Title word cross-reference

z [LCZL14].

-Equivalent [LCZL14].

2002 [Ano02]. 2013 [HP15].

Abstract [XMA+14, Jac95a, Pon02]. Abstracting [Gun00]. Abstraction [AEK+16, CF03, Egy02]. abstractions [BG98, DBGU13]. access [BDL06]. accommodates [YHR92]. Accounting [SM12]. Achieving [BJMH02, HAB13, LBZ14].

Acknowledgement [ACM05]. ACM [NP08]. across [CSV13]. action [HN98].

Alphabet \[FDB^{+12}\]. Amoeba \[DCS^{09}\]. among \[GL^{11}\]. Amplifying \[ZE^{14}\]. Analyses \[CST^{16}, LS^{13}\]. Analysis \[AEK^{+16}, CFL^{+16}, DG^{17}, LC^{14}\]. PBCT\(^{10}\), SEM\(^{17}\), SGD\(^{15}\), YXK\(^{+17}\), YBL\(^{15}\), BP\(^{98}\), BGO\(^{+14}\), CS\(^{12}\), CK\(^{96}\), CK\(^{99}\), Cor\(^{00}\), CSX\(^{08}\), DR\(^{96}\), Dev\(^{99}\), DBDS\(^{94}\), DCCN\(^{04}\), For\(^{94}\), GL\(^{14}\), GM\(^{01}\), GSH\(^{97}\), HKMB\(^{+14}\), Hie\(^{06}\), HH\(^{95}\), HZZ\(^{13}\), HT\(^{98}\), HVT\(^{98}\), HN\(^{98}\), LH\(^{08}\), LH\(^{02}\), MRR\(^{05}\), NP\(^{08}\), O\(^{092}\), P\(^{TY^{95}}\), PGM\(^{12}\), RM\(^{03}\), Rob\(^{08}\), S\(^{GG^{+14}}\), Sne\(^{96}\), SRK\(^{06}\), T\(^{PT^{13}}\), WP\(^{93}\), XCKX\(^{13}\), YTL\(^{+95}\), YBL\(^{13}\), FPGA\(^{07}\), MVM\(^{07}\). analyze \[CFM^{00}\]. analyzing \[DFG^{00}\]. annotation \[KATS^{12}\]. annotation-based \[KATS^{12}\]. Annotations \[IC^{14}\]. announcement \[SPAK^{10}\]. answering \[KM^{10}\]. Apache \[MFH^{02}\]. API \[ARG^{17}\]. APIs \[SPK^{14}\]. APPL \[SHO^{95}\]. APPL/A \[SHO^{95}\]. Application \[DBDS^{94}, MFL^{12}, MS^{15}, ZE^{14}, LH^{02}\]. Applications \[CGPP^{15}, DG^{17}, KAT^{12}, MBH^{+17}, NBB^{15}, BM^{07}, BCFM^{06}, CPPRM^{03}, CDP^{04}, GGLT^{07}, MZ^{09}, MGMT^{11}, PWX^{14}, PBCT^{10}, SS^{06}, WGS^{07}, XM^{07}\]. Applying \[FLM^{+98}\]. Approach \[BZSW^{14}, DL^{11}, HZZ^{+14}, MFL^{12}, LDUD^{13}, YBL^{13}, ZSL^{+13}, CTCC^{98}, CRST^{12}, CPPRM^{03}, DFB^{99a}, DFB^{99b}, DvdHT^{05}, DPT^{13}, DF^{94}, FK^{96}, FPB^{+05}, Hen^{97}, LASLI^{13}, MZ^{09}, OHDB^{92}, QRLV^{12}, TD^{01}, ZZZ^{+06}\]. approaches \[YHC^{13}\]. approximation \[JGB^{12}\]. APTL \[WME^{93}\]. Architecting \[BCD^{02}\]. Architectural \[MFL^{12}, AG^{97}, AG^{98}, LWF^{03}, RVMRM^{04}\]. Architecture \[BNB^{14}, HWH^{14}, AAG^{95}, BCC^{92}, DvdHT^{05}, GL^{14}\]. Architecture-centric \[HWH^{14}\]. Architecture-Level \[BNB^{14}\]. architectures \[MRRR^{02}\]. Aria \[DR^{96}\]. Array \[NKWF^{14}\]. artifact \[DFOT^{07}\]. ASM \[BZSW^{14}\]. Aspect \[Jac^{95a}, DR^{10}, HE^{13}, KF^{07}, RS^{09}, SGR^{+10}\]. aspect- \[RS^{09}\]. aspect-oriented \[DR^{10}, HE^{13}, SGR^{+10}\]. AspectJ \[HZ^{08}, MI^{11}\]. aspects \[BTI^{14}\]. Assembly \[AM^{04}\]. Assessing \[ACF^{97}, RST^{+14}\]. Assessment \[CMM^{+15}, GJ^{08}, PJRR^{10}, SR^{05}, Wey^{96}\]. assigned \[BHL^{11}\]. assistance \[GN^{93}\]. assume \[CAC^{08}\]. assume-guarantee \[CAG^{08}\]. Assumptions \[HG^{+16}, IW^{00}\]. ASTOOT \[DF^{94}\]. aToucan \[YBL^{15}\]. Attacks \[EWS^{14}\]. attribute \[KK^{93}\]. attributes \[GL^{14}\]. Augmenting \[YBL^{15}\]. Author \[Ano^{96}, TAW^{95}\]. Automated \[Egy^{02}, FA^{14}, FSM^{+15}, GM^{01}, GN^{93}, HJL^{96}, JO^{15}, MS^{14}, TM^{14}, WB^{13}, YBL^{15}, BGO^{+14}, CS^{12}, CAC^{08}, FN^{03}, FRB^{+06}, TBS^{92}, XM^{07}, XM^{08}\]. Automatic \[CGPP^{15}, CF^{03}, DSV^{03}, BRRP^{05}, DO^{93}\]. Automatically \[CMM^{+15}, Mem^{08}, LS^{13}\]. Avoiding \[Hie^{06}\]. Aware \[KAT^{12}, MS^{15}, DFB^{99a}, DFB^{99b}, MGMT^{11}\]. B \[SB^{06}\]. back \[Not^{13}\]. Based \[AB^{12}, ARL^{+15}, ASMP^{16}, DDE^{11}, GG^{+15}, OKS^{+16}, SGD^{15}, WB^{13}, YXK^{+17}, BGd^{92}, BCT^{96}, CMP^{13}, CDS^{10}, CY^{11}, Cia^{93}, CMCP^{+99}, CPPRM^{03}, CW^{98}, DBGU^{13}, DBPU^{13}, Ham^{09}, HAB^{13}, KAT^{12}, KKL^{02}, Kip^{92}, KK^{04}, Kuh^{99}, LY^{05}, LH^{08}, MMST^{14}, Mem^{08}, MB^{07}, MS^{03}, MG^{00}, MPF^{14}, NLR^{11}, PBO^{07}, QNR^{13}, SS^{06}, SGE^{00}, SB^{02}, Sna^{06}, TZZ^{09}, TPT^{13}, THHB^{06}, TD^{01}, TK^{02}, UKM^{04}, WAF^{00}, XM^{07}, XCKX^{13}, YHIC^{13}, OHDB^{92}\]. Baseline \[WOM^{15}\]. basis \[AG^{97}, AG^{98}\]. Bayesian \[PL{M^{15}}\]. BDD \[LH^{08}\]. BDD-based \[LH^{08}\]. Behavior \[FDB^{+12}, SS^{02}, DBGU^{13}, LK^{14}, MG^{00}, PP^{09}, UKM^{04}\]. Behavior-consistent \[SS^{02}\]. behaviors \[IW^{00}\]. benefits \[LH^{08}, MC^{08}\]. between \[Gun^{00}\]. Bilevel \[SKBD^{14}\]. black \[CTCC^{98}\]. Bloat \[XMA^{+14}\]. Boa \[DRNR^{15}\]. Boolean \[CCX^{11}, KB^{07}\]. bound \[CM^{08}\].
Boundaries [CSV13]. boundary [Hie06].
Bound [PMS13]. Breaking [CAC08].
Brutus [CM00]. Bug [LRC14, AM11, CSX08]. Bugs [ZSL13, Jac95a].
Building [ELN92, KKL02]. Business [LDUD93, DCS09, ODV09].
C [DLRA15]. C/C [DLRA15]. Calculus [EW11, DSV03].
Call [ARL15, ARG17, MMG08]. calls [BHR95, MM13]. capabilities [TS09].
capability [Kuh99, TK02]. Case [EM15, HZH15, OKS16, YBL15, ZMM16, BJMH02, CD98, DO93, HAB13, MFP02, PSV01, SCK13, TBS92, YBL13].
Changes [DR11, DPB17, PSV01]. Channel [EWS14].
characteristics [CF10, SM12]. Charts [RGS12]. checker [SGE00]. Checking [BHB16, CK99, EBE14, dFLSV14, BS07, BRRP05, BGL00, CDEG03, Esh06, FM94, FGM03, HJL96, IWY00, JGB12, KATS12, KF07, NFEF03, PBO07, PMS13, SGL12, SMAC08, WGS07, XCCY10].
class [BM13, CCCC09, CTC01, CXX11, Egy02, LY05, PPP94, ZXLC14]. class-level [CTCC98]. Classes [AB12, GRT09, HRD08, KB07, Kuh99, Pon02, Tiw08, TK02].
classification [DFB99a, DFB99b].
Classifying [OSH04]. cleanroom [TBS92].
Clematis [ASMP16]. Client [MS14].
Client-State [MS14]. Clone [DER10].
cluster [CTC01]. co [VD13].
co-installability [VD13]. coarse [BRR01].
coarse- [BRR01]. Code
Combining [DBNG15, Hie14, SMAC08].
Complex [BS16]. Component [SEM17, BCC92, CPM13, Ham09, IWY00, VD13]. component-based [CMP13]. components [BO92, CFM00, DFB99a, DFB99b, ZW97].
Composing [BLW09]. Composite [BGL00]. Composition [Ost99, Ham09, REM14, ZJ93].
Compositional [HGW16, CK96, CK99]. Comprehensibility [SGR15, SGG14].
Comprehension [MTK14, RST14, OSH04].
comprehensive [DvdH05]. Computing [SHDB92, EF05, FGL12, MZ09, RMP97, XCCY10]. Concept [PGM12, Sne96].

