A Complete Bibliography of Publications in ACM Transactions on Programming Languages and Systems (TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

24 July 2017
Version 2.126

Title word cross-reference

(SRW02), + [Han81a], T^M [Bla03], ρ_{ex}
[AW82], || [DDDCG02], δ [DES12], \mathcal{R}
[JMSY92], \mathcal{R}_{Lin} [VR95], ℓ [ADG+94].
$O(nn)$ [Pet82], ϕ [CF95, DR05], π [ABL03].
Abstract [BGL93, BK11, CMB+95, CFG+97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, Lan80, LO94, LV94, LR13, Loe87, MSJ94, MP88, S89, She91, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03]. Abstraction [BGL93, BK11, CMB+95, CFG+97, DGG97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, Lan80, LO94, LV94, LR13, Loe87, MSJ94, MP88, S89, She91, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Affine [BAC16, BCEM15, ELS+14, VJB12]. Affix [GF85]. agents [BCC04]. aggregate [LSLR05]. Ahead [BLH12, DP82]. Algebra [Koz97, Wil82a, KBC+99]. Algebraic [BP82, BWPS7, Jen97, Lin93, JB06, SP07]. Algorithm [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha19, DP93, GHS83, Hua90, Hud91, LV94, LY98, Lei90, LT79, LH91, MM82, MC82a, Pe82, SH89, TB98, Ws79, BKRW98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKRW05]. Algorithmic [BP82, GM12, Loe87]. Algorithms [Apt86, BA84, CS95, CN83, GLO88, KRS84, KKM90, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, MM89, RD87, RH87, RP88, TM93, WW95, Ap00, DAS98, GC01, ZG05].

Alias [Hor97, HBC99, RRSY08]. Aliasing [Bos95, Ram94, RLS+01]. All-Purpose [Sp98]. Allocating [ZP07]. Allocation [BB79, Bre89, BCT94, CH90, CS95, FLBB89, GSO94, Rob79, SH89, CGS+03, HCS10, LGAT00, PS99, PF96, RDG08, SRM10, TP04]. Alma [ABPS98]. Alma-O [ABPS98]. almost [Du80, Ram99].

Analysis [AKN17, ABE+05, AD98, Bac84, BC85b, Blo94, BE13, Bur90a, CMM91, DL93, Deb95, DP97, DAW88, GNS+15, GJ93, HP96, Hi88, Hor97, ISY88, Jen97, KD94, LR13, McG82, MWB94, MOS07b, OHL+14, OLI+16, Pal95, PO95, PCC85, PP91, PW94, PW98, Pur91, RTD83, RTP17, RPS8, SR95, SSS83, SGL98, SS13, ABB+99, BDFZ09, BAL07, Bla03, Blu99, BCG+07, CSW06, Cha02, CGS+03, CKT86, DDV99, DGS97, FF99, GHB+96, GJ05, GZ04, GCRN11, HAM+05, HPMS00, HBC99, HVDH07, HAH12, IK05, JLR10, KBC+99, KK07, KSK07, LP00].
LH08, MPM03, NS13, PHP02, Pal98, PKH07, Ram00, Rep00, RSL10, RD97, RRSY08, RR03, RR05, RLS+01, SRW98, SRW02, STS03, SdSCP13, SS96, ST00a, WP10, WJ98, ZSD09, dHB+96, analyze [DMM01, VBLG04]. analyzer [SMP10].

Analyzing [AW85, BEF+16, CFP+04, GMM99].

And/Or [Har80]. Annotations [Bur84].

AOP [DES12]. APL [Bud84, GD82, Hob84].

Applicability [DAW88, How80, LS98]. applicable [Gom92]. Application [CD79, DF80, DF81, LBN17, LR13]. Applications [BLRS12, Bou88, BALP06, CMLC06, NR06]. Applicative [AC94, KS86]. apprentice [MP02]. Approach [AKNP17, ABR81, AR80, BAC16, BP82, Bur90a, CH90, CD79, DS90, EL82, ES97, FT94, GL515, Har80, Hes88, KKW14, Lam79, Lam80, Lee86, MW80, MDCB91, ND16, QA88, Sam80, Spo86, SM81, SNS+14, Bout05, CRN+08, DHM+12, FGM+07a, JLRs10, KV00, LP80, MBT09, PSS05, PCJD08, RC03, SP07, WS97].

approximations [BGP99]. Apt [Moi83].

architected [ZP07]. Architecture [Wal92].

Architectures [Han94, KPF95, NSTD+15, PAS+15].

Aris ing [Bac84]. Arithmetic [Fis80, GNS+15, Hen83, LdR81, MOS07b].

ARM [FKW98]. Array [CGST95, CG95, LS79, Per79, PW98, JB06, LSLR05, NI05, PHP02, RMH06, RR05, ZCG+07].

array-valued [RMH06]. Arrays [BBC16].

ASF [VHK002]. aspect [DWWW08, WKD04]. aspect-oriented [DWWW08, WKD04]. AspectML [DWWW08]. Aspects [Boh81, Set83]. assembly [AAP+10, MWC99].

Associated [PPS79]. associativity [Cha02].

Associations [Rem81]. assume [HQRT02]. assume-guarantee [HQRT02].

Assumptions [ES97]. AST [GVC15].

Asynchronous [Bag89, GLO88, OGS6, GM12, HR02]. ATL [WSH15]. Atomic [WL85, Wies0, AE01].

Atomicity [JLP+14, Wies99, FFLQ08].

Attribute [CP95, Hud91, JP81, Jon80, Kat84, KR97, MK94, RD87, WW95, Boy96, CP96, Wu04]. Attributes [HT86].

Author [Aro86a, Aro88a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].

authorization [FGM07b]. Authors [Aro82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b].

auto [ZP10]. auto-addressing [ZP10].

Automata [BMW91, ES97, Pro95, KV00].

Automata-Theoretic [ES97, KV00].

Automated [GRS+11, KZC15, FK00, Sok87, JNGG10].

Automatic [AKNP17, AK87, Aro02a, BBC16, Cat80, CES86, DS90, KK98, Le 88, LK02, LS04, MS83, PZ05, RH87, SSS81, SLC03, She91, Wat91, Wha94, ABH11, ATD08, BdlBH99, CRN+08, ZCG+07].

Automatically [Slo95].

Automating [GKL94, MTSS09]. Avoidance [FGL94].

aware [MQ05]. Axiomatic [AR80, App04a, Beo85, Sou84, YB87, YB88, LP80].

Axioms [Mis86].

B [Hans1a].

backpropagator [PS08].

Backtracking [Lin79, VR95, FM87a].

Balanced [AS80, PB80, vHK00]. base [LS08].

Based [BPP16, BGL93, Bur90a, CGJ+97a, CI84, CP95, CH90, CPS93, DVL15, DLR16, EGP14, GGS85, HT86, JTM98, Kai89, KH92, KR79, LFI14, PW98, RIS83, SR95, SGL98, SNS+14, Wat94, WS94, vPS81, BFG08, BMR01, BHM+07, BCG+07, CTT07, DDV99, Ew07, FF99, HBJ98, KBC+99, KK07].
KC01, LP00, LH08, LGAT00, MTSS09,
MH06, Pal98, PPT08, PCJD08, SP97, SP07,
SMP10, SYN06, BDP14, WGS93, WM12].
Basic [GLR83]. BDD [LH08], BDD-based
[LH08]. Be
[Bee94, Coh91, Wir91, CG04, LP99]. Behavior [KLS92, GMM99, VBLG04].
Behavioral [LN15, LW94]. Being [Cop94],
benefits [GMP+00]. Better [Gri79, Lam88].
between [BS88]. Beyond [GSW95], BI
[BBTS07]. BI-hyperdoctrines [BBTS07].
Bidirectional [DP93, MMR95, FGM+07a, GPWZ08].
binaries [STSP05]. Binary
[Sip82, DDD05, MMM+07, RC03, YF09].
binding [ACE96]. Birrell [MDJ05].
Bisimulation [FDY12, MH06, San09].
bisimulation-based [MH06].
bisimulations [SKS11]. Bit [KD94, KK07].
bitvector [KSV96]. Bliss [GNS+15].
Blind [LS81, Mur91]. Block-Structured
[LS81]. Blocked [FTJ95]. Blocks [Jag94].
Boolean [Xa07]. Bootstrapping [App94a]. Both
[KZC15]. bottlenecks [RD03]. Bottom
[BGL93, GCRN11]. Bottom-Up
[BGL93, GCRN11]. bound [KK07, Nio5].
Bounded [ADG+94]. Bounds
[CP17, PW94, BP12, CEI+07, RR05, SS05a].
Box [WLBF16]. boxed [BCC04]. Branch
[CGJ+97a, CEG07, YUW02, YS99].
Branches [WZ91, RC03]. Broad [Daw88].
Buddy [Kau84]. Buffer [Zic94]. bugs
[HCS10]. Building [Jag94]. BURS [Pro95].
Bus [Pur94]. Bytecode
[SA99, BD+08, CSM00, FM99, GPF08,
KR01, Qia00, SMP10, WR08]. Byzantine
[LSP82].

