A Complete Bibliography of Publications in ACM Transactions on Programming Languages and Systems (TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

20 January 2018
Version 2.129

Title word cross-reference

[SRW02], + [Han81a], T^M, [Bla03], ex
[AW82], || [DDDCG02], A [DES12], R
[JMSY92], R_{Lin} [VR95], ℓ [ADG94].

$O(nm)$ [Pet82]. ϕ [CF95, DR05]. π [ABL03].
Abstract [BGL93, BK11, CMB+95, CFG+97, DLR16, ELS+14, EO80, GS98, HL82, JPP91, Lan80, LO94, LV94, LM18, LR13, Loe87, MS94, MP88, SS98, She91, van88, ABS09, BDL+08, BDlBH99, Leu04, RM07, SYYH07, SJ03].

Abstraction [CGL94, CL94, Der85, GMH81, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, Ell82].

Abstractions [BCF04].

Access [ABLP93, BCC04, KS83, Mis86, NBG13, HR02, HO07, KSK07, PHP02, PSS05].

Access-Right [KS83]. accessed [RR05].

Accessing [CB80].

Accumulation [Bir84, Bir85].

Accumulators [Cam89].

accuracy [CEG07, HDH02]. accurate [CG04, VBLG04, VALG05].

ACE [Le 88].

ACM [Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro90, Kro91, Kro92].

Across [NSTD+15].

Action [BKS88].

Actions [Lam94, LS83]. Activity [Bar81, MTG80].

Actor [TCP+17].

Aecyclic [BE94, JF81].

Ad [MDCB91, PS08].

Ada [Bak82, DiI90, Hii88, LP80, WJS+00].

Adaptation [Dha91].

Adaptive [ABH06, PXL95, TCVB14, UJ92, RD03].

adaptors [YS97].

Addendum [Bir85].

Adding [ACW90, BN94].

Addressing [Hol87, ZP10].

Adequacy [KKSD94, Wey83]. adjusting [ABB+09].

advice [WKD04].

Æminium [SNS+14].

Affine [BAC16, BECM15, ELS+14, VJB12].

Affix [GF85].

agents [BCC04]. aggregate [LSLR05].

Alarms [LLK+17].

Algebra [Koz97, Wil82a, KBC+99].

Algebraic [BP82, BWP87, Jen97, Lin93, JB06, SP07].

Algorithm [AB81, Bak82, BB79, BAC16, BP82, DSW82, Dha91, DP93, GH883, Hua90, Hud91, LV94, LY98, Le90, LT79, LH91, MM82, MC82a, Pet82, SH89, TB98, Wis79, BKRW98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKRW05].

Algorithmic [BP82, GM12, Loe87].

Algorithms [Apt86, BA84, CS95, CN83, GLO88, KRS84, KKM90, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, MM89, RD87, RH87, RP88, TM93, WW95, Ape00, DAS98, GC01, ZGZ05].

Alias [Hor97, HBC99, RSSY08].

Aliasing [Boe85, Ram94, RLS+01].

All-Purpose [Spo86].

Allocating [ZP07].

Allocation [BB79, Bre89, BTC94, CH90, CS95, FLBB89, GS094, Rob79, SH89, C83+03, HCS10, LGATO0, PS99, PF96, RDG08, SRM10, TP04].

Alma [ABPS98].

Alma-O [ABPS98].

almost [Duc08, Ram99].

Alternative [Gho93, GH80, Zav85].

Alway [Gri79].

ambients [BCC04, LS03, MH06].

Ambiguity [Tho94].

amortized [HAH12].

Amulet [VHM+01].

Analyses [AC94, CC95, CFM94, KSV96, SJ03].

Analysis [AKNP17, ABE+05, AD98, Bac84, BC85b, Bli94, BE13, Bur90a, CDK+18, CMN91, DL93, Deb95, DP97, DAW88, FJK+17, GNS+15, GJ93, HP96, Hii88, Hor97, ISY88, Jen97, KD94, LLK+17, LR13, MG82, MW94, MO807b, OHL+14, OLI+16, PAl95, P095, PCC05, PP91, PW94, PW98, Pur91, RTD83, RTP17, RP88, SR95, SS83, SGL98, SS13, BAA+09, BDFZ09, BAL07, Bla03, Bli99, BCG+07, CSW06, Cha02, C83+03, CKT86, DLY99, DG97, FF99, GH86, GJ05, GZ04, GCRN11, HAM+05,

