Abstract

This bibliography records books and other publications about virtual machines.

Title word cross-reference

32.95 [Ano97a]. 5 [ALW15]. TM [Cza00]. d [XDL15]. HV^2M [CBZ+16]. ω [Arv02]. II [Syr07]. V^2 [DG05].

-dienste [WF03].

.NET [Fra06, Fra09, Hee07, Hog06, Hog08, Men03].

/dev/random [Fer11]. / [IBM88, Int88]. /CLI
[Fra06, Fra09, Hee07, Hog06, Hog08, Siv07, Wil06].
0 [Sim92, SCP93]. 0.9.0 [WR07]. 0.9.1 [WR08]. '01
[Ano00, Ano01a, Ano01b, USE01c, USE01d]. '02 [USE02]. '03
[ACM03b, Ert03]. '04 [Ano04a, Ano04b]. '05 [ACM05d, Vra05].

1 [Pub91, Sch94a, WDSW01]. 1-4 [Ano06a]. 1.x [KG00]. '10
[Ano10, See10, VSC+10]. 10.0 [Bau06b]. 10GE [HB12]. 11 [Ham76, PK75a].
11/40 [GBO87]. 1100 [Kam75]. 11th [ACM04a]. 12th [IEE85]. 14-16
[ACM06f]. 148 [Ano15]. 15th [ACM06b]. 16th [BW03, Ano93]. 17th
[IEE93a, IEE93b, JPTE94]. 19th [ACM03b, SS05]. 1st [ACM06c, Ano01a].

2 [Bri98, Com00, Com03, Kis08]. 2-Level [ZSR+05]. 2.0
[Fru06, Ng01a, SUN97]. 2000 [ACM00]. 2001 [ACM01b]. 2003
[RM03, ACM03a, ACM03b, IEE03, Int05a]. 2004 [ACM04a, ACM04b]. 2005
[ACM05a, ACM05b, ACM05c, Wil06]. 2006
[ACM06c, ACM06b, ACM06d, IEE06b, IEE06a, Int06b, Int06c, Int06a]. 2008
23272 [Int05b]. 26th [ACM99]. 29-state [Sig89]. 2nd [Ano02].

3 [McC08, PO09, vdK09]. 3.0 [MRB91a]. 3.1 [Bau06a, Skr01]. 3.5
[Fru09, Hog08]. 32 [Ano14b]. 32-bit [VED06]. 335
[ECM01, ECM02, ECM05, ECM06]. 360/40 [ABCC66]. 37th [ACM06d].
390 [DBC+00]. 3rd [ACM05b, ACM06c, Ano04a].

4 [Gal09b, G+06, Lav10, Low09, NOK+85]. 4-7 [M+06]. 43rd [ACM06a].
440 [R+02]. 4th [USE00a].

5 [IEE02, War05]. 5.2 [P+08]. 5.5 [Bau06c, LMG+14]. 5L [Mly09].

64 [De 06, Don06]. 64-bit [VED06, VED07]. 6th [USE01b].

7 [HH08]. 7th [Tho93].

8 [LYB14, She02]. 80 [BMWB86, BSUH87]. 84 [IT86]. 84/K [IT86]. '89
[ACM89].

'90 [IEE90b]. 91 [MR91]. '92 [IEE92]. '93 [GHH+93, IEE93b, LFBB94]. '96
[ACM96]. '99 [ACM99, USE99].

A-DRM [WIS+15]. A.NET [Men03]. Aachen [GHH+93]. ADEBUG
[ACM05a]. Ability [RI00]. Abstract [Wel94, KMMV14, CK87].
Abstraction [YLH17, Sch09]. Abstractions [BJH+16, MD12, Tsa14, UR15].
Accelerated [SCSL12, SWF16, BHDS09]. Accelerates [Ano03a].
Accelerating [BSSM08, MNS+14, ZLBF14, KKC+16]. Acceleration [DEK+03, PRRS16, Wu13, ZXX+16]. accelerator [GKT17, LKY+17]. Access [KCWH14, KP15, LZW+17, Bor07, CWC+14, CFSS+12, MN91, Oi08, PSC+07]. Accesses [WVT+17], account [Yd99], accountability [HPB06].

Adaptable [GIK+99, CGM17], adaptation [ZBG+05]. adapters [SAB+07].

Adapting [BADM06, SJW+13, WGLL13]. Adaption [BH15]. Adaptive [AS14, Brrh9, HHW10, HKKW13, JKB15, KHL17, LMV12, Lc16, LCT+14, LZW+15, OVI+12, PSZ+07, SXCL14, dSOK17, BB12, JNR12, KKB14, SYMA17]. adaptively [JDW+14]. Adding [HHV+02]. Administration [MJW+06, Bor07, Dav04]. administrator [TC10]. Advanced [A+04, Af91, fltN14, AAB+05c, B+05, G+05, IEE06a, MRM06, OH05, SS05, Fit14].

Advances [Ert05]. Adversarial [HLP+16]. advisor [ZLV+12, ZBS+15].

ahead [MA10]. Aid [KLF+15]. aided [ME87, SI81, TB14]. AINA [SS05].

AIX [Gal11, My09]. ALEEP [Sim92, SCP93]. ALEP-0 [Sim92, SCP93].

Alfa [WDSW01]. Alfa-1 [WDSW01]. Algorithm [BP99, LW12, ZHL16, Hog02, JGA+88, MM92, MS17, RH17, TLML14, Tho68, YLCH17].

Allocation [CW1L12, CPST14, Do11, HKLM17, Man15a, NMG15, PCC+16, VTM16, XSC13, CPST15, dCCDFD10, DEG+17, EdPG+10, GLLJ16, HMM17, JWH+15, My09, SGG13, ZG13, ZLH+15]. allocation-site-based [CPST15]. Alternative [MLG+02, vMAT14, SPF+07]. Alto [ACM01b].

AMDF4 [Ano14a]. American [Boa90]. among [CDN02, LTZ+14, TLCL13].

amplifying [DP11]. Analogy [Gal75]. analyses [HB13]. Analysis [ACM05a, BFG+14, HT98, HB17, HWB03, JKK+13, KNT02, LCK11, MM93, NMS+14, Ostu94, RI00, SM02, TKG98, WH99, ACM01a, AAH+03, BBM09, BMER14, ESS15, FX06, GP13, GPW03, LTZ+14, MD73, MD74, MSG01, SWSB11, TLX17, Win13, YJZY12, DHPW01]. Analysis-Driven [ACM05a].

analytic [Bar78]. analytics [KB17]. Analyzer [Ano03a, SHLJ13].

Analyzing [CVWL13, PV08]. Android
Angeles [ACM06c, IEE84b].

Animated [PCR89].

Annealing [RH17].

Annotated [MR04, RSF03].

Annotation [ANH00].

Announcement [Ano00].

Annual [ACM06a, Ano10, IEE85, IEE05, MS91b, Shr89, USE00a, USE01a, USE06, ACM06a].

Anomalies [FRM+15].

AOT [WKJ17].

APA [JNR12].

Apache [FRM+15].

API [Ano14c].

APL [Alf91].

Applets [Wes98].

Appliance [See10].

Appliances [BRX13, AEMWC+12, BSM+12].

Application-transparent [AW17].

Applications [Ano99, Ano03a, BAL15, Boa90, DJS+17, HHV+02, HC17, IEE05, NKK+06, Pfo13, PY93, SS05, TR88, AS76, Alf91, AC16, AB16, ACT94, ABC*07, BTLNBF+15, DBC*00, EF94, EMS15, GHD12, GHH93, HC14, HKD+13, HSC15, JPT94, KRGT+12, LCL14, dOL12, PTRM+15, R*13, RSLACBLB16, Sch13b, SGV12, SZ88, WDC10, YGN*06, ZBP05, ZNSL14].

Approach [BFG+14, BRX13, CFM17, CLW+14, Cox09, DPCA11, DM75, EMAL17, FPS+02, Jen79, JQWG15, KC16, KAH83, NSJ12, SDD+16, VN06, WJ10, WVT+17, XD17, ZTWM17, BML+13, BHvR05, CGL+08a, CGL+08b, CGL*08c, CBZ+16, GLLJ16, KW13, KKB14, LH13, LU04, MD73, MD74, PSC+07, XHCL15].

Approaches [BAL15, FMIF18, JK15, TIIN09].

Architecture [BBD91, BKMM87, BDR+12, CAF91, DAH91, G05, Gol73, Gum83, HW93, Hsu01, HWCH16, IEE85, KZB+90, Kec77, LMG00, LMG01, LGR14, MSS+15, PCC+16, PK75a, Rev11, SJV*05, SSB03, SN05a, SWF16, Sun99, TR88, TV12, Tur92, UH06, WIS*15, ZGW*06, Ano94, Ber86, BR01, CCL+17, CLDA07, DS09, GDSA+17, GCARPC+01, HIIG16, HOG02, HSM04, IBM88, IIK+06, JNS05, KWS0, LLL+12, LL14, MS01, MJ93, NOK*85, OJG91, RFBLO01, Ros06, SIJP11, SG09, Wel02, YTS14, YYP01, Yur02].

Architectures [ACM06b, BN75, EMAL17, EQ01, HW93, HHK94, Ian14, PG74, PY93, RD90, BGS13, DM93, EMII13, PG73, Skr01, ZYW+13, ZP14].

Architecture-aware [WIS*15].

Architecture(R) [MBBS13].

Architectures [ACM06b, BN75, EMAL17, EQ01, HW93, HHK94, Ian14, PG74, PY93, RD90, BGS13, DM93, EMII13, PG73, Skr01, ZYW+13, ZP14].

Architect [Dal97].

Area [BFG+14, Fis01].

Arizona [IEE05].

ARM [DN14, DLL+16, GNDB16, ZTWM17].

Aroma [Sur01].

Arquillian [Ame13].

Array [MBK+92, SV15].

Arrivals [KMM13].

Art [BGP00, SGB+16, BDF+03, MDD+08].
[MNS+14]. Breaking [GKB15, Rix08]. breed [Arm98]. Bridge [Men03].
Bridging [ACMO4b, FL13a, GSW+17]. Breaking [Vra05]. bring [XKY+11].
Bringing [BR+12, STS+13]. brokering [TMMVL12]. browser [FIF+15].
BSD [WF03]. Buch [KGG00, Tho08]. buddies [WTL5+09]. Budget [BB17].
Budget-Driven [BB17]. buffer [JADAD06b]. buffers [CFG+13].
bug [Ano15]. Building [AABB+05a, CGM17, DBC+00, DF96, HWCH16,
PEC+14, SJV+05, Sec10, TSP17, Nie12, SG10b, WH08]. Burstable
[WUNK17]. bursts [DP11]. bus [HHPV15]. Buying [YLN+17, ZLH+15].
buying-based [ZLH+15]. BYOD [DMG+15]. Bypass [LHAP06].
Bytecode [MO98]. bytecodes [SUH86].
C [Fra06, Fra09, Hee07, Hog06, Hog08, Wil06, Blu02, CWG00, G+01, Hee07,
Hog06, Hog08, JM08, Men03, Siv07, Wil06]. C# [G+01]. C/C [Blu02]. CA
[ACMO6a, ACM06c, Ano97a, IEE84b, IEE93a, USE01c]. Cache
[JQWG15, NsP16, RHR02, Boz89, JADAD06b, Oi05, RJK16, ZP14]. caches
[BLRC94]. Caching [KL11, MM93, LM99, XWW+17]. Calculations
[Bad87]. Calculus [AVB12, Wat86, Wat87, WK90]. Calif [ACMO1b].
California [ACM06a, ACM06c, Ano97a, IEE84b, IEE93a, USE01c].
Call [DEK+03, Lee16, PULO16, PVRR14, SSB+14a]. Call-site
[SSB+14a]. calling [HB13, SSB+14a]. calls [VMBM12]. Cambridge [USE93]. Can
[Cox07, GW07, THB06, Sig89]. Canada [ACMO6f, So83]. CAOS [Sch86].
Cap [HC17]. Capabilities [TV09, Amc13, AABB+05c, Fit14]. capable
Capture [Sur01]. capturing [BKC+13]. Card
[Siv04, SUN97, HM01, Req03, JCV99]. cards [TLBW12]. carry [Ame13].
carrying [FGC+05]. Cascade [YHL+15]. cascading [HL13]. Case
[GGG03, HWB03, Ian14, PK75a, HIIG16, MN03, Sig89, SIRP17, Vit14].
Case-Based [GGG03]. Cases [FG91]. Cassandra [FMR+15]. Catalyst
[Ano03a, GMM17]. Categories [Gail97]. causes [FRM+15]. CCAP
[JQWG15]. CCGrid [TL06]. CD [Joo06]. Cells [DAH+12]. cellular
[ALW15, Sig89]. Center [Ano93, Car14, CGC16, DY17, IEE90b, PCC+16,
WN17, XWJX15, HUWH14, LZW+15, Man15b, MRM06, MBM09, NTH+17,
VOS12, WDC08, WZ1+13, YPLZ17, Car13]. Centers
[BB13, CL17, EGR15, KMM13, LVM16, Man15a, Man16, SB16, YLH17,
ZHL16, dSFD16, AGH+15b, AGH+15a, ATS16, AMAB17, BB12, FLL+13,
IKU15, KTB17, PVRR14, RH17, RJK+17, WCY+17, WTLS+09].
centralized [Fis91]. Certain [JHS12]. Certified [Khn09, IIPB09]. CéU
[SIR+17]. Chain [EMAL17, RH17]. chain-based [RH17]. Chaining
[LLW+16]. chains [NRS92]. Challenges
[AFG+17, Nie12, SG10b, FJJK17, LDDT12, MA10, MA17, TIIN09]. change
[LL13]. Changing [Mac79]. Channel [LGR14, MN03, WXW15]. Channels
[Hu90]. Characteristics [SHW+15, CWH+14]. Characterization
[AMA+14, CGS06, IEE02, IEE03, ACM06c, RVJ+01]. characterize
Co-Designed [HS06, Wu13]. Co-evolution [WIDP12]. co-location [OG16].
co-scheduling [YWGH13]. COBOL [IBM88, Int88, TT96]. Cocoa
[YLN+17]. Code [AC98, CDN02, Dom80b, Fra83, GFH82, GFH83a, GFH83b,
RJK16, VNL+83, Ano15, EL98, FCG+05, HK07, HLW+13, JM08, NG13,
PV08, tTR82, UTO13, WKJ17, WGF11, Cox12]. code-copying [PV08].
Codesign [KAJW93]. CodeWeavers [Ano03b]. Coding [Hsu01].
Cognitive [AAJD+16]. Coherence [YVCB17]. coherent [LKY+17, ZP14].
Cold [BZD17, WGF11]. Collaborative [IEE06a, XWH+16, ZCG+17].
Collecting [DS16]. Collection
[ADM98, Ano03b, BZD17, Hsu01, SHB+03, DEE+16].
Collection-Oriented [BS90]. collections [BDT13, SV15, SV17]. Collector
[GT8+15, WK08]. Collectoren [Sch13a]. collectors [Sch13a]. colocation
[WTLS+09]. Colorado [USE00b]. Comandos [MC93, CTS+93].
Combating [GG11]. Combinatorial [HMH17, ZG13]. Combining
[BPP+17, RSLAGCLB16, YJZY12]. COMMA [ZNSL14]. Commandos
[MC93]. Commodity [Ros99, ZTWM17, BK14, CGL+08a, CGL+08b,
CGL+08c, CLDA07, TLBW12]. Common
[CK87, Cro93, Int05a, Int05b, Int06a, ECM01, ECM02, ECM05, ECM06,
Int06b, Int06c, Int06a, MR04, PW03, RSF03]. communicating [SK13c].
Communication [CL17, CK06b, CK06e, DJ77, HW15, Jen79, RLZ+16,
YC98a, YC98b, BML+13, DSC+08, DJ76, GI12, Tho93].
Communications [NKK+06, CFVP12, HSC15, MN91]. communities [ACM04b]. community
[AAB+05a]. compaction [WK08]. Comparative [LJL+15, Van98].
Comparing [Gal11]. Comparison
[Do11, EDS+15, NG01a, NG01b, QC07, AA06]. Compatible [ZFL15].
Competition [CRZH15]. Competitive [BFG+14]. Compilation
[ACM06b, Cla97, FM90, JK13, KS13]. Compiler [GFH82, Har77, FS89].
Compiling [BS90, BUH87, Ode87, Wak99]. Complete
[Bod10, Fis09, LJN+00, War02]. completion [MNT14]. complex [Sig89].
Complexity [SSH17, Bod88, FS08, GLK+12, Sub08]. Compliant
[CF00, HWCH16]. Component [Ano03b]. components [HPHS04, IKU15].
Composable [JHE14]. Composed [Wel94]. Composite [DKW15].
compositional [Yel99]. compound [VMBM12]. Comprehensive
[LV99, PCW+16, TFLcC15, GP13, MA17]. compressing [JDW+14].
Compression [HKKW13, SHT11]. compromise [CD01]. CompSC
[PDC+12]. Computatio [HW93]. computation
[CMP+13, CKP+93, KJJ+16]. Computational [THLK10, Wün13, YQZ14].
computations [Kra90, NOR15]. Compute [GSW+17, KL13]. Computer
[ACM81, ACM06d, Ano93, Arnu78, BG89, CCO+05, DM75, Hsu01, IEE85,
IEE90a, IEE91, IEE05, Nel04, PBR+90, SS75, SI81, Tur92, WR07, WR08,
ZR06, Agr99, BR01, DG05, DTH07, FFB+00, GE85, GD08, Hgd02, Jou85,
Jou07, KW80, LPB+07, ME87, MS01, Poh90, Ros06, Skr01, Sp06, SS72,
Sus76, WO75, YYPA01, Yur02, Mon97, Osb01, War11]. Computers
[BP99, BKMM87, BS90, KD78, MSS+15, HP77, SGGB99, SGGB00].
Computing
[ACM98, ACM04b, ACM05b, ACM06e, Abr80, BHEP14, CWL12, CPKL17, CFM17, DDS’94, DPCA11, Gei02, IEE96b, IE04, IE06a, KC16, KGZ’04, LCK11, LW12, MSG14, MO98, NSJ12, PCW’16, PXG’17, PS16, RCM’12, RSNK17, SCSL12, SEF’06, TLC06, USE93, Vog03, WB81, XSC13, YLN’17, ZL16, ZZF06, ZAI’16, Ano96, AMA’14, BS96, CD14, CDM’10, DQR’13, DCMW17, Fis91, FF96, Fu10, GLA’08, JPTE94, KHL17, KSO’15, LBZ’11, LLW’12, LCL14, LTZ’14, LP11, LPBB’18, MNA16, McG72, McK11, MUKX06, M’06, MA17, PSZ’07, QZDJ16, RQD’17, Rob06, SJW’13, SAGS13, SB10, TMLL14, WH08, XTB17, ZLZ13, ZWHC17].

computing-an [FF96].

