A Bibliography of Publications about Virtual Machines

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

03 September 2019
Version 1.330

Abstract
This bibliography records books and other publications about virtual machines.

Title word cross-reference

$32.95 [Ano97a]. 5 [ALW15]. TM [Cza00]. tP [LTK17]. d [XDS15]. HV2M
[CBZ+16]. \omega [Arv02]. II [Syr07]. V2 [DG05].

-dienste [WF03]. -Enabled [SB18].

.NET [Fra06, Fra09, Hee07, Hog06, Hog08, Men03].

/CLI [Fra06, Fra09, Hee07, Hog06, Hog08, Siv07, Wil06]. /dev/random
[Far11].

1
0 [Sim92, SCP93]. 0.9.0 [WR07]. 0.9.1 [WR08]. '01 [Ano00, Ano01a, Ano01b, USE01c, USE01d]. '02 [USE02]. '03 [ACM03b, Ert03]. '04 [Ano04a, Ano04b]. '05 [ACM05d, Vra05].

2 [Bri98, Com00, Com03, Kis08]. 2-Level [ZSR+05]. 2.0 [Fra06, Ng01a, SUN97]. 2000 [ACM00]. 2001 [ACM01b]. 2003 [RM03, ACM03a, ACM03b, IEE03, Int05a]. 2004 [ACM04a, ACM04b]. 2005 [ACM05a, ACM05b, ACM05c, Wil06]. 2006 [ACM06c, ACM06b, ACM06d, IEE06b, IEE06a, Int06b, Int06c, Int06a]. 2008 [Lar09]. 2010 [Ano10]. 2011 [LCK11]. 20th [IEE06a, Vra05]. 21st [IEE05]. 23272 [Int05b]. 26th [ACM99]. 29-state [Sig89]. 2nd [Ano02].

3 [McC08, PO09, vdK09]. 3.0 [MRGB91]. 3.1 [Bau06a, Skr01]. 3.5 [Fra09, Hog08]. 32 [Ano14b]. 32-bit [VED06]. 335 [ECM01, ECM02, ECM05, ECM06]. 360 [Kam75]. 360/40 [ABCC66]. 370 [Att79, Bar78, Ber86, Cal75, GLC84, Gum83]. 37th [ACM06d]. 390 [DBC+00]. 3rd [ACM05b, ACM06c, Ano04a].

4 [Gal09b, G+06, Lav10, Low09, NOK+85]. 4-7 [M+06]. 40 [GBO87]. 43rd [ACM06a]. 440 [R+02]. 4th [USE00a].

5 [IEE02, War05]. 5.2 [P+08]. 5.5 [Bau06c, LMG+14]. 5G [CM18]. 5L [Mly09].

6000 [ABDD+91]. 64 [De 06, Don06]. 64-bit [VED06, VED07]. 6th [USE01b].

7 [HH08]. 7th [Tho93].

8 [LYBB14, She02]. 80 [BMW86, BSUH87]. 84 [IT86]. 84/K [IT86]. '89 [ACM89].

A-DRM [WIS+15]. A.NET [Men03]. Aachen [GHH+93]. AADEBUG
[ACM05a]. Ability [RI00]. Absorbing [MTFK19]. Abstract
[Wel94, KMMV14, CK87]. Abstraction [YLH17, Sch09]. Abstractions
[BJH+16, MD12, Tsa14, UR15]. Accelerated
[MTFK19, SCSL12, SWF16, BHDS09]. Accelerates [Ano03a]. Accelerating
[BSSM08, MNS+14, ZLBF14, KKC+16]. Acceleration
[DEK+03, PRS16, Wu13, XZZ+16]. Accelerator
[LWB13, GKT17, LKY+17]. Access [KCWH14, KP15, LZW+17, MSI18,
Bor07, CWC+14, CFS+12, MN91, Oi08, PSC+07]. Accesses [WVT+17].
account [Yel99]. accountability [HBP06]. Accounting
[JSHM15, CMP+13, HB08]. Acculock [XXZ13]. accuracy
[CEG07, EG03]. Accurate [RRB17, ZDLG17, SK13b, XXZ13]. ACDC
[AHK+15]. ACDC-JS [AHK+15]. achieve [ZL13]. Achieving
[KMK16, MBK+92]. ACLE [PBR+90]. ACM [ACM90, ACM01b, RM03, ACM03b, ACM04a,
ACM04b, ACM05c, ACM05d, ACM06a, IEE04, Vra05, Cre10b]. ACM/IEEE
[ACM05c]. ACM/USENIX [ACM05d]. ACOS [NOK+85]. ACOS-I
[NOK+85]. Acquiring [FG91]. Across [JWL+18, TMMVL12]. action
[Hol95, KB17, Siv07]. Activation [RSN+18]. Actor [TCP+17]. actors
[GE85, Sub11]. Actra [TLD+89]. Ada
[Dom80a, Bak83, GBO87, GR80,
Ibs84a, Kam83, Ker88, Ibs84b, SGS92, SM92, Vol90, Wes98, ZEdlP13]. Ada97
[ACM97]. Adaptability [SV13]. Adaptable [GIK+99, CGM17].
adaptation [ZBG+05]. adapters [SAB+07]. Adapting
[BADM06, SJW+13, WGLL13]. Adaption [BHI15]. Adaptive
[AS14, Bir94, CYX+17, HHW10, HKKW13, JKB15, KHL17, LMV12, Lee16,
LCT+15, LZX+15, MCJ+9, OVI+12, PSZ+07, SXCL14, dSOK17, BB12,
JNR12, KKB14, KR16, SENS16, SYMA17, ZLCZ18]. adaptively [JDW+14].
Adding [HHV+02]. Address [HWHW18]. Administration
[MJW+06, NSHW10, Bor07, Dav04]. administrator [TC10]. Admitting
[MLXG19]. Advanced [A+04, Ali91, fltNW14, AAB+05c, B+05, G+05,
IEE06a, MRM06, OH05, SS05, Fit14]. Advances [Ert05]. Advancing
[ZKWH17]. Adversarial [HLP+16]. advisor [ZLV+12, ZBS+15]. Affinity
[SK13c]. Affinity-aware [SK13c]. against [CVWL13, CD12, GHD12]. age
[Bac11]. Agent [PXG+17, RB01, ABV12]. Agile [GHS16, GHS17, BM+13].
Agility [OSK15]. aging [AMA+14]. ahead [MA10]. Aid [KLF+15]. aided
[ME87, SI81, TB14]. AINA [SS05]. AIX [Gal11, Mly09]. ALEP
[Sim92, SCP93]. ALEP-0 [Sim92, SCP93]. Alfa [WDSW01]. Alfa-1
[WDSW01]. Algorithm
[AAK18, BP99, LW12, ZHL16, GGQ+13, GA18, Hog02, JGA+88, LZX+16,
MM92, MS17, RGAT18, RH17, RT18, TML114, Tho68, YLCH17, ZYLY18].
Algorithm-Dependent [BP99]. Algorithms
[FGLI15, HHK94, KP99, Man15a, SHW+15, AB16, BB12, CRB12, Man18,
ME87, Mj93, SGS92, XT17, YTS14]. aligned [AGIS94]. Alignment
[EDS+15]. allocate [LLF+18]. Allocation [CWL12, CPST14, Do11,
GLBJ18, HKLM17, KRS+17, LLZ18, Man15a, NMG15, PCC+16, VTW16,
XSC13, CPST15, dCCDF0d15, DEG+17, EdPG+10, GLL16, HMH17,
 allocation-site-based [CPST15]. Alternative
[HBL+10, MLG+02, vMAT14, SPF+07]. Alto [ACM01b]. AMD64 [Ano14a].
American [Boa90]. among [CDN02, LLF+18, LTZ+14, TtLC13].
amplifying [DP11]. Analogy [Gai75]. analyses [HB13]. analysing [PV06].
Analysis [ACM05a, BFG+14, BDG18, HT98, HB17, HWB03, JKK+13,
KNT02, LCK11, MM93, NMS+14, Ost94, RI00, SM02, TKG89, VP16, WH99,
WLS+18, ACMo1a, AAH+03, AMIA19, BBM09, BMER14, EMS15, FX06,
GP13, GPW03, LTZ+14, MD73, MD74, MSG01, RRB17, SMSB11, TLX17,
Wun13, YJZY12, DHPW01]. Analysis-Driven [ACM05a].
analytic [Bar78]. Analytics [IGBKR19, WTM18, KB17]. Analyzer [Ano03a, SHLJ13].
Analyzing [CVWL13, PV08, ZDK+19]. Android
[CXLX15, KLF+15, MPP+12, STY+14, THC+14]. Angeles
[ACM06c, IEE84b]. Animated [PCR89]. annealing [RH17]. Annotated
[MR04, RSF03]. annotation [ANH00]. annotation-aware [ANH00].
Announcement [Ano00]. Annual [ACM06a, Ano10, IEE85, IEE05, MS91b,
Shr89, USE00a, USE01a, USE06, ACM06a]. anomalies [FRM+15]. anomaly
[MW18, SIK+16]. Ant [AAK18, AP18, GGQ+13]. Antfarm [JADAD06a].
Anti [Sta07]. Anti-P2P [Sta07]. Antonio [ACM99, USE01b]. Anwendung
[Bec09, Bor01, WF03, Zim06]. Any [WL96, FIF+15]. AOT [WKJ17]. APA
applets [Wes08]. Appliance [See10]. Appliances
[BRX13, AEMWC+12, BSM+12]. Application
[AW17, BCZ19, CHW12, cCWS14, Cza00, HMH17, KNT02, KLF+15,
LWC+17, MD73, MD74, PCW+16, TB17, AS14, BBS06, IBM88, Int88,
IBM96, JSK+13, JCZZI3, JDJ+06, Kaa05, Lia05, LBF12, LLS+08, MRGB91,
SE12, SWccM12, SASS13, SL00, ZS01, ZBG+05]. application-specific
[ZS01]. Application-transparent [AW17]. Applications
[An99b, Ano03a, BAL15, Boa90, DSM+18, DJS+17, FBL18, HHV+02,
HSH17, HIC17, IEE05, JW17, NKK+06, Ps13, PY93, SSO5, TR88, VP16,
WLS+18, AS76, AL91, AC16, AB16, ACT94, ABC+07, BD11, BTLNB+15,
BOF17, DMIH18, DBC+00, EF94, EMS15, GHG12, GTH+06, GHI+93,
HK919, Hcc14, HKD+13, HSC15, JPET94, KRG+12, LCL14, MCC18,
dOL12, PTM+15, R+13, RSLAGCL16, Sch13b, SGV12, SZ88, TDG+18,
WDCL08, YGN+06, ZB05, ZNSL14]. Applicative [AS85a, Abr82, AS85b].
 applied [MM92]. Approach [BFG+14, BRX13, CFM17, CLW+14, Cox09,
DPCA11, DM75, EMAL17, FPS+02, Jen79, JQW15, KC16, KAH83, NSJ12,
SDD+16, VN06, WJ10, WVT+17, XD17, ZTW17, BML+13, BHvR05,
CGL+08a, CGL+08b, CGL+08c, CBZ+16, GKP+19, GLJ16, KW13, KKB14,
LH13, LU04, MD73, MD74, PSC+07, Pn19, SENS16, TTK17, XHCL15].
Approaches [AL15, FMMF18, JK15, THN09]. Appropriate [ZRS+16].
apps [MPP+12]. April [Ano01b, IEE84a, USE01c]. Arbitration [SKJ+17].
Architecting [SYC14, TGB19]. Architectural [DCP+12, JR02, NMHS15,
PCC+14, SL12, CFS+12, DLL+16, RVJ+01, WLL+13]. Architecture
Architecture-aware [WIS+15].

Architecture (R) [MBBS13].

Architectures [ACM06b, BN75, BDF19, EMAL17, EG01, HW93, HHK94, Ian14, PG74, PY93, RD90, BGS13, DM93, EMI13, KMG18, PG73, Skr01, YZW13, ZP14].

Architektur [Dal97].

Area [BFG+14, Fis01]. areas [BCZ19].

Arizona [IEE05].

ARM [DN14, DLL+16, GNDB16, MGL+17, ZTWM17, PS19].

Aroma [Sur01]. Arquillian [Ame13].

Array [MBK+92, SV15]. Arrivals [KMM13].

Art [BGP00, SGB+16, AEB19, BDF+03, BDG18, MDD+08].

Artifical [MR91, TVO92, BCM90, KCV11, RK16]. arts [BB08].

as-a-Service [ESY+17, HPHV17]. aspect [BADM06]. Aspects [Hsu01, Kna93, EF94]. assembler [GBO87]. Assembly [BD01, SVB93, Ber86, Don88, Joo07]. Assembly-Language [SVB93].

assignment [AAM+16, KMT14, WZV+13]. Assisted [CCML12, JSHM15, JAS+15, PPG+17, RTL+18, AJH12, AEB19, GMK17, ZYZ+18]. Assists [OLZ16]. Association [So83]. Assurance [LJZ12, LLW+12].

August [RM03, IEE96a, IEE96b, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03].

Australia [MR91]. Author [DM76]. AutoBoT [VS19]. automata [RGAT18, RT18, TLX17]. automata-based [RGAT18, RT18]. Automated [AD18, ACM05a, Ano03b, BSS14, HLP+16, FGLI15]. Automatic [MS00, SMES01, SMA+10, Sus76, WML02, ZLZ13, CL17b, MSZ09].

Automating [MJW+06]. Automation [ACM06a]. automaton [Sig89].

Autonomic [SEK+19, SWC08, WDC08]. Autonomous [SC17].

availability [AAF+09, Fu10, LDL+08, MRC+13, YLH14]. Available [Ano03b, GI12, GVI13]. avatar [CKT08]. average [LDL14]. avionics [ABC+07]. Avoidance [LYS+18, OG16]. Avoiding [BLRC94]. Award [War11]. Aware [Akk18, BMS16, BL17, CWH+16, CGC16, CWL+15, CYX+17, CHLY18, Do11, EGR15, HC17, HPP15, JJK+11, JQWG15, KL14, LMM18, Man16, RG17, SDD+16, TB17, XLL+14, XLJ16, YLH17, ZCG+17].
Awareness [ZHL16, LCL14]. Azure [Fab13].

C [Fra06, Fra09, Hee07, Hog06, Hog08, Wil06, Blu02, CWG00, G+01, Hee07, Hog06, Hog08, JM08, Men03, Siv07, Wil06]. C# [G+01]. C/C [Blu02]. CA [ACM06a, ACM06c, Ano97a, IEE84b, IEE93a, USE01c]. Cache
[Hee07, Hog06, Hog08, Siv07, SNS03, Vog03, Wil06]. **CLI-based** [Vog03]. **Client** [RSW06, DPW09, HIIG16]. **CLIP** [Lau87]. **Cloning** [LCWB11]. **Closing** [ZLHD15]. **Cloud** [ASSB18, BB13, BHEP14, CWL12, CPKL17, Cfm17, CPS17, Dsm18, DKW15, FBL18, GB19, GLS15, Gsw17, HMH17, HKLM17, JE12, JQWG15, JW17, KC16, KMM13, KAZS14, KK19, LCWB11, LGR14, LGG18, LW12, LS15, MSG14, Man15a, Man16, Man18, MJW+14, MPA+18, NSJ12, PCW+16, PXG+17, PS16, PCC+16, PG18, RSNK17, RSGG15, RXW+12, SL14, Sar16, SJS+17, SC18, SZW+16, SV13, SB18, SXCL14, TB17, TVKB16, TMMVL12, WVT+17, WUNK17, WUK+18, WLS+18, WTM18, XSC13, XWJX15, XLL+14, XLJ16, YLN+17, YP15, ZQcz16, ZL16, ZGC+17, ZL18, ZWL+18, ZHL16, ZLW18, AGH+15b, AGH+15a, ADA+19, AB16, AO16, AMA+14, ATS16, AMAB17, ARMM18, AP18, AEB19, AA18, BD11, BTMS10, Beg12, BCC+15, CL14, CSSS11, DC15, DEG+17, DQLW15, DCMW17, FCP13, FPGK18, FMIF18, Fro13, GGQ+13, GTGB14, GDA+17, GLK+12, GA18, HKS19, HTB19, IKU15]. **Cloud** [JES+15, JWH+15, KSO+15, KSRL10, KS18, KMT14, KTB17, KCS14, KJLY15, KCCG15, LLW+12, LZWC13, LZWD15, LZZ+16, LLS14, LL14, LTZ+14, LPI1, LPPBB+18, Man15b, MNA16, MW18, MA17, MGG+18, Nic12, NIA18, dOL12, OL13, PFPJ18, Pon19, RK16, RGT18, RH17, RT18, RQD+17, RK17, Ros14, SG10a, SGV13, SASG13, SBP+17, Str13, TK17, TMLL14, VT14, WCY+17, WLL+13, WRX+15, WXW15, XHL+13, XLL+14, XTB17, YLH14, YLHJ14, YLCH17, YB+15, YRJ18, ZY+18, ZL12, ZWHC17, ZHHC17, ZWC+19, ZWH+17, ZYL+18, BB12, CD14, CFP12, KKB14, KBB11, KMG+18]. **cloud-assisted** [ZYZ+18]. **Cloud-Based** [WLS+18, MPA+18]. **cloud-computing** [ZLZ13]. **cloud-distributed** [AB16]. **cloud-oriented** [Beg12]. **Cloud/Virtual** [YP15]. **CloudiA** [ZLV+12, ZBS15]. **cloudlet** [YB+15]. **cloudlet-based** [YB+15]. **Cloudlets** [RSN+18]. **CloudMentions** [WLLZ16]. **CloudNet** [WRSvdM11, WRS+15]. **Clouds** [AD11, CRZH15, ESY+17, HKM+18, HKKW13, KMK16, KDB16, LLWL10, LLZ18, MLXG19, NMG15, OG16, OSK15, RG17, RB17, WZL15, WLLZ16, WHD+16, WYY+17, ZHW+17, ZRY15, BB15, dCCFD1015, DX+17, FBZ12, HZZ+14, KMK10, KR16, LMV12, LBZ+11, LLWL16, PPO14, SYMA17, XJWW15, ZG13, ZLH+15, ZLW+12, ZBS+15, EMS15]. **CloudSim** [OBSR16]. **Cluster** [CL16b, GIK+99, SEF+06, TLC06, ZGC+17, FLCB10, KJLY15, LJJ12, SBP+17, SSN94, WDT18, YLHJ14]. **Cluster-Aware** [ZGC+17]. **cluster-based** [FLCB10]. **Clustered** [DJS+17]. **Clustering** [XZZ+16, ZWCH17]. **Clustering-based** [XZZ+16]. **Clusters** [CHPY17, GSW+17, LZ15, PXG+17, WIS+15, YWCF15, ZLW+14, AO16, Fu10, HCJ07, KOY05, PRS16, SJJ+12]. **CMD** [CW+14]. **CMS** [SNC91, IBM96]. **CNC** [Lia05]. **Co** [DCG12, HS06, LH16, WIDP12, OG16, Wu13, YWGH13]. **Co-Design** [LH16]. **Co-Designed** [HS06, DCG12, Wu13]. **Co-evolution** [WIDP12]. **co-location** [OG16]. **co-scheduling** [YWGH13]. **COBOL**
11
[BP99, BKMM87, BS90, KD78, MSS+ 15, HP77, SGGB99, SGGB00].
Computing
[ACM98, ACM04b, ACM05b, ACM06e, Abr80, BHEP14, CWL12, CPKL17,
CFM17, DDS+ 94, DPCA11, Gei02, GB19, IEE96b, IEE04, IEE06a, KC16,
KGZ+ 04, KK19, LCK11, LW12, MSG14, MO98, NSJ12, PCW+ 16, PXG+ 17,
PS16, RCM+ 12, RSNK17, RSN+ 18, SCSL12, SZW+ 16, SEF+ 06, SB18, TLC06,
USE93, Vog03, WB81, WTM18, XSC13, YLN+ 17, ZL16, ZZF06, ZAI+ 16,
ADA+ 19, Ano96, AMA+ 14, ARMMA18, AEB19, BS96, CD14, CDM+ 10,
DQR+ 13, DCMW17, Fis91, FF96, Fro13, Fu10, GGQ+ 13, GLA+ 08, HKS19,
JPTE94, KHL17, KSO+ 15, LBZ+ 11, LLW+ 12, LZC+ 16, LCL14, LTZ+ 14,
LP11, LPBB+ 18, MNA16, McG72, McK11, MUKX06, M+ 06, MA17, MMG+ 18,
NIA18, PSZ+ 07, QZDJ16, RGAT18, RQD+ 17, Rob06, SJW+ 13, SASG13,
SB10, TMLL14, WH08, XTB17, YRJ18, ZLZ13, ZWHC17, ZLZ+ 19a, ZYLY18].
con [SMSB11]. concept [SIJPP11]. Concepts
[PPTH72, Ågr99, Don88, MS01]. Concerns [PM19, VN08]. concolic
[LLS+ 12]. Concurrency [MD12, CFS+ 12, Sub11, UR15]. concurrency-safe
[CFS+ 12]. Concurrent [GMP89, Har77, KD78, IT86, WK08, YWGH13].
Conditioned [WC01]. Conference
[ACM81, ACM90, ACM96, ACM97, ACM00, ACM01b, ACM04b, ACM05d,
ACM06a, ACM06b, ACM06f, Ano93, Ano99b, Ano01a, Ano02, Ano04a,
Ano06a, BW03, DC15, IEE84b, IEE93a, IEE05, LCK11, Mar81, MS91b,
MR91, Sof83, SS05, Shr89, USE99, USE00a, USE01a, USE01b, USE06,
ACM05c, ACM06e, IEE06b, JPTE94, USE85, USE86, ACM00, IEE85].
Configurable [WJGA12]. Configuration
[BRX13, Lar09, A+ 04, FL13b, SMA+ 10]. configurations [LDL + 08].
configure [Car14]. Configuring [AL05, Rul07]. Confirmation
[MTFK19, OG16]. conflict [BLRC94]. Congestion
[CL16b, LYS + 18, YLH17, ZWC+ 14]. Congestion-Aware [YLH17].
Congress [GHH+ 93]. conjugate [MM92]. Connected [SMES01, MS00].
connection [MJ93, Tur84, TR88]. connections [FBZS12]. connectivity
Consider [SC18]. considerations [G + 05]. Considered [NMHS15, WC01].
considering [LTZ + 14]. consistency [FRM+ 15]. Consistent [DJS+ 17].
Consolidated [HC17, HPP15, JJK+ 11, KKJL14, OL13, SS13, ZLL+ 16].
Consolidation
[AAK18, BB13, LVM16, PZW+ 07, SBK15, AGH+ 15b, ATS16, AMAB17,
AP18, BB12, BB15, CD14, Fro13, HMH17, HZZ+ 14, gKEY13, KCV11, KR16,
LZC+ 16, LBL16, LYYY17, LYYY18, LLWW18, LL14, LDDT12, Man15b,
NTH+ 17, RT18, R+ 02, SENS16, SSN12, WCC+ 16a, YRJ18, ZLCZ18].
consolidation-aware [WCC + 16a]. constituent [RHR02]. Constrained
[EGR15, LTE12]. Constraint [LFBB94, DQLW15, LYYY18].
constraint-based [LYYY18]. Constraints [BB13, KKS12, SZ13].
Constructing [DM93]. Consumption
[DSM14, HKM+ 18, MV16, FFB+ 00, DPBK16, RJK16, THG+ 18, VED07].


