A Complete Bibliography of ACM Transactions on Reconfigurable Technology and Systems

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: https://www.math.utah.edu/~beebe/

04 June 2024
Version 1.50

Title word cross-reference

+ [GL08]. 2 [BPCC09, LP15, RNTW22]. 3 [IAG23, JB15, SPS12, TZW15].
K [LLS+23, TK16]. N [MPK22]. QR [ZCL16].

2 [YB18]. 2.0 [AZM19, GMZ+23]. 2.1 [JRHK15]. 200 [WBR16]. 2007
[MAK+12].

5 [AKA09]. 5.0 [LKJ+11].
7.0 [LGW+14]. 7nm [SY24]. 7th [VG14].

8 [MPZ+20]. 80 [YSC+23].

A-Port [PVA+09]. Abstraction [IBH+15]. Abstractions [IPC14].
Academic [MWL+15]. Accelerated
[MHS+19, MCC10, SKJ22, BE19, GKL223]. Accelerating
[JLB+08, PFL22, SDGL+22, TZW15, VL11, ZG16, ZVS20]. Acceleration
[ABB+23, BMC+22, CAPA+09, CSS+23, CBR+14, Z09, DBF+22, HNM+22, KLC11, KZB23, LUX+21, LLS+24, MCD+18, PFC15, PBPLA17, RRLW22, SCL24, TK16, TYL+23, WTS19, WMG+10, WWC+22, XCG+09, YOY17, YBS16, ZBR12]. Accelerator
[BHXJ24, CNZ+18, CZZ23, CJH+24, DCL+22, HLW+21, JZL+24, KVU24, LML+23, LXS+24, LDJ+17, LLS+23, LLYC24, QMG+24, QNF+23, SZKR22, SKW+21, TWL+23, WHJ+23, XRC23, YHK+21, YG+18, ZZJB13, YXC+11]. Accelerators
[BSW+23, DCS24, FC24, GZY+18, HBXA23, JRLH15, KHK24, NGM+23, SLL+20, SKJ22, UNBR14]. Access
[AEM+24, LYZ+18]. Accesses
[PFC15]. Accumulation
[LLL+23]. Accumulator
[WS16]. Accuracy
[DHL+18, KY18, LP15, UNBR14]. Accurate
[AVCP20, CSK17, DCM18, JM14]. ACE
[HLW+21]. ACE-GCN
[HLW+21]. ACM [Lee23]. Across
[DCS24]. Adaptable
[MLPK22]. Adaptation
[FL+20]. Adoption
[BHI15]. Adaptive
[CNE+15, GRNW22, INF+14, JCG+12, LSP+23, NNY12, OVI+12, PMC+14, SGW20, Tak17, ZCL15, ZMH+23, Tak12, DGP+15]. ADAS
[CSS+23]. Adder
[BPPB18]. Adding
[PSM+14]. Addition
[CAPA+09, OBD13]. Addition-Related
[OBD13]. Adjustable
[ZWM19]. Adjustment
[NW11]. Advantage
[MPK22]. Advantages
[WSDH23]. adventure
[RD11]. AEKA
[BHXJ24]. Aerial
[CZ09]. Aerospace
[WGGR16]. AES
[DGP10, HF14]. Against
[SRR23, LOM10]. Agent
[GMBC17]. Aggregation
[GS23]. Aging
[CAG+22]. Agreement
[ADSH18]. AI
[JZL+24]. Algean
[TDH+22]. Ain’t
[RNTW22]. Algorithm
[AIH+24, CBR+14, EWL15, KVU24, RLY+15, St10, SMN+23, TL11, TK16, ZCK+22]. Algorithm-Hardware
[AIH+24]. Algorithm/Architecture
[EWL15]. Algorithmic
[ZVS20]. Algorithms
[CW09, LRA13, NSS+11]. Alignment
[JLB+08, MCC10, OBD13]. All-digital
[LLS+24]. Altera
[SMOP15, TK16]. Altering
[WML+24]. AMD
[HDN+24]. Amenability
[HNG09]. Analog
[HII+24]. Analyses
[DRHM22]. Analysis
[BPD+11, CCF+18, CFBS15, CKG+10, JCGW20, LLL+23, MMT09, PRV21, PPR+10, RGGW10, RGCL16, RMSK16, SB08, TMLS21, GP13, Tak12]. Analytical
[KSCC10, LAL13, YCV+21, DW13, HGLS11]. Analytics
[SZKR22]. Analyzing
[GSC+13]. Anomaly
[LBL+23]. Application
[ABCC09, BBND10, CM14, DDB+10, GdLIG+14, JSC14, KGS15, LJS11, MLPK22, MKW+12, PMK111, RUC11, SSK+23, SSL+20, VTN09, WYZ16, WMG+10, YFW+17, SSF+13]. Application-Optimized
[YFW+17].
Application-Specific [PMKM11, LJS11, SLL12+]. Application
[AZM19+19, AI22, CFBS15, CKG+10, DFB+22, GKM+12, HDMN24, IAG23, KBM09, KCC+14, LZF+10, LBR16, NJW14, PSM+14, PVB13, RWW+22, SGC21, WHQ+08, KSG11]. **Applying** [NSS11]. Approach
[CMI14, DCS24, GKG23, KM10, LYZ+18, MS23, MKW+12, NBS13, RKV23, SBC15, WSD23]. **Approaches** [CHG22, MVGB15, SAD10]. **Approximate** [FAB22, LN23, SUK24]. **ARC** [BAG15, DB15, GSC15, SB15, WBAM10]. **ARC’08** [CWBD09]. Architecture
[BYB23, ADSH18, ATJ21, BCE1+10, CXG+12, DS15, EWL15, FT17, GWS23, GMB17, IZ0+10, IG12, IH15, KLC10, KAL14, KD21, LMG22, LLG+14, MPZ+20, OWMZ11, PFC15, P18, RRL12, RTW22, SBC10, SB15, SZZ23, SL24, SKB+22, Tak17, VL11, WS16, XJ1+16, ZCL16, DW13, LKJ+11, Oli12]. **Architectures** [BBND10, DB19, CBC11, DSB09, EBYB20, GC13, IAG23, JTLC09, KY18, LAL13, LFN+18, SFT+23, WCK21, YB18, HLL08]. Area
[BHX24, DD15, KY18, SUY24, Th15, WCK21]. Area-Efficient
[BHX24, DD15, Th15]. **ARISE** [VTN09]. Arithmetic
[SUK24, SCC10, TML21, WCC+22]. **ARM** [GHWS22]. Array
[BCW21, SLH1+10, ZCL16]. Array-System
[BCW21]. Arrays
[DPHT19, HNM+22, SCC10, ZCK22, ZH12]. Artfact
[Lee23]. Artificial
[KAL14]. **ASIC** [BYB18, DE22]. **ASIP** [EWL15]. Assembly
[BGSL17]. Assignment
[SB08]. Associative
[DD15]. Assurance
[CHG22, KMK10]. Asymmetric
[SDG12]. Atmospheric
[GFL15]. Attack
[SGM09]. Attacks
[GER19, GTS23, KGT19, MDL23+23, ZQ19]. Authenticated
[ADSH18]. Automata
[BDX+19, KB23, KD21, MHS09]. Automated
[CCZ1+24, DD18, GMZ1+23, HDM24, RSK16, SCC10]. Automatic
[AZM19+19, APR+22, SFT+23, TZY1+23, YB18, YBS16]. **Automatically**
[LP15]. Automating
[NCl+15, YFW1+17]. Automation
[SV09]. Autonomous
[BM16, DV15]. AutoScaleDSE
[JYJC23]. Avionics
[LZF+10]. avoidance
[RD11]. Aware
[BAG15, BKT14, HNS10, LCS14, LN23, NJW14, SB08, EAI11, KSG11, ZVS20]. Awareness
[AHL1+14, Bec14, GKL2A23, DGP+15]. **AWS** [ES22]. AxOMaP
[SUK24]. Bandwidth
[AI22, BBND10, HNM+22, SLH1+10, USY17, BC11, SFT+23, ZHZ+20]. Bandwidth-Bound
[AI22]. Bandwidth-Reduction
[SLH1+10]. Based
[AI16, AHI1+24, BAG15, BHX24, CBFM14, CZ09, DGP1+15, DCL1+22, DL09, EWL15, FHL1+24, GWPK20, GDH11, GHO17, HLN1+10, JCG1+12,/JTC109, Kap16, KBT09, KD0, KG1+12, LBR16, LZ19, LT09, LYH1+23, LL12, MVGB15, MVBL21, MZLS20, NNY12, OVI1+12, PRV21, PRP1+10, RK23, RC10, SY24, SLH1+10, SB15, SP20, SCY1+23, TYB18, USY17, WAS1+23, WGG16, YGY17, ZCL16, ZBC1+09, ZNA1+18, ZBB1+16, AHAM1+19, AB23, CAG1+22, DLC20, EA11, FZ23, GWS23, GKG23, GWS21, GZY1+18, HBA23, HLL08, KZ23, LZF1+10, LSP1+23, LF1+18.