'C [PEK99, BR97, HSS+14, ND16, PKH07,
PFH11, Ven95]. C# [BCF04]. C/C [ND16].
Cache
[GMM99, KLS92, MMM+07, SS96, VBLG04].
Caching [ABM93, FK85, KS86, LST98].
Calculational [Bou06]. calculi [ABS09].
Calculus
[ABL93, BKL+97, BN94, Gom92, Kob98,
MRG88, Nel89, Oho95, WM95, ABL03,
AH10, Bou05, Bou06, BCC04, DES12, HR02,
IPW01, Jay04, TA08a, KPT09]. Call
[DP97, GL80, GC01, HL05, KK07, SW97a].
call-by-value [HL05, SW97a]. Calls
[Coh83, Coh85, FF08]. Can
[Boe85, Coh91, Wir91, CG04]. capabilities
[WC00]. capability [TA08a]. Carlo
[FL15]. carrying [AM01]. Case
[FTJ95, WW95, BdlBH99, KF03]. Cats
[AMT14]. Cause [Cas95]. CCP [EGM01].
CCured [NCH+05]. Cedar [SZBH96].
Cells [ISY88]. Centered [CHR12]. Centers
[KRS84]. Centralized [HM84]. centric
certified [STSP05]. Chaining [LS08].
Chains [HS94]. challenge [MP92]. change
[BA08, CP96, Lee09]. Changes
[Ber94, MTSS09]. changing [MP97].
Chariots [PB97]. Check [AP94]. checked
[KN06]. checker [NP08]. Checking
[Car95, CGL94, ES97, FF08, GL94, ND16, Ay01,
ACM11, BGP99, FFLQ08, HQR02, JJD98,
KR01, K00, SS05a, SJ99].
Checks [CG95, CEI+07]. Choice
[BN94]. CIRCAL [Mii85]. Circular [Jon90, Pet82].
Circularity [WW95, Wu04]. Clarification
[PA86a]. Class [HKMN94, Han92, SJ03,
SDTF13, HS11, MH04, ST00a]. Classes
[SDTF13, WT11, HHPW96, HMS06].
Classical [JSB+12]. Classification
[KZC15]. Classifying [GSW95]. Claus
[WP10]. Clriché [Wat94]. Clriché-Based
[Wat94]. Clique [GOS94]. Closure
[Pal95, SW97b, SA00]. CLP
[DHM00, GLMM05, JMS92, KMM+98, VR95].
Clusters [BGH+13, HBG+09]. coalescing
[GA96, Hai05, PM04]. Code
[AGT89, Cat80, Cop94, DF84, FGL94, GF85,
Hen82, HG83, JSB+12, KRS94, LR13, ND16,
Rob79, TvS82, Wan82, AM01, DEM00,
Hai98, HBG+09, HK07, JNZ06, LDK+96].
conservative [Hai05]. considered [Gor04].
Constant [Coh91, WZ91, Wir91].
Constrained [BG89a, DAW88, PS96, Žic94, LPP01].
Constraint [Bor81, DGMP97, DDV99, NSTD + 15, Pal95, PW98, Apt00, BMR01, DPPR00, FH04, GHB + 96, HPMS00, SS08, SS09, SP07, SSD09, dHB + 96].
Constraint-Based [PW98, DDV99, SP07].
Constraint-Oriented [Bor81].
Constraint-Solving [NSTD + 15].
Constraints [AKP94, DFR15, HG83, Mye90, BA08, RM10, TFK + 11, Van96b, VHM + 01, Van96a].
Construct [Ans87, BS83, Kat93].
Construction [ADGM91, HIT97, LaL81, MB83, RH87, SL92, CMS03, GC01].
Constructive [Loe87].
Constructs [AR84, DJP + 16, Par90].
Context [GHR80, Ode93, PK80, Ram00, RTD83, Rep00].
Context-Dependent [Ode93, RTD83].
Context-Free [GHR80].
Context-sensitive [Ram00, Rep00].
Contexts [Ode93].
Continuation [BDM15, Wan92].
Continuation-Passing [BDM15].
Continuations [BDM15, HF87].
Continuous [KF03].
Contract [SIG17, SDTF13, CGP09].
Contravariance [Cas95].
Control [ABLP93, Bur84, CL94, CFR + 91, DP97, FM87b, Kat93, Lam88, Lin79, NGB13, PB97, PBR + 15, Set83, SS13, TUR84, Wat83, Wei89, BCM99, BCC04, HO07, PSS05, RAB + 07, Zho96].
Controlled [Min84, Tho94, JC97].
Controlling [BALP06, LaL81, LMD98].
Convergence [AF84].
Conversion [Bar85].
Cooperative [GLR83, NO79].
Cooperation [BK88].
Coordinating [JS94].
Coordination [GLR83].
Core [IPW01].
Coroutine [Sam80].
Coroutines [LS81, DI90].
Correct [DGMP97, Hen86, SS88, AAD + 07].
Correction [FA93].
Correctness [Apt86, CM86b, FRW90, Gom92, HW90, Lam79, Lam80, Oss83, San96].
correlated [YS99].
Correspondence [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Ell82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tic88, Vol91, WST85, Wir91, YB88].
Corrigenda [WCW91].
Corrigendum [BKRW05, DF81, Fra80a, KS89, Lam80, Pur91, QG95, Van96a, Wai81, WGS93].
Cost [AB81, Bae84, DL93, Hai98, Han81a, ZGZ05, VALG05].
Cost-optimal [Hai98].
costs [GMP + 00].
Counting [Bal94, LP06].
Counts [Bob80, Wis79].
Coupled [ACW90].
Covariance [Cas95].
covariant [PZJ05].
Creating [Mye90].
criteria [Hai05].
Critical [PS93].
Critique [GM81].
Cross [FTJ95].
Cross-Interferences [FTJ95].
Cryptographic [App15].
CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Žic94].
CSP-Like [Hua90].
currency [DS98].
Custom [DJP + 16].
Cycle [BG89b, PKB + 07].
Cycles [FRW90].
Cyclic [RY88].

D. [Bur91].
Data [AMT14, ANP89, AM85, Bae84, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, Ell82, EO80, FL81, GMH81, GEGP17, HL82, Her93, Hes88, Hol87, Jen97, KH92, Kam83, KZC15, KXH98, KQ95, KQ95, PK95, RL82, SL85, Wei89, Wei90, Wet82, Wey83, CFP + 04, DHM + 12, DGS97, HBJ98, KBC + 99, KF00, LK02, Rep00, SP07, VALG05, YUW02, ZGZ05, Pur91].
data-centric [DHM + 12].
Data-Driven [BL87, CS87].
Data-Flow [BC85b, Bur90a, Wet82, RP88, KBC + 99].
data-independence [PZJ05].
data-member [DF81].
Data-Parallel [Cha93, HBJ98].
Database [Bar85, CB80].
Dataflow [Deb95, DFR15, MWB94, SS13,
dolce [MP10a]. Domain
[Tra08, RM07, SS05a]. Domains
[CMB+95, ELS+14, GS98, FH04, GLMM05].

 Dominance [Ano02b, DVD07]. dominator
[SGL97]. Dominators
[LT79, Ano02b, BKRW98, BKRW05]. Don’t
[AKNP17]. df [MSM+16]. Drinking
[CM84, MS88]. Drive [PK80]. Driven
[BL87, CS87, GF85, GSW95, PA85, PA86a,
PA86b, YBL16, DGS97, PF96, YMW97].

Dually [MT08]. Dummy [Lam88].
[BL87, CS87, GF85, GSW95, PA85, PA86a,
PA86b, YBL16, DGS97, PF96, YMW97].

Dually [MT08]. Dummy [Lam88]. During
[BKB80]. DyC [GMP+00]. Dynamic
[ACP91, AGT89, ASF17, BB79, BDM15,
Bre89, CTT07, DS98, Dug99, HSS+14, HG05,
Kai89, KR79, RC95, Ven95, WR08,
dBB85, ACE96, BG96, CE1+07, DDDCG02,
GZ07, MMM+07, PHEK99, SJP12, SHB+07,
SYK+05, SYN06, WGD04, ZGZ05].

eager [FKW00]. Earley [Lei90]. Early
[AB81]. ECCS [CDFP89]. Edge [DP93].
Editing [FL81, HT86, Nix85]. Editor
[FM87b, DeM83, Per90, Rep86, Wol92].

