A Complete Bibliography of ACM Transactions on Software Engineering and Methodology

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

17 April 2023
Version 1.76

Title word cross-reference

N [RKBL19], z [LCZL14].
-Equivalent [LCZL14], -way [RKBL19].
19 [FSZ+22].
2.0 [DKD21]. 2002 [Ano02]. 2013 [HP15].
Abandoned [KCAS23], Abbreviated [SRTR17], ABC [SF18], Able [HNRA20].
Abstract [PSZ21, XMA+14, Jac95a, Pon02].
Abstractive [Gun00]. Abstraction [AEK+16, ZNZ+23, CF03, Egy02].
Abstractions [PSZ21, BG98, DBGU13].
Acknowledgement [ACM05]. ACM [NP08], across [CSV13], action [HN98].
Active [ASNB19, MS15]. ActivFORMS [WI23]. Activities [SHLW21, WFW+20].
Architecture-centric [HWH14].
Architecture-Implementation [ZCT18].
Architecture-Level [BNB14].
[Jac95a, DR10, HE13, SGR]. Aspect-
[RS09]. aspect-oriented [DR10, HE13, SGR]. AspectJ
[HZS08, MHRK11]. Aspects
[GCX+22, SZH+19, BTH14]. Assembly
[AM04]. Assessing
[ACF97, Cai20, CXH23, RST+14, VBD+18, YHL+22]. Assessment
[CMM+15, LIWW+22, GJ08, PJJRR10, SR05, Wey96]. assigned
[BLH11]. Assignments
[AFY+22]. assistance
[GN93]. assume
[CAC08]. assume-guarantee
[CAC08]. Assumptions
[HG+16, IWY00]. ASTOOT
[DF94]. Atomic
[LIu22]. Atomicity
[MWP+21]. aToucan
[YBL15]. Attack
[WWZ+22, YX+23]. Attacks
[AMGBK22, EWS14, WC+20]. attribute
[KK93]. Attributes
[RF+23, GL14]. Augmenting
[DB+17, GCX+22]. Author
[AN06, TAW95]. Autoencoder
[CCX+20]. Automated
[ARC19, AG20, ASNB19, BLBB+23, CSW21, Egy02, FA14, FSB+15, GM01, GN93, HJ06, HAB+20, HCW+22, JO15, LRKF+22, DGD+19, MZA+22, MS14, NP+22, PGZ+20, RKBL19, STGR+21, SIB23, TM14, WB13, WC23, YBL15, ZSL+22, ZSW+22, BGO+14, CS12, CAC08, FN03, FRB+06, TBS29, XM07, XM08]. Automatic
[CGP+15, CF03, DS03, MGTR18, NBMK22, UKR21, BRP05, DO93].
Automatically
[CMM+15, CDK+21, Mem08, YJW+20, LS13]. Automating
[GXZ+22]. Automaton
[EM18]. Autonomous
[AM23, FDC+21]. Avoiding
[He06]. Aware
[HGC+22, KAT12, LIWW+22, MS15, VLJ+18, WYW+22, CYA22, DFB99a, DFB99b, MGMM11, WYM+20, WXL+21].
B [SB06]. back [Not13]. Based
[AB12, ARL+15, ASMP+16, AFHC22, BMM+17, BC23, CLI+22, DDE11, GZ+22, GGZ+15, JZL+19b, KS+22, LXL+22, LHX21, MWP+21, MFB+22, OKS+16, SMB+21, SGD15, SVHB23, TLP+22, TSPR+18, WB13, YXK+17, ZA22, ZLY+21, ZWH+21, AAP+20, AG22, ABC+22, AVAS23, BG+92, BCTW96, BT22, CMBPI3, CDSM+10, CY11, CCX+20, CL23, Cia93, CMCP+99, CPPRM03, CW08, C19, DBUG+13, DBP+13, GGGU21, HAM09, HAB13, KATS12, KKLS+2, KKP+22, Kip92, KK04, Kuh99, LY05, LH08, MMST14, Mem08, MB07, MS03, MG00, MPF+14, NLR+11, OPK+21, POB+07, PZS+20, QN+13, RXX+19, RKBL19, SS06, SGE00, SB02, Shn96, TZZ09, TPT+13, THBH+06, TD01, TK02, UKM04, WAF00, WXL+21, W23, XM07, XCKX13, XLR20, YHC+13, ZYL+23, ZZX+21, OHDB92]. Baseline
[SP+18, WO+15]. Bash
[DLT+23]. basis
[AG97, AG98]. Bayesian
[FTF+22, PLM15, SYY19]. BDD
[HL08]. BDD-based
[HL08]. Be
[CL23]. Behavior
[FB+12, DGR18, MAK+22, SS02, DBUG+13, LK14, MG00, PP93, UKM04]. Behavior-consistent
[SS02]. Behavioral
[CZ19, GLFW22]. behaviors
[IWY00]. Benefit
[BMC+23]. benefits
[HL08, MC08]. Better
[LIWW+22, YB20]. between
[CXH23, Gum00]. Beyond
[GWD+21]. Bilevel
[SKBD14]. Binaries
[JPS22]. BIP
[ABB+18]. BiRD
[JPS22]. Black
[PGZ+20, RMCT+22, CTC98]. Black-box
[PGZ+20, RMCT+22]. Bloat
[NWB+18, XMA+14]. Blockchain
[AMGBK22, YBZK21, ZOJH+21]. Blockchain-Powered
[ZOJH+21]. Boa
[DNR+15]. Bookkeeping
[HSB+23]. Boolean
[CCX11, KB07]. Boosting
[CS22, GXLG21]. Bootstrap
[SMY19]. Bot
Combatting [LCL+23]. Combinatorial [NL11]. Combining [DBNG15, Hie14, SMAC08, XZZL18].
Completion-aware [WYW20]. Complex [BS16]. Component [SEM17, BCC92, CMP13, Ham09, IVY00, VI13].
Computing [BPSSA+22, LIL+20, OHDB92, TC20, EF05, FGL+12, MZ09, RMP97, XCCY10]. Concept [PGM12, Sne96]. Concepts [DG17, MG00, SGL12]. Conceptual [QT12, TZZ09]. Concerns [MVM07, RM07].
Concurrency [MQLR16, ZSL+13, DL13, YTL+95].
Concurrent [AGRR19, MNB+22, Cor00, DKM+94, DCCN04, HZZ13, MRK+97, PTY95].
Conditional [EBE+14]. conditions [KB07, SRK06]. ConE [MNB+22].
Conference [MP14]. Configurable [AMS+18, CGZ23]. Configuration [BNB14, ELvdH+05, Gun00, Je99].
confounding [XZLC14]. Conjunction [ZJ93]. ConMem [ZSL+13]. connection [AG97, AG98]. connectors [LWF03].
Consent [RBPG23]. Considered [XCS+22]. Consistency [SEM17, HJL96, NEFE03, PBO07, XCCY10]. Consistent [LRL+22, SS02].
Consolidation [LUD13]. constrained [BM13, WRD+22]. Constraint [DBNG15, GWD+21, SSB20, XCCY10].
Constraints [CZ19, DDMM22, MWK15, QT12, SGD15, CY11, CK96, OO92].
constructing [Hen97]. Construction [ARL+15]. Constructs [KS20].
Contributions [KCAS23]. Contributor
[KCAS23]. Contributor-Abandoned

Corrigenda [DFB99a]. Cost [CST16, FCLL21, NPB22, ZOJH21, ATW94, Bre95, REM+04, Wey96]. Cost-Effective [ZOJH21, FCLL21, NPB22, REM+04].

Cost-Effectiveness [CST16].

Crash [GWD+21, ZSL+13, ZSL+22].

Crash-Triggering [ZSL+13]. Crasher [CSX08]. creation [MS22]. Criteria [MKW15, MB20, OKS+16, TAA+19, Hie02, KSD08, XL20]. critical [GM01, MS94].

Cross [LLZ+22, ZYL+18, DCS09]. Cross-Language [LLZ+22]. cross-organizational [DCS09].

Databases [AG20]. dataflow [KSD08]. Dataset [YHL+22]. Datasets [UGKR22].

