A Complete Bibliography of Publications in *ACM Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 January 2023
Version 2.146

Title word cross-reference

[SRW02], + [Han81a], T^M [Bla03], ϕ_{ex}
[AW82], \parallel [DDDCG02], \mathcal{A} [DES12], \mathcal{R}
[JMSY92], \mathcal{R}_{Lin} [VR95], ℓ [ADG+94],
$O(nm)$ [Pet82], ϕ [CF95, DR05], π [ABL03].

(k) [ADGM91, BL94b, KM81], 2 [Dam03], 3
-calculus [ABL03]. -Exclusion [ADG94].
-function [DR05]. -Nodes [CF95]. -Tree [Han81a]. -valued [SRW02].

11 [ND16]. 16 [TGT20].
20 [TGT20]. 568 [Han81b].
8 [Ano18].
90 [DP99]. 95 [WJS+00].

Abstract
[BGL93, BK11, CMB+95, CFG+97, DGG97, DC22, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM81, LR13, Loe87, MSJ94, MXZ+22, NDS98, She91, TY21, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Abstraction
[BNN22, CGL94, CL94, Der85, GMH81, GKM20, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, Ell82].

Addendum [Bir85].

Adding [ACW90, BN94]. Addition [CBMO91].

Addressing [Hol87, ZP10].

Adaptation [Dha91]. Adaptive [ABH06, HOYY18, PXL95, TCVB14, UJ92, RD03].

Adaptors [YS97].

Abstract
[BGL93, BK11, CMB+95, CFG+97, DGG97, DC22, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM81, LR13, Loe87, MSJ94, MXZ+22, NDS98, She91, TY21, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Abstraction
[BNN22, CGL94, CL94, Der85, GMH81, GKM20, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, Ell82].

Addendum [Bir85].

Abstract
[BGL93, BK11, CMB+95, CFG+97, DGG97, DC22, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM81, LR13, Loe87, MSJ94, MXZ+22, NDS98, She91, TY21, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Abstraction
[BNN22, CGL94, CL94, Der85, GMH81, GKM20, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, Ell82].

Addendum [Bir85].

Abstract
[BGL93, BK11, CMB+95, CFG+97, DGG97, DC22, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM81, LR13, Loe87, MSJ94, MXZ+22, NDS98, She91, TY21, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Addendum [Bir85].

Abstract
[BGL93, BK11, CMB+95, CFG+97, DGG97, DC22, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM81, LR13, Loe87, MSJ94, MXZ+22, NDS98, She91, TY21, Wei89, van88, ABS09, BDL+08, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Addendum [Bir85].
Analysis
[AKNP17, ABE+05, AD98, Bac84, BNN18, BC85b, Blo94, BE13, Bur90a, CFNH18, CFG19, CDK+18, CMLN91, DKL18, DL93, Del95, DP97, DC22, DAW88, FPS19, FJK+17, GNS+15, GKM20, GJ93, HP96, HL22, HOYY18, Hi88, Hor97, ISY88, Jen97, JCO19, KD94, LLK+17, LTMS20, LR13, LHR19, LWR21, McG82, MRGP20, MBB94, MOS07b, OHL+14, OLH+16, Pal95, PO95, PCC85, PP91, PW98, Pur91, RDL83, RRP19, RS95, SSSS83, SGL98, SS13, ABB+09, BDFZ09, BAL07, Bla03, Blu99, BCG+07, CSW06, Cha02, CGS+03, CKT86, DDV99, DGS97, FF99, GHB+96, GJ05, GZ04, GCRN11, HAM+05, HPMS00, HBCC99, HVDH07, HA12, IK05, JLR10, KBC+99, KK07, KSK07, LP00, LH08, MPM03, NS13, PHP02, Pal98, PKH07, Ram00, Rep00, RSL10, RSR08].

And/Or
[Har80].

Annotations
[Bur84].

AOP
[DES12].

APL
[Bud84, GD82, Hob84].

Applicability
[DAW88, How80, LS98].

Applicable
[Gom92].

Application
[CD79, DF80, DF81, LBN17, LR13].

Applications
[BLRS12, Bou88, MRGP20, SR21, BALP06, CMLC06, NR06].

Applicative
[AC94, KS86].

apprentice
[MP02].

Approach
[AKNP17, ABR81, AR80, BAC16, BP82, Bur90a, CH90, D90, E12, ES97, FT94, GGL15, Har80, Hes88, KKW14, Lam79, Lam80, Lee86, LTMS20, MW80, MDCB91, ND16, OA88, Sam80, Spo86, SM81, SNS+14, Bou05, CRN+08, DHM+12, FGM+07a, JLR10, KV00, LP80, MBB+09, PSS05, PCJD08, RC03, SP07, WS97].

approximations
[BGP99].

Architect
ted
[TP07].

Architecture
[Wal92].

Architectures
[Han94, KP95, NSTD+15, PAS+15].

Arising
[Bac84].

Arithmetic
[Fis80, GNS+15, Hen83, LdR81, MOS07b].

ARM
[FKW98, ADG+21].

Armada
[LC+22].

Armed
[ADG+21].

Array
[DGW98, ADG+21].

Armada
[LCK+22].

Armed
[ADG+21].

Array
[DGW98, ADG+21].

Armed
[ADG+21].

Armed
[ADG+21].

Armada
[LCK+22].

Armed
[ADG+21].

Arrays
[BBC16].

Article
[Ano18, TGT20].

ASF
[VHK02].

aspect
[DDWW08, WKD04].

aspect-oriented
[DDWW08, WKD04].

AspectML
[DDWW08].

Aspects
[Bor81, Set83].

assembly
[AAR+10, MWCG99].

Assertions
[BKB80].

Assessing
[BDH+16, Wey83].

Assets
[COE+20].

Assignment
[BM94, CFR+91, GL80, GPF08, LDK+96].

Assisted
[HCHP92].

Assisting
[Fea82].

Associated
[PPS79].

associativity
[Cha02].

Assocs
[Ram01].

assume
[HQRT02].

assume-guarantee
[HQRT02].

Assumptions
[ES97].

AST
[GVC15].

Asynchronous
[Bag89, GLO88, Mis86, GM12, HR02].

ATL
[WSH15].

Atomic
[WL85, Wei90, AE01].

Atomicity
[JLP+14, Wei89, FFLQ08].

Attacks
[SBE+19].

Attribute
[CP95, Hud91, JP91, Kat84, KR79, MK94, RD87, WW95, Boy96, CP96, Wu04].

Attributes
[HST86].

Author
[Ano86a, Ano88a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].

authorization
[FGM07b].

Authors
[Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano90b, Ano91b, Ano92b].

auto
[ZP10].

auto-addressing
[ZP10].

Automata
[BMW91, CBMO19, ES89, Pro95, KV00].

Automata-Theoretic
[ES97, KV00].

Automated
[GRSK+11, KZC15, KF00, LCK+22, S87, JNGG10].

Automatic
[AKNP17, AK87, Ano02a, BBC16, Cat80,
B [Han81a]. backpropagator [PS08].
Backward [DL18, Mye18]. Balanced [AS80, PB80, vHK00]. Barrier [CHMY19].
Base [NcS20, LS98]. Based [BPP16, BGL93, Bur90a, CGJ +97a, CI84, Boe85, Sou84, YB87, YB88, LP80]. Axioms [Mis86].
Backtracking [Lin79, VR95, FM87a].
Backward [DL18, Mye18]. Balanced [AS80, PB80, vHK00]. Barrier [CHMY19].
Base [NcS20, LS98]. Based [BPP16, BGL93, Bur90a, CGJ +97a, CI84, Boe85, Sou84, YB87, YB88, LP80]. Axioms [Mis86].
Backtracking [Lin79, VR95, FM87a].
Centered [CHY12]. Centers [KRS84].
Centralized [HM84, centric [DHM+12].
change [BA08, CP96, Lee09]. Changes [Ber94, MTSS09]. changing [MP07].
Chariots [PB97]. CHC [MTK21].
CHC-based [MTK21]. Check [AP94].
checked [KN06]. checker [NP08].
Checking [Car95, CGL94, ES97, FF08, GL94, ND16, AY01, ACM11, BGP99, FFLQ08, HQRST02, JJD98, KF10, KV00, N105, SG04, VJB12, YMW97]. Checks [CG95, CEI+07]. Chocola [SDD21]. Choice [BN94, JCM19]. CIRCAL [Mil85].
Circular [Jon90, Pett82]. Circularity [WW95, Wu04].
Class [CBMO19, HKMN94, Han92, SJ03, SDTF13, HS11, MH04, ST00a]. Classes [SDTF13, WT11, HHPW96, HMS06].
Closure [Pal95, SW97b, SA00]. CLP [DHM00, GLMM05, JMSY92, KMM+98, VR95].
Clustering [LKK+17]. Clusters [BGH+13, HBG+09]. coalescing [GA96, Hai05, PM04]. Coalggebraic [KBP22]. Coalgebras [KBP22]. Code [AGT89, BHM+19, Cat80, Cop94, DF84, FGL94, GF85, Hen82, HG83, JSB+12, KRS94, LR13, LCK+22, ND16, Rob79, TvS82, Wan82, AM01, DEM00, Hai98, HBG+90, HK07, JNZ06, LDK+96, MSRR00, ME07, Oh07, PHEK99, WS07, vHK00, CM93, Pem83, WST85]. Coder [SBS22].
Cohen [Coh85]. coherence [SS96].
coinduction [San09]. Collect [JCM19].
Collecting [HY91]. Collection [BA84, CN83, DSW82, Lan80, TM93, URJ18, WLBF16, BALP06, HDH02, PK+07, Piq96]. Collector [YW22, BBYG+05, LP06, TSBR08].
Coloring [BCT94, CH90, GSO94].
Communicating [AFdBR80, GC86, HM84, MW84, MC82b, M083, Os83, P914, Pur91, Sou84, Ber80, KS79]. Communication [Ang89, CHY12, FJK+17, FY85, Ge85, Hu90, LH91, MB83, vPS81, KBC+99, M185, SWU10, WM12].
Communication-Centered [CHY12]. Communications [RS84].
Commutativity [RD97, Apt00, Cha02]. Compact [BC79, Sip82, Wad90].
Compactification [RH87]. Compacting [CN83]. Compaction [CP17, Wis79, BP12, DDD00, DEMD00].
Comparative [WCW90, WCW91].
Comparing [Hai05]. Comparison [CN83].
Compartmentalized [WLBF16].
CompCert [BDP14]. Compensation [FGL94]. Compilation [ABC+21, DLR16, FKFW98, FL91, JLP+14, JF81, Oh095, PAS+15, PG21, Sit79, KMM+98, LST02, LDM07, SYN06]. Compile [ABR81, GW99, Hol87, Tra08].
Compile-Time [ABR81, Hol87, GW99, Tra08]. Compiler [ABC+21, App94a, Bud84, CM86b, DK17, DEMD00, FT94, FGL94, JSB+12, Rei83, Slo95, Son87, Wha94, YBL16, Ano02a, CMLC06, DSH09, GMM99, KN06, PE08, PHEK99, SYK+05, VHH02].
Compiler-Driven [YBL16]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHH02].
Complementation [CFG+97]. Complete
[Min84, Tho94, JC97]. Controlling
[BALP06, LaL81, LMD98]. Convention
[AF84]. Convergence [Bar85]. Conversion
[CS87, SW97b, SA00, YK97]. Cooperating
[GLR83, NO79]. Cooperation [BK88].
Coordinating [JS94]. Coordination
[GLR83]. copying [TSBR08]. core [IPW01].
Coroutine [San80]. Coroutines [LS81, NO79].
Correct [DGMP97, Hen86, JP17, SS88, AAD
+07]. Correction [FA93]. Correctness
[ABC+21, Apt86, CM86b, DI09].
Correctness [GLR83]. copying [TSBR08].
core [IPW01]. Coroutine [San80].
Correct [DGMP97, Hen86, JP17, SS88, AAD
+07]. Correction [FA93]. Correctness
[ABC+21, Apt86, CM86b, FRW90, Gom92,
HW90, Lam79, Lam80, ML21, Oss83, San96],
correlated [YS99]. Correspondence
[BS88, Bur90b, Bur91, Coh91, CM93, DS88,
Ell82, FA93, Fra81, Hen83, LaL83, LaL84,
Moh81, Mol83, MS88, NN86, Par90, Pen83,
Sor89, SM82, Tan83, Tie88, Vol91, WST85,
Wir91, YB88].
Corrigendum [Ano18, BKRW05, DF81,
Fra80a, KS89, Lam80, Pur91, QG95, TGT20,
Van96a, Wal81, WGS93]. Cost
[AB81, Bac84, DL93, Hai98, Han81a, ZGZ05,
VALG05]. Cost-optimal [Hai98]. costs
[GMP+00]. Counting [Bal94, LP06].
Counts [Bob80, Wis79]. Coupled [ACW90].
Covariance [Cas95]. covariant [TZ50].
Creating [Mye90]. criteria [Hai95].
Critical [PS93]. Critique [CM93]. Cross
[Ano18, FTJ95, GSS+18].
Cross-Interferences [FTJ95].
Cross-Language [Ano18, GSS+18].
Cryptographic [App15]. CS [CD79].
CSim [SZLY21]. CSP [AF84, Bag89, BS83,
Fid93, Hua90, LS84, Zie94]. CSP-Like
[Hua90]. CSS [HLH19]. currency [DS98].
Curry [LR19]. Curry-Style [LR19].
Custom [DJP+16]. CV3 [CZ84]. Cycle
[BG98b, PBK+07]. Cyclic [FRW90]. Cyclic
[RY88].