Container [SPF+07, YLN+17, ZLW18, GKP+19, MG19, SG10a, Str13].
Container-Based [YN+17, SPF+07]. Containerization [HSL17].
Containerized [HSL17]. containers [Ros14]. Containment [CLW+14].
Content [CWH+16, FLZ17, LYS+18, GVI13, LLF+18, LLWW18].
[DMG+15, TMV12, vLSM01, HB13, SSB+14a, SM01]. Continuous
[DL89, TSLBYF08]. Continuum [Bad87]. Contraction [Par79].
contribution [ABB+19b]. Control
[AGLM91, Att79, CL16b, HHC+16, LZ15, PSBG11a, RSNK17, RSN+18,
SCH94b, SCH94a, SDD+16, Sur01, WJ10, WUK+18, WN17, WSAJ13, Zyt94a,
Zyt94b, AS76, AMIA19, BKH+06, FP14, HB08, Kis08, KKS12, Lia05,
PSZ+07, PSBG11b, PSC+07, STS+09, ZBG+05, ZSW+06]. Control-Flow
[WJ10]. controlled [KK79, Sto07]. Controllers [AMH+16, CWG00].
Controlling [HSK+17, BKC+13]. convection [BB95]. Convention [Ano93].
converged [DPW+09]. Convergence [RM03]. Conversion
[GBO87, IBM94, YTY00]. convex [SJRS+13]. Cookbook
[Car13, Car14, G+06, P+08, TH10]. cooling [ARMMA18]. Cooperative
[KJL11, GLL16]. Coordinated
[BRX13, LZ15, CRB12, KK+13, NS07, BBMA91, MSS91]. coordinating
[ZNSL14]. Coordination [ABV12, CRG16, Tho93]. COOTS
[USE99]. Copley
[USE01a]. Coprocessor [LRZ16]. Copy
[AGJS16, HDG09]. copying [PV08]. CORBA [GCARPC+01]. Core
[RTL+18, CMP+07, DQR+13, KW13, PNT12, SK13b, YTS14]. Corel
[Ano03b]. Corfu
[DJS+17]. Corner [Sch94b, Sch94a]. correct
[DM93, IM75, Kou11]. Correction [Lee16]. Correspondence
[BDJdS02]. Cosmology [Nel04]. Cost
[AMA18, AMH+16, HKS19, HKM+18, VS19, ADA+19, DRE08, KJM+07,
LBZ+11, OMB+15, SJRS+13, WCY+17, YRJ18, ZLZ15]. cost-aware
[YRJ18]. Cost-Effective [VS19, HKS19]. Cost-Efficient
[AMA18, OMB+15]. Costs [ZHW+17, FLL+13]. count [XWX+17]. counter
[NB11]. Counteracting [VT14]. Coupled [WN17]. course [AL05, Don88].
courses [BBS+06, GD08]. Cover [Arm98]. Coverage [CSS+16].
Coverage-directed [CSS+16]. covert [WXW15]. CPU
[BSSS14, HB08, JGW+11, Kam13, LWC+17, SK13c, WGLL13]. crash
[KY16]. create [Fit14]. creation [CK06b, CK06c]. Credit
[KP15, KCS14]. Credit-Based
[KP15]. crisis [AT16]. criteria [ATS16]. Criticality
[WLMD16, LWM14]. Crop [UBF+98, BDF+98]. Cross
[CSS+18, JR02, JXL+12, SWF16, WLW+15, WCC16b, AWR05, BKC+13,
CWH+14]. Cross-Architectural [JR02]. Cross-Architecture
[SWF16]. Cross-ISA
[WLW+15, WCC16b, CWH+14]. Cross-Language [CSS+18]. Cross-Platform
[JXL+12]. cross-run [AWR05]. cross-thread [BKC+13]. Crosscut
[CLG+10]. CrossRef [Ano03b]. cryptographic [QZDJ16].
Distance [KKLV16, AJD09]. Distributed [Ano10, BBD+91, BDF+99, CLLS12, Das91, FKZ17, FD08, HKLM17, IE93a, IE96b, JWL+18, Kim84, KMG+18, KAZS14, LLW98, LS15, MLXG19, PP16, SC17, SM02, TCP+17, Vol90, WB81, WIS+15, WVT+17, WLS+18, WN17, XWH+16, ZFF06, AC95, Ano96, AB16, AFT01, Bier94, EMI13, Fis91, FF96, FX06, Fu10, GKP+19, KTB17, KJJ+16, KSLA08, SJ14, SNN12, SGGB99, SGGB00, SIK+16, VO92, WKC+09, ZWHC17].

Dolly [CSSS11], Domain [GGM+16, HHV+02, KLF+15, WK90, BML+13]. Domain-aware [KLF+15]. Domains [PNT12]. dominance [CPST14]. done [Han16, HUL06]. Don't [HHPV15]. Dortmund [Müh75].

duplication [CLcC13], Durham [Boa90]. during [JK13]. DVFS [Kam13].

DVM [MSG+12, MSG14]. Dynamic [Abr80, AMAB17, BB13, BHI15, DHPW01, DMG+15, GSN93, JWH+15, Lec16, LB98, LJJ+15, MDGS98, NMG15, PTHH14, SZW+16, TMLL14, TB17, TV12, Vac06, WWH+16, WCS09, XSC13, XML+18, YLN+17, ZFL15, ZWL09, ABDD+91, ARMMA18, AP18, BK14, BB12, BB15, BZA12, BOF17, CSV15, CPST15, GPW03, HWW+13, HBI3, JK13, JYW+13, KRC14, KJM+07, LMV12, LYYY18, LJJ12, Mly09, NTH+17, PGL12, PBAM17, RH17, RR17, WRSvdM11, WR+15, WU13, WWH+17, XH90, YWF09, vKF13].

Dynamically [MGZ14, BLRC94, BDT13, FC98, HH13].
dynamically-linked [FC98]. Dynamics [YWCF15, ACT94]. dynamo [Hol95].

dge-intelligence [MPA+18]. Edition [KGG00, LYYB14]. Editorial [Sed07]. Editors [FDF05, KS08b]. EDSAC [CK96]. Education [ACM06d, AJD09, DG05, GLA+08, HMS04, DTW07]. educational [WDSW01]. Effective
RH17, SZL+14, ZWC+19, CD14, DXM+17, GLK+12, KCS14, WDT18. Energy-Awareness [ZHL16]. Energy-credit [KCS14]. Energy-Efficient [DMR10, LZC+16, SYMA17, YLX+10, BB15, BRIDM10, HM18, NTH+17, YPLZ17]. Energy-Oriented [BWD+15]. Enforcement [LJFS17, NMMP15]. Enforcing [KC12, WZL15]. 'Engine [Wal10, GLV+09, M098, GLV+10, J+05, M057+05]. Engineering [IEE84b, ACM01a, MG82, GLV+09, MJ05, MIS+05]. Engineering [IEE84b, ACM01a, MG82, GLV+09, MJ05, MIS+05]. Enhance [GLS15]. enhancement [DXM+17, LS18]. Enhancing [CPKL17, GI12]. ENIAC [ZR06]. Enlightened [AGJS16]. ensemble [RGAT18]. ensuring [Req03]. Enterprise [ADG+92, FPR06, G06, LVM16, Hal08, NS07, WH05, Ano03a, Gal11]. enthüllt [Joo06]. ENTICE [GKP+19]. Entrepreneur [War11]. Entropia [CCWY05]. Entropy [TVO92]. Entropy-Driven [TVO92]. enumeration [SHS17]. Environment [BGM70, CL16b, GI98, Gen86, GGG03, HW93, IEE06a, J+05, JADAD06a, LWC+17, LW12, Mac79, RT93, TMV12, XSC13, AAB+05b, BH13, CLDA07, CWG00, Don87, GD08, GMR93, Hal09, HLR13, JWH+15, JXZ+10, JADAD06b, KW13, KMG+18, LJY15, MCG72, MST+05, MW18, MPF+06, RGAT18, TML14, TT93, Van06, WLL+13, XZZ+16, ZBP05, ZLLL13]. Environments [ACM05d, ACM06f, CWL12, GKXK13, HHW10, HKKW13, KKH14, KGZ+04, NKY+18, RGSJ17, SV13, ZZF06, ADA+19, ATS14, BCC+15, BRIDM10, BDK+08, CFVP12, DP11, DEG+17, FMIF18, GMK17, HOKO14, HC12, KSO+15, KKB14, PSZ+07, SJW+13, SGV12, TRG13, VD14, WWWL13, XHL+13, YLK+10]. Ephemeral [WHD+16]. equivalent [TCP+17]. Erlang [TCP+17]. Error [XH16, XHL+13]. errors [AMIA19]. Ersatz [Hin08]. erstellen [Zim06]. Erstellung [See08a]. ESA [Fis91, GH91a, IBM94, MSS91, OJG91, SNC91]. ESA/390 [OJG91]. ESA/XC [GH91a]. eServer [R+02, G+05]. ESPRIT [RD90]. Essentials [SN03, MBM09, VSC+10]. Estimation [DSM14, HSK17, KSSG16, NKY+18, OBSR16, LBL16, MPA+18, WDT18]. ESX [AAH+03, D+04, MWHH05, OH05, Rol07, R+02, Zim05, Hal08, MBM09, Wal02]. ESXi [GKBB15]. ET6 [Pul91]. ET6/1 [Pul91]. Etherface [Hir17]. Eucalyptus [AMA+14]. European [ACM04a]. EUROTRA [Pul91]. Evaluating [De 06, GLK+12, HW93, RCM+12]. Evaluation [AD11, CFH+79, CFH+80, DAH+12, HB12, KD78, MG19, PWZ+07, SJA+17, SHB+03, SHTE11, TFtLC15, VMBM12, ACM06c, ALW15, DSSP06, FSH+13, GE85, HTB19, Kao17, MCC18, Man18, VW08, WKT08, WWH+17, YZW+13, Hin08]. evaluations [SJW+13]. Event [DLX+17, MV16, YP15]. Event-driven [DLX+17]. events [LC13]. everywhere [Tre05]. Eviction [AGJS16]. Evil [HJC07]. Evolution [HH79, Kim84, SLM89, SL16, AGS10, CD01, GBCW00, Kero99]. Evolutions [BAL15]. evolving [Ano96, FF96]. examination [HN08]. Examining [NL00]. exceeding [GHS16]. Excelsior [MLG+02]. exception [Sal92]. Exceptionization [YKM17]. exceptions [Ven97b]. exclusion
Executable [MP01]. executables [AD18]. executing [ACT94, Lot91]. Execution [ACM05d, ACM06f, HWB03, KGZ+04, LWC+17, MM93, MO98, PY93, RT93, SV13, vLSM01, AS76, AAB+05b, BFC02, BDK+08, CLDA07, Fre05, GCARPC+01, GK05, MMP+12, OJG91, SM01, TT93, ZL13].

Experience [San88, RM03, CARB10, CBFLD12, PBAM17, RSC+15, TGCF08]. Experiences [NV05, SCD90, Tsa14, CMP+07].

Experience [San88, RM03, CARB10, CBFLD12, PBAM17, RSC+15, TGCF08]. Experiences [NV05, SCD90, Tsa14, CMP+07].

Experience [San88, RM03, CARB10, CBFLD12, PBAM17, RSC+15, TGCF08]. Experiences [NV05, SCD90, Tsa14, CMP+07].
ACM75, IEE96b, USE99, IEE04. File [AEMWC+12, AvMT11, Li14, SNC91, ZZF06, FFBG08, HC12, Int06c, JXZ+10, SBQZ14, Vag10, WH08, WF07], files [LLF+18], filesystem [ZYX+18], filling [HUWH14], film [SL00].

G [ALW15]. GA [HMH17]. game [FK13, GLJJ16]. games [WK+09].
Gaming [ZQCZ16]. Gap [DGLZ+11, FL13a, GSW+17, ZLHD15]. gaps [HUWH14]. Garbage [ADM98, DS16, GTS+15, HPHV17, PBAM17, Sch13a, SHB+03, URJ18, BOF17, DEE+16]. Gast [WF03]. Gast-Systeme [WF03].
Gateway [CCO+05]. Gateways [DW14]. gather [Wol99]. GC [HHPV15].
GCompris [CK06t, CK06r, CK06s, CK06q]. GCTrees [DS16]. GDB [MZG14].
geharteten [See08a]. Geiger [JADAD06b]. Gelato [Ano06a].
Gene [SSU+12]. Gene/P [SSU+12]. General [GBF+09, XWH+16, BDE+03, LSS04, SS72]. General-Purpose [GBF+09].
Generation [Ano03b, JXL+12, VLZL16, XML+18, ME87, Sus76]. generational [WK08]. generations [BOF17]. generator [ABDD+91, GEKP02]. Generators [Fra83, GHF83a, GHF83b, WNL+83]. Generic [MM94]. generics [Int06a].
Geo [JWL+18]. Geo-Distributed [JWL+18]. geographically [KTB17].
geometry [Hol95]. George [ACM03b]. Georgia [USE86, USE00a]. German [Joo09, Bec09, Bod10, CK06a, CK06b, CK06e, Fis09, Lar09, Sch13a, Spr07, WR07]. Germany [RM03, GHH+93, IEE01]. get [Ame13]. gets [Rou07].
good [RY10].
Google [Cox12, Joo06, DC15]. Goto [Abr80]. GP GPU [MMG+18, TY14]. GPU-Accelerated [MTFK19, SCSL12]. GPU-assisted [GMK17].
granular [FS89]. Grande [ACM01b, DHPW01, GPW03]. Grande/ISCOPE [ACM01b]. Granularity [PXG+17, LLS14]. Graph [CFM17, CRG16, LKY+17, Syr07, YTS14]. graph-based [CRG16].
graphic [Val76]. graphic-simulator [Ber86]. graphical [Bur02]. Graphics [Ano03b, JXL+12, VLZL16, XML+18, ME87, Sus76].
Green [KL14, LLW+12, LJI12, WZV+13, YLHJ14].
Grenoble [ACM05b, JPT94]. Grid [ACM05b, EEE04, SEF+06, TLC06, ZZF06, vLSM01, Rob06, SJW+13, SGV12, ZBP05, AKK+07, CCO+05, KGZ+04, LP14, WKT08, ZBP07]. Grid-Based [vLSM01]. GridGIS [M+06]. grids [CCWY05, MPA+18, GTN+06].
Group [Boa90, SF83, YLN+17, CKP78, ZLH+15]. growth [LDL14]. GSX [Zim05].
GTP [M+06]. Guarantee [LZ15]. Guaranteed [ZW+18]. Guaranteeing [LZW+15, YWR+14, ZRS+16]. guarantees [MSG01, ZHCB15]. Guest [CCML12, NOT+17, ABG14, FL13b, JXZ+10, LD11, MSZ09, XHCL15].
[KKTM17]. High-Level [DMS02, RB01]. High-Performance
[ACM98, IEE06a, KCWH14, LMG01, SD01, SCSSL12, URJ18, WCC16b,
dGG+17, Han16, Hog02, SYC14, LILLE17, LM99, LMG00, MUKX06,
SPF+07, WWH+17, ZYZ+18]. high-performing [GBCW00]. High-speed
[LRP+19]. Higher [BW03]. Highly
[KD78, ZFL15, CARB10, CGM17, GI12, GVI13, TGF08]. Hilton [IEE90b].
Hiphop [AEM+14]. histograms [CL14]. History [SKJ+17].
History-Based [SKJ+17]. HITAC [KAH83]. HIVE [Tay76]. HLA
[LCT+15]. HLA-Based [LCT+15]. hold [Yur02]. Holders [War11].
Holistic [LGJ+18]. Home [DW14, See08b]. hones [Won97]. honeypots
[ALL06]. Hood [Ven96, Ven97b, Ven97c, Ven97d]. Hose [YLH17]. Host
[CLW+14, QNC07, LMJ07, TB14]. Host-Based [CLW+14, LMJ07]. Hosted
[SVL01, CBLF012, CKT08, DS09b]. hosting [RQD+17]. Hosts
[BB13, BAO06c, CLL+13, TcLeC13]. Hot
[IEE90a, IEE97, IEE99, IEO01, BBTK+17]. Hotel [USE01a]. HotOS
[IEE01]. HotOS-VII [IEE01]. Hotplug [LJL+15]. HotSpot
[Sch13a, Arm98, BOF17, HNV+02]. HotSpotTM [RB01]. Houston
[ACM06d]. HP [BKMM87, MSCK92]. HPC
[M+06, HCJ07, JQGW15, PNT12, PCB+18]. HPC-GTP [M+06].
HPC.NET [Vog03]. HPCCh [DF96]. HPCS06 [IEE06a]. HSPT
[WLW+15]. HSSM [Wei02]. Huge [Got07, KYP+17]. HVM [LTK17].
HVMs [CBZ+16]. HW [DCG12, Wu13]. HW/SW [DCG12, Wu13].
Hybrid [GSW+17, HD16, KCWH14, PST+15, RSNK17, VVC+17, WGLL13,
FX06, KS18, LQW+12, RJK+17, YWHG13, ZGW+06, Gua14]. Hyper
[Gal09b, Lar09, LCO9a, TGB19, WXW15, Apr09, Car06, KVV09, KSS09,
KS10, Lar09, LCO9b, LCO9a, MG08, MG09, SRS09]. hyper-space [WXW15].
Hyper-V [Gal09b, Lar09, LCO9a, Apr09, Car06, KVV09, KSS09, KS10,
Lar09, LCO9b, LCO9a, MG08, MG09, SRS09]. Hypercubes [HO92].
HyperMAMBO [dGG+17]. HyperMAMBO-X64 [dGG+17].
Hypervisor
[BAL15, CL16a, HWCH16, JSHM15, JAS+15, KYP+17, NOT+17, PPG+17,
SJ+05, SKYK16, WJ10, WHD+16, XD16, XD17, ABG14, BBD+10, Chi08,
DN14, MSZ09, RSLACCLB16, Ste14, SL12, KSS09, KS10].
Hypervisor-as-a-Service [WHD+16]. Hypervisor-Based [BAL15].
hypervisor-secure [SL12]. Hypervisors [Rev11, SPF+07]. HYVI [Gua14].

