A Complete Bibliography of Publications in the *VLDB Journal: Very Large Data Bases*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 May 2022
Version 1.88

Title word cross-reference

(*, β) [908]. 10(10) [455]. 3 [496]. +
[854, 23, 971]. 33 [708]. ℓ [771]. K
[685, 429, 553, 581, 909, 638, 906, 391, 612,
798, 937, 377, 714, 770, 499, 995, 446, 254,
733, 304, 961, 488, 500, 939, 545, 789, 747,
489, 728, 694, 661, 342, 763, 901, 873, 757,
441, 717, 483, 774]. kk [651, 689]. t [744]. lp
[779]. n [164, 409]. pq [570]. s [964]. t
[512, 964]. tt [651]. Orpheus [885]. DÅG
[799].

* [92, 96, 94, 78].

-anonymity [377, 661, 304]. -approximate
[940]. -closeness [512]. -closest [689]. -core
[908, 728]. -gram [409]. -grams [570]. -hop
[638]. -most [733]. -Nearest [164, 770, 499].
-NN [391]. -overlap [771]. -Path [714].
-reach [980]. -shortest [906]. -TM [708].
-tree [91]. -truss [961].

1999 [192].

3X [475].

‘98 [144].

absolute [854]. Abstract [122].
avoidance [934]. Avoiding [718, 731]. aware

B [417, 89, 282, 23]. B-link [282]. B-Tree
[89]. B-trees [417]. backchase [649].
based [361]. BAD [921]. balanced
[282, 597]. Balancing [116, 265, 988].
Bandwidth [359, 897].
Bandwidth-constrained [359]. Base
[49, 88, 84, 215, 754]. Based
[62, 54, 748, 702, 808]. basket [205]. batch
[758]. batched [948]. Bayes [339, 381].
Bayesian [222, 435]. Bdual [356].
Bdual-Tree [356]. BEA [259]. Behavior
[93]. Behavioral [60]. behaviour [160].
benchmark [468, 815]. benchmarking
[852, 972]. BerlinMOD [468]. Best
[90, 256, 524, 873]. beyond [455]. bias [962].
bisimony [507]. bichromatic [548].
bidirectional [978, 811]. big
[669, 984, 914, 879, 943, 824, 792, 823, 730, 988, 878, 921, 710, 662]. billion
[951, 732, 963]. billion-edge [963].
billion-scale [951, 732]. binary [364, 792].
Binding [113]. bioinformatics [286, 287].
bipartite [476, 908, 985]. Bit [137, 724].
bit-vectors [724]. bitemporal [197].
bitmap [563]. bitruss [985]. Bitwise [722].
blending [645]. Block [137]. blockchains
[931]. blocking [954]. blocks [916]. bolt
[885]. bolt-on [885]. bone [921].
bookmark [507, 503]. Boolean [849].
bottleneck [169]. bound [219]. bounded
[347, 623, 300, 399, 657, 668]. bounded-size
[347, 623]. bounds [298, 653]. bricolage
[752]. bridging [873]. broadcast [452].
bucket [388]. Bucketization [512].
buddies [533]. budget [939]. Buffer
[52, 8, 293]. Buffering [146]. Buffers [68].
Building [833, 88, 916]. built [509].
built-in [509]. Business [224].
Business-to-business [224].
c [940]. Cache
[313, 321, 66, 947, 497, 329, 739, 546].
Cache-conscious [313, 321].
Cache-efficient [947]. Cache-Sensitive
[66]. Caching [64, 75, 123, 65, 157, 361, 546].
Calculus [29]. Calibrating [676].
capabilities [509]. cardinalities [263].
Cardinality [820, 809, 235, 630]. Cascade
[840]. Cascade-aware [840]. case
[960, 226, 970, 653, 771]. Categorical
[148, 464]. categorized [953]. CDBTune
[971]. cell [731, 412, 432]. CellJoin [432].
centric [570, 696, 547, 715, 896, 794].
century [810]. certain [560, 734]. Chain
[123]. Chairmen [144, 143]. challenges
[877, 888]. changes [464, 258].
Characterization [52, 737]. Checking
[102, 552]. checks [934]. Chronological
[27]. citizens [275]. CLARO [579]. class
[275, 232, 718]. classes [718]. Classification
[124, 132, 231, 487, 796, 381]. Cleaning
[900, 949]. Client [118, 114, 75, 103].
Client-Server [75, 103]. Client/Server
[118, 114]. Clip [131]. clique [905, 717].
cliques [841]. closed [987]. closeness
[312, 188]. closest [689]. closure [586].
cloud [664, 778, 665, 727, 715, 827, 932, 971, 999].
cross [919, 922]. cross-platform [919]. cross-range [922]. crowd [615].
crowd-sourced [615]. crowds [621].
Crowdsourced [939, 819, 920].
crowdsourcing [619, 786, 772, 691, 875].
custom [821]. customer [733].
customizing [179]. Cyclic [125].

d [496]. DaMoN [915, 894]. dashboard [506]. Data
database-backed [361]. database-driven [256]. Databases
datalog [798, 610, 966, 760]. Dataset [876].
datasets [847, 250, 347, 493, 383, 624].
dataspace [973]. dataspace-based [973].
DAWN [373]. DB [885]. DB&IR [340].
DBMS [428, 480]. DBMSs [372, 642].
DBToaster [639]. DCT [373]. Deadlock
[139]. Dealing [56]. decidability [706].
decision [962, 167, 222]. Declarative
[109, 159, 966]. DECLARE [35].
decomposition [870, 728, 985, 762].
decompression [918]. Decorating [727].
dedicated [415]. Deductive
[33, 35, 34, 32, 36, 37, 31]. deep
[209, 617, 593, 713, 971]. DeepDive [754].
definitions [555]. Delay [353]. Delivering
[134]. delta [639]. Demarcation [40, 39],
denormalized [268]. Dense [636].