Behavior [PVA+09]. Benchmarks [HH24, MKP23, MVL+15, PB18].

Benefits [PSM+14]. Bent [SZZW23]. between [LM08, MVL+15, TOS17].

BFS [LXS+24]. Big [RMSK16]. Binary
[ADSH18, BHXJ24, FAB22, HBXA23, PFC15, SCL24, YLF+24].

[DVK15, GKS23]. Bitstream [BPFD11, SMOP15]. Bitwidth [VddSN23].

BlastFunction [DFB+22]. BLASTP [JLB+18, MH15]. Block
[BDGH15, CBFM14, DE22, EBYB20, TYB18, ZCK22]. Block-Based
[CBFM14]. Blocks
[AGM+22, FK08, NI24, RRW+22, SY24, TMLS21, PMK11, dBVW+24].

BLOOP [FZ23]. BNN [DCL+22]. body [MPK22]. Boltzmann [KAL14].

Boolean [FZ23]. Bottleneck [SKJ22, KSG11]. Bound
[AI22, MHS09, RLM+17]. BRAM [AZM+19]. BRAMs [DGP10]. Branch
[RLM+17]. Bringing [DFB+22]. Broadcast [PSM+14]. Buffer
[SKJ22]. Buses [HBA+15].

[KD19]. Cache-Unfriendly [AI22]. Caching [SLL+20]. CAD
[KA17, LKJ+11, LGW+14, MLS+15, MPZ+20]. calculation [DCL+22].

Calculus [GWPK20]. Calculus-Based [GWPK20]. Calibration [TKB+24].

Calling [XRCP23]. CAM [SCL24]. Cannot [BYB18]. Capabilities

Carlo [TB10]. Carry [PAB09]. Cartography [SGM09]. Case
[KD21, MHS09]. Centers [ENPR22a, ENPR22b, KW22]. Centric
[BFBN+20, VG14]. CGRA [VL11, CCZ+24, WCK21, dBVW+24].

CGRA-EAM-Rapid [WCK21]. CGRAs [CM14, NZS+23, WSDH23].

Chain [PAB09]. Challenge [MKP23]. Challenges [CLL+22]. Channel

Check [DL09]. Checking [CPFM21, PD15]. Checkpointing [AB20, AB23].

Chief [Che19]. Chip
[AB14, BCW21, CTH16, CSK17, DE22, GMBC17, GdLIG+14, GS10, HBA+15, JSC14, LXS+24, LL12, VG14, GNM+15, LLS+23].

[QRD+15]. Cipher [SCV+23, YSC+23]. Circuit
[AHSS+21, DVH+15, EAAAA19, KS20, LL12, MKP23, US23, WSC09, GL08].

Circuitry [GGR+18]. Circuits [BMR16, CBC+12, CAG+22, DL09, FC24, GRNW22, JSG+22, JMGJ23, LSP+23, SC08, SV09, SLE10, WBR16, WBR18].
Classification [MS23, ZWM19]. Clock [GRNW22, WSDH23, LW08].
[FK08, OKA19, TDH+22]. CNN [BSW+23, JZL+24, LFN+18, MCD+18,
MZLS20, WWC+22, YHK+21, YGH+18]. CNN-based [LFN+18]. CNNs
[dMdLC23]. Co
[AIH+24, AB23, EWL15, GCL+23, MCL+23, SMN+23, ZHL+21]. Co-Design
[AIH+24, ZHL+21, MCL+23]. Co-Exploration [EWL15]. Co-optimization
[VL11, WCK21, XJD+16]. Coarse
[VL11, WCK21]. Coarse-Grained
[VL11, WCK21]. Coalesce
[AI22]. Coarse
[VL11, WCK21]. Coarse-Grained
[VL11, WCK21]. Coarse-Grained
[VL11, WCK21]. Coarse
[ZVS20]. Connection-aware [ZVS20]. Connections [WML+24].

Deep-Learning [BPF18], Deeply [LFN18]. Defined [LUX21]. Deflection [KG17].
[BBND10, DGP+15, HHSC10, MSSM10, NNY12, QMG+24, TL11, ZBB+16, HLL08, HH13, IYY+11]. **Dynamics** [CH10, HNM+22, SFT+23].

EAM [WCK21]. **ECC** [DL09, GS10, WHJ+23]. **Eciton** [CJH+24]. **Edge** [BF23, CJH+24, DCL+22, KZB23]. **Edge-skipcalculation** [DCL+22].

Edition [DH08]. **editor** [AN09, Che19]. **Editor-in-Chief** [Che19]. **Editorial** [CDM15, Che19, DH08, GSCB15, WBAM10]. **Editors** [SJT09]. **Edwards** [ADSH18]. **Effect** [HLL08]. **Efficiency** [BYB18, DPHT19, NZZ+23, PBBP18, YLF+24, HDN+24, LHY+23].

Efficient [BHXJ24, BM16, BGSL17, CCT+22, DD15, DLBM18, EBYB20, FT17, FK08, HU10, KSCC10, KV24, KD19, LYZ+18, LLYC24, MCD+18, PBPLA17, RLY+15, RLM+17, SLH+10, SSK+23, SFNP23, Tho15, VdSN23, WML+24, dBVW+24, CA11, SMN+23]. **ElC** [Che22]. **Elastic** [APR+22]. **Elastic-DF** [APR+22]. **Electrical** [KGT19]. **Electrical-level** [KGT19]. **Electromagnetic** [SGM09]. **Electron** [TZWZ15]. **Elementary** [LGD+14]. **Eliminating** [SKJ22]. **Elimination** [NCJ+15]. **Elliptic** [GPP08, KMB09, SG15]. **Embedded** [BH15, Kap16, KBT09, RWS+22, WPSI18, WHQ+08]. **Embedding** [HLW+21]. **Empirical** [RKV23]. **Emulation** [CSK17, ZSZ+20]. **EmulatoR** [KGS+12]. **Enable** [AZM+19, AB20, RDB+18]. **Enabled** [HN15, BYB23, TES24]. **Enabling** [ML+15, OVI+12], encoded [KV+11]. **Encryption** [SMOP15]. **End** [BSW+23, BPF+18, BF23].