Editorial
[AP07, App93, AG93, AF94, MP07, Pal11a,
Pal11b, Pal12, Pal13, Pal15, FP02, OP04].
Editors [DMM88, M89, RTD83, Wat94].

EDO [OKN06]. effect [RLS+01]. Effective
[BS83, Col84, KKN06, N10, PE08, WJ98,
YUW02]. Effectiveness [BdIH99, SH89].

Effects [Boe85, TA08b]. Efficient
[AKBLN89, ADGM91, BB79, BGH+13,
Bre89, Cam89, CS95, DP82, DMM88, GZ05,
GZ07, GLR83, GLO88, GSO94, HVB+99,
HS94, HSS+14, HIT97, JP81, Jon90,
KKM90, KRS88, KPF95, MVV+01, MS82,
NB99, NI05, PHP02, PXL95, PKH07, PAB5,
PA86b, RH87, SS08, SA00, SS88, WG98,
YUW02, BCP08, GB99, KSV96, LPS004,
LS09, PBK+07, TP04, VWJB10, YF98,
PA86a, SS09]. Efficiently
[Bal94, CFR+91, CF95]. Eiffel [ACE96].
elaboration [KR01]. Election [Hua96].
Eliminating [BT93, Col83, Col85, RD03].

Elimination
[DP93, SGL98, KKN06, KCL+99].
Elimination-Based [SGL98]. embedded
[BCP08, CSMC00, HK07, Rhi03, RM10,
TP04, ZP10]. Embedding [HF87].

Empirical [BHK07, BD+16].
Empowering [JB+12]. Emulator [ML80].
Enabled [ADG+94]. Encapsulating
[GPV07]. Encapsulation [AR84, DDM11].
Encoding [HS84, GZ05, ZP07].
Encodings [BC79]. End [BDP14, CSMC00].
enforcement [HMS06]. Enforcing
[CE1+07]. engines [SS08, SS09]. enhanced
[GH97]. Entries [LaL84, SS82].

Enumeration [BB94, JJD98].
Environment [CO90, SZBH86, CKT86].
Environmental [SKS11]. Environments
[BS86, GKL94, HK85, HT86, Kai89,
dJKVS12]. Epochs [Sol92]. equalities
[FMPS11]. Equality [Pal98].

Equality-based [Pal98]. Equations
[HO82, Bou06, GS11, GMM99].

Equiprobable [PB80]. Equivalence
[VJB12, VSS94]. Equivalent [PO95, NP08].
Erratum [SS09]. Error
[AB81, Bac84, BN99, BF87, FL15, KC01,
LaL84, MF88, MYD95, PK80, Ric85, SS83,
SS82, WST82, dJKVS12, Jef03, JA07].

Errors
[AWW95, Wha94, CPRT02, JNGG10].

Escape [Bla03, GCS+03]. ESOP’05
[Sag07]. Essential [DES12]. Esterel
[Tar07]. Eta [DMP96]. Eta-expansion
[DMP96]. Euclid [HW82]. Euclidean
[Bou92]. Evaluating [BLH12]. Evaluation
[AFV98, Bur84, CGST95, CK93, G982,
Hud91, Jon90, LV94, PA85, PA86a, PA86b,
RD87, RL98, Slo95, SG90, WC90,
WC91, ADR06, CP96, CG04, GJ05,
LDM04, Leu04, ST00b, SYK+05].

Evaluations [BDH+16]. Evaluator
[GC92, JP81, KR79, Le88]. Evaluators
[CP95]. Event [Bar81, YMW97].

event-driven [YMW97]. Events [Bal94].

Hackers [App94a]. Hancock [CFP+04].
handle [VJB12]. Handling [Hau96, LdR81, Piq96, SSS83, UM02, YB85, YB87, YB88, CRN+08, LS98, LP80, SSD09, Hen83]. Hard [Hor97]. Hardware [BK+97, Mis86].
harmful [Gor04]. Hashing [PB80, Duc08].
Haskell [GRS+11, HHPW96].
heap-manipulating [YB85, YB88, CRN+08, LS98, SSD09, Hen83].
Hardly [Hor97].
Hardware [BKL+97, Mis86].
harmful [Gor04]. Hashing [PB80, Duc08].
Haskell [GRS+11, HHPW96].
heap-manipulating
Heavily [BG89a].
Hennessy [CM93, WST85].
Herding [AMT14].
Heuristic [SL92].
 hiding [LN02, OYR09]. hierarchic [AG04].
Hierarchical
[BA99, CP95, CD79, Ay91, CP96].
hierarchically [MBC04]. hierarchies
[ST00a, Van96a, Van96b]. hierarchy [KF00].
High
[Cam89, Fat82, MSM+16, CMS03, VWJB10].
High-Level
[Cam89, Fat82, CMS03, VWJB10]. Higher
[AC94, AD98, CJ95, DJP+16, BBTS07, DF11, SKS11, SP97]. Higher-Order
[AC94, AD98, CJ95, DJP+16, BBTS07, DF11, SKS11, SP97]. Highly [Her93, Sku95].
Hoare [Apt81, GM81, LS84, Sok87, Yin11].
Hoc [MDCB91]. Homomorphisms
[HIT97]. HOP [BLRS12]. Hybrid
[KF10, KS10]. hyperdoctrines [BBTS07].
I-Structures [ANP89]. I/O [Car95]. Icon
[GHK81, Gri82]. id [Bee94]. idempotency
[KOE+06]. Identical [FLBB89].
Identification [BGH+13]. identify
[MMP+07]. Identifying [Ram99, SGL96].
Idioms [FP94]. IDL [Lam87]. IEEE
[Fat82]. Ignorance [GN+15]. Illustrative
[Oss83]. Impact [OLH+16, CTK86].
Imperative [ABPS98, DFR15, Gro06].
Implementation [AKBLN89, AOC+88, BCD+15, Bou88, Bre89, BS83, CM86b, GMH81, Gaz83, Lia93, MDCB91, PXL95, RL98, WL85, CMLC06, FM87a, GB99, LDM07, LPS004, Tra08, Zho96].
implementations
[BBF+11, BFGT08, DFG98]. Implemented
[DB85]. Implementing
[BR97, Her93, HW82, Sku95]. Implications
[Fat82]. Implicit [BH05b, SP12].
Implicit-signal [BH05b]. improve [KF00].
Improved [GHR80, Mur91, KK07].
Improvement [MS83, San96].
Improvements [BCT94]. Improving
[CK94, CBM+95, MCT96, WS97]. impure
[Pip97]. incomplete [GLM05].
Incremental
[Bur90a, CP95, DMM88, GM79, HKR92, HKR94, HPMS00, Hud91, Kau89, Lur95, LST98, PS92, RTD83, RP88, SGL97, WC98, YS91, BBYG+05, CP96, Van96a, Van96b].
Incrementally [QL91]. Independence
[DHM00, Rep00]. Independent
[ML80, Mu92]. Index
[AM01]. indices [RR05]. Indirect
Pip96, CEG07, YK97]. Induction
[GSW95, Sit79]. inefficiencies [MMP+07].
Inessential [SS82, LaL84]. Inference
[CEW14, Deb89, Hen93, LO94, LY98, TB98, Wey83, FFLQ08, JB06, PM06, PT00, PS03, Van06]. Influence [FT95]. Information
[BC85b, TZ07]. infrastructure [SWU10].
Inheritance [LN15, WT11]. initialization
[FM99]. Input [BS83, vPS81].
Input-Output [BS83]. Inputs [PA86a].
Insensitive [Hor97, FJKA06]. Insertion
[AKNP17, GJ05]. inspection [CF04, FG03].
Instantiation [Der85]. Instead
[Lam84, Rem81]. Instruction [KPF95].
Instructions
[LS80, PS93, RF97, Rob79, LPP01]. Integer
[BAGM12, BFP+16, BGP99]. Integrated
[SS13]. Integrating [HPR89, WJS+00].
Integration [CO90, Leu04]. Intensional [STS03]. Interaction [WSH15, WT11, van88, BCM99].

Jade [RL98]. Jam [ALZ03]. Java [AFF06, ALZ03, AAD+97, BH05a, Bla03, BALP06, CGS+93, CMS03, CRMC00, FFLQ08, FM99, GFP08, IPW01, KKK96, KGOR94, KN06, KR01, LST02, LP06, LS08, Loc13, MVM+01, MME+10, MFRW09, MMG00, NR06, OKN06, Qia00, SLC03, SMP10, SA99, SYK+05, TSL+02, WR08]. Java-like [KN06]. JavaCOP [MME+10]. JavaGI [WT11]. Jump [LS80, RS84a]. Jump [LS80, RS84a]. Just [DLR16, SYK+05]. Just-in-Time [DLR16, SYK+05]. JVM [HO07].

