A Bibliography of Publications about Virtual Machines

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
 beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

18 April 2019
Version 1.322

Abstract
This bibliography records books and other publications about virtual machines.

Title word cross-reference

$32.95 [Ano97a]. 5 [ALW15]. T^M [Cza00]. TP [LTK17]. d [XDS15]. HV^2M
[CBZ’16]. w [Arv02]. II [Syr07]. V^2 [DG05].
-dienste [WF03].
.NET [Fra06, Fra09, Hee07, Hog06, Hog08, Men03].
/CLI [Fra06, Fra09, Hee07, Hog06, Hog08, Siv07, Wil06]. /dev/random
[Fer11].
0 [Sim92, SCP93]. 0.9.0 [WR07]. 0.9.1 [WR08]. '01
[Ano00, Ano01a, Ano01b, USE01c, USE01d]. '02 [USE02]. '03
[ACM03b, Ert03]. '04 [Ano04a, Ano04b]. '05 [ACM05d, Vra05].

1 [Pul91, Sch94a, WDSW01]. 1x [KGG90]. '10
[Ano10, See10, VSC +10]. 10.0 [Bau06b]. 10GE [HB12]. 11 [Ham76, PK75a].
11/40 [GBO87]. 1100 [Kam75]. 11th [ACM94a]. 12th [IEE95]. 14-16
[ACM96f]. 18 [Ano06a]. 1.x [KGG90]. '10
[Ano10, See10, VSC +10]. 10.0 [Bau06b]. 10GE [HB12]. 11 [Ham76, PK75a].

2 [Bri98, Com00, Com03, Kis08]. 2-Level [ZSR +05]. 2.0
[Fra93, Ng01a, SUN97]. 2000 [ACM00]. 2001 [ACM01b]. 2003
[RM03, ACM03a, ACM03b, EIE03, Int05a]. 2004 [ACM04a, ACM04b]. 2005
[ACM05a, ACM05b, ACM05c, Wil06]. 2006
[ACM06c, ACM06b, ACM06d, EIE06b, IE06a, Int06b, Int06c, Int06a]. 2008
23272 [Int05b]. 26th [ACM99]. 29-state [Sig99]. 2nd [Ano02].

3 [McC08, PO09, vdK09]. 3.0 [MRGB91]. 3.1 [Bau90a, Skr01]. 3.5
[Fra93, Hog08]. 32 [Ano14b]. 32-bit [VED06]. 335
[ECM01, ECM02, ECM05, ECM06]. 360 [Kam75]. 360/40 [ABCC66]. 370
[Att79, Bar78, Ber86, Cal75, GLC84, Gum83]. 37th [ACM96d]. 390
[DBC +00]. 3rd [ACM95b, ACM96e, Ano04a].

4 [Gal99b, G+06, Lav10, Low99, NOK+85]. 4-7 [M+06]. 40 [GBO87]. 43rd
[ACM96a]. 440 [R+02]. 4th [USE00a].

5 [IEEE92, War05]. 5.2 [P+08]. 5.5 [Bau96c, LMG+14]. 5G [CM18]. 5L
[Mly09].

6000 [ABD+91]. 64 [De96, Don96]. 64-bit [VED06, VED07]. 6th
[USE01b].

7 [HH98]. 7th [Tho93].

8 [LYBB14, She02]. 80 [BMWB86, BSUH87]. 84 [IT86]. 84/K [IT86]. '89
[ACM89].

'90 [IEE90b]. 9000 [ADG +92]. 91 [MR91]. '92 [IEE92]. '93
[GGH+93, IEE93b, LFBB94]. '96 [ACM96]. '99 [ACM99, USE99].

A-DRM [WIS +15]. A.NET [Men03]. Aachen [GHH +93]. AADebug
American [Boa90]. among [CDN02, LLF+18, LTZ+14, TtLcC13]. amplifying [DP11]. Analogy [Gai75]. analyses [HB13]. analysing [PV06]. Analysis [ACM05a, BFG+14, HT98, HB17, HWB03, JKK+13, KNT02, LCK11, MM93, NMS+14, Ost94, RI00, SM02, TKG89, WH99, WLS+18, ACM01a, AAh+03, BFM09, BMER14, EMS15, FX06, GP13, GPW03, LTZ+14, MD73, MD74, MSG01, RRB17, SMSB11, TLX17, Wüh13, YJZY12, DHPW01]. Analysis-Driven [ACM05a]. analytic [Bar78]. analytics [KB17]. Analyzer [Ano03a, SHLJ13]. Analyzing [CVWL13, PV08, ZDK+19]. Android [CXLX15, KLF+15, MMP+12, STY+14, THC+14]. Angeles [ACM06c, IEE84b]. Animated [PCR89]. annealing [RH17]. Annotated [MR04, RSF03]. annotation [ANH00]. annotation-aware [ANH00]. Announcement [Ano00]. Annual [ACM06a, Ano10, IEE85, IEE05, MS91b, Shr89, USE00a, USE01a, USE06, ACM06a]. anomalies [FRM+15]. anomaly [MW18, SIK+16]. Ant [AAK18, AP18, GGQ+13]. Antfarm [JADAD06a]. Anti [Sta07]. Anti-P2P [Sta07]. Antonio [ACM99, USE01b]. Anwendung [Bec09, Bor01, WF03, Zim06]. Any [WL96, FIF+15]. AOT [WKJ17]. APA [JNR12]. Apache [FRM+15]. apart [LBF12]. API [AAn14c]. APL [Alp91]. applets [Wes98]. Appliance [See10]. Appliances [BRX13, AEMWC+12, BSM+12]. Application [AW17, CHW12, cCWS14, Cza00, HMH17, KNT02, KLF+15, LWC+17, MD73, MD74, PCW+16, TB17, AS14, BBS06, IBM88, Int88, IBM96, JSK+13, JCZZ13, JDJ+06, Kga09, Lia05, LBF12, LLS+08, MRGB91, SE12, SWCM12, SASG13, SL00, ZSO1, ZBG+05]. application-specific [ZSO1]. Application-transparent [AW17]. Applications [Ano99b, Ano03a, BAL15, Boa90, DJS+17, FBL18, HHV+02, HSK17, HC17, IEE05, JW17, NKK+06, Pfo13, PY93, SS05, TR88, WLS+18, AS76, Alp91, AC16, AB16, ACT94, ABC+07, BD11, BTLNB+15, BOF17, DM18, DBC+00, EF94, EMS15, GHD12, GTN+06, GH+03, HKS19, HcC14, HKD+13, HSC15, JPT+94, KRG+12, LCLK+14, MCC18, dOL12, PTM+15, R+13, RSLA+16, Sch13b, SGV12, SZ88, TDG+18, WDCL08, YGN+06, ZB05, ZNSL14]. Applicative [AS85a, Abr82, AS85b]. applied [MM92]. Approach [BFG+14, BRX13, CPM17, CLW+14, Cox09, DPCA11, DM75, EMAL17, FPP+02, Jen79, JQWG15, KC16, KAH83, NS12, SDD+16, VN06, WJ10, WVT+17, XD17, ZTWM17, BML+13, BHvR05, CGL+08a, CGL+08b, CGL+08c, CBZ+16, CKP+19, GLLJ16, KW13, KKB14, LH13, LU04, MD73, MD74, PSC+07, Pon19, SENS16, TDK17, XHCL15]. Approaches [BAL15, FMIF18, JK15, TIIN09]. Appropriate [ZRS+16]. apps [MMP+12]. April [Ano01b, IEE84a, USE01c]. Arbitration [SKJ+17]. architectural [TZB19]. Architectural [DCP+12, JR02, NMHS15, PEC+14, SL12, CFS+12, DLL+16, RJV+01, WLL+13]. Architecture [BBD+91, BKMM87, BDR+12, CAF+91, DAH+12, F+05, Gol73, Gum83, HW93, Hsu01, HWCH16, IEE85, KZB+90, Kuc77, LG00, LG01, LGR14, MSS+15, PCC+16, PK75a, Rev11,
Architectures-aware [WIS+15]. Architecture (R) [MBBS13]. Architectures [ACM06b, BN75, EMAL17, EG01, HW93, HHK94, Ian14, PG74, PY93, RD90, BGS13, DM93, EMI13, KMG+18, PG73, Skr01, YZW+13, ZP14].

Architektur [Dal97]. Area [BFG+14, Fis01]. Arizona [IEE05]. ARM [DN14, DLL+16, GNDB16, MGL+17, ZTWM17]. Aroma [Sur01]. Arquillian [Ame13]. Array [MBK+92, SV15]. Arrivals [KMM13]. Art [BGP00, SGB+16, AEB19, BDF+03, MDD+08]. Artificial [MR91, TVO92, BCM90, IM93, KCV11, RK16]. arts [BB08]. as-a-Service [ESY+17, HPHV17]. aspect [BADM06]. Aspects [Hsu01, Kna93, EF94]. assembler [GBO87]. Assembly [BD01, SVB93, Don88, Jno07]. Assembly-Language [SVB93]. assignment [AAM+16, KMT14, WZV+13]. Assisted [CCML12, JSHM15, JAS+15, RTL+18, AJH12, AEB19, GMK17, ZYZ+18]. Assists [OLZ+16]. Assurance [LJZ12, LLW+12]. Assuring [YDW18]. AST [ZLB+14]. asymmetric [CBG+12, KKJ+14]. Asynchronous [Cav93, LL+11, MM93, RZPX19, SM01, WN17, vLSM01]. Atlanta [USE86, USE00a]. ATMS [CGW00]. atomicity [BHSB14]. attached [Mon97]. Attackers [CLS07]. Attacks [SL16, SYB12, TV12, WWL+17, GHD12, VT14, WXW15]. Attestation [ZL16, VT14]. attribute [FS89]. Auction [SZW+16, TVKB16, ZG13, ZLH+15]. auction-based [ZG13]. Auctions [ZH+17]. Auditing [SM90]. aufsetzen [RHM08]. augment [Bri98]. August [RM03, IEE96a, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IE02, IE03]. Australia [MR91]. Author [DM76]. automata [RGAT18, RT18, TLX17]. automata-based [RGAT18, RT18]. Automated [AD18, ACM05a, Ano03b, BSSS14, HLP+16, FGLI15]. Automatic [MS00, SMES01, SMA+10, Sus76, WML02, ZLZ13, CL17b, MSZ09]. Automating [MJW+06]. Automation [ACM06a]. automaton [Sig89]. autonomic [SWC08, WDL08]. Autonomous [SC17]. availability [AAD+09, Fu10, LDL+08, MRC+13, YLH14]. Available [Ano03b, GI12, GI13]. avatar [CKT08]. average [LDL4]. avionics [ABC+07]. Avoidance [LYS+18, OG16]. Award [War11]. Aware [AAK18, BMS16, BL17, CWH+16, CGC16, CWL+15, CYX+17, CHLY18, Do11, EGR15, HC17, HPP15, JJK+11, JQWG15, KL14, LMM18, Man16, RG17, SDD+16, TB17, XLL+14, XJ16, YLH17, ZCG+17, ZWL+18, dSdF16, ADA+19, AO16, AMAB17, ANH00, CD14, DXM+17, DCMW17, Fu10, GLK+12, GA18, HKS19, HSC15, HC12, IKU15, JNR12, KC16, KBB11, KCS14, KR16, KLF+15, LYY+18, LWL16, PFPJ18, RH17,
SSB+14a, SSN12, SGV12, SZL+14, SK13c, WIS+15, WCC+16a, WDT18, X CJ+14, YRJ18, ZHHC17, ZWC+19, ZWH+17. Awareness [ZHL16, LCL14]. Azure [Fab13].

Ballooning [LJL+15]. Baltimore [Ano93]. Band [ZSXZ07, PBYH08]. Bandwidth [LJFS17, YLH17, ZRS+16, BAC15, GLLJ16, LZW+15, WQG15, WXW15]. Bandwidths [LMM18]. Bare [AGH+16, OSK15, GAH+12]. Bare-metal [AGH+16, OSK15, GAH+12]. barrier [Rix08]. barriers [LM99]. Base [UOKT84, WH08]. Baseband [KWZ+19]. Based [AAK18, Bad82, BAL15, CWL12, CHW12, CLW+14, CD12, CDD13, DF96, GGG03, HKM+18, HWWH18, JN15, KP15, KA1314, LW11, LP14, LCT+15, LW12, LZW+17, MJW+14, MGL+17, OVT+12, PDS08, Ran02, RZX19, RWX+12, SJJ+05, SHZ+14, SKJ+17, TV12, WB81, WLS+18, YWR+14, YLN+17, ZQ16, ZXY+15, vLSM01, AD18, ABB19a, Ano96, Ano06a, AB16, ALL06, AM11, BD11, BL17, CL17b, CVWL13, CGL+08a, CGL+08b, CGL+08c, CWC+14, CBZ+16, CLC13, CPST14, CPST15, CGV10, CRG16, DP11, DC15, DPCA11, ES17, FS89, FLB10, FF96, FL13b, GTGB14, GDA+17, GR15, HOKO14, HWCH16, JWH+15, Kago9, Kam13, KS13, KRCH14, KKB14, KB16, KM13, KJM+07, KKJ+13, gKEY13, LMJ07, LBL16, LYY17, LY17, LLS+08, LC13, MCD18, MAP+18, MW18, Oi05, Oi06, Oi08, PFH+16, PGL12, QZDJ16, RGAT18, RH17, RT+18, SB14, SS13, SENS16]. based [SG10a, SGV13, SPF07, SV17, SCFP00, Sto07, TT96, TY14, VT14, Vog03, WKT08, WDC10, WXZ+17, WW77, XZ11, XZZ+16, WX+17, YC98a, YC98b, YZL14, YLCH17, YBZ+15, ZGL13, ZLH+15, ZWH17, ZAI+16, ZLL+16, dSOK17, vKF13]. basic [A+04]. basierende [Deu08]. Basis [Kar07]. Batch [KMM13, LD05, SS13]. Bathymetry [MMG+18]. Bay [Ano10]. Bayesian [LYYY17]. BCPL [Abr80, WW77]. BCPL-Slim [Abr80]. Be [Cox07]. beams [MC98]. Beautiful [SG09]. Bedienung [KG00]. beginner [RR99, Wes98]. Behavior [EG01, XWH+16, ZDLG17, CL14, LWB+15, Oi08, Wol99]. behavioral [CL17b]. Behind [Cra98]. Belgium [ACM04a]. Benchmark [DHPW01, GPW03, SMSB11]. Benchmarking [CGS06, RO16, AKH+15, FLM+08, KJ13, ZS01]. benchmarks [LJN+00].
6, CK06t, CK06r, CK06s]. Betriebssysteme [WR07, WR08]. Better
[MW05, Com00]. Between
[Jun79, KLLT18, ZLHD15, BDJdS02, CL17a, GSW+17, KGS16]. Beyond
[FPS+02, ACM04a]. Bias [Lee16], biased [ABDD+91]. Big
[GTI+15, MSG14, BOF17, DXM+17]. Billing [RB17]. Bin
[GR15, SXCL14, XDL15]. Binary
[KLF+15, ZFL15, dGG+17, HLW+13, JYW+13, PGLG12, vKF13]. BIND
[Sec00]. binding [KW13]. biodata [Wün13]. biogeography [ZLL+16].
[VED06, VED07]. Bitcoin [HB14]. BizOps [FBL18]. Black
[NMMP15, VVB13, TZK17, WSVY09]. black-box [TZK17, WSVY09].
Blessing [Kot10, Kot11]. Block [Sch94b, Sch94a, TLB12, Zyt94a, Zyt94b,
FFBG08, FLCB10, LLE17, TKG89, WF07]. block-device [FFBG08].
block-level [FLCB10]. block-paging [TKG89]. Blockchain
[CQLL18, DMH18]. Blocks [Lam75]. blows [BTMK+17]. Blue
[SSU+12]. board [CGV10]. Bochs [Ano14b]. bodies [AGIS94]. Bolton
[ACM03b]. Book [Ano97a, Fra13, Lii09, Van98, B+07, TC10, War02]. books
[Van98]. boost [CBZ+16]. boosting [AC16, LKY+17, PGLG12]. Boot
[NOT+17, SB16, DBO+18]. Bootstrapping [CBLFD12, Kam75]. BOS
[RP07]. Boston [IEE85, USE01a, USE06]. Both
[ZHL16]. Bottom
[UOKT84]. Bottom-up [UOKT84]. bound [JGA+88]. boundary [SBQZ14].
bounded [XHL+13]. Box
[NMMP15, TZK17, VVB13, WSVY09, XHCL15, MNS+14]. branch
[CEG07, EG03, JGA+88, JYW+13, WHC16]. branch-and-bound
[JGA+88]. branch-and-price [WHC16]. branches [KJM+07]. Breadth
[MNS+14]. Breaking [GBK15, Rix08]. breed [Arm98]. Bridge [Men03].
Bridging [ACMO4b, FL13a, GSW+17]. Brighton [Vra05]. bring [XKY+11].
Bringing [BD+12, STS+13]. brokering [TMMVL12]. browser
[FIF+15]. BSD
[WF03]. Buch [KGG00, Tho08]. buddies [WTLS+09]. Budget
[RBP17]. Budget-Driven [RBP17]. buffer [JADAD06b]. buffers [CFG+13].
Bug [Ano97b, Ano15]. Building [AAB+05a, CGM17, DBC+00, DF96,
HWCH16, PEC+14, SJ+05, See10, TSP17, Nie12, SG10b, WH08].
Burstable [WUNK17]. bursts [DP11]. bus [HHPV15]. Buying
[YLN+17, ZHL+15]. buying-based [ZHL+15]. BYOD
[DMG+15]. Bypass
[LHAP06]. Bytecode [MO98]. bytecodes [SUH86].

CK06q, CK06t, CK06r, CK06s]. Betriebssysteme [WR07, WR08]. Better
[MW05, Com00]. Between
[Jun79, KLLT18, ZLHD15, BDJdS02, CL17a, GSW+17, KGS16]. Beyond
[FPS+02, ACM04a]. Bias [Lee16], biased [ABDD+91]. Big
[GTI+15, MSG14, BOF17, DXM+17]. Billing [RB17]. Bin
[GR15, SXCL14, XDL15]. Binary
[KLF+15, ZFL15, dGG+17, HLW+13, JYW+13, PGLG12, vKF13]. BIND
[Sec00]. binding [KW13]. biodata [Wün13]. biogeography [ZLL+16].
[VED06, VED07]. Bitcoin [HB14]. BizOps [FBL18]. Black
[NMMP15, VVB13, TZK17, WSVY09]. black-box [TZK17, WSVY09].
Blessing [Kot10, Kot11]. Block [Sch94b, Sch94a, TLB12, Zyt94a, Zyt94b,
FFBG08, FLCB10, LLE17, TKG89, WF07]. block-device [FFBG08].
block-level [FLCB10]. block-paging [TKG89]. Blockchain
[CQLL18, DMH18]. Blocks [Lam75]. blows [BTMK+17]. Blue
[SSU+12]. board [CGV10]. Bochs [Ano14b]. bodies [AGIS94]. Bolton
[ACM03b]. Book [Ano97a, Fra13, Lii09, Van98, B+07, TC10, War02]. books
[Van98]. boost [CBZ+16]. boosting [AC16, LKY+17, PGLG12]. Boot
[NOT+17, SB16, DBO+18]. Bootstrapping [CBLFD12, Kam75]. BOS
[RP07]. Boston [IEE85, USE01a, USE06]. Both
[ZHL16]. Bottom
[UOKT84]. Bottom-up [UOKT84]. bound [JGA+88]. boundary [SBQZ14].
bounded [XHL+13]. Box
[NMMP15, TZK17, VVB13, WSVY09, XHCL15, MNS+14]. branch
[CEG07, EG03, JGA+88, JYW+13, WHC16]. branch-and-bound
[JGA+88]. branch-and-price [WHC16]. branches [KJM+07]. Breadth
[MNS+14]. Breaking [GBK15, Rix08]. breed [Arm98]. Bridge [Men03].
Bridging [ACMO4b, FL13a, GSW+17]. Brighton [Vra05]. bring [XKY+11].
Bringing [BD+12, STS+13]. brokering [TMMVL12]. browser
[FIF+15]. BSD
[WF03]. Buch [KGG00, Tho08]. buddies [WTLS+09]. Budget
[RBP17]. Budget-Driven [RBP17]. buffer [JADAD06b]. buffers [CFG+13].
Bug [Ano97b, Ano15]. Building [AAB+05a, CGM17, DBC+00, DF96,
HWCH16, PEC+14, SJ+05, See10, TSP17, Nie12, SG10b, WH08].
Burstable [WUNK17]. bursts [DP11]. bus [HHPV15]. Buying
[YLN+17, ZHL+15]. buying-based [ZHL+15]. BYOD
[DMG+15]. Bypass
[LHAP06]. Bytecode [MO98]. bytecodes [SUH86].

