A Complete Bibliography of Publications in ACM Transactions on Programming Languages and Systems (TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

27 April 2021
Version 2.139

Title word cross-reference

[SRW02], + [Han81a], T^M [Bla03]. \phi [CF95, DR05]. \pi [ABL03].
-calculus [ABL03]. -Exclusion [ADG+94].
-function [DR05]. -Nodes [CF95]. -Tree [Han81a]. -valued [SRW02].

11 [ND16]. 16 [TGT20].
40 [TGT20].
568 [Han81b].
8 [Ano18].
90 [DP99]. 95 [WJS+00].

Abstract [BGL93, BK11, CMB+95, CFG+97, DGG97, DLR16, ELS+14, EO80, GSK98, HS82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BD+10, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Accuracy [CEG07, HDH02]. accurate [CG04, VBLG04, VALG05].

Acm [Ano18, TGT20, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92]. Across [NSTD+15].

Action [BKS88]. Actions [Lam94, LS83].

Active [SR21]. Activity [Bar81, MTG80].

Actor [TCP+17]. Acyclic [BE94, JF81].

Ad [MDCB91, PS08]. Ada [Bak82, Dil90, Hil88, LP80, WJS+00].

Adaptation [Dha91]. Adaptive [ABH06, HOYY18, PXL95, TCVB14, UJ92, RD03].

Adaptors [YS97]. Addendum [Bir85].
aware [MQ05]. Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80]. Axioms [Mis86].

[Ber94, MTSS09]. changing [MP07].

Chariots [PB97]. Check [AP94]. checked [KN06]. checker [NP08]. Checking [Car95, CGL94, ES97, FF08, GL94, ND16, AY01, ACM11, BGP99, FFLOQ08, HQRT02, JJD98, KN06, KV00, ND16, SG04, VLJB12, YM97].

Checks [C90, CE97]. Chocola [SDD21].

Class [BB94, JCM99]. CIRCAL [Mi08].

Circularity [WW95, Wu04]. Clarification [PA86].

Clarity [PA94, HCN90, Pet82].

Closure [Pal95, SW97b, SA00].

Clustering [LL17]. Clusters [BGH13, HBP97].

Collector [BBYG05, LP06, TSBR08].

Coloring [BCT94, CH90, FGL94].

Composition [AFD80, GC86, HM84, MW84, MC82b, Moi83, Oss83, PP91, Pur91, Sou84, Ber80, KS79]. Communicating [AFD80, GC86, HM84, MW84, MC82b, Moi83, Oss83, PP91, Pur91, Sou84, Ber80, KS79].

Communication [Ang89, CHY12, FJK97, FY85, G985, Hua90, LH91, MB83, PS88, KBC99, Mil85, SWU10, WM12].

Communication-Centered [CHY12].

Communications [RS84].

Commutativity [RD97, Apt00, Cha02].

Compact [BC79, Sip82, Wald90].

Compactification [RH87]. Compacting [CF92].

Comparative [WC90, WC91].

Comparing [Hai05]. Comparision [CN83].

Compartmentalized [WLF91].

CompCert [BDP14]. Compensation [FGL94].

Compilation [DLR16, FKW98, FL91, JLP14, JF81, PS88, PG21, Sit79, KMM98, LST02, LDM07, SY06].

Compile [AB81, GW99, Hol87, Tra08].

Compile-Time [AB81, Hol87, GW99, Tra08].

Compiler [App94a, BDH84, CM86b, HCY84, DEMD00, FT94, FGL94, JSB91, Reis83, Slo95, Son87, WH94, YBL16, A002, CML90, DHS99, GMM99, KMP06, PHE99, SY05, VHKO02].

Compiler-Driver [YBL16].

Compilers [BDF97, DHD84, HP96, Han94, BGKR09, RD97, SY06].

Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Configuration [CFG87]. Complete [BDFH97, WM95].

Completeness [LBN17, TVB95, WGS92, Wu04, WGS93].

Completion [KR01].

Complexity [BEF16, De95, Le88, RRSY08, SSD99].

Component [LS98, YS97].

Component-Base [LS98].

Componential [FF99]. Components [CIJ18].

Composable [SDD21].

Composing [AL93, HKMN94]. Composite [Fe87].

Composition [AH10, PAU01].

Compositional
compressed [DAS98]. Compression [BMW91, CSCM00, DKV07].

Computability [HMS06]. Computable [PK82]. Computation [AC94, BOV85, DP82, HS94, LST98, PB97, ABB+09, AE01, DR05, LK02, SWU10, SGL97, HaIl85].

Computational [ATD08, SSD09]. Computers [Fis80, LK02]. Computing [ANP89, CFR+91, CF95, KM81, HVB+99, MMG00].

Concrete [Tur86, ST00a]. Concrete [Bar81].

Concurrency [BG89a, Lam90, SDD21, Wei89, BCF04, Mil85, TA08a, CPS93].

Constraint-Based [PW98, Ste18, DDV99, SP07]. Constraint-Oriented [Bor81]. Constraint-Solving [NSTD+15].

Constraints [AKP94, DFR+15, HG83, Mye90, BA08, RM10, TFK+11, Van96b, VHM+01, Van96a].

Construct [Ans87, BS83, Kat93].

Construction [ADGM91, HIT97, LaL81, MB83, RH87, SL92, CMS03, GC01].

Constructive [Loe87]. Constructs [AR84, DJP+16, Par90]. Context [GHR80, LTMS20, LWLR21, Ode93, Pad19, PK80, Ram00, RTD83, Rep00].

Context-Dependent [Ode93, RTD83]. Context-Free [GHR80, Pad19].

Context-sensitive [Ram00, Rep00].

Continuation-Passing [BDM15].

Conventions [BDM15, HF87].

Continuous [KF03]. contract [DF11].

Contracts [SIG17, SDF13, CGP09].

Contravariance [Cas95]. Control [ABL93, Bur84, CL94, CFR+91, DP97, FM87b, Kat93, Lam88, Lin79, NBG13, PB97, PBR+15, Set83, SS13, Tur84, Wat83, Wei89, BCM99, BCC04, HO07, PSS05, RAB+07, Zho96].

Correct [DGMP97, Hen86, JP17, SS88, AAD+07].

Correspondence [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Ell82, FA93, Fra81, Hen83, LaL83, LaL84].
Moh81, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tie88, Vol91, WST85, Wir91, YB88. Corrigendum [WCV91].

Corrigendum [Ano18, BKRW90, DF81, Fra80a, KS89, Lam80, Pur91, QG95, TGT20, Van96a, Wal81, WGS93]. Cost [AB81, Bac84, DL93, Hai98, Han81a, ZGZ05, VALG05].

Cost-optimal [Hai98].

g++ [GMP +].

Costs [GMP].

Counting [Bal94, LP06].

Counts [Bob80, Wis79].

Coupled [ACW90].

Covariance [Cas95].

Covariant [PZJ05].

Creating [Mye90].

Criteria [Hai98].

Critical [PS93].

Critique [GM81].

Cross [Ano18, FT95, GSS*].

Cross-Interferences [FT95].

Cross-Language [Ano18, GSS*].

Cryptographic [App15].

CS [CD79].

CSim [SZLY21].

CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Zic94].

CSP-Like [Hua90].

CSS [HLH19].

currency [DS98].

Curry [LR19].

Curry-Style [LR19].

Custom [DJP*+].

CV3 [CS84].

Cycle [BG89b, PBK*].

Cycles [FRW90].

Cyclic [RY88].

D. [Bur91].

Data [AMT14, ANP89, AM85, Bac84, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, EIL82, EO80, FL81, GMIH81, GEGP17, HLS82, Hor93, Hes88, Hol87, Jen97, JCCO19, K92, Kam83, KZC15, KK98, KD94, LaL89, LO94, LN02, Loe87, Mal82, MMR95, MCT96, PP91, QC95, RCR95, RP88, SSS81, Sku95, SGL98, SM81, TWW82, WL85, Wei89, Wei90, Wet82, Wei87, CPF+04, DHM+12, DSG97, HBJ98, KBC+99, KF00, LK02, Rep00, SP07, VAL95, YUW02, ZGZ05, Pur91].

data-centric [DHM+].

Data-Driven [BL87, CS87, JCCO19].

Data-Flow [BC85b, Bur90a, Wet82, RP88, KBC+99].

Data-independence [Rep00].

Data-member [KF00].

Data-Parallel [Cha93, HBJ98].

Database [Bar85, CB80].

Databases [SR21].

Dataflow [Deb95, DFR15, MW89, SS13, SS96, Van96a, Van96b, VHM+01].

datalog [LS09, ZSS20].

datatypes [MBC04].

Deadlock [CHMY19, Hua90, Kob98].

Deadlock-Free [Kob98].

Deadlocks [FKJ+17].

Dealing [GMM05, GG85].

Debugging [CMN91, CM93, Cop94, Hen82, WST85, ZSS20].

Deciding [GGL15].

Decision [MTG80, NO79].

decisions [MTSS09].

Declarative [ABPS98, TCVB14, Bou05, MME*].

Decompilation [BB94].

Decomposing [BDL*].

decomposition [LK02].

decrease [LDK+96].

Deducing [TB95].

deduction [LMD98].

Deductive [MW80].

Default [SNS+].

Deferring [MTSS09].

Defined [Wal92, Wal80, Wal81].

Defining [Ode93].

definite [RRR].

Definition [Bou92, BWP87, CI84, CD79, Fid93, HS94, WC90, WC91, Wol94].

Definition-Use [HS94].

Definitions [BS86, Wi82, Dan03, VHK02, Si89].

Delay [BG89b].

Delayed [KPF95, RC03].

Delayed-Load [KPF95].

Delaying [Kau84].

Deleting [GP81].

Delimited [BDM15].

Demand [FPS19, GSW95, PA85, PA86a, PA86b, PF96, SR95, DSG97].

Demand-Driven [GSW95, PA85, PA86a, PA86b, FPS19, PF96, DSG97].

Denali [JNZ06].

Denotational [AB94, FA93, Guo92, MSJ94, NF89, Nie85, Sch85, dBB85].

Dependence [BGH+13, CF+91, FOW87, HBG+09, HR90, ML21, PB97, PW98, Wol94, RAB+07].

 Dependence-based [ML21].

Dependences [PW94].

Dependencies [Deb89, CSS99].

Dependency [Bnu99].

Dependent [LS80, Miq19, NDB13, Ode93, RT83, Rob97].

dequeues [Chi05].

DeRemer [Sag66].

Derivation [BKB80, Cat80, DSW82, Gie83, HIT97, Kna90, TM93, Ano02a].

Deriving [Wan82, Bou06].

Describing [AW85].

Description [McG92].

Descriptions [Boe85, BKL+97, Cat80, Ano02a].
Descriptors [Hol87]. Design [BPP16, BCD+15, BO94, DF80, DF81, FT94, HM84, KKM90, LDM07, ML80, RCS93, RL98, SYK+05, Bout05, MTSS09, CMLC06], design-pattern-based [MTSS09].

Differencing [PK82, RSL10]. Differential [BKOZB13, ZP07]. Differentiation [Sha82]. Diffusing [MC82b]. Dijkstra [BN94, Nel89].

Dimensional [Hil88, GWZ08]. direct [YK97]. Directed [BDJ13, DMM88, Gud92, Han94, Set83, SYH07, OKN06]. Direction [Dar90]. Directly [Hob84].

Director [KS88, KS89]. Directory [Han81b].

discipline [FGM07b]. Disciplines [SS84].

Discovering [FJK+17]. discovery [PZJ05].

Discrete [Bar81]. Discrete-Event [Bar81].

Disintegration [NC20]. Disjunctive [Jen97, JJO91]. dispatch [DAS98, MFRW99]. dispatching [GZ07].