Concepts
[PPTH72, Agr99, Don88, MS01].

Concerns
[VN08].

Concurrent
[GMP89, Har77, KD78, IT86, YWGH13].

Conditioned
[WC01].

Conference
[ACM81, ACM90, ACM96, ACM97, ACM00, ACM01b, ACM04b, ACM05d, ACM06a, ACM06b, ACM06f, Ano93, Ano99, Ano01a, Ano02, Ano04a, Ano06a, BW03, DC15, IEE84b, IEE93a, IE05, LCK11, Mar81, MS91b, MR91, SoS83, SS05, Shr89, USE99, USE00a, USE01a, USE06, AC05c, ACM06e, IE06b, JPTE94, USE85, USE86, ACM00, IE08].

Configurable
[WJGA12].

Configuration
[BRX13, Lar09, A’04, FL13b, SMA’10].

configure [Car14].

Consuming
[AL05, Rul07].

confirmation [OG16].

Conflict
[BLRC94].

Congestion-Aware
[YLH17].

Conserving
[DP11].

considerations [G’05].

Considered
[NMHS15, WC01].

can be considered [LTZ’14].

Consistency
[FRM’15].

Consistent
[DJS’17].

Consolidation
[BB13, IVM16, PZW’07, SBK15, AGH’15b, ATS16, AMAB17, BB12, BB15, CD14, HMHI17, HZZ’14, gKEY13, KCV11, LBL16, LYY17, LL14, LDDT12, M15b, NTH’17, R’15, SN12, WCC’16a], consolidation-aware [WCC’16a].

constituent [RHR02].

Constrained
[EGR15, LTE12].

Constraint
[LFBB94, DQLW15].

Constraints
[BB13, KKS12, SZ13].

Constructing
[DM93].

Consumption
[DSM14, MV16, FFB’00, DPBK16, RJK16, VED07].

Container
[SP’07, YLN’17, SG10a, Str13].

Container-Based
[YLN’17, SP’07].

Containerization
[HS17].

Containerized
[HS17].

containers [Ros14].

Containment
[CLW’14].

Content
[CWH’16, GVI13].

Contention
[JQWG15].

Contention-Aware
[JQWG15].

contents [BTNLBF’15].

Context
[DMG’15, TMV12, vLSM01, HB13, SSB’14a, SM01].

Continuous
[DL89, TSLBYF08].

Continuum
[Bad87].

Contraction
[Par79].

Control
[AGLM01, Att79, CL16b, HH’16, LZ15, PSB11a, RSNK17, Sch94b].
Control-Flow [WJ10].

Conversion [Ano93].

Convergence [RM03].

Convention [GBO87, IBM94, YTY00].

Conversion [GBO87, IBM94, YTY00].

Cookbook [Car13, Car14, G06, P08, TH10].

Cooperative [KJL11, GLLJ16].

Coordinated [BRX13, LZ15, CRB12, KKJ13, NS07, BBMA91, MSS91].

coordinating [ZNSL14].

Coordination [ABV12, CRG16, Tho93].

COOTS [USE99].

Copley [USE01a].

Coprocessor [LRZ16].

Copy [AGJS16, HDG09].

core [CMP07, DQR13, KW13, PNT12, SK13b, YTS14].

Correction [Lee16].

Correspondence [BDJdS02].

Cosmology [Nel04].

Cost [AMH16, Dre08, KJM+07, LBZ+11, OMB+15, SJRS+13, WCY+17, ZLZ15].

cost-efficient [OMB+15].

Costs [ZHW+17, FLL+13].

count [XWX+17].

counter [NB11].

Counteracting [VT14].

Coupled [WN17].

course [AL05, Don88].

courses [BB06, GD08].

Cover [Arm98].

Coverage [CSS+16].

Coverage-directed [CSS+16].

covert [WXW15].

CPU [BS014, HBo8, JG+11, KMi13, LWC+17, Sk+01, SK13c, WGLL13].

create [Fi14].

creation [CK06b, CK06e].

Credit [KP15, KCS14].

Credit-Based [KP15].

crisis [AT16].

criteria [ATS16].

Critical [Ano15].

Criticality [WLMD16, LWMT14].

Crop [UBF+98, BDF+98].

Cross [JR02, JXL+12, SWF16, WLW+15, WCC16b, AW05, BKC+13, CWH+14].

Cross-Architectural [JR02].

Cross-Architecture [SWF16].

Cross-ISA [WLW+15, WCC16b, CWH+14].

Cross-Platform [JXL+12].

Cross-thread [BKC+13].

Crosscut [CLG+10].

CrossOver [Ano03b].

cryptographic [QZD16].

cryptography [RY10, VDO14].

CSDA [War11].

CSDP [War11].

CTO [Cre08a, Cre08b, Cre09, Cre10b, Cre10a].

CUDA [PRS16].

Current [AH12, RG05].

Curse [Kot10, Kot11].

Customer [PPO14].

Customer-oriented [PPO14].

Customizable [LJFS17].

Customization [PC+16, CGV10].

customized [HB13].

CVM [DSC+08].

CyberGuarder [LLW+12].

DAI [AKK+07].

dann [B+07].

Dana [Ano10].

Dancing [DLX+17].

Dark [Fer11].

Darling [MR91].

Dartmouth [Lee86].

Dartmouth-Smalltalk [Lee86].

Data [BFHW75, BB13, CL17, CGC16, DY17, EGR15, FL13a, GTS+15, IEE84b, KP15, LVM16, Man15a, Man16, Nel04, PCC+16, SB16, UVL+13, WN17, Wel94, WXJX15, YLH17, ZHL16, dSdF16, AKK+07, AGH+15b, AGH+15a, ATS16, AMAB17, BK14, BB12, CKR17, CFS+12, Cla05, DXM+17, FLL+13, GE85, GH91a, HN08, HUWH14, IKU15, KTB17, KJJ+16, KSLA08, KB17,
LDL14, LZW+15, Man15b, MRM06, MBM09, NTH+17, PVR14, PRB07, RH17, RJK+17, She91, TSLB-YF08, VOS12, WKJ17, WDC108, WZV+13, WCY+17, Wo199, WTLS+09, WCG+14, XXZ+13, YPLZ+17]. data-flow [GE85].

data-parallel [She91]. Database
[WK90, BBS06, CSSS11, ECAE13, MN91, MR+13, PTM+15, SI81, SMA+10].
databases [GDSA+17]. Datacenter
[BBM+15, KGGS17, BCP+08, GTGB14, MSG+12, SG10b, ZLZ15, ZWC+14].
datacenter-scale [MSG+12]. Datacenters
[KL14, GLLJ16, LPB+18, WRS13]. Dataflow [HT98]. Datapath [TSP17].
Dataplane [BPP+17]. DBT [KS13]. DDG [PGLG12]. DDG-based [PGLG12].
de-duplication [CLC+13]. de-facto [Rus08].
dead [SK13a]. deadline [DQLW15]. deadlocks [PRB07]. Death
[NOT+17]. Debian
[CK06a, CK06b, CK06k, CK06q, Bau06a, CK06a, CK06b]. Debues [Ano03b].
Debugger [MZG14, RB01, Sun99, But94, HH05]. Debugging
[ACM05a, FS12, HHH04, Cia07, JHE14, KM13, KK79, PMC05]. December
[ACM05b, HHK94, IEE05, M+06]. Decision
[CHW12, DJ77, DJ76]. Decisions
[HKKW13]. Declarative
[CRG16, Dan86]. Decomposition
[JK15]. dedicated [KOY05]. Deduplication
[Li14, MJW+14, PP16, CWC+14, GMK17, HOKO14, XZZ+16].
Deduplication-Based [MJW+14]. deep [GTK17, HcC14]. defending
[CVWL13]. Defensive [BDJdS02, Coh97]. Defined
[AFG+17, CL17, CPKL17, RN15, LLW+16, ALW15, LJR12, LWL16].
Defining
[DL89, Lot91, BMWB86]. Definition
[Dom80b, SSB14b, SMO84, EMS15, SSB01]. Definitive [Oak14, Chi08].
Defragmenting [SGV13]. Degree [KMM13]. DejaView
[LB07]. Delay
[RSNM17, RKKR17, WCY+17, ZRS+16, LCL14]. Delay-cost
[WCY+17]. delay-sensitive
[LCL14]. Delivery [TFtLC15]. delta
[SHTE11]. Demand
[CWL12, KJK+13, MSS+15, SFC+06, ZZF06, DEG+17, J+05, JCZZ13, LZW+15, SGV13]. Demand-based
[KJK+13, SGV13]. Denelcor
[Dun86]. denotational [Arv02]. Denver [USE00b]. Deoptimization
[KRC14]. Dependability
[FP14, VW08]. Dependable [DPCA11, SJW+13].
dependences
[BKC+13]. Dependent
[BP99]. deployed
[RY10]. deploying
[R+13]. deployment
[AAB+05b, Bt07, CGV10, SASG13, ZLZ13, ZLY+12, ZBS+15]. derivation
[MSZ09]. Derivative
[Fro13]. derived
[Int06c]. Deriving
[HWB03]. Design
[ACM06a, AC16, Ano03a, Ano03b, fLTNW14, ACA16, BGS9, CPS17, Clo85, DAI+12, Das91, Dom80a, DLS+01, ESY+17, GFB+92, JNR12, JJ02, KGGS17, Kut92, LH16, Mar08, OH05, PCW+16, SIR+17, SGGB99, SGGB00, SM02, Sur01, WC03, WCG05, WP97, XCI+14, ZSZ07, ZAI+16, AM16, Blu02, BT15, Bur02, CARB10, Car14, DN14, DCA04, GR80, HH05, HH13, Les74, Lia05, MSCK92, Oi05, PMC05, Pul91, SI81, SNV10, SMSB11, SJW+13, Tur84, CMP+07]. Designed
[HS06, Wu13]. Designing
[Par79, TGCF08]. DesignJet
[MSCK92]. Designs
[DMS02, RGSJ17].
DVM [MSG+12, MSG14]. Dynamic [Abr80, AMAB17, BB13, BHI15, DHPW01, DMG+15, GSN93, JWH+15, Lee16, LB98, LJL+15, MDGS98, NMG15, PTHH14, SZW+16, TML14, TB17, TV12, Vac06, WWH+16, WCSS09, XSC13, YLN+17, ZFL15, ZWL09, ABDD+91, BK14, BB12, BB15, BZA12, CSV15, CPST15, GPW03, HLW+13, HB13, JK13, JYW+13, KRCH14, KJM+07, LMV12, LJL12, My09, NTH+17, PGLG12, RH17, WRsdM11, WBS+15, Wu13, WWH+17, XH90, YWF09, vKF13].

Dynamically [MZG14, BLRC94, BDT13, HH13].

Dynamics [YWCF15, ACT94].

Efectively [HLW+13]. Eective [HLW+13]. Ease [Par79]. eBay [Joo06]. ECMA-335 [ECM01, ECM02, ECM05, ECM06]. ecological [KSSG16]. economic [CSV15]. Edge [BBM+15, CPS17, Cre10b, RSNK17, Sar16, Cre10a]. Edition [KGG00, LYBB14]. Editorial [Sed07]. Editors [FDF05, KS08b]. EDSAC [CK96]. Education [ACM06d, AJD09, GLA+08, HMS04, DTW07]. educational [WDSW01].

Einfuhrung [CK06a, CK06b, CK06c, CK06d, CK06e, CK06f, CK06i, CK06j, CK06k, CK06m, CK06n, CK06p, CK06q, CK06r, CK06s]. Einsatz [Zim05]. Einsatzmoglichkeiten [Zim06].

Embedded [Web10]. Embedded

[BHI15, DEK+03, Kut92, Mon97, NKK+06, SMK02, WLW+15, AH12, Caa00, CT03, CGV10, HK07, Ive03, KKC+16, MBBS13, RJK16, RMB02].

Embedded-System [Kut92]. Embedding

[AM16, BL17, OMB+15, YLH17, AO16, BCC+15, CRB12, EMI13, JK15, KKM+13, NTH+17, SZL+14, WHC16]. EMF [WIDP12]. emulate [tTR82]. emulated [THC+14]. emulating [VdlFCC97]. Emulation

[Ano03a, BKMM87, JN15, KKK17, BB08, CWH+14, GD08, Kam13, YJZY12, Bro89]. emulations [Bod88]. Emulator [Ano14b, Bru07, CFH+79,
CFH+80, CK87, FS11, MZG14, WCC16b, Bar06, KS13, Les74, She02.

Emulators [Ert03, HHC+16, Ert05]. Enable [XD17]. enabled [SVG12, VOS12]. enabler [DPW+09]. Enabling [HD16, KMK10, NOT+17, OVI+12, TY14, WHD+16, LSS04]. Encrypted [HB17]. Encrypting [Pro00]. End [Ram93, SS17]. end-users [SS17].

ENIAC [ZR06]. Enlightened [AGJS16]. ensuring [Req03]. Enterprise [ADG+92, FPR+06, G+06, LVM16, Hal08, NS07, WH05, Ano03a, Gal11]. enthüllt [Joo06]. Entrepreneur [War11]. Entropia [CCWY05]. Entropy [TVO92]. Entropy-Driven [TVO92]. enumeration [SSH17]. Environment [BGM70, CL16b, GIK+99, Gen86, GGG03, HW93, IEE06a, J+05, JADAD06a, LWC+17, LW12, Mac79, RT93, TMV12, XSC13, AAB+05b, BH13, CLDA07, CWG00, Don87, GD08, GMR93, Hal09, HL13, JWH+15, JXX+10, JADAD06b, KW13, Mcg72, MST+05, MPF+06, TMLL14, TT93, Van06, XZZ+16, ZBP05, ZLLL13]. Environments [ACM05d, ACM06f, Cwl12, Gkxk13, HHW10, Hkw13, Kgz+04, RGJS17, SV13, ZZF06, ATS14, BCR+15, BRIdM10, BDK+08, CFVP12, DP11, DEG+17, FMI18, GMK17, HOK014, HC12, KSO+15, KKB14, PSZ+07, SJW+13, SGV12, TRG13, VDO14, WWL13, XHL+13, YLK+10]. Ephemeral [WHD+16]. equivalent [TLX17]. Erlang [TCP+17]. Error [XH16, XHL+13]. Ersatz [Hin08]. erstellen [Zim06]. Erstellung [See08a]. ESA [GH91a, OJG91]. ESA/390 [OJG91]. ESA/XC [GH91a]. eServer [R+02, G+05]. ESPRIT [RD90]. Essentials [SNS03, MBM09, VSC+10]. Estimation [DSM14, KSSG16, OBSR16, LBL16]. ESX [AAH+03, D+04, MW0H05, OH05, Ru07, R+02, Zim05, Hal08, MBM09, Wal02]. ESXi [GBK15]. ET6 [Pul91]. ET6/1 [Pul91]. Eucalyptus [AMA+14]. European [ACM04a]. EUROTRA [Pul91]. Evaluating [De 06, GLK+12, HW93, RCM+12]. Evaluation [AD11, CFH+79, CFH+80, DAH+12, HB12, KD78, PZB+07, SHB+03, SHT11, TFrLcC15, VMBM12, ACM06c, ALW15, DSSP06, FSH+13, GE85, VW08, WKT08, WHH+17, YZW+13, Hin08]. evaluations [SJW+13].