C [Fra06, Fra09, Hee07, Hog06, Hog08, Wil06, Blu02, CWW00, G+01, Hee07,
Hog06, Hog08, JMW08, Men03, Siv07, Wil06]. C# [G+01]. C/C [Blu02]. CA
[ACM06a, ACM06b, Ano97a, EEE84b, EEE93a, USE01c]. Cache
[JQWG15, NSP16, RHR02, Boz89, JADAD06b, O05, RJK16, ZP14, AMA18].
caches [BLRC94]. Caching [AMA18, KJL11, MM93, LM99, RXW+17].
Calculations [Bad87, Hol95]. Calculus [ABV12, Wat86, Wat87, WK90].
Calif [ACM01b]. California
[ACM05a, Ano01b, Ano04b, Ano10, IEE96a, IEE97, IEE99, USE91, USE99, USE01c, USE02, IEE84a, IEE90a, IEE91, Tho93]. **Call** [DEK+03, Lec16, PUL016, PVRR14, SSB+14a]. **Call-site** [SSB+14a]. **calling** [HB13, SSB+14a]. **calls** [VMBM12]. **Cambridge** [USE03]. **Can** [Cox07, GW07, THB06, Sig89]. **Canada** [ACM06f, So83]. **CAOS** [Sch86]. **Cap** [HC17]. **Capabilities** [TVO92, Ame13, AAB+05c, Fit14]. **capable** [PST+15]. **Capacity** [HMH17, WUK+18]. **capo** [SMSB11]. **Capping** [HSK17, JKK+13]. **Capture** [SCFP00, Sur01]. **Capture/Replay** [SCFP00]. **capturing** [BKC+13]. **Card** [Siv04, SUN97, HM01, Req03, JCV99]. **cards** [GLV99, TLBW12]. **carry** [Ame13]. **carrying** [FCG+05]. **Cascade** [YYL+15]. **cascading** [HL13]. **Case** [GGG03, HWB03, Ian14, PK75a, HIIG16, MN03, Sig89, SIRP17, Vit14]. **Case-Based** [GGG03]. **Cases** [FG91]. **Cassandra** [FRM+15]. **Catalyst** [Ano03a, GMK17]. **Categories** [Gai75]. **causes** [FRM+15]. **CBase** [ZLZ+19b]. **CCAP** [JQWG15]. **CCGrid** [TLC06]. **CD** [Joo06]. **CDN** [LYS+18]. **Cells** [DAH+12]. **cellular** [ALW15, Sig89]. **Center** [Ano93, Car14, CGC16, DY17, IEE90b, PCC+16, WN17, XWJX15, HUWH14, LZW+15, Man15b, MRM06, MMB09, NTH+17, VOS12, WDCL08, WZV+13, YPLZ17, ZLZ+19b, ZWH+17, Car13]. **Centers** [BB13, CL17a, EGR15, KMM13, LMM18, LVM16, Man15a, Man16, SH16, YL1H7, ZHL16, dSdF16, AGH+15b, AGH+15a, ATS16, AMAB17, ARMA18, BB12, FLL+13, IKU15, KTB17, LZC+16, PVRR14, Pon19, RK16, RH17, RT18, RJK+17, WCY+17, WTLS+09]. **centralized** [Fis91]. **Certain** [JHS12]. **Certified** [Kh09, IIPB09]. **CeU** [SIR+17]. **Chain** [EMAL17, HJG18, RH17]. **chain-based** [RH17]. **Chaining** [LLW+16, GHM+18]. **Chains** [JWL+18, KLLT18, NRS92]. **Challenges** [AFG+17, JW17, Nie12, SG10b, AEB19, CM18, FJKK17, LDDT12, MA10, MA17, PCB+18, THIN09]. **change** [ZL13]. **Changing** [Mac79]. **Channel** [LGR14, TTH+19, MN03, WXW15]. **Channels** [Hu90]. **Characteristics** [SHW+15, CWC+14]. **Characterization** [AMA+14, CGS06, IEE02, IEE03, ACM06c, RVJ+01]. **characterize** [LJN+00]. **Chatten** [Joo06]. **Cheat** [Rul07]. **checking** [BHSB14]. **checkpoint** [BBHL08]. **checkpoint/restart** [BBHL08]. **Checkpointing** [ECJ+16, PEL11, SGV12, TSLBYF08, dSOK17]. **checkpointing-enabled** [SGV12]. **Cherub** [JCZZ13]. **Chicago** [ACM05d]. **chip** [Mon97]. **Chips** [FRD+08, IEE97, IEE99, IEE96a]. **Choices** [XDSL15, Ano93]. **CICS** [R+13]. **circuit** [Bur02, KKC+16]. **Class** [LCWB+11, LB98, Pat12, SS17, Won97]. **classes** [Bor07, Skr01]. **classical** [SGS92]. **Classification** [VTWL16]. **CLI** [ECM01, ECM02, ECM05, ECM06, Int06b, Int06c, Int06a, Fra06, Fra09, Hee07, Hog06, Hog08, Sig07, SNS03, Vos03, Wil06]. **CLI-based** [Vos03]. **Client** [RSW+06, DPW+09, HIIG16]. **CLIP7** [Lau87]. **Cloning** [LCWB+11]. **Closing** [ZLHD15]. **Cloud** [ASSB18, BB13, BHEP14, CWL12, CPKL17, CFM17, CPS17, DKW15, FBL18,
Continuum [Bad87]. Contraction [Par79].

Control [AGLM91, Att79, CL16b, HHC+16, LZ15, PSBG11a, RSNK17, RSN+18, Sch94b, Sch94a, SDD+16, Sur01, WJ10, WUK+18, WN17, WSAJ13, Zyt94a, Zyt94b, AS76, BKH+06, FP14, HB08, Kis08, KKS12, Lia05, PSZ+07, PSBG11b, PSC+07, STS+13, ZBG+05, ZSW+06].

Control-Flow [WJ10].

Controlled [KK79, Sto07].

Controllers [AMH+16, CWG00].

Controlling [HSK17, BKC+13].

Convection [BB95].

Convention [Ano93].

Converged [DPW+09].

Convergence [RM03].

Conversion [GBO87, IBM94, YTY00].

Convex [SJRS+13].

Cookbook [Car13, Car14, G+06, P+08, TH10].

Cooling [ARMMA18].

Cooperative [KJL11, GLLJ16].

Coordinated [BRX13, LZ15, CRB12, KKJ+13, NS07, BBMA91, MSS91].

Coordinating [ZNSL14].

Coordination [ABV12, CRG16, Tho93].

COOTS [USE99].

Copley [USE01a].

Coprocessor [LRZ16].

Copying [PV08].

CORBA [GCARPC+01].

Core [RTL+18, CMP+07, DQR+13, KW13, PNT12, SK13b, YTS14].

Corel [Ano03b].

Corner [Sch94b, Sch94a].

Correct [DM93, IM75, Kou11].

Correction [Lee16].

Correspondence [BDJdS02].

Cosmology [Nel04].

Cost [AMA18, AMH+16, HKS19, HKM+18, ADA+19, Dre08, KJM+07, LBZ+11, OMB+15, SJRS+13, WCY+17, YRJ18, ZLZ15].

Cost-aware [YRJ18].

Cost-effective [HKS19].

Cost-Efficient [AMA18, OMB+15].

Costs [ZHW+17, FLL+13].

Count [XWX+17].

Counter [NB11].

Counteracting [VT14].

Coupled [WN17].

Course [AL05, Don88].

Courses [BBS06, GD08].

Cover [Arm98].

Coverage [CSS+16].

Coverage-directed [CSS+16].

Covert [WXW15].

CPU [BSSS14, HBo8, JGW+11, Kam13, LWC+17, Skr01, SK13c, WGLL13].

Crash [KY16].

Create [Fit14].

Creation [CK06b, CK06e].

Credit [KP15, KCS14].

Credit-Based [KP15].

Crisis [AT16].

Criteria [ATS16].

Critical [WLM16, LWM14].

Crop [UBF+98, BDF+98].

Cross [GS+18].

Cross-ISA [WLW+15, WCC+16b, AW05, BKC+13, CWH+14].

Cross-Architectural [JR02].

Cross-Architecture [SWF16].

Cross-Platform [JXL+12].

Cross-run [AW05].

Cross-thread [BKC+13].

Crosscut [CLG+10].

CrossOver [Ano03b].

Cryptographic [QZDJ16].

Cryptography [RY10, VDO14].

CSDA [War11].

CSDP [War11].

CTO [Cre08a, Cre08b, Cre09, Cre10a, Cre10b].

CUDA [MGL+17, PRS16].

Current [AH12, RG05].

Curse [HB14, Kot10, Kot11].

Customer [PP014].

Customizable [LJFS17].

Customization [PCC+16, CGV10].

Customized [HB13].

CVM [DSC+08].

CyberGuarder [LLW+12].

DADTA [ZLCZ18].

DAI [AKK+07].

DAM [B+07].

Dana [Ano10].

Dancing [DLX+17].

Dark [Fer11].

Darling [MR91].

Dartmouth [Lee86].

Dartmouth-Smalltalk [Lee86].

Data
[BFHW75, BB13, CL17a, CGC16, DY17, EGR15, FL13a, GTS+15, IEE84b, KP15, LMM18, LVM16, Man15a, Man16, Nel04, PCC+16, SB16, UVL+13, WN17, Weh94, XWJX15, YLH17, ZHL16, dSdF16, AKK+07, AGH+15b, AGH+15a, ATS16, AMAB17, ARMM18, BK14, BB12, BDE+03, BOF17, CKRJ17, CFS+12, Cla05, DXM+13, GE85, GH91a, HN08, HUWH14, IKU15, KTB17, KJJ+16, KSLA08, KB17, LDL14, LZW+15, LZC+16, LRP+19, Man15b, MM06, MBM09, NTH+17, PVRR14, PRB07, Pon19, RK16, RH17, RT18, RJK+17, She91, TSLBYF08, VOS12, WKJ17, WDCL08, WZV+13, WCY+17, Wo99, WTLS+09, WCG14, XXZ13, YPLZ17, ZLZ+19b, ZWH+17].

data-flow [GE85]. data-parallel [She91].

Database

[WK90, BBS06, CSSS11, ECAE13, MN91, MRC+13, PTM+15, SI81, SMA+10].

databases [GDSA+17]. Datacenter

[BBM+15, KGGS17, BCP+08, GTGB14, MSG+12, SG10b, ZLZ15, ZWC+14].
datacenter-scale [MSG+12].

Datacenters

[JWL+18, KL14, LGJ+18, SC17, SC18, GLJJ16, LPBB+18, WRS13].

Dataflow

DDC [CYX+17]. DDG [PGLG12]. DDG-based [PGLG12].

de-duplication [CLcC13].

decomposition [DK13].

defined [AFG+17, CL17a, CPKL17, JN15, LLW+16, ZKWH17, ALW15, HHSG18, LJR12, LWL16].

defining [DL89, Hir17, Lot91, BMWB86].

Defragmenting

[SGV13]. Degree [KMM13]. DejaView [LB+07]. Delay

[RSNK17, RRKR17, WCY+17, ZRS+16, LCL14]. Delay-cost [WCY+17].

delay-sensitive [LCL14]. Delivery [FLZ17, TFltC15]. delta [SHTE11].

Demand

[CWL12, KJ+13, MSS+15, SC18, SEF+06, ZZF06, DEG+17, J+05, JCZZ13, LZW+15, SGV13]. Demand-based [KKJ+13, SGV13].

Denelcor [Dun86]. denotational [Arv02]. Denver [USE00b].

Deoptimization

[KRCH14]. Dependability [FP14, VW08]. Dependable

[DPCA11, SJW+13]. dependences [BKC+13]. Dependent [BP99].

deployed [RY10]. Deploying [KLLT18, R+13]. deployment

[AAB+05b, Bor07, CGV10, SASG13, ZLZ13, ZLV+12, ZBS+15]. derivation

[MSZ09]. Derivative [Pfo13]. derived [Int06c]. Deriving [HWB03]. Design

[ACM06a, AC16, Ano03a, Ano03b, fLtNW14, ACA16, BGS89, CPS17, Clo85,
Domain-aware [KLF+15]. Domains [PNT12]. dominance [CPST14]. done [Han16, HUL06]. Don’t [HHPV15]. Dortmund [Müh75].
DoubleChecker [BHSB14]. Down [JJ91, PBWH+12]. Downing [Ano97a].
Dozens [War11]. DPMI [GMR93]. drafting [MSCK92]. Driven
[ACM05a, NSJ12, PY93, RB17, SV13, TVO92, CSSS11, DLX+17, EdPG+10].
Driver [JXL+12]. DriverGuard [CDD13]. Drivers
[Chu06, JKK+10, Nou92, LU04, MSZ09]. DRM [WIS+15]. DRP [Mar08].
Dual [FL13b]. dual-VM [FL13b]. Duality [FS08]. dummies [Low08].
duplication [CLcC13]. Durham [Boa90]. during [JK13]. DVFS
[Kam13]. DVM [MSG+12, MSG14]. Dynamic
[Abb80, AMAB17, BB13, BH15, DHPW01, DMG+15, GSN93, JWH+15,
Lec16, LB98, LJJ+15, MDGS98, NMG15, PTHH14, SZW+16, TMLL14, TB17,
TV12, Vac06, WWH+16, WCS09, XSC13, XML+18, YLN+17, ZFL15, ZWL09,
ABD+91, ARMMA18, AP18, BK14, BB12, BB15, BZA12, BOF17, CSV15,
CST15, GPW03, HLW+13, HB13, JK13, JWY+13, KRCH14, KJM+07,
LM12, LYY18, LJJ12, Mly09, NTH+17, PGL12, PBAM17, RH17,
RRB17, WRSvdM11, WRS+15, Wu13, WWH+17, XH90, YWF09, vKF13].
Dynamically [MZG14, BLRC94, BDT13, FC98, HH13].
dynamically-linked [FC98]. Dynamics
[YWCF15, ACT94]. dynamo
[Hol95].

E-Mail [Joo06]. e-Science [SVG12]. e-server [A+04]. Eagle
[KS18]. early
[HLW+13]. early-exit [HLW+13]. Ease
[Par79]. eBay
[Joo06]. ECI
[AMA18]. ECI-Cache
[AMA18]. ECMA-335
[ECM01, ECM02, ECM05, ECM06]. ecological
[KSSG16]. Economic
[FBL18, CSV15]. ecosystem
[DMH18]. Edge
[BBM+15, CPS17, Cre10b,
RSNK17, RSN+18, Sar16, Cre10a, MPA+18, ZLZ+19a]. edge-intelligence
[MPA+18]. Edition
[KGG00, LYBB14]. Editorial
[Sed07]. Editors
[FDF05, KS08b]. EDSAC
[CK96]. Education
[ACM06a, AJD09, DG05, GLA+08, HMS04, DTW07]. educational
[WDSW01]. Effective
[LW11, LWC+17, WUK+18, HSK19, Sto07, WKJ15].
Effectively
[UR15]. effectiveness
[Man15b]. effects
[KCV11]. Efficiency
[BPP+17, KDB16, GTK17, KSSG16, PVRR14, PBAM17, ZLY18]. Efficient
[AMA18, BHDS09, BKH+06, CWL12, CWH+14, CGV10, CHPY17, DMR10,
ECJ+16, EG01, GHS17, HB13, JGSE13, KL11, LM99, MBBS13, NSL+06,
ORPS09, PP16, PCC+16, RSF+15, SHZ+14, TLX17, WLW+15, WCC+16a,
WXZ+17, WHD+16, WXW+17, YP15, AAM+16, AMAB17, BHRv05, BB12,
BB15, BRJ10, BHSB14, BDE+03, Car14, CGM17, CFS+12, DQLW15,
DCP+12, EGBK02, FM90, HM18, HMK17, IMK+13, KMT14, KMG+18,
KR16, LLE17, LZZ+16, NTH+17, OMB+15, PEL11, RT18, RZ14, SENS16,
SJRS+13, SSN12, SVG12, SYMA17, SLA+16, SHTE11, WKJ15, XXZ13,
YPLZ17, YLK+10, ZWX16, ZDK+19, ZL13, ZLCZ18]. Efficiently
[CWL+15, EGJS15, BKC+13]. EGO
[FSFP19]. Eighth
[IEE01]. einem
[See08a]. Einführung
[CK06a, CK06b, CK06c, CK06d, CK06g].
[BGM70, CL16b, GIK+99, Gen86, GGG03, HW93, IEE06a, J+05, JADAD06a, LWC+17, LW12, Mac79, RT93, TMV12, XSC13, AAB+05b, BH13, CLDA07, CGW00, Don87, GD08, GMR93, Ha109, HL13, JWH+15, JXZ+10, JADAD06b, KW13, KMG+18, LJYZ15, McG72, MST+05, MW18, MPF+06, RGAT18, TMLL14, TT93, Van06, WLL+13, ZBP05, ZLLL13].

Environments [ACM05d, ACM06f, CWL12, GKXK13, HHW10, HKKW13, KGZ+04, NKC+18, RGSJ17, SV13, ZZZF06, ADA+19, ATS14, BCC+15, BRIDM10, BDK+08, CFVP12, DP11, DEG+17, FMIF18, GMK17, HOKO14, HC12, KSO+15, KKB14, PSZ+07, SJW+13, SGV12, TRG13, VDO14, WWWL13, XHL+13, YLK+10].

Ephemeral [WHD+16]. equivalent [TLX17].

Evolution [HH79, Kim84, SLM89, SL16, AGSS10, CD01, GBCW00, Kro09, WIDP12]. Evolutions [BAL15]. evolving [Ane96, FF96]. examining [HN08]. Examining [NL00]. exceeding [GHS16]. Excelsior [MLG+02]. exception [Sal92]. Exceptionization [YKM17]. exceptions [Ven97b]. exclusion [SGS92]. Executable [MP01]. executables [AD18]. executing [ACT94, Lot91]. Execution [ACM05d, ACM06f, HWB03, KGZ+04, LWC+17, MM93, MO98, PY93, RT93, SV13, vLSM01, AS76, AAB+05b, BFC02, BDK+08, CLDA07, Fre05, GACRP+01, GK05, MMP+12, OJC91, SM01, TCT93, ZL13].

Execution-Driven [PY93]. executions [KM13]. Exercise [Lee86].

existential [AT16]. Existing [JMSLM92, LTT92]. exit [HLW+13]. exitless [AGH+16]. exokernel [Co99]. Expansion [Par79]. Experience [San88, RM03, CARB10, CBLFD12, PBAM17, RSC+15, TGCF08].

Experiences [NV05, SCD90, Tsa14, CMP+07]. Experimental [Bro89, ACM06c, FSH+13, HL13, SS72]. Experimenting [Taf11].
explorative [AHK+15]. explore [Fit14]. Exploring [SE12, SldLB15, YBZ+15]. Expo [Ano06a]. Express [Ng01a, Ng01b].
Expression [Cox07, Cox09, Cox10, Cox12, Wat86, Wat87, Tho68]. Expressions [KP99]. Extended [DC15, Gum83, MT16, MT17, IBM88].
Extending [CT03, DLM+06, PTHH14, YTY00]. Extensible [FLD10, SMP16, MT17, IBM88].
extension [Fis01, SCP93]. EXTERIOR [FL13b]. External [AA18, FL13b].
extraction [WML02]. ExtraV [KY+17]. ExtraVirt [LRC05]. extreme [NOR15]. EXUS [SKC73]. eye [Guy14].

FACADE [GLV99]. FACILE [GMP89]. Facilitating [cCWS14, SWcCM12].
Facilities [Gum83, GH91a, MN91]. Facility [MLA83, SM90, SZ88]. facto [Rus08]. Factor [SC18].
Fad [Fra98]. Failure [Fu10, MSI+12, ZWH+17].
Failure-aware [Fu10, ZWH+17]. Failures [YYL+15, PBYH+12]. Fair [CL15, GLLJ16, HSN17a, TTH+19, RZ14].
FairGV [HSN17a]. Fairness [SKJ+17]. Falle [Mar98]. familiarized [Ame13]. Farms [Do11]. Fast [CS+13, CLW+14, Cox07, CHPY17, Hol95, HSN17a, Kon11, NOT+17, PEL11, ZWH+14, ZFY18, ZLW+19, KMMV14, KJLY15, MS09, SK+13b, SV15].

firmware [ABB+15, MSCP99]. First [ACM5d, EEE4b, LCB+11, MNS+14, ZR06, SS17, SHB+03]. First-Class [LCW+11, SS17]. Fit [NY+18]. Fixed [Lam75, Bod88]. flash [Pat12].
fly [URJ18]. folding [CPST14, Oi06]. Forecast [CWL12, TMLL14]. Forecasting [PCW+16, KSSG16]. Forensics [HN08, ZXY+15]. Formal [BDJdS02, BN75, CH78, Dom80b, JE12, Jen79, MP01, PG73, PG74, Qia99]. Formalism [UOKT84, Pul91]. Formalizing [HM01]. formation [HLW+13]. FORSETI [CSV15]. FORTH [Mar81, Kna93]. FORTRAN [IBM88, Int88]. Forum [CS76, DM76, Fra83, GHF83a, GHF83b, WNL+83, DHPW01, GPW03]. Found [Uh06, YK13]. found [Ano97b]. foundation [OJG91]. Foundations [Hog08, HMS17]. Four [QNC07]. Fourth [Ano03b, MS91b]. Fourth-Generation [Ano03b]. FPGA [GP13]. Frame [WH99]. Framework [DY17, GH91b, JXL+12, KCWH14, KAJW93, LWLL10, MGL+17, PXG+17, PST+15, Szw+16, TMV12, XWH+16, ZFL15, Ame13, AC16, BB15, BDE+03, CD14, FPGK18, Fre05, JSK+13, Kao97, Kao17, KKM+13, KJJ+16, LLE17, NB11, PV06, RHC17, RSC+15, SJR+13, XWH+16, Ame13, AC16, BB15, BDE+03, CD14, FPGK18, Fre05, JSK+13, Kao97, Kao17, KKM+13, KJJ+16, LLE17, NB11, PV06, RHC17, RSC+15, SJR+13, XWH+16, Ame13, AC16, BB15, BDE+03, CD14, FPGK18, Fre05, JSK+13, Kao97, Kao17, KKM+13, KJJ+16, LLE17, NB11, PV06, RHC17, RSC+15, SJR+13, XWH+16, Ame13, AC16, BB15, BDE+03, CD14, FPGK18, Fre05, JSK+13, Kao97, Kao17, KKM+13, KJJ+16, LLE17, NB11, PV06, RHC17, RSC+15, SJR+13, XWH+16, Ame13, AC16, BB15, BDE+03, CD14, FPGK18, Fre05, JSK+13, Kao97, Kao17, KKM+13, KJJ+16, LLE17, NB11, PV06, RHC17, RSC+15, SJR+13, XWH+16, Ame13, AC16, BB15, BDE+03, CD14, FPGK18, Fre05, JSK+13, Kao97, Kao17, KKM+13, KJJ+16, LLE17, NB11, PV06, RHC17, RSC+15, SJR+13, XWH+16, Ame13, AC16, BB15, BDE+03, CD14, FPGK18, Fre05, JSK+13, Kao97, Kao17, KKM+13, KJJ+16, LLE17, NB11, PV06, RHC17, RSC+15, SJR+13, XWH+16, Ame13, AC16, BB15, BDE+03, CD14, FPGK18, Fre05, JSK+13, Kao97, Kao17, KKM+13, KJJ+16, LLE17, NB11, PV06, RHC17, RSC+15, SJR+13, XWH+16]. Frameworks [ZLW18, AGH+15a, HZZ+14]. France [ACM90, ACM05b, Jou85, JPTE94]. Francisco [ACM06a, USE02]. Free [Ano03a, BRX13]. FreeDOS [WF03]. French [Apr09]. frequency [Kam13, AMAB17]. Friendly [ZBG+05]. Frontier [Ram93]. Frontier [Sar16]. Frontiers [ACM06e, M+06]. Full [HHC+16, HSL17, MCE+02, Sch13b, SWF16, LLY+18, YKS16]. Full-System [SWF16]. Function [EMAL17, FLZ17, HSL17, JW17, LLW+16, KRRK17, YWL+18, ZKH17, ALW15, BCC+15, MCJ19]. Functional [ACM90, Dan86, GMP89, Ame13, Wak99, Jou85]. Functions [DL89, KLLT18, TF16, FJKK17, HHSG18, KWz+19, LRP+19, QZDJ16, YCL+19, GHM+18]. funfte [Muh75]. funnel [LMV12]. Fusion [Kis08]. Future [Her06, KOS8b, RG05, Sup04, AH12, Bau05, NIA18, Ros14, Str13, Yur02, SIJPP11]. Fuzzing [KLF+15]. Fuzzy [Hu90, LZ15, FLM+08, SENS16]. FWNs [SIJPP11].
BHDS09, CBGM12, FP14, HH13, HP77, KW13, KJM+07, Oi05, Oi06, Oi08, PGLG12, PBB13, RPE12, SE12, TO96, WZW+11, XZ11, YJZY12, ZDK+19. Hardware-Accelerated [SWF16]. Hardware-Assisted [JSHM15, JAS+15, RTL+18, AujH12]. Hardware-Based [PvDS08, KJM+07], hardware-translation [Oi06, Oi08]. Hardware/Software [KAJW93, LH16, HH13, HP77, WZW+11].