Concepts [DG17, MG00, SGL12].
Conceptual [QT12, TZZ09]. Concerns [MVM07, RM07].
Concurrency [QMLR16, ZSL13, DL13, YTL95].
concurrent [C000, DKK94, DCC04, HZ13, MRK17, PYY95]. Conditional [EBE14]. conditions [KB07, SRK06].
Conference [MP14]. Configuration [DBN14, ELvdH95, Gun00, Jez99].
configurations [Sne96]. conflict [FN03].
conformance [Ber94, PK14, PBO07, Pet97].
confounding [XLC14].
connection [ZJ93]. ConMem [ZSL13]. connection
connectors [LWF03].
Consistency
[SEM17, HJL96, NEFE03, PBO07, XCCY10].
consistent [SS02].
Consolidation
[LDUD13].
constrained [BM13].
Constraint [DBNG15, XCCY10].
Constraints [MWK15, QT12, SGD15, CY11, CK96, O092]. constructing [Hen97].
Construction [ARL15].
container [CFM00]. Context
[CK96, KAT12, KGA+12, LH08, XCCY10, vdBV96]. Context-Aware [KAT12].
context-free [KGA+12, vdBV96].
context-sensitive [LH08].
Continuous [BZSW14].
Contracts [YQTR15]. Control
[BHB16, BD06, DL13, MMST14, MU00, SHR01, TBS92]. Controlled
[FSM+15, BFN+14]. controllers [DBPU13].
controlling [HGS93].
cookie [TM14].
cooperative [HE13]. Coordinating
[Cia93]. coordination
[CFM00, MU00, MPR06, Tiw08]. CORBA
[CPPRM03]. CORBA-based [CPPRM03].
corners [ZJ97]. correctness [Hie06, MA14].
Correlations [GL11]. correspondence
[CW99]. Corrigenda [DFB99a].
Cost
[CST16, ATW94, Bre95, REM+04, Wey96].
cost-effective [REM+04].
Cost-Effectiveness
[CST16].
Countermeasures [EWS14]. Coupling
[CBRO16, KK04, MB07, Off92]. Coverage
[GRS+16, GGZ+15, MKW15, YHC13].
Coverage-Based
[GGZ+15, YHC13]. CPU
[MPR+13]. Crash
[ZSL+13].
Crash-Triggering
[ZSL+13]. Crasher
[CSX08]. Criteria
[MWK15, OKS+16, Hie02, KSD08]. critical
[GM01, MS94]. cross [DCS09].
cross-organizational
[DJS09].
crosscutting [SGL12, MVM07].
cryptographic [DFG00]. CSCW [KAT12].
CSP [SLD+13]. customizable [Dev99].
cycles [SS02].

Dahl [Ano02]. dark [ZJ97]. DARWIN
[QRLV12]. Data
[BHB16, DPB17, NBB15, BCC+01, BG98, CW98, FK96, For94, OSH04, TZZ09, WGG13]. Database
[MWK15, CF03, PWX14, WGD07].
dataflow [KSD08].

Deadlines [DBNG15].
Debugging
[CMM+15, FSP+13, JO15, MQ16, AM04, HRD08, OSH04, QRLV12].
decentralized [ML00].
Decision
[HH+16]. decisions [AM11].
decoupling
[BTI14].
deduction
[FS93].
deductive
[GM01].
defect
[SM12].
Defects
[AVY11].
Degree
[FMMH+14].

Degree-of-knowledge
[FMMH+14].
Delta
[HT98, HVT98].

Dependence
[FXJ17, Dl97, SHR01, SRK06].
dependencies
[Jac95, OSH04].
dependencies
[BGO+14, GM00, Rob08].

Dependency
[MWK15, CY11, GL14].
dependency-based
[CY11].
dependency-driven
[GL14].
Deployed
[AVY11].
depth
[ZSL+13].

Derived
[YBL15, XM08].
derived
[IWY00].
description
[DvdHT05, DJ97].
descriptions
[AAG95, BAD08, WJ10].
descriptors
[DER10].