Dependencies
[27, 596, 555, 976, 978, 601, 811, 975, 461].
Dependancy [300, 632, 719, 524, 802].
Deploying [363]. deployment [699].
Depth [433, 852, 327]. derived [551].
description [358]. Design [33, 555, 62, 2, 53, 84, 783, 472, 529, 803, 405, 990].
Designing [178]. designs [609]. desktop
[405, 501]. destination [588, 681].
Detecting [389, 464, 688]. Detection
[139, 279, 969, 721, 764, 953, 336, 719, 490, 956, 348, 634, 644]. deterministic
[298, 527]. devices [877]. DHT [544].
diagram [604, 604]. Dictionary
[92, 678, 918]. Dictionary-based [92, 678].
DIFF [933]. different [173]. Differential
[10, 656, 704, 661]. Differentially [625, 796].
differentiated [718]. digest [426]. digital
[201, 422]. dimension [420]. Dimensional
[154, 47, 46, 279, 722, 463, 168, 614, 854, 203, 328, 176, 548, 441, 248]. dimensionality
Generation [124, 535, 703, 814, 836].
Generator [115]. Generic [465, 421, 786].
Genericity [380]. genomic [584]. Geo [780, 909, 957, 935, 533, 705].
geo-distributed [935]. Geo-social [780, 533, 705]. geo-textual [909, 957].
geometric [386]. geometry [848].
GeoSparkVis [941]. geospatial [941].
gigabytes [864]. GIST [758]. Given [164].
glass [815]. Global [195, 21, 671, 513].
globally [671]. Glue [33]. Glue-Nail [33].
GMAP [79]. Go [801]. Gossip [935, 630].
Gossip-based [935, 630]. GPU [745, 998, 741, 646, 781].
GPU-accelerated [741]. gradient [903]. grading [703].
GRADOOP [991]. GRAIL [572]. grained [931].
gram [409]. grammars [366]. grams [570].
granularities [173, 541]. Graph [776, 683, 881, 984, 529, 532, 476, 841, 965, 840, 721, 764, 913, 175, 928, 583, 989, 835, 715, 991, 888, 927, 904, 842, 793, 988, 765, 843, 600, 762, 942, 622, 554, 652].
grah-based [652]. graph-theoretical [175].
grah-theoretical [927]. graphic [670].
group-by [814]. groupings [476].
groupjoin [814]. groups [694, 362, 829].
Growing [610]. gStore [652]. guaranteed [1000]. guarantees [657].
Guest [346, 165, 237, 155, 156, 225, 177, 402, 185, 302, 213, 121, 930, 260]. Guided [394].