[IEE01]. HotOS-VIII [IEE01]. Hotplug [LJL+15]. HotSpot
[Sch13a, Arm98, BOF17, HHV+02]. HotSpot™ [RB01]. Houston
[ACM06d]. HP [BKMM87, MSCK92]. HP
[RI+06, HCJ07, JQWG15, PNT12, PCB+18]. HPC-GTP [RI+06].
HPC.NET [Vog03]. HPCC [DF96]. HPCS'06 [IEE06a]. HSPT
[WLW+15]. HSSM [Wel02]. Huge [Got07, KYP+17]. HVM [LTK17].
HVMs [CBZ+16]. HW [Wu13]. HW/SW [Wu13]. Hybrid
[GSW+17, HD16, KCWH14, PST+15, RSNK17, VVC+17, WGLL13, FX06,
KS18, LQW+12, RJK+17, YWG13, ZGW+06, Gua14]. Hyper
[Gal09b, Lar09, LC09a, TZY19, WXW15, Apr09, Car06, KV09, KSS09,
KS10, Lar09, LC09b, LC09a, MG08, MG09, SRS09]. Hyper-space [WXW15].
Hyper-V [Gal09b, Lar09, LC09a, Apr09, Car06, KV09, KSS09, KS10,
Lar09, LC09b, LC09a, MG08, MG09, SRS09]. Hypercubes [HO92].
HyperMAMBO [dGG+17]. HyperMAMBO-X64 [dGG+17].
Hypervisor [BAL15, CL16a, HWCH16, JSHM15, JAS+15, KYP+17,
NOT+17, SJV+05, SKYK16, WJ10, WHD+16, XD16, XD17, ABG14,
BBD+10, Chi08, DN14, MSZ09, RSLAGCLB16, Ste14, SL12, KSS09, KS10].
Hypervisor-as-a-Service [WHD+16]. Hypervisor-Based [BAL15].
hypervisor-secure [SL12]. Hypervisors [Rev11, SPF+07]. HYVI [Gua14].

I-Caching [MM93], I/O [Mü95]. I/O [RM03, AJM+06, AMA18, AD11,
ABG14, ABB+15, BMS16, BHEP14, CWH+16, CDD13, CRZH15, DCP+12,
DS09, GAG+12, HB12, KS08a, KMN+16, LLE17, LMR18, LHAP06, NSP16,
PST+15, Rus08, SBQZ14, SML01, TLeC13, VV08, WR12, ZSR+05]. I/Os
[OBSR16]. IA [Ano14b, De 06, Don06]. IA-32 [Ano14b]. IA-64
[De 06, Don06]. IaaS
[GLL16, GA18, HKM+18, KDB16, PPO14, RB17, ZLHD15, ZHW+17]. IAS
[XLL+14]. IBM
[ADG+92, A+04, ABDD+01, ABB+15, Ber86, B+05, Bri98, D+04, GBO87,
G+06, G+05, Kam75, MIS+05, My09, P+08, R+06, R+02, SZ88]. IBM/360
[Kam75]. ICE [Ano06a]. ICL [HP77, Kee77]. ICTree [FBZS12]. ID
[SJPP11]. ID/Locator [SIJPP11]. IDE [Ano03a]. idea [BBS06].
identification [BZD17]. Identifying [CL17a, MD12]. Idiom [KKM+13].
Idle [DEE+16, SBK15]. ie [MC93]. IEC
[Int05a, Int05b, Int06b, Int06c, Int06a]. IEEE
[ACM04b, ACM05c, ACM06a, IE90a, IE91, IE02, IE03, IE04].
IEEE/ACM [ACM04b, IE04]. Igniting [ACM03a]. II [Cre08a]. IJCAI
iluminating [BK14]. im [KGG00, Mar08, Zim05]. IMA [XHCL15]. Image
[AD11, CWH+16, EF94, NSJ12, IM93, KMG+18, XZZ+16, XWW+17,
ZXW16, ZFY18]. Image-Content-Aware [CWH+16]. Images
[Li14, GKP+19, XJWW15]. iMeter [YZL14]. iMIG [LZL+15].
immutable [SV15]. Impact [Ros06, BT15, WKJ17]. impacts [KWZ+19]. Impasse [APST05]. Imperative [LFBB94]. implement [Sig89]. Implementation [LtNW14, BBD+91, DAH+12, DJ77, DLS+01, Hal79, JR02, JI02, KR94, MD12, MN91, NsP16, Rev11, SGS92, SIR+17, SCD90, Sur01, TV092, TO96, TFeLcC15, UOKT84, WLW+15, War80, YLWH14, YCL+19, ZSXZ07, ZL18, AFT01, ANH00, Blu02, BT15, CKP78, DN14, DJ76, DCA04, IT86, JNR12, Lav10, Man18, MJ93, Sch09, SJW+13, SGGB99, SGGB00, Taf11, WW77, XCS+14, Lee86]. Implementations [HLP+16, SVB93, AEMWC+12, CSS+16]. Implementierung [Mar08]. Implementing [CTS+93, D+04, LFBB94, Tai98]. Implications [RM03, GTN+06, MT16, MT17, DLL+16, Pat12, RVJ+01]. Important [SC18, CK06b]. Improve [GKXK13, GBB+15, SAT09, YWGH13, YQZ14]. Improved [War80, BTLNBF+15]. improvement [YLH14]. Improving [AWR05, BHEP14, CFG+13, HXZ+16, HILW+13, JKB15, KL13, LCT+15, LBL16, Osk15, Rsc+15, RSLAGCLB16, TCP+17, WKL15, GV13, HC12, JYW+13, OL13, UTO13]. IMSA [Ano99b]. in-kernel [Uhl07]. In-Memory [TF16]. in-situ [CKRJ17]. In-VM [LWLL10]. included [Ano97a]. including [B+07, CGW07, WLW07]. Incorporating [GH91b]. Increasing [LWLL10]. Independent [DHPW01, KAH83, USE93, GPW03, PW03, PFH+16]. Index [Cox12]. indexed [JYW+13]. Indirect [TR82, CEG07, EG03, JYW+13, KJM+07]. individual [LWLL16]. induced [ZLZ+19a]. Inferno [WP97]. InfiniBand [PRS16, RS16]. influence [Mly09]. Information [CAF+91, IEE93a, Int05a, Int05b, Int06b, Int06c, Int06a, SS75, SS05, Ano93, LC09a, MD73, MD74, RRB17]. Informed [HKKW13]. Infragistics [Ano03b]. Infrastructure [ECM01, ECM02, ECM05, ECM06, Int05a, Int05b, Int06b, Int06c, Int06a, McC08, MJW+06, Nel04, NKK+06, OG16, PP16, XH16, AO16, AMA+14, AA18, BDS+09, Car14, Hal09, HH13, J+05, KSRL10, KR16, LLY+18, Low08, OL12, MR04, PW03, RSF03, Fro13]. infrastructures [FPGK18, LPBB+18]. Ingens [KYP+17]. inherently [TDG+18]. InkTag [HKD+13]. Innovation [ACM03a]. innovations [ABB+15]. input [Wal76]. insider [LC09a]. Insiderinformationen [LC09a]. insiders [KSS09, KS10]. Insights [Rev11]. Inspection [SK+17]. Installation [Bec09, Bor01, KGG00, Ldr09, Wf03, Zim05, Zim06, MIS+05]. Instance [EMAL17, KCKC15]. Instances [WUNK17, ZG13]. Instant [HPP15, Joo06]. Instruction [Oi06, HW15]. instructional [DSSP06, DTW07, WO75]. Instructions [Qia99]. Instrumentation [ZFL15, BZA12]. Instrumenting [MZG14]. Instruments [BPB86]. integer [YTY00]. integer-reference [YTY00]. integrated [CWG00, YZLQ14]. Integrating [JMSLM92, LTT92, LCL14, OMS16]. Integration [GMP89, Ame13]. integrierten [Deu08]. Integrity [CW03, DM75, (Fo71, (Fo78, QT06, WJ10, CS76, JXZ+10, XHCL15]. Intel [AJM+06, CMP+07, DLM+06, Don06, NSL+06, NKK+06, RSW+06, RI00.
UNR+05, Uhl06]. **Intelligence** [MR91, JNR12, MPA+18]. **Intelligent** [GH91b]. inteligente [PO09]. **IntelliJ** [Ano03a]. **intensive** [IKU15, VVB13]. **Inter**
[cCWS14, RLZ+16, BML+13, CBZ+16, SWcCM12, SBP+17, VOS12]. **Inter-Application** [cCWS14, SWcCM12]. **inter-cloud** [SBP+17]. **inter-connectivity** [VOS12]. **inter-domain** [BML+13]. **Inter-Virtual-Machine** [RLZ+16]. **inter-VM** [CBZ+16]. **interact** [EGD03]. **Interacting** [SK13a]. **Interactions** [cCWS14, SWcCM12]. **Interactive**
[Hir17, LD05, MLA83, SSG90, WLS+18, Ber86, HMS04, KKJL14]. **Interconnect** [RCM+12, SKJ+17]. **interdependencies** [LBF12]. **interdependencies** [LBF12]. **Interference** [NBH08, XLL+14, XLJ16, ZRD+15, HL13, gKEY13, SS13, VVB13]. **Interference-Aware** [XLL+14, XLJ16]. **Interferences** [ZRZY15]. **InterLISP** [II79]. **intermediate** [GLV99]. **internal** [SI81]. **International**
[ACM00, ACM05a, ACM05b, ACM05d, ACM06b, Ano99b, BW03, IEE84b, IEE85, IEE93a, IEE96b, IEE02, IEE03, IEE04, IEE06b, IEE06a, LCK11, MS91b, MR91, Ost94, SS05, Shr89, Tho93, TLC06, ACM06c, JPT94, M+06, HHH4]. **Internet** [Ano99b, CK06b, KGG00, APST05, Ano03a, CHCC07, CK06b, CK06c, CK06d, CK06g, CK06f]. **Internetprogramme** [CK06b]. **Internetprogrammen** [CK06e, CK06c, CK06d, CK06g, CK06f]. **Internship** [HMS17]. **Interoperability** [GSS+18, Men03]. **interoperable** [KKB14]. **interposed** [ZSR+05]. **Interpreter** [SMK02, Ber86, KMMV14]. **interpreter/graphic** [Ber86]. **interpreters** [EG01, CEG07, EGKP02, EG03, Ert05, ZLBF14, Ert03]. **Interpreting** [Han05]. **Interpretive** [AS76, OJG91]. interpretive-execution [OJG91]. **Interrupt** [CL16a, TFiLC15, AA18]. **interrupts** [AGH+16]. **Intranet** [Ano03a]. **Intrinsics** [PSBG11a, PSBG11b]. introduce [MS01]. **Introduction** [A+04, CK06a, CK06b, CK06c, FDF05, KS08b, Sch94b, Sch94a, Wun13]. introductory [BR01, Don88]. **Introspection** [CCML12, CLcC13, DGL+11, FL13a, NBH08, Pfo13, StdLB15, WWMG06, FL13b, HN08, HeC14]. **Introspection-based** [CLcC13]. intrusion [AMA+11, LMJ07, MA17]. intrusions [JKDC05]. intrusive [ZXY+15]. **Invariants** [PEC+14]. invited [Piz17]. invocation [Ven97c]. **IOMMU** [YWCF15]. **IoT** [ABB+19b, MPA+18, PFPJ18, ZY+18]. **IOV** [DYL+12, DCP+12, HB12, HD16, XD17, YWCF15]. **IP** [AM16, CF00, HWHW18, NTR18]. **Iron** [Ano05]. **IronGrid** [Ano03b]. irregular [AC16]. **ISA** [CWH+14, DZ02, WIW+15, WCC16b]. **Ischia** [ACM06c]. **ISCOPe** [ACM01b]. **ISDF** [M+06]. **ISDN** [KGG00]. **ISO** [Int05a, Int05b, Int06b, Int06c, Int06a]. **ISO/IEC**
[Int05a, Int05b, Int06b, Int06c, Int06a]. **Isolated** [Jen79]. **Isolation** [WZL15, ZTWM17, Cza00, GNDB16, MD73]. **ISPA** [M+06]. **ISPAN** [HHK94]. **ISSA** [Ost94]. **Issue** [KM13, TZB19, Yur02]. **Issues** [AFG+17, AD11, KS08a, PZH13, SEF+06, Tur84, AGH+15a, AEB19, BB08, PBB13]. **Italy** [BW03, M+06, ACM06e]. **Itanium** [Ano06a]. **Itanium-based** [Ano06a]. **iterators** [ZLBF14]. **IV** [Int06c]. **IVME** [Ert03]. **IX** [BPP+17, IE97].

J [AC98]. **J2EE** [JDJ+06]. **J9** [WKJ15]. **Jahrestagung** [MüH75]. **Jalapeño** [AAB+00]. **January** [ACM99, IEE93a, Shr89, USE01b]. **Japan** [HHK94]. **Java** [ACM98, ACM01b, Ano00, Ano01a, Ano01b, Ano02, Ano03a, Sch13a, USE01c, USE01d, USE02, Wol99, ADM98, Ame13, AT16, Ano97b, Ano97c, Ano97d, Ano03b, AFT01, ABC+07, AC98, ANH00, BDF+98, BHDS09, BD01, BP01, BP03, Bri98, BZD17, Caa00, CW03, CT03, CH08, Cia97, Coh97, CDG97, Cra98, Cza00, Dalxx, Dal97, DHPW01, DEK+00, Fra98, FK03, G+01, GGG03, GCARP+01, GPW03, GBCW00, HT98, Han05, HM01, HOKO14, HWB03, HB08, Ive03, JR02, Ju07, Kal97, KS13, LM99, LM00, LB98, LV99, LY79a, LY97b, LY99, LXxxa, LXxxb, LYBB13a, LYBB13b, LYBB14, LTK17, MSG01, MO98, Men03, MD97, MDxx, MLG+02, MB98, Mon01, NG13, O07, Oak14, Oi05, Oi06, Oi08]. **Java** [PTHH14, PRB07, PV06, Qia99, R01, RHR02, R+01, Req03, SMK02, SSL+14a, SD01, SE12, SH04, Sch13a, SSMGD10, Set13, SMSB11, SSB03, Shi03, SM01, SV12, Siv04, Smi97, SBB01, SBB14b, SHB+03, Sun95b, Sun95a, SUN97, JCV99, Sun99, STS+13, SM02, Sur01, Tai98, Tol98, TO96, UBF+98, UR15, Van98, Ven97a, Ven97c, Ven97d, Ven99a, Ven99b, VED06, VED07, VL00, WL96, WGF11, Wak99, WH99, Wes98, Wol99, Won97, WWMG06, YC98a, YC98b, YME05, YKM17, Yel99, YTT00, ZP14, ZS01, vLSM01, Ano97a]. **Java-based** [Ano96, FF96, HOKO14, KS13, YC98b]. **Java/CORBA** [GCARP+01]. **JavaCard** [BDJdS02]. **JavaScript** [AHK+15, CBLFD12]. **JavaScriptCore** [Piz17]. **Java** [LMG01, SMES01, CF00, RB01, vD00]. **Javvy** [GGG03]. **JCloudScale** [ZLHD15]. **JDM** [ZP14]. **JET** [MLG+02]. **JetBrains** [Ano03a]. **jetzt** [KGG00]. **Jikes** [AAB+05a]. **Jini** [JJ02]. **JiST** [BHvR05]. **JIT** [JK13, PFH+16, WK17]. **JIT-based** [PFH+16]. **JITs** [KRC14]. **JN** [Mon97]. **JnJVM** [TGCF08]. **Job** [MNT14]. **John** [IEE06a]. **Joint** [NTH+17, RJK+17, WZV+13]. **Jointly** [LWL16]. **Jon** [Ano97a]. **Jose** [Ano94a]. **journaling** [HC12]. **JP** [SSB+14a]. **JPDA** [Sun99]. **JPF** [WK17]. **JPR** [WK17]. **jRapture** [SCFP00]. **JS** [AHK+15]. **judgment** [CSV15]. **July** [IEE06b, SoF83]. **June** [ACM90, ACM01a, ACM01b, ACM05d, ACM06f, IEE85, USE85, USE86, USE01a, USE06]. **JVM** [Ano00, Ano01a, Ano01b, USE01c, USE01d, USE02, AC16, CSS+16, DBC+00, Guy14, R+13, RRB17, SV15, Sub08, Sub11, Ven99b, WK17]. **JVMP** [Sun95a]. **JVMs** [BK14].

L [Lot91]. lab [AL05, HMS04]. laboratories [DTW07]. Laboratory [Kim84, SVN*10]. Labs [See08b]. Lagrangian [GR15]. Lagrangian-based [GR15]. Lake [ACM03b]. Lambda [Wat86, Wat87]. land [Tsa14]. Landing [ACM03b]. Language [CDM*10, ECM01, ECM02, ECM05, ECM06, GSS+18, Hog08, Int05a, Int05b, Int06b, Int06a, Km83, Luc97, MR04, PW03, PFH+16, RSP03, SIR+17, SYB93, SUN97, WIDP12, Arv02, Ber86, BD01, BMER14, DH01, Don88, GLV99, Hog06, IT86, Jou07, KRCH14, Les74, MD12, MC93, PRB07, RJK16, RSW91, SKC73, SOM84, Ta11, Ta08, WCG14, WWH+17]. Language-independent [PFH+16]. language-level [WCG14]. Languages [BS90, Dan86, KP99, LFBB94, PTHH14, SSG90, Tld98, YKM17, ACM99, BDT13, Jou85, PMC05, PULO16, Sus76, TB14, Wel02, Wu13, YWF09].

LARD [WCG14]. Large [DK93, GKB95, PHL+12, RGS17, SLM89, XDLS15, ZSX07, ZLW+14, BLRC94, DK75, FPGK18, LD+11, Nie12, Req03, SZ13, SHTE11, YZSC17]. Large-Scale [PHL+12, SLM89, XDLS15, ZLW+14, SZ13, YZSC17]. Latency [ASSB18, BPB+17, BI17, MV16, RZPX19, IMK+13, ZSW+06]. Later [FS12]. layer [BTLNF+15, MA17, RSLACB16, ZFY18]. layered [PSC+07]. layering [YWF09]. LayerMover [ZFY18]. lazy [Wal99]. LDA* [YZSC17]. leadfoot [HHPV15]. lean [SV15, Ven96]. Learning [BRX13, AD18, GKT17, KRG+12, RGAT18, RT18]. legacy [LU04]. LegoSim [RMB02]. Lern [CK06q, CK06t, CK06r, CK06s]. Lern- [CK06q, CK06t, CK06r, CK06s]. Lernprogramme [CK06k, CK06m, CK06l, CK06n, CK06o]. Lernprogrammen [CK06k, CK06m, CK06l, CK06n, CK06o]. Lessons
Leuven [ACM04a]. Level
[AC16, cCWS14, Chu06, DMS02, KHW+16, NTR18, RB01, SV13, ZSR+05, ZQCZ16, AD18, AL05, BSM+12, But94, Cia07, EGD03, FLCB10, IM75, JHE14, LZW+17, SVN+10, SWcCM12, SSG90, WF07, WCG14, ZLZ13].

Leveraging
[LLF+18, LDL+08, Pfo13, RTL+18, WHD+09, ZL13, AJD09, ZBG+05]. Libraries [DK93, Int05b, Won97]. Library [Cro93, SJS+17, PBWH+12].

libvirt [Ano14c]. Life [ZR06]. Lifetime [WJ10]. Light [WWL+17, HB08]. Light-Weight [WWL+17, HB08]. Lightweight
[ABV12, CXLX15, Ran02, VN06, WJ10, YME05, vMAT14, AMA+11, CCL+17, DQR+13, RQD+17, SSU+12, TB14, XZ11]. Like
[Abr80, SSOT17]. LILA [Dan86]. Limbo [Luc97]. limited
[CH08]. Limits [WBB+16, vKF13]. line [SV17].

LINUX [KGG00, Ano06a, CK06a, CK06b, CK06g, CK06f, CK06i, CK06h, CK06j, CK06o, CK06p, G+06, Mar08, USE00a, WF03, ABB19a, Bau05, Bau06c, BHHL08, Ble10, Bor01, CK06a, CK06b, Com00, Com03, DN14, Dav04, Fab13, G+06, GNDB16, MZG14, NSHW10, NV05, P+08, Ros14, Spr06, Spr07, VBM12, Win13]. Linux-based [ABB19a]. Linux-Server [Mar08]. Linux/OSS [Ble10]. Liquid [Li14]. LISP [ACM90, CK87]. List [TT96].

List-based [TT96]. LIIT [Lam75]. little [Men03, YYPA01]. Live
[CCZ+06, Deu08, DK17, ECJ+16, JDW+14, KKLV16, LZL+15, LLL+11, SHW+15, SKI+17, XLL+14, XD16, XD17, ZRS+16, ZDLG17, ZXY+15, AS14, BAC15, BB08, FG115, HIL+10, HDG09, JKK+13, JGW+11, JGSE13, NIA18, PDC+12, SSI+13, SLA+16, SHTE11, TDG+06, WRSvdM11, WRS+15, ZLLLI13]. Live-Distribution [Deu08]. live-migration [JKK+13].