Desert
[Rei99].
Design
[BPT10, EK11, MFL12, SGR+15, BM07, BO92, BRRP05, BFN+14, CSC06, CR94, FBC+13, FP02, GGLT07, L100, MRK+97, RS09, SS06, SB06, SGR+10, YTL+95, ZB13].

Design-Pattern
[SGR+15].
Designing
[CC+11, DL11, XM07, CPPRM03].
designs
[SB02].
Detecting
[AVY11, MM13, ZSL+13, Jac95, LS13].

Detection
[LRC14, MS14, RD15, SKB14, XMA+14, ZAW92, FN03, Kuh99, SMT92, TK02, XR13].
determination
[OLR+96].

deterministic
[HT17].
developer
[CF10, FMMH+14, Sin10].

Developing
[HRD08, ZJW03, MGMM11].
Development
[CF+16, MS15, AM11, DvdHT05, EAS08].

E3 [JPL98]. Easier [CMM+15]. editing [BGdV92]. Editorial [DR15, GMR03, Ghe05, Ghe07, Not07a, Not07b, Not07c, Not08a, Not08b, Not09, Not10, Not12, Not13, OGKW05, Ros13a, Ros14c, Ros14a, Ros14b, Ros16]. Edsger [An02]. Effect [GSM+16, HZBS14]. RST+14, ZSL+13, Off92, Sin10, ZXL1C14].

guarantee [CAC08]. GUI [Mem08, XM07, XM08]. GUI-based [XM07]. Guided [PWX14]. Guidelines [GGZ+15].

Hierarchical [YWC16, BO92, SLD+13, WJ10]. hierarchies [CCX11]. hierarchy [BM13, DFB99a, DFB99b, LY05].
Large
[BNB14, DNRN15, FA14, MC08, PSV01].
Large-Scale [BNB14, FA14, PSV01]. latent
[BGO14, Latte [DDE11].
Lattice-Based [DDE11]. Law [MU00].
Law-governed [MU00], laws [LSV08].
layers [SB02], lazy [FC00], leak [XR13].
Learning
[BS16, HGW16, MS15, BG96, MY13].
legacy [THHB06]. Less [PB16]. Level
[BNB14, AM04, CTCC98, KSD08, MMST14, Sin10]. levels [CTC01]. lexical [MN96].
libraries [ZW95]. library [OHDB92]. life
[SS02]. Lightweight [MN06, Jac02], LIME
[MPR06]. Line [DL11]. linear [ZW92].
lines [BJMH02, KATS12, MPG13].
linking [FC00]. links [DFOT07]. liveness
[DBPU13, SGE00]. Localisation [YXK17].
localization [MA14, XCKX13, YHC13].
locating [TD01]. location
[PGM12, ZZL06]. logic
[DKM94, PMS13, TPT13, ZS97]. logical
[FGL12, MS94]. logics [DJ07]. looking
[Not13, Ros13a]. loop [BHL11].
loop-assigned [BHL11]. Loops [RD15].
LSCs [MHK11]. LLTL [BSL11].
machines [WJ10]. macro [Sin10].
macro-level [Sin10]. Mae [RVMM04].
majority [MM13]. Make [CMM13].
management [DFOT07, ELvdH05, Jéz99].
Managing [HN98, RVMM04].
Manipulation [MS14, BG98]. Many
[HLL16, MKS15]. Many-Objective
[HLL16, MKS15]. Markov
[HW16, WP93]. Marple [LS13]. marts
[BCC01]. matching [ZW95, ZW97]. Math
[SPK14]. mathematical [Sn96]. MC
[GRS16]. MC/DC [GRS16]. MDD
[MGP13]. means [BG96]. measurement
[GD08, MGP13]. Measuring
[MP09, CW99]. mechanism
[MU00, WAF00]. memoriam [Ros13b].
Memory [AEK16, XR13]. Merging
[FDB12, LDUD13]. Message
[RG12, CR94]. meta [Kl93, HZS08].
meta-AspectJ [HZS08].
meta-environment [Kl93]. metalocking
[BS07]. Metamodel [PPO07].
Metamodel-based [PPO07]. Method
[AB12, CF10, BRR05, MG00, MM13].
Method-Method [AB12]. Methodology
[LBZ14, TCT1, DC09, FGL+, FRB+, HGS93, KSD08, MPR+13, MGMM11, RBL+01, SCK13, ZJW03]. methods
[CMCP+99, DFOT07, DBDS94]. Metric
[AB12, PMS13]. metrics
[CSC06, KK04, MSW12, MB07].
middleware [EAS08, MPR06, VTA04].
Migration [SPK14]. millions [MPG13].
Minimal [NL11]. Mining
[BBS16, DNRN15, SPK14]. missing
[MM13]. mitigation [MA14]. Mixin [SB02].
Mobile [RMP97, ZE14, CFM00, FGMP03,
FC00, MZ00, MR99, PRM01], mobility
[MPR06, PRM01]. Mockups [RST+14].
Model [BS16, BDLO6, BS07, BHB16, DG17,
EBE+14, GR+16, MMST14, NBB15,
PVW17, LDUD13, WOM15, KBM07,
BGL00, CS12, CA95, CDEG03, CW99,
Di93, Esh06, FGMP03, HAB13, JGB12,
KF07, LL00, MS03, MN96, MPR06, ML00,
NLR11, PBO07, RVMM04, SMAC08, SS06,
SHE00, TZZ09, VTA04, XM08].
Model-based
[MMST14, HAB13, MS03, SS06, TZZ09].
model-checking
[BGL00, CDEG03, FGMP03, KF07].
Model-Driven [DG17]. Modeling
[BRG+01, FMMH14, MFL12, MR99,
MRR02, SL+13, BCFM06, BAD08,
CD04, DCS09, DHW98, PWD+09, SB06].
Modelling [BZSW14, DGC14, Jac02].
Models
[FDB+12, HLL+16, RGCS14, WB13, YBL15,
BDL06, CMCP+99, CW98, Cor00, JPL98,
MGP+13, MG00, MPF14, ODV+09, PTH95,
SGG+14, SCK13, UKMO4, YBL13]. modern

