A Complete Bibliography of *ACM Transactions on Reconfigurable Technology and Systems*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

19 October 2019
Version 1.32

Title word cross-reference

+ [GL08]. 2 [BPCC09, LP15]. 3 [JB15, SPS12, TZWZ15]. k [TK16]. QR [ZCL16].

-D [SPS12]. -Means [TK16].

11th [AC14]. 15th [DH08]. 19th [GC13].

2 [YB18]. **2.0** [AZM+19]. 2.1 [JRHK15]. **200** [WBR16]. **2007** [AN09]. **2009** [Che11, WBAM10]. **2011** [Hüb12]. **2013** [CDM15]. **2014** [BAG15, DB15, GSCB15, RVHP16, SB15]. **2015** [CS17]. **256** [MAK+12].

5 [AKA09]. **5.0** [LKJ+11].

7.0 [LGW+14]. 7th [VG14].
A-Port [PVA+09]. Abstraction [IBH+15]. Abstractions [IPC14].
Academic [MWL+15]. Accelerated [MHS+19, MCC10, BE19].
Accelerating [JLB+08, TZWZ15, VL11, ZG16]. Accelerator
[CNZ+18, LDJ+17, YEC+09, YGH+18, ZZJB13, YXC+11]. Accelerators
[GZY+18, JRHK15, UNBR14]. Access [LYZ+18]. Accesses [PFC15].
Accumulator [WS16]. Accuracy [DHL+18, KY18, LP15, UNBR14].
Accurate [CSK17, DLBM18, JM14]. Adaption [BHI15]. Adaptive
[CNE+15, INF+14, JCG+12, NNY12, OVI+12, PMC+14, Tak17, ZCL15,
Tak12, DGP+15]. Adder [PPB18]. Adders [HU10]. Adding [PSM+14].
Addition [CAPA+09, OBD13]. Addition-Related [OBD13]. Adjustable
[ZWM19]. Adjustment [NW11]. adventure [RD11]. Aerial [CZ09].
Aerospace [WGGR16]. AES [DPB10, HF14]. against [LOM10]. Agent
[GMBC17]. Agreement [ADSH18]. Algorithm
[CBR+14, EWL15, RL+15, Ste10, TL11, TK16]. Algorithm/Architecture
[EWL15]. Algorithms [CW09, LRA13, NSS+11]. Alignment
[JLB+08, MCC10, OBD13]. Altera [SMOP15, TK16]. Amenability
[HNG09]. Analysis [BPFD11, CCF+18, CBFS15, CKG+10, MMT09,
PBR+10, RGGW10, RGCL16, RSMK16, SB08, GP13, Tak12]. Analytical
[KSCC10, LAL13, DW13, HGLS11]. Analyzing [GSJC13]. Application
[ABCC09, BBND10, CM14, DDB+10, GdLlG+14, JSC14, KGS15, LJS11,
MWK+12, PMKM11, RUC11, VTN09, WYZ16, WMG+10, YFW+17, SSF+13].
Application-Optimized [YFW+17]. Application-Specific
[PMKM11, LJS11]. Applications
[AZM+19, CBFS15, CKG+10, GKM+12, KBM09, KCC+14, LZF+10,
LBRS16, NJLW14, PSM+14, PVB13, WHQ+08, KSG11]. Applying
[NSS+11]. Approach [CM14, KM10, LYZ+18, MWK+12, NBS13, SBC15].
Approaches [MVG15, SAD10]. ARC
[BAG15, DB15, GSCB15, SB15, WBAM10]. ARC’08 [CWBD09].
Architecture [ADSH18, ATJZ16, BCE+10, CGX+12, DS15, EWL15, FT17,
GMBC17, IZO+10, IBH+15, KLD16, KSCC10, KAL14, LGW+14, OWMZ11,
PFC15, PB18, SBC10, SB15, Tak17, VL11, WS16, XJD+16, ZCL16, DW13,
LKJ+11, Oli12]. Architectures [BBND10, BDX+19, CBC+12, DSB09,
GC13, JTL10, KY18, LAL13, LFN+18, YB18, HLL08]. Area
[DD15, KY18, Tho15]. Area-Efficient [DD15, Tho15]. ARISE [VTN09].
Arithmetic [SCC10]. Array [SLH+10, ZCL16]. Arrays
[DPHT19, SCC10, ZH12]. Artificial [KAL14]. ASIC [BYB18]. ASIP
[EWL15]. Assembly [BGSL17]. Assignment [SB08]. Associative [DD15].
Assurance [KMK+10]. Asymmetric [SDG12]. Atmospheric [GFL+15].
Attack [SGM09]. Attacks [GER19, KGT19, ZQ19]. Authenticated
[ADSH18]. Automata [BDX+19, MHS09]. Automated
[DD18, RMSK16, SCC10]. Automatic [AZM+19, YB18, YBS16].
Automatically [LP15]. Automating [NCJ+15, YFW+17]. Automation

Awareness [AHL⁺14, Bec14, DGP⁺15].

