Abstract

This bibliography records books and other publications about virtual machines.

Title word cross-reference

$32.95$ [Ano97a]. 5 [ALW15]. $^{TM}$ [Cza00]. $^{TP}$ [LTK17]. $d$ [XDL15]. $HV^2M$
[CBZ16]. $\omega$ [Arv02]. $\Pi$ [Syr07]. $V^2$ [DG05].

-dienste [WF03].

.NET [Fra06, Fra09, Hee07, Hog06, Hog08, Men03].

/CLI [Fra06, Fra09, Hee07, Hog06, Hog08, Siv07, Wil06]. /dev/random
[Fe11].
0 [Sim92, SCP93]. 0.9.0 [WR07]. 0.9.1 [WR08]. '01 [Ano00, Ano01a, Ano01b, USE01c, USE01d]. '02 [USE02]. '03 [ACM03b, Ert03]. '04 [Ano04a, Ano04b]. '05 [ACM05d, Vra05].


2 [Bri98, Com00, Com03, Kis08]. 2-Level [ZSR+05]. 2.0 [Fra06, Ng01a, SUTH97]. 2000 [ACM00]. 2001 [ACM01b]. 2003 [RM03, ACM03a, ACM03b, IEE03, Int05a]. 2004 [ACM04a, ACM04b]. 2005 [ACM05a, ACM05b, ACM05c, Wil06]. 2006 [ACM06c, ACM06b, ACM06d, IEE06b, IEE06a, Int06b, Int06c, Int06a]. 2008 [Lar09]. 2010 [Ano10]. 2011 [LCK11]. 20th [IEE06a, Vra05]. 21st [IEE05]. 23272 [Int05b]. 26th [ACM99]. 29-state [Sig89]. 2nd [Ano02].

3 [McC08, PO09, vdK09]. 3.0 [MRGB91]. 3.1 [Bau06a, Skr01]. 3.5 [Fra09, Hog08]. 32 [Ano14b]. 32-bit [VED06]. 335 [ECM01, ECM02, ECM05, ECM06]. 360 [Kam75]. 360/40 [ABCC66]. 370 [Att79, Bar78, Ber86, Cal75, GLC84, Gum83]. 37th [ACM06d]. 390 [DBC+00]. 3rd [ACM05b, ACM06e, Ano04a].

4 [Gal09b, G+06, Lav10, Low09, NOK+85]. 4-7 [M+06]. 40 [GBO87]. 43rd [ACM06a]. 440 [R+02]. 4th [USE00a].

5 [IEE02, War05]. 5.2 [P+08]. 5.5 [Bau06c, LMG+14]. 5L [Mly09].

6000 [ABDD+91]. 64 [De 06, Don06]. 64-bit [VED06, VED07]. 6th [USE01b].

7 [HH08]. 7th [Tho93].

8 [LYBB14, She02]. 80 [BMWB86, BSUH87]. 84 [IT86]. 84/K [IT86]. '89 [ACM89].


American [Boa90]. among [CDN02, LLF+18, LTZ+14, TtLcC13].

amplifying [DP11]. Analysis [Gai75]. analyses [HB13]. analysing [PV06]. Analysis
[ACM05a, BFG+14, HT98, HB17, HWB03, JKK+13, KNT02, LCK11, MM93, NMS+14, Ost94, RI00, SM02, TKG89, WH99, WLS+18, ACM01a, AAH+03, BBM09, BER14, EMS15, FX06, GP13, GPW03, LTZ+14, MD73, MD74, MSG01, RRB17, SNSB11, TLX17, Wun13, YJZY12, DHPW01].

Analysis-Driven [ACM05a]. analytic [Bar78]. analytics [KB17].

Analyzer [Ano03a, SHLJ13]. Analyzing [CVWL13, PV08]. Android
[CXLX15, KLF+15, MPP+12, STY+14, THC+14]. Angeles
[ACM06c, IEE84b]. Animated [PCR89]. annealing [RH17]. Annotated
[MR04, RSF03]. annotation [ANH00]. annotation-aware [ANH00]. Announcement [Ano00]. Annual [ACM06a, Ano10, IEE85, IEE05, MS91b, Shr89, USE00a, USE01a, USE06, ACM06a]. anomalies [FRM+15]. anomaly [SIK+16]. Ant [AAK18, AP18]. Antfarm [JADAD06a]. Anti [Sta07]. Anti-P2P [Sta07]. Antonio [ACM99, USE01b]. Anwendung
[Bec09, Bor01, WF03, Zim06]. Any [WL96, FIF+15]. AOT [WKJ17]. APA
[BRX13, AEMWC+12, BSM+12]. Application
[AW17, CHW12, cCWS14, Cza00, HMH17, KNT02, KLF+15, LWC+17, MD73, MD74, PCW+16, TB17, AS14, BBS06, IBM88, Int88, IBM96, JSK+13, JCZZ13, JDJ+06, Kau09, Lia05, LBF12, LLS+08, MRGB91, SE12, SWcCM12, SASG13, SL00, ZS01, ZBG+05]. application-specific [ZS01]. Application-transparent [AW17]. Applications
[Ano99b, Ano03a, BAL15, Boa90, DJS+17, FBL18, HHV+02, HSK17, HC17, IEE05, JW17, NKK+06, Pto13, PY93, SS05, TR88, WLS+18, AS76, AHR13, AC16, AB16, ACT94, ABC+07, BD11, BTLNBF+15, BOF17, DMH18, DBC+00, EF94, EMS15, GHD12, GTN+06, GHH+93, HeC14, HKD+13, HSC15, JPT14, JRG+12, LCC14, MCC18, dOOL12, PTM+15, R+13, RSLACGLB16, ScH13b, SGV12, SZ88, TDG+18, WDC10, YGN+06, ZBP05, ZNSL14]. Applicative
[AS85a, Abr82, AS85b]. applied [MM92]. Approach
[BFG+14, BRX13, CFC17, CLW+14, Cox09, DPA11, DM75, EMAL17, FPS+02, Jen79, JQW+15, KC16, KAH83, NSJ12, SDD+16, VN06, WJ10, WVT+17, XDH17, ZTWM17, BML+13, BHvR05, CGL+08a, CGL+08b, CGL+08c, CBZ+16, GLLJ+16, KW13, KKB14, LHI3, LU04, MD73, MD74, PSC+07, SENS16, TZE17, XHCL15]. Approaches
[BAL15, FMIF18, JK15, TIN09]. Appropriate [ZRS+16]. apps [MMP+12]. April
[Ano01b, IEE84a, USE01c]. Arbitration [SKJ+17]. Architectural
[DCP+12, JR02, NMHS15, PEC+14, SL12, CFS+12, DLL+16, RVJ+01, WLL+13]. Architecture
[BBD+91, BKM08, BDR+12, CAF+91, DAH+12, G+05, Gol73, Gum83, HW93, Hsu01, HWCH16, IEE85, KZB+90, Kee77, LMG00, LMG01, LGR14, MSS+15, PCC+16, PK75a, Rev11, SJV+05, SSB03, SN05a, SWF16, Sun99, TR88, TV12, Tur92, Uhl06, WIS+15, ZL18, ZGW+06,
Ano94, Ber86, BR01, CCL+17, CLDA07, DS09, FC98, GDSA+17, GCARPC+01, HII16, Hog02, HMS04, IBM88, IJK+06, Jou85, KW80, LIW+12, LL14, MS01, MJ93, NOK+85, OJG91, RFBO01, Ros06, SIJPP11, SG09, We02, YTS14, YYP01, Yur02. Architecture-aware [WIS+15], Architecture(R) [MBBS13]. Architectures [ACM06b, BN75, EMAL17, EG01, HW93, HHK94, Iau14, PG74, PY93, RD90, BGS13, DM93, EM13, FG73, Skr01, YZW+13, ZP14]. Architecture [Dal97]. Area [BFG+14, Fis01]. Arizona [IEE05]. ARM [DN14, DLL+16, GNDB16, MGL+17, ZTWM17]. ARM [Bauer01]. Arm [Sur01]. Arquillian [Ame13]. Array [BMK+92, SV15]. Arrivals [KMM13]. Art [BGP00, SGB+16, BDF+03, MDD+08]. Artificial [MR91, TVO92, BCM90, IM93, KCV11, RK16]. Arts [BB08]. as-a-Service [ESY+17, HPHV17]. aspect [BADM06]. Aspects [Hsu01, Kna93, EF94]. assembler [GBO87]. Assembly [BD01, SVB93, Ber86, Don88, Joo07]. Assembly-Language [SVB93]. assignment [AAM+16, KMT14, WZV+13]. Assisted [CCML12, JSHM15, JAS+15, RTL+18, AHJ12, GMK17, ZY+18]. Assists [OLZ16]. Association [Sof83]. Assurance [LJZ12, LLW+12]. Assuring [YDW18]. AST [ZLBF14]. asymmetric [CBGM12, KKLJ14]. Asynchronous [Cav93, LJ+11, MM93, SM01, WN17, vLSM01]. Atlanta [USE08, USE00a]. ATMS [CWG00]. atomicity [BHSB14]. attached [Mon97]. Attackers [CLS07]. Attacks [SL16, SYB12, TV12, WWP+17, GHD12, VT14, WXW15]. Attestation [ZL16, VT14]. attribute [FS89]. Auction [SZW+16, TVKB16, ZG13, ZLH+15]. auction-based [ZG13]. Auctions [ZHW+17]. Auditing [SM90]. aufsetzen [RHM08]. augments [Bri98]. August [RM03, IEE96a, IEE97, IEE99, MR91, Ost94, USE93, USE00b, USE02]. Ausfalls [Mar08]. Austin [ACM75, IEE02, IEE03]. Australia [MR91]. Author [DM76]. automata [RGAT18, RT18, TLX17]. automata-based [RGAT18, RT18]. Automated [AD18, ACM05a, Ano03b, BSS14, HLP+16, FGLI15]. Automatic [MS00, SMES01, SMA+10, Sus76, WML02, ZLZ13, CL17b, MSZ09]. Automating [MJW+06]. Automation [ACM06a]. automaton [Sig89]. autonomic [SWC08, WDC08]. Autonomous [SA17]. availability [AAF+09, Fu10, DL+08, MRC+13, YLH14]. Available [Ano03b, GI12, GV13]. avatar [CKT08]. average [LDL14]. avionics [ABC+07]. Avoidance [LYS+18, OG16]. Avoiding [BLRC94]. Award [War11]. Aware [AAK18, BM16, BL17, CWH+16, CGC16, CWL+15, CYX+17, CHLY18, Do11, EGR15, HC17, HPP15, JKK+11, JQWG15, KL14, LMM18, Man16, RG17, SD+16, TB17, XLL+14, XLJ16, YLH17, ZCG+17, ZWL+18, dSdF16, AO16, AMAB17, ANH00, CD14, DXM+17, DCMW17, Fu10, GLK+12, GA18, HSC15, HC12, IKU15, JNR12, KC16, KBB11, KCS14, KLF+15, LYY18, LWL16, PFPJ18, RH17, SBB+14a, SSN12, SGV12, SZ+14, SK13c, WIS+15, WCC+16a, XJ+14, YRJ18, ZHHC17, ZWC+19, ZWH+17]. Awareness
[GR15, SXCL14, XDL15]. Binary
[KLF+15, ZFL15, dGG+17, HLW+13, JYW+13, PGLG12, vKF13]. BIND
biogeography-based [ZLL+16]. biology [Wü13]. Biopolis [Ano06a]. bird
[VED06, VED07]. Bitcoin [HB14]. BizOps [FBL18]. Black
[NMMP15, VVB13, TZK17, WSVY09]. black-box [TZK17, WSVY09].
Blessing [Kot10, Kot11]. Block [Sch94b, Sch94a, TLBW12, Zyt94a, Zyt94b,
FFBG08, FLCB10, LLE17, TKG89, WF07]. block-device [FFBG08].
block-level [FLCB10]. block-paging [TKG89]. Blockchain
[CQLL18, DMH18]. Blocks [Lam75]. blows [BBTK+17]. Blue
[SSU+12]. board [CGV10]. Bochs [Ano14b]. bodies [AGS94]. Bolton [ACM03].
Book [Ano97a, Fro13, Lar09, Van98, B+07, TC10, War02]. books
[Van98]. boost [CBZ+16]. boosting [AC16, LKY+17, PGLG12].
Boot [NOT+17, SB16, DBO+18]. Bootstrapping [CBLFD12, Kam75]. BOS
[RP07]. Boston [IEE85, USE01a, USE06]. Both [ZHL16]. Bottom
[UOKT84]. Bottom-up [UOKT84]. bound [JGA+88]. boundary [SBQZ14].
bounded [XHL+13]. Box
[NMMP15, TZK17, VVB13, WSVY09, XHCL15, MNS+14]. branch
[CEG07, EG03, JGA+88, JYW+13, WHC16]. branch-and-bound
[JGA+88]. branch-and-price [WHC16]. branches [KJM+07]. Breadth
[MNS+14]. Breaking [GKBB15, Rix08]. breed [Arm98]. Bridge [Men03].
Bridging [ACM04b, FL13a, GSW+17]. Brighton [Vra05]. bring
[XKY+11]. Bringing [BDR+12, STS+13]. brokering [TMMVL12]. browser
[FIF+15]. BSD [WF03]. Buch [KGG00, Tho08]. buddies [WTL09]. Budget
[RB17]. Budget-Driven [RB17]. buffer [JADAD06b]. buffers [CFG+13].
Bug [Ano97b, Ano15]. Building [AAB+05a, CMG17, DBC+00, DF06,
HWCH16, PEC+14, SJV+05, See10, TSP17, Nie12, SG10b, WH08].
Burstable [WUNK17]. bursts [DP11]. bus [HHPV15]. Buying
[YLN+17, ZLH+15]. buying-based [ZLH+15]. BYOD [DMG+15]. Bypass
[LHAP06]. Bytecode [MO98]. bytecodes [SUH86].

C [Fra06, Fra09, Hee07, Hog06, Hog08, Wil06, Blu02, CWG00, G+01, Hee07,
Hog06, Hog08, JM08, Men03, Siv07, Wil06]. C# [G+01]. C/C [Blu02]. CA
[ACM06a, ACM06c, Ano97a, IEE84b, IEE93a, USE01c]. Cache
[JQWG15, NSP16, RHR02, Boz89, JADAD06b, Oi05, RJK16, ZP14, AMA18].
caches [BLRC94]. Caching [AMA18, KJLI11, MM93, LM99, XWX+17].
Calculations [Bad87]. Calculus [ABV12, Wat86, Wat87, WK90]. Calif
[ACM01b]. California [ACM05a, ANo01b, Ano04b, Ano10, IEE96a, IEE97,
IEE99, USE91, USE99, USE01c, USE02, IEE84a, IEE90a, IEE91, Tho93].
Call [DEK+03, Lee16, PULO16, PVR14, SSB+14a]. Call-site [SSB+14a].
calling [HIB13, SSB+14a]. calls [VMBM12]. Cambridge [USE93]. Can
[Cox07, GW07, THB06, Sig89]. Canada [ACM06f, Sol83]. CAOS [Sch86].
Cap [HCl17]. Capabilities [TV092, Ame13, AAB+05c, Fit14]. capable

YP15, ZQCZ16, ZL16, ZCG+17, ZL18, ZWL+18, ZHL16, ZL18, AGH+15b, AGH+15a, AB16, AO16, AMA+14, ATS16, AMAB17, ARMMA18, AP18, AA18, BD11, BTMS10, Beg12, BCC+15, CL14, CSSS11, DC15, DEG+17, DQLW15, DCMW17, FLL+13, FPGK18, FMIF18, FrO13, GTGB14, GDSA+17, GLK+12, GA18, IKU15, JES+15, JWH+15, KSO+15, KSRL10, KS18, KMT14, KTB17, KCS14, KJLY15. **Cloud** [KCKC15, LLW+12, LZWC13, LZWD15, LZC+16, LLF+18, LLWW18, LCL14, LLS14, LL14, LTZ+14, LP11, LPBB+18, Man15b, MNA16, MA17, Nie12, NIA18, dOL12, OL13, PFPJ18, RK16, RGAT18, RH17, RT18, RQD+17, RJK+17, Ros14, SG10a, SGV13, SASG13, SBP+17, Str13, TZEK17, TMLL14, VT14, WCY+17, WLL+13, WRSvdM11, WRS+15, WXW15, XHL+13, XZZ+16, XT17, YLH14, YLHJ14, YLCH17, ZWC19, ZWH17, ZLZ13, ZWHC17, ZHHC17, ZWC+19, ZWH+17, BB12, CD14, CFVP12, KBB14, KBB11].

**Cloud-Assisted** [KCKC15, LLW+12, LZWC13, LZWD15, LZC+16, LLF+18, LLWW18, LCL14, LLS14, LL14, LTZ+14, LP11, LPBB+18, Man15b, MNA16, MA17, Nie12, NIA18, dOL12, OL13, PFPJ18, RK16, RGAT18, RH17, RT18, RQD+17, RJK+17, Ros14, SG10a, SGV13, SASG13, SBP+17, Str13, TZEK17, TMLL14, VT14, WCY+17, WLL+13, WRSvdM11, WRS+15, WXW15, XHL+13, XZZ+16, XT17, YLH14, YLHJ14, YLCH17, ZWC19, ZWH+17, BB12, CD14, CFVP12, KBB14, KBB11].
Combining [BPP+17, RSLAGCLB16, YJZY12]. COMMA [ZNSL14].

Commands [MC93]. Commodity [RTL+18, Ros99, ZTWM17, BK14, CGL+08a, CGL+08b, CGL+08c, CLDA07, TLBW12]. Common
[CK87, Cro93, Int05a, Int05b, Int06a, ECM01, ECM02, ECM05, ECM06, Int06b, Int06c, Int06a, MR04, PW03, RSF03]. communicating [SK13c].

Communication [CL17a, CK06b, CK06e, DJ77, HW15, Jen79, RLZ+16, YC98a, YC98b, BML+13, DSC+08, DJ76, GI12, Tho93]. Communications
[NKK+06, CFVP12, HSC15, MN91]. communities [ACM04b].

Communicating [SK13c]. Communication [CL17a, CK06b, CK06e, DJ77, HW15, Jen79, RLZ+16, YC98a, YC98b, BML+13, DSC+08, DJ76, GI12, Tho93].

Communications [NKK+06, CFVP12, HSC15, MN91]. communities [ACM04b]. community [AAB+05a].


Comparing [Gal11]. Comparison [Do11, EDS+15, Ng01a, Ng01b, QNC07, AA06]. Compatible [ZFL15].

Comparative [LJL+15, Van98]. Compatible [ZFL15].

Comparison [Do11, EDS+15, Ng01a, Ng01b, QNC07, AA06]. Compatible [ZFL15].

Compatible [ZFL15].

Competent [LJL+15, Van98]. Compatible [ZFL15].

Competitive [BFG+14]. Compilation
[ACM06b, Cla97, FM90, JK13, KS13]. Compiler [GFH82, Har77, FS89].

Compiling [BS90, BSUH87, Ode87, Wak99]. Complete
[Bod10, Fis09, LJN+00, RRB17, War02]. completion [MNT14]. Complex
[KAZS14, Sig89]. Complexity [SSH17, Bod88, FS08, GLK+12, Sub08].

Compliant [CF00, HWCH16]. Component [Ano03b, WML02].

Component [Ano03b, WML02].

Components [HPHS04, IKU15]. Composable [JHE14]. Composed [Wel94].

Composite [DKW15]. compositional [Yel99]. compound [VMBM12]. Comprehensive
[HSN17b, LV99, PCW+16, TFiLeC15, GP13, MA17, YWL+18].

Compressing [JDW+14]. Compression [HKKW13, SHTE11]. compromise
[CD01]. CompSC [PDC+12]. Computatio [HW93]. computation
[CMP+13, CKP+93, KJJ+16]. Computational [THK10, Wum13, YQZ14].

Computations [Kra90, NOR15]. Compute [GSW+17, KL13]. Computer
[ACM81, ACM06d, Ano93, Arm78, BGS89, CCO+05, DM75, Hsu01, EIE85, IEE90a, IEE91, IEE05, Nel04, PBR+90, SS75, SI81, Tur92, WR07, WR08, ZR06, Agr99, BR01, DG05, DTW07, FFB+00, GE85, GD08, Hog02, Jus95, Jus07, KW80, LB+07, ME87, MS01, Pon90, Ross06, Skr01, Spi06, SS72, Sus76, WO75, YYYY99, Yur02, Mon97, Osb01, War11]. Computers
[BP99, BKMM07, BS90, KD78, MSS+15, HP77, SGGB99, SGGB00].

Computing
[ACM98, ACM04b, ACM05b, ACM06e, Abr80, BHEP14, CWL12, CPKL17, CFM17, DDS+94, DPCA11, Gei02, IEE96b, IEE04, IEE06a, KC16, KGZ+04, LCK11, LW12, MSG14, MO98, NSJ12, PCW+16, PXG+17, PS16, RCM+12, RSNK17, RSN+18, SCSL12, SZW+16, SEF+06, TLC06, USE93, Voj03, WB81, XSC13, YLN+17, ZL16, ZF06, ZAI+16, Ano96, AMA+14, ARMA18, BS96, CD14, CDM+10, DQR+13, DCMW17, Fis95, FF06, Fro13, Fu10, GLA+08, JPT09, KLH17, KSO+15, LBZ+11, LLW+12, LZC+16, LCL14, LTZ+14, LP11, LPBB+18, MNA16, McG72, McK11, MUKX06, M+06, MA17, NIA18, PSZ+07, QZDJ16, RGAT18, RQD+17, Rob06, SJW+13, SASG13, SB10, TMLL14, WH08, XTB17, YRJ18, ZLZ13, ZWHC17]. con
[SMSB11]. concept [SIJPP11]. Concepts
[PPTH72, Agr99, Do88, MS01]. Concerns [VN08]. concolic [LLS+12]. Concurrency
concurrency-safe [CFS12]. Concurrent [GMP89, Har77, KD78, IT86, WK08, YWGH13]. Conditioned [WC01].

