A Complete Bibliography of Publications in ACM
Transactions on Programming Languages and Systems
(TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

04 March 2019
Version 2.131

Title word cross-reference

\([SRW02]\), + [Han81a], \(T^M [Bla03]\), \(\phi/ex/\)
\([AW82]\), \(\| [DDD02]\), \(A [DES12]\), \(R\)
\([JMSY92]\), \(R_{Lin} [VR95]\), \(\ell [ADG+94]\),
\(O(nm) [Pet82]\), \(\phi [CF95, DR05]\), \(\pi [ABL03]\).
Abstract [BGL93, BK11, CMB+95, CFG+97, DGG97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Algebra [Ko97, Wil82a, KBC99]. Algebraic [BP82, CFNH18, GM12, Loe87]. Algorithms [Apt86, BA84, CIJGP18, CS95, CN83, GLO88, KRS84, KKM90, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, MM89, RD87, RH87, RP88, TM93, WW95, Apt00, DAS98, GC01, ZGZ05].

Analysis [AKNP17, ABE+05, AD98, Bac84, BNN18, BC85b, Blo94, BE13, Bur90a, CFNH18, CDK+18, CMM01, DKKL18, DL93, Deb95, DP97, DAW88, FJK+17, GNS+15, GJ93, HP96, HOYY18, Hii88, Hor97, ISY88, Jen97, KD94, LLK+17, LR13, LHR19, McG82, MWW94, MOS07b, OHL+14, OLH+16].
Pal95, PO95, PCC85, PP91, PW94, PW98, Pur91, RTD83, RTP17, RP88, SR95, SSS83, SGL98, SS13, ABB+99, BDFZ09, BAL07, Bla03, Bh99, BCG+07, CSW06, Cha02, CGS+03, CKT86, DDV99, DGS97, FF99, GHB+96, GJ05, GZ04, GCRN11, HAM+05, HPMS00, HCC99, HVDH07, HAH12, IK05, JLR01, KBC+99, KK07, KSK07, LP00, LH08, MPM03, NS13, PHP02, Pal98, PKH07, Ram00, Rep00, RSL10, RD97, RRSY08, RR03, RR05, RLS+01, SdSCP13, SS96, ST00a, WP10].

analysis [WJ98, ZSD09, dHB+96].

analyze [DMM01, VBLG04].

analyzer [SMP10].

Analyzing [AW85, BEF+16, CFP+04, GMM99].

And/Or [Har80].

Annotations [Bur84].

AOP [DES12].

APL [Bud84, GD82, Hob84].

Applicability [DAW88, How80, LS98].

applicable [Gom92].

Application [CD79, DF80, DF81, LBN17, LR13].

Applications [BLRS12, Bou88, BALP06, CMLC06, NR06].

Applicative [AC94, KS86].

apprentice [MP02].

Approach [AKNP17, ABR81, AR80, BAC16, BP82, Bur90a, CH90, CD79, DS90, EIL82, ES97, FT94, GGL15, Har80, Hes88, KKW14, Lan79, Lam80, Lee86, MW80, MDCB91, ND16, OAA88, Sam80, Spo86, SM81, SNS+14, Bou05, CRN+08, DHM+12, FGM+07a, JLRS10, KV00, LP80, MBT09, PSS05, PCJD08, RC03, SP07, WS97].

approximations [BGP99].

Apt [Mo83].

architected [ZP07].

Architecture [Wal92].

Architectures [Han94, KPF95, NSTD+15, PAS+15].

Arising [Bac84].

Arithmetic [Fis80, GNS+15, Hen83, LdR81, MOS07b].

ARM [FKW98].

Array [CGST95, CG95, LS79, Per79, PW98, JB06, LSLR05, NI05, PHP02, RM06, RR05, ZCG+07].

array-valued [RMH06].

Arrays [BBC16].

Article [Ano18].

ASF [VHKO02].

aspect-oriented [DWWW08, WKO04].

AspectML [DWWW08, WKO04].

Aspects [Bor81, Set83].

assembly [AAR+10, MWC99].

Assertions [BKB80].

Assessing [BDH+16, Wey83].

Assignment [BM94, CFR+91, GL80, GFP08, LDK+96].

Assisted [HCP92].

Assisting [Fen82].

Associated [PPS79].

associativity [Cha02].

Assocations [Rem81].

assume [HQRT02].

assume-guarantee [HQRT02].

Assumptions [ES97].

AST [GVC15].

Asynchronous

[Bag89, GLO88, Mis86, GM12, HR02].

ATL [WSH15].

Atomic [WL85, Wei90, AE01].

Atomicity [JLP+14, Wei89, FFLQ08].

Attribute

[CP95, Hud91, JP81, Jon90, Kat84, KR79, MK94, RD87, WW95, Boy96, CP96, Wu04].

Attributes [HT86].

Author

[Ano86a, Ano86b, Ano87, Ano88a, Ano88b, Ano89a, Ano89b, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].

authorization [FGM07b].

Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b].

auto [ZP10].

auto-addressing [ZP10].

Automata

[BMW91, ES97, Pro95, KV00].

Automata-Theoretic [ES97, KV00].

Automated

[GRSK+11, KZC15, KF00, Sok87, JNGG10].

Automatic [AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, DS90, KK98, Le 88, LK02, LS04, MS83, PF90, RSL98, SSS81, SLC03, She91, Wat91, Wha94, ABH11, ATD08, BdBH99, CRN+08, ZCG+07].

Automatically [Slo95].

Automating

[GKL94, MTSS09].

Avoidance [FGL94].

aware [MQ05].

Axiomatic [AR80, App94a, Boe85, Sou84, BY87, YB88, LP80].

Axioms [Mis86].

B

[Han81a].

backpropagator [PS08].

Backtracking [Lin79, VR95, FM87a].

Backward [DL18, Mye18].

Balanced

Concerning [Sha82]. Concrete [Bar81].

Concurrency [BG98a, Lam90, Wei89, BCF04, Mil85, TA08a, CPS93]. Concurrent [BC91, Car95, CIJP18, Cla80, CES86, CPS93, CFM94, DGMP97, FT94, Hal85, HSP83, HW90, Her93, JTM98, Kar84, Lam83, LFF14, MSM85, OL82, Pet83a, Pet83b, RY88, Sku95, SNS84, AE98, AE01, AAE04, BBYG05, BGP99, CSW06, JPS08, RS97, SRM10, YS10]. Concurrent-by-Default [SNS85].

Constrained [BG98a, DAW88, PS96, Zic94, LPP01]. Constraint [Bor81, DGMP97, DDV99, NSTD15, Pal95, PW98, Ste18, Apt00, BMR01, DPPR00, FH04, GH89, HPMS00, SS08, SS09, SP07, SSD09, dH86]. Constraint-Based [PW98, Ste18, DDV99, SP07]. Constraint-Oriented [Bor81].

Constraint-Solving [NSTD15]. Constraints [AKP94, DFR15, HG83, Mye90, BA08, RM10, TKF84, Van96b, VHM84, Van96a].

Construct [Ans87, BSS83, Kat93]. Construction [ADGM91, HIT97, LaL81, MB83, RH87, SL92, CMS83, GC01].

Constructive [Loo87].

Context [AR84, DJP16, Par90]. Context-Sensitive [Ram00, Rep00].

Context-Free [GHR80].

Contexts [Ode93].

Continuation [BDM15, Wan82]. Continuation-Passing [BDM15]. Continuations [BDM15, HSF87].

Contracts [SIG17, SDTF13, CGP09].

Controlling [BALSE06, LMD98]. Convention [AF84]. Convergence [Bar85]. Conversion [CS87, SW97b, SA00, YK97].

Core [IPW01]. Coroutine [BAM94, CM86b, FRW89, Gom92, HW90, Lam79, Lam80, OSS83, SA00]. Correlated [YS99]. Correspondence [BS88, Bur90b, Bur91, Coh91, CM93, DS88, ELL82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moi83, MS88, NN86, Par90, Pem83, SOR99, SM82, Tan83, Tic88, Vol91, WST85, 91].

Correction [WCW91]. Corrigendum [Ano18, BFK05, DF81, Fra80a, KSS89, Lam80, Pur91, QG95, Val95, VAL05].

Counts [Bob80, Wis79].

Coupled [ACW90]. Covariance [Cas95].

Covariant [PZ05]. Creating [Mey90].

Criteria [Hai05]. Critical [PS89, Critique [GM81]].

Cross-Interferences [FT95].

Cross-Language [Ano18, GSS18].

Cryptographic [App15]. CS [CD79]. CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Zic94]. CSP-Like [Hua90]. Currency [DS98].