I-Caching [MM93]. i.e [Mühl75]. I/O
[RM03, AJM+06, AMA08, AD11, ABG14, ABB+15, BMS16, BHEP14,
CWH+16, CDD13, CRZH15, DCP+12, DS09b, GAH+12, HB12, KS08a,
KMN+16, LILLE17, LMR18, LHAP06, NsP16, PST+15, Rus08, SBQZ14,
SYC14, SVL01, TcLeC13, VW08, WR12, ZSR+05]. I/Os [OBSR16]. IA
[Ano14b, De 06, Don06]. IA-32 [Ano14b]. IA-64 [De 06, Don06]. IaaS
[GLLJ16, GA18, HKM+18, KDB16, PPO14, RB17, ZLHD15, ZHW+17]. IAS
OG16, PP16, XH16, AO16, AMA+14, AA18, BDS+09, Car14, Hal09, HH13, J’+05, KSRL10, KR16, LLY+18, Low08, dOL12, MR04, PW03, RSF03, Fro13].

Infrastructures [WTM18, FPGK18, LPBB+18]. Ingens [KYP+17].

Infrastructures inherently [TDG+18]. Infrastructures [WTM18, FPGK18, LPBB+18]. Ingens [KYP+17].

Inspection [SK1+17]. Installation

[Bec09, Bor01, KGG00, Lar09, WF03, Zim05, Zim06, MIS+05]. Instance

[AMIA19, EMAL17, KCKC15]. Instances [WUNK17, ZG13]. Instant

[HPP15, Joo06]. Instruction [Oi06, HW15]. instructional

[DSSP06, DTW07, WO75]. Instructions [Qia99]. Instrumentation

[ZFL15, BZA12]. Instrumenting [MZG14]. Instruments [BPB86]. integer

[YTY00]. integer-reference [YTY00]. Integrated

[BDF19, CWG00, YZLQ14]. Integrating

[JMSLM92, LTT92, LCL14, OBSR16]. Integration [GMP89, Ame13].
Interpreters
[EG01, CEG07, EGKP02, EG03, Ert05, KKC+16, ZLBF14, Ert03].
Interpreting
[Han05]. Interpretive
[AS76, OJG91].
interpretive-execution
[OJG91]. Interrupt
[CL16a, TFtLC15, AA18].
interrupts
[AGH+16]. Intrernet
[Ano03a]. Intrinsics
[PSBG11a, PSBG11b].
introduce
[MS01]. Introduction
[ABB+19b, MPA+18, PFFJ18, ZYZ+18]. IOV
[DYL+12, DCF+12, HB12, XD16, XD17, YWCF15]. IP
[AM16, CF00, HWH18, NTR18]. Iron
[Ano05]. IronGrid
[Ano03b]. irregular
[AC16]. ISA
[CWH+14, DZ02, WIW+15, WCC16b]. Ischia
[ACM06c]. ISCOPE
[ACM01b]. ISDF
[M+06]. ISDN
[KGG00]. ISO
[Int05a, Int05b, Int06b, Int06c, Int06d]. ISO/IEC
[Int05a, Int05b, Int06b, Int06c, Int06d]. Isolated
[Jan79]. Isolation
[WZL15, ZTW17, Cza00, GND16, MD73]. ISPA
[M+06]. ISPAN
[HHK94]. ISSSTA
[Ost94]. Issue
[KM13, TZB19, Yur02]. Issues
[AFG+17, AD11, KS08a, KK19, PZH13, SEF+06, Tur84, AGH+15a, AEB19, BB08, PBB13]. Italy
[BW03, M+06, ACM06e]. Itanium
[Ano06a]. Itanium-based
[Ano06b]. iterators
[ZLBF14]. IV
[Int06c]. IVME
[Ert03]. IX
[BPP+17, IEE97].

J
[AC98]. J2EE
[JDJ+06]. J9
[WKJ15]. Jahrestagung
[Mih75]. Jalapeño
[AAB+00]. January
[ACM99, IEE93a, Shr89, USE01b]. Japan
[HHK94]. Java
[ACM98, ACM01b, Ano00, Ano01a, Ano01b, Ano02, Ano03a, Sch13a, USE01c, USE01d, USE02, Wol99, ADM98, Ame13, AT16, Ano07b, Ano97c, Ano97d, Ano03b, AFT01, ABC+07, AC98, ANH00, BDF+98, BHDS09, BD01, BP01, BP03, Bri98, BZD17, Caa00, CW03, CT03, CH08, Cla97, Coh97, CDG97, Cra98, Cza00, Da1x, Da1t, DHPW01, DEK+03, DS09a, DBC+00, DCA04, DLS+01, EGD03, Eng99, EL98, Eng06, FFB+00, Fra98, FK03, G+01, GGG03, GCMAP+01, GPW03, GBCW00, HT98, Hau05, HM01, HOKO14, HWB03, HB08, Ivo03, J0R2, JJ02, Juo07, Kal97, KS13, LM99, LMG00, LB98, LV99, LY97a, LY97b, LY99, LYxxa, LYxxb, LYYBB13a, LYB13b, LYB14, LTK17, MSG01, MO98, Men03, MD97, MDxx, MLG+02, MB98, Mon97, MP01, NG13, OT97, Osk14, Oi05, Oi06]. Java
[Oi08, PTHH14, PRR07, PV06, Qia99, RVJ+01, RHR02, Ran02, R+13, Req03, SMK02, SSB+14a, SD01, SE12, SH04, Sch13a, SSMGD10, Seq13, SMSB11, SSB03, Shi03, SM01, SGV12, Siv04, Sni97, SBB01, SBB14b, SHB+03, Sun95a, Sun95a, SUN97, JCV99, Sui99, STS+13, SM02, Sur01, Tai98, Tal98, TO96, UBF+98, UR15, Van98, Ven97a, Ven97b, Ven97c,
Ven97d, Ven99a, Ven99b, VED06, VED07, VL00, WL96, WGF11, Wak99, WH99, Wes98, Wol99, Won97, WMWG06, YC98a, YC98b, YME05, YKM17, Yel99, YTY00, ZP14, ZS01, vLSM01, Ano97a. Java-based
[Ano96, FF96, HOKO14, KS13, YC98b].
Java/CORBA [GCARPC+01].
JavaScript [AHK+15, CBLFD12, VP16].
JavaScriptCore [Piz17].
Java [LMG01, SMES01, CF00, RB01, vD00].
JavaCard [BDJdS02].
JavaTM [Ano00, Ano01a, Ano01b, USE01c, USE01d, USE02, AC16, CSS+16, DBC+00, Guy14, R+13, RRB17, SV15, Sub08, Sub11, Ven99b, WKG17].
JVMPI [Sun95a].
JVMs [BK14].

K. [Sch94a]. Kailua [Shr89]. Kailua-Kona [Shr89]. Kaleidoscope [LFBB94]. Kanazawa [HHK94]. Kanotix [CK06c, CK06h, CK06r, CK06s]. Karlsruhe [RM03]. KDE [KGG00]. Keeping [NP13]. Kernel [FL13a, HD16, JJ91, KZB+90, SM90, SYB12, TY14, WLMD16, IWM14, Uhl07, VMBM12, KM13]. Kernel-based [TY14, KM13]. Kernelized [WCC16b]. kernels [HPHS04, RMB02]. Key [TF16, DPW+09]. Key=Value [TF16]. Kinder [CK06q, CK06t, CK06r, CK06s]. Kingdom [Vra05]. Kit [Car06, LC09b]. Knob [WK18, BR01]. Knoppix [CK06d, CK06i, CK06n, CK06s, Deu08, CK06i]. knot [LBF12]. Knowledge [FG91, IT86]. Kochbuch [PO09]. kompletten [Mar08]. Kona [Shr89]. Konfiguration [Bor01, Lar09, WF03, Zim06]. konfigurieren [RHM08]. Konsolidierung [Sec08a]. Konzept [Dal97]. Konzepte [Tho08]. Konzeption [Zim06]. krill [KS18]. KScalar [MRL02]. Kubuntu [CK06e, CK06g, CK06n, CK06t, CK06e, CK06e]. Kuck [War11]. Kundenserversystemen [Sec08a]. KVM [Deu08, Hin08, DN14, GLC84, HWCH16, LZL+15]. KVM-based [HWCH16]. KVM/370 [GLC84]. KVM/ARM [DN14].

L [Lot91]. lab [AL05, HMS04]. laboratories [DTW07]. Laboratory [Kim84, SVN+10]. Labs [Sec08b]. Lagrangian [GR15]. Lagrangian-based [GR15]. Lake [ACM03b]. Lambda [Wat86, Wat87]. land [Tsa14]. Landing [ACM03b]. Language [CDM+10, ECM01, ECM02, ECM05, ECM06, GSS+18, Hog08, Int05a, Int05b, Int06b, Int06c, Int06a, Kam83, Luc97, MR04, PW03, PFH+16,
Language-independent [PFH+16].
Language-level [WCG14].
Languages [BS90, Dan86, LFFB94, PTHH14, SSG90, Tol98, YKM17, ACM99, BDT13, Jou85, PMC05, PULO16, Sus76, TB14, Wel02, Wu13, YWF09].

LARD [WCG14].

Large [DK93, GKB815, PHL+12, RGSJ17, SL89, XDLS15, ZSXZ07, ZLW+14, BLRC94, DK75, FPQK18, LPD+11, Nie12, Req03, SZ13, SHTE11, YZSC17].
Large-Scale [PHL+12, SL89, XDLS15, ZLW+14, Sz13, YZSC17].
Latency [ASSB18, BPP+17, BL17, MV16, RZPX19, IMK+13, ZSW+06].
Later [FS12].
Launch [AMIA19].
Launch-time [AMIA19].
Layer [BTLNBF+15, MA17, RSLA+16, SLM89, XDLS15, ZLW+14, SZ13, YZSC17].
Layering [YWF09].
LayerMover [ZFY18].
LayerMV [ZFY18].
Lazy [Wak99].
LDA* [YZSC17].
Leadfoot [HHPV15].
Lean [SV15, Ven96].
Learn [BWH+19].
Learn-as-you-go [BWH+19].
Learning [BRX13, AD18, KGKT17, KRGT12, RGAT18, RT18].
Legacy [LU04].
LegoSim [RMB02].
Lern [CK06q, CK06t, CK06r, CK06s].
Lern- [CK06q, CK06t, CK06r, CK06s].
Lernprogramme [CK06k, CK06m, CK06l, CK06n, CK06o].
Lernprogrammen [CK06k, CK06m, CK06l, CK06n, CK06o].
Lessons [RM03, LJZ12, Rob06, URJ18, HMS04].
Level [AC16, cCWS14, Chu06, DMS02, KHW+16, NTR18, RB01, SV13, ZSR+05, ZQCZ16, AD18, AL05, BSM+12, BUT94, CIA07, EGD03, FLCB10, IM75, JHE14, LZW+17, SVN+10, SWcCM12, SSG90, WF07, WCG14, ZLZ13].
Leveraging [LLF+18, LDL+08, Pfo13, RLT+18, WHD+09, ZL13, ADF09, ZBG+05].
Libraries [DK93, Int05b, Woi97].
Library [Cro93, SJ+17, PWH+12].
Libvirt [Ano14c].
Life [ZR06].
Liftime [WJ10].
Light [WWL+17, HH10].
Light-Weight [WWL+17, GB08].
Lightweight [WWL+17, HB08].
Libvirt [Ano14c].
Like [Abr80, SSOT17].
LILA [Dan86].
Limbo [Luc97].
Limited [CH08].
Limits [WBB+16, vKF13].
Line [SV17].
Linguistic [UR15].
Link [KLLT18, CRB12, JK15].
Linked [FC98].
Linking [FC98].
LINUX
KGG00, Ano06a, CK06a, CK06b, CK06g, CK06f, CK06i, CK06h, CK06j, CK06k, CK06p, G+06, Mar08, Use00a, Wf03, ABB19a, Bau05, Bau06c, BBH08, Ble10, Bof01, CK06a, CK06b, Com00, Com03, DNV10, DAv04, Fab13, G+06, Gndb16, Mzg14, Nshw10, NV05, P+08, Ros14, Spr06, Spr07, Vmb12, Wm13].
Linux-based [ABB19a].
Linux-Server [Mar08].
Linux/OSS [Ble10].
Liquid [Li14].
LISP [ACM90, CK87].
List [TT96].
List-based [TT96].
Literature [BDF19].
LITL [Lam75].
Little [Men03, YYPA01].
Live [BWH+19, CCZ+06, Deu08, DK17, ECJ+16, Jgw+14, Kklv16, Lz1+15, Lj+11, Swh+15, Ski+17, Xll+14, Xd16, Xd17, Zrs+16, ZdlG17, Zxy+15, As14, Bac15, BB08, Fgl15, Hlw+10].
XWXJ15, XLJ16, YWW+17, YP15, ZLW+14, ZRS+16, ZL16, ZCG+17, ZL18, ZLZ+19b, ZZF06, ZWL+18, ZHL16, ZJXL11, ZTWM17, Zyt94a, Zyt94b, dSdF16, AD18, Abr82, AS85b, AGSS10, AGH+15b, AGH+15a, AAB+00, AC95, Ano13, Ano94, Ano96, Ano99a, AO16, AFT01, ABC+07, Arm98, AWR05, Arv02]. machine [AP18, ANH00, AMA+11, BDF+03, BBTK+17, Beg12, BPC94, BCM90, Bin94, Blu02, BADM06, BFC02, Bri98, CARB10, CL14, CD14, Car14, CEG07, CFVP12, CS76, CHCC07, CBLFD12, CK06a, CK06c, Co85, Co99, CGV10, dCCDFdO15, CGW00, CD01, DHC08, DP11, DM93, DBC00, Don87, DJ76, DXM17, EGKP02, EG03, FLL+13, FM90, FSLF19, FMIF18, Fit14, FF96, FLM08, FCG05, Fre05, GGG03, GTGB14, GCARPC01, GPW03, GR80, GBCW00, GA18, HJ10, HTB19, HUL06, HK07, He14, HPHS04, HSC15, IBM85, IBM88, Int88, IBM94, IBM96, IU18, JNR12, JW+11, JADAD06b, Kal97, KGY05, KS13, KSO+15, KS18, KTB17, gKEY13, KCS14, KJLY15, KCKC15, KKC+16, KM+18, KFF12, Kou11, KCV11, KRG+12, Lam75, LBZ+11, Les74, LC02, LM99, LZWD15, LBL16, LWLL16, LYY14, LYY18, LWLL16]. machine [Lia05, LL14, LPBB+18, Lot91, LG93, MSG+12, MD73, MD74, MD01, DBPK16, MS17, Man18, MNA16, MG72, MCC93, MN91, MST+05, MW18, MAk07, MJ93, NOK+85, NIA18, OG16, Oi08, ORPS09, PEL11, PFPJ18, PCB+18, Pi17, Pol19, Pul91, Ra17, RZ14, Re03, RF00, RL01, RS10, ScH13b, SSMG10, SHL13, She91, SCEG08, SASH13, SL00, Si89, GSBG99, SGBB00, SKC73, Smi97, SYA17, SMA+10, SBP+17, SSU+12, TSLBYF08, TML14, Ta17, TR+82, THG+18, THN09, TB14, TT93, Tur84, Vag10, Van89, Ven96, Ven97c, Ven97d, Ven99, VV13, WGF11, WKT08, WRX11, WZV+13, WKJ15, WCY+17, Web10, WLL+13, WW77, Won97, XHL+13, XCJ+14, XJW15, XZZ+16, YME05, YZW+13, YLH14, YP18, YLZ17, YLH17, YBZ+15, Yel99, YRJ18, YGN+06, YQZ14, YTY00, ZG13, ZWW16, ZY13, ZL15, ZL+15]. Machine-Based [LW11, WB81, CGV10, WKT08, YZW+13]. Machines [Ano75, ASB18, BMS16, BP99, BDJ02, BSS14, BW+19, Bee05, BBD13, BRX13, CL17a, CWL12, CCML12, CW12, CSS+13, CL16a, CCO+05, CH78, CHLY18, CDG02, DSM14, DEK+03, Den01, DK17, DMR10, DK15, Do11, EGF15, ECJ+16, Ert03, EDS+15, Gai75, G+01, GTS+15, Gum83,
HKLM17, HB17, HS06, HPP15, Ian14, JE12, Jen79, JXL+12, JAS+15, JK+10, KCWH14, KJL11, KP15, KAH83, LMR18, LZL+15, LYYY17, LD05, LHAP06, LW12, LJL+15, LLZ18, Mac79, Man15a, MD12, MGL+17, MM94, PSBG11a, PS16, Rev11, Ros04, SD01, SCSL12, SV13, SN05a, SN05b, Sta97, SKI+17, Sup04, TTH+19, TV12, UT87, Vog03, WLW+15, WGLL13, WZL15, WLLZ16, XSC13, XLL+14, ZRD+15, vLSM01, Agr99, ABB19a, AAH+03, ADA+19, AGH+16, ATS16, AAM+16, AMAB17, AS14, BAC15, Bac11, Bag76, BML+13, BDF98, BHvR05, Bel06. machines [BB12, BB15, BBM09, BBS06, BB95, CL17b, CGM17, CCL+17, CH08, Cra06, Cra13, CDD+94, DC15, DEG+17, DQLW15, DSZ11, DCMW17, EGD03, Ert05, EL98, EMS15, FBZS12, Fit14, FHL+96, FGLI15, FX06, Fu10, GI12, GVI13, Gol73, GLV+10, HKS19, HM18, HMH17, HZZ+14, HDG09, Hol95, JES+15, JWH15, JDW+14, JGSE13, KSSG16, KRCH14, KBB11, KR16, LMJ07, LZC+16, LLF18, LJL12, LQW+12, LC13, LTZ+14, LSS04, Man15b, Mat09, MG13, MRG17, hTMAC+08, NK10, NOR15, PFH+16, PSBG11b, PMC05, PBHY+08, PRS16, PV08, RK16, RH17, RR02, RT18, SB14, SS13, SENS10, SNV10, Sch09, SSN12, SJ1+12, SJW+13, SSL+13, Ste14, Str13, SK13e, SLA+16, SHTE11, Syr07, TzK17, TGF08, TMMVL12, TDG+06, TrLc13, VT14, VED07, WQG15, WZX+17, WDT18, WCS06, WSVY09, WrSvdM11, WrS+15, XHCL15]. machines [XWX+17, XTB17, YC98b, YWF09, YWGH13, ZBG+05, ZWHC17, ZWL09, ADM98, BHDS09, CT03, Cla97, MLG+02, PEC+14, SM01, UB+98, VED06, YC98a, ZS01]. macro [Wel02]. macro-architecture [Wel02]. Made [Ste05]. Mail [Joo06]. Mainframe [BBHL08]. maintaining [HBP06]. maintenance [LSS04]. Make [THB06, BC10, DMH18]. makes [Wal10]. Making [HKKW13, XLL+14, SJJ+12]. Malware [CLS07, CD12, GG11, AD18, CVWL13, CDD+06, YJZY12]. MAN [TDG+06, YYP01]. MAN/WAN [TDG+06]. manage [Car14, Fit14]. Manageability [Gua14, MG05]. managed [CBGM12, CFG+13, GK05, RJK16]. Management [AW17, DMR10, HC17, KGGS17, KL14, Lar09, LJL+13, LCL12, LXM+16, MBWW86, MDGS98, SMES01, SC17, SDD+16, TB17, WIS+15, WLW+15, WGLL13, AHH+15, ATS16, ARMA18, BAC15, Beg12, BBMA91, BHDS09, BN89, Ch08, Cla05, Fit14, Fu10, GTGB14, GLK+12, HB13, IMK+13, KCKC15, KMG+18, KB17, LLS+08, MS00, MBA+12, NS07, DOL12, RH17, RP07, RJK16, SG10b, SWC08, TRG13, Wal02, WDC08, WWVL13, WC06, WS09, YLCH17]. Manager [Car13, Car14, KMT14, Apr09, MBA+12]. Managing [BB13, KGZ+04, BCP+08, J1+05, YLH14]. Manipulating [GK05]. Mantle [BB95]. Manual [CRZ83]. manufacturing [LSS14]. Many [LPB17, CLL+13, DQR+13, WR07]. Many-Objective [LPB17]. Manycores [HPP15, KHW+16]. Mapped [HW93, BLRC94, SV15]. Mapping [Bak83, CFM17, PS16, PCC+16, CRB12, HSC15, JK15, UR15, WK08]. MapReduce [HSC15]. March [ACM06d, Ano10, SS05]. Marine [MMG+18].
Middleboxes [KRS+17, YDW18]. Middleware [ACM05b, HOKO14]. Migrate [YBZ'+15, CLL'+13]. Migrating [JE12]. Migration [ABV12, BWH'+19, BFG'+14, BWD'+15, CYX'+17, DK17, EMAL17, KC16, KGS16, KKLV16, LZL'+15, LJJ'+11, NBK16, RSNK17, RSN'+18, SL14, SHW'+15, TMV12, XWXJ15, XLL'+14, XD16, XD17, YWR'+14, ZRS'+16, ZCG'+17, ZDLG17, vLSM01, AGH+15b, AGH+15a, AS14, BAC15, BB08, CLcC13, FMIF18, FGLI15, HLW'+10, HTB19, HDG09, JKK+13, JGW+11, JDW+14, JGSE13, KTB17, KJLY15, LZWD15, LZC+16, DPBK16, MG13, NIA18, PDC+12, PFPJ18, PCB+18, RK16, SM01, SYMA17, SSL+13, SLA+16, SHTE11, TDG'+06, WCY'+17, WDT18, WRSvdM11, WRS+15, YBZ+15, ZLZ15, ZHHC17, ZFY18, ZLZ+19b, ZLZ+19a, ZNSL14, ZLLL13, ZLYL18].