Energy-Reliability [DSK15]. **Engine** [JZL+24, JYJC23, MS23]. **Engines** [RVN24, XCG+09, YXC+11]. **Enhance** [RKV23]. **Enhanced** [JCCM09, ZCL15, ZCL16, LXS+24, MS23]. **Enhancement** [ABCC09].

Enhancements [ZVS20]. **Enhancing** [GK+12, GHWS22, MCN12, RDC+21, TYB18]. **Enough** [RNTW22].

Ensemble [LBL23]. **Ensembles** [OKA19]. **Entropy** [FK08]. **Environment** [MCL+13]. **Environmentally** [SGW20]. **Equations** [GFL+15]. **Era** [AGM+22]. **Error** [DVK15, PD15, ZNA+18]. **Espresso** [SCY+23].

Estimation [DHL+18, DLN19, LML+23, WPSI18, WCK21, WSDH23, YCV+21, AHAM+19]. **ETA** [PEN+09]. **Evaluating** [LAL13, FPL22, PB18, SY24, WGG16]. **Evaluation** [BDX+19, KY18, Lec23, LOM10, NJLW14, SKB+22, SMOP15, TKB+24].

Evaluations [KGS+12]. **Event** [GWS23]. **Event-based** [GWS23].

Evolution [CBC+12]. **Evolutionary** [ZCK22]. **Evolvable** [DS15].

Evolve [MLPK22]. **Exact** [OROS+19]. **Example** [SP20]. **Execution** [DSK15]. **ExHiPR** [XPN+24]. **Exotic** [FT17]. **Experiment** [QRC+15]. **Explicitly** [N124]. **Exploitation** [INF+14, MAK+12]. **Exploiting** [BDGH15, CA11, EAGEG09, GER19, LCE14, LZF+10, MCD+18, PVB13, SKH+22]. **Exploration** [BPF+18, CCZ+24, EWL15, JYJC23, MZLS20].

LZF+10, LGD+14, Leo22, LAL13, LLL+23, LML+23, LLS+24, LXS+24, LDJ+17, LFN+18, LLVC24, LT09, LBL23, LKJ+11, MLPK22, MLFS22, MCD+18, MKP23. **FPGA**

[MAK+12, MCN12, MZLS20, MPZ+20, MHS09, NNY12, NGM+23, NZI22, NI24, PWP+16, PDH11, PMGL22, PABI09, PMKM11, PB18, PBPLA17, PCFM23, RDC+21, RVN24, RC10, RRLW22, SUK24, SLH+10, SB15, SC08, SV09, Sha22, SLL+20, SZZW23, SCL24, SMN+23, TL11, TWL+23, Tho15, TB10, TBK+24, TES24, USY17, US23, UNBR14, VPPK20, VDsdSN23, WTS19, WYZ16, WHQ+08, WWC+22, WGRG16, WGRG17, XPN+24, XCG+09, XRC+23, YXC+11, YB18, YOY17, YGH+18, ZDS+22, ZBR12, ZZJB13, ZQ19, ZCK22, ZBC+09, ZNA+18, ZMH+23, ZYS20, ZBB+16]. **FPGA-accelerated** [BE19]. **FPGA-Array** [SLH+10]. **FPGA-Aware** [LCS14]. **FPGA-Based** [UNBR14, ZZJB13, AIH+24, CZ09, GHO17, JCG+12, Kap16, KBT09, LT09, NNY12, RC10, SB15, USY17, WGRG16, YOY17, ZNA+18, ZBB+16, GZY+18, KZB23, LLYC24, LBL23, MLFS22, NGM+23, SUK24, TWL+23, TKB+24, WTS19, WWC+22, XBC+11, YB18, YOY17, YGH+18, ZDS+22, ZBR12, ZZJB13, ZQ19, ZCK22, ZBC+09, ZNA+18, ZMH+23, ZYS20, ZBB+16]. **FPGA-enabled** [TES24]. **FPGA-optimized** [ZCK22]. **FPGA-SoCs** [GHWS22]. **FPGA Defender** [LMG+20]. **FPGAs** [AB14, AKA09, AHAM+19, AJYH18, ABB+23, AI22, AB23, BAMR10, BNW+10, BPCC09, BHB14, CAPA+09, CBFM14, CPW18, CCT+22, CXG+12, CPFM21, CPN+09, CFBS15, DRF24, DO8, DSC24, DUC20, DHD+11, DD15, DGP+15, DGP10, DB15, ENPR22a, ENPR22b, FL16, FAB22, GRN22, GTS23, GL+23, HU10, HBA+15, HDN+24, IAG23, KG17, KA21, KW22, KGT19, KD21, LMG+20, LLO+14, LN23, LSP+23, LLS+23, LOM10, LFS22, LGW+14, MA24, MHK+08, MKSB22, MMN+09, MKP22, MVGB15, MDL+23, MSSM10, MGH+19, OKA19, PFL22, PANBI11, PVA+09, PVB13, RVHP16, RLM+17, RDB+18, RHLK18, SY24, SGM09, SWT+22, SKH+22, SSF+13, SPS12, SB08, Ste10, SDK+18, SSSC16, SKB22, SMOP15, TMLS21, TWG+20, TYB18, TYL+23, VMV15, WSC09, WAT15, ZZZ+20, ZML+22]. **FPL** [BGSL17, YFW+17, CDM15, CS17, GKK24, KS24, LAA+17, MST22]. **FPT** [KZ23, Lee23]. **FPT’12** [AC14]. **FPT’20** [SLD23]. **FPT’21** [Che22]. **FPV** [KGC+24]. **Framework**

[ASGY12, AHSS+21, BSW+23, BPF+18, COT+22, CCZ+24, CKG+10, DFB+22, FHL+24, GCL+23, JCG+12, JRHK15, KHK24, KD21, LZ19, QMG+24, RGW10, SGW20, SGC21, TDH+22, TYL+23, UAS16, VTN09, WPSI18, WGG16, ZDS+22, HIL08, SPS+13, SPS12]. **Free**