[LTE12]. Local [ADM98, Oi08, PCR89, HJ10, KMT14, Oi05]. Locality
[HSC15, SZ88]. Location-Independent [USE93]. Locator [SJJPP11]. lock [YTS14]. Logic
[DK93, Int05b, Won97]. Logical [RT93, Lio05, TT93]. Logically

Lookaside
[BPP+17, RZPX19, WCG14, ZHCB15, GE85, IMK+13, SJRS+13]. low-cost [SJRS+13]. Low-Latency [RZPX19, IMK+13]. Low-level
[WCG14]. Low-overhead [ZHC15]. Low-resolution [GE85]. LTTng
[WKK15]. Luminous [KNT02].
[USE06]. MAC [SJV+05]. MAC-Based [SJV+05]. Mach [USE91, MRGB91]. Machine [AGJS16, AS85a, ABCC66, ABV12, Ano00, Ano01a, Ano01b, Ano02, Ano04a, Ano04b, ILtWN14, AE01, Apr09, Arc07, AAK18, AGIS94, BW85, BFHW75, Bak83, Bal91, BDF+99, BN75, BWD+15, BHZ+16, CTS+93, CW03, CFH+79, CFH+80, Car13, CF00, CGC16, CRZH15, Cox09, CWL+15, CHPY17, CYX+17, Dalxx, Dal97, DHPW01, Dan86, DF96, DGLZ+11, Dom80a, DJ77, EG01, Fis01, FPS+02, (Fo71, (Fo78, FL13a, GIK+99, Gei02, Gen86, GLBJ18, HHV+02, HHW10, Hal79, HH79, HKM+18, Hir17, HKKW13, Ibs84a, JHS12, JMK+92, JQWG15, JN15, JADAD06a, KC16, KS08a, KMK16, KNT02, KF91, Ken80, KDB16, Kim84, KA83, KGZ+04, KLF+15, LCBW+11, LMM18, Lan87, Law00, LW11, LW98, LTE12, Li14, LVM16, LGJ+18, LL79, LJL+11, LPB17, LFBB94, Loy92, LXM+16, Mac79, MRGB91, Man16, MS70, MD97, MDxx, MDGS98, MKKE12, II79, NBH08, NBK16, NGM15, Nel04, NSJ12, PPT97, PX+17, Pf013, PCC+16, PK75a, Pro00, Qia99, QT06, RG17, RLZ+16, Ren78, RI00, RSN+18, RT93, Ros99, RG05, Ibs84a, SL14, Sun88, Sch94b, Sch94a, SSB03, SCP93, SG09, SHZ+14, SHB+03, SVL01, Sun95b, Sun95a, SUN97, JCV99, TT96, TMV12, TY14, USE01c, USE01d, USE02, VTW16, Ven97a, VL00, WL96, WR12, Wk99, WH99, WB81, WWL+17, We94, WC05, WTD+09, WP97, XWJX15, XL16, YY+17, YP15, ZLS+14, ZRS+16, ZL+16, ZLS+19b, ZZF06, ZWL+18, ZHL16, ZJXL11, ZTWM17, Zyt94a, Zyt94b, dSdF16, AD18, Abr82, AS85b, AGSS10, AGH+15b, AGH+15a, AAB+00, AC95, AMG15, Ano94, Ano96, ANH00, AMA+11, BDF+03, BBTK+17, Beg12, BPC94, BCM90, Bir94, BL92, BDF03, Bri98, CARB10, CL14, CD14, Car14, CEG07, Cav93, CFVP12, CS76, CHCC07, CBLF12, CK06a, CK06c, Clo85, CFP99, CVG10, dCCFD915, CG00, CD01, DH10, DSC+08, DP11, DM93, DBC+00, Don87, DJ76, DXM+17, EGK02, EG03, FLL+13, FM90, FSFP19, FMI16, FDF06, FLF+08, FC05, Fre05, GGO+13, GTGB14, GCAPEC+01, GPW03, GR80, GBCW00, GA18, HJ10, HUL06, HK70, HC14, HPHS04, HSC15, IBM85, IBM88, Int88, IBM94, IBM96, IKU15, JKK+13, JNR12, JGW+11, JADAD06b, Kalk97, KOY05, KS13, KSO+15, KS18, KTB17, kKEY13, KSC14, KJLY15, KC16, KMG+18, KFF12, KOU11, KCV11, KRG+12, Lam75, LBZ+11, Les74, LC02, LM99, LZW15, LBL16, LWL16, LYY+18, LWL18, LIA05]. Machine [AP18, ANH00, AMA+11, BDF+03, BBTK+17, Beg12, BPC94, BCM90, Bir94, Blu02, BDM06, BFC02, Bri98, CAR10, CL14, CD14, Car14, CEG07, Cav93, CFVP12, CS76, CHCC07, CBLF12, CK06a, CK06c, Clo85, CFP99, CVG10, dCCFD915, CG00, CD01, DH10, DSC+08, DP11, DM93, DBC+00, Don87, DJ76, DXM+17, EGK02, EG03, FLL+13, FM90, FSFP19, FMI16, FDF06, FLF+08, FC05, Fre05, GGO+13, GTGB14, GCAPEC+01, GPW03, GR80, GBCW00, GA18, HJ10, HUL06, HK70, HC14, HPHS04, HSC15, IBM85, IBM88, Int88, IBM94, IBM96, IKU15, JKK+13, JNR12, JGW+11, JADAD06b, Kalk97, KOY05, KS13, KSO+15, KS18, KTB17, kKEY13, KSC14, KJLY15, KC16, KMG+18, KFF12, KOU11, KCV11, KRG+12, Lam75, LBZ+11, Les74, LC02, LM99, LZW15, LBL16, LWL16, LYY+18, LWL18, LIA05].
Vag10, Van98, Ven96, Ven97b, Ven97c, Ven97d, Ven99b, VVB13, WGF11, WKT08, WRX11, WZV+13, WKJ15, WCY+17, Web10, WLL+13, WW77, Won97, XHL+13, XCJ+14, XJKWW15, XZZ+16, YME05, YZW+13, YLH14, YLH14, YPLL17, YLCH17, YBZ+15, YLK+10, Ye99, YRJ18, YGN+06, YQZ14, YTY00, ZG13, ZWX16, ZYZ+18, ZL15, ZLH+15, ZHHC17].

machine [ZFy18, ZWC+19, ZLZ+19a, ZBP07, ZLL+16, ZL13, ZLLL13, ZWH+17, ZLZC+18, ZYL+18, ZWC+14, dSOK17, AEM+14, AAB+05a, Ano75b, Ano97c, Ano97d, AC98, BD01, BP01, BP03, BZD17, Caa00, CCWY05, CK87, Cla97, Coh97, CDG97, Cra98, Cza00, DCA04, DLS+01, Eng99, FS11, FFB+00, Fra98, FK03, Fuj91, GKP+19, GGG+03, HT98, HM01, HWB03, HB08, Ivo03, JR02, JDJ+06, JJ02, Jou07, KM13, LGM00, LGM01, LB98, LV99, LY97a, LY99, LYBB13a, LYBB13b, LTK17, Men03, MB98, Mon97, MP01, OT97, Oi05, Oi06, PTH14, PR07, Ran02, RB01, SM02, SSB+14a, SH04, Sch13a, SMES01, Set13, SMSB11, Shi03, SG12, Sim92, Siv04, SSB01, SS14b, SM02, Sur01, Tai98, Tol98, TO96, TR88, UR15, Ven99a, Wel02, Wol99, WWMG06, vD00, Ano97a].

Machine-Based [LW11, WB81, CGV10, WKT08, YZW+13].

Machines [Ano75, ASSB18, BMS16, BP99, BD17, BDJdS02, BSSS14, Bee05, BB13, BRX13, CL17a, CWL12, CCML12, CWS12, CSS+13, CLI6a, CCO+05, CH78, CHLY18, CDN02, DSM14, DEK+03, Den01, DK17, DMR10, DKW15, Do11, EGR15, EGSJ+15, Ert03, EDS+15, Ga175, G+01, GTS+15, Gum83, HKLM17, HB17, HS06, HPP+15, Ian14, JE12, Jen79, JXL+12, JAS15, JKJ+10, KCWH14, KJL11, KP15, KAHH+S, LMR18, LZL+15, LYY+17, LD05, LHAP06, LW12, LJJ+15, LLZ18, Ma179, M15a, MD12, MGL+17, MM94, PSBG11a, PS16, Rev11, Ros04, SD01, SCCL12, SV13, SN05a, SN05b, Sta97, SKI+17, Sup04, TTH+19, TV12, UT87, VOG03, WLV+15, WGL13, WZL15, WLLZ16, XSC13, XLL+14, ZRD+15, vLSM01, Agr99, ABB19a, AAB+03, ADA+19, AGH+16, AT16, AAM+16, AMAB17, AS14, BAC15, Bac11, Bag76, BML+13, BDF+98, BHvR05, Bel06, BB12].

machines [BB15, BBM09, BBS06, BB95, CL17b, CGM17, CCL+17, CH08, Cra05, Cra06, CW0+06, CLL+13, DDS+94, DC15, DEG+17, DQ1W15, DSS11, DCMW17, EGD03, Ert05, EL98, EMS15, FBZS12, Fit14, FHL+96, FGLI15, FX06, Fu10, GI12, GVI13, Gol73, GLV+10, HKS19, HM18, HMM17, HZI+14, HDG09, Ho95, JES+15, JW+15, JD+14, JG13, JSSG16, KRC14, KB11b, KR16, LM07, LZZ+16, LLF+18, LJJ12, LQW+12, LC13, LZZ+14, LSS04, Man15b, Mat09, MG13, MRC17, hTMAC+08, NK10, NOR15, PFH+16, PSBG11b, PMC05, PYB+08, PRS16, PV08, RK16, RH17, RHR02, RT18, SJ1b, SS13, SSEN+16, SNV10, Sch09, SNN12, SJJ+12, SJW+13, SSL+13, Ste14, Str13, SK13c, SLA+16, SHTE11, Syr07, TDK17, TGC10, TMMVL12, TDG+06, TtLcC13, VT14, VED07, WQG15, WXZ+17, WDT18, WSO6, WSVY09, WRSvD11, WRS+15, XHCL15, WXZ+17, XTB17].

machines [YC98b, YWFG09, YWGH13, ZBG+05, ZWHC17, ZWL09, AD198, BHD09, CT03, Cla97, MLG+02, PEC+14, SM01, UBF+98, VED06, YC98a, ZS01].
Mixed-Criticality [WLMD16]. Mixing [LD05], MLN [Beg12]. MO
[ACM97]. Mobile [CPKL17, CPS17, CWH+16, LH16, LYS+18, MV16,
RSN+18, SGB+16, USE93, WVT+17, BD11, BBD+10, CM18, FC98,
HLW+10, IJK+06, ISE08, LLLE17, SASG13, ZLZ+19a]. mobility
[FX04, SBP+17, ZLZ+19a]. mobility-induced [ZLZ+19a]. Mode
[Da04, CWH+14, Co99]. MODEF [SMO84]. Model
[BRX13, CHW12, HIK+18, KKT17, KF91, KAZ+14, MV16, MP01, NL04,
NSJ12, XDSL15, YLH17, ZDL+17, Bar78, BCM90, Br94, CKP+93, Fr05,
Re03, SS13, W075, YZLQ14, ZBG+05]. Model-Driven [NSJ12].
Model-Free [BRX13]. Modeling [ACM81, CH78, IN87, KRG+12, LDL14,
TIIN09, WLS+18, BB95, FX06, gKEY13, SK13c, TLX17, YZSC17].
Modelling [DPBK16]. Models [DSM14, HWB03, Man15a, RSW+06, SL16,
ADG+92, HCJ07, Lia05, RO16, VVB13, WDT18, Ble89].
Modem [Ano03a]. Modern [EG01, FKZ17, GG11, FIF+15, KB17, ZDK+19].
Modular [AvMT11, DCA04, FC98, LH13, TO91]. Modularity
[SVB93, DNR06]. Modulation [WUK+18]. möglichen [Hin08]. moldable
[HZZ+14]. Molecular [YWCF15]. monad [Dan12]. Monitor
[LXM+16, QTO6, RN78, RL00, RT93, Ros99, SVL01, AGSS10, AL06,
AMA+11, Cof99, KOY05, Kou11, SJJ13, SU+12, TT93, XZ11, ZY+18].
motion-based [AMA+11]. Monitoring
[BAL15, CCML12, DLX+17, LZW+17, WLLZ16, ZL16, ZL18, ZXY+15,
ACT94, CL14, JXZ+10, JADAD06b, YCL+19]. Monitors [JHS12, KS08a,
FK91, RG05, WCGS05, BDF+03, FLM+08, HUL06, HPHS04, YME05].
Monterey [ACM05a, Ano01b, USE91, USE01c]. Mori [CPST15]. Mortar
[HUWH14]. most [CK06b]. motion [Lia05]. Motorola [An03a, MM84].
move [GKS13]. Moving [Crel06, Cre10a]. MPSoC [BHI15]. MPSoCs
[OV1+12]. MS [Tho08]. MU5 [MDFS72]. Multi
[ABV12, AP18, CLG+10, DY17, DLS+01, GSS+18, GLBJ18, HMH17, HC17,
HPcC04, LLS14, MD12, MM94, PXG+17, PNT12, RTL+18, SL14, TTH+19,
WLL+13, ZRZY15, AD18, AL05, ATS16, Bor07, DEG+17, GQG+13,
GKP+19, JH14, KMT14, LYYY18, RPE12, SE12, SI+16, SWW+18,
WDCL08, XZ11, YKS16, YTS14, ZNSL14, ZL+16, JD+06, NMS+14].
Multi-Agent [PGX+17, ABV12]. Multi-Capacity [HM17].
Multi-Channel [TTH+19]. multi-cloud [DEG+17]. Multi-Core
[RTL+18, PNT12, YTS14]. multi-course [AL05]. multi-criteria [ATS16].
Multi-dimensional [HPcC04]. Multi-Dispatch [DLS+01]. Multi-GPU
[NMS+14]. Multi-granularity [LS14]. Multi-Language [GSS+18, MD12].
multi-level [AD18, JHE14]. Multi-Objective
[GLBJ18, AP18, SL14, GQQ+13, GKP+19, ZL+16]. multi-platform
multi-server [RPE12]. multi-source [SI+16]. Multi-stage [CLG+10].
multi-start [KMT14]. Multi-tasking [JD+06]. Multi-Tenancy [DY17].
Multi-tenant [ZRZY15, SWW+18, YKS16]. Multi-threaded [HC17, SE12].
multi-tier [WDCL08, ZNSL14]. multi-user [Bor07]. MultiCache [NsP16].
Multicore [FRD+08, HHW10, Ian14, Man16, SE12, SSMGD10, SJJ+12,
Sub08, WCC+16a, WCS09, WJGA12, YQZ14]. Multicore-Aware [Man16].
Multigrid [AGIS94]. multihost [Bar06]. MultiLanes [KHW+16].
Multilayer [VLZL16]. Multilayered [NsP16]. Multimedia
[Ano99b, CAF+91, FLZ17, ZKWH17, BTLNBF+15]. multiple
[CSV15, Com00, GMR93, IKU15, SLA+16, TMMVL12, TtLcC13].
Multiprocessing [DBO+18, TLD+89]. Multiprocessor
[AGLM91, Dun86, KKJL14, WXZ+17, Bro89]. Multiprocessors
[Bad87, Cro93, SLM89, TO91, WWS89, AGIS94]. multiprogramming
[Abr82]. multitarget [Bar06]. Multitasking
[CD01, IBM96, TLD+89]. multitasking/multiprocessing
[TLD+89]. multitenant [LZW+15]. Multithreading
[LRZ16, ABB+15, PV06]. musical [BB08]. mutual
[SGS92]. MVM [GMR93]. MVP [Lot91]. MySQL
[Wun13].

O [RM03, AJM+06, AMA18, AD11, ABG14, ABB+15, BMS16, BHEP14, CWH+16, CDD13, CIZH15, DCF+12, DS09, GAH+12, HB12, KS08a, KMN+16, LLLE17, LMR18, LHAP06, NSP16, PST+15, Rzu08, SBQZ14, SVL01, TtLeC13, VW08, WR12, ZSR+05]. Oak [SVN+10]. Oakland [IEE84a, IEE90a, IEE91]. OAMulator [MS01]. OASIS [UBL+82]. OB [XCH15]. Oberon [WF03]. Object [Bad82, BBD+91, BP01, CAF+91, Lw88, PTHH14, PMC05, San88, STFH15, USE99, USE01b, BPPB6, BP03, BZD17, DNR06, GSN93, IT86, LM99, VED07, WML02]. Object-Based [BAD82]. Object-Oriented [BBD+91, USE99, USE01b, PTHH14, PMC05, San88, BPPB6, GSN93, IT86, WML02]. Objective [GLBJ18, LPB17, AP18, GGGQ+13, GKP+19, SL14, ZLL+16]. Objects [Qia99, ABB+19b, SK13a]. Observation [NBH08, SCFP00]. observation-based [SCFP00]. occupied [SZ13]. OCTET [BKC+13]. October [ACM03b, Ano99b, Ano06a, Boa90, IEE03, Tho93, USE00a, Vra05]. off [CGV10]. off-board [CGV10]. Offensive [BDJDS02]. Offers [Ano03a, Got07]. office [BRdM10, Ano03b]. Offline [TRG13, SHLJ13]. Offloading [CL16a, GKK13]. offs [SdLB15]. OGSA [AKK+07]. OGSA-DAI [AKK+07]. Oktober [Miih75]. Old [Got07]. Older [SHB+03]. Older-first [SHB+03]. Oleco [Joo06]. On-Demand [SEF+06, ZZF06, DEG+17, JCSS13]. on-stack [LH13]. On-the-fly [URJ18]. One [Cre09, HPHV17, NKY+18, JK15, Ste14]. one-shot [JK15]. Online
[FL13a, GR15, HKLM17, HKKW13, JWL+18, Joo06, KTB17, NG13, RG17, SZW+16, SIK+16, SXCL14, ZHW+17, ZWC+14, BB12, LSS04, NK10, ZWX16]. **Online-Handbuch** [Joo06]. **Ontario** [ACM06f, Sof83]. onto [AO16, Bak83, BS90, PS16]. Open [AFG+17, SJV+05, AGH+15a, AAB+05a, FP14, TSP17]. **Open-Source** [SJV+05, AAB+05a]. **OpenCL** [KJJ+16, TY14]. **OpenFlow** [YKS16]. **OpenNebula** [KMT14]. **OpenOffice** [Joo06]. **OpenQRM** [Kar07]. **OpenStack** [BB15]. **OpenSUSE** [CK06g, CK06f, CK06o, CK06p, CK06p]. Operating [ACM75, ACM03b, BPP+17, BYBYT16, CD12, Das91, HXZ+16, IEE01, J+05, MKKE12, MM94, RT93, SLM89, THB06, Vra05, ACT94, CCZ+06, CGL+08a, CGL+08b, CGL+08c, CK06a, CK06b, CK06e, CKP78, Com00, CLDA07, Dav04, Don87, HKD+13, KSLA08, Kou11, MW18, MDFS72, NV05, Ros06, SPF+07, SS72, TT93, Vac06, Van06, WR07, WWT89, YK13, Mat10]. **Operation** [ZR06]. **Operational** [Dan12, Siv04]. **Operations** [OLZ16, MPF+06]. **operator** [GHM+18]. **Opportunistic** [KMK16, OMB+15]. **Optimal** [BP99, BB12, DEG+17, HM18, HJG18, WHC16]. optimale [Sch13a]. **Optimisation** [YWGH13, GKP+19]. **Optimises** [War80]. **Optimization** [Pon19, WGF11]. Optimization [CPS17, CWH+16, DKB18, GLBJ18, KC16, LW11, Man15a, MJW+14, NIA18, SM06, SHZ+14, WK90, YKM17, YWF09, GCARPC+01, HLW+13, JK13, KS13, KS18, LIWW18, MS17, dOL12, ZLL+16, ZYLY18]. **Optimization-Based** [SHZ+14]. **Optimizations** [HB12, NBK16, RLZ+16, CPST15, NG13, PGL12]. **Optimize** [OLZ16, LDL+08]. **Optimized** [CGC16, KCV11, LWL16, TMMVL12]. **Optimizing** [CEG07, dCCDFO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQV+12, LL14, LXM+16, MCZ06, SMK02, SV15, ZLL13, ZJXL11, FMIF18, HSC15, ZLBF14, FLL+13]. **Options** [HDM08]. **Oracle** [VSC+10]. **orbit** [SSN94]. **Order** [BW03, BFC02]. **Ordering** [HMH17]. **ORE** [OMB+15]. **Oregone** [IEE93b, USE85]. **O’Reilly** [Ano97a]. Organization [BPC94, Kam83, RSGG15, Juo07, Skr01]. **Organizational** [PXG+17]. **organizer** [MS00, SMES01]. **organizing** [OK90]. **Orient** [IT86]. **Oriented** [BBB+91, BWD+15, BS90, CAF+91, DY17, LVM16, RSGG15, SYB12, USE99, USE01b, Beg12, BBP86, Fro13, GSN93, IIK+06, IT86, PTHH14, PMC05, PPO14, San88, WML02]. **Origin** [Den01]. **Original** [BDR+12]. **Orthogonally** [LMG01, LMG00]. **OS-Level** [cCWS14, KHW+16, SWCM12]. **OS/2** [Bri98]. **OS/390** [DBC+00]. **OS6** [SS72]. **OSCAR** [VS06]. **OSS** [Ble10]. **Other** [Den01, Mac79, KS13, Mat10]. **OtOt** [DKF94]. **Ottawa** [ACM06f]. **Out-of-Band** [ZSXZ07, PBYH+08]. **Out-of-order** [BFC02]. **Out-of-Process** [RB01]. **out-of-the-box** [XHCL15]. **Out-of-VM** [ZFL15]. **Outline** [Kee77]. **Outsourced** [YDW18, CMP+18, QZDJ16]. outsourcing [SASG13]. **Over-Provisioning** [SC18]. **overbooked** [LPBB+18]. **Overcoming** [APST05].
Overcommitment [GBK15]. Overcommitted
[CWS12, W06, ZHHC17]. overhead
[LPD+11, LBL16, ZHCB15, ZLZ+19a]. overheads [MST+05]. overload
[LYY18]. Overloaded [BB13]. Overshadow
[CGL+08a, CGL+08b, CGL+08c]. Overview
[Lau87, MLG+02, ALW15, BB08, MNA16]. oVirt [Ano14d]. OVM [BFC02].

