A Bibliography of Publications about Virtual Machines

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 January 2019
Version 1.310

Abstract
This bibliography records books and other publications about virtual machines.

Title word cross-reference

32.95 [Ano97a]. 5 [ALW15]. TM [Cza00]. TP [LTK17]. d [XDL15]. HV^2M
[CBZ+16]. ω [Arv02]. II [Syr07]. V^2 [DG05].

-dienste [WF03].

.NET [Fra06, Fra09, Hee07, Hog06, Hog08, Men03].

/CLI [Fra06, Fra09, Hee07, Hog06, Hog08, Siv07, Wil06]. /dev/random
[Fer11].
Abstraction [YLH17, Sch09]. Abstractions [BJH+16, MD12, Tsa14, UR15].
Accelerated [SCSL12, SWF16, BHDS09]. Accelerates [Ano03a].
Accelerating [BSSM08, MNS+14, ZLBF14, KKC+16]. Acceleration [DEK+03, PRS16, Wu13, XZZ+16].
Accelerator [GKT17, LKW+17]. Access [KCWH14, KP15, LZW+17, Boz07, CWC+14, CFS+12, MN91, O08, PSC+07].
Accesses [WVT+17]. account [Yel99]. accountability [HBP06].
Accounting [JSHM15, CMP+13, HB08]. Acculock [XXZ13]. accuracy [CEG07, EG03].
Accurate [RRB17, ZDLG17, SK13b, XXZ13]. ACDC [AHK+15]. ACDC-JS [AHK+15].
achieve [ZL13]. Achieving [KMK16, MBK+92]. ACLE [PRB+90]. ACM [ACM90, ACM01b, RM03, ACM04b, AC05c, ACM05d, ACM06a, IE04, Vra05, Cre10b].
Across [JWL+18, TMMVL12]. action [KB17, Siv07]. Activation [RSN+18].
Actor [TCP+17]. actors [GE85, Sub11]. Actra [TLD+89]. Ada [Dom80a, Bak83, GBO87, GR80, Ibs84a, Kam83, Ker88, Ibs84b, SGS92, SM92, Vol90, Wes98, ZEdlP13].
Ada'97 [ACM97]. Adaptable [GIK+99, CGM17]. adaptation [ZBG+05]. adapters [SAB+07].
Algorithm [AAK18, BP99, IW12, ZHL16, GA18, Hog02, JGA+88, LZX+16, MM92, MS17, RGT18, RH17, RT18, TMLL14, Tho68, YLCX17].
Algorithm-Dependent [BP99]. Algorithms [FGLI15, HHK94, KP99, Man15a, SHW+15, AB16, BB12, CRB12, Man18, ME08, MJ03, SGS92, XTB17, YTS14]. aligned [AGIS94]. Alignment [EDS+15]. allocate [LLF+18]. Allocation [CW12, CPST14, Do11, GLBJ18, HKLM17, KRS+17, LLZ18, Man15a, NMG15, PCC+16, VTW16, XSC13, CPST15, dCCDFdO15, DEG+17, EdFG+10, GLLJ16, HMH17, JWH+15, KS18, Mly09, SGV13, ZG13, ZLH+15, ZWC+19].
allocation-site-based [CPST15]. Alternative [MLG+02, vMAT14, SPF+07]. Alto [ACM01b]. AMD64 [Ano14a].
American [Boa90]. among [CDN02, LLF+18, LTZ+14, TtLcC13]. amplifying [DP11]. Analogy [Gai75]. analyses [HB13]. analysing [PV06]. Analysis [ACM05a, BFG+14, HT98, HB17, HWB03, JKK+13, KNT02, LCK11, MM93, NMS+14, Ost94, RI00, SM02, TKG89, WH99, WLS+18, ACM01a, AAH+03, BBM09, BMER14, EMS15, FX06, GP13, GPW03, LTZ+14, MD73, MD74, MSG01, RRB17, SMSB11, TLX17, Wün13, YJZY12, DHPW01]. Analysis-Driven [ACM05a]. analytic [Bar78]. analytics [KB17]. Analyzer [Ano03a, SHLJ13]. Analyzing [CVWL13, PV08]. Android [CXLX15, KLF+15, MMP+12, STY+14, THC+14]. Angeles [ACM06c, IEE84b]. Animated [PCR89]. annealing [RH17]. Annotated [MR04, RSF03]. annotation [ANH00]. annotation-aware [ANH00]. Announcement [Ano00]. Annual [ACM06a, Ano10, IEE85, IEE05, MS91b, Shr89, USE00a, USE01a, USE06, ACM06a]. anomalies [FRM+15]. anomaly [SIK+16]. Ant [AAK18, AP18]. Antfarm [JADAD06a]. Anti [Sta07]. Anti-P2P [Sta07]. Antonio [ACM99, USE01b]. Anwendung [Bec09, Bor01, WF03, Zim06]. Any [WL96, FIF+15]. AOT [WKJ17]. APA [JNR12]. Apache [FRM+15]. apart [LBF12]. API [Ano14c]. APL [Alf91]. applets [Wes98]. Appliance [See10]. Applications [BRX13, AEMWC+12, BSM+12]. Application [AW17, CHW12, cCWS14, Cza00, HMH17, KNT02, KLF+15, LWC+17, MD73, MD74, PCW+16, TB17, AS14, BBS06, IBM88, Int88, IBM96, JJSK+13, JCZZ13, DJJ+06, Kag09, Lia05, LBF12, LLS+08, MRGB91, SE12, SWcCM12, SAGS13, SL00, ZS01, ZBG+05]. application-specific [ZS01]. Application-transparent [AW17]. Applications [Ano99b, Ano03a, BAL15, Boa90, DJS+17, FBL18, HHV+02, HSK17, HC17, IEE05, JW17, NKK+06, Pto13, PY93, SS05, TR88, WLS+18, AS76, AHH91, AC16, AB16, ACT94, ABC+07, BD11, BTLNBF+15, BOF17, DMH18, DBC+00, EF94, EMS15, GH12, GTN+06, GHG+93, HeC14, HKD+13, HSC15, JPT94, KRG+12, LCL14, MCC18, dO12, PTM+15, R+13, RSLAGCLB16, Sch13b, SGG12, SZZ88, TDG+18, WDC10, YGN+06, ZBP05, ZNSL14]. Applicative [AS85a, ABR82, AS85b]. applied [MM92]. Approach [BFG+14, BRX13, CEF17, CLW+14, Cox09, DPCA11, DM75, EMAL17, FPS+02, Jen79, JQGW15, KC16, KAH83, NSJ12, SDD+16, VN06, WJ10, WVT+17, XD17, ZTWM17, BML+13, BHvR05, CGL+08a, CGL+08b, CGL+08c, CBZ+16, GLLJ16, KW13, KKB14, LH13, LU04, MD73, MD74, PSC+07, SENS16, TZK17, XHCL15]. Approaches [BAL15, FMIF18, JK15, TIN09]. Appropriate [ZRS+16]. apps [MMP+12]. April [Ano01b, IEE84a, USE01c]. Arbitration [SKJ+17]. Architectural [DCP+12, JR02, NMHS15, PEC+14, SL12, CFS+12, DLL+16, RVJ+01, WLL+13]. Architecture [BBD+91, BKM87, BDR+12, CAF+91, DAH+12, G+05, Gol73, Gum83, HW93, HSU01, HWCH16, IEE85, KZB+90, Kee77, LMG00, LMG01, LGR14, MSS+15, GCC+16, PK75a, Rev11, SJV+05, SSB03, SN05a, SWF16, SUN99, TR88, TV12, Tur92, Uhl06, WIS+15, ZL18, ZGW+06, ZL18, ZGW+06].
Ano94, Ber86, BR01, CCL+17, CLDA07, DS09, FC98, GDSA+17, GCARPC+01, HIIG16, Hog02, HMS04, IBM88, IJK+06, Jou85, KW80, LW+12, LL14, MS01, MJ93, NOK+85, OJG91, RFBL001, Ros06, SIJPP11, SG09, We02, YTS14, YYPA01, Yur02. Architecture-aware [WIS+15].

Architecture(R) [MBBS13]. Architectures [ACM06b, BN75, EMAL17, EG01, HW93, HHK94, Ian14, PG74, PY93, RD90, BGS13, EM13, PG73, Skr01, YZW+13, ZP14]. Architecture [Dal97]. Area (BFG+14, Fis01]. Arizona [IEE05]. ARM [DN14, DLL+16, GNDB16, MGL+17, ZTWM17]. Aroma [Sur01]. Arquillian [Ame13]. Array [MBK+92, SV15]. Arrivals [KMM13]. Art [BGP00, SGB+16, BDF+03, MDD+08]. Artificial [MR91, TV092, BCM90, KCV11, RK16]. Arts [BB08]. as-a-Service [ESY+17, HPHV17]. aspect [BADM06]. Aspects [Hsu01, Kna93, EF94]. assembler [GBO87]. Assembly [BD01, SVB93, Ber86, Don88, Juo07]. Assembly-Language [SVB93]. assignment [AAM+16, KMT14, WZV+13]. Assisted [CCML12, JSHM15, JAS+15, RTL+18, AJH12, GMK17, ZYZ+18]. Assists [OLZ16]. Association [Sof83]. Assurance [LJZ12, LLW+12]. Assuring [YDW18]. AST [ZLBF14]. asymmetric [CBGM12, KKJL14]. Asynchronous [Cav93, LJJ+11, MM93, SM01, WN17, vLSM01]. Atlanta [USE86, USE00a]. ATMS [CWG00]. atomicity [BHSB14]. attached [Mon97]. Attackers [CL07]. Attacks [SL16, SYB12, TV12, WWL+17, GHD12, VT14, WXW15]. Attestation [ZL16, VT14]. attribute [FS89]. Auction [SZW+16, TVKB16, ZG13, ZLH+15]. auction-based [ZG13]. Auctions [ZH+17]. Auditing [SM90]. aufsetzen [RHM08]. augments [Br98]. August [RM03, IEE96a, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03]. Australia [MR91]. Author [DM76]. automata [RGAT18, RT18, TLX17]. automata-based [RGAT18, RT18]. Automated [AD18, ACM05a, Aon03b, BSSS14, HLP+16, FGLI15]. Automatic [MS00, SMES01, SMA+10, Sus76, WML02, ZLZ13, CL17b, MSZ09]. Automating [MJW+06]. Automation [ACM06a]. automaton [Sig89]. autonomic [SWC08, WDCL08]. Autonomous [SC17]. availability [AAF+09, Fu10, LDL+08, MRC+13, YLH14]. Available [Aon03b, GI12, GV13]. avatar [CKT08]. average [LDL14]. avionics [ABC+07]. Avoidance [LYS+18, OG16]. Avoiding [BLRC94]. Award [War11]. Aware [AAK18, BMS16, BL17, CWH+16, CGC16, CWL+15, CYX+17, CHLY18, Do11, EGR15, HC17, HPP15, JJK+11, JQW15, KL14, LMM18, Man16, RG17, SDD+16, TB17, XLL+14, XLJ16, YHL17, ZCG+17, ZWL+18, dSdF16, AO16, AMAB17, ANH00, CD14, DXM+17, DC14W17, Fu10, GLK+12, GA18, HSC15, HC12, IKU15, JNR12, KC16, KBB11, KCS14, KLF+15, LYLY18, LWL16, PFPJ18, RH17, SSB+14a, SSN12, SG12, SZL+14, SK13c, WIS+15, WCC+16a, XCJ+14, YRJ18, ZHHC17, ZWC+19, ZWH+17]. Awareness
[ZHL16, LCL14]. **Azure** [Fab13].

B [Req03]. **B5500** [Ham76]. **Back** [KS08b], **backhaul** [MCC18]. **Backup** [ACA16, KRS+17, ZWX16]. **Backup-Sharing** [ACA16]. **bad** [RY10].

Bahamas [Ano99b]. **Balanced** [LLW+16], **Balancing** [KS08b]. **Backup-Sharing** [ACA16]. **Bad** [RY10].

Bahamas [Ano99b]. **Balanced** [LLW+16], **Balancing** [KS08b]. **Backup-Sharing** [ACA16]. **Bad** [RY10].

Bahamas [Ano99b]. **Balanced** [LLW+16], **Balancing** [KS08b]. **Backup-Sharing** [ACA16]. **Bad** [RY10].

Bandwidth [LJFS17, YLH17, ZRS+16, BAC15, GLLJ16, LZW+15, WQG15, WXW15]. **Bandwidths** [LMM18]. **Bare** [AGH+16, OSK15, GAH+12]. **Bare-metal** [AGH+16, OSK15, GAH+12].

Barrier [Rix08]. **Barriers** [LM99]. **Base** [UOKT84, WH08]. **Based** [AAK18, Bad82, BAL15, CWL12, CHW12, CLW+14, CD12, CDD13, DF96, GGG03, HKM+18, HWHW18, JN15, KP15, KAZS14, LW11, LP14, LCT+15, LW12, LZW+17, MJW+14, MGL+17, OVI+12, PvdS08, Ran02, RWX+12, SJV+05, SHZ+14, SKJ+17, TV12, WB81, WLS+18, YWR+14, YLH17, ZQZ+16, VLSM01, AD18, AAJD+16, Ano96, Ano06a, AB16, ALL06, AMA+11, BD11, BL17, CL17b, CVWL13, CGL+08a, CGL+08b, CGL+08c, CWC+14, CBZ+16, CLcC13, CPST14, CPST15, CV910, CRG16, DP11, DC15, DPCA11, ESY+17, FS89, FLB10, FL13b, GTGB14, GDSA+17, GR15, HOKO14, HWHC16, JW+15, Kag09, Kam13, KS13, KRCH14, KKB14, KDB16, KM13, KJM+07, KJK+13, gKEY13, LMM17, LBL16, LYYY17, LYYY18, LLS+08, LC13, MCC18, MFA+18, Oi05, Oi06, Oi08, PFH+16, PGLG12, QZDJ16, RGAT18, RH17, RT18, SJ14, SS13, SENS16, SG10a, SV17, SV17, SCFP00, Sto07, TT96, TY14, VOG+03, WKT08, WDCLO8, WZ+17, WW77, XZI1, XZZ+16, XWX+17, YC98a, YC98b, YZW+13, YZLQ+14, YLCH17, YBZ+15, ZG13, ZLH+15, ZWHC17, ZAI+16, ZLL+16, dSKO17, vKF13].

Beneﬁt [HB14]. **Benefits** [LS15, SIRP17]. **Berkeley** [USE01c]. **Best** [B+07, GHS16, MS17, Sch13a]. **Betreiben** [RHM08]. **Betriebssystem** [CK06a, CK06b, CK06c, CK06d, CK06g, CK06f, CK06i, CK06h, CK06j, CK06k, CK06m, CK06n, CK06o, CK06p, CK06q, CK06t, CK06r, CK06s]. **Betriebssysteme** [WR07, WR08]. **Better** [MW05, Com00].

Between [Jen79, KLTT18, ZLHD15, BDJdS02, CL17a, GSW+17, KGS16]. **Beyond** [FPS+02, ACM04a]. **Bias** [Lee16]. **biased** [ABDD+91]. **Big** [GTS+15, MSG14, BOF17, DXM+17]. **Billing** [RB17]. **Bin**
[GR15, SXCL14, XDLS15]. Binary
[KL15, ZFL15, dGG+17, HLW+13, JYW+13, PGLG12, vKF13]. BIND
biogeography-based [ZLL+16], biology [Wün13]. Biopolis [Ano06a]. bird
[VED06, VED07]. Bitcoin [HB14]. BizOps [FBL18]. Black
[NMMP15, VVB13, TZK17, WSVY09]. black-box [TZK17, WSVY09]. Blessing
[Kot10, Kot11]. Block [Sch94b, Sch94a, TLBW12, Zyt94a, Zyt94b, FFBG08, FLCB10, LLE17, TKG89, WF07]. block-device [FFBG08].
block-level [FFBG08]. block-paging [TKG89]. Blockchain
[CQLL18, DMH18]. Blocks [Lam75]. blows [BBTK+17]. Blue
[SSU+12]. board [CGV10]. Bochs [Ano14b]. bodies [AGIS94]. Bolton
[ACM03b]. Book [Ano97a, Fro13].边界 [ZHL16]. Bottom
[UOKT84]. Bottom-up [UOKT84]. bound [JGA+88]. boundary [SBQZ14].
bounded [XHL+13]. Box
[NMMP15, TZK17, VVB13, WSVY09, XHCL15, MNS+14]. branch
[CEG07, EG03, JYW+13, JGA+88, JYW+13, WHC16]. branch-and-bound
[JGA+88]. branch-and-price [WHC16]. branches [KJM+07]. Breadth
[MNS+14]. Breaking [GBK15, Rix08]. breeds [Arm98]. Bridge
[Men03]. Bridging [ACM04b, FL13a, GSW+17]. Brighton [Rix08]. bring
[XKY+11]. Bringing [BDR+12, STS+13]. brokering [TMVL12]. browser
[FIF+15]. BSD [WF03]. Buch [KGG00, Tho08]. buddies [WTL11].
Budget [RB17]. Budget-Driven [RB17]. buffer [JADADO6b]. buffers
[CFG+13]. Bug [Ano97b, Ano15]. Building [AAB+05a, CGM17, DBC+00, DF96,
HWCH16, PEC+14, SJV+05, See10, TSP17, Nie12, SG10b, WH08].
Burstable [WUNK17]. bursts [DP11]. bus [HHPV15]. Buying
[YLN+17, ZHL+15]. buying-based [ZHL+15]. BYOD
[DMG+15]. Bypass
[LHAP06]. Bytecode [MO98]. bytecodes [SUH86].

