
CPP(1) CPP(1)

NAME
cpp − ANSI/ISO C compiler preprocessor component

SYNOPSIS
cpp [−Dname] [−Dname=value] [−Fvalue] [−g] [−I path] [−l] [−M] [−N] [−O] [−Uname]

[−v] [−V] [− +] [infile [outfile]]

If the input and output filenames are omitted, they default to the standard input and output, respectively.

DESCRIPTION
cpp is a preprocessor for the C and C++ programming languages conforming strictly to the 1989, 1990,
1998, and 1999 ANSI and ISO Standards for those languages, and is a component of thelcc(1) compiler
system.

cpp filters an input stream, obeying preprocessing directives, and copying nondirective text to an output
stream, after expanding any macros that are recognized in that text. Text that matches the comment syntax
of the programming language is discarded. Nondirective text which does not require processing is simply
copied verbatim. Handling of binary data is undefined, and unpredictable.

Because the C preprocessor is not normally invoked directly by humans, it is seldom found in the default
PATH . To see wherecpp is installed, run a C or C++ compiler with an option to display the commands
that it invokes. This option is often−v (as withlcc(1)), or−#.

OPTIONS
cpp recognizes the following command-line options:

−Dname Definenameto have the integer value 1.

−Dname=value Definenameto have the string valuevalue. If the value is a character string, then quota-
tion marks, suitably protected against shell interpretation, must be explicitly provided:
compare−Dversion=23with −Ddate=’"29 March 2001"’. −FvalueThis option is rec-
ognized, for historical reasons, but is ignored.

−g This option is recognized, for historical reasons, but is ignored.

−I path Add path to the end of the list of directories to be searched for included files.cpp has
no predefined default directories, so compilers that invokecpp are expected to pass it
their own list of include directories, prefixed by any user-defined directories. Directories
are always searched in the order given by−I options.

−l This option is recognized, for historical reasons, but is ignored.

−M Suppress normal preprocessor output, and produceMakefile object file dependencies
instead.

If −M is given at least once, generate a list of dependencies on quoted header files
(#include "myfile.h"), and write them on the standard output unit.

If −M is given more than once, the output also includes dependencies on angle-brack-
eted header files (#include<sysfile.h>).

−N Do not searchany of the directories currently in the search list for include files. Only
those directories specified by subsequent explicit−I options will be searched, in the
order given.

−O This option is recognized, for historical reasons, but is ignored.

−Uname Undefine any prior definition ofname. It is not an error for the name to already be unde-
fined, and no diagnostic is issued in either case.

Certain special names are required by the language Standards to be immune to user
redefinition, once defined, althoughcpp itself may alter their values:__DATE__,
__FILE__, __LINE__, __STDC__, __TIME__, anddefined.

−v Display thecpp version number and revision date on the standard error unit, and con-
tinue processing.

local − $Date: 2001/04/02 13:52:38 $ 1

CPP(1) CPP(1)

−V Write token parsing progress reports on the standard error unit.

− + Recognize C++ (and 1999 Standard C) comments, from // up to, but not including, the
next end-of-line. The current version ofcpp used bylcc(1) always has this flag set,
because some pre-1999 Standard C compilers supported C++-style comments as an
extension.

USAGE
The precise details of the preprocessing actions are complex, and documented only briefly here. Consult
one of the language Standards, or a good textbook about C or C++, for more information.

The recognized directives are:#define, #elif, #else, #endif, #error , #eval, #if, #ifdef, #ifndef, #include,
#line, #pragma, and#undef. Such directives must occur at the start of a line, although whitespace may
optionally precede and/or follow the initial sharp (#).

All other input that resembles a directive, such as#ident, #import , #include_next <filename.h>, or
#module, is ignored, with a warning, and copied to the output stream.

The syntax ofconstant-expressionused in the descriptions below matches that of Standard C and C++,
excluding assignment operators, and has the same precedence rules.

Arithmetic is carried out as if all values are of typelong int or unsigned long int, but the sign of character
constants is implementation-defined.

Constructs like the C/C++sizeofoperator, typecasts, andenums, floating-point arithmetic, and character-
string matching, arenotavailable in preprocessor expressions.

definedname

defined(name) This directive is used in constant expressions in conditional statements: it evaluates to
one ifnameis defined, and zero if not.

#definename Definenameto expand to 1.

#definename value Definenameto expand tovalue.

#definename(arg1,arg2,. . .,argn) value
The parenthesized list may contain zero or more named arguments, using the normal
C/C++ identifier syntax (initial letter or underscore, followed by any number of let-
ters, digits, and underscores). An occurrence ofname(rep1,rep2,. . .,repn)in the input
stream is replaced by the expansion ofvalue, where each occurrence ofarg1, arg2,
. . . argn is replaced by the corresponding textrep1, rep1, . . . repn, without further
substitution. After that expansion is complete, it is rescanned for further macro sub-
stitutions.

In order for the expansion to take place, the input stream must containname, option-
ally followed by whitespace, and then the argument list. In particular, if the input
stream contains(name)(v1,v2,. . .,vn), then macro expansion doesnot occur. This can
be used to protect against such expansion:foo(a,b,c) might be expanded, but
(foo)(a,b,c) is never expanded (although the arguments will be). Both forms are
valid, and equivalent, C and C++ code.

#elif constant-expression
If the constant-expressionis nonzero, and no prior expression in preceding#if con-
stant-expressionor #elif constant-expressionparts of this conditional statement has
evaluated to nonzero, expand the following lines down to, but excluding, the next
matching#elif constant-expression, #else, or #endif, and then skip to the statement
following the matching#endif.

Nested conditionals are permitted, provided each matching#if/#endif pair is con-
tained within the same source file.

#else If no constant-expressionin preceding#if constant-expressionor #elif constant-
expressionparts of this conditional statement has evaluated to nonzero, expand the

local − $Date: 2001/04/02 13:52:38 $ 2

CPP(1) CPP(1)

following lines down to, but excluding, the next matching#endif, and then skip to
the statement following that#endif.

#endif Terminate the most-recently opened conditional#if constant-expression.

#error message textIssue an error message to the standard error unit with the specified text, after normal
preprocessing expansion of the text. This doesnot affect the final status return code
from cpp.

#evalconstant-expression.
This directive evaluates the expression, like#if or #elif, and then discards the result.

#eval is an extension to the C and C++ Standards, and it is unclear why it even exists,
since, in the absence of assignment operators, the result of the evaluation cannot be
detected, or have any side effects!

#if constant-expression
If the constant-expressionis nonzero, expand the following lines down to, but exclud-
ing, the next matching#elif constant-expression, #else, or #endif, and then skip to
the statement following the matching#endif.

Nested conditionals are permitted, provided each matching#if/#endif pair is con-
tained within the same source file.

#ifdef name Act like #if, with the expression evaluating to nonzero ifnameis defined, and zero if
it is not.

This can be coded equivalently as#if defined(name).

#ifndef name Act like #if, with the expression evaluating to nonzero ifnameis not defined, and
zero if it is.

This can be coded equivalently as#if !defined(name).

#include "filename" Temporarily divert input processing to the named file, which must be found either in
the directory of the file containing that directive, or in directories named by−I path
options that define the include directory search path.

While it is conventional to name such header files with a.h extension, it is not neces-
sary to do so. Indeed, Standard C++ has many header files that do not end with.h.

Include files may be nested to a maximum depth of 10.

#include<filename>
Temporarily divert input processing to the named file, which must be found in direc-
tories named by−I pathoptions that define the include directory search path.

While it is conventional to name such header files with a.h extension, it is not neces-
sary to do so. All of those defined in Standard C have such extensions.

Include files may be nested to a maximum depth of 10.

integer-constant
#line integer-constant
integer-constant "filename"
#line integer-constant "filename"

Generate line number information for subsequent programs. The constant is inter-
preted as the line number of the next line, and"filename"as the file from which it
came. It"filename"is omitted, the current filename is unchanged.

Input # and#line directives are copied verbatim to the output stream. New ones are
generated at suitable points in the input stream, such as at the start of each file, and
the resumption of input after completion of#includefile processing.

#pragma text This directive is copied verbatim from the input stream to the output stream, after
normal preprocessing expansion of the text.

local − $Date: 2001/04/02 13:52:38 $ 3

CPP(1) CPP(1)

The effect of#pragma is implementation defined. It is thus system-dependent, and
rarely useful for end users, because the same pragma might be interpreted in widely
different ways by different compilers, or accepted by one, and diagnosed as erro-
neous by others.

rcc(1) recognizes just one form of this directive,#pragma ref identifier, but cur-
rently, no use is made of it by thelcc(1) compiler system.

#undefname Undefine any prior definition ofname. It is not an error for the name to already be
undefined, and no diagnostic is issued in either case.

ENVIRONMENT VARIABLES
cpp does not use any environment variables.

FILES
cpp opens only those files explicitly given on its command line.

SEE ALSO
CC(1), c89(1), cc(1), cpp(1), g++(1), gcc(1), lcc(1), pgCC(1), pgcc(1), rcc(1).

C. W. Fraser and D. R. Hanson,A Retargetable C Compiler: Design and Implementation,Addison-Wesley,
1995. ISBN 0-8053-1670-1.

The World-Wide Web page athttp://www.cs.princeton.edu/software/lcc/ .

S. P. Harbison and G. L. Steele, Jr.,C: A Reference Manual, 4th ed., Prentice-Hall, 1995.

B. W. Kernighan and D. M. Ritchie,The C Programming Language, 2nd ed., Prentice-Hall, 1988.

American National Standards Inst.,American National Standard for Information Systems—Programming
Language—C, ANSI X3.159-1989, New York, 1990.

International Organization for Standardization,ISO/IEC 9899:1990: Programming languages — C,
Geneva, Switzerland, 1990.

BUGS
Mail bug reports along with the shortest program that exposes them, and the details reported bycpp’s −v
option, to lcc-bugs@princeton.edu . The World-Wide Web page at URL
http://www.cs.princeton.edu/software/lcc/ includes detailed instructions for reporting
bugs.

local − $Date: 2001/04/02 13:52:38 $ 4

