Title word cross-reference

\begin{itemize}
 \item \(k \) \([\text{ADGM91, BL94b, KM81}] \)
 \item \(2 \) \([\text{Dam03}] \)
 \item \(3 \)
 \item \(\text{SRW02} \), \(+ \) \([\text{Han81a}] \), \(T^M \) \([\text{Bla03}] \cdot 5_{ex} / \)
 \item \(\text{AW82} \), \(\| \) \([\text{DDDCG02}] \), \(A \) \([\text{DES12}] \), \(\mathcal{R} \)
 \item \(\text{JMSY92} \), \(\mathcal{R}_{Lin} \) \([\text{VR95}] \), \(\ell \) \([\text{ADG}^{+}94] \)
 \item \(O(nm) \) \([\text{Pet82}] \), \(\phi \) \([\text{CF95}, \text{DR05}] \), \(\pi \) \([\text{ABL03}] \)
\end{itemize}
-calculus [ABL03]. -Exclusion [ADG +94].
-function [DR05]. -Nodes [CF95]. -Tree [Han81a]. -valued [SRW02].

11 [ND16].

256 [App15].

568 [Han81b].

8 [Ano18].

90 [DP99]. 95 [WJS +00].

Abstract [BGL93, BK11, CMB +95, CFG +97, DGG97, DLR16, ELS +14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL +08, BdIBH99, Leu04, RM07, SYYH07, SJ03].

Abstraction [CGL94, CL94, Der85, GMH81, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, Ell82].

abstractions [BCF04]. Access [ABLP93, BCC04, KS83, Mis86, NBG13, HR02, HO07, KSK07, PHP02, PSS05].

Access-Right [KS83]. accessed [RR05].

Accessing [CB80]. Accumulation [Bir84, Bir85]. Accumulators [Cam89].

accuracy [CEG07, HDH02]. accurate [CG04, VBLG04, VALG05]. ACE [Le 88].

ACM [Ano18, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro90, Kro91, Kro92].

Across [NSTD +15]. Action [BK888].

Actions [Lam94, LS83]. Activity [Bar81, MTG80]. Actor [TCP +17]. Acyclic [BE94, JF81]. Ad [MDCB91, PS08]. Ada [Bak82, Di90, Hii88, LP80, WJS +00].

Adaptation [Dha91]. Adaptive [ABH06, HOYY18, PXL95, TCVB14, UJ92, RD03].

adaptors [YS97]. Addendum [Bir85].

Adding [ACW90, BN94]. Addressing [Hol87, ZP10]. Adequacy [KKSD94, Wey83]. adjusting [ABB +09].

Algorithm [Koz97, WIl82a, KBC +99]. Algebraic [BP82, BW87, CIJGP18, Jen97, Lin93, JB06, SP07].

Algorithms [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha91, DP93, GHS83, Hua90, Hud91, LV94, LY98, Le90, LT79, LH91, MM82, MC82a, Pet82, SH89, TB98, Wis79, BKRW98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKRW05]. Algorithmic [BP82, CFNH18, GM12, Loe87].

Alias [Hor97, HBC99, RRSY08]. Aliasing [Boe85, Ram94, RLS +01]. All-Purpose [Spo86]. Allocating [ZP07]. Allocation [BB79, Bre89, BCT94, CH90, CS95, FLBB99, GSO94, Ro579, SH98, CGS +03, HCS10, LGAT00, PS99, PF96, RDG08, RHM7, RP88, TM93, WW95, Ato00, DAS98, GC01, ZGZ05].

Alma [ABPS98]. Alma-O [ABPS98]. almost [Due06, Ram99].

Alternative [Gho93, GS80, Zav85]. Alway [Gri79]. ambients [BCC04, LS03, MH06].

Ambiguity [Tho94]. amortized [HAR12].

Amulet [VHM +01]. Analyses [AC94, CC95, CFM94, KSV96, SJ03].

Analysis [AKNP17, ABE +05, AD98, Bae84, BNN18, BC85b, Blo94, BE13, Bur90a, CFNH18, CDF +18, CMN91, DKKL18, DL93, Deb95, DP97, DAW88, FJ +17, GNS +15, GJ93, HP96, HOYY18, Hii88, Hor97, ISY88, Jen97, KD94, LLK +17, LR13, LHR19, McG82, MNB94, MOS07b, OHL +14, OHL +16, ...
Pal95, PO95, PCC85, PP91, PW94, PW98, Pur91, RTD83, RTP17, RP88, SR95, SSS83, SGL98, SS13, ABB+09, BDFZ09, BAL07, Bla03, Bhu99, BCG+07, CSW06, Cha02, CGS+03, CKT86, DDV99, DGS97, FF99, GHB+96, GJ05, GZ04, GCRN11, HAM+05, HPMS00, HBBC99, HVDH07, HAH12, IK05, JLR10, KBC+99, KK07, KSK07, LP00, LH08, MPM03, NS13, PHP02, Pal98, PKH07, Ram00, Rep00, RSL10, RD97, RRSY08, RR03, RR05, RLS01, SRW98, SRW02, STS03, SdSCP13, SS96, ST00a, WP10].

analysis [WJ98, ZSD09, dHB+96]. analyze [DMM01, VBLG04]. analyzer [SMP10].

B [Han81a]. Backpropagator [PS08]. Backtracking [Lin79, VR95, FM87a]. Backward [DL18, Mye18]. Balanced
Barrier [CHMY19].

BDD [LS98].

BDD-based [LH08].

BDD-based [LH08].

Bayesian [HOYY18].

Bayesian [HOYY18].

Basic [GLR83].

Bayesian [HOYY18].

BDD [LH08].

BDD-based [LH08].

Basic [GLR83].

Bayesian [HOYY18].

BDD [LH08].

BDD-based [LH08].

Basic [GLR83].
Concerning [Sha82]. Concrete [Bar81].
Concurrency [BG89a, Lam90, Wei89, BCF04, Mil85, TA08a, CPS93]. Concurrent [BC91, Car95, CLJGP18, Cla80, CES86, CPS93, CFM94, DGM97, FT94, Hal85, HSP83, HW90, Her93, JTM98, Kar84, Lam83, LFF14, MSM+16, OL82, Pet83a, Pet83b, RY88, Sku95, SNS+14, AE98, AE01, AAE04, BBYG+05, BGP99, CWW06, JPS+08, RS97, SRM10, YS10]. Concurrent-by-Default [SNS+14]. Concurrent-Program [FT94].
Condensation [JTM98]. Condition [HW90].
Conflict [Cas95]. Conjecture [KPS92, Sag86]. Conjoining [AL95].
conservative [Gor04]. Considered [GPV07].
Constant [CIJGP18, Coh91, WZ91, Wir91].
Constrained [BG89a, DAW88, PS96, Zic94, LPP01].
Constraint [Bor81, DGM97, DDV99, NSTD+15, Pal95, PW98, Ste18, Apt00, BMR01, DPPR00, FH04, GHB+96, HPMS00, SS08, SS09, SP07, SSD09, dHB+96]. Constraint-Based [PW98, Ste18, DDV99, SP07].
Constraint-Oriented [Bor81].
Constraint-Solving [NSTD+15].
Constraints [AKP94, DFR15, HG83, Mye90, BA08, RM10, TFK+11, Van96b, VHM+01, Van96a].
Construct [Ans87, BSS83, Kat93].
Construction [ADGM91, HIT97, LaL81, MB83, RH87, SL92, CMS03, GC01].
Constructive [Loo87]. Constructs [AR84, DJP+16, Par90]. Context [GHR80, Ode93, PK80, Ram00, RTD83, Rep00].
Context-Dependent [Ode93, RTD83].
Context-Free [GHR80].
Context-sensitive [Ram00, Rep00].
Continuous [KF03]. contract [DF11].
Contracts [SIG17, SDTF13, CGP09].
Convention [AF84]. Convergence [Bar85].
Conversion [CS87, SW97b, SA00, YK97]. Cooperating [GLR83, NO79].
Cooperation [BKS88]. Coordinating [JS94]. Coordination [GLR83]. copying [TSBR08]. core [IPW01]. Coroutine [Sam80].
Coroutines [LS81, DI09]. Correct [DGMP97, Hen86, JP17, SSS8, AAD+07].
Correction [FA93]. Correctness [Apt86, CM86b, FRW90, Gom92, HW90, Lam79, Lam80, Oss83, SN96]. correlated [YS99]. Correspondence [BS88, Bur90b, Bur91, Coh91, CM93, DS88, EL82, FA93, Fra81, Hen83, LaL83, LaL84, Moh83, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tic88, Vol91, WST85, Wir91, YB88].
Corrigendum [WCW91].
Corrigendum [Amo18, BKR90, DF81, Fra08a, KA94, Lam80, Pur91, QG95, Van96a, Wal81, WGS93]. Cost [AB81, BA08, DL93, Hai98, Han98a, ZGZ05, VALG05]. Cost-optimal [Hai98]. costs [GMP+00]. Counting [Bal94, LP06]. Counts [Bob90, WSt79].
Coupled [ACW90]. Covariance [Cas95].
Covariant [PZJ05]. Creating [Mye90].
criteria [HA05]. Critical [PS93]. Critique [GM81]. Cross [Amo18, FTJ95, GSS18].
Cross-Interferences [FTJ95].
Cross-Language [Amo18, GSS+18].
Cryptographic [App15]. CS [CD79]. CSP [AF84, Bag89, BS83, Dic93, Hua90, LS84, Zic94].
Custom [DJP+16]. CV3 [CZ84]. Cycle [BG89b, PBK+07]. Cycles [FRW90]. Cyclic [RY88].