Bandwidth [BBND10, SLH⁺10, USY17, BC11]. Bandwidth-Reduction [SLH⁺10]. Based [AL16, BAG15, CBFM14, CZ09, DGP⁺15, DL09, EWL15, GDFH11, GHO17, HLN⁺10, JCG⁺12, JTLc09, Kap16, KBT09, KD10, KGS⁺12, LBRS16, LZh, LT09, LL12, MVGB15, NNY12, OVI⁺12, PPR⁺10, RC10, SLH⁺10, SB15, TYB18, USY17, WGG16, YOY17, ZCL16, ZBC⁺09, ZNA⁺18, ZBB⁺16, AHA⁺19, EA11, GZY⁺18, HL108, LZF⁺10, LF1⁺18, MBJ11, Ste10, WTS19, YX1⁺11, ZBR12, ZQ19, KPS14, UNBR14, ZZJB13].

Bit-Serial [UCR⁺19]. Bits [DVK15]. Bitstream [BPFD11, SMOP15].

BLASTP [JLB⁺08, MH15]. Block [BDGH15, CBFM14, TYB18]. Block-Based [CBFM14]. Blocks [FK08, PMKM11]. Boltzmann [KAL14].

bottleneck [KSG11]. Bound [MHS09, RLM⁺17]. BRAM [AZM⁺19].

BRAMs [DGP10]. Branch [RLM⁺17]. Broadcast [PSM⁺14]. Buses [HBA⁺15].

Circuitry [GGR⁺18]. Circuits [BMR16, CBC⁺12, DL09, SC08, SV09, Ste10, WBR16, WBR18].

Coding [BAG15]. CoEx [EWL15]. COFFE [YB18]. Coherency [SDG12].

Combinatorial [WSC09]. Combined [PP10]. Commercial
Communication [HNS+10, KLD16, TL11, VG14, HZW+13]. Communication-Aware [HNS+10]. Communication-centric [VG14]. Communications [BNW+10].

Comparison [BNW+10, LA17]. Compatible [LT09]. Compensation [DNL19]. Compilation [BPFD11, MWK+12, UAS16]. Compile [PPR+10]. Compile-Time [PPR+10]. Compiler [HLC+15, ZG16]. Complex [YB18]. Complexity [FRS+15]. Component [SCC10]. Components [ATJZ16, DC16]. Composing [LLO+14]. Comprehensive [JCG+12, GP13]. Compression [GRG08, PP10, PBBP18, USY17, IYY+11]. Compression/Decompression [PP10]. Compressor [CAPA+09, PABI09, PANBI11]. Computational [RGCL16]. Compute [MHS09]. Computer [LYS+08, NSS+11]. Computers [SPM+10, THK12].

Computing [AJYH18, Bec14, CH10, CKG+10, EAGEG09, HNS+10, JCG+12, MH15, RGGW10, RBB+18, USY17, UAS16, UCR+19, WGGR16, dDELVP13, KSG11]. Conference [AC14, LAA+17]. Configurable [PABI09, WS16]. Configuration [DVK15, HBA+15, KD10]. Configurations [MHK+08]. Congestion [AHAM+19, CTH16]. Congestion-estimation [AHAM+19]. Conjugate [RC10]. Connected [ATJZ16]. Consideration [TL11]. Considering [SC08]. Constant [HCOB13], constrained [MHS+19]. Constraint [MWK+12]. Constraints [BAMR10, INF+14, LP15]. Construction [YFV17]. Context [BMR16, NW11]. Context-Switch [BMR16]. Continuous [GGR+18]. Control [NW11, ZG16]. Control-Intensive [ZG16]. Controller [GdLIG+14]. Converter [DNL19]. Convolution [WTS19]. Convolutional [BYB18, LDJ+17, LFN+18, MHS+19, PBBP18]. Coordination [ASGY12, PMC+14]. Coprocessor [GS10]. CORDIC [ZCL15, ZCL16]. CORDIC-Based [ZCL16]. Core [IZO+10, WPSI18, WMG+10, SGNB08].

Correlation [GSJC13]. COSMIC [GGR+18]. Cost [DPHT19, TL11, PDH11, ZH12]. Countermeasure [MMMT09]. Counters [LT09]. Counting [FK08, PBPLA17]. Covert [GER19]. Covert- [GER19]. CPU [CCF+18, MCD+18]. CPUs [TOS17]. Creative [MCL+13]. Cross [BDX+19, YGH+18]. Cross-layer [YGH+18]. Cross-Platform [BDX+19].

D [BPCC09, JB15, LP15, SPS12, TZWZ15]. Data [GKM+12, IABV15, LYZ+18, PVB13, RMSK16, USY17, WAT15, CA11]. Data-Flow [GKM+12]. Data-Level [PVB13, CA11]. Databases [VL11].

