A Complete Bibliography of Publications in *ACM Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

10 April 2024
Version 2.153

Title word cross-reference

\[k \quad [ADGM91, BL94b, KM81]. 2 \quad [Dam03]. 3 \]

\[[SRW02], ^+ [Han81a], ^{TM} [Bla03], ^{-} [AW82]. \]
\[II [DDDGC02], \ A [DES12], \ R [JMSY92], \]
\[R_{Lin} [VR95], \ \ell [ADG+94], \ O(n \log n) \]
\[[Pet82], \ \phi [CF95, DR05], \ \pi [ABL03]. \]
Automatic
[AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, DS90, KK98, Le 88, LK02, LS04, MS83, PJ05, RH87, SSS81, SLC03, She91, VS22, Wha94, ABHI11, ATD08, BallBH99, CRN+08, ZCG+07].

Automatically [Slo95].

Automating [GKL94, MTSS09].

Avoidance [FGL94].

Aware [BPRB23, MQ05].

Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80].

Axioms [Mis86].

B [Han81a].

Backpropagator [PS08].

Backtracking [Lin79, VR95, FM87a].

Backward [DL18, Mye18].

Balanced [AS80, PB80, vHK00].

Barrier [CHMY19].

Base [NcS20, LS98].

Based [BPP16, BGL93, Bur90a, CGJ+97a, CI84, CP95, CH90, CPS93, DVLM15, DLR16, EGP14, GG85, JTM98, KR79, LFF14, PW98, RTD83, SR95, SGL98, Ste18, SNS+14, TY18, Wat94, WGS92, vPS81, BFG08, BM01, BM07, BCG+07, CTT07, DDV99, Evg07, FF99, HB98, JKT23, KBC+99, KK07, KC01, LP00, LH08, LGAT00, ML21, MTK21, MH06, Pal98, PPT08, PCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12].

Basic [CGG+19, GLR83].

Bayesian [HOYY18].

BDD [LH08].

BDD-based [LH08].

Be [Bee94, Coh91, Wir91, CG04, LP99].

Behavior [KLS92, GMM99, VBLG04].

Behavioral [LN15, LW94].

Behavioural [SV20].

Being [Cop94].

benefits [GMP+00].

Better [Gri79, Lam88].

between [BS88].

Beyond [GWS95].

BI [BTS07].

BI-hyperdoctrines [BBTS07].

Bisimulation [FY12, MH06, San09].

bisimulation-based [MH06].

Bisimulations [SV19, SKS11].

Bit [CDK+18, KD94, KK07].

Bit-Precise [CDK+18].

bitvector [KSV96].

Bliss [GNS+15].

Block [LS81, Mur91].

Block-Structured [LS81].

Blockchain [COE+20].

Blocked [FTJ95].

Blocks [Jag94].

Boolean [XA07].

Bootstrapping [App94a].

Borrowing [Pea21].

Both [KZC15].

bottlenecks [RD03].

Bottom [BGL93, GCRN11].

Bottom-Up [BGL93, GCRN11].

bound [KK07, NI05].

Bounded [ADG+94, ITF+22, MXZ+22, LLOY23].

Bounds [CP17, FNBG20, ISIRS22, PW94, BP12, CEI+07, RR05, SS05a].

Box [WLBF16].

boxed [BCC04].

Branch [CGJ+97a, CEG07, YUW02, YS99].

Branches [WZ91, RC03].

Branching [CBMO19].

Broad [DAW88].

Buddy [Kan84].

Buffer [Zic94].

bugs [HCS10].

Building [Jag94].

BURLS [Pro95].

Bus [Pur94].

Bytecode [SA99, BDL+08, CSM00, FM99, GPF08, KR01, Qia00, SMP10, WR08].

Byzantine [LSP82].

'C [PHEK99, BR97, HSS+14, MRGP20, ND16, PKH07, PFH11, Ven95].

C# [BCF04].

C/C [ND16].

C11 [JP17].

Cache [GMM99, KLS92, MMM+07, SS96, VBLG04].

Caching [ABM93, FK85, KS86, LST98].

Calculational [Bou06].

calculi [ABS09].

Calculus [ABLP93, BKL+97, BN94, Gom92, Kc98, LBTTT22, Mis19, MRG88, Neh89, Oho95, WM95, AB22, BBN05, BMM04, DES12, HR02, IPW01, Jay04, TA08a].

Call [DP97, GL80, dBH21, GC01, HH05, SW97a].

Call-by-Value [dBH21, HL05, SW97a].

Calls [BN18, CBT08, CBT08, FDF08].

Can [Boe85, Coh91, Wir91, CG04].

Capabilities [SDB20, WCM00].

capability [TA08a].

Capturing [BGOL+23].

Carlo [FL15].

Carrying [AM01].

Case
PE08, PHEK99, SYK+05, VHKO02.
Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Compiler-Driven [YBL16].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].
Continuation [BDM15, Wan82].
Continuation-Passing [BDM15].
Continuations [BDM15, HF87].

Corrigendum [Ano18, BKRW05, DF81, Fra80a, KS89, Lam80, Pur91, QG95, TGT20, Van96a, Wat81, WGS93]. Cost [AB81, Bac84, DL93, Hai98, Han81a, ZGZ05, VALG05]. Cost-optimal [Hai98]. costs [GMP+00]. Counting [Bal94, LP06].

D. [Bur91]. Data [AMT14, ANP89, AM85, Bac84, BNN22, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, ELL82, EO80, FL81, GM81, GEGP17, HL82, Her93, Hess88, Holi87, Jen97, JCO19, KH92, Lam83, KZ15, KK98, KD94, LaL89, LO94, LN02, LVRG21, Loc87, Mal82, MMR95, MCT96, PFP91, QG95, RCR95, RP88, SSS81, Suf95, SGL98, SM81, TWW82, WLL85, Wei89, Wei90, Wet82, Wey83, CFP+04, DSH97, HBJ98, KBC+99, KO02, LK07, SP07, VALG05, YWU02, ZGZ05, Pur91].

data-centric [DMM+12]. Data-Driven [BL87, CS87, JCO19]. Data-Flow [BC85b, Bur90a, Wet82, RP88, KBC+99].

data-independence [Rep00].

data-member [KF00]. Data-Parallel [Cha93, HBJ98]. Database [Bar85, CB80].

Databases [SR21]. Dataflow [Deg95, DFR15, MWB94, SS13, SS96, Van96a, Van96b, VHM+01]. datalog [LGS09, ZSS20]. datatypes [MBC04].

Debugging [CMN91, CM93, Cop94, Hen82, WST85, ZSS20]. Decentralized [RKW+23].

Decidable [LB22]. Deciding [GL15].

Decision [MTG80, NO79].

decisions [MTSS09]. Declarative [ABPS98, TCVB14, Bon05, MME+10].
Decomposition [BB94]. Decomposing [BDL+08]. decomposition [LK02].
decrease [LDK+96]. Deducing [TB95].
deduction [LMD98]. Deductive [MW80].
Deep [YW22]. Default [SNS+14, LMM21].
definite [Wal92, BWP87, CI84, CD79, Fid93, HS94, WCD90, WCD91, Wol94].
Definition [Bou92, BWP87, CI84, CD79, Fid93, HS94, WCD90, WCD91, Wol94].
Definition-Use [HS94]. Definitions [BS86, Wal82, BM02, Si89].
Delay [BG89b]. Delayed [KPF95, RC03].
Delayed-Load [KPF95]. Delaying [Kau84].
Deleting [GP81]. Delimited [BDJ15].
Demand [FPS19, GSW95, PA85, PA86a, PA86b, PF96, SR95, DG97].
Demand-Driven [GSP89, WA91, MF92, Han94, Set83, SYH97, OKN06].
Demanded [SCH94, MBS94, MBS95, SDR95].
Demining [KPF95]. Depiction [HBS22, CSS99].
Dependence [BKB80, Cat80, DSW82, Gie93, HIT97, Kna90, TM93, Ano92a].
Dependence-Based [ML21]. Dependencies [PW94].
Dependency [Deb98, HBS22, CSS99].
Dependent [LS80, Miq94, NBG13, Ode93, RTD83, Rho97].
DeRemer [Sag86]. Derivation [BKB80, Cat80, DSW92, Gie93, HIT97, Kna90, TM93, Ano92a].
Derivative [JKT23].
Deriving [Wan82, Bou96]. Describing [AW85].
Descriptions [Bou85, BKL+97, Cat80, Ano92a].
Describers [Hol87]. Design [BPP16, BCD+15, BO94, DF80, DF81, DC22, FT94, HM84, KKM90, LDM07, ML80, RCS93, RL98, SK9+05, Bou96, MTSS09, CMLC06].
design-pattern-based [MTSS09].
Detection [CM86a, Hua90, MC82a, MC82b, TM93, AFF06, HDH02, PFH11, PCJD08, XA07].
determinism [TA98a].
Development [KK97, YGJ83, DL81, Tar07].
Diagnosis [BF87]. Dialect [Mul92]. Dialects [CP95].
dialogue [BCM09]. DIB [FM87a].
difference [BA98]. Differenting [PK82, RSL10]. Differential [BKOZ13, TDA+13, ZP07].
Differentiation [SHA82, VS22]. Diffusing [MC82b].
Dijkstra [BN94, Ne98].
Dimensional [Hil88, GPWZ08]. direct [YK97].
Directed [BDJ13, DMM88, Gud92, Han94, Set83, SYH97, OKN06].
Direction [Dar90]. Directly [Hob84].
Directory [KS88, KS98].
Discipline [VMLY22, FGM07b].
Disciplines [SS84]. Discovering [FJK+17].
discovery [PZ90]. Discrete [Bar81].
Discrete-Event [Bar81]. Disintegration [NC20].
Disjunctive [Jen97, JCC99]. dispatch [DAS98, MFRW99]. dispatching [GZ07].
Distance [Wol94, ZSD90].
distribute [CRN+08]. Distributed [ABLP93, AF84, APT86, AW5, BKS88, BCP15, Bur84, CJK95, CM86a, CBDGF95, C9S9, DAW98, Dug99, FLBB99, Fra80b, GHS83, HSG17, Hua90, HM84, Jon94, Kat93, KKM90, LAM84, LS83, MC82a, RCR95, SS84, Sch82, TM93, TCP+17, Zav85, ABLO3, FM87a, HVB+99, KM804, LK02, MDJ05, Piq96, Fra80a, Moh81, VHB+97].
Distributed-Memory [KK98, RCR95].
div [Bou92]. Dive [YW22].
Divergence [SDSCP13].
DJ [DR05, SGL96, SGL98, UM02]. DJ-graphs [UM02]. DLLs [Dug02]. do [SS05a].

Exception-Driven [OKN06]. Exception-Handling [YB85, LS98]. Exceptional [WN08]. Exceptions [ASF17, Han96, LP00]. Exclusion [ADG+94, LH91, ABHH11]. Executable [OB84]. executors [YF09]. eXecute [BR10]. Execution [BNV+21, CS87, Di90, GJ93, JGN10, JS80, SS88, BALP06, GPA+01, TY00, YF98].