div [Bou92]. Divergence [SSCP13]. DJ [DR05, SG96, SGL98, UM02]. DJ-graphs [UM02]. DLLs [Dug02]. does [SS05a]. Documentation [MH86].
dolce [MP10a]. Domain [LM18, Tra80, RM07, SS05a]. Domains [CMB95, ELS+14, GS98, FH04, GLMM05]. dominance [Ano02b, DV07]. dominator [SG97]. Dominators [LT79, Ano02b, BKWW98, BKWW05]. Don’t [AKNP17]. df [MSM+16]. Drinking [CM84, MS88]. Drive [PK80]. Driven [BL87, CS87, GF85, GSW95, PA85, PA86a, PA86b, TGT18, YBL16, DGS97, PF96, YM97]. Dually [MT08]. Dummy [Lam88]. During [BKBB00]. DyC

[GMP+00]. Dynamic [ACP99, AGT89, AS17, BB79, BDM15, Bre89, CHMY19, CTT07, DS98, Dug99, HSS+14, HN05, Kai99, KR79, RCRH95, Ven95, WR08, dBB85, ACE96, BP12, CE1+07, DDDCG02, GZ07, MMM+07, PHEK99, SJP+12, SHB+07, SYK+05, SYN06, WKD04, ZGZ05].
eager [FKW00]. Earley [Lei90]. Early [AB81]. ECCS [CDP89]. Edge [DP93]. Editing [FL81, HT86, Nix85]. Editor [FM87b, DeM83, Mye18, Per90, Rep86, Wol92]. Editorial [AP07, App93, AG93, AF94, MP07, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04]. Editors [DMM88, MM89, RST83, Wat94]. EDO [OKN06]. effective [RLS+01]. Effective [BS83, Col84, KKK06, NI05, PE08, WJ98, YWU02]. Effectiveness [BdBB99, SH89].

Efficiently [Bal94, CR+91, CF95]. Eiffel [ACE96]. elaboration [KR01]. Election [Hua93].

Eliminating [BT93, Coh83, Coh85, RD03]. Elimination [DP93, SG96, KKN06, KLC+99]. Elimination-Based [SG98]. embedded [BCP08, CSM00, HK07, Rhi03, SRM10, TP04, ZP10]. Embedding [HF87]. Empirical [BH07, BDH+16].

Empowering [JSB+12]. Emulator [ML80].

Enabled [ADG+94]. Encapsulating [GPV07]. Encapsulation [AR84, DDM11]. Encoding [Hob84, GZ05, ZP07].

Encodings [BC79]. End [BDP14, CSM00]. enforcement [HMS06]. Enforcing [CE1+07]. engines [SS08, SS09]. enhanced [GH97]. Entries [LaL84, SS82].

Enumeration [BB94, JID98].

Environment [CO90, SZBH86, CTK86].

Environmental [SKS11]. Environments [BS86, GKL94, HK85, HT86, Kai89, dJKVS12]. Epochs [S092].

equalities
[FMoPS11]. Equality [Pal98].

Equality-based [Pal98]. Equations [HO82, Bou96, GS11, GMM99].

Equiprobable [PB80]. Equivalence [VJB12, VSS94]. Equivalent [PO95, NP08].

Erlang [TCP+17]. Erratum [SS09]. Error [AB81, BAC84, BN99, BF87, FL15, Ko01, LaL84, MF88, MY95, PK80, Ric85, SSS83, SS82, Wet82, ZMVP17, dJKV12, Je03, XA07]. Errors [AWW95, SBB+19, Wha94, CPRT02, JN91]. Escape [Bla03, CGS+03]. ESOP'05 [Sag07].

Essential [DES12]. Esterel [Tar07].

Estimation [SBB+19], Eta [DMP96].

Eta-expansion [DMP96]. Euclid [HW82].

Euclidean [Bou92]. Evaluating [BLH12].

Evaluation [AFV98, Bur84, CGST95, CK93, GRI82, Hud91, Jon90, LV94, PA85, PA86a, PA86b, RD87, RL98, SLO95, SG90, WCW90, WCW91, ADRO6, CP96, CG04, GJ05, LDM07, Leu04, ST00b, SYK+05].

Event [Bar81, YM97].

Event-driven [YM97]. Events [Bal94].

Ever [Gri79]. Evidence [CGJ+97a].

Evidence-Based [CGJ+97a]. Example [CM86a, Mye90, Nix85]. Examples [Oss83, Je03].

Exception [YB85, YB87, YB88, LS98, LP00, OKN06].

Exception-Directed [OKN06].

Exception-Handling [YB85, LS98].

Exceptional [WN08]. Exceptions [ASF17, Hau96, LP00]. Exclusion [ADG+94, LH91, ABH11].

Executable [Hob84].

executables [YF09].

execute [BR10].

Execution [CS77, DIL90, GJ93, JW17, JN910, JF81, SS98, SS88, BALT06, GPA+01, TS00, YF98].

Exemplars [LaL98].

Exemplified [DGL+79].

Exercise [Kna90, Mis81].

Exhaustive [Bur90a].

Existential [MP88]. existing [LS98].

expansion [DMP96].

Expansions [SBB+19].

Experience [FSS83, Wal92].

experiences [Eug07]. Experimental [LV94, SSS83, Ven95, ABB+09, BGP99].

Experiments [Tur84]. Explanation [Mis81].

Exploiting [KOE+06].

exploring [WS97].

exponential [Wu04].

exponential-time [Wu04].

Expression [GP81, YB87, YB88, HV90].

Expression-Oriented [GP81, YB87, YB88].

Expressions [BG89b, CGST95, CC97, DAW88, Fis80, Geo84, GRI82, Hen83, HY91, KSS93, LDR81, PK82, SHA82, Sit97, Wat91, Dam03, NN96].

Expressive [MFRW09].

Expressiveness [WG92, WGS93, PS96].

extended [KGM004].

Extending [CEW14, CMS03, MSR00, MK94].

Extensible [HSG17, Sto04, ATD08, MBC04].

Extension [Bur90b, Cohl91, WSH15, Wir91, AL03, KKN06, LS08].

Extensions [Wir88].

Extent [MF98]. External [Wal80, Wal81].

Extracting [GP95]. extraction [TSL+02].

extrapolation [WM12].

Extrema [Pet82].

F [MWC99]. Facets [ASF17].

factoring [DRSS96].

Failure [BN95, Dar90, Kar84].

Failure-Free [Kar84].

Fair [BN94, PR07].

Fairness [ES97, OA88, TB95, AH98].

Families [LaL98].

Fashioned [AL94].

Fast [ADR06, DAS98, FMoPS11, HVDH07, LT79, SR95, DR05, PE08, TP04, VBLG04, DVL15].

Fault [CS95, Lam84, LJ99, AAE04].

Fault-Tolerance [LJ99]. Fault-Tolerant [CS95, Lam84, AAE04]. FD [GLMM05].

FeatherTrait [LS08].

Featherweight [IPW01, LST02, LS08].

Feature [ASAVF19, AH10]. Feature-Specific [ASAVF19].

Feeding [PA86a].

Fence [AKNP17].

Fickle [DDDGC02, AAD+07].

field [PKH07].

field-sensitive [PKH07].

fields [PZ05].

FIFO [FLBB99].

Final [Kam83].

Finding [KRS84, KKM90, LT79].

Fine [PBR+15, DNS+06].
Geometry [CR87], Georgeff [NN86], GJ [IPW01], Glanville [MSRR00], Global [Bac84, Dha91, GHB+96, OHL+14, PK80, PS92, Sch85, dHB+96, CS04, KBC+99, DS88, Sor89], GLR [SJ06], Goal [Dar90, Gud92, SYYH07], Goal-Directed [Gud92, SYYH07], Goal-Oriented [Dar90].

Goto [CF94], GPU [BCD+15], Gradual [TGT18].

Grammar [CI84, CP95, GF85, JP81, KR79, Web95], Grammar-Based [CI84].

Grammars [BS88, Jon90, Kat84, LaL81, RD87, Tai79, WW95, Boy96, CP96, Wu04], Grammatic [Tho94], Grammers [BB94, MK94].

Graph [Ass00, Bee94, BCT94, CFR+91, FOW87, KS89, KLS92, MC82a, Son87, CTT07, GC01], graph-based [CTT07].

Graphical [VHM+01].

Graphs [HRB90, KPS92, Kna90, SGL98, DR05, JC97, KSK07, SGL96, UM02].

grid [VWJB10].

Grimmer [Ano18].

groundness [CSS99].

Grover [BH99], growth [BALP06].

Guarantee [GEP17], LFF14, HQRT02], guarantees [LS09], guard [MP07], guarded [SP07].

Guardians [LS83]. Guards [Ber80]. Guest [FP02, OP04, DeM83, Peru90, Rep86, Wu04].

Guide [App94a, BDH+16]. Guided [OLH+16]. guiding [VALG05].

Hackers [App94a]. Hancock [CFP+04].

handle [VJB12], Handling [Hau96, LD88, Piq96, SSS83, UM02, YBD85, YBD87, YBD88, CRN+08, LS89, LP80, SDD99, Hen83]. Hard [Hor97]. Hardware [BKSL+97, Mis86].

harmful [Got04]. Hashing [PB80, Doo08].

Haskell [GRSK+11], HHPW96. Heap [KSK07, BALP06, KF00, YS10].

heap-manipulating [YS10], Heavily [BG89a]. Hennessy [CM93, WST85].

Herding [AM14]. Heuristic [SL92].

hiding [LN02, OYR09], hierarchic [AG04].

Hierarchical [BA99, CP95, CD97, AY01, CP96].

hierarchically [MBC04], hierarchies [ST00a, Van96a, Van96b], hierarchy [KF00].

High [Cam89, Fat82, MSM+16, URJ18, CMS03, VWJB10], High-Level [Cam89, Fat82, CMS03, VWJB10].

High-Performance [URJ18]. Higher [AC94, AD98, CJK95, DHP+16, BBTS07, DF11, SKS11, SP97]. Higher-Order [AC94, AD98, CJK95, DHP+16, BBTS07, DF11, SKS11, SP97].

