A Complete Bibliography of *ACM Transactions on Software Engineering and Methodology*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

11 December 2019
Version 1.62

Title word cross-reference

N [RKBL19], z [LCZL14].

-Equivalent [LCZL14]. -way [RKBL19].

2002 [Ano02]. 2013 [HP15].

Abbreviated [SRTR17]. ABC [SF18].
Abstract [XMA+14, Jac95a, Pon02].
Abstracting [Gun00]. Abstraction
[AEK+16, CF03, Egy02]. abstractions
[BG98, DBGU13]. access [BDL06].
accommodates [YHR92]. Accounting
[SM12]. Accuracy [ASNB19]. Achieving
[BJMH02, HAB13, LBZ14].
Acknowledgement [ACM05]. ACM
[NP08]. across [CSV13]. action [HN98].
Active [ASNB19, MS15]. activity [Esh06].
activitycharts [BRG+01]. Ada
[Dil93, Dil97, DBDS94, YTL+95]. ADAM
[GL14]. adapt [DPT13]. Adaptation
[SEM17]. Adaptive
[BS16, CLBY18, DR11, HWH14, VTA04].
Addendum [HT98]. Address [Zav04].
Adequacy [GRS+16, KSD08]. Adequate
[GGZ+15]. Admitted [RXX+19]. adopting
[SAB+14]. against [EWS14, IC14]. agents
[MPR06]. aggregator [BPT10]. agile
[CF10]. AI [OHDB92]. AI-based
[OHDB92]. aided [SB06]. algebra [ZB13].
Algebraic [SZH+19, HRD08, PPP94].
algebras [BCD02]. algorithm
[BS07, YHR92]. Algorithms [DBNG15,
ARL+15, HT17, HT98, HVT98, KK93].
aliasing [FYD+08]. alignment [UGF14].

alloy [FPB+05, MF14, Jac02]. Alphabet [FDB+12]. Alternatives [KDM17].

Amoeba [DCS09]. among [GL11].

Amplifying [ZE14]. Analyses [CST16, RKBL19, LS13]. Analysis [AMS+18, AEK+16, AGRR19, Bjo19, CFL+16, DG17, JZL+19b, LCZL14, DDGR18, MGTR18, PBCT10, SEM17, SGD15, VLJ+18, YXK+17, YBL15, BP98, BGO+14, CS12, CK96, CK99, Cor00, CSX08, DRW06, Dev99, DBDS94, DCCN04, For94, GL14, GM01, GSH07, HKMB+14, Hie06, HH95, HZZ13, HT98, HVT98, HN08, LH08, LH02, MRR05, NP08, OO92, PTY95, PGM12, RM03, Rob08, SGG+14, Sune96, SRK06, TPT13, WP93, XCKX13, YTL+95, YBL13, FPGA07, MVM07]. analyze [CFM00]. Analyzing [LTX19, DFG00].

B [SB06]. back [Not13]. Based [AB12, ARL+15, ASMP16, BMM+17, DDE11, GGZ+15, JZL+19b, OKS+16, SGD15, TSPRC18, WB13, YXK+17, BGDV92, BCTW96, CMP13, CDSM10, CY11, Cha93, CMCP+99, CPPRM03, CW98, CZ19, DBGU13, DBPU13, Hami09, HAB13, KATS12, KKLS02, Kip92, KK04, Kuhl99.

[BO92, CFM00, DFB99a, DFB99b, ZW97].

Composing [BLW09]. Composite [BGL00, KDM17]. Composition [Ost99, Ham09, REM+04, ZJ93].

comprehensive [OHDB92, EF05, FGL+12, MZ09, RMP97, XCCY10]. Concept [PGM12, Sne96]. Concepts [DG17, MG00, SGL12]. Conceptual [QT12, TZZ09]. Concerns [MVM07, RM07].

Concurrency [MQLR16, ZSL+13, DL13, YTL+95]. Concurrent [AGRR19, Cor00, DKM+94, DCCN04, HZZ13, MK+97, PTY95].

Conditional [EVE+14]. conditions [KB07, SRK06]. Conference [MP14]. Configurable [AMS+18].

Configuration [BNB14, ELvdH+05, Gum00, Jez99]. configurations [Sne96]. Configuring [XZZL18]. Conflict [BFFG19, FN03].

Conformance [ZCT18, Ber94, LK14, PBO07, Pet97]. confounding [ZXL+14]. Conjunction [ZJ93].

ConMem [ZSL+13]. connection [AG97, AG98]. connectors [LWF03].

Consistency [SEM17, HJL96, NCEF03, PBO07, XCCY10]. consistent [SS02]. Consolidation [LDUD13]. constrained [BM13].

Consumption [LVBBC+18]. container [XR13]. containing [CFM00]. Context [CK96, KAT12, KGA+12, LH08, XCCY10, vdBV96]. Context-Aware [KAT12].

cooperative [HE13]. Coordinating [Cia93]. coordination [CFM00, MU00, MPR06, Tew08]. CORBA [CPPRM03]. CORBA-based [CPPRM03].

Cost [CST16, ATW94, Bre95, REM+04, Wey96]. cost-effective [REM+04]. Cost-Effectiveness [CST16].

Coverage-Based [GGZ+15, YHC13]. CPU [MPR+13]. Crash [ZSL+13].

Crash-Triggering [ZSL+13]. Crasher [CSX08]. Criteria [MKW15, OKS+16, TAA+19, Hie02, KSD08].

critical [GM01, MS94]. Cross [ZYL+18, DCS09]. cross-organizational [DCS09].

Cross-Project [ZYL+18]. crosscutting [SGL12, MVM07].

cryptographic [DFG00]. CSCW [KAT12]. CSP [SLD+13]. customizable [Dev99].
cycles [SS02].

Data-Intensive [NW+18]. Database [MKW15, CF03, PWX14, WGSD07].

dataflow [KSD08]. David [Ros13b]. DC [GRS+16]. Deadlines [DBNG15].