D. [Bur91]. Data
[AMT14, ANP89, AM85, Bac84, BNNN22,
BC85b, BL87, Bur90a, Cha93, CS87, Deb89,
DP93, DD85, Ell82, EO80, FL81, GMH81,
GEGP17, HL82, Her93, Hes88, Hol87, Jen97,
JCO19, KH92, Kam93, KZC15, KK98,
KD94, LaL89, LO94, LN02, LVRG21, Lo97,
Mal82, MMR95, MCT96, PP91, QG95,
RCRH95, RP88, SSS81, Sku95, SGL98,
SM81, TWW82, WL85, Wei91, Wei90,
Wet82, Wey83, CFP+04, DHM+12, DGS97,
HBJ98, KBC+99, KF00, LK02, Rep00, SP07,
VALG05, YUW02, ZGZ05, Pur91].
data-centric [DHM+12]. Data-Driven
[BL87, CS87, JJC019]. Data-Flow
[BC85b, Bur90a, Wet82, RP88, KBC+99].
data-independence [Rep00].
data-member [KF00]. Data-Parallel
[Cha93, HB98]. Database [Bar85, CB80].
Databases [SR21]. Dataflow
[Deb95, DFR15, MWB94, SS13, SS96,
Van96a, Van96b, VH+01]. datalog
[LS09, ZS20]. datatypes [MBC04].
Deadlock [CHMY19, Hua90, Kob98].
Deadlock-Free [Kob98]. Deadlocks
[FK+17]. Dealing [GLMM05, GG85].
Debugging [CMN91, CM93, Cop94, Hen82,
WST85, ZS20]. Decidable [LB22].
Deciding [GGL15]. Decision
[MTG80, NO79]. decisions [MTSS09].
Declarative
[ABPS98, TCVB14, Bou05, MME+10].
Decompilation [BB94]. Decomposing
[BDL+08]. decomposition [LK02].
decrease [DK+96]. Deducing [TB95].
deduction [LMD98]. Deductive [MW80].
Deep [YW22]. Default [NS+14, LMM21].
Deferring [MTSS09]. Defined
[Wal92, Wal80, Wal81]. Defining [Ode93].
definite [RKRR04]. Definition
[Bou92, BWP87, CI84, CD79, Fid93, HS94,
WC90, WC91, Wal94]. Definition-Use
[HS94]. Definitions
[BS86, Wil82b, Dam93, VHS02, SI89].
Delay [BG98b]. Delayed [KPF95, RC03].
Delayed-Load [KPF95]. Delaying [Kau84].
Deleting [GP81]. Delimited [BDM15].
Demand [FPS19, GSW95, PA85, PA86a, PA86b, PF96, SR95, DGS97].
Demand-Driven [GSW95, PA85, PA86a, PA86b, FPS19, PF96, DGS97].
Denali [JNZ06].
Denotational [AB94, FA93, Gud92, MSJ94, NF89, Nie85, Sch85, dBB85].
Dependence [BGH + 13, CFR + 91, FOW87, HBG + 09, HR90, ML21, PB97, PW98, Wol94, RAB + 07]. Dependence-based [ML21].
Dependences [PW94].
Dependencies [Deb89, HBS22, CSS99].
Dependency [Blu99].
Dependent [LS80, Miq19, NBG13, Ode93, RTD83, Rob79].
dequeues [Chi05].
DeRemer [Sag86].
Derivation [BKB80, Cat80, DSW82, Gie83, HIT97, Kna90, TM93, Ana02a]. Deriving [Wan82, Bou06]. Describing [AW85].
Description [McG82]. Descriptions [Boe85, BKL + 97, Cat80, Ana02a].
Descriptors [Hol87]. Design [BPP16]. BCD + 15. BO04. DF80. DF81. DC22. FT94. HM84. KKM90. LDM07. ML80. RCS93. RL98. SYK + 05. Bou05. MTSS09. CML06.
design-pattern-based [MTSS09].
Designing [LaL89, ALZ03]. Designs [AW85]. destructive [SRW98]. Detect [ISY88]. Detecting [GSW95, HCS10, Sch85]. Detection [CM86a, Hum90, MC82a, MC82b, TM93, AFF06, HDH02, PFH11, PCJD08, XA07].
Determinacy [TK94]. determination [DS98]. Determining [MF88].
Differencing [PK82, RSL10]. Differential [BKOZB13, ZP07]. Differentiation [Sha82, VS22]. Diffusing [MC82b].
Dijkstra [BN94, Nel89]. Dimensional [Hil88, GPWZ08]. direct [YK97]. Directed [BDJ13, DMM88, Gud92, Han94, Set83, SYYH07, OKN06]. Direction [Dar90].
Directly [Hob84]. Director [KS88, KS89].
Directory [Han81b]. Discipline [VMLY22, FGM07b]. Disciplines [SS84].
Discovering [FJK + 17]. discovery [PZ05].
Discrete [Bar81]. Discrete-Event [Bar81].
Disintegration [Ne20]. Disjunctive [Jen97, JCO19]. dispatch [DAS98, MFRW09]. dispatching [GZ07].
Distance [Wol94, ZSD09]. distribute [CRN + 08]. Distributed [ABLP93, AF84, APL86, AW85, BKS88, BEM15, Bur84, CJK95, CM86a, CBGDF95, CS95, DAW88, Dug99, FLBB88, Fra80b, GHS83, HSG17, Huo90, HM84, Jon94, Kat93, KCK84, KKM90, Lam84, LS83, MC82a, RCRH95, SS84, Sch82, TM93, TCP + 17, Zav85, ABL03, FM87a, HVB + 99, KGMO04, LK02, MDJ05, Piq96, Fra80a, Moh81, HVB + 97].
Distributed-Memory [KK98, RCRH95].
div [Bou92]. Dive [YW22]. Divergence [SdSCP13].
Dj [DR05, SGL96, SGL98, UM02]. DJ-graphs [UM02]. DLLs [Dug02]. do [SS05a].
Documentation [MH86]. does [DMP06].
dolce [MP10a]. Dollars [HL22]. Domain [LM18, Tra08, RM07, SS05a]. Domains [CM87a, ELS + 14, GS98, FH04, GLMM05].
dominance [Ana02b, DVO07]. dominator [SGL97].
Dominator [LT79, Ana02b, BCRW98, BCRW05]. Don’t [AKNP17].
Down [HL22, SZLY21]. drf [MSM + 16]. Drinking [CM84, MS88]. Drive [PK80].
Driven [BL87, CS87, GF85, GSW95, JDCO19, PA85, PA86a, PA86b, GT81, XBYL16, DGS97, FPS91, PF96, GT20, YMW97]. Dually [MT08]. Dummy [Lam86].
During [BKB80]. DyC [GMP + 00]. Dyck [LZ22].
Dynamic [ACPP91, AGT89, ASF17, BNN22, BB79, BDM15, Bre89, CGG + 19, CHMY19, CTT07, DS98, Dug99, HSS + 14, HN05, Kaiz99, KR79, RCRH95, Ven95, WR08, dBB85, ACE96].
BP12, CEI*07, DDDCG02, GZ07, MMM*07, PHEK99, SJP12, SHB*07, SYK*05, SYN06, WKD04, ZGZ05.
eager [FKW00]. Earley [Lei90]. Early [AB81]. ECCS [CDFP89]. Edge [DP93].
Editing [FL81, HT86, Nix85]. Editor [FM87b, DeM83, Per90, Rep86, Wol92]. Editorial [AP07, App93, AG93, AF94, MP07, Mye19, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04]. Editors [DMM88, MM89, RTD83, Wat94].
EDO [OKN06]. Eect [Gor21, RLS*01]. Eective [BS83, Col84, JB20, KKN06, NI05, PE08, WJ98, YUW02]. Effectiveness [BdIBH99, SH89]. Effects [Boe85, MXZ*22, SV20, TA08b]. Efficient [AKBLN89, ADGM91, BB79, BGH*13, Bre89, Cam89, CS95, DP82, DMM88, GZ05, GZ07, GLR83, GLO88, GSO94, HVB*99, HS94, HSS*14, HIT97, JP81, Jon90, KKM90, KRS88, KPF95, MVV*01, MM82, NB99, NI05, PHP02, PXL95, PG21, PKH07, PA85, PA86b, RH87, SS08, SA00, SS88, TN19, WG98, YUW02, BCP08, GBH99, KSV96, LPSO04, LS09, PBF*07, TP04, VVJB10, YF98, PA86a, SS09]. Efficiently [Bal94, CFR*91, CF95]. Eiffel [ACE96]. elaboration [KR01]. Election [Hua93].
Execution [BNV+21, CS87, DIL90, GJ93, JW17, JNGG10, FS11, SS98, SS88, BALP06, GPA+01, TSY00, YF98].

Exemplars [LaL89]. Exemplified [DGL+79]. Exercise [Kna90, Mis81].

Exhaustive [Bur90a]. Existential [MP88]. existing [LS98]. expansion [DMP96].

Expansions [SBB+19]. Experience [FSS83, Wal92]. experiences [Eug07].

Experimental [LV94, SSS83, Ven95, ABB+09, BGP99].

Experience [FSS83, Wal92]. experiences [Eug07].

Experimental [LV94, SSS83, Ven95, ABB+09, BGP99].

Expressive [MFRW09]. Expressiveness [WGS92, WGS93, PS96]. Extended [ABC+21, CBMO19, KGMO04]. Extending [CEW14, CMS03, MSRR00, MK94].

Extensibility [LCK+22]. Extensible [HSG17, Sto04, ATD08, MBC04].

Extensions [Bur90b, Coh91, WSH15, Wir91, ALZ03, KKN06, LS08].

Extraction [GP95]. extraction [TSL+02]. extrapolation [WM12].

Facets [ASF17]. factoring [DRSS96]. Failure [BN99, Dar90, GHF+19, Kar84].

Failure-Free [Kar84]. Fair [BN94, PR07].

Fairness [ES97, OA88, TB95, AH98].

Fashioned [AL94]. Fast [ADR06, DAS98, FMP011, HVDH07, LT79, LZR22, SR95, DR05, PE08, TP04, VBLG04, DVML15]. Faster [CGG+19]. Fault [CS95, Lam84, LJ99, AAE04].

Fault-Tolerance [LJ99]. Fault-Tolerant [CS95, Lam84, AAE04]. FD} [GLMM05].

FeatherTrait [LS08]. Featherweight [IPW01, LST02, LS08]. Feature [ASAVF19, AH10]. Feature-Specific [ASAVF19]. Feeding [PA86a]. Fence [AKNP17]. Few [HL22]. Fickle [DDDCG02, AAD+07]. field [PKH07].

field-sensitive [PKH07]. fields [PZJ05].

FIFO [FLBB89]. Final [Kam83]. Finding [KRS84, KKM90, LT79]. Fine [DSFG21, HL22, PBR+15, DNS+06].

Fine-Grained [HL22, PBR+15, DSFG21, DNS+06].

fingerprinting [CTT07]. Finitary [AH98].

Finite [ACW90, BLH12, CES86, GC6, PK82, PP91, Pur91, RSL10, Zav85].

Finite-State [ACW90, BLH12, CES86].

First-Class [HKMN94, Han92, SDTF13, MH04].

First-Come-First-Served [LH91].

First-Enabled [ADG+94]. First-Fit [Bre89]. First-In [ADG+94]. First-Order [DP97, JPP91, JS94]. Fixed [SS98]. Fixed-Order [SS98]. Fixpoint [AC94, Qia00].

Flexible [AD98, Hud91, MSM+16, WG98, Wii82b, dJKVS12, IV06, KGMO04].