Distance [Wol94, ZSD09]. distribute [CRN+08]. Distributed [ABLPG93, AF84, Apt86, AW85, BK88, BCEM15, Bur84, CJK95, CM86a, CDBGF95, CS95, DAW88, Dug99, FLBB89, Fra80b, GHS83, HSG17, Huo90, HMS4, Jon94, Kat93, K90, KRS84, KKM90, Lam84, LS83, MC82a, RCRH95, SS84, SCH82, TM93, TCP+17, Zav85, ABLO3, FM87a, HVB+99, KGMM04, LK02, MD05, Pia96, Fra80a, Moh81, VHB+97].

Distributed-Memory [KK98, RCRH95].

div [Bou92]. Divergence [SdSCP13]. DJ [DR05, SGL, SGL98, UM02]. DJ-graphs [UM02]. DLLs [Dug02]. do [SS05a].

Documentation [MH86]. does [MDP96].

dolce [MP10a]. Domain [LM18, Tra08, RM07, SS05a]. Domains [CM9+95, ELS+14, GS98, FH04, GLMM05].

dominance [Ano02b, DVD07]. dominator [SGL97].

Dominator [LT79, Ano02b, BKRW08, BKRW05]. Don't [AKNP17]. down [SZLY21]. df [MSM+16].

Drinking [CM84, MS88]. Drive [PK80].

Driven [BL87, CS87, GF85, GW95, JCO19, PA85, PA86a, PA86b, TGT18, YBL16, DGS97, FPS9, PF96, TGT20, YMW97]. Dually [MT08]. Dummy [Lam88].

During [BKB80]. DyC [GMP+00]. Dynamic [ACPP91, AGT89, ASF17, BB79, BDM15, Bre89, CGG+19, CHMY19, CTT07, DS98, Dug99, HSS+14, HN05, Ka89, KR79, RCRH95, Ven95, WR08, dBB85, ACE96, BP12, CEI+07, DDDCG02, GZ07, MMM+07, PHEK99, SJP12, SHB+07, SYK+05, SYN06, WKD04, ZG05].

eager [FKW00]. Earley [Lei90]. Early [AB81]. ECCS [CDFP89]. Edge [DP93].

Editing [FL81, HT86, Nix85]. Editor [FM87b, Dem83, Mye18, Per90, Rep86, Wol92].

EDO [OKN06]. Effect [Gor21, RLS+01].

Effective [BS83, Col84, JB20, KKN06, N105, PE08, WJ98, YUW02]. Effectiveness [BdBBH99, SH89].

Effects [Boe85, SV20, TA08b]. Efficient [AKB089, ADGM91, BB79, BGH+13, Bre89, Cam89, CS95, DP82, DMM88, GZ95, GZ07, GLRR83, GGL88, GSO94, HVB+99, HS94, HSS+14, HIT97, JP81, Jon90, KKM90, KRS88, KPF95, MMV+01, MM82, SMM92, SMM93, SMM95, SMM97].
NB99, NI05, PHP02, PXL95, PG21, PKH07, PA85, PA86b, RH87, SS08, SA00, SS88, TN19, WG98, YUW02, BCP08, GB99, KSV96, LPSO04, LS09, PBK+07, TP04, VWJB10, YF98, PA86a, SS09, Efficiently [Bal94, CFR+91, CF95]. Eiffel [ACE96].

Elimination [KR01]. Election [Hua93].

Eliminating [BT93, Coh83, Coh85, RD03].

Elimination-Based [SGL98]. embedded [BCP08, CSCM00, HK07, Rhi03, SRM10, TP04, ZP10]. Embedding [HF87].

Empirical [BHK07, BDH+16].

Empowering [JSB+12]. Emulator [ML80].

Enabled [ADG+94]. Encapsulating [GPV07]. Encapsulation [AR84, DDM11].

Encoding [Hob84, GZ05, ZP07]. Encodings [BC79]. End [BDP14, CSCM00]. enforcement [HMS06]. Enforcing [CEI+07]. engines [SS08, SS09]. enhanced [GH97]. Entries [LaL84, SS82].

Enumeration [BB94, JDJ98]. Environment [CO90, SZBH86, CKT86].

Environmental [SKS11, SV19].

Environments [BS86, GKL94, HK85, HT86, Kai89, dJKVS12]. Epochs [So92].

equalities [FMoPS11]. Equality [Pal98].

Equation [HL82, Bou06, GS11, GMM99].

Equivalence [LP80, NB08].

Equivalent [PO95, NP08]. Erlang [TCP+17]. Erratum [SS09]. Error [AB81, Bac84, BN99, BF87, FL15, KC01, LA84, MF88, PK80, Ric85, SSS83, SS82, Wet82, ZMVPJ17, dJKVS12, Jef03, AX07]. Errors [AWW95, SBB+19, Wha94, CPRT02, JNGG10].

Escape [Bla03, CGS+03]. ESOP [Ahm20].

ESOP’05 [Sag07]. Essential [DES12].

Esterel [Tan07]. Estimation [SBB+19].

Eta [DMP96]. Eta-expansion [DMP96]. Euclid [HW82]. Euclidean [Bou92].

Evaluating [BLH12].

Evaluations [BDH+16]. Evaluators [CP95]. Event [Bar81, YMW97]. event-driven [YMW97]. Events [Bal94].

Ewert [Gri79]. Evidence [CGJ+97a]. Evidence-Based [CGJ+97a]. Example [CM86a, Mye90, Nix85]. Examples [Oss83, Jef03]. Exception [YB85, YB87, YB88, LS98, LP80, OKN06].

Exception-Directed [OKN06].

Exception-Handling [YB85, LS98].

Exceptional [WN08]. Exceptions [ASF17, Hau96, LP00]. Exceptional [WS97].

Expression [GP81, YB87, YB88, HYP05].

Expression-Oriented [GP81, YB87, YB88].

Expressions [BG89b, CGST95, CC97, DAW88, Fis80, Geo84, Gri82, Hen83, HY91, KS83, LD81, PK82, Sha82, Sit97, Wat91, Dam03, NN86].

Expressive [MFRW09]. Expressiveness [WGS92, WGS93, PS96].

Extended [CBM019, KGMO04].

CEW14, CMS03, MSRR00, MK94.
Extensible [HSG17, Sto04, ATD08, MBC04].

Extension [Bur90b, Coh91, WSH15, Wir91, ALZ03, KKN06, LS08]. Extensions [Wir88].

Extent [MF88]. External [Wal80, Wai81].

Extracting [GP95]. extraction [TSL+02].

extrapolation [WM12]. Extrama [Pet82].

Failure-Free [Kar84]. Fair [BN94, PR07].

Fairness [ES97, OA88, TB95, AH98].

Families [LaL89]. Fashioned [AL94]. Fast [ADR06, DAS98, FMoPS11, HVDH07, LT79, SR95, DR05, PE08, TP04, VBLG04, DVLM15]. Faster [CGG+19]. Fault [CS95, Lam84, LJ99, AAE04].

Fault-Tolerance [LJ99]. Fault-Tolerant [CS95, Lam84, AAE04]. FD [GLMM05].

First-Class [HKMN94, Han92, SDTF13, MH04].

First-Enabled [ADG+94]. First-Fit [Bre89]. First-In [ADG+94]. First-Order [DP97, JPP91, JS94]. Fit [Bre89]. Fixed [SS98]. Fixed-Order [SS98]. Fixpoint [AC94, Qia00]. Flexible [AD98, Hud91, MSM+16, WG98, Wille82b, dJKVS12, IV06, KGM004]. Floating [CK94, Fat82, SBB+19, Han96, Mon08].

Floating-Point [CK94, Fat82, SBB+19, Han96, Mon08]. flop [MMG00]. Flow [AR80, AD98, ASF17, Bac84, BC85b, Bur90a, DP97, DP93, FJKAO06, HT97, KD94, MIR95, NBG13, PO95, PP91, PBR+15, Pur91, Set83, SL98, SS13, Wet82, DGS97, HR02, HY07, KBC+99, Pal98, PS03, RRSY08, RP88, TZ07, WJ98].

Flow-Insensitive [HT97, FJKAO06]. Flowback [CMN91]. Flowgraph [LT79].

Foo [FA93]. foreign [FF08]. Foreword [Myc17, Mye18]. Form [AK87, DP99]. Foundation [KRR18, Ban11, RAB+07, Rhi03].

foundational [AM01]. Foundations [GTWA14, LW93, AAR+10]. Fractal [MMP03]. fractional [Boy10]. frames [SJP12]. Framework [BGL93, Gie83, JW17, KRR18, NSZS13, NSTD+15, OHL+14, SGL98, TN19, ATD08, DGS97, MIR99, GZ04, GC01, Leu04, PS08, RRRR04, TP04, VBLG04, XA07, ZCG+07, ZP10, vHK00].

Frameworks [MMR95, KK07]. Framing [BNN18]. Francez [Fra81, Moli81, Moli83]. Free [AP94, GEGP17, GHR80, Her91, Kar84, Kob98, Pad19, JD998, KSV96].

freedom [KS10]. frontiers [Ano02b]. fully [GB99]. Fully [JPP91]. function
[DR05, FF08]. **Functional**
[AFV98, Ban87, Blo94, Bou05, Bur84,
DW89, FL91, ISY88, JPP91, WM95, Web95,
Wil82a, ABH06, Bou06, DWWW08, DF98,
PS08, San96, SP97]. **Functions**
[AKP94, AK82, Bou92, PB80, SM89, Lee09,
MBC04, MB99, MT08, PPT08]. **Further**
[CMM93]. **Fusion** [JB20, LGAT00].
Fusion-based [LGAT00].

G. [Tie88]. **Garbage**
[BA84, CN83, DSW82, ISY88, JCM919,
TM93, URJ18, WLBF16, Wis79, BBYG+05,
BALP06, HDH02, LP06, Piz96, TSBR08].
Garner [VHM+01]. **General**
[BGL83, CHMY19, HSS+14].
General-Purpose [HSS+14].
Generalization [Nel89, LMD98].
Generalized [Ans87, BS83, GKM20, KD94, Lin79].
Generating [DB85]. **Generals** [LGAT00].
Generators [Cat80, GHK81]. **Generic**
[LV94, DDM11]. **generics** [LV06].
Geometry [CR87]. **Geoffre** [NN86]. **GJ**
[IPW01]. **Glanville** [MSRR00]. **Global**
[Bac84, Dha91, GHB+96, OH+14, PK80,
PS92, Sch85, dHB+96, CS04, KBC+99,
DSS8, Sor89]. **GLR** [SS06]. **Goal**
[Dar90, Gud92, SYYH07]. **Goal-Directed**
[Gud92, SYYH07]. **Goal-Oriented** [Dar90].
Goto [CF94]. **GPU** [BCD+15]. **Gradual**
[TGT18, TGT20]. **Graham** [MSRR00].
Graham-Glanville [MSRR00]. **Grained**
[PBR+15, DSS+06]. **Grammar**
[CI84, CP95, GF85, JP81, KR79, Web95].
Grammar-Based [CI84]. **Grammars**
[BS88, Jon90, Kat84, LaL81, RD87, RH87,
Tal79, WW95, Boy96, CP96, Wu94]. **Grammar**
[Tho94]. **Grammers**
[BB94, MK94]. **Granularity** [RRB19].
Graph [Ass00, Bee94, BCT94, CFP+91,
FOW87, KKSD94, KLS92, MC82a, Son87,
CTT07, GC01]. **graph-based** [CTT07].
Graphic [Ma82]. **graphical** [VHM+01].
Graphs [GKM20, HBR90, KPS92, Kna90,
SGL98, DR05, JC97, KSK07, SGL96, UM02].
grid [WVJB10]. **Grimmer** [Ano18].
groundness [CSS99]. **Grover** [BH99].
growth [BALP06]. **Guarantee**
[EGP17, LFF14, SZLY21, HQR012].
guarantees [LS90]. **guard** [MP07].
guarded [SP07]. **Guards** [Ber80].
Guess [FP02, OP04, DeM83, Per90, Rep86, Wol92].
Guide [App94a, BD+16]. **Guided**
[OLH+16]. **guiding** [VALG05].

