A Complete Bibliography of Publications in *ACM Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 December 2019
Version 2.134

Title word cross-reference

([SRW02], + [Han81a], T^M [Bla03], $\delta_{ex}/$
[AW82], \parallel [DDDCG02], A [DES12], \mathcal{R}
[JMSY92], \mathcal{R}_{Lin} [VR95], ℓ [ADG94].
$O(n)$ [Pet82], ϕ [CF95, DR05], π [ABL03].)

(k) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3
Abstract [BGL93, BK11, CMB+95, CFG+97, DGG97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RR05, HO07, KSK07, PHP02, PSS05].

Accessing [CB80]. Accumulation [Bir84, Bir85]. Accumulators [Cam89]. accuracy [CEG07, HDH02]. accurate [CG04, VBLG04, VALG05]. ACE [Le 88].

ACM [Ano18, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92].

Across [NSTD+15]. Action [BKS88].

Actions [Lam94, LS83]. Activity [Bar81, MTG80]. Actor [TCP+17]. Acyclic [BE94, JF81]. Ad [MDCB91, PS08]. Ada [Bak82, Dil90, Hall88, LP80, WJS+00].

Adaptation [Dha91]. Adaptive [ABH06, HOY+18, FXL95, TCVB14, UJ+92, RD03].

adaptors [YS97]. Addendum [Bir85].

Adding [ACW90, BN94]. Addition [Hol87, ZP10].

Algorithmic [BP82, BLP87, CIGP18, CKG+19, Jen97, Lin93, SV19b, JB06, SP07].

Algorithm [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha91, DP93, GHS83, Hua90, Hud91, JJC+19, LV94, LK89, Le90, LT79, LH91, MM82, MC82a, Pet82, SH89, TB98, Wis79, BKRW98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han91, BKRW05].

Algorithms [Apt86, BA91, CIGP18, CKG+19, CS95, GLO88, KRS84, KKM90, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro90, Kro91, Kro92, MM89, RD87, RH87, RP88, TR93, WW93, Apt00, DAS98, GC01, ZG05].

Alias [Hor97, HBCC99, RR05]. Allasing [Boe85, Ram94, RLS+01]. All-Purpose [Sp06]. Allocating [ZP07]. Allocation [BB79, BRE98, BCT94, CH90, CS95, FLBB89, GSO94, LCB91, Rob97, SH89, CGS+93, HCS10, LGAT00, PS99, PF96, RDG08, SRM10, TP04].

Alma [ABPS98].

Alma-O [ABPS98]. almost [Due08, Ram99].

Alternative [Gho93, GH80, Zav85]. Alway [Gr97].

Ambiguity [Th93]. amorphous [HAH12].

Amulet [VHM+01].

Analyses [AC94, CC95, CFM94, TN19, KSV96, SJ03].

Analysis [AKP17, ABE+05, AD98, Bae84, BNN18, BC85b, Blo94, BE13, Bur90a, CFNH18, CFG19, CKK+18, CMN91, DKL18, DL93, Deb95, DP97, DAW88, FPS19, FJK+17, GNS+15, GJ93, HP96, HOY+18, Hll98, Hor97, ISY88, Jen97, JJC+19, KD94].
array-valued [RMH06]. Arrays [BBC16].
Article [Ano18]. ASF [VHKO02]. aspect [DWW08, WKD04]. aspect-oriented [DWW08, WKD04]. AspectML [DWW08]. Aspects [Bor81, Set83].
assembly [AAC+10, MWCG99].
Assertions [BKB80]. Assessing [BDH+16, Wey83]. Assignment [BM94, CFR+91, GL80, GFP08, LDK+96].
Assisted [HCHP92]. Assisting [Fea82]. Associated [PPS79]. associativity [Cha02].
Assocs [Rem81]. assume [HQRT02].
assume-guarantee [HQRT02].
Assumptions [ES97]. AST [GVC15].
Asynchronous [Bag89, GLO88, Mis86, GM12, HR02]. ATL [WSH15]. Atomic [WL85, Wei90, AE01].
Atomicity [JLP+14, Wei89, FFLQ08]. Attacks [SBE+19]. Attribute [CP95, Hud91, Jon90, Kat84, KR79, MK94, RD87, WW95, Boy96, CP96, Wu04].
Attributes [HT86]. Author [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].
authorization [FGM07b]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b].
auto [ZP10]. auto-addressing [ZP10].
Automata [BMW91, CBM019, ES97, Pro95, KV00].
Automata-Theoretic [ES97, KV00].
Automated [GRSK+11, KZC15, KF00, Sok87, JNGG10].
Automatic [AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, D90, KK98, Le 88, LK02, LS04, MS83, PZJ05, RH87, SSS81, SL03, She91, Wat91, Wh94, ABH11, ATD08, BdiBH99, CRN+08, ZCG+07].
Automatically [Slo95]. Automating [GKL94, MTSS09]. Avoidance [FGL94].
aware [MQ05]. Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80]. Axioms [Mis86].
Checks [CG95, CEI+07]. Choice [BN94, JCM19]. CIRCAL [Mil85].
Circular [Jon90, Pet82]. Circularity [WW95, Wn04]. Clarification [PA86a].
Class [CRM09, HKM94, Han92, SJ03, SDTF13, HS11, MH04, ST00a]. Classes [SDTF13, WT11, HHPW96, HMS06].
Classical [JSB+12, Miq19]. Classification [KZC15]. Classifying [GSW95].
Claus [WP10]. Cliche [Wat94]. Cliche-Based [Wat94]. Closure [Pal95, SW97b, SA00]. CLP [DHM00, GLMM05, JMSY92, KMM+98, VR95].
Clustering [LLK+17]. Clusters [BGH+13, HBG+09]. coalescing [GA96, Hai05, PM04]. Code [AGT89, BHM+19, Cat80, Cop94, DF84, FGL94, GF85, Hen82, HG83, JSB+12, KRS94, LR13, ND16, Rob79, TVS82, Wan82, AM01, DEMD00, Hai98, HBG+09, HK07, JNZ06, LDK+06, MSR00, ME97, Oho07, PHEK99, WS97, vHK00, CM93, Pen83, WST85].
Cohen [Coh85]. coherence [SS96]. coinduction [San09]. Collect [JCM19].
Collecting [HY91]. Collection [BA84, CN83, DSW82, Lan80, TM93, URJ18, WLB+16, BALP06, HDH02, PBK+07, Piq96].
collector [BBYG+05, LP06, TSBR08]. Coloring [BCT94, CH90, GSO94].
Communicating [AFRD80, GC86, HM84, MW84, MC82h, Moli83, OSS83, PP91, Pur91, Sou84, Ber80, KS79]. Communication [Ang89, CHY12, FJK+17, FY85, Gel85, Hua90, LH91, MB83, vPS81, KBC+99, Mil85, SWU10, WM12]. Communication-Centered [CHY12].
Communications [RS84b]. Commutativity [RD97, Apo00, Cha02]. Compact [BC79, Sip82, Wad90].
Compactification [RH87]. Compacting [CN83]. Compaction [CP17, WIs79, BP12, DDD05, DEMD00]. Comparative [WCW90, WCW91].
Comparing [Hai05]. Comparison [CN83]. Compartmentalized [WLB+16].
CompCert [BDP14]. Compensation [FGL94]. Compilation [DLR16, FKW98, FL91, JLP+14, JFS1, Oho95, PAS+15, Sit79, KMM+98, LST02, LDM07, SY06]. Compile [ABR81, GW99, Hol87, Tra08].
Compile-Time [ABR81, Hol87, GW99, Tra08]. Compiler [APP94a, Bud84, CM86b, DK02, DEMD00, FT94, FGL94, JSB+12, Rei83, Slo95, Son87, Wha94, YBL16, Ano02a, CMLC06, DSH09, GMM99, KN06, PEO8, PHEK99, SYK+05, VHO02]. Compiler-Driven [YBL16]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SY06].
Compiling [Cha93, CH87, Fis80, Set83, VHO02].
Complementation [CFG+97]. Complete [BDFH97, WM95]. Completeness [LBN17, TB95, WGS92, WU94, WGS93].
completion [KR01]. Complexity [BEF+16, Deb95, Le 88, RRSY08, SSD09]. component [LS98, YS97].
component-base [LS98]. Componential [FF99]. Components [CIG18].
Composing [AL93, HKM94]. Composite [Fen87]. composition [AH10, Pau01].
Compositional [Fos96, Jon94, JTM98, LFF14]. compressed [DAS98]. Compression [BMW91, CSCM00, DKV07].
Computability [HMS06]. Computable [PK82]. Computation [AC94, BOV85, DP82, HS94, LST98, PB97, ABB+09, AE01, DR05, LK02, SWU10, SGL97, Hal85].
computational [ATD08, SSD09].
Coupled [ACW90]. Covariance [Cas95].

covariant [PZJ05]. Creating [Mye90].

criteria [Hai05]. Critical [PS93]. Critique [GM81]. Cross [Ano18, FTJ95, GSS+18].

Cross-Interferences [FTJ95].

Cross-Language [Ano18, GSS+18].

cryptographic [App15]. CS [CD79]. CSP [AF84, Bag89, BS83, Fid93, Hua90, LS84, Zic94]. CSP-Like [Hua90]. CSS [HLH19].

currency [DS98]. Curry [LR19]. Curry-Style [LR19].

Custom [DJP+16].

cv3 [CZ84]. cycle [BG89b, PBK+07].

cycles [FRW90]. cyclic [RY88].

D. [Bur91]. Data [AMT14, ANP89, AM85, Bac84, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, Ell82, EO80, FL81, GMH81, GEGP17, HLS82, Her93, Hes88, Hol87, Jen97, JCC019, KH92, Kam83, KZC15, KK98, KD94, La89, LO94, Loe87, Mal82, MMR95, MCT96, PP91, QC95, RCRH95, RP88, SSS81, Sku95, SGL98, SM81, TWW82, WL85, Wei89, Wei90, Wet82, Wey83, CFP+04, DHM+12, DG97, HBJ98, KBC+99, KF00, LK02, Rep90, SP07, VALG05, YUW02, ZGZ95, Pur91].

data-centric [DHM+12]. Data-Driven [BL87, CS87, JCC019].

Data-Flow [BC85b, Bur90a, Wet82, RP88, KBC+99].

data-independence [Rep90].

data-member [KF00]. Data-Parallel [Cha93, HBJ98]. Database [Bar85, CB80].

Deciding [GGL15]. Decision [MTG80, NO79]. decisions [MTSS09].

Declarative [AP98, TC14, Bou05, MME+10].

Decomposition [BB94]. Decomposing [BDL+08]. decomposition [LK02].

decrease [LDK+96]. Deducing [TB95].

deduction [LMD98]. Deductive [MW80].

Default [SNS+14]. Deferring [MTSS09].

Defined [Wal92, Wal80, Wal81]. Defining [Ode93]. definite [RKRR04]. Definition [Bou92, BWP87, CI84, CD79, Fid93, HS94, WCW90, WCW91, Woi94]. Definition-Use [HS94]. Definitions [BS68, Wil82a, Van82a, VHT02, SI89].

Delay [BG98]. Delayed [KPF95, RC03].

Delayed-Load [KPF95]. Delaying [Kau84].

Deleting [GP81]. Delimited [BDM15].

Demand [FPS19, GS95, PA85, PA86a, PA86b, PF96, SR95, DG97].

Demand-Driven [GS95, PA85, PA86a, PA86b, FPS19, PF96, DG97].

Denali [JN06]. Denotational [AB94, FA93, Gd92, MS94, NF89, Nie85, Sch85, dBB85].