Floating [CK94, Fat82, SBB+19, Han96, Mon08].

Floating-Point [CK94, Fat82, SBB+19, Han96, Mon08].

flop [MMG00]. Flow [AR80, AD98, ASF17, Bac84, BC85b, Bur90a, DP97, DP93, FJKAO6, Hor97, KDH94, MMR95, NGB13, PO95, PP91, PBR+15, Pur91, S683, SGL98, SS13, Wet82, DGS97, HR02, HY07, KBC+99, Pal98, PS03, RRSV08, RP88, TZ07, WJ98].

Flow-Insensitive [Hor97, FJKAO6].

Flowback [CMN91]. Flowgraph [LT79].

Fly [CF95, BA84, LP06, PBB+07, URJ18]. fold [RKRR04]. Folklore [LY98]. Font [FK85].

G. [Tie88]. Garbage [BA84, CN83, DSW82, ISY88, JCMM19, TM93, URJ18, WLBF16, Wis79, YW22, BBYG+05, BALP06, HDH02, LP06, Peq96, TSBR08]. Garnet [VHM+01]. General [BGL93, CHMY19, HSS+14]. General-Purpose [HSS+14].

guarantees [LS09]. guard [MP07].
guarded [SP07]. Guardians [LS83].
Guards [Ber80]. Guest
[FP02, OP04, DeM83, Per90, Rep86, Wol92].
Guide [App94a, BDH+16]. Guided
[OLH+16]. guiding [VALG05].

Hackers [App94a]. Hancock [CFP+04].
handle [VJB12]. Handling [Hau96, LdR81, Pic96, SSS83, UM02, YB85, YB87, YB88, CRN+08, LS98, LP80, SSD09, Hen83]. Hard
[Hor97]. Hardware [BKL+97, Mis86].

harmful [Gor04]. Hashing [PB80, Duc08].
Haskell [GRSK+11, HHPW96]. Heap
[KSK07, BALP06, KF00, YS10].
heap-manipulating [YS10]. Heavily
[BG89a]. Hennessy [CM93, WST85].
Herding [AMT14]. Heuristic
[SL92]. hiding [LN02, OYR09]. hierarchic
[AG04]. Hierarchical
[BA09, CP95, CD97, AYO1, CP96].
hierarchically [MBC04]. hierarchies
[ST00a, Van96a, Van96b]. hierarchy [KF00].
High [Cam89, Fat82, MSM+16, URJ18, CMS03, VWJB10]. High-Level
[Cam89, Fat82, CMS03, VWJB10].
High-Performance [URJ18]. Higher
[AC94, AD98, CJK95, DJP+16, FPS91, SV19, BBTS07, DF11, SKS11, SP97].
Higher-Order
[AC94, AD98, CJK95, DJP+16, FPS91, SV19, BBTS07, DF11, SKS11, SP97].
Highly [Her93, SUI95]. Hoare
[Apt81, GM81, LS84, Sok87, Yin11, dBH21].
Hoc [MDCB91]. Holistic
[ZMVPJ17]. Homomorphic
[VS22]. Homomorphisms
[HIT97]. HOP [BLRS12]. Hybrid
[KF10, KS10]. Hyperball
[LM18]. hyperdoctrines
[BBTS07].

I-Structures [ANP89]. I/O [Car95]. Icon
[GHK81, Gri82]. id [Bee94]. idempotency
[KOE+06]. Identical
[FLBB89]. Identification
[BGH+13, SBE+19].

identify [MMM+07]. Identifying
[Ran99, SGL96]. Idioms
[PP94]. IDL
[Lam87]. IEEE [Fat82]. Ignorance
[GNS+15]. Illustrative
[Oss83]. Impact
[BHM+19, OLH+16, CTK86]. Imperative
[AB20, ABPS98, DFR15, Gro06].
Implementation
[AKBLN89, AOC+88, BCD+15, Bou88, Bre89, BS83, CM86b, GMH81, Gas83, Lin93, MDCB91, PXL95, Rl98, WL85, CMLC06, FM87a, GB99, LDM07, LPSO04, Tra08, Zho96].
implementations
[BBF+11, BFGT08, DF98]. Implemented
[DB85]. Implementing
[BR97, Her93, HW82, Sku95]. Implications
[Fat82]. Implicit
[BH05b, SJ12]. Implicit-signal
[BH05b]. improve
[KF00]. Improved
[GHR80, Mur91, KK07]. Improvement
[MS83, San96]. Improvements
[BCT94]. Improving
[CK94, CM+95, MCT96, TCF+17, WS97].
impure [Pip97]. Incomplete
[MRGP20, GLMM05]. Incremental
[Bur90a, CP95, DMM88, GM79, HKR92, HKR94, HPM80, Hud91, KAI89, Lar95, LST98, LHR19, PS92, RTD83, RP88, SGL97, WG98, YS91, BBYG+05, CP96, Van96a, Van96b]. Incrementally
[QL91]. Independence
[DHM00, GGV22, Rep00]. Independent
[ML80, Mul92]. Index
[ANO86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98]. indexed
[AM01]. indices
[RR05]. Indirect
[Piq96, CEG07, YK97]. Induction
[GSW95, Sit79]. Inductive
[LBMT22]. inefficiencies
[MMP+07]. Inessential
[SS82, LSL84]. Inference
[CEW14, Deb89, Hen93, LO94, LY98].
MRGP20, Pad19, SR21, TB98, Wey83, FFLQ08, JB06, PM06, PT00, PS03, Van06].
Inferring
[FNBC20]. Influence
[FTJ95]. Information
[AR80, Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b, AS17, BC85b,
HR02, NBG13, PBR+15, PS03, GS99, HY07, LN02, OYR09, TZ07. Information-Flow
[BC85b, TZ07]. infrastructure [SWU10].
[BS83, vPS81]. Input-Output [BS83]. Inputs [PA86a]. Insensitive
[Hor97, FJKAA06]. Insertion
[AKNP17, GJ05]. inspection [CF04, FG03].
Instantiation [Der85]. Instead
[Lam84, Rem81]. Instruction
[KPF95, LCBS19]. Instructions
[LS80, PS93, RF97, Rob79, LPP01]. Integer
[BAGM12, BEF+16, FNBG20, HSD22, BGP99]. Integrated [SS13]. Integrating
[HPR89, WJS+00]. Integration
[CO90, Leu04]. Intensional [ST03].
Interaction
[WSH15, WT11, van88, BCM99]. Interactions
[JS94]. Interactive
[ACS84, BS86]. Interconnectability
[TY18]. Interface
[Win87, van88]. Interfaces
[DS90, Mye90, TLHL11, WT11]. Interferences
[FTJ95]. Interfering
[Jon83]. Interleaved
[LZS22]. Intermediate
[Lam87, Pem83, TVS82]. Internal
[Han81a]. Interoperability
[Ao818, GSS+18]. interoperable
[BFTG08]. Interpretation
[BGL93, CFG+97, DC22, DLR16, KRR18, LV94, MSJ94, BDL+08, BdlBH99, DGG97, Leu04, SYYH07]. Interpretation-Based
[DLR16]. Interpretations
[CMB+05, HY91, SJ03]. Interpreters
[LR13, CEG07]. Interprocedural
[Bur90a, BT93, DP97, HAM+05, HS94, HBC99, HRB90, LWR21, ML21, NR06, SH89, CKT86, DVD07, DGS97, FMopS11, JLRS10, KK07, RLS+01]. Interprocess
[RS84b]. Interruptible
[BNV+21]. intersection
[Dan03]. Intertask
[FY85]. Interval
[Bur90a, GNS+15, FH04]. Interval-Based
[Bur90a]. Introduction
[Ahm20, DeM83, HCH82, Mül21, Per90, Rep86, Sag07, Wol92, Yos22]. Invariant
[BKB80]. Invariants
[Cla80, GEGP17]. Irreducible
[Hav97, UM02]. Irregular
[YF98]. Irrelevant
[GP81]. Iso
[LB17, ZZ02]. Iso-Recursive
[LB17, ZZ02]. Isolation
[Wha94]. Isoform
[JJD98]. Isoform-free
[JJD98]. Issue
[Ahm20, Ano18, TGT20, Yos22, Sag07]. Issues
[BO94]. Iterable
[Gor21]. Iterated
[GAE96]. Iteration
[Cam89, MOSS96, GS11, JLF02, Qia00]. Iterative
[Ans87, Par90, DR05, JNGG10, LS04]. Jade
[RL98]. Jam
[ALZ03]. Java
[AFF06, ALZ03, AAD+07, BH05a, Bla03, BALP06, CGS+03, CMS03, CSMC00, FFLQ08, FM99, GPF08, IPW01, KKN06, KGMO04, KN06, KR01, LST02, LP06, LS08, Loc13, MVE+01, MRE+010, MFRW09, MMG00, NRO6, OKN06, Qia00, RRB19, SLC03, SMP10, SBE+19, SAA99, SYK+05, TN19, TSL+02, WH98]. Java-like
[KN06]. JavaCOP
[MME+10]. JavaGI
[WJS11]. Join
[WKD04]. JR
[KGMO04]. Jump
[LS80, RS84a]. Just
[DLR16, TN19, SYK+05]. Just-In-Time
[TN19, DLR16, SYK+05]. JVM
[HO07].
KaffeeOS
[BH05a]. Kaiser
[Tie88]. Kernels
[BCD+15, ATD08]. Keys
[PB80]. Kilbury
[Lei90]. Kitsune
[HSS+14]. Kleene
[Koz97]. Knot
[MC82a]. knowledge
[GLMM05].
labels
[Sto04]. Laboratory
[BR81]. LaLonde
[Hen83, LaL83]. LALR
[DP82, KM81, PCC85]. Lambda
[Geo84, Gom92, NN86, PS08]. Laminar
[PBR+15]. Lamport
[Ang89, Pet83b]. Language
[ACPP91, AOC+88, Ano18, ABPS98, BS86, BPP16, BO94, BOR81, BC91, DVLMI5, Fat82, Fea87, FFF+18, GS5+18, LAM+18].
Gud92, Hal85, HSG17, JMSY92, JPP91, Kail89, LVRG21, McG82, Per79, PPS79, RTD83, RCS93, Spo86, SNS+14, SDD21, Tur84, Wet82, Win89, YS91, YB87, dJKVS12, van88, Bou05, BSvGF03, CFP94, DWWW08, DF98, FM99, Gro06, HBJ98, KN06, LP99, MF09, MWC299, PPT08, PHEK99, Tra08, VHK02, HCW82, YB88.

Language-Based [Kai89, RTD83].

Large [KL82]. Large-scale [ZSS20]. Lattice [AKBLN89, MMR95, FH04]. Lauer [GM81].

Layout [KK98, LVA+83, GPW08, KF00]. Lazy [ABM93, FKW98, HKR94, HDH02, ITF+22, TCVB14, Chi05]. LCF [Sok87].

lead [SS05a]. Leader [Hua93, KKM90]. leak [HDH02]. learned [VHM+01].

Learning [CGJ+97a, HOYY18, JRCO19, SR21]. Least [AB81, BAC84]. Least-Cost [AB81, BAC84]. Left [FKW98]. Left-Linear [FKW98]. legacy [NCH+05]. length [SMP10].

Lessons [URJ18, VHM+01]. Let [LY98].

Let-Polymorphic [LY98]. Level [Cam89, Fat82, GP95, YBL16, CMS03, VWJB10].

Lexical [HBM+06]. lifetime [HBM+06]. Lifetimes [Pea21]. Lightweight [Pea21, SW97b]. Like [Hua90, KN06]. Limitations [CP17].

Logical [LS83, Wei90, FGM+07a]. Link [DDD05].

Liveness [ACW90, OL82, RY88, HDH02]. LL [BF87]. LLVM [HL22]. Load [KPF95].

Loaded [BG89a]. Local [BDFZ09, CBDGF95, PT00, SDB20, TSBR08, Wei89, Dam03, Sau96]. Locality [BAC16, MCT96, VAL05, ZSD09]. Locally [AB81, BAC84, Min84]. locating [JNGG10].

Locator [ZMVJ17]. Lock [GEGP17, KS10]. Lock-Free [GEGP17].

lock-freedom [KS10]. locking [AFF06].

LOCKS [BFH11]. Logic [AS89, AFV98, Apt81, BNN22, BGL93, BL87, BCD90, BDJ13, BMPT94, CS04, CES86, CFM94, DW98, Deb99, DL93, Deb95, DJP+16, JPP91, Kar84, LS84, Lam94, MW84, MSJ94, MMG92, PZ22, SS98, Sok87, TK94, TB95, dBH21, BBTS07, BMR01, BCG+07, BliBH99, CO8, CG86, CSS99, DDV99, DPPR00, GHB+06, GW99, HVB+99, HPMS00, KWL09, LMD98, Len04, PM06, RKRR04, SRW02, Yin11, dHB+96].