Curry [LR19]. Curry-Style [LR19].
[FMoPS11]. Equality [Pal98].
Equality-based [Pal98]. Equations [HO82, Bou06, GS11, GMM99].
Equiprobable [PB80]. Equivalent [VJB12, VSS94].
Equivalence [HO82, Bou06, GS11, GMM99].
Equivalent [PO95, NP08]. Erlang [TCP+17].
Erratum [SS09]. Error [AB81, Bac84, BN99, BF87, FL15, KC01, LaL84, MF88, MYD95, PK80, Ric85, SSS83, SS82, Wet82, ZMVPJ17, Jef03, XA07].
Errors [AWW95, SBB+19, Wha94, CRPT02, JNGG10].
Essential [DES12]. Esterel [Tar07].
Estimation [SBB+19]. Eta [DMP96].
E-time-expansion [DMP96]. Euclid [HW82].
Euclidean [Bou92]. Evaluating [BLH12].
Evaluation [AFV98, Bur84, CGST95, CK93, Gri82, Hud91, Jon90, LV94, PA85, PA86a, PA86b, RD87, RL98, Slo95, SG90, WCCW00, WCCW01, AD06, CP96, CG04, GJ05, LDM07, Leu04, ST00b, SYK+05].
Ever [Gri79]. Evidence [CGJ+97a].
Evidence-Based [CGJ+97a]. Example [CM66, Mye90, Nix85]. Examples [Oss83, Jef03]. Exception [YB58, YB87, YB88, LS98, LP00, OKN06].
Exception-Directed [OKN06]. Exception-Handling [YB87, LS98].
Exceptional [WN08]. Exceptions [ASF17, Hau96, LP00]. Exclusion [ADG+94, LH91, AHBH11]. Executable [Hob84]. executables [YF09]. eXecute [BR10].
Execution [CS87, Di90, GJ93, JW17, JNGG10, JF81, SS98, SS88, BALP06, GPA+01, TSY00, YF98]. Exemplars [LaL89]. Exemplified [DGL+79]. Exercise [Kna90, Mis81]. Exhaustive [Bur90a].
Experiments [Tur84]. Explanation [Mis81]. Exploiting [KOE+06]. exploring [WS97]. exponential [Wu04].
exponential-time [Wu04]. Expression [GP81, YB87, YB88, HVP05].
Expression-Oriented [GP81, YB87, YB88]. Expressions [BG89b, CGST95, CC97, DAW88, Fis80, Geo84, Gri82, Hen83, HY91, KS83, Ldr81, PK82, Shao82, Sit79, Wat91, Dam03, NN06].
Expressive [MFRW09]. Expressiveness [WGS92, WGS93, PS96]. extended [KGMO04].
Extending [CEW14, CMS03, MSRR00, MK94].
Extensible [HSG17, Sto04, ATD08, MBC04].
Extension [Bur90b, Cob91, WSH15, Wir91, ALZ03, KKK06, LS08]. Extensions [Wir88].
Extent [MF88]. External [Wal80, Wal81].
Extracting [GP95]. extraction [TSL+02]. extrapolation [WM12]. Extrema [Pet82].

F [MWCG99]. Facets [ASF17]. factoring [DRS96]. Failure [BN09, Dar90, Kar84].
Failure-Free [Kar84]. Fair [BN94, PR07]. Fairness [ES97, OA88, TB95, AH98].
Families [LaL89]. Fashioned [AL94]. Fast [ADR06, DAS98, FMoPS11, HVDH07, LT79, SR95, DR05, PE08, TP04, VLBG04, DVL15].
Fault [CS95, Lam84, LJ99, AAE04].
Fault-Tolerance [LJ99]. Fault-Tolerant [CS95, Lam84, AAE04, FD] [GLMM05].
 FeatherTrait [LS08]. Featherweight [IPW01, LST02, LS08]. Feature [ASAVF19, AH10]. Feature-Specific [ASAVF19]. Feeding [PA86a]. Fence [AKNP17]. Fickle [DDDGG02, AAD+07]. field [PKH07]. field-sensitive [PKH07]. fields [PZJ05]. FIFO [FLBB89]. Final [Kam83]. Finding [KRS84, KKM90, LT79].
Fine [PBR+15, DNS+06]. Fine-Grained
[PBR+15, DNS+06]. fingerprinting
[CTT07]. Finitary [AH98]. Finite
[ACW90, BLH12, CES86, GC86, PK82, PP91, Pur91, RSL10, Zav85]. Finite-State
[ACW90, BLH12, CES86].
Finite-State-Machine [Zav85]. First
[ADG*94, Bre89, DP97, HKMN94, Han92, JPP91, JS94, LH91, MH04, SDTF13].
First-Class
[HKMN94, Han92, SDTF13, MH04]. First-Come-First-Served
[LH91]. First-Enabled
[ADG*94]. First-Fit
[Bre89]. First-In
[ADG*94]. First-Order
[DP97, JPP91, JS94]. Fixed
[SS98]. Fixed-Order
[SS98]. Fixpoint
[AC94, Qia00]. Flexible
[AD98, Hud91, MSM*16, WG98, Wil82b, dJKVS12, IV06, KGM004]. Floating
[CK94, Fat82, SBB*19, Han96, Mon08]. Floating-Point
[CK94, Fat82, SBB*19, Han96, Mon08]. flop
[MMG00]. Flow
[AR80, AD98, ASF17, Bac84, BC85b, Bur90a, DP97, DP93, FJKA06, Hor97, KD94, MMR95, NBG13, PO95, PP91, PBR*15, Pur91, Set83, SGL98, SS13, Wet82, DGS97, HR02, HY07, KBC*99, Pal98, PS03, RRSY08, RP88, TZ07, WJ98]. Flowback
[CMN91]. Flowgraph
[LT79]. Flows
[Kna90]. Floyd
[Yin11]. Fly
[CF95, BA84, LP06, PK8*07, URJ18]. fold
[RKRR04]. Folklore
[LY98]. Font
[FK85]. Foo
[FA93]. foreign
[FF08]. Foreword
[Mye17, Mye18]. Form
[AK87, BOV85, BM94, CFF+91, GS95, Pal95, GF08, KCL*99]. Forma
[ZCG*07]. Formal
[BS86, BDP14, CB80, CD79, Fid93, Gie83, HIT97, Kna90, Lee86, Mal82, MH86, Sha82, WP10]. Formalisms
[PCC85]. Formalization
[BPP16]. Formally
[SP97]. Format
[Wat83]. Forms
[DS83]. formulas
[RSL10]. formulations
[RS97]. Fortran
[AK87, DP99]. Foundation
[KRR18, Ban11, RAB*07, Rhi03]. foundational
[AM01]. Foundations
[GTWA14, LW93, AAR*10]. Fractal
[MPM03]. fractional
[Boy10]. frames
[SIP12]. Framework
[BGL93, Gie83, JW17, KRR18, NSZS13, NSTD*15, OHL*14, SGL98, ATD08, DGS97, GMM99, GZ04, GC01, Letu04, PS08, RKRR04, TP04, VBLG04, XA07, ZCG*07, ZP10, vHK00]. Frameworks
[MMR95, KK07]. Framing
[BNN18]. Francez
[Fra81, Moh81, Moi83]. Free
[AP94, GEGP17, GHR80, Her91, Kar84, Kob98, JDJ98, KSV96]. freedom
[KS10]. frontiers
[Ano02b]. full
[GB99]. Fully
[JPP91]. function
[DR05, FF08]. Functional
[AFV98, Ban87, Bl69, Bout05, Bur84, DW98, FL91, ISY88, JPP91, WM95, Web95, Wil82a, ABH06, Bon06, DWW08, DF98, PS08, San96, SP97]. Functions
[AKP94, AK82, Bout92, PB80, SM89, Lee09, MBC04, MB99, MT08, PPT08]. Further
[CM93]. Fusion
[LGAT00]. Fusion-based
[LGAT00].

G. [Tic88]. Garbage
[BA84, CN83, DSW82, ISY88, JCM99, TM93, URS16, WLB16, Wi07, BYYG*05, BALP06, HDH02, LP06, Piq96, TSBR08].
Garnet
[VHM*01]. General
[BGL93, CHMY19, HSS*14]. General-Purpose
[HSS*14]. Generalization
[Ne89, LMD98].
Generalized
[Ans87, BS83, KD94, Lin79]. Generalizing
[DB85]. Generals
[LSP82].
Generate
[Sou87]. Generated
[Slo95, dJKVS12]. Generating
[HBM*06, HT86, Je03, LR13, JNZ06]. Generation
[ACT98, AS08, BOV85, BM94, DS83, DS90, GF05, GVC15, HKR92, HKR94, Pro95, Rei83, Rob95, She91, ST00b, UJ92, DAS98, MSRR00, FHEK99].
Generative
[Ge05]. Generator
[PPS79].
Generators
[Cat80, GHK81]. Generic
[LV94, DDM11]. generics
[IV06].

