The newalg Package

Rick Farnbach*
Paul Furnanz’

May 23, 2005

Abstract

The package contains the definitions that are needed to typeset code
algorithms in a pretty way. The Formatted algorithms follow the style set
forth in the book “Introduction to Algorithms” by Corman, Leiserson and
Rivest.

Contents
1 Introduction 1

2 User Interface
2.1 The algorithm environment
2.2 Flow Control Environments
2.3 MacCroso e
2.4 Additional keywords and symbols

RN

3 Future Work 4

1 Introduction

The ITEX macros which are described here allow descriptions of algorithms to
be typeset in a pretty way. This is very useful for functional specifications for a
software project or to document an algorithm for a white paper.

The idea for this macro package comes from the book “Introduction to Algo-
rithms” by Cormen, Leiserson, and Rivest. Any examples in this document come
directly from that book and should not be reproduced without proper attribution.

2 User Interface

2.1 The algorithm environment

algorithm Use the algorithm environment to typeset algorithm code. This environment makes

*Email: rick_ farnbach@mentorg.com
TEmail: paul_furnanz@mentrog.com

several new commands available that help in typesetting code algorithms. The al-
gorithm environment uses math mode and the array enviroment to do the typeset-
ting. Everything typed is interpreted in math mode. To leave math mode use the
text command. Here is an example of the output produced by using the algorithm

environment.
\begin{algorithm}{Allocate-Object}{}
ALLOCATE-OBJECT() \begin{IF}{free = \NIL}
1 if free = NIL \ERROR{out of space}
2 then error “out of space” \ELSE
3 else =« free x \= free \\
4 free « net[a] free \= next[x] \\
\RETURN x
5 return x \end{IF}
\end{algorithm}

2.2 Flow Control Environments

IF Use the environment IF to format an if statement. When inside the IF environment,
the ELSE macro becomes available to show the else clause. The environment takes
one argument that is the condition for the if statement. For an example of its
usage, see the above example.

FOR Use the FOR environment to format a for loop and takes one argument. There
are two kinds of for loops supported by this macro. The first type of for loop
is generally know as the for-each loop. This type of loop is used to iterate
over the values of some set. The syntax for the argument to the environment
is “\EACH <var> \IN <set>”. The other type of loop supported is used to as-
sign a variable to a range of values. The syntax for the argument in this case is
“<var> \= <beginning> \TO <end>". Here is an example usage.

\begin{algorithm}
{Greedy-Activity-Selector}{s,f}

GREEDY-ACTIVITY-SELECTOR(S, f) n \= lengthls] \\

1 n < lengthls] A= {1} \\
2 4l jA=1\
3 j<1 \begin{FOR}{i \= 2 \TO n}
4 fori—2ton \begin{IF}{s_i \geq f_j}
5 doifs; > f; A \= A \cup {i} \\
6 then A «— AU j\=1i
7 i \end{IF}
8 return A \end{FOR} \\
\RETURN A
\end{algorithm}
WHILE Uset the WHILE environment to format a while loop. The environment takes

one argument. The argument is the exit condition for the loop. The loop will

REPEAT

SWITCH

iterate until the condition is false. Here is an example usage.

\begin{algorithm}{Tree-Successor}{x}
\begin{IF}{right [x] \neq \NIL}

TREE-SUCCESSOR () \RETURN
1 if right]x] # NIL \CALL{Tree-Min} (right [x])
2 then return TREE-MIN(right[z]) \end{IF} \\
3y« pla] y \=.p[x] \\
4 while y # NIL and z = right|[y] \begin{WHILE} _
{y \neq \NIL \text{and} x=right[y]l}
5 dozx«+—y £ \= 3y \\
S ty — ply] v \= plyl
return y \end{WHILE} \\
\RETURN y
\end{algorithm}

Use the REPEAT environment to format a repeat-until loop. The environ-
ment takes no arguments. The condition for the loop should be given after the
\end{REPEAT} line. Here is an example usage.

HASH-SEARCH(T, k)

1
2
3

4
)
6
7
8

\begin{algorithm}{Hash-Search}{T,k}

. i\=0\\
10 \begin{REPEAT}
repeat ‘ j \= hx,i) \\
— h(k,1) \begin{IF}{T[j] = k}
if T[j] =k \RETURN j
then return j \end{IF} \\
| i\= i+t
until T[j] = NIL or i = m \end{REPEAT} T[j]=\NIL\text{or} i=m \\
return NiL \RETURN \NIL
\end{algorithm}

Use the SWICH environment to format a very general switch statement. The
environment is like an itemize environment. Use the command \item{<condition>}
to create a new case label. The conditions can be anything, and don’t all have to
test the same variable. This is the most general switch statement. The formatting
conventions show that the first case condition to match will be executed. The text
\DEFAULT may be used for the condition to provide a default action. Here is an
example usage.

\begin{algorithm}{Select}(x, i)
r \= size[left[x]] + 1 \\

SELECT(z, 1) \begin{SWITCH}

1 r - sizelleft[z]] +1 \item{i = 1} \\

2 switch \RETURN x

3 case 1 =71 : \item{i < r} \\

4 return \RETURN

5 case it <71 : \CALL{Select}(left[x], i)

6 return SELECT(left[z],) \item{\DEFAULT} \\

7 case default : \RETURN

8 return SELECT(right[z],i — 1) \CALL{Select}(right[x], i - r)
\end{SWITCH}

\end{algorithm}
2.3 Macros

CALL Use the CALL macro to format a function call. The macro takes one argument. The
argument is the name of the function to call. It is usually followed by the parametes
to the function call. For example, “\CALL{Sort-Array}(array, length)”.

ERROR Use the CALL macro to signal that some sort of error has occured. The macro
takes one argument that the reason for the error. The text will be formatted in
text mode (not math mode) and will be surrounded by quotation marks.

algkey Use the algkey to format key words. If this package does not define a keyword
that you want to use, then this macro is used to format your keyword like the
other keywords.

2.4 Additional keywords and symbols

RETURN Use the RETURN macro to print out the return keyword. Usually this macro is
followed by information that is to be returned from the algorithm but this is not
an argument to the macro.

NIL Use the NIL macro to print the nil keyword. This keywod is used to represent
\= a variable that has no value assinged. Use the text \= to signal assinment. This
command produces this symbol in the formatted text, “«”.

3 Future Work

The current implementation of the algorithm environment is sensitive to the proper
placement of \\ in the text. See the examples for this. The environments should
work without being so fussy on this point. (Sometime you need a \\ at the end
of and environment, sometimes you don’t).

I would like the syntax of the repeat loop to be the same as the while loop.
I was having some trouble getting the stack commands to work, so that I could
save of the argument. This environment is not very consistent with the rest of the
algorithm environments.

There is probably a better way to do the formatting then using the array
environment. Currently IMTEX is formatting the algorithms by using the array
environment. This is pretty silly, because this is not really an array.

You cannot center the algorithm environment. This is probably becase it is
being implemented as an array. The current workaround for this problem is to
include the algorithm in a \begin{minipage}{ipt} ... \end{minipage}. Seems
to work in every case that I have come accross.

There is probably a better way to make a mode that is like math mode that
does not insert $ characters everywhere.

I am not very experienced in writing modes for I#TEX, so if you have any sug-
gestions for improvements or know how to solve any of the above listed problems,
please send me email. The address is on the front page of this document.

