPR89]. Versus
[DPP22, Pa98, Pip97, UM02]. Vertices
[BGH+13]. Very
[GLR83]. VHDL
[BKL+97]. via
[CEI+07, FK98, GP08, GSO94, HLH19, HOYY18, ITF+22, MMM+07, PE08, RTP17, SRW02, SV20, SCPP23, Tra08, WCM00]. View
[KBP22, SZBH86, FGM+07a]. view-update
[FGM+07a]. Virtual
[Jef85, RRB19, CEG07, KN06]. Visibly
[CBMO19, JKT23]. Visual
[Mye90, BCM99]. vita
[MP10a, MP10b]. VLSI
[LVV+83]. Volpano
[Bur91]. Volume
[Ano18, TGT20]. vs

W [Tie88]. Wait [Her91]. Wait-Free
[Her91]. Waite
[BP82]. Warp [LW93]. way
[VHM+01]. Weak [AMT14, KZC15]. weakening [SYYH07]. Weaker [Boo82].

web
[BFG08, BLRS12, CHY12, CGP09, CMS03]. Weight
[GH83]. While
[Pet83a, BC85b, GM81]. while-Programs
[BC85b]. Whole
[BDH+16]. Widening
[KKW14, VJB12]. win
[Lam90]. Within
[FKW98]. Without
[Cop94, Ode93, AS89, Cas95, Sto04, VR95]. Witnessing
[TA08b]. Workbench
[CP09]. World
[GG85, DF11]. World-Model-Based
[GG85]. Worst
[CFG19, WW95]. Worst-Case
[CFG19]. wp
[BH99]. write
[AE01]. Writing
[Pet83a, Win87]. WYSINWYX

[X10]. X-Sensitive
[OLH+16]. XARK
[ATD08]. XML
[HVP05, HFC09]. XSL
[MOS07a].

Years [Apt81].

ZGC
[YW22]. Zones
[GMN+21].

References

REFERENCES


REFERENCES


**Abadi:1991:DTS**


**Archer:1984:URR**


**Aggarwal:1990:ALP**


**Alglave:2021:ACF**


**Ashley:1998:PFF**


**Afek:1994:BFF**

REFERENCES


Abadi:2006:TSL


Alpuente:1998:PEF


Appel:1993:Eb


Alur:1998:FF


Apel:2010:CUF


Aung:2014:SS

Min Aung, Susan Horwitz, Rich Joiner, and Thomas Reps. Specialization slicing. ACM Transactions on Programming Lan-
Ahmed:2020:ISI


Arsac:1982:STR


Alglave:2017:DSF


Ait-Kaci:1994:FPC


Abadi:1993:CS

Abadi:1994:OFR


Abadi:1995:CS


Ancona:2003:JDJ


Atkinson:1985:PPD


Appel:2001:IMR


Alglave:2014:HCM


Anger:1989:LIC

Frank D. Anger. On Lamport’s interprocessor communi-

**Anonymous:1982:IA**


**Anonymous:1983:IA**


**Anonymous:1984:IA**


**Anonymous:1985:IA**


**Anonymous:1986:A1**


**Anonymous:1986:IA**


**Anonymous:1987:IA**


**Anonymous:1988:A1**


**Anonymous:1988:IA**

REFERENCES

Anonymous:1989:AI


Anonymous:1989:IA


Anonymous:1990:AI


Anonymous:1990:IA


Anonymous:1991:AI


Anonymous:1991:IA


Anonymous:1992:AI


Anonymous:1992:IA


Anonymous:1994:AI


Anonymous:1995:AI

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Anonymous:1998:AI


Anonymous:2002:ADC


Anonymous:2002:LDD


Anonymous:2018:CCL


Arvind:1989:SDS


Anson:1987:GIC


Andrews:1988:OSL

REFERENCES

Apt:1994:OCF

[AP94]

Apt:1981:TYH

[App15]

Apt:1994:PS

Abadi:2007:E

[AP07]

Apt:1993:Ea

[App93]

Apt:1986:CPD

[App86]

Apt:1994:ABG
REFERENCES


Apt:2000:RCC

Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Andersen:2019:FSP

Austin:2017:MFD
Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. Multiple facets for dynamic information flow with exceptions.
REFERENCES