Hackers [App94a]. **Hancock** [CFP+04].
handle [VJB12]. **Handling** [Hau96, LdR81,
Piz96, SSS83, UM02, YB85, YB87, YB88,
CRN+08, LS98, LP80, SSD09, Hen83]. **Hard**
[Hor97]. **Hardware** [BKM+97, Mie86].
harmful [Gor04]. **Hashing** [PB80, Duc08].
Haskell [GRS+11, HHPW96]. **Heap**
[KSK07, BALP06, KF00, YS10].
heap-manipulating [YS10]. **Heavily**
[BG89a]. **Hennessy** [CM93, WST85].
Herding [AMT14]. **Heuristic** [SL92].
hiding [LN02, OYR09], **hierarchic** [AG04].
Hierarchical
[BAA99, CP95, CD97, AY01, CP96].
hierarchically [MBC04]. **hierarchies**
[ST00a, Van96a, Van96b]. **hierarchy** [KF00].
High [Cam89, Fat82, MSM+16, URJ18,
CMS03, VWJB10]. **High-Level**
[Cam89, Fat82, CMS03, VWJB10].
High-Performance [URJ18]. **Higher**
[AC94, AD98, CJK95, DJP+16, FPS19,
SV19, BBTS07, DF11, SKS11, SP97].
Higher-Order
[AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97].

Highly [Her93, Sku95].

Hoare [Apt81, GM81, LS84, Sok87, Yin11].

Hoc [MDCB91].

Holistic [ZMVPJ17].

Homomorphisms [HIT97].

HOP [BLRS12].

Hybrid [KF10, KS10].

Hyperball [LM18].

hyperdoctrines [BBTS07].

I-Structures [ANP89].

I/O [Car95].

id [Bee94].

idempotency [KOE+06].

Identical [FLBB89].

Identification [BGH+13, SBE+19].

identify [MMM+07].

Identifying [MMM+07].

Identities [AM01].

II [Car95].

imperative [AB20, ABPS98, DFR15, Gro06].

Implementation [AKBLN89, AOC+88, BCD+15, Bou88, Bre89, BS83, CM86b, GMH81, Gaz83, Lin93, MDCB91, PXL95, RL98, WL85, CMLC06, FM87a, GB99, LDM07, LPSO04, Tra08, Zho96].

Implementations [BBF+11, BFGT08, DF98].

Implemented [DB85].

Implementing [BR97, Her93, HW82, Sku95].

Implications [Fat82].

Implicit [BH05b].

Implicit-signal [BH05b].

Improved [GHR80, Mur91, KK07].

Improvement [MS83, San96].

Improvements [BCT94].

Improving [CK94, CMB+95, MCT96, TCP+17, WS97].

impure [Pip97].

Incomplete [MRGP20, GLMM05].

Incremental [Bur90a, CP95, DMM88, GM79, HKR92, HKR94, HPMS00, Hud91, Kai89, Lar95, LST98, LHR19, PS92, RTD83, RP88, SGL97, WG98, YS91, BBYG+05, CP96, Van96a, Van96b].

Incrementally [QL91].

Independence [DHM00, Rep00].

Independent [ML80, Mul92].

[Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98].

indexed [AM01].

indices [RR05].

Indirect [Pi96, CEG07, YK97].

Induction [GSW95, Sit79].

inefficiencies [MMM+07].

Inessential [SS82, LaL84].

Inference [CEW14, Deb89, Hen93, LO94, LY98, MRGP20, Pad19, SR21, TB98, Wey83, FFLQ08, JB06, PM06, PT00, PS03, Van06].

Inferring [FNBG20].

Influence [FTJ95].

Information [AR80, Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b, ASF17, BC85b, HR02, NBG13, PBR+15, PS03, GS99, HY07, LN02, OY90, TZ07].

Information-Flow [BC85b, TZ07].

infrastructure [SWU10].

Inheritance [LN15, WT11].

initialization [FM99].

Injection [SBE+19].

Input [BS83, vPS81].

Input-Output [BS83].

Inputs [PA86a].

Insensitive [Hor97, FJKA06].

Insertion [AKNP17, GJ05].

inspection [CF04, FG03].

Instantiation [Der85].

Instead [Lam84, Rem81].

Instruction [KPF95, LCBS19].

Instructions [LS80, PS93, RF97, Rob79, LPP01].

Integer [BAGM12, BCF+16, FNBG20, BGP99].

Integrated [SS13].

Integrating [HPR89, WJS+00].

Integration [CO90, Leu04].

Intensional [STS03].

Interaction [WSH15, WT11, van88, BCM99].

Interactions [JS94].

Interactive [ACS84, BS86].

Interconnectability [TY18].

Interface [Win87, interconnect].

Interfaces [DS90, Mye90, TLHL11, WT11].

Interferences [FTJ95].

Interfering [Jon83].

Intermediate [Lam87, Pem83, Tvs82].

Internal [Han81a].

International [Wol92].

Interoperability [Ano18, GSS+18].

interoperable [BFGT08].

Interpretation [BGL93, CFG+97, DLR16, KRR18, LV94, MSJ94, BDL+08, BdlBH99, DGG97, Leu04, SYYH07].
Interpretation-Based [DLR16].
Interpretations [CMB+95, HY91, SJ03].
Interpreters [LR13, CEG07].
Interprocedural [Bur90a, BT93, DP97, HAM+05, HS94, HBCC99, HR90, LWR21, ML21, NR06, SH95, CTK86, DVD07, DGS97, FMoPS11, JLRS10, KK07, RLS+01].
Interprocess [RS84b].
Interprocessor [Ang89].
Intersection [Dam03].
Intertask [FY85].
Interval [Bur90a, GNS+15, FH90].
Interval-Based [Bur90a].
Introduction [Ahm20, DeM83, HCW82, Per90, Rep86, Sag07, Wol92].
Invariant [BKB80].
Invariants [Cla80, GEGP17].
Irreducible [Hav97, UM02].
Irregular [YF98].
Irrelevant [GP81].
Iso [LBN17].
Iso-Recursive [LBN17].
Isolation [Wha94].
Isomorph [JJD98].
Isomorph-free [JJD98].
Isolation [Wha94].
Iteration [Cam89, MOSS96, GS11, JLF02, Qia00].
Iterative [Ans87, Par90, DR05, JNGG10, LS04].
Jade [RL98].
Jamb [ALZ03].
Java [AFF06, ALZ03, AAD+07, BH05a, Bla03, BALP06, CGS+03, CMS03, CSCM00, FFLQ08, FM99, GPFO8, IPW01, KKN06, KGM004, KN06, KR01, LST02, LP06, LS08, Loc13, MVM+01, MMF+01, MFRW09, MMG00, NR06, OKN06, Qia00, RR19, SLC03, SMD10, SBE+19, SAE9, SYK+05, TN19, TSL+02, WR08].
Java-like [KN06].
JavaCOP [MME+10].
JavaGI [WT11].
join [WKD04].
JRF [KGM004].
Jump [LS08, RS84a].
Just [DLR16, TN19, SYK+05].
Just-In-Time [TN19, DL16, SYK+05].
Knot [MC82a].
Knowledge [GLMM05].
labels [Sto04].
Laboratory [Bor81].
LaLonde [Hen83, LaL83].
LALR [DP82, KM81, PCC85].
Lambda [Geo84, Gum92, NN86, PS08].
Laminar [PBR+15].
Lamport [Ang89, Pet83b].
Language [ACPP91, AOC+88, Ano18, ABPS98, BS86, BPP16, BO94, Bor81, BC91, DVM15, Fat82, Foa87, FFF+18, GSS+18, Gud92, Hal85, HSG17, JMSY92, JPP91, Kai89, McG82, Per79, PPS79, RTD83, RCS93, Spo86, SNS+14, SDD21, Tur84, Wet82, Win87, YS91, YB87, dJKVS12, van88, BStGF03, CFP+04, DWW08, DF98, FM99, Gro06, HBJ98, KN06, LP99, MF09, MWC99, PPT08, PHEK99, Tra08, VKOO2, HCW82, YB88].
Language-Based [Kai89, RSD83].
Languages [Ano18, AR84, AD98, Bar81, BL94b, BHM+19, Blo94, BM94, BW87, DCFP89, Dug99, Fos96, FL91, HU96, Lee86, LR19, MSM+16, Mur91, Ryu16, SV19, TK94, TGT20, AAR+10, ACM11, DHM00, GW99, RS97, Rhi03, SRW88, SKS11, SP97, SWU10, Wol92].
Large [GLR83, MK94, MHS6, WCV90, WCV91, ZSS20].
Large-scale [ZSS20].
Lattice [AKBN89, MMR95, FH04].
Lauer [GM81].
Layout [KK98, LVV+83, GPWZ08, KF00].
Lazy [ABM93, FK00, HKR94, Hw91, TCVB14, Chi05].
Left [SS05a].
Leader [Hu93, KKM00].
Learned [HD92].
Learning [CGJ+97a, HOYY18, JCCO19, SR21].
Least [AB81, Bac84].
Least-Cost [AB81, Bac84].
Left [FKW98].
Left-Linear [FKW98].
Legacy [NCH+05].
Length [SMP10].
Lessons [URJ18, VMM+01].
Let [LY98].
Let-Polymorphic [LY98].
Level [Cam89, Fat82, GP95, YBJ16, CMS03, VJB10].
Lexical [HKR92].
Libraries [Dug92].
LIFE [AKP94].
Lifetime [HBM+06].
Lifetimes [Pea21].
Lightweight [Pea21, SW97b].
Like
Hua90, KN06. Limitations [CP17].
Linear-Time [YR94, BKRW98, BKRW05].
Linearity [KPT99]. Linearizability [HW90, DSW11].
Linguistic [LS83, Wei90, FGM+07a]. Link [DDD05].
Link-time [DDD05]. Linking [QL91, Dug02].
LIPS [CDFP89]. LISF [GCRN11].
LISP [Mul92, Pip97, SH89, Wat83]. LISP [GCRN11].
List [BC79, HIT97, Kau84, Sij89]. listing [MDJ05].
Literature [Oss83]. Live [MWB94]. Live-Structure [MWB94].
Liveness [ACW90, GC86, OL82, RY88, HD02]. LL [BF87]. Load [KPF95]. Loaded [BG89a].
Local [BDFZ09, CBDFG95, PT00, SDB20, TSB08, Wei89, Dan03, San96]. Locality [BAC16, MCT96, VALG05, ZSD09]. Locally [AB81, Bac84, Min84]. locating [JNGG10]. Locator [ZMVPJ17]. Lock [GEGP17, KS10]. Lock-Free [GEGP17]. lock-freedom [KS10]. locking [AFF06].
LOCKSMITH [PFH11]. Logic [AS89, AFV98, Apt81, BGL93, BL87, BCD90, BDJ13, BMT94, CS04, CES86, CFM94, DW99, Deb89, DL93, Deb95, DJ+96, JPP91, Kar84, LS84, Lam94, MW84, MSJ94, MMG92, SS98, Sok87, TK94, TB95, BBT97, BM01, BCG+97, BdlBH99, CU08, CG86, CSS99, DDV99, DPP00, GHB+96, GW99, HVB+99, HPS00, KWL09, LMD98, Leu04, PM06, RR04, SRW02, Yin11, dHB+96]. Logical [BN18, GGL15, GS98, TY18, RSL10, Tar07]. Look [DP82]. Look-Ahead [DP82]. Lookahead [KM81, MF88]. Loop [BAC16, CS87, MCT96, S797, RKSR12].
Loops [BAGM12, Boo82, CK94, DB85, FTTJ95, Hav97, Wat91, Ano02b, LS04, LSLR05, Ram99, RDG08, SGL96, UM02].
low [CSCM00]. low-end [CSCM00].}