Deadlock [ABB+18, DBDS94]. Debt [RXX+19]. Debugging [CMM+15, FSP+13, JO15, MQLR16, AM04, HRD08, OSH04, QRLV12]. decentralized [ML00].

deductive
Defect [ZYL+18, SM12]. Defects [AVY11]. Degree [FMMH+14].
Degree-of-knowledge [FMMH+14]. Delta [HT98, HVT98]. Dependence
[PXJ17, Di97, SHR01, SRK06].

dependences [Jac95a, OSH04].
dependencies [BGO+14, Gun00, Rob08].
Dependancy [SEM17, CY11, GL14].
dependency-based [CY11].
dependency-driven [GL14]. Deployed
[AVY11]. depth [ZXLC14]. Derive
[YBL15, XM08]. derived [IWY00].
Description [Bjo19, DvdHT05, DJ97].
Descriptions [JZL+19a, AAG95, BAD08, WJ10].
descriptors [DER10]. Desert [Ref99].
Design [BPT10, EK11, DDGR18, MFL12, SGR+15, BM07, BOR92, BRRP05, BFN+14, CSG06, CR94, FBC+13, FP02, GGLT07, ML00, MRK+97, RS09, SS06, SB06, SGR+10, YTL+95, ZB13]. Design-Pattern
[SGR+15]. Designers [CZ19]. Designing
[BCC+01, DL11, XM07, CPPRM03].
designs [SB02]. Detecting [AVY11, DDGR18, MM13, ZSL+13, Jac95a, LS13].
Detection
[EKL+19, GHM18, LRC14, MS14, RD15, RXX+19, SKBD14, XMA+14, ZAW92, FN03, Kuh99, SMT92, TK02, XR13].
determination [OLR+96]. deterministic
[HT17]. Developer
[BFFG19, CF10, FMMH+14, Sin10].
Developing
[HRD08, TAA+19, JZW03, GMMM11].
Development
[BFFG19, CFL+16, MS15, ZCT18, AM11, DvdHT05, EAS08, ELN+92, GJ08, KK93, MFH02, PSV01, SCK13, Tiw08].
development-oriented [AM11].
deviations [CDFG96]. diagnosis [NLR11].
diagram [BP05]. diagrams
[BM13, Egv02, Esh06, WK14]. DiaPro
[CST16]. Differential [MLR16, TCDZ19].
DIG [NKWF14]. Digraphs [EM15].

Dijkstra [Ano02]. Directed [YPRK14].
discipline [KLV05]. Discovering
[CW98, GL11]. Discovery
[Böh18, SPK14, GL14]. discrete [Ost99].
Distinguishing [HT17]. Distributed
[Hie14, TG11, WME93, KK93, MU00].
distribution [TS09]. diversity [HAB13].
Do [CM+15, LYYC14, SURL11, CAC08].
documentation [TB92]. Documenting
[SGR+15]. documents [SMT92]. Does
[FSM+15]. Domain
[ASNB19, Bjo19, HZS08, ZE14, BJMH02, BAD08, Hie09, JW94, SS06, ZAW92].
Domain-specific [HZS08, BJMH02, SS06].
domain-testing [JW94]. domains [Hie02].
Double [For94]. Driven
[CLBY18, DG17, PVHW17, BDL06, GL14].
DSD [CSX08]. DSD-Crasher [CSX08].
duplication [DER10]. DynAlloy
[FPGA07]. Dynamic
[CST16, KMYK19, DDGR18, NKWF14, PXJ17, XMA+14, CY11, DR10, FC00, FPB+05, GSH97, PJRR10]. dynamically
[WGSD07]. Dynamite [MPF14].

E3 [JPL08]. Early [KDM17]. Easier
[CM+15]. easier [BGdV92]. Editor
[Pez19d, Ros19]. Editor-in-Chief
[Pez19d, Ros19]. Editorial [DR15, GMRS03, Ghe05, Ghe07, Not07a, Not07b, Not07c, Not08a, Not08b, Not09, Not10, Not12, Not13, OGW05, Pez19d, Pez19e, Pez19b, Pez19c, Ros13a, Ros14c, Ros14a, Ros14b, Ros15, Ros17, Ros18a, Ros18b, Ros19].
Edsger [Ano02]. Effect [GRS+16, HZBS14, RST+14, ZSL+13, Off92, Sin10, ZXLC14].
Effect-Oriented [ZSL+13]. Effective
[FYD+08, RD15, CF10, Hen97, REM+04].
Effectiveness [CST16, CM+15, GRS+16, MKW15, CM08]. Efficiency
[CM+15, LH02]. Efficient [AGRR19, AVY11, FPGA07, SRK06, dFLSV14, RH97].
efficiently [DL11]. Effort [SP18, SMY19, WOM15, AM11, BM07, GJ08, MY13].
elaboration [UKM04]. Eliciting [JPL98].
Embedded [BNB14, MFLL12, GGLT07].
Emergent [LBZ14]. Empirical
[FSM+15, MB09, RWEB19, TWB+19, VLJ+18, YXK+17, ZHO+18, BM07, BG07,
GHK+01, HT08, HVT08, MB07, MC08, MNGL98, SR05, Tiw08]. emulators
[MPR+13]. enabled [VTA04]. Enabledness
[DBGU13]. Enabledness-based [DBGU13].
end [Dev99, LASL13]. end-user [LASL13].
Energy [IVBBC+18]. Engineering
[DG17, DL11, DR15, MBH+17, MP14,
OKS+16, STS+18, SF18, WFF+19, ACF97,
CDP04, ELvdH+05, KLV05, LASL13,
RSB05, SR05, TBS02, UFG14, ZJ97].
engineers [HBB+09]. Engines [SURL11].
enhanced [SS06]. Enhancing [TS09].
Enough [CBRO16]. Ensuring [SEM17].
environment [ATW94, Bre95, FGMP03, Kli93, MRK+97,
Rei99, RVMRM04, SN92, TY92].
environments [ACF97, DHW98, ELN+92,
KK93, Kli93, MGP+13, PJJ+10, PWD+99].
equations [BRG+01, KGA+12].
Equivalence [LH02, MGTR18, DSV03].
Equivalent [LCZL14]. Errata [AG98].
error [Kuh99, TK02]. errors
[TD01, ZAW92]. ESP [Cia93]. estimates
[GJ08]. Estimating [MB15, PBU16, BM07].
Estimation
[PMM+99, SP18, WOM15, MY13, TZZ09].
evaluate [MGP+13]. Evaluating
[LH08, TAA+19, WGG13]. Evaluation
[FA14, KDM17, MS15, RWEB19, CAC08,
DBDS04, KK93, MBH09, XCKX13].
evaluations [SM12]. Event [ASMP16,
BCTW96, CW98, DBPU13, Mem08].
Event-Based
[ASMP16, BCTW96, CW98, DBPU13].
every [LYYC14]. Evolution [DR11, RM03,
RVMRM04, SN92, THHHB06, WGG13].
Evolutionary [HLL+16, Hen97, MBH09].
evolvability [CS12]. evolving
[DCS09, QRLV12]. EvoMaster [Arc19].
EvoSuite [FA14]. Exact [HKMB+14].
Examination [ZYL+18]. Examples [BS16].
Exception [CMP13, ZE14, RM03].
Executables [AEK+16]. Execution
[KPC18, YPRK14, AM04, Dill93, DHW98,
SMAC08]. Executions [EM18]. experience
[CMCP+99, YTL+95]. experiment
[BFN+14]. Experimental [CMM+15,
DO93, DBDS94, OL96, SMT92].
Experiments [SGR+15, Ham09, YBL13].
extert [CF10, Kip92]. Explainability
[RXX+19]. Explicit [BHB16].
Explicit-Data [BHB16]. Exploiting
[CGPP15, exploration [QNR13].
Explorations [PBU16]. Exposing [LBZ14].
expressions [KGA+12]. Expressive
[TG11, BLW09, WJ10]. Extended
[EM15, EM18, ZE14, LY05]. extensibility
[BJMH02]. Extensible [TG11]. External
[GL14]. Extracting [KM10]. Extraction
[ASNB19, MN96]. extractors [MNGL98].
faceted [DFB99a, DFB99b]. Facilitating
[RKBL19, YBL13]. factors [SAB+14].
factory [BCC92, FLM+98]. Failure
[NL11, Wey96]. Failure-Causing [NL11].
Failures [JO15]. families [BCD02].
Family [GHM18, RKBL19, SGR+15, WFF+19].
Family-based [RKBL19]. Fan [MVM07].
Fan-In [MVM07]. Far [ZYL+18]. Farewell
[Ros19]. Fault [EKL+19, KMYK19, Kuh99,
TSPRC18, YHC13, YXK+17, CCX11, Hie02,
Hie09, KB07, LY05, MA14, SMT92, TK02,
XCKX13, ZLCL14]. Faults
[HZBS14, SRTR17, LS13]. Feasibility
[EK11]. Feature [CLBY18, FN03, HLL+16,
RWEB19, Z97, ZZL+06]. Feature-Guided
[CLBY18]. Features
[JZL+19a, KMYK19, DR10, Zav04].
fedback [GJ08]. FEMOSAA [CLBY18].
Field [DPB17, JO15]. finding [CSX08].
fine [BRR01, DL13]. fine-grained
[BRR01, DL13]. Finite
[BM13, EM18, Cor00]. Finite-State