Representing [RM07, DER10].
Reproducing [JO15]. Required [LK14].
Requirements [DPB17, GL11, RST+14, CRST12, CD98, GM01, GZ05, HJL96, SMT92, SR05, UFG14, ZJ97]. research [EAS08, ELvdH+05, RSB05]. Residual [LRCS14]. response [TAW95].
restructuring [BG98, GN93]. results [DO93, PJRR10]. re-targetable [Dev99].
Retention [ZMM+16]. Retrieval [MBH+17, SURL11, DFOT07, PGM12].
Retrieving [PP93]. re usable [BO92, PP93].
Rewards [PBU16]. rewriting [VKV03].
Risk [GL11, LBZ14, XCKX13]. role [GJ08].
router [CR94]. rule [Cia93, Kip92, MM13].
rule-based [Cia93, Kip92]. Rules [ARG17, MFLLI2, KK04]. Runtime [AVY11, BLS11, XMA+14, BLW09].
safe [BRR01, BTI14, RH97]. safety [BFN+14, CK99, SGE00, SRK06].
SAFKASI [WAF00]. Sampling [DDE11, PP93, PMM+99]. satisfiability [BM13, PMS13]. Sator [BPT10]. Scala [ARL+15].
Scalable [XMA+14, BRRP05, HKB+14, HAB13].
Scale [BNB14, DNRN15, FA14, PSV01].
Scaling [HZZ13, LCZL14]. scenario [UKM04, WJ10]. scenario-based [UKM04].
Scenarios [MHK11, UKM04]. Schedule [MQLR16]. Schema [MKW15, NL11].
Schemas [QT12]. scientific [CY11, EF05, LYYC14]. Screen [RST+14].
Search [BS16, OKS+16, SURL11, SED14].
Search-Based [OKS+16]. Searching [MPG+13]. second [TPT13]. second-order [TPT13]. section [NP08]. security [BDL06, BLW09, CMJ00, WAF00].
segments [LS13]. Selection [HLL+16, BRR01, CY11, GHK+01, RH97].
selective [ATW94, Bre95]. self [PJRR10].
self-assessment [PJRR10]. Semantic [BAD08, MB15, PJRR10, MG00].
Semantics [LK14, HN96, YHR+92].
semantics-preserving [YHR92]. Sensing [BZSW14].
Sensitive [SGD15, Bro93, Cal95, For94, LH08, TPT13].
sensitivity [HKMB+14, MRRR05].
Sequence [RGS12, LK14, Mem08].
Services [ZL13, BKM07]. sets [Hie02].
shape [Cor00]. shuttle [CD98]. Side [EWS14]. Side-Channel [EWS14]. signal [BRG+01]. Signature [ZW95]. Significant [HZBS14]. similarity [OHDB92].
simplified [JW94]. Simulating [FS93].
simulation [KklS02]. SIP [HLL+16]. size [BGH07, GD08, HGS93, MGP+13, TZZ09, ZXL14]. slice [BGH07, MB07].
slice-based [MB07]. slices [BFN+14].
Slicing [XMA+14, GSH97, LH02, TD01].
slicing-based [TD01]. Small [HZBS14, Sin10]. small-world [Sin10].
SMC [SGE00]. Smell [SKBD14]. Smells [HZBS14].
SNIAFL [ZZL+06]. Software [BNB14, CBRO16, CW99, CFL+16, DWH98, DR15, DNRN15, EWS14, EF05, EW11, FSM+15, H95, MFL12, MHB+17, MY13, MKS+15, MP14, OKS+16, RGCS14, WB13, WOM15, YQTR15, AAG95, ACF97, BCTW96, BO92, BGO+14, BCD02, CS12, CTC01, CM08, Cia93, CW98, CDP04, CD98, DvdHT05, DFOT07, DCCN04, ELN+92, ELvdH+05, FK96, FML+98, GJ08, Gnn00, HBB+09, Hen97, HW12, JPL98, JMS08, KK93, LASL13, LSV08, MRR02, MSW12, MFH02, MC08, NLR11, NP08, Off92, ODV+09, PSV01, PP93, PMM+99, PSMV98, ROB08, RSB05, SRK06, SN92, SHO95, TWW08, TBS92, UFG14, VD13, WP93, WGG13, XM07, XR13, ZW95, SHO95, TWW08, TBS92, UFG14, VD13, WP93, WGG13, XM07, XR13, ZW95,
Test-and-adapt [DPT13]. test-selection [BRR01]. testability [BHL11, MBH09].

