A Bibliography of Publications about Virtual Machines

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

12 August 2017
Version 1.245

Abstract
This bibliography records books and other publications about virtual machines.

Title word cross-reference

$32.95 [Ano97a]. 5 [ALW15]. T^M [Cza00]. d [XDL15]. HV^2 M [CBZ16]. \omega [Arv02]. II [Syr07]. V^2 [DG05].$

-dienste [WF03].

.NET [Fra06, Fra09, Hee07, Hog06, Hog08, Men03].

/dev/random [Fer11]. / [IBM88, Int88]. /CLI
[Fra06, Fra09, Hee07, Hog06, Hog08, Siv07, Wil06].
0 [Sim92, SCP93]. 0.9.0 [WR07]. 0.9.1 [WR08]. '01 [Ano00, Ano01a, Ano01b, USE01c, USE01d]. '02 [USE02]. '03 [ACM03b, Ert03]. '04 [Ano04a, Ano04b]. '05 [ACM05d, Vra05].

2 [Bri98, Com00, Com03, Kis08]. 2-Level [ZSR+05]. 2.0 [Fra06, Ng01a, SUN97]. 2000 [ACM00]. 2001 [ACM01b]. 2003 [RM03, ACM03a, ACM03b, IEE03, Int05a]. 2004 [ACM04a, ACM04b]. 2005 [ACM05a, ACM05b, ACM05c, Wil06]. 2006 [ACM06c, ACM06b, ACM06d, IEE06b, IEE06a, Int06b, Int06c, Int06a]. 2008 [Lar09]. 2010 [Ano10]. 2011 [LCK11]. 20th [IEE06a, Vra05]. 21st [IEE05]. 23272 [Int05b]. 26th [ACM99]. 29-state [Sig89]. 2nd [Ano02].

3 [McC08, PO09, vdK09]. 3.0 [MRGB91]. 3.1 [Bau06a, Skr01]. 3.5 [Fra09, Hog08]. 32 [Ano14b]. 32-bit [VED06]. 335 [ECM01, ECM02, ECM05, ECM06]. 360/40 [ABCC66]. 37th [ACM06d]. 390 [DBC+00]. 3rd [ACM05b, ACM06c, Ano04a].

4 [Gal09b, G+06, Lav10, Low09, NOK+85]. 4-7 [M+06]. 43rd [ACM06a]. 440 [R+02]. 4th [USE00a].

5 [IEE02, War05]. 5.2 [P+08]. 5.5 [Bau06c, LMG+14]. 5L [Mly09].

64 [De 06, Don06]. 64-bit [VED06, VED07]. 6th [USE01b].

7 [HH08]. 7th [The93].

8 [LYBB14, She02]. 80 [BMW86, BSUH87]. 84 [IT86]. 84/K [IT86]. '89 [ACM89].

Angeles [ACM06c, IEE84b]. Animated [PCR89]. annealing [RH17].
Annotated [MR04, RSF03]. annotation [ANH00]. annotation-aware [ANH00]. Announcement [ANO00]. Annual [ACM06a, ANO10, IEE85, IEE05, MS91b, SHR89, USE00a, USE01a, USE06, ACM06a]. anomalies [FRM +15]. anomaly [SIK +16]. Antfarm [JADAD06a]. Anti [STA07]. Anti-P2P [STA07]. Antonio [ACM99, USE01b]. Anwendung [BEC09, BOR01, WF03, ZIM06]. Any [WL96, FIF +15]. APA [JNR12]. Apache [FRM +15]. apart [LBFI12]. API [ANA14c]. applets [WES98]. Appliance [ANA99, ANA03a, BAL15, BOA90, HHV +02, HC17, IEE05, NKK +06, PFO13, PY93, SSR05, TR88, AS76, ALF91, AC16, AB16, ACT94, ABC +07, BTLNB +15, DBC +00, EF94, EMS15, GHG12, GTN +06, GH +93, HC14, HKD +13, HSC15, JPT +94, KRG +12, LCL14, dOL12, PTM +15, R +13, RSLAGCLB16, Sch31b, SGV12, SZ88, WDC10, YGN +06, ZBP05, ZNSL14]. Application [BAL15]. Applications [BAL15, KF15, THI09]. Approaches [BAL15, ANO01b, IEE84a, USE01c]. Area [BFG +14, BRX13, CFM17, CLW +14, COX09, DPCA11, DM75, FPS +02, JEN79, JQWG15, KC16, KF15, KI12, SL12, CFS +12, DLL16, RVJ +01]. Architecture [AN099, AN003a, BAL15, BOA90, HHV +02, HC17, IEE05, NKK +06, PFO13, PY93, SSR05, TR88, AS76, ALF91, AC16, AB16, ACT94, ABC +07, BTLNB +15, DBC +00, EF94, EMS15, GHG12, GTN +06, GH +93, HC14, HKD +13, HSC15, JPT +94, KRG +12, LCL14, dOL12, PTM +15, R +13, RSLAGCLB16, Sch31b, SGV12, SZ88, WDC10, YGN +06, ZBP05, ZNSL14]. Architectural [ANA99, ANA03a, BAL15, BOA90, HHV +02, HC17, IEE05, NKK +06, PFO13, PY93, SSR05, TR88, AS76, ALF91, AC16, AB16, ACT94, ABC +07, BTLNB +15, DBC +00, EF94, EMS15, GHG12, GTN +06, GH +93, HC14, HKD +13, HSC15, JPT +94, KRG +12, LCL14, dOL12, PTM +15, R +13, RSLAGCLB16, Sch31b, SGV12, SZ88, WDC10, YGN +06, ZBP05, ZNSL14]. Arquillian [AME13]. Array [MBK +92, SV15]. Artificial [MR91, TVO92, BCM90, IIM93, KCV11]. arts [BB08]. aspect [BADM06]. Aspects [Hsu01, Knu93, EF94]. assembler [GBO87]. Assembly [BD01, SVB93, Ber86, Don88, Juo07]. Assembly-Language [SVB93].

Asynchronous [Cav93, LJL+11, MM93, SM01, vLSM01]. Atlanta [USE86, USE00a]. ATMS [CWG00]. atomicity [BHSB14]. attached [Mon97]. Attackers [CLS07]. Attacks [SL16, SYB12, TV12, GHD12, VT14, WXW15]. Attestation [ZL16, VT14]. attribute [FS89]. Auction [SZW+16, TVKB16, ZG13, ZLH+15]. Auction-based [ZG13]. Auctions [ZHW+17]. Auditing [BHSB14]. ausformen [RHM08]. Augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austria [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. Automated [ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MJW+06]. Automation [ACM06a]. automaton [Sig89]. auNsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. Automated [ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MJW+06]. Automation [ACM06a]. automaton [Sig89]. auNsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. Automated [ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MJW+06]. Automation [ACM06a]. automaton [Sig89]. auNsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. Automated [ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MJW+06]. Automation [ACM06a]. automaton [Sig89]. auNsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. Automated [ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MJW+06]. Automation [ACM06a]. automaton [Sig89]. auNsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. Automated [ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MJW+06]. Automation [ACM06a]. automaton [Sig89]. auNsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. Automated [ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MJW+06]. Automation [ACM06a]. automaton [Sig89]. auNsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. Automated [ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MJW+06]. Automation [ACM06a]. automaton [Sig89]. auNsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. Automated [ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MJW+06]. Automation [ACM06a]. automaton [Sig89]. auNsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE96b, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].
PFH$^{+16}$, PGLG12, QZDJ16, RH17, SJB14, SS13, SG10a, SGV13, SPF$^{+07}$, Sto07, TT96, TY14, VT14, Vog03, WKT08, WDCL08, WXZ17, WW77, XZI11, XZZ$^{+16}$, YC98a, YC98b, YZW$^{+13}$, YZLQ14, YLCH17, YBZ$^{+15}$, ZG13, ZLH$^{+15}$, ZWHC17, ZAI$^{+16}$, ZLL$^{+16}$, based

C [Fra06, Fra09, Hee07, Hog06, Hog08, Wil06, Bhu02, CWG00, G+01, Hee07, Hog06, Hog08, JM08, Men03, Siv07, Wil06]. C# [G+01]. C/C [Bhu02]. CA [ACM06a, ACM06c, Ano97a, IEE84b, IEE93a, USE01c]. Cache [JQWG15, NsP16, RHR02, Boz89, JADAD06b, Oi05, RJK16, ZP14]. caches [BLRC94]. Caching [KJL11, MM93, LM99]. Calculations [Bad87].

Calculus [ABV12, Wat86, Wat87, WK90]. Calif [ACM01b]. California [ACM05a, Ano01b, Ano04b, Ano10, IEE96a, IEE97, IEE99, USE91, USE99, USE01c, USE02, IEE04a, IEE90a, IEE91, Tho93]. Call [DEK+03, Lee16, PVRR14, SSB+14a]. Call-site [SSB+14a]. calling [HB13, SSB+14a].

calling [VMBM12]. Cambridge [USE93]. Can [Cox07, GW07, THB06, Sig89]. Canada [ACM06f, So83]. CAOS [Sch86].

Cap [HC17]. Capabilities [TVO92, Ame13, AAB+05c, Fit14]. capable [PST+15]. Capacity [HMH17]. capo [SMSB11]. capping [JKK+13].

Capture [Sur01]. capturing [BK+13]. Card [Siv04, SUN97, HM01, Req03, JCV99]. cards [TLBW12]. carry [Ame13]. carrying [FCG+05].

Cascade [YYL+15]. cascading [HL13]. Case [GGG03, HWB03, Ian14, PK75a, HIIG16, MN03, Sig89, SIRP17, Vit14]. Case-Based [GGG03]. Cases [FG91]. Cassandra [FRM+15]. Catalyst [Ano03a].

Categories [Gai75]. causes [FRM+15]. CCAP [JQWG15].

CCGrid [TLC06]. CD [Joo06]. Cells [DAH+12]. cellular [ALW15, Sig89].

Center [Ano93, Car14, CGC16, DY17, IEE90b, PCC+16, XWJX15, HUWH14, LZW+15, Man15b, MRM06, MBM09, VOS12, WDCL08, WZV+13, Car13].

Centers [BB13, CL17, EGR15, KMM13, IVM16, Man15a, Man16, SB16, YLH17, ZHL16, dSdF16, AGH+15b, AGH+15a, ATS16, AMAB17, BB12, FLL+13, IKU15, PVRR14, RH17, RJK+17, WCY+17, WTLS+09].

Challenges [Nie12, SG10b, FJKK17, LDDT12, MA10, MA17, THIN09]. change [ZL13].

Changing [Mac79]. Channel [LCWB14, MN03, WXW15]. Channels [Hu90].

Characteristics [SHW+15, CWC+14]. Characterization [AMA+14, CGS06, IEE02, IEE03, ACM06c, RV+01]. characterize [LJN+00]. Chatten [Joo06]. Cheat [Rul07]. checking [BHSB14].

checkpoint [BBHL08]. checkpoint/restart [BBHL08]. Checkpointing [ECJ+16, PEL11, SGV12, TSLBYF08, dSOK17]. checkpointing-enabled [SGV12].

circuit [Bur02, KKC+16]. Class [LCWB+11, LB98, Pat12, Won97]. classes [Bor07, Skr01]. classical [SGS92]. Classification [VLZL16, CWC+14].
classification-based [CWC+14]. Cleancache [VTW16]. CLI
[ECM01, ECM02, ECM05, ECM06, Int06b, Int06c, Int06d, SNS03, Vog03]. CLI-based [Vog03]. Client [RSW+06, DPW+09, HIIG16]. CLIP7 [Lau87].
Cloning [LCWB+11]. Closing [ZLHD15]. Cloud
[BB13, BHEP14, CWL12, CFM17, DKW15, GLS15, HMH17, HKLM17, JE12,
JQWG15, KC16, KMM13, LCWB+11, LGR14, LW12, LS15, MSG14, Man15a,
Man16, MJW+14, NSJ12, PCW+16, PS16, PCC+16, RSNK17, RSGG15,
RWX+12, SL14, SZW+16, SV13, SXCL14, TVKB16, TMMVL12, WVT+17,
WUNK17, XSC13, XWJX15, XL+14, XLJ16, YLN+17, YP15, ZQCZ16,
ZL16, ZHL16, AGH+15b, AGH+15a, AB16, AO16, AMA+14, ATS16,
AMAB17, BTMS10, Beg12, BCC+15, CLI4, CSSS11, DC15, DEG+17,
DQWL15, DCMW17, FLL+13, GTGB14, GLK+12, IKU15, JES+15,
JWH+15, KSO+15, KSR10, KMT14, KCS14, KJL15, KCC15, LW+12,
LZWC13, LZWD15, LCL14, LS14, LL14, LTZ+14, LP11, Man15b, MNA16,
MA17, Nie12, dOL12, OL13, RH17, RQD+17, RJK+17, Ros14, SG10a,
SGV13, SASG13, SBP+17, Str13, TMLL14, VT14, WRSvdM11,
WRS+15, WXW15, XHL+13, XZZ+16, XTB17, YLH14, YLHJ14].
cloud [YLCH17, YBZ+15, ZLZ13, ZWHC17, ZHHC17, BB12, CD14, CFVP12,
KKB14, KBB11]. cloud-computing [ZLZ13]. cloud-distributed [AB16].
cloud-oriented [Beg12]. Cloud/Virtual [YP15]. ClouDiA
[ZLV+12, ZBS+15]. cloudlet [YBZ+15]. cloudlet-based [YBZ+15].
CloudMon [WLLZ16]. CloudNet [WRSvdM11, WRS+15]. Cloulds
[AD11, CRZH15, HKKW13, KMK16, LWLL10, NMG15, OG16,
OS15, RG17, RB17, WZL15, WLL16, ZHW+17, ZRZY15, BB15,
dCCDFD015, DCM16b, PCW+16, FBB+12, HZZ+14, KMK16, LMV12, LBZ+11,
LLW16, PP014, XJWW15, ZG13, ZLH+15, ZLW+12, ZBS+15, EMS15].
CloudSim [OBSR16]. CloudSim [OBSR16]. Cluster [CLI6b, GIK+99, SEF+06, TLC06, FLCB10,
KJL15, LJL12, SBP+17, SSN94, YLHJ14]. cluster-based [FLCB10].
Clustering [XZZ+16, ZWHC17]. Clustering-based [XZZ+16]. Clusters
[CHP17, LZ15, WIS+15, YWCF15, ZLW+14, A016, F10, HCJ07, KOY05,
SJ12]. CMD [CWC+14]. CMS [SNC91, IBM96]. CNC [Lia05]. Co
[HS06, LH16, WDP12, OG16, Wu13, YWG13]. Co-Design [LH16].
Co-Designed [HS06, Wu13]. Co-evolution [WDP12]. co-location [OG16].
co-scheduling [YWGH13]. COBOL [IBM88, Int88, TT96]. Cocoa
[YLN+17]. Code [AC98, CDN02, Dom80b, Fra83, GFH82, GHF83a, GHF83b,
RJK16, WNL+83, Ano15, EL98, FCG+05, HK07, HLW+13, JM08, NG13,
PV08, tTR82, UTO13, WGF11, Cox12]. code-copying [PV08]. Codesign
[KAJW93]. CodeWeavers [Ano03b]. Coding [Hsu01]. Cognitive
[AAJD+16]. coherent [ZP14]. Cold [BZD17, WGF11]. Collaborative
[IEE06a, XWH+16]. Collecting [DS16]. Collection
[ADM98, Ano03b, BS90, SHB+03, DEE+16]. Collection-Oriented [BS00].
collections [BDT13, SV15]. Collector [GTS+15, WK08]. Collectoren
[Sch13a]. collectors [Sch13a]. collection [WTLS+09]. Colorado [USE00b].
Comandos [MC93, CTS+93]. Combating [GG11]. Combinatorial
Combining [BPP+17, RSLAGCLB16, YJZY12]. COMMA [ZNSL14]. Commandos [MC93]. Commodity [Ros99, BK14, CGL+08a, CGL+08b, CLDA07, TLBW12]. Common [CK87, Cro93, Int05a, Int05b, Int06a, ECM01, ECM02, ECM05, ECM06, Int06b, Int06c, Int06a, MR04, PW03, RSF03]. communicating [SK13c]. Communication [CL17, CK06b, Ck06e, DJ77, HW15, Jen79, RLZ+16, YC98a, YC98b, BML+13, DSC+08, DJ76, GI12, Tsh93]. Communications [NKK+06, CFVP12, HSC15, MN91]. communicating [ACM04b]. community [AAB+05a]. Compaction [WK08]. Comparing [Gal11]. Comparison [Do11, EDS+15, Ng01a, Ng01b, QNC07, AA06]. Compatible [ZFL15]. Competition [CRZH15]. Competitive [BFG+14]. Compilation [ACM06b, Cla97, FM90, JK13, KS13]. Compiler [GFH82, Har77, FS89]. Compiling [BS90, BUH87, Ode87, Wak99]. Complete [Bod10, Fis09, LJN+00, War02]. completion [MNT14]. complex [Sig89]. complexity [Bod88, GLK+12, Sub08]. Compliant [CF00]. Component [Ano03b]. components [HPHS04, IKU15]. Composable [JHE14]. Composed [Wel94]. Composite [DKW15]. compositional [Yel99]. compound [VMBM12]. Comprehensive [LV99, PCW+16, TFtLC15, GP13, MA17]. compressing [JDW+14]. Compression [HKKW13, SHT11]. compromise [CD01]. CompSC [PDC+12]. Computatim [HW93]. computation [CMP+13, CKP+93, KJJ+16]. Computational [THLK10, Wün13, YQZ14]. computations [Kra90, NOR15]. compute [KL13]. Computer [ACM81, ACM06d, Ano93, Arm78, BGS89, CCO+05, DM75, Hsu01, IE85, IEE90a, IE91, IEE05, Ne04, PBR+90, SS75, SI81, Tur92, WR07, WR08, ZR06, Agr99, BR01, DTW07, FFB+00, GE85, GD08, Hog02, Jou85, Juo07, KW80, LBP+07, ME87, MS01, Pono90, Ros06, Skr01, Spi06, SS72, Sus76, WO75, YPA01, Yur02, Mon97, Osb01, War11]. Computers [BP99, BKM11, BK09, KD78, MSS+15, HP77, SGG89, SGG00]. Computing [ACM98, ACM04b, ACM05b, ACM06e, Abr80, BHEP14, CWL12, CFM17, DDS+94, DPCA11, Gei02, IEE96b, IEE04, IEE06a, KC16, KG2+04, LCK11, LW12, MSG14, MO98, NSJ12, PCW+16, PS16, RCM+12, RSNK17, SCSL12, SZW+16, SEF+06, TLC06, USE93, Vot03, WB81, XSC13, YLN+17, ZL16, ZF06, ZAI+16, Ano96, AMA+14, BS96, CD14, CDM+10, DQR+13, DCM17, Fis91, FF96, Fu10, GLA+08, JPE94, KHL17, KSO+15, LBZ+11, LLW+12, LCL14, LTZ+14, LP11, MNA16, MCG72, MCK11, MUKK06, M+06, MA17, PSZ+07, QZDJ16, RQD+17, Rob06, SJW+13, SAS13, SB10, TML14, WH08, XTB17, ZLZ13, ZWHC17]. computing-an [FF96]. con [SMS11]. concept [SIJP11]. Concepts [PPTH72, Agr99, Don88, MS01]. Concerns [VN08]. concolic [LLS+12]. Concurrency [MD12, CFS+12, Sub11, UR15]. concurrency-safe [CFS+12]. Concurrent [GMP89, Har77, KD78, IT86, WK08, YWHG13]. Conditioned [WC01]. Conference
ACM81, ACM90, ACM96, ACM97, ACM00, ACM01b, ACM04b, ACM05d, ACM06a, ACM06b, ACM06f, Ano93, Ano99, Ano01a, Ano02, Ano04a, Ano06a, BW03, DC15, IEE84b, IEE93a, IEE05, LCK11, Mar81, MS91b, MR91, S083, SS05, Shr89, USE99, USE00a, USE01a, USE01b, USE06, ACM06c, ACM06e, IEE06b, JPE94, USE85, USE86, ACM00, IEE85.