Model-Driven [NSJ12]. Model-Free [BRX13]. Modeling [ACM81, CH78, IN87, KRG'+12, LDL14, TIIN09, WLS'+18, XWH'+16, BB95, FX06, gKEY13, SK13c, TLX17, YZS17]. Modelling [DPBK16]. Models [DSM14, HBL'+10, HWB03, Man15a, RSW'+06, SL16, ADG'+92, HJC07, Lia05, RO16, VVB13, WDT18, Ble89]. Modem [Ano30a]. Modern [BDG18, EG01, FKS+17, GG11, FIF'+15, KB17, ZDK'+19]. Modular [AvMT11, DCA04, FC98, LH13, TO91]. Modularity [SV93, DNR96].

Modulation [WUK+18]. m"oglichen [Hin08]. moldable [HZZ'+14]. Molecular [YWCF15]. monad [Dan12]. Monitor [LXM'+16, QT06, Ren78, RI00, RT93, Ros99, SVL01, AGSS10, ALL06, AMA+11, Co99, KOY05, Kou11, SLHJ13, SSU'+12, TT93, XZ11, ZYY+18]. monitor-based [AMA+11]. Monitoring

Near-Precise [LJFS17]. near-threshold [TDG18]. Neat [BB15]. need [BGS13, GLK12, WCS09]. needs [STFH15]. Negotiation [ABV12]. Nested [HBL10, GHS16, RQD17]. nested-virtualization [RQD17]. Net [MBK11, Tur92]. NetAdvantage [Ano03b]. NetLCR [Joo06]. Netstumbler [Joo06]. NetWare [WF03]. Network [ACM98, RM03, AFG17, Ano10, AO16, ACA16, BRIdM10, BL17, BHEP14, CFM17, CPS17, CKT08, Cre08b, DW14, EMAL17, Fis01, FLZ17, GHM18, HSL17, HB12, HJK18, IKU15, JW17, KKT17, Ken80, KAZS14, KLLT18, LLW16, LDRS18, LCFL12, MLXG19, MCZ06, Mon97, MR06, Nou92, PHL12, PCR89, PST15, Rix08, RKKR17, SSOT17, WB81, XWH16, XD16, XD17, ZHHC17, ZWH17, ZKWH17, ACM06c, AM16, AMIA19, ALW15, BCC15, BCM90, BL90, BH13, BBS06, CBZ16, CB10, CRB12, Cre10a, DYL12, FLL13, FJKK17, FK13, FSH13, GLLJ16, HBP06, IM93, IK15, KSO15, KWZ19, LYYY17, LLW16, LDRS18, LCFL12, MLXG19, MCZ06, Mon97, MR06, Nou92, PHL12, PCR89, PST15, Rix08, RKKR17, SSOT17, WB81, XWH16, XD16, XD17, ZHHC17, ZWH17, ZKWH17, ACM06c, AM16, AMIA19, ALW15, BCC15, BCM90, BL90, BH13, BBS06, CBZ16, CB10, CRB12, Cre10a, DYL12, FLL13, FJKK17, FK13, FSH13, GLLJ16, HBP06, IM93, JK15, KSO15, KWZ19, LYYY17, LRP19, DPBK16, MSZ09, NTH17, OK90, PBL16, RK16, SZL14, Tur84, UBL82, WWS89, WHC16, WCC16c, WC91, YCL19, ZLZ19a, BCZ19, MCJ19, MF16, YWL18].

[AT16]. **NUMA**
[BMS16, GTS+15, KP15, LL14, LXM+16, SJA+17, SKJ+17].
NUMA-Aware [BMS16]. **NumaGiC** [GTS+15]. **Number** [BP99, SZ13].
Numerical [Hol95]. **nutzen** [Zim06]. **nützliche** [LC09a]. **NVMe** [HC18].
NVRAM [ZLW+19].

O [RM03, AJM+06, AMA18, AD11, ABG14, ABB+15, BMS16, BHEP14, CWH+16, CDD13, CRZH15, DCP+12, DS09b, GAH+12, HB12, KS08a, KMN+16, LLE17, LMR18, LHAP06, NsP16, PST+15, Rus08, SBQZ14, SYC14, SVL01, TtLC13, WV08, WR12, ZSR+05]. **Oak** [SVN+10]. **Oakland** [IEE84a, IEE90a, IEE91]. **OAMulator** [MS01]. **OASIS** [UBL+82]. **OB** [XHCL15]. **Oberon** [WF03].

Object [Bad82, BBD+91, BP01, CAF+91, Low88, PTHH14, PMC05, San88, STFH15, USE99, USE01b, BZD17, DNR06, GSN93, IT86, LM99, VED07, WML02]. **Object-Based** [Bad82]. **Object-Oriented** [BBD+91, USE99, USE01b, PTHH14, PMC05, San88, BZD17, DNR06, GSN93, IT86, LM99, VED07, WML02].

October [ACM03b, Ano99b, Ano06a, Boa90, IEE03, Tho93, USE00a, Vra05]. o [CGV10]. o-board [CGV10]. **Oensive** [BDJdS02].**Oers** [Ano03a, Got07]. **Oece** [BRIdM10, Ano03b]. **Oine** [TRG13, SHLJ13].

Ooading [CL16a, GKXK13]. offs [SIrLB15]. **OGSA** [AKK+07].

OGSA-DAI [AKK+07]. **Oktober** [Müh75]. Old [Got07]. Older [SHB+03].

Older-first [SHB+03]. **Oleco** [Joo06]. **On-Chip** [GGM+16]. **On-Demand** [SEF+06, ZZF06, DEG+17, JCZZ13]. on-stack [LH13]. **On-the-fly** [URJ18].

One [Cre09, HPHV17, NKY+18, JK15, Ste14]. on-shot [JK15]. **Online** [FL13a, GR15, HKLM17, HKKW13, JWL+18, Joo06, KT17, NG13, RG17, SZW+16, SIK+16, SXCL14, ZHW+17, ZWC+14, BB12, LSS04, NK10, ZWX16]. **Online-Handbuch** [Joo06]. **Ontario** [ACM06f, SoS3]. onto

[AO16, Bak83, BS90, PS16]. Open [AFG+17, SJV+05, AGH+15a, AAB+05a, FP14, TSP17]. **Open-Source** [SJV+05, AAB+05a]. **OpenCL** [KJJ+16, TY14]. **OpenFlow** [YKS16].

OpenNebula [KMT14]. OpenOffice [Joo06]. OpenQRM [Kar07].

OpenStack [AMIA19, BB15]. OpenSUSE [CK06g, CK06f, CK06o, CK06p]. **Operand** [MSI18]. **Operating** [ACM75, ACM03b, BPP+17, BYBYT16, CD12, Dsas91, HXZ+16, IEE01, J+05, MKKE12, MM94, RT93, SL89, THB06, Vra05, ACT94, CCZ+06, CGL+08a, CGL+08b, CGL+08c, CK06a, CK06b, CK06c, CKP78, Co00, CLDA07, Dav04, Don87, HDK+13, KSLA08, Kou11, MW18, MDFS72, NV05, Ros06, SPF+07, SS72, TW13, Vac06, Van06, WR07, WWT89, YK13, Mat10].

Operation [ZT06]. **Operational** [Dan12, Siv04]. Operations [OLZ16, MPF+06]. operator [GHM+18]. Opportunity

[KMK16, OMB+15]. Optimal
optimale [Sch13a].

Optimisation [YWGH13, GKP+19]. Optimise [War80]. Optimistic [Pon19, WGF11].

Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12].

Optimize [OLZ16, LDL+08]. Optimized [CGC16, KCV11, LWL16, TMMVL12].

Optimizing [CEG07, dCCDFdO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQW+12, LL14, LM+16, MCZ06, SMK02, SV15, ZLL16, ZYLY18].

Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12].

Optimize [OLZ16, LDL+08]. Optimized [CGC16, KCV11, LWL16, TMMVL12].

Optimizing [CEG07, dCCDFdO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQW+12, LL14, LM+16, MCZ06, SMK02, SV15, ZLL16, ZYLY18].

Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12].

Optimize [OLZ16, LDL+08]. Optimized [CGC16, KCV11, LWL16, TMMVL12].

Optimizing [CEG07, dCCDFdO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQW+12, LL14, LM+16, MCZ06, SMK02, SV15, ZLL16, ZYLY18].

Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12].

Optimize [OLZ16, LDL+08]. Optimized [CGC16, KCV11, LWL16, TMMVL12].

Optimizing [CEG07, dCCDFdO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQW+12, LL14, LM+16, MCZ06, SMK02, SV15, ZLL16, ZYLY18].

Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12].

Optimize [OLZ16, LDL+08]. Optimized [CGC16, KCV11, LWL16, TMMVL12].

Optimizing [CEG07, dCCDFdO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQW+12, LL14, LM+16, MCZ06, SMK02, SV15, ZLL16, ZYLY18].

Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12].

Optimize [OLZ16, LDL+08]. Optimized [CGC16, KCV11, LWL16, TMMVL12].

Optimizing [CEG07, dCCDFdO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQW+12, LL14, LM+16, MCZ06, SMK02, SV15, ZLL16, ZYLY18].

Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12].

Optimize [OLZ16, LDL+08]. Optimized [CGC16, KCV11, LWL16, TMMVL12].

Optimizing [CEG07, dCCDFdO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQW+12, LL14, LM+16, MCZ06, SMK02, SV15, ZLL16, ZYLY18].

Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12].

Optimize [OLZ16, LDL+08]. Optimized [CGC16, KCV11, LWL16, TMMVL12].

Optimizing [CEG07, dCCDFdO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LQW+12, LL14, LM+16, MCZ06, SMK02, SV15, ZLL16, ZYLY18].
BB12, BBM09, BMER14, CBGM12, CBZ16, CMP07, DQR13, DLL16, DSSP06, DYL12, EMS15, Fit14, FF96, GP13, G+01, GVI13, G+05, GAH12, Han16, HHSG18, Hog02, HC12, HL13, KJL14, KL13.

Performance [Kou11, KCV11, LBZ11, LLLE17, LM99, LM00, LL14, MCC18, MA10, MST+05, MUKX06, M+06, MMG+18, MW05, NB11, OL13, PV08, RHR02, RQD+17, Rix08, SENS16, SE12, SB10, SPF+07, SYC14, TIIN09, VW08, WWH+17, YC98b, YZLQ14, YQZ14, ZRY+18, ZSR+05, ZSW+06, ZLCZ18].

Power-Aware [SDD+16, ZWL+18, KBB11, JNR12]. power-capping [JKK+13].
Power-ecient [AAM+16, LLLE17, SSN12]. POWER5 [AAB+05c]. PowerPC [But94].
Practical [BJH+16, DLX+17, HN10, Kna93, WLW+15, WWH+17, FIF+15, SNV10, TC10, Wun13].
Practice [Bec09, Cre08b, Lar09, SHB+03]. Practices [MO98]. Praxis [Bec09].
Praxisbuch [Lar09]. Praxisfuhrer [Bor01]. Pre [LUL+05].
Pre-virtualization [LUL+05], Precedence [EGR15].
Precedence-Constrained [EGR15]. Precise [LJFS17, BHSB14, TLX17].
Precision [ADM98, BKMM87]. preconditioned [MM92]. Predicate [UOKT84]. predicates [JKDC05]. Predictable
[LTE12, XLJ16, LTK17, HK07]. predicting [WQG15]. Prediction
[LWC+17, ZDLG17, ADA+19, CEG07, EG03, KJM+07, KCV11, RAj79, SSN94]. predictable [XCJ+14]. Predictor [BSMF08].
Preemptive [PG18]. prefetch [KW13]. Prefetching [RZPX19].
Preliminary [HW93]. prep [IIPB09]. PreScheme [Ram93]. presence
[CFG+13]. present [JKDC05, Yur02]. presented [ACM90]. Preservation
[JE12, BB08]. preserve [STFH15]. Preserving [BS96, DNR06].
pretenuring [BOF17]. Prevent [SYB12]. preventing [PR07]. prevention
[MA17]. previous [STFH15]. price [WHC16]. pricing [ADA+19, DEG+17].
Primary [PP16]. Primitive [LCWB+11, BMWB86, POU90].
Principles [ACM75, ACM99, ACM03b, Joo07, SHW+15, Vra05, SS72].
Privacy [IEE84a, IEE90a, IEE91, WLL+13]. private
[Nie12, SYMA17, WH08, Fro13]. Privileged [MPF+06]. Pro
[SR509, Fra06, Fra09, Wil06]. Proactively [SKBB15]. probability
[LYYY18]. Problem [BL17, BFG+14, Man15a, MM92, SL00]. Proceedings
[ACM96, ACM97, ACM99, ACM04b, ACM05b, ACM06a, ACM06b, Ano02, IEE96b, BAA90, IEE99, USE99a, USE00a, USE01a, USE01b, ACM00, ACM03b, ACM05a, ACM06f, Ano93, GHG+93, HKH94, IEE85, IEE04, JPT04, Mat10, MR91, SS05, USE85, USE86, Vra05, ACM75, ACM81, ACM89, ACM90, ACM01b, RM03, ACM04a, ACM05c, ACM05d, ACM06c, ACM06d, Ano01b, Ano04b, Ano06a, BW03, IEE84b, IEE84a, IEE90a, IEE90b, IEE91, IEE92, IEE93a, IEE93b, IEE05, IEE06b, IEE06a, MS91b, Oto94, Soi83, Shr89, Tho93, USE91, USE93, USE01c, USE02, USE06, M+06].
Process [AGLM91, Bal91, HPHV17, MZG14, RB01, SC17, Tho93, AC95, LZWD15, XCJ+14]. process-aware [XCJ+14]. Processes
processing

[DKW15, Loy92, VLZL16, DH01, EF94, GSN93, IM93, KHL17, KWZ+19, LKY+17, LRP+19, LG93, MMG+18, WWT89, Wün13, ZDK+19].

processor

[ISE08, NSL+06, RWX+12, SKJ+17, IIK+06, LRC05, VdlFCC97, WDSW01, WLL+13, WJGA12].

processor-interconnect

[SKJ+17].

processors

[DSM14, Gei02, MT16, MT17, MBK+92, PNT12, RTL+18, KKC+16, MN03].

Product

[IBM88, Int88, SV17].

production

[SL00].

products

[Ano03a, Ano03b, Ano05].

professional

[vH08, IIPB09, Ham07, Khn09].

professionellen

[Zim05].

profile

[AWR05, WKJ17].

profiles

[SH04, VL00].

Profits

[BYBYT16, MLXG19, ZHW+17, LWLL16].

Profit-Maximizing

[BYBYT16].

profitability

[WUK+18].

Program

[ACM01a, Han05, HB08, MSG01, SZ88, ABDD+91, BPB86, She02, WGF11].

Programm

[Mar08].

Programmable

[DCG12, DMS02, FS11, Ken80, MSS+15].

Programmer

[PSBG11a, PSBG11b].

programmers

[Hee07].

Programming

[ACM90, Arm78, DK75, Eng99, Gai75, GMP89, GH91b, LFBB94, Luc97, SYB12, Sub08, Sub11, Tho68, Tol98, ACM99, AS85b, Alf91, BCM90, Ham76, Jon85, Kog99, ME87, RSW91, SM08, Tai98, AS85a].

Programming-in-the

[DK75].

programming-in-the-small

[DK75].

Programs

[FS12, Kam83, NMMP15, Wel94, CK06b, CK06e, CRC16, DKF94, EGD03, GMR93, IM75, Wol99].

Progress

[ZRD+15, ZHC15].

project

[AAB+05a, CK978, Lot91, RD90].

projects

[AL05].

PROLOG

[Clo85, Ode87, War80].

Promoting

[ACA16, WLW+17].

Proof

[FC98, LLZ18, Arv02, FP14, FCG+05, ZLH+15].

proof-carrying

[FGG+05].

Propagating

[AD11].

Properties

[BN75].

property

[VT14].

proposed

[GH91b].

Prospect

[PCB+18].

protect

[ZBP07].

