A Complete Bibliography of ACM Transactions on Reconfigurable Technology and Systems

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 February 2020
Version 1.34

Title word cross-reference

+ [GL08]. 2 [BPCC09, LP15]. 3 [JB15, SPS12, TZWZ15]. k [TK16]. QR [ZCL16].

-D [SPS12]. -Means [TK16].

11th [AC14]. 15th [DH08]. 19th [GC13].

5 [AKA09]. 5.0 [LKJ+11].

7.0 [LGW+14]. 7th [VG14].

[MWL+15, OVI+12]. encoded [KVK+11]. Encryption [SMOP15]. End
[BPF+18]. End-to-End [BPF+18]. Energy
[DSK15, DLBM18, DPH19, KLD16, LP15, CA11]. Energy-Efficient
[DLBM18, CA11]. Energy-Reliability [DSK15]. Engines
[XCG+09, YXC+11]. Enhanced [JCCM09, ZCL15, ZCL16]. Enhancement
[ABCC09]. Enhancing [GKM+12, MCN12, TYB18]. Ensembles [OKA19].
Entropy [FK08]. Environment [MCL+13]. Equations [GFL+15]. Error
[DVK15, PD15, ZNA+18]. Estimation
[DHL18, DNL19, WPS18, AHAM+19]. ETA [PEM+09]. Evaluating
[LAL13, PB18, WGG16]. Evaluation
[BDX+19, KY18, LOM10, NJLW14, SMOP15]. Evaluations [KGS+12].
Evolution [CBS+12]. Evolvable [DS15]. Exact [OROS+19]. Example
[SP20]. Execution [DSK15]. Exotic [FT17]. Experiment [QRDC+15].
Exploitation [INF+14, MAK+12]. Exploiting
[BG15, CA11, EAGE+09, GER19, LCS14, LZ19, MCD+18, PVB13].
Exploration [BPF+18, EWL15, UNBR14, HLL10, LKJ+11]. Exploring
[JTL10, MWL+15, SPS12]. Exponentiation [dDELVP13]. Expressions
Extension [GB+11, GFBF12, MWK+12]. Extraction [GNM+15].

Fabric [BHB14, WHQ+08, SPS12]. Fabrics [KA17]. Factor [LRA13].
Factored [KAL14]. Fast [AVCP20, BAG15, BPF+18, BDD19, CSK17,
HU10, JCGW20, JM14, NW11, UNBR14, YGH+18, ZWM19, SSF+13, SP20].
Fault [BKT14, JCG+12, RLY+15]. Fault-Tolerant [BKT14, RLY+15].
FCCM'16 [Bak18]. FeatherNet [MHS+19]. Feel [AB20]. FEM [BG17].
Field [AC14, CAPA+09, DPHT19, SCC10]. Field-Programmable
[AC14, DPHT19, SCC10]. Filter [BPCC09]. Filtering [LP15]. Filters
[CNE+15]. Financial [TB10]. Fine [KD19, RBR16, ZNA+18].
Fine-Grained [RBR16, ZNA+18, KD19]. Fingerprint [XJD+16]. Finite
[NJLW14, SLH+10, GDH11]. Finite-Difference [NJLW14]. FINN
[BPF+18]. FINN-R [BPF+18]. FIR [LP15]. First [LAA+17]. Fixed
[RGCL16, WL10, WMG+10]. Fixed- [WL10]. flexibility [LW08]. Flexible
[DS15, LBRS16, LZ19, MCD+18]. FlexSaaS [CNZ+18]. Flight [QRDC+15].
Floating [FL16, HU10, OBD13, RC10, USY17, WL10, WS16, dDELVP13].
Floating-Point [FL16, HU10, OBD13, USY17, WL10, WS16, dDELVP13].
Floorplan [KSC10]. Floorplanning [MSSM10]. Flow
[BNW+10, BM16, HBB14, GKM+12, KA17, RLY+15, SCC10, ZG16].
Footprint [CW09]. Fourier [SP20]. FPGA
[AZX+19, AVCP20, ABC09, AB20, BCE+10, BAG15, BPF11, BDGH15,
BE19, BYB18, CA11, Che11, CW09, CCF+18, CS17, CZ10, DW13, DVF15,
DHL+18, DL19, DL09, EAAAA19, FRS+15, FL+17, GP13, GFBF12,
GMBC17, GSJC13, GER19, GRO8, GHO17, GZY+18, HF14, HGLS11,
HC0B13, IPC14, JCG+12, JHK15, JCCM09, JM14, KLD16, KLC11, KM10,
Kap16, KBM09, KVK+11, KMK+10, KY18, KAL14, KA17, KGS15, KBT09,
KD10, KS20, LA17, LCS14, LW08, LZF+10, LGD+14, LAL13, LDJ+17, LFN+18, LT09, LKJ+11, MCD+18, MAK+12, MCN12, MHS09, NNY12, PWP+16, PDH11, PABI09, PMKM11, PB18, PBPLA17, RC10, SLH+10, SB15, SC08, SV09, TL11, Tho15, TB10, USY17, UNBR14, WTS19, WYZ16, WHQ+08, WGGR16, WGG17, XCG+09, YXC+11, YB18, YOY17, YGH+18, ZBR12, ZZJB13, ZQ19, ZBC+09, ZNA+18, ZBB+16.