First-In [ADG+94]. First-Order [DP97, JPP91, JS94, MPLM23]. Fit [Bres89].

Fixed [SS98]. Fixed-Order [SS98].

Fixpoint [AC94, Qia00]. Flexible [AD98, Hud91, MSM+16, WG98, Wil82b, dJKVS12, IV06, KGMO04]. Floating [CK94, Fat82, SBB+19, Hau96, Mon08].

Floating-Point [CK94, Fat82, SBB+19, Hau96, Mon08]. Flop [MMG00]. Flow [AR80, AD98, ASF17, Bac84, BC85b, Bur90a, DP97, DP93, FJKA06, Hor97, KDF94, MMR95, NBG13, PO95, PP91, PBR+15, Pur91, RSPS23, Set83, SGL98, SS13, Wet82, DGS97, HR02, HY07, KBC+99, Pal98, PS03, RRSY98, RP88, SCP23, TZ07, WJ98].

Flow-Insensitive [Hor97, FJKA06]. Flowback [CMN91]. Flowgraph [LT79].

Flows [Kna90]. Floyd [Yin11]. Fly [CF95, BA84, LP06, PKB+07, URJ18].

Focusing [EKD23]. fold [RRKR04].

Folklore [LY98]. Font [FK85]. Fool [FA93].

ForeC [YGRBA23]. foreign [FF08].

Foreword [Mye17, Mye18]. Form [AK87, BOV85, BM94, CFR+91, GSW95, Pal95, PG21, GP08, KCL+99]. Forma [ZCG+07].

Formal [ADG+21, BS86, BDP14, CB80, CD79, Fid93, Gie83, HHT97, Kna90, Lee86, Mal82, MH86, SSFZ+23, Sha82, WP10].

Formalism [Pea21]. Formalisms [PCCS85].

Formalization [BPP16]. Formally [SP97].

Fortran [AK87, DP99].

Foundation [KRR18, Ban11, RAB+07, Rhi03].

Foundational [HRV+23, AM01].

Foundations [GTWA14, LW93, AAR+10].

Fractal [MPP03]. fractional [Boy10].

Frames [MPLM23, SJP12]. Framework [BGL93, Gie83, HRV+23, JW17, KRR18, NSZS13, NSTD+15, OHL+14, SGL98, TN19, ATD08, DGS97, GMM99, GZ04, GC01, Leu04, PS08, RKRR04, TP04, VBLG04, XA07, ZCG+07, ZP10, vHK00].

Frameworks [MMR95, KK07].

Frameworks [MMR95, KK07]. Framing [BNN18, BNN22].

Franchise [Frap81, Moh81, Mio83].

Free [AP94, GEK17, GHR80, Her91, Kav84, Koa98, Pad19, JJD89, KPB22, KSV96].

freedom [KS10]. Fresh [GMN+21].

Frontiers [Ano02b]. full [GB99]. Fully [JPP91, TY21]. function [DR05, FF08].

Functional [AFV98, Ban87, Blg94, Bov05, Bw84, DW89, FL91, ISY88, JPP91, WM05, Web95, Wil82a, ABH06, Bov06, DWW08, DF08, PS08, San96, SP97].

Functions [AKP94, AK82, Bov92, PB80, SM89, TY21, Lee09, MBC04, MB99, MT08, PPT08].

Further [CM93]. Fusion [JB20, LGAT00].

Fusion-based [LGAT00].

G. [Tie88]. Garbage [BA84, CN83, DSW82, ISY88, JCMC91, TM93, URF18, WLBF16, Wis79, YW22, BbY99, Bp06, HH02, LP06, Pi96, TSB08].

Garnet [VH9+01].

General [BGL93, CHERMY19, HSS+14].

General-Purpose [HSS+14].

Generalization [Nel89, LMD98].

Generalized [An87, BS83, GKM20, KD94, Lin79].

Generalizing [DB85]. Generals [LSP82].

Generate [Son87]. Generated [Slo95, dJKVS12].

Generating [HBM+06, HT86, Jef03, LR13, JNZ06].

Generation [AGT89, AS80, BOV85, BM94, DS83, DSN92, GB85, GCV15, HKR92, HKR94, Pro95, Re83, Rob80, She91, ST00b, U92, DAS98, MSRR00, PHEK99].

Generative [Ge85]. Generator [JKT23, PPS79].

Generators [Cat80, GHK81].

General [LV94, DDM11].

generics [IV96].

Geometry [CR87].

Geoffrey [NN86].

GJ [IPW01].

Glanville [MSRR00].

Global [Bac84, Dha91, GHH+96, OHL+14, PK80, PS92, Sch85, Sor89, dHB+96, CS04, KBC+99, DS88].

Globally [DHH+24].

GLR [SJ06].

Goal
Goal-Directed [Dar90, Gud92, SYYH07]. Goal-Oriented [Dar90].
Goto [CF94]. GPU [BCD+15]. Gradual [TGT18, TGT20]. Gradualizing [LBMTT22]. Graham [MSRR00]. Graham-Glanville [MSRR00]. Grained [HL22, PBR+15, DSFG21, DNS+06].
Hardware [BKL+97, Mis86]. Hare [Dan23]. harmful [Gor04]. Hashing [PB80, Duc08]. Haskell [GRSK+11, HHPW96]. Heap [KSK07, BALP06, KF00, YS10]. heap-manipulating [YS10]. Heavily [BG89a]. Hennessy [CM93, WST85]. Herding [AMT14]. Heuristic [SL92]. hiding [LN02, OYR09]. hierarchic [AG04]. Hierarchical [BA99, CP95, CD79, Ay01, CP96]. hierarchically [MBC04]. hierarchies [ST00a, Van96a, Van96b]. hierarchy [KF00].
High [Cam89, Fat82, MSM+16, URJ18, CSM03, VWJB10]. High-Level [Cam89, Fat82, CMS03, VWJB10].
High-Performance [URJ18]. Higher [AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97]. Higher-Order [AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97].
Iterative
[Ans87, Par90, DR05, JNGG10, LS04].

Jade [RL98]. Jam [ALZ03]. Java
[AFF06, ALZ03, AAD07, BH05a, Bla03, BALP06, CGS+03, CMS03, CSCM00, FFLQ08, FM99, GF08, IPW01, KKN06, KGM004, KN06, KR01, LST02, LP06, LS08, Loc13, MME+10, MMG00, NRS06, OKN06, Qia00, RRB19, SLC03, SML10, SBE+19, SA99, SYK+05, TN19, TSL+02, WR08]. Java-like [KN06].

JavaCOP [MME+10]. JavaGI [WT11].

Join [WKD04]. JR [KGMO04]. Jump
[LS80, RS84a].

Just [DLR16, TN19, SYK+05]. Just-In-Time
[TN19, DLR16, SYK+05]. JVM [HO07].

KaffeOS [BH05a]. Kaiser [Tic88]. Kernels
[BCD+15, ATD08]. Keys [PB80]. Kilbury
[Lei90]. Kitsune [HSS+14]. Kleene [Koz97].

Knot [MC82a]. knowledge [GLMM05].

Labels [Sto04]. Laboratory [Bor81].

LaLonde [Heu83, LaL83]. LALR
[DP82, KM81, PCC85]. Lambda
[Geo84, Gom92, NN86, PS08]. Laminar
[PBR+15]. Lamport [Ang89, Pet83b].

Language
[ACPP91, AOC+88, Ano18, ABPS09, BS86, BPP16, BO94, Bor81, BC91, DVLM15, Fat82, Fea87, FFF+18, GSS+18, Gu92, Hal85, HSG17, JMSY92, JPP91, Kístico91, LVRG21, McG82, Per79, PPS79, RTD83, RCS93, RKW+23, Spo86, SNS+14, SSD21, Tur84, Wet82, Win87, YS91, YB87, dJKV12, van88, Bou05, BS-GF03, CPF+04, DWWW08, DF08, FM99, Gro06, HBJ98, KN06, LP99, MF09, MWC09, PPT08, PHEK99, Tra08, VHH002, HCW82, YB88].

Language-Based [Kístico91, RTD83].

Languages

Large [HL22]. Large-scale [ZSS20].

Lattices [AKBLN89, MMR95, FM99, Gro06, HBJ98, KN06, LP99, MF09, MWCG99, PPT08, PHEK99, Tra08, VHKO02, HCW82, YB88].

Lazarus [Win87].

Large [GLR83, HSD22, MK94, MH86, WCW90, WCW91, ZSS20].

LAM [BH94b, BL94b, FKW98, PS99, RS84a, TDA+23, YR94, BKRW98, BKRW05, FMP011, KBC+99, Ram99, Rep98, RM10].

Linear-Time [YR94, BKRW98, BKRW05].

Linearizability [KPT95].

Linear Time [HL22]. Linearization [SCP23].

Linguistic [LS83, We90, FGM+07a]. Link
[DDD05]. Link-time [DDD05]. Linking
[QL91, Dug02]. LIPS [CDFP89].

LISP [GCRN11].

Live [MWB94]. Liveness
[ACW90, GC86, OL82, RY88, HDH02].

Live-Structure [MWB94]. Load
[KF95].

Linguistic
[HKR92, SJW23]. libraries [Dug02]. LIFE
[AKP94]. lifetime [HB+06]. Lifetimes
[Pee21]. Lightweight [Pee21, SW97b]. Like
[Hua90, KN06]. Limitations [CP17].

Linchpin [BGH+13]. Linda [Gel85]. Line

Lessons [URJ18, VHM+01]. Let
[LY98].

Let-Polymorphic
[LY98]. Level
[BPR23, Cam89, Fat82, GF95, YBL16, CMS03, VVJB10].

Lexical
[HKR92, SJW23]. libraries [Dug02]. LIFE
[AKP94]. lifetime [HB+06]. Lifetimes
[Pee21]. Lightweight [Pee21, SW97b]. Like
[Hua90, KN06]. Limitations [CP17].

Linchpin [BGH+13]. Linda [Gel85]. Line

Linear-Time [YR94, BKRW98, BKRW05].

Linearity [KPT95].

Linearizability
[HW90, DSW11]. Linearization [SCP23].

Linguistic [LS83, We90, FGM+07a]. Link
[DDD05]. Link-time [DDD05]. Linking
[QL91, Dug02]. LIPS [CDFP89].

LISP [GCRN11].

Live [MWB94]. Liveness
[ACW90, GC86, OL82, RY88, HDH02].