C [Fra06, Fra09, Hee07, Hog06, Hog08, Wil06, Blu02, CWG00, G+01, Hee07,
Hog06, Hog08, JM08, Men03, Sirv07, Wil06]. C# [G+01]. C/C [Blu02]. CA
[ACM06a, ACM06c, Ano05a, IE88b, IEE93a, USE01c]. Cache
[JQW15, Na16, RHR02, Boz99, JADADO6b, Oi05, RJK16, ZP14]. caches
[BBR94]. Caching [KJL11, MM93, LM99, XWX+17]. Calculations
[Bad87]. Calculus [AVB12, Wat86, Wat87, WK00]. Calif [ACM01b].
California [ACM05a, Ano01b, Ano04b, Ano10, IEE96a, IEE97, IEE09,
USE91, USE99, USE01c, USE02, IEE84a, IEE90a, IEE91, Tho93]. Call
[DEK+03, Lee16, PUL016, PVRR14, SSS+14a]. Call-site [SSS+14a].
calling [HB13, SSS+14a]. calls [VBM12]. Cambridge [IEE93]. Can
[Cox07, GW07, THB06, Sig89]. Canada [ACM06f, SoI83]. CAOS
[Sch86]. Cap [HC17]. Capabilities [TV092, Ame13, AAB+05c, Fit14]. capable
[PST+15]. Capacity [HMH17, WUK+18]. capo [SMSB11]. Capping [HSK17, JKK+13]. Capture [SCFP00, Sur01]. Capture/Replay [SCFP00]. capturing [BKC+13]. Card [Siv04, SUN97, HM01, Req03, JCV99]. cards [GLV99, TLBW12]. carry [Ame13]. carrying [FCG+05]. Cascade [YYL+15]. cascading [HL13]. Case [GGG03, HWB03, Ian14, PK75a, HIIG16, MN03, Sig89, SIRP17, Vit14]. Case-Based [GGG03]. Cases [FG91]. Cassandra [FRM+15]. Catalyst [Ano03a, GMK17]. Categories [Gai75]. causes [FRM+15]. CBase [ZLZ+19]. Cells [DAH+12, cellular [ALW15, Sig89]]. Center [Ano93, Car14, CGC16, DY17, IEE90b, PCC+16, WN17, XWJX15, HUWH14, LZW+15, Man15b, MRM06, MBM09, NTH+17, VOS12, WDCL08, WZ+13, YPLZ17, ZLZ+19, ZWH+17, Car13]. Centers [BB13, CL17a, EGR15, KMM13, LVM16, Man15a, Man16, SB16, YL17, ZHL16, dSdF16, AGH+15, AGH+15b, ATS16, AMAB17, ARMMA18, BB12, FL+13, IKU15, KTB17, LZC+16, PVRR14, RK16, RH17, RT18, RJK+17, WCY+17, WTLS+09]. centralized [Fis91]. Certain [JHS12]. Certified [Khn09, IIPB09]. CeU [SIR+17]. Chain [EMAL17, HJG18, RH17]. Chain-based [RH17]. Chaining [LLW+16, GHM+18]. Chains [JWL+18, KLLT18, NRS92]. Challenges [AFG+17, JW17, Nie12, SG10b, FJKK17, LDDT12, MA10, MA17, PCB+18, TIIN09]. change [ZL13]. Changing [Mac79]. Channel [LGR14, MN03, WXW15]. Channels [Hu90]. Characteristics [SHW+15, CWC+14]. Characterization [AMA+14, CGS06, IEE02, IEE03, ACM06c, RVJ+01]. characterize [LJN+00]. Chatten [Joo06]. Cheat [Rul07]. checking [BHSB14]. checkpoint [BBHL08]. checkpoint/restart [BBHL08]. Checkpointing [ECJ+16, PEL11, SGV12, TSLBYF08, dSOK17]. checkpointing-enabled [SGV12]. Cherub [JCCZ13]. Chicago [ACM05d]. chip [Mon97]. Chips [FRD+08, IEE97, IEE99, IEE96a]. Choices [XDLS15, Ano93]. CICS [R+13]. circuit [Bur02, KKC+16]. Class [LCWB+11, LB98, Pat12, SS17, Won97]. classes [Bor07, Skr01]. classical [SGS92]. Classification [VLZ16, CWC+14]. classification-based [CWC+14]. Cleancache [VTW16]. CLI [ECM01, ECM02, ECM05, ECM06, Int06b, Int06c, Int06a, Fra06, Fra09, Hec07, Hog06, Hog08, Siv07, SNS03, Vog03, Wil06]. CLI-based [Vog03]. Client [RSW+06, DPW+09, HIIG16]. CLIP7 [Lau87]. Cloning [LCWB+11]. Closing [ZLHD15]. Cloud [ASSB18, BB13, BHEP14, CWL12, CPKL17, CFM17, CPS17, DKW15, FBL18, GLS15, GSW+17, HM17, HKLM17, JE12, JQWG15, JW17, KC16, KMM13, KAZS14, LCWB+11, LGR14, LGJ+18, LW12, LS15, MSG14, Man15a, Man16, Man18, MJW+14, MPA+18, NSJ12, PCW+16, PXG+17, PS16, PCC+16, RSNK17, RSGG15, RWX+12, SL14, Sar16, SJS+17, SC18, SZ+16, SV13, SXCL14, TB17, TVKB16, TMMVL12, WVT+17, WUNK17, WUK+18, WLS+18, XSC13, XWJX15, XLL+14, XLJ16, YLN+17, YP15,
Combining [BPP+17, RSLAGCLB16, YJZY12]. COMMA [ZNSL14].

Commandos [MC93]. Commodity [RTL+18, Ros99, ZTWMA17, BK14, CGL+08a, CGL+08b, CGL+08c, CLDA07, TLBW12]. Common [CK87, Cro93, Int05a, Int05b, Int06a, ECM01, ECM02, ECM05, ECM06, Int06b, Int06c, Int06a, MR04, PW03, RSF03]. communicating [SK13c].

Communication [CL17a, CK06b, CK06e, DJ77, HW15, Jen79, RLZ+16, YC98a, YC98b, BML+13, DSC+08, DJ76, GI12, Tho93]. Communications [NKK+06, CFVP12, HSC15, MN91].

Communicating [SK13c]. Communicating [CL17a, CK06b, CK06e, DJ77, HW15, Jen79, RLZ+16, YC98a, YC98b, BML+13, DSC+08, DJ76, GI12, Tho93].

Communications [NKK+06, CFVP12, HSC15, MN91].

Community [AAB+05a]. compaction [WK08].

Community [AAB+05a]. Compacting [Gal11]. Comparison [Do11, EDS+15, Ng01a, Ng01b, QNC07, AA06]. Compatible [ZFL15].

Comparison [Do11, EDS+15, Ng01a, Ng01b, QNC07, AA06]. Compatible [ZFL15].

Comparison [Do11, EDS+15, Ng01a, Ng01b, QNC07, AA06]. Compatible [ZFL15].

Comparison [Do11, EDS+15, Ng01a, Ng01b, QNC07, AA06]. Compatible [ZFL15].

Compatibility [SSH17, Bod88, FS08, GLK+12, Sub08].

Comparative [CRZH15]. Comparative [BFG+14]. Compilation [ACM06b, Cla97, FM90, JK13, KS13]. Compiler [GFH82, Har77, FS89]. Compiling [BS90, BSUH87, Ode87, Wak99]. Complete [Bod10, Fis09, LJN+00, RRB17, War02].

Completely [Bod10, Fis09, LJN+00, RRB17, War02]. compression [JDW+14].

Computational [THLK10, Wun13, YQZ14]. Computations [Kra90, NOR15].

Computing [ACM98, ACM04b, ACM05b, ACM06e, Abr80, BHEP14, CWL12, CPKL17, CFM17, DDS+94, DPCA11, Gei02, IEE96b, IEE04, IEE06a, KC16, KGZ+04, LCK11, LW12, MSG14, MO98, NSJ12, PCW+16, PXG+17, PS16, RCM+12, RSNK17, RSN+18, SCSSL12, SZW+16, SEF+06, TLC06, USE93, Vog03, WB81, XSC13, YLN+17, ZL16, ZZW06, ZAI+16, Ano96, AMa+14, ARMA18, BS96, CD14, CDM+10, DQR+13, DCMW17, Fis91, FF96, Fro13, Fu10, GLA+08, JPTHE94, KHL17, KSO+15, LBZ+11, LLW+12, LZC+16, LCL14, LTZ+14, LP11, LPBB+18, MNA16, McG72, McK11, MUKX06, M+06, MA17, NIA18, PSZ+07, QZJD16, RGAT18, RQD+17, Rob06, SJW+13, SAS13, SB10, TMLLL4, WH08, XTB17, YRJ18, ZLZ13, ZWHC17].

concurrency-safe [CFS+12]. Concurrent [GMP99, Har77, KD78, IT86, WK08, YWGH13]. Conditioned [WC01].

Conference [ACM81, ACM90, ACM96, ACM97, ACM00, ACM01b, ACM04b, ACM05d, ACM06a, ACM06b, ACM06f, Ano93, Ano99b, Ano01a, Ano02, Ano04a, Ano06a, BW03, DC15, IEE84b, IEE93a, IEE05, LCK11, Mar81, MS91b, MR91, Sof83, SS05, Shr89, USE99, USE00a, USE01a, USE01b, USE06, ACM05c, ACM06e, IEE06b, JPTE94, USE85, USE86, ACM00, IEE85].

Configurable [WJGA12]. Configuration [BRX13, Lar09, A+04, FL13b, SMA+10]. configurations [LDL+08]. configure [Car14]. Configuring [AL05, Rul07]. confirmation [OG16].

Connected [SMES01, MS00]. connection [MJ93, Tur84, TR88].

consistency [FRM+15]. Consistent [DJS+17]. Consolidated [HJ17, HPP15, JJKJ14, OL13, SS13, ZLL+16]. Consolidation [AAK18, BB13, LVM16, PZJ+07, SBK15, AGH+15b, ATS16, AMAB17, AP18, BB12, BB15, CD14, Fro13, HMH17, HZZ+14, gKEY13, KCV11, LZZ+16, LBL16, LYY+17, LYY+18, LWW18, LL14, LDDT12, Man15b, NTH+17, RT18, R+02, SEN16, SN12, WCC+16a, YRJ18, ZLCZ18]. consolidation-aware [WCC+16a]. constituent [RHR02]. Constrained [EGR15, LTE12]. Constraint [LFBB94, DQJ+15, LYY+18].

constraint-based [LYY+18]. Constraints [BB13, KKS12, SZ13].

Constructing [DM93]. Consumption [DSM14, HKM+18, MV16, FFB+00, DPBK16, RJK16, THG+18, VED07].

Container [SPF+07, YLT+17, ZLW18, SG10a, Str13]. Container-Based [YLT+17, SPF+07]. Containerization [HSL17]. Containerized [HSL17].

containers [Ros14]. Containment [CLW+14]. Content [CWH+16, FLZ17, LYS+18, GVI13, LL+18, LWW18]. Contention [JQWG15]. Contention-Aware [JQWG15]. contents [BTLNB+15]. Context [DMG+15, TMV12, vLSM01, HB13, SSB+14a, SM01]. Continuous [DL93, TSLBYF08]. Continuum [Bad87]. Contraction [Par79]. Control [AGLM91, Att79, CL16b, HHC+16, LZZ+15, PSBG11a, RSNK17, RSN+18, Sch94b, Sch94a, SDD+16, Sur01, WJ10, WUK+18, WN17, WSAJ13, Zyt94a, Zyt94b, AS76, BKH+06, FP14, HB08, Kis08, KKS12, Lia05, PSZ+07, PSBG11b, PSC+07, STS+13, ZBG+05, ZSW+06]. Control-Flow [WJ10].

coordinating [ZNSL14]. Coordination [ABV12, CRG16, Tho93]. COOTS [USE99].
Copley [USE01a]. Coprocessor [LRZ16]. Copy [AGJS16, HDG09].
copying [PV08]. CORBA [GCARPC 01]. Core
[RTL+18, CMP+07, DQR+13, KW13, PNT12, SK13b, YTS14].
Corfu [DJS+17]. Corner [Sch94b, Sch94a]. correct
[DM93, IM75, Kou11]. Correction [Lee16]. Correspondence [BDJdS02].
Cosmology [Nel04]. Cost [AMH+16, HKM+18, Dre08, KJM+07, LBZ+11,
OMB+15, SJRS+13, WCY+17, YRJ18, ZLZ15]. cost-aware [YRJ18].
cost-efficient [OMB+15]. Costs [ZHW+17, FLL+13]. count [XWX+17].
counter [NB11]. Counteracting [VT14]. Coupled [KN17]. course
[AL05, Don88]. courses [BBS06, GD08]. Cover [Arm98]. Coverage
[CSS+16]. Coverage-directed [CSS+16]. covert [XWX15]. CPU
[BSSS14, HB08, JGW+11, Kam13, LWC+17, Skr01, SK13c, WGLL13].
crash [KY16]. create [Fit14]. creation [CK06b, CK06e]. Credit [KP15, KCS14].
Credit-Based [KP15]. crisis [AT16]. criteria [ATS16]. Critical
[ANO15]. Criticality [WLMD16, LWM14]. Crop [UBF+98, BDF+98].
Cross [GSS+18, JR02, JXL+12, SWF16, WLW+15, WCC16b, AWR05, BKC+13,
Cross-ISA [WLW+15, WCC16b, CWH+14]. Cross-Language [GSS+18].
Cross-Platform [JXL+12]. cross-run [AWR05]. cross-thread [BKC+13].
Crosscut [CLG+10]. CrossOver [ANO3b]. cryptographic [QZDJ16].
[Cre08a, Cre08b, Cre09, Cre10b, Cre10a]. CUDA [MGL+17, PRS16].
Current [AH12, RG05]. Curse [HB14, Kot10, Kot11]. Customer [PPO14].
Customer-oriented [PPO14]. Customizable [LJFS17]. Customization
[PCC+16, CGV10]. customized [HB13]. CVM [DSC+08]. CyberGuarder
[LLW+12].

DADTA [ZLCZ18]. DAI [AKK+07]. damn [B+07]. Dana [ANO10].
Dancing [DLX+17]. Dark [Fer11]. Darling [MR91]. Dartmouth
[Lee86].
Dartmouth-Smalltalk [Lee86]. Data
[BFW75, BB13, CL17a, CGC16, DY17, EGR15, FL13a, GTS+15, IEE84b,
KP15, LMM18, LVM16, Man15a, Man16, Nel04, PCC+16, SB16, UVL+13,
WN17, We94, XWJX15, YLH17, ZHL16, dSdF16, AKK+07, AGH+15b,
AGH+15a, ATS16, AMAB17, ARMA18, BK14, BB12, BDE+03, BOF17,
CKR17, CFS+12, Cla05, DXM+17, FLL+13, GE85, GH91a, HN08, HUWH14,
IK15, KT517, KJJ+16, KSLA08, KB17, LDK14, LZW+15, LZZ+16,
Man15b, MRM06, MBM09, NTH+17, PVR14, PRB07, RK16, RH17, RT18,
RJK+17, She91, TSLBYF08, VOS12, WKJ17, WDC08, WZV+13, WCY+17,
Wol9, WTLS+09, WCG14, XXZ13, YPLZ17, ZLZ+19, ZWH+17]. data-flow
[GE85]. data-parallel [She91]. Database
[WK90, BBS06, CSSS11, ECAE13, MN91, MRC+13, PTM+15, SI81, SMA+10].
databases [GDSA+17]. Datacenter
[BBM+15, KGGS17, BCP+08, GTGB14, MSG+12, SG10b, ZLZ15, ZWC+14].

Datacenter-scale [MSG+12]. *Datacenters*

[JWL+18, KL14, LGJ+18, SC17, SC18, GLLJ16, LPBB+18, WRS13].

Dataflow [HT98]. *Datapath* [TSP17]. *Dataplane* [BPP+17, DBT [KS13], DCN [CYX+17], DDG [PGLG12], DDG-based [PGLG12], de-duplication [CLC13], de-facto [Rus08]. dead [SK13a].

deadline [DQLW15]. deadlocks [PRB07]. Death [NOT+17]. Debian [CK06a, CK06b, CK06q, Bau06a, CK06a, CK06b]. Debues [Ano03b].

Debugger [MZG14, RB01, Sun99, But94, HH05]. Debugging [ACM05a, FS12, HHH04, Cia07, JHE14, KM13, KK79, PMC05]. December [ACM05b, HHK94, IEE05, M+06].

Decision [CHW12, DJ17, SC17, DJ76].

deep [GKT17, HcC14]. defending [CVWL13]. Defensive [BDJdS02, Coh97]. Defined [AFG+17, CL17a, CPKL17, JN15, LLW+16, ZKWH17, ALW15, HHSG18, LJR12, LWL16].

Defining [DL89, Hir17, Lot91, BMWB86]. Definition [Dom80b, SSB14b, SMO84, EMS15, SSB01]. Declarative [Oak14, Chi08].

Deduplication [MJW+14].

deep [GKT17, HcC14]. defending [CVWL13]. Defensive [BDJdS02, Coh97]. Defined [AFG+17, CL17a, CPKL17, JN15, LLW+16, ZKWH17, ALW15, HHSG18, LJR12, LWL16].

Defining [DL89, Hir17, Lot91, BMWB86]. Definition [Dom80b, SSB14b, SMO84, EMS15, SSB01]. Declarative [Oak14, Chi08].

Deduplication-Based [MJW+14].

deep [GKT17, HcC14]. defending [CVWL13]. Defensive [BDJdS02, Coh97]. Defined [AFG+17, CL17a, CPKL17, JN15, LLW+16, ZKWH17, ALW15, HHSG18, LJR12, LWL16].

Defining [DL89, Hir17, Lot91, BMWB86]. Definition [Dom80b, SSB14b, SMO84, EMS15, SSB01]. Declarative [Oak14, Chi08].

deep [GKT17, HcC14]. defending [CVWL13]. Defensive [BDJdS02, Coh97]. Defined [AFG+17, CL17a, CPKL17, JN15, LLW+16, ZKWH17, ALW15, HHSG18, LJR12, LWL16].

Defining [DL89, Hir17, Lot91, BMWB86]. Definition [Dom80b, SSB14b, SMO84, EMS15, SSB01]. Declarative [Oak14, Chi08].

Delay [RSNK17, RKRK17, WCY+17, ZRS+16, LCL14]. Delay-cost [WCY+17].

delay-sensitive [LCL14]. Delivery [FLZ17, TFDLeC15]. delta [SHTE11].

Demand [CWLI2, KKJ+13, MSS+15, SC18, SEF+06, ZZF06, DEG+17, J+05, JCGZ13, LZW+15, SGV13]. Demand-based [KKJ+13, SGV13].

Denelcor [Dun86]. denotational [Arv02]. Denver [USE00b].

deployed [RY10]. Deploying [KLTL18, R17]. deployment [AAB+05b, Bor07, CGV10, SASG13, ZLZ13, ZLY+12, ZBS+15]. derivation [MSZ09]. Derivative [Pfo13]. derived [Int06c]. Deriving [HWB03].