Datacenters [BE19]. Dataflow [ZG16]. Datapath [SBC15, WHQ+08]. Datapath-Oriented [WHQ+08]. DBSCAN [SB15]. DCT [CA11]. Debug [WHQ+08]. Debugging [IPC14]. Decision [OKA19]. decoders [CA11].
Decomposition [ZCL16]. Decompression [KBT09, PP10].
Deconvolutional [LFN+18]. Deep [BPF+18, CPW18, LDJ+17, RHLK18].
[ZQ19]. Deflection [KG17]. Deflection-Routed [KG17].
Defragmentation [FKS+12]. Delay [LOM10, MHK+08, SC08, WYZ16].
Delays [GNM+15, WSC09]. Demands [RUC11]. Dense [RC10, RMSK16].
Dependability [KGS+12, WGR17]. Dependable [Ste10]. Deployment
[BDX+19]. Depth [CCF+18]. Design [BKT14, BMR16, DL09, EWL15,
GH017, IPC14, JSC14, JB15, KMK+10, MKP09, MHS+19, NBS13, SJT09,
SBC15, Tak12, UNBR14, HLL08, HH13, MAK+12]. design-space [HLL08].
Designing [AHL+14, FK08]. Designs [BPCC09, DD18, DB15, RLM+17, WYZ16].
Desktop [LYS+08]. Detection [ATJZ16, PD15, YGH+18, KSG11]. Development
[VTN09, DW13]. Device [CXG+12]. Devices
[FKS+12, RGCL16, WMG+10]. Dictionary [GRG08]. Difference
[NJLW14, SLH+10]. Differential [MMMT09]. Digital
[BNW+10, DHL19, LP15, MCN12, SSC16]. Digital-Signal [SSC16]. direct
[ZBR12]. Discovery [KG17]. Discrete
[GdL+14, GPP08]. Distributed [OKA19, HZW+13]. DL [GZY+18]. Do
[BYB18]. Domain [DDH+11, NSS+11]. Domain-Specific [DDH+11]. don't
[LG+14]. Double-Precision [LG+14]. DPA [LOM10]. Driven
[DK15, LRA13, MWL+15, Ste10, YGH+18, EA11]. driver [LKJ+11]. DSP
[CBFM14]. DSPs [DP10]. Dual [HF14]. Dual-Rail [HF14]. Dynamic
[AZM+19, BHI15, CTH16, CW09, DVH+15, FKS+12, KPL14, LP15, VMV15,
NSS+11]. Dynamically [BBND10, DGP+15, HHSC10, MSSM10, NNY12,
TL11, ZBB+16, HLL08, HH13, IYY+11]. Dynamics [CH10].

ECC [DL09, GS10]. Edition [DH08]. editor [AN09, Che19].
Editor-in-Chief [Che19]. Editorial
[CDM15, CHE19, DH08, GSCB15, WBAM10]. Editors [SJT09]. Edwards
[ADSH18]. Effect [HLC+15]. Efficiency [BYB18, DPHT19, PBBP18].
Efficient
[BM16, BSGL17, DD15, DLBM18, FT17, FK08, HU10, KSCC10, KD19,
LYZ+18, MCD+18, PBPLA17, RLY+15, RLM+17, SLH+10, Tho15, CA11].
Electrical [KGT19]. Electrical-level [KGT19]. Electromagnetic [SGM09].
Electron [TZW21]. Element [MVGB15]. Elementary [LG+14].
Elimination [NCJ+15]. Elliptic [GPP08, KBM09, SG15]. Embedded
[BHI15, Kap16, KBT09, WPSI18, WHQ+08]. Emulation [CSK17].
EmulatoR [KGS+12]. Enable [AZM+19, RDB+18]. Enabling
[MWL+15, OVT+12]. encoded [KV+11]. Encryption [SMOP15]. End
[BPF+18]. End-to-End [BPF+18]. Energy
[DK15, DLBM18, DPHT19, KLD16, LP15, CA11]. Energy-Efficient
[DLBM18, CA11]. Energy-Reliability [DK15]. Engines
YOY17, YGH+18, ZBR12, ZZJB13, ZQ19, ZBC+09, ZNA+18, ZBB+16.

FPGA-accelerated [BE19]. **FPGA-Array** [SLH+10]. **FPGA-Aware** [LCS14]. **FPGA-Based** [UNBR14, ZZJB13, CZ09, GH017, JCG+12, Kap16, KBT09, LT09, NNY12, RC10, SB15, USY17, WGG16, YOY17, ZNA+18, ZBB+16, GZY+18, WTS19, YXC+11, ZBR12, ZQ19]. **FPGAs**

[AB14, AKA09, AHAM+19, AJYH18, BKT14, BAMR10, BNW+10, BPC09, BHI14, CAPA+09, CBFM14, CPW18, CGX+12, CPN+09, CFBS15, DH08, DDD+11, DD15, DGP+15, DGP10, DB15, HU10, HBA+15, KG17, KGT19, LLO+14, LOM10, LGW+14, MKH+08, MM10, MGG15, MSL10, MHS+19, OKA19, PNBI11, PVA+09, PVB13, RVHP16, RLM+17, RDB+18, RHK18, SGM09, SSS+13, SPS12, SB08, Ste10, SDM+18, SSC16, SMOP15, TYB18, VM15, WSC09, WAT15].

FPL

[BG08, YFW+10, CDF14, LAA+17]. **FPT'12** [AC14]. **Framework** [ASGY12, BPF+18, CKG+10, JCG+12, JRHK15, LZ19, RGGW10, UAS16, VTN09, WPSI18, WGG16, HLL08, SSM+13, SPS12]. **Frequent** [PBPLA17, ZH13]. **FroC** [AZM+19]. **FSM** [GDHG11]. **FT** [WTS19].

Full [CPN+09], **Full-System** [CPN+09], **Fully** [KAL14]. **Function** [LGd+14]. **Functional** [RUC11]. **Functions** [NCJ+15, SAD10].

Game [MCL+13]. **Gap** [MWL+15, TOS17]. **Gaps** [BYB18]. **Gate** [DPHT19, SCC10]. **Gaussian** [SBC10, TL08, Th15]. **General** [AJYH18, GFB12]. **General-Purpose** [AJYH18]. **Generalized** [ZWM19].

