A Bibliography of Publications about Virtual Machines

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

03 August 2019
Version 1.327

Abstract
This bibliography records books and other publications about virtual machines.

Title word cross-reference

$32.95 [Ano97a]. 5 [ALW15]. T^M [Cza00]. \tau_P [LTK17]. d [XDSL5]. HV^2M [CBZ+16]. \omega [Arv02]. II [Syr07]. V^2 [DG05].

-dienste [WF03].

.NET [Fra06, Fra09, Hee07, Hog06, Hog08, Men03].

/CLI [Fra06, Fra09, Hee07, Hog06, Hog08, Siv07, Wil06]. /dev/random [Fer11].
0 [Sim92, SCP93]. 0.9.0 [WR07]. 0.9.1 [WR08]. '01 [Ano00, Ano01a, Ano01b, USE01c, USE01d]. '02 [USE02]. '03 [ACM03b, Ert03]. '04 [Ano04a, Ano04b]. '05 [ACM05d, Vra05].

2 [Bri98, Com00, Com03, Kis08]. 2-Level [ZSR+05]. 2.0 [Fra06, Ng01a, SUN97]. 2000 [ACM00]. 2001 [ACM01b]. 2003 [RM03, ACM03a, ACM03b, IEE03, Int05a]. 2004 [ACM04a, ACM04b]. 2005 [ACM05a, ACM05b, ACM05c, Wil06]. 2006 [ACM06c, ACM06b, ACM06d, IEE06b, IEE06a, Int06b, Int06a]. 2008 [Lar09]. 2010 [Ano10]. 2011 [LCK11]. 20th [IEE06a, Vra05]. 21st [IEE05]. 23272 [Int05b]. 26th [ACM99]. 29-state [Sig89]. 2nd [Ano02].

3 [McC08, PO09, vdK09]. 3.0 [MRGB91]. 3.1 [Bau06a, Skr01]. 3.5 [Fra09, Hog08]. 32 [Ano14b]. 32-bit [VED06]. 335 [ECM01, ECM02, ECM05, ECM06]. 360 [Kam75]. 360/40 [ABCC66]. 370 [Att79, Bar78, Ber86, Cal75, GLC84, Gum83]. 37th [ACM06d]. 390 [DBC+00]. 3rd [ACM05b, ACM06e, Ano04a].

4 [Gal09b, G+06, Lav10, Low09, NOK+85]. 4-7 [M+06]. 40 [GBO87]. 43rd [ACM06a]. 440 [R+02]. 4th [USE00a].

5 [IEE02, War05]. 5.2 [P+08]. 5.5 [Bau06c, LMG+14]. 5G [CM18]. 5L [My09]. 6000 [ABDD+91]. 64 [De 06, Don06]. 64-bit [VED06, VED07]. 6th [USE01b].

7 [HH08]. 7th [Tho93].

8 [LYBB14, She02]. 80 [BMW86, BSUH87]. 84 [IT86]. 84/K [IT86]. '89 [ACM89].

A-DRM [WIS+15]. A.NET [Men03]. Aachen [GHH+93]. ADEBUG
Architecture-aware [WIS+15].

Architecture(R) [MBBS13]. Architectures [ACM06b, BN75, EMAL17, EG01, HW93, HHK94, Ian14, PG74, PY93, RD90, BGS13, DM93, EMI13, KMG+18, PG73, Skr01, YZW+13, ZP14].

Architektur [Dal97]. Area [BFG+14, Fis01]. areas [BCZ19]. Arizona [IEE05]. ARM [DN14, DLL+16, GNDB16, MGL+17, ZTWM17]. Aroma [Sur01]. Arquillian [Ame13]. Array [MBK+92, SV15]. Arrivals [KMM13].

ZWL^+18, dSdF16, ADA^+19, AO16, AMAB17, ANH00, CD14, DXM^+17, DCMW17, Fu10, GLK^+12, GA18, HKS19, HSC15, HC12, IKU15, JNR12, KC16, KBB11, KCS14, KR16, KLF^+15, LYYY18, LWL16, PFPJ18, RH17, SSB^+14a, SSN12, SGV12, SKL14, WIS^+15, WCC^+16a, WDT18, X CJ^+14, YRJ18, ZHHC17, ZWC^+19, ZWH^+17]. **Awareness** [ZHL16, LCL14]. **Azure** [Fab13].

B [Req03]. **B5500** [Ham76]. **Back** [KS08b]. **backhaul** [MCC18]. **Backup** [ACA16, KRS^+17, ZWX16]. **Backup-Sharing** [ACA16]. **bad** [RY10]. **Bahamas** [Ano99b]. **Balanced** [LLW16]. **Balancing** [CGC16, CL16a, DY17, Gua14, HPP15, LW12, LYS^+18, MKKE12, WWH16, YWR^+14, Bir94, KAZS14, TF16, Vac06, XH90, XTB17, ZWL09]. **Ballooning** [LJL15]. **Baltimore** [Ano93]. **Band** [ZSXZ07, PBYH08]. **Bandwidth** [LJFS17, YLH17, ZRS^+16, BAC15, GLLJ16, LZW^+15, WQG15, WXW15]. **Bandwidths** [LMM18]. **Bare** [AGH16, OSK15, GAH^+12]. **Bare-metal** [AGH16, OSK15, GAH^+12]. **barrier** [Rix08]. **barriers** [LM99]. **Base** [UOKT84, WH08]. **baseband** [KWZ^+19]. **Based** [SS13, SENS16, SG10a, SGV13, SPF^+07, SYC14, SV17, SCFP00, Sto07, TT96, TY14, VT14, Vog03, WKT08, WDCLO8, WXZ^+17, WW77, XZ11, XZZ^+16, WXW^+17, YC98a, YC98b, YZW^+13, YZLQ14, YLCH17, YBZ^+15, ZG13, ZLH^+15, ZWHC17, ZAI^+16, ZLL^+16, dSOK17, vKF13]. **basic** [A^+04]. **basiereende** [Deu08]. **Basis** [Kar07]. **Batch** [KMM13, LD05, SS13]. **bathymetry** [MMG^+18]. **Bay** [Ano10]. **Bayesian** [LJN^+00]. **BCPL** [Abr80, WW77]. **BCPL-Slim** [Abr80]. **Be** [Cox07]. **beams** [MC98]. **Beautiful** [SG09]. **Bedienung** [KKG00]. **beginner** [RR09, Wes98]. **Behavior** [EG01, WXH^+16, ZDLG17, CL14, LWB^+15, Oi08, Wad99]. **behavioral** [CL17b]. **Behind** [Cra98]. **Belgium** [ACM04a]. **Benchmark** [DHPW01, GPW03, SMSB11]. **Benchmarking** [CGS06, RO16, AHK^+15, FLM^+08, KJ13, ZS01]. **benchmarks** [LJN^+00]. **Benefit** [HB14]. **Benefits** [KZW^+19, LS15, SIRP17, CM18]. **Berkeley**
Best [B+07, GHS16, MS17, Sch13a]. betreiben [RHM08].

Betriebssysteme [CK06a, CK06b, CK06c, CK06d, CK06g, CK06f, CK06i, CK06h, CK06j, CK06k, CK06m, CK06l, CK06n, CK06o, CK06p, CK06q, CK06t, CK06r, CK06s]. Betriebssysteme [WR07, WR08]. Better [MW05, Com00].

Between [FPS+02, ACM04a]. Bias [Lee16].

Between [Jen79, KLLT18, ZLHD15, BDJdS02, CL17a, GSW+17, KGS16]. Beyond [FPS+02, ACM04a].

Bias [Lee16].

Big [GTS+15, MSG14, WTML8, BOF17, DXM+17]. Billing [RB17].

Big [GTS+15, MSG14, WTM18, BOF17, DXM+17]. Billing [RB17].

Binary [See10].

Binary [KLF+15, ZFL15, dGG+17, HLW+13, JYW+13, PGLG12, vKF13]. BIND [See10].

block-device [FFBG08].

block-level [FLCB10]. block-paging [TKG89].

Block [Sch94b, Sch94a, TLBW12, Zyt94a, Zyt94b, FFBG08, FLCB10, LLLE17, TKG89, WF07]. block-device [FFBG08].

Blockchain [CQLL18, DMH18].

blocks [BBTK+17]. Blue [SSU+12].

Bochs [Ano14b]. bodies [AGIS94]. Bolton [ACM03b].

Book [Ano97a, Fro13, Lar09, Van98, B+07, TC10, War02]. books [Van98].

boost [CBZ+16]. boosting [AC16, LKY+17, PGLG12].

boosting [AC16, LKY+17, PGLG12].

bound [JGA+88]. boundary [SBQZ14].

bound [JGA+88]. boundary [SBQZ14].

bound [JGA+88]. boundary [SBQZ14].

Budget [RB17]. Budget-Driven [RB17]. buffer [JADAD06b]. buffers [CFG+13].

buffers [CFG+13].

Building [AAB+05a, CGM17, DBC+00, DF96, HCH16, PEC+14, SJV+05, See10, TSP17, Nie12, SG10b, WH08].

Buying [YLN+17, ZLI+15]. buying-based [ZLI+15]. BYOD [DMG+15]. Bypass [LHAP06].

Bytecode [MO98, SEK+19]. bytecodes [SUH86].

C [Fra06, Fra09, Hee07, Hog06, Hog08, Wil06, Blu02, CWG00, Gaz01, Hee07, Hog06, Hog08, JM03, Siv07, Wil06]. C# [G+01]. C/C [Blu02]. CA [ACM06a, ACM06c, Ano97a, IEE84b, IEE93a, USE01c].

Cache [JQWG15, NSP16, RHR02, Boz89, JADAD06b, Oi05, RJK16, ZP14, AMA18].
caches [BLRC94]. Caching [AMA18, KJL11, MM93, LM99, XWX+17].
Calculations [Bad87, Hol95]. Calculus [ABV12, Wat86, Wat87, WK90].
Calif [ACM01b]. California
[ACM05a, An001b, An04b, An10, IEE96a, IEE97, IEE99, USE91, USE99,
USE01c, USE02, IEE84a, IEE90a, IEE91, Tho93]. Call
[DEK+03, Lee16, PUL016, PVR14, SSB+14a]. Call-site [SSB+14a].
calling [HB13, SSB+14a]. calls [VMBM12]. Cambridge [USE93]. Can
[Cox07, GW07, THB06, Sig89]. Canada [ACM06f, So83]. CAOS [Sch86].
Cap [HC17]. Capabilities [TVO92, Ame13, AAB+05c, Fit14]. capable
[FST+15]. Capacity [HM17, WUK+18]. capo [SMSB11]. Capping
[HSK17, JKK+13]. Capture [SCFP00, Sur01]. Capture/Replay [SCFP00].
capturing [BKC+13]. Card [Siv04, SUN97, HM01, Req03, JCV99]. cards
[GLY99, TLBW12]. carry [Ame13]. carrying [FGC+05]. Cascade
[YYL+15]. cascading [HL13]. Case [GGG03, HBL+10, HWB03, Ian14,
PK75a, HIIG16, MN03, Sig89, SIR17, Vit14]. Case-Based [GGG03]. Cases
[FG91]. Cassandra [FRM+15]. Catalyst [An003a, GMK17]. Categories
[Gal75]. causes [FRM+15]. CBase [ZLZ+19b]. CCAP [JMQW15]. CCGrid
[TLC06]. CD [Joo06]. CDN [LYS+18]. Cells [DAH+12]. cellular
[ALW15, Sig89]. Center [An93, Car14, CGC16, DY17, IEE90b, PCC+16,
WN17, XWJX15, HUWH14, LZW+15, Man15b, MRM06, MBM09, NTH+17,
VOS12, WDC08, WZW+13, YPLZ17, ZLZ+19b, ZWH+17, Car13]. Centers
[BB13, CL17a, EGR15, KMM13, LMM18, LVM16, Man15a, Man16, SB16,
YHL17, ZHL16, dSD16, AGH+15b, AGH+15a, ATS16, AMAB17,
ARMMA18, BB12, FL+13, HTB19, IKU15, KTB17, LZC+16, PVR14,
Pon19, RK16, RH17, RT18, RJK+17, WCY+17, WTL8+09]. centralized
[Fis91]. Certain [JHS12]. Certified [Khu09, IIPB09]. CéU [SIR+17].
Chain [EMAL17, HJG18, RH17]. chain-based [RH17]. Chaining
[LLW+16, GMM+18]. Chains [JW17+18, KLLT18, NRS92]. Challenges
[AGF+17, JW17, Nie12, SG10b, AEB19, BCZ19, CM18, FJK17, LDDT12,
MA10, MA17, PCB+18, TNN09]. change [ZL13]. Changing [Mac79].
Channel [LGR14, TTH+19, MN03, WXW15]. Channels [Hu90].
Characteristics [SHW+15, CWC+14]. Characterization
[AMA+14, CGS06, DSo9a, IEE02, IEE03, ACM06c, RVJ+01]. characterize
[LJN+00]. Chatten [Joo06]. Cheat [Rul07]. checking [BHSB14].
checkpoint [BBHL08]. checkpoint/restart [BBHL08]. Checkpointing
[ECJ+16, PEL11, SGO12, TSLBY08, dSOK17]. checkpointing-enabled
Chips [FRG+08, IEE97, IEE99, IEE96a]. Choices [XDSL15, An093]. CICS
[R+13]. circuit [Bur02, KKC+16]. Class
[LCWB+11, LB88, Pat12, SS17, Won97]. classes [Bor07, Skr01]. classical
[SGS92]. Classification [VLL16, CWC+14]. classification-based
[CWC+14]. CleancaChe [TVW16]. CLI
[ECO01, ECM02, ECM05, ECM06, Int06b, Int06c, Int06a, Fra06, Fra09,
Hee07, Hog06, Hog08, Siv07, SNS03, Vog03, Wil06]. CLI-based [Vog03].
Client [RSW+06, DPW+09, HIIG16]. CLIP7 [Lau87]. Cloning [LCWB+11].
Closing [ZLHD15]. Cloud [ASSB18, BB13, BHEP14, CWL12, CPKL17, CFM17, CPS17, DSK+18, DWK15, FBL18, GLSW+17, HM17, HKLM17, JE12, JQWG15, JW17, KC16, KMM13, KAZS14, LCWB+11, LG14, LGJ+18, LW12, LS15, MSG14, Man15a, Man16, Man18, MJW+14, MPA+18, NS12, PCW+16, PXG+17, PS16, PCC+16, PG18, RSNK17, RSGG15, RXW+12, SL14, SJS+17, SC18, SZW+16, SV13, SXCL14, TB17, TVKB16, TMMVL12, WVT+17, WUNK17, WUK+18, WLS+18, WTM18, XSC13, XWJX15, XLL+14, XLJ16, YLN+17, YP15, ZQZC16, ZL16, ZCG+17, ZL18, ZWL+18, ZHL16, ZLW18, AGH+15b, AGH+15a, ADA+19, AB16, AO16, AMA+14, ATS16, AMAB17, ARMMA18, AP18, AEB19, AA18, BD11, BTMS10, Beg12, BCC+15, CL14, CSSS11, DC15, DEG+17, DQLW15, DCMW17, FLL+13, FPGK18, FMIF18, Fro13, GGQ+13, GTGB14, GDSA+17, GLK+12, GA18, HKS19, HTB19, IKU15, JES+15, JWH+15].

Cloud [KSO+15, KSRL10, KS18, KMT14, KTB17, KCS14, KJLY15, KCC15, LLW+12, LZWC13, LZWD15, LZE+16, LLF+18, LLWW18, LCL14, LL14, LTZ+14, LP11, LPBB+18, Man15b, MNA16, MW18, MA17, MMG+18, Nie12, NIA18, DOL12, OL13, PFPJ18, Pon19, RK16, RGAT18, RH17, RT18, RQD+17, RJK+17, Ros14, SG10, SGG13, SBP+17, Str13, TSK17, TMML14, VT14, WCY+17, WLL+13, WRSDM11, WRS+15, WXW15, XHL+13, XZZ+16, XTB17, YLH14, YLHJ14, YLCH17, YBZ+15, YRJ18, ZYZ+18, ZL13, ZWCH17, ZHHC17, ZWC+19, ZWH+17, ZLY+18, BB12, CD14, CFVP12, KKB14, KBB11, KM15. Cloud-assisted [ZYZ+18]. Cloud-Based [WLS+18, MPA+18]. cloud-computing [GSA+17, WLS+18, MPA+18].

Clouds [AD11, CRZH15, ESY+17, HKM+18, HKK13, KM16, KDB16, LWLL10, LLZ18, NMG15, OG16, OSK15, RG17, RB17, WZL15, WLLZ16, WHD+16, YYW+17, ZHW+17, ZRY15, BB15, DCCDF15, DXY+17, FBZ12, HZZ+14, KMK10, KR16, LMV12, LBZ+11, LWLL16, PPO14, SYMA17, XJWW15, ZG13, ZL13, ZLF+12, ZBS+15, EMS15]. Cloudsim [OB16].

[AC98, CDN02, Dom80b, Fra83, GFH82, GHF83a, GHF83b, RJK16, WNL+83, Ano15, DNR06, EL98, FC98, FCG+05, HK07, HLW+13, JM08, NG13, PV08, tTR82, UTO13, WKJ17, WGF11, Cox12]. code-copying [PV08]. Codesign [KAJW93]. CodeWeavers [Ano03b]. Coding [Hsu01].
cognitive [ZYZ+18, AAJD+16]. Coherence [YVCB17]. coherent [LKY+17, ZP14]. Cold [BZD17, BBTK+17, WGF11]. Collaborative [IEE06a, XWH+16, ZCG+17]. Collecting [DS16]. Collection [ADM98, Ano03b, BS90, HPHV17, SHB+03, URJ18, BOF17, DFF+16, PBAM17].
Collection-Oriented [BS90]. collections [BDT13, SV15, SV17]. Collector [GTS+15, WK08]. Collectoren [Sch13a]. collectors [Sch13a]. colocation [WTLS+09]. Colony [AAK18, AP18, GGQ+13]. Colorado [USE00b].
colocation [WTLS+09]. Colony [AAK18, AP18, GGQ+13]. Colorado [USE00b].
Combing [BPP+17, RSLAGCLB+16, YJZY12]. COMMA [ZNSL14]. Commandos [MC93]. Commodity [RTL+18, Ros99, ZTWM17, BK14, CGL+08a, CGL+08b, CGL+08c, CLDA07, TLBW12]. Common [CK87, Cro93, Int05a, Int05b, Int06a, ECM01, ECM02, ECM05, ECM06, Int06b, Int06c, Int06a, MRF04, PW03, RSF03]. communicating [SK13c].
Communication [CL17a, CK06b, CK06e, DJ77, GGM+16, HW15, Jen79, RLZ+16, YC98a, YC98b, BML+13, DSC+08, DJ76, GI12, Tho93].
Communications [NKK+06, CFVP12, HSC15, MN91]. communities [ACM04b]. community [AAB+05a]. compaction [WK08]. Comparative [LJL+15, Van98]. Comparing [Gal11]. Comparison [Do11, EDS+15, Ng01a, Ng01b, QNC07, AA06]. Compatible [ZFL+15].
Competition [CRZH15]. Competitive [BFG+14]. Compilation [ACM06b, Cla97, FM90, JK13, KS13]. Compiler [GHF82, Har77, FS89].
Compiling [BS90, BSUH87, Ode87, Wak99]. Complete [Bod10, Fis09, LJJ+00, RRB17, War02]. completion [MNT14]. Complex [KAZS14, Sig89]. Complexity [SS17, Bod88, FS08, GLK+12, Sub08].
Compliance [HC18]. Compliant [CF00, HWCH16, LDRS18]. Component [Ano03b, WML02]. components [HPHS04, IKU15]. Composable [JHE14].
computations [Kra90, NOR15]. Compute [GSW+17, KL13]. Computer [ACM81, ACM06d, Ano93, Arm78, BGS89, CCO+05, DM75, Hsu01, IEE85, IEE90a, IEE91, IEE05, Nel04, PBR+90, SS75, SIS1, Tur92, WR07, WR08, ZR06, Agr99, BR01, DG05, DTW07, FFB+00, GE85, GD08, Hog02, Jon85, Jua07, KWS0, LBP+07, MES87, MS01, Pou90, Ros06, Skr01, Spi06, SS72, Sus76, WO75, YYPA01, Yur02, Mon97, Osb01, War11]. Computers [BP99, BKMM87, BS90, KD78, MSS+15, HP77, SGGB99, SGGB00].
Computing
[ACM98, ACM04b, ACM05b, ACM06c, Abr80, BHEP14, CWL12, CPKL17, CMF17, DDS+94, DPCA11, Gei02, IEE96b, IEE04, IEE06a, KC16, KGZ+04, LCK11, LW12, MSG14, MO98, NSJ12, PCW+16, PXG+17, PS16, RCM+12, RSNK17, RSN+18, SCSL12, SZW+16, SEF+06, TLC06, USE93, Vog03, WB81, WTM18, XSC13, YLN+17, ZL16, ZZF06, ZAI+16, ADA+14, ARMM18, AEB19, BS96, CD14, CDM+10, DQR+13, DCMW17, Fis91, FF96, Fro13, Fu10, GGQ+13, GLA+08, HKS19, JPTE94, KHL17, KSO+15, LBZ+11, LLW+12, LCL14, LTZ+14, LP11, LPBB+18, MNA16, MCG72, MeK11, MUKX06, MA17, MG+18, NIA18, PSZ+07, QZDJ16, RGAT18, RQD+17, Rob06, SJW+13, SAGS13, SB10, TMLL14, WHO8, XTB17, YRN18, ZLC16, ZWHC17, ZLZ+19a, ZYLY18].

con [SMSB11].

concept [SIJPP11].