Highly [Her93, Sku95].

Hoc [MDCB91], Holistic [ZMVPJ17].

Homomorphisms [HT17], HOP [BLRS12].

Hybrid [KF10, KS10].

Hyperball [LM18], hyperdoctrines [BBTS07].

I-Structures [ANP89], I/O [Car95]. Icon [GKH81, Gre82], id [Bee94], idempotency [KOE+06]. Identical [FLBB89].

Identification [BGH+13], identify [MMP+07]. Identifying [Ram99, SGL96].

Idioms [PP94], IDL [Lam87].

IEEE [Fat82], Ignorance [GNS+15]. Illustrative [Oss83].

Impact [OLH+16], CKT86].

Imperative [ABPS98, DFR15, Gro06].

Implementation [AKBLN89], AOC+88, BCD+15, Bou88, Bre89, BS83, CMS86b, GMH81, Gaz83, Lin93, MDCB91, PXL95, RL98, WL85, CML06, FM87a, GB99, LDM07, LPS004, Tra08, Zho96].

Implementations [BBF+11, BFGT08, DF98]. Implemented [DB85]. Implementing [BR97, Her93, HW82, Sku95].

Implications [Fat82]. Implicit [BH05b, SJ12].

Implicit-signal [BH05b]. improve [KF00].

Improved [GHR80, Mur91, KK07].

Improvement [MS83, Sut90].

Improvements [BCT94]. Improving [CK94, CMB+95, MCT96, TCP+17, WS97].
impure [Pip97]. incomplete [GLMM05].

labels [Sto04]. Laboratory [Bor81]. LaLonde [Hen83, Lal83]. LALR [DP82, KM81, PCC85]. Lambda [Geo84, Gom92, NN86, PS08]. Laminar [PBR+15]. Lamport [Ang89, Pet83b]. Language [ACPP91, AOC+88, Ano18, ABPS98, BS86, BPP16, BO94, Bor81, BC91, DVLM15, Fat82, Fea87, FFF+18, GSS+18, Gud92, Hal85, HSG17, JMSY92, JPP91, Kai89, McG82, Per79, PPS79, RTD83, RCS93, Spo86, SNS+14, Tun84, Wet82, Win87, YS91, YB87, dJKVS12, van88, Bou05, BSvGF03, CFP+04, DWWW08, DF98, FM99, Gro06, HBJ98, KN06, LP99, MF09, MWCG99, PPT08, PHEK99, Tra08, VHKO02, HCW82, YB87, dJKVS12, van88, Bou05, BSvGF03, CFP+04, DWWW08, DF98, FM99, Gro06, HBJ98, KN06, LP99, MF09, MWCG99, PPT08, PHEK99, Tra08, VHKO02, HCW82, YB87].

Language-Based [Kai89, RTD83]. Languages [Ano18, AR84, AD98, Bar81, BL94b, Blo94, BM94, BWP87, CDFP89, DUG99, Fos96, FL91, HU96, Lee86, LR19, MSM+16, Mur91, Ruy94, TK94, AAR+10, ACM11, DHM00, GW99, RS97, Rhi03, SRW98, SKS11, SP97, SWU10, Wol92].

Logical [BNN18, GGL15, GS98, TY18, RSL10, Tar07]. Look [DP82]. Look-Ahead [DP82]. Lookahead [KM81, MF88]. Loop [BAC16, CS87, MCT96, St79, RKSR12]. Loops [BAGM12, Boo82, CK94, DB85, FT95, Hav97, Wat91, Ano02b, LS04.
LSLR05, Ram99, RDG08, SGL96, UM02].
low [CSCM00]. low-end [CSCM00]. Lower
[PW94]. LR [ADGM91, BL94b, BF87,
CPRT02, DMM88, Je03, JP17, KC01,
LaL81, LaL84, SS82, ST00b]. LR-based
[KC01].

M [Bur91, Mul92]. M-LISP [Mul92].
Machine
[CGJ+97a, Cat80, GNS+15, Gie83, Han94,
LR13, ML80, RF97, SS98, Wal92, Zav85,
Ano02a, CEG07, CF04, HK07, KN06, Oho07].
machine-checked [KN06]. Machine-Code
[LR13]. Machine-Independent [ML80].
Machine-Specific [Gie83]. machinery
[FKW00]. Machines
[ACW90, Bee94, CGST95, GC86, KK98,
PS93, PP91, Rob97, RCRH95, Ay01, AG04,
ABE+05, ABS09, TSY00, Pur91]. Madsen
[Ell82, SM82]. Magma2 [Tur84].
maintenance [GKL94]. Making
[JC97, Loc13]. malware [PCJD08].
Management
[JP81, Mur91, van88, BP12, WCM00, Zho96].
Managing [Bob80]. Manifest [SIG17].
manipulating [YS10]. Manipulation
[DVL15]. many [AE98]. massive
[BHK07]. Massively [CGST95]. Matching
[AC96, AGT89, CP95, KS92, ADR06,
Van06]. Matching-Based [CP95].
materializations [RH06]. Mathematical
[Ban11, Hes88, LW93]. MATLAB [DP99].
MATLAB(R) [JB06]. Matrix [FT95].
Matrix-Vector [FT95]. Maximal
[BG98b, Rep98]. Maximal-munch [Rep98].
Maximization [GLO88]. Maximum
[Kna90]. Max [Hor97]. May-Alias [Hor97].
MCALIB [FL15]. Measuring [FL15].
Mechanically [DSW11]. Mechanism
[CO90, YB85, DNS+06]. Mechanisms
[Rei83, HMS06]. Mechanizing [Pau01].
Median [Com80]. Medians [KRS84].
megaflops [MMG00]. member [KF00].
Memory
[AMT14, CK94, Cha93, KZC15, KK98,
KR888, MS+16, Ms86, RCRH95, SS88,
ABH11, BP12, GMM99, GW99, JNGG10,
KF00, LK02, Loc13, Qr00, RR05, TSY00,
TP04, VBLG04, WCM00, MMM+07].
memory-efficient [TP04].
memory-hierarchy [KF00]. Merge
[Ber94]. Merlin [HBM+06]. Message
[CSW06, SS84, Gor04]. Messages
[BB79, Je03], meta [Tra08].
meta-programming [Tra08]. Metalevel
[Jag94]. Metaprogramming [CIB].
Method [BN11, BCD90, BF87, HL82,
Jon83, Loe87, JJD98]. Methodology
[Ban87, Her93, Sku95]. Methods
[DAW88, KM81]. METRIC [MMM+07].
Mezzo [BPP16]. Microanalysis [HCP92].
Microcode [MV87]. Middle [BDP14].
Middle-End [BDP14]. Might [Bee94].
migration [PIq96]. Minimal
[FKW98, IPW01]. Minimization [RS84].
imminizing [RH06]. Minimum [GHS83].
Minimum-Weight [GHS83]. Mining
[AMT14]. Misled [Cop94]. miss [GMM99].
Mixin [HL05, RD13]. mixins [ALZ03]. ML
[Bh99, HM93, HT04, PS03, RD13, Spo86].
Mobile
[LS03, VHB+07, BCC04, KS10, SWU10].
mod [Bou92]. mode [PS08, ZP10]. Model
[A01, Ang89, BK11, BS87, BGP99, CGL94,
DLM16, ES97, GS98, GG85, GL94, Han81a,
HW82, Hol87, KH92, MS+16, MMG92,
ND16, VSS94, ACM11, AM01, AE01, JJD98,
JPS+08, KN06, KV00, Loc13, NP08, QR00,
SG04, VWJB10, VAL05, YMW97].
Model-Checking [ES97, BGP99].
Modelling [AMT14]. Models [GJ93, KZC15].
Modern
[BCF04, RAB+07]. Modes [Deb89].
modest [LS08]. Modification
[Lei90, RLS+01]. Modula [EO80]. Modular
[AG04, BMP94, CDK+18, GL94, JBK18,
Jag94, KKM90, LN15, MBC04, Wei89, YB85,
dJKVS12, KV00, MFRW09, MOS07b].
modularity [BA99]. Module
[PAS+15, RD13]. Modules
[CL95, HW82, Lam83, HL05]. monadic
[MH04]. Monitors [BLH12, BH05b].
Monolingual [HK85]. Monte [FL15].
Morel [Dha91, DS88, Sor89]. Morphing
[HSl1]. Morris [Wis79]. Mostly
[YF09, BBYG+05]. Motion [KRS94, Hai98].
MPI [FJK+17, TSY00]. Multi
[Ano18, GSS+18, MF09]. Multi-Language
[Ano18, GSS+18, MF09]. Multialgebraic
[WM95]. multidimensional [RGT08].
MultiJava [CMLC06]. Multilisp [Hal85].
multimethod [DAS98]. Multimethods
[CL95]. Multiparty [JS94]. Multiple
[ASF17, NSTD+15]. Multiply [FTJ95].
Multiprocess [Lam79, Lam80].
Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].
Multithreaded
[EGP14, JBK18, JSB+12, KKW14, NR06].
Multivariate [HAH12]. Multiway
[Cha87, Van96a, Van96b]. munch [Rep98].
Mutandis [SHB+07]. Mutatis [SHB+07].
Mutual [LH91, ABH11].
Mutual-Exclusion [LH91]. Myths [Gor04].
n [CKT86]. Naming [BDP93]. Natural
[GZ04, dJKVS12, ACE96]. Neighborhood
[BG89a]. Neighborhood-Constrained
[BG89a]. Nested [Cha93, NB99, ACM11].
Nesting [Hav97, Boy10]. Nests [BAC16].
Net [JTM98]. Network [WGS92, WGS93].
Networks [CGJ97b, GC86, KRS84, dBB85].
Newtonian [RTP17]. Nicholson [FA93].
No [Ano18]. node [JC97, UM02]. Nodes
[CF95, Han81a]. Nomadic [SWU10].
Nominal [CU08]. Non
[DL18, LLK+17, Mye18, BS88]. non-
[BS88].
Non-Deterministic [Mye18, DL18].
Non-Statistical [LLK+17]. Noncanonical
[Tai79]. Noncorrecting [Ric85].
Nondeterminate [TK94].
Nondeterminism [Ber80, Hes88, WM95].
Nondeterministic [QG95, MT08].
Noninterfering [HPR89]. nonnumerical
[ME97]. Nonprocedural [PPS79].
nonrectangular [JLF02]. nonscalars
[CRN+08]. Nonsequentiality [Bar81].
Nonstrict [Blo94]. Nontermination
[PM06]. normal [LMD98]. Normalize
[CRN+08]. norms [BCG+07]. Notation
[Rem81, WII2b]. Note [Com80, CM93],
MS88, WST85, Coh85, Pal11b, YK97].
Notes [Sku95]. Nothing [BDH+16].
Notion [LV94]. NP [Hor97]. NP-Hard
[Hor97]. NQLAR [BS88]. nulled [SJ06].
Numbers [GLR83]. numeric [Hau96].
O [ABPS98, Car95]. Object
[DF84, HU96, KH92, Ryu16, WCU90].
WCC91, BSvGF03, DMM01, DDDCG02,
FM99, GPWZ08, HBM+06, JPS+08,
LPS004, Piq96, WJS+00]. Object-Based
[KH92]. Object-Oriented [HNU96, Ryu16,
BSvGF03, DMM01, JPS+08, WJS+00].
Objects
[AM85, CJK95, HF87, HW90, Her93, SM89,
VHB+97, Wal00, Wal81, Win84, GPV07,
HBJ98, KOF00, Sto04, WJS+00, Sku95].
Obligations [DSW11]. Observability
[Gaz83]. Observations [Sha82]. Occur
[AP94]. Occur-Check-Free [AP94]. Off
[SSB+19]. Offline [CG04, GJ05]. Old
[AL94]. Old-Fashioned [AL94]. On-Line
[Bal94]. On-The-Fly
[CF95, BA84, URJ18, LP06, PBK+07]. One
Bak82, BG89b, VHM+01]. One-Pass
Bak82. one-way [VHM+01]. online
[CG04, HVH07]. only [PZ05]. Opacity
[QG95]. Operating [HM84, BCP08].
Operational [BLRS12, Han94, MF09].
Operations
[AKBLN89, CK94, Lee86, LS79]. Operator
[CSV01, Hul83, LdR81]. Operators
[Ive79, She91]. Optimal [BOV85, CGST95,
FK85, JCM19, KRS94, Lar95, PB97,
Hai98, JNZ06, KSV96, MSRR00].