Hackers [App94a]. Hancock [CFP+04].
handle [VJB12]. Handling [Hau96, LdR81, Piq96, SSS83, UM02, YB85, YB88, CRN+08, LS98, LP80, SSSD09, Hen83]. Hard [Hor97]. Hardware [BKL+97, Mis86]. harmful [Gor04]. Hashing [PB80, Duc08]. Haskell [GRSK+11]. HHPW06]. Heap [KSK07, BALP06, KF00, YS10]. heap-manipulating [YS10]. Heavily [BG89a]. Hennessy [CM93, WST85]. Herding [AMT14]. Heuristic [SL92]. hiding [LN02, OYR09]. hierarchic [AG04]. Hierarchical [BA99, CP95, CD79, AY01, CP96]. hierarchically [MBC04]. hierarchies [ST00a, Van96a, Van96b]. hierarchy [KF00]. High [Cam89, Fat82, MSM+16, UJ18, CSM03, VWJB10]. High-Level [Cam89, Fat82, CSM03, VWJB10]. High-Performance [URJ18]. Higher [AC94, AD98, CJK95, DJP+16, BBTS07, DF11, SKS11, SP97]. Higher-Order [AC94, AD98, CJK95, DJP+16, BBTS07, DF11, SKS11, SP97]. Highly [Her93, Sku95]. Hoare [Apt81, GM81, LS84, Sok87, Yin11]. Hoc [MDCB91]. Holistic [ZMVPJ17]. Homomorphisms [HIT97]. HOP [BLRS12]. Hybrid [KF10, KS10]. Hyperball [LM18]. hyperdoctrines [BBTS07].

impure [Pip97]. incomplete [GLMM05].
Incremental [Bur90a, CP95, DMM88, GMT97, HKR92, HKR94, HPMS00, Hud91, Kai89, Lar95, LST98, LHR19, PS92, RTD83, RPS88, SGL07, WG98, YS91, BBYG+05, CP96, Van96a, Van96b]. Incrementally [QL91].
Independent [DHM00, Rep00].
Independent [ML80, Mul92].
Index [Ano86a, Ano88a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98]. indexed [AM01]. indices [RR05]. Indirect [Piq96, CEG07, YK97].
Induction [GSW95, Sit79]. inefficiencies [MMM+07].
Inessential [SS82, LaL84]. Inference [CEW14, Deb89, Hen93, LO94, LY98, TB98, Wey83, FFLQ08, JB06, PM06, PT00, PS03, Van06].
Influence [FTJ95]. Information [AR80, Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88a, Ano89b, Ano90b, Ano91b, Ano92b, ASF17, BC85b, HR02, NBG13, PBR+15, PS03, GS99, HY07, LN02, OYR09, TZ07]. Information-Flow [BC85b, TZ07]. infrastructure [SWU10].
Input-Output [BS83]. Inputs [PA86a].
Insensitive [Hor97, FJKA06]. Insertion [AKNP17, GJ05]. inspection [CF04, FG03].
Instantiation [Der85]. Instead [Lam84, Rem81]. Instruction [KPF95].
Instructions [LS80, PS93, RF97, Rob79, LPP01]. Integer [BAGM12, BEF+16, BGP99]. Integrated [SS13]. Integrating [HPR99, WJS+00].
Integration [CO90, Lei04]. Intensional [ST03]. Interaction [WSH15, WT11, van88, BCM99].
Interactions [JS94]. Interactive [ACS84, BS86]. Interconnectability [TY18]. Interface [Win87, van88].
Interpretation [BGL93, CFG+97, DLR16, KRR18, LV94, MSJ94, BDL+08, BdlBH99, DGG97, Len04, SYYH07].
Interpretation-Based [DLR16].
Interpretations [CMB+95, HY91, SJ03]. Interpreters [LR13, CEG07].
Interprocedural [Bur90a, BT93, DP97, HAM+05, HS94, HBC99, HRB90, NR06, SH89, CKT86, DVD07, DGS97, FMoPS11, JLRS10, KK07, RLS+01]. Interprocess [RS84b]. Interprocessor [Ang89].
intersection [Dam03]. Intertask [FY85]. Interval [Bur90a, GNS+15, FH04].
Interval-Based [Bur90a].
Introduction [DeM83, HCW82, Per90, Rep86, Sag07, Wol92]. Invariant [BK80]. Invariants [Cla80, GEGP17]. Irreducible [Hav97, UM02]. irregular [YF98]. Irrelevant [GP81]. Iso [LBN17].
Iso-Recursive [LBN17]. Isolation [Wha94]. Isomorph [JJD98]. Isomorph-free [JJD98]. Issue [Ano18, Sag07]. Issues [BO94]. Iterated [GA96]. Iteration [Cam89, MOSS96, GS11, JLF02, Qia00]. Iterative [Ans87, Par90, DR05, JNGG10, LS04].
Jade [RL98]. Jam [ALZ03]. Java [AFF06, ALZ03, AAD+07, BH05a, Bla03, BALP06, CGS+03, CMS03, CSM00, FFLQ08, FM99, GPFO8, IPW01, KKN06, KGMO04, KN06, KR01, LST02, LP06, LS08, Loc13, MVV+01, MME+10, MFRW09, MMG00, NR06, OKN06, Qia00, SLC03, SRR10, SA99, SYK+05, TSL+02, WR08].
Java-like [KN06]. JavaCOP [MME+10].
Just-in-Time [DLR16, SYK+05]. JVM [HO07].
KaffeOS [BH05a]. Kaiser [Tie88]. Kernels

LSLR05, Ram99, RDG08, SGL96, UM02].
low [CSCM00]. low-end [CSCM00]. Lower
[PW94]. LR [ADGM91, BL94b, BF87,
CPRT02, DMM88, Je903, JP17, KC01,
LaL81, LaL84, SS82, ST00b]. LR-based
[KC01].

M [Bur91, Mul92]. M-LISP [Mul92].
Machine
[CGJ97a, Cat80, GNS85, Gie83, Han94,
LR13, ML80, RF97, SS98, Wal92, Zav85,
Ano02a, CEG07, CF04, HK07, KN06, Oho07].
machine-checked [KN06]. Machine-Code
[LR13]. Machine-Independent [ML80].
Machine-Specific [Gie83]. machinery
[FKW00]. Machines
[ACW90, Bee94, CGST95, GC86, KK98,
PS93, PP91, Rob79, RCRH95, AY01, AG04,
ABE05, ABS09, TSY00, Pur91]. Madsen
[Ell82, SM82]. Magna2 [Tur84].
Maintenance [GKL94]. Making
[JC97, Loc13]. malware [PCJD08].
Management
[JP81, Mur91, van88, BP12, WCM00, Zho96].
Managing [Bob80]. Manifest [SIG17].
manipulating [YS10]. Manipulation
[DVM15]. many [AE98]. massive
[BHK07]. Massively [CGST95]. Matching
[AC96, AGT89, CP95, KPS92, ADR06,
Van06]. Matching-Based [CP95].
materializations [RMH06]. Mathematical
[Ban11, Hes88, LW93]. MATLAB [DP99].
MATLAB(R) [JB06]. Matrix [FT95].
Matrix-Vector [FT95]. Maximal
[BG89b, Rep98]. Maximal-munch [Rep98].
Maximization [GLO88]. Maximum
[Kna90]. May [Hor97]. May-Alias [Hor97].
MCALIB [FL15]. Measuring [FL15].
Mechanically [DSW11]. Mechanism
[CO90, YBS85, DNS06]. Mechanisms
[Rei89, HMS06]. Mechanizing [Pau01].
Median [Com89]. Medians [KRS84].
negaflps [MMG00]. member [KF00].
Memory
[AMT14, CK94, Cha93, KZC15, KK98,
KRS88, MSM16, Mis86, RCRH95, SS98,
ABHI11, BP12, GMM99, GW99, JNGG10,
KF00, DK02, Loc13, QR00, RR05, SSY00,
TP04, VBLG94, WCM00, MMM07].
memory-efficient [TP04].
memory-hierarchy [KF00]. Merge
[Ber94]. Merlin [HBM06]. Message
[CSW06, SS84, Gor04]. Messages
[BB79, Je903]. meta [Tra08].
meta-programming [Tra08]. Metalevel
[Jag94]. Metaprogramming [C184].
Method [BNN98, BCD90, BF87, HL82,
Jon83, Loe87, JJD98]. Methodology
[Ban87, Her93, Sku95]. Methods
[DAW88, KM81]. METRIC [MMM07].
Mezzo [BPP16]. Microanalysis [HCHP92].
Microcode [MV87]. Middle [BDP14].
Middle-End [BDP14]. Might [Bee94].
migration [Pic96]. Minimal
[FKW98, IPW01]. Minimization [RS84a].
minimizing [RMH06]. Minimum [GHS83].
Minimum-Weight [GHS83]. Mining
[AMT14]. Misled [Cop94]. miss [GMM99].
Mixin [HL05, RD13]. mixins [ALZ03]. ML
[Bhn99, HM93, HT04, PS03, RD13, Spo86].
Mobile
[LS03, VHB97, BCC04, KS10, SWU10].
mod [Bou92]. mode [PS08, ZP10]. Model
[AY01, Ang89, BK11, BL87, BGP99, CGL94,
DLR16, ES97, GS98, GL94, Han81a,
HW82, Hol87, HK92, MSM16, MMG92,
ND16, VSS94, ACM11, AM01, AE01, JJD98,
JPG08, KN06, KV00, Loc13, NP08, QR00,
SG04, VWJB10, VALG05, YMW97].
Model-Checking [ES97, BGP99].
Modeling [AF84]. Modelling [AMT14].
Models [GJ93, KZC15]. Modern
[BCF04, RAB07]. Modes [Dgb89].
modest [LS08]. Modification
[Lei90, RLS91]. Modula [E080]. Modular
[AG04, BNP94, CDK18, GL94, JKH98,
Jag94, KKM90, LN15, MBC04, Wei89, YB85,
dKSVI2, KV00, MFRW09, MOS07b].
modularity [BA99]. Module [PAS+15, RD13]. Modules [CL95, HWS2, Lam83, HL05]. monadic [MH04]. Monitors [BLH12, BH05].

