A Complete Bibliography of Publications in *ACM Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

17 December 2021
Version 2.142

Title word cross-reference

<table>
<thead>
<tr>
<th>Title word cross-reference</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k) [ADGM91, BL94b, KM81]. 2 [DAM03]. 3</td>
<td>[SRW02], + [Han81a], (T^M) [Bla03]. (5_{ex})</td>
</tr>
<tr>
<td>[AW82], (\sqcup) [DDD02], A [DES12], (\mathcal{R})</td>
<td>[JMSY92], (\mathcal{R}_{Lin}) [VR95]. (\ell) [ADG+94].</td>
</tr>
<tr>
<td>(O(nm)) [Pet82]. (\phi) [CF95, DR05]. (\pi) [ABL03].</td>
<td></td>
</tr>
</tbody>
</table>
BNN18, BC85b, Blo94, BE13, Bur90a, CFNH18, CFG19, CDK+18, CMN91, DKKL18, DL93, Deb95, DP97, DAW88, FPS19, FJK+17, GNS+15, GKM20, G93, HP96, HOYY18, HII88, Hor97, ISY88, Jen97, JCO19, KD94, LLK+17, LTMS20, LRR13, LHR19, LWR21, McG82, MRGP20, MWB94, MOS07b, OHL+14, OLH+16, Pal95, PC95, ECC95, PCC85, PP91, PW94, PW95, Pur91, RDP17, RRB19, RP88, SR95, SSS83, SGL98, SS13, ABB+09, BDFZ09, BAL07, Bla99, BCG+07, CFSW06, Cha02, CGS+03, CKT86, DDV99, DGS97, FF99, GHB+96, GJ05, GZ04, GCRN11, HAM+05, HPMS00, HBCC99, HVDH07, HAH12, IK05, JLRS10, KBC+99, KK07, KSK07, LP00, LH08, MPM03, NS13, PHP02, Pal98, PKH07, Ram00, Rep00, RSL10, RD97, RR05, R05].

analysis [RLS+01, SRW98, SRW02, STS03, SdSCP13, SS96, ST00a, WP10, WJ98, ZSD09, dHB06].
analyze [DMM01, VBLG04].
analyzer [SMP10].
Analyzing [AW85, BEF+16, CFP+04, GMM99].
And/or [Har80].
Annotations [Bur84].
AOP [DES12].
APL [Bud84, GD82, Hob84].
Applicability [DAW88, How80, LS98].
applicable [Gom92].
Application [CD79, DF80, DF81, LBN17, LR13].
Applications [BLRS12, Bou88, MRGP20, SR21, BALP06, CMLC06, NR06].
Applicative [AC94, KS86].
apprentice [MP02].
Approach [AKNP17, ABR81, AR80, BAC16, BP82, Bur90a, CH90, CD97, DS90, EII82, ES97, FT94, GGL15, Har80, Hes88, KKW14, Lam79, Lam90, Lee86, LTMS20, MW80, MDCB91, ND16, OA88, Sam80, Sp86, SM81, SNS+14, Bou05, CRN+08, DHM+12, FGM+07a, JLR10, KV00, LP80, MBT09, PSS05, PCJD08, RC03, SP07, WS97].
approximations [BGP99].
Apt [Moi83].
arbitrated [ZP10].
Architecture [Wal92].
Architectures [Han94, KPF95, NSTD+15, PAS+15].
Arising [Bac84].
Arithmetic [Fis80, GNS+15, Hen83, LdR81, MOS07b].
ARM [FKW98, ADG+21].
Armed [ADG+21].
Array [CGST95, CG95, LS79, Per79, PW98, JB06, LSLR05, NI05, PHP02, RMH06, RR05, ZCG+07].
array-valued [RMH06].
Arrays [BBC16].
Article [Ano18, TGT20].
ASF [VHK02].
aspect [DWW08, WKD04].
spect-oriented [DWW08, WKD04].
AspectML [DWW08].
Aspects [Bor81, Set83].
assembly [AAP+10, MWC89].
Assertions [BKB80].
Assessing [BDH+16, Wey83].
Assets [COE20].
Assignment [BMY94, CFP+91, GL80, GPF08, LDLK+96].
Assisted [HCHP92].
Assisting [Fen82].
Associated [PPS79].
associativity [Cha02].
Assocs [Rem81].
assume [HQRT02].
assume-guarantee [HQRT02].
Assumptions [ES97].
AST [GVC15].
Asynchronous [Bag91, GLO88, Mis86, GM12, HR92].
ATL [WSH15].
Atomic [WL85, Wei90, AE01].
Atomicity [JLP+14, Wei89, FFLQ08].
Attacks [BMY94].
Attribute [CP95, Hud91, JP81, Jon90, Kat84, KR79, MK94, RD87, WW95, Boy96, CP96, Wu04].
Attributes [HT86].
Author [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].
authorization [FGM07b].
Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b].
auto [ZP10].
auto-addressing [ZP10].
Automata [BMW91, CBMO19, ES97, Pro95, KV00].
Automata-Theoretic [ES97, KV00].
Automated [GRSK+11, KZC15, KF00, Sok87, JNRM10].
Automatic [AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, DS90, K98, Le 88, Lk02, LS04, MS83, PZJ05, RH87, SSS81,
Automatically [Slo95]. Automatically [GKL94, MTS90]. Avoidance [FGL94].

Aware [MQ05]. Axiomatic [AR80, App94a, Boe85, Sou84, YB84, YB88, LP80]. Axioms [Mis86].

B [Han81a]. Backpropagator [PS08].

Backtracking [Lin79, VR95, FM87a]. Backward [DL18, Mye18]. Balanced [AS80, PB80, vHK00]. Barrier [CHMY19].

Base [NcS20, LS98]. Based [BPP16, BGL93, Bur90a, CGJ +97a, CI84, LS98, HT86, JTM98, KF03, KH92, KR79, LFF14, PW98, RDT83, SR95, SGL98, Ste18, SNS+14, TY18, Wat94, WGS92, vPS81, BFG08, BMR01, BNM+07a, BCG+07, CTT07, DDV99, Eug07, FF99, HB98, KBC+99, KR01, LP00, LH08, LGAT00, ML21, MTS90, ML21, MTS90, Pal98, PPT08, PCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12]. Basic [CGG+19, GLR83].

Bayesian [HOYY18]. BDD [LH08]. BDD-based [LH08]. Be [Bee94, Coh91, Wir91, CG04, LP99].

Behavioral [LN15, LW94]. Behavioural [SV20]. Being [Cop94]. benefits [GMP+00].

Better [Gri79, Lam88]. between [BS88].

Beyond [GSW95]. BI [BBTS07].

BI-hyperdoctrines [BBTS07].

Bidirectional [DP93, MMR95, FGM+07a, DP93, MMR95, FGM+07a, GPW08].

binaries [STSP05]. Binary [Sin82, DDD05, MMM+07, RC03, YF09].

binding [ACE96]. Birrell [MDJ05].

Bisimulation [FDY12, MH06, San09].

Bisimulation-based [MH06].

Bounded [ADG+94]. Bounds [CP17, FNBG20, PW94, BP12, CEI+07, RR05, SS05a]. Box [WLB16]. boxed [BCC04]. Branch [CGJ+97a, CEG07, YUW02, YS99].

Building [Jag94]. BURS [Pro95]. Bus [Pur94]. Bytecode [SA99, BDL+08, CSM, FM99, GP08, KR01, Qia00, SMP10, WR08]. Byzantine [LSP82].
[BGKR09, BK11]. certified [STSP05].
Chaining [LS80]. Chains [HS94].
challenge [MP02]. change [BA08, CP96, Lee09]. Changes [Ber94, MTSS09]. changing [MP07].
Chariots [PB97].

CHC-based [MTK21]. Check [AP94]. checked [KN06]. checker [NP08].
Checking [Car95, CGL94, ES97, FF08, GL94, ND16, AY01, ACM11, BGP99, FFLQ08, HQRT02, JJD98, KF10, KV00, NI05, SG04, VJB12, YMW97]. Checks [CG95, CEI07]. Chocola [SDD21]. Choice [BN94, JCM19]. CIRCAL [Mil85]. Circular [Jon90, Pet82]. Circularity [WW95, Wu04].
Circularity [WW95, Wu04].

Class [CBMO19, HKMN94, Han92, SJ03, SDTF13, HS11, MH04, ST00a]. Classes [SDTF13, WT11, HHPW96, HMS06].
Classical [JSB12, Miq19]. Classification [KZC15]. Classifying [GSW95].

Claus [WP10]. Cliché [Wat94]. Cliché-Based [Wat94]. Clique [GSO94]. Closure [PAL95, SW97b, SA00]. CLP [DHM00, GLMM05, JMSY92, KMM98, VR95].

Clustering [LLK17]. Clusters [BGH+13, HBG+09]. coalescing [GA96, Hai05, PM04]. Code [AGT89, BHM+19, Cat80, Cop94, DF84, FGL94, GF85, Hen82, HG83, JSB+12, KRS94, LR13, ND16, Rob79, TVS82, Wan82, AM01, DEMD00, Hai98, HBG+09, HK07, JNZ06, LDK+96, MSRR00, ME97, Oh07, PHEK99, WS97, vHK00, CM93, Fsm03, WST85].

Cohen [Coh85]. coherence [SS96].

coinduction [San09]. Collect [JCM19]. Collecting [HY91].

Collection [BA84, CN83, DSW82, Lan80, TM93, URJ18, WLBF16, BALP06, HDH02, PBK+07, Pio96].

collector [BBY+05, LP06, TSBR08].

Coloring [BCT94, CH90, GSO94].

Combining [Ber94, BP82, CC95, CMB+95]. Come [LH91]. Comments [AB94, KS79, LaL84, NN86, Sor89].

Communicating [AFdR80, GC86, HM84, MW84, MC82b, Mio83, Oss83, PP91, Pur91, Sou84, Ber80, KS79].