heterogeneity [LKJ⁺11]. Heterogeneous
[ASGY12, AHL⁺14, BPCC09, CNE⁺15, CCF⁺18, GFL⁺15, KSCC10, KP14, OVI⁺12, TZWZ15, UAS16, YB18, PMKM11, SPS12]. Hiding
[MMMT09, THK12]. Hierarchies [YFW⁺17]. High
[BGSL17, BS15, CH10, CKG⁺10, DHL⁺18, EAGEG09, HNS⁺10, HLC⁺15, IPC14, MH15, NBS13, OROS⁺19, PBBP18, RC10, SPM⁺10, SGM09, SSC16, TB10, USY17, WBC16, WBR18, ZBC⁺09, MAK⁺12, PANBI11].

High-Accuracy [DHL⁺18]. High-Efficiency [PBBP18]. High-Level
[BGSL17, BS15, CH10, CKG⁺10, DHL⁺18, EAGEG09, HNS⁺10, HLC⁺15, IPC14, MH15, NBS13, OROS⁺19, PBBP18, RC10, SPM⁺10, SGM09, SSC16, TB10, USY17, WBC16, WBR18, ZBC⁺09, MAK⁺12, PANBI11].

High-Performance [BGSL17, BS15, CH10, CKG⁺10, DHL⁺18, EAGEG09, HNS⁺10, HLC⁺15, IPC14, MH15, NBS13, OROS⁺19, PBBP18, RC10, SPM⁺10, SGM09, SSC16, TB10, USY17, WBC16, WBR18, PANBI11].

High-Speed [BGSL17, BS15, CH10, CKG⁺10, DHL⁺18, EAGEG09, HNS⁺10, HLC⁺15, IPC14, MH15, NBS13, OROS⁺19, PBBP18, RC10, SPM⁺10, SGM09, SSC16, TB10, USY17, WBC16, WBR18, PANBI11].

High-Throughput [BGSL17, BS15, CH10, CKG⁺10, DHL⁺18, EAGEG09, HNS⁺10, HLC⁺15, IPC14, MH15, NBS13, OROS⁺19, PBBP18, RC10, SPM⁺10, SGM09, SSC16, TB10, USY17, WBC16, WBR18, PANBI11].

