
RCC(1) RCC(1)

NAME
rcc − ANSI/ISO C compiler lexer, parser and code-generator component

SYNOPSIS
rcc −target=name[option]. . . [infile [outfile]]

Sincercc does not assume any default target, the−target=namesetting is mandatory, although it may be
preceded by other options.

Standard input and output are assumed if the files are not supplied, or if their names are given as− .

DESCRIPTION
rcc is the compiler lexer, parser and code-generator component for thelcc(1) compiler system.rcc takes
input from the C preprocessor, lexes and parses it, and generates assembly code for a requested target archi-
tecture and operating system.lcc(1) then normally invokes the native assembler and loader to produce the
final executable file.

rcc is not normally invoked by humans, and indeed, is normally not found in the defaultPATH , but during
compiler development work, it has sometimes been useful to do so, so these manual pages were written to
document it.

OPTIONS
rcc interprets the options described in this section; unrecognized options are diagnosed as errors.

GNU/POSIX style−−option syntax is recognized as equivalent to−option.

−A Warn about declarations and casts of function types without prototypes, assignments between
pointers toints and pointers toenums, and conversions from pointers to smaller integral types.

A second−A warns about unrecognized control lines, nonANSI/ISO language extensions and
source characters in literals, unreferenced variables and static functions, declaring arrays of incom-
plete types, and exceedingsomeANSI/ISO environmental limits, such as more than 257 cases in
switches. It also arranges for duplicate global definitions in separately compiled files to cause
loader errors.

−a[input-profile-file]
Read the specified profile file, orprof.out if the filename is omitted, from a previous execution and
use the data therein to compute reference counts (see−b).

rcc assigns the most frequently-referenced scalar parameters and locals to registers whenever pos-
sible. For each block, explicit register declarations are obeyed first; remaining registers are
assigned to automatic locals if they are ‘referenced’ at least 3 times. Each top-level occurrence of
an identifier counts as 1 reference. Occurrences in a loop, either of thethen/elsearms of anif
statement, or acasein a switch statement each count, respectively, as 10, 1/2, or 1/10 references.
These values are adjusted accordingly for nested control structures.

−asdl Change the interface record (IR) function pointers to new ones prefixed byasdl_. [??? What is the
purpose of this ???]

−b Produce code that counts the number of times each expression is executed. If loading takes place,
arrange for aprof.outfile to be written when the object program terminates. A listing annotated
with execution counts can then be generated withbprint (1). −C is similar, but counts only the
number of function calls.

−C Produce code to count the number of function calls. See also−b.

−copyright
Display copyright information on the standard output, and exit immediately with a success status
code.

This option may be abbreviated to any unique prefix at least as long as−co.

−d Turn on debugging output.

local − $Date: 2001/04/01 05:15:45 $ 1

RCC(1) RCC(1)

−errout=outfile
Redirect the standard error unit to the specified output file. Execution terminates immediately
with a failure status code if this action fails.

−en Set the maximum number of error messages ton.

−g Produce additional symbol table information for the local debuggers.

−g[n[,x]]
Set the debugging level ton and emit source code as comments into the generated assembly code;
x must be the assembly language comment character. Ifn is omitted, it defaults to 1, which is sim-
ilar to −g. Omitting ,x just sets the debugging level ton.

−html When used with−target=symbolic, this option causes the text rendition to be emitted as strictly
grammar-conformant HTML, complete with hypertext links for cross references in the code!

−left_to_right=1
−left_to_right=0

Set the interface record (IR) flagleft_to_right. This controls function argument evaluation order,
which is unspecified by ANSI/ISO Standard C; it is normally architecture dependent. [Reference:
lcc book, p. 88]

−little_endian=1
−little_endian=0

Set the interface record (IR) flaglittle_endian: nonzero for little-endian addressing, or zero, for
big-endian addressing. This value is normally architecture dependent, and may also be operating-
system dependent on those CPU architectures that support both addressing forms. [Reference:lcc
book, p. 87]

−metricname=size,align,outofline
Initialize the named metric with the three numeric parameters. The metric is one ofcharmetric,
doublemetric, floatmetric, intmetric , longdoublemetric, longlongmetric, longmetric, ptrmet-
ric , shortmetric, or structmetric . [Reference:lcc book, pp. 78--79]

−mulops_calls=1
−mulops_calls=0

Set the interface record (IR) flagmulops_calls: nonzero if multiply, divide, and remainder are done
by library calls, or zero, if they are done in hardware. [Reference:lcc book, p. 87]

−n Produce code that tests for dereferencing zero pointers. The code reports the offending file and
line number and callsabort(3).

−nvalidate[,check]
[??? What does this do ???]

−P Writes declarations for all defined globals on standard error. Function declarations include proto-
types; editing this output can simplify conversion to ANSI/ISO C. This output may not corre-
spond to the input when there are severaltypedefs for the same type.

−sf Generate jump tables for switches whose density is at leastf , a floating-point constant between
zero and one. The default is 0.5.

This is the same aslcc(1)’s −d f option.

−tname
−t Produce code to print the name of the function, an activation number, and the name and value of

each argument at function entry. At function exit, produce code to print the name of the function,
the activation number, and the return value. By default,printf does the printing; ifnameappears,
it does. For nullchar* values, "(null)" is printed.