Parametric
[HFC09, MMG92, SRW02, IV06].
Parenthesis [AS80]. Parlog [CG86].
Parsed [Wad90]. Parser
[DDH84, LaL84, SS82]. Parsers
[BN99, LaL81, MYD95, PK80, CPRT02,
SJ06, ST00b]. Parsing
[CH87, DMM88, FiS80, GM79, Lar95, RH87,
Sam80, WG98, Kc01]. Part
[LaL81, PA85, PA86a, PA86b, Aapt81].
Partial [AFV98, CP17, CK93, DS88,
Gom92, Kcl+99, Sor90, ADR06, BP12,
CG04, GJ05, LMD98, Leu04, ST00b].
Partially [BLH12, Kob98, RRSY08].
partially-flow-sensitive [RRSY08].
partitioning [RM07, Yf09]. Parts [Son87].
Pascal [LS79]. Pass [Bak82, BM94].
Passing [BDM15, Gaz83, SS84, CSW06,
Gor04, Zho96]. Passive [AKP94]. past
[PM09]. Path [Blo94, SMP10]. path-length
[SMP10]. Pattern
[EGP14, ADR06, Jay04, MTSS09, Van06].
Pattern-Based [EGP14]. Patterns [GH80].
PDS [Han81b]. PEAK [PE08]. Peephole
[DF80, DF81, Pen83, Tv82]. PegaSys
[MH86]. C [ND16]. CS [CD79]. CV3
[CS84]. fold [RRR04]. Semantic
[HCW82]. subscribe [Eug07].
time-efficient [YF98]. write [AE01].
Pennello [Sag86]. Perfect [Duc08].
Performance
[HU96, MSM+16, PB80, KF00, PE08].
Performed [Col91, Wir91]. Permission
[BPP16, SNS+14]. Permission-Based
[BPP16, SNS+14]. permissions [Boy10].
Persistent [AM85]. Petri [JTM98].
Petri-Net-Based [JTM98]. Phases
[Bar81]. Philosopher [CM84].
Philosophers [MS88]. pi [HR02, KPT99].
pi-calculus [HR02, KPT99]. pict [SWU10].
Pictures [MH86]. Pipeline [HG83].
Pipeline [BG89b, LPP01, RDG08].
pipelining [ME97]. pitfalls [Mon08]. PL
[CD79, CZ84]. PL/CS [CD79]. PL/CV3
[CZ84]. place [GW99]. Placement
[DP93, GS99, vHK00]. pluggable
[MME+10]. Pluto [BAC16]. Point
[CK94, Fat82, GJ05, Han96, Mon08].
Pointer [LS79, RR03, HBC99, HVDH07,
PKH07, RLS+01]. Pointers [SS13, RR05].
points [WKD04]. Pointwise [VSS94].
Policies [NBG13, BDFZ09, FGM07b].
Policy [Kro82, Kro83, Kro84, Kro85, Kro86,
Kro87, Kro88, Kro90, Kro91, Kro92,
UJ92, BFG08]. policy-based [BFG08].
Polyhedra [GVC15]. Polyhedral
[GVC15, QR00]. POLYLITH [Pur94].
Polymorphic [BMR05, Dug99, HT04,
Hen93, Ktu93, LQ94, LY98, Oh95, SIG17,
SV96, WJ98, BsvGF03, DWW08].
Polymorphism [Bur90b, MDCB91, HFC09].
polynomial [BAL07]. PolyTOIL
[BsvGF03]. polyvariance [LMD09].
Polyvariant [AC94, WJ98]. Portable
[DDH84, Han81b, HK07]. Postfix [DS83].
Postpass [HG83]. Power [TWW02, SSD09].
Powerlist [Mis94]. PPMexe [DKV07]. PQ
[GZ05]. PQ-encoding [GZ05]. Practical
[AD98, BAC16, BF87, DP17, Dha91, ND16,
PBR+15, SSS13, WC97, Bou05,
DR05, DVD07, DGS97, JNZ06, PFH11].
Practice [KRS94, Ryu16, Bla03, DRSS06].
Pragmatic [BDH+16]. Pragmatics
[Gom92]. Pre [OLH+16]. Pre-Analysis
[OLH+16]. Precedence [Hen83, LdR81].
Precise [Hor97, PH02]. precision
[ZG05]. Precondition [Boo82]. Predicate
[Lam90, BMR05, Bou05, Bou06, MFRW09,
MMS96, PR07]. Predicates
[CBDGF95, Lam88]. predictable
[SHB+07, HK07]. Prediction
[CGJ+97a, CEG07, YS99]. Prepaging
[FK85]. Presence [AWW95, CF94, Ktu93].
preserving [DHS09, LST02]. pretenuring
[BHM+07]. Pretty [Chi05]. Prettyprinter
[Wat83]. Prettyprinting [Opp80].
Primitive [App15]. principals [TZ07].
Principles [Bou88, DRSS06]. printing
Priority [CH90, Fid93].

Priority-Based [CH90]. Privacy [BKOZB13]. Privileges [Min84].

Probabilistic [BKOZB13, HSP83, MMS96, Rao94, BH99, PPT08]. Problem [ADG94, CM84, DS88, Gho93, LSP82, MS88, Pet82, Pet83b, PB97, Sor89, FGM*07a, Wu04].

Problems [Bac84, DP93, MMR95, SRW98].

Processing [GH80, HSG17, Rei83]. Processor [BG89b, Bud84]. Processors [GLR83, Per79, LPP01, ZP10].

Productivity [SiJ89].

Profile [BHM*07, YUW02]. Profile-based [BHM*07]. Profiling [BL94a, SP97].

Program [Bal94, Bar85, BAL07, BKB80, Col84, Der85, Fea82, FOW87, FT94, FL91, HSP83, HKR94, Jen97, KKW14, Lam83, Lam88, LFF14, MS83, MW80, Mis81, Nie85, PP94, PPS97, Rem81, RTP17, TSY00, Wat94, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NS13, Pau01, RAB+07, SLC03, WZ07, WN08, YF09, DKV07].

Programming [AGT89, AR84, ABF98, BS86, BPP16, BL87, Bir84, BMPT94, BWP87, BCEM15, CHY12, CL94, Dar90, DFR15, DGL+79, Dug99, Fv96, FL15, GTWA14, Har80, HK85, HOS2, Kasi9, KHH92, Lee86, LVV+83, MK94, Mye90, Pet83b, RCS93, SS84, SNS+14, SZBH86, TK94, ABH06, BMR01, Bou06, BdLBH99, C086, CG86, CMT86, DW8808, DPPR00, GW99, HBJ98, JPS+08, KGMO04, MVV+01, MTSS09, MQ05, TrA08, VWJB10, WKD04, WJS+00, Bir85, SWU10].

Programming-in-the-Large [MK94].

Programs [AWW95, AK87, AFV98, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BE13, BDF+16, CR87, CB80, CM86a, Ch89, CEW14, CM91, Cla80, CMF94, CS87, DGM97, DW89, De89, DL93, De95, DP97, DI90, EGP14, GG85, GM81, HD89, HP92, HP98, How80, HIT97, IS88, JW17, Jon83, JF81, Kna90, Lam79, LS83, MS94, MH86, NSZ13, OA88, OL82, PS92, QL91, Rao94, SS98, Scr82, SS81, SS88, Ven95, Wad90, WBS95, Wi82a, AE01, AAE04, BCG+07, CSW06, CSS99, DP90, DDV99, DS98, DMM01, EGM01, GM12, GHB+96, GH97, GPA*01, Ha96, HPMS00, JPS+08, KV96, LMD98, Uen04, LS09, MF09, NM6, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yen11, dHB+96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA*01, MW89, NF89, Zho96].

Promotion [Bir84, Bir85]. Proof [AFdR80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW8, HO07]. proof-carrying [AM01].

Proof-Directed [BDJ13]. Proofs [Apt86, BC85a, CM86b, JW17, LY98, Oss83, GRK+11]. Propagation [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].

Prototype [WCW90, WCW91].

Prototypes [HW82]. provably [GB99].

provenly [AAD+07]. Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Purpose [App94b, HSS+14, Spo86].