Date [OL22]. David [Ros13b]. DC [GRS+16]. Deadlines [DBNG15].

Debugging [CMM+15, FSP+13, J015, MQLR16, ZNZ+23, AM04, HRD08, OSH04, QRL12].

Decentralized [EHF20, ML00]. Deciding [SGD15]. Decision [HGW+16, XW+22].

Decisions [AMGBK22, LLS+21, AM11].

Deep [CYA22, CWW+20, CWH+21, HGC+22, KFY23, LLSM22, LGX+22, MPT+21, NBMK22, RMCT22, XWL+21, WCP+22, XLW+22, YHL+22, ZFL+22, ZZZ+22, ZRG+23, ZZX+21].

DeepWukong [CWH+21].

Defect [FAP22, KS20, XLX+22, ZYL+18, SM12].

Demystifying [SCL+23]. Denoising [BXX+20].

Dependence [FCLL21, PXJ17, Dil97, SHR01, SRK06].
dependencies [Jac95a, OSH04].
dependencies [BGO+14, Gun00, Rob08].

Dependency
RCAH23, SEM17, CY11, GL14,
dependency-based [CY11],
dependency-driven [GL14]. Deployed
[BGO+14, Gun00, Rob08].

Description
Bjø99, DvdHT05, DJ97.

Design
[AROK21, AMGBK22, BPT10,
CCX+20, EK11, LSN+23, Liu22, DDGR18,
MFL12, SGR+15, BM07, BO92, BRRP05,
BFN+14, CSC06, CR94, FBC+13, FP02,
GGLT07, LL00, MRK+97, RS09, SS06, SB06,
SGR+10, YTL+95, ZB13].

Designers
[AVY11].

Detecting
[AYV11, CWH+21, GCX+22,
DDGR18, MM13, WCB+20, YHL+22,
ZSL+13, Jac95a, LS13].

Detection
[CA10, CL22, CCY+21, EKL+19, GHM18,
JPS22, LRCS14, MNB+22, MS14, NBK22,
RD15, RX+19, SKB14, UGRK22,
WWZ+22, XMA+14, XGF+23, XYM+23,
ZAW92, ZFL+22, ZLW+21, ZYW+21, FN03,
Kuh99, SMT92, TK02, XR13].

Detector
[ZZX+21].

deterministic
[OLR+96].

deterministic
[HT17].

Developer
[BC19, CDK+21, CCY+21, EHEZ21,
KS22, SHLW21, WFW+20, CF10,
FMH+14, SIN10].

Developers
[Ben19, CH23, FSZ+22, PZS+20, PLZ+22,
YBP+22, ZWCH21].

Developing
[HRD08, TAA+19, ZJ020, ZOJH21, MGMM11].

Development
[BC19, BS22, CFL+16, GTD21,
LKR22, LCC+22, MNB+22, MS15, TG23,
ZCT18, AM11, DvdHT05, EAS08, ELN+92,
GJ08, KK93, MFH02, PSV01, SCK13, Tiw08].

development-oriented
[AM11].

deviations
[CDF96].
diagnosis
[NLR11].

Diagram
[BP05].

Diagrams
[AB23, Bni13, Egy02, Esh06, LK14].

Differential
[MQLR16, NWZ+23, TCDZ19].

Dijstra
[AN02].

Directed
[MC15, DCTC11, Directed
SDLC23, YPRK14, NWZ+23].

discipline
[KLV05].

Discovering
[CW98, GL11].

Discovery
[Böh18, SPK14, GL14].
discrete
[Ost99].

Discussions
[EHE21].

Dissecting
[FMMC23b, FMMC23a].

Distinguishing
[HT17].

Distributed
[BLX+20, DD12, FCLL21, GTD21, Hie14,
TG11, WME93, KK93, MU00].

Distribution
[HGC+22, TS09].

Distribution-Aware
[HGC+22].

Diversifying
[MJS+21].

diversity
[HAB13].

Do
[CMM+15, CXLG22, JA22, LYYC14,
PLZ+22, SURL11, YZP+22, CAC08].

Documentation
[CXH23, HCW+22, UKR21, TBS92].

Documenting
[SGR+15].

documents
[SMT92].

Does
[CXH+21, FSM+15].

Domain
[ASNB19, BJ02, BM+23, HZS08,
ZE14, BJMH02, BAD08, Hier09, JW94,
SS06, ZAW92].

Domain-specific
[HZS08, BJH02, SS06].

domain-testing
[JW94].

domains
[Hie02].

Dormant
[FAP22].

Driven
[CLBY18, DG17, PVHW17, BDL06, GL14,
GTD21, KKP+23, NP22].

Driving
[BKD+23].

DSDF
[CSX08].

DSDF-Crasher
[CSX08].

Duplicate
[WYMW20].

Duplication
[ZLW+21, DER10].

during
[FSZ+22].

Dynamite
[MPF14].

Formally [WI23, CMCP99]. Formatted [TC20]. Forms [BLBB23].
Founded [WI23]. Form [ZJ97, CD98]. frames [KK04]. Framework [AEK+16, CTA+21, DR11, KAT12, MS15, SIB23, WWZ+22, XW22, YBL15, BCTW96, CDP04, CDFG96, Dev99, For94, MS03, SGL12, WGG13].
Free [RCAH23, KGA+12, vdBV96]. Freedom [ABB+18].

Functional [Bro93, GD08, RST+14, MGP+13].
Functions [BCGB21, Hi09, MPG+13, VKV03].
FuzzBench [FMMB23a, FMMR23a].
Fuzzing [ZKW+23a, ZKW+23b]. Fuzzy [FMMB23b, FMMR23a].

Gas [ZJW91]. general [CCX11].
Generalizable [DLSC23]. Generated [CMM+15, LS13, WGSD07]. Generating [ARG17, DRW96, GXX+20, HT17, IC14, SSB20, YJW+20, Kli93]. Generation [Arc19, AG20, BFFG19, FA14, FSM+15, GZX+22, GSYT21, HLL+20, HAB+20, HCW+22, MZA22, MGTR18, SMBO21, WXL+21, XN22, ZZA22, ZZS+22, vdBV96, EFO5, FK96, FRB+06, HZS08, PWX14].
Generative [KAT12]. Generator [NKWF14, D093].
Generic [CWM+20, LL00]. Genetic [DBNG15, YXK+17]. GENOA [Dev99].
Goals [BBS16, DBPU13]. Google [CCH+21]. governed [MU00].

HAMP [KGA+12]. handle [LYYC14].
Heuristic [ZHO+18, ZZX+21]. Hidden [SCL+23].
Hierarchical [CGZ23, YWC16, BO92, SLD+13, WJ10].
hierarchies [CCX11]. hierarchy [BM13, DFB99a, DFB99b, LY05].
hierarchy-aware [DFB99a, DFB99b]. high [CF03]. high-quality [CF03]. Higher [GXSC21, LWF03, XTW+23].
Higher-Order [GXSC21, LWF03, XTW+23]. Highly [AMS+18]. HINNPerf [CG23].