Testers [FSM+15]. Testing [DBNG15, BG96, DPB17, Hie14, NL11, Ber94, CTCC98, CTCC01, CM08, DRW96, DF94, DSV03, FRB+06, Ham09, HAB13, Hie09, JW94, KSD08, Kip92, Kuh99, LY05, MPR+13, MBH09, Mem08, MS03, NP08, Off92, OSH04, Pet97, RBL+01, REM+04, SS06, SM12, TM14, TK02, Wey96, XM08, ZAW92]. testing-based [Ham09]. Tests [SPK14, ZE14]. Text [MBH+17]. Their theoretic [YHC13]. Theoretical [YXK+17, XCKX13]. Theory [FSP+13, RGCS14, HBB+09, PPP94]. Three [BM07, ZMM+16, CSC06]. time [Bro93, Cal95, FM94, FP02, GGLT07, MS94, MRK+97, Ost99, Pon02, SLD+13, WME93]. time-critical [MS94]. time-sensitive [Bro93, Cal95].

warehouses [BCC+01]. Weak [FDB+12]. web [LASL13, BM07, BCFM06, BPT10,
REFERENCES

CGPP15, NBB15, SURL11, ZL13].
web-centred [LASL13]. Weighted
[HGW+16]. Well [SURL11]. white
[CTCC98]. within [DHW98]. word
[KGA+12]. Workarounds [CGPP15].
workflow [CY11, LYYC14]. world [Sin10].
Wrapper [THHB06]. Wrapper-based
[THHB06]. Wybe [Ano02]. WYSIWYT
[FRB+06].

XP [CF10]. XPIs [SGR+10].

Z [Jac95b].

References

[AAG95] Gregory D. Abowd, Robert
Allen, and David Garlan. Formalizing style to understand
descriptions of software architecture. ACM
Transactions on Software Engineering and

[AB12] Jehad Al Dallal and Li-
onel C. Briand. A precise method-method interaction-
based cohesion metric for object-oriented classes. ACM
Transactions on Software Engineering and Methodology, 21
(2):8:1–8:23, March 2012. CO-

DEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Vincenzo Ambriola, Reidar
Conradi, and Alfonso Fuggetta. Assessing process-centered software engineering environments. ACM
Transactions on Software Engineering and Methodology, 6(3):283–328, July 1997. CODEN ATSMER. ISSN

ACM Transactions on Software Engineering and Methodology.

ACM Transactions on Software Engineering and Methodology staff. Reviewers 2002. ACM
Transactions on Software Engineering and Methodology, 12(1):

ACM Transactions on Software Engineering and Methodology staff. Acknowledgement of referee 2004. ACM
Transactions on Software Engineering and Methodology, 14(2):246, April
2005. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Allen:1997:FBA

Anvik:2011:REB

Anonymous:1996:AI

REFERENCES

[Bad08] Travis D. Breaux, Annie I. Antón, and Jon Doyle. Semantic

Bhatia:2016:MPG

Basili:1992:RAC

Bonifati:2001:DDM

Bernardo:2002:AFS

Brambilla:2006:PMW

Barrett:1996:FEB

REFERENCES

REFERENCES

[Bau:2016:CED]
Binkley:1995:PIL

binkley/.

Batory:2002:AET

Broy:2007:FMS

Bauer:2011:RVL

Batory:2009:CER

Baresi:2007:TES

Balaban:2013:FSU

REFERENCES

DEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Behjati:2014:ALC

Batory:1992:DIH

Baresi:1998:TFS

Bretti:1995:CCS

Bodden:2014:JPI

Banach:2014:CAM

Cobleigh:2008:BHD

Callison:1995:TSO

Candela:2016:UCC

Chen:2011:RFC

Crow:1998:FSS

REFERENCES

[Conboy:2010:MDC] Kieran Conboy and Brian Fitzgerald. Method and developer characteristics for effective