References [Han92, SV96]. Referencing [LS81]. Referential [QG95]. Refinement [BBF+11, BK+97, BEM15, CM86a, DGL+79, GEGP17, JLP+14, MRR88, SL92, AG04, QG95], reﬂecting [HS11], reﬂection [SW97a]. Region [TB98, SYN06].

region-based [SYN06], regions [RR05]. Register [BCT94, CH90, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

Relation [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relation [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationship [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

relationships [LBN17, MTG80]. Relational [BKOZB13, CB80, GSO94, JLF02, RGD08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].
shape-analysis [SRW98].

shape-analysis [SRW98].
Rob79, Sip82, KOE+06, TVA07. **Strategies** [Bir84, Bir85, Geo84, NN86]. **Strategy** [Brek98, PK80, WSH91, GS11]. **Stratified** [SS98]. **Stream** [HSG17], **streams** [CFP+04]. **strength** [CV01]. **Strict** [Bee94]. **Strictness** [Bee94, SR95]. **String** [GH90]. **Strings** [AS80, KS89, ADR06, KK07]. **Strong** [KZC15]. **Structural** [SZBH86, MTSS09]. **Structurally** [HS11]. **Structure** [BC79, GKL94, Mis94, MWB94, She91, HY07]. **Structure-Oriented** [GKL94]. **Structured** [BM94, CHY12, GD82, Har80, LS81, Mur91, RR03]. **Structures** [ANP89, Bob80, FL81, GEGP17, RCRH95, SSS81, LPS004, RAB+07]. **Study** [FTJ95, BHK07, BdBH99, DF98, KF03, LS98]. **Style** [BDM15]. **Sublanguage** [DGL+79]. **Sublinear** [RD87]. **Submodule** [MB83]. **Subroutines** [SA99]. **Subscript** [CG95]. **Subsequence** [Han92]. **Subset** [BL87]. **Substrings** [BL94b, Han92]. **subtype** [Duc08, KR01]. **Subtyping** [AC96, AC93, GGL15, LN15, LB17, LW94, GZ05, IV06]. **Subtyping-Relation** [LBN17]. **SUP** [HAM+05]. **Supercompiler** [Tur86]. **Superimposition** [Kat93]. **Support** [Bal94, DS90, Faa78, LS83, MK94, We90, TS00]. **Supporting** [RCRH95]. **Supports** [ABPS98]. **Suppression** [DS88, FGL94, Sor89, JNGG10]. **Survey** [Apt81, GPA+01]. **Suspension** [CFM94]. **Symbol** [ABR81, Rei83]. **Symbolic** [Dil90, HP96, Hai85, Hen82, RR05, YMW97, BGP99, MPM03, CM93, WST85]. **Symmetry** [FY95]. **Symmetry** [ES97, SG04]. **Synchronization** [Bag98, DJJ+16, Her91, KRS88, RS84b, Sch82, CGS+03, DHM+12, Ram00, RD03]. **synchronization-sensitive** [Ram00]. **Synchronizing** [And81]. **Synchronous** [CS87, TLHL11]. **synchrony** [CS04]. **Syntactic** [BF87, GMZ00, MF88, PK80, Wli82b]. **Syntax** [DMM88, Ode93, Ric85, SSS83, BMR01, CPRT02, Je03, Hcw82]. **Syntax-Directed** [DMM88]. **Syntax-Error-Handling** [SSS83]. **Syntax/Semantic** [HCW82]. **Synthesis** [AE98, AE01, AAN04, Ban78, BDJ13, BKL+97, Cla80, MW80, MW84, MV87]. **System** [AFdR80, AW85, BSS86, Bou88, CB80, Faa82, GD82, GP81, Han81b, HM84, JMSY92, LR13, MLS08, Mio83, MHS86, PO95, RD13, SA99, Wc97, BH05a, FH04, FM99, HO07, JB06, KS10, MTSS09, NP08, PE08, STSP05, MWC99]. **systematic** [DF98, PSS05]. **Systems** [ABLP93, AR84, ACS84, BKS88, BM93, CI84, CDP98, CBDDG95, CES86, CPS93, DAW88, Faa78, FKW98, Hen86, Jag94, Jon94, JTM98, Kar84, Kat93, Kau84, Lam84, LW93, Mis86, WGS92, WGS93, WC90, van88, Ass00, AE98, BCP08, BCM99, BGP99, CSM00, DGG97, GS11, TP04, TZ97, YMW97, WC91]. **Systolic** [Hen86]. **T** [Zic94]. **Table** [BM91, PK80, DAS98]. **Table-Drive** [PK80]. **Tabled** [SS98]. **Tables** [ADGM91, DDH84]. **Tail** [DP97, CF04]. **Tail-Call** [DP97]. **tail-recursive** [CF04]. **Tailored** [Kau84]. **Tailored-List** [Kau84]. **Tanenbaum** [Pem83, Tan83]. **Target** [Wan82]. **Task** [GP95, NSZS13, HBJ98]. **task** [HBJ98]. **Task-Level** [GP95]. **Task-Parallel** [NSZS13]. **Tasking** [Dil90]. **Tasks** [GP81]. **tcc** [PHEK99]. **Technical** [BS88, Bur90b, Bur91, Coh91, CM93, DSS88, Eii82, FA93, Fra91, Hen83, LaL83, LaL84, Mio83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tie88, Vol91, WST85, Wir91, YB88, Mm97]. **Technique** [AW95, BM99, BCD+15, JSSb+12, KKM90, SSS81, SSS83, JNGG10, KBC+99, RD97].
Techniques [AK82, CMN91, DP99, GLR83, How80, TWW82, WCW90, WCW91, BHK07, DDD05, DEMD00, LS08, MSRR00, SS96, TSL+02]. technology [LS98].
Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KWL09].
temporal-ordering [GS99].
temporaries [RMH06].
Ten [Apt81].
Tensor [RTP17].
Tentative [Jon83].
Tenuring [UJ92].
Term [KKSD94, MBT09, GRSK+11].
Termination [AF84, Apt86, BAGM12, BCG+07, Fra80b, GH97, GMP+00, GB99, HH93, Hen93, KPS92, KTU93, KR01, Lan80, LO94, LST02, LY98, LP00, MBT09, SMP10, Fra80a, Moh81].
Test [Wey83, WW95, Duc08].
Testing [AMT14, GMH81, TK94].
Tests [Coh91, Koz97, Wir91, ZG05].
Text [CC97].
Their [Kam83, LaL84, SS82, PS96].
Theoretic [ES97, Sha82, KV00].
Theories [NSTD+15, Bou06].
Theory [CZ84, KD94, KR94, NBG92, NY93, CGP09, MH06, Oho07, Pau01, SS05b, Bla03, FG03].
ThingLab [Bor81].
Thinking [WLBF16].
Thinning [Web95].
Third [WoI92].
ThisType [Ryu16].
Thread [YBL16].
Thread-Level [YBL16].
threaded [TSY00].
Three [Oss83].
Tichy [Tic88].
tiling [JLF02, LS04, RKSR12].
Time [AL94, ABR81, BL94b, BLH12, Coh91, DLR16, Hol87, IS89, Jef85, Lam84, MMG92, PS93, R84a, R84b, Wir91, Zic94, BKL07, BAL06, BKRW98, BKRW05, DD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Mil85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YM97, LW93].
Time-Constrained [Zic94, LPP01].
Time-Critical [PS93].
time-efficient [GB99].
Timed [Zic94].
Timeout [Lam84].
Timing [LJ99].
tokenization [Rep98].
Tolerance [LJ99].
Tolerant [CS95, Lam84, AAE04].
Tool [CPS93].
Toolkit [BDHF97].
toolkits [VHM+01].
Tools [van88].
TOPLAS [MP10a, MP10b].
topology [DDM11].