configurable [WJGA12]. Configuration

configure [Car14]. Configuring [AL05, Rul07]. configuration [BLRC94].

configurations [BRX13, Lar09, AL04, FL13b, SMA10].

configure [Car14]. Configuring [AL05, Rul07].

confirming [OG16].

conflict [BLRC94].

Congestion-Aware [YLH17]. Congress [GHH+93].

conjugate [MM92].

Connected [SMES01, MS00]. connection [MJ93, Tur84, TR88].

connections [FBZS12]. connectivity [VOS12].

Conserving [DP11].

consideration [FRM+05]. Considered [NMHS15, WC01].

considering [LTZ+14].

Consolidated

Consolidation [BB13, LVM16, PZW+07, SBK15, ACH+15b, ATS16, AMAB17, BB12, BB15, CD14, HML17, HZZ+14, gKEY13, KCV11, LBL16, LYYY17, LL14, LDDT12, Man15b, R’02, SS12, WCC+16a]. consolidation-aware [WCC+16a].

constituent [RHR02].

Constrained [EGR15, LTE12].

Constraint [LFBB94, DQLW15]. Constraints [BB13, KKS12, SZ13].

Constructing [DM93].

Consumption

Consumption [DSM14, MV16, FFB+00, DPBK16, RJK16, VED07]. Container

Container-Based [YNL+17, SPF+07].

Containerization [HSL17]. Containerized [HSL17]. containers [Ros14].

Context [DMG+15, TMV12, vLSM01, HB13, SSB+14a, SM01]. Continuous [DL89, TSLBYF08]. Continuum [Bad87]. Contraction [Par79]. Control [AGLM92, Att79, CL16b, HHC+16, LZ15, PSBG11a, RSNK17, Sch94b, Sch94a, SDD+16, Sur01, W10, WSAJ13, Zyt94a, Zyt94b, AS76, BKH+06, FP14, HB08, Kis08, KKS12, Lin05, PSZ+07, PSBG11b, PSC+07, STS+13, ZBG+05, ZSW+06]. Control-Flow [WJ10]. controlled [KK97, Sto07].

Car13, Car14, G+06, P+08, TH10]. Cooperative [KJL11, GLJJ16].

Coordinated [BRX13, LZ15, CRB12, KKK+13, NS07, BBMA91, MS01]. coordinating [ZNSL14]. Coordination [ABV12, Tho93]. COTS [USE99].

Copley [USE01a], Coprocessor [LRZ16], copy [HDG09], copying [PV08]. core [CMP+07, DQR+13, KW13, PNT12, SK13b, YTS14]. Corel [Ano03b].

Corner [Sch94b, Sch94a]. correct [DM93, IM75, Kou11]. Correction [Lee16]. Correspondence [BDJSD02]. Cosmology [Nel94]. Cost

Cost [AMH+16, Dre08, KJM+07, LBZ+11, OMB+15, SJRS+13, WCY+17, ZLZ15]. cost-efficient [OMB+15]. Costs [ZHW+17, FLL+13]. counter [NB11].
Counteracting [VT14]. course [AL05, Don88]. courses [BBS06, GD08].
Cover [Arm98]. Coverage [CSS+16]. Coverage-directed [CSS+16]. covert
[WXW15]. CPU [BSSS14, HB08, JGW+11, Kam13, Skr01, SK13c, WGLL13].
crash [KY16], create [Fit14], creation [CK06b, CK06c]. Credit
[KP15, KCS14]. Credit-Based [KP15]. criteria [ATS16]. Critical [Ano15].
Criticality [WLMD16, LWM14]. Crop [UBF+15, BDF+15].
cross-Architectural [JR02]. Cross-Architecture [SWF16]. Cross-ISA
[WLW+15, WCC16b, CWH+14]. Cross-Platform [JXL+12]. cross-run
[AWR05]. cross-thread [BKC+13]. Crosscut [CLG+10]. CrossOver
[Ano03b]. cryptographic [QZDJ16]. cryptography [RY10, VDO14].
CSDA [War11]. CSDP [War11]. CTO
[Cre08a, Cre08b, Cre09, Cre10b, Cre10a]. Current [AH12, RG05]. Curse
Customizable [LJFS17]. Customization [PCC+16, CGV10]. customized
[HB13]. CVM [DSC+08]. CyberGuarder [LLW+12].

DAI [AKK+07]. dann [B+07]. Dana [Ano10]. Dark [Fer11]. Darling
[MR91]. Dartmouth [Lee86]. Dartmouth-Smalltalk [Lee86]. Data
[BFHW75, BB13, CL17, CGC16, DY17, EGR15, FL13a, GTS+15, IEE84b,
KP15, LVM16, Man15a, Man16, Nel04, PCC+16, SB16, UVL+13, Wel94,
WXJ15, YLH17, ZHL16, dSdF16, AKK+07, AGH+15b, AGH+15a, ATS16,
AMAB17, BK14, BB12, CFS+12, Cla05, DXM+17, FLL+13, GE85, GH91a,
HN08, HUWH14, IKU15, KJJ+16, KSLA08, LDL14, LZW+15, Man15b,
MRM06, MBM09, PVRR14, PRB07, RH17, RJK+17, She91, TSLBYF08,
VOS12, WDCL08, WZV+13, WCY+17, Wol99, WTLS+09, WCG14, XXZ13].
data-flow [GE85]. data-parallel [She91]. Database
[WK90, BBS06, CSSS11, ECAE13, MN91, MRC+13, PTM+15, SI81, SMA+10].
Datacenter
[BBM+15, BCP+08, GTGB14, MSG+12, SG10b, ZLZ15, ZWC+14].
datacenter-scale [MSG+12]. Datacenters [KL14, GLJJ16, WRS13].
DDG-based [PGLG12]. DDGacc [PGLG12]. de-duplication [CLcC13].
de-facto [Rus08]. dead [SK13a]. deadline [DQLW15]. deadlocks [PRB07].
Debian [CK06a, CK06b, CK06c, CK06q, Bau06a, CK06a, CK06b]. Debues
[Ano03b]. Debugger [MZG14, RB01, Sun99, But94, HH05]. Debugging
[ACM05a, FS12, HH04, Ci07, JHE14, KM13, KK79, Pmc05]. December
[ACM05b, HHK94, IEE05, M+06]. Decision [CHW12, DJ77, DJ76].
Decisions [HKKW13]. Declarative [Dau86]. Decomposition [JK15].
dedicated [KOY05]. Deduplication
[Li14, MJW+14, PP16, CWC+14, HOKO14, XZZ+16].
 Deduplication-Based [MJW+14]. deep [HeC14]. defending [CVWL13].
Defensive [BDJdS02, Coh97]. Defined
[CL17, JN15, LLW+16, ALW15, LJRT12, LWL16]. Defining
[DL89, Lot91, BMWB86]. Definition
[Dom80b, SSB14b, SMO84, EMS15, SSB01]. Definitive [Oak14, Chi08].
Defragmenting [SGV13]. Degree [KMM13]. DejaView [LBP+07]. Delay
[RSNK17, RKKK17, WCY+17, ZRS+16, LCL14]. Delay-cost [WCY+17].
delay-sensitive [LCL14]. Delivery [TFtLcC15]. delta [SHTE11]. Demand
[CWL12, KKJ+13, MSH+15, ZF+06, ZEF+17, J+05, JCPZ13,
LZW+15, SGV13]. Demand-based [KKJ+13, SGV13]. Denelcor [Dun86].
denotational [Arv02]. Denver [USE00b]. Deoptimization [KRCH14].
Dependability [FP14, VW08]. Dependable [DPCA11, SJW+13].
dependences [BKC+13]. Dependent [BP99]. deployed [RY10]. deploying
[R+13]. deployment
[AAB+05b, Bor07, CGV10, SASG13, ZLZ13, ZLV+12, ZBS+15]. derivation
[MSZ09]. Derivative [Pfo13]. derived [Int06c]. Deriving [HWB03]. Design
[ACM06a, AC16, Ano03a, Ano03b, fltNW14, ACA16, BGS89, Clo85,
DAH+12, Das91, Dom80a, DLS+01, GFB+92, JNR12, J02, Kut92, LH16,
Mar08, OH05, PCW+16, SIR+17, SGGB99, SGGB00, SM02, Sur01, WC01,
WCSG05, WP97, XJC+14, ZSXZ07, ZAI+16, AM16, Blu02, BT15, Bur02,
CARB10, Car14, DN14, DCA04, GR80, HH05, HH13, Lcs74, Lio05, MSCK92,
O05, PMC05, Pul91, Si81, SNV10, SMSB11, SJW+13, Tur84, CMP+07].
Designed [HS06, Wu13]. Designing [Par79, TGC08]. DesignJet
[MSC92]. Designs [DMS02]. Desktop
[Ano03b, BWD+15, KGG00, CCW05, WH05]. Desktopping [JKB15].
desktops [KKJL14]. Detecting [CL14, JKDC05, TV12, CDW+06, LRC05].
Detection [CWS12, CLW+14, JHS12, AMA+11, FLF+08, MA17, PYB+08,
SIK+16, WC14, XXZ13]. detection/prevention [MA17]. detectors
[LMJ07]. Determine [BP99]. Determining [ZRS+16]. Deterministic
[KD78, BB12, KM13]. dev [Fer11]. Develop [DBM92]. developers [Wil06].
Developing [HHZ+14, PC19, R+13]. Development [Kna93, Lio05, RT93,
Wil01, Bor07, But94, CCW00, Her10, IBM88, Int88, STFH15, TT93]. Device
[Ano03a, JKJ+10, Nou92, SGB+16, FFBG08, LU04, SBQ14, TtLcC13].
Devices
[CXLX15, MV16, MSB03, SVL01, CT03, DPW+09, PDC+12, Rus08, Wal76].
Devirtualizable [LSS04]. devirtualization [KJM+07]. Diagnosing
[MST+05]. diagnosis [PP014]. dialect [BMW86]. Diego
[An010, IEE93a, USE99]. dienste [WF03]. Difference
[GLV+09, GLV+10, Wal10]. Different [Nel04]. differential [CSS+16].
Differentiated [MSS+15]. diffusion [DM93, MM92]. Digital
[MBK+92, TLB012]. dimensional [BSSM08, HPcC04]. DINO [RSW91].
Direct [M098, TFtLcC15, BLRC94, LC09a]. direct-mapped [BLRC94].
Directed [AJM+06, CSS+16, NG13, RP07]. Directions [WC01]. director
[KMK10]. direkt [LC09a]. Disaster
[KKL10, AAF+09, BGS13, RCO12, Mar08]. disaster-recovery
[BGS13, Mar08]. disclosure [FSH+13]. Discourse [MBWW86].
discovering [FBZS12]. Discrete [YP15]. Discussion [G+01]. disk
SHTE11, WKJ15, XXZ13, YLK+10, ZXW16, ZL13. Efficiently
[CWL+15, EGJS15, BKC+13]. Eighth [IEE01]. einem [See08a].
Einführung [CK06a, CK06b, CK06c, CK06d, CK06g, CK06f, CK06i,
CK06h, CK06j, CK06k, CK06m, CK06l, CK06o, CK06p, CK06q,
CK06t, CK06v, CK06s]. Einsatz [Zim05]. Einsatzmöglichkeiten [Zim06].
Einsatzszenarien [Sch13a]. Elastic [KSO+15]. Elasticity [GLS15, OSK15].
Energie [LBZ+11]. Electronic [MSC92, ZR06]. electronics [BB08].
Elektronische [Mar08]. ELI [GAH+12]. elimination [VED07]. elliptic
[AGIS94]. Elmau [IEE01]. em88110 [VdlFCC97]. embeddable [Web10].
Embedded
[BH15, DEK+03, Kut92, Mon97, NKK+06, SMK02, WLM+15, AH12,
Caa00, CT03, CGV10, HK07, Ivo03, KKC+16, MBBS13, RJK16, RMB02].
Embedded-System [Kut92]. Embedding [AM16, BL17, OMB+15, YLH17,
AO16, BCC+15, CR12, EMI13, JK15, KKM+13, SZL+14, WHC16]. EMF
[WIDP12]. emulate [tTR82]. emulated [THC+14]. emulating [VdlFCC97].
Emulation
[Ano03a, BKMM87, JN15, BB08, CW+14, GD08, Kam13, JYZY12, Bro89].
emulations [Bod88]. Emulator [Ano14b, Bru07, CFH+79, CFH+80, CK87,
FS11, MZG14, WCC16b, Bar06, KS13, Les74, She02]. Emulators
[Ert03, HHC+16, Ert05]. enabled [SGV12, VOS12]. enabler [DPW+09].
Enabling [KMK10, OVI+12, TY14, LSS04]. Encrypting [Pro00]. End
[Ram93]. Energy [BWD+15, CWL12, DMR10, DQLV15, Do11, DCMW17,
EGR15, JJK+11, KC16, KDB16, KCS14, KL14, OBSR16, RH17, SCL+14,
YLK+10, ZHL16, AMAB17, BAC15, BB12, BB15, BRI1M10, CD14, DP11,
DXM+17, FFB+00, GLK+12, GTN+06, JWH+15, KMT14, DPBK16, DOL12,
PVR14, RP07, VV08]. Energy-Aware [Do11, EGR15, DCMW17, KC16,
RH17, SCL+14, CD14, DXM+17, GLK+12, KCS14]. Energy-Awareness
[ZHL16]. Energy-credit [KCS14]. Energy-Efficient
[DMR10, YLH+10, BB15, BRI1M10]. Energy-Oriented [BWD+15].
Enforcement [LJFS17, NMMP15]. Enforcing [KC12, WZL15]. Engine
[Wal10, GLV+09, MO98, GLV+10, J+05, MIS+05]. Engineering
[IEE84b, ACM01a, McG72, WZ+13]. Enhance [GLS15]. enhancement
[DXM+17], enhancements [AKK+07]. Enhancing [GI12]. ENIAC [ZR06].
enhancing [Req03]. Enterprise
[ADG+92, FPR+06, G+10, LVM+15, Hal08, NS07, WH05, Ano03a, Gal11].
enthüllt [Joo06]. Entrepreneur [War11]. Entropie [CCW05]. Entropy
[TV092]. Entropy-Driven [TV092]. Environment [BGM70, CL16b,
G1K+99, Gen86, GGG03, HW93, IEE06a, J+05, JADAD06a, LW12, Mac79,
RT93, TMV12, XSC13, AAB+05b, BH13, CLDA07, CWG00, Don87, GD08,
GMR93, Hal09, HL13, JWH+15, JXZ+10, JADAD06b, KW13, McG72,
MST+05, MPF+06, TMLL14, TT93, Van66, XZZ+16, ZBP05, ZLLL13].
Environments [ACM05d, ACM06f, CWL12, GKKX13, HHW10, HKKW13,
KGZ+04, SV13, ZZZ06, ATS14, BCC+15, BRI1M10, BDK+08, CFVP12,
DP11, DEG+17, HOKO14, HC12, KSO+15, KKB14, PSZ+07, SJW+13,
Functional [ACM90, Dan86, GMP89, Ame13, Wak99, Jou85]. Functions [DL89, TF16, FJKK17, QZDJ16]. funfte [Mühl75]. funnel [LMV12]. Fusion [Kis08]. Future [Her06, KS08b, Sup04, AH12, Bau05, Ros14, Str13, Yur02, SIJPP11]. Fuzzing [KLF15]. Fuzzy [Hu90, LZ15, FLM08]. FUsions [SIJPP11].

