IXTEX 2¢ Interfaces

The KTEX Project*
Released 2026-01-23

Abstract

This document contains user (and programmer) documentation for much of the

“new” code added to the KTEX kernel in recent years. Over time, this coverage
is expected to be expanded to include the majority of user commands defined in
latex.1ltx.
The individual parts are written at different times and were originally meant to stand
on their own. This means that explanations are not necessary in the most logical
order, and there is some duplication. Headings are also somewhat inconsistent. We
expect this to be sorted out over time, as material is revised to form a consistent
whole.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I Hooks

1 KETEX’s hook management

2

1.1
1.2

1.3

Introduction L
Package writer interface o o oo

1.2.1 IMTEX2¢ interfaces o o oo o

Declaring hooks Lo
Special declarations for generic hooks
Using hooksincode L ..
Updating code for hooks
Hook names and default labels
The top-level label L.
Defining relations between hook code.
Querying hooks Lo
Displaying hook code oo,
Debugging hook code,

1.2.2 L3 programming layer (expl3) interfaces
1.2.3 On the order of hook code execution
1.2.4 The use of “reversed” hooks
1.2.5 Difference between “normal” and “one-time” hooks
1.2.6 Generic hooks provided by packages
1.2.7 Hooks with arguments
1.2.8 Private BTEX kernel hooks
1.2.9 Legacy BTEX 2¢ interfaces oL

ETEX 22 commands and environments augmented by hooks

1.3.1 Generichooks.

Generic hooks for all environments
Generic hooks for commands
Generic hooks provided by file loading operations

1.3.2 Hooks provided by \begin{document}
1.3.3 Hooks provided by \end{document}
1.3.4 Hooks provided by \shipout operations
1.3.5 Hooks provided for paragraphs
1.3.6 Hooks provided in NFSS commands
1.3.7 Hook provided by the mark mechanism

ETEX’s hook management for files

2.1

Introduction e

2.1.1 Provided hooks
2.1.2 General hooks for file reading
2.1.3 Hooks for package and class files
2.1.4 Hooks for \include files
2.1.5 High-level interfaces for 'TRX
2.1.6 Kernel, class, and package interfaces for BWTpX
2.1.7 A sample package for structuring the log output

ii

p—

Uk W N NDNDNDN

CO W W WD NNDNDNDDNDNDDNDDNDDNDNDDNDN - = =
H O OO IIO U R ERERNRFERFEOWOODU I WREO®

3 Hook management for commands
3.1 Imtroduction e
3.2 Restrictions and operational details

3.2.1

3.2.2
3.2.3
3.2.4

Patching
Timing o . o e
Command copies oo
Grouping e
Commands that look ahead

3.3 Package author interface oL

3.3.1

Arguments and redefining commands

4 Paragraph building and hooks
4.1 Introduction e

4.1.1

The default processing done by the engine

4.2 The new mechanism implemented for BKTRX

4.2.1
4.2.2
4.2.3

4.24

The provided hooks L L
Altered and newly provided commands
Examples
Testing the mechanism
Mark the first paragraph of each itemize
Some technical notes L oo o
Glue items between paragraphs (found with fancypar)

5 The shipout routine: hooks and interfaces
5.1 Introduction

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7

Overloading the \shipout primitive
Provided hooks
Legacy BTEX commands
Special commands for use inside the hooks
Provided LuaTgX callbacks
Information counters oL oL oL
Debugging shipout code L.

5.2 Emulating commands from other packages

5.2.1
5.2.2
5.2.3
5.2.4

Emulating atbegshi o
Emulating everyshi oo
Emulating atenddvi o oo
Emulating everypageo oo

II Run data and page design

iii

38
38
39
40
40
40
41
41
41
42

44
44
44
46
47
48
49
49
ol
o1
o1

53
93
53
55
56
o7
57
98
58
59
99
60
60
60

61

6 The marks mechanism

6.1 Introduction
6.2 Design-level and code-level interfaces
6.2.1 Use cases for conditionals
6.2.2 Understanding regions oL
6.2.3 Debugging mark code L oL
6.3 Application examples
6.4 Legacy ITEX 2¢ interfaceo oo
6.4.1 Legacy design-level and document-level interfaces
6.4.2 Legacy interface extensions
6.5 Notes on the mechanism
6.6 Public interfaces for packages such as multicol
6.7 Internal functions for the standard output routine of BITRX

Recording and cross-referencing document properties

7.1 Introduction L
7.2 Design discussion Lo e
7.3 Handling unknown labels and properties
74 Rerunmessageso
7.5 Openpoints L e
7.6 Codeinterfaces
7.7 Auxiliary file interfaces L oL oo
7.8 ITEX2¢ interface Lo
7.9 Pre-declared properties Lo oo

IIT Design-level tools

8

ETEX’s socket management
8.1 Imtroduction
8.2 Configuration of the transformation process
8.2.1 The template mechanism
8.2.2 The hook mechanism
8.2.3 The socket mechanism L.
Examples
Details and semantics oo L.
Command syntax o
Rationale for error handling

iv

62
62
63
65
65
67
67
67
68
68
69
70
71

72
72
72
73
73
73
74
(0]
76
T

9 Templates: Prototype document functions 88

9.1 Introduction 88
9.2 What is a document? 89
9.3 Types, templates, and instances 89
9.4 Template types 89
9.5 Templates 90
9.6 Multiple choices e 94
9.7 Instances e e e e e 95
9.8 Document interface 96
9.9 Changing existing definitions oo 96
9.9.1 Expanding the valuesof keys 97

9.10 Getting information about templates and instances 97
Index 99

Part 1
Hooks

Chapter 1

INTEX’s hook management

1.1 Introduction

Hooks are points in the code of commands or environments where it is possible to add
processing code into existing commands. This can be done by different packages that do
not know about each other, and to allow for hopefully safe processing it is necessary to
sort different chunks of code added by different packages into a suitable processing order.

This is done by the packages adding chunks of code (via \AddToHook) and labeling
their code with some label by default using the package name as a label.

At \begin{document} all code for a hook is then sorted according to some rules
(given by \DeclareHookRule) for fast execution without processing overhead. If the hook
code is modified afterwards (or the rules are changed), a new version for fast processing
is generated.

Some hooks are used already in the preamble of the document. If that happens then
the hook is prepared for execution (and sorted) already at that point.

1.2 Package writer interface

The hook management system is offered as a set of CamelCase commands for traditional
ITEX 2¢ packages (and for use in the document preamble if needed) as well as expl3
commands for modern packages, that use the L3 programming layer of IXTEX. Behind
the scenes, a single set of data structures is accessed so that packages from both worlds
can coexist and access hooks in other packages.

1.2.1 FKETEX 2¢ interfaces

Declaring hooks

With a few exceptions, hooks have to be declared before they can be used. The exceptions
are the generic hooks for commands and environments (executed at \begin and \end),
and the generic hooks run when loading files (see section 1.3.1).

\NewHook \NewHook {(hook)}

Creates a new (hook). If this hook is declared within a package it is suggested that its
name is always structured as follows: (package-name)/(hook-name). If necessary you
can further subdivide the name by adding more / parts. If a hook name is already taken,
an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1. The string ?? can’t be used as a hook name because it has a
special significance as a placeholder in hook rules.

\NewReversedHook \NewReversedHook {(hook)}

Like \NewHook declares a new (hook). the difference is that the code chunks for this
hook are in reverse order by default (those added last are executed first). Any rules for
the hook are applied after the default ordering. See sections 1.2.3 and 1.2.4 for further
details.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\NewMirroredHookPair \NewMirroredHookPair {(hook-1)} {(hook-2)}

A shorthand for \NewHook{(hook-1)}\NewReversedHook{(hook-2)}.
The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\NewHookWithArguments \NewHookWithArguments {(hook)} {(number)}

Creates a new (hook) whose code takes (number) arguments, and otherwise works exactly
like \NewHook. Section 1.2.7 explains hooks with arguments.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\NewReversedHookWithArguments \NewReversedHookWithArguments {(hook)} {(number)}

Like \NewReversedHook, but creates a hook whose code takes (number) arguments. Sec-
tion 1.2.7 explains hooks with arguments.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\NewMirroredHookPairWithArguments \NewMirroredHookPairWithArguments {(hook-1)} {(hook-2)} {(number)}

A shorthand for \NewHookWithArguments{(hook-1)}{{number)}
\NewReversedHookWithArguments{(hook-2)}{(number)}. Section 1.2.7 explains hooks
with arguments.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

Special declarations for generic hooks

The declarations here should normally not be used. They are available to provide support
for special use cases mainly involving generic command hooks.

\DisableGenericHook

\ActivateGenericHook

\UseHook

\UseHookWithArguments

\DisableGenericHook {(hook)}

After this declaration® the (hook) is no longer usable: Any further attempt to add code
to it will result in an error and any use, e.g., via \UseHook, will simply do nothing.
This is intended to be used with generic command hooks (see 1tcmdhooks-doc) as
depending on the definition of the command such generic hooks may be unusable. If that
is known, a package developer can disable such hooks up front.
The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\ActivateGenericHook {(hook)}

This declaration activates a generic hook provided by a package/class (e.g., one used
in code with \UseHook or \UseOneTimeHook) without it being explicitly declared with
\NewHook). If the hook is already activated, this command does nothing.

Note that this command does not undo the effect of \DisableGenericHook. See
section 1.2.6 for a discussion of when this declaration is appropriate.

Using hooks in code

Using a hook that is executing the code that has been associated with it is only allowed
if the hook has been previously declared with \NewHook. For performance reason there
are no runtime checks for this and it is the responsibility of the programmer of a package
to ensure that all hooks that are used in a package (with one of the commands in this
section) are declared first.

\UseHook {(hook)}

Execute the code stored in the (hook).

Before \begin{document} the fast execution code for a hook is not set up, so in
order to use a hook there it is explicitly initialized first. As that involves assignments
using a hook at those times is not 100% the same as using it after \begin{document}.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\UseHookWithArguments {(hook)} {(number)} {({argi)} ... {(argn)}

Execute the code stored in the (hook) and pass the arguments {(arg;)} through {{arg,)}
to the (hook). Otherwise, it works exactly like \UseHook. The (number) should be the
number of arguments declared for the hook. If the hook is not declared, this command
does nothing and it will remove (number) items from the input. Section 1.2.7 explains
hooks with arguments.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

n the 2020/06 release this command was called \DisableHook, but that name was misleading as it
shouldn’t be used to disable non-generic hooks.

\UseOneTimeHook \UseOneTimeHook {(hook)}

Some hooks are only used (and can be only used) in one place, for example, those in
\begin{document} or \end{document}. From that point onwards, adding to the hook
through a defined \(addto-cmd) command (e.g., \AddToHook or \AtBeginDocument, etc.)
would have no effect (as would the use of such a command inside the hook code itself).
It is therefore customary to redefine \(addto-cmd) to simply process its argument, i.e.,
essentially make it behave like \@firstofone.

\UseOneTimeHook does that: it records that the hook has been consumed and any
further attempt to add to it will result in executing the code to be added immediately.

Using \UseOneTimeHook several times with the same {(hook)} means that it only
executes the first time it is used. For example, if it is used in a command that can
be called several times then the hook executes during only the first invocation of that
command; this allows its use as an “initialization hook”.

Mixing \UseHook and \UseOneTimeHook for the same {(hook)} should be avoided,
but if this is done then neither will execute after the first \UseOneTimeHook.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.
See section 1.2.1 for details.

\UseOneTimeHookWithArguments \UseOneTimeHookWithArguments {(hook)} {(number)} {(argi)} ... {{arg.)}

Works exactly like \UseOneTimeHook, but passes arguments {(arg;)} through {{arg,)}
to the (hook). The (number) should be the number of arguments declared for the hook.
If the hook is not declared, this command does nothing and it will remove (number) items
from the input.

It should be noted that after a one-time hook is used, it is no longer possible to use
\AddToHookWithArguments or similar with that hook. \AddToHook continues to work as
normal. Section 1.2.7 explains hooks with arguments.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.
See section 1.2.1 for details.

Updating code for hooks

In contrast to the commands from the previous section, declarations such as \AddToHook
or \DeclareHookRule can be used even when the hook is not yet declared. The rationale
is that the hook declaration may be in some package that is loaded later, or perhaps not
loaded at all.

A side effect of this design is that misspellings do not raise an error but are simply
regarded as declarations for hooks with a different name.

\AddToHook

\AddToHookWithArguments

\RemoveFromHook

Important:

The \RemoveFromHook
command should be only
used if one has full control
over the code chunk to be
removed. In particular it
should not be used to
remove code chunks from
other packages! For this the
voids relation is provided.

\AddToHook {(hook)} [(label)] {(code)}

Adds (code) to the (hook) labeled by (I1abel). When the optional argument (Iabel) is
not provided, the (default label) is used (see section 1.2.1). If \AddToHook is used in a
package/class, the (default label) is the package/class name, otherwise it is top-level
(the top-level label is treated differently: see section 1.2.1).

If there already exists code under the (1abel) then the new (code) is appended to
the existing one (even if this is a reversed hook). If you want to replace existing code
under the (1abel), first apply \RemoveFromHook.

The hook doesn’t have to exist for code to be added to it. However, if it is not
declared, then obviously the added {code) will never be executed. This allows for hooks
to work regardless of package loading order and enables packages to add to hooks from
other packages without worrying whether they are actually used in the current document.
See section 1.2.1.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 1.2.1.

\AddToHookWithArguments {(hook)} [(label)] {(code)}

Works exactly like \AddToHook, except that the (code) can access the arguments passed
to the hook using #1, #2, ..., #n (up to the number of arguments declared for the
hook). If the (code) should contain parameter tokens (#) that are not supposed to be
understood as the arguments of the hook, such tokens should be doubled. For example,
with \AddToHook one can write:

\AddToHook{myhook}{\def\foo#1{Hello, #1!}}
but to achieve the same with \AddToHookWithArguments, one should write:
\AddToHookWithArguments{myhook}{\def\foo##1{Hello, ##1!}}

because in the latter case, #1 refers to the first argument of the hook myhook. Section 1.2.7
explains hooks with arguments.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 1.2.1.

\RemoveFromHook {(hook)} [(label)]

Removes any code labeled by (label) from the (hook). When the optional argument
(label) is not provided, the (default label) is used (see section 1.2.1).

If there is no code under the (1abel) in the (hook), or if the (hook) does not exist, a
warning is issued when you attempt to \RemoveFromHook, and the command is ignored.
\RemoveFromHook should be used only when you know exactly what labels are in a hook.
Typically this will be when some code gets added to a hook by a package, then later this
code is removed by that same package. If you want to prevent the execution of code from
another package, use the voids rule instead (see section 1.2.1).

If the optional (1abel) argument is *, then all code chunks are removed. This is
rather dangerous as it may well drop code from other packages (that one may not know
about); it should therefore not be used in packages but only in document preambles!

The (hook) and (1abel) can be specified using the dot-syntax to denote the current
package name. See section 1.2.1.

\AddToHookNext

In contrast to the voids relationship between two labels in a \DeclareHookRule this
is a destructive operation as the labeled code is removed from the hook data structure,
whereas the relationship setting can be undone by providing a different relationship later.

A useful application for this declaration inside the document body is when one wants
to temporarily add code to hooks and later remove it again, e.g.,

\AddToHook{env/quote/begin}{\small}
\begin{quote}

A quote set in a smaller typeface
\end{quote}

\RemoveFromHook{env/quote/begin}
. now back to normal for further quotes

Note that you can’t cancel the setting with
\AddToHook{env/quote/begin}{}

because that only “adds” a further empty chunk of code to the hook. Adding
\normalsize would work but that means the hook then contained \small\normalsize
which means two font size changes for no good reason.

The above is only needed if one wants to typeset several quotes in a smaller typeface.
If the hook is only needed once then \AddToHookNext is simpler, because it resets itself
after one use.

\AddToHookNext {(hook)} {(code)}

Adds (code) to the next invocation of the (hook). The code is executed after the normal
hook code has finished and it is executed only once, i.e. it is deleted after it was used.

Using this declaration is a global operation, i.e., the code is not lost even if the
declaration is used inside a group and the next invocation of the hook happens after the
end of that group. If the declaration is used several times before the hook is executed
then all code is executed in the order in which it was declared.?

If this declaration is used with a one-time hook then the code is only ever used
if the declaration comes before the hook’s invocation. This is because, in contrast to
\AddToHook, the code in this declaration is not executed immediately in the case when
the invocation of the hook has already happened—in other words, this code will truly
execute only on the next invocation of the hook (and in the case of a one-time hook there
is no such “next invocation”). This gives you a choice: should my code execute always,
or should it execute only at the point where the one-time hook is used (and not at all if
this is impossible)? For both of these possibilities there are use cases.

It is possible to nest this declaration using the same hook (or different hooks): e.g.,

\AddToHookNext{(hook)}{(code-1)\AddToHookNext{({hook)}{({code-2)}}

will execute (code-1) next time the (hook) is used and at that point puts (code-2) into
the (hook) so that it gets executed on following time the hook is run.

A hook doesn’t have to exist for code to be added to it. This allows for hooks to
work regardless of package loading order. See section 1.2.1.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

2There is no mechanism to reorder such code chunks (or delete them).

\AddToHookNextWithArguments \AddToHookNextWithArguments {(hook)} {(code)}

\ClearHookNext

Works exactly like \AddToHookNext, but the (code) can contain references to the argu-
ments of the (hook) as described for \AddToHookWithArguments above. Section 1.2.7
explains hooks with arguments.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\ClearHookNext {(hook)}

Normally \AddToHookNext is only used when you know precisely where it will apply and
why you want some extra code at that point. However, there are a few use cases in
which such a declaration needs to be canceled, for example, when discarding a page with
\DiscardShipoutBox (but even then not always), and in such situations \ClearHookNext
can be used.

Hook names and default labels

It is best practice to use \AddToHook in packages or classes without specifying a (label)
because then the package or class name is automatically used, which is helpful if rules
are needed, and avoids mistyping the (Iabel).

Using an explicit (label) is only necessary in very specific situations, e.g., if you
want to add several chunks of code into a single hook and have them placed in different
parts of the hook (by providing some rules).

The other case is when you develop a larger package with several sub-packages. In
that case you may want to use the same (label) throughout the sub-packages in order
to avoid that the labels change if you internally reorganize your code.

Except for \UseHook, \UseOneTimeHook and \IfHookEmptyTF (and their expl3 in-
terfaces \hook_use:n, \hook_use_once:n and \hook_if_empty:nTF), all (hook) and
(1abel) arguments are processed in the same way: first, spaces are trimmed around the
argument, then it is fully expanded until only character tokens remain. If the full expan-
sion of the (hook) or (1abel) contains a non-expandable non-character token, a low-level
TEX error is raised (namely, the (hook) is expanded using TEX’s \csname. .. \endcsname,
as such, Unicode characters are allowed in (hook) and (label) arguments). The argu-
ments of \UseHook, \UseOneTimeHook, and \IfHookEmptyTF are processed much in the
same way except that spaces are not trimmed around the argument, for better perfor-
mance.