Assmann:2000:GRS


Arenaz:2008:XE


Ashcroft:1982:RS


Avrunin:1985:DAD


Aiken:1995:SST


Alur:2001:MCH


Ben-Ari:1984:AFG

REFERENCES

Blume:1999:HM


Ben-Amram:2008:SCT


Bagrodia:1989:SAP


Ben-Amram:2012:TIL


Baker:1982:OPA


Ball:1994:ECP


Ben-Amram:2007:PTA


Brecht:2006:CGC

Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage collection and heap growth to reduce the execution time of Java applications. ACM Transactions on Programming Languages and Systems, 28(5):908–941, September 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Banerjee:2011:MFT


Barnden:1981:NCA


Barstow:1985:CTD


Banerjee:1987:MSR


BB79

REFERENCES

Breuer:1994:DET


Bhaskaracharya:2016:ASO


Biering:2007:BHH


Barabash:2005:PIM


Bobrow:1979:CEL


Bates:1985:PP

Joseph L. Bates and Robert L. Constable. Proofs as programs. *ACM Transactions on Programming Languages and Systems*, 7
REFERENCES


Bergeretti:1985:IFD


Brogi:1991:CLS


Bugliesi:2004:ACM


Bossi:1990:MSL


Betts:2015:DIV


Bugliesi:2015:ART


Benton:2004:MCA

Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions for C#.
REFERENCES


Bruynooghe:2007:TAL


Bottoni:1999:SDC


Bhatia:2008:RSE


Briggs:1994:IGC


Bergstra:1997:TCT


Bartoletti:2009:LPR

[BDFZ09] Massimo Bartoletti, Pierpaolo Degano, Gian-Luigi Ferrari, and Roberto Zunino. Local policies for resource usage analysis. ACM Transactions on Programming Languages and Systems,
REFERENCES


Blackburn:2016:TWT


Botincan:2013:PDP


Bueno:1999:EAI


Biernacki:2015:DCP


Bowman:1993:RAN

REFERENCES


REFERENCES


REFERENCES

Binkley:2013:EIL


Barthe:2009:CTO


Barbuti:1993:GFS


Boruch-Gruszeczki:2023:CT


Bultan:1999:MCC


Butler:1999:RA

REFERENCES


**Back:2005:KJR**


**Buhr:2005:ISM**


**Binkley:2007:ESO**


**Blackburn:2007:PBP**


**Berger:2019:IPL**


**Bird:1984:PAS**


**Bird:1985:APA**

Barthe:2011:AMC


Broy:1980:DIA


Breuer:1997:RCS


Barthe:2013:PRR


Buchsbaum:1980:NSL


Buchsbaum:2005:CNS


Back:1988:DCA

REFERENCES


Bic:1987:DDM

Ball:1994:OPT

Bates:1994:PAO

Boudol:2012:RAW
Gérard Boudol, Zhengqin Luo, Tamara Rezk, and Manuel Serrano. Reasoning about Web applications: An operational se-
REFERENCES

Blume:1999:DAS

Bistarelli:2001:SBC

Ball:2005:PPA

Borstler:1991:TCT

Blu99


BM94

BMPT94

BMR01

BMR05

BMR91
REFERENCES


Boehm:1985:SEA


Boom:1982:WPL


Borning:1981:PLA


Boute:1988:SSP


Boute:1992:EDF


Boute:2005:FDL


Boute:2006:CSD

REFERENCES


[BP82] Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter

**Baumgartner:1997:ISC**


**Balakrishnan:2010:WWY**


**Brent:1989:EIF**


**Buckley:1983:EIG**

G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. *ACM Transactions on Programming Languages and Systems*, 5 (2):223–235, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

**Bahlke:1986:PSF**


**Bermudez:1988:NRB**

Manuel E. Bermudez and Karl M. Schimpf. On the (non-)relationship between SLR(1) and
REFERENCES


[Bur84]


[Bur90a]


[Bur90b]


[Bur91, Bur91]

[Burk84:ACP]

Bruce:2003:PTS


[BSvGF03]

[Bur84]

[Bur90a]

[Bur90b]

[Budd:1984:ACV]