G [ALW15]. GA [HMH17]. game [FK13, GLLJ16]. games [WKC09].

Gathering [Wol99]. GC [HHPV15]. GCompris [CK06t, CK06r, CK06s, CK06q].

GCTrees [DS16]. GDB [MZG14]. geharteten [See08a]. Geiger [JADAD06b]. Gelato [Ano06a]. Gene [SSU12]. Gene/P [SSU12].

General [GFB92, XWH16, LSS04, SS72]. General-Purpose [GFB92]. Generation [Ano03b, AC98, BDF99, CF00, GFH82, MZG14, PG74, EL98, IIK06, LLS12, PG73, Sus76, Web10]. generational [WK08]. generator [ABDD91, EGKP02]. Generators [Fra83, GHF83a, GHF83b, WNL83].

Generic [MM94]. generics [Int06a]. George [ACM03b]. Georgia [USE86, USE00a].

German [Joo09, Bec09, Bod10, CK06a, CK06b, CK06e, Fis09, Lar09, Sch13a, Spr07, WR07]. Germany [RM03, GHH93, IEE01].

get [Ame13]. gets [Rou07]. Ghost [Arc07]. GI [Mühl75]. Giants [FS12].

Gradual [RSE15]. grain [WJGA12]. Grained [BSSS14, CHW12, CCD13, RB17, JCZJ13, PG11, YTS14]. grammar [FS89].

Grande [ACM01b, DHPW01, GPW03]. Grande/ISCONE [ACM01b].

granularity [LLS14]. Graph [CFM17, Syr07, YTS14]. graphic [Wal76].

graphical [Bur02]. Graphics [Ano03b, JXL12, VLZL16, ME87, Sus76].

Grenoble [ACM05b, JPT94]. Grid [ACM05b, EEE04, SEF06, TLC06, ZF06, vLSM01, Rob06, SJW13, SGV12, ZBP05, AKK07, CCO05, KGZ04, LP14, WKT08, ZBP07].

Grid-Based [vLSM01]. GridGIS [M06]. grids [CCWY05, GNT06].

Group [Boa90, SoI83, YLN17, CKP78, ZLH15]. growth [LDL14]. GSX [Zim05]. GT [M06]. Guarantee [LZ15]. Guaranteeing [LZL15, YWR14, ZRS16]. guarantees [MSG01, ZHCB15]. Guest [CCML12, AGB14, FL13b, JXZ10, LD11, MSZ09, XHCL15, FDF05, KOS8b].

Guest-Assisted [CCML12]. guest-OS [FL13b]. guest-transparent
[JXZ+10]. GUI [PW03]. guidance [JSK+13]. Guide
[Ame13, BBD+91, Bas04, Bas06, Gal09a, Oak14, OH05, Chi08, IBM88, Int88, IBM94, KSS09, KS10, MDD+08, MIS+05, RR09, TC10, War02, Wes98].
guided [HLW+13].

H [JAS+15, Wel02]. H-SVM [JAS+15]. hacking [Spi06]. Hadoop [ZRD+15]. Handbook [Bod10, Fis09, War05, Joo09]. Handbuch [Joo06, WF03, Bod10, Fis09, Joo09]. handler [Sal92]. handles [Ven97b, Ven97c]. Handling [SB16]. hands [MDD+08]. hands-on [MDD+08]. Harbour [MR91]. Hardware [AE01, CWS12, Cla97, HHV+02, HWF07, Hsu01, JSHM15, JAS+15, KAJW93, LH16, Mac79, NSL+06, OT97, PvDS08, SYB12, SWF16, WCS06, vD06, AA06, AJH12, BHDS09, CBGM12, FP14, HH13, HP77, KW13, KJM+07, Oi05, Oi06, Oi08, PGL12, PBB13, RPE12, SE12, TO96, WZW+11, XZ11, YJZY12]. Hardware-Accelerated [SWF16]. Hardware-Assisted [JSHM15, JAS+15, AJH12]. Hardware-Based [PvDS08, KJM+07]. hardware-translation [O06, Oi08]. Hardware/Software [KAJW93, LH16, HH13, HP77, WZW+11]. Harmful [NMHS15, WC01]. HARNESS [BDF+99, GIK+99, MDGS98]. harnessing [GLV+10]. hash [SV15]. hash-array [SV15]. Hawaii [MS91b, Shr89]. HBench [ZS01].

header [VED07]. Healing [BHI15]. Health [ZL16]. heap [CSV15, CH08, LDL14, LLS+08, WSAJ13]. hedging [RY10]. Helix [Ano03a]. help [Car14, Men03]. HEP [Dum86]. Heterogeneity [GLS15, XLJ16, WCS09]. Heterogeneous [GIK+99, OVI+12, RG17, YLH17, ZAI+16, Bac11, CDM+10, DCMW17, GTGB14, GCARC+01, KHL17, KKBI4, LZW+15, NRS92, PMC05, SWC08, ZZL13]. HeteroVisor [GLS15]. Heuristic [BL17, XH90, CD14, KMT14]. heuristics [ATS16, BB12, Man15b]. HI [Shr89]. HICAMP [CFS+12]. hidden [CWdO+06, WQG15]. Hiding [CLS07]. Hierarchical [DM75, YFW09].

Hierarchy [SBK15]. High [ACM98, ACM04b, Bad82, BPP+17, CW03, DMS02, DYL+12, Han16, Hog02, IEE96b, IEE06a, KCWH14, KMM13, LCK11, LMG01, LJJ12, LHAP06, MLG+02, RCM+12, RB01, SD01, SCSL12, SV13, VOG03, WQG15, WCC16b, YWCF15, AAF+09, An96, BML+13, DQR+13, EMS15, FF96, Fu10, G+01, GTN+06, GBCW00, LBZ+11, LLLE17, LM99, LMG00, LDL+08, MUKX06, M+06, MRC+13, RQD+17, SB10, SPF+07, WXW15]. High-Assurance [LJJ12]. high-availability [Fu10, LDL+08]. high-bandwidth [WXW15]. High-Level [DMS02, RB01]. High-Performance [ACM98, IEE06a, KCWH14, LMG01, SD01, SCSL12, WCC16b, Han16, Hog02, LLE17, LM99, LMG00, MUKX06, SPF+07]. high-performing [GBCW00]. Higher [BW03]. Highly [KD78, ZFL15, CARB10, GI12, GVI13, TGCF08]. Hilton [IEE90b]. HipHop [AEM+14]. histograms [CL14]. History [SKJ+17]. History-Based [SKJ+17]. HITAC [KAH83]. HIVE [Tay76]. HLA [LCT+15]. HLA-Based

Implementation
[LTNW14, BBD+91, DAH+12, DJ77, DLS+01, Hal79, JR02, JJ02, KR94,
MD12, MN91, NsP16, Rev11, SGS92, SIR+17, SCD90, Sur01, TVO92, TO96,
TFTLC15, UOKT84, WLW+15, War80, YLWH14, ZSXZ07, AFT01, ANH00,
Blu02, BT15, CKP78, DN14, DJ76, DCA04, IT86, JNR12, Lau10, MJ93,
Sch09, SJW+13, SGGB99, SGGB00, Taf11, WW77, XJ+14, Lec86].
Implementations [HL+16, SV93, AEMWC+12, CSS+16].
Implementierung [Mar08]. Implementing [CTS+93, D+04, LFBB94, Tai98].
Implications [RM03, GNT+06, DLL+16, Pat12, RVJ+01].
important [CK06b]. Improve [GKXK13, GKBB15, KDB16, SAT09, YWGH13,
YWZ14]. Improved [War80, BTLNBF+15]. improvement [YLH14].
improving [YLH14]. Improving [AWR05, BHEP14, CFG+13, HXZ+16,
HLW+13, JKB15, KL13, LCT+15, LBL16, OSK15, RSC+15, RSLAGCLB16,
WKJ15, GVI13, HC12, JYW+13, OL13, UTO13]. IMSA [An99].
in-kernel [Uhl07]. In-Memory [TF16]. In-VM [LWLL10]. included [An97a].
including [B+07, CGW07]. Incorporating [GH91b]. Increasing [LWLL10].
Independent [DHPW01, KAH83, USE93, GPW03, PW03, PFH+16]. Index [Cox12].
indexed [JYW+13]. Indirect [tTR82, CEG07, EG03, JYW+13, KJM+07].
individual [LWLL16]. Inferno [WP97]. InfiniBand [RS16]. influence
[Mly09]. Information [CAF+91, Int05a, Int05b, Int06a, Int06b, Int06c,
Int06a, SS75, SS05, An93, LC09a, MD73, MD74]. Informed [HKKW13].
Infragistics [An93b]. Infrastructure [ECM01, ECM02, ECM05, ECM06,
Int05a, Int05b, Int06b, Int06c, Int06a, McC08, MJW+06, Ne04, NKK+06,
OG16, PP16, XH16, A016, AMA+14, BDS+09, Car14, Hal09, HH13, J+05,
KSL10, Low08, dOL12, MR04, PW03, RSF03]. InkTag [HKD+13].
Innovation [ACM03a]. innovations [ABB+15]. input [Wal76]. insider
[LC09a]. Insiderinformationen [LC09a]. insiders [KSS09, KS10]. Insights
[Rev11]. Installation
[Bec09, Bor01, KGG00, Lar09, WF03, Zim05, Zim06, MIS+05]. instance
[KCKC15]. Instances [WUNK17, ZG13]. Instant [HPP15, Joo06].
Instruction [Ol06, HW15]. instructional [DSS06, DTW07, WO75].
Instructions [Qia99]. Instrumentation [ZFL15, BZA12]. Instrumenting
[MZG14]. Instruments [BPB86]. integer [YTY00]. integer-reference
[YTY00]. integrated [CWG00, YZLQ14]. Integrating
[JMSLM92, LTT92, LCL14, OBSR16]. Integration [GMP89, Ame13].
integrierten [Deck08]. Integrity
[CW03, DM75, (Fo71, (Fo78, QT06, WJ10, CS76, JXZ+10, XHCL15]. Intel
[AJM+06, CMP+07, DLM+06, Do06, NSL+06, NKK+06, RSW+06, RI00,
UR+05, Uhl06]. Inteligence [MR91, JNR12]. Intelligent [GH91b].
intelligente [PO09]. IntelliJ [An93a]. intensive [IKU15, VVB13]. Inter
[cCWS14, RLZ+16, BML+13, CBZ+16, SCwCM12, SBP+17, VOS12].
Inter-Application [cCWS14, SWCM12]. inter-cloud [SBP+17].
inter-connectivity [VOS12]. inter-domain [BML+13].
Inter-Virtual-Machine [RLZ+16]. inter-VM [CBZ+16]. interact [EGD03]. Interacting [SK13a]. Interactions [cCWS14, SWcCM12].
Interactive [LD05, MLA83, SSG90, Ber86, HMS04, KKJL14]. Interconnect [RCM+12, SKJ+17]. interdependencies [LBF12]. Interface [Cro93, SH04, Sun95a, Guz01, HP77, VL00]. Interfaces [Mac79, PST+15].
Interfacing [MC93]. Interference [NBH08, XLL+14, XLJ16, ZRD+15, HL13, gKEY13, SS13, VVB13].
Interference-Aware [XLL+14, XLJ16]. Interferences [ZRZY15].
Inter-LISP [II79]. internal [SI81]. International [ACM00, ACM05a, ACM05b, ACM05d, ACM06b, Ano99, BW03, IEE84b, IEE85, IEE93a, IEE96b, IE02, IE03, IE04, IE06b, IE06a, LCK11, M91b, MR91, Ost94, SS05, Shr89, Tho93, TLC06, ACM06c, JPT94, M+06, HHK94]. Internet [Ano99, CK06b, KGG00, APST05, Ano03a, CHCC07, CK06b, CK06c, LLW98, Mon97].
Internetkommunikation [CK06b, CK06c, CK06d, CK06g, CK06f]. Internetprogramme [CK06b]. Internetprogrammen [CK06c, CK06d, CK06g, CK06f]. interoperability [Men03]. interoperable [KKB14]. Interposed [ZSR+05]. Interpreter [SMK02, Ber86, KMMV14]. interoperable/graphic [Ber86]. Interpreters [EG01, CEG07, EGK02, EG03, Ert05, KKC+16, ZLBF14, Ert03].
Interpreting [Han05]. Interpretive [AS76, OJG91]. interpretive-execution [OJG91]. Interrupt [CL16a, TFtLcC15]. interrupts [AGH+16]. Intranet [Ano03a]. Intrinsicities [PSBG11a, PSBG11b]. introduce [MS01]. Introduction [A+04, CK06a, CK06b, CK06c, FDF05, KS08b, Sch94b, Sch94a, Wün13].
Introductory [BR01, Don88]. Introspection [CCML12, CLcC13, DGL+11, FL13a, NBH08, Pfo13, SIdLB15, WWM06, FL13b, HN08, HcC14].
Introspection-based [CLcC13]. intrusion [AMA+11, LMJ07, MA17].
intrusions [JKDC05]. intrusive [ZXY+15]. Invariants [PEC+14]. invocation [Ven97c]. IOMMU [YWC15]. IOV [DYL+12, DCP+12, HB12, YWC15]. IP [AM16, CF00]. Iron [Ano05].
IronGrid [Ano03b]. irregular [AC16]. ISA [CW+14, DZ02, WLW+15, WC16b]. Ischia [ACM06c]. ISDF [M+06]. ISDN [KGG00]. ISO [Int05a, Int05b, Int06b, Int06c, Int06a]. ISO/IEC [Int05a, Int05b, Int06b, Int06c, Int06a]. Isolated [Jen97]. Isolation [WZL15, Cza00, GNB16, MD73]. ISPA [M+06]. ISPAN [HK94]. ISSTA [Ost94]. Issue [KM13, Yu02]. Issues [AD11, KS08a, PZH13, SEF+06, Tur84, AGH+15a, BB08, PBB13]. Italy [BW03, M+06, ACM06c]. Itanium [Ano06a]. Itanium-based [Ano06a]. iterators [ZLBF14]. IV [Int06c]. IVME [Ert03]. IX [BPP+17, IEE97].
Java [ACM98, ACM01b, Ano00, Ano01a, Ano01b, Ano02, Ano03a, Sch13a, USE01c, USE01d, USE02, Wol99, ADM98, Ame13, Ano97b, Ano97c, Ano03b, AFT01, ABC^+07, AC98, ANH00, BDF^+98, BHDS09, BD01, BP01, BP03, Bri98, BZD17, Caa00, CW03, CT03, CH08, Cla97, Coh97, CDG97, Cra98, Cza00, Dalxx, DaI97, DHPW01, DEK^+03, DBC^+00, DCA04, DLS^+01, ENG99, EL98, Eng06, FFB^+00, Fra98, FK03, G^+01, GGG03, GCARPC^+01, GPW03, GBCW00, HT98, Han05, HM01, HOKO14, HWB03, HB08, Ive03, JR02, Jo07, Kal97, KS13, LM99, LMG00, LB98, LV99, LY97a, LY97b, LY99, LYxxa, LYxxb, LYYB13a, LYYB13b, LYYB14, MGG01, MO98, Men03, MD97, MDxx, MLG^+02, MB98, Mon97, NG13, OT97, Oak14, Oi05, Oi06, Oi08, PTHH14, PRB07, Qia99].

Java-based [HOKO14, KS13, YC98b].

Java/CORBA [GCARPC^+01].

JavaCard [BDJdS02].

JavaScript [AHK^+15, CBLFD12].

Java(TM) [LMG01, SMES01, CF00, RB01, vD00].

Javy [GGG03].

JCloudScale [LFBB94].

Kanotix [CK06c, CK06h, CK06l, CK06r, CK06a].

Karlsruhe [HHK94].

KDE [KGG00].

KDE [KGG00].

KDE [KGG00].

Knowledge [FG91, KT86].

Konfiguration [Bor01, Lar09, WF03, Zim06].
konfigurieren [RHM08]. Konsolidierung [See08a]. Konzept [Dal97].

Konzepte [Tho08]. Konzeption [Zim06]. KScalar [MRL02]. Kubuntu [CK06e, CK06j, CK06n, CK06t, CK06e, CK06j]. Kuck [War11].

Kundenserversystemen [See08a]. KVM [Deu08, Hin08, DN14, GLC84, LZL+15]. KVM/370 [GLC84]. KVM/ARM [DN14].

L [Lot91]. lab [AL05, HMS04]. laboratories [DTW07]. Laboratory [Kim84, SVN+10]. Labs [See08b]. Lagrangian [GR15]. Lagrangian-based [GR15]. Lake [ACM03b]. Lambda [Wat86, Wat87]. landing [Tsa14].

Largo [DK93, GKBB15, PHL+12, SLM89, XDLS15, ZSXZ07]. LARD [WCG14]. Large [DK93, GKBB15, PHL+12, SLM89, XDLS15, ZWX+14]. LARGE [WCG14].

Large-scale [PHL+12, SLM89, XDLS15, ZWX+14]. Latency [BPP+17, BL17, IMK+13, ZSW+05]. Later [FS12]. layer [BTLNBF+15, MA17, RSLAGCLB16]. Layered [PSC+06].

Lern [CK06q, CK06t, CK06r, CK06s]. Lern- [CK06q, CK06t, CK06r, CK06s]. Lernprogramme [CK06k, CK06m, CK06l, CK06n, CK06o].