Live-Structure [MWB94]. Load
[KF95].
Local [HMY+24]. Local-1st [HMY+24]. Locality [BAC16, MCT96, VALG05, ZSD09]. Locality [AB81, Bac84, DHH+24, Min84]. locating [JNGG10]. Locator [ZMVPJ17]. Lock [GEGP17, KS10]. Lock-Free [GEGP17]. Lock-freedom [KS10]. locking [AFF06]. LOCKSMITH [PFH11]. Logic [AS89, AFV98, Apt81, BNNN22, BGL93, BL87, BCD90, BDJ13, BMPT94, CS04, CES86, CFM94, DW89, Deb97, Deb95, DJP+16, JPP91, Kar84, LSS8, Lam94, MW84, MSJ94, MMG92, MPLM23, PZ22, SS98, Sok87, TK94, TB95, dBH21, BBTS07, BdlBH99, CU08, CG86, CSS99, DDV99, DPP00, GB9+96, GW99, HVB+99, HPM00, KWL09, LMD98, Leu04, PM06, RKR04, SRW02, Yin11, dHB+96]. Logical [BNN18, GGL15, GS98, TY18, RSL10, Tar07]. Look [DP82, GMN+21]. Look-Ahead [DP82]. Lookahead [KM81, MF88]. Loop [BAC16, CS87, MCT96, SIT79, RKK912]. Loops [BAGM12, Boo82, CK94, DB85, FT95, Hav97, Wat91, Ano02b, LS04, LSLR05, Ram99, RDG08, SGL96, UM02]. LoRe [HMY+24]. low [CSCM00]. low-end [CSCM00]. Lower [FNBG20, PW94]. LR [La84, ADGM91, BL94b, BF87, CPR02, DMM08, Jef03, JP17, KC01, LaL81, SS82, ST00b]. LR-based [KC01].

[CRN]+08. Nonsequentiality [Bar81].
Nonstrict [Blo94]. Nonterminating
[ML21]. Nontermination [PM06]. normal
[LMD98]. Normalize [CRN]+08. norms
[BCG]+07. Notation [Rem81, Wil82b].

Note [Com80, CM93, MS88, WST85, Coh85,
Pal11b, YK97]. Notes [Sku95]. Nothing

NP-Hard [Hor97]. NQALR [BS88].
nulled [SJ06]. Number [Ste22]. Numbers
[GLR83]. numeric [Han96].

O [ABPS98, Car95]. Object
[DF84, GMP24, HU96, KH92, Ryu16, Ste22,
WCW90, WCW91, BsVGF03, DMM01,
DCCG02, FM99, GPWZ08, HBM]+06,
PJS+08, LPS004, Pq96, WJS+00.

Object-Based [KH92]. Object-Oriented
[HU96, Ryu16, Ste22, GMP24, BsVGF03,
DMM01, PJS+08, WJS+00]. Objects
[AM85, CJK95, HF87, HW90, Her93, SM98,
VHB+97, Wal80, Wal81, Win84, GPV07,
HB98, KFO0, Sto04, WJS+00, Skn95].

obligations [DSW1]. Observability
[Gaz83]. Observation [LWR21].
Observations [Sha82]. Obsidian
[COE]+20. Occur [AP94].
Occur-Check-Free [AP94]. Octagons
[GMN+21]. Off [SBB+19]. Offline
[CG04, GJ05]. Old [AL94]. Old-Fashioned
[AL94]. Omnissemantics [CEG07].

On-Line [Bal94]. On-The-Fly
[CF95, BA84, URJ88, LPF06, PBK+07]. One
Bak82, BG88b, VHM+01. Onew-Pass
Bak82. one-way [VHM+01]. online
CG04, HVDO07. only [PZ95]. OO
RPSP23. Opacity [GQ95]. OpenJDK
YW23. Operating
[HLH]+23, HM84, BCP08. Operational
[BLRS12, Han94, MO91]. Operations
[AKBLN89, CK94, Lee86, LS79]. Operator
[CCM00, CSV01, Hen83, LDR81].

Operators [Ive79, She91]. Optimal
[BOV85, CGST95, FK85, JCM91, KR94,
Lar95, PB97, Hai98, JNZ06, KSV96,
MSR00]. optimality [CP96]. Optimally
[BL94a]. Optimistic [PM04].

Optimization [PRB23, Bee94, BBC16,
Bla94, BAC16, BT93, DF84, DP97, DHD84,
Dha91, DS88, FOW87, HG83, HOY18,
Pem83, PP94, RBB91, SS82, Sor89, TV82,
Web95, Ass90, BHK07, KBC+99, KFO3,
PE08, TVA07, ZP10, CC95, LA9, ON06].

Optimization-Aware [PRB23].

Optimizations [CC95, JSB+12, CGS+03,
CT86, GMP+00, SYK+05]. optimize
[DMM01, VBLG04]. Optimized
[CM93, Cop94, Hen82, WST85, DS98, UM02].

Optimizer [DF80, FSS83, HRL+23, DF81].
Optimizers [Gie83]. Optimizing
[CEG07, KMM+98, LLO23, LS05, ML08, NSZ13, QR00, BGKR09].

Or-Parallel [GJ93]. orchestration [PE08].
Order [AC94, AD98, Bur84, CJK95, DP97,
DJP+16, JPP91, JS94, SS06, BBTS07, DF11,
FPS19, MPL23, SKS11, SV19, SP97].

Ordering [SH23, GS99]. Organization
[Han81a]. Oriented [Bor81, Dar90, Ell82,
FFF+18, G-talk14, GL94, GS1, HU96,
Ryu16, SM81, Ste22, Tur89, YB87, YB88,
BSVGF03, DWW08, DMM01, GMP24,
PJS+08, WDK04, WP10, WJS+00]. origins
[San09]. OSI [CDP89]. Output
[Ber80, BS33]. overflow [KOE+06].
overhead [BP12, SS96]. overlays [SUW1].

Overload [Bak82]. overloading [SS05].
Overview [AO+88]. ownership
[DDM11, SS96]. Oz [VHB+97].

Package [Hil88]. Paper [GM81]. Parallel
[ANP98, BG22, BOV85, BQ94, BE13,
Cha93, CGST95, CMN91, CL94, DS83,
Fos96, GLO88, GJ93, GPA+01, HCHP92,
HIT97, JF81, Kna90, LHR19, Mis94,
NSZ13, OA88, Rao94, SS98, VMLY22,
YGRB23, BYG+05, CG86, GBB99, HBJ98,
KSV96, LK02, MVY+01, RR03, YF98].

Parallelism [Bur84, GP95, KSV96, NB99,
Parallelization [BAC16, BDJ13, PP94, BdlBH99, HAM+05].
Parallelizing [HP96, ME97, RD97].
Parameter [Gaz83, Zho96].
Parameterization [TWW82].
Parameterized [CGJ97b, CK93, Gaz83, RKSR12].
Parametric [HFC09, MMG92, SRW02, IV06].
Parametricities [DPP22].
Parenthesis [AS80].
Parlog [CG86].
Parsed [Wad90].
Parser [DDH84, JKT23, JP17, LaL84, SS82].
Parsers [BN99, LaL81, MYD95, PK80, CPRT02, SJ06, ST00b].
Parsing [CH87, DMM88, Fis80, GM79, Lar95, RH87, Sam80, SJW23, WG98, KC01].
Part [LaL81, PA85, PA86a, PA86b, Apt81].
Partial [AFV98, CP17, CK93, DS88, Gom92, KCL+99, SCP23, Sor89, ADR06, BP12, CG04, GJ05, LMD98, Leu04, ST00b].
Partially [BLH12, Kob08, VP23, RRSY08].
partially-flow-sensitive [RRSY08].
partitioning [RM07, YF09].
Parts [Son87].
Pascal [LS79].
Pass [Bak82, BM94].
Passing [BDM15, Gaz83, SS84, VMLY22, CSW06, Gor04, Zho96].
Passive [AKP94].
Passport [SSFZ+23].
past [PM09].
Path [Bl04, CIJGP18, SMP10].
path-length [SMP10].
Patient [FFF+18].
Patient-Oriented [FFF+18].
Pattern [EGP14, ADR06, Jay04, MTSS09, Van06].
Pattern-Based [EGP14].
Patterns [GH80].
PDS [Han81b].
PEAK [PE08].
Peephole [DF80, DF81, Pem83, TV82].
PegaSys [MH86].
Pennello [Sag86].
Perfect [Duc08].
Performance [H96, MSM+16, PB80, URJ18, VP23, KF00, PE08].
Performed [Col91, Wir91].
Permission [BPP16, SNS+14].
Permission-Based [BPP16, SNS+14].
permissions [Boy10].
Persistent [AM85].
Petri [JTM98].
Petri-Net-Based [JTM98].
Phases [Bar81].
Philosopher [CM84].
Philosophers [MS88].
Pi [BG22, HR02, KPT99].
Pi-calculus [BG22, HR02, KPT99].
pict [SWU10].
Pictures [MH86].
Pipeline [HG83].
Pipelined [BG89b, LPP01, RDG08].
pipelining [ME97].
pitfalls [Mon08].
PL [CD79, CZ84, FFF+18].
PL/CS [CD79].
PL/CV3 [CZ84].
place [GW99].
Placement [DP93, GS99, vHK00].
Platform [TCP+17].
pluggable [MME+10].
Plurals [Ste22].
Pluto [BAC16].
Point [CK94, Fat82, SBB+19, GJ05, Haut96, Mon08].
Pointer [LTMS20, LHR19, LS79, RR03, SDB20, HBC99, HVDH07, PKH07, RLS+01].
Pointers [SS13, RR05].
Points [GKM20, WKD04].
Points-to [GKM20].
Pointwise [VSS94].
Policies [NBG13, BDFZ09, FGM07b].
Policy [Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, UJ92, BFG08].
policy-based [BFG08].
Polyhedra [GVC15].
Polyhedral [GVC15, QR00].
POLYLITH [Pur94].
PolyMage [JB20].
Polymorphic [BMR05, Dug99, Gor21, HT04, Hen93, KTU93, LO94, LY98, Oho95, SIG17, SV96, TY21, WJ98, BSvGF03, DWWW08].
Polynomial [Bur90b, MDCB91, HFC09].
polynomial [BAL07, CFC19].
PolyTOIL [BSvGF03].
polyvariance [LMD08].
Polyvariant [AC94, WJ98].
POP [FFF+18].
POP-PL [FFF+18].
Portable [DDH84, Han81b, HK07].
Porting [HLH+23].
Possibly [JP17, ML21].
Postfix [DS83].
Postpass [HG83].
Power [TWW82, SS09].
Powerlist [Mis94].
PPMexe [DKV07].
PQ [GZ05].
PQ-encoding [GZ05].
Practical [AD98, BAC16, BF87, CP17, Dha91, LR19, ND16, PBR+15, SS13, TSL+02, WC97, Bou05, DR05, DVD07, DGS97, JNZ06, PFH11].
Practice [KRS94, Ryu16, Bla03, DRSS96].
Pragmatic [BDH+16].
Pragmatics
[Gom92]. **Pre** [OLH+16]. **Pre-analysis** [OLH+16]. **Precedence** [CMPP23, Hen83, LdrR81]. **Precise** [CDK+18, FJK+17, GKM20, Hor97, TN19, PHP02]. **Precise-yet-efficient** [TN19].

precision [ZGZ05]. **Precondition** [Boo82]. **Predicate** [Lam90, BMR05, Bou05, Bou06, MFRW09, MMS96, PR07]. **Predicates** [CBDGF95, Lam88]. **Predictable** [SHB+07, HK07]. **Prediction** [CGJ+97a, CEG07, YS99]. **Predictive** [FJK+17]. **Prepaging** [FK85].