Dependence [BG98, CBR+91, FOW87, HBG+09, HR90, PB97, PW98, Woi94, RAB+07].

Dependences [Ped89, CSS99]. Dependency [Blu99].

Dependent [LS80, Miq99, NGB13, Ode93, RTH83, Rob79], dequeues [Chu05].

DeRemer [Sag86]. Derivation [BKG80, Cat80, DSW92, Gie93, HIT97, Kna90, TM93, Aho02a].

Deriving [Wan82, Bou06]. Describing [AW85].

Description [McG82]. Descriptions [Boe85, BK+97, Cat80, Aho02a].

Descriptors [Hol87]. Design [BPP16, BCD+15, BO94, DF80, DF81, FT94, HM84, KKM90, LDM07, ML80, RCS93, RL98, SYK+05, Bou05, MTSS09, CML06].

Design-pattern-based [MTSS09].

Describing [La89, AL03]. Designs [AW85]. destructive [SRW98]. Detect [IS88].

Detecting [GS95, HCS10, Sch85]. Detection [CM86a, Hua90, MC82a, MC82b, TM93, AFF06, HDH02, PFI11, PCD08, XA07].

Determinacy [TK94]. determination

discipline [FGM07b]. Disciplines [SS84]. Discovering [FJK +17]. discovery [PZJ05]. Discrete [Bar81]. Discrete-Event [Bar81]. Disjunctive [Jen97, JCC10]. dispatch [DAS98, MFRW90]. dispatching [GZ07]. Distance [Wol94, ZSD09]. distribute [CRN’08]. Distributed [ABLP93, AF84, APT86, AW85, BKS88, BSEM15, BUR84, CJK95, CM86a, CDBG95, CS95, DAW88, Dug99, FLBB99, Fra80b, GHS83, HSG17, Hua90, HMS4, Jon94, Kat93, KK98, KRS84, KKM90, Lam84, LS83, MC82a, RCRH95, SS84, Sch82, TM93, TCP’17, Zav85, ABL03, FM87a, HVB’99, KGMO04, LK02, MD05, Piq96, Fra80a, Moh81, VHB’97].

Distributed-Memory [KK98, RCRH95].
div [Bou92]. Divergence [SdSCP13]. DJ [DR05, SGL96, SGL98, UM02]. DJ-graphs [UM02]. DLLs [Dug02]. do [SS05a].

Documentaion [MH86]. does [DMP96].
dolce [MP10a]. Domain [LM18, Tra08, RM07, SS05a]. Domains [CMB’95, ELS+14, GS98, FH04, GLMM05]. dominance [Ano02b, DVD07]. dominator [SGL97]. Dominators [LTH9, Ano02b, BKRW98, BKRW05]. Don’t [AKNP17].

Drf [MSM +16]. Drinking [CM84, MS88]. Drive [PK80]. Driven [BL78, CS87, GF85, GSW95, JCC10, PA85, PA86a, PA86b, TGT18, YBL16, DGS97, FPS19, PF96, YMW97]. Dually [MT08].

Dummy [Lam88]. During [BKB80]. DyC [GMP’00]. Dynamic [ACPP91, AGT89, ASF17, BBT99, BDM15, BRE89, CGG’19, CHMY19, CTT07, DS98, Dug99, HSS’14, HN05, KAI89, KR79, RCRH95, VEN95, WR08, DBB85, ACE96, BP12, CEI’07, DDCGO2, GZ07, MMM’07, PHEK99, SJ12, SHB’07, SYK’05, SYNO6, WKD04, ZGZ05].

eager [FKW00]. Earley [Lei90]. Early [AB81]. ECICS [CDFP89]. Edge [DP93]. Editing [FL81, HT86, Nix85]. Editor [FM87b, DeM83, Mye18, Per90, Rep86, Wol92]. Editorial [AP07, App93, AG93, AM07, Me69, PAL11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04]. Editors [DMM88, MM89, RDT83, Wat94]. EDO [OKN06]. effect [RLS’01]. Effective [BS83, COl84, KKN06, N05, PE08, WJ98, YUW02].

Effectiveness [BdHH99, SH89]. Effects [Boe85, SV19b, TA08b]. Efficient [AKBLN89, ADGM91, BB79, BGH+13, BRE89, CAM89, CS95, DP82, DMM88, GZ05, GZ07, GLR83, GLO88, GSO94, HVB’99, HSS94, HSB’14, HIT97, JP81, Jon90, KKM90, KRS88, KPF95, MVV’01, MM82, NB99, N05, PHP02, PX05, PKH07, PA85, PA86b, RBH87, SSO8, SA00, SSB8, TN19, WG98, YUW02, BCP08, GB99, KSV96, LPS004, LS09, PBK’07, TP04, VWJB10, YF98, PA86a, SS09]. Efficiently [Ba94, CCR’91, CF95]. Eiffel [ACE96].

elaboration [KR01]. Election [Hua93].

Eliminating [BT93, Coh83, Coh85, RD03]. Elimination [DP93, SGL98, KKN06, KCL’99]. Elimination-Based [SGL98]. embedded [BPC08, CSCM00, HK07, Rhi03, SRM10, TP04, ZP10]. Embedding [HP87].

Empirical [BHK07, BDH16].

Empowering [JSB’12]. Emulator [ML80].

DVLM15]. Faster [CGG+19]. Fault
[CS95, Lam84, LJ99, AAE04].
Fault-Tolerance [LJ99]. Fault-Tolerant
[CS95, Lam84, AAE04]. FD [GLMM05].
FeatherTrait [LS08], Featherweight
[IPW01, LST02, LS08]. Feature
[ASAVF19, AH10]. Feature-Specific
[ASAVF19]. Feeding [PA86a]. Fence
[AKNP17]. Fickle [DDDCG02, AADG07].
Feld [PKH07]. Feld-sensitive [PKH07].
Felds [PZJ05]. FIFO [FLBB89]. Final
[Kam83]. Finding [KRS84, KKM90, LT79].
Fine [PBR+15, DNS+06]. Fine-Grained
[PBR+15, DNS+06]. fingerprinting
[CTT07]. Finitary [AH98]. Finite
[AC90, BLH12, CES86, GC86, PK82,
PP91, Pur91, RSL10, Zav85]. Finite-State
[AC90, BLH12, CES86]. Finite-State-Machine
[Zav85]. First
[ADG+94, Bre89, DP07, HKMN94, Han92,
JPP91, JS94, LH10, MH04, SDF13].
First-Class
[HKMN94, Han92, SDF13, MH04].
First-Come-First-Served [LH91].
First-Enabled [ADG+94]. First-Fit
[Bre89]. First-In [ADG+94]. First-Order
[DP07, JPP91, JS94]. Fit [Bre89]. Fixed
[SS98]. Fixed-Order [SS98]. Fixpoint
[AC94, Qia00]. Flexible
[AD98, Hud91, MSM+16, WG98, Wil82b,
dKV12, IV06, KGM04]. Floating
[CK94, Fat82, SBB+19, Han96, Mon08].
Floating-Point
[CK94, Fat82, SBB+19, Han96, Mon08].
flop [MMG00]. Flow [AR80, AD98, ASF17,
Bac84, BC85b, Bur90a, DP97, DP93,
FJKA06, Hor97, KD94, MMR95, NGB13,
PO95, PP91, PBR+15, Pur91, Set83, SGL98,
SS13, Wt82, DQS97, HR02, HY07, KBC+99,
Pal98, PS03, RRSY08, RP88, TZ07, WJ98].
Flow-Insensitive [Hor97, FJKA06].
Flowback [CM91]. Flawgraph [LT79].
Flows [Kna90]. Floyd [Yin11]. Fly
[CF95, BA84, LP06, PKB+07, URJ18]. fold
[RKRR04]. Folklore [LY98]. Font [FK85].
Foo [FA93]. foreign [FF08]. Foreword
[Mye17, Mye18]. Form
[AK87, BOV95, BM94, CFR+91, GSW95,
Pal95, GPF08, KCL+99]. Forma
[ZCG+07]. Formal [BS86, BD14, CB80,
CD79, Fkd93, Gie83, HTH97, Kna90, Lee86,
Mal82, MH86, Sha82, WP10]. Formalisms
[PCC85]. Formalization [BPP16].
Formally [SP97]. Format [Wat83]. Forms
[DS83]. formulas [RS97]. formulations
[RS97]. Fortran [AK87, DP99].
Foundation
[KRR18, Ban11, RAB+07, Rhi03].
foundational [AM01]. Foundations
[GTWA14, LW93, AAR+10]. Fractal
[MPM03]. fractional [Boy10]. frames
[SJP12]. Framework [BGL93, Gie83, JW17,
KRR18, NSZ+13, NSTD+15, OHL+14,
SGL98, TN19, ATD08, DGS07, GMM99,
GZ04, GC01, Leu04, PS08, RKRR04, TP04,
VBL04, XA07, ZCG+07, ZP10, vHK00].
Frameworks [MMR95, KK07]. Framing
[BNN18]. Francez [Fra81, Moh81, Moe83].
Free [AP94, GEGP17, GHR80, Her91,
Kar84, Koh98, Pad19, JJD98, KSV96].
freedom [KS10]. frontiers [Ano02b]. full
[GB99]. Fully [JPP91]. function
[DR05, FF08]. Functional
[AFV98, Ban87, Blo94, Bout95, Bur84,
DW98, FL91, ISY88, JPP91, WM95, Web95,
Wil82a, ABH06, Bon06, DWWW08, DF98,
PS08, San96, SP97]. Functions
[AKP94, AK82, Bout92, PB80, SM89, Lee09,
MBC04, MB99, MTO8, PPT08]. Further
[CM93]. Fusion [LGAT00]. Fusion-based
[LGAT00].
G. [Tic88]. Garbage
[BA84, CN83, DSW82, ISY88, JCM19,
TM93, URJ18, WLBF16, WIs79, BBYG+05,
BALP06, HDH02, LP06, Pid96, TSB08].
Garnet [VHM+01]. General
[BGL93, CHMY19, HSS+14].
General-Purpose [HSS+14].
Generalization [Nel89, LMD98].
Generalized [Ans87, BS83, KD94, Lin79].
Generalizing [DB85]. Generals [LSP82].
Generate [Son87].
Generated [Slo95, dJKVS12]. Generating
[HBM+06, HT86, Jef03, LR13, JNZ06].
Generation [AGT89, AS80, BOV85, BM94,
DS83, DS90, GF85, GVC15, HKR92,
HKR94, Pro95, Rei83, Rob79, She91, ST00h,
UJ92, DAS98, MSRR00, PHEK99].
Generative [Gel85].
Generator [PPS79].
Generators [Cat80, GHK81].
Generic [LV94, DDM11]. generics [IV06].
Geometry [CR87].
Geoff {NN86}. GJ [IPW01].
Glanville [MSRR00].
Global [Bac84, Dha91, GHB+96, OHL+94,
PS82, Sch85, DHB+96, CS04, KBC+99,
DS88, Sor89].
GLR [SJ06].
Goal [Dar90, Gud92, SYYH07].
Goal-Directed [Gud92, SYYH07].
Goal-Oriented [Dar90].
Goto [CF94].
GPU [BCD+15].
Gradual [TGT18]. Graham [MSRR00].
Graham-Glanville [MSRR00].
Grained [PBR+15, DNS+96].
Grammar [CI84, CP95, GF85, JP81, KR79, Web95].
Grammar-Based [CI84].
Grammars [BS88, Jon90, Kat84, LaL81, MC82a, Son87,
CTT07, GC01].
Grammatic [Tho94].
Grammers [BB94, MK94].
Granularity [RRB19].
Graph [Ass00, Bee94, BCT94, CFR+91,
FOW87, KKS94, KLS92, MC82a, Son87,
CTT07, GC01].
graph-based [CTT07].
Graphic [Mal82].
graphical [VHM+01].
Graphs [HRB90, KPS92, Kna90, SGL98,
DR05, JC97, KSK07, SGL96, UM02].
grid [VWJB10].
Grimmer [Ano18].
groundness [CSS99].
Grover [BH99].
growth [BALP06].
Guarantee [GEGP17, LFF14, HQRT02].
guarantees [LS09].
guard [MP07].
guarded [SP07].
Guardians [LS83].
Guards [Ber80].
Guest [FP02, OP04, DeM83, Per90, Rep86, Wol92].
Guide [App94a, BDH+16].
Guided [OLH+16].
guiding [VALG05].
Hackers [App94a].
Hancock {CFP+04}. handle [VJB12].
Handling [Han96, LdR81, Piq96, SSS83, UM02, YB85, YB87, YB88,
CRN+08, LS98, LP80, SSD09, Hen83].
Hard [Hor97].
Hardware [BKLM+97, Mis86].
harmful [Gor04].
Hashing [PB80, Duc08].
Haskell [GRSK+11, HHPW96].
Heap [KSK07, BALP06, KF00, YS10].