Protected

[KSLA08].

Protecting

[LMJ07, WTM18, WLL+13].

Protection

[VMW+19, CD12, CDD13, SS75, CGL+08a, CGL+08b, CGL+08c, JCZZ13, PK75b, TSLBYF10, WJGA12].

Protector

[DK18, NMMP15, Wel94, CK06b, CK06e, CRC16, DKF94, EGD03, GMR93, IM75, Wol99].

Protocol

[GKXK13, MN91].

protocols

[DM93, RSLGCLB16].

Prototype

[Sim92].

Provably

[GNDB16].

Proverb

[Fer11].

Provers

[Hir17].

Provide

[ESY+17, WJ10].

providers

[EdPG+10, SG10a, TMMVL12].

Providerwahl

[Joo06].

Providing

[BS+09, HC18, KKH14, KGZ+04].

Proving

[BW03, IM75].

Provider

[BN75].

proxy

[TC+15, LLL18, NMG15, NSJ12, SC18, SZW+16, SXCL14, XLJ16, ZLW+14, ZRS+16, CSS11, CFVP12, KBB11, PPO14, SJ14, VOS12].

proxies

[Eug06, STFH15].

PS3

[Sta07].

PBSeries

[Miy09].

Pseudo

[ABDD+91].

pseudo-random

[ABDD+91].

PSO

[War12].

PSO-Based

[LW12].

Pthreads

[RMB02].

Public

[OG16, WUNK17, WUK+18, FBZS12, ZLW+12, ZBS+15].

Publications

[Mat10].

Purpose

[GB+92].

Purposes

[BHI15, WDSW01, WO75].

PV

[Ano15].

pyramid

[MJ93].
QEMU [WR07, WR08, CK06a, CK06b, CK06c, CK06d, CK06g, CK06f, CK06j, CK06k, CK06m, CK06n, CK06o, CK06p, CK06q, CK06r, CK06s, Bar06, MZG14, WR07, WR08, vdK09, CK06a, CK06b, CK06c, CK06d, CK06g, CK06j, CK06k, CK06m, CK06n, CK06o, CK06r, CK06s, Deu08].

QoE [KS18].

QoS [BAC15, DXM+17, KP15, LCL14, LWL16]. QoS-aware [LWL16].

Qualitative [ALW15]. Quality [BAC15, DXM+17, KP15, LCL14, LWL16].

Quantoication [BKHS06]. quantify [TZK17, TDG+18]. Quantifying [FFB+00]. Quantitative [YZW+13]. Quelle [LC09a]. Quemu [CK06o].

Query [WK90, KHL17]. querying [CKRJ17]. queuing [Pon19].

R [Fro13, KMMV14, Vit14, Win13]. R2 [Bod10, KS10, Apr09, Bod10, Car14, Gal09b]. race [HHPV15]. R2 [Bod10, KS10, Apr09, Bod10, Car14, Gal09b]. R2 [Bod10, KS10, Apr09, Bod10, Car14, Gal09b]. R2 [Bod10, KS10, Apr09, Bod10, Car14, Gal09b]. R2 [Bod10, KS10, Apr09, Bod10, Car14, Gal09b].

Reduction [JK+11, Wat86, Wat87, ZHL16, HCJ07, LJJY15, TDG+18]. Redundancy [Tay76, GLV+10]. redundant [KJJ+16, ZWH+17].

schema [SI81]. Scheme [AMA18, KAZS14, RSN+18, SHZ+14, YWR+14, KJLY15, LJYZ15, Xcj+14, YPLZ17, YQZ14, FM90, KR94]. Schemes [Do11, MNA16, YWGH13]. Schloss [IEE01]. School [BGP00]. Science [ACM06d, BR01, DG05, SGV12]. Sciences [Shr89, MS91b]. Scientific [Bad87, RB17, dCCDFdO15]. Scientists [THLK10]. Screening [LP14]. Scripting [MJW+06]. SDSSfL [CLLS12]. SDN [BDF19, HTB19, LLY+18, SB18, VYC+17]. SDN&NFV [ABB+19b]. SDN-enabled [HTB19]. SDNs [ALW15]. SDWN [AFG+17]. Schloss [IEE01]. School [BGP00]. Science [ACM06d, BR01, DG05, SGV12]. Sciences [Shr89, MS91b]. Scientific [Bad87, RB17, dCCDFdO15]. Scientists [THLK10]. Screening [LP14].
Ano03a, B+07, D+04, Ham07, Lar09, MWHH05, OH05, R+06, Rul07, R+02].

Servern [Mar08]. Servers [DSM14, JJK11, KAZS14, SDD+16, SKJ+17, WLW+17, A+04, BBHL08, G+05, Hal08, JDJ+06, Mly09, SZ13], Service [BB13, BFG+14, DKW15, DPCA11, EMAL17, ESY+17, HJG18, HPHV17, JWL+18, LP14, LLW+16, RSNK17, RSGG15, WVT+17, WHD+16, BSM+12, CHCC07, DXM+17, EdPG+10, ECAE13, EM13, Fro13, GHM+18, KKB14, LZW13, MCJ19, RCOW12, SZ13, VOS12, YCL19]. Service-Based [LP14]. service-chaining [GHM18]. Service-Oriented [RSGG15, Fro13]. Serviceability [RB01]. Services [BFHW75, IEE06b, MSS+15, MLXG19, WC01, ZLW18, BDS+09, HBP06, KBB11, KSLA08, LTZ14, ZEdlP13]. Service-Based [LP14]. Service-Oriented [RSGG15, Fro13]. Serviceability [RB01]. Services [BFHW75, IEE06b, MSS+15, MLXG19, WC01, ZLW18, BDS+09, HBP06, KBB11, KSLA08, LTZ14, ZEdlP13]. Service-Based [LP14]. service-chaining [GHM18]. Service-Oriented [RSGG15, Fro13]. Serviceability [RB01]. Services [BFHW75, IEE06b, MSS+15, MLXG19, WC01, ZLW18, BDS+09, HBP06, KBB11, KSLA08, LTZ14, ZEdlP13]. Service-Based [LP14]. service-chaining [GHM18]. Service-Oriented [RSGG15, Fro13]. Serviceability [RB01]. Services [BFHW75, IEE06b, MSS+15, MLXG19, WC01, ZLW18, BDS+09, HBP06, KBB11, KSLA08, LTZ14, ZEdlP13]. Service-Based [LP14]. service-chaining [GHM18]. Service-Oriented [RSGG15, Fro13]. Serviceability [RB01]. Services [BFHW75, IEE06b, MSS+15, MLXG19, WC01, ZLW18, BDS+09, HBP06, KBB11, KSLA08, LTZ14, ZEdlP13].

Solver [DZ02]. Small [JJ02, SSB03, DK75, HPHS04, SS72, WH08, WWT89]. small-scale [WWT89]. Small-Sized [JJ02]. smalltalk [FIF+15, BMWB86, BSUH87, G+88, Lee86, SUH86, TLD+89]. Smalltalk-80 [BMWB86, BSUH87]. Smart [An03b, GLV99, MP+18, Rou07, WTLS+09]. Smartphone [DAH+12]. SMIL [Bru07]. SMILEmu [Bru07]. SMOK [DZ02]. Smoot [Fro13]. Smooth [DL89]. smoothed [CL14]. SMP [CL16a, KJK+13, RZ14]. SnapFiner [CHLY18]. Snapshot [CHLY18]. Snapshots [CWL+15, DS16]. Snowbird [ACM01a]. SnowFlock [LCWB+11]. SOAR [SUH86]. SOC [LVM16]. social [BTLNBF+15, LWL16]. Society [IEE90a, IEE91]. Soft [Ano03a, XH16]. Software [AFG+17, Ano94, Ano03a, Ano03b, AE01, AMA+14, CL17a, CPKL17, DBMB92, DL89, EDS+15, Hsu01, IGBKR19, JMSLM92, JN15, KP99, Kna93, KAJW93, LH16, LTT92, LLW+16, Ost94, Par79, PBR+90, Sof83, SM06, Shr89, SAT09, SB18, Sta07, Tho93, YYL+15, ZKWH17, vdK09, ACM01a, AA06, ALW15, AAB+05b, AC95, BD11, CBGM12, CFG+13, FP14, GuZ01, HSSG18, HH13, HP77, LIR12, LW16, MNT14, PV06, SV17, WZW+11, YJZY12, ZLZ13, ZHCB15, CK06q, CK06t, CK06r, CK06s]. Software-Defined [AFG+17, CL17a, JN15, LLW+16, SB18, ZKWH17, ALW15, HSSG18, LJR12].

48

CHCC07, CFS+12, DJ76, GK05, ORPS09, PGLG12, SJRS+13, STFH15, SL12, TY14, WK08, WCS06, WLL+13. **Supporting** [BMS16, CVS12, Kim84, MSS+15, Mon97, RT93, XWJX15, YWCF15, ZZF06, GD08, TT93]. **Supports** [Ano03a]. **surgery** [PBL+16]. **Survey** [BAL15, HSN17b, KKLV16, KL14, KK19, Man15a, PM19, PS16, PS19, SB16, SGB+16, UOKT84, WMUW19, AGH+15b, CB10, FMIF18, MG13, NIA18, PBB13, XTBI7, YWL+18]. **Survor** [Fra83, GHF83a, GHF83b, WNL+83]. **survivability** [YZW+13]. **Survivable** [ACA16, AM16]. **SUSE** [Bau06b]. **System** [ACM75, BBMA91, BHI15, BDG18, CD12, CAF+91, Das91, DJ77, Her10, HBL+10, IEE93a, IE01, Lar09, LW11, LJZ12, MM93, MJW+14, MKKE12, PPG+17, RT93, SL14, SS75, SVB93, SL16, SN05b, THB06, USE99, USE01b, Vra05, WN17, WLMD16, YVBC17, AJH12, ALW15, AT16, Ano93, AAB+05c, BSSM08, CCZ+06, CGL+08a, CGL+08b, CGL+08c, CK06a, Com00, CGV10, CLDA07, Dav04, Don87, DJ76, DCMW17, FP14, FLBC10, GHH+93, GK05, Ham76, HH13, JSK+13, KCS14,}

[135x634]SL12, TY14, WK08, WCS06, WLL+13]. **Supporting** [BMS16, CVS12, Kim84, MSS+15, Mon97, RT93, XWJX15, YWCF15, ZZF06, GD08, TT93]. **Supports** [Ano03a]. **surgery** [PBL+16]. **Survey** [BAL15, HSN17b, KKLV16, KL14, KK19, Man15a, PM19, PS16, PS19, SB16, SGB+16, UOKT84, WMUW19, AGH+15b, CB10, FMIF18, MG13, NIA18, PBB13, XTBI7, YWL+18]. **Survor** [Fra83, GHF83a, GHF83b, WNL+83]. **survivability** [YZW+13]. **Survivable** [ACA16, AM16]. **SUSE** [Bau06b]. **System** [ACM75, BBMA91, BHI15, BDG18, CD12, CAF+91, Das91, DJ77, Her10, HBL+10, IEE93a, IE01, Lar09, LW11, LJZ12, MM93, MJW+14, MKKE12, PPG+17, RT93, SL14, SS75, SVB93, SL16, SN05b, THB06, USE99, USE01b, Vra05, WN17, WLMD16, YVBC17, AJH12, ALW15, AT16, Ano93, AAB+05c, BSSM08, CCZ+06, CGL+08a, CGL+08b, CGL+08c, CK06a, Com00, CGV10, CLDA07, Dav04, Don87, DJ76, DCMW17, FP14, FLBC10, GHH+93, GK05, Ham76, HH13, JSK+13, KCS14,
Kou11, LLE17, LWM14, LZWD15, LCL14, LTK17, MRC+13, MA17, NS07, NV05, PSC+07, RVJ+01, RJK16, Ros06, SJB14, SK13b, SSMGD10, SJJ+12, Sto07, Syr07, TTR93, TH2+14, Vac06, Vit14, WR07, WKC+09, YK13.

Systemverwaltung [Lar09].

Tables [MT16, MT17, WLW+15]. tackle [Sub08]. tactics [OG16]. Tail [ASSB18, War80]. Taipei [SS05]. Taiwan [SS05]. Take [Kis08]. Taking [Uhl06]. talk [Piz17]. Taming [CZL08, HHPV15]. Tan [Fro13]. Tape [DK93]. Table [KMM13, PCC+16]. Tasking [MB98, Shi03, JDJ+06]. Tasks [KGS16, VS19, YSS+17, ABB19a, YQZ14]. Taxonomy [GB19, SGB+16, SB18, AGH+15a]. Taxonomy-Based [HWW18]. TCB [HC07, HPHS04]. TCP [CL16b, GKXK13, GI12]. teach [Don88]. Teaching [Agr99, Dav04, Don87, GGG03, ME87, Guz01, Ham76, KW80, MS01, NV05, WKC+09, YPPA01]. teasing [LBF12]. Technical [ACM06d, Ano06b, Han16, OH05, USE01a, USE06, BB08, Int06c, Int06a, LC09a, Wal10]. Techniken [Tho08]. Technique [JHS12, JMSLM92, LTT92, SMK02, WMUW19, ACT94, SLA+12, WMUW19, ACT94, SLA+12, WMUW19, ACT94, SLA+12]. Technologies [DF96, PZW+07, USE99, USE01b]. AMIA19, Cla05, Kao17, MP+18].

Technology [Ano00, Ano01a, Ano01b, Ano04a, Ano04b, DLM+06, Don06, Got07, Her06, RG05, USE01c, USE01d, USE02, UNR+05, WHD+09, ZAI+16, Apr09, Int05a, Int05b, Int06b, Int06c, Int06a, AJM+06, NSL+06, NKK+06, RSW+06, Uhl06]. Tele [HMS04]. Tele-lab [HMS04]. telehealth [WQG15]. template [WRX11]. Temporal [CWD0+06]. Tenancy [DY17]. tenant [SWW+18, YKL16, ZRY15]. terminal [KCT08]. terminals [IK+06, ISE08]. Terra [BSI+15]. TerrierTail [ASSB18]. Tesseract [ABG14]. Test [SM06, ABDD+91, IIPP09, LLS+12]. testbed [HLW+10, ZGW+06]. testbeds [ACM06c]. Testboard [Kut92]. Testing [Ame13, CQLL18, DKF94, GFB+92, HLP+16, Kao17, KLF+15, MMP+12, Ost94, VS06, BD11, CSS+16, KFF12, SCFP00]. Texas [ACH75, ACM06d, USE01b, IEE02, IEE03]. their [EF94, KCV11, SS13]. Third [YYPA01, Vit14, YZW+13, ZFY18]. third-party [CRZH15, PG74, PG73]. Third-Party [CRZH15]. Thoth [KB17]. thousand [SK13b]. thousand-core [SK13b]. Thread [MP01, BKC+13, Ven97d]. threaded [HC17, SE12, tTR82]. threads [UR15]. Threat [SL16]. threats [PZH13]. Three [YYPA01, Vit14, YZW+13, ZFY18]. three-layer [ZFY18]. threshold [SENS16, TDG+18]. threshold-based [SENS16]. Throughput [BPP+17, GKKX13, GH12, ZSW+06]. Thunderbird [Joo06]. ticket [OL13].
tier \cite{WDCL08, ZNSL14}. tiered \cite{AW17}. Time
\cite{Bad87, CW03, Fuq91, Hu90, HWB03, HS06, LTE12, LWC+17, MS70, PPG+17, Sta97, ABB19a, AS76, AMIA19, ACT94, ABC+07, BBS06, CGM17, DEE+16, HK07, HeC14, Ivo03, KJ13, KBB11, LD05, LTK17, MNT14, QTO6, She91, Ste14, TSLBYF08, WQG15, YK13, YCL+19, ZEdlP13].