MPI [FJK+17, TSY00]. Multi [Ano18, GSS+18, MF09]. Multi-Language [Ano18, GSS+18, MF09]. Multialgebraic [WM95]. multidimensional [RDG08].

Multiprocess [Lam79, Lam80]. Multiprocessing [ABR81]. Multiprocessor [GP81]. Multiprocessors [Cha93, KRS88]. Multisource [MMR95].

Multithreaded [EGP14, JBK18, JSB+12, KKW14, NR06]. Multivariate [HAH12]. Multiway [Cha87, Van96a, Van96b]. munch [Rep98].

Nesting [Hav97, Boy10]. Nests [BAC16]. Net [JTM98]. Network [WGS92, WGS93]. Networks [CGJ97b, GC86, KRS84, dBB85].

Newtonian [RTP17]. Nicholson [FA93]. No [Ano18]. node [JC97, UM02]. Nodes [CF95, Han81a]. Nomadic [SWU10].

Nominal [CU08]. Non [DL18, LLK+17, Mye18, BS88]. non- [BS88]. Non-Deterministic [Mye18, DL18].

Nondeterministic [QG95, MT08]. Noninterfering [HPR89]. nonnumerical [ME97]. Nonprocedural [PPS79].

nonrectangular [JLF02]. nonscalars [CRN+08]. Nonsequentiality [Bar81].

Nonstrict [Blo84]. Nontermination [PM06]. normal [LMD98]. Normalize [CRN+08]. norms [BCG+07]. Notation [Ren81, Wi82]. Note [Com80, CM93, MS88, WST85, Coh85, Pal11b, YK97].

Notes [Sku95]. Nothing [BDH+16].

Notion [LW94]. NP [Hor97]. NP-Hard [Hor97]. NQLALR [BS88]. nullled [SJ06]. Numbers [GLR83]. numeric [Hau96].

O [ABPS98, Car95]. Object [DF84, HU96, KH92, Ryu16, WC90, WC91, BSVG03, DMM01, DDC02, FM09, GPWZ08, HBM+06, JPS+08, LPS004, Piq96, WJS+00]. Object-Based [KH92]. Object-Oriented [HU96, Ryu16, BSVG03, DMM01, JPS+08, WJS+00].

Objects [AM85, CJK95, HF87, HW90, Her93, SM89, VHB+97, Wal80, Wal81, Win84, GPV07, HBJ98, KF00, Sto04, WJS+00, Sku95].

Optimal [BOV85, CGST95, FK85, JCM12, KRS94, Lar95, PB97].
Hai98, JNZ06, KSV96, MSRR00].

optimality [CP96]. Optimally [BL94a].

Optimistic [CP96]. Optimizations [CC95, JSB12, CGS03, CKT86, GMP00, SYK05].

Optimize [DMM01, VBLG04].

Optimized [CM93, Cop94, Hen82, WST85, DS98, UM02].

Optimizer [DF80, FSS3, DF81].

Optimizers [Gie83]. Optimizing [CEG07, JSB12, CGS03, CKT86, GMP00, SYK05].

Overload [Bak82].

Overloading [SS05b].

Overview [AOC88].

Ownership [DDM11, SS96].

Oz [VHB97].

Package [Hil88].

Paper [GM81]. Parallel [ANP89, BOV85, BO94, Be13, Cha93, CGST95, CMN91, CL94, DS83, Ead96, GLO88, GJ93, GPA01, HCP92, HIT97, JF81, Kna90, LHR91, Mis94, NSZS13, OA88, Rao04, SS88, BYG05, CG86, GB99, HB98, KSV96, LK02, MVV01, RR03, YF98].

Parallelism [Bur84, GP95, KSV96, NB99, PW94, TCVB14, YBL16].

Parallelizing [HP96, ME97, RD97].

Parameter [Gaz83, Zho96].

Parameterization [TWW82].

Parameterized [CGJ97b, CK93, Gaz83, RKR12].

Parametric [HFO9, MGG92, SWR02, IV06].

Parenthesis [AS80].

Parlog [CG86].

Parsed [Wad90].

Parser [DDH84, JP17, LaL84, SS82].

Parsers [BN99, LaL81, MY95, PK80, CPRT02, SJ06, ST00b].

Parsing [CH87, DMM88, Fis80, GM79, Lar95, RH87, Sm80, WG98, KC01].

Part [LaL81, PA85, PA86a, PA86b, Apt81].

Partial [AFV98, CP17, CK93, DS88, Gom92, KCL99, SS89, AD96, BP12, CG04, GJ05, LMD98, Leu04, ST00b].

Partially [BLH12, Kob98, RRSY08].

Partially-flow-sensitive [RRSY08].

Partitioning [RM07, YF09].

Parts [Son87].

Pascal [LS79].

Pass [Bak82, BM94].

Pass [DMM15, Gaz83, SS84, CSW06, G04, Zho96].

Passive [AKP94].

Past [Coh91, Wir91].

Permission [BPP16, SNS14].

Permission-Based [BPP16, SNS14].

Permissions [Boy10].

Persistent [AM85].

Petri [JTM98].

Petri-Net-Based [JTM98].

Phases [Bar81].

Philosopher [CM84].

Philosophers [MS88].

Pi [HR02, KPT99].

Pi-calculus [HR02, KPT99].

Pict [SWU10].

Pictures [MH86].

Pipeline [HG83].

Pipelined [BG89b, LPP01, RDG08].

Pipelining [ME97].

pitfalls [Mon08].

PL
Fos96, FL15, GTWA14, Har80, HK85, HO82,
Kai89, KH92, Lee86, LVV+83, MK94, Mye90,
OGJ+18, Pet83b, RCS93, SS84, SNS+14,
SZBH86, TK94, ABH01, Bou06,
BdlBH99, CU08, CG86, CHT86, DWWW08,
DPKR00, GW99, HBJ98, JPS+08, KGMO04,
MVV+01, MTSS09, MQ05, Tra08, VWJB10,
WKD04, WJS+00, Bir85, SWU10].

Programming-in-the-Large [MK94].

Programs [AWW95, AK87, AFV98, AR80, AP94, AC94,
BL94a, Ban87, BGL93, BC85a, BC85b,
Ber94, BCD90, BE94, BE13, BEF+16, CR87,
CS80, CM86a, Cla93, CFNH18, CEW14,
CMN91, Cla80, CMF94, CS87, DL18,
DGM97, DW89, Deb89, DL93, Deb95,
DP97, Di90, EGP14, FJK+17, GM85, GM81,
Har80, HCP92, HPR89, How80, HIT97,
ISY88, JH98, JJB18, KID81, Kna90,
Lam79, LS83, MSJ94, MHS86, Mye18, NSS813,
OA88, OL82, PS92, QL91, Rao94, SS98,
Sch82, SSS81, SSS88, Ven95, Wad90, We95,
Wil82a, AE01, AAE04, BCG+07, CSW06,
CSS99, DP99, DMT99, DMS8, DMM01,
EGM01, GM12, GHB+96, GH97, GPA+01,
Hau96, HPMS00, JPS+08, KSV96, LMD98,
Leu04, LS09, MF09, NR06, PM06, RRK94,
RR03, San96, VJK18, WM12, YS10].

Programs [Yin11, dHB+96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93,
GPA+01, MWS89, NF89, Zho96].

Promotion [BIR84, Bir85].

Proof [AFdR80, BDJ13, FRW90, GL80, Moi83,
Sag86, SS84, Sok87, WGS92, WGS93, AM01,
DSW11, Oho07].

Proof-Carrying [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, JH17, LY98, Oss83,
GRK+11].

Propagation [SR95, WZ91,
Apt00, CP96, SS05a, SS08, SS09].

Properties

[ACW90, AS89, CIJGP18, Kar84, LM18,
OL82, RY88, TB95, Wei89, YS10].

Proposed [FAT82].

Protected [PAS+15, WJS+00].

Protocol [SL92, YS97].

Protocols [MB83, BFGT08, SS96].

Prototype [WC90, WC91].

Prototypes [HW82].

provably [GB99].

provenly [AAD+07].

Proving [DGMP97, GH97, Hen86, Kar84,
Lam79, Lam80, OL82].

Pruning [BN99].

PSG [BS68].

publish [Eng07].

publish/subscribe [Eng07].

Pure [BNN18, HU96, Pip97, Tar07].

Purpose [Ap94b, HSS+14, Spo86].

qualifiers [FJA06].

Qualitative [CFNH18].

Quantification [Vol91, Bur91].

Quantified [Gro06, STS03].

Quantitative [CFNH18].

Quantum [FDY12, HH99, Yin11].

Queries [Bal94].

Queuing [BB79].

Quiescence [CM86a].

R [AW82, CHT86, KMM+98].

race [AFF06, PFH11].

Races [KZC15].

Random [AS80].

Range [CG95].

Rank [Dam03].

Ranking [Lee09].

Ratio [CK94].

rational [GS11].

rationale [CMLC06].

Reach [FK98].

Reachability [NS13].

Reactive [FR15, AG04, DG97].

read [AE01, PZ05].

read-only [PZ05].

read/write [AE01].

Readable [Sp06].

Reading [Pet83a].

Real [AL94, MEG92, RS84b, GH97, HK07,
LS98, YMW97].

Real-Time [MM92, RS84b, GH97, HK07,
LS98, YMW97].

realities [Gor04].

Reals [DK17].