Lower [FNGB20, PW94]. LR [ADGM91, BL94b, BF87, CPRT02, DMM88, Je03, JP17, KC01, LaL81, LaL84, SS82, ST00b]. LR-based [KC01].
M [Burd91, Mul92]. M-LISP [Mul92].
Machine-Specific [Gie83]. machinery [FKW00]. Machines [ACW90, Bee94, CGST95, GC86, KK98, PS93, PP91, Rob79, RCRH95, AY01, AG04, ABE+05, ABS09, TSY00, Pur91]. Madsen [Ell82, SM82]. Magma2 [Tur84].
Median [Cour80]. Medians [KRS84]. megaflops [MMG00]. member [KF00]. Memory
Noncorrecting [Ric85].
Nondeterminate [TK94].
Nondeterminism [Ber80, Hes88, WM95].
Nondeterministic [QG95, MT08].
Noninterfering [HPR89]. nonnumerical [ME97].
nonrectangular [JLF02]. nonscalars [CRN+08].
Nonsequentiality [Bar81].
Nonstrict [Blo94]. Nonterminating [ML21].
Nontermination [PM06]. normal [LMD98].
Normalize [CRN+08]. norms [BCG+07].
Notation [Rem81, Wil82b].
Note [Com80, CM93, MS88, WST85, Cob85, Pal11b, YK97]. Notes [Sku95].
Nothing [BDH+16]. Notion [LW94]. NP [Hor97].
NP-Hard [Hor97].
Numbers [GLR83]. numeric [Hau96].
Object [DF84, HU96, KH92, Ryu16, WST85, DS98, UM02]. Object-Oriented [HU96, Ryu16, BSvGF03, DMM01, JPS08, WJS00].
Obsidian [Gaz83]. Observation [LWR21].
Observations [Sha82]. obligations [DSW11].
Observability [Gaz83]. Observation [LWR21].
overhead [BP12, SS96]. overlays [SWU10].
Overload [Bak82]. overloading [SS05b].
Overhead [BP12, SS96]. overloads [SWU10].
Overload [Bak82]. overloading [SS05b].
Overview [AOC88]. ownership [DMM11, SS96].
Oz [VHB97].

Operations
[AKBLN89, CK94, Lee86, LS79]. Operator [CSV01, Hen83, LdR81]. Operators [Ive79, She91]. Optimal [BOV85, CGST95, FK85, JCM919, KRS94, Lar95, PB97, Hai98, JNZ06, KS96, MSRR00].
Optimality [CP96]. Optimally [BL94a].
Optimistic [PM04]. Optimization [Bee94, BBC16, Bly94, BAC16, BT93, DF84, DP97, DDH84, Dha91, DS88, FOW87, HG83, HOYY18, Pen83, PP94, RR819, SS82, Sor89, TVS82, Web95, Ass00, BHIK, KBC99, KF03, PE08, TVA07, ZP10, CG95, LAL84, OKN06].
Optimizations [CC95, JSB12, CGS03, CKT86, GMP00, SYK05]. optimize [DM01, VBLG04].
Optimized [CM93, Cop94, Hen82, WST85, DS98, UM02]. Optimizer [DF80, FSS83, DF91].
Optimizers [Gie83]. Optimizing [CEG07, JSB12, CGS03, CKT86, GMP00, SYK05]. optimize [DMM01, VBLG04].
Optimized
[AC94, AD98, Bur84, CJK95, DP97, DJF16, JPP91, JS94, SS98, BBTS07, DF11, FPS99, SKS11, SV19, SP97]. ordering [GS99]. Organization [Han81a]. Oriented [Bor81, Dar90, Ell82, FFF18, GTWA14, GKL94, GPX94, HU96, Ryu16, SM81, Tur84, YB87, YB88, BSvGF03, DWW08, DMM01, JPS08, WKD04, WP10, WJS00].
Sources [San09]. OSI [CDFP89]. Output [Ber80, BS83].
overload [KOE86]. overhead [BP12, SS96]. overloads [SWU10].
Overload [Bak82]. overloading [SS05b].
Overview [AOC88]. ownership [DMM11, SS96].
Oz [VHB97].

Package
[HL88]. Paper [GM81]. Parallel [ANP89, BOV85, BO94, BE13, Cha93, CGST95, CM91, CL94, DS83, Fos96, GLO88, GJ93, GPA01, HCP92, HIT97, JF81, Kna90, LHR19, Mis94, NSZS13, OAA88, Rao94, S88, BBYG05, CG86, GB99,
HBJ98, KSV96, LK02, MVV+01, RR03, YF98]. **Parallelism** [Bur84, GP95, KSV96, NB99, PW94, TCVB14, YBL16].

Parallelization [BAC16, BDJ13, PP94, BdhBH99, HAM+05].

Parallelizing [HP96, ME97, RD97].

Parameter [Gaz83, Zho96].

Parameterization [TWW82].

Parameterized [CGJ97b, CK93, Gaz83, RKSR12].

Parametric [HFC09, MMG92, SRW02, IV06].

Parenthesis [AS80].

Parlog [CG86].

Parsed [Wad90].

Parser [DDH84, JP17, LaL84, SS82].

Parsers [BN99, LaL81, MYD95, PK80, CPRT02, SJ06, ST00b].

Parsing [CH87, DMM88, Fis80, GM79, Lar95, RH87, Sam80, WG98, KO1].

Partial [LaL81, PA85, PA86a, PA86b, Apt81].

Partially [BLH12, Kob08, RR50].

Pointwise-Oriented [FFF+08].

Pattern [EGP14, ADK06, JdS09, Vdn06].

Pattern-Based [EJP14].

Patterns [GH80].

PDS [Han81b]. **PEAK** [PE80]. **Peephole** [DF80, DF81, Pem83, Tvs82]. **PegaSys** [Mh86]. **Pennello** [Sag86]. **Perfect** [Duc08].

Performance [HU96, MS+16, PB80, URJ18, KF00, PE08]. **Performed** [Coh91, Wbr91]. **Permission** [BPP16, SNS+14]. **Permission-Based** [BPP16, SNS+14]. **permissions** [Boy10].

Persisted [AM85]. **Petri** [JTM98]. **Petri-Net-Based** [JTM98]. **Phases** [Bar81]. **Philosopher** [CM84].

Philosophers [MS88]. **pi** [HR02, KPT99]. **pi-calculus** [HR02, KPT99]. **pict** [SWU10].

Pictures [MH86], **Pipeline** [HG83].

Pipelined [BG89b, LRR01, RDG08]. **piping** [ME97]. **pitfalls** [Mon08]. **PL** [CD79, CZ84, FFF+18], **PL/CS** [CD79]. **PL/CV3** [CZ84]. **place** [GW99].

Placement [DP93, GS99, vHK00]. **Platform** [TCP+17]. **pluggable** [MME+10].

Pluto [BAC16]. **Point** [CK94, Fat82, SBB+19, JG05, Han96, Mon08]. **Pointer** [LTMS20, LHR19, LS79, RR03, SDB20, HBC99, HVDH07, PKH07, RLS+01].

Pointers [SS13, RR05]. **Points** [GKM20, WKDO]. **Points-to** [GKM20].

Pointwise [VSS94]. **Policies** [NBG13, BDFZ09, FGM07]. **Policy** [Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, UJ92, BFG08].

policy-based [BFG08]. **Polyhedra** [GVC15]. **Polyhedral** [GVC15, QR00].

POLYLITH [Pur94]. **PolyMage** [JB20].

Polymorphic [BMR05, Dug99, Gor21, HT04, Hen93, KTR93, LO94, LY98, Oho95, SIG17, SV96, WJ98, BSvGF03, DWWW08]. **Polymorphism** [Bur99b, MDCB91].

Polynomials [Bz99b, MDCHB91, HFC09].

Polynomial [BAL70, CFG19]. **PolyTOIL** [BSvGF03]. **polyvariance** [LMD08].

Polyvariant [AC94, WJ98]. **POP** [FFF+18]. **POP-PL** [FFF+18]. **Portable** [DD84, Han81b, HK07]. **Possibly** [JP17, ML21]. **Postfix** [DS83]. **Postpass** [HG83]. **Power** [TWW82, SSD09].

Powerlist [Mst94], **PPMexe** [DKV07]. **PQ** [GZ05]. **PQ-encoding** [GZ05]. **Practical** [AD98, BAC16, BF87, CP17, Dha91, LR19, ND16, PB+15, SS13, TSL+02, WC97, Bou05, DR05, DVS07, DGS97, JN06, PFH11]. **Practice** [KRS94, Ryu16, Bla03, DRSS96].

Pragmatic [BDH+16]. **Pragmatics** [Gom92]. **Pre** [OLH+16]. **Pre-Analysis** [OLH+16]. **Precedence** [HO93, LdR81].
Bur84, Lam80]. **PROLOG**
[LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MWB94, NF89, Zho96].
Promotion [Bir84, Bir85].
Proof [AFdR80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Oh07]. **proof-carrying** [AM01].
Proof-Directed [BDJ13].
Proofs [Apt86, BC85a, CM86b, JW17, LY98, Oss83, GRSK+11].
Propagation [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].
Properties [ACW90, AS89, CIJGP18, Kar84, LM18, OL82, Ry88, TB95, Wei89, YS10].
Proposed [Fat82].
prossima [MP10b].
Protected [PAS+15, WJS+00].
Protocol [SL92, YS97].
Protocols [MB83, BFGT08, SS96].
Prototype [WCW90, WCW91].
Prototypes [HW82].
Provably [SDB20, GB99].
Provenance [ZSS20].
provenly [AAD+07].
Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].
Pruning [BN99].
PSG [BS86].
publish [Eug07].
publish/subscribe [Eug07].
Pure [BN18, Hu96, Pip97, Tar07].
Purpose [App94b, HSS+14, Spo86].
Pushdown [CBMO19].
PYE [TN19].

qualifiers [FJKA06].
Qualitative [CFNH18].
Quality [BHM+19].
Quantification [Vol91, Bur91].
Quantified [Gro06, STS03].
Quantitative [CFNH18].
Quantum [FDY12, BH99, Yin11].
Queries [Bal94, CGG+19].
Queuing [BB79].
Quiescence [CM86a].

R [AW82, CKT86, KMM+98].
race [AFF06, PFH11].
Races [KZC15].
Random [AS80].
Range [CG95].
Rank [Dam03].
Ranking [Lee09].
Ratio [CK94].
rational [GS11].
rationale [CMLC06].
Reach [FKW98].
Reachability [NS13].
Reactive [DFR15, AG04, DGG97].
read [AE01, PZJ05].
read-only [PZJ05].
read/write [AE01].
Readable [Spo86].
Reading [Pet83a].
Real [AL94, MMG92, RS84b, GH97, HK07, LS98, YMW97].
Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].
realities [Gor04].
Reals [DK17].
Reasoning [BKZOB13, BLRS12, BDP93, BP82, BH99, CB80, Lam88, LN15, Rao94, SDB20, TSBR08].
receive [Gor04].
receptive [ABL03].
Recipe [AL94].
reclassification [DDCG02].
recognition [ATD08].
Recognizer [GHR80].
Recognizing [BL94b].
Recombination [Kau84].
Recombination-Delaying [Kau84].
Recollection [BT93, SK88, Tic86, Tic88].
Reconciling [HU96].
Reconstruction [YR94].
Record [LS79, Oh05].
Reduction [AB81, ACS84, Bae84, BF87, GHH+19, PK80, Ric85, dJKVS12].
recurrences [VJB12].
Recursion [AK82, Col84, Hen93, KU893, Mis94, YK97].
Recursive [AC93, AK82, Ban87, CFG19, Coh83, Coh85, LBN17, Sij89, AB+05, AM01, CF04, Dug02, Pal98].
Recursively [BE13].
Reduce [BN99, MYD95, BALP06, KOE+06, SS96].
reduced [SG04].
Reducible [Hav97, JC97].
Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mul92, NN86, CSV01].
Redundancies [DS88, Sor89].
redundancy [KCL+99].
Redundant [Coh83, Coh85].
Reentrant [Bob80].
Reexamination [CG95].
Refactoring [Ste81, TFK+11].
Reference [Bob80, Pea21, Wis79, KSK07, KOE+06, LP06, MDJ05].
reference-counting [LP06].
References [Han92, TGT18, TGT20, SV96].
Referencing [LS81].
Referential [QG95].
Refinement [BBF+11, BKL+97, BCEM15, CM86a, DGL+79, GEGP17, JLP+14, MRGB88, SL92, AG04, QG95].
reflecting [HS11].
reflection [SW97a].
Regeneration [SR21].
Region [TB98, SYN06].
region-based [SYN06]. regions [RR05].
Register [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH98, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].
registers [ZP07].
Regular [CC97, HVP05, LaL81].
Relation [LBN17, MTG80]. Relational [BKOZB13, CB80, GS98, TLHL11, JJD98, JLRS10].
Relations [ELS+14, HT86, LH08].
Relationship [BCT94, CH90, GSO94, JLF02, LGAT00, PM04, PS99, PF96, TP04].
Register [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH98, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].
registers [ZP07].
Regular [CC97, HVP05, LaL81].
Relation [LBN17, MTG80]. Relational [BKOZB13, CB80, GS98, TLHL11, JJD98, JLRS10].
Relations [ELS+14, HT86, LH08].
Relationship [BCT94, CH90, GSO94, JLF02, LGAT00, PM04, PS99, PF96, TP04].
Register [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH98, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].
registers [ZP07].
Regular [CC97, HVP05, LaL81].
Relation [LBN17, MTG80]. Relational [BKOZB13, CB80, GS98, TLHL11, JJD98, JLRS10].
Relations [ELS+14, HT86, LH08].
Relationship [BCT94, CH90, GSO94, JLF02, LGAT00, PM04, PS99, PF96, TP04].
Register [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH98, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].
registers [ZP07].
Regular [CC97, HVP05, LaL81].
Relation [LBN17, MTG80]. Relational [BKOZB13, CB80, GS98, TLHL11, JJD98, JLRS10].
Relations [ELS+14, HT86, LH08].
Relationship [BCT94, CH90, GSO94, JLF02, LGAT00, PM04, PS99, PF96, TP04].
Solving