Concepts [PPTH72, ˚Agr99, Don88, MS01].

Concerns [VN08].

concolic [LLS+12].

Concurrency [MD12, CFS+12, Sub+11, UR15].

concurrency-safe [CFS+12].

Concurrent [GMP89, Har77, IT86, YWGH13].

Conditioned [WC01].

Conference [ACM81, ACM90, ACM96, ACM97, ACM00, ACM01b, ACM04b, ACM05d, ACM06a, ACM06b, ACM06f, Ano93, Ano99b, Ano01a, Ano02, Ano04a, Ano06a, BW03, DC15, IEE84b, IEE05, LCK11, Mar81, MS91b, MR91, Sof83, SS05, Shr89, USE99, USE00a, USE01a, USE01b, USE06, ACM05c, ACM06e, IEE06b, JPTE94, USE85, USE86, ACM00, IEE85].

Configurable [WJGA12].

Configuration [BRX13, Lar09, FL13b, SMA+10].

configurations [LDL+08].

configure [Car14].

Configuring [AL05, Rul07].

confirmation [OG16].

conflict [BLRC94].

Concurrency [CL16b, YLN+17, ZWC+14].

Congestion-Aware [YLN+17].

Congress [GHH+93].

conjugate [MM92].

Connected [SMES01, MS00].

connection [MJ93, Tur84, TR88].

connections [FBZS12].

connectivity [TZB19, VOS12].

conservation [RK16, TDG+18].

Conserving [DP11].

Consider [SC18].

considerations [G+05].

Considered [NMHS15, WC01].

considering [LTZ+14].

consistency [FRM+15].

Consistent [DJS+17].

Consolidated [HC17, HPP15, JJK+11, KKJL14, OL13, SS13, ZLL+16].

Consolidation [AAK18, BB13, IVM16, PZW+07, SBK15, AGH+15b, ATS16, AMAB17, AP18, BB12, BB15, CD14, Fro13, HMM17, HZZ+14, gKEY13, KCV11, KR16, LZZ+16, LLL16, LYY17, LYY18, LLW18, LL14, LDĐT12, Man15b, NTH+17, RT18, R+02, SEN16, SSN12, WCC+16a, YRJ18, ZLC18].

consolidation-aware [WCC+16a].

constituent [RHR02].

Constrained [EGR15, LTE12].

Constraint [LFBB94, DLW15, LYY18].

constraint-based [LYY18].

Constraints [BB13, KKS12, SZ13].

Constructing [DM93].

Consumption [DSM14, HKM+18, MV16, FFB+00, DPBK16, RJK16, THG+18, VED07].

Container [SFP+07, YLN+17, ZLW18, GKP+19, MG19, SG10a, Str13].

Container-Based [YLN+17, SFP+07].

Containerization [HSL17].

Containerized [HSL17].

containers [Ros14].

Containment [CLW+14].
DADTA [ZLCZ18]. DAI [AKK+07]. damn [B+07]. Dana [Ano10].
Dartmouth-Smalltalk [Lee86]. Data [BFHW75, BB13, CL17a, CGC16, DY17, EGR15, FL13a, GTS+15, IEE84b, KP15, LMM18, LVM16, Man15a, Man16, Ne04, PCC+16, SB16, UVL+13, WN17, We94, WT18, XWWX15, YLH17, ZHL16, dSdF16, AKK+07, AGH+15b, AGH+15a, ATS16, AMAB17, ARMA18, BK14, BB12, BDE+03, BOF17, CKRJ17, CFS+12, Cla05, DCM+17, FL+13, GE85, GH91a, HN08, HTB19, HUWH14, IKU15, KTB17, KJL+16, KSLA08, KB17, LDDL14, LWZ+15, LGC+16, LRP+19, Man15b, MR06, MBM09, NTH+17, PVRR14, PRB07, Pon19, RK16, RH17, RT18, RJK+17, She91, TSLBYF08, VOS12, WKJ17, WDC08, WZV+13, WCY+17, Wol99, WTLS+09, WCG14, XXZ13, YPLZ17, ZLZ+19b, ZWH+17].
data-flow [GE85].
data-parallel [She91].
Database [WK90, BBS06, CSSS11, ECAE13, MN91, MRC+13, PTM+15, SI81, SMA+10].
databases [GDSA+17].
Datapath [PTM+15, SI81, SMA+10].
Databases [GDSA+17].
Datacenter [BBM+15, KGGS17, BCP+08, GTGB14, MSG+12, SG10b, ZLZ15, ZWC+14].
datacenter-scale [MSG+12].
Datacenters [JWL+18, KL14, LGJ+18, SC17, SC18, GLLJ16, LPBB+18, WRS13].
Dataflow [HT98].
Datapath [TSP17].
Dataplane [BPP+17].
DBT [KS13].
DCN [CYX+17].
DDG [PGLG12].
DDG-based [PGLG12].
DDGacc [PGLG12].
de-duplication [CLcC13].
defacto [Rus08].
def oft [SK13a].
deadline [DQLW15, HKS19].
deadline-aware [HKS19].
deadlocks [PRB07].
Death [NOT+17].
Debian [CK06a, CK06b, CK06q, Bau06a, CK06a, CK06b].
Debues [Ano03b].
Debugger [MZG14, RB01, Sun99, But94, HH05].
Debugging [ACM05a, FS12, HHK94, IEE05, M+06].
December [ACM05b, HKH04, IEE05, M+06].
Decision [CHW12, DJ77, SC17, DJ76].
Decisions [HKKW13].
Declarative [CRG16, Dan86].
Decomposition [JK15].
dedicated [GLV99, KOY05].
Deduplication [Li14, MJW+14, PP16, CW+14, GMK17, HOKO14, XZZ+16].
Deduplication-Based [MJW+14].
deep [GKT17, HcC14].
defending [CVWL13].
Defensive [BDJdS02, Coh97].
Defined [AFG+17, CL17a, CPKL17, JN15, LLW+16, ZKWH17, ALW15, HHS18, LJR12, LWL16].
Defining [DL89, Hir17, Lot91, BMWB86].
Definition [Dom80b, SSB14b, SMO84, EMS15, SSB01].
Definitive [Oak14, Chio8].
Defragmenting [SGV13].
Degree [KMM13].
DejaView [LB+07].
Delay [RSNK17, RKKR17, WCY+17, ZRS+16, LCL14].
Delay-cost [WCY+17].
delay-sensitive [LCL14].
Delivery [FLZ17, TFeLeC15].
delta [SHTE11].
Demand [CWL12, KKJ+13, MSS+15, SC18, SEF+06, ZZF06, DEG+17, J+05, JCCZ13, LWZ+15, SGV13].
Demand-based [KKJ+13, SVG13].
Denelcor [Dum86].
denotational [Arv02].
Denver [USE00b].
Deoptimization [KRCH14].
Dependability [FP14, VW08].
Dependable [DPCA11, SJW+13].
dependences [BKC+13].
Dependent [BP99].
deployed [RY10].
Deploying [KLLT18, R+13].
deployment

Einsatz [Zim05]. Elmau [IEE01]. Einsatzzonen [Zim06]. Einsatzszenarien [Sch13a].

[Req03]. Enterprise
[ADG+92, FPR+06, G+06, LVM16, Hal08, NS07, WH05, Ano03a, Gal11]. enthüllt [Joo06]. ENTEC [GKP+19]. Entrepreneur [War11]. Entropia [CCWY05]. Entropy [TVO92]. Entropy-Driven [TVO92]. enumeration [SSH17]. Environment
[BGM70, CL16b, GIK+99, HW93, IEE06a, J+05, JADAD06a, LWC+17, LW12, Mac79, RT93, TMV12, XSC13, AAB+05b, BH13, CLDA07, CWG00, Don87, GD08, GMR93, Hal09, HL13, JWH+15, JXZ+10, JADAD06b, KW13, KMG+18, LJJY15, McG72, MST+05, MW18, MPF+06, RGAT18, TMLL14, TT93, Van06, WLL+13, XZZ+16, ZBP05, ZLLL13].

Environments [ACM05d, ACM06f, CWL12, GKXK13, HHW10, HKKW13, KKH14, KGZ+04, NKY+05, J05, JADAD06a, LWC+17, LW12, Mac79, RT93, TMV12, XSC13, AAB+05b, BH13, CLDA07, CWG00, Don87, GD08, GMR93, Hal09, HL13, JWH+15, JXZ+10, JADAD06b, KW13, KMG+18, LJJY15, McG72, MST+05, MW18, MPF+06, RGAT18, TMLL14, TT93, Van06, WLL+13, XZZ+16, ZBP05, ZLLL13]. Equivalent [TLX17]. Erlang [TCP+17]. Error [XH16, XHL+13]. Ersatz [Hin08]. erstellen [Zim06]. Erstellung [See08a]. ESA [Fis91, GH91a, IBM94, MSS91, OJG91, SNC91]. ESA/390 [OJG91]. ESA/XC [GH91a]. EServer [R+02, G+05]. ESPRIT [RD90]. Essentials [SNS03, MBM09, VSC+10]. Estimation
[DSM14, HSK17, KSSG16, NKY+18, OBSR16, LBL16, MPA+18, WDT18]. ESX [AAH+03, D+04, MWHH05, OH05, R+02, Zim05, Hal08, MBM09, Wal02]. ESXi [GKBB15]. ET6 [Pul91]. ET6/1 [Pul91]. Etherenum [Hir17]. Eucalyptus [AMA+14]. European [ACM04a]. EUROTARA [Pul91]. Evaluating [De 06, GLK+12, HW93, RCM+12]. Evaluation [AD11, CFH+79, CFH+80, DAH+12, HB12, KD78, MG19, PZW+07, SJA+17, SHB+03, SHTE11, TFFtLC15, VMBM12, ACM06c, ALW15, DSSP06, FSH+13, GE85, HTB19, Kao17, MCC18, Man18, VW08, WKT08, WWH+17, YZW+13, Hin08]. evaluations [SJW+13]. Event [DLX+17, MV16, YP15]. Event-driven [DLX+17], events [LC13].

everywhere [Tre05]. Eviction [AGJS16]. Evil [HCJ07]. Evolution
[ACM05d, ACM06f, HWB03, KGZ+04, LWC+17, MM93, MO98, PY93, RT93, SV13, vLSM01, AS76, AAB+05b, BFC02, BDK+08, CLDA07, Fre05, GCARPC+01, GK05, MMP+12, OJG91, SM01, TT93, ZL13]. Execution-Driven [PY93]. executions [KM13]. Exercise [Lee86]. existential [AT16]. Existing [JMSLM92, LTT92]. exit [HLV+13]. exitless [AGH+16]. exokernel [Co099]. Expansion [Par79]. Experience
[San88, RM03, CARB10, CBLFD12, PBAM17, RSC+15, TGCFO8].
Experiences [NV05, SCD90, Tsa14, CMP+07]. Experimental
[Bro89, ACM06c, FSH+13, HL13, SS72]. Experimenting [Taf11].

experiments [Ker88]. Expert [Hee07]. ExpEther [NMS+14]. Explaining
[YYL+15]. Explicit [WUK+18]. Exploitation [SSMGD10]. Exploiting
[CRZH15, EdPG+10, GLS15, MPA+18, SJS+17, YTS14, WTLS+09].

explorative [AHK+15]. explore [Fit14]. Exploring
[SE12, SlLB15, YBZ+15]. Expo [Ano06a]. Express [Ng01a, Ng01b].

Expression [Cox07, Cox09, Cox10, Wat86, Wat87, Tho68]. Expressions
[KP99]. Extended [DC15, Gum83, MT16, MT17, IBM88]. Extending
[CT03, DLM+06, PTHH14, YTY00]. Extensible
[FLCB10, TSP17, DCA04, MT16, MT17, YTS14, WTLS+09].

extension [DCP+12]. Extraction [WML02]. ExtraV
[LKY+17]. ExtraVirt [LRC05]. extreme
[NOR15]. EXUS [SKC73]. eye [Guy14].

FACADE [GLV99]. FACILE [GMP89]. Facilitating [cCWS14, SwcCM12].
Facilities [Gum83, GH91a, MN91]. Facility [MLA83, SM90, S88]. facto
[Rus08]. Factor [SC18]. Fad [Fra98]. Failure [Fu10, MSI+12, ZWH+17].

Failure-aware [Fu10, ZWH+17]. Failures [YYL+15, PBYH+08]. Fair
[CL15, GLLJ16, HSN17a, TTH+19, RZ14]. FairGV [HSN17a]. Fairness
[SKJ+17]. Falle [Mar08]. familiarized [Ame13]. Farms [Do11]. Fast
[CSS+13, CLW+14, Cox07, CHPY17, Hol95, HSN17a, Kon11, NOT+17, PEL11,
ZLW+14, ZFY18, ZLZ+19b, KMMV14, KLYL15, MSZ09, SK13b, SV15].

Fast-Spreading [CLW+14]. FastDesk [SWW+18]. FAST [D+04]. Fault
[FK03, JKJ+10, Kim84, RZPX19, YWR+14, YYL+15, ZJXL11, NV10,
YH+14]. Fault-Tolerant [FK03, Kim84, YWR+14, SNV10]. faults [LRC05].

FCP [SAB+07]. Fe [ACM00]. feather [YGN+06]. feather-weight
[YGN+06]. feature [Bag76]. Features [Gal11, Bau06b, Bau06a, IT86].

featuring [Wil06]. February [Ano10, USE01b]. federated
[AO16, CFVP12, dccDF4O15, KMG+18]. federation [LWLL16]. Fedora
[HH08]. feedback [GNS13, ZBG+05]. feedback-control [ZBG+05].
feedback-directed [NG13]. FGP [FG91]. FHPCN
[M+06]. Fiber
[GDSA+17]. Fiber-based [GDSA+17]. Fidelity [KKT+17]. Field
[BBM+15, KNT02]. Fifth [ACM75, IIE96b, USE99, IEE04]. File
[AEMWC+12, AvMT11, Li14, SNC91, ZFF06, FFBG08, HC12, Int06c,
JXZ+10, SBQZ14, Vag10, WH08, WF07]. files [LLF+18]. filesystem
[ZY+18]. filling [HUWH+14]. film [SL00]. filtering [MG19]. final [Fu91].

find [Fab13]. finding [Bod88]. Fine [BSSS14, CHW12, CDD13, HSK17,
JZZ13, PG11, RB17, YSS+17, KWZ+19, WJGA12, YTS14]. fine-grain
[WJGA12]. Fine-Grained [BSSS14, CHW12, CDD13, HSK17, RB17,
YSS+17, JZZ13, PG11, KWZ+19, YTS14]. Finite [SC17]. Finite-Markov
[SC17]. Firefly [KC16]. Firefox [Joo06]. Firewall [TMV12, JES+15].

firmware [ABB+15, MSCK92]. First
[ACM05d, IEE84b, LCWB+11, MNS+14, ZR06, SS17, SHB+03]. First-Class
Fit [NKY +18, LWB13]. Fixed [Lam75, Bod88]. Flash [SYC14, Pat12].
Flash-based [SYC14]. flaws [Ano07]. flex [Kag09].

Flexibilities [LS15]. Flexibility [BSI +15, FPS +02]. Flexible [AvMT11,
KWZ +19, LZW +17, LWB13, vMAT14, CARB10, CCL +17, TGC08]. Flow
[WJ10, BK14, BKH +06, FLL +13, GE85, RJK +17, YKS16]. Flows [CDD13].
fly [URJ18]. folding [CPST14, Oi06]. Forecast [CWL12, TMLL14].
Forecasting [PCW +16, KSSG16]. Forensics [HN08, ZXY +15].

Foreshadow [VMW +19]. Formal [BDJdS02, BN75, CH78, Dom80b, JE12, Jen79, MP01, PG73, PG74, Qia99].

Formalism [UOKT84, Pul91]. Formalizing [HM01]. formation [HLW +13].

FORSETI [CSV15]. FORTH [Mar81, Kna93, Ode87]. FORTRAN [IBM88, Int88].

Forum [CS76, DM76, Fra83, GHH83, GE85, RJK +17, YKS16]. Flows [CDD13].

fly [URJ18]. folding [CPST14, Oi06]. Forecast [CWL12, TMLL14].
Forecasting [PCW +16, KSSG16]. Forensics [HN08, ZXY +15].

Foreshadow [VMW +19]. Formal [BDJdS02, BN75, CH78, Dom80b, JE12, Jen79, MP01, PG73, PG74, Qia99].