[AB20, GWPK20]. **Frequency** [WSDH23]. **Frequent** [PBPLA17, ZZJB13]. **FRoC** [AZM+19]. **Fruit** [YSC+23]. **Fruit-80** [YSC+23]. **fSEAD** [LBL23]. **FSM** [GDHG11]. **FT** [WTS19]. **Full** [CPN+09, DFB+22]. **Full-system** [CPN+09]. **Fully** [KAL14]. **Function** [LG+14, LML+23, MWBL21, SFNP23, ZSP+21]. **Functional** [RUC11]. **Functions** [NCJ+15, SAD10]. **Future** [BMC+22, LUX+21].
High-Accuracy [DHL⁺¹⁸].
High-Bandwidth
[HNM⁺²², SFT⁺²³, ZBB⁺²⁰].
High-Efficiency
[PBBP18, HDN⁺²⁴, LYH⁺²³].
High-Level
[CKG⁺¹⁰, HLC⁺¹⁵, IPC⁺¹⁴, JYJC2³, LN2³, NBS1³, OROS⁺¹⁹, WBC1⁶, XPN⁺²⁴, CJWC2³, CSS⁺²³, GWXW2¹, HDMN2⁴, SFNP2³].
High-Order
[BGSL1⁷].
High-Performance
[CH¹⁰, EAGEG⁰⁹, HNM⁺²², HNS⁺¹⁰, JZL⁺²⁴, JSG⁺²², LLS⁺²³, MH¹⁵, PMGL²², SPM⁺¹⁰, SSC1⁶, TB¹⁰, USY¹⁷, WBR¹⁸, LXS⁺²⁴, MCL⁺²³, MPZ⁺²⁰, WWC⁺²², PANBI¹¹].
High-Speed
[BS¹⁵, ZBC⁺⁰⁹].
High-Throughput
[SSK⁺²³, MAK⁺¹²].
Highly
[DLBM¹⁸, ES²², IGM⁺²⁰, RDC⁺²¹].
Hipernet
[PMGL²²].
HLS
[CCT⁺²², CLL⁺²², DRHM²², GRNW²², GCL⁺²³, JCGW²⁰].
HLS-generated
[GRNW²²].
HMAC
[MAK⁺¹²].
Homogeneous
[LAL¹³].
Hoplite
[KG¹⁷].
HopliteBuf
[GWPK²⁰].
HopliteML
[MLPK²²].
HPC
[MKP²², MKP²³, US²³].
HTTP
[MA²⁴].
HW
[MCL⁺²³].
HyBNN
[YLF⁺²⁴].
Hybrid
[DS¹⁵, FAB²², GHWS²², MFOM²³, RGCL¹⁶, SGW²⁰, TYL⁺²³].
Hybrid-TPM
[GHWS²²].
HyperTransport
[SGNB⁰⁸].

Introduction
[AC14, Bak18, BE19, BL08, CS17, Che16, CPW18, Che11, CWBD09, DC16, Deh20, ENPR22a, ENPR22b, GC13, GKK24, Hübl2, Jen23, KZ23, KS24, Leo22, LH23, MST22, SJT09, Sha22, SLD23, VG14, AN09].

Loop [DCS24, DRHM22, DS09, DPHT19, FZ23]. Loops [PMC+14, PFC15].
Low [CJH+24, DHL+18, DS15, DPHT19, FRS+15, HBA+15, KBM09, KCC+14, KGS15, NZS+23, VDdSN23, WWC+22, ZBC+09, ZH12].

Matching [KVV24, SCL24, TKB+24, XJD+16]. Matchings [BBFN+20].

[AHAM+19, CCF+18, GCL+23, LFS22, ZMH+23]. MODES [KGS+12].
Modifications [SDG12]. Modular
[AL16, GKGS23, IPC14, NBS13, OWMZ11, VPPK20]. Module
[DHL+18, KD10, SGM09, TWG+20, ZNA+18]. Module-Based
[KD10, ZNA+18]. Modules [ZMH+23]. Module [BAMR10, OROS+19].
Molecular [CH10]. Monitoring [BCE+10, GGR+18]. Monte [TB10].
Montgomery [NEPV24]. Motion [TB10]. Multi-Agent [GMBC17].
Multi-Application [JSC14]. Multi-bit [LYH+23]. Multi-Core
[WMG+10, QNF+23]. Multi-Die [BYB23]. Multi-FPGA
[ES22, HGLS11, RDC+21, MKP23]. Multi-Input [CAPA+09]. Multi-Level
[QMG+24]. Multi-Object [GWS23]. Multi-Pattern
[LYZ+18]. Multi-Ported [LLO+14]. Multi-Technique [LN23].
Multi-threaded [QNF+23]. Multicontext [VL11].
Multicore [MSF16, SDG12]. Multicores [AHL+14, CFBS15].
Multidimensional [SB15]. MultiFactor [KLC11]. Multigigabit
Multimedia [DSK15]. Multiple
[DCS24, MHK+08, RVN24, SKW+21]. Multiple-Metal
[MYC+22]. Multiplication
[DDB+10, FAB22, NEPV24, UCR+19, BC11]. Multiplier
[HCOB13]. Multipliers [HU10]. Multiported
[AL16]. Multiprocessor
[CPN+09]. Multiprocessors [PPR+10]. Multivariate
[SBC10, TL08]. mutate [GL08]. MXP [LA17].

NAPOLY [KB23]. NASCENT2 [SZKR22]. native [DFB+22]. NCBI
[MH15]. Near [ASPP22, DD15, IAG23, SZKR22, SDGL+22, ZSB+20].
Near-Associative [DD15]. Near-data [ZSB+20]. Near-Memory
[SDGL+22, ASPP22, IAG23]. Near-Storage [SZKR22]. Nearest
Net-length-based [EA11]. Network
[BYB18, CTH16, CJH+24, GWPK20, GMBC17, GZY+18, JSC14, KAL14,
LLYC24, MHS+19, PMGL22, RNTW22, SFNP23, TWL+23, US23, ZSP+21].
Network-on-Chip [CTH16, JSC14]. Networks
[AB14, BPF+18, CSK17, DWN+22, KD10, LDJ+17, LL12, MKP23,
MVG15, PFL22, PVA+09, PBBP18, QNF+23, RKV23, SP20, TKH+19,
VDIN23, WAS+23, YLF+24, ZDS+22, HZW+13, LW08].
Networks-on-Chip [AB14, CSK17]. NEURAghe [MCD+18]. Neural
[BPF+18, BYB18, CJH+24, DWN+22, GZY+18, KAL14, LDJ+17, LLYC24,
MHS+19, PFL22, PBBP18, QNF+23, RKV23, RNTW22, SFNP23, TKH+19,
VDIN23, WAS+23, YLF+24, ZDS+22]. NeuroHSMD [MFOM23].
Nine-Context [NW11], nm [TMLS21], NN [FC24], NoC [KG17, KP14], NoC-Based [KP14], NoCs [GWPK20, MLPK22], Non [CAG+22, FC24, KB23], Non-deterministic [KB23], Non-Linear [FC24], Non-uniform [CAG+22], Normalised [FLM+17, FL20], Note [Che22], Novel [AHAM+19, CCZ+24, DNL19, EWL15, IGM+20, RNTW22, VL11, SPS12], NPN [ZWM19], Number [LSP+23, PRV21, RVHP16, SBC10, TL08, Tho15], Numerical [SLH+10, USY17], NX [LNGP22].