Total [San96].
Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12].
Trace-Based [WGS92, WGS93, WM12].
traces [HBM+06, WR08].
Tracing [BL94a, DLR16, MMM+07].
tradeoffs [ZGZ05].
Trailing [VR95].
Traits [DNS+06].
transactional [ABHI11, CFP+04].
Transactions [HMK94].
Transducer [DVLM15].
Transducer-Based [DVLM15].
Transformation [BKS80, FL91, NSZS13, Wad91, RKRR04, San96, TSV00, WZ07].
Transformational [BDHF97, Bir84, Bir85, DSW82, OA88, RC03].
Transformations [Bar85, EGM01, Geo84, LD81, LFF14, MS83, MCT96, Nie88, GFM+07a, KWL09, MOS07a, VALG05, WZZ05, HNN86].
Transformers [Lam90, MMS96, MBT09].
TransformGen [GKL94].
Transforming [AWW95, BE94].
Transition [PR07].
Translation [AK87, AK87, Kat84, Son87, AAD+07, BGKR09, DP99, RC03].
Transmission [HL82].
Transparency [JSB+12].
Transport [Min84].
transpose [CRN+08].
Traversals [LPS004].
Treatement [YB87, YB88].
Tree [AGT89, BO85, BMW91, DVLM15, DS83, Han81a, Hen83, LD81, GFM+07a].
Trees [Com80, GHS83, MTG80, Sip82, Wad90, ACM11, SGL97].
trick [DMP96].
Truth [BDH+16].
TSL [LR13].
tuning [GMM99, PE08].
Tuples [Ren81].
Tutorial [GM81].
Two [BO94, CDFP89, GPZ08, FMoPS11].
Two-dimensional [GPZW08].
two-variable [FMoPS11].
Type [Bur90b, Car95, CEW14, Coh91, CZ84, Dug02, Eng07, HHP96, HM93, Hen93, KPS92, KTU93, KR01, Lan80, LO94, LST02, LY98, LP00, MB88, NBG13, PO95, SA99, SM89, TW88, Van06, Wal80, WT11, Wir88, WC97, BSvGF03, BCG+07, FJKA06, GFM07b, FM99, FF08, GZ07, GMZ00].
HO07, HDH02, HY07, KF10, KS10, NP08, NCH+05, PT00, STS05, TFK+11, TZ07, Wal81, Wir91. **Type-based** [Eng07, LP00, BCG+07]. **Type-Extension** [Coh91, Wir91]. **Type-Graphs** [KPS92]. **Type-preserving** [LST02]. **Type-Safe** [AGT89, Bob80, CGJ+97a, CES86, CH87, DP93, Di90, DMM01, DJP+16, FLBB89, GSW95, GSO94, HRB90, JTM98, Kar84, LaL89, Lam84, Mye90, Ode93, Pet83b, PP94, PBR+15, SS84, SS96, Sok87, SGL98, Tvs82, ACM11, BH99, CSW06, CGS+03, DR05, GS99, GCR11, KWL09, KSK07, MTSS09, RD03, ST00a, SGL96, TFK+11, VJB12, XA07, YUV02, ZSD09, Pem83]. **Utilizing** [ES97].

VAL [McG82, Wet82]. **Validation** [How80, KC01, MOS07a]. **Value** [HL82, HL05, SW97a]. **valued** [RMH06, SRW02]. **Values** [AS80, BP89, Hua93, AH10, HY07, Uniformly [DB85]. **Uniform** [VSS94]. **Uniformly** [HPR89]. **versus** [Pal98, Pip97, UM02]. **Vertices** [BGH+13]. **Variant** [IV06]. **variants** [FG03]. **Variational** [CEW14]. **Vector** [AK87, Bud84, Fis80, FTJ95, KKL99, Per79, KKL07]. **Verifiable** [VBJ5]. **Verification** [App15, BDP14, BCD+15, DCFP89, CES86, CPS93, Dil90, EGP14, GL94, Jon94, JTM98, KKK14, LFF14, L99, LS79, NBG13, RY88, BDL+08, CEI+07, GPF08, GM12, Qia00]. **Verified** [BFGT08, BKL+97, JLP+14, DSW11]. **Verifying** [AS89, BFG08, CGJ97b, DJP+16, ECG17, YS10, Mon08]. **Version** [YR94]. **Versions** [HR89]. **virtual** [MP10a, MP10b]. **Virtual** [Jef85, CEG07, KN06]. **Volpano** [Bur91]. **vs** [HR02].

W [Tie88]. **Wait** [Her91]. **Wait-Free**
REFERENCES

[Her91]. Waite [BP82]. Warp [LW93], way
[VHM+01]. Weak [AMT14, KZC15].
weakening [SYYH07]. Weaker [Boo82].
web [BFG08, BLRS12, CHY12, CGP09, CMS03].
Weight [GHS83]. While
[Pet83a, BC85b, GM81]. while-Programs
[BC85b]. Whole [BDH+16]. Widening
[KKW14, VJB12]. win [Lam90]. Within
[FKW98]. Without
[Cop94, Ode93, AS89, Cas95, Sto04, VR95].
Witnessing [TA08b], Workbench [CPS93].
World [GG85, DF11].
World-Model-Based [GG85]. Worst
[WW95]. wp [BH99]. Writing
[Pet83a, Win87]. WYSINWYX [BR10].

X [OLH+16, MSM+16]. X-Sensitive
[OLH+16]. XARK [ATD08]. XML
[HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].

References

REFERENCES

Acar:2009:EAS

Alur:2005:ARS

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CA

Afek:1993:LC

REFERENCES

Apt:1998:AIL

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

Attali:1996:NSE

REFERENCES

Abadi:1991:DTS

Aggarwal:1990:ALP

Ashley:1998:PFF

Afek:1994:BFF

REFERENCES

Alpuente:1998:PEF

Appel:1993:Eb

Alur:2004:MRH

Aung:2014:SS

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR

Alglave:2014:HCM

Anger:1989:LIC

Anonymous:1982:IA

REFERENCES

1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Anonymous:1983:IA

Anonymous:1984:IA

Anonymous:1985:IA

Anonymous:1986:IA

Anonymous:1986:IA

Anonymous:1987:IA

Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

REFERENCES

Anonymous:1990:AI

Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1991:IA

Anonymous:1992:AI

Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC
Anonymous. Automatic derivation of compiler machine de-
Anon:2002:LDD

Arvind:1989:SDS

Anson:1987:GIC

Andrews:1988:OSL

Apt:1994:OCF

Abadi:2007:E

Appel:1993:E

Andrew W. Appel. Editorial. *ACM Transactions on Programming Languages and Systems*, 15
REFERENCES

Appel:1994:ABG

Appel:1994:PS

Appel:2015:VCP

Apt:1981:TYH

Apt:1986:CPD

Apt:2000:RCC

Andrews:1980:AAI

Appelbe:1984:ECS
William F. Appelbe and A. P.

REFERENCES

Alur:2001:MCH

Ben-Ari:1984:AF

Blume:1999:HM

REFERENCES

Banerjee:2011:MFT

Barnden:1981:NCA

Barstow:1985:CTD

Biering:2007:BHH
[BBTS07] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-hyperdoctrines, higher-order separation logic, and abstraction. *ACM Transactions on Pro-

Breuer:1994:DET

Bhaskaracharya:2016:ASO

Bengtson:2011:RTS

Beyer:1979:SED
REFERENCES

Barabash:2005:PIM

Bobrow:1979:CEL

Bates:1985:PP

Bergeretti:1985:IFD

Brogi:1991:CLS

Bugliesi:2004:ACM

Bossi:1990:MSL

A. Bossi, N. Cocco, and S. Dulli. A method for specializing logic programs. ACM Transactions on Programming Lan-
gues and Systems, 12(2):253–302, April 1990. CODEN
ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Betts:2015:DIV

Bugliesi:2015:ART

Benton:2004:MCA

Bruynooghe:2007:TAL

Bottoni:1999:SDC

Bhatia:2008:RSE

REFERENCES

Bernstein:1989:SEP

Binkley:2013:EIL

Bultan:1999:MCC

Barthe:2009:CTO

Barbuti:1993:GFS

BH99
REFERENCES

Broy:1980:DIA

Breuer:1997:RCS

Buchsbaum:1998:NSL

Buchsbaum:2005:CNS

Barthe:2013:PRR

Bac:1988:DCA

REFERENCES

REFERENCES

Blume:1999:DAS

Brandis:1994:SPG

Brogi:1994:MLP

Bistarelli:2001:SBC

Ball:2005:PPA

Borstler:1991:TCT

Broy:1994:AFC

REFERENCES

Bertsch:1999:FPT

[BN99]

Bohm:1985:SEA

[Boe85]

Bohm:1982:WPL

[Boo82]

Borning:1981:PLA

[Bor81]

Bobrow:1980:MRS

[Bob80]

Boute:1988:SSP

[Bou88]
REFERENCES

based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Bahlke:1986:PSF

Bermudez:1988:NRB

Bruce:2003:PTS

Burke:1993:IOE

Budd:1984:ACV

Burton:1984:ACP

Burke:1990:IBA

Michael Burke. An interval-based approach to exhaustive

Burton:1990:TCT

Burton:1991:TCA

Broy:1987:ADP

[BWP87] Manfred Broy, Martin Wirsing, and Peter Pepper. On the algebraic definition of program-
REFERENCES

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Click:1995:CAC

Clarke:1997:URE

Constable:1979:HAF

[Robert L. Constable and James E. Donahue. A hierarchical approach to formal semantics with application to the definition of PL/CS. *ACM Transactions on Programming Languages and Systems*, 1(1):98–114, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

Carchiolo:1989:ELT

[Vincenza Carchiolo, Antonella Di Stefano, Alberto Faro, and Giuseppe Pappalardo. ECCS and LIPS: Two languages for OSI systems specification and verification. *ACM Transac-
REFERENCES