Communication [Ang89, CHY12, FJK+17, FY85, Gel85, Hua90, MB83, vPS81, KBC+99, Mil85, SWU10, WM12].

Communication-Centered [CHY12]. Communications [RS84b].

Commutativity [RD97, Apt00, Cha02].

Compact [BC79, Sip82, Wad90].

Compactification [RH87]. Compacting [CN83].

Compacting [CP17, Wis79, BP12, DDD05, DEMD00].

Comparative [WCW90, WCW91].

Comparing [Hai05]. Comparison [CN83].

Componentalized [WLBF16].

CompCert [BDP14]. Compensation [FGL94].

Compilation [ABC+21, DLR16, FKW98, FL91, JLP+14, JF81, Oh95, PAS+15, PG21, Sit79, KMM+98, LST00, LD07, SY06].

Compile [ABR81, GW99, Hol87, Tra08].

Compile-Time [ABR81, Hol87, GW99, Tra08].

Compiler [ABC+21, App94a, Bud84, CM86b, DK17, DEMD00, FT94, FGL94, JSP+12, Rei83, Slo95, Son87, Wha94, YBL16, Ano02a, CMLC06, DHS09, GMM99, KN06, PE08, PHEK99, SYK+05, VHK002].

Compiler-Driven [YBL16]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SY06].

Compiling [Cha93, CH87, Fis80, Set83, VHK002].

Complementation [CFG+97]. Complete [BDFH97, WM95].

Completeness [LB17, TB95, WGS92, dBH21, Wu04, WGS93].

completion [KR01]. Complexity [BEF+16, Deb95, Le 88, dBH21, RRSY08, SSD09].

component [LS98, YS97].
Dependencies [Deb89, CSS99].
Dependency [Blu99]. Dependent [LS80, Miq19, NBG13, Ode93, RTD83, Rob79].
dequeues [Chi05]. DeRemer [Sag86].
Derivation [BBK80, Cat80, DSW82, Gie83, HIT97, Kna90, TM93, Ano02a]. Deriving [Wan82, Bou06]. Describing [AW85].
Description [McG82]. Descriptions [Boe85, BKL+97, Cat80, Ano02a]. Descriptors [Hol87]. Design [BPP16, BCD+15, BO94, DF80, FT94, HM84, KKM90, LDM07, ML80, RCS93, RL98, SYK+05, Bou05, MTSS09, CMLC06]. design-pattern-based [MTSS09].
Designing [LaL89, ALZ03]. Designs [AW85]. destructive [SRW98]. Detect [GSW95, HCS10, Sch85]. Detection [CM86a, Hua90, MC82a, MC82b, TM93, AFF06, HDH02, PCJD08, XA07]. Determinacy [TK94]. determination [DS98].
Differencing [PK82, RSL10]. Differential [BKOZB13, ZP07]. Differentiation [Sha82].
Discovering [FJK+17]. discovery [PZJ05]. Discrete [Bar81]. Discrete-Event [Bar81].
Disintegration [NsC20]. Disjunctive [Jen97, JJC019]. dispatch [DAS98, MFRW09]. dispatching [GZ07]. Distance [Wol94, ZSD09]. distribute [CRN+08]. Distributed [ABLP93, AF84, Apt86, AW85, BKS88, Bcem15, Bur84, CJK95, CM86a, CBDFG95, CS95, DAW88, Dug99, FLBB89, Fra80b, GHS83, HSG17, Hua90, HM84, Jon94, Kat93, KKR98, KRS84, KKM90, Lam84, LS83, MC82a, RCRH95, SS84, Sch82, TM93, TCP+17, Zav85, ABL03, FM87a, HVB+99, KGM04, LR02, MDJ05, Piqu96, Fra80a, Moli81, VHB+97].

Distributed-Memory [KK98, RCRH95].
div [Bou92]. Divergence [SdSCP13]. DJ [DR05, SGL96, SGL98, UMO2]. DJ-graphs [UM02]. DLLs [Dug02]. do [SS05a].
Documentation [MH86]. does [DMP96]. dolce [MP10a]. Domain [LM18, Tra08, RM07, SS05a]. Domains [CMB+95, ELS+14, GS98, FH04, GLMM05]. dominance [Ano02b, DVD07]. dominator [SGL97]. Dominators [LT79, Ano02b, BKR98, BKR05]. don't [AKNP17]. down [SZLY21]. drf [SS05a].
Drinking [CM84, MS88]. Drive [PK80].
Driven [BL87, CS87, GF85, GSW95, JJC019, PA85, PA86a, PA86b, TGT18, YBL16, DGS97, FPS99, PF96, TGT20, YMW97]. Dually [MT08]. Dummy [Lam88]. During [BBK80].
Dyc [GMP+00]. Dynamic [ACPP91, AGT89, ASF17, BB79, BD15, Bre89, CGG+19, CHMY19, CTT07, D98, Dug99, HSS+14, HN05, Kais9, KR97, RCRH95, Ven95, WR08, dBB95, ACE96, BP12, CEI+07, DDCG02, GZ07, MM+07, PHEK99, SJP12, SHB+07, SYK+05, SYN06, WDK04, ZG05].
eager [FKW00]. Earley [Lei90]. Early [AB81]. ECCS [CDFP89]. Edge [DP93].
Editing [FL81, HT86, Nix85]. Editor [FM87b, DeM83, Mye18, Per09, Rep86, Wol92]. Editorial [AP07, App93, AG93, AF94, MP07, Mie91, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04]. Editors [DMM88, MM89, RTD83, Wat94]. EDO [OKN06]. Effect [Gor21, RLS+01].

[311x646] [311x634] [311x622] [311x610] [311x598] [311x586] [311x574] [311x562] [311x551] [311x539] [311x537] [311x525] [311x513] [311x501] [311x489] [311x477] [311x465] [311x453] [311x441] [311x429] [311x417] [311x405] [311x393] [311x381] [311x369] [311x357] [311x345] [311x333] [311x321] [311x309] [311x297] [311x285] [311x273] [311x261] [311x249] [311x237] [311x225] [311x213] [311x201] [311x189] [311x177] [311x165] [311x153] [311x141] [311x129] [311x117] [311x105] [311x93] [311x81] [311x69] [311x57] [311x45] [311x33] [311x21] [311x9] [311x1]
expressional [Wu04].
exponential-time [Wu04]. Expression
[GP81, YB87, YB88, HVP05].
Expression-Oriented [GP81, YB87, YB88].
Expressions [BG89b, CGST95, CC97, DAW88, Fis80,
Geo84, Gri82, Hen83, HY91, KSS3, LdR81,
PK82, Sha82, Sit79, Wat91, Dan03, NN86].
Expressive [MFRW09].
Expressiveness [WGS92, WGS93, PS96].
Extended [ABC+21, CBMO19, KGMO04]. Extending
[CEW14, CMS03, MSRR00, MK94].
Extensible [HSG17, Sto04, ATD08, MBC04].
Extension [Bur90b, Coh91, WSH15, Wir91,
ALZ03, KKN06, LS08]. Extensions [Wir88].
Extent [MF88].
External [Wal80, Wal81].
Extracting [GP95].
extrapolation [TSL+02].
F [MWCG99]. Facets [ASF17].
Factoring [DRSS96].
Failure [BN99, Dar90, GHH+19, Kar84].
Failure-Free [Kar84].
Fair [BN94, PR07].
Fairness [ES97, OA88, TB95, AH98].
Families [LaL89].
Fashioned [AL94].
Fast [ADR06, DAS98, FMoPS11, HVDH07, LT79,
SR95, DR05, PE08, TP04, VBLG04,
DVL15]. Faster [CGG+19]. Fault
[CS95, Lam84, LJ99, AE04].
Fault-Tolerance [LJ99].
Fault-Tolerant [CS95, Lam84, AE04].
FD [GLM05].
FeatherTrait [LS08].
Featherweight [IPW01, LST02, LS08].
Feature [ASAVF19, AH10].
Feature-Specific [ASAVF19].
Feeding [PA86a]. Fence
[AKNP17]. Fickle [DDDCG02, AAD+07].
field [PKH07]. field-sensitive [PKH07].
fields [PZJ05].
FIFO [FLBB89]. Final
[Kam83]. Finding [KRS84, KKM90, LT79].
Fine [DSFG21, PBR+15, DNS+06].
Fine-Grained
[PBR+15, DSFG21, DNS+06].
fingerprinting [CTT07]. Finitary [AH98].
Finite [ACW90, BLH12, CES86, GC86,
PK82, PP91, Pur91, RSL10, Zav85].
Finite-State [ACW90, BLH12, CES86].
Finite-State-Machine [Zav85]. First
[ADG+94, Bre89, DP97, HKM19, Han92,
JPP91, JS94, LH91, MH04, SDTF13].
First-Class
[HKM19, Han92, SDTF13, MH04].
First-Com-E First-Served [LH91].
First-Enabled [ADG+94]. First-Fit
[Bre89]. First-In [ADG+94]. First-Order
[DP97, JPP91, JS94]. Fixed
[Bre89]. Fixed-Order [SS98]. Fixpoint
[AC94, Qia00]. Flexible
[AD98, Hud91, MS+16, WG98, Wil82b,
dJJK12, IV06, KGMO04].
Floating
[CK94, Fatt82, SBB+19, Hau96, Mon08].
Floating-Point
[CK94, Fatt82, SBB+19, Hau96, Mon08].
Flow [MMG00]. Flow
[AR80, AD98, AS17, Bac84, BC85b, Bur90a,
DP97, DP93, FJKA06, Hor97, KD94, MRR95,
NBG13, PO95, PP91, PB+15, Pur91, Set83,
SGL88, SS13, Wet82, DGS97, HR02, HY07,
KBC+99, Pal98, PS03, RRSY08, RP88,
TZ07, WJ98].
Flow-Insensitive
[Hor97, FJKA06]. Flowback
[CMN91]. Flowgraph
[LT79]. Flows
[Kna90].
Fly
[CF95, BA84, LP06, PBK+07, URJ18]. fold
[RKRR04]. Folklore
[LY98].
Font
[FK85].
Foo
[FA93].
foreign
[FF08]. Foreword
[Mye17, Mye18].
Form
[AK87, BOV85, BM94, CFR+91, GSW95,
Pal95, PG21, GP08, KCL+99].
Formal
[ADG+21, BSG86, BDP14,
CB80, CD79, Fid93, Gie83, HIT97, Kna90,
Lee86, Mal82, MH86, Sha82, WP10].
Formalism
[Pea21]. Formalisms
[PCC85]. Formalization
[CPP16]. Formally
[SP97]. Formating
[Wat83].
Forms
[D883]. formulas
[RSL10]. formulations
[RS97]. Fortran
[AK87, DP99]. Foundation
[KRR18, Ban11, RAB+07, Rhi03].
foundational
[AM01]. Foundations
Herding [AMT14]. Heuristic [SL92]. hiding [LN02, OYR09]. hierarchic [AG04]. Hierarchical
[BA99, CP95, CD79, AY01, CP96]. hierarchically [MBC04]. hierarchies [ST00a, Van96a, Van96b]. hierarchy [KF00].
High [Cam89, Fat82, MSK0+16, URJ18, CMS03, VWJB10]. High-Level
[Cam89, Fat82, CMS03, VWJB10]. High-Performance [URJ18]. Higher
[AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97]. Higher-Order
[AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97]. Highly
[Her93, Sku95]. Hoare
[Apt81, GM81, LS84, Sok87, Yin11, dBH21]. Hoc [MDCB91]. Holistic
[ZMVPJ17]. Homomorphisms
[HIT97]. HOP
[BLRS12]. Hybrid
[KF10, KS10]. Hyperball
[LM18]. hyperdoctrines
[BBTS07].