optimality [CP96]. Optimally [BL94a].

Optimistic [PM04]. Optimization
[Bee94, BBC16, Blo94, BAC16, BT93, DF84, DP97, DDH84, Dha91, DS88, FOW87, HG83, HOYY18, Penn83, PP94, SS82, Sor89, TvS82, Web95, Ass00, BHK07, KDC99, KF03, PE08, TVA07, CG95, LaL84, OKN06].

Optimizations [CC95, JSB12, CGS03, CKT86, GMP00, SYK05].

Optimize [DMM01, VBLG04].

Optimized [CM93, Cop94, Hen82, WST85, DS98, UM02].

Optimizer [DF80, FSS83].

Optimizers [Gie83].

Optimizing [CEG07, KMM98, LSLR05, ML80, NSZS13, QR00, BGK09].

Or-Parallel [GJ93].

orchestration [PE08].

Order [AC94, AD98, Bur84, CJK95, DP97, DJP16, JPP91, JS94, SS98, BBT607, DF11, SKS11, SP97].

ordering [GS99].

Organization [Han81a].

Oriented
[Bor81, Dar90, ELL82, FFF18, GTWA14, GKL94, GP91, HU96, Ryu16, SM81, TUR84, YBS7, YB88, BS9GF03, DW2W08, DMM01, JPS80, WKD04, WPI0, WJS00].

origins [San09].

OSI [CDFP89].

Output
[Ber80, BS83, overflow [KOE80]].

overhead [BP12, SS96].

overlays [SWU10].

Overload [Bak82].

overloading [SS05b].

Overview [AOC88].

ownership
[DDM11, SS96].

Oz [VHB97].

Package [Hill88].

Paper [GM81].

Parallel
[ANP89, BOV85, BO94, BE13, Cha93, CGST95, CM91, CL94, DS83, Fos96, GLO88, GJ93, GPA01, HCHP92, HIT97, JF81, Kna90, LHR91, Mis94, NSZS13, OA88, Rao94, SS88, BB9Y95, CG86, GB99, HB9J, KSV96, IK02, MVM01, RR03, YF98].

Parallelism
[Bur84, GP95, KSV96, NB99, PW94, TCVB14, YBL16].

Parallelization
[BAC16, BDJJ13, PP94, BdlBH99, HAM05].

Parallelizing
[HP96, ME97, RD97].

Parameter
[Gaz83, Zho96].

Parameterization [TWW82].

Parameterized
[CGJ97b, CK93, Gaz83, RKSR12].

Parametric
[HFC90, MMD92, SRW02, IV06].

Parenthesis [AS80].

Parlog [CG86].

Parsed [Wad90].

Parser
[CM93, Cop94, Hen82, WST85, SS82].

Parsers
[BN99, LaL81, MYD95, PK80, CPRT02, SJ06, ST00b].

Parsing
[CH87, DMM88, Fis80, GM79, CPRT02, RH87, SM90, W98, KCO90].

Partially
[BLH12, Kob98, RRSY08].

partially-flow-sensitive [RRSY08].

partitioning [RM07, YF09].

Parts [Son87].

Pascal [LS79].

Pass [Bak82, BM94].

Passing
[BDM15, Gaz83, SS84, C2W06, Gor04, Zho96].

Passive [AKP94].

path-length [SMP10].

Patient [MP90].

Path
[BL94a, CIGF18, SMP10].

path-length [SMP10].

Patient Oriented [FFF18].

Pattern
[EGP14, AD06, Jy04, MTSS90, Van06].

Pattern Based [EGP14].

Patterns [GH80].

PDS [Han81b].

PEAK [PE08].

Peephole
[DF80, DF81, Pen83, TvS82].

PegaSys
[MH86].

Pennello [Sag86].

Perfect [Duc08].

Performance
[HU96, SM81].

Permission
[Col91, Wir91].

Permission Based
[BPP16, SNS14].

Permissions
[Boy90].

Persistent [AM85].

Petri
[JM98].

Petri-Net Based
[JM98].

Phases
[Bar91].

Philosopher [CM84].

Philosophers [MS88].

pi [HR02, KPT99].

pi calculus [HR02, KPT99].

pict [SWU10].

Pictures
[MH86].

Pipeline
[SG83].

Pipelined
[BG98, LPP01, RDG08].

pipelining
[ME97].

pitfalls
[Mon80].

PL
[CD79, CZ84, FFF+18]. PL/CS [CD79].
PL/CV3 [CZ84]. place [GW99].
Placement [DP93, GS99, vIK00].
Platform [TCP+17], pluggable [MME+10].
Pluto [BAC16], Point [CK94, Fat82, SBB+19, GJ05, Hau96, Mon08]. Pointer
[LRH19, LS79, RR03, HBCC99, HVDH07, PKH07, RLS+01]. Pointers [SS13, RR05].
poinTs [WKD04]. Pointwise [VSH94].
Policies [NBG13, BDFZ09, FGM07b].
Policy [Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, UJ92, BFG08]. policy-based [BFG08].
Polyhedra [GVC15]. Polyhedral
[GVC15, QR00]. POLYLITH [Pur94].
Polyomorphic [BMI05, Dug99, HT04, Hen93, KU93, LO94, LY98, Oh95, SIG17, SV96, WJ98, BSvGF03, DWW08].
Polyomorphism [Bur90b, MDCB91, HFC09].
Polyhedral [BKM07]. PolyTOIL
[BSvGF03]. polyvariance [LMD98].
Polyvariant [AC94, WJ98]. POP
[FFF+18]. POP-PL [FFF+18]. Portable
[DDH84, Han81b, HK07]. Possibly [JP17].
Postfix [DS83]. Postpass [HG83]. Power
[TWW82, SS09]. Powerlist [Mis94].
PMPexe [DKV07]. PQ [GZ05].
PQ-encoding [GZ05]. Practical [AD08, BAC16, BF87, CP17, Dha91, LR19, ND16, PBR+15, SS13, TSL+02, WC97, Bou05, DR05, DWD07, DGS97, JN06, PFH11].
Practice [KRS94, Ryu16, Bla03, DRSS96].
Pragmatic [BDH+16]. Pragmatics
[Gom92]. Pre [OLH+16]. Pre-Analysis
[OLH+16]. Precedence [Hau83, LdR81].
Precise [CDK+18, FJK+17, Hor97, PHP02].
precision [ZGZ05]. Precondition [Bou92].
Predicate [Lam90, BMR05, Bou05, Bou06, MFRW09, MMS96, PR07]. Predicates
[SHB+07, HK07]. Prediction
[CGJ+97a, CEG07, YS99]. Predictive
[FKJ+17]. Prepaging [FK85].
Prescription [FFF+18]. Presence
[AWW95, CF94, KU93]. preserving
[DHS09, LST02]. pretenuring [BHM+07].
Pretty [Chi05]. Prettyprinter [Wat83].
Prettyprinting [Opp80]. Primitive
[App15]. principals [TZ07]. Principles
[Bou88, DRSS96]. printing [Chi05].
Priority [CH90, Fid93]. Priority-Based
[CH90]. Privacy [BKOZB13]. Privileges
[Min84]. Probabilistic
[BKOZB13, CFN18, HSP83, MMS96, OJ+18, RAO94, BH99, PPT08]. Problem
[ADG+94, CM84, DSS88, Gho93, LSP82, MS88, Pet82, Pet83b, PB97, Sor99, FGM+97a, Wu04]. Problems
[Bac84, CFN18, DP93, MMR95, SRW98].
Procedural [HF87, Lin93, VS89].
Procedure [CDK+18, GS99, GL80].
Procedure-Modular [CDK+18].
Procedures [AM85, Kat84, NO79].
Process [Kob98, vPS81, WP10].
process-oriented [WP10]. Processes
[AFR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, OSS83, RY88, Sou84, TY18, dBB85, AE98, KS10, Ber80, Moi83].
Processing [GH80, HSR17, Re18].
Processor [BG89b, Bud84]. Processors
[GLR83, Per79, LPP01, ZP10]. Product
[RTP17]. Production [Wad00].
Productivity [Sij89]. Profile
[BHM+07, YUW02]. Profile-based
[BHM+07]. Profiling
[ASAVF19, BL94a, SP97]. Program
[Bal94, Bar85, BAL07, BKB80, Col84, DKKL18, Der85, Fea82, FOW87, FT94, FL91, HSP83, HKR94, Jen97, KKW14, KWL09, Lam83, Lam88, LFF14, MS83, MW80, Mis81, Nie85, PP94, PPS79, Rem81, RTP17, TSY00, Wat94, Wey83, ZS09, AS00, DDD05, GZ04, KF03, LH08, NS13, Pau91, RAB+07, SLC03, WZ07, WN08, YF09, DKV07].
Programming [AGT89, ANO18, AR84, ABPS98, BS86, BPR16, BL87, Bir84, Bor81, BMPT94, BWP87, BCE15, CH12, CL94, Dar90, DFR15, DGL+79, Dug99, FFF+18,
Fos96, FL15, GTWA14, Har80, HK85, HO82, Kai89, KH92, Lee86, LVV+83, MK94, Mye90, OGJ+18, Pet83b, RCS93, SS84, SNS+14, SZBH86, TK94, ABH06, BMR01, Bou06, BdlBH99, CU08, CG86, CKT86, DWWW08, DPPR00, GW99, HBJ98, JPS+08, KGMO04, MVV+01, MTSS09, MQ05, Tra08, VVJB10, WKD04, WJS+00, Bir85, SWU10.