15
Event [DLX+17, MV16, YP15]. Event-driven [DLX+17]. events [LC13].
everywhere [Tre05]. Eviction [AGJS16]. Evil [HCJ07]. Evolution
[HH79, Kim84, SL89, SL16, AGSS10, C01, GBCW00, Kro09, WIDP12].
Evolutions [BAL15]. evolving [Ano96, FF96]. examination [HN08].
Examining [NL00]. exceeding [GHS16]. Excelsior [MLG+02].
exception [Sal92]. Exceptionization [YKM17]. exceptions [Ven97b]. exclusion
[SGS92]. Executable [MP01]. executing [ACT94, Lot91]. Execution
[ACM05d, ACM06f, HWB03, KGZ+04, LWC+17, MM93, MO98, PY93, RT93,
SV13, vLSM01, AS76, AABt05b, BFC02, BDK+08, CLDA07, Fre05,
GCARPC+01, OJJ91, SM01, TT93, ZL13]. Execution-Driven [PY93].
executions [KM13]. Exercise [Lee86]. existential [AT16]. Existing
[JMSLM92, LTT92]. exit [HLW+13]. exitless [AGH+16]. exokernel [Cof99].
Expansion [Par79]. Experience [San88, RM03, CARB10, CBLFD12, RSC+15,
TGC08]. Experiences [NV05, SCD90, Tsa14, CMP+07]. Experimental
[Bro89, ACM06c, FSH+13, HL13, SS72]. Experimenting [Taf11].
experiments [Ker88]. Expert [Hee07]. ExpEther [NMS+14]. Explaining
[YYL+15]. Exploitation [SSMD10]. Exploiting
[CRZH15, EdPG+10, GLS15, SJS+17, YTS14, WTLS+09]. explorative
[AHK+15]. explore [Fit14]. Exploring [SE12, SLdLB15, YBZ+15].
Expo [Ano06a]. Express [Ng01a, Ng01b]. Expression
[Cox07, Cox09, Cox10, Wat86, Wat87, Tho68]. Expressions [KP99].
Extended [DC15, Gum83, MT16, MT17, IBM88]. Extending
[CT03, DLM+06, PTHH14, YTY00]. Extensible
[FLCB10, TSP17, DCA04, YZY12]. extension [DCP+12]. Extensions
[Fis01, SCP93]. EXTERIOR [FL13b]. external [FL13b]. ExtraV
[LY+17]. ExtraVirt [LRC05]. extreme [NOR15]. eye [Guy14].

FACILE [GMP89]. Facilitating [cCWS14, SWcCM12]. Facilities
[Gum83, GH91a, MN91]. Facility [MLA83, SM90, SZ88]. facto [Rus08]. Fad
[Fra08]. Failure [Fu10, MSI+12]. Failure-aware [Fu10]. Failures
[YYL+15, PBYH+08]. Fair [CL15, GLJJ16, HSN17, RZ14]. FairGV
[HSN17]. Fairness [SKJ+17]. Falle [Mar08]. familiarized [Ame13]. Farms
[Do11]. Fast [CSS+13, CLW+14, Cox07, CHPY17, HSN17, Kour11, NOT+17,
PEL11, ZLW+14, KMMV14, KLJY15, MSZ09, SK13b, SV15].
Fast-Spreading [CLW+14]. FASTT [D+04]. Fault
[FK03, JKL+10, Kim84, YWR+14, YYL+15, JZXL11, SNV10, YLH14].
Fault-Tolerant [FK03, Kim84, YWR+14, SNV10]. faults [LRC05]. FCP
[SAB+07]. Fe [ACM00]. feather [YGN+06]. feather-weight [YGN+06].
feature [Bag76]. Features [Gal11, Bau06b, Bau06a, IT86]. featuring
[Wil06]. February [Ano10, USE01b]. federated
[AO16, CFVP12, dCCDFdO15]. federation [LWLL16]. Fedora [HH08].
feedback [NG13, ZBG+05]. feedback-control [ZBG+05]. feedback-directed
[NG13]. FGP [FG91]. FHPCN [M+06]. Fiber
guided \cite{HLW+13, SSH17}.

H \cite{JAS+15, Web02}. **H-SVM** \cite{JAS+15}. **HA-VM** \cite{ZTW17}. hacking \cite{Spi06}. **Hadoop** \cite{ZRD+15}. **Handbook** \cite{Bod10, Fis09, War05, Joo09}. **Handbuch** \cite{Joo06, WF03, Bod10, Fis09, Joo09}. **handler** \cite{Sal92}. handles \cite{Ven97b, Ven97c}. **Handling** \cite{SB16}. **hands** \cite{MDD+08}. **hands-on** \cite{MDD+08}. **Harbour** \cite{MR91}. **Hardware** \cite{AE01, CWS12, Cla97, HHV+02, HWF07, Hsu01, JSHM15, JAS+15, KAJW93, LH16, LZW+17, Mac97, NSL+06, OT97, PvsD08, SYB12, SWF16, WSC06, YVCB17, ZTW17, vD06, AA06, AJH12, BHDS09, CBGM12, FP14, HH13, HW77, HWF07, Hsu01, JSHM15, JAS+15, KAJW93, LH16, LLLE17, LM99, LMG00, LDL+08, MUKX06, M+06, MRC+13, RQD+17, SB10, SPF+07, WXW15, WWH+17}. **Hardware-Assisted** \cite{JSHM15, JAS+15, AJH12}. **Hardware-Accelerated** \cite{SWF16}. **Hardware-Based** \cite{PvsD08, KJM+07}. hardware-translation \cite{I06, I08}. **Hardware/Software** \cite{KAJW93, LH16, HH77, HWF07, Hsu01, JSHM15, JAS+15, KAJW93, LH16, LLLE17, LM99, LMG00, LDL+08, MUKX06, M+06, MRC+13, RQD+17, SB10, SPF+07, WXW15, WWH+17}. **Harmful** \cite{NMHS15, WC01}. **HARNESS** \cite{BDF+99, GIK+99, MDGS98}. harnessing \cite{GLV+10}. hash \cite{SV15}. hash-array \cite{SV15}. **Hawaii** \cite{MS91b, Shr89}. **HBench** \cite{ZS01}. header \cite{VED07}. Healing \cite{BHI15}. **Health** \cite{ZL16}. **heap** \cite{CSV15, CH08, LDL14, LLS+08, TLX17, WSAJ13}. hedging \cite{RY10}. **Helix** \cite{Ano03a}. help \cite{Car14, Men03}. **HEP** \cite{Dun86}. **Heterogeneity** \cite{GLS15, XLJ16, WC03}. **HeteroOS** \cite{KGGS17}. **HeteroVisor** \cite{GLS15}. Heuristic \cite{BL17, XH90, CD14, KMT14}. heuristics \cite{ATS16, BB12, Man15b}. HI \cite{Shr89}. **HICAMP** \cite{CFS+12}. hidden \cite{CLS07}. **Hierarchical** \cite{DM75, YWF09}. **Hierarchy** \cite{SBK15}. **High** \cite{ACM98, ACM04b, Bad82, CPP+17, CW03, DMS02, DYL+12, Han16, Hoo02, IEE96a, IEE96b, KHCWH16, KKT17, KLM13, LCK11, LMG01, LHZ12, LHAP06, MLG+02, RCM+12, RB01, SD01, SCSL12, SV13, VOG03, WQG15, WCC16b, WYCF15, dGG+17, Ano96, BML+13, DQG+13, EMS15, FF96, Fu10, G+01, GTN+06, HBOC00, LBZ+11, LLL11, LM99, LMG00, LDL+08, MUKX06, M+06, MRC+13, RQD+17, SB10, SPF+07, WXW15, WWH+17}. **High-Assurance** \cite{LJZ12}. **High-availability** \cite{Fu10, LDL+08}. **high-bandwidth** \cite{WXW15}. **High-Fidelity** \cite{KKTM17}. **High-Level** \cite{DMS02, RB01}. **High-Performance** \cite{ACM98, IEE96a, KHCWH16, LMG01, SD01, SCSL12, WCC16b, dGG+17, Han16, Hoo02, LLL11, LM99, LMG00, MUKX06, SPF+07, WWH+17}. **high-performing** \cite{HBOC00}. **Higher** \cite{BW03}. **Highly** \cite{KD78, ZFL15, CARB10, CMG17, GI12, GVI13, TGGC08}. **Hilton** \cite{IEE96b}. **HipHop** \cite{AEM+14}. **histograms** \cite{CL14}. **History** \cite{SKJ+17}. **History-Based** \cite{SKJ+17}. **HITAC** \cite{KAH83}. **HIVE** \cite{Tay76}. **HLA** \cite{LCT+15}. **HLA-Based** \cite{LCT+15}. hold \cite{Yur02}. **Holders** \cite{War11}. **Home**

intelligente [PO09]. IntelliJ [Ano03a]. intensive [IKU15, VVB13]. Inter
[cCWS14, RLZ+16, BML+13, CBZ+16, SWcCM12, SBP+17, VOS12].
Inter-Application [cCWS14, SWcCM12]. inter-cloud [SBP+17].
inter-connectivity [VOS12]. inter-domain [BML+13].
Inter-Virtual-Machine [RLZ+16]. inter-VM [CBZ+16]. interact
[EGD03]. Interacting [SK13a]. Interactions [cCWS14, SWcCM12].
Interactive [LD05, MLA83, SS90, Ber86, HMS04, KKJL14]. Interconnect
[RCM+12, SKJ+16]. Interdependencies [LBF12]. Interface
[Cro93, SH04, Sun95a, Guz01, HP77, VL00]. Interfaces [Mac79, PST+15].
Interfacing [MC93]. Interference
[NBH08, XLL+14, ZRD+15, HL13, gKEY13, SS13, VVB13].
Interference-Aware [XLL+14, XLJ16]. Interferences [ZRZY15].
InterLISP [II79]. internal [SI81]. International
[ACM00, ACM05a, ACM05b, ACM06b, Ano99, BW03, IEE84b, IEE85, IEE93a, IEE96b, IEE02, IEE03, IEE04, IEE06b, IEE06a, LCK11, MS91b, MR91, Ost94, SS05, Shr89, Tho93, TLC06, ACM06c, JPTE94, M+06, HHK94]. Internet [Ano99, CK06b, KGG00, APST05, Ano03a, CHCC07, CK06b, CK06c, LLW98, Mon97].
Internetkommunikation [CK06b, CK06c, CK06d, CK06e, CK06f].
Internetprogramme [CK06b]. Internetprogrammen
[CK06c, CK06d, CK06g, CK06f]. Internship [HMS17].
interoperability [Men03]. interoperable [KKB14]. interposed [ZSR+05].
Interpreter [SMK02, Ber86, KMMV14]. interpreter/graphic [Ber86].
interpreter/graphic-simulator [Ber86]. Interpreters
[EG01, CEG07, EKLP12, EG03, Ert05, KKC+16, ZLBF14, Ert03].
Interpreting [Han05]. Interpretive [AS76, OJG91].
interpretive-execution [OJG91]. Interrupt [CL16a, TFtLcC15].
interrupts [AGH+16]. Intranet [Ano03a]. Intrinsics [PSBG11a, PSBG11b].
introduce [MS01]. Introduction
[A+04, CK06a, CK06b, CK06c, FDF05, KS08b, Sch94b, Sch94a, Wûn13].
introductory [BR01, Don88]. Introspection
[CCML12, CLcC13, DGLZ+11, FL13a, NBH08, Pfo13, SLdB15, WWMG06, FL13b, HN08, HcC14].
Introspection-based [CLcC13]. intrusion [AMA+11, LMJ07, MA17].
intrusions [JKDC05]. intrusive [ZXY+15]. Invariants [PEC+14].
invocation [Ven97c]. IOMMU [YWCF15]. IOV
[DYL+12, DCP+12, HB12, XD16, XD17, YWCF15]. IP [AM16, CF00]. Iron
[Ano05]. IronGrid [Ano03b]. irregular [AC16]. ISA
[CWH+14, DZ02, WLW+15, WCC16b]. Ischia [ACM06c]. ISDF
[M+06]. ISDN [KKG00]. ISO [Int05a, Int05b, Int06b, Int06c, Int06a]. ISO/IEC
[Int05a, Int05b, Int06b, Int06c, Int06a]. Isolated [Jen79]. Isolation
[WZL15, ZTW17, Cza00, GND16, MD73]. ISPA [M+06]. ISPAN
[HHK94]. ISSA [Ost94]. Issue [KM13, Yur02]. Issues
[AFG+17, AD11, KS08a, PZH13, SEF+06, Tur84, AGH+15a, BB08, PBB13].
Italy [BW03, M+06, ACM06c]. Itanium [Ano06a]. Itanium-based
[Ano06a]. iterators [ZLBF14]. IV [Int06c]. IVME [Ert03]. IX
[BPP+17, IEE97].

[AAAB06]. January [ACM99, IEE93a, Shr89, USE01b]. Japan [HHK94].
Java [ACM98, ACM01b, Ano00, Ano01a, Ano01b, Ano02, Ano03a, Sch13a,
USE01c, USE01d, USE02, Wol99, ADM98, Ame13, AT16, Ano97b, Ano97c,
Ano03b, APT01, ABC+07, AC98, AN900, BDF+98, BDHS09, BD01, BP01,
BP03, Bri98, BZD17, Caa00, CW03, CT03, CH08, Cla97, CDG97,
Cra98, Cza00, Dalxx, Dal97, DHPW01, DEK+03, DBC+00, DCA04, DLS+01,
EGD03, Eng99, EL98, Eug06, FFB+00, Fra98, FK03, GC+01, GGG03,
GCARPC+01, GPW03, GBCW00, HT98, Han05, HMK01, HOKO14, HWB03,
HB08, Ivo03, JR02, Jj02, Ju007, Ka97, KS13, LM99, LMG00, LB98, LV99,
LY97a, LY97b, LY99, LYxxa, LYxxb, LYBB13a, LYYB13b, LYBB14, MSG01,
MO98, Men03, MD97, MDxx, MLG+02, MB98, Mon97, MP01, NG13, OT97,
Oak14, Oi05, Oi06, Oi08, PTHH14, PRB07]. Java
[Qia99, RVJ+01, RHR02, R+13, Re09, SSK+02, SSB+14a, SD01,
SE12, SH04, Sch13a, SSMGD10, Set13, SMB11, SSB03, Shi03, SM01, SV12,
Siv04, Sni97, SSB01, SSB14b, SHB+03, Sun95b, Sun95a, SUN97, JCV99,
JST+13, SM02, Sur01, Tai98, To198, TO96, UFB+98, UR15, Van98,
Ven97a, Ven97b, Ven97c, Ven97d, Ven99a, Ven99b, VED06, VED07, VLO0,
WL06, Wgf11, Wk99, WH99, Wes98, Wm99, Won97, WWMG06, YC98a,
YC98b, YME05, YKM17, Yl99, YTY00, ZP14, ZS01, vLSM01, Ano97a].
Java-based [HOKO14, KS13, YC98b]. Java/CORBA [GCARPC+01].
JavaCard [BDJdS02]. JavaScript [AHK+15, CBLFD12]. Java
[LMG01, SMES01, CF00, RB01, VD00]. Javvy [GGG03]. JCloudScale
[ZLHD15]. JDMM [ZP14]. JET [MG+02]. JetBrains [Ano03a]. jetzt
[JGK00]. Jikes [AAAB+05a]. Jini [Jj02]. JiST [BHvR05]. JIT
[JK13, PHF+16, WJKJ17]. JIT-based [PHF+16]. JITs [KRC14]. JN
[NTH+17, RJK+17, WZV+13]. Jointly [LWL16]. Jon [Ano97a]. Jose
[Ano04b]. journaling [HC12]. JP2 [SSB+14a]. JPDA [Sun99]. JS
[AKH+15]. judgment [CSV15]. July [IEE06b, So93]. June
[ACM90, ACM01a, ACM01b, ACM05d, ACM06f, IE85, USE85, USE86,
USE01a, USE06]. JVM [Ano00, Ano01a, Ano01b, USE01c, USE01d, USE02,
AC16, CSS+16, DBC+00, Guy14, R+13, SV15, Sub08, Sub11, Ven99b].
JVMPI [Sun95a]. JVMs [BK14].