Casey:2007:OIB

Chander:2007:ERB

Clarke:1986:AVF

Chen:2014:ETI

Cytron:1995:ECN

REFERENCES

Christensen:2004:OPE

Calder:1997:EBS

Castagna:2009:TCW

Choi:2003:SAS

Chatterjee:1995:OEA

Cohen:1987:PCU

Chow:1990:PBC

Charlesworth:1987:MR

Chatterjee:1993:CND

Charlesworth:2002:UAC

Chitil:2005:PPL

Carbone:2012:SCC

Cameron:1984:GBD

Cejtin:1995:HOD

Consel:1993:PPE

Carr:1994:IRM

Cooper:1986:IIA

Crowl:1994:PPC
Lawrence A. Crowl and Thomas J. LeBlanc. Parallel programming with control abstraction. *ACM Transactions on Programming Languages and Systems*, 16(3):524–576, May 1994. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

K. M. Chandy and Jayadev Misra. An example of stepwise refinement of distributed programs: Quiescence detection.

Michael Codish, Anne Mulkers, Maurice Bruynooghe, Maria García de la Banda, and Manuel Hermenegildo. Improving abstract interpretations by combining domains. *ACM Trans-
REFERENCES

Clifton:2006:MDR

Choi:2006:MDR

Christensen:2003:EJH

Cohen:2006:CCA

Clemm:1990:MEI

Cohen:1983:ERR

Cohen:1985:NCE

Cohen:1991:TCT

Copperman:1994:DOC

Carle:1995:MBI

Carle:1996:OCP

Carle:1996:OCP

Comer:1980:NMS

REFERENCES

Cohen:2017:LPC

Corchuelo:2002:RSE

Cleaveland:1993:CWS

Carson:1987:GSP

Cooke:2008:NTD

Cuny:1987:CDD

Choy:1995:EFT

REFERENCES

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FAC

Dillon:1988:CET

Dunlop:1985:GSU

Debray:1989:SIM

Debray:1995:CDA

DeMillo:1983:GEI

DeFraine:2012:EAC

Davidson:1980:DAR
REFERENCES

REFERENCES

DeBoer:1997:PCC

Duesterwald:1997:PFD

Dhamdhere:1991:PAG

DelaBanda:1996:GAC

DeLaBanda:2000:ICL

Dolby:2012:DCA

Dolev:2009:SSP

DeMoura:2009:RC

Dillon:1990:USE

deJonge:2012:NFE

Dodds:2016:VCS

Darulova:2017:TCR

Drinic:2007:PPC

Debray:1993:CAL

Dissegna:2016:AIB

Degano:1988:EIL

Diwan:2001:UTA

Danvy:1996:EED

Ducasse:2006:TMF

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schürrl, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DeRemer:1982:ECL

REFERENCES

REFERENCES

Dekel:1983:PGP

Drechsler:1988:TCS

Dewan:1990:ASA

Dhamdhere:1998:DCD

Dewar:1982:TDG

Derrick:2011:MVP
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Month</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duc08</td>
<td>Perfect hashing as an almost perfect subtype test.</td>
<td>Roland Ducournau</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>30</td>
<td>6</td>
<td>33:1–33:56</td>
<td>October</td>
<td>2008</td>
<td>10.1145/1558-4593 (print)</td>
</tr>
<tr>
<td>Dug99</td>
<td>Dynamic typing for distributed programming in polymorphic languages.</td>
<td>Dominic Duggan</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>21</td>
<td>1</td>
<td>11–45</td>
<td>January</td>
<td>1999</td>
<td>10.1145/1558-4593 (print)</td>
</tr>
<tr>
<td>Dug02</td>
<td>Type-safe linking with recursive DLLs and shared libraries.</td>
<td>Dominic Duggan</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>24</td>
<td>6</td>
<td>711–804</td>
<td>November</td>
<td>2002</td>
<td>10.1145/1558-4593 (print)</td>
</tr>
<tr>
<td>DVLM15</td>
<td>Fust: a transducer-based language for tree manipulation.</td>
<td>Loris D’Antoni, Margus Veanes, Benjamin Livshits, and David Molnar</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>38</td>
<td>1</td>
<td>1:1–1:??</td>
<td>October</td>
<td>2015</td>
<td>10.1145/1558-4593 (print)</td>
</tr>
<tr>
<td>EGM01</td>
<td>Transformations of CCP programs.</td>
<td>Sandro Etalle, Maurizio Gab brielli, and Maria Chiara Meo</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>29</td>
<td>4</td>
<td>19:1–19:44</td>
<td>August</td>
<td>2007</td>
<td>10.1145/1558-4593 (print)</td>
</tr>
</tbody>
</table>

REFERENCES

Cedric Fournet and Andrew D. Gordon. Stack inspection: The-
REFERENCES

Fernandez:2004:ICS

Fidge:1993:FDP

Fischer:1980:PCA

Foster:2006:FIT
Jeffrey S. Foster, Robert Johnson, John Kodumal, and Alex Aiken. Flow-insensitive type qualifiers. *ACM Transactions on Programming Languages and Systems*, 28(6):1035–
REFERENCES

1087, November 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Fuchs:1985:OPF

FK85

Fokkink:1998:WAR

FKW98

Fokkink:2000:LRE

FKW00

Fischer:1989:DFA

FL81

Fraser:1981:EDS

FLB89

Fradet:1991:CFL

FL91

Frechtling:2015:MMS

FL15
REFERENCES

REFERENCES

Francez:1985:SIC

George:1996:IRC

Gazinger:1983:PSP

Greiner:1999:PTE

Gouda:1986:PLN

Grove:2001:FCG

REFERENCES

[GGL15] Nils Gesbert, Pierre Genevès, and Nabil Layaïda. A logical...

Griswold:1980:AUP

Ralph E. Griswold and David R. Hanson. An alternative to the use of patterns in string processing. ACM Transactions on Programming Languages and Systems, 2(2):153–172, April 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Gerber:1997:SRT

GarciaDeLaBanda:1996:GAC

Griswold:1981:GI

Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. ACM Transactions on Programming Languages and Systems, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ghosh:1993:ASP

Graham:1980:ICF

REFERENCES

REFERENCES

Grant:2000:BCD

Gorlatch:2004:SRC

Grit:1981:DIT

Gange:2015:IAM

REFERENCES

Girkar:1995:ETL

Gupta:2001:PEP

Gal:2008:JBV

Gri79

Gri82

Grossman:2006:QTI
REFERENCES

Giesl:2011:ATP

Giacobazzi:1998:LMR

Gloy:1999:PPU

Gawlitz:2011:SSR

Gupta:1994:ERA

Gerlek:1995:BIV

Garcia:2014:FTO

[GTWA14] Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan

Gudeman:1992:DSG

Grosser:2015:PAG

Gudjonsson:1999:CTM

Glesner:2004:NSS

Gil:2005:EST

Gil:2007:EDD

Hoffmann:2012:MAR

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivari-

REFERENCES

Hannan:1994:OSD

Harel:1980:PNA

Hauser:1996:HFP

Havlak:1997:NRI
Paul Havlak. Nesting of reducible and irreducible loops.

Hind:1999:IPA

Harman:2009:DCS

Hassen:1998:TDP
Saniya Ben Hassen, Heurí E. Bal, and Ceriel J. H. Jacobs. A task- and data-parallel programming language based on

Hennessy:1986:PSS

Henglein:1993:TIP

Herlihy:1999:MIH

Hesselink:1988:MAN

Haynes:1987:ECP

Hosoya:2009:PPX

Hennessy:1983:PCO

Hall:1996:TCH

Hilfinger:1988:APD

Hu:1997:FDE

Heering:1985:TMP

Henzinger:2007:EMP

REFERENCES

REFERENCES

Hamlen:2006:CCE

HMS06

Hic:
Hicks:2005:DSU

HN05

Hoffman:1982:PE

HO82

Higuchi:2007:STS

HO07

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

Howsden:1980:ASV
REFERENCES

[Haghighat:1996:SAP]

[Hermenegildo:2000:IA]

[Horwitz:1989:INV]

[Henzinger:2002:AGR]

[Hennessy:2002:IFV]

[Horwitz:1990:ISU]

[Harrold:1994:ECI]
REFERENCES

REFERENCES

[HW82] Richard C. Holt and David B. Wortman. A model for im-

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS

Igarashi:2005:RUA

Igarashi:2001:FJM

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Inoue:1988:AFP

Igarashi:2006:VPT

Atsushi Igarashi and Mirko Viroli. Variant parametric types: a flexible subtyping scheme

Iverson:1979:O

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

Janssen:1997:MGR

Jefferson:1985:VT

Jeffery:2003:GLS

Jensen:1997:DPA

[Jen97] Thomas Jensen. Disjunctive program analysis for algebraic...
REFERENCES

Juelich:1981:CAS

Jackson:1998:IFM

Jimenez:2002:RTN

Jagannathan:2014:ARV

Jeannet:2010:RAI

Jaffar:1992:CLS

REFERENCES

Jacobs:2008:PMC

Joung:1994:CFO

Joisha:2012:TTE

Juan:1998:CVC

Jakobs:2017:PPF

Kaiser:1989:IDS

Kamin:1983:FDT

REFERENCES

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO

Kim:2001:ERV

Kennedy:1999:PRE
REFERENCES

Khedker:1994:GTB

Kistler:2000:ADM

Kistler:2003:CPO

Knowles:2010:HTC

Keen:2004:JFD

Kaiser:1992:OBP

Kennedy:1998:ADL

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Details</th>
</tr>
</thead>
</table>
REFERENCES