Follow [STS'+18]. Foraging [FSP'+13].

Formal [BP05, CR94, EWS14, RO18, AG97, AG98, BRRP05, BKM07, CS12, CMCP'+99, CRST12, CPRPM03, FP02, MMST14, PGM12, SCK13, VTA04, SB06].

Four [ZJ97, CD98]. frames [KK04]. Framework [AEK'+16, DR11, KAT12, MS15, YBL15, BCTW96, CDP04, CDFG96, Dev99, For94, MS03, SGL12, WGG13]. free [KGA'+12, vdBV96]. Freedom [ABB'+18].

Full-Word [SRTR17]. Functional [Bro93, GD08, RST'+14, MGP'+13]. functions [Hie09, MPG'+13, VKV03].

general [CCX11]. Generated [CMM'+15, LS13, WGS07]. Generating [ARG17, DRW96, HT17, IC14, KL93].

Generation [Arc19, BFFG19, FA14]. FSM'+15, MGTR18, vdBV96, EF05, FK96, FRB'+06, HZ080, PWX14].

Generative [KAT12]. Generator [NKWF14, DO93].

generic [LL00]. Genetic [DBNG15, YXK'+17]. GENOA [Dev99].

Global [ABB'+18, CFL'+16, WFF'+19].

Goals [BBS16, DBPU13]. governed [MU00]. GQM [FLM+98]. grained [BRR01, DL13]. grammars [KGA'+12].

grammarware [KLV05]. Graph [ARL'+15, PTY95, MNGL98]. graphical [DKM'+94, MRK'+97]. graphs [SRK06].

GreASE [dFLSV14]. growth [JMS08].

guarantee [CAC08]. GUI [Mem08, XM07, XM08].

HAMPI [KGA'+12]. handle [LYYC14].

handlers [CMP13]. Handling [ZE14]. hard [CAC08]. healing [CMP13]. Help [FSM'+15]. heterogeneous [MU00].

Heuristic [ZHO'+18]. Hierarchical [YW16, BO92, SLD'+13, WI10].

hierarchies [CCX11]. hierarchy [BM13, DFB99a, DFB99b, LY05].

hierarchically-aware [DFB99a, DFB99b]. high [CF03]. high-quality [CF03].

Higher [LWF03]. Higher-order [LWF03]. Highly [AMS'+18]. History [ARG17, FM94].

history-checking [FM94]. hosts [MPR06].

HOTTest [SS06]. Human [YXK'+17, CDFG96]. human-centered [CDFG96].

Hybrid [GSH97, ZMM'+16, CRST12, CSX08].

Hybridized [BBS16]. Hyper [ZHO'+18].

Hyper-Heuristic [ZHO'+18]. hypotheses [Hie02, Hie09].

ICSE [MP14]. Identification [GHM18].

Identifier [SRTR17]. Identifying [MVM07]. III [MKS'+15]. Impact [CST16, ELvdH'+05, PVHW17, Tlw08, EAS08, MA14, RSB05, SGG'+14].

Impact-Driven [PVHW17].

Implementation [KDM17, ZCT18, BO92, BPT10, LH08, SB02]. Implementations [GZSW19, TCDZ19].

improvement [SR05].

improving [ASN19, BGO'+14, DPT13, GJ08, LH02].

in-depth [ZXLC14].

Inconsistent [HN98]. Incremental [DPB17, UKM04, YPRK14, KK93, PF07].
Multi-Criteria \([\text{OKS}^+16]\). Multi-Level \([\text{DG}18]\). Multi-Objective \([\text{CLBY}18, \text{IVBCC}^+18, \text{ZHO}^+18]\). Multi-Step \([\text{BS}16]\). Multi-valued \([\text{CDEG}03]\). Multiagent \([\text{DL}11, \text{ZJW}03]\). Multidimensional \([\text{GL}11]\). Multilevel \([\text{DGC}14]\). Multimodal \([\text{MHK}11]\). multinational \([\text{Tiw}08]\). multiobjective \([\text{MY}13]\). Multitolerant \([\text{EK}11]\). multiuser \([\text{KK}93]\). multiview \([\text{PBO}07]\). mutant \([\text{OLR}^+96]\).