human-centered [CDFG96]. Hybrid [GXSC21, GSH97, ZMM+16, CRST12, CSX08]. Hybridized [BBS16]. Hyper
Hyper-Heuristic [ZHO+18].
Hypermutation [ZA22].
Hyperparameter [LLSM22].
Impact-Driven [SRTR17].
Identifying [CDKP21, GLL].
Influence [Hie02, Hie09].
iBiR [KKP+23].
ICSE [MP14].
IDE [XVN22].
Identification [GHM18, WRD+22, WC23, ZSW+22].
Identifier [SRTR17].
Identifying [CDKP21, GLL+21, MVM07].
Identity [ZQS+23].
II [MKS+15].
Image [CCX+20].
Impact [CST16, ELvdH+05, FAP22, LLSM22, LLS+21, PVHW17, Tiw08, ZLW+21, EAS08, MA14, RSB05, SGG+14].
Impact-Driven [PVHW17].
Impacts [TDT+22].
Implementation [KDM17, Liu22, ZCT18, BO09, BPT10, LH08, SB02].
Implementations [GZSW19, NWZ+23, TTL+21, TCDZ19].
implementing [CDP04].
implicit [SPAK10].
implied [UKM04].
Important [LXL+22].
Improve [ABC+22, CCH+21, VHNF22].
Improved [CST16].
Improvement [CXH+21, SR05].
Improving [ASNB19, BGO+14, Cai20, PWB23, WYMW20, YHL+22, DPT13, GJ08, LH02].
In-Depth [XCS+22, SBLB23, ZXL14].
In-IDE [XVN22].
In-Process [WYW+22].
Incoming [Pez19d].
Incompatibility [XGF+23].
inconsistencies [CDFG96, GZ05].
inconsistent [HN98].
Incremental [DPB17, UKM04, YPRK14, KK93, KF07].
incrementally [KCLS02].
Independent [WHP+23].
Index [Ano96, TPT13].
index-sensitive [TPT13].
Indicators [AAP+20].
Inductive [ASJDW21, BG96].
Industrial [OKS+16, CMCP+99, FLM+98, SR05].
Industrially [VHNF22].
Industry [MS22].
Industry-Academia [MS22].
Inference [NBB15, SMY19].
Inferring [EM18, MG00, RO18].
Inflow [ZMM+16].
influence [Sin10].
Issues [LCL+23, Pez23]. items [Gun00]. iterative [For94].

J [TS09]. J-Orchestra [TS09]. Java [BS07, Cor00, HRD08, KM10, LTX19, MRR05, RD15, SBBL23, SRTR17, SGHM23, SVDHB23, TS09, WHP+23, XR13].

Just-In-Time [NXL+22].

KBSE [DJ97]. Key [GCX+22, SAB+14]. Killing [CPCT21]. KLEESpectre [WCB+20]. Knee [CLBY18]. Knee-Driven [CLBY18]. Know [YZP+22]. Knowledge [CH21, GZX+22, MS22, TG23, FMMH+14, KK04, MG00]. knowledge-based [KK04, MG00]. Kristen [Ano02].

L2S [XW22]. Label [VCF21, ML00].

Language [AROK21, DLT+23, KJHY22, LLZ+22, WB13, XVN22, BGdV92, CL94, CFM00, GZ05, JPL98, SHO95, TY92, WAF00, MRRR02]. language-based [BGdV92, WAF00].

Languages [Bj19, CXH23, FFT22, BJMH02, BHR95, DSM10, DvdHT05, HZS08, KSD08, RSB05, vdBV96].

Larch [CL94]. Larch/Smalltalk [CL94].

Large [BN14, DNRN15, FA14, KCAS23, LJJ+20, LLZ+22, MNB+22, Rus21, YZP+22, MC08, PSV01]. Large-Scale [BN14, FA14, LLZ+22, MNB+22, Rus21, YZP+22, PSV01]. latent [BG+04].

Lattice [DDE11]. Lattice-Based [DDE11].

Learning-based [BT22, ZZX+21]. legacy [THHB06]. Less [PBU16]. Lessons [RCAH23]. Level [BN14, DG18, AM04, CTCC98, KSD08, MMST14, Sin10]. levels [CTC01]. Leveraging [CH21, VCF21].

lexical [MN96]. libraries [ZW95]. Library [DKD21, OHDB92]. License [XGF+23].

LiDetector [XGF+23]. Life [VCF21, SS02]. Lightweight [GHM18, MN96, Ja02].

LIME [MPR06]. Line [CTA+21, DL11, ZCT18]. Linear [SP18, ZAW92]. Lines [HLL+20, HAB+20, XZZL18, BJMH02, KATS12, Sin10].

Linking [KS20, SZH+19, FC00]. Links [PWB23, DFOT07]. Literature [LCS+22, SBMK21, TWS+22, WC+22].

liveness [DBP13, SGE00]. Local [ABB+18, TC20, ZWGX22]. Localisation [YXK+17]. Localization [AFHC22, KMYK19, TSPRC18, MA14, XCKX13, YHC13]. locating [TD01].

Location [RWEB19, PGM12, ZLW+06]. Logic [BMM+17, XLW+22, DKM+94, PMS13, TPT13, ZS97]. Logic-Based [BMM+17]. logical [FGL+12, MS94].

Machine [BLBB23, CLL+22, DKD21, RFR23, TWB+19, ZLIW+21].

Machine-Learning-Based [ZLW+21].

Machines [PSZ21, WJ10]. macro [Sin10]. macro-level [Sin10]. Mae [RVMM04].

Maintainability [KDM17]. Maintaining [ZCT18]. majority [MM13]. Make [BKHT21, CM+15].

Malware [Cai20, GHM18, WCG+21, ZLW+21, ZWY+21].
Models-Detection [ZFL+22]. modern [RSB05]. modifiability [SGG+14].

Modular
[SGR+10, WLS+20, DvdHT05, FC00].

modularity [CS12, HE13, SPAK10].

modularization [BGO+14]. Molecular [EKL+19]. monadic [TPT13].

Monitoring [DDMM22, DDE11, EHF20, RBPG23].

Monotone [PSW+20]. Most [XW22]. motivations [HBB+09]. Mozilla [MFH02].

MPI [GSYT21]. Multi
[AROK21, BS16, BKD+23, CDEG03, CLBY18, CL23, DG18, LVBBC+18,
OKS+16, SYA21, XL20, ZHO+18].

Multi-Criteria [OKS+16, XL20].

Multi-Language [AROK21]. Multi-Level [DG18].

Multi-Objective
[CLBY18, LVBBC+18, ZHO+18, B KD+23, CL23, SYA21, XL20].

Multi-Step [BS16].

Multi-valued [CDEG03]. Multiagent
[DL11, ZJW03]. Multidimensional [GL11].

Multilevel [DGC14]. Multimodal
[MHK11]. multinational [Tiw08].

multiobjective [MY13]. Multitolerant
[EK11]. multiuser [KK93], multiview
[PBO07]. Mutant [ZWL+22, OLR+96].

Mutants [CPCT21, OSD+23]. Mutation
[KJHY22, OSD+23]. My
[CCH+21, CXH+21].

Names
[SRTR17]. Natural
[KJHY22, XVN22, GZ05]. need [LYYC14].

Needs [CXH23], nesting [MBH09].

Network [CWW+20, CWH+21, CGZ23,
RXX+19, WLS+20]. Network-based
[RXX+19]. Networks
[DLSC23, LLSM22, PLM15, XLW+22, Sin10].

Neural [CWW+20, CWH+21, CGZ23,
DLY+23, LLSM22, RXX+19, TWB+19,
XLW+22, ZYL+23]. Neuron [XLW+22].

next [HKMB+14]. no [RCAH23]. Node
[LJL+20]. Non [GGZ+15, HT17, MWP+21].

Non-Adequate [GGZ+15].

Non-deterministic [HT17].

Non-Serializable [MWP+21].

nonanomalous [DBPU13].

Nonequivalence [dFLSV14].

noninterference [DFG00]. notation
[FP02, Jac02]. notations [BP05, CDPO4].

Notkin [Ros13b]. Novice [CZ19]. NPC
[XLW+22]. Npm [RCAH23]. NSGA
[MKS+15]. NSGA-III [MKS+15]. Nudge
[MUB+23]. numerical [SMAC08].

Nygaard [Ano02].

Obfuscation [GHM18].

Obfuscation-Resilient [GHM18].

Obituary [Ano02]. Object
[AB12, GGGU21, LHX21, MS94, TG11, Cal95,
CTCC98, CTC01, CSC06, DFB99a, DF94,
Jac02, MRR05, RS09, RM03, SS02, SB02].

Object-Oriented
[AB12, MS94, CTCC98, CTC01, CSC06,
DFB99a, DF94, RS09, RM03, SB02].

Object-Sensitive [LHX21]. objected
[DFB99b]. objected-oriented [DFB99b].

Objective
[CLBY18, HLL+16, HLL+20, LVBBC+18,
MK5+15, SHLW21, TAA+19, XZZL18,
ZHO+18, B KD+23, CL23, SYA21, XL20].

obliviousness [HE13]. OBSERV [TY92].