Conference

ACM81, ACM90, ACM96, ACM97, ACM00, ACM01b, ACM04b, ACM05d, ACM06a, ACM06b, ACM06f, Ano93, Ano99b, Ano01a, Ano02, Ano04a, Ano06a, BW03, DC15, IEE84b, IEE93a, IEE05, LCK11, Mar81, MS91b, MR91, SoS3, SS05, Shr89, USE99, USE00a, USE01a, USE01b, USE06, ACM05c, ACM06e, IEE06b, JPTE94, USE85, USE86, ACM00, YWGH13].

Configurable [WJGA12]. Configuration

[BRX13, Lar09, A+04, FL13b, SMA+10]. configurations [LDL+08].

configure [Car14]. Configuring [AL05, Rul07]. confirmation [OG16].

Conflict

BLRC94. Congestion [CL16b, LYS+18, YLH17, ZWC+14].

Congestion-Aware [YLH17]. Congress [GHH+93]. conjugate [MM92].

Configuration

[BRX13, Lar09, A+04, FL13b, SMA+10]. configurations [LDL+08]. configure [Car14]. Configuring [AL05, Rul07]. confirmation [OG16].

Conflict

BLRC94. Congestion [CL16b, LYS+18, YLH17, ZWC+14].

Congestion-Aware [YLH17]. Congress [GHH+93]. conjugate [MM92].

Connected [SMES01, MS00]. connection [MJ93, Tur84, TR88].

Connections


Consistency

[FRM+15]. Consistent [DJS+17]. Consolidated [HC17, HPP15, JJKJL14, OL13, SS13, ZL+16]. Consolidation [AAK18, BB13, LVM16, PZW+07, SBK15, AGH+15b, ATS16, AMAB17, AP18, BB12, BB15, CD14, Fro13, HMIH17, HZZ+14, gKEY13, KCV11, Lzc+16, LBL16, LYY+17, LYY18, LLW18, LL14, LDDT12, Man15b, NTH+17, RT18, R+02, SEN16, SSN12, WCC+16a, YRJ18, ZLCZ18].

Consolidation-aware [WCC+16a]. constituent [RHR02]. Constrained [EGR15, LTE12]. Constraint [LFBB94, DQLW15, LYY18].

Constraint-based [LYY18]. Constraints [BB13, KKS12, SZ13].

Constructing [DM93]. Consumption

[DSM14, HKM+18, MV16, FFB+00, DPBK16, RJK16, THG+18, VED07].

Container [SPF+07, YL+17, ZLW18, SG10a, Str13]. Container-Based [YLN+17, SPF+07]. Containerization [HSL17]. Containerized [HSL17].

Containers

[Ros14]. Containment [CLW+14]. Content

[CWH+16, FLZ17, LYS+18, GVIH13, LLF+18, LLLW18].

Contention

[JKWG15]. Contention-Aware [JKWG15]. contents [BTBNF+15].

Context

[DMG+15, TMV12, vLSM01, HB13, SSB+14a, SM01]. Continuous [DL95, TSLBYF08]. Continuum [Bad87]. Contraction [Par79]. Control [AGLM91, Att79, CL16b, HHC+16, L15, PSBG11a, RSNK17, RSN+18, Sch94b, Sch94a, SDD+16, Sur01, W10, WUK+18, WN17, WSA13J, Zyt94a, Zyt94b, AS76, BKH+06, FP14, HB08, Kis08, KKS12, Lia05, PSZ+07, PSBG11b, PSC+07, STS+13, ZBG+05, ZSW+06]. Control-Flow [WJ10].


[

MD12, CFS+12, Sub11, UR15]. concurrency-safe [CFS12]. Concurrent [GMP89, Har77, KD78, IT86, WK08, YWGH13]. Conditioned [WC01].

Conference

ACM81, ACM90, ACM96, ACM97, ACM00, ACM01b, ACM04b, ACM05d, ACM06a, ACM06b, ACM06f, Ano93, Ano99b, Ano01a, Ano02, Ano04a, Ano06a, BW03, DC15, IEE84b, IEE93a, IEE05, LCK11, Mar81, MS91b, MR91, SoS3, SS05, Shr89, USE99, USE00a, USE01a, USE01b, USE06, ACM05c, ACM06e, IEE06b, JPTE94, USE85, USE86, ACM00, YWGH13].

Configurable [WJGA12]. Configuration

[BRX13, Lar09, A+04, FL13b, SMA+10]. configurations [LDL+08].

configure [Car14]. Configuring [AL05, Rul07]. confirmation [OG16].

Conflict

BLRC94. Congestion [CL16b, LYS+18, YLH17, ZWC+14].

Congestion-Aware [YLH17]. Congress [GHH+93]. conjugate [MM92].

Connected [SMES01, MS00]. connection [MJ93, Tur84, TR88].


Consistency

[FRM+15]. Consistent [DJS+17]. Consolidated [HC17, HPP15, JJK+11, KKJL14, OL13, SS13, ZL+16]. Consolidation [AAK18, BB13, LVM16, PZW+07, SBK15, AGH+15b, ATS16, AMAB17, AP18, BB12, BB15, CD14, Fro13, HMIH17, HZZ+14, gKEY13, KCV11, Lzc+16, LBL16, LYY+17, LYY18, LLW18, LL14, LDDT12, Man15b, NTH+17, RT18, R+02, SEN16, SSN12, WCC+16a, YRJ18, ZLCZ18].

Consolidation-aware [WCC+16a]. constituent [RHR02]. Constrained [EGR15, LTE12]. Constraint [LFBB94, DQLW15, LYY18].

Constraint-based [LYY18]. Constraints [BB13, KKS12, SZ13].

Constructing [DM93]. Consumption

[DSM14, HKM+18, MV16, FFB+00, DPBK16, RJK16, THG+18, VED07].

Container [SPF+07, YL+17, ZLW18, SG10a, Str13]. Container-Based [YLN+17, SPF+07]. Containerization [HSL17]. Containerized [HSL17].

Containers

[Ros14]. Containment [CLW+14]. Content

[CWH+16, FLZ17, LYS+18, GVIH13, LLF+18, LLLW18].

Contention

[JKWG15]. Contention-Aware [JKWG15]. contents [BTBNF+15].

Context

[DMG+15, TMV12, vLSM01, HB13, SSB+14a, SM01]. Continuous [DL95, TSLBYF08]. Continuum [Bad87]. Contraction [Par79]. Control [AGLM91, Att79, CL16b, HHC+16, L15, PSBG11a, RSNK17, RSN+18, Sch94b, Sch94a, SDD+16, Sur01, W10, WUK+18, WN17, WSA13J, Zyt94a, Zyt94b, AS76, BKH+06, FP14, HB08, Kis08, KKS12, Lia05, PSZ+07, PSBG11b, PSC+07, STS+13, ZBG+05, ZSW+06]. Control-Flow [WJ10].


coordinating [ZNSL14], Coordination [ABV12, CRG16, Tho93], COOTS [USE99], Copley [USE01a], Coprocessor [LRZ16], Copy [AGJS16, HDG09], copying [PV08], CORBA [GCARPC+01], Core [RTL+18, CMP+07, DQR+13, KW13, PNT12, SK13b, YTS14], Corel [Ano03b], Corfu [DJS+17], Corner [Sch94b, Sch94a], correct [DM93, IM75, Kou11], Correction [Lee16], Correspondence [BDJdS02], Cosmology [Nel04], Cost [AMA18, AMH+16, HKM+18, Drei08, KJM+07, LBZ+11, OMB+15, SJR+13, WCY+17, YRJ18, ZLZ15], cost-aware [YRJ18], Cost-Elegant [AMA18, OMB+15], Costs [ZHW+17, FLL+13], count [XWX+17], counter [NB11], Counteracting [VT14], Coupled [WN17], course [AL05, Don88], courses [BBS06, GD08], Cover [Arm98], Coverage [CSS+16], Coverage-directed [CSS+16], covert [WXW15], CPU [BSSS14, HB08, JGW+11, KAM+13, LWC+17, Skr01, SK13c, WGLL13], crash [KY16], create [Fit14], creation [CK06b, CK06e], Credit [KP15, KCS14], Credit-Based [KP15], crisis [AT16], criteria [ATS16], Critical [Ano15], Criticality [WLMD16, LWM14], Crop [UBF+98, BDF+98], Cross [GSS+18, JR02, JXL+12, SWF16, WLW+15, WCC16b, AWR05, BKC+13, CWH+14], Cross-Architectural [JR02], Cross-Architecture [SWF16], Cross-ISA [WLW+15, WCC16b, CWH+14], Cross-Language [GSS+18], Cross-Platform [JXL+12], cross-run [AWR05], cross-thread [BKC+13], Crosscut [CLG+10], CrossOver [Ano03b], cryptographic [QZDJ16], cryptography [RY10, VDO14], CSDA [War11], CSDP [War11], CTO [Cre08a, Cre08b, Cre09, Cre10b, Cre10a], CUDA [MGL+17, PRS16], Current [AH12, RG05], Curse [HB14, Kot10, Kot11], Customer [PPO14], Customer-oriented [PPO14], Customizable [LJFS17], Customization [PCC+16, CGV10], customized [HB13], CVM [DSC+08], CyberGuarder [LLW+12].
data centers [GDSA + 17]. Datacenter [BBM + 15, KGGS17, BCP + 08, GTGB14, MSG + 12, SG10b, ZLZ15, ZWC + 14].
datacenter-scale [MSG + 12]. Datacenters [JWL + 18, KLI4, LGJ + 18, SC17, SC18, GLLJ16, LPBB + 18, WRS13].
Dataflow [HT98], Datapath [TSP17]. Dataplane [BPP + 17], DBT [KS13].
DCN [CYX + 17]. DDG [PGLG12]. DDG-based [PGLG12]. DDGacc [PGLG12].
de-duplication [CLcC13]. de-facto [Rus08]. dead [SK13a].
deadline [DQLW15]. deadlocks [PRB07]. Death [NOT + 17]. Debian [CK06a, CK06b, CK06k, CK06q, Bau06a, CK06a, CK06b].
Debues [Ano03b]. Debugger [MZG14, RB01, Sun99, But94, HH05].
Debugging [ACM05a, FS12, HHH04, Cia07, JHE14, KM13, KK79, PMC05].
December [ACM05b, HHK94, IEE05, M + 06]. Decision [CHW12, DJ77, SC17, DJ76].
Deduplication [Li14, MJW + 14, PP16, CWC + 14, GMK17, HOKO14, XZZ + 16].
Deduplication-Based [MJW + 14]. deep [GTK17, HeC14]. defending [CVWL13].
Defensive [BDJDs02, Coh97]. Defined [AFG + 17, CL17a, CPKL17, JN15, LLW + 16, ZKWH17, ALW15, HHSG18, LJR12, LWL16].
Defining [DL89, Hir17, Lot91, BMWB86]. Definition [Dom80b, SSB14b, SMO84, EMS15, SSB01].
Definitive [Oak14, Chi08].
Defragmenting [SGV13]. Degree [KMM13]. DejaView [LBP + 07]. Delay [RSNK17, RKKR17, WCY + 17, ZRS + 16, LCL14].
Delay-cost [WCY + 17]. delay-sensitive [LCL14]. Delivery [FLZ17, TFLcC15]. delta [SHTE11].
Demand [CWL12, KJ + 13, MSS + 15, SC18, SEF + 06, ZSF06, DEG + 17, J + 05, JZZ + 13, LZW + 15, SGV13].
Demand-based [KJ + 13, SGV13].
Denelcor [Dun86]. denotational [Arv02]. Denver [USE00b].
Dependability [KRCH14]. Dependable [FP14, VW08]. Dependable [DPCA11, SJY + 13]. dependences [BKC + 13].
Dependent [BP99].
deployed [RY10]. Deploying [KL1T18, R + 13]. deployment [AAB + 05b, Bor07, CGV10, SASG13, ZLZ13, ZLV + 12, ZBS + 15]. derivation [MSZ09].
Derivative [Pfo13]. derived [Int06c]. Deriving [HWB03]. Design [ACM06a, AC16, Ano03a, Ano03b, fltNW14, ACA16, BGS89, CPS17, Clo85, DAI + 12, Das91, Dom80a, DSL + 01, ESZ + 17, GFB + 92, JNR12, JJJ2, KGGS17, KU792, LH16, Mar08, OH05, PCW + 16, SIR + 17, SGGB99, SGGB00, SM02, Sur01, WC01, WCSSG05, WP97, XJC + 14, SXXZ07, ZL18, ZAI + 16, AM16, Bh02, BT15, Bur02, CARB10, Car14, DN14, DCA04, DNR06, GR80, HH05, HH13, Les74, LIA05, MSC92, Oi05, PMC05, Pul91, SI81, SNV10, SNS11, SJW + 13, Tur84, CMP + 07]. Designed [HS06, Wu13]. Designing [Par79, TGCF08]. DesignJet [MSCK92]. Designs [DMS02, RJSS17].
Desktop [Ano03b, BWD + 15, KGG00, CCWY05, SWW + 18, WH05].
Desktopting [JKB15]. desktops [KKJL14]. Destruction [NOT + 17].
Detecting [CL14, JKDC05, TV12, CWD0 + 06, LRC05]. Detection [CWS12, CLW + 14, JHS12, AD18, AMA + 11, FLM + 08, MA17, PBYH + 08, SIK + 16, WCG14, XXZ13]. detection/prevention [MA17]. detectors
14

[LMJ07]. Determine [BP99]. Determining [ZRS+16]. Deterministic
[KD78, RTL+18, BB12, KM13]. dev [Fer11]. Develop [DBMI92].
developers [SS17, Wil06]. Developing [HZZ+14, PCR89, R+13].
Development [Kna93, Lia05, RT93, Wil01, Bor07, But94, CWG00, Her10,
IBM88, Int88, STFH15, TT93]. Device [Ano03a, JKJ+10, KKT17, Nou92,
SGB+16, FFBG08, LU04, SBQZ14, TrLeC13]. Devices [CXLX15, MV16,
SS03, SVL01, XD16, XD17, CT03, DPW+09, PDC+12, Rus08, Wal76].
Devirtualizable [LSS04]. devirtualization [KJM+07]. DevOps [FBL18].
Diagnosing [MST+05]. diagnosis [PPO14]. dialect [BMWB86]. Diego
[Ano10, IEE93a, USE99]. dienste [WF03]. Difference
[GLY+09, GLY+10, Wal10]. Different [Nel04]. differential [CSS+16].
Differentiated [MSS+15]. diffusion [DM93, MM92]. Digital
[MBK+92, TLBW12]. dimensional [BSSM08, HPcC04]. DINO [RSW91].
Direct [M098, TFtLcC15, BLRC94, LC09a]. direct-mapped [BLRC94].
Directed [AJM+06, CSS+16, NG13, RP07]. Directions [WC01, NIA18].
director [KMK10]. direkt [LC09a]. Disaster
[KKLV16, AAF+09, BGS13, ROCW12, Mar08]. disaster-recovery
[BGS13, Mar08]. Disclosure [WWL+17, FSH+13]. Discourse [MBWW86].
discovering [FBZS12]. Discrete [YP15]. Discussion [G+01]. disk
[AAH+03, BC10, DSSP06, DP11]. diskette [Ano97a]. disks
[HJ10, hTMAC+08]. Dispatch [DLS+01, KKC+16]. Distance
[KKLV16, AJD09]. Distributed [Ano10, BBD+91, BDF+99, CLLS12, Das91,
FKZ17, HKLM17, IEE93a, IE96b, JWL+18, Kim84, KAZS14, LLW98, LS15,
PP16, SC17, SM02, TCP+17, Vol90, WB81, WIS+15, WVT+17, WLS+18,
WN17, XWH+16, ZZF06, AC95, Ano96, AB16, AFT01, Bir94, EMI13, Fis91,
FF96, FX06, Fu10, KTB17, KJJ+16, KSLA08, SBJ14, SN12, SGGB99,
SGGB00, SIK+16, VOS12, WKC+09, ZWHC17]. Distributing [HHW10].
Distribution [Deu08, Vol90, ZKWH17, BTLNBF+15, WRS13]. Diversity
[SJS+17, WGLL13, WHD+09]. divisible [HM18]. DJM [LLW98]. DMZ
[Kar07]. DNA [Ano03a]. DNS [See10]. Do [GW07]. Does [BC10, NKY+18].
Dolly [CSSS11]. Domain [HHV+02, KLF+15, WK90, BML+13].
Domain-aware [KLF+15]. Domains [PNT12]. dominance [CPST14].
done [Han16, HUL06]. Don’t [HHPV15]. Dortmund [Mih75].
DoubleChecker [BHSB14]. Down [JJ91, PBWH+12]. Downing [Ano97a].
Dozens [War11]. DPMI [GM93]. drafting [MSCK92]. Driven
[ACM05a, NSJ12, PY93, RB17, SV13, TOV92, CSSS11, DLX+17, EdPG+10].
Driver [JXL+12]. DriverGuard [CDD13]. Drivers
[Chn06, JKJ+10, Nou92, LU04, MSZ09]. DRM [WIS+15]. DRP [Mar08].
dual [FL13b]. dual-VM [FL13b]. Duality [FS08]. dummies [Low08].
duplication [CLcC13]. Durham [Boa90]. during [JK13]. DVFS
[Kam13]. DVM [MSG+12, MSG14]. Dynamic
[Abr80, AMAB17, BB13, BHI15, DHPW01, DGM+15, GSN93, JWH+15,
Lec16, LB98, LJJ+15, MDGS98, NMG15, PTHH14, SZW+16, TML114, TB17,
TV12, Vac06, WWH+16, WSCS09, XSC13, XM+18, YLN+17, ZFL15, ZWL09,
ABDD+91, ARMMA18, AP18, BK14, BB12, BB15, BZA12, BOF17, CSV15, CPST15, GPW03, HLW+13, HB13, JK13, JYW+13, KRCH14, KJM+07, LV12, LYYY18, LJI12, My09, NTH+17, PGLG12, PBAM17, RH17, RBB17, WRSvdM11, WRS+15, Wu13, WWH+17, XH90, YWF09, vKF13]. Dynamically [MZG14, BLRC94, BDT13, FC98, HH13]. dynamically-linked [FC98]. Dynamics [YWCF15, ACT94].


CFH+80, CK87, FS11, MZG14, WCC16b, Bar06, KS13, Les74, She02.

Emulators [Ert03, HHC+16, Ert05]. Enable [XD17], enabled [DMH18, SGV12, VOS12]. enabler [DPW+09]. Enabling [HD16, KMK10, NOT+17, OVI+12, TY14, WHD+16, LSS04]. encoding [BDE+03]. Encrypted [HB17], Encrypting [Pro00]. End [Ram93, SS17].

end-users [SS17]. Endurance [AMA18]. Energy [AAK18, BWB+15, CWL12, DMR10, DQLW15, Do11, DCMW17, EGR15, FLZ17, HKM+18, JJK+11, KC16, KDB16, KCS14, KL14, LMM18, LZC+16, LYYY18, LGJ+18, OBR16, RK16, RH17, SYMA17, SZL+14, YLK+10, YR18, ZWC+19, ZHL16, AMAB17, ARMMA18, BAC15, BB12, BB15, BrIdM10, CD14, DP11, DXM+17, FFB+00, GLK+12, GTN+06, HM18, JWH+15, KMT14, KTB17, DBPK16, NH+17, dOL12, PVRR14, RP07, RT18, SENS16, THG+18, VW08, YPLL17, ZLCZ18]. Energy-Aware [AAK18, Do11, EGR15, LMM18, DCMW17, KC16, LYYY18, RH17, SYMA17, YLK+10, BB15, BrIdM10, HM18, NH+17, YPLL17]. Energy-Driven [BDE+03]. Envelope [Wal10, GLV+09, MO98, GLV+10, J+05, MIS+05]. Engineering [IEE84b, ACM01a, McG72, WZV+13]. Enhance [GL515]. enhancement [DXM+17, KS18]. Enhancing [CPKL17, GI12]. ENIAC [ZR06]. Enlightened [AGJS16]. ensemble [RGAT18].

Enterprise [ADG+92, FPR+06, G+06, LMM18, Hal08, NS07, WH05, Ano03a, Gal11]. enthüllt [Joo06]. Entrepreneur [War11]. Entropia [CCWY05]. Entropy [TVO92]. Entropy-Driven [TVO92]. enumeration [SSH17]. Environment [BGM70, CL16b, GIK+99, Gen86, GGG03, HW93, IEE06a, J+05, JADAD06a, LWC+17, LW12, Mac79, RT93, TMV12, XSC13, AAB+05b, BH13, CLDA07, CWG00, Don87, GD08, GMR93, Hal09, HL13, JWH+15, JXZ+10, JADAD06b, KW13, McG72, MST+05, MPF+06, RGAT18, TMLL14, TT93, Wan06, WLL+13, XZZ+16, ZBP05, ZLLL13].

Environments [ACM05d, ACM06f, CWL12, GKKX13, HHW10, HWW13, KGZ+04, NXY+18, RGSJ17, SV13, ZZF06, ATS14, BCC+15, BrIdM10, BDK+08, CFVP12, DP11, DEG+17, FMI18, GMM17, HOKO14, HCI2, KSO+15, KKB14, PSZ+07, SJW+13, SGV12, TRG13, VDO14, WWW13, XHL+13, YLK+10]. Ephemerality [WHD+16]. equivalent [TLX17]. Erlang [TCP+17]. Error [XH16, XHL+13]. Ersatz [Hin08]. erstellen [Zim06]. Erstellung [See08a]. ESA [Fis91, GH91a, IBM94, MS91, OJG91, SNC91].