Haar [854]. Hadoop [648]. HaLoop [558].
Handling [61]. hard [724].
hard-to-compress [724]. Hardware [736, 737, 561, 816].
Harvesting [519].
hB [91]. HE-Tree [464]. heavy [688].
Heterogeneity [141, 136]. Heterogeneous [6, 3, 481, 821, 96, 285, 179, 178, 183, 601, 781].
Heuristic [102]. heuristics [881].
Hierarchically [419]. Hierarchies [123, 2, 209, 482].
Hierarchy [110, 111, 897].
High [47, 84, 655, 67, 605, 279, 817, 520, 935, 973, 592, 897, 203, 328, 176, 972, 966, 248].
high-bandwidth [897]. High-Dimensional [47, 279, 203, 328, 176, 248].
High-Level [84]. high-order [817]. high-performance [935]. high-precision [972].
high-variety [973]. higher [639]. higher-order [639].
highly [753, 566, 574]. Hippocratic [307].
histogram [625]. Histograms [358, 388, 530]. Historical [69, 70, 333, 801, 910].
History [147]. Hit [52, 983]. hitters [688]. HMAP [173]. hoc [393, 105].
Holism [469]. holistic [250, 764, 735]. Hop [964, 638].
Hybrid [724, 621, 943, 616, 289]. HyperFile [50]. Hypergraphs [113].
HyperStorM [109]. Hypervideo [130]. hypothesis [836].
I/O [948, 961, 940, 762, 682, 774].
I/O-efficient [774]. identification [636, 234, 505]. identify [962]. IDList [629].
II [7]. Image [45, 120, 172, 424]. Images [132]. Impact [101, 737, 100].
Implantation [141]. Implementation [33, 118, 6, 84, 24, 195, 138, 828].
Improve [153]. improvements [729]. Improving [97]. In-database [758].
in-depth [852]. In-Memory [959, 869, 974, 945, 958, 781].
in-network [538]. In-order [970]. inclusion [596].
incorporate [455, 865, 491, 461].
incremental [411]. increasing [731].
Incremental
personal [405]. personalization [184].
Personalized [647, 863, 684, 700].
perspective [210, 308]. perturbation [394].
PicoDBMS [186]. PicShark [404].
platform [669, 578, 919]. platforms [183, 646]. PMG [115]. PMR [204].
Prediction [52, 852, 982, 523, 495, 620, 681].
Predictions [123]. predictive [495].
Preference [517, 911, 939, 363].
prefetch-based [911]. preferred [766].
prefetch [166]. Prefetching [123, 329].
PrefixFPM [987]. preorder [606].
Prescriptive [850]. presence [401, 448, 233, 482, 420, 576].
principled [735]. Principles [469].
prioritized [517]. Priority [74].
Priority [447, 1000, 533, 504, 381, 308, 305, 370, 430, 656, 654, 302, 613, 704, 303, 490, 661].
Privacy-preserving [447, 381, 305, 654, 303, 490].
Probability [52]. Problem [102, 692, 210, 735, 681].
processor [259, 432]. processors [821, 313, 321]. products [733, 651].
Profiling [695]. programmable [948].
Programming [50, 61, 80, 84]. Progressive [171, 549, 327, 954]. project [387].
predictions [231]. promises [398].
propagating [733]. Prone [1, 452].
Propagation [153, 285, 751].
Propagations [113]. properties [586, 454].
proportional [744].
protection [370, 613, 493].
protein [285, 212].
Protocol [40, 39, 562].
Prototypes [32, 37].
Provenance [696, 798, 787, 813, 828, 931].
Provenance-based [696]. providers [533].
Providing [377, 509]. provisioning [642].
proximity [533, 793]. proxy [361, 384].
PSoup [229]. public [699]. publication [507, 656, 796, 625]. publish [909, 763, 707].
publish/subscribe [909, 763, 707].
publishing [654, 187].
PUG [828].
Purpose [370, 335, 987].
QFilter [527]. QoS [611]. QoS-aware [611].
QQL [340]. quadtree [204, 325].
quadtree-based [204]. qualified [988].
Qualitative [462, 46]. quality [518, 265, 605]. Quantifiable [150].
Quantifying [640]. Quantiles [729].
Quantitative [62]. quasi [176].
quasi-sparse [176]. quaternary [364].
QUBLE [645]. Queries [97, 113, 70, 154, 131, 690, 496, 299, 726, 817, 367, 703, 229, 553, 581, 463, 775, 638, 157, 297, 444, 359, 552, 612, 798, 596, 853, 996].

settings [766]. shapes [437, 198]. SHARC [518]. Shared
[51, 17, 816, 94, 504, 18, 597, 863, 576].
shared-everything [597].
Shared-Nothing [17, 94]. Sharing
[4, 778, 568, 82, 270]. shifted [479].
Shooting [545]. short [708]. shortest
[367, 906, 613, 767, 997]. SI [887, 867, 546].
SI-Cache [546]. sight [913]. SIGMOD
[72, 64]. signal [891]. Signature [124].
significance [662]. SIMD [895, 917].
similar [490, 198]. Similarities [90].
Similarity [112, 607, 133, 891, 800, 951, 392,
569, 551, 580, 400, 614, 723, 785, 205, 804,
676, 646, 335, 176, 837, 573, 761, 843, 687,
683, 866, 622, 790]. Simple [964, 942, 335].
simplification [862]. SimRank
[473, 830, 972, 791]. SimRank* [843].
Simultaneously [154]. single
[726, 863, 972, 759, 248, 907].
single-dimensional [248]. single-function
[726]. single-source [863, 972], sites
[160, 159, 361, 504]. situation [252]. size
[297, 744, 347, 623]. size- [744].
SKCompress [903]. Sketching [686].
Skew [20]. sky [479, 485]. SkyAlign [745].
Skyframe [425]. Slate [865, 745, 995,
566, 485, 633, 924, 517, 425, 829, 873, 479].
skylines [662]. Sleepers [64, 65]. Sliding
[488, 686, 970, 763]. Sliding-window
[488, 686, 970]. slow [801]. small [857].
small-world [857]. smart [680]. smartcard
[186]. Smooth [809]. snapshot
[671, 581, 463, 721]. Snorkel [892]. Social
[503, 852, 507, 506, 505, 1000, 677, 986, 533,
504, 644, 777, 834, 780, 705]. Software
[49, 314, 322]. SOLE [385]. solid [740].
solid-state [740]. Solution [136]. solutions
[985, 363]. Solving [681, 826]. some [706].
Sort [568, 66, 556]. Sort-sharing-aware
[568]. sortable [860]. sorted [489]. Sorting
[550, 167, 731, 331]. source [620, 863, 972].
sourced [615]. sources [618, 273]. Space
[46, 508, 497, 553, 806, 410, 990, 356, 248].
spaces [689, 785, 199, 397, 548, 977]. Spark
[960, 813]. SPARQL
[993, 890, 725, 720, 652]. sparse
[893, 905, 903, 176]. sparsity [681]. Spatial
[43, 55, 130, 120, 46, 203, 152, 875, 582, 208,
48, 912, 553, 530, 440, 937, 451, 853, 526, 42,
204, 383, 199, 647, 804, 412, 694, 855, 477,
763, 829, 585, 604, 899, 438, 757, 486, 276,
797, 452]. spatial-keyword [937, 763].
Spatio
[800, 298, 654, 385, 197, 676, 326, 831].
spatio-bitemporal [197].
Spatio-temporal
[298, 654, 385, 676, 326, 831].
Spatio-textual [800]. spatiotemporal
[247, 295, 398, 541, 901, 730]. Special
[516, 664, 915, 22, 37, 48, 63, 72, 57, 557, 64,
697, 736, 883, 984, 615, 470, 812, 283, 427, 43,
537, 309, 317, 453, 709, 575, 590, 749, 930,
635, 128, 32, 894, 17, 402, 338, 302, 260, 750].
specification [159, 195]. specified [420].
Speed
[510, 424]. Speeding [204]. spurious
[492]. SQL
[703, 448, 555, 734, 785, 192, 326]. SQL2
[85]. SRX [855]. SSD [948]. SSDs [738].
STAIRS [544]. standard [751]. stars [545].
Start [967]. state [783, 740, 411, 946, 823].
state-of-the-art [946]. stateful [650].
static [860, 648, 830]. Statistical [466].
Stepwise [141]. stochastic [898, 794].
Storage
[109, 123, 103, 877, 332, 731, 880, 349, 547,
474, 416, 716, 932, 280, 330, 642, 907].
storage-centric [547]. Store [67, 781, 428].
stores [993, 955]. Storing [268]. story
[636]. Strategies [64, 62, 153, 65]. Strategy
[137, 423]. Stratosphere [669]. Stream
[771, 228, 262, 859, 608, 432, 650, 260, 360,
255, 668, 261, 856]. Streaming [494, 636,
708, 229, 259, 563, 410, 860, 547, 598, 408].
streams [464, 909, 471, 263, 488, 278, 366,
928, 729, 688, 385, 478, 686, 511, 865, 706,
412, 603, 579, 498, 644]. string
[92, 417, 569, 396, 918, 364, 741, 761].
References