Observability [ZQS+23]. Observable
[HT17]. observational [PSV01]. OCL
[QT12]. Ole [Ano02]. Ole-Johan [Ano02].

One [Liu22]. Opacity
[ALMS22]. Open
[BSA22, BKHT21, CWM+20, KCAS23,
PL+22, RGCS14, TWS+22, WFW+20,
XGF+23, MFH02, Sin10].

Open-Source
[BSA22, KCAS23, PL+22, RGCS14, Sin10].

OpenStack [ZLT+22]. Operational
[SZH+19]. Operations
[SCL+23].

operators [OLR+96]. Opinion

slice-based [MB07]. slices [BFN+14].
Slicing [XMA+14, GSH97, LH02, TD01].
slicing-based [TD01]. Small
[HZBS14, Sin10]. small-world [Sin10].
Smalltalk [CL94]. Smart [AGHC+22].
CXLG22, HSB+23, YABLR20, ZOJH21.
SMC [SGE00]. Snell [SkSBD14]. Smells
[AROK21, DLT+23, HZBS14, RRPW21].
SMT [AGRR19, CH21]. SNIAFL
[ZZL+06]. Snippets [GXG+20]. SNOW
[Liu22]. SNOW-optimal [Liu22]. Socio
[JA22]. Socio-Technical [KAS20].
Sociotechnical [KAS20]. Software
[AAP+20, BNB14, BXL+22, BSA22,
BKHT21, Böh18, CL22, CBRO16, CTA+21,
CLBY18, CCY+21, CL23+21, CWL+21,
CZW21, CW99, CFl+16, CZ19, DHW98,
DLY+23, DR15, DNRR15, EWS14, EM18,
EF05, EW11, FSZ+22, FSM+15, FTF22,
GZSW19, GLFW22, HLL+20, HH95, JPS22,
KS22, KPC18, LCS+22, LGX+22, MNB+22,
MFBF+22, MGF+22, MFLL12, MBH+17,
MY13, MB20, MKS+15, MP14, OKS+16,
RKBL19, RGCS14, SP18, STS+18, SBMK21,
SMBK22, SMY19, SF18, SGhWG22,
TDT+22, TWS+22, UKGR22, VHNF22,
WB13, WPB19, WCP+22, WOM15,
XZZL18, XGF+23, XL20, YXL+22,
YQTR15, ZSHD20, ZHZ+21, AAG95,
ACF97, BCTW96, B092, BGO+14, BCD02,
CS12, CTC01, CM08, Cia93, CW98, CD04,
CD98, DwdHT05, DFOT07, DCCN04,
ELN+92, ELvdiH+05, FK96, FLM+98, GJ08,
Gum00, HBB+09, Hen97, HW12, JPL98,
JMS08, KK93, LASL13, LSV08]. software
[M MST14, MRRR02, MSW12, MFMH02,
MC08, NLR11, NP08, Off92, ODV+09,
PSV01, PP93, PMM+99, PSMV98, Rob08,
RSB05, SRK06, SN92, SH095, TZZ09, Tiw08,
TBS92, UFG14, VD13, WP93, WGG13,
XM07, XR13, ZW95, ZW97, DKD21].
Software-2.0 [DKD21].
Software-engineering [XL20]. Solution
[LJL+20]. Solutions [LLS+21, XL20].
Solved [XCS+22]. solver [KGA+12].
Solvers [XZZL18]. Solving
[AGRR19, CH21, SSB20, SED14, XL20].
Some [AVAS23, HZBS14]. Sound
[MWP+21, XL20]. Source
[BSA22, BKHT21, CWM+20, DNRR15,
GGH+23, HNRA20, KS20, KCS23,
KJHY22, MB15, PZS+20, PLZ+22, RGCS14,
SGR+15, SRTR17, SED14, TWS+22,
WLS+20, WFW+20, XGF+23, Dev99,
DER10, MFH02, MN96, RM07, SGG+14,
Sin10, SAB+14]. Source-Code
[DNRN15, SGR+15, SGG+14]. sources
[PSMV98]. Space
[STS+18, ZRGT23, CD98, DBDS94].
Special [HP15, MP14, NP08].
specialization [SS02]. Species [Böh18].
specific [BJMH02, BGL00, HZS08, SS06].
Specification [KAS20, KL21, XW22, ZW97,
Bro93, CDSM10, CL94, CR94, ELN+92,
FN03, Kuh99, LY05, MS94, PPP94, RMP97,
TK02, WME93]. specification-based
[Kuh99, LY05, TK02]. Specifications
[EHF20, PSW+20, CCX11, DSV03, FM94,
HJL96, HRD08, HN98, Jae95b, KB07,
MMST14, MS03, Pon02, PMS13, UKM04,
WP93, FPGA07]. specify [CFM00].
Specifying [PSZ21, DKM+94]. spectra
[NLR11]. spectra-based [NLR11].
Spectrum
[TSPRC18, YXK+17, MSW12, XCKX13].
Spectrum-Based
[TSPRC18, YXK+17, XCKX13].
Speculative [WCB+20]. Speed [ODE21].
Speeding [TTL+21]. spi [DSV03, ZSW+22].
Splitting [LLS+21]. spreadsheet
[FRB+06]. spreadsheets [RBL+01]. SQL
[AG20]. SSL [NZW+23, TCDZ19].
SSL/TLS [NZW+23, TCDZ19]. Stack
[AEK+16, ARG17, GXG+20, YZP+22,
ZWCH21]. Stacks [ZGWX22]. STADS
[Böh18]. Stages [LSN+23]. Stand
[UGKR22]. Stand-alone [UGKR22]. State
EM18, MS14, PSZ21, RWEB19, WB13,
Cor00, DBDS94, WJ10]. State-Based
[WB13]. statecharts
[BRG+01, HA92, RN96]. Stateful
[BPSSA+22, SL+13], STATEMATE
[HN96]. Statement [BC23],
Statement-Based [BC23]. States
[LCZL14]. Static [CTC+23, HNRA20,
IVY00, KMYK19, RD15, RWEB19, RM03,
VLJ+18, WGS07, BGH07, FPB+05,
GSH97, MNL98, OOO2, ZZZ1].
Statically [CWH+21]. Statistical
[RGCS14, NZ+23], Static [WFF+19].
State [BS16, SLS+21]. Stepwise [EK11].
Stochastic [CFL+16]. Storage [ZWG22].
Strategies [AVAS23]. strategy [JW94].
stratified [PM+99]. StreamGen
[GTD21]. Streaming [GTD21], strength
[MP09]. Stress [DBNG15]. string [TPT13].
strings [KGA+12]. Strong [AVAS23].
Structural [Kip92]. Structure
[GHH+23, GR+16, WBJ3, RM03].
Structure-Guided [GHH+23], structured
[BP98]. Structures [KDM17]. Structuring
[Jac05]. Stubborn [CPCT21]. Studies
[Cai20, SPS21]. BM07, CD98, HBB+09,
MFF02]. Study
[AROK21, AMGBK22, CWM+20, CCH+21,
CHX23, DKD21, EHEZ21, FAP22, FSB+15,
GLL+21, HGC+22, KCS23, LLS22,
LLS+21, NXL+22, ODE21, OKS+16,
PZS+20, RRW21, Rus1, SBLB23,
SGHM23, TTT+21, TWB+19, UGKR22,
VLJ+18, XCS+22, YZP+22, ZOJH21, ZE14,
ZHO+18, ZA22, ZMM+16, BJMH02, BR01,
BGH07, CF10, GKH+01, MB07, MNL98,
PSV01, SMT92, T008, TBS92, XM08,
XLC14]. Studying [OSD+23]. style
[AAG95]. Subject [DPB17]. Suboptimal
[WHP+23]. Success [Rus21, Sin10].
Successful [JW22]. Such [RCAH23].
sufficient [OLR+96]. Suggestion [O21].
Suite [HLL+20, Ber94, HGS93, Pet97,
REM+04, XLL20, YTL+95]. Suites
[GGZ+15, Mem08]. Summaries
[CTC+23, PXJ17]. Summarization
[CXH+21, GGH+23]. Super [AGHC+22].
Super-optimization [AGHC+22]. Support
[DBNG15, JO15, SR11, ZCT18, BFN+14,
HWH14, MS03, RM03]. Supporting
[BG98, DR10, Ham09, MP06]. Surprise
[KFY23]. Survey
[MFF+22, PKH22, TWS+22]. Surveys
[WFF+19]. Sustainability [Ca20].
Symbolic
[AK+16, BHB16, CPCT21, Esh06, KPC18,
LCZL14, RGS12, WCB+20, YPRK14,
BGL00, CDEG03, QNR13, SMAC08].
symmetry [SGE00]. symmetry-based
[SGE00]. symposium [NP08].
Synchronisation [AGRR19].
Synchronization [YKY+23, YXM+23].
synthesis [MMST14]. synthesized
[PWX14]. Synthesizing
[DBPU13, WJ10, XW22, DL13]. Synthetic
[SMY19]. SysML [BNF+14]. System
[AG20, BLX+20, CY22, KFY23, LBZ14,
PBU16, SSB20, ZA22, ZCT18, BGdV92,
CDM10, IWY00, MMST14, MG00,
OHDB92, RVMM04, TB92, WME93].
-system-level [MMST14]. Systematic
[AMV23, LCS+22, SMK21, TG23,
VHF22, WCP+22, HBB+09, MS03].
Systematizing [HW12]. SystemC
[YJW+20]. Systems [AMS+18, AGRR19,
AM23, AFHC22, AVY11, BNBJ4, BT22,
CLL+22, CMM+20, CGZ23, DL11, DPB17,
DDJ22, EKL+19, FDC+21, FCL21, KA20,
LSN+23, MTP+21, MFBF+22, NWW+18,
OSS+23, PSW+20, SYA21, TG11, W123,
XTW+23, YBZK21, ZHZ+21, ZRG23,
BO92, BCD02, Br03, Cal95, CMP13, CY11,
CFM00, CRS12, CDFG96, DFT07, DJ97,
DKM+94, DCC04, FM94, FP02, FS93,
GM01, JGB12, Kip92, KK04, LYYC14,
MUI00, MS94, MK+97, Osl99, ODV+09,
P02, RM03, SLD+13, TZZ09, THHB06,
WAF00, ZJW03].