Time-Constrained \cite{LTE12}. Time-Sharing \cite{MS70}. timebombs \cite{CWdO+06}. Timing \cite{Hu90, HWB03, LGR14}. tiny \cite{LC02}. TLB \cite{OLZ16, RGSJ17}. TM \cite{Qia99}. Tolerance \cite{JKJ+10, RZPX19, ZJXL11, RCOW12, YLH14}. Tolerant \cite{FK03, Kim84, YWR+14, SNV10}. Tool \cite{Ano03b, Wil01, KK79, Lia05, Skr01, SCFP00}. toolkit \cite{DZ02, PW03}. Tools \cite{AC98, BDG18, Cal75, GG11, LC09a, MJW+06, PY93, QNC07, ACM01a, EL98, YYPA01}. top \cite{KMT14, PBWH+12, Won97}. topic \cite{YZSC17}. Topics \cite{IEE01}. topological \cite{KKM+13}. Topology \cite{CYX+17, TB17, dSdF16, AM16}. Topology-Adaptive \cite{CYX+17}. Topology-Aware \cite{dSdF16}. Toronto \cite{Sof83}. Total \cite{LGJ+18, THG+18}. TotalStorage \cite{D+04}. TPC \cite{NP13}. TPHOLs \cite{BW03}. TPM \cite{KC12}. TR \cite{Int05b, Int06c, Int06a}. Trace \cite{MZG14, BDE+03, DC15}. Traces \cite{WKG17}. Tracing \cite{BT15, PFH+16, WKJ15, Wol99}. Track \cite{Shr89}. Tracking \cite{JADAD06a}. Tractable \cite{KR94}. Trade \cite{DPBK16}. Trade-os \cite{CMM+06a, CMM+06b, CMM+06c}. Trac-Aware \cite{CGC16, CYX+17}. trac-intensive \cite{IKU15}. trac-sensitive \cite{DK17}. Transactional \cite{URJ18, CMM+06a, CMM+06b, CMM+06c, ZHCB15}. Transcendent \cite{VTW16}. Transformation \cite{DPBK16}. transformations \cite{MBWW86, Syr07}. Transiently \cite{LDRS18}. Translation \cite{JXL+12, LH16, YVCB17, dGG+17, CFG+13, JYW+13, Oi05, Oi06, Oi08}. translation-based \cite{Oi05}. Translational \cite{WIDP12}. translations \cite{UTO13}. Transmission \cite{RSNK17, RSN+18}. Transparent \cite{BZA12, FK03, KJ+10, KKH14, MSF+12, dGG+17, AW17, JXZ+10, MRC+13, YJZY12}. Transputer \cite{Boa90, GHH+93, Boa90, GHH+93}. travel \cite{TSLBYF08}. Traveling \cite{YK13}. traversal \cite{YTS14}. Treating \cite{SSOT17}. Tree \cite{Hal79, KMMV14}. Trenches \cite{HN10}. Trends \cite{RG05, AH12, CM18, JPTE94, vD06}. TRI \cite{ACM97}. TR-IAda’97 \cite{ACM97}. trie \cite{SV17}. trie-based \cite{SV17}. tries \cite{SV15}. Trigram \cite{Cox12}. Troubleshooting \cite{WF03}. Troy \cite{Ano97a}. Trusted \cite{DPW+09, SVB03, BCP+08, KSLA08, WH08}. TrustZone \cite{PPG+17, PS19}. TrustZone-Assisted \cite{PPG+17}. Trustful \cite{NMG15}. TSAC \cite{WZL15}. Tucson \cite{IEE05}. Tuning \cite{EDS+15, RS16}. Tutoring \cite{GH91b}. TVDC \cite{BCP+08}. Twelfth \cite{MR91}. Twenty \cite{MS91b, Shr89}. Twenty-Fourth \cite{MS91b}. Twenty-Second \cite{Shr89}. TwinDrivers \cite{MSZ09}. twins \cite{HCJ07}. twitter \cite{Guy14}. Two \cite{AW17, SSG90, TF16, BSSM08, HCJ07, LUL+05}.
two-dimensional [BSSM08]. Two-level [SSG90]. Two-phase [TF16].
Two-tiered [AW17]. TX [ACM99]. Type
[ADM98, AT16, Arv02, KCV11, PRB07]. type- [Arv02]. Type-Precision
[ADM98]. Typeded [G+88, BDT13, GLV99, KRCH14]. Types [Wel94].
TypeScript [RSF+15]. Typing [RSF+15].
u.v.a [Tho08]. UKCF [JXL+12]. umfassende [Bod10, Fis09]. Umgebung
[CK06p]. Umgebung
[CK06a, CK06e, CK06c, CK06d, CK06g, CK06f, CK06i, CK06h, CK06j,
CK06k, CK06m, CK06l, CK06n, CK06o, CK06q, CK06t, CK06r, CK06s].
UML [Fre05, RFBO001]. UMLexe [Fre05]. uncertainty [LPBB+18].
underlying [FBZS12]. understand [DMH18]. Underlying
[FRM+15, Set13, ZRZY15, LWB+15]. Undocumented [Sch94b, Sch94a].
Unfairness [SJA+17]. Unified [MBA+12]). Uniform [Eug06, Bod88].
Unifying [MD12]. unique [AM16]. Unit [DCG12, PXG+17]. United
[Vra05]. uniting [LUL+05]. Units [VLZL16, Vol90]. UNIVAC [Kam75].
Universe [Nel04]. Universities [Sta07]. University
[ACM75, ACM81, Kre10, IEE96a, IEE97, IEE99]. UNIX
[JJ91, KAH83, NSHW10, Gen86, HO92, Ka97]. Unknown [CLW+14].
unleashed [Ano97d, HH08, MG08, MG09]. Unmodified
[HLP+16, MKKE12]. Unpicking [LBF12]. unsound [AT16]. Untrusted
[CD12, HKD+13, HPH04, WLL+13, ZBP05]. upcalls [LD11]. Update
[VVC+17, J+05]. Updates [LDRS18]. updating [CCZ+06]. upgrade
[CHCC07]. Upgrades [Ano03a]. uptrees [HB13]. UPWN [M+06]. Urgent
[AGJS16]. USA [ACM81, ACM01a, ACM03b, ACM05a, ACM06c, ACM06b,
ACM06d, Boa90, IEE93a, Shr89, USE01c, ACM75, ACM05d, ACM06a,
Ano01b, Ano04b, IEE84b, Ost94, USE85, USE86, USE91, USE93, USE99,
USE00a, USE01a, USE01b, USE06]. Usage
[KLTT18, RSW+06, WH99, KTB17, RGAT18, SK13c]. USB [Ano03a]. Use
[Bec09, CLLS12, Gyu14, KK79, Sch13a, SJJ+12]. used [tTR82]. useful
[LC09a]. USENIX [ACM05d, So83, USE91, USE93, USE06]. User
[Chu06, ZQCZ16, Ano93, ACT94, Bor97, Guz01, PG11, RSC+15, Sto07,
ZLZ13, ZLZ+19a, CTK08, Dav04]. user-controlled [St07]. User-Level
[Chu06, ZQCZ16, ZLZ13]. user-space [PG11]. User-terminal [CKT08].
Users [Boa90, SS17]. userspace [Ste14]. Using
[AAF+09, ABV12, ALL06, Bas04, Bas06, BRX13, CQLL18, CCO+05,
DBM92, Don88, ESY+17, Guz01, HLV+10, HWHW18, JMSLM92, LJN+00,
LTT92, LD05, MV16, OLZ16, PEC+14, RSW+06, Sec10, SM06, SC17,
SYB12, SAT00, SBK15, SXCL14, TDG+18, WDSW01, WKG17, WUNK17,
Wil01, Wol99, XSC13, ZBP07, ZLW+19, dGG+17, AD18, Agr99, ATS16,
AWR05, AP18, AGIS94, BSM+12, BVHR05, CL14, CCZ+06, Dan12,
FFBG08, FL13b, GHM+18, HJ10, HN08, HPHS04, Hol95, JNR12, JWH+15,
JGSE13, Juo07, KKM+13, KS18, KJJ+16, KGS16, KL13, Kous11, KRG+12,
LDL14, LIWW18, LQW+12, NV05, PBL+16, Pon19, RP07, SVG13, SSN12,
V [Gal09b, Lar09, LC09a, Apr09, Car06, KVV09, KSS09, KS10, Lar09, LC09b, LC09a, MG08, MG09, SRS09]. V2E [YJZY12]. Validation [SSB14b, SSB01]. Value [TF16]. vApp [SG10a]. Variable [ADM98, Lam75, Oi05, Oi08]. VAX [KZB90, LJZ12]. VAX/SVS [LJZ12]. vCache [KKH14]. vCloud [MKM10]. VCP [Khn09]. vCPUs [OLZ16]. vCUDA [SCSL12]. VDE [GD08]. Vector [Abr80, LRZ16, WWS89, Ble89, SZ88]. vectorized [SZ88]. vectorizing [LRP19]. VEE [ACM05d, ACM06f]. VEEs [LCT15]. Vegas [ACM81]. vehicular [MCC18, YBZ15]. Vergleich [Zim05]. verifiable [CMP13, PK75]. Verification [ABDD91, JE12, JES15, SSB14b, ZL18, FC98, LLS12, PBL16, SSS17, SSB01]. Versatile [SN05b]. Version [Bru07, Sim92, WR07, WR08, Ano94, Ano14a, IBM96, MIS05]. versioning [STFH15, WF07]. versus [DK75, HPHS04, SCEG08, VED06]. vertical [STY14]. Verwaltung [Zim05]. Very [RGSJ17, SSB03]. VFe [Ano05]. vGreen [DMR10]. VHDL [FS89]. VI [Int06b]. via [FL13a, GI12, GLLJ16, HSK17, HB13, KJM07, LLL11, MIS05, ZL18, FC98, LLS12, PBL16, SSS17, SSB01]. viable [HW15]. viele [WR07, WR08]. vieles [Joo06]. View [GB19, KKH14, AD18, Guy14, LDDT12]. Views [PW03]. Vigilant [PBYH08]. VIII [IEE01, IEE96a]. VINEYard [CRB12]. Violation [ZHL16]. violations [BSM12]. virtio [Rus08]. Virtual [ACM05d, ACM06f, AGJS16, AS85a, ABC06, AEM14, ADM98, AGH15a, AAB05a, ABV12, Ano75, Ano94, Ano97b, Ano97a, Ano97c, Ano97d, Ano00, Ano01a, Ano01b, Ano02, Ano04a, Ano04b, Ano05, JLSN14, AE01, Apr09, Arc07, AD11, AAK18, ASSB18, Att79, ACA16, AC98, AMA11, BWP85, BFHW75, Bak83, Bal91, BMS16, BP99, BDF03, BBTK17, BDJdS02, BSS14, BW19, BDF99, Bee05, BCC15, Bel06, BB13, BN75, BD09, BBH08, BL17, BFG14, BWD15, BBM15, Blu02, BBM09, BD01, BP01, BP03, BZD17, Bro89, BRX13, VMW19, BBS06, BZH16, B07, Caa00, CTS03, CW03, CCW05, CLD17a, CFH79, CFX80, CWL12, CFM17, CML12, Car13, CK87, CFVP12, CWS12, CHCC07, CF00, CT03, CSS13, CGC16, CL16a, CL16b, CRZH15, CCO05, Cla97, Coh97, CDG97, Cox09, Cra05, Cra06, Cra98]. Virtual [CH78, CGW00, CWL15, CHPY17, CYX17, CHLY18, CDN02, Dalxx, DAH12, Dal97, DHPW01, Dan86, DSM14, DG05, DEK03, Den01, DK17, DMR10, DKLW15, DFK6, Do11, DGLZ11, Dom80a, DJ76, DJ77, DCA04, DLS01, EGR15, EGJS15, ECI16, Eng99, EMAL17, EG01, Ert03, EDS15, FFB00, FG91, Fis01, FPS02, F071, F08, Fra98, FK03, FL13a, Gal75, G01, GIK99, Gei02, Gen86, GGG03, GLBJ18, Gum83, HHV02, HHW10,
virtual [MS00, Mat09, MN03, MC93, MG13, MRG17, MN91, MST05, hTMAC08, MAK07, NK10, NOK85, NOR15, NV05, NIA18, OG16, Oi08, OMB15, ORPS09, PFH16, PEL11, PSBG11b, PMC05, PFPJ18, PBHY08, PCB18, Pix17, Pon19, PRL16, PV08, Pul91, RK16, RH17, RH02, Raj79, RT18, Req03, RFBLO01, RJK15, Rus08, SJJ14, SS13, SE16, SNV10, SchL13, SSN12, She91, SJF12, SJW13, SAG13, SL00, SGGB99, SGGB00, SKC73, Smi97, SYA17, SSL13, SMA10, Spi06, Ste14, SSU12, Str13, SZL14, SLA16, HZ11, Syr07, TZ17, TML14, Tay76, tTR82, TGC10, THG18, TI109, TMV12, TB14, TDG06, Tsa14, TlC13, Tur84, Vac06, Van98, VT14, Ven96, Ven97c, Ven97d, Ven99b, VON07, VVB13, VDO14, WGF11, WKT08, WRX11, WZV13, WQ15]. virtual [WKJ15, WHC16, WCY17, WXZ17, WR07, WDT18, Web10, WK08, WH08, WCS06, WLL13, WSY09, WRSW11, WRS15, XJ15, XWW15, XZ16, XW17, YC98b, YME05, YZW13, YL14, YLH14, YPL17, YB15, YKL10, Ye99, WW09, YRJ18, YGN16, YWGH13, YQ14, YTO00, ZG13, ZW16, ZY18, ZB15, ZL15, ZL16, ZWC17, ZWC18, ZWC19, ZBC05, ZBP07, ZWL09, ZL13, ZLLL13, ZWH17, ZLC18, ZWC14, dSOK17, AGIS94, BPB86, Ca00, Fuji91, GKP19, GHM18, KM13, Mon97, PEC14, Ros09, VON07, WDE06, WDL02]. virtual-machine [HUL06, HPHS04].

Virtual-Machine-Based [JN15], virtual-time [She91]. Virtualbox [Deu08, Bec09]. virtualisation [Apo19]. virtualised [MPF06]. virtualisierte [Mar08, Kar07]. Virtualisierung [Spr06, Spr07].

Virtualisierungs-Buch [Tho08]. Virtualisierungs-Buch [Tho08]. Virtualisierungslösung [Spr06, Spr07]. Virtualisierungslösungen [PO09].

Virtualisierungsoftware [Zim05]. Virtualisierungssystemen [Deu08].

Virtualitäten [Den01]. Virtualisierbare [HH13, PG74, PG73]. Virtualisierung [AFG17, AJM06, AAD16, APST05, An03b, AVMT11, Bac11, Bc10, BHEP14, BDR12, CZL08, CSL07, CGS06, CHW12, CXL15, CWH16, CQLL18, CD12, CDD13, cCWS14, CLLS12, Chu06, Coh10, Cre09, Cre10b, CGW07, DMS02, DW14, DPCA11, DLM06, Don06, DMG15, DY17, EMAL17, FPR16, Fer11, FPD05, FRD18, FLZ17, Gal09a, Gal11, GHS17, GW07, Got07, GG11, HD16, HFW07, Her06, HN10, HHC16, HSN17a, HSN17b, HDM08, HSL17, HB12, JW17, KHW16, KS08a, KMM13, KS08b,
KGS16, Kot10, Kot11, KC12, LHI16, LWC+17, LLW+16, LRZ16, LZW+17, LCFL12, LDDT12, MCC18, MA10, MCZ06, MUKX06, MA17, MGL+17, MWHH05, NTR18, NSL+06, NKK+06, NS16, OVI+12, PZW+07, PHL+12, PM19, PZH13, PsDS08, PNT12, PST+15, QNC07, RSW+06, RCM+12, R+06, RTRL+18, RZPX19, RRK17, RVX+12, RRO9, Sed07, SM06.

Virtualization [CDD13, RZPX19, AAJD+16, DPCA11, MCC18, WDC10, CGL+08a, CGL+08c, CB10, CMM+06a, CMM+06b, CMM+06c, Cia07, Cia05, CM18, CKT08, Cre08a, Cre08b, Cre10a, CB07, DLL+16, DBO+18, DYL+12, DCP+12, DS09b, Dero8, EdPG+10, ECAE13, FFGB08, FP14, FJKK17].

virtualization [FLCB10, FS08, Fro13, FK13, FSH+13, GKK17, GLA+08, G+06, G+06, GTN+06, GA+12, GKT17, HLW+10, HAO8, HAN16, HIG16, HHS18, HPcC04, HCl12, IJK+06, ISE08, IMK+13, J+05, JMO8, JXZ+10, JZZ13, Koo17, KV09, KSR10, KKB14, KWZ+19, KL13, Kro09, LPD+11, LD11, LUL+05, LL17, LLW12, LZW13, LLY+18, LIY15, LWQ+12, LCL14, LWL16, LR+16, LRS14, LP11, DLD+08, MG19, MMM06, MS1+12, MDJ+08, MIS+05, MBA+12, MBBS13, MY09, MMG+18, MR06, NTH+17, NB11, P+08, PG11, PBB13, QZDJ16, RSC+15, RS16, RQD+17, Ribo8, RSLAGL16, Ros06, Ros07, SVN+10, SJSR+13, SWcCM12, SIRP17, SPF+07, SWW+18, SAB+07, SWC08, SL12, TDG+18, TSB19, TLB12, VW08, VSC+10, VOS12, WR12, WZ+11, WCC+16a, WCC16c, WSC09, WJGA12, XKY+11, XZ11, YKS16, YJZ12, YTS14, YLH14, YLH14, YC+19, ZED1P13].

virtualization [ZSR+05, ZSW+06, ZLZ13, vD06, vHO8, Gua14, BC19, MC19, YWL+18].

Virtualization-Based [CDD13, RZPX19, AAJD+16, DPCA11, MCC18, WDC10, CGL+08a, CGL+08c, CGL+08c, QZDJ16].

Virtualized [CSS11, CB09, CD+10, CFW+13, CWH+14, CL15, CZZ+06, CGL+08a, CGL+08b, CGL+08c, CB10, CMM+06a, CMM+06b, CMM+06c, Cia07, Cia05, CM18, CKT08, Cre08a, Cre08b, Cre10a, CB07, DLL+16, DBO+18, DYL+12, DCP+12, DS09b, Dero8, EdPG+10, ECAE13, FFGB08, FP14, FJKK17].

VirtualKnotter [ZWC+14].

Virtual [Spi06, WL96, Tre05].

VirtualPower [NS07].

virtuelle [WF03, WR07, WR08, Zim05, Zin06].

virtuellen [CK06a, CK06c, CK06d, CK06g, CK06i, CK06h, CK06j, CK06k, CK06m, CK06l, CK06n, CK06o, CK06r, CK06q, CK06t, CK06u].
Virtuoso [DGLZ+11]. VIRTUS [IJK+06]. Vision [Arm78]. Visual [Fra06, Fra09, MC98, Wil06, Hee07, Hog06, Hog08]. Visualization [Nel04]. Visualizing [WT91]. VLISP [Ram03]. VLSI [IN87]. VM [Aon01a, Ano04a, Ano04b, Ano03a, AB16, ABG14, Att79, Bar78, BN89, BT15, Boz89, Cal75, CBZ+16, ESY+17, Fis91, FL13b, GH91a, G+06, GH12, HXZ+16, Hc12, HW15, IBM94, LBF12, LJZ12, LWLL10, MSS91, MLA83, NOK+85, OJG91, P+,08, PG18, RSNK17, SHW+15, SBK15, SNC91, StdB15, TB17, Wal10, YZLQ14, YKM17, YWR+14, ZFL15, ZDLG17].

VMBackup [ZXW16]. vmBBProfiler [TZK17]. Vmgen [EGK02]. VMI [LLF+18]. Vmknoppix [Deu08]. VMM [AD18, ALL06, Car14, DQR+13, DLX+17, KZB+90, LD11, LHAP06, OLZ16, RQD+17, SM90]. VMM-based [ALL06]. VMM-Bypass [LHAP06]. VMM-to-guest [LD11]. VMMB [MKKE12]. VMOR [MSI18]. VMP [JNR12]. VMPlanner [FLL+13]. VMPlants [KGZ+04]. VMMP [Loy92, LG93]. VMs [KMT14, KJJ+13, RJK16, VS19]. VMScatter [CLL+13]. VMSI [ZTW17]. VMThunder [ZLW+14]. VMWare [Joo06, CK06f, Ham07, Khu09, KGG00, Tho08, Zim05, Zim06, Bas04, Bas06, War05, Wil01, AHH+03, Ano03a, Ano03b, Ano07, BB+10, Ban06c, Bor01, BDR+12, CK06f, Com00, Com03, DS09b, D+04, Gal09b, GKB+15, Hal08, Hal09, Her10, HSM17, IHPB09, Kis08, KMK10, Lav10, Low08, Low09, Low11, LGM+14, MRM06, MBM09, Mcc08, MWHH05, MJW+06, Ng01a, Ng01b, NL00, OH99, Ru07, R+02, Se10, SIK+16, SVL01, Ten17, TH10, Wal02, Wal09, War02, WF03, War11, Zim05, Zim06, B+07]. VNC [RSLAGCLB16]. Vol.II [Shr89]. Volatile [AMH+16, HN08]. voltage [TGD+18, AMAB17]. Volume [AvMT11]. Vorstellung [CK06b, CK06e, CK06c, CK06d, CK06g, CK06f, CK06k, CK06m, CK06l, CK06n, CK06o, CK06q, CK06t, CK06c, CK06s]. VPC [KJM+07]. VPFS [WH08]. VPN [MSI+12]. vs [Gal09b, WKJ17]. VSA [SHLJ13]. vsAN [FKZ17]. VSched [LD05]. Vshadow [WLW+17]. VSim [RPE12]. vSphere [Gal09b, Lav10, Low09, LGM+14, Fit14, Hal09]. vSphere5 [Low11]. VSwapper [ATS14]. vSwitch [TSP17]. vulnerabilities [RY10]. Vulnerability [CRZH15, Ano99a, JKDC05]. vulnerability-specific [JKDC05]. Vulnerable [JSHM15, JAS+15].

Web-based [CVWL13, Kag09]. Web/Java [FF96, Ano96]. Web/Java-based [FF96, Ano96]. Weight [WWL+17, HB08, YGN+06].

Weir [BMER14]. Welfare [ZHW+17, LWLL16]. Well [WC01].

Well-Conditioned [WC01]. Werkzeugen [KGG00]. Which [MS17, War80]. Whispers [WXW15]. Who [BDG18, LS15]. whole [BBM09]. whose [BBS06]. wichtigsten [CK06b]. Wide [WWL+17, HB08, YGN+06].

Weir [BMER14]. Welfare [ZHW+17, LWLL16]. Well [WC01].

Who [BDG18, LS15]. whole [BBM09]. whose [BBS06]. wichtigsten [CK06b]. Wide [WWL+17, HB08, YGN+06].

Web-based [CVWL13, Kag09]. Web/Java [FF96, Ano96]. Web/Java-based [FF96, Ano96]. Weight [WWL+17, HB08, YGN+06].

Weir [BMER14]. Welfare [ZHW+17, LWLL16]. Well [WC01].

Well-Conditioned [WC01]. Werkzeugen [KGG00]. Which [MS17, War80]. Whispers [WXW15]. Who [BDG18, LS15]. whole [BBM09]. whose [BBS06]. wichtigsten [CK06b]. Wide [WWL+17, HB08, YGN+06].

Weir [BMER14]. Welfare [ZHW+17, LWLL16]. Well [WC01].
REFERENCES

York [ACM03b, IEE90b, IEE96b, IEE90b]. Yountville [Tho93].

z [G+06, P+08], z/VM [G+06, P+08], z13 [ABB+15]. Zero [AMH+16, CHCC07]. Zero-Cost [AMH+16]. zero-loss [CHCC07]. ZNET [UBL+82]. ZSim [SK13b]. zur [KGG00, See08a]. Zytaruk [Sch94b, Sch94a].