It is not enforced, but highly recommended that the hooks defined by a package,
and the (Iabels) used to add code to other hooks contain the package name to eas-
ily identify the source of the code chunk and to prevent clashes. This should be the
standard practice, so this hook management code provides a shortcut to refer to the
current package in the name of a (hook) and in a (label). If the (hook) name or the
(label) consist just of a single dot (.), or starts with a dot followed by a slash (./)
then the dot denotes the (default label) (usually the current package or class name—
see \SetDefaultHookLabel). A “.” or “./” anywhere else in a (hook) or in (label) is
treated literally and is not replaced.

For example, inside the package mypackage.sty, the default label is mypackage, so
the instructions:

\NewHook {./hook}
\AddToHook {./hook}[.]{code} % Same as \AddToHook{./hook}{code}

Important:

The dot-syntaz is not
available with \UseHook
and some other commands
that are typically used
within code!

\AddToHook {./hook}[./subl{code}
\DeclareHookRule{begindocument}{.}{before}{babel}
\AddToHook {file/foo.tex/after}{code}

are equivalent to:

\NewHook {mypackage/hook}

\AddToHook {mypackage/hook}[mypackage]{code}

\AddToHook {mypackage/hook} [mypackage/sub]{code}
\DeclareHookRule{begindocument}{mypackage}{before}{babel}
\AddToHook {file/foo.tex/after}{code} % unchanged

The (default label) is automatically set equal to the name of the current pack-
age or class at the time the package is loaded. If the hook command is used outside
of a package, or the current file wasn’t loaded with \usepackage or \documentclass,
then the top-level is used as the (default label). This may have exceptions—see
\PushDefaultHookLabel.

This syntax is available in all (Iabel) arguments and most (hook) arguments, both
in the IMTEX 2¢ interface, and the IWTEX3 interface described in section 1.2.2.

Note, however, that the replacement of . by the (default label) takes place when
the hook command is executed, so actions that are somehow executed after the package
ends will have the wrong (default label) if the dot-syntax is used. For that reason,
this syntax is not available in \UseHook (and \hook_use:n) because the hook is most of
the time used outside of the package file in which it was defined. This syntax is also not
available in the hook conditionals \IfHookEmptyTF (and \hook_if_empty:nTF), because
these conditionals are used in some performance-critical parts of the hook management
code, and because they are usually used to refer to other package’s hooks, so the dot-
syntax doesn’t make much sense.

In some cases, for example in large packages, one may want to separate the code
in logical parts, but still use the main package name as the (label), then the (default
label) can be set using \PushDefaultHookLabel{...}...\PopDefaultHookLabel or
\SetDefaultHookLabel{...}.

\PushDefaultHookLabel
\PopDefaultHookLabel

\SetDefaultHookLabel

\PushDefaultHookLabel {({default label)}

(code)
\PopDefaultHookLabel
\PushDefaultHookLabel sets the current (default label) to be used in (label) argu-
ments, or when replacing a leading “.” (see above). \PopDefaultHookLabel reverts the

(default label) to its previous value.

Inside a package or class, the (default label) is equal to the package or class
name, unless explicitly changed. Everywhere else, the (default label) is top-level
(see section 1.2.1) unless explicitly changed.

The effect of \PushDefaultHookLabel holds until the next \PopDefaultHookLabel.
\usepackage (and \RequirePackage and \documentclass) internally use

\PushDefaultHookLabel{(package name)}
(package code)
\PopDefaultHookLabel

to set the (default label) for the package or class file. Inside the (package code) the
(default label) can also be changed with \SetDefaultHookLabel. \input and other
file input-related commands from the I#TEX kernel do not use \PushDefaultHookLabel,
so code within files loaded by these commands does not get a dedicated (1abel)! (that
is, the (default label) is the current active one when the file was loaded.)

Packages that provide their own package-like interfaces (TikZ’s \usetikzlibrary,
for example) can use \PushDefaultHookLabel and \PopDefaultHookLabel to set dedi-
cated labels and to emulate \usepackage-like hook behavior within those contexts.

The top-level label is treated differently, and is reserved to the user document, so
it is not allowed to change the (default label) to top-level.

\SetDefaultHookLabel {(default label)}

Similarly to \PushDefaultHookLabel, sets the current (default label) to be used in
(label) arguments, or when replacing a leading “.”. The effect holds until the label
is changed again or until the next \PopDefaultHookLabel. The difference between
\PushDefaultHookLabel and \SetDefaultHookLabel is that the latter does not save
the current (default label).

This command is useful when a large package is composed of several smaller pack-
ages, but all should have the same (label), so \SetDefaultHookLabel can be used at
the beginning of each package file to set the correct label.

\SetDefaultHookLabel is not allowed in the main document, where the (default
label) is top-level and there is no \PopDefaultHookLabel to end its effect. It is also
not allowed to change the (default label) to top-level.

The top-level label

The top-level label, assigned to code added from the main document, is different from
other labels. Code added to hooks (usually \AtBeginDocument) in the preamble is almost
always to change something defined by a package, so it should go at the very end of the
hook.

Therefore, code added in the top-level is always executed at the end of the hook,
regardless of where it was declared. If the hook is reversed (see \NewReversedHook), the
top-level chunk is executed at the very beginning instead.

10

Rules regarding top-level have no effect: if a user wants to have a specific set of
rules for a code chunk, they should use a different label to said code chunk, and provide
a rule for that label instead.

The top-level label is exclusive for the user, so trying to add code with that label
from a package results in an error.

Defining relations between hook code

The default assumption is that code added to hooks by different packages are independent
and the order in which they are executed is irrelevant. While this is true in many cases
it is obviously false in others.

Before the hook management system was introduced packages had to take elaborate
precautions to determine whether some other package had also been loaded (before or
after) and then to find some ways to alter its behavior accordingly. In addition is was
often the user’s responsibility to load packages in the right order so that alterations made
by packages were done in thsat same order; and in some cases even altering the loading
order wouldn’t resolve the conflicts.

With the new hook management system it is now possible to define rules (i.e., rela-
tionships) between code chunks added by different packages and to specify explicitly the
order in which they should be processed.

The rules can be declared for hooks before the hook has been declared with \NewHook
and they are allowed to refer to code labels that do not yet exist, e.g., because a package
defining the code chunk with that label has not yet been loaded. When the hook code
is finally sorted for fast execution, all rules that apply are acted on and the others are
ignored.

This offers the flexibility needed to handle complicated relationships between code
from different packages and to set this up beforehand in a way that is independent of
whether or not the packages are actually loaded in a specific document. The downside
of this is that misspellings of hook names or code labels will not raise any error, instead
the rule will simply never apply!

11

\DeclareHookRule \DeclareHookRule {(hook)} {(labell)} {(relation)} {(label2)}

Defines a relation between (labell) and (label2) for a given (hook). If (hook) is 77
this defines a default relation for all hooks that use the two labels, i.e., that have chunks
of code labeled with (1abell) and (label2).

Currently, the supported relations are the following:

before or < Code for (1abell) comes before code for (label2).
after or > Code for (1abell) comes after code for (label2).

incompatible-warning Only code for either (1abell) or (label2) can appear for that hook (a way to say
that two packages—or parts of them—are incompatible). A warning is raised if
both labels appear in the same hook.

incompatible-error Like incompatible-error but instead of a warning a KTEX error is raised, and
the code for both labels are dropped from that hook until the conflict is resolved.

voids Code for (1abell) overwrites code for (1abel2). More precisely, code for (1abel2)
is dropped for that hook. This can be used, for example if one package is a superset
in functionality of another one and therefore wants to undo code in some hook and
replace it with its own version.

unrelated The order of code for (labell) and (label2) is irrelevant. This rule is there to
undo an incorrect rule specified earlier.

There can only be a single relation between two labels for a given hook, i.e., a later
\DeclareHookRule overwrites any previous declaration. In all cases rules specific to a
given hook take precedence over default rules that use 77 as the (hook).

If a default rule is applied, it is done before reversing the label order in a reversed
hook, e.g., before in a default rule effectively becomes after in such a hook. In contrast,
a rule for a specific hook is always applied to the state after any reversal (i.e., the state
you see when using \ShowHook on that hook).

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 1.2.1.

\ClearHookRule \ClearHookRule {(hook)} {(labell)} {(label2)}

Syntactic sugar for saying that (1abel1) and (1abel2) are unrelated for the given (hook).

12

\DeclareDefaultHookRule \DeclareDefaultHookRule {(labell)} {(relatiomn)} {(label2)}

This sets up a relation between (1abell) and (label2) for all hooks unless overwritten
by a specific rule for a hook. Useful for cases where one package has a specific relation to
some other package, e.g., is incompatible or always needs a special ordering before or
after. (Technically it is just a shorthand for using \DeclareHookRule with ?? as the
hook name.)

If such a rule is applied to a reversed hook it behaves as if the rule is reversed
(e.g., after becomes before) because those rules are applied first and then the order is
reversed. The rationale is that in hook pairs (in which the ordering in one is reversed)
default rules have to be reversed too in nearly all scenarios. If this is not the case, a
default rule can’t be used or has to be overwritten with an explicit \DeclareHookRule
for that specific hook.

Declaring default rules is only supported in the document preamble.?

The (label) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

Querying hooks

Simpler data types, like token lists, have three possible states; they can:
e exist and be empty;
e exist and be non-empty; and
e not exist (in which case emptiness doesn’t apply);

Hooks are a bit more complicated: a hook may exist or not, and independently it may or
may not be empty. This means that even a hook that doesn’t exist may be non-empty
and it can also be disabled.

This seemingly strange state may happen when, for example, package A defines hook
A/foo, and package B adds some code to that hook. However, a document may load
package B before package A, or may not load package A at all. In both cases some code
is added to hook A/foo without that hook being defined yet, thus that hook is said to be
non-empty, whereas it doesn’t exist. Therefore, querying the existence of a hook doesn’t
imply its emptiness, neither does the other way around.

Given that code or rules can be added to a hook even if it doesn’t physically exist
yet, means that a querying its existence has no real use case (in contrast to other variables
that can only be update if they have already been declared). For that reason only the
test for emptiness has a public interface.

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have
code added to its code pool. A hook is said to exist when it was declared with \NewHook
or some variant thereof. Generic hooks such as file and env hooks are automatically
declared when code is added to them.

3Trying to do so, e.g., via \DeclareHookRule with ?? has bad side-effects and is not supported (though
not explicitly caught for performance reasons).

13

\IfHookEmptyTF * \IfHookEmptyTF {(hook)} {(true code)} {(false code)}
\IfHookEmptyT =*

\T£HookEmptyF Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or

\AddToHookNext) or such code was removed again (via \RemoveFromHook), and branches
to either (true code) or (false code) depending on the result.
The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

Displaying hook code

If one has to adjust the code execution in a hook using a hook rule it is helpful to get some
information about the code associated with a hook, its current order and the existing
rules.

\ShowHook \ShowHook {({hook)}
\LogHook \LogHook {(hook)}

Displays information about the (hook) such as
« the code chunks (and their labels) added to it,
e any rules set up to order them,
e the computed order in which the chunks are executed,

e any code executed on the next invocation only.

\LogHook prints the information to the .log file, and \ShowHook prints them to the
terminal/command window and starts TEX’s prompt (only in \errorstopmode) to wait
for user action.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

Suppose a hook example-hook whose output of \ShowHook{example-hook} is:

1 -> The hook ’example-hook’:
Code chunks:
foo -> [code from package ’foo’]
bar -> [from package ’bar’]
baz -> [package ’baz’ is here]
Document-level (top-level) code (executed last):
-> [code from ’top-level’]
Extra code for next invocation:
-> [one-time code]
Rules:
foolbaz with relation >
baz|bar with default relation <
Execution order (after applying rules):
baz, foo, bar.

@
VVVVVVVVVVYVVYV

In the listing above, lines 3 to 5 show the three code chunks added to the hook and
their respective labels in the format

(1abel) -> (code)

14

\DebugHooks0On
\DebugHooks0ff

\hook_new:n
\hook_new_reversed:n
\hook_new_pair:nn

Line 7 shows the code chunk added by the user in the main document (labeled
top-level) in the format

Document-level (top-level) code (executed (first/last)):
-> (top-level code)

This code will be either the first or last code executed by the hook (last if the hook is
normal, first if it is reversed). This chunk is not affected by rules and does not take
part in sorting.

Line 9 shows the code chunk for the next execution of the hook in the format

-> (next-code)

This code will be used and disappear at the next \UseHook{example-hook}, in contrast
to the chunks mentioned earlier, which can only be removed from that hook by doing
\RemoveFromHook{(label)} [example-hook].

Lines 11 and 12 show the rules declared that affect this hook in the format

(label-1)|(label-2) with (default?) relation (relation)

which means that the (relation) applies to (1abel-1) and (1abel-2), in that order, as
detailed in \DeclareHookRule. If the relation is default it means that this rule applies
to (label-1) and (label-2) in all hooks, (unless overridden by a non-default relation).

Finally, line 14 lists the labels in the hook after sorting; that is, in the order they
will be executed when the hook is used.

Debugging hook code

\DebugHooksOn ... \DebugHooksOff

Turn the debugging of hook code on or off. This displays most changes made to the hook
data structures. The output is rather coarse and not really intended for normal use, but
it can be helpful in case hooks do not work as expected. See also 1.2.1 for commands to
inspect individual hooks.

1.2.2 L3 programming layer (expl3) interfaces

This is a quick summary of the I#TEX3 programming interfaces for use with packages
written in expl3. In contrast to the KTEX 2: interfaces they always use mandatory
arguments only, e.g., you always have to specify the (Iabel) for a code chunk. We
therefore suggest to use the declarations discussed in the previous section even in expl3
packages, but the choice is yours.

\hook_new:n {(hook)}
\hook_new_reversed:n {(hook)}
\hook_new_pair:nn {(hook-1)} {(hook-2)}
Creates a new (hook) with normal or reverse ordering of code chunks. \hook_new_-
pair:nn creates a pair of such hooks with {(hook-2)} being a reversed hook. If a hook
name is already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

15

\hook_new_with_args:nn

\hook_new_with_args:nn {(hook)} {(number)}

\hook_new_reversed_with_args:nn \hook_new_reversed_with_args:nn {(hook)} {(number)}
\hook_new_pair_with_args:nnn \hook_new_pair_with_args:nnn {(hook-1)} {(hook-2)} {(number)}

\hook_disable_generic:n

\hook_activate_generic:n

\hook_use:n
\hook_use:nnw

\hook_use_once:n
\hook_use_once:nnw

Creates a new (hook) with normal or reverse ordering of code chunks, that takes (number)
arguments from the input stream when it is used. \hook_new_pair_with_args:nn cre-
ates a pair of such hooks with {(hook-2)} being a reversed hook. If a hook name is
already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\hook_disable_generic:n {(hook)}

Marks {(hook)} as disabled. Any further attempt to add code to it or declare it, will
result in an error and any call to \hook_use:n will simply do nothing.

This declaration is intended for use with generic hooks that are known not to work
(see 1tcmdhooks-doc) if they receive code.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\hook_activate_generic:n {(hook)}

This is like \hook_new:n but it does nothing if the hook was previously declared with
\hook_new:n. This declaration should be used only in special situations, e.g., when a
command from another package needs to be altered and it is not clear whether a generic
cmd hook (for that command) has been previously explicitly declared.

Normally \hook_new:n should be used instead of this.

\hook_use:n {(hook)}
\hook_use:nnw {(hook)} {(number)} {(argi)} ... {(argn)}

Executes the {(hook)} code followed (if set up) by the code for next invocation only, then
empties that next invocation code. \hook_use:nnw should be used for hooks declared
with arguments, and should be followed by as many brace groups as the declared number
of arguments. The (number) should be the number of arguments declared for the hook.
If the hook is not declared, this command does nothing and it will remove (number) items
from the input.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_use_once:n {(hook)}
\hook_use_once:nnw {(hook)} {(number)} {(argi)} ... {(argn)}

Changes the {(hook)} status so that from now on any addition to the hook code is
executed immediately. Then execute any {(hook)} code already set up. \hook_use_-
once:nnw should be used for hooks declared with arguments, and should be followed by
as many brace groups as the declared number of arguments. The (number) should be the
number of arguments declared for the hook. If the hook is not declared, this command
does nothing and it will remove (number) items from the input.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

16

\hook_gput_code:nnn \hook_gput_code:nnn {(hook)} {(label)} {(code)}
\hook_gput_code_with_args:nnn \hook_gput_code_with_args:nnn {(hook)} {(label)} {(code)}
Adds a chunk of {code) to the (hook) labeled (label). If the label already exists the

(code) is appended to the already existing code.

If \hook_gput_code_with_args:nnn is used, the (code) can access the arguments
passed to \hook_use:nnw (or \hook_use_once:nnw) with #1, #2, ..., #n (up to the
number of arguments declared for the hook). In that case, if an actual parameter token
should be added to the code, it should be doubled.

If code is added to an external (hook) (of the kernel or another package) then the
convention is to use the package name as the (1abel) not some internal module name or
some other arbitrary string.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 1.2.1.

\hook_gput_next_code:nn

ok
\hook_gput_next_code_with_args:nn \hook_gput_next_code_with_args:nn {(hook)

\hook_gput_next_code:nn {(hook)} {(code)}
} {(code)}

\hook_gclear_next_code:n

\hook_gremove_code:nn

Adds a chunk of (code) for use only in the next invocation of the (hook). Once used it
is gone.

If \hook_gput_next_code_with_args:nn is used, the (code) can access the argu-
ments passed to \hook_use:nnw (or \hook_use_once:nnw) with #1, #2 ..., #n (up to
the number of arguments declared for the hook). In that case, if an actual parameter
token should be added to the code, it should be doubled.

This is simpler than \hook_gput_code:nnn, the code is simply appended to the
hook in the order of declaration at the very end, i.e., after all standard code for the hook
got executed. Thus if one needs to undo what the standard does one has to do that as
part of (code).

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\hook_gclear_next_code:n {(hook)}

Undo any earlier \hook_gput_next_code:nn.

\hook_gremove_code:nn {(hook)} {(label)}

Removes any code for (hook) labeled (1abel).

If there is no code under the (1abel) in the (hook), or if the (hook) does not exist, a
warning is issued when you attempt to use \hook_gremove_code:nn, and the command
is ignored.

If the second argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about, so think twice
before using that!

The (hook) and (1abel) can be specified using the dot-syntax to denote the current
package name. See section 1.2.1.