Test [Arc19, AG20, AVAS23, BKD+23, CM+15, DPT13, EM15, FA14, FSM+15, GR5+16, GGZ+15, GSYT21, HZ+14, HLL+20, HAB+20, HGC+22, IC14, KB07, MPT+21, MZ+22, MWK15, MGTR18, LP+23, RFR23, SYA21, SMBO21, SSB20, TLP+22, XLI23, ZC22, Ber94, BR01, DO93, FK96, FRB+06, GHK+01, HGS93, HAB13, Hie02, Hie09, KSD08, Mem08, PWX14, Pet97, RH97, REM+04, SS06, UFG14, XQ07]. Test-and-adapt [DPT13]. Test-Equivalence [MGTR18].

test-selection [BR01]. Test-suite [XL20]. Testability [AG22, BHL11, MB09]. Tester [MAK22]. Testers [FSM+15].

testing [DBNG15, AV23, AG22, ABC+22, BG96, BT22, Böhm18, CLL+22, CWW+20, CS22, DPB17, GGGU21, Hie14, KFY23, KPC18, MS+21, MAK22, MB20, NP22, NL11, NWZ+23, OS+23, PLP+23, PGZ+20, RMC122, SDL23, TCDZ19, TAA+19, WPB19, ZSHD20, ZRG23, Ber94, CTC98, CTO01, CM08, DRW96, DF94, DSV03, FRB+06, Ham09, HAB13, Hie09, JW94, KSO08, Kip92, Kuh99, LY05, MPR+13, MBH09, Mem08, MS03, NP08, Off92, OSH14, Pet97, RBL+01, REM+04, SS06, SM12, TM14, TK02, Wey06, XM08, ZAW92]. testing-based [Ham09]. Tests [GWD+21, PKHM22, SPK14, WC23, ZE14].

time-critical [MS94]. time-sensitive [Bro93, Cal95]. Time-travel [WWZ+22].

Timed [ALMS22, BAM+17, WAH23, PBCT10, SLD+13]. Timeliness [WPB19].

Token [HSB+23]. TokenAware [HSB+23].

Tool [MNP+22, dFLSV14, CSX08, ELN+92, MS03, MPF14, YTL+95, ZW95]. Tools [CL22, FSP+13, Ham09, SIB23, UGKR22, DRW96, Tiw08].
topics [BGO+14].

Topology [Rob08]. TOSEM [Pez23].

TOTAL [MZ09]. Trace [MWP+21, HZZ13]. Trace-Based [MWP+21]. Traceability [BFN+14, DFOT07]. Traces [DLSC22, MWP+21]. Tracking [HB22, DER10].

Transfer [KSK+22]. Transformation [ELKRF22, RSB21, BHL11, CF03, MB09].

Transformations [ASJNW21, AG22, BS16, ...]
DGD\(^{+}20\), NBMK22, TSPRC18, YHR92].
Transformer [GGH\(^{+}23\)]. Transforming
[MIK11, BHLL11]. transition [YBL13].
Translation [CLL\(^{+}22\), TBW\(^{+}19\), Zav04].
Transplantation [STGR21]. travel
[WWZ\(^{+}22\), traversal [YKC03]. Tree
[WLS\(^{+}20\), triage [AM11]. Triggering
[ZSL\(^{+}13\)]. TRIO [FM94]. trustability
[HH95]. Tuning [LSSM22]. Turnover
[ZLT\(^{+}22\)]. Twitter [STS\(^{+}18\)]. Two
[FSZ\(^{+}22\), MHHJ02, JGB12]. two-phase
[JGB12]. Type [ARL\(^{+}15\), KATS12, ODE21,
SGD15, BGL00, TD01]. Type-Based
[ARL\(^{+}15\), SGD15]. type-specific [BGL00].
Types [ASJDW21, SPAK10]. typestate
[FYD\(^{+}08\)]. Typing [DG17, DGD\(^{+}19\)].

UI [CCX\(^{+}20\), CCH\(^{+}21\)]. Ultra
[DNRN15, LJJ\(^{+}20\)]. Ultra-Large-Scale
[DNRN15, LJJ\(^{+}20\)]. UML
[BM13, BMM\(^{+}17\), BDL06, Esh06, MFF112,
QT12, SGG\(^{+}14\), SB06, YBL15]. UML-B
[SB06]. unbounded [JGB12]. Uncertainty
[BMC\(^{+}23\), CYA22, OL22, SBM21, WPB19,
ZZY\(^{+}21\), GJ08]. Uncertainty-aware
[CYA22]. Uncertainty-wise [ZZY\(^{+}21\)].
Understand [GL11, AAG95].
Understandable [CZ19]. Understanding
[ASMP16, DLRA15, DKD21, KCAS23,
LTX19, NWB\(^{+}18\), PSMV98]. Unified
[HZZ\(^{+}14\), ZS07, MRRR02]. Unifying
[CST16, RS09]. Uniqueness [WC23]. Unit
[FA14, FSL\(^{+}15\), KSD08, MJS\(^{+}21\), SPK14].
Unit-level [KSD08]. UNITY
[MR99, PRM01, RMP97]. Unnecessary
[HNRA20]. until [JGB12]. Unveiling
[WFW\(^{+}20\)]. Update [NPB22].
Update-driven [NPB22]. upper [CM08].
Usage [DKD21, DLT\(^{+}23\), KS20, MB20,
UKR21, ZOJH21]. usages [MPG\(^{+}13\)]. Use
[CDKP21, DGC14, SCK13, WCP\(^{+}22\),
ZZY\(^{+}22\), YBL15, D9J7, HBB\(^{+}09\), YBL13].
Used [CWM\(^{+}20\)]. User
[CCH\(^{+}21\), BRRP05, LASL13, SMT92].