Design [ACM06a, AC16, AN03a, AN03b, fLtwN14, ACA16, BGS98, CPS17, Clo85, DAH+12, Das91, Dom80a, DLS+01, ESY+17, GFB+92, JNR12, JJ02, KGGS17, Kutt92, LH16, Mar08, OH05, PCW+16, SIR+17, SGGB99, SGGB00, SM02, Sur01, WC01, WCSSG05, WP97, XJC+14, ZSXZ07, ZL18, ZAI+16, AM16, Blu02, BT15, Bur02, CARB10, Car14, DN14, DCA04, DNR06, GR80, HH05, HH13, Les74, Lia05, MSC92, Oi05, PMC05, Pul91, SI81, SNV10, SMB11, SJW+13, Tar84, CMP+07].

Designed [HS06, WU13]. Designing [Par79, TGCFC08]. DesignJet [MSCK92]. Designs [DMS02, RGSJ17].

Desktop [ANO3b, BWD+15, KGG00, CCWY05, SWW+18, WH05].

Desktopping [JKB15]. desktops [KKJL14]. Destruction [NOT+17].

Detecting [CL14, JKDC05, TV12, CWDo+06, LRC05]. Detection [CWS12, CLW+14, JHS12, AD18, AMA+11, FLM+08, MA17, PBYH+08, SIK+16, WCIG14, XXZ13]. detection/prevention [MA17]. detectors [LMJ07]. Determined [BP99]. Determining [ZRS+16]. Deterministic
developers [SS17, Wil06]. Developing [HZZ+14, PCR89, R+13].
Dynamically \cite{MZG14, BLRC94, BDT13, FC98, HH13}.

dynamically-linked \cite{FC98}.

Dynamics \cite{YWCF15, ACT94}.

E-Mail \cite{Joo06}. e-Science \cite{SGV12}. e-server \cite{A04}.

Eagle \cite{KS18}.

early \cite{HLW+13}. early-exit \cite{HLW+13}. Ease \cite{Par79}. eBay \cite{Joo06}. ECMA-335 \cite{ECM01, ECM02, ECM05, ECM06}.

ecological \cite{KSSG16}.

Economic \cite{FBL18, CSV15}.

ecosystem \cite{DMH18}.

Edge \cite{BBM+15, CPS17, Cre10b, RSNK17, RSN+18, Sar16, Cre10a, MPA+18}.

edge-intelligence \cite{MPA+18}.

Edition \cite{KGG00, LYBB14}.

Editorial \cite{Sed07}.

Editors \cite{FDF05, KS08b}.

EDSAC \cite{CK96}.

Education \cite{ACM06d, AJD09, DG05, GLA+08, HMS04, DTW07}.

educational \cite{WDSW01}.

Effective \cite{LIW11, LWC+17, WUK+18, Sto07, WKJ15}.

Effectively \cite{UR15}.

effectiveness \cite{Man15b}.

effects \cite{KCV11}.

Eficcient \cite{BHDS09, BKH+06, CWL12, CWH+14, CGV10, CHPY17, DMR10, ECJ+16, EG01, GHS17, HB13, JGSE13, KJL11, LM99, MBBS13, NTH+17, ORPS09, PP16, PCC+16, RSF+15, SHZ+14, TLX17, WLW+15, WCC+16, WCC+16a, WLW+15, WHD+16, WXW+17, YSH+17, YP15, AAM+16, AMABI7, HV05, BB12, BB15, BRLD10, BHSB14, BDE+03, Car14, CGM17, CFS+12, DQLW15, DCP+12, EGKPO2, FM90, HM18, HMH17, IKM+13, KMT+14, LLLE+17, LZA+16, NTH+17, OMB+15, PEL11, RT18, RZ14, SENSI6, SJRS+13, SSN12, SGV12, SYMA17, SLA+16, SHTE11, WKJ15, XXZ+13, YPLZ17, YLK+10, ZMW16, ZL13, ZLCZ+18].

Efficiently \cite{CW+15, EJGSI5, BKC+13].

Eighth \cite{IEE01}.

Einem \cite{See08a}.

Einführung \cite{ZIM05}.

Einsatzmöglicherkeiten \cite{ZIM05}.

Einsatzszenarien \cite{SCH13a}.

Elastic \cite{KSO+15, LPBB+18}.

Elasticity \cite{GLS15, OSK15}.

electricity \cite{LBZ+11}.

Electronic \cite{MSCK92, ZR06}.

electronics \cite{BB08}.

Elektronische \cite{MAR08}.

ELI \cite{GAH+12}.

elimination \cite{VED07}.

elliptic \cite{AGIS94}.

Elm\cite{AEE01}.

em88110 \cite{VdLFC97}.

embeddable \cite{WEB10}.

Embedded \cite{BH15, DEK+03, KUT92, MON97, NKK+06, SMK02, WLW+15, AH12, CAOA00, CT03, CGV10, HK07, IVE03, KKC+16, LTK17, MBBS13, RJK16, RMB02}.

Embedded-System \cite{KUT92}.

Embedding \cite{AML16, BL17, OM3+15, YLH17, AO16, BCC+15, CRB12, EMI13, JK15, KKM+13, NTH+17, SLZ+14, WHC16}.

EMF \cite{WIPD12}.

emulate \cite{tTR82}.

emulated \cite{THC+14}.

emulating \cite{VdLFC97}.

Emulation \cite{ANO03a, BKMM87, JN15, KKK17, BB08, CWH+14, GD08, KAM13, YJZY12, BRO89}.

emulations \cite{BOD88}.

Emulator \cite{ANO14b, BRU07, CFH+79, CFW+80, COS11, MZG14, WCC16b, BAR06, KSS13, LES74, SHEO2}.

Emulators \cite{ERT03, HC+16, ERT05}.

Enable \cite{XU17}. enabled
[DMH18, SGV12, VOS12]. **enabler** [DPW+09]. **Enabling** [HD16, KMK10, NOT+17, OVI+12, TY14, WHD+16, LSS04]. **encoding** [BDE+03]. **Encrypted** [HB17]. **Encrypting** [Pro00]. **End** [Ram93, SS17].

end-users [SS17]. **Energy** [AAK18, BWD+15, CWL12, DMR10, DQLV15, Do11, DCMW17, EGR15, FLZ17, HKM+18, JJK+11, KC16, KDB16, KCS14, KL14, LMM18, LZZ+16, LYY18, LGJ+18, OBSR16, RK16, RH17, SYMA17, SZZ+14, YLK+10, YR18, ZWC+19, ZHL16, AMAB17, ARMM18, BAC15, BB12, BB15, BRdM10, CD14, DP11, DXX+17, FFB+00, GLK+12, GTO+06, HM18, JWH+15, KMT14, KTB17, DPBK16, NTH+17, dOL12, PVR14, RP07, RT18, SENS16, THG+18, VW08, YPLZ17, ZLCZ18]. **Energy-Aware** [AAK18, Do11, EGR15, LMM18, DCMW17, KC16, LYY18, RH17, SZZ+14, ZWC+19, CD14, DXX+17, GLK+12, KCS14]. **Energy-Awareness** [ZHL16]. **Energy-credit** [KCS14]. **Energy-Efficient** [DMR10, LZZ+16, SYMA17, YLK+10, BB15, BRdM10, HM18, NTH+17, YPLZ17]. **Energy-Oriented** [BWD+15]. **Enforcement** [LJFS17, NMM15]. **Enforcing** [KCS12, WZZ].

'Engine [Wal10, GLV+09, MO98, GLV+10, J+05, MIZ+05]. **Engineering** [IEE84b, ACM01a, MzG2, WZV+13]. **Enhance** [GLS15]. **enhancement** [DXX+17, KSS].

ENIAC [ZR06]. **Enlightened** [AGJS16]. **ensemble** [RGAT18]. **ensuring** [Req03]. **Enterprise** [ADG+92, FPR+06, G+06, LVM16, Holo8, NS07, WH05, Ano03a, Goli11]. **enthüllt** [Joo06]. **Entrepreneur** [War11]. **Entropia** [CCWY05]. **Entropy** [TV092]. **Entropy-Driven** [TV092]. **enumeration** [SSH17]. **Environment** [BGM70, CL16b, GIK+99, Gen86, GGG03, HW93, IEE06a, J+05, JADA06a, LWC+17, LW12, Mac79, RT93, TMV12, XSC13, AAB+05b, BH13, CLDA07, CWG00, Don87, GD08, GMR93, Holo9, HL13, JWH+15, JXZ+10, JADA06b, KW13, McG72, MST+05, MPF+06, RGAT18, TMLL14, TT93, Van06, WLL+13, XZZ+16, ZBP05, ZLLL13]. **Environments** [ACM05d, ACM06f, CWL12, GKXK13, HWH10, HKK13, KGZ+04, RGSJ17, SV13, ZZF06, ATS14, BBC+15, BRdM10, BDK+08, CFVP12, DP11, DEG+17, FMIF18, GMK17, HOK04, HC12, KSO+15, KKK14, PSZ+07, SJW+13, SVG12, TRG13, VDO14, WWL13, XHL+13, YLK+10]. **Ephemeral** [WHS+16]. **equivalent** [TLX17]. **Erlang** [TCP+17]. **Error** [XH16, XHL+13]. **Ersatz** [Hin08]. **erstellen** [Zim06]. **Erstellung** [See08a]. **ESA** [Fis91, Gh91a, IBM94, MSS91, OJG91, SNC91]. **ESA/390** [OJG91]. **ESA/XC** [GH91a]. **eServer** [R+02, G+05]. **ESPRIT** [RD90]. **Essentials** [SNS03, MBM09, VSC+10]. **Estimation** [DSM14, HSK17, KSSG16, OBSR16, LBL16, MPA+18]. **ESX** [AAH+03, D+04, MHH+05, OH05, Rul07, R+02, Zim05, Holo8, MBM09, Wal02]. **ESXi** [GBK09]. **ET6** [Pul91]. **ET6/1** [Pul91]. **Ethereum** [Hir17]. **Eucalyptus** [AMA+14]. **European** [ACM04a]. **EUROTRA** [Pul91]. **Evaluating** [De 06, GLK+12, HW93, RCM+12]. **Evaluation** [AD11, CFH+79, CFH+80, DAH+12, HD12, KD78, PZW+07, SHB+03].
SHTE11, TFtLeC15, VMBM12, ACM06c, ALW15, DSSP06, FSH+13, GE85, Kao17, MCC18, Man18, VW08, WKT08, WWH+17, YZW+13, Hin08.

evaluations [SJW+13]. Event [DLX+17, MV16, YP15]. Event-driven [DLX+17], events [LC13]. everywhere [Tre05]. Eviction [AGJS16]. Evil [HCJ07].

Evolution [HH79, Kim84, SLM89, SL16, AGSS10, CD01, GBCW00, Kro09, WIDP12]. Evolutions [BAL15]. evolving [Ano96, FF96]. examination [HN08].

Examining [NL00]. exceeding [GHS16]. Exception [Sal92]. Exceptionization [YKM17]. exceptions [Ven97b]. exclusion [SGS92]. executable [MP01]. executables [AD18].

executing [ACT94, Lot91]. Execution [ACM05d, ACM06f, HWB03, KGZ+04, LWC+17, MM93, MO98, PY93, RT93, SV13, vLSM01, AS76, AAB+05b, BFC02, BDK+08, CLDA07, Fre05, GCARP+01, GK05, MMP+12, OIJ91, SM01, TT93, ZL13].

Experience [San88, RM03, CARB10, CBLFD12, PBAM17, RSC+15, TGCFO8]. Experiences [NV05, SCD90, Tsa14, CMP+07]. Experimental [Bro89, ACM06c, FSH+13, HLI3, SS72]. Experimenting [Taf11].

explorative [AHK+15]. explore [Fit14]. Exploring [SE12, SlDLb15, YBZ+15]. Expo [Ano06a]. Express [Ng01a, Ng01b].

Expression [Cox07, Cox09, Cox10, Cox12, Wat86, Wat87, Tho68]. Expressions [KP99]. Extended [DC15, Gum83, MT16, MT17, IBM88].

Extending [CT03, DLM+06, PTHH14, YTY00]. Extensible [FLCB10, TSP17, DCA04, YZY12]. extension [DCP+12]. Extensions [Fis01, SCP93]. EXTERIOR [FL13b]. External [AA18, FL13b].

extraction [WML02]. ExtraV [LKY+17]. ExtraVirt [LRc05]. extreme [NOR15]. EXUS [SKC73].

Failure-aware [Fu10, ZWH+17]. Failures [YYL+15, PBYH+08]. Fair [CL15, GLLJ16, HSN17a, RZ14]. FairGV [HSN17a]. Fairness [SKJ+17].

Falle [Mar08]. familiarized [Ame13]. Farms [Do11]. Fast [CSS+13, CLW+14, Cox07, CHPY17, HSN17a, Kou11, NOT+17, PEL11, ZLW+14, ZFY18, ZLZ+19, KMMV14, KJLY15, MSZ09, SK13b, SV15].

Fast-Spreading [CLW+14]. FastDesk [SWW+18]. FAST [D+04]. Fault [FK03, JKJ+10, Kim84, YWR+14, YYL+15, ZJXL11, SNV10, YLH14].

Fault-Tolerant [FK03, Kim84, YWR+14, SNV10]. faults [LRC05]. FCP
[SAB+07]. Fe [ACM00]. feather [YGN+06]. feather-weight [YGN+06]. feature [Bag76]. Features [Gal11, Bau06b, Bau06a, IT86]. featuring [Wil06]. February [Ano10, USE01b]. federated [AO16, CFVP12, dCCDFdO15]. federation [LWLL16]. Fedora [HH08]. feedback [NG13, ZBG+05]. feedback-control [ZBG+05].

Framework [DY17, GH91b, JXL+12, KCWH14, KAJW93, LWW10, MGL+17, PXG+17, PST+15, SZW+16, TMV12, XWH+16, ZFL15, Ame13, AC16, BB15, BDE+03, CD14, FPGK18, Fre05, JSK+13, Kag09, Kao17, KKM+13, KJJ+16, LLE+17, NB11, PV06, RH17, RSC+15, SJRS+13, SL00, SI+16, STY+14, WHC16, ZWW16, ZS01, ZSR+05]. Frameworks [ZLLW18, AGH+15b, HZZ+14]. France [ACM90, ACM05b, Jou85, JPT94]. Francisco [ACM06a, USE02]. Free [Ano03a, BFX+13]. FreeDOS [WF03]. French [Apr09]. frequency [Kam13, AMAR17]. Friendly [ZBG+05]. Front [Ram93]. Frontier [Sar16]. Frontiers [ACM06c, M+06]. Full [HHC+16, HSL17, MCE+02, Sch13b, SWF16, LLY+18, YKS16].

Full-System [SWF16]. Function [EMAL17, FLZ17, HSL17, JW17, LLW+16, RKRK17, YWL+18, ZKWH17, ALW15, BCC+15]. Functional [ACM90, Dan86, GMP89, Ame13, Wak99, Jou85]. Functions
[DL89, KLLT18, TF16, FJKK17, HHSG18, QZDJ16, GHM+18]. funfte
[Müh75]. funnel [LMV12]. Fusion [Kis08]. Future [Her06, KS08b, RG05,
Sup04, AH12, Baut05, NIA18, Ros14, Str13, Yur02, SJPP11]. Fuzzing
[KLF+15]. Fuzzy [Hu90, LZ15, FLM+08, SENS16]. FWNs [SIJPP11].

G [ALW15]. GA [HMH17]. game [FK13, GLLJ16]. games [WKC+09].
Gaming [ZQCZ16]. Gap [DGLZ+11, FL13a, GSW+17, ZLHD15]. gaps
[HUWH14]. Garbage [ADM98, DS16, GTS+15, HPHV17, PBAM17, Sch13a,
SHB+03, BOF17, DEE+16]. Gast [WF03]. Gast-Systeme [WF03].
Gateways [CCO+05]. Gateways [DW14]. gather [Wol99]. GC
[HHPV15]. GCompris [CK06t, CK06r, CK06s, CK06q]. GCTrees
[DS16]. GDB [MZG14]. geharteten [See08a]. Geiger [JADAD06b].
Gelato [Ano06a]. Gene [SSU+12]. Gene/P [SSU+12]. General
[GF+92, XWH+16, BDE+03, LSS04, SS72]. General-Purpose
[GF+92]. Generation [Ano03b, AC98, BDF+99, CF00, GFH82, MZG14, PG74, EL98,
IIK+06, LLS+12, PG73, Sus76, Web10]. generational [WK08]. generations
[BOF17]. generator [ABDD+91, EGKP02]. Generators
[Fra83, GHF83a, GHF83b, WNL+83]. Generic [MM94]. generics [Int06a].
Geo [JWL+18]. Geo-Distributed [JWL+18]. geographically [KTB17].
Georgia [ACM03b]. Georgia [USE86, USE00a]. German [Joo09, Bec09,
Bod10, CK06a, CK06b, CK06q, Fis09, Lar09, Sch13a, Spr07, WR07].
Germany [RM03, GHH+93, IEE01]. get [Ame13]. gets [Ron07]. Ghost
[Ar07]. GI [Müh75]. Giants [FS12]. GKLEE [LLS+12]. Global
[LLW98, Sta97]. GloudSim [DC15]. GNAT [CDG97, MB98, Shi03]. go
[Cox12, Joo06, DC15]. Goto [Abr80]. GPGPU [TY14]. GPU
[DS09, GKM17, HSN17a, HSN17b, MNS+14, MGL+17, NMS+14, RSC+15,
RS16, SCSL12, SIRP17, SKYK16, XML+18, YLWH14, YSS+17].
GPU-Accelerated [SCSL12]. GPU-assisted [GMK17]. GPUDirect
[YWCF15]. GPUs [LLS+12]. GPUvm [SKYK16]. GRACE [M+06].
graindient [MM92]. Gradual [RSF+15]. grain [WJGA12]. Grained
[BSSS+14, CHW12, CDD13, HSK17, RB17, YSS+17, JCZZ+13, PG11, YTS14].
granular [FS89]. Grande [ACM01b, DHPW01, GPW03].
Grande/ISCOPe [ACM01b]. Granularity [PXG+17, LLS14]. Graph
[CFM17, CRG16, LKY+17, Syr07, YTS14]. graph-based [CRG16]. graphic
[Wal76]. graphic-simulator [Ber86]. graphical [Bur02]. Graphics
[Ano03b, JXL+12, VLZL16, XML+18, ME87, Sus76]. Graphs
[Lee16, Bod88, PUL016]. gray [WSVY09]. gray-box [WSVY09]. Greedy
[NMG15]. Green [KL14, LLW+12, LLL2, WZV+13, YLJJ14].
Grenoble [ACM05b, JPTE94]. Grid
[ACM05b, IEO04, SEF+06, TLC06, ZZF06, vLSM01, Rob06, SJW+13,
SVG12, ZBP05, AKK+07, CCO+05, KGZ+04, LP14, WKT08, ZBP07].
Grid-Based [vLSM01]. GridGIS [M+06]. grids
GTN +06, GBCW00, LBZ +11, LLEE17, LM99, LMG00, LDL +08, MUXK06, M +06, MRC +13, RQD +17, SB10, SPF +07, WXW15, WWH +17, ZYZ +18.