[BAG15, CZ09, SDM⁺18]. Images [TZWZ15]. Impact [HBA⁺15, KLD16]. Implementation [AV13, BAG15, DNL19, GRG08, HF14, LGD⁺14, MKP09, OBD13, RC10, SV09, SAD10, CA11, SSF⁺13]. Implementations
[BDGH15, FLM⁺17]. Implemented [PVB13]. Implementing [BKT14, BNW⁺10, SG15]. Imprecise [SBC15]. Improve
[BYB18, LZF⁺10, SDG12]. Improved [GHO17, JCCM09]. Improving [LZ19, YKBS10]. In-Circuit [KS20]. In-Depth [CCF⁺18]. In-the-Cloud
[BDX⁺19]. Incremental [GGR⁺18, GL08]. Independent [PMC⁺14]. Index
[BAG15]. Index-Aware [BAG15]. Inference
[BYB18, GZY⁺18, MCD⁺18, OKA19, RHLK18]. Information [GSJC13]. Infrastructure [HBA⁺15, HHI⁺13]. Input [CAPA⁺09, FK08]. Insertion
[LOM10]. Instance [RLM⁺17]. Instance-Specific [RLM⁺17]. Instruction
[GB11, WBR18, YGH⁺18]. Instruction-Set [GB11]. Instructions [LCS14]. Integration
[GS10, JRHK15, LRA13, YBS16]. Intensive [ZG16].

[AC14, DH08, VG14]. Interrupt [AB20]. Intra [GNM⁺15, HF14].

Intra-cluster [GNM⁺15]. Intra-Masking [HF14]. Intrinsic [MHK⁺08]. Introduction
[AC14, BK18, BC14, BE19, BL08, CS17, CHE16, CPW18, CHE11, CWBD09, DC16, GC13, HÜH12, STJ09, VG14, AN09]. Introspection
[GGR⁺18]. Invariant [PD15]. IP [IZ0⁺10]. IPs [EAAAA19]. IR [ZG16].

Isolated [MMMT09]. Issue [AC14, CWBD09, DC16, HÜH12, VG14].

Itemset [ZZJB13]. Itemsets [PBPLA17]. Iterative [LZ19, BC11].

Optimizations [HLC+15]. Optimized [GS10, LDJ+17, SBC10, YFW+17]. Optimizing [BAMR13, BC11, Kap16, LFN+18, UCR+19, WGGR16, WGGR17]. Option [JTL09]. Options [FT17], Order [BGSL17, WBR16, WBR18], Oriented [TL11, VL11, WHQ+08]. Oscillator [YKBS10, ZH12]. Out-of-Order [WBR16, WBR18]. Over-Clocking [DB15], Overclocking [SBC15].

Overhead [DHL+18, KS15]. Overlays [JCGW20, LA17].

Parameters [DW13]. Parametric [SC08].

Parser [LBRS16]. Parser-Based [LBRS16].

Pattern [LYZ+18]. Pay [EAAAA19]. Pay-per-use [EAAAA19]. Pentium(R) [LYS+08]. Per-Module [DHL+18]. Perfecto [HLL08].

Performance [CH10, CKG+10, EAGEG09, HNG09, HNS+10, LP15, MH15, PDH11, SPM+10, SDG12, SSC16, TL11, Tak17, TB10, TOS17, USY17, UNBR14, WPSI18, WBR18, WGGR17, BC11, GP13, HGLS11, PANBI11]. Performance-Oriented [TL11], Perl [LT09], Perturb [GL08]. PEs [GRG08]. PGAS [AGY+11]. Physical [INF+14, MVGB15, SMOP15].

Preserving [PVA+09, RHLK18]. Pricing [FT17, JTL09, KLC11].

Processes [FLM+17, GFBF12, VTN09, WPSI18, WBR18, IYY+11, LJS11].
Production [UHU09]. Productivity [KGS15]. Profiling [EWL15].
Profiling-Based [EWL15]. Program [PD15]. Program-Invariant [PD15].
Pulses [PEM+09]. Purpose [AJYH18, GFBF12, GPP08, LGD+14]. Purposes [BHI15].