Using
[AGRR19, BBS16, CL22, CBRO16, CWH\(^{+}21\),
CM00, Cor00, CTC\(^{+}23\), DLSC23, ETM22,
EM15, FA14, GSY21, HLL\(^{+}16\), HAB\(^{+}20\),
KX22, KMYK19, LKRF22, MVM07,
MGP\(^{+}13\), MKS\(^{+}15\), NBMK22, OKS\(^{+}16\),
SYA21, Wey96, XM08, XMA\(^{+}14\), XTW\(^{+}23\),
YLP\(^{+}22\), ALMS22, CK99, DFO07, DFG00,
IYW00, KK04, LS13, LH08, ML00, PGM12,
SLD\(^{+}13\), TC20, UKM04, XR13, ZW95].

utility [CSC06]. UTP [XTW\(^{+}23\)].

Validate [ZE14]. Validating
[FM94, MSW12]. Validation
[AMV23, CRST12, FDC\(^{+}21\), NWZ\(^{+}23\),
QT12, TCDZ19, CW99, DBGU13].
Validator [CYA22]. value [FBC\(^{+}13\), Hie06].
valued [CDEG03]. Variability
[AMS\(^{+}18\), VLJ\(^{+}18\)]. Variability-Aware
[VLJ\(^{+}18\)]. Variable
[CST16, DLY\(^{+}23\), ZYL\(^{+}23\)].
Variable-based [ZYL\(^{+}23\)]. Variant
[RKBL19]. Variant-rich [RKBL19].

variants [Jez99]. Variation
[EW11, SPAS21, PSMV98]. Verdict [Hie09].
Verification [ASJDW21, AGRR19, AMV23,
BCG21, BMM\(^{+}17\), BLS11, BDD\(^{+}22\),
CSV13, CH21, DDI22, EWS14, FDC\(^{+}21\),
GSX12, HG\(^{+}16\), LKR22, Liu22, NBB15,
QT12, RBPG23, BGL00, CDSM10, CY11,
DVS03, FGL\(^{+}12\), FGMP03, FYD\(^{+}08\), FC00,
MPF14, SGE00, WME93]. Verified
[AFY\(^{+}22\)]. Verifx [AFY\(^{+}22\)]. verify
[SMAC08]. Verifying
[CJMA00, GZSW19, DCCN04, SLD\(^{+}13\)].
Version [ARG17]. versioning [ZS97].
Versions [VCY21]. versus [CL23]. via
[BGO\(^{+}14\), CS22, DDI22, FCLL21, GWD\(^{+}21\),
GXLL21, KAS20, KJHY22, PWX14,
PLP\(^{+}23\), PWB23, SMY19, TBW\(^{+}19\),
WCB\(^{+}20\), XLW\(^{+}22\), YHL\(^{+}22\), ZAW92,
ZSW\(^{+}22\)]. Views [DL13, JAC95b]. violation
[LYY21]. Violations [MWP\(^{+}21\), MM13].

Virtual
REFERENCES

[BFFG19, BKD+23, DHW98, Pon02].

Visual
[ABC+22, CDP04, Dil93, KSD08, MG00].

Visualization
[KKP+22, BG98].

Visualizing
[BLX+20]. vs [SRTR17].

Vulnerabilities
[CWH+21, MS14, SBBL23].

Vulnerability
[GWD+21, GCX+22, YXM+23, ZZX+21].

warehouses
[BCC+01]. Wasted
[KCAS23].

way
[RKBL19]. WCET
[LSN+23]. Weak
[FDB+12]. web
[LASL13, BM07, BCFM06, BPT10, CGPP15, NBB15, SURL11, YXM+23, ZL13].

web-centred
[LASL13]. Weighted
[CL23, HGW+16]. Weights
[CL23]. Well
[SURL11, TC20, ZWCH21]. Well-Formed
[TC20]. white
[CTCC98]. Who
[STS+18]. Whole
[SLB+21]. Whole-program
[SLB+21]. Wild
[AFHC22, DLT+23, TWB+19]. Wireframe
[CXH+20]. Wireframe-based
[CCX+20]. wise
[PLP+23, ZZY+21]. within
[DHW98]. Witnesses
[BDD+22]. Women
[TWS+22]. Word
[ETM22, SRTR17, KGA+12]. WordPress
[LSH23]. Words
[LXL+22]. Work
[CXH+21]. Workarounds
[CGPP15]. workflow
[CY11, LYYC14]. Working
[FSZ+22]. world
[Sin10]. Wrapper
[THHB06]. Wrapper-based
[THHB06]. Wybe
[Ano02]. WYSIWYT
[FRB+06].

X.509
[NWZ+23]. XCode
[LLZ+22]. XP
[CF10]. XPIs
[SIR+10].

Year
[Pez23].

Z
[Jac95b].

References

Altoy:2023:PCR

Attie:2018:GLD

Ardito:2022:FMB

Ambriola:1997:APC

Staff:2003:R

Staff:2005:AR

Anand:2016:SMA

[AEK+16] Kapil Anand, Khaled Elwazeer, Aparna Kotha, Matthew Smith-

[AMGBK22] Sabreen Ahmadjee, Carlos Mera-Gómez, Rami Bahsoon, and Rick Kazman. A study on blockchain architecture de-

Abal:2018:VBH

Araujo:2023:TVV

Arcuri:2019:RAA

Azad:2017:GAC

Shams Azad, Peter C. Rigby, and Latifa Guerrouj. Generating API call rules from version history and stack overflow posts. *ACM Transactions on Software Engineering and
REFERENCES

Ali:2015:TBC

Abidi:2021:MLD

Alimadadi:2016:UJE

Arora:2019:ALA

Adams:1994:CSR

Arrieta:2023:SSS

Banach:2023:GRR

Bhatia:2016:MPG

Bertolotti:2023:FTS

Basili:1992:RAC

[BDD+22] Dirk Beyer, Matthias Dangl, Daniel Dietsch, Matthias Heizmann, Thomas Lemberger, and

Basin:2006:MDS

Bernhard:1994:RTS

Bernaschina:2019:VDI

Briand:2014:TSD

Bergadano:1996:TMI

REFERENCES

REFERENCES

Binkley:2011:FTT

Binkley:1995:PIL

Batory:2002:AET

Bjorner:2019:DAD

Birchler:2023:SMO

Bogart:2021:WHM

[Bena20] Lucian Balaban and Azzam Marace. Finite satisfiability of

Burgueno:2023:DBU

Baresi:2017:LBA

Behjati:2014:ALC

Batory:1992:DIH

Bohme:2018:SST

Baresi:1998:TFS

REFERENCES

Baresi:2005:FID

Barcelona-Pons:2022:SSC

Brogi:2010:DIS

Brett:1995:CCS

Beauvais:2001:MSA

Broy:1993:FST
Bible:2001:CSC

Berstel:2005:SFM

Basu:2007:MCJ

Baki:2016:MSL

Bock:2022:MMG

Biagiola:2022:TPR
 REFERENCES

REFERENCES

[CROW198:FSS] Judith Crow and Ben Di Vito. Formalizing space shuttle software requirements: four case studies. *ACM Transactions on Software Engineering and
REFERENCES

Chechik:2003:MVS

Cugola:1996:FFI

Chatterjee:2021:AIQ

Costagliola:2004:FMI

Chen:2010:VSI

Cohen:2003:AHQ

Yossi Cohen and Yishai A. Feldman. Automatic high-quality

Jianhui Chen and Fei He. Leveraging control flow knowledge in SMT solving of program

Ciancarini:1993:CRB

Cheung:1996:CCC

Cheung:1999:CSP

Cheon:1994:LSI

REFERENCES

Calefato:2022:UPD

Chen:2023:WCH

Chen:2018:FFG

Cao:2022:SSB

Chen:2008:UBS

Ciapessoni:1999:FMF

[CMCP+99] Emanuele Ciapessoni, Piergiorgio Mirandola, Alberto Coen-Porisini, Dino Mandrioli, and Angelo Morzenti. From formal models to formally based methods: an industrial experience. ACM Transactions on Software Engineering and Methodology, 8(1):79–113, Jan-

Chen:2018:FFG

REFERENCES

Chondamrongkul:2021:SAM

Csallner:2008:DCH

Castro:2021:FFS

Chen:2001:TMO

Costea:2023:HDR

Chen:1998:BWI

Cook:1998:DMS

Chen:2020:HCT

Cheng:2021:DSD

Chen:2020:PAE

REFERENCES

acm.org/ft_gateway.cfm?id=3306608.