[GS11, HLI91, NSTD+15, SRW98]. Some

[AB94, AK82, Shaa82, Sor89]. Sometimes

[Gr79]. Sound [LLK+17]. Soundness

[Sok87]. source [HBG+09]. Space

[BP12, BB79, FLBB89, JP81, NB99, RD87, YF98, LS99, SS05a, SA00]. Space-Efficient

[JP81, NB99]. Space/time

[LLK+17]. Spatial

[Sok87]. Special

[Ah20, Wol92, Sag07]. Specialization

[AHJR14, BCP08, GJ05, HT04, SLC03]. specialization-point [GJ05]. Specializing

[BCD90]. Specific [ASAVF19, Gie83, Tra08]. Specification

[BCM99, CDFP89, E080, Fea87, GMH81, Jon94, Kam83, LN15, Lin93, LJ99, Loe87, Mal82, Mor88, PPS79, RY88, TWW82, LP99, LPS004]. Specificational

[MB83]. Specifications

[AL93, AL95, BNN18, CES86, DB85, Gaz83, Loe87, MWS4, MB83, Rei83, Sch85, Win87, Zav85, Zie94, vPS81, JJD98, YS97]. Specifying

[GM81, Lam83, RF97]. Speculative

[YBL16, GB99]. speculative

[KOE+06]. SPL [HSG17]. Split [Com80]. splitting

[J97, U90, W98]. SPMD

[W12]. SR [AOC+88]. SSA

[BDP14, GS95, KCL+99]. SSA-Based

[BDP14]. Stabilization

[GH03, DHS09]. Stabilizing

[BP89]. Stack

[CG8+03, FG03, L81, SDB20, CF94, Zho96]. Stack-Controlling

[L81]. Standard

[Fat82, HM03, Qia00, Bru99]. State

[ACW90, BLH12, CES86, GC86, PP81, Pur91, Zav85, AY81, AB+05, MB09]. Statement

[EL82, Mor88, SM81]. Statement-Oriented

[EL82, SM81]. Statements

[CF94]. States

[ADG91, CBMO19]. Static

[AKNP17, AC94, BM94, CGJ+97a, CF94, CFR+91, DL18, Deb89, HOYY18, LLK+17, LST98, MRGP20, MOS07a, Mye18, PW94, SBE+19, YS99, ZMVPJ17, CEI+07, GPF08, GZ04, HO07, PSS05, PFH11, RSL10, VJB12, WCM00, YF09, AFF06, FFLQ08]. Statically

[ACPP91]. Statistical

[LLK+17]. Statistics

[Lan80]. Staveren

[PB82, SM82]. Steensgaard-Madsen

[EL82, SM82]. Steensgaard

[AS80, KS88, KS89, ADR06, KK07]. Strong

[KZC15]. Structural

[SBH86, MTSS09]. Structurally

[HS11]. Structure

[BC79, GKL94, HM03, Mis94, MB94, She91, HY07]. Structure-Oriented

[GKL94]. Structured

[BM94, CHY12, GD82, Har80, LS81, Mur91, RR03]. Structures

[ANP89, Bob80, FL81, GEGP17, RCRH95, SS81, LPS04, RAB+07]. Study

[BHM+19, FT95, BK07, Bdh81, DF98, KF03, LS98]. Style

[BDM15, LR19]. Sublanguage

[DGL+79]. Sublinear

[RB78]. Sublinear-Space

[RB78]. Submodule

[MB83]. Subroutines

[SA99]. subscribe

[Eug07]. Subscribe

[CG95]. Subtyping

[AC96, AC93, GGL15, LN15, LR19, LBN97, LW94, XBS02, GZ05, IV06]. Subtyping-Relation

[LBN17]. SUIF

[HAM+05]. Supercompiler

[Tur86]. Superimposition

[Kat93]. Support

[Bal94, DS90, Fea87, LS83, MK94, We90, TSY00]. Supporting

[RCRH95]. Supports
23

[ABPS98]. Suppression
[DS88, FGL94, Sor89, JNGG10]. Survey
[Apt81, GPA+01]. Suppression
[CFM94]. Symbol
[ABR81, Rei83]. Symbolic
[Dil90, HP96, Hal85, Hen85, NC82, RR05, SBB+19, YMW97, BGP99, MPM03, CM93, WST85]. Symmetric
[FY85]. Symmetry
[ES97, SG04]. Synchronisation
[CHMY19]. Synchronization
[Bag89, DJP+16, Her91, KRS88, DS88, Eil82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moi83, MS88, NN86, Par90, PEMs83, Sor89, SM82, Tan83, Tie88, Vol91, WST85, Wir91, YBB88, MMG00]. Technique
[AW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNGG10, KB+99, RD97, SYN06]. Techniques
[AK82, CMN91, DF99, GLR83, How80, TWW82, WCW90, WCW91, BHK07, DED05, DEMD00, LS98, MSR00, SS96, TSL+02]. technology
[LS98]. Temporal
[AS89, CBDGF95, CES86, Kar84, Lam84, MW84, GS99, KWL09]. Temporal-ordering
[GS99]. temporaries
[RMH06]. Ten
[APT81]. Tensor
[RTP17]. Tentative
[Jon83]. Tenuring
[UJ92]. Term
[KKS94, MBT09, GRSK+11].
Termination
[AF84, APT86, BAGM12, BCG+07, CFNH18, CDK+18, DG19, Fra80b, GJ05, HSP83, JBJK18, MC82b, TM93, BAL07, BA08, DDV99, GRSK+11, Le09, PR07, SMP10, Fra80a, M881]. Test
[Wey83, WW95, Duc08]. Testing
[these]. Tests
[Col91, Koz97, Wir91, GZ05]. Text
[CC97]. Their
[Kam83, LaL84, SS82, PS96]. Theoretic
[ES97, Sha82, KV00]. Theoretical
[KR18]. Theories
[NSTD+15, Bou06]. Theory
[AB20, CZ84, KD94, KRS94, NG13, Ryu16, TLHL11, CGP09, MH06, Oho07, Pau01, SS05b, Bla03, FG03]. ThingLab
[Bor81]. things
[PM09]. Thinking
[WB16]. Thinning
[Web95]. Third
[Wol92]. ThisType
[Ryu16]. Thread
[YBL16].
Thread-Level [YBL16]. Threaded [JBK18, TSY00]. Three [Ose83]. Tichy [Tic88]. Tile [JB20]. tiling [JLF02, LS04, RKSR12]. Time [AL94, ABR81, BLH12, Coh91, DLR16, Hol87, ISY88, Jef85, Lam84, MMG92, PS93, RS84a, RS84b, TN91, Wir91, YR94, Zic94, BAL07, BALP06, BKR98, BKRW05, DDD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Mil85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YMW97, LW93]. Time-Constrained [Zic94, LPP01]. Time-Critical [PS93]. time-efficient [GB99, YF98]. Timed [Zic94]. Timeout [Lam84]. Timing [LJ99]. Tokenization [Rep98]. Tolerance [LJ99]. Tolerant [CS95, Lam84, AAE04]. Tool [CPS93]. Toolkit [BDFH97]. toolkits [VHM+01]. Tools [van88]. Top [SZLY21]. Top-down [SZLY21]. TOPLAS [Ano18, TGT20, MP10a, MP10b]. topology [DDM11]. Total [San96]. Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12]. Trace-Based [WGS92, WGS93, WM12]. traces [HBMc06, WR08]. Tracing [BL94a, DLR16, MM+07]. tradeoffs [ZGZ05]. Trailing [VR95]. Traits [DNS+06]. Transactional [URJ18, ABH11, CFP+04]. Transactions [Ano18, HKMN94, TGT20]. Transducer [DVM15]. Transducer-Based [DVM15]. Transformation [BKB80, Fea82, FL91, NSZS13, Wat91, RKRR04, San96, TSY00, W207]. Transformational [BDFH97, Bir84, Bir85, DSW82, OAA88, RC03]. Transformations [Bar85, EGM01, Geo84, Ldr81, LFF14, MS83, MCT96, Nie85, FGM+07a, KWLO9, MOS07a, VALG05, WS97, Hen83, NN86]. Transformers [Lam90, MMS96, MBT90]. TransformGen [GLK94]. Transforming [AWW95, BE94]. Transition [PR07]. Translation [AK87, BK11, Kat84, Son87, AAD+07, BGKR09, DP99, RC03]. Transmission [HL82]. Transparently [JSB+12]. Transport [Min84]. transpose [CRN+08]. Traversals [LPSO04]. Treatment [YB87, YB88]. Tree [AGTS9, BOVS5, BMW91, DVLM15, DSS83, Han81a, Hen83, Ldr81, GFM+07a]. Trees [Con80, GHS83, MTG80, Sip82, Wad90, ACM11, SGL97]. Treewidth [CLJG18, CGW+19]. trick [DMP96]. Truth [BDH+16]. TSL [LR13]. tuning [GMM99, PE08]. Tuples [Rem81]. Tutorial [GM81]. Two [BO94, CDFP98, GPWZ08, FMPS11]. Two-dimensional [GPWZ08]. two-variable [FMPS11]. Type [Bur90b, Car95, CEW14, Coh91, CZ84, Dug02, Eug07, HHPW96, HM93, Hen93, KPS92, KU93, KR01, Lam80, LO94, LST02, LY98, LP00, MRGP20, MP88, NGB13, Pad19, PO95, SA99, SM89, TWW82, TGT18, TGT20, Van06, Wal80, WT11, Wir88, WC97, BSvGF03, BCG+07, FJKA06, GFM07b, FM99, FF08, GZ07, GMZ00, HO07, HDH02, HY07, KF10, KS10, NP08, NCH+05, PT00, STSP05, TFK+11, TZ07, Wal81, Wir91]. Type-based [Eug07, LP00, BCG+07]. Type-Driven [TGT18, TGT20]. Type-Extension [Coh91, Wir91]. Type-Graphs [KPS92]. Type-preserving [LST02]. Type-Safe [Dug02, BSvGF03, NCH+05]. Typechecking [CL95, MBC04]. Typed [ACCP91, Geo84, Kob98, NN86, WCM00, AAR+10, LP99, MWWC99]. Types [AFF06, AC93, BB94, BCEM15, DD85, EO80, FFLQ08, GEGP17, HL82, Hess88, Jen97, Kam83, LdLS9, LO94, LBN17, Loc87, Mal82, Miq19, MP88, WL85, Wei89, Wei90, AM01, BBF+11, Dan03, DDM11, DMM01, Gro06, GPV07, HPV05, IV06, MME+10, PS96, Pal98, STS03, SP07]. Typestate [COE+20, GTWA14]. Typestate-Oriented [GTWA14]. Typing
ultimate [PS08]. Ultracomputers [Sch80].