[Bud84]

[Vol91, Bur91]

[Burk90a]

[Vol91, Bur91]


[Bur90b]


[Burk91b]

[BT93]


[Bur90a]


[Vol91, Bur91]

[Bud84]

[Burd:1993:IOE]


[Vol91, Bur91]


[Bur90a]

[BT93]
REFERENCES


Charron-Bost:1995:LTP


Cotton-Barratt:2019:MVP


Click:1995:CAC


Clarke:1997:URE


Charguéraud:2023:OSH


Constable:1979:HAF


Carchiolo:1989:ELT

[CDFP89] Vincenza Carchiolo, Antonella Di Stefano, Alberto Faro, and


Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto statements. *ACM Transactions on Programming Languages and Systems*, 16(4):1097–1113, July 1994. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). [CF94]
REFERENCES


Daryl Pregibon, Anne Rogers, and Frederick Smith. Hancock: a language for analyzing transac-
tional data streams. *ACM Transactions on Programming Languages and Systems*, 26(2):

Cytron:1991:ECS

[CFR+91] Ron Cytron, Jeannie Ferrante, Barry K. Rosen, Mark N. Weg-
man, and F. Kenneth Zadeck. Efficiently computing static single assignment form and the con-
trol dependence graph. *ACM Transactions on Programming Languages and Systems*, 13(4):

Clark:1986:PPP

[CG86] Keith Clark and Steve Greg-
ory. Parlog: parallel programming in logic. *ACM Trans-
actions on Programming Languages and Systems*, 8(1):1–
49, January 1986. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/5390.html.

Chin:1995:ROA

[CG95] Wei-Ngan Chin and Eak-Khoon
Goh. A reexamination of “Opt-
imization of Array Subscript
Range Checks”. *ACM Trans-
actions on Programming Lan-
guages and Systems*, 17(2):217–
227, March 1995. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/201063.html.

Christensen:2004:OPE

Niels H. Christensen and Robert Glöck. Offline partial evaluation can be as accurate as online partial evaluation. *ACM Transactions on Programming Languages and Systems*, 26(1):
191–220, January 2004. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Chatterjee:2019:F

[CGG+19] Krishnendu Chatterjee, Amir Kaf-
shdar Goharshady, Prateesh
Goyal, Rasmus Ibsen-Jensen,
and Andreas Pavlogiannis. Faster
algorithms for dynamic algebraic
queries in basic RSMs with con-
tant treewidth. *ACM Trans-
actions on Programming Lan-
guages and Systems*, 41(4):23:1–
23:??, November 2019. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Calder:1997:EBS

[CGJ+97a] Brad Calder, Dirk Grunwald,
Michael Jones, Donald Lindsay,
James Martin, Michael Mozer,
and Benjamin Zorn. Evidence-
based static branch prediction

**Clarke:1997:VPN**


**Clarke:1994:MCA**


**Choi:2003:SAS**


**Chatterjee:1995:OEA**


**Cohen:1987:PCU**

REFERENCES

**Cho:1990:PBC**


**Charlesworth:1987:MR**


**Chatterjee:1993:CND**


**Charlesworth:2002:UAC**


**Chitil:2005:PPL**


**Cogumbreiro:2019:DDV**


**Carbone:2012:SCC**

REFERENCES


[CI84] 


[CIJGP18] 


[CJK95] 


[CK94] 


[CKT86] 

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Chambers:1995:TMM

Clarke:1980:SRI

Chandy:1984:DPP

Chandy:1986:ESR

Chirica:1986:TCI
Laurian M. Chirica and David F. Martin. Toward compiler implementation correctness proofs. ACM Transactions on Programming Languages and Systems, 8(2):185–214, April 1986. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Copperman:1993:TCF
URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/214526.html. See [Hen82].