Names \([\text{SRTR}17]\). natural \([\text{GZ}05]\). need \([\text{LYYC}14]\). nesting \([\text{MBH}09]\). Network \([\text{RXX}^+19]\). Network-based \([\text{RXX}^+19]\). Networks \([\text{PLM}15, \text{Sin}10]\). Neural \([\text{RXX}^+19, \text{TWB}^+19]\). next \([\text{HKMB}^+14]\). Non \([\text{GGZ}^+15, \text{HT}17]\). Non-Adequate \([\text{GGZ}^+15]\). Non-deterministic \([\text{HT}17]\). nonanomalous \([\text{DBPU}13]\). Nonequivalence \([\text{dFLSV}14]\). noninteractive \([\text{ZZL}^+96]\). noninterference \([\text{DFG}00]\). notation \([\text{FP}02, \text{Jac}02]\). notations \([\text{BP}05, \text{CDP}04]\). Notkin \([\text{Ros}13b]\). Novice \([\text{CZ}19]\). NSGA \([\text{MKS}^+15]\). NSGA-III \([\text{MKS}^+15]\). numerical \([\text{SMAC}08]\). Nygaard \([\text{Ano}02]\).

Obfuscation \([\text{GHM}18]\). Obfuscation-Resilient \([\text{GHM}18]\). Obituary \([\text{Ano}02]\). Object \([\text{AB}12, \text{MS}94, \text{TG}11, \text{Cal}95, \text{CTCC}98, \text{CTC}01, \text{CSC}06, \text{DFB}99a, \text{DF}94, \text{Jac}02, \text{MRR}05, \text{RS}09, \text{RM}03, \text{SS}02, \text{SB}02]\). Object-Oriented \([\text{AB}12, \text{MS}94, \text{CTCC}98, \text{CTC}01, \text{CSC}06, \text{DFB}99a, \text{DF}94, \text{RS}09, \text{RM}03, \text{SB}02]\). objected \([\text{DFB}99b]\). objected-oriented \([\text{DFB}99b]\). Objective \([\text{CLBY}18, \text{HLL}^+16, \text{IVBCC}^+18, \text{MKS}^+15, \text{TAA}^+19, \text{ZZZL}^+18, \text{ZHO}^+18]\). obliviousness \([\text{HE}13]\). OBSERV \([\text{TY}92]\). Observable \([\text{HT}17]\). observational \([\text{PSV}01]\). OCL \([\text{QT}12]\). Ole \([\text{Ano}02]\). Ole-Johan \([\text{Ano}02]\). Open \([\text{RGCS}14, \text{MFH}02, \text{Sin}10]\). Open-Source \([\text{RGCS}14, \text{Sin}10]\). Operational \([\text{SZH}^+19]\). operators \([\text{OLR}^+96]\). opinion \([\text{CF}10]\). Optimal \([\text{HLL}^+16]\). Optimization \([\text{CLBY}18, \text{HLL}^+16, \text{IVBCC}^+18, \text{ZZZL}^+18]\). Oracles \([\text{WPB}19, \text{XM}07]\). Orchestra \([\text{TS}09]\). Order \([\text{SGD}15, \text{LWF}03, \text{TPT}13]\). organizational \([\text{DCS}09]\). Oriented \([\text{AB}12, \text{ZSL}^+13, \text{AM}11, \text{CTCC}98, \text{CTC}01, \text{CSC}06, \text{DFB}99a, \text{DFB}99b, \text{DF}94, \text{DR}10, \text{FGL}^+12, \text{HE}13, \text{MS}94, \text{OD}^+09, \text{RS}09, \text{RM}03, \text{SB}02, \text{SGR}^+10]\). OSS \([\text{ZMM}^+16]\). outcome \([\text{GJ}08]\). Outgoing \([\text{Ros}19]\). output \([\text{KM}10, \text{QNR}13]\). Overflow \([\text{ARG}17, \text{DLRA}15]\). overlapping \([\text{HaK}92]\).