GA96, Hai05, PM04. Code
[AGT89, Cat80, Cop94, DF84, FGL94, GF85, Hen82, HG83, JSB+92, KRS94, LR13, ND16, Rob79, TvS82, Wan82, AM01, DEMD00, Hai98, HBG+09, HK07, JNZ06, LDK+96, MSRR00, ME97, Oho97, PHEK99, WS97, vHK00, CM93, Pem83, WST85]. Cohen
[Coh85]. coherence [SS96]. coinduction [San09]. Collecting [HY91]. Collection
[BA84, CN83, DSW82, Lan80, TM93, WLBF16, BALP06, HDH02, PBK07, Piq96]. collector [BBYG05, LP06, TSBR08]. Coloring [BCT94, CH90, GSO94]. combination [BCG07]. Combinator
[FRW90, KLS92]. Combinators [FGM+07a, KS88, KS89]. Combinatory
[RS97]. Combining [Ber94, BP82, CC95, CMB95]. Come [LH91]. Comments
[AB94, KS79, LaL84, NN86, Sor89]. Communicating [AFdR80, GC86, HM84, MW84, MC82b, Moi83, Oss83, PP91, Pur91, Sou84, Ber80, KS79]. Communication
[Ang89, CHY12, FJK17, FY85, Gel85, Hua90, LH91, MB83, vPS81, KBC+99, Mil85, SWU10, WM12]. Communication-Centered [CHY12]. Communications
[RS84b]. Commutativity [RD97, Apt00, Cha02]. Compact [BC79, Sp82, Wad90].
Compactification [RH87]. Compacting [CN83]. Compaction
[CP17, Wis79, BP12, DDD05, DEMD00]. Comparative [WCW90, WCW91]. Comparing [Hai05]. Comparison
[CN83]. Compartmentalized [WLBF16]. CompCert [BDP14]. Compensation
[FGL94]. Compilation [DLR16, FKW98, FL91, JLP+14, JFS1, Oho95, PAS+15, Sit79, KMM+98, LST02, LDM07, SY06]. Compile [ABR81, GW99, Hol87, Tra08]. Compile-Time
[ABR81, Hol87, GW99, Tra08]. Compiler
[App94a, Bud84, CM86b, DK17, DEMD00, FT94, FGL94, JSB+12, Rei83, Slo95, Son87, Wha94, YBL16, Ano02a, CMLC06, DHS09, GMM99, KN06, PE08, PHEK99, SYK+05, VHK002]. Compiler-Driven [YBL16]. Compilers [BDHF97, DDH84, HP96, Han94, BGK09, RD97, SY06]. Compiling
[Cha93, CH87, Fis80, Set83, VHK002]. Complementation [CFG+97]. Complete
[BDHF97, WM95]. Completeness
[LBN17, TB95, WGS92, Wu04, WGS93]. completion [KR01]. Complexity
[BEF+16, Deb95, Le 88, RRSY08, SSD09]. component
[LS98, SY97]. compound
[BLS98]. Componential
[FF99]. Composing
[AL93, HKMN94]. Composite
[Fe97]. composition
[AH10, Pau01]. Compositional
[Fos96, Jon94, JTM98, LFF14]. compressed
[DAS98]. Compression
[BMW91, CSCM00, DKT97]. Computability
[HMS06]. Computable
[PK82]. Computation
[AC94, BOV85, DP82, HS94, LST98, PB97, ABB+09, AE01, DR05, LG02, SWU10, SGL97, Hal85]. computational
[ATD08, SSD09]. Computations
[DW89, MC82b, VSS94, YS91, LSLR05, MMG00]. Concept
[Tur86, ST00a]. Concepts
[Eug07]. Concerning
[Sha82]. Concrete
[Bar81]. Concurrency
[BG89a, Lam90, Wei89, BCF04, Mi85, TA08a, CPS93]. Concurrent
[BC91, Car95, Cla80, CES86, CPS93, CFM94, DGM97, FT94, Hai85, HSP83, HW90, Her93, JTM98, Kar84, Lam83, LFF14, MSL+16, OL82, Pet83a, Pet83b, RY88, Sku95, SNS+14, AE98, AE01, AAE04, BBYG+05, BGP99, CSM06, JPS+08, RS97, SRM10, YS10]. Concurrent-by-Default
[SNS+14]. Concurrent-Program
[FT94].
data-centric [DHM+12]. Data-Driven [BL87, CS87]. Data-Flow [BC85b, Bur90a, Wet82, RP88, KBC+99].
data-independence [Rep00].
data-member [KF00]. Data-Parallel [Cha93, HBJ98]. Database [Bar85, CB80].
Dataflow [Deb95, DFR15, MWB94, SS13, SS96, Van96a, Van96b, VHM+01]. datalog [LS99]. datatypes [MBC04].
Deadlock [Hua90, Kob98]. Deadlock-Free [Kob98]. Deadlocks [FJK+17]. Dealing [GLMM05, GG85].
Debugging [CMN91, CM93, Cop94, Hen82, WST85].
Deciding [GGL15]. Decision [MTG80, NO79]. decisions [MTSS09].
Declarative [ABPS98, TCVB14, Bou05, MME+10].
Decomposition [BB94]. Decomposing [BDL+08]. decomposition [LK02].
decrease [LDK+96]. Deducing [TB95].
deduction [LMD98]. Deductive [MW80].
Default [MSN+14]. Deferring [MTSS09].
Definitions [BS86, Wil82b, Dam03, VHK002, Sij89].
Delay [BG89b]. Delayed [KPF95, RC03].
Delay-Load [KPF95]. Delaying [Kan84].
Deleting [GP81]. Delimited [BDM15].
Demand [GSW95, PA85, PA86a, PA86b, PF96, SR95, DGS97]. Demand-Driven [GSW95, PA85, PA86a, PA86b, PF96, DGS97]. Denali [JNZ06]. Denotational [AB94, FA93, Gud92, JS94, NF98, Nie85, Sch85, dBB85].
Dependence [BGH+13, CFR+91, FOW87, HBG+09, HRB90, PB97, PW98, Wol94, RAB+07].
Dependencies [PW94]. Dependencies [Deb89, SS99]. Dependency [Bhu99].
Dependent [LS80, NBG13, Ode93, RTD83, Rob79].
dequeues [Chi05]. DeRemer [Sag86].
Derivation [BKB80, Cat80, DSW82, Gie83, HIT97, Kna90, TM93, Ano02a]. Deriving [Wan82, Burt06]. Describing [AW85].
Description [McG82]. Descriptions [Boe85, BKL+97, Cat80, Ano02a].
Descriptors [Hol87]. Design [BPP16, BCD+15, BO94, DF80, DF81, FT94, HM84, KKM90, LMD07, ML80, RCS93, RL98, SYK+05, Burt05, MTSS09, CMLC06].
design-pattern-based [MTSS09].
Designing [LaL89, ALZ03]. Designs [AW85]. destructive [SRW98]. Detect [ISY88]. Detecting [GSW95, HCS10, Sch85]. Detection [CM86a, Hua90, MC82a, MC82b, TM93, AFF06, HDH02, PFH11, PCJD08, XA07].
Determinacy [TK94]. determination [DS98]. Determining [MF88].
determinism [TA08a]. Deterministic [KR79, Tar07]. Development [BKB80, Col84, Foa87, Jon83, ML80, Phys79, Wil82a].
Diagnosis [BF87]. Dialect [Mul92].
Dialects [CP95]. dialogue [BCM99]. DIB [FM87a]. difference [BA08].
Differencing [PK82, RSL10]. Differential [BKOZB13, ZP07]. Differentiation [Sha82].
Diffusing [MC82b]. Dijkstra [BN94, Ne89].
Dimensional [Hil88, GPWZ08]. direct [YK97].
Directed [BDJ13, DMM88, Gud92, Han94, Set83, SYH07, OKN06]. Direction [Dar90]. Directly [Hob84].
Director [KS88, KS89]. Directory [Han81b].
discipline [FGM07b]. Disciplines [SS84].
Discovering [FJK+17]. discovery [PZ05].
Discrete [Bar81]. Discrete-Event [Bar81].
Disjunctive [Jen97]. dispatch [DAS98, MFRW09].
dispatching [GZ07].
Distance [Wal94, ZSD09]. distribute [CRN+08]. Distributed [ABLP93, AF84, APL86, AW85, BKS88, BCF15, Bur84, CKJ95, CM86a, CBDS95, CS95, DAW88, Dug99, FLB89, Fra80b, GHS83, HSG17, Hua90, HM84, Jon94, Kat93, KK98, KRS84].
Distributed-Memory [KK98, RCRH95].
div [Bou92]. Divergence [SdSCP13]. DJ [DR95, SGL96, SGH98, UM02]. DJ-graphs [UM02]. DLLs [Dug02].
do [SS05a]. Documentation [MH86]. does [DMP96]. dolce [MP10a]. Domain [LM18, Tra08, RM07, SS05a].
dominance [Ano02b, DVD07]. dominator [SGL97]. Dominators [LT79, Ano02b, BKRW98, BKRW05]. Don’t [AKNP17].
drf [MSM+16]. Drinking [CM84, MS88]. Drive [PK80]. Driven [BL87, CS87, GF85, GSW95, PA85, PA86a, PA86b, YBL16, DGG07, PF96, YMW97].
Dually [MT08]. Dummy [Lam88]. During [BKB80]. DyC [GMP+00]. Dynamic [ACPP91, AGT89, ASF17, BB79, BMD15, Bre89, CTT07, DS98, Dug99, HSS+14, HN05, Kai99, KRR95, RCRH95, Ven95, WR08, dBB85, ACE96, BP12, CE1+07, DDDCG02, GZ07, MMM+07, PHEK99, SJP12, SHB+07, SYK+05, SYN06, WKD04, ZGZ05].
eager [FKW00]. Earley [Lei90]. Early [AB81]. ECCS [CDFP89]. Edge [DP93].
Editing [FL81, HT86, Nix85]. Editor [FM87b, DeM83, Per90, Rep86, Wol92].
Editorial [AP97, App93, AG93, AF94, MP07, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04].
Editors [DMM88, MM89, RTD83, Wat94]. EDO [OKN06]. effect [RLS+01]. Effective [BS83, Col84, KKK06, N105, PE08, WJ98, YUW02]. Effectiveness [BdIBH99, SH99]. Effects [Boe85, TA08b].
Efficient [AKBLN89, ADGM91, BB79, BGH+13, Bre89, Cam89, CS95, DP82, DMM88, GZ05, GZ07, GLR83, GLO88, GSO94, HVB+99, HS94, HSS+14, HIT97, JP81, Jon90].
KMK90, KRS88, KPF95, MVV+01, MM82, NB99, N105, PHP02, PXL95, PKH07, PA85, PA86b, RH87, SS08, SA00, SS88, WG98, YUW02, BCP08, GB99, KSV96, LPS004, LS09, PBK+07, TP04, VWJB10, YF98, PA86a, SS09]. Efficiently [Bal94, CFR+91, CF95]. Eiffel [ACE96].
evaluation [KR01]. Election [Hua93]. Eliminating [BT93, Coh83, Coh85, RD03]. Elimination
[DP93, SGL98, KKN06, KCL+99]. Elimination-Based [SGL98]. embedded [BCP08, CSM00, HK07, Rhi03, SRM10, TP04, ZP10]. Embedding [HF87].
Encoding [Hob84, GZ05, ZP07]. Encodings [BC79]. End [BDP14, CSM00]. enforcement [HMS06]. Enforcing
[CE1+07]. engines [SS08, SS09]. enhanced [GH97]. Entries [LaL84, SS82].
Enumeration [BB94, JJD98]. Environment [CO90, SZBH86, CKT86].
Environmental [SKS11]. Environments [BS86, GKL94, HK85, HT86, Kai89, dJKVS12]. Epochs [SS08, SS09].
Equiprobable [PB90]. Equivalence [VJB12, VSS94]. Equivalent [PO95, NP08].
Erlang [TCP+17]. Erratum [SS09]. Error [AB81, Bac84, BN99, BF87, FL15, KC01, LaL84, MF88, MYD95, PK80, Ric85, SSS83, SS82, Wet82, ZMVPJ17, dJKVS12, Je03, XA07]. Errors
[AWW95, Wha94, CPR92, JNGG10]. Escape [Bla03, CGS+03]. ESOP’05
[Sag07]. Essential [DES12]. Esterel [Tar07]. Eta [DMP96]. Eta-expansion
[DMP96]. Euclid [HW82]. Euclidean
[Bou92]. Evaluating [BLH12]. Evaluation
[AFV98, Bur84, CGST95, CK93, Gri82, Hud91, Jon90, LV94, PA85, PA86a, PA86b, RD87, RL98, Slo95, SG90, WCCW90, WCCW91, ADR06, CP96, CG04, GJ05, LDM07, Len04, ST00b, SYK05].

event-driven [YMW97]. Events [Bal94].

Evidence [Gri79]. Evidence-Based [CGJ97a]. Example [CM86a, Mye90, Nix85]. Examples [Oss83, Jef03].

Exception-Directed [OKN06]. Exception-Handling [YB85, LS98, LP80, OKN06].

Exceptional [WN08]. Exceptions [ASF17, Han96, LP00]. Exclusion [ADG+94, LH91, ABHI11]. Executable [Hob84]. executables [YF09]. eXecute [BR10].

Execution [CS87, Dil90, GJ93, JW17, JNGG10, JF81, SS98, SS88, BALP06, GPA+01, TSY00, YF98].

Exemplars [LaL89]. Exemplified [DGL+79]. Exercise [Kna90, Mis81]. Exhaustive [Bur90a].

Expression-Oriented [GP81, YB87, YB88]. Expressions [BG89b, CGST95, CC97, DAW88, Fis80, Geo84, Gri82, Hen83, HY91, KS83, LdR81, PK82, Sha82, Sib79, Wat91, Dan03, NN86].

Expressive [MFRW09]. Expressiveness [WGS92, WGS93, PS96]. extended [KGM004]. Extending [CEW14, CMS03, MSRR00, MK94].

Extensible [HSG17, Sto04, ATD08, MBC04].

Extension [Bur90b, Coh91, WSH15, Wir91, ALZ03, KKN06, LS08]. Extensions [Wir88].

Extent [MF88]. External [Wal80, Wal81].

Extrapolation [GP95]. extraction [TSL+02].

F [MWCG99]. Facets [ASF17]. factoring [DRSS96]. Failure [BN99, Dar90, Kar84].

Failure-Free [Kar84]. Fair [BN94, PR07].

Fairness [ES97, OA88, TB95, AH98].

Families [LaL89]. Fashioned [AL94]. Fast [ADRO6, DAS89, FMOPS11, HVDH07, LT79, SR95, DR05, PEO8, TP04, VBLG04, DVLM15]. Fault [CS95, Lam84, LJJ99, AAE04].

Fault-Tolerance [LJ99]. Fault-Tolerant [CS95, Lam84, AAE04]. FD [GLMM05].

Feature [LS08]. FeatureWeight [IPW01, LST02, LS08]. feature [AH10].