I-Structures [ANP89]. I/O [Car95]. Icon
[GKS81, Gri82]. id [Bee94]. idempotency
[KOE+06]. Identical
[FLBB89]. Identification
[BGH+13, SBE+19]. identify
[MMP+07]. Identifying
[Ram99, SGL96]. Idioms
[PP94]. IDL
[Lam87]. IEEE
[Fat82]. Ignorance
[GNS+15]. Illustrative
[Oss83]. Impact
[BHM+19, OLH+16, CKT86]. Imperative
[AB20, ABPS98, DFR15, Gro06]. Implementation
[AKBLN89, AOC+88, BCD+15, Bou88, Bre89, BS83, CM86b, GM81, Gaz83, Lin93, MDCB91, PXL95, RL98, WL85, CMLC06, FM87a, GB99, LDM07, LPS004, Tra08, Zhu96]. implementations
[BBF+11, BFGT08, DF08]. Implemented
[DB5]. Implementing
[BR97, Her93, HW82, Sku95]. Implications
[Fat82]. Implicit
[BH05b, SJP12]. Implicit-signal
[BH05b]. improve
[KF00]. Improved
[GHR80, Mur91, KK07]. Improvement
[MS83, SA96]. Improvements
[BCT94]. Improving
[CK94, CMB+95, MCT96, TCP+17, WS97]. impure
[Pip97]. Incomplete
[MRGP20, GLMM05]. Incremental
[Bur90a, CP95, DMM88, GM79, HKR92, HKR94, HPMS00, Hau91, Kau89, Lar95, LST98, LHR91, PS92, RTD83, RP88, SGL97, WG98, YS91, BBYG+05, CP96, Van96a, Van96b]. Incrementally
[QL91]. Independence
[DHM00, Rep00]. Independent
[ML80, Mul92]. Index
[ANO86a, Ano88a, Ano89a, Ano91a, Ano92a, Ano94, Ano95, Ano98]. indexed
[AM01]. indices
[RR05]. Indirect
[Piq96, CEG07, YK97]. Induction
[GSW95, Sit79]. inefficiencies
[MMP+07]. Inessential
[SS82, LaL84]. Inference
[CEW14, Deb89, Hen93, LO94, LY98, MRGP20, Pad19, SR21, TB98, Wey83, FFLQ08, JB06, PM06, PT00, PS03, Van06]. Inferring
[FNBG20]. Influence
[FTJ95]. Information
[AR80, ANO82, ANO83, ANO84, ANO85, ANO86b, ANO87, ANO88b, ANO89b, ANO90b, ANO91b, ANO92b, ASF17, BC85b, HR02, NBB13, PBR+15, PS03, GS99, HY07, LN02, OYR09, TZ07]. Information-Flow
[BC85b, TZ07]. infrastructure
[SWU10]. Inheritance
[LN15, WT11]. initialization
[FM99]. Injection
[SBE+19]. Input
[BS83, vPS81]. Input-Output
[BS83]. Inputs
[PA86a]. Insensitive
[Hor97, FJKA06]. Insertion
[AKNP17, GJ05]. inspection
[CF04, FG03]. Instantiation
[Der85]. Instead
[Lam84, Rem81]. Instruction
[KPF95, LCBS19]. Instructions
[LS80, PS93, RF97, Rob79, LPP01]. Integer
[BAGM12, BEF+16, FNBG20, BGP99]. Integrated
[SS13]. Integrating
[HPR89, WJS+00]. Integration
[CO90, Leu04]. Intensional
[STS03]. Interaction
Layout [KK98, LVV+83, GPWZ08, KF00].

M [Bur91, Mul92]. M-LISP [Mul92].
Machine [CGJ+97a, Cat80, GNS+15, Gie83, Han94, JJC019, LR13, ML80, RF97, SS98, SDB20, Wal92, Zav85, Ano02a, CEG07, CF04, HK07, KN06, Oho07, RRB19].
materializations [RMH06]. Mathematical
[Ban11, Hes88, LW93]. MATLAB [DP99].
MATLAB(R) [JB06]. Matrix [FTJ95].
Matrix-Vector [FTJ95]. Maximal
[BG99, Rep98]. Maximal-munch [Rep98].
Maximization [GLO88]. Maximum
[Kna90]. May [Hor97]. May-Alias [Hor97].
MCALIB [FL15]. Measures [NcS20].
Measuring [FL15]. Mechanically
[DSW11]. Mechanism
[CO90, YB85, DNS+06]. Mechanisms
[Rei83, HMS06]. Mechanizing [Pau01].
Median [Com80]. Medians [KRS84].
megaflops [MMG92]. member [KF00].
Memory
[AMT14, CK94, Cha93, CBMO19, KZC15,
KK98, KRS88, MSM+16, Mis86, RCRH95,
SS88, ABH11, BP12, GMM99, GW99,
JNGG10, KF00, LK02, Loc13, QR00, RR05,
TSY00, TP04, VBLG04, WCM00, MMM+07].
memory-efficient [TP04].
memory-hierarchy [KF00]. Merge
[Ber94]. Merlin [HBM+06]. Message
[CSW06, SS84, Gor04]. Messages
[BB79, Je93]. meta [Tra98].
meta-programming [Tra98]. Metalevel
[Jag94]. Metaprogramming [CI84].
Method
[BN118, BCF90, BF87, HL82,
Jon83, Loe87, JJD98]. Methodology
[Ban94]. Medians [KRS84]. Methods
[DAW98, KMS91]. METRIC [MMM+07].
Mezzo [BPP16]. Microanalysis [HCHP92].
Microcode [MV97]. Microprocessors
[BV+21]. Middle [BDP14]. Middle-End
BDP14]. Might [Bee94]. migration
[Piq96]. Minification [HLH19]. Minimal
[FKW98, IPW01]. Minimization [RS84a].
mimicking [RMH06]. Minimum [GHS83].
Minimum-Weight [GHS83]. Mining
[AMT14]. Misled [Cop94]. miss [GMM99].
Mixin [HL05, RD13]. mixins [ALZ03]. ML
[Blu99, CBMO19, HM93, HT04, PS03,
RD13, Spo86]. Mobile
[LS02, VHB+97, BCC04, KS10, SWU10].
mod [Bou92]. Modalities [SV20]. mode
[PS08, ZP10]. Model [AY01, Ang89, BK11,
BL87, BGP99, CGL94, DLR16, ES97, GS98,
GG85, GL94, Han81a, HW82, Hol87, JB20,
JCO19, KH92, MSM+16, MMG92, ND16,
VSS94, ACM11, AM01, AE01, JJD98,
JPS+98, KN06, KV00, Loc13, NP08, QR00,
SG04, VVJB10, VALG05, YMW97].
Model-Checking [ES97, BGP99].
Modeling [AMT14, ADG+21]. Models [GJ03, KZC15].
Modern [BCF04, LMM21, RAB+07].
Modes [Deb89]. modest [LS98].
Modification [Lei90, RLS+01]. Modula
[EO80]. Modular [AG04, BMPT94,
CDK+18, EMH20, GL94, JBK18, Jag94,
KMM90, LN15, MBC04, Wei89, YB85,
dJKVS12, KV00, MFRW09, MOS07b].
modularity [BA99]. Module
[PAS+15, RD13]. Modules
[CL95, HW82, Lam83, HL05]. Monadic
[DG19, MH04]. Monitors [BLH12, RH05b].
Monolingual [HK85]. Monte [FL15].
Morel [Dha91, DS88, Sor89]. Morphing
[HS11]. Morris [Wis97]. Mostly
[YP09, BMYG05]. Motion [KRS94, Hai98].
MPI [FJK+17, TSY00]. Multi
[An018, GSS+18, MF09]. Multi-Language
[An018, GSS+18, MF09]. Multialgebraic
[WM95]. multidimensional [RDG08].
MultiJava [CMLC06]. Multilisp [Hal85].
multimethod [CM97, GSS+18, MF09].
multimethod [DAS98]. Multimethods
[CL95]. Multiparty [JS94]. Multiple
[ASF17, NSTD+15]. Multiply [FTJ95].
Multiprocess [Lam79, Lam80].
multiprocessing [ABR81].
multiprocessor [GSP1]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].
multithreaded
[EGP14, JBK18, JSB+12, KKWH14, NR06].
multivariate [HAD12]. Multiway
[Cha87, Van96a, Van96b]. munch [Rep98].
Mutandis [SHB+07]. Mutatis [SHB+07].
Mutual [LH91, ABH11].
Mutual-Exclusion [LH91]. Myths [Gor04].