Lernprogrammen [CK06k, CK06m, CK06l, CK06n, CK06o]. Lessons [RM03, LJZ12, Rob06, HMS04]. Leuven [ACM04a]. Level [AC16, cCWS14, Ch06, DMS02, KHW+16, RB01, SV13, ZSR+05, ZQZ+16].

AL05, BSM+12, But94, Cia07, EG03, FLCB10, IM75, JHE14, SVN+10, SWcCM12, SSG90, WF07, WCG14, ZLZ13].

Leveraging [DD93, Int05b, Won97]. Library [Cro93, PBWH+12]. Libvirt [Ano14c]. Life [Z06]. Lifetime [W10]. light [HB08]. light-weight [HB08]. Lightweight [ABV12, CXLX15, Ran02, VN06, WJ10, YME05, vMAT14, AMA+11, CCL+17, DQR+13, RQD+17, SU+12, TB14, XZ11]. Like [Abr80, SSOT17].

LiLa [Dan86]. Limbo [Luc97]. Limited [CH08]. Limits [vKF13]. Linguistic [UR15]. Link [CRB12, JK15]. LINUX [KGG00, Ano06a, CK06a, CK06b, CK06g, CK06f, CK06i, CK06h, CK06j, CK06o, CK06p, G+06, Mar08, USE00a, WF03, Bau05, Bau06c, BBHL08].

Ble10, Bor01, CK06a, CK06b, Com00, Com03, DN14, Dau04, Fab13, G+06, GND16, MZG14, NV05, P+08, Ros14, Spr06, Spr07, VMBM12, Winn13]. Linux-Server [Mar08]. Linux/OSS [Ble10]. Liquid [Li14]. LISP
AO16, AFT01, ABC+07, Arm98, AWR05, Arv02, ANH00, AMA+11, BDF+03, Beg12, BPC94, BCM00, Bir94, Bhu02, BADM06, BFC02, Bri98, CARB10, CLI4, CD14, Car14, CEG07, Cav93, CFVP12, CS76, CHCC07, CBLF12]. machine [CK06a, CK06e, Clo85, Cof99, CGV10, dCCDF915, CWG00, CD01, DH01, DSC+08, DP11, DM93, DBC00, Don87, DJ76, DXM97, EGKP02, EG93, FLL13, FM90, Fit14, FF96, FG+05, Fre05, GTB14, GCARPC+01, GPW03, GR80, GBCW00, HJ10, HK07, HcC14, HPHS04, HSC15, IBM85, IBM88, Int88, IBM94, IBM96, IKU15, gKEY13, KCS14, KJLY15, KCKC15, KFF12, Kou11, KCV11, KRG12, Lam75, LBZ11, Les74, LC02, LM99, LZW15, LBL16, LWW16, Lia05, LL14, Lot91, LG93, MSG12, MD73, MD74, MSG01, DPBK16, MS17, MNA16, MSH00, MC72, MC93, MN91, MST05, MAK07, MJ93, NOK85, OG16, Oi08, ORPS09, PEL11, Pul91, Raj79, RZ14, Req03, RFBLO01, RY10, RJK+17, Sch13b, SSMGD10, ShL13, She91, SCEG08]. machine [SAS13, SL00, Sig89, SGG89, SGG00, SKC73, Smi97, SMA+10, SBP+17, SSU+12, TSLBYF08, TML14, Tay76, tTR82, TIIN09, TB14, TT93, Tur84, Vag10, Van98, Ven96, Ven97b, Ven97d, Ven99b, VBV13, WGF11, WKT08, WRE11, WZV+13, WKC15, WCY17, Web10, WW77, Won97, XHL+13, XJW15, XZZ+16, YME05, YZW13, YLH14, YLH17, YBZ+15, YL+10, Yel99, YGN+06, YQZ14, YTY00, ZG13, ZXW16, ZLZ15, ZLH+15, ZHHC17, ZBP07, ZLL+16, ZL13, ZLLL13, ZWC+14, dSOK17, AEM+14, AAB+05a, Ano97b, Ano97c, AC98, BD01, BP01, BP03, BZD17, Caa00, CCWY05, CK87, Cla97, Coh97, CDD97, Cra98, Cza00, DCA04, DLS+01, Eng99, FS11, FFB+00, Fra98, FK03, Fuji91, GGG03, HT98, HM01, HWB03, HB08, Ivo3, JR02, JJD+06, J02, Juo07, KM13, LMG00, LMG01, LB98, LV99, LY97a]. Machine [LY99, LYBB13a, LYBB13b, Men03, MB98, Mon97, MP01, OT97, Oi05, Oi06, PTHH14, PR07, Ran02, RB01, SMK02, SSB+14a, SH04, Sch13a, SMES01, Set13, SMSB11, Shi03, SG12, Sin92, Siv04, SM02, SM02, Sur01, Tu98, Tol98, TO96, TR88, UR15, Ven99a, Wb02, Wol99, WWMG06, vD00, Ano97a]. Machine-Based [LW11, WB81, CG10, WKT08, YZW13]. Machines [Ano75, BMS16, BP99, BJD802, BS14, Bee05, BB13, BRX13, CL17, CWL12, CCML12, CWS+12, CS76+13, CL16a, CCO+05, CH78, CDN02, DSM14, DEK+03, Den01, DK17, DMR10, DWK15, Do11, EGR15, EGJS15, EC+16, Ert03, EDS+15, Gai75, G+01, GTS+15, Gum83, HKLM17, HS06, HPP15, Lan14, Je12, Jen79, JXL+12, JAS+15, JKL+10, KCWH14, KJL11, KP15, KAH3, LZZ+15, LYY17, LD05, LHAP06, LW12, LJL+15, Mac79, Man15a, MD12, MM94, PSBG11a, PS16, Rev11, Ros04, SD01, SCSL12, SV13, SN05a, Sta97, Sup04, TV12, UT87, VOG03, WLW+15, WGL13, WZL15, WLL16, XSC13, XLL+14, ZRD+15, vLSM01, Agr99, AAH+03, AGH+16, ATS16, AMM+16, AMAB17, AS14, BAC15, Bac11, Bag76, BML+13, BDF+98, BHvR05, Bel06, BB12, BB15, BBM9, BBS06, CCL+17, CH08, Cra05, Cra06, CWDO+06, CLL+13, DDS+94, DC15]. machines
meet [FHL96]. Meets [BBM15]. mehr [Joo06]. Memento [CPST15]. memories [Pat12]. Memory [AW17, AMH16, Bad82, Bro89, CLLS12, Cro93, GHS17, GKB815, HHC16, HPP15, JJK11, LW11, LH16, LLJ15, LXM16, MKKE12, RLZ16, RWX12, SMES01, SLM89, VTV16, Wal02, WWH16, WK90, WTLS09, AHH15, ATS14, Ano15, BHDS09, CWH14, CWC14, CLcC13, CH08, CMM06a, CMM06b, CMM06c, GVI13, GNDB16, GLV10, HBI13, HHPV15, HUWH14, JSHK13, JDW14, LLS08, MS00, PP014, RJK16, VEO07, WWS89, WZW11, WWW13, WK08, ZP14, ZHCB15, ZWLO9, ZL13, TF16]. Memory-Aware [JJK11].

BBD$^{+10}$, HLW$^{+10}$, IIK$^{+06}$, ISE08, LLE17, SASG13. mobility
[FX06, SBP$^{+17}$]. Mode [Dav04, CWH$^{+14}$, Co09]. MODEF [SMO04].

Model
[BRX13, CHW12, KF91, MV16, MP01, Ne04, NSJ12, XDL15, YLH17, Bar78, BCM90, Bir94, CKP$^{+93}$, Fre05, Req03, SS13, WO75, YZLQ14, ZP14, ZBG$^{+05}$].

Model-Driven [NSJ12]. Model-Free [BRX13].

Modeling [ACM81, CH78, IN87, KRG$^{+12}$, LDL14, TIIN09, XWH$^{+16}$, FX06, gKEY13, SK13c].

Modelling [DPBK16]. Models [DSM14, HWB03, Man15a, RSW$^{+06}$, SL16, ADG$^{+92}$, HCJ07, Lia05, VVB13, Ble89].

Modem [Ano03a]. Modern [EG01, GG11, FIF$^{+15}$]. Modular [AvMT11, DCA04, LH13, TO91].

Modularity [SVB93]. möglichen [Hin08]. moldable [HZZ$^{+14}$]. Molecular [YWCF15]. monad [Dan12].

Monitor [LXM$^{+16}$, QT06, Ren78, RI00, RT93, Ros99, SVL01, AGS10, ALL06, AMA$^{+11}$, Co09, KOY05, Kou11, SSU$^{+12}$, TT93, XZ11]. monitor-based [AMA$^{+11}$]. Monitoring [BAL15, CCML12, WLL16, ZL16, ZXY$^{+15}$, ACT94, CL14, JXZ$^{+10}$, JADAD06b].

Monitors [JHS12, KS08, RG05, WCSG05, BDF$^{+03}$, FLM$^{+08}$, HUL06, HPHS04, YME05].

Monterey [ACM05a, Ano01b, USE91, USE01c].

Mortar [HUWH14]. most [CK06b]. motion [Lia05]. Motorola [Ano03a, MMM84].

move [BGS13]. Moving [Cre10b, Cre10a]. MPSoC [BHI15]. MPSoCs [OVI$^{+12}$]. MS [Tho08]. MU5 [MDFS72].

Multi [AVB12, CLG$^{+10}$, DY17, DLS$^{+01}$, HMI17, HC17, HPc04, LLS14, MD12, MM94, PNT12, SL14, ZRZY15, AL05, ATS16, Bor07, DEG$^{+17}$, JHE14, KMT14, RPE12, SE12, SIK$^{+16}$, WDCL08, XZ11, YKS16, YTS14, ZNSL14, ZLL$^{+16}$, JDD$^{+06}$, NMS$^{+14}$].

Multi-agent [AVB12]. Multi-Capacity [HMH17]. multi-cloud [DEG$^{+17}$]. Multi-core [PNT12, YTS14].

Multi-course [AL05]. Multi-Capacity [HMH17].

Multi-Dispatch [DLS$^{+01}$]. Multi-GPU [NMS$^{+14}$].

Multi-granularity [LLS14]. Multi-language [MD12]. multi-level [JHE14].

Multi-tasking [JDD$^{+06}$]. Multi-Tenancy [DY17]. Multi-tenant [ZRZY15, YKS16].

Multicore-Aware [Man16].

Multihost [Bar06]. MultiLanes [KHW$^{+16}$]. Multilayer [VLZL16].

Multilayered [NsP16]. Multimedia [Ano09, CAF$^{+91}$, BTLNB$^{+15}$].

multiple [CSV15, Com00, GMR93, IKU15, SLA$^{+16}$, TMMVL12, TtLcC13].

Multiprocessor [AGLM91, Dum86, KKJL14, WXZ$^{+17}$, Bro89].

Multiprocessors [Bad87, Cro93, SLM89, TO91, WWS89, WWT89, AGI94].

Multiring-programming [Abr82]. multtarget [Bar06]. Multitasking
[CD01, IBM96, TLD$^{+89}$]. multitasking/multiprocessing [TLD$^{+89}$].

multitenant [LZW$^{+15}$]. Multithreading [LRZ16, ABB$^{+15}$]. musical
ParCo93 [JPTE94]. PARD [MSS+15]. ParDMCom [M+06]. PAROS [MM94]. PARS [CWL+15]. Parser [UOKT84]. Part
[Cre09, HO92, Sch04b, Sch94a, Cre08a, SS72, Zyt94a, Zyt94b]. Partial
[BWD+15, WGF11]. partiality [Dan12]. partially [HH13]. Partition
[Int06c, LLS+08]. Partition-based [LLS+08]. partitioned [Van06].
Partitioning [Bad87, Ian14]. Partitions [Int06b, SJRS+13]. Party
[CRZH15]. Pascal [Har77, GBO87]. pass [PDC+12, YLWH14].
pass-through [PDC+12, YLWH14]. passe [BC10]. Passing
[Fra98, DM93, TO91, UR15, XH90]. Password [CD12]. Past
[Sup04, BS96, JKDC05]. PASTE’01 [ACM01a]. path [AM16].
Graphical-Simulator [Ber86].
IEC [Int05a, Int05b, Int06b, Int06c, Int06a].
IEEE [ACM05c]. ISCOPE [ACM01b]. Java-based
[Ano96, FF96]. K
[IT86]. Locator [SIJPP11]. multigrid [AGIS94]. multiprocessing
Replay [JKB15]. restart [BBHL08]. Software
[KAIJW93, LH16, HH13, HP77, WZW+11]. SVS [LJZ12]. SW [Wu13].
WAN [TDG+06]. XA [BN89, Boz89, IBM94]. XC [GH91a]. penguin
[Bau05, Bau06b, Bau06a, Fab13]. Pentium [Ri00]. Perceiving [XWH+16].
[ACM98, ACM04b, Ano03b, AD11, Bad82, BL90, Cal75, CFH+79, CFH+80,
CGS06, CHW12, De 06, DSS11, EDS+15, GE85, Gua14, GKB15, HB12,
IEE96b, IEE06a, IN87, JR02, JK13, KCWH14, KS08a, KMM13, KP15, KD78,
LC15, LCK11, LGM01, LCT+15, LHAP06, LTZ+14, MJW+14, MLG+02,
MBK+92, NMS+14, OAK14, OBR16, PZW+07, Pat12, PNT12, Raj79,
RCM+12, RP07, SHW+15, SD01, SCSL12, SDD+16, SM92, SM02, THC+14,
UT87, Vog03, WKT08, WCC16b, XLJ16, YC98a, YWCF15, ZRZY15,
ZJXL11, AKK+07, AAI+03, AGH+16, Ano96, AWR05, BML+13, BB12,
BBM09, BMER14, CBGM12, CBZ+16, CMP+07, DQR+13, DLL+16,
DSSP06, DYL+12, EMS15, Fit14, FF96, GP13, G+01, GVI13, G+05,
GAIH+12, Han16, Hog02, HC12, HL13, KJLL14, KL13, Kou11, KCV11,
LBZ+11, LLLE17, LM99, LGM00, LL14, MA10, MST+05, MUKX06, M+06].
performance [NB11, OL13, PV08, RHR02, RJD+17, Rix08, SE12, SB10,
SPF+07, TIIN09, VW08, YC98b, YZLQ14, YQZ14, ZSR+05, ZSW+06.
Performance-Based [CHW12]. Performance-directed [RP07].
performing [BB08, GBCW00], performs [Ven97d], period [B+07].
Periodic [LD05], periodical [YQZ14]. Periods [RB17]. Persistence [SCD90]. Persistent
[GH91b, Low88, SMES01, LM99, LMG00, MS00, LMG01].
Personal [Hir92, LBP+07]. Perspective [Han16, RSGG15, FP14, LD12, Wal10].
perspectives [MA10]. Pervasive [HHH04, BTNLBF+15, HH05]. Petascale
[JK13, TF16, ZL13]. phases [RHR02]. Phoenix [ACM3a].
Physical [BBM+15, PS16, WLW+17, AAM+16]. physics [GTN+06].
Piccolo [CHPY17]. PicoJava [MO98, TO96, OT97]. PicoJava-I [OT97].
Pin [ZFL15]. Pioneer [War11]. Pipelines [RKRK17]. PIPPIN [DH01].
Pittsburgh [ACM96, ACM04b, IEE04]. PL [SKC73]. PL/EXUS [SKC73].
Place [USE01a, Fab13]. Placement
[CGC16, JQW15, KP15, LTE12, Man16, SHZ+14, ZHL16, dSD16, EMS15,
FLL+13, IKU15, KHL17, KSO+15, LBZ+11, LZWD15, MS17, MNA16,
RJK+17, TMLL14, TMMV12, XT17, ZWH17, ZLL+16]. Planes
[UVL+13]. PlanetFlow [HB06]. PlanetLab [MPF+06]. planning
[Hal08, MIS+05], plans [Kal97, Lot91]. Planung [Zim05]. Platform
[DHPW01, DMG+15, Fra09, GPW03, JXL+12, JJ02, MCE+02, Sun99, WL96,
Wal99, BB+10, Fra06, PW03, WQG15, WCC+16a, XZ11, Ros99].
platform-independent [PW03]. Platforms
[Ano06a, GLS15, Ulh06, YP15,
DPW+09, GLK+12, RMR06, MBBS13, NV05, SN05b, SB+17]. Player
[Joo06, Zim06]. Plex86 [Law00]. Plant [KDB16]. Plant-based [KDB16].
plotter [MSCK92], plug [Kag09], plug-in [Kag09]. Plural [UT87]. pocket
[BB+10, FFB+00]. Policies [KC12, NMMP15]. Policy [SL14]. polymer
[NRS92], polymorphism [UTO13], pooling [WRSvdM11, WRS+15].
POPL [ACM99]. POPLOG [SSG90]. Port [DBMI92]. Portability
[Hir92, JR02]. Portable
[HBW03, Ibs84a, SMK02, Ibs84b, FCG+05, HK07, AEMWC+12]. Porting
[Caa00, JJ91, Kel06, MB98, Shi03, vdK09]. Portland [IEE93b, USE85].
possession [USE01c]. Post [GDH09]. Post-copy [GDH09]. Postroom [Os01].
Potential [FRD+08, Got07, JK13]. Power
[AAM+16, DSM14, KBB11, KL14, LZ15, LLLE17, MV16, MJW+06,
RSNK17, SSN12, SDD+16, Sta07, XDL05, CBG12, CMP+07, FLL+13,
IMK+13, JKK+13, JNR12, NS07, THC+14, WRS13, XHL+13, YZLQ14,
YHL14, YLHC17, A+04, B+05, G+05, MBBS13]. Power-Aware
[SDD+16, KBB11, JNR12], power-capping [JKK+13]. Power-efficient
[AAM+16, LLLE17, SSN12]. POWER5 [AAB+05c]. PowerPC [But94].
Practical [HN10, Kna93, WLW+15, FIF+15, SNV10, TC10, Wn+13].
Practice [Bec09, Cre08b, Lar09, SHB+03]. Practices [MO98]. Praxis
[Bec09]. Praxisbuch [Lar09]. Praxisführer [Bor01]. Pre [LUL+05].
Pre-virtualization [LUL+05]. Precedence [EGR15].