References

REFERENCES

REFERENCES

Anjo:2016:DML

Ayoubi:2016:TPB

ACM:1975:PFS

ACM:1981:ASC

ACM:1989:PSN

ACM:1990:PAC
REFERENCES

REFERENCES

[ACM06b] ACM, editor. PACT’06: Proceedings of the 15th International Conference on Parallel Architectures and Compilation
REFERENCES

REFERENCES

REFERENCES

Alfonseca:1991:AAA

Asrigo:2006:UVB

Akyildiz:2015:WSD

Agrawal:2016:EIU

Azmandian:2011:VMM

Araujo:2014:SAE

Ahmadian:2018:ECH

Arroba:2017:DVF

Ament:2013:ATG

Awad:2016:SSZ

Ahmed:2019:ILT

Azevedo:2000:AAJ
Ana Azevedo, Alex Nicolau, and Joe Hummel. An annotation-aware Java virtual machine implementation. *Concurrency:
Anonymous:1975:VM

Anonymous:1993:NCS

Anonymous:1994:SAS

Anonymous:1996:TWJb

Anonymous:1997:BRJe

Anonymous:1997:BFJ

Anonymous:1997:IJV

Anonymous:1997:JVM

Anonymous:1999:MVM

Anonymous:1999:PII

Anonymous:2000:AJV

Anonymous:2001:CRJ

Anonymous:2001:PJV

Anonymous:2002:CRJ

Anonymous:2003:PUJ

Anonymous:2003:PVF

Anonymous:2004:CRV

REFERENCES

REFERENCES

[Ano15] Anonymous. Critical Xen bug in PV memory virtualization code (XSA 148). Web bug report, October 29, 2015. URL https://github.com/QubesOS/qubes-secpack/blob/master/QSBs/qsb-022-2015.txt. The report notes about this bug that allows memory pages to leak between Xen virtual machines on the same physical host: “... the bug is a very critical one. Probably the worst we have seen affecting the Xen hypervisor, ever. Sadly... it is really shocking that such a bug has been lurking in the core of the hypervisor for so many years.”.

[AS14] Muhammad Atif and Peter Strazdins. Adaptive parallel application resource remapping through the live migration of virtual

REFERENCES

Appuswamy:2011:FMF

Agarwal:2017:TAT

Arnold:2005:IVM

Blank:2005:APV

Buytaert:2007:BDS

REFERENCES

Balzer:1991:PVM

Bauman:2015:SHB

Bard:1978:AMV

Bartholomew:2006:QMM

Bastiaansen:2004:RGU

Bastiaansen:2006:RGU

Bauer:2005:PPF

Bauer:2006:PPSb
REFERENCES

REFERENCES

REFERENCES

Bennett:1991:SMC

Bullers:2006:VMI

Barrett:2017:VMW

Boutcher:2010:DVM

Bellavista:2015:VNF

Bessiere:1990:VMM

REFERENCES

Bienkowski:2014:WA

Bagley:1975:SDS

Brawn:1970:SPE

Boszormenyi:2000:SNW

Birmingham:1989:MSC

Bartholomy:2013:NMT

May 2005. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic).

[BKMM87] Arndt B. Bergh, Keith Keilman, Daniel J. Magenheimer, and James A. Miller. HP 3000 emulation on HP precision archi-
REFERENCES

REFERENCES

References

Bodlaender:1988:CFU

Boddenberg:2010:WSR

Bruno:2017:NPG

Born:2001:VWP

Border:2007:DDM

Bozman:1989:VSM

REFERENCES

[BP99] J. Barbosa and A. Padilha. Algorithm-dependent method to
determine the optimal number of computers in parallel virtual
machines. *Lecture Notes in Computer Science*, 1573:508–521,
1999. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349
(electronic).

[BP01] Fabian Breg and Constantine Polychronopoulos. Java Vir-
tual Machine support for object serialization. In ACM
philippsen.com/JGI2001/finalpapers/18500173.ps.

[BP03] Fabian Breg and Constantine D. Polychronopoulos. Java
Virtual Machine support for object serialization. *Concurrency
263–275, March/April 2003. CODEN CCPEBO. ISSN 1532-
0626 (print), 1532-0634 (electronic).

[BPB86] K. S. Bhaskar, J. K. Peckol, and J. L. Beug. Virtual Instru-
ments: object-oriented program synthesis. *ACM SIGPLAN
Notices*, 21(11):303, November 1986. CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[BPC94] V. Beletsky, T. Popova, and A. Chemeris. Organization of a
parallel virtual machine. In Horiguchi et al. [HHK94], pages
IEEE catalog no. 94TH0697-3.

[BPP+17] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic,
Samuel Grossman, Christos Kozyrakis, and Edouard Bagnion.
The IX operating system: Combining low latency, high
throughput, and efficiency in a protected dataplane. *ACM
2017. CODEN ACSYEC. ISSN 0734-2071 (print), 1557-7333
(electronic).
REFERENCES

Braught:2001:KSC

Brier:1998:NIA

Berl:2010:NVE

Brorsson:1989:ESV

Mats Brorsson. Emulation of Shared Virtual Memory on an Experimental Multiprocessor. Technical report, Department of Computer Engineering, Lund University, P.O. Box 118, S-221 00 Lund, Sweden, October 1989.

Brunschen:2007:SSE

Bu:2013:CSC

[Bleloch:1990:CCO]

[BS90]

[Burnet:1996:PCP]

[BS96]

[Branco:2015:TFS]

[BSI+15]

[Bairavasundaram:2012:RRS]

[BSM+12]

[Burcea:2008:PV]
Ioana Burcea, Stephen Somogyi, Andreas Moshovos, and Babak Falsafi. Predictor virtualization. Operating Systems

[BSMF08]
REFERENCES

| [Caa00] | Paul Caamano. Porting a Java Virtual Machine to an embedded system. Thesis (m.s.), Department of Computer Science, University of California, Santa Cruz, Santa Cruz, CA, USA, 2000. viii + 56 pp. |
| [CAF+91] | Stavros Christodoulakis, Natassa Ailamaki, Manolis Fragk Nikolakis, Yorgos Kapetanakis, and Leonidas Koveos. An ob- |

REFERENCES

Chen:2017:MLF

Carbone:2012:SRM

Childs:2005:SCG

Chiueh:2014:SFI

Calder:2005:EVM

REFERENCES

REFERENCES

Theme title: Ada; the right choice for reliable software. ACM order number: 825970.

REFERENCES

Canon:1979:VME

Canon:1980:VME

Cao:2017:VNM

Cheriton:2012:HAS

Celesti:2012:VMP

[CFVP12] Antonio Celesti, Maria Fazio, Massimo Villari, and Antonio Puliafito. Virtual machine provisioning through satellite communications in federated Cloud environments. Future Generation Computer Systems, 28(1):85–93, January 2012. CODEN FGSEVI. ISSN 0167-739X (print), 1872-
REFERENCES

REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Casazza:2006:RSP

Courbot:2010:EBD

Crosby:2007:VXI

Cremers:1978:FMV

Choi:2008:SHM

Chang:2007:VMS

Da-Wei Chang, Cheng-En Hsieh, Yan-Pai Chen, and Kuo-Cheng Chiu. Virtual machine support for zero-loss Internet service recovery and upgrade. *Software—Practice and
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[CK06t] Toralf Chryselius and Andrea Kuntz. *Software für Kinder in Kubuntu unter Qemu Einführung in das Betriebssyst-
REFERENCES

Claudia Canali and Riccardo Lancellotti. Detecting similarities in virtual machine behavior for cloud monitoring using smoothed histograms. *Journal of Parallel and Distributed Computing*, 74(8):2757–2769, August 2014. CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (elec-
REFERENCES

Checco:2015:FVN

Cheng:2016:OIL

Cheng:2016:RTC

Canali:2017:ICP

Canali:2017:SAV

Cladingboel:1997:RJV

[Cla97] Christopher Cladingboel. Real Java Virtual Machines: Hardware compilation and the Java Virtual Machine. Thesis
(M.Sc.), Board of the Faculty of Mathematical Sciences, Oxford University, Oxford, UK, 1997. 107 pp.

Clark:2005:SVT

Chiang:2013:IBM

Criswell:2007:SVA

Chow:2010:MSR

Cui:2013:VMV

Chrobot:2012:DMV

REFERENCES

Gift:1985:DSS

Carpenter:2007:HVA

Chen:2014:HBA

Condoluci:2018:SVM

Chung:2006:TTMa

Chung:2006:TTMb

REFERENCES 123

2006. CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Chung:2006:TTMc

Contreras:2007:XPP

Chen:2013:TVR

Coffing:1999:XPM

Cohen:1997:DJV

Cohen:2010:VS

Compton:2000:VLB

Compton:2003:VL

Cox:2007:REM

Cox:2009:REM

Cox:2010:REM

Cox:2012:REM

Cao:2017:EMN

Cruz:2016:DCG

Crowl:1993:CLI

Cohen:1983:PSR

Chiang:2015:SEV

Chandersekaran:1976:FVM

Chen:2013:FRS

REFERENCES

Chang:2013:ADA

Cai:2003:THI

Chen:2014:CCB

Crandall:2006:TSD

Crookston:2000:VCM

Chang:2014:EMV

Chen:2016:ICA

Cao:2012:EEA

Cui:2015:PPA

Chakraborty:2012:SOV

Chen:2015:LVS

Cui:2017:TAV

REFERENCES

[Dalxx] Matthias K. Dalheimer. *Java Virtual Machine, Sprache, Konzept, Konzept*. O’Reilly & Associates, Inc., 103a Morris Street, Sebastopol, CA 95472, USA, Tel: +1 707 829 0515, and 90 Sherman Street, Cambridge, MA 02140, USA, Tel: +1
REFERENCES

[Dav04] Renzo Davoli. Teaching operating systems administration with User Mode Linux. *SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education)*, 36(3):112–116,
REFERENCES

September 2004. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

Dillenberger:2000:BJV

Darcy:1992:USD

Denz:2018:SMB

Di:2015:ECP

Doyle:2004:DIM
REFERENCES

Coutinho:2015:OVM

Deb:2012:HSC

Duan:2017:EAS

Dong:2012:RAE

Dean:1994:CPV

DeRose:2006:EXI

REFERENCES

REFERENCES

Dincer:1996:BWW

Davoli:2005:VSV

dAntras:2017:HUX

Dolan-Gavitt:2011:VNS

Decker:2001:PMS

Daly:2001:PID

REFERENCES

REFERENCES

Deshpande:2017:TSL

Damodaran-Kamal:1994:TRP

Di:2015:OCC

Demillo:1989:DSC

Dall:2016:AVP

Dong:2006:EXI

REFERENCES

[DMH18] Vikram Dhillon, David Metcalf, and Max Hooper. Blockchain enabled applications: understand the blockchain ecosystem and

Maio:2016:MEC

Dobre:2011:VBA

Dalton:2009:TVP

Ding:2015:EES

Dai:2013:LVM

REFERENCES

REFERENCES

Dunigan:1986:DHM

Dillon:2014:VHN

Dou:2017:EAV

Duan:2017:LBM

Dong:2012:HPN

REFERENCES

REFERENCES

REFERENCES

Ebrahimirad:2015:EAS

Esteire:1998:STN

Eramo:2017:ASF

Esposito:2013:SES

Evoy:2015:ADP

Engel:1999:PJV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

137–151, October 1996. CODEN OSRED8. ISSN 0163-5980 (print), 1943-586X (electronic).

Freudenberg:2015:SMP

Fischofer:1991:VSS

Fischer:2001:SAN

Fischer:2009:XUH

Fitzhugh:2014:VVM

Firoozjaei:2017:SCN

Mahdi Daghmehchi Firoozjaei, Jaehoon (Paul) Jeong, Hoon Ko, and Hyoungshick Kim. Security challenges with network functions virtualization. Future Generation Com-
REFERENCES

Friedman:2003:TFT

Fu:2013:SGW

Fink:2017:VMD

Fu:2013:BSG

Fu:2013:EUD

Flouris:2010:EBL

REFERENCES

Fang:2013:VOV

Franklin:2008:RDV

Anonymous:2014:AVM

Fu:2017:MCD

Feeley:1990:PVM

REFERENCES

REFERENCES

Fredriksen:2005:UUV

Fan:2015:UCC

Froberg:2013:BRP

Farrow:1989:VCB

Fong:2008:DVS

Fagin:2011:IPE

REFERENCES

Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf Schuster, and Dan Tsafrir. ELI: bare-

REFERENCES

Gaudiot:1985:PES

Geist:2002:PVM

Genter:1986:UVM

Garzon:1992:DTG

Ganapathi:1982:RCC

Greamo:2011:SVM

REFERENCES

GomezMartin:2003:JVE

Garcia:2016:CMP

Gao:2013:MO

Gdaniec:1991:VDS

Greenfield:1991:PIT

Ghosh:2012:RAA

REFERENCES

[Ganapathi:1983:SFRa]

[Ganapathi:1983:SFRb]

[Grebe:1993:TAS]

[Gupta:2018:SCS]

[Gandhi:2016:APE]

[Gandhi:2017:APE]
REFERENCES

[Sandi Gec, Dragi Kimovski, Uros Pascinski, Radu Prodan, and Vlado Stankovski. Semantic approach for multi-objective optimisation of the ENTICE distributed Virtual Machine and container images repository. *Concurrency and Computation:*]
REFERENCES

Gschwind:2017:OED

Gamage:2013:PRO

Gaspar:2008:RVC

Guerrero:2018:MOO

Gold:1984:KR

REFERENCES

Goth:2007:VOT

Ganegedara:2013:CPA

Gregg:2003:PID

Groves:1980:DVM

Gupta:2015:LBO

Green:2010:SUS

David Green. The Sydney University SILLIAC. Web site, August 14, 2010. URL http://members.iinet.net.au/~dgreen/silliac.html. The SILLIAC was the first computer installed at Sydney University, and was operational from 1956.
REFERENCES

to 1968. The Web site links to the SILLIAC Emulator, a C program for Microsoft Windows.

REFERENCES

[Hammersley:2007:PVS]

[Hansen:2005:IJP]

[Hand:2016:TPH]

[Hartmann:1977:CPC]

[Hulaas:2008:PTL]

[Huang:2012:PEN]
Shu Huang and Ilia Baldine. Performance evaluation of 10GE NICs with SR-IOV support: I/O virtualization and network

Huang:2013:ECS

Hurlburt:2014:BBC

Hetzelt:2017:SAE

Hoang:2010:CAN

Huang:2006:PMA

Huang:2012:VAJ

REFERENCES

REFERENCES

Hu:2008:SVO

Heege:2007:ECC

Herrod:2006:SRD

Herrod:2010:SRD

Hendricks:1979:EVM

Ho:2005:DPD

Hudson:2008:FU

REFERENCES

Huang:2013:VHS

Hong:2016:OCT

Ho:2004:PPD

Horiguchi:1994:ISP

Hussein:2015:DRM

Hausheer:2018:SPS

[HHSG18] David Hausheer, Oliver Hohlfeld, Stefan Schmid, and Guofei Gu. Security and performance of software-defined networks

180

REFERENCES

REFERENCES

Hao:2017:OA

Hinz:2018:CMI

Haidri:2019:CED

Huang:2013:ESC

Hoque:2016:AAT

Ji Hu, Christoph Meinel, and Michael Schmitt. Tele-lab IT security: an architecture for interactive lessons for security

REFERENCES

Hogenson:2008:FCC

Horie:2014:SDJ

Hollerbach:1995:FDA

Huxtable:1977:HSI

Huang:2004:MDS

Hohmuth:2004:RTS

Hussein:2017:OPR

Hwang:2015:RPA

Hu:2006:RST

Hsu:2015:LLA

Ha:2017:PPE

Tuan Minh Ha, Masaki Samejima, and Norihisa Komoda. Power and performance estimation for fine-grained server power capping via controlling heterogeneous applications. *ACM Transactions on Management Information Systems*
REFERENCES

(TMIS), 8(4):11:1–11:??, September 2017. CODEN ????. ISSN 2158-656X.

REFERENCES

Meyer:2008:PVD

Hu:1990:RTC

Heiser:2006:VMM

Hwang:2014:MFG

Herbordt:1993:EEA

Hume:2015:SCS

REFERENCES

[He:2014:DRC] Ligang He, Deqing Zou, Zhang Zhang, Chao Chen, Hai Jin, and Stephen A. Jarvis. Developing resource consoli-

[Iancu:2014:CPV]

[IBM:1985:VM]

[IBM:1988:VMSa]

[IBM:1994:CGN]

[IBM:1996:CAM]

[Ibsen:1984:PVM]

REFERENCES

IEEE:1996:HCV

IEEE:1996:PFIa

IEEE:1997:HCI

IEEE:1999:HCS

IEEE:2001:EIW

IEEE:2002:WII

IEEE:2003:IW

IEEE:2004:FIA

IEEE:2005:PAC

IEEE:2006:PIS

REFERENCES

REFERENCES

[IT86] Y. Ishikawa and M. Tokoro. A concurrent object-oriented knowledge representation language Orient 84/K: its features

Jacob:2005:DOE

Jones:2006:ATP

Jones:2006:GMB

Jin:2015:HSH

Sun:1999:JCV

Janakiram:1988:RPB

Jo:2013:ELM

Jin:2011:OLM

Johnson:2014:CML

Jamthagen:2012:TRD
REFERENCES

REFERENCES

ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Jeyarani:2012:DIA

Joos:2006:OHE

Joos:2009:MWS

Jouannaud:1985:FPL

REFERENCES

REFERENCES

Jia:2013:SID

Kagawa:2009:WWB

Kojima:1983:AMI

Kumar:1993:FHS

Kalin:1997:NMP

Kamnitzer:1975:BXI

REFERENCES

Kounga:2012:ESP

Kansal:2016:EAV

Kim:2015:UWM

Kim:2014:ECS

Kousiouris:2011:ESW

Kang:2014:HSA

REFERENCES

[KGZ+04] Ivan Krsul, Arijit Ganguly, Jian Zhang, Jose A. B. Fortes, and Renato J. Figueiredo. VMPlants: Providing and man-
aging virtual machine execution environments for Grid com-
LCCN QA76.88. IEEE order number E2153. ACM order num-
ber 415043.

computing resources. Proceedings of the VLDB Endowment,

[Khn09] Elias N. Khnaser. VCP: VMware Certified Professional. Exam-
cram. Que Corporation, Indianapolis, IN, USA, 2009. ISBN 0-
7897-3805-8 (paperback). xv + 316 pp. LCCN QA76.3 .K495
2009. Includes CD-ROM.

[KHW+16] Junbin Kang, Chunming Hu, Tianyu Wo, Ye Zhai, Benlong
Zhang, and Jinpeng Huai. MultiLanes: Providing virtualized
storage for OS-level virtualization on manycores. ACM Trans-
actions on Storage, 12(3):12:1–12:??, June 2016. CODEN ????
ISSN 1553-3077 (print), 1553-3093 (electronic).

[Kim84] K. H. Kim. Evolution of a virtual machine supporting fault-
tolerant distributed processes at a research laboratory. In IEEE
[IEE84b], pages 620–628. ISBN 0-8186-0533-2 (pa-
perback), 0-8186-8533-6 (hard), 0-8186-4533-4 (microfiche).
LCCN QA76.9.D3 I5582 1984. URL http://dblp.uni-
trier.de/db/conf/icde/Kim84.html.

O’Reilly Media, Inc., 1005 Gravenstein Highway North, Se-
bastopol, CA 95472, USA, 2008. ISBN 1-933671-49-1. ????
pp. LCCN QA76.76.O63 K57 2008.
REFERENCES

REFERENCES

REFERENCES

July/December 2014. CODEN ???? ISSN 1556-6056 (print), 1556-6064 (electronic).