Generated [HLG+15, LP15]. **Generating** [BMR16, GNM+15]. **Generation** [BS15, LGW+14, MKW+12, SCC10, TL08, GL08]. **Generator** [GHO17, SBC10, SSC16, Tho15]. **Generators** [RVHP16]. **Global** [GFL+15, JSC14]. **GPP** [TB10]. **GPU** [TB10]. **GPUs**

[AJYH18, BNW+10, CFBS15]. **Gradient** [RC10]. **Grain** [IZO+10]. **Grained** [RBR16, VL11, XD+16, ZNA+18, KD19]. **Graph** [CM14, FRS+15, MG15, ZG16]. **Graph-Based** [MVGB15]. **graphics** [BG08]. **GRNG** [Th15]. **GROK** [GNN+15], **GROK-LAB** [GNN+15].

Guest [AN09, CDM15, DH08, GSCB15, WBAM10, SJT09].

Hadamard [Th15]. **Hard** [AB14]. **Hardware** [ADSH18, AV13, BPFD11, BS15, CBC+12, CBR+14, C09, DD18, DS15, GPP08, HSC10, HLG+15, HLN+10, IBH+15, KBT09, MOG+13, MCC10, PD15, PSM+14, SBC10, TL08, TOS17, WL10, YBS16, ZG16, BG08, H13, SC11].

Hardware-Accelerated [MCC10]. **Hardware-Based** [HLN+10]. **Hardware/Software** [HHS10, H13, SC11]. **Hash** [IABV15]. **Healing** [BH15]. **healthier** [ZH12]. **Heap** [BAG15]. **Heap-Based** [BAG15]. **heterogeneity** [LKJ+11].

Heterogeneous [ASGY12, ACH+14, BPC09, CNE+15, CCF+18, GFL+15, KSC10, KP14, OVI+12, TZWZ15, UAS16, YB18, PMK11, SPS12].

Hiding [MMT09, TK12]. **Hierarchies** [YFW+17]. **High** [BGSL17, BS15, CH10, CKG+10, DHL+18, EAGEG09, HNS+10, HLG+15, IPC14, MH15, NBS13, ORS+19, PBBP18, RC10, SPM+10, SGM09, SSC16].
TB10, USY17, WBC16, WBR18, ZBC+09, MAK+12, PANBI11].

High-Accuracy [DHL+18]. **High-Efficiency** [PBBP18]. **High-Level** [CKG+10, HLC+15, IPC14, NBS13, OROS+19, WBC16]. **High-Order** [BGSL17]. **High-Performance** [CH10, EAGEG09, HNS+10, MH15, SPM+10, SSC16, TB10, USY17, WBR18, PANBI11]. **High-Speed** [BS15, ZBC+09]. **high-throughput** [MAK+12]. **Highly** [DLBM18]. **HMAC** [MAK+12]. **Homogeneous** [LAL13]. **Hoplite** [KG17]. **Hybrid** [DS15, RGCL16]. **HyperTransport** [SGNB08].

I/O [RGCL16, MHS09]. **ICFP** [AN09]. **iDEA** [CBFM14]. **Identification** [DVH+15, GHO17]. **Idle** [NCJ+15]. **II** [SMOP15]. **III** [SMOP15]. **Image** [BAG15, CZ09, SDM+18]. **Images** [TZWZ15]. **Impact** [HBA+15, KLD16].

Implementation [AV13, BAG15, DNL19, GROG08, HNS+10, LMG14, MKP09, OBD13, RC10, SV09, SAD10, CA11, SSF13]. **Implementations** [BDGH15, FLM+17]. **Implemented** [PVB13]. **Implementing** [BKT14, BNW+10, SG15]. **Improve** [BYB18, LZF+10, SDG12]. **Improved** [GHO17, JCCM09]. **Improving** [LZ19, YKBS10]. **In-Depth** [CCF+18]. **In-the-Cloud** [BDX+19].

Incremental [GGR+18, GL08]. **Independent** [PMC+14]. **Index** [BAG15].

Index-Aware [BAG15]. **Inference** [BYB18, GZY+18, MCD+18, OKA19, RHLK18]. **Information** [GSJC13].

Infrastructure [HBA+15, HH13]. **Input** [CAPA+09, FK08]. **Insertion** [LOM10]. **Instance** [RLM+17]. **Instance-Specific** [RLM+17]. **Instruction** [GB11, WBR18, YGH+18]. **Instruction-Set** [GB11]. **Instructions** [LCS14].

Integration [GS10, JRHK15, LRA13, YBS16]. **Intensive** [ZG16].

Interactions [KD19]. **Interconnect** [FK08, RBR16, SPS12]. **Interface** [JB15, RUC11]. **Internal** [HBA+15]. **International** [AC14, DH16, VG14].

Intra [GNM+15, HF14]. **Intra-cluster** [GNM+15]. **Intra-Masking** [HF14].

Intrinsic [MHK+08]. **Introduction** [AC14, Bak18, Bec14, BE19, BL08, CS17, Ch16, CPW18, Che11, CWB09, DC16, GC13, Hi12, SJT09, VG14, AN09]. **Introspection** [GGR+18].

Invariant [PD15]. **IP** [IZO+10]. **IPs** [EAAAA19]. **IR** [ZG16]. **Isolated** [MMMT09]. **Issue** [AC14, CWB09, DC16, Hi12, VG14]. **Itemset** [ZZJB13]. **Itemsets** [PBPLA17]. **Iterative** [LZ19, BC11].