Codish:1995:IA1
Michael Codish, Anne Mulkers, Maurice Bruynooghe, Maria García de la Banda, and Manuel Hermenegildo. Improving abstract interpretations by com-
REFERENCES


REFERENCES


Carle:1995:MBI


Carle:1996:OCP


Cohen:2017:LPC


Cleaveland:1993:CWS


Carson:1987:GSP


Cooke:2008:NTD

REFERENCES


Cuny:1987:CDD

Choy:1995:EFT

Chen:2004:LGS

Clausen:2000:JBC

Codish:1999:SGD

Cooper:2001:OSR
Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick. Operator strength reduction. ACM Transactions on Programming Languages and Systems, 23(5):603–625, September...
REFERENCES


Eric Dujardin, Eric Anieli, and Eric Simon. Fast algorithms

Dillon:1988:CET


Dunlop:1985:GSU


DeBoer:2021:CCR


Deng:2022:SDR


DeBruin:1985:DSD

REFERENCES


REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DF80].

Davidson:1984:CST


Douence:1998:SSF


Dimoulas:2011:CSH


Demetrescu:2015:RIP


DalLago:2019:PTM


Dams:1997:AIR


Dewar:1979:PRE

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).


Dolby:2012:DCA


Dolev:2009:SSP


DeMoura:2009:RC


Dillon:1990:USE


deJonge:2012:NFE


Dodds:2016:VCS

Darulova:2017:TCR


David:2018:PSP


Drinic:2007:PPC


Debray:1993:CAL


Degano:1988:EIL


Diwan:2001:UTA

Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Using types to analyze and optimize object-oriented programs.
REFERENCES


Danvy:1996:EED


Ducasse:2006:TMF

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärfli, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. ACM Transactions on Programming Languages and Systems, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DeRemer:1982:ECL


Dhamdhere:1993:EAB


Debray:1997:ICF


DeRose:1999:TTM


DNN[^06]
Devriese:2022:TPV


Dovier:2000:SCL


Dawson:1996:PPU


Dekel:1983:PGP


Drechsler:1988:TCS

REFERENCES

URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/214509.html. See remark [Sor89].


REFERENCES


Duggan:2002:TSL

DeSutter:2007:PID

Dantoni:2015:FTB

Etalle:2001:TCP

Esparza:2014:PBV
References

Economou:2023:FRT


Ellis:1982:TCS


Elder:2014:ADA


Eilers:2020:MPP


Ernst:1980:SAD


Emerson:1997:USW


Eugster:2007:TBP

REFERENCES


Flanagan:2008:TAS


Flournet:2003:SIT


Fournet:2007:TDA


Fernandez:2004:ICS

REFERENCES


REFERENCES


REFERENCES

pubs/citations/journals/toplas/1999-21-6/p1196-freund/.

Flexeder:2011:FIL


Frohn:2020:ILR


Foster:1996:CPP


Facchinetti:2019:HOD


Francez:1980:CDT

REFERENCES


REFERENCES


REFERENCES


[NN86]


REFERENCES

Ghosh:1993:ASP


Graham:1980:ICF


Gallager:1983:DAM


Giegerich:1983:FFD


Gupta:1993:APE


Glenstrup:2005:TAS


Garlan:1994:TAM


REFERENCES


[GMP24a] Roberto Giacobazzi, Isabella

**REFERENCES**

Giallorenzo:2024:COO


Gange:2015:IAM


Gomard:1992:SAP


Gorlatch:2004:SRC


Gordon:2021:PIS

REFERENCES


[Gri82] Ralph E. Griswold. The evaluation of expressions in Icon.


[Gro82] Ralph E. Griswold. The evaluation of expressions in Icon.
REFERENCES


Grossman:2006:QTI


Giesl:2011:ATP


Giacobazzi:1998:LMR


Gloy:1999:PPU


Gawlitza:2011:SSR


Gupta:1994:ERA

REFERENCES


REFERENCES


**Gil:2005:EST**


**GZ05**


**Gil:2007:EDD**


**Hoffmann:2012:MAR**


**Hall:2005:IPA**


**Hailperin:2005:CCC**


**Halstead:1985:MLC**


**Hailperin:1998:COC**

Hansen:1981:CMI


Hanson:1981:APP


Hansen:1992:SRF


Havelak:1997:NRI


Hind:1999:IPA

[HBCC99] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok

Harman:2009:DCS


Hassen:1998:TDP


Hickey:1992:CAM


Huang:2010:DBR

Yuqiang Huang, Bruce R. Childers, and Mary Lou Soffa. Detecting bugs in register allocation. *ACM Transactions
REFERENCES