Fault-Tolerant Faults \cite{FK03, JKJ16, YWR14, YYL15, ZJXL11, SNV10, YLH14}.

Faults \cite{FK03, Kim84, YWR14, SNV10}. FCP \cite{SAB07}. Fe \cite{ACM00}. feather \cite{LRC05}. feather-weight \cite{YGN06}.

Feature \cite{Bag76}. Features \cite{Gal11, Bau06b, Bau06a, IT86}. featuring \cite{Wil06}. February \cite{Ano10, USE01b}. federated \cite{AO16, CFVP12, dCCDFdO15}. federation \cite{LWLL16}. Fedora \cite{HH08}.

feedback \cite{NG13, ZBG05}. feedback-control \cite{ZBG05}. feedback-directed \cite{Pul91}. feedback-control \cite{ZBG05}.

feature \cite{Bag76}. Features \cite{Gal11, Bau06b, Bau06a, IT86}. featuring \cite{Wil06}.

February \cite{Ano10, USE01b}. federated \cite{AO16, CFVP12, dCCDFdO15}. federation \cite{LW LL16}. Fedora \cite{HH08}.

feedback \cite{NG13, ZBG05}. feedback-control \cite{ZBG05}.

feature \cite{Bag76}. Features \cite{Gal11, Bau06b, Bau06a, IT86}. featuring \cite{Wil06}.

February \cite{Ano10, USE01b}. federated \cite{AO16, CFVP12, dCCDFdO15}. federation \cite{LWLL16}. Fedora \cite{HH08}.

feedback \cite{NG13, ZBG05}. feedback-control \cite{ZBG05}.
Full-System [SWF16]. Function [EMAL17, FLZ17, HSL17, JW17, LLW+16, RKKK17, YWL+18, ZKWH17, ALW15, BCC+15]. Functional [ACM90, Dan86, GMP89, Ame13, Wak99, Jou85]. Functions [DL89, KLLT18, TF16, FJKK17, HHSG18, QZDJ16, GHM+18]. Functional [ACM90, Dan86, GMP89, Ame13, Wak99, Jou85]. Functions [DL89, KLLT18, TF16, FJKK17, HHSG18, QZDJ16, GHM+18]. functe [Müh75], funnel [LMV12], Fusion [Kis08], Future [Her06, KS08b, RG05, Sup04, AH12, Baut05, NIA18, Str13, Yur02, SLJPP11]. Fuzzing [KLF+15], Fuzzy [Hu90, LZ15, FLM+08, SENS16]. Fuzzy [Hu90, LZ15, FLM+08, SENS16]. Fuzzing [KLF+15], Fuzzy [Hu90, LZ15, FLM+08, SENS16]. Fuzzy [Hu90, LZ15, FLM+08, SENS16]. Fuzzing [KLF+15], Fuzzy [Hu90, LZ15, FLM+08, SENS16].
High-Assurance [LJZ12], high-availability [Fu10, LDL+08].
High-bandwidth [WXW15]. High-Endurance [AMA18].
High-Fidelity [KKTM17]. High-Level [DMS02]
High-Performance [ACM98, IEE06a, KCWH14, LMG01, SD01, SCSL12, WCC16b, dGG+17, Han16, Hog02, LILLE17, LM99, LMG00, MUKX06, M+06, MRC+13, RQD+17, SB10, SPF+07, WXW15, WWH+17, ZYZ+18].
High-performing [GBCW00].
Higher [BW03].
Highly [KD78, ZFL15, CARB10, CGM17, GI12, GVI13, TGCF08]. Hilton [IEE90b]. HipHop [AEM+14], histograms [CL14]. History [SKJ+17].
History-Based [SKJ+17]. HITAC [KAH83]. HIVE [Tay76]. HLA [LCT+15]. HLA-Based [LCT+15]. hold [Yur02]. Holders [War11]. Holistic [LGJ+18]. Home [DW14, See08b]. honeypots [ALL06]. Hood [Ven96, Ven97b, Ven97c, Ven97d]. Hose [YLH17]. Host [CLW+14, QNC07, LMJ07, TB14]. Host-Based [CLW+14, LMJ07]. Hosted [SVL01, CBLFD12, CKT08, DS09]. hosting [RQD+17]. Hosts [BB13, Baut06c, CLL+13, TrLcC13]. Hot [IEE96a, IEE97, IEE01, BBTK+17]. Hotel [USE01a]. HotOS [IEE01]. HotOS-VIII [IEE01]. Hotplug [LJL+15]. HotSpot [Sch13a, Arm98, BOF17, HHV+02]. HotSpotTM [RB01]. Houston [ACM06d]. HP [BKMM87, MSCK92]. HPC [M+06, HCJ07, JQWG15, PNT12, PCB+18]. HPC-GTP [M+06].

I-Caching [MM93]. i.e [Müh75]. I/O [RM03, AJM+06, AMA18, AD11, ABG14, ABB+15, BMS16, BHEP14, CWH+16, CDD13, CRZ15, DCP+12,
DS09, GAH+12, HB12, KS08a, KMN+16, LLE17, LMR18, LHAP06, NsP16, PST+15, Rus08, SBQZ14, SVL01, TtLcC13, VW08, WR12, ZSR+05. I/Os [OBSR16]. IA [Ano14b, De 06, Don06]. IA-32 [Ano14b]. IA-64 [De 06, Don06]. IaaS [OBSR16]. IA-64 [De 06, Don06]. IAS [OBSR16]. IA-32 [Ano14b]. IASTED [Ano99b]. iAware [XLL+14]. IBM [ADG+92, A+04, ABDD+91, ABB+15, Ber86, B+05, Bri98, D+04, GBO87, G+06, G+05, Kam75, MIS+05, Mly09, P+08, R+06, R+02, SZ88]. IBM/360 [Kam75]. ICJ [Ano06a]. ICL [HP77, Kee77]. ICTree [FBZS12]. ID [SIJPP11]. ID/Locator [SIJPP11]. IDE [Ano03a]. iAID [BM93]. IE [KGG00, Mar08, Zim05]. IEC [Int05a, Int05b, Int06b, Int06c, Int06a]. IEEE/ACM [ACM04b, ACM05c, ACM06a, IEE90a, IEE91, IEE02, IEE03, IEE04]. IEEE/ACM [ACM04b, ACM04e]. Igniting [ACM03a]. ILCAI [MR91]. ILCAI-91 [MR91]. ILDJIT [CARB10]. Illinois [ACM05d]. Illuminating [BK14]. im [KGG00, Mar08, Zim05]. IMA [YXCL15]. Image [AD11, CWH+16, EF94, NSJ12, IM93, XZZ+16, XWX+17, ZXW16, ZFY18]. Image-Content-Aware [CWH+16]. Images [Li14, XJWW15]. iMeter [YZLQ14]. iMIG [LZL+15]. Immutable [SV15]. Impact [Ros06, BT15, WKJ17]. Impasse [APST05]. Imperative [LFBB94]. implementation [Sig89]. Implementation [fltNW14, BBD+91, DAH+12, DJ77, DLS+01, Ha79, JR02, J002, KR94, MD12, MN91, NsP16, Rev11, SGS92, SIR+17, SCD90, Sur01, TVO92, TO96, TFtLcC15, UOKT84, WLW+15, War80, YLWH14, ZSXZ07, ZL18, AFT01, ANH00, Blu02, BT15, CKP78, DN14, DJ76, DCA04, IT86, JNR12, Lav10, Man18, MJ93, Sch09, SJW+13, SGB09, SGGB00, Taf11, WW77, XJC+14, Lee86]. Implementations [HL+16, SV93, AEMWC+12, CSS+16]. Implementierung [Mar08]. Implementing [CTS+93, D+04, LFBB94, Tai98]. Implications [RM03, GTN+06, MT16, MT17, DLI+16, Pat12, RVJ+01]. Important [SC18, CK06b]. Improve [GKXK13, GKB15, KDB16, SAT09, YWGH13, YQZ14]. Improved [War80, BTLNBF+15]. improvement [YLH+14]. Improving [AWR05, BHETP14, CFG+13, HXZ+16, HLY+13, JKB15, KL13, LCT+15, LBL16, OSK15, RSC+15, RSLAGCLB16, TCP+17, WKJ15, GVI13, HC12, JY+13, OL13, UT013]. IMSA [Ano99b]. in-kernel [Ulh07]. In-Memory [TF16]. in-situ [CRJ17]. In-VM [WLW10]. included [Ano97a]. including [B+07, CGW07, WG07]. Incorporating [GH91b]. Increasing [WLW+10]. Independent [DHPW01, KAH83, USE93, GPW03, PW03, PFH+16]. Index [Cox12]. indexed [YJ+13]. Indirect [tTR82, CEG07, EG03, JYW+13, KJM+07]. individual [WLW16]. Inferno [WP97]. InfiniBand [PRS16, RS16]. influence [Mly09]. Information [CAF+91, IEE93a, Int05a, Int05b, Int06b,
Int06c, Int06a, SS75, SS05, Ano93, LC09a, MD73, MD74, RR17. Informed [HKKW13]. Infragistics [Ano03b]. Infrastructure
[ECM01, ECM02, ECM05, ECM06, Int05a, Int05b, Int06b, Int06c, Int06a, 
McCo8, MJW+06, Nl04, NKK+06, OG16, PP16, XH16, AO16, AMA+14, 
AA18, BDS+09, Car14, Hal09, HH13, J+05, KSRL10, LLY+18, Low08, 
dOL12, MR04, PW03, RSF03, Fro13]. infrastructures 
[FPGBK18, LPBB+18]. Ingens [KYP+17]. inherently [TDG+18]. InkTag 
[HKD+13]. Innovation [ACM03a]. innovations [ABB+15]. input [Wal76].
insider [LC09a]. Insiderinformationen [LC09a]. insiders [KSS09, KS10]. 
Insights [Rev11]. Inspection [SKI+17]. Installation 
[Bec09, Bor01, KGG00, Lar09, WF03, Zim05, Zim06, MIS+05]. Instance 
[EMAL17, KCKC15]. Instances [WUNK17, ZG13]. Instant [HPP15, Joo06]. 
Instruction [Oi06, HW15]. instructional [DSSP06, DTW07, WO75]. 
Instructions [Qia99]. Instrumentation [ZFL15, BZA12]. Instrumenting 
[MZG14]. Instruments [BPB86]. integer [TTY00]. integer-reference 
[TTY00]. integrated [CWG00, YZLQ14]. Integrating 
[JMSLM92, LTT92, LCL14, OBSR16]. Integration [GMP89, Ame13].
integrierten [Deu08]. Integrity 
[CW03, DM75, (Fo71, (Fo78, QT06, WJ10, CS76, JXZ+10, XHCL15]. Intel 
[AJM+06, CMP+07, DLM+06, Don06, NSL+06, NKK+06, RSW+06, RI00, 
UNR+05, Uhl06]. Intelligence [MR91, JNR12, MPA+18]. Intelligent 
[GH91b]. intelligente [PO09]. IntelliJ [Ano03a]. intensive 
[IKU15, VVB13]. Inter 
[cCWS14, RLZ+16, BML+13, CBZ+16, SWcCM12, SBP+17, VOS12]. 
Inter-Application [cCWS14, SWcCM12]. inter-cloud [SBP+17].
inter-connectivity [VOS12]. inter-domain [BML+13]. 
Inter-Virtual-Machine [RLZ+16]. inter-VM [CBZ+16]. interact 
[EGD03]. Interacting [SK13a]. Interactions [cCWS14, SWcCM12].
Interactive 
[Hir17, LD05, MLA83, SSG90, WLS+18, Ber86, HMS04, KKJL14]. 
Interconnect [RCM+12, SKJ+17]. interdependencies [LBF12]. Interface 
[Cro93, SH04, Sun95a, Gux01, HP77, VL00]. Interfaces 
[Mac79, PST+15, WMJ02]. Interfacing [MC93]. Interference 
[NBH08, XL+14, XLJ16, ZRD+15, HL13, gKEY13, SS13, VVB13]. 
Interference-Aware [XL+14, XLJ16]. Interferences [ZRZ15]. 
InterLISP [II79]. intermediate [GLV99]. internal [SB1]. International 
[ACMO0, ACM05a, ACM05b, ACM05d, ACM06b, ACM06f, Ano99b, BW03, 
IEE84b, IEE85, IEE93a, IEE96b, IEE02, IEE03, IEE04, IEE06b, IEE06a, 
LC11, MS91b, MR91, Osr94, SS05, Shr89, Tho93, TLC06, ACM06c, 
JPTE94, M+06, HHK94]. Internet [Ano99b, CK06b, KGG00, APST05, 
Ano03a, CHCC07, CK06b, CK06e, LLW98, M097]. 
Internetkommunikation [CK06b, CK06c, CK06d, CK06g, CK06f]. 
Internetprogramme [CK06b]. Internetprogrammen 
[CK06c, CK06d, CK06g, CK06h]. Internship [HMS17].

J [AC98]. J2EE [JDJ+06]. J9 [WKJ15]. Jahrestagung [Mühl75]. Jalapeño [AAB+00]. January [ACM99, IE93a, Shr89, USE01b]. Japan [HHK94]. Java [ACM98, ACM01b, Ano00, Ano01a, Ano01b, Ano02, Ano03a, Sch13a, USE01c, USE01d, USE02, Wol99, ADM98, Ame13, AT16, Ano97b, Ano97c, Ano97d, Ano03b, AFT01, ABC+07, AC98, ANH00, BDF+98, BHDS09, BD01, BP01, BP03, Bir98, BZD17, Caa00, CW03, CT03, CH08, Cla97, Coh97, CDG97, Cra98, Cza00, Dalxx, Da97, DHPW01, DEK+03, DBC+00, DCA04, DLS+01, EG03, Eng99, EL98, Eng06, FFB+00, Fra98, FK03, G+01, GGG03, GCARPC+01, GWP03, GBCW00, HT98, Han05, HM01, HOK03, HWB03, HB08, Iwe03, JR02, JJ02, Juo07, Ka97, KS13, LM99, LMC00, LB98, LV99, L97a, L97b, L99, LxXa, Lxyx, LYBB13a, LYBB13b, LYBB14, LTK17, MSG01, M098, Men09, M097, MD97, MDxx, MLG+02, MB98, Mon07, MP01, NG13, OT97, Oak14, Oi05, Oi06, Oi08]. Java [PThH14, PRB07, PV06, Qia99, RVJ+01, RHR02, Ran02, R+13, Req03, SMK02, SSB+14a, SD01, SE12, SH04, Sch13a, SSMGD10, Seq13, SMBB11, SSB03, Shi03, SM01, SGV12, Siv04, Smi97, SSB01, SSB14b, SHB+03, Sun95b, Sun95a, SUN97, JCV99, Sun99,
STS+13, SM02, Sur01, Tai98, Tol98, TO96, UBF+98, UR15, Van98, Ven97a, Ven97b, Ven97c, Ven97d, Ven99a, Ven99b, VED06, VED07, VL00, WL96, WGF11, Wak99, WH99, Wes98, Wol99, Won97, WWMG06, YC98a, YC98b, YME05, YKM17, Yel99, YTY00, ZS01, vLSM01, Ano97a]. Java-based [Ano96, FF96, HOKO14, KS13, YC98b].

Java/CORBA [GCARPCI14].

JavaCard [BDJdS02].

JavaScript [AHK+15, CBLFD12].

JavaScriptCore [Piz17].

Java

TM

[LMG01, SMES01, CF00, RB01, vD00].

Javy

[GGG03].

JCloudScale [ZLHD15].

JDMM [ZP14].

JET [MLG02].

JetBrains [Ano03a].

jetzt [KGG00].

Jikes

[AAB05a].

Jini [JJ02].

JiST [BHvR05].

JIT

[JK13, PFH+16, WKJ17].

JIT-based [PFH+16].

JITs [KRCH14].

JN

[Mon97].

JnJVM [TGCF08].

Job [MNT14].

Joint [NTH+17, RJK+17, WZV+13].

Jointly [LWL16].

Jon [Ano97a].

Jose

[Ano04b].

journaling [HC12].

JP2

[SSB+14].

JPDA [Sun99].

JPF

[WKG17].

jRapture [SCFP00].

JS

[AHK+15].

July

[IEE06b, Sof83].

June

[ACM90, ACM01a, ACM01b, ACM05d, ACM06f, IEE85, USE85, USE86, USE01a, USE06].

JVM

[Ano00, Ano01a, USE01c, USE01d, USE02, ACM16, CSS+16, DBC+00, Guy14, R+13, RRB17, SV+15, Sub08, Sub11, Ven99b, WKG17].

JVMPI [Sun95a].

K.

[Sch94a].

Kailua

[Shr89].

Kailua-Kona

[Shr89].

Kaleidoscope

[LFB94].

Kanazawa

[HHK94].

Kanotix

[CK06c, CK06h, CK06r, CK06h].

Karlsruhe

[RM03].

KDE

[KGGO0].

Keeping

[NP13].

Kernel

[FL13a, HD16, JJ91, KZB+90, SM90, SYB12, TY14, WLM+16, Uhl07, VMBM12, KM13].

Kernel-based

[TY14, KM13].

Kernelized

[WCC+16].

kernels

[HPHS04, RMB02].

Key

[TF16, DP+09].

Key-Value

[TF16].

Kinder

[CK06q, CK06t, CK06r, CK06s].

Kingdom

[Vra05].

kit

[Car06, LC09b].

Knob

[WUK+18, BR01].

Knoppix

[CK06d, CK06i, CK06n, CK06u, CK06l, CK06h].

Knot

[LBFI12].

Knowledge

[FG91, IT86].

Kochbuch

[PO09].

kompletten

[Mar08].

Kona

[Shr89].

Konfiguration

[Bor01, Lar09, WF03, Zim06].

konfigurieren

[RHM08].

Konsolidierung

[See08a].

Konzept

[Da97].

Konzepte

[Tho08].

Konzeption

[Zim06].

krill

[KS18].

KScalar

[RML02].

Kubuntu

[CK06e, CK06j, CK06n, CK06l, CK06c, CK06j].

Kuck

[War11].

Kundenserversystemen

[See08a].

KVM

[Deu08, Hin08, DN14, GLC84, HWCH16, LZF+15].

KVM-based

[HWCH16].

KVM/370

[GLC84].

KVM/ARM

[DN14].

L

[Lot91].

lab

[AL05, HMS04].

laboratories

[DTW07].

Laboratory

[Kim84, SVN+10].

Labs

[See08b].

Lagrangian

[GR15].

Lagrangian-based

[GR15].

Lake

[ACM03b].

Lambda

[Wat86, Wat87].

land

[Tsa14].

Landing

[ACM03b].

Language

[CDM+10, ECM01, ECM02, ECM05, ECM06, GSS+18, Hog08, Int05a].
Int05b, Int06b, Int06c, Kam83, Luc97, MR04, PW03, PFH+16, RSR03, SIR+17, SVB93, SUN97, WIDP12, Arv02, Ber86, BD01, BMER14, DH01, Don88, GLV99, Hug06, IT86, Juo07, KRCH14, Les74, MD12, MC93, PRB07, RJK16, RSW91, SKC73, SM084, Taf11, Tai98, WCG14, WWH+17].

Language-independent [PFH+16]. language-level [WCG14]. Languages [BS90, Dan86, LPD+11, PTHH14, SSG90, Tol98, YKM17, ACM99, BDT13, Jou85, PMC05, PULO16, Sus76, TB14, Wei02, Wu13, YWF09].

LARD [WCG14]. Large [DK93, GKB15, PHL+12, RGSJ17, SLB98, XDL95, ZSZ07, ZLW+14, BLRC94, DK75, FPGK18, LD+11, Nie12,Req03, SJ13, SHTE11, YZS17].

Large-Scale [PHL+12, SLB98, ZLW+14, SJ13, YZS17]. Latency [ASSB18, BPP+17, BL17, MV16, IMK+13, ZSW+06]. Later [FS12].

layer [BTLNBF+15, MA17, RSLAGCLB16, ZFY18]. LayerMover [ZFY18]. lazy [Wak99]. LDA* [YZS17]. leadfoot [HHPV15]. lean [SV15, Ven96]. Learning [BRX13, AD18, GKT17, KRG+12, RGAT18, RT18]. legacy [LU04].

LegoSim [RMB02]. Lern [CK06q, CK06t, CK06r, CK06s]. Lernprogramme [CK06k, CK06m, CK06l, CK06n, CK06o]. Lernprogrammen [CK06k, CK06m, CK06l, CK06n, CK06o]. Lessons [RM03, LJZ12, Ro06, HMC94].

Lessons [RM03, LJZ12, Ro06, HMC94]. Lessons [RM03, LJZ12, Ro06, HMC94].

Lev [KLLT18, CRB12, JK15]. linked [FC98]. linking [FC98]. LINUX [KGG00, Ano06a, CK06a, CK06b, CK06c, CK06d, CK06e, CK06f, CK06g, CK06h, CK06i, CK06j, CK06k, CK06l, CK06m, CK06n, CK06o, CK06p, G+06, Mar08, USE00a, WF03, Bau05, Bau06c, BBHL08, Bl10, Bor01, CK06a, CK06b, Com00, Com03, DN14, Dav04, Fab13, G+06, GND16, MZG14, NSH10, NV05, P+08, Ros14, Spr06, Spr07, VBM12, Win13].

