A Complete Bibliography of *ACM Transactions on Software Engineering and Methodology*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

17 April 2023
Version 1.76

Title word cross-reference

N [RKBL19]. z [LCZL14].

-Equivalent [LCZL14]. -way [RKBL19].

19 [FSZ+22].

2.0 [DKD21]. 2002 [Ano02]. 2013 [HP15].

Abandoned [KCAS23]. Abbreviated [SRTR17]. ABC [SF18]. Able [HNRA20].

Abstract [PSZ21, XMA+14, Jac95a, Pon02].
Abstractions [Gun00]. Abstraction [Aek+16, ZNZ+23, CF03, Egy02].
Academia [MS22]. Accelerating [MUB+23]. Acceleration [LHX21]. access

[BDL06]. Accessibility [BXL+22]. accommodates [YHR92]. Accounting

[SM12]. Accuracy [ASNB19, CWW+20, ODE21]. Accurate

[HSB+23]. Achieving [BJMH02, HAB13, LBZ14].

Acknowledgement [ACM05]. ACM [NP08]. across [CSV13]. action [HN98].

Active [ASNB19, MS15]. ActivFORMS

[WI23]. Activities [SHLW21, WFW+20]. Activity [KS22, Esh06]. Activity-Based

[KS22]. activitycharts [BRG+01]. Ada

[Di893, Dill97, DBDS94, YTL+95]. ADAM

[GL14]. adapt [DPT13]. Adaptation

[SEM17]. Adaptive

[BS16, CLBY18, DR11, RPT+22, SMBO21, ZA22, HWH14, VTA04, WI23]. Addendum
Architecture-centric [HWH14].
Architecture-Implementation [ZCT18].
Architecture-Level [BNB14].
[RCAH23]. bound [CM08]. Boundaries
[CSV13]. boundary [Hie06]. Bounded
[PMS13]. box [PGZ+20, RMCT22]. Brain
[VBZ+18]. Breaking [BKHT21, CAC08].
Brutus [CJM00]. Buddy [ZWGX22].
Budget [SMBO21]. Bug
[AFHC22, KKP+23, LRCJS14, TWB+19,
ZSL+22, AM11, CSX08]. Bug-Fixing
[TWB+19]. Bug-report-driven [KKP+23].
Bugs [AMS+18, DLT+23, ZSL+13, JAC95a].
Building [ELN+92, WWZ+22, KKL02].
Business [LDUD13, DCS09, ODV+09].
Bytecode [SVDHB23].

C [BCGB21, CWB+20, DLRA15, SRTR17].
C/C [BCGB21, DLRA15]. Cache
[WCB+20]. CafeOBJ [RO18]. Calculus
[EW11, DSV03]. Call
[ARL+15, ARG17, MNGL08]. calls
[BHR95, MM13]. Can [CL22, CL23].

capabilities [TS09]. capability
[Kuh99, TK02]. Cars [BKD+23]. Case
[ARC9, AVAS23, CXX23, EM15, TFF22,
HZZ+14, OKS+16, RFR23, RTP+22,
SMB21, SMBK22, YBL15, ZOJH21,
ZMM+16, BJMH02, CD98, DO93, HAB13,
MFH02, PVS01, SCK13, TBS92, YBL13].
Cases [BKD+23, CMM+15, IC14, TLP+22].
Catalog [YBZK21]. Categorical [BLBB23].

category [CXH+21, YKJ+23]. Casing
[NL11]. centered [ACF97, CDFG96].

Centralised [Hie14]. Centrality [ZCT18].
centred [LAS13]. centric [HW14].
Certificate [NWZ+23, TCDZ21]. CFL
[LH21]. CFL-Reachability-Based
[LH21]. chaining [FK96]. Challenge
[XCS+22]. Challenges [XVN22, YXL+22].
Change [LWWM22, YQTR15]. Changes
[BKHT21, DR11, DPB17, WHP+23, PV01].
Channel [EWS14, KJHY22, GZSW19].
characteristics [CF10, SM12].
Characterization [SGHM23].
Characterizing [XLW+22]. Charts
[RGS12]. Chats [CDKP21]. Checker
[MWP+21, WYMW20, SGE00]. Checking
[ALMS22, BHB16, CK99, EBE+14,
DDGR18, dFLSV14, BS07, BRRP05,
BGL00, CDEG03, Esh06, FM94, FGMP03,
HJ16, IWY00, JGB12, KATS12, KF07,
NEF03, PBO07, PMS13, SLG12, SMC08,
WGSD07, XCCY10]. checkpoint [CY11].
Chef [RRPW21]. Chief [Pez19d, Ros19].
Choice [EW11]. Cities [FSZ+22]. Class
[AB23, DL+23, BM13, CTC098, CTC01,
CCX11, Egy02, LY05, PPP94, XZLC14].

class-level [CTC98]. Classes
[AB12, VCF21, GRT09, HRD08, KB07,
Kuh99, PON02, TIW08, TK02].

Classification
[WCG+21, DFB99a, DFB99b]. Classified
[WCG+21]. Classifying [ETM22, OSH04].
classroom [TB92]. Cleamatis [ASMP16].
Client [MS14]. Client-State [MS14].
Clone [DER10]. Clones [YHL+22]. Cloud
[LJJ+20]. cluster [CTC01]. cmath
[BCGB21]. Co [LH23, MS22, VS13].
Co-creation [MS22]. Co-evolution
[LH23]. co-installability [VD13]. coarse
[BRR01]. coarse- [BRR01]. Code
[BXX+20, BFGG19, BC23, CXH+21,
DLSC23, DLT+23, DNRN15, FTF22,
GXG+20, GGH+23, HNR20, HZBS14,
HAB+20, HCW+22, KS20, KKP+22,
KJHY22, LWWM22, LLZ+22, LXL+22,
MB15, OSD+23, OKS+16, PZS+20, PGZ+20,
PLM15, SKBD14, SBB32, SGR+15,
SRTR17, SURL11, SED14, WLS+20, XWN22,
YJW+20, YKY+23, YHL+22, ZYL+23,
ZE14, ZZS+22, Dev99, DER10, FMNH14,
MPG+13, PRM01, RM07, SGG+14].

Code-Comment [YKY+23]. Code-Smell
[SKBD14]. Coded [IC14]. CodeMatcher
[LWL+22]. Cognitive [FDC+21, SHLW21].

Cohesion
[AB12, CBRO16, CCO06, KK04, MB07].
coincidental [Hie06, MA14].
Collaboration [MS22, Sin10, SB02].
collaboration-based [SB02].
Combatting [LCL+23]. Combinatorial [NL11]. Combining [DBNG15, Hie14, SMAC08, XZZL18].
communicating [Bro93]. Communication [CCY+21, ZQS+23]. Communities [ZMM+16]. Community [DR15].
Companies [ZLT+22]. comparative [BRR01]. Comparing [Hie02, PSW+20, YHC13, XM07]. Comparisons [GGZ+15]. Competition [MAKM22].
Competitiveness [YXX+17]. Compiler [CS22, MHK11, DFG00]. Complete [MWP+21, XL20]. Completion [MUB+23, PLM15, WYMW20].
Completion-aware [WYMW20]. Complex [BS16]. Component [SEM17, BCC92, CMP13, Ham09, IWY00, VD13].
component-based [CMP13]. components [BO92, CFM00, DFB99a, DFB99b, ZW97]. Composing [BLW09]. Composite [BGL00, KDM17].
Composition [Ost99, Ham09, REM+04, ZJ93]. Compositional [HGW+16, CK96, CK99].
Comprehensibility [SGR+15, SGG+14]. Comprehension [BC23, MTRK14, RST+14, OSH04].
Comprehensive [GLL+21, DvdHT05]. Computing [BPSSA+22, LIL+20, OHDB92, TC20, EF05, FGL+12, MZ09, RMP97, XCCY10].
Concept [PGM12, Sne96]. Concepts [DG17, MG00, SGL12]. Conceptual [QT12, TZZ09]. Concerns [MVM07, RM07].
Concurrency [MQLR16, ZSL+13, DL13, YTL+95]. Concurrent [AGRR19, MNB+22, Cor00, DKM+94, DCCN04, HZZ13, MRK+97, PTY95].
Conditional [EBE+14]. conditions [KB07, SRK06]. ConE [MNB+22]. Conference [MP14]. Configurable [AMS+18, CGZ23]. Configuration [BNB14, ELvdH+05, Gun00, Jez99].
confounding [ZXL14]. Conjunction [ZJ93]. ConMem [ZSL+13]. connection [AG97, AG98]. connectors [LWF03].
Consent [RPBG23]. Considere [XCS+22]. Consistency [SEM17, HJL96, NEFE03, PBO07, XCCY10]. Consistent [LRL+22, SS02].
Consolidation [LDUD13]. constrained [BM13, WRD+22]. Constraint [DBNG15, GWD+21, SSB20, XCCY10].
Constraints [CZ19, DDMM22, MWK15, QT12, SGD15, CY11, CK06, OO92].
constructing [Hen97]. Construction [ARL+15]. Constructs [KS20].
Consumption [LVBBC+18]. container [XR13]. containing [CFM00]. Context [CK96, KAT12, LWWM22, LHX21, WXL+21, WYW+22, KGA+12, LH08, XCCY10, vdBV96]. Context- [WYW+22].
Contributions [KCAS23]. Contributor
Contributor-Abandoned [KCAS23]. Control [HB16, CH21, HB22, KAS20, VHN22, BDL06, DL13, MMST14, MU00, SHR01, TBS92]. Control-flow [HB22]. Controlled [FSM15, FSZ21, BFN14]. controllers [DBPU13]. controlling [HG93].