H [JAS+15, Wel02]. H-SVM [JAS+15]. HA-VMSI [ZTWM17]. hacking [Spi06]. Hadoop [GLBJ18, ZRD+15]. Handbook [Bod10, Fis09, NSHW10, War05, Joo09]. Handbuch
[Joo06, WF03, Bod10, Fis09, Joo09]. \textit{handler} [Sal92]. \textit{handles}
[Ven97b, Ven97c]. \textit{Handling} [SB16]. \textit{hands} [MDD+08]. \textit{hands-on}
[MDD+08]. \textit{Harbour} [MR91]. \textit{hard} [LTK17]. \textit{Hardware}
[AE01, CWS12, Cla97, HHV+02, HWF07, Hsu01, JSHM15, JAS+15,
KAJW93, LH16, LZW+17, Mac79, NSL+06, OT97, PvdS08, RTL+18,
SYB12, SWF16, WCS06, YVCB17, ZTW17, vD06, AA06, AJH12, AEB19,
BHDS09, CBGM12, FP14, HH13, HP77, KW13, KJM+07, Oi05, Oi06, Oi08,
PGLG12, PBB13, RPE12, SE12, TO96, WZW+11, XZ11, YJZY12, ZDK+19].
\textbf{Hardware-Assisted} [JSHM15, JAS+15, RTL+18, AJH12].
\textbf{Hardware-Based} [PvdS08, KJM+07].
\textbf{Hardware/Software} [KAJW93, LH16, HH13, HP77, WZW+11].
\textbf{Harmful} [NMHS15, WC01].
\textbf{HARNESS} [BDF+99, GIK+99, MDGS98].
\textbf{harnessing} [GLV+10].
\textbf{hash} [SV15].
\textbf{hash-array} [SV15].
\textbf{Hawaii} [MS91b, Shr89].
\textbf{Hbench} [ZS01].
\textbf{header} [VED07].
\textbf{Healing} [BHI15, GK05].
\textbf{Health} [ZL16, ZL18].
\textbf{heap} [CSV15, CH08, LDL14, LLS+08, TLX17, WSAJ13].
\textbf{hedging} [RY10].
\textbf{Helix} [Ano03a].
\textbf{help} [Car14, Men03].
\textbf{HEP} [Dun86].
\textbf{herd} [KS18].
\textbf{Heterogeneity} [GLS15, KR16, XLJ16, WCS09].
\textbf{Heterogeneous} [GIK+99, HSK17, HWCH16, KGS17, LMM18,
LLZ18, OVI+12, RG17, YLH17, ZAI+16, Bac11, CDM+10, CRKJ17,
DCMW17, GTGB14, GCARPC+01, KHL17, KKB14, LZW+15, NRS92,
PMCO5, SWC08, ZLLL13].
\textbf{HeteroOS} [KGS17].
\textbf{HeteroVisor} [GLS15].
\textbf{Heuristic} [BL17, XH90, CD14, KMT14].
\textbf{Heuristics} [ARMMA18, ATS16, BB12, KR16, Man15b].
\textbf{HI} [Shr89].
\textbf{HICAMP} [CF5+12].
\textbf{hidden} [CWdO+06, WQG15].
\textbf{Hiding} [CLS07].
\textbf{Hierarchical} [ABB19a, DM75, YWF09].
\textbf{Hierarchy} [SBK15].
\textbf{High} [ACM98, ACM04b, AMA18, Bad82, BPP+17, CW03, DMS02,
DYL+12, Han16, Hog02, IEE96b, IEE06a, KCWH14, KKT17, KMM13,
LCK11, LMG01, LRP+19, LZZ12, LHAP06, MLG+02, RCM+12, RB01,
SD01, SCSL12, SV13, SYC14, URJ18, Vogo3, WQG15, WCC16b,
YWCF15, dGG+17, AAF+09, Ano96, BML+13, DQR+13, EMS15, FF96,
Fu10, G+01, GTN+06, GBCW00, LBZ+11, LLE17, LM99, LMG00,
LDL+08, MUKX06, M+06, MR+13, MMG+18, RQD+17, SB10, SPF+07,
WXW15, WHO+17, ZYZ+18].
\textbf{High-Assurance} [LJZ12].
\textbf{high-availability} [Fu10, LDL+08].
\textbf{high-bandwidth} [WXW15].
\textbf{High-Endurance} [AMA18].
\textbf{High-Fidelity} [KKTM17].
\textbf{High-Level} [DMS02, RB01].
\textbf{High-Performance} [ACM98, IEE06a, KCWH14, LMG01, SD01, SCSL12,
URJ18, WCC16b, dGG+17, Han16, Hog02, SYC14, LLE17, LM99,
LMG00, MUKX06, SPF+07, WHO+17, ZYZ+18].
\textbf{high-performing} [GBCW00].
\textbf{High-speed} [LRP+19].
\textbf{Higher} [BW03].
\textbf{Highly} [KD78, ZFL15, CARB10, CGM17, GI12, GVI13, TGCF08].
\textbf{Hilton} [IEE90b].
\textbf{HipHop} [AEM+14].
\textbf{histograms} [CL14].
\textbf{History} [SKJ+17].
\textbf{History-Based} [SKJ+17].
\textbf{HITAC} [KAH83].
\textbf{HIVE} [Tay76].
\textbf{HLA} [LCT+15].
\textbf{HLA-Based} [LCT+15].
\textbf{hold} [Yur02].
\textbf{Holders} [War11].
[ACM04b, ACM05c, ACM06a, IEE90a, IEE91, IEE02, IEE03, IEE04].
Instruction [Oi06, HW15]. instructional [DSSP06, DTW07, WO75].

integrierten [Deo08]. Integrity [GMP89, Ame13].

integrierten [Deo08]. Integrity [GMP89, Ame13].

Interconnect [RCM12, SKJ17]. interdependencies [LBF12]. Interface [Cro93, SH04, Sun95a, Guz01, HP77, VL00]. Interfaces [Mac79, PST15, WML02]. Interfacing [MC93]. Interference [NH08, XLI14, XJ16, ZRD15, HL13, gKEY13, SS13, VVB13].

Interference-Aware [XLI14, XJ16]. Interferences [ZRZY15].

Intersession [HMS17], Internet [Ano03a, CK06a, CK06b, CK06c, CK06d, CK06f]. Internetprogramme [CK06b, CK06a, CK06d, CK06f]. Internship [HMS17].

Interoperability: GSS+18, Men03. interoperable [KKB14]. interposed [ZSR05]. Interpreter [MS18, SMK02, Ber86, KMMV14]. interpreter/graphic [Ber86].

Interpreters [EG01, CEG07, EGK02, EG03, Ert05, KKC+16, ZLB14, Ert03]. Interpretation [Han05]. Interpretive [AS76, OJG91].

interpretive-execution [OJG91]. Interrupt [CL16a, TFtLcC15, AA18]. interrupts [AGH+16]. Intranet [Ano03a]. Intrinsics [PSBG11a, PSBG11b].

introduce [MS01]. Introduction [A+04, CK06a, CK06b, CK06c, DFD05, KS08b, Sch94b, Sch94a, Wüm13].

introductory [BR01, Don88]. Introspection [CCML12, CLeC13, DGLZ+11, FL13a, NBH08, Pfo13, SIdLB15, WWMG06, FL13b, HN08, HcC14].

Introspection-based [CLeC13]. intrusion [AMA+11, LJM07, MA17].
intrusions [JKDC05]. intrusive [ZXY+15]. Invariants [PEC+14]. invited [Piz17]. invocation [Ven97c]. IOMMU [YWCF15]. IoT
[ABB+19b, MPA+18, PFPJ18, ZYZ+18]. IOV
[DYL+12, DCP+12, HB12, XD16, XD17, YWCF15]. IP
[AM16, CF00, HWWH18, NTR18]. Iron [Ano05]. IronGrid [Ano03b]. irregular [AC16]. ISA [CWH+14, DZ02, WLW+15, WCC16b]. Ischia
[ACM06e]. ISCOPE [ACM01b]. ISDF [M+06]. ISDN [KGG00]. ISO
[Int05a, Int05b, Int06b, Int06c, Int06a]. ISO/IEC
[Int05a, Int05b, Int06b, Int06c, Int06a]. Isolated [Jen79]. Isolation
[WZL15, ZTM17, Cza00, GNDB16, MD73]. ISPA [M+06]. ISPAN
[HHK94]. ISTA [Ost94]. Issue [KM13, TZB19, Yur02]. Issues
[AFG+17, AD11, KS08a, PZH13, SEF+06, Tur84, AGH+15a, AEB19, BB08, PBB13]. Italy
[BW03, M+06, ACM06e]. Itanium [Ano06a]. Itanium-based
[Ano06a]. iterators [ZLBF14]. IV [Int06c]. IVME [Ert03]. IX
[BPP+17, IEE97].

[ABB+00]. January [ACM99, IEE93a, Shr89, USE01b]. Japan [HHK94].
Java [ACM98, ACM01b, Ano00, Ano01a, Ano01b, Ano02, Ano03a, Sch13a, USE01c, USE01d, USE02, Wol99, ADM98, Ame13, AT16, Ano97b, Ano97c, Ano97d, Ano03b, AFT01, ABC+07, AC98, ANH00, BDF+98, BHDS09, BD01, BP01, BP03, Bri98, BZD17, Caa00, CW03, CT03, CH08, Cla97, Coh97, CDG97, Cza98, Cza00, Dalxx, Da97, DHPW01, DEK+03, DS09a, DBC+00, DCA04, DLS+01, EGD03, Eng99, EL98, Eug06, FFB+00, Fra98, FK03, G+01, GGG03, GCARP+C01, GPW03, GBCW00, HT98, Han05, HM01, HOKO14, HWB03, HB08, Ivo03, JR02, JU02, Juo07, Kal97, KS13, LM99, LGM00, LB98, LV99, LYY97a, LYY7b, LYY99, LYYxa, LYYxb, LYYB13a, LYYB13b, LYYB14, LTK17, MSG01, MO98, Men03, MD97, MDxx, MLG+02, MB98, Mon97, MP01, NG13, OT97, Oak14, Oi05, Oi06]. Java
[Oi08, PTHH14, PRB07, PV06, Qia99, RVJ+01, RR02, Ran02, R+13, Rec03, SMK02, SSB+14a, SD01, SE12, SH04, Sch13a, SSMDG10, Set13, SMSB11, SSB03, Shi03, SM01, SGV12, Siv04, Smi97, SSB01, SSB14b, SHB+03, Sun95b, Sun95a, SUN97, JCV99, Sun99, STS+13, SM02, Sur01, Tai98, TO96, UBF+98, UR15, Van98, Ven97a, Van97b, Ven97c, Ven97d, Ven99a, Ven99b, VED06, VED07, VL00, WL96, WGF11, Wak99, WH99, Wes98, Wol99, Won97, WWMG06, YC98a, YC98b, YME05, YMK17, Yel99, YTY00, ZP14, ZS01, vLSM01, Ano97a]. Java-based
[Ano96, FF06, HOKO14, KS13, YC98b]. Java/CORBA [GCARP+C01].
JavaCard [BDJs02]. JavaScript [AHK+15, CBLFD12, VP16].
JavaScriptCore [Piz17]. JavaScript [LMG01, SMES01, CF00, RB01, vD00].
Javy [GGG03]. JCloudScale [ZLHD15]. JDMM [ZP14]. JET [MLG+02].
JetBrains [Ano03a]. JST [BHvR05]. JIT [JK13, PFH+16, WKJ17]. JIT-based [PFH+16]. JItS
Joint [NTH+17, RJK+17, WZV+13]. Jointly [LWL16]. Jon [Ano97a]. Jose
[WKG17]. JPR [WKG17]. jRapture [SCFP00]. JS [AHK+15]. judgment
[CSV15]. July [IEE06b, Sof83]. June [ACM90, ACM01a, ACM01b, ACM05d,
ACM06f, IEE85, USE85, USE86, USE01a, USE06]. JVM
[Ano00, Ano01a, Ano01b, USE01c, USE01d, USE02, AC16, CSS+16,
DBC+00, Guy14, R+13, RRB17, SV15, Sub08, Sub11, Ven99b, WKG17].
JVMPi [Sun95a]. JVMs [BK14].

K. [Sch94a]. Kailua [Shr89]. Kailua-Kona [Shr89]. Kaleidoscope
[LFB94]. Kanazawa [HHK94]. Kanotix
[CK06c, CK06h, CK06l, CK06r, CK06h]. Karlsruhe [RM03]. KDE
[KKG00]. Keeping [NP13]. Kernel [FL13a, HD16, JJ91, KZB+90, SM90,
SYB12, TY14, WLM16, LWM14, Uhl07, VMBM12, KM13]. Kernel-based
[TY14, KM13]. Kernelized [WCC16b]. kernels [HPHS04, RMB02]. Key
[TF16, DPW+09]. Key-Value [TF16]. Kinder
[CK06q, CK06t, CK06r, CK06s]. Kingdom [Vra05]. kit [Car06, LC09b].

Knob [WUK+18, BR01]. Knoppix
[CK06d, CK06i, CK06m, CK06s, Deu08, CK06i]. knot [LBF12]. Knowledge
[FG91, IT86]. Kochbuch [PO09]. kompletten [Mar08]. Kona [Shr89].
Konfiguration [Bor01, Lar09, WF03, Zim06]. konfigurieren [RHM08].
Konsolidierung [See08a]. Konzept [Dal97]. Konzepte [Tho08].
Konzeption [Zim06]. krill [KS18]. KScalar [MRL02]. Kubuntu
[CK06e, CK06j, CK06n, CK06r, CK06e, CK06j]. Kuck [War11].
Kundenserversystemen [See08a]. KVM
[Deu08, Hin08, DN14, GLC84, HWCH16, LZL+15]. KVM-based [HWCH16].
KVM/370 [GLC84]. KVM/ARM [DN14].

L [Lot91]. lab [AL05, HMS04]. laboratories [DTW07]. Laboratory
[Kim84, SVN+10]. Labs [See08b]. Lagrangian [GR15]. Lagrangian-based
[GR15]. Lake [ACM03b]. Lambda [Wat86, Wat87]. land [Tsa14]. Landing
[ACM03b]. Language
[CDM+10, ECM01, ECM02, ECM05, ECM06, GSS+18, Hog08, Int05a,
Int05b, Int06b, Int06c, Int06a, Kam83, Luc97, MR04, PW03, PFH+16,
RSF03, SIR+17, SVB93, SUN97, WIDP12, Arv02, Ber86, BD01, BMER14,
DH01, Don88, GLV99, Hog06, IT86, Juo07, KRCH14, Les74, MD12, MC93,
PRB07, RJK16, RSW91, SKC73, SM084, Taf11, Tai98, WCG14, WWH+17].
Language-independent [PFH+16]. language-level [WCG14]. Languages
[BS90, Dan86, KP99, LFB94, PTHH14, SSG90, Tol98, YKM17, ACM99,
BDT13, Jou85, PMC05, PUL016, Sus76, TB14, Wel02, Wu13, YWF09].

LARD [WCG14]. Large
[DK93, GKB15, PHL+12, RGSJ17, SL89, XDL15, ZSZ07, ZLW+14,
BLRC94, DK75, FPGK18, LPD+11, Nie12, Req03, SZ13, SHTE11, YZSC17].
Large-Scale [PHL+12, SL89, XDL15, ZLW+14, SZ13, YZSC17]. Latency
Later\footnote{FS12}. [PSC+07]. LayerMover\footnote{ZYF18}. Lazy\footnote{Wak99}. LDA\footnote{YZSC17}. Leadfoot\footnote{HHPV15}. Lean\footnote{SV15, Ven96}. Learning\footnote{BRX13, AD18, KRG12, RGAT18, RT18}. Legacy\footnote{LU04}. LegoSim\footnote{RMB02}. Lern\footnote{CK06q, CK06t, CK06r, CK06s}. Lern\footnote{CK06q, CK06t, CK06m, CK06n, CK06o}. Lernprogramm\footnote{CK06k, CK06m, CK06l, CK06n, CK06o}. Lernprogrammen\footnote{CK06k, CK06m, CK06l, CK06n, CK06o}. Lessons\footnote{RM03, LJJ212, Rob06, URJ18, HMS04}. Leuven\footnote{ACM04a}. Level\footnote{AC16, cCWS14, Chu06, DMS02, KHW16, NTR18, RB01, SV13, ZSR05, ZQCZ16, AD18, AL05, BSM12, But94, Cia07, EGD03, FLCB10, IM75, JHE14, LZW17, SVN10, SWcCM12, SSG90, WF07, WCG14, ZLZ13}. Leveraging\footnote{LLF18, LDL08, Pfo13, RTL18, WHD09, ZL13, AD18, AL05, BSM12, But94, Cia07, EGD03, FLCB10, IM75, JHE14, LZW17, SVN10, SWcCM12, SSG90, WF07, WCG14, ZLZ13}. Libraries\footnote{DK93, Int05b, Won97}. Library\footnote{Cro93, SJS+17, PBWH12}. libvirt\footnote{Ano14c}. Life\footnote{ZRO06}. Lifetime\footnote{WWL17, HB08}. Light-Weight\footnote{WWL17, HB08}. Lightweight\footnote{ABV12, CXLX15, Ran09, AL05, BSM12, But94, Cia07, EGD03, FLCB10, IM75, JHE14, LZW17, SVN10, SWcCM12, SSG90, WF07, WCG14, ZLZ13}. Like\footnote{Abr80, SSOT17}. LILA\footnote{Dan86}. Limbo\footnote{Luc97}. limited\footnote{CH08}. Limits\footnote{WBB16, vKF13}. line\footnote{SV17}. linguistic\footnote{UR15}. Link\footnote{LLT18, CRB12, JK15}. linked\footnote{FC98}. linking\footnote{FC98}. LINUX\footnote{KGG00, Ano06a, CK06a, CK06b, CK06j, CK06l, CK06m, CK06n, CK06o, CK06p, G+06, Mar08, USE00a, WF03, ABB19a, Bau05, Bau06c, BBH10, Ble10, Bor01, CK06a, CK06b, Com00, Com03, DN14, Dav04, Fab13, G+06, GND16, MZG14, NSH10, NV05, P+08, Ros14, Spr06, Spr07, VBM12, Win13}. Linux-based\footnote{ABB19a}. Linux-Server\footnote{Mar08}. Linux/OSS\footnote{Ble10}. Liquid\footnote{Li14}. LISP\footnote{ACM90, CK87}. List\footnote{TT96}. List-based\footnote{TT96}. LITT\footnote{Lam75}. little\footnote{Men03, YYPA01}. Live\footnote{CCZ+06, Deu08, DK17, ECJ+16, JWD+14, KKL16, LZW+15, LYL+11, SHW+15, SKI+17, XLL+14, XD16, XD17, ZRS+16, ZDLG17, ZXY+15, AS14, BAC15, BB08, FGL15, HIL+10, HTB19, HDG09, JKK+13, JGW+11, JGSE13, NIA+18, PDC+12, SSL+13, SLA+16, SHTE11, TDG+06, WRSvM11, WRS+15, ZLL13}. Live-Distribution\footnote{Deu08}. live-migration\footnote{JDK+13}. lively\footnote{STFH15}. Liveness\footnote{ADM98, LDL14}. LLC\footnote{KKH14}. LLVM\footnote{LH13}. Load\footnote{CL16a, DY17, KAZS14, LW12, LYS18, YWR+14, Bir94, TF16, XH90, XTB17}. Load-balancing\footnote{KAZS14}. Loading\footnote{LB98, HSC15, WGF11}. Loads\footnote{LTF12}. Local\footnote{ADM98, Oi08, PCR89, HJ10, KMT14, Oi05}. Locality\footnote{HSC15, ZS88}. Localization\footnote{YYL15}. Location\footnote{USE93, OG16}. Location-Independent\footnote{USE93}. Locator\footnote{SJIP11}. lock\footnote{YTS14}. Logic\footnote{DMS02, FD08, GH91b, UOKT84, Alf91, Bur02}. Logic-Based\footnote{FD08}. Logical\footnote{RT93, Lia05, TT93}. Logically\footnote{Jen79}. Logics\footnote{BW03}. Logisim
A page from a document containing a list of terms and references, along with some natural text. The page includes terms like logistics, Look, Long-Distance, Lookaside, Lookup, Louis, MAC, Machine, and M-series. The text is a collection of references and terms related to computing and information technology, with examples such as Lookaside, Long-Distance, Lookups, and Losses. The page also mentions terms like LogP, Long, Longest, Long-Distance, Long-running, and Longest, among others. The text is dense and technical, typical of a document on computer science or information technology.
IBM94, IBM96, IKU15, JKK+13, JNR12, JGW+11, JADAD06b, Ka97, KOY05, KS13, KSO+15, KS18, KTB17, gKEY13, KCS14, KJLY15, KCKC15, KKC+16, KMG+18, KFF12, Kou11, KCV11, KRG+12, Lam75, LBZ+11, Les74, LC02, LM99, LZWD15, LBL16, LWLL16, LYYY18, LLWW18.

machine [Lia05, LL14, LPBB+18, Lot91, LG93, MSG+12, MD73, MD74, MSG01, DPBK16, MS17, Man18, MNA16, MS00, McG72, MC93, MN91, MSA+05, MW18, MAK07, MJ93, NOK+85, NIA18, OG16, Oi08, ORPS09, PEL11, PPFJ18, PCB+18, PiZ+17, Pon19, Ful91, Raj79, RZ14, Req03, RFBL001, RY10, RJK+17, Sch13b, SSMDG10, SMLJ13, She91, SCEG08, SASG13, SL00, Sig89, SGBB99, SGGB00, SKC73, Smi97, SYMA17, SMA+10, SFB+17, SSU+12, TSLBYF08, TMLL14, Tay76, tTR82, THG+18, TIIN09, TB14, TT93, Tur84, Vag10, Van98, Ven97b, Ven97c, Ven97d, Ven99b, VVB13, WGF11, WKT08, WRX11, WZV+13, WJK15, WCY+17, Web10, WLL+13, WW77, Won97, XHL+13, XJWW15, ZHY16, YME05, YZW+13, YLH14, YLHJ14, YPLZ17, YLCH17, YBZ+15, YLK+10, Yel99, YRJ18, YGN+06, YQZ14, YTY00, ZG13, ZWX16, ZYZ+18, ZLZ15, ZLH+15].