Nesting [Hav97, Boy10]. Nests [BAC16]. Net [JTM98]. Network [WGS92, WGS93]. Networks [CGJ97b, GC86, KRS84, dBB85].

Newtonian [RTP17]. Nicholson [FA93]. No [Ano18, TGT20]. node [JC97, UM02]. Nodes [CF95, Han81a]. Nomadic [SWU10]. Nominal [CU08].

Non [CFG19, DL18, LLK+17, Mye18, BS88]. Non-Deterministic [Mye18, DL18]. Non-polynomial [CFG19]. Non-Statistical [LLK+17]. Noncanonical [Tai79].

Noncorrecting [Ric85]. Nondeterminate [TK94]. Nondeterminism [Ber80, Hes88, WM95]. Nondeterministic [QG95, MT08].

Noninterfering [HPR89]. nonnumerical [ME97]. Nonprocedural [PPS79].

Nonrectangular [JLF02]. nonscalars [CRN+08]. Nonsequentiality [Bar81].

Notation [Rem81, Wil82b]. Note [Com80, CM93, Han81a].

null [SJ06]. Numbers [GLR83].

numeric [Han96].

O [ABPS98, Car95]. Object [DF84, HU96, KF92, Ryu16, WCW90, WCW91, BSvGF03, DMM01, DDDCG02, FM99, GPWZ08, HBM+06, JPP91, JPS+08, LPS004, Pic96, WJS+00]. Object-Based [KH92]. Object-Oriented [HUC96, Ryu16, BSvGF03, DMM01, JPS+08, WJS+00].

Objects [AM85, CJK95, HF87, HW90, Her93, SM89, VHB+97, Wal80, Wal81, Win84, GPV07, HBJ98, KF00, Sto04, WJS+00, Sku95].

obligations [DSW11]. Observability [Gaz83]. Observation [LWR21].

Observations [Sha82]. Obsidian [COE+20]. Occur [AP94].

Occur-Check-Free [AP94]. Octagons [GMN+21]. Off [BB+19].

On-The-Fly [CF95, BA84, URJ18, LP06, PKB+07]. One [Bak82, BS88]. One-Pass [Bak82]. one-way [VHM+01]. online [CG04, HVDH07]. only [PZJ05]. Opacity [QG95].

Operating [HM84, BCP08].

Operational [BLRS12, Han94, MF09].

Operations [AKBLN89, CK94, Lee86, LS79]. Operator [CSV01, Han83, LD08]. Operators [Ive79, She91].

Optimal [BOV85, CGST95, FK85, JCM19, KRS94, Lz95, PB97, Hai98, JNZ06, SKV96, MSRR00].

Optimality [CP96]. Optimally [BL94a].

Optimization [PM04]. Optimization [Bee94, BBC16, Blo94, BAC16, BT93, DF84, DP97, DHA84, Dha91, DS07, FOW87, HG93, HOYY18, Pem94, RBB91, SS82, Sot95, Hah95, Ass00, HIKO7, KBC+09, FFO3, PEO9, TAV07, ZP10, CG95, LL04, OKN06].

Optimizations [CC95, JSB+12, CGS+03, CTK86, GMP+00, SYK+05]. optimize [DMM01, VBLG04].

Optimized [CM93, Cop94, Han82, WST5, DS98, UM02].

Optimizer [DF80, FSS83, DF81].

Optimizers [GIE83]. Optimizing [CEG07, KMM+98, LSLR05, LM90, NSZS13, QR00, BGK909].

Or-Parallel [JG93].

orchestration [PE08]. Order [AC94, AD98, Bur84, CJK95, DP97, DJP+16, JPP91, JS94, SS98, BBTS07, DF11, FPS19, SKS11, SV19, SP97].

ordering [GS99]. Organization [Han81a]. Oriented

Polymorphism [Bur90b, MDCB91, HFC09].

Polynomial [BAL07, CFG19]. PolyTOIL [BSvGF03]. polyvariance [LMD98].

Polyvariant [AC94, WJ98]. PolyTOIL [BSvGF03]. polyvariance [LMD98].

Powerlist [Mis94]. PPMexe [DKV07]. PQ [FFF18]. PQ-encoding [GZ05]. Practical [AD98, BAC16, BF87, CP17, Dha91, LR19, ND16, PBR+15, SS13, TSL+02, WC97, Bou05, DR05, DVD07, DGS97, JNZ06, PFH11]. Practice [KRS94, Ryu16, Bla03, DRSS96].

Prescription [FFF18]. Presence [AWW95, CF94, KTU93]. preserving [DHS09, LST02]. pretenuring [BHM+07]. Pretty [Chi05]. Prettyprinter [Wat83].

printing [Chi05]. Priority [CH90, Fid93]. Priority-Based [CH90]. Privacy [BKZOZB13, LVRG21]. Privileges [Min84].

Probabilistic [AB20, BKOZB13, CFNH18, DG19, HSP83, MMS96, OGJ+18, Rao94, SV19, BH99, PPT08]. Problem [ADG+94, CM84, DS88, Gho93, LSP82, MS88, Pet82, Pet83b, PB97, Sor89, FGM+07a, Wu04].

Problems [Bac84, CFNH18, DP93, MMR95, SRW98].

Procedural [HF87, Lin93, VSS94]. Procedure [CDK+18, GSS99, GL80].

Procedure-Modular [CDK+18]. Procedures [AM85, Kat84, NO79].

Process [Koh98, vPS81, WP10]. process-oriented [WP10]. Processes [AFdR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oss83, RY88, Sou84, TY18, dBB85, AE98, KS10, Ber80, Mui83].

Processing [GH80, HSG17, Rei83]. Processor [BG89b, Bud84]. Processors [GLR83, Per79, LPP01, ZP10]. Product [EMH20, RTP17]. Production [Wad90].

Productivity [Sij89]. Profile [BHM+07, YUW02]. Profile-based [BHM+07]. Profiling [ASAVF19, BL94a, SP97]. Program [Bal94, Bar85, BAL07, BKB80, Cil84, DKKL18, Der85, FPS91, FEA82, FOW87, FT94, FL91, HSP83, HKR94, Jen97, JIC19, KKW14, Lam83, Lam88, LFF14, LWR21, MSh3, MW00, Mis81, Nie85, PP04, PPS79, Rem81, RTP17, TSY00, Wat94, Wey83, ZS09, As80, DDD05, GZ04, KF03, LHO8, NS13, Pau01, RAB+07, SCL03, WZ07, WN08, YF09, DKV07].

Programm [AGT89, Ano18, AR84, ABPS98, BS86, BPP16, BHM+19, BL87, Bir84, Bor81, BMT94, BWP87, BC15, CHY12, COE+20, CL94, Dar90, DFR15, DGL+79, Dug99, FFF+18, Fos96, FL15, GEA14, Har80, HK85, HO82, Ka89, KH92, Lee86, LVV+83, LMM21, LVRG21, MK94, Mye90, OGJ+18, Pets83b, RCS93, SS84, SSN+14, SZBH86, TK94, TGT20, ZSO21, ABH06, BMRO1, Bou06, BDHBH99, CU08, CGS6, CKT86, DWW08, DPPR00, GW99, BJH98, JPS+08, KGM04, MVV+01, MTS09, MOQ05, Tra80, VWJB10, WKD04, WJS+00, Bir85, SWU10].

Programming-in-the-Large [MK94].

Programs [AWW95, AK87, AVF98, AB20, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BE13,
BEF$^+$16, CR87, CB80, CM86a, Cha93, CFNH18, CFG19, CEW14, CMN91, Cla80, CFRM94, CS87, DSFG21, DL18, DGM97, DW89, Deb89, DL93, Deb95, DP97, Dill90, EMH20, EGP14, FJK$^+$17, FNBG20, GG85, GM81, Har80, HCHP92, HPR89, How97, HIT97, ISY88, JJB18, JW17, Jon83, JF81, Kna90, Lam79, LS83, MSJ94, ML21, MTK21, MRGP20, MH86, Mye18, NSZ93, OA88, OL82, PS92, QL91, Rao94, SS98, Sch82, SSS81, SS88, TOUH21, TN99, Ven95, Wad90, Web95, Will82a, AE01, AAE04, BCG$^+$07, CFW06, CSS99, DP99, DDV99, DS98, DMM01, EG01, GM12, GHB$^+$96, GPA$^+$01, Hau96, HPMS00, JPS08, KSV96, LMD98, Leu04].

programs [LS09, MF09, NR06, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yin11, dHB$^+$96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA$^+$01, MWB94, NF89, Zo96].

Promotion [Bir84, Bir85]. Proof [AFdR80, BDJ13, FRW90, GL80, Mh01, Ssg86, SSS81, SG87, WGS92, WGS93, AM01, DSW11, Oho07]. proof-carrying [AM01].

Proof-Directed [BDJ13]. Proofs [Apt86, BC85a, CM86b, JW17, L98, Oss83, GR85$^+$11]. Propagation [SR95, WZ91, Apto00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CIJGP18, Kar84, LM18, OL82, RY88, TB95, Wei89, YS10].

qualifiers [FJKA06]. Qualitative [CFNH18]. Quality [BHM$^+$19].

Quantification [Vol91, Bur91]. Quantified [Gao06, STS03]. Quantitative [CFNH18].

Quantum [FDY12, BH99, Yin11]. Queries [Bal94, CGG$^+$19]. Queuing [BB79].

Quiescence [CM86a].

R [AW82, CK86, KMM$^+$98]. R. [Tic88].

race [AFF06, PFH11]. Races [KZC15].