Feeding [PA86a]. Fence [AKNP17].

Fickle} [DDDGC02, AAD+07]. field [PKH07]. field-sensitive [PKH07]. fields [PZJ05]. FIFO [FLBB89]. Final [Kam83].

Finding [KRS84, KKM90, LT79]. Fine [PBR+15, DNS+06]. Fine-Grained [PBR+15, DNS+06]. fingerprinting [CTT07].

Finite [ACW90, BLH12, CES86, GC86, PK82, PP91, Pur91, RSL10, Zav85]. Finite-State [ACW90, BLH12, CES86].

First-Class [HKMN94, Han92, SDTF13, MH04]. First-Come-First-Served [LH91].

Fixpoint [AC94, Qia00]. Flexible [AD98, Hud91, MSM+16, WG98, Wil82b].
Floating-Point
[CK94, Fat82, Hau96, Mon08].

Floating-Point
[CK94, Fat82, Hau96, Mon08].

Flow
[MMG00].

Flow
[AR80, AD98, ASF17, Bac84, BC85b, Bur90a, DP97, DP93, FJKAO6, Hor97, KD94, MMR95, NBG13, PO95, PP99, PBR15, Pur91, Set83, SGL98, SS13, Wet82, DGS97, HR02, HY07, KBC+99, Pal98, PS03, RRSY08, RP88, TZ07, WJ98].

Flow-Insensitive
[Hor97, FJKAO6].

Flowback
[CMN91].

Flowgraph
[LT79].

Flows
[Kna90].

Floyd
[Yin11].

Fly
[CF95, BA84, LP06, PBK07].

Folklore
[LY98].

Font
[FK85].

Foo
[FA93].

foreign
[FF08].

Foreword
[Mye17].

Form
[AK87, BOV85, BM94, CFR91, GSW95, Pal95, GPF08, KCL+99].

Forma
[ZCG+07].

Formal
[BS86, BDP14, CB80, CD79, Fid93, Gie83, HIT97, Kna90, Lee86, Mal82, MH86, Sha82, WP10].

Formalisms
[PCC85].

Formalization
[BPP16].

Formally
[SP97].

Format
[Wat83].

Forms
[DS83].

formulas
[RSL10].

formulations
[RS97].

Fortran
[AKP94, AK82, Bou92, PB80, SM89, Lee09, MBC04, MB99, MT08, PPT08].

Further
[CM93].

Fusion
[LGAT00].

Fusion-based
[LGAT00].

G.
[Tic88].

Garbage
[BA84, CN83, DSW82, ISY88, TM93, WLBF16, Wis79, BBYG+05, BALP06, HDH02, LP06, Piq96, TSBR08].

Garnet
[VHM+01].

General
[BGL93, HSS+14].

General-Purpose
[HSS+14].

Generalization
[Nel89, LMD98].

Generalized
[Ans87, BS83, KD94, Lin79].

Generalizing
[DB85].

Generals
[LSP82].

Generate
[Son87].

Generated
[Slo95, dJKVS12].

Generating
[HBM+06, HT86, Je03, LR13, JNZ06].

Generation
[AGT89, AS80, BOV85, BM94, DS83, DS90, GF85, GVC15, HKR92, HKR94, Pro95, Re83, Ro79, She91, ST00b, UJ92, DAS98, MSRR00, PHEK99].

Generative
[Gd85].

Generator
[PPS79].

Generators
[Cat80, GHK81].

Generic
[LV94, DDM11].

generics
[IV06].

Geometry
[CR87].

Geoffr
[NN86].

GJ
[IPW01].

Glanville
[MSRR00].

Global
[Bac84, Dha91, GHB+96, OHL+14, PK80, PS92, Sch85, dHB+96, COS4, KBC+99, DS88, Sor89].

GLR
[SJ06].

Goal
[Dar90, Gud92, SYYH07].

Goal-Directed
[Gud92, SYYH07].

Goal-Oriented
[Dar90].

Goto
[CF94].

GPU
[BCD15].

Graham
[MSRR00].

Graham-Glanville
[MSRR00].

Grained
[PBR+15, DNS+06].

Grammar
[CI84, CP95, GF85, JP81, KR79, Web95].

Grammar-Based
[C184].

Grammars
[BS88, Jon90, Kat84, LaL81, RD87, RH87, Tai79, WW95, Boy96, CP96, Wu04].

Grammatic
[Tho94].

Grammars
[BB94, MK94].

Graph
[Ass00, Bee94, BCT94, CFR+91, FOW87, KKSD94, KLS92, MC82a, Son87, CTT07, G01].

graph-based
[CTT07].

Graphic
[Mal82].

graphical
[VHM+01].

Graphs
[HRB90, KPS92, Kna90, SGL98, DR05].
JC97, KSK07, SGL96, UM02]. grid
[VWJB10]. groundness [CSS99]. Grover
[BH99]. growth [BALP06]. Guarantee
[GEP17, LFF14, HQR02], guarantees
[LS09], guard [MP07], guarded [SP07].
Guardians [LS83]. Guards [Ber80]. Guest
[FP02, OP04, DeM83, Per90, Rep86, Wol92].
Guide [App94a, BDH16]. Guided
[OLH16]. guiding [VALG05].

Hackers [App94a]. Hancock [CFP+04].
handle [VJB12]. Handling [Han96, LiR81,
Piq96, SSS93, UM02, YB85, YB87, YB88,
CRN+08, LS98, LP80, SSD09, Hen83]. Hard
[Hor97]. Hardware [BKL+97, Mis86].
harmful [Gor04]. Hashing [PB80, Duc08].
Haskell [GRSK11, HHPW96]. Heap
[KSK07, BALP06, KF00, YS10].
heap-manipulating [YS10]. Heavily
[BG99a]. Hennessy [CM93, WST85].
Herding [AMT14]. Heuristic [SL92].
hiding [LN02, OYR09]. hierarchic [AG04].
Hierarchical
[BA99, CP95, CD79, AY01, CP96].
hierarchically [MBC04]. hierarchies
[ST00a, Van96a, Van96b]. hierarchy [KF00].
High
[Cam89, Fat82, MSM+16, CMS03, VWJB10].
High-Level
[Cam89, Fat82, CMS03, VWJB10]. Higher
[AC94, AD98, CJ95, DPP+16, BBTS07,
DF11, SKS11, SP97]. Higher-Order
[AC94, AD98, CJ95, DPP+16, BBTS07,
DF11, SKS11, SP97]. Highly [Her93, Sku95].
Hoare [Apt81, GM81, LS84, Sok87, Yin11].
Hoc [MDCB91]. Holistic [ZMVPJ17].
Homomorphisms [HIT97]. HOP
[BLRS12]. Hybrid [KF10, KS10].
Hyperball [LM18]. hyperdoctrines
[BBTS07].

I-Structures [ANP89]. I/O [Car95]. Icon
[GHK81, Gri82]. id [Bee94]. idempotency
[KOE+06]. Identical [FLBB89].

Identification [BGH+13]. identify
[MMM+07]. Identifying [Ram99, SGL96].
Idioms [PP94]. IDL [Lam87]. IEEE
[Fat82]. Ignorance [GNS+15]. Illustrative
[Oss83]. Impact [OLH+16, CKT86].
Imperative [ABPS98, DFR15, Gro06].
Implementation [AKBLN89, AOC+88,
BCD+15, Bn88, Bres9, BSS83, CRM86,
GMH81, Gaz83, Lin93, MDCB91, PXL95,
RL98, WL85, CMLC06, FMS7a, GB99,
LDM07, LPS004, Tra08, Zho96].

Implementations
[BBF+11, BFGT08, DF98]. Implemented
[DB85]. Implementing [BR97, Her93, HW82,
Sku95]. Implications [Fat82]. Implicit
[BH05b, SJ12]. Implicit-signal [BH05b]. improve
[KF00]. Improved [GHR80, Mur91, KK07].
Improvement [MS83, San96].

Improvements [BCT94]. Improving
[CK94, CMB+95, MCT96, TCP+17, WS97].
impure [Pip97]. incomplete [GLMM05].
Incremental
[Bur90a, CP95, DMM88, GM79, HKR92,
HKR94, HPM80, Hud91, Kais9, Lar95,
LST98, PS92, RTD83, RP88, SGL97, W998,
YS91, BBY9+05, CP96, Van96a, Van96b].
Incrementally [QL91]. Independence
[DHMO00, Rep00]. Independent
[ML80, Mul92]. Index
[Ano86a, Ano89a, Ano89a, Ano90a, Ano91a,
Ano92a, Ano94, Ano95, Ano98]. indexed
[AM01]. indices [RR05]. Direct
[Pi96, CEG07, YK97]. Induction
[GSW95, Sit79]. inefficiencies [MMM+07].
Inessential [SS82, LS84]. Inference
[CEW14, Deb89, Hen93, LO94, LY98, TB98,
Wey83, FFLQ08, JB06, PM06, PTO0, PS03,
Van06]. Influence [FT95]. Information
[AR80, Ano82, Ano83, Ano84, Ano85,
Ano86b, Ano87, Ano88b, Ano90b, Ano91b,
Ano92b, ASF17, BC85b, HRR2,
NGB13, PBR+15, PS03, GS99, HY07, LN02,
OYR09, TZ07]. Information-Flow
GW99, RS97, Rhi03, SRW98, SKS11, SP97, SWU10, Wol92. Larch [Win87]. Large [GLR83, MK94, MH86, WCW90, WCW91].
Lattice [AKBLN89, MMR95, FH04]. Lauer [GM81]. Layout [KK98, LVV+83, GPWZ08, KF00]. Lazy [ABM93, FKW00, HRR94, Hu91, TCVB14, Chi05]. LCF [Sok87]. lead [SS05a]. Least [AB81, Bac84]. Least-Cost [AB81, Bac84]. Left [FKW98]. Left-Linear [FKW98]. legacy [NCH+05]. length [SMP10]. Lessons [VHM+01]. Let [LY98]. Let-Polymorphic [LY98]. Level [Cam89, Fat82, GP95, YBL16, CMS03, VWJB10].
Liveness [ACW90, GC86, OL82, RY88, HDH02]. LL [BF87]. Load [KPF95]. Loaded [BG89a]. Local [BDFZ90, CBDFG95, PT00, TSBR08, Wei89, Dam03, San96]. Locality [BAC16, MCT96, VALG05, ZSD09]. Locally [AB81, Bac84, Min84]. locating [JNGG10]. Locator [ZMPVJ17]. Lock [GEGP17, KS10]. Lock-Free [GEGP17]. lock-freedom [KS10]. locking [AFF06].