17

\hook_gset_rule:nnnn

\hook_if_empty_p:n *
\hook_if_empty:nTF *

\hook_show:n
\hook_log:n

\hook_debug_on:
\hook_debug_off:

\hook_gset_rule:nnnn {(hook)} {(labell)} {(relation)} {(label2)}

Relate (labell) with (label2) when used in (hook). See \DeclareHookRule for the
allowed (relation)s. If (hook) is 7?7 a default rule is specified.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 1.2.1. The dot-syntax is parsed in both (label) arguments,
but it usually makes sense to be used in only one of them.

\hook_if_empty:nTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either (true code) or (false code) depending on
the result.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_show:n {(hook)}
\hook_log:n {(hook)}

Displays information about the (hook) such as
o the code chunks (and their labels) added to it,
e any rules set up to order them,
e the computed order in which the chunks are executed,
o any code executed on the next invocation only.

\hook_log:n prints the information to the .log file, and \hook_show:n prints them
to the terminal /command window and starts TEX’s prompt (only if \errorstopmode) to
wait for user action.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 1.2.1.

\hook_debug_on:
Turns the debugging of hook code on or off. This displays changes to the hook data.

1.2.3 On the order of hook code execution

Chunks of code for a (hook) under different labels are supposed to be independent if
there are no special rules set up that define a relation between the chunks. This means
that you can’t make assumptions about the order of execution!

Suppose you have the following declarations:

\NewHook{myhook}

\AddToHook{myhook} [packageA] {\typeout{A}}
\AddToHook{myhook} [packageB] {\typeout{B}}
\AddToHook{myhook} [packageC] {\typeout{C}}

then executing the hook with \UseHook will produce the typeout A B C in that order.
In other words, the execution order is computed to be packageA, packageB, packageC
which you can verify with \ShowHook{myhook}:

18

-> The hook ’myhook’:
> Code chunks:

> packageA -> \typeout {A}

> packageB -> \typeout {B}

> packageC -> \typeout {C}

> Document-level (top-level) code (executed last):
> —_

> Extra code for next invocation:

>
>
>
>
>

Rules:
Execution order:
packageA, packageB, packageC.

The reason is that the code chunks are internally saved in a property list and the initial
order of such a property list is the order in which key-value pairs got added. However,
that is only true if nothing other than adding happens!

Suppose, for example, you want to replace the code chunk for packageA, e.g.,

\RemoveFromHook{myhook} [packageA]
\AddToHook{myhook} [packageA] {\typeout{A altl}}

then your order becomes packageB, packageC, packageA because the label got removed
from the property list and then re-added (at its end).

While that may not be too surprising, the execution order is also sometimes altered
if you add a redundant rule, e.g. if you specify

\DeclareHookRule{myhook}{packageA}{before}{packageB}
instead of the previous lines we get

-> The hook ’myhook’:
Code chunks:
packageA -> \typeout {A}
packageB -> \typeout {B}
packageC -> \typeout {C}
Document-level (top-level) code (executed last):

>
>
>
>
>
>
> Extra code for next invocation:

> —_—

> Rules:

> packageB|packageA with relation >

> Execution order (after applying rules):

> packageA, packageC, packageB.

As you can see the code chunks are still in the same order, but in the execution order for
the labels packageB and packageC have swapped places. The reason is that, with the
rule there are two orders that satisfy it, and the algorithm for sorting happened to pick
a different one compared to the case without rules (where it doesn’t run at all as there
is nothing to resolve). Incidentally, if we had instead specified the redundant rule

\DeclareHookRule{myhook}{packageB}{before}{packageC}

the execution order would not have changed.
In summary: it is not possible to rely on the order of execution unless there are rules
that partially or fully define the order (in which you can rely on them being fulfilled).

19

1.2.4 The use of “reversed” hooks

You may have wondered why you can declare a “reversed” hook with \NewReversedHook
and what that does exactly.

In short: the execution order of a reversed hook (without any rules!) is exactly
reversed to the order you would have gotten for a hook declared with \NewHook.

This is helpful if you have a pair of hooks where you expect to see code added that
involves grouping, e.g., starting an environment in the first and closing that environment
in the second hook. To give a somewhat contrived example*, suppose there is a package
adding the following:

\AddToHook{env/quote/before} [package-1] {\begin{itshapel}}
\AddToHook{env/quote/after} [package-1]{\end{itshapel}}

As a result, all quotes will be in italics. Now suppose further that another package-too
makes the quotes also in blue and therefore adds:

\usepackage{color}
\AddToHook{env/quote/before} [package-too] {\begin{color}{blue}}
\AddToHook{env/quote/after} [package-too]{\end{color}}

Now if the env/quote/after hook would be a normal hook we would get the same
execution order in both hooks, namely:

package-1, package-too
(or vice versa) and as a result, would get:

\begin{itshape}\begin{color}{blue} ...
\end{itshapel}\end{color}

and an error message saying that \begin{color} was ended by \end{itshape}. With
env/quote/after declared as a reversed hook the execution order is reversed and so
all environments are closed in the correct sequence and \ShowHook would give us the
following output:

-> The hook ’env/quote/after’:
Code chunks:
package-1 -> \end {itshape}
package-too -> \end {color}
Document-level (top-level) code (executed first):

Rules:
Execution order (after reversal):

>

>

>

>

>

> Extra code for next invocation:
>

>

>

>

> package-too, package-1.

If there is a matching default rule (done with \DeclareDefaultHookRule or with ??
for the hook name) then this default rule is applied before the reversal so that the order
in the reversed hook mirrors the one in the normal hook. However, all rules specific to
a hook happen always after the reversal of the execution order, so if you alter the order
you will probably have to alter it in both hooks, not just in one, but that depends on the
use case.

4There are simpler ways to achieve the same effect.

20

1.2.5 Difference between “normal” and “one-time” hooks

When executing a hook a developer has the choice of using either \UseHook or
\UseOneTimeHook (or their expl3 equivalents \hook_use:n and \hook_use_once:n).
This choice affects how \AddToHook is handled after the hook has been executed for
the first time.

With normal hooks adding code via \AddToHook means that the code chunk is added
to the hook data structure and then used each time \UseHook is called.

With one-time hooks it this is handled slightly differently: After \UseOneTimeHook
has been called, any further attempts to add code to the hook via \AddToHook will simply
execute the (code) immediately.

This has some consequences one needs to be aware of:

o If (code) is added to a normal hook after the hook was executed and it is never
executed again for one or the other reason, then this new (code) will never be
executed.

o In contrast if that happens with a one-time hook the (code) is executed immedi-
ately.

In particular this means that construct such as

\AddToHook{myhook}
{ (code-1) \AddToHook{myhook}{(code-2)} (code-3) }

works for one-time hooks® (all three code chunks are executed one after another), but
it makes little sense with a normal hook, because with a normal hook the first time
\UseHook{myhook?} is executed it would

o execute (code-1),

o then execute \AddToHook{myhook}{code-2} which adds the code chunk (code-2)
to the hook for use on the next invocation,

 and finally execute (code-3).

The second time \UseHook is called it would execute the above and in addition (code-2)
as that was added as a code chunk to the hook in the meantime. So each time the
hook is used another copy of (code-2) is added and so that code chunk is executed
(# of invocations) — 1 times.

1.2.6 Generic hooks provided by packages

The hook management system also implements a category of hooks that are called
“Generic Hooks”. Normally a hook has to be explicitly declared before it can be used
in code. This ensures that different packages are not using the same hook name for
unrelated purposes—something that would result in absolute chaos. However, there are
a number of “standard” hooks where it is unreasonable to declare them beforehand, e.g,
each and every command has (in theory) an associated before and after hook. In such
cases, i.e., for command, environment or file hooks, they can be used simply by adding
code to them with \AddToHook. For more specialized generic hooks, e.g., those provided

5This is sometimes used with \AtBeginDocument which is why it is supported.

21

by babel, you have to additionally enable them with \ActivateGenericHook as explained
below.

The generic hooks provided by IXTEX are those for cmd, env, file, include, package,
and class, and all these are available out of the box: you only have to use \AddToHook
to add code to them, but you don’t have to add \UseHook or \UseOneTimeHook to your
code, because this is already done for you (or, in the case of cmd hooks, the command’s
code is patched at \begin{document}, if necessary).

However, if you want to provide further generic hooks in your own code, the situation
is slightly different. To do this you should use \UseHook or \UseOneTimeHook, but
without declaring the hook with \NewHook. As mentioned earlier, a call to \UseHook with
an undeclared hook name does nothing. So as an additional setup step, you need to
explicitly activate your generic hook. Note that a generic hook produced in this way is
always a normal hook.

For a truly generic hook, with a variable part in the hook name, such upfront acti-
vation would be difficult or impossible, because you typically do not know what kind of
variable parts may come up in real documents.

For example, babel provides hooks such as babel/(language)/afterextras. How-
ever, language support in babel is often done through external language packages. Thus
doing the activation for all languages inside the core babel code is not a viable approach.
Instead it needs to be done by each language package (or by the user who wants to use
a particular hook).

Because the hooks are not declared with \NewHook their names should be carefully
chosen to ensure that they are (likely to be) unique. Best practice is to include the
package or command name, as was done in the babel example above.

Generic hooks defined in this way are always normal hooks (i.e., you can’t imple-
ment reversed hooks this way). This is a deliberate limitation, because it speeds up the
processing considerably.

1.2.7 Hooks with arguments

Sometimes it is necessary to pass contextual information to a hook, and, for one reason
or another, it is not feasible to store such information in macros. To serve this purpose,
hooks can be declared with arguments, so that the programmer can pass along the data
necessary for the code in the hook to function properly.

A hook with arguments works mostly like a regular hook, and most commands that
work for regular hooks, also work for hooks that take arguments. The differences are
when the hook is declared (\NewHookWithArguments is used instead of \NewHook), then
code can be added with both \AddToHook and \AddToHookWithArguments, and when
the hook is used (\UseHookWithArguments instead of \UseHook).

A hook with arguments must be declared as such (before it is first used, as all regular
hooks) using \NewHookWithArguments{(hook)}{(number)}. All code added to that hook
can then use #1 to access the first argument, #2 to access the second, and so forth up
to the number of arguments declared. However, it is still possible to add code with
references to the arguments of a hook that was not yet declared (we will discuss that
later). At their core, hooks are macros, so TEX’s limit of 9 arguments applies, and a
low-level TEX error is raised if you try to reference an argument number that doesn’t
exist.

22

To use a hook with arguments, just write \UseHookWithArguments{(hook)}{(number)}
followed by a braced list of the arguments. For example, if the hook test takes three
arguments, write:

\UseHookWithArguments{test}{3}{arg-1}{arg-2}{arg-3}

then, in the (code) of the hook, all instances of #1 will be replaced by arg-1, #2 by
arg-2 and so on. If, at the point of usage, the programmer provides more arguments
than the hook is declared to take, the excess arguments are simply ignored by the hook.
Behavior is unpredictable® if too few arguments are provided. If the hook isn’t declared,
(number) arguments are removed from the input stream.

Adding code to a hook with arguments can be done with \AddToHookWithArguments
as well as with the regular \AddToHook, to achieve different outcomes. The main differ-
ence when it comes to adding code to a hook, in this case, is firstly the possibility of
accessing a hook’s arguments, of course, and second, how parameter tokens (#g) are
treated.

Using \AddToHook in a hook that takes arguments will work as it does for all other
hooks. This allows a package developer to add arguments to a hook that otherwise had
none without having to worry about compatibility. This means that, for example:

\AddToHook{test}{\def\foo#1{Hello, #1!}}

will define the same macro \foo regardless if the hook test takes arguments or not.

Using \AddToHookWithArguments allows the (code) added to access the arguments
of the hook with #1, #2, and so forth, up to the number of the arguments declared in the
hook. This means that if one wants to add a #¢ to the (code) that token must be doubled
in the input. The same definition from above, using \AddToHookWithArguments, needs
to be rewritten:

\AddToHookWithArguments{test}{\def\foo##1{Hello, ##1!}}

Extending the above example to use the hook arguments, we could rewrite something
like (now from declaration to usage, to get the whole picture):

\NewHookWithArguments{test}{1}

\AddToHookWithArguments{test}{%
\typeout{Defining foo with "#1"}
\def\foo##1{Hello, ##1! Some text after: #1}V,

}

\UseHook{test}{Howdy!}

\ShowCommand\foo

Running the code above prints in the terminal:

Defining foo with "Howdy!"
> \foo=macro:
#1->Hello, #1! Some text after: Howdy!.

6The hook will take the declared number of arguments, and what will happen depends on what was
grabbed, and what the hook code does with its arguments.

23

Note how ##1 in the call to \AddToHookWithArguments became #1, and the #1 was
replaced by the argument passed to the hook. Should the hook be used again, with a
different argument, the definition would naturally change.

It is possible to add code referencing a hook’s arguments before such hook is declared
and the number of hooks is fixed. However, if some code is added to the hook, that
references more arguments than will be declared for the hook, there will be a low-level
TEX error about an “Illegal parameter number” at the time the hook is declared, which
will be hard to track down because at that point TEX can’t know whence the offending
code came from. Thus it is important that package writers explicitly document how
many arguments (if any) each hook can take, so users of those packages know how many
arguments can be referenced, and equally important, what each argument means.

1.2.8 Private BTEX kernel hooks

There are a few places where it is absolutely essential for IATEX to function correctly that
code is executed in a precisely defined order. Even that could have been implemented
with the hook management (by adding various rules to ensure the appropriate ordering
with respect to other code added by packages). However, this makes every document
unnecessary slow, because there has to be sorting even though the result is predetermined.
Furthermore it forces package writers to unnecessarily add such rules if they add further
code to the hook (or break KTEX).

For that reason such code is not using the hook management, but instead private ker-
nel commands directly before or after a public hook with the following naming convention:
\@kernel@before@(hook) or \@kernel@after@({hook). For example, in \enddocument
you find

\UseHook{enddocument}/,
\@kernel@after@enddocument

which means first the user/package-accessible enddocument hook is executed and then
the internal kernel hook. As their name indicates these kernel commands should not be
altered by third-party packages, so please refrain from that in the interest of stability
and instead use the public hook next to it.”

1.2.9 Legacy ETEX 2¢ interfaces

IMTEX 2¢ offered a small number of hooks together with commands to add to them. They
are listed here and are retained for backwards compatibility.

With the new hook management, several additional hooks have been added to ITEX
and more will follow. See the next section for what is already available.

7As with everything in TEX there is not enforcement of this rule, and by looking at the code it is
easy to find out how the kernel adds to them. The main reason of this section is therefore to say “please
don’t do that, this is unconfigurable code!”

24

\AtBeginDocument

\AtEndDocument

\AtBeginDocument [{label)] {(code)}

If used without the optional argument (label), it works essentially like before, i.e., it is
adding (code) to the hook begindocument (which is executed inside \begin{document}).
However, all code added this way is labeled with the label top-level (see section 1.2.1)
if done outside of a package or class or with the package/class name if called inside such
a file (see section 1.2.1).

This way one can add code to the hook using \AddToHook or \AtBeginDocument
using a different label and explicitly order the code chunks as necessary, e.g., run some
code before or after another package’s code. When using the optional argument the call
is equivalent to running \AddToHook {begindocument} [{label)] {(code)}.

\AtBeginDocument is a wrapper around the begindocument hook (see section 1.3.2),
which is a one-time hook. As such, after the begindocument hook is executed at
\begin{document} any attempt to add (code) to this hook with \AtBeginDocument
or with \AddToHook will cause that (code) to execute immediately instead. See sec-
tion 1.2.5 for more on one-time hooks.

For important packages with known order requirement we may over time add rules
to the kernel (or to those packages) so that they work regardless of the loading-order in
the document.

\AtEndDocument [(Iabel)] {(code)}
Like \AtBeginDocument but for the enddocument hook.

The few hooks that existed previously in I#TEX 2¢ used internally commands such
as \@begindocumenthook and packages sometimes augmented them directly rather than
working through \AtBeginDocument. For that reason there is currently support for this,
that is, if the system detects that such an internal legacy hook command contains code
it adds it to the new hook system under the label legacy so that it doesn’t get lost.

However, over time the remaining cases of direct usage need updating because in one
of the future release of IWTEX we will turn this legacy support off, as it does unnecessary
slow down the processing.

1.3 FKETgEX 2 commands and environments augmented
by hooks

In this section we describe the standard hooks that are now offered by KTEX, or give
pointers to other documents in which they are described. This section will grow over
time (and perhaps eventually move to usrguide3).

1.3.1 Generic hooks

As stated earlier, with the exception of generic hooks, all hooks must be declared
with \NewHook before they can be used. All generic hooks have names of the form
“(type)/{name)/(position)”, where (type) is from the predefined list shown below,
and (name) is the variable part whose meaning will depend on the (type). The last com-
ponent, (position), has more complex possibilities: it can always be before or after;
for env hooks, it can also be begin or end; and for include hooks it can also be end. Each
specific hook is documented below, or in 1tcmdhooks-doc.pdf or 1tfilehook-doc.pdf.
The generic hooks provided by IXTEX belong to one of the six types:

25

env Hooks executed before and after environments — (name) is the name of the environ-
ment, and available values for (position) are before, begin, end, and after;

cmd Hooks added to and executed before and after commands — (name) is the name of
the command, and available values for (position) are before and after;

file Hooks executed before and after reading a file — (name) is the name of the file (with
extension), and available values for (position) are before and after;

package Hooks executed before and after loading packages — (name) is the name of the
package, and available values for (position) are before and after;

class Hooks executed before and after loading classes — (name) is the name of the class,
and available values for (position) are before and after;

include Hooks executed before and after \included files — (name) is the name of the
included file (without the .tex extension), and available values for (position) are
before, end, and after.

Each of the hooks above are detailed in the following sections and in linked docu-
mentation.

Generic hooks for all environments
Every environment (env) has now four associated hooks coming with it:

env/(env)/before This hook is executed as part of \begin as the very first action,
in particular prior to starting the environment group. Its scope is therefore not
restricted by the environment.

env/(env)/begin This hook is executed as part of \begin directly in front of the code
specific to the environment start (e.g., the third argument of \NewDocumentEnvironment
and the second argument of \newenvironment). Its scope is the environment body.

env/(env)/end This hook is executed as part of \end directly in front of the code specific
to the end of the environment (e.g., the forth argument of \NewDocumentEnvironment
and the third argument of \newenvironment).

env/(env)/after This hook is executed as part of \end after the code specific to the
environment end and after the environment group has ended. Its scope is therefore
not restricted by the environment.

The hook is implemented as a reversed hook so if two packages add code to
env/(env)/before and to env/(env)/after they can add surrounding environ-
ments and the order of closing them happens in the right sequence.