Convolutional [DLY23]. cookie [TM14]. cooperative [HE13]. Coordinating [Cia93]. coordination [CFM00, MU00, MPR06, Tiw08]. CORBA [CPPRM03]. CORBA-based [CPPRM03]. corners [ZJ97]. Correctness [AB23, IWW22, TLP12, Hie06, MA14].

Corrigenda [DFB99a]. Cost [CST16, FCLL21, NP22, ZOJH21, ATW94, Bre95, REM14, Wey96]. Cost-Effective [ZJ97].

Cost-Effectiveness [CST16].

Craftsmanship [SGLG22]. Crash [GWD12, ZSL12, ZSL12].

Crash-Triggering [ZSL13]. Crasher [CSX08]. creation [MS22]. Criteria [MKW15, MB20, OK16, TAA19, Hie02, KDS80, XL20]. critical [GM01, MS94].

Cross [LLZ12, YZ18, DCS09]. Cross-Language [LLZ12].

cross-organizational [DCS09].

Cross-Project [YZ18]. crosscutting [SGL12, MVM07]. Crowdsourcing [WYM12].

Crowdworker [WYW12].

Crucial [BPSA12]. cryptographic [DFG09].

CSCW [KAT12]. CSP [SLD13]. customizable [Dev99]. CVEs [XCS12].

Cyber [HCW22, CW12, CW12, CW12]. Cyber-physical [HCW22, CW12, CW12]. Cycle [VC21].

Database [MKW15, CF03, PX14, WYSD07].

Databases [AG20]. dataflow [KDS08].

Dataset [YHL12]. Datasets [UGKR22]. Date [OL22]. David [Ros13]. DC [GRS15].

Deadlines [DBNG15].

Deadlock [ABB12]. DBSDS94. Dealing [BMC13].

Debloating [SVDHB23]. Debt [RXX12].

Debugging [CMM15, FSP13, J015, MQL16, ZNZ12, AM04, HRD08, OSH04, QRLV12].

Decentralized [EWH02, ML00].

Deciding [SDG15].

Decision [HGW15, LW12].

Decisions [AMGBK22, LLS21, AM11].

Decompiled [DLY12]. Decomposition [BSA22].

decoupling [BTI14].

deduction [FS03].

deductive [GM01].

Defect [FAP22, KS20, XNL12, ZYL12, SM12].

Defective [VC21].

Defects [AVY11, FAP22, VC21].

Defining [TG23].

deGraphCS [YZ18]. Degree [FMM14].

Degree-of-knowledge [FMM14].

Delta [HT98, HVT98].

Denoising [SCL12].

denoising [SCL12].

Dependence [OL22, SS02].
dependencies [Jac95a, OSH04].
dependencies [BGO +14, Gun00, Rob08].
Dependency
[RCAH23, SEM17, CY11, GL14],
dependency-based [CY11],
dependency-driven [GL14]. Deployed
[AYV11]. Depth
[XCS +22, SBBL23, ZLCL14]. Derive
[YBL15, XM10]. derived [IWY00].
Description [Bjø19, DvdHT05, DJ97].
Descriptions
[GCX +22, JZL +19a, AAG95, BAD08, WJ10].
descriptors [DER10]. DESEN [KAS20].
Deserialization [SBBL23]. Desert [Rei99].
Design [AROK21, AMGBK22, BPT10, CCX +20, KJ11, LSN +23, Liu22, DDGR18, MFLL12, SGR +15, BM07, B092, BRPP05, BFN +14, CSC06, CR94, FBC +13, FP02, GGLT07, LL00, MRK +97, RS09, S096, SB06, SGR +10, YTL +95, ZB13]. Design-Pattern
[SGR +15]. Designers [CZ19]. Designing
[BCC +01, DL11, XM07, CPPRM03].
designs [SB02]. Destruct [CXLG22].
Detecting [AYV11, CWH +21, GCX +22, DDGR18, MM13, WCB +20, YHL +22, ZSL +13, Jac95a, LS13]. Detection
[Cai20, CL22, CCY +21, EKL +19, GHM18, JPS22, LRC14, MNB +22, MS14, MBKK22, RD15, RXR +19, SKB14, UGRK22, WWZ +22, XMA +14, XGM +23, YXM +23, ZAW92, ZFL +22, ZLZ +21, ZYW +21, FN03, Kuh99, SMT92, TK02, XR13]. Detector
[ZZX +21]. determination [OLR +96].
deterministic [HT17]. Developer
[BFFG19, CDPK21, CCY +21, EHEZ21, KS22, SHLW21, WFW +20, CF10, FMHM +14, Sin10]. Developers
[CXH23, FSZ +22, PZS +20, PLZ +22, YZP +22, ZWCH21]. Developing [HDR08, TAA +19, ZJW03, ZOJH21, GMMM11].
Development
[BFFG19, BSA22, CFL +16, GTD21, LKR22, LSC +22, MNB +22, MS15, TG23, ZCT18, AM11, DvdHT05, EAS08, ELN +92, G098, KK93, MFH02, PSV01, SCK13, Tiw08]. development-oriented [AM11]. deviations [CDFG96]. diagnosis [NLR11].
diagram [BP05]. Diagrams
[AB23, BM13, Egy02, Esh06, LK14]. DiaPro
[CST16]. Differ [JA22]. Differential
[MQLR16, NWZ +23, TCDZ19]. DIG
[NKWF14]. Digraphs [EM15]. Dijkstra
[Ano02]. DIRE [DLY +23]. Directed
[SDLC23, YPR14, NWZ +23]. discipline
[KL05]. Discovering [CW98, GL11].
Discovery [Böh18, SPK14, GL11]. discrete
[Ost99]. Discussions [EHEZ21]. Dissecting
[FMMD23b, FMMD23a]. Distinguishing
[HT17]. Distributed
[BLX +20, DDI22, FCC17, GTD21, Hie14, TG11, WME93, KK93, MU00]. Distribution
[HG +22]. Distribution-Aware [HG +22].
Diversifying [MJS +21]. diversity [HAB13].
Do [CMM +15, CXLG22, JA22, LYYC14, PLZ +22, SUR11, YZP +22, CAC08].
Documentation
[CXH23, HCW +22, UKR21, TBS92].
Documenting [SGR +15]. documents
[SMT92]. Does [CWH +21, FSM +15].
Domain [ASNB19, BJ019, BMC +23, HSZ08, ZE14, BMH02, BAD08, Hie09, JW94, SS06, ZAW92]. Domain-specific
[HSZ08, BMH02, SS06]. domain-testing
[TW94]. domains [Hie02]. Dormant
[FAP22]. Double [For94]. Driven
[CLBY18, DG17, PTVH17, BD10, GL14, G101, KKP +23, NPB22]. driving
[BKD +23]. DSD [CSX08]. DSD-Crasher
[CSX08]. Duplicate [WYMW20].
Duplication [ZLW +21, DERR10]. during
[FSZ +22]. DynAlloy [FPAG07]. Dynamic
[CST16, FCC17, H222, KMYK19, DDGR18, NWZ14, PXJ17, PSW +20, XMA +14, CY11, DR10, FC00, FFB +05, GSH07, PJJ010]. dynamically [WGSD07]. Dynamics
[BSA22, KAS23]. Dynamite [MPF14].
E3 [JPL98], Eagle [LHX21], Early [KDM17], Easier [CMM+15], Easy [ZWCH21], Ecosystems [BKHT21], Edit [MBN+22], editing [BGdV92], Editor [Pez19d, Ros19], Editor-in-Chief [Pez19d, Ros19], Editorial [BDD15, GMRS03, Ghe05, Ghe07, Not07a, Not07b, Not07c, Not08a, Not08b, Not09, Not10, Not12, Not13, OGKW05, Pez19d, Pez19a, Pez19b, Pez19c, Pez20a, Pez20b, Pez21, Pez22, Ros13a, Ros14c, Ros14a, Ros14b, Ros16, Ros17, Ros18a, Ros18b, Ros19, Pez23], Edsger [Ano02], Eect [GRS+16, HZBS14, RST+14, ZSL+13, Off92, Sin10, ZXLC14], Effect-Oriented [ZSL+13], Effective [FYD+09, RD15, ZOJH21, ZRGT23, CF10, FCLL21, Hen97, NPB22, REM+04], Effectiveness [CST16, CMM+15, CRS+16, MKW15, ODE21, UGKR22, CM08], Efficiency [CMM+15, LH02], Efficient [AGRR19, AVY11, CW+20, GRLM07, HSB+23, SRK06, ZRGT23, ZWGX22, ZNZ+23, dFLSV14, RH97], Efficiently [DL11], Effort [KS22, SP18, SMI99, WOM15, AM11, BM07, GJ08, MY13], elaboration [UKM04], Eliciting [JPL98], Elite [WFW+20], Embedded [BNB14, MFLL12, GGLT07], Embedding [LWWM22, ZYL+23], Embeddings [DLSC23, ETM22], Emergent [LBZ14], Emoji [CCY+21], Emoji-powered [CCY+21], Emotion [CCY+21], Empirical [AROK21, AAP+20, CWM+20, EHEZ22, FSM+15, FT22, GLL+21, HGC+22, LSS22, LLS+21, MB09, ODE21, RWEB19, TWB+19, UGKR22, VLI+18, YXK+17, ZHO+18, BM07, BGH07, GHK+01, HT08, HVT08, MB07, MC08, MGLH98, SR05, T1w08], Emulation [DDI22], emulators [MPR+13], enabled [VTA04], Enabledness [DBGU13, GGGU21], Enabledness-based [DBGU13, GGGU21], End [ZSL+22, Dev99, LASL13], End-to-End [ZSL+22], end-user [LASL13], Energy [LCL+23, LVBBC+18], Engineer [WI23], Engineering [AAP+20, CL22, CL23, DG17, DL11, DR15, FTF22, GLFW22, LGX+22, MFBF22, MBH+17, MP2E, OSK+16, STS+18, SF18, UGKR22, WFF+19, WXY+22, ACF97, CDPO4, ELvDH+05, KLV05, LASL13, RSBO5, SR05, TBS92, UF141, XL20, ZJ97], engineers [BHH+09], Engines [URL11], Enhanced [XYM+23, SS06], Enhancement [HGC+22, ZFL+22], Enhancing [AG22, TS09], Enough [CRO16], Ensemble [UGKR22], Ensuring [SEM17], Entry [BLBB23], environment [ATW94, B95, FGMP03, Kli93, MRK+97, R89, RMSR04, SN92, TY92], Environments [BDK+23, ACF97, DWH98, ELN+92, KK93, Kli93, MGP+13, PRR10, PWD+99], equations [BRG+01, KGA+12], Equivalence [HL02, MGTR18, DSV03], Equivalent [LCZ14], Errata [AG98], error [Kuh99, TK02], errors [TD01, ZAW92], ESP [Cia93], Essential [SLB+21], estimates [GJ08], Estimating [LSN+23, MB15, PBU16, BM07], Estimation [CWW+20, KS22, PPM+99, SP18, WOM15, ZFL+22, MY13, TZZ09], Estimator [KS29], Ethereum [CXLG22, WWZ+22, ZOJH21], evaluate [MGP+13], Evaluating [KAFY23, LH08, TAA+19, WGG13], Evaluation [AAP+20, FMMB23b, FMMB23a, FA14, HCW+22, KDM17, MS15, RWEB19, SBM21, SMK22, YLL+22, ZWL+22, CAC08, DBDS94, KK93, MB09, XCK13], evaluations [SM12], Event [ASMP16, BCTW96, CW98, DBPU13, Mem08], Event-Based [ASMP16, BCTW96, CW98, DBPU13], every [LYYC14], Evolution [LYYC14],
Evolutionary
[HLL+16, YB20, Hen97, MBH09], evolvability [CS12], Evolving
[OSD+23, DCS09, QRL12]. EvoMaster
[Arc19, ZA22]. EvoSuite [FA14]. Exact
[HKMB+14]. Examination [ZYL+18].
Examining [MAKM22]. Example
[LKF22]. Examples [B16]. Exception
[CMP13, ZE14, RM03]. Executables
[AEK+16]. Execution [CPCT21, KPC18,
SBBL23, TDT+22, WCB+20, YPRK14,
AM04, Di093, DHW98, SMAC08].
Executions [BLX+20, EM18, PSW+20].
Existing [AG22]. experience
[CMCP+99, YTL+95]. Experiment
[OL22, PSZ21, BFN+14]. Experimental
[CMM+15, D093, DBBD94, OLR+96,
SMT92]. Experiments
[SGR+15, Ha09, YBL13]. expert
[CF10, Kip92]. Explainability [BXX+19].
Explicit [BHB16]. Explicit-Data [BHB16].
Exploiting [CGP15]. Exploits [SBBL23].
Exploration [CS22, ZRGT23, QNR13].
Explorations [PBU16]. Exploratory
[TTL+21]. Exploring [RCAH23].
Exposing [LBZ14]. expressions [KGA+12].
Expressive [TG11, BLW09, WJ10].
Extended [EM15, EM18, ZE14, LY05].
extensibility [BJMH02]. Extensible
[TG11]. External [GL14]. Extracting
[KM10]. Extraction
[ASN19, BXX+20, GWD+21, MN96].
extractors [MGL98].