LOCKSMITH [PFH11]. Logic [AS89, AFV98, Apt81, BGL93, BL87, BCD90, BD13, BMPT94, CS04, CES86, CFM94, DW98, Deb89, DL93, Deb95, DJP+16, JPP91, Kar84, LS84, Lam94, MW84, MSJ94, MMG92, SS98, Sok87, TK94, TB95, BBTS07, BMR01, BCG+07, BdlBH99, CU08, CG86, CS99, DDV99, DPPR00, GHb+06, GW99, HVB+99, HPMS00, KWL09, LMD98, Len04, PM06, RKRR04, SRW02, Yin11, dHB+96]. Logical [GGL15, GS98, RSL10, Tar07]. Look [DP82]. Look-Ahead [DP82]. Lookahead [KM81, MF88]. Loop [BAC16, CS87, MCT96, Sit79, RKSR12]. Loops [BAGM12, Boo82, CK94, DB85, FT95, Hay97, Wat91, Ano02b, LS04, LSLR05, Ram99, RDG08, SGL96, UM02]. low [CSCM00]. low-end [CSCM00]. Lower [PW94]. LR [ADGM91, BL94b, BF87, CPRT02, DMM88, Je03, JP17, KC01, LaL81, LaL84, SS82, ST00b]. LR-based [KC01].

[AC96, AGT89, CP95, KPS92, ADR06, Van06]. Matching-Based [CP95].
materializations [RMH06]. Mathematical
[Ban11, Hes88, LW93]. MATLAB [DP99],
MATLAB(R) [JB06]. Matrix [FTJ95].
Matrix-Vector [FTJ95]. Maximal
BG98b, Rep98]. Maximal-munch [Rep98].
Maximization [GL988]. Maximum
[Ban90]. May [Hor97]. May-Alias [Hor97],
MCALIB [FL15]. Measuring [FL15].
Mechanically [DSW11]. Mechanism
[CO90, YB85, DNS+06]. Mechanisms
[Rei83, HMS06]. Mechanizing [Pau01].
Median [Com80]. Medians [KRS84].
mega
ops [MMG00]. member [KF00].
Memory
[AMT14, CK94, Cha93, KZC15, KK98,
KRS88, MSM+16, Mis86, RCRH95, SS88,
ABHI11, BP12, GMM99, GW99, JNG10,
KF00, LK02, Loc13, QRO0, RR05, TSY00,
TP04, VBG04, WCM00, MMM+07],
memory-efficient [TP04].
memory-hierarchy [KF00]. Merge
[Ber94]. Merlin [HBM+06]. Message
[CSW06, SS84, Gor04]. Messages
[BB79, Je03]. meta [Tra08].
meta-programming [Tra08]. Metalevel
[Jag94]. Metaprogramming [CIS4].
Method
[BCD90, BF87, HL82, Ons87, Loc87, JJD98].
Methodology [Ban87, Her93, Sku95].
Methods [DAW88, KM81]. METRIC
[MMM+07]. Mezzo [BPP16].
Microanalysis [HCHP92]. Microcode
[MV87]. Middle [BPD14]. Middle-End
BDP14]. Might [Bee94]. migration
[Pic96]. Minimal [FKW98, IPW01].
Minimization [RS84a]. minimizing
[RMH06]. Minimum [GHS83].
Minimum-Weight [GHS83]. Mining
[AMT14]. Misled [Cop94]. miss [GMM99].
Mixin [HL05, RD13]. mixins [ALZ03]. ML
[Blu99, HM93, HT04, PS03, RD13, Spo86].
Mobile
[LS03, VHB+97, BCC04, KS10, SWU10].
mod [Bou92]. mode [PS08, ZP10]. Model
[AY01, Ang89, BK11, BL87, BGP99, CGL94,
DLR16, ES97, GS98, GS85, GL94, Han81a,
HW82, Hol87, KHR2, MSM+16, MMRG92,
ND16, VSS94, ACM11, AM01, AE01, JJD98,
JPS+08, KN06, KV00, Loc13, NP08, QR00,
SG04, VWJB10, VALG05, YM97].
Model-Checking [ES97, BGP99].
Modeling [AF84]. Modelling [AMT14].
Models [GJ93, KZC15]. Modern
[BCF04, RAB+07]. Modes [Deb89].
modest [LS08]. Modification
[Lei90, RLS+01]. Modula [EO80]. Modular
[AG04, BMPT94, CDK+18, GL94, Jag94,
KKM90, LN15, MBC04, Wei89, YB85,
dJVS12, KV00, MFRW09, MOS07b].
modularity [BA99]. Module
[PA+15, RD13]. Modules
[CL95, HW82, Lam83, HL05]. monadic
[MLH04]. Monitors [BLH12, BH05].
Monolingual [HK85]. Monte [FL15].
Morel [Dha91, DS88, Sor89]. Morphing
[HS11]. Morris [Wis79]. Mostly
[YF09, BBY+05]. Motion [KRS94, Hai98].
MPI [FKJ+17, TSY00]. multi [MF09].
multi-language [WM95]. Multialgebraic
[MML95]. multidimensional [RDG08].
MultiJava [CML06]. Multilisp [Hal85].
multimethod [DAS98]. Multimethods
[CL95]. Multiparty [JS94]. Multiple
[ASF17, NSTD+15]. Multiply [FTJ95].
Multiprocess [Lam79, Lam80].
Multiprocessing [ABR81].
Multiprocessor [GP81]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].
Multithreaded
[EPG14, JSB+12, KKW14, NR06].
Multivariate [HAI12]. Multiway
[Cha87, Van96a, Van96b]. munch [Rep98].
Mutandis [SHB+07]. Mutatis [SHB+07].
Mutual [LH91, ABHI11].
Mutual-Exclusion [LH91]. Myths [Gor04].
Package [Hil88]. Paper [GM81]. Parallel [ANP89, BOV85, BO94, BE13, Cha93, CGST95, CMN91, CL94, DS83, Fos96, GLO88, GJ93, GPA+01, HCHP92, HJT97, JF81, Kua90, Mis94, NSZS13, OAA8, Rao94, SS88, BBYG+05, CG86, GB99, HBJ98, KSV96, LK02, MVV+01, RR03, YF98].

Parallelism [Bur84, GP95, KSV96, NB99, PW94, TCVB14, YBL16]. Parallelization [BAC16, BDJ13, PP94, BdlBH99, HAM+05].

Parameter [Gaz83, Zho96]. Parameterization [TWW82]. Parameterized [CGJ97b, CK93, Gaz83, RKSR12]. Parametric [HFC09, MMG92, SRW02, IV06].

Parenthesis [AS80]. Parlog [CG86]. Parsed [Wad90]. Parser [DDH84, JP17, LaL84, SS82]. Parsers [BN99, LaL81, MYD95, PK80, CPRT02, SJ06, ST00b]. Parsing [CH87, DMM88, Fis80, GM79, Lar95, RH87, Sam80, WG98, KCO1]. Part [LaL81, PA85, PA86a, PA86b, Apt81].

Partial [AFV98, CP17, CK93, DS88, Gom92, KCL+99, Sor89, ADR06, BP12, CG04, JG05, LMD98, Len04, ST00b]. Partially [BLH12, Kob98, RR05]. partially-flow-sensitive [RR05]. partitioning [RM07, YF09]. Parts [Son87].

time-efficient [YF98]. write [AE01].

Point [C94, Fat82, GJ05, Han96, Mon08]. Pointer [LS79, RR03, HBCC99, HVD07, PKH07, RLS+01]. Pointers [SS13, RR05]. points [WKD04]. Pointwise [VSS94].

Polymorphic [BMR05, Dug99, HT04, Hen93, KU93, LO94, LY98, Oho95, SIG17, SV96, JW98, BSvGF03, DWWW08].

Polymorphism [Bur90b, MDCB91, HFC09]. polynomial [BAL07]. PolyTOIL [BSvGF03]. polyvariance [LMD98].

Polyvariant [AC94, WJ98]. Polyvariance [LMD98].