O [MHS09, RGCL16], Object [AIH+24, GWS23], Octavo [LA17], ODoST [YBS16], OFDM [BATM22, SAD10], off [LW08], Offs [SAD10], On-Chip [LL12, GNM+15], On-cloud [EAAA19], Online [DHL+18, GGR+18], Only [BDX+19], onto [SFNP23, SSF+13], Open [FL16, KHK24, TDH+22, ZML+22, SGNB08], Open-Source [FL16, KHK24, ZML+22, SGNB08], OpenCL [MZLS20, TK16, WTS19], OpenCL-Based [MZLS20], OpenGL [BCW21], Operate [US23], Operating [AHL+14, IBH+15, VPPK20], Operation [NBS13], Operations [PSM+14], Operators [OBD13, SUK24], Opportunities [CCL+22, DVH+15], Optical [BNW+10, NW11], Optimal [DSB09], Optimization [BPCC09, CXG+12, DSK15, DDH+11, KSCC10, LZ19, LP15, LT09, WYZ16, YB18, GCL+23, MBJJ11, SMN+23], Optimizations [HLC+15, IAG23, YSC+23], Optimized [AI22, FZ23, GS10, LDJ+17, NEPV24, RDC+21, SBC10, SZZW23, TYL+23, VDdSN23, YFW+17, ZCK22], Optimizing [BAMR13, BC11, Kap16, LFN+18, MZLS20, UCR+19, WGGR16, WGGR17, YLF+24], Option [JTLC09], Options [FT17], Order [BGSL17, WBR16, WBR18], Oriented [TL11, VL11, WHQ+08], Oscillator [LYH+23, YKBS10, LMG+20, ZH12], Oscillators [PRV21], Out-of-Order [WBR16, WBR18], Over-Clocking [DB15], Overclocking [SBC15], Overhead [DHL+18, KGS15, NZS+23], Overlay [BYB23, IF23, KB23], Overlays [JCGW20, LA17], own [RD11].

Packet [MS23], Packing [AKA09], Papers [Lee23, LAA+17], Parallel [AV13, BAG15, ES22, GMZ+23, IGM+20, JB15, MWBL21, SB15, SDM+18, SSC16, TZWZ15, YOY17, GCL+23], Parallelising [CJWC23], Parallelism [GWXM21, INF+14, KLD16, PVBl3, QMG+24, RNTW22, TYL+23, CA11], Parallelization [DRHM22, ZVS20], Parallelized [LZ19], Parallelizing [WAT15], parameters [DW13], Parametric [SC08], Parser [LBRS16], Parser-Based [LBRS16], Part [ENPR22b], Partial [BF23, EAGEG09, GBF12, GGR+18, GMZ+23, RDB+18, TWG+20, XPN+24, ZMH+23, PDH11], Partial-Reconfiguration [GGR+18], Partially [HHSC10, KMK+10, HH13], Particle [BG08, CNE+15], Partition [BS15], Partitioned [SCL24], Partitioning [APR+22, LYZ+18, TL11, TWG+20], Pattern [LYZ+18, YHK+21], Patterns [NI24], Pay [EAAAA19], Pay-per-use [EAAAA19], Pentium(R).
[LYS⁺08]. **Per-Module** [DHL⁺18]. **Perfecto** [HLL08]. **Performance** [APR⁺22, CH10, CKG⁺10, EAGEG09, HNM⁺22, HNG09, HNS⁺10, JZL⁺24, JSG⁺22, LLS⁺23, LP15, MH15, MZLS20, PDH11, PMGL22, RKV23, SPM⁺10, SDG12, SSC16, TL11, Tak17, TB10, TOS17, USY17, UNBR14, WPSI18, WBR18, WGR17, YCV⁺21, BC11, GP13, HGLS11, LXS⁺24, MCL⁺23, MPZ⁺20, PANBI11, WWC⁺22]. **Performance-Oriented** [TL11]. **Perl** [LT09]. **Persistent** [MHT⁺21]. **Perturb** [GL08]. **PEs** [GRG08]. **PGAS** [AGY⁺11]. **Phylogenetics** [CA23]. **Phylogeny** [ASPP22]. **Physical** [GCL⁺23, INF⁺14, MVGB15, SMOP15]. **PMap** [LZ19]. **Pinch** [DGP10]. **PipeArch** [KA21]. **Pipelined** [KAL14, SV09, YOY17]. **Pipelining** [FZ23]. **Pixel** [Oli12]. **Placement** [AHSS⁺21, FRS⁺15, GSJC13, HHSC10, JSG⁺22, MVGB15, MSSM10, NZI22, Ste10, ZCK22, GL08]. **Platform** [BDX⁺19, JZL⁺24, KSG11, KD19, NNY12, ZSP⁺21]. **Platform-aware** [KSG11]. **Platforms** [CCF⁺18, CBR⁺14, GFL⁺15, GKM⁺12, RMSK16, SAD10, YCV⁺21]. **Point** [FL16, HU10, KD10, OBD13, RC10, USY17, WL10, WS16, dDELVP13, LLL⁺23, WWC⁺22]. **Point-to-Point** [KD10]. **Polar** [DLCJ20]. **Policy** [SDG12]. **Population** [CA23]. **Port** [AEM⁺24, PVA⁺09]. **Portability** [KGS15]. **Portable** [WS16, ZBR12]. **Ported** [LLO⁺14]. **Positive** [AVCP20]. **Post** [HBXA23, MCL⁺23]. **Potential** [AEM⁺24]. **Power** [KGS⁺12, CGX⁺12, DHL⁺18, KBM09, KCC⁺14, KP14, LAL13, MMNT09, MDL⁺23, NZS⁺23, SLH⁺10, UNBR14, WGR17, ZBC⁺09, CJH⁺24, EA11, IW08, KGS⁺12]. **Power-aware** [EA11]. **Power-Efficient** [SLH⁺10]. **POWER-Emulator** [KGS⁺12]. **POWER-MODES** [KGS⁺12]. **Powered** [JZL⁺24]. **PQC** [BHJ24]. **Practical** [CPFM21, OROS⁺19]. **Precision** [FL16, KG1⁺24, LGD⁺14, WL10, YHK⁺21, Oli12, WWC⁺22]. **Predict** [AHSS⁺21]. **Predicting** [MOG⁺13]. **Prediction** [HNG09, KZB23, SDGL⁺22, AHAM⁺19, HGLS11]. **Preemption** [RDB⁺18]. **Preserving** [PVA⁺09, RHLK18]. **Pricing** [FT17, JTLC09, KLC11]. **Primitives** [HLN⁺10]. **Priority** [BAG15, KVK⁺19]. **Privacy** [RHLK18]. **Privacy-Preserving** [RHLK18]. **Private** [WHJ⁺23]. **Probabilistic** [CSS⁺23]. **Problem** [GB11, GPP08]. **Problems** [KM10]. **Process** [DB15, RDB⁺18, SB08, SRR23, TMLS21, LKJ⁺11, SC11]. **Processing** [ASPP22, BCW21, BDX⁺19, BHB14, CCT⁺22, CA23, DRF24, IABV15, KAP16, KZ21, LP15, MVGB15, SLL⁺20, SKH⁺22, SDM⁺18, SSC16, WAT15, YEC⁺09, ZBB⁺20, ZBB⁺16]. **Processor** [CBFM14, KB23, KCC⁺14, KD19, LA17, MWK⁺12, PWP⁺16, Tak17, WBR16, YEC⁺09, Tak12]. **Processor-logic** [KD19]. **Processors** [FLM⁺17, GFBF12, KG1⁺24, SFNP23, VTN09, WPSI18, WBR18, IYY⁺11, LJS11, MLFS22]. **Product** [VD1dSN23]. **Production** [UHU09]. **Productivity** [KGS15]. **Profiling** [EWL15]. **Profiling-Based** [EWL15]. **Program** [PD15]. **Program-Invariant** [PD15]. **Programmability** [GKM⁺12]. **Programmable** [AC14, BCW21, CAPA⁺09, DPHT19, GS10, HH24,
Programmers [LFS22].