heap-manipulating [Y10].
Heavily [BG99a].
Hennessy [CM93, WST85].
Herding [AMT14].
Heuristic [SL92].
hiding [DN02, OYR09].
hierarchical [AG04].
Hierarchical
[BA99, CP95, CD79, AY01, CP96].
hierarchically [MBC04].
hierarchies [ST00a, Van96a, Van96b].
hierarchy [KF00].
High [Cam89, Fat82, MSM+16, URJ18,
CMS03, VWJB10].
High-Level
[Cam89, Fat82, CMS03, VWJB10].
High-Performance [URJ18].
Higher
[AC94, AD98, CJK95, DJP+16, FF91,
SV19a, BBTS07, DF11, SKS11, SP97].
Higher-Order
[AC94, AD98, CJK95, DJP+16, FF91,
SV19a, BBTS07, DF11, SKS11, SP97].
Highly [Her93, Skn95].
Hoare
[Apt81, GM81, LS84, Sok87, Yin11].
Hoc
[MDCB91].
Holistic [ZMVPJ17].
Homomorphisms [HIT97].
HOP
[BLRS12].
Hybrid [KF10, KS10].
Hyperball [LM18].
hyperdoctrines [BBTS07].
I-Structures [ANP89].
I/O [Car95].
Icon [GHK81, Gri82].
id [Bee94].
idempotency [KOE+06].
Identical [FLBB99].
Identification [BGH+13, SBE+19].
identify [MMM+07].
Identifying [Ram99, SGL96].
Idioms [PP94].
IDL
[Lam87].
IEEE [Fat82].
Ignorance
[GNS+15].
Illustrative [OSS83].
Impact

[BHM+19, OLH+16, CKT86]. **Imperative**

[ABPS98, DFR15, Gro06]. **Implementation**

[AKBLN89, AOC+88, BCD+15, Bou88, Bre89, BS83, CM86b, GM881, Gaz83, Lin93, MDCB91, PXL95, RL98, WL85, CMLC06, FM87a, GB99, LDM07, LPS00, Tra08, Zho96]. **implementations**

[BBF+11, BFGT08, DF98]. **Implemented**

[DB85]. **Implemented**

[BR97, Her93, HW82, Sku95]. **Implications**

[Fat82]. **Implicit**

[BH05b, SJP12]. **Implicit-signal**

[KF00]. **improve**

[GHR80, Mur91, KK07]. **Improved**

[MS83, San96]. **Improvement**

[BCT94]. **Incremental**

[Bur90a, CP95, DMM88, GM79, HKR92, HKR94, HPMS00, Hud91, Kai89, Lar95, LST98, LHR19, PS92, RTD83, RP88, SGL07, WGo98, YS91, BBYG*+05, CP96, Van96a, Van96b]. **Incrementally**

[QL91]. **Independence**

[DHM00, Rep00]. **Independent**

[ML80, Mul92]. **Independent**

[Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98]. **indexed**

[AM01]. **indices**

[Piq96, CEG07, YK97]. **Induction**

[GSW95, Sit79]. **inefficiencies**

[MMM+07]. **Inessential**

[SS82, LaL84]. **Inference**

[CEW14, Deb89, Hen93, LO94, LY98, Pad19, TB98, Wey83, FLLQ08, JB06, PM06, PT00, PS03, Van06]. **Influence**

[FTJ95]. **Information**

[AR80, Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b, ASF17, BC85b, HR02, NGB13, PBR+15, PS03, GS99, HY07, LN02, OYR09, TZ07]. **Information-Flow**

[BC85b, TZ07]. **Infrastructure**

[Wha94]. **Isomorph**

[MM99]. **Injection**

[BBF+11]. **Input**

[BS83, vPS81]. **Input-Output**

[BS83]. **Inputs**

[PA86a]. **Insensitive**

[Hor97, FJKA06]. **Insertion**

[AKNP17, GJ05]. **inspection**

[CF04, FG03]. **Instantiation**

[Der85]. **Instead**

[Lam84, Rem81]. **Instruction**

[KPF95, LCBS19]. **Instructions**

[LS80, PS93, RF97, Rob79, LPP01]. **Integer**

[BAGM12, BEF+16, BGP99]. **Integrated**

[SS13]. **Integrating**

[HPR89, WJS+00]. **Integration**

[CO90, Len04]. **Intensional**

[STS03]. **Interaction**

[WSH15, WT11, van88, BCM99]. **Interactions**

[JS94]. **Interactive**

[ACS84, BS86]. **Interconnectability**

[YY18]. **Interface**

[Win87, van88]. **Interfaces**

[DSS0, Mye90, TLHL11, WT11]. **Interferences**

[FTJ95]. **Interfering**

[Jon83]. **Intermediate**

[Lam87, Pem83, TvS82]. **Internal**

[Han81a]. **International**

[Wol92]. **Interoperability**

[Ano18, GSS+18]. **interoperable**

[DFG08]. **Interpretation**

[BGL93, CFG+97, DLR16, KRR18, LVR94, BDS99, DGG97, Leu04]. **Interpretation-Based**

[DLR16]. **Interpretations**

[CMB+95, HY91, SJ03]. **Interpreters**

[LR13, CEG07]. **Interprocedural**

[Bur90a, BT93, DP97, HAM+05, HS94, HCC99, HRB90, NR06, SH89, CKT86, DVD07, DGS97, FMoPS11, JLR89, KKL07, RLS+01]. **Interprocess**

[RS84b]. **Interprocessor**

[Ang89]. **intersection**

[Dan03]. **Interconnection**

[Wha94]. **Isomorph**

[MM99]. **Injection**

[BBF+11]. **Input**

[BS83, vPS81]. **Input-Output**

[BS83]. **Inputs**

[PA86a]. **Insensitive**

[Hor97, FJKA06]. **Insertion**
lock-freedom \[KS10\]. locking \[AFF06\].

LOCKSMITH \[PFH11\]. Logic \[AS89, AFV98, Apt81, BGL93, BL87, BCD90, BDJ13, BMPT94, CS04, CES86, CFM94, DW89, Deb98, DL93, Deb95, DJP+16, JPP91, Kar84, LS84, Lam94, MW84, MSJ94, MMG92, SS98, Sok87, TK94, TB95, BBT97, BMR01, BCG+07, BdlBH99, CU08, CG86, CSS99, DDV99, DPPR00, GHB+96, GW99, HVB+99, HPIS00, KWL09, LMD98, Leu04, PM06, RKRR04, SRW02, Yin11, dHB+96\]. Logical \[BNN18, GGL15, GS98, TY18, RSL10, Tar07\]. Look \[DP82\]. Look-Ahead \[DP82\]. Lookahead \[KM81, MF88\].

Loop \[BAC16, CS87, MCT96, Sit79, RKSR12\]. Loops \[BAGM12, Boo82, CK94, DB85, FTJ95, Hav97, Wat91, Ano02b, LS04, LSLR05, Ram99, RDG08, SGL96, UM02\]. low \[CSCM00\]. low-end \[CSCM00\]. Lower \[PW94\]. LR \[ADGM91, BL94b, BF87, CRPT02, DMM88, JF03, JP17, KC01, LaL81, LaL84, SS82, ST00b\]. LR-based \[KC01\].

M \[Bur91, Mul92\]. M-LISP \[Mul92\]. Machine \[CGJ+97a, Cat80, GNS+15, Gie83, Han94, JCCO19, LR13, ML80, RF97, SS98, Wab92, Zav85, Ano02a, CEG07, CF04, HK07, KN06, Oh007, RR19\]. machine-checked \[KN06\]. Machine-Code \[LR13\]. Machine-Independent \[ML80\]. Machine-Learning \[JCCO19\]. Machine-Specific \[Gie83\]. machinery \[FKW00\]. Machines \[ACW90, Bee94, CGST95, GC86, KK98, PS93, PP91, Rob79, CRH95, Ay01, AG04, ABE+05, ABS09, TSY00, Pur91\]. Madsen \[Ell82, SM82\]. Magma2 \[Tur84\]. Maintenance \[GKL94\]. Making \[JC97, LOC13\]. malware \[PCJD08\].

Management \[JP81, Mur91, van88, BP12, WCM00, Zhao96\]. Managing \[Bob80\]. Manifest \[SIG17\].

manipulating \[YS10\]. Manipulation \[DVLM15\]. many \[AE98\]. massive \[BHK07\]. Massively \[CGST95\]. Matching \[AC96, AGT89, CP95, KPS92, ADR06, Van06\]. Matching-Based \[CP95\].

materializations \[RBM06\]. Mathematical \[Ban11, Hes88, LW93\]. MATLAB \[DP99\]. MATLAB(R) \[JB06\]. Matrix \[FTJ95\]. Matrix-Vector \[FTJ95\]. Maximal \[BG89b, Rep98\]. Maximal-munch \[Rep98\]. Maximization \[GLO88\]. Maximum \[Kna90\]. May \[Hor97\]. May-Alias \[Hor97\].

MCALIB \[FL15\]. Measuring \[FL15\]. Mechanically \[DSW11\]. Mechanism \[CO90, YB85, DNS+06\]. Mechanisms \[Rei83, HMS06\]. Mechanizing \[Pat01\]. Median \[Com80\]. Medians \[KR84\].

megaflops \[MG00\]. member \[KF00\]. Memory \[AM14, CK94, Cha93, CBM08, KZC15, KK98, KRS88, MS+16, Mis86, RCRH95, SS88, ABHI11, BP12, GMM99, GW99, JNGG10, KF00, LK02, Loc13, RR05, TSY00, TP04, VBLG04, WCM00, MMM+07\]. memory-efficient \[TP04\].

memory-hierarchy \[KF00\]. Merge \[Ber94\]. Merlin \[HBM+06\]. Message \[CSW06, SS84, Gor04\]. Messages \[BB79, JF03\]. meta \[Tr08\]. meta-programming \[Tr08\]. Metalevel \[Jag94\]. Metaprogramming \[CI84\].

Method \[BNN18, BCD90, BF87, HL82, JN83, Loe87, JJD98\]. Methodology \[Ban87, Her93, Sku95\]. Methods \[DAW88, KM81\]. METRIC \[MMM+07\]. Mezzo \[BPP16\]. Microanalysis \[HCP92\]. Microcode \[MV87\]. Middle \[BDP14\]. Middle-End \[BDP14\]. Might \[Bee94\].

migration \[Pi96\]. Minification \[HLH19\]. Minimal \[FKW98, IPW01\]. Minimization \[RS84a\]. minimizing \[RHM06\]. Minimum \[GHS83\]. Minimum-Weight \[GHS83\].