PQ [PQ-encoding]. Practical [AD98, BAC16, BF87, CP17, Dia91, ND16, PBR+15, SS13, TSL+02, WC97, Bou05, DR05, DVD07, DGS97, JNZ06, PFH11]. Practice [KRS94, Ryu16, Bla03, DRSS96].
DSW11, Oho07]. proof-carrying [AM01].
Proof-Directed [BDJ13]. Proofs
[Apt86, BC85a, CM86b, JW17, LY98, Oss83, GRSK+11]. Propagation [SR95, WZ91,
Apt00, CP96, SS05a, SS08, SS09].
Properties [ACW90, AS89, Kar84, LM18,
OL82, RY88, TB95, Wei89, YS10].
Proposed [Fat82]. prossima [MP10b].
Protected [PAS+15, WJS+00]. Protocol
[SL92, YS97]. Protocols [MB83, BFGT08, SS96].
Prototype [WCW90, WCW91]. Prototypes [HW82].
provably [GB99]. provenly [AAD+07].
Proving [DGMP97, GC86, Hen86, Kar84,
Lam79, Lam80, OL82]. Pruning [BN99].
PSG [BS86]. publish [Eug07]. publish/
subscribe [Eug07]. Purpose
[App94b, HSS+14, Spo86].
qualifiers [FJKA06]. Quantification
[Vol91, Bur91]. Quantified [Gro06, STS03].
Quantum [FDY12, BH99, Yin11]. Queries
[Bal94]. Queuing [BB79]. Quiescence
[CM86a].
R [AW82, CKT86, KMM+98]. R. [Tic88].
race [AFF06, PFH11]. Races [KZC15].
Random [AS80]. Range [CG95]. Rank
[Dam03]. Ranking [Lee09]. Ratio [CK94].
Rational [GS11]. rationale [CMLC06].
Reach [FKW98]. Reachability [NS13].
Reactive [DFR15, AG04, DGG97]. read
[AEO1, PZJ05]. read-only [PZJ05]. read/
write [AEO1]. Readable [Sp086]. Reading
[Pet83a]. Real [AL94, MMG92, RS84b,
GH97, HK07, L598, YMW97]. Real-Time
[MMG92, RS84b, GH97, HK07, L598,
YMW97]. realities [Gor04]. Reals [DK17].
Reasoning
[BKOZB13, BLRS12, BDP93, BP82, BH99,
CB80, Lam88, LN15, Rao94, TSBR08].
receive [Gor04]. receptive [ABL03].
Recipe [AL94]. reclassification
[DDDCG02]. recognition [ATD08].
Recognizer [GHR80]. Recognizing
[BL94b]. Recombination [Kau84].
Recombination-Delaying [Kau84].
Recompilation [BT93, SK88, Tic86, Tic88].
Reconciling [HU96]. Reconstruction
[YS97]. Record [LS79, Oho95]. Recovery
[AB81, ACS84, Bac84, BF87, PK80, Ric85,
dJKVS12]. recurrences [VJB12].
Recursion
[AK82, Col84, Hen93, KTU93, Mis94, YK97].
Recursive
[AC93, AK82, Ban87, Coh83, Coh85, LBN17,
Sij89, ABE+05, AM01, CF04, Dug02, Pal98].
Recursively [BE13]. Reduce
[BN89, MYD95, BALP06, KOE+06, SS96].
reduced [SG04]. Reducible [Hay97, JC97].
Reduction [Bee94, Bur84, FRW90, Geo84,
KLS92, Mul92, NN86, CSV01].
Redundancies [DS88, Sor89]. redundancy
[KCL+99]. Redundant [Coh83, Coh85].
Reentrant [Bob80]. Reexamination
[CG95]. Refactoring [Ste18, TFK+11].
Reference
[Bob80, Wis79, KSK07, KOE+06, LP06, MDJ05]. reference-counting [LP06].
References [Han92, SY96]. Referencing
[LS81]. Referential [QG95]. Refinement
[BBF+11, BKL+97, BCEM15, CM86a,
DGL+79, GEGP17, JLP+14, MRG88, SL92,
AG04, QG95]. reflecting [HS11]. reflection
[SW97a]. Region [TB98, SYN06].
region-based [SYN06]. regions [RR05].
Register [BCT94, CH90, GSO94, JLF02,
RDG08, SH89, GA96, HCS10, LGAT00,
PM04, PS99, PF96, TP04]. registers
[ZP07]. Regular [CC97, HVP05, LaL81].
Relation [LBN17, MTC80]. Relational
[BKOZB13, CB80, GS98, TLHL11, JJD98,
JLRS10]. Relations [ELS+14, HT86, LH08].
Relationship [BS88]. Reliability
[LM18, WN08]. Reliably [TCP+17]. Rely
[GEGP17, LFF14]. Rely-Guarantee
[GEGP17]. Rely-Guarantee-Based
[LFF14]. Remembrances [PM09]. Remote
[BCP08, SG90]. Removal [AK82].

Rendezvous [Cha87]. Renvoice
[DH91, DS88, Sor89]. Reoptimization
[PS92]. reordering [YUW02]. Repair
[BN99, MF88, MYD95, KC01]. Repairing
[CPRT02]. Replacement [MM89].

Replicate [Rb94]. replication [RD03].

Reply
[Bur91, Fra81, LaL83, Tan83, Wir91, SM82].

Representation
[DGL+79, Mul92, SM89, Wad90, Wan82, Mil85].

Representation-Independent [Mul92].

Representations
[Lam87, RF97, Wa80, Wai81, BGP99].

Reshaping [ZCG+07]. Resilient [WL85].

Resolution
[ABR81, Bak82]. Resolved
[SIG17]. Resource
[CS95, Cla80, MK05, MQ05, BDFZ09, CEI+07, HR02, HA12].

Resources
[And81, FLBB89]. Respect
[Gaz83]. Response
[Tie88].

Responsiveness
[HU96]. Restores
[Wis79].

Result
[Ven95, BGP99, SYYH07]. Retargetable
[DF80, DF81, MV87]. Retention
[LS81].

Retraining [NCH+05]. reuse
[DNS+06, GW99, ZSD09]. Reversal
[ACS84]. Reverse
[PS08]. Reverse-mode
[PS08]. Revised
[SIG17]. Revision
[FM87b]. revisited
[MDJ05, Zho96].

Revisiting
[DI09]. Rewrite
[FKW98, Ass00]. Rewriting
[KKSD94, BCM99, DDD03, FKW00, GRSK+11, MMM+07]. Right
[KS83, LaL81, SJ06]. Rings
[BP89, Hua93].

RISC
[PS93]. Rivieres
[Hen83]. RMI
[MVV+01]. Robust
[LS83]. Roever
[Mol83]. role
[Apt00]. Roman
[PB97].

Rounding
[FL15]. Row
[MM89]. rule
[HQRT02]. Rules
[GL80, JTM98, SS84, LS09, SSD09]. Run
[ISY88, TZ07, GMP+00]. Run-Time
[ISY88, TZ07, GMP+00]. Runtime
[BLH12, BEF+16, TCVB14, BH05a, TSY00].

S
[HCW82]. S/SL
[HCW82]. Safe
[AWW95, DG02, JW17, AFF06, BSvgF03, LS03, Loc13, NCH+05, SA00, ZCG+07, MH06, SHB+07]. safe-for-space
[SA00]. safety
[FF08, YS10]. same
[SS05a]. sampling
[PPT08]. Santa
[WP10]. Sather
[Moss96]. Satin
[VWJB10]. satisfaction
[DF11]. satisfiability
[XA07]. satisfying
[Van96a, Van96b]. Saturn
[XA07].

Scalability
[TCP+17]. Scalable
[FT94, XA07]. ScalaExtrap
[WM12].

Scaling
[TCP+17]. scan
[PS99]. Scanners
[HKR92]. Scanning
[VC15]. Scavengers
[UI02]. Schanuel
[KPS92]. schedulability
[GH97]. schedule
[TVAO7]. Scheduler
[TCVB14]. schedules
[MH04].

Scheduling
[BG98b, FGL94, KR79, KPF95, LPP01, LK99, NB99, NSD+15, PS93, TCVB14, Ban11, ME97, YF98]. schema
[RLS+01]. Scheme
[MUR91, YR94, IV06, WC97].

Schemes
[Son87, TM93]. Schorr
[BP82]. Schwanke
[Tie88]. Scientific
[How80].

Scope
[App94b]. Scratchpad
[SRM10].

Screen
[MM89]. SDF
[VIK02]. Search
[Dar90, BH99, SS05a]. Searching
[CC97].

Section
[Wol92]. Secure
[BCEM15, PAS+15, BBF+11, HY07].

Security
[RB94]. security
[BFGT08, BFG08]. see
[BR10]. Selection
[DF84, SSS81]. Selective
[Min84, OLR+16, ME97]. Self
[BP89, DHS09, Gho93, Gem92, ABB+09]. self-adjusting
[ABB+09]. Self-applicable
[Gem92]. Self-Stabilization
[Gho93, DHS09]. Self-Stabilizing
[BP89]. Semantic
[AAR+10, AWW95, GGL15, MH06].

Semantics
[ABHI11, An87, AB94, AW82, BGL93, Ber94, BLRS12, Bou88, Boy10, CPSS93, CD79, FA93, GM81, Gud92, Han94, JPP91, Kai89, Mul92, NF89, Set83, Son84, WM95, Wan82, dBB85, ACE96, BMRO1, Bou06, GZ04, MF09, PCJD08, SWU10, SJ03, Tar07, WKD04].
Sublinear [RD87]. Sublinear-Space
[RD87]. Submodule [MB83]. Subroutines
[SA99]. Subscript [CG95]. Subsequence
[Han92]. Subset [BL87]. Substrings
[BL94b, Han92], subtype [Duc08, KR01].
Subtypes [Vol91, Bur91]. Subtyping
[AC96, AC93, GGL15, LN15, LBN17, LW94,
GZ05, IV06]. Subtyping-Relation
[LBN17]. SUIF [HAM+05]. Supercompiler
[Tur86]. Superimposition [Kat93].
Support [Bal94, D90, Fea87, LS83, MK94,
Wei90, TSY00]. Supporting [RCRH95].
Supports [APPS98]. Suppression
[DS88, FGL94, S90, JN91]. Survey
[Apt81, GPA+01]. Suspension [CFM94].
Symbol [ABR81, Rei83]. Symbolic
[Di90, HP96, Hal85, Hen82, RR05, YMW97,
BGP99, MPM03, CM93, WST85].
Symmetric [FY85]. Symmetry
[ES97, SG04]. Synchronization
[Bag89, D9+16, Her91, KRS88, RS84b,
Sch82, CGS+03, DHM+12, Ram00, RD03].
synchronization-sensitive [Ram00].
Synchronizing [And81]. Synchronous
[CS87, TLH11]. synchrony [CS04].
Syntactic
[BF87, GMZ00, MF88, PK80, W82]. Syntax
[DD98, Ode93, Ric85, SS93]. Synthesis
[AE98, AE01, AE04, Ban87, BDJ13,
BKL+97, Cla80, MW80, MW84, MV87].
System [AFdR80, AW85, BS86, Bou88,
CB80, Fea82, GD82, GP81, Han81b, HM84,
JMSY92, LR13, ML80, M83, MHS6, PO95,
RD13, SA99, WC97, BH05a, FH04, FMM99,
HO07, JB06, KS10, MTSS99, NP08, PE08,
STSP05, MWCG99]. systematic
[DF89, PSS05]. Systems
[ABL93, AR84, AC84, BKS88, BG9a,
BDP93, CI84, CDFP99, CBDFG95, CES86,
CPS93, DAW88, Fae87, FKW98, Hen86,
Jag94, Jon94, JTM98, Kar84, Kat93, Kau84, Lam84, LW93, Mis86, WGS92, WGS93, WCW90, van88, Ass00, AE98, BCP08, BCM99, BGP99, CSMC00, DGG97, GS11, TP04, T207, YMW97, WCW91. Systolic [Hen86].