Machine-Based [LW11, WB81, CGV10, WKT08, YZW+13].** Machines** [Ano75, ASSB18, BMS16, BP99, BDJdS02, BSSS14, Bee05, BB13, BRX13, CL17a, CWL12, CCML12, CSS+13, CL16a, CCO+05, CH78, CHLY18, CDN02, DMS14, DEK+03, Den01, DK17, DMR10, DKW15, Do11, EGR15, EGJS15, ECJ+16, Ert03, EDS+15, Gai75, G+01, GTS+15, Gum83, HKLm17, HB17, HSO6, HPP15, Ian14, JE12, Jen79, JXL+12, JAS+15, JKJ+10, KCWH14, KJL11, KP15, KAH83, LMR18, LCL+15, LYY+17, LD05, LHPA06, LW12, LJL+15, LLZ18, Mac79, Man15a, MD12, MGL+17, MM94, PSBG11a, PS16, Rev11, Ros04, SD01, SCML12, SV13, SN05a, SN05b, Sta97, SKI+17, Sup04, TTH+19, TV12, UT87, Vog03, WLW+15, WGLL13, WZL15, WZZ16, XSC13, XLL+14, ZRD+15, vLSM01, Agr99, ABB19a, AAI+03, ADA+19, AGH+16, ATS16, AAM+16, AMAB17, AS14, BAC15, Bac11, Bag76, BML+13, BDF+98, BhvR05, Bel06, BB12].
HDG09, Ho95, JES+15, JWH+15, JDW+14, JGSE13, KSSG16, KRCH14, KBB11, KR16, LMOJ07, LZC+16, LLF+18, LJL12, LQW+12, LC13, LTZ+14, LSS04, Man15b, Mat09, MG13, MRP17, hTMAC+08, NK10, NOR15, PFI+16, PSBG11b, PMC05, PBHY+08, PRS16, PV08, RK16, RH17, RHR02, RT18, SJBJ14, SS13, SENS16, SNV10, Sch09, SSN12, SJJ+12, SJW+13, SSL+13, Ste14, Str13, SLA+16, SHTE11, Syr07, TZEK17, TGCF08, TMMVL12, TDG+06, TlLeC13, VT14, VED07, WQG15, WXZ+17, WDT18, WSC06, WSY09, WRSvdM11, WRS+15, XHCL15, XWX+17, XTB17.

machines
[YC98b, YWF09, YWGH13, ZBG+05, ZWCH17, ZWL09, ADM98, BHDS09, CT03, Cla97, MLG+02, PEC+14, SM01, UBF+98, VED06, YC98a, ZS01].

macro [Wel02].

macro-architecture [Wel02].

Made [Ste05].

Mail [Joo06].

Main [AW17, AMH+16].

Mainframe [GBO87].

Mainstream [Uhl06, BBHL08].

maintaining [HBP06].

maintenance [LSS04].

Make [THB06, BC10, DMH18].

makes [Wal10].

Making [HKKW13, XLL+14, SJJ+12].

Malware
[CLS07, CD12, GG11, AD18, CVWL13, CWdO+06, YJZY12].

MAN
[TDG+06, YYP+01].

MAN/WAN [TDG+06].

manage [Car14, Fit14].

Manageability [Gua14, MV05].

managed [CBGM12, CFG+13, GK05, RJK16].

Management [AW17, DMR10, HC17, KGGS17, KL14, Lar09, LJJ+15, LCFL12, LXM+16, MBWG+86, MDGS98, SMS01, SC17, SDD+14, TB17, WIS+15, WLW+15, WGLL+13, AKH+15, ATS16, ARMMA+18, BAC15, Beg12, BBMA+91, BHDS09, BN89, Ch08, Cla05, Fit14, Fu10, GTGB+14, GLK+12, HB13, IMK+13, KCKC15, KMG+18, KB17, LLS+08, MS00, MBA+12, NS07, dOL12, RH17, RP07, RJK16, SG10b, SWC08, TRG13, Wal02, WDCL08, WWWL13, WCS06, WSY09, YLCH17].

Manager [Car13, Car14, KMT14, Apr09, MBA+12].

Managing [BB13, KGZ+04, BCP+08, J+05, YLHJ14].

Manipulating [GK05].

Mantle [BB95].

Manual [CRZ83].

manufacturing [LLS14].

Many [LPB17, CLL+13, DQR+13, WR07].

Many-Objective [LPB17].

Manycores [HPP15, KHW+16].

Mapped [HW93, BLRC94, SV15].

Mapping
[Bak83, CFM17, PS16, PCC+16, CRB12, HSC15, JK15, UR15, WK08].

MapReduce [HSC15].

March [ACM06d, Ano10, SS05].

Marine [MMG+18].

Market [LS15].

marketplace [KMK10].

Markets [TVKB16].

Markov [BL17, RH17, SC17, WQG15].

Marriott [USE01a].

Maryland [Ano93].

Maschinen [Zim06].

Massachusetts [USE93, USE01a, IEE85].

Massively
[BS90, Kra90, MM93].

Mastering
[CBER09, Low09, Low11, LMG+14, McC08, Sub11].

Matching
[CFM17, Cox07, Cox09, Cox10, Cox12, YDW18].

Maté [LC02].

matrix
[Kra90].

Maximization
[ZH+W+17, JWH+15, KTB17, LWLL16].

Maximizing [BYBY+16, ZRD+15].

May
[ACM00, ACM06d, Ano04b, IEE84a, IEE90a, IEE91, IEE01, IEE06a, Mar81, TLC06, USE99, USE06, Yur02].

MBSA [CCL+17].

MC68020 [MMM84].

MCG [ZGW+06].

MCG-mesh [ZGW+06].

mean [Ven96].

Measurement
[LCT+15, LLZ18, MD12, TVKB16, Mly09, SIRP17, SYMA17, YLH14, YLWH14, ZLH+15]. Mechanisms [NMG15, Nel04, MG13, TMMVL12].

Memory [AW17, AMH+16, Bad82, Bro89, VMW+19, CLLS12, Cro93, GHS17, GKB15, HHIC+16, HPP15, JJK+11, KGG17, LW11, LH16, LJJ+15, LZW+17, LXM+16, MKKE12, RLZ+16, RWX+12, RGSJ17, SMES01, SL89, VTW16, Wal02, WWH+16, WWL+17, WK90, WTLS+09, XML+18, AHK+15, ATS14, Ano15, BHDS09, CWH+14, CWC+14, CLC13, CH08, CMF+06a, CMF+06b, CMF+06c, GMIK17, GVI13, GND16, GLV+10, HB13, HHPV15, HUH14, JSK+13, JDW+14, KB17, LIWW18, LJYZ15, LSS+08, MS00, PPO14, RO16, RJK16, VED07, WWS89, WZW+11, WWWL13, WK08, ZP14, ZHCB15, ZW19, ZL13, TF16]. Memory-Aware [JJK+11]. memory-limited [CH08]. Memory-Resident [WK90]. merging [TLX17]. mesh [SJRS+13, ZGW+06]. Message [GGM+16, DM93, TO91, UR15, XH90]. message-passing [TO91, UR15, XH90]. messaging [Joo06]. meta [BT15]. meta-tracing [BT15]. metacircular [PBAM17]. Metacomputing [MDGS98].

Microarchitectural [MSI18, EGD03, SK13b]. microcomputer [UBL+82]. microcomputers [GBO87]. microkernel [GMR93, Sto07, Uhl07]. microkernel-based [Sto07]. Microkernels [FHL+96, HUL06].

Microprocessor [Ran02, ACT94, WW77]. microprocessors [But94]. microprogrammable [Bag76]. Microsoft
[Lar09, Zim05, Ano99a, B+07, Car13, CBER09, Gal09b, Joo09, Kal97, KV09, KSS09, KS10, Lar09, MRM06, Nou92, Ste05, Won97]. Middleboxes [KRS+17, YDW18]. Middleware [ACM05b, HOK014]. Migrate [YBZ+15, CLL+13]. Migrating [JE12]. Migration
[ABV12, BFG+14, BWD+15, CYX+17, DK17, EMAL17, KC16, KGS16, KKL16, LZZ+15, LJJ+11, NBK16, RSNK17, RSN+18, SL14, SHW+15, TMV12, WXXJ15, XLL+14, XD16, XD17, YWR+14, ZRS+16, ZCG+17, ZDLG17, vLSM01, ACH+15b, AGH+15a, AS14, BAC15, BB08, CLC13, FMIF18, FGL15, HLW+10, HTB19, HDG09, JKK+13, JGW+11, JW+14, JGSE13, KTB17, KJLY15, LZW15, LZC+16, DPBK16, MG13, NIA18, PDC+12, PFFJ18, PCB+18, RK16, SM01, SYMA17, SSL+13, SLA+16, SHTE11, TDG+06, WCY+17, WDT18, WRSvdM11, WRS+15, YBZ+15,
ZLZ15, ZHHC17, ZFY18, ZLZ+19b, ZLZ+19a, ZNSL14, ZLLL13, ZLY18
Migrations [WVT+17, JES+15]. MigVisor [ZDLG17]. MIMO [LZ15].
Mini [ZXY+15]. Mini-intrusive [ZXY+15]. Miniboxing [UTO13].
minicomputer [KK79]. MiniComputers [Har77]. minidisk [Boz89].
[LGJ+18, RSNK17, RK16, SZ13, THG+18]. Minimum
[BAC15]. MINIX [Kel06, vdK09]. Minneapolis
[IEE92]. Minnesota
[IEE92]. MIPS [RWX+12]. mirror [Rob06]. Misalignment [SC18]. misses
Mitigating [ASSB18]. Mitigation [LGR14]. Mixed
[WLMD16, LWM14]. Mixed-Criticality
[WLMD16]. Mixing [LD05]. MLN
[Beg12]. MO
[ACM97]. Mobile
[CPKL17, CPS17, CWH+16, LH16, LYS+18, MV16,
RSN+18, SGB+16, USE93, WVT+17, BD11, BBD+10, CM18, FC98,
HLW+10, IIK+06, ISE08, LLE17, SASG13, ZLZ+19a]. mobility
[FX06, SBP+17, ZLZ+19a]. mobility-induced
[ZLZ+19a]. Mode
[Dav04, CWH+14, Co99]. MODEF
[SMO84]. Model
[BRX13, CHW12, HKM+18, KKKM17, KF91, KAZS14, MV16, MP01, NEL04,
NSJ12, XDL15, YLL17, ZDLG17, Bar78, BCM90, Bir94, CKP+93, Fre05,
Re03, SS13, WO75, YZLQ14, ZP14, ZBG+05]. Model-Driven
[NSJ12]. Model-Free
[BRX13]. Modeling
[ACM81, CH78, IN87, KRG+12, LDL14,
TIIN09, WLS+18, BB95, FX06, gKEY13, SK13c, TLX17, YZSC17].
Modelling
[DPBK16]. Models
[DSM14, HBL+10, HWB03, Man15a,
RSW+06, SL16, ADG+92, HCJ07, Lia05, RO16, VVB13, WDT18, Ble89].
Modem
[Ano03a]. Modern
[EG01, FKZ17, GG11, FIF+15, KB17, ZDK+19].
Modular [AvMT11, DCA04, FC98, LH13, TO91]. Modularity
[SVB93, DNR06]. Modulation
[WUK+18]. möglichen
[Hin08]. moldable
[HZ+14]. Molecular
[YWCF15]. monad
[Dan12]. Monitor
[LXM+16, QTO6, Ren78, RI00, RT93, Ros99, SVL01, AGSS10, ALL06,
AMA+11, Co99, KOY05, Kou11, SLL14, SSU+12, TT93, XZ11, ZYZ+18].
monitor-based
[AMA+11]. Monitoring
[BAL15, CCML12, DLX+17, LZW+17, WLLZ16, ZL16, ZL18, ZXY+15,
ACT94, CL14, JXZ+10, JADAD06b, YCL+19]. Monitors
[JHS12, KS08a, KF91, RG05, WCGS05, BDF+03, FLM+08, HUL06, HPHS04, YME05].
Monterey
[ACM05a, Ano01b, USE91, USE01c]. mori
[CPST15]. Mortar
[HUWH14]. most
[CK06b]. motion
[Lia05]. Motorola
[Ano03a, MMM84]. move
[BGS13]. Moving
[Crel06, Cre10a]. MPSoC
[BH15]. MPSoCs
[OVI+12]. MS
[Tho08]. MU5
[MDFS72]. Multi
[ABV12, AP18, CLG+10, DY17, DLS+01, GSS+18, GLBJ18, HMM17, HC17,
HPeC04, LLS14, MD12, MM94, PXG+17, PNT12, RTL+18, SL14, TTH+19,
WLL+13, ZRY15, AD18, AL05, ATS16, Bor07, DEG+17, GGQ+13,
GKP+19, JHE14, KMT14, LYYY18, RPE12, SE12, SIK+16, SWW+18,
WCLO8, XZ11, YKS16, YTS14, ZNSL14, ZLL+16, JDJ+06, NMS+14].
Multi-Agent
[PXG+17, ABV12]. Multi-Capacity
[HMH17].

Nam [Fro13]. Named [War11, XWJX15]. Nancy [Jou85]. Narrow [YSS^17]. Narrowing [DGLZ^11]. National [Ano93, SVN^10]. Native [AC98, UT^87, EL^98, RPE12, STS^13]. NATUG [Boa90]. NATUG-2 [Boa90]. NC [Bon90]. NDSS [Ano10]. Near [LJFS17, UT^87, LKY^17, RPE12, TLD^18]. Near-Native [UT^87]. Near-Precise [LJFS17]. near-threshold [TDG^18]. Near [BB15]. need [BG513, GLK^12, WSC09]. needs [STFH15]. Negotiation [ABV12]. Nested [HBL^10, GHS06, RQD^17]. nested-virtualization [RQD^17]. Net [MBK^92, Tur92]. NetAdvantage [Ano03b]. NetLCR [Joo06]. Netstumbler [Joo06]. NetWare [WF03]. Network [ACM98, RM03, AFG^17, Ano10, AO16, ACA16, BRID10, BL17, BHEP14, CFM17, CPS17, CT08, Cre10b, DW14, EMAL17, Fis01, FLZ17, GMH^18, HSL17, HB12, HJG18, IKU15, JW17, KKTMM17, Ken80, KAZS14, KLL18, LIW^16, LDRS18, LCFL12, MCZ06, Mon97, MR06, Non92, PHL^12, PCR89, PST^15, Rix08, RKR17, SSOT17, UVL^13, WB81, XWH^16, XD16, XD17, ZHHC17, ZWH^17, ZKWH17, ACM06c, AM16, ALW15, BCC^15, BCM90, BL90, BH13, BBS06, CBZ^16, CB10, CRB12, Cre10a, DYL^12, FLL^13, FJKK17, FK13, FSH^13, GLLJ16, HBP06, IM93, JK15,
KSO+15, KWZ+19, LYYY17, LRP+19, DPBK16, MSZ09, NTH+17, OK90, PBL+16, RK16, SZL+14, Tur84, UBL+82, VOS12, WWS89, WHC16, WCC16c, WC91, YCL+19, ZLZ+19a, BCZ19, MCJ19, TF16, YWL+18.
Network-aware [AO16, IKU15, ZHHC17].
Network-based [LYYY17].
Network-hosted [CKT08].
Network-I [RM03].
Network-I/O [RM03].
Networked [CT03, SGGB99, SGGB00].
Networking [ACM04b, CPKL17, IEE06b, LCK11, MLA83, SS05, XWJX15, ZKWH17, BTMS10, Bor07, BH13, GD08, IM93, Zho10].
Networks [BSI+15, CPKL17, CGC16, Hal79, HHK94, JN15, KKLV16, LLW+16, MBWW86, SJPP11, TVO92, VVC+17, ALW15, Af91, CL15, CM18, GCARPC+01, GHM+18, HHSG18, KCV11, LC02, LZW+15, LWL16, MG19, MAK07, NRS92, OMB+15, RS16, TO91, WZV+13, WT91, YKS16, YPLZ17, AAJD+16]. Netzwerk [KGG00]. Netzwerke [WF03]. Netzwerkkonfiguration [WF03]. Neumann [FS11, FS12, Sig89].
Neural [MBK+92, TVO92, Tur92, WWS89, Af91, BCM90, BL90, IM93, KCV11, OK90, RK16, TO91, WT91, WC91]. Neurocomputer [GFB+92]. neutron [MM92]. Neuron [MJK93, TVO92, Tur92, WWS89, Alf91, BCM90, BL90, IM93, KCV11, OK90, RK16, TO91, WT91, WC91]. Neuroncomputer [GFB+92]. neuropet [MM92]. Nevada [ACM81, ACM89]. newer [YK13]. Newfoundland [IEE06a].

O [RM03, AJM+06, AMA18, AD11, ABG14, ABB+15, BMS16, BHEP14, CWH+16, CDD13, CRZH15, DCP+12, DS09b, GAH+12, HB12, KS08a, KMN+16, LLE17, LMR18, LHAP06, NsP16, PST+15, Rus08, SBQZ14, SYC14, SVL01, TtLcC13, VW08, WR12, ZSR+05]. Oak [SVN+10]. Oakland [IEE84a, IEE90a, IEE91]. OAMulator [MS01]. OASIS [UBL+82]. OB [XHCL15]. Oberon [WF03]. Object [Bad82, BBD+91, BP01, CAF+91, Low88, PTHH14, PMC05, Sun88, STFH15, USE99, USE01b, BPB86, BP03, BZD17, DNR06, GSN93, IT86, LM99, VED07, WML02]. Object-Based [Bad82]. Object-Oriented [BBD+91, USE99, USE01b, PTHH14, PMC05,
Objective
[GLBJ18, LPB17, AP18, GGQ+13, GKP+19, SL14, ZLL+16].

Objects
[Qia99, ABB+19b, SK13a].

Observation
[NBH08, SCFP00].

observation-based
[SCFP00].

occupied
[SZ13].

OCTET
[BKC+13].

October
[ACM03b, Ano09b, Ano06a, Boa90, IEE03, Tho93, USE00a, Vra05].

off
[CGV10].

off-board
[CGV10].

Offensive
[BDJdS02].

Offers
[Ano03a, Got07].

office
[BRIdM10, Ano03b].

Offline
[TRG13, SHLJ13].

Offloading
[CL16a, GKXK13].

offs
[SIdLB15].

OGSA
[AKK+07].

OGSA-DAI
[AKK+07].

Oktober
[Mühl75].

Old
[Got07].

Older
[SHB+03].

Older-first
[SHB+03].

Oleco
[Joo06].

On-Chip
[GGM+16].

On-Demand
[SEF+06, ZF06, DEG+17, JCZZ13].

on-stack
[SHLJ13].

On-the-fly
[URJ18].

One
[Cro09, HPHV17, NKY+18, JK15, Ste14].

one-shot
[JK15].

Online
[FL13a, GR15, HKLM17, HKKW13, JWL+18, Joo06, KT17, NG13, RG17, SZW+16, SIK+16, SXCL14, ZHW+17, ZWC+14, BB12, LSS04, NK10, ZXW16].