REFERENCES

REFERENCES

Chang:2013:EHH

Corbett:2000:USA

Coen-Porisini:2003:FAD

Creveuil:1994:FSD

Cimatti:2012:VRH

Cai:2012:FMA

Yuanfang Cai and Kevin Sullivan. A formal model for

Counsell:2006:IUT

Cai:2016:DUD

Chaki:2013:VAI

Chen:2001:TMO

Chen:1998:BWI
REFERENCES

Cook:1998:DMS

Cook:1999:SPV

Chen:2011:TDB

Duri:1994:AEE

DeCaso:2013:EBP

REFERENCES

REFERENCES

[dFLSV14] Nicoletta de Francesco, Giuseppe Lettieri, Antonella Santone, and

DeLucia:2007:RTL

DeLara:2017:PTM

DeLara:2014:WHU

Doppke:1998:SPM

Dillon:1993:VEM

Dillon:1997:TDT

REFERENCES

DeMillo:1993:ERA

DiNardo:2017:AFD

Denaro:2013:TAA

Dyer:2010:SDA

Dagenais:2011:RAC

Dwyer:2015:EJF

Devanbu:1996:GTA

Premkumar T. Devanbu, David S. Rosenblum, and Alexander L. Wolf. Generating testing

Durante:2003:ATE

Dashofy:2005:CAD

Egyed:2002:AAC

ElKholy:2014:CCR

Erwig:2005:SRS

Egyed:2002:AAC

REFERENCES

REFERENCES

Fraser:2014:LSE

Fong:2000:PLM

Fischbein:2012:WAM

Fantechi:2012:LVM

Ferrari:2003:MCV

REFERENCES

331X (print), 1557-7392 (electronic).

Ferguson:1996:Cas

Fuggetta:1998:AGI

Felder:1994:VRT

Fritz:2014:DKM

Felty:2003:FSA

Forgacs:1994:DIF
István Forgács. Double iterative framework for flow-sensitive interprocedural data flow analysis. *ACM Transactions on Soft-
Felder:2002:FDN

Frias:2005:RAS

Frias:2007:EAD

Fisher:2006:IAT

Feldman:1993:SRS

Fraser:2015:DAU

Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. Does automated unit test generation really help software testers? A controlled empirical study. *ACM
REFERENCES

Fleming:2013:IFT
Scott D. Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel Bellamy, Joseph Lawrance, and Irwin Kwan. An information foraging theory perspective on tools for debugging, refactoring, and reuse tasks. ACM Transactions on Software Engineering and Methodology, 22(2):14:1–14:??, March 2013. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Fink:2008:ETV

Gencel:2008:FSM

Gamatie:2007:PDE

Gligoric:2015:GCB

Ghezzi:2005:E

Ghezzi:2007:E
Carlo Ghezzi. Editorial. ACM Transactions on Software Engineering and Methodology, 16(1): 2:1–2:??, February 2007. CODEN ATSMER. ISSN 1049-
Graves:2001:ESR

Gruschke:2008:ROF

Gandhi:2011:DMC

Ganesan:2014:AED

Gargantini:2001:ADR

Ghezzi:2003:E

Griswold:1993:AAP
William G. Griswold and David Notkin. Automated assistance for program restructuring. *ACM Transactions on Soft-
REFERENCES

Gay:2016:EPM

Goel:2009:IPC

Gervasi:2005:RAI

Hemmati:2013:ASM
[HAB13] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Achiev-
REFERENCES

REFERENCES

July 1993. CODEN ATSMER.

He:2016:LWA

Howden:1995:STA

Hierons:2002:CTS

Hierons:2006:ACC

Hierons:2009:VFT

Hierons:2014:CCD

Heitmeyer:1996:ACC

[HJL96] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated consistency checking of requirements specifi-

Harman:2014:ESS

Hierons:2016:SOP

Harel:1996:SSS

Hunter:1998:MIS

Harman:2015:ISI

REFERENCES

Henkel:2008:DD

Hunt:1998:ADA

Holmes:2012:SPS

Haesevoets:2014:ACS

Hall:2014:SCS

[HZBS14] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some code
smells have a significant but small effect on faults. *ACM Transactions on Software Engineering and Methodology*, 23(4): 33:1–33:??, August 2014. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Huang:2008:DSL

Huang:2013:SPA

Hao:2014:UTC

Islam:2014:GTC

Inverardi:2000:SCS

Jackson:1995:ADB

Jackson:1995:SZS

Jackson:2002:ALO

Jennings:2012:TPA

Jalote:2008:PRR

Jin:2015:ASR

REFERENCES

331X (print), 1557-7392 (electronic).