High-Assurance [LJZ12]. high-availability [Fu10, LDL +08].

ddM +06, GBCW00, LBZ +11, LLEE17, LM99, LMG00, LDL +08, MUXK06, M +06, MRC +13, RQD +17, SB10, SPF +07, WXW15, WWH +17, ZYZ +18.

High-Assurance [LJZ12]. high-availability [Fu10, LDL +08].

Higher [BD03]. HighLevel [DMS02, RB01]. High-Performance [ACM98, IEE06a, KCWH14, LMG01, SD01, SCSL12, WCC16b, dGG +17, Han16, Hog02, LLEE17, LM99, LMG00, MUXK06, SPF +07, WWH +17, ZYZ +18]. high-performing [GBCW00].

High-Assurance [LJZ12]. high-availability [Fu10, LDL +08].

Histograms [CL14]. History [SKJ +17].

Host [CLW +14, QNC07, LMJ07, TB14]. Host-Based [CLW +14, LMJ07]. Hosted [SVL01, CBLFD12, CKT08, DS09]. hosting [RQD +17]. Hosts [BB13, Bau06c, CLL +13, TtLcC13]. Hot [IEE96a, IEE97, IEE01, BBTK +17].

Hot [IEE96a, IEE97, IEE01, BBTK +17]. Hotel [USE01a]. HotOS [IEE01]. HotOS-VIII [IEE01]. Hotplug [LJL +15]. HotSpot [Sch13a, Arm98, BOF17, HHV +02]. HotSpot™ [RB01]. Houston [ACM06d]. HP [BKMM87, MSC92].

HPC.NET [Vog03]. HPCC [DF96]. HPCS’06 [IEE06a]. HSPT [CLW +14, QNC07, LMJ07, TB14]. Host-Based [CLW +14, LMJ07]. Hosted [SVL01, CBLFD12, CKT08, DS09]. hosting [RQD +17]. Hosts [BB13, Bau06c, CLL +13, TtLcC13]. Hot [IEE96a, IEE97, IEE01, BBTK +17].

Hot [IEE96a, IEE97, IEE01, BBTK +17]. Hotel [USE01a]. HotOS [IEE01]. HotOS-VIII [IEE01]. Hotplug [LJL +15]. HotSpot [Sch13a, Arm98, BOF17, HHV +02]. HotSpot™ [RB01]. Houston [ACM06d]. HP [BKMM87, MSC92].

HPC.NET [Vog03]. HPCC [DF96]. HPCS’06 [IEE06a]. HSPT [CLW +14, QNC07, LMJ07, TB14]. Host-Based [CLW +14, LMJ07]. Hosted [SVL01, CBLFD12, CKT08, DS09]. hosting [RQD +17]. Hosts [BB13, Bau06c, CLL +13, TtLcC13]. Hot [IEE96a, IEE97, IEE01, BBTK +17].

Hot [IEE96a, IEE97, IEE01, BBTK +17]. Hotel [USE01a]. HotOS [IEE01]. HotOS-VIII [IEE01]. Hotplug [LJL +15]. HotSpot [Sch13a, Arm98, BOF17, HHV +02]. HotSpot™ [RB01]. Houston [ACM06d]. HP [BKMM87, MSC92].

HPC.NET [Vog03]. HPCC [DF96]. HPCS’06 [IEE06a]. HSPT [CLW +14, QNC07, LMJ07, TB14]. Host-Based [CLW +14, LMJ07]. Hosted [SVL01, CBLFD12, CKT08, DS09]. hosting [RQD +17]. Hosts [BB13, Bau06c, CLL +13, TtLcC13]. Hot [IEE96a, IEE97, IEE01, BBTK +17].

Hot [IEE96a, IEE97, IEE01, BBTK +17]. Hotel [USE01a]. HotOS [IEE01]. HotOS-VIII [IEE01]. Hotplug [LJL +15]. HotSpot [Sch13a, Arm98, BOF17, HHV +02]. HotSpot™ [RB01]. Houston [ACM06d]. HP [BKMM87, MSC92].

HPC.NET [Vog03]. HPCC [DF96]. HPCS’06 [IEE06a]. HSPT [CLW +14, QNC07, LMJ07, TB14]. Host-Based [CLW +14, LMJ07]. Hosted [SVL01, CBLFD12, CKT08, DS09]. hosting [RQD +17]. Hosts [BB13, Bau06c, CLL +13, TtLcC13]. Hot [IEE96a, IEE97, IEE01, BBTK +17].

Hot [IEE96a, IEE97, IEE01, BBTK +17]. Hotel [USE01a]. HotOS [IEE01]. HotOS-VIII [IEE01]. Hotplug [LJL +15]. HotSpot [Sch13a, Arm98, BOF17, HHV +02]. HotSpot™ [RB01]. Houston [ACM06d]. HP [BKMM87, MSC92].

HPC.NET [Vog03]. HPCC [DF96]. HPCS’06 [IEE06a]. HSPT [CLW +14, QNC07, LMJ07, TB14]. Host-Based [CLW +14, LMJ07]. Hosted [SVL01, CBLFD12, CKT08, DS09]. hosting [RQD +17]. Hosts [BB13, Bau06c, CLL +13, TtLcC13]. Hot [IEE96a, IEE97, IEE01, BBTK +17].

Hot [IEE96a, IEE97, IEE01, BBTK +17]. Hotel [USE01a]. HotOS [IEE01]. HotOS-VIII [IEE01]. Hotplug [LJL +15]. HotSpot [Sch13a, Arm98, BOF17, HHV +02]. HotSpot™ [RB01]. Houston [ACM06d]. HP [BKMM87, MSC92].
[McC08, MJW+06, Nel04, NKK+06, OG16, PP16, XH16, AO16, AMA+14, AA18, BDS+09, Car14, Hal09, HH13, J+05, KRSL10, LLY+18, Low08, dOL12, MR04, PW03, RSF03, Fro13]. **infrastructures**

[FPBK18, LPBB+18]. **Ingers** [KYP+17]. inherently [TDG+18]. **InkTag** [HKD+13]. **Innovation** [ACM03a]. innovations [ABB+15]. input [Wal76]. insider [LC09a]. **Insiderinformationen** [LC09a]. insiders [KSS09, KS10]. **Insights** [Rev11]. **Inspection** [SKI+17]. Installation

[Bec09, Bor01, KGG00, Lar09, WF03, Zim05, Zim06, MIS+05]. **Instance** [EMAL17, KCKC15]. **Instances** [WUNK17, ZG13]. Instant [PWW15, Joo06].

[Instructions] [Qia99]. Instrumentation [ZFL15, BZA12]. Instrumenting [MZG14]. Instruments [BPB86]. integer [Wal76]. integer-reference [YTY00].

[Integrated] [LC09a]. Integrating [ZSR+05]. Interpreter [SMK02, Ber86, KMMV14]. interpret/graphicsimulator [Ber86]. Interpreters
PRB07, RJK16, RSW91, SKC73, SMO84, Taf11, Tai98, WCG14, WWH+17.

Language-independent [PFH+16], language-level [WCG14]. Languages [BS90, Dan86, KP99, LFBB94, PTHH14, SSG90, Tol98, YKM17, ACM99, BDT13, Jou85, PMC05, PULO16, Sus76, TB14, We02, Wu13, YWF09].

LARD [WCG14]. Large [DK93, GKBB15, PHL+12, RGSJ17, SLM89, XDLS15, ZSXZ07, ZLW+14, BLC94, DK75, FPGBK18, LPD+11, Nie12, Req03, SZ13, SHTE11, YZSC17].

Large-Scale [PHL+12, SLM89, XDLS15, ZLW+14, SZ13, YZSC17]. Latency [ASSB18, BPP+17, BL17, MV16, IMK+13, ZSW+06]. Later [FS12].

Later [BLRC94, DK75, FPGK18, LPR+11, Nie12, Req03, SZ13, SHTE11, YZSC17]. Layering [PSC+07]. LayerMover [ZFY18]. Lazy [Wak99]. LDA* [YZSC17].

Lean [SV15, Ven96]. Learning [BRX13, AD18, GKT17, KRG+12, RGAT18, RT18]. Legacy [LU04].

LegoSim [RMB02]. Lern [CK06q, CK06t, CK06r, CK06s]. Lernprogramme [CK06q, CK06r, CK06s, CK06t, CK06v, CK06w]. Lernprogrammen [CK06q, CK06r, CK06s, CK06t, CK06v, CK06w]. Lessons [RM03, LZJ12, Rob06, HSM04]. Level [AC16, cCWS+14, Chu06, DMS02, KHW+16, NTR18, RB01, SV13, ZSR+05, ZQCZ16, AD18, AL05, BSM+12, But94, Cia07, EGD03, FLCB10, IM75, JHE14, LZW+17, SVN+10, SWcCM12, SSG90, WF07, WCG14, ZLZ13].

Leveraging [LLF+18, LDL+08, Pfo13, RTL+18, WHD+09, ZL13, AJD09, ZBG+05]. Libraries [DK93, Int05b, Won97].

Library [Cro93, SJS+17, PBWH+12]. libvirt [Ano14c]. Life [ZR06]. Lifetime [WJ10]. Light [WJ10, HB08].

Light-Weight [WJ10, HB08]. Lightweight [ABV12, CXLX15, Ran02, VN06, WJ10, YME05, ZTW+17, vMAT14, AMA+11, CCL+17, DQR+13, RSD+17, SSU+12, TB14, XZ11]. Like [Abr80, SSOT17]. LILA [Dan86]. Limbo [Luc97]. limited [CH08]. Limits [WBB+16, vKF13]. line [SV17]. linguistic [UR15]. Link [KL1T18, CRB12, JK15]. linked [FC98]. linking [FC98]. LINUX [KGG00, Ano06a, CK06a, CK06b, CK06c, CK06d, CK06e, CK06f, CK06g, CK06h, CK06i, CK06j, CK06k, CK06l, CK06m, CK06n, CK06o, CK06p, G+06, Mar08, USE09a, WF03, Bau05, Bau06c, BBH08, Ble10, Bor01, CK06a, CK06b, Com00, Com03, DN14, Dav04, Fab13, G+06, GNDB16, MZG14, NWH010, NV05, P*08, Ros14, Spr06, Spr07, VBBM12, Win13].

LYS+18, YWR+14, Bir94, TF16, XH90, XTB17. **Load-balancing** [KAZS14]. **Loading** [LB98, HSC15, WGF11]. **Loads** [LTE12]. **Local** [ADM08, Oi08, PCR89, HJ10, KMT14, Oi05]. **Locality** [HSC15, SZ88]. **Localization** [YL15]. **Location** [USE93, OG16]. **Location-Independent** [USE93]. **Locator** [SLJPP11]. **lock** [YTS14].

Load [KAZS14]. **Loading** [LB98, HSC15, WGF11]. **Loads** [LTE12]. **Local** [ADM08, Oi08, PCR89, HJ10, KMT14, Oi05]. **Locality** [HSC15, SZ88]. **Localization** [YYL15]. **Location** [USE93, OG16]. **Location-Independent** [USE93]. **Locator** [SIJPP11]. **lock** [YTS14]. **Logic** [DMS02, GH91b, UOKT84, Alf91, Bur02]. **Logical** [RT93, Lia05, TT93]. **Logically** [Jen79]. **Logics** [BW03]. **Logisim** [Bur02]. **logistics** [LZWC13]. **LogP** [CKP93]. **Long** [KKLV16, KGS16]. **Long-Distance** [KKLV16]. **long-running** [KGS16]. **Longest** [HWHW18]. **Look** [HMS17]. **lookaside** [CFG13]. **Lookup** [HWHW18]. **Loris** [AvMT11]. **Loss** [XDLS15, CHCC07]. **Losungen** [Tho08]. **LOTOS** [MS91a]. **Louis** [ACM97].

Low [BPP17, WCG14, ZHCB15, GE85, IMK13, SJRS13]. **low-cost** [SJRS13]. **low-latency** [IMK13]. **Low-level** [WCG14]. **Low-overhead** [ZHCB15]. **low-resolution** [GE85]. **LTTng** [WKJ15]. **Luminous** [KNT02].
Clo85, Cof99, CGV10, dCCDFdO15, CWG00, CD01, DH01, DSC+08, DP11, DM93, DBC+00, Don87, DJ76, DXM+17, EGKP02, EG03, FLL+13, FM90, FMI18, Fit14, FF96, FLM+08, FCC+05, Fre05, GTGB14, GCARPC+01, GPW03, GR80, GBCW00, GA18, HUL06, HK07, HcC14, HPHS04, HSC15, IBM85, IBM88, Int88, IBM94, IBM96, IKU15, JK+13, JNR12, JG+11, JADAD06b, Kal97, KOY05, KS13, KSO+15, KS18, KTBJ7, gKEY13, KCS14, KJLY15, KCKC15, KKC+16, KFF12, Kou11, KCV11, KRG+12, Lam75, LBZ+11, Les74, LC02, LM99, LZWD15, LBL16, LWLL16, LYYY18, LIW18, Lia05, LL14, LPBB+18, Lot91, LG93, MSG+12, MD73, MD74, MSG01, DPBK16, MS17, Man18, MNA16, MS00, McG72, MC93, MN91, MST+05, MA07, MJ93, NOK85, NIA18, OG16, Oi08, ORPS09, PE11, PFPJ18, PCB+18, Piz17, Pul91, Raj79, RZ14, Req03, RFBL001, RY10, RJ+17, Sch13b, SMGD10, SHLJ13, She91, SCEG08, SASG13, SL00, Sig89, SGGB99, SGGB00, SKC73, Smi97, SYMA17, SMA+10, SBP+17, SSU+12, TSLBYF08, TMLL14, Tay76, tTR82, THG+18, TIIN09, TB14, TT93, Tur84, Vag10, Van98, Ven96, Ven97b, Ven97c, Ven97d, Ven99b, VVB13, WGF11, WKT08, WRX11, WZV+13, WKJ15, WCY+17, Web10, WLL+13, WW77, Won97, XHL+13, XCJ+14, XJWW15, XZZ+16, YME05, YZW+13, YLH14, YLH14, YPLZ17, YLH17, YBZ+15, YLK+10, Yel99, YRJ18, YGN+06, YQZ14, YTY00, ZG13, ZXW16, ZYZ+18, ZLZ15, ZLH+15, ZHHC17, ZFY18, ZWC+19, ZBP07, ZLL+16, ZL13, ZLLL13, ZWH17, ZLCZ18, ZWC+14, dSOK17, AEM+14, AAB+05a, Ano97b, Ano97c, Ano97d, AC98, BD01, BP01, BP03, BZD17, Caa00, CCWY05, CK87, Cla97, Coh97, CDG97, Cra98, Cza00, DCA04, DLS+01, Eng99, FS11, FFB+00, Fra98, FK03, Fuj91, GGG03, HT98, HM01, HWE03, HB08, Ivo03, JR02, JDJ+06, JJ02, Joo07, KM13, LMG00, LMG01, LB98, LV99, LY97a, LY99, LYBB13a, LYBB13b, LTK17, Men03, MB98, Mon97, MP01, OT97, Oi05, Oi06, PTHH14, PRB07, Ran02, RB01, SMK02, SSB+14a, SH04, Sch13a, SMES01, Set13, SMSB11, Shi03, SG12, Sim92, SSB01, SSB14b, SM02, Sur01, Ta98, Tol98, TO96, UR15, Ven99a, Wc02, Wf09, WWMG06, vD00, Ano97a]. **Machine-Based**

[LB11, WB18, CGV10, WKT08, YZW+13]. **Machines**

[Ao75, ASSB18, BMS16, BP99, BJhD02, BSSS14, Bee05, BB13, BRX13, CL17a, CWL12, CCCM12, CWS12, CSS+13, CL16a, CCO+05, CH78, CHLY18, CDN02, DSM14, DEK+03, Den01, DK17, DMR10, DKW15, Do11, EGR15, EGJS15, ECJ+16, Ert03, EDS+15, Gal75, G+01, GTS+15, Gum83, HKLM17, HB17, HS06, HPP15, Ian14, JE12, Jen79, JXL+12, JAS+15, JK+10, KCWH14, KJL11, KP15, KAH83, LMR18, LZZ+15, LYYY17, LD05, LHP06, LW12, LJJ+15, LLZ18, Mac79, Man15a, MD12, MGL+17, MM94, PSBG11a, PS16, Rev11, Ros04, SD10, SCSL12, SV13, SN05a, SN05b, Sta97, SKI+17, Sup04, TV12, UT87, Vog03, WLW+15, WGLL13, WZL15, WLLZ16, XSC13, XLL+14, ZRD+15, vLSM01, Agr99, AAM+03, AGH+16, ATS16, AAM+16, AMAB17, AS14, BAC15, Bac11, Bag76, BML+13, BDF+98, BHvR05, Bel06, BB12, BB15, BBM09, BBS06]. **machines**
[CL17b, CGM17, CCL +17, CH08, Cra05, Cra06, CWdO +06, CLL +13, DDS +94, DC15, DEG +17, DQLW15, DSZ11, DCMW17, EGD03, Ert05, EL98, EMS15, FBZS12, Fit14, FHL +96, FGLI15, FX06, Fu10, GI12, GVI13, Gol73, GLV +10, HM18, HMI17, HZZ +14, HDG09, JES +15, JW +15, JDW +14, JGSE13, KSSG16, KRC14, KBB11, LMI07, LZC +16, LLF +18, LJJL12, LQW +12, LC13, LTZ +14, LSS04, Man15b, Mat09, MG13, MRG17, hTMAC +08, NK10, NO15, FFM +16, PSBG11b, PMC05, PBYH +08, FR16, FK16, RH17, RR02, RT18, SBJ14, SS13, SENS16, SNV09, SS12, SJJ +12, JW +13, SSL +13, Ste14, Str13, SK13c, SLA +16, SHTE11, Syr07, TZZK17, TGC +08, TMMV12, T +06, TtLC13, VT14, VED07, WQG15, WXZ +17, WC06, WSVY09, WRSVM11, WRS +15, XHCL15, XWL +17, YCS98, YWFG09, YWGH13, ZBG +05, ZWHC17, ZWL09, ADM98, BHDS09].