Random [AS80]. Randomized [TOUH21]. Range [CG95]. Rank [Dam03]. Ranking [Lee09, TOUH21]. Rate [DK17].

realities [Gor04]. Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

reoccurrences [YJB12]. Recursion [DK17].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97]. realities [Gor04]. Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

Realistic [AK82, ACS84, Bac84, BF87, GH97, HK07, LS98, YMW97]. realism [Gor04]. Reachability [NS13, TOUH21].

Quality [BHM+19].

Quantification [Vol91, Bur91]. Quantified [Gao06, STS03]. Quantitative [CFNH18].

Quantum [FDY12, BH99, Yin11]. Queries [Bal94, CGG+19]. Queuing [BB79].

Quiescence [CM86a].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97]. realities [Gor04]. Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

Quantitative [CFNH18].

Quantum [FDY12, BH99, Yin11]. Queries [Bal94, CGG+19]. Queuing [BB79].

Quiescence [CM86a].

Randomized [TOUH21]. Range [CG95]. Rank [Dam03]. Ranking [Lee09, TOUH21]. Rate [DK17].

realities [Gor04]. Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

Realistic [AK82, ACS84, Bac84, BF87, GH97, HK07, LS98, YMW97]. realism [Gor04]. Reachability [NS13, TOUH21].

Quality [BHM+19].

Quantification [Vol91, Bur91]. Quantified [Gao06, STS03]. Quantitative [CFNH18].

Quantum [FDY12, BH99, Yin11]. Queries [Bal94, CGG+19]. Queuing [BB79].

Quiescence [CM86a].

Randomized [TOUH21]. Range [CG95]. Rank [Dam03]. Ranking [Lee09, TOUH21]. Rate [DK17].

realities [Gor04]. Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

Realistic [AK82, ACS84, Bac84, BF87, GH97, HK07, LS98, YMW97]. realism [Gor04]. Reachability [NS13, TOUH21].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97]. realities [Gor04]. Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].
[AMT14, Bar81, Bor81, LFF14, HQRT02]. sin [Lam90]. Single
[AKNP17]. situations [WN08]. Size
[BA08, BEF+16, JB20, Lee09, LDK+96]. Size-change [BA08, Lee09]. Sized [DG19].
Slicing
[AB20, AHJR14, CF94, DL18, GH97, HRB90, ML21, Mye18, Ven95, WZ07, BHK07, GZ07, NR06, RAB+07, WR08, ZG05]. SLR
[BS88, Tal79]. Small
[BNV+21, FLBB89, LH91, Pet83b]. Smart
[Tic86]. Smarter
[SK88, Tic88]. Smooth
[JF81]. Soft
[WC97]. Software
[ACM11, AW85, Ber94, DAW88, HSS+14, How80, JW17, PXL95, PPS79, Pur94, Wal92, YBL16, CTT07, HN05, LS98, ME97, NCH+05, RDG08, SHB+07, SRM10]. Software-Defined [Wal92].
Soisalon
[LaL84]. Soisalon-Soininen
[LaL84]. Solution
[ADG+94, DS88, Gho93, Pet83b, Sor89, WP10]. Solving
[GS11, HLH19, NSTD+15, SRW98]. Some
[AB94, AK82, Sha82, Sor89]. Sometimes
[Gr79]. Sound
[LLK+17]. Soundness
[Sok87]. source
[HBC+09]. Space
[BP12, BB79, FLBB89, JP81, NB99, RD87, YF98, LS90, SS05a, SA00]. Space-Efficient
[JP81, NB99]. Space/time
[YF98]. Space/time-efficient
[YF98]. spaces
[JLF02]. Span
[LS80, Rob79]. Span-Dependent
[LS80, Rob79]. Spanning
[GH80]. Sparse
[OHL+14]. Spatial
[NSTD+15]. Special
[Ahn20, Mll21, Wol92, Sag07]. Specialization
[AHJR14, BCP08, GJ05, HT04, SLC03]. specialization-point
[GJ05]. Specializing
[BCD90]. Specific
[ASAVF19, Gie83, Tra08]. Specification
[BCM99, CDFP99, ESO80, Foa87, GMM81, Jon94, Kam83, LN15, Lin93, LJ99, Loe87, Mal82, Mor88, PPS79, RY88, TWW82, LP99, LPSO04]. Specificational
[MB99]. Specifications
[AL93, AL95, BNN18, CES86, DB85, Gaz83, Loe87, MW84, MB83, Rei83, Sch85, Win87, Zav85, Ze94, vPS81, JJD98, YS97]. Specifying
[GM81, Lam83, RF97]. Speculation
[YBL16, GB99]. speculative
[KOE+06]. SPL
[HSG17]. Split
[Com80]. splitting
[JC97, UM02, WJ08]. SPMD
[WM12]. SR
[AOC+88]. SSA
[BDP14, GSW95, KCL+99]. SSA-Based
[BDP14]. Stabilization
[Gho93, DHS09]. Stabilizing
[BP89]. Stack
[CGS+03, FG03, LaL81, SDB20, CF04, ZH96].
Stack-Controlling
[LaL81]. Standard
[Fat82, HM93, Qia00, Blu99]. State
[ACW90, BLH12, CES86, GC86, PP91, Pur91, Zav85, Ay01, ABE+05, MBT09]. Statement
[Ell82, Mor88, SM81]. Statement-Oriented
[Ell82, SM81].
Statements
[CF94]. States
[ADGM91, CBMO19]. Static
[AKNP17, AC94, BM94, CGJ+97a, CF94, CFR+91, DL18, Deb89, HOYY18, LLK+17, LST98, MRGP20, MOS07a, Mye18, PW94, SBE+19, YS99, ZMVPJ17, CEI+07, GPF08, GZ04, HO07, PSS05, PFI11, RSL10, VJB12, WCM00, YF09, AFF06, FFLOQ8]. Statistically
[ACP91]. Statistical
[LLK+17]. Statistics
[Lan80]. Staveren
[Pem83]. Steensgaard
[Ell82, SM82]. Steensgaard-Madsen
[Ell82, SM82]. stencil
[LS04]. Step
[Col84, TVA07]. Steps
[Jon83]. Stepwise
[CM86a, SL92]. Stevenson
[Pem83]. Storage
[BBC16, Bre89, JP81, LDK+96, Mur91, Rob79, Sip82, KOE+06, TVA07]. Strategies
[Bir84, Bir85, Geo84, NN86]. Strategy
[Bre89, PK80, WSH15, ZSS20]. Strategical
[SS98]. Stream
[HSG17]. streams
[CFP+04]. strength
[CSV01]. Strict
[Bee94]. Strictness
[Bee94, SR95]. String
[GH80]. Strings
Strong [KZC15]. Structural [SZBH86, MTSS09].

Structurally [HS11]. Structure [BC79, GKL94, HM93, Mis94, MWB94, She91, HY07]. Structure-Oriented [GKL94]. Structured [BM94, CHY12, GD82, Har80, LS81, Mur91, RR03].

Structures [AP89, Bobs80, FL81, GEGP17, RC79, SS81, LPSO04, RAB+07]. Study [BH79+19, FT95, BHK07, BldBH99, DF98, KF03, LS98]. Style [BDM15, LR19].

Subsequence [Han92]. Subset [BL87]. Substrings [BL94b, Han92]. Subtype [Duc08, KR01]. Subtypes [Vol91, Bur91].

Subtyping [AC96, AC93, GGL15, LN15, LR19, LBN17, LW94, XBO920, GZ05, IV06]. Subtyping-Relation [LBN17]. SUIF [HAM+05]. Supercompiler [Tur86].

Symbol [ABR81, Re83]. Symbolic [Dil90, HP96, Hal85, Hen82, Ne85, RR05, SB+19, YMW97, BGP99, MPM03, CM93, WST85].

Symmetric [FY85]. Symmetry [ES97, SG04]. Synchronisation [CHMY19].

Synchronization [Bag89, DJ9+16, Her91, KRS88, RS84b, Sch82, CGs+03, DHM+12, Ran00, RD03]. synchronization-sensitive [Ram00].

Synchronizing [And81]. Synchronous [CS87, TLHL11]. synchrony [CS04]. Syntactic [BF87, GMZ00, MF88, PK80, Wil82b]. Syntax [DDM88, Ode93, Ric85, SS883, BMR01, CPRT02, Jef03, HCW82].

Synthesis [AP89, BBK+97, Cla80, DKKL81, LW80, MW84, MV87]. System [AFdR80, AW85, BS86, BKM88, CB82, GD82, GP81, Han81b, HM84, JMSY92, LRM13, ML80, Mio83, MH86, PO95, RD13, SA99, WC97, BH85a, FH74, FM99, HO07, JS10, MTSS09, NP08, PE08, STS05, MWCG99].

systematic [DF89, PSS05]. Systems [ABLP93, Ano18, AR84, ACS84, BKS88, BG89a, BDP93, CI84, CDF98, CBDGF95, CIJ18, CES86, CPS93, CBMO19, DL18, DAW88, FEA87, FK89, Gor21, Hen86, Jag94, Jon94, JTM98, Kar84, Kat93, Kau84, Lam84, LW93, Mis86, Mye18, SZLY21, TGT20, WS92, WGS93, WC90, van88, Ass00, AE89, BCP08, BCM99, BGP99, CSG00, DGG97, GS81, TP04, TZ07, YMW97, WC91].

Systolic [Hen86].

T [Zic94]. Table [BM891, PK80, DAS89]. Table-Drive [PK80]. Tabled [SS89].

Tasks [GP81]. Taylor [SBB+19]. tcc [PHEK99]. Technical [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Ell82, FA93, Fra81, Hen83, LA83, LA84, Moli81, Mio83, MS88, NM60, Par90, Pam83, Sor89, SM82, Tan83, Tic88, Vol91, WST85, Wir91, YBA88, MEG00].