Reasoning [BKOZB13, BLRS12, BDP93, BH99,
CM86a].

Recognizing [BL94b].

Recognizer [GHR80].

Recall [BR08].

Recognition [ATD08].

Reclassification [DDDCG02].

Reconstruct [DDDCG02].

Reconfiguration [DK17].

Reconciliation [YH96].

Reconstruction [YR94].

Record [LS97, Oho95].

Recovery
Recurrence [AB81, ACS84, Bac84, BF87, PK80, Ric85, dJKVS12]. Recurrences [VJB12].

Recursion [AK82, Col84, Hen93, KTU93, Mis94, YK97].

Recursive [AC93, AK82, Ban87, Coh83, Coh85, LBN17, Sij89, ABE+05, AM01, CF04, Dug02, Pal98].

Recursively [BE13]. Reduce [BN99, MYD95, BALP06, KOE+06, SS96].

reduced [SG04]. Reducible [Hav97, JC97].

Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mul92, NN86, CSV01].

Redundancies [DS88, Sor89]. Redundancy [KCL+99]. Redundant [Coh83, Coh85].

Redundant [BBF+11, BKL+97, BCEM15, CM86a, GGL+79, GEGP17, JLP+14, MRG88, SL92, AG04, QG95]. reflecting [HS11]. reflection [Sw97a]. Region [TB98, SYN06]. region-based [SYN06]. regions [RR05].

Register [BCT94, CH90, GSO94, JLF02, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].

Relation [LBN17, MTG80]. Relational [BKOZB13, CB80, GS98, TLHL11, JJD98, JLR510]. Relations [ELS+14, HT86, LH08].

Rely-Guarantee-Based [LFF14]. Remembrances [PM09]. Remote [BCP08, SG90]. Removal [AK82].

Rendezvous [Cha87]. Renoise [Dha91, DS88, Sor89]. Reoptimization [PS92]. reordering [YUW02]. Repair [BN99, MF88, MYD95, KC01]. Repairing [CPRT02]. Replacement [MM89].

Representation [DGL+79, Mul92, SM89, Wad90, Wan82, Mi85]. Representation-Independent [Mul92].

Representations [Lam87, RF97, Wal80, Wal81, BGP99]. reshaping [ZCG+07]. Resilient [WL85].

Resolution [ABR81, Bak82]. Resolved [SIG17]. Resource [CS95, Cla80, IK05, MQ05, BDFZ09, CEI+07, HR02, HAH12].

Resources [And81, FLBB89]. Respect [Gaz83]. Response [Tie88]. Responsiveness [HU96]. Restores [Wiz79].

Result [TB95]. Results [Ven95, BGP99, SYH07]. Retargetable [DF80, DF81, MV87]. Retention [LS81].

Rethinking [LHR19]. retrofitting [NCH+05]. reuse [DNS+06, GW99, ZSD09]. Reversal [ACS84]. Reverse [PS08].

Reverse-mode [PS08]. Revised [SIG17]. Revision [FM87b]. revisited [MDJ05, Zho96]. Revisiting [DI09].

Rewrite [FKW98, Ass00]. Rewriting [KKSD94, BCM99, DDD05, FKW00, GrSK+11, MMM+07]. Right [KS83, LA81, SJ06]. Rigorous [BSS+19].

Rings [BP89, Hua93]. RISC [PS93]. Rivieres [Hen83]. RMI [MVV+01].

Robust [LS83]. Roever [Moi83]. role [App00]. Roman [PB97]. Round [SBB+19].

Round-Off [SBB+19]. Rounding [FL15].

Row [MM89]. rule [HQR02]. Rules [GL80, JTM98, SS84, LS09, SSD09]. Run [IS88, TZ07, GMP+00]. Run-Time [IS88, TZ07, GMP+00]. Runtime [Ano18, BLH12, BFP+16, GSS+18, TCVB14, BH05a, TSY00].

S [HHC82]. S/SL [HCW82]. Safe [AWW95, Dug02, JW17, AFF06, BSvGF03, LS03, Loc13, NCH+05, SA00, ZCG+07, MH06, SHB+07]. safe-for-space [SA00].

Scalability [TCP+17]. Scalable [FT94, XA07]. ScalExtrap [WM12].

Scheme [Mur91, YR94, IV06, WC97]. Schemes [Son87, TM93]. Schemes [Schorr [BP82]. Schwanke [Tic88]. Scientific [How80].

Scope [App94b]. Scratchpad [SRM10].

Screen [MM89]. SDF [VHKO02]. Search [Dar90, BH99, SO05a]. Searching [CC97].

Section [Wol92]. Secure [BCEM15, PAS+15, BBF+11, HY07].

Security [BR94]. Security [TGT18, BFGT08, BFG08]. see [BR10].

Semantic [AAR+10, AWW95, GGL15, MH06, HCW82].

Semantics [ABHI11, Ans87, AB94, AW82, BGL93, Ber94, BLRS12, Boy88, Boy10, CPS93, CD79, FA93, GMS81, Gud92, Han94, JPP91, Kai89, Mul92, NF89, Set83, Son84, WM95, Wan82, dBB85, ACE96, BMR01, Bou06, GZ04, MF09, PCJD08, SWU10, SJ03, Tar07, WKD04].

Semantics-Based [BGL93, CPS93, PCJD08].

Semantics-Directed [Han94, Set83].

Semaphore [CR87]. Semiring [BMR01].

Semiring-based [BMR01]. Send [Gor04].

Send-receive [Gor04]. Sensitive [OLH+16, PKH07, Ram00, Rep00, RRSY08].

Sensitivity [FL15, KRR18]. Separating [DDM11]. Separation [BDJ13, DJP+16, OYR09, BBTS07].

Separators [GS04]. Sequences [GSW95].

Sequential [ABS09]. Sequential [AFdR80, Ber80, GLR83, HM84, KS79, MC82b, Moi83, Son84]. Series [Wat91].

Share [SS88]. Shared [Cha93, FLBB89, KH92, KRS88, Pet83b, Dug02, HB98, TSY00, BC91].

Shared-Memory [Cha93, TSY00]. Sharing [CSS99, Lam87]. SHErrLoc [ZMVPJ17].

Shift [BB99, MYD95]. Shift-Reduce [BN99, MYD95]. Short [Sag86]. Should [LP99]. Side [Boe85, KWL09, RLS+01, TA08b].

sim [Lam90]. Single [BM94, CFR+91, JYK18, GPF08].

[BA08, BEF+16, Lee09, LDK+96].

Size-change [BA08, Lee09].

Slicing [AHJR14, CF94, DL18, GH97, HRB00, Mye18, Ven95, WZ07, BHK07, GZ07, NR06, RAB+07, WR08, ZGZ05].

SLR [BS88, Tai79].

Small [FLBB89, LH91, Pet83b].

Smart [Tic86].

Smarter [SK88, Tic88].

Smooth [JF81].

Soft [WC97].

Software [ACM11, AW85, Ber94, DAW88, HSS+14, How80, JW17, PXL95, PPS79, Pur94, Zav85, Ay01, ABE+05, MBT09].

Software-Defined [Wal92].

Soininen [LaL84].

Soisalon [LaL84].

Soisalon-Soininen [LaL84].

Solution [ADG+94, DS88, Gho93, Pet83b, Sor89, WP10].

Solving [GS11, NSTD+15, SRW98].

Some [AB94, AK82, Sha82, Sor89].

Sometimes [Gri79].

Sound [LLK+17].

Soundness [Sok87].

source [HGB+09].

Space [BP12, BB79, FLBB89, JP81, NB99, RD87, YF98, LS09, SS05a, SA00].

Space-Efficient [JP81, NB99].

Space/time [YF98].

Space/time-efficient [YF98].

spaces [JLF02].

Span [LS80, Rob79].

Span-Dependent [LS80, Rob79].

Spanning [GHS83].

Sparse [OHL+14].

Spatial [NSTD+15].

Special [Wo92, Sag07].

Specialization [AHJR14, BCP08, GJ05, HT04, SLC03].

specialization-point [GJ05].

Specializing [BDC09].

Specific [ASAVF19, Gie83, Tra08].

Specification [BCM99, CDFP99, EO80, Fea87, GMH81, Jon94, Kam83, LN15, Lin93, LJ99, Loe87, Mal82, Mor88, PPS79, Ry88, TWW82, LP99, LP99].

Specifications [MB99].

Specifications [AL93, AL95, BNN18, CES86, DB85, Gaz83, Loe87, MW84, MB83, Rei83, Sch85, Win87, Zav85, Zic94, vPS81, JJD98, YS97].

Specifying [GM81, Lam83, RF97].

Speculation [YBL16, GB99].

specculative [KOE+06].

SPL [HSG17].

Split [Com80].

splitting [JC97, UM02, WJ98].

SPMD [WM12].

SR [AOC+88].

SSA [BDP14, GSW95, KCL+99].

SSA-Based [BDP14].

Stabilization [Gho93, DHS09].

Stabilizing [BP89].

Stack [CGS+03, FG03, LaL81, CF04, Zho96].

Stack-Controlling [LaL81].

Standard [Fat82, HM93, Qua00, Blu99].

State [ACW90, BLH12, CES86, GC86, PP91, Pur91, Zav85, Ay01, AB8+05, MBT09].

Statement [Ell82, Mor88, SM81].