Machines
[CT03, Cla97, MLG +02, PEC +14, SM01, UBF +98, YC98a, ZS01]. macro [Wel02]. macro-architecture [Wel02]. Made [Ste05]. Mail [Joo06]. Main [AW17, AMH +16]. mainframe [GBO87]. Mainstream [Uhl06, BBHL08]. maintaining [HPB06]. maintenance [LSS04]. Make [THB06, BC10, DMH18]. makes [Wal10]. Making [HKKW13, XLL +14, SJJ +12]. Malware [CL07, CD12, GG11, AD18, CVWL13, CWdO +06, YJZY12]. MAN [TDG +06, YYP01]. MAN/WAN [TDG +06], manage [Car14, Fit14]. Manageability [Gua14, MW05]. managed [CBGM12, CFG +13, GK05, RJK16]. Management [AW17, DMR10, HC17, KGGS17, KL14, LAR09, LJJ +15, LCFL12, LXM +16, MBW +86, MDGS98, SMS01, SC17, SDD +16, TB17, WIS +15, WLW +15, WGLL13, AKH +15, ATS16, ARMA18, BAC15, Beg12, BBMA91, BHDS09, BN89, CH08, Cla05, Fit14, Fu10, GTGB14, GLK +12, HB13, IMK +13, KCKC15, KB17, LLS +08, MS00, MBA +12, N507, dOL12, RH17, RP07, RJK16, SG10b, SWC08, TRG13, Wal02, WDC10, WWWL13, WCS06, WSVY09, YLCH17].

[ACM00, ACM06e, Ano04b, IEE84a, IEE90a, IEE91, IEE01, IEE06a, Mar81, TLC06, USE99, USE06, Yur02]. MBSA [CCL+17]. MC68020 [MM84].

Memory [AW17, AMH+16, Bad82, Bro89, CLL12, Cro93, GHS17, GKKB15, HHC+16, HPP15, JKK+11, KGGs17, LW11, LH16, JLJ+15, LWZ+17, LXM+16, MKKE12, RLZ+16, RXW+12, RGSJ17, SMES01, SLM89, VTW16, Wal02, WWH+16, WWL+17, WK90, WTLS+09, XML+18, AKH+15, ATS14, Ano15, BHD09, CWH+14, CW+14, CLC13, CH08, CMM+06a, CMM+06b, CMM+06c, GMK17, GVI13, GNB16, GL+10, HB13, HHPV15, HUWH14, JSK+13, JDW+14, KB17, LLIW18, LL+08, MS09, PPO14, RO16, RJK16, VED07, WWS89, WZW+11, WWWL13, WK80, ZP14, ZHCB15, ZWL09, ZL13, TF16]. Memory-Aware [JJK+11].

memory-limited [CH08]. Memory-Resident [WK90]. merging [TLX17]. mesh [JSR+13, ZGW+06]. message [DM03, TO91, UR15, XH90]. message-passing [TO91, UR15, XH90]. messaging [Joo06]. meta [BT15].

meta-tracing [BT15]. metacircular [PBAM17]. Metacomputing [MDGS98].

Metrics [Sch13a]. Metriken [Sch13a]. Mexico [ACM00]. Meyer [Ano97a].

MGC05 [ACM05b]. MI08 [Hin08]. Micon [BG89]. microarchitectural [EGD03, SK13b]. microcomputer [UBL+82]. microcomputers [GBO87].

microkernel [GMR93, St07, Uh07]. microkernel-based [St07].

Microkernels [FHL+96, HUL06]. Microprocessor [Ran02, ACT94, WW77]. microprocessors [But94]. microprogrammable [Bag76].

Microsoft [Lar09, Zim05, Ano99a, B+07, Car13, CBER09, Gal09b, Joo09, Kal97, KV09, KSS09, KS10, Lar09, MRM06, Not92, Ste05, Wou97].

Middleboxes [KRS+17, YDW18]. Middleware [ACM05b, HOK014].

Migrate [YBZ+15, CLL+13]. Migrating [JE12]. Migration [ABV12, BFG+14, BWD+15, CYX+17, DK17, EMAL17, KC16, KGS16, KKLV16, LRL+15, LML11, NBB16, RSNK17, RSN+18, SL14, SHW+15, TMM12, XXJX15, XLL+14, XD16, XD17, YWR+14, ZRS+16, ZCG+17, ZDLG17, vLST101, AGH+15b, AGH+15a, AS14, BAC15, BB08, CLC13, FMF18, FGL115, HLG+10, HGD09, JKK+13, JGW+11, JDW+14, JGSE13, KTB17, KJLY15, LZWD15, LZC+16, DPB16, MG13, NIA18, PDC+12.
LYYY17, DPBK16, MSZ09, NTH+17, OK90, PBL+16, RK16, SZL+14, Tur84, UBL+82, VOS12, WWS89, WHC16, WCC16c, WC91, TF16, YWL+18.
Network-aware [AO16, IKU15, ZHHC17]. Network-based [LYYY17].
O [RM03, AJM+06, AD11, ABG14, ABB+15, BMS16, BHEP14, CWH+16, CDD13, CRZH15, DCP+12, DS09, GAH+12, HB12, KS08a, KM+16, LLE17, LMR18, LHAP06, NaP16, PST+15, Rus08, SBQZ14, SVL01, TtLeC13, VW08, WR12, ZSR+05]. Oak [SVN+10]. Oakland [IEE84a, IEE90a, IEE91]. OAMulator [MS01]. OASIS [UBL+82]. OB [XHCL15]. Oberon [WF03]. Object [Bad82, BBD+91, BP01, CA+91, Low88, PTHH14, PM05, San88, STFH15, USE99, USE01b, BPP86, BPO3, BZD17, DNR06, SNS93, IT86, LM99, VED07, WML02]. Object-Based [Bad82]. Object-Oriented [BBD+91, USE99, USE01b, PTHH14, PM05, San88, BPP86, SNS93, IT86, WML02]. Objective [GLBJ18, LPB17, AP18, SL14, ZLL+16]. Objects [Qia99, SK13a]. Observation [NBH08, SCFP00]. observation-based [SCFP00]. occupied
OCTET [BKC+13]. October [ACM03b, Ano99b, Ano06a, Boa90, IEE03, Tho93, USE00a, Vra05].
off [CGV10]. off-board [CGV10]. Offensive [BDJdS02]. Offers [Ano03a, Got07]. office [BRdM10, Ano03b]. Offline [TRG13, SHLJ13].
Offloading [CL16a, GKXK13]. off [SidLB15]. OGSA [AKK+07].
OGSA-DAI [AKK+07]. Oktober [Müh75]. Old [Got07]. Older [SHB+03].
Older-first [SHB+03]. Oleco [Joo06]. On-Demand [SEF+06, ZZF06, DEG+17, JCZZ13]. on-stack [LH13]. One [Cre09, HPHV17, JK15, Ste14]. one-shot [JK15]. Online [FL13a, GR15, HKL17, HKKW13, JWL+18, Joo06, KTB17, NG13, RG17, SZW+16, SIK+16, SXCL14, ZHW+17, ZWC+14, BB12, LSS04, NK10, ZWX16].
Online-Handbuch [Joo06]. Ontario [ACM06f, Sof83]. onto [AO16, Bak83, BS90, PS16]. Open [AFG+17, SJV+05, AGH+15a, AAB+05a, FP14, TSP17]. Open-Source [SJV+05, AAB+05a]. OpenCL [KJJ+16, TY14]. OpenFlow [YKS16].
OpenNebula [KMT14]. OpenOffice [Joo06]. OpenQRM [Kar07].
OpenStack [BB15]. OpenSUSE [CK06g, CK06f, CK06o, CK06p]. Open-Source [SJV+05, AAB+05a]. OpenCL [KJJ+16, TY14]. OpenFlow [YKS16].
Optimal [BP99, BB12, DEG+17, HM18, HJG18, WHC16]. optimale [Sch13a].
Optimization [CPS17, CWH+16, DKW15, GLBJ18, KC16, LW11, Msl15a, MJW+14, NIA18, SM06, SHZ+14, WK90, YM17, YWF09, GACRP+01, HLW+13, JK13, KS13, KS18, LLL16, MS17, dOL12, ZLL+16].
Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12]. Optimize [OLZ16, MPF+06]. operator [GHM+18]. Opportunistic [KM16, OMB+15].
Optimal [BP99, BB12, DEG+17, HM18, HJG18, WHC16]. optimale [Sch13a].
Optimization [CPS17, CWH+16, DKW15, GLBJ18, KC16, LW11, Msl15a, MJW+14, NIA18, SM06, SHZ+14, WK90, YM17, YWF09, GACRP+01, HLW+13, JK13, KS13, KS18, LLL16, MS17, dOL12, ZLL+16].
Optimization-Based [SHZ+14]. Optimizations [HB12, NBK16, RLZ+16, CPST15, NG13, PGLG12]. Optimize [OLZ16, LDL+08]. Optimized [CGC16, KV11, LLL16, TMMVL12].
Optimizing [CEG07, dCDDFdO15, EG03, GKT17, HHC+16, JGW+11, KRS+17, LW+12, LL14, LXQ+16, MCZ06, SMK02, SV15, ZLLL13, ZJX11, FMIF18, HSC15, ZLBF14, FLL+13]. Options [HDG+08]. Oracle [VSC+10]. orbit [SSN94]. Order [BW03, FBC02]. Ordering [HHM17].
ORE [OMB+15]. Oregon [IEE93b, USE85]. O'Reilly [Ano97a].
Organization [BPC94, Kam83, RSGG15, Joo07, Skr01]. Organizational [PXG+17]. organizer [MS00, SMES01]. organizing [OK90]. Orient [IT86].
Oriented [BBD+91, BWD+15, BS90, CAF+91, DY17, LVM16, RSGG15, SYB12, USE99, USE01b, Beg12, BPB86, Frd13, GSN93, IJK+06, IT86, PTHH14, PMC05, PPO14, Sun88, WML02]. Origin [Den01]. Original [BDR+12]. Orthogonally [LMG01, LMG00]. OS-Level

Overcommitment [GKB15]. Overcommitted [CWS12, WCS06, ZHH17]. overhead [LPD11, LBL16, ZHCB15]. overheads [MST+05]. overload [LYY18]. Overloaded [BB13].

Pangoda [YSS17]. Palm [MS00, SMES01]. Palo [ACM01b]. Panel [G+01, UBF+98, BDF+98]. Papers [DC15, KM13, ACM90, G+88].

PAPM [SDD16]. para [LC13]. para-virtualized [LC13]. paradigm [BD11]. PARALISP [CRZ83]. Parallax [hTMAC+08]. Parallel [ACM06b, Arm78, BP99, BS90, EGR15, Fis01, HD16, HHH94, IEE93a, IM93, JN15, KNT02, Loy92, LCFL12, MM92, MM93, MRG17, MM94, NOT17, PY93, SSN94, TVO92, WCC15, Wat86, Wat87, Wel94, YP15, ZR15, AS14, AGI94, BPC94, Bir94, BL09, RFC02, CARB10, Cax93, CDM10, dCCDF05, CRG16, CKP93, DKF94, DDS94, DM93, EF94, FM90, GSN93, JGA88, KJLY15, Krah90, Les74, LG93, MeK11, MN91, NORT15, NG13, Pou09, RH17, RSW91, She91, SL00, Taf11, WK08, YC88b, Ble89, JPTE94, YC98a]. parallelism [YTS14]. parallelization [vK13].

PARD [MSS15]. ParDMCom [M+06]. PAROS [MM94]. PARS [CW15]. Parser [UOKT84]. Part [Cre09, HO92, RGSJ17, Sch94b, Sch94a, Cre08a, SS72, Zyt94a, Zyt94b].

PRIMITIVES [Ble89]. Princeton [FS11], principled [WSAJ13].
Principles [ACM75, ACM99, ACM03b, Joo07, SHW+15, Vra05, SS72].
Privacy [IEE84a, IEE90a, IEE91, WLL+13]. private [Nie12, SYMA17, WH08, Fro13]. Privileged [MPF+06]. Pro [SRS09, Fra06, Fra09, Wil06]. Proactively [GBK15]. probability [LYY18]. Problem [BL17, BFG+14, Man15a, MM92, SL00]. Proceedings [ACM96, ACM97, ACM04b, ACM05b, ACM06a, ACM06b, Ano99b, Boa90, IEE96b, LCK11, USE99, USE00a, USE00b, USE01a, USE01b, ACM00, ACM03b, ACM05a, ACM06f, Ano93, GHH+93, HHH94, IEE85, IEE04, JPT194, Mat10, MR01, SS05, USE85, USE86, Vra05, ACM75, ACM81, ACM89, ACM90, ACM01b, RM03, ACM04a, ACM05c, ACM05d, ACM06e, ACM06c, ACM06d, Ano01b, Ano04b, Ano06a, BW03, IEE84b, IEE84a, IEE90a, IEE90b, IEE91, IEE92, IEE93a, IEE93b, IEE05, IEE06b, IEE06a, MS91b, Ost94, So03, Shr89, Tho93, USE91, USE93, USE01c, USE02, USE06, M+06].
Process [AGLM91, Bal91, HPHV17, MZG14, RB01, SC17, Tho93, AC95, LZW15, XCJ+14]. process-aware [XCJ+14]. Processes [JADAD06a, Kim84, SN05b, WTh91]. Processing [DKW15, Loy92, VLZ16, DH01, EF94, GSN93, IM93, KHL17, LKY+17, LG93, WWT89, Wun13].
Processor [IEE08, NSL+06, RX+12, SKJ+17, ILK+06, LRC05, VdIFC97, WDSW01, WLL+13, WJ1A12]. Processor-Interconnect [SKJ17].
Processors [DSM14, Gei02, MT16, MT17, MBK+92, PNT12, RTL+18, KKC+16, MN03]. product [IBM88, Int88, SV17]. production [SL00]. Products [Ano03a, Ano03b, Ano05]. Professional [vH08, IIPB09, Ham07, Khn09]. professionellen [Zim05]. profile [AWR15, WKJ17]. Profiler [SH04, VL00]. Profiles [Int05b]. Profiling [LV99, Sun95a, DSZ11, NK10, SS+14a, STY+14, TSK17, THC+14, YZLQ14].
Profit [BY1Y16, ZTH+17, LWL16]. Profit-Maximizing [BY1Y16].
Profitability [WUK+18]. Program [ACM01a, Han05, HB08, MSG01, SZ88, ABDD+91, BPB86, She02, WGF11]. Programm [Mar08]. Programmable [DMS02, FS11, Ken08, MSS+15].
Programmer [PSBG11a, PSBG11b]. programmers [Hee07].
Programming [ACM90, Arm78, DK75, Eng99, Gai75, GMP89, GH91b, LFBB94, Luc97, SYB12, Sub08, Sub11, Tho98, Tol98, ACM99, ASB95, All91, BCM90, Ham76, Jou95, Kat99, ME87, RSW91, SM084, Tai98, ASB95].
Programming-in-the [DK75]. programming-in-the-small [DK75].
Programs [FS12, Kam83, NMM15, Wei94, CK06b, CK06c, CRG16, DKF94, EG03, GMR93, IM75, Wark99, Wom99]. Progress [ZHD+15, ZHCC15]. project [AAB+05a, CKP78, Lot91, RD90]. projects [AL05]. PROLOG [Clo85, Ode87, War80]. Promoting [ACA16, WLW+17].
Proof [FC98, LLZ18, Arv02, FP14, FCG+05, ZLH+15]. proof-carrying

QEMU [WR07, WR08, CK06a, CK06b, CK06e, CK06c, CK06d, CK06g, CK06f, CK06i, CK06j, CK06k, CK06m, CK06l, CK06n, CK06o, CK06p, CK06q, CK06r, CK06s, CK06t, CK06u, Bar06, MZG14, WR07, WR08, vdK09, CK06a, CK06b, CK06c, CK06d, CK06g, CK06j, CK06k, CK06m, CK06l, CK06n, CK06q, CK06r, CK06s, Deu08]. QoE [KS18]. QoS [BAC15, DM+17, KP15, LCL14, LW+16]. QoS-aware [LW16]. qualitative [ALW15]. Quality [BB13, SV13, VOS12, WK17]. quantification [BH+06]. quantify [TZK17, TDG+18]. Quantifying [FFB+00]. Quantitative [YZW+13]. Quelle [LC09a]. Quemu [CK06o]. Query [WK90, KHL17]. querying [CKRJ17]. Quick [NOT+17]. QUICKTALK [BMBW86]. QUIS [CKRJ17].