Yu:1993:BMB

Harlander:1993:CCI

Grant:1993:QLR

Jensen:1993:UDT

REFERENCES

REFERENCES

REFERENCES

[47] King Ip Lin, H. V. Jagadish, and Christos Faloutsos. The TV-tree: An index structure for high-
References

Anonymous:1994:SIS

Constantopoulos:1995:SIB

Agrawal:1995:OSL

Clifton:1995:HDQ

Dan:1995:CDA

[52] Asit Dan, Philip S. Yu, and Jen Yao Chung. Characterization of database access pattern for analytic predic-
REFERENCES

Peckh...1995:DME

Teniente:1995:UKB

Guting:1995:RBS

Templeton:1995:IDC

Atkinson:1995:SIP

[57] Malcolm P. Atkinson and Ronald Morison. Special issue on persistent object systems: Orthogonally persis-
REFERENCES

REFERENCES

Anonymous:1995:SIP

Barbara:1995:SSO

Barbara:1995:SWC

Nyberg:1995:ACS

White:1995:QHP

Swami:1995:EPF

Landau:1995:HQA

Landau:1995:RJA

Abiteboul:1995:PLM

Anonymous:1995:SSO

DeWitt:1996:POT

REFERENCES

REFERENCES

Shyy:1996:DIK

Härder:1996:APS

Ooi:1996:INE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mehta:1998:OPM

Ishakbeyoglu:1998:MII

Scheuermann:1998:DPL

Dessloch:1998:ADP

[118] Stefan Deßloch, Theo Härder, Nelson Mendonça Mattos, Bernhard Mitschang, and Joachim Thomas. Advanced data processing in KRISYS:

Abiteboul:1998:LVS

Ooi:1998:FIR

Jarke:1998:GE

Seshadri:1998:EAD

[122] Praveen Seshadri. Enhanced ab-
REFERENCES

Roy:1998:GCO

Chakrabarti:1998:SFS

Seshadri:Praveen
Ng:1998:IRM

Ozsu:1998:I

Ozsu:1998:SIM

Garofalakis:1998:PRS

Jiang:1998:STC
Ng:1998:OCO

Soffer:1998:ISI

Zezula:1998:ASR

Balkir:1998:DPM

REFERENCES

REFERENCES

Torp:2000:ETD

Sheikholeslami:2000:WWB

Pacitti:2000:UPS

Liang:2000:OMD

REFERENCES

Atzeni:2000:DWG

Atzeni:2000:GE

Chidlovskii:2000:SCW

Gruser:2000:LRT

Fernandez:2000:DSW

REFERENCES

Berendt:2000:ANB

Buneman:2000:UQL

Mirbel:2000:CTI

REFERENCES

Jagadish:2000:ODM

Manegold:2000:ODA

Raman:2000:ODR

Tan:2000:PEN

Ngu:2001:CMV

REFERENCES

Marathe:2002:QPT

Sakurai:2002:SIH

Feng:2002:TMM

Apers:2002:E

REFERENCES

REFERENCES

[218] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML documents with XPath expres-

REFERENCES

[232] Chi-Wai Fung, Kamalakar Karlapalem, and Qing Li. Cost-driven vertical class partitioning for methods in object oriented databases. *VLDB Journal: Very...