JIT [BPFD11]. **JITPR** [SSF+13]. **Join** [YOY17]. **Junction** [TYB18].

Junction-Based [TYB18].

KAPow [DHL+18]. **Kernel** [FLM+17, PWP+16]. **Kernels** [JB15]. **Key** [ADSH18, GFBF12]. **KLT** [DB15]. **Knowledge** [GNM+15].

Lab [MCN12, GNM+15]. **LambdaRank** [YXC+11]. **Language** [CKG+10, SDM+18]. **Large** [CSK17, KM10, MWL+15]. **Large-Scale** [CSK17]. **Latencies** [BAMR13]. **Latency** [THK12]. **Layer**
Module-Based [KD10, ZNA+18].
Multi [CAPA+09, GMBC17, HGLS11, JSC14, KGT19, LLO+14, LYZ+18, WMG+10].
Network [BYB18, CTH16, GMBC17, GZY+18, JSC14, KAL14, MHS+19].
Network-on-Chip [CTH16, JSC14]. Networks [AB14, BPF+18, CSK17, KD10, LDJ+17, LL12, MVGB15, PVA+09, PBBP18, TKH+19, HZW+13, LW08].
Networks-on-Chip [AB14, CSK17]. NEURAghe [MCD+18]. Neural [BPF+18, BYB18, GZY+18, KAL14, LDJ+17, MHS+19, PBBP18, TKH+19].
NoC-Based [KP14]. Normalised [FLM+17]. Novel [AHAM+19, DNL19, EWL15, VL11, SPS12]. NPN [ZWM19].
Number [RVHP16, SBC10, TL08, Tho15]. Numerical [SLH+10, USY17].

O [RGCL16, SGNB08]. Octavo [LA17]. ODosT [YBS16]. OFDM [SAD10].
open [SGNB08]. open-source [SGNB08]. OpenCL [TK16, WTS19].
Overhead [DHL+18, KGS15]. Overlays [LA17]. own [RD11].

Packing [AKA09]. Papers [LAA+17]. Parallel
[AV13, BAG15, JB15, SB15, SDM+18, SSC16, TZWZ15, YOY17].
Parallelism [INF+14, KLD16, PVB13, CA11]. Parallelized [LZ19].
Parallelizing [WAT15]. parameters [DW13]. Parametric [SC08]. Parser
[LBRS16]. Parser-Based [LBRS16]. Partial
[EAGEG09, GFBF12, GGR+18, RDB+18, PDH11].
Partial-Reconfiguration [GGR+18]. Partially [HHSC10, KMK+10, HH13].
Particle [BG08, CNE+15]. Partition [BS15]. Partitioning [LYZ+18, TL11].
Pattern [LYZ+18]. Pay [EAAAA19]. Pay-per-use [EAAAA19].
Pentium(R) [LYS08]. Per-Module [DHL+18]. Perfecto [HLL08].
Performance [CH10, CKG+10, EAGEG09, HNG09, HNS+10, LP15, MH15,
PDH11, SPM+10, SDG12, SSC16, TL11, Tak17, TB10, TOS17, USY17,
UNBR14, WPSI18, WBR18, WGGR17, BC11, GP13, HGLS11, PANBI11].
Performance-Oriented [TL11]. Perl [LT09]. Perturb [GL08]. PEs [GRG08]. PGAS [AGY+11]. Physical [INF+14, MVGB15, SMOP15].
PIMap [LZ19]. Pinch [DGP10]. Pipelined [KAL14, SV09, YOY17]. pixel
[Oli12]. Placement
[FRS+15, GSJC13, HHSC10, MVGB15, MSSL10, Ste10, GL08]. Platform
[BDX+19, KSG11, KD19, NNY12]. Platform-aware [KSG11]. Platforms
[CCF+18, CBR+14, GFL+15, GKM+12, RMSG16, SAD10]. Point
[HU10, KD10, OBD13, RC10, USY17, WL10, WS16, dDELVP13].
Point-to-Point [KD10]. Policy [SDG12]. Port [PVA+09]. Portability
[KGS15]. Portable [WS16, ZBR12]. Ported [LLO+14]. POWER
[KGS+12, CXG+12, DHL+18, KBM09, KCC+14, KP14, LAL13, MMT09,
SLH+10, UNBR14, WGGR17, ZBC+09, EA11, LW08, KGS+12].
Power-aware [EA11]. Power-Efﬁcient [SLH+10]. POWer-EmulatoR-
[KGS+12]. POWER-MODES [KGS+12]. Practical [OROS+19].
Precision [LGD+14, WL10, Oli12]. Predicting [MOG+13]. Prediction
[HNG09, AHAM+19, HGLS11]. Preemption [RDB+18]. Preserving
[PVA+09, RHLK18]. Pricing [FT17, JTLC09, KLC11]. Primitives
[HLN+10]. Priority [BAG15, KVK+11]. Privacy [RHLK18].
Privacy-Preserving [RHLK18]. Problem [GB11, GPP08]. Problems
[KM10]. Process [DB15, RDB+18, SB08, LKJ+11, SC11]. Processing
[BDX+19, BHB14, IABV15, Kap16, LP15, MVGB15, SDM+18, SSC16,
WAT15, YEC+09, ZBB+16]. Processor [CBFM14, KCC+14, KD19, LA17,
MKW+12, PWP+16, Tak17, WBR16, YEC+09, Tak12]. Processor-logic
[KD19]. Processors
[FLM+17, GFBF12, VTN09, WPSI18, WBR18, IYY+11, LJS11].
Production [UHU09]. Productivity [KGS15]. Proﬁling [EWL15].
Proﬁling-Based [EWL15]. Program [PD15]. Program-Invariant [PD15].
Programmability [GKM+12]. Programmable
[AC14, CAPA+09, DPHT19, GS10, OWMZ11, SCC10]. Programming
Quantized [BPF+18], Quasi-Monte [TB10], Query [ZBB+16], Queue [BA15], Quipu [MO13].