Read-Performance [MJW+14]. Real [AE01, CW03, Cha97, HeC14, LD05, Mac79, Mat09, QTo6, Sta97, Swa06, AS76, ABC+07, BCC+15, HK07, lve03, KBB11, LTK17, Nie12, WQ15, ZEdlP13]. Real-Time [CW03, Sta97, HeC14, LD05, QT06, AS76, ABC+07, HK07, lve03, KBB11, LTK17, WQ15, ZEdlP13]. Realism [DSSP06]. realistic

S [M+06, Ber86]. S-GRACE [M+06]. S.u.S.E [KGG00]. S/370 [Ber86]. SableSpMT [PV06]. Safe [BHI15, RSF+15, SKI+17, VVC+17, CFS+12, CLDA07, MSZ09]. Safety [BSI+15, HM01, MSG01]. Sagamore [ACM03b]. Sampling [Lee16]. San
Sandboxing [GG11]. Sandpiper [WSVY09]. SANs [ZSXZ07]. Santa [ACM00]. satellite [CFVP12, SSN94]. Satisfaction [LVM16]. Satisfaction-Oriented [LVM16]. saving [YLCH17]. SC'11 [LCK11]. SC2003 [ACM03a]. Scala [AT16, SMSB11, Sub08]. Scalability [KMK16, QNC07, TCP+17]. Scalable [CL17b, FBL18, HJ10, Li14, RSN+18, SD01, UVL+13, XML+18, HIW+10, SJJ+12, SPF+07, SG10b, Uh107]. Scale [HC17, PHL+12, SLM89, XDLs15, ZLW+14, FPGK18, LPD+11, MSG+12, SZ13, WWT89, YZSC17]. Scaling [HC17, JWL+18, JDJ+06, PBL+16, TCP+17, AB16, AMAB17]. Scaling-Aware [HC17, AMAB17]. SCAN [Ble89]. scenarios [KCV11, Sch13a]. Scenarios [Cra98]. scheduler [KCS14]. Scheduling [EGR15, HSN17b, JJK+11, KDB16, LMM18, LGJ+18, LD05, LC13, RB17, WWT89, ZQCZ16, ZLW18, BC10, DEE+16, DQLW15, DXM+17, DCMW17, JGW+11, KKJ+13, KCV11, RZ14, SS13, SHLJ13, SNN12, Sto07, TMLL14, THG+18, VVB13, WQG15, WCC16a, XJZ+14, YPZ17, YQZ14, ZSR+05]. schema [SI81]. Scheme [KAZS14, RSN+18, SHZ+14, YWR+14, KJLY15, XJC+14, YPLZ17, YQZ14, FM90, KR94]. Schemes [Do11, MNA16, YWGH13]. Schloss [IEE01]. School [BGP00]. Science [ACM06d, BR01, DG05, SGV12]. Sciences [Shr89, MS91b]. Scientific [Bad87, RB17, dCCDF+015]. Scientists [THLK10]. Screening [LP14]. Scripting [MJW+06]. SDDSfL [CL LS12]. SDN [LLY+18, VVC+17]. SDNs [ALW15]. SDWN [AGF+17]. SE [LYBB14]. Seamless [Hir92, TDG+06, XWXJ15, BADM06]. Search [Cox12, MNS+14, CWdO+06, KMT14, Tho68, WXZ+17]. search-based [WXZ+17]. Seattle [ACM05c, ACM06b, LCK11, Ost94]. Sebastopol [Ano97a]. sEc [SMK02]. SECD [Abr82, AS85a, AS85b]. SECD-M [Abr82, AS85a, AS85b]. Second [ACM06f, IEE93a, Shr89]. SecondSite [RCOW12]. Secure [AMH+16, CCML12, CLDA07, JSHM15, JAS+15, LJ12, LP11, PEC+14, QZDJ16, RIO0, RSGG15, THB06, TtLC13, WF07, vD00, BDS+09, GNDB16, HKD+13, ISE08, SL12, TLBW12, ZBP05]. Secured [TMV12, WCC16c]. securing [Hal08, Hal09]. Security [AKK+07, Ano93, Att79, De06, ESY+17, FJKK17, GW07, HHSG18, HB17, IEE84a, IEE90a, IEE91, IEE05, JE12, KZB+90, KSO8a, KSO8b, LWL110, NMP15, PVD08, Fpo13, SJJ+05, SM90, SEF+06, Ste05, TMV12, TV12, USE00b, VN08, WHD+09, ZL16, ZL18, Ano07, BTMS10, Bau05, Bau06b, Bau06a, Be06, BCP+08, Bor07, BBS06, Hal09, HSM04, IIIK+06, LLW+12, MD73, MD74, Mat09, MA17, PZ13, PBB13, Sch13b, VT14, DTW07]. security-oriented [IIK+06]. see [Yur02]. SEED [DTW07]. seinen [KGG00]. Selecting [NBK16]. selection [JK13, LZW+13, LLWW18]. Selective [WZW+11]. Self [BHI15, BRX13, HHW10, dOL12, CBLFD12, GK05, KKB14, OK90]. Self-Adaptation [BHI15]. self-adaptive [KKB14]. Self-Configuration [BRX13]. Self-Healing [BHI15, GK05]. self-hosted [CBLFD12].
Self-management [dOL12]. Semantic [Das91, DGLZ+11, FL13a, AD18].
Semantics [WIDP12, Dan12, EdPG+10, Siv04, Wal76, ZHCB15].
semi [MSZ09]. semi-automatic [MSZ09]. sensitive
[DK17, KSLA08, LCL14, ZBP07]. sensitivity [HB13, TZE17]. Sensor
[BSI+15, LC02, MAK07]. sensors [ALL06]. Separation
[KF91, WLMD16, LWM14]. September [ACM81, ACM04a, ACM05a,
ACM06c, ACM06b, Ano93, BW03, GHH+93, Jou85, JPTE94]. Sequence
[EDS+15]. sequential [Clo85]. Serialization [BP01, BP03]. Series
[AC98, EL98, ZDLG17]. sets [HW15]. setups [RPE12]. SGAM [ZLH+15].
Shadow [WLW+17, GHS16]. ShadowReboot [YK13]. Shared
[Bro89, CH08, Cro93, Low88, RLZ+16, KKRK17, SLM89, SV13, SNC91,
SNS03, CFS+12, JGSE13, PW03, TZE17, WWS89, WDC08].
Shared-Memory [Cro93, RLZ+16, SLW98, WWS89]. shared-source
[PW03]. Sharing [ACA16, BFHW75, CDN02, MS70, PTM+15, RG17,
SAB+07, XML+18, LLS14, LTZ+14, TtLcC13, WTLS+09]. Sharing-Aware
[RG17]. shell [FL13b]. Shoot4U [OLZ16]. Short [HW15, KKC+16].
Short-circuit [KKC+16]. shortest [AM16]. shot [JK15]. Shoulders [FS12].
Showcase [UZE00a]. showdown [SCEG08]. Shredder [AMH+16].
Shredding [AMH+16]. Shrinking [Ste14]. shuffling [ZWC+14]. Shuttle
[eCWS14]. Sibling [OG16]. SIGACT [ACM99]. SIGCOMM [RM03].
SIGCSE [ACM06d]. SIGMETRICS [ACM81]. Signal [MBK+92].
SIGOPS [ACM04a]. SIGPLAN [ACM01a, ACM99]. SIGPLAN-SIGACT
[ACM99]. SIGSOFT [ACM01a]. Silent [AMH+16]. SILLIAC [Gre10]. Sim
[Skr01]. SIMD [PSBG11a, PSBG11b, PBR+90, Sig89]. Simics
[Ano14a, MCE+02]. similarities [CL14, CL17b]. similarity
[GV13, LLF+18, LLLW18]. Simple [Bak83, Cox07, NOR15]. Simplicity
[BGP00, DGP06]. simplification [FS08]. Simplified [Beg12, PSC+07].
simplifying [Cla05]. simulated [GE85, RH17, WDSW01]. Simulating
Simulation [ADG+92, AB16, DBMI92, JN15, KD78, Kut92, MCE+02, MBK+92, MJ93, PBR+90, PY93, Tur92, WB81, WWMG06, YP15, Ano94, BHvR05, Bur02, BS96, Clo85, DSSP06, IM93, KSH+99, NRS92, RMB02, SK13b, URL+82, WWS89]. Simulations [LCT+15, BL90, DH01]. Simulator [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Singapore [Ano06a, TLC06]. Single [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Singapore [Ano06a, TLC06]. Single [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Singapore [Ano06a, TLC06]. Single [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Singapore [Ano06a, TLC06]. Single [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Singapore [Ano06a, TLC06]. Single [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Singapore [Ano06a, TLC06]. Single [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Singapore [Ano06a, TLC06]. Single [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Singapore [Ano06a, TLC06]. Single [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Singapore [Ano06a, TLC06]. Single [CK96, CRZ83, Dun86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, KB80, MLR02, YPPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15].

Supercomputing

[ACM89, ACM96, ACM00, ACM04b, ACM05c, Hir92, IEE90b, IEE92, IEE93b].

Superconcurrent [NR82], superoptimization [HW15], superscalar [VdFCC97]. supertype [RRB17]. superoptimization [HW15]. superscalar [VdlFCC97]. supertask [AC95].

Support

[BP01, DJ77, HHV+02, HD16, HB12, KY+17, LW99, NIS+04, RI00, SSG90, Tur92, XD16, dGG+17, AC95, BADM06, BTLNBF+15, BP03, CHCC07, CFL+12, DJ76, GK05, ORPS09, PGLG12, SJRS+13, STFH15, SL12, TY14, WK08, WSC06, WLL+13].

Supporting

[BMS16, CWS12, Kim84, MSS+15, Mon97, RT93, XWJX15, YWCF15, ZZF06, GD08, TT93].

Supports [Ano03a]. surgery [PBL+16].

Survey

[BAL15, HSN17b, KKL16, KL14, Man15a, PS16, SB16, SGB+16, UOKT84, AGH+15b, CB10, FMIF18, MG13, NIA18, LV99, NSL+06, RI00, SSG09, Tur92, XD16, dGG+17, AC95, BADM06, BTLNBF+15, BP03, CHCC07, CFL+12, DJ76, GK05, ORPS09, PGLG12, SJRS+13, STFH15, SL12, TY14, WK08, WSC06, WLL+13].

Surveyor [Fra83, GHF83a, GHF83b, WNL+83]. survivability [YZW+13].

Switching

[ACM75, ACM03b, ACM05a, ACM06d, Ano00, Ano01a, Ano01b, Ano04a, Ano04b, Ano10, HHK94, IEE84a, IEE85, IEE90a, IEE91, IEE96b, IEE06a, Ost94, TLC06, USE91, USE93, USE00b, USE01d, USE02, Vra05, IEE96a, Ano02].

Synchronization

[LJL+11, ZJXL11, Sub11, Uhl07, Ven97d].

Synchronous [SIR+17]. syntax [KMMV14]. Synthesis [DMS02, BPB86].

Syracuse [IEE96b]. System [ACM75, Abr80, ABC06, Ano10, AAK18, Bad82, BFHW75, BDP+91, BSYT16, BGS89, B05, Car13, CSS+13, CWL+15, CHPY17, CHLY18, DRM10, DM75, Fis01, G+06, GH91b, HXZ+16, HW93, HX+16, HWCH16, IN87, Kam83, Kec77, KP15, Kut92, LP14, Li14, LCF1L2, LXM+16, MCE+02, Mat10, MS70, MDGS98, MB98, MS91b, MM94, NSH10, NMS+14, P+08, R+06, Sch86, SLM89, SVN+10, Shi03, Shr80, SWF16, Ste05, WLV+15, WK90, ZSXX07, ZQZ16, ZFF06, ZXY+15, AD18, AEMWC+12, AL05, AH12, ACT94, AP18, Bar78, Bor07, Bur02, Caa00, CWH14, CK06b, CK06e, CKP78, FFFB08, Fis91, HNO8, HHD+13, HCU12, IBB88, Int88, KCKC15, KK79, LLJN+00, LIA05, LDL+08, MDPD, MDFS27, PR07, PK75, Rob06, SNV10, SPF+07, SWW+18, SZ13, SS72, STY+14, TC10, Vag10, Van06, VM12].

System

[VSC+10, WKT08, WH08, WWT89, WF07, WC91, YLCH17, YZSC17, ADG+92, ABDD+91, Car14, Gum83, SNC91]. System-level

[SVN+10, AL05]. System/370 [Gum83]. System/6000 [ABDD+91]. System/9000 [ADG+92]. Systemarchitektur [See08a]. Systeme [WF03]. Systems [ACM81, ACM03b, Ano99b, BBMA91, BT05, CD12, CAF+91].

[46]
Das91, DJ77, Her10, IEE93a, IEE01, Lar09, LW11, LJZ12, MM93, MJW⁺14, MKKE12, RT93, SL14, SS75, SVB93, SL16, SN05b, THB06, USE99, USE01b, Vra05, WN17, WLMD16, YVCB17, AH12, ALW15, AT16, Ano93, AAB⁺05c, BSSM08, CZZ⁺06, CGL⁺08a, CGL⁺08b, CGL⁺08c, CK06a, Com00, CGV10, CLDA07, Dav04, Don87, DJ76, DCMW17, FP14, FLCB10, GHH⁺93, GK05, Ham76, HH13, JSK⁺13, KCS14, Kou11, LLLE17, LWM14, LZWD15, LCL14, LTK17, MRC⁺13, MA17, NS07, NV05, PSC⁺07, RVJ⁺01, RJK16, Ros06, SJM14, SK13b, SSMGD10, SJJ⁺12, Sto07, Syr07, TT93, THB⁺14, Vac06, Vit14, WR07, WKC⁺09, YK13. Systemverwaltung [Lar09].

Tables [MT16, MT17, WLW⁺15]. tackle [Sub08]. tactics [OG16]. Tail [ASSB18, War80]. Taipei [SS05]. Taiwan [SS05]. Take [Kis08]. Taking [Uhl06]. talk [Piz17]. Taming [CZL08, HHPV15]. Tan [Fro13]. Tape [DK93]. target [FCG⁺05]. Targeting [CDG97]. Targets [Sta07]. Task [KMM13, PCC⁺16]. Tasking [MB98, Shi03, JDJ⁺06]. Tasks [KGS16, YSS⁺17, YQZ14]. Taxonomy [SGB⁺16, AGH⁺15a]. TCAM [HWHW18]. TCAM-Based [HWHW18]. TCB [HCJ07, HPHS04]. TCP [CL16b, GKK13, GI12]. teach [Don88]. Teaching [Agr99, Dav04, Don87, GGG03, ME87, Guz01, Ham76, KW80, MS01, NV05, WKC⁺09, YYPA01]. teasing [LBF12]. Technical [ACM06d, Ano06b, Han16, OH05, USE01a, USE06, BB08, Int06c, Int06a, LC09a, Wal10]. Techniken [Tho08].

Technique [JHS12, JMSLM92, LTT92, SMK02, ACT94, SLA⁺16, XHL⁺13, YKS16].

Techniques [ACM06b, LIJ⁺15, OVI⁺12, SldLB15, Th06, UOKT84, ZZF06, AD18, AA06, AH12, BADM06, HSC15, IM93, KS13, KRG⁺12, SNS12, SHT11].

technische [LC09a]. technologie [Apr09]. Technologies [DF96, PZW⁺07, USE99, USE01b, Cla05, Kao17, MPA⁺18]. Technology [Ano00, Ano01a, Ano02, Ano04a, Ano04b, DLM⁺06, Don06, Got07, Her06, RG05, USE01c, USE01d, USE02, UNR⁺05, WHD⁺09, ZAI⁺16, Apr09, Int05a, Int05b, Int06b, Int06c, Int06a, AJM⁺06, NSL⁺06, NKK⁺06, RSW⁺06, Uhl06]. Tele [HMS04]. Tele-lab [HMS04]. telehealth [WQG15]. template [WRX11]. Temporal [CWD0⁺06]. Tenancy [DY17]. tenant [SWW⁺18, YKS16, ZRZY15]. terminal [CKT08]. terminals [HIK⁺06, ISE08]. Terra [BSI⁺15]. TerrierTail [ASSB18]. Tesseract [ABG14]. Test [SM06, ABDD⁺91, IIPB09, LLS⁺12]. testbed [HLW⁺10, ZGW⁺06]. testbeds [ACM06c]. Testboard [Kut92]. Testing [Ame13, CQLL18, DFK94, GBF⁺92, HLP⁺16, Kao17, KLF⁺15, MPM⁺12, Ost94, VS06, BD11, CSS⁺16, KFF12, SCF00]. Texas [ACM75, ACM06d, USE01b, IEE02, IEE03]. their [EF94, KCV11, SS13]. Them [HPHV17]. Theorem [Hir17, SSH17, BW03]. Theoretical [Kna93]. theory [WSAJ13]. Thermostat [AW17]. Things [Gal09a, Gal09b, Gal11]. Third [Ano04b, CRZH15, PG74, PG73]. Third-Party [CRZH15]. Thoth [KB17]. thousand [SK13b]. thousand-core [SK13b]. Thread
Twenty-Fourth [MS91b]. Twenty-Second [Shr89]. TwinDrivers [MSZ09]. twins [HCJ07]. twitter [Guy14]. Two [AW17, SSG08, HCJ07, LUL05]. two-dimensional [BSSM08]. Two-level [SSG09]. Two-phase [TF16]. Two-tiered [AW17]. TX [ACM99]. Type [AD98, AT16, Arv02, KCV11, PR97]. type- [Arv02]. Type-Precision [ADM98]. Typed [G88, BDT13, GLV99, KR94]. Types [Wel94]. TypeScript [RSF15]. Typing [RSF15]. u.v.a [Tho08]. UKCF [JXL12]. umfassende [Bod10, Fis09]. Umgebung [CK06]. Unit [PXG17]. United [Vra05]. uniting [LUL05]. Units [VLZ16, Vo90]. UNIVAC [Kam75]. University [Ne04]. Universities [Sta07]. University [ACM75, ACM81, Gre06, IEE96a, IEE99]. UNIX [JJ91, KA83, NSH00, HO92, Ka97]. Unknown [CLW14]. unleashed [An09]. HH08, MG08, MG09]. Unmodified [HLP16, MKKE12]. Unpicking [LBF12]. unsound [AT16]. Untrusted [CD12, HKD13, HPHS04, WLL03, ZBP05]. upcalls [LJ11]. Update [VVC17, J05]. updating [CCZ06]. upgrade [CHC07]. Upgrades [An03a]. uptrees [HB13]. UPWN [M06]. Urgent [AGJS16]. USA [ACM81, ACM01a, ACM03b, ACM05a, ACM06b, ACM06d, BSA09, IEE09a, USE01]. ACM81, ACM82, ACM89, ACM90, ACM91, ACM92, ACM93, ACM94, ACM95, ACM96, ACM97, ACM98, ACM99, ACM00, ACM01, ACM02]. USENIX [ACM91, USE92, USE93, USE94, USE95, USE96, USE97, USE98, USE99, USE00, USE01, USE02, USE03]. Usage [KLT18, RSW06, WH99, KTB17, RGAT18, SK13c]. USB [An03a]. Use [Bec09, CLS12, Guy14, KKK9, Sch13a, SJ05]. used [tTR82]. useful [LC90a]. USENIX [ACM05d, USE91, USE93, USE96]. User [Cha06, ZQCZ16, An03a, ACT94, Bor07, Guz01, PG11, RSC05, Sto07, ZLZ13, CKT08, Dav04]. user-controlled [Sta07]. User-Level [Cha06, ZQCZ16, ZLZ13]. user-space [PG11]. User-terminal [CKT08]. Users [Boa09, SS17]. userspace [Sta14]. Using [AA09, ABV12, ALL06, Bas04, Bas06, BRX13, CQLL18, CCO05, DBM92, Don88, ESSY17, Guz01, HLW10, HWHW18, JMSLM92, LJS00, LTT92, LD05, MV16, OZL16, PEC14, RSW06, Sec10, SM06, SYB12, SAT09, SBE15, SXCL14, TDC18, WDSW01, WKG17, WUNK17, Wil01, Wol99, XSC13, ZBP07, dGG17, AD18, Agr99, ATS16, AW05, AP18, AGS94, BSM01, BHVR05, CL14, CCZ06, Dan12, FFBG08, FL13b, GHM14, HJ10, HNO8, HPHS04, JNR12, JWH15, JGSE13, Jiu07, KKM13, KS18, KJJ16, KGS16, KLI13, Kou11, KRG12, LDL14, LLWW18, LQW12, NV05, PBL16,
RP07, SGV13, SSN12, SIJPP11, SIK+16, SSH17, STFH15, SSN94, TSLBYF08, TF16, VT14, YK13, YLWH14, YWF09, YWCF15, ZLZ13, ZDLG17. UT [Ren78]. Utah [ACM01a, CK87]. utility [CSV15, JWH+15, PSZ+07]. Utilization [KCKC15]. Utilizing [GVI13, KOY05].
Virtual [KLF+15, LCWB+11, LMM18, Lam75, Lau87, Law00, LW11, LP14, LMR18, LIW98, LMG00, LMG01, LTE12, Li14, LZL+15, LZWd15, LVM16, LWLL16, LYY17, LGJ+18, LI98, LV99, LTT92, LD05, LY97a, LY97b, LY99, Lyyxx, LYxxb, LYWD15, LVM16, LWLL16, LY18, LKJ13, LKJ14, LP15, KAHS3, KGZ+04, KLLT18].