Online-Handbuch
[Joo06].

Ontario
[ACM06f, Sof83].

onto
[AO16, Bak83, BS90, PS16].

Open
[AFG+17, SJV+05, AGH+15a, AAB+05a, FP14, TSP17].

Open-Source
[SJV+05, AAB+05a].

OpenCL
[KJJ+16, TY14].

OpenFlow
[KC16].

OpenNebula
[KMT14].

OpenOffice
[Joo06].

OpenQRM
[Kar07].

OpenStack
[BB15].

OpenSUSE
[CK06g, CK06f, CK06o, CK06p, CK06p].

Operand
[MSI18].

Operating
[ACM75, ACM03b, BPP+17, BYBYT16, CD12, Das91, HXZ+16, IEE01, J+05, MKKE12, MM94, RT93, SLM89, THB06, Vra05, ACT94, CCZ+06, CGL+08a, CGL+08b, CGL+08c, CK06a, CK06b, CK06c, CKP78, Com00, CLDA07, Dav04, Don87, HKD+13, KSLA08, Kou11, MW18, MDF572, NV05, Ros06, SPF+07, STS2, TT93, Vac06, Van06, WR07, WWT89, YK13, Mat10].

Operation
[ZR06].

Operational
[Dan12, Siv04].

Operations
[OLZ16, MPF+06].

operator
[GHM+18].

Opportunistic
[KMK16, OMB+15].

Optimal
[BP99, BB12, DEG+17, HM18, HG18, WHC16].

optimale
[Sch13a].

Optimisation
[YWGH13, GKP+19].

Optimises
[War80].

Optimistic
[Pon19, WGF11].

Optimization
[CP17, CWH+16, DKW15, GLBJ18, KC16, LW11, Man15a, MJW+14, NIA18, SM06, SHZ+14, WK90, YKM17, YWFO9, GACRP+01, HLW+13, JK13, KS13, KS18, LLW+18, MS17, dOL12, ZLL+16, ZLY+18].

Optimization-Based
[SHZ+14].

Optimizations
[HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12].

Optimize
[OLZ16, LDL+08].

Optimized
[CGC16, KCV11, LWL16, TMMVL12].

Optimizing
[CCE07, dCDDFO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQW+12, LL14, LXM+16, MCZ06, SMK02, SV15, ZL1L13, ZJXL11, FMIF18, HSC15, ZLBF14, DLL+13].

Options
[HDM08].

Oracle
[SSC+10].

orbit
[SSN94].

Order
[BDJ03, BFC02].

Ordering
[HMH17].

ORE
[OMP+15].

Oregon
[IEE93b, USE85].

O'Reilly
[Ano97a].

Organization
[BPC94, Kam83, RSGG15, Joo07, Skr01].

Organizational
[MSS+15]. ParDMCom [M+06]. PAROS [MM94]. PARS [CWL+15].
Parser [UOKT84]. Part
[Cre09, HO92, RGSJ17, Sch94b, Sch94a, Cre08a, SS72, Zyt94a, Zyt94b].
Part-of-Memory [RGSJ17]. Partial [BWD+15, WGF11, WWH+17].
partiality [Dan12], partially [HH13]. Partition [Int06c, LLS+08].
Partition-based [LLS+08]. partitioned [Van06]. Partitioning
[Bad87, Ian14]. Partitions [Int06b, SJRS+13]. Party [CRZH15]. Pascal
[Har77, GBO87]. pass [PDC+12, YLWH14]. pass-through
[PDC+12, YLWH14]. Pass [Sup04, BS96, JKDC05]. PASTE'01 [ACM01a].
patches [Ano07]. path [AM16]. PATHWORKS [Nou92]. Pattern
[CFM17, HPP15, YDW18, ZDLG17, OK90]. Pattern-Aware
[PP3A+17]. Patterns [CL17a, ESY+17, PMC05]. Paxos [HMS17]. PC
[ACM98, ACM04b, Ano03b, AD11, Bad82, BL90, Cal75, CFH+79, CFH+80,
CGS06, CHW12, De 06, DSZ11, EDS+15, GE85, Gua14, GKB15, HSK17,
HTB19, HB12, IEE96b, IEE06a, IN87, JR02, JK13, KCWH14, KS08a,
KMM13, KP15, KD78, LZ15, LCK11, LMR18, LGM01, LCT+15, LHAP06,
LTZ+14, MJW+14, MT16, MT17, MLG+02, MBK+92, NMS+14, Oak14,
OB8R16, PZW+07, Pat12, PNT12, Ra79, RC+12, RP07, SHW+15, SD01,
SCSL12, SDD+16, SJA+17, SM92, SM02, THC+14, URJ18, UT87, VP16,
Vog03, WKT08, WCC16b, XLJ16, YC98a, YWCF15, ZRZY15, ZWL+18,
ZJXL11, dGG+17, AKK+07, AAL+03, AGH+16, Ano96, AWR05, BML+13,
BB12, BBM09, BPM+14, CBGM12, CBZ+16, CMP+07, DQL+13, DLL+16,
DSSP06, DYL+12, EMS15, Fit14, FF96, GP13, G+01, GI13, GI+05,
GAH+12, Han16, HHS18, Hg02, HC12, HL13, KKKJ14, KL13].

performance
[Kou11, KCV11, LBZ+11, LLE17, LM99, LGM00, LL14, MCC18, MA10,
MST+05, MUKX06, M+06, MMG+18, MW05, NB11, OL13, PV08, RHR02,
RQD+17, Rix08, SENS16, SE12, SB10, SPF+07, SYC14, TII09, VV08,
WWH+17, YC98b, YZLQ14, YQZ14, ZY+18, ZSR+05, ZSW+06, ZLCZ18].
Performance-Based [CHW12]. Performance-directed [RP07].
Performance-Guaranteed [ZWL+18]. performing [BB08, GBCW00].
performs [Ven97d]. period [B+07]. Periodic [LD05]. periodical [YQZ14].
Periods [RB17]. Persistence [SCD90]. Persistent
[GH91b, Low88, SMES01, LM99, LGM00, MS00, LGM01]. Personal
[Hir92, LBP+07]. Perspective
[FLZ17, Han16, RSGG15, FP14, LDDT12, Wal10]. perspectives [MA10].
Precision [ADM98, BKMM87]. pre-conditioned [MM92]. Predicate [UKOT84]. predicates [JKDC05]. Predictable [LTE12, XLJ16, LTK17, HK07]. predicting [WQG15]. Prediction [LWC+17, ZDLG17, ADA+19, CEG07, EG03, KJM+07, KCV11, RGAT18, Raj79, SSN94]. predictive [XCJ+14]. Predictor [BSMF08]. Preemptable [OL13]. Preempted [OLZ16]. preempting [SJB14]. pre-emption [YQZ14]. Preemptive [PG18]. prefetch [KW13]. Prefetching [RZPX19]. Preliminary [HW93]. prep [IIPB09]. PreScheme [Ran93]. presence [CFG+13]. present [JKDC05, Yur02]. presented [ACM90]. Preservation [JE12, BB08]. preserve [STFH15]. Preserving [BS96, DNR06]. pretenuring [BOF17]. Prevent [SYB12]. preventing [PRB07]. prevention [MA17]. previous [STFH15]. price [WHC16]. pricing [ADA+19, DEG+17]. Primary [PP16]. Primitive [LCWB+11, BMWB86, Pout90]. PRIMITIVES [Ble89]. Princeton [FS11]. principled [WSAJ13]. Principles [ACM75, ACM99, ACM03b, Juo07, SHW+15, Vra05, SS72]. Privacy [IEE84a, IEE90a, IEE91, WLL+13]. private [Nie12, SYMA17, WH08, Fro13]. Privileged [MPF+06]. Pro [SRS09, Fra06, Fra09, Wil06]. Proactively [GKBB15]. probability [LYYY18]. Problem [BL17, BFG+14, Man15a, MM92, SL00]. Proceedings [ACM96, ACM97, ACM99, ACM04b, ACM05b, ACM06a, ACM06b, Ano99b, Boa90, IEE96b, LCK11, USE99, USE00a, USE00b, USE01a, USE01b, ACM00, ACM03b, ACM05a, ACM06f, Ano93, GHH+93, HHK94, IEE85, IEE04, JPTE94, Mat10, MR91, SS05, USE85, USE86, Vra05, ACM75, ACM81, ACM89, ACM90, ACM01b, RM03, ACM04a, ACM05c, ACM05d, ACM06e, ACM06c, ACM06d, Ano01b, Ano04b, Ano06a, BW03, IEE84b, IEE84a, IEE90a, IEE90b, IEE91, IEE92, IEE93a, IEE93b, IEE93, IEE95, IEE06b, IEE06a, MS91b, Ost94, SoF83, Shr89, Tho93, USE91, USE93, USE01c, USE02, USE06, M+06]. Process [AGLM91, Bal91, HPHV17, MZG14, RB01, SC17, Tho93, AC95, LZWD15, XCJ+14]. process-aware [XCJ+14]. Processes [JADAD06a, Kin84, SN05b, WT91]. Processing [DKW15, Loy92, VZL16, DH01, EF94, GSN93, IM93, KHL17, KWZ+19, LKY+17, LRP+19, LG93, MGG+18, WWT89, Wün13, ZDK+19]. Processor [ISE08, NLS+06, RWX+12, SKJ+17, IIK+06, LRC05, VdlPC97, WDSW01, WLL+13, WJGA12]. Processor-Interconnect [SKJ+17]. Processors [DSM14, Ge02, MT16, MT17, MBK+92, PNT12, RTL+18, KKC+16, MN03]. product [IBM88, Int88, SV17]. production [SL00]. Products [Ano03a, Ano03b, Ano05]. Professional [vH08, IIPB09, Ham07, Khn09]. professionellen [Zim05]. profile [AWR05, WKJ17]. Profiler [SH04, VL00]. Profiles [Int05b]. Profiling [LV99, Sun95a, DSSZ11, NK10, SSB+14a, STY+14, TZEK+17, THC+14, YZLQ14]. Profit [BYBYT16, ZHW+17, LWLL16]. Profit-Maximizing [BYBYT16]. Profitability [WUK+18]. Program [ACM01a, Han05, HB08, MSG01, SZ88, ABDD+91, BPB86, She02, WGF11]. Programm [Mar08]. Programmable
Programmer [Hee07]. Programming-in-the-small [DK75]. Programs [ACM90, Arm78, DK75, Eng99, Gai75, GMP89, GH91b, Luc97, SYB12, Sub08, Sub11, Tho68, Tol98, ACM99, AS85b, Al91, BCM90, Ham76, Jou85, Kag99, ME87, RSW91, SMO84, Tai98, AS85a].

Proof [FC98, LLZ18, Arv02, FP14, FCG+05, ZLH+15]. Proof-carrying [FCG+05]. Progress [ZRD+15, ZHCB15]. Project [AAB+05a, CKP78, Lot91, RD90]. Projects [AL05].

Protection [VMW+19, CD12, CDD13, SS75, CGL+08a, CGL+08b, CGL+08c, JZZ13, PK75b, TSLBYF08, WJGA12]. Protectit [KSLA08]. Protocol [GKXK13, MN91]. protocols [DM93, RSLAGCLB16]. Prototype [Sim92]. Provably [GNDG16]. Prover [Fer11]. Provers [Hir17].

QEMU [WR07, WR08, CK06a, CK06b, CK06c, CK06d, CK06g, CK06f, CK06i, CK06j, CK06k, CK06m, CK06l, CK06o, CK06p, CK06q, CK06t, CK06r, CK06s, Bar06, MZG14, WR07, WR08, vdK09, CK06a, CK06b, CK06c, CK06d, CK06g, CK06k, CK06m, CK06l, CK06o, CK06p, CK06q, CK06t, CK06r, CK06s, Deu08]. QuoE [KS18]. QoS [BAC15, DMX+17, KP15, LCL14, LWL16]. QuoS-aware [LWL16].

Quick [NOT+17]. QUICKTALK [BMWB86]. QUIS [CKRJ17].

R [Fro13, KMMV14, Vit14, Wün13]. R2 [Bod10, KS10, Apr09, Bod10, Car14, Gal09b]. race [HHPV15]. races
41

[DKF94, PRB07, WCG14, XXZ13]. **Racket** [KFF12]. **Radio**
[AJJD+16, LJR12]. **railway** [FP14]. **random** [ABDD+91, Fer11].
randomized [JGA+88, KFF12]. **randomness** [RY10]. **range** [HP77]. **Rapid**
[But94, GMK17]. **rapidly** [BSM+12]. **rCUDA** [PRS16, RSC+15, SIRP17].
RDMA [PST+15]. **RDMA-capable** [PST+15]. **reachability** [KY16].
Reactive [DSM+18, NMMP15]. **Read** [MJW+14]. **Read-Performance**
[MJW+14]. **Real** [AE01, CW03, Cla97, HcC14, LD05, Mac79, Mat09,
PPG+17, QT06, Sta97, Swa06, ABB19a, AS76, ABC+07, BCC+15, HK07,
Ive03, KBB11, LTK17, Nie12, WQG15, YCL+19, ZEdlP13]. **Real-Time**
[CW03, PPG+17, Sta97, HcC14, LD05, QT06, ABB19a, AS76, ABC+07,
HK07, Ive03, KBB11, LTK17, WQG15, YCL+19, ZEdlP13]. **Reality**
[DSSP06]. **realistic** [CKP+93]. **reality** [CB07]. **Realizing**
[UT87, Syr07]. **RealNetworks** [Ano03a]. **Reap** [HPHV17]. **reasonable**
[KJ13]. **Receives** [War11]. **Rechenzentrum** [See08a]. **Rechenzentrums**
[Mar08]. **recipes** [Car14]. **Reclamation** [Bad82]. **recognition**
[KKM+13, OK90]. **reconciling** [ABG14]. **Reconfigurable**
[BHI15, KGS16, STY+14, UVL+13, FX06, HH13]. **Reconfigured**
[MDGS98, JES+15, LJR12]. **Reconsidered** [Sta07]. **reconstruct**
[AD18]. **reconstruction** [Sch13b]. **record** [JKB15, IEE96a]. **Record**
[JKB15]. **recorder** [LBP+07]. **recoverability** [KY16]. **recovery**
[LRC05]. **Recovery** [KKLV16, AAF+09, BGS13, CHCC07,
FL13b, Kon11, MSI+12, STFH15, Tay76, ZXW16, BBMA91, Mar08, MS91].
Recursion [War80]. **Recursive** [BN75, FHL+96]. **Red** [G+06]. **Redefining**
[CGS06]. **RedHat** [Gal11]. **redirecting** [JYW+13]. **Redirection**
[FL13a, LYS+18]. **reduce** [FLL+13, RJK16]. **reduced** [VED07]. **Reducing**
[HPHS04, Hu90, HS06, KY16, LBZ+11, MV16, SC18, ZLZ+19a, KJM+07].
Reduction [JJK+11, Wat86, Wat87, ZHL16, HCJ07, LJYZ15, TDG+18].
Redundancy [Tay76, GLV+10]. **redundant** [KJJ+16, ZHW+17].
Reference [Ano03a, CRZ83, Hal79, HPP15, LC09a, XWX+17, YTY00].
Refrerenz [LC09a]. **Reflection** [FPS+02, ORPS09]. **Reflections**
[MLA83]. **region** [HLW+13, vKF13]. **region-based** [vKF13]. **Register**
[CK87]. **registrs** [SCEG08]. **Regular** [Cox07, Cox09, Cox10, Cox12, KP99, Tho68].
reification [RRB17]. **Reincarnation** [Ros04]. **Rejuvenation**
[SAT09, AMA+14, MNT14]. **Relation** [KLLT18]. **Relational** [WK90].
release [IBM94, IBM96]. **Releases** [Ano03a, Ano03b]. **relevant** [NP13].
Reliability [ESY+17, HXZ+16, XH16, MD74]. **Reliable**
[PEC+14, THB06, YWY+17, Car14, Van06, WQG15, WXW15]. **Reliably**
[TCP+17]. **relocation** [KJLY15]. **remapping** [AS14, LJKL2]. **Remote**
[FLM+08, JKB15, HJS12, KMN+16, Bor07, GCARPC+01, RSC+15, RS16,
SRIP17, SWW+18]. **Remoting** [MGL+17]. **removal** [WGFI11]. **Remus**
[dSO17]. **RemusDB** [MRC+13]. **Renaissance** [FDF05]. **Rendezvous**
[SM92]. **renewable** [KTB17]. **Renewal** [WN17]. **ReNIC** [DCP+12]. **Reno**
[ACM89]. **rental** [FBZS12]. **Repair** [SEK+19]. **repeatibility** [Vit14].
Replacement [GHD12, LH13]. **Replay**
[BJH+16, JKB15, KM13, RTL+18, SCFP00, CLG+10, WXZ+17]. **Replaying**
[WKG17]. Replica [GLBJ18]. Replication
[CWL+15, LJJ+11, DCP+12, KJJ+16, LMV12, dSOK17]. reply [DM76].

Report
[Ano01a, Ano02, Ano04a, CBLFD12, Int06c, Int06a, PBAM17, Pul91].
repository [AWR05, GKP+19]. representation [IT86]. reproducibility
[Vit14]. reproducing [PTM+15]. Request [LYS+18]. Requirement
[YWR+14]. Requirements [PG74, PG73]. ReRanz [WWL+17]. Research
[ABB+05a, Ano00, Ano01a, Ano01b, Ano02, Ano04a, Ano04b, Bas90,
DMS02, IEE90a, IEE91, Kim84, Ten17, USE01c, USE01d, USE02, AGH+15a,
CBLFD12, Her10, SVN+10, Vit14, HSM17]. ReSeer [WXZ+17].
Reservation [HC18, ZWC+19]. reservations [THG+18]. reserved
[DEG+17]. reset [RY10]. Reshaping [BHI15]. Resident [WK90].
Resilience [NTR18, OMB+15]. resilient [BGS13, OMB+15, TDG+18].
resolution [GE5]. resolving [ZWC+14]. Resource [BBMA91, BL17,
FDF05, GLS15, GA18, HC17, JSHM15, LZWC13, LCT+15, LCFL12, MSS91,
MBA+12, PFPJ18, RG17, SBJ14, SC17, SC18, SZW+16, SXCL14, Sur01,
WIS+15, XSC13, YSS+17, ZQCV16, ATSL6, AS14, Car06, CMP+13,
EdPG+10, Fu10, HZZ+14, JWH+15, LC09b, LYY18, LLS14, MS01, My09,
RGAT18, SVG13, SVG12, VVB13, Wal02, WDC08, WSVO9, ZWC+19].
Resource-aware [GA18, PFPJ18, SVG12]. Resource-Latency [BL17].
Resources [CRZH15, KGS16, PCC+16, HML17, KHL17, LTZ+14, PSZ+07,
TZK17, WRsM11, WRs+15, ZBP07]. Resourcing [MSS+15].
Resourcing-on-Demand [MSS+15]. Responding [BSM+12].
Responsibility [GKXK13]. Ressource [Mar08]. restart [BBH08].
restoration [BS96, XWW+17]. Restoring [EGJS15]. Results
[HWS93, Man15b]. Retargetable
[GFH82, Fra83, GHH83a, GHH83b, WNL+83]. Rethink [WRX11, XJJW15].
Rethinking [PBW+12, RGSJ17, WSG05]. retrofitting
[CGL+08a, CGL+08b, CGL+08c]. Retrospect [GLC84]. Return
[SYB12, Ven97c]. Return-Oriented [SYB12]. returned [BBS06].
Returning [PSBG11a, PSBG11b]. reuse [LU04]. Review
[Ano97a, Fro13, Ng01a, Ng01b, AGH+15a, MA17, Van98, Mat10]. Reviewer
[Ano03b]. Reviewers [Ano06b]. Reviews [Ano03b]. Revised [Ram93].
Revisited [SCD90]. Revisiting [AH12, CL16b, HSM17, WWWL13].
revolution [MCK11]. Reward [BL17]. rewriting [XWW+17]. RHHEL
[P+08]. rich [RSLGCB16]. Ridge [SVN+10]. Right [NKK16, HL06].
rigor [Vit14]. Rigorous [KJ13, Man15b]. RISC [ABDD+91, BSUH87].
risks [Bel06]. roadside [YBB+15]. Rob [Bas04, Bas06]. Robot [Arm78].
Robust [CCML12, SVG12, YZS17]. Rochester [Mar81]. Rockefellar
[IEE90b]. role [GLA+08]. Rollback [CHP+17]. Rome [BW03]. Rose
[Ano03b]. Rosenblum [War11]. Roundtable
[Cree0b, Sta97, Cre08a, Cre08b, Cre90, Cre10a]. route [YPL17]. routed
[AM16]. routers [GP13]. Routing
[EMAL17, FD08, HLP+16, YYW+17, FLL+13, FSH+13, LWL16, SJRS+13].
RPC [CSS+13]. RPython [MRG17]. RTLSim [YYPA01]. rule [Pul91]. Run [Bad87, ACT94, AWRO5, CGM17, Com00]. Run-Time [Bad87, ACT94, CGM17]. Running [Bad87, MDD+08, GMR93, KGS16, SZ88]. runs [FIF+15]. Runtime [GSS+18, Kam83, KP15, MB08, NMMP15, Shi03, ORPS09, RVJ+01, STY+14]. Runtimes [HD16, Han05, CSV15, GK05, PBAM17, WWH+17].