[Herlihy:1993:MIH]

[Her93]

Hosoya:2009:PPX


[HFC09]

Hennessy:1983:PCO


[HG83]

Hall:1996:TCH


[HHPW96]

Haynes:1987:ECP


[HF87]

Hilfinger:1988:APD


[Hil88]
REFERENCES

107


[HL82] Maurice P. Herlihy and Barbara Liskov. A value transmission

Hirschowitz:2005:MMC


Haslbeck:2022:FDM


Hague:2019:CMC


Hu:2023:TPO


Hull:1984:CSP


Harper:1993:TSS

REFERENCES

Hamlen:2006:CCE


Haas:2024:LPM


Hicks:2005:DSU


Hoffman:1982:PE


Higuchi:2007:STS


Hobson:1984:DEE


Holt:1987:DDC


Horwitz:1997:PFI

REFERENCES

(Ref), 1558-4593 (electronic).


Matthew Hennessy and James Riely. Information flow vs.

**Horwitz:1990:ISU**


**Hietala:2023:VOQ**


**Haselwarter:2023:SFF**


**Harrold:1994:ECI**


**Huang:2011:MSS**


**Hu:2022:SPS**

[HSD22] Qinheping Hu, Rishabh Singh, and Loris D’Antoni. Solving program sketches with large integer values. ACM Transactions on Programming Languages and Systems, 44(2):
REFERENCES


Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD
Huang:1993:LEU


Hudson:1991:IAE


Haridi:1999:ELV


Hirzel:2007:FOP


Hosoya:2005:RET

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27(1):46–90, January 2005. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Holt:1982:MIE

REFERENCES


[HY07] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).


Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper. Modular termination verification of single-threaded and multithreaded programs. ACM Transactions
REFERENCES

on Programming Languages and Systems, 40(3):12:1–12:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Janssen:1997:MGR


Jacek:2019:OCW


Jeffery:2003:GLS


Jensen:1997:DPA


Juelich:1981:CAS


Jeon:2019:MLA


Jefferson:1985:VT

REFERENCES


REFERENCES


Ruyi Ji, Yuwei Zhao, Yingfei Xiong, Di Wang, Lu Zhang, and Zhenjiang Hu. Decomposition-based synthesis for applying divide-and-conquer-like algorithmic paradigms. *ACM Transactions on Programming Languages and Systems*, 46(2):
REFERENCES

Kaiser:1989:IDS

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO


REFERENCES


REFERENCES


REFERENCES

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP
REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Krogh:1989:AAP


Krogh:1990:AAP


Krogh:1991:AAP


Krogh:1992:AAP


Kim:2018:TFS


Korach:1984:DAF


Kruskal:1988:ESM


Knoop:1994:OCM

REFERENCES


Richard B. Kieburtz and Abra-
ham Silberschatz. Comments
on “Communicating sequential
processes”. ACM Transactions
on Programming Languages and
Systems, 1(2):218–225, October
1979. CODEN ATPSDT.
ISSN 0164-0925 (print), 1558-
4593 (electronic).

Richard B. Kieburtz and Abra-
ham Silberschatz. Access-right
expressions. ACM Transactions
on Programming Languages and
Systems, 5(1):78–96, January
1983. CODEN ATPSDT. ISSN
0164-0925 (print), 1558-
4593 (electronic).

Robert M. Keller and M. Ro-
nan Sleep. Applicative caching.
ACM Transactions on Program-
ming Languages and Systems, 8
(1):88–108, January 1986. CO-
DEN ATPSDT. ISSN 0164-
0925 (print), 1558-4593 (elec-
tronic).

Richard Kennaway and Ronan
Sleep. Corrigendum: “Direc-
tor Strings as Combinators”.
ACM Transactions on Program-
ming Languages and Systems,
11(3):482, July 1989. CO-
DEN ATPSDT. ISSN 0164-
0925 (print), 1558-4593 (elec-
tronic). See [KS88].