Virtual [KLF+15, LCWB+11, LMM18, Lam75, Lau87, Law00, LW11, LP14, LMR18, LIW98, LMG00, LMG01, LTE12, Li14, LZL+15, LZWd15, LVM16, LWLL16, LYY17, LGJ+18, LI98, LV99, LTT92, LD05, LY97a, LY97b, LY99, Lyyxx, LYxxb, LYWD15, LVM16, LWLL16, LY18, LKJ13, LKJ14, LP15, KAHS3, KGZ+04, KLLT18].
Virtualization

[Virtualization-Based: [CDD13, AAJD16, DPCA11, MCC18, WDCL08, CGL08a, CGL08b, CGL08c, QZDJ16].

virtualization-driven: [CSSS11].

VirtualKnotter: [ZWC14].

VisualKnotter: [ZWC14].

VisualPower: [NS07].

virtuelle: [WF03, WR07, WR08, Zim05, Zim06].

virtuellen: [CK06a, CK06c, CK06d, CK06g, CK06h, CK06i, CK06k, CK06m, CK06n, CK06o, CK06q, CK06r, CK06s].

Virtuoso: [DGLZ11].

VIRTUS: [IIK06].

Visual: [Fra06, Fra09, MC08, Wil06, Tre05].

Visualization: [WT91].

VLISP: [Ram03].

VLSI: [IN87].

VM: [Ano01a, Ano04a, Ano04b, Ano03a, AB16, ABG14, Att79, Bar78, BN89, BT15, Boz89, Cal75, CBZ16, ESY17, Fis91, FL13b, GH91a, G106, GH12, HXZ16, HC12, HW15, IBM94, LBF12, LJZ12, LWLL10, MSS91, MLA83, NOK16, OJG91, P108, RSNK17, SHW15, SBK15, SNC91, SldLB15,
References

REFERENCES

Aryania:2018:EAV

Aroca:2016:PEA

Antonescu:2016:SSB

Axnix:2015:IZF

Armbruster:2007:RTJ

Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David Holmes, Filip Pizlo, Edward Pla, Marek Proc’hazka, and Jan Vitek. A real-time Java virtual machine with

Ambriola:1995:DVM

AzanonEsteire:1998:JST

Anjo:2016:DML

Ayoubi:2016:TPB

ACM:1975:PFS

ACM:1981:ASC

REFERENCES

ACM Press, New York, NY 10036, USA, Fall 1981. ISBN ???? LCCN ????

REFERENCES

ACM:2004:PWA

ACM:2004:SHP

ACM:2005:APS

ACM:2005:MPI

ACM:2005:PAI

REFERENCES

REFERENCES

REFERENCES

CODEN SCIPEV. ISSN 1058-9244 (print), 1875-919X (electronic).

Abe:2016:UVM

Aral:1991:PCS

Aagren:1999:TCC

Agesen:2010:EXV

Aguiar:2012:CTF

Aigner:2015:AJE

Martin Aigner, Thomas Hütter, Christoph M. Kirsch, Alexander Miller, Hannes Payer, and Mario Preishuber. ACDC-JS: explorative benchmarking of JavaScript memory management.
REFERENCES

Anderson:2009:XWL

Ahn:2012:RHA

Abramson:2006:IVT

Adamski:2007:SPE

Adams:2005:CMC

REFERENCES

REFERENCES

Anonymous:1994:SAS

Anonymous:1996:TWJb

Anonymous:1997:BRJe

Anonymous:1997:BFJ

Anonymous:1997:IJV

Anonymous:1997:JVM

REFERENCES

Anonymous:1999:MVM

Anonymous:1999:PII

Anonymous:2000:AJV

Anonymous:2001:CRJ

Anonymous:2001:PJV

Anonymous:2002:CRJ

Anonymous:2003:PJU
[Ano03a] Anonymous. Products: JetBrains upgrades IntelliJ Java IDE; Catalyst’s USB analyzer supports device emulation;

REFERENCES

Anonymous:2015:CXB

Anonymous. Critical Xen bug in PV memory virtualization code (XSA 148). Web bug report, October 29, 2015. URL https://github.com/QubesOS/qubes-secpack/blob/master/QSBs/qsb-022-2015.txt. The report notes about this bug that allows memory pages to leak between Xen virtual machines on the same physical host: “... the bug is a very critical one. Probably the worst we have seen affecting the Xen hypervisor, ever. Sadly,... it is really shocking that such a bug has been lurking in the core of the hypervisor for so many years.”.

Aral:2016:NAE

Ashraf:2018:MOD

Aprea:2009:HVS

Anderson:2005:OII

Mary S. Adix and Henrik A. Schutz. Interpretive execution of real-time control applications. *ACM SIGPLAN Notices*, 11
Abramski:1985:SMV

Abramsky:1985:SMV

Atif:2014:APA

Asyabi:2018:TMT

Amin:2016:JST

[AT16] Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: the existential crisis of null pointers. *ACM SIGPLAN Notices*, 51(10):838–848, October 2016. CODEN SIN-
Amit:2014:VMS

Arianyan:2016:NHC

Attanasio:1979:VCS

Appuswamy:2011:FMF

Agarwal:2017:TAT

Arnold:2005:IVM

Blank:2005:APV

Buytaert:2007:BDS

Bacon:2011:VAH

Baccarelli:2015:MEB

Baden:1982:HPS

REFERENCES

REFERENCES

REFERENCES

Beloglazov:2012:OOD

Beloglazov:2013:MOH

Beloglazov:2015:ONF

Balter:1991:AIG

Barr:2010:VMV

Bhattiprolu:2008:VSC

Bratanov:2009:VMW

Birke:2015:WVM

Bennett:1991:SMC

Bullers:2006:VMI

Barrett:2017:VMW

[BD11] Srikanth Baride and Kamlesh Dutta. A cloud based software testing paradigm for mobile applications. *ACM SIGSOFT
REFERENCES

[BDJs02] Gilles Barthe, Guillaume Dufay, Line Jakubiec, and Simão Melo de Sousa. A formal correspondence between offensive and de-

Butrico:2008:SEE

Bughinon:2012:BVX

Baldwin:2009:PSS

Bolz:2013:SSC

Becker:2009:VIA

REFERENCES

178, February 2014. CODEN IEANEP. ISSN 1063-6692 (print), 1558-2566 (electronic).

Bagley:1975:SDS

Brawn:1970:SPE

Boszormenyi:2000:SNW

Birmingham:1989:MSC

Bartholomy:2013:NMT

Botero:2013:GNN

REFERENCES

[Bir94] Umesh V. Biradar. Adaptive distributed load balancing model for parallel virtual machine. Master of science in computer science, Department of Computer Science, College of Engineer-

REFERENCES

REFERENCES

137–141, October 26, 1988. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

REFERENCES

Brier:1998:NIA

Berl:2010:NVE

Brorsson:1989:ESV

Brunschen:2007:SSE

Bu:2013:CSC

Blelloch:1990:CCO

REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Burnet:1996:PCP

Branco:2015:TFS

Bairavasundaram:2012:RRS

Burecea:2008:PV

Bhargava:2008:ATD

Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. Accelerating two-dimensional page walks for

REFERENCES

References

Ben-Yehuda:2016:NPM

Bruening:2012:TDI

Briggs:2017:COI

Caamano:2000:PJS

[Caa00] Paul Caamano. Porting a Java Virtual Machine to an embedded system. Thesis (m.s.), Department of Computer Science, University of California, Santa Cruz, Santa Cruz, CA, USA, 2000. viii + 56 pp.

Christodoulakis:1991:OOA

Callaway:1975:PMT

Carbone:2006:WSH

REFERENCES

REFERENCES

REFERENCES

Cheng:2012:VBP

Cao:2014:EAH

Cheng:2013:DVB

Comar:1997:TGJ

Chafi:2010:LVH

Czajkowski:2002:CSA

Casey:2007:OIB

Chelius:2000:ING

Chang:2013:IVP

Canon:1979:VME

Canon:1980:VME

REFERENCES

Cao:2017:VNM

Cheriton:2012:HAS

Celesti:2012:VMP

Chen:2016:OVM

Chen:2008:OVBa

REFERENCES

REFERENCES

[CK06b] Toralf Chryselius and Andrea Kuntz. *Internetkommunikation in Debian unter Qemu Einführung in das Betriebssystem Debian Linux in Qemu und Vorstellung der wichtigsten Internetprogramme.* (German) [Internet Communication in Debian under Qemu: Introduction in the Debian Linux operating system in Qemu and creation of the most important Internet programs], volume 18 of Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-117-1 (book), 3-86768-717-X (DVD). 109 pp. LCCN ????

Chryselius:2006:IKQa

[CK06e] Toralf Chryselius and Andrea Kuntz. *Internetkommunikation in Kubuntu unter Qemu* Einführung in das Betriebssystem Kubuntu und Vorstellung von Internetprogrammen in der virtuellen Umgebung Qemu. (German) [Internet Communication in Kubuntu under Qemu: Introduction to the Kubuntu operating system and creation of Internet programs in the Qemu virtual machine], volume 6 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-105-8 (Buch), 3-86768-705-6 (DVD). 107 pp. LCCN ????

Chryselius:2006:IOV

Chryselius:2006:IOQ

Chryselius:2006:KLQb

REFERENCES

REFERENCES

[CK06n]

[CK06o]

[CK06p]

[CK06q]
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

//swtch.com/~rsc/regexp/regexp3.html. See also [Tho68, KP99, Cox07, Cox09, Cox12].

REFERENCES

Creeger:2009:CRV

Creeger:2010:MEC

Creeger:2010:MEA

Cruz:2016:DCG

Crowl:1993:CLI

Cohen:1983:PSR

Chiang:2015:SEV

REFERENCES

[CWS12] Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi. Supporting overcommitted virtual machines through hardware

Chen:2015:LVS

Cui:2017:TAV

Czajkowski:2000:AIJ

Carbone:2008:TV

Dufrasne:2004:IVE

Dall:2012:DIE

REFERENCES

REFERENCES

Davoli:2004:TOS

Dillenberger:2000:BJV

Darcy:1992:USD

Denz:2018:SMB
REFERENCES

Di:2015:ECP

Doyle:2004:DIM

Coutinho:2015:OVM

Duan:2017:EAS

Dong:2012:RAE

REFERENCES

REFERENCES

[DLM+06] Yaozu Dong, Shaofan Li, Asit Mallick, Jun Nakajim, Kun Tian, Xuefei Xu, Fred Yang, and Wilfred Yu. Extending Xen with Intel virtualization technology. *Intel Technology Journal*, 10(3):193–203, August 10, 2006. ISSN 1535-
REFERENCES

REFERENCES

[Do11] Tien Van Do. Comparison of allocation schemes for virtual machines in energy-aware server farms. The Computer Jour-
REFERENCES

Dai:2013:LVM

Drepper:2008:CV

Dowty:2009:GVV

Dragga:2016:GGC

Deng:2008:CCV

daSilva:2016:TAV

REFERENCES

REFERENCES

[ECM06] ECMA. *ECMA-335: Common Language Infrastructure (CLI)*. ECMA (European Association for Standardizing In-
REFERENCES

REFERENCES

Esteire:1998:STN

Eramo:2017:ASF

Esposito:2013:SES

Evoy:2015:ADP

Engel:1999:PJV

Ertl:2003:IVM

URL http://www.complang.tuwien.ac.at/anton/ivme03/proceedings/ivme.ps.gz.

REFERENCES

[FFB+00] Keith I. Farkas, Jason Flinn, Godmar Back, Dirk Grunwald, and Jennifer M. Anderson. Quantifying the energy consump-

Faibish:2008:SVU

Fertig:1991:FVM

Forsman:2015:AAL

Ford:1996:MMR

Freudenberg:2015:SMP

Fischofer:1991:VSS

REFERENCES

REFERENCES

Fu:2013:BSG

Fu:2013:EUD

Flouris:2010:EBL

Fang:2013:VOV

REFERENCES

Franklin:2008:RDV

Anonymous:2014:AVM

Fu:2017:MCD

Feeley:1990:PVM

Filho:2018:AOV

Forum:1971:VMI

Forum:1978:VMI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Geiselhart:2006:IZV

Gupta:2018:RAV

Gordon:2012:EBM

Gaines:1975:ACV

Galvin:2009:PA

REFERENCES

Goldweb:2008:VEE

Gasiunas:2017:FBA

Gaudiot:1985:PES

Geist:2002:PVM

Genter:1986:UVM

Garzon:1992:DTG

REFERENCES

CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic). See [GFH82, WNL+83, Fra83, GHF83b].

REFERENCES

REFERENCES

[GLLJ16] Jian Guo, Fangming Liu, John C. S. Lui, and Hai Jin. Fair network bandwidth allocation in IaaS datacenters via a co-

REFERENCES

Giacalone:1989:FSI

Golub:1993:MER

Guanciale:2016:PSM

Goldberg:1973:AVM

Goth:2007:VOT

Ganegedara:2013:CPA

[GP13] Thilan Ganegedara and Viktor Prasanna. A comprehensive performance analysis of virtual routers on FPGA. *ACM Trans-

[Gre10] David Green. The Sydney University SILLIAC. Web site, August 14, 2010. URL http://members.iinet.net.au/~dgreen/silliac.html. The SILLIAC was the first computer installed at Sydney University, and was operational from 1956 to 1968. The Web site links to the SILLIAC Emulator, a C program for Microsoft Windows.

[GSS+18] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger, and Mikel Luján. Cross-language interoperab-

Gupta:2017:HCS

Garg:2014:SBV

Gilbert:2006:IVG

Gidra:2015:NGC

Guan:2014:HHV

REFERENCES

166

Gum:1983:SEA

Guyer:2014:UJT

Guzdial:2001:UST

Geroﬁ:2013:UMC

Garfinkel:2007:WVC

Habib:2006:X
REFERENCES

Hand:2016:TPH

Hartmann:1977:CPC

Hulaas:2008:PTL

Huang:2012:PEN

Huang:2013:ECS

REFERENCES

REFERENCES

Hale:2016:EHP

Hines:2009:PCL

Hu:2008:SVO

Heege:2007:ECC

Herro:2006:FVT

Herro:2010:SRD
REFERENCES

REFERENCES

REFERENCES

Hofmann:2013:ISA

Hovestadt:2013:AOC

Hao:2017:OA

Hinz:2018:CMI

Huang:2013:ESC

[Hallawi:2017:MCC] Huda Hallawi, Jörn Mehnen, and Hongmei He. Multi-capacity combinatorial ordering GA in application to cloud

REFERENCES

Tuan Minh Ha, Masaki Samejima, and Norihisa Komoda. Power and performance estimation for fine-grained server power capping via controlling heterogeneous applications. ACM Transactions on Management Information Systems
REFERENCES

REFERENCES

REFERENCES

[Iancu:2014:CPV] Costin Iancu. The case for partitioning virtual machines on multicore architectures. *IEEE Transactions on Parallel and
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[IMK+13] Canturk Isci, Suzanne McIntosh, Jeffrey Kephart, Rajarshi Das, James Hanson, Scott Piper, Robert Wolford, Thomas Brey, Robert Kantner, Allen Ng, James Norris, Abdoulaye Traore, and Michael Frissora. Agile, efficient virtualization power management with low-latency server power states. ACM
REFERENCES

Iacobovic1:1987:VSP

IBM:1988:VMSb

ISO:2005:IIa

ISO:2005:IIb

ISO:2006:ITCb

REFERENCES

REFERENCES

[Jo:2013:ELM] Changyeon Jo, Erik Gustafsson, Jeongseok Son, and Bernhard Egger. Efficient live migration of virtual machines using

Jin:2011:OLM

Johnson:2014:CML

Jamtliagen:2012:TRD

Jolitz:1991:PUS

Jung:2002:DIS

Jang:2011:ERC

Jantz:2013:PPO

Jarray:2015:DAV

Jaffer:2015:IRD

Joshi:2005:DPP

Jo:2010:TFT

REFERENCES

Jacob:2002:CAP

Jin:2015:HAS

Jantz:2013:FAG

Juola:2007:PCO

Jin:2017:WCM

Jia:2015:DRA

Xiaohua Jia, Jinhai Wang, Chuanhe Huang, Qin Liu, Kai He, Jing Wang, and Peng Li. Dynamic resource allocation

[JW+15]

Jia:2018:OSN

Jiang:2012:UNG

Jin:2010:GTF

Jia:2013:SID

Kagawa:2009:WWB

REFERENCES

ISSN 0097-8418 (print), 2331-3927 (electronic). Proceedings of ITiCSE ’09.