Prescription [FFF+18]. **Presence** [AWW95, CF04, KTU93]. **preserving** [DHS09, LST02]. **pretenuring** [BHM+07]. **Pretty** [Chi05]. **Prettyprinter** [Wat83]. **Prettyprinting** [Opp80]. **Principals** [TZ07]. **Principled** [LTMS20]. **Principles** [Bou88, DRSS96]. **Printing** [Chi05]. **Priority** [CH90, Fid93].

Priority-based [CH90]. **Prisma** [RKW+23]. **Privacy** [BKGOZB13, LVRG21, TDA+23]. **Privileges** [Min84]. **Probabilistic** [AB20, BKOZB13, CFNHI8, DG19, HSP83, MMS96, OGG+18, Rao94, SV19, BH99, PPT08]. **Problem** [ADG+94, CM84, DS88, Gho93, LSP82, MS88, Pet82, Pet83b, PB97, Sor89, FGM+07a, Wu04]. **Problems** [Bac84, CFNHI8, DP93, MMR95, SRW98].

Procedural [HF87, Lin93, VSS94]. **Procedural** [CDK+18, GS99, GL80]. **Procedural-modular** [CDK+18]. **Procedures** [AM85, KAT84, NO79]. **Process** [Kob98, vPS81, WP10]. **Process-oriented** [WP10]. **Processes** [AFdR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oas83, RY88, Sou84, TY18, dBB85, AE98, KS10, Ber80, Mio83]. **Processing** [GH80, HSG17, Rei83]. **Processor** [BG89b, Bud84]. **Processors** [GLR83, Per79, LPP01, ZP10]. **Product** [EMH20, RTP17]. **Production** [Wad90]. **Productivity** [Sij89]. **Profile** [BHM+07, YUW02]. **Profile-based** [BHM+07]. **Profiles** [VP23]. **Profiling** [ASA19, BL94a, BPRB23, SP97].

Program [Bal94, BNNN22, Bar85, BAL07, BKB80, Col84, DKKL18, Der85, FSP19, Fea82, FOW87, FT94, FL91, HSP83, HK94, HSD22, HLH+13, Jen97, JCCO19, KKW14, KWL09, Lam83, Lam88, LLOYD23, LFF14, LWR21, MS83, MV80, Ms81, Nie85, PP94, PPS79, Rem81, RTP17, SBS22, TSY00, Wat94, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NS13, Pau01, RAB+07, SLC03, WZ07, WN08, YF09, DVK07].

Programming [AGT89, ANO18, AR84, ABBPS98, BSS6, BPP16, BHM+19, BL87, Bir84, Bor81, BMPT94, BWP87, BCEM15, CHY12, COE+20, CL94, Dar90, DFR15, DGG+79, DH+24, Du99, FFG+18, Fos96, FL15, GTWA14, GMP24, HMY+24, Har80, HK85, HOS2, Kais9, KHR2, Lee86, LVV+83, LMM21, LVRG21, MK94, Mye90, OGG+18, Pet83b, RCS93, SS84, Ste22, SNS+14, SZBH86, TK94, TGT20, YGRABA23, ZS021, ABH06, BMR01, Bou06, BdBH90, CUF08, CG86, CTK86, DWW+08, DPPR00, GW99, HB98, JPS+08, KGM04, MVV+01, MTSS09, MQ05, Tra08, VVJB10, WKD04, WJS+00, Bir85, SWU10].

Programming-in-the-Large [MK94]. **Programs** [AWW95, AK87, AFV98, AB20, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BE13, BEF+16, CR87, CB80, CM86a, Cha93, CFNHI8, CFG19, CEW14, CMN91, Cla80, CCM94, CS87, DSFG21, DL18, DGM97, DW89, Deb89, DL03, Deb95, DP97, DI90, EMH20, EGP14, FJK+17, FNBG20, GG85, GMS1, Har80, HCHP92, HPR89, How80, HIT97, IS88, ITF+22, JKBK18, JW17, Jon83, JF18, Kna90, Lam79, LS83, MSJ94, ML21, MTK21, MRGP20, MH86, Mye18, NSZS13, OA88, OL82, PS92, QL91, Rao94, SS98, Sch82, SSS81, SSS88, TOUH21, TN9, VMLY22, Ven95, Wad90, Web95, WII8a,
AE01, AAE04, BCG+07, CSW06, CSS99, DP99, DDV99, DS98, DMM01, EGM01, GM12, GH8+96, GH97, GPA+01, Hau96, HPMS00, JPS+08, KSV96, programs [LMD98, Lue04, LS09, MF09, NR06, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yin11, dHB+96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MWB94, NF89, Zho96]. Programs [LMD98, Leu04, LS09, MF09, NR06, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yin11, dHB+96, Bur84, Lam80].

Proof-carrying [AM01].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, HRV23, JW17, LY98, OSS84, GRSK+11].

Propagation [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CIJGP18, Kar84, LM18, OL82, RY88, TB95, Wei89, YS10].

Prophecy [LM22].

Proposed [Fat82].

protected [PAS+15, WJS+00].

Protected [PAS+15, WJS+00].

Protocols [MB83, RKW+23, BFGT08, SS96].

Protocol [WCW90, WCW91].

Prototypes [HW82].

Provenance [ZSS20].

Properties [ACW90, AS89, CIJGP18, Kar84, LM18, OL82, RY88, TB95, Wei89, YS10].

Proving [DGMP97, GC86, Hen86, Kar84, Lam88, LN15, Rao94, SDB20, TB95, Wei89, YS10].

Public [Eug07].

Publish/subscribe [Eug07].

Public [Eug07].

Publish/subscribe [Eug07].

Purpose [App94b, HSS+14, Spo86].

Purpose [App94b, HSS+14, Spo86].

Pushdown [CBM19, KJT23].

Puget [TRN19].

Qualifiers [FJKA06].

Quantitative [CFNH18].

Quality [BHM+19].

Quantification [Voi91, Bur91].

Quantified [Gro06, STS03].

Quantitative [CFNH18].

Quantum [FDY12, HRL+23, BH99, Yin11].

Queries [Bal94, CGG+19].

Queuing [BB79].

Quiescence [CM86a].

R [CKT86, KMM+98, AW82].

Random [AS80].

Randomized [TOUH21].

Range [CG95].

Rank [Dam03].

Rational [CK94].

Real [Kau84].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

Realities [Gor04].

Reals [DK17].

Reasoning [BKOZB13, BLRS12, BDP93, Lam88, LN15, Rao94, SDB20, TB95, Wei89, YS10].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

Realities [Gor04].

Recall [ATD08].

Recall [ATD08].

Recognizer [GHR80].

Recognizing [BL94b].

Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mul92, NN86, CSV01].

Recursive [BE13].

Reducible [BB79].

Redundancy [BB79].

Redundancy [BB79].
[URJ18]. Sather [MOSS96]. Satin
[SVJF98], satisfaction [DF11].
Satisfiability [FSH23, XA07], satisfying
[Van96a, Van96b]. Saturn [XA07].
Scalability [TCP+17]. Scalable
[FT94, GKM20, ZSS20, XA07].
ScalaExtrap [WM12]. scale [ZSS20].
Scaling [TCP+17]. scan [PS99]. Scanners
[HK92]. Scanning [GVC15]. Scavengers
[UJ92], Schanuel [KPS92]. schedulability
[GH97]. schedule [TVA07]. Scheduler
[TCVB14]. schedules [MH04]. Scheduling
[BG89b, FGL94, KR79, KPF95, LPP01,
LJ99, LCBS19, NB99, NSTD+15, PS93,
TCVB14, Ban11, ME97, YF98]. Schemes
[RLS+01]. Scheme
[Mur91, YR94, IV96, WC97]. Schemes
Son87, TM93. Schorr [BP82], Schwanke
[Tic88]. Scientific [How80]. Scope
[App94b]. Scratchpad [SRM10]. Screen
[MM89]. SDF [VHK02]. Search
[Dar90, LLOY23, BH09, SS05a]. Searching
[CC97]. Section [Müll21, Wol92]. Secure
[ABC+21, BCGM15, PAS+15, PG21,
BBF+11, HY07]. Securely [RB94].
Securing [BNV+21]. Security
[TGT18, TGT20, BFG08, BFG08]. see
[BR10]. Selection [DF84, SSS81]. Selective
[LTMS20, Min84, OLH+16, ME97]. Self
[BP89, DFIH09, Gho93, Gom92, ABB+09].
self-adjusting [ABB+09]. Self-applicable
[GM92]. Self-Stabilization
[Gho93, DFIH09]. Self-Stabilizing [BP89].
Semantic [AR+10, AW95, GGL15,
LCK+22, ML21, MH06, HCW82].
Semantics [AR+11, Ans87, AB94, AW82,
BGL93, Ber94, BLS812, Bou88, Boy10,
CP939, CD79, DFIH+24, FA93, GM81,
Gud92, Han94, JPP91, Kai89, Mul92, NFF89,
Set83, Sou84, WM95, Wan82, dBB85,
ACE96, BMR01, Bou06, GZ04, MF09,
PCJD08, SWU10, SJ03, Tar07, WKD04].
Semantics-Based
[BGL93, CPS93, PCJD08].
Semantics-Directed [HAN94, Set83].
Semaphore [CPR87]. Semiring [BMR01].
Semiring-based [BMR01]. Send [Gor4].
Send-receive [Gor4]. Sensitivity
[OLH+16, HBS22, PKH07, Ram00, Rep00,
RRSY08, VP23]. Sensitivity
[FL15, KRB18, LTMS20]. Separating
[DDM11, Ste22]. Separation
[BDJ13, DFP+16, OYR09, BBT307, PZ22].
Separators [GSS94]. Sequences
[GSW95, LWR21]. Sequential [ABS90, MIq19].
Sequential [AFDR80, Ber80, Gor21, GLR83,
HM84, KS79, MC82b, Moi83, Sou84].
Sequentialization [ITF+22]. Series
[Wat91]. Served [LH91]. server [LDM07].
servers [BBYG+05]. service [CMS03].
Services [CHY12, RB94, BFG08, CGP09].
Session [DDMP22, KBF22, Pad19, YF18].
Session-Based [YF18]. Sessions [YF21].
Set [Sha82, FF99]. set-based [FF99].
SETL [DGL+79, FSS83, SSS81]. Sets
[DP82, DPPL00]. Setting
[Lin79, Nie85, HL05]. SHA [App15].
SHA-256 [App15]. shape
[GCRN11, JLR810, JB06, SRW98, SRW02].
shape-analysis [SRW98]. shaping [HS11].
Share [SS88]. Shared
[Cha93, FLBB89, KH92, KRS88, LB22,
Pet83b, Dug02, HBJ98, TSY00, BC91].
Shared-Memory [Cha93, TSY00]. Sharing
[CSS99, Lam87]. SHErrLoc [ZMV17].
Shift [BN99, MYD95]. Shift-Reduce
[BN99, MYD95]. Short [Sag86]. Should
[LP99]. Side
[Boe85, SCP23, KWL09, RLS+01, TA08b].
Side-channel [SCP23]. side-effect
[RLS+01]. sign [KKN06]. signal [BH05b].
Signatures [BR97]. Signedness [GNS+15].
similar [AE98]. Simple
[Boe85, GLO88, JP17, LMS22, SH89].
simpler [BBRW98, BFRW05].
Simplification [LZ22, N79]. Simula
[Lan80]. Simulating [KKSD94].
Simulation
sin [Lam90]. Single [BM94, CFR+91, JBK18, GPF08].