Programming-in-the-Large [MK94].

Programs [AWW95, AK87, AFV98, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BEF+16, CR87, CB80, CM86a, Cha93, CFNH18, CEW14, CMN91, Cla80, CMF94, CS87, DL18, DGM97, DW89, Deb89, DL93, Deb95, DP97, DH90, EGP14, FJK+17, GG85, GM81, Har80, HCHP92, HPR89, How80, HIT97, ISY88, JKB18, JW17, Jon83, JF81, Kna90, Lam79, LS83, MSJ94, MH86, Mye18, NSZS13, OA88, OL82, PS92, QL01, Rao94, SS98, Sch82, SSS81, SS88, Veh95, Wad90, Web95, Wil82a, AE01, AAE04, BCG+07, CSW06, CSS99, DP99, DVM99, DS98, DMM01, EGM01, GM12, GHB+96, GH97, GPA+01, Hau96, HPMS00, JPS+08, KSV96, LMD98, Lru04, LS09, MF09, NM06, PM06, RRKR04, RR03, San96, VJB12, WM12, YS10].

y programs [Yin11, dHB+96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MWB94, NF89, Zho96].

Promotion [Bir84, Bir85].

Proof [AFdR80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Ohno07].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, JW17, LY98, Ose83, GRSK+11].

Propagating [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].

Properties [ACW90, AS89, CLJGP18, Kar84, LM18, OL82, RY88, TB95, Wei89, YS10].

Proposed [Fat82].

Protected [PAS+15, WJS+00].

Protocol [SL92, YS97].

Protocols [MB83, BFGT08, SS96].

Prototype [WCW90, WCW91].

Prototypes [HW82].

provably [GB99].

provably [AAD+07].

Proving [DGM97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Pruning [BN99].

PSG [BS86].

publish [Eng07].

publish/subscribe [Eng07].

Pure [BNN18, HU96, Pip97, Tar07].

Purpose [App94b, HSS+14, Spo86].

qualifiers [FJKA06].

Qualitative [CFNH18].

Quantification [Vol91, Bur91].

Quantified [Gro06, STS03].

Quantitative [CFNH18].

Quantum [FDY12, BH99, Yin11].

Queries [Bal94].

Queuing [BB79].

Quiencesce [CM86a].

R [AW82, CKT86, KMM+98].

race [AFF06, PFH11].

Races [KZC15].

Random [AS80].

Range [CG95].

Rank [Dam03].

Ranking [Lee09].

Ratio [CK94].

Rational [GS11].

rationale [CMLC06].

Reach [FKW98].

Reachability [NS13].

Reactive [DFR15, AG04, DGG97].

read [AE01, PZJ05].

read-only [PZJ05].

read/write [AE01].

Readable [Spo86].

Reading [Pet83a].

Real [AL94, MMG92, RS84b, GH97, HK07, LS98, YMW97].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

realities [Gor04].

Reals [DK17].

Reasoning [BKOZB13, BLRS12, BDP93, BP82, BH99, CB80, Lam88, LN15, Rao94, TSB08].

receive [Gor04].

receptive [ABL03].

Recipe [AL94].

reclassification [DDDCC02].

recognition [ATD08].

Recognizer [GHR80].

Recognizing [BL94b].

Recombination [Kau84].

Recombination-Delaying [Kau84].

Recompilation [BT93, SK88, Tic86, Tic88].

Reconciling [HU96].

Reconstruction [YR94].

Record [LS79, Ohno95].