Facet [DGK21]. Facet-oriented [DGK21].
faceted [DFB99a, DFB99b]. Facilitating
[RKBL19, YBL13]. factors [SAB+14].
factory [BCC92, FLM+98]. Failed [JA22].
Failing [TLT+22]. Failure [NL11, Wey96].
Failure-Causing [NL11]. Failures
[JO15, LJJ+20]. Fairness [WYW+22].
Fairness-Aware [WYW+22]. families

[BCD02]. Family
[GHM18, RKBL19, SGR+15, WFF+19].
Family-based [RKBL19]. Fan [MVM07].
Fan-In [MVM07]. Far
[CL22, GLL+21, ZYL+18]. Farewell
[Ros19]. Fault
[AROK21, EK+19, KKP+23, KMYK19,
Kuh99, NBMK22, TSPRC18, YHC13,
YXX+17, CCX11, He02, He09, KB07, LY05,
MA14, SMT92, TK02, XCKX13, ZXL14].
Faulty
[AY21]. Faulty
[SR21]. Faulty
[SYA21]. Feasibility [EK11]. Feature
[ABC+22, CLBY18, FN03, HLL+16,
RWEB19, WRD+22, ZRTG23, ZS97,
ZXL+06]. Feature-Guided [CLBY18].
Features
[JZL+19a, KSS22, KMYK19, DR10, Zav04].
Feedback [SDL23, G08].
Feedback-Directed [SDL23].

FEMOSAA CLBY18. Field
[DPB17, JO15]. Fields [BLBB23]. Filling
[BLBB23]. finding [CSX08]. Fine
[PGZ+20, BRR01, DL13]. Fine-grained
[PGZ+20, BRR01, DL13]. Finite
[BM13, DDM22, EM18, Cor00]. Finite
-State [EM18, Cor00]. Firmware
[WRD+22]. First [DR15]. Fixed [OL22].
Fixed-Date [OL22]. Fixing
[SRTR17, TBW+19]. FlagRemover
Flexible [NEFE03, BT14]. Floating
[BCGB21]. Floating-Point [BCGB21].
Flow
[CH21, DCCN04, ZYL+23, For94, HB22].
flow-sensitive [For94]. flows [MP09].
Focused [MJS+21]. Fold2Vec [BC23].
Follow [STS+18]. Foraging [FSP+13].
Formal [BP05, CTA+21, CR94, EWS14,
GXSC21, RO18, YJW+20, AG97, AG98,
BRRP05, BKM07, CS12, CMCP+99,
CRST12, CPFPR03, FP02, MMST14,
PGL12, SCK13, VTA04, SB06].
Formalizing

iBiR [KKP+23], ICSE [MP14], IDE [XVN22]. Identifi-
cation [GHM18, WRD+22, WC23, ZSW+22]. Identif-
er [SRTR17], Identify [HNRA20]. Identifying [CDKP21, GLL+21, MVM07]. Ide-
ntity [ZQS+23]. III [MKS+15]. Impact [CCX+20]. Impact-
[CDP04]. implicit [SPA10]. implied [UKM04]. Impor-
tant [LXL+22]. Improve [ABC+22, CCH+21, VHN+22]. Improved
[CST16]. Improvement [CXH+21, SR05]. Improving
[ASNB19, BGO+14, Cai20, PWB23, WYMW20, YHL+22, DPT13, GJ08, LH02]. In-
Depth [XCS+22, SBBL23, ZXLC14]. In-IDE
[XVN22]. In-Process [WYW+22]. In-
coming [Pez19d]. Incompatibility
[XGF+23]. inconsistencies
[CDFG96, GZ05]. inconsistent [HN98]. Incre-
ment [DPB17, UKM04, YPRK14, KK93, KF07]. incre-
mentally [KKLS02]. Independent
[WHP+23]. Index [Ano96, TPT13]. index-
sensitive [TPT13]. Indicators
[AAP+20]. Inductive [ASJDW21, BG06]. In-
dustry
[OKS+16, CMCP+99, FLM+98, SR05]. In-
dustry-based [CST16, VHN+22]. Industry
[MS22]. Industry-Academia [MS22]. Inference
[NBB15, SMY19]. Inferring
[EM18, MG00, RO18]. Inflow
[ZMM+16]. influence [Sin10]. Information
[CXH23, FSP+13, RFR23, WCB+20, DFOT07, FBC+13, GSH97, MP09, PGM12, TZZ09, THH06, Wey96, YHC13]. infor-
mation-theoretic [YHC13]. infra-
structures [BDL06]. inher-
tance [KKLS02]. inheritance-based
[KKLS02]. Injection [KKP+23]. inner
[SAB+14]. inspections [BFN+14, PSMV98]. install-
ability [VD13]. Instances [SGR+15]. instruc-
tion [AM04]. IntDroid [WYW+21]. Integer
[DLRA15, XL20]. Integrated
[YB20, CTCC98, ELN+92, PWD+99, SCK13]. Integrating
[BFFG19, FRB+06, GSH97]. integration
[BCTW96, BHR95, SN92, YHR92]. Integrity
[MWK15]. Intellectual [CSV13]. Intel-
ligent [PLM15]. Intensive [NB+18]. Inten-
t [YXM+23]. Inter [SEM17]. Inter-
[SM17]. Interacting [GR09, SYA21]. Inter-
action [AB12, CGZ23, MU00]. Inter-
action-Based [AB12]. Interactions
[ASMP16, PWX14]. interchangeability
[DPT13]. Interface [PSZ21, CL94]. Interfaces
[IC14, BRRP05, BT14]. inter-
national [NP08, MP14]. Inter-
net [YBZK21]. Interpretation
[LRL+22, WCG+21, CSC06]. interpreters
[BP05]. Interpreting [ZZX+21]. Inter-
procedural [OO92, SHR01, For94]. Interv-
al [SMY19, CDSM10, DKM+94]. inter-
val-based [CDSM10]. Interventions
[RPT+22]. Intimacy [WYW+21]. Intra
[SEM17]. Intra-Component [SEM17]. In-
trinsic [CGPP15]. Introduced
[RCAH23]. Introduction
[GLF22, HP15, MP14, NP08]. Invariant
[NKWF14]. Invariants [NKWF14]. inves-
tigating [HBB+09, CXLG22]. Investi-
gation [LRCS14, WZZ+22, MC08]. Investiga-
tions [Of92]. invocation
[SPA10]. Involvement [ZMM+16]. IoT
[SMBK22]. IP [MR99]. ISENSE2.0
[WYM20]. Isolation [JZL+19b]. ISA
[TP08, HP15]. Issue [HP15, MP14, PWB23].
Issues [LCL+23, Pez23]. items [Gun00].
iterative [For94].