Size-change [BA08, Lee09]. Sized [DG19].

Sketches [HSD22]. Slicing [AB20, AHJR14, CF94, DL18, GH97, HRB90, ML21, Mye18, Ven95, WZ07, BHK07, GZ07, NR06, RAB+07, WR08, ZGZ05]. SLR [BS88, Tai79]. Small [BNV+21, FLBB89, LH91, Pet83b]. Smart [Tic86]. Smarter [SK88, Tic88]. Smaller [SK90].

Software [ACW90, BLH12, CES86, GC86, PP91, Pur91, Zav85, AY01, ABE+05, MBT09].

Some [AB94, AK82, Sha82, Sor89].

Space/time-efficient [YF98]. spaces [JLF02]. Span [LS09, Rob79]. Span-Dependent [LS09, Rob79].

Spanning [GHS83]. Sparse [OHL+14].

SSA-Based [BDP14]. SSSProve [HRV+23].

Stabilization [Gho93, DHS09]. Stabilizing [BP89]. Stack [CGS+03, FG03, LaL81, SDB20, CF04, Zhou96]. Stack-Controlling [LaL81]. Standard [Fat82, HM93, Qia00, Blu99]. State [ACW90, BLH12, CES86, GC86, PP91, Pur91, Zav85, Ay01, ABE+05, MBT09].

Statement [Ein82, Mor88, SM81]. Statement-Oriented [Ein82, SM81].

Statements [CF94]. States [ADGM91, CBMO19]. Static [AKNP17, AC94, BM94, CG+97a, CF94, CFR+91, DL18, Deb89, HOYY18, LLK+17, LST98, MGRP20, M0S07a, Mye18, PW94, SBE+19, YS99, ZMVP17, CEI+07, GPFO8, GZ04, HO07, PSS05, PFH11, RSL10, VJB12, WCM00, YF09, AFF06, FFLQ08].

Statically [ACP91]. Statistical [LLK+17].

Statistics [Lan80]. Staveren [Pen83].

Steensgaard [Ein82, SM82]. Steensgaard-Madsen [Ein82, SM82].

stencil [LS04]. Step [Col84, TVA07]. Steps [Jon83]. Stepwise [CM86a, SL92].

Stratified [SS98]. Stream [HSG17].

streams [CFP+04]. strength [CSV01].
Strict [Bee94]. Strictness [Bee94, SR95].
String [GH80]. Strings [AS80, KS88, KS89, ADR06, KK07]. Strong [KZC15, PZ22]. Strong-separation [PZ22].
Structural [SZBH86, MTSS09]. Structurally [HS11]. Structure [BC79, GKL94, HM93, Mis94, MWB94, She91, HY07]. Structure-Oriented [GKL94].
Study [BHM19, FTJ95, BHK07, BDdB99, DF98, KF03, LS98]. Style [BDM15, LR19].
Sublanguage [DGL79]. Sublinear [RD87]. Sublinear-Space [RD87].
Submodule [MB83]. Subroutines [SA99]. subscribe [Eug07]. Subscript [CG95].
Subsequence [Han92]. Subset [BL87]. Substrings [BL94b, Han92]. subtype [Duc08, KR01]. Subtypes [Vol91, Bur91].
Subtyping [AC96, AC93, GGL15, LN15, LR19, LBN17, LW94, XBO920, ZZO22, GZ05, IV06].
Subtyping-Relation [LBN17]. SUIF [HAM+05]. Summarization [SCS24].
Supercompiler [Tur86]. Superimposition [Kat93]. Supermartingales [TOUH21].
Support [Bal94, DS90, Fea87, LS83, MK94, Wei90, TSY00]. Supporting [RCRH95].
Supports [ABPS98]. Suppression [DS88, FGL94, Sor89, JNGG10]. Survey [Apt81, GPA+01]. Suspension [CFM94].
Symbol [ABR81, Rei83]. Symbolic [Dil90, HP96, Hal85, Hen82, NcS20, RR05, SBB+19, YMW97, BGP99, MPM03, CM93, WST85].
Symmetric [Fy85]. Symmetry [ES97, SG04]. Synchronisation [CHMY19].
Synchronization [Bag89, DJP+16, Her91, KRS88, RSB84b, Sch82, CGS+03, DHM+12, Ram00, RD03].
synchronization-sensitive [Ram00]. Synchronizing [And81]. Synchronous [CS87, TLHL11, YGRBA23]. synchrony [CS04]. Syntactic [BF87, GMZ00, MF88, PK80, WIl82b].
Syntax [DMM88, Ode93, Ric85, SSS83, BMR01, CPRT02, Jef03, HCW82]. Syntax-Directed [DMM88].
Syntax-Error-Handling [SSS83]. Syntax/Semantic [HCW82]. Synthesis [AE98, AE01, AA04, Ban87, BDJ13, BKL+97, Cla80, DKL18, HLH+23, LLOY23, MW80, MW84, MV87, SBS22].
System [AFdR80, AW85, BS86, Bou88, CB80, FEA82, GD82, GP81, Han81b, HM84, JMSY92, LR13, ML80, Mio83, MH86, PO95, RD13, SA99, WC97, BH05a, FH04, FM99, HO07, JB06, KS10, MTSS09, NP08, PE08, STSP05, MWC99]. Systematic [DC22, DF98, PSS05]. Systems [ABLP93, An18, AR84, AC84, BKS88, BG89a, BDP93, CI84, CDFP95, CIIJ18, CES86, CPS93, CBMO19, DL18, DAW88, Fea87, FKW98, Gor21, Hen86, HLH+23, Jag94, Jon94, JTM98, Kar84, Kat93, Kau84, Lam84, LW93, Mis86, Mye18, SZLY21, TGT20, WGS92, WGS93, WC90, van88, Ass00, AE98, BCP08, BCM99, BGP99, CSCM00, DGG97, GS11, TP04, TZ07, YMW97, WC91]. Systolic [Hen86].
T [Zic94]. Table [BMW91, PK80, DAS98]. Table-Drive [PK80]. Tabled [SS98].
Target [Wan82]. Task [GP95, NSZS13, RR91, HB98]. task-HB98. Task-Level [GP95].
Task-Parallel [NSZS13]. Tasking [Dil90]. Tasks [GP91]. Taylor [SBB+19]. tcc [PHEK99]. Technical [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Ell82, FA93, Fra81, Hen83, LaL83, LaL84, Mio81, Mio83, MS88, NN86, Pur90, Pem83,
Technique [AWW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNGG10, KBC+99, RD97, SY06]. Techniques [AK82, CMN91, DP99, GLR83, How80, TWW82, WCW90, WCW91, BHK07, DDD05, DEMD00, LS98, MSRR00, SS96, TSL+02]. technology [LS98].

Techniques [AK82, CMN91, DP99, GLR83, How80, TWW82, WCW90, WCW91, BHK07, DDD05, DEMD00, LS98, MSRR00, SS96, TSL+02]. technique [LS98].

Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KWL09].

temporal-ordering [GS99]. temporaries [RMH06].

Ten [Apt81]. Tensor [RTP17, SBS22].

Tenuring [UJ92]. Term [KKSD94, MBT09, GRSK+11]. Termination [AF84, Apt86, BAGM12, BCG+07, CFNH18, CDK+18, DSFG21, DG19, Fra80b, GJ05, HSP83, JKB18, MC82b, TM93, BAL07, BA08, DDV99, GRSK+11, Lee09, PR07, SMP10, Fra80a, Moh81].

Their [Kam83, LaL84, SS82, PS96]. Theoretic [ES97, Sha82, KV00]. Theoretical [KRR18].

Theories [NSTD+15, Bou06]. Theory [AB20, CZ84, FSH23, KD94, KRS94, NBG13, Ryu16, TLHL11, CGP09, MH06, Oho07, Pau01, SS05b, Bla03, FG03].

ThingLab [Bor81]. things [PM09].

Thinking [WLB16]. Thinning [Web95]. Third [Wol92]. ThisType [Ryu16].

Thread [YBL16]. Thread-Level [YBL16]. Threaded [JKB18, ITF+22, TSY00]. Three [DPP22, Oss83]. Tichy [Tie88]. Tierless [RKW+23]. Tile [JB20]. tiling [JLF02, LS04, RKS12]. Time [AL94, ABR81, BL94b, BLH12, Coh91, DLR16, HBS22, Hol87, ISY88, Jef85, Lam84, LOY23, MMG92, PS93, RS84a, RS84b, TN19, Wir91, YR94, Zic94, BAL07, BALP06, BKRW98, BKRW05, DDD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS99, Mil85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YM97, LW93].

Time-bounded [LLO23].

Tool [CPS93]. Toolkit [BDFH97]. toolkits [VHM+01]. Tools [van88]. Top [SZLY21].

Top-down [SZLY21]. TOPLAS [Ano18, TGT20, MP10a, MP10b]. topology [DDM11]. Tortoise [Dan23]. Total [San96].

Trace [ABC+21, FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12]. Trace-Based [WGS92, WGS93, WM12]. Trace-relating [ABC+21]. traces [HBM+06, WR08].

Tracing [BL94a, DLR16, MM+07]. tradeoffs [ZGZ05]. Trailing [VR95]. Traits [DNS+06].

Transactional [URJ18, ABHI11, CFP+04]. Transactions [Ano18, HKMN94, TGT20]. Transducer [DVL15]. Transducer-Based [DVL15].

Transformation [BK80, Fea82, FL91, NSZ13, Wat91, RKRR04, San96, TSY00, W207].

Transformational [BDFH97, Bir84, Bir85, DSW82, OA88, RC03]. Transformations [Bar85, EGM01, Geo84, LdR81, LFF14, MS83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VAL05, WS97, Hen83, NN86].

Transformers [Lam90, MMS96, MBT09]. TransformGen [GKL94]. Transforming [AW95, BE94].

Translation [AK87, BK11, Kat84, Son87, AAD+07, BGR09, DP99, RC03].

Transmission [HL82]. Transpareply [JSB+12]. Transport [Min84]. transpose [CRN+08]. Traversals [LPS04].

Treatment [YB87, YB88]. Tree [AGT89, BOV85, BMW91, DVL15, DS83, Han81a, Hen83, LdR81, FGM+07a]. Trees
[Com80, GHS83, MTG80, Sip82, Wad90, ACM11, SGL97]. **Treewidth**

[CIJGP18, CGG+19]. **trick** [DMP96].

Truth [BDH+16], **TSL** [LR13], **TSO** [FSH23]. **tuning** [GMM99, PE08].

Tuples [Rem81]. **Tutorial** [GM81].

Two [BO94, CDFP89, DPP22, GPWZ08, TY21, FMoPS11]. **Two-dimensional** [GPWZ08]. **two-variable** [FMoPS11].