[KKTM17] Takaaki Kawai, Shigeru Kaneda, Mineo Takai, and Hiroshi Mineno. A virtual WLAN device model for high-fidelity wireless

[KMG+18] Dragi Kimovski, Attila Marosi, Sandi Gec, Nishant Saurabh, Attila Kertesz, Gabor Kecskemeti, Vlado Stankovski, and

[KMT14] Yacine Kessaci, Nouredine Melab, and El-Ghazali Talbi. A multi-start local search heuristic for an energy efficient VMs

REFERENCES

Kedlaya:2014:DDL

Kundu:2012:MVA

Kroeker:2009:EV

Kanizo:2017:OVB

Karger:2008:VVM

King:2008:GEI

REFERENCES

[KSRL10] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. NoHype: virtualized cloud infrastructure without the virtu-

REFERENCES

Kerridge:1980:STC

Kang:2013:HPP

Kist:2019:FFG

Koskinen:2016:RCR

Kwon:2017:IHP

Karger:1990:VSK

REFERENCES

Lin:2012:UKT

Li:2016:ICV

Laadan:2007:DPV

Le:2011:REC

Levis:2002:MTV

Larson:2009:WSHb

REFERENCES

Li:2015:ARP

Lagar-Cavilla:2011:SVM

Lin:2005:VMB

Lange:2011:SSV

Lv:2012:VCV

Loveland:2008:LVO
Li:2014:MHD

Ludwig:2018:TPC

Lee:1986:DSE

Lee:2016:ACS

Lesser:1974:DEP

Lopez:1994:ICI

Loyot:1993:VVM

REFERENCES

REFERENCES

Li:2018:LCS

Lee:2017:PEH

Liu:2008:PBH

Li:2012:GCV

Liu:2014:MGR

REFERENCES

[LLYW18] Junfeng Li, Dan Li, Yirong Yu, Yukai Huang, Jing Zhu, and Jinkun Geng. Towards full virtualization of SDN infrastructure. *Computer Networks (Amsterdam, Netherlands: 1999), 143*(??):ii, October 9, 2018. CODEN
REFERENCES

Laureano:2007:PHB

Lago:2018:EAV

Lettieri:2018:SPV

Laden:2012:ADF

Lott:1991:DVM

Low:1988:SPO

REFERENCES

López-Pires:2018:VMP

Lange:2011:MOV

Lin:2012:OVM

Lucchetti:2005:EDR

Linguaglossa:2019:HSD

REFERENCES

[Li:2016:SSO] Xi Li, Anthony Ventresque, and John Murphy. SOC: Satisfaction-oriented virtual machine consolidation in enter-

Le:2011:EMO

Liu:2012:PBA

Lyons:2013:SFF

Lin:2015:SGU

Li:2017:AET

Lin:2016:JOQ

Liu:2010:VMF

Li:2016:VMT

Li:2014:VSK

Luo:2016:OMM

Lindholm:1997:IJV

REFERENCES

Lindholm:2014:JVM

Liu:2018:CAL

Li:2017:BNB

Li:2018:EAM

Lama:2015:CPP

Li:2016:EEM

[LZC+16] Hongjian Li, Guofeng Zhu, Chengyuan Cui, Hong Tang, Yusheng Dou, and Chen He. Energy-efficient migration and

Li:2015:ITA

Li:2015:GHB

Lu:2017:FPL

Li:2013:RVS

Li:2015:VMP

September 2015. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic).

Mann:2015:RRE

Mann:2016:MAV

Mann:2018:CSI

Martin:1981:RFS

Marcy:2008:DRP

Mattsson:2009:RSV

Matthews:2010:WPO

Millet:1998:PGT

Mayer:2012:URM

Mittal:2013:EVE

Muller:1992:ASP

REFERENCES

REFERENCES

REFERENCES

Morimoto:2009:WSH

Medina:2013:SMM

Makowski:2019:EVT

Montella:2017:VCB

Matthys:2005:IVE

Mzaik:1993:SPA

REFERENCES

Muller:2006:SVP

Mao:2014:RPO

Min:2012:VVM

Mendelsohn:1983:RVF

Mikheev:2002:OJE

REFERENCES

MacGregor:1984:MM

Mirzaei:2012:TA

Meleshchuk:1991:IPP

McAuley:2003:CVC

Masdari:2016:OVM

Mitsuishi:2014:ABF

Takuji Mitsuishi, Shimpei Nomura, Jun Suzuki, Yuki Hayashi, Masaki Kan, and Hideharu Amano. Accelerating breadth first

REFERENCES

Malan:1991:MA

G. Malan, R. Rashid, D. Golub, and R. Baron. DOS as a Mach 3.0 application. In USENIX [USE91], pages 27–40. LCCN QA7 X27.

Moure:2002:KS

Marshall:2006:ASV

Meyer:1970:VMT

Manas:1991:VLM

Milutinovic:1991:PTA

Mathiske:2000:APM

Menczer:2001:OTR

Mann:2017:WBA

Mebane:1992:EFD

Maessen:2001:PAS

Ma:2012:DTD

REFERENCES

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). VEE '12 conference proceedings.

Ma:2014:DBV

Matsuhashi:2012:TVF

Mashimo:2018:VMS

Maslak:1991:CRR

Ma:2015:SDS

Menon:2005:DPO

REFERENCES

Menon:2009:TSA

Merrifield:2016:PIE

Merrifield:2017:PIE

Mao:2019:AMC

Mühlbacher:1975:GIF

Mergen:2006:VHP

Marz:2016:RPC

Munawar:2005:BPB

Miao:2018:VMA

Muller:2005:VVE

Mihajlovic:2014:DIQ

REFERENCES

REFERENCES

[Nam:2017:JNE] Tran Manh Nam, Nguyen Huu Thanh, Hoang Trung Hieu, Nguyen Tien Manh, Nguyen Van Huynh, and Hoang Duong Tuan. Joint network embedding and server consolidation for

REFERENCES

(Oglesby:2005:VES)

(Oi:2005:DLV)

(Oi:2006:IFH)

(Oi:2008:LVA)

(Osisek:1991:EIA)

(Ozgur:1990:SON)

(Ouyang:2013:PTS)

Jiannan Ouyang and John R. Lange. Preemptable ticket spinlocks: improving consolidated performance in the cloud. ACM
REFERENCES

Ouyang:2016:SUV

Oliveira:2015:ORE

Ortin:2009:EVM

Osborne:2001:PC

Omonte:2015:IAE

Ostrand:1994:PIS

REFERENCES

Pek:2013:SSI

Plotkin:2016:SNV

Plata:1990:ASP

Porter:2012:RLT

Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C. Hunt. Rethinking the library OS from...
REFERENCES

Pelleg:2008:VBD

Pickartz:2018:PCV

Piraghaj:2016:VMC

Perez-Cazares:1989:DAL

Peng:2016:TCT

REFERENCES

Pan:2012:CLM

Pham:2014:BRS

Park:2011:FSE

Pape:2016:LIS

Pfoh:2013:LDV

REFERENCES

Paulraj:2018:RAV

Popek:1973:FRV

Popek:1974:FRV

Payer:2011:FGU

Psychas:2018:NPV

Pavlou:2012:DBD

REFERENCES

REFERENCES

REFERENCES

Parri:2011:RCPa

Parri:2011:RCPb

Payne:2007:LAS

Pfefferle:2015:HVF

Padala:2007:ACV

REFERENCES

REFERENCES

Perez:2008:VHB

Pawlish:2014:CEE

Panesar-Walawege:2003:VHM

Peng:2017:SMA

Poulsen:1993:ETP

Pearce:2013:VIS

Padala:2007:PEV

Qian:1999:FSJ

Quetier:2007:SCF

Quynh:2006:RTI

Qiang:2016:SCF

Russell:2002:SCI

REFERENCES

Kenneth Russell and Lars Bak. The HotSpot™ serviceability agent: An out-of-process high-level debugger for a Java™ Virtual Machine. In USENIX [USE01c], page ?? ISBN 1-880446-11-1. LCCN QA76.73.J38

REFERENCES

REFERENCES

Ryoo:2017:RTD

Rajabzadeh:2017:EAF

Radonic:2008:XAK

Rajan:2002:CPJ

Robin:2000:AIP

Rixner:2008:NVB

[Scot Rixner. Network virtualization: breaking the performance barrier. ACM Queue: Tomorrow’s Computing Today, 6
REFERENCES

Robinson:2016:CCM

Roh:2017:JFV

Radhakrishnan:2016:ECC

Rottenstreich:2017:MDN

Ren:2016:SMO

REFERENCES

REFERENCES

Son:2018:TSD

Singh:2015:TVC

Sotiriadis:2017:VMC

Sani:2014:PDF

Shen:2017:DAV

Shen:2018:RDM

Haiying Shen and Liuhua Chen. Resource demand misalignment: an important factor to consider for reducing resource

Schuh:1990:PRI

Shi:2008:VMS

Steven:2000:JCR

Schoen:1986:CS

Schulman:1994:UCI

Schulman:1994:IWV

REFERENCES

Andrew Seely. Building a virtual DNS appliance using Solaris 10, BIND, and VMware. login: the USENIX

[SG10a] René W. Schmidt and Steffen Grarup. vApp: a standards-based container for cloud providers. Operating Systems Re-
REFERENCES

Soundararajan:2010:CBS

Shuja:2016:SMD

Sirer:1999:DID

Sirer:2000:DID

Saeed:1992:ICM

Simao:2012:CER

Shanmuganathan:2013:DCU

Schmalenbach:2004:JVM

Stefanovic:2003:OFG

Shen:1991:VTD

Shelburne:2002:PEP

Shippy:2003:PGT

Shao:2013:VOS

October 2013. CODEN FGSEVI. ISSN 0167-739X (print),
com/science/article/pii/S0167739X12002245.

[B. D. Shriver, editor. Proceedings of the Twenty-Second An-
nual Hawaii International Conference on System Sciences.
Vol.II: Software Track, Kailua-Kona, HI, USA, January 3–
6, 1989. IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1989. ISBN 0-8186-
1912-0. LCCN ???? IEEE catalog number 89TH0243-6.

[S. Svärd, Benoit Hudzia, Johan Tordsson, and Erik Elm-
roth. Evaluation of delta compression techniques for efficient
live migration of large virtual machines. ACM SIGPLAN Not-
tices, 46(7):111–120, July 2011. CODEN SINODQ. ISSN 0362-
1340 (print), 1523-2867 (print), 1558-1160 (electronic).

[SHW+ 15] Petter Särd, Benoit Hudzia, Steve Walsh, Johan Tordsson, and
Erik Elmroth. Principles and performance characteristics of
algorithms for live VM migration. Operating Systems Review,
49(1):142–155, January 2015. CODEN OSRED8. ISSN 0163-
5980 (print), 1943-586X (electronic).

[F. Song, Daochao Huang, Huachun Zhou, Hongke Zhang, and
Ilsun You. An optimization-based scheme for efficient virtual
machine placement. International Journal of Parallel Pro-
ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
/link.springer.com/article/10.1007/s10766-013-0274-
5.

[N. L. Sarda and J. R. Isaac. Computer aided design of database
internal schema. International Journal of Computer and In-
formation Sciences, 10(4):219–234, August 1981. CODEN IJ-
CIAH. ISSN 0091-7036.

[Sahil Suneja, Canturk Isci, Eyal de Lara, and Vasanth Bala.
Exploring VM introspection: Techniques and trade-offs. ACM

Signorini:1989:HSM

So-In:2011:VAU

Solaimani:2016:OAD

Simpkins:1992:AVP

Santanna:2017:DIS

Silla:2017:BRG

[SIRP17] Federico Silla, Sergio Iserete, Carlos Reano, and Javier Prades. On the benefits of the remote GPU virtualization mechanism:

REFERENCES

REFERENCES

Seiden:1990:AFV

Sterrett:1992:PMA

Shudo:2001:AME

Surdeanu:2002:DPA

Seetharaman:2006:TOU

Soror:2010:AVM

REFERENCES

7:??, February 2010. CODEN ATDSD3. ISSN 0362-5915 (print), 1557-4644 (electronic).

REFERENCES

REFERENCES

REFERENCES

Saltzer:1975:PIC

Shih:2005:ICA

Salimi:2013:BSC

Soundararajan:2017:SFC
Vijayaraghavan Soundararajan and Joshua Schnee. Sustainability as a first-class metric for developers and end-users. *Op-

Stark:2001:JJV

Shaylor:2003:JVM

Sarimbekov:2014:JCS

Stark:2014:JJV

Smith:1990:PTL

REFERENCES

REFERENCES

Stoess:2012:LVM

Stankovic:1997:VRR

Stanik:2007:NVR

Steil:2005:MMM

Stecklina:2014:SHO

Steinert:2015:OVS
Bastian Steinert, Lauritz Thamsen, Tim Felgentreff, and Robert Hirschfeld. Object versioning to support recovery needs: using proxies to preserve previous development states

Stoess:2007:TEU

Strauss:2013:FCC

Sun:2013:BJW

Su:2014:RVP

Subramaniam:2008:PST

Subramaniam:2011:PCJ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Takemura:2010:BXP

Trinder:2017:SRI

Travostino:2006:SLM

Tan:2018:UVQ

Li Tan, Nathan DeBardeleben, Qiang Guan, Sean Blanchard, and Michael Lang. Using virtualization to quantify power conservation via near-threshold voltage reduction for inherently resilient applications. Parallel Computing, 74(??):3–15, ???? 2018. CODEN PACOEJ. ISSN 0167-8191 (print),
REFERENCES

Tu:2014:PPP

Tian:2018:MTE

Thiruvathukal:2010:VCS

Thompson:1968:PTR

Thomas:1993:PIS

REFERENCES

Tolksdorf:1998:PLJ

Tucker:1988:AA

Treese:2005:VVE

Thorat:2013:OMV

Tsafrir:2014:ELV

Ta-Shma:2008:VMT

Tu:2017:BEO
Cheng-Chun Tu, Joe Stringer, and Justin Pettit. Building an extensible Open vSwitch datapath. *Operating Systems Review*,
Tsai:1993:LMM

Tamm:1996:LBV

Tan:2019:VMC

Tu:2013:SDS

Thanh:1982:ITC

Turek:1984:IDV

John Joseph E. Turek. Issues in the design of a virtual network for the connection machine. Thesis (B.S.), Department of Electrical Engineering and Computer Science, Massachusetts

REFERENCES

[UNR+05] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Martins, Andrew V. Anderson,

REFERENCES

REFERENCES

Ureche:2013:MIS

Unnikrishnan:2013:RDP

Vachon:2006:DBV

Vaghani:2010:VMF

Vanhelsuwe:1998:BRJb

VanHensbergen:2006:PRP

vanDoorn:2000:SVJ

REFERENCES

vanDoorn:2006:HVT

vanderKouwe:2009:PQV

Villadeamigo:1997:EES

Visegrady:2014:SCV

Venstermans:2006:BVB

Venstermans:2007:JOH
REFERENCES

Venners:1996:UHL

Venners:1997:IJV

Venners:1997:UHHa

Venners:1997:UHHb

Venners:1997:UHHc

Venners:1999:IJV

VENNERS:1999:SV

VONHAGEN:2008:PXV

VITEK:2014:CTR

VONKOC:2013:LRB

VISWANATHAN:2000:JVM

VONLASZEWSKI:2001:GBA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2016:TSN

Wood:2014:LLD

Wells:2006:HSS

Wells:2009:DHN

Whitaker:2005:RDV

REFERENCES

Wells:2002:HMA

Wes98

Ward:2003:VWH

Wires:2007:SFS

Williams:2007:VXI

Wagner:2011: SJV

Gregor Wagner, Andreas Gal, and Michael Franz. “slimming” a Java virtual machine by way of cold code removal and op-

REFERENCES

REFERENCES

Wentzla:2012:CFG

Whang:1990:QOM

Wegiel:2008:MCV

Wein:2009:VGT

Wang:2017:JRJ

REFERENCES

Wong:1997:MHJ

Winterbottom:1997:DIV

[WP97] Phil Winterbottom and Rob Pike. The design of the Inferno virtual machine. In IEEE [IEE97], page ?? ISBN ?? LCCN ???

Wang:2015:HRR

Warnke:2007:QVC

Warnke:2008:QVC

Waldspurger:2012:V

REFERENCES

2009. CODEN ???? ISSN 1389-1286 (print), 1872-7069 (electronic).

Wang:2017:RLW

Wright:2006:IJV

Wang:1989:NNS

Wendorf:1989:SOS

Wang:2013:RMM

Wu:2015:WHS

Xin Xu and Bhavesh Davda. SRVM: Hypervisor support for live migration with passthrough SR-IOV network devices.
REFERENCES

Xu:2015:RSV

Xia:2011:VWB

Xu:2016:HIA

Xu:2014:IML

Xue:2018:SGV

Xiao:2013:DRA

Xu:2017:SLB

Xie:2016:GCF

Xie:2015:SSV

Xu:2017:EIR

Yang:2019:IRT

Yuan:2018:ASP

Yelland:1999:CAJ

Yu:2006:FWV

Yan:2012:VCH

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). VEE ’12 conference proceedings.

Yamada:2013:TFT

Yang:2017:EJV

Yamanaka:2016:TFF

Yang:2017:VMM

Yang:2014:ICV

YLCH17

YK13

YKM17

YKS16

YLH14
REFERENCES

REFERENCES

Yoginath:2015:EPD

Yang:2017:EEV

Yu:2014:MPP

Yousefpour:2018:ECA

Yeh:2017:PFG

Yan:2014:EFG

Yutaka:2000:EJV

Yurcik:2002:SIS

Yan:2017:HTC

Younge:2015:SHP

REFERENCES

Yermolovich:2009:ODL

Yu:2013:OSI

Yi:2018:CSN

Yao:2014:GFT

Yang:2017:RVM

Yi:2015:ESF

[YYL+15] Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Chao Wang. Explaining software failures by cascade fault localiza-
REFERENCES

Yehezkel:2001:TST

Yang:2014:IIV

Yut:2017:LRL

Yang:2013:QSE

Zhao:2016:SHC

REFERENCES

REFERENCES

Zhang:2017:MAP

Zamorano:2013:ART

Zeng:2015:PPH

Zhang:2018:LFV

Zaman:2013:CAB

Zimmermann:2006:AHM
Alexander Zimmermann, Mesut Günes, Martin Wenig, Jan Ritzerfeld, and Ulrich Meis. Architecture of the hybrid MCG-
mesh testbed. In ACM [ACM06c], pages 88–89. ISBN 1-59593-540-0. LCCN ????

[Zim05] Dennis Zimmer. VMware and Microsoft Virtual Server: virtuelle Server im professionellen Einsatz; [VMware GSX, ESX und Microsoft Virtual Server; Virtualisierungsssoftware im Vergleich; Planung, Installation und Verwaltung]. Galileo

Zimmer:2006:VSV

Zhu:2011:OPV

Zhu:2017:NFV

Zhou:2013:LPC

Zhang:2016:MAV

Qinghua Zheng, Rui Li, Xiuqi Li, Nazaraf Shah, Jianke Zhang, Feng Tian, Kuo-Ming Chao, and Jia Li. Virtual

Zhou:2013:OVM

Zou:2012:CDA

Zhang:2014:VFP

Zhou:2018:SFC

Zhong:2019:TFL

REFERENCES

REFERENCES

Zhang:2001:HJAb

Zhang:2005:ILS

Zhang:2006:SPV

Zhang:2007:DIB

Zhu:2017:VLV

Zou:2014:VOV

Zhang:2019:EAV

Zhou:2017:NFA

Zhang:2017:CBV

Zhao:2009:DMB

Zhao:2018:PAP

Zeng:2016:VEF

Zhong:2015:VBM

Zhou:2018:VMM

Zytaruk:1994:WVMa

Zytaruk:1994:WVMb