Pacemaker \([\text{BZSW}14]\). Pan \([\text{BGdV}92]\). Parallel \([\text{HT}17, \text{KK}93, \text{PSV}01, \text{RD}15, \text{SMAC}08]\). Parameter \([\text{TG}11]\). parameterization \([\text{BAD}08]\). Parameterized \([\text{MR}05]\). Parameters \([\text{RGCS}14]\). Part \([\text{ELN}^+92]\). Partial \([\text{FDB}^+12, \text{PBU}16, \text{SGD}15, \text{XCC}Y10]\). Partial-Order \([\text{SGD}15]\). Passing \([\text{TG}11]\). Patch \([\text{MGTR}18]\). Patches \([\text{KPC}18, \text{TWB}^+19]\). Path \([\text{DDE}11, \text{QNR}13, \text{SGD}15, \text{TPT}13, \text{LS}13, \text{SRK}06]\). Path- \([\text{TPT}13]\). Path-Sensitive \([\text{SGD}15]\). Paths \([\text{YWC}16]\). Pattern \([\text{CZ}19, \text{SGR}^+15]\). Pattern-based \([\text{CZ}19]\). Patterns \([\text{DDGR}18, \text{ZB}13]\). Peer \([\text{RGCS}14]\). Performance \([\text{CFL}^+16, \text{RXX}^+19, \text{Tiw}08]\). Personalized \([\text{ZL}13]\). Perspective \([\text{FSP}^+13]\). pervasive \([\text{MZ}09, \text{XCCY}10]\). phase \([\text{JGB}12]\). philosophies \([\text{MSW}12]\). pilot \([\text{XM}08]\). PL \([\text{DL}11]\). Place \([\text{MS}15]\). Place-Aware \([\text{MS}15]\). Planning \([\text{ZHO}^+18]\). Platys \([\text{MS}15]\). point \([\text{BTI}14]\). pointers \([\text{OSH}04]\). points \([\text{LH}08, \text{MRR}05]\). points-to \([\text{LH}08, \text{MRR}05]\). Policies \([\text{BBS}16, \text{BLW}09]\). Polychronous \([\text{GGL}T07]\). Polynomial \([\text{NKWF}14]\). Portfolio \([\text{MPG}^+13]\). Post
regular [KGA+12]. Regulatory [GL11].
Repository [DNRN15]. Representation [EW11]. representations [BGL00]. Representing [RM07, DER10].
Reproducing [JO15]. Required [LK14]. Requirements [DPB17, GL11, DGD+19, RST+14, WFF+19, CRST12, CD98, GM01, GZ05, HJL96, SMT92, SR05, UFG14, ZJ97].
Resampling [SMY19]. Research [SF18, EAS08, ELvdH+05, RSH05].
Retrieving [PP93]. reusable [BO92, PP93]. Reuse [FPS+13, DGD+19, EF05, Hen97, HW12, MC08, OHDB92]. reverse [AM04].
router [CR94]. rule [Cia93, Kip92, MM13]. rule-based [Cia93, Kip92]. Rules [ARG17, MFLL12, KK04]. Runtime [AVY11, BLS11, EKL+19, XMA+14, BLW09].
Scale [BNB14, DNRN15, FA14, VLJ+18, PSV01]. Scaling [HZZ13, LCZL14]. scenario [UKM04, WJ10]. scenario-based [UKM04].
Scenarios [HKMB11, UKM04]. Schedule [MQLR15]. Schema [MKW15, NL11].
Schemas [QT12]. scientific [CY11, EF05, LYYC14]. Scores [RO18].
Screen [RST+14]. Scripts [RO18]. Search [BS16, OKS+16, SURL11, SED14, ZHO+18].
Search-Based [OKS+16]. Searching [MPG+13]. second [TPT13]. second-order [TPT13]. section [NP08]. security [BDL06, BLW09, CJM00, WAF00].
segments [LS13]. Selection [HLL+16, BRR01, CY11, GHK+01, RH97]. selective [ATW94, Bre95]. Self [CLBY18, RXX+19, PJRR10].
Semantic [BAD08, MB15, PJRR10, MG00]. Semantics [LK14, SZH+19, HN96, YHR92].
semantics-preserving [YHR92]. Sensing [BZSW14].
Sensitive [SGD15, Bro93, Cal95, For94, LH08, TPT13]. sensitivity [HKMB+14, MRR05].
Services [ZL13, BKM07]. sets [Hie02]. Shadow [KPC18]. shape [Cor00]. shuttle [CD98]. Side [EWS14, GZSW19].
Side-Channel [EWS14, GZSW19]. signal [BRG+01]. Signature [ZW95]. Significant [HZBS14]. similarity [OHDB92].
simplified [JW94]. Simulating [FS93]. simulation [KKLS02]. Single [ZCT18].
SIP [HLL+16]. size [BGH07, GD08, HGS93, MGP+13, TZZ09, ZXLC14], slice [BGH07, MB07], slice-based [MB07], slices [BFN+14]. Slicing [XMA+14, GSH07, LH02, TD01]. slicing-based [TD01]. Small [HZBS14, Sin10], small-world [Sin10], Smalltalk [CL94], SMC [SGE00], Smell [SKBD14], Smells [HZBS14], SMT [AGRR19]. SNAFL [ZZL+06]. Software [BNB14, Böhl8, CBRO16, CLBY18, CW99, CFL+16, CZ19, DHW98, DR15, DNRN15, EWS14, EM18, EF05, EW11, FSM+15, GZSW19, HH95, KPC18, MFH02, MFH02, MS94, PPP94, RMP97, TK02, WME93], specification-based [Kuh99, LY05, TK02]. specifications [CCX11, DSV03, FM94, HJJL96, HRD08, HN98, Jac95b, KB07, MMST14, MS03, Pon02, PMS13, UKM04, WP93, FPGA07], specify [CF00], specifying [DKM+94], spectra [NLR11], spectra-based [NLR11]. Spectrum [TSPRC18, YXK+17, MSW12, XCKX13]. Spectrum-Based [TSPRC18, YXK+17, XCKX13]. spi [DSV03], spreadsheet [FRB+06]. spreadsheets [RBL+01], SSL [TCDZ19]. SSL/TLS [TCDZ19]. Stack [AEK+16, ARG17]. STADS [Böhl8]. State [EM18, MS14, RWEB19, WB13, Cor00, DBDS94, WJ10]. State-Based [WB13]. statecharts [BRG+01, HaK92, HN96], stateful [SLD+13]. STATEMATE [HN96], States [LCZL14]. Static [IWy00, KMYK19, RD15, RWEB19, RM03, VLJ+18, WGS07, BGH07, FPB+05, GSH97, MNGL98, OO92, ZZL+06], Statistical [RGCS14]. Status [WFF+19]. Step [BS16]. Stepwise [EK11]. Stochastic [CFL+16]. strategy [JW94], stratified [PM+99], strength [MP09], Stress [DBNG15]. string [TPT13], strings [KGA+12]. Structural [Kip92], Structure [GRS+16, WB13, RM03], structured [BP98], Structures [KDM17], Structuring [Jac95b], studies [BM07, CD98, HBB+09, MFH02], Study [FSM+15, OKS+16, TWB+19, VLJ+18, Ze14, ZHO+18, ZMM+16, BJMH02, BRR01, BGH07, CF10, GHK+01, MB07, MNGL98, PSV01, SMT92, SR05, Tw08, TBS92, XM08, ZXLC14], style [AAG95], Subject [DPB17], success [Sin10], sufficient [OLR+96], suite [Ber94, HGS93, Pet97, REM+04, YTL+95], Suites [GGZ+15, Mem08], Summaries [PXJ17]. Support [DBNG15, JO15, SURL11, ZCT18, BFN+14, MS94, PPP94, RMP97, TK02, WME93].
HWH14, MS03, RM03. Supporting
[BG98, DR10, Ham09, MP06]. Surveys
[WFF+19]. Symbolic
[AEK+16, BHB16, Esh06, KPC18, LCZL14, RGS12, YPRK14,
BGL00, CDEG03, QNR13, SMAC08].
symmetry [SGE00]. symmetry-based
[SGE00]. symposium [NP08].
Synchronisation [AGRR9]. synthesis
[MMST14]. synthesized [PWX14].
Synthesizing [DBPU13, WJ10, DL13].
Synthetic [SMY19]. SysML [BFN+14].
System [LBZ14, PBU16, ZCT18, BGdV92,
CSM10, IY00, MMST14, MG00,
OHDB92, RVMRM04, TBS92, WME93].
system-level [MMST14]. systematic
[HBB+09, MS03]. Systematizing [HW12].
Systems [AMS+18, AGR19, AVY11,
BNB14, DL11, DPB17, EKL+19, NWB+18,
TG11, BO92, BCD02, Bro93, Cal95, CMP13,
CY11, CFM00, CRST12, CDFG96, DFT07,
DJ97, DTM+94, DCCN04, FM94, FP02,
FS93, GM01, JGB12, Kip92, KK04,
LYYC14, MU00, MS94, MRK+97, Ost99,
ODV+99, Pon02, RM03, SL+13, TZZ09,
THHB06, WAF00, ZJW03].