Programming

QiCells [GKGS23]. Quantifying [YLF+24]. Quantization [YHK+21].

R [BPF+18, PP10, dBVW+24]. R-Blocks [dBVW+24]. R3TOS [IBH+15].

Ranking [KY18]. Rapid [HNG09, RGGW10, WPSI18, WCK21].

Receiver [BATM22]. Recipes [DPG10]. Recoding [ZCL15]. Recognition [DDH+11]. reconfigurability [SC11]. Reconfigurable [ASGY12, ADSH18, AV13, ATJZ16, BBNDO10, Bec14, BHI15, BDX+19, BHB14, CBC+12, CNZ+18, CZZ23, CTH16, CNE+15, CH10, CBR+14, CKG+10, DC16, DGP+15, DSB09, DDB+10, EAGEG09, FT17, FHL+24, FKS+12, GFL+15, GKM+12, GWS23, GC13, GD1G+14, HCOB13, HHSC10, HNS+10, HLN+10, IZO+10, IG+20, IBH+15, JTC09, KMK+10, KCC+14, LP22, LYS+08, MS23, MI15, MKP09, MWK+12, MSSM10, NNY12, NBS13, NJLW14, Oli12, PP10, PD15, PFC15, QMG+24, QNF+23, RGGW10, RGC16, RUKS16, RUC11, SGW20, SGC21, SP+10, SJT09, SAD10, SDGL+22, TL11, THG+20, TK12, TL08, UAS16, UCR+19, UHU09, VL11, VTN09, VG14, WL10, WCK21, WMG+10, YCV+21, ZBB+16, dDELVP13, AGY+11, BG08, GDBH11, HLL08, HII13, IYY+11, KSC11, ZH12].

Reconfiguration [BDX+19, BF23, DS15, EAGEG09, GFBF12, GGR+18, GMZ+23, HNS+10, JSC14, KD10, KS20, LCS14, LZF+10, NW11, NCJ+15, PPR+10, RLY+15,
RDB⁺ discourage, VMV⁺, XPN⁺, ZBC⁺, ZMH⁺, NSS⁺, PDH⁺.
[SZKR22]. Sorting [SP20]. Source
[DC16, FL16, KHK24, SGNB08, ZML+22]. Space
[CCZ+24, DCS24, JCG+12, JJJC23, LZF+10, LT09, MZLS20, SGW20,
SCG21, SCY+23, HLL08]. Sparse [DDB+10]. Sparsification [WAS+23].
Sparsity [YHK+21]. Spatial [SGM09, TYL+23, ZG16]. Special
[Bak18, Bec14, BE19, CS17, CPW18, CWBD09, DH08, DC16, Deh20,
ENPR22a, ENPR22b, GKK24, GPP08, Hüb12, Ien23, KZ23, KS24, LGG+14,
Leo22, LH23, MST22, Sha22, SL23, VGI4, Che11, GC13, AC14].
Special-Purpose [GPP08, LGD+14]. Specialization [DVH+15].
Specializing [MHT+21]. Specific
[DDH+11, PMKM11, RLM+17, WYZ16, LJS11, SLL+20, SFT+23]. Spectral
[LML+23]. Speculation [CTH16, THK12]. Speed
[BS15, HBA+15, NW11, ZBC+09]. Spiking [MFOM23, PFL22]. SQL
[ZBB+16]. Squares [FLM+17, FL20, PWP+16]. SRAM
[AL16, LZF+10, Ste10]. SRAM-Based [AL16, LZF+10, Ste10]. SRCS’12
[Bec14]. SRP [KCC+14]. stack [DFB+22]. stacked [IAG23], staged
Standing [NGM+23]. State [ZG16, GDHG11]. States [BAMR13]. Static
[CW09, DRHM22, LAL13]. Statistical
[CXG+12, MOG+13, SB08, WSDH23]. Status [LUX+21]. Stealing
[RLM+17], Stencil [DCS24, JB15, RDC+21, TYL+23]. Step [BPFD11].
Stereo [JM14, KVV24]. Stopping [AB20]. Storage
[DLBM18, KHK24, SZKR22]. Storage- [DLBM18], Strategies
[MCL+13, PCFM23]. Strategy [DCL+22, KMK+10]. Stratix
[SMOP15, KVV24, LNGP22, SMOP15]. Stream
[GS23, PPLA17, SCY+23, YSC+23]. Streaming
[DD18, IF23, LBL23, PVB13, RMSK16]. Streams [SKW+21, USY17].
Strega [MA24]. Strong [MPK22]. Strongly [ATJZ16]. Structure
[LGD+14, MCC10]. Structures [DL09]. Study [BNW+10, NSS+11].
Submitted [Lee23]. Substream [BFB+20]. Substream-Centric
[BBF+20]. Successes [CLL+22]. Super [ABCC09, CZZ23].
Super-Resolution [ABCC09]. Supercomputer [DDB+10].
Supercomputing [UH09, AGY+11]. Superconducting [GJK+23].
SuperDragon [TZW+15]. Superscalar [WBR18]. Support
[GlL+14, MSF16, PSM+14, PPLA17]. Supporting
[DNL19, QMG+24, SSF+13]. Supports [KGC+24]. Suppression [MHK+08].
Survey [CA23, GB11, GZY+18, PCFM23, PDH11]. SW [MCL+23].
SW/HW [MCL+23]. Switch
[BMR16, KA21, NI24, PMGL22, SY24, SKW+21]. Switch-based [SKW+21].
Switch-Blocks [NI24]. Switched [AL16, LL12, MKP23]. Switching
[GFBF12]. Symmetries [ZWM19]. Symposium [DH08]. Synchronous
[GKM+12, PVA+09]. SyncNN [PFL22]. Synergies [MCD+18]. Synthesis
[BAMR10, BAMR13, BPCC09, CJWC23, CSS+23, DD18, GWXW21,
transactional [LJS11]. Transfer [DD18]. Transforms [SP20]. Transient
[PEM+09]. Transistor [KY18]. Transition [GDHG11]. Transition-Based
[GDHG11]. Traversal [FRS+15]. Tree
[BAG15, DCL+22, JTLC09, OKA19, PANBI11]. Tree-Based [JTLC09].

Trees [CAPA+09, HDN+24, PBBP18]. TRENDS
[Bec14, Che22, DH08, Lee23]. TRIP [GGR+18]. TRNG [LYH+23].
TRNGs [SRR23, YKBS10]. True [LSP+23, PRV21]. Trust [DL09].
Trust-Based [DL09]. TrustZone [GHWS22]. Tunable [SKB+22]. Tuning
[AV13, NJLW14]. Tunnel [TYB18]. Turnaround [JCGW20]. Two [DL09].
Two-Level [DL09].

ULP [KCC+14]. ULP-SRP [KCC+14]. Ultra [KCC+14]. UltraScale
Unary [FAB22, MWBL21]. Unfriendly [AI22]. Unified [WS16, ZDS+22].
uniform [CAG+22]. UNILOGIC [IGM+20]. Unit [BCW21, PP10, RUC11].
Units [VdSN23, dDELVP13]. Unpredictable [BAMR13]. Unrolling
[DSB09, DPHT19, TKH+19]. Unstructured [BGS17]. UNTANGLED
Using
[BAG15, BCW21, CSK17, CPN+09, CAG+22, DL09, FC24, FAB22, FK08,
FRS+15, GNM+15, HNM+22, JCGW20, LP15, NW11, PWP+16, RLY+15,
RLM+17, RLHK18, SY24, SDGL+22, TK16, WTS19, ZSB+20, ZCK22,
ZWM19, dMdLC23, JSC14, KSCC10, MHK+08, PD15, PPKM11, SUK24].
Utilization [CZZ23, RGCL16]. Utilizing [SFNP23].