Type [Bur90b, Car95, CEW14, Coh91, CZ84, Dug02, Eng07, HHPW96, HM93, Hen93, KPS92, KTU93, KR01, Lan80, LO94, LST02, LY98, LP90, MRGP20, MP88, NBG13, Pad19, PO95, SA99, SM89, Ste22, TW88, TGT18, TGT20, Van06, VMLY22, Wal80, WT11, Wir88, WC97, BSvGF03, BCG+07, FJKA06, FM07b, FM99, FF08, GZ07, GMZ00, HO07, HDH02, HY07, KF10, KS10, NP08, NCH+05, PT00, STSP05, TFK+11, TZ07, Wal81, Wir91].

Type-based [Eug07, LP00, BCG+07]. **Type-Driven** [TGT18, TGT20].

Type-Extension [Coh91, Wir91].

Type-Graphs [KPS92].

Type-preserving [LST02]. **Type-Safe** [Dug02, BSvGF03, NCH+05].

Typechecking [CL95, MBC04]. **Typical** [ACPP91, Geo84, GDF23, Kob98, NN86, WCM00, AAR+10, LP99, MCG99].

Typed-Untyped [GDF23]. **Types** [AFF06, AC93, BG22, BGOL+23, BB94, B tạmx, DPP22, DSSS5, EO80, FFLQ08, GEGP17, HL82, HES88, Jen97, Kam83, KBB22, LA89, LO94, LBN17, LOE87, MA82, MJQ19, MP88, TDA+23, WL85, We89, WE90, AMO1, BF+11, DAM03, DMM11, DMHM1, GRO06, GPV07, HVP05, IV06, ME+10, PS96, Pal98, STS03, SP07].

Typestate [COE+20, GTWA14].

Typestate-Oriented [GTWA14]. **Typing** [ACPP91, DG19, Dug99, EK23, GGSV22, RM10, SV96].

ultimate [PS08]. **Ultracomputers** [Sch80].

Unassigned [Win84]. **Unbounded** [LWR21, BGP99]. **uncaught** [LP00].

Undecidability [Ram94, Rep00, Cha02]. **undecidable** [Ram00]. **Understandable** [SM+16]. **Understanding** [ST00a, Undo [Lee86]. **unfold** [RKRR04]. **unfold/fold** [RKRR04]. **Unidirectional** [Pet82].

Unification [MM82, DRSS96]. **Unified** [VSS94]. **Uniform** [AS80, BGP99].

Untrusted [JW17].

Untyped [GDF23]. **Update** [Hud91, FGM+07a, GW99].

Updating [HSS+14, HO5, SRW98, SHB+07]. **Upper** [PW94]. **Usage** [MS83, BDFZ09, IK05, QR00].

Use [FO87, GH80, HS94, LAL84, PPS79, She91, SS82, CC97]. **usefulness** [HH02]. **User** [AC84, DS90, Mye90, Wal80, Wal81, Wat83, Van88]. **User-Defined** [Wal80, Wal81].

Using [AGT98, Bob80, CGJ97a, CES86, CH87, DP93, DI90, DMP01, DPP+16, FLBB89, GSW95, GSO94, HRB90, ISIRS22, JTM98, Kar84, LaL89, Lam84, LM18, LWR21, Mye90, Ode93, Pet83b, PP94, PBR+15, SSFZ+23, SS84, SS96, SoK87, SGL98, TV82, ACM11, BH90, CS06, CGS+03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, SZLY21, ST00a, SGL96, TFK+11, VJB12, XA07, YUZ02, ZSD09, Pem83].

Utilizing [ES97].

VAL [McG82, Wet82]. **Validation** [How80, KCO1, MWS07]. **Value** [HL82, dBH21, HL05, SW97a]. **valued** [RMH06, SRW02]. **Values** [DD85, Han92, HSD22, Wet82].

Variable [MS83, MTG80, FMoPS11, GLMM05].

Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96]. **Variant** [IV06]. **variants**
REFERENCES

[FG03]. Variational [CEW14]. Variety
[NC20]. Vector [AK87, Bud84, CBMO19, Fis80, FTJ95, KD94, Per79, KK07].
Verifiable [YB85]. Verifiably [HMY+24].
Verification

[App15, BDP14, BCD+15, CDFP89, CES86, CFS89, CHMY19, Dii90, EGP14, GL94,
ITF+22, JBBK18, Jon94, JTM98, KKW14, LFF14, Lj99, LCK+22, LS79, MTK21,
NBG13, Ry88, SLY21, SSFZ+23, BDL+08, CEI+07, GFPO8, GM12, Qia00].
Verifie[d [BFGT08, BKL+97, HL22, HRL+23, JLP+14, DSW11]. Verifying

[AS89, BFG08, CGJ97b, DJP+16, GEGP17, LM18, YS10, Mon08].
Version [YR94].

Versions [HPR89]. Versus

[DPP22, Pa98, Pip97, UM02]. Vertices

[BGH+13]. Very [GLR83]. VHDL

[BKL+97]. via

[CEI+07, FKW98, GFPO8, GSO94, HLH19, HOYY18, ITF+22, MMM+07, PE08, RTP17,
SRW02, SV20, SCP23, Tra08, WCM00].
View [KBP22, SZBH86, FGM+07a].
view-update [FGM+07a]. Virtual

[Jef85, RRB19, CEG07, KN06]. Visibly

[CBMO19, JKT23]. Visual

[My90, BCM99]. vita [MP10a, MP10b].
VLSI [LVV+83]. Volpano [Bur91].
Volume [Aon18, TGT20]. vs [HR02].

W [Tic88]. Wait [Her91]. Wait-Free

[Her91]. Waite [BP82]. Warp [LW93]. way

[VHM+01]. Weak [AMT14, KZC15]. weakening [SYH07]. Weaker [Boo82].
web

[BFG08, BLRS12, CHY12, CGP09, CMS03].
Weight [GHS83]. While

[Pet83a, BC85b, GM81]. while-Programs

[BC85b]. Whole [BDH+16]. Widening

[KKW14, VJB12]. win [Lam90]. Within

[FKW98]. Without

[Cop94, Ode93, AS89, Cas95, Sto04, VR95].
Witnessing [TA08b]. Workbench [CPS93].
World [GG85, DF11].

World-Model-Based [GG85]. Worst

[CFG19, WW95]. Worst-Case [CFG19].
wp [BH99]. write [AE01]. Writing

[Pet83a, Win87]. WYSINWYX [BR10].

X [OLH+16, MS+16]. X-Sensitive

[OLH+16]. X10 [GH+19]. XARK

[ATD08]. XML [HVP05, HFC09]. XSL

[MOS07a].

Years [Apt81].

ZGC [YW22]. Zones [GMN+21].

References

Ancona:2007:PCT

D. Ancona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, and E. Zucca. A
provenly correct translation of Fickle into Java. ACM Transactions on Programming
(print), 1558-4593 (electronic).

Attie:2004:SFT

Paul C. Attie, Anish Arora, and E. Allen Emerson. Synthesis of fault-tolerant concurrent
programs. ACM Transactions on Programming Languages and Systems, 26(1):125–185,
January 2004. CODEN ATPSBT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ahmed:2010:SFT

Amal Ahmed, Andrew W. Appel, Christopher D. Richards,
REFERENCES

Anderson:1981:LLC

Arbab:1994:SCD

Acar:2009:EAS

Abate:2021:EAT

Alur:2005:ARS

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CAC

Abadi:1993:CAV

Afek:1993:LC

Apt:1998:AIL

Andre:1981:MAC

REFERENCES

Arc her:1984:URR

Aggarwal:1990:ALP

Ashley:1998:PFF

Afek:1994:BFF

Alglave:2021:ACF

Ancona:1991:ECL

REFERENCES

REFERENCES

Abadi:1995:CS

Alglave:2014:HCM

Anger:1989:LIC

Anonymous:1982:IA

Anonymous. Information for authors. ACM Transactions on Programming Languages and Systems, 4(3):522–525, July
REFERENCES

1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

ACM Transactions on Programming Languages and Systems, 12(4):700–701, October 1990. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

ACM Transactions on Programming Languages and Systems, 16(6):1904–1907, October 1994. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Anon[2002:ADC] Anonymous. Automatic derivation of compiler machine de-
Anonymous:2002:LDD

Anonymous:2018:CCL

Arvind:1989:SDS

Anson:1987:GIC

Andrews:1988:OSL

Apt:1994:OCF

REFERENCES

Abadi:2007:E

Appel:1993:Ea

Appel:1994:ABG

Appel:1994:PS

Appel:2015:VCP

Apt:1981:TYH

Apt:1986:CPD

Apt:2000:RCC

Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Andersen:2019:FSP

Austin:2017:MFD

Assmann:2000:GRS

Arenaz:2008:XEF

Ashcroft:1982:RS

Avrunin:1985:DAD

Ben-Ari:1984:AFG

Blume:1999:HM

Aiken:1995:SST

Alur:2001:MCH

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA
Amir M. Ben-Amram and Chin Soon Lee. Program termination analysis in polynomial time. *ACM Transactions
REFERENCES

Brecht:2006:CGC

Barstow:1985:CTD

Beyer:1979:SED

Breuer:1994:DET

REFERENCES

Bhaskaracharya:2016:ASO

Bengtson:2011:RTS

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL

Bates:1985:PP

Bergeretti:1985:IFD

REFERENCES

Bottoni:1999:SDC

Bhatia:2008:RSE

Bergstra:1997:TCT

Bartoletti:2009:LPR

Blackburn:2016:TWT

Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney, José Nelson Amaral, Tim Brecht, Lubomír Bulej, Cliff Click, Lieven Eeckhout, Sebastian Fischmeister, Daniel Frampton, Laurie J. Hendren, Michael Hind, Antony L. Hosking, Richard E. Jones, Tomas Kalibera, Nathan Keynes, Nathaniel Nystrom, and

REFERENCES

REFERENCES

Bhargavan:2008:VPB

Bhargavan:2008:VII

Barbosa:1989:CHL

Binkley:2013:EIL

Barthe:2009:CTO

Baillot:2022:TCP

Bernstein:1989:SEP

[BH05b] Peter A. Buhr and Ashif S. Harji. Implicit-signal monitors. ACM Transactions on Programming Languages and Systems, 27(6):1270–1343, November 2005. CODEN ATPSDT. ISSN 0164-
REFERENCES

Binkley:2007:ESO

Blackburn:2007:PBP

Berger:2019:IPL

Bird:1984:PAS

Bird:1985:APA

Barthe:2011:AMC

Broy:1980:DIA
REFERENCES

Ball:1994:OPT

Bates:1994:RSL

Blanchet:2003:EAJ

Bodden:2012:PEF

Bloss:1994:PAO

Boudol:2012:RAW

Blume:1999:DAS

REFERENCES

REFERENCES

Banerjee:2018:LAF

Banerjee:2022:RPL

Bohm:1994:TIP

Bobrow:1980:MRS

Boehm:1985:SEA

Boom:1982:WPL

H. J. Boom. A weaker precondition for loops. *ACM Trans-
REFERENCES

Borning:1981:PLA

Bouton:1988:SSP

Boute:1992:EDF

Boute:2005:FDL

Boute:2006:CSD

Bar-On:1985:OPG

Boyland:1996:CAG
REFERENCES

 REFERENCES

Cameron:1989:EHL

Carlisle:1995:TCC

Castagna:1995:CCC

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Cotton-Barratt:2019:MVP
REFERENCES

REFERENCES

Cortesi:1997:CAI

Chatterjee:2019:NPW

Codish:1994:SAC

Chatterjee:2018:AAQ

Cortes:2004:HLA

Cytron:1991:ECS

REFERENCES

[Cha87] Arthur Charlesworth. The multiway rendezvous. *ACM Transactions on Programming Languages and Systems*, 9(3):
Chatterjee:1993:CND

Charlesworth:2002:UAC

Chitil:2005:PPL

Cogumbreiro:2019:DDV

Carbone:2012:SCC

Cameron:1984:GBD

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

[CLA80] Edmund Melson Clarke, Jr. Syn...