EGD03, GMR93, IM75, Wak99, Wol99]. **Progress** [ZRDb+15, ZHCB15].

project [AAB+05a, CKP78, Lot91, RD90]. **projects** [AL05]. **PROLOG** [Clo85, Ode87, War80]. **Promoting** [ACA16, WLW+17]. **proof** [Arv02, FP14, FCG+05, ZLH+15]. **proof-carrying** [FCG+05]. **Propagation** [AD11]. **Properties** [BN75]. **property** [VT14]. **proposed** [GH91b]. **proof** [Arv02, FP14, FCG+05, ZLH+15]. **proof-carrying** [FCG+05]. **Propagation** [AD11]. **Properties** [BN75]. **property** [VT14]. **proposed** [GH91b].

Progress [ZRDb+15, ZHCB15]. **project** [AAB+05a, CKP78, Lot91, RD90]. **projects** [AL05]. **PROLOG** [Clo85, Ode87, War80]. **Promoting** [ACA16, WLW+17]. **proof** [Arv02, FP14, FCG+05, ZLH+15]. **proof-carrying** [FCG+05]. **Propagation** [AD11]. **Properties** [BN75]. **property** [VT14]. **proposed** [GH91b]. **proof** [Arv02, FP14, FCG+05, ZLH+15]. **proof-carrying** [FCG+05]. **Propagation** [AD11]. **Properties** [BN75]. **property** [VT14]. **proposed** [GH91b].

XCJ+14, YWGH13, YQZ14, ZSR+05. Schema [SB1]. Scheme [SHZ+14, YWR+14, KJLY15, XCJ+14, YQZ14, FM90, KR94]. Schemes [Do11, MNA16, YWGH13]. Schloss [IEE01]. School [BGP00]. Science [ACM06, BR01, DG05, SGV12]. Sciences [Shr89, MS91b]. Scientific [Bad87, RB17, dCCDFdO15]. Scientists [THLK10]. Screening [LP14].

Scripting [MJW+06]. SDDSfL [CLLS12]. SDNs [ALW15]. SE [LYBB14]. Seamless [Hi92, TG+06, WJX15, BADM06]. Search [Cox12, MNS+14, CWd+06, KMT14, Tho68, WXZ+17]. search-based [WXZ+17]. Seattle [ACM05, ACM06b, LCK11, Ost94]. Sebastopol [Ano97a]. sEc [SMK02]. SECD [Abr82, AS85a, AS85b]. SECD-M [Abr82, AS85a, AS85b]. Second [ACM06f, IEE93a, Shr89]. SecondSite [RCOW12]. Secure [AMH+16, CCML12, CLDA07, JSHM15, JAS+15, LJR12, LP11, PEC+14, QZDJ16, Rl00, RSGG15, THB06, TtLcC13, WF07, vD00, BDS+09, GND16, HKD+13, ISE08, SL12, TlbW12, ZBP05].

Secured [TMV12, WCC16c]. securing [HAL08, Hal09]. Security [AKK+07, Ano93, Att79, De06, FJKK17, GW07, IEE84a, IEE90a, IEE91, IEE05, JE12, KZB+90, KS08a, KS08b, LWL10, NMMP15, PvdDS08, Pfo13, SJV+05, SM90, SEF+06, Ste05, TMV12, TV12, USE00b, VNO8, WDD+09, ZL16, BTMS10, Bau05, Bau06b, Bau06a, Bel06, BCP+08, Bor07, BBS06, Hal09, HMS04, I1K+06, LLW+12, MD73, MD74, MA17, PG11, PZH13, PBB13, Sch13b, VT14, DTW07]. security-oriented [IIK+06]. see [Yur02].

semi-automatic [MSZ09]. sensitive [DK17, KSLA08, LCL14, ZBP07]. sensitivity [HB13]. Sensor [BSI+15, MC02, MAK07]. sensors [ALL06].

Separation [KF91, WLM16, LWL14]. September [ACM81, ACM04a, ACM05a, ACM06c, ACM06b, Ano93, BW03, GHH+93, Jou85, JPT94].

Sequence [EDS+15]. sequential [Clo85]. Serialization [BP01, BP03].

Series [Kee77, KA83]. Server [Ano03a, Apr09, Bod10, Car06, CGS06, Do11, Joo09, KSS09, KS10, LZ15, Lar09, LC09b, LC09a, Mar08, MG08, MG09, PZw+07, RWW+12, R+02, SWS08, ZHW+17, Zim05, Zim06, A+04, AGH+15b, B+07, DBC+00, Hal08, IMK+13, LLS+08, LL14, LDDT12, MNT14, MR106, R+13, RPe12, Wat02, YZZ+13, AAH+03, Ano03a, B+07, D+04, Ham07, Lar09, MWH05, OH05, R+06, Rul07, R+02]. Servern [Mar08]. Servers [DSM14, JJK+11, SDD+16, SKJ+17, WIL+17, A+04, BBH08, G+05, Hal08, JDJ+06, Mly09, SZ13]. Service [BB13, BFG+14, DKL15, DPCA11, LP14, LLW+16, RSK17, RSGG15, WVT+17, BSM+12, CHCC07, DXM+17, EdPG+10, ECAE13, EMI13, KKB14, LZWC13, ROGW12, SIZ13, VOS12]. Service-Based [LP14].
Service-Oriented [RSGG15]. Serviceability [RB01]. Services
[BFHW75, IEE06b, MSS+15, WC01, BDS+09, HBP06, KBB11, KSLA08,
LTZ+14, ZEdP13]. Set [AC98, EL98]. sets [HW15]. setups [RPE12].
SGAM [ZLH+15]. Shadow [WLW+15, GHS16]. ShadowReboot [YK13],
Shared [Bro89, CH08, Cro03, Low88, RLZ+16, RRKR17, SLM89, SV13,
SNC91, SNS03, CFS+12, JGSE13, PW03, WWS89, WDC10].
Shared-Memory [Cro93, RLZ+16, SLM89, WWS9]. shared-source
[PW03]. Sharing [ACA16, BFHW75, CDN02, MS70, PMP+15, RG17,
SAB+07, LLS14, LTZ+14, TtLc13, WTLS+09]. Sharing-Aware [RG17].
shell [FL13b]. Short [HW15, KKC+16]. Short-circuit [KKC+16]. shortest
[AM16]. shot [JK15]. Shoulders [FS12]. Showcase [USE00a]. showdown
[SCEG08]. Shredder [AMH+16]. Shredding [AMH+16]. Shrinking [Ste14].
shuffling [ZWC+14]. Shuttle [cCWS14]. Sibling [OG16]. SIGACT
[ACM99]. SIGCOMM [RM03]. SIGCSE [ACM06d]. SIGMETRICS
[ACM81]. Signal [MBK+92]. SIGOPS [ACM04a]. SIGPLAN
[ACM01a, ACM99]. SIGPLAN-SIGACT [ACM99]. SIGSOFT [ACM01a].
Silent [AMH+16]. SILLIAC [Gre10]. Sim [Skr01]. SIMD
[PSBG11a, PSBG11b, PBR+14, Sig89]. Simics [Ano14a, MCE+02].
similarities [CL14]. similarity [GV13]. Simple [Bak83, Cox07, NOR15].
Simplicity [BGP00, DSSP06]. simplification [FS08]. Simplified
[Bel12, PSC+07], simplifying [Cla05]. simulated [GE85, RH17, WDS01].
Simulating [HO92, Pou90, RPE12, TO91, ZR06, Skr01, WC91]. Simulation
[ADG+92, AB16, DBMI92, JN15, KD78, Kt92, MCE+02, MBK+92, MJ93,
PBR+90, PY93, TUr92, WBS81, WWMG06, YP15, Ano94, BHyR05, BUR02,
BS96, CBo85, DSSP06, IM93, KK79, LJN+00, NRS92, RM02, SK13b,
UBL+82, WWS89]. Simulations [LCT+15, BL90, DH01]. Simulator
[CK96, CRZ83, DUn86, PCSR89, Ber86, BR01, CMB+07, DC15, GBO87,
Hog02, KW80, MRL02, YYP01, Ano14a]. Simulators
[NMH15, Sup04, Yuv02]. Simultaneous [LRZ16, ABB+15]. Singapore
[Ano06a, TLC06]. Single [CCO+05, KP15, AGS94, Fis91, LSS04, Mon97],
single-chip [Mon97]. Single-Computer [CCO+05]. single-node [LSS04].
single/multigrid [AGS94]. site [CPST15, SBB+14a]. Sixth
[ACM05a, TLC06]. Size [Lun75, HPHS04, UTO13]. Sized [JJO2]. Sizing
[VTW16, CSV15, WSAJ13]. Skype [Joo06]. SLA
[AB16, EdPG+10, GTGB14, KKB14, ZHL16]. SLA-based
[GTGB14, AB16, KKB14]. SLA-driven [EdPG+10]. sledgehammer
Sloop [DZ02]. Small [JJO2, SBB03, DK75, HPHS04, SST2, WH08, WWT89].
small-scale [WWT89]. Small-Sized [JJO2]. smalltalk
[FIF+15, BMW86, BSUH87, G+88, Lcs86, SUH86, TLD+89]. Smalltalk-80
[BWMB86, BSUH87]. Smart [Ano03b, Rou07, WTLS+09]. Smartphone
[DAH+12]. SMIL [Bru07]. SMILemu [Bru07]. SMOK [DZ02]. Smooth
[DL89]. smoothed [CL14]. SMP [CL16a, KJ+13, RZ14]. Snapshots
[CWL+15, DS16]. Snowbird [ACM01a]. SnowFlock [LCWB+11]. SOAR
40

[SUH86]. **SOC** [LVM16]. **social** [BTLNBF+15, LWLL16]. **Society** [IEE90a, IEE91]. **Soft** [Ano03a, XH16]. **Software** [Ano94, Ano03a, Ao03b, AE01, AMA+14, CL17, DBMI92, DL89, EDS+15, Hsu01, JMSLM92, JN15, KP99, Kna93, LTT92, LLW16, Ost94, Par79, PBR+90, So83, SM06, Shr89, SAT09, Sta07, The93, YYL15, vdk09, ACM01a, AA06, ALW15, AAB+05b, CBGM12, CFG+13, FP14, Guz01, LJR12, LWL16, MNT14, YJJY12, ZLZ13, ZHC15, CK06q, CK06t, CK06r, CK06s].

Software-Defined [CL17, JN15, LLW16, ALW15, LJR12]. **Solaris** [VSC+10, WF03, Gal11, HDM08, See10]. **Solution** [CHW12, CXLX15, Coh10, DMG+15, Gua14, KDB16]. **Solutions** [SL16, ATS16, AGIS94, EMI13, HN10, PZH13]. **solver** [TB14]. **solver-aided** [TB14]. **solvers** [CARPC+01]. Some [Ker88, Man15b]. **Sorrento** [M06].

Sorting [CHW12, CXLX15, Coh10, DMG+15, Gua14, KDB16]. **Solutions** [SL16, ATS16, AGIS94, EMI13, HN10, PZH13]. **solver** [TB14]. **solver-aided** [TB14]. **solvers** [CARPC+01]. Some [Ker88, Man15b]. **Sorrento** [M06].

Source [Ano03a, SV99+05, SNS03, AAB+05a, But94, Cia07, JM08, LC09a, PW03, SIK16]. **source-level** [But94]. **sous** [Apr09]. **SP** [IBM94]. **SP2** [Boz89]. **space** [PEL11, PG11, Web10, WXW15]. **space-efficient** [PEL11]. **spaces** [GH91a]. **SPAN** [RD90]. **Sparks** [VN08]. **sparse** [Kra90]. **sparse-matrix** [Kra90]. **Spatially** [HW93]. **SPC** [JYW+13]. **SPC-indexed** [JYW+13]. **Special** [Bag76, KM13, Yur02]. **Specialized** [BDK+08, PGLG12, Yur02]. **Specific** [HHV02, WIDP12, JKDC05, ZS01].

Specification [Coh97, DMS02, LY97b, LY99, LYBB13a, LYBB13b, LYBB14, LS15, I79, Qia99, Sm99, SUN97, JCV99, Taf11]. **SPECjvm98** [LJN00].

Speculation [AC16]. **speculative** [GI12]. **speed** [RPE12, UTO13]. **SPEED08** [VW08]. **Spiegelsammlung** [CK60q, CK60t, CK60r, CK60s].

Spin [CWS12, WCS06]. **Spinlocks** [KMK16, OL13]. **SPIRE** [JYW+13].

split [SLPP11]. **Spot** [TVKB16]. **Spotless** [MS00, SMES01]. **Spotlighting** [Ano06a]. **Sprache** [Dalxx, Dal97]. **Spreading** [CLW+14]. **square** [DG05].

squeak [Guz01]. **SqueakJS** [FIF+15]. **SR** [DYL+12, DCP+12, HB12, YWCF15]. **SR-IOV** [DYL+12, DCP+12, HB12, YWCF15]. **St** [IEE06a]. **State** [ACM97]. **Stack** [AE01, Cia07, HB12, Ran02, SSOT17, WH99, KRCH14, LH13, WW77, SCEG08].

Stack-Based [Ran02, KRCH14]. **Stackdb** [JHE14]. **stage** [CLG+10]. **Standard** [MR04, RSF03, Ano94, Rus08]. **Standards** [Mar81, SG10a]. **standards-based** [SG10a]. **Stanford** [IEE96a, IEE97, IEE99]. **start** [KMT14]. **Startup** [HS06]. **State** [CLW+11, SGB+16, Su01, TV12, Sch13b, Sig89, Ven99b, Web10].

State-Based [TV12]. **Stateless** [VDO14]. **States** [SBK15, IMK+13, MC98, STFH15]. **Static** [JMO8]. **Sticky** [KCI2]. **STM** [Sub11]. **Stochastic** [FX06, FK13, GR15, SDD+16]. **Stop** [LWB+15].

StopWatch [LGR14]. **Storage** [ACM04b, Att79, Bad82, BDT13, Cia05, FFBG08, KCHW14, KHW+16, LCK11, LJFS17, MJW+14, PPTH72, PF16, Ron07, SSOT17, VW08, ZSW+06, BN89, CCL+17, FLCB10, HJ10, HPC04, JGSE13, PFH+16, Pat12, TLBW12, XJWW15, YLK+10, ZLLL13]. **Storages** [TF16]. **Store** [Low88]. **Storing** [CWL+15]. **Storms** [SB16]. **Story** [Arm98].
strange [Fab13]. Strategies [YLN+17, BDT13, LLS14, PFH+16, TKG89]. strategy [DKF94, Won97, ZLZ15, ZLH+15]. strategy-proof [ZLH+15]. Stream [MV16]. streaming [BMER14, RSLAGCLB16, SIK+16]. Streams [MM93]. stress [MC98]. String [HOKO14]. Striping [DK93]. Stripped [JJ91]. Stripped-Down [JJ91]. strong [ZHCB15]. structural [ORPS09]. structure [MDFS72, SS72]. Structured [Das91, Gai75, CFS+12, IM75, Syr07]. Structures [AGLM91]. student [CKP78]. Studio [Ano03b]. Study [BBM+15, LJL+15, PK75a, ZAI+16, HIIG16, HL13, Kw13, Pu91, RHR02, SAG13, Sig89]. Subroutines [HT98, Qia99]. Subset [SUN97, Req03]. Subsystem [HH79, Ste14]. Suitable [Vog03]. Suite [DHPW01, DTW07, GPW03, SMB11]. Summary [CFH+79]. Summer [Gal09a, Gal09b, Gal11]. Superblock [KS13]. Supercomputer [MBK+92, LPD+11, XH90]. Supercomputing [ACM89, ACM96, ACM00, ACM04b, ACM05c, Hir92, IEE90b, IEE92, IEE93b]. Superconcurrent [NR92]. superoptimization [HW15]. superscalar [VdlFCC97]. Support [BP01, DJ77, HHV+02, HB12, LV99, NSL+06, RI00, SSG90, Tur92, BADM06, BTLNBF+15, BP03, CHCC07, CFS+12, DJ76, ORPS09, PGLG12, SJRS+13, STFH15, SL12, TY14, WK08, WSC06]. Supporting [BMS16, CWS12, Kim84, MSS+15, Mon97, RT93, WXJ15, YWCF15, ZZ06, GD08, TT93]. Supports [Ano03a]. surgery [PBL+16]. Survey [BAL15, KKL16, KL14, Man15a, PS16, SB16, SGB+16, UOKT84, AGH+15b, CB10, MG13, PBB13, XTB17]. Surveyor [Fra83, GHF83a, GHP83b, WNL+83]. survivability [YZW+13]. Survivable [ACA16, AM16]. SUSE [Bau00b]. SVGrid [ZBP05]. SVM [JAS+15]. swapper [ATS14]. swapping [ABG14]. swarm [JNR12]. Swiper [CRZH15]. switch [BR01, Ste14]. Switching [DMG+15, LBL16]. Sy [USE01c]. Sydney [MR91, Gre10]. symbiotic [LD11]. symbolic [TB14]. SymCall [LD11]. Symmetric [GMP89]. symmetry [PBL+16]. Symposium [ACM75, ACM03b, ACM05a, ACM06d, Ano00, Ano01a, Ano01b, Ano04a, Ano04b, Ano10, HHK94, IEE84a, IEE85, IEE90a, IEE91, IEE96b, IEE06a, Ost94, TLC06, USE91, USE93, USE00b, USE01d, USE02, Vra05, IEE96a, Ano02]. Synchronization [LJL+11, ZJXL11, Sub11, Uhl07, Ven97d]. Synchronous [SIR+17]. syntax [KMMV14]. Synthesis [DMS02, BPP86]. Syracuse [IEE96b]. System [ACM75, Abr80, ABCC66, Ano10, Bad82, BFHW75, BBD+91, BPP+17, BGS89, B+05, Car13, CSS+13, CWL+15, CHPY17, DMR10, DM75, Fis01, G+06, GH91b, HZX+16, HW93, HHC+16, IN87, Kam83, Kee77, KP15, Kuf92, LP14, Li14, LCFI12, LXM+16, MCE+02, Mat10, MS70, MDGS98, MB08, MS91b, MM94, NMS+14, P+08, R+06, Sch86, SLM89, SVN+10, Shi03, Shr89, SWF16, Ste05, WLW+15, WK90, ZSZ07, ZQZ16, ZZFO6, ZXY+15, AEMWC+12, AL05, AH12, ACT94, Bar78, Bor07, Bur02, Caa00, CWH+14, CK06b, CK06e, CP7K8, FFBG08, Fis91, HN08, HKD+13, HC12, IBM88, Int88, KCK15, KKK7, LJN+00, Lia05, LDL+08, MD73, MD74, MDFS72, PRB07,
[BSSM08]. **Two-level** [SSG90]. **Two-phase** [TF16]. **Two-tiered** [AW17].
TX [ACM99]. **Type** [ADM98, Arv02, KCV11, PRB07]. **type** - [Arv02].
Type-Precision [ADM98]. **Typed** [G⁺88, BDT13, KRCH14]. **Types**
[We94]. **TypeScript** [RSF⁺15]. **Typing** [RSF⁺15].