Linux-Server [Mar08]. Linux/OSS [Ble10]. Liquid [Li14]. LISP [AC90, CK87]. List [TT96]. List-based [TT96]. LITL [Lam75]. little [Men03, YPYA01]. Live [CCZ+06, Deu08, DK17, ECJ+16, JDW+14, KKL16, LZZ+15, LLL+11, SHW+15, SKI+17, XLL+14, XD16, XD17, ZRS+16, ZDLG17, ZXY+15, AS14, BAC15, BB08, FGL15, HLL+10, HDG09, JKK+13, JGW+11, JGSE13, NIA18, PDC+12, SSL+13, SLA+16,
Machine-based [AP18, ANH00, AMA+11, BDF+03, BBTK+17, Beg12, BPC94, BCM90, Bir94, Blu02, BADM06, BFC02, Bri98, CARB10, CL14, CD14, Car14, CEG07, Cav93, CFVP12, CS76, CHCC07, CBLFD12, CK06, Clo08, Cof99, CGV10, dCCDFdO15, CGW00, CD01, DH01, DSC+08, DP11, DM93, DBC+00, Don87, DJ61, DMM+17, EG03, FLL+13, FM90, FMIF18, Fit14, FF96, FLMO+08, FCG05, Fre05, GTGB14, GCARPC+01, GPW03, GR80, GBCW00, GA18, HJ10, HK07, HcC14, HPHS04, HSC15, IBM85, IBM88, Int88, IBM94, IKU15, JKK+13, JNR12, JGW+11, JADAD06b, Kal97, KOY05, KS13, KSO+15, KS18, KT17, gKEY13, KCS14, KJLY15, KCKC15, KFC+16, KFF12, Kou11, KCV11, KRG+12, Lam75, LBZ+11, Les74, LC02, LM99, LZWD15, LBL16, LLYY18, LLWW18, Lia05, LL14, LPBB+18, LM99, LZWD15, LBL16, LLYY18, LLIW18, Lia05, LL14, LPBB+18, Lot91]. Machine [LG93, MSG+12, MD73, MD74, MSG01, DPBK16, MS17, Man18, MNA16, MS00, McG72, MC93, MN91, MCT+05, MAK07, MJ93, NOK+85, NIA8, OG16, Oi08, ORPS09, PEL11, PFPJ18, PCB+18, Piz17, Pul91, Raj79, RZ14, Rec03, RFBLO01, RY10, RJK+17, Sch13b, SSMSG10, SHLJ13, She91, SCAEG08, SASG13, SL00, Sig99, SGGB99, SGGB00, SKC73, Smi97, SYMA17, SMA+10, SBB+17, SSU+12, TSLBY08, TMLL+14, Tay76, TR82, THG+18, TI09, TB14, TT93, Tur84, Vag10, Van98, Ven96, Ven97b, Ven97d, Ven99g, VVB13, WGF11, WK08, WRX11, WZV+13, WK15, WCY+17, Web10, WLL+13, WW77, Won97, XHL+13, XJ14, XJWW15, XZZ+16, YME05, YZW+13, YLYY18, YLYY18, YLYW18, YOK11, YRJ18, YGN+06, YQZ14, YTY00, ZG13, ZWX16, ZY+18, ZL15, ZLH+15, ZHHC17, ZFY18, ZWC+19, ZBF07, ZLL+16, ZL13]. Machine [ZLLL13, ZWH+17, ZLCZ18, ZWC+14, dSOK17, AEM+14, AAB+05a, Ano97b, Ano97c, AC98, BD01, BP01, BZ17, Caa00, CCWY05, CK87, Cla97, Coh97, CDG97, Cra98, Cza00, DCA04, DLS+01, Eng99, FS11, FFB+00, Fra98, FK03, Fu91, GGG03, HT98, HM01, HWB30, HB08, Ivec03, JR02, JDJ+06, JI00, JI03, JI13, LM13, LGMO01, LB18, LV99, LY97a, LY99, LYBB13a, LYBB13b, LTK17, Men03, MB98, Mon97, MP01, OT97, Oi05, Oi06, PTHH14, PRB07, Ran02, RB01, SMK02, SSB+14a, Shi04, Sch13a, SMES01, Set13, SMSB11, Shi03, SGV12, Sim92, Sit04, SSB01, SSB14b, SM02, Sun01, Tai98, To98, TO96, TR88, UR15, Ven99a, Wei02, Wol99, WWMG06, vD00, Ano97a]. Machine-based [LW11, WB81, CGV10, WK08, YZW+13]. Machines [Ano75, ASB18, BMS16, BP99, BDJ02, BSSS14, Bee05, BB13, BRX13, CL17a, CWL12, CCML12, CS12, CSS+13, CL16a, CCO+05, CH78, CHLY18, CDN02, DVM+14, DEK+03, Den01, DK17, DMR10, DKEW15, Do11, EGR15, EGJS15, ECJ+16, Ert03, EDS+15, Gai75, G+01, GTS+15, Gum83, HKLM17, HB17, HS06, HPP15, Ian14, JE12, Jen79, JXL+12, JAS+15, JKJ+10, KCWH14, KJL11, KP15, KAH83, LMR18, LZZ+15, LLYY17, LD05, LHAP06, LW12, LJJ+15, LLZ18, Mac79, Man15a, MDM12, MGL+17, MM94, PSBG11a, PS16, Rev11, Ros04, SD01, SCSL12, SV13, SN05a, SN05b, Sta97, SKI+17, Sup04, TV12, UT87, Veg03, WLW+15, WGLL13, WZL15, WLLZ16,
XSC13, XLL+14, ZRD+15, vLSM01, Ågr99, AGH+03, AGH+16, ATS16, AAM+16, AMAB17, AS14, BAC15, Bac11, Bag76, BML+13, BDF+98, BHvRo5, Be06, BB12, BB15, BBM09, BBS06. machines [CLI7b, CGM17, CCL+17, CH08, Cra05, Cra06, CwDo+06, Cll+13, DDS+94, DC15, DEG+17, DQLW15, DSZ11, DCMW17, EGD03, Ert05, EL98, Ems15, FBZS12, Fit14, FHL+96, FGLI15, FX06, Fu10, GI12, GVI13, Gol73, GLV+10, HM18, HmH17, HZ+14, HDG09, JES+15, JWH+15, Jdw+14, JGSE13, KSSG16, KRCH14, KBB11, Lmj07, LZC+16, LLF18, LJL12, LQW98, BHvR05, Bel06, BB12, BB15, B BM09, BBS06]. Machines [CT03, Cla97, MLG+02, PEC+14, SM01, UBF+98, VED06, YC98a, ZS01]. macro [Wel02]. macro-architecture [Wel02]. Made [Ste05]. Mainframe [GBO87]. Mainstream [Uhl06, BBHL08]. maintaining [HPB06]. maintenance [LSS04]. Make [THB06, BC10, DMH18]. Making [HKKW13, XLL+14, SJ+12]. Malware [CLS07, CD12, GI11, AD18, CVWL13, CWD+06, YJZY12]. MAN [TDG+06, YYPA01]. MAN/WAN [TDG+06]. manage [Car14, Fit14]. Manageability [Gua14, MW05]. managed [CBGM12, CFG+13, GK05, RJK16]. Management [AW17, DMR10, HC17, KGS17, KL14, Lar09, Ljl+15, LCFL12, LXM+16, MBW86, MDGS98, SMES01, SC17, SDD+16, TB17, WIS+15, WILW+15, WGLL13, AHK+15, ATS16, ARMA18, BAC15, Beg12, BMA91, BHDS09, BN89, CH08, Cla05, Fit14, Fu10, GTGB14, GLK+12, HB13, IMK+13, KCKC15, KB17, LLS+08, MS00, MBA+12, NS07, DOL12, RH17, RP07, RJK16, SG10b, SWC08, TRG13, Wal02, WDCL08, WWWW13, WCS06, WSVY09, YLC17]. Manager [Car13, Car14, KMT14, Apr09, MBA+12]. Managing [BB13, KGZ+04, BCP+08, J+05, YLHJ14]. Manipulating [GK05]. Manual [CRZ83]. manufacturing [LLS14]. Many [LPB17, CLL+13, DQR+13, WR07]. Many-Objective [LPB17]. Manycores [HPP15, KHW+16]. Mapped [HW93, BLRC94, SV15]. Mapping [Bak83, CFM17, PS16, PCC+16, CRB12, HSC15, JK15, UR15, WK08]. MapReduce [HSC15]. March [ACM06d, An010, SS05]. Market [LS15]. marketplace [KMK10]. Markets [TVKB16]. Markov [BL17, RH17, SC17, WQG15]. Marriott [USE01a]. Maryland [An093]. Maschinen [Zlm06]. Massachusetts [USE93, USE01a, IEE85]. Massively [BS90, Kra90, MM93]. Mastering [CBER09, Low09, Low11, LGM+14, McCo8, Sub11]. Matching
[CFM17, Cox07, Cox09, Cox10, Cox12, YDW18]. Maté [LC02]. matrix [Kra90]. Maximization [ZHW+17, JHW+15, KTB17, LWLL16].

Maximizing [BBYT61, ZRD+15]. May [ACM00, ACM06a, Ano04b, IEE84a, IEE90a, IEE91, IEE01, IEE06a, Mar81, TLC06, USE99, USE06, Yur02]. MBBSA [CCL+17]. MC68020 [MMMS4].


Memory [AW17, AMH+16, Bad82, Bro89, CLLS12, Cro93, GHS17, GKB15, HCH+16, HPP15, KGS17, LW11, LH16, LJJ+15, LZW+17, LXM+16, MKKE12, RLZ+16, RWSX+12, RGSJ17, SMES01, SLM89, VTw16, Wal02, WWX+16, WWL+17, WK90, WTLS+09, XML+18, AHK+15, ATS14, Ano15, BHD09, CWH+14, CWCX+14, CLC13, CH08, CMM+06a, CMM+06b, CMM+06c, GMX17, GVL13, GND6B, GLX+10, HOB13, HHPV15, HUWH14, JSK+13, JDW+14, KB17, LLLW18, LLSX+08, MS00, PPO14, RO16, RJK16, VED07, WWS89, WZX+11, WWWW13, WK08, ZP14, ZHCB15, ZWW09, ZL13, TF16]. Memory-Aware [JJK+11].

memory-limited [CH08]. Memory-Resident [WK90]. merging [TLX17]. mesh [SJRS+13, ZGW+06]. message [DM93, TO91, UR15, XH90].

message-passing [TO91, UR15, XH90]. messaging [Joo06]. meta [BT15].


Metrics [Sch13a]. Metriken [Sch13a]. Mexico [ACM00]. Meyer [Ano97a]. MGC'05 [ACM05b]. MI08 [Hin08]. Micon [BG89]. microarchitectural [EGD03, SK13].

microcomputer [UBL+82]. microcomputers [GBO87]. microkernel [GMR93, Sto07, Uh07]. microkernel-based [Sto07].

Microkernels [FHL+96, HUL06]. Microprocessor [Tan02, ACT94, WW77]. microprocessors [But94]. microprogrammable [Bag76].

Microsoft [Lar99, Zim05, Ano99a, B+07, Car13, CBER09, Gal09b, Joo09, Kal97, KV09, KSS09, KS10, Lar09, MR06, Nou92, Ste05, Won97]. Middleware [KRS+17, YDW18]. Middleware [ACM05b, HOKO14].

Migrate [YBZ+15, CLL+13]. Migrating [JE12]. Migration [ABV12, BFG+14, BWD+15, CYX+17, DK17, EMAL17, KC16, KGS16, KKL16, LXL+15, LJJ+11, NBK16, RSNK17, RSN+18, SL14, SHW+15, TMV12, XWJX15, XLL+14, XD16, XD17, YWR+14, ZRS+16, ZCG+17, ZGW+06].


Metrics [Sch13a]. Metriken [Sch13a]. Mexico [ACM00]. Meyer [Ano97a]. MGC'05 [ACM05b]. MI08 [Hin08]. Micon [BG89]. microarchitectural [EGD03, SK13].

microcomputer [UBL+82]. microcomputers [GBO87]. microkernel [GMR93, Sto07, Uh07]. microkernel-based [Sto07].

Microkernels [FHL+96, HUL06]. Microprocessor [Tan02, ACT94, WW77]. microprocessors [But94]. microprogrammable [Bag76].

Microsoft [Lar99, Zim05, Ano99a, B+07, Car13, CBER09, Gal09b, Joo09, Kal97, KV09, KSS09, KS10, Lar09, MR06, Nou92, Ste05, Won97]. Middleware [KRS+17, YDW18]. Middleware [ACM05b, HOKO14].

Migrate [YBZ+15, CLL+13]. Migrating [JE12]. Migration [ABV12, BFG+14, BWD+15, CYX+17, DK17, EMAL17, KC16, KGS16, KKL16, LXL+15, LJJ+11, NBK16, RSNK17, RSN+18, SL14, SHW+15, TMV12, XWJX15, XLL+14, XD16, XD17, YWR+14, ZRS+16, ZCG+17, ZGW+06].


Metrics [Sch13a]. Metriken [Sch13a]. Mexico [ACM00]. Meyer [Ano97a]. MGC'05 [ACM05b]. MI08 [Hin08]. Micon [BG89]. microarchitectural [EGD03, SK13].

microcomputer [UBL+82]. microcomputers [GBO87]. microkernel [GMR93, Sto07, Uh07]. microkernel-based [Sto07].

Microkernels [FHL+96, HUL06]. Microprocessor [Tan02, ACT94, WW77]. microprocessors [But94]. microprogrammable [Bag76].

Microsoft [Lar99, Zim05, Ano99a, B+07, Car13, CBER09, Gal09b, Joo09, Kal97, KV09, KSS09, KS10, Lar09, MR06, Nou92, Ste05, Won97]. Middleware [KRS+17, YDW18]. Middleware [ACM05b, HOKO14].

Migrate [YBZ+15, CLL+13]. Migrating [JE12]. Migration [ABV12, BFG+14, BWD+15, CYX+17, DK17, EMAL17, KC16, KGS16, KKL16, LXL+15, LJJ+11, NBK16, RSNK17, RSN+18, SL14, SHW+15, TMV12, XWJX15, XLL+14, XD16, XD17, YWR+14, ZRS+16, ZCG+17, ZGW+06].

XD17, ZHHC17, ZWH\textsuperscript{+}17, ZKWH17, ACM06c, AM16, ALW15, BCC\textsuperscript{+}15, BCM90, BL90, BH13, BBS06, CBZ\textsuperscript{+}16, CB10, CRB12, Cre10a, DYL\textsuperscript{+}12, FLL\textsuperscript{+}13, FJKK17, FK13, FSH\textsuperscript{+}13, GLJJ16, HBP06, IM93, JK15, KSO\textsuperscript{+}15, LYY17, DPBK16, MS209, NTH\textsuperscript{+}17, OK90, PBL\textsuperscript{+}16, RK16, SZL\textsuperscript{+}14, Tur84, UBL\textsuperscript{+}82, VOS12, WWS89, WHC16, WCC16c, WC91, TF16, YWL\textsuperscript{+}18.

Network-aware [AO16, IKU15, ZHHC17]. network-based [LYYY17].

Network-hosted [CKT08]. Network-I [RM03]. Network-I/O [RM03].

networked [CT03, SGGB99, SGGB00]. Networking [ACM04b, CPKL17, IEE06b, LCK11, MLA83, SS05, XWJX15, ZKWH17, BTMS10, Bor07, BH13, GD08, Zho10]. Networks [BSI\textsuperscript{+}15, CPKL17, CGC16, Hal79, HHK94, JN15, KKLV16, LLW\textsuperscript{+}16, MBWW86, SJPP11, TVO92, VVC\textsuperscript{+}17, ALW15, AI91, CL15, GCARP\textsuperscript{+}01, GHN\textsuperscript{+}18, HHSG18, KCV11, LC02, LWL15, MAK07, NRS92, OMB\textsuperscript{+}15, RS16, TO91, WZV\textsuperscript{+}13, WT91, YKS16, YPLZ17, AAJD\textsuperscript{+}16].

Netzwerk [KGG00]. Netzwerke [WF03]. Netzwerkkonfiguration [WF03].

Neumann [FS11, FS12, Sig89]. Neural [MBK\textsuperscript{+}92, TVO92, Tur92, WWS89, Alf91, BCM90, BL90, IM93, KCV11, OK90, RK16, TO91, WT91, WC91]. Neuron [MM92]. Nevada [ACM81, ACM89].

newer [YK13]. Newfoundland [IEE06a]. News [Bri98, Kal97, Sta07]. Next [BDF\textsuperscript{+}99, CF00, IIK\textsuperscript{+}06]. next-generation [IIK\textsuperscript{+}06]. NFV [ALW15, TF16, GDSA\textsuperscript{+}17, JWL\textsuperscript{+}18].

NICs [HB12]. Niklaus [BGP00]. Ninth [USE00b]. NoC [FRD\textsuperscript{+}08]. Node [NTR18, CRB12, JK15, KL13, LSS04]. Nodes [Vol90]. NoHype [KSR10].

nom [BYBYT16]. Non [AMH\textsuperscript{+}16, PG18, YKM17, KOY05, KM13, ZP14]. non-cache-coherent [ZP14]. non-dedicated [KOY05]. non-deterministic [KM13].

Non-Java [YKM17]. Non-Preemptive [PG18]. Non-Volatile [AMH\textsuperscript{+}16]. nonaligned [AGIS94]. normal [AM16]. North [Boa90]. Nosv [RQD\textsuperscript{+}17]. Note [DMS02]. notebook [IBM94]. Novel [ATS16, NK10, CBZ\textsuperscript{+}16, ZLCZ18].

Novell [WF03]. November [ACM75, ACM89, ACM96, ACM03a, ACM04b, ACM05b, ACM05c, IEE90b, IEE92, IEE93b, IEE02, IEE04, LCK11, USE91, ACM97]. Nu [DNR06]. null [AT16]. NUMA [BMS16, GTS\textsuperscript{+}15, KP15, LL14, LXM\textsuperscript{+}16, SKJ\textsuperscript{+}17].

NUMA-Aware [BMS16]. NumaGiC [GTS\textsuperscript{+}15]. Number [BP99, SZ13]. nutzen [Zim06]. nützliche [LC09a].