Naoki Kobayashi and Davide
Sangiorgi. A hybrid type sys-
tem for lock-freedom of mo-
bile processes. ACM Trans-
actions on Programming Lan-
guages and Systems, 32(5):16:1–
16:49, May 2010. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Uday P. Khedker, Amitabha
Sanyal, and Amey Karkare. Henp
reference analysis using ac-
cess graphs. ACM Transactions
on Programming Languages and
Systems, 30(1):1:1–1:41, No-
vember 2007. CODEN ATPSDT.
ISSN 0164-0925 (print), 1558-
4593 (electronic).

Jens Knoop, Bernhard Steffen,
and Jürgen Vollmer. Paral-


Soisalon-Soininen’s “Inessential Error Entries and Their Use in LR Parser Optimization”. ACM Transactions on Programming Languages and Systems, 6 (3):432–439, July 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [SS82].


[Lam79] Leslie Lamport. A new approach to proving the correctness of multiprocess programs. ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].


REFERENCES


REFERENCES


REFERENCES


Lee:2009:RFS


Leiss:1990:KME


Leuschel:2004:FIP


Liang:2014:RGB


Lueh:2000:FBR


Lycklama:1991:FCF


Lhotak:2008:RAB

Ondřej Lhoták and Laurie Hendren. Relations as an ab-
REFERENCES


**Liu:2019:RIP**


**LK02**


**Lindstrom:1979:BGC**


**Lin:1993:PIA**


**Liu:1999:SVF**


**Lee:2002:ADC**


**Lee:2017:SNS**


REFERENCES

[LP99] Lochbihler:2013:MJM


[Lamport:1999:SYS]


[Leroy:2000:TBA]


[Lev06] Levanoni:2006:FRC


REFERENCES


They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \( n \geq t > 0 \), where \( n \) is the total number of processes and \( t \) is the number of faulty processes.

**Liu:1998:SCI**


**LT79**


**LST02**


**Lengauer:1979:FAF**


**LVRG21**

Elisabet Lobo-Vesga, Alejandro Russo, and Marco Gaboardi.


REFERENCES

140


REFERENCES


[MF09] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language programs. *ACM Transactions on Programming Languages and Systems*, 31
REFERENCES


Millstein:2009:EMP

Moriconi:1986:PSP
Mark Moriconi and Dwight Hare. The PegaSys system: Pictures as formal documentation of large programs. ACM Transactions on Programming Languages and Systems, 8(4):524–546, October 1986. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

Miquey:2019:CSC
REFERENCES


REFERENCES

Markstrum:2010:JDP


Marathe:2007:MMT


Masticola:1995:LFM


Moreira:2000:FMJ


Morgan:1996:PPT


Morzenti:1995:LFM


Morgan:1995:MMP


Masticola:1995:LFM


Morgan:1996:PPT


Morgan:1996:PPT


Morgan:1996:PPT


REFERENCES


Mohan:1981:TCF

Moitra:1983:TCA

Monniaux:2008:PVF

Morgan:1988:SS

Murer:1996:IAS

Muller-Olm:2007:AMA

Moller:2007:SVX

Mitchell:1988:ATE
John C. Mitchell and Gordon D. Plotkin. Abstract types...

Moore:2002:AC


McKinley:2007:ECG


Mckinley:2010:PVT


Murali:2023:FOL


Menon:2003:FSA


Moreau:2005:RAP

REFERENCES


REFERENCES

Morris:2008:DNF

Moret:1980:AVR

Matsushita:2021:RCB

MacDonald:2009:DDP

Muller:1992:MLR

Muller:2021:ISS

Murtagh:1991:ISM
Thomas P. Murtagh. An improved storage management

**Mueller:1987:RMS**


**Maassen:2001:EJR**


**Manna:1980:DAP**


**Manna:1984:SCP**


**Mulkers:1994:LSD**


**Morrisett:1999:SFT**


Andrew Myers. Editor’s foreword to “Static Backward Slicing of Non-Deterministic Programs and Systems”. *ACM Transactions on Programming Languages and Systems*, 40(3):11:1–11:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DL18].