Le:2013:MDF

Louridas:2008:PLS

Lopes:2003:HOA

Lau:2005:EFC

Liu:2014:DWN

Xiao Liu, Yun Yang, Dong Yuan, and Jinjun Chen. Do we need to handle every temporal violation in scientific workflow systems? *ACM Transactions on Software Engineering and Methodology*, 23(1):5:1–5:??, February 2014. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Masri:2014:PCC

Meyers:2007:ESS

Mahmoud:2015:ESR

REFERENCES

McMinn:2009:EEN

Mills:2017:PQQ

Mohagheghi:2008:EIS

Memon:2008:ARE

Mockus:2002:TCS

Mattsson:2012:AMA

Mills:2000:KBM
Kevin L. Mills and Hassan Gomaa. A knowledge-based

Miles:2011:PMD

Marin:2013:UFS

Maoz:2011:CMS

Monperrus:2013:DMM

Myers:2000:PPU

REFERENCES

REFERENCES

Milanova:2005:POS

Medvidovic:2002:MSA

Morzenti:1994:OOL

Miller:2003:FTS

Moller:2014:ADC

Murukannaiah:2015:P

REFERENCES

Nijjar:2015:DMP

Nentwich:2003:FCC

Nguyen:2014:DDI

Nie:2011:MFC

Naish:2011:MSB

Notkin:2007:Ea

Notkin:2007:Eb

REFERENCES

Notkin:2007:Ec

Notkin:2008:Ea

Notkin:2008:Eb

Notkin:2009:E

Notkin:2010:E

Notkin:2012:E

Notkin:2013:ELB

Notkin:2008:ISS

Ouyang:2009:BPM

Outt:1992:IST

Osterweil:2005:E

Ostertag:1992:CSR

Outt:1996:EDS

Olender:1992:ISA

Poshyvanyk:2012:CLU

Payton:2010:SSA

Proksch:2015:ICC

Podgurski:1999:ESR

Pradella:2013:BSC

Pons:2002:TAC

Alexander P. Pons. Temporal abstract classes and virtual temporal specifications for real-time systems. *ACM Trans-
Podgurski:1993:RRS

Parisi-Presicce:1994:ATC

Pezze:1995:GMR

Mauro Pezzè, Richard N. Tay-

Polyvyanyy:2017:IDP

Pohl:1999:PTP

Pan:2014:GTG

Palepu:2017:DDS

Qi:2013:PEB

Qi:2012:DAD

Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil

Queralt:2012:VVU

Rothermel:2001:MTS

Radoi:2015:ETS

Reiss:1999:DE

Rothermel:2004:TSC

Rigby:2014:PRO
Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne Storey. Peer review on open-source software projects: Parameters, statistical models, and theory. ACM
REFERENCES

Roychoudhury:2012:SMS

Rothermel:1997:SER

Robillard:2003:SAS

Robillard:2007:RCS

Robillard:2008:TAS

REFERENCES

[RST+14] Filippo Ricca, Giuseppe Scanniello, Marco Torchiano, Gianna Reggio, and Egidio Astesiano. Assessing the effect of screen

Roshandel:2004:MSM

Stol:2014:KFA

Smaragdakis:2002:MLO

Snook:2006:UBF

Sinning:2013:UCT

Stolee:2014:SSS

Sadeghi:2017:ECA

Alireza Sadeghi, Naeem Esfahani, and Sam Malek. Ensuring the consistency of adapta-

Sherman:2015:DTB

Sistla:2000:SSB

Sullivan:2010:MAO

Scanniello:2015:DDP

Sutton:1995:ALS

Sinha:2001:ICD

Singh:2010:SWE

Sahin:2014:CSD

Sun:2013:MVH

Streck:2012:ADC

Streck:2012:ADC

REFERENCES

Steimann:2010:TMI

Santhiar:2014:MUT

Sommerville:2005:ESI

Snelting:2006:EPC

Schre:f:2002:BCS

Sinha:2006:HMB

Sim:2011:HWD

Tichy:1995:AR

Tappenden:2014:ACC

Tateishi:2013:PIS

Tilevich:2009:JOE

Tyszberowicz:1992:OPL

Tan:2009:CDM

Unterkalmsteiner:2014:TRE

Uchitel:2004:IES
REFERENCES

Vouillon:2013:SCC

vandenBrand:1996:GFC

VanDenBrand:2003:RT

Venkatasubramanian:2004:FMR

Wallach:2000:SSM

Walkinshaw:2013:ACS

Weyuker:1996:UFC

Wursch:2013:EQF

Wassermann:2007:SCD

Whittle:2010:SHS

Wang:1993:DRT

Whigham:2015:BMS

Whittaker:1993:MAS

Xu:2010:PCC

Xie:2013:TAR

[XR13] Guoqing Xu and Atanas Rountev. Precise memory leak de-

Yue:2013:FTU

Yue:2015:AAF

Yoo:2013:FLP

Yang:1992:PIA

Yang:2014:DIS

Yi:2015:SCC

Zhang:2014:ATV

Zav:1993:CC

Zav:1997:FDC

Zambonelli:2003:DMS

Zheng:2013:PRP

Zhou:2016:IRO

Zeller:1997:UVT
Andreas Zeller and Gregor Snelting. Unified versioning