J [TS09]. J-Orchestra [TS09]. Java [BS07, Cor00, HRD08, KM10, LTX19, MRR05, RD15, SBBL23, SRTR17, SGHM23, SVDHB23, TS09, WHP+23, XR13].
Just-In-Time [NXL+22].

KBSE [DJ97]. Key [GCX+22, SAB+14]. Killing [CPCT21]. KLEESpectre [WCB+20]. Knee [CLBY18]. Knee-Driven [CLBY18]. Know [YZP+22]. Knowledge [CH21, GZX+22, MS22, TG23, FMHH14, KKO4, MG00]. knowledge-based [KK04, MG00]. Kristen [An02].

L2S [XW22]. Label [VCF21, ML00].
Language [AROK21, DLT+23, KJHY22, LLZ+22, WB13, XVN22, BGdV92, CL94, CFM00, GZ05, JLP98, SHO95, TV92, WAF00, MRRR02]. language-based [BGdV92, WAF00]. Languages [Bjo19, CXH23, FTF22, BJMH02, BHR95, DSM10, DvdHT05, HZS08, KSD08, RSB05, vdBV96].
Larch [CL94]. Larch/Smalltalk [CL94].
Large [BNB14, DNRN15, FA14, KCAS23, LJJ+20, LLZ+22, MNB+22, Rus21, YZP+22, MC08, PSV01]. Large-Scale [BNB14, FA14, LLZ+22, MNB+22, Rus21, YZP+22, PSV01]. latent [BG0+14].
Lattice [DDE11]. Lattice-Based [DDE11].

LiDetector [XGF+23]. Life [VCF21, SS02].

Lightweight [GHM18, MN96, Jac02].

LIME [MPR06]. Line [CTA+21, DL11, ZCT18]. Linear [SP18, ZAW92]. Lines [HLL+20, HAB+20, XZZL18, BJMH02, KATS12, MPG+13].
Linking [KS20, SZH+19, FC00]. Links [PWB23, DFOT07]. Literature [LCS+22, SBMK21, TWS+22, WCP+22].
liveness [DBPU13, SGM00]. Local [ABB+18, TC20, ZGWX22]. Localisation [YXK+17]. Localization [AFHC22, KMYK19, TSPRC18, MA14, XCKX13, YHC13]. locating [TD01].

Location [WEB19, PGM12, ZZZ+06]. Logic [BMM+17, XLW+22, DMM+94, PMS13, TPT13, ZS97]. Logic-Based [BMM+17]. logical [FGL+12, MS94].

Logics [DDMM22, DJ97]. looking [Not13, Ros13a]. loop [BHL11].
loop-assigned [BHL11]. Loops [RD15].
Lop [FMMB23b, FMMB23a]. LSCs [MNB14, DNRN15, FA14, KCAS23, LJJ+20, LLZ+22, MNB+22, Rus21, YZP+22, PSV01]. latent [BG0+14].

Machine [BLBB23, CLL+22, DKD21, RFR23, TWB+19, ZLW+21].
Machine-Learning-Based [ZLW+21].
Machines [PSZ21, WJ10]. macro [Sin10].
macro-level [Sin10]. Mae [RVMRM04].

Mixed-Methods [KAS23, Rus21]. Mixin [SB02]. Mobile [ETM22, JZL+19a, LCL+23, RMP97, ZE14, CFM00, GFM03, FC00, MZ09, MR99, PRM01]. Mobility [JZL+19b, MP06, PRM01]. Mockups [RST+14]. Model [ALMS22, AFHC22, ASNB19, BS16, BDL06, BS07, BHB16, CXH+21, DG7, EBE+14, GR5+16, GTD21, LKRF22, DGD+19, LLSM22, DDGR18, MMST14, NBB15, OPK+21, PVHW17, LDUD13, Rus21, TSPRC18, W13, Wom15, BKM07, BGL00, CS12, Cal95, CDEG03, CW99, Di09, Esh06, GFM03, HAB13, JGB12, KF07, LL00, MS03, MN96, MP06, ML00, NLR11, PBO07, RVRM04, SMAC08, SS06, SGE00, TZZ09, VTA04, XM08]. Model-Based [AFHC22, MMST14, W13, HAB13, MS03, SS06, TZZ09]. Model-checking [BG10, DÉG03, GFM03, KF07].

Model-Driven [DG17, GTD21]. Modeling [BRG+01, BSA22, FMMH+14, JZL+19b, MFLL12, MR99, MRR02, SLD+13, BCFM06, BAD08, CDP04, DCS09, DWH98, PWD+99, SB06]. Modelling [BZSW14, Bj019, DGC14, DGK21, Jac02]. Models [BMM+17, BMC+23, CAYA22, DG18, EM18, FDB+12, HLL+16, JPS22].
Opportunities [YXL⁺22]. Personality [CL22].

Optimal [HLL⁺16, Liu22]. Optimization [CLBY18, CS22, HLL⁺16, LLSM22, LVBBC⁺18, XZZL18, AGHC⁺22]. Options [ZKW⁺23a, ZKW⁺23b].

Oracles [WPB19, XM07]. Orchestra [TS09]. Order [GXS21, SGD15, TPT13, XTW⁺23]. organizational [DCS09].

Organized [ZCH21]. Oriented [AB12, ZSL⁺13, AM11, CTCC98, CTC01, CSC06, DFB99a, DFB99b, DF94, DR10, FGL⁺12, HE13, DGP21, MS94, ODV⁺09, RS09, RM03, SB02, SGR⁺10]. OSS

[KS22, ZMM⁺16]. outcome [GJ08].

Outgoing [Ros19]. output [KM10, QNR13].

Overdue [MUB⁺23]. Overflow [ARG17, DLR15, GXG⁺21, SGD15, JLS13, SRK06].

Overhead [RCAH23]. overlapping [Ha92].

[ELN⁺92]. Partial [FDB⁺12, LHX21, PBU16, SGD15, XCCY10].

Patch [LWW22, MGTR18, STGR21, TLP⁺22].

Patches [KPC18, TWB⁺19, ZSW⁺22].

Path [DDE11, GSYT21, QNR13, SGD15, TPT13, XWT⁺22, LS13, SRK06]. Path-

[CZ19, SGR⁺15, WAH23]. Pattern-based [CZ19]. Patterns

[KAS20, DDGR18, MS22, ZB13]. Peer [RGCS14]. Penetration [MAK22].

Performance [CGZ23, CFL⁺16, LLSM22, LLS⁺21, RXB⁺19, ZHZ⁺21, Tiw08]. Person

[ZSHD20]. Personalized [ZL13]. Perspective

[BXL⁺22, FSP⁺13]. pervasive [MZ09, XCCY10]. phase [GJ012]. philosophies [MSW12]. physical

[CYA22, XTW⁺23]. pilot [XM08]. PL

[DL11]. Place [MS15]. Place-Aware

[MS15]. Planning [CSW21, OL22, ZHO⁺18].

Plasticity [BT22]. Platform

[EHEZ21, LJJ⁺20, LS11, ZQZH21]. Platys

[MS15]. Play [CCH⁺21]. Plugins [LSH23].

Point [BCGB21, BT14]. Pointer [LH21].

pointers [OSH04]. points [HL08, MRR05].

points-to [HL08, MRR05]. Policies

[BBS16, BKHT21, BLW09]. Polychronous

[GGLT07]. Polynomial [NWF14].

Popular [CCH⁺21]. Portfolio [MPG⁺13].

Post [CDK21, JMS08]. Post-release [JMS08]. Posteriori [DG17]. Posts

[ARG17]. potentially [XZLC14]. Power

[LSV08]. Powered [ZQZH21, CYY⁺21].

Practical [BCGB21, CWW⁺20, HB22, SZH⁺19, SS20]. Practice

[BXL⁺22, ELvdH⁺05]. Practices

[BKHT21, WHP⁺23]. Practitioner

[BXL⁺22]. pragmatic [HW12]. Pre

[LLZ⁺22]. Pre-Training [LLZ⁺22]. Precise

[AB12, KMYK19, LRCS21, XR13].

