A Complete Bibliography of *ACM Transactions on Quantum Computing (TQC)*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/
08 August 2024
Version 1.12

Title word cross-reference

<table>
<thead>
<tr>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>[VMPV24]</td>
</tr>
<tr>
<td>ACM</td>
<td>[HY21, HY20], across [UMSN+21].</td>
</tr>
<tr>
<td>Addressable</td>
<td>[ACC+23].</td>
</tr>
<tr>
<td>Adiabatic</td>
<td>[AL22, HTS+22].</td>
</tr>
<tr>
<td>Affine</td>
<td>[Kon21], agnostic [CML23].</td>
</tr>
<tr>
<td>Algorithm</td>
<td>[AL22, CCH+23, JAA+22, MT21, MS23, PB22, VHW22].</td>
</tr>
<tr>
<td>Algorithms</td>
<td>[AHKZ20, BTT22, BT21, LQS+23, Ros24, SM22].</td>
</tr>
<tr>
<td>Analysis</td>
<td>[GBOE22].</td>
</tr>
<tr>
<td>Annealer</td>
<td>[IHA21].</td>
</tr>
<tr>
<td>Annealing</td>
<td>[MF24, RSB+23, RRN+23].</td>
</tr>
<tr>
<td>Application</td>
<td>[DPHW23].</td>
</tr>
<tr>
<td>Approach</td>
<td>[BSCSK22, SDL+23, SSC21, ZLTY23].</td>
</tr>
<tr>
<td>Approximate</td>
<td>[AL22, MS22, SLL+23].</td>
</tr>
<tr>
<td>Approximating</td>
<td>[HZK+22].</td>
</tr>
<tr>
<td>Architecture</td>
<td>[ZC+24].</td>
</tr>
<tr>
<td>Architectures</td>
<td>[PSAF24, UMSN+21].</td>
</tr>
<tr>
<td>ArQTiC</td>
<td>[BPD22].</td>
</tr>
<tr>
<td>Assembly</td>
<td>[CJAA+22].</td>
</tr>
<tr>
<td>Assignment</td>
<td>[IHKH22, NBGJ23].</td>
</tr>
<tr>
<td>Assignment-based</td>
<td>[IHKH22].</td>
</tr>
<tr>
<td>Authenticity</td>
<td>[BKP22].</td>
</tr>
<tr>
<td>Automatic</td>
<td>[XHB+23].</td>
</tr>
<tr>
<td>Automating</td>
<td>[DPHW23].</td>
</tr>
<tr>
<td>Backend</td>
<td>[CML23].</td>
</tr>
<tr>
<td>Backend-agnostic</td>
<td>[CML23].</td>
</tr>
<tr>
<td>Based</td>
<td>[AL22, BTT22, LQS+23, SDL+23, WHB22, GKS24, IHHK22].</td>
</tr>
<tr>
<td>Bayesian</td>
<td>[ZLTY23].</td>
</tr>
<tr>
<td>Beginners</td>
<td>[JAA+22].</td>
</tr>
</tbody>
</table>
Bilinear \cite{LSA23}. Best \cite{MS22}.
Bilinear \cite{LQS+23}. Bodies \cite{CCH+23}.
Boolean \cite{Had21}. Bridging \cite{TFH+23}.
Broader \cite{CJA+22}.