Kojima:1983:AMI

Kumar:1993:FHS

Kalin:1997:NMP

Kamnitzer:1975:BXI

Kamrad:1983:ROA

Kamga:2013:CFE

REFERENCES

Kao:2017:TEF

[199]

Karcher:2007:VDX

[210]

Kumar:2014:DLB

[210]

Kunjir:2017:TAM

[210]

Kim:2011:PAP

[210]

Kounga:2012:ESP

[210]

Kansal:2016:EAV

[210]

Kim:2015:UWM

Kim:2014:ECS

Kousiouris:2011:ESW

Kang:2014:HSA

Kumar:1978:PEH

[KFF12] Casey Klein, Matthew Flatt, and Robert Bruce Findler. The Racket virtual machine and randomized test-
REFERENCES

Klappheck:2000:BLE

Kannan:2017:HDH

Knodel:2016:MLR

Krsul:2004:VPM

Karnagel:2017:AWP

REFERENCES

REFERENCES

Motohiro Kawahito, Hideaki Komatsu, Takao Moriyama, Hiroshi Inoue, and Toshio Nakatani. Idiom recognition framework using topological embedding. *ACM Transactions on Ar-

[KLT18] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. Deploying chains of virtual network functions: On the relation between link and server usage. IEEE/ACM
REFERENCES

Transactions on Networking, 26(4):1562–1576, August 2018. CODEN IEANEP. ISSN 1063-6692 (print), 1558-2566 (electronic).

[Kup16] Yossi Kuperman, Eyal Moscovic, Joel Nider, Razya Ladelsky, Abel Gordon, and Dan Tsafrir. Paravirtual remote I/O. ACM
REFERENCES

[KRCH14] Madhukar N. Kedlaya, Behnam Robatmili, Cgiln Cascaval, and Ben Hardekopf. Deoptimization for dynamic language

Kundu:2012:MVA

Kroeker:2009:EV

Kanizo:2017:OVB

Karger:2008:VVM

King:2008:GEI

Kelbley:2010:WSR

REFERENCES

Kaufmann:2013:SCO

Kesavaraja:2018:QEC

Kong:2008:PTD

Kavvadia:2015:EVM

Keller:2010:NVC

REFERENCES

REFERENCES

Laadan:2007:DPV

Le:2011:REC

Levis:2002:MTV

Larson:2009:WSHb

Larson:2009:WSHa

Liu:2013:SPV

Luo:2012:PNV

Lathrop:2011:SPI

Lin:2014:IQA

Li:2015:ARP

Lagar-Cavilla:2011:SVM

REFERENCES

[LJL12] Xiaofei Liao, Hai Jin, and Haikun Liu. Towards a green cluster through dynamic remapping of virtual machines. *Fu-

References

REFERENCES

REFERENCES

REFERENCES

Lopez-Pires:2017:MO

Lopez-Pires:2018:VMP

Lange:2011:MOV

Lin:2012:OVM

Lucchetti:2005:EDR

Lu:2016:VCV

[LRZ16] Yaojie Lu, Seyedamin Rooholamin, and Sotirios G. Ziavras. Vector coprocessor virtualization for simultaneous mul-

[Ludwig:2015:DCM]

[LS15]

[LSS04]

[LTE12]

[LTK17]

[LTT92]
REFERENCES

REFERENCES

Li:2016:VMT

Li:2014:VSK

Luo:2016:OMM

Lindholm:1997:IJV

Lindholm:1997:JVM

Lindholm:1999:JVM

Lindholm:19xx:JVMa

Tim Lindholm and Frank Yellin. *The Java Virtual Machine*. GOTOPI Information Inc., 5F, No.7, Lane 50, Sec.3 Nan Kang
REFERENCES

Lindholm:19xx:JVMb

Lindholm:2013:JVMa

Lindholm:2013:JVMb

Lindholm:2014:JVM

Liu:2018:CAL

REFERENCES

Li:2015:GHB

Lu:2017:FPL

Li:2013:RVS

Li:2015:VMP

Min:2006:FHP

REFERENCES

REFERENCES

CS-1986-034, University of Massachusetts, Amherst, Computer Science, December 31, 1986.

McHugh:1993:ILC

Miller:1998:VMB

McCain:2008:MVI

Malandrino:2018:VBE

Magnusson:2002:SFS

REFERENCES

REFERENCES

Matthys:2005:IVE

Mzaik:1993:SPA

Muller:2006:SVP

Mao:2014:RPO

Min:2012:VVM

REFERENCES

[MPF+06] Steve Muir, Larry Peterson, Marc Fiuczynski, Justin Cappos, and John Hartman. Privileged operations in the PlanetLab

Mylopoulos:1991:IPT

Miller:2004:CLI

Moreno:2006:NV

Minhas:2013:RTH

Meier:2017:PVM

Malan:1991:MA

REFERENCES

REFERENCES

References

Computers, 63(9):2245–2258, September 2014. CODEN ICTOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

Merrifield:2016:PIE

Merrifield:2017:PIE

Mühlbacher:1975:GIF

Mergen:2006:VHP

Marz:2016:RPC

Munawar:2005:BPB

REFERENCES

REFERENCES

Ng:2001:VEWa

Ng:2001:VEWb

Noll:2013:OFD

Noshy:2018:OLV

Nieh:2012:CBR

Namjoshi:2010:NOP

Neumann:2006:IVT

Nieh:2000:EV

Nejad:2015:TGM

Nowatzki:2015:ASC

Ngo:2015:RES

Nomura:2014:PAM

REFERENCES

REFERENCES

REFERENCES

Omote:2015:IAE

Ostrand:1994:PIS

OConnor:1997:PJV

Ost:2012:EAT

Parziale:2008:ZVL

Parnas:1979:DSE

REFERENCES

Patel:2012:PIF

Pimas:2017:GCE

Pek:2013:SSI

Plotkin:2016:SNV

Plata:1990:ASP

REFERENCES

Porter:2012:RLT

Pelleg:2008:VBD

Pickartz:2018:PCV

Piraghaj:2016:VMC

REFERENCES

REFERENCES

REFERENCES

Petrides:2012:HPD

Picht:2009:XKI

Pountain:1990:SPP

Paulo:2016:EDD

Pftscher:2014:COD

Parmelee:1972:VSV

REFERENCES

REFERENCES

[PW03] Rajwinder Kaur Panesar-Walawege. Views: a platform-independent GUI toolkit for the shared-source Common Lan-
REFERENCES

Benjamin Quétier, Vincent Neri, and Franck Cappello. Scalability comparison of four host virtualization tools. *Journal*
REFERENCES

Quynh:2006:RTI

Qiang:2016:SCF

Russell:2002:SCI

ReFerre:2006:VIS

Rayns:2013:CJS

Rajaraman:1979:PPV
M. K. Rajaraman. Performance prediction of a virtual machine. ACM SIGMETRICS Performance Evaluation Review,
REFERENCES

Ramsdell:1993:RVP

Raner:2002:LJV

Russell:2001:HSA

Rodriguez:2017:BDS

Ramakrishnan:2012:EIV

Rajagopalan:2012:SDT

SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). VEE ’12 conference proceedings.

REFERENCES

Rosenblum:1999:VVP

Rosenblum:2004:RVM

Rosenblum:2006:IVC

Rosen:2014:LCF

Roussos:2007:SVG

Ramamurthy:2007:PDE

Ryckbosch:2012:VSM

[RPE12] Frederick Ryckbosch, Stijn Polliet, and Lieven Eeckhout. VSim: Simulating multi-server setups at near native hardware

REFERENCES

REFERENCES

CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

Simons:2010:VHP

Samant:2016:HBS

Singh:2015:TVC

Sotiriadis:2017:VMC

Sani:2014:PDF

Shen:2017:DAV

Andrew Schulman. Undocumented corner: Introduction to ‘The Windows 3.1 Virtual Machine Control Block Part 2’ (K.
REFERENCES

Schocken:2009:VMA

Schmeisser:2013:MOE

Schneider:2013:FVM

Simpkins:1993:AVM

Shi:2012:VGA

Sarkar:2001:HPS

[SD01] Vivek Sarkar and Julian Dolby. High-performance scalable Java virtual machines. Lecture Notes in Computer Science,
Sartor:2012:EMT

Jennfer B. Sartor and Lieven Eeckhout. Exploring multi-threaded Java application performance on multicore hardware.

Sedighi:2007:EV

Seecker:2008:EGS

Seeling:2008:L

Soundararajan:2010:CBS

Shuja:2016:SMD

Sier:1999:DID

Sier:2000:DID

Saeed:1992:ICM

Simao:2012:CER

Shanmuganathan:2013:DCU

Schmalenbach:2004:JVM

Stefanovic:2003:OFG

Shen:1991:VTD

Shelburne:2002:PEP

Shippy:2003:PGT

Shao:2013:VOS

Shriver:1989:PTA

Svard:2011:EDC

Sard:2015:PPC

Song:2014:OBS

Sarda:1981:CAD

Suneja:2015:EVI

Signorini:1989:HSM

So-In:2011:VAU

Solaimani:2016:OAD

Simpkins:1992:AVP

Santanna:2017:DIS

Silla:2017:BRG

REFERENCES

Siveroni:2004:OSJ

Sivakumar:2007:CCA

Salehi:2014:RPB

Shi:2012:TSW

Sem-Jacobsen:2013:ELC

Shen:2017:SLC

REFERENCES

REFERENCES

REFERENCES

CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic). ASPLOS ’12 conference proceedings.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Saltzer:1975:PIC]

[Shih:2005:ICA]

[Salimi:2013:BSC]

[Soundararajan:2017:SFC]

[Stark:2001:JJV]
REFERENCES

LCCN QA76.73.J38 S785 2001. US$49.95. Includes CD-ROM with the entire text of the book and numerous examples and exercises.

REFERENCES

Song:2013:PLM

Sciampacone:2010:EMS

Stone:1994:PSO

Sharifi:2012:PED

Stefanovic:2017:TSS

Stoess:2012:LVM

Strauss:2013:FCC

Sun:2013:BJW

Su:2014:RVP

Subramaniam:2008:PST

Subramaniam:2011:PCJ

Samples:1986:SSB

Simao:2013:ADQ

Steindorfer:2015:OHA

Steindorfer:2017:TSP

Sebes:1993:MAL

Sugerman:2001:VDV

Scott:2010:SLV

Swaine:2006:VR

Steinder:2008:SVA

Shan:2012:FIA

Spink:2016:HAC

Song:2018:FRD

Song:2014:ARP

Shuo:2012:PKR

Sohrabi:2017:EEA

Syropoulos:2007:PMV

So:1988:PLV

Stolyar:2013:LSS

Su:2014:EAV

REFERENCES

REFERENCES

Tu:2014:PPP

Tian:2018:MTE

Thiruvathukal:2010:VCS

Thompson:1968:PTR

Thomas:1993:PIS

REFERENCES

REFERENCES

REFERENCES

Tsai:1993:LMM

Tamm:1996:LBV

Tu:2013:SDS

Thanh:1982:ITC

Turek:1984:IDV

Turega:1992:CAS

Tupakula:2012:DSB

Toosi:2016:AMC

Tollenaeere:1992:PIC

Tien:2014:EOS

Taheri:2017:VBB

REFERENCES

Upadhyaya:2015:EML

USENIX:1985:SCP

USENIX:1986:SCP

USENIX:1991:PUM

USENIX:1993:PUM

USENIX:1999:PFU

USENIX:2000:P

USENIX:2000:PNU

USENIX:2001:PUA

USENIX:2001:PUC

USENIX:2001:PJV

USENIX:2001:UJV

REFERENCES

REFERENCES

[VdlFCC97] José M. Pérez Villadeamigo, Santiago Rodríguez de la Fuente, Rafael Méndez Cavanillas, and M. Isabel García Clemente. The em88110: emulating a superscalar processor. SIGCSE Bulletin (ACM Special Interest Group on Computer Science
REFERENCES

(December 1997). CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927 (electronic).

Visegrady:2014:SCV

Visegrady:2014:SCV

[Visegrady:2014:SCV]

Venstermans:2006:BVB

Venstermans:2007:JOH

Venners:1996:UHL

Venners:1997:IJV

REFERENCES

Venners:1997:UHHb

Venners:1997:UHHc

Venners:1999:IJV

Venners:1999:SVJ

VonHagen:2008:PXV

Vitek:2014:CTR

[Vit14] Jan Vitek. The case for the three R’s of systems research: repeatability, reproducibility and rigor. ACM SIGPLAN No-
REFERENCES

vonKoch:2013:LRB

Viswanathan:2000:JVM

vonLaszewski:2001:GBA

Varvello:2016:MPC

vanMoolenbroek:2014:TFL
REFERENCES

[Vallee:2006:OTX]

[Victor:2010:OSS]

[Varadharajan:2014:CSA]

[Venkatesan:2016:SCA]

[Verboven:2013:BBS]

REFERENCES

REFERENCES

[WCC16b] Huang Wang, Xianglan Chen, and Huaping Chen. A cross-ISA kernelized high-performance parallel emulator. *International
REFERENCES

REFERENCES

82, April 2002. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Wesley:1998:WJA

Ward:2003:VWH

Wires:2007:SFS

Williams:2007:VXI

Wagner:2011:SJV

Weng:2013:HCM
Chuliang Weng, Minyi Guo, Yuan Luo, and Minghu Li. Hybrid CPU management for adapting to the diversity of virtual machines. *IEEE Transactions on Computers*, 62(7):1332–1344,
REFERENCES

July 2013. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic).

REFERENCES

REFERENCES

CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic). ISCA ’12 conference proceedings.

Zhe Wang, Jianjun Li, Chenggang Wu, Dongyan Yang, Zhenjiang Wang, Wei-Chung Hsu, Bin Li, and Yong Guan. HSPT: Practical implementation and efficient management of embedded shadow page tables for cross-ISA system virtual machines. *ACM SIGPLAN Notices*, 50(7):53–64, July 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

William A. Wulf, Joe Newcomer, Bruce Leverett, Rick Cattell, and Paul Knueven. Surveyor’s forum: Retargetable code gen-

[WP97] Phil Winterbottom and Rob Pike. The design of the Inferno virtual machine. In IEEE [IEE97], page ?? ISBN ?? LCCN ???

REFERENCES

Wang:2016:DMB

Wurthinger:2017:PPE

Wang:2017:RLW

Wright:2006:IJV

Wang:1989:NNS

Wendorf:1989:SOS

J. W. Wendorf, R. G. Wendorf, and H. Tokuda. Scheduling operating system processing on small-scale multiprocessors. In
Shriver [Shr89], pages 904–913 (vol. 2). ISBN 0-8186-1912-0. LCCN ???? IEEE catalog number 89TH0243-6.

[Wang:2011:SHS] Xiaolin Wang, Jiarni Zang, Zhenlin Wang, Yingwei Luo, and Xiaoming Li. Selective hardware/software memory virtu-

REFERENCES

REFERENCES

Hong Yao, Changmin Bai, Deze Zeng, Qingzhong Liang, and Yuanyuan Fan. Migrate or not? Exploring virtual machine

[YGN+06] Yang Yu, Fanglu Guo, Susanta Nanda, Lap chung Lam, and Tzi cker Chiueh. A feather-weight virtual machine for Win-

Yan:2012:VCH

Yamada:2013:TFT

Yang:2017:EJV

Yamanaka:2016:TFF

Yang:2017:VMM

Yang:2014:ICV

Yan:2017:CAE

Yang:2014:MMG

Ye:2010:EES

Yi:2017:CDC

Yang:2014:IGV

Yang:2005:LMJ

Yoginath:2015:EPD

Yang:2017:EEV

Yu:2014:MPP

Yousefipour:2018:ECA

Yeh:2017:PFG

Yan:2014:EFG

Yutaka:2000:EJV

Yurcik:2002:SIS

Yan:2017:HTC

[YWY+17] Song Yang, Philipp Wieder, Ramin Yahyapour, Stojan Trajanovski, and Xiaoming Fu. Reliable virtual machine place-

Xin Zhao, Kevin Borders, and Atul Prakash. SVGrid: a secure virtual environment for untrusted grid applications. In ACM [ACM05b], pages 1–6. ISBN 1-59593-269-0. LCCN ????

Zhang:2017:MAP

Zamorano:2013:ART

Zeng:2015:PPH

Zhang:2018:LFV

Zaman:2013:CAB

Zimmermann:2006:AHM

Alexander Zimmermann, Mesut Günes, Martin Wenig, Jan Ritzerfeld, and Ulrich Meis. Architecture of the hybrid MCG-
REFERENCES

mesh testbed. In ACM [ACM06c], pages 88–89. ISBN 1-59593-540-0. LCCN ????

[Zim05] Dennis Zimmer. VMware and Microsoft Virtual Server: virtuelle Server im professionellen Einsatz; [VMware GSX, ESX und Microsoft Virtual Server; Virtualisierungsssoftware im Vergleich; Planung, Installation und Verwaltung]. Galileo
REFERENCES

Zhang:2018:DIV

Zhang:2014:AIO

Zhou:2018:DNA

Zhang:2015:SSP

Zabolotnyi:2015:JCG

Zheng:2016:VMC

[ZLL+16] Qinghua Zheng, Rui Li, Xiuqi Li, Nazaraf Shah, Jianke Zhang, Feng Tian, Kuo-Ming Chao, and Jia Li. Virtual

Zhou:2013:OVM

Zou:2012:CDA

Zhang:2014:VFP

Zhou:2018:SFC

Zhang:2013:ASD

REFERENCES

Zhang:2015:MCV

Zhang:2019:CFV

Zheng:2014:CCM

Zakkak:2014:JJM

Zhang:2016:CGS

Zoppke:2006:VLE
Till Zoppke and Raúl Rojas. The virtual life of ENIAC: Simulating the operation of the first electronic computer. *IEEE
REFERENCES

Zhang:2006:SPV

Zhang:2007:DIB

Zhu:2017:VLV

Zou:2014:VOV

Zhang:2019:EAV

Zhou:2017:NFA

Zhang:2017:CBV

Zhao:2009:DMB

Zhao:2018:PAP

Zeng:2016:VEF

Zhong:2015:VBM

Zytaruk:1994:WVMa

Zytaruk:1994:WVMb

Zhan:2018:HPV

Zhao:2006:DFS