−target=architecture/os
Generate assembly code for the specified architecture and operating system. This switch is
mandatory, sincercc does not assume any default target.

local − $Date: 2001/04/01 05:15:45 $ 2

RCC(1) RCC(1)

The supportedarchitecture/oscombinations may include

alpha/linux Compaq/DEC Alpha, GNU/Linux
alpha/osf Compaq/DEC Alpha, OSF/1 3.2, 4.x
mips/irix big-endian MIPS Rx000, IRIX 5.2, 6.x
mips/linux big-endian MIPS Rx000, GNU/Linux
mips/ultrix little-endian MIPS Rx000, ULTRIX 4.3
null no output
sparc/linux Sun SPARC, GNU/Linux
sparc/solaris Sun SPARC, Solaris 2.x
sparc/sun Sun SPARC, SunOS 4.x
symbolic text rendition of the generated code
symbolic/osf text rendition of the generated code for Compaq/DEC OSF/1
symbolic/irix text rendition of the generated code for SGI IRIX
x86/freebsd Intel x86, FreeBSD
x86/linux Intel x86, GNU/Linux
x86/solaris Intel x86, Sun Solaris 2.x
x86/win32 Intel x86, Windows NT 4.0/Windows 95/98/2000

Additional combinations that may be supported in the future, if code-generation support is com-
pleted, include

ia64/freebsd HP/Intel IA-64, FreeBSD
ia64/linux HP/Intel IA-64, GNU/Linux
ia64/win32 HP/Intel IA-64, Windows NT 4.0/Windows 95/98/2000
ia64/win64 HP/Intel IA-64, Windows-64
parisc/hpux HP PA-RISC, HP-UX 10.x, 11.x
parisc/linux HP PA-RISC, GNU/Linux
ppc/aix PowerPC, IBM AIX 4.x
ppc/linux PowerPC, GNU/Linux
ppc/macosx PowerPC, Mac OS X (Darwin, Rhapsody)

−unsigned_char=1
−unsigned_char=0

Make plainchar an unsigned (1, or nonzero) or signed (0) type.

By default,char is signed on all platforms on whichlcc runs. Note that this may differ from the
choice made by other C compilers on the same platform.

−v Print the program name and RCS id string.

−version
Display version information on the standard output, and exit immediately with a success status
code.

This option may be abbreviated to any unique prefix at least as long as−ve.

−w Suppress warning diagnostics, such as those announcing unreferenced statics, locals, and parame-
ters. The line#pragma ref idsimulates a reference to the variableid.

−wants_argb=1
−wants_argb=0

Set the interface record (IR) flag,wants_argb. When nonzero, the front end emitsARGBnodes to
pass structure arguments; when zero, it uses simpler operations. [Reference:lcc book, p. 88]

−wants_callb=1
−wants_callb=0

Set the interface record (IR) flagwants_callb: nonzero if the front end should emitCALLBnodes
to invoke functions that return structures, or zero for simpler code. [Reference:lcc book, p. 88]

local − $Date: 2001/04/01 05:15:45 $ 3

RCC(1) RCC(1)

−wants_dag=1
−wants_dag=0

Set the interface record (IR) flagwants_dag: nonzero if the front end should pass dags to the back
end, or zero if the front end should undag all nodes with reference counts exceeding one. [Refer-
ence:lcc book, p. 89]

−wchar_t=unsigned_char
−wchar_t=unsigned_short
−wchar_t=unsigned_int

Makes wide characters the type indicated.

By default, forlcc, wide characters areunsigned short int, andwchar_t is a typedef defined in
<stddef.h>. The definition forwchar_t in <stddef.h> changes according to the setting of this
option. For that reason, care should be taken to ensure that the same value of this option is used if
preprocessing is done separately from compilation.

−x Turn on some additional cross-referencing. [??? What does this do ???]

ENVIRONMENT VARIABLES
rcc does not use any environment variables.

FILES
rcc opens only those files explicitly given on its command line.

SEE ALSO
as(1), bprint (1), c89(1), cc(1), collect2(1), cpp(1), gas(1), gcc(1), gprof(1), lcc(1), lcc-cpp(1), ld(1),
pgcc(1), prof (1).

C. W. Fraser and D. R. Hanson,A Retargetable C Compiler: Design and Implementation,Addison-Wesley,
1995. ISBN 0-8053-1670-1.

The World-Wide Web page athttp://www.cs.princeton.edu/software/lcc/ .

S. P. Harbison and G. L. Steele, Jr.,C: A Reference Manual, 4th ed., Prentice-Hall, 1995.

B. W. Kernighan and D. M. Ritchie,The C Programming Language, 2nd ed., Prentice-Hall, 1988.

American National Standards Inst.,American National Standard for Information Systems—Programming
Language—C, ANSI X3.159-1989, New York, 1990.

International Organization for Standardization,ISO/IEC 9899:1990: Programming languages — C,
Geneva, Switzerland, 1990.

BUGS
Mail bug reports along with the shortest preprocessed program that exposes them, and the details reported
by rcc’s −v option, to lcc-bugs@princeton.edu . The World-Wide Web page at URL
http://www.cs.princeton.edu/software/lcc/ includes detailed instructions for reporting
bugs.

local − $Date: 2001/04/01 05:15:45 $ 4