K. [Sch94a]. Kailua [Shr89]. Kailua-Kona [Shr89]. Kaleidoscope
[LFB94]. Kanazawa [HHK94]. Kanotix
[CK06c, CK06h, CK06l, CK06h]. Karlsruhe [RM03]. KDE
[KGG00]. Keeping [NP13]. Kernel [FL13a, HD16, Jj91, KZB+90, SM90,
SYB12, TY14, WLMD16, LW14, Ul97, VMBM12, KM13]. Kernel-based
[TY14, KM13]. Kernelized [WCC16b]. kernels [HPHS04, RMB02]. Key
AMA+11, CCL+17, DQR+13, RQD+17, SSU+12, TB14, XZ11]. Like [Abr80, SSOT17]. LILA [Dan86]. Limbo [Luc97]. limited [CH08]. Limits [WBB+16, vKF13]. line [SV17]. linguistic [UR15]. link [CRB12, JK15].

LINUX
[KGG00, Ano06a, CK06a, CK06b, CK06g, CK06i, CK06h, CK06j, CK06o, CK06p, Com00, Com03, DN14, Dav04, Fab13, G+06, GND16, MZG14, NV05, P+08, Ros14, Spr06, Spr07, VM12, Wun13]. Linux-Server [Mar08]. Linux/OSS [Ble10]. Liquid [Li14]. LISP [ACM90, CK87]. List [TT96]. List-based [TT96]. LITL [Lam75]. little [Men03, YYPA01]. Live [CL16a, DY17, LW12, YWR+14, Bir94, TF16, XH90, XTB17]. Loading [LB98, HSC15, WGF11]. Loads [LTE12]. Local [ADM98, Oi08, PCR89, HJ10, KMT14, Oi05]. Locality [HSC15, SZ88].

LXM+16, MSG14, Mac79, MS91a, Man16, MS70, MD97, MDxx]. **Machine**

[MDGS98, MKKE12, I179, NBH08, NBK16, NMG15, Neil04, NSJ12, PPTH72, PXG+17, Pfo13, PCC+16, PK75a, Pro00, Qia99, QT06, RG17, RLZ+16, Ren78, Ri00, RT93, Ros99, RG05, Ibs84b, SL14, San88, Sch94b, Sch94a, SSB03, SCP93, SSG90, SHZ+14, SHB+03, SVL01, Sun95b, Sun95a, SUN97, JCV99, TT96, TMV12, TY14, USE01c, USE01d, USE02, VTW16, Ven97a, VL90, WL96, WIDP12, Wak99, WH99, WB1, WWL+17, Wei94, WCGS05, WLD+09, WP97, XWJX15, XLJ16, YY+17, YY15, ZLW+14, ZRS+16, ZL16, ZCG+17, ZF10, ZHL16, ZJXL11, ZTMW17, Zty94a, Zty94b, dsIF16, ABR82, AS85b, AGSS10, AGH+15b, AAB+00, AAB+05a, Ano97b, Ano97c, AC98, BD01, BP03, BZD17, Caa00, CCWY05, CK87, Cla97, Coh97, CDG97, Cra98, Cza00, DCA04, DLS+01, Eng99, FS11, FFB+00, Fra98, FK03, Fuj91, GGG03]. **Machine**

[HT98, HM01, HWB03, HB08, I179, JR02, J156, JJ02, J156, KM13, LM00, LG00, LB98, LV99, LV97a, LY99, LYBB13a, LYBB13b, Men03, MB98, Mon97, MP01, QT97, Oi05, Oi06, PTTH14, PRB07, Ran02, RB01, SMK02, SSB+14a, SH04, Sch13a, SMES01, Set13, SMSB11, Shi03, SGV12, Sim92, Siv04, SSB01, SSB14b, SM02, Sur01, Tai98, Tol98, TO96, TR88, UR15, Ven99a, Wol99, WWWM06, vD00, Ano97a]. **Machine-Based**

[LW11, WB81, CGV10, WKT08, YZW+13]. **Machines**

[Ano75, BMS16, BP99, BDJsd02, BSSS14, Bee05, BB13, BRX13, CL17,
CWL12, CCML12, CWS12, CSS+13, CLI16a, CCO+05, CH78, CDN02, DSM14, DEK+03, Den01, DK17, DMR10, DKW15, Do11, EGR15, EGJS15, ECJ+16, Ert03, EDS+15, Gai75, G+01, GTS+15, Gun83, HKLM17, HB17, HS06, HPP15, Ian14, JE12, Jen79, JXL+12, JAS+15, JKJ+10, KCWH14, KIJ11, KP15, KA83, LZZ+15, LYY+17, LD05, LHP06, LW12, LJJ+15, Mac79, Man15a, MD12, MM94, PSBG11a, PS16, Rev11, Ros04, SD01, SCS12, SV13, SN05a, Sta97, SKI+17, Sup04, TV12, UT87, Vog03, WLW+15, WGL13, WZZ16, XSC13, XLL+14, ZRD+15, vLSM01, AAH+03, AGH+16, ATS16, AAM+16, AMAB17, AS14, BAC15, Bac11, Bag76, BML+13, BDF+98, BHvR05, Bel06, BB12, BB15, BBM09, BBS06, CGM17, CCL+17, CH08, Cra05, Cra06, CWdO+06, CLL+13, DDS+94, DC15, DEG+17, DQLW15, DSZ11, DCMW17, EGD03, Ert05, EL98, EMS15, FHL+96, FGLI15, FX06, Fu10, GI12, GVI13, Gol73, GLV+10, HMH17, HZZ+14, HDG09, JES+15, JGSE13, KSSG16, KRCH14, KBB11, LMJ07, LJL12, LQW+12, LC13, LTZ+14, LSS04, Man15b, MG13, MRG17, lTMAC+08, NK10, NOR15, PFI+16, PSBG11b, PM05, PBYH+08, PRS16, PV08, RH17, RHR02, SBJ14, SS13, SNV10, Sch09, SSN12, SJJ+12, SJW+13, SN05b, SSL+13, Ste14, Str13, SK13c, SLA+16, SHTE11, Syr07, TGC08, TMMVL12, TDG+06, TtLC13, VT14, VED07, WQG15, WXZ+17, WCS06, WSVY09, WRsdM11, WRs+15, XHCL15, WX+17, XTB17, YC98b, YWF09, YWH13, ZBG+05, ZWHC17, ZWL09, ADM98, BHDS09, CT03, Clz97, MLG+02, PEC+14, SM01, UF+98, VED06, YC98a, ZS01.

macro [Wel02].

macro-architecture [Wel02]. Made [Ste05]. Mail [Joo06]. Main [AW17, AMH+16]. mainframe [GBO87]. Mainstream [Uh06, BBL08].

Manageability [Gua14]. managed [CBGM12, CFG+13, RJK16].

Management [AW17, DMR10, HC17, KGGS17, KL14, Lar09, LJJ+15, LCFL12, LX+16, MBW86, MDGS98, SMES01, SDD+16, TB17, WIS+15, WLW+15, WGL13, AKH+15, ATSE16, BAC15, Beg12, BBMA91, BHDS09, BN89, Ch08, Cla05, Fit14, Fu10, GTGB14, GLK+12, HB13, IMK+13, KCCK15, KB17, LSS+08, MS00, MBA+12, NS07, dOL12, RH17, RP07, RJK16, SG10b, SWC08, TRG13, Wal02, WDC08, WVL13, WSC06, WSVY09, YLCH17]. Manager [Car13, Car14, KMT14, Apr09, MBA+12]. Managing [BB13, KGZ+04, BCF+08, J+05, YLHJ14]. Manual [CRZ83]. manufacturing [LLS14]. Many [LPB17, CLL+13, DQR+13, WR07].

marketplace [KMK10]. Markets [TVKB16]. Markov
[BL17, RH17, WQG15]. Marriott [USE01a]. Maryland [Ano93].
Maschinen [Zim06]. Massachusetts [USE93, USE01a, IEE85]. Massively
[BS90, Kra90, MM93]. Mastering
[CBER09, Low09, Low11, LMG+14, McCo8, Sub11]. Matching
[CFM17, Cox07, Cox09, Cox10, Cox12]. Maté [LC02]. matrix [Kra90].
Maximization [ZHW+17, JWH+15, KTB17, LWLL16]. Maximizing
[BYBYT16, ZRD+15]. May [ACM00, ACM06e, Ano04b, IEE84a, IEE90a,
IEE91, IEE01, IEE06a, Mar81, TLC06, USE99, USE06, Yur02]. MBSA
[CCL+17]. MCG [ZGW+06]. MCG-mesh [ZGW+06]. mean [Ven96].
Measurement [ACM81, Cal75, XHCL15]. Measures [Att79, SM92].
measuring [LWLL10, XHL+13]. mechanics [MC98, Uhl07].
Mechanism [LCT+15, MD12, TVKB16, Mly09, SIRP17,
SYMA17, YLH+14, ZLH+15]. Mechanisms [NMG15, Nel04, MG13, TMMVL12].
MECOM [JDW+14]. Media [ZCG+17]. meet [FHL+96]. Meets [BBM+15]. mehr [Joo06]. Memento
[CPST15]. memories [Pat12]. Memory
[AW17, AMH+16, Bad82, Bro89, CLLS12, Cro93, GHS17, GKBBI5, HHCI6,
HPP15, JJK+11, KGGS17, LW11, LH16, LJL+15, LZW+17, LXM+16,
MKKE12, RLZ+16, RWX+12, RGSJ17, SMES01, SLM89, VTM+16, Wal02,
WWH+16, WWL+17, WK90, WTLS+09, AHS+15, ATS14, Ano15, BHD809,
CWH+14, CW+14, EL+13, CH08, CMM+06a, CMM+06b, CMM+06c,
GMK17, GVI13, GNDB16, GLV+10, HB13, HHP+15, HUWH14, JSK+13,
JWD+14, KB17, LLS+08, MS00, PPO14, RO16, RJK16, VED07, WWS89,
WZW+11, WWLL13, WK08, ZP14, ZHC15, ZWL09, ZL13, TF16].
Memory-Aware [JJK+11]. memory-limited [CH08]. Memory-Resident
[WK90]. merging [TLX17]. mesh [SJRS+13, ZGW+06]. message
[DM93, TO91, UR15, XH90]. message-passing [TO91, UR15, XH90].
messaging [Joo06]. meta [BT15]. meta-tracing [BT15]. Metacomputing
[MDG98]. metal [AGH+16, GAH+12, OSK15]. Method
[AC16, BP99, DEK+03, HT98, LZL+15, RSNK17, ZAI+16, DXM+17,
JJK+13, JXZ+10, LYYY17, Ven97c, YLHJ14]. Method-Level [AC16].
methodology [FS89]. Methods
[Pfo13, Qia99, UT87, WH99, BMW86, XH90]. metric [SS17]. Metrics
[Sch13a]. Metriken [Sch13a]. Mexico [ACM00]. Meyer [Ano97a]. MGC'05
[ACM05b]. MI08 [Hin08]. Micon [BG89]. microarchitectural
[EGD03, SK13b]. microcomputer [UBL+82]. microcomputers [GBO87].
microkernel [GMR93, St007, Uh107]. microkernel-based [St007].
Microkernels [FHL+96, HUL06]. Microprocessor
[Ran02, ACT94, WW77]. microprocessors [But94]. microprogrammable
[Bag76]. Microsoft [Lar09, Zim05, B+07, Car13, CBER09, Gal09b, Joo09,
Ka97, KV09, KSS09, KS10, Lar09, MRM06, Nou92, Ste05, Won97].
Middleware [ACM05b, HOKO14]. Migrate [YBZ+15, CLL+13].
Migrating [JE12]. Migration [AVB12, BF+14, BW+15, DK17,
EMAL17, KC16, KGS16, KKL16, LZZ15, LJL11, NBK16, RSNK17, SL14, SHW15, TMV12, XWJX15, XLL14, XD16, XD17, YWR14, ZR16, ZCG17, ZDLG17, vLSM01, AGH15b, AGH15a, AS14, BAC15, BB08, CLC13, FMIF18, FGL15, HLW10, HDG09, JK13, JG11, JD14, JGSE13, KTB17, KLY15, LZWD15, DPBK16, MG13, PDC12, SM01, SYMA17, SSL13, SLA16, SHTE11, TDG06, WCY17, WRSvdM11, WRS15, YBZ15, ZLZ15, ZHHC17, ZNSL14, ZLLL13.

Multi-Capacity [MH17]. multi-cloud [DEG+17].
Multi-core [PNT12, YTS14]. multi-course [AL05]. multi-criteria
[ATS16]. Multi-dimensional [HPcC04]. Multi-Dispatch [DLS+01].
Multi-GPU [NMS+14]. Multi-granularity [LLS14]. Multi-language
[MD12]. Multi-level [JHE14]. Multi-Listing [DLS+01].
Multi-Cloud [YTS14]. multi-objective [SL14, ZLL+16].
Multi-core [PNT12, YTS14]. multi-course [AL05]. multi-criteria
[ATS16]. Multi-dimensional [HPcC04]. Multi-Dispatch [DLS+01].
Multi-GPU [NMS+14]. Multi-granularity [LLS14]. Multi-language
[MD12]. Multi-level [JHE14]. Multi-Listing [DLS+01].
Overshadow [CGL+08a, CGL+08b, CGL+08c]. Overview
[Lau87, MLG+02, ALW15, BB08, MNA16]. oVirt [Alo14d]. OVM [BFC02].

P [Dom80b, SU+12, Syr07]. P-Code [Dom80b]. P.R.O.S.E [Van06]. P2P
[Sta07]. p5 [A+04, B+05, G+05]. PA [ACM04b, ACM96, IEE04]. Pack
[ZLH15]. Package [BFR+90]. Packages [JMSL92, LTT92]. Packet
[VLZL16, Ste14]. Packeteer [Ano03a]. Packing [GR15, RG17, SXCL14, XDLS15, SZA4]. PACT’06
[ACM06b]. PACE 06 [ACM06b]. Paper [AW17, CWL+15, KYP+17, LH16, LZW+17, MT16, MT17, LW+15,
AJH12, BSSM08, CWL14, WTLS+09]. Page-Aware [CWL+15].
Page-level [LZW+17]. Pages [GKBB15, Ano97a, JDW+14]. Paging
[BGM70, GHS17, GHS16, TKG89]. Palm [MS00, SMES01]. Palo [ACM90].
Panel [G+88]. Papers [DC15, KM13, ACM90, G+88]. PAPMSC
[SDD+16]. para [LC13]. para-virtualized [LC13]. PARALISP
[CRZ83]. Parallax [NMAC+08]. Parallel [ACM06b, ARM78, BP99, BS90,
EGH15, Fis01, HD16, HHK94, IEE93a, IM93, JN15, KNT02, Loy92, LCFL12,
MM92, MM93, MRG17, MM94, NOT+17, PF93, SSN94, TVO92, WCC16b,
Wat6, Wat6, Wat87, Wat87, Wat95, YP15, ZZY15, AS14, AGIS94, BPC94, Bir94, BL90,
BFC02, CARB10, Cap93, CDM+10, dCCDF+015, CRG16, CKP+93, DKF94,
DDS+94, DM93, EF94, FM90, GSN93, TH15, KQY90, Les74, LCFL12,
LG93, Mc21, MN19, NOR15, NG13, Poo90, RH17, RSW91, She91, SLO00,
Taf11, WK08, YC98b, Bre89, JPTE94, YC98a]. parallelism [YTS14].
parametric [PULO16, UTO13]. Paranoid [Bau05, Bau06b, Bau06a].
ParaSail [Taf11]. Paravirtual [KMN+16]. Paravirtualization
[AD11, SBQ14]. ParCo93 [JPTE94]. PARD [M+14]. ParDMCom
[M+16]. PAROS [MM94]. PARS [CW+15]. Parser [UOKT84]. Part
[Cre90, HO92, RGSJ17, Sch94b, Sch94a, Cre08a, SS72, ZYT94a, ZYT94b].
Part-of-Memory [RGSJ17]. Partial [BWD+15, WGF11, WHH+17].
partiality [Dan12]. partially [HH13]. Partition [Int06c, LLS+08].
Partition-based [LLS+08]. partitioned [Van06]. Partitioning
[Bad87, Ian14]. Partitions [Int06b, SJS+13]. Party [CRZ83]. Pascal
[Har77, GOB07]. pass [PDC+12, YLW14]. pass-through
[PDC+12, YLW14]. passé [BC10]. Passing
[Fra98, DM93, TO91, UR15, XH90]. Pasesthrough [XD16, XD17]. Password
[CD12]. Past [Sup04, BS96, JDC05]. PASTE’01 [ACM01a]. path [AM16].
PATHWORKS [Non92]. Pattern [CFM17, HPP15, ZDLG17, OK90].
Pattern-Aware [HPP15]. Patterns [CL17, ESX+17, PM05]. Paxos
[HMS17]. PC [ACM04a, GOB08, Mon97]. PCI [YWLH14]. PCs [Ros99].
PDB [HHH04]. PDCE [M+06]. PDP [GOB07, Ham76, PK75, She02].
PDP-11 [GOB07, Ham76, PK75]. PDP-11/40 [GOB08]. PDP-8 [She02].
[Kam75]. 370 [Att79, Bar78, Ber86, Cal75, GLC84, Gun83]. 390 [OJG91]. 4
[NOK+85]. 40 [ABCD96, GOB07]. 6000 [ABBD+91]. 9000 [ADG+92].
ACM [ACM04b, IEE04]. application [LBF12]. ARM [DN14]. CLI [Fra06, Fra09, Hee07, Hog06, Hog08, Siv07, Wil06]. CORBA [CARPC]. ESA [Fis91, IBM94, MSS91, OJG91, SCR91]. EXUS [SKC73]. flex [Kag09].