P [Dom80b, SSU+12, Syr07]. P-Code [Dom80b]. P.R.O.S.E [Van06]. P2P
[Sta07]. p5 [A+04, B+05, G+05]. PA [ACM04b, ACM96, IEE04]. PaaS
[ZLHD15]. Package [PBR+90]. Packages [JMSLM92, LTT92]. Packet
[VLZL16, LRP+19, Ste14]. Packeteer [Ano03a]. Packing
[GR15, RG17, XDL15, SZ13]. PACT’06 [ACM06b]. Page
[AW17, CWL+15, CHLY18, KYP+17, LH16, LZW+17, MT16, MT17,
WL+15, AJH12, BSSM08, CWC+14, WTLS+09]. Page-Aware
[CWL+15, CHLY18]. Page-level [LZW+17]. Pages
[GBK15, Ano97a, JDW+14]. Paging [BGM70, GHS17, GHS16, TKG89].
Pagoda [YSS+17]. Palm [MS00, SMES01]. Polo [ACM01b]. Panel
[G+01, UBF+98, BDF+98]. Papers [DC15, KM13, ACM90, G+88].
PAPMESC [SDD+16]. para [LC13]. para-virtualized [LC13]. paradigm
[BD11]. PARALISP [CRZ83]. Parallax [ITMAC+08]. Parallel
[ACM06b, Arm78, BP99, EGR15, Fis01, HD16, HHH94, IEE93a, IM93,
JN15, KNT02, Loy92, LCFL12, MM92, MM93, MRG17, MM94, NOT+17,
PY93, SSN94, TVO92, WCC16b, Wat86, Wat87, Wel94, YP15, ZRZY15,
AS14, AGIS94, BCP94, Bir94, BL90, BFC02, BB95, CARB10, Cav93,
CDM+10, dCCDFJ015, CRG16, CKP+93, DKF94, DDS+94, DM93, EF94,
FM90, GSN93, Hol95, JGA+88, KJLY15, Kra90, Les74, LG93, McK11, MN91,
NOR15, NG13, Pou90, RH17, RSW91, She91, SLO0, Taf11, WK08, YC98b,
Ble89, JPT94, YC98a]. Parallelism [HC18, YTS14]. parallelization
[vKF13]. Parallelizing [SSL+13]. Parallels [Tho08]. parametric
Paravirtual [KMN+16]. Paravirtualization [AD11, SBQZ14]. ParCo93
[JPTE94]. PARD [MSS+15]. ParDMCom [M+06]. PAROS [MM94].
PARS [CWL+15]. Parser [UOKT84]. Part
[Cre09, HO92, RGSJ17, Sch94b, Sch94a, Cre08a, SS72, Zyt94a, Zyt94b].
Part-of-Memory [RGSJ17]. Partial [BWD+15, WGF11, WWH+17].
partiality [Dan12]. partially [HH13]. Partition [Int06c, LLS+08].
Partition-based [LLS+08]. partitioned [Van06]. Partitioning
[Bad87, Ian14]. Partitions [Int06b, SJRS+13]. Party [CRZH15]. Pascal
[Har77, GBO87], pass [PDC+12, YLWH14]. pass-through
[PDC+12, YLWH14, MLA83]. passé [BC10]. Passing
[Fra98, DM93, TO91, UR15, XH90]. Passthrough [XD16, XD17]. Password
[CD12]. Past [Sup04, BS96, JKD05]. PASTE’01 [ACM01a]. patches
[Ano07]. path [AM16]. PATHWORKS [Nou92]. Pattern
[CFM17, HPP15, YDW18, ZDLG17, OK90]. Pattern-Aware [HPP15].
Patterns [CL17a, ESY+17, PMC05]. Paxos [HMS17]. PC
[ACM04a, GBO87, Mon97]. PCI [YLWH14]. PCs [Ros99]. PDB [HHH04].
PDCE [M+06]. PDP [GBO87, Ham76, PK75a, She02]. PDP-11
[GBO87, Ham76, PK75a]. PDP-11/40 [GBO87]. PDP-8 [She02]. PDS
[AAB+05b]. Peak [LTE12]. PEMU [ZFL15]. penguin
[Bau05, Bau06b, Bau06a, Fab13]. Pentium [RI00]. Perceiving [XWH16].
[ACM98, ACM04b, Ano03b, AD11, Bad82, BL90, Cal75, CFH+79, CFH+80,
CGS06, CHW12, De 06, DSS11, EDS+15, GE85, Gu14, GKB15, HSK17,
HB12, IIE96b, IE06a, In87, JR02, JK13, KCWH14, KS08a, KMM13, KP15,
KD78, LZ15, LCK11, LMR18, LMG01, LCT+15, LHP06, LTZ+14,
MJW+14, MT16, MLG+02, MBK+92, NMS+14, Oak14, OBR16,
PZW+07, Pat12, PNT12, Raj79, RCM+12, RP07, SHW+15, SD01, SCSL12,
SDD+16, SM92, SM02, THC+14, URJ18, UT87, Vogo3, WKT08, WCC16b,
XLJ16, YC98a, YWCF15, ZRZ15, ZWL+18, ZJX11, dGG+17, AKK+07,
AHH+03, AGH+16, Ano96, AWR05, BML+13, BB12, BMB09, BMER14,
CBGM12, CBZ+16, CMP+07, DQR+13, DLL+16, DSSP06, DYL+12, EMS15,
Fit14, FF96, GP13, G+01, GVI13, G+05, GAH+12, Han16, HHS18, Hog02,
HC12, HLL13, KJJ14, KL13, Kout11, KCV11]. performance
[LBZ+11, LLL17, LM99, LMG00, LL14, MCC18, MA10, MST+05,
MKX06, M+06, MMG+18, MW05, NB11, OL13, PV08, RHR02, RQD+17,
Rix08, SENS16, SE12, SB10, SPF+07, THN09, VV08, WWH+17, YC98b,
YZLQ14, YQZ14, ZYS+18, ZSR+05, ZSW+06, ZLCZ18].
Performance-Based [CHW12]. Performance-directed [RP07].
Performance-Guaranteed [ZWL+18]. performing [BB08, GBCW00].
performs [Ven97d]. period [B+07]. Periodic [LD05]. periodical [YQZ14].
Periods [RB17]. Persistence [SCD90]. Persistent
[GH91b, Low88, SMES01, LM99, LMG00, MS00, LMG01]. Personal
[Hir92, LBP+07]. Perspective
[FLZ17, Han16, RSGG15, FP14, LDGT+12, Wal10]. perspectives [MA10].
Pervasive [HHH04, BTLNB+15, HHO5]. Petascale [Gei02]. Pete
[Gal09a, Gal09b, Gal11]. PEVM [LMG00, LMG01]. Phantasy [RZPX19].
phase [JK13, TF16, ZL13]. phases [RHR02]. Phoenix [ACM03a].
Phosphor [BK14]. Physical [BBM+15, PS16, WLW+17, AAM+16].
physics [GTN+06]. Piccolo [CHPY17]. PiccoloJava [MO98, TO96, OT97].
PIPPIN [DH01]. Pittsburgh [ACM96, ACM04b, IE04]. PL [SKC73].
PL/EXUS [SKC73]. Place [USE01a, Fab13]. Placement
[CGC16, GLBJ18, JQWG15, KP15, LTE12, LYS+18, LPB17, Man16,
SHZ+14, YWW+17, ZWL+18, ZHL16, dSD16, CL17b, EMS15, FLL+13,
FMIF18, GGO+13, GA18, HM18, IKU15, KHL17, KSO+15, LBZ+11,
LZWD15, LLWW18, LPBB+18, MS17, Man18, MAN16, Pon19, RJK+17,
TMLL14, TMML12, XTB17, YPLZ17, ZWHC17, ZLL+16, ZWH+17].
plane [LRP+19]. Planes [UVL+13]. PlanetFlow [HP06]. PlanetLab
[MPF+06]. planning [Hal08, MIS+05]. plans [Kal97, Lot91]. Planung [Zim05]. Platform [DHPW01, DMG+15, Fra09, GPW03, JXL+12, JJ02, MCE+02, Sun99, TCP+17, WL96, Wal99, BBD+10, Fra06, MW18, PW03, WQG15, WCC+16a, XZ11, Ros99]. platform-independent [PW03].

Platforms [AMA18, Ana06a, GLS15, SN05b, Uhl06, YP15, DPW+09, GLK+12, MRM06, MBBS13, NV05, SBP+17]. Player [Joo06, Zim06].

Porting [Caa00, JJ91, Kel06, MB98, Shi03, vdK09]. Portland [IEE93b, USE85].posium [USE01c]. Post [AGJS16, HDG09]. Post-Copy [AGJS16, HDG09]. Postroom [Osb01].

Potential [FRD+08, Got07, JK13]. Power [AAM+16, DSM14, HSK17, KBB11, KL14, LZ15, LLE17, MV16, MJW+06, RSNK17, RSN+18, SSN12, SDD+16, Sta07, XDL15, ZWL+18, CBGM12, CMP+07, FLL+13, IMK+13, JKK+13, JNR12, NS07, TDG+18, THC+14, WRS13, XHL+13, YZL14, YLCH17, A+04, B+05, G+05, MBBS13].

Praxisbuch [Lar09]. Praxissführer [Bor01]. Pre [LUL+05]. Pre-virtualization [LUL+05]. Precedence [EGR15].

Preemptive [PG18]. prefetch [KW13]. Prefetching [RZPX19].

Primary [PP16]. Primitive [LCWB+11, BMWB86, POU90].

Principles [ACM75, ACM99, ACM03b, Jou07, SHW+15, Vra05, SS72].
Privacy [IEE84a, IEE90a, IEE91, WLL+13]. private
[Nie12, SYMA17, WH08, Fro13]. Privileged [MPF+06]. Pro
[SRs09, Fra06, Fra09, Wil06]. Proactively [GKB15]. probability
[LYY18]. Problem [BL17, BFG+14, Man15a, MM92, SL00]. Proceedings
[ACM96, ACM97, ACM99, ACM04b, ACM05b, ACM06a, ACM06b, Ano99b,
Boa90, IEE96b, LCK11, USE99, USE00a, USE00b, USE01a, USE01b, ACM00,
ACM03b, ACM05a, ACM06f, Ano93, GHH+93, HHK94, IEE85, IEE04,
JPTe94, Mat10, MR91, SS05, USE85, USE86, Vra05, ACM75, ACM81,
ACM89, ACM90, ACM01b, RM03, ACM04a, ACM05c, ACM05d, ACM06e,
ACM06c, ACM06d, Ano01b, Ano04b, Ano06a, BW03, IEE84b, IEE84a, IEE90a,
IEE90b, IEE91, IEE92, IEE93a, IEE93b, IE05, IE06b, IE06a, MS91b,
Ost94, Sof83, Shr89, Tho93, USE91, USE93, USE01c, USE02, USE06, M+06].
Process [AGLM91, Bal91, HPHV17, MZG14, RB01, SC17, Tho93, AC95,
LZWD15, XCJ+14]. process-aware [XCJ+14]. Processes
[JADAD06a, Kim84, SN05b, WT91]. Processing
[DKW15, Loy92, VLZL16, DH01, EF94, GSN93, IM93, KHL17, KWZ+19,
LKY+17, LRP+19, LG93, MMG+18, WWT89, Wü013, ZDK+19]. Processor
[ISE08, NSL+06, RWX+12, SKJ+17, IIK+06, LRC05, ValFCC97, WDSW01,
WLL+13, WJGA12]. Processor-Interconnect [SKJ+17]. Processors
[DSM14, Gei02, MT16, MT17, MBK+92, PNT12, RTL+18, KKC+16, MN03].
product [IBM88, Int88, SV17]. production [SL00]. Products
[Ano03a, Ano03b, Ano05]. Professional [vH08, IIPB09, Ham07, Khn09].
professionellen [Zim05]. profile [AWR05, WK17]. Profiler [SH04, VL00].
Profiles [Int05b]. Profiling
[LV99, Sun95a, DSZ11, NK10, SSB+14a, STY+14, TZK17, THC+14, YZLQ14].
Profit [BYBYT16, ZHW+17, LWL16]. Profit-Maximizing [BYBYT16].
Profitability [WUK+18]. Program
[ACM01a, Han05, H080, MSG01, SZ88, ABDD+91, BPB86, She02, WGF11].
Programm [Mar08]. Programmable
[DMS02, FS11, Ken80, MSS+15]. Programmer
[PSBG11a, PSBG11b]. programmers [Hee07].
Programming [ACM90, Arm78, DK75, Eng99, Gai75, GMP89, GH91b,
LFBB94, Luc97, SYB12, Sub08, Sub11, Tho68, Tol98, ACM99, AS85b, Alf91,
BCM90, Ham76, Jou85, Klag09, ME87, RSW91, SOM04, Ta81, AS85a].
Programming-in-the [DK75]. programming-in-the-small [DK75].
Programs [FS12, Kan83, NMMP15, Wei94, CK06b, CK06e, CR16,
DKF94, EGD03, GMR93, IM75, Wak99, Wol99]. Progress
[ZRD+15, ZHCB15]. project [AAB+05a, CKP78, Lot91, RD90]. projects
[AL05]. PROLOG [Clo85, Ode87, War80]. Promoting [ACA16, WLW+17].
Proof [FC98, LLZ18, Arv02, FP14, FCG+05, ZLH+15]. proof-carrying
[FCG+05]. Propagation [AD11]. Properties [BN75]. property [VT14].
proposed [GH91b]. Prospects [PCB+18]. protect [ZBP07]. Protected
[BPP+17, Cof99, GHD12]. Protecting [LMJ07, WLL+13]. Protection
[CD12, CDD13, SS75, CGL+08a, CGL+08b, CGL+08c, JCCZ13, PK75b,
ection [FPS+02, ORPS09]. Re
Resource-aware [GA18, PFPJ18, SGV12]. Resource-Latency [BL17].

Resources [CRZH15, KGS16, PCC16, HMI17, KHL17, LTZ+14, PSZ+07, Tzk17, WRSvdM11, WRS+15, ZBP07]. Resourcing [MSS+15].

Resourcing-on-Demand [MSS+15]. Responding [BSM+12].

Responsibility [GKXK13]. Ressource [Mar08]. restart [BBHL08].

restoration [BS96, XWX17]. Restoring [EGJS15].

Results [HW93, Man15b]. Retargetable [GFH82, Fra83, GHF83a, GHF83b, WNL83]. Rethink [WRX11, XJWW15].

Rethinking [PBWH12, RGSJ17, WCSG05]. retrofittting [CGL08a, CGL08b, CGL08c]. Retrospect [GLC84].

Return [SYB12, Ven97c]. Return-Oriented [SYB12]. returned [BBS06].

Returning [PSBG11a, PSBG11b]. Review [Ano97a, Fra13, Ng01a, Ng01b, AGH15a, MA17, Van98, Mat10]. Reviewer [Ano03b].

Reviews [Ano03b]. Revised [Ram93]. Revisited [SCD90]. Revisiting [AJH12, CL16b, HMI17, WWWL13].

rigor [Vit14]. Rigorous [KJ13, Man15b]. RISC [ABDD91, BSUH87]. risks [Bel06]. roadside [YBZ15]. Rob [Bas04, Bas06]. Robot [Arm78].

Robust [CML12, SGV12, YZC17]. Rochester [Mar81]. Rockefeller [IEE90b]. role [GLA+08]. Rollback [CHPY17]. Rome [BW03].

Rose [Ano03b]. Rosenblum [War11]. Roundtable [Cre10b, Sta97, Cre08a, Cre08b, Cre09, Cre10a]. route [YPLZ17]. routed [AM16].

routers [GP13]. Routing [EMAL17, HLP+16, WY+17, FLL+13, FSH+13, LWL16, SJR+13]. RPC [CSS+13].

RPYthon [MRG17]. RTLSim [YYPA01]. rule [Pul91]. Run [Bad87, ACT94, AWRE05, CGM17, Com00]. Run-Time [Bad87, ACT94, CGM17].

Running [Bad87, MDD+08, GMR93, KGS16, SJ88]. runs [FIF+15]. Runtime [GSS+18, Kam83, KB15, MB98, NMMP15, Shi03, ORPS09, RVJ+01, STY+14].

Runtimes [HD16, Han05, CSV15, GKO5, PBAM17, WWH+17].

S [M+06, Ber86]. S-GRACE [M+06]. S.u.S.E [KGG00]. S/370 [Ber86].

SableSpMT [PV06]. Safe [BHI15, RSR+15, SKI+17, VVC+17, CFS+12, CLDA07, MSZ09]. Safety [BSI+15, HM01, MSG01].

Sagamore [ACMC03b]. Sampling [Lec16]. San [ACM99, ACM06a, Ano94b, Ano10, IEE93a, USE99, USE01b, USE02].

Sandboxing [GG11]. Sandpiper [WWSY09]. SANs [ZSXX07]. Santa [ACM08]. Sapphire [URJ18]. satellite [CFVP12, SSN94]. Satisfaction [LVM16].

Satisfaction-Oriented [LVM16]. saving [YLCH17]. SC+11
semi-automatic [MSZ09]. sensitive [DK17, KSLA08, LCL14, ZBP07].
sensitivity [HB13, TZK17]. Sensor [BSI+15, LC02, MAK07]. sensors [ALL06]. Separation [KF91, WLMD16, LWM14]. September
[ACM81, ACM04a, ACM05a, ACM06c, ACM06b, Ano93, BW03, GHH+93, Jou85, JPTED94]. Sequence [EDS+15], sequential [Clo85]. Serialization
[BP01, BP03]. Series [Kec77, KAH83]. Server
[Ano03a, Apr09, Bod10, Car06, CGS06, Do11, HSK17, Joo99, KSS09, KS10, KLLT18, L215, Lar09, LC09b, LC09a, Mar08, MG08, MG09, PZW+07, RWX+12, R+02, SWC08, WN17, ZHW+17, Zim05, Zim06, A+04, AGH+15b, B+07, DBC+00, Hal08, IMK+13, LLW+18, LLS+08, LI14, LDDT12, MNT14, MRM06, NTH+17, R+13, RPE12, Wal02, WDT18, YZW+13, AAI+03, Ano03a, B+07, D+04, Ham07, Lar09, MWHH05, OH05, R+06, Rul07, R+02].
Server [Mar08]. Servers [DSM14, JJK+11, KAZS14, SDD+16, SK+17, WLW+17, A+04, BBHL08, G+05, Hal08, JDJ+06, Mly09, SZ13].
Service [BB13, BFG+14, DKW15, DPCA11, EMAL17, ESY+17, HJG18, HPHV17, JWL+18, LP14, LLW+16, RSNK17, RSGG15, WVT+17, WHD+16, BSM+12, CHCC07, DVM+17, EdPG+10, ECAE13, EM13, Fr013, GHM+18, KKB14, LZWC13, MCJ19, ROCW12, SZ13, VOS12, YCL+19]. Service-Based
[HP+14]. service-chaining [GHM+18]. Service-Oriented [RSGG15, Fro13]. Serviceability [RB01]. Services [BFHW75, IEE06b, MSS+15, WC01, ZLW+18, BDS+09, HBP06, KBB11, KSLA08, LTZ+14, ZEdlP13]. Set
[Bro89, CH08, Cro93, Low88, RLZ+16, RKRK17, SLM89, SV13, SNC91, SNS03, CFS+12, JGSE13, PW03, TZK17, WWS89, WDC10].
Shared-Memory [Cro93, RLZ+16, SLM89, WWS89]. shared-source [PW03]. Sharing [ACA16, BFHW75, CDN02, MS07, PTM+15, RG17, SAB+07, XML+18, LLS14, LTZ+14, TtLC13, WTLS+09]. Sharing-Aware
[RG17]. shell [FL13b]. Shoot4U [OLZ16]. Short [HW15, KKC+16].
Short-circuit [KKC+16]. shortest [AM16]. shot [JK15]. Shoulders [FS12]. Showcase [USE00a]. showdown [SCEG08]. Shredder [AMH+16].
Shredding [AMH+16]. Shrinking [Ste14]. shaving [ZWC+14]. Shuttle
e[cWS14]. Sibling [OG16]. SIGACT [ACM99]. SIGCOMM [RM03].
SIGCSE [ACM06d]. SIGMETRICS [ACM81]. Signal [MBK+92].
SIGOPS [ACM04a]. SIGPLAN [ACM01a, ACM99]. SIGPLAN-SIGACT
[Skr01]. SIMD [PSBG11a, PSBG11b, PBR+90, Sig89]. Simics
[Ano14a, MCE+02]. similarities [CL14, CL17b]. similarity
[GV13, LLF+18, LLWW18]. Simple [Bak83, Cox07, NOR15, WDT18].
Simplicity [BGP00, DSSP06]. simplification [FS08]. Simplified
[Bag12, PSC+07]. simplifying [Cla05]. simulated [GE85, RH17, WDSW01]. Simulating
[HO92, Pou90, RPE12, TO91, ZR06, FPGK18, Skr01, WCC91]. Simulation
[ADG+92, AB16, DBMI92, JN15, KD78, Kut92, MCE+02, MBK+92, MJ93, PBR+90, PY93, Tur92, WB81, WWMG06, YP15, Ano94,
BHvR05, Bur02, BS96, Clo85, DSSP06, IM93, KK79, LJN+00, NRS92,
RMB02, SK13b, UBL+82, WWS89.
Simulations [LCT+15, BL90, DH01].
Simulator [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15,
GB07, Hog02, KW80, MRL02, YYP01, Ano14a].
Simulators [NMHS15, Sup04, Man18, Yur02].
Simultaneous [LRZ16, ABB+15].

Singapore [Ano06a, TLC06].
Single [CCO+05, KP15, AGIS94, Fis91, LSS04, Mon97].
single-chip [Mon97].
single-node [LSS04].
single/multigrid [AGIS94].
site [CPST15, SSB03, DK75, HPHS04, SS72, WH08, WWT89].
sizes [HM18].
Sizing [VTW16, CSV15, WSAJ13].
Sizing [JJ02].
Sizing [JJ02].
Small [JJ02, SSB03, DK75, HPHS04, SS72, WH08, WWT89].
small-scale [WWT89].
Small-Sized [JJ02].
Smalltalk-80 [BMWB86, BSUH87].
Smalltalk [BMWB86, BSUH87].
Smart [Ano03b, GLV99, MPA+18, Rou07, WTLS+09].
Smartphone [DAH+12].
SMIL [Bru07].
SMILemu [Bru07].
SMOK [DZ02].
SnapShot [CHLY18].
Snapshots [CWL+15, DS16].
Snowbird [ACM01a].
SnowFlock [LCWB+11].
Social [XML+18, PEL11, PG11, Web10, WXW15].
sound [BHSB14].
soundness [Req03].
Source [Ano03a, SJV+05, SNS03, AAB+05a, But04, CKRKJ17, Cia07, JM08, PW03, SIK+16].
source-level [But04].
source-aided [TB14].
solvers [GCARPC+01].
Some [Ker88, Man15b].
Some [Ker88, Man15b].

Some [M+06].
Sorting [BGHSM70].
SOSP [ACM03b, Vra05].
sound [BHSB14].
soothing [Req03].
Source [Ano03a, SJV+05, SNS03, AAB+05a, But04, CKRKJ17, Cia07, JM08, LC09a, PW03, SIK+16].
source-level [But04].
sous [Apr09].
SP [IBM94].
SP2 [Boz89].
Space [XML+18, PEL11, PG11, Web10, WXW15].
space-efficient [PEL11].
spatial [GH91a].
SPAN [RD90].
Sparks [VN08].
sparse [Kra90].
sparse-matrix [Kra90].
Spatially [HW93].
SPC [JYW+13].
SPC-indexed [JYW+13].
Special [Bag76, KM13, TZZB19, Yur02].
Specialized
Supercomputing
[ACM89, ACM96, ACM00, ACM04b, ACM05c, Hir92, IEE90b, IEE92, IEE93b].
Superconcurrent [NRS92]. superoptimization [HW15]. superscalar
[VdlFCC97]. supertype [RBB17]. Support [BP01, DJ77, HHV+02, HD16, HB12, KYP+17, LV99, NLS+06, RI00, SSG90, Tur92, XD16, dGG+17, AC95, BADM06, BTLNBF+15, BP03, CHCC07, CFS+12, DJ76, GK05, ORPS09, PGLG12, SJRS+13, STFH15, SL12, TY14, WK08, WES06, WLL+13]. Supporting [BMS16, CWS12, Kim84, MSS+15, Mon97, RT93, XWJX15, YWCF15, ZZF06, GD08, TT93]. Supports [Ano03a]. surgery [PBL+16].
Survey [BAL15, HSN17b, KKL16, KL14, Man15a, PS16, SB16, SGB+16, UOKT84, AGH+15b, CB10, FMIF18, MG13, NIA18, PBB13, XTB17, YWL+13]. Surviving [BMS16, CWS12, Kim84, MSS+15, Mon97, RT93, XWJX15, YWCF15, ZZF06, GD08, TT93]. Survivability [YZW+13].
Surveyor [Fra83, GHF83a, GHF83b, WNL+83]. Survive [Ano03a]. Surveyor [BMS16, CWS12, Kim84, MSS+15, Mon97, RT93, XWJX15, YWCF15, ZZF06, GD08, TT93]. Survivable [ACA16, AM16]. SUSE [Bau06b]. Sustainability [FBL18, SS17]. SVGrid [ZBP05]. SVM [JAS+15]. SVS [LJZ12]. SW [Wu13]. swapper [ATS14]. swapping [ABG14]. swarm [JNR2]. Sweet [WBB+16]. Swift [NOT+17]. Swiper [CRZH15]. switch [BR01, Ste14]. Switching [DMG+15, LBL16]. Sy [USE01c]. Sydney [MR91, Gre10]. symbiotic [LD11]. symbolic [MMP+12, TB14]. SymCall [LD11]. Symmetric [DBO+18, GMP89]. symmetry [PBL+16]. Symposium [ACM75, ACM03b, ACM05a, ACM06d, Ano00, Ano01a, Ano01b, Ano04a, Ano04b, Ano10, HHK94, IE84a, IE85, IE90a, IE91, IE96b, IE96d, IE06a, Ost94, TLC06, USE91, USE93, USE93, USE00b, USE01d, USE02, Vra05, IE96a, Ano02]. Synchronization [LJL+11, ZJXL11, Sub11, Uhi07, Ven97d]. Synchronous [SIR+17]. syntax [KMMV14]. Synthesis [DMS02, BPB86]. Syracuse [IEE96b]. System [ACM75, Abr80, ABC66, Ano10, AAK18, Bad82, BFHW75, BBD+91, BPP+17, BHYBT6, BG589, B+05, Car13, CSS+13, CWL+15, CHPY17, CHLY18, DMR10, DM75, Fis01, G+06, GH91b, HXZ+16, HW93, HHC+16, HWCH16, IS7, Kam83, Kee77, KP15, Kut92, LP14, Li14, LCFL12, LXM+16, MCE+02, Mat10, MS70, MDGS98, MB98, MS01b, MM94, NHW10, NMS+14, P+08, R+06, Sch86, SLM89, SVN+10, Shio3, Shr89, SWF16, Ste05, WLW+15, WK90, ZSZX07, ZQZC16, ZFF06, ZXY+15, AD18, AEMW+12, AL05, AH12, ACT94, AP18, Bar78, Bor07, Bur02, Caa00, CWH+14, CK06b, CK06e, CKP78, FFBG08, Fis91, GQQ+13, HN08, HKD+13, HCC12, IBM88, Int88, KCKC15, KK79, LNN+00, Lya05, LDL+08, MD73, MD74, MDFST2, PRB07, PK75b, Rob06, SNV10, SPF+07, SWW+18, SZ13, SS72, STY+14, TC10, Vag10, Van06]. system [VMBM12, VSC+10, WKT08, WH08, WWT89, WF07, WC91, YLCH17, YZSC17, ADG+92, ABD+91, Car14, Gum83, SNC91]. System-level [SVN+10, AL05]. System/370 [Gum83]. System/6000 [ABBD+91]. System/9000 [ADG+92]. Systemarchitecktur [See08a]. Systeme [WF03]. Systems [ACM81, ACM03b, Ano99b, BBMA91, BH15, CD12, CAF+91, Das91, DJ77, Her10, IEE93a, IE01, Lar09, LW11, LJZ12, MM93, MJW+14, MKKE12, RT93, SL14, SS75, SVB93, SL16, SN05b, THB06, USE99, USE01b,
Systemverwaltung [Lar09].