Technique [AW85, BN99, BCD+15, JSB+12, KKM90, SS81, SS83, JNGG10, KBC+99, RD97, SYN06]. Techniques [AK82, CMN91, DP99,
GLR83, How80, TWW82, WCW90, WCW91, BHK07, DDD05, DEMD00, LS98, MSRR00, SS96, TSL+02. technology [LS98].
Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KW09].
Tentative [Jon83]. Tenuring [UJ92]. Term [KKSD94, MBT09, GRSK+11].
Termination [AF84, Apt86, BAGM12, BCG+07, CFNH18, CDK+18, DSGF21, DG19, Fra80b, GJ05, HSP83, JBK18, MC82b, TM93, BAL07, BA08, DSV99, GRSK+11, Lee09, PR07, SMP10, Fra80a, Moh81]. Test [Wey83, WW95, Duc08]. Testing [AMT14, GMH81, TK94]. Tests [Coh91, Koz97, Wir91, GZ05]. Text [CC97]. Their [Kam83, LaL84, SS82, PS96]. Theoretic [ES97, Sha82, KV00]. Theoretical [KRR18]. Theories [NSTD+15, Bou06]. Theory [AB20, CZ84, KD94, KRS94, N8B13, Ryu16, TLH11, CGP09, HM06, Oho07, Pan01, SS05b, Bla03, FG03]. ThingLab [Bors81]. things [PM09]. Thinking [WLBF16]. Thinning [Web95]. Third [Wol92]. ThisType [Ryu16]. Thread [YBL16].
Thread-Level [YBL16]. Threaded [JBK18, TSY00]. Three [Oss83]. Tichy [Tie88]. Tile [JB20]. tiling [JLF02, LS04, RKSR12]. Time [AL94, ABR81, BL94b, BLH12, Coh91, DLR16, Hol87, ISY88, Jef85, Lam84, MMG92, PS93, RS84a, RS84b, TN19, Wir91, YR94, Zic94, BAL07, BALP06, BKRW98, BKRW05, DDD05, GH97, GPMP+00, GB99, GFW99, HK07, LS98, LPP01, LS09, Mil85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YMW97, LW93]. Time-Constrained [Zic94, LPP01]. Time-Critical [PS93].
tokenization [Rep98]. Tolerance [LJ99].
Tolerant [CS95, Lam84, AAE04]. Tool [CP93]. Toolkit [BDFH97]. toolkits [VHM+01]. Tools [van88]. Top [SZLY21].
Top-down [SZLY21]. TOPLAS [Ano18, TGT20, MP10a, MP10b]. topology [DDM11]. Total [San96]. Trace [ABC+21, FGL94, WGS92, Ban711, RM07, SJ03, WGS93, WM12]. Trace-Based [WGS92, WGS93, WM12]. Trace-relating [ABC+21]. tracers [HBN+06, WR08].
Truth [BDH+16]. TSL [LR13]. tuning [GMM99, PE08]. Tuples [Rem81]. Tutorial [GM81]. Two [BO94, CDFP89, GPWZ08, TY21, FMoPS11]. Two-dimensional [GPWZ08]. two-variable [FMoPS11]. Type [Bur90b, Car95, CEW14, Coh91, CZ84,
Dug02, Eug07, HHPW96, HM93, Hen93, KPS92, KTU93, KR01, Lan80, LO94, LST02, LY98, LP00, MRGP20, MP88, NGB13, Pad91, PO95, SA99, SM89, TWW82, TGT18, TGT20, Van06, Wal80, WT11, Wir88, WC97, BSvGF03, BCG+07, FJKA06, FM99, FF08, GZ07, GMZ00, HO07, HDH02, HY07, KF10, KS10, NP08, NCH+05, PT00, STSP05, TFK+11, TZ07, Wal81, Wir91.

Type-based [Eug07, LP00, BCG+07].
Type-Driven [TGT18, TGT20].
Type-Extension [Coh91, Wir91].
Type-Graphs [KPS92].
Type-preserving [LST02].
Type-Safe [Dug02, BSvGF03, NCH+05].
Typechecking [CL95, MBC04].
Typed [ACPP91, Geo84, Kob98, NN86, WCM00, AAR+10, LP99, MWCG99].
Types [AFF06, AC93, BB94, BCEM15, DD85, ESO8, FF08, GEGP17, HL82, HS88, Jen97, Kam83, LA89, LO94, LBN17, Loe87, Mal82, Miq19, MP88, WL85, Wei90, Wei90, AM01, BBE+11, Dam03, DMM11, DMM01, Gro06, GPV07, HP05, IV06, MME+10, PS96, Pa19, STS03, SP07].
Typestate [COE+20, GTWA14].
Typestate-Oriented [GTWA14].
Typing [ACPP91, DG19, Dug99, RMH06, SV96].

ultimate [PS08].
Ultracomputers [Sch80].
Unassigned [Win84].
Unbounded [LWR21, BGP99].
uncaught [LP00].
Undecidability [Ram94, Rep90, Cha02].
undecidable [Ram00].
Understandable [MM+16].
Understanding [ST00a].
Undo [Lee86].
unfold [RKKR04].
unfold/fold [RKKR04].
Unidirectional [Pet82].
Unification [MM82, DRSS96].
Unified [VSS94].
Uniform [AS80, BP89, Hua93, AH10, HY07].
Uniformly [DB85].
unifying [TVA07].
unique [Van06].
UNITY [Pau01, TB95].
universe [DDM11].
Unnecessary [BT93].
Untrusted [JW17].

Update [Hud91, FGM+07a, GW99].
Updating [HSS+14, HN05, SRW98, SHB+07].
Upper [PW94].
Usage [MS83, BDFZ09, IK05, QR00].
Use [FOW87, GH80, HN94, LaL84, PPS79, She91, SS82, CC97].
Usefulness [HDH02].
User [ACS84, DS90, Mye90, Wal80, Wal81, Wat83, van88].
User-Defined [Wal80, Wal81].
Using [AGT89, Bob80, CGJ+97a, CES86, CH87, DP93, Di90, DMM01, DJP+16, FLBB99, GSW95, GSO94, HBB90, JTM98, Kar84, LaL89, Lam84, LM18, IWR21, Mye90, Ode93, Pet83b, PP94, PBR+15, SS84, SS96, Sok87, SGL98, Sv88, ACM11, BH99, CPO6, CG93+03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, ZLY21, ST00a, SGL96, TFF+11, VJB12, XA07, YUVU02, ZSD09, Pem83].
Utilizing [ES97].

VAL [Mc-G82, Wet82].
Validation [How80, KC01, MOS07a].
Value [HL82, DBH21, HL05, SW97a].

Values [DD85, Han92, Wet82].

Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HV1999, NS13, SV96].

Variable [MS83, MTG80, FMPS91, GLM95].

Verifiable [YB85].
Verification [App15, BDP14, BCD+15, CDFP89, CES86, CPS93, CHMY19, Di90, EGP14, GL94, JBK18, Mon94, JTM98, KKW14, LFF14, LJ99, LS97, MTK21, NGB13, Ry88, SGL21, BDL+08, CEI+07, GPF08, GM12, Qia00].

Verified [BFCT08, BKL+97, JLP+14, DSW11].

Verifying [AS89, BFG08, CGJ97b, DJP+16, GEGP17, LM18, YS10, Mon08].

Version [YR94].
Versions [HR89].

versus [Pal98, Pip97, UM02].

Vertices [BG+13].
REFERENCES

Very [GLR83]. VHDL [BKL+97]. via [CEF+07, FKW98, GPF08, GSO94, HLH19, HOYY18, MMM+07, PE08, RTP17, SRW02, SV20, Tra08, WCM00]. View [SZBH86, FGM+07a], view-update [FGM+07a]. Virtual [Jef85, RRB19, CEG07, KN06]. Visibly [CBMO19]. Visual [Mye90, BCM99]. vita [MP10a, MP10b]. VLSI [LVV+83].

Volpano [Bur91]. Volume [Ano18, TGT20]. vs [HR02].

X [OLH+16, MSM+16]. X-Sensitive [OLH+16]. X10 [GHH+19]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MS07a].

Years [Apt81].

Zones [GMN+21].

References

Ancona:2007:PCT

Attie:2004:SFT

Ahmed:2010:SFT

Anderson:1981:LLC

REFERENCES

M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional...

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recur-

REFERENCES

[AE98] Paul C. Attie and E. Allen Emerson. Synthesis of concurrent systems with many similar

Alur:2004:MRH

Aho:1989:CGU

Alur:1998:FF

Apel:2010:CUF

Ahmed:2020:ISI

Arsac:1982:STR

Allen:1987:ATF

Ait-Kaci:1989:EIL

Alglave:2017:DSF

Ait-Kaci:1994:FPC

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam—

Anonymous. Information for authors. *ACM Transactions

Anonymous:1985:IA

Anonymous:1986:AI

Anonymous:1986:IA

Anonymous:1987:IA

Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

Anonymous:1990:AI

Anonymous:1990:IA

Anonymous:1991:IA

Anonymous:1991:IA

Anonymous:1992:IA

Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

Anonymous:2002:LDD

[Ano02b] Anonymous. On loops, dominators, and dominance frontiers. *ACM Transactions on Programming Languages and Systems*,

1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

locally least-cost error recovery. ACM Transactions on Programming Languages and Systems, 6 (2):192–214, April 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2007:PTA

Brecht:2006:CGC

[Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage collection and heap growth to reduce the execution time of Java applications. ACM Transactions on Programming Languages and Systems, 28(5):908–941, September 2006.]
REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Bengtson:2011:RTS

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL

Bates:1985:PP

Bergeretti:1985:IFD

Brogi:1991:CLS

Bugliesi:2004:ACM

Bossi:1990:MSL

Betts:2015:DIV

Bugliesi:2015:ART

Benton:2004:MCA

Bruynooghe:2007:TAL

Bottoni:1999:SDC

REFERENCES

[BDJ13] Matko Botincan, Mike Dodds, and Suresh Jagannathan. Proof-
directed parallelization synthesis by separation logic. ACM Transactions on Programming Languages and Systems, 35(2): 8:1–8:??, July 2013. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Bernardeschi:2008:DBV

Bueno:1999:EAI

Biernacki:2015:DCP

Bowman:1993:RAN

Barthe:2014:FVS

Bossi:1994:TAP

Bhargavan:2008:VII

Barbosa:1989:CHL

Bernstein:1989:SEP

Binkley:2013:EIL

Barthe:2009:CTO

Barbuti:1993:GFS

Bultan:1999:MCC

REFERENCES

REFERENCES

REFERENCES

Buchsbaum:2005:CNS

Bates:1994:RSL

Ball:1994:OPT

Back:1988:DCA

Bic:1987:DDM

Blanchet:2003:EAJ

Bodden:2012:PEF

Eric Bodden, Patrick Lam, and Laurie Hendren. Partially evaluating finite-state runtime monitors ahead of time. ACM Transactions on Programming Languages and Systems, 34(2):
REFERENCES

7:1–7:52, June 2012. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[BMR05] Thomas Ball, Todd Millstein, and Sriram K. Rajamani. Poly-

[MYD95] See [MYD95].