TACCLE [CTC01]. tailoring [CF10].
Target [KMYK19]. Task
[DBNG15, BBS16, Dl97, SCK13]. tasking
[Dl93]. Tasks [FSP+13, MBH+17].
taxonomy [UFG14]. Teams [CFL+16].
Technical [RXX+19]. technique
[KKLS02, RH97, SS06, SB10]. Techniques
[Bj09, RD15, BRR01, GHK+01, SM12].
technology [EAS08]. telecom [MC08].
telecommunication [Zav04]. Temporal
[CY11, Pon02, LYYC14, PMS13]. Term
[VKV03]. Termination [TAA+19, Dl97].
Terms [WB13]. Test [Arc19, CMM+15,
DPT13, EM15, FA14, FSN+15, GRS+16,
GGG+15, HZZ+14, IC14, KB07, MTK05,
MGTR18, Ber94, BRR01, DO93, FK96,
FRB+06, GHK+01, HGS93, HAB13, Hie02,
Hie09, KSD08, Mem08, PWX14, Pet97,
RH97, REM+04, SS06, UFG14, XM07].
Test-and-adapt [DPT13].
Test-Equivalence [MGTR18].
test-selection [BRR01]. testability
[BHL11, MBH09]. Testers [FS+15].
Testing [DBNG15, BG96, BÖh18, DPB17,
Hie14, KPC18, NL11, TCDZ19, TA+19,
WPB19, Ber94, CTCC98, CTCO1, CM08,
DRW96, DF94, DSV03, FRB+06, Ham09,
HAB13, Hie09, JW94, KSD08, Kip92,
Kuh99, LY05, MP+13, MBH09, Mem08,
MS03, NP08, Off92, OSH04, Pet07, RBL+01,
REM+04, SS06, SM12, TM14, TK02, Wey96,
XM08, ZAW92], testing-based [Ham09].
Tests [SPK14, ZE14]. Text [MBH+17].
Their [WB13, MPG+13]. theoretic
[YHC13]. Theoretical
[SZH+19, YXK+17, XCK13]. Theory
[FSP+13, RGC14, WFF+19, HBB+09,
Ham09, PPF94].
Three
[BM07, ZMM+16, CSC06]. time
[Bj09, Cal95, FM94, FP02, GGL07, MS94,
MRK+97, Ost99, Pon02, SL+13, WME93].
time-critical [MS04]. time-sensitive
[Bro93, Cal95]. Timed
[BMM+17, PBCT01, SL+13]. Timeliness
[WPB19]. TLS [TCDZ19]. TLTL [BLS11].
Tool [dFLSV14, CSX08, ELN+92, MS03,
MPF14, YTL+95, ZW95]. Tools
[FSP+13, Ham09, DRW96, Tiw08]. topics
[BGO+14]. Topology [Rob08]. TOTA
[MZ09]. trace [HZZ13]. Traceability
[BFN+14, DFT07]. tracking [DER10].
Trading [HE13]. transformation
[BHL11, CF03, MBH09]. Transformations
[BS16, DGD+19, TSPC18, YHR92].
Transforming [MHK11, BHL11].
transition [YBL13]. Translation
[TWB+19, Zav04]. traversal [VKV03].
triage [AM11]. Triggering [ZSL+13].
TRIO [FM94]. trustability [HH95].
Twitter [ST+18]. Two [MFH02, JGB12].
two-phase [JGB12]. Type
[ARL+15, KATS12, SCD15, BGL00, TD01].
Type-Based [ARL+15, SGD15].
type-specific [BGL00]. Types [SPAK10].
typestate [FYD+08]. Typing
[DG17, DGD+19].

Ultra [DNRN15]. Ultra-Large-Scale
[DNRN15]. UML
[BM13, BMM+17, BDL06, Esh06, MFL12,
QT12, SGG+14, SB06, YBL15]. UML-B
[SB06]. unbounded [JGB12].

References
Abo...

Validate [ZE14]. Validating
[FM94, MSW12]. Validation
[CRST12, QT12, TCDZ19, CW99, DBGU13].
value [FBC+13, Hie06]. valued [CDEG03].
Variability [AMS+18, VLJ+18].
Variability-Aware [VLJ+18]. Variable
[CST16]. Variant [RKBL19]. Variant-rich
[RKBL19]. variants [Jez99]. Variation
[EW11, PSMV98]. Verdict [Hie09].
Verification
[AGRR19, BMM+17, BLS11, CSV13,
EWS14, HGW+16, NBB15, QT12, BGL00,
CDM10, CY11, DSV03, FGL+12, FGMP03,
FYD+08, FC00, MPF14, SGE00, WME93].
verify [SMAC08]. Verifying
[CJM00, GZSW19, DCCN04, SLD+13].
Version [ARG17]. versioning [ZS97]. via
[BGO+14, PWX14, SMY19, TWB+19,
ZAW92]. Views [DL13, Jac95b]. violation
[LYYC14]. violations [MM13]. Virtual
[BBFG19, DHH98, Fom02]. visual
[CDP04, Dil93, KSD08, MG00].
visualization [BG98]. vs [SRTR17].
Vulnerabilities [MS14].

warehouses [BCC+01]. way [RKBL19].
Weak [FDB+12]. web
[LASL13, BM07, BCFM06, BPT10,
CGPP15, NBB15, SURL11, ZL13].
web-centred [LASL13]. Weighted
[HHG+16]. Well [SURL11]. white
[CTCC98]. Who [STS+18]. Wild
[TWB+19]. within [DHW98]. Word
[SRTR17, KGA+12]. Workarounds
[CGPP15]. workflow [CY11, LYVC14].
world [Sin10]. Wrapper [THHB06].
Wrapper-based [THHB06]. Wybe
[Ano02]. WYSIWYT [FRB+06].

XP [CF10]. XPIs [SGR+10].
Z [Jac95b].