C \cite{CML23, MNS+21}. Case \cite{MF24}.
Celebrating \cite{HY21}. Centers \cite{LSQ+23}.
Challenges \cite{LSZ24}. Channels \cite{FW20}.
Characterization \cite{RMJ+24, XHB+23}.
Characterizing \cite{ZLY23}. Chemistry \cite{CML23}.
Circuit \cite{CWS+21, CSP24, HZK+22, IMM+22, PB22, PSFA23, PBW23}.
Circuits \cite{BDG+20, DPHW23, GBV+21, HS22, NLD+23, PB23, SRM+23}.
Classical \cite{CSP24, FW20, FYS+21, MNS+21, TFH+23, ZYC+24, CML23, NM22, Ros24}.
Classification \cite{UBM24}. Client \cite{DKDK21}.
Clifford \cite{VMP24}. Codes \cite{Hig22}.
Coding \cite{YN23}. combination \cite{GKS24}.
Combinatorial \cite{UMSN+21}.
Communications \cite{BKP22}. Compilation \cite{NM22, PSFA24}.
Compiler \cite{CCK+23}.
Compilers \cite{PHSM22}. Compiling \cite{MS22}.
Completeness \cite{CJPV21}. Complexity \cite{Aar21}.
Computer \cite{Sha22}. Computers \cite{AMD22, AmdJ23, ABLJ23, AL22, CCK+23, FYS+21, Had21, HTS+22, HY21, DIB+23, MNS+21, NM22, Sha22, SSC21, WBB22, Wu21, HY20}.
Connectivity \cite{LAH21}.
Connectivity-limited \cite{LAH21}.
Conscious \cite{BGL+23}. Constrained \cite{RRN+23}.
Constraints \cite{DPH23}.
Convex \cite{CCH+23}. Cost \cite{PB22}. Count \cite{VMP24}.
Cutting \cite{CSP24}.

Data \cite{BKP22}. Decision \cite{BTT22, HZK+22, WHB22}.
Decoder \cite{BMM+24}.
Decoding \cite{Hig22, PB22}.
Decoherence \cite{SRM+23}.
Deeper \cite{CJA+22}.
Definitions \cite{ALKP21}.
Depth \cite{HS22}.
Design \cite{DPH23}.
Detector \cite{ZGH24}.
Devices \cite{GBO22, LAH21}.
Diagonalizable \cite{Sha22}.
Diagrams \cite{HZK+22, WHB22}.
Differentiable \cite{DIB+23}.
Digital \cite{ZZC+24}.
Distributed \cite{CCK+23}.

Editorial \cite{HY20, HY21}.
Effect \cite{RRN+23}.
Efficiency \cite{PB23}.
Efficient \cite{BMM+24, FW20, JH22}.
Eigensolver \cite{HTS+22}.
Eigenspectrum \cite{RRN+23}.
Eigenvalues \cite{Sha22}.
Electronic \cite{ALKP21}.
Elimination \cite{GBV+21}.
Energy \cite{PB22}.
Enhancing \cite{VHW22}.
Equation \cite{SCS21}.
Error \cite{BSC22, DP20, GBO22}.
Error-Modeling \cite{DP20}.
Errors \cite{ZLY23}.
Estimating \cite{CCH+23}.
Estimation \cite{BT21, FW20}.
Evaluation \cite{LSA23}.
Exact \cite{IMM+22}.
Exascale \cite{NLD+23}.
Experimental \cite{DP20}.
Exploiting \cite{SRM+23}.
Expressibility \cite{CWS+21}.
Expression \cite{ABJ23}.
Extending \cite{MNS+21, NM22}.
Extrapolation \cite{VHW22}.
Factors \cite{RRN+23}.
Fair \cite{GBO22}.
Faster \cite{SM22}.
Features \cite{FYS+21}.
Feedforward \cite{AHK20}.
Finding \cite{Eke24}.
Formal \cite{LSZ24, Wu21}.
Framework \cite{CML23, FYS+21}.
Full \cite{PB22}.
Full-stack \cite{BKP22}.
Functions \cite{Had21}.

Gate \cite{BGL+23, VMP24, XHB+23, ZLY23}.
Gates \cite{ACC+23}.
Gaussian \cite{GBV+21}.
Gene \cite{ABJ23}.
Generative \cite{RMJ+24}.
Geometric \cite{LQS+23}.
gprof \cite{SSTS23}.
gprof-Inspired \cite{SSTS23}.
Graph \cite{LAH21, MS23}.
Graphical \cite{CJPV21}.
Graphs \cite{MT21}.
Greedy \cite{GBV+21}.
GWh \cite{PB22}.