O [RM03, AJM\textsuperscript{+}06, AMA18, AD11, ABG14, ABB\textsuperscript{+}15, BMS16, BHEP14, CWH\textsuperscript{+}16, CDD13, CRZH15, DCP\textsuperscript{+}12, DS09, GAH\textsuperscript{+}12, HB12, KS08a, KMM\textsuperscript{+}16, LLE17, LMR18, LHAP06, NsP16, PST\textsuperscript{+}15, Rus08, SBQZ14, SVL01, TRLC13, VW08, WR12, ZSR\textsuperscript{+}05]. Oak [SVN\textsuperscript{+}10]. Oakland [IEE84a, IEE90a, IEE91]. OAMulator [MS01]. OASIS [UBL\textsuperscript{+}82]. OB [XHCL15]. Oberon [WF03]. Object [Bad82, BBD\textsuperscript{+}91, BP01, CAF\textsuperscript{+}91, Low88, PTHH14, PMC05, San88, STFH15, USE99, USE01b, BPB86, BP03, BZD17, DNR06, GSN93, IT86, LM99, VED07, WML02]. Object-Based [Bad82]. Object-Oriented [BBD\textsuperscript{+}91, USE99, USE01b, PTHH14, PMC05,
partiality [Dan12]. partially [HH13]. Partition [Int06c, LLS+08].
Partition-based [LLS+08]. partitioned [Van06]. Partitioning [Bad87, Ian14].
Partitions [Int06b, SJRS+13]. Party [CRZH15]. Pascal [Har77, GBO87].
pass [PDC+12, YLWH14]. pass-through [PDC+12, YLWH14, MLA83].
passes [BC10]. Passing [Fra98, DM93, TO91, UR15, XH90]. Passthrough [XD16, XD17].
Password [CD12]. Past [Sup04, BS96, JKDC05]. PASTE’01 [ACM01a]. patches [Ano07].
Path [AM16]. PATHWORKS [Nou92]. Pattern [CL17a, ESY+17, PMC05].
Paxos [HMS17]. PC [ACM04a, GBO87, Mon97]. PCs [Ros99]. PDB [HHH04].
PCCE [M+06]. PDP [GBO87, Ham76, PK75a, She02]. PDP-11 [GBO87, Ham76, PK75a].
PDP-11/40 [GBO87]. PDP-8 [She02]. PDS [AAB+05b]. Peak [LTE12].
Penguin [Bau05, Bau06b, Bau06a, Fab13]. Pentium [RI00]. Perceiving [XWH+16].
Perfctr [NB11]. Perfctr-Xen [NB11]. Performance [ACM98, ACM04b, Ano03b, AD11, Bad82, BL90, Cal75, CFH+79, CFH+80, CGS06, CHW12, De 06, DSZ11, EDS+15, GE85, Gua14, GKB15, HSK17, HB12, IEE96b, IEE06a, IN87, JR02, JK13, KCWH14, KS08a, KMM13, KP15, KD78, LZ15, LCK11, LMR18, LGMO1, LCT+15, LH06, LTZ+14, MJW+14, MT16, MLG+02, MBK+92, NMS+14, Oak14, OBR16, PZW+07, Pat12, PNT12, Raj79, RC+12, RP07, SHW+15, SD01, SCSL12, SDD+16, SM92, SM02, TH+14, UT87, Vog03, WKT08, WCC16b, XJL16, YC98a, YWCF15, ZRZY15, ZWL+18, ZJWL11, dGG+17, AKK+07, AHH+03, AGH+16, Ano96, AWR05, BML+13, BB12, BMM09, BER14, CBGM12, CBZ+16, CPM+07, DQR+13, DLY+16, DSSP06, DYL+12, EMS15, Fit14, FF96, GP13, G+01, GVI13, G+05, GAH+12, Han16, HHS18, HOG02, HC12, HL13, KKJL14, KL13, KS14, KCV11, LBZ+11], performance [LLLE17, LM99, LGMO0, LL14, MCC18, MA10, MUM+06, MW05, NB11, OL13, PV08, RHR02, RQD+17, Rix08, SENS16, SE12, SB10, SPF+07, TI09, VJ08, WWH+17, YC98b, YZL14, YQZ14, ZY+18, ZSR+05, ZSW+06, ZLCZ18]. Performance-Based [CHW12]. Performance-directed [RP07]. Performance-Guaranteed [ZWL+18]. performing [BB08, GBCW00]. performs [Ven97d]. period [B+07].
Periodic [LD05]. periodical [YQZ14]. Periods [RB17]. Persistence [SCD90].
Persistent [GH91b, Low88, SMES01, LM99, LGMO0, MS00, LGMO1].
Personal [Hir92, LB+07]. Perspective [FLZ17, Han16, RSGG15, FP14, LDDT12, Wal10]. perspectives [MA10].
Pervasive [HHH04, BTLNBF+15, HHO5]. Petascale [Gei02].
Pete [Gal09a, Gal09b, Gal11]. PEVM [LMG00, LGMO1]. phase [JK13, TF16, ZL13]. phases [RHR02].
Piccolo [CHPY17]. PicoJava [MO98, TO96, OT97]. PicoJava-I [OT97].
Pittsburgh [ACM96, ACM04b, IEE04]. PL [SKC73]. PL/EXUS [SKC73].
Place [USE03a, Fab13]. Placement [CGC16, GLBJ18, JQWG15, KP15, LTE12, LYS+18, LPB17, Man16, SHZ+14, YYW+17, ZWL+18, ZHL16, dSdF16, CL17b, EMS15, FLL+13, FMIF18, GA18, HM18, IKU15, KHL17, KSO+15, LBZ+11, LZWD15, LIWW18, LPBB+18, MS17, Man18, MNA16, RJK+17, TMLL14, TMML12, XTB17, YPLZ17, ZWHC17, ZLL+16, ZWH+17]. Planes [UVL+13].
PlanetFlow [HBP06]. PlanetLab [MPF+06]. planning [Hal08, MIS+05]. plans [Kal97, Lot91]. Planung [Zim05]. Platform [DHPW01, DMG+15, Fra09, GPW03, JXL+12, J02, MCE+02, Sun99, TCP+17, WL96, Wal99, BBD+10, Fra06, PW03, WQG15, WCC+16a, XZ11, Ros99].
platform-independent [PW03]. Platforms [AMA18, Ano06a, GLS15, S05b, Uhl06, YP15, DPW+09, GLK+12, MRM06, MBBS13, N05b, SBP+17]. Player [Joo06, Zim06]. Plex86 [Law00]. Pliant [KDB16]. Pliant-based [KDB16]. plotter [MSC92]. plug [Kag09].
Port [DBM92]. Portability [Hir92, JR02]. Portable [HGB03, Ihs84a, SMK02, Ihs84b, FCG+05, HK07, LTK+17, AEMWC+12].
Porting [Cao00, J91, Ke106, MB98, Shi03, vDk09]. Portland [IEE93b, USE85]. posium [USE03c]. Post [AGJS16, HDG09]. Post-Copy [AGJS16, HDG09]. Postroom [Os80]. Potential [FRD+08, Got07, JK13].
Power [AAM+16, DSG14, HSK17, KBB11, KL14, LZ15, LLE17, MV16, MJW+06, RSNK17, RSN+18, SSN12, SSD+16, Sta07, XDS15, ZWL+18, CBGM12, CMP+07, FLL+13, IMK+13, JKK+13, JNR12, N07, TDG+18, TH+14, WRS13, XHL+13, YZLQ+14, YLHJ+14, YLC+17, A+04, B+05, G+05, MBBS13].
Practice [Bec09, Cre08b, Lar09, SHB+03]. Practices [MO98]. Praxis [Bec09]. Praxisbuch [Lar09]. Praxisführer [Bor01]. Pre [UL+05].
Pre-virtualization [UL+05]. Precedence [EGR15].
Precedence-Constrained [EGR15]. Precise [LJS07, HSB14, TLX17].
Precision [ADM98, BKMM87]. preconditioned [MM92]. Predicate [UKOT84]. predicates [JKDC05].
Predicable [LTE12, XJL16, LTK+17, HK07]. predicting [WQG15]. Prediction [LWC+17, ZDLG17, CEG07, EG03, KJM+07, KCV11, RGAT18, RA+79, SSN94]. predictive [XCJ+14]. Predictor [BSMF08]. Preemptable [OL13].
Preempted [OLZ16]. preempting [SJB14]. preemption [YQZ14].

preserve [STFH15]. Preserving [BS96, DNR06]. pretenuring [BOF17]. Prevent [SYB12]. preventing [PRB07]. prevention [MA17]. previous [STFH15]. price [WHC16]. pricing [DEG+17]. Primary [PP16]. Primitive [LCWB+11, BMW86, Pou90]. PRIMITIVES [Ble89]. Princeton [FS11]. principled [WSAJ13]. Principles [ACM75, ACM99, ACM03b, Juo07, SHW+13, Vra05, SS72]. Privacy [IEE84a, IEE90a, IEE91, WLL+13]. private [Nie12, SYMA17, WH08, Fro13]. Privileged [MPF+06]. Pro [SRS09, Fra06, Fra09, Wil06]. Proactively [GKBB15]. probability [LYY18]. Problem [BL17, BFG+14, Man15a, MM92, SL00]. Proceedings [ACM96, ACM97, ACM99, ACM04b, ACM05b, ACM06a, ACM06b, Ano99b, Boa90, IEE96b, LCK11, USE99, USE00a, USE00b, USE01a, USE01b, ACM00, ACM03b, ACM05a, ACM06f, Ano93, GHH+93, HHK94, IEE85, IEE04, JPTe94, Mat10, MR91, SS05, USE85, USE86, Vra05, ACM75, ACM81, ACM89, ACM90, ACM01b, RM03, ACM04a, ACM05c, ACM05d, ACM06e, ACM06c, ACM06d, Ano01b, Ano04b, Ano06a, BW03, IEE84b, IEE84a, IEE90a, IEE90b, IEE91, IEE92, IEE93a, IEE93b, IEE05, IEE06b, IEE06a, MS91b, Ost94, So83, Shr89, Tho93, USE91, USE93, USE01c, USE02, USE06, M+06]. Process [AGLM91, Bal91, HPHV17, MZG14, RB01, SC17, Tho93, AC95, LZWD15, XCJ+14]. process-aware [XCJ+14]. Processes [JADAD06a, Kim84, SN05b, WT91]. Processing [DKW15, Loy92, VLZL16, DH01, EF94, GSN93, IM93, KHL17, LKY+17, LG93, WWT89, Wun13]. Processor [ISE08, NSL+06, RXW+12, SKJ+17, IIK+06, LRC05, VdlFCC97, WDSW01, WLL+13, WJGA12]. Processor-Interconnect [SKJ+17]. Processors [DSM14, Ge02, MT16, MT17, MBK+92, PNT12, RTL+18, KKC+16, MN03]. product [IBM88, Int88, SV17]. production [SL00]. Products [Ano03a, Ano03b, Ano05]. Professional [vH08, IIPB09, Ham07, Khn09]. professionellen [Zim05]. profile [AWR05, WKJ17]. Profiler [SH04, VL00]. Profiles [Int05b]. Profiling [LV99, Sum95a, DSZ11, NK10, SSB+14a, STY+14, TSK17, THC+14, YZLQ14]. Profit [BYBYT16, ZHW+17, LWLL16]. Profit-Maximizing [BYBYT16]. Profitability [WUK+18]. Program [ACM01a, Han05, HB08, MSG01, SV17]. programm in-the [DK75]. programm in-the-small [DK75]. Programs [FS12, Kam83, NMMP15, Wel94, CK06b, CK06e, CRG16].
DKF94, EGD03, GMR93, IM75, Wak99, Wol99]. Progress
[ZRD+15, ZHCB15]. project [ABB+05a, CKP78, Lot91, RD90]. projects [AL05]. PROLOG [Clo85, Ode87, War80]. Promoting [ACA16, WLW+17].
proposed [GH91b]. Prospects [PCB+18]. protect [ZBP07]. Protected [BPP+17, Cofo99, GHD12]. Protecting [LMJ07, WLL+13]. Protection [CD12, CDD13, SS75, CGL+08a, CGL+08b, CGL+08c, JCZZ13, PK75b, TSLBYF08, WJGA12]. Protectit [KSLA08]. Protocol [GKKX13, MN91].
protocols [DM93, RSLAGCLB16]. Protocols [Sim92]. Providing [BSSS14, HJG18, LCT+15, LWC+17, LLZ18, NMG15, NSJ12, SC18, SZW+16, SXCL14, XLJ16, ZLW+14, ZRS+16, CSSS11, CFVP12, KBB11, PPO14, SJBJ14, VOS12].
QEMU [WR07, WR08, CK06a, CK06b, CK06c, CK06d, CK06g, CK06f, CK06i, CK06h, CK06j, CK06k, CK06m, CK06l, CK06n, CK06o, CK06p, CK06q, CK06r, CK06s, Bar06, MZG14, WR07, WR08, vdK09, CK06a, CK06b, CK06c, CK06d, CK06e, CK06f, CK06g, CK06h, CK06i, CK06j, CK06k, CK06m, CK06l, CK06n, CK06o, CK06p, CK06q, CK06r, CK06s, Den08]. QoE [KS18].
QoS [BAC15, DXM+17, KP15, LCL14, LWL16]. QoS-aware [LWL16].
qualitative [ALW15]. Quality [BB13, SV13, VOS12, WKJ17].
quantification [BKH+06]. quantify [TZK17, TDG+18]. Quantifying [FFB+00]. Quantitative [YZW+13]. Quelle [LC09a]. Quemu [CK06o].
Query [WK90, KHL17]. querying [CRKJ17]. Quick [NOT+17].
QUICKTALK [BMWB86]. QUIS [CRKJ17].

Read-Performance [MJW+14]. Real
[AE01, CW03, Cla97, HcC14, LD05, Mac79, Mat09, QT06, Sta97, Swa06, AS76, ABC+07, BCC+15, HK07, Ive03, KBB11, LTK17, Nie12, WQG15, ZEdlP13].


ection [FPS+02, ORPS09]. Re


Report [Ano01a, Ano02, Ano04a, CBLFD12, Int06c, Int06a, PBAM17, Pul91]. repository [AWR05]. representation [IT86]. reproducibility [Vit14]. reproducing [PTM+15]. Request [Lys+18]. Requirement [YWR+14]. Requirements [PG74, PG73]. ReRanz [WWL+17]. Research
S [M+06, Ber86]. S-GRACE [M+06]. S.u.S.E [KGG00]. S/370 [Ber86]. SableSpMT [PV06]. Safe
[BHI15, RSF+15, SKI+17, VVC+17, CFS+12, CLDA07, MSZ09]. Safety
[BSI+15, HM01, MSG01]. Sagamore [ACM03b]. Sampling [Lee16]. San
[ACM99, ACM06a, Ano04a, Ano10, IE93a, USE99, USE01b, USE02]. Sandboxing [GG11]. Sandpiper [WSVY09]. SANs [ZSXZ07]. Santa
[ACM00]. Satellite [CFVP12, SSN94]. Satisfaction [LVM16]. Satisfaction-Oriented [LVM16]. Saving
[YLCH17]. SC'11 [LCK11]. SC2003 [ACM03a]. Scala [AT16, SMSB11, Sub08]. Scalability
[KMK16, QNC07, TCP+17]. Scalable [CL17b, FBL18, HJ10, Li14, RSN+18, SD01, UVL+13, XML+18, HLW+10, SJJ+12, SPF+07, SG10b, Uh07]. Scale
[HC17, PHL+12, SLN98, XDL15, ZLW+14, FP+18, LPD+11, MSG+12, SZ13, WTW89, YZC17]. Scaling
[HH17, JWL+18, JDJ+06, PBL+16, TCP+17, AB16, AMAB17]. Scaling-Aware [HC17, AMAB17]. SCAN [Ble89]. scenarios
[KCV11, Sch98]. Scenes [KCS14]. Scheduling
[ER15, HSN17b, JKK+11, KDB16, LM+18, LGJ+18, LQ05, LC13, PG18, RB17, WWT89, ZQCZ16, ZLW18, BC10, DE+16, DQL15, DXM+17, DCW17, JGW+11, KJ+13, KCV+11, RZ14, SS13, SHLJ13, SSN12, St07, TML14, THG+18, VVB13, WQGI5, WCC16, WXZ17, YWH13, YQZ14, ZSR+05]. Schema
[AMA18, KAZS14, RS+18, SHZ+14, YWR+14, KJLY15, XJ+14, YPLZ17, YZQ14, FM90, KR94]. Schemes
[Do11, MNA16, YWGH13]. Schloss
[IEE01]. School [BGP00]. Science [ACM06d, BR01, DG05, SGV12]. Sciences [Sh98, MS91b]. Scientific
[Bad87, RB17, dCD05]. Scientists [THK10]. Screening [LP14]. Scripting [MJW+06]. SDDSFL
[CLLS12]. SDN [LLY+18, VVC+17]. SDNs [ALW15]. SDWN [AFG+17]. SE
[LYB14]. Seamless [Hir92, T+06, WJX15, BDM06]. Search
[Cox12, MNS+14, KMT14, Tho68, WXZ+17]. search-based
[WZX+17]. Seattle [ACM05c, ACM06b, LCK11, Ost94]. Sebastopol
[Ano97a]. SEC [SMK02]. SECD
[Abr82, AS85a, AS85b]. SECD-M
[Abr82, AS85a, AS85b]. Second
[ACM06f, IE93a, Sh98]. SecondSite
[RCW02]. Secure
[AMH+16, CCML12, CLDA07, JSHM15, JAS+15, LJR12, LP+11, PEC+14, QZDJ16, RIO0, RSGG15, THB06, TLcC13, WF07, vD00, BOS+09, GNB16, HKD+13, ISE08, SL12, TLBW12, ZBP05]. Secured
[TMV12, WCC16]. securing
[Hal08, Hal09]. Security
[AKK+07, Ano93, Att79, De 06, ESY+17, FJJK17, GW07, HHS18, HB17, IEE84a, IE99a, IE91, IE05, JE12, KZB+90, KS08a, KS08b, LWW10, NEMP15, PdS08, Pf013, SJY+05, SM90, SEF+06, Ste05, TMV12, TV12, USE00b, VN08, WHD+09, ZL16, ZL18, Ano07, BTMS10, Bau05, Bau06b, Bau06a, Be06, BCP+08, Bor07, BBS06, Hal09, HMS04, IIK+06, LLW+12, MD73, MD74, Mat09, MA17, PG11, PZHI13, PBB13, Sch13b, VT14, DTW07]. security-oriented [IIK+06]. see [Yur02]. SEED
[DTW07]. seinen
[KGG00]. Selecting
[NBK16]. selection
[JK13, LZWC13, LLWW18].
Selective [WZW+11]. Self
[BHI15, BRX13, HHW10, dOL12, CBLFD12, GK05, KKB14, OK90].
Self-Adaption [BHI15]. self-adaptive [KKB14]. Self-Configuration
Self-management [dOL12]. Semantic [Das91, DGLZ+11, FL13a, AD18].
Semantics [WIDP12, Dan12, EdPG+10, Siv04, Wal76, ZHCB15]. semi
[MSZ09]. semi-automatic [MSZ09]. sensitive[DK7, KSLA08, LCL14, ZBP07]. sensitivity [HB13, TZW17].
Sensor [BSI+15, LC02, MAK07]. sensors [ALL06]. Separation
[KF91, WLMD16, LWM14]. September [ACM81, ACM04a, ACM05a, ACM06c, ACM06b, Ano93, BW03, GHH+93, Jou85, JPTE94].
Sequence [EDS+15]. sequential [Clo85]. Serialization [BP01, BP03]. Series
[Kee77, KAH83]. Server
[Ano03a, Apr09, Bod10, Car06, CGS06, Do11, HSK17, Joo09, KSS09, KS10, KLLT18, LZ15, Lar09, LC09b, LC09a, Mar08, MG08, MG09, PZW+07, RMX+12, R+02, SWC08, WN17, ZHW+17, Zim05, Zim06, A+04, AGH+15b, B+07, DBC+00, Hal08, IMK+13, LLWW18, LLS+08, LL14, LDDT12, MNT14, MRM06, ETH+17, R+13, RPE12, Wal02, YZW+13, AAM+03, Ano03a, B+07, D+04, Ham07, Lar09, MWHH05, OH05, R+06, Rul07, R+02].
Servern [Mar08]. Servers [DSM14, JJK+11, KAZS14, SDD+16, SKJ+17, WLW+17, A+04, BBHL08, G+05, Hal08, JDJ+06, Mly09, SZ13]. Service
[BB13, BFG+14, DKW15, DPCA11, EMAL17, ESY+17, HJG18, HPHV17, JWL+18, LP14, LLW+16, RSNK17, RSGG15, WVT+17, WHD+16, BSM+12, CHCC07, DXM+17, EdPG+10, ECAE13, EMI13, Fro13, GHM+18, KKB14, LZW13, RCOW12, SZ13, VOS12]. Service-Based [LP14].
service-chaining [GHM+18]. Service-Oriented [RSGG15, Fro13].
Serviceability [RB01]. Services [BFHW75, IEE06b, MSZ+15, WC01, ZLW18, BDS+09, HBPO6, KBB11, KSLA08, LTL+14, ZEdP13]. Set
[AC98, EL98, NKY+18, ZDLG17]. sets [HW15]. setups [RPE12]. SGAM
[ZLI+15]. Shadow [WLW+15, GHS16]. ShadowReboot [YK13]. Shared
[Bro89, CH08, Cro93, Low88, RLZ+16, RKRK17, SLM89, SV13, SNC91, SNS03, CFS+12, JGSE13, PW03, TZK17, WWS89, WDCL08].
Shared-Memory [Cro93, RLZ+16, SLM89, WWS89]. shared-source
[PW03]. Sharing [ACA16, BFHW75, CDN02, MS70, PTM+15, RG17, SAB+07, XML+18, LLS14, LTL+14, TtLC13, WTLS+09]. Sharing-Aware
[RG17]. shell [FL13b]. Shoot4U [OLZ16]. Short [HW15, KKC+16].
Short-circuit [KKC+16]. shortest [AM16]. shot [JK15]. Shoulders [FS12].
Showcase [USE00a]. showdown [SCEG08]. Shredder [AMH+16].
Shredding [AMH+16]. Shrinking [Ste14]. shuffling [ZWC+14]. Shuttle
[ccWS14]. Sibling [OG16]. SIGACT [ACM99]. SIGCOMM [RM03].
SIGCSE [ACM06d]. SIGMETRICS [ACM81]. Signal [MBK+92].
SIGOPS [ACM04a]. SIGPLAN [ACM01a, ACM99]. SIGPLAN-SIGACT
[ACM99]. SIGSOFT [ACM01a]. Silent [AMH+16]. SILLIAC [Gre10]. Sim
[Skr01]. SIMD [PSBG11a, PSBG11b, PBR+90, Sig89]. Simics
similarities [CL14, CL17b]. similarity [GV13, LLF+18, LLWW18]. Simple [Bak83, Cox07, NOR15]. Simplicity [BGP00, DSSP06]. simplification [FS08]. Simplified [Bak83, Cox07, NOR15]. Simplifying [Cla05]. simulated [GE85, RH17, WDSW01]. Simulating [HO92, Pou90, TO91, ZR06, FPGK18, Skr01, WC91]. Simulation [ADG+92, AB16, DBMI92, JN15, KD78, Kut92, MCE+02, MK+93, PBR+90, PY93, Tur92, WB81, WMMG06, YP15, Ano94, BHvR05, Bur02, BS96, Cl98, DSSP06, IM93, KJ79, LJN+00, NRS92, RMB02, SK13b, UBB+82, WWS89]. Simulations [LCT+15, BL90, DH01]. Simulator [CK96, CRZ83, DUN86, PCR89, Ber86, BR01, CMP+07, DC15, GBO87, Hog02, MRL02, YYPA01, Ano14a]. Simulators [NMHS15, Sup04, Man18, Yur02]. Simultaneous [LRZ16, ABB+15]. Simultaneous Learning [AB16, GTGB14, KKB14]. SLA-based Learning [AB16, GTGB14, KKB14]. SLA-driven Learning [EdPG+10]. sledgehammer Learning [LU04]. Slice Learning [EMI13]. Slim Learning [Abr80]. Slimming Learning [WGF11]. SLA [AB16, EdPG+10, GTGB14, KKB14]. Social Learning [BTLNBF+15, LWLL16]. Society [IEE90a, IEE91]. Software [AFG+17, Ano94, Ano93a, Ano03b, AE01, AMA+14, CL17a, CPKL17, DBMI92, DL89, EDS+15, Hsu01, JMSLM92, JN15, KP99, Kna93, KAJW93, LH16, LTT92, LLW+16, Ost94, Par79, PBR+90, So83, SM06, Sh89, SAT09, Sta07, Tho93, YYL+15, ZKWH17, vDK09, ACM01a, AA06, AL15, AAB+15, BD11, CBGM12, CFG+13, FP14, Guz01, HHSG18, HH13, HP77, LJR12, LWL16, MNT14, PV06, SV17, WZW+11, YJZY12, ZLZ13, ZHCB15, CK06q, CK06t, CK06r, CK06s]. Software-Defined Learning [AFG+17, CL17a, JN15, LLW+16, ZKWH17, AL15, HHSG18, LJR12]. Solaris [VSC+10, WF03, Gal11, HDM08, Sec10]. Solution [CHW12, CXLX15, Coh10, DMG+15, Gua14, KDB16, MPA+18]. Solutions [HN10, SL16, ATS16, AGIS94, EMI13, PZH13]. solver [TB14]. solver-aided Learning [TB14]. solvers [GCARPC+01]. Some [Ker88, Man15b]. Sorrento [M+06]. Sorting [BGM70]. SOSP [ACM03b, Vra05]. soundness [BHSB14]. soundness
[Req03]. Source [Ano03a, SJV+05, SNS03, AAB+05a, But94, CRKJ17, Cia07, JM08, LC09a, PW03, SIK+16], source-level [But94]. sous [Apr09].