Chandy:1984:DPP

Chandy:1986:ESR

Chirica:1986:TCI

Copperman:1993:TCF

Codish:1995:IAI

Clifton:2006:MDR

Choi:1991:TDP

Chiari:2023:MCO

Christensen:2003:EJH

Cohen:1983:CCA

Clemm:1990:MEI

Coblenz:2020:OTA

Cohen:1983:ERR

REFERENCES

[Col96] Alan Carle and Lori Pollock. On the optimality of change propagation for incremental evaluation of hierarchical attribute grammars. *ACM Transactions on Programming Lan-

REFERENCES

[C87] Cohen:2017:LPC

[CPRT02] Corchuelo:2002:RSE

[CPS93] Cleaveland:1993:CWS

Carson:1987:GSP

Cooke:2008:NTD

Cuny:1987:CDD

Choy:1995:EFT
Manhoi Choy and Ambuj K. Singh. Efficient fault-tolerant

Chen:2004:LGS

Clausen:2000:JBC

Codish:1999:SGD

Cooper:2001:OSR

Carlsson:2006:MAC

Collberg:2007:DGB

REFERENCES

Cheney:2008:NLP

Darlington:1990:SDG

Danvy:2023:THA

Dujardin:1998:FAC

Dillon:1988:CET
Laura K. Dillon, George S. Avrunin, and Jack C. Wile don. Constrained expressions: Toward broad applicability of analysis methods for distributed software systems. ACM Transactions on Programming Languages and Systems, 10(3):
REFERENCES

Dunlop:1985:GSU

dBruin:1985:DSD

dDeBoer:2021:CCR

Deng:2022:SDR

Donahue:1985:DTV

DeSutter:2005:LTB

Drossopoulou:2002:MDO

Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-
Ciancaglini, and Paola Gian-

nini. More dynamic object re-
classification: *Fickle*, ACM
Transactions on Programming
Languages and Systems, 24(2):
153–191, March 2002. CO-
DEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

<table>
<thead>
<tr>
<th>References</th>
<th>Description</th>
</tr>
</thead>
</table>
| [DeM83] | Richard A. DeMillo. Guest Edi-

REFERENCES

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Drinic:2007:PPC

Debray:1993:CAL

Danicic:2018:SBS

Dissegna:2016:AIB

Degano:1988:EIL

Diwan:2001:UT

Danvy:1996:EED

Ducasse:2006:TMF

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärlí, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DeRemer:1982:ECL

Dhamdhere:1993:EAB

Debray:1997:ICF

DeRose:1999:TTM

Devriese:2022:TPV

Dovier:2000:SCL

REFERENCES

[DS98] D. M. Dhamdhere and K. V. Sankaranarayanan. Dynamic currency determination in opti-
REFERENCES

Dantoni:2015:FTB

Debray:1989:FCL

Dantas:2008:APA

Etalle:2001:TCP

Esparza:2014:PBV

Economou:2023:FRT

[Dantoni:2015:FTB]

[DW89]

[EGM01]

[Ell82]

[Ell:1982:TCS]

[DWWW08]

[Esparza:2014:PBV]

[Ell:1982:TCS]
REFERENCES

Elder:2014:ADA

Eilers:2020:MPP

Ernst:1980:SAD

Emerson:1997:USW

Eugster:2007:TBP

Finlay:1993:TCC

Fateman:1982:HLL

REFERENCES

REFERENCES

Frechtling:2015:MMS

Fischer:1989:DFA

Finkel:1987:DDI

Fraser:1987:ERC

Freund:1999:TSO

Flexeder:2011:FIL

Frohn:2020:ILR
Foster:1996:CPP
Ian Foster. Compositional parallel programming languages.

Ferrante:1987:PDG
Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and its use in optimization.

Fisher:2002:GE
Kathleen Fisher and Benjamin C. Pierce. Guest editorial.

Facchinetti:2019:HOD

Francez:1980:CDT

Francez:1980:DT

Francez:1981:TCR
Farmer:1990:CPC

Fan:2023:SMO

Freudenberger:1983:ESO

Foster:1994:CAS

Fricker:1995:ICI

Francez:1985:SIC

George:1996:IRC

[GA96] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Transactions on Programming Languages and Systems, 18(3):300–324, May 1996. CODEN ATPSDT. ISSN 0164-0925
Gazinger:1983:PSP

Greiner:1999:PTE

Gouda:1986:PLN

Grove:2001:FCG

Gulavani:2011:BSA

Gergeron:1982:SAS

Greenman:2023:TUI

REFERENCES

Mahadevan Ganapathi and Charles N. Fischer. Affix grammar driven code generation.
REFERENCES

[Gro2019:FRR]

David Gries and Gary Levin.

Grumberg:1994:MCM

Gavanoelli:2005:DIK

Greeneberg:1988:SEA

Gottlieb:1983:BTE

Ghezzi:1979:IP

Greif:1981:SSW

Ganty:2012:AV

Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs. *ACM Transactions on Programming Languages and Systems*, 34(1):.

Gannon:1981:DAI

Ghosh:1999:CME

Gange:2021:FLZ

Grant:2000:BCD

Giallorenzo:2024:COO

REFERENCES

Gange:2015:IAM

Gomard:1992:SAP

Gorlatch:2004:SRC

Gordon:2021:PIS

Grit:1981:DIT

Girkar:1995:ETL

Gupta:2001:PEP

Gopal Gupta, Enrico Pontelli, Khayri A. M. Ali, Mats Carlsson, and Manuel V. Hermen-

Roberto Giacobazzi and Francesca Scozzari. A logical model

Gloy:1999:PPU

Gawlitza:2011:SSR

Gupta:1994:ERA

Garcia:2014:FTO

[Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of typestate-oriented programming. ACM Transactions on Programming Languages and Systems,]
REFERENCES

Hannan:1994:OSD

Harel:1980:PNA

Hauser:1996:HFP

Havlak:1997:NRI

Hind:1999:IPA

Harman:2009:DCS

Hassen:1998:TDP

REFERENCES

Henderson:1983:TCL

Hennessy:1986:PSS

Henglein:1993:TIP

Herlihy:1991:WFS

Herlihy:1993:MIH

Hesselink:1988:MAN

Haynes:1987:ECP

Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in procedural objects. ACM Trans-
REFERENCES

Hilfinger:1988:APD

Hosoya:2009:PPX

Hennessy:1983:PCO

Hall:1996:TCH

Henzinger:2007:EMP
Thomas A. Henzinger and Christoph M. Kirsch. The em-

Haines:1994:CFC

HL05

HL22

Hague:2019:CMC

HL19

Hirschowitz:2005:MMC

HL82

Hu:2023:TPO

Hull:1984:CSP

Harper:1993:TSS

Hamlen:2006:CCE

Haas:2024:LPM

Hicks:2005:DSU

Homan:1982:PE

Higuchi:2007:STS

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

Howden:1980:ASV

Heo:2018:ASA

Haghighat:1996:SAP

REFERENCES

Hermenegildo:2000:IAC

HPR89

Henzinger:2002:AGR

Hennessy:2002:IFV

Horwitz:1990:ISU

Hietala:2023:VOQ

REFERENCES

[HSS+14] Christopher M. Hayden, Karla Saur, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. Kitsume: Efficient, general-purpose dynamic software updating for C. *ACM Transactions on Pro-
REFERENCES

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD

Huang:1993:LEU

Hudson:1991:IAE

Haridi:1999:ELV

Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer, and Gert
REFERENCES

Hirzel:2007:FOP

Hosoya:2005:RET

Honda:2007:UTS

REFERENCES

Igarashi:2005:RUA

Igarashi:2001:FJM

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ish-Shalom:2022:RCB

Igarashi:2006:VPT

Iverson:1979:O

Jagannathan:1994:MBB

[Jag94] Suresh Jagannathan. Metalevel building blocks for modular systems. *ACM Trans-

REFERENCES

References

REFERENCES

Juan:1998:CVC

Kamins:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Juan:1998:CV

Kamins:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

REFERENCES

[120](print), 1558-4593 (electronic).

Kaufman:1984:TLR

Kandemir:1999:GCO

Keizer:2022:SCC

Kim:2001:ERV

Kennedy:1999:PRE

Khedker:1994:GTB

REFERENCES

Kistler:2000:ADM

Kistler:2003:CPO

Knowles:2010:HTC

Keen:2004:JFD

Kaiser:1992:OBP

Kennedy:1998:ADL

Karkare:2007:IBC
REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Klein:2006:MCM

Knapp:1990:EFD

Kobayashi:1998:PDF

Kozen:1997:KAT

Kurlander:1995:EIS
Katzenelson:1992:TMT

Kobayashi:1999:LPC

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

[Kro85] F. T. Krogh. ACM algorithms policy. *ACM Transactions on Programming Lan-
REFERENCES

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

KRS84 E. Korach, D. Rotem, and N. Santoro. Distributed algorithms for finding centers and

Kruskal:1988:ESM

Knoop:1994:OCM

Kieburtz:1979:CCS

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1988:DSC

Kennaway:1989:CDS

Richard Kennaway and Ronan Sleep. Corrigendum: “Director Strings as Combinators”.
REFERENCES

Kobayashi:2010:HTS

Khedker:2007:HRA

Knoop:1996:PFE

Kfoury:1993:TRP

Kuperman:2000:ATA

Kalvala:2009:PTU

Kasikci:2015:ACD

Baris Kasikci, Cristian Zamfir, and George C. Canede. Automated classification of data
races under both strong and weak memory models. ACM Transactions on Programming Languages and Systems, 37(3): 8:1–8:??, June 2015. CODEN ATPSDD. ISSN 0164-0925 (print), 1558-4593 (electronic).

LaLonde:1981:CSC

LaLonde:1983:TCL

LaLonde:1984:TCC

LaLonde:1989:DFD

Lamport:1979:NAP

[Lam79] Leslie Lamport. A new approach to proving the correctness of multiprocess programs. ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].