Diep:2011:LBS

Lucia:2018:DBD

DiStefano:2022:VDS

DeGiacomo:2022:MCM

Duala-Ekoko:2010:CRD

Devanbu:1999:GCF

Doong:1994:AAT

[DF94] Roong-Ko Doong and Phyl-
REFERENCES

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recovering...

DeLara:2017:PTM

DeLara:2018:RML

DeLara:2014:WHU

DeLara:2021:FOM

Doppke:1998:SPM

John C. Doppke, Dennis Heimbigner, and Alexander L. Wolf. Software process modeling and execution within virtual environments. *ACM Transactions on Software Engineering and Methodology*, 7(1):1–40, January 1998. CODEN ATSMER. ISSN 1049-331X (print), 1557-

[DJ97] Premkumar Devanbu and Mark A. Jones. The use of description logics in KBSE systems.
Dehlinger:2011:GPP

Demsky:2013:VSF

Dietz:2015:UIO

Ding:2023:TLG

Dong:2023:BWL

Dramko:2023:DDN

Dyer:2015:BUL

[DNRN15] Robert Dyer, Hoan Anh
References

DeMillo:1993:ERA

DiNardo:2017:AFD

Denaro:2013:TAA

Dyer:2010:SDA

Dagenais:2011:RAC

Dwyer:2015:EJF

REFERENCES

Devanbu:1996:GTA

Durante:2003:ATE

Dashofy:2005:CAD

Emmerich:2008:IRD

ElKholy:2014:CCR

Erwig:2005:SRS

Egyed:2002:AAC

Alexander Egyed. Automated abstraction of class diagrams.
Ehsan:2021:ESD

El-Hokayem:2020:MDS

Ebnenasir:2011:FSD

Ellis:2019:RFD

Engels:1992:BIS

Estublier:2005:IIE
Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geoffrey Clemm, Walter Tichy, and Darcy Wiborg-

[FDCL21] Angelo Ferrando, Louise A. Dennis, Rafael C. Cardoso, Michael Fisher, Davide Ancona, and Viviana Mascardi. Toward a holistic approach to...

Fantechi:2012:LVM

Ferrari:2003:MCV

Felder:1994:VRT

Fuggetta:1998:AGI

Felder:1994:VRT

Frias:2005:RAS

Frias:2007:EAD

Fisher:2006:IAT

Feldman:1993:SRS

Fraser:2015:DAU

Fleming:2013:IFT

REFERENCES

Ford:2022:TTC

Furia:2022:ABA

Fink:2008:ETV

Guo:2022:DAM

Gencel:2008:FSM

Godoy:2021:EBT

REFERENCES

Gao:2023:CSG

Ghezzi:2005:E

Ghezzi:2007:E

Grav:2001:ESR

Garcia:2018:LOR
Joshua Garcia, Mahmoud Hammad, and Sam Malek.

Gervasi:2005:RAI

Gao:2019:VQS

Hemmati:2013:ASM

Holmes:2020:URL

Harel:1992:SO

REFERENCES

[HGC+22] Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Lei Ma, Mike Papadakis, and Yves Le

Harrold:1993:MCS

He:2016:LWA

Howden:1995:STA

Hierons:2002:CTS

Hierons:2006:ACC

Hierons:2009:VFT

Robert M. Hierons. Verdict functions in testing with a fault domain or test hypotheses. *ACM Transactions
Hierons:2014:CCD

Heitmeyer:1996:ACC

Harman:2014:ESS

Hierons:2016:SOP

Hierons:2020:MOT

Harel:1996:SSS

REFERENCES

REFERENCES

[102x681] REFERENCES

73

Hierons:2017:PAG

Hunt:1998:DAE

Holmes:2012:SPS

Haesevoets:2014:ACS

Hall:2014:SCS

[HZBS14] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some code smells have a significant but small effect on faults. ACM Transactions on Software Engineering and Methodology, 23(4):33:1–33:??, August 2014. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Huang:2008:DSL

[ZS08] Shan Shan Huang, David Zook, and Yannis Smaragdakis. Domain-specific languages and program generation with meta-AspectJ. ACM Transactions on Software Engineering and Methodology, 18(2):6:1–6:??, November 2008. CODEN ATSMER. ISSN 1049-
REFERENCES

Huang:2013:SPA

Hao:2014:UTC

Islam:2014:GTC

Inverardi:2000:SCS

Jackson:1995:ADB

REFERENCES

[PL98] Maria Letizia Jaccheri, Gian Pietro Picco, and Patricia Lago. Eliciting software process models with the E3 language. *ACM Transactions on Soft-

Jain:2022:BRD

Jeng:1994:SDT

Kafali:2020:DSS

Jiang:2019:IMA

Jiang:2019:RNF

Kulkarni:2012:GPF

Kastner:2012:TCA

Kapoor:2007:TCF

Khatoonabadi:2023:WCU

Karanikolas:2017:EEI

Krishnamurthi:2007:FIA

Kim:2023:ESA

Idit Keidar, Roger Khazan, Nancy Lynch, and Alex Shvartsman. An inheritance-based technique for building simula-
REFERENCES

Keller:2022:WYS

Khanfir:2023:IBR

Klin:1993:MEG

Klin:2005:TED

Ko:2010:EAW
Kim:2019:PLR

Kuchta:2018:SSE

Kapur:2020:DES

Kapur:2022:OEE

Karam:2008:ULT

Kuhn:1999:FCE

Lizcano:2013:WCA

Layman:2014:MER

Li:2023:CEI

Liu:2022:RRD

Rosa:2013:BPM

Lin:2022:OMS

Liang:2002:EAA

Lhotak:2008:EBC

Lu:2021:ECR

Liu:2022:AOD

Liu:2020:PNF

Lu:2014:RBS

REFERENCES

[Lin:2022:XTC] Zehao Lin, Guodun Li, Jingfeng Zhang, Yue Deng, Xiangli Zeng, Yin Zhang, and Yao Wan. XCode: Towards cross-language code representation with large-

Li:2014:RIP

Lyu:2022:TCI

Lee:2013:MDF

Lin:2023:CEW

Lee:2023:EPS

Louridas:2008:PLS

Masri:2014:PCC

Meyers:2022:EPT

Meyers:2007:ESS

Mahmoud:2015:ESR

Miranda:2020:TRU

McMinn:2009:EEN

Mills:2017:PQQ

Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, Andrian Marcus, and Andrea De Lucia. Predicting query quality for applications of text

Mohagheghi:2008:EIS

Memon:2008:ARE

Martinez-Fernandez:2022:SEA

Mockus:2002:TCS

Mattsson:2012:AMA

Mills:2000:KBM

[MNGL98] Gail C. Murphy, David Notkin,
REFERENCES

Masri:2009:MSI

Murphy:2014:ISI

Moscato:2014:DTV

Mcmillan:2013:PSR

Murphy:2006:LCM

Martignoni:2013:MTC

[LPR+13] Lorenzo Martignoni, Roberto Palarei, Alessandro Reina, Giampaolo Fersi Roglia, and Danilo Bruschi. A methodology for testing CPU emulators. ACM Transactions on Software

[Mmp:2013:PSR]

[MpR+13] Lorenzo Martignoni, Roberto Palarei, Alessandro Reina, Giampaolo Fersi Roglia, and Danilo Bruschi. A methodology for testing CPU emulators. ACM Transactions on Software

References

Ma:2021:TSD

Machado:2016:CDD

McCann:1999:MMI

Moser:1997:GED

Milanov:2005:POS

Medvidovic:2002:MSA
Morzenti:1994:OOL

Miller:2003:FTS

Moller:2014:ADC

Murukannaiah:2015:PAL

Marijan:2022:IAR

Meneely:2012:VSM

REFERENCES

Minku:2013:SEE

Mamei:2009:PPM

Marculescu:2022:FFR

Nikanjam:2022:AFD

Nentwich:2003:FCC

Nguyen:2014:DDI

REFERENCES

30:??, August 2014. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Nie:2011:MFC