Road [UHU09], robotics [NSS+11], Robust [ABCC09], Robustness [LZF+10, YKBS10], Rotation [ZCL15], Routability [AHAM+19, JCCM09, LRA13, PB18, DW13, EA11], Routability-Driven [LRA13, EA11], Routability-prediction [AHAM+19], Routeda [KG17], Route [LL12], routers [GP13], Routing [CW09, FRS+15, IZO+10, KA17, SB08, WYZ16, GL08, LKJ+11, RD11], RTL [DVH+15], RTR [ZBC+09], Run [DNL19], Run-Time [DNL19], Runtime [EAGEG09, FR5+15, LCS14, NCJ+15, PPR+10, ZBC+09], Safe [BHI15], Samsung [KCC+14], SARFUM [BCE+10], SAT [KM10], SATTA [DGP+15], SCA [HF14], SCA-Resistant [HF14], Scalability [Tak17], Scalable [CPN+09, MBJJ11, OWMZ11, SLH+10, ZBR12], Scalar [TOS17], Scale [CSK17], Scaling [AZM+19, NNY+12, LKJ+11], Scavenger [YFW+17], SCF [ASGY12], Scheduling [BAMR10, CBR+14, HHSC10, HNS+10, OR5+19, WBR18], Scheme [EAAA+19], Schemes [OB13, SV09], Science [UHU09], Scientific [RUC11], SDK [TK16], SDM [LL12], Search [CNZ+18, WTS19, XCG+09, YXC+11], Searching [PEM+09], Secondary [MCC10], Secondary-Structure [MCC10], Section [Bak18, Bec14, BE19, CS17, CPW18, Che11, GC13], Secure [GFBF12, KGT19, MKP09, VMV15], Security [BCE+10, BE19, HLN+10, KGS+12, SJT09, SMOP15], Segmentation [LFA+18], Selection [CNZ+18], Self [AHL+14, AV13, Bec14, BKT+14, BHI15, GGR+18, HC013, LZF+10, NJLW14, OBD13, PMC+14, WSC09, DGP+15], Self-Adaption [BHI15], Self-Adaptive [OBD13], Self-Alignment [BHI15], Self-Aware [BKT+14, NJLW14], Self-Awareness [AHL+14, Bec14], Self-Healing [BHI15], Self-Measurement [WSC09], Self-Monitoring [GGR+18], Self-Reconfigurable [HC013], Self-Reconfiguration [LZF+10], Separable [LP15], Separation [WBC16], Sequence [JL+08], Sequences [PBPLA17], Serial [UCR+19], Set [GB11], SHA [MAK+12], SHA-256 [MAK+12], Shared [MSF16], Shifter [WAT15], Shifting [DSB09], SHMEM [AGY+11], Side [GER19, SG15], Side-Channel [SG15, GER19], Signal [BBH14, DDH+11, SSC16], signatures [LJS11], Significant [LAA+17], Silicon [UHU09, WHQ+08], Simulation [CZ09, MVGB15, RGGW10, TB10], Simulations [CH10, CPN+09, MHS09, SLH+10, SC08], Single [CSK17, LKJ+11], single-driver [LJ+11], Skew [SB08], Sliding [CBFS15, SCS16], Sliding-Window [CBFS15, SSC16], SMP [MSF16], SoC [LBRS16], SoCs [MCD+18, WGGR16], Soft [AB14, AJYH18, CBFM14, DVK15, Kap16, LA17, PD15, TOS17, WPS18, WBR16, WBR18, YEC+09, LJS11], Soft-Error [DVK15, PD15], Soft-Processor [LA17], Software [HHSC10, HH13, SC11], solver [ZBR12], Solving [GFL+15, GPP08, KM10].
Source [DC16, SGNB08]. Space [JCG⁺12, LZF⁺10, LT09, HLL08]. Sparse
[DDB⁺10]. Spatial [SGM09, ZG16]. Special
[Bak18, Bec14, BE19, CS17, CPW18, CWBD09, DH08, DC16, GPP08,
Hüb12, LGD⁺14, VG14, Che11, GC13, AC14]. Special-Purpose
[GPP08, LGD⁺14]. Specialization [DVH⁺15]. Specific
[DDH⁺11, PMKM11, RLM⁺17, WYZ16, LJS11]. Speculation
[CTH16, THK12]. Speed [BS15, HBA⁺15, NW11, ZBC⁺09]. SQL [ZBB⁺16].
Squares [FLM⁺17, PWP⁺16]. SRAM [AL16, LZF⁺10, Ste10].
SRAM-Based [AL16, LZF⁺10, Ste10]. SRCS’12 [Bec14]. SRP [KCC⁺14].
Staged [KVK⁺11]. Standard [KA17]. State [ZG16, GDHG11]. States
[BAMR13]. Static [CW09, LAL13]. Statistical [CXG⁺12, MOG⁺13, SB08].
Storage [DLBM18]. Storage- [DLBM18]. Strategies [MCL⁺13]. Strategy
[KMK⁺10]. Stratix [SMOP15, SMOP15]. Stream [PBPLA17]. Streaming
[DD18, PVB13, RSMK16]. Streams [USY17]. Strongly [ATJZ16].
Structure [LGD⁺14, MCC10]. Structures [DL09]. Study
[BNW⁺10, NSS⁺11]. Super [ABCC09]. Super-Resolution [ABCC09].
Supercomputer [DDB⁺10]. Supercomputing [UH09, AGY⁺11].
SuperDragon [TZWZ15]. Superscalar [WBR18]. Support
[GdLlG⁺14, MSF16, PVB13, PBPLA17]. Supporting [DNLI, SSF⁺13].
Suppression [MHK⁺08]. Survey [GB11, GZY⁺18, PDH11]. Switch
[BMR16]. Switched [AL16, LLI12]. Symbol [BDX⁺19]. Symbol-Only
[BDX⁺19]. Symmetric [GFBF12]. Symmetries [ZWM19]. Symposium
[DH08]. Synchronous [GKM⁺12, PVB13]. Synergies [MCD⁺18].
Synthesis [BAMR10, BAMR13, BPCC09, DD18, GdLlG⁺14, HLC⁺15,
KMK⁺19, RBR16, WBC16, PANBI11]. Synthesis-Generated [HLC⁺15].
Synthesizable [KA17, WHQ⁺08]. System [CPN⁺09, GSJC13, GS10,
IBH⁺15, JM14, LGW⁺14, MSF16, TWZV15, WBR16, ZBR12].
System-Level [GSJC13]. System-on-Chip [GS10]. SystemC
[HLL08]. SystemC-based [HLL08]. Systems [ASGY12, Bec14, KBT14, BHI15,
CNE⁺15, CH10, GMBCL17, GdLlG⁺14, HSSC10, HLN⁺10, INF⁺14, Kap16,
KMK⁺19, KBT09, MH15, MCN12, NBS13, NJLW14, PMC⁺14, PVB⁺09,
RGGW10, SFT10, V14, ZQ19, ZNA⁺18, HGLS11, HH13, PDH11, ZH12].
Systems-on-Chip [GdLlG⁺14, VG14]. Systolic [ZCL16].