Lamport:1980:CNA

Lamport:1983:SCP

REFERENCES

[LB22] Ori Lahav and Udi Boker. What’s decidable about causally consistent shared memory?
REFERENCES

Lennon-Bertrand:2022:GCI

Ligatti:2017:SRC

Lozano:2019:CRA

Lorch:2022:AAV

Liao:1996:SAD

Lee:2007:DIE

REFERENCES

Lueh:2000:FBR

Lycklama:1991:FCF

Lin:1993:PIA

Liu:1999:SVF

133

REFERENCES

[LMM21] Lun Liu, Todd Millstein, and Madanlal Musuvathi. Safe-by-default concurrency for modern

Leino:2002:DAI

Leavens:2015:BSS

Laufer:1994:PTI

Loeckx:1987:ASC

Luckham:1980:AEH

Lamport:1999:SYS

REFERENCES

Leroy:2000:TBA

Levanoni:2006:FRC

Leung:2001:STC

Lieberherr:2004:TOS

Lim:2013:TSG

Lepigre:2019:PSC

Luckham:1979:VAR

They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

Liu:1998:SCI

Lengauer:1979:FAF

References

Li:2020:PAS

Lipton:1983:VLP

LeCharlier:1994:EEG

Lisko:1994:BNS

Liu:2021:ICU

Peizun Liu, Thomas Wahl, and Thomas Reps. Interprocedural context-unbounded pro-

Lee:1998:PAF

Li:2022:FGS

Mallgren:1982:FSG

Merlin:1983:CSS

Morris:1999:SF

Millstein:2004:MTH

REFERENCES

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

George J. Milne. CIRCAL and the representation of communication, concurrency, and time. *ACM Transactions on Programming Languages and Systems*, 7
REFERENCES

REFERENCES

Masud:2021:SCD

Martelli:1982:EUA

Myers:1989:RRA

Markstrum:2010:JDP

Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

REFERENCES

2007. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Masticola:1995:LFM

Moitra:1983:TCA

Morgan:1996:PPT

Morgan:1988:SS

Mohan:1981:TCF

Moller:2007:SVX

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

Moore:2002:AC

McKinley:2007:ECG

Mckinley:2010:DVT

Mckinley:2010:PVT

Kathryn S. McKinley and Keshav Pingali. La prossima vita at TOPLAS. ACM Transactions on Programming Languages and Systems, 32(6):20:1, August 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Murali:2023:FOL

Adithya Murali, Lucas Peña, Christof Löding, and P. Mad-

Marino:2016:DXU

Madhavan:2000:EGG

Morris:2008:DNF

ISSN 0164-0925 (print), 1558-4593 (electronic).

Moret:1980:AVR

Matsushita:2021:RCB

MacDonald:2009:DDP

REFERENCES

REFERENCES

Mulkers:1994:LSD

McKenzie:1995:ERS

Morrisett:1999:SFT

Myers:2017:F

Myers:2018:EFS

Andrew Myers. Editor’s foreword to “Static Backward Slicing of Non-Deterministic Programs and Systems”. *ACM

[102x681]REFERENCES

[BN99] See failure report [BN99].
REFERENCES

Transactions on Programming Languages and Systems, 40(3): 11:1–11:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DL18].

REFERENCES

References

REFERENCES

153

Dereck C. Oppen. Prettyprinting. ACM Transactions on
REFERENCES

Ossefort:1983:CPC

Pingali:1986:EDD

Pingali:1986:CFI

OHearn:2009:SIH

Padovani:2019:CFS

Palsberg:1995:CAC

OYR09

Pad19

Pal95

Pingali:1985:EDD

Pingali:1986:CFI

Ossefort:1983:CPC

Palsberg:1995:CAC
Palsberg:1998:EBF

Palsberg:2015:E

Palsberg:2011:E

Palsberg:2011:EN

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

[Pau01] Lawrence C. Paulson. Mechanizing a theory of program composition for UNITY. *ACM Trans-
REFERENCES

actions on Programming Languages and Systems, 23(5):626–656, September 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

Pan:2008:PFE

[PE08] Zhelong Pan and Rudolf Eigenmann. PEAK — a fast and effective performance tuning system via compiler optimization
REFERENCES

Gary L. Peterson. An $O(n \log n)$ unidirectional algorithm for the circular extrema problem. *ACM Transactions on Programming Languages and Systems*, 4(4):758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of n uniquely numbered processes in a ring. The algorithm requires $O(n \log n)$ messages in the worst case, and is unidirectional. The number of processes is not initially known.

Gary L. Peterson. A new solution to Lamport’s concurrent programming problem using small shared variables. *ACM
REFERENCES

José M. Piquer. Indirect distributed garbage collection:

Pai:1980:GCR

Paige:1982:FDC

Pearce:2007:EFS

Park:2004:ORC

Payet:2006:NIL

Pingali:2009:RTP

Palsberg:1995:TSE

REFERENCES

160

Peng:1991:DFA

Pinter:1994:POP

Prywes:1979:UNS

Park:2008:PLB

Podelski:2007:TPA

Proebsting:1995:BAG

Pollock:1992:IGR

REFERENCES

[PT00] Benjamin C. Pierce and David N. Turner. Local type inference.
REFERENCES

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SAU

Pugh:1998:CBA

Palsberg:1995:EIA

Pagel:2022:SSL

Palsberg:2005:ADC

Jens Palsberg, Tian Zhao, and Trevor Jim. Automatic discov-
tery of covariant read-only fields.

Qian:1995:CRO

Qian:2000:SFI

Quillere:2000:OMU

Ranganath:2007:NFC

Ramalingam:1994:UA

REFERENCES

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Rao:1994:RAP

Reiter:1994:HSR

Ramsey:2003:TAB

Rogers:1995:SDD

Richardson:1993:DPL

Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh.

Reps:1987:SSE

RD87

Rinard:1997:CAN

Rinard:2003:ESB

Andreas Rossberg and Derek Dreyer. Mixin’ up the ML module system. *ACM Transactions on Programming Languages and Systems*, 35(1):2:1–2:??, April 2013. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Rinard:2013:MMM

Rong:2008:RAS

Reiss:1983:GCS

Martin Rem. Associons: a program notation with tuples instead of variables. *ACM Transactions on Programming Languages and Systems*, 3(3):
251–262, July 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Richter:2023:PTL

Rinard:1998:DIE

Ryder:2001:SIM

Rival:2007:TPA

Ruggieri:2010:TLC

Salvatore Ruggieri and Fred Mesnard. Typing linear con-
REFERENCES

REFERENCES

REFERENCES

[Sam80] Hanan Samet. A coroutine approach to parsing. *ACM
REFERENCES

[Schiertz:1982:SDP] Fred B. Schneider. Synchronization in distributed programs. ACM Transactions on Programming Languages and Systems, 4
REFERENCES

Schmidt:1985:DGV

Soares:2023:SCE

Stein:2024:IAI

Skorstengaard:2020:RAM

Swalens:2021:CCC

Sampaio:2013:DA

Strickland:2013:CFC

T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa,

Stevenkiste:1989:SIR

Sharir:1982:SOC

Stoyle:2007:MMS

Sheard:1991:AGU

Sekiyama:2017:PMC

Sijtsma:1989:PRL

Sipala:1982:CSB

REFERENCES

[Sku95] Joseph P. Skudlarek. Notes on “A Methodology for Implementing Highly Concurrent Data Objects”. *ACM Trans-

Shankar:1992:SRH

Schultz:2003:APS

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TRO

Spoto:2010:TAJ

Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java bytecode based on path-length. ACM

Patrick M. Sansom and Simon L. Peyton Jones. Formally based

Simonet:2007:CBA

Spooner:1986:MAR

Sekar:1995:FSA

Shen:2021:ALI

Suhendra:2010:SA

Sagiv:1998:SSA

Sagiv:2002:PSA

Soisalon-Soininen:1982:IEE

Schlichting:1984:UMP

Shasha:1988:ECE

Skeppstedt:1996:UDA

Sagonas:1998:AMT

Schulte:2005:WDB

REFERENCES

REFERENCES

Shao:2005:TSC

Smith:1996:PTV

Sangiorgi:2019:EBP

Simpson:2020:BEM

Sabry:1997:RCV

Steckler:1997:LCC

Sewell:2010:NPP

REFERENCES

REFERENCES

[TCVB14] Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua. Lazy schedul-

Tich:1988:TCT

TM93

Tick:1994:DTN

TN91

Tripakis:2011:TSR

TOUH21

Tel:1993:DDT

TN19

Takisaka:2021:RRS
Tak:2019:TSR

Thammanur:2004:FME

Tratt:2008:DSL

Torp-Smith:2008:LRA

Tip:2002:PET

Tang:2000:PTR

Turini:1984:MLO

Turchin:1986:CS

Thies:2007:STU

[TVA07] William Thies, Frédéric Vivien, and Saman Amarasinghe. A

Tanenbaum:1982:UPO

Thatcher:1982:DTS

Toninho:2018:ISB

Toninho:2021:PSF

Tse:2007:RTP

Ungar:1992:A

Unger:2002:HIL

REFERENCES

Vera:2005:ACM

VanderZanden:1996:IAS

Vansummeren:2006:TIU

REFERENCES

Venkatesh:1995:ERD

VanRoy:1997:MOD

vonHanxleden:2000:BCP

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equiv- alence checking of static affine programs using widening to handle recurrences. *ACM Transactions on Programming Languages and Systems*, 34(3):11:1–11:35, October 2012. CO-
REFERENCES

Waters:1991:ATS

Waters:1994:CBP

Wright:1997:PST

Walker:2000:TMM

Wileden:1990:CEO

Wileden:1991:CCE

Webber:1995:OFP

Weihl:1989:LAP

Weihl:1990:LSA

Wetherell:1982:EDV

Weyuker:1983:ATD

Wagner:1998:EFI

Widom:1992:TBN
URL http://www.acm.org/pubs/toc/Abstracts/0164-
REFERENCES

195

Niklaus Wirth. Technical correspondence: Reply to “Type-

Wise:1979:MGC

Wright:1998:PSE

Wellings:2000:IOO

Wand:2004:SAD

Weihl:1985:IRA

Wagner:2016:TIB

Whitfield:1997:AEC

Wang:2015:EAS

Wall:1985:TCN

Wehr:2011:JIT

Wu:2004:ETC

Wu:1995:WCC

Wegman:1991:CPC

REFERENCES

Ward:2007:SPT

Xie:2007:SSF

Xie:2020:CSA

URL https://dl.acm.org/ft_gateway.cfm?id=3310339.

Yemini:1985:MVE

Yemini:1987:A

Yemini:1988:TCA

Yiapanis:2016:CDS

[YBL16] Paraskevas Yiapanis, Gavin Brown, and Mikel Luján. Compiler-driven software specification for thread-level parallelism. ACM Transactions on...
REFERENCES

Yang:1998:STE

[YF98]

Yardimci:2009:MSP

[YF09]

Yu:1997:NCI

[YK97]

Yip:2023:SDP

[YGRBA23]

Ying:2011:FHL

[YGRBA23]

Yu:1997:NCI

[YK97]

Yip:2023:SDP

[YGRBA23]

Yin:2023:SDP

[YMW97]
Yoshida:2022:ISI

Yu:1994:LTS

Yellin:1991:ILI

Yellin:1997:PSC

Young:1999:SCB

Yahav:2010:VSP

Yang:2002:EEB

Minghui Yang, Gang-Ryung Uh, and David B. Whalley. Efficient and effective branch reordering using profile data. *ACM Transactions on Programming Languages and Systems*, 24(6):

[Zhang:2017:SSH] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Si-