Naish:2011:MSB

Notkin:2007:Ea

Notkin:2007:Eb

Notkin:2008:Ea

Notkin:2008:Eb

Notkin:2009:E

Notkin:2010:E

REFERENCES

REFERENCES

Orso:2004:CDD

Ostroff:1999:CRD

Ponge:2010:AAT

Paige:2007:MBM

Pavese:2016:LME

Petrenko:1997:CRT

Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li. Preference-wise testing

Pantiuchina:2022:WDD

Pdgurski:1999:ESR

Podgurski:1993:RRS

Parisi-Presicce:1994:ATC

Francesco Parisi-Presicce and Alfonso Pierantonio. An al-
REFERENCES

Picco:2001:RAC

Porter:1998:USV

Perry:2001:PCL

Polyvyany:2020:MPR

Paulweber:2021:SIT

REFERENCES

[PTY95] Mauro Pezzè, Richard N. Taylor, and Michal Young. Graph models for reachability analysis of concurrent programs.
CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic). URL http://
www.acm.org/pubs/articles/journals/tosem/1995-4-2/p171-
pelze/p171-pelze.pdf; http://
www.acm.org/pubs/citations/journals/tosem/1995-4-2/p171-
pelze/.

CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

ACM Transactions on Software Engineering and Methodology, 32(2):32:1–32:??, April 2023. CO-

ACM Transactions on Software Engineering and Method-
Pantiuchina:2020:WDR

Qi:2013:PEB

Qi:2012:DAD

Queralt:2012:VVU

Rothermel:2001:MTS

Robol:2023:CVM

Rombaut:2023:TNS

Radoi:2015:ETS

Reiss:1999:DE

Rothermel:2004:TSC

Ramírez:2023:TIA

Rigby:2014:PRO

REFERENCES

Riesco:2018:PPI

Robillard:2008:TAS

Rosenblum:2013:MF

Rosenblum:2013:MDN

Rosenblum:2014:Ea

Rosenblum:2014:Eb

Rosenblum:2014:E

Rosenblum:2016:E
REFERENCES

2016. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Rosenblum:2017:E

Rosenblum:2018:Ea

Rosenblum:2018:Eb

Rosenblum:2019:FEO

Rauf:2022:CAS

Rahman:2021:SSA

Rajan:2009:UA

REFERENCES

REFERENCES

[Scanniello:2014:IUA] Giuseppe Scanniello, Carmine Gravino, Marcela Genero, Jose’ A. Cruz-Lemus, and Gen-

Zohreh Sharafi, Yu Huang, Kevin Leach, and Westley Weimer. Toward an objective measure of developers’ cognitive activities. *ACM Transactions on Software Engineering and Methodology*, 30(3):
REFERENCES

Sutton:1995:ALS

Sinha:2001:ICD

Sworna:2023:AFA

Singh:2010:SWE

Sahin:2014:CSD

Sun:2021:TRE
Xiaoyu Sun, Li Li, Tegawendé Bissyandé, Jacques Klein, Damien Octeau, and John Grundy. Taming reflection: an essential step toward whole-

Sun:2013:MVH

Strecker:2012:ADC

Siegel:2008:CSE

Sobhy:2022:CPS

Scalabrino:2021:ASB

Schneider:1992:ESF

REFERENCES

Song:2019:SEI

Sullivan:1992:REI

Snelting:1996:RCB

Sarro:2018:LPB

Steimann:2010:TMI

Siegmund:2021:MVH

[SPAS21] Janet Siegmund, Norman Peitek, Sven Apel, and Norbert Siegmund. Mastering variation in human studies: The role of aggregation. ACM Trans-

Santhiar:2014:MUT

Sommerville:2005:ESI

Snelting:2006:EPC

Scanniello:2017:FFC

Schrefl:2002:BCS

Sinha:2006:HMB

Soltana:2020:PCS

Ghanem Soltana, Mehrdad Sabetzadeh, and Lionel C. Briand. Practical constraint solving for generating system test data. ACM Transactions on Software Engineering

Sharifdeen:2021:APT

Sharma:2018:RWF

Sim:2011:HWD

Soto-Valero:2023:CBD

Safdar:2021:RFC

Sheng:2019:TPA

[Feng Sheng, Huibiao Zhu, Jifeng He, Zongyuan Yang, and Jonathan P. Bowen. Theoretical and practical aspects of linking operational and algebraic semantics for MDESL. ACM Transactions on Software Engineering and Methodology, 28(3):14:1–14:??, August 2019. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).]
REFERENCES

Traini:2022:HSR

Tilevich:2011:EEP

Tamasauskaite:2023:DKG

Thiran:2006:WBE

Tiwana:2008:ICD

Tsuchiya:2002:FCE

Tian:2022:PPC

Tappenden:2014:ACC

Tateishi:2013:PIS

Tao:2021:SDM

Tufano:2019:ESL

REFERENCES

Uchitel:2004:IES

Uddin:2021:AAU

Vidal:2018:ARB

Vandehei:2021:LDL

Vouillon:2013:SCC

vandenBrand:1996:GFC

Vogel-Heuser:2022:MIA

[BVHC22] Birgit Vogel-Heuser, Eva-Maria

Van Den Brand:2003:TRT

Von Rhein:2018:VAS

Venkatasubramanian:2004:FMR

Wallach:2000:SSM

Waga:2023:PTP

Walkinshaw:2013:ACS

Wu:2023:AIU

Wang:2020:KDI

Wu:2021:WAA

Wu:2021:WAA

Weyuker:1996:UF

Wagner:2019:SQR
Stefan Wagner, Daniel Méndez Fernández, Michael Felderer,

REFERENCES

Whittle:2010:SHS

Wang:2020:MTN

Whitaker:1993:MAS

Wang:2019:OTS

Whigham:2015:BMS

Wang:2019:OTS

[Whittle:2010:SHS]

[Wang:2020:MTN]

[Whitaker:1993:MAS]

[Wang:2019:OTS]

[Whigham:2015:BMS]

REFERENCES

Xie:2013:TAR

Xue:2020:MOI

Xie:2022:NNP

Xie:2007:DCA

[XM07] Qing Xie and Atif M. Memon. Designing and comparing automated test oracles for GUI-based software applications. *ACM Transactions on Software Engineering and Methodology,*
REFERENCES

REFERENCES

Yu:2022:AIE

Yu:2022:AIE

Yang:1992:PIA

Yang:1992:PIA

Yan:2020:AGS

Yan:2020:AGS

Yang:2023:SCP

Yang:2023:SCP

Yang:2014:DIS

Yang:2014:DIS

Yi:2015:SCC

Yi:2015:SCC

May 2015. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Young:1995:CAT

Yang:2016:HPP

YoO:2017:HCG

Yang:2016:HPP

Yin:2023:SEV

Yang:2022:DDR

Wenhua Yang, Chong Zhang, Minxue Pan, Chang Xu, Yu Zhou, and Zhiqiu Huang. Do developers really know how to use Git commands? A

REFERENCES

REFERENCES

/Zambonelli:2003:DMS

/Zhang:2023:FCPa

/Zhang:2023:FCPb

/Zhao:2021:ISD

/Zheng:2013:PRP

REFERENCES

Zhang:2020:MTC

Zhang:2013:CDC

Zhao:2022:RAE

Zhou:2022:SAI

Zaremski:1995:SMT

Zaremski:1997:SMS

[ZW97] Amy Moormann Zaremski and

Zhang:2021:CSO

Zou:2021:IAM

Zhou:2014:DSP

Zhou:2018:HFW

Zeng:2023:DEV

Zhao:2006:STS

Zhong:2022:ARD

Zou:2021:IDL

Zhang:2021:UWR

Huihui Zhang, Man Zhang, Tao Yue, Shaukat Ali, and Yan Li. Uncertainty-wise requirements prioritization with search. *ACM Transactions on Software Engineering and Methodology*, 30(1):4:1–4:54, January 2021. CODEN ATSMER. ISSN 1049-
REFERENCES