Nanevski:2013:DTT


[NBG13]

Necula:2005:CTS


[NCH+05]

Narayanan:2020:SDV


[NcS20]

Norris:2016:PAM


[ND16]

Nelson:1989:GDC


[NF89]


[NI05]

Nguyen:2005:EEA

REFERENCES


REFERENCES

Nikolic:2013:RAP


Nowatzki:2015:SFS


Nandivada:2013:TFO


Olderog:1988:FPP


Odersky:1993:DCD


Olmedo:2018:CPP


Oh:2014:GSA


REFERENCES

620–640, October 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).


REFERENCES


**Pingali:1997:OCD**


**Paz:2007:EFC**


**Porter:2015:PFG**


**Park:1985:NAL**


**Preda:2008:SBA**


**Pan:2008:PFE**


**Pearce:2021:LFR**

David J. Pearce. A lightweight formalism for reference lifetimes

**Pemberton:1983:TCT**


**Perrott:1979:LAV**


**Perry:1990:GEI**


**Peterson:1983:CRW**


**Peterson:1983:NSL**


**Proebsting:1996:DDR**

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).


Pai:1980:GCR


Paige:1982:FDC


Pearce:2007:EFS


Park:2004:ORC


Payet:2006:NIL


Pingali:2009:RTP


Palsberg:1995:TSE


Peng:1991:DF

161

REFERENCES


Pinter:1994:POP


PP94

Prywes:1979:UNS


PPS79

Park:2008:PLB


PPT08

Podelski:2007:TPA


PR07

Proebsting:1995:BAG


Pro95

Pollock:1992:IGR


PS92

Palem:1993:STC

REFERENCES


Palsberg:1996:CTT


Poletto:1999:LSR


Pottier:2003:IFI


Pottier:2005:SAS


Pierce:2000:LTI


Purushothaman:1991:CDF

S. Purushothaman. Corrigendum: “Data Flow Analysis

Purtilo:1994:PSB


Pugh:1994:SAU


Pugh:1998:CBA


Palsberg:1995:EIA


Pagel:2022:SSL


Palsberg:2005:ADC


Qian:1995:CRO

Xiaolei Qian and Allen Goldberg. Corrigendum: “Referential Opacity in Nondeterministic Data Refinement”. *ACM
REFERENCES


Qian:2000:SFI

Quong:1991:LP

Quillere:2000:OMU

Ranganath:2007:NFC

Ranganath:1994:UA

Ramalingam:1999:ILA
URL http://www.acm.org/
REFERENCES

Ramalingam:2000:CSS


Rao:1994:RAP


Reiter:1994:HSR


Rogers:1995:SDD


Richardson:1993:DPL


Reps:1987:SSE

Thomas Reps and Alan Demers. Sublinear-space evaluation algo-
REFERENCES

Rinard:1997:CAN

Rinard:2003:ESB

Rossberg:2013:MMM
Andreas Rossberg and Derek Dreyer. Mixin‘ up the ML module system. *ACM Transactions on Programming Languages and Systems*, 35(1):2:1–2:??, April 2013. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Rong:2008:RAS

Reiss:1983:GCS

Rem:1981:APN

Reps:1986:GEI
REFERENCES


REFERENCES


Renganarayanan:2012:PLT


Richter:2023:PTL


Rival:2007:TPA


Ruggieri:2010:TLC


Rosenkrantz:2006:MMA

Daniel J. Rosenkrantz, Lenore R. Mullin, and Harry B. Hunt III.

**Robertson:1979:CGS**


**Ryder:1988:IDF**


**Rugina:2003:PAS**


**Rugina:2005:SBA**


**Rosa:2019:AOT**


**Rinetzky:2008:CPF**


**Ramanath:1984:JML**

REFERENCES


[San96] David Sands. Total correctness by local improvement in the transformation of functional programs. *ACM Trans-
**REFERENCES**


REFERENCES


REFERENCES

0925 (print), 1558-4593 (electronic).