technique [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Ell82, FA93, Fra81, Hen83, LaL83, LaL84, Moh81, Moll83, MS88, NN86, Par90, Pen83, Sor89, SM82, Tan83, Tie88, Vol91, WST85, Wir91, YB88, MMG00].

Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KWL90].

temporal-ordering [SS99].

Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KWL90].

temporal-ordering [SS99].

temporaries [RMH06].

Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KWL90].

temporal-ordering [SS99].

Termination [AF84, Apt86, BAGM12, BCG*07, CDK*18, Fra80b, GJ05, HSP83, MC82b, TM93, BAL07, BA08, DDV99, GRSK*11, Lee09, PR07, SMP10, Fra80a, Moh81].

Test [Wey83, WW95, Dwn08].

Testing [AMT14, GMH81, TK94].

Tests [Coh91, Koz97, Wir91, GZ05]. Text [CC97].

Their [Kam83, LaL84, SS82, PS96].

Theoretic [ES97, Sha82, KV00]. Theories [NSTD+15, Bou06]. Theory [CZ84, KD94, KRS94, NBG13, Ryu16, TLHL11, CGP09, MH06, Oho07, Pau01, SS05b, Blao3, FG03].

ThingLab [Bor81]. things [PM09].

Thinking [WLBF16]. Thinning [Web95].

Third [Wol92]. ThisType [Ryu16].

Thread [YBL16]. Thread-Level [YBL16].

threaded [TSY00]. Three [Oss83].

Tichy [Tic88]. tiling [JLF02, LS04, RKR12].

Time [AL94, ABR81, BL94b, BLH12, Coh91, DLR16, Hol87, ISY88, Jef85, Lam84, MMG92, PS93, RS84a, RS84b, Wir91, YR94, Zic94, BAL07, BALP06, BKRW98, BKRW05, DDD05, GH97, GMP*00, GB99, GW99, HK07, LS98, LPFO1, LS09, Mi85, Ram99, Rep98, SYK*05, Tra08, TZ07, Wu04, YMW97, LW93].

Time-Constrained [Zic94, LPP01]. Time-Critical [PS93].

time-efficient [GB99].

Timed [Zic94].

Timeout [Lam84]. Timing [LJ99].

tokenization [Rep98]. Tolerance [LJ99].

Tolerant [CS95, Lam84, AAE04]. Tool [CPS93]. Toolkit [BDHF97].

toolkits [VHM+01].

Tools [van88].

TOPLAS [MP10a, MP10b]. topology [DDM11].

Total [San96].

Trace [FG94, WS92, Ban11, RM07, SJ03, WS93, WM12].

Trace-Based [WS92, WS93, WM12].

traces [HBM*06, WR08].

Tracing [BL94a, DLR16, MMM+07].

tradeoffs [ZGZ05].

Trailing [VR95].

Traits [DNS+06].

transactional [ABHI11, CFP*04].

Transactions [HKMN94].

Transducer [DVM15].

Transducer-Based [DVM15].

Transformation [BKB80, Faa82, FL91, NSS13, Wat91, RKRR04, San96, TSY00, WZ07].

Transformational [BDHF97, Bir84, Bir85, DS82, OA88, RC03].

Transformations [Bar85, EGM01, Geo84, LD81, LFF14, MS83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86].
Pet83b, Rem81, Sch85, BGP99, HVB+99, NS13, SV96. **Variant** [IV06]. variants [FG03]. **Variational** [CEW14]. **Vector** [AK87, Bud84, Fis80, FTJ95, KD94, Per79, KK07]. **Verifiable** [YB85]. Verification [App15, BDP14, BCD+15, CDFP89, CES86, CPS93, DiI90, EGP14, GL94, Jon94, JTM98, KKW14, LFF14, LJ99, LS79, NBG13, RY88, BDL+08, GPFO8, GM12, Qia00]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Vector [AK87, Bud84, Fis80, FTJ95, KD94, Per79, KK07]. Verifiable [YB85]. Verification [App15, BDP14, BCD+15, CDFP89, CES86, CPS93, DiI90, EGP14, GL94, Jon94, JTM98, KKW14, LFF14, LJ99, LS79, NBG13, RY88, BDL+08, GPFO8, GM12, Qia00].

References

Ancona:2007:PCT

Attie:2004:SFT

Ahmed:2010:SFT

REFERENCES

Anderson:1981:LLC

Arbab:1994:SCD

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

Abadi:1993:CA
C. Martín Abadi, Andrew Birrell, Butler Lampson, and Gordon Plotkin. A calculus for access control in distributed systems. *ACM Trans-

Afek:1993:LC

Apt:1998:AIL

Amadio:1993:SRT

Ashley:1994:FCP

REFERENCES

Afek:1994:BFF

Ancona:1991:ECL

Appel:2006:FPE

Attie:1998:SCS

Attie:2001:SCP

Apt:1984:MDT

Appel:1994:E

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Apt:1980:PSC

Abadi:2006:TSL

Alpuente:1998:PEF

Appel:1993:Eb

Alur:2004:MRH

Alur:1998:FF

Aho:1989:CGU

Aho:1989:CGU

REFERENCES

Apel:2010:CUF

Aung:2014:SS

Arsac:1982:STR

Allen:1987:ATF

Ait-Kaci:1989:EIL

Alglave:2017:DSF

Ait-Kaci:1994:FPC

Abadi:1993:CS

Martín Abadi and Leslie Lamport. Composing specifications.
REFERENCES

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR

Alglave:2014:HCM

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Anger:1989:LIC

Anonymous:1982:IA

Anonymous:1983:IA

Anonymous:1984:IA

Anonymous:1985:IA

Anonymous:1986:AI

Anonymous:1986:IA

Anonymous:1987:IA

Anonymous:1988:AI

REFERENCES

REFERENCES

Abadi:2007:E

Appel:2015:VCP

Apt:1981:TYH

Apt:1986:CPD

Apt:2000:RCC
Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Austin:2017:MFD

Assmann:2000:GRS

Arenaz:2008:XEF

Manuel Arenaz, Juan Touriño, and Ramon Doallo. XARK: an extensible framework for automatic recognition of computational kernels. *ACM Trans-

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Tim Brecht, Eshrat Arjomandi, Chang Li, and Hang Pham. Con-
trolling garbage collection and heap growth to reduce the execution time of Java applications. ACM Transactions on Programming Languages and Systems, 28(5):908–941, September 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[BBC16] Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, and Albert Cohen. Automatic storage optimization for arrays. ACM

Antonio Brogi and Paolo Ciancarini. The concurrent language, Shared Prolog. *ACM Transactions on Programming Languages and Systems*, 1991:CLS.
REFERENCES

Bugliesi:2004:ACM

Bossi:1990:MSL

Betts:2015:DIV

Bugliesi:2015:ART

Benton:2004:MCA

Bruynooghe:2007:TAL

Bottoni:1999:SDC
P. Bottoni, M. F. Costabile, and P. Mussio. Specifica-
REFERENCES

Bhatia:2008:RSE

Briggs:1994:IGC

Bergstra:1997:TCT

Bartoletti:2009:LPR

Blackburn:2016:TWT
REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Bernstein:1980:OGN

Berzins:1994:SMS

Burke:1987:PML

Bhargavan:2008:VPB

Karthikeyan Bhargavan, Cédric

 REFERENCES

[Bir84] R. S. Bird. The promotion and accumulation strategies in transformational programming. *ACM Transactions on Programming Languages and Systems*, 6

REFERENCES

Buchsbaum:2005:CNS

Back:1988:DCA

Bic:1987:DDM

Ball:1994:OPT

Bates:1994:RSL

Blanchet:2003:EAJ

Bodden:2012:PEF

REFERENCES

Bloss:1994:PA

Boudol:2012:RA

Blume:1999:DAS

Bistarelli:2001:SBC

Ball:2005:PPA

[BM05] Thomas Ball, Todd Millstein, and Sriram K. Rajamani. Polymorphic predicate abstraction. ACM Transactions on Programming Languages and Systems, 27
REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[Bre89] R. P. Brent. Efficient implementation of the first-fit strategy

G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. *ACM Transactions on Programming Languages and Systems*, 5(2):223–235, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Timothy A. Budd. An APL

Carlisle:1995:TCC

Castagna:1995:CCC

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Click:1995:CAC

Clarke:1997:URE

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Cytron:1991:ECS

Clark:1986:PPP

Chin:1995:ROA

Christensen:2004:OPE

Calder:1997:EBS

Clarke:1997:VPN

REFERENCES

REFERENCES

[Carr:1994:IRM] S. Carr and K. Kennedy. Improving the ratio of memory op-

REFERENCES

REFERENCES

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC
Max Copperman. Debugging optimized code without being misled. ACM Transactions on Programming Languages and Systems, 16(3):387–427, May 1994. CODEN ATPSDE. ISSN 0164-0925
REFERENCES

[CRN+08] Daniel E. Cooke, J. Nelson Rushton, Brad Nemanich,
REFERENCES

[CSV01] Keith D. Cooper, L. Taylor Simpson, and Christopher A.