CH10, CPN+09, MHS09, SLH+10, SC08. Single [CSK17, LKJ+11].
single-driver [LKJ+11]. Skew [SB08]. Sliding [CFBS15, SSC16].
Sliding-Window [CFBS15, SSC16], SMP [MSF16], SoC [LBRS16]. SoCs
[MCD+18, WGGR16]. Soft [AB14, AJYH18, CBFM14, DVK15, Kap16,
LA17, PD15, TOS17, WPSI18, WBR16, WBR18, YEC+09, LJS11].
Soft-Error [DVK15, PD15]. Soft-Processor [LA17]. Software
[HHSC10, HH13, SC11], solver [ZBR12]. Solving [GFL+15, GPP08, KM10].
Sorting [SP20]. Source [DC16, FL16, SGNB08]. Space
[JCG+12, LZF+10, LT09, HLL08]. Sparse [DBB+10]. Spatial
[SGM09, ZG16]. Special [LKJ+11]. Special-Purpose [GPP08, LGD+14]. Specific
[DDH+11, PMKMI11, RLM+17, WYZ16, LJS11]. Speculation
[CTH16, THK12]. Speed [BS15, HBA+15, NW11, ZBC+09]. SQL [ZBB+16].
Squares [FLM+17, PWP+16]. SRAM [AL16, LZF+10, Ste10].
SRAM-Based [AL16, LZF+10, Ste10]. SRCs’12 [Bec14]. SRP [KCC+14].
[CXG+12, MOG+13, SB08]. Stealing [RLM+17]. Stencil [JB15]. Step [BPFD11]. Stereo
[JM14]. Stopping [AB20]. Storage [DBLM18]. Storage- [DBLM18]. Strategies
[MCL+13]. Strategy [KMK+10]. Stratix [SMOP15, SMOP15]. Stream
[PBPLA17]. Streaming [DD18, PVB13, RMSK16]. Streams [USY17].
Strongly [ATJZ16]. Structure [LDG+14, MCC10]. Structures [DL09].
Study [BNW+10, NSS+11]. Super [ABCC09]. Super-Resolution
[ABCC09]. Supercomputer [DBB+10]. Supercomputing
[UHU09, AGY+11]. SuperDragon [TZWZ15]. Superscalar [WBR18].
Support [GdLiG+14, MSF16, PSM+14, PBPLA17]. Supporting
[DLN19, SSF+13]. Suppression [MHK+08]. Survey
[GB11, GZY+18, PDH11]. Switch [BMR16]. Switched [AL16, LL12].
Switching [AB20]. Symbol [BDX+19]. Symbol-Only [BDX+19].
Symmetric [GFBF12]. Symmetries [ZWM19]. Symposium [DH08].
Synchronous [GKM+12, PVA+10]. Synergies [MCD+18]. Synthesis
[BAMR10, BAMR13, BPPC09, DD18, GdLiG+14, HLC+15, OROS+19,
RBR16, WBC16, PANBI11]. Synthesis-Generated [HLC+15].
Synthesizable [KA17, WHQ+08]. System [AVCP20, CPN+09, GSJC13,
GS10, IBH+15, JM14, JB15, LGW+14, MSF16, TZWZ15, WBR16, ZBR12].
System-Level [GSJC13]. System-on-Chip [GS10]. SystemC [HLL08].
SystemC-based [HLL08]. Systems [ASGY12, Bec14, BKT14, BHI15,
CNE+15, CH10, GMBC17, GdLiG+14, HHSC10, HLN+10, INF+14, Kap16,
KMK+10, KBT09, MH15, MCN12, NBS13, NJLW14, PMC+14, PVA+09,
RGW10, S JIT09, VG14, ZQ19, ZNA+18, HGLS11, HH13, PDH11, ZH12].
Systems-on-Chip [GdLiG+14, VG14]. Systolic [ZCL16].

Table IABV15, Tho15. Table-Hadamard [Tho15]. Targetable [KA17].