TCAM [HWHW18]. TCAM-Based [HWHW18]. TCB [HCJ07, HPHS04].

TCP [CL16b, GKKK13, GI12]. teach [Don88]. Teaching [Agr99, Dav04, Don87, GGG03, ME87, Guz01, Ham76, KW80, MS01, NV05, WKC+09, YPPA01]. teasing [LBF12]. Technical [ACM06d, Ano06b, Han16, OH05, USE01a, USE06, BB08, Int06c, Int06a, LC09a, Wall10].

Techniken [Tho08]. Technique [JHS12, JMSLM92, LT92, SMK02, ACT94, SLA+16, YKS16]. Technologies [ACM06b, LJJ+15, NKY+18, OVI+12, SldLB15, Tho68, UOKT84, ZZF06, AD18, AA06, AH12, BADM06, HSC15, IM93, KS13, KRG+12, SSN12, SHTE11]. technische [LC09a]. technologie [Apr09].

Technologies [DF96, PZW+07, USE99, USE01b, Cla05, Kao17, MPA+18]. Technology [Ano00, Ano01a, Ano01b, Ano02, Ano04a, DLM+06, Don06, Got07, Her06, RG05, USE01c, USE01d, USE02, UNR+05, WHD+09, ZAI+16, Apr09, Int05a, Int05b, Int06b, Int06c, Int06a, AJM+06, NSL+06, NKK+06, RSW+06, Uhl06]. Tele [HMS04]. Tele-lab [HMS04]. telehealth [WQG15]. template [WRX11]. Temporal [CwdO+06]. Tenancy [DY17]. tenant [SWW+18, YKS16, ZRYZ15]. terminal [CKT08]. terminals [IIK+06, ISE08]. Terra [ACM75, ACM06d, USE01b, IEE02, IEE03]. theri [EF94, KCV11, SS13]. Them [Hir17, SSI17, BW03]. Theoretical [Kna93].

Three [YPPA01, Vit14, YZW+13, ZFY18]. three-layer [ZFY18]. threshold
49

[SENS16, TDG+18]. threshold-based [SENS16]. Throughput
[BPP+17, GKKX13, GI12, ZSW+06]. Thunderbird [Joo06]. ticket [OL13].
tier [WDC08, ZNSL14]. tiered [AW17]. Time
[Bad87, CW03, Fuj91, Hu90, HWB03, HS06, LTE12, IWC+17, MS70, Sta97,
ABB19a, AS76, ACT94, ABC+07, BBS06, CMG17, DEE+16, HK07, HC14,
Ive03, KJ13, KBB11, LD05, LTK17, MNT14, QT06, She91, Ste14,
TSLBYF08, WQG15, YK13, YCL+19, ZEdlP13]. Time-Constrained
[LTE12]. Time-Sharing [MS70]. timebombs [CWd06]. Timing
[Hu90, HWB03, LGR14]. tiny [LC02]. TLB [OLZ16, RGSJ17]. time
TM [Qia99]. Tolerance [JKJ+10, RZPX19, ZJX11, ROC12, YLH14]. Tolerant
[FK03, Kim84, YWR+14, SNV10]. Tool
[Ano03b, Wil01, KK79, Lia05, Skr01, SCFP00]. tool kit [DZ02, PW03]. Tools
[AC98, Cal75, GG11, LC09a, MJW+06, PY93, QNC07, ACM01a, EL98,
YYPA01]. top [KMT14, PBWH+12, Won97]. topic [YZSC17]. Topics
[IEE01]. topological [KKM+13]. Topology
[CYX+17, TB17, dSdlF16, AM16]. Topology-Adaptive [CYX+17].
Topological-Aware [dSdlF16]. Toronto [So83]. Total [LGJ+18, THG+18].
TotalStorage [D+04]. TPC [NP13]. TPHOLs [BW03]. TPM [KC12]. TR
[Int05b, Int06c, Int06a]. Trace [MZG14, BDE+03, DC15]. Traces [WKG17].
tracing [BT15, PFH+16, WKJ15, Wol99]. Track [Sch89]. Tracking
trade off [UTO13, WCY+17]. Tradeoffs [CMM+06a, CMM+06b, CMM+06c].
trading [LWLL16]. Traffic [BBM+15, CGC16, CYX+17, DK17, PCW+16,
FLL+13, IKU15, MG19, WZV+13, YCL+19]. Traffic-Aware
[CGC16, CYX+17]. traffic-intensive [IKU15]. Traffic-sensitive [DK17].
Transactional [URJ18, CMM+06a, CMM+06b, CMM+06c, ZHC15].
Transcendent [VTW16]. Transfer [HHC+16]. transfers [DBP16].
Transformation [WIDP12]. transformations [HB08]. transient [LRC05].
Transiently [LDRS18]. Transition [MBW+86, Syr07]. Translation
[JXL+12, LH16, YVBCB17, dGG+17, CFG+13, JYW+13, OI05, OI06, OI08].
translation-based [OI05]. Translational [WIDP12]. translations [UTO13].
Transmission [RSNK17, RSN+18]. Transparent [BZA12, FK03, JKJ+10,
MSI+12, dGG+17, AW17, JXZ+10, MRC+13, YJZ+12]. Transputer
[Boa90, GHH+93, Boa90, GHH+93]. travel [TSLBYF08]. Traveling [YK13].
traversal [YTS14]. Treating [SSOT17]. Tree [Hal79, KMMV14]. Trenches
[HN10]. Trends [RG05, AH12, CM18, JPT94, vD06]. TRI [ACM97].
Trigram [Cox12]. Troubleshooting [WF03]. Troy [Ano97a]. Trusted
[DPW+09, SVB93, BCP+08, KSLA08, WH08]. Truthful [NGM15, TSAC
[WZL15]. Tucson [IEE05]. Tuning [EDS+15, RS16]. Tutoring [GH91b].
TVDe [BCP+08]. Twelfth [MR91]. Twenty [MS91b, Shr89].
Twenty-Fourth [MS91b]. Twenty-Second [SR89]. TwinDrivers [MSZ09].
twins [HCJ07]. twitter [Guy14]. Two
[AW17, SSG90, TF16, BSSM08, HCJ07, LUL+05]. two-dimensional
Two-level [SSG90]. Two-phase [TF16]. Two-tiered [AW17].
TX [ACM99]. Type [ADM98, AT16, Arv02, KCV11, PRB07]. type- [Arv02].
Type-Precision [ADM98]. Typed [G+88, BDT13, GLV99, KRCH14].
Types [Wel94]. TypeScript [RSF+15]. Typing [RSF+15].

u.v.a [Tho08]. UKCF [JXL+12]. umfassende [Bod10, Fis09]. Umgebung
[CK06p]. Umgebung
[CK06a, CK06e, CK06c, CK06d, CK06g, CK06f, CK06i, CK06h, CK06j, CK06k, CK06m, CK06l, CK06n, CK06q, CK06t, CK06r, CK06s].
UML [Fre05, RFBLO01]. UMLexe [Fre05]. uncertainty [LPBB+18].
underlying [FBZS12]. understanding [DMH18].

unknown [ClW+14]. unleased [Ano97d, HH08, MG08, MG09]. Unmodified
[HL+16, MKKE12]. Unpicking [LB12]. unsound [AT16]. Untrusted
[CD12, HK+13, HPHS04, WLL+13, ZBP05]. upcalls [LD11]. Update
[VCC+17, J+05]. Updates [LDRS18]. updating [CCZ+06]. upgrade
[CHCC07]. Upgrades [Ano03a]. uptrees [HB13]. UPWN [M+06]. Urgent
[AGJS16]. USA [ACM75, ACM81, ACM01a, ACM03b, ACM05a, ACM06c, ACM06b, ACM06d, Boa90, IEE93a, Shr89, USE01c, ACM75, ACM05d, ACM06a, Ano01b, Ano04b, IEE84b, Ost94, USE85, USE86, USE91, USE93, USE99, USE00a, USE01a, USE01b, USE06]. Usage
[KLLT18, RSW+06, WH99, KTB17, RGAT18, SK13c]. USB [Ano03a]. Use
[Bec09, CLLS12, Guy14, KK79, Sch13a, SJJ+12]. used [tTR82]. useful
[LC09a]. USENIX [ACM50d, So93, USE91, USE93, USE06]. User
[Chu06, ZQZC16, Ano93, ACT94, Bor07, Guz01, PG11, RSC+15, Sto07, ZLZ13, ZLZ+19a, CKT08, Dav04]. user-controlled [Sto07]. User-Level
[Chu06, ZQZC16, ZLZ13]. user-space [PG11]. User-terminal [CKT08].

Users [Boa90, SS17]. userspace [Ste14]. Using
[AAF+09, ABV12, AL06, Bas04, Bas06, BRX13, CQLL18, CCO+05, DBMI92, Don88, ESY+17, Guz01, HLW+10, HW18, JMSLM92, LHN+00, LTT92, LD05, MV16, OLZ16, PEC+14, RSW+06, See10, SM06, SC17, SYB12, SAT09, SBK15, SXCL14, TD+18, WDSW01, WKG17, WUNK17, Wil01, WOl09, XSC13, ZB07, cGG+17, AD18, Agr99, ATS16, AWR05, AP18, AGIS94, BSM+12, BHvR05, CL14, CCZ+06, Dan12, FFBG08, FL13b, GHM+18, HJ10, HN08, HPHS04, Hol95, JNR12, JWH+15, JGSE13, Juo07, KKM+13, KS18, KJJ+16, KGS16, KL13, Kou11, KRG+12, LLD14, LLLW18, LQW+12, NV05, PBL+16, Pon19, RP07, SGV13, SNS12, SJPP11, SIK+16, SSH17, STF15, SNS94, TSLBF08, TF16, V14, YK13, YLWH14, YW09, YWCF15, ZLZ13, ZDLG17]. UT [Ren78]. Utah [ACM01a, CK87]. utility
[CSV15, JWH+15, PSZ+07]. **Utilization** [KCKC15]. **Utilizing** [GV113, KOY05].

V [Gal09b, Lar09, LC09a, Apr09, Car06, KVV09, KSS09, KS10, Lar09, LC09b, LC09a, MG08, MG09, SRS09]. **V2E** [YJZY12]. **Validation** [KCKC15]. Utilizing [GVI13, KOY05].

V [Gal09b, Lar09, LC09a, Apr09, Car06, KVV09, KSS09, KS10, Lar09, LC09b, LC09a, MG08, MG09, SRS09]. **V2E** [YJZY12]. **Validation** [KCKC15]. Utilizing [GVI13, KOY05].

V [Gal09b, Lar09, LC09a, Apr09, Car06, KVV09, KSS09, KS10, Lar09, LC09b, LC09a, MG08, MG09, SRS09]. **V2E** [YJZY12]. **Validation** [KCKC15]. Utilizing [GVI13, KOY05].

V [Gal09b, Lar09, LC09a, Apr09, Car06, KVV09, KSS09, KS10, Lar09, LC09b, LC09a, MG08, MG09, SRS09]. **V2E** [YJZY12]. **Validation** [KCKC15]. Utilizing [GVI13, KOY05].
Virtual

KS08a, KMK16, KNT02, KKTM17, KF91, Ken80, KDB16, Kim84, KJL11, gKEY13, KKJL14, KP15, KA83, KGZ+04, KLTT18. Virtual [KLF+15, LCWB+11, LMM18, Lam75, Lau87, Law00, LW11, LP14, LMR18, LW98, LMG00, LMG01, LTE12, Li14, LZZ+15, LZW15, LVM16, LWWL16, LYYY17, LGJ+18, LB98, LV99, LTT92, LD05, LY97a, LY97b, LY99, LYxxa, LYxxb, LYY13a, LYBB13b, LYBB14, LHP06, LWWL10, LJJ+11, LW12, LJL+15, LLZ18, LPB17, LPBB+18, LFBB94, Loy92, LTK17, LX+16, MSG14, Mac79, MS91a, Man15a, Man16, MD12, McG72, Men03, MS70, MD97, MDxx, MW18, MDGS98, MLG02, MB98, MKKE12, II79, MP01, MJW+06, MM94, NBH08, NKK16, NMG15, Nel04, NSJ12, NO12, OL05, OT97, Oi05, Oi06, PTHH14, PTHH72, PSBG11a, PXG+17, PRB07, Pfo13, PS16, PCC+16, PK75a, Pr00, Qia99, QT06, RG17, Ran02, RLZ+16, Ren78, Rev11, RY10, R00, RSN+18, Ros99, Ros04, RG05, RB01, SM02, Ibs84b, SL14, San88, SSB+14a, SD01]. Virtual [SH04, Sch13a, SMES01, Sch94b, Sch94a, See10, Set13, SMSB11, SSB03, SC17, SCEG08, SCSL12, Shi03, SM01, SGV12, SV13, Sim92, SCP93, Siv04, SSG90, SN05a, SN05b, SHZ+14, SSB+17, Sta97, SSB01, SSB14b, SHB+03, SVL01, Sun95b, Sun95a, SUN97, JCV99, SKI+17, Sup04, SM02, Sur01, TSLBYF08, Tai98, TT96, TTH+19, TMV12, TY14, To98, TO96, TV12, USE01c, USE01d, USE02, UT87, UBF+08, UR15, Vag10, VTF16, Ven97a, Ven99a, VL00, Vog03, Vol90, WL06, WIPD12, Wak99, WH99, Wa19, WB11, WLW+15, WWL+17, Wel94, WGLL13, WLLZ16, WCSG05, WPD+09, WP97, Wa99, Won97, WWM06, XKY+11, XSC13, XHL+13, XWJX15, XLL+14, XLJ16, YC98a, YLL17, YYY+17, YLCH17, YF15, ZS01, ZLW+14, ZRD+15, ZRS+16, ZL16, ZCG+17, ZL18, ZLZ+19b, ZZF06, ZWL+18, ZLL+16]. Virtual [Zho10, ZHL16, ZLY18, ZJXL11, ZTMW17, Zim05, ZR06, Zy94a, Zyt94b, dSdF16, vD00, vLSM01, dG99, AEMWC+12, ABB19a, Abr82, AS85b, AGS10, AAH+03, AGH+15b, ADA+19, AAB+00, AAB+05b, AC95, Ame13, AGH+16, An04, An06, An09a, AO16, ATS16, AFT01, ABC+07, Arm98, AW05, AAM+16, AMAB17, Arv02, AP18, AS14, ANH00, BAC15, Bag76, BML+13, BSM+12, BDF+98, BDS+09, BVH+05, Beg12, BPC94, BB12, BB15, BCP+08, BCN90, Bir94, BADM06, BFC02, Br98, BB95, CARB10, CL14, CL17b, CD14, Car14, CEG07, Cav93, CS76, CGM17, CCL+17, CBLFD12, CH08, CRB12, CK06a, CK06b, CK06c, CG10, cCCDFdO15, CDO+06, CDAL07, CLL+13, CD01, DPW+09, DDS+94, DSC+08, DP11, DM03, DC15, DEG+17, DBC+00, DLQW15, Don87, DXM+17, DSZ11, DCMW17, EGD03, EGK02, EG03]. Virtual [Ert05, EL98, EMS15, FLL+13, FM90, FBZS12, FSFP19, FMIF18, Ft14, FHL+96, FGL15, FF96, FLH+08, FCG+05, Fad05, FX06, Fu10, GP13, GGQ+13, GTG14, GI12, GVI13, G173, GCARPC+01, GPW03, GR80, GBCW00, GLV+10, GA18, HKS19, HM18, Ha09, HMH17, HJ10, HN08, HZZ+14, HUL06, HDG09, Hc14, HPHS04, Hol95, HSC15, IBM94, IBM96, IKU15, JSK+13, JK15, JES+15, JKK+13, JNR12, JWH+15, JGW+11, JDW+14, JGSE13, JADAD06b, Kal97, KOY05, KSSG16, KSO+15, KRCH14,
KS18, KTB17, KBB11, KCS14, KJLY15, KCKC15, KKC+16, KMG+18, KFF12, Kouv11, KCV11, KR16, LBP+07, LMJ07, LBZ+11, LC02, LM99, LZF+16, LBL16, LLYY18, LLW+18, Lia05, LJL12, LQW+12, LC13, LL14, LTZ+14, Lot91, LSSO4, LG93, MSG+12, MD73, MD74, MSG01, DPBK16, Man15b, MS17, Man18, MRMO6, MBM09, MNA16, MS00, Mat09].

Virtual [MN03, MC93, MG13, MRG17, MN91, MST+15, hTMAC+08, MAK07, NK10, NOK+85, NOR15, NV05, NIA18, OG16, Oi08, OMB+15, ORPS09, PFH+16, PEL11, PSBG11b, PMC05, PFPJ18, PBYH+08, PCB+18, Piz17, PON19, PRS16, PV08, Pu91, RK16, RH17, RHR02, Raj79, RT18, RZ14, Req03, RFBL01, RJK+17, Rus08, SJB14, SS13, SENS16, SNV10, Sch13b, SSMGD10, SHLJ13, SN12, She91, SJ+12, SJW+13, SAGSA13, SL00, SGGB99, SGGB00, SKC73, Smi97, SYMA17, SSL+13, SMA+10, Spi06, Ste14, SSU+12, Str13, SZL+14, SL13, SL14, Lot91, LSS04, LG93, MSG+12, DPBK16, Man15b, MS17, Man18, MRMO6, MBM09, MNA16, MS00, Mat09].

Virtual-machine [HUL06, HPHS04]. **Virtual-Machine-Based** [JN15].

Virtual-time [She91]. **Virtualbox** [Deu08, Bec09]. **virtualisation** [Apr09].

virtualised [MPF+06]. **virtualisierte** [Mar08, Kar07]. **Virtualisierung** [Spr06, Spr07]. **Virtualisierungs-Buch** [Tho08]. **Virtualisierungslosung** [See08a]. **Virtualisierungslosungen** [PO09]. **Virtualisierungssoftware** [Zim05]. **Virtualisierungssystemen** [Deu08].

Virtualities [Den01]. **Virtualizable** [HH13, PG74, PG73]. **Virtualization** [AFG+17, AJM+06, AAD+16, APST05, Ano03b, AVMT11, Bac11, Ble10, BHEP14, BDR+12, CZL08, CLS07, CGS06, CH12, CXLX15, CWH+16, CQLL18, CD12, CDD13, CCWS14, CLLS12, Chu06, Coh10, Cre09, Cre10b, CGW07, DMS02, DW14, DPCA11, DLM+06, Don06, DMG+15, DY17, EMAL17, FPR+06, Fer11, FDF05, FRD+08, FLZ17, Gal09a, Gal11, GHS17, GW07, Got07, GG11, HD16, HFW07, Her06, HN10, HHC+16, HSN17a, HSN17b, HDM08, HSL17, HB12, JW17, KHW+16, KSO8a, KMM13, KSO8b, KGS16, Kot10, Kot11, KCL12, LH16, LWC+17, LLW+16, LRZ16, LZW+17, LCFL12, LDIT12, MCC18, MA10, MCZ06, MUKX06, MA17, MGL+17, MWHH05, NTR18, NSL+06, NKK+06, NSP16, OVI+12, PZ+07, PH+12, PZH13, PVDS08, PNT12, PST+15, QNC07, RSW+06, RC+12, R+06, RTL+18, RZPX19, RKRK17, RWX+12, RR09, Sed07, SM06, SGB+16].
Virtualization [SYB12, SAT09, SJPP11, SWF16, Spr07, Sta07, SKYK16, Swa06, THLK10, TF16, Tre05, UNR+05, Uhl06, UVL+13, VN06, VN08, WBB+16, WDC108, WWH+16, WC01, WG07, WHD+16, WH05, WLW+17, XH16, XML+18, YSS+17, ZSX07, ZQCZ16, ZZF06, ZAI+16, ZXY+15, ZKW017, dGG+17, vMAT14, vDK09, AA06, AKK+07, AAF+09, A+04, AH12, ALW15, AJD09, Ano14c, Ano15, Apr09, AAB+05c, AEB19, ABB+19b, AA18, ABB+15, BDF+03, BBD+10, BRH110, B+05, BB08, Bor07, BH13, BC10, BTLNB15, BSMF08, B+07, CSS11, CBER09, CDM+10, CFG+13, CWH+14, CL15, CCZ+06, CGL+08a, CGL+08b, CGL+08c, CB10, CMM+06a, CMM+06b, CMM+06c, Cia07, Cia05, CM18, CKT08, Cre08a, Cre08b, Cre10a, CB07, DLL+16, DBO+18, DYL+12, DCP+12, DS09, DRe08, EdPG+10, ECAE13, FFBG08, FP14, FJJK17, FLCB10, FS08, Fro13, FK13].

virtualization [FSh+13, GMK17, GLA+08, G+06, G+05, GTN+06, GAH+12, GKT17, HLP+10, Hal08, Han16, HIIG16, HPH08, HC12, IIAK+06, ISE08, IMK+13, J+05, JM08, JXZ+10, JCC01, Kao17, KVV09, KSR10, KKB14, KWZ+19, KL03, Kro09, LPD+11, LD11, LUL+05, LLE17, LLW+12, LZWC13, LLY+18, LJY07, LQW+12, LCL14, LWE+16, LRP+19, LLS14, LP11, LDL+08, MG19, MRM06, MSL+12, MDD+08, MIS+05, MBA+12, MPA+18, MBBS13, Mly09, MMG+18, MR06, NTH+17, NBI11, P+08, PG11, PBB13, QZD16, RSC+15, RS16, RQD+17, Rix08, RSLAC16, Ros06, Rou07, SVN+10, SJSR+13, SWc12, SIR17, SPF+07, SWW+18, SAB+07, SWC08, SL12, TDL+18, TZR9, TLB12, VW08, VSC+10, VOS12, WR12, WZW+11, WCC+16a, WCC16c, WCS09, WJGA12, XKY+11, XZ11, YKS16, YJY12, YTS14, YLH14, YLWH14, YCL+19, ZE11, ZRE+05, ZSW+06, ZLZ+13, vD06]. virtualization [vH08, Gua14, MCJ19, YWL+18]. Virtualization-Based [CDD13, RZX19, AAJD+16, DPCA11, MCC18, WDC108, CGL+08a, CGL+08b, CGL+08c, QZD16]. virtualization-driven [CSS11].