Given that these generic hook names involve / as part of their name they would not
work if one tries to define an environment using a name that involves a /.%

Generic environment hooks are never one-time hooks even with environments that
are supposed to appear only once in a document.” In contrast to other hooks there is
also no need to declare them using \NewHook.

8Officially, IATEX names for environments should only consist of a sequence of letters, numbers, and
the character *, i.e., this is not a new restriction.

9Thus if one adds code to such hooks after the environment has been processed, it will only be
executed if the environment appears again and if that doesn’t happen the code will never get executed.

26

\BeforeBeginEnvironment

\AtBeginEnvironment

\AtEndEnvironment

\AfterEndEnvironment

The hooks are only executed if \begin{(env)} and \end{(env)} is used. If the
environment code is executed via low-level calls to \(env) and \end(env) (e.g., to avoid
the environment grouping) they are not available. If you want them available in code
using this method, you would need to add them yourself, i.e., write something like

\UseHook{env/quote/before}\quote

\endquote\UseHook{env/quote/after}

to add the outer hooks, etc.

Largely for compatibility with existing packages, the following four commands are
also available to set the environment hooks; but for new packages we recommend directly
using the hook names and \AddToHook.

\BeforeBeginEnvironment [(label)] {(env)} {{code)}

This declaration adds to the env/(env)/before hook using the (1abel). If (label) is
not given, the (default label) is used (see section 1.2.1).

\AtBeginEnvironment [(label)] {(env)} {(code)}

This is like \BeforeBeginEnvironment but it adds to the env/(env)/begin hook.

\AtEndEnvironment [(label)] {(env)} {(code)}

This is like \BeforeBeginEnvironment but it adds to the env/({env)/end hook.

\AfterEndEnvironment [(label)] {({env)} {(code)}

This is like \BeforeBeginEnvironment but it adds to the env/(env)/after hook.

Generic hooks for commands

Similar to environments there are now (at least in theory) two generic hooks available
for any ITEX command. These are

cmd/(name)/before This hook is executed at the very start of the command execution.

cmd/(name)/after This hook is executed at the very end of the command body. It is
implemented as a reversed hook.

In practice there are restrictions and especially the after hook works only with a subset
of commands. Details about these restrictions are documented in 1tcmdhooks-doc.pdf
or with code in 1tcmdhooks-code.pdf.

Generic hooks provided by file loading operations

There are several hooks added to XTEX’s process of loading file via its high-level interfaces
such as \input, \include, \usepackage, \RequirePackage, etc. These are documented
in 1tfilehook-doc.pdf or with code in 1tfilehook-code.pdf.

27

1.3.2 Hooks provided by \begin{document}

Until 2020 \begin{document} offered exactly one hook that one could add to using
\AtBeginDocument. Experiences over the years have shown that this single hook in one
place was not enough and as part of adding the general hook management system a
number of additional hooks have been added at this point. The places for these hooks
have been chosen to provide the same support as offered by external packages, such as
etoolbox and others that augmented \document to gain better control.

Supported are now the following hooks (all of them one-time hooks):

begindocument/before This hook is executed at the very start of \document, one can
think of it as a hook for code at the end of the preamble section and this is how it
is used by etoolbox’s \AtEndPreamble.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 1.2.5).

begindocument This hook is added to by using \AddToHook{begindocument} or by using
\AtBeginDocument and it is executed after the .aux file has been read and most
initialization are done, so they can be altered and inspected by the hook code. It is
followed by a small number of further initializations that shouldn’t be altered and
are therefore coming later.

The hook should not be used to add material for typesetting as we are still in
ETEX’s initialization phase and not in the document body. If such material needs
to be added to the document body use the next hook instead.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 1.2.5).

begindocument/end This hook is executed at the end of the \document code in other
words at the beginning of the document body. The only command that follows it
is \ignorespaces.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 1.2.5).

The generic hooks executed by \begin also exist, i.e., env/document/before and
env/document/begin, but with this special environment it is better use the dedicated
one-time hooks above.

1.3.3 Hooks provided by \end{document}

ITEX 2¢ has always provided \AtEndDocument to add code to the \end{document}, just
in front of the code that is normally executed there. While this was a big improvement
over the situation in KTEX 2.09, it was not flexible enough for a number of use cases
and so packages, such as etoolbox, atveryend and others patched \enddocument to add
additional points where code could be hooked into.

Patching using packages is always problematical as leads to conflicts (code avail-
ability, ordering of patches, incompatible patches, etc.). For this reason a number of
additional hooks have been added to the \enddocument code to allow packages to add
code in various places in a controlled way without the need for overwriting or patching
the core code.

Supported are now the following hooks (all of them one-time hooks):

28

enddocument The hook associated with \AtEndDocument. It is immediately called at the
beginning of \enddocument.

When this hook is executed there may be still unprocessed material (e.g., floats
on the deferlist) and the hook may add further material to be typeset. After it,
\clearpage is called to ensure that all such material gets typeset. If there is nothing
waiting the \clearpage has no effect.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 1.2.5).

enddocument/afterlastpage As the name indicates this hook should not receive code
that generates material for further pages. It is the right place to do some final
housekeeping and possibly write out some information to the .aux file (which is
still open at this point to receive data, but since there will be no more pages you
need to write to it using \immediate\write). It is also the correct place to set up
any testing code to be run when the .aux file is re-read in the next step.

After this hook has been executed the .aux file is closed for writing and then read
back in to do some tests (e.g., looking for missing references or duplicated labels,
etc.).

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 1.2.5).

enddocument/afteraux At this point, the .aux file has been reprocessed and so this is
a possible place for final checks and display of information to the user. However,
for the latter you might prefer the next hook, so that your information is displayed
after the (possibly longish) list of files if that got requested via \listfiles.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 1.2.5).

enddocument/info This hook is meant to receive code that write final information mes-
sages to the terminal. It follows immediately after the previous hook (so both could
have been combined, but then packages adding further code would always need to
also supply an explicit rule to specify where it should go.

This hook already contains some code added by the kernel (under the labels
kernel/filelist and kernel/warnings), namely the list of files when \listfiles
has been used and the warnings for duplicate labels, missing references, font sub-
stitutions etc.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 1.2.5).

enddocument/end Finally, this hook is executed just in front of the final call to \@@end.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 1.2.5).is it even possible to add
code after this one?

There is also the hook shipout/lastpage. This hook is executed as part of the last
\shipout in the document to allow package to add final \special’s to that page. Where
this hook is executed in relation to those from the above list can vary from document to
document. Furthermore to determine correctly which of the \shipouts is the last one,

29

ETEX needs to be run several times, so initially it might get executed on the wrong page.
See section 1.3.4 for where to find the details.

It is in also possible to use the generic env/document/end hook which is executed
by \end, i.e., just in front of the first hook above. Note however that the other generic
\end environment hook, i.e., env/document/after will never get executed, because by
that time I¥TEX has finished the document processing.

1.3.4 Hooks provided by \shipout operations

There are several hooks and mechanisms added to IATEX’s process of generating pages.
These are documented in 1tshipout-doc.pdf or with code in 1tshipout-code.pdf.

1.3.5 Hooks provided for paragraphs

The paragraph processing has been augmented to include a number of internal and public
hooks. These are documented in 1tpara-doc.pdf or with code in 1tpara-code.pdf.

1.3.6 Hooks provided in NFSS commands

In languages that need to support for more than one script in parallel (and thus several
sets of fonts, e.g., supporting both Latin and Japanese fonts), NFSS font commands such
as \sffamily need to switch both the Latin family to “Sans Serif” and in addition alter
a second set of fonts.

To support this, several NFSS commands have hooks to which such support can be
added.

rmfamily After \rmfamily has done its initial checks and prepared a font series update,
this hook is executed before \selectfont.

sffamily This is like the rmfamily hook, but for the \sffamily command.
ttfamily This is like the rmfamily hook, but for the \ttfamily command.

normalfont The \normalfont command resets the font encoding, family, series and
shape to their document defaults. It then executes this hook and finally calls
\selectfont.

expand@font@defaults The internal \expand@font@defaults command expands and
saves the current defaults for the metafamilies (rm/sf/tt) and the metaseries
(bf/md). If the NFSS machinery has been augmented, e.g., for Chinese or Japanese
fonts, then further defaults may need to be set at this point. This can be done in
this hook which is executed at the end of this macro.

bfseries/defaults, bfseries If the \bfdefault was explicitly changed by the user, its
new value is used to set the bf series defaults for the metafamilies (rm/sf/tt) when
\bfseries is called. The bfseries/defaults hook allows further adjustments to
be made in this case. This hook is only executed if such a change is detected. In
contrast, the bfseries hook is always executed just before \selectfont is called
to change to the new series.

mdseries/defaults, mdseries These two hooks are like the previous ones but they are
in the \mdseries command.

30

selectfont This hook is executed inside \selectfont, after the current values for en-
coding, family, series, shape, and size are evaluated and the new font is selected
(and if necessary loaded). After the hook has executed, NFSS will still do any
updates necessary for a new size (such as changing the size of \strut) and any
updates necessary to a change in encoding.

This hook is intended for use cases where, in parallel to a change in the main font,
some other fonts need to be altered (e.g., in CJK processing where you may need
to deal with several different alphabets).

1.3.7 Hook provided by the mark mechanism
See 1tmarks-doc.pdf for details.

insertmark This hook allows for a special setup while \InsertMark inserts a mark. It
is executed in group so local changes only apply to the mark being inserted.

31

file/before
file/.../before
file/.../after
file/after

Chapter 2

INTEX’s hook management for
files

2.1 Introduction

2.1.1 Provided hooks

The code offers a number of hooks into which packages (or the user) can add code to
support different use cases. Many hooks are offered as pairs (i.e., the second hook is
reversed. Also important to know is that these pairs are properly nested with respect to
other pairs of hooks.

There are hooks that are executed for all files of a certain type (if they contain code),
e.g., for all “include files” or all “packages”, and there are also hooks that are specific to
a single file, e.g., do something after the package foo.sty has been loaded.

2.1.2 General hooks for file reading

There are four hooks that are called for each file that is read using document-level com-
mands such as \input, \include, \usepackage, etc. They are not called for files read
using internal low-level methods, such as \@input or \openin.

These are:

file/before, file/(file-name)/before These hooks are executed in that order just
before the file is loaded for reading. The code of the first hook is used with every file,
while the second is executed only for the file with matching (file-name) allowing
you to specify code that only applies to one file.

file/(file-name)/after, file/after These hooks are executed after the file with
name (file-name) has been fully consumed. The order is swapped (the specific
one comes first) so that the /before and /after hooks nest properly, which is im-
portant if any of them involve grouping (e.g., contain environments, for example).
Furthermore both hooks are reversed hooks to support correct nesting of different
packages adding code to both /before and /after hooks.

32

So the overall sequence of hook processing for any file read through the user interface
commands of ITEX is:

\UseHook{file/before}
\UseHook{file/(file name)/before}
(file contents)
\UseHook{file/(file name)/after}
\UseHook{file/after}

The file hooks only refer to the file by its name and extension, so the (file name)
should be the file name as it is on the filesystem with extension (if any) and without paths.
Different from \input and similar commands, the .tex extension is not assumed in hook
(file name), so .tex files must be specified with their extension to be recognized. Files
within subfolders should also be addressed by their name and extension only.

Extensionless files also work, and should then be given without extension. Note
however that TEX prioritizes .tex files, so if two files foo and foo.tex exist in the
search path, only the latter will be seen.

When a file is input, the (file name) is available in \CurrentFile, which is then
used when accessing the file/(file name)/before and file/(file name)/after.

\CurrentFile The name of the file about to be read (or just finished) is available to the hooks through
\CurrentFile (there is no expl3 name for it for now). The file is always provided with
its extension, i.e., how it appears on your hard drive, but without any specified path
to it. For example, \input{sample} and \input{app/sample.tex} would both have
\CurrentFile being sample.tex.

\CurrentFilePath The path to the current file (complement to \CurrentFile) is available in \CurrentFilePath
if needed. The paths returned in \CurrentFilePath are only user paths, given through
\input@path (or expl3’s equivalent \1_file_search_path_seq) or by directly typing in
the path in the \input command or equivalent. Files located by kpsewhich get the path
added internally by the TEX implementation, so at the macro level it looks as if the file
were in the current folder, so the path in \CurrentFilePath is empty in these cases
(package and class files, mostly).

\CurrentFileUsed In normal circumstances these are identical to \CurrentFile and \CurrentFilePath.

\CurrentFilePathUsed They will differ when a file substitution has occurred for \CurrentFile. In that case,
\CurrentFileUsed and \CurrentFilePathUsed will hold the actual file name and path
loaded by ETEX, while \CurrentFile and \CurrentFilePath will hold the names that
were asked for. Unless doing very specific work on the file being read, \CurrentFile and
\CurrentFilePath should be enough.

2.1.3 Hooks for package and class files

Commands to load package and class files (e.g., \usepackage, \RequirePackage,
\LoadPackageWithOptions, etc.) offer the hooks from section 2.1.2 when they are used
to load a package or class file, e.g., file/array.sty/after would be called after the ar-
ray package got loaded. But as packages and classes form as special group of files, there
are some additional hooks available that only apply when a package or class is loaded.

33

package/before
package/after
package/.../before
package/.../after
class/before
class/after
class/.../before
class/.../after

These are:
package/before, package/after These hooks are called for each package being loaded.

package/(name)/before, package/(name)/after These hooks are additionally called if
the package name is (name) (without extension).

class/before, class/after These hooks are called for each class being loaded.

class/(name)/before, class/(name)/after These hooks are additionally called if the
class name is (name) (without extension).

All /after hooks are implemented as reversed hooks.

The overall sequence of execution for \usepackage and friends is:

\UseHook{package/before}
\UseOneTimeHook{package/(package name)/beforel}

\UseHook{file/before}
\UseHook{file/(package name).sty/before}
(package contents)
\UseHook{file/(package name).sty/after}
\UseHook{file/after}

code from \AtEnd0fPackage if used inside the package

\UseOneTimeHook{package/(package name)/after}
\UseHook{package/after}

and similar for class file loading, except that package/ is replaced by class/ and
\AtEndOfPackage by \AtEndOfClass.

If a package or class is not loaded none of the hooks are executed!

All class or package hooks involving the name of the class or package are implemented
as one-time hooks, whereas all other such hooks are normal hooks. This allows for the
following use case

\AddToHook{package/varioref/after}
{ ... apply my customizations if the package gets
loaded (or was loaded already) ... }

without the need to first test if the package is already loaded.

2.1.4 Hooks for \include files

To manage \include files, I#TEX issues a \clearpage before and after loading such a
file. Depending on the use case one may want to execute code before or after these
\clearpages especially for the one that is issued at the end.

Executing code before the final \clearpage, means that the code is processed while
the last page of the included material is still under construction. Executing code after
it means that all floats from inside the include file are placed (which might have added
further pages) and the final page has finished.

34

include/before
include/.../before
include/end
include/.../end
include/after
include/.../after

Because of these different scenarios we offer hooks in three places.'® None of the
hooks are executed when an \include file is bypassed because of an \includeonly decla-
ration. They are, however, all executed if ITEX makes an attempt to load the \include
file (even if it doesn’t exist and all that happens is “No file (filename).tex”).

These are:

include/before, include/(name)/before These hooks are executed (in that order) af-
ter the initial \clearpage and after .aux file is changed to use (name).aux, but
before the (name).tex file is loaded. In other words they are executed at the very
beginning of the first page of the \include file.

include/(name)/end, include/end These hooks are executed (in that order) after
KTEX has stopped reading from the \include file, but before it has issued a
\clearpage to output any deferred floats.

include/(name)/after, include/after These hooks are executed (in that order) after
ETEX has issued the \clearpage but before is has switched back writing to the
main .aux file. Thus technically we are still inside the \include and if the hooks
generate any further typeset material including anything that writes to the .aux
file, then it would be considered part of the included material and bypassed if it is
not loaded because of some \includeonly statement.'!

include/excluded, include/(name)/excluded The above hooks for \include files are
only executed when the file is loaded (or more exactly the load is attempted).
If, however, the \include file is explicitly excluded (through an \includeonly
statement) the above hooks are bypassed and instead the include/excluded hook
followed by the include/(name)/excluded hook are executed. This happens after
ETEX has loaded the .aux file for this include file, i.e., after TEX has updated its
counters to pretend that the file was seen.

All include hooks involving the name of the included file are implemented as one-
time hooks (whereas all other such hooks are normal hooks).

If you want to execute code that is run for every \include regardless of whether or
not it is excluded, use the cmd/include/before or cmd/include/after hooks.

2.1.5 High-level interfaces for KTEX

We do not provide any additional wrappers around the hooks (like filehook or scrlifile
do) because we believe that for package writers the high-level commands from the hook
management, e.g., \AddToHook, etc. are sufficient and in fact easier to work with, given
that the hooks have consistent naming conventions.

10Tf you want to execute code before the first \clearpage there is no need to use a hook—you can
write it directly in front of the \include.

HFor that reason another \clearpage is executed after these hooks which normally does nothing, but
starts a new page if further material got added this way.

35

2.1.6 Kernel, class, and package interfaces for BTEX

\declare@file@substitution

\declare@file@substitution {(file)} {(replacement-file)}

\undeclare@file@substitution \undeclare@file@substitution {(file)}

\disable@package@load
\reenable@package@load

If (file) is requested for loading replace it with (replacement-file). \CurrentFile
remains pointing to (file) but \CurrentFileUsed will show the file actually loaded.

The main use case for this declaration is to provide a corrected version of a package
that can’t be changed (due to its license) but no longer functions because of BTEX kernel
changes, for example, or to provide a version that makes use of new kernel functionality
while the original package remains available for use with older releases. As such it is
mainly meant for use in the INTEX kernel but other use cases are conceivable.

The \undeclare@file@substitution declaration undoes a substitution made ear-
lier.

Please do not misuse this functionality and replace a file with another un-
less if really needed and only if the new version is implementing the same
functionality as the original one!

\disable@package@load {(package)} {(alternate-code)}
\reenable@package@load {(package)}

If (package) is requested, do not load it but instead run (alternate-code) which could
issue a warning, error or any other code.

The main use case is for classes that want to restrict the set of supported packages
or contain code that make the use of some packages impossible. So rather than waiting
until the document breaks they can set up informative messages why certain packages
are not available.

The function is only implemented for packages not for arbitrary files and again it
should only be applied if there are good reasons for doing this.'?