S [M+06, Ber86]. S-GRACE [M+06]. S.u.S.E [KGG00]. S/370 [Ber86]. SableSpMT [PV06]. Safe [BHI15, RSF+15, SKI+17, VVC+17, CFS+12, CLDA07, MSZ09]. Safety [BSI+15, HM01, MSG01]. Sagamore [AMC03b]. Sampling [Lee16]. Sampling-Aware [HC17, JWL+18, JDJ+06, PBL+16, TCP+17, AB16, AMAB17].

S-CASE [YXH+19]. Scheduling [EGR15, HSN17b, JJK+11, KDB16, LMM18, LGJ+18, LD05, LC13, PG18, RB17, TTH+19, WWT89, ZQCAZ16, ZLW18, ABB91a, BC10, DEE+16, DQWL5, DXM+17, DCMW17, HKS19, JGW+11, KJLY15, LJYZ15, XCJ+14, YQZ14, FM90, KR94]. Schemes [Do11, MNA16, YWGH13]. Schloss [IEE01]. School [BG00]. Science [ACM06d, BR01, DG05, SGV12]. Scientists [Shr89, MS91b]. Scientists [THLK10]. Screening [LP14]. Scripting [MJW+06]. SDDSIL [CLLS12]. SDN [HTB19, HLY+18, VVC+17]. SDN&NFV [ABB+19b]. SDN-enabled [HTB19]. SDNs [ALW15]. SDWN [AFG+17]. SE [LYBB14]. Seamless [Hir92, TDG+06, XWJX15, BADM06]. Search [Cox12, MNS+14, CWDO+06, KMT14, Tho68, WXZ+17]. search-based [WXZ+17]. Seattle [ACM05c, ACM06b, LCK11, Ost94]. Sebastopol [ANO97a]. Sec [SMK02]. SECD [Abr82, AS85a, AS85b]. SECD-M [Abr82, AS85a, AS85b]. Second [ACM06f, IEE09, Shr89]. SecondSite [RCOW12]. Secure [AMH+16, CCML12, CLDA07, JSHM15, JAS+15, LJR12, LP11, PEC+14, QZDJ16, RHO0, RSGG15, THB06, TtLcC13, WF07, vD00, BDS+09, GNDB16, HKD+13, ISE08, SL12, TBLW12, ZBP05].
Secured [TMV12, WCC16c]. securing [Hal08, Hal09]. Security [AKK+07, Ano93, AEB19, Att79, De 06, ESY+17, FJKK17, GW07, HHSG18, HB17, IEE84a, IEE90a, IEE91, IEE05, JE12, KZB+90, KS08a, KS08b, LWWL10, NMMP15, PvdS08, Pfo13, SJV+05, SM90, SEF+06, Ste05, TMV12, TV12, USE00b, VN08, WHD+09, WTM18, ZL16, ZL18, Ano07, BTMS10, Bau05, Bau06b, Bau06a, Bel06, BCP+08, Bor07, BBS06, Hal09, HMS04, IIK+06, LLW12, MD73, MD74, Mat09, MA17, PG11, PZH13, PBB13, Sch13b, VT14, DTW07]. security-oriented [IIK+06]. see [Yur02]. SEED [DTW07]. seinen [KGG00]. Selecting [NBK16]. selection [JK13, LZWC13, LLWW18, MCJ19]. Selective [WZW+11]. Self-Adaption [BHH15]. self-adaptive [KKB14]. Self-Configuration [BRX13]. Self-Healing [BHH15, GK05]. self-hosted [CBLFD12].

Self-management [DOL12]. Semantic [Das91, DGLZ+11, FL13a, GKP+19, AD18]. Semantics [Das91, DGLZ+11, FL13a, GKP+19, AD18].

Sensitive [DK17, KSLA08, LCL14, ZBP07]. sensitivity [HB13, TZK17].

Sensor [BSI+15, LC02, MAK07]. sensors [ALL06]. Separation [KF91, WLMD16, LWM14]. September [ACM81, ACM04a, ACM05a, ACM06b, Ano93, BW03, GHH+93, Jou85, JPTE94]. Sequence [EDS+15]. sequential [Clo85]. Serialization [BP01, BP03]. Series [Kee77, KA83]. Server [Ano03a, Apr09, Bod10, Car06, CGS06, Do11, HSK17, Joo09, KSS09, KS10, KLLT18, LZ15, Lar09, LC09b, LC09a, Mar08, MG08, MG09, PZW+07, RWX+12, R+02, SCC08, WN17, ZHW+17, Zim05, Zim06, A+04, AGH+15b, B+07, DBC+00, Hal08, IMK+13, LLWW18, LLS+08, LL14, LDDT12, MNT14, MR06, NTH+17, R+13, RPE12, Hal02, WDT18, YZW+13, AAH+03, Ano03a, B+07, D+04, Ham07, Lar09, MWHH05, OH05, R+06, Rul07, R+02].

Servern [Mar08]. Servers [DSM14, JKK11, KAZ14, SDD+16, SKJ+17, WLW+17, A+04, BBHL08, G+05, Hal08, JDJ+06, Mly09, SZ13]. Service [BB13, BFG+14, DKW15, DPCA11, EMAL17, ESY17, HJG18, HPHV17, JWL+18, LP14, LLW+16, RSNK17, RSGG15, WVT+17, WHD+16, BSM+12, CHCC07, DMD+17, EdPG+10, ECAE13, EM13, Fro13, GHM+18, KKB14, LWWL13, MCI19, RCOW12, SZ13, VOS12, YCL+19]. Service-Based [LP14]. service-chaining [GHM+18]. Service-Oriented [RSGG15, Fro13]. Serviceability [RB01]. Services [BFHW75, IEE06b, MSS+15, WC01, ZLW18, BDP+09, HB06, KBB11, KSLA08, LTZ+14, ZEdP13]. Set [AC98, EL98, NXY+18, ZDLG17]. sets [HW15]. setups [RPE12]. SGAM [ZLH+15]. SGX [VMW+19]. Shadow [WLW+15, GHS16]. ShadowReboot [YK13]. Shared [Bro89, CH08, Cro93, Low88, RLZ+16, RKRK17, SLMS9, SV13, SNC91, SNS03, CFS+12, JGSE13, PW03, TZE17, WWS89, WDC08]. Shared-Memory [Cro93, RLZ+16, SLMS9, WWS89]. shared-source [PW03]. Sharing [ACA16, BFHW75, CDN02, MS70, PTM+15, RG17,}
Software-Defined [AFG+17, CL17a, JN15, LLW+16, ZKWH17, ALW15, HHSG18, LJR12].
Softwareization [CM18].
Solaris [VSC+10, WF03, Gal11, HDM08, See10].
Solid [SYC14].
Solid-State [SYC14].
Solution [CHW12, CXLX15, Coh10, DMG+15, Gua14, KDB16, MPA+18].
Solutions [HN10, SL16, ATS16, AGIS94, EMH13, PZH13].
solver [BHSB14].
solver-aided [TB14].
solvers [GCARPC01].
Some [Ker88, Man15b].
Sorrento [M06].
Sorting [BGM70].
SOSP [ACM03b, Vra05].
sound [BHSB14].
soundness [Req03].
Source [Ano03a, SJV+05, SNS03, AAB+05a, But94, CKRJ17, CIA07, JM08, LC09a, PW03, SIK+16].
source-level [But94].
sous [Apr09].
SP [IBM94].
SP2 [Boz89].
Space [XML+18, PEL11, PG11, Web10, WXW15].
space-efficient [PEL11].
spaces [GH91a].
SPAN [RD90].
Sparks [VN08].
sparse [Kra90].
sparse-matrix [Kra90].
Spatially [HW93].
SPC [JYW+13].
SPC-indexed [JYW+13].
Special [Bag76, KM13, TZB19, Yur02].
Specialized [BDK+08, PGLG12, Yur02].
Specific [HHV+02, WIDP12, JKDC05, ZS01].
Specification [Coh97, DMS02, LY97b, LY99, LYBB13a, LYBB13b, LYBB14, LS15, II79, Qia99, Sun95b, SUN97, JCV99, Taf11].
SPECjvm98 [LJN+00].
Speculation [AC16].
speculative [GI12, PV06].
speed [LRP+19, RPE12, UTO13].
SPEED08 [VW08].
spherical [Hol95].
Spiesesammlung [CK06q, CK06r, CK06s].
Spin [CWS12, WCS06].
Spinlocks [KMK16, OL13].
SPIRE [JYW+13].
Split [HWHW18, SJPP11].
Spot [TVKB16].
Spotless [MS00, SMES01].
Spotlighting [Ano06a].
Spots [WBB+16].
Sprache [Dalxx, Dal97].
Spreading [CLW+14].
square [DG05].
squeak [Guz01].
SqueakJS [FIF+15].
SR [DYL+12, DCP+12, HB12, XD16, XD17, YWCF15].
SR-IOV [DYL+12, DCP+12, HB12, XD16, XD17, YWCF15].
SRVM [XD16].
SSDs [HC18].
St [IEEE06a].
St. [ACM97].
Stack [AE01, CIA07, HB12, Ran02, SSOT17, WH99, KRCH14, LH13, WW77, SCG08].
Stack-Based [Ran02, KRCH14].
Stackdb [JHE14].
stage [CLG+10].
Standard [MR04, RSF03, WKG17, Ano94, Rus08].
Standards [Mar81, SG10a].
standards-based [SG10a].
Stanford [IEEE96a, IEEE97, IEEE99].
start [KMT14].
Startup [HS06].
State [LJL+11, SGB+16, SYC14, Sur01, TV12, AEB19, MPA+18, Sch13b, Sig89, Ven99b, Web10].
State-Based [TV12].
Stateless [VD014].
States [SBK15, IMK+13, MC08, STFH15].
Static [JM08].
STEP [BDE+03].
Stephen [Fro13].
Sticky [KC12].
STM [Sub11].
Stochastic [FX06, FK13, GR15, SDD+16, HK19].
Stop [LWB+15].
StopWatch [LGR14].
Storage [ACM04b, Att79, Bad82, BDT13, CIA05, FFBG08, FKBZ17, GSW+17].
Storages [TF16]. Store [Low88]. Storing [CWL+15]. Storms [SB16].

Story [Arm98]. strange [Fab13]. Strategies [YLN+17, BDT13, GHM+18, LLS14, PFH+16, TKG89]. Strategy [LLZ18, DKF94, HKS19, KS18, MW18, Won97, ZLZ15, ZLH+15, ZLCZ18].

String [HOKO14, YDW18].

String [HOKO14, YDW18].

String [HOKO14, YDW18].

String [HOKO14, YDW18].

Synchronous | Syntactic | System

Updates [LDRS18]. updating [CCZ+06]. upgrade [CHCC07]. Upgrades [Ano03a]. uptrees [HB13]. UPWN [M+06]. Urgent [AGJS16]. USA [ACM81, ACM01a, ACM03b, ACM05a, ACM06c, ACM06b, ACM06d, Boa90, IEE93a, Shr89, USE01c, ACM75, ACM05d, ACM06a, Ano11b, Ano04b, IEE84h, Osr94, USE85, USE86, USE91, USE93, USE99, USE00a, USE01a, USE01b, USE06]. Usage [KLLT18, RSW+06, WH99, KTB17, RGAT18, SK13c]. USB [Ano03a]. Use [Bec09, CLLS12, Guy14, KK79, Sch13a, SJJ+12]. used [tTR82]. useful [LC09a]. USENIX [ACM05d, Sof83, USE91, USE93, USE06]. User [Chu06, ZQCZ16, Ano01b, Ano04b, IEE84b, Ost94, USE01c, ACM75, ACM05d, ACM06a, Ano11b, Ano04b, IEE84h, Osr94, USE85, USE86, USE91, USE93, USE99, USE00a, USE01a, USE01b, USE06]. User-Level [Chu06, ZQCZ16, ZLZ13]. user-space [PG11]. User-controlled [Sto07]. User-Terminal [KLLT18, RSW+06, WH99, KTB17, RGAT18, SK13c]. USB [Ano03a]. Use [Bec09, CLLS12, Guy14, KK79, Sch13a, SJJ+12]. used [tTR82]. useful [LC09a]. USENIX [ACM05d, Sof83, USE91, USE93, USE06]. User [Chu06, ZQCZ16, Ano01b, Ano04b, IEE84b, Ost94, USE01c, ACM75, ACM05d, ACM06a, Ano11b, Ano04b, IEE84h, Osr94, USE85, USE86, USE91, USE93, USE99, USE00a, USE01a, USE01b, USE06]. Usage [KLLT18, RSW+06, WH99, KTB17, RGAT18, SK13c]. USB [Ano03a]. Use [Bec09, CLLS12, Guy14, KK79, Sch13a, SJJ+12]. used [tTR82]. useful [LC09a]. USENIX [ACM05d, Sof83, USE91, USE93, USE06]. User [Chu06, ZQCZ16, Ano01b, Ano04b, IEE84b, Ost94, USE01c, ACM75, ACM05d, ACM06a, Ano11b, Ano04b, IEE84h, Osr94, USE85, USE86, USE91, USE93, USE99, USE00a, USE01a, USE01b, USE06].
viele [WR07, WR08]. vieles [Joo06]. View
[KKH14, AD18, Guy14, LDDT12]. Views [PW03]. Vigilant [PYBH+08].
VIII [IEE01, IEE96a]. ViNEYard [CRB12]. Violation [ZHL16]. violations
[BSM+12]. virtio [Rus08]. Virtual [ACM05d, ACM06f, AGJS16, AS85a,
ABCDE6, AEM+14, ADM98, AGH+15a, AAB+05a, ABV12, Ano75, Ano97b,
Ano97a, Ano97c, Ano97d, Ano00, Ano01a, Ano01b, Ano02, Ano04a, Ano04b,
Ano05, flANW14, AE01, Apr09, Arc07, AD11, AAK18, ASSB18, Att79,
ACA16, AC98, AMA+11, BWHP85, BFHW75, Bak83, BAI91, BMS16, BP99,
BDF+03, BBTK+17, BDjds02, BSSS14, BDF+99, Bee05, BCC+15, Bel06,
B13, BN75, BHDS09, BBHL08, BL17, BFG+14, BWD+15, BMM+15, Bhu02,
BMM09, BD01, BP01, BP03, BZD17, Bro89, BRX13, VMW+19, BBS06,
BJH+16, B+07, Caa00, CTS+93, CW03, CCWY05, CL17a, CFH+79,
CFH+80, CWL12, CFM17, CCM12, Car13, CK78, CFVP12, CWS12,
CHC07, CF00, CT03, CSS+13, CGC16, CL16a, CL16b, CRZH15, CCO+05,
Cla97, Coh97, CDG97, Cox09, Cra05, Cra06, Cra08, CH78].
Virtual
[CWG00, CWL+15, CHPY17, CYX+17, CHLY18, CDN02, Dalxx, DAH+12,
Dal97, DHFPW01, Dan86, DSM14, DG05, DEK+03, Den01, DK17, DMR10,
DKW15, DF96, Do11, DGLZ+11, Dom80a, DJ67, DJ77, DCA04, DLS+01,
EGR15, EGJS15, ECJ+16, Eng99, EMAL17, EG01, Ert03, EDS+15, FFB+00,
FG91, Fis01, FPS+02, (Fo71, (Fo78, Fra98, FK03, FL13a, GI01,
GKI+99, Gei02, Gen86, GG03, GLBJ18, Gum83, HHV+02, HHH10, HT98,
Hal79, HKLM17, HM01, HHT9, HKM+18, Hir17, HKWW13, HWW03,
HS06, HB08, HPP15, IBM85, IBM88, Int88, Ian14, Ibs84a, Ivo03, JR02,
JHS12, JJK+11, JE12, Jen79, JXL+12, JMSL92, JQW15, JAS+15, JNJ15,
JKJ+10, JADAD06a, JDJ+06, J02, J007, KCHW14, KRS+17, KC16,
KS08a, KMK16, KNT02, KKT17, KF91, Ken80, KDB16, Kim84, KLJ11,
gKEY13, KKJL14, KP15, KAH83].
Virtual
[KGZ+04, KLLT18, KLF+15, LCWB+11, LMM18, Lam75, Lau87, Law00,
LW11, LP14, LMR18, LW98, LMG00, LMG01, LTE12, Li14, LZL+15,
LZWD15, LVM16, LWL16, LYYY17, LGJ+18, LB98, LV99, LTT92, LD05,
LY97a, LY97b, LY99, LYYxa, LYYxb, LYBB13a, LYBB13b, LYBB14,
LHAP06, LWL11, LJL+11, LW12, LJL+15, LLZ18, LPB17, LPBB+18,
LPBB94, Loy92, LTK17, LXM+16, MSG14, Mac79, MS91a, Man15a, Man16,
MD12, McG72, Men03, MS70, MD97, Mdx2, MW18, MDGS98, MLG+02,
MB98, MKKE12, II79, MP01, MJW+06, MM94, NBH08, NBK16, NMG15,
Nel04, NSJ12, Nou92, OT97, Oi05, Oi06, PTHH14, PTH72, PSBG11a,
PXG+17, PRB07, Fps13, PS16, PCC+16, PK75a, Pro00, Qia99, QTO6, RG17,
Ran02, RLZ+16, Ren78, Rev11, RY10, RJ00, RSN+18, Ros99, Ros04, RG05,
RB01, SMK02, Ibs84b, SL14, San88].
Virtual
[SSB+14a, SD01, SH04, Sch13a, SMES01, Sch09, Sch94b, Sch94a, See10,
Set13, SMSB11, SSB03, SC17, SCEG08, SCSL12, Shi03, SM01, SVG12, SV13,
Sim92, SCP93, Siv04, SSG90, SN05a, SN05b, SHZ+14, SBP+17, Sta97, SSB01,
SSB14b, SHB+03, SVL01, Sm95b, Sun95a, SUN97, JCV99, SKI+17, Sup04,
SM02, Sur01, TSLBYF08, Tai98, TT96, TTH+19, TMV12, TY14, Tol98, TO96,
Virtual-Machine-Based [JN15], virtual-time [She91].

Virtualbox [Deu08, Bec09].

canonical [Apr09].

canonicalised [MPF06].

canonicaliser [Mar08, Kar07].

canonicalisation [Spr06, Spr07].

canonicalisation Buch [Tho08].

canonicalisationlösung [See08a].

canonicalisationssprach [PO09].

canonicalisationssprachsoftware [Zim05].

canonicalisationssystemen [Deu08].