REFERENCES

Bobrow:1980:MRS

Boehm:1985:SEA

Boom:1982:WPL

Borning:1981:PLA

Boute:1988:SSP

Boute:1992:EDF

Boute:2005:FDL

Boute:2006:CSD

[Bou06] Raymond T. Boute. Calculational semantics: Deriving programming theories from

Bar-On:1985:OPG

Boyland:1996:CAG

Boyland:2010:SFP

Broy:1982:CAA

Burns:1989:USS

Bendersky:2012:SOB

Balabonski:2016:DFM
REFERENCES

Baumgartner:1997:ISC

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. *ACM Transactions on Programming Languages and Systems*, 5(2):223–235, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Bahlke:1986:PSF

Bermudez:1988:NRB

Manuel E. Bermudez and Karl M. Schimpf. On the (non-) relationship between SLR(1) and NQLALR(1) grammars (technical correspondence). *ACM Transactions on Programming Languages and Systems*, 10(2):
REFERENCES

Bruce:2003:PTS

Burke:1993:IOE

Burke:1990:IBA

Burton:1984:ACP

Burke:1990:TCT

REFERENCES

[Broy:1987:ADP]

[Cameron:1989:EHL]

[Carlisle:1995:TCC]

[Castagna:1995:CCC]

[Cattell:1980:ADC]

[Casanova:1980:FSR]

REFERENCES

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Clements:2004:TRM

Cortesi:1997:CAI

Chatterjee:2018:AAQ

Cortes:2004:HLA
REFERENCES

Cytron:1991:ECS

Clark:1986:PPP

Chin:1995:ROA

Christensen:2004:OPE

Chatterjee:2019:FAD

Calder:1997:EBS

REFERENCES

REFERENCES

[CL95] Craig Chambers and Gary T. Leavens. Typechecking and modules for multimethods. *ACM

Clarke:1980:SRI

Chandy:1984:DPP

Chandy:1986:ESR

Chirica:1986:TCI

Copperman:1993:TCF

Codish:1995:IAI

REFERENCES

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC

Carle:1995:MBI

Carle:1996:OCP

REFERENCES

REFERENCES

Chen:2004:LGS

Clausen:2000:JBC

Codish:1999:SGD

Cooper:2001:OSR

Carlsson:2006:MAC

Collberg:2007:DGB
REFERENCES

deBruin:1985:DSD

DeSutter:2005:LTB

dBH21

Drossopoulou:2002:MDO

Dencker:1984:OPT

Donahue:1985:DTV

DDD11
Werner Dietl, Sophia Drossopoulou, and Peter Müller. Separating ownership topology and encapsulation with generic universe types. *ACM Transactions on Programming Languages and Systems*, 33(6):20:1–
REFERENCES

REFERENCES

Davidson:1980: DAR

Davidson:1981:CDA

Davidson:1984:CST

Douence:1998:SSF

Dimoulas:2011:CSH

Demetrescu:2015:RIP

DalLago:2019:PTM
REFERENCES

DeLaBanda:2000:ICL

DeMoura:2009:RC

Dolby:2012:DCA

Dolev:2009:SSP

Dodds:2016:VCS

Mike Dodds, Suresh Jagannathan, Matthew J. Parkinson, Kasper Svendsen, and Lars Birkedal. Verifying custom synchronization constructs using higher-order separation logic.
REFERENCES

Darulova:2017:TCR

David:2018:PSP
Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. Program synthesis for program analysis. ACM Transactions on Programming Languages and Systems, 40(2):5:1–5:??, June 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Drinic:2007:PPC

Debray:1993:CAL

Danicic:2018:SBS

Dissegna:2016:AIB

Degano:1988:EIL
REFERENCES

Diwan:2001:UTA

Danvy:1996:EED

Ducasse:2006:TMF

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärl, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DeRemer:1982:ECL

Dhamdhere:1993:EAB

Debray:1997:ICF

DeRose:1999:TTM

REFERENCES

[DS90] Prasun Dewan and Marvin Solomon. An approach to support automatic generation of user interfaces. ACM Trans-

Dhamdhere:1998:DCD

Dosualdo:2021:TLC

Derrick:2011:MVP

Ducournau:2008:PHA

Duggan:1999:DTD

REFERENCES

Richard J. Fateman. High-level language implications of the proposed IEEE floating-point standard. ACM Transactions on Programming Lan-
REFERENCES

REFERENCES

Fournet:2003:SIT

Fournet:2007:TDA

Fernandez:2004:ICS

Fidge:1993:FDP

Foster:2007:CBT

Fischer:1980:PCA

Forejt:2017:PPA

Foster:2006:FIT

Fuchs:1985:OPF

Fokkink:1998:WAR

Fokkink:2000:LRE

Fraser:1981:EDS

Fradet:1991:CFL

REFERENCES

Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl. Inferring lower runtime bounds for integer programs.
REFERENCES

REFERENCES

REFERENCES

Georgeff:1984:TRS

Ganapathi:1985:AGD

Gini:1985:DWM

Gesbert:2015:LAD

Griswold:1980:AUP

Gerber:1997:SRT

GarciaDeLaBanda:1996:GAC

REFERENCES

REFERENCES

REFERENCES

Gottlieb:1983:BTE

Ghezzi:1979:IP

Greif:1981:SSW

Ganty:2012:AVA

Gannon:1981:DAI

Ghosh:1999:CME

Gange:2021:FLZ

REFERENCES

Grant:2000:BCD

Gange:2015:IAM

Gomard:1992:SAP

Gorlatch:2004:SRC

Gordon:2021:PIS

Colin S. Gordon. Polymorphic iterable sequential effect systems. ACM Transactions on Programming Languages and Systems, 43(1):4:1–4:79, April 2021. CODEN ATPSDT. ISSN 0164-
REFERENCES

Ralph E. Griswold. The evaluation of expressions in Icon.
REFERENCES

Giesl:2011:ATP

Giacobazzi:1998:LMR

Gloy:1999:PPU

Gawlitza:2011:SSR

Gupta:1994:ERA

Sabine Glesner and Wolf Zimmermann. Natural seman-

Gil:2005:EST

Gil:2007:EDD

Hoffmann:2012:MAR

Hailperin:1998:COC

Hailperin:2005:CCC

Halstead:1985:MLC

Hall:2005:IPA

REFERENCES

Harman:2009:DCS

Hassen:1998:TDP

Hertz:2006:GOL

Hickey:1992:CAM

Huang:2010:DBR

Holt:1982:ISS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

Howden:1980:ASV

Heo:2018:ASA

Haghighat:1996:SAP

Hermenegildo:2000:IAC

Henzinger:2002:AGR

Hennessy:2002:IFV

Horwitz:1990:ISU

Huang:2011:MSS

Hirzel:2017:SEL

REFERENCES

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD

Huang:1993:LEU
Shing-Tsaan Huang. Leader election in uniform rings. *ACM Transactions on Programming Languages and Systems*, 15(3):
REFERENCES

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Jefery:2003:GLS

Jensen:1997:DPA

Juelich:1981:CAS

Jeon:2019:MLA

Jackson:1998:IFM

Jimenez:2002:RTN

Jagannathan:2014:ARV

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

[Jeannet:2010:RAI] Bertrand Jeannet, Alexey Logi-
nov, Thomas Reps, and Mooly Sagiv. A relational approach to
interprocedural shape analysis. *ACM Transactions on Program-
ming Languages and Systems*, 32 (2):5:1–5:52, January 2010. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Peter J. Stuckey, and Roland H. C. Yap. The CLP(R)
language and system. *ACM Transactions on Programming
Languages and Systems*, 14(3):339–395, July 1992. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Jeffrey:2010:ESA] Dennis Jeffrey, Vijay Nagara-
jan, Rajiv Gupta, and Nee-
lam Gupta. Execution sup-
pression: an automated it-
erative technique for locating
memory errors. *ACM Trans-
actions on Programming Lan-
guages and Systems*, 32(5):17:1–
17:36, May 2010. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

[Joshi:2006:DPA] Rajeev Joshi, Greg Nelson, and
Yunhong Zhou. Denali: a practi-
cal algorithm for generating op-
timal code. *ACM Transactions
on Programming Languages and
ISSN 0164-0925 (print), 1558-4593 (electronic).

toward a development method
for interfering programs. *ACM
Transactions on Programming
Languages and Systems*, 5(4):
596–619, October 1983. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

evaluation of circular attribute
grammars. *ACM Transactions on Programming Lan-
guages and Systems*, 12(3):
429–462, July 1990. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

specification and verification
of distributed systems. *ACM
Transactions on Programming
Languages and Systems*, 16(2):
259–303, March 1994. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

[Jonsson:1994:CSV]
REFERENCES

Jakobs:2017:PPF

Kaiser:1989:IDS

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO

M. Kandemir, P. Banerjee, [KBC+99]

REFERENCES

[Knowles:2010:HTC]