Mining \[AM14\]. Misled \[Cop94\]. miss \[GMM99\]. Mixin \[HL05, RD13\]. mixins
[ALZ03]. **ML** [Blu99, CBMO19, HM93, HT04, PS03, RD13, Sp86]. **Mobile** [LS03, VHB+07, BCC04, KS10, SWU10].
mod [Bon92]. **Modalities** [SV19b]. **mode** [PS08, ZP10]. **Model** [AY01, Ang89, BK11, BL87, BGP99, CGL94, DLR16, ES97, GS98, GG85, GL94, Han81a, HW82, Hol87, JFC019, KH92, MGG92, ND16, VSS94, ACMI11, AE01, JJD98, JPS+08, KN06, Loc13, NP08, QR00, SG04, VWJB10, VALG05, YMW97].
Model-Checking [ES97, BGP99]. **Modeling** [AF84]. **Modelling** [AMT14].
Models [GJ93, KZC15]. **Modern** [BCF04, RAB+07].
Modes [Deb89]. **modest** [LS08]. **Modification** [Lei90, RLS+01]. **Modula** [EO80]. **Modular** [AG94, BMPT94, CDK+18, EMH19, GL94, JBK18, Jag94, KKM90, LN15, MBC04, Wei89, YB85, dJKVS12, KV00, MFRW09, MOS07b].
modularity [BA99]. **Module** [PAS+15, RD13].
Modules [CL95, HW82, Lam83, HL05]. **Monadic** [DG19, MH04]. **Monitors** [BLH12, BH05b].
Monolingual [HK85]. **Monte** [FL15].
Morel [Dha91, DS88, Sor89]. **Morphing** [HS11]. **Morris** [Wis79].
Motion [KR94, Hai98]. **MPI** [FJK+17, TSY00]. **Multi-Language** [Ano18, GSS+18, MF09]. **Multiparty** [JS94]. **Multiple** [ASF17, NSTD+15].
Multiprocessing [Lam79, Lam80].
Multiple [ABP98, Car95]. **Object** [DF84, Hu96, KH92, Ryu16, WCW90, WCW91, BSvGF03, DMM01, DDDCG02, FM99, GPWZ08, HBM+06, JPS+08, LPSO04, Piq96, WJS+00]. **Object-Based** [KH92]. **Object-Oriented** [Hu96, Ryu16, BSvGF03, DMM01, JPS+08, WJS+00].
Objects
[AM85, CJK95, HF87, HW90, Her93, SM89, VHB\(^+\)97, Wal80, Wal81, Win84, GPV07, HB398, KF00, Sto04, WJS\(^+\)00, Sku95]. obligations [DSW11]. Observability [Gaz83]. Observations [Sha82]. Occur [AP94]. Occur-Check-Free [AP94]. Off [SSB\(^+\)99]. Offline [CG04, GJ05]. Old [AL94]. Old-Fashioned [AL94]. On-Line [Bal94]. On-The-Fly [CF95, BA84, UJ18, LP06, PBK\(^+\)07]. One [Bak82, BG89b, VHM\(^+\)01]. One-Pass [Bak82]. one-way [VHM\(^+\)01]. online [CG04, HVDH07]. only [PZJ05]. On-Line [Bal94]. On-The-Fly [CF95, BA84, UJ18, LP06, PBK\(^+\)07]. One [Bak82, BG89b, VHM\(^+\)01]. One-Pass [Bak82]. one-way [VHM\(^+\)01]. online [CG04, HVDH07]. only [PZJ05]. Operations [AKBLN89, CK94, Lee86, LS79]. Operator [CSV01, Hen83, LD81]. Optimizers [Ive79, She91]. Optimal [BOV85, CGST95, FK35, JCMM19, KR95, PB97, HA98, JNZ06, KS96, MSRR00]. optimality [CP96]. Optimally [BL94a]. Optimistic [PM04]. Optimization [Bee94, BBC16, BLO94, BAC16, BT93, DF84, DP97, DDH84, Dha91, DS88, FOW87, HG83, HOY18, Pem83, PP94, RR91, SS82, Sor89, TV82, Web95, Ass00, BHK07, KBC\(^+\)99, KF93, PE08, TVA07, ZP10, GS95, LS84, OKN06]. Optimizations [CC95, JSB\(^+\)12, CGS\(^+\)01, CKT86, GMP\(^+\)00, SYK\(^+\)05]. optimize [DMM01, VBLG04]. Optimized [CM93, Cop94, Hen82, WST85, DS89, UM02]. Optimizer [DF80, FSS83, DF81]. Optimizers [Gie83]. Optimizing [CEG07, KMM\(^+\)98, LSR95, ML80, NSZ913, QR00, BGK909]. Or-Parallel [GJ93]. orchestraion [PE08]. Order [AC94, AD98, Bu84, CJK95, DP97, DJP\(^+\)16, JPP91, JS94, SS98, BBTS07, DF11, FPS19, SK11, SV19, SP97]. ordering [GS99]. Organization [Han81a]. Oriented [Bor81, Dar90, Ell82, FFF\(^+\)18, GTWA14, GKL94, GP81, HU96, Ryu16, SM81, Tur84, YB87, YB88, BSV903, DWW908, DMM01, JPS\(^+\)08, WK904, WP10, WJS\(^+\)00]. origins [San09]. OSI [CDFP89]. Output [Ber80, BS83]. overflow [KE0\(^+\)06]. overhead [BP12, SS96]. overlays [SWU10]. Overload [Bak82]. overloading [SS05b]. Overview [AOC\(^+\)88]. ownership [DDM11, SS96]. Oz [VHB\(^+\)97]. Package [HL88]. Paper [GM81]. Parallel [ANP89, BOV85, BO94, BE13, Cha93, CGST95, CMN91, CL94, DS83, Fos96, GLO88, GF93, GPA\(^+\)01, HCHP92, HHT97, JF81, KN90, LHR91, Mis94, NSZ913, OA88, R94, SS88, BBYG\(^+\)05, GS96, GB99, HB98, KS96, LK02, MVV\(^+\)01, RR3, YF98]. Parallelism [Biy84, GP95, KS96, NB99, PW94, TVC914, YBL16]. Parallelization [BAC16, BDJ13, PP94, BCP09, HAM\(^+\)05]. Parallelizing [HP96, ME97, RD97]. Parameter [Gaz83, Zho96]. Parameterized [CG97, CK93, Gaz83, RKS12]. Parametric [HFC09, MMG92, SRW02, IV06]. Parenthesis [AS80]. Parlog [CG86]. Parse [Wad90]. Parser [DDH84, JP17, LaL84, SS82]. Parsers [BN99, LaL81, MYD95, PK80, CPRT02, SJ06, ST00b]. Parsing [CH87, DMM88, FS80, GM79, Lar95, RH87, Sam80, WG98, KC01]. Part [LaL81, PA85, PA86a, PA86b, A81]. Partial [AVF98, CP17, CK93, DS88, Gom92, KCL\(^+\)99, Sor89, ADR06, BP12, CG04, GJ05, LMD98, Leu04, ST00b]. Partially [BLH12, Kob98, RRSY08]. partially-flow-sensitive [RYS08]. partitioning [RM07, YF09]. Parts [Son87]. Pascal [LS79]. Pass [Bak82, BM94]. Passing [BDM15, Gaz83, SS84, CSW06, VHB\(^+\)97].
Gor04, Zho96]. Passive [AKP94]. past [PM09]. Path [Blo94, CLJP18, SMP10].
path-length [SMP10]. Patient [FFF+18].
Patient-Oriented [FFF+18]. Pattern [EGP14, ADRO6, MTSS09, Van06].
Pattern-Based [EGP14]. Patterns [GH80].
PDS [Han81b]. PEAK [PE08]. Peephole [DF80, DF81, Pem83, Tvs82]. PegaSys [MH86].
Performance [HU96, MSM16, PegaSys [MH86]. Pennello [Sag86]. Perfect [Duc08].
Performance [HU96, MSM16, PB80, URJ18, KF00, PE08]. Performed [Coh91, Wir91]. Permission
[BPP16, SNs+14]. Permission-Based [BPP16, SNs+14]. permissions [Boy10].
Persistent [AM85]. Petri [JTM98].
Petri-Net-Based [JTM98]. Phases [Bar81]. Philosophers [CM84].
Philosophers [MS88]. pi [HR02, KPT99]. pi-calculus [HR02, KPT99]. pict [SWU10].
Pictures [MH86]. Pipeline [HG83]. Pipelining [BG89b, LPP01, RDG08]. Pipelined [SWU10].
Pipelining [LS79, RR03, HBCC99, HVDH07, LHR19, LS79, RR03, HBCC99, HVDH07, Kogo87, Kro88, Kro89, Kro90, Kro91, Kro92,
UJ92, BFG08]. policy-based [BFG08].
Polyhedra [GVC15, QR00]. POLYLITH [Pur94].
Polyomorphism [BM05, DG09, HT04].
Hen93, KTU93, LQ94, LY98, Oh95, SIG17, SV96, WJ98, BSvGF03, DWW08].
Polyomorphism [BHM98, MDC09, HFC09]. polynomial [DAL07, CFG19]. PolyTOIL
[BSvGF03]. polyvariance [LMD98]. Polyvariant [AC94, WJ98]. POP
[FFF+18]. POP-PL [FFF+18]. Portable [DDH84, Han81b, HK07]. Possibly [JP17].
PPE [DKV07]. PQ [GZ05].
PQ-encoding [GZ05]. Practical [AD98, BAC16, BF87, CP17, Dha91, LR19, ND16, PBR+15, SS13, TSL+02, WC97, Bov05, DR05, DWD07, DGS97, JNZ06, PHF01].
Practice [KRS94, Ryu16, Bia03, DRSS96].
Pragmatic [BDH+16]. Pragmatics [Gom92]. Pre [OLH+16]. Pre-Analysis
[OLH+16]. Precedence [Hen83, LdR81].
Precise [CDK+18, FJK+17, Hor97, TN19, PHP02].
Precise-Yet-Efﬁcient [TN19]. precision [ZG05].
Precondition [Boo82]. Predicate [Lam90, BM05, Bov05, MFRW09, MMS96, PR07].
Predicates [CBDGF05, LAM88]. predictable
[SJ97+08, HK07]. Prediction [CGJ+97a, CEG07, VS99]. Predictive
[FJK+17]. Prepaging [FK05].
Prescription [FFF+18]. Presence
[AWW95, CF94, KU93]. preserving
[DHS09, LST02]. pretenuring [BHW+07].
Pretty [Chi05]. Prettyprinter [Wat83].
Prettyprinting [Opp80]. Primitive
[App15]. principals [TZ07]. Principles
[BOU88, DRSS96]. printing [Chi05].
Priority [CH90, Fid03]. Priority-Based
[CH90]. Privacy [BKOZB13]. Privileges
[Min84]. Probabilistic
[BKOZB13, CFNH18, DG19, HSP83, MMS96, OJG+18, RA04, SV19a, BH99, PPT08].
Problem [ADG+14, CM84, DS88, Gho93, LSP82, MS88, Pet82, Pet83b, PB07, Sor89, FG+07a, Wu04].
Problems
[Bac84, CFNH18, DP93, MMR95, SRW98].
Procedural [HF87, Lin93, VSS94].
Procedure [CDK+18, GS99, GL80].
Procedure-Modular [CDK+18].
Procedures [AM85, Kat84, NO79].
Process [Kob98, vPS81, WP10].
process-oriented [WP10]. Processes [AFdR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oss83, RY88, Sou84, TY18, dB85, AE08, KS10, Ber80, Moi83].