V [KVV24]. Validation [IPC14]. Value [THK12, ZG16]. Variability
[TML+21]. Variable [FL16, IZO+10, WL10, Oli12]. Variable-Grain
[IZO+10]. Variable-Precision [FL16]. Variant [XRC23]. Variation
[DB15, MHK+08, SB08, SRR23]. Variation-Aware [SB08]. Variations
[DDB+10, Kap16, YEC+09, BC11]. Verilog [KA17]. Verilog-to-Routing
[WL10]. via [AIH+24, AB23, CBC+12, GHWS22, LYZ+18, LZ19, MKP23,
RDC+21, SKJ22]. Video [ABCC09, LP15]. Virtex [AKA09]. Virtex-5
Virtualization [OV+19, ZDS+22, ZSP+21]. Vision
[FHL+24, JMO+14, NSS+11]. VLIW [LG+14]. VM [GTS23]. Voltage
[AZM+19, DB15, MDL+23, NNY12]. VPR [LJK+11]. vs [BYB18, TB10].
VTR [LGW+14, MPZ+20].

Wait [BAMR13]. Wave [SV09]. Wave-Pipelined [SV09]. Waveform
[TKB+24]. WDDL [MMMT09]. Weather [SDGL+22]. Web
[CNZ+18, XCG+09, YXC+11]. Weight [PBBP18]. Where [NGM+23].
Width [KY18]. WiMax [SAD10]. Window [CFBS15, SSC16, WYZ16].
Windows [SWT+22, GS23]. Winograd [YHK+21]. Winograd-based
[YHK+21]. Wireless [GKLLA23]. WireMap [JCCM09]. Wires
[GER19, SZZW23]. Within [SC08, MKSB22]. Within-Die [SC08], without
[NI24, PB18]. Work [RLM+17]. Workflow [HDMN24]. Workloads
[VPPK20]. Workshop [GC13, VG14, Bec14]. world [SLL+20]. Wotan
[PB18].

X [AVCP20]. xDNN [DWN+22]. Xilinx [AEM+24, LMG+20]. XVDPU
[JZL+24].

Years [LAA+17]. Yield [SC08].

Zynq [KVV24, KD19, MCD+18]. ZyPR [BF23].

References

Abdelfattah:2014:NCF

Mohamed S. Abdelfattah and Vaughn Betz. Networks-on-chip
for FPGAs: Hard, soft or mixed? ACM Transactions on Re-
configurable Technology and Systems (TRETS), 7(3):20:1–20:??,
August 2014. CODEN ???? ISSN 1936-7406 (print), 1936-7414
(electronic).

Attia:2020:FFI

Sameh Attia and Vaughn Betz. Feel free to interrupt: Safe
task stopping to enable FPGA checkpointing and context switching.
ACM Transactions on Reconfigurable Technology and Systems
org/doi/abs/10.1145/3372491.

Attia:2023:TSL

Sameh Attia and Vaughn Betz. Toward software-like debugging
for FPGAs via checkpointing and transaction-based co-simulation.
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 16(2):31:1–31:??, June 2023. CODEN ???? ISSN 1936-
doi/10.1145/3552521.

Arora:2023:CDC

Aman Arora, Atharva Bhamburkar, Aatman Borda, Tanmay
Anand, Rishabh Sehgal, Bagus Hanindhito, Pierre-Emmanuel

Angeloportoulou:2009:RRT

Anderson:2014:ISI

Anandakumar:2018:RHA

Albartus:2024:MPX

Arora:2022:TSF

REFERENCES

Aggarwal:2011:SMP

Al-Hyari:2019:NCE

Agne:2014:SAM

Al-Hyari:2021:DLF

Asiatici:2022:RCS

[AI22] Mikhail Asiatici and Paolo Ienne. Request, coalesce, serve, and forget: Miss-optimized memory systems for bandwidth-bound cache-unfriendly applications on FPGAs. *ACM Trans-
REFERENCES

AlKadi:2018:GPC

Ahmed:2009:PTV

Abdelhadi:2016:MSM

Amano:2009:GEI

REFERENCES

REFERENCES

Alachiotis:2020:RXF

Ahmed:2019:FAB

Bai:2015:ATF

Bakos:2018:ISS

Ben-Asher:2010:RMC

Ben-Asher:2013:OWS

[BAMR13] Yosi Ben-Asher, Ron Meldiner, and Nadav Rotem. Optimizing wait states in the synthesis of memory references with unpre-

Bhasin:2015:EFB

Bo:2019:APR

Bobda:2019:ISS

Becker:2014:ITS

Bucknall:2023:ZEE

Besta:2020:SCM

REFERENCES

REFERENCES

Abdelhamid:2023:SMC

Chen:2011:EDL

Corts:2023:SPS

Cook:2022:INU

Cevrero:2009:FPC

REFERENCES

REFERENCES

Chen:2024:HNF

Cardoso:2015:GEF

Cooke:2015:TAF

Chiu:2010:MDS

Cheung:2011:ISS

Chen:2016:I

REFERENCES

REFERENCES

REFERENCES

Chin:2009:SDM

Compton:2009:ISI

Cheng:2012:STP

Cong:2009:FBH

Chang:2023:AHC

Duarte:2015:ACK

[DB15] Rui Policarpo Duarte and Christos-Savvas Bouganis. ARC 2014 over-clocking KLT designs on FPGAs under process, voltage,
REFERENCES

deBruin:2024:RBE

Dehon:2016:ISI

Du:2022:BAB

DelSozzo:2024:ATS

Dhawan:2015:AEN

Shantanu Dutt and Li Li. Trust-based design and check of FPGA circuits using two-level randomized ECC structures. *ACM Trans-
Ding:2018:LLH

Delomier:2020:MBD

deMoura:2023:DCR

Dinh:2019:NFI

Dumpala:2019:LUE

REFERENCES

El-Araby:2009:EPR

Eldafrawy:2020:FLB

Eguro:2022:ISIa

Eguro:2022:ISIb

Ebcioğlu:2022:HPM

[FKS+12] Sándor P. Fekete, Tom Kamphans, Nils Schweer, Christopher Tessars, Jan C. van der Veen, Josef Angermeier, Dirk Koch, and

REFERENCES

[GdLiG+14] Sébastien Guillet, Florent de Lamotte, Nicolas le Griguer, Éric Rutten, Guy Gogniat, and Jean-Philippe Diguet. Extending

REFERENCES

Gross:2022:ESF

Gebauer:2023:QMR

Gohringer:2024:IFS

Ganewattha:2023:HAR

Gantel:2012:ERP

REFERENCES

REFERENCES

REFERENCES

[Huang:2015:ECO] Qijing Huang, Ruolong Lian, Andrew Canis, Jongsook Choi, Ryan Xi, Nazanin Calagar, Stephen Brown, and Jason Anderson. The