2.1.7 A sample package for structuring the log output

As an application we provide the package structuredlog that adds lines to the .log when
a file is opened and closed for reading keeping track of nesting level es well. For example,
for the current document it adds the lines

= (LEVEL 1 START) tllmr.fd

= (LEVEL 1 STOP) tilmr.fd

= (LEVEL 1 START) supp-pdf.mkii
= (LEVEL 1 STOP) supp-pdf .mkii
= (LEVEL 1 START) nameref.sty

== (LEVEL 2 START) refcount.sty
(LEVEL 2 STOP) refcount.sty

(LEVEL 2 START) gettitlestring.sty
(LEVEL 2 STOP) gettitlestring.sty
= (LEVEL 1 STOP) nameref.sty

(LEVEL 1 START) 1ltfilehook-doc.out

12 Just to be sure: “I don’t like this package by somebody else” is not a good one :-)

36

= (LEVEL 1 STOP) ltfilehook-doc.out

1
= (LEVEL 1 START) 1ltfilehook-doc.out
= (LEVEL 1 STOP) 1ltfilehook-doc.out
= (LEVEL 1 START) ltfilehook-doc.hd
= (LEVEL 1 STOP) 1ltfilehook-doc.hd
= (LEVEL 1 START) 1ltfilehook.dtx
== (LEVEL 2 START) otillmr.fd
== (LEVEL 2 STOP) otllmr.fd
== (LEVEL 2 START) omllmm.fd
== (LEVEL 2 STOP) omllmm.fd
== (LEVEL 2 START) omslmsy.fd
== (LEVEL 2 STOP) omslmsy.fd
== (LEVEL 2 START) omxlmex.fd
== (LEVEL 2 STOP) omxlmex.fd
== (LEVEL 2 START) umsa.fd
== (LEVEL 2 STOP) umsa.fd
== (LEVEL 2 START) umsb.fd
== (LEVEL 2 STOP) umsb.fd
== (LEVEL 2 START) tsilmr.fd
== (LEVEL 2 STOP) tsillmr.fd
== (LEVEL 2 START) tllmss.fd
== (LEVEL 2 STOP) tllmss.fd

= (LEVEL 1 STOP) 1ltfilehook.dtx

Thus if you inspect an issue in the .log it is easy to figure out in which file it occurred,
simply by searching back for LEVEL and if it is a STOP then remove 1 from the level value
and search further for LEVEL with that value which should then be the START level of the
file you are in.

37

Chapter 3

Hook management for
commands

3.1 Introduction

This file implements generic hooks for (arbitrary) commands. In theory every command
\(name) offers now two associated hooks to which code can be added using \AddToHook,"*
\AddToHookNext, \AddToHookWithArguments, and \AddToHookNextWithArguments.'*

However, this is only true “in theory”. In practice there are a number of restrictions
that makes it impossible to use such generic command hooks in a number of cases, so
please read all of section 3.2 to understand what may prevent you from using them
successfully.

The generic command hooks are:

cmd/(name)/before This hook is executed at the very start of the command, right
after its arguments (if any) are parsed. The hook (code) runs in the com-
mand inside a call to \UseHookWithArguments. Any code added to this hook
using \AddToHookWithArguments or \AddToHookNextWithArguments can access
the command’s arguments using #1, #2, etc., up to the number of arguments of the
command. If \AddToHook or \AddToHookNext are used, the arguments cannot be
accessed (see the Ithooks documentation'® on hooks with arguments).

cmd/(name)/after This hook is similar to cmd/(name)/before, but it is executed at the
very end of the command body. This hook is implemented as a reversed hook.

The hooks are not physically present before \begin{document}'® (i.e., using a com-
mand in the preamble will never execute the hook) and if nobody has declared any code
for them, then they are not added to the command code ever. For example, if we have
the following definition

131n this documentation, when something is being said about \AddToHook, the same will be valid for
\AddToHookWithArguments, unless that particular paragraph is highlighting the differences between both.
The same is true for the other hook-related functions and their ...WithArguments counterparts.

141n practice this is not supported for all types of commands, see section 3.2.4 for the restrictions that
apply and what happens if one tries to use this with commands for which this is not supported.

15texdoc lthooks-doc

16More specifically, they are inserted in the commands after the begindocument hook, so they are also
not present while IATEX is reading the .aux file.

38

\newcommand\foo[2]{Code #1 for #2!}

then executing \foo{A}{B} will simply run Code_ A for B! as it was always the case.
However, if somebody, somewhere (e.g., in a package) adds

\AddToHook{cmd/foo/before}{<before code>}
then, after \begin{document} the definition of \foo will be:

\renewcommand\foo [2]{/
\UseHookWithArguments{cmd/foo/beforeH 2 H{#1{#2}%
Code #1 for #2!}

and similarly \AddToHook{cmd/foo/after}{<after code>} alters the definition to

\renewcommand\foo [2] {%
Code #1 for #2!9,
\UseHookWithArguments{cmd/foo/after {2} {#1}{#2}}

In other words, the mechanism is similar to what etoolbox offers with \pretocmd
and \apptocmd with the important differences

e that code can be prepended or appended (i.e., added to the hooks) even if the
command itself is not (yet) defined, because the defining package has not been
loaded at this point;

e and that by using the hook management interface it is now possible to define how
the code chunks added in these places are ordered, if different packages want to
add code at these points.

3.2 Restrictions and operational details

Adding arbitrary material to commands is tricky because most of the time we do not
know what the macro expects as arguments when expanding and TEX doesn’t have a
reliable way to see that, so some guesswork has to be employed.

We can do this in most cases when commands are defined using \NewDocumentCommand
or \newcommand (with a few exceptions). For commands defined with \def the situation
is less good. Common cases where the command hooks will not work are:

e Commands that use special catcode settings within their definition. In that case it
is usually not possible to augment the definition (see 3.2.1).

e If a command is defined while \ExplSyntax0n is in force and the command contains
~ characters to represent spaces, then it can’t be patched to include the command
hooks. In fact in some very special circumstances you might even get a low-level
error rather than the information that the command can’t be patched (see, for
example, https://github.com/latex3/latex2e/issues/1430.

o Commands that have arguments as far as the user is concerned (e.g., \section or
\caption), but are defined in a way that these arguments are not read by the user
level command but only later during the processing. In that case the after hook
doesn’t work at all. The before hook only works with \AddToHook but not with
\AddToHookWithArguments because the arguments haven’t been read at that point
where the hook is patched in. See section 3.2.4.

39

https://github.com/latex3/latex2e/issues/1430

o Adding a specific generic command hook is only attempted once per command,
thus after redefining a command such hooks will no longer be there and will also
not being re-added, see section 3.2.1.

All this means that you have to have a good understanding of how commands are defined
when you attempt to make use of such hooks and something goes wrong. What can help
in that case is to turn on \DebugHooksOn in which case you get much more (low-level)
details on why something fails and what was tried to enable the hooks.

3.2.1 Patching

The code here tries to find out if a command was defined with \newcommand or
\DeclareRobustCommand or \NewDocumentCommand, and if so it assumes that the ar-
gument specification of the command is as expected (which is not fail-proof, if someone
redefines the internals of these commands in devious ways, but is a reasonable assump-
tion).

If the command is one of the defined types, the code here does a sandboxed expansion
of the command such that it can be redefined again exactly as before, but with the hook
code added.

If however the command is not a known type (it was defined with \def, for exam-
ple), then the code uses an approach similar to etoolbox’s \patchcmd to retokenize the
command with the hook code in place. This procedure, however, is more likely to fail if
the catcode settings are not the same as the ones at the time of command’s definition,
so not always adding a hook to a command will work.

Timing

When \AddToHook (or its expl3 equivalent) is called with a generic cmd hook, say,
cmd/foo/before, for the first time (that is, no code was added to that same hook be-
fore), in the preamble of a document, it will store a patch instruction for that command
until \begin{document}, and only then all the commands which had hooks added will
be patched in one go. That means that no command in the preamble will have hooks
patched into them.

At \begin{document} all the delayed patches will be executed, and if the command
doesn’t exist the code is still added to the hook, but it will not be executed. After
\begin{document}, when \AddToHook is called with a generic cmd hook the first time,
the command will be immediately patched to include the hook, and if it doesn’t exist or
if it can’t be patched for any reason, an error is thrown; if \AddToHook was already used
in the preamble no new patching is attempted.

This has the consequence that a command defined or redefined after \begin{document}
only uses generic cmd hook code if \AddToHook is called for the first time after the def-
inition is made, or if the command explicitly uses the generic hook in its definition by
declaring it with \NewHookPair adding \UseHook as part of the code.!”

3.2.2 Command copies

Once a hook has been added to a command, it will be present in any copies of that
command which are made. For example, if in the preamble we have

17We might change this behavior in the main document slightly after gaining some usage experience.

40

\NewDocumentCommand\foo{}{}
\AddToHook{cmd/foo/after}{1}%

then after \begin{document}, any use of \NewCommandCopy will include the hook in the
copy, for example

\NewCommandCopy\baz\foo

would include the hook in this copied command.

3.2.3 Grouping

Command hooks are intended to be added to document commands, which are typically
defined globally. As such, adding a hook is a global operation, even if the command was
previously only locally-defined. Addition of material to hooks is also global.

3.2.4 Commands that look ahead

Some commands are defined in different “steps” and they look ahead in the input stream
to find more arguments. If you try to add some code to the cmd/(name)/after hook of
such command, it will not work, and it is not possible to detect that programmatically,
so the user has to know (or find out) which commands can or cannot have hooks attached
to them.

One good example is the \section command. You can add something to the
cmd/section/before hook (but only with \AddToHook not \AddToHookWithArguments),
but if you try to add anything to the cmd/section/after hook, \section will no longer
work at all. That happens because the \section macro takes no argument, but instead
calls a few internal IATEX macros to look for the optional and mandatory arguments. By
adding code to the cmd/section/after hook, you get in the way of that scanning.

In such a case, where it is known that a specific generic command hook does not work
if code is added to it, the package author can add a \DisableGenericHook'® declaration
to prevent this from happening in user documents and thereby avoiding obscure errors.

3.3 Package author interface

The cmd hooks are, by default, available for all commands that can be patched to add
the hooks. For some commands, however, the very beginning or the very end of the
code is not the best place to put the hooks, for example, if the command looks ahead for
arguments (see section 3.2.4).

If you are a package author and you want to add the hooks to your own com-
mands in the proper position you can define the command and manually add the
\UseHookWithArguments calls inside the command in the proper positions, and manually
define the hooks with \NewHookWithArguments or \NewReversedHookWithArguments.
When the hooks are explicitly defined, patching is not attempted so you can make sure
your command works properly. For example, an (admittedly not really useful) command
that typesets its contents in a framed box with width optionally given in parentheses:

\newcommand\fancybox{\Q@ifnextchar ({\@fancybox}{\@fancybox(5cm)}}
\def\@fancybox (#1)#2{\fbox{\parbox{#1}{#2}}}

18Please use \DisableGenericHook if at all, only on hooks that you “own?”, i.e., for commands your
package or class defines and not second guess whether or not hooks of other packages should get disabled!

41

If you try that definition, then add some code after it with
\AddToHook{cmd/fancybox/after}{<code>}

and then use the \fancybox command you will see that it will be completely broken,
because the hook will get executed in the middle of parsing for optional (...) argument.

If, on the other hand, you want to add hooks to your command you can do something
like:

\newcommand\fancybox{\@ifnextchar ({\@fancybox}{\@fancybox(5cm)}}
\def\@fancybox (#1)#2{\fbox{’
\UseHookWithArguments{cmd/fancybox/before}{ 2} {#1}{#2}%
\parbox{#1}{#2}
\UseHookWithArguments{cmd/fancybox/after}{2}{#1}{#2}}}
\NewHookWithArguments{cmd/fancybox/before}{2}
\NewReversedHookWithArguments{cmd/fancybox/after}{2}

then the hooks will be executed where they should and no patching will be at-
tempted. It is important that the hooks are declared with \NewHookWithArguments or
\NewReversedHookWithArguments, otherwise the command hook code will try to patch
the command. Note also that the call to \UseHookWithArguments{cmd/fancybox/before}
does not need to be in the definition of \fancybox, but anywhere it makes sense to insert
it (in this case in the internal \@fancybox).

Alternatively, if for whatever reason your command does not support the generic
hooks provided here, you can disable a hook with \DisableGenericHook'?, so that when
someone tries to add code to it they will get an error. Or if you don’t want the error,
you can simply declare the hook with \NewHook and never use it.

The above approach is useful for really complex commands where for one or the
other reason the hooks can’t be placed at the very beginning and end of the command
body and some hand-crafting is needed. However, in the example above the real (and
in fact only) issue is the cascading argument parsing in the style developed long ago in
IXTEX 2.09. Thus, a much simpler solution for this case is to replace it with the modern
\NewDocumentCommand syntax and define the command as follows:

\DeclareDocumentCommand\fancybox{D () {5cm}m}{\fbox{\parbox{#1}{#2}}}

If you do that then both hooks automatically work and are patched into the right places.

3.3.1 Arguments and redefining commands

The code in ltcmdhooks does its best to find out how many arguments a given command
has, and to insert the appropriate call to \UseHookWithArguments, so that the arguments
seen by the hook are exactly those grabbed by the command (the hook, after all, is a
macro call, so the arguments have to be placed in the right order, or they won’t match).

When using the package writer interface, as discussed in section 3.3, to change the
position of the hooks in your commands, you are also free to change how the hook code
in your command sees its arguments. When a cmd hook is declared with \NewHook (or
\NewHookWithArguments or other variations of that), it loses its “generic” nature and
works as a regular hook. This means that you may choose to declare it without arguments

19Please use \DisableGenericHook if at all, only on hooks that you “own”, i.e., for commands your
package or class defines and not second guess whether or not hooks of other packages should get disabled!

42

regardless if the command takes arguments or not, or declare it with arguments, even if
the command takes none.

However, this flexibility should not be abused. When using a nonstandard configu-
ration for the hook arguments, think reasonably: a user will expect that the argument
#1 in the hook corresponds to the argument’s first argument, and so on. Any other
configuration is likely to cause confusion and, if used, will have to be well documented.

This flexibility, however, allows you to “correct” the arguments for the hooks. For
example, IXTEX’s \refstepcounter has a single argument, the name of the counter. The
cleveref package adds an optional argument to \refstepcounter, making the name of
the counter argument #2. If the author of cleveref wanted, for whatever reason, to add
hooks to \refstepcounter, to preserve compatibility he could write something along the
lines of:

\NewHookWithArguments{cmd/refstepcounter/before}{1}

\renewcommand\refstepcounter [2] [<default>]{/%
\UseHookWithArguments{cmd/refstepcounter/before}{1}{#23}/
<code for \refstepcounter>}

so that the mandatory argument, which is arg #2 in the definition, would still be seen as
#1 in the hook code.

Another possibility would be to place the optional argument as the second argument
for the hook, so that people looking for it would be able to use it. In either case, it would
have to be well documented to cause as little confusion as possible.

43

Chapter 4

Paragraph building and hooks

4.1 Introduction

The building of paragraphs in the TEX engine(s) has a number of peculiarities that
makes it on one hand fairly flexible but on the other hand somewhat awkward to control
or reliably to extend. Thus to better understand the code below we start with a brief
introduction of the mechanism; for more details refer to the TEXbook [?, chap. 14] (for
the full truth you may even have to study the program code).

4.1.1 The default processing done by the engine

TEX automatically starts building a paragraph when it is currently in vertical mode and
encounters anything that can only live in horizontal mode. Most often this is a character,
but there are also many commands that can be used only in horizontal mode. If any
of them is encountered, TEX will immediately back up (i.e., the character or command
is read later again), adds a \parskip glue to the current vertical list unless the list is
empty, switches to horizontal mode, starts its special “start of paragraph processing” and
only then rereads the character or command that caused the mode change.?’

This “start of paragraph processing” first adds an empty box at the start of the
horizontal list of width \parindent (which represents the paragraph indentation) unless
the paragraph was started with \noindent in which case no such box is added?!. It then
reads and processes all tokens stored in the special engine token register \everypar.
After that it reads and processes whatever has caused the paragraph to start.

Thus out of the box, TEX offers the possibility to put some special code into
\everypar to gain control at (more or less) the start of the paragraph. For example, in
LaTeX and a number of packages, special code like the following is sometimes used:

\everypar{{\setbox\z@\lastbox}\everypar{} ...}

This removes the paragraph indentation box again (that was already placed by TgX),
then resets \everypar so that it doesn’t do anything on the next paragraph start and then
does whatever it wants to do, e.g., in an \item of a list it will typeset the label in front
of the paragraph text. However, there is only one such \everypar token register and if

20 Already not quite true: the command \noindent starts the paragraph but influences the special
processing by suppressing the paragraph indentation box normally inserted by it.
21That’s a bit different from placing a zero-sized box!

44

different packages and/or the kernel all attempt to add their own code here, coordination
is very difficult if not impossible.

The process when the paragraph ends has different mechanisms and interfaces. A
paragraph ends when the engine primitive \par is called while TEX is in unrestricted hor-
izontal mode, i.e., is building a paragraph. At other times this primitive does nothing or
generates as an error depending on the mode TEX is in, e.g., the \par in \hbox{a\par b}
is ignored, but $a\par b$ would complain.

If this primitive ends the paragraph it does some special “end of horizontal list”
processing, then calls TEX’s paragraph builder; this breaks the horizontal list into lines
and then these lines are added as boxes to the enclosing vertical list and TEX returns to
vertical mode.

This \par command can be given explicitly, but there are also situations in which
TEX is generating it on the fly. Most often this happens when TEX encounters a blank
line which is automatically changed to a \par command which is then executed. The
other possibility is that TEX encounters a command which is incompatible with horizontal
processing, e.g., \vskip (a request for adding vertical space). In such cases it silently
backs up, and inserts a \par in the hope that this gets it out of horizontal mode and
makes the vertical command acceptable.

The important point to note here is that TEX really inserts the command with
the name \par, which can be redefined. Thus, it may not have its original “primitive”
meaning and therefore may not end the horizontal list and call the paragraph builder.
This approach offers some flexibility but also allows you to easily produce a TEX document
that loops forever, for example, the simple line

A \let\par\relax \vskip

will start a horizontal list at A, redefines \par, then sees \vskip and inserts \par to end
the paragraph. But this now only runs \relax so nothing changes and \vskip is read
again, issues a \par which In short, it only takes a plain TEX document with five
tokens to run forever (since no memory is consumed and therefore eventually exhausted).

There is no way other than changing \par to gain control at the end of a paragraph,
i.e., there is no token list like \everypar that is inserted. Hence the only way to change
the default behavior is to modify the action that \par executes, with similar issues
as outlined before: different processes need to ensure that they do not overwrite their
modifications or worse, think that the \par in front of them is the engine primitive while
in fact it has already been changed by other code.

To make matters slightly worse there are a few places where TEX handles the situa-
tion differently (most likely for speed reasons back when computers were much slower). If
TEX finds itself in unrestricted horizontal mode at the end of building a vertical box (for
an \insert, \vadjust or executing the output routine code), it will finish the horizontal
list not by issuing a \par command (which would be consistent with all other places) but
by simply executing the primitive meaning of \par, regardless of the actual definition
that \par has at the time.