**SP** [IBM94]. **SP2** [Boz89]. **Space** [XML+18, PEL11, PG11, Web10, WXW15]. space-efficient [PEL11], spaces [GH91a]. **SPAN** [RD90]. Sparks [VN08], sparse [Kra90]. sparse-matrix [Kra90]. Spatially [HW93]. **SPC** [JYW+13]. SPC-indexed [JYW+13].

**Special** [Bag76, KM13, Yur02]. **Specialized** [BDK+08, PGLG12, Yur02]. Speciﬁc [HHV+02, WIDP12, JKDC05, ZS01]. Speciﬁcation [Coh97, DMS02, LY97b, LY99, LYBB13a, LYBB13b, LS15, II79, Qia90, Sun95b, SUN97, JCV99, Taf11]. SPECjvm98 [LJN+00]. Speculation [AC16]. speculative [GI12, PV06]. speed [RPE12, UTO13].

**SPEED08** [VW08]. Spielesamung [CK06q, CK06t, CK06r, CK06s]. Spin [CWS12, WCS06]. Spinlocks [KMK16, OL13]. SPIRE [JYW+13].

**Split** [HWHW18, SIJPP11]. **Spot** [TVKB16]. Spotless [MS00, SMES01]. Spotlighting [Ano06a]. Spots [WBB+16]. Sprach [Dalxx, Dal97].

**Spreading** [CLW+14]. square [DG05]. squeak [Guz01]. SqueakJS [FIF+15]. **SR** [DYL+12, DCP+12, HB12, XD16, XD17, YWCF15]. **SR-IOV** [DYL+12, DCP+12, HB12, XD16, XD17, YWCF15]. **SRVM** [XD16]. St [IEE06a]. St. [ACM97]. **Stack** [AE01, Cia07, HB12, Ran02, SSOT17, WH99, KRCH14, LH13, WW77, SCEG08]. Stack-Based [Ran02, KRCH14].

Stackdb [JHE14]. stage [CLG+10]. Standard [MR04, RSF03, WKG17, Ano94, Rus08]. **Standards** [Mar81, SG10a]. standards-based [SG10a]. Stanford [IEE96a, IEE97, IEE99]. start [KMT14]. **Startup** [HS06]. State [LJL+11, SGB+16, Sur01, TV12, MPA+18, Sch13b, Sig89, Ven99b, Web10].

**State-Based** [TV12]. Stateless [VDO14]. States [SBK15, IMK+13, MC98, STFH15]. Static [JM08]. **STEP** [BDE+03].


Storage [ACM04b, Att79, Bad82, BDT13, Cla05, FFBG08, FKZ17, GSW+17, KCWH14, KHW+16, LCI11, LJFS17, MJW+14, PPTH72, PP16, Rou07, SSOT17, VW08, ZSW+06, BN89, CCL+17, FLB10, HJ10, HC04, JGSE13, LKY+17, LMY+16, Pat12, TLBW12, XJWW15, YLK+10, ZLZ+19, ZLL13].

Storages [TF16]. **Store** [Low88]. **Storing** [CWL+15]. **Storms** [SB16].


String [HOKO14, YDW18]. **Striping** [DK93]. Stripped [JJ91]. Stripped-Down [JJ91]. strong [ZHCB15]. structural [ORFS09]. structure [MDFS72, SS72, ZFY18, ZLZ+19]. **Structured** [Das91, Ga75, CFS+12, IM75, Syr07]. **Structures** [AGLM91]. student [CKP78]. **Study** [BBM+15, LMR18, LJJ+15, PXG+17].
ADG+92, ABDD+91, Car14, Gum83, SNC91]. **System-level**

[SVN+10, AL05]. **System/370** [Gum83]. **System/6000** [ABDD+91].

**System/9000** [ADG+92]. **Systemarchitektur** [See08a]. **Systeme** [WF03]. **Systems** [ACM81, ACM03b, Ano99b, BBMA91, BHI15, CD12, CAF+91, Das91, DJ77, Her10, IEE93a, IEE01, Lar09, LW11, LJZ12, MM93, MJW+14, MKKE12, RT93, SL14, SS75, SBV93, SL16, SN05b, THB06, USE99, USE01b, Vra05, Wn17, WLMD16, YVCB17, AJH12, ALW15, AT16, Ano93, AAB+05c, BSMM08, CCZ+06, CGL+08a, CGL+08b, CGL+08c, CK06a, Com00, CVG10, CLDA07, Dav04, Don87, DJ76, DCMW17, FP14, FLCB10, GH+93, GK05, Ham76, HS13, JK+13, KCS14, Kon11, LLLM14, LZW15, LCL14, LT17, MRC+13, MA17, NS07, NV05, PSC+07, RJ+01, RJK16, Ros06, SJ14, SK13b, SSMGD10, SJ+12, Sto07, Sy06, TT93, TC+14, Vac06, Vit14, WR07, WKC+09, YK13].

**Systemverwaltung** [Lar09].

**Tables** [MT16, MT17, WLW+15]. **tackle** [Sub08]. **tactics** [OG16]. **Tail** [ASSB18, War80]. **Taiwan** [SS05]. **Take** [Kis04]. **Taking** [Uhl06]. **talk** [Piz17]. **Taming** [CZL08, HHPV15].

**Technical** [ACM06d, Ano06b, Han16, OH05, USE01a, USE06, BB08, Int06c, Int06a, LC09a, WALL0]. **Techniken** [Tho08].

**Technique** [HJS12, JMSLM92, LTT92, SMK02, ACT94, SLA+16, XHL+13, YKS16].

**Techniques** [ACM06b, LJJ+15, NKY+18, OVI+12, StLB15, Tho68, UOKT84, ZZ706, AD18, AA06, AH12, BADM06, HSC15, IM93, KS13, KRG+12, SSN12, SHTTE11].

**technische** [LC09a]. **technologie** [Apr09].

**Technologies** [DF96, PZW+07, USE99, USE01b, Cla05, Kao17, MPA+18].

**Technology** [Ano00, Ano01a, Ano01b, Ano02, Ano04a, Ano04b, DLM+06, Don06, Got07, Her06, RG05, USE01c, USE01d, USE02, UNR+05, WHD+09, ZAI+16, Apr09, Int05a, Int05b, Int06a, Int06c, Int06d, AJM+06, NSL+06, NFK+06, RSW+06, Uh06].

**Tele** [HMS04]. **Tele-lab** [HMS04]. **telehealth** [WQG15]. **template** [WRX11]. **Temporal** [CW+06]. **Tenancy** [DY17].

**tenant** [SWW+18, YKS16, ZRZY15]. **terminal** [CKT08]. **terminals** [IIK+06, ISE08]. **Terra** [BSI+15]. **Terrier-Tail** [ASSB18]. **Tesseract** [ABG14]. **Test** [SM06, ABDD+91, IIPB09, LLS+12]. **testbed** [HLW+10, ZGW+06]. **testbeds** [ACM06c].

**Testboard** [Kut92]. **Testing** [Ame13, CCLL18, DFK94, GFB+92, HLP+16, Kao17, KLF+15, MMP+12, Ost94, VSO6, BD11, CSS+16, KFF12, SCFP00].

**Texas** [ACM75, ACM06d, USE01b, IEE02, IEE03].

**their** [EF94, KCV11, SS13].

**Them** [HPHV17]. **Theorem** [Hir17, SSH17, BW03]. **Theoretical** [Kna93].
Trusted [DPW+09, SVB93, BCP+08, KSLA08, WH08]. Truthful [NMG15].

TSAC [WZL15]. Tucson [IEE05]. Tuning [EDS+15, RS16]. Tutoring [GH91b]. TVDc [BCP+08]. Twelfth [MR91]. Twenty [MS91b, Shr89].

Twenty-Fourth [MS91b]. Twenty-Second [Shr89]. TwinDrivers [MSZ09].

twins [HCJ07]. twitter [Guy14].

Two [AW17, SSG90, TF16, BSSM08, HCJ07, LUL+05]. two-dimensional [BSSM08]. Two-level [SSG90]. Two-phase [TF16]. Two-tiered [AW17].

TX [ACM99]. Type [ADM98, AT16, Arv02, KCV11, PRB07]. type- [Arv02].

Type-Precision [ADM98]. Typed [G+88, BDT13, GLV99, KRCH14].

Types [Wel94]. TypeScript [RSF+15]. Typing [RSF+15].

u.v.a [Tho08]. UKCF [JXL+12]. umfassende [Bod10, Fis09]. Umgebung [CK06p].

[UML [Fre05, RFBL01]. uncertainty [LPBB+18]. underlying [FBZS12]. understand [DMH18]. Understanding [FRM+15, Set13, ZRY15, LWB+15]. Undocumented [Sch94b, Sch94a].


USA [ACM81, ACM01a, ACM03b, ACM05a, ACM06c, ACM06d, ACM06b, ACM06d, Boa90, IE093a, Shr89, USE01c, ACM75, ACM05d, ACM06a, Ano01b, Ano04b, IEEE84b, Ost94, USE85, USE86, USE91, USE93, USE99, USE00a, USE01a, USE01b, USE06]. Usage [KLLT18, RSW+06, WH99, KTB17, RGAT18, SK13c]. USB [Ano03a]. Use [Bec09, CLLS12, Guy14, KK79, Sch13a, SJJ+12]. used [tTR82]. useful [LC09a].

USENIX [ACM05d, SoF3, USE91, USE93, USE06].

User [Chu06, ZQZC16, Ano93, ACT94, Bor07, Gux01, PG11, RSC+15, Sto07, ZLZ13, CKT08, Dav04]. user-controlled [Sto07]. User-Level [Chu06, ZQZC16, ZLZ13]. user-space [PG11]. User-terminal [CKT08].

Users [Boa90, SS17]. userspace [Ste14]. Using [AAS+09, ABV12, ALL06, Bas04, Bas06, BRX13, CQLL18, CCO+05, DBMI92, Don88, ESY+17, Gux01, HLW+10, HWHW18, JMSLM92, JTN+00, LTT92, LD05, MV16, OLZ16, PEC+14, RSW+06, See10, SM06, SC17, SYB12, SAT09, SBK15, SXCL14, TDG+18, WDSW01, WKG17, WUNK17, Wil01, Wol99, XSC13, ZBP07, dGG+17, AD18, Agr99, ATS16, AWR05, AP18, AGIS94,
BSM +12, BHvR05, CL14, CCZ +06, Dan12, FFBG08, FL13b, GHM +18, HJ10, HN08, HPH04, JNR12, JWH +15, JGSE13, Jno07, KKM +13, KS18, KJJ +16, KGS16, KL13, Kou11, KRG +12, LDL14, LIWW18, LQW +12, NV05, PBL +16, RP07, SGV13, SSN12, SIK +16, SSH17, STFH15, SSN94, TSLBYF08, TF16, V14, YK13, YLWH14, YWF09, YWCF15, ZLZ13, ZDLG17. UT [Ren78]. Utah [ACM01a, CK87]. utility [CSV15, JWH +15, PSZ +07]. Utilization [KCKC15]. Utilizing [GVI13, KOY05].

GIK+99, Gei02, Gen86, GGG03, GLBJ18, Gum83, HHV+02, HHW10, HT98, Hal79, HKLM17, HM01, HH79, HB17, HKM+18, Hir17, HKKW13, JQWG15, JAS+15, JN15, JKJ+10, JADAD06a, JDJ06, JL02, Juo07, KCWH14, KRS+17, KC16, KS08a, KMK16, KNT02, KKT17, KF91, Ken80, KDB16, Kim84, KJL11, gKEY13, KKJL14, KP15, KAH83, KGZ04, KLLT18, Virtual

[KL15, LCWB11, LMM18, Lam75, Lau87, Law00, LW11, LP14, LMR18, LW18, LGJ18, LMG00, LMG01, LTM97, LWLL16, LYY17, LGJ98, LV99, LTT92, LD05, LY97a, LY99, LYxxa, LYYxb, LYYB13a, LYBB13b, LHA06, LW110, LJL+11, LW12, LJL+15, LLZ18, LPB17, LMB98, Loy92, LTK17, LXM16, MSG14, Mac79, MS91a, Man15a, Man16, MD12, McG72, Men03, MS70, MD07, MDxx, MDGS98, MLG02, MB98, MKKE12, II79, MP01, MJW06, MM94, NBH08, NBK16, NMG15, Nel04, NSJ12, Nol92, OT97, Oi05, Oi06, PTH114, PPT07, PSBG11a, PXG+17, PRB07, Pio13, PS16, PCC+16, PK75a, Pro00, Qiu01, Qiu03, Rev11, RY10, RZ00, RSN+18, Ros99, Ros04, RG05, RB01, SM02, Ibs84b, SL14, San88, SSB+14a, SD01, SH04].

Virtual

[Sch13a, SMM01, Sch09, Sch94b, Sch94a, Sec10, Set13, SMSB11, SS03, SC17, SCEG08, SCSL12, Shi03, SM01, SGV12, SV13, Sim92, SCP93, Siv04, SSG90, SN05a, SN05b, SHZ+14, SBP+17, Sta97, SS01, SBB14b, SHB+03, SVL01, Sun95b, Sun95a, SUN97, JCV99, SKI+17, Sup04, SM02, Sur01, TSLBYF08, Tai98, TT96, TMV12, TY14, To98, TO96, TV12, USE01c, USE01d, USE02, UT87, UBF+98, UR15, Vag10, VTW16, Ven97a, Ven99a, VL00, Vog03, Vo90, WL96, WIDP12, Wak99, WH99, Wa99, WB81, WLW+15, WWL+17, Wel94, WGLL13, WZL15, WLLL16, WSG05, WHD+09, WP97, Wol99, Won97, WWMG06, XXY+11, XSC13, XHL+13, XWXJ15, XLL+14, XLI16, YCG9a, YLI17, YVV+17, YLP17, YP15, ZS01, ZL+14, ZRD+15, ZRS+16, Z16, ZCG+17, ZL18, ZLZ+19, ZZF06, ZWL+18, ZLL+16, Zho10, ZHL16, ZJXL11].

Virtual

[ZTWM17, Zim05, ZR06, Zyt94a, Zyt94b, dSdF16, vD00, vLSM01, Agr99, AEMWC+12, Abr82, AS85b, AGSS10, AAH+03, AGH+15a, AAB+00, AAB+05b, AC95, Ame13, AGH+16, Ano94, Ano06, Ano99a, AO16, AT96, AFT01, ABC07, Arm98, AWR05, AAM+16, AMAB17, Arv02, AP18, AS14, ANH00, BAC15, Bag76, BML+13, BSM+12, BDF+98, BPS+09, BHvR05, Beg12, BPC94, BB12, BB15, BCP+08, BCM90, Bir94, BADM06, BFC02, Bri98, CARB10, CL14, CL17b, CD14, Car14, CEG07, Cav93, CS76, CGM17, CCL+17, CBF1D12, CH08, CRB12, CK06a, CK06e, Co99, CG10, dCCDF015, CWDO+06, CLDA07, CLL+13, CD01, DPW+09, DDS+94, DSC+08, DP11, DM93, DC15, DEG+17, DBC+00, DQLW11, Don87, DXM+17, DSZ11, DCMW17, EGD03, EGGK02, EG03, Ert05, EL98, EMS15, FLL+13, FM90, FBZS12, FM18].

Virtual

[Fit14, FHL+96, FGL15, FF96, FLM+08, FCC+05, Fre05, FX06, Fu10, GP13, GTGB14, GI12, GVI13, Gol73, GARCPC+01, GPW03, GR80,
Virtualization [SAT09, SLIPP11, SWF16, SPR07, STA07, SKYK16, SWA06, THLK10, TF16, TRE05, UHR05, UHI06, UVL13, VN06, VN08, WBB16, WDC10, WWH16, WCO1, WG07, WHD16, WH05, WLW17, XHI16, XM18, YSS17, ZSX20, ZQC16, ZZF06, ZAI16, ZXY15, ZKH17, dGG17, vMAT14, vDK09, AA06, AAF09, A04, AH12, ALW15, AJD09, AN014c, AN015, APR09, AAB05c, AA18, ABB15, BDF03, BBD10, BRIDM10, BB05, BB08, BOR07, BH13, BCT10, BTLNB15, BSMF08, B07, CESS11, CBER09, CDM10, CFG13, CWH14, CL15, CCZ06, CGL08a, CGL08b, CGL08c, CB10, CMM06a, CMM06b, CMM06c, CIA07, CLA05, CKT08, CRO09, AAB05c, AA18, ABB15, BDF03, BBD10, BRIDM10, BB05, BB08, BOR07, BH13, BCT10, BTLNB15, BSMF08, B07, CESS11, CBER09, CDM10, CFG13, CWH14, CL15, CCZ06, CGL08a, CGL08b, CGL08c, CB10, CMM06a, CMM06b, CMM06c, CIA07, CLA05, CKT08, CRO09, AAB05c, AA18, ABB15, BDF03, BBD10, BRIDM10, BB05, BB08, BOR07, BH13, BCT10, BTLNB15, BSMF08, B07, CESS11, CBER09, CDM10, CFG13, CWH14, CL15, CCZ06, CGL08a, CGL08b, CGL08c, QZDJ16].

Virtualization-Based [CDD13, AAJD16, DPCA11, MCC18, WDCL08, CGL08a, CGL08b, CGL08c, QZDJ16].

Virtualized [AMA18, EGR15, GKK13, GLBJ18, KHW16, LZ15, MT16, MT17, NKY18, RGJ17, SB16, SL16, SDD16, WIS15, WKC09, WLMD16, YVCB17, YWC15, AJH12, ATS14, BGS13, BSSM08, HOKO14, HL13, KW13, KSRL10, KRG12, LWMI14, LC13, MNT14, NS07, PSZ07, PSC07, SG10b, TRG13, WWL13, WTLS09, ZWC14].

VirtualKnotter [ZWC14].

Virtually [SPI06, WL96, TRE05].

VirtualPower [NS07].

virtuelle [WF03, WR07, WR08, ZIM05, ZIM06].

virtuellen [CK06a, CK06c, CK06d, CK06f, CK06i, CK06h, CK06j, CK06k, CK06m, CK06i, CK06n, CK06q, CK06p, CK06q, CK06r, CK06s].

Virtuoso [DGZ11].

VIRTUS [IIK06].

Visual [Arm78].

Visual [FAO6, FRO09, MC98, WIL06, HEE07, HOG06, HOG08].

Visualization [NEL04].

Visualizing [WT91].

VLISP [RAM03].

VLSI [IN87].

VM
VM-based [ESY+17]. VM-protected [GHD12]. VM-scaling [AB16]. VM/370 [Att79, Bar78, Cal75]. VM/4 [NOK+85]. VM/application [LBF12]. VM/ESA [BN89, Boz89, IBM94, MSS91, OJG91, SNC91]. VM/Pass [MLA83]. VM/Pass-Through [MLA83]. VM/XA [BN89, Boz89, IBM94]. VMBackup [ZXW16]. vmBBProfiler [TZK17]. Vmgen [EGKP02]. VMI [LLF+18]. Vmknoppix [Deu08]. VMM [AD18, ALL06, Car14, DQR+13, DLX+17, KZB+90, LD11, LHAP06, OLZ16, RQD+17, SM90]. VMM-based [ALL06]. VMM-Bypass [LHAP06]. VMM-to-guest [LD11]. VMMB [MKKE12]. VMP [JNR12]. VMPlanner [FLL+13]. VMPPlants [KGZ+04]. VMPP [Loy92, LG93]. VMs [KMT14, KKJ+13, RJK16]. VMscatter [CLL+13]. VMSI [ZTWM17]. VMThunder [LIW+14]. VMMware [Joo06, CK06f, Ham07, KMG00, Tho08, Zin05, Zin06, Bas04, Bas06, War05, Wil01, AAH+03, Ano03a, Ano03b, Ano07, BBD+10, Bau06c, Bor01, BDR+12, CK06f, Com00, Com03, DS09, D+04, Gal09b, GKB05, Hal08, Hal09, Her10, HMS17, IIPB09, Kis08, KMK10, Lav10, Low08, Low09, Low11, LM0+14, MRM06, MBM09, McC08, MW05, MJW+06, Mg01a, Mg01b, NL00, OH05, Ros99, Ru07, R+02, Sec10, SIK+16, SLL01, Ten17, TH10, Wal02, Wal09, War02, WF03, War11, Zin05, Zin06, B+07]. VNC [RSLAGCLB16]. Vol.II [Shr89]. Volatile [AMH+16, HN05]. voltage [TDG+18, AMAB17]. Vorstellung [AvMT11]. Vorstellung [CK06b, CK06e, CK06c, CK06d, CK06g, CK06f, CK06k, CK06l, CK06n, CK06o, CK06q, CK06r, CK06s]. VPC [KJM+07]. VPFS [WH08]. VPN [MSI+12]. vs [Gal09b, WKJ17]. VSA [SHLJ13]. vSAN [FKZ17]. VSched [LD05]. Vshadow [WLW+17]. VSIM [RPE12]. vsphere [Gal09b, Lav10, Low09, LM0+14, Fit14, Hal09]. vSphere5 [Low11]. VSwapper [ATS14]. vsSwitch [TSP17]. vulnerabilities [RY10]. Vulnerability [CRZH15, Ano99a, JKDC05]. vulnerability-specific [JKDC05]. Vulnerable [JSHM15, JAS+15].