References

REFERENCES

REFERENCES

REFERENCES

Bo:2019:APR

Bobda:2019:ISS

Becker:2014:ITS

Beeckler:2008:PGR

Burovskiy:2017:EAH

Brugger:2014:RRF

[BHB14] Christian Brugger, Dominic Hillenbrand, and Matthias Balzer. RIVER: Reconfigurable flow and fabric for real-time signal processing on FPGAs. *ACM Transactions on Reconfigurable Tech-

REFERENCES

Blott:2018:FRE

Bergeron:2011:LT

Butler:2015:HSH

Boutros:2018:YCI

Chen:2011:EDL

REFERENCES

REFERENCES

[CPW18] Deming Chen, Andrew Putnam, and Steve Wilton. Introduction to the special section on deep learning in FPGAs. *ACM Trans-
REFERENCES

[CXG+12] Lerong Cheng, Wenyao Xu, Fang Gong, Yan Lin, Ho-Yan Wong, and Lei He. Statistical timing and power optimization of architecture and device for FPGAs. ACM Transactions on Reconfigurable
REFERENCES

REFERENCES

REFERENCES

Elrabaa:2019:PPP

El-Araby:2009:EPR

Eusse:2015:CNP

Feng:2008:DEI

Fekete:2012:DDR

Fang:2016:OSV

REFERENCES

REFERENCES

Guillet:2014:EUM

Giechaskiel:2019:LWE

Gaspar:2012:SEF

Gan:2015:SGA

Giesen:2018:COS

Hans Giesen, Benjamin Gojman, Raphael Rubin, Ji Kim, and André Dehon. Continuous online self-monitoring introspection circuitry for timing repair by incremental partial-reconfiguration

Gu:2017:IRF

Gantel:2012:ERP

Grant:2008:PMS

Gerlein:2017:NCA

Gojman:2015:GLG

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

REFERENCES

REFERENCES

[IBH+15] Xabier Iturbe, Khaled Benkrid, Chuan Hong, Ali Ebrahim, Raul Torrego, and Tughrul Arslan. Microkernel architecture and hardware abstraction layer of a reliable reconfigurable real-time operating system (R3TOS). *ACM Transactions on Reconfigurable
Itturiet:2014:APE

Iskander:2014:HLA

Inoue:2011:TCD

Inoue:2010:VGL

Jin:2015:MID

REFERENCES

Kirchgessner:2015:LOF

Krautter:2019:MEL

Kaganov:2011:FAM

Kadric:2016:IPM

Kanazawa:2010:ASL

Kepa:2010:DAS

K. Kepa, F. Morgan, K. Kościuszkwicz, L. Braun, M. Hübner, and J. Becker. Design assurance strategy and toolset for partially

REFERENCES

Khan:2018:EAM

Laforest:2017:MCM

Leong:2017:FYF

Leow:2013:AME

LeGal:2016:FSM

Lam:2014:EFA

[LCS14] Siew-Kei Lam, Christopher T. Clarke, and Thambipillai Srinathan. Exploiting FPGA-aware merging of custom instructions

Liu:2017:TOF

Liu:2018:OCB

Lei:2014:FIS

Luu:2014:VNG

Labrecque:2011:ASS

REFERENCES

ISSN 1936-7406 (print), 1936-7414 (electronic).

Luu:2011:VF

[LKJ+11] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye,
Wei Mark Fang, Kenneth Kent, and Jonathan Rose. VPR 5.0:
FPGA CAD and architecture exploration tools with single-driver
routing, heterogeneity and process scaling. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 4(4):32:1–
32:??, December 2011. CODEN ???? ISSN 1936-7406 (print),
1936-7414 (electronic).

Lusala:2012:STB

circuit-switched router for on-chip networks. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 5(3):15:1–
15:??, October 2012. CODEN ???? ISSN 1936-7406 (print),
1936-7414 (electronic).

Laforest:2014:CMP

[LLO+14] Charles Eric Laforest, Zimo Li, Tristan O’rourke, Ming G. Liu,
and J. Gregory Steffan. Composing multi-ported memories on
FPGAs. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 7(3):16:1–16:??, August 2014. CODEN ????
ISSN 1936-7406 (print), 1936-7414 (electronic).