Thus, if you have carefully crafted a redefined \par to execute some special actions
at the end of a paragraph and you write something like

\vbox{Some paragraph ... text.}

you will find that your code does not get run for the last paragraph in that box. INTEX
avoids this problem, by making sure that its boxes (such as \parbox or the minipage
environment, etc.) all internally add an explicit \par at the end so that such code is run

45

and TEX finds itself in vertical mode already without the need to start up the paragraph
builder internally. But, of course, this only works for boxes under direct control of the
IXTEX kernel; if some package uses low-level \vboxes without adding this precaution the
TEX optimization kicks in and no special \par code is executed.

And there is another optimization that is painful: if a paragraph is interrupted
by a mathematical display, e.g., \[...\] in IXTEX or $$...$$ in plain TEX, then TEX
will resume horizontal mode afterward, i.e., it will start to build a new horizontal list
without inserting an indentation box or \everypar at that point. However, if that list
immediately ends with an explicit or implicit \par then TEX will simply throw away this
“null” paragraph and not do its usual “end of horizontal list” processing, so this special
case also needs to be accounted for when introducing any extended processing.

4.2 The new mechanism implemented for KTEX

To improve the situation (and also to support automatic tagging of PDF documents) we
now offer public as well as private hooks at the start and end of the paragraph processing.
The public hooks can be used by packages (or by the user in the preamble or within the
document) and using the hook mechanisms it is possible to reorder or arrange code from
different packages in such a way that these can safely coexist.

To make that happen we have to make use of the basic functionality that is offered
by TEX, e.g., we install special code inside \everypar to provide hooks at the beginning
and we redefine \par to do some special processing when appropriate to install hooks at
the end of the paragraph.

In order to make this work, we have to ensure that package use of \everypar is not
overwriting our code. This is done through a trick: we basically hide the real \everypar
from the packages and offer them a new token register (with the same name). So if
they install their own code it doesn’t overwrite ours. Our code then inserts the new
\everypar at the right place inside the process so that it looks as if it was the primitive
\everypar.??

At the end of the paragraph it would be great if we could use a similar trick. However,
due to the fact that TEX inserts the token \par (that doesn’t have a defined meaning)
we can’t hide “the real thing™” and offer the package an indistinguishable alternate.

Fortunately, I*TEX has already redefined \par for its own purposes. As a result
there aren’t many packages that attempt to change \par, because without a lot of extra
care that would fail miserably. But the bottom line is that, if you load a package that
alters \par then the end of paragraph hooks are most likely not executing while that
redefinition is active.?3

22Ideally, \everypar wouldn’t be used at all by packages and instead they would simply write their
code into the hooks now offered by the kernel. However, while this is the longterm goal and clearly an
improvement (because then the packages do no longer need to worry about getting their code overwritten
or needing to account for already existing code in \everypar), this will not happen overnight. For that
reason support for this legacy method is retained.

23Similarly to the \everypar situation, the remedy is that such packages stop doing this and instead
add their alterations into the paragraph hooks now provided.

46

4.2.1 The provided hooks

para/before The following four public hooks are defined and executed for each paragraph:

para/begin
para/end

para/after

para/before This hook is executed after the kernel hook \@kernel@before@para@before

(discussed below) in vertical mode immediately after TEX has contributed \parskip
to the vertical list and before the actual paragraph processing in horizontal mode
starts.

This hook should either not produce any typeset material or add only vertical
material. If it starts a paragraph an error is generated. The reason is that we are
in the starting process of processing a paragraph and so this would lead to endless
recursion.?*

para/begin This hook is executed after the kernel hook \@kernel@before@para@begin

(discussed below) in horizontal mode immediately before the indentation box is
placed (if there is any, i.e., if the paragraph hasn’t been started with \noindent).

The indentation box to be typeset is available to the hook as \IndentBox and
its automatic placement (after the hook is executed) can be prevented through
\OmitIndent. More precisely \OmitIndent voids the box.

The indentation box is then typeset directly after the hook execution by something
equivalent to \box\IndentBox followed by the current content of the token register
\everypar that it is available to the kernel or to packages (that run some legacy
code).

One has to be careful not to add any code to the hook that starts its own paragraph
(e.g., by adding a \parbox or a \marginpar inside) because that would call the
hook inside again (as a new paragraph is started there) and thus lead to an endless
recursion ending only after exhausting the available memory. This can only be
done by making sure that is not executed for the inner paragraphs (or at least not
recursively forever).

para/end This hook is executed at the end of a paragraph when TEX is ready to return to

vertical mode and after it has removed the last horizontal glue (but not any kerns)
placed on the horizontal list. The code is still executed in horizontal mode so it
is possible to add further horizontal material at this point, but it should not alter
the mode (even a temporary exit from horizontal mode would create chaos—any
attempt will cause an error message)! After the hook has ended the kernel hook
\@kernel@after@para@end is executed and then TEX returns to vertical mode.

The hook is offered as public hook, but because of the requirement to stay within
horizontal mode one needs to be careful in what is placed into the hook.?®

This hook is implemented as a reversed hook.

para/after This hook is executed directly after TEX has returned to vertical mode and

after any material that migrated out of the horizontal list (e.g., from a \vadjust)
has processed.

240ne could allow it but only if the newly started paragraph is processed without any hooks. Further-
more correct spacing would be a bit of a nightmare so for now this is forbidden.

25Maybe we should guard against that, but it would be rather tricky to implement as mode changes
can happen across group boundaries so one would need to keep a private stack just for that. Well,
something to ponder.

47

This hook should either not produce any typeset material or add only vertical
material. However, for this hook starting a new paragraph is not a disaster so that
it isn’t prevented.

This hook is implemented as a reversed hook.

Once that hook code has been processed the kernel hook \@kernel®@after@para@after
is executed as the final action of the paragraph processing.

\@kernel@before@para@before
\@kernel@after@para®after
\@kernel@before@para@begin
\@kernel®@after@para@end

As already mentioned above there are also four kernel hooks that are executed at the
start and end of the processing.

\@kernel@before@para@before For future extensions, not currently used by the kernel.
\@kernel@after@para@after For future extensions, not currently used by the kernel.

\@kernel@before@paralbegin Used by the kernel to implement tagging. This hook is
executed at the very beginning of a paragraph after TEX has switched to horizontal
mode but before any indentation box got added or any \everypar was run.

It should not generate typeset material that could alter the position. Note that
it should never leave hmode, otherwise you will end with a loop! We could guard
against this, but since it is an internal kernel hook that shouldn’t be touched this
isn’t checked.

\@kernel@after@para@end Used by the kernel to implement tagging. It is executed
directly after the public para/end hook. After it there is a quick check that we
are still in horizontal mode, i.e., that the public hook has not mistakenly ended
horizontal mode prematurely (this is an incomplete check just testing the mode
and could perhaps be improved (at the cost of speed)).

4.2.2 Altered and newly provided commands

\par An explicit request for ending a paragraph is provided in plain TEX under the name

\endgraf \endgraf, which simply uses the primitive meaning (regardless of what \par may have

\para_end: . jts current definition). In KTEX \endgraf (with that behavior) was originally also
available.

With the new paragraph handling in BTEX, ending a paragraph means a bit more
than just calling the engine’s paragraph builder: the process also has to add any hook
code for the end of a paragraph. Thus \endgraf was changed to provide this additional
functionality (along with \par remaining subject to its current meaning).

The expl3 name for this functionality is \para_end:.

Note: The next two commands are still under discussion and may slightly
change their semantics (as described in the document) and/or their names
between now and the 2021 Spring release!

48

\OmitIndent
\para_omit_indent:

\IndentBox
\g_para_indent_box

\RawIndent
\para_raw_indent:
\RawNoindent
\para_raw_noindent:
\RawParEnd
\para_raw_end:

Inside the para/begin hook one can use this command to suppress the indentation box
at the start of the paragraph. (Technically it is possible to use this command outside the
hook as well, but this should not be relied upon.) The box itself remains available for
use.

The expl3 name for the function is \para_omit_indent:.

The box register holding the indentation box for the paragraph is available for inspection
(or changes) inside hooks. It remains available even if the \OmitIndent command was
used; in that case it will just not be automatically placed.

The expl3 name for the box register is \g_para_indent_box.

\RawIndent hmode material \RawParEnd
\RawNoindent hmode material \RawParEnd

The commands \RawIndent and \RawNoindent are not meant for normal paragraph
building (where the result is a textual paragraph in the traditional meaning of the word),
but for special cases where TEX’s low-level algorithm is used to achieve special effects,
but where the result is not a “paragraph”.

They are called “raw”, because they bypass ITEX’s hook mechanism for paragraphs
and simply invoke the low-level TEX algorithm. L.e., they are like the original TEX prim-
itives \indent and \noindent (that is they execute no hooks other than \everypar)
except that they can only be used in vertical mode and generate an error if found else-
where.

To avoid issues a paragraph started by them should always be ended by \RawParEnd?>°
and not by \par (or a blank line), because the latter will execute hooks which then have
no counterpart at the beginning of the paragraph. It is the responsibility of the program-
mer to make sure that they are properly paired. This also means that one should not
put arbitrary user content between these commands if that content could contain stray
\pars.

The expl3 names for the functions are \para_raw_indent:, \para_raw_indent: and
\para_raw_end:.

4.2.3 Examples

None of the examples in this section are meant for real use as they are far too simple-
minded but they should give some ideas of what could be possible if a bit more care is
applied.

Testing the mechanism

The idea is to output for each paragraph encountered some information: a paragraph
sequence number, a level number in roman numerals, the environment in which this
paragraph appears, and the line number where the start or end of the paragraph is, e.g.,
something like

26Technical note for those who know their TgXbook: the \RawParEnd command invokes the original
TEX engine definition of \par that (solely) triggers the paragraph builder in TEX when found inside
unrestricted horizontal mode and does nothing in other processing modes.

49

PARA: 1-i start (document env. on input line 38)
PARA: 1-i end (document env. on input line 38)
PARA: 2-i start (document env. on input line 40)
PARA: 3-ii start (minipage env. on input line 40)
PARA: 3-ii end (minipage env. on input line 40)
PARA: 2-i end (document env. on input line 41)

As you can see paragraph 2 starts on line 40 and ends on 41 and inside a minipage started
paragraph 3 (start and end on line 40). If you run this on some document you will find
that ITEX considers more things “a paragraph” than you have probably thought.

This was generated by the following hook code:

\newcounter{paracnt} % sequence counter
\newcounter{paralevel} % level counter

To support paragraph nesting we need to maintain a stack of the sequence numbers.
This is most easily done using expl3 functions, so we switch over. This is not a very
general implementation, just enough for what we need and a bit of ITEX 2¢ thrown in
as well. When popping, the result gets stored in \paracntvalue and the \ERROR should
never happen because it means we have tried to pop from an empty stack.

\ExplSyntaxOn
\seq_new:N \g_para_seq
\cs_new:Npn \ParaPush
{\seq_gpush:No \g_para_seq {\the\value{paracnt}}}
\cs_new:Npn \ParaPop {\seq_gpop:NNF \g_para_seq \paracntvalue \ERROR }
\ExplSyntax0ff

At the start of the paragraph increment both sequence counter and level and also save
the then current sequence number on our stack.

\makeatletter % because we use a few internal 2e commands

\AddToHook{para/begin}{/%
\stepcounter{paracnt}\stepcounter{paralevelly,
\ParaPush

To display the sequence number we \typeout the current sequence and level number.
The command \@currenvir gives us the current environment and \on@line produces a
space and the current input line number.

\typeout{PARA: \arabic{paracnt}-\roman{paralevel} start
(\@currenvir\space env.\on@line)}%

We also typeset the sequence number as a tiny red number in a box that takes up
no horizontal space. This helps us seeing where IXTEX sees the start and end of the
paragraphs in the document.

\llap{\color{red}\tiny\arabic{paracnt}\ 1}/
}

At the end of the paragraph we display sequence number and level again. The level
counter has the correct value but we need to retrieve the right sequence value by popping
it off the stack after which it is available in \paracntvalue the way we have set this up
above.

50

\AddToHook{para/end}{%
\ParaPop
\typeout{PARA: \paracntvalue-\roman{paralevell} end \space\space
(\@currenvir\space env.\on@line)}%

We also typeset again a tiny red number with that value, this time sticking out to the
right.?” We also decrement the level counter since our level has finished.

\rlap{\color{red}\tiny\ \paracntvaluel},
\addtocounter{paralevel}{-1}%
}

\makeatother

Mark the first paragraph of each itemize

The code for this is rather simple. We supply some code that is executed only once inside
a hook at the start of each itemize. We explicitly change the color back and forth so
that we don’t introduce grouping around the paragraph.

\AddToHook{env/itemize/begin}{%
\AddToHookNext{para/begin}{\color{blue}}%
\AddToHookNext{para/end}{\color{black}}/,

}

As a result the first paragraph of each itemize will appear in blue.

4.2.4 Some technical notes

The code tries hard to be transparent for package code, but of course any change means
that there is a potential for breaking other code. So in section we collect a few cases that
may be of importance if low-level code is dealing with paragraphs that are now behaving
slightly differently. The notes are from issues we observed and will probably grow over
time.

Glue items between paragraphs (found with fancypar)

In the past BTEX placed two glue items between two consecutive paragraphs, e.g.,
textl \par text2 \par
would show something like

\glue (\parskip) 0.0 plus 1.0
\glue(\baselineskip) 5.16669

but now there is another \parskip glue (that is always Opt):

\glue (\parskip) 0.0 plus 1.0
\glue (\parskip) 0.0
\glue (\baselineskip) 5.16669

2"Note that this can alter the document pagination, because a paragraph ending in a display (e.g., an
equation) will get an extra line—in that case our tiny number has an effect even though it doesn’t take
up any space, because it paragraph is no longer empty and thus isn’t dropped!

o1

The reason is that we generate a “fake” paragraph to gain control and safely add the
early hooks, but this generates an additional glue item. That item doesn’t contribute
anything vertically but if somebody writes code that unravels a constructed list using
\lastbox, \unskip and \unpenalty then the code has to remove one additional glue
item or else it will fail.

52

\shipout

Chapter 5

The shipout routine: hooks
and interfaces

5.1 Introduction

The code provides an interface to the \shipout primitive of TEX which is called when
a finished pages is finally “shipped out” to the target output file, e.g., the .dvi or .pdf
file. A good portion of the code is based on ideas by Heiko Oberdiek implemented in his
packages atbegshi and atenddvi even though the interfaces are somewhat different.?®

5.1.1 Overloading the \shipout primitive

With this implementation TEX’s shipout primitive is no longer available for direct use.
Instead \shipout is running some (complicated) code that picks up the box to be shipped
out regardless of how that is done, i.e., as a constructed \vbox or \hbox or as a box
register.

It then stores it in a named box register. This box can then be manipulated through
a set of hooks after which it is shipped out for real.

Each shipout that actually happens (i.e., where the material is not discarded for one
or the other reason) is recorded and the total number is available in a readonly variable
and in a KTEX counter.

28Heiko’s interfaces are emulated by the kernel code, if a document requests his packages, so older
documents will continue to work.

53

\RawShipout

\ShipoutBox
\1_shipout_box

This command implements a simplified shipout that bypasses the foreground and back-
ground hooks, e.g., only shipout/firstpage and shipout/lastpage are executed and
the total shipout counters are incremented.

The command doesn’t use \ShipoutBox but its own private box register so that it
can be used inside of shipout hooks to do some additional shipouts while already in the
output routine with the current page being stored in \ShipoutBox. It does have access
to \ShipoutBox if it is used in shipout/before (or shipout/after) and can use its
content.

It is safe to use it in shipout/before or shipout/after but not necessarily in the
other shipout/... hooks as they are intended for special processing.

This box register is called \ShipoutBox (alternatively available via the L3 name \1_-
shipout_box).

This box is a “local” box and assignments to it should be done only locally. Global
assignments (as done by some packages with older code where this is box is known as
255) may work but they are conceptually wrong and may result in errors under certain
circumstances.

During the execution of shipout/before this box contains the accumulated ma-
terial for the page, but not yet any material added by other shipout hooks. During
execution of shipout/after, i.e., after the shipout has happened, the box also contains
any background or foreground material.

Material from the hooks shipout/firstpage or shipout/lastpage is not included
(but only used during the actual shipout) to facilitate reuse of the box data (e.g.,
shipout/firstpage material should never be added to a later page of the output).

\1_shipout_box_ht_dim
\1_shipout_box_dp_dim
\1_shipout_box_wd_dim

\1_shipout_box_ht_plus_dp_dim

The shipout box dimensions are available in the L3 registers \1_shipout_box_ht_dim,
etc. (there are no IWTEX 2¢ names).?? These variables can be used inside the hook code
for shipout/before, shipout/foreground and shipout/background if needed.

29Might need changing, but HO’s version as strings is not really helpful I think).

54

shipout/before
shipout/after
shipout/foreground
shipout/background
shipout/firstpage
shipout/lastpage

5.1.2 Provided hooks

The code for \shipout offers a number of hooks into which packages (or the user) can
add code to support different use cases. These are:

shipout/before This hook is executed after the finished page has been stored in
\ShipoutBox / \1_shipout_box). It can be used to alter that box content or
to discard it completely (see \DiscardShipoutBox below).

You can use \RawShipout inside this hook for special use cases. It can make use of
\ShipoutBox (which doesn’t yet include the background and foreground material).

Note: It is not possible (or say advisable) to try and use this hook to typeset
material with the intention to return it to main vertical list, it will go wrong and
give unexpected results in many cases—for starters it will appear after the current
page not before or it will vanish or the vertical spacing will be wrong!

shipout/background This hook adds a picture environment into the background of the
page with the (0,0) coordinate in the top-left corner using a \unitlength of 1pt.

It should therefore only receive \put commands or other commands suitable in a
picture environment and the vertical coordinate values would normally be nega-
tive.

Technically this is implemented by adding a zero-sized \hbox as the very first item
into the \ShipoutBox containing that picture environment. Thus the rest of the
box content will overprint what ever is typeset by that hook.

shipout/foreground This hook adds a picture environment into the foreground of the
page with the (0,0) coordinate in the top-left corner using a \unitlength of 1pt.

Technically this is implemented by adding a zero-sized \hbox as the very last item
into the \ShipoutBox and raising it up so that it still has its (0,0) point in the
top-left corner. But being placed after the main box content it will be typeset later
and thus overprints it (i.e., is in the foreground).

shipout This hook is executed after foreground and/or background material has been
added, i.e., just in front of the actual shipout operation. Its purpose is to allow
manipulation of the finalized box (stored in \ShipoutBox) with the extra material
also in place (which is not yet the case in shipout/before).