Unassigned [Win84]. Unbounded [LWR21, BGP99]. uncaught [LP00].

Undecidability [Ram94, Rep00, Cha02].

undecidable [LP00]. Understandable [MSM +16]. Understanding [ST00a]. Undo [Lee86].

undo [RKRR04]. unfold [RKRR04]. Unidirectional [Pet82].

unification [MM82, DRSS96]. Unified [VSS94]. Uniform [DB85]. unfold/fold [RKRR04].

Uniformly [DDM11]. unifying [TVA07]. unique [Van06]. UNITY [Pau01, TB95].

Upper [PW94]. Usage [MS83, BDFZ09, IK05, QR00]. Use [FOW87, GH80, H94, LaL84, PPS79, She91, SS82, CC97]. usefulness [HDL02]. User [ACS84, DS90, Mye90, Wa180, Wa181, Wat83, van88]. User-Defined [Wa180, Wa181].

Using [AGT89, Bob80, CGJ +97a, CES86, CH87, DP93, Dii90, DMM01, DJP +16, FLBB99, GSW95, GS094, HRR90, JTM98, Kar84, LaL89, Lam84, LM18, LWR21, Mye90, Ode93, Pet83b, PP94, PBR +15, SS84, SS96, Sok87, SL98, TVS82, ACM11, BH99, CSW06, CGS +03, DR05, GS99, GCRN11, KWL09, KSK97, MTSS09, RD03, SLZY21, ST00a, SGL96, TFK +11, VJB12, Xia07, YUW02, ZSD09, Pem83]. Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KC01, MOS07a]. Value [HL82, HLT05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Han92, Wet82]. Variable [MS83, MTG80, FMOPS11, GLM95]. Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB +99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NcS00]. Vector [AK87, Bud84, CBMO19, Fis80, FTJ95, KD94, Per79, KK07].

Verifiable [YB85]. Verification [App15, BDP14, BCD +15, CDF89, CES86, CPS93, CHMY19, Dii90, EGP14, GL94, JKB18, Jon94, JTM98, KKW14, LFF14, LJ99, LS79, NGB13, Ry88, SYZ21, BDL +08, CEI +07, GF08, GM12, Qia00].

Volpano [Bur91]. Volume [Ano18, TGT20]. vs [HR02].

W [Tic88]. Wait [Her91]. Wait-Free [Her91]. Wait-Free [BP82]. Warp [LW03]. way [VHM +01]. Weak [AMT14, KZC15].

weakening [SYH+07]. Weaker [Boo82]. web [BF08, BLRS12, CHY12, CGP09, CMS03]. Weight [GHS83]. While [Pet83a, BCS85, GM81]. while-Programs [BCS85]. Whole [BDH +16]. Widening [KKW14, VJB12]. win [Lam90]. Within [FKW98]. Without [Cop94, Ode93, AS89, Cas95, Sto04, VR95].

Witnessing [TA08b]. Workbench [CPS93].

World [GG85, DF11].

World-Model-Based [GG85]. Worst
[CFG19, WW95]. **Worst-Case** [CFG19]. *wp* [BH99]. *write* [AE01]. **Writing** [Pet83a, Win87]. **WYSINWYX** [BR10].

X [OLH+16, MSM+16]. **X-Sensitive** [OLH+16]. **X10** [GHH+19]. **XARK** [ATD08]. **XML** [HVP05, HFC09]. **XSL** [MOS07a].

Years [Apt81].

References

Ancona:2007:PCT

Attie:2004:SFT

Arbab:1994:SCD

Aartoft:2020:TSI

REFERENCES

Apt:1998:AIL

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

Attali:1996:NSE

REFERENCES

Alur:2011:SMC

Abadi:1991:DTS

Ashley:1998:PFF

Afek:1994:BFF

Aggarwal:1990:ALP

Ancona:1991:ECL

Ager:2006:FPE

Attie:1998:SCS

Attie:2001:SCP

Apt:1984:MDT

Appel:1994:E

Apt:1980:PSC

Abadi:2006:TSL

Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking: Static

Alpuente:1998:PEF

Appel:1993:Eb

Alur:2004:MRH

Aung:2014:SS

Ahmed:2020:ISI

Arsac:1982:STR

Allen:1987:ATF

Ait-Kaci:1989:EIL

Alglave:2017:DSF

Ait-Kaci:1994:FPC

Abadi:1993:CS

REFERENCES

REFERENCES

Anonymous:1982:IA

Anonymous:1983:IA

Anonymous:1984:IA

Anonymous:1985:IA

Anonymous:1986:AI

Anonymous:1986:IA

Anonymous:1987:IA

Anonymous:1988:AI

Anonymous:1988:IA
<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1989:AI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1989:IA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1990:AI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1990:IA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1991:AI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1991:IA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1992:AI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1992:IA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1994:AI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Anon</th>
<th>Anonymous:1995:AI</th>
</tr>
</thead>
</table>
Anon:1998:AI

Arvind:1989:SDS

Anson:1987:GIC

Andrews:1988:OSL

REFERENCES

REFERENCES

Apt:2000:RCC

Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Andersen:2019:FSP

Austin:2017:MFD

Assmann:2000:GRS

Arenaz:2008:XE

Ashcroft:1982:RS

Avrunin:1985:DAD

Blume:1999:HM

[BA99] Matthias Blume and Andrew W. Appel. Hierarchical modularity. *ACM Transactions on...

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP
Thomas Ball. Efficiently counting program events with support for on-line queries. ACM Transactions on Programming Languages and Systems, 16(5):1399--
REFERENCES

1410, September 1994. CO-
DEN ATPSDT. ISSN 0164-0925
to (print), 1558-4593 (electronic).

URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/]
186027.html.

Ben-Amram:2007:PTA

[BAL07] Amir M. Ben-Amram and
Chin Soon Lee. Program ter-
mination analysis in polyno-
mial time. ACM Transactions
on Programming Languages and
Systems, 29(1):5:1–5:37, Jan-
uary 2007. CODEN ATPSDT.
ISSN 0164-0925 (print), 1558-
4593 (electronic).

Brecht:2006:CGC

[BALP06] Tim Brecht, Eshrat Arjomandi,
Chang Li, and Hang Pham. Con-
trolling garbage collection and
heap growth to reduce the exe-
cution time of Java applications.
ACM Transactions on Program-
mng Languages and Systems,
CODEN ATPSDT. ISSN 0164-
0925 (print), 1558-4593 (elec-
tronic).

Barstow:1985:CTD

[Bar85] David Barstow. On conver-
gence toward a database of pro-
gram transformations. ACM
Transactions on Programming
Languages and Systems, 7(1):
1–9, January 1985. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/]
2364.html.

Banerjee:2011:MFT

Utpal Banerjee. Mathematical
foundation of trace scheduling.
ACM Transactions on Program-
ing Languages and Systems, 33
(3):10:1–10:24, April 2011. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Barnden:1981:NCA

[Bar81] J. A. Barnden. Nonsequential-
ity and concrete activity phases
in discrete-event simulation lan-
guages. ACM Transactions on Program-
mng Languages and Systems,
3(3):293–317, July 1981. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Banerjee:1987:MSR

[BB79] Eric Beyer and Peter Buneman.
A space efficient dynamic al-
location algorithm for queuing
messages. ACM Transactions on Program-
mng Languages and Systems,
1(2):287–294, October 1979. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Banerjee:2011:MFT

Debasish Banerjee. A method-
ology for synthesis of recur-
sive functional programs. ACM
Transactions on Programming
Languages and Systems, 9(3):
441–462, July 1987. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/]
24071.html.

Banerjee:2007:PTA

Beyer:1979:SED
REFERENCES

Bergeretti:1985:IFD

Brogi:1991:CLS

Bugliesi:2004:ACM

Bossi:1990:MSL

Betts:2015:DIV

Bugliesi:2015:ART

Benton:2004:MCA

REFERENCES

Botincan:2013:PDP

Bernardeschi:2008:DBV

Bueno:1999:EAI

Biernacki:2015:DCP

Bowman:1993:RAN

REFERENCES

REFERENCES

REFERENCES

Blackburn:2007:PBP

Berger:2019:IPL

Bird:1984:PAS

Bird:1985:APA

Barthe:2011:AMC

Broy:1980:DIA

Breuer:1997:RCS

[Barthe:2013:PRR]

[Buchsbaum:1998:NSL]

[Buchsbaum:2005:CNS]

[Bic:1987:DDM]

REFERENCES

REFERENCES

Jürgen Börstler, Ulrich Möncke, and Reinhard Wilhelm. Table compression for tree automata.

Anindya Banerjee, David A. Naumann, and Mohammad Nikouei. A logical analysis of framing for specifications with pure method calls. *ACM Transactions on Program-
REFERENCES

Bohm:1994:TIP

Bobrow:1980:MRS

Boehm:1985:SEA

Boom:1982:WPL

Borning:1981:PLA

Boute:1988:SSP

Boute:1992:EDF

REFERENCES

REFERENCES

Balabonski:2016:DFM

Baumgartner:1997:ISC

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. ACM Transactions on Programming Languages and Systems, 5(2):223–235, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Bahlke:1986:PSF

Rolf Bahlke and Gregor Snelting. The PSG system: From formal language definitions to interactive programming environments. ACM Transactions on Programming Languages and Systems, 8(4):547–576, October 1986. CODEN ATPSDT. ISSN 0164-0925
Bermudez:1988:NRB

Bruce:2003:PTS

Burk:1993:IOE

Burk:1990:IBA

Budd:1984:ACV

Burton:1984:ACP

Burk:1999:IBA
REFERENCES

Burton:1991:TCA

Bur:1990b, Vol91]

Broy:1987:ADP

Broy:1980b, Broy91]

Casanovade1980:FSR

Marco R. Casanova and Phillip A. Bernstein. A formal system for

Charron-Bost:1995:LTP

Cotton-Barratt:2019:MVP

Click:1995:CAC

Clarke:1997:URE

Constable:1979:HAF

Carchiolo:1989:ELT

Chen:2018:BPP

Casey:2007:OIB

Chander:2007:ERB

Clarke:1986:AVF

Chen:2014:ETI

Choi:1994:SSP

REFERENCES

Cytron:1995:ECN

Clements:2004:TRM

Cortesi:1997:CAI

Chatterjee:2019:NPW

Codish:1994:SAC

Chatterjee:2018:AAQ

Cortes:2004:HLA

Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers, and Frederick Smith. Hancock: a language for analyzing transactional data streams. *ACM

Cytron:1991:ECS

Clark:1986:PPP

Chin:1995:ROA

Christensen:2004:OPE

Chatterjee:2019:FAD

Calder:1997:EBS

Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael Mozer, and Benjamin Zorn. Evidence-based static branch prediction using machine learning. *ACM Transactions on Programming Languages and Systems*, 19(1): 188–222, January 1997. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

REFERENCES

Charlesworth:1987:MR

Chatterjee:1993:CND

Charlesworth:2002:UAD

Chitil:2005:PPL

Cogumbreiro:2019:DDV

Carbone:2012:SCC

Cameron:1984:GBD

Robert D. Cameron and M. Robert Ito. Grammar-based definition of metaprogramming systems.
REFERENCES