WAN [TDG]. XA [BN89, Boz89, IBM94]. XC [GH91a].

Penguin [Bau05, Bau06, Bau06b, Fab13]. Pentium [RI00]. Perceiving [XWH].

Perfctr [NB11]. Perfctr-Xen [NB11]. Performance [ACM08, ACM04b, Ano03b, AD11, Bad82, BL90, Cal75, CFH+79, CFH+80, CGS06, CHW12, De 06, DSZ11, EDS+15, GE85, Gua14, GKB15, HB12, IEE96b, IEE06a, IN87, JR02, JK13, KCWH14, KS08a, KMM13, KP15, KD78, LZ15, LCK11, LGM01, LCT+15, LHAP06, LTZ+14, MJW+14, MT16, MT17, MLG+02, MBK+92, NMS+14, Oa14, OBS16, PZP+07, Pat12, PNT12, Raj79, RC+12, RP07, SHW+15, SD01, SCSL12, SDD+16, SM92, SM02, TH+14, UT87, VOG+03, WCT16].

Performance [ACM98, ACM04b, AD11, Bad82, BL90, Cal75, CFH+79, CFH+80, CGS06, CHW12, De 06, DSZ11, EDS+15, GE85, Gua14, GKB15, HB12, IEE96b, IEE06a, IN87, JR02, JK13, KCWH14, KS08a, KMM13, KP15, KD78, LZ15, LCK11, LGM01, LCT+15, LHAP06, LTZ+14, MJW+14, MT16, MT17, MLG+02, MBK+92, NMS+14, Oa14, OBS16, PZP+07, Pat12, PNT12, Raj79, RC+12, RP07, SHW+15, SD01, SCSL12, SDD+16, SM92, SM02, TH+14, UT87, VOG+03, WCT16, WCC16b, YC98a, YWCF15, ZRZY15, ZJXL11, dGG+17, AKK+07, AHH+16, Ano91, AW05, BML+13, BB12, BM009, BMR14, CBGM12, CBZ+16, CMP+07, DQR+13, DLL+16, DSSP06, DYI+12, EMS15, Fit14, FF96, GP13, G+01, GVI13, G+05, GAH+12, Han16, Hog02, HC12, HL13, KJH14, KL13, KOU11, KCV11, LBZ+11, LLE17, LM99, LGM00, LL14].

Personal [Hir92, LB+07]. Perspective [Han16, RSSG15, FP14, LDXT12, Wal10]. perspectives [MA10]. Pervasive [HHH04, BTJNBF+15, HH05]. Petascale [Gei02].

Piccolo [CHPY17]. PicoJava [MO98, TO96, OT97]. Picojava-I [OT97].

Providing [BDS+09, KHW+16, KGZ+04]. Proving [BW03, IM75]. Provision [WN17]. provisioner [JNR12]. Provisioning [BSSS14, LCT+15, LW+17, NMG15, NSJ12, SZW+16, SXCL14, XLJ16, ZLV+14, ZRS+16, CSS11, CFVP12, KBB11, PPO14, SJB14, VOS12]. proxies [Eng06, STFH15]. PS3 [Sta07]. pSeries [Mly09]. pseudo [ABDD+91]. pseudo-random [ABDD+91]. PSO [LW12]. PSO-Based [LW12]. proxies [Eug06, STFH15]. PS3 [Sta07]. pSeries [Mly09]. pseudo [ABDD+91]. pseudo-random [ABDD+91]. PSO [LW12]. PSO-Based [LW12]. publications [Mat10]. Purpose [GFB+92]. Purposes [BHI15, WDSW01, WO75]. PV [Ano15]. pyramid [MJ93]. QEMU [WR07, WR08, CK06a, CK06b, CK06e, CK06c, CK06d, CK06g, CK06f, CK06i, CK06h, CK06j, CK06k, CK06m, CK06l, CK06n, CK06o, CK06p, CK06q, CK06t, CK06r, CK06s, Bar06, MZG14, WR07, WR08, vdK09, CK06a, CK06b, CK06e, CK06c, CK06d, CK06g, CK06j, CK06k, CK06m, CK06l, CK06n, CK06q, CK06t, CK06r, CK06s, Deu08]. QoS [BAC15, DXM+17, KP15, LCL14, LWL16]. QoS-aware [LWL16]. qualitative [ALW15]. Quality [BB13, SV13, VOS12, WK17]. quantification [BH9+06]. Quantifying [FFB00]. Quantitative [YZW+13]. Quelle [LC09a]. Quemu [CK06o]. Query [WK90, KHL17]. querying [CRJR17]. Quick [NOT+17]. QUICKTALK [BMWB86]. QUIS [CKRJ17].

Science [ACM06d, BR01, DG05, SGV12]. Sciences [Shr89, MS91b]. Scientific [Bad87, RB17, dCDFD015]. Scientists [THLK10]. Screening [LP14]. Scripting [MJW+06]. SDDSfL [CLLS12]. SDN [VVC+17]. SDNs [ALW15]. SDWN [AFG+17]. SE [LYBB14]. Seamless [Hir92, TDG+06, XWJX15, BADM06]. Search [Cox12, MNS+14, KMT14, Tho68, WXX+17]. search-based [WXZ+17]. Seattle [ACM05c, ACM06b, LCK11, Ost94]. Sebastopol [Ano97a]. SECD [Abr82, AS85a, AS85b]. SECD-M [Abr82, AS85a, AS85b]. Second [ACM06f, IEE93a, Shr89]. SecondSite [RCOW12]. Secure [AMH+16, CCML12, CLDA07, JSHM15, JAS+15, LJR12, LP11, PEC+14, QZDJ16, R00, RSGG15, THB06, TtLcC13, WF07, vD00, BDS+09, GDNB16, HKD+13, ISE08, SL12, TLBW12, ZBP05]. Secured [TMV12, WCC16c]. securing [Hal08, Hal09]. Security [AKK+07, Ano93, Att79, De 06, ESY+17, FJKK17, GW07, HB17, IEE84a, IEE90a, IEE91, IEE05, JE12, KZB+90, KS08a, KS08b, LWLL10, NMMP15, Pvd808, Pfo13, SJV+05, SM90, SEF+06, Ste05, TMV12, TV12, USE00b, VN08, WHD+09, ZL16, BTMS10, Bau05, Bau06b, Bau06a, Bel06, BCP+08, Bor07, BBS06, Hal09, HMS04, IIK+06, LLW+12, MD73, MD74, MA17, PG11, PZH13, PBB13, Sch13b, VT14, DTW07]. security-oriented [IIK+06]. see [Yur02]. SEED [DTW07]. seinen [KGG00]. Selecting [NBK16]. selection [JK13, LZWC13]. Self [BHI15, BRX13, HHW10, dOL12, CBLFD12, KKB14, OK90]. Self-Adaption [BHI15]. self-adaptive [KKB14]. Self-Configuration [BRX13]. Self-Healing [BHI15]. self-hosted [CBLFD12]. Self-management [dOL12]. Semantic [Das91, DGLZ+11, FL13a]. Semantics [WIDP12, Dan12, EdPG+10, Siv04, Wal76, ZHCB15]. semi [MSZ09]. semi-automatic [MSZ09]. sensitive [DK17, KSLA08, LCL14, ZBP07]. sensitivity [HB13]. Sensor [BSI+15, LC02, MAK07]. sensors [ALL06]. Separation [KF91, WLMD16, LWM14]. September [ACM81, ACM04a, ACM05a, ACM06c, ACM06b, Ano93, BW03, GHH+93, Jou85, JPFTE94]. Sequence [EDS+15]. sequential [Clo85]. Serialization [BP01, BP03]. Series [Kee77, KAHS]. Server [Ano03a, Apr09, Bod10, Car06, CGS06, Do11, Joo09, KSS09, KS10, LZ15, Lar09, LC09b, LC09a, Mar08, MG08, MG09, PZV+07, RWX+12, R+02, SWC08, WN17, ZHW+17, Zimm05, Zimm06, A+04, AGH+15b, B+07, DBC+00, Hal08, IMK+13, LLS+08, LL14, LDDT12, MNT14, MM06, NTH+17, R+13, RE02, Wal02, YZW+13, AAH+03, Ano03a, B+07, D+04, Ham07, Lar09, MWHHO05, HO05, R+06, Rul07, R+02]. Servenr [Mar08]. Servers [DSM14, JJK+11, SDD+16, SKJ+17, WLW+17, A+04, BBHLO8, G+05, Hal08, DJD+06, Mly09, SZ13]. Service [BB13, BFG+14, DKW15, DPCA11, EMAL17, ESY+17, HPHV17, LP14, LLW+16, RSNK17, RSGG15, WVT+17, WHD+16, BSM+12, CHCC07, DXM+17, EdPG+10, ECAE13, EMII13, KKB14, LZWC13, RCOW12, SZ13, VOS12]. Service-based [LP14]. Service-Oriented [RSGG15]. Serviceability [RB01]. Services [BFHW75, IEE06b, MSS+15, WC01, BDS+09, HBP06,
strange [Fab13]. Strategies [YLN+17, BDT13, LLS14, PFH+16, TKG89].
strategy [DFK94, Won97, ZLZ15, ZLH+15]. strategy-proof [ZLH+15].
Stream [MV16]. streaming [BMER14, RSLAGCLB16, SIK+16]. Streams
[MM93]. stress [MC98]. String [HOKO14]. Striping [DK93]. Stripped
[JJ91]. Stripped-Down [JJ91]. strong [ZHCB15]. structural [ORPS09].
structure [MDFS72, SS72]. Structured
Das91, Gaï75, CFS+12, IM75, Syst07]. Structures [AGLM91]. student
[CKP78]. Studio [Ano03b]. Study [BBM+15, LJL+15, PK75a, ZAI+16, HI16, HW93, SASG13, Sig89].
Subroutines [HT98, Qia99]. Subset [SUN97, Req03]. Subsystem
[HH79, Ste14]. Subroutines [HT98, Qia99]. Subset [SUN97, Req03]. Subsystem
[HH79, Ste14]. Suitable [Vog03]. Suite
DHPW01, DTW07, GPW03, SMSB11]. Summary [CFH+79]. Summer
[HMS17, So83, USE85, USE86]. Sun [Gal09a, Gal09b, Gal11]. Superblock
[KS13]. Supercloud [SJS+17]. Supercomputer [MBK+92, LPD+11, XH90].
Supercomputing
[ACM89, ACM96, ACM00, ACM04b, ACM05c, Hir92, IEE90b, IEE92, IEE93b].
Superconcurrent [NR92]. superoptimization [HW15]. superscalar
[VdlFCC97]. Support
BP01, DJ77, HHV+02, HD16, HB12, KYP+17, LV99. NSL+06, RI00, SSG90,
Tur92, XD16, dG+17, BADM06. BTLNB+15, BP03, CHCC07, CFS+12,
DJ76, ORPS09. PGLG12, SJRS+13, STFHH15, SL12, TY14, WK08, WCS06].
Supporting
[BMS16, CW09, Kim84, MSS+15, Mon97, RT93, XWJX15, YWC15, ZF06, GD08, TT93]. Supports [Ano03a]. surgery [PBL+16].
Survey
[BL15, KKLV16, KL14, Man15a, PS16, SB16, SGB+16, UOKT84,
AGH+15b, CB10, FMIF18, MG13, PBB13, XTB17]. Surveyor
[Fra83, GHF83a, GHF83b, WNL+83]. survivability [YZW+13]. Survivable
[ACA16, AM16]. SUSE [Bau06b]. Sustainability [SS17]. SVGrid [ZBP05].
SVM [JAS+15]. swapper [ATS14]. swapping [ABG14]. swarm [JNR12].
Sweet
[WBB+16]. Swift [NOT+17]. Swiper [CRZH15]. switch
[BR01, Ste14]. Switching [DMG+15, LBL16]. Sy [USE01c]. Sydney
Symmetric [GMP89]. symmetry [PBL+16]. Symposium [ACM75,
ACM03b, ACM05a, ACM06d, An000, An001a, An001b, An004a, An004b,
An010, HHH94, IEE84a, IEE85, IEE90a, IEE91, IEE96b, IEE06a, Ost94,
TLC06, USE91, USE93, USE00b, USE01d, U02, Vra05, IEE96a, An002].
Synchronization
[LR+11, ZJX11, Sub11, Uhl07, Ven97d]. Synchronous
[SIR+17]. syntax [KMMV14]. Synthesis [DMS02, BPP86]. Syracuse
[IE96b]. System
[ACM75, Abr80, ABC66, An010, Bad82, BFHW75, BBD+91, BPP+17,
BYBYT16, BGS89, B+05, Car13, CSS+13, CWL+15, CHPY17, DM10,
DT75, Fis01, G+06, GH91b, HWX+16, HW93, HHC+16, HWCH16, IN87,
Kam83, Kee77, KP15, Kut92, LP14, Li14, LCFL12, LXM+16, MCE+02, Mat10,
MS70, MDGS98, MB98, MS91b, MM94, NMS+14, P+08, R+06, S86, SL89,
SVN$^{+10}$, Shi03, Shr89, SWF16, Ste05, WLW$^{+15}$, WK90, ZSXZ07, ZQCZ16, ZZF06, ZXY$^{+15}$, AEMWC$^{+12}$, AL05, AH12, ACT94, Bar78, Bor07, Bur02, Ca90, CW$^{+14}$, CK06b, CK06e, CKP78, FFBG08, Fis91, HN08, HKD$^{+13}$, HC12, IBM88, Int88, KCKC15, KK79, LJN$^{+00}$, Ldo05, MDL$^{+08}$, MD73, MD74, MDFS72, PRB07, PK75b, Rob06, SNV10, SPF$^{+07}$, SZ13, STY$^{+14}$, TC10, Van10, Van06, VMBM12, VSC$^{+10}$, WKT08, WH08, WWT89, WF07].

System

[WC91, YLCH17, YZSC17, ADG$^{+92}$, ABDD$^{+91}$, Car14, Gum83, SNC91].

System-level [SVN$^{+10}$, AL05].

System/370 [Gum83].

System/6000 [ABDD$^{+91}$].

System/9000 [ADG$^{+92}$].

Systemarchitecktur [See08a].

Systeme [WF03].

Systems [ACM81, ACM03b, Ano99, BBMA91, BHI15, CD12, CAF$^{+91}$, Das91, DJ77, Her10, IEE93a, IEE01, Lar09, LW11, LJJZ12, MM93, MJW$^{+14}$, MKKE12, RT93, SL14, SS72, STY$^{+14}$, TC10, Vag10, Van06, VMBM12, VSC$^{+10}$, WKT08, WH08, WWT89, WF07].

Tables [MT16, MT17, WLW$^{+15}$].

Tackle [Sub08].

Tactics [OG16].

Tail [War80].

Taipei [SS05].

Taiwan [SS05].

Take [Kis08].

Taking [Uhl06].

Taming [CZL08, HHPV15].

Tape [DK93].

Target [FCG$^{+05}$].

Targeting [CDG97].

Targets [Sta07].

Task [KMM13, PCC$^{+16}$].

Tasking [MB98, Shi03, JDJ$^{+06}$].

Tasks [KGS16, YQZ14].

Taxonomy [SGB$^{+16}$, AGH$^{+15a}$].

TCB [HCJ07, HPHS04].

TCP [CL16b, GKKX13, G12].

tech [Don88].

Teaching [Ag99, Dvo04, Don87, GGG03, Biz01, Ham76, KW80, MS01, NV05, WKC$^{+09}$, WWPA01].

teasing [LBF12].

Technical [ACM06d, Ano06b, Han16, OH05, USE01a, USE06, BB08, Int06c, Int06a, LC09a, Wal10].

Techniken [Tho08].