It cannot be used to cancel the shipout operation via \DiscardShipoutBox (that
has to happen in shipout/before, if desired!

shipout/firstpage The material from this hook is executed only once at the very be-
ginning of the first output page that is shipped out (i.e., not discarded at the last
minute). It should only contain \special or similar commands needed to direct
post processors handling the .dvi or .pdf output.*®

This hook is added to the very first page regardless of how it is shipped out (i.e.,
with \shipout or \RawShipout).

30In IATEX2¢ that was already existing, but implemented using a box register with the name
\@begindvibox

55

\AtBeginDvi
\AtEndDvi

shipout/lastpage The corresponding hook to add \specials at the very end of the
output file. It is only executed on the very last page of the output file — or rather
on the page that EXTEX believes is the last one. Again it is executed regardless of
the shipout method.

It may not be possible for I¥TEX to correctly determine which page is the last one
without several reruns. If this happens and the hook is non-empty then ETEX will
add an extra page to place the material and also request a rerun to get the correct
placement sorted out.

shipout/after This hook is executed after a shipout has happened. If the shipout box
is discarded this hook is not looked at.

You can use \RawShipout inside this hook for special use cases and the main
\ShipoutBox is still available at this point (but in contrast to shipout/before
it now includes the background and foreground material).

Note: Just like shipout/before this hook is not meant to be used for adding
typeset material back to the main vertical list—it might vanish or the vertical
spacing will be wrong!

As mentioned above the hook shipout/before is executed first and can manipulate
the prepared shipout box stored in \ShipoutBox or set things up for use in \write
during the actual shipout. It is even run if there was a \DiscardShipoutBox request in
the document.

The other hooks (except shipout and shipout/after) are added inside hboxes to
the box being shipped out in the following order:

shipout/firstpage only on the first page
shipout/background

(boxed content of \ShipoutBox)

shipout/foreground

shipout/lastpage only on the last page

If any of the hooks has no code then the corresponding box is added at that point.
Once the (page) box has got the above extra content it can again be manipulated
using the shipout hook and then is shipped out for real.
Once the (page) box has been shipped out the shipout/after hook is called (while
you are still inside the output routine). It is not called if the shipout box was discarded.
In a document that doesn’t produce pages, e.g., only makes \typeouts, none of the
hooks are ever executed (as there is no \shipout) not even the shipout/lastpage hook.
If \RawShipout is used instead of \shipout then only the hooks shipout/firstpage
and shipout/lastpage are executed (on the first or last page), all others are bypassed.

5.1.3 Legacy BETEX commands

\AtBeginDvi {(code)}

\AtBeginDvi is the existing IATEX 2¢ interface to fill the shipout/firstpage hook. This
is not really a good name as it is not just supporting .dvi but also .pdf output or .xdv.
\AtEndDvi is the counterpart that was not available in the kernel but only through
the package atenddvi. It fills the shipout/lastpage hook.
Neither interface can set a code label but uses the current default label.

56

\DiscardShipoutBox
\shipout_discard:

pre_shipout_filter

As these two wrappers have been available for a long time we continue offering them
(but not enhancing them, e.g., by providing support for code labels).

For new code we strongly suggest using the high-level hook management commands
directly instead of “randomly-named” wrappers. This will lead to code that is easier to
understand and to maintain and it also allows you to set code labels if needed.

For this reason we do not provide any other “new” wrapper commands for the above
hooks in the kernel, but only keep the existing ones for backward compatibility.

5.1.4 Special commands for use inside the hooks

\AddToHookNext {shipout/before} {...\DiscardShipoutBox...}

The \DiscardShipoutBox declaration (L3 name \shipout_discard:) requests that on
the next shipout the page box is thrown away instead of being shipped to the .dvi or
.pdf file.

Typical applications wouldn’t do this unconditionally, but have some processing logic
that decides to use or not to use the page.

Note that if this declaration is used directly in the document it may depend on the
placement to which page it applies, given that IXTEX output routine is called in an asyn-
chronous manner! Thus normally one would use this only as part of the shipout/before
code.

Todo: Once we have a new mark mechanism available we can improve on that
and make sure that the declaration applies to the page that contains it — not
done (yet)

\DiscardShipoutBox cannot be used in any of the shipout/... hooks other than
shipout/before.

In the atbegshi package there are a number of additional commands for use inside
the shipout/before hook. They should normally not be needed any more as one can in-
stead simply add code to the hooks shipout/before, shipout, shipout/background or
shipout/foreground.®! If atbegshi gets loaded then those commands become available
as public functions with their original names as given below.

5.1.5 Provided LuaTgX callbacks

Under LuaTgX the pre_shipout_filter Lua callback is provided which gets called di-
rectly after the shipout hook, immediately before the shipout primitive gets invoked.
The signature is

function(<node> head)
return true
end

The head is the list node corresponding to the box to be shipped out. The return value
should always be true.

31If that assumption turns out to be wrong it would be trivial to change them to public functions
(right now they are private).

57

\ReadonlyShipoutCounter
\g_shipout_readonly_int

totalpages
\g_shipout_totalpages_int

\PreviousTotalPages

\DebugShipoutsOn
\DebugShipouts0ff
\shipout_debug_on:
\shipout_debug_off:

5.1.6 Information counters

\ifnum\ReadonlyShipoutCounter=. ..

\int_use:N \g_shipout_readonly_int % expl3 usage

This integer holds the number of pages shipped out up to now (including the one to be
shipped out when inside the output routine). More precisely, it is incremented only after
it is clear that a page will be shipped out, i.e., after the shipout/before hook (because
that might discard the page)! In contrast shipout/after sees the incremented value.

Just like with the page counter its value is only accurate within the output rou-
tine. In the body of the document it may be off by one as the output routine is called
asynchronously!

Also important: it must not be set, only read. There are no provisions to prevent
that restriction, but if you manipulate it, chaos will be the result. To emphasize this
fact it is not provided as a KTEX counter but as a TEX counter (i.e., a command), so
\Alph{\ReadonlyShipoutCounter} etc, would not work.

\arabic{totalpages}
\int_use:N \g_shipout_totalpage_int % expl3 usage
In contrast to \ReadonlyShipoutCounter, the totalpages counter is a IMTEX counter
and incremented for each shipout attempt including those pages that are discarded for
one or the other reason. Again shipout/before sees the counter before it is incremented.
In contrast shipout/after sees the incremented value.

Furthermore, while it is incremented for each page, its value is never used by KETEX.
It can therefore be freely reset or changed by user code, for example, to additionally
count a number of pages that are not build by IXTEX but are added in a later part of the
process, e.g., cover pages or picture pages made externally.

Important: as this is a page-related counter its value is only reliable inside the output
routine!

\PreviousTotalPages

Command that expands to the number of total pages from the previous run. If there was
no previous run or if used in the preamble it expands to 0. Note that this is a command
and not a counter, so in order to display the number in, say, Roman numerals you have
to assign its value to a counter and then use \Roman on that counter.

5.1.7 Debugging shipout code

\DebugShipoutsOn

Turn the debugging of shipout code on or off. This displays changes made to the shipout
data structures.

Todo: This needs some rationalizing and may not stay this way.

58

5.2 Emulating commands from other packages

The packages in this section are no longer necessary, but as they are used by other
packages, they are emulated when they are explicitly loaded with \usepackage or
\RequirePackage.

Please note that the emulation only happens if the package is explicitly requested,
i.e., the commands documented below are not automatically available in the ITEX kernel!
If you write a new package we suggest to use the appropriate kernel hooks directly instead
of loading the emulation.

5.2.1 Emulating atbegshi

\AtBeginShipoutUpperLeft \AddToHook {shipout/before} {...\AtBeginShipoutUpperLeft{(code)}...}
\AtBeginShipoutUpperLeftForeground

This adds a picture environment into the background of the shipout box expecting
(code) to contain picture commands. The same effect can be obtained by simply using
kernel features as follows:

\AddToHook{shipout/background}{(code)}

There is one technical difference: if \AtBeginShipoutUpperLeft is used several times
each invocation is put into its own box inside the shipout box whereas all (code) going
into shipout/background ends up all in the same box in the order it is added or sorted
based on the rules for the hook chunks.

\AtBeginShipoutUpperLeftForeground is similar with the difference that the
picture environment is placed in the foreground. To model it with the kernel func-
tions use the hook shipout/foreground instead.

\AtBeginShipoutAddToBox \AddToHook {shipout/before} {...\AtBeginShipoutAddToBox{(code)}...}
\AtBeginShipoutAddToBoxForeground

These work like \AtBeginShipoutUpperLeft and \AtBeginShipoutUpperLeftForeground
with the difference that (code) is directly placed into an \hbox inside the shipout box
and not surrounded by a picture environment.

To emulate them using shipout/background or shipout/foreground you may have
to wrap (code) into a \put statement but if the code is not doing any typesetting just
adding it to the hook should be sufficient.

\AtBeginShipoutBox This is the name of the shipout box as atbegshi knows it.

\AtBeginShipoutOriginalShipout

This is the name of the \shipout primitive as atbegshi knows it. This bypasses all the
mechanisms set up by the IXTEX kernel and there are various scenarios in which it can
therefore fail. It should only be used to run existing legacy atbegshi code but not in
newly developed applications.

The kernel alternative is \RawShipout which is integrated with the KTEX mech-
anisms and updates, for example, the \ReadonlyShipoutCounter counter. Please use
\RawShipout for new code if you want to bypass the before, foreground and background
hooks.

59

\AtBeginShipoutInit

\AtBeginShipout
\AtBeginShipoutNext

\AtBeginShipoutFirst
\AtBeginShipoutDiscard

\EveryShipout

\AtNextShipout

\AddEverypageHook

\AddThispageHook

By default atbegshi delayed its action until \begin{document}. This command was
forcing it in an earlier place. With the new concept it does nothing.

\AtBeginShipout{(code)} = \AddToHook{shipout/before}{(code)}
\AtBeginShipoutNext{(code)} = \AddToHookNext{shipout/before}{(code)}

This is equivalent to filling the shipout/before hook by either using \AddToHook or
\AddToHookNext, respectively.

The atbegshi names for \AtBeginDvi and \DiscardShipoutBox.

5.2.2 Emulating everyshi

The everyshi package is providing commands to run arbitrary code just before the shipout
starts. One point of difference: in the new shipout hooks the page is available as
\ShipoutBox for inspection of change, one should not manipulate box 255 directly inside
shipout/before, so old code doing this would change to use \ShipoutBox instead of
255 or \Q@cclv.

\EveryShipout{(code)} = \AddToHook{shipout/before}{(code)}

\AtNextShipout{(code)} = \AddToHookNext{shipout/before}{(code)}

However, most use cases for everyshi are attempts to put some picture or text into
the background or foreground of the page and that can be done today simply by using
the shipout/background and shipout/foreground hooks without any need to coding.

5.2.3 Emulating atenddvi

The atenddvi package implemented only a single command: \AtEndDvi and that is now
available out of the box so the emulation makes the package a no-op.

5.2.4 Emulating everypage

This package patched the original \@begindvi hook and replaced it with its own version.
Its functionality is now covered by the hooks offered by the kernel so that there is no
need for such patching any longer.

\AddEverypageHook{(code)} =
\AddToHook{shipout/background}{\put (1in,-1in){(code)}}

\AddEverypageHook is adding something into the background of every page at a position
of lin to the right and lin down from the top left corner of the page. By using the
kernel hook directly you can put your material directly to the right place, i.e., use other
coordinates in the \put statement above.

\AddThispageHook{({code)} =
\AddToHookNext{shipout/background}{\put (1in,-1in){(code)}}

The \AddThispageHook wrapper is similar but uses \AddToHookNext.

60

Part 11
Run data and page design

61

Chapter 6

The marks mechanism

6.1 Introduction

The TEX engines offer a low-level mark mechanism to communicate information about
the content of the current page to the asynchronous operating output routine. It works
by placing \mark commands into the source document. When the material for the current
page is assembled in box 255, TEX scans for such marks and sets the commands \topmark,
\firstmark and \botmark. The \firstmark receives the content of the first \mark seen
in box 255 and \botmark the content of the last mark seen. The \topmark holds the
content of the last mark seen on the previous page or more exactly the value of \botmark
from the previous page. If there are no marks on the current page then all three are
made equal to the \botmark from the previous page.

This mechanism works well for simple formats (such as plain TEX) whose output
routines are only called to generate pages. It fails, however, in WTEX (and other more
complex formats), because here the output routine is sometimes called without producing
a page, e.g., when encountering a float and placing it into one of the float regions. In that
case the output routine is called, determines where to place the float, alters the goal for
assembling text material (if the float was added to the top or bottom region) and then
it resumes collecting textual material.

As a result the \botmark gets updated and so \topmark no longer reflects the situ-
ation at the top of the next page when that page is finally boxed.

Another problem for KTEX was that it wanted to use several “independent” marks
and in the early implementations of TEX there was only a single \mark command available.
For that reason IATEX implemented its own mark mechanism where the marks always
contained two parts with their own interfaces: \markboth and \markright to set marks
and \leftmark and \rightmark to retrieve them.

However, this extended mechanism (while supporting scenarios such as chap-
ter /section marks) was far from general. The mark situation at the top of a page (i.e.,
\topmark) remained unusable and the two marks offered were not really independent of
each other because \markboth (as the name indicates) was always setting both.

The new mechanism overcomes both issues:

o It provides arbitrarily many, fully independent named marks, that can be allocated
and, from that point onwards, used.

o It offers access for each such marks to retrieve its top, first, and bottom values
separately.

62

\NewMarkClass
\mark_new_class:n

\InsertMark
\mark_insert:nn

insertmark

e Furthermore, the mechanism is augmented to give access to marks in different
“regions” which may not be just full pages.

6.2 Design-level and code-level interfaces

The interfaces are mainly meant for package developers, but they are usable (with appro-
priate care) also in the document preamble, for example, when setting up special running
headers with fancyhdr, etc. They are therefore available both as CamelCase commands
as well as commands for use in the L3 programming layer. Both are described together
below.

\NewMarkClass {(class)}
\mark_new_class:n {({class)}

Declares a new {class) of marks to be tracked by ITEX. Each (class) must be declared
before it is used.
Mark classes can only be declared before \begin{document}.

\InsertMark {(class)} {(text)}
\mark_insert:nn {(class)} {(text)}

Adds a mark to the current galley for the (class), containing the (text).

It has no effect in places in which you can’t place floats, e.g., a mark inside a box or
inside a footnote never shows up anywhere.

If used in vertical mode it obeys XTEX’s internal @nobreak switch, i.e., it does not
introduce a breakpoint if used after a heading. If used in horizontal mode it doesn’t
handle spacing (like, for example, \index or \label does, so it should be attached to
material that is typeset.

\AddToHook {insertmark} {(code)}

When marks are inserted, the mark content may need some special treatment, e.g., by
default \1label, \index, and \glossary do not expand at this time (but only later if and
when the mark content is actually used. In order to allow packages to augment or alter
this setup there is a public hook insertmark that is executed at this point. It runs in
a group so local modification to commands are only applied to the (text) argument of
\InsertMark or \mark_insert:nn.

63

\TopMark
\FirstMark
\LastMark
\mark_use_top:nn
\mark_use_first:nn
\mark_use_last:nn

X X ok X ot

Important!

\IfMarksEqualTF *
\IfMarksEqualT *
\IfMarksEqualF *
\mark_if_eq:nnnnTF *
\mark_if_eq:nnnnnnTF *

\TopMark [(region)] {(class)}
\FirstMark [(region)] {(class)}
\LastMark [(region)] {(class)}
\mark_use_top:nn {(region)} {(class)}
\mark_use_first:nn {(region)} {(class)}
\mark_use_last:nn {(region)} {(class)}

These functions expand to the appropriate mark (text) for the given (class) in the
specified (region). The default (region) in the design-level commands is page. Note
that with the L3 layer commands there are no optional arguments, i.e., both arguments
have to be provided.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (text) does not expand further when appearing in an x-type or e-type
argument expansion.

The “first” and “last” marks are those seen first and last in the current region/page,
respectively. The “top” mark is the last mark of the (class) seen in an earlier region,
i.e., the (text) what would be “current” at the very top of the region.

The commands are only meaningful inside the output routine, in other places their
result is (while not random) unpredictable due to the way KTEX cuts text material into
pages. There is, however, one exception: if you produce multiple columns using the
multicol package, it is possible to retrieve mark values from the regions first-column,
last-column, mcol-1, mcol-2,... directly after the environment has ended. This can,
for example, be useful if a multicols has been be used inside a box.

Currently, (region) is one of page, previous-page, column, previous-column,
first-column, last-column, and mcol-1 (first column in a multicols), mcol-2 (sec-
ond column in a multicols), up to mcol-20 (twentieth column in a multicols). See
section 6.2.2 for discussion of how these regions behave and how one can make use of
them.

\IfMarksEqualTF [(region)] {(class)} {(posi1)} {(pos2)} {(true)} {(false)}
\mark_if_eq:nnnnTF {(region)} {(class)} {(posi1)} {(pos2)} {(true)} {(false)}
\mark_if_eq:nnnnnnTF {(regiom)} {(classi)} {(posi)}

{(regionz)} {(classz)} {(pos2)} {(true)} {(false)}
These conditionals allow you to compare the content of two marks and act based on the
result. The commands work in an expansion context, if necessary.

It is quite common when programming with marks to need to interrogate conditions
such as whether marks have appeared on a previous page, or if there are multiple marks
present on the current page, and so on. The tests above allow for the construction of a
variety of typical test scenarios, with three examples presented below.

The first two conditionals cover only the common scenarios. Both marks are picked
up from the same (region) (by default page) and they have to be of the same (class).?
The (pos;) argument can be either top, first, or last.

Important to note is that the comparison is not with respect to the textual content
of the marks but whether or not they originated from the same \InsertMark command
(or the L3 layer version \mark_insert:nn).

If you wish to compare marks across different regions or across different classes, you
have to do it using the generic test only available in the L3 programming layer or do it

321f an undeclared mark class is used the tests return true (not an error).

64

manually, i.e., get the marks and then compare the values yourself.??

6.2.1 Use cases for conditionals

However, the basic version is enough for the following typical use cases:

Test for at most one mark of class myclass on current page: If the first and last
mark in a region are the same then either there was no mark at all, or there was
at most one. To test this on the current page:

\NewMarkClass{myclass}
\IfMarksEqualTF{myclass}{first}{last}
{ <zero or one mark> }{ <two or more marks> }

Test for no mark of class myclass in the previous page: If the top mark is the
same as the first mark, there is no mark in the region at all. If we wanted to
do this test for the previous page:

\IfMarksEqualTF [previous-page]l{myclass}{top}{first}
{ <no marks> }{ <at least one mark> }

Comparing top and last would give you the same result.