ACM Transactions on Programming Languages and Systems, 6 (1):20–54, January 1984. CODEN ATPSRT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Chatterjee:2018:AAP

Cejtin:1995:HOD

Consel:1993:PPE

Carr:1994:IRM

Cooper:1986:IIA

Crowl:1994:PPC

REFERENCES

REFERENCES

Cohen:1983:ERR

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC

Carle:1995:MBI

Carle:1996:OCP

Alan Carle and Lori Pollock. On the optimality of change prop-

Cohen:2017:LPC

Corchuelo:2002:RSE

Cuny:1987:CDD

REFERENCES

[Collberg:2007:DGB] Christian S. Collberg, Clark Thomborson, and Gregg M. Townsend. Dynamic graph-
REFERENCES

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FAC

Dillon:1988:CET

Dunlop:1985:GSU

Douglas D. Dunlop and Victor R. Basili. Generalizing specifications for uniformly imple-

deBruin:1985:DSD

Donahue:1985:DTV

DeSutter:2005:LTB

Drossopoulou:2002:MDO

Dencker:1984:OPT

Dietl:2011:SOT

Decorte:1999:CBT

Stefaan Decorte, Danny De Schreye, and Henk Vandecasteele. Constraint-based termination analysis of logic pro-

[DF80] Jack W. Davidson and Christopher W. Fraser. The design and application of a re-targetable peephole optimizer. *ACM Transactions on Programming Languages and Systems*, 2
REFERENCES

REFERENCES

[DH00] Marí García De La Banda, Manuel Hermenegildo, and Kim Marriott. Independence in
REFERENCES

[DK17] Eva Darulova and Viktor Kunčak. Towards a compiler for reals. *ACM Transactions on Pro-

David:2018:PSP

Drinic:2007:PPC

Debray:1993:CAL

Danievic:2018:SBS

Diogene:2016:AIB

Degano:1988:EIL

Diwan:2001:UTA

[Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Using types to analyze and optimize object-oriented programs. ACM Transactions on Programming Languages and Systems, 23(1):30–72, January 2001. CO-

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärtl, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Das:2005:PFI

[DR05]

Drec

KS83

Drechsler:1988:TCS

Dawson:1996:PPU

[DS90]

Dewan:1990:ASA

REFERENCES

[Dan:2015:FTB] Loris D’Antoni, Margus Veanes, Benjamin Livshits, and David

Debray:1989:FCL

Dantas:2008:APA

Elder:2014:ADA

Eilers:2020:MPP

Ellis:1982:TCS

Ernst:1980:SAD

Emerson:1997:USW

Eugster:2007:TBP

Fateman:1982:HLL

Feng:2012:BQP

Feather:1982:SAP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph

Foster:1994:CAS

Fricke:1995:ICI

Francez:1985:SIC

George:1996:IRC

Gazinger:1983:PSP

Greiner:1999:PTE

Gouda:1986:PLN
REFERENCES

REFERENCES

[Griswold:1981:GI] Ralph E. Griswold, David R. Hanson, and John T. Korb. Gen-
Ghosh:1993:ASP

Graham:1980:ICF

Gallager:1983:DAM

Giegerich:1983:FFD

Gupta:1993:APE

Glenstrup:2005:TAS

Garlan:1994:TAM

[David Garlan, Charles W. Krueger, and Barbara S. Lerner. TransformGen: Automating the maintenance of structure-oriented environments. *ACM Transactions on Programming Languages and Systems*, 16(3):]
REFERENCES

Gharat:2020:GPG

Gries:1980:APC

Grumb redo:1994:MCM

Gavanelli:2005:DIK

Greenberg:1988:SEA

Gottlieb:1983:BTE

Ghezzi:1979:IP

Carlo Ghezzi and Dino Mandrioli. Incremental parsing.
REFERENCES

[Irene Greif and Albert R. Meyer. Specifying the semantics of while programs: a tutorial and critique of a paper by Hoare and Lauer. ACM Transactions on Programming Languages and Systems, 3(4):484–507, October 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

Gange:2015:IAM

Gomard:1992:SAP

Gorlatch:2004:SRC

Gordon:2021:PIS

Grit:1981:DIT

Girkar:1995:ETL

Gupta:2001:PEP

REFERENCES

REFERENCES

Hailperin:1998:COC

Hailperin:2005:CCC

Halstead:1985:MLC

Hansen:1981:CMI

Hanson:1981:APP

Hansen:1992:SRF

Hansen:1992:SRF

[HAM+05] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica S.

REFERENCES

Hertz:2006:GOL

Hickey:1992:CAM

Huang:2010:DBR

Holt:1982:ISS

Hirzel:2002:UTL

Hennessy:1982:SDO

Henderson:1983:TCL
Peter B. Henderson. Technical correspondence: On LaLonde and des Rivieres’ “Handling Operator Precedence in Arithmetic

Haruo Hosoya, Alain Frisch, and Giuseppe Castagna. Parametric

Hennessy:1983:PCO

Hall:1996:TCH

Hilfinger:1988:APD

Hu:1997:FDE

Heering:1985:TMP

Henzinger:2007:EMP

Haines:1994:CFC

N. Haines, D. Kindred, J. G. Morrisett, and S. M. Nettles. Composing first-class

Heering:1992:IGL

Heering:1994:LIP

Herlihy:1982:VTM

Hirschowitz:2005:MMC

Hague:2019:CMC

Hull:1984:CSP

Harper:1993:TSS

REFERENCES

Hamlen:2006:CCE

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for enforcement mechanisms. ACM Transactions on Programming Languages and Systems, 28(1): 175–205, January 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Hicks:2005:DSU

Hoffman:1982:PE

Higuchi:2007:STS

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

[HR02] Matthew Hennessy and James Riely. Information flow vs. resource access in the asynchronous pi-calculus. *ACM Transactions on Programming Languages and Systems*, 24(5):
REFERENCES

Horwitz:1990:ISU

Harrold:1994:ECI

Huang:2011:MSS

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE
Susan Horwitz and Tim Teitelbaum. Generating editing environments based on relations and attributes. *ACM Transactions on Programming Languages and Systems*, 8(4):577–608, October 1986. CODEN

Horwitz:1990:ISU

Harrold:1994:ECI

Huang:2011:MSS

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE
REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Hirzel:2007:FOP

Hosoya:2005:RET

Holt:1982:MIE

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS

Igarashi:2005:RUA

Igarashi:2001:FJM

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ.
Inoue:1988:AFP

Igarashi:2006:VPT

Iverson:1979:O

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

Jangda:2020:EFT

Jacobs:2018:MTV

[Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper.] Modular ter-
mination verification of single-threaded and multithreaded programs. ACM Transactions on Programming Languages and Systems, 40(3):12:1–12:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Janssen:1997:MGR

Jacek:2019:OCW

Jen:2003:GLS

Jensen:1997:DPA

Juelich:1981:CAS

Jeon:2019:MLA

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. A machine-learning algorithm with disjunctive model for data-driven program analysis. ACM
REFERENCES

Joung:1994:CFO

Joisha:2012:TTE

Juan:1998:CVC

Jakobs:2017:PPF

Kaiser:1989:IDS

Kamin:1983:FDT

REFERENCES

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO

Kim:2001:ER

Kennedy:1999:PRE

REFERENCES

Khedker:1994:GTB

Kistler:2000:ADM

Knowles:2010:HTC

Kistler:2003:CPO

Kaiser:1992:OBP

Kennedy:1998:ADL

Karkare:2007:IBC

Korach:1990:MTD

Kawahito:2006:ESE

Kennis Way:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

[KL81] Bent Bruun Kristensen and Ole Lehrmann Madsen. Meth-

REFERENCES

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Kim:2018:TFS

Korach:1984:DAF

Kruskal:1988:ESM

Knoop:1994:OCM

Kennaway:1988:DSC

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Kennaway:1989:CDS

Richard Kennaway and Ronan Sleep. Corrigendum: “Director Strings as Combinators”.

Kobayashi:2010:HTS

Knedler:1996:PFE

Kfoury:1993:TRP

Kuperman:2000:ATA

Kalvala:2009:PTU

Sara Kalvala, Richard Warburton, and David Lacey. Program transformations using tem-

REFERENCES

REFERENCES

[LGatti:2017:SRC]
Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal.
On subtyping-relation completeness, with an application to iso-
recursive types. ACM Transactions on Programming Lan-
ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Lozano:2019:CRA]
Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort
Blindell, and Christian Schulte.
Combinatorial register alloca-
tion and instruction scheduling.
ACM Transactions on Program-
ing Languages and Systems, 41
(3):17:1–17:??, July 2019. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

[LCBS19]
Han B. Lee, Amer Diwan, and
J. Eliot B. Moss. Design, im-
plementation, and evaluation of
a compilation server. ACM
Transactions on Programming Languages and Systems, 29(4):
18:1–18:40, August 2007. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

[MaLonde:1981:HOP]
Wilf R. LaLonde and Jim des
Rivieres. Handling operator
precedence in arithmetic expres-
sions with tree transformations.
ACM Transactions on Program-
ing Languages and Systems, 3
(1):83–103, January 1981. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
See remarks [Hen83, LaL83].

[LeMetayer:1988:AAC]
Daniel Le Métayer. ACE: An
automatic complexity evaluator.
ACM Transactions on Program-
ing Languages and Systems, 10
(2):246–266, April 1988. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://dl.acm.org/ft_ga
teway.cfm?id=3332373.

[Liao:1996:SAD]
Stan Liao, Srinivas Devadas, Kur-
t Keutzer, Steven Tjiang,
and Albert Wang. Storage as-
signment to decrease code size.
ACM Transactions on Program-
ing Languages and Systems, 18(3):
235–253, May 1996. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/
42347.html.

[Leeman:1986:FAU]
George B. Leeman, Jr. A for-
mal approach to undo opera-
tions in programming languages.
ACM Transactions on Program-
ing Languages and Systems, 8
REFERENCES

Lee:2009:RFS

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB

Lueh:2000:FBR

Lycklama:1991:FCF

Lhotak:2008:RAB

Ondřej Lhoták and Laurie Hendren. Relations as an ab-

Liu:2019:RIP

LK02

Lindstrom:1979:BGC

Lin:1993:PIA

Lee:2017:SNS

Liu:1999:SVF

[LM18] Jacob Lidman and Sally A. Mckeen. Verifying reliability properties using the hyperball abstract domain. *ACM Transactions on Programming Languages and Systems*, 40(1):3:1–3:??, Jan-

Lidman:2018:VRP
REFERENCES

January 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[LP80]
REFERENCES

REFERENCES

5:1–5:??, March 2019. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Luckham:1979:VAR

Leverett:1980:CSD

Lindstrom:1981:RRB

Liskov:1983:GAL

Lamport:1984:HLC

Lang:1998:SAE

Levi:2003:MSA

Li:2004:ATI

[LS04] Zhiyuan Li and Yonghong Song. Automatic tiling of iterative

\textbf{Liquori:2008:FME}

\textbf{Liu:2009:DRE}

\textbf{Liu:2005:OAA}

\textbf{Lamp:1982:BGP}
Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. \textit{ACM Transactions on Programming Languages and Systems}, 4(3):382–401, July 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the encrypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

\textbf{Liu:1998:SCI}

\textbf{League:2002:TPC}
REFERENCES

[Liu:2021:ICU] Peizun Liu, Thomas Wahl, and Thomas Reps. Interprocedural context-unbounded pro-

REFERENCES

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

Moriconi:1986:PSP

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

[Min84] Naftaly H. Minsky. Selective and locally controlled transport

Miquey:2019:CSC

Misra:1981:EPE

Misra:1986:AMA

Misra:1994:PSP

Misra:1980:DMI

Masud:2021:SCD

Martelli:1982:EUA

Myers:1989:RRA

Markstrum:2010:JDP

Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Masticola:1995:LFM

Stephen P. Masticola, Thomas J.