References

[AAG95] Gregory D. Abowd, Robert
Allen, and David Garlan. Formalizing
style to understand descriptions of
software architecture. ACM Transac-
tions on Software Engineering and
Methodology, 4(4):319–364, October
1995. CODEN ATSMER. ISSN
1049-331X (print), 1557-7392 (electron).
URL http://
www.acm.org/pubs/articles/
REFERENCES

Allen:1997:FBA

Allen:1998:EFB

Antonino:2019:EVC

Akgul:2004:AIL

Anvik:2011:REB

Abal:2018:VBH

REFERENCES

Anonymous:1996:AI

Anonymous:2002:OOJ

Arcuri:2019:RAA

Azad:2017:GAC

Ali:2015:TBC

Alimadadi:2016:UJE

Arora:2019:ALA

[ASN19] Chetan Arora, Mehrdad Sabetzadeh, Shiva Nejati, and Lionell Briand. An active learning approach for improving the accuracy of automated domain model extraction. *ACM Transactions on Software Engineer-
REFERENCES

Adams:1994:CSR

Arnold:2011:QER

Breaux:2008:SPP

Bhatia:2016:MPG

Basili:1992:RAC

Bonifati:2001:DDM

[BCC+01] Angela Bonifati, Fabiano Cattaneo, Stefano Ceri, Alfonso Fuggetta, and Stefano Paraboschi. Designing data marts for data warehouses. ACM Transactions on Software Engi-
REFERENCES

Bernardo:2002:AFS

Brambilla:2006:PMW

Barrett:1996:FEB

Basin:2006:MDS

Bernhard:1994:RTS

Bernaschina:2019:VDI
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Beauvais:2001:MSA

Broy:1993:FST

Bible:2001:CSC

Berstel:2005:SFM

Basu:2007:MCJ

Baki:2016:MSL

Islem Baki and Houari Sahraoui. Multi-step learning and adaptive search for learning com-

Bodden:2014:JPI

Banach:2014:CAM

Cobleigh:2008:BHD

Callison:1995:TSO

Candela:2016:UCC

Chen:2011:RFC

Crow:1998:FSS

Chechik:2003:MVS

Cugola:1996:FFI

Costagliola:2004:FMI

Chen:2010:VSI

Cohen:2003:AHQ

REFERENCES

Cheung:1996:CCC

Cheung:1999:CSP

Cheon:1994:LSI

Chen:2018:FF

Chen:2008:UBS

Ciapessoni:1999:FMF

[CMCP+99] Emanuele Ciapessoni, Piergiorgio Miranda, Alberto Coen-Porisini, Dino Mandrioli, and

citations/journals/tosem/1994-3-4/p271-creveuil/.

RECENT REFERENCES

Diep:2011:LBS

Lucia:2018:DBD

Duala-Ekoko:2010:CRD

Doong:1994:AAT

Damiani:1999:CHA

REFERENCES

REFERENCES

DeLara:2014:WHU

Lara:2019:ARM

Doppke:1998:SPM

Dillon:1993:VEM

Dillon:1997:TDT

REFERENCES

[DO93] Richard A. DeMillo and A. Jefferson Offutt. Experimental results from an automatic test

DiNardo:2017:AFD

Denaro:2013:TAA

Dwyer:2010:SDA

Dagenais:2011:RAC

Dwyer:2015:EJF

Devanbu:1996:GTA

REFERENCES

REFERENCES

Ellis:2019:RFD

Engels:1992:BIS

Emam:2015:TCP

Emam:2018:IEP

Eshuis:2006:SMC

Erwig:2011:CCR

Martin Erwig and Eric Walkingshaw. The choice calcu-

REFERENCES

REFERENCES

REFERENCES

DEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Ghezzi:2005:E

Ghezzi:2007:E

Graves:2001:ESR

Garcia:2018:LOR

Gruschke:2008:ROF

Gandhi:2011:DMC

Ganesan:2014:AED

Dharmalingam Ganesan and Mikael Lindvall. ADAM: Ex-

Gargantini:2001:ADR

Ghezzi:2003:E

Griswold:1993:AAP

Gay:2016:EPM

Goel:2009:IPC

Gupta:1997:HSI

REFERENCES

Hall:2009:SRT

Hoffman:2013:TOM

Henninger:1997:EAC

Homan:2013:TOM

He:2016:LWA

Hierons:2002:CTS

Hierons:2006:ACC

Hierons:2009:VFT

Hierons:2014:CCD

Hierons:2016:SOP

REFERENCES

Robert M. Hierons and Uraz Cengiz Türker. Parallel algorithms for generating distinguishing sequences for observable nondeterministic FSMs. *ACM
REFERENCES

Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some code smells have a significant but small effect on faults. *ACM Transactions on Software Engineering and Methodology*, 23(4):33:1–33:??, August 2014. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic). [HBS14]

Jezequel:1999:RV

Jennings:2012:TPA

Jalote:2008:PRT

Jin:2015:ASR

Jaccheri:1998:ESP

Jeng:1994:SDT

Jiang:2019:RNF

Jiang:2019:IMA

Kulkarni:2012:GPF

Kastner:2012:TCA

Kapoor:2007:TCF

Karanikolas:2017:EEI

Krishnamurthi:2007:FIA

Shriram Krishnamurthi and Kathi Fisler. Foundations

Kiezun:2012:HSW

Kiper:1992:STR

Kaiser:1993:PDI

Kram:2004:CCM

Keidar:2002:IBT

Klint:1993:MEG

[Kli93] P. Klint. A meta-environment for generating programming en-

REFERENCES

[Lu:2014:RBS] Lunjin Lu and Dae-Kyoo Kim. Required behavior of sequence diagrams: Semantics and con-

Louridas:2000:GMR

Li:2014:RIP

Linares-Vasquez:2018:MOO

Lopes:2003:HOA

Lau:2005:EFC

Liu:2014:DWN

Xiao Liu, Yun Yang, Dong Yuan, and Jinjun Chen. Do we need to handle every temporal violation in scientific workflow systems? *ACM Transactions on Software Engineering and Methodology*, 23(1):5:1–5:??, February 2014. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Masri:2014:PCC

Meyers:2007:ESS

Mahmoud:2015:ESR

McMinn:2009:EEN

Mills:2017:PQQ

Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, Andrian Marcus, and Andrea De Lucia. Predicting query

REFERENCES

Marin:2013:UFS

Mechtaev:2018:TEA

Maoz:2011:CMS

Mkaouer:2015:MOS

Myers:2000:PPU

Monperrus:2013:DMM

Mari:2014:MBS

[MMST14] Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. Model-based synthesis of con-
Moscato:2014:DTV

Mcmillan:2013:PSR
Collin Mcmillan, Denys Poshynanyk, Mark Grechanik, Qing Xie, and Chen Fu. Portfolio: Searching for relevant functions and their usages in millions of lines of code. ACM

murphy: 2006: lcm

martignoni: 2013: MTC

Machado: 2016: CDD

Mccann: 1999: MMI

Moser: 1997: GED

Milanova: 2005: POS

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity

Medvidovic:2002:MSA

Morzenti:1994:OOL

Miller:2003:FTS

[MS03] Tim Miller and Paul Strooper. A framework and tool support for the systematic testing of model-based specifications.