[Keen:2004:JFD]

[Kaiser:1992:OBP]

[Kennedy:1998:ADL]

[Karkare:2007:IBC]

[Korach:1990:MTD]

[Kawahito:2006:ESE]
Kennaway:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM

Knapp:1990:EFD

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

REFERENCES

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Knoop:1994:OCM

Korach:1984:DAF

Kruskal:1988:ESM

Knoop:1994:OCM

Kim:2018:TFS
REFERENCES

[KSV96] Jens Knoop, Bernhard Steffen, and Jürgen Vollmer. Paral-

[LaL84] Wilf R. LaLonde. Technical correspondence: Comments on
REFERENCES

1. Lamport:1990:WSP

2. Lamport:1994:TLA

3. Landwehr:1980:ATS

5. Ligatti:2017:SRC

REFERENCES

Lee:2007:DIE

Lee:2009:RFS

LaLonde:1981:HOP

LeMetayer:1988:AAC

Leeman:1986:FAU

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB
Hongjin Liang, Xinyu Feng, and Ming Fu. Rely-guarantee-based

Lueh:2000:FBR

Lueh:2000:FBR

Lycklama:1991:FCF

Lycklama:1991:FCF

Lhotak:2008:RAB

Lhotak:2008:RAB

Liu:2019:RIP

Lindstrom:1979:BGC

Lindstrom:1979:BGC

Lin:1993:PIA

Lin:1993:PIA

Liu:1999:SVF

Liu:1999:SVF

Zhiming Liu and Mathai Joseph. Specification and verification

REFERENCES

Gary Lindstrom and Mary Lou Soffa. Referencing and retention in block-structured coroutines. ACM Transactions on Programming Languages and Systems, 3
REFERENCES

Liskov:1983:GAL

Lamport:1984:HLC

Lang:1998:SAE

Levi:2003:MSA

Li:2004:ATI

Liquori:2008:FME

Liu:2009:DRE

Liu:2005:OAA

[LSLR05] Yanhong A. Liu, Scott D. Stoller, Ning Li, and Tom

Lamport:1982:BGP

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems, 4*(3):382–401, July 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section 23) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

Liu:1998:SCI

League:2002:TPC

Li:2020:PAS

LeCharlier:1994:EEG

Baudouin Le Charlier and Pascal Van Hentenyck. Experimen-

REFERENCES

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

[MF09] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language programs. ACM Transactions on Programming Languages and Systems, 31
REFERENCES

REFERENCES

[MM89] Eugene W. Myers and Webb Miller. Row replacement algorithms for screen editors. *ACM*
REFERENCES

Markstrum:2010:JDP

MME+10

Morzenti:1992:MPR

MME92

Moreira:2000:FMJ

Morgan:1996:PPT

REFERENCES

138

Mohan:1981:TCF

Moitra:1983:TCA

Monniaux:2008:PVF

Morgan:1988:SS

Moller:2007:SVX

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE
John C. Mitchell and Gordon D. Plotkin. Abstract types

Moore:2002:AC

McKinley:2007:ECG

Mckinley:2010:PVT

Menon:2003:FSA

Morgan:1988:RC

Melo:2020:TIC

[MRG20] Leandro T. C. Melo, Rodrigo G. Ribeiro, Breno C. F. Guimarães,

Maher:1983:API

Murphy:1988:NDP

Marriott:1994:DAI

Marino:2016:DXU

Madhavan:2000:EGG

Morris:2008:DNF

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

[MV87] Robert A. Mueller and Joseph Varghese. Retargetable mi-

REFERENCES

Myers:1990:CUI

Narlikar:1999:SES

Myers:2017:F

Nanevski:2013:DTT

Necula:2005:CTS
Narayanan:2020:SDV

Norris:2016:PAM

Nelson:1989:GDC

Nielson:1985:PTD

Nix:1985:EE

Nguyen:2005:EEA

Nielson:1986:TCC
Flemming Nielson and Hanne Riis Nielson. Technical correspondence.
REFERENCES

REFERENCES

Odersky:1993:DCD

Olmedo:2018:CPP

Oh:2014:GSA

Ohori:1995:PRC

Ohori:2007:PTM

Ogasawara:2006:EED

Owicki:1982:PLP

Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent programs. ACM Transactions on Programming Languages and Systems, 4
REFERENCES

Pingali:1986:EDD

Padovani:2019:CFS

Palsberg:1995:CAC

Palsberg:1998:EBF

Palsberg:2011:E

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

REFERENCES

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

REFERENCES

[150]

[Per82] Gary L. Peterson. An $O(n \log n)$ unidirectional algorithm for the

Peterson presents a deterministic distributed algorithm for finding the largest of a set of uniquely numbered processes in a ring. The algorithm requires $O(n \log n)$ messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

Patrignani:2021:RSC

Poletto:1999:CTL

REFERENCES

REFERENCES

[PR07] Andreas Podelski and Andrey Rybalchenko. Transition pred-

Proebsting:1995:BAG

Pollock:1992:IGR

Palem:1993:STC

Palsberg:1996:CTT

Poletto:1999:LSR

Pottier:2003:IFI

REFERENCES

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SAU

Pugh:1998:CBA

REFERENCES

Palsberg:1995:EIA

Palsberg:2005:ADC

Quillere:2000:OMU

Ranganath:2007:NFC

Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff, and Matthew B.

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Rao:1994:RAP

Reiter:1994:HSR

Ramsey:2003:TAB

Rogers:1995:SDD

Reiss:1983:GCS

Rem:1981:APN

Reps:1986:GEI

Reps:1998:MMT

Reps:2000:UCS

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

REFERENCES

[RSM10] Salvatore Ruggieri and Fred Mesnard. Typing linear con-
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

3:??, March 2017. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Skudlarek:1995:NMI

Shankar:1992:SRH

Schultz:2003:APS

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TRO

(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/77345.html.

pubs/toc/Abstracts/0164-0925/214513.html. See [DS88].

pubs/toc/Abstracts/0164-0925/11326.html.

pubs/toc/Abstracts/0164-0925/29874.html.

pubs/toc/Abstracts/0164-0925/116785.html.

pubs/toc/Abstracts/0164-0925/214513.html. See [DS88].

[Sou84] N. Soundararajan. Axiomatic semantics of communicating se-

Sagiv:2002:PSA

Soisalon-Soininen:1982:IEE

Schlichting:1984:UMP

Sagonas:1998:AMT

Schulte:2005:WDB

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:EEC

Staiger-Stöhr:2013:PIA

Sneyers:2009:CPC

Schonberg:1981:ATS

REFERENCES

Sangiorgi:2019:EBP

Simpson:2020:BEM

Sabry:1997:RCV

Steckler:1997:LCC

Sewell:2010:NPP

Suganuma:2005:DED

REFERENCES

[Tan83] Andrew S. Tanenbaum. Technical correspondence: Tanenbaum’s reply. *ACM Trans-

[102x681]REFERENCES

REFERENCES

[TSBR08] Noah Torp-Smith, Lars Birkedal, and John C. Reynolds. Local reasoning about a copying garbage collector. *ACM
REFERENCES

Tip:2002:PET

Tang:2000:PTR

Turini:1984:MLO

Thatcher:1982:DTS

Turchin:1986:CS

Thies:2007:STU

REFERENCES

Toninho:2018:ISB

TY18

Toninho:2021:PSF

TY21

Unger:2002:HIL

UM02

Ugawa:2018:TSL

URJ18

Vera:2005:ACM

VALG05

Ungar:1992:ATP

UJA92

Unger:2002:HIL

Um02

Tse:2007:RTP

TZ07

Tse:2007:RTP

TZ07

Ungar:1992:ATP

UJA92

Tse:2007:RTP
References

vonHanxleden:2000:BCP

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaeghe:2012:ECS

Volpano:1991:TCS

vandenBos:1981:PCB

REFERENCES

183

VanHentenryck:1995:BTC

VonBank:1994:UMP

VanNieuwpoort:2010:SHL

Waddle:1990:PTC

Wallis:1980:ERO

[Wall80] Peter J. L. Wallis. External representations of objects of user-defined type. ACM Transactions on Programming Languages and Systems, 2(2): 137–152, April 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Wall81].

Wallis:1981:CER

Wall:1992:ESD

Wand:1982:DTC

Waters:1983:UFC

Waters:1991:ATS

Waters:1994:CBP

Wright:1997:PST

Walker:2000:TMM

Wileden:1990:CEO

REFERENCES

88639.html. See corrigenda [WCW91].

REFERENCES

Wirth:1988:TE

Wirth:1991:TCR

Wise:1979:MGC

Wright:1998:PSE

Wellings:2000:IOO

Wand:2004:SAD

Weihl:1985:IRA

[WL85] William Weihl and Barbara

Peter H. Welch and Jan B. Pedersen. Santa Claus: Formal

Wang:2008:DSJ

Wang:2015:EAS

Wang:2004:ETC

Wu:1995:WCC

Pei-Chi Wu and Feng-Jian Wang. A worst case of circularity test algorithms for attribute grammars. *ACM Transactions on Programming Lan-

Wall:1985:TCN

Wehr:2011:JIT

REFERENCES

References

Yiapanis:2016:CDS

YBL16

Yang:1998:STE

YF98

Yardimci:2009:MSP

YMW97

Yin11

Yu:1997:NCI

YK97

Yang:1997:SMC

REFERENCES

Yu:1994:LTS

Yellin:1991:ILI

Yellin:1997:PSC

Young:1999:SCB

Yahav:2010:VSP

Yang:2002:EEB

Zave:1985:DAF

Xiaotong Zhuang and Santosh Pande. An optimization framework for embedded processors with auto-addressing mode. *ACM Transactions on Programming Languages and Systems*, 32
Zhong:2009:PLA

Zhang:2021:CP

Zhao:2020:DLS