Precision [LHX21, PSW⁺20].

Precision-Preserving [LHX21].

Predicting

[LJJ⁺20, MBH⁺17, TLP⁺22, ZHZ⁺21].

Prediction

[CYA22, CXH⁺21, CGZ23, FAP22, NXL⁺22, SMY19, YKY⁺23, ZL13, ZYL⁺18, XZLC14].

Predictions [ZZX⁺21]. Predictive

[KJHY22, LRCS14, XR13].

Preference [PLP⁺23]. Preference-wise

[PLP⁺23]. preliminary [YTL⁺95].

presence [FND⁺08, FC00, Hie02, OSH04].

Preserving [LHX21, YHY092]. Prevalence

[MA14, ZLT⁺22]. PRIME

Prioritisation [RF15]. Prioritization
Recommendations [OPK+21].

Recommenders [AM11]. Recommending [DR11, JZL+19a, SYA21, STS+18]. recompliation [ATW94, Bre95].

Redundancy [CGPF15, HZZ13].

Reengineering [Sne96, CF03]. Refactor [PZS+20]. Refactoring [AB23, DG18, FSP+13, OKS+16, TDT+22, VBZ+18, SGL12]. Refactorings [PLZ+22].

referees [ACM05]. reference [BCC92].

Refinement [ASJDW21, Ban23, ZNZ+23, Ost99]. refinements [SB02]. Reflection [LTX19, Pez22, SLB+21]. reflective [LL00]. region [DER10]. RegionTrack [MWP+21].

recession [BRR01, GHK+01, Mem08, RH97, REM+04]. regular [KGA+12]. Regulation [KAS20].

Regulatory [GL11]. Refining [Jéz99]. reimplementation [CF03].

Reinforcement [BT22, FCLL21, RMCT22]. Reject [PLZ+22]. Relatedness [MB15].

Release [OL22, ZHO+18, HKMB+14, JMS08].

Relevance [OSD+23]. relevant [MPG+13].

Reliability [ZL13, JMS08, PMM+99, Wey96].

Remodularization [CBRO16, MKS+15].

Removal [WRD+22]. Removing [LCZL14, HZZ13].

Renamings [DLY+23].

Reports [KS20, ZSL+22]. repositories [Hen97]. Repository [DNRN15].

Requests [KCAS23, MUB+23]. Required [LK14].

Requirements [DPB17, GL11, LKRF22, DGD+19, RST+14, WFF+19, ZZY+21, CRST12, CD98, GM01, GZ05, HJL96, SMT92, SR05, UFG14, ZJ97].

Resampling [SMY19]. Research [CL22, MS22, SF18, WCP+22, EAS08, ELvdH+05, RSB05]. Residual [LRC014].

Resilient [GHM18]. Resistance [GZSW19].

retargetable [Dev99]. Retention [ZMM+16]. Retrenchment [Ban23].

Retrieval [MBH+17, SURL11, WX+21, ZWCH21, DFOT07, PM12].

Reuse [FSP+13, DGD+19, VHN12, EF05, Hen97, HW12, MC08, OHDB92]. reverse [AM04].

Review [AMV23, GZX+22, LCP+22, RGCS14, SBMK21, TG23, WCP+22, BHB+09].

Reviewers [ACM03]. Reviews [CH+21]. revisit [CCX11]. revisited [GD08].

Revisiting [MB20]. Rewards [PBU16].

Risk [GL11, LBZ14, MGP+22, XCKX13].
Robotic [AMV23]. Robustness
[ABC+22, ZFL+22, ZZS+22]. Role
[SPAS21, GJ08]. router [CR94]. rule
[Cia93, Kip92, MM13]. rule-based
[Cia93, Kip92]. Rules
[ARG17, MFL12, KK04]. Run [ZH2+21].
Run-time [ZH2+21]. Runtime
[AVY11, BLS11, EKL+19, XMA+14,
ZWGX22, BLW09]. Rust [CXL23, XCS+22].

SAEO [GSYT21]. Safe
[LSN+23, BRR01, BTI14, RH97]. Safety
[XCS+22, BFN+14, CK09, SGE00, SRK06].
SAFKASI [WAF00]. Sample [ZLW+21].
Sampling [DDE11, PP93, PMM+99].
Sanity [WYMW20]. SAT
[AGRR19, ZJX+18]. SAT/SMT [AGRR19].
satisfiability [BM13, PMS13]. Sator
[BPT10]. Scala [ARL+15]. Scalable
[FCLL21, WWZ+22, XMA+14, BRRP05,
HKMB+14, HAB13]. Scale
[BNB14, DNRN15, FA14, LJL+20, LLZ+22,
VLJ+18, MNB+22, PSV01, RSB21, YZP+22].

Scaling [HZZ13, LCZL14]. Scanner
[YXM+23]. Scenario
[UKR21, UKM04, WJ10]. scenario-based
[UKM04]. Scenarios [MHP11, UKM04].
Schedule [MQL16]. Schema
[MWK15, NL11]. Schemas [QT12].
scientific [CY11, EF05, LLYC14]. Scope
[MB20]. Scores [RO18]. Scope [RST+14].

Screencasts [BXX+20]. Scripts
[RRFW21, RO18]. SEADS [FCLL21].
Search [AAP+20, AG22, AVAS23, BS16,
CCX+20, CL23, OKS+16, SYA21, SMBO21,
SURL11, SED14, TC20, XL20, YLZ+23,
ZHO+18, ZZY+21, ZA22]. Search-Based
[OKS+16, SMBO21, ZA22, AAP+20, AG22,
AVAS23, CL23, XL20]. Searching
[XL+22, MPG+13, ZZS+21]. second
[TPT13]. second-order [TPT13], section
[NP08]. Secure [ZQS+23]. Security
[AMGBK22, RRPW21, RPT+22, SIB23,
ZQS+23, ZSW+22, BDL06, BLW09, CJM00,
WAF00]. See [KKP+22]. Seeding
[AVAS23]. Seeds [AVAS23]. segments
[LS13]. Selection
[AVAS23, HLL+16, HGC+22, MPT+21,
BRR01, CY11, GHK+01, RH97]. selective
[ATW94, Bre95]. Self
[BKD+23, CLBY18, CXL22, GLL+21,
RXX+19, WI23, PJRR10]. Self-Adaptive
[CLBY18, WI23]. Self-Admitted
[RXX+19, GLL+21]. self-assessment
[PJRR10]. Self-Destruct [CXLG22].
Self-driving [BDK+23]. Selfdestruct
[CXG22]. Semantic [BAD08, CLL+22,
MB15, PJRR10, YHL+22, MG00, KKP+22].
Semantic-Based [CLL+22]. Semantics
[EHF20, LXL+22, LK14, SZH+19, XT+23,
HN96, YHR92]. semantics-preserving
[YHR92]. SemMT [CLL+22]. Sensing
[BZSW14]. Sensitive
[LKR22, LHX21, SGD15, SCL+23, Bro93,
Cal95, For94, LH08, TPT13]. Sensitivity
[LHX21, HKMB+14, MRB05]. Sentiment
[CCY+21, UGK22]. Sequence
[RGS12, LK14, Mem08]. sequence-based
[Mem08]. Sequences [HT17]. sequencing
[OO2]. Sequential [DD12, LXL+22].
Serializable [MWP+21]. Serverless
[BPSSA+22]. service [BPT10, DPT13,
FGL+12, WWH14, PBC10].