u.v.a [Tho08]. **UKCF** [JXL⁺12]. **umfassende** [Bod10, Fis09]. **Umgebung**
[CK06p]. **Umgebung** [CK06a, CK06b, CK06c, CK06d, CK06g, CK06h, CK06j,
CK06k, CK06m, CK06n, CK06o, CK06q, CK06t, CK06r, CK06s].
UML [Fre05, RFBLO01]. **UMLexe** [Fre05]. **underlying** [FBZS12].
Understanding [FRM⁺15, Set13, ZRZY15, LWB⁺15]. **Undocumented**
[Sch94b, Sch94a]. **Unified** [MBA⁺12]. **Uniform** [Eug06, Bod88].
Unifying [MD12]. **unique** [AM16]. **United** [Vra05].
uniting [LUL⁺05]. **Units** [VLZL16, Vol90]. **UNIVAC** [Kam75].
Universe [Nel04]. **Universities** [Sta07]. **University** [ACM75, ACM81, Gre10, IEE96a, IEE97, IEE99].
UNIX [JJ91, KAH83, Gen86, HO92, Kal97]. **Unknown** [CLV⁺14].
unleashed [Ano97c, HH08, MG08, MG09]. **Unmodified** [HLP⁺16, MKKE12].
Unpicking [LBF12]. **Untrusted** [CD12, HKD⁺13, HPHS04, ZBP05].
upcalls [LD11]. **update** [J⁺05]. **updating** [CCZ⁺06]. **upgrade** [CHCC07].
upgrades [Ano03a]. **uptrees** [HB13]. **UPWN** [M⁺06].
USA [ACM81, ACM01a, ACM03b, ACM05a, ACM06c, ACM06b, ACM06d, Boa90,
IEE93a, Shr89, USE01c, ACM75, ACM05d, ACM06a, Ano01b, Ano04b,
IEE84b, Ost94, USE85, USE86, USE91, USE93, USE99, USE00a, USE01a,
USE01b, USE06]. **Usage** [RSW⁺06, WH99, SK13c]. **USB** [Ano03a].
Use [Bec09, CLLS12, Guy14, KK79, Sch13a, SJJ⁺12]. **used** [tTR82]. **useful**
[LC09a]. **USENIX** [Sof83, USE91, USE93, USE06]. **User**
[Chu06, ZQCZ16, Ano93, ACT94, Bor07, Guz01, PG11, RSC⁺15, Sto07,
ZLZ13, CKT08, Dav04]. **user-controlled** [Sto07]. **User-Level**
[Chu06, ZQCZ16, ZLZ13]. **user-space** [PG11]. **User-terminal** [CKT08].
Users [Boa90]. **userspace** [Ste14]. **Using** [AAF⁺09, ABV12, ALL06, Bas04,
Bas06, BRX13, CCO⁺05, DBM92, Don88, Guz01, HL⁺10, JMSL92,
LJN⁺00, LTT92, LD05, MV16, PEC⁺14, RSW⁺06, See10, SM06, SYB12,
SAT09, SBK15, SXCL14, WDSW01, WUNK17, Wil01, Wo99, XSC13,
ZBP07, Agr99, ATS16, AWR05, AGHS94, BSM⁺12, BHvR05, CL14, CCZ⁺06,
Dan12, FFBG08, FL13b, HJ10, HN08, HPHS04, JNR12, JWH⁺15, JGSE13,
Juo07, KKM⁺13, KJJ⁺16, KGS16, KL13, Kou11, KRCH14, LYLWH14,
LQW⁺12, NL05, PBL⁺16, RP07, SVG13, SSN12, SIJPP11, SIK⁺16, STFH15,
SSN94, TSLBYF08, TF16, VT14, YK13, YLWH14, YWF09, YWCF15, ZLZ13].
UT [Ren78]. **Utah** [ACM01a, CK87]. **utility** [CSV15, JWH⁺15, PSZ⁺07].
Utilization [KCKC15]. **Utilizing** [GVI13, KOY05].

V [Gal09b, Lar09, LC09a, Apr09, Car06, KVV09, KSS09, KS10, Lar09,
LC09b, LC09a, MG08, MG09, SRS09]. **V2E** [YJZY12]. **Validation**
[SSB14b, SSB01]. **Value** [TF16]. **vApp** [SG10a]. **Variable**
[ADM98, Lam75, Oi05, Oi08]. VAX [KZB+90, LJZ12]. VAX/SVS [LJZ12]. vCloud [MK10]. VCP [Khn09]. VCPU [WCC+16a]. vCUDA [SCSL12]. VDE [GD08]. Vector [Abr80, LRZ16, WWS89, Ble89, SZ88]. vectorized [SZ88]. VEE [ACM05d, ACM06f]. VEEs [LCT+15]. Vegas [ACM81]. vehicular [YBZ+15]. Vergleich [Zim05]. verifiable [CMP+13, PK75b]. Verification [ABDD+91, JE12, JES+15, SSB14b, LLS+12, PBL+16, SSB01]. versatile [SN05b]. Version [Bru07, Sim92, WR07, WR08, Ano94, Ano14a, IBM96, MIS+05]. versioning [STF15, WF07]. versus [DK75, HPHS04, SCEG08, VED06]. vertical [STY+14]. Verwaltung [Zim05]. Very [SSB03]. VFe [Ano05]. vGreen [DMR10]. VHDL [FS89]. VI [Int06b]. via [FL13a, GI12, GLLJ16, HB13, KJM+07, LJL+11, MSS+15, QZDJ16, SDD+16, WXJX15, YTS14, ZSW+06]. viable [HW15]. viele [WR07, WR08]. vieles [Joo06]. view [Guy14, LDDT12]. Views [PW03]. Vigilant [PBYH+08]. VIII [IEE01, IEE96a]. ViNEYard [CRB12]. Violation [ZHL16]. violations [BSM+12]. virtio [Rus08]. Virtual [ACM05d, ACM06f, AS85a, ABC66, AEM+14, ADM98, AGH+15a, AAB+05a, ABV12, Ano75, Ano97a, Ano97c, Ano00, Ano01a, Ano01b, Ano02, Ano04a, Ano04b, Ano05, fLtNW14, AE01, Apr09, Arc07, AD11, Att79, ACA16, AC98, AMA+11, BWP85, BFHW75, Bak83, Bal91, BMS16, BP99, BDF+03, BDJJ+02, BSS14, BDF+99, Bee05, BCC+15, Bel06, BB13, BN75, BHDS09, BBH08, BL17, BFG+14, BWD+15, BBM+15, Blu02, BBM09, BD01, BP01, BP03, BZD17, Bro89, BRX13, BBS06, B+07, Caa00, CTS+03, CW03, CCWY05, CL17, CFH+79, CFH+80, CW12, CFM17, CCML12, Car13, CK87, CFVP12, CWS12, CHCC07, CF00, CT03, CSS+14, CGC16, CL16a, CL16b, CRZH15, CCO+05, Cla97, Coh97, CDG97, Cox09, Cra05, Cra06, Cra98, CH78, CWG00, CWL+15, CHPY17, CDN02, Dalxx, DAH+12, Dal97]. Virtual [DHPW01, Dan86, DSM14, DG05, DEK+03, Den01, DJ17, DMR10, DKW15, DF96, Do11, DGLZ+11, Dom80a, DJ76, DJ77, DCA04, DLS+01, EGR15, EGJS15, ECJ+16, Eng99, EG01, Ert03, EDS+15, FFB+00, FG91, Fis01, FPS+02, (Fo71, (Fo78, Fra98, FK03, FL13a, Gai97, G+01, GIK+99, Gef02, Gen86, GGG03, Gum83, HHV+02, HHW10, HT98, Hal79, HKLM17, HM01, HH79, HKKW13, HB03, HS06, HB08, HP15, IBM85, IBM88, Int88, Ian14, Ibs84a, Ivo03, JR02, JHS12, JKK+11, JE12, Jen79, JKL+12, JMSLM92, JQWG15, JAS+15, JN15, JKJ+10, JADAD06a, JDJ+06, JU02, Joo07, KCWH14, KC16, KS08a, KMK16, KNT02, KF91, Ken80, KDB16, Kim84, KJL11, gKEY13, KJLI14, KP15, KAHH83, KGZ+04, KLF+15, LCW+11, Lam75, Lau87, Law00, LW11, LP14, LLW98, LG00, LG01, LTE12, Li14, LZL+15, LZW15, LVM16, LWL16, LYYY17]. Virtual [LB98, LV99, LTT92, LD05, LY97a, LY97b, LY99, LYxxa, LYxxb, LYBB13a, LYBB13b, LYBB14, LHAP06, LWL10, LJL+11, LW12, LJL+15, LFBB94, Loy92, LXM+16, MSG14, Ma79, MS91a, Man15a, Man16, MD12, MG72, Men03, MS70, MD97, MDxx, MGDS98, MLG+02, MB98, MKKE12, I79, MP01, MJW+06, MM94, NBH08, NGM15, Nel04, NSJ12, Nuo92, OT97, Oi05.
Virtual Machine [HUL06, HPHS04]. Virtual-Machine-Based [JN15].

virtual-time [She91]. Virtualbox [Deu08, Bec09].

Virtualization [AJM06, AAJD16, APST05, Ano03b, AvMT11, Bac11, Ble10, BHEP14, BDR+12, CZL08, CLS07, CGS06, CHW12, CXLX15, CWH+16, CD12, CDD13, cCWS14, CL LS12, Chu06, Coh10, Cre09, Cre10b, CGW07, DMS02, DW14, DPCA11, DLM+06, Don06, DMG15, DY17, FPR+06, Fer11, FDF05, FRD+08, Gal09a, Gal11, GHS17, GW07, Got07, GG11, HWF07, Her06, HHC+16, HSL17, HB12, KHW+16, KS08a, KMM13, KS08b, KGS16, Kot10, Kot11, KC12, LH16, LLW+16, LRZ16, LCFL12, LDWT12, MA10, MCZ06, MUKX06, MA17, MWWH05, NSL+06, NKK06, NsP16, OVI12, PZW+07, PHL+12, PZH13, PdDS08, PNT12, PST+15, QNC07, RSW+06, RCM+12, R+06, RKKK17, RWX+12, RR09, Sed07, SM06, SGB+16, SYB12, SAT09, SIJPP11, SWF16, Spr07, Sta07, SKYK16, Swa06, THTL10, TF16, Tre05, UNR+05, Uhl06, UVL+13, VN06].

Virtual Machine [HUL06, HPHS04]. Virtual-Machine-Based [JN15].

virtual-time [She91]. Virtualbox [Deu08, Bec09].

Virtualization [AJM06, AAJD16, APST05, Ano03b, AvMT11, Bac11, Ble10, BHEP14, BDR+12, CZL08, CLS07, CGS06, CHW12, CXLX15, CWH+16, CD12, CDD13, cCWS14, CL LS12, Chu06, Coh10, Cre09, Cre10b, CGW07, DMS02, DW14, DPCA11, DLM+06, Don06, DMG15, DY17, FPR+06, Fer11, FDF05, FRD+08, Gal09a, Gal11, GHS17, GW07, Got07, GG11, HWF07, Her06, HHC+16, HSL17, HB12, KHW+16, KS08a, KMM13, KS08b, KGS16, Kot10, Kot11, KC12, LH16, LLW+16, LRZ16, LCFL12, LDWT12, MA10, MCZ06, MUKX06, MA17, MWWH05, NSL+06, NKK06, NsP16, OVI12, PZW+07, PHL+12, PZH13, PdDS08, PNT12, PST+15, QNC07, RSW+06, RCM+12, R+06, RKKK17, RWX+12, RR09, Sed07, SM06, SGB+16, SYB12, SAT09, SIJPP11, SWF16, Spr07, Sta07, SKYK16, Swa06, THTL10, TF16, Tre05, UNR+05, Uhl06, UVL+13, VN06].
Virtualization-Based [CDD13, AAJD+16, DPCA11, WDCL08, CGL+08a, CGL+08b, CGL+08c, QZDJ16]. virtualization-driven [CSSS11]. Virtualized

Virtualization-Based [CDD13, AAJD+16, DPCA11, WDCL08, CGL+08a, CGL+08b, CGL+08c, QZDJ16]. virtualization-driven [CSSS11].

Virtualization [BTMS10, SB10, SVL01, WRS13].

VirtualKnotter [ZWC14]. virtually [Spi06, WL96, Tre05].

VirtualPower [NS07].

Virtualizing [BTMS10, SB10, SVL01, WRS13].

VirtualKnotter [ZWC14]. virtually [Spi06, WL96, Tre05].

VirtualPower [NS07].

Visual [Fra06, Fra09, MC98, Wil06, Hec07, Hog06, Hog08]. Visualization [Nel04].

Visualizing [WT91]. VLISP [Ram93]. VLSI [IN87]. VM

VMBackup [ZWX16]. Vmgen [EGKP02]. Vmknoppi [Deu08]. VMM

[VMM] [ALL06, Car14, DQR+13, KZB+90, LD11, LHAP06, RQD+17, SM90]. VMM-based [ALL06]. VMM-Bypass [LHAP06]. VMM-to-guest [LD11].

VMScatter [CLL+13]. VMThunder [ZLW+14]. VMWare [Joo06, CK06, Ham07, Kmo09, KGG00, Tho08, Zip05, Zip06, Bas04, Bas06, War05, Wil01, AAH+03, Ano03a, Ano03b, BBD+10, Ban06c, Bor01, BDR+12, CK06f, Com00, Com03, DS09, D+04, Gal09b, GKB05, Hal08, Hal09, Her10, IIPB09, Kis08, KMK10, Lav10, Low08, Low09, Low11, LMG+14, MRM06, MBM09, MC08, MWHH05, MJW+06, Ng09a, Ng01b, NL00, OH05, Ros99, Ru107, R+02, Sec10, SIK+16, SVL01, TH10, Wal02, Wal09, War02, WF03, War11, Zip05, Zip06, B+07]. VNC [RSLAGCLB16].

Vol.II [Shr89]. Volatile [AMH+16, HN08]. Voltage [AMAB17]. Volume

[AuMT11]. Vorstellung [CK06b, CK06c, CK06d, CK06g, CK06f, CK06k, CK06m, CK06l, CK06n, CK06o, CK06q, CK06t, CK06r, CK06s].

VSwapper [ATS14]. vulnerabilities [RY10]. Vulnerability
vulnerability-specific [JKDC05]. Vulnerable
[JSHM15, JAS+15].