Table [IBV15, Tho15]. Table-Hadamard [Tho15]. Targetable [KA17].
Targeting [DDH⁺11, TL08]. TAS [ZBC⁺09]. TAS-MRAM-Based
[ZBC⁺09]. Task [ASGY12, CTH16, HNS⁺10, PVB13]. Tasks-
[PVB13]. Task-Level [ASGY12]. Tasks [HHSC10]. TDF [DGP⁺15]. TDM
[LL12]. TDM-Based [LL12]. Techniques [AKA09, KBT09, MKP09, OVI⁺12].
Technology [AC14, JCCM09, LZ19, PWP⁺16, KVK⁺11]. Telescope
[PEM⁺09]. Temperature [DGP⁺15, DB15]. Temperature-Based
[DGP⁺15]. Tenant [KGT19]. Ternary [PBBP18, TKH⁺19]. Test
[HNG09, IYY⁺11]. Testing [AZM⁺19]. Thermal [KP14]. Throughput
15

Years [LAA+17]. Yield [SC08].

Zynq [KD19, MCD+18].

References

REFERENCES

Ananthan:2013:RPH

Ahmed:2019:FAB

Bai:2015:ATF

Yuhui Bai, Syed Zahid Ahmed, and Bertrand Granado. ARC 2014: Towards a fast FPGA implementation of a heap-based priority queue for image coding using a parallel index-aware tree. *ACM Transactions on Reconfigurable Technology and Systems*
REFERENCES

REFERENCES

Bhasin:2015:EFB

Bo:2019:APR

Bobda:2019:ISS

Becker:2014:ITS

REFERENCE

Chen:2011:EDL

Cevrero:2009:FPC

Cancare:2012:EHC

Cheah:2014:IDB

Clemente:2014:MSA

Juan Antonio Clemente, Ivan Beretta, Vincenzo Rana, David Atienza, and Donatella Sciuto. A mapping-scheduling algorithm for hardware acceleration on reconfigurable platforms. *ACM Transactions on Reconfigurable Technology and Systems*

2016. CODEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DGP10]</td>
<td>DSPs, BRAMs, and a pinch of logic: Extended recipes for AES on FPGAs.</td>
<td>2010</td>
<td>ACM Trans. on Reconfigurable Technology and Systems (TRETS)</td>
<td>3(1)</td>
<td>3:1-3:??</td>
<td>CODEN ????? ISSN 1936-7406 (print), 1936-7414 (electronic).</td>
</tr>
</tbody>
</table>
DeHon:2008:GET