Lu:2010:ERD

[LOM10] Yingxi Lu, Maire O’Neill, and John McCanny. Evaluation of ran-
dom delay insertion against DPA on FPGAs. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 4(1):11:1–
11:??, December 2010. CODEN ???? ISSN 1936-7406 (print),
1936-7414 (electronic).

Llamocca:2015:DEP

[LP15] Daniel Llamocca and Marios Pattichis. Dynamic energy, perform-
ance, and accuracy optimization and management using auto-
matically generated constraints for separable 2D FIR filtering for
digital video processing. ACM Transactions on Reconfigurable
CODEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

REFERENCES

Majzoobi:2009:TDI

McEvoy:2009:IWH

Meeuws:2013:QSM

Matthews:2016:SMM

Montone:2010:PFD

REFERENCES

Olivares:2012:RA

Oppermann:2019:EPM

Ost:2012:EAT

ONeil:2011:SPM

Parandeh-Afshar:2009:FLC

Parandeh-Afshar:2011:CTS

REFERENCES

Petelin:2018:WEF

Prost-Boucle:2018:HEC

Prost-Boucle:2017:EVF

Park:2015:PIC

Papadimitriou:2011:PPR

Patterson:2009:STP

C. D. Patterson, S. W. Ellingson, B. S. Martin, K. Deshpande, J. H. Simonetti, M. Kavic, and S. E. Cutchin. Searching for
REFERENCES

Paulino:2015:RAB

Panerati:2014:CIL

Parvez:2011:ASF

Papadopoulos:2010:TRM

Purnaprajna:2010:RRM

Peng:2014:BAH

Pellauer:2009:PNP

Plavec:2013:ETD

Pang:2016:MKR

Quinn:2015:CFE

REFERENCES

References

Sedcole:2008:PYM

Shannon:2011:LRH

Smith:2010:AFA

Shield:2012:ACC

Stewart:2018:RPI

Sasdrich:2015:ICS

REFERENCES

Luca Sterpone. A new timing driven placement algorithm for dependable circuits on SRAM-based FPGAs. *ACM Transactions on
REFERENCES

Seetharaman:2009:ASF

Takano:2012:DAA

Takano:2017:PSA

Tian:2010:HPQ

Thielmann:2012:MLH

Thomas:2015:THG

[TYB18] Kosuke Tatsumura, Sadegh Yazdanshenas, and Vaughn Betz. Enhancing FPGAs with magnetic tunnel junction-based block RAMs. *ACM Transactions on Reconfigurable Technology and Sys-
REFERENCES

Tan:2015:SHP

Ul-Abdin:2016:RCF

Umuroglu:2019:OBS

Underwood:2009:SSL

Ulusel:2014:FDE

REFERENCES

[Woods:2010:GEA]

[Winterstein:2016:SLH]

[Wong:2016:MCM]

[Wong:2018:HPI]

[Wulf:2016:FEO]

[Wulf:2017:OFP]

Nicholas Wulf, Alan D. George, and Ann Gordon-Ross. Optimizing FPGA performance, power, and dependability with linear

[Wilton:2008:SDO]

[Wang:2010:VVP]

[Williams:2010:CFR]

[Wijesundera:2018:FRP]

[Wilson:2016:UAA]

Wong:2009:SMC

Wang:2019:FBA

Wegley:2016:ASD

Xu:2009:FAR

Xu:2016:CGA

Yazdanshenas:2018:CAM

REFERENCES

Yu:2016:OAH

Yu:2009:VPS

Yang:2017:FSA

Yu:2018:IDC

Yoo:2010:IRR

Yoshimi:2017:PPJ
Masato Yoshimi, Yasin Oge, and Tsutomu Yoshinaga. Pipelined parallel join and its FPGA-based acceleration. *ACM Transactions...

Yan:2011:FBA

Ziener:2016:FBD

Zhao:2009:TMB

Zhang:2012:PSF

Zhang:2015:EAR