Technique [JHS12, JSMLM92, LTT92, SMK02, ACT94, SLA$^{+16}$, XHL$^{+13}$, YKS16].

Techniques [ACM06b, LJJ$^{+15}$, OVT$^{+12}$, SIdLB15, Tho68, UOKT84, ZZF06, AA06, AH12, BDM06, HSC15, IM93, KS13, KR$^{+12}$, SSN12, SHT11].

technische [LC09a].

technologie [Apr09].

Technologies [DF06, PZW$^{+07}$, USE99, USE01b, Cla05].

Technology [Ano00, Ano01a, Ano01b, Ano02, Ano04a, Ano04b, DLM$^{+06}$, Don06, Got07, Her06, RG05, USE01c, USE01d, USE02, UNR$^{+05}$, WHD$^{+09}$, ZAI$^{+16}$, Apr09, Int05a, Int05b, Int06b, Int06c, Int06a, AJM$^{+06}$, NSL$^{+06}$, NK$^{+06}$, RSW$^{+06}$, Uhl06].

Tele [HMS04].

Tele-lab [HMS04].

telehealth [WQG15].

template [WRX11].

Temporal [CWD$^{+06}$].

Tenancy [DY17].

tenant [YKS16, ZRZY15].

terminal [CKT08].

terminals [IJK$^{+06}$, ISE08].

Terra
Third-Party [CRZH15]. Third

Third-party [SK13b]. Thread [MP01, BKc+13, Ven97d]. threaded

[HC17, SE12, TR82]. threads [UR15]. Threat [SL16]. threats [PZH13].

Three [YYP01, V14, YZW+13]. Throughput

[BBP+17, GKK13, GI12, ZSW+06]. Thunderbird [Joo06]. ticket [OL13].

tier [WDC10, ZNSL14]. tiered [AW17]. Time [Bad87, CW03, Fu91, Hu90, HWB03, HS06, LTE12, LWC+17, MS70, Sta97, AS76, ACT94, ABC+07, BBS06, CGM17, D15+16, HK97, He97, Ie93, KJ13, KBB11, LD05, MNT14, QT6, SE91, SE14, TSLBYF08, WQG15, YK13, ZEdP13].

Time-Constrained [LTE12]. Time-Sharing [MS70]. timebombs

[CW00+06]. Timing [Hu90, HWB03, LG14]. tiny [LC02]. TLB

[OL16, RGS17]. TM [Qia99]. Tolerance

[JK1+10, ZXL11, RCO12, YLH14]. Tolerant

[FK03, Kim84, YWR06]. Tool

[ANO03b, W101, KK79, Liu05, Skr01]. toolkit [DZ02, PW03]. Tools [AC98, Cal75, GG11, LC009a, M15+06, PY93, QC07, ACM01a, EL98, YYP01].

top [KMT14, PBW12, W1997]. topic [Y10]. Topics [IEE01].

topological [KKM+13]. Topology [TB17, dSd16, AM16].

Topology-Aware [dSD16]. Toronto [So93]. TotalStorage [D+04]. TPC

[NP13]. TPHOs [BW03]. TPM [KC12]. TR [Int05b, Int06c, Int06a].

Trace [MZG14, DC15]. tracing [BT15, PFH+16, WK15, Wol99]. Track

[Shr89]. Tracking [JADAD06a]. Tractable [KR94]. Trade [SLD15].

Trade-offs [SLD15]. tradeoff [UTO13, WCY+17]. Tradeoffs

[CMM+06a, CMM+06b, CMM+06c]. trading [LHLL16]. Traffic

[BBM+15, CGC16, DK17, PCW+16, FLL+13, IKU15, WZV+13].

Traffic-Aware [CCG16]. traffic-intensive [IKU15]. Traffic-sensitive

[DK17]. transactional [CMM+06a, CMM+06b, CMM+06c, ZHC15].

Transcendent [VTW16]. Transfer [HHC+16]. transfers [DPB16].

Transformation [WDP12]. transformations [HB08]. transient [LRC05].

Transition [MBNW86, Syv07]. Translation

[JXL+12, LH16, YVCB17, dGG+17, CFG+13, JYW+13, OI05, OI06, OI08].

translation-based [O105]. Translational [WDP12]. translations

[UTO13]. Transmission [RSN17]. Transparent [BZA12, FK03, KJ1+10, M15+12, dGG+17, AW17, JXZ+10, MRC+13, YJZ12]. Transputer

[Boa09, GHH+93, Boa90, GHH+93]. travel [TSLBYF08]. Traveling [YK13].

transformation [YTS14]. Treating [SSOT17]. Tree [Hal79, KMMV14]. trenches
46

Trigram [Cox12]. Troubleshooting [WF03]. Troy [Ano97a]. Trusted [DPW+09, SVB93, KSLA08, WH08]. Truthful [NMG15]. TSAC [WZL15]. Tucson [IEE05]. Tuning [EDS+15, RS16]. Tutoring [GH91b]. TVDc [BCP+08]. Twelfth [MR91]. Twenty [MS91b, Shr89]. Twenty-Fourth [MS91b]. Twenty-Second [Shr89]. TwinDrivers [MSZ09]. twins [HCJ07]. twitter [Guy14]. Two [AW17, SS990, TF16, BSSM08, HCJ07, LUL+05]. two-dimensional [BSSM08]. Two-level [SS90]. Two-phase [TF16]. Two-tiered [AW17]. TX [ACM99]. Type [ADM98, AT16, Arv02, KCV11, PRB07]. type- [Arv02].
WUNK17, Wil01, Wol99, XSC13, ZBP07, dGG+17, Agr99, ATS16, AWR05, AGIS94, BSM+12, BHvR05, CL14, CCZ+06, Dan12, FFBG08, FL13b, HJ10, HN08, HPHS04, JNR12, JWH+15, JGSE13, Juo07, KKM+13, KJ+16, KGIS16, KL13, KU11, KRG+12, LDL14, LQW+12, NV05, PBL+16, RP07, SGV13, SSN12, SLIPP11, SIK+16, SSH17, STFH15, SSN94, TSLBF08, TF16, VT14, YK13, YLWH14, YWF09, YWCF15, ZLZ13, ZDLG17]. UT [Ren78]. Utah [ACM01a, CK87]. utility [CSV15, JWH+15, PSZ+07]. Utilization [KCKC15].

Utilizing [GVI13, KOY05]. V [Gal09b, Lar09, LC09a, Apr09, Car06, KVV09, KSS09, KS10, Lar09, LC09b, LC09a, MG08, MG09, SRS09]. V2E [YJZY12]. validation [SSB14b, SSB01]. Value [TF16]. [Khn09]. VCP [WCC+16a]. vApp [SG10a]. Variable [CSV15, JWH+15, PSZ+07]. VEEs [LCT+15]. Vegas [ACM81]. Virtual [DAH+12, Dal97, DHPW01, Dan86, DSM14, DG05, DEK+03, Den01, DK17, DMR10, DKW15, DF96, Do11, DGLZ+11, Dom80a, DJ76, DJ77, DCA04, DLS+01, EGR15, EGJS15, ECJ+16, Eng99, EMAL17, EG01, Ert03, EDS+15, FFB+00, FG01, Fis01, FPS+02, (Fo71, (Fo78, Fra98, FK03,
Virtualization-based [CDD13, AAJD16, DPCA11, WDCL08, CGL08a, CGL08b, CGL08c, QZDJ16]. Virtualization-driven [CSSS11]. Virtualized [EGR15, GKXK13, KHW16, LZ15, MT16, MT17, RGSJ17, SB16, SL16, SDD16, VIS15, WKC09, WLMD16, YVCB17, YWCF15, AJH12, AT814, BGS13, BSSM08, HOKO14, HL13, KW13, KSLR10, KRG12, LWM14, LC13, MNT14, NS07, PSZ07, PSC07, SG10b, TRG13, WWWL13, WTLS09, ZWC14]. Virtualizing [BTMS10, Sar16, SB10, SVL01, WRS13]. VirtualKnotter [ZWC14]. Virtually [Spi06, WL96, Tre05]. VirtualPower [NS07]. virtuelle [WF03, WR07, WR08, Zim05, Zim06]. virtuelles [CK06a, CK06c, CK06d, CK06g, CK06f, CK06i, CK06h, CK06j, CK06k, CK06m, CK06n, CK06o, CK06s]. Virtuoso [DGLZ11]. VIRTUS [IIK06]. Vision [Arm78]. Visual [Fra06, Fra09, MC98, Wil06, Hee07, Hog06, Hog08]. Visualization [Nel04]. Visualizing [WT91]. VLISt [Ram93]. VLSI [IN87]. VM [Ano01a, Ano04a, Ano04b, Ano03a, AB16, ABG14, Att79, Bar78, BN89, BT15, Boz89, Cal75, CBZ16, ESY17, Fis91, FL13b, GH91a, GHD12, HX16, HC12, HW15, IBM94, LBF12, LJZ12, LWLL10, MS91, MLA83, NOK15, OJG91, RSN17, SHW15, SBK15, SNC91, STL15, TB17, Wal10, YQL14, YKM17, YWR14, ZFL15, ZDL17]. VM-based [ESY17]. VM-protected [GHD12]. VM-scaling [AB16]. VM/370 [Att79, Bar78, Cal75]. VM/4 [NOK15]. VM/application [LBF12]. VM/ESA [Fis91, IBM94, MS91, OJG91, SNC91]. VM/Pass [MLA83]. VM/Pass-Through [MLA83]. VM/XA [BN89, Boz89, IBM94]. VMBackup [ZXW16]. Vmgen [EGKP02]. Vmknoppix [Deu08]. VMM [ALL06, Car14, DQR13, DLX17, KZB90, LD11, LHAP06, OLZ16, RQD17, SM90].
VMM-based [ALL06]. VMM-Bypass [LHAP06]. VMM-to-guest [LD11].
VMMB [MKKE12]. VMP [JNR12]. VMPlanner [FLL+13]. VMPlants
[KGZ+04]. VMPP [Loy92, LG93]. VMs [KMT14, KKJ+13, RJK16].
VMScatter [CLL+13]. VMSI [ZTWM17]. VMThunder [ZLW+14].
VMware [Joo06, CK06f, Ham07, Khn09, KGG00, Tho08, Zim05, Zim06,
Bas04, Bas06, War05, Wil01, AAM+03, Ano03a, Ano03b, BBD+10, Bau06c,
Bor01, BDR+12, CK06f, Com00, Com03, DS09, D+04, Gal09b, GKB15,
Hal08, Hal09, Her10, HMS17, IIPB09, Kis08, KMK10, Lav10, Low08, Low09,
Low11, LMG+14, MRM06, MBM09, McC08, MWHH05, MJW+06, Ng01a,
Ng01b, NL00, OH05, Ros99, Rul07, R+02, See10, SIK+16, SVL01, Ten17,
TH10, Wal02, Wal09, War02, WF03, War11, Zim05, Zim06, B+07]. VNC
[RSLAGCLB16]. Vol.II [Shr89]. Volatile [AMH+16, HN08]. Voltage
[AMAB17]. Volume [AvMT11]. Vorstellung
[CK06b, CK06e, CK06c, CK06d, CK06g, CK06f, CK06k, CK06m, CK06n,
CK06q, CK06t, CK06r, CK06s]. VPC [KJM+07]. VPFS
[WH08]. VPN [MSI+12]. vs [Gal09b, WKJ17]. VSA [SHLJ13]. vSAN
[FK17]. VSched [LD05]. Vshadow [WLW+17]. VSim [RPE12]. vSphere
[Gal09b, Lav10, Low09, LMG+14, Fit14, Hal09]. vSphere5 [Low11].
VSwitch [ATS14]. vSwitch [TSP17]. vulnerabilities [RY10]. Vulnerability
[CRZH15, JKDC05]. vulnerability-specific [JKDC05]. Vulnerable
[JSHM15, JAS+15].

W [ALW15]. W-SDNs [ALW15]. WA [ACM05c, LCK11]. walks
[AJH12, BSSM08]. WAN [WRsvdM11, WRs+15]. WAPPEN [Kag09].
Washington [ACM06b, Ost94]. wavelength [AM16]. wavelength-routed
[AM16]. way [Ble10, Com00, WGF11]. weak [RO16]. Web
[Ano96, CVWL13, DF96, FF96, Kag09, SJJ+12, SDD+16, WDC08].
Web-based [CVWL13, Kag09]. Web/Java [FF96, Ano96]. Web/
Java-based [FF96, Ano96]. Weight [WWL+17, HB08, YGN+06]. Weir
[BMER14]. Welfare [ZHW+17, LLW16]. Well [WCO1].
Well-Conditioned [WCO1]. Werkzeugen [KKTM17]. Which
[MS17, War80]. Whispers [WXW15]. Who [LS15]. whole [BBM09]. whose [BBS06].
wichtigsten [CK06b]. Wide [BFG+14, DF96]. Wide-Area [BFG+14]. wie
[Deu08]. WiFi [KKY+11]. Wild [Cox10, STS+13]. Win [War11]. Win4Lin
[Ng01b, Ng01a]. WinCE [Kal97]. Windows
[Bod0, Bor01, Joo09, Lar09, Sch94b, Sch94a, WF03, Apr09, Bod10, Car06,
CK06a, CK06b, CK06h, CK06p, GMR93, KSS09, KS10, Lar09, LC09b, LC09a,
MG08, MG09, Nou92, Sal92, YGN+06, Zyt94a, Zyt94b]. WINRAR
[Joo06]. wired [KKY+11]. Wireless [ACM06c, AFG+17, ALW15, BSI+15, HLP+16,
KKTM17, SIJP11, FK13, HLW+10, XKY+11]. Wirth [BGP00]. Within
[RD00]. without [CD01, KSRL10, SUH86]. WLAN [KKTM17]. Wolves
[DLX+17]. WOMP [M+06]. Work [HMS17, KHL17]. worked [Cox12].
workflow [KCKC15, WKT08]. Workflows [RB17, dCCDF015]. Working
[ZDLG17, G+88]. Working-Set [ZDLG17]. Workload
workload-aware workloads. *Workshop* [ACM08, RM03, ACM05b, IEE01, IEE02, IEE03, IEE04, Mat10, Tho93, ACM01a, ACM04a, ACM06c]. worksh ROUNDUP. *Workstation* [Bau06c, Bor01, BDR+12, WF03, War05, SSN94, War02, SVL01]. *World* [DF96, GHH+93, WLW+17, BBM09, STS+13]. *World-Wide* [DF96]. worlds [AJD09, LUL+05]. *Worm* [CLW+14]. Worst [HWB03]. Worst-Case [HWW03]. *Writing* [Wes98]. written [MSG01]. *WWC* [IEE03, IEE02]. *WWC-5* [IEE02]. *WWC-6* [IEE03].

x3950 [R+06]. X64 [dGG+17]. x86 [AGSS10, BDR+12, Cof99, MT16, MT17, Rev11, AA06]. *Xbox* [Ste05]. XEN [Hin08, P009, Don08, HHH04, Kar07, Mar08, See08a, Tho08, RH08, AJD09, An015, BDF+03, B+07, CBZ+16, Chi08, CGW07, De 06, DLM+06, Don06, Fis09, Hab06, HF07, Kar07, Kc06, MDD+08, MST+05, MCZ06, NB11, NOT+17, P009, PRS16, QT06, SJV+05, SLJ13, Spr06, Spr07, TC10, VS06, WG07, dSOK17, vH08]. Xen-based [dSOK17, CBZ+16]. Xen-Basis [Kar07]. Xen-virtualisierte [Mar08]. XenEnterprise [CGW07, WG07]. XenExpress [CGW07, WG07]. XenServer [CGW07, WG07]. XHive [KJL11]. XHPC [M+06]. XINU [BWP85]. XML [Int06c]. XPL [Kam75]. XSA [An015]. XScale [CMP+07]. xSeries [R+02]. XTREM [CMP+07]. yang [CBGM12]. Years [FS12]. yieldpoint [LWB+15]. yin [CBGM12]. York [ACM03b, IEE90b, IEE90b]. Yountville [Tho93].