Virtualized [AMA18, EGR15, GKK13, GLJ18, KKW+16, LZ15, MT16, MT17, NKY+18, RGSJ17, SB16, SL16, SDD+16, WIS+15, WKC+09, WLM06, YWC08, YWC17, YWOF15, AJH12, ATS14, BGS13, BSS08, HOK014, HL13, KW13, KSR010, KRG+12, LWM14, LC13, MNT14, NS07, PSZ+07, PSC+07, SG10b, TRG13, WWM+13, WLS+09, ZWC+14]. Virtualizing [BTMS10, Sari16, SB10, SL01, WRS13]. VirtualKnotter [ZWC+14].

Virtually [Spi06, WL96, Tre05]. VirtualPower [NS07]. virtuelle [WF03, WR07, WR08, Zim05, Zim06]. virtuellen [CK06a, CK06e, CK06c, CK06d, CK06g, CK06f, CK06i, CK06h, CK06j, CK06k, CK06m, CK06l, CK06n, CK06o, CK06p, CK06q, CK06t, CK06r, CK06s].

Visualizing [WT91]. VLISP [Ram93]. VLSI [IN87]. VM [Ano01a, Ano04a, Ano04b, Ano03a, AB16, ABG14, Att79, Bar78, BN89, BT15, Boz89, Cal75, CBZ+16, ESY+17, Fis91, FL13b, GH91a, G+06, GHD12, HXZ+16, HC12, HW15, IBM94, LBF12, LJZ12, LLW10, MSS91, MLA83,
NOK+85, OJG91, P+08, PG18, RSNK17, SHW+15, SBK15, SNC91, SldLB15, TB17, Wal10, YZLQ14, YKM17, YWR+14, ZFL15, ZDLG17. VM-based [ESY+17]. VM-protected [GHD12]. VM-scaling [AB16]. VM/370 [Att79, Bar78, Cal75]. VM/4 [NOK+85]. VM/application [LBF12]. VM/ESA [Fis91, IBM94, MSS91, OJG91, SNC91]. VM/Pass [MLA83]. VM/Pass-Through [MLA83]. VM/XA [BN89, Buz99, IBM94]. VMBackup [ZXW16]. vmBBProfiler [TZK17]. Vmgem [EGK17]. VMI [LLF+18]. Vmknoppix [Deu08]. VMM [AD18, AL06, Car14, DQR+13, DLX+17, KZB+90, LD11, LHAP06, OLZ16, RQD+17, SM90]. VMM-based [AL06]. VMM-Bypass [LHAP06]. VMM-to-guest [LD11]. VMMB [MKKE12]. VMP [JNR12]. VMPPlanner [FLL+13]. VMPPlants [KZG+04]. VMPP [Ly92, LG93]. VMs [KMT14, KJ+13, RJ+16]. VMScatter [CLL+13]. VMSI [ZTW17]. VMThunder [ZLW+14]. VMWare [Joo06, CK06f, Ham07, Klm09, KGG00, Tho08, Zim05, Zim06, Bas04, Bas06, War05, Wil01, AAH+03, Ano03a, Ano03b, Ano07, BBD+10, Bau06c, Bor01, BDR+12, CK06f, Com00, Com03, D09, D+04, Gal09b, GKB15, Hal08, Hal09, Her10, HMS17, IIPB09, Kis08, KMK10, Lav10, Low08, Low09, Low11, LMG+14, MRM06, MBM09, McC08, MWH05, MJW+06, Ng01a, Ng01b, NLO, OH05, Ros99, Ru07, R+02, Sec10, SIK+16, SVL01, Ten17, TH10, Wal02, Wal09, War02, WF03, War11, Zim05, Zim06, B+07]. VNC [RSLAGCLB16], Vol.II [Srh89]. Volatile [AMH+16, HN08], voltage [TDG+18, AMAR17]. Volume [AvM17]. Vorstellung [CK06b, CK06c, CK06d, CK06f, CK06g, CK06h, CK06k, CK06m, CK06l, CK06n, CK06o, CK06q, CK06r, CK06s]. VPC [KJM+07]. VPFS [WH08]. VPN [MSI+12]. vs [Gal09b, WK17]. VSA [SHL13]. vSAN [FKZ17]. VSched [LD05]. Vshadow [LW+17]. VSim [RPE12]. vSphere [Gal09b, Lav10, Low09, LMG+14, Fit14, Hal09]. vsphere5 [Low11]. VSwapper [ATS14]. vsSwitch [TSP17]. vulnerabilities [RY10]. Vulnerability [CRZ15, Ano99a, JKDC05]. vulnerability-specific [JKDC05]. Vulnerable [JSH15, JAS15].

[Ng01b, Ng01a]. **WinCE** [Kal97]. **Windows** **[Bod10, Bor01, Joo09, Lar09, Sch94b, Sch94a, WF03, Apr09, Bod10, Car06, CK06a, CK06i, CK06h, CK06p, GMR93, KSS09, KS10, Lar09, LC09b, LC09a, MG08, MG09, Nou92, Sal92, YGN+06, Zyt94a, Zyt94b], **WINRAR** [Joo06], **Wireless** [ACM06c, AFG+17, ALW15, BSI+15, HLP+16, KKT17, SIJPP11, FK13, HLW+10, XKY+11]. **Wirth** [BGP00]. **wired** [XKY+11]. **Wireless** **[ACM06c, AFG+17, ALW15, BSI+15, HLP+16, KKT17, SIJPP11, FK13, HLW+10, XKY+11]. **Wirth** [BGP00]. Within [RD90]. Without [CD01, KSRL10, SUH06]. **WLAN** [KKTM17]. Wolves [DLX+17]. **WOMP** [M+06]. **Work** [HMS17, DMH18, KHL17]. worked [Cox12]. workflow [HKS19, KCKC15, WKT08]. Workflows [RB17, dCCDF015]. Working [NKY+18, ZDLG17, G+88]. Working-Set [ZDLG17]. Workload [IEE02, IEE03, KCV11, SS13, SSN12]. workload-aware [SSN12]. workloads [GTGB14, LL14, SMA+10, SWC08, VVB13]. Workshop ACM08, RM03, ACM05b, IEE01, IEE02, IEE03, IEE04, Mat10, Tho03, ACM01a, ACM04a, ACM06c]. **workshops** [M+06]. **Workstation** [Bau06c, Bor01, BDR+12, WF03, War05, SSN94, War02, SVL01]. World [DF96, GHH+93, WLW+17, BBM09, STS+13]. **World-Wide** [DF96]. worlds [AJD09, LUL+05]. **Worm** [CLW+14]. Worst [HWB03]. Worst-Case [HWB03]. Writing [Wes98]. written [MSG01]. **WWC** [IEE03, IEE02]. WWC-5 [IEE02]. WWC-6 [IEE03].

\[x3950 \text{[R+06]. X64 } [dGG+17]. \text{x86} [AGSS10, BDR+12, CoF99, MT16, MT17, MGL+17, Rev11, AA06]. \text{XA} [BN98, Boz89, IBM94]. \text{Xbox} [Ste05]. \text{XC} [GH91a]. \text{XEN} [Hin08, PO09, Du08, HHH04, Kar07, Mar08, See08a, Tho08, RHM08, AJD09, Ano15, BDF+03, B+07, CBZ+16, Chi08, CGW07, De 06, DLM+06, Don06, Fis09, Hab06, HWF07, Kar07, Kel06, SSN04, War02, SVL01]. World [DF96, GHH+93, WLW+17, BBM09, STS+13]. World-Wide [DF96]. worlds [AJD09, LUL+05]. **Worm** [CLW+14]. Worst [HWB03]. Worst-Case [HWB03]. Writing [Wes98]. written [MSG01]. **WWC** [IEE03, IEE02]. WWC-5 [IEE02]. WWC-6 [IEE03].

\[yang \text{[CBGM12]. Years } [FS12]. yieldpoint [LWB+15]. yin [CBGM12]. York [ACM03b, IEE90b, IEE96b, IEE90b]. Yountville [Tho93].

\[z \text{[G+06, P+08]. z/VM } [G+06, P+08]. \text{z13 } [ABB+15]. \text{Zero } [AMH+16, CHCC07]. \text{Zero-Cost } [AMH+16]. \text{zero-loss } [CHCC07]. \text{ZNET } [UBL+82]. \text{ZSim } [SK13b]. zur [KGG00, See08a]. Zytaruk [Sch94b, Sch94a].\]
References

REFERENCES

2005. CODEN IBMSA7. ISSN 0018-8670. URL http://
alpern.txt.

Frauenhofer, Todd Mummert, and Michael Pigott. PDS: a
virtual execution environment for software deployment. In
ACM [ACM05d], pages 175–185. ISBN 1-59593-047-7. LCCN
fy0611/2006530661.html. ACM order number 548059.

D. Larson, K. A. Lucke, N. Nayar, and R. C. Swanberg. Advanced
virtualization capabilities of POWER5 systems. IBM
Journal of Research and Development, 49(4/5):523–532, ????
2005. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556
rd/494/armstrong.html.

Tomek. Using virtualization for high availability and dis-
aster recovery. IBM Journal of Research and Development,
53(4):??, ???? 2009. CODEN IBMJAE. ISSN 0018-8646

V. Makhija. An analysis of disk performance in VMware ESX
Server virtual machines. In IEEE [IEE03], pages 65–76. ISBN

[Al-Ayyoub:2016:VBC] Mahmoud Al-Ayyoub, Yaser Jararweh, Ahmad Doulat,
Haythen A. Bany Salameh, Ahmad Al Abed Al Aziz, Mohamed
Alsmirat, and Abdallah A. Khreishah. Virtualization-
based Cognitive Radio Networks. The Journal of Sys-

REFERENCES

[Abr80] Harvey Abramson. Why is a goto like a dynamic vector in the BCPL-Slim computing system. Technical Report TR-80-

REFERENCES

October 2016. CODEN IEANEP. ISSN 1063-6692 (print), 1558-2566 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Aldossary:2019:EAC

Ackerman:1992:SIE

Agesen:1998:GCL

Aoki:2001:SVM

Asvija:2019:SHA

B. Asvija, R. Eswari, and M. B. Bijoy. Security in hardware assisted virtualization for cloud computing — state of

Adams:2014:HVM

Abd-El-Malek:2012:FSV

Abdelaziz:2017:SDW

Aridor:2001:DIV

Ahmad:2015:VMM

Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab. Hamid, Muhammad Shiraz, Feng Xia, and Sajjad A. Madani. Virtual

Ahmad:2015:SVM

Amit:2016:BMP

Averbuch:1994:PES

Abe:2016:UVM

Aral:1991:PCS

REFERENCES

Aagren:1999:TCC

Agensen:2010:EXV

Aguiar:2012:CTF

Aigner:2015:AJE

Anderson:2009:XWL

REFERENCES

Ament:2013:ATG

Awad:2016:SSZ

Azevedo:2000:AAJ

Anonymous:1975:VM

Anonymous:1993:NCS

REFERENCES

Anonymous:1999:PII

Anonymous:2000:AJV

Anonymous:2001:CRJ

Anonymous:2001:PJV

Anonymous:2002:CRJ

Anonymous:2003:PJU

Anonymous. Products: JetBrains upgrades IntelliJ Java IDE; Catalyst’s USB analyzer supports device emulation; VMware releases Enterprise Server VM software; Motorola offers free soft modem reference design; RealNetworks releases source for Helix DNA Server; Packeteer accelerates intranet and Internet applications. *Computer*, 36
Anonymous:2003:PVF

Anonymous:2004:CRV

Anonymous:2004:PTV

Anonymous:2005:NPV

Anonymous:2006:PGI

ice.gelato.org/; http://www.ice.gelato.org/about/oct06_presentations.php.

this bug that allows memory pages to leak between Xen virtual machines on the same physical host: “... the bug is a very critical one. Probably the worst we have seen affecting the Xen hypervisor, ever. Sadly. . . . it is really shocking that such a bug has been lurking in the core of the hypervisor for so many years.”.

REFERENCES

REFERENCES

March 2014. CODEN CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

REFERENCES

Blank:2005:APV

Buytaert:2007:BDS

Bacon:2011:VAH

Baccarelli:2015:MEB

Baden:1982:HPS

Baden:1987:RTP

Bockisch:2006:AVMa

[BADM06] Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, and Mira Mezini. Adapting virtual machine techniques for seam-
REFERENCES

Bagley:1976:SFM

Baker:1983:MAS

Balzer:1991:PVM

Bauman:2015:SHB

Bard:1978:AMV

Bartholomew:2006:QMM

Bastiaansen:2004:RGU

Bastiaansen:2006:RGU

Bauer:2005:PPF

Bauer:2006:PPSa

Bauer:2006:PPSb

Bauer:2006:VWL

Bunge:1995:MCM

Bonardi:2008:PEM

REFERENCES

REFERENCES

Boutcher:2010:DVM

Bellavista:2015:VNF

Bessiere:1990:VMM

Berger:2008:TMS

Bredlau:2001:ALT

Baride:2011:CBS

[BD11] Srikauth Baride and Kamlesh Dutta. A cloud based software testing paradigm for mobile applications. *ACM SIGSOFT
REFERENCES

Beebe:2005:VM

Begnum:2012:SCO

Bellovin:2006:IR

Bernat:1986:IIG

Bosilca:2002:OOE

Bienkowski:2014:WAV

REFERENCES

178, February 2014. CODEN IEANEP. ISSN 1063-6692 (print), 1558-2566 (electronic).

Bagley:1975:SDS

Brawn:1970:SPE

Boszormenyi:2000:SNW

Birmingham:1989:MSC

Bartholomy:2013:NMT

Botero:2013:GNN

REFERENCES

[Bir94] Umesh V. Biradar. Adaptive distributed load balancing model for parallel virtual machine. Master of science in computer science, Department of Computer Science, College of Engineer-
ing, Lamar University, Beaumont, TX, USA, 1994. viii + 44 pp.

REFERENCES

137–141, October 26, 1988. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

REFERENCES

REFERENCES

Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. Accelerating two-dimensional page walks for...

REFERENCES

Burc:2002:LGS

Butt:1994:RDS

Basin:2003:TPH

Bila:2015:EOP

Bachrac:1985:XVM

REFERENCES

[Caa00] Paul Caamano. Porting a Java Virtual Machine to an embedded system. Thesis (m.s.), Department of Computer Science, University of California, Santa Cruz, Santa Cruz, CA, USA, 2000. viii + 56 pp.

REFERENCES

REFERENCES

Cerling:2009:MMV

Cao:2012:YYP

Chevalier-Boisvert:2012:BSH

Cheng:2016:VMN

Chen:2017:MLF

Carbone:2012:SRM

Martim Carbone, Matthew Conover, Bruce Montague, and Wenke Lee. Secure and robust monitoring of virtual machines
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cui:2017:PFE

Chubb:2006:VUL

Chen:2012:FGP

Ciabrini:2007:SVS

Carr:1987:EUC

Campbell-Kelly:1996:ES

[CK06b] Toralf Chryselius and Andrea Kuntz. *Internetkommunikation in Debian unter Qemu Einführung in das Betriebssystem Debian Linux in Qemu und Vorstellung der wichtigsten Internetprogramme*. (German) [Internet Communication in Debian under Qemu: Introduction in the Debian Linux operating system in Qemu and creation of the most important Internet programs], volume 18 of *Schriftenreihe Grenzgänger - Linux leicht verständlich*. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-117-1 (book), 3-86768-717-X (DVD). 109 pp. LCCN ????

[CK06c] Toralf Chryselius and Andrea Kuntz. *Internetkommunikation in Kubuntu unter Qemu* Einführung in das Betriebssystem Kubuntu und Vorstellung von Internetprogrammen in der virtuellen Umgebung Qemu. (German) [Internet Communication in Kubuntu under Qemu: Introduction to the Kubuntu operating system and creation of Internet programs in the Qemu virtual machine], volume 6 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-105-8 (Buch), 3-86768-705-6 (DVD). 107 pp. LCCN ???

REFERENCES

REFERENCES

[CKP*93] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E. Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: towards a realis-

REFERENCES

Canali:2017:ICP

Canali:2017:SAV

Cladingboel:1997:RJV

Clark:2005:SVT

Chiang:2013:IBM

Criswell:2007:SVA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[CPST15] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. Memento mori: dynamic allocation-site-based opti-

REFERENCES

puter Science Department, Hebrew University, Jerusalem, Israel, January 1983.

REFERENCES

REFERENCES

Chakraborty:2012:SOV

Chen:2015:LVS

Cui:2017:TAV

Czajkowski:2000:AIJ

Carbone:2008:TV

Dufrasne:2004:IVE

REFERENCES

REFERENCES

REFERENCES

Dong:2012:RAE

Dean:1994:CPV

DeRose:2006:EXI

Degenbaev:2016:ITG

Diaz:2017:OAV

Debbabi:2003:MCA

REFERENCES

REFERENCES

Spring Street, Suite 300, Silver Spring, MD 20910, USA, May 2011.

REFERENCES

[DLL+16] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios Koloventzos. ARM virtualization: performance and

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Elmore:2013:TDV

Egger:2016:ECL

ECMA-335-1

ECMA-335-2

ECMA-335-3

REFERENCES

Ejarque:2010:ESV

Estrada:2015:PCT

Erenyi:1994:IPA

Ertl:2001:BEV

REFERENCES

REFERENCES

[Feng:2012:IDU] Zhenqian Feng, Bing Bai, Baokang Zhao, and Jinshu Su. IC-Tree: discovering the underlying connections of your rental

REFERENCES

REFERENCES

Fischofer:1991:VSS

Fischofer:2001:SAN

Fischofer:2009:XUH

Fitzhugh:2014:VVM

Firoozjaei:2017:SCN

Friedman:2003:TFT

REFERENCES

REFERENCES

Franklin:2008:RDV

Anonymous:2014:AVM

Fu:2017:MCD

Feeley:1990:PVM

Filho:2018:AOV

Forum:1971:VMI
REFERENCES

[FP14] Johannes Feuser and Jan Peleska. Dependability in open proof software with hardware virtualization — The rail-
way control systems perspective. *Science of Computer Pro-
gramming*, 91 (part B)(??):188–215, October 1, 2014. CO-
DEN SCPGD4. ISSN 0167-6423 (print), 1872-7964 (elec-
article/pii/S0167642313002001.

[FPGK18] Christos K. Filelis-Papadopoulos, George A. Gravvanis, and
Panagiotis E. Kyziropoulos. A framework for simulating
large scale cloud infrastructures. *Future Generation Com-
puter Systems*, 79 (part 2)(??):703–714, 2018. CODEN
FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).
pii/S0167739X17303230.

[FPR+06] Patrick Fabian, Julia Palmer, Justin Richardson, Mic Bow-
man, Paul Brett, Rob Knauerhase, Jeff Sedayao, John Vi-
cente, Cheng-Chee Koh, and Sanjay Rungta. Virtualization
in the enterprise. *Intel Technology Journal*, 10(3):227–242,
August 10, 2006. ISSN 1535-766X. URL http://developer.
intel.com/technology/itj/2006/v10i3/6-enterprise/1-
abstract.htm.

[FPS+02] B. Folliot, I. Piumarta, L. Seinturier, C. Baillarguet,
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
service/series/0558/bibs/2326/23260016.htm; http:
//link.springer-ny.com/link/service/series/0558/papers/
2326/23260016.pdf.
REFERENCES

REFERENCES

Fan:2015:UCC

Froberg:2013:BRP

Farrow:1989:VCB

Fong:2008:DVS

Fagin:2011:IPE

Fagin:2012:DSG

See [FS11] for a description of the emulator on which von Neumann’s programs were run and debugged.

Ferreira:2019:DEV

Fukushima:2013:MDR

Fu:2010:FAR

Fujimoto:1991:VTM

Fu:2006:SMA

REFERENCES

REFERENCES

Gonzalez-Castano:2001:JCV

Goldweb:2008:VEE

Gasiunas:2017:FBA

Gaudiot:1985:PES

Geist:2002:PVM

Al Geist. Petascale virtual machine: Computing on 100,000 processors. Lecture Notes in Computer Science, 2474:6–??,
REFERENCES

REFERENCES

REFERENCES

Guo:2015:PBL

Kim:2013:VMC

Gec:2019:SAM

Gschwin:2017:OED

Gamage:2013:PRO

REFERENCES

2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Grimaud:1999:FTI

Gupta:2009:DE

Gupta:2010:DEH

Garg:2017:CGA

Giacalone:1989:FSI

REFERENCES

[GPW03] David Gregg, James Power, and John Waldron. Platform independent dynamic Java virtual machine analysis: the Java

[Gre10] David Green. The Sydney University SILLIAC. Web site, August 14, 2010. URL http://members.iinet.net.au/~dgreen/silliac.html. The SILLIAC was the first computer installed at Sydney University, and was operational from 1956 to 1968. The Web site links to the SILLIAC Emulator, a C program for Microsoft Windows.

[GSW+17] Abhishek Gupta, Rick Spillane, Wenguang Wang, Maxime Austruy, Vahid Fereydouny, and Christos Karamanolis. Hy-

Garg:2014:SBV

Gilbert:2006:IV

Gidra:2015:NGC

Guan:2014:HHV

Gum:1983:SEA

REFERENCES

REFERENCES

Haletky:2008:VES

Haletky:2009:VVV

Hamlet:1976:PBT

Hammersley:2007:PVS

Hansen:2005:IJP

Hand:2016:TPH

REFERENCES

(1):107, January 2016. CODEN CACMA2. ISSN 0001-0782
(print), 1557-7317 (electronic). URL http://cacm.acm.org/
magazines/2015/1/195736/fulltext.