Statement-Oriented [Ell82, SM81].

Statements [CF94].

States [ADGM91].

Static [AKNP17, AC94, BM94, CGJ+97a, CF94, CFR+91, DL18, Deb89, HOYY18, LLK07, LST98, MS07a, Mye18, PW94, YS99, ZVPJ17, CEI+07, GPF08, GZ04, HO07, PSS05, PFH11, RSL10, VJB12, WCM00, YF09, AFF06, FFLQ08].

Statistically [ACP91].

Statistical [LLK07].

Statistics [Lan80].

Staveren [Pem83].

Steensgaard [Ell82, SM82].

Steensgaard-Madsen [Ell82, SM82].

stencil [LS04].

Step [Col84, TVA07].

Steps [Jon83].

Stepwise [CM86a, SL92].

Stevenson [Pem83].

Storage [BBC16, Bre89, JP81, LDK07, Mur91, Rob97, Si98, KOE+06, TVA07].

Strategies [Bir84, Bir85, Geo84, NN86].

Strategy [Bre89, PK80, WSH15, GS11].

Stratified [SS08].

Stream [HSG17].

streams [CFP+04].

strength [CSV01].

Strict [Bee94].

Strictness [Bee94, SR95].

String [GH80].

Strings [AS80, KS89, KS89, ADR06, KK07].

Strong [KZC15].

Structural [SZBH86, MTSS09].

Structurally [HS11].

Structure [BC79, GKL94, HM93, Mis94, MWB94, She91, HY07].

Structure-Oriented [GKL94].

Structured [BM94, CHY12, GD82, Har80, LS81, Mur91, RR03].

Structures [ANP89, Bob80, FL81, GEGP17, RCR95, SSS81, LPS004, RAB+07].

Study [FT95, BHK07, BDL99, DF98, KFO3].
[AFF06, AC93, BB94, BCEM15, DD85, EO80, FFLQ08, GEGP17, HL82, Hes88, Jen97, Kam83, LaL89, LO94, LBN17, Loe87, Mal82, MP88, WL85, Wei89, Wei90, AM01, BBF+11, Dam03, DMM11, DMM01, Gro06, GPV07, HVP05, IV06, MME+10, PS96, Pal98, STS03, SP07]. Typestate [GTWA14]. Typestate-Oriented [GTWA14]. Typing [ACPP91, Duq99, RM10, SV96].

ultimate [PS08]. Ultracomputers [Sch80]. Unassigned [Win84]. unbounded [BGP99]. uncaught [LP00].
Undecidability [Ram94, Rep00, Cha02]. undecidable [Ram00]. Understandable [MSS+16]. Understanding [ST00a]. Undo [Lee86]. unfold [RKRR04]. unfold/fold [RKRR04]. Unidirectional [Pet82].
Unification [MM82, DRSS96]. Unified [VSS94]. Uniform [AS80, BP89, Hua93, AH10, HY07].
Untrusted [JW17]. Update [Hud91, FGM+07a, GW99]. Updating [HSS+14, HN05, SRW98, SHH+07]. Upper [PW94]. Usage [MS83, BDFZ09, IK05, QR00]. Use [FOW87, GH80, HSR94, LaL84, PPS79, She91, SS82, CC97]. usefulness [HDH02]. User [ACS84, DS90, Mye90, Wal80, Wal81, Wat83, van88]. User-Defined [Wal80, Wal81].
Using [AG89, Bob80, CGJ+97a, CES86, CH87, DP93, Di90, DMM01, DJP+16, FLBB89, GSW95, GSO94, HRB90, JTM98, Kar84, LaL89, Lam84, LM18, Mye90, Ode93, Pet83b, PP94, PBR+15, SS84, SS96, Sok87, SGL98, TVS82, ACM11, BH99, CSW06, CGS+03, DR05, GS99, GCRN11, KWLO9, KSK07, MTSS09, RD03, ST00a, SGL96, TFK+11, VJB12, XAO7, YUW02, ZSD09, Pem83]. Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KCO1, MOS07a]. Value [HL82, HL05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Han92, Wet82]. Variable [MS83, MTG80, FMoPS11, GLMM05].
Verifying [AS89, BFG08, CGJ97b, DJP+16, GEGP17, LM18, YS10, Mon08]. Version [YR94]. Versions [HPR89]. versus [Pal98, Pip97, UM02]. Vertices [BGH+13].
Very [GLR83]. VHDL [BKL+97]. via [CEI+07, FKWH98, GFP98, GSO94, HOYY18, MMM+07, PE08, RTP17, SRW02, Tra08, WCM00]. View [SZBH06, FGM+07a].
VLSI [LV+83]. Volpano [Bur91].
Volume [Ano18]. vs [HR02].

web [BFG08, BLRS12, CHY12, CGP09, CMS03].
Weight [GHS83]. While [Pet83a, BC85b, GM81]. while-Programs [BC85b]. Whole [BDH+16]. Widening [KKW14, VJB12]. win} [Lam90]. Within [FKWH98]. Without [Cop94, Ode93, AS89, Cas95, St04, VR95].

X [OLH+16, MSM+16]. X-Sensitive [OLH+16]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].

References

Ancona:2007:PCT

Attie:2004:SFT

Ahmed:2010:SFT

Anderson:1981:LLC

Arbab:1994:SCD

Acar:2009:EAS

Alur:2005:ARS

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CAC

Afek:1993:LC

Apt:1998:AIL

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

Attali:1996:NSE

Alur:2011:SMC

Abadi:1991:DTS

Ashley:1998:PFF

Afek:1994:BFF

Aggarwal:1990:ALP

Ancona:1991:ECL

Ager:2006:FPE

Attie:1998:SCS

Attie:2001:SCP

Apt:1984:MDT

Appel:1994:E

Apt:1980:PSC

Abadi:2006:TSL

Alpuente:1998:PEF

REFERENCES

Allen:1987:ATF

Ait-Kaci:1989:EIL

Alglave:2017:DSF

Ait-Kaci:1994:FPC

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR

Alglave:2014:HCM

Anger:1989:LIC

Anonymous:1982:IA

Anonymous:1983:IA
REFERENCES

0164-0925 (print), 1558-4593 (electronic).

Anonymous:1984:IA

Anonymous:1985:IA

Anonymous:1986:AI

Anonymous:1986:IA

Anonymous:1987:IA

Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

Anonymous:1990:AI

[Ano90a] Anonymous. 1990 author index. ACM Transactions on Programming Languages and Systems, 12
Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1992:AI

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

Anonymous:2002:LDD

Anonymous:2018:CCL

Arvind:1989:SDS

Anson:1987:GIC

Andrews:1988:OSL

Apt:1994:OCF
Abadi:2007:E

[Appel:1993:Ea]

[Appel:1994:ABG]

[Appel:1994:PS]

[Appel:2015:VCP]

[Apt:1986:CPD]

[Apt:2000:RCC]

Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Andersen:2019:FSP

Austin:2017:MFD

Assmann:2000:GRS
REFERENCES

REFERENCES

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA
REFERENCES

Brecht:2006:CGC

Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Controlling garbage collection and heap growth to reduce the execution time of Java applications. ACM Transactions on Programming Languages and Systems, 28(5):908–941, September 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Banerjee:1987:MSR

Banerjee:2011:MFT

Barnden:1981:NCA

Barstow:1985:CTD

Beyer:1979:SED

Breuer:1994:DET

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Bottoni:1999:SDC

Bhatia:2008:RSE

Briggs:1994:IGC

Bartoletti:2009:LPR

Blackburn:2016:TWT

Botincan:2013:PDP

Bernardeschi:2008:DBV

Bueno:1999:EAI

Biernacki:2015:DCP

Bowman:1993:RAN

Barthe:2014:FVS

REFERENCES

REFERENCES

Bultan:1999:MCC

Butler:1999:RAG

Back:2005:KJR

Buhr:2005:ISM

Binkley:2007:ESO

Blackburn:2007:PBP

REFERENCES

Buchsbaum:2005:CNS

See [BKRW98].

Bates:1994:RSL

Blanchet:2003:EAJ

Bodden:2012:PEF

Eric Bodden, Patrick Lam, and Laurie Hendren. Partially evaluating finite-state runtime monitors ahead of time. *ACM Transactions on Programming Languages and Systems*, 34(2):
7:1–7:52, June 2012. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Thomas Ball, Todd Millstein, and Sriram K. Rajamani. Poly-

[Borstler:1991:TCT]

[Broy:1994:AFC]

[Bertsch:1999:FPT]

[Banerjee:2018:LAF]

[Bohm:1994:TIP]

[Bobrow:1980:MRS]
REFERENCES

Boom:1982:WPL

Borning:1981:PLA

Boute:1988:SSP

Boute:1992:EDF

Boute:2005:FDL

Boute:2006:CSD

Bar-On:1985:OPG

[BOV85] Ilan Bar-On and Uzi Vishkin. Optimal parallel generation of a computation tree form. ACM Transactions on Programming Languages and Systems, 7(2):
REFERENCES

Boyland:1996:CAG

Boyland:2010:SFP

Broy:1982:CAA

Burns:1989:USS
James E. Burns and Jan Pachl. Uniform self-stabilizing rings.