W [ALW15]. W-SDNs [ALW15]. WA [ACM05c, LCK11]. walks
[AJH12, BSSM08]. WAN [WRSvdM11, WRS+15]. WAPPEN [Kag09].
Washington [ACM06b, Ost94]. wavelength [AM16]. wavelength-routed
[AM16]. way [Ble10, Com00, WGF11]. Web
[Ano96, CVWL13, DF96, FF96, Kag09, SJJ+12, SDD+16, WDCL08].
Web-based [CVWL13, Kag09]. Web/Java [FF96, Ano96]. Web/
Java-based [FF96, Ano96]. weight [HB08, YGN+06]. Weir
[BMER14]. Welfare [ZHW+17, LWLL16]. Which
[MS17, War80]. Whispers
[WXW15]. Who
[LS15]. whole
[BBM09]. whose
[CK06b]. Wide
[BFG+14, DF96]. Wide-Area [BFG+14]. wie [Deu08]. WiFi [XYK+11].
Wild [Cox10, STS+13]. Win [War11]. Win4Lin [Ng01b, Ng01a]. WinCE
[Kal97]. Windows
[Bod10, Bor01, Joo09, Lar09, Sch94b, Sch94a, WF03, Apr09, Bod10, Car06,
CK06a, CK06i, CK06h, CK06p, GMR93, KSS09, KS10, Lar09, LC09b, LC09a,
MG08, MG09, Nou92, Sal92, YGN+06, Zyt94a, Zyt94b]. WINRAR
[Joo06]. wired
[XKY+11]. Wireless
[ACM06c, ALW15, BSI+15, HLP+16, SJPP11, FK13, HLW+10, XKY+11].
Wirth
[BGP00]. Within [RD90]. without [CD01, KSRL10, SUH86].
WOMP [M+06]. work [KHL17]. worked [Cox12]. workflow
[KCKC15, WKT08]. Workflows [RB17, dCCDFdO15]. working [G+88].
Workload [IEE02, IEE03, KCV11, SS13, SSN12]. workload-aware
[SSN12]. workloads [GTGB14, LL14, SMA+10, SWC08, VVB13]. Workshop
[ACM98, RM03, ACM05b, IEE01, IEE02, IEE03, IEE04, Mat10, Tho93,
ACM01a, ACM04a, ACM06c]. workshops [M+06]. Workstation
[Bau06c, Bor01, BDR+12, WF03, War05, SSN94, War02, SVL01]. World
[DF96, GH1+93, LWL+17, BBM09, STS+13]. World-Wide [DF96]. worlds
[AJD09, LUL+05]. Worm
[CLW+14]. Worst
[HWB03]. Worst-Case
[HWB03]. Writing [Wes98]. written [MSG01]. WWC
[IEE03, IEE02]. WW-5 [IEE02]. WW-C [IEE03].

x3950 [R+06]. x86 [AGSS10, BDR+12, Co99, Rev11, AA06]. Xbox
[Ste05]. XEN [Hin08, P09, Deu08, HHH04, Kar07, Mar08, Sec08a,Tho08, RHM08,
AJD09, Ano15, BDF+03, B+07, CBZ+16, Chi08, CG07, De 06, DLM+06,
Don06, Fis09, Hab06, HWF07, Kar07, Ke06, MDD+08, MST+05, MLC06,
NB11, P09, QT06, SJV+05, SLJ13, Spr06, Spr07, TC10, VS06, WG07,
dSOK17, vH08]. Xen-based [dSOK17, CBZ+16]. Xen-Basis [Kar07].
Xen-virtualisierte [Mar08]. XenEnterprise [CG07, WG07]. XenExpress
[CG07, WG07]. XenServer [CG07, WG07]. XHive
[KJL11]. XHPC [M+06]. XINU [BWP85]. XML
[Int06c]. XPL [Kam75]. XSA [Ano15]. XScale [CMP+07]. xSeries
[R+02]. XTREM [CMP+07].
REFERENCES

yang [CBGM12]. Years [FS12]. yieldpoint [LWB+15]. yin [CBGM12].
York [ACM03b, IEE90b, IEE96b, IEE90b]. Yountville [Tho93].

References

Alpern:2005:PVE

Armstrong:2005:AVC

Adeshiyahan:2009:UVH

Ahmad:2003:ADP

Al-Ayyoub:2016:VBC

Aroca:2016:PEA

Antonescu:2016:SSB

Axnix:2015:IZF

Armbruster:2007:RTJ

Adair:1966:VMS

REFERENCES

REFERENCES

[ACM06b] ACM, editor. PACT’06: Proceedings of the 15th International Conference on Parallel Architectures and Compilation

REFERENCES

Armstrong:2011:PIC

Ackerman:1992:SIE

Agesen:1998:GCL

Aoki:2001:SVM

Adams:2014:HVM

REFERENCEs

Abd-El-Malek:2012:FSV

Aridor:2001:DIV

Ahmad:2015:VMM

Ahmad:2015:SVM

Amit:2016:BMP

REFERENCES

Anderson:2009:XWL

Ahn:2012:RHA

Abramson:2006:IVT

Adamski:2007:SPE

Adams:2005:CMC

REFERENCES

Alfonseca:1991:AAA

Asrigo:2006:UVB

Akyildiz:2015:WSD

Agrawal:2016:EUI

Azmandian:2011:VMM

Araujo:2014:SAE

Arroba:2017:DVF

Ament:2013:ATG

Awad:2016:SSZ

Azevedo:2000:AAJ

Anonymous:1975:VM

Anonymous:1993:NCS

Anonymous. Products: VMware’s fourth-generation desktop virtualization software; automated design reviews with Reviewer for Rose; CodeWeavers debues CrossOver Office; Corel

REFERENCES

[Ano15] Anonymous. Critical Xen bug in PV memory virtualization code (XSA 148). Web bug report, October 29, 2015. URL https://github.com/QubesOS/qubes-secpack/blob/master/QSBs/qsb-022-2015.txt. The report notes about this bug that allows memory pages to leak between Xen virtual machines on the same physical host: “... the bug is a very critical one. Probably the worst we have seen affecting the Xen hypervisor, ever. Sadly. ... it is really shocking that such a bug has been lurking in the core of the hypervisor for so many years.”

REFERENCES

REFERENCES

Arianyan:2016:NHC

Attanasio:1979:VCS

Appuswamy:2011:FMF

Agarwal:2017:TAT

Arnold:2005:IVM

REFERENCES

[Bockisch:2006:AVMa] Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, and Mira Mezini. Adapting virtual machine techniques for seam-
REFERENCES

REFERENCES

Beloglazov:2013:MOH

Beloglazov:2015:ONF

Balter:1991:AIG

Barr:2010:VMV

Bhattiprolu:2008:VSC

Bratanov:2009:VMW

REFERENCES

Birke:2015:WVM

Bennett:1991:SMC

Bullers:2006:VMI

Boutcher:2010:DVM

Bellavista:2015:VNF

Bessiere:1990:VMM

P. Bessiere, A. Chams, and T. Muntean. A virtual machine model for artificial neural network programming. In *Proceed-
Berger:2008:TMS

Bredlau:2001:ALT

Bak:1998:NCJ

Beck:1999:HNG

Barham:2003:VMM

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Virtual machine monitors: Xen and the art of virtualization. In ACM [ACM03b], pages 164–177.
REFERENCES

[Barthe:2002:FCB]

[Butrico:2008:SEE]

[Bugnion:2012:BVX]

[Baldwin:2009:PSS]

[Bolz:2013:SSC]
REFERENCES

(print), 1558-1160 (electronic). OOPSLA ’13 conference proceedings.

Bienkowski:2014:WAV

Bagley:1975:SDS

Brawn:1970:SPE

Boszormenyi:2000:SNW

Birmingham:1989:MSC

Bartholomy:2013:NMT

REFERENCES

REFERENCES

May 2005. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Bianchi:2017:MRB

Blelloch:1989:SPP

Bledsoe:2010:VLO

Bershad:1994:ACM

Blunden:2002:VMD

Burtsev:2014:WSL

REFERENCES

Bai:2013:HPI

Banerjee:2016:SNA

Ballard:1986:QSD

Belpaire:1975:FPR

Blandy:1989:VSM

Board:1990:TRA

Bodlaender:1988:CFU

REFERENCES

Boddenberg:2010:WSR

Born:2001:VWP

Border:2007:DDM

Bozman:1989:VSM

Barbosa:1999:ADM

Breg:2001:JVM
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>support for object serialization. *Concurrency and Computation: Practice</td>
</tr>
<tr>
<td></td>
<td>ISSN 1532-0626 (print), 1532-0634 (electronic).</td>
</tr>
<tr>
<td>[BPB86]</td>
<td>K. S. Bhaskar, J. K. Peckol, and J. L. Beug. Virtual Instruments:</td>
</tr>
<tr>
<td></td>
<td>object-oriented program synthesis. ACM SIGPLAN Notices, 21(11):303,</td>
</tr>
<tr>
<td></td>
<td>November 1986. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print),</td>
</tr>
<tr>
<td></td>
<td>1558-1160 (electronic).</td>
</tr>
<tr>
<td>[BPC94]</td>
<td>V. Beletsky, T. Popova, and A. Chemeris. Organization of a parallel</td>
</tr>
<tr>
<td></td>
<td>virtual machine. In Horiguchi et al. [HHK94], pages 421–426. ISBN</td>
</tr>
<tr>
<td>[BPP+17]</td>
<td>Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman,</td>
</tr>
<tr>
<td></td>
<td>Christos Kozyrakis, and Edouard Bugnion. The IX operating system:</td>
</tr>
<tr>
<td></td>
<td>Combining low latency, high throughput, and efficiency in a protected</td>
</tr>
<tr>
<td></td>
<td>January 2017. CODEN ACSYEC. ISSN 0734-2071 (print), 1557-7333 (</td>
</tr>
<tr>
<td></td>
<td>electronic).</td>
</tr>
<tr>
<td>[BR01]</td>
<td>Grant Braught and David Reed. The knob & switch computer: a computer</td>
</tr>
<tr>
<td></td>
<td>architecture simulator for introductory computer science. *ACM Journal</td>
</tr>
<tr>
<td></td>
<td>on Educational Resources in Computing (JERIC)*, 1(4):31–45, December</td>
</tr>
<tr>
<td></td>
<td>2001. CODEN ???? ISSN 1531-4278.</td>
</tr>
<tr>
<td></td>
<td>JavaWorld: IDG’s magazine for the Java community, 3(3):??, March 1998.</td>
</tr>
<tr>
<td></td>
<td>CODEN ???. ISSN 1091-8906. URL http://www.javaworld.com/javaworld/jw-03-</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

Branco:2015:TFS

Bairavasundaram:2012:RRS

Burcea:2008:PV

Bhargava:2008:ATD

Bartolini:2014:AFG
Davide B. Bartolini, Filippo Sironi, Donatella Sciuto, and Marco D. Santambrogio. Automated fine-grained CPU provi-

REFERENCES

REFERENCES

Campanoni:2010:HFP

Cavender:1993:APV

Crosby:2006:VR

Chowdhury:2010:SNV

Cerling:2009:MMV

Cao:2012:YYP

REFERENCES

Chevalier-Boisvert:2012:BSH

Cheng:2016:VMN

Chen:2017:MLF

Carbone:2012:SRM

Childs:2005:SCG

REFERENCES

Chiueh:2014:SFI

Calder:2005:EVM

Chen:2006:LUO

Czajkowski:2001:MCV

Cheng:2012:VBP

Cao:2014:EAH
REFERENCES

(Kevin Casey, M. Anton Ertl, and David Gregg. Optimizing indirect branch prediction accuracy in virtual machine interpreters. *ACM Transactions on Programming Languages and Systems*, 29(6):37:1–37:36, October 2007. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).)
REFERENCES

REFERENCES

Cheriton:2012:HAS

Celesti:2012:VMP

Chen:2016:OVM

Chen:2008:OVBa

Chen:2008:OVBb

REFERENCES

2008. CODEN ????? ISSN 1539-9087 (print), 1558-3465 (electronic).

Carr:1987:EUC

Campbell-Kelly:1996:ES

Chryselius:2006:DQE

Chryselius:2006:IDQ

Toralf Chryselius and Andrea Kuntz. Internetkommunikation in Debian unter Qemu Einführung in das Betriebssystem Debian Linux in Qemu und Vorstellung der wichtigsten Internetprogramme. (German) [Internet Communication in Debian under Qemu: Introduction in the Debian Linux operating system in Qemu and creation of the most important Internet programs], volume 18 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-117-1 (book), 3-86768-717-X (DVD). 109 pp. LCCN ????

Chryselius:2006:IKQb

Toralf Chryselius and Andrea Kuntz. Internetkommunikation in Kanotix unter Qemu Einführung in das Betriebssystem Kanotix und Vorstellung von Internetprogrammen

[CK06c] Toralf Chryselius and Andrea Kuntz. Internetkommunikation in Kubuntu unter Qemu Einführung in das Betriebssystem Kubuntu und Vorstellung von Internetprogrammen in der virtuellen Umgebung Qemu. (German) [Internet Communication in Kubuntu under Qemu: Introduction to the Kubuntu operating system and creation of Internet programs in the Qemu virtual machine], volume 6 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-105-8 (Buch), 3-86768-705-6 (DVD). 107 pp. LCCN ????

[CK06g] Toralf Chryselius and Andrea Kuntz. Internetkommunikation mit OpenSUSE unter Qemu: Einführung in das Betriebssystem OpenSUSE Linux und Vorstellung von Internetprogrammen in der virtuellen Umgebung Qemu, volume 66

Chryselius:2006:KLQb

Chryselius:2006:KLQa

Chryselius:2006:KQE

Chryselius:2006:LDQ

REFERENCES

[CK06p] Toralf Chryselius and Andrea Kuntz. *OpenSuSE Linux unter Qemu Einführung in das Betriebssystem OpenSUSE*
REFERENCES

* CK06q

* CK06r

* CK06s

Toralf Chryselius and Andrea Kuntz. *Software für Kinder in Kubuntu unter Qemu Einführung in das Betriebssystem Kubuntu und Vorstellung der Lern- und Spielesammlung GCompris in der virtuellen Umgebung Qemu*, volume 8 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD,

REFERENCES

REFERENCES

Chen:2014:HBA

Chung:2006:TTMa

Chung:2006:TTMb

Chung:2006:TTMc

Contreras:2007:XPP
REFERENCES

Chen:2013:TVR

Coffing:1999:XPM

Cohen:1997:DJV

Cohen:2010:VS

Compton:2000:VLB

Compton:2003:VL

Cox:2007:REM

REFERENCES

REFERENCES

REFERENCES

Chen:2016:CDD

Cecchet:2011:DVD

Cameron:2015:JFE

Chen:2003:EJV

Cahill:1993:ICV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dillenberger:2000:BJV

Darcy:1992:USD

Di:2015:ECP

Doyle:2004:DIM

Coutinho:2015:OVM

Duan:2017:EAS

Dong:2012:RAE

Dean:1994:CPV

DeRose:2006:EXI

Degenbaev:2016:ITG

Diaz:2017:OAV

Debbabi:2003:MCA

Denning:2001:OVM

DELUG:2008:VKB

Dincer:1996:BWW

Davoli:2005:VSV

Dolan-Gavitt:2011:VNS

REFERENCES

on Security and Privacy. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, May 2011.

[DLM⁺06] Yaozu Dong, Shaofan Li, Asit Mallick, Jun Nakajim, Kun Tian, Xuefei Xu, Fred Yang, and Wilfred Yu. Extending Xen with Intel virtualization technology. *Intel Technology Journal*, 10(3):193–203, August 10, 2006. ISSN 1535-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[DYL+12] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian, and Haibing Guan. High performance network

REFERENCES

REFERENCES

[Egger]:2015:ERV

[Ertl]:2002:VGE

[EGKP02] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. Vmgen — a generator of efficient virtual machine interpreters. *Software—Practice and Experience, 32*
REFERENCES

Ebrahimirad:2015:EAS

Esteire:1998:STN

Esposito:2013:SES

Evoy:2015:ADP

Engel:1999:PJV

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
| [FDF05] | Renato Figueiredo, Peter A. Dinda, and José Fortes. Guest Editors’ introduction: Resource virtualization renais-
REFERENCES

REFERENCES

Fitzhugh:2014:VVM

Firoozjaei:2017:SCN

Friedman:2003:TFT

Fu:2013:SGW

Fu:2013:BSG

Fu:2013:EUD

REFERENCES

(Flouris:2010:EBL)

(Fang:2013:VO)

(Franklin:2008:RDV)

(Anonymous:2014:AVM)

(Feeley:1990:PVM)

(Forum:1971:VMI)

REFERENCES

REFERENCES

REFERENCES

[F10] Song Fu. Failure-aware resource management for high-availability computing clusters with distributed virtual machines. Journal of Parallel and Distributed Computing, 70

REFERENCES

REFERENCES

REFERENCES

P. G. Greenfield and R. J. Hendley. A proposed intelligent tutoring system framework incorporating persistent logic pro-

[GLA+08] Alessio Gaspar, Sarah Langevin, William Armitage, R. Sekar, and T. Daniels. The role of virtualization in computing educa-
REFERENCES

REFERENCES

Gre10 David Green. The Sydney University SILLIAC. Web site, August 14, 2010. URL http://members.iinet.net.au/~dgreen/silliac.html. The SILLIAC was the first computer installed at Sydney University, and was operational from 1956 to 1968. The Web site links to the SILLIAC Emulator, a C program for Microsoft Windows.
REFERENCES

REFERENCES

Guyer:2014:UJT

Guzdial:2001:UST

Geroﬁ:2013:UMC

Garfinkel:2007:WVC

Habib:2006:X

Halstead:1979:RTN

R. H. Halstead. Reference Tree Networks: Virtual Machine and Implementation. Thesis (Ph.D.), Department of Electrical Engineering and Computer Science, Massachusetts Institute of

雹letky:2008:VES

雹letky:2009:VVV

雹mlet:1976:PBT

雹ammersley:2007:PVS

雹ansen:2005:IJP
REFERENCES

REFERENCES

Huang:2012:VAJ

Hankendi:2017:SCS

Hizver:2014:RTD

Hansen:2007:ETT

Hines:2009:PCL

Hu:2008:SVO

Heege:2007:ECC

Herrod:2006:FVT

Herrod:2010:SRD

Hendricks:1979:EVM

Ho:2005:DPD

Hudson:2008:FU

Huang:2013:VHS

REFERENCES

Haase:2010:SD

Haque:2016:ACV

Hinkelmann:2008:EKM

Hirschsohn:1992:PSS

Hansen:2010:SVM

Henzinger:2007:EMP

REFERENCES

[HLM17] Fang Hao, Murali Kodialam, T. V. Lakshman, and Sarit Mukherjee. Online allocation of virtual machines in a dis-
6692 (print), 1558-2566 (electronic).

[HL13] Qun Huang and Patrick P. C. Lee. An experimental study of cascading performance interference in a virtualized envi-
(print), 1557-9484 (electronic).