Hadamard \cite{VMP24}.
Hamiltonians \cite{Car24, Had21, RRN+23}.
Hardware \cite{BGL+23}.
Hardware-Conscious \cite{BGL+23}.
Hardy \cite{DP20}.
Heavy \cite{BMM+24}.
Heterogeneous \cite{FYS+21, MNS+21}.
Hexagonal \cite{BMM+24}.
Highway [MF24]. Hoare [FY21]. Hybrid [RSB+23, Ros24].

i-QER [BSCSK22]. Identification [DKDK21]. Impact [Kon21].
Implementations [JAA+22]. Improved [BDG+20]. Improving [HTS+22, PBP23].
Issue [AMD22, AMdJ23, HY20, Wu21].

Just [NM22]. Just-in-time [NM22].

Knowledge [MT21].

Language [CJAA+22]. Languages [CJPV21, Wu21]. Larger [RSB+23].
Larger-than-QPU [RSB+23]. Lattice [RSB+23]. Lattice-structured [RSB+23].

Network [HS22, NLD+23]. Networking [BKP22]. Networks [AHKZ20, ZGH24].
Neural [AHKZ20]. NISQ [DPHW23, FYS+21, GBOE22, LSKA23].
Non [BT21]. Non-linearity [BT21].
Numerical [SDL+23].

Package [BPD22, Hig22]. Paradox [DP20].
Probability [Eke24]. Problem [MS23].
Problems [Aar21, MS22, RSB+23].
Processes [Car24]. Profiler [SSTS23].
Program [IHKH22]. Programming [ABLJ23, FYS+21, NBGJ23, Wu21].
Programs [LSZ24]. Protection [BKP22].
Protocols [DKDK21]. PUF [DKDK21].
PyMatching [Hig22]. Python [Hig22, NM22].

Volumes [CCH+23]. Voting [ALKP21].

warm [TFH+23]. warm-starts [TFH+23].
Wave [SSC21]. Weight [Hig22]. Weighted [SLL+23].

References

Aaronson:2021:OPR

Alvarez:2023:GEP

Allcock:2020:QAF

An:2022:QLS

Arapinis:2021:DSQ
REFERENCES

Alexeev:2022:ISI

Bowman:2023:HCO

Barbeau:2022:AIR

Bhoumik:2024:ESD

REFERENCES

[CCK+23] Daniele Cuomo, Marcello Cafelli, Kevin Krsulich, Filippo Tramonto, Gabriele Agliardi, Enrico Prati, and Angela Sara Cacciapuoti. Optimized compiler

[DIB+23] Olivia Di Matteo, Josh Izaac, Thomas R. Bromley, Anthony Hayes, Christina Lee, Maria Schuld, Antal Száva, Chase
REFERENCES

Haowei Deng, Yuxiang Peng, Michael Hicks, and Xiaodi Wu. Automating NISQ application design with Meta Quantum Circuits with Constraints (MQCC).

REFERENCES

REFERENCES

[102x681] Haner:2022:LDQ

[Humble:2021:ECQ]

[Harwood:2022:IVQ]

[Humble:2020:IIE]

[Izquierdo:2021:TQA]

[IHK22]

David Ittah, Thomas Häner, Vadym Kliuchnikov, and Torsten
REFERENCES

REFERENCES

Lin:2021:USG

Li:2023:QBI

Li:2023:QLL

McGeoch:2024:MQU

Mccaskey:2021:ECH
REFERENCES

Perriello:2023:IEQ

Peham:2023:OSQ

Pozzi:2022:URL

Paraskevopoulos:2024:SCS

Paler:2023:MLO

Riofrio:2024:CQG
REFERENCES

Rosmanis:2024:HQC

Roch:2023:EPF

Raymond:2023:HQA

Smith:2023:LSN

Shao:2022:CED

Shaydulin:2023:PTQ

Shao:2022:FQI

Smith:2023:TES

Suau:2023:QGI

Tate:2023:BCQ

Ushijima-Mwesigwa:2021:MCO

REFERENCES

Fang Zhang, Xing Zhu, Rui Chao, Cupjin Huang, Linghang Kong, Guoyang Chen, Dawei Ding, Haishan Feng, Yihuai Gao, Xiaotong Ni, Liwei Qiu, Zhe Wei, Yueming Yang, Yang Zhao, Yaoyun Shi, Weifeng Zhang, Peng Zhou, and Jianxin Chen. A classical architecture for digital quantum computers.