Hartmann:1977:CPC

[Har77] A. C. Hartmann. *A Concurrent Pascal Compiler for Mini-
Computers*. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 1977.

Hulaas:2008:PTL

[HB08] Jarle Hulaas and Walter Binder. Program transformations
for light-weight CPU accounting and control in the Java Vir-
tual Machine. *Higher-Order and Symbolic Computation*, 21
(1–2):119–146, June 2008. CODEN LSCOEX. ISSN 1388-
springerlink.com/openurl.asp?genre=article&issn=1388-
3690&volume=21&issue=1&page=119.

Huang:2012:PEN

[HB12] Shu Huang and Ilia Baldine. Performance evaluation of 10GE
NICs with SR-IOV support: I/O virtualization and network
stack optimizations. *Lecture Notes in Computer Science*, 7201:
197–205, 2012. CODEN LNCSD9. ISSN 0302-9743 (print),
chapter/10.1007/978-3-642-28540-0_14/.

Huang:2013:ECS

[HB13] Jipeng Huang and Michael D. Bond. Efficient context sen-
sitivity for dynamic analyses via calling context uptrees and
customized memory management. *ACM SIGPLAN Notices*,
48(10):53–72, October 2013. CODEN SINODQ. ISSN 0362-
1340 (print), 1523-2867 (print), 1558-1160 (electronic). OOP-
SLA ’13 conference proceedings.

Hurlburt:2014:BBC

IT Professional, 16(3):10–15, May 2014. CODEN IPMAFM.
ISSN 1520-9202 (print), 1941-045x (electronic).

Hetzelt:2017:SAE

[HB17] Felicitas Hetzelt and Robert Buhren. Security analysis of en-
crypted virtual machines. *ACM SIGPLAN Notices*, 52(7):129–
REFERENCES

142, July 2017. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

REFERENCES

Hussein:2015:DRM

Hausheer:2018:SPS

Ha:2002:AHS

Haase:2010:SDV

Haque:2016:ACV
REFERENCES

Hinkelmann:2008:EKM

Hirschsohn:1992:PSS

Hirai:2017:DEV

Hansen:2010:SVM

Huin:2018:ONS

Henzinger:2007:EMP

Hofmann:2013:ISA
Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel. InkTag: secure applications on

REFERENCES

[Hallawi:2017:MCC] Huda Hallawi, Jörn Mehn, and Hongmei He. Multi-capacity combinatorial ordering GA in application to cloud
REFERENCES

Hogenson:2006:CCV

Hogenson:2008:FCC

Horie:2014:SDJ

Hollerbach:1995:FDA

Huxtable:1977:HSI

REFERENCES

REFERENCES

Ha:2017:PPE

Hu:2017:TFC

Hong:2017:FFF

Hong:2017:GVS

Hsu:2001:CAS

Hagiya:1998:NMD

REFERENCES

Meyer:2008:PVD

Hu:1990:RTC

Heiser:2006:VMM

Hwang:2014:MFG

Herbordt:1993:EEA

Hume:2015:SCS

REFERENCES

Huang:2016:BKB

Hand:2007:HVX

Huang:2018:TBI

Hao:2016:IRO

He:2014:DRC

Iancu:2014:CPV

IBM:1985:VM

IBM:1988:VMSa

IBM:1994:CGN

IBM:1996:CAM

Ibsen:1984:PVM

SPE::Ibsen1984

Ibsen:1984b

REFERENCES

Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. ISBN ???. LCCN ???

IEEE:1996:PFIa

IEEE:1997:HCI

IEEE:1999:HCS

IEEE:2001:EIW

IEEE:2002:WI

REFERENCES

REFERENCES

Moore:1979:IVM

Inoue:2006:VNP

Ilgenfritz:2009:VCP

Ilkhechi:2015:NAV

Infante:1975:PSP

Inouchi:1993:PTI

REFERENCES

ISO:2006:ITCb

ISO:2006:II

ISO:2006:ITCa

Inoue:2008:PVS

Ishikawa:1986:COO

Ive:2003:TER

REFERENCES

References

Jo:2013:ELM

Jin:2011:OLM

Johnson:2014:CML

Jamthagen:2012:TRD

Jolitz:1991:PUS

Jung:2002:DIS

Jun-Young Jung and Min-Soo Jung. Design and implementation of small-sized Java Virtual Machine on Java plat-

REFERENCES

REFERENCES

198

[Jin15] Hai Jin, Hanfeng Qin, Song Wu, and Xuerong Guo. CCAP: A cache contention-aware virtual machine placement approach...

Jacob:2002:CAP

Jin:2015:HAS

Jantz:2013:FAG

Juola:2007:PCO

Jin:2017:WCM

Jia:2015:DRA

Jia:2018:OSN

Jiang:2012:UNG

Jin:2010:GTF

Jia:2013:SID

REFERENCES

REFERENCES

[202]

Kamga:2013:CFE

Kao:2017:TEF

Karcher:2007:VDX

KAZS14

Kunjir:2017:TAM

Kim:2011:PAP

Kounga:2012:ESP

Kansal:2016:EAV

Kim:2015:UWM

Kim:2014:ECS

Kousiouris:2011:ESW

Kang:2014:HSA

Kumar:1978:PEH

[KD78] B. Kumar and Edward S. Davidson. Performance evaluation of highly concurrent computers by deterministic simula-

REFERENCES

Klein:2012:RVM

Klappheck:2000:BLE

Kannan:2017:HDH

Knodel:2016:MLR

Krsul:2004:VPM

Karnagel:2017:AWP

Khnaser:2009:VVC

Kang:2016:MPV

Kim:1984:EVM

Kissell:2008:TCV

Kalibera:2013:RBR

Kim:2016:DOF

Junghyun Kim, Gangwon Jo, Jaehoon Jung, Jungwon Kim, and Jaejin Lee. A distributed OpenCL framework using re-

Kim:2011:XEC

Kim:2015:PMS

Kim:2007:VPR

Kobayashi:1979:SMC

Kertesz:2014:ISA

Kim:2016:SCD

Kim:2013:DBC

Kim:2014:VAM

Kokkinos:2016:SLM

Kawahito:2013:IRF

Koksal:2012:CC

Kawai:2017:VWD

Kocoloski:2013:ICN

Kong:2014:SGE

Kyle:2015:ADA

REFERENCES

Kuo:2018:DCV

Kiefer:2013:SIP

Kimovski:2018:DEE

Krieger:2010:EMC

Kashyap:2016:OSA

Khazaei:2013:PCC

[KMM13] Hamzeh Khazaei, Jelena Misić, and Vojislav B. Misić. Performance of cloud centers with high degree of virtualization under

...
REFERENCES

Kalibera:2014:FAS

Kuperman:2016:PR

Kessaci:2014:MSL

Knaggs:1993:PTA

Kasprzyk:2002:APV

REFERENCES

REFERENCES

Kumar:2016:HTA

Kratzer:1990:MPS

Kedlaya:2014:DDL

Kundu:2012:MVA

Kroeker:2009:EV

Kanizo:2017:OVB
Yossi Kanizo, Ori Rottenstreich, Itai Segall, Jose Yallouz, Yossi Kanizo, Ori Rottenstreich, Itai Segall, and Jose Yallouz. Optimizing virtual backup allocation for middleboxes. *IEEE/
REFERENCES

[KSLA08] Jiantao Kong, Karsten Schwan, Min Lee, and Mustaque Ahamad. Protectit: trusted distributed services operating on

Kavvadia:2015:EVM

Keller:2010:NVC

Kelbley:2009:WSH

Katsaros:2016:EFE

Khosravi:2017:OVM

Kutter:1992:STE

Kappel:2009:MVH

Kerridge:1980:STC

Kang:2013:HPP

Kist:2019:FFG

Koskinen:2016:RCR

Kwon:2017:IHP

Karger:1990:VSK

Lamming:1975:LVM

Larisch:2009:PMH

Lau:1987:OCV

Laverick:2010:VVI

REFERENCES

REFERENCES

1974. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Liu:2006:HPV

Li:2014:LSD

Liang:2005:DLM

Li:2017:CSN

Liu:2011:LVM

Liao:2012:TGC

Liu:2014:MGR

Leung:1998:DGD

Li:2012:CVS

Lin:2016:BSC

Li:2018:OVM

Huixi Li, Wenjun Li, Haodong Wang, and Jianxin Wang. An optimization of virtual machine selection and placement by

Li:2018:TFV

Liu:2018:SPM

Lewis:1999:EBP

Lewis:2000:APH

Lewis:2001:APH

REFERENCES

Lowe:2014:NVV

Laureano:2007:PHB

Lago:2018:EA

Lettieri:2018:SPV

Laden:2012:ADF

Lott:1991:DVM

REFERENCES

REFERENCES

Lopez-Pires:2017:MOV

Lopez-Pires:2018:VMP

Lange:2011:MOV

Lin:2012:OVM

Lucchetti:2005:EDR

Linguaglossa:2019:HSD

Lu:2016:VCV

Ludwig:2015:DCM

Lowell:2004:DVM

Li:2012:VMP

Luckow:2017:HTP

[LTK17] Kasper Søe Luckow, Bent Thomsen, and Stephan Erbs Korsim. HVM$_{TP}$: a time predictable and portable Java Virtual...

REFERENCES

Li:2016:SSO

Le:2011:EMO

Liu:2012:PBA

Lin:2015:SGU

Li:2017:AET

Lin:2016:JOQ

[LWL16] Shih-Chun Lin, Pu Wang, and Min Luo. Jointly optimized QoS-aware virtualization and routing in software de-

Lindholm:1999:JVM

Lindholm:19xx:JVMa

Lindholm:19xx:JVMb

Lindholm:2013:JVMa

Lindholm:2013:JVMb

Lindholm:2014:JVM

Liu:2018:CAL

Li:2017:BNB

Li:2018:EAM

Lama:2015:CPP

Li:2016:EEM

REFERENCES

[Man15b] Zoltán Ádám Mann. Rigorous results on the effectiveness of some heuristics for the consolidation of virtual ma-

Mann:2016:MAV

Mann:2018:CSI

Martin:1981:RFS

Marcy:2008:DRP

Mattsson:2009:RSV

Matthews:2010:WPO

Jeanna Neefe Matthews. Workshop proceedings and other publications in *Operating Systems Review*. Operating Systems

REFERENCES

REFERENCES

Matthews:2008:RXH

REFERENCES

REFERENCES

Medina:2013:SMM

Makowski:2019:EVT

Montella:2017:VCB

Matthys:2005:IVE

Mzaik:1993:SPA

Muller:2006:SVP

Al Muller, Andy Jones, David E. Williams, Stephen Beaver, David A. Payne, Jeremy Pries, and David E. Hart. *Scripting VMware Power Tools: Automating Virtual Infrastructure*
Mao:2014:RPO

Min:2012:VVM

Mendelsohn:1983:RVF

Mikheev:2002:OEJ

Mlynski:2009:IIP

Meleshchuk:1991:IPP

McAuley:2003:CVC

Masdari:2016:OVM

Mitsuishi:2014:ABF

Machida:2014:JCT

McGhan:1998:CPP

REFERENCES

REFERENCES

REFERENCES

Mebane:1992:EFD

Maessen:2001:PAS

Ma:2012:DTD

Ma:2014:DBV

Matsuhashi:2012:TVF

Maslak:1991:CRR

Ma:2015:SDS

Jiuyue Ma, Xiudefeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni Xu, Zhicheng Yao, Yun Chen, Haibin Wang, Lixin Zhang, and Yungang Bao. Supporting differentiated services in computers via programmable architecture for resourcing-on-demand (PARD). *ACM SIGPLAN Notices*, 50(4):131–143, April 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Menon:2005:DPO

Menon:2009:TSA

Merrifield:2016:PIE

Merrifield:2017:PIE

REFERENCES

Mihajlovic:2014:DIQ

Nikolaev:2011:PXF

Nance:2008:VMI

Nathan:2016:SRO

Nelson:2004:CDC

Ng:2001:VEWa

Nitu:2018:WSS

Nieh:2000:EV

Nejad:2015:TGM

Nowatzki:2015:ASC

Ngo:2015:RES

Nomura:2014:PAM

REFERENCES

Nanba:1985:VA

Nejad:2015:SPV

Nitu:2017:SBQ

Nourse:1992:MWN

Nambiar:2013:KTR

Nakanishi:1992:SSP

REFERENCES

Omote:2015:IAE

Ostrand:1994:PIS

OConnor:1997:PJV

Ost:2012:EAT

Parziale:2008:ZVL

Parnas:1979:DSE

REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

REFERENCES

References

Jonathan Parri, Daniel Shapiro, Miodrag Bolic, and Voicu Groza. Returning control to the programmer: SIMD intrin-
REFERENCES

Parri:2011:RCPb

Payne:2007:LAS

Pfeerle:2015:HVF

Padala:2007:ACV

Pape:2014:EJV

REFERENCES

REFERENCES

REFERENCES

Roblitz:2002:LSE

Ritson:2016:BWM

Robbins:2006:LGC

Rosenblum:1999:VVP

Rosenblum:2004:RVM

Rosenblum:2006:IVC

Rosen:2014:LCF

Roussos:2007:SVG

Ramamurthy:2007:PDE

Ryckbosch:2012:VSM

Ren:2017:NLN

Ruest:2009:VBG

Rosa:2017:ARC

REFERENCES

REFERENCES

Ranjbari:2018:LAB

Ren:2018:LHA

Rule:2007:HCC

Russell:2008:VTF

Radhakrishnan:2001:JRS

Ruan:2012:MVM

Li Ruan, Huixiang Wang, Limin Xiao, Mingfa Zhu, and Feibo Li. Memory virtualization for MIPS processor based cloud server. Lecture Notes in Computer Science, 7296:54–63,
REFERENCES

REFERENCES

Sandberg:1988:EOO

Sarkar:2016:VEC

Shiraz:2013:SVM

Silva:2009:UVI

Simons:2010:VHP

Samant:2016:HBS

REFERENCES

REFERENCES

Shi:2008:VMS

Steven:2000:JCR

Schoen:1986:CS

Schulman:1994:UCI

Schulman:1994:IWV

Schocken:2009:VMA

Schmeisser:2013:MOE

(German) [Metrics and best use scenarios for garbage collectors of the Java HotSpot Virtual Machine]. Masterarbeit, Hochschule für Technik, Wirtschaft und Kultur, Leipzig, Germany, 2013. iii + 103 pp.

Schneider:2013:FVM

Simpkins:1993:AVM

Shi:2012:VGA

Sarkar:2001:HPS

Shi:2016:PPA

Sartor:2012:EMT

Sedighi:2007:EV

Seecker:2008:EGS

Seeling:2008:L

Seely:2010:BVD

Smith:2006:SID

Salimian:2016:AFT

Seth:2013:UJV

Spinellis:2009:BA

Schmidt:2010:VSB

Soundararajan:2010:CBS

Shuja:2016:SMD

REFERENCES

Stefanovic:2003:OFG

Shen:1991:VTD

Shelburne:2002:PEP

Shippy:2003:PGT

Shao:2013:VOS

Shriver:1989:PT

Svard:2011:EDC

Petter Svärd, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. Evaluation of delta compression techniques for efficient

[So-In2011:VAU] Chakchai So-In, Raj Jain, Subharthi Paul, and Jianli Pan. Virtualization architecture using the ID/Locator split concept for
Solaimani:2016:OAD

Simpkins:1992:AVP

Santanna:2017:DIS

Silla:2017:BRG

Siveroni:2004:OSJ

Sivakumar:2007:CCA

REFERENCES

[Shi:2013:AGC] Xuanhua Shi, Hai Jin, Song Wu, Wei Zhu, and Li Qi. Adapting grid computing environments dependable with vir-
tual machines: design, implementation, and evaluations.

[SKJ+17] Wonjun Song, Gwangsun Kim, Hyungjoon Jung, Jongwook Chung, Jung Ho Ahn, Jae W. Lee, and John Kim. History-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Strauss:2013:FCC

Sun:2013:BJW

Su:2014:RVP

Subramaniam:2008:PST

Subramaniam:2011:PCJ

Samples:1986:SSB

REFERENCES

Sun:1995:JVMb

Sun:1995:JVMa

Sun:1997:JCL

Sun:1999:JPD

Supnik:2004:SVM

Suri:2001:SCR

Suski:1976:AGC

Simao:2013:ADQ

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Sebes:1993:MAL

Sugerman:2001:VDV

Scott:2010:SLV

REFERENCES

Shuo:2012:PKR

Sohrabi:2017:EEA

Syropoulos:2007:PMV

So:1988:PLV

Stolyar:2013:LSS

Su:2014:EAV

REFERENCES

Tennenhouse:2017:RV

Trajano:2016:TPL

Tu:2015:CIE

Thomas:2008:DHF

Troy:2010:VC

Tanenbaum:2006:CWM

REFERENCES

Thorns:2008:VBK

Tickoo:2009:MVM

Tetzla:1989:ABS

Tuch:2012:BSV

Turner:2006:SIS

Thomas:1989:AMM

REFERENCES

[TO96]
REFERENCES

Tsai:1993:LMM

Tsai:1993:LMM

Tamm:1996:LBV

Tamm:1996:LBV

Tan:2019:VMC

Tan:2019:VMC

Tu:2013:SDS

Tu:2013:SDS

Thanh:1982:ITC

Thanh:1982:ITC

Turek:1984:IDV

Turek:1984:IDV

John Joseph E. Turek. Issues in the design of a virtual network for the connection machine. Thesis (B.S.), Department of Electrical Engineering and Computer Science, Massachusetts

REFERENCES

[UNR+05] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, Andrew V. Anderson,

REFERENCES

REFERENCES

REFERENCES

vanDoorn:2006:HVT

vanderKouwe:2009:PQV

Villadeamigo:1997:EES

Visegrady:2014:SCV

Venstermans:2006:BVB

Venstermans:2007:JOH

REFERENCES

Venners:1996:UHL

Venners:1997:IJV

Venners:1997:UHHa

Venners:1997:UHHb

Venners:1997:UHHc

Venners:1999:IJV

REFERENCES

Venners:1999:SJV

vonHagen:2008:PXV

Vitek:2014:CTR

vonKoch:2013:LRB

Viswanathan:2000:JVM

vonLaszewski:2001:GBA
Varvello:2016:MPC

vanMoolenbroek:2014:TFL

Vicente:2012:ECS

Vaughan-Nichols:2006:NAV

Vaughan-Nichols:2008:VSS

Vogels:2003:HNC

Werner Vogels. HPC.NET — are CLI-based virtual machines suitable for high performance computing? In *ACM [ACM03a]*,

REFERENCES

[Wak99] David Wakeling. Compiling lazy functional programs for the Java virtual machine. *Journal of Functional Prog-

Ward:2011:KRC

Watson:1986:PRL

Watson:1987:PRL

Wang:1981:VMB

Waldspurger:2016:SSL

Wu:1991:NNS

REFERENCES

[Wells:2006:HSS] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. Hardware support for spin management in overcommitted vir-
REFERENCES

Wells:2009:DHN

Whitaker:2005:RDV

Wang:2017:DCT

Wang:2008:VBA

Wainer:2001:UAS

EUR 32.00 (DE). URL http://www.gbv.de/du/services/agi/FCC0A57071BE8695C125704A0029797F/FLMA122525.

Wire2007:SFS

Williams:2007:VXI

Wagner:2011:SJV

Weng:2013:HCM

Waldron:1999:AVM

Wolf:2005:VDE

Wills:2006:PVC

Wang:2015:DAA

Wang:2010:HLA

Wentzlaff:2012:CFG

Whang:1990:QOM

REFERENCES

REFERENCES

Waddington:1996:JVM

Wen:2013:MPA

Weng:2016:CMV

West:2016:VSK

Wang:2018:TCB

Wang:2015:HP1

[WLW+15] Zhe Wang, Jianjun Li, Chenggang Wu, Dongyan Yang, Zhenjiang Wang, Wei-Chung Hsu, Bin Li, and Yong Guan. HSPT: Practical implementation and efficient management of embedded shadow page tables for cross-ISA system virtual machines.

REFERENCES

Phil Winterbottom and Rob Pike. The design of the Inferno virtual machine. In IEEE [IEE97], page ?? ISBN ???? LCCN ????

REFERENCES

REFERENCES

Wang:2017:RLW

Wright:2006:IJV

Wang:1989:NNS

Wendorf:1989:SOS

Wang:2013:RMM

Wu:2015:WHS

[WXW15] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space: high-bandwidth and reliable covert channel at-

Wang:2017:RES

Weng:2015:TEI

Wang:2013:JVM

Wang:2011:SHS

Xie:2014:DIP

REFERENCES

[XML+18] Mochi Xue, Jiacheng Ma, Wentai Li, Kun Tian, Yaozu Dong, Jinyu Wu, Zhengwei Qi, Bingsheng He, and Haib-
REFERENCES

352

REFERENCES

Yalamanchilli:1998:CPJb

Yang:2019:IRT

Yuan:2018:ASP

Yelland:1999:CAJ

Yu:2006:FWV

REFERENCES

[YLH14] Chao-Tung Yang, Jung-Chun Liu, and Ching-Hsien Hsu. On improvement of cloud virtual machine availability with virtu-

REFERENCES

Yeh:2017:PFG

Yan:2014:EFG

Yutaka:2000:EJV

Yurcik:2002:SIS

Yan:2017:HTC

Younge:2015:SHP

Andrew J. Younge, John Paul Walters, Stephen P. Crago, and Geoffrey C. Fox. Supporting high performance molecu-

Yermolovich:2009:ODL

Yu:2013:OSI

Yi:2018:CSN

Yao:2014:GFT

Yang:2017:RVM

REFERENCES

Qian Zhao, Motoki Amagasaki, Masahiro Iida, Morihiro Kuga, and Toshinori Suyoshi. A study of heterogeneous computing design method based on virtualization technology. *ACM*
REFERENCES

[ZB05] Xin Zhao, Kevin Borders, and Atul Prakash. SVGrid: a secure virtual environment for untrusted grid applications. In ACM [ACM05b], pages 1–6. ISBN 1-59593-269-0. LCCN ?????

[Zeuch:2019:AES] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel Renz, Jonas Traub, Sebastian Breß,

REFERENCES

REFERENCES

Zimmer:2005:VMV

Zimmer:2006:VSV

Zhu:2011:OPV

Zhu:2017:NFV

Zhou:2013:LPC

REFERENCES

[Zab] Rostyslav Zabolotnyi, Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. JCloudScale: Closing the gap be-

Zheng:2016:VMC

Zhou:2013:OVM

Zou:2012:CDA

Zhang:2014:VFP

Zhou:2018:SFC

REFERENCES

[367]

[391]

[427]

[425]

[348]

[387]

ZHANG:2001:HJAb

ZHANG:2005:ILS

ZHANG:2006:SPV

ZHANG:2007:DIB

ZHU:2017:VLV

Zou:2014:VOV

Zhang:2019:EA

Zhou:2017:NFA

Zhang:2017:CBV

Zhao:2009:DMB

REFERENCES