[HLP+16] Endadul Hoque, Hyojeong Lee, Rahul Potharaju, Charles Killian, and Cristina Nita-Rotaru. Automated adversarial test-
ing of unmodified wireless routing implementations. *IEEE/ACM Transactions on Networking*, 24(6):3369–3382, December 2016. CODEN IEANEP. ISSN 1063-6692 (print), 1558-
2566 (electronic).

in a scalable mobile wireless testbed. *ACM SIGMETRICS*
REFERENCES

Hsu:2013:IDB

Hartel:2001:FSJ

Hallawi:2017:MCC

Hu:2004:TLI

Hay:2008:FEV

Hess:2010:PVS

REFERENCES

Huang:2004:MDS

Hohmuth:2004:RTS

Hwang:2015:RPA

Hu:2006:RST

Hsu:2015:LLA
REFERENCES

REFERENCES

Herbordt:1993:EEA

Hume:2015:SCS

Hu:2003:DJV

Hand:2007:HVX

Hao:2016:IRO

REFERENCEs

REFERENCES

[SPE::Ibsen1984]

[IEEE:1984:PSS]

[IEEE:1984:DE]

[IEEE:1985:CPA]

[IEEE:1990:PIC]

REFERENCES

IEEE Computer Society Order Number 2060. IEEE Catalog Number 90CH2884-5.

REFERENCES

REFERENCES

Street, Suite 300, Silver Spring, MD 20910, USA, 2006. ISBN 0-7695-2582-2. ISSN 1550-5243. LCCN QA76.88. ACM product number E2582.

REFERENCES

ISO:2005:II

ISO:2006:ITCb

ISO:2006:II

ISO:2006:ITCa

Inoue:2008:PVS

Ishikawa:1986:COO

[IT86] Y. Ishikawa and M. Tokoro. A concurrent object-oriented knowledge representation language Orient 84/K: its features

REFERENCES

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Joshi:2005:DPP

Jo:2010:TFT

Jeong:2013:AVM

Jansen:2008:SVC

Jim-Min:1992:IES

Jin:2015:PSV

REFERENCES

Jeyarani:2012:DIA

Joos:2006:OHE

Joos:2009:MWS

Jouannaud:1985:FPL

REFERENCES

Joubert:1994:PCT

Jin:2015:CCC

Jacob:2002:CAP

Jin:2015:HAS

Jantz:2013:FAG

Juola:2007:PCO

REFERENCES

Jia:2015:DRA

Jiang:2012:UNG

Jin:2010:GTF

Jia:2013:SID

Kagawa:2009:WWB
Kojima:1983:AMI

Kumar:1993:FHS

Kalin:1997:NMP

Kamnitzer:1975:BXI

Kamrad:1983:ROA

Kamga:2013:CFE

Kousiouris:2011:ESW

Kang:2014:HSA

Kumar:1978:PEH

Kertesz:2016:PBV

Keedy:1977:OIS

Kelly:2006:PMX

REFERENCES

REFERENCES

Kalibera:2013:RBR

Kim:2016:DOF

Kim:2011:XEC

Kim:2015:PMS

Kim:2007:VPR

Kobayashi:1979:SMC
Kertesz:2014:ISA

Kim:2016:SCD

Kim:2013:DBC

Kim:2014:VAM

REFERENCES

40, July 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Kokkinos:2016:SLM

Kawahito:2013:IRF

Koksal:2012:CC

Kocoloski:2013:ICN

Kong:2014:SGE

Kyle:2015:ADA
Stephen Kyle, Hugh Leather, Björn Franke, Dave Butcher, and Stuart Monteith. Application of domain-aware binary fuzzing...

Kiefer:2013:SIP

Krieger:2010:EMC

Kashyap:2016:OSA

Khazaei:2013:PCC

Kalibera:2014:FAS

Kuperman:2016:PR

[KMN+16] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel Gordon, and Dan Tsafrir. Paravirtual remote I/O. *ACM
REFERENCES

Kessaci:2014:MSL

Knaggs:1993:PTA

Kasprzyk:2002:APV

Kotsovinos:2010:VBC

Kotsovinos:2011:VBC

REFERENCES

Kourai:2011:FCP

[190]

Kaneda:2005:VMM

Kernighan:1999:REL

Kim:2015:CBR

Kelsey:1994:TSI

Kratzer:1990:MPS

Kedlaya:2014:DDL

[KRCH14] Madhukar N. Kedlaya, Behnam Robatmili, Cglin Cascaval, and Ben Hardekopf. Deoptimization for dynamic language

REFERENCES

REFERENCES

Kutter:1992:STE

Kappel:2009:MVH

Kerridge:1980:STC

Kang:2013:HPP

Koskinen:2016:RCR

Karger:1990:VSK

Lamming:1975:LVM

M. Lamming. LITL virtual machine. fixed or variable size blocks. Technical Report QMW-DCS-1975-085; QMW-DCS-
1975-091, Queen Mary College, Department of Computer Science, June 1975.

REFERENCES

Li:2016:ICV

Laadan:2007:DPV

Le:2011:REC

Levis:2002:MTV

Larson:2009:WSHa

REFERENCES

Lee:2016:HSC

Liu:2006:HPV

Li:2014:LSD

Liang:2005:DLM

Li:2017:CSN

Liu:2011:LVM

Liao:2012:TGC

[LJL12] Xiaofei Liao, Hai Jin, and Haikun Liu. Towards a green cluster through dynamic remapping of virtual machines. *Fu-

Liu:2015:HBC

Li:2000:UCS

Li:2012:SRS

Lipner:2012:LVS

Liu:2014:OVM

REFERENCES

Laureano:2007:PHB

Laden:2012:ADF

Lott:1991:DVM

Low:1988:SPO

Lowe:2008:VID

Lowe:2009:MVV

Lowe:2011:MVV

[LRC05] Dominic Lucchetti, Steven K. Reinhardt, and Peter M. Chen. ExtraVirt: detecting and recovering from transient processor

Lu:2016:VCC

Ludwig:2015:DCM

Lowell:2004:DVM

Li:2012:VMP

Lin:1992:IES

Liu:2014:PAC

[LTZ+14] Xiaodong Liu, Weiqin Tong, Xiaoli Zhi, Fu ZhiRen, and Liao WenZhao. Performance analysis of cloud computing

LeVasseur:2004:SAR

Lucent:1997:LPL

LeVasseur:2005:PVU

Liang:1999:CPS

Li:2016:SSO

Le:2011:EMO

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Li:2015:GHB

Li:2013:RVS

Li:2015:VMP

Min:2006:FHP

McDougall:2010:VPP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

March 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Muller:1992:ASP

Marshall:2009:VEE

McDonald:1986:TND

McHugh:1993:ILC

Miller:1998:VMB

McCain:2008:MVI

Magnusson:2002:SFS

McGrath:1972:VMC

McKinley:2011:HPC

Menon:2006:ONV

Madnick:1973:AAV

Madnick:1974:AAV

REFERENCES

REFERENCES

co.uk/computer_journal/hdb/Volume_15/Issue_02/tiff/113.tif; http://www3.oup.co.uk/computer_journal/hdb/Volume_15/Issue_02/tiff/114.tif; http://www3.oup.co.uk/computer_journal/hdb/Volume_15/Issue_02/tiff/115.tif; http://www3.oup.co.uk/computer_journal/hdb/Volume_15/Issue_02/tiff/116.tif.

REFERENCES

Mendelsohn:1983:RVF

Mikheev:2002:OEJ

Mlynski:2009:IP

Majumdar:1992:PPC

Manning:1993:AAE

REFERENCES

REFERENCES

[MR06] Minhas:2013:RTH

REFERENCES

Meyer:1970:VMT

Manas:1991:VLM

Milutinovic:1991:PTA

Mathiske:2000:APM

Menczer:2001:OTR

Mann:2017:WBA
Mebane:1992:EFD

Maessen:2001:PAS

Ma:2012:DTD

Ma:2014:DBV

Matsuhashi:2012:TVF

REFERENCES

REFERENCES

Ng:2001:VEW

Ng:2001:VEWb

Noll:2013:OFD

Nieh:2012:CBR

Namjoshi:2010:NOP

Neumann:2006:IVT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Odette:1987:CPF

OLoughlin:2016:SVM

Oglesby:2005:VES

Oi:2005:DLV

Oi:2006:IFH

Oi:2008:LVA

Osisek:1991:EIA
D. L. Osisek, K. M. Jackson, and P. H. Gum. ESA/390 interpretive-execution architecture, foundation for VM/ESA.
REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

Pek:2013:SSI

Plotkin:2016:SNV

Plata:1990:ASP

Porter:2012:RLT

REFERENCES

2012. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[PEC+14] Cuong Pham, Zachary J. Estrada, Phuong Cao, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Building reliable

Park:2011:FSE

Pape:2016:LIS

Pfoh:2013:LDV

Popek:1973:FRV

Popek:1974:FRV

REFERENCES

Payer:2011:FGU

Pavlou:2012:DBD

Papadimitriou:2012:TLS

Popek:1975:PVM

Popek:1975:VPS

Parson:2005:OOD

REFERENCES

Pfeerle:2015:HVF

Padala:2007:ACV

Pape:2014:EJV

Pham:2015:SRD

Pulman:1991:EER

Prokopski:2008:APC

REFERENCES

REFERENCES

Qian:1999:FSJ

QNC07

QT06

Qiang:2016:SCF

Russell:2002:SCI

ReFerre:2006:VIS

REFERENCES

Rayns:2013:CJS

Rajaraman:1979:PPV

Ramsdell:1993:RVP

Raner:2002:LJV

Russell:2001:HSA

Rodriguez:2017:BDS

REFERENCES

REFERENCES

REFERENCES

Ren:2016:SMO

ACM:2003:ATA

Roblitz:2002:LSE

Robbins:2006:LGC

Rosenblum:1999:VVP

Rosenblum:2004:RVM

2004. CODEN AQCUAE. ISSN 1542-7730 (print), 1542-7749 (electronic).

Ruest:2009:VBG

Reano:2016:TRG

Reano:2015:IUE

Ragsdale:2003:CLI

Rastogi:2015:SEG

Roy:2015:SCP

Rodriguez-Silva:2016:IVR

Rodrigues:2017:HMM

Rosing:1991:DPP

Ramachandran:2006:NCV

Rong:1993:LMM

Rule:2007:HCC

REFERENCES

REFERENCES

REFERENCES

Schoen:1986:CS

Schulman:1994:UCI

Schulman:1994:IWV

Schocken:2009:VMA

Schmeisser:2013:MOE

Schneider:2013:FVM

Seecker:2008:EGS

Seeling:2008:L

Seely:2010:BVD

Smith:2006:SID

Seth:2013:UJV

Spinellis:2009:BA

Schmidt:2010:VSB

[SG10a] René W. Schmidt and Steffen Grarup. vApp: a standards-based container for cloud providers. Operating Systems Re-
REFERENCES

Soundararajan:2010:CBS

Shuja:2016:SMD

Sirer:1999:DID

Sirer:2000:DID

Saeed:1992:ICM

Simao:2012:CER

[José Simão, Tiago Garrochinho, and Luís Veiga. A checkpointing-enabled and resource-aware Java Virtual Machine for efficient and robust e-Science applications in grid

Shanmuganathan:2013:DCU

Schmalenbach:2004:JVM

Stefanovic:2003:OFG

Shen:1991:VTD

Shelburne:2002:PEP

Shippy:2003:PGT

Shao:2013:VOS

REFERENCES

[Silla:2017:BRG] Federico Silla, Sergio Iserte, Carlos Reaño, and Javier Prades. On the benefits of the remote GPU virtualization mechanism:

REFERENCES

REFERENCES

REFERENCES

Sun:2016:NTE

Scott:1989:EOS

Seiden:1990:AFV

Sterrett:1992:PMA

Shudo:2001:AME

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Stefanovic:2017:TSS

Stoess:2012:LVM

Stankovic:1997:VRR

Stanik:2007:NVR

Steil:2005:MMM

Stecklina:2014:SHO

Julian Stecklina. Shrinking the hypervisor one subsystem at a time: a userspace packet switch for virtual machines. *ACM
REFERENCES

REFERENCES

Suri:2001:SCR

Suski:1976:AGC

Simao:2013:ADQ

Steindorfer:2015:OHA

Sebes:1993:MAL

Sugerman:2001:VDV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

2014. CODEN ATASFO. ISSN 1084-4309 (print), 1557-7309 (electronic).

REFERENCES

REFERENCES

Tsafrir:2014:ELV

Ta-Shma:2008:VMT

Tsai:1993:LMM

Tamm:1996:LBV

Tu:2013:SDS

Thanh:1982:ITC

Ungar:1998:PNC

Unger:1982:OSZ

Uhlig:2006:F

Uhlig:2007:MKS

Uhlig:2005:IVT

Uehara:1984:BPB

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[VdlFCC97] José M. Pérez Villadeamigo, Santiago Rodríguez de la Fuente, Rafael Méndez Cavanillas, and M. Isabel García Clemente. The em88110: emulating a superscalar processor. *SIGCSE Bulletin (ACM Special Interest Group on Computer Science*
REFERENCES

Visegrady:2014:SCV

Venstermans:2006:BVB

Venstermans:2007:JOH

Venners:1996:UHL

Venners:1997:IJV

Venners:1997:UHHa
Bill Venners. Under the hood: How the Java virtual machine handles exceptions. *JavaWorld: IDG’s magazine for the Java
REFERENCES

Venners:1997:UHHb

Venners:1997:UHHc

Venners:1999:IJV

Venners:1999:SVJ

vonHagen:2008:PXV

Vitek:2014:CTR

[Vit14] Jan Vitek. The case for the three R’s of systems research: repeatability, reproducibility and rigor. ACM SIGPLAN No-
REFERENCES

tices, 49(7):115–116, July 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

vonKoch:2013:LRB

Viswanathan:2000:JVM

vonLaszewski:2001:GBA

Varvello:2016:MPC

vanMoolenbroek:2014:TFL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wainer:2001:UAS

Weber:2010:EVM

Welch:1994:PVM

Wells:2002:HMA

Westley:1998:WJA

Ward:2003:VWH

[WF03] Brian Ward and Gerhard Franken. VMware Workstation: [das Handbuch; Installation, Konfiguration, Anwendung und Troubleshooting; Gast-Systeme: Windows, Linux, BSD, Novell NetWare, Solaris, FreeDOS und Oberon; virtuelle Netzwerke,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

June 2017. CODEN ????? ISSN 2476-1249. URL http://dl.acm.org/citation.cfm?id=3084448.

REFERENCES

Xie:2014:DIP

Xie:2015:PDC

Xu:1990:HMD

Xu:2016:SER

Xing:2015:OIB

[XSC13] Zhen Xiao, Weijia Song, and Qi Chen. Dynamic resource allocation using virtual machines for cloud computing environ-
REFERENCES

Xu:2017:SLB

Xie:2016:GCF

Xie:2015:SSV

Xie:2013:AAE

Xiao:2011:HLM

Xu:2016:CBA

Jiwei Xu, Wenbo Zhang, Zhenyu Zhang, Tao Wang, and Tao Huang. Clustering-based acceleration for virtual ma-

Yu:2006:FWV

Yan:2012:VCH

Yamada:2013:TFT

Yang:2017:EJV

Yamanaka:2016:TFF

Yang:2017:VMM

Chao-Tung Yang, Jung-Chun Liu, Shuo-Tsung Chen, and Kuan-Lung Huang. Virtual machine management system based on the power saving algorithm in cloud. Journal of

Yang:2014:ICV

Yan:2017:CAE

Yang:2014:MMG

Ye:2010:EES

Yi:2017:CDC

REFERENCES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>DOI</th>
<th>URL</th>
</tr>
</thead>
</table>
Yutaka:2000:EJV

Yurcik:2002:SIS

Younge:2015:SHP

Yermolovich:2009:ODL

Yu:2013:OSI

Yao:2014:GFT

[YWR+14] Lin Yao, Guowei Wu, Jiankang Ren, Yanwei Zhu, and Ying Li. Guaranteeing fault-tolerant requirement load balancing

REFERENCES

[ZBP05] Xin Zhao, Kevin Borders, and Atul Prakash. SVGrid: a secure virtual environment for untrusted grid applications. In ACM [ACM05b], pages 1–6. ISBN 1-59593-269-0. LCCN ????

REFERENCES

Zaman:2013:CAB

Zimmermann:2006:AHM

Alexander Zimmermann, Mesut Günes, Martin Wenig, Jan Ritzerfeld, and Ulrich Meis. Architecture of the hybrid MCG-mesh testbed. In ACM [ACM06c], pages 88–89. ISBN 1-59593-540-0. LCCN ????

Zhang:2015:LOS

Zhang:2017:NAV

Zhou:2016:VMP

Zhou:2010:VN

Zhang:2017:OAI

Zimmer:2005:VMV

Zimmer:2006:VSV

Zhu:2011:OPV

Zhou:2013:LPC

Zhang:2016:MAV

Zhang:2014:AIO

Zhang:2015:SSP

Zabolotny:2015:JCG

Zheng:2016:VMC

Zhou:2013:OVM

REFERENCES

Zou:2012:CDA

Zhang:2014:VFP

Zhang:2013:ASD

Zhang:2015:MCV

Zheng:2014:CCM

Zakkak:2014:JJM

Zhang:2016:CGS

Zoppke:2006:VLE

Zhang:2015:MIM

Zhang:2016:GDL

Zhao:2015:UPP

Zhang:2001:HJAb

Xiaolan Zhang and Margo Seltzer. HBench:Java: an application-specific benchmarking framework for Java Vir-

Zhang:2005:ILS

Zhang:2006:SPV

Zhang:2007:DIB

Zou:2014:VOV