Logical [BNN18, GGL15, GS98, TY18, RSL10, Tar07].

Look [DP82, GMN+21]. Look-Ahead [DP82]. Lookahead [KKM1, MF88].

Loop [BAC16, CS87, MCT96, Sit79, RKR12].

Loops [BAGM12, Boo82, CK94, DB85, FTJ95, Hav97, Wat91, AN02b, LS04, LSLR05, Ram99, RDG08, SGL06, UM02].

low [CSM00]. low-end [CSM00]. Lower [FNBG20, PW94]. LR [ADGM91, BKL94b, BF87, CPR02, DMM88, Jef03, JP17, KCI01, LaL81, LaL84, SS82, ST00b]. LR-based [KCI01].
M [Bur91, Mul92]. **M-LISP** [Mul92].

Machine [CGJ+97a, Cat80, GNS+15, Gie83, Han94, JJC019, LR13, ML80, RF97, SS98, SDB20, Wal92, Zav85, Ano02a, CEG07, CF04, HK07, KN06, Oh07, RRB19].

machine-checked [KN06]. **Machine-Code **[LR13]. **Machine-Independent** [ML80]. **Machine-Learning** [JJC019].

Machine-Specific [Gie83]. **machinery** [FKW00].

Machines [ACW90, Bee94, CGST95, GC86, KK98, PS93, PP91, Rob79, RCR95, KY01, AG04, ABE+05, ABS09, TSY00, Pur91]. **Made** [LM22].

Madsen [Eli82, SM82]. **Magma2** [Tur84]. **Maintenance** [GKL94].

Management [JPS1, Mur91, SDB20, van88, BP12, WCM00, Zho96].

Manifast [Sig17]. **manipulating** [YS10].

Manipulation [DVL15].

many [AE98].

massive [BH07]. **Massively** [CGST05].

Matching [AC96, AGT89, CP95, KPS92, ADR06, Van06].

Matching-Based [CP95].

materializations [RMH06].

Mathematical [Ban11, Hes88, LW93].

MATLAB [DP99].

MATLAB(R) [JB06].

Matrix [FT95].

Matrix-Vector [FT95].

Maximal [BG89b, Rep98].

Maximal-munch [Rep98].

Maximization [GLO88].

Maximum [Kna90].

May [Hor97]. **May-Alias** [Hor97].

MCALIB [FL15].

Measures [NeS20].

Measuring [FL15].

Mechanically [DSW11].

Mechanism [CO90, YB85, DNS+06].

Mechanisms [Rei83, HMS06].

Mechanizing [Pau01].

Median [Com80].

Medians [KR88].

megaflops [MMG00].

member [KF00].

Memory [AMT14, CK94, Cha93, CRM019, KZC15, KK98, KRS88, LB22, MSM+16, Mis86, RCR95, SS88, ABH11, BP12, GMM99, GW99, JNGG10, KF00, LK02, Loc13, QR00, RR05, TSY00, TP04, VBLG04, WCM00, MMM+07].

memory-efficient [TP04].

memory-hierarchy [KF00].

Merge [Ber94].

Merlin [HBM+06].

Message [CSW06, SS84, VMLY22, Gor04].

Messages [BB79, Jef03].

meta [Tra08].

meta-programming [Tra08].

Metalevel [Jag94].

Metaprogramming [CI84].

Method [BNN18, BCD09, BF87, HL82, Jon83, Le87, JJ98].

Methodology [Ban87, Her93, Sku95].

Methods [DAW88, KM81].

METRIC [MM+07].

Mezzo [BPP16].

Microanalysis [HCHP92].

Microcode [MV87].

Microprocessors [BNV+21].

Middle-End [BDP14].

Middle [BDP14].

Might [Bee94].

migration [Piq96].

Minification [HLH19].

Minimal [FKW98, IPW01].

Minimization [RS4a].

minimizing [RMH06].

Minimum [GHS83].

Minimum-Weight [GHS83].

Mining [AMT14].

Missed [Cop94].

miss [GMM99].

Minx [HL05, RD13].

mixins [ALZ03].

ML [Bha99, CBM019, HM93, HT04, PS03, RD13, Sp086].

Mobile [LS03, VHB+97, BCC04, KS10, SWU10].

mod [Bou92].

Modalities [SV20].

mode [PS08, ZP10].

Model [AY01, Ang89, BK11, BL87, BGP99, CGL94, DLR16, ES97, GS98, GG85, GL94, Han81a, HW92, Ho87, JB20, JJC019, KH92, MSM+16, MMG92, ND16, VSS94, ACM11, AM01, AE01, JJ98, JPS+08, KN06, KV00, Loc13, NP08, QR00, SG04, VWJB10, VALG05, YMW97].

Model-Checking [ES97, BGP99].

Modeling [AF84].

Modelling [AMT14, ADG+21].

Models [GJ03, KZC15].

Modern [BCF04, LMM21, YW22, RAB+07].

Modes [Deb89].

modest [LS08].

Modification [Lei90, RLS+01].

Modula [EO80].

Modular [AG04, BMPT94, CDK+18, EMH20, GL94, JBK18, Jag94, KKM09, LN15, MBC04, Wei89, YB85, dJKVS12, KV00, MFRW09, MOS07b].

modularity [BA99].

Module [PAS+15, RD13].

** Modules**

O [ABPS98, Car95]. Object [DF84, Hu96, KH92, Ryu16, Ste22, WC90, WC91, BSvGF03, DMM01, DDDCG02, FM09, GPWZ08, HB+06, JPS+08, LPS004, Pq96, WJS+00]. Object-Based [KH92]. Object-Oriented [HU96, Ryu16, Ste22, BSvGF03, DMM01, JPS+08, WJS+00].

optimal [CP96]. Optimally [BL94a].

Optimization [BOV85, CGST95, FK85, JCM99, KR94, Lar95, PB97, Hai98, JNZ06, KSV96, MSRR00].

Optimality [CP96]. Optimality [BL94a].

Operator [CSV01, Hen83, LS91]. Operators [Ive79, She91].

Optimistic [PM04].

Operator [CSV01, Hen83, LdR81].

Optimizing [CEG07, KMM98, LSLR05, ML80, NSZS13, QR00, BGKR09].

Or-Parallel [GJ93].

Ori-Parallel [GJ93].

Optimizers [Gie83].

Optimize [DMM01, VBLG04].

Optimized [CM93, Cop94, Hen82, WST85, DS98, UM02].

Optimizer [DF80, FSS83, DF81].

Optimizing [CEG07, KMM98, LSLR05, ML80, NSZS13, QR00, BGKR09].

Or-Parallel [GJ93].

orchestration [PE08].

Order [AC94, AD98, Bur84, CJK95, DP97, JFP91, JS94, SS98, BBTS07, DF11, FPS91, SKS11, SV19, SP97].

ordering [GS99].

Organization [Han81a]. Oriented [Bor81, Dar90, Ell82, FFF18, GKL94, GP81, HU96, Ryu16, SM81, Ste22, Tur84, YB87, YB88, BSVGF03, DWWW08, DMM01, JPS08, WKD04, WP10, WJS00].

origins [San09]. OSI [CDFP89].

Output [Ber80, BS83].

overflow [KOE06].

overhead [BP12, SS96].

overlays [SWU10].

Overload [Bak82].

overloading [SS05b].

Overview [AOC88].

ownership [DDM11, SS96].

Oz [VHB97].

Package [Hi88].

Paper [GM81]. Parallel [ANP98, BG22, BOV85, BO94, BE13, Cha93, CGST95, CMN91, CI94, DS83, Fos96, GLO88, GJ93, GPA01, HCHP92, HIT97, JF81, Kna90, LHR19, Mis94, NSZS13, OA88, Rao94, SS88, VMLY22, BBYG05, CG86, GB99, HBJ98, KSV96, LK02, MVV01, RR03, YF98].

Parallelism [Bur84, GP95, KSV96, NB99, PW94, TCVB14, YBL16].

Parallelization [BAC16, BDJ13, PP94, BdlBH99, BAC16, BDJ13, PP94, BdlBH99, HAM05].

Parallelizing [HP96, ME97, RD97].

Parameter [Gaz83, Zho96].

Parameterization [TWW82].

Parameterized [CG97b, CK93, Gaz83, RKS94].

Parametric [HFC09, MG92, SRW02, IV06].

Parametricities [DDP22]. Parenthesis [AS80].

Parse [CG86].

Parsed [Wad90].

Parser [DBDH84, JP17, LA84, SS95].

Parsers [BN99, LA81, MYD95, PK80, CPRT02, SJ06, ST00b].

Parsing [CH87, DMM88, Fis80, GM79, Lar95, RH87, Sam80, WG98, KO1].

Part [La81, PA85, PA86a, PA86b, Apt81].

Partial [AVF98, CP17, CK93, DS88, Gom92, KCL09, SS89, ADRO6, BP12, CG04, G07, LMD98, Le04, ST00b].

Partially [BLH12, Kob98, RRSY08].

Partially-flow-sensitive [RRS08].

partitioning [RM07, YF09].

Parts [Son87].

Pascal [LS97].

Pass [Bak82, BM94].

Passing [BDM15, Gaz83, SS84, VMLY22, CSW06, Gor04, Zho96].

Passive [AKP94].

past [PM09].

path [Bl94, CIJGP18, SMP10]. path-length [SMP10].

Patient [FFF18].

Patient-Oriented [FFF18].

Pattern [EGP14, ADRO6, JAY04, MTSS09, Van06].

Pattern-Based [EGP14].

Pattern [EGP14].

Pattern-Based [EGP14].

Patterns [GH80].

PDS [Han81b].

PEAK [PE08].

Peephole [DF80, DF81, Pem83, TVS82].

PegaSys [MH86].

Pennaello [Sag86].

Perfect [Duc08].

Performance [HU96, MSM016, PB80, UR18, KF00, PE08].

Performed [Coh91, WIR91].

Permission [BPP16, SNS14].

Permission-Based [BPP16, SNS14].

permissions [Boy10].

Persistent [AM85].

Petri [JT98].

Petri-Net-Based [JT98].

Phases
Profil
[ASAVF19, BL94a, SP97]. Progr
[Bal94, BNNN22, BAL07, BKB80, Col84, DKKL18, Der85, FPS19, Fea82, FOW87, FT94, FL91, HSP83, HKR94, HSD22, Jen97, JJC019, KKW14, KW109, Lam83, Lam88, LFF14, LWR21, MS83, MW80, Mis81, Nie85, PP94, PPS79, Rem81, RPT17, SBS22, TSY00, Wat94, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NS13, Pau01, RAB+07, SLC03, WZ07, WN08, YF90, DKV07]. Progr
[AGT89, Ano18, AR84, ABPS98, BS86, BHM+19, BL87, Bir84, Bor81, BMPT94, BWP87, BCG86, BHM+19, BL87, Bir84, Bor81, BMPT94, BWP87, BCEM15, CHY12, COE+20, CL94, Dar90, DFR15, DGL+79, Dug99, FFF+18, Fos96, FL15, GTWA14, Har80, HK54, HO82, Kf92, Lee86, LVV+83, LMM21, LVRG21, MK94, Mye90, OGJ+18, Pet83b, RCS93, SS84, Ste22, SNS+14, SZBH86, TK94, TGT20, ZSO21, ABH06, BMRI01, Bou06, BdlBH99, CU08, Cg86, CKT86, DWWW08, DPR00, GW99, HBJ98, JPS+08, KM004, MVV+01, MTSS09, MQ05, Tra08, VWJB10, WDK04, WJS+00, Bir85, SWU10]. Progr-in-the-Large
[MK94]. Programs
[AWW95, AK87, AF98, AB20, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BE13, BEF+16, CR87, CB80, CM86a, CH93, CFNH18, CFG19, CEW14, CMN91, Cla80, CFM94, CS87, DFG21, DL18, DGM97, DW89, De89, DL93, De95, DP97, Di90, EMH20, EGP14, FJK+17, FNB20, GG85, GM81, Har80, HCP92, HPR89, How80, HIT97, ISY88, ITF+22, JKB18, JW17, Jun83, JF81, Kna90, Lam79, LS83, MSJ94, ML21, MT21, MRGP20, MH86, Mye18, NSZS13, OA88, OL82, PS92, QL91, Rao94, SS98, Sch82, SSS81, SSS88, TOUH21, TN19, VMLY22, Ven90, Web95, Wil82a, AE01, AAE04, BCG+07, CSM06, CSS99, DP99, DDV99, DS98, DMM01, EGM01, GM12, GHB+96, GH97, GPA+01, Hau96, HPMS00, JPS+08, KSV96]. programs
[LMD98, Leu04, LS90, MF90, NR06, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yin11, dHB+96, Bur84, Lam80]. PROLOG
[LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MB94, NF89, Zho96]. Promotion
[Bir84, Bir85]. Proof
[AFdR80, BDJ13, FRW90, GL80, Moi83, Rag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Oho07], proof-carrying
[AM01]. Proof-Directed
[BDJ13]. Proofs
[Apt86, BC85a, CM86b, JW17, LY98, Oss83, GRSK+11]. Propagation
[SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09]. Properties
[ACW90, AS89, CIJGP18, Kar84, LM18, OL82, RY88, TB95, We89, YS10]. Prophecy
[LM22]. Proposed
[Fat82]. prossima
[MP10b]. Protected
[PAS+15, WJS+00]. Protocol
[SL92, YS97]. Protocols
[MB83, BFGT08, SS96]. Prototype
[WC90, WC91]. Prototypes
[HW82]. Provably
[SDB20, GB99]. Provenance
[ZSS20]. provenly
[AAD+07]. Proving
[DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82]. Pruning
[BN99]. PSG
[BS86]. publish
[Eug07], publish/subscribe
[Eug07]. Pure
[BNN18, HU96, Pip97, Tar07]. Purpose
[App94b, HSS+14, Spo86]. Pushdown
[CBMO19]. PYE
[TN19]. qualifiers
[FJKA06]. Qualitative
[CFNH18]. Quality
[BHM+19]. Quantification
[Vol91, Bur91]. Quantified
[Gro06, STS03]. Quantitative
[CFNH18]. Quantum
[FDY12, BH99, Yin11]. Queries
[Bal94, CGG+19]. Queuing
[BB79]. Quiescence
[CM86a]. R
[AW82, CKT86, KMM+98]. R.
[Tic88]. race
[AFF06, PFH11]. Races
[KZC15].
Random [AS80]. Randomized [TOUH21].
Reachability [LZR22, NS13, TOUH21]. Reaction [DFR15, AG04, DGG97].
Read [AE01, PZJ05]. read-only [PZJ05]. Read [AE01]. Readable [Spo86].
Real [AL94, MMG92, RS84b, GH97, HK07, LS98, YMW97].
Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97]. realities [Gor04]. Reals [DK17].
Reasoning [BKOZB13, BLRS12, BDP93, BP82, BH99, CS80, DSFG21, Lam88, LN15, Rao94, SDB20, dBH21, TSBR08]. receive [Gor04]. receptive [ABL03].
Recipe [AL94]. reclassification [DDDCG02]. recognition [ATD08]. Recognizer [GHR80].
Recursive [AC93, AK82, Ban87, CFG19, Coh83, Coh85, LBN17, Sij89, ZZO22, ABE+05, AM01, CF04, Dug02, Pal98]. Recursively [BE13]. Reduce [BN99, MYD95, BALP06, KOE+06, SS96]. reduced [SG04]. Reducible [Hav97, JC97].
Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mul92, NN86, CSV01].
Redundancies [DSS88, Sor89]. redundancy [KCL+99]. Redundant [Coh83, Coh85].
Reentrant [Bob80]. Refactoring [Ste18, TFK+11].
Reference [Bob80, Pea21, Wis79, KSK07, KOE+06, LP06, MJ05].
reference-counting [LP06]. References [Han92, TGT18, TGT20, SV96].
Referencing [LS81]. Referential [QG95].
region-based [SYN06]. regions [RR05]. Register [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].
registers [ZP07]. Regular [CC97, HVP05, KBP22, LaL81]. relating [ABC+21]. Relation [LBN17, MTG80].
Relational [BNNN22, BKOZB13, CBS0, GS98, TLHL11, JJD98, JLR10]. Relations [ELS+14, HT86, LH08]. Relationship [BS88]. Reliability [LM18, WN08].
Reliably [TCP+17]. Rely [GEP17, LFF14, SZLY21].
Rely-Guarantee [GEP17, SZLY21].
Rely-Guarantee-Based [LFF14].
Remembrances [PM09]. Remote [BCP08, SG90]. Removal [AK82].
Rendezvous [Cha87]. Renvoise [Dha91, DS88, Sor89]. Reoptimization [PS92]. reordering [YUW02]. Repair [BN99, MF88, MYD95, KC01]. Repairing [CPR02]. Replacement [MM89].
Replicate [RB94]. replication [RD03].
Reply [Bur91, Fra81, LaL83, Tun83, Wir91, SM82].
Representation [DGL+79, Mul92, SM89, Wad90, Wan82, Mil85].
Representation-Independent [Mul92].
Representations [LM87, RF97, Wal80, Wal81, BGP99].
Resource [CS95, Cla80, IKS05, MQ05, BDFZ09, CEI+07, HR02, HAH12].

Rivieres [CGG, SA00]. Safer [LMM21]. Safe-by-default [BP89, Hua93]. Rings [BBF85, ACE96, BMR01, Bou88, BBF85, AC96, BMR01, Bou88, BBF85, AC96,

Specifying [GM81, Lam83, RF97].

Sketches [HSD22]. Slicing [AB20, AHJR14, CF94, DL18, GH97, HRRB90, ML21, Mye18, Ven95, WZ07, BHKK07, GZ07, NR06, RAB+07, WR08, ZGZ05]. SLR [BS88, Tai79]. Small [BNV+21, FLBB89, LH91, Pet83b]. Smart [Tie86]. Smarter [SK88, Tie88]. Smooth [TF81]. Soft [WC97]. Software [ACM11, AW85, Ber94, DAW88, HSS+14, How80, JW17, PXL95, PPS79, Pur94, Wal92, YBL16, CTT07, HN05, LS98, ME97, NCH+05, RDG08, SHB+07, SRM10].

Specifying [GM81, Lam83, RF97].
BKL+, Cla80, DKKL88, MW80, MW84, MV87, SBS22. System [AFdR80, AW85, BS86, Bou88, CB80, Cee82, GD82, GP81, Han81b, HM84, JMSY92, LR13, ML80, Moi83, MH86, PO95, RD13, SA99, WC97, BH05a, FH04, FM99, HS07, JB06, KS10, MTSS09, NP08, PE08, STSP05, MWCG99].
Systematic [Dc22, DF98, PSS05].
Systems [ABLP93, Ano18, AR84, ACS84, BKS88, BG89a, BDP93, CI84, CDFP89, CBDGF95, CIJGP18, CES86, CPS93, CBMO19, DL18, DAW88, Fea87, FKW98, Gor92, Han81b, HS07, JB06, KS10, MTSS09, NP08, PE08, STSP05, MWCG99].
Systolic [BD91, PK80].
Table [BMW91, PK80, DAS98].
Table-Drive [PK80].
Tabled [SS98].
Tables [ADGM91, DDH84].
TaDA [DSFG21].
Tail [DP97, CF04].
Tail-Call [DP97].
tail-recursive [CF04].
Tailored-List [Kau84].
Tale [TY21].
Tanzenbaum [Pem83, Tan83].
Target [Wan82].
Task [GP95, NSZS13, RRB19, HBJ98], task-[HBJ98].
Task-Level [GP95].
Task-Parallel [NSZS13].
Tasking [Dil90].
Tasks [GP91].
Taylor [SBB+19].
tcc [PHEK99].
Technical [BS88, Bu90b, Bu91, Coh91, CM93, DS88, Ell82, FA93, Fra81, Hen93, LaL83, LaL84, Moh81, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tie88, Vol91, WST85, Wh91, YBB88, MMG99].
Technique [AWW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNMG10, KBC+99, RD97, SYN96].
Techniques [AK82, CMN91, DP99, GLR83, How80, TWW82, WCW90, WCW91, BHK07, DDD05, DEMD00, LS98, MSRR00, SS96, TLS+02].
technology [LS98].
Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KW09].
temporal-ordering [GS99].
temporaries [RMH06].
Ten [APT81].
Tensor [RTP17, SBS22].
Tentative [Jon83].
Tenuring [UJ92].
Term [KKSD94, MBT09, GRK+11].
Termination [AF84, Apt86, BAGM12, BCG+07, CFNH18, CDA+18, DSFG21, DG19, FRA80b, GJ05, HSP83, JBK18, MC82b, TM93, BAL07, BA08, DDV99, GRK+11, Lee09, PR07, SMP10, Fra80a, Moh81].
Test [Wey83, WW95, Duc08].
Testing [AMT14, GMH81, TK94].
Tests [Coh91, Kos97, Wir91, GZ05].
Text [CC97].
TF [SBS22].
TF-Coder [SBS22].
Their [Kam83, LaL84, SS82, PS96].
Theoretic [ES97, Sha82, KV00].
Theoretical [KRR18].
Theories [NDT+15, Bou06].
Theory [AB20, C84, KD94, KRS94, NG13, Ryu16, TLHL11, CGP09, MBH06, Ok07, Pak01, SS05, Bla03, FG03].
ThingLab [Bor81].
things [PM09].
Thinking [WLBF16].
Thinning [Web95].
Third [Wol92].
ThisType [Ryu16].
Thread [YB16].
Thread-Level [YB16].
Threaded [JBB18, IT+22, TSY00].
Three [DP97, Oss83].
Tichy [Tie88].
Tile [JB20].
tiling [JLF02, LS04, RKS+12].
Time [AL94, ABR81, BL94b, BLH12, Coh91, DLR16, HBS22, Hol87, ISY88, Je85, Lam84, MMG99, PS93, RS84a, RS84b, TN19, Wir91, YR94, Zie94, BAL07, BALP06, BK908, BKR05, DDD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Mii85, Ram99, Rep98, SYK+05, Tra08, TZ07, Wu04, YWM97, LW93].
Time-Constrained [Ziel94, LPP01].
Time-Critical [PS93].
time-efficient [GB99, YF98].
Time-sensitive [HBS22].
Timed [Ziel94].
Timeout [Lam84].
Timing [LJ99].
tokenization [Rep98].
Tolerance [LJ99].
Tolerant [CS95, Lam84, AAE04].
Tool [PS93].
Toolkit [BDFH97]. toolkits
[VHM+01]. Tools [van88]. Top [SZLY21].

Top-down [SZLY21]. TOPLAS
[Ano18, TGT20, MP10a, MP10b]. topology [DDM11].
Total [San96]. Trace
[ABC+21, FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12]. Trace-Based
[WGS92, WGS93, WM12]. Trace-relating tracess [HBM+06, WR08].
Tracing [BL94a, DLR16, MMM+07].

tradeoffs [ZGZ05]. Trailling [VR95]. Traits
[DNS+06]. Transactional
[URJ18, ABHI11, CF+04]. Transactions
[Ano18, HKMN94, TGT20]. Transducer [DVML15].
Transducer-Based [DVML15]. Transformation
[BKB80, FEA91, FL91, NSZS13, Wat91, RKRR04, San96, TSY00, WZ07].

Transformational [BDFH97, Bir84, Bir85, DSW82, OA88, RC03]. Techniques
[Bar85, EGM01, LdRS81, LFF14, MS83, MCT96, Nic85, FGM+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86].
Transformers [Lam90, MMS96, MBT09].

TransformGen [GK94]. Transforming
[AWW95, BE94]. Transition [PR07].

Translation [AK87, BK11, Kat84, Son87, ADD+07, BGKR09, DP99, RC03].
Transmission [HL82]. Transiently
[JSB+12]. Transport [Min94]. transpose
[CRN+08]. Traversals [LPS04].

Treatment [YB87, YB88]. Tree
[AGT89, BOV85, BM91, DVML15, DS83, Han81a, Hen83, LdRS81, FGM+07a].
Trees [Com80, GHSS83, MTG80, Sp82, Wad90, ACM11, SGL97].

Treeheight
[CIJGP18, CCG+19]. trick [DMP96].

Truth [BDH+16]. TSL [LR13].
tuning
[GM09, PE08]. Tuples [Rem81].

Tutorial [GM81]. Two [BO94, CDFP89, DPP22, GPWZ08, TY21, FMoPS11].

Two-dimensional [GPWZ08].
two-variable [FMoPS11].

Type
[Bur90b, Car95, CEW14, Coh91, CZ84, Dug02, Eug07, HHPW96, HM93, Hen93, KPS92, KU93, KR01, Lan80, LO94, LST02, LY98, LP00, MRGP20, MP88, NBS13, Pad95, SA95, SM89, Ste22, TW82, TGT18, TGT20, Van06, VMLY22, Wal80, WT11, Wir88, WC97, BSvGF03, BCG+07, FJKA06, FM07b, FF08, GZ07, GMZ00, HO07, HJ82, HY07, KF10, KS10, NP98, NCH+05, PT00, STSP05, TFK+11, TZ07, Wal81, Wir91].

Type-based
[Eng07, LP00, BCG+07].

Type-Driven
[TGT18, TGT20].

Type-Extension
[Coh91, Wir91].

Type-Graphs [KPS92].

Type-preserving
[LST02]. Type-Safe
[Dug02, BSvGF03, NCH+05].

Typechecking
[CL95, MBC04].

Typed
[ACPP91, Geo84, Kob98, NN86, WCM00, AAR+10, LP99, MWCG99].

Types
[AFF06, AC93, BG22, BB94, BCEM15, DDMP22, DPP22, DD85, EPO0, FFLQ08, GEGP17, HL82, Jes88, Jen97, Kam83, KBP22, LaL89, LO94, LBN17, Loe87, Mal82, Mio19, MP88, WL85, Wei89, Wei90, AM01, BBF+11, Dam03, DMM11, Gro96, GPV07, HVP05, IV06, MME+10, PS96, Pal98, STS03, SP07].

Typestate
[COE+20, GTWA14].

Typestate-Oriented
[GTWA14].

Typing
[ACPP91, DG19, Dud99, GGSV22, RM10, SV96].

ultimate
[PS08].

Unicpus
[Sch80].

Unassigned
[Win84].

Unbounded
[LWR21, BCG99].

Uncaraght
[LP00].

Undecidability
[Ram94, Rep00, Chat02].

Undecidable
[Ram00].

Understandable
[MSM+16].

Understanding
[ST00a].

Undo
[Lee86].

unfold unfolded
[RKRR04].

Unidirectional
[Pet82].

Unification
[MM82, DRSS96].

Unified
[VSS94].

Uniform
[COE+20, GTWA14].

Unify
[ACPP91, DG19, Dud99, GGSV22, RM10, SV96].
Update [Hud91, FGM+07a, GW99].
Updating [HSS′14, HN05, SRW98, SHB′07]. Upper [PW94].
Usage [MS83, BDFZ09, IK05, QR00]. Use [FOW87, GH80, HS94, LaL84, PPS79, She91, SS82, CC97]. usefulness [HDH02]. User [ACS84, DS90, Mye90, Wal80, Wal81, Wat83, van88]. User-Defined [Wal80, Wal81].
Using [AGT89, Bob80, CGJ+97a, CES86, CH87, DP93, DiI90, DMM01, DJP+16, FLBB89, GSW95, GSO94, HRB90, ISIRS22, JTM98, Kar84, LaL89, Lam84, LM18, LWR21, Mye90, Ode93, Pet83b, PP94, PBR′15, SS84, SS96, Sok87, SGL98, TVs82, ACM11, BH99, CSW06, CGS′03, DR05, GS99, GCRN11, KLW09, KSK07, MTS09, RD03, SZLY21, ST00a, SGL96, TFK′11, VJB12, XA07, YUW02, ZSD09, Pem83].
Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KC01, MOS07a]. Value [HL82, dBH21, HL05, SW97a]. Valued [RMH06, SRW02]. Values [DD85, Han92, HSD22, Wet82]. Variable [MS83, MTG80, FMoPS11, GLMM05]. Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BGP99, HVB′99, NS13, SV96]. Variant [IV06]. variants [FG03]. Variational [CEW14]. Variety [NC520]. Vector [AK87, Bud84, CBMO19, Fis80, FTJ95, KD94, Per79, KK07].

Verifiable [YB85]. Verification [App15, BDP14, BCD′15, CDFP89, CES86, CPS93, CHMY19, DiI90, EGP14, GL94, ITF′22, JBK18, Jon94, JTM98, KKW14, LFF14, LJJ99, LCK′22, LS79, MTK21, NBG13, RY88, SZLY21, BDL′08, CEI′07, GPF08, GM12, Qia00]. Verified [BFGT08, BKL′97, HLZ22, JLP′14, DSW11].

Verifying [AS89, BFG08, CGJ97b, DJP′16, GEGP17, LM18, YS10, Mon08]. Version [YR94]. Versions [HPR89]. Versus [DPP22, Pal98, Pip97, UM02]. Vertices [BGH′13]. Very [GLR83]. VHDL [BKL′97]. via [CEI′07, FKW98, GPF08, GSO94, HLH19, HOYY18, ITF′22, MMM′07, PE08, RTP17, SRW02, SV20, Tra08, WCM00]. View [KBP22, SZBH86, FGM′07a]. view-update [FGM′07a].

W [Tie88]. Wait [Her91]. Wait-Free [Her91]. Waite [BP82]. Warp [LW93]. way [VHM′01]. Weak [AMT14, KZC15]. weakening [SYHY07]. Weaker [Boo82]. web [BFG08, BLRS12, CHY12, CGP09, CMS03]. Weight [GHS83]. While [Pet83a, BC85b, GM81]. while-Programs [BC85b]. Whole [BDH′16]. Widening [KKW14, VJB12]. win [Lam90]. Within [FKW98]. Without [Cop94, Ode93, AS89, Cas95, Sto04, VR95].

X [OLH′16, MSM′16]. X-Sensitive [OLH′16]. X10 [GHH′19]. XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].

ZGC [YW22]. Zones [GMN′21].
References

Ancona:2007:PCT

Attie:2004:SFT

Ahmed:2010:SFT

Anderson:1981:LLC

Arbab:1994:SCD

Amtoft:2020:TSI

Acar:2009:EAS

REFERENCES

REFERENCES

[Apt1998:AIL]

[Ariola:2009:SCA]

[Amadio:1993:SRT]

REFERENCES

Alglave:2021:ACF

Ancona:1991:ECL

Ager:2006:FPE

Attie:2001:SCP

Apt:1984:MDT

Appel:1994:E

REFERENCES

Aung:2014:SS

Ahmed:2020:ISI

Arsac:1982:STR

Alglave:2017:DSF

Ait-Kaci:1989:EIL

Ait-Kaci:1994:FPC

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR

Alglave:2014:HCM
REFERENCES

REFERENCES

Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

Anonymous:1990:AI

Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1991:IA

Anonymous:1992:AI

Anonymous:1992:IA
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue</th>
<th>Pages</th>
<th>CODEN</th>
<th>ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymous</td>
<td>1994</td>
<td>Author index</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>16(6)</td>
<td>1904–1907, October 1994</td>
<td>ATPSDT</td>
<td>0164-0925</td>
</tr>
<tr>
<td>Anonymous</td>
<td>1995</td>
<td>Author index</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>17(6)</td>
<td>938–940, November 1995</td>
<td>ATPSDT</td>
<td>0164-0925</td>
</tr>
<tr>
<td>Anonymous</td>
<td>1998</td>
<td>Author index</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>20(6)</td>
<td>1323–1325, November 1998</td>
<td>ATPSDT</td>
<td>0164-0925</td>
</tr>
<tr>
<td>Anonymous</td>
<td>2002</td>
<td>Automatic derivation of compiler machine descriptions</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>24(4)</td>
<td>369–408, July 2002</td>
<td>ATPSDT</td>
<td>0164-0925</td>
</tr>
<tr>
<td>Anonymous</td>
<td>2002</td>
<td>On loops, dominators, and dominance frontiers</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>24(5)</td>
<td>455–490, September 2002</td>
<td>ATPSDT</td>
<td>0164-0925</td>
</tr>
<tr>
<td>Anonymous</td>
<td>2018</td>
<td>Corrigendum</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>40(4)</td>
<td>18:1–18:??, December 2018</td>
<td>ATPSDT</td>
<td>0164-0925</td>
</tr>
<tr>
<td>Ed Anson</td>
<td>1987</td>
<td>A generalized iterative construct and its semantics</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>9(4)</td>
<td>567–581, October 1987</td>
<td>ATPSDT</td>
<td>0164-0925</td>
</tr>
</tbody>
</table>

REFERENCES

Leif Andersen, Vincent St-Amour, Jan Vitek, and Matthias Felleisen. Feature-specific profiling. *ACM Transactions on

Austin:2017:MFD

Assmann:2000:GRS

Arenaz:2008:XEF

Ashcroft:1982:RS

Avrunin:1985:DAD

Aiken:1995:SST

Alur:2001:MCH

REFERENCES

Ben-Ari:1984:AFG

Blume:1999:HM

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA

Brecht:2006:CGC

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Banerjee:1987:MSR

Banerjee:2011:MFT

Barnden:1981:NCA

Barstow:1985:CTD

[Bar85] David Barstow. On convergence toward a database of program transformations. *ACM Transactions on Programming Languages and Systems*, 7(1):
REFERENCES

Bengtson:2011:RTS

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL

Bhaskaracharya:2016:ASO

Bier:1979:SED

Breuer:1994:DET

Bengtson:2011:RTS

Biering:2007:BHH

Barabash:2005:PIM

Bobrow:1979:CEL
Bates:1985:PP

Bergereretti:1985:IFD

Brogi:1991:CLS

Bugliesi:2004:ACM

Bossi:1990:MSL

Betts:2015:DIV

Bugliesi:2015:ART
Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Affine refinement types

Benton:2004:MCA

Bruynooghe:2007:TAL

Bottoni:1999:SDC

Bhatia:2008:RSE

Briggs:1994:IGC

Bergstra:1997:TCT

REFERENCES

[Biernacki:2015:DCP] Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-passing style for dynamic delimited continuations. ACM Transactions on Programming Languages and
Boorman:1993:RAN

Barthe:2014:FVS

Bouajjani:2013:ARP

Beemster:1994:SOG

Brockschmidt:2016:ARS

Bernstein:1980:OGN
Bernstein presents a distributed algorithm for CSP output guards based on priority ordering of processes.

[BG22] Patrick Baillot and Alexis Ghyselen. Types for complexity of parallel computation in
REFERENCES

REFERENCES

Buhr:2005:ISM

Binkley:2007:ESO

Blackburn:2007:PBP

Berger:2019:IPL

Bird:1984:PAS

Bird:1985:APA

Barthe:2011:AMC

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Bic:1987:DDM

Ball:1994:OPT

Bates:1994:RSL

Boudon:2012:PEF

Bloss:1994:PAO

Boudol:2012:RAW

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Balakrishnan:2010:WWY

Brent:1989:EIF

Buckley:1983:EIG

G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. ACM Transactions on Programming Languages and Systems, 5(2):223–235, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Bahlke:1986:PSF

Bermudez:1988:NRB

Bruce:2003:PTS

Kim B. Bruce, Angela Schuett, Robert van Gent, and Adrian Fiech. PolyTOIL: a type-safe polymorphic object-oriented language. ACM Transactions on
REFERENCES

Burke:1993:IOE

Budd:1984:ACV

Burton:1984:ACP

Burke:1990:IBA

Burton:1990:TCT

Burton:1991:TCA

Broy:1987:ADP
Manfred Broy, Martin Wirsing, and Peter Pepper. On the algebraic definition of program-
REFERENCES

Conrad Cotton-Barratt, Andrzej S. Murawski, and C.-

[CEG07] Kevin Casey, M. Anton Ertl, and David Gregg. Optimizing indirect branch prediction accuracy in virtual machine interpreters. *ACM Transactions on Programming Languages and Systems*,
REFERENCES

[CFG+97] Agostino Cortesi, Gilberto File, Roberto Giacobazzi, Catuscia

Chatterjee:2019:NPW

Codish:1994:SAC

Chatterjee:2018:AAQ

Cortes:2004:HLA

Cytron:1991:ECS

Clark:1986:PPP

Keith Clark and Steve Gregory. Parlog: parallel programming in logic. *ACM Transactions on Programming Lan-
REFERENCES

Castagna:2009:TCW

[CGP09]

Choi:2003:SAS

[CGS+03]

Chatterjee:1995:OEA

[CGST95]

Cohen:1987:PCU

[CH87]

Chow:1990:PBC

[CH90]

Charlesworth:1987:MR

[Cha87]

Chatterjee:1993:CND
Siddhartha Chatterjee. Compiling nested data-parallel programs for shared-memory mul-

[Cha93]
REFERENCES

Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-order distributed objects. ACM Transactions on Programming Languages and Systems, 17(5):704–739,
September 1995. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Consel:1993:PPE

Carr:1994:IRM

Crowl:1994:PPC

Chambers:1995:TMM

Clarke:1980:SRI

Chandy:1984:DPP

[CM84] K. M. Chandy and Jayadev Misra. The drinking philoso-

REFERENCES

[L. Colussi. Recursion as an effective step in program development. ACM Transactions on Programming Languages and Systems, 6(1):55–67, January 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

Cleaveland:1993:CWS

Carson:1987:GSP

Cooke:2008:NTD

Choy:1995:EFT

Chen:2004:LGS

Clausen:2000:JBC

Lars Ræder Clausen, Ulrik Pagh Schultz, Charles Consel, and Gilles Muller. Java bytecode compression for low-end embedded systems. ACM Trans-
Codish:1999:SGD

Cooper:2001:OSR

Carlsson:2006:MAC

Collberg:2007:DGB

Cheney:2008:NLP

Constable:1984:TTP

REFERENCES

[dBH21] Frank S. de Boer and Hans-Dieter A. Hiep. Completeness and complexity of reasoning about call-by-value in
REFERENCES

REFERENCES

REFERENCES

Davidson:1980:DAR

Davidson:1981:CDA

Davidson:1984:CST

Douence:1998:SSF

Demoulas:2011:CSH

Demetrescu:2015:RIP

DalLago:2019:PTM

REFERENCES

Dams:1997:AIR

Dewar:1979:PRE

DeBoer:1997:PCC

Duesterwald:1997:PFD

Dhamdhere:1991:PA

delaBanda:1996:GAC

Mike Dodds, Suresh Jagannathan, Matthew J. Parkinson, Kasper Svendsen, and Lars Birkedal. Verifying custom synchronization constructs using higher-order separation logic.
Darulova:2017:TCR

David:2018:PSP

Drinic:2007:PPC

Debray:1993:CAL

Danicic:2018:SBS

Dissegna:2016:AIB

Degano:1988:EIL

REFERENCES

Diwan:2001:UTA

Danvy:1996:EED

Ducasse:2006:TMF

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DeRemer:1982:ECL

Dhamdhere:1993:EAB

Debray:1997:ICF

DeRose:1999:TTM

REFERENCES

REFERENCES

[EGP14] Javier Esparza, Pierre Ganty, and Tomás Poch. Pattern-based verification for multi-
threaded programs. ACM Transactions on Programming Languages and Systems, 36(3):9:1–9:??, September 2014. COachenCODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ellis:1982:TCS

Elder:2014:ADA

Eilers:2020:MPP

Ernst:1980:SAD

Emerson:1997:USW

Eugster:2007:TBP

Finlay:1993:TCC

[FA93] Alan Finlay and Lloyd Allison. Technical correspondence: a correction to the denotational semantics for the Prolog of Nicholson and Foo. ACM Transactions on Programming Lan-
REFERENCES

URL http://www.acm.org/pubs/toc/Abstracts/0164-0925/151652.html. See [NF89].

Fateman:1982:HLL

Feng:2012:BQP

Feather:1982:SAP

Feather:1987:LSS

Flanagan:1999:CSB

Furr:2008:CTS

Florence:2018:PPP
REFERENCES

ACM Transactions on Programming Languages and Systems, 40(3):10:1–10:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Flanagan:2008:TAS

Fournet:2007:CBT

Fournet:2007:TDA

Fernandez:2004:ICS

Fidge:1993:FDP

REFERENCES

REFERENCES

Fradet:1991:CFL

Frechtling:2015:MMS

Fischer:1989:DFA

Flexeder:2011:FIL

Andrea Flexeder, Markus Müller-olm, Michael Petter, and Helmut

Frohn:2020:ILR

Foster:1996:CPP

Ferrante:1987:PDG

Fischer:2002:GE

Facchinetti:2019:HOD

Francez:1980:CDT

Francez:1980:DT

REFERENCES

[0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Fra80a] and remarks [Moh81, Fra81].

Francez:1981:TCR

[89]

[FRW90]

Farmer:1990:CPC

[FT94]

Ian Foster and Stephen Taylor. A compiler approach to scalable concurrent-program design.

Fricker:1995:ICI

Francez:1985:SIC

Freudenberger:1983:ESO

Lal George and Andrew W. Appel. Iterated register coalescing. ACM Transactions on Programming Languages and Systems, 18(3):300–324, May 1996. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

REFERENCES

REFERENCES

Gerber:1997:SRT

GarciaDeLaBanda:1996:GAC

Grov:2019:FRR

Griswold:1981:G1

[Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

Ghosh:1993:ASP

Graham:1980:ICF

Gallager:1983:DAM

[GHK81] Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]
REFERENCES

Giegerich:1983:FFD

Gupta:1993:APE

Glenstrup:2005:TAS

Garlan:1994:TAM

Gharat:2020:GPG

Gries:1980:APC

Grumberg:1994:MCM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gawlitza:2011:SSR

Gupta:1994:ERA

Grimmer:2018:CLI

Gerlek:1995:BIV

Garcia:2014:FTO

Gudeman:1992:DSG

Grosser:2015:PAG

[GVC15] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. Polyhedral AST generation is more than scanning polyhedra. *ACM Transactions on Programming Languages and Systems*, 37(4):12:1–12:??, August 2015. CODEN ATPSDT. ISSN 0164-
Gudjonsson:1999:CTM

Glesner:2004:NSS

Gil:2005:EST

Gil:2007:EDD

Hoffmann:2012:MAR

Hailperin:1998:COC

Hailperin:2005:CCC

REFERENCES

Halstead:1985:MLC

Hall:2005:IPA

Hansen:1981:CMI

Hanson:1981:APP

Harel:1980:PNA

Hausner:1996:APP

Hall:2005:IPA

Hansen:1992:SRF

Hannan:1994:OSD

Hauser:1996:HFP

REFERENCES

REFERENCES

Henglein:1993:TIP

Herlihy:1991:WFS

Herlihy:1993:MIH

Hesselink:1988:MAN

Haynes:1987:ECP

Hosoya:2009:PPX

Hennessy:1983:PCO
REFERENCES

Hall:1996:TCH

Hilfinger:1988:APD

Hu:1997:FDE

Heering:1985:TMP

Henzinger:2007:EMP

Haines:1994:CFC

Heering:1992:IGL

J. Heering, P. Klint, and J. Rekers. Incremental generation of lexical scanners. *ACM Transactions on Programming Lan-

Heering:1994:LIP

Herlihy:1982:VTM

Hirschowitz:2005:MMC

Haslbeck:2022:FDM

Hague:2019:CMC

Hull:1984:CSP

Harper:1993:TSS

REFERENCES

REFERENCES

REFERENCES

Christopher M. Hayden, Karla Saur, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. Kitsume: Efficient, general-purpose dynamic software updating for C. *ACM Transactions on Pro-
ISSN 0164-0925 (print), 1558-4593 (electronic).

Horwitz:1986:GEE

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD

Huang:1993:LEU

Hudson:1991:IAE

Haridi:1999:ELV

Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer, and Gert
REFERENCES

REFERENCES

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Jag94] Suresh Jagannathan. Metalevel building blocks for modular systems. ACM Trans-

REFERENCES

REFERENCES

2014. CODEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Jeannet:2010:RAI] Bertrand Jeannet, Alexey Logi-

nov, Thomas Reps, and Mooly Sagiv. A relational approach to interprocedural shape analysis. *ACM Transactions on Program-

ming Languages and Systems*, 32 (2):5:1–5:52, January 2010. CO-

DEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[JLRS10] Bertrand Jeannet, Alexey Logi-

nov, Thomas Reps, and Mooly Sagiv. A relational approach to interprocedural shape analysis. *ACM Transactions on Program-

ming Languages and Systems*, 32 (2):5:1–5:52, January 2010. CO-

DEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[JMSY92] Joxan Jaffar, Spiro Michaylov, Peter J. Stuc-

key, and Roland H. C. Yap. The CLP(R) language and system. *ACM Transactions on Program-

ming Languages and Systems*, 14(3):339–395, July 1992. CO-

DEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

key, and Roland H. C. Yap. The CLP(R) language and system. *ACM Transactions on Program-

ming Languages and Systems*, 14(3):339–395, July 1992. CO-

DEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Jon83] Larry G. Jones. Efficient evaluation of circular attribute grammars. *ACM Transactions on Programming Lan-

[JNGG10] Dennis Jeffrey, Vijay Nagara-

jan, Rajiv Gupta, and Nee-

lam Gupta. Execution sup-

pression: an automated it-

erative technique for locating memory errors. *ACM Transactions on Program-

ming Languages and Systems*, 32(5):17:1–

17:36, May 2010. CODEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Jazayeri:1981:SES

Jourdan:2017:SPC

Jagadeesan:1991:FAS

Joung:1994:CFO

Joisha:2012:TTE

Juan:1998:CVC

REFERENCES

Jakobs:2017:PPF

Kaiser:1989:IDS

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

REFERENCES

Kandemir:1999:GCO

Keizer:2022:SCC

Kim:2001:ERV

Kennedy:1999:PRE

Khedker:1994:GTB

Kistler:2000:ADM

Kistler:2003:CPO

Knowles:2010:HTC

Keen:2004:JFD

Kaiser:1992:OBP

Kennedy:1998:ADL

Karkare:2007:IBC

Korach:1990:MTD

REFERENCES

Kawahito:2006:ESE

Kennaway:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM

Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual machine, and compiler. ACM Transactions on Program-
REFERENCES

Knapp:1990:EFD

Kobayashi:1998:PDF

Kim:2006:ERI

Kozen:1997:KAT

Kurlander:1995:EIS

Katzenelson:1992:TMT

Kobayashi:1999:LPC

[KPT99] Naoki Kobayashi, Benjamin C.
REFERENCES

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

[Kro87] F. T. Krogh. ACM algorithms policy. *ACM Transactions on Programming Lan-
REFERENCES

Krogh:1988:AAP

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

REFERENCES

REFERENCES

Khedker:2007:HRA

Knoop:1996:PFE

Kfoury:1993:TRP

Kuperman:2000:ATA

Kalvala:2009:PTU

Kasikci:2015:ACD

[Baris Kasikci, Cristian Zamfir, and George Candea. Automated classification of data races under both strong and weak memory models. *ACM Transactions on Programming Languages and Systems*, 37(3):8:1–8:??, June 2015. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

LaLonde:1981:CSC

LaLonde:1983:TCL

LaLonde:1984:TCC
Wilf R. LaLonde. Technical correspondence: Comments on Soisalon-Soininen’s “Inessential Error Entries and Their Use in LR Parser Optimization”.
ACM Transactions on Programming Languages and Systems, 6 (3):432–439, July 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [SS82].

LaLonde:1989:DFD
Wilf R. LaLonde. Designing families of data types using exemplars.

Lamport:1979:NAP
Leslie Lamport. A new approach to proving the correctness of multiprocess programs.
ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].

Lamport:1980:CNA

Lamport:1983:SCP
Leslie Lamport. Specifying concurrent program modules.
ACM Transactions on Programming Languages and Systems, 5(2):190–222, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Lamport:1984:UTI
Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems.
ACM Transactions on Programming Languages and Systems, 6 (2):254–280, April 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Lamb:1987:ISI
David Alex Lamb. IDL: Sharing intermediate representations.
ACM Transactions on Programming Languages and Systems, 9
REFERENCES

Lamp:ort:1988:CPB

Leslie Lamport. Control predicates are better than dummy variables for reasoning about program control. ACM Transactions on Programming Languages and Systems, 10(2):267–281, April 1988. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Lam88] Leslie Lamport. Control predicates are better than dummy variables for reasoning about program control. ACM Transactions on Programming Languages and Systems, 10(2):267–281, April 1988. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Lamp:ort:1990:WSP

Lahav:2022:WDA

Lennon-Bertrand:2022:GCI

Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter. Gradualizing the calculus of inductive constructions. ACM Trans-

LeMetayer:1988:AA

Leeman:1986:FAU

Lee:2009:RFS

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB

Lueh:2000:FBR

Lycklama:1991:FCF

[Lycklama] Edward A. Lycklama and Vassos Hadzilacos. A first-come-
first-served mutual-exclusion algorithm with small communication
variables. *ACM Transactions on Programming Languages and Sys-
tems*, 13(4):558–576, October 1991. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/102415584593.html.

Lhotak:2008:RAB

[Lhotak] Ondrej Lhotak and Laurie Hendren. Relations as an ab-
straction for BDD-based program analysis. *ACM Transactions on Pro-
gramming Languages and Systems*, 30(4):19:1–19:63, July 2008. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Liu:2019:RIP

[Liu] Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. Re-
thinking incremental and parallel pointer analysis. *ACM Transac-
tions on Programming Languages and Systems*, 41(1):6:1–6:??, March
2019. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Lindstrom:1979:BGC

[Lindstrom] Gary Lindstrom. Backtracking in a generalized control set-
ting. *ACM Transactions on Programming Languages and Sys-
tems*, 1(1):8–26, July 1979. CODEN ATPSDT. ISSN 0164-0925
(print), 1558-4593 (electronic).

Lin:1993:PIA

[Huin Lin] Huimin Lin. Procedural implementation of algebraic spec-
ification. *ACM Transactions on Programming Languages and Sys-
(print), 1558-4593 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0164-0925/115370.html.

Liu:1999:SVF

[Zhimin Liu and Mathai Joseph] Zhiming Liu and Mathai Joseph. Speci-
ification and verification of fault-tolerance, timing, and scheduling.
ACM Transactions on Programming Languages and Systems, 21(1):46–
89, January 1999. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593
(electronic). URL http://www.acm.org/
pubs/citations/journals/toplas/1999-21-1/p46-liu/.

Lee:2002:ADC

[Peizong Lee and Zvi Meir Kedem] Peizong Lee and Zvi Meir Kedem. Automatic data and com-
putation decomposition on distributed memory parallel comput-
ers. *ACM Transactions on Programming Languages and Sys-
(print), 1558-4593 (electronic).
REFERENCES

REFERENCES

Barbara Liskov and Robert Scheiffer. Guardians and actions: Linguistic support for robust, distributed programs. *ACM Transactions on Programming Languages and Systems*, 5
REFERENCES

Lamport:1984:HLC

Lang:1998:SAE

Levi:2003:MSA

Li:2004:ATI

Liquori:2008:FME

Liu:2009:DRE

Liu:2005:OAA

Lamport:1982:BGP

They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the encrypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any $n \geq t > 0$, where n is the total number of processes and t is the number of faulty processes.

Liu:1998:SCI

Lengauer:1979:FAF

Li:2020:PAS

LeCharlier:1994:EEG
Lobo-Vesga:2021:PLD

Lipton:1983:VLP

Leivent:1993:MFT

Liskov:1994:BNS

Liu:2021:ICU

Lee:1998:PAF

Li:2022:FGS

[LZR22] Yuanbo Li, Qirun Zhang, and Thomas Reps. Fast graph simplification for interleaved-Dyck reachability. *ACM Trans-

Mallgren:1982:FSG

Merlin:1983:CSS

Morris:1999:SF

Millstein:2004:MTH

Morris:2009:TTN

Misra:1982:DGA

Misra:1982:TDD

REFERENCES

Millstein:2009:EMP

Moriconi:1986:PSP

Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

Miquey:2019:CSC

Étienne Miquey. A classical sequent calculus with dependent types. *ACM Transactions on Programming Languages and Systems*, 41(2):8:1–8:??, June 2019. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

REFERENCES

Myers:1989:RRA

Markstrum:2010:JDP

Morzenti:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Masticola:1995:LFM

Morgan:1996:PPT

Mohan:1981:TCF

Moitra:1983:TCA

Monniaux:2008:PVF

Morgan:1988:SS

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

Moore:2002:AC

McKinley:2007:ECG

McKinley:2010:DVT

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Joseph M. Morris and Malcolm Tyrrell. Dually nondeterminis-

REFERENCES

Mueller:1987:RMS

Maassen:2001:EJR

Manna:1980:DAP

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

Melicher:2022:BAE
Darya Melicher, Anlun Xu, Valerie Zhao, Alex Potanin, and Jonathan Aldrich. Bounded abstract effects. *ACM Transactions on Programming Languages and Systems*, 44(1):
REFERENCES

McKenzie:1995:ERS

Myers:1990:CUI

Myers:2017:F

Myers:2018:EFS

Andrew Myers. Editor’s foreword to “Static Backward Slicing of Non-Deterministic Programs and Systems”. ACM Transactions on Programming Languages and Systems, 40(3):11:1–11:??, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DL18].

Myers:2019:E

Narlikar:1999:SES

Nanevski:2013:DTT

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Dependent type theory for verification of information flow and access control policies. ACM Transactions on Programming...
Necula:2005:CTS

Narayanan:2020:SDV

Norris:2016:PAM

Nelson:1989:GDC

Nicolson:1989:DSP

Nguyen:2005:EEA

Nielson:1985:PTD

REFERENCES

REFERENCES

Nandivada:2013:TFO

Olderog:1988:FPP

Odersky:1993:DCD

Olmedo:2018:CPP

Oh:2014:GSA

Ohori:1995:PRC

Ohori:2007:PTM

Pingali:1986:CFI

Pingali:1986:EDD

Padovani:2019:CFS

Palsberg:1995:CAC

Palsberg:1998:EBF

Palsberg:2011:E

Palsberg:2011:EN

Palsberg:2012:E

REFERENCES

Palsberg:2013:E

Palsberg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

REFERENCES

Perry:1990:GEI

Peterson:1982:UAC

Gary L. Peterson. An $O(n \log n)$ unidirectional algorithm for the circular extrema problem. *ACM Transactions on Programming Languages and Systems*, 4(4):758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of n uniquely numbered processes in a ring. The algorithm requires $O(n \log n)$ messages in the worst case, and is unidirectional. The number of processes is not initially known.

Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

Pratikakis:2011:LPS

Patrignani:2021:RSC

Marco Patrignani and Deepak Garg. Robustly safe compilation, an efficient form of secure compilation. *ACM Trans-

Poletto:1999:CTL

Paek:2002:EPA

Pippenger:1997:PVI

Piquer:1996:IDG

Pai:1980:GCR

Paige:1982:FDC

REFERENCES

[PPS79] N. S. Prywes, Amir Pnueli, and S. Shastry. Use of a nonprocedural specification language and...

Park:2008:PLB

Podelski:2007:TPA

Palsberg:1996:CTT

Pollock:1992:IGR

Palem:1993:STC

Palsberg:1996:CTT

REFERENCES

Pugh:1994:SAU

Pugh:1998:CBA

Palsberg:2005:ADC

Qian:1995:CR

Qian:2000:SFI

References

Quong:1991:LPI

Quillere:2000:OMU

Ranganath:2007:NFC

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Rao:1994:RAP
Josyula R. Rao. Reasoning about probabilistic paral-
REFERENCES

161

REFERENCES

REFERENCES

Ramsey:1997:SRM

Rhiger:2003:FEL

Richter:1985:NSE

REFERENCES

[Rota03] Radu Rugina and Martin C. Rinard. Pointer analysis for structured parallel programs. *ACM Transactions on Programming Languages and Systems*, 25(1):
REFERENCES

Rugina:2005:SBA

Rosa:2019:AOT

Rinetzky:2008:CPF

Ramanath:1984:JML

Reif:1984:RTS

Raja:1997:CFC

Reps:2010:FDL

[RS10] Thomas Reps, Mooly Sagiv, and
REFERENCES

[Sag86] Thomas J. Sager. A short proof of a conjecture of DeRemer and Pennello. *ACM Transactions...
REFERENCES

REFERENCES

Schwartz:1980:U

Schneider:1982:SDP

Schmidt:1985:DGV

Sampaio:2013:DA

Strickland:2013:CFC

REFERENCES

CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Steenkiste89] Peter A. Steenkiste and John L. Hennessy. A simple interprocedural register allocation algorithm and its effective-

[Sit79] Richard L. Sites. The compilation of loop induction expressions. *ACM Transactions on Programming Languages and Systems*, 1(1):50–57, July 1979. CODEN ATPSDT. ISSN 0164-
REFERENCES

Spoto:2003:CAA

Scott:2006:RNG

Smans:2012:IDF

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Shankar:1992:SRH
REFERENCES

[Sok87] Stefan Sokolowski. Soundness
REFERENCES

REFERENCES

REFERENCES

Schlichting:1984:UMP

Sasha:1988:ECE

Skeppstedt:1996:UDA

Sagonas:1998:AMT

Schulte:2005:WDB

Stuckey:2005:TO

Schulte:2008:ECP

REFERENCES

Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of constraint handling rules. ACM Transactions on Programming Languages and Systems, 31(2):8:1–8:42, February 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Steimann:2018:CBR

Steimann:2022:CPS

Stone:2004:EOL

Saha:2003:IAQ

Shao:2005:TSC

Smith:1996:PTV

Sangiorgi:2019:EBP

Simpson:2020:BEM
Alex Simpson and Niels Voornieveld. Behavioural equiva-

Sabry:1997:RCV

Steckler:1997:LCC

Sewell:2010:NPP

Suganuma:2005:DED

Suganuma:2006:RBC

Soo:2007:GDW

REFERENCES

[TB95] Yih-Kuen Tsay and Rajive L. Bagrodia. Deducing fairness properties in UNITY logic — a new completeness result. *ACM Transactions on Programming Languages and Systems*, 17(1):
Tofte:1998:RIA
Mads Tofte and Lars Birkedal.
A region inference algorithm.

Tip:2011:RUT
Frank Tip, Robert M. Fuhrer, Adam Kieżun, Michael D. Ernst, Ittai Balaban, and Bjorn De Sutter. Refactoring using type constraints.

Toro:2018:TDG
Matías Toro, Ronald Garcia, and Éric Tanter. Type-driven gradual security with references.

Toro:2020:CTD
Matías Toro, Ronald Garcia, and Éric Tanter. Corrigendum
REFERENCES

181

Thorup:1994:CGA

Tichy:1986:SR

Tichy:1988:TCT

[TLHL11]

Tel:1993:DDT

Gerard Tel and Friedmann Mattern. The derivation of distributed termination detection algorithms from garbage collection schemes. ACM Transactions on Programming Lan-
Thakur:2019:PFP

Takisaka:2021:RRS

Thammanur:2004:FME

Tratt:2008:DSL

Torp-Smith:2008:LRA

Tip:2002:PET

Tang:2000:PTR
Hong Tang, Kai Shen, and Tao Yang. Program transformation and runtime support for threaded MPI execution on shared-memory machines.

TSL⁺02
REFERENCES

Turini:1984:MLO

Turchin:1986:CS

Thies:2007:STU

Thatcher:1982:DTS

Toninho:2018:ISB

Toninho:2021:PSF

Bernardo Toninho and Nobuko Yoshida. On polymorphic sessions and functions: a tale of two (fully abstract) encodings. ACM Transactions on Programming Languages and Systems, 43
REFERENCES

VanderZanden:1996:IAS

Vansummeren:2006:TIU

Vera:2004:FAF

Venkatesh:1995:ERD

VanRoy:1997:MOD

vonHanxleden:2000:BCP

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Vasconcelos:2022:TDM

Volpano:1991:TCS

vandenBos:1981:PCB

VanHentenryck:1995:BTC

REFERENCES

Peter J. L. Wallis. External representations of objects of user-defined type. ACM Transactions on Programming Languages and Systems, 2(2):137–152, April 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Wal81].

David W. Wall. Experience with a software-defined machine architecture. ACM Transactions on Programming Languages and Systems, 14(3):
REFERENCES

Wand:1982:DTC

Waters:1983:UFC

Waters:1991:ATS

Waters:1994:CBP

Wright:1997:PST

Walker:2000:TMM

Wileden:1990:CEO

REFERENCES

REFERENCES

Widom:1992:TBN

Widom:1993:CTB

Williams:1982:DAF

Williams:1982:FNS

Winner:1984:UO

Wing:1987:WLI

REFERENCES

Wirth:1988:TE

Wirth:1991:TCR

Wise:1979:MGC

Wright:1998:PSE

Wellings:2000:IOO

Wand:2004:SAD

Mitchell Wand, Gregor Kiczales, and Christopher Dutton. A semantics for advice and dynamic join points in aspect-oriented programming. *ACM Transactions on Programming Languages and Systems*, 26(5):

REFERENCES

Wu:1995:WCC

Wegman:1991:CPC

Ward:2007:SPT

Xie:2007:SSF

Xie:2020:CSA

Yemini:1985:MVE

Yemini:1987:ATE

REFERENCES

24052.html. See remarks [YB88].

Yemini:1988:TCA

Yiapanis:2016:CDS

Yang:1998:STE

Yardimci:2009:MSP

Ying:2011:FHL

Yu:1997:NCI

Yang:1997:SMC

Yang:2002:EEB

Yang:2022:DDZ

Zave:1985:DAF

Zic:1994:TCB

Zhang:2005:CPT

Zhou:1996:PPC

REFERENCES

Zhang:2017:SSH

Zhong:2009:PLA

Zhang:2021:CP

Zhao:2020:DLS

Zhou:2022:RIR