Recovery
[AB81, ACS84, Bac84, BF87, PK80, Ric85, dJKVS12]. Recurrences [VJB12].
Recursion
[AK82, Col84, Hen93, KTU93, Mis94, YK97]. Recursive
[AC93, AK82, Ban87, Coh83, Coh85, LBN17, Sij89, ABE+05, AM01, CF04, Dug02, PaI98]. Recursively
[BE13]. Reduce
[BN99, MYD95, BALP06, KOE+06, SS96]. Reduced
[SG04]. Reducible
[Hav97, JC97]. Reduction
[Bee94, Bur84, FRW90, Geo84, KLS92, Mul92, NN86, CSV01]. Redundancies
[DS88, Sor89]. Redundancy
[KCL+99]. Redundant
[Coh83, Coh85]. Reentrant
[Bob80]. Reexamination
[CG95]. Refactoring
[Ste18, TFK+11]. Reference
[Bob80, Wis79, KSK07, KOE+06, LP06, MDJ05]. Reference-counting
[LP06]. References
[Han92, TGT18, SV96]. Referencing
[LS81]. Region
[BKOBZ13, CB80, GSO94, JLF02, RDG08, SH89, GA69, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers
[ZP07]. Region-based
[SYN06]. regions
[RR05]. Register
[BCT94, CH90, GSO94, JLF02, RDG08, SH89, GA69, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers
[ZP07]. Regular
[CC97, HVP05, LaL81]. Relation
[LBN17, MTG80]. Relational
[BKOZB13, CB80, GSO98, TLHL11, JJD98, JLS10]. Relations
[ELS+14, HT86, LH08]. Relationship
[BSS88]. Reliability
[LM18, WN08]. Reliably
[TCP+17]. Rely
[EGP17, LFF14]. Rely-Guarantee
[EGP17]. Rely-Guarantee-Based
[LFF14]. Remembrances
[PM09]. Remote
[BCP08, SG90]. Removal
[AK82]. Rendezvous
[Cha87]. Renvoise
[Dha91, DS88, Sor89]. Reoptimization
[PS92]. reordering
[YUU02]. Repair
[BN99, MF88, MYD95, KC01]. Repairing
[CPRT02]. Replacement
[MM89]. Replicate
[RB94]. replication
[RD03]. Reply
[Bur91, Fra81, LaL83, Tan83, Wir91, SM82]. Retargetable
[DF80, DF81, MV87]. Retention
[LS81]. Retraining
[LHR19]. retrofitting
[NCH+05]. reuse
[DNS+06, GW99, ZSD09]. Reversal
[ACS84]. Reverse
[PS08]. Reverse-mode
[PS08]. Revised
[SIG17]. Revision
[FM87b]. revisited
[MDJ05, Zho96]. Revisiting
[DI09]. Rewrite
[FKW98, Ass00]. Rewriting
[KKSD94, BCM99, DDD05, FKW00, GRSK+11, MMM+07]. Right
[KS83, LaL81, Sj06]. Rigorous
[BBB+19]. Rings
[BP89, Hua93]. RISC
[PS93]. Rivieres
[Hen83]. RMI
[MVV+01]. Robust
[LS83]. Roever
[Moi83]. role
[APT00]. Roman
[PB97]. Round
[BBB+19]. Round-Off
[BBB+19]. Rounding
[FL15]. Row
[MM89]. rule
[HQR02]. Rules
[GL80, JTM98, SS84, LS09, SSD09]. Run
[IS88, TZ07, GMP+00]. Run-Time
[IS88, TZ07, GMP+00]. Runtime
[Ao18, BLH12, BFF+16, GSS+18, TCVB14, BH05a, TYS00]. S
[HAC82]. S/SL
[HAC82]. Safe
[AWW95, Dug02, JW17, AFF06, BSyGF03, LS03, Loc13, NCH+05, SA00, ZCG+07, MH06, SHB+07]. safe-for-space
[SA00].
same [SS05a].
safety [FF08, YS10].
sampling [PPT08].
Santa [WP10].
Sapphire [URJ18].
Sather [MOSS96].
Satin [VWJB10].
satisfaction [DF11].
satisfying [XA07].
Saturn [XA07].
Scalability [TCP+17].
Scalar [FT94, XA07].
ScaExtrap [WM12].
Scaling [TCP+17].
scan [PS99].
Scanners [HKR92].
Scanning [GVC15].
Scavengers [UJ92].
Schanuel [KPS92].
schedulability [GH97].
schedule [TVA07].
Scheduler [TCVB14].
schedules [MH04].
Scheduling [BG89b, FGL94, KR79, KPF95, LPP01, L999, NB99, NSTD+15, PS93, TCVB14, Ban11, ME97, YF98].
schema [RLS+01].
Schwane [Tie88].
Scientific [How80].
Scope [App94b].
Scratchpad [SRL90].
Screen [MM89].
SDF [VHKO02].
Search [Dar90, BH99, SS05a].
Searching [CC97].
Section [Wol92].
Secure [BCEM15, PAS+15, BBF+11, HY07].
Securely [RB94].
Security [TGT18, BFGT08, BFG08]. see [BR10].
Selection [DF84, SSS81].
Selective [Min84, OLH+16, ME97].
Self [BP89, DSH09, Gho93, Gom92, ABB+09].
sel-applicable [ABB+09].
Self-applicable [Gom92].
Self-Stabilization [Gho93, DSH09].
Self-Stabilizing [BP89].
Semantic [AAR+10, AW95, GGL15, MH06, HCW82].
Semantics [ABHI11, Ans87, AB94, AW82, BGL93, Ber94, BLRS12, Bou88, Boy10, CPS93, CD79, FA93, GM81, Gud92, Han94, JPP91, Kai89, Mul92, NF89, Set83, Sou84, WM95, Wan92, dBBB5, ACE96, BMR01, Bou06, GZ04, MF09, PCJD08, SWU10, SJ03, Tar07, WKD04].
Semantics-Based [BGL93, CPS93, PCJD08].
Semantics-Directed [Han94, Set83].
Semaphore [CR87].
Semiring [BMR01].
Semiring-based [BMR01].
Send [Gor04].
Send-receive [Gor04].
Sensitive [OLH+16, PKH07, Ram00, Rep00, RRSY08].
Sensitivity [FL15, KRR18].
Separating [DDM11].
Separation [BDJ13, DJP+16, OYR09, BBTS07].
Separators [GSO94]. Sequences [GSW95].
Sequent [ABS09].
Sequential [AFDR80, Ber80, GLR83, HM84, KS79, MC82b, Moe83, Son84]. Series [Wat91].
Served [LH91].
server [LDM07].
servers [BBYG+05].
service [CMS03].
Services [CHY12, RB94, BFG08, CGP09].
Session [TY18].
Session-Based [TY18].
Set [Sha82, FF99].
set-based [FF99].
SETL [DGL+79, FSS83, SSS81].
Sets [DP82, DDRP90].
Setting [Lin79, NCA85, HL05].
SHA [App15].
SHA-256 [App15].
shape [GCRN11, JLR10, JG06, SRW98, SRW02].
shape-analysis [SRW98].
shaping [HS11].
Share [SS88].
Shared [Cha93, FLBB89, KH92, KRS88, Pet83b, Dug02, HBJ98, TSY00, BC91].
Shared-Memory [Cha93, TSY00].
Sharing [CSS99, Lam87].
SHErrLoc [ZMVPJ17].
Shift [BN99, MYD95].
Shift-Reduce [BN99, MYD95].
Short [Sag86].
Should [LP99].
Side [Boe85, KWL09, RLS+01, TA08b].
side-effect [RLS+01].
sign [KKN06].
signal [BH05b].
Signatures [BR97].
Signedness [GNS+15].
similar [AE98].
Simple [Boe85, GLO88, JP17, SH89].
simpler [BKRW98, BKRW05].
Simplification [NO79].
Simula [Lan80].
Simulating [KKSD94].
Simulation [AMT14, Bar81, Bor81, LFF14, HQR10].
sin} [Lam90].
Single [BM94, CFR+91, JBG18, GPF08].
Single-Assignment [BM94].
Single-Pass [BM94].
Single-Threaded [JBG18].
Sit [AKNP17].
situations [WN08].
Size
Size-change [BA08, Lee09, LDK+96].

Slicing [AHJR14, CF94, DL18, GH97, HBB90, Mye18, Ven95, WZ07, BHK07, GZ07, NR06, RAB+07, WR08, ZGZ05]. SLR [BS88, Tai79]. Small [FLBB89, LH91, Pet83b]. Smart [Tie86]. Smarter [SK88, Tie88]. Smooth [JF81]. Soft [WC97]. Software [ACM11, AW85, Ber94, DAW88, HSS+14, How80, JW17, PXL95, PPS79, Pur94, Wal92, YBL16, CTT07, HY07, LS98, ME97, NCH+05, RDG08, SHB+07, SRM10].

Stack-Controlling [LA81]. Standard [Fat82, HM93, Qia00, Blu99]. State [ACW90, BLH12, CES86, GC86, PP91, Pur91, Zav85, AY01, ABE+05, MBT09].

Statement [Ell82, Mor88, SM81]. Statement-Oriented [Ell82, SM81]. Statements [CF94]. States [ADG91]. Static [AKNP17, AC94, CGJ+97a, CF94, CFR+91, DL18, Deb89, HOY18, LLK+17, LST98, MO807a, Mye18, PW94, YS99, ZMPV17, CE1+07, GPF08, GZ04, HO07, PSS05, FHH11, RSL10, VJB12, WCM00, YF09, AFF06, FLQL08].

Steenstra [Ell82, SM82]. Steenstra-Madsen [Ell82, SM82]. stencil [LS04]. Step [Coh84, TVA07]. Steps [Jon83]. Stepwise [CM86, SL92].

Strings [AS80, KS88, KS98, ADR06, KK07]. Strong [KZ15]. Structural [SZBH86, MTSS09].

Structurally [HS11]. Structure [BC79, GKL94, HM93, Mis94, MWD94, She91, HY07]. Structure-Oriented [GKL94]. Structured [BM94, CHY12, GD82, Har80, LS81, Mur91, RR03].

Structures [ANP98, Bob80, FL81, GEP17, RCR95, SSS81, LPS004, RAB+07]. Study [FT95, BHK07, DDBH99, DF98, KF03].
References

Ancona:2007:PCT

Attie:2004:SFT

Acar:2009:EAS

REFERENCES

Alur:2005:ARS

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CAC

Afek:1993:LC

Apt:1998:AIL

Andre:1981:MAC

Ariola:2009:SCA

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

Attali:1996:NSE

Alur:2011:SMC

REFERENCES

Ager:2006:FPE

Attie:1998:SCS

Attie:2001:SCP

Abadi:2006:TSL

Abite:1988:MDT

Alpuente:1998:PEF

REFERENCES

Allen:1987:ATF

Ait-Kaci:1989:EIL

Alglave:2017:DSF

Ait-Kaci:1994:FPC

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

REFERENCES

dheads-2003:JDJ
Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam—
designing a Java extension with mixins. *ACM Transactions on Programming Languages and Systems*, 25(5):641–
712, September 2003. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Atkinson:1985:PPD
Malcolm P. Atkinson and Ronald Morrison. Procedures as
persistent data objects. *ACM Transactions on Programming
Languages and Systems*, 7(4):539–559, October 1985. CODEN
ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

(print), 1558-4593 (electronic).

Anger:1989:LIC
(print), 1558-4593 (electronic).

Anonymous:1982:IA

Anonymous:1983:IA
Anon anonymous:1984:IA

Anon anonymous:1985:IA

Anon anonymous:1986:AI

Anon anonymous:1986:IA

Anon anonymous:1987:IA

Anon anonymous:1988:AI

Anon anonymous:1988:IA

Anon anonymous:1989:AI

Anon anonymous:1989:IA

Anon anonymous:1990:AI
[Ano90a] Anonymous. 1990 author index. ACM Transactions on Programming Languages and Systems, 12
REFERENCES

Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1991:IA

Anonymous:1992:AI

Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

Anonymous:2002:LDD

Anonymous:2018:CCL

Arvind:1989:SDS

Apt:1994:OCF

Anson:1987:GIC

Andrews:1988:OSL

Abadi:2007:E

Appel:1993:Ea

Appel:1994:ABG

Appel:1994:PS

Appel:2015:VCP

Apt:1981:TYH

Apt:1986:CPD

Apt:2000:RCC

Andrews:1980:AAP

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Assmann:2000:GRS
Arenaz:2008:XEF

Ashcroft:1982:RS

Avrunin:1985:DAD

Aiken:1995:SST

Alur:2001:MCH

Ben-Ari:1984:AFG

Blume:1999:HM

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA

Bhaskaracharya:2016:ASO

Bengtson:2011:RTS

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL

Bates:1985:PP

Bergeretti:1985:IFD

REFERENCES

Bottoni:1999:SDC

Bhatia:2008:RSE

Briggs:1994:IGC

Bergstra:1997:TCT

Bartoletti:2009:LPR

Blackburn:2016:TWT

Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney, José Nelson Amaral, Tim Brecht, Lubomír Bulej, Cliff Click, Lieven Eeckhout, Sebastian Fischmeister, Daniel Frampton, Laurie J. Hendren, Michael Hind, Antony L. Hosking, Richard E. Jones, Tomas Kalibera, Nathan Keynes, Nathaniel Nystrom, and

Botincan:2013:PDP

Bernardeschi:2008:DBV

Bueno:1999:EAI

Biernacki:2015:DCP

Bowman:1993:RAN

Barthe:2014:FVS
REFERENCES

REFERENCES

Bultan:1999:MCC

[102x681]REFERENCES

Butler:1999:RAG

Buhr:2005:ISM

Binkley:2007:ESO

Blackburn:2007:PBP

Buchsbaum:2005:CNS

See [BKRW98].