REFERENCES

[250] Lixin Fu and Sanguthhevar Rajasekaran. Evaluating holistic aggregators effi-

Rahal:2004:ETU

Adi:2004:ASM

Freytag:2004:BPV

Ilyas:2004:STJ

Papadimitriou:2004:AUS

Labrinidis:2004:ETB

He:2004:AIW

Velegrakis:2004:PMC

Florescu:2004:BSX

[259] Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Riccardi, Till Westmann, J. Carey, and Arvind Sundararajan. The BEA streaming
REFERENCES

REFERENCES

Josifovski:2005:QXS

Aggarwal:2005:EEA

Yao:2005:HBL

Kollios:2005:IMO

Jaluta:2005:CCR

Gaasterland:2005:SID

Tian:2005:PMC

Claypool:2005:SYD

REFERENCES

Conery:2005:RBW

Thakkar:2005:COE

Vlachos:2006:IMT

Zheng:2006:GPI

Tamir:2006:CGM

Bremer:2006:IDD

Ogras:2006:OSD

Goh:2006:DBM

REFERENCES

Arasu:2006:CCQ

Hadjieleftheriou:2006:ISA

Guting:2006:MQM

Chirkova:1999:AQU

Cao:1999:STD

Benetis:1999:NRN

Pelleg:1999:DTS

Che:1999:QOX

Ferrari:2006:GES
Mukherjee:2006:PPT

Jiang:2006:SDF

Blanton:2006:SRF

Domingo-Ferrer:2006:EMD

Massacci:2006:HHD

Xiong:2006:PLM

Haas:2006:SIB

Godfrey:2006:AAM

Larson:2006:VMO

Markl:2006:CSE

Haftmann:2006:FER

Ghoting:2006:CCF

Haas:2007:SIB

Lee:2006:ETS

Godfrey:2007:AAM

Larson:2007:VMO

Markl:2007:CSE

[321] Amol Ghoting, Gregory Buehrer, Srini-
savan Parthasarathy, Daehyun Kim, Anthony Nguyen, Yen-Kuang Chen,
and Pradeep Dubey. Cache-conscious frequent pattern mining on modern
and emerging processors. *VLDB Journal: Very Large Data Bases*, 16(1):77–
96, January 2007. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

[322] Yoonkyong Lee, Mayssam Sayyadian, An-
Hai Doan, and Arnon S. Rosenthal. eTuner: tuning schema matching soft-
ware using synthetic scenarios. *VLDB Journal: Very Large Data Bases*, 16

[323] Doug Burdick, Prasad M. Deshpande, T.
S. Jayram, Raghu Ramakrish-
nan, and Shivakumar Vaithyanathan. OLAP over uncertain and imprecise
CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

[324] Florian Haftmann, Donald Kossmann,
and Eric Lo. A framework for efficient regression tests on database applica-
CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

[325] Egemen Tanin, Aaron Harwood, and Hanan Samet. Using a distributed
quadtree index in peer-to-peer networks. *VLDB Journal: Very Large
Data Bases*, 16(2):165–178, April 2007. CODEN VLDBFR. ISSN 1066-8888
(print), 0949-877X (electronic).

[326] Jose R. Rios Viqueira and Nikos A.
Lorentzos. SQL extension for spatio-
temporal data. *VLDB Journal: Very
Large Data Bases*, 16(2):179–200, April
2007. CODEN VLDBFR. ISSN 1066-
8888 (print), 0949-877X (electronic).

[327] Bi-Ru Dai, Cheng-Ru Lin, and Ming-
Syan Chen. Constrained data clustering by depth control and progressive
constraint relaxation. *VLDB Journal: Very Large Data Bases*, 16(2):201–217,
April 2007. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

[328] Heng Tao Shen, Xiaofang Zhou,
and Aoying Zhou. An adaptive and
dynamic dimensionality reduction
method for high-dimensional indexing.
CODEN VLDBFR. ISSN 1066-8888
(print), 0949-877X (electronic).

[329] Zhen He and Alonso Marquez. Path and cache conscious prefetching
(PCCP). *VLDB Journal: Very Large
Yu:2007:MBS

Yiannis:2007:CTF

Jermaine:2007:PEF

Deligiannakis:2007:DCH

Bohm:2007:FRA

Traina:2007:OFA

Khan:2007:NID

Dalvi:2007:EQE

Croft:2008:ISI

Roelleke:2008:MRM

Schmitt:2008:QDQ

Lau:2008:MRM

Theobald:2008:TEV

Simitsis:2008:PUK

Cornacchia:2008:FEI

Lockemann:2008:MKR

Alonso:2008:GEM

Gemulla:2008:MBS

Yu:2008:XSR

Mitra:2008:TKS

Benjelloun:2008:DUL

Jeffery:2008:ARM

Parreira:2008:JAP

Narayanan:2008:DAQ

Bernstein:2008:IMC

Li:2008:ESF

Yiu:2008:BTI

Awad:2008:PWS

Wang:2008:HBM

Deligiannakis:2008:BCQ

Hammad:2008:QPM

Luo:2008:FBP

Wang:2008:EAM

Yu:2008:DMW

Li:2008:EUD

Tao:2007:MRK

REFERENCES

Koch:2007:AGS

Chan:2007:OES

Lee:2007:DPI

Papazoglou:2007:SOA

Byun:2008:PBA

Karayannidis:2008:HCO

Plattner:2008:EDS

Hsieh:2008:DEF

Atzori:2008:APP

Morfonios:2008:SDC

[375] Konstantinos Morfonios and Yannis Ioannidis. Supporting the data cube

Sharifzadeh:2008:OSR

Friedman:2008:PAD

Harder:2008:VCC

Ou:2008:EAI

Alagic:2008:GJP

Vaidya:2008:PPN

Fu:2008:STW

Mouratidis:2008:TBP

Yu:2008:DMP

[384] Jeffrey Xu Yu, Zhiheng Li, and Guimei Liu. A data mining proxy approach for efficient frequent itemset
REFERENCES

Mokbel:2008:SSL

Pol:2008:MVL

Abiteboul:2008:AXP

Buccafurri:2008:EHT

Kamra:2008:DAA

Guha:2008:WSH

Deng:2008:MRS

Chuang:2008:PLR

Padmanabhan:2008:SDR

[393] Prasanna Padmanabhan, Le Gruenwald, Anita Vallur, and Mohammed

Guha:2008:WSH

Deng:2008:MRS

Chuang:2008:PLR

Padmanabhan:2008:SDR

[393] Prasanna Padmanabhan, Le Gruenwald, Anita Vallur, and Mohammed

Zhong:2008:GPT

Rizzolo:2008:TXM

Jin:2008:SES

Venkateswaran:2008:RBI

Tao:2008:PDW

Tao:2008:ETC

Islam:2008:ACB

Chuang:2008:MTK

Catarci:2008:GES

[402] Tiziana Catarci and René J. Miller. Guest editorial: special issue on meta-
REFERENCES

Atzeni:2008:MIS

Cudre-Mauroux:2008:PMM

Cruz:2008:LFS

Candan:2008:SSE

Wang:2008:AXB

Zhou:2008:DSD

Kim:2008:SOF

Guha:2008:STO

REFERENCES

[419] Dimitris Sacharidis, Antonios Deligianakis, and Timos Sellis. Hierarchically
REFERENCES

Abadi:2009:SSV

Arai:2009:AMT

Chen:2009:AKD

Dong:2009:DIU

Gedik:2009:CPS

Schnaitter:2009:DER

Shao:2009:EKS

Wu:2009:GEV

Hill:2009:ROJ

Hua:2009:TTQ

Bawa:2009:PPI

Fan:2009:QTX

Malik:2009:RRA

Wang:2009:CRE

DuMouza:2009:LSI

Zheng:2009:DSI

Haas:2009:SIU

Sarma:2009:RUD

Jinchuan Chen, Reynold Cheng, Mohamed Mokbel, and Chi-Yin Chow. Scalable processing of snapshot and continuous nearest-neighbor queries

Chen:2010:TFD

Whang:2010:GER

Ntarmos:2010:SSI

Bramandia:2010:OUR

Duntgen:2010:BBM

Mandreoli:2010:PHS

Buneman:2010:SIB

Cormode:2010:MFF

REFERENCES

[481] Angela Bonifati, Elaine Chang, Terence Ho, Laks V. Lakshmanan, Rachel

Morfonios:2010:RCL

Zhang:2010:TBP

Nutanong:2010:AEV

Lee:2010:ZSE

Yiu:2010:ESS

Hintoglu:2010:SMP

Jin:2010:SWT

Pang:2010:EPE

Murugesan:2010:EPP

Soliman:2010:SRQ

Lee:2010:SCE

Lucchese:2010:RPT

Zhang:2010:SMA

Jeung:2010:PPP

Ali:2010:MAA

Askitis:2010:ESC

Wu:2010:EEG

Guting:2010:ENN

Li:2010:TQT

Duda:2010:PBI

Bohm:2010:F

Carmel:2010:SBW

Squicciarini:2010:PPS

Hay:2010:RSR

Gruhl:2010:MSI

Benz:2010:SBP

Roy:2010:SEG

Li:2011:PBK

Cai:2011:SKD
Deng Cai, Xiaofei He, and Jiawei Han. Speed up kernel discriminant analysis. *VLDB Journal: Very Large Data Bases*, 20(1):21–33, February 2011. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Qin:2011:SKS

Cao:2011:SSA

Terrovitis:2011:LGR

Lian:2011:PIR

Hua:2011:RQU

Abiteboul:2011:SIB
REFERENCES

Li:2011:EFF

Guting:2011:SID

Popa:2011:INT

Lange:2011:ERT

Giannotti:2011:UCH

Timko:2011:SSA

Guo:2011:DBS

Trajcevski:2011:RCN

Rao:2011:STE

Lian:2011:STS

Perez-Sorrosal:2011:ESC

Moga:2011:USC

Wong:2011:MBR

Tiakas:2011:PPS

Mueller:2012:SNF

Georgoulas:2012:DSE

Deutch:2012:TIT

REFERENCES

ISSN 1066-8888 (print), 0949-877X (electronic).

Cheema:2012:CRN

Zou:2012:APM

Hartmann:2012:DES

Guravannavar:2012:WSO

Atzeni:2012:SIB

Bu:2012:HAL

Alexe:2012:MCI

Fan:2012:TCF

Johnson:2012:SWA

[561] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anastasia Alampaki. Scalability of

Chen:2012:AUP

Fusco:2012:RTC

Gordevicus:2012:PTA

Hore:2012:SMR

Hose:2012:SSP

Gong:2012:EMU

Cao:2012:SSA

Feng:2012:TJT

Augsten:2012:WGA

[570] Niko Augsten, Michael Böhlen, Curtis Dyreson, and Johann Gamper. Windowed pq-grams for approximate joins of data-centric XML. *VLDB Journal: Very Large Data Bases*, 21
Zhou:2012:ESM

Yildirim:2012:GSI

Xu:2012:EES

Zhang:2012:HOA

Wolf:2012:OSM

Zhou:2012:SPD

Kang:2012:GEA

REFERENCES

REFERENCES

Soh:2012:AEE

Lehner:2013:SIB

Tzoumas:2013:EAG

Minhas:2013:RTH

Furche:2013:OLS

Curino:2013:ADS

Ramesh:2013:KSF

Dieng:2013:MFC

[596] Cheikh Tidiane Dieng, Tao-Yuan Jen, Dominique Laurent, and Nicolas
REFERENCES

REFERENCES

Data Bases, 22(3):345–368, June 2013. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Baca:2013:OEG

Silva:2013:SQT

Dindar:2013:MES

Elghandour:2013:RXP

Mazuran:2013:EPD

Galpin:2013:QAO

Deutch:2013:TQW

Gao:2013:OSD

Kalashnikov:2013:SEF

[614] Dmitri V. Kalashnikov. Super-EGO: fast multi-dimensional similarity join. VLDB Journal: Very Large Data
REFERENCES

Brambilla:2013:SIS

Goasdoue:2013:GTT

Furche:2013:OKA

Bozzon:2013:ESF

Demartini:2013:LSL

Sagi:2013:SMP

Lee:2013:HEC

Zhao:2013:EPG

[639] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli,

Shang:2014:PTM

Richter:2014:ZTO

Meier:2014:BR

Gedik:2014:PFS

Zou:2014:GGB

Tao:2014:ILW

Cicek:2014:ELD

Unterbrunner:2014:HAE

Koh:2014:FKM

[651] Jia-Ling Koh, Chen-Yi Lin, and Arbee L. Chen. Finding \(k \) \(k \) most favorite products based on reverse top-\(k \) queries. VLDB Journal: Very Large Data Bases, 23(4):541-564, August 2014. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Koh:2014:FKM

[651] Jia-Ling Koh, Chen-Yi Lin, and Arbee L. Chen. Finding \(k \) \(k \) most favorite products based on reverse top-\(k \) queries. VLDB Journal: Very Large Data Bases, 23(4):541-564, August 2014. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Koh:2014:FKM

[651] Jia-Ling Koh, Chen-Yi Lin, and Arbee L. Chen. Finding \(k \) \(k \) most favorite products based on reverse top-\(k \) queries. VLDB Journal: Very Large Data Bases, 23(4):541-564, August 2014. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Kumar:2014:SWA

Sahli:2014:ASP

Lo:2014:MGD

Xie:2014:MEB

Alexandrov:2014:SPB

Ward:2014:RTC

Binnig:2014:DSI

Vlachos:2015:CMF

REFERENCES

[681] Andy Yuan Xue, Jianzhong Qi, Xing Xie, Rui Zhang, Jin Huang, and Yuan
REFERENCES

Zhang:2015:ECS

Yuan:2015:GSS

Yang:2015:TPC

Huang:2015:TKS

Papapetrou:2015:SDS

Yuan:2015:EDS

Mirylenka:2015:CHH

Gao:2015:ECP

Aksoy:2015:RPE

REFERENCES

Roy:2015:TAO

Bao:2015:GFR

Kotsifakos:2015:EBS

Skovsgaard:2015:FTR

Abedjan:2015:PRD

Deutch:2015:PBA

Bohlen:2015:SIB

Yan:2015:ALK

REFERENCES

Zou:2015:CDA

Zh u:2015:SAP

Ren:2015:VLM

Gal arraga:2015:FRM

Chandra:2015:DGT

Li:2015:MMO

Armenatzoglou:2015:GSR

Santini:2015:QSU

Wang:2015:ATE
REFERENCES

VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

[717] Long Yuan, Lu Qin, Xuemin Lin, Li-
jun Chang, and Wenjie Zhang. Di-
versified top-k clique search. VLDB
Journal: Very Large Data Bases, 25
(2):171–196, April 2016. CODEN
VLDBFR. ISSN 1066-8888 (print),
0949-877X (electronic).

[718] Thao N. Pham, Panos K. Chrysanthis,
and Alexandros Labrinidis. Avoid-
ing class warfare: managing continu-
ous queries with differentiated classes
of service. VLDB Journal: Very Large
CODEN VLDBFR. ISSN 1066-8888
(print), 0949-877X (electronic).

[719] Philipp Langer and Felix Naumann. Ef-
cient order dependency detection. VLDB
Journal: Very Large Data Bases, 25(2):223–241, April 2016. CO-
DEN VLDBFR. ISSN 1066-8888
(print), 0949-877X (electronic).

[720] Peng Peng, Lei Zou, M. Tamer Özsü,
Lei Chen, and Dongyan Zhao. Process-
ing SPARQL queries over distributed
RDF graphs. VLDB Journal: Very
Large Data Bases, 25(2):243–268, April
2016. CODEN VLDBFR. ISSN 1066-
8888 (print), 0949-877X (electronic).

[721] Jun Gao, Chang Zhou, and Jeffrey Xu
Yu. Toward continuous pattern de-
tection over evolving large graph with
snapshot isolation. VLDB Journal:
Very Large Data Bases, 25(2):269–290,
April 2016. CODEN VLDBFR. ISSN
1066-8888 (print), 0949-877X (elec-
tronic).

[722] Stephan Baumann, Peter Boncz, and
Kai-Uwe Sattler. Bitwise dimen-
sional co-clustering for analytical work-
lloads. VLDB Journal: Very Large
CODEN VLDBFR. ISSN 1066-8888
(print), 0949-877X (electronic).

[723] Feifei Li, Ke Yi, Yufei Tao, Bin Yao,
Yang Li, Dong Xie, and Min Wang. Ex-
act and approximate flexible aggregate
similarity search. VLDB Journal: Very
Large Data Bases, 25(3):317–338, June
2016. CODEN VLDBFR. ISSN 1066-
8888 (print), 0949-877X (electronic).

[724] Gheorghi Guzun and Guadalupe
Canahuate. Hybrid query optimization
for hard-to-compress bit-vectors.
VLDB Journal: Very Large Data
Bases, 25(3):339–354, June 2016. CO-
DEN VLDBFR. ISSN 1066-8888
(print), 0949-877X (electronic).

[725] Razen Harbi, Ibrahim Abdelaziz,
Panos Kalnis, Nikos Mamoulis, Yasser
Ebrahim, and Majed Sahli. Accelerat-
ing SPARQL queries by exploiting
hash-based locality and adaptive par-
titioning. VLDB Journal: Very Large
CODEN VLDBFR. ISSN 1066-8888
(print), 0949-877X (electronic).
Bonifati:2016:MEO

Lu:2016:DCE

Sariyuce:2016:IKC

Luo:2016:QDS

Xie:2016:EEI

Kanza:2016:ESF

Jeon:2016:MBS

Islam:2016:KYC

Kohler:2016:PCK

REFERENCES

REFERENCES

[769] Francesco Cafagna and Michael H. Böhlen. Disjoint interval partition-

REFERENCES

[786] Nguyen Quoc Hung, Duong Chi Thang, Nguyen Thanh Tam, Matthias Wei-
REFERENCES

REFERENCES

REFERENCES

Roblot:2018:PCC

Bress:2018:GCC

Zoumpatianos:2018:GDS

To:2018:SSM

Liu:2018:ACE

Wang:2018:EEM

Rahman:2019:OGF

Wu:2019:VFS

Lee:2019:PFP

REFERENCES

February 2019. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

[837] Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. Leveraging set relations in exact and dynamic set
REFERENCES

Chen:2020:VSS

Su:2020:STD

Fang:2020:MDA

Malliaros:2020:CDN

Qin:2020:MDV

Rahman:2020:EID

Xie:2020:ESR

[873] Min Xie, Raymond Chi-Wing Wong, and Ashwin Lall. An experimental survey of regret minimization query and variants: bridging the best worlds between top-k query and skyline query. VLDB Journal: Very
REFERENCES

Magdy:2020:MDM

Tong:2020:SCS

Giatrakos:2020:CER

Chapman:2020:DSS

Fevgas:2020:IFS

Chapman:2020:DSS

REFERENCES

[880] Luo:2020:LBS

[882] Chen:2020:EMM

[885] Huang:2020:VOD

Salem:2020:SIB

Lang:2020:MMY

Zarubin:2020:ECN

Pohl:2020:JHB

Pedersen:2020:FSR

Xu:2020:EPM

Geerts:2020:CDL

Wu:2020:TRS

Qin:2020:EQA

Jiang:2020:SCS

Wang:2020:FEF

Chang:2020:EMC

Chondrogiannis:2020:FSP

Zou:2020:ADS

REFERENCES

Huang:2020:EAA

Li:2020:FSC

Ahmad:2020:AWM

Linardi:2020:SDS

Song:2020:IPA

Lee:2020:TLA

Ömídvar-Tehrání:2020:CAE

Ozcan:2021:GES
[930] Fatma Özcan and Lei Chen. Guest editorial: Special issue on VLDB
REFERENCES

Zhang:2021:TTA

Li:2021:CTQ

Liu:2021:LET

Yu:2021:GCC

Zhang:2021:SAN

Fang:2021:DHE

Paul:2021:SER

REFERENCES

Romanous:2021:ELL

Mao:2021:CES

Piatov:2021:CES

Do:2021:BDC

Song:2021:CTT

Yang:2021:IEM

Chen:2021:ESN

Yu:2021:VAR

Wenhui Yu, Xiangnan He, and Zheng Qin. Visually aware recommendation with aesthetic features. *VLDB
REFERENCES

153

REFERENCES

Guo:2021:MAD

Shao:2021:MAF

Peng:2021:EHC

Debrouvier:2021:MQL

Wang:2021:FSH

Peng:2021:FDS

Wei:2021:ADE

Kossmann:2022:DDQ

Zhuro:2021:PSA

Schmidl:2022:EDD

Dignos:2022:LRJ

Peng:2022:ARE

REFERENCES

[988] Da Yan, Guimu Guo, and John C. S. Lui. G-thinker: a general distributed framework for finding qualified subgraphs in a big graph...
REFERENCES

158

Mohamed:2022:RKG

Sagi:2022:DSR

Rost:2022:DTG

Bevilacqua:2022:FME

Ali:2022:SRS

Pitoura:2022:FRR

Hidayat:2022:CMM

Farhan:2022:FFD

Zhao:2022:RCS

Lai:2022:AMW

diVimercati:2022:AMQ

Huang:2022:PEG