Processing [GH80, HSG17, Rei83]. Processors [GH80, HSG17, Rei83]. Programs [VJB12, WM12, YS10, Yin11, dB85, Ber84, Lam80]. PROLOG [LV94, AP94, AB94, CH87, FA93, GPA96, MWB94, NF98, Zhao96].

Properties [ACW90, AS98, CIG018, Kar84, LM18, OL82, Ry88, TB95, Wei89, YS10].

Proposed [Fat82], prossima [MP10b]. Protected [PAS95, WS95]. Protocol [SL92, YS97]. Protocols [MB83, BFGT08, SS96]. Prototype [WC90, WC91]. Prototypes [HW82].

provably [GB99], provenly [AAD07]. Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Pushdown [CSM019]. PYE [TN19].
Quiescence [CM86a].

R [AW82, CKT86, KMM*98]. R. [Tic88].
race [AFF06, PFH11]. Races [KZC15].
Random [AS80]. Range [CG95].
Rank [Dam03]. Ranking [Lee09].
Ratio [CK94].
rational [GS11], rationale [CMLC06].
Reach [FKW98]. Reachability [NS13].
Reactive [DFR15, AG04, DGG97]. read [AE01, PZJ05].
read-only [PZJ05]. read/write [AE01].
Readable [Spo86]. Reading [Pet83a].
Real [AL94, MMG92, RS84b, GH97, HK07, LS98, YMW97].
Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].
realities [Gor04]. Reals [DK17].
Reasoning [BKOZB13, BLRS12, BDP93, BP82, BH99, CB80, Lam88, LN15, Rao94, TSBR08].
receive [Gor04]. receptive [ABL03].
Recipe [AL94]. reclassification [DDDCG02].
recognition [ATD08]. Recognizer [GHR80].
Recognizing [BL94b]. Reconciliation [Kau84].
Recombination-Delaying [Kau84].
Recompilation [BT93, SK88, Tic86, Tic88].
Reconciling [HU96]. Reconstruction [YR94].
Record [LS79, Oho95]. Recovery [ABS81, ACS84, Bac84, BF87, GHH+19, PK80, Ric85, dJKVS12].
recurring [VJB12].
Recursion [AK82, Col84, Hen93, KTU93, Mis94, YK97].
Recursive [AC93, AK82, Ban87, CFG19, Coh83, Coh85, LBN17, Sij89, ABE+05, AM01, CF04, Dug02, Pal98].
Recursively [BE13].
Reduce [BN99, MYD95, BALP06, KOE+06, SS96].
reduced [SG04]. Reducible [Hav97, JC97].
Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mul92, NN86, CSV01].
Redundancies [DS88, Sor89]. redundancy [KCL+99]. Redundant [Coh83, Coh85].
Reentrant [Bob80]. Reexamination [CG95].
Refactoring [Ste18, TFK+11].
Reference [Bob80, Wis79, KSK07, KOE+06, LP06, MDJ05]. reference-counting [LP06].
References [Han92, TGT18, SV96].
Referencing [LS81]. Referential [QG95].
Refinement [BBF+11, BKL+97, BCRM15, CM86a, DKL+79, GEGP17, JLP+14, MRG88, SL92, AG04, QG95]. reflecting [HS11]. reflection [SW97a]. Region [TB98, SYN06]. region-based [SYN06].
regions [RR05]. Register [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07]. Regular [CC97, HVP05, LaL81].
Relation [LBN17, MTG80]. Relational [BKOZB13, CB80, GS98, TLHL11, JJD98, JLR010]. Relations [ELS+14, HT86, LH08].
Rendezvous [Cha87]. Renvoise [Dha91, DS88, Sor89]. Reoptimization [PS92]. reordering [YUW02]. Repair [BN99, MF88, MYD95, KC01]. Repairing [CPRT02]. Replacement [MM89].
Replicate [RB94]. replication [RD03].
Reply [Bur91, Fra81, LaL83, Tan83, Wir91, SM82].
Representation [AET*79, Mul92, SM89, Wad90, Wan82, Mil85].
Representation-Independent [Mul92].
Representations [Lam87, RF97, Wal80, Wal81, BGP99].
Reproduction [BH*19]. reshaping [ZCG+07]. Resilient [GHH+19, WL85].
Resolution [ABR81, Bak82]. Resolved [SIG17]. Resource [CS95, Cla80, IK05, MQ05, BDFZ90, CEI+07, HR02, HAH12].
Resources [Aud81, FLBB89]. Respect [Gaz83]. Response [Tic88].
Responsiveness [HU96]. Restores [Wis79].
Result [TB95]. Results
[Ven95, BGP99, SYH07]. Retargetable
[DF80, DF81, MV87]. Retention [LS81].
Rethinking [LHR19]. retrofitting
[NCH+05]. reuse [DNS+06, GW99, ZSD09].
Reversal [ACS84]. Reverse [PS08].
Reverse-mode [PS08]. Revised [SIG17].
Revision [FM87b]. revisited
[MDJ05, Zho96]. Revisiting [DI09].
Rewrite [FKW98, Ass00]. Rewriting
[KKS94, BCM99, DDD05, FKW00,
GRSK+11, MMM+07]. Right
[KS83, LaL81, SJ06]. Rigorous [SBB+19].
Rings [BP89, Hua93]. RISC [PS93].
Rivieres [Hun83]. RMI [MVV+01].
Robust [LS83]. Roever [Moi83]. role
[Apt100]. Roman [PB97]. Round [SBB+19].
Round-Off [SBB+19]. Rounding [FL15].
Row [MM89]. RSMs [CGG+19]. rule
[HKRT02]. Rules
[GL00, JTM98, SS84, LS09, SSD09]. Run
[ISY88, TZ07, GMP+00]. Run-Time
[ISY88, TZ07, GMP+00]. Runtime
[Ano18, BLH12, BFE+16, GSS+18, TCVB14,
BH05a, TSY00].