Virtualities [Den01].

canonicalisable [HH13, PG74, PG73].

canonicalisation [AFG17, AJM+06, AAJD+16, APST05, Aoo03b, AvnT11, Bac11, Ble10, BHES14, BDR+12, CIZ08, CSL07, CGS06, CHW12, CXLX15, CWH+16, CQLL18, CD12, CDD13, cCWS14, CLLS12, Chu06, Coh10, Cre09, Cre10b, CWW07, DMS02, DW14, DPCA11, DLM+06, Don06, DMG+15, DY17, EMAL17, FPR+06, Fer11, FDF05, FRD+08, FLZ17, Gal09a, Gal11, GHS17, GW07, Got07, GG11, HD16, HWF07, Her06, HN10, HHC+16, HSN17a, HSN17b, HMD08, HLS17, HB12, JW17, KHW+16, KS08a, KMM13, KS08b, KGS16, Kot10, Koc11, KC12, LH16, LWC+17, LLW+16, LR12, LZ17, LCFL12, LDDT12, MCC18, MA01, MCZ06, MUKX06, MA17, MGL+17, MWHH05, NTR18, NSL+06, NK16, NSP16, OVI+12, PZW+07, PBL+12, PZH13, PvDS08, PNT12, PST+15, QNC07, RSW+06, RCM+12, R+06, RTL+18, RZPX19, RKRK17, RXW+12, RR09, Sed07, SM06, SGB+16].
BDR+12, CK06f, Com00, Com03, DS09b, D+04, Gal09b, GKBB15, Hal08, Hal09, Her10, HMS17, IIPB09, Kis08, KMK10, Lav10, Low08, Low09, Low11, LMG+14, MRM06, MBM09, McCo8, MWHH05, MJW+06, Ng01a, Ng01b, NL00, OH05, Ros99, Ru107, R+02, Sec10, SIK+16, SVL01, Ten17, TH10, Wal02, Wal09, War02, WF03, War11, Zim05, Zim06, B+07]. VNC
References

REFERENCES

Antonescu:2016:SSB

Axnix:2015:IZF

Abeni:2019:HSR

Atzori:2019:SCI

Armbruster:2007:RTJ

[ABC+07] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David Holmes, Filip Pizlo, Edward Pla, Marek Proc-

Ambriola:1995:DVM

AzanonEsteire:1998:JST

Anjo:2016:DML

Ayoubi:2016:TPB

ACM:1975:PFS

ACM:1981:ASC

ACM Press, New York, NY 10036, USA, Fall 1981. ISBN ???? LCCN ????

REFERENCES

ACM:2006:VPS

Argade:1994:TMR

Armstrong:2011:PIC

A:2018:AML

Aldossary:2019:EAC

REFERENCES

Abd-El-Malek:2012:FSV

Abdelaziz:2017:SDW

Aridor:2001:DIV

Ahmad:2015:VMM

Ahmad:2015:SVM

Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab. Hamid, Muhammad Shiraz, Abdullah Yousafzai, and Feng Xia. A survey on virtual machine migration and server consolidation frameworks for cloud data centers. *Journal of Network*

Amit:2016:BMP

Averbuch:1994:PES

Abe:2016:UVM

Aral:1991:PCS

Aagren:1999:TCC

Agesen:2010:EXV

Aguiar:2012:CTF

Aigner:2015:AJE

Anderson:2009:XWL

Ahn:2012:RHA

Abramson:2006:IVT

REFERENCES

Adamski:2007:SPE

Adams:2005:CMC

Alfonseca:1991:AAA

Asrigo:2006:UVB

Akyildiz:2015:WSD

Agrawal:2016:EIU

REFERENCES

[Ano00] Anonymous. Announcement: Java Virtual Machine Research and Technology Symposium (JVM ’01). ;login: the
USENIX Association newsletter, 25(3):??, June 2000. CODEN LOGNEM. ISSN 1044-6397. URL http://www.usenix.org/events/jvm01.

Anonymous:2001:CRJ

Anonymous:2001:PJV

Anonymous:2002:CRJ

Anonymous:2003:PJU

Anonymous:2003:PVF

Anonymous. Products: VMware’s fourth-generation desktop virtualization software; automated design reviews with Reviewer for Rose; CodeWeavers debues CrossOver Office; Corel Smart Graphics Studio now available; IronGrid’s Java performance tool; Infragistics releases NetAdvantage component
REFERENCES

Anonymous:2010:NDS

Anonymous:2014:ASS

Anonymous:2014:BIE

Anonymous:2014:LVA

Anonymous:2014:O

Anonymous:2015:CXB

Anonymous. Critical Xen bug in PV memory virtualization code (XSA 148). Web bug report, October 29, 2015. URL https://github.com/QubesOS/qubes-secpack/blob/master/QSBs/qsb-022-2015.txt. The report notes about this bug that allows memory pages to leak between Xen virtual machines on the same physical host: “... the bug is a very critical one. Probably the worst we have seen affecting the Xen hypervisor, ever. Sadly. ... it is really shocking that such a bug has been lurking in the core of the hypervisor for so many years.”.

Aral:2016:NAE

REFERENCES

Ashraf:2018:MOD

Aprea:2009:HVS

Anderson:2005:OII

Arce:2007:GVM

Armstrong:1978:PPC

Armstrong:1998:CSH

Arroba:2018:HMD

Arvizo:2002:VMT

Adix:1976:IER

Abramski:1985:SMV

Atif:2014:APA

Asyabi:2018:TMT

Amin:2016:JST

Amit:2014:VMS

Arianyan:2016:NHC

REFERENCES

Attanasio:1979:VCS

Appuswamy:2011:FMF

Agarwal:2017:TAT

Arnold:2005:IVM

Blank:2005:APV

Buytaert:2007:BDS

REFERENCES

REFERENCES

Bauer:2006:PPSb

Bauer:2006:PPSa

Bauer:2006:VWL

Bunge:1995:MCM

Bonardi:2008:PEM

Beloglazov:2012:OOD

Beloglazov:2013:MOH

[BB13] Anton Beloglazov and Rajkumar Buyya. Managing overloaded hosts for dynamic consolidation of virtual machines in cloud...
REFERENCES

REFERENCES

[R] Rhodes Brown, Karel Driesen, David Eng, Laurie Hendren, John Jorgensen, Clark Verbrugge, and Qin Wang. *STEP:
REFERENCES

REFERENCES

Butrico:2008:SEE

Bugnion:2012:BVX

Baldwin:2009:PSS

Bolz:2013:SSC

Becker:2009:VIA

Beebe:2005:VM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bell:2014:PID

Bond:2013:OCC

Bockisch:2006:ECF

Bergh:1987:HEH

Board:1990:PPN

Bianchi:2017:MRB

Blelloch:1989:SPP

Bledsoe:2010:VLO

Bershad:1994:ACM

Blunden:2002:VMD

Burtsev:2014:WSL

Bai:2013:HPI

REFERENCES

REFERENCES

REFERENCES

[Bartolini:2014:AFG] Davide B. Bartolini, Filippo Sironi, Donatella Sciuto, and Marco D. Santambrogio. Automated fine-grained CPU provi-

REFERENCES

Computing (JERIC), 2(1):5–16, March 2002. CODEN ????
ISSN 1531-4278.

Butt:1994:RDS

Farooq Butt. Rapid development of a source-level debugger for
PowerPC microprocessors. ACM SIGPLAN Notices, 29(12):
73–77, December 1994. CODEN SINODQ. ISSN 0362-1340
(print), 1523-2867 (print), 1558-1160 (electronic).

Basin:2003:TPH

David Basin and Burkhart Wolff, editors. Theorem Prov-
ing in Higher Order Logics: 16th International Conference,
TPHOLs 2003, Rome, Italy, September 8–12, 2003: Pro-
ceedings, volume 2758 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, Berlin, Germany / Heidelberg, Ger-
3-540-40664-6. ISSN 0302-9743 (print), 1611-3349 (electronic).
LCCN QA76.9.A96. URL http://link.springer-ny.com/
link/service/series/0558/tocs/t2758.htm; http://
0302-9743&volume=2758; http://www.springerlink.com/

Bila:2015:EOP

Nilton Bila, Eric J. Wright, Eyal De Lara, Kaustubh Joshi,
H. Andrés Lagar-Cavilla, Eunbyung Park, Ashvin Goel, Matti
Hiltunen, and Mahadev Satyanarayanan. Energy-oriented par-
tial desktop virtual machine migration. ACM Transactions on
Computer Systems, 33(1):2:1–2:??, March 2015. CODEN AC-
SYEC. ISSN 0734-2071 (print), 1557-7333 (electronic).

Bachrach:1985:XVM

A XINU virtual machine. In USENIX Association [USE85],

Ben-Yehuda:2016:NPM

Muli Ben-Yehuda, Orna Agmon Ben-Yehuda, and Dan Tsafir.
The nom profit-maximizing operating system. ACM SIG-
PLAN Notices, 51(7):145–160, July 2016. CODEN SINODQ.
ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
tronic).
REFERENCES

REFERENCES

Cardoso:2014:SCR

Campanoni:2010:HFP

Campanoni, Simone; Agosta, Giovanni; Crespi Reghizzi, Stefano; and Biagio, Andrea Di. A highly flexible, parallel virtual machine: design and experience of ILDJIT. *Software—Practice and Experience*, 40(2):177–207, February ??, 2010. CODEN SPJXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

Cavender:1993:APV

Crosby:2006:VR

Chowdhury:2010:SNV

Cerling:2009:MMV

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Cheng:2016:VMN

Chen:2017:MLF

Carbone:2012:SRM

[CD12] Yueqiang Cheng and Xuhua Ding. Virtualization based password protection against malware in untrusted operating systems. Lecture Notes in Computer Science, 7344:201–218,

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[CK06b] Toralf Chryselius and Andrea Kuntz. *Internetkommunikation in Debian unter Qemu Einführung in das Betriebssystem Debian Linux in Qemu und Vorstellung der wichtigsten Internetprogramme*. (German) [Internet Communication in Debian under Qemu: Introduction in the Debian Linux operating system in Qemu and creation of the most important Internet programs], volume 18 of *Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich*. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-117-1 (book), 3-86768-717-X (DVD). 109 pp. LCCN ???.

REFERENCES

[CK06c] Toralf Chryselius and Andrea Kuntz. *Internetkommunikation in Kubuntu unter Qemu Einführung in das Betriebssystem Kubuntu und Vorstellung von Internetprogrammen in der virtuellen Umgebung Qemu* (German) [Internet Communication in Kubuntu under Qemu: Introduction to the Kubuntu operating system and creation of Internet programs in the Qemu virtual machine], volume 6 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-105-8 (Buch), 3-86768-705-6 (DVD). 107 pp. LCCN ????

REFERENCES

REFERENCES

 REFERENCES

[CKP*93] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E. Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: towards a realis-

Chamanara:2017:QSH

Conte:2008:NHA

Canali:2014:DSV

Checco:2015:FVN

Cheng:2016:OIL

Cheng:2016:RTC

REFERENCES

REFERENCES

REFERENCES

Condoluci:2018:SVM

Chung:2006:TTMa

Chung:2006:TTMb

Chung:2006:TTMc

Contreras:2007:XPP

[CPST15] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. Memento mori: dynamic allocation-site-based opti-
REFERENCES

REFERENCES

Chen:2003:EJV

Cahill:1993:ICV

Chang:2013:ADA

Cai:2003:THI

Chen:2014:CCB

Crandall:2006:TSD

Crookston:2000:VCM

Chang:2014:EMV

Chen:2016:ICA

Cao:2012:EEA

Cui:2015:PPA

[CWL+15] Lei Cui, Tianyu Wo, Bo Li, Jianxin Li, Bin Shi, and Jinpeng Huai. PARS: a page-aware replication system for efficiently storing virtual machine snapshots. *ACM SIGPLAN Notices*,
129

Chakraborty:2012:SOV

Chen:2015:IVS

Cui:2017:TAV

Czajkowski:2000:AIJ

Carbone:2008:TV

Dufrasne:2004:IVE

REFERENCES

REFERENCES

Duan:2017:EAS

Dong:2012:RAE

Dean:1994:CPV

DeRose:2006:EXI

Degenbaev:2016:ITG

Diaz:2017:OAV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

February 1987. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

REFERENCES

Dalton:2009:TVP

Ding:2015:EES

Dai:2013:LVM

Drepper:2008:CV

Desai:2009:AIC

Dowty:2009:GVV

DeRosa:2006:RSD

Du:2011:PPV

Du:2007:SSI

Dunigan:1986:DHM

Dillon:2014:VHN

Dou:2017:EAV

REFERENCES

and Experience, 29(14), July 25, 2017. CODEN CCPEBO. ISSN 1532-0626 (print), 1532-0634 (electronic).

[ECMA-335-1] ECMA. ECMA-335: Common Language Infrastructure (CLI). ECMA (European Association for Standardizing Information...
REFERENCES

ECMA-335-2

ECMA-335-3

ECMA-335-4

Ejarque:2010:ESV

[EdPG+10] Jorge Ejarque, Marc de Palol, Íñigo Goiri, Ferran Julià, Jordi Guitart, Rosa M. Badia, and Jordi Torres. Exploiting se-

REFERENCES

REFERENCES

Figueiredo:2005:GEI

Ferrell:2011:DRV

Fox:1996:TWJ

Farkas:2000:QEC

Faibish:2008:SVU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Filelis-Papadopoulos:2018:FSL

Fabian:2006:VE

Folliot:2002:BFR

Fraser:1983:SFR

Franz:1998:JVM

Fraser:2006:PVC

Fraser:2009:PVC

Flich:2008:PNV

Fredriksen:2005:UUV

Fan:2015:UCC

Froberg:2013:BRP

Farrow:1989:VCB

Rodney Farrow and Alec G. Stanculescu. A VHDL compiler based on attribute grammar methodology. *ACM SIG-
REFERENCES

Fong:2008:DVS

Fagin:2011:IPE

Fagin:2012:DSG

Ferreira:2019:DEV

Fukushima:2013:MDR

Masaki Fukushima, Kohei Sugiyama, Teruyuki Hasegawa, Toru Hasegawa, and Akihiro Nakao. Minimum disclosure routing for network virtualization and its experimental evalua-
REFERENCES

REFERENCES

Geiselhart:2006:IZV

Gupta:2018:RAV

Gordon:2012:EBM

Gaines:1975:ACV

Galvin:2009:PATb

Galvin:2009:PATE

REFERENCES

Gasiunas:2017:FBA

Gaudiot:1985:PES

Geist:2002:PVM

Genter:1986:UVM

Garzon:1992:DTG

Ganapathi:1982:RCC

Mahadevan Ganapathi, Charles N. Fischer, and John L. Hennessy. Retargetable compiler code generation. ACM Com-
puting Surveys, 14(4):573–592, December 1982. CODEN CMSVAN. ISSN 0010-4892. See also [WNL+83, GHF83a, Fra83, GHF83b].

REFERENCES

REFERENCES

2016. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

References

Gec:2019:SAM

Gschwind:2017:OED

Gamage:2013:PRO

Gaspar:2008:RVC

Guerrero:2018:MOO

REFERENCES

Gold:1984:KR

Ghumre:2012:ENC

Guo:2016:FNB

Gupta:2015:HER

Grimaud:1999:FTI

Gupta:2009:DE
REFERENCES

Gupta:2010:DEH

Garg:2017:CGA

Giacalone:1989:FSI

Golub:1993:MER

Guanciale:2016:PSM

REFERENCES

2016. CODEN JCSIET. ISSN 0926-227X (print), 1875-8924 (electronic).

[Gre10] David Green. The Sydney University SILLIAC. Web site, August 14, 2010. URL http://members.iinet.net.au/~dgreen/silliac.html. The SILLIAC was the first computer installed at Sydney University, and was operational from 1956 to 1968. The Web site links to the SILLIAC Emulator, a C program for Microsoft Windows.

REFERENCES

[Haletky, 2009] Edward Haletky. *VMware vSphere and virtual infrastructure security: securing the virtual environment*. Prentice-Hall, Up-
REFERENCES

Hamlet:1976:PBT

Hammersley:2007:PVS

Hansen:2005:IJP

Hand:2016:TPH

Hartmann:1977:CPC

Hulaas:2008:PTL

[A2008] Jarle Hulaas and Walter Binder. Program transformations for light-weight CPU accounting and control in the Java Virc-
REFERENCES

Mark Huang, Andy Bavier, and Larry Peterson. PlanetFlow: maintaining accountability for network services. *Operating
Huang:2012:VAJ

Hankendi:2017:SCS

Huang:2018:PSC

Hizver:2014:RTD

Hansen:2007:ETT

Hale:2016:EHP

REFERENCES

Hines:2009:PCL

Hu:2008:SVO

Heege:2007:ECC

Herrod:2006:FVT

Herrod:2010:SRD

Hendricks:1979:EVM

Ho:2005:DPD

REFERENCES

REFERENCES

REFERENCES

[Hoque:2016:AAT] Endadul Hoque, Hyojeong Lee, Rahul Potharaju, Charles Killian, and Cristina Nita-Rotaru. Automated adversarial test-

REFERENCES

REFERENCES

[Ha:2017:PPE] Tuan Minh Ha, Masaki Samejima, and Norihisa Komoda. Power and performance estimation for fine-grained server power capping via controlling heterogeneous applications. ACM Transactions on Management Information Systems
REFERENCES

(HMIS), 8(4):11:1–11:??, September 2017. CODEN ?? ?? ISSN 2158-656X.

Hu:2017:TFC

Hong:2017:FFF

Hong:2017:GVS

Hsu:2001:CAS

Hagiya:1998:NMD

He:2019:PEL

Meyer:2008:PVD

Hu:1990:RTC

Heiser:2006:VMM

Hwang:2014:MFG

Herbordt:1993:EEA

Hume:2015:SCS

Tom Hume and Des Watson. Short communication: Is superoptimization viable for VM instruction sets? *Software—*
REFERENCES

Hu:2003:DJV

Huang:2016:BKB

Hand:2007:HVX

Huang:2018:TBI

Hao:2016:IRO

He:2014:DRC

Ligang He, Deqing Zou, Zhang Zhang, Chao Chen, Hai Jin, and Stephen A. Jarvis. Developing resource consoli-
REFERENCES

Iancu:2014:CPV

IBM:1985:VM

IBM:1988:VMSa

IBM:1994:CGN

IBM:1996:CAM

Ibsen:1984:PVM

REFERENCES

IEEE:1990:PSN

IEEE:1991:PIC

IEEE:1992:PSM

IEEE:1993:PSI

IEEE:1993:PSP

IEEE:1996:HCV

IEEE:1997:HCI

IEEE:1999:HCS

IEEE:2001:EIW

IEEE:2002:WII

IEEE:2003:IIW

IEEE:2004:FIA

IEEE:2005:PAC

IEEE:2006:PIS

REFERENCES

Infante:1975:PSP

Inouchi:1993:PTI

Isci:2013:AEV

Iacobovici:1987:VSP

IBM:1988:VMSb

ISO:2005:IIIa

[IT86] Y. Ishikawa and M. Tokoro. A concurrent object-oriented knowledge representation language Orient 84/K: its features

REFERENCES

REFERENCES

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

REFERENCES

Jin:2017:WCM

Jia:2015:DRA

Jia:2018:OSN

Jiang:2012:UNG

Jin:2010:GTF

REFERENCES

REFERENCES

[Kamga:2013:CFE]

[Kao:2017:TEF]

[Karcher:2007:VDX]

[Kumar:2014:DLB]

[Kunjir:2017:TAM]

[Kim:2011:PAP]

REFERENCES

Kelem:1991:SMV

Klein:2012:RVM

Klappheck:2000:BLE

Kannan:2017:HDH

Knodel:2016:MLR

REFERENCES

Krsul:2004:VPM

Karnagel:2017:AWP

Khnaser:2009:VVC

Kang:2016:MPV

Kim:1984:EVM

Kissell:2008:TCV

REFERENCES

[209]

Kalibera:2013:RBR

Kim:2016:DOF

Kim:2011:XEC

Kim:2015:PMS

Kim:2007:VPR

Kobayashi:1979:SMC

REFERENCES

Kertesz:2014:ISA

Kim:2016:SCD

Kim:2014:VPT

Kim:2013:DBC

REFERENCES

Kim:2014:VAM

Kokkinos:2016:SLM

Kawahito:2013:IRF

Koksal:2012:CC

Kawai:2017:VWD

Kocoloski:2013:ICN

Kong:2014:SGE

Kyle:2015:ADA

Kuo:2018:DCV

Kiefer:2013:SIP

Kimovski:2018:DEE

REFERENCES

REFERENCES

Kundu:2012:MVA

Kroeker:2009:EV

Kanizo:2017:OVB

Karger:2008:VVM

King:2008:GEI

Kelbley:2010:WSR

Kaufmann:2013:SCO

Kesavaraja:2018:QEC

Kong:2008:PTD

Kavvadia:2015:EVM

Keller:2010:NVC

[Lam75] M. Lamming. LITL virtual machine. fixed or variable size blocks. Technical Report QMW-DCS-1975-085; QMW-DCS-
Larisch:2009:PMH

Lau:1987:OCV

Laverick:2010:VVI

Lawton:2000:PVM

Liang:1998:DCL

Lin:2012:UKT

REFERENCES

Lagar-Cavilla:2011:SVM

Lin:2005:VMB

Lange:2011:SSV

Lv:2012:VCV

Loveland:2008:LVO

Li:2014:MHD

Ludwig:2018:TPC

Lee:1986:DSE

Lee:2016:ACS

Lesser:1974:DEP

Lopez:1994:ICI

Loyot:1993:VVM

Li:2018:HVM

REFERENCES

Li:2014:SCA

Lameed:2013:MAS

Lee:2016:HSC

Liu:2006:HPV

Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. High performance VMM-bypass I/O in virtual machines. In USENIX [USE06], page ?? ISBN 1-931971-44-7. LCCN ???