Ball:1994:OPT

Bates:1994:RSL

Blanchet:2003:EAJ

Bodden:2012:PEF

Eric Bodden, Patrick Lam, and Laurie Hendren. Partially evaluating finite-state runtime monitors ahead of time. *ACM Transactions on Programming Languages and Systems*, 34(2):
Bloss:1994:PAO

Brogi:1994:MLP

Bistarelli:2001:SBC

Ball:2005:PPA

Thomas Ball, Todd Millstein, and Sriram K. Rajamani. Poly-

[Boe85] Hans-Juergen Boehm. Side effects and aliasing can have simple axiomatic descriptions. ACM
REFERENCES

[BOV85] Ilan Bar-On and Uzi Vishkin. Optimal parallel generation of a computation tree form. ACM Transactions on Programming Languages and Systems, 7(2):
REFERENCES

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

Bahlke:1986:PSF

Bermudez:1988:NRR

Bruce:2003:PTS
REFERENCES

0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Cliff Click and Keith D. Cooper. Combining analyses, combining optimizations. *ACM Trans-
REFERENCES

REFERENCES

[CFM94] Michael Codish, Moreno Falaschi, and Kim Marriott. Suspension analyses for concur-
 REFERENCES

REFERENCES

Carbone:2012:SCC

Cameron:1984:GBD

Chatterjee:2018:AAP

Cejtin:1995:HOD

Consel:1993:PPE

Carr:1994:IRM

Cooper:1986:IIO

Keith D. Cooper, Ken Kennedy, and Linda Torczon. The impact of interprocedural analysis and optimizations in the R(n) programming environment. *ACM Transactions on Programming Languages and Systems*, 8(4):
REFERENCES

Co
dish:1995:IAI

Clifton:2006:MDR

Choi:1991:TDP

Christensen:2003:EJH

Cohen:1983:CCA

Clemm:1990:MEI
REFERENCES

[CP96] Alan Carle and Lori Pollock. On the optimality of change prop-

Cohen:2017:LPC

CPR02

Cuny:1987:CDD

REFERENCES

[CTT07] Christian S. Collberg, Clark Thomborson, and Gregg M. Townsend. Dynamic graph-

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FAC

Dillon:1988:CET

Dunlop:1985:GSU

Douglas D. Dunlop and Victor R. Basili. Generalizing specifications for uniformly imple-

deBruin:1985:DSD

Donahue:1985:DTV

DeSutter:2005:LTB

Drossopoulou:2002:MDO

Dencker:1984:OPT

Dietl:2011:SOT

Decorte:1999:CBT

Stefaan Decorte, Danny De Schreye, and Henk Vandecasteele. Constraint-based termination analysis of logic pro-
Debray:1989:SIM

Debray:1995:CDA

DeMillo:1983:GEI

DeFraine:2012:EAC

Davidson:1980:DAR

Jack W. Davidson and Christopher W. Fraser. The design and application of a re-targetable peephole optimizer. *ACM Transactions on Programming Languages and Systems*, 2
REFERENCES

(2):191–202, April 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [DF81].

DeBoer:1997:PCC

Duesterwald:1997:PFD

Dhamdhere:1991:PAG

DeLaBanda:2000:ICL

Dolby:2012:DCA

Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip,

REFERENCES

Drinic:2007:PPC

Debray:1993:CAL

Danicic:2018:SBS

Dissegna:2016:AIB

Degano:1988:EIL

Diwan:2001:UTA

Danvy:1996:EED

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schäli, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Das:2005:PFI

Dawson:1996:PPU

Dekel:1983:PGP

Drechsler:1988:TCS

Dewan:1990:ASA

Dhamdhere:1998:DCD

REFERENCES

Eugster:2007:TBP

Finlay:1993:TCC

Fateman:1982:HLL

Feng:2012:BQP

Feather:1982:SAP

Feather:1987:LSS

Flanagan:1999:CSB

REFERENCES

Furr:2008:CTS

Florence:2018:PPP

Flanagan:2008:TAS

Fournet:2003:SIT

Freundenberger:1994:ASC

Foster:2007:CBT

Fournet:2007:TDA
Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for authorization

Fernandez:2004:ICS

Fidge:1993:FDP

Fischer:1980:PCA

Forejt:2017:PPA

Foster:2006:FIT

Fuchs:1985:OPF

Fokkink:1998:WAR

REFERENCES

Fokkink:2000:LRE

[FKW00]

Frechtling:2015:MMS

[FL15]

Fischer:1981:EDS

[FLBB89]

Finkel:1987:DDI

[FL91]

Fraser:1987:ER

Christopher W. Fraser and Eugene W. Myers. An editor for

REFERENCES

1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Fra80a] and remarks [Moh81, Fra81].

Francez:1981:TCR

Friedenberg:1983:ESO

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Gelernter:1985:GCL

Georgeff:1984:TRS

Ganapathi:1985:AGD

Gini:1985:DWM

Gesbert:2015:LAD

Griswold:1980:AUP

Gerber:1997:SRT

Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Arne John Glenstrup and Neil D. Jones. Termination anal-

Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient coordination of very large numbers of cooperating sequential processors. ACM Transactions on Programming Languages and Systems, 5(2):164–189, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).
Ghezzi:1979:IP

Greif:1981:SSW

Ganty:2012:AVA

Gannon:1981:DAI

Ghosh:1999:CME

Grant:2000:BCD

REFERENCES

Gange:2015:IAM

Gomard:1992:SAP

Gorlatch:2004:SRC

Grit:1981:DIT

Girkar:1995:ETL

Gupta:2001:PEP

Gal:2008:JBV

Andreas Gal, Christian W. Probst, and Michael Franz. Java

[Gri82] Ralph E. Griswold. The evaluation of expressions in Icon.

[Gries:1979:SEB]

[Giacobazzi:1998:LMR]

Gloy:1999:PPU

Gawlitz:2011:SSR

Gupta:1994:ERA

Grimmer:2018:CLI

Gerlek:1995:BIV

Garcia:2014:FTO

Gudeman:1992:DSG

[Ger92] David A. Gudeman. Denotational semantics of a goal-

Grosser:2015:PAG

Gudjonsson:1999:CTM

Glesner:2004:NSS

Gil:2005:EST

Gil:2007:EDD

Hoffmann:2012:MAR

Hailperin:1998:COC

Max Hailperin. Cost-optimal code motion. *ACM Transactions on Programming Lan-
REFERENCES

Hailperin:2005:CCC

Halstead:1985:MLC

Hall:2005:IPA

Hansen:1981:CMI

Hannan:1994:OSD

REFERENCES

Hickey:1992:CAM

Huang:2010:DBR

Holt:1982:ISS

Hirzel:2002:UTL

Hennessy:1982:SDO

Henderson:1983:TCL

Hennessy:1986:PSS

Matthew Hennessy. Proving systolic systems correct. *ACM
REFERENCES

Henglein:1993:TIP

Herlihy:1991:WFS

Herlihy:1993:MIH

Hesselink:1988:MAN

Haynes:1987:ECP

Hosoya:2009:PPX

Hennessy:1983:PCO

Hall:1996:TCH

Hilfinger:1988:APD

Hu:1997:FDE

Haines:1994:CFC

Henzinger:2007:EMP

Heering:1992:IGL

Heering:1994:LIP

Herlihy:1982:VTM

Hull:1984:CSP

Harper:1993:TSS

Hamlen:2006:CCE

REFERENCES

Haghighat:1996:SAP

Hermenegildo:2000:IAC

Horwitz:1989:INV

Henzinger:2002:A

Hennessy:2002:IFV

Horwitz:1990:ISU
REFERENCES

[HT86] Horwitz:1986:GEE

Urs Hölzle and David Un-
REFERENCES

103

[Huang:1990:DDD]

[Huang:1993:LEU]

[Hudson:1991:IAE]

[HVDH07]

[Hosoya:2005:RET]

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27
REFERENCES

REFERENCES

Igarashi:2006:VPT

Iverson:1979:O

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

Jacobs:2018:MTV

Janssen:1997:MGR

Jacek:2019:OCW

Nicholas Jacek, Meng-Chieh Chiu, Benjamin M. Marlin, and J. Eliot B. Moss. Optimal choice of when to garbage collect. *ACM...
REFERENCES

Jefferson:1985:VT

Jensen:1997:DPA

Juelich:1981:CAS

Jackson:1998:IFM

Jimenez:2002:RTN

Jagannathan:2014:ARV

REFERENCES

2014. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Jaan:2010:RAI

Jozef:2006:DPA

REFERENCES

Jazayeri:1981:SES

Jourdan:2017:SPC

Jagadeesan:1991:FAS

Joisha:2012:TTE

Juan:1998:CVC

REFERENCES

Jakobs:2017:PPF

Kaiser:1989:IDS

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Kandemir:1999:GCO

Khedker:1994:GTB

Kim:2001:ERV

Kistler:2003:CPO

REFERENCES

[111]

Kno\text{\textless}wles:2010:HTC

[112]

Keen:2004:JFD

[113]

Kaiser:1992:OBP

[114]

Kennedy:1998:ADL

[115]

Karkare:2007:IBC

[116]

Korach:1990:MTD

[117]