Boyland:2010:SFP

Balabonski:2016:DFM

Bauerngartner:1997:ISC
URL http://www.acm.org/
Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

Bruce:2003:PTS
Burke:1993:IOE

Budd:1984:ACV

Burton:1984:ACP

Burke:1990:IBA

Burton:1990:TCT

Burton:1991:TCA

Broy:1987:ADP

Manfred Broy, Martin Wirsing, and Peter Pepper. On the algebraic definition of programming languages. *ACM Transactions on Programming Lan-
REFERENCES

REFERENCES

[CFM94] Michael Codish, Moreno Falaschi, and Kim Marriott. Suspension analyses for concur-

Chatterjee:2018:AAQ

Cortes:2004:HLA

Cytron:1991:ECS

Clark:1986:PPP

Chin:1995:ROA

Christensen:2004:OPE

REFERENCES

Cohen:1987:PCU

Chow:1990:PBC

Charlesworth:1987:MR

Chatterjee:1993:CND

Charlesworth:2002:UAC

Chitil:2005:PPL

Cogumbreiro:2019:DDV

REFERENCES

Carbone:2012:SCC

Cameron:1984:GBD

Chatterjee:2018:AAP

Cejtin:1995:HOD

Consel:1993:PPE

Carr:1994:IRM

Cooper:1986:IIA
Keith D. Cooper, Ken Kennedy, and Linda Torczon. The impact of interprocedural analysis and optimizations in the R(n) programming environment. *ACM Transactions on Programming Languages and Systems*, 8(4):

Codish:1995:IAI

Clifton:2006:MDR

Choi:1991:TDP

Christensen:2003:EJH

Cohen:1983:CCA

Clemm:1990:MEI

Cohen:1983:ERR

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC

Carle:1995:MBI

Carle:1996:OCP

Alan Carle and Lori Pollock. On the optimality of change prop-

Cohen:2017:LPC

Corchuelo:2002:RSE

Cleaveland:1993:CWS

Carson:1987:GSP

Cooke:2008:NTD

Cuny:1987:CDD

REFERENCES

[CTT07] Christian S. Collberg, Clark Thomborson, and Gregg M. Townsend. Dynamic graph-

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FAC

Dillon:1988:CET

Dunlop:1985:GSU

Douglas D. Dunlop and Victor R. Basili. Generalizing specifications for uniformly imple-

[Decorte:1999:CBT] Stefaan Decorte, Danny De Schreye, and Henk Vandecasteele. Constraint-based termination analysis of logic pro-

[DF80] Jack W. Davidson and Christopher W. Fraser. The design and application of a re-targetable peephole optimizer. *ACM Transactions on Programming Languages and Systems*, 2
REFERENCES

REFERENCES

DeBoer:1997:PCC

Duesterwald:1997:PFD

Dhamdhere:1991:PAG

delaBanda:1996:GAC

DeLaBanda:2000:ICL

Dolby:2012:DCA

Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip,
REFERENCES

Dolev:2009:SSP

DeMoura:2009:RC

Dillon:1990:USE

Darulova:2017:TCR

David:2018:PSP

Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. Program synthesis for program analysis. ACM Transactions on Programming Lan-

Dodds:2016:VCS

Dil09

REFERENCES

Drinic:2007:PPC

Debray:1993:CAL

Danicic:2018:SBS

Dissegna:2016:AIB

Degano:1988:EIL

Diwan:2001:UTA

Danvy:1996:EED

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Das:2005:PFI

Dawson:1996:PPU

Dekel:1983:PGP

Dremhsler:1988:TCS

Dewan:1990:ASA

Dhamdhere:1998:DCD

REFERENCES

Dewar:1982:TDG

Derrick:2011:MVP

Ducournau:2008:PHA

Duggan:1999:DTD

Duggan:2002:TSL

DeSutter:2007:PID

Dantoni:2015:FTB

Debray:1989:FCL

Saumya K. Debray and David S. Warren. Functional computa-

REFERENCES

REFERENCES

Furr:2008:CTS

Florence:2018:PPP

Flanagan:2008:TAS

Fournet:2003:SIT

Freudenberger:1994:ASC

Foster:2007:CBT

Fournet:2007:TDA
Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for authorization
REFERENCES

REFERENCES

Christopher W. Fraser and Eugene W. Myers. An editor for

Freund:1999:TSO

Flexeder:2011:FIL

Fisher:2002:GE

Francez:1980:CDT

Francez:1980:DT

REFERENCES

1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Fra80a] and remarks [Moh81, Fra81].

Gazinger:1983:PSP

Greiner:1999:PTE

Gouda:1986:PLN

Grove:2001:FCG

Gulavani:2011:BSA

Gergeron:1982:SAS

Gordon:2017:VIL
REFERENCES

REFERENCES

GarciaDeLaBanda:1996:GAC

Griswold:1981:GI

Ghosh:1993:ASP

Graham:1980:ICF

Gallager:1983:DAM

Giegerich:1983:FFD

Gupta:1993:APE

Glenstrup:2005:TAS

[GHJ05] Arne John Glenstrup and Neil D. Jones. Termination anal-

REFERENCES

Gloy:1999:PPU

Gawlitza:2011:SSR

Gupta:1994:ERA

Grimmer:2018:CLI

Gerlek:1995:BIV

Garcia:2014:FTO

Gudeman:1992:DSG

David A. Gudeman. Denotational semantics of a goal-
References

Grosser:2015:PAG

Gudjonsson:1999:CTM

Glesner:2004:NSS

Gil:2005:EST

Gil:2007:EDD

Hoffmann:2012:MAR

Hailperin:1998:COC

Max Hailperin. Cost-optimal code motion. *ACM Transactions on Programming Lan-
REFERENCES

Hailperin:2005:CCC

Max Hailperin. Comparing conservative coalescing criteria.

Halstead:1985:MLC

Hall:2005:IPA

Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica S. Lam. Interprocedural parallelization analysis in SUIF.

Hansen:1981:CMI

Wilfred J. Hansen. A cost model for the internal organization of B+-tree nodes.

Hanson:1981:APP

David R. Hanson. Algorithm 568. PDS — a portable directory system.

Hansen:1992:SRF

Wilfred J. Hansen. Subsequence references: First-class values for substrings.

Hannan:1994:OSD

John Hannan. Operational semantics-directed compilers and machine architectures.
ACM Transactions on Programming Languages and Systems, 16(4):1215–1247, July 1994. CODEN ATPS DT. ISSN 0164-0925
REFERENCES

Harel:1980:PNA

Hauser:1996:HFP

Havlak:1997:NRI

Hind:1999:IPA

Harman:2009:DCS

Hassen:1998:TDP

REFERENCES

Henglein:1993:TIP

Herlihy:1991:WFS

Herlihy:1993:MIH

Hesselink:1988:MAN

Haynes:1987:ECP

Hosoya:2009:PPX

Hennessy:1983:PCO

Heering:1992:IGL

Heering:1994:LIP

Herlihy:1982:VTM

Hirschowitz:2005:MMC

Hull:1984:CSP

Harper:1993:TSS

Hamlen:2006:CCE

REFERENCES

Haghighat:1996:SAP

Hermenegildo:2000:IAC

Henzinger:2002:AGR

Hennessy:2002:IFV

Horwitz:1990:ISU

REFERENCES

Harrold:1994:ECI

Huang:2011:MSS

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

[HU96] Urs Hölzle and David Un-
REFERENCES

103

[HVP05] Haruo Hosoya, Jérome Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27
REFERENCES

REFERENCES

Igarashi:2006:VPT

Iverson:1979:O

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

Jacobs:2018:MTV

Janssen:1997:MGR

Jacek:2019:OCW
Nicholas Jacek, Meng-Chieh Chiu, Benjamin M. Marlin, and J. Eliot B. Moss. Optimal choice of when to garbage collect. *ACM...

Jefferson:1985:VT

Jeffery:2003:GLS

Jensen:1997:DPA

Juelich:1981:CAS

Jackson:1998:IFM

Jimenez:2002:RTN

Jagannathan:2014:ARV

REFERENCES

2014. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Jeannet:2010:RAI

Jaffar:1992:CLS

Jeffrey:2010:ESA

Joshi:2006:DPA

Jones:1983:TST

Jonsson:1994:CSV

REFERENCES

Jazayeri:1981:SES

Jourdan:2017:SPC

Jagadeesan:1991:FAS

Joisha:2012:TTE

Juan:1998:CVC

Jakobs:2017:PPF

Kaiser:1989:IDS

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR
Kandemir:1999:GCO

Kim:2001:ERV

Kedker:1994:GTB

Kistler:2000:ADM

Kistler:2003:CPO

Kennaway:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM

Knapp:1990:EFD

Kobayashi:1998:PDF

Kobayashi:1999:LPC

REFERENCES

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP
ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[SV96] Jens Knoop, Bernhard Steffen, and Jürgen Vollmer. Paral-

Kfoury:1993:TRP

Kuperman:2000:ATA

Kalvala:2009:PTU

Kasikci:2015:ACD

Baris Kasikci, Cristian Zamfir, and George C. A list of references.

LaLonde:1981:CSC

LaLonde:1983:TCL

LaLonde:1984:TCC

Wilf R. LaLonde. Technical correspondence: Comments on
Soisalon-Soininen’s “Inessential Error Entries and Their Use in LR Parser Optimization”. ACM Transactions on Programming Languages and Systems, 6 (3):432–439, July 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [SS82].