Li:2014:LSD

Liang:2005:DLM

REFERENCES

REFERENCES

Lee:2017:PEH

Liu:2008:PBH

Li:2012:GCV

Liu:2014:MGR

Leung:1998:DGD

[LLZ18] Xi Liu, Weidong Li, and Xuejie Zhang. Strategy-proof mechanism for provisioning and allocation virtual machines in heterogeneous clouds. *IEEE Transactions on Parallel and Distributed Systems*, 29(7):1650–1663, July 2018. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (elec-
REFERENCES

References:

REFERENCES

Lowe:2011:MVV

Loyot:1992:VVM

Lombardi:2011:SVC

Lee:2014:GSB

Lopez-Pires:2017:MOV

Lopez-Pires:2018:VMP

REFERENCES

REFERENCES

[LSS04] David E. Lowell, Yasushi Saito, and Eileen J. Samberg. De-
virtualizable virtual machines enabling general, single-node,
online maintenance. ACM SIGARCH Computer Architecture
ISSN 0163-5964 (ACM), 0884-7495 (IEEE).

[Li:2012:VMP] Wubin Li, Johan Tordsson, and Erik Elmroth. Virtual ma-
achine placement for predictable and time-constrained peak
loads. Lecture Notes in Computer Science, 7150:120–134,
2012. CODEN LNCS-D9. ISSN 0302-9743 (print), 1611-3349

[Luckow:2017:HTP] Kasper Søe Luckow, Bent Thomsen, and Stephan Erbs Kor-
sholm. HVMTP: a time predictable and portable Java Virtual
Machine for hard real-time embedded systems. Concurrency
and Computation: Practice and Experience, 29(22):??, November
25, 2017. CODEN CCPEBO. ISSN 1532-0626 (print),
1532-0634 (electronic).

[Lin:1992:IES] Jim-Min Lin, Shang Rong Tsai, and Li-Ming Tseng. Inte-
grating existing software packages using the virtual machine
218, July 1992. CODEN JSSODM. ISSN 0164-1212 (print),
1873-1228 (electronic).

[Liu:2014:PAC] Xiaodong Liu, Weiqin Tong, Xiaoli Zhi, Fu ZhiRen, and
Liao WenZhao. Performance analysis of cloud computing
services considering resources sharing among virtual ma-
2014. CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484

REFERENCES

Lyons:2013:SFF

Lin:2015:SGU

Li:2017:AET

Liu:2010:VMF
REFERENCES

Li:2016:VMT

Li:2014:VSK

Luo:2016:OMM

Lindholm:1997:IJV

Lindholm:1997:JVM

Lindholm:1999:JVM

Lindholm:19xx:JVMa

Tim Lindholm and Frank Yellin. *The Java Virtual Machine*. GOTOP Information Inc., 5F, No.7, Lane 50, Sec.3 Nan Kang
REFERENCES

Lindholm:19xx:JVMb

[LYxxb] Tim Lindholm and Frank Yellin. The Java Virtual Machine. GOTOP Information Inc., 5F, No.7, Lane 50, Sec.3 Nan Kang Road Taipei, Taiwan; Unit 1905, Metro Plaza Tower 2, No. 223 Hing Fong Road, Kwai Chung, N.T., Hong Kong, 19xx. ISBN ???? LCCN ???? ???? Chinese translation by Thi Shiang Workshop.

Lindholm:2013:JVMa

Lindholm:2013:JVMb

Lindholm:2014:JVM

Liu:2018:CAL

REFERENCES

<table>
<thead>
<tr>
<th>Ref</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
</table>
McDougall:2010:VPP

Modi:2017:VLS

MacKinnon:1979:CVM

Muller:2007:VMS

Mann:2015:AVM

Mann:2015:RRE

REFERENCES

REFERENCES

CS-1986-034, University of Massachusetts, Amherst, Computer Science, December 31, 1986.

REFERENCES

REFERENCES

Meyer:1997:JVM

Meyer:19xx:JVMb

Marr:2012:IUM

Matthews:2008:RXH

Morris:1972:SMO

REFERENCES

Migliardi:1998:DRV

Maxim:1987:TPA

Mengant:2003:NBJ

Morimoto:2008:WSH

Morimoto:2009:WSH
REFERENCES

Medina:2013:SMM

Makowski:2019:EVT

Montella:2017:VCB

Matthys:2005:IVE

Mzaik:1993:SPA

Muller:2006:SVP

[MJW+06] Al Muller, Andy Jones, David E. Williams, Stephen Beaver, David A. Payne, Jeremy Pries, and David E. Hart. *Scripting VMware Power Tools: Automating Virtual Infrastructure*

REFERENCES

Meleshchuk:1991:IPP

McAuley:2003:CVC

Masdari:2016:OVM

Mitsuishi:2014:ABF

Machida:2014:JCT

McGhan:1998:CPP

REFERENCES

Montague:1997:JEJ

Moore:2001:EFJ

Meloni:2018:CBI

Muir:2006:POP

Mylopoulos:1991:IPT

Miller:2004:CLI

REFERENCES

REFERENCES

REFERENCES

Mebane:1992:EFD

Maessen:2001:PAS

Ma:2012:DTD

Ma:2014:DBV

Matsuhashi:2012:TVF

Mashimo:2018:VMS

Susumu Mashimo, Ryota Shioya, and Koji Inoue. VMOR: Microarchitectural support for operand access in an inter-

References

Maslak:1991:CRR

Ma:2015:SDS

Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tiani Xu, Zhicheng Yao, Yun Chen, Haibin Wang, Lixin Zhang, and Yungang Bao. Supporting differentiated services in computers via programmable architecture for resourcing-on-demand (PARD). *ACM SIGPLAN Notices*, 50(4):131–143, April 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Menon:2005:DPO

Menon:2009:TSA

Merrifield:2016:PIE

MERRIFIELD:2017:PIE

MUHLBACHER:1975:GIF

MURGEN:2006:VHP

MARZ:2016:RPC

MUNAWAR:2005:BPB

MIAO:2018:VMA

Muller:2005:VVE

Mihajlovic:2014:DIQ

Nikolaev:2011:PXF

Nance:2008:VMI

Nathan:2016:SRO

Nelson:2004:CDC

Ng:2001:VEWa

Ng:2001:VEWb

Noll:2013:OFD

Noshy:2018:OLV

Nieh:2012:CBR

Namjoshi:2010:NOP

January 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

[NSL+06] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel Virtualization Technology: Hardware support for efficient processor virtualization. Intel Technolog-
No:2016:MMC

Nam:2017:JNE

Nagy:2018:NVI

Nieh:2005:ETO

Oaks:2014:JPD

Ouarnoughi:2016:ICP

Odette:1987:CPF

OLoughlin:2016:SVM

Oglesby:2005:VES

Oi:2005:DLV

Oi:2006:IFH

Oi:2008:LVA

Osisek:1991:EIA

Ozgur:1990:SON

Ouyang:2013:PTS

Ouyang:2016:SUV

Oliveira:2015:ORE

Ortin:2009:EVM

Osborne:2001:PC

Omote:2015:IAE

Ostrand:1994:PIS

OConnor:1997:PJV

Ost:2012:EAT

Parziale:2008:ZVL

REFERENCES

Porter:2012:RLT

Pelleg:2008:VBD

Pickartz:2018:PCV

Piraghaj:2016:VMC

REFERENCES

Pfoh:2013:LDV

Paulraj:2018:RAV

Popek:1973:FRV

Popek:1974:FRV

Payer:2011:FGU

REFERENCES

Parson:2005:OOD

Petrides:2012:HPD

Picht:2009:XKI

Ponraj:2019:OVM

Pountain:1990:SPP

Paulo:2016:EDD

REFERENCES

Parri:2011:RCPa

Parri:2011:RCPb

Payne:2007:LAS

Pfefferle:2015:HVF

Padala:2007:ACV
REFERENCES

REFERENCES

Padala:2007:PEV

Qian:1999:FSJ

Quetier:2007:SCF

Quynh:2006:RTI

Qiang:2016:SCF

Russell:2002:SCI

REFERENCES

ReFerre:2006:VIS

Rayns:2013:CJS

Rajaraman:1979:PPV

Ramsdell:1993:RVP

Raner:2002:LJV

Russell:2001:HSA

REFERENCES

REFERENCES

REFERENCES

Robinson:2016:CCM

Roh:2017:JFV

Radhakrishnan:2016:ECC

Rottenstreich:2017:MDN

Ren:2016:SMO

REFERENCES

REFERENCES

REFERENCES

41:??, April 2015. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic).

REFERENCES

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

Singh:2015:TVC

Sotiriadis:2017:VMC

Sani:2014:PDF

Shen:2017:DAV

Shen:2018:RDM

Schuh:1990:PRI
REFERENCES

Schmeisser:2013:MOE

Schneider:2013:FVM

Simpkins:1993:AVM

Shi:2012:VGA

Sarkar:2001:HPS

Shi:2016:PPA

[SDD+16] Xiaoyu Shi, Jin Dong, Seddik M. Djouadi, Yong Feng, Xiao Ma, and Yefu Wang. PAPMSC: Power-aware performance

Staples:2019:SAB

Salimian:2016:AFT

Seth:2013:UJV

Spinellis:2009:BA

Schmidt:2010:VSB

Soundararajan:2010:CBS

REFERENCES

[Sig89] J. Signorini. How a SIMD machine can implement a complex cellular automaton? a case study: von Neumann’s 29-state
cellular automaton. In ACM [ACM89], pages 175–186. ISBN

Sivakumar:2007:CCA

Song:2017:EPU

Salehi:2014:RPB

Shi:2012:TSW

Sem-Jacobsen:2013:ELC

Shen:2017:SLC

Sailer:2005:BMB

Shi:2013:AGC

Salkeld:2013:IDO

Sanchez:2013:ZFA

Sudevalayam:2013:AAM

Sitton:1973:PEL

REFERENCES

Suneja:2017:SIL

Song:2017:HBA

Skrien:2001:CST

Suzuki:2016:GGV

Shyu:2000:APV

Szefer:2012:ASH

REFERENCES

CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic). ASPLOS ’12 conference proceedings.

REFERENCES

REFERENCES

304

REFERENCES

REFERENCES

REFERENCES

Saltzer:1975:PIC

Shih:2005:ICA

Salimi:2013:BSC

Soundarajan:2017:SFC

Stark:2001:JJV
LCCN QA76.73.J38 S785 2001. US$49.95. Includes CD-ROM with the entire text of the book and numerous examples and exercises.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Simão:2013:ADQ

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Sebes:1993:MAL

Sugerman:2001:VDV

Scott:2010:SLV
REFERENCES

Shuo:2012:PKR

Song:2014:AFB

Sohrabi:2017:EEA

Syropoulos:2007:PMV

So:1988:PLV

Stolyar:2013:LSS

REFERENCES

REFERENCES

Tu:2014:PPP

Tian:2018:MTE

Thiruvathukal:2010:VCS

Thompson:1968:PTR

Thomas:1993:PIS

REFERENCES

REFERENCES

REFERENCES

References

Tsai:1993:LMM

Tamm:1996:LBV

Tan:2019:VMC

Tu:2013:SDS

Thanh:1982:ITC

Turek:1984:IDV

Taheri:2017:VBB

Ungar:1998:PNC

Unger:1982:OSZ

Uhlig:2006:F

Uhlig:2007:MKS

Uhlig:2005:IVT
Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, Andrew V. Anderson,

REFERENCES

REFERENCES

Ureche:2013:MIS

Unnikrishnan:2013:RDP

Vachon:2006:DBV

Vaghani:2010:VMF

Vanhelsuwe:1998:BRJb

VanHensbergen:2006:PRP

vanDoorn:2000:SVJ

vanDoorn:2006:HVT

vanderKouwe:2009:PQV

Villadeamigo:1997:EES

Visegrady:2014:SCV

Venstermans:2006:BVB

Venstermans:2007:JOH

REFERENCES

REFERENCES

Vallee:2006:OTX

Victor:2010:OSS

Varadharajan:2014:CSA

Venkatesan:2016:SCA

Verboven:2013:BBS

Vissicchio:2017:SUH
Stefano Vissicchio, Laurent Vanbever, Luca Cittadini, Geoffrey G. Xie, and Olivier Bonaventure. Safe update of hybrid

[Varman:2008:SVP]

[Wakeling:1999:CLF]

[Wal76]

[Walters:1999:VVP]

[Waldspurger:2002:MRM]

[Waldspurger:2010:VEM]
REFERENCES

optimises tail recursion. Research Paper 156, Department of
AI, University of Edinburgh, 1980.

VMware workstation*. No Starch Press, San Francisco, CA,

[War05] Steven S. Warren. *The VMWare Workstation 5 Handbook*
Charles River Media, Hingham, MA, USA, 2005. ISBN 1-
58450-393-9. xvii + 334 pp. LCCN QA76.76.O63 W3665
2005010053.html.

Greene and Rosenblum win Computer Entrepreneur Award;
dozens of new CSDP and CSDA holders named. *Computer*,
(print), 1558-0814 (electronic).

[Wat86] Paul Watson. *The Parallel Reduction of Lambda Calculus
Expression*. PhD thesis, University of Manchester, July 1986. 133
pp. Also available as UMCS-87-2-1.

[Wat87] Paul Watson. *The Parallel Reduction of Lambda Calculus
Science Department, February 1987. URL http://www.cs.man.ac.uk/csonly/cstechrep/Abstracts/UMCS-
87-2-1.html; mailto:techreports@cs.man.ac.uk.

[WB81] Richard T. Wang and James C. Browne. Virtual machine-
based simulation of distributed computing and network com-
puting. In ACM [ACM81], pages 154–156. ISBN ????. LCCN
????

REFERENCES

REFERENCES

Williams:2016:EEH

Wagelaar:2012:TSC

Wilson:2001:UVD

Wills:2006:PVC

Wang:2015:DAA

Wang:2010:HLA

REFERENCES

REFERENCES

[WN17] Xiaohan Wei and Michael J. Neely. Data center server provision: Distributed asynchronous control for coupled renewal

Winterbottom:1997:DIV

Wang:2015:HRR

Warnke:2007:QVC

Warnke:2008:QVC

Waldspurger:2012:V

Wang:2013:VPD

REFERENCES

Wood:2009:MBE

Win:2018:BDB

Wu:2013:HSC

Wang:2018:ECM

Wunschiers:2013:CBP

Wang:2017:UBI
Wang:2017:SMC

Wilding-White:1977:MBI

Wang:2016:DMB

Wurthinger:2017:PPE

Wang:2017:RLW

REFERENCES

Weng:2015:TEI

Wang:2013:JVM

Wang:2011:SHS

Xie:2014:DIP

Xu:2016:SHS

Xu:2017:HAE

Xie:2015:PDC

Xu:1990:HMD

Xu:2016:SER

Xing:2015:OIB

Xiao:2013:VMP

Xu:2015:RSV

References

REFERENCES

Yang:2019:IRT

Yuan:2018:ASP

Yelland:1999:CAJ

Yu:2006:FWV

Yan:2012:VCH

Yamada:2013:TFT

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). VEE ’13 Conference proceedings.

Yang:2017:EJV

Yamanaka:2016:TFF

Yang:2017:VMM

Yang:2014:ICV

Yan:2017:CAE

Yang:2014:MMG

Ye:2010:EES

Yi:2017:CDC

Yang:2014:IGV

Yang:2005:LMJ

Yoginath:2015:EPD

[YP15] Srikanth B. Yoginath and Kalyan S. Perumalla. Efficient parallel discrete event simulation on cloud/virtual machine plat-

Yu:2013:OSI

Yi:2018:CSN

Yao:2014:GFT

Yang:2017:RVM

Yi:2015:ESF

Yehezkel:2001:TST

[YYPA01] Cecile Yehezkel, William Yurcik, Murray Pearson, and Dean Armstrong. Three simulator tools for teaching computer ar-

[YZLQ14] Hailong Yang, Qi Zhao, Zhongzhi Luan, and Depei Qian. iMe-

Zhao:2005:SSV

[XBP05] Xin Zhao, Kevin Borders, and Atul Prakash. SVGrid: a secure virtual environment for untrusted grid applications. In ACM [ACM05b], pages 1–6. ISBN 1-59593-269-0. LCCN ????

Zhao:2007:UVM

Zou:2015:CDA

Zhang:2017:CAV

Zeuch:2019:AES

Zhang:2017:MAP

Zamorano:2013:ART

Zeng:2015:PPH

Zhang:2018:LFV

Zaman:2013:CAB

Zimmermann:2006:AHM

Alexander Zimmermann, Mesut Günes, Martin Wenig, Jan Ritzerfeld, and Ulrich Meis. Architecture of the hybrid MCG-mesh testbed. In ACM [ACM06c], pages 88–89. ISBN 1-59593-540-0. LCCN ???.

Zhang:2015:LOS

Zhang:2017:NAV

Zhou:2016:VMP

Zhou:2010:VN

Zhang:2017:OAI

Zimmer:2005:VMV

Zimmer:2006:VSV

Dennis Zimmer. *VMware Server and VMware Player: [Installation, Anwendung und Konfiguration; Konzeption und Einsatzmöglichkeiten; virtuelle Maschinen erstellen und nutzen]*.

REFERENCES

REFERENCES

REFERENCES

Zhang:2005:ILS

Zhang:2006:SPV

Zhang:2007:DIB

Zhu:2017:VLV

Zou:2014:VOV

Zhang:2019:EAV

Zhou:2017:NFA

Zhang:2017:CBV

Zhao:2009:DMB

Zhao:2018:PAP

REFERENCES

[ZXW16]

[ZXW16]

[Zhou:2018:VMM]

[Zyt94a]

[Zyt94b]