References

Adra:2004:APV

Adams:2006:CSH

Keith Adams and Ole Agesen. A comparison of software and hardware techniques for x86 virtualization. *Operating Systems*
REFERENCES

REFERENCES

Adeshiyan:2009:UVH

Ahmad:2003:ADP

Al-Ayyoub:2016:VBC

Aroca:2016:PEA

Antonescu:2016:SSB

Axnix:2015:IZF

Armbruster:2007:RTJ

Adair:1966:VMS

Aharon:1991:VIR

Arya:2014:TRG

Abramson:1980:WGL

REFERENCES

1975. CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ahmad:2015:VMM

Ahmad:2015:SVM

Amit:2016:BMP

Averbuch:1994:PES

Abe:2016:UVM

Yoshihisa Abe, Roxana Geambasu, Kaustubh Joshi, and Mahadev Satyanarayanan. Urgent virtual machine eviction with

Aral:1991:PCS

Aagren:1999:TCC

Agesen:2010:EXV

Aguiar:2012:CTF

Aigner:2015:AJE

Anderson:2009:XWL

Benjamin R. Anderson, Amy K. Joines, and Thomas E. Daniels. Xen worlds: leveraging virtualization in distance

Akyildiz:2015:WSD

Agrawal:2016:EIU

Azmandian:2011:VMM

Araujo:2014:SAE

Arroba:2017:DVF

REFERENCES
REFERENCES

REFERENCES

Anonymous:1996:TWJb

Anonymous:1997:BRJe

Anonymous:1997:IJV

Anonymous:1997:JVM

Anonymous:1999:PII

Anonymous:2000:AJV

Anonymous:2004:CRV

Anonymous:2004:PTV

Anonymous:2005:NPV

Anonymous:2006:PGI

Anonymous:2006:TR

Anonymous:2010:NDS

Anonymous:2014:ASS

Anonymous:2014:BIE

Anonymous:2014:LVA

Anonymous:2014:O

Anonymous:2015:CXB
[Ano15] Anonymous. Critical Xen bug in PV memory virtualization code (XSA 148). Web bug report, October 29, 2015. URL https://github.com/QubesOS/qubes-secpack/blob/master/QSBs/qsb-022-2015.txt. The report notes about this bug that allows memory pages to leak between Xen virtual machines on the same physical host: “... the bug is a very critical one. Probably the worst we have seen affecting the Xen hypervisor, ever. Sadly. ... it is really shocking that such a bug has been lurking in the core of the hypervisor for so many years.”.

Aral:2016:NAE

Aprea:2009:HVS

Anderson:2005:OII
[APST05] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Overcoming the Internet impasse through

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Beloglazov:2015:ONF

Balter:1991:AIG

Barr:2010:VMV

Bhattiprolu:2008:VSC

Bratanov:2009:VMW

REFERENCES

Berger:2008:TMS

Bredlau:2001:ALT

Bak:1998:NCJ

Beck:1999:HNG

Barham:2003:VMM

REFERENCES

Barthe:2002:FCB

Butrico:2008:SEE

Bugnion:2012:BVX

Baldwin:2009:PSS

Bolz:2013:SSC

Bienkowski:2014:WA

Bagley:1975:SDS

Brawn:1970:SPE

Boszormenyi:2000:SNW

Birmingham:1989:MSC

Bartholomy:2013:NMT

REFERENCES

May 2005. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

[BKMM87] Arndt B. Bergh, Keith Keilman, Daniel J. Magenheimer, and James A. Miller. HP 3000 emulation on HP precision archi-
REFERENCES

REFERENCES

REFERENCES

Brier:1998:NIA

Berl:2010:NVE

Bro:1989:ESV

Mats Brorsson. Emulation of Shared Virtual Memory on an Experimental Multiprocessor. Technical report, Department of Computer Engineering, Lund University, P.O. Box 118, S-221 00 Lund, Sweden, October 1989.

Brunschen:2007:SSE

Bu:2013:CSC

Blelloch:1990:CCO

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Burnet:1996:PCP

Branco:2015:TFS

Bairavasundaram:2012:RRS

Bhargava:2008:ATD
Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. Accelerating two-dimensional page walks for

References

REFERENCES

[Caa00] Paul Caamano. Porting a Java Virtual Machine to an embedded system. Thesis (m.s.), Department of Computer Science, University of California, Santa Cruz, Santa Cruz, CA, USA, 2000. viii + 56 pp.

References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

Childs:2005:SCG

Chiueh:2014:SFI

Calder:2005:EVM

Chen:2006:LUO

Czajkowski:2001:MCV

REFERENCES

REFERENCES

ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://
link.springer-ny.com/link/service/series/0558/bibs/
2374/23740155.htm; http://link.springer-ny.com/link/
service/series/0558/papers/2374/23740155.pdf.

[CEG07] Kevin Casey, M. Anton Ertl, and David Gregg. Optimizing
indirect branch prediction accuracy in virtual machine inter-
preters. ACM Transactions on Programming Languages and
ISSN 0164-0925 (print), 1558-4593 (electronic).

[CF00] Guillaume Chelius and Éric Fleury. An IP next generation
compliant JavaTM virtual machine. Lecture Notes in Com-
puter Science, 1800:528–??, 2000. CODEN LNCS29. ISSN
springer-ny.com/link/service/series/0558/bibs/1800/
18000528.htm; http://link.springer-ny.com/link/service/
service/0558/papers/1800/18000528.pdf.

[CFG+13] Xiaotao Chang, Hubertus Franke, Yi Ge, Tao Liu, Kun Wang,
Jimi Xenidis, Fei Chen, and Yu Zhang. Improving virtual-
ization in the presence of software managed translation looka-
side buffers. ACM SIGARCH Computer Architecture News, 41
(3):120–129, June 2013. CODEN CANED2. ISSN 0163-5964
(print), 1943-5851 (electronic). ICSA ’13 conference proceed-
ings.

Michael F. Mitoma, and Juan Rodriguez-Rossel. A virtual
machine emulator for performance evaluation (summary). In Proceedings of the 7th ACM Symposium on Operating Sys-
tems Principles (SOSP), Operating Systems Review, pages 1–
?? ACM Press, New York, NY 10036, USA, 1979. CODEN
OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

[CFH+80] M. D. Canon, D. H. Fritz, John H. Howard, T. D. Howell,
Michael F. Mitoma, and Juan Rodriguez-Rossel. A virtual ma-
chine emulator for performance evaluation. Communications
REFERENCES

REFERENCES

REFERENCES

[CK06b] Toralf Chryselius and Andrea Kuntz. *Internetkommunikation in Debian unter Qemu Einführung in das Betriebssystem Debian Linux in Qemu und Vorstellung der wichtigsten Internetprogramme*. (German) [Internet Communication in Debian under Qemu: Introduction in the Debian Linux operating system in Qemu and creation of the most important Internet programs], volume 18 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-117-1 (book), 3-86768-717-X (DVD). 109 pp. LCCN ????

[CK06e] Toralf Chryselius and Andrea Kuntz. *Internetkommunikation in Kubuntu unter Qemu Einführung in das Betriebssystem Kubuntu und Vorstellung von Internetprogrammen in der virtuellen Umgebung Qemu*, volume 6 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany,
REFERENCES

2006. ISBN 3-86768-105-8 (Buch), 3-86768-705-6 (DVD). 107 pp. LCCN ????

REFERENCES

REFERENCES

Chryselius:2006:SKKc

Chryselius:2006:SKKa

Comaa:1978:SGP

Culler:1993:LTR

Chamanara:2017:QSH

Claudia Canali and Riccardo Lancellotti. Identifying communication patterns between virtual machines in software-defined data centers. *ACM SIGMETRICS Performance Evaluation*
REFERENCES

[Cladingboel:1997:RJV]

[Clark:2005:SVT]

[Chiang:2013:IBM]

[Criswell:2007:SVA]

[Chow:2010:MSR]

[Cui:2013:VMV]
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
REFERENCES

Compton:2000:VLB

Compton:2003:VL

Cox:2007:REM

Cox:2009:REM

Cox:2010:REM

Cox:2012:REM

Cao:2017:EMN

Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. ViNEYard: virtual network embedding algorithms

[Creeger:2008:CVR]

[Creeger:2008:PCR]

[Creeger:2009:CRV]

[Creeger:2010:MEC]

[Creeger:2010:MEA]

[Cruz:2016:DCG]
REFERENCES

Cecchet:2011:DVD

Cameron:2015:JFE

Chen:2003:EJV

Cahill:1993:ICV

Chang:2013:ADA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Di:2015:ECP

Doyle:2004:DIM

Coutinho:2015:OVM

Duan:2017:EAS

Dong:2012:RAE

REFERENCES

[DH01] Rick Decker and Stuart Hirshfield. The PIPPIN machine: simulations of language processing. ACM Journal on Educational
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[DPBK16] Vincenzo De Maio, Radu Prodan, Shajulin Benedict, and Gabor Kecskemeti. Modelling energy consumption of network transfers and virtual machine migration. *Future Gener-
REFERENCES

Dobre:2011:VBA

Dalton:2009:TVP

Ding:2015:EES

Dai:2013:LVM

Drepper:2008:CV

REFERENCES

REFERENCES

Jorge Ejarque, Marc de Palol, Íñigo Goiri, Ferran Julià, Jordi Guitart, Rosa M. Badia, and Jordi Torres. Exploiting semantics and virtualization for SLA-driven resource allocation in service providers. *Concurrency and Computation: Prac-*
REFERENCES

REFERENCE

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

REFERENCES

REFERENCES

[Fu10] Song Fu. Failure-aware resource management for high-availability computing clusters with distributed virtual machines. Journal of Parallel and Distributed Computing, 70
REFERENCES

REFERENCES

REFERENCES

Gayer:1987:CPA

Gonzalez-Castano:2001:JCV

Goldwebber:2008:VEE

Gasiunas:2017:FBA

Gaudiot:1985:PES

REFERENCES

Geist:2002:PVM

Genter:1986:UVM

Garzon:1992:DTG

Ganapathi:1982:RCC

Greamo:2011:SVM

GomezMartin:2003:JVE

REFERENCES

[GKT17] M. Gschwind, T. Kaldewey, and D. K. Tam. Optimizing the efficiency of deep learning through accelerator virtualiza-
REFERENCES

Gamage:2013:PRO

Gaspar:2008:RVC

Gold:1984:KR

Ghumre:2012:ENC

Guo:2016:FNB
REFERENCES

REFERENCES

2003. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

[Gre10] David Green. The Sydney University SILLIAC. Web site, August 14, 2010. URL http://members.iinet.net.au/~dgreen/silliac.html. The SILLIAC was the first computer installed at Sydney University, and was operational from 1956 to 1968. The Web site links to the SILLIAC Emulator, a C program for Microsoft Windows.

Gilbert:2006:IV

Gidra:2015:NGC

Guan:2014:HHV

Gum:1983:SEA

Guyer:2014:UJT

REFERENCES

Computers. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 1977.

for light-weight CPU accounting and control in the Java Vir-
tual Machine. Higher-Order and Symbolic Computation, 21
(1–2):119–146, June 2008. CODEN LSCEX. ISSN 1388-
springerlink.com/openurl.asp?genre=article&issn=1388-
3690&volume=21&issue=1&page=119.

[Huang:2012:PEN] Shu Huang and Ilia Baldine. Performance evaluation of 10GE
NICs with SR-IOV support: I/O virtualization and network
stack optimizations. Lecture Notes in Computer Science, 7201:
197–205, 2012. CODEN LNCSD9. ISSN 0302-9743 (print),
chapter/10.1007/978-3-642-28540-0_14/.

[Huang:2013:ECS] Jipeng Huang and Michael D. Bond. Efficient context sen-
titivity for dynamic analyses via calling context uptrees and
customized memory management. ACM SIGPLAN Notices,
48(10):53–72, October 2013. CODEN SINODQ. ISSN 0362-
1340 (print), 1523-2867 (print), 1558-1160 (electronic). OOP-
SLA '13 conference proceedings.

crypted virtual machines. ACM SIGPLAN Notices, 52(7):129–
142, July 2017. CODEN SINODQ. ISSN 0362-1340 (print),
1523-2867 (print), 1558-1160 (electronic).

[HBP06] Mark Huang, Andy Bavier, and Larry Peterson. PlanetFlow:
maintaining accountability for network services. Operating
Systems Review, 40(1):89–94, January 2006. CODEN OS-
RED8. ISSN 0163-5980 (print), 1943-586X (electronic).
REFERENCES

[HHV+02] Yajun Ha, Radovan Hipik, Serge Vernalde, Diederik Verkest, Marc Engels, Rudy Lauwereins, and Hugo De Man. Adding

REFERENCES

[Henzinger:2007:EMP]

[Hofmann:2013:ISA]

[Hovestadt:2013:AOC]

[Hao:2017:OA]

[Huang:2013:ESC]

[Hoque:2016:AAT]
Hahn:2010:UVL

Hsu:2013:IDB

Hartel:2001:FSJ

Halla

wi:2017:MCC

Hu:2004:TLI

REFERENCES

Hwang:2015:RPA

Hu:2006:RST

Hsu:2015:LLA

Hu:2017:TFC

Hong:2017:FFF

Hsu:2001:CAS

REFERENCES

[Hagiya:1998:NMD]

[Meyer:2008:PVD]

[Hu:1990:RTC]

[Heiser:2006:VMM]

[Hwang:2014:MFG]

[Herbordt:1993:EEA]
REFERENCES

Hume:2015:SCS

Hu:2003:DJV

Huang:2016:BKB

Hand:2007:HVX

Hao:2016:IRO

He:2014:DRC

REFERENCES

Iancu:2014:CPV

IBM:1985:VM

IBM:1988:VMSa

IBM:1994:CGN

IBM:1996:CAM

Ibsen:1984:PVM

SPE::Ibsen1984

REFERENCES

IEEE Computer Society Press order number 2056. IEEE catalog number 90CH2916-5.

REFERENCES

Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. ISBN ???. LCCN ???.

IEEE:2003:IiW

IEEE:2004:FIA

IEEE:2005:PAC

IEEE:2006:PIS

IEEE:2006:PIC

REFERENCES

Moore:1979:IVM

Inoue:2006:VNP

Ilgenfritz:2009:VCP

Ilkhechi:2015:NAV

Infante:1975:PSP

Inouchi:1993:PTI

REFERENCES

REFERENCES

REFERENCES

Jacob:2005:DOE

Jones:2006:ATP

Jones:2006:GMB

Jin:2015:HSH

Sun:1999:JCV

Jin:2013:CFG

REFERENCES

REFERENCES

[Jung:2002:DIS] Jun-Young Jung and Min-Soo Jung. Design and implementation of small-sized Java Virtual Machine on Java plat-

Jang:2011:ERC

Jantz:2013:PPO

Jarray:2015:DAV

Jaffer:2015:IRD

Joshi:2005:DPP

[Joos:2006:OHE]

[Joos:2009:MWS]

[Jouannaud:1985:FPL]

[Joubert:1994:PCT]

Jacob:2002:CAP

Jin:2015:HAS

Jantz:2013:FAG

Juola:2007:PCO

Jia:2015:DRA

REFERENCES

[pledged]

Jiang:2012:UNG

Jin:2010:GTF

Jia:2013:SID

Kagawa:2009:WWB

Kojima:1983:AMI

Kumar:1993:FHS

Sanjaya Kumar, James H. Aylor, Barry W. Johnson, and Wm. A. Wulf. A framework for hardware/software codesign.

REFERENCES

Kounga:2012:ESP

Kansal:2016:EAV

Kim:2015:UWM

Kim:2014:ECS

Kousiouris:2011:ESW

REFERENCES

REFERENCES

REFERENCES

Krsul:2004:VPM

Karnagel:2017:AWP

Khnaser:2009:VVC

Kang:2016:MPV

Kim:1984:EVM

Kissell:2008:TCV

REFERENCES

REFERENCES

Kokkinos:2016:SLM

Kawahito:2013:IRF

Koksal:2012:CC

Kawai:2017:VWD

Kocoloski:2013:ICN

Kong:2014:SGE

REFERENCES

Kyle:2015:ADA

Kiefer:2013:SIP

Krieger:2010:EMC

Kashyap:2016:OSA

Khazaei:2013:PCC

Kalibera:2014:FAS
Kuperman:2016:PR

Kessaci:2014:MSL

Knaggs:1993:PTA

Kasprzyk:2002:APV

Kotsovinos:2010:VBC

Kotsovinos:2011:VBC

REFERENCES

[KRCH14] Madhukar N. Kedlaya, Behnam Robatmili, Cglin Cascaval, and Ben Hardekopf. Deoptimization for dynamic language

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett Witchel. Ingens: Huge page support

Karger:1990:VSK

Lamming:1975:LVM

Larisch:2009:PMH

Lau:1987:OCV

Laverick:2010:VVI

Lawton:2000:PVM

Liang:1998:DCL

Lin:2012:UKT

Li:2016:ICV

Laadan:2007:DPV

Le:2011:REC

Levis:2002:MTV

REFERENCES

Li:2015:ARP

Lagar-Cavilla:2011:SVM

Lin:2005:VMB

Lange:2011:SSV

Lv:2012:VCV

REFERENCES

Li:2012:SRS

Lipner:2012:LVS

Lee:2017:EBG

Liu:2014:OVM

Lee:2017:PEH

Liu:2008:PBH

Li:2012:GCV

Liu:2014:MGR

Leung:1998:DGD

Li:2012:CVS

Lin:2016:BSC

Lewis:1999:EBP

Lewis:2000:APH

Lewis:2001:APH

Lowe:2014:MVV

Laureano:2007:PHB

Laden:2012:ADF

REFERENCES

[LTZ+14] Xiaodong Liu, Weiqin Tong, Xiaoli Zhi, Fu ZhiRen, and Liao WenZhao. Performance analysis of cloud computing

LeVasseur:2004:SAR

Lucent:1997:LPL

LeVasseur:2005:PVU

Liang:1999:CPS

Li:2016:SSO

Le:2011:EMO

Liu:2012:PBA

Lin:2015:SGU

Li:2017:AET

Lin:2016:JOQ

Liu:2010:VMF

REFERENCES

Li:2016:VMT

Li:2014:VSK

Luo:2016:OMM

Lindholm:1997:IJV

Lindholm:1997:JVM

Lindholm:1999:JVM

Lindholm:19xx:JVMa

Tim Lindholm and Frank Yellin. The Java Virtual Machine. GOTOP Information Inc., 5F, No.7, Lane 50, Sec.3 Nan Kang
REFERENCES

Road Taipei, Taiwan; Unit 1905, Metro Plaza Tower 2, No. 223
Chinese translation by Thi ShiAng Workshop.