Kurlander:1995:EIS

Katzenelson:1992:TMT

Kobayashi:1999:LPC

Kennedy:1979:DA

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP
REFERENCES

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP
REFERENCES

Korach:1984:DAF

Kruskal:1988:ESM

Knooop:1994:OCM

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1988:DSC

REFERENCES

Kasikci:2015:ACD

LaLonde:1981:CSC

LaLonde:1983:TCL

LaLonde:1984:TCC

LaLonde:1989:DFD

Lampport:1979:NAP

Lampport:1980:CNA

REFERENCES

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB

Lueh:2000:FBR

Lycklama:1991:FCF

Lhotak:2008:RAB

Lindstrom:1979:BGC

REFERENCES

Lin:1993:PIA

Liu:1999:SVF

Lee:2002:ADC

Leuschel:1998:CGP

Leavens:2015:BSS

Laufer:1994:PTI

REFERENCES

REFERENCES

Lieberherr:2004:TOS

Lim:2013:TSG

Luckham:1979:VAR

Leverett:1980:CSD

Lindstrom:1981:RRB

Liskov:1983:GAL

Lamport:1984:HLC

Lang:1998:SAE

Jun Lang and David B. Stewart. A study of the applicability of existing exception-handling techniques to component-base real-time software technology.
REFERENCES

Levi:2003:MSA

Li:2004:ATI

Liquori:2008:FME

Liu:2009:DRE

Liu:2005:OAA

Lamport:1982:BGP
[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Transactions on Programming Languages and Systems, 4(3):382–401, July 1982. CODEN ATPSDET. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any $n \geq t > 0$, where n is the total number of processes and t is the number of faulty processes.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Matthews:2009:OSM

Millstein:2009:EMP

Moriconi:1986:PSP

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC
REFERENCES

[MKEE+10] Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd Millstein, Chris Andreae, and James

Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Maticola:1995:LFM

Morgan:1996:PPT

Mohan:1981:TCF

REFERENCES

Moore:2002:AC

McKinley:2007:ECG

Mckinley:2010:DVT

Mckinley:2010:PVT

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Maher:1983:API

Murphy:1988:NDP

REFERENCES

Marriott:1994:DAI

Marino:2016:DXU

Madhavan:2000:EGG

Morris:2008:DNF

Moret:1980:AVR

MacDonald:2009:DDP

REFERENCES

[Muller:1992:MLR]

[Murtagh:1991:ISM]

[Maassen:2001:EJR]

[Manna:1980:DAP]

[Manna:1984:SCP]

[Mulkers:1994:LSD]

[NCH+05] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. CCured: type-safe retrofitting of

[Ni05] Norris:2016:PAM

[ND16] [Nel85] [Nix85] [NN86]

REFERENCES

Nelson:1979:SCD

Naik:2008:TSE

Nanda:2006:ISM

Nikolic:2013:RAP

Nowatzki:2015:SFS

Nandivada:2013:TFO

Olderog:1988:FPP

REFERENCES

Odersky:2004:GE

Oppen:1980:P

Ossefort:1983:CPC

OHearn:2009:SIH

Pingali:1985:EDD

Pingali:1986:CFI

Pingali:1986:EDD

Palsberg:1995:CAC

REFERENCES

Palsberg:1998:EBF

Palsberg:2011:E

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

[Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens. Secure compilation to protected module architectures. ACM Transactions on Programming Languages and Systems, 37(2):6:1–6:??, April 2015. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

Palsberg:1998:EBF

Palsberg:2011:E

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP
REFERENCES

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

REFERENCES

[Poletto:1999:CTL]

[Piquer:1996:IDG]

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Paige:1982:FDC

Pearce:2007:EFS

Park:2004:ORC

Payet:2006:NIL

Pingali:2009:RTP

Palsberg:1995:TSE

Peng:1991:DFA

Pinter:1994:POP

REFERENCES

REFERENCES (print), 1558-4593 (electronic).

Poletto:1999:LSR

Pottier:2003:IFI

Pearlmutter:2008:RMA

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

REFERENCES

Quong:1991:LPI

Quillere:2000:OMU

Ranganath:2007:NFC

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Rao:1994:RAP
REFERENCES

842, May 1994. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Rinard:1998:DIE

Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of Jade. *ACM Transactions on Programming Languages and Systems*, 20(3):483–545, May 1998. CODEN ATPSDT. ISSN 0164-
REFERENCES

REFERENCES

Ramanath:1984:JML

Reif:1984:RTS

REFERENCES

Samet:1980:CAP

Sands:1996:TCL

Sangiorgi:2009:OBC

Schwartz:1980:U

Schneider:1982:SDP

Schmidt:1985:DGV

Sampaio:2013:DA

Strickland:2013:CFC
T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa, and Matthias Felleisen. Contracts for first-class classes. *ACM Transactions on Programming Languages and Systems*, 35

Stamos:1990:RE

Sreedhar:1998:NFE

Sharir:1982:SOC

Stoyle:2007:MMS

Sheard:1991:AGU

Sekiyama:2017:PMC

Sijtsma:1989:PRL

Sipala:1982:CSB

Sites:1979:CLI

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Spoto:2003:CAA

Scott:2006:RNG

Smans:2012:IDF

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Shankar:1992:SRH
Schultz:2003:APS

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TRO

Spoto:2010:TAJ

Stork:2014:APB

Sokolowski:1987:SHL

[Sok87] Stefan Sokolowski. Soundness

Solworth:1992:E

Sonnenschein:1987:GTS

Sorkin:1989:TCS

Sreekumar:1992:ASC

Sansom:1997:FBP

Simonet:2007:CBA

REFERENCES

REFERENCES

[SS08] Staiger-Stohr:2013:PIA

[SS13] Staiger-Stohr:2013:PIA

[Sey99] Sneyers:2009:CPC
Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of constraint handling rules. ACM Transactions on Programming Languages and Systems, 31(2):8:1–8:42, February 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[ST00a] Snelting:2000:UCH

[ST00b] Sperber:2000:GLP

[Sto04] Stone:2004:EOL
REFERENCES

REFERENCES

REFERENCES

REFERENCES

URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/214507.html. See [SK88].

Tick:1994:DTN

Tripakis:2011:TSR

Tel:1993:DDT

Thammanur:2004:FME

Tratt:2008:DSL

Torp-Smith:2008:LRA

Tip:2002:PET

Tang:2000:PTR

Turini:1984:MLO

Turchin:1986:CS

Thies:2007:STU

Tanenbaum:1982:UPO

Thatcher:1982:DTS

Tse:2007:RTP

REFERENCES

Vera:2004:FAF

Venkatesh:1995:ERD

VanRoy:1997:MOD

VonHanxleden:2000:BCP

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

[SVEN
[Volpano:1991:TCS]

Volpano:1991:TCS

VonBank:1994:UMP

VanNieuwpoort:2010:SHL

Waddle:1990:PTC

REFERENCES

Wallis:1980:ERO

Wallis:1981:CER

Wall:1992:ESD

Wand:1982:DTC

Waters:1983:UFC

Waters:1991:ATS

Waters:1994:CBP

Wright:1997:PST
Andrew K. Wright and Robert Cartwright. A practical soft

Walker:2000:TMM

Wileden:1990:CEO

Wileden:1991:CCE

Webber:1995:OFP

Weihl:1989:LAP

Weihl:1990:LSA

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Weyl:1985:IRA

Wulf:2000:IOO
Wellings:2000:IOO

Wand:2004:SAD

Wagner:2016:TIB
Westley Weimer and George C. Necula. Exceptional situations

Walicki:1995:CCM

Wu:2012:STB

Weimer:2008:ESP

REFERENCES

REFERENCES

Yemini:1987:ATE

Yemini:1988:TCA

Yiapanis:2016:CDS

Yang:1998:STE

Yardimci:2009:MSP

Ying:2011:FHL

Yu:1997:NCI
Ting Yu and Owen Kaser. A note on “on the conversion of indirect to direct recursion”. *ACM Transactions on Programming Languages and Systems*, 19(6):1085–1087, November 1997. CO-

Yang:2002:EEB

Zave:1985:DAF

Zhao:2007:FFS

Zhang:2005:CPT

Zhou:1996:PPC

Zic:1994:TCB

Zhuang:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA