
README: Installation instruction for tgrind−3.00

Last update: Sat Jun 20 08:08:51 1998

Table of contents

Jump start
Introduction
Installation
UNIX Systems
IBM PC DOS
PostScript fonts
Test suite
Sample build output for UNIX

Jump start

As with most GNUware, you can build, test, and install this program on most UNIX
systems by these simple steps

csh et amici:
 setenv CC ...your favorite C or C++ compiler...
 ./configure && make all check install TEXINPUTS=...

sh et amici:
 CC=...your favorite C or C++ compiler...
 export CC
 ./configure && make all check install TEXINPUTS=...

Or in one line, if you have env (most modern UNIX systems do):

 env CC=... ./configure && make all check install TEXINPUTS=...

There is wide variation in TeX directory trees, and configure cannot figure that out
for you, so you will almost certainly have to supply a suitable value for TEXINPUTS,
the name of a directory that TeX and tgrind will search for needed files.

If you don’t set the CC environment variable, then gcc (or cc , if gcc is not available)
will be assumed.

If you wish to undo a make install, just do make uninstall; this will remove any files in
system directories put there by make install.

file:/u/sy/beebe/tex/tgrind/tgrind−3.00/README.html

− 1 −

See below for further details, and for instructions for non−UNIX systems.

Introduction

Please report all problems, suggestions, and comments to the maintainer and co−
author:
Nelson H. F. Beebe
Center for Scientific Computing
University of Utah
Department of Mathematics, 322 INSCC
155 S 1400 E RM 233
Salt Lake City, UT 84112−0090
USA
Tel: +1 801 581 5254
FAX: +1 801 585 1640, +1 801 581 4148
Email: beebe@math.utah.edu , beebe@acm.org , beebe@ieee.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

The principal author is no longer able to maintain this program.

Installation

tgrind 3.00 has been updated to use the GNU autoconf automatic configuration
system for UNIX installations.

GNU autoconf is run at the maintainer’s site to produce the configure script from
configure.in .

The configure script is run at each installer’s UNIX site to produce Makefile from
Makefile.in , and config.h from config.hin . The configure script is a large
(3000+ lines) Bourne shell program that investigates various aspects of the local C
implementation, and records its conclusions in config.h .

For convenience and safety, the distribution includes a subdirectory named save
that contains read−only copies of the files Makefile , config.h , and configure
created by autoconf and make configure. This will allow recovery from a lost or
damaged configure file.

Should you do a make maintainer−clean [not recommended, except at the
maintainer’s site], the configure script will be deleted, and you will need recent
versions of both GNU m4 and autoconf correctly installed to reconstruct things,
which can be done this way:

 make −f save/Makefile reconfigure

file:/u/sy/beebe/tex/tgrind/tgrind−3.00/README.html

− 2 −

Suitable hand−crafted config.h files are provided for non−UNIX systems, and in the
unlikely event of a failure of the configure script on a UNIX system, config.h can
be manually produced from a copy of config.hin with a few seconds of editing
work. If you do this, remember to save a copy of your config.h under a different
name, because running configure will destroy it. If you have GNU autoconf
installed (the installation is very simple and source code is available from
ftp://prep.ai.mit.edu/pub/gnu/autoconf− x.y .tar.gz), you might try
augmenting configure.in instead, then run autoconf , autoheader , and
configure .

Thus, on UNIX, installation normally consists of just two steps (assuming a csh −
compatible shell):

 setenv CC ...your favorite C or C++ compiler...
 ./configure && make all check install TEXINPUTS=...

There is wide variation in TeX directory trees, and configure cannot figure that out
for you, so you will almost certainly have to supply a suitable value for TEXINPUTS,
the name of a directory that TeX and tgrind will search for needed files.

If you like, add OPT=’your favorite optimization flags’ to the make
command; by default, no optimization flags are set.

The GNU standard installation directories /usr/local/bin for binaries, and
/usr/local/man/man1 for manual pages are assumed. The prefix /usr/local can
be overridden by providing an alternate definition on the command line:

 make prefix=/some/other/path install TEXINPUTS=...

After installation, you can do

 make distclean

to restore the directories to their distribution state. You should also do this between
builds for different architectures from the same source tree; neglecting to do so will
almost certainly lead to failure, because the config.cache file created by
configure will lead to an incorrect config.h for the next build.

UNIX Systems

The code can be compiled with either C (K&R or ISO/ANSI Standard C) or C++
compilers. With some C++ compilers, it may be necessary to supply additional
switches for force the compiler to stay in C++ mode, rather than reverting to C mode
(e.g., on DEC Alpha OSF/1, you must do setenv CC "cxx −x cxx").

file:/u/sy/beebe/tex/tgrind/tgrind−3.00/README.html

− 3 −

On UNIX systems, the only changes that you are likely to need in the Makefile are
the settings of CC and CFLAGS, and possibly, DEFINES, and if you wish to do make
install, the settings of bindir , MANDIR, and MANEXT.

If you are installing tgrind on a new system, you should definitely run make check
before installing it on your system. Sample output of make check from a UNIX
system is given below.

These programs have been successfully built and tested with C and C++ compilers
and tested on these systems for the 3.00 release (76 builds):

Machine and
model O/S Compilers

DEC Alpha
2100−5/250

OSF/1
3.2

/bin/c89 /bin/cc /bin/cxx /usr/bin/c89 /usr/bin/cc
/usr/ccs/bin/c89 /usr/ccs/bin/cc /usr/local/bin/g++
/usr/local/bin/gcc /usr/local/bin/lcc /usr/ucb/cc

DECstation
5000/200

ULTRIX
4.3

/bin/cc /usr/bin/cc /usr/local/bin/g++ /usr/local/bin/gcc
/usr/local/bin/lcc

HP 9000/735 HP−UX
10.01

/bin/CC /bin/c89 /bin/cc /usr/bin/CC /usr/bin/c89
/usr/bin/cc /usr/ccs/bin/cc /usr/local/bin/g++
/usr/local/bin/gcc

IBM PowerPC
43P AIX 4.1 /bin/c89 /bin/cc /bin/xlC /usr/bin/c89 /usr/bin/cc

/usr/local/bin/g++ /usr/local/bin/gcc
IBM PowerPC
43P AIX 4.2 /bin/c89 /bin/cc /bin/xlC /usr/bin/c89 /usr/bin/cc

Intel Pentium
(200MHz MMX)

Linux
2.0.30 /usr/bin/cc /usr/bin/g++ /usr/bin/gcc

NeXT
Turbostation Mach 3.3 /bin/cc /usr/local/bin/g++ /usr/local/bin/gcc

SGI Challenge L IRIX 5.3 /bin/CC /bin/cc /usr/bin/CC /usr/bin/cc /usr/local/bin/g++
/usr/local/bin/gcc

SGI O2 R10000−
SC IRIX 6.3 /bin/CC /bin/c89 /bin/cc /usr/bin/CC /usr/bin/c89

/usr/bin/cc

SGI Origin/200−4 IRIX 6.4 /bin/CC /bin/c89 /bin/cc /usr/bin/CC /usr/bin/c89
/usr/bin/cc /usr/local/bin/g++ /usr/local/bin/gcc

Sun SPARC
20/512

Solaris
2.6

/opt/SUNWspro/bin/CC /opt/SUNWspro/bin/c89
/opt/SUNWspro/bin/cc /usr/local/bin/g++
/usr/local/bin/gcc /usr/local/bin/lcc /usr/ucb/cc

Sun SPARC
4/380

SunOS
4.1.3

/bin/cc /usr/bin/cc /usr/lang/CC /usr/lang/acc
/usr/local/bin/gcc /usr/ucb/cc

IBM PC DOS

file:/u/sy/beebe/tex/tgrind/tgrind−3.00/README.html

− 4 −

PostScript font support

With only a few exceptions, PostScript fonts are licensed proprietary products that
cannot be freely redistributed with a software package like tgrind . Nevertheless, the
few that are available are included in the tgrind distribution in the fonts
subdirectory. They are provided in five forms each, identified by these file extensions:

.afm : Adobe Font Metric files, containing character dimensions, and usually
also kerning and ligature information, but no information about character
shapes;
.pfa : PostScript Font ASCII files, containing the character shapes, but neither
dimensions, nor kerning, nor ligature information;
.pfb : PostScript Font Binary files, a more compact form of .pfa files, but with
identical contents after format conversion;
.tfm : TeX Font Metric files, containing character dimensions, and kerning and
ligature information;
.vf : TeX Virtual Font files, containing remappings of characters from one or
more physical fonts into a virtual font containing characters in the order
expected with ordinary TeX fonts.

There is also a file named psfonts.add , containing suitable mappings that must be
added to your local psfonts.map file to make these fonts accessible. However,
check your own psfonts.map file to see whether it might not already have the
required mappings. The fonts included here are already available in many TeX
installations.

Although including both .pfa and .pfb files in the tgrind distribution is redundant,
some PostScript software requires one of these, and cannot handle the other.
Providing both formats therefore makes sense. The t1ascii and tibinary utilities
in the t1utils distribution, available in the CTAN archives (see the penultimate
section of the tgrind manual pages for CTAN locations), can convert between these
formats.

Because TeX installations differ widely in their directory structures, there is no
consistent place that the make install step could install fonts in. It is therefore up
to you, the installer, to decide whether or not to install the provided fonts, and where.

Many UNIX systems have TeX DVI driver software that interfaces to the UNIX
MakeTeXPK script. The drivers call that script when they cannot find a font, and the
script then attempts to generate the font on−the−fly, either by running Metafont, or
by using gsftopk and gs (Aladdin ghostscript), or ps2pk , to rasterize PostScript
Type 1 fonts, and convert them to TeX PK (packed bitmap) format. In particular, the
maintainer’s own DVI drivers, Tom Rokicki’s dvips , and Paul Vojta’s xdvi drivers all
do this. This makes PostScript Type 1 fonts usable on a wide variety of output

file:/u/sy/beebe/tex/tgrind/tgrind−3.00/README.html

− 5 −

devices, including non−PostScript printers, and workstation screens.

Test suite

The tgrind distribution includes an extensive test suite. It is run by

 make check

Each test consists of up to 4 files, named check nnn (nnn = 001, 002, ...), with these
extensions:

.in input data

.out correct tgrind stdout data produced at the maintainer’s site

.err correct tgrind stderr data produced at the maintainer’s site

.opt command line arguments [optional]

The input files are stored in the test subdirectory, and the correct .out and .err
files are stored in the test/okay subdirectory.

The make check job loops over the list of test files, and executes either

 ../tfontedpr check nnn .in > check nnn .out 2> check nnn .err

or

 ../tfontedpr ‘cat check nnn .opt‘ check nnn .in > check nnn .out 2> chec
nnn .err

depending on whether a .opt file is available or not. The resulting .out and .err
files are then compared with the expected output in the .out and .err files in the
test/okay subdirectory.

All of the .out files are valid plain TeX files, and each can be typeset and viewed or
printed to demonstrate tgrind ’s formatting. This is not, however, done as part of the
validation test suite.

For use on other operating systems, the test/check.bat file for PC DOS may
serve as a useful starting point for preparing a script to run the tests.

Please do run the validation suite at your site before installing the program.
Compilers are complex software systems that also have bugs, so the fact that the
program runs correctly somewhere else does not mean that it will do so on a
different system.

Sample build output for UNIX

file:/u/sy/beebe/tex/tgrind/tgrind−3.00/README.html

− 6 −

Here is a log of a successful build on Sun Solaris 2.6 using the native C++ compiler,
CC:

% env CC=CC ./configure && make all check
creating cache ./config.cache
checking whether make sets ${MAKE}... yes
checking for gcc... CC
checking whether the C compiler (CC) works... yes
checking whether the C compiler (CC) is a cross−compiler... no
checking whether we are using GNU C... no
checking for c++... c++
checking whether the C++ compiler (c++) works... yes
checking whether the C++ compiler (c++) is a cross−compiler... no
checking whether we are using GNU C++... yes
checking whether c++ accepts −g... yes
checking for a BSD compatible install... /usr/local/bin/install −c
checking whether ln −s works... yes
checking for col... col −x −b
checking for gawk... gawk
checking for chmod... chmod
checking for checksum... checksum
checking for rcp... rcp
checking for cmp... cmp
checking for deroff... deroff
checking for diff... diff
checking for distill... distill
checking for dvips... dvips
checking for dvialw... (cached) dvips
checking for dw... dw
checking for geqn... geqn
checking for gzip... gzip
checking for ispell... ispell
checking for lpr... lpr
checking for ls... ls
checking for man2html... man2html
checking for mkdir... mkdir
checking for mv... mv
checking for groff... groff
checking for rmdir... rmdir
checking for sed... sed
checking for sort... sort
checking for spell... spell
checking for strip... strip

file:/u/sy/beebe/tex/tgrind/tgrind−3.00/README.html

− 7 −

checking for gnutar... no
checking for gtar... no
checking for tar... tar
checking for gtbl... gtbl
checking for tex... /usr/local/lib/tex
checking for touch... touch
checking for unzip... unzip
checking for zip... zip
checking for zoo... zoo
checking for Standard C/C++ function declarations... yes
checking how to run the C preprocessor... CC −E
checking for ANSI C header files... no
checking for ctype.h... yes
checking for fcntl.h... yes
checking for libc.h... yes
checking for stdio.h... yes
checking for stdlib.h... yes
checking for string.h... yes
checking for sys/types.h... yes
checking for sys/stat.h... yes
checking for time.h... yes
checking for unistd.h... yes
checking for Standard C/C++ prototype support... yes
checking for working const... no
checking for size_t... yes
checking for atoi... no
checking for atol... no
checking for remove... no
checking for rename... no
checking for strtol... no
checking for strtoul... no
checking for unlink... no
checking for argument type of ctime()... const time_t *
checking for struct stat... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
creating config.h
CC −DHAVE_CONFIG_H −I. −DDEFSFILE=\"/usr/local/lib/tex/inputs/vgrinde f
CC −DHAVE_CONFIG_H −I. −c vgrindefs.c −o vgrindefs.o
CC −DHAVE_CONFIG_H −I. −c regexp.c −o regexp.o
CC −DHAVE_CONFIG_H −I. −o tfontedpr tfontedpr.o vgrindefs.o regexp.o
CC −DHAVE_CONFIG_H −I. −c retest.c −o retest.o

file:/u/sy/beebe/tex/tgrind/tgrind−3.00/README.html

− 8 −

CC −DHAVE_CONFIG_H −I. −o retest retest.o regexp.o
CC −c −DHAVE_CONFIG_H −I. \
 ’−DAWK="gawk"’ \
 ’−DDIR="ls −l"’ \
 ’−DDVI="dvips"’ \
 ’−DDVI_OPTION="−o"’ \
 ’−DLIBDIR="/usr/local/lib/tex/inputs/"’ \
 ’−DPRINT="lpr"’ \
 ’−DTGRIND="tgrind"’ \
 tgrind.c
CC −DHAVE_CONFIG_H −I. tgrind.o −o tgrind
The following checks should produce no output other than their names..
check001
check002
check003
check004
check005
check006
check007
check008
check009
check010
check011
check012
check013
check014
check015
check016
check017
check018
check019
check020

file:/u/sy/beebe/tex/tgrind/tgrind−3.00/README.html

− 9 −