service-oriented [FGL+12]. Services
[BL13, BKM07]. sets [HST12]. Shadow
[KPC18]. shape [Cor00]. Should [CCH+21].
shuttle [CD18]. Side [EWS14, GZS19].
Side-Channel [EWS14, GZS19]. signal
[BGR+01]. Signature [ZW95].
Significance [YKY+23]. Significant
[HZBS14]. Similarity
[KS22, TLP+22, OHDB22]. simplified
[MJW94]. Simulating [FS93]. Simulation
[BPB23, EHF20, KKL02]. Single
[BKD+23, ZCT18]. SIP [HLL+16]. Site
[GGX21]. Sites [UKR21]. Six [PZ23]. size
[BGH07, GD08, HGS93, MGP+13, TZZ09,
XZLC14]. slice [BGH07, MB07].
Cor00, DBDS94, WJ10]. State-Based
[WB13]. statecharts
[BRG+01, HaK92, HN96]. Stateful
[BPSA+22, SL+13], STATEMATE
[HN96]. Statement [BC23].
Statement-Based [BC23]. States
[LCKL14]. Static [CTC+23, HNRA20,
IVY00, KMYK19, RD15, RWEB19, RM03,
VLJ+18, WGS07, BGH07, FPB+05,
GSH97, MNGL98, OOO92, ZZZ+06].
Statistically [CWH+21]. Statistical
[RGCS14, ZNZ+23]. Status [WFF+19].
Step [BS16, SLB+21]. Stepwise [EK11].
Stochastic [CFL+16]. Storage [WGX22].
Strategies [AVAS23]. strategy [JW94].
stratified [PM+99]. StreamGen
[GTG21]. Streaming [GTG21]. strength
[MP09]. Stress [DBN07]. string [TPT13].
strings [KGA+12]. Strong [AVAS23].
Structural [KiP92]. Structure
[GGH+23, GRS+16, WB13, RM03].
Structure-Guided [GGH+23], structured
[BP98]. Structures [KDM17]. Structuring
[Jac95b]. Stubborn [CPCT21]. Studies
[Cai20, SPAS21, BM07, CD98, HBB+09,
MFI02]. Study
[AROK21, AMBK22, CWM+20, CCH+21,
CXH23, DKD21, EHEZ21, FAP22, FSSM+15,
GLL+21, HGC+22, KAS23, LLS22,
LLS+21, NXL+22, ODE21, OKS+16,
PSZ+20, RRPW21, Rus18, SBBL23,
SGHM23, TTL+21, TWB+19, UGKR22,
VLJ+18, XCS+22, YZP+22, ZOJJ21, ZE14,
ZHO+18, ZA22, ZMM+16, BJMH02, BRR01,
BGH07, CF10, GHK+01, MB07, MNGL98,
PST01, SMT92, Tiw08, TBS92, XM08,
ZXC14]. Studying [OSD+23]. style
[AA+95]. Subject [DBP17]. Suboptimal
[WHP+23]. Success [Rus21, Sin10].
Successful [JA22]. Such [RCAH23].
sufficient [OLR96]. Suggestion [ODE21].
Suite [HLL+20, Ber94, HGS93, Pet97,
REM+04, XL20, YTL+95]. Suites
[GGZ+15, Mem08]. Summaries
[CTC+23, PXJ17]. Summarization
[CXH+21, GGH+23]. Super [AGHC+22].
Super-optimization [AGHC+22]. Support
[DBNG15, JO15, SUR11, ZCT18, BFN+14,
HWH14, MS03, RM03]. Supporting
[BG98, DR10, Ham09, MPR06]. Surprise
[KFY23]. Survey
[MBF+22, PKHM22, TWS+22]. Surveys
[WFF+19]. Sustainability [Ca20].
Symbolic
[AEK+16, BHB16, CPCT21, Esh06, KPC18,
LCZL14, RGS12, WCB+20, YPRK14,
BGL00, CDEG03, QRI03, SMAC08].
symmetry [SME+00]. Symmetry-based
[SME+00]. Symposium [NP08].
Synchronisation [AGRR19].
Synchronisation [YK+23, YXM+23].
synthesis [MMST14]. synthesized
[PWX14]. Synthesizing
[DPBU13, WJ10, XW22, DL13]. Synthetic
[SME19]. SysML [BFN+14]. System
[AG20, BLX+20, CYA22, KFY23, LBZ14,
PBU16, SSB20, ZA22, ZCT18, BGD92,
CDSM10, IVY00, MMST14, MG00,
OHDB19, RVMRM04, TBS92, WME93].
system-level [MMST14]. Systematic
[AMV23, LCS+22, SBM21, TG23,
VHF22, WCP+22, HBB+09, MS03].
Systematizing [HW12]. SystemC
[YJW+20]. Systems [AMS+18, AGRR19,
AMV23, AFHC22, AVY11, BN14, BT22,
CCL+22, CWM+20, CGZ23, D11, DP17,
DDD12, EKL+19, FDC+21, FCLL21, KAS20,
LSN+23, MPT+21, MFBB+22, NBW+18,
OSD+23, PSW+20, SY21, TG11, WI23,
XTW+23, YBBZ21, ZHZ+21, ZRGT23,
BO02, BCD02, Bro03, Cai95, CMP13, CY11,
CFM00, CRST12, CDFG96, DFOT07, DJ97,
DKM+94, DCCN04, FM94, FP02, FS03,
GM01, JGB12, Kip92, KK04, LYYC14,
MU00, MS94, MRK+97, OJ99, ODV+09,
PM10, RM03, SLD+13, ZZ20, THHB06,
WAF00, ZJW03].
DGD+19, NBMK22, TSPRC18, YHR92.

Transformer [GGH+23]. Transforming [MHK11, BHL11]. transition [YBL13].

Translation [CLL+22, TWB+19, Zav04].

Transplantation [STGR21], travel [WWZ+22]. traversal [VKV03]. Tree [WLS+20]. triage [AM11]. Triggering [ZSL+13]. TRIO [FM94]. trustability [HH95]. Tuning [LSSM22]. Turnover [ZLT+22]. Twitter [STS+13]. Two [FSZ+22, MFH02, JGB12]. two-phase [JGB12]. Type [ARL+15, KATS12, ODE21, SGD15, BGL00, TD01]. Type-Based [ARL+15, SGD15]. type-specific [BGL00].

Types [ASJDW21, SPAK10]. typestate [JGB12].

Understand [GL11, AAG95].

Understandable [CZ19]. Understanding [ASMP16, DLRA15, DKD21, KCAS23, LTX19, NWB+18, PSMV98]. Unified [HZZ+14, ZS07, MR02]. Unifying [CST16, RS09]. Uniqueness [WC23]. Unit [FA14, FSM+15, KSD08, MJS+21, SKP14].

Update-driven [NPB22]. upper [CM08].

Used [CWM+20]. User [CCH+21, BRRP05, LASL13, SMT92].

Using [AGRR19, BBS16, CL22, CBRO16, CWH+21, CFM00, Cor00, CTC+23, DLSC23, ETM22, EM15, FA14, GSYT21, HLL+16, HAB+20, KS22, KMYK19, LKRF22, MVM07, MGP+13, MKS+15, NBMK22, OKS+16, SYA21, Wey96, XM08, XMA+14, XTW+23, YZP+22, ALMS22, CK99, DFT07, DFG00, IWIY00, KK04, LS13, LH08, ML00, PGM12, SLD+13, TC20, UKM04, XR13, ZW95].

utility [CSC06]. UTP [XTW+23].

Variable-based [ZYL+23]. Variant [RKBL19]. Variant-rich [RKBL19].

variants [Jéz99]. Variation [EW11, SPAS21, PSMV98]. Verdict [Hie09].

Verification [ASJDW21, AGRR19, AMV23, BCGB21, BMM+17, BLS11, BDD+22, CSV13, CH21, DDI22, EWS14, FDC+21, GSXC21, HGW+16, LRK22, Llin22, NBB15, QT12, RBPG23, BGL00, CDSM10, CY11, DSV03, FGL+12, FGMP03, Fyd+08, FC00, MPF14, SGE00, WME93]. Verified [AFY+22]. Verify [AFY+22]. verify [SMAC08]. Verifying [CJM00, GZSW19, DCCN04, SLD13].

Version [ARG17]. versioning [ZS97].

Virtual
REFERENCES

[BFFG19, BKD+23, DHW98, Pon02].

Visual [ABC+22, CDP04, Dill93, KSD08, MG00].

Visualization [HKP+22, BC98].

Visualizing [BLX+20], vs [SRTR17].

Vulnerabilities [CWH+21, MS14, SBBL23].

Vulnerability [GWD+21, GCX+22, YXM+23, ZZX+21].

warehouses [BCC+01]. Wasted [KCAS23].

way [RKBL19], WCET [LSN+23]. Weak [FDB+12]. web
[LASL13, BM07, BCFM06, BPT10, CGPP15, NBB15, SURL11, YXM+23, ZL13].

Whole [SLB+21], Whole-program [SLB+21]. Wild [AFHC22, DL+T23, TWB+19]. Wireframe [CCX+20]. Wireframe-based [CCX+20].

wise [PLP+23, ZY+21]. within [DHW98].

Witnesses [BDD+22]. Women [TWS+22].

Word [ETM22, SRTR17, KGA+12].

WordPress [LSH23]. Words [LX+22].

Work [CX+21]. Workarounds [CGPP15].

workflow [CY11, LYY+14]. Working [FSZ+22]. world [Sin10]. Wrapper [THHB06]. Wrapper-based [THHB06].

Wybe [Ano02]. WYSIWYT [FRB+06].

X.509 [NWZ+23]. XCode [LLZ+22]. XP [CF10]. XPIs [SG+10].

Year [Pez23].

Z [Jac95b].

References

[AAG95] Gregory D. Abowd, Robert

Ali:2020:QIS

AlDallal:2012:PMM

Altoy:2023:PCR

Attie:2018:GLD

Ardito:2022:FMB

Ambriola:1997:APC

Sta:2003:R

Sta:2005:AR

Anand:2016:SMA
Kapil Anand, Khaled Elwazeer, Aparna Kotha, Matthew Smith-
References

Son:2016

Arcega:2022:BLM

Arcega:2022

Ahmed:2022:VVR

Ahmed:2020

Arcuri:2020:HSD

Arcuri:2020

Allen:1997:FBA

Allen:1997

Allen:1998

Arcuri:2020
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>URL</th>
</tr>
</thead>
</table>

Shams Azad, Peter C. Rigby, and Latifa Guerrouj. Generating API call rules from version history and stack overflow posts. *ACM Transactions on Software Engineering and
Ali:2015:TBC

Abidi:2021:MLD

Alimadadi:2016:UJE

Arora:2019:ALA

Adams:1994:CSR

REFERENCES

Arrieta:2023:SSS

Arnold:2011:QER

Bertolotti:2023:FTS

Basili:1992:RAC

REFERENCES

[BDL06] Basin:2006:MDS

REFERENCES

REFERENCES

Binkley:2011:FTT

Binkley:1995:PIL

Batory:2002:AET

Bjorner:2019:DAD

Birchler:2023:SMO

Bogart:2021:WHM

Broy:2007:FMS

Belgacem:2023:MLA

Bauer:2011:RVL

Bauer:2009:CER

Beschastnikh:2020:VDS

Baresi:2007:TES

Balaban:2013:FSU

Mira Balaban and Azzam Marae. Finite satisfiability of

REFERENCES

[CD98] Judith Crow and Ben Di Vito. Formalizing space shuttle software requirements: four case studies. ACM Transactions on Software Engineering and
REFERENCES

Chechik:2003:MVS

Cugola:1996:FFI

Chatterjee:2021:AIQ

Costagliola:2004:FMI

Chen:2010:VSI

Cohen:2003:AHQ
[CF03] Yossi Cohen and Yishai A. Feldman. Automatic high-quality

Conboy:2010:MDC

Czekster:2016:SPA

Ciancarini:2000:UCL

Carzaniga:2015:AWE

Cheng:2023:HHI

Chen:2021:LCF

[CH21] Jianhui Chen and Fei He. Leveraging control flow knowledge in SMT solving of program
REFERENCES

REFERENCES

1049-331X (print), 1557-7392 (electronic). URL http://www.acm.org/pubs/articles/journals/tosem/1994-3-3/p221-
cheon/p221-cheon.pdf; http://www.acm.org/pubs/citations/journals/tosem/1994-3-3/p221-
cheon/.