Strickland:2013:CFC

Sethi:1983:CFA

Stamos:1990:RE

Sistla:2004:SRS

Sreedhar:1996:ILU

Sreedhar:1997:ICD

Sreedhar:1998:NFE
Steenkiste:1989:SIR


Sharir:1982:SOC


Stoyle:2007:MMS


Sipala:1982:CSB

Paolo Sipala. Compact storage of binary trees. *ACM
REFERENCES


REFERENCES


Spar:2010:TAJ


Stork:2014:APB


Sokolowski:1987:SHL


Solworth:1992:E


Sonnenschein:1987:GTS


Sorkin:1989:TCS


Soundararajan:1984:ASC

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Sansom:1997:FBP


Simonet:2007:CBA


Spooner:1986:MAR


Sekar:1995:FSA


Shen:2021:ALI


Suhendra:2010:SA


Sagiv:1998:SSA

REFERENCES


Sagiv:2002:PSA


Soisalon-Soininen:1982:IEE


Schlichting:1984:UMP


Shasha:1988:ECE


Skeppstedt:1996:UDA


Sagonas:1998:AMT

REFERENCES

**Schulte:2005:WDB**


**Stuckey:2005:TO**


**Schulte:2008:ECP**


**Schulte:2009:EEC**


**Staiger-Stöhr:2013:PIA**


**Sneyers:2009:CPC**


**Sanchez-Stern:2023:PIA**


**Schonberg:1981:ATS**

[SSS81] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. An automatic technique for selection of data structures in
REFERENCES


Bratin Saha, Valery Trifonov, and Zhong Shao. Intensional analysis of quantified types. *ACM Transactions on Programming Languages and Systems*, 25
REFERENCES


REFERENCES

Suganuma:2005:DED


Suganuma:2006:RBC


Seo:2007:GDW


Swinehart:1986:SVC


Sanan:2021:CCT


Terauchi:2008:CCC


Terauchi:2008:WSE

REFERENCES


REFERENCES

0925 (print), 1558-4593 (electronic).

**Tzannes:2014:LSR**  

**Toro:2018:TDG**  

**Toro:2020:CTD**  

**Thorup:1994:CGA**  

**Tip:2011:RUT**  


REFERENCES

Thammanur:2004:FME

Tratt:2008:DSL

Torp-Smith:2008:LRA

Tip:2002:PET

Tang:2000:PTR

Turini:1984:MLO

Turchin:1986:CS


REFERENCES


REFERENCES


Verdoolaege:2012:ECS


Vasconcelos:2022:TDM


Volpano:1991:TCS


Vukasovic:2023:EPC


vandenBos:1981:PCB


VanHentenryck:1995:BTC


Vakar:2022:CCH

REFERENCES


REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).


REFERENCES


Webber:1995:OFP


Weihl:1989:LAP


Weihl:1990:LSA


Wetherell:1982:EDV


Weyuker:1983:ATD


Wagner:1998:EFI


Widom:1992:TBN

REFERENCES


Widom:1993:CTB


Whalley:1994:AIC


Williams:1982:FNS


Winner:1984:UO


Wing:1987:WL1


Wirth:1988:TE

REFERENCES

Wirth:1991:TCR


Wise:1979:MGC


Wright:1998:PSE


Wellings:2000:IOO


Wand:2004:SAD


Weihl:1985:IRA


Wagner:2016:TIB

[WLBF16] Gregor Wagner, Per Larsen, Stefan Brunthaler, and Michael


REFERENCES


Ward:2007:SPT


Xie:2007:SSF


Xie:2020:CSA


Yemini:1985:MVE


Yemini:1987:ATE


Yiapanis:2016:CDS

Paraskevas Yiapanis, Gavin

**Yang:1998:STE**


**Yardimci:2009:MSP**


**Yip:2023:SDP**


**Yin:2011:FHL**


**Yu:1997:NCI**


**Yang:1997:SMC**

Yoshida:2022:ISI


Yu:1994:LTS


Yellin:1991:ILI


Young:1999:SCB


Yahav:2010:VSP


Yang:2002:EEB

Minghui Yang, Gang-Ryung Uh, and David B. Whalley. Efficient and effective branch reordering using profile data. *ACM Transactions on Programming Languages and Systems*, 24(6):
REFERENCES


**Yang:2022:DDZ**


**Zhang:2005:CPT**


**Zhou:1996:PPC**


**Zic:1994:TCB**


**Zhang:2017:SSH**

Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Si-

**ZHuang:2007:AAR**


**ZHuang:2010:OFE**


**ZHou:2009:PLA**


**Zhang:2021:CP**


**Zhao:2020:DLS**


**Zhou:2022:RIR**