LaLonde:1989:DFD

Lamport:1979:NAP
Leslie Lamport. A new approach to proving the correctness of multiprocess programs. ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].

Lamport:1980:CNA

Lamport:1983:SCP

Lamport:1984:UT1

Lamb:1987:ISI

Lamport:1988:CPB
Leslie Lamport. Control predicates are better than dummy variables for reasoning about program control. ACM Transactions on Programming Languages and Systems, 10(2):267–281, April 1988. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). URL http://www.acm.org/
Lamport:1990:WSP

Lamport:1994:TLA

Landwehr:1980:ATS

Larchevêque:1995:OIP

Ligatti:2017:SRC

Liao:1996:SAD

Lee:2007:DIE

REFERENCES

Lalonde:1981:HOP

LeMetayer:1988:AAC

Leeman:1986:FAU

Lee:2009:RFS

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB

Lueh:2000:FBR

Lycklama:1991:FCF

Lhotak:2008:RAB

Liu:2019:RIP

Lindstrom:1979:BGC

Lin:1993:PIA

Liu:1999:SVF

REFERENCES

REFERENCES

REFERENCES

Lieberherr:2004:TOS

Lim:2013:TSG

Lepigre:2019:PSC

Luckham:1979:VAR

Leverett:1980:CSD

Lindstrom:1981:RRB

Liskov:1983:GAL

Lamport:1984:HLC
Leslie Lamport and Fred B. Schneider. The “Hoare logic” of CSP, and all that. *ACM Transactions on Programming Languages and Systems*, 6(2):
Lang:1998:SAE

Levi:2003:MSA

Li:2004:ATI

Liquori:2008:FME

Luigi Liquori and Arnaud Spiwack. FeatherTrait: a modest extension of Featherweight Java.

Liu:2009:DRE

Liu:2005:OAA

Lamport:1982:BGP

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3):382–401, July 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authen-
tication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

[League:2002:TPC]
Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. *ACM Transactions on Programming Languages and Systems*, 24(2):112–152, March 2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Lengauer:1979:FAF]

[Lipton:1983:VLP]

[Leivent:1993:MFT]
REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

Mohan:1981:TCF

Moitra:1983:TCA

Monniaux:2008:PVF

Morgan:1988:SS

Moller:2007:SVX

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM

Moore:2002:AC

McKinley:2007:ECG

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Maher:1983:API

B. Maher and D. H. Sleeman. Automatic program improve-
REFERENCES

Murphy:1988:NDP

Marriott:1994:DAI

Marino:2016:DXU

Madhavan:2000:EGG

Morris:2008:DNF

Moret:1980:AVR
MacDonald:2009:DDP
Steve MacDonald, Kai Tan, Jonathan Schaeffer, and Duane Szafron. Deferring design pattern decisions and automating structural pattern changes using a design-pattern-based programming system. ACM Transactions on Programming Languages and Systems, 31(3):9:1–9:49, April 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Mueller:1987:RMS

Muller:1992:MLR

Mueller:1984:SCP
REFERENCES

1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[Necula:2005:CTS]

[Necula:2005:CTS]

[Norris:2016:PAM]

[Nguyen:2005:EEA]
REFERENCES

[138] ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Nandivada:2013:TFO

Olderog:1988:FPP

Odersky:1993:DCD

Olmedo:2018:CPP

Oh:2014:GSA

Ohor:1995:PRC

Ohor:2007:PTM

Atsushi Ohori. A proof theory for machine code. *ACM Transactions on Programming Languages and Systems*, 29(6):
References

REFERENCES

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

REFERENCES

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

Pan:2008:PFE

Pemberton:1983:TCT

Perrott:1979:LAV

Perry:1990:GEI

Peterson:1982:UAC

Peterson presents a deterministic distributed algorithm for finding the largest of a set of n uniquely numbered processes in a ring. The algorithm requires \(O(n \log n) \) messages in the worst case, and is unidirectional. The number of processes is not initially known.

Piper:1996:IDG

Pai:1980:GCR

Park:2004:ORC

Payet:2006:NIL

REFERENCES

[PALSBERG:1995:TSE]

[PENG:1991:DFA]

[PPINTER:1994:POP]

[PITYRES:1979:UNS]

[PARK:2008:PLB]

[PROEBSTING:1995:BAG]

[Todd A. Proebsting. BURS automata generation. ACM
REFERENCES

[PS08] Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode AD in a functional framework: Lambda the ultimate backpropagator. ACM Transactions on Programming Lan-
REFERENCES

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SAU

Pugh:1998:CBA

Palsberg:1995:EIA
Palsberg:2005:ADC

Qian:1995:CRO

Qian:2000:SFI

Quillere:2000:OMU

Ranganath:2007:NFC

REFERENCES

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Rao:1994:RAP

Reiter:1994:HSR

Ramsey:2003:TAB

Rogers:1995:SDD

Richardson:1993:DPL

Reps:1987:SSE

Rinard:1997:CAN

Rinard:2003:ESB

Rossberg:2013:MMM

Rong:2008:RAS

Reiss:1983:GCS

REFERENCES

[Rem81:APN]

[Rep86:GEI]

[Rep98:MMT]

[Rep00:UCS]

[Ros97:SRM]

[RH87:EAA]

[Rhi03:FEL]
REFERENCES

REFERENCES

REFERENCES

Raja:1997:CFC

Reps:2010:FDL

Reps:1983:ICD

Ryu:2016:TOO

Sukyoung Ryu. ThisType for object-oriented languages: From theory to practice. ACM Transactions on Programming Languages and Systems, 38(3):8:1–8:??, May 2016. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
REFERENCES

Stata:1999:TSJ

Shao:2000:ESS

Sager:1986:SPC

Sagiorgi:2009:OBC

Solovyev:2019:REF

Samet:1980:CAP

Sands:1996:TCL
Rigorous estimation of floating-point round-off errors with symbolic Taylor expansions.

Sampaio:2013:DA

Strickland:2013:CFC

Sethi:1983:CFA

Stamos:1990:RE

REFERENCES

REFERENCES

2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TRO

Spoto:2010:TAJ

Stork:2014:APB

Sokolowski:1987:SHL

Solworth:1992:E

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Sagonas:1998:AMT

Schulte:2005:WDB

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:EEC

Staiger-Stohr:2013:PIA

Sneyers:2009:CPC
REFERENCES

REFERENCES

REFERENCES

Seo:2007:GDW

Swinehart:1986:SVC

Terauchi:2008:CCC

Terauchi:2008:WSE

Tai:1979:NSG

Tanenbaum:1983:TCT

Tardieu:2007:DLS

Tsay:1995:DFP

REFERENCES

168

Tichy:1986:SR

Tichy:1988:TCT

Tick:1994:DTN

Tripakis:2011:TSR

Tel:1993:DDT

Thammanur:2004:FME

Tratt:2008:DSL

Laurence Tratt. Domain specific language implementa-

[TvS82] Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Stevenson. Using peephole optimization on intermediate code. ACM Transactions on Programming Languages and Systems, 4
REFERENCES

vandenBos:1988:AIT

VanderZanden:1996:CIA

VanderZanden:1996:IAS

Vansummeren:2006:TIU

Vera:2004:FAF

Venkatesh:1995:ERD

VanRoy:1997:MOD

REFERENCES

[173]

vonHanxleden:2000:BCP

VandenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Volpano:1991:TCS

vandenBos:1981:PCB

REFERENCES

VanHentenryck:1995:BTC

VonBank:1994:UMP

VanNieuwpoort:2010:SHL

Waddle:1990:PTC

Wallis:1980:ERO

Wallis:1981:CER

Wall:1992:ESD

REFERENCES

REFERENCES

88639.html. See corrigenda [WCW91].

[Weleden:1991:CCE]

[Webber:1995:OFP]

[Weyuker:1983:ATD]

[Wei89]

[Wagner:1998:EFI]

REFERENCES

Wirth:1988:TE

Wirth:1991:TCR

Wise:1979:MGC

Wright:1998:PSE

Wellings:2000:IOO

Wand:2004:SAD

Weihl:1985:IRA

[William Weihl and Barbara]
REFERENCES

REFERENCES

Paraskevas Yiapanis, Gavin Yemini:1985:MVE

Yemini:1987:ATE

Yemini:1988:TCA

Yiapanis:2016:CDS

Paraskevas Yiapanis, Gavin

Yang:1998:STE

Yardimci:2009:MSP

Ying:2011:FHL

Yu:1997:NCI

Yu:1997:SMC

Yu:1994:LTS

Yellin:1991:ILI

Yellin:1997:PSC

Young:1999:SCB

Yahav:2010:VSP

Yang:2002:EEB

Zave:1985:DAF

Zhao:2007:FFS

[ZCG+07] Peng Zhao, Shimin Cui, Yaoqing Gao, Raúl Silva, and José Nelson Amaral. Forma: a framework for safe automatic array reshaping. ACM Transactions on Programming Languages and
REFERENCES

Zhang:2005:CPT

Zhou:1996:PPC

Zic:1994:TCB

Zhang:2017:SSH

Zhuang:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA

Yutao Zhong, Xipeng Shen, and Chen Ding. Program locality analysis using reuse distance. ACM Transactions on Programming Languages and Systems,