Calefato:2022:UPD

Chen:2023:WCH

Chen:2018:FFG

Emanuele Ciapessoni, Piergiorgio Mirandola, Alberto Coen-Porisini, Dino Mandrioli, and Angelo Morzenti. From formal models to formally based methods: an industrial experience. ACM Transactions on Software Engineering and Methodology, 8(1):79–113, Jan-

Ceccato:2015:DAG

Chang:2013:EHH

Corbett:2000:USA

Chekam:2021:KSM

Coen-Porisini:2003:FAD

Creveuil:1994:FSD

[CR94] Christian Creveuil and Gruia-Catalin Roman. Formal specification and design of a message router. ACM Transactions
REFERENCES

Cimatti:2012:VRH

Cai:2016:DUD

Chen:2022:BCT

Counsell:2006:IUT

Cai:2016:DUD

Chaki:2013:VAI

Chondamrongkul:2021:SAM

Csallner:2008:DCH

Castro:2021:FFS

Chen:2001:TMO

Costea:2023:HDR

Chen:1998:BWI

REFERENCES

Chen:2021:WMC

Cogo:2023:AAB

Chen:2022:WDS

Chen:2011:TDB

Catak:2022:UAP

Czepa:2019:HUP

Czepa:2023:ACR

acm.org/ft_gateway.cfm?id=3306608.

Duri:1994:AEE

DeCaso:2013:EBP

Dwyer:2004:FAV

Desai:2009:AMM

REFERENCES

[Doong:1994:AAT] Roong-Ko Doong and Phyl-
REFERENCES

Damiani:1999:CHA

Damiani:1999:HAA

Durante:2000:CAC

deFrancesco:2014:GTE

DeLucia:2007:RTL

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recovering

REFERENCES

Dehlinger:2011:GPP

Demsky:2013:VSF

Dietz:2015:UIO

Ding:2023:TLG

Dong:2023:BWL

Dramko:2023:DDN

Dyer:2015:BUL

Robert Dyer, Hoan Anh

[DeMillo:1993:ERA] [DO93]

REFERENCES

Devanbu:1996:GTA

Durante:2003:ATE

Dashofy:2005:CAD

Emmerich:2008:IRD

ElKholy:2014:CCR

Erwig:2005:SRS

Egyed:2002:AAC
Alexander Egyed. Automated abstraction of class diagrams.

Ehsan:2021:ESD

El-Hokayem:2020:MDS

Ebnenasir:2011:FSD

Ellis:2019:RFD

Engels:1992:BIS

Estublier:2005:ISE
Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geoffrey Clemm, Walter Tichy, and Darcy Wiborg-

Emam:2015:TCP

Emam:2018:IEP

Eshuis:2006:SMC

Ebrahimi:2022:CMA

Erwig:2011:CCR

Eldib:2014:FVS

Fraser:2014:LSE

Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated unit test generation using EvoSuite. *ACM
REFERENCES

[Ferrando:2021:THA] Angelo Ferrando, Louise A. Dennis, Rafael C. Cardoso, Michael Fisher, Davide Ancona, and Viviana Mascardi. Toward a holistic approach to

[Ferguson:1996:CAS]

[Ferrari:2003:MCV]

REFERENCES

REFERENCES

REFERENCES

Ford:2022:TTC

Furia:2022:ABA

Guo:2022:DAM

Gencel:2008:FSM

Godoy:2021:EBT

REFERENCES

Gao:2023:CSG

[GGH+23]

Gamatie:2007:PDE

Ghezzi:2005:E

Ghezzi:2007:E

Graves:2001:ESR

Garcia:2018:LOR

Joshua Garcia, Mahmoud Hammad, and Sam Malek.

[Gruschke:2008:ROF]

[Gandhi:2011:DMC]

[Guo:2021:HFW]

[Gargantini:2001:ADR]

REFERENCES

Ghezzi:2003:E

Griswold:1993:AAP

Gay:2016:EPM

Goel:2009:IPC

Gupta:1997:HSI

Gong:2021:TDG

REFERENCES

Gervasi:2005:RAI

Gao:2019:VQS

Hemmati:2013:ASM

Holmes:2020:URL

Harel:1992:SO

Hamlet:2009:TES

Hough:2022:PAD

Hall:2009:SRT

Hu:2022:CAH

Hoffman:2013:TOM

Henninger:1997:EAC

Hu:2022:ESD

Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Lei Ma, Mike Papadakis, and Yves Le
REFERENCES

Hierons:2014:CCD

Heitmeyer:1996:ACC

Harel:1996:SSS

REFERENCES

73

Huang:2013:SPA

Hao:2014:UTC

Islam:2014:GTC

Inverardi:2000:SCS

Joblin:2022:HDS

Jackson:1995:ADB

REFERENCES

Jackson:1995:SZS

Jackson:2002:ALO

Jezequel:1999:RVC

Jennings:2012:TPA

Jalote:2008:PRR

Jin:2015:ASR

Jaccheri:1998:ESP

[PL98] Maria Letizia Jaccheri, Gian Pietro Picco, and Patricia Lago. Eliciting software process models with the E3 language. *ACM Transactions on Soft-
REFERENCES

Jain:2022:BRD

Jiang:2019:IMA

Kafali:2020:DSS

Jeng:1994:SDT

Jiang:2019:RNF

JPS22

JZL+19a

JZL+19b

Kas20

Kulkarni:2012:GPF

Kastner:2012:TCA

Kapoor:2007:TCF

Khatoonabadi:2023:WCU

Karanikolas:2017:EEI

Krishnamurthi:2007:FIA

Kim:2023:ESA

Kiezun:2012:HSW

Kiper:1992:STR

Kim:2022:PMA

Kaiser:1993:PDI

Kramer:2004:CCM

Keidar:2002:IBT

Idit Keidar, Roger Khazan, Nancy Lynch, and Alex Shvartsman. An inheritance-based technique for building simula-

Kim:2019:PLR

Kuchta:2018:SSE

Kapur:2020:DES

Kapur:2022:OEE

Karam:2008:ULT

Kuhn:1999:FCE

REFERENCES

Liang:2002:EAA

Lhotak:2008:EBC

Lu:2021:ECR

Liu:2022:AOD

Li:2020:PNF

Lu:2014:RBS
ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Lauko:2022:VPS

Lano:2022:MTD

Louridas:2000:GMR

Lyu:2021:ESI

Liao:2022:ESI

Lin:2022:XTC

Zehao Lin, Guodun Li, Jingfeng Zhang, Yue Deng, Xiangji Zeng, Yin Zhang, and Yao Wan. XCode: Towards cross-language code representation with large-

Li:2014:RIP

Lyu:2022:TCI

Lee:2013:MDF

Lin:2023:CEW

Lee:2023:EPS

Louridas:2008:PLS

REFERENCES

[LYYC14] Xiao Liu, Yun Yang, Dong Yuan, and Jinjun Chen. Do we need to handle every temporal violation in scientific workflow systems? *ACM Transactions on Software Engineering and Methodology*, 23(1):5:1–

Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, Andrian Marcus, and Andrea De Lucia. Predicting query quality for applications of text

Mohagheghi:2008:EIS

Memon:2008:ARE

Martinez-Fernandez:2022:SEA

Mockus:2002:TCS

Mattsson:2012:AMA

Mills:2000:KBM

REFERENCES

Patrice Koligheu, Slim Bechikh, Kalyanmoy Deb, and Ali Ouni. Many-objective software re-
modularization using NSGA-III. ACM Transactions on Software Engineering and Method-

Myers:2000:PPU
Andrew C. Myers and Barbara Liskov. Protecting pri-
vacy using the decentralized label model. ACM Transactions on Software Engineering and Methodology, 9(4):410–442, Oc-
tober 2000. CODEN ATSMER. ISSN 1049-331X (print), 15577392 (electronic). URL http://
www.acm.org/pubs/articles/journals/tosem/1996-5-3/p262-
murphy/p262-murphy.pdf; http://
www.acm.org/pubs/citations/journals/tosem/1996-5-3/p262-
murphy/.