S [HCW82]. S/SL [HCW82]. Safe
[AWW95, Dug02, JW17, AFF06, BSyGF03,
LS03, Loc13, NCH+05, SA00, ZCG+07,
MH06, SHB+07]. safe-for-space [SA00].
safety [FF08, YS10]. same [SS05a].
sampling [PPT08]. Santa [WP10].
Sapphire [URJ18]. Sather [MOSS96].
Satin [VWJB10]. satisfaction [DF11].
satisfiability [XA07]. satisfying
[Van96a, Van96b]. Saturn [XA07].
Scalability [TCP+17]. Scalable
[FT94, XA07]. ScalaExtrap [WM12].
Scaling [TCP+17]. scan [PS99]. Scanners
[HKR92]. Scanning [VCV15]. Scavengers
[UJ92]. Schannel [KPS92]. schedulability
[CH97]. schedule [TVA07]. Scheduler
[TVCB14]. schedules [MH04]. Scheduling
[BG95, FGL94, KR79, KPF95, LPP01,
LG99, LCB19, NB99, STD+15, PS93,
TCVB14, Ban11, ME97, YF98]. schema
[RLS+01]. Scheme
[Mur91, YR94, IV96, WC97]. Schemes
[SON99, TM93]. Schorr [BP82]. Schwanke
[Tic88]. Scientific [How80]. Scope
[App94b]. Scratchpad [SRM10]. Screen
[MM89]. SDF [VHK02]. Search
[Dar09, BH99, SS05a]. Searching [CC97].
Section [Wol92]. Secure
[BCEM15, PAS+15, BBF+11, HY07].
Securely [BR94]. Security
[TGT18, BFGT08, BFG08]. see [BR10].
Selection [DF84, SS81]. Selective
[Min84, OLH+16, ME97]. Self
[BP89, DHS99, Gho93, Gom92, ABB+09].
self-adjusting [ABB+09]. Self-applicable
[Gom92]. Self-Stabilization
[Gho93, DHS09]. Self-Stabilizing [BP89].
Semantic
[AAR+10, AWW95, GGL15, MH06, HCW82].
Semantics
[ABHI11, Ans87, AB94, AW92, BGL93,
Ber94, BLRS12, Bou88, Boy10, CPS93, CD79,
FA93, GM81, Gud92, Han94, JPP91, Kai89,
Mul92, NF89, Set83, Son84, WM95, Wan82,
dBB85, ACE96, BMR01, Bou96, GZ04, MF09,
PCJD08, SWU10, SJ03, Tar07, WK04].
Semantics-Based
[BGL93, CPS93, PCJD08].
Semantics-Directed [Han94, Set83].
Semaphore [CR87]. Semiring [BMR01].
Semiring-based [BMR01]. Send [Gor04].
Send-receive [Gor04]. Sensitive
[OLH+16, PKH07, Ram00, Rep00, RRS08].
Sensitivity [FL15, KRR18]. Separating
[DDM11]. Separation
[BDJ13, DJP+16, OY09, BBTS07]. Separators
[GS094]. Sequences [GSW95].
Sequent
[ABS09, Miq19]. Sequential
[AFdR80, Ber80, GLR83, HM84, KS79,
MC82b, Mii83, Son84]. Series [Wat91].
Served [LH91]. server [LDM07]. servers
[BBY+05]. service [CMS03]. Services
[CHY12, RB94, BFG08, CGP09]. Session
[ADGM91, CBMO19]. Static
[AKNP17, AC94, BM94, CGJ+97a, CF94, CFR+91, DL18, Deb89, HOYY18, LLK+17,
LST98, MOS07a, Mye18, PW94, SBE+19, YS99, ZMJP17, CEI+07, GFP08, GZ04,
HO07, PSS05, PFH11, RLS10, VJB12, WCM00, YF09, AFF06, FFLQ08].
Statistically [ACPP91]. Statistical [LLK+17].
Statistics [Lan80]. Staveren [Pem83].
Steensgaard [Ell82, SM82]. Steensgaard-Madsen [Ell82, SM82].
Stencil [LS04]. Step [Col84, TVA07]. Steps [Jon83].
Stepwise [CM86a, SL92]. Stevenson [Pem83]. Storage
[BBC16, Bre89, JP81, LDK+96, Mur91, Rob79, Sip82, KOE+06, TVA07]. Strategies
[Bir84, Bir85, Geo84, NN86]. Structure-Oriented [GKL94]. Structures
[BCL94, HM93, Mis94, MWB94, She91, HY07]. Structured
[BM94, CHY12, GD82, Har90, LS81, Mur91, RR03].
Sublanguage [DGL+79]. Sublinear [RD87]. Sublinear-Space [RD87].
Submodule [MB83]. Subroutines [SA99].
Substrings [BL94b, Han92]. subtype [Duc08, KR01]. Subtypes [Vol91, Bur91].
Subtyping [AC96, AC93, GGL15, LN15, LR19, LBN17, LW94, XBOS19, GZ05, IV06].
Subtyping-Relation [LBN17]. SUIF
[HAM+05]. Supercompiler [Tur86].
Superimposition [Kat93]. Support [Bal94, DS90, Fea87, LS83, MK94, Wei90, TSY00].
Supporting [RCRH95]. Supports
[ABPS98]. Suppression
[DS88, FGL94, Sor89, JNNG10]. Survey
[Apt81, GPA+01]. Suspension [CFM94].
Symbol [ABR81, Rei83]. Symbolic
[BH90, HP81, Hal85, Hen82, RR05, SBB+19,
YM97, BGP99, MMP03, CM93, WST85].
Symmetric [FY85]. Symmetry
[BES97, SG04]. Synchronisation [CHMY19].
Synchronization
[Bag89, DJP+16, Her91, KRR88, RS84b,
Sch82, CGS+03, DHM+12, Ram00, RD03].
synchronization-sensitive [Ram00].
Synchronizing [And81]. Synchronous
[CS78, TLHL11]. synchrony [CS04].
Syntactic
[BF87, GMZ00, MF88, PK80, Wll82b].
Syntax [DMM88, Ode93, Ric85, SSS83,
BMR01, CPRT02, JeF03, HCW82].
Syntax-Directed [DMM88].
Syntax-Error-Handling [SSS83].
Syntax/Semantic [HCW82]. Synthesis
[AE98, AE01, AAE04, Ban87, BDJ13,
BKL+97, Cla80, DKKL18, MW80, MW84,
MV87]. System [AFdR80, AW85, BS86,
Bou88, CB80, Fea82, GD82, GP81, Han81b,
HM84, JMSY92, LR13, ML80, Mlo83, MH86,
PO95, RD13, SA99, WC97, BH05a, FH04,
FM09, HO07, JBO6, KS10, MTSS09, NP08,
PE08, STSP05, WMMC99]. systematic
[DF98, PSS05]. Systems
[ABLP93, Ano18, AR84, ACS84, BKS88,
BG89a, BDP93, CI84, CDFP89, CBDFG95,
CIJGP18, CE86, CPS93, CBMO19, DL18,
DAW88, Fea87, FK98, Hen86, Jag94,
Jon94, JTM98, Kar84, Kat93, Kau84,
Lam84, LW93, Mis86, Mye18, WGS92,
WGS93, WCW90, van88, Ass00, AE98,
BCP08, BCM99, BGP99, CSCM00, DGG97,
GS11, TP04, TZ07, YM97, WCW91].
Systolic [Hen86].
T [Zic94]. Table [BMW91, PK80, DAS98].
Table-Drive [PK80]. Tabled [SS98].
Tables [ADGM91, DHD84]. Tail [DP97, CF04]. Tail-Call [DP97].
tail-recursive [CF04]. Tailored [Kau84].
Tailored-List [Kau84]. Tanenbaum [Fem83, Tan83].
Target [Wan82]. Task [GP95, SS98, RBB91, HBJ98]. task-
HBJ98. Task-Level [GP95].
Task-Parallel [SS98]. Tasking [Dil90].
Tasks [GP81]. Taylor [SBB+19].
tcc [PHEK99]. Technical [BS88, Bur90b, Bur91, Coh91, CM93, DHD84, El82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Mio83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tie88, Vol91, WST85, Wir91, YB88, MMG00].
Technique [AWW95, BN99, BCD+15, JBB+12, KKM90, SSS98, SSS99, JNG10, KBC+99, RD97, SYN06].
Techniques [AK82, CMN91, DP99, GLR83, How80, TW882, WCW90, WCW91, BHK07, DDD05, DEMD00, LS98, LS98, MRR00, MS96, TSL+02]. technology [LS98].
Temporal [A839, CBDGF95, CE86, Kar84, Lam94, MW84, GS99, Kau84].
Tentative [Jon83]. Tenuring [UJ92]. Term [KKSD94, MRR00, GRSK+11].
Termination [AF84, AP86, BAGM12, BCG+07, CFNH18, CDK+18, DG19, Fra90, GJ05, HSP83, JBB18, MC82b, TM93, BAL07, BA08, DDV99, GRSK+11, Lee09, PR07, SMP10, Fra80a, Moh81].
Test [Wey83, WW95, Duc80]. Testing [AMT14, GMH08, TK94]. Tests [Coh91, Koz97, Wir91, GZ05]. Text [CC97].
Their [Kam83, LaL84, SS82, PS96].
Theoretic [ES97, Sha82, KV00].
Theoretical [KRR18]. Theories [NSTD+15, Bou06].
Theory [CZ84, KD94, KRS94, NBG13, Ryu16, TLHL11, CGP09, MH06, Oh07, Pau01, SSB05, Bla03, FG03].
ThingLab [Bor81]. things [PM09].
Thinking [WLF16]. Thinning [Web95].
Third [Wo92]. ThisType [Ryu16].
Thread [YB16]. Thread-Level [YB16].
Threaded [JBK18, TS00]. Three [Oss83].
Tichy [Tic88]. tiling [JLF02, LS04, RKSR12].
Time [AL94, ABR81, BL94b, BLH12, Coh91, DLR16, Hol87, IS88, Jef85, Lam94, MMG92, PS93, RS84a, RS84b, TN19, Wir91, YR94, Zic94, BAL07, BALP06, BKRW98, BKRW05, DDD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Mii85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YMW97, LW93].
Time-Constrained [Zic94, LPP01]. Time-Critical [PS93].
time-efficient [GB99, X99]. Timed [Zic94].
Timeout [Lam84]. Timing [LJ99].
tokenization [Rep98]. Tolerance [L99].
Tolerant [CS95, Lam94, AAE04]. Tool [CP93]. Toolkit [BDH97]. toolkits [VHM+01].
Tools [van88]. TOPLAS [An18, MP10a, MP10b]. topology [San96].
Total [GFL94, WS92, Ban01, RM07, S03, WS93, WM12].
Trace [GFL94, WS92, Ba01, RM07, S03, WS93, WM12].
Trace-Based [WGS92, WGS93, WM12].
traces [HBM+06, WR08].
Tracing [BL94a, DLR16, MRR00].
tradeoffs [ZG05].
Trailing [VR95]. Traits [DNS+06].
Transaction [UR18, ABH11, CFP+04].
Transactions [An18, HKMN94].
Transducer [DVM15].
Transducer-Based [DVM15].
Transformation [BBK80, FSS02, FL91, NSZS91, Wat91, RKR04].
Sан96, TSY00, WZ07].
Transformational [BDFH97, Bir84, Bir85].
DSW82, OA88, RC03].
Transformations [Bar85, EGM01, Geo84, LDR81, FGM07a, KWL09, MOS07a, VAL05, WS97, HEN83, NN86].
Transformers [Lam90, MMS96, MRR00].
TransformGen [GKL94].
Transforming [AWW95, BE94].
Transition [PR07].
REFERENCES

Verifiable [YB85]. Verification [App15, BDP14, BCD+15, CDPF89, CES86, CPS93, CHMY19, Di90, EGP14, GL94, JBK18, Jon94, JTM98, KKW14, LEF14, L99, LS79, NBG13, RY88, AVL+08, CEI+07, GPFP08, GM12, Qia00].

Verifying [AS89, BFG08, CGJ97b, DIP+16, GEGP17, LM18, YS10, Mon08]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Vector [AK87, Bud84, CBMO19, Eis80, FT395, KD94, Per79, KK07]. Verifiable [YB85]. Verification [App15, BDP14, BCD+15, CDPF89, CES86, CPS93, CHMY19, Di90, EGP14, GL94, JBK18, Jon94, JTM98, KKW14, LEF14, L99, LS79, NBG13, RY88, AVL+08, CEI+07, GPFP08, GM12, Qia00].

Very [GLR83]. VHDL [BKL+97]. via [CEI+07, FKW98, GPFP08, GSO94, HLH19, HOYY18, MMM+07, PE08, RTP17, SRW02, SV19b, Tra08, VCM00]. View [SZBH86, FGM+07a]. view-update [FGM+07a]. Virtual [Jef85, RRB19, CEG00, KN06]. Visibly [CBMO19]. Visual [Mye90, BCM99]. vita [MP10a, MP10b]. VLSI [LVV+83].

Volpano [Bur91]. Volume [Ano18]. vs [HR02].

X [OLH+16, MSM+16]. X-Sensitive [OLH+16]. X10 [GH+19]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].

References

Ancona:2007:PCT

Attie:2004:SFT

Ahmed:2010:SFT

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. Semantic foundations for typed assembly languages. ACM Trans-
REFERENCES

Anderson:1981:LLC

Arbab:1994:SCD

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CA

Afek:1993:LC

Apt:1998:AIL

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

REFERENCES

Afek:1994:BFF

Ancona:1991:ECL

Ager:2006:FPE

Attie:1998:SCS

Attie:2001:SCP

Apt:1984:MDT

REFERENCES

[AH98] Rajeev Alur and Thomas A. Henzinger. Finitary fairness. ACM Transactions on Programming Languages and Systems, 20
REFERENCES

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR

Alglave:2014:HCM

Anger:1989:LIC

Anonymous:1989:LIC

Anonymous:1982:IA

Anonymous:1983:IA

Anonymous:1984:IA

Anonymous:1985:IA

Anonymous:1986:AI

Anonymous:1986:IA

Anonymous:1987:IA

REFERENCES

REFERENCES

REFERENCES

Austin:2017:MFD

Assmann:2000:GRS

Arenaz:2008:XEF

Ashcroft:1982:RS

Avrunin:1985:DAD

Aiken:1995:SST

Alur:2001:MCH

REFERENCES

Ben-Ari:1984:AFG

Blume:1999:HM

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA

Brecht:2006:CGC

Banerjee:1987:MSR

Banerjee:2011:MFT

Barnden:1981:NCA

Barstow:1985:CTD

[Bar85] David Barstow. On convergence toward a database of program transformations. *ACM Transactions on Programming Languages and Systems*, 7(1):
REFERENCES

Beyer:1979:SED

Breuer:1994:DET

Bhaskaracharya:2016:ASO

Bengtson:2011:RTS

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL

Bates:1985:PP

Bergereretti:1985:IFD

Brogi:1991:CLS

Bugliesi:2004:ACM

Bossi:1990:MSL

Betts:2015:DIV

Bugliesi:2015:ART

Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Affine refinement types
for secure distributed programming. ACM Transactions on Programming Languages and Systems, 37(4):11:1–11:??, August 2015. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[Bowman:1993:RAN]

[Bossi:1994:TAP]

[Bouajjani:2013:ARP]

[Beemster:1994:SOG]

[Brockschmidt:2016:ARS]

[Bernstein:1980:OGN]
REFERENCES

1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Bernstein presents a distributed algorithm for CSP output guards based on priority ordering of processes.

Berzins:1994:SMS

Burke:1987:PML

Bhargavan:2008:VPB

Barbosa:1989:CHL

[BG+13] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens
REFERENCES

Barthe:2009:CTO

Butler:1999:RAG

Bultan:1999:MCC

Buhr:2005:ISM

Back:2005:KJR

Buhr:2005:ISM

Buhr, Peter A. Buhr and Ashif S. Harji. Implicit-signal monitors.
Binkley:2007:ESO

Birk:1984:APAS

Birk:1985:APA

Blackburn:2007:PBP

Berger:2019:IPL

Barthe:2011:AMC

Broy:1980:DIA

REFERENCES

Ball:1994:OPT

Bates:1994:RSL

Blanchet:2003:EAJ

Boudol:2012:RAW

Blume:1999:DAS

REFERENCES

REFERENCES

Banerjee:2018:LAF

Bohm:1994:TIP

Borning:1981:PLA

Boute:1988:SSP

Bobrow:1980:MRS

Bou88

Bohm:1985:SEA

Bohm:1994:TIP

Borning:1981:PLA

Bou88

Bohm:1985:SEA

Banerjee:2018:LAF

Bohm:1994:TIP

Borning:1981:PLA

Bou88

REFERENCES

REFERENCES

Bendersky:2012:SOB

Balanowski:2016:DFM

Buckley:1983:EIG

G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. ACM Transactions on Programming Languages and Systems, 5 (2):223–235, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not
establish communication with a third process will communicate within a bounded time.