Carlsson:2006:MAC

Collberg:2007:DGB

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FAC

REFERENCES

Peter Dencker, Karl Dürre, and Johannes Heuf-

[Demillo:1983:GEI]

DeMillo:1983:GEI

Debray:1989:SIM

Debray:2000:CTC

Dershowitz:1985:PAI

Nachum Dershowitz. Program abstraction and instantiation.
REFERENCES

REFERENCES

Dams:1997:AIR

Dew:1979:PRE

DeBoer:1997:PCC

Duesterwald:1997:PFD

Dhandhere:1991:PA

delBanda:1996:GAC

Transactions on Programming Languages and Systems, 18(5): 564–614, September 1996. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DeLaBanda:2000:ICL

Dolby:2012:DCA

Dolev:2009:SSP

DeMoura:2009:RC

Dillon:1990:USE

DeJonge:2012:NFE

Dodds:2016:VCS

Mike Dodds, Suresh Jaganathan, Matthew J. Parkinson, Kasper Svendsen, and Lars

Darulova:2017:TCR

Drinic:2007:PPC

Debray:1993:CAL

Dissegna:2016:AIB

Degano:1988:EIL

Diwan:2001:UTA

Danvy:1996:EED

Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. Eta-expansion does the trick. *ACM Transactions on Programming Languages and Systems*, 18(6):
REFERENCES

Ducasse:2006:TMF

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DeRemer:1982:ECL

Dhamdhere:1993:EAB

Debray:1997:ICF

DeRose:1999:TTM

Dovier:2000:SCL

Das:2005:PFI

Dawson:1996:PPU

Dekel:1983:PGP

Drecchsler:1988:TCS

Dewan:1990:ASA

Dhamdhere:1998:DCD

REFERENCES

Dewar:1982:TDG

Derrick:2011:MVP

Ducournau:2008:PHA

Duggan:1999:DTD
Dominic Duggan. Dynamic typing for distributed programming in polymorphic languages.

Duggan:2002:TSL

DeSutter:2007:PID

Danton:2015:FTB
Debray:1989:FCL

Dantas:2008:APA

Etalle:2001:TCP

Esparza:2014:PBV

Ellis:1982:TCS

Elder:2014:ADA

Ernst:1980:SAD

Emerson:1997:USW

Eugster:2007:TBP

Finlay:1993:TCC

Fateman:1982:HLL

Feng:2012:BQP

Feather:1982:SAP

Feather:1987:LSS

Flanagan:1999:CSB

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

References

George:1984:TRS

Ganapathi:1985:AGD

Gini:1985:DWM

Gesbert:2015:LAD

Griswold:1980:AUP

Gerber:1997:SR

GarciaDeLaBanda:1996:GAC
REFERENCES

Griswold:1981:GI
Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ghosh:1993:ASP

Graham:1980:ICF

Gallager:1983:DAM

Giegerich:1983:FFD

Gupta:1993:APE

Glenstrup:2005:TAS

Garlan:1994:TAM
David Garlan, Charles W. Krueger, and Barbara S. Lerner.
REFERENCES

Gries:1980:APC

Grumberg:1994:MCM

Gavanelli:2005:DIK

Greenberg:1988:SEA

Gottlieb:1983:BTE

Ghezzi:1979:IP

Greif:1981:SSW

Irene Greif and Albert R. Meyer. Specifying the semantics of while

Ganty:2012:AVA

Gannon:1981:DAI

Ghosh:1999:CME

Grant:2000:BCD

Gange:2015:IAM

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J.

Gomard:1992:SAP

Gorlatch:2004:SRC

Grit:1981:DIT

Girkar:1995:ETL

Gupta:2001:PEP

Gal:2008:JBV

Grothoff:2007:EOC

Gil:2008:TDB

Gries:1979:SEB

Griswold:1982:EEI

Grossman:2006:QTI

GRSK+11

Giacobazzi:1998:LMR

Gloy:1999:PPU

Gawlitza:2011:SSR

Gupta:1994:ERA

Gerlek:1995:BIV

Garcia:2014:FTO

Gudeman:1992:DSG

Grosser:2015:PAG

Gudjonsson:1999:CTM

REFERENCES

Hall:2005:IPA

Hansen:1981:CMI

Hanson:1981:APP

Hansen:1992:SRF

Hannan:1994:OSD

Harel:1980:PNA

Hauser:1996:HFP

Havlak:1997:NRI

[Hav97] Paul Havlak. Nesting of reducible and irreducible loops.

Hind:1999:IPA

Harman:2009:DCS

Hassen:1998:TDP

Hertz:2006:GOL

Hickey:1992:CAM

Huang:2010:DBR

Yuqiang Huang, Bruce R. Childers, and Mary Lou Sofla. Detecting bugs in register allocation. ACM Transactions
REFERENCES

94

Holt:1982:ISS

Hirzel:2002:UTL

Hennessy:1982:SDO

Henderson:1983:TCL

Hennessy:1986:PSS

Henglein:1993:TIP

Herlihy:1991:WFS

Herlihy:1993:MIH

Hesselink:1988:MAN

Haynes:1987:ECP

Hosoya:2009:PPX

Hennessy:1983:PCO

Hall:1996:TCH

Hilfinger:1988:APD

REFERENCES

Hu:1997:FDE

Heering:1985:TMP

Haines:1994:CFC

Heering:1992:IGL

Heering:1994:LIP

Herlihy:1982:VTM
Maurice P. Herlihy and Barbara Liskov. A value transmission

REFERENCES

Henzinger:2002:AGR

Hennessy:2002:IFV

Horwitz:1990:ISU

Huang:2011:MSS

Hirzel:2017:SEL

Hart:1983:TPC

Hayden:2014:KEG

[HSS+14] Christopher M. Hayden, Karla

Horwitz:1986:GEE

Helsen:2004:PSM

Hudson:1991:IAE

REFERENCES

REFERENCES

Igarashi:2005:RUA

Igarashi:2001:FJM
Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Inoue:1988:AFP

Igarashi:2006:VPT

Iverson:1979:O

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS
Pramod G. Joisha and Prithviraj Banerjee. An algebraic array shape inference system for MATLAB(R). *ACM Transactions on Programming Lan-
REFERENCES

Janssen:1997:MGR

Jefferson:1985:VT

Jeffery:2003:GLS

Jensen:1997:DPA

Juelich:1981:CAS

Jackson:1998:IFM

Jimenez:2002:RTN

Marta Jiménez, José M. Llaberia, and Agustín Fernández. Register tiling in nonrectangular iteration spaces. *ACM Transactions
REFERENCES

Jagannathan:2014:ARV

Jerey:2010:ESA

Jeannet:2010:RAI

Bertrand Jeannet, Alexey Logi

Joshi:2006:DPA

Jones:1983:TST

Jones:1990:EEC

Jonsson:1994:CSV

Jazayeri:1981:SES

Jourdan:2017:SPC

Jagadeesan:1991:FAS

Jacobs:2008:PMC

Joung:1994:CF

Joisha:2012:TTE

Pramod G. Joisha, Robert S. Schreiber, Prithviraj Banerjee, Hans-J. Boehm, and Dhruba R. Chakrabarti. On a technique for transparently empowering classical compiler optimizations

Juan:1998:CVC

Jakobs:2017:PPF

Kaiser:1989:IDS

Katayama:1984:TAG

Katz:1993:SCC

REFERENCES

REFERENCES

Kistler:2003:CPO

Knowles:2010:HTC

Keen:2004:JFD

Kaiser:1992:OBP

Kennedy:1998:ADL

Karkare:2007:IBC

Korach:1990:MTD

REFERENCES

Kawahito:2006:ESE

Kennaway:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM
Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual machine, and compiler. *ACM Transactions on Program-
REFERENCES

Knapp:1990:EFD

Kobayashi:1998:PDF

Kim:2006:ERI

Kozen:1997:KAT

Kurlander:1995:EIS

Katzenelson:1992:TMT

Kobayashi:1999:LPC

Naoki Kobayashi, Benjamin C.

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

F. T. Krogh. ACM algorithms policy. ACM Transactions on Programming Lan-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

LaLonde:1984:TCC

LaLonde:1989:DFD

Lamport:1979:NAP

Lamport:1980:CNA

Lamport:1983:SCP

Lamport:1984:UTI

Lamb:1987:ISI

Lamport:1988:CPB

[Lam88] Leslie Lamport. Control predicates are better than dummy variables for reasoning about program control. *ACM Transactions on Programming Languages and Systems*, 10(2):267–281, April 1988. CODEN
REFERENCES

116

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

[LK02] Peizong Lee and Zvi Meir Kedem. Automatic data and computation decomposition on distributed memory parallel computers. *ACM Transactions on Programming Languages and
REFERENCES

[Loc13] Andreas Lochbihler. Making the Java memory model safe. ACM Transactions on Programming Languages and Systems, 35
REFERENCES

Karl Lieberherr, Boaz Patt-Shamir, and Doug Orinles. Traversals of object structures:
References

Lim:2013:TSG
Lim:2013:TSG

Luckham:1979:VAR
Luckham:1979:VAR

Leverett:1980:CSD
Leverett:1980:CSD

Lindstrom:1981:RRB
Lindstrom:1981:RRB

Liskov:1983:GAL
Liskov:1983:GAL

Lamport:1984:HLC
Lamport:1984:HLC

Lang:1998:SAE
Lang:1998:SAE

REFERENCES

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3):382–401, July 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any $n \geq t > 0$, where n is the total number of processes and t is the number of faulty processes.