Monperrus:2013:DMM
Martin Monperrus and Mira Mezini. Detecting missing method calls as violations of the majority rule. ACM Trans-

Mari:2014:MBS
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. Model-based synthesis of con-
trol software from system-level formal specifications. ACM Transactions on Software Engineer-
ing and Methodology, 23(1):6:1–6:??, February 2014. CODEN ATSMER. ISSN 1049331X (print), 15577392 (electronic).

Murphy:1996:LLS
www.acm.org/pubs/articles/journals/tosem/1996-5-3/p262-
murphy/p262-murphy.pdf; http://
www.acm.org/pubs/citations/journals/tosem/1996-5-3/p262-
murphy/.

Maddila:2022:CCE
org/doi/10.1145/3478019.

Murphy:1998:ESS
Gail C. Murphy, David Notkin,
REFERENCES

Masri:2009:MSI

Murphy:2006:LCM

Martignoni:2013:MTC

Lorenzo Martignoni, Roberto Paleari, Alessandro Reina, Giampaolo Fesi Roglia, and Danilo Bruschi. A methodology for testing CPU emulators. *ACM Transactions on Software
REFERENCES

Ma:2021:TSD

Machado:2016:CDD

McCann:1999:MMI

Moser:1997:GED

Milanova:2005:POS

Medvidovic:2002:MSA

REFERENCES

Morzenti:1994:OOL

Miller:2003:FTS

Moller:2014:ADC

Murukannaiah:2015:PAL

Marijan:2022:IAR

Meneely:2012:VSM

REFERENCES

Minku:2013:SEE

Mamei:2009:PPM

Marculescu:2022:FFR

Nikanjam:2022:AFD

Nentwich:2003:FCC

Nguyen:2014:DDI

REFERENCES

30:??, August 2014. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Nie:2011:MFC

Naish:2011:MSB

Notkin:2007:Ea

Notkin:2007:Eb

Notkin:2008:Ea

Notkin:2008:Eb

Notkin:2009:E

Notkin:2010:E
7.1–7.??, January 2010. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Ore:2021:EST

Ouyang:2009:BPM

Osterweil:2005:E

Ostertag:1992:CSR

Offutt:1992:IST

Ouni:2016:MCC

Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsumo Iwna, and Kalyanmoy Deb. Multi-criteria code refactoring using search-based software engineering: an indus-
REFERENCES

Orso:2004:CDD

Pavo:2007:MBM

Ostro:1999:CRD

Pavese:2016:LME

Petrenko:1997:CRT

Minxue Pan, Yifei Lu, Yu Pei, Tian Zhang, and Xuandong Li. Preference-wise testing...

Pantiuchina:2022:WDD

Podgurski:1999:ESR

Podgurski:2013:BSC

Podgurski:1993:RRS

Parisi-Presicce:1994:ATC

Francesco Parisi-Presicce and Alfonso Pierantonio. An al-
REFERENCES

Picco:2001:RAC

Polyvyanyy:2020:MPR

Paulweber:2021:SIT

104

REFERENCES

Pantiuchina:2020:WDR

Qi:2013:PEB

Qi:2012:DAD

Queralt:2012:VVU

Rothermel:2001:MTS

Robol:2023:CVM

REFERENCES

REFERENCES

REFERENCES

Riesco:2018:PII

Robillard:2008:TAS

Rosenblum:2013:ELF

Rosenblum:2013:MDN

Rosenblum:2014:Ea

Rosenblum:2014:Eb

Rosenblum:2014:E

Rosenblum:2016:E

REFERENCES

2016. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Ryder:2005:ISE

Ricca:2014:AES

Russo:2021:ASM

Roshandel:2004:MSM

Razzaq:2019:SEE

Ren:2019:NNB

Stol:2014:KFA

[SAB+14] Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and Brian Fitzger-

REFERENCES

Sun:2023:FDM

Stoole:2014:SSS

Sadeghi:2017:ECA

Stol:2018:ASE

Sherman:2015:DTB

Sistla:2000:SSB

Scanniello:2014:IUA
Giuseppe Scanniello, Carmine Gravino, Marcela Genero, Jose’ A. Cruz-Lemus, and Gen-

Zohreh Sharafi, Yu Huang, Kevin Leach, and Westley Weimer. Toward an objective measure of developers’ cognitive activities. *ACM Transactions on Software Engineering and Methodology*, 30(3):
References

Sutton:1995:ALS

Sinha:2001:ICD

Sworna:2023:AFA

Singh:2010:SWE

Sahin:2014:CSD

Sun:2021:TRE
Xiaoyu Sun, Li Li, Tegawendé F. Bissyandé, Jacques Klein, Damien Octeau, and John Grundy. Taming reflection: an essential step toward whole-

References

Sobhy:2022:CPS

Scalabrino:2021:ASB

Siegel:2008:CSE

REFERENCES

[Sieg mund:2021:MVH] Janet Siegmund, Norman Peitek, Sven Apel, and Norbert Sieg mund. Mastering variation in human studies: The role of aggregation. ACM Trans-
REFERENCES

Santhiar:2014:MUT

Sommerville:2005:ESI

Snelting:2006:EPC

Scanniello:2017:FFC

Schrefl:2002:BCS

Sinha:2006:HMB

Soltana:2020:PCS

REFERENCES

[TAA+19]

[TD01] F. Tip and T. B. Dinesh. A slicing-based approach for locating type errors. ACM
REFERENCES

REFERENCES

[TW+19] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and

REFERENCES

VanDenBrand:2003:TRT

VonRhein:2018:VAS

Venkatasubramanian:2004:FMR

Wallach:2000:SSM

Waga:2023:PTP

Walkinshaw:2013:ACS

REFERENCES

125

Wu:2023:AIU

Wang:2020:KDI

Wu:2021:WAA

Watson:2022:SLR

Weyuker:1996:UF

Wagner:2019:SQR

[WFF+19] Stefan Wagner, Daniel Méndez Fernández, Michael Felderer,

Wang:2020:UED

Wang:2023:SCJ

Weyns:2023:AFF

Whittle:2010:SHS

Wang:2020:MTN

Whigham:2015:BMS

Whittaker:1993:MAS

Wang:1993:DRT

Wang:2019:OTS
Williams:2022:GFI

Wu:2022:TTI

Wang:2022:CFA

Xu:2010:PCC
REFERENCES

ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Xie:2013:TAR

Xu:2022:MSC

Xu:2023:LLI

Xue:2020:MOI

Xie:2022:NNP

Xue:2007:DCA

REFERENCES

Xie:2008:UPS

Xu:2014:SRB

Xu:2013:PML

Xu:2023:SFC

Xu:2022:ICG

Xiong:2022:LFS
REFERENCES

May 2015. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Young:1995:CAT

Yang:2016:HPP

Yoo:2017:HCG

Yang:2022:PMS

Yin:2023:SEV

Yang:2022:DDR

[YZP+22] Wenhua Yang, Chong Zhang, Minxue Pan, Chang Xu, Yu Zhou, and Zhiqiu Huang. Do developers really know how to use Git commands? A

Zhang:2022:AHS

Zav:2004:ATT

Zeil:1992:DLE

Zheng:2018:MAI

Zhu:2013:ADP

Zhou:2022:PTP

REFERENCES

REFERENCES

136

Zambonelli:2003:DMS

Zhang:2023:FCPa

Zhang:2023:FCPb

Zheng:2013:PRP

Zhang:2022:TCO

Zhao:2021:ISD
REFERENCES

Zhou:2016:IRO

Zuo:2023:TME

Zdun:2023:MSM

Zohdinasab:2023:EEF

Zeller:1997:UVT

Andreas Zeller and Gregor Snelting. Unified versioning through feature logic. *ACM Transactions on Software Engineering and Methodology*, 6
CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).
URL http://www.acm.org/pubs/articles/journals/tosem/1997-6-4/p398-
zeller/p398-zeller.pdf;
http://www.acm.org/pubs/citations/journals/tosem/1997-6-4/p398-
zeller/.

Zhang:2020:MTC
Xihui Zhang, Thomas F. Stafford, Tao Hu, and Hua Dai.
Measuring task conflict and person conflict in software testing.
CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Zhang:2013:CDC
Wei Zhang, Chong Sun, Junghee Lim, Shan Lu, and Thomas Reps.
ConMem: Detecting crash-triggering concurrency bugs through an effect-oriented approach.
CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Zhao:2022:RAE
Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru, William G. J. Halfond, and Tingting Yu.
ReCDroid+: Automated end-to-end crash reproduction from bug reports for Android apps.
CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Zhou:2022:SAI
Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing Liu, and Yang Liu.
SPI: Automated identification of security patches via commits.
CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Zaremski:1995:SMT
Amy Moormann Zaremski and Jeannette M. Wing.
Signature matching: a tool for using software libraries.
CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).
URL http://www.acm.org/pubs/articles/journals/tosem/1995-4-2/p146-
zaremski/p146-zaremski.pdf;
http://www.acm.org/pubs/citations/journals/tosem/1995-4-2/p146-
zaremski/.

Zaremski:1997:SMS
Amy Moormann Zaremski and

Zhang:2021:CSO

Zou:2021:IAM

Zhou:2014:DSP

REFERENCES

10:1–10:??, February 2014. CODEN ATSMER. ISSN 1049-331X (print), 1557-7392 (electronic).

Zhou:2018:HFW

Zeng:2023:DEV

Zhou:2022:ARD

Zou:2021:IDL

Zhang:2021:UWR