REFERENCES

REFERENCES

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Cotton-Barratt:2019:MVP

Click:1995:CAC

Clarke:1997:URE

Constable:1979:HAF

Robert L. Constable and James E. Donahue. A hierarchical approach to formal semantics with application to the definition of PL/CS. *ACM Transactions on Programming Languages and Systems*.
REFERENCES

REFERENCES

Choi:1994:SSP

Cytron:1995:ECN

Clements:2004:TRM

Cortesi:1997:CAI

Chatterjee:2018:AAQ

Codish:1994:SA

Chatterjee:2019:NPW

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. Algorithmic analysis of qualitative and quantitative termination problems.

Cortes:2004:HLA

Cytron:1991:ECS

Chin:1995:ROA

Christensen:2004:OPE

Chatterjee:2019:FAD

REFERENCES

Calder:1997:EBS

Clarke:1997:VPN

Clarke:1994:MCA

Castagna:2009:TCW

Choi:2003:SAS

Chatterjee:1995:OEA

Cohen:1987:PCU

Chow:1990:PBC

Charlesworth:1987:MR

Chatterjee:1993:CND

Charlesworth:2002:UAC

Chitil:2005:PPL

Cogumbreiro:2019:DDV

REFERENCES

(print), 1558-4593 (electronic).
URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/214526.html. See [Hen82].

REFERENCES

[CP96] Alan Carle and Lori Pollock. On the optimality of change propagation for incremental evaluation of hierarchical attribute grammars. ACM Transactions on Programming Lan-
REFERENCES

Cohen:2017:LPC

Corchuelo:2002:RSE

Cleaveland:1993:CWS

Carson:1987:GSP

Cooke:2008:NTD

Cuny:1987:CDD

Choy:1995:EFT
Manhoi Choy and Ambuj K. Singh. Efficient fault-tolerant

Chen:2004:LGS

Clausen:2000:JBC

Codish:1999:SGD

Cooper:2001:OSR

Carlsson:2006:MAC

Collberg:2007:DGB

REFERENCES

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FA

Dillon:1988:CET

Dunlop:1985:GSU
Douglas D. Dunlop and Victor R. Basili. Generalizing specifications for uniformly implemented loops. ACM Transactions on Programming Lan-
REFERENCES

guages and Systems, 7(1):137–158, January 1985. CODEN ATPSDT. ISSN 0164-0925

Arie de Bruin and Wim Böhm. The denotational semantics of
dynamic networks of processes. ACM Transactions on Program-
ing Languages and Systems, 7 (4):656–679, October 1985. CO-

James Donahue and Alan Demers. Data types are values.
ACM Transactions on Programming Languages and Systems, 7
(3):426–445, July 1985. CODEN ATPSDT. ISSN 0164-0925

Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Link-
time binary rewriting techniques for program compaction. ACM
Transactions on Programming Languages and Systems, 27(5):
882–945, September 2005. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-
Ciancaglini, and Paola Gian- nini. More dynamic object re-
classification: Fickle. ACM Transactions on Programming
Languages and Systems, 24(2): 153–191, March 2002. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Peter Dencker, Karl Dürre, and Johannes Heuft. Optimization

Werner Dietl, Sophia Drossopoulou, and Peter Müller. Separa-
ting ownership topology and en-

Stefaan Decorte, Danny De Schreye, and Henk Vandecasteele. Constraint-based termination analysis of logic pro-
grams. ACM Transactions on Programming Languages
REFERENCES

Debray:1989:SIM

Debray:1995:CDA

DeMilo:1983:GEI

DeMillo:1983:GEI

[DF80] Jack W. Davidson and Christopher W. Fraser. The design and application of a re-targetable peephole optimizer. ACM Transactions on Programming Languages and Systems, 2

DeMilo:1983:GEI

Dershowitz:1985:PAI

DeFraine:2012:EAC

Davidson:1980:DAR

[DF80] Jack W. Davidson and Christopher W. Fraser. The design and application of a re-targetable peephole optimizer. ACM Transactions on Programming Languages and Systems, 2
REFERENCES

(2):191–202, April 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [DF81].

Dewar:1979:PRE

DeBoer:1997:PCC

Duesterwald:1997:PFD

Dhamdhere:1991:PAG

DelaBanda:1996:GAC

DeLaBanda:2000:ICL

Marí García De La Banda, Manuel Hermenegildo, and Kim Marriott. Independence in

Dolby:2012:DCA

Dolev:2009:SSP

DeMoura:2009:RC

Dillon:1990:USE

deJonge:2012:NFE

Dodds:2016:VCS

Darulova:2017:TCR

[DK17] Eva Darulova and Viktor Kunčak. Towards a compiler for reals. *ACM Transactions on Pro-
REFERENCES

David:2018:PSP

Drinic:2007:PPC

Debray:1993:CAL

Danicic:2018:SBS

Dissegna:2016:AIB

Degano:1988:EIL

Diwan:2001:UTA

REFERENCES

[DNS06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärfli, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[DPPR00] Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gianfranco

REFERENCES

[Dan10oni:2015:FTB] Loris D’antoni, Margus Veanes, Benjamin Livshits, and David

Debray:1989:FCL

Dantas:2008:APA

Etalle:2001:TCP

Esparza:2014:PBV

Ellis:1982:TCS

Elder:2014:ADA

Eilers:2019:MPP

REFERENCES

REFERENCES

REFERENCES

Finkel:1987:DDI

[FM87a]

Fraser:1987:ERC

[FM87b]

Freund:1999:TSO

[FM99]

Ferrante:1987:PDG

[FOW87]

Fisher:2002:GE
Kathleen Fisher and Benjamin C. Pierce. Guest editorial.

[FP02]

Flexeder:2011:FIL

[FMoPS11]

Foster:1996:CPP

[Fos96]

Ferrante:1987:PDG

[FOW87]

Fisher:2002:GE
Kathleen Fisher and Benjamin C. Pierce. Guest editorial.
REFERENCES

Facchinetti:2019:HOD

Francez:1980:CDT

Francez:1980:DT

Francez:1981:TCR

Freudenberger:1983:ESO

Foster:1994:CAS

REFERENCES (print), 1558-4593 (electronic).

Frick:1995:ICI

Francez:1985:SIC

George:1996:IRC

Gazinger:1983:PSP

Greiner:1999:PTE

Gouda:1986:PLN

Grove:2001:FCG

REFERENCES

Gulavani:2011:BSA

Gergeron:1982:SAS

Gordon:2017:VIL

Gelernter:1985:GCL

Georgeff:1984:TRS

Ganapathi:1985:AGD

Gini:1985:DWM

Giuseppina C. Gini and Maria L. Gini. Dealing with world-model-based programs. ACM Transactions on Programming Languages and Systems, 7(2):
REFERENCES

Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Sukumar Ghosh. An alterna-
Gupta:1993:APE

Glenstrup:2005:TAS

Garlan:1994:TAM

Gries:1980:APC
David Gries and Gary Levin. Assignment and procedure call

Grumberg:1994:MCM

Gavanelli:2005:DIK

Greenberg:1988:SEA

Gottlieb:1983:BTE

Ghezzi:1979:IP

Greif:1981:SSW

Ganty:2012:AVA

Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs. *ACM Transactions on Programming Languages and Systems*, 34
REFERENCES

Gannon:1981:DAI

Ghosh:1999:CME

Gange:2015:IAM

Gomard:1992:SAP

Carsten K. Gomard. A self-applicable partial evaluator for the lambda calculus: Correctness and pragmatics. ACM

Gorlatch:2004:SRC

Grit:1981:DIT

Girkar:1995:ETL

Gupta:2001:PEP

Gal:2008:JVB

Grothoff:2007:EOC

Gil:2008:TDB

REFERENCES

Gries:1979:SEB

Griswold:1982:EEI

Grossman:2006:QTI

Giesl:2011:ATP

Giacobazzi:1998:LMR

Gloy:1999:PPU

Gawlitza:2011:SSR
REFERENCES

Gupta:1994:ERA

Grimmer:2018:CLI

Gerlek:1995:BIV

Garcia:2014:FTO

Gudeman:1992:DSG

Grosser:2015:PA

Gudjonsson:1999:CTM

Glesner:2004:NSS

Gil:2005:EST

Gil:2007:EDD

Hoffmann:2012:MAR

Hailperin:1998:COC

Hailperin:2005:CCC

Halstead:1985:MLC
REFERENCES

Hall:2005:IPA

Hansen:1981:CMI

Hanson:1981:APP

Hansen:1992:SRF

Hannan:1994:OSD

Har:1980:PNA

Haus:1996:HFP

REFERENCES

[Havlak:1997:NRI]

[Hind:1999:IPA]

[HBC99] [HBM06]

[HICP92]

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

HK85

[HL82] Maurice P. Herlihy and Barbara Liskov. A value transmission
REFERENCES

Hirschowitz:2005:MMC

Hague:2019:CMC

Hicke:2005:DSU

Hamlen:2006:CCE

Homan:1982:PE

REFERENCES

REFERENCES

Shan Shan Huang and Yannis Smaragdakis. Morphing: Structurally shaping a class by re-

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD

Shing-Tsaan Huang. A distributed deadlock detection algorithm for CSP-like communication. *ACM Transac-
REFERENCES

[102x681] Huang:1993:LEU

[Hua93] Huang:1993:LEU

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27(1):46–90, January 2005. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[HVP05] Hosoya:2005:RET

REFERENCES

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS

Igarashi:2005:RUA

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Igarashi:2006:VPT

Iverson:1979:O

[Ive79] Kenneth E. Iverson. Operators. *ACM Transactions on Program-
REFERENCES

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

Jacek:2019:OCW

Jefferson:1985:VT
REFERENCES

REFERENCES

Jeannet:2010:RAI

Bertrand Jeannet, Alexey Logi-
nov, Thomas Reps, and Mooly Sagiv. A relational approach to interprocedural shape analysis. *ACM Transactions on Program-
ning Languages and Systems*, 32 (2):5:1–5:52, January 2010. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Jaffar:1992:CLS

Joxan Jaar, Spiro Michaylov,
Peter J. Stuckey, and Roland H.
C. Yap. The CLP(R) language
and system. *ACM Trans-
actions on Programming Lan-

Jerey:2010:ESA

Dennis Jerey, Vijay Nagara-
jan, Rajiv Gupta, and Nee-
lam Gupta. Execution sup-
pression: an automated it-
erative technique for locating
memory errors. *ACM Trans-
actions on Programming Lan-
ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Joshi:2006:DPA

Rajeev Joshi, Greg Nelson, and
Yunhong Zhou. Denali: a practi-
cal algorithm for generating op-
timal code. *ACM Transactions on Programming Languages and Systems*, 28(6):967–989, November 2006. CODEN ATPSDT.
ISSN 0164-0925 (print), 1558-4593 (electronic).

Jones:1983:TST

C. B. Jones. Tentative steps
ward toward a development meth-
od for interfering programs. *ACM Trans-
actions on Programming Lang-
uages and Systems*, 5(4):
596–619, October 1983. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Jonsson:1994:CSV

Bengt Jonsson. Compositional
specification and verification of
distributed systems. *ACM Trans-
actions on Programming Lan-
guages and Systems*, 16(2):
REFERENCES

REFERENCES

111

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP
117

REFERENCES

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Knoop:1994:OCM

Kno:2018:TFS

Korach:1984:DAF

Kruskal:1988:ESM

Kno:1994:OCM
REFERENCES

[LaL84] Wilf R. LaLonde. Technical correspondence: Comments on
Soisalon-Soininen’s “Inessential Error Entries and Their Use in LR Parser Optimization”. ACM Transactions on Programming Languages and Systems, 6 (3):432–439, July 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [SS82].

LaLonde:1989:DFD

Lamport:1979:NAP

Leslie Lamport. A new approach to proving the correctness of multiprocess programs. ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].