REFERENCES

League:2002:TPC

Lengauer:1979:FAF

LeCharlier:1994:EEG

Lee:1998:PAF

[LY98] Ouksel Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type inference al-

Lipton:1983:VLP

Leivent:1993:MFT

Liskov:1994:BNS

Mallgren:1982:FSG

Merlin:1983:CSS

Morris:1999:SF

Millstein:2004:MTH

Morris:2009:TTN

Misra:1982:DGA

Misra:1982:TDD

REFERENCES

125

Carlmark:1982:VLD

McG82

MCT96

MDCB91

MDJ05

ME97

MF88

Jacob Matthews and Robert Bruce Findler. Operational semantics...

Millstein:2009:EMP

Moriconi:1986:PSP

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

Misra:1981:EPE

Misra:1986:AMA

Misra:1994:PSP

Micallef:1994:EAG

Ma:1980:DMI

Martelli:1982:EUA

Myers:1989:RRA

Markstrum:2010:JDP

REFERENCES

REFERENCES

Monniaux:2008:PVF

Morgan:1988:SS

Moller:2007:SVX

Müller-Olm:2007:AMA

Moller-Olm:2007:AMA

Müller-Olm:2007:AMA

Moller:2007:SVX

Müller-Olm:2007:AMA

Moller:2007:SVX

Müller-Olm:2007:AMA
REFERENCES

0164-0925 (print), 1558-4593 (electronic).

McKinley:2007:ECG

McKincrey:2010:DVT

McKinley:2010:PVT
Kathryn S. McKinley and Keshav Pingali. La prossima vita at TOPLAS. *ACM Transactions on Programming Languages and Systems*, 32(6):20:1, August 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Maher:1983:API

Murphy:1988:NDP

Murtagh:1991:ISM

Mueller:1987:RMS

Mulkers:1994:LSD

Manna:1980:DAP

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
REFERENCES

McKenzie:1995:ERS

Myers:1990:CUI

Myers:2017:F

Narlikar:1999:SES

Nanevski:2013:DTT

Necula:2005:CTS

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Norris:2016:PAM

Nelson:1989:GDC

Nielson:1986:TCC

Nguyen:2005:EEA

[NI05] Thi Viet Nga Nguyen and François Irigoin. Efficient and effective array bound checking.

Nelson:1979:SCD

Naik:2008:TSE

Nanda:2006:ISM

Nikolic:2013:RAP

Nowatzki:2015:SFS

Nandivada:2013:TFO

Olderog:1988:FPP

REFERENCES

Odersky:1993:DCD

Olmedo:2018:CPP

Oh:2014:GSA

Ohori:1995:PRC

Ohori:2007:PTM

Ogasawara:2006:EED

Owicki:1982:PLP

Oh:2016:SXS

[OLH+16] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. Selective X-sensitive analysis guided by im-
REFERENCES

Odersky:2004:GE

Oppen:1980:P

Ossefort:1983:CPC

O’Hearn:2009:SIH

Pingali:1985:EDD

Pingali:1986:CFI

Pingali:1986:EDD

Palsberg:1995:CA

Palsberg:1998:EBF

Palsberg:2011:E

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

[PAR+15] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs,
REFERENCES

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya

Pan:2008:PFE

Pemberton:1983:TCT

Perrott:1979:LAV

Perry:1990:GEI

Peterson:1982:UAC

Gary L. Peterson. An $O(n \log n)$ unidirectional algorithm for the circular extrema problem. *ACM Transactions on Programming Languages and Systems*, 4(4):758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of n uniquely numbered processes in a ring. The algorithm requires $O(n \log n)$ messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW

Peterson:1983:NSL

Gary L. Peterson. A new solution to Lamport’s concurrent programming problem using small shared variables. *ACM
REFERENCES

Proebsting:1996:DDR

Pratikakis:2011:LPS

Pip97

Poletto:1999:CTL

Piq96

Paek:2002:EPA

Piper:1997:PVI
142

REFERENCES

Pai:1980:GCR

Paige:1982:FDC

Pearce:2007:EFS

Park:2004:ORC

Payet:2006:NIL

Pingali:2009:RTP

Palsberg:1995:TSE

Peng:1991:DF
REFERENCES

Pinter:1994:POP

Proebsting:1995:BAG

Prywes:1979:UNS

Park:2008:PLB

Palem:1993:STC

Podelski:2007:TP

Andreas Podelski and Andrey Rybalchenko. Transition predic-
REFERENCES

REFERENCES

Zhenyu Qian. Standard fixed-point iteration for Java byte-

Quong:1991:LPI

Quillere:2000:OMU

Ranganath:2007:NFC

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

REFERENCES

REFERENCES

Rinard:2003:ESB

Rossberg:2013:MMM

Rong:2008:RAS

Reiss:1983:GCS

Rem:1981:APN

Reps:1986:GEI

Reps:1998:MMT

REFERENCES

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayan:2012:PLT

Ramsay:1997:SRM

Rosenkrantz:1987:EAA

Reps:2000:UCS

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayan:2012:PLT
REFERENCES

REFERENCES

Sukyoung Ryu. ThisType for object-oriented languages: From theory to practice. *ACM Transactions on Programming Languages and Systems*, 38(3):8:1–8:??, May 2016. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Strickland:2013:CFC

Sethi:1983:CFA

Stamos:1990:RE

Sistla:2004:SRS

Sreedhar:1996:ILU

Sreedhar:1997:ICD

Sreedhar:1998:NFE

Steenkiste:1989:SIR

Sharir:1982:SOC

Stoyle:2007:MMS

Sheard:1991:AGU

Sekiyama:2017:PMC

Sijtsma:1989:PRL

Sipala:1982:CSB

REFERENCES

Sites:1979:CLI

Spoto:2003:CAA

Scott:2006:RNG

Smans:2012:IDF

Schwanke:1988:SR

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Shankar:1992:SRH

A. Udaya Shankar and Simon S. Lam. A stepwise refinement heuristic for protocol construction. *ACM Trans-
REFERENCES

Schultz:2003:APS

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

Steensgaard-Madsen:1982:TCS

Steensgaard-Madsen:1989:TR

Stork:2014:APB

[SP07] Vincent Simonet and François Pottier. A constraint-based

Spooner:1986:MAR

Sekar:1995:FSA

Suhendra:2010:SAC

Sagiv:1998:SSA

Sagiv:2002:PSA

Soisalon-Soininen:1982:IEE

Schlichting:1984:UMP

Richard D. Schlichting and Fred B. Schneider. Using message passing for distributed pro-

Shasha:1988:ECE

Skeppstedt:1996:UDA

Sagonas:1998:AMT

Schulte:2005:WDB

Stuckey:2005:TO

Schulte:2008:ECP

REFERENCES

REFERENCES

Steimann:2018:CBR

Stone:2004:EOL

Saha:2003:IAQ

Shao:2005:TSC

Smith:1996:PTV

Sabry:1997:RCV

Steckler:1997:LCC

Sewell:2010:NPP
Peter Sewell, Paweł T. Wojciechowski, and Asis Unyapoth. Nomadic pict: Programming languages, communication infrastructure overlays, and semantics for mobile computation.

Suganuma:2005:DED

Suganuma:2006:RBC

Seo:2007:GDW

Swinehart:1986:SVC

Terauchi:2008:CCC

Terauchi:2008:WSE

Tai:1979:NSG

REFERENCES

Tip:2011:RUT

Thorup:1994:CGA

Tichy:1986:SR

Tichy:1988:TCT

Tick:1994:DTN

Tripakis:2011:TSR

Tel:1993:DDT

REFERENCES

Thammanur:2004:FME

Tratt:2008:DSL

Torp-Smith:2008:LRA

Tip:2002:PET

Tang:2000:PTR

Turini:1984:MLO

Turchin:1986:CS

Thies:2007:STU

Tanenbaum:1982:UPO

Thatcher:1982:DTS

Tse:2007:RTP

Ungar:1992:ATP

Unger:2002:HIL

Vera:2005:ACM

vandenBos:1988:AIT

Jan van den Bos. Abstract interaction tools: a language for user

VanderZanden:1996:CIA

VanderZanden:1996:IAS

Vansummeren:2006:TIU

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Vera:2004:FAF

Venkatesh:1995:ERD

VanRoy:1997:MOD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wirth:1988:TE

Wirth:1991:TCR

Wise:1979:MGC

Wright:1998:PSE

Wellings:2000:IOO

Wand:2004:SAD

Weihl:1985:IRA

[WL85] William Weihl and Barbara

[WW95] Pei-Chi Wu and Feng-Jian Wang. A worst case of circularity test algorithms for attribute grammars. ACM Transactions on Programming Lan-
REFERENCES

Wegman:1991:CPC

Ward:2007:SPT

Xie:2007:SSF

Yemini:1985:MVE

Yemini:1987:ATE

Yemini:1988:TCA

Yiapanis:2016:CDS
Paraskevas Yiapanis, Gavin
References

[178]

[178]

[178]

[178]

[178]

REFERENCES

Zhang:2005:CPT

Zhou:1996:PPC

Zic:1994:TCB

ZHANG:2017:SSH

Zhuang:2007:AAR

Zhuang:2010:OFE

Zhong:2009:PLA

Yutao Zhong, Xipeng Shen, and Chen Ding. Program locality analysis using reuse distance. *ACM Transactions on Programming Languages and Systems*,
REFERENCES