[HNM+22] Tom Hogervorst, Razvan Nane, Giacomo Marchiori, Tong Dong Qiu, Markus Blatt, and Alf Birger Rustad. Hardware acceleration of high-performance computational flow dynamics using high-bandwidth memory-enabled field-programmable gate arrays. *ACM Transactions on Reconfigurable Technology and Systems*
REFERENCES

[Huang:2010:RCA]

[Hemmert:2010:FEF]

[Hubner:2012:ISI]

[Heisswolf:2013:VND]

[Istvan:2015:HTL]

[Iskandar:2023:NMC]
Veronia Iskandar, Mohamed A. Abd El Ghany, and Diana Göhringer. Near-memory computing on FPGAs with 3D-
REFERENCES

Iturbe:2015:MAH

Ienne:2023:ISS

Ioannou:2023:SOA

Ioannou:2020:UNA

Itturiet:2014:APE

[INF+14] Fábio Itturiet, Gabriel Nazar, Ronaldo Ferreira, Álvaro Moreira, and Luigi Carro. Adaptive parallelism exploitation under physical and real-time constraints for resilient systems. ACM Transactions
REFERENCES

REFERENCES

REFERENCES

Kim:2017:SSC

Kara:2021:PGC

Kim:2014:FPF

Kapre:2016:OSV

Karakchi:2023:NND

Keller:2009:ECC

Koc:2009:HDT

Kim:2014:USU

Koh:2010:CMP

Kroh:2019:EFG

Kyparissas:2021:LSC

Kapre:2017:HDR

REFERENCES

2017. CODEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

[Keilbart:2024:DIC]

[Krieg:2012:PMP]

[Kirchgessner:2015:LOF]

[Krautter:2019:MEL]

[Khan:2024:OSD]
REFERENCES

REFERENCES

REFERENCES

Leow:2013:AME

Lou:2023:FCF

LeGal:2016:FSM

Lam:2014:EFA

Liu:2017:TOF

Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu, Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim...
REFERENCES

Li:2023:ISS

Labrecque:2011:ASS

Luu:2011:VFC

Lusala:2012:STB

Li:2023:FPF

[LLL+23] Carol Jingyi Li, Xiangwei Li, Binglei Lou, Craig T. Jin, David Boland, and Philip H. W. Leong. Fixed-point FPGA implementation of the FFT accumulation method for real-time cyclostationary analysis. *ACM Transactions on Reconfigurable Technology...

Laforest:2014:CMP

Liu:2023:CK

Li:2024:ADC

Liu:2024:EFB

La:2020:FMS

REFERENCES

REFERENCES

[MCD+18] Paolo Meloni, Alessandro Capotondi, Gianfranco Deriu, Michele Brian, Francesco Conti, Davide Rossi, Luigi Raffo, and Luca Benini. NEURAghe: Exploiting CPU–FPGA synergies for efficient and flexible CNN inference acceleration on Zynq SoCs.
REFERENCES

Mehta:2013:UGE

Mao:2023:HPC

Morgan:2012:RFL

Moini:2023:VSI

Machado:2023:NNH

REFERENCES

Majzoobi:2009:TDI

Meyer:2023:MFD

Mbongue:2022:DMT

Matthews:2022:QDR

Malik:2022:HEA

REFERENCES

REFERENCES

[MWK+12] Kevin Martin, Christophe Wolinski, Krzysztof Kuchcinski, Antoine Floch, and François Charot. Constraint programming approach to reconfigurable processor extension generation and appli-

References

REFERENCES

REFERENCES

Petelin:2018:WEF

Prost-Boucle:2018:HEC

Prost-Boucle:2017:EVF

Proulx:2023:SFC

Park:2015:PIC

Papadimitriou:2011:PPR

REFERENCES

[PVA+09] Michael Pellauer, Muralidaran Vijayaraghavan, Michael Adler, Arvind, and Joel Emer. A-port networks: Preserving the

[Plavec:2013:ETD]

[Pang:2016:MKR]

[Qiu:2024:FFD]

[Que:2023:RRM]

[Quinn:2015:CFE]

Heather Quinn, Diane Roussel-Dupre, Mike Caffrey, Paul Graham, Michael Wirthlin, Keith Morgan, Anthony Salazar, Tony Nelson, Will Howes, Eric Johnson, Jon Johnson, Brian Pratt,

REFERENCES

[RLY+15] Yu Ren, Leibo Liu, Shouyi Yin, Jie Han, and Shaojun Wei. Efficient fault-tolerant topology reconfiguration using a maximum

[SCY+23] Zhengyuan Shi, Cheng Chen, Gangqiang Yang, Hailiang Xiong, Fudong Li, Honggang Hu, and Zhiguo Wan. Design space exploration of Galois and Fibonacci configuration based on Espresso stream cipher. *ACM Transactions on Reconfigurable Technology*
REFERENCES

[SFT+23] Stephanie Soldavini, Karl Friebel, Mattia Tibaldi, Gerald Hempel, Jeronimo Castrillon, and Christian Pilato. Automatic creation of high-bandwidth memory architectures from domain-specific languages: The case of computational fluid dynamics. *ACM Trans-
Sasdric:2015:ICS

Sabogal:2021:RFR

Sauvage:2009:ERF

Slogsnat:2008:OSH

Sabogal:2020:RFE

REFERENCES

REFERENCES

REFERENCES

Serre:2020:DBH

Saldana:2010:MPM

Siozios:2012:NFE

Skubich:2023:IRT

Stitt:2016:PSW

REFERENCES

REFERENCES

Tian:2010:HPQ

Tarahdar:2022:ACOF

Trochatos:2024:CCF

Thielmann:2012:MLH

Thomas:2015:THG

Tang:2016:AKM

REFERENCES

Tili:2017:RPG

Tang:2020:PSM

Tao:2023:LGL

Tatsumura:2018:EFM

Tian:2023:SSA

Tan:2015:SHP

[TZWZ15] Guangming Tan, Chunming Zhang, Wendi Wang, and Peiheng Zhang. SuperDragon: a heterogeneous parallel system for ac-
REFERENCES

Ul-Abdin:2016:RCF

Umuroglu:2019:OBS

Underwood:2009:SSL

Ulusel:2014:FDE

Ueno:2023:VVC

REFERENCES

REFERENCES

[Wu:2023:TEA] Guiming Wu, Qianwen He, Jiali Jiang, Zhenxiang Zhang, Yuan Zhao, Yinchao Zou, Jie Zhang, Changzheng Wei, Ying Yan, and
REFERENCES

REFERENCES

REFERENCES

Yu:2016:OAH

Yasudo:2021:APE

Yu:2009:VPS

Yang:2017:FSA

Yu:2018:IDC
REFERENCES

Yang:2021:BWB

Yoo:2010:IRR

Yang:2024:HQQ

Yoshimi:2017:PPJ

Yang:2023:HOF

REFERENCES

Yan:2011:FBA

Ziener:2016:FBD

Zhao:2009:TMB

Zhang:2012:PSF

Zhang:2022:RFH

REFERENCES

[ZHL+21] Zhen Zhou, Debiao He, Zhe Liu, Min Luo, and Kim-Kwang Raymond Choo. A software/hardware co-design of crystals-dilithium

Zhao:2023:ASC

Zhou:2022:ROS

Zhao:2018:FGM

Zhang:2019:RAD

Zhang:2021:CHP

Zhou:2020:AFR

Zhu:2019:FAN

Zhang:2020:MRB

Zhang:2013:FBA