Lamport:1980:CNA

Lamport:1987:ISI

Lamport:1988:CPB

Leslie Lamport. Control predicates are better than dummy variables for reasoning about program control. ACM Transactions on Programming Languages and Systems, 10(2):267–281, April 1988. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). URL http://www.acm.org/
Lamp:ort:1990:WSP

Landwehr:1980:ATS

Larchevêque:1995:OIP

Ligo:tti:2017:SR

Lozano:2019:CRA

Liao:1996:SAD

REFERENCES

Lee:2007:DIE

LaLonde:1981:HOP

LeMetayer:1988:AAC

Lee:2009:RFS

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB
Hongjin Liang, Xinyu Feng, and Ming Fu. Rely-guarantee-based

Lee:2002:ADC

Lee:2017:SNS

Lidman:2018:VRP

Leino:2002:DAI

Leavens:2015:BSS

REFERENCES

Laufer:1994:PTI

Lochbihler:2013:MJM

Loeckx:1987:ASC

Luckham:1980:AEH

Lamport:1999:SYS

Leroy:2000:TBA

Levanoni:2006:FRC

Barbara Liskov and Robert Scheiffer. Guardians and actions: Linguistic support for robust, distributed programs. *ACM Transactions on Programming Languages and Systems*, 5
REFERENCES

They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

Liu:1998:SCI

League:2002:TPC
Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. *ACM Transactions on Programming Languages and Systems*, 24(2): 112–152, March 2002. CODEN ATPSRT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Lengauer:1979:FAF

LeCharlier:1994:EEG

Lipton:1983:VLP

Leivent:1993:MFT
Jonathan I. Leivent and Ronald J.
REFERENCES

REFERENCES

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

Moriconi:1986:PSP

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

George J. Milne. CIRCAL and the representation of communication, concurrency, and time. ACM Transactions on Programming Languages and Systems, 7
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Murer:1996:IAS

Mitchell:1988:ATE

Moore:2002:AC

McKinley:2007:ECG

McKinley:2010:DVT

McKinley:2010:PVT

Kathryn S. McKinley and Keshav Pingali. La prossima vita at TOPLAS. ACM Transactions on Programming Languages and Systems, 32(6):20:1, August 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Menon:2003:FSA

Moreau:2005:RAP

REFERENCES

Morgan:1988:RC

Maher:1983:API

Murphy:1988:NPD

Marriott:1994:DAI

Marino:2016:DXU

Madhavan:2000:EGG

Morris:2008:DNF
Joseph M. Morris and Malcolm Tyrrell. Dually nondeterministic functions. ACM Transactions on Programming Languages and
REFERENCES

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

McKenzie:1995:ERS

Myers:1990:CUI

Myers:2017:F

Myers:2018:EFS
Andrew Myers. Editor’s foreword to “Static Backward Slicing of Non-Deterministic Programs and Systems”. *ACM Transactions on Programming Languages and Systems*, 40(3): 11:1–11:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DL18].

Myers:2019:E

Narlikar:1999:SES

Nanevski:2013:DTT

Necula:2005:CTS

Norris:2016:PAM

Nelson:1989:GDC

Tim Nicholson and Norman Foo. A denotational semantics for Prolog. *ACM Trans-

REFERENCES

Languages and Systems, 28(6): 1088–1144, November 2006. CODEN ATSPDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Nikolic:2013:RAP

Nowatzki:2015:SFS

Nandivada:2013:TFO

Olderog:1988:FPP

Odersky:1993:DCD

Olmedo:2018:CPP

Oh:2014:GSA

[OHL+14] Hakjoo Oh, Kihong Heo, Woonchan Lee, Woosuk Lee, Dae-

Owic:1982:PLP

Oh:2016:SXS

Odersky:2004:GE

Oppen:1980:P
Ossefort:1983:CPC

OHearn:2009:SIH

Pingali:1985:EDD

Pingali:1986:EDD

Pingali:1986:CFI

Padovani:2019:CFS

Palsberg:1995:CAC

Palsberg:1998:EBF

[Pal98] Jens Palsberg. Equality-based flow analysis versus re-

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

Lawrence C. Paulson. Mechanizing a theory of program composition for UNITY. *ACM Transactions on Programming Languages and Systems*, 23(5):626–656, September 2001. COD-
Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

Pan:2008:PFE
Zhelong Pan and Rudolf Eigenmann. PEAK — a fast and effective performance tuning system via compiler optimization

Pemberton:1983:TCT

Perrott:1979:LAV

Perry:1990:GEI

Peterson:1982:UAC

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

REFERENCES

Pratikakis:2011:LPS

Poletto:1999:CTL

Paek:2002:EPA

Pippenger:1997:PVI

Piquer:1996:IDG

Pai:1980:GCR

REFERENCES

[PP94] Shlomit S. Pinter and Ron Y. Pinter. Program optimization and parallelization using idioms. *ACM Transactions on Programming Languages and Systems*,

REFERENCES

Poletto:1999:LSR

Pottier:2003:IFI

Pearlmutter:2008:RMA

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

REFERENCES

Pugh:1994:SAU

PW94

Pugh:1998:CBA

PZJ05

Palsberg:2005:ADC

Qian:1995:CRO

Qia00

REFERENCES

REFERENCES

842, May 1994. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Rinard:1998:DIE

[RL98] Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of Jade. *ACM Transactions on Programming Languages and Systems*, 20(3):483–545, May 1998. CODEN ATPSDE. ISSN 0164-
REFERENCES

REFERENCES


```latex
Rugina:2005:SBA

```

```latex
Rosa:2019:AOT

```

```latex
Rinetzky:2008:CPF

```

```latex
Ramanath:1984:JML

```

```latex
Reif:1984:RTS

```

```latex
Raja:1997:CFC

```

```latex
Reps:2010:FDL

Thomas Reps, Mooly Sagiv, and
```
REFERENCES

Sukyoung Ryu. ThisType for object-oriented languages: From theory to practice. *ACM Transactions on Programming Languages and Systems*, 38(3):8:1–8:??, May 2016. CODEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Thomas J. Sager. A short proof of a conjecture of DeRemer and Pennello. *ACM Trans-
REFERENCES

actions on Programming Languages and Systems, 8(2):264–271, April 1986. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

URL https://dl.acm.org/ft_gateway.cfm?id=3332371.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Shankar:1992:SRH

Schultz:2003:APS

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

REFERENCES

[Sor89] Arthur Sorkin. Technical correspondence: Some comments on “A Solution to a Problem with Morel and Renvoise’s “Global Optimization by Suppression of Partial Redundancies””. *ACM Transactions on Programming Languages and Systems*, 11(4):
REFERENCES

Soundararajan:1984:ASC

Sansom:1997:FBP

Simonet:2007:CBA

Spoonern:1986:MAR

Sekar:1995:FSA

Suhendra:2010:SAC

Sagiv:1998:SSA

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis problems in languages with destructive updat-
REFERENCES

Schulte:2005:WDB

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:EEC

Staiger-Stohr:2013:PIA

Sneyers:2009:CPC

Schonberg:1981:ATS

Sippu:1983:SEH

REFERENCES

REFERENCES

[Sangiorgi:2019:EBP] Davide Sangiorgi and Valeria Vi-
gnudelli. Environmental bisimulations for probabilis-
 tic higher-order languages. *ACM Transactions on Pro-
 gramming Languages and Systems*, 41(4):22:1–
22:??, November 2019. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL https://dl.acm.org/ft-
gateway.cfm?id=3350618.

[Simpson:2019:BEM] Alex Simpson and Niels Voorne-
eveld. Behavioural equivalence via modalities for al-
gebraic effects. *ACM Transactions on Programming Lan-
guages and Systems*, 42(1):4:1–
4:??, December 2019. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL https://dl.acm.org/ft-
gateway.cfm?id=3363518.

A reflection on a call-by-value. *ACM Transactions on Pro-
 gramming Languages and Systems*, 19(6):916–941,
November 1997. CODEN ATPSDT. ISSN 0164-
acm.org:80/pubs/citations/journals/toplas/1997-19-6/
p916-sabry/.

[Steckler:1997:LCC] Paul A. Steckler and Mitchell
Wand. Lightweight closure
conversion. *ACM Transactions on Program-
ing Languages and Systems*, 19(1):48–
86, January 1997. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/

[Sewell:2010:NPP] Peter Sewell, Paweł T. Woj-
ciechowski, and Asis Unyapoth.
Nomadic pict: Programming
languages, communication in-
frastructure overlays, and se-
manitics for mobile computation.
*ACM Transactions on Program-
ing Languages and Systems*, 32
(print), 1558-4593 (electronic).

Yasue, Motohiro Kawahito,
Hideaki Komatsu, and Toshio
Nakatani. Design and evalua-
tion of dynamic optimizations
for a Java just-in-time compiler.
*ACM Transactions on Program-
CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

[Suganuma:2006:RBC] Toshio Suganuma, Toshiaki Ya-
sue, and Toshio Nakatani. A
region-based compilation tech-
nique for dynamic compilers.
*ACM Transactions on Pro-
gramming Languages and Systems*, 28
REFERENCES

[TA08b] Yih-Kuen Tsay and Rajive L. Bagrodia. Deducing fairness properties in UNITY logic — a new completeness result. *ACM Transactions on Programming Languages and Systems*, 17(1):
REFERENCES

171

REFERENCES

[Tichy:1986:SR]

[Tichy:1988:TCT]

[Tick:1994:DTN]

[Tripakis:2011:TSR]

[Tel:1993:DDT]

[Thakur:2019:PFP]

[TVA07] William Thies, Frédéric Vivien, and Saman Amarasinghe. A

Tanenbaum:1982:UPO

See remarks [Pem83].

Thatcher:1982:DTS

Toninho:2018:ISB

Ungar:1992:ATP

Unger:2002:HIL

Ugawa:2018:TSL

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Vera:2005:ACM]

[vandenBos:1988:AIT]

[VanderZanden:1996:CIA]

[VanderZanden:1996:IAS]

[Vansummeren:2006:TIU]

[Vera:2004:FAF]

[Venkatesh:1995:ERD]
VanRoy:1997:MOD

vonHanxleden:2000:BCP

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Volpano:1991:TCS

REFERENCES

[177] See [Bur90b, Bur91].

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [Wal80].

REFERENCES

REFERENCES

Wagner:1998:EFI

Widom:1992:TBN

Widom:1993:CTB

Whalley:1994:AIC

Williams:1982:DAF

Williams:1982:FNS

Winner:1984:UO
REFERENCES

Wing:1987:WLI

Wirth:1988:TE

Wirth:1991:TCR

Wise:1979:MGC

Wright:1998:PSE

Wellings:2000:IOO

Wolfe:1994:DDD

Welch:2010:SCF

Wang:2008:DSJ

Whitfield:1997:AEC

Whitfield:1997:AEC

Wall:1985:TCN

Wehr:2011:JIT

REFERENCES

Wu:2004:ETC

Wu:1995:WCC

Wegman:1991:CPC

Ward:2007:SPT

Xie:2007:SSF

Xie:2019:CSA

Yemini:1985:MVE

Yemini:1987:ATE

Yemini:1988:TCA

Yiapanis:2016:CDS

Yang:1998:STE

Yardimci:2009:MSP

Ying:2011:FHL

Yu:1997:NCI

YANG:2002:EEB

ZAVE:1985:DAF

ZHANG:2007:FFS

ZHANG:2005:CPT

ZHOU:1996:PPC

ZIC:1994:TCB

ZHANG:2017:SSH

REFERENCES

0925 (print), 1558-4593 (electronic).

Zhuang:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA