A Complete Bibliography of Publications in ACM Transactions on Programming Languages and Systems (TOPLAS)

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

29 September 2023
Version 2.151

Title word cross-reference

[k] [ADGM91, BL94b, KM81]. 2 [Dam03]. 3 [SRW02], + [Han81a], T [Bla03]., [AW82].
∥ [DDDCG02]. A [DES12]. R [JMSY92].
R [LR]. [VR95]. ε [ADG+94]. O(n log n)
[Pet82]. φ [CF95, DR05]. π [ABL03].
-calculus [ABL03]. Exclusion [ADG94].
-function [DR05]. Nodes [CF95]. Tree [Han81a]. valued [SRW02].

11 [ND16]. 16 [TGT20].

40 [TGT20].

568 [Han81b].

8 [Ano18].

90 [DP99]. 95 [WJS+00].

Abstract
[BGL93, BK11, CMB+95, CFG+97, DGG97, DC22, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MXZ+22, Pet82, SH89, TB98, Wis79, BKR98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKR05].

Abstraction
[BNNN22, CGL94, CL94, Der85, GMH81, GKM20, SM81, BMR05, BBTS07, GMZ00, LN02, LH91, MM82, MC82a, Pet82, SH89, TB98, Wis79, BKR98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKR05].

Adaptation
[Bak82, Dil88, LP80, WJS+00].

Adaptation [Dha91]. Adaptive [ABH06, HOYY18, PXL95, TCVB14, UJ92, RD03].

Adaptors [YS97]. Addendum [Bir85].

Adding [ACW90, BN94]. Addition [CBMO19].

Adequacy [KKSD94, Wey83], adjusting [ABB+09]. advice [WKD04].

Affine [BAC16, BCE15, CFNH18, DG19, ELS+14, VJB12]. Affix [GF85].

agents [BCC04]. aggregate [LSLR05]. Ahead [BLH12, DP82].

alarms [LLK+17].

Algebra [Koz97, Wil82a, KBC+99].

Algorithmic
[BP82, CFNH18, GM12, Loe87].

Algorithms
[AB81, Bak82, BB79, BAC16, BP82, Dan23, DSW82, Dha91, DP93, GHS83, HL22, Hua90, Hud91, JCC019, LV94, LY98, Le90, LT79, LH91, MM82, MC82a, Pet82, SH89, TB98, Wis79, BKR98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKR05].

Alma-O
[ABPS98].

Almost
[Duc08, Ram99].

All-Purpose
[Spo86].

Allocation
[BB79, Bre85, BCT94, CH90, CS95, FLBB89, GSO94, LCSB19, Rob79, SH89, CGS+03, HCS10, LGAT00, PS99, PF96, RDG08, SRM10, TP04].

Ambiguity
[Tho94].

Ambient
[AC94, CC95, CFM94, TN19, KSV96, SJ03].

Amulet
[VHM+01].

Analyses
[AC94, CC95, CFM94, TN19, KSV96, SJ03].
Analysis

[AKNP17, ABE+05, AD98, BAC84, BNN18, BC85b, Bl094, BE13, Bur90a, CFNH18, CFG19, CDK+18, CMN91, DKKL18, DL93, De05, DP97, DC22, DAW88, FPS19, FJK+17, GNS+15, GKM20, AD98, Bac84, BNN18, BC85b, Bl94, HOYY18, Hil88, Hor97, ISY88, Jen97, JJCO19, KD94, LLK+17, LTMS20, LR13, LHR19, LWR21, McG82, MRGP20, MWB94, MOS07b, OHL+14, OLH+16, Pal95, PO95, PCC85, PP91, PW94, PW98, Pur91, RTD83, RTP17, RRB19, RP88, SJW23, SSS83, SGL98, SS13, ABB+09, BDFZ09, BAL07, Bl03a, CGL96, GNS+15, GJ93, GJ05, GZ04, GCRN11, GHB+96, GJ05, GZ04, GCRN11, Ham79, Ham80, Lam79, Lam80, Lee86, LTMS20, MW80, MDCB91, ND16, OA88, Sam80, Sp086, SM81, SNS+14, Bou05, CRN+08, DHM+12, FGM+07a, JLR10, KV00, LPS0, MBT09, PSS05, PCJD08, RC03, SP07, WS97].

approximations [BGP99]. Apt [Moi83].
architected [ZP07]. Architecture [Wal92].
Architectures [Han94, KPF95, NSTD+15, PAS+15].
Aris [RCS+98]. Arithmetic [Fis80, Hen93, LdR81, MOS07b].
ARM [FCKW98, ADG+21]. Armada [LCN+22].
Array [CGST95, CG95, LS79, Per79, PW98, JB06, LSLR05, N05, PH02, RM06, RR05, ZCG+07]. array-valued [RMH06]. Arrays [BBC16]. Article [Ahn19, TGT20]. ASF [VHO02]. aspect [DWWO08, WKO04]. aspect-oriented [DWWO08, WKO04].
AspectML [DWWO8]. Aspects [BS91, S93]. assembly [AAR+10, MWCG99]. Assertions [BKB80].
Assessing [BDH+16, Wey83]. Assets [COE+20]. Assignment [BM94, CRF+91, GL80, GPF08, LDK+96].
Assisted [HCHP92]. Assisting [Fea82].
Associated [PPS79]. associativity [Cha02].
Associations [Rem81]. assume [HQT02].
assume-guarantee [HQT02].
Assumptions [ES97]. AST [GVC15].
Asynchronous [Bag89, GLO88, Mis86, GM12, HR02]. ATL [WSH15]. Atomic [WL85, Wei90, AE01].
Atomicity [JLP+14, Wei89, FFLQ08].
Attributes [HT86]. Author [Ano86a, Ano88a, Ano89a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98, Bur91].
authorization [FGM07b]. Authors [Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b].
auto [ZP10]. auto-addressing [ZP10].
Automata [BMW91, CBBM019, ES97, Pro95, KV00].
Automata-Theoretic [ES97, KV00].
Automated [GRSK+11, KZC15, KF00, LCK+22, SSFZ+23, Sok87, JNCG10].
Automatic
[AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, DS00, KK98, Le 88, LK02, LS04, MS83, PZJ05, RH87, SSS81, SLC03, She91, VS22, Wat91, Wha94, ABHI11, ATD08, BdlBH99, CRN +86, ZCG +87].
Automatically [Slo95].
Automating [GKL94, MTSS09].
Avoidance [FGL94].
Aware [BPRB23, MQ05].
Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80].
Axioms [Mis86].
B [Han81a].
backpropagator [PS08].
Backtracking [Lin79, VR95, FM87a].
Backward [DL18, Mye18].
Balanced [AS80, PB80, vHK00].
Barrier [CHMY19].
Base [NcS20, LS98].
Based [BPP16, BGL93, Bur90a, CGJ +97a, CI84, CP95, CH90, CPS93, CH90, CPS93, DVLM15, DLRL6, EGP14, GG85, HT86, JTM98, Ka89, KH92, KR79, LFF14, PW98, RTD83, SR95, SGL98, Ste18, SNS +14, TY18, Wat94, WGS92, vPS81, BFG08, BMRO1, BHM +07, BCG +07, CTT07, DDV99, Fuc07, FF99, HB98, JKT23, KBC +99, KK07, KC01, LP00, LH08, LGAT00, MTSS09, ML21, MTK21, MH06, Pal98, PPT08, PCJD08, SP97, SP07, SMP10, SYNO6, BDP14, WGS93, WM12].
Basic [CG +19, GLR83].
Bayesian [HOYY18].
BDD [LH08].
BDD-based [LH08].
Bee [Bee94, Coh91, Wir91, CGO4, LP99].
Behavior [KLS92, GMM99, VBLG04].
Behavioral [LN15, LW94].
Behavioural [SV20].
Being [Cop94].
benefits [GMP +00].
Better [Grt79, Lam88].
between [BS88].
Beyond [GWS95].
BI [BTS07].
BI-hyperdoctrines [BTS07].
Bidirectional
[DP93, MMR95, FGM +07a, GPWZ08].
binaries [STSP05].
Binary
[Sip82, DDD05, MMM +07, RC03, YF09].
binding [ACE96].
Birrell [MDJ05].
Bisimulation [FDY12, MH06, San09].
bisimulation-based [MH06].

Bisimulations [SV19, SKS11].
Bit
[CDK +18, KD94, KK07].
Bit-Precise
[CDK +18].
bivector [KSV96].
Bliss
[GNS +15].
Bind [LS81, Mur91].
Block-Structured [LS81].
Blockchain
[CEO +20].
Blocked [FTJ95].
Blocks
[Jag94].
Boolean [AXA07].
Bootstrapping
[App94a].
Borrowing [Pea21].
Both
[KZC15].
bottlenecks [RD03].
Bottom
[BGL93, GCRN11].
Bottom-Up
[BGL93, GCRN11].
bound [KK07, NI05].
Bounded
[ADG +94, ITF +22, MXZ +22, LLOY23].
Bounds
[CP17, FNBG20, ISIRS22, PW94, BP12, CEI +07, RR05, SS05a].
Box
[WLBF16].
boxed [BCC04].
Branch
[CGJ +97a, CEG07, YUW02, YS99].
Branches
[WZ91, RC03].
Branching
[CBM019].
Broad [DAW88].
Buddy
[Kan84].
Buffer
[Zic94].
bugs [HCS10].
Building
[Jag94].
BURNS [Pro95].
Bus
[Pur94].
Bytecode
[SA99, BDL +08, CSCM00, FM99, GPF08, KR01, Qia00, SMP10, WR08].
Byzantine
[LSP82].
'C
[PHEK99, BR97, HSS +14, MRGP20, ND16, PKH07, PFH11, Ven95].
C#
[BCF04].
C/C
[ND16].
C11
[JP17].
Cache
[GMM99, KLS92, MMM +07, S996, VBLG04].
Caching
[ABM93, FKS85, KS86, LST98].
Calculational
[Bou06].
calculi
[ABS09].
Calculus
[ABLP93, BKL +97, BN94, Gom92, Kob98, LBM822, M19, MRG88, N89, Oh89, WM95, ABLO3, AH10, BG22, Bun05, Bun06, BCC04, DES12, HR02, IPW01, JAY04, TA08a, KPT99].
Call
[DP97, GL80, dBH21, GC01, H105, KK07, SW97a].
Call-by-Value
[dBH21, HL05, SW97a].
Calls
[BNN18, Coh83, Coh85, FF08].
Can
[Boe85, Coh91, Wir91, CGO4].
Capabilities
[SDB20, WCM00].
capability
[TA08a].
Carlo
[FL15].
carrying
[AM01].
Case
[CFG19, FTJ95, WW95, BdlBH99, KF03].
Compiler-Level [BPRB23]. Compilers [BDFH97, DDH84, HP96, Han94, BGKR09, RD97, SYN06]. Compiling [Cha93, CH87, Fis80, Set83, VHKO02].

Completeness [CFG97]. Complete [BDFH97, WM95].

Complementation [CFG97].

Complete [BDFH97, WM95].

Completeness [LBN17, TB95, WGS92, dBH21, Wu04, WGS93].

Completion [KR01].

Complexity [BDFH97, WM95].

Complete [BDFH97, WM95].

Completeness [TB95, WGS92, dBH21, Wu04, WGS93].

Component [BDFH97, WM95].

Component-base [LBN17, TB95, WGS92, dBH21, Wu04, WGS93].

Componential [FF99].

Component [CIJGP18].

Composable [SDD21].

Composing [SDD21].

Composite [Fea87].

Compositionally [Dan23].

Compressed [DAS98].

Computability [LBN17, TB95, WGS92, dBH21, Wu04, WGS93].

Computable [PK82].

Computational [ATD08, SS09].

Computations [ATD08, SS09].

Constraint-Based [PW98, Ste18, DDV99, SP07].

Constraint-Oriented [Bor81].

Constraint-Solving [NSTD15].

Constraints [AKP94, DFR15, HG83, Mye90, BA08, RM10, TFK11, Van96b, VHM01, Van96a].

Construct [Ans87, BS83, Kat93].

Construction [ADGM91, HIT97, LaL81, MB83, RH87, SL92, CMS03, GC01].

Constructions [LBMTT22].

Constructive [Loe87].

Constructs [AR84, DJP16, Par90].

Containerless [Ste22].

Context [GHR80, KLP22, LTMS20, LWR21, Ode93, Pad19, PK80, Ram00, RTD83, Rep00].

Context-Dependent [Ode93, RTD83].

Context-Free [GHR80, Pad19, KLP22].

Context-sensitive [Ram00, Rep00].

Context-Unbounded [LWR21].

Contextual [Ode93].

Continuation [BDM15, Wan82].

Continuation-Passing [BDM15].

Continuations [BDM15, HF87].
Deduction [LMD98]. Deductive [MW80].

Deep [YW22]. Default [SNS+14, LMM21].

Default [SNS+14, LMM21].

Defining [Ode93].

Definite [RKRR04].

Definition [Bou92, BWP87, CI84, CD79, Fid93, HSM94, WCM90, WCM91, Wol94]. Definition-Use [HS94].

Definitions [BS86, Wil82b, Dam03, VHKO02, Sij89].

Delay [BG89b]. Delayed [KPF95, RC03].

Delayed-Load [KPF95]. Delaying [Kau84].

Deleting [GP81]. Delimited [BDM15].

Demand [FPS19, GSW95, PA85, PA86a, PA86b, PF06, SR95, DGS97].

Demand-Driven [GSW95, PA85, PA86a, PA86b, FPS19, PF96, DGS97].

Denali [JNZ06].

Denotational [AB94, FA93, Gud92, MS94, NF98, Nie85, Sch85, dBB95].

Dependence [BGH+13, CFR+91, FOW87, HBG+09, HR90, ML21, PB97, PW98, Wol94, RAB+07].

Dependence-based [ML21].

Dependencies [Dee89, HBS22, CSS99].

Dependence [Bhu99].

Dependent [LS80, Miq91, NGB13, Ode93, RTD83, Rob79].

deques [Chi05]. DeRemer [Sag86].

Derivation [BK80, Cat80, DSW82, Gie83, HIT97, Kn90, TM93, Ano02a].

Derivative [JKT23].

Derivative-based [JKT23].

Deriving [Wan82, Bou06].

Describing

Description [AW85].

Description [McG82].

Descriptions [Boe85, BKL+97, Cat80, Ano02a].

Descriptors [Hol87].

Design [BPP16, BCD+15, B094, DF80, DF81, DC22, FT94, HSM84, KKM90, LDM07, ML80, RCS93, RL98, SYK+05, Bou05, MTSS09, CMLC06].

design-pattern-based [MTSS09].

Designing [LaL89, ALZ03].

Designs [AW85].

destructive [SRW98]. Detect [ISY88].

Detecting

GSW95, HCS10, Sch85].

Detection

CM86a, Hua90, MC82a, MC82b, TM93, AFF06, HDH02, PFH11, PCJD08, XA07].

Determinancy [TK94].

determination [DS98].

Determining [MF88].

determinism [TA08a].

Deterministic [KR79, Mye18, YGRBA23, DL18, Tar07].

Development [BK80, Col84, F087, Jon83, ML80, PPS79, Wil82a].

Diagnosis [BF87].

Dialect [Mul92].

Dialects [CP95].

dialogue [BCM99].

DIB [FM87a].

difference [BA08].

Differencing [PK82, RSL10].

Differential [KPF95, TDA+23, ZP07].

Differentiation [Sha82, VS22].

Diffusing [MC82b].

Dijkstra [BN94, Nel89].

Dimensional [Hil88, GPWZ08].

direct [YK97].

Directed [BDJ13, DMM88, Gud92, Han94, Set83, SYH07, OKN06].

Direction [Dar90].

Directly [Hob84].

Director [KS88, KS89].

Directory [Han81b].

Discipline [VMLY22, FGM07b].

Disciplines [SS84].

Discovering [FJK+17].

discovery [PZJ05].

Discrete [Bar81].

Discrete-Event [Bar81].

Disintegration [Ne820].

Disjunctive [Jen97, JOC919].

dispatch [DAS98, MFRW09].

dispatching [GZ07].

Distance [Wol94, ZS09].

distribute [CRN+08].

Distributed

[ABLP93, AF84, Apt86, AW5, BKS88, BCEM15, Bur84, CJ95, CM86a, CBDGF95, CS95, DAW88, Dug99, FLBB89, Fra80b, GHS83, HSG17, Hua90, HM84, Jon94, Kat93, KRS84, KKM90, Lam84, LS83, MC82a, RCRH95, SS84, Sch82, TM93, TCP+17, Zav85, ABL03, FM87a, HVB+99, KGO04, LK02, MDJ05, Pq96, Fh80a, Moh81, VHB+97].

Distributed-Memory [KK98, RCRH95].

div [Bou92].

Dive [YW22].

Divergence [SdSCP13].

DJ

[DR05, SGL96, SGL98, UM02].

DJ-graphs [UM02].

DLLs [Dug02].

do [SS50a].

Documentation [MHS86].

does [DMP96].

dolce [MP10a].

Dollars [HL22].

Domain [LM18, Tra08, RM07, SS05a].

Domains

[CMB+95, ELS+14, GS98, FH04, GLM05].
dominance [Ano02b, DVD07]. dominator [SGL97]. Dominators [LT79, Ano02b, BKRW98, BKRW05]. Don’t [AKNP17]. Down [HL22, SZLY21]. df [MSM+16]. Drinking [CM84, MS88]. Drive [PK80]. Driven [BL87, CS87, GSF95, JJC019, PA85, PA86a, PA86b, TGT18, YBL16, DGS97, FPS19, PF96, TGT20, YMW97]. Dually [MT08]. Dummy [Lam88]. During [BKB80]. DyC [GMP+00]. Dyck [LZR22].

Dyamic [ACPP91, AGT89, BNN22, BB79, BDM15, Bre89, CGG+19, CHMY19, CTT07, DS98, Dug99, HSS+14, HN05, Kai89, KR97, RCRH95, Ven95, WR08, dBB85, ACE96, BP12, CEI+07, DDDCG02, GZ07, MMM+07, PHEK99, SJP12, SHB+07, SYK+05, SYN06, WKD04, ZGZ05].

eager [FKW00]. Earley [Lei90]. Early [AB81]. ECCS [CDFP89]. Edge [DP93]. Editing [FL81, HT86, Nix85]. Editor [FM87b, DeM83, Mye18, Per90, Rep86, Wob92]. Editorial [AP07, App93, AG93, AF94, MP07, Mye19, Pal11a, Pal11b, Pal12, Pal13, Pal15, FP02, OP04]. Editors [DMM88, MM89, RTD83, Wat94]. EDO [OKN06]. Effect [Gor21, RLS+01]. Effective [BS83, Col84, JB20, KKN06, N05, PE08, WJ98, YUW02]. Effectiveness [BdIBH99, SH89]. Effects [Boe85, MXZ+22, SV20, TA08b]. Efficient [AKBLN89, ADGM91, BB79, BGH+13, Bre89, Cam89, CS95, DP82, DMM88, GZ05, GZ07, GLR83, GLO88, GSO04, HVB+99, HSS+14, HIT97, JP81, Jon90, KKM90, KRS88, KPF95, MVV+01, MM82, NB99, N05, PHP02, PXL95, PG21, PKH07, PA85, PA86b, RH87, SS08, SA00, SS88, TN19, WG98, YUW02, BCP08, GB99, KSV96, LPS004, LS09, PBK+07, TP04, VVJB10, YF98, PA86a, SS09]. Efficiently [Bal94, CFR+91, CF95]. Eiffel [ACE96].

Estimation [SBB+19]. Estimations [LVRG21]. Eta [DMP96]. Eta-expansion [DMP96]. Euclid [HW82]. Euclidean [Bou92]. Evaluating [BLH12]. Evaluation [AVF98, Bur84, CGST95, CK93, Gri82, Hud91, Jon90, LV94, LLOY23, PA85, PA86a, PA86b, RD87, RL98, Sl09, SG90, WCW90, WCW91, ZSS20, ADR06, CP96, CG04].
GJ05, LDM07, Leu04, ST00b, SYK+05.
Floating-Point
[CK94, Fat82, SBB+19, Hau96, Mon08]

Floating-Insensitive
[Hor97, FJKA06]

Flowback
[CNM91]

Flowglaph
[LT79]

Flows
[Kna90]

Floyd
[CF94, BA84, LP06, PBK+07, URJ18]

fold
[RKRR04]

Folklore
[LY98]

Font
[FK85]

Fool
[FA93]

ForeC
[YGRBA23]

Foreign
[FF08]

Foreword
[Mye17, Mye18]

Form
[AK87, BOV85, BM94, CFR+91, GSW95, Pal95, PG21, GPF08, KCL+99]

Formalization
[BPP16]

Formally
[SP97]

Format
[Wat83]

Forms
[DS83]

formulas
[RSL10]

formulations
[RS97]

Fortran
[AK87, DP99]

Foundation
[KRR18, Ban11, RAB+07, Rhi03]

Foundational
[HRV+23, AM01]

Foundations
[GTWA14, LW93, AAR+10]

Fractal
[MPM03]

Fractals
[Boy10]

Frames
[MPLM23, SJP12]

Framework
[BGL93, Gie83, HRV+23, JW17, KRR18, NSZS13, NSTD+15, OHL+14, SGL98, TN19, ATD08, DGS97, GMM99, GZ04, GC01, Leu04, PS08, RKRR04, TP04, VBLG04, XA07, ZCG+07, ZP10, vHK00]

Frameworks
[MMR95, KK07]

Framing
[BNN18, BNNN22]

Francez
[Fra81, Moh81, Moi83]

Free
[AP94, GEGP17, GHR80, Her91, Kar84, Kob98, Pad19, JJD98, KBP22, KSV96]

freedom
[KS10]

Fresh
[GMN+21]

frontiers
[Ano02b]

full
[GB99]

Fully
[JPP91, TY21]

function
[DR05, FF08]

Functional
[AFV98, Ban87, Blo94, Bou95, Bur84, DW89, FL91, ISY88, JPP91, WM95, Web95, Wil82a, ABH06, Bou06, DWWW08, DF98, PS08, San96, SP97]

Functions
[AKP94, AK82, Bou92, PB80, SM89, TY21, Lee09, MBC04, MB99, MT08, PPT08]

Further
[CM93]

Fusion
[JB20, LGAT00]

Fusion-based
[LGAT00]
Incomplete [MRGP20, GLMM05].

Incremental [Bur90a, CP95, DMM88, GMT97, HKR92, HKR94, HPMS00, Hud91, Kai89, Lar95, LST98, LHR19, PS92, RTD83, RP88, SGL97, WG98, YS91, BYYG+05, CP96, Van96a, Van96b]. Incrementally [QL91].

Independence [DHM00, GGSV22, Rep00]. Independent [ML80, Mul92].

Index [Ano86a, Ano88a, Ano90a, Ano91a, Ano92a, Ano94, Ano95, Ano98]. indexed [RR05]. Indices [RR05]. Indirect [Piq96, CEG07, YK97]. Induction [GSW95, Sit79]. Inductive [LBMTT22].

ineciencies [MMM+07]. Inessential [SS82, LaL84].

Inference [CEW14, Deb89, Hen93, LO94, LY98, MRGP20, Padi19, SR21, TB98, Wey83, FFLQ08, JB06, HM19, PS03, Van06]. Inferring [FNBG20]. Influence [FTJ95].

Information [AR80, Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87, Ano88b, Ano89b, Ano90b, Ano91b, Ano92b, ASF17, BC85b, HR02, NGB13, PBR+15, PS03, RSPS23, GS99, HY07, LN02, OYR09, TZ07].

Injection [SBE+19]. Input [BS83, SJW23, vPS81]. Input-Output [BS83]. Inputs [PA86a]. Insensitive [Hor97, FJKA06]. Insertion [AKNP17, GJ05]. inspection [CF04, FG03].

Instantiation [Der85]. Instead [Lam84, Rem81]. Instruction [KPF95, LCBS19]. Instructions [LS80, PS93, RF97, Rob79, LPP01]. Integer [BAGM12, BEF+16, FNBG20, HSD22, BG999]. Integrated [SS13]. Integrating [HPR89, WJS+00]. Integration [CO09, Leu04]. Intensional [STS03]. Interaction [WSH15, WT11, van88, BCM99].

Interferences [FTJ95]. Interfering [Jon83]. Interleaved [LZR22].

Interleaved-Dyck [LZR22]. Intermediate [Lam87, Pem83, TvS82]. Internal [Han81a].

International [Wol92]. Interoperability [Ano18, GSS+18]. interoperable [BFGT08].

Interpretation [BL93, CFG+97, DC22, DLR16, KRR18, LV94, MSJ94, BDL+08, BdlBH99, DGG97, Leu04, SYH07]. Interpretation-Based [DLR16]. Interpretations [CM+05, HY91, SJ03]. Interpreters [LR13, CEG07].

Interprocedural [Bur90a, BT93, DP97, HAM+05, HS94, HBC99, HRB90, LWR21, ML21, NR06, SH89, CKT86, DVD07, DGS97, FMoPS11, JLRS10, KK07, RLS+01]. Interprocess [RS84b]. Interprocessor [Ang89]. Interruptible [BNV+21].

intersection [Dan03]. Intertask [FY85]. Interval [Bur90a, GNS+15, FH04].

Interval-Based [Bur90a]. Introduction [Ahm20, DeM83, HCW82, Mül21, Per90, Rep86, Sag07, Wol92, Yos22]. Invariant [BKB80]. Invariants [Cla80, GEGP17].

Irreducible [Har97, UM02]. irregular [YF98]. Irrelevant [GP81]. Iso [LBN17, ZZO22]. Iso-Recursive [LBN17, ZZO22]. Isolation [Wha94].

Isomorph [JJD98]. Isomorph-free [JJD98]. Issue [Ahm20, Ano18, TGT20, Yos22, Sag07]. Issues [BO94]. Iterable [Gor21]. Iterated [GA96]. Iteration [Cam89, MOSS96, GS11, JLF02, Qia00].

Iterative [Ans87, Par90, DR05, JNMG10, LS04].

Jade [RL98]. Jam [ALZ03]. Java [AFF06, ALZ03, AAD+07, BH05a, Bla03, BALP06, CGS+03, CMS03, CSCM00, FFLQ08, FM99, GPF08, IPW01, KKN06,
KGMO04, KN06, KR01, LST02, LP06, LS08, Loc13, MMV'01, MME'10, MFRW09, MMG00, NR06, OKN06, Qi00, RRB19, SLC03, SMP10, SBE'10, SA99, SYK'05, TN19, TSL'02, WR08. Java-like [KN06].
JavaCOP [MME'10]. JavaGI [WT11].
Just-In-Time [TN19, DLR16, SYK'05]. JVM [HO07].
KaeOS [BH05a]. Kaiser [Tic88]. Kernels [BCD'15, ATD08]. Keys [PB80].
Kilbury [Lei90]. Kitsune [HSS'14]. Kleene [Koz97].
Knot [MC82a]. knowledge [GLMM05].
labels [Sto04]. Laboratory [Bor81].
LaLonde [Hen83, LaL83]. LALR [DP82, KM81, PCC85].
Lambda [Geo84, Gom92, NN86, PS08]. Laminar [PBR'15]. Lamport [Ang86, Pet83b].
Language [ACP91, AOC'88, Ano18, ABPS98, BS86, BPP91, BO94, Bor81, BC91, DVL15, Fat82, Fca87, FFF'18, GSS'18, Gud92, Hal85, HSG17, JMSY92, JPP91, Kai89, LVRG21, McGe82, Per79, PPS79, RTD83, RCS93, RKW'23, Sp086, SNS'14, SDD21, Tur84, Wet82, Win87, YSR91, YB87, dJKV82, van88, Bou05, BSvGF03, CFP'18, DWW08, DF98, FM99, Gro06, HBJ98, KNO6, LP99, MF09, MWC99, PPT08, PHEK99, Tra08, VHKO02, HCW82, YB88].
Linearity [KPT99].
Linearizability [HW90, DSW11]. Linearization [SCP23].
Linguistic [LS83, Wei90, FGM'07a]. Link [DDD05]. Link-time [DDD05]. Linking [QL91, Dug02]. LIPS [CDFP89]. LISF [GCRN11].
Live-Structure [MBW94]. Liveness [ACW90, GC86, OL82, RY88, HDH02]. LL [BF87]. LLVM [HL22]. Load [KPF95].
Loaded [BG89a]. Local [BDFZ09, CBDGF95, PT00, SDB20, TSB08, Wei89, Dann03, San96]. Locality [BAC16, MCT96, VALG05, ZSD09]. Locally [AB81, Bac84, Min84]. locating [JNNG10]. Localizer [ZMVPJ17]. Lock [GEP17, KS10]. Lock-Free [GEP17].
lock-freedom [KS10]. locking [AFF06].
LOCKSMITH [PFH11]. Logic
[AS89, AFV98, Apt81, BNN22, BGL93, BL87, BCD90, BDJ13, BMP94, CS04, CES86, CFM94, DW99, Deb89, DL93, Deb95, DJP+16, JPP91, Kar84, LS8, Lam94, MW84, MSJ94, MMG92, MPLM23, PZ22, SS98, Sok87, TK94, TB95, dBH21, BBTS07, BMR01, BCG+07, BdlBH99, CU08, CG86, CSS99, DDY99, DD09, GHB+96, GW99, HBB+99, HPMS00, KWL09, LMD98, Leu04, PM06, RKRR04, SW02, Yin11, dHB+96].

Logical [BNN18, GGL15, GS98, TY18, RSL10, Tar07]. Look [DP82, GMN+21]. Look-Ahead [DP82]. Lookahead [KM81, MF88]. Loop [BAC16, CS87, MCT96, Si79, RKSR12]. Low [CSCM00]. low-end [CSCM00]. lower [FNBG20, PW94]. LR [LaL84, ADGM91, BL94b, BF87, CPRT02, DMM88, Jef03, JP17, KC01, LaSe1, SS82, ST00b]. LR-based [KC01].

M [Bur91, Mul92]. M-LISP [Mul92]. Machine [CGJ+97a, Cat80, GNS+15, Gie83, Han94, JJCO19, LR13, ML80, RF97, SSB98, SDB20, Wa92, Zav85, ANo02b, LSO4, LSLR05, Ram99, RD08, SGL06, UM02].

Management [JP81, Mur91, SDB20, van88, BP12, WCM00, Zho96]. Managing [Bob80].

Manifest [SIG17]. manipulating [YS10].
Manipulation [DVL05]. Manipulations [BNN18, many [AE98], massive [HJK90]. Massively [CGST95]. Matching [AC96, AG89, CP95, KPS92, ADR06, Van06].
Matching-Based [CP95].
Maximization [GLO88]. Maximum [Kna90]. May [Hor97]. May-Alias [Hor97].
MCALIB [FL15]. Measures [Ne20].
Median [Com80]. Medians [KRS84].
megaflops [MMG00]. member [KF00].
Memory [AMT14, CK94, Cha93, CBMO19, FSH23, KZC15, KK98, KRS88, LB22, MSM+16, Mis86, RCRHT95, SS88, ABH11, BP12, GMM99, GW99, JNGG10, KF00, LK02, Loc13, QR00, RR05, TSY00, TP04, VBL04, WCM00, MMM+07].

memory-efficient [TP04]. memory-hierarchy [KF00]. Merge [Ber94]. Merlin [HBM+06]. Message [CSW06, SS84, VMLY22, Gor04]. Messages [BB79, Jef03]. meta [Tra08].
meta-programming [Tra08]. Metalevel [Jag94]. Metaprogramming [CI84].
Method [BNN18, BCD90, BF87, HL82, Jon83, Loe87, JJD98]. Methodology [Ban87, Her93, Sku95]. Methods [DAW88, KM81]. METRIC [MMM+07].

minimizing [RMH06]. Minimum [GHS83].

NP-Hard [Hor97]. NQLALR [BS88]. nulled [SJ06]. Number [Ste22]. Numbers [GLR83]. numeric [Hau96].

O [ABPS98, Car95]. Object [DF84, Hu96, Kh92, Ryu16, Ste22, WCW90, WCW91, BSvGF03, DMM01, DDDCG02, FM99, GPWZ08, HBM+06, JPS+08, LPS004, Plg96, WJS+00]. Object-Based [Kh92]. Object-Oriented [Hu96, Ryu16, Ste22, BSvGF03, DMM01, JPS+08, WJS+00]. Objects [AM85, CJK95, HF87, HW90, Her93, SM89, VHB+97, Wal80, Wal81, Win84, GPV07, HBJ98, KF00, Sto04, WJS+00].

Operators [Ive79, She91]. Optimal [BOV85, CGST95, FK85, JCM19, KRS94, Lar95, PB97, Hai98, JNZ06, KVS06]. MSRR00]. optimality [CP96]. Optimally [BL94a]. Optimistic [PM04].

Optimization [BPRB23, Bec94, BBC16, Bl94, BAC16, BT93, DF84, DP97, DDH84, Dha91, DSS88, FOW87, HG83, HOYY18, Pem83, PP94, RRB19, SS82, Sor89, TV82, Web95, Ass00, BHK07, KBC+99, KF03, PE08, TVA07, ZP10, CG95, LaL84, OCN06].

Optimization-Aware [BPRB23].

Optimizations [CC95, JSB+12, CGS+03, CKT86, GMP+00, SYK+05]. optimize [DMM01, VBLG04]. Optimized [CM93, Cop94, Hen82, WST85, DS98, UM02]. Optimizer [DF80, FSS83, HRL+23, DF81].

Optimizers [Gie83]. Optimizing [CE93, CDF89, Output [Ber80, BS83]. over [KOE+06]. overhead [BP12, SS96]. overlays [SWU10].

Overload [Bak82]. overloading [SS05b].

Overview [AOC+88]. ownership [DMM11, SS96]. Oz [VHB+97].
[HFC09, MMG92, SRW02, IV06].
Parser [DDH84, JKT23, JP17, LaL84, SS82].
Parse [BN99, LaL81, MYD95, PK80, CPRT02, SJ06, ST00b]. Parsing [CH87, DMM88, Fis80, GM79, Lar95, RH87, Sam80, SJW23, W98, K01]. Part [LaL81, PA85, PA86a, PA86b, Apt81].
Partial [AFV98, CP17, CK93, DS88, Gom92, KCL 99, SCP23, Sor89, ADR06, BP12, CG04, GJ05, LMD98, Leu04, ST00b].
Partially [BLH12, Kob98, RRSY08]. partially-flow-sensitive [RRSY08].
partitioning [RM07, YF09]. Parsing [CH87, DMM88, Fis80, GM79, Lar95, RH87, Sam80, SJW23, W98, K01]. Part [LaL81, PA85, PA86a, PA86b, Apt81].
[LV94, AP94, AB94, BC91, CH87, FA93, GPA+91, MWB94, NF89, Zho96].
Promotion [Bir84, Bir85]. Proof
[AFdR80, BDJ13, FRW90, GL80, Moi83, Sag86, SS84, Sok87, WGS92, WGS93, AM01, DSW11, Ols07]. proof-carrying [AM01].
Proof-Directed [BDJ13]. Proofs
[Apt86, BC85a, CM86b, HRV+92, JW17, LY98, Oss83, GRSK+11].
Proofs [Bir84, Bir85].
Propagation [SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].
Properties
[ACW90, AS89, CIJGP18, Kar84, LM18, OL82, Ry88, TB95, Wei89, YS10].
Prophecy [LM22]. Proposed [Fat82].
Proposers [MP10b]. Protected
[PAS+15, WJS+00]. Protocol [SL92, YS97].
Protocol
[MB83, RKW+23, BFGT08, SS96].
Prototypes
[HW82]. Provably
[SDB20, GB99]. Provenance [ZSS20].
Provedly
[AAD+07]. Proving
[DGMP97, GC86, Hen79, Lam79, Lam80, OL82].
Proving [Eug07].
publish/subscribe [Eug07]. Pure
[BN18, HU96, Pip97, Tar97]. Purpose
[App94b, SS05a, SS08]. Pushdown
[CBM90, JKT23]. PYE [TN19].
Qualifiers
[FJKA06]. Qualitative
[CFNH18]. Quality
[BHM+19].
Quantification
[Vol91, Bur91]. Quantified
[Gro06, STS03]. Quantitative
[CFNH18].
Quantum
[FDY12, HRL+23, BH99, Yin11]. Queries
[Bal94, CGG+19]. Queuing
[BB79]. Quiescence [CM86a].
R
[CT86, KMM+98, AW82]. R.
[Tic88].
race
[AFF06, PFH11]. Races
[KZC15].
Random
[AS80]. Randomized
[TOUH21]. Range
[CG95]. Rank
[Dan03]. Ranking
[Lee09, TOUH21]. Ratio
[CK94]. rational
[GS11]. rationale
[CMLC06]. Reach
[FKW98]. Reachability
[LZR22, NS13, TOUH21]. Reactive
[DFR15, AG04, DGG97]. read
[AE01, PZJ05]. read-only
[PFH11]. Readable
[Spo86].
Reading
[Pet83]. Real
[AL94, MMG92, RS84]. Real-Time
[MMG92, RS84]. realities
[Gor04]. Reals
[DK17]. Reasoning
[BKOZB13, BLRS12, DP93, BP82, BH99]. Recognition
[ABL03]. Recipient
[SL92, YS97].
Recognizing
[BL94]. Recombination
[Kau84]. Recombination-Delaying
[Kau84]. Recomposition
[BT93, SK88, Tic86, Tic88]. Reconciling
[HU96]. Reconstruction
[SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].
Provenly
[AD+17]. Proving
[DGMP97, GC86, Hen79, Lam79, Lam80, OL82].
Pruning
[BN99]. PSO
[FSH23]. publish
[Eug07].
provenly
[ADD+17]. Proving
[DGMP97, GC86, Hen79, Lam79, Lam80, OL82].
Pushdown
[CBM90, JKT23]. PYE [TN19].
Qualifiers
[FJKA06]. Qualitative
[CFNH18]. Quality
[BHM+19].
Quantification
[Vol91, Bur91]. Quantified
[Gro06, STS03]. Quantitative
[CFNH18].
Quantum
[FDY12, HRL+23, BH99, Yin11]. Queries
[Bal94, CGG+19]. Queuing
[BB79]. Quiescence [CM86a].
R
[CT86, KMM+98, AW82]. R.
[Tic88].
race
[AFF06, PFH11]. Races
[KZC15].
Random
[AS80]. Randomized
[TOUH21]. Range
[CG95]. Rank
[Dan03]. Ranking
[Lee09, TOUH21]. Ratio
[CK94]. rational
[GS11]. rationale
[CMLC06]. Reach
[FKW98]. Reachability
[LZR22, NS13, TOUH21]. Reactive
[DFR15, AG04, DGG97]. read
[AE01, PZJ05]. read-only
[PFH11]. Readable
[Spo86].
Reading
[Pet83]. Real
[AL94, MMG92, RS84]. Real-Time
[MMG92, RS84]. realities
[Gor04]. Reals
[DK17]. Reasoning
[BKOZB13, BLRS12, DP93, BP82, BH99]. Recognition
[ABL03]. Recipient
[SL92, YS97].
Recognizing
[BL94]. Recombination
[Kau84]. Recombination-Delaying
[Kau84]. Recomposition
[BT93, SK88, Tic86, Tic88]. Reconciling
[HU96]. Reconstruction
[SR95, WZ91, Apt00, CP96, SS05a, SS08, SS09].
Provenly
[AD+17]. Proving
[DGMP97, GC86, Hen79, Lam79, Lam80, OL82].
Pruning
[BN99]. PSO
[FSH23]. publish
[Eug07].
provenly
[ADD+17]. Proving
[DGMP97, GC86, Hen79, Lam79, Lam80, OL82].
Pushdown
[CBM90, JKT23]. PYE [TN19].
CM86a, DGL+79, GEGP17, JLP+14, MRG88, SL92, AG04, QG95. reflecting [HS11]. reflection [SW97a]. Regeneration [SR21]. Region [TB98, SYN06]. region-based [SYN06]. regions [RR05].

Register [BCT94, CH90, GSO94, JLF02, LCBS19, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].

 Interrupts [ZP07]. Regular [CC97, HVP05, KBP22, LaL81]. relating [ABC+21]. Relation [LBN17, MTG80].

Relational [BNNN22, BKOZB13, CB80, GS98, TLHL11, JJD98, JLRS10]. Relations [ELS+14, HT86, LH08]. Relationship [BS88]. Reliability [LM18, WN08].

Reliably [TCP+17]. Rely [GEGP17, LFF14, SZLY21].

Representation [DGL+79, Mul92, SM89, Wad90, Van82, Mil85]. Representations-Independent [Mul92].

Representations [Lam87, RF97, Wal80, Wal81, BGP99].

Reproduction [BHM+19]. Repulsing [TOUH21]. reshaping [ZCG+07]. Resilient [GH+19, WL85]. Resolution [ABR81, Bak82]. Resolved [SIG17].

Resource [CS95, Cla80, IK05, MQ05, BDFZ09, CEI+07, HR02, HAH12].

Restores [Wis79]. Result [TB95]. Results [Ven95, BGP99, SYYH07]. Retargetable [DF80, DF81, MV87]. Retention [LS81].

Rethinking [LHR19]. retrofitting [NCH+05]. Return [SDB20]. reuse [DNS+06, GW99, ZSD09]. Reversal [ACS84]. Reverse [PS08]. Reverse-mode [PS08]. Revised [SIG17]. Revision [FM87b], revisited [MDJ05, Cho96].

Revisiting [DI09, ZZO22]. Rewrite [FKW98, Ass00]. Rewriting [KKSD94, BCM99, DDD05, FKW00, GRSK+11, MMM+07]. Right [KSS3, LaL81, SJ06]. Rigorous [SBB+19].

Rings [BP89, Hua93]. RISC [PS93]. Rivieres [Hen83]. RMI [MVV+01].

Robust [LS83]. Robustly [PG21]. Roever [Moi83]. role [Apt00]. Roman [PB97].

Round [SBB+19]. Round-Off [SBB+19].

Rounding [FL15]. Row [MM89]. RSMs [CGG+19]. rule [HQRST02]. Rules [GL80, JTM98, SS84, LSO9, SSO09].

Run [IS88, TZ07, GMP+00]. Run-Time [IS88, TZ07, GMP+00].

Runtime [ANO18, BLH12, BEF+16, FNBG20, GSS+18, ISIRS22, TCVB14, BH05a, TSY00].

Rust [MTK21, Pea21]. RustHorn [MTK21].

Reliability [LM18, WN08].

Rigorously [PL93].

Round [SBB+19]. Round-Off [SBB+19].

Rounding [FL15]. Row [MM89]. RSMs [CGG+19]. rule [HQRST02]. Rules [GL80, JTM98, SS84, LSO9, SSO09].

Run [IS88, TZ07, GMP+00]. Run-Time [IS88, TZ07, GMP+00].

Runtime [ANO18, BLH12, BEF+16, FNBG20, GSS+18, ISIRS22, TCVB14, BH05a, TSY00].

Rust [MTK21, Pea21]. RustHorn [MTK21].

Rivieres [Hen83]. RMI [MVV+01].

Robust [LS83]. Robustly [PG21]. Roever [Moi83]. role [Apt00]. Roman [PB97].

Round [SBB+19]. Round-Off [SBB+19].

Rounding [FL15]. Row [MM89]. RSMs [CGG+19]. rule [HQRST02]. Rules [GL80, JTM98, SS84, LSO9, SSO09].

Run [IS88, TZ07, GMP+00]. Run-Time [IS88, TZ07, GMP+00].

Runtime [ANO18, BLH12, BEF+16, FNBG20, GSS+18, ISIRS22, TCVB14, BH05a, TSY00].

Rust [MTK21, Pea21]. RustHorn [MTK21].

Rivieres [Hen83]. RMI [MVV+01].

Robust [LS83]. Robustly [PG21]. Roever [Moi83]. role [Apt00]. Roman [PB97].

Round [SBB+19]. Round-Off [SBB+19].

Rounding [FL15]. Row [MM89]. RSMs [CGG+19]. rule [HQRST02]. Rules [GL80, JTM98, SS84, LSO9, SSO09].

Run [IS88, TZ07, GMP+00]. Run-Time [IS88, TZ07, GMP+00].

Runtime [ANO18, BLH12, BEF+16, FNBG20, GSS+18, ISIRS22, TCVB14, BH05a, TSY00].

Rust [MTK21, Pea21]. RustHorn [MTK21].

S [HCW82]. S/SL [HCW82]. Safe [AWW95, Dug02, JW17, LMM21, PG21, SDB20, AFF06, BSvGF03, LS03, Loc13, NCH+05, SA00, ZCG+07, MH06, SHB+07].

Safe-by-default [LMM21]. safe-for-space [SA00].

Safer [COE+20]. safety [FF08, YS10]. same [SS05a]. sampling [PPT08].

Satisfiability [FBSH23, XA07]. satisfying [Van96a, Van96b]. Saturn [XA07].

Scalability [TCP+17]. Scalable [FT94, GKM20, ZSS20, XA07].

ScalaExtrap [WM12]. scale [ZSS20].

Scaling [TCP+17]. scan [PS99]. Scanners [HKR92]. Scanning [GVC15]. Scavengers
temporal-ordering [GS99]. temporaries [RMH06]. Ten [Apt81]. Tensor
[RTP17, SBS22]. Tentative [Jon83].
Tenuring [UJ92]. Term
[KKSD94, MBT09, GRSK+11].
Termination
[AF84, Apt86, BAGM12, BCG+07, CFNH18, CDK+18, DSFG21, DG19, Fra80b, GJ05, HSP83, JBK18, MC82b, TM93, BAL07, BA08, DVG99, GRSK+11, Lee09, PR07, SMP10, Fra80a, Moh81]. Test
[Wey83, WW95, Duc08]. Testing
[AMT14, GMH81, TK94]. Tests
[Coh91, Koz97, Wir91, GZ05]. Text
[CC97]. TF
[SBS22]. TF-Coder
[SBS22]. Their
[Kam83, LaL84, SS82, PS96]. Theoretic
[ES97, Sha82, KV00]. Theoretical
[KRR18]. Theories
[NSTD+15, Bou06]. Theory
[AB20, CZ84, FSH23, KD94, KRS94, NBG13, Ryu16, TLHL11, CGP09, M06, Oh07, Pau01, SS05b, Bla03, FG03].

Thinking [WLBF16]. Thinning [Web95].
Third [Wol92]. ThisType
[Ryu16]. Thread
[YBL16]. Thread-Level
[YBL16]. Threaded
[JBK18, IT+22, TSY00]. Three
[DPP22, Oss83]. Tichy
[Tic88]. Tierless
[RRK+23]. Tile
[JB20]. tiling
[JL02, LS04, RKRS12]. Time
[AL94, ABR81, BL94b, BLH12, Coh91, DLR16, HBS22, Hol87, ISY88, Jef85, Lam84, LLOY23, M0G92, P93, RS84a, RN84b, TN19, Wir91, YR94, Zic94, BAL07, BALP06, BK08, BKR05, DDD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Mi85, Ram99, Rep98, SYK+05, Tra08, T07, Wu04, YMW97, LW93].

Time-bounded [LLOY23]. Time-Constrained
[Zic94, LPP01]. Time-Critical
[PS93]. time-efficient
[GB99, YF98]. Time-sensitive
[HBS22].
Timed
[Zic94]. Timeout
[Lam84]. Timing
[LJ99].

transformational [BDFH97]. toolkits
[VHM+01]. Tools
[van88]. Top
[SZLY21].
Top-down
[SZLY21]. TOPLAS
[Ano18, TGT20, MP10a, MP10b]. topology
[DDM11]. Tortoise
[Dan23]. Total
[San96]. Trace
[ABC+21, FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12]. Trace-Based
[WGS92, WGS93, WM12]. Trace-relating
[ABC+21]. traces
[HB+06, WR08]. Tracing
[BL94a, DLR16, MMM+07]. tradeoffs
[ZGZ05]. Trailing
[VR95]. Traits
[DNS+06]. Transactional
[URJ18, ABH11, CPF+04]. Transactions
[Ano18, HKMN94, TGT20]. Transducer
[DVLM15]. Transducer-Based
[DVLM15]. Transformation
[BKB80, Fea82, FL91, NSZ13, Wat91, RKR04, San96, TSY00, WZ07]. Transformational
[BDFH97, Bir84, Bir85, DS82, OA88, RC03]. Transformations
[Bar85, EGM01, Geo84, L0R81, M83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VAL05, WS97, Hen83, NN86]. Transformers
[Lam90, MMS96, MBT09]. TransformGen
[GKL94]. Transforming
[AWW95, BE94]. Transition
[PR07]. Translation
[AK87, BK11, Kat84, Son87, AAD+07, BGKR90, DP99, RC03]. Transmission
[HL82]. Transparently
[JSB+12]. Transport
[Min84]. transpose
[CRM+08]. Traversals
[LPS004]. Treatment
[YB87, YB88]. Tree
[AGT89, BOV85, BMW91, ZLH15, DS83, Han81a, Hen83, L0R81, FGM+07a]. Trees
[Com80, G0S83, MTG80, S92, Wad90, ACM11, SGL97]. Treewidth
[CJG18, CGG+19]. trick
[DMP96]. Truth
[BDH+16]. TSL
[LR13]. TSO
[FSH23]. tuning
[GMM99, PE08]. Tuples
[Rem81]. Tutorial
[GM81]. Two
[BO94, CDFP89, DPP22, GPWZ08, TY21, FMP11]. Two-dimensional
[GPWZ08]. two-variable
[FMP11]. Type
[Bur90b, Car95, CEW14, Coh91, CZ84,
Dug02, Eug07, HHPW96, HM93, Hen93, KPS92, KTU93, KR901, Lan80, LO94, LST02, LY98, LP00, MRGP20, MP88, NBG13, Pad19, PO95, SA99, SM89, Ste22, TWW82, TGT18, TGT20, Van86, VMLY22, Wal80, WT11, Wir88, WC97, BSvGF03, BCG + 07, FJKA06, FGM07b, FM99, FF08, GZ07, GMZ00, HO07, HDH02, HY07, KF10, KS10, NP08, NCH + 05, PT00, STSP05, TFW82, TZ07, Wal81, Wir91.

Type-based [Eug07, LP00, BCG + 07].

Type-Driven [TGT18, TGT20].

Type-Extension [Coh91, Wir91].

Type-Graphs [KPS92].

Type-preserving [LST02].

Type-Safe [Dug02, BSvGF03, NCH + 05].

Typechecking [CL95, MBC04].

Typed [ACPP91, Geo84, GDF23, Kob98, NN86, WCM00, AAR + 10, LP99, MWCG99].

Typed-Untyped [GDF23].

Types [AFF06, AC93, BG22, BB94, BCEM15, DDMP22, DPP22, DD85, E080, FFLQ08, GEGP17, HL82, Hes88, Jen97, Kan83, KBP22, LaL89, LO94, LBN17, Loe87, Mal82, Mq19, MP88, TDA + 23, WL85, Wei89, Wei90, AM01, BF + 11, Dan03, DMM11, DMM01, Gro06, GPV07, HVP05, IV06, MME + 10, PS06, Pch98, S03, SP07].

Typestate [COE + 20, GTWA14].

Typestate-Oriented [GTWA14].

Typing [ACPP91, DG19, Dug99, GGSV22, RM10, SV96].

Ultimate [PS08].

Type-based [Eug07, LP00].

Type-Driven [TGT18, TGT20].

Type-Extension [Coh91, Wir91].

Type-Graphs [KPS92].

Type-preserving [LST02].

Type-Safe [Dug02, BSvGF03, NCH + 05].

Typechecking [CL95, MBC04].

Typed [ACPP91, Geo84, GDF23, Kob98, NN86, WCM00, AAR + 10, LP99, MWCG99].

Typed-Untyped [GDF23].

Types [AFF06, AC93, BG22, BB94, BCEM15, DDMP22, DPP22, DD85, E080, FFLQ08, GEGP17, HL82, Hes88, Jen97, Kan83, KBP22, LaL89, LO94, LBN17, Loe87, Mal82, Mq19, MP88, TDA + 23, WL85, Wei89, Wei90, AM01, BF + 11, Dan03, DMM11, DMM01, Gro06, GPV07, HVP05, IV06, MME + 10, PS06, Pch98, S03, SP07].

Typestate [COE + 20, GTWA14].

Typestate-Oriented [GTWA14].

Typing [ACPP91, DG19, Dug99, GGSV22, RM10, SV96].

Ultimate [PS08].

Unassigned [Win84].

Unbounded [LWR21, BGP99].

Uncaught [LP00].

Undecidable [Ram94, Rep900, Cha02].

Undecidability [Ram94, Rep900].

Understanding [ST00a].

Understanding [ST00a].

Undo [Lee86].

Unfold [RKRR04].

Unfold/fold [RKRR04].

Unidirectional [Pet82].

Unification [MM82, DRSS96].

Unified [VSS94].

Uniform [VSS94].

Uniformly [DB85].

Unique [Van06].

UNITY [Pau01, TB95].

Universal [DPP22].

Universe [DDM10].

Unnecessary [BT93].

Untrusted [JW17].

Untyped [GDF23].

Update [Hud91, FGM + 07a, GW99].

Updating [HSS + 14, HN05, SRW98, SHB + 07].

Upper [PW94].

Usage [MS83, BDFZ09, IK05, QR00].

Use [FOW87, GH80, HS94, LaL84, PPS79, She91, SS82, CC97].

Usefulness [HDH02].

User-Defined [Wal81, Wat83, Van88].

User [ACS84, DS90, Mye90, Wal80, Wal81].

Utilizing [ES97].

VAL [McG82, Wet82].

Validation [How80, KC01, MOS07a].

Value [HL82, dBH21, HLI05, SW07a].

Values [DD85, Han92, HSI22, Wet82].

Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BG99, HVB + 99, NS13, SV96].

Variants [IV06].

Variational [CEW14].

Varieties [NC20].

Vector [AK87, Bud84, CBMO19, Fis80, FTJ95, KD94, Per79, KK07].

Verified [YB85].

Verification [App15, BDP14, BCD + 15, CDFP99, CES86, CPS93, CHMY19, D090, EG14, GL94, ITF + 22, JBK18, Jon94, JTM98, KKW14, LFF14, L99, LCK + 22, LS79, MTK21, NBG13, RY88, SZLY21, SSFZ + 23, BD1 + 08, CEI + 07, GP08, GM12, Qia00].

Verified
REFERENCES

[BFGT08, BKL+97, HL22, HRL+23, JLP+14, DSW11]. Verifying
[AS89, BFG08, CGJ97b, DJP+16, GEGP17, LM18, YS10, Mon08]. Version [YR94].
Versions [HPR89]. Versus
[DPP22, Pai98, Pip97, UM02]. Vertices
[BGH+13]. Very [GLR83]. VHDL
[BKL+97]. via
[CEI+07, FKW98, GPFO8, GS094, HLH19, HOYY18, ITT+22, MMM+07, PE08, RTP17, SRW02, SV20, SCP23, Tra08, WCM00].
View [KBP22, SZBH86, FGM+07a]. view-update [FGM+07a]. Virtual
[Jef85, RR19, CEG07, KN06]. Visibly
[CBMO19, JKT23]. Visual
[Mye90, BCM99]. vita [MP10a, MP10b].
VLSI [LVV+83]. Volpano [Bur91].
Volume [Ano18, TGT20]. vs [HR02].

W [Tic88]. Wait [Her91]. Wait-Free
[Her91]. Waite [BP82]. Warp [LW93]. way
[VHM+01]. Weak [AMT14, KZC15].
weakening [SYYH07]. Weaker [Boo82].
web
[BFG08, BLRS12, CHY12, CGP09, CMS03].
Weight [GHS83]. While
[Pet83a, BC85b, GM81]. while-Programs
[BC85b]. Whole [BDH+16]. Widening
[KKW14, VJB12]. win) [Lam90]. Within
[FKW98]. Without
[Cop94, Ode93, AS89, Cas95, Sto04, VR95].
Witnessing [TA08b]. Workbench [CPS93].
World [GG85, DF11].
World-Model-Based [GG85]. Worst
[CFG19, WW95]. Worst-Case [CFG19].
wp [BH99]. write [AE01]. Writing
[Pet83a, Win87]. WYSINWYX [BR10].

X [OLH+16, MSM+16]. X-Sensitive
[OLH+16]. X10 [GHH+19]. XARK
[ATD08]. XML [HVP05, HFC09]. XSL
[MOS07a].

Years [Apt81].

ZGC [YW22]. Zones [GMN+21].

References

REFERENCES

Amadio:1993:SRT

Ashley:1994:FCP

Abadi:1996:SM

Attali:1996:NSE

Alur:2011:SMC

Abadi:1991:DTS

Archer:1984:URR

[ACS84] James E. Archer, Jr., Richard Conway, and Fred B. Schneider. User recovery and reversal in interactive systems.
REFERENCES

ACM Transactions on Programming Languages and Systems, 6 (1):1–19, January 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Aggarwal:1990:ALP

Ashley:1998:PFF

Afek:1994:BFF

Alglave:2021:ACF

Ancona:1991:ECL

Ager:2006:FPE

REFERENCES

REFERENCES

Alur:2004:MRH

Aho:1989:CGU

Ahmed:2020:ISI

Arsac:1982:STR
Allen:1987:ATF

Ait-Kaci:1989:EIL

Abadi:1993:CS

Abadi:1994:OFR

Abadi:1995:CS
Ancona:2003:JDJ

Atkinson:1985:PPD

Appel:2001:IMR

Alglave:2014:HCM

Anger:1989:LIC

Anonymous:1982:IA

Anonymous:1983:IA

REFERENCES

[Ano90a] Anonymous. 1990 author index. *ACM Transactions on Programming Languages and Systems*, 12

Anonymous:1990:IA

Anonymous:1991:AI

Anonymous:1991:IA

Anonymous:1992:AI

Anonymous:1992:IA

Anonymous:1994:AI

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

REFERENCES

[AP07] Martín Abadi and Jens Palsberg.
REFERENCES

[Appel:1993:Ea]

[Appel:1994:ABG]

[Appel:1994:PS]

[Appel:2015:VCP]

[Apt:1986:CPD]

[Apt:2000:RCC]

Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Andersen:2019:FSP

Austin:2017:MFD

Assmann:2000:GRS

Arenaz:2008:xef

[ATD08] Manuel Arenaz, Juan Touriño, and Ramon Doallo. XARK:

Ashcroft:1982:RS

Avrunin:1985:DAD

Aiken:1995:SST

Alur:2001:MCH

Ben-Ari:1984:AFG

Blume:1999:HM

Ben-Amram:2008:SCT

Amir M. Ben-Amram. Size-change termination with difference constraints. *ACM Trans-

Backhouse:1984:GDF

Bondhugula:2016:PAP

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Brecht:2006:CGC

Banerjee:1987:MSR

Banerjee:2011:MFT

Barnden:1981:NCA

Barstow:1985:CTD

Beyer:1979:SED

Breuer:1994:DET

REFERENCES

REFERENCES

Brogi:1991:CLS

Bugliesi:2004:ACM

Bos:1990:MSL

Betts:2015:DIV

Bugliesi:2015:ART

Benton:2004:MCA

Bruynooghe:2007:TAL
REFERENCES

REFERENCES

Botincan:2013:PDP

Botincan, Matko; Dodds, Mike; Jagannathan, Suresh. Proof-directed parallelization synthesis by separation logic. ACM Transactions on Programming Languages and Systems, 35(2):8:1–8:??, July 2013. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Bernardeschi:2008:DBV

Bueno:1999:EAI

Biernacki:2015:DCP

Biernacki, Dariusz; Danvy, Olivier; Millikin, Kevin. A dynamic continuation-passing style for dynamic delimited continuations. ACM Transactions on Programming Languages and Systems, 38(1):2:1–2:??, October 2015. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Bowman:1993:RAN

Barthe:2014:FVS

Barthe, Gilles; Demange, Delphine; Pichardie, David. Formal verification of an SSA-Based middle-end for CompCert. ACM Transactions on Programming Languages and Systems, 36(1):4:1–4:??, March 2014. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Bossi:1994:TAP

Bossi, Annalisa; Etalle, Sandro. Transforming acyclic...

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Brogi:1994:MLP

Bistarelli:2001:SBC

Ball:2005:PPA

Borstler:1991:TCT

Jürgen Börstler, Ulrich Möncke, and Reinhard Wilhelm. Table compression for tree automata.

Broy:1994:AFC

Bertsch:1999:FPT

Banerjee:2018:LAF

Anindya Banerjee, David A. Naumann, and Mohammad Nikouei. A logical analysis of framing for specifications with pure method calls. *ACM Transactions on Programming L-
REFERENCES

Banerjee:2022:RPL

Bobrow:1980:MRS

Busi:2021:SIE

Boehm:1985:SEA

Boehm:1982:WPL

Borning:1981:PLA

Boehm:1985:SEA

REFERENCES

Broy:1982:CAA

Burns:1989:USS

Bendersky:2012:SOB

Balabonski:2016:DFM

Basso:2023:OAC

Baumgartner:1997:ISC

Balakrishnan:2010:WWY

REFERENCES

[BS83] G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. *ACM Transactions on Programming Languages and Systems*, 5(2):223–235, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

REFERENCES

[Cam89] Robert D. Cameron. Efficient high-level iteration with accumulators. *ACM Trans-

[Click:1995:CAC] Cliff Click and Keith D. Cooper.

REFERENCES

Chander:2007:ERB

Clarke:1986:AVF

Chen:2014:ETI

Choi:1994:SSP

Cytron:1995:ECN

Clements:2004:TRM

Cortesi:1997:CAI
Agostino Cortesi, Gilberto File, Roberto Giacobazzi, Catuscia

Chatterjee:2019:NPW

CFP+04

Cortes:2004:HLA

Cytron:1991:ECS

Codish:1994:SAC

Keith Clark and Steve Gregory. Parlog: parallel programming in logic. *ACM Transactions on Programming Lan-
REFERENCES

CG95

CG95

CG04

CGG19

CG95

CG04

CGG19
REFERENCES

[Cha93] Siddhartha Chatterjee. Compiling nested data-parallel programs for shared-memory mul-

Charlesworth:2002:UAC

Chitil:2005:PPL

Cogumbreiro:2019:DDV

Carbone:2012:SCC

Cameron:1984:GBD

Chatterjee:2018:AAP

Cejtin:1995:HOD

Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-order distributed objects. *ACM Transactions on Programming Languages and Systems*, 17(5):704–739,

[KM84] K. M. Chandy and Jayadev Misra. The drinking philoso-
Chandy:1986:ESR

Chirica:1986:TCI

Copperman:1993:TCF

Codish:1995:IAI

Clifton:2006:MDR

Choi:1991:TDP

Chiari:2023:MCO

Christensen:2003:EJH

Coblenz:2020:OTA

Cohen:1983:ERR

Cohen:1985:NCE
REFERENCES

[Cohen:1991:TCT]

[Colussi:1984:RES]

[Comer:1980:NMS]

[Copperman:1994:DOC]

[Carle:1996:OCP]

[CP95]

[CP96]

[CP17] Nachshon Cohen and Erez Petrank. Limitations of partial compaction: Towards practical bounds. *ACM Transactions on Programming Lan-
REFERENCES

[CS04] Yifeng Chen and J. W. Sanders.

REFERENCES

Douglas D. Dunlop and Victor R. Basili. Generalizing specifications for uniformly implemented loops. *ACM Transactions on Programming Lan-
REFERENCES

dBruin:1985:DSD

deBoer:2021:CCR

Deng:2022:SDR

Donahue:1985:DTV

DeSutter:2005:LTB

Drossopoulou:2002:MDO

Dencker:1984:OPT
Peter Dencker, Karl Dürrre, and Johannes Heuft. Optimization of parser tables for portable

Das:2022:NST

Debray:1989:SIM

Debray:1995:CDA

DeMillo:1983:GEI

Debray:2000:CTC

[DEMD00] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler techniques for code compaction. *ACM
REFERENCES

Dershowitz:1985:PAI

DeFraine:2012:EAC

Davidson:1981:CDA

Davidson:1984:CST

Douence:1998:SSF

Dimoulas:2011:CSH
Christos Dimoulas and Matthias Felleisen. On contract satisfaction in a higher-order world. ACM Transactions on Programming Languages and Systems, 33
REFERENCES

Demetrescu:2015:RIP

DalLago:2019:PTM

Dams:1997:AIR

Duesterwald:1997:PFD

REFERENCES

REFERENCES

See Editor's foreword [Mye18].

[DNS+06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärl, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. ACM Transactions on Programming Languages and Systems, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Debra:1997:ICF

DeRose:1999:TTM

Devriese:2022:TPV

Dovier:2000:SCL

Das:2005:PFI

Dawson:1996:PU
REFERENCES

REFERENCES

Derrick:2011:MVP

Ducournau:2008:PHA

Duggan:1999:DTD

Duggan:2002:TSL

DeSutter:2007:PID

Danton:2015:FTB

Debray:1989:FCL

Dantas:2008:APA
Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie...

Etalle:2001:TCP

Esparza:2014:PBV

Ellis:1982:TCS

Elder:2014:ADA

Eilers:2020:MPP

Ernst:1980:SAD

Emerson:1997:USW

Fernandez:2004:ICS

Fidge:1993:FDP

Fischer:1980:PCA

Forejt:2017:PPA

Foster:2006:FIT

Fuchs:1985:OPF

Fokkink:1998:WAR

REFERENCES

Fokkink:2000:LRE

Fraser:1981:EDS

Christopher W. Fraser and A. A. Lopez. Editing data structures. ACM Transactions on Programming Languages and Systems, 3 (2):115–125, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Fradet:1991:CFL

Frechtling:2015:MMS

Fischer:1989:DFA

Finkel:1987:DDI

Fraser:1987:ERC

Christopher W. Fraser and Eugene W. Myers. An editor for

Freund:1999:TSO

Flexeder:2011:FIL

Frohn:2020:ILR

Foster:1996:CPP

Ferrante:1987:PDG

Fisher:2002:GE

Facchinetti:2019:HOD

Leandro Facchinetti, Zachary Palmer, and Scott Smith.

Francez:1980:CDT

Francez:1980:DT

Francez:1981:TCR

Fan:2023:SMO

Freudenberger:1983:ESO

Foster:1994:CAS

[FT94] Ian Foster and Stephen Taylor. A compiler approach to scalable concurrent-program design.
REFERENCES

Frick:1995:ICI

FTJ95

Fazine:1985:SIC

FY85

Greiner:1999:PTE

GB99

Gouda:1986:PLN

GA96

References

REFERENCES

Grove:2001:FCG

Gulavani:2011:BSA

Gergeron:1982:SAS

Greenman:2023:TUI

Gordon:2017:VIL

Gelernter:1985:GCL

Georgeff:1984:TRS

Ganapathi:1985:AGD

Mahadevan Ganapathi and Charles N. Fischer. Affix grammar driven code generation.
REFERENCES

Griswold:1980:AUP

Griswold:1980:AUP
Grove:2019:FRR

Griswold:1981:GI

Ghosh:1993:ASP

Graham:1980:ICF

Gallager:1983:DAM

Giegerich:1983:FFD

Gupta:1993:APE

References

(print), 1558-4593 (electronic).

Gran:2000:BCD

Gom:1992:SAP

Gor:2004:SRC

Gor:2021:PIS
REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Gil:2005:EST

Gil:2007:EDD

Hailperin:2005:CCC

Hailperin:2005:CCC

Hai85

Hall:2005:IPA

REFERENCES

REFERENCES

Hirzel:2002:UTL

Hennessy:1982:SDO

Henderson:1983:TCL

Hennessy:1986:PSS

Henglein:1993:TIP

Herlihy:1991:WFS

Herlihy:1993:MIH

Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM Transactions on Programming Languages and Systems, 15(5): 745–770, November 1993. CO-
Hesselink:1988:MAN

Haynes:1987:ECP

Hosoya:2009:PPX

Hennessy:1983:PCO

Hall:1996:TCH

Hilfinger:1988:APD

Hu:1997:FDE

REFERENCES

Heering:1985:TMP

Heering:1992:IGL

Heering:1994:LIP

Henzinger:2007:EMP

Herschowitz:2005:MMC

Haines:1994:CF

Haines:1997:CTP

Herlihy:1982:VTM
REFERENCES

REFERENCES

[Hicks:2005:DSU]

[Homan:1982:PE]

[Higuchi:2007:STS]

[Hobson:1984:DEE]

[Holt:1987:DDC]

[Horwitz:1997:PFI]

[Howden:1980:ASV]

[Heo:2018:ASA]
Haghighat:1996:SAP

Hermenegildo:2000:IAC

Horwitz:1989:INV

Henzinger:2002:AGR

Hennessy:2002:IFV

Horwitz:1990:ISU

Hietala:2023:VOQ
Kesha Hietala, Robert Rand, Liyi Li, Shih-Han Hung, Xiaodi Wu, and Michael Hicks.
REFERENCES

REFERENCES

Hayden:2014:KEG

Horwitz:1986:GEE

Susan Horwitz and Tim Teitelbaum. Generating editing environments based on relations and attributes. ACM Transactions on Programming Languages and Systems, 8(4):577–608, October 1986. CODEN ATPSĐT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Helsen:2004:PSM

Holzle:1996:RRP

Huang:1990:DDD

Huang:1993:LEU

Hudson:1991:IAE

Holt:1982:MIE

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS
Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow.
REFERENCES

Igarashi:2005:RUA

Igarashi:2001:FJM

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ish-Shalom:2022:RCB

Inoue:1988:AFP

Inverso:2022:BVM

Igarashi:2006:VPT

Iverson:1979:O

Kenneth E. Iverson. Operators. *ACM Transactions on Program-
REFERENCES

Jagannathan:1994:MBB

Jay:2004:PC

Joisha:2006:AAS

Jangda:2020:EFT

Jacobs:2018:MTV

Janssen:1997:MGR

Jacek:2019:OCW

REFERENCES

REFERENCES

Joisha:2012:TTE

Juan:1998:CVC

Jakobs:2017:PPF

Kaiser:1989:IDS

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

[KD94] Uday P. Khedker and Dhananjay M. Dhamdhere. A generalized theory of bit vector data flow analysis. *ACM Trans-
REFERENCES

Karkare:2007:IBC

Korach:1990:MTD

Kawahito:2006:ESE

Kennaway:1994:AGR

Kaiser:2014:WAM

Koopman:1992:CBC

Kristensen:1981:MCL

Bent Bruun Kristensen and Ole Lehrmann Madsen. Methods for computing LALR(k) lookahead. *ACM Transactions on Programming Languages and Systems*, 3(1):60–82, January 1981. CODEN ATPSDT. ISSN
REFERENCES

0164-0925 (print), 1558-4593 (electronic).

[KPF95] Steven M. Kurlander, Todd A. Proebsting, and Charles N. Fischer. Efficient instruction...

F. T. Krogh. ACM algorithms policy. ACM Transactions on Programming Languages and Systems, 6(3):440–
REFERENCES

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

Krogh:1988:AAP

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Kim:2018:TFS
REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

[Lam79] Leslie Lamport. A new approach to proving the correctness of multiprocess programs. ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].

REFERENCES

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Lahav:2022:WD

Lennon-Bertrand:2022:GCI

Ligatti:2017:SRC

Lozano:2019:CRA

Lorch:2022:AAV

Liao:1996:SAD

REFERENCES

Lueh:2000:FBR

Liu:2019:RIP

Lycklama:1991:FCF

Lindstrom:1979:BGC

Lin:1993:PIA

Lhotak:2008:RAB

Liu:1999:SVF

Zhiming Liu and Mathai Joseph. Specification and verification

[LJ99] Zhiming Liu and Mathai Joseph. Specification and verification

REFERENCES

Lamport:1999:SYS

Leroy:2000:TBA

Levanoni:2006:FRC

Leung:2001:STC

Lieberherr:2004:TOS

Lim:2013:TSG

Lepigre:2019:PSC

REFERENCES

They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the encrypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any $n \geq t > 0$, where n is the total number of processes and t is the number of faulty processes.

Liu:2021:ICU

Lee:1998:PAF

Li:2022:FGS

Mallgren:1982:FSG

Merlin:1983:CSS

Morris:1999:SF

REFERENCES

Millstein:2004:MTH

Morris:2009:TTN

Misra:1982:DGA

Misra:1982:TDD

McGraw:1982:VLD

McKinley:1996:IDL

Morrison:1991:AHA

Moreau:2005:BDR
Luc Moreau, Peter Dickman, and Richard Jones. Birrell’s dis-
REFERENCES

140

[MH06] Massimo Merro and Matthew Hennessy. A bisimulation-based semantic theory of Safe Ambients. ACM Transactions on
REFERENCES

REFERENCES

Ma:1980:DMI

Masud:2021:SCD

Martelli:1982:EUA

Myers:1989:RRA

REFERENCES

REFERENCES

REFERENCES

MacDonald:2009:DDP

Muller:1992:MLR

Muller:2019:ISS

Murtagh:1991:ISM

Mueller:1987:RMS

Maassen:2001:EJR

Manna:1980:DAP

[MW80] Zohar Manna and Richard Waldinger. A deductive approach to program synthesis. *ACM Transactions on Programming Languages and Systems*, 2
REFERENCES

Manna:1984:SCP

[MW84]

Mulkers:1994:LSD

[MWB94]

Morrisett:1999:SFT

[MWCG99]

Melicher:2022:BAE

[MXZ+22]

McKenzie:1995:ERS

[MYD95]

Myers:1990:CUI
Brad A. Myers. Creating user interfaces using programming by example, visual programming, and constraints. ACM Transactions on Programming Languages and Systems, 12(2):143–177, April 1990. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). URL http://www.acm.org/

Andrew Myers. Editor’s foreword to “Static Backward Slicing of Non-Deterministic Programs and Systems”. *ACM Transactions on Programming Languages and Systems*, 40(3): 11:1–11:?, August 2018. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [DL18].

[NO79] Greg Nelson and Derek C. Op-
REFERENCES

\textbf{Naik:2008:TSE}

\textbf{Nanda:2006:ISM}

\textbf{Nikolic:2013:RAP}

\textbf{Nowatzki:2015:SFS}

\textbf{Nandivada:2013:TFO}

\textbf{Olderog:1988:FPP}

\textbf{Odersky:1993:DCD}

REFERENCES

Olmedo:2018:CPP

Oh:2014:GSA

Ohori:2007:PTM

Ogasawara:2006:EED

Owicki:1982:PLP

Oh:2016:SXS

REFERENCES

REFERENCES

Palsberg:1995:CAC

Palsberg:1998:EBF

Palsberg:2011:E

Palsberg:2011:EN

Palsberg:2012:E

Palsberg:2013:E

Palsberg:2015:E

Parnas:1990:TCI

REFERENCES

Preda:2008:SBA

Pan:2008:PFE

Pearce:2021:LFR

Pemberton:1983:TCT

Peterson:1982:UA

Gary L. Peterson. An \(O(n \log n)\) unidirectional algorithm for the circular extrema problem. *ACM Transactions on Programming Languages and Systems*, 4(4):758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of \(n\) uniquely numbered processes in a ring. The algorithm requires \(O(n \log n)\) messages in the worst case, and is unidirectional. The number of processes is not initially known.
Peterson:1983:CRW

Peterson:1983:NSL

Proebsting:1996:DDR

Pratikakis:2011:LPS

Patrignani:2021:RSC

Poletto:1999:CTL

Paek:2002:EPA

REFERENCES

REFERENCES

[PS08] Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode AD in a functional framework: Lambda the ultimate backpropagator. ACM Transactions on Programming Lang-
REFERENCES

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SAU

Pugh:1998:CBA

Palsberg:1995:EIA
REFERENCES

[162](print), 1558-4593 (electronic).

Pangel:2022:SSL

Palsberg:2005:ADC

Qian:1995:CRO

Qian:2000:SFI

Quong:1991:LPI

Quillere:2000:OMU

Ranganath:2007:NFC

[162] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff, and Matthew B.
REFERENCES

Ramalingam:1994:UA

Ramalingam:1999:ILA

Ramalingam:2000:CSS

Ramsey:2003:T

Rogers:1995:SDD

Anne Rogers, Martin C. Carlisle, John H. Reppy, and L. J.

REFERENCES

Reiss:1983:GCS

Rem:1981:APN

Reps:1986:GEI

Reps:1998:MMT

Reps:2000:UCS

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

REFERENCES

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Rinard:1998:DIE

Ryder:2001:SIM

REFERENCES

REFERENCES

[Runge:2023:IES] Tobias Runge, Marco Servetto, Alex Potanin, and Ina Schaefer. Immutability and encapsulation for sound OO information flow control. ACM Transactions on Programming Languages and Systems, 45(1):3:1–3:??, March 2023. CODEN ATPSDT. ISSN 0164-
REFERENCES

Sagiv:2007:ISE

Samet:1980:CAP

Sands:1996:TCL

Sangiorgi:2009:OBC

Solovyev:2019:REF

Spoto:2019:SII

Shi:2022:TCP
REFERENCES

Schwartz:1980:U

Schneider:1982:SDP

Schmidt:1985:DGV

Soares:2023:SCE

Skorstengaard:2020:RAM

Swalens:2021:CCC

Sampaio:2013:DA

REFERENCES

Strickland:2013:CFC

Sethi:1983:CFA

Stamos:1990:RE

Sreedhar:1996:ILU

Sreedhar:1997:ICD

Sreedhar:1998:NFE

References

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Shankar:1992:SRH

Schultz:2003:APS

Sloane:1995:EAG

Spoto:2010:TAJ

[SMP10] Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java byte code based on path-length. ACM
REFERENCES

Transactions on Programming Languages and Systems, 32(3): 8:1–8:70, March 2010. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[SP97] Patrick M. Sansom and Simon L. Peyton Jones. Formally based

Simonet:2007:CBA

Spooner:1986:MAR

Sekar:1995:FSA

Shen:2021:ALI

Suhendra:2010:SA

Sagiv:1998:SSA

REFERENCES

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:EEC

Staiger-Stohr:2013:PIA

Sneyers:2009:CPC

Sanchez-Stern:2023:PIA

Schonberg:1981:ATS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
<th>Journal</th>
<th>DOI</th>
</tr>
</thead>
</table>
Shao:2005:TSC

Smith:1996:PTV

Sangiorgi:2019:EBP

Simpson:2020:BEM

Sabry:1997:RCV

Steckler:1997:LCC

Sewell:2010:NPP
REFERENCES

DEN ATPS DT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[TCVB14] Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua. Lazy schedul-

[TVA07] William Thies, Frédéric Vivien, and Saman Amarasinghe. A
REFERENCES

Tanenbaum:1982:UPO

Thatcher:1982:DTS

Toninho:2018:ISB

Toninho:2021:PSF

Tse:2007:RTP

Ungar:1992:A

Unger:2002:HIL

REFERENCES

REFERENCES

Venkatesh:1995:ERD

VanRoy:1997:MOD

VonHanxleden:2000:BCP

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

Vasconcelos:2022:TDM

Volpano:1991:TCS

Vakar:2022:CCH

VonBank:1994:UMP

REFERENCES

VanNieuwpoort:2010:SHL

Waddle:1990:PTC

Wallis:1980:ERO

Wallis:1981:CER

Wall:1992:ESD

Wand:1982:DTC

Waters:1983:UFC

Waters:1991:ATS

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Waters:1994:CBP

Wright:1997:PST

Walker:2000:TMM

Wileden:1990:CEO

Wileden:1991:CCE

Webber:1995:OFP

REFERENCES

[Wis79] David S. Wise. Morris’s garbage

REFERENCES

Wu:2012:STB

Weimer:2008:ESP

Wolf:1992:GEI

Welch:2010:SCF

Wang:2008:DSJ

Whitfield:1997:AEC

REFERENCES

Wang:2015:EAS

Wall:1985:TCN

Wehr:2011:JIT

Wu:2004:ETC

Wu:1995:WCC

Wegman:1991:CPC

Ward:2007:SPT

Martin Ward and Hussein Zedan. Slicing as a program transformation. *ACM Transactions on Programming Lan-
198

REFERENCES

Xie:2007:SSF

Xie:2020:CSA

Yemini:1987:ATE

Yemini:1988:TCA

Yiapanis:2016:CDS

Yang:1998:STE

Tao Yang and Cong Fu. Space/time-efficient scheduling and

REFERENCES

Yu:1994:LTS

Yellin:1991:ILI

Yellin:1997:PSC

Young:1999:SCB

Yahav:2010:VSP

Yang:2002:EEB

Yang:2022:DDZ

Zave:1985:DAF

Zhao:2007:FFS

Zhang:2005:CPT

Zhao:2007:FFS

[ZP07] Xiaotong Zhuang and Santosh

Zhuang:2007:AAR

Zic:1994:TCB

Zh:2007:AAR

\[\text{Zhuang:2010:OFE}\]

\[\text{Zhong:2009:PLA}\]

\[\text{Zhang:2021:CP}\]

\[\text{Zhao:2020:DLS}\]

\[\text{Zhou:2022:RIR}\]