Moller:2014:ADC

Murukannaiah:2015:PAL

Meneely:2012:VSM

Maalej:2014:CPC

Minsky:2000:LGI

Marin:2007:ICC

Mcminn:2015:ETC

Minku:2013:SEE

Mamei:2009:PPM

Nijjar:2015:DMP

REFERENCES

Nentwich:2003:FCC

Nguyen:2014:DDI

Nie:2011:MFC

Naish:2011:MSB

Notkin:2007:Ea

Notkin:2007:Eb

Notkin:2007:Ec

Notkin:2008:Ea

David Notkin. Editorial. *ACM Transactions on Software Engineering and Methodology*, 17

Notkin:2008:Eb

Notkin:2009:E

Notkin:2010:E

Notkin:2012:E

Notkin:2013:ELB

Notkin:2008:ISS

Nguyen:2018:UCM

Ouyang:2009:BPM

Outt:1992:IST

Osterweil:2005:E

Ouni:2016:MCC

Outt:1996:EDS

Olender:1992:ISA

Orso:2004:CDD

Ostroff:1999:CRD

Ponge:2010:AAT

Paige:2007:MBM

Pavese:2016:LME

REFERENCES

REFERENCES

tosem/1994-3-2/p166-parisipresicce/.

Picco:2001:RAC

Porter:1998:USV

Perry:2001:PCL

Pezze:1995:GMR

Polyvyany:2017:IDP

Pohl:1999:PTP

REFERENCES

Robillard:2003:SAS

Robillard:2007:RCS

Roman:1997:MUR

Riesco:2018:PII

Robillard:2008:TAS

Rosenblum:2013:ELF

REFERENCES

REFERENCES

Smaragdakis:2002:MLO

Snook:2006:UBF

Sinnig:2013:UCT

Stolee:2014:SSS

Sadeghi:2017:ECA

Stol:2018:ASE

Sherman:2015:DTB

REFERENCES

Sinha:2001:ICD

[SHR01]

Sinha:2001:ICD

[Sin10]

Singh:2010:SWE

[SM12]

Sahin:2014:CSD

[SKBD14]

Sahin:2014:CSD

[SIN10]

Sun:2013:MH

[SLD13]

Strecker:2012:ADC

[SMAC08]

Siegel:2008:CSE
Stephen F. Siegel, Anastasia Mironova, George S. Avrunin, and Lori A. Clarke. Combining symbolic execution with model checking to verify parallel numerical programs. ACM Transactions on Software Engineering and Methodology, 17
REFERENCES

Schneider:1992:ESF

Song:2019:SEI

Sullivan:1992:REI

Sulting:1996:RCB

Sarro:2018:LPB

Steimann:2010:TMI

Friedrich Steimann, Thomas Pawlitzk, Sven Apel, and Christian Kastner. Types and modularity for implicit

Sharma:2018:RWFW Abhishek Sharma, Yuan Tian, Agus Sulisty, Dinhua Wijedasa, and David Lo. Recommending who to follow in the software engineering Twit-
REFERENCES

Sim:2011:HWD

Sheng:2019:TPA

Tramontana:2019:DEO

Tichy:1995:AR

Trammell:1992:APC
Tian:2019:DTC

Tip:2001:SBA

Tilevich:2011:EEP

Tsuchiya:2002:FCE

Tappenden:2014:ACC

Tiwana:2008:ICD

Unterkalmsteiner:2014:TRE

Uchitel:2004:IES

Vidal:2018:ARB

Santiago Vidal, Iiaki Berra, Santiago Zulliani, Claudia Mar-\[\text{cos}, \text{and J. Andr\[\text{\ö\text{\text{"e}}}s D\[\text{\^{	ext{a}}}az P\[\text{ace. Assessing the refactoring of brain methods. ACM Trans-\[\text{actions on Software Engineering and Methodology}, 27(1):2:1-\[\text{2:??, June 2018. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).}

Vouillon:2013:SCC

VanDenBrand:2003:TRT

Stefan Wagner, Daniel Méndez Fernández, Michael Felderer, Antonio Vetrò, Marcos Kalinowski, Roel Wieringa, Dietmar Pfahler, Tayana Conte, Marie-Therese Christiansson, Desmond Greer, Casper Lassenius, Toni Männistö, Maleknaz Nayebi, Markku Oivo, Birgit Penzenstadler, Rafael Prikладник, Guenther Ruhe, André Schekelmann, Sagar Sen, Rodrigo Spínola, Ahmed Tuzcu,

Wursch:2013:EQF

Wassermann:2007:SCD

Whittle:2010:SHS

Wang:1993:DRT

Whigham:2015:BMS

Whittaker:1993:MAS

James A. Whittaker and J. H. Poore. Markov analysis of software specifications. *ACM Transactions on Software Eng-
REFERENCES

Wang:2019:OTS

Xu:2010:PCC

Xie:2007:DCA

Xie:2008:UPS

Xie:2013:TAR
Xu:2013:PML

Xiang:2018:CSP

Yue:2013:FTU

Tao Yue, Lionel C. Briand, and Yvan Labiche. Facilitating the transition from use case models to analysis models: Approach and experiments. ACM Transactions on Software Engineering and Methodology, 22(1):5:1–5:??, February 2013. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Yue:2015:AAF

Yoo:2013:FLP

Yang:1992:PIA

Yang:2014:DIS

Guowei Yang, Suzette Person, Neha Rungta, and Sarfraz Khurshid. Directed incremen-

Yi:2015:SCC

Young:1995:CAT

Yang:2016:HPP

Yoo:2017:HCG

Zave:2004:ATT

Zeil:1992:DLE

Zhu:2013:ADP

Zheng:2018:MAI

Zhang:2014:ATV

Zhang:2018:ESM

Zave:1993:CC

Zave:1997:FDC
REFERENCES

REFERENCES

Zaremski:1997:SMS

Zhou:2014:DSP

Zhou:2018:HFW

Zhao:2006:STS