Whispers [WXW15]. Who [LS15]. whole [BBM09]. whose [BBS06]. wichtigsten [CK06b]. Wide [BFG+14, DF96]. Wide-Area [BFG+14]. wie [Deu08]. WiFi [XKY+11]. Wild [Cox10, STS+13]. Win [War11]. Win4Lin [Ng01b, Ng01a]. WinCE [Kal97]. Windows [Bod10, Bor01, Joo09, Lar09, Sch94b, Sch94a, WF03, Apr09, Bod10, Car06, CK06a, CK06i, CK06h, CK06p, GMR93, KSS09, KS10, Lar09, LC09b, LC09a, MG08, MG09, Nou92, Sal92, YGN+06, Zyt94a, Zyt94b]. WINRAR [Joo06]. wired [XKY+11]. Wireless [ACM06c, AFG+17, ALW15, BSI+15, HLP+16, KKT17, SJJP+11, FK13, HILW+10, XKY+11]. Wirth [BGP00]. Within [RD90]. without [CD01, KSRL10, SUH86]. WLAN [KKT17]. Wolves [DLX+17]. WOMP [M+06]. Work [HMS17, DMH18, KHL17]. worked [Cox12]. workflow [KCKC15, WKT08]. Workflows [RB17, dCCDFdO15]. Working [NKY+18, ZDLG17, G+88]. Working-Set [ZDLG17]. Workload [IEE02, IEE03, KCV11, SS13, SSN12]. workload-aware [SSN12]. workloads [GTGB14, LL14, SMA+10, SW08, VVB13]. Workshop [ACM98, RM03, ACM05b, IEE01, IEE02, IEE03, IE04, Mat10, Tho93, ACM01a, ACM04a, ACM06c]. workshops [M+06]. Workstation [Bau06c, Bor01, BDR+12, WF03, War05, SSN94, War02, SVL01]. World [DF96, GHI+93, WI+17, BBM09, STS+13]. World-Wide [DF96]. worlds [AJD09, LUL+05]. Worm [CLW+14]. Worst [HWB03]. Worst-Case [HWB03]. Writing [Wes98]. written [MSG01]. WWC [IEE03, IEE02]. WWC-5 [IEE02]. WWC-6 [IEE03].

x3950 [R+06]. X64 [dGG+17]. x86 [AGSS10, BDR+12, Cof99, MT16, MT17, MGL+17, Rev11, AA06]. XA [BN89, Boz89, BMW94]. XBox [St05]. XC [GH91a]. XEN [Hin08, PO09, Deu08, HHH04, Kar07, Mar08, See08a, Tho08, RHM08, AJD09, Ano15, BDF+03, B+07, CBZ+16, Chi08, CGW07, De 06, DLM+06, Don06, Fis09, Hab06, HFW07, Kar07, Ke06, MDD+08, MST+05, MCD06, NB11, NOT+17, PO09, PRS16, QTO07, SJV+05, SL1113, Spr06, Spr07, TC10, VS06, WG07, dSOK17, vH08]. Xen-based [CBZ+16, dSOK17]. Xen-Basis [Kar07]. Xen-virtualisierte [Mar08]. XenEnterprise [CGW07, WG07]. XenExpress [CGW07, WG07]. XenServer [CGW07, WG07]. XHive [KJL11]. XHPC [M+06]. XINU [BWP85]. XIVE [AA18]. XML [Int06c]. XPL [Kam75]. XSA [Ano15]. XScale [CMP+07]. xSeries [R+02]. XTREM [CMP+07].

yang [CBGM12]. Years [FS12]. yieldpoint [LWB+15]. yin [CBGM12]. York [AC03b, IEE09b, IEE96b, IEE90b]. Yountville [Tho93].


55
References


REFERENCES


Aryania:2018:EAV


Aroca:2016:PEA


Antonescu:2016:SSB


Axnix:2015:IZF


Armbruster:2007:RTJ

Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David Holmes, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A real-time Java virtual machine with

**Adair:1966:VMS**


**Aharon:1991:VIR**


**Arya:2014:TR**


**Abramson:1980:WGL**


**Abramsky:1982:SMV**


**Anderson:2012:MAN**


**Adair:1966:VMS**


**Aharon:1991:VIR**


**Arya:2014:TR**


**Abramson:1980:WGL**


**Abramsky:1982:SMV**


**Anderson:2012:MAN**

REFERENCES


[ACM:1975:PFS]

[ACM:1981:ASC]

[ACA16]
ACM Press, New York, NY 10036, USA, Fall 1981. ISBN ?????
LCCN ????


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


Aridor:2001:DIV


Ahmad:2015:VMM


Ahmad:2015:SVM


Amit:2016:BMP


Averbuch:1994:PES

REFERENCES

CODEN SCIPEV. ISSN 1058-9244 (print), 1875-919X (electronic).

Abe:2016:UVM

Aral:1991:PCS

Aagren:1999:TCC

Agesen:2010:EXV

Aguiar:2012:CTF

Aigner:2015:AJE
Martin Aigner, Thomas Hüttner, Christoph M. Kirsch, Alexander Miller, Hannes Payer, and Mario Preishuber. ACDC-JS: explorative benchmarking of JavaScript memory management.
Anderson:2009:XWL


Ahn:2012:RHA


Abramson:2006:IVT


Adamski:2007:SPE


Adams:2005:CMC

Alfonseca:1991:AAA

Asrigo:2006:UVB

Akyildiz:2015:WSD

Agrawal:2016:EIU

Azmandian:2011:VMM

Araujo:2014:SAE
Ahmadian:2018:ECH  

Arroba:2017:DVF  

Ament:2013:ATG  

Awad:2016:SSZ  

Azevedo:2000:AAJ  

Anonymous:1975:VM  
REFERENCES


REFERENCES


REFERENCES


REFERENCES


Anonymous:2015:CXB

[Ano15] Anonymous. Critical Xen bug in PV memory virtualization code (XSA 148). Web bug report, October 29, 2015. URL https://github.com/QubesOS/qubes-secpack/blob/master/QSBs/qsb-022-2015.txt. The report notes about this bug that allows memory pages to leak between Xen virtual machines on the same physical host: “... the bug is a very critical one. Probably the worst we have seen affecting the Xen hypervisor, ever. Sadly. ... it is really shocking that such a bug has been lurking in the core of the hypervisor for so many years.”.

Aral:2016:NAE


Ashraf:2018:MOD


Aprea:2009:HVS


Anderson:2005:OII

Arce:2007:GVM


Armstrong:1978:PPC


Armstrong:1998:CSH


Arroba:2018:HMD


Arvizo:2002:VMT


Adix:1976:IER

Mary S. Adix and Henrik A. Schutz. Interpretive execution of real-time control applications. *ACM SIGPLAN Notices*, 11
Abramski:1985:SMV


Abramsky:1985:SMV


Atif:2014:APA


Asyabi:2018:TMT


Amin:2016:JST

Nada Amin and Ross Tate. Java and Scala’s type systems are unsound: the existential crisis of null pointers. *ACM SIGPLAN Notices*, 51(10):838–848, October 2016. CODEN SIN-
REFERENCES

ODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).


Arnold:2005:IVM

Blank:2005:APV

Buytaert:2007:BDS

Bacon:2011:VAH

Baccarelli:2015:MEB

Baden:1982:HPS
REFERENCES


Bartholomew:2006:QMM


Bastiaansen:2004:RGU


Bastiaansen:2006:RGU


Bauer:2005:PPF


Bauer:2006:PPSb


Bauer:2006:PPSa


Bauer:2006:VWL


Bonardi:2008:PEM

REFERENCES

**Beloglazov:2012:OOD**


**Beloglazov:2013:MOH**


**Beloglazov:2015:ONF**


**Balter:1991:AIG**


**Barr:2010:VMV**

REFERENCES


[BD11] Srikaath Baride and Kamlesh Dutta. A cloud based software testing paradigm for mobile applications. *ACM SIGSOFT*
REFERENCES


**Brown:2003:SFE**


**Bak:1998:NCJ**


**Beck:1999:HNG**


**Barham:2003:VMM**


**Barthe:2002:FCB**

[BDJdS02] Gilles Barthe, Guillaume Dufay, Line Jakubiec, and Simão Melo de Sousa. A formal correspondence between offensive and de-


REFERENCES

178, February 2014. CODEN IEANEP. ISSN 1063-6692 (print), 1558-2566 (electronic).

Bagley:1975:SDS


Brawn:1970:SPE


Boszormenyi:2000:SNW


Birmingham:1989:MSC


Bartholomy:2013:NMT


Botero:2013:GNN

REFERENCES


[Bir94] Umesh V. Biradar. Adaptive distributed load balancing model for parallel virtual machine. Master of science in computer science, Department of Computer Science, College of Engineer-


REFERENCES


REFERENCES


137–141, October 26, 1988. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).


REFERENCES


REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).


REFERENCES


[Caa00] Paul Caamano. Porting a Java Virtual Machine to an embedded system. Thesis (m.s.), Department of Computer Science, University of California, Santa Cruz, Santa Cruz, CA, USA, 2000. viii + 56 pp.


REFERENCES


REFERENCES


Childs:2005:SCG


Chiueh:2014:SFI


Calder:2005:EVM


Chen:2006:LUO


Czajkowski:2001:MCV

REFERENCES


REFERENCES

Cao:2017:VNM


Cheriton:2012:HAS


Celesti:2012:VMP


Chen:2016:OVM


Chen:2008:OVBa


[Chen:2008:OVBB]


[Chari:2017:BEH]


[Casazza:2006:RSP]


[Courbot:2010:EBD]

REFERENCES


REFERENCES

Chryselius:2006:DQE

Chryselius:2006:IDQ
[CK06b] Toralf Chryselius and Andrea Kuntz. Internetkommunikation in Debian unter Qemu: Einführung in das Betriebssystem Debian Linux in Qemu und Vorstellung der wichtigsten Internetprogramme. (German) [Internet Communication in Debian under Qemu: Introduction in the Debian Linux operating system in Qemu and creation of the most important Internet programs], volume 18 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-117-1 (book), 3-86768-717-X (DVD). 109 pp. LCCN ????

Chryselius:2006:IKQb

Chryselius:2006:IKQc
[CK06c] Toralf Chryselius and Andrea Kuntz. *Internetkommunikation in Kubuntu unter Qemu* Einführung in das Betriebssystem Kubuntu und Vorstellung von Internetprogrammen in der virtuellen Umgebung Qemu. (German) [Internet Communication in Kubuntu under Qemu: Introduction to the Kubuntu operating system and creation of Internet programs in the Qemu virtual machine], volume 6 of Schriftenreihe Grenzgänger - Linux leicht verständlich; Schriftenreihe Grenzgänger - Linux leicht verständlich. CVTD, Bergfelde bei Berlin, Germany, 2006. ISBN 3-86768-105-8 (Buch), 3-86768-705-6 (DVD). 107 pp. LCCN ???.


REFERENCES


REFERENCES


REFERENCES


[Cull:93] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E. Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: towards a realis-

**Chamanara:2017:QSH**


**Conte:2008:NHA**


**Canali:2014:DSV**


**Checco:2015:FVN**


**Cheng:2016:OIL**


**Cheng:2016:RTC**

REFERENCES


REFERENCES

Chow:2010:MSR


Cui:2013:VMV


Chrobot:2012:DMV


Clocksin:1985:DSS


Carpenter:2007:HVA


Chen:2014:HBA

Chung:2006:TTMa


Chung:2006:TTMb


Chung:2006:TTMc


Contreras:2007:XPP


Chen:2013:TVR

REFERENCES


 Chen Chen, Zhuyun Qi, Yirui Liu, and Kai Lei. Using virtualization for blockchain testing. In Smart Computing and Communication, Lecture Notes in Computer Science, pages


REFERENCES


REFERENCES


Davoli:2004:TOS


Dillenberger:2000:BJV


Darcy:1992:USD


Denz:2018:SMB

Robert Denz, Scott Brookes, Martin Osterloh, Stephen Kuhn, and Stephen Taylor. Symmetric multiprocessing from boot to virtualization. *Software—Practice and Experience,*

Di:2015:ECP


Doyle:2004:DIM


Coutinho:2015:OVM


Duan:2017:EAS


Dong:2012:RAE

DEGANBAEV:2016:ITG


DIAZ:2017:OAV


DEBABI:2003:MCA


DENNING:2001:OVM


HARRIS:2001:GMA


HELMuth:2006:GPV


HIBBS:1998:GVT

REFERENCES


REFERENCES


REFERENCES


Deshpande:2017:TSL


Damodaran-Kamal:1994:TRP


Di:2015:OCC


Demillo:1989:DSC


Dall:2016:AVP


Dong:2006:EXI

[DLM+06] Yaozu Dong, Shaofan Li, Asit Mallick, Jun Nakajim, Kun Tian, Xuefei Xu, Fred Yang, and Wilfred Yu. Extending Xen with Intel virtualization technology. *Intel Technology Journal, 10(3):193–203, August 10, 2006*. ISSN 1535-
Dutchyn:2001:MDJ


Deng:2017:DWT


Donovan:1975:HAC


Donovan:1976:FAR


Despous:1993:CCP


Dong:2015:VSB

REFERENCES

Dhillon:2018:BEA


Dhiman:2010:VSE


Diessel:2002:THL


Dall:2014:KAD


Dyer:2006:NPD


Do:2011:CAS

REFERENCES

Oliveira:2012:SMC

Dommergaard:1980:DVM

Dommergaard:1980:FDP

Donaldson:1987:TOS

Donahue:1988:UAL

Dong:2006:XIV


Dargie:2014:PCE


daSilva:2017:ARA


DeRosa:2006:RSD


Du:2011:PPV


Du:2007:SSI


Dunigan:1986:DHM

REFERENCES


REFERENCES


[ECM06] ECMA. *ECMA-335: Common Language Infrastructure (CLI)*. ECMA (European Association for Standardizing In-

Ejarque:2010:ESV


Estrada:2015:PCT


Erenyi:1994:IPA


Ertl:2001:BEV

REFERENCES


Esteire:1998:STN


Eramo:2017:ASF


Esposito:2013:SES


Evoy:2015:ADP


Engel:1999:PJV


Ertl:2003:IVM

REFERENCES

URL http://www.complang.tuwien.ac.at/anton/ivme03/proceedings/ivme.ps.gz.

Ertl:2005:AIV


Estrada:2017:UDP


Eugster:2006:UPJ


Fabbro:2013:LAS


Fokaefs:2018:DBE


Feng:2012:IDU

REFERENCES


[Farkas:2000:QEC] Keith I. Farkas, Jason Flinn, Godmar Back, Dirk Grunwald, and Jennifer M. Anderson. Quantifying the energy consump-
REFERENCES


REFERENCES


**Fink:2017:VMD**


**Fu:2013:BSG**


**Fu:2013:EUD**


**Flouris:2010:EBL**


**Fang:2013:VOV**

REFERENCES

Franklin:2008:RDV


Anonymous:2014:AVM


Fu:2017:MCD


Feeley:1990:PVM


Filho:2018:AOV


Forum:1971:VMI


Forum:1978:VMI


REFERENCES


REFERENCES


Geiselhart:2006:IZV


Gupta:2018:RAV


Gordon:2012:EBM


Gaines:1975:ACV


Galvin:2009:PATb


Goldweb:2008:VEE

Michael Goldweber and Renzo Davoli. VDE: an emulation environment for supporting computer networking courses. 

Gasiunas:2017:FBA


Gaudiot:1985:PES


Geist:2002:PVM


Genter:1986:UVM


Garzon:1992:DTG

REFERENCES


REFERENCES

CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic). See [GFH82, WNL+83, Fra83, GHF83b].

[Ganapathi:1983:SFRb]

[Grebe:1993:TAS]

[Gupta:2018:SCS]

[Gandhi:2016:APE]

[Gandhi:2017:APE]


[GLLJ16] Jian Guo, Fangming Liu, John C. S. Lui, and Hai Jin. Fair network bandwidth allocation in IaaS datacenters via a co-


REFERENCES

Giacalone:1989:FSI

Golub:1993:MER

Guanciale:2016:PSM

Goldberg:1973:AVM

Goth:2007:VOT

Ganegedara:2013:CPA
Thilan Ganegedara and Viktor Prasanna. A comprehensive performance analysis of virtual routers on FPGA. ACM Trans-
REFERENCES


[Gre10] David Green. The Sydney University SILLIAC. Web site, August 14, 2010. URL http://members.iinet.net.au/~dgreen/silliac.html. The SILLIAC was the first computer installed at Sydney University, and was operational from 1956 to 1968. The Web site links to the SILLIAC Emulator, a C program for Microsoft Windows.


[GSS+18] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger, and Mikel Luján. Cross-language interoperabil-

**Gupta:2017:HCS**


**Garg:2014:SBV**


**Gilbert:2006:IVG**


**Gidra:2015:NGC**


**Guan:2014:HHV**

REFERENCES

[166]


REFERENCES


Hale:2016:EHP


Hines:2009:PCL


Hu:2008:SVO


Heege:2007:ECC


Herrod:2006:FVT


Herrod:2010:SRD

Hendricks:1979:EVM


Ho:2004:PPD


Huang:2013:VHS


Hong:2016:OCT


Ho:2005:DPD


Hudson:2008:FU


Horiguchi:1994:ISP


REFERENCES


REFERENCES


Hofmann:2013:ISA


Hovestadt:2013:AOC


Hao:2017:OAV


Hinz:2018:CMI


Huang:2013:ESC

Hoque:2016:AAT


Hahn:2010:UVL


Hsu:2013:IDB


Hartel:2001:FSJ


Halacsy:2018:OEE


Hallawi:2017:MCC

[HMH17] Huda Hallawi, Jörn Mehnen, and Hongmei He. Multi-capacity combinatorial ordering GA in application to cloud


REFERENCES


REFERENCES


[Ha:2017:PPE] Tuan Minh Ha, Masaki Samejima, and Norihisa Komoda. Power and performance estimation for fine-grained server power capping via controlling heterogeneous applications. ACM Transactions on Management Information Systems
REFERENCES

(HMIS), 8(4):11:1–11:??, September 2017. CODEN ???. ISSN 2158-656X.


REFERENCES


Hu:1990:RTC


Heiser:2006:VMM


Hwang:2014:MFG


Herbordt:1993:EEA


Hume:2015:SCS


Hu:2003:DJV

REFERENCES

Huang:2016:BKB


Hand:2007:HVX


Huang:2018:TBI


Hao:2016:IRO


He:2014:DRC


Iancu:2014:CPV

Costin Iancu. The case for partitioning virtual machines on multicore architectures. *IEEE Transactions on Parallel and


[SPE::Ibsen1984]


REFERENCES


IEEE:1991:PIC


IEEE:1992:PSM


IEEE:1993:PSI


IEEE:1993:PSP


IEEE:1996:HCV

REFERENCES


REFERENCES


[IMK+13] Canturk Isci, Suzanne McIntosh, Jeffrey Kephart, Rajarshi Das, James Hanson, Scott Piper, Robert Wolford, Thomas Brey, Robert Kantner, Allen Ng, James Norris, Abdoulaye Traore, and Michael Frissora. Agile, efficient virtualization power management with low-latency server power states. ACM
REFERENCES


REFERENCES


REFERENCES


[Jo:2013:ELM] Changyeon Jo, Erik Gustafsson, Jeongseok Son, and Bernhard Egger. Efficient live migration of virtual machines using

### Jin:2011:OLM


### Johnson:2014:CML


### Jämthagen:2012:TRD


### Jolitz:1991:PUS


### Jung:2002:DIS


REFERENCES


REFERENCES

Jacob:2002:CAP

Jin:2015:HAS

Jantz:2013:FAG

Juola:2007:PCO

Jin:2017:WCM

Jia:2015:DRA
Xiaohua Jia, Jinhai Wang, Chuanhe Huang, Qin Liu, Kai He, Jing Wang, and Peng Li. Dynamic resource allocation


REFERENCES

ISSN 0097-8418 (print), 2331-3927 (electronic). Proceedings of ITiCSE ’09.


Kao:2017:TEF

Kao:2017:TEF

Karcher:2007:VDX

Karcher:2007:VDX

Kumar:2014:DLB

Kumar:2014:DLB

Kunjir:2017:TAM

Kunjir:2017:TAM

Kim:2011:PAP

Kim:2011:PAP

Kounga:2012:ESP

Kounga:2012:ESP

Kansal:2016:EAV

Kansal:2016:EAV


REFERENCES


[Kent:2012:RVM] Casey Klein, Matthew Flatt, and Robert Bruce Findler. The Racket virtual machine and randomized test-
REFERENCES


REFERENCES

Khnaser:2009:VVC


Kang:2016:MPV


Kim:1984:EVM


Kissell:2008:TCV


Kalibera:2013:RBR


Kim:2016:DOF


Kertesz:2014:ISA


Kim:2016:SCD


Kim:2013:DBC


Kim:2014:VAM


Kokkinos:2016:SLM


Kawahito:2013:IRF

Motohiro Kawahito, Hideaki Komatsu, Takao Moriyama, Hiroshi Inoue, and Toshio Nakatani. Idiom recognition framework using topological embedding. *ACM Transactions on Ar-
REFERENCES


[KLLT18] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. Deploying chains of virtual network functions: On the relation between link and server usage. IEEE/ACM
Transactions on Networking, 26(4):1562–1576, August 2018. CODEN IEANEP. ISSN 1063-6692 (print), 1558-2566 (electronic).