Masticola:1995:LFM

Morgan:1996:PPT

Morgan:1988:SS

Mohan:1981:TCF

Muller-Olm:2007:AMA

Monniaux:2008:PVF

Moller:2007:SVX

Murer:1996:IAS

[Moore:2002:AC]

[McKinley:2007:ECG]

[McKinley:2010:DVT]

Kathryn S. McKinley and Keshav Pingali. La prossima vita at TOPLAS. ACM Transactions on Programming Languages and Systems, 32(6):20:1, August 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[McKinley:2010:PVT]

Menon:2003:FSA
REFERENCES

REFERENCES

Maassen:2001:EJR

Manna:1980:DAP

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

McKenzie:1995:ERS

REFERENCES

210193.html. See failure report [BN99].

Narayanan:2020:SDV

Norris:2016:PAM

Nelson:1989:GDC

Nguyen:2005:EEA

Nielsen:1985:PTD

Nix:1985:EE

Nielsen:1986:TCC

[NN86] Flemming Nielson and Hanne Riis Nielsen. Technical correspon-
REFERENCES

Nelson:1979:SCD

Naik:2008:TSE

Nanda:2006:ISM

[Nikolic:2013:RAP]

[Nowatzki:2015:SFS]

[Nandivada:2013:TF]

[Olderog:1988:FPP]

REFERENCES

Odersky:1993:DCD

Olmedo:2018:CPP

Ogasawara:2006:EED

Owicki:1982:PLP
Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent programs. ACM Transactions on Programming Languages and Systems, 4
REFERENCES

Oh:2016:SXS

Odersky:2004:GE

Oppen:1980:P

Ossefort:1983:CPC

OYR09

Pingali:1985:EDD

Pingali:1986:CFI

References

Pingali:1986:EDD

Padovani:2019:CFS

Palsberg:1995:CAC

Palsberg:1998:EBF

Palsberg:2011:E

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

REFERENCES

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

Pingali:1997:OCD

Papadimitriou:1980:PBH

Porter:2015:PFG

circular extrema problem. *ACM Transactions on Programming Languages and Systems*, 4(4): 758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of \(n\) uniquely numbered processes in a ring. The algorithm requires \(O(n \log n)\) messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

Pratikakis:2011:LPS

Patrignani:2021:RSC

Poletto:1999:CTL

[P07] Andreas Podelski and Andrey Rybalchenko. Transition pred-

REFERENCES

Pearlmutter:2008:RMA

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SAU

Pugh:1998:CBA

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Rao:1994:RAP

Reiter:1994:HSR

Ramsey:2003:TAB

Rogers:1995:SDD

Anne Rogers, Martin C. Carlisle, John H. Reppy, and L. J.

Richardson:1993:DPL

RCS93

Reps:1987:SSE

[RD87]

Rinard:1997:CAN

Rinard:2003:ESB

Rinard:2003:ESB

Rossberg:2013:MIM

Andreas Rossberg and Derek Dreyer. Mixin’ up the ML module system. *ACM Transactions on Programming Languages and Systems*, 35(1):2:1–2:??, April 2013. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Rong:2008:RAS

REFERENCES

REFERENCES

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Ruggieri:2010:TLC

[RM10] Salvatore Ruggieri and Fred Mesnard. Typing linear con-

Rinard:1998:DIE

Ryder:2001:SIM

Rival:2007:TPA

Ruggieri:2010:TLC

[RM10] Salvatore Ruggieri and Fred Mesnard. Typing linear con-
REFERENCES

[Rosenkrantz:2006:MMA]

[Robertson:1979:CGS]

[Rinetzky:2008:CPF]

[Rugina:2005:SBA]

[Rugina:2003:PAS]

[Ryder:1988:IDF]

[Rosa:2019:AOT]
REFERENCES

[RY88] Joylyn Reed and Raymond T. Yeh. Specification and verification of liveness properties...

Ryu:2016:TOO

Sukyoung Ryu. ThisType for object-oriented languages: From theory to practice. *ACM Transactions on Programming Languages and Systems*, 38(3):8:1–8:??, May 2016. CODEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Stata:1999:TSJ

Shao:2000:ESS

Sager:1986:SPC

Sagiv:2007:ISE

Samet:1980:CAP

Sands:1996:TCL

David Sands. Total correctness by local improvement in the transformation of functional programs. *ACM Transactions on Programming Languages and Systems*, 18(2):175–234, March 1996. CODEN ATPS DT. ISSN 0164-0925
Sangiorgi:2009:OBC

Solovyev:2019:REF

Spoto:2019:SII

Skorstengaard:2020:RAM

REFERENCES

Swalens:2021:CCC

Sampaio:2013:DA

Strickland:2013:CFC

Sethi:1983:CFA

Sistla:2004:SRS

Sreedhar:1996:ILU

REFERENCES

REFERENCES

Sijtsma:1989:PRL

[Sij89]

Sipala:1982:CSB

[Sip82]

Sites:1979:CLI

[Sit79]

Spoto:2003:CAA

[SJ03]

Scott:2006:RNG

[SJ06]

Smans:2012:IDF

[SJP12]

Schwanke:1988:SR

[SK88]

Sangiorgi:2011:EBH

[SKS11]
REFERENCES

(print), 1558-4593 (electronic).

[Sou84] N. Soundararajan. Axiomatic semantics of communicating se-

Sansom:1997:FBP

Simonet:2007:CBA

Spooner:1986:MAR

Sekar:1995:FSA

Shen:2021:ALI

Suhendra:2010:SA

Sagiv:1998:SSA

[Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving

Sagiv:2002:PSA

Soisalon-Soininen:1982:IEE

Schlichting:1984:UMP

Skeppstedt:1996:UDA

Sagonas:1998:AMT

Shasha:1988:ECE

Schulte:2005:WDB

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:EEC

Staiger-Stöhr:2013:PIA

Sneyers:2009:CPC

Schonberg:1981:ATS

Sippu:1983:SEH

Snelting:2000:UCH

Sperber:2000:GLP

Steimann:2018:CBR

Stone:2004:EOL

Saha:2003:IAQ

Shao:2005:TSC

Smith:1996:PTV

[SV96] Geoffrey Smith and Dennis Voilpano. Polymorphic typing of

Suganuma:2006:RBC

Seo:2007:GDW

Swinehart:1986:SVC

Sanan:2021:CCT

Terauchi:2008:CCC

Terauchi:2008:WSE

Tai:1979:NSG

Tanenbaum:1983:TCT

REFERENCES

Tardieu:2007:DLS

Tsay:1995:DFP

Tofte:1998:RIA

Trinder:2017:SRI

Tzannes:2014:LSR

Tip:2011:RUT

Frank Tip, Robert M. Fuhrer, Adam Kieżun, Michael D. Ernst, Ittai Balaban, and Bjorn De

REFERENCES

Tripakis:2011:TSR

Tel:1993:DDT

Thammanur:2004:FME

Tra08

Torp-Smith:2008:LRA

Tip:2002:PET

Tang:2000:PTR

Turini:1984:MLO

Turchin:1986:CS

Thies:2007:STU

Tanenbaum:1982:UPO

Thatcher:1982:DTS

Toninho:2018:ISB
REFERENCES

[Van96a] Brad Vander Zanden. An incremental algorithm for satisfying hierarchies of multiway
REFERENCES

Vansummeren:2006:TIU

Vera:2004:FAF

Venkatesh:1995:ERD

VanRoy:1997:MOD

VonHanxleden:2000:BCP

VanDenBrand:2002:CLD

REFERENCES

2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

VonBank:1994:UMP

VanNieuwpoort:2010:SHL

Waddle:1990:PTC

Wallis:1980:ERO

Wallis:1981:CER

Wallis:1982:DTC

Waters:1983:UFC

Waters:1991:ATS
REFERENCES

ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/1
102806.html.

Waters:1994:CBP
[Wat94] Richard C. Waters. Cliche-based program editors. ACM
Transactions on Programming
Languages and Systems, 16(1):
102–150, January 1994. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/1
174628.html.

Wright:1997:PST
[WC97] Andrew K. Wright and Robert
Cartwright. A practical soft
type system for Scheme. ACM
Transactions on Programming
Languages and Systems, 19(1):
87–152, January 1997. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/citations/journals/toplas/1
1997-19-1/p87-wright/.

Walker:2000:TMM
[WCM00] David Walker, Karl Crary, and
Greg Morrisett. Typed memory
management via static capabilities. ACM
Transactions on Programming
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/citations/journals/toplas/1
2000-22-4/p701-walker/.

Wileden:1990:CEO
[WCW90] Jack C. Wileden, Lori A. Clarke,
and Alexander L. Wolf. A
comparative evaluation of object
definition techniques for large prototype systems. ACM
Transactions on Programming
Languages and Systems, 12(4):
670–699, October 1990. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/1
88639.html. See corrigenda [WCW91].

Wileden:1991:CCE
[WCW91] Jack C. Wileden, Lori A. Clarke,
and Alexander L. Wolf. Corri-
genda: “A Comparative Evalu-
ation of Object Definition Tech-
niques for Large Prototype Sys-
tems”’. ACM Transactions on
Programming Languages and
Systems, 13(1):179, January
1991. CODEN ATPSDT. ISSN
0164-0925 (print), 1558-4593
(electronic). See [WCW90].

Webber:1995:OFP
[Web95] Adam Webber. Optimization of functional programs by gram-
mar thinning. ACM Transactions on Programming
Languages and Systems, 17(2):293–330, March 1995. CODEN
ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).
URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/1
201067.html.
REFERENCES

Weihl:1989:LAP

Weihl:1990:LSA

Wetherell:1982:EDV

Weyuker:1983:ATD

Wagner:1998:EFI

Widom:1992:TBN

Widom:1993:CTB

REFERENCES

(184)

Wright:1998:PSE

Wellings:2000:IOO

[WJ98]

[WL85]

[WLF16]

[WM95]

Michal Walicki and Sigurd Meidal. A complete calculus for the multialgebraic and functional semantics of nondeterminism.

REFERENCES

[Yang:1998:STE] Tao Yang and Cong Fu. Space/time-efficient scheduling and
execution of parallel irregular computations. *ACM Transactions on Programming Languages and Systems*, 20(6):1195–1222, November 1998. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (elec-
journals/toplas/1998-20-6/p1195-yang/.

[YMW97] Jin Yang, Aloysius K. Mok, and Farn Wang. Symbolic model checking for event-driven real-
time systems. *ACM Transactions on Programming Lan-
guages and Systems*, 19(2):386–412, March 1997. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
URL http://www.acm.org/pubs/citations/journals/toplas/
1997-19-2/p386-yang/.

[YF09] Efe Yardimci and Michael Franz. Mostly static program partition-
ing of binary executables. *ACM Transactions on Programming Lan-
guages and Systems*, 31(5):17:1–17:46, June 2009. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (elec-
tronic).

[Yin11] Mingsheng Ying. Floyd-Hoare logic for quantum programs. *ACM Transactions on Programming Lan-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (elec-
tronic).

[YR94] Lin Yu and Daniel J. Rosen-
krantz. A linear-time scheme for version reconstruction. *ACM Transactions on Programming Lan-
guages and Systems*, 16(3):775–797, May 1994. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/
177705.html.

[YK97] Ting Yu and Owen Kaser. A note on “on the conversion of indirect to direct recursion”. *ACM Transactions on Programming Lan-
guages and Systems*, 19(6):1085–1087, November 1997. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (elec-

cremental computations. *ACM Transactions on Programming Lan-
guages and Systems*, 13(2):211–236, April 1991. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/
103137.html.
Yellin:1997:PSC

Young:1999:SCB

Yang:2002:EEB

Zave:1985:DAF

Zhao:2007:FFS

Zhang:2005:CPT

Zhou:1996:PPC

Zic:1994:TCB

Zhang:2017:SSH

Zhuang:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA

Zhao:2020:DLS
David Zhao, Pavle Subotić, and Bernhard Scholz. Debugging large-scale Datalog: a scalable provenance evaluation strategy. ACM Transactions on Programming Languages and Systems, 42
REFERENCES