[Lyxxb] Tim Lindholm and Frank Yellin. The Java Virtual Machine. GOTOP Information Inc., 5F, No. 7, Lane 50, Sec. 3 Nan Kang Road Taipei, Taiwan; Unit 1905, Metro Plaza Tower 2, No. 223 Hing Fong Road, Kwai Chung, N.T., Hong Kong, 19xx. ISBN ?? ??? LCCN ?? ?? Chinese translation by Thi ShiAng Workshop.

Kangkang Li, Huanyang Zheng, Jie Wu, and Xiaojiang Du. Virtual machine placement in cloud systems through migration process. *International Journal of Parallel, Emergent and
REFERENCES

Min:2006:FHP

McDougall:2010:VPP

Modi:2017:VLS

MacKinnon:1979:CVM

Muller:2007:VMS

Mann:2015:AVM

Zoltán Ádám Mann. Allocation of virtual machines in cloud data centers — a survey of problem models and optimiza-
REFERENCES

Laurent Millet and Ted Baker. Porting the GNAT tasking runtime system to the Java Virtual Machine.

Mayer:2012:URM

Mittal:2013:EVE

Muller:1992:ASP

Marshall:2009:VEE

McDonald:1986:TND

REFERENCES

REFERENCES

[Menon:2006:ONV]

[MD73]

[MD74]

[Meyer:1997:JVM]

[Meyer:19xx:JVMb]

[Marr:2012:IUM]
Stefan Marr and Theo D’Hondt. Identifying a unifying mechanism for the implementation of concurrency abstractions
REFERENCES

[MJW+06] Al Muller, Andy Jones, David E. Williams, Stephen Beaver, David A. Payne, Jeremy Pries, and David E. Hart. Script-

REFERENCES

SCPE_10_2_05.pdf; http://www.scpe.org/vols/vol10/no2/SCPE_10_2_05.zip.

REFERENCES

REFERENCES

Muir:2006:POP

Mylopoulos:1991:IPT

Miller:2004:CLI

Moreno:2006:NV

Minhas:2013:RTH

Meier:2017:PVM

Malan:1991:MA

G. Malan, R. Rashid, D. Golub, and R. Baron. DOS as a Mach 3.0 application. In USENIX [USE91], pages 27–40. LCCN QAX 27.

Moure:2002:KS

Marshall:2006:ASV

Meyer:1970:VMT

Manas:1991:VLM

Milutinovic:1991:PTA

Mathiske:2000:APM

Menczer:2001:OTR

Mann:2017:WBA

Mebane:1992:EFD

Maessen:2001:PAS

Ma:2012:DTD

REFERENCES

Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianmi Xu, Zhicheng Yao, Yun Chen, Haibin Wang, Lixin Zhang, and Yungang Bao. Supporting differentiated services in computers via programmable architecture for resourcing-on-demand (PARD). *ACM SIGPLAN Notices*, 50(4):131–143, April 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Aravind Menon, Simon Schubert, and Willy Zwaenepoel. TwinDrivers: semi-automatic derivation of fast and safe hyper-

Merrifield:2016:PIE

Merrifield:2017:PIE

Muhlbacher:1975:GIF

Mergen:2006:VHP

Marz:2016:RPC

Muller:2005:VVE

[MWHH05] Al Muller, Seburn Wilson, Don Happe, and Gary J. Humphrey, editors. *Virtualization with VMware ESX Server*. Syngress
REFERENCES

[Ng01a] Choong Ng. VMware Express 2.0 and Win4Lin 2.0: a comparison review. Linux Journal, 85:??, May 2001. CODEN LIJOFX. ISSN 1075-3583 (print), 1938-3827 (electronic).

Ng:2001:VEWb

Noll:2013:OFD

Nieh:2012:CBR

Namjoshi:2010:NOP

Neumann:2006:IVT

Nieh:2000:EV

REFERENCES

CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

REFERENCES

REFERENCES

Oi:2006:IFH

Oi:2008:LVA

Osisek:1991:EIA

Ozgur:1990:SON

Ouyang:2013:PTS

Ouyang:2016:SUV

Oliveira:2015:ORE

[OVI+12] Luciano Ost, Sameer Varyani, Leandro Soares Indrusiak, Marcelo Mandelli, Gabriel Marchesan Almeida, Eduardo

Parziale:2008:ZVL

Parnas:1979:DSE

Patel:2012:PIF

Pek:2013:SSI

Plotkin:2016:SNV

Plata:1990:ASP

Porter:2012:RLT

Pelleg:2008:VBD

Piraghaj:2016:VMC

Perez-Cazares:1989:DAL

Peng:2016:TCT

Pan:2012:CLM

Pham:2014:BRS

Park:2011:FSE

Pape:2016:LIS

REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[PHL+12] Panagiotis Papadimitriou, Ines Houidi, Wajdi Louati, Djamal Zeghlache, and Christoph Werle. Towards large-scale
REFERENCES

REFERENCES

Pountain:1990:SPP

Paulo:2016:EDD

Pfitscher:2014:COD

Parmelee:1972:VSV

Permandla:2007:TSP

Provos:2000:EVM

Prades:2016:CAX

Javier Prades, Carlos Reaño, and Federico Silla. CUDA acceleration for Xen virtual machines in InfiniBand clusters with rCUDA. *ACM SIGPLAN Notices*, 51(8):35:1–35:??, August
2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Pietri:2016:MVM

Parri:2011:RCPa

Parri:2011:RCPb

Payne:2007:LAS

Pfefferle:2015:HVF

Padala:2007:ACV

Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal, Arif Merchant, and Kenneth

[Pape:2014:EJV]

[Pham:2015:SRD]

[Pulman:1991:EER]

[Petrashko:2016:CGL]

[Prokopski:2008:APC]

REFERENCES

Perez:2008:VHB

Pawlish:2014:CEE

Panesar-Walawege:2003:VHM

Peng:2017:SMA

Poulsen:1993:ETP

Pearce:2013:VIS

Padala:2007:PEV

Qian:1999:FSJ

Quetier:2007:SCF

Quynh:2006:RTI

Qiang:2016:SCF

Russell:2002:SCI

REFERENCES

ReFerre:2006:VIS

Rayns:2013:CJS

Rajaraman:1979:PPV

Ramsdell:1993:RVP

Raner:2002:LJV

Russell:2001:HSA

REFERENCES

REFERENCES

REFERENCES

2016. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

References

REFERENCES

REFERENCES

Sani:2014:PDF

Schuh:1990:PRI

Shi:2008:VMS

Schoen:1986:CS

Schulman:1994:UCI

Schulman:1994:IWV

Schocken:2009:VMA

[Sch09] Shimon Schocken. Virtual machines: abstraction and implementation. *SIGCSE Bulletin (ACM Special Interest Group*

REFERENCES

REFERENCES

REFERENCES

Shen:1991:VTD

Shelburne:2002:PEP

Shippy:2003:PGT

Shao:2013:VOS

Shriver:1989:PTA

Svard:2011:EDC

Sard:2015:PPC

Song:2014:OBS

Sarda:1981:CAD

Suneja:2015:EVI

Signorini:1989:HSM

So-In:2011:VAU

Shi:2012:TSW

Sem-Jacobsen:2013:ELC

Shen:2017:SLC

Sailer:2005:BMB

Shi:2013:AGC

REFERENCES

REFERENCES

Skrien:2001:CST

Suzuki:2016:GGV

Shyu:2000:APV

Szefer:2012:ASH

Sallam:2014:MOV

Sgandurra:2016:EAT

Daniele Sgandurra and Emil Lupu. Evolution of attacks, threat models, and solutions for virtualized systems. *ACM Com-

Sun:2016:NTE

Scott:1989:EOS

Seiden:1990:AFV

Sterrett:1992:PMA

Shudo:2001:AME

Venugopal K. S., Geetha Manjunath, and Venkatesh Krishnan. sEc: a portable interpreter optimizing technique for embedded Java Virtual Machine. In USENIX [USE02],
REFERENCES

Scales:2010:DPS

STUG:1983:PUA

Soltesz:2007:CBO

Spivey:2006:VHH

Sprang:2006:XVL

REFERENCES

Shih:2005:ICA

Salimi:2013:BSC

Soundararajan:2017:SFC

Stark:2001:JJV

Shaylor:2003:JVM

REFERENCES

1:1–1:11, ???? 2010. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

Stanik:2007:NVR

Steil:2005:MMM

Stecklina:2014:SHO

Steinert:2015:OVS

Stoess:2007:TEU

Strauss:2013:FCC

Sun:2013:BJW

Su:2014:RVP

Subramaniam:2008:PST

Subramaniam:2011:PCJ

Samples:1986:SSB

Sun:1995:JVMb

Sun:1995:JVMa

REFERENCES

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Shan:2012:FIA

Spink:2016:HAC

Song:2014:ARP

Shuo:2012:PKR

Sohrabi:2017:EEA

Syropoulos:2007:PMV

REFERENCES

istry of Defence, Royal Signals and Radar Establishment, Lon-
don, UK, 1976.

[TB14] Emina Torlak and Rastislav Bodik. A lightweight symbolic vir-
tual machine for solver-aided host languages. *ACM SIGPLAN
Notices*, 49(6):530–541, June 2014. CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[TB17] Michael Tighe and Michael Bauer. Topology and applica-
tion aware dynamic VM management in the cloud. *Journal
ISSN 1570-7873 (print), 1572-9184 (electronic). URL https://
link.springer.com/article/10.1007/s10723-017-9397-z;
https://link.springer.com/content/pdf/10.1007/
s10723-017-9397-z.pdf.

book of Xen: a practical guide for the system administra-
C83 2009. URL http://proquest.safaribooksonline.com/
?fpi=9781593271862.

[TCP+17] Phil Trinder, Natalia Chechina, Nikolaos Papaspyrou, Kon-
stantinos Sagonas, Simon Thompson, Stephen Adams, Stavros
Aronis, Robert Baker, Eva Bihari, Olivier Boudeville, Francesco
Cesarini, Maurizio Di Stefano, Sverker Eriksson, Viktória
Fördös, Amir Ghaffari, Aggelos Giantsios, Rickard
Green, Csaba Hoch, David Klaftenegger, Huiqing Li, Kenneth
Lundin, Kenneth Mackenzie, Katerina Roukoumai, Yiannis
Tsiouris, and Kjell Winblad. Scaling reliably: Improving the
scalability of the Erlang distributed actor platform. *ACM
Transactions on Programming Languages and Systems*, 39(4):
17:1–17:??, September 2017. CODEN ATPSDT. ISSN 0164-
0925 (print), 1558-4593 (electronic).

[TDG+06] Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog,
Cees de Laat, Joe Mambretti, Inder Monga, Bas van Oude-

[Tanenbaum:2006:CWM] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. Can we make operating systems reliable and se-
REFERENCES

Tu:2014:PPP

Thiruvathukal:2010:VCS

Thompson:1968:PTR

Thomas:1993:PIS

Thorns:2008:VBK

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

USENIX, P.O. Box 7, El Cerrito 94530, CA, USA, 1985. LCCN QA76.8.U65 U8 1985.

USENIX:1986:SCP

USENIX:1991:PUM

USENIX:1993:PUM

USENIX:1999:PFU

USENIX:2000:PAL

USENIX:2000:PNU

REFERENCES

Umeno:1987:NMR

Ureche:2013:MIS

Unnikrishnan:2013:RDP

Vac:2006:DBV

Vaghani:2010:VMF

Vanhelsuwe:1998:BRJb

VanHensbergen:2006:PRP

vanDoorn:2000:SVJ

vanDoorn:2006:HVT

vanderKouwe:2009:PQV

Villadeamigo:1997:EES

Visegrady:2014:SCV

Venstermans:2006:BVB

REFERENCES

Venners:1999:IJV

Venners:1999:SVJ

vonHagen:2008:PXV

Vitek:2014:CTR

vonKoch:2013:LRB

Viswanathan:2000:JVM

vonLaszewski:2001:GBA

Varvello:2016:MPC

vanMoolenbroek:2014:TFL

Vicente:2012:ECS

Vaughan-Nichols:2006:NAV

REFERENCES

REFERENCES

[VW08] Peter Varman and Jun Wang. Storage and I/O virtualization, performance, energy, evaluation and dependability
REFERENCES

REFERENCES

[WF03] Brian Ward and Gerhard Franken. VMware Workstation: [das Handbuch; Installation, Konfiguration, Anwendung und Troubleshooting; Gast-Systeme: Windows, Linux, BSD, Novell NetWare, Solaris, FreeDOS und Oberon; virtuelle Netzwerke,

REFERENCES

Wilson:2001:UVD

Wills:2006:PVC

Wang:2015:DAA

Wang:2010:HLA

Wentzla:2012:CFG

Whang:1990:QOM

REFERENCES

Wegiel:2008:MCV

Wein:2009:VGT

Wang:2015:IJV

Wade:2017:AVJ

Wang:2008:PEV
REFERENCES

REFERENCES

[WP97] Phil Winterbottom and Rob Pike. The design of the Inferno virtual machine. In IEEE [IEE97], page ?? ISBN ??? LCCN ???
REFERENCES

Wang:2016:DMB

Wurthinger:2017:PPE

Wang:2017:RLW

Wright:2006:IJV

Wang:1989:NNS

Wendorf:1989:SOS

REFERENCES

REFERENCES

Xu:2014:IML

Xiao:2013:DRA

Xu:2017:SLB

Xie:2016:GCF

Xie:2015:SSV

Xu:2017:EIR

Xie:2013:AAE

Xiao:2011:HLM

Xu:2016:CBA

Yao:2015:MEV

Yalamanchilli:1998:CPJa

Narendar Yalamanchilli and William Cohen. Communication performance of Java based Parallel Virtual Machines. In ACM [ACM98], page ?? CODEN CPEXEI. ISSN
REFERENCES

REFERENCES

[YP15] Srikanth B. Yoginath and Kalyan S. Perumalla. Efficient parallel discrete event simulation on cloud/virtual machine plat-

YANG:2017:EEV

YU:2014:MPP

YAN:2014:EFG

YUTAKA:2000:EJV

References

329
REFERENCES

Yang:2017:RVM

Yi:2015:ESF

Yehezk:2001:TST

Yang:2014:IV

Yut:2017:LRL

Yang:2013:QSE

REFERENCES

Zhao:2016:SHC

Zhang:2005:FVM

Zhao:2007:SSV

[ZBP05] Xin Zhao, Kevin Borders, and Atul Prakash. SVGrid: a secure virtual environment for untrusted grid applications. In ACM [ACM05b], pages 1–6. ISBN 1-59593-269-0. LCCN ????

Zhao:2007:UVM

Zou:2015:CDA

Zhang:2017:CAV

REFERENCES

[ZHCBD15] Minjia Zhang, Jipeng Huang, Man Cao, and Michael D. Bond. Low-overhead software transactional memory with progress

Zhang:2017:NAV

Zhou:2016:VMP

Zhou:2010:VN

Zhang:2017:OAI

Zimmer:2005:VMV

REFERENCES

Zabolotnyi:2015:JCG

Zheng:2016:VMC

Zhou:2013:OVM

Zou:2012:CDA

Zhang:2014:VFP

REFERENCES

2005. CODEN ???. ISSN 0163-5999 (print), 1557-9484 (electronic).

[ZSW+06] Zhang:2006:SPV

[ZSXZ07] Zhang:2007:DIB

[ZWHC17] Zhang:2017:CBV
Zhao:2009:DMB

Zeng:2016:VEF

Zhong:2015:VBM

Zytaruk:1994:WVMa

Zytaruk:1994:WVMb

Zhao:2006:DFS