Kiefer:2013:SIP


Krieger:2010:EMC


Kashyap:2016:OSA


Khazaei:2013:PCC


Kalibera:2014:FAS


Kuperman:2016:PR

[KMN+16] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel Gordon, and Dan Tsafrir. Paravirtual remote I/O. ACM
Kessaci:2014:MSL


Knaggs:1993:PT


Kasprzyk:2002:APV


Kotsovinos:2010:VBC


Kotsovinos:2011:VBC

REFERENCES


**Kundu:2012:MVA**


**Kroeker:2009:EV**


**Kanizo:2017:OVB**


**Karger:2008:VVM**


**King:2008:GEI**


**Kelbley:2010:WSR**

Kaufmann:2013:SCO


Kesavaraja:2018:QEC


Kong:2008:PTD


Kavvadia:2015:EVM


Keller:2010:NVC


REFERENCES

Kang:2013:HPP

[Hui Kang and Jennifer L. Wong. To hardware prefetch or not to prefetch?: a virtualized environment study and core binding approach. ACM SIGPLAN Notices, 48(4):357–368, April 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Koskinen:2016:RCR


Kwon:2017:IHP


Karger:1990:VSK


Lamming:1975:LVM


Larisch:2009:PMH

REFERENCES


Laadan:2007:DPV


Le:2011:REC


Levis:2002:MTV


Larson:2009:WSHb


Larson:2009:WSHa


Liu:2013:SPV


REFERENCES

- Lin:2005:VMB

- Lange:2011:SSV

- Lv:2012:VCV

- Loveland:2008:LVO

- Li:2014:MHD

- Lee:1986:DSE

- Lee:2016:ACS


REFERENCES


[LJL12] Xiaofei Liao, Hai Jin, and Haikun Liu. Towards a green cluster through dynamic remapping of virtual machines. *Fu-
Liu:2015:HBC


Li:2000:UCS


Li:2012:SRS


Lipner:2012:LVS


Lee:2017:EBG


Ning Liu, Xiaoping Li, and Weiming Shen. Multi-granularity resource virtualization and sharing strategies in cloud manufacturing. *Journal of Network and Computer"

Leung:1998:DGD


Li:2012:CVS


Lin:2016:BSC


Li:2018:OVM

Li:2018:TFV


Liu:2018:SPM


Lewis:1999:EBP


Lewis:2000:APH


Lewis:2001:APH


Low:2014:MMV

REFERENCES


Laureano:2007:PHB


Lago:2018:EAV


Lettieri:2018:SPV


Laden:2012:ADF


Lott:1991:DVM


Low:1988:SPO

C. Low. A shared, persistent object store. In S. Gjessing and K. Nygaard, editors, ECOOP ‘88 European Conference on...
REFERENCES


REFERENCES


REFERENCES


Liu:2014:PA


LeVasseur:2004:SAR

Joshua LeVasseur and Volkmar Uhlig. A sledgehammer approach to reuse of legacy device drivers. In ACM [ACM04a], page ?? ISBN ????? LCCN ????

Lucent:1997:LPL


LeVasseur:2005:PVU


Liang:1999:CPS


Li:2016:SSO


Le:2011:EMO

Duy Le and Haining Wang. An effective memory optimization for virtual machine-based systems. *IEEE Transactions on


REFERENCES

Li:2016:VMT


Li:2014:VSK


Luo:2016:OMM


Lindholm:1997:IJV


Lindholm:1997:JVM


Lindholm:1999:JVM


Lindholm:19xx:JVMa

REFERENCES


REFERENCES


REFERENCES


REFERENCES

*McDougall:2010:VPP*


*Modi:2017:VLS*


*MacKinnon:1979:CVM*


*Muller:2007:VMS*


*Mann:2015:AVM*


*Mann:2015:RRE*

REFERENCES


Millet:1998:PGT


Mayer:2012:URM


Mittal:2013:EVE


Muller:1992:ASP


Marshall:2009:VEE


McDonald:1986:TND

CS-1986-034, University of Massachusetts, Amherst, Computer Science, December 31, 1986.


McGrath:1972:VMC

McKinley:2011:HPC

Menon:2006:ONV

Madnick:1973:AAV

Madnick:1974:AAV

Meyer:1997:JVM
REFERENCES

Meyer:19xx:JVMb


Marr:2012:IUM


Matthews:2008:RXH


Morris:1972:SMO


Migliardi:1998:DRV

[MDGS98] M. Migliardi, J. Dongarra, A. Geist, and V. Sunderam. Dynamic reconfiguration and virtual machine management in

Maxim:1987:TPA


Mengant:2003:NBJ


Morimoto:2008:WSH


Morimoto:2009:WSH


Medina:2013:SMM


Montella:2017:VCB


**Matthys:2005:IVE**


**Mzaik:1993:SPA**


**Muller:2006:SVP**


**Mao:2014:RPO**


**Min:2012:VVM**

REFERENCES


REFERENCES


Machida:2014:JCT


McGhan:1998:CPP


Montague:1997:JEJ


Moore:2001:EFJ


Meloni:2018:CBI


Muir:2006:POP

Steve Muir, Larry Peterson, Marc Fiuczynski, Justin Cappos, and John Hartman. Privileged operations in the PlanetLab

**Mylopoulos:1991:IPT**


**Miller:2004:CLI**


**Moreno:2006:NV**


**Minhas:2013:RTH**


**Meier:2017:PVM**


**Malan:1991:MA**

REFERENCES


REFERENCES

Menczer:2001:OTR


Mann:2017:WBA


Mebane:1992:EFD


Maessen:2001:PAS


Ma:2012:DTD


Ma:2014:DBV

[MSG14] Zhiqiang Ma, Zhonghua Sheng, and Lin Gu. DVM: A big virtual machine for cloud computing. IEEE Transactions on
Matsuhashi:2012:TVF


Maslak:1991:CRR


Ma:2015:SDS

Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianli Xu, Zhicheng Yao, Yun Chen, Haibin Wang, Lixin Zhang, and Yungang Bao. Supporting differentiated services in computers via programmable architecture for resourcing-on-demand (PARD). *ACM SIGPLAN Notices*, 50(4):131–143, April 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Menon:2005:DPO


Menon:2009:TSA

REFERENCES


REFERENCES


REFERENCES

Ng:2001:VEWa


Ng:2001:VEWb


Noll:2013:OFD


Noshy:2018:OLV


Nieh:2012:CBR


Namjoshi:2010:NOP


January 2015. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).


REFERENCES


REFERENCES


Parnas:1979:DSE


Patel:2012:PIF


Pimas:2017:GCE


Pek:2013:SSI


Plotkin:2016:SNV


Plata:1990:ASP

Porter:2012:RLT


Pelleg:2008:VBD


Pickartz:2018:PCV


Piraghaj:2016:VMC

REFERENCES


Perez-Cazares:1989:D


Peng:2016:TCT


Pan:2012:CLM


Pham:2014:BRS


Park:2011:FSE


Pape:2016:LIS


Parson:2005:OOD


Petrides:2012:HPD


Picht:2009:XI


Pountain:1990:SPP


Paulo:2016:EDD


Pfitscher:2014:COD

REFERENCES


**Payne:2007:LAS**


**Pfefferle:2015:HVF**


**Padala:2007:ACV**


**Pape:2014:EJV**


**Pham:2015:SRD**

REFERENCES


Panesar-Walawege:2003:VHM


Peng:2017:SMA


Poulsen:1993:ETP


Pearce:2013:VIS


Padala:2007:PEV


Qian:1999:FSJ


REFERENCES


REFERENCES


Conference on Object Oriented Programming, Systems, Languages and Applications (OOPSLA’01).

**Rosenblum:2005:VMM**


**Rampersaud:2017:SAO**


**Rahmanian:2018:LAB**


**Ryoo:2017:RTD**


**Rajabzadeh:2017:EAF**

REFERENCES


Radhakrishnan:2016:ECC


Rottenstreich:2017:MDN


Ren:2016:SMO


ACM:2003:ATA


Roblitz:2002:LSE


Ritson:2016:BWM

Robbins:2006:LGC


Rosenblum:1999:VVP


Rosenblum:2004:RVM


Rosenblum:2006:IVC


Rosen:2014:LCF


Roussos:2007:SVG


Ramamurthy:2007:PDE

[RP07] Pratap Ramamurthy and Ramanathan Palaniappan. Performance-directed energy management using BOS. *Operating Systems*
References

Ryckbosch:2012:VSM

Ren:2017:NLN

Ruest:2009:VBG

Rosa:2017:ARC

Reano:2016:TRG

Reano:2015:IUE
Carlos Reaño, Federico Silla, Adrián Castelló, Antonio J. Peña, Rafael Mayo, Enrique S. Quintana-Ortí, and José Duato.


REFERENCES


Thomas Ristenpart and Scott Yilek. When good randomness goes bad: Virtual machine reset vulnerabilities and hedging deployed cryptography. In Anonymous [Ano10], page ?? ISBN 1-891562-29-0, 1-891562-30-4. LCCN ???
REFERENCES


Rao:2014:TFE

Srikrishnan:2007:SFA

Salter:1992:EHW

Sandberg:1988:EOO

Sarkar:2016:VEC

Shiraz:2013:SVM
REFERENCES


Ardalan Amiri Sani, Kevin Boos, Shaopu Qin, and Lin Zhong. I/O paravirtualization at the device file boundary.
REFERENCES


Shen:2017:DAV


Shen:2018:RDM


Schuh:1990:PRI


Shi:2008:VMS


Steven:2000:JCR


Schoen:1986:CS

[Sch94a] Andrew Schulman. Undocumented corner: Introduction to
‘The Windows 3.1 Virtual Machine Control Block Part 1’ (K.
January 1994. CODEN DDJOEB. ISSN 1044-789X.

[Sch94b] Andrew Schulman. Undocumented corner: Introduction to
‘The Windows 3.1 Virtual Machine Control Block Part 2’ (K.
February 1994. CODEN DDJOEB. ISSN 1044-789X.

implementation. SIGCSE Bulletin (ACM Special Interest Group
on Computer Science Education), 41(3):203–207, September
2009. CODEN SIGSD3. ISSN 0097-8418 (print), 2331-3927
(electronic). Proceedings of ITiCSE ’09.

fur Garbage Collectoren der Java HotSpot Virtual Machine.
(German) [Metrics and best use scenarios for garbage col-
lectors of the Java HotSpot Virtual Machine]. Masterarbeit,
Hochschule fur Technik, Wirtschaft und Kultur, Leipzig, Ger-
many, 2013. iii + 103 pp.

[Schneider:2013:FVM] Christian A. Schneider. Full virtual machine state recon-
struction for security applications. Doktors der Naturwis-
senschaften (Dr. rer. nat.), Fakultat fur Informatik der Tech-
nischen Universitat Munchen, Lehrstuhl fur Sicherheit in
der Informatik, Munich, Germany, April 23, 2013. xvi
+ 153 pp. URL http://mediatum.ub.tum.de/node?id=1142206;
http://nbn-resolving.de/urn/resolver.pl?
urn:nbn:de:bvb:91-diss-20131029-1142206-0-0.

ALEP-0 Virtual Machine extensions. Technical report, CEC,
1993.
REFERENCES


Seeling:2008:L


Seely:2010:BVD


Smith:2006:SID


Salimian:2016:AFT


Seth:2013:UJV


Spinellis:2009:BA

Diomidis Spinellis and Georgios Gousios, editors. *Beautiful architecture*. O’Reilly Media, Inc., 1005 Gravenstein Highway
REFERENCES


Schmidt:2010:VSB


Soundararajan:2010:CBS


Shuja:2016:SMD


Sirer:1999:DID


Sirer:2000:DID


Saeed:1992:ICM

1992. CODEN AALEE5. ISSN 1094-3641 (print), 1557-9476 (electronic).


REFERENCES


[Santanna:2017:DIS] Francisco Sant’anna, Roberto Ierusalimschy, Noemi Rodriguez, Silvana Rossetto, and Adriano Branco. The design
REFERENCES


[SJRS+13] Frank Olaf Sem-Jacobsen, Samuel Rodrigo, Tor Skeie, Alessandro Strano, and Davide Bertozzi. An efficient, low-cost routing framework for convex mesh partitions to support

Shen:2017:SLC


Sailer:2005:BMB


Shi:2013:AGC


Salkeld:2013:IDO


Sanchez:2013:ZFA

Sudevalayam:2013:AAM


Sitton:1973:PEL


Suneja:2017:SIL


Song:2017:HBA


Skrien:2001:CST


Suzuki:2016:GGV

REFERENCES


REFERENCES

Seiden:1990:AFV
K. F. Seiden and J. P. Melanson. The auditing facility for
a VMM security kernel. In IEEE [IEE90a], pages 262–277.
IEEE Computer Society Order Number 2060. IEEE Catalog
Number 90CH2884-5.

Sterrett:1992:PMA
Anthony Sterrett and Marvin Minei. Performance measures
of the Ada Rendezvous. ACM SIGADA Ada Letters,
ISSN 1094-3641 (print), 1557-9476 (electronic).

Shudo:2001:AME
Kazuyuki Shudo and Yoichi Muraoka. Asynchronous migra-
tion of execution context in Java Virtual Machines.
Future Generation Computer Systems,
CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115
(electronic). URL http://www.elsevier.com/gej-ng/10/19/19/
60/31/30/abstract.html.

Surdeanu:2002:DPA
Mihai Surdeanu and Dan Moldovan. Design and per-
formance analysis of a distributed Java Virtual Machine.
IEEE Transactions on Parallel and Distributed Systems,
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183

Seetharaman:2006:TOU
Swaminathan Seetharaman and Krishna Murthy. Test opti-
mization using software virtualization. IEEE Software,
CODEN IESOEG. ISSN 0740-7459 (print), 0740-7459
(electronic).

Soror:2010:AVM
Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga,
Kenneth Salem, Peter Kokosiulis, and Sunil Kamath. Au-


REFERENCES


REFERENCES


REFERENCES

Saltzer:1975:PIC

Shih:2005:ICA

Salimi:2013:BSC


Robert Smith, Aaron Sloman, and John Gibson. POPLOG’s two-level virtual machine support for interactive languages.
REFERENCES


Stefanovic:2017:TSS


Stoess:2012:LVM


Stankovic:1997:VRR


Stanik:2007:NVR


Steil:2005:MMM


Stecklina:2014:SHO


Suri:2001:SCR


Suski:1976:AGC


Simao:2013:ADQ


Steindorfer:2015:OHA


Steindorfer:2017:TSP


Sebes:1993:MAL


Sugerman:2001:VDV

[SVL01] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing I/O devices on VMware Workstation’s


[SWW+18] Tao Song, Jiajun Wang, Jiewei Wu, Ruhui Ma, Alei Liang, Tao Gu, and Zhengwei Qi. FastDesk: a remote desk-

**Song:2014:ARP**


**Shuo:2012:PKR**


**Sohrabi:2017:EEA**


**Syropoulos:2007:PMV**


**So:1988:PLV**


**Stolyar:2013:LSS**

[SZ13] Alexander L. Stolyar and Yuan Zhong. A large-scale service system with packing constraints: minimizing the number of

**Su:2014:EAV**


**Shi:2016:OAF**


**Taft:2011:EPP**


**Taivalsaari:1998:IJV**


**Taylor:1976:RRH**


**Torlak:2014:LSV**


REFERENCES

Tan:2018:UVQ


Tennenhouse:2017:RV


Trajano:2016:TPL


Tu:2015:CIE


Thomas:2008:DHF


Troy:2010:VC


REFERENCES


REFERENCES


[TLD+89] David A. Thomas, Wilf R. LaLonde, John Duimovich, Michael Wilson, Jeff McAffee, and Brian Barry. Actra
REFERENCES


[TSLBYF08] Paula Ta-Shma, Guy Laden, Muli Ben-Yehuda, and Michael Factor. Virtual machine time travel using continuous data


Turega:1992:CAS


Tupakula:2012:DSB


Toosi:2016:AMC


Tollenaere:1992:PIC


Tien:2014:EOS


Taheri:2017:VBB

REFERENCES


REFERENCES


REFERENCES

USENIX:2001:UJV

USENIX:2002:PJV

USENIX:2006:PUA

Umeno:1987:NMR

Urec:he:2013:MIS

Unnikrishnan:2013:RDP
REFERENCES


Villadeamigo:1997:EES


Visegrady:2014:SCV


Venstermans:2006:BVB


Venstermans:2007:JOH


Venners:1996:UHL


Venners:1997:IJV

REFERENCES

Venners:1997:UHHa


Venners:1997:UHHb


Venners:1997:UHHc


Venners:1999:IJV


Venners:1999:SJV


vonHagen:2008:PXV


REFERENCES

Vrable:2005:SPA


Vallee:2006:OTX


Victor:2010:OSS


Varadharaajan:2014:CSA


Venkatesan:2016:SCA


Verboven:2013:BBS

Sam Verboven, Kurt Vanmechelen, and Jan Broeckhove. Black box scheduling for resource intensive virtual ma-


Waldspurger:2010:VEM


Warren:1980:IPI


Ward:2002:BVC


Warren:2005:VWH


Ward:2011:KRC


Watson:1986:PRL


Watson:1987:PRL

REFERENCES

//www.cs.man.ac.uk/csonly/cstechrep/Abstracts/UMCS-87-2-1.html; mailto:techreports@cs.man.ac.uk.


REFERENCES


REFERENCES


REFERENCES


Wentzla:2012:CFG


Whang:1990:QOM


Wegiel:2008:MCV


Wein:2009:VGT


Wang:2017:JRJ

Wang:2015:IJV


Wade:2017:AVJ


Wang:2008:PEV


Waddington:1996:JVM


Wen:2013:MPA


Weng:2016:CMV

REFERENCES


Phil Winterbottom and Rob Pike. The design of the Inferno virtual machine. In IEEE [IEE97], page ?? ISBN ?? LCCN ???.


REFERENCES

Wood:2015:CDP


Wood:2011:CDP


Wang:2011:RVM


White:2013:CTP


Wood:2009:SBB


Weichert:1991:VPN


[WWMG06] Greg Wright, Mario Wolczko, Phil McGachey, and Erika Gunadi. Introspection of a Java Virtual Machine under sim-
REFERENCES


Chuliang Weng, Jianfeng Zhan, and Yuan Luo. TSAC: Enforcing isolation of virtual machines in clouds. *IEEE Trans-
Wang:2013:JVM


Wang:2011:SHS


Xie:2014:DIP


Xu:2016:SHS


Xu:2017:HAE


Xie:2015:PDC

Qiaomin Xie, Xiaobo Dong, Yi Lu, and Rayadurgam Srikant. Power of $d$ choices for large-scale bin packing: a loss model.


REFERENCES


Xie:2016:GCF


Xie:2015:SSV


Xu:2017:EIR


Xie:2013:AAE


Xiao:2011:HLM

REREFERENCES


REFERENCES


REFERENCES

DEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Yi:2017:CDC


Yang:2014:IGV


Yang:2005:LMJ


Yoginath:2015:EPD


Yang:2017:EEV


REFERENCES


REFERENCES

Yao:2014:GFT

Yang:2017:RVM

Yi:2015:ESF

Yehezkel:2001:TST

Yang:2014:IIV


Zou:2015:CDA


Zhang:2017:CAV


Zhang:2017:MAP


Zamorano:2013:ART


Zeng:2015:PPH


Zhang:2018:LFV

REFERENCES


Zaman:2013:CAB


Zimmermann:2006:AHM

Alexander Zimmermann, Mesut Günes, Martin Wenig, Jan Ritzerfeld, and Ulrich Meis. Architecture of the hybrid MCG-mesh testbed. In ACM [ACM06c], pages 88–89. ISBN 1-59593-540-0. LCCN ???.

Zhang:2015:LOS


Zhang:2017:NAV


Zhou:2016:VMP


IEMUE4. ISSN 1070-986X (print), 1941-0166 (electronic).


Zhaoning Zhang, Ziyang Li, Kui Wu, Dongsheng Li, Huiba Li, Yuxing Peng, and Xicheng Lu. VMThunder: Fast provisioning of large-scale virtual machine clusters. *IEEE Transactions on
Zhou:2018:SFC


Zhang:2013:ASD


Zhang:2015:MCV


Zhang:2019:CFV


Zheng:2014:CCM

REFERENCES


[ZRZY15] Yong Zhao, Jia Rao, Xiaobo Zhou, and Qing Yi. Understanding parallel performance under interferences in multi-tenant

**Zhang:2001:HJAb**


**Zhang:2005:ILS**


**Zhang:2006:SPV**


**Zhang:2007:DIB**


**Zhu:2017:VLV**

Zou:2014:VOV


Zhang:2019:EAV


Zhou:2017:NFA


Zhang:2017:CBV


Zhao:2009:DMB

ZWL09  Weiming Zhao, Zhenlin Wang, and Yingwei Luo. Dynamic memory balancing for virtual machines. *Operating Systems*
REFERENCES

Zhao:2018:PAP


Zeng:2016:VEF


Zhong:2015:VBM


Zytaruk:1994:WVMa


Zytaruk:1994:WVMb


Zhan:2018:HPV

Dongyang Zhan, Lin Ye, Hongli Zhang, Binxing Fang, Huhua Li, Yang Liu, Xiaojiang Du, and Mohsen Guizani. A high-performance virtual machine filesystem monitor in cloud-assisted cognitive IoT. *Future Generation Computer*

Zhao:2006:DFS