Davis:2018:KHA

Dutt:2009:TBD

Ding:2018:LLH

Dinh:2019:NFI

Dumpala:2019:LUE

Dobai:2015:LLF

Dragomir:2009:OLU

Das:2015:ETD

Davidson:2015:IDC

Das:2015:ASE

33

REFERENCES

Eduardo A. Gerlein, T. M. Mcginnity, Ammar Belatreche, and Sonya Coleman. Network on chip architecture for multi-agent

Gojman:2015:GLG

Ganegedara:2013:CPA

Guneysu:2008:SPH

Gorjiara:2008:MDC

Guo:2010:OSC

Goehringer:2015:GEA

Gharibian:2013:ASL

Guo:2018:DSF

Heyse:2015:IRL

Hormigo:2013:SRC

Hoang:2014:IMD

Holland:2011:AMM

Huang:2013:VHS

Hsiung:2010:SPH

Huang:2015:ECO

Hsiung:2008:PSB

Humire:2010:SPR

Iturbe:2015:MAH

Itturiet:2014:APE

Iskander:2014:HLA

Inoue:2011:TCD

Inoue:2010:VGL

Jin:2015:MID

Jang:2009:WFT

Jacobs:2012:RFT

JLB+08

Jin:2014:FAS

Jacobsen:2015:RRI

REFERENCES

Kirchgessner:2015:LOF

Krautter:2019:MEL

Kaganov:2011:FAM

Kadric:2016:IPM

Kanazawa:2010:ASL

Kepa:2010:DAS

K. Kepa, F. Morgan, K. Kościszkieiwicz, L. Braun, M. Hübner, and J. Becker. Design assurance strategy and toolset for partially

Kornaros:2014:DPT

Kahoul:2010:EHA

Koehler:2011:PAB

Kennings:2011:FTM

Khan:2018:EAM

Laforest:2017:MCM

Leong:2017:FYF

Leow:2013:AME

LeGal:2016:FSM

Lam:2014:EFA

Liu:2017:TOF

[LKJ+11] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark Fang, Kenneth Kent, and Jonathan Rose. VPR 5.0: FPGA CAD and architecture exploration tools with single-driver routing, heterogeneity and process scaling. *ACM Transactions...
REFERENCES

Lusala:2012:STB

Laforest:2014:CMP

Lu:2010:ERD

Llamocca:2015:DEP

Liu:2013:INL

Lo:2009:SOC

Chia-Tien Dan Lo and Yi-Gang Tai. Space optimization on counters for FPGA-based Perl compatible regular expressions.
REFERENCES

REFERENCES

REFERENCES

McEvoy:2009:IWH

Meeuws:2013:QSM

Matthews:2016:SMM

Montone:2010:PFD

Miller:2015:GBA

Oleg Petelin and Vaughn Betz. Wotan: Evaluating FPGA architecture routability without benchmarks. *ACM Transactions
REFERENCES

Paulino:2015:RAB

Panerati:2014:CIL

Parvez:2011:ASF

Papadopoulos:2010:TRM

Purnaprajna:2010:RRM

Peng:2014:BAH
Peng, Yuanxi, Manuel Saldaña, Christopher A. Madill, Xiaofeng Zou, and Paul Chow. Benefits of adding hardware support for broadcast and reduce operations in MPSoC applications. *ACM Transactions on Reconfigurable Technology and Systems*.

REFERENCES

References

Ahmad Sghaier, Shawki Areibi, and Robert Dony. Implementation approaches trade-offs for WiMax OFDM functions on recon-

Smith:2010:AFA

Shield:2012:ACC

Stewart:2018:RPI

Sasdric:2015:ICS

Sauvage:2009:ERF

REFERENCES

Thomas:2008:MGR

Tai:2011:POA

Tili:2017:RPG

Tatsumura:2018:EFM

Tan:2015:SHP

Ul-Abdin:2016:RCF

Zain Ul-Abdin and Bertil Svensson. A retargetable compilation framework for heterogeneous reconfigurable computing. *ACM Transactions on Reconfigurable Technology and Systems*
Umuroglu:2019:OBS

Underwood:2009:SSL

Ulusel:2014:FDE

Ueno:2017:BCF

Voros:2014:ISI

REFERENCES

Wong:2016:MCM

Wong:2018:HPI

Wulf:2016:FEO

Wulf:2017:OFP

Wilton:2008:SDO

Wang:2010:VVP
REFERENCES

[WYZ16] Evan Wegley, Yanhua Yi, and Qinhai Zhang. Application of specific delay window routing for timing optimization in FPGA designs. *ACM Transactions on Reconfigurable Technology and Sys-

Hsin-Jung Yang, Kermin Fleming, Felix Winterstein, Michael Adler, and Joel Emer. (FPL 2015) Scavenger: Automating
the construction of application-optimized memory hierarchies.

Yu:2018:IDC

[YGH+18] Jincheng Yu, Guangjun Ge, Yiming Hu, Xuefei Ning, Jiantao Qiu, Kaiyuan Guo, Yu Wang, and Huazhong Yang. Instruction driven cross-layer CNN accelerator for fast detection on FPGA.

Yoo:2010:IRR

[YKBS10] Sang-Kyung Yoo, Deniz Karakoyunlu, Berk Birand, and Berk Sunar. Improving the robustness of ring oscillator TRNGs.

Yoshimi:2017:PPJ

Yan:2011:FBA

Ziener:2016:FBD

REFERENCES

Zhao:2018:GM

Zhang:2019:RAD

Zhou:2019:AN

Zhang:2013:FBA