Kawahito:2006:ESE

REFERENCES

Kennaway:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM

Knapp:1990:EFD

Kobayashi:1998:PDF

Kim:2006:ERI

KPS92

Kobayashi:1999:LPC
REFERENCES

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

REFERENCES

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Knooop:1994:OCM

KRS84

Kruskal:1988:ESM

KRR18

KRS88
REFERENCES

116

Kfoury:1993:TRP

Kuperman:2000:ATA

Kalvala:2009:PTU

Kasikci:2015:ACD

LaLonde:1981:CSC

LaLonde:1983:TCL

LaLonde:1984:TCC

Wilf R. LaLonde. Technical correspondence: Comments on

LaLonde:1989:DFD

Lamport:1983:SCP

Lamport:1984:UTI

Lamp:1987:ISI

Lamport:1988:CPB

URL http://www.acm.org/

REFERENCES

REFERENCES

Lycklama:1991:FCF

Lhotak:2008:RAB

Liu:2019:RIP

Lindstrom:1979:BGC

Lin:1993:PIA

Liu:1999:SVF

REFERENCES

REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Lamport:1984:HLC] Leslie Lamport and Fred B. Schneider. The “Hoare logic” of CSP, and all that. *ACM Transactions on Programming Languages and Systems*, 6(2):
REFERENCES

[LS08] Luigi Liquori and Arnaud Spiwack. FeatherTrait: a modest extension of Featherweight Java.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3):382–401, July 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentica-
tion, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

Liu:1998:SCI

Liu:1998:SCI

Liu:1998:SCI

LST98

LST98

LST98

LST98

LST98

League:2002:TPC

Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. *ACM Transactions on Programming Languages and Systems*, 24(2):112–152, March 2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

League:2002:TPC

League:2002:TPC

League:2002:TPC

League:2002:TPC

Lengauer:1979:FAF

LeCharlier:1994:EEG

Lipton:1983:VLP

Leivent:1993:MFT

REFERENCES

REFERENCES

REFERENCES

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

Moriconi:1986:PSP

Milne:1985:CRC
REFERENCES

Markstrum:2010:JDP

Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Masticola:1995:LFM

Morgan:1996:PPT

REFERENCES

REFERENCES

Moore:2002:AC

McKinley:2007:ECG

Mckinley:2010:PVT

Kathryn S. McKinley and Keshav Pingali. La prossima vita at TOPLAS. ACM Transactions on Programming Languages and Systems, 32(6):20:1, August 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Maher:1983:API

B. Maher and D. H. Sleeman. Automatic program improve-
REFERENCES

Murphy:1988:NDP

Marriott:1994:DAI

Marino:2016:DXU

Madhavan:2000:EGG

Morris:2008:DNF

Moret:1980:AVR
MacDonald:2009:DDP

Mueller:1987:RMS

Maassen:2001:EJR

Manna:1980:DAP

Manna:1984:SCP

1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Mulkers:1994:LSD

Morrisett:1999:SFT

McKenzie:1995:ERS

Myers:1990:CUI

Myers:2017:F

Myers:2018:EFS

Andrew Myers. Editor’s foreword to “Static Backward Slicing of Non-Deterministic Programs and Systems”. *ACM Transactions on Programming Languages and Systems*, 40(3):11:1–11:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DL18].

Narlikar:1999:SES

REFERENCES

Nanevski:2013:DTT

Necula:2005:CTS

Norris:2016:PAM

Nelson:1989:GDC

Nelson:1989:GDC

URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/69564.html. See also remarks in [FA93].

Nguyen:2005:EEA

Nielson:1985:PTD

Flemming Nielson. Program transformations in a denotational setting. ACM Transactions on Programming Languages and Systems, 7(3):359–379, July 1985. CODEN
REFERENCES

REFERENCES

Den ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Nandivada:2013:TFO

Olderog:1988:FPP

Odersky:1993:DCD

Olmedo:2018:CPP

Oh:2014:GSA

Ohori:1995:PRC

Ohori:2007:PTM

REFERENCES

Ogasawara:2006:EED

Owic:1982:PLP

Oh:2016:SXS

Odersky:2004:GE

Pingali:1985:EDD

Oppen:1980:P

Ossefort:1983:CPC

O’Hearn:2009:SIH

REFERENCES

(Print), 1558-4593 (electronic).

REFERENCES

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

Pan:2008:PFE

Pemberton:1983:TCT

Perrott:1979:LA

Peterson:1982:UAC

Peterson presents a deterministic distributed algorithm for finding the largest of a set of \(n \) uniquely numbered processes in a ring. The algorithm requires \(O(n \log n) \) messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

Pratikakis:2011:LPS

Poletto:1999:CTL

Paek:2002:EPA

Pippenger:1997:PVI

Piquer:1996:IDG

Pai:1980:GCR

Paige:1982:FDC

Pearce:2007:EFS

Park:2004:ORC

Payet:2006:NIL

REFERENCES

[Todd A. Proebsting. BURS automata generation. *ACM
REFERENCES

Pollock:1992:IGR

Palem:1993:STC

Palsberg:1996:CTT

Poletto:1999:LSR

Pottier:2003:IFI

Pearlmutter:2008:RMA

Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode AD in a functional framework: Lambda the ultimate backpropagator. *ACM Transactions on Programming Lan-
REFERENCES

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SA

Pugh:1998:CBA

Palsberg:1995:EIA

REFERENCES

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Rao:1994:RAP

Reiter:1994:HSR

Ramsey:2003:TAB

Rogers:1995:SDD

REFERENCES

REFERENCES

Rem:1981:APN

Reps:1986:GEI

Reps:1998:MMT

Reps:2000:UCS

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

REFERENCES

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayan:2012:PLT

Rinard:1998:DIE

Ryder:2001:SIM

Rival:2007:TPA

Ruggieri:2010:TLC

REFERENCES

REFERENCES

Schwartz:1980:UC

Schneider:1982:SDP

Schmidt:1985:DGV

Sampaio:2013:DA

Strickland:2013:CFC

Sethi:1983:CFA

Stamos:1990:RE

REFERENCES

(Sprint), 1558-4593 (electronic).

Sistla:2004:SRS

Sreedhar:1996:ILU

Sreedhar:1999:NFE

Steenkiste:1989:SIR

Sharir:1982:SOC

REFERENCES

REFERENCES

2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TRO

Sokolowski:1987:SHL

Solworth:1992:E

Spoto:2010:TAJ

Stork:2014:APB

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[SS96] Jonas Skeppstedt and Per Stenström. Using dataflow analysis techniques to reduce ownership overhead in cache coherence protocols. *ACM Trans-

Sagonas:1998:AMT

Schulte:2005:WDB

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:ECP

Staiger-Stohr:2013:PIA

Sneyers:2009:CPC
Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of constraint handling rules. ACM Transactions on Programming Languages and Systems,
REFERENCES

Schonberg:1981:ATS

Sippu:1983:SEH

Snelting:2000:UCH

Sperber:2000:GLP

Steimann:2018:CBR

Stone:2004:EOL

Saha:2003:IAQ

Shao:2005:TSC

Smith:1996:PTV

Sabry:1997:RCV

Steckler:1997:LCC

Sewell:2010:NPP

Suganuma:2005:DED

Suganuma:2006:RBC

REFERENCES

Seo:2007:GDW

Swinehart:1986:SVC

Terauchi:2008:CCC

Terauchi:2008:WSE

Tai:1979:NSG

Tanenbaum:1983:TCT

Tardieu:2007:DLS

Tsay:1995:DFP

REFERENCES

Tofte:1998:RIA

Trinder:2017:SRI

Tzannes:2014:LSR

Tip:2011:RUT

Toro:2018:TDG

Thorup:1994:CGA
Mikkel Thorup. Controlled grammatic ambiguity. ACM Transactions on Programming Languages and Systems, 16(3):1024–1050, May 1994. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

[Tra08] Laurence Tratt. Domain specific language implementa-
REFERENCES

70

Torp-Smith:2008:LRA

Tip:2002:PET

Tang:2000:PTR

Turini:1984:MLO

Turchin:1986:CS

Thies:2007:STU

Tanenbaum:1982:UPO

Andrew S. Tanenbaum, Hans van Staveren, and Johan W. Stevenson. Using peephole optimization on intermediate code. *ACM Transactions on Programming Languages and Systems*, 4...
REFERENCES

REFERENCES

REFERENCES

vonHanxleden:2000:BCP

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdooalaeg:2012:ECS

Volpano:1991:TCS

vandenBos:1981:PCB

REFERENCES

VanHentenryck:1995:BTC

VonBank:1994:UMP

VanNieuwpoort:2010:SHL

Waddle:1990:PTC

Wallis:1980:ERO

Wallis:1981:CER

Wall:1992:ESD

REFERENCES

Wand:1982:DTC

Waters:1983:UFC

Waters:1990:CEO

WCM00

Wileden:1990:CEO

Waters:1994:CBP

REFERENCES

Widom:1992:TBN

Widom:1993:CTB

Whalley:1994:AIC

Williams:1982:DAF

Williams:1982:FNS

Winner:1984:UO

Wing:1987:WL1

REFERENCES

Wirth:1988:TE

Wirth:1991:TCR

Wise:1979:MGC

Wright:1998:PSE

Wellings:2000:IOO

Wand:2004:SAD

Weihl:1985:IRA

[WL85] William Weihl and Barbara

Wang:2008:DSJ

Whitfield:1997:AEC

Wang:2015:EAS

Wall:1985:TCN

Wehr:2011:JIT

Wu:2004:ETC

Wu:1995:WCC
Pei-Chi Wu and Feng-Jian Wang. A worst case of circularity test algorithms for attribute grammars. ACM Transactions on Programming Lan-
REFERENCES

Wegman:1991:CPC

Ward:2007:SPT

Xie:2007:SSF

Yemini:1985:MVE

Yemini:1987:ATE

Yemini:1988:TCA

Yiapanis:2016:CDS

Paraskevas Yiapanis, Gavin

REFERENCES

[ZCG+07] Peng Zhao, Shimin Cui, Yaoqing Gao, Raúl Silvera, and José Nelson Amaral. Forma: a framework for safe automatic array reshaping. *ACM Transactions on Programming Languages and
Zhang:2005:CPT

Zhou:1996:PPC

Zic:1994:TCB

Zic:1994:TCB

Zhuang:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).