Test for zero, one, or more than one: Combining the two tests from above you can
test for zero, one or more than one mark.

\IfMarksEqualTF{myclass}{top}{first}
{ <no marks> }
{\IfMarksEqualTF{myclass}{first}{last}
{ <exactly one mark> }{ <more than one mark> }}

If you need one of such tests more often (or if you want a separate command for it
for readability), then consider defining:

\providecommand\IfNoMarkTF [2] [page] {\IfMarksEqualTF [#1]{#2}{first}{last}}

6.2.2 Understanding regions

If a page has just been finished then the region page refers to the current page and
previous-page, as the name indicates, refers to the page before the current page. This
means you are able to access mark information for the current page as well as for the page
before (as long as you are inside the output routine) without the need to explicitly save
that information beforehand. The page region is the region that is most often queried,
which is why commands like \FirstMark use that region by default.

In single column documents the column is the same as the page region, but in
two-column documents (if not produced by multicols), column refers to the current
column that just got finished and previous-column to the one previously finished. Code
for running headers is (in standard IXTEX) evaluated only after both columns have been
assembled, which is another way of saying that in that case previous-column refers to
the left column and column to the right column. However, to make these somewhat

33If two undeclared mark classes are compared the result is always true; if a declared and an undeclared
mark class is used it is always false.

65

easier to use, there are also aliased names for these two regions: first-column and
last-column.?*

Note that you can only look backwards at already processed regions, e.g., in a
twoside document finishing a recto (odd, right-hand) page you can access the data
from the facing verso (left-hand) page, but if you are finishing a left-hand page you can’t
integrate data from the upcoming right-hand page. If such a scenario needs to be realized
then it is necessary to save the left-hand page temporarily instead of finalizing it, process
material for the right-hand page and once both are ready, attach running headers and
footers and shipout out both in one go.*”

The situation starts getting rather complex if you allow for multiple columns in
the way they are supported by the multicol package. In this case you might have a
variable number of “columns” on a single page to be shipped out. And even if not, then
a multicols might start or end in the middle of the page; in either case, the regions
column and previous-column become rather meaningless and you should therefore not
use them.?® Instead, the algorithm offers mcol-1, mcol-2, mcol-3, etc., to represent the
columns in the multicols on the current page to be shipped out. If there is more than
one multicols on the current page then in the output routine only the columns of the
last one will be accessible.

These provisions cover, out of the box, a number of layouts and use cases, but obvi-
ously not all. However, more cases can be supported by storing away mark information
during the processing. Here is the full algorithm:

o The column region is used by the “current column” that is being built (moving
through all columns with previous-column trailing behind (to handle top marks

properly).

e When the multicols starts, the column region is cleared, i.e., from that point on
it looks as if there have not been any marks so far. This will make sure that the
top mark in the first column is always empty.

e If the multicols extends beyond the current page, then the material designated
for the current page is split into columns. The column region is used to represent
each column in turn.

— First we copy the current data from column to previous-column. Then the
mark data from the current column is placed into the column region. Then
we alias column to mcol-1.

— These steps are repeated for all columns of the multicols environment.

— Finally, the first and the last column of that page is also made available as
first-column and last-column, respectively.

e All those marks inside any of the columns are also available in the page region.
Thus, if you are interested in the top, first, or last mark of a specific class on the
whole page you simply need to query for it in the page region.

34The region is called “last-column” not “second-column” in anticipation of extending the mechanism to
multiple columns, where first and last would still make sense. There aren’t any previous-first-column
and previous-last-column regions to access the corresponding columns from the previous page.

35 As of now that scenario is not (yet) officially supported but it would be possible to achieve this using
the shipout hooks to store the verso page and then on the next shipout use the hook to shipout both
with running headers and footers attached.

36They return something, because they represent the last two columns of the multicols when you are
inside the output routine, but that is obviously of little use.

66

\DebugMarksOn
\DebugMarks0ff
\mark_debug_on:

\mark_debug_off:

o If the multicols continues across several pages then this algorithm above is re-
peated for each page, except that the column region is not cleared again. This
means that the top mark of the first column of the next page will be the last mark
of the last column from the previous page.

e When the multicols finishes the remaining material for the current page is bal-
anced to produce columns of roughly equal height.

e Again column and previous-column are used while this balancing happens and
mcol-1, mcol-2, etc., are used to represent the column regions and first-column
and last-column are set appropriately.

o Then the balanced set of columns is returned back to the page (since there may be
space for further material). In addition, all marks inside that material are reinserted
so that they become available in the page region.

o Asaside effect, it is possible (and useful in certain circumstances) to query for mark
classes directly after the multicols has ended without the need to be inside the
output routine. The regions that can be queried this way are mcol-1, mcol-2, etc.
(up to the number of columns the multicol had) and first-column and last-column.

6.2.3 Debugging mark code

\DebugMarksOn ... \DebugMarksOff

Commands to turn the debugging of mark code on or off. The debugging output is
rather coarse and not really intended for normal use at this point in time.

6.3 Application examples

If you want to figure out if a break was taken at a specific point, e.g., whether a heading
appears at the top of the page, you can do something like this:

\newcounter{breakcounter}

\NewMarkClass{break}

\newcommand\markedbreak [1] {\stepcounter{breakcounterl}y
\InsertMark{break}{\arabic{breakcounter}/,
\penalty #1\relax
\InsertMark{break}{-\arabic{breakcounter}}

To test if the break was taken you can test if \TopMark{break} is positive (taken) or
negative (not taken) or zero (there was never any marked break so far). The absolute
value can be used to keep track of which break it was (with some further coding).

to be extended with additional application examples

6.4 Legacy ITEX 2¢ interface

Here we describe the interfaces that IXTEX 2¢ offered since the early nineties and some
minor extensions.

67

6.4.1 Legacy design-level and document-level interfaces

\markboth \markboth {(left)} {(right)}
\markright \markright {(right)}
TEX 2¢ uses two marks which aren’t fully independent. A “left” mark generated by
the first argument of \markboth and a “right” mark generated by the second argu-
ment of \markboth or by the only argument of \markright. The command \markboth
and \markright are in turn called from heading commands such as \chaptermark or
\sectionmark and their behavior is controlled by the document class.
For example, in the article class with twoside in force the \sectionmark will issue
\markboth with an empty second argument and \subsectionmark will issue \markright.
As a result the left mark will contain chapter titles and the right mark subsection titles.
Note, however, that in one-sided documents the standard behavior is that only
\markright is used, i.e., there will only be right-marks but no left marks!

\leftmark « \leftmark

\rightmark * \rightmark
These functions return the appropriate mark value from the current page and work as
before, that is \leftmark will get the last (!) left mark from the page and \rightmark
the first (!) right mark.

In other words they work reasonably well if you want to show the section title that
is current when you are about to turn the page and also show the first subsection title
on the current page (or the last from the previous page if there wasn’t one). Other
combinations can’t be shown using this interface.

The commands are fully expandable, because this is how they have been always
defined in I¥TEX. However, this is of course only true if the content of the mark they
return is itself expandable and does not contain any fragile material. Given that this
can’t be guaranteed for arbitrary content, a programmer using them in this way should
use \protected@edef and not \edef to avoid bad surprises as far as this is possible, or
use the new interfaces (\TopMark, \FirstMark, and \LastMark) which return the (text)
in \exp_not:n to prevent uncontrolled expansion.

6.4.2 Legacy interface extensions

The new implementation adds three mark classes: 2e-1left, 2e-right and 2e-right-nonempty
and patches \markboth and \markright slightly so that they also update these new mark
classes, so that the new classes work with existing document classes.

As a result you can use \LastMark{2e-left} and \FirstMark{2e-right} instead of
\leftmark and \rightmark. But more importantly, you can use any of the other retrieval
commands to get a different status value from those marks, e.g., \LastMark{2e-right}
would return the last subsection on the page (instead of the first as returned by
\rightmark).

The difference between 2e-right and 2e-right-nonempty is that the latter will
only be updated if the material for the mark is not empty. Thus \markboth{title}{}
as issued by, say, \sectionmark, sets a 2e-left mark with title and a 2e-right mark
with the empty string but does not add a 2e-right-nonempty mark.

Thus, if you have a section at the start of a page and you would ask for
\FirstMark{2e-right} you would get an empty string even if there are subsections
on that page. But 2e-right-nonempty would then give you the first or last subsection

68

on that page. Of course, nothing is simple. If there are no subsections it would tell you
the last subsection from an earlier page. We therefore need comparison tools, e.g., if top
and first are identical you know that the value is bogus, i.e., a suitable implementation
would be

\IfMarksEqualTF{2e-right-nonempty}{top}{first}
{ <appropriate action if there was no real mark> }
{\FirstMark{2e-right-nonempty}}

6.5 Notes on the mechanism

In contrast to vanilla TEX, e-TEX extends the mark system to allow multiple independent
marks. However, it does not solve the \topmark problem which means that ETEX still
needs to manage marks almost independently of TEX. The reason for this is that the
more complex output routine used by BTEX to handle floats (and related structures)
means that \topmark(s) remain unreliable. Each time the output routine is fired up,
TEX moves \botmark to \topmark, and while e-TEX extends this to multiple registers the
fundamental concept remains the same. That means that the state of marks needs to be
tracked by BTEX itself. An early implementation of this package used TEX’s \botmark
only to ensure the correct interaction with the output routine (this was before the e-TEX
mechanism was even available). However, other than in a prototype implementation for
IXTEX3, this package was never made public.

The new implementation now uses e-TEX’s marks as they have some advantages,
because with them we can leave the mark text within the galley and only extract the
marks during the output routine when we are finally shipping out a page or storing away
a column for use in the next page. That means we do not have to maintain a global data
structure that we have to keep in sync with informational marks in the galley but can
rely on everything being in one place and thus manipulations (e.g. reordering of material)
will take the marks with them without a need for updating a fragile linkage.

To allow for completely independent marks we use the following procedure:

e For every type of marks we allocate a mark class so that in the output routine TEX
can calculate for each class the current top, first, and bottom mark independently.
For this we use \newmarks, i.e., one marks register per class.

e As already mentioned firing up an output routine without shipping out a page
means that TEX’s top marks get wrong so it is impossible to rely on TEX’s approach
directly. What we do instead is to keep track of the real marks (for the last page
or more generally last region) in some global variables.

e These variables are updated in the output routine at defined places, i.e., when we
do real output processing but not if we use special output routines to do internal
housekeeping.

e The trick we use to get correctly updated variables is the following: the material
that contains new marks (for example the page to be shipped out) is stored in a
box. We then use TEX primitive box splitting functions by splitting off the largest
amount possible (which should be the whole box if nothing goes really wrong).
While that seems a rather pointless thing to do, it has one important side effect:
TEX sets up first and bottom marks for each mark class from the material it has
split off. This way we get the first and last marks (if there have been any) from the
material in the box.

69

e The top marks are simply the last marks from the previous page or region. And
if there hasn’t been a first or bottom mark in the box then the new top mark also
becomes new first and last mark for that class.

e That mark data is then stored in global token lists for use during the output routine
and legacy commands such as \leftmark or new commands such as \TopMark
simply access the data stored in these token lists.

That’s about it in a nutshell. Of course, there are some details to be taken care of—those
are discussed in the implementation sections.

6.6 Public interfaces for packages such as multicol

The functions in this section are public so that packages can make use of them. However,
this must be done with great care, e.g., \mark_update_structure_from_material:nn
updates the global mark structure and can therefore be used only in places where such
an update is meaningful, e.g., in special output routines. Elsewhere, a change to the
mark structure would break the whole mechanism and querying the marks would return
incorrect data.

\mark_update_structure_from_material:nn \mark_update_structure_from_material:nn {(region)} {(material with

\mark_copy_structure:nn

marks)}

Helper function that inspects the marks inside the second argument and assigns new
mark values based on that to the (region) given in the first argument. For this it first
copies the mark structure from (region) to previous-(region) and then takes all last
mark values currently in the region and makes them the new top mark values. Finally
it assigns new first and last values for all mark classes based on what was found in the
second argument.

As a consequence, the allowed values for (region) are page and column because
only they have previous-... counterparts.

Another important aspect to keep in mind is that marks are recognized only if they
appear on the top level, e.g., if we want to process material stored in boxes we need to
put it unboxed (using \unvcopy etc.) into the second argument.

\mark_copy_structure:nn {(alias)} {(source)}

Helper function that copies all mark values in the (source) region to (alias), i.e., make
the structures identical. Used to update the previous-... structures inside \mark_-
update_structure_from_material:nn and first-column and last-column structures
inside the internal commands __mark_update_singlecol_structures: or __mark__-
update_dblcol_structures:.

\mark_set_structure_to_err:n \mark_set_structure_to_err:n {(region)}

Helper function that sets all mark values in the (region) to an error message. This is
currently used for last-column at times where using marks from it would be question-
able/wrong, i.e., when we have just processed the first column in a two-column document.

70

\mark_clear_structure:n \mark_clear_structure:n {(region)}

Helper function that sets all mark values in the (region) to empty. This is currently
used for column when a multicol environment starts; this is because it wouldn’t make
sense if the top mark in the first column returned the last mark from a previous multicol
(which may have been much earlier, with intermediate material).

\mark_get_marks_for_reinsertion:nNN \mark_get_marks_for_reinsertion:nNN {(source)}
(token-list-var for collecting first marks)
(token-list-var for collecting last marks)

Helper function for extracting marks that would otherwise get lost, for example when
they are hidden inside a box. This helper does not update mark structures and can
therefore be used outside the output routine as well.

It collects all the top-level marks from inside the (source) and then adds suitable
\mark_insert:nn commands to each of the two token lists. These token lists can then
be executed at the right place to reinsert the marks, e.g., directly after the box. This is,
for example, going to be used®” by multicol when a short balanced multicols is returned
to the galley for typesetting.

If the (source) consists of a single vertical box (plus possibly followed by some glue
but nothing else) then the box is unpacked and the top-level marks are collected from
its content. However, if it is not a vertical box or there are other data then nothing is
unpacked and you have to do the unpacking yourself to get at the marks inside.

It is quite likely that one only needs a single token list for returning the \mark_-
insert:nn statements. If that is the case this command may change to take only two
arguments.

6.7 Internal functions for the standard output routine

of BWTEX

The functions in this section are tied to the output routine and used in the interface to
¥TEX 2¢ and perhaps at some later time within a new output routine for IMTEX. They
are not (yet) meant for general use and are therefore made internal, even though we
already use them in multicol. Internal means that @@ automatically gets replaced in the
code (and in the documentation) so we have to give it a suitable value.

1 (@@=mark)

__mark_update_singlecol_structures: __mark_update_singlecol_structures:

MTEX 2¢ integration function in case we are doing single column layouts. It assumes that
the page content is already stored in \@outputbox and processes the marks inside that
box. It is called as part of \@opcol.

__mark_update_dblcol_structures: __mark_update_singlecol_structures:

ETEX 2¢ integration function mark used when we are doing double column documents.
It assumes that the page content is already stored in \@outputbox and processes the
marks inside that box. It then does different post-processing depending on the start of
the switch \if@firstcolumn. If we are in the second column it also has to update page
marks, otherwise it only updates column marks. It too is called as part of \@opcol.

37Probably not before 2025, though.

71

Chapter 7

Recording and
cross-referencing document
properties

7.1 Introduction

The module allows to record the “current state” of various document properties (typically
the content of macros and values of counters) and to access them in other places through
a label. The list of properties that can be recorded and retrieved are not fix and can be
extended by the user. The values of the properties are recorded in the .aux file and can
be retrieved at the second compilation.

The module uses the ideas of properties and labels. A label is a document reference
point: a name for the user. An property is something that IXTEX can track, such as
a page number, section number or name. The names of labels and properties may be
arbitrary. Note that there is a single namespace for each.

7.2 Design discussion

The design here largely follows ideas from zref. In particular, there are two independent
concepts: properties that can be recorded between runs, and labels which consist of lists
of these properties. The reason for the split is that individual labels will want to record
some but not all properties. For examples, a label concerned with position would track
the x and y coordinates of the current point, but not for example the page number.

In the current implementation, properties share a single namespace. This allows
multiple lists to re-use the same properties, for example page number, absolute page
number, etc. This does mean that changing a standard property is an issue. However,
some properties have complex definitions (again, see zref at present): having them in a
single shared space avoids the need to copy code.

Labels could be implemented as prop data. That is not done at present as there is
no obvious need to map to or copy the data. As such, faster performance is available
using a hash table approach as in a “classical” set up. Data written to the .aux file uses
simple paired balanced text not keyvals: this avoids any restrictions on names and again
offers increased performance.

72

The expl3 versions of the label command do not use \@bsphack/\@esphack to avoid
double spaces, but the ITEX 2 command does as it lives at the document command
level.

The reference commands are expandable.

Currently the code has nearly no impact on the main \label and \ref commands as
too many external packages rely on the concrete implementation. There is one exception:
the label names share the same namespace. That means that if both \1abel{ABC} and
\RecordProperties{ABC}{pagel} are used there is a warning Label ‘ABC’ multiply
defined.

7.3 Handling unknown labels and properties

With the standard \label/\ref commands the requested label is either in the .aux-file
(and so known) or not. In the first case the stored value can be used, in the second case
the reference commands print two question marks.

With flexible property lists a reference commands asks for the value of a specific
property stored under a label name and we have to consider more variants:

o If the requested property is unknown (not declared) the system is not correctly set
up and an error is issued.

o If the label is unknown, the default of the property is used.

o If the label is known, but doesn’t provide a value for the property then again the
default of the property is used.

e The command \property_ref:nnn allows to give a local default which is used
instead of the property default in the two cases before.

7.4 Rerun messages

As the reference commands are expandable they can neither issue a message that the label
or the label-property combination is unknown, nor can they trigger the rerun message at
the end of the ITEX run.

Where needed such messages must therefore be triggered manually. For this
two commands are provided: \property_ref_undefined_warn: and \property_ref_ -
undefined_warn:nn. See below for a description.

7.5 Open points

e The xpos and ypos properties require that the position is stored first but there is
no (public) engine independent interface yet. Code must use \tex_savepos:D.

73

7.6 Code interfaces

\property_new:nnnn \property_new:nnnn {(property)} {(setpoint)} {(default)} {(code)}
\property_gset:nnnn \property_gset:nnnn {(property)} {(setpoint)} {(default)} {(code)}

¥TEX 2¢-interface: see \NewProperty, \SetProperty.
Sets the (property) to have the (default) specified, and at the (setpoint) (either now
or shipout) to write the result of the (code) as part of a label. The (code) should be
expandable. The expansion of (code) (the value of the property) is written to the .aux
file and read back from there at the next compilation. Values should assume that the
standard IMTEX catcode régime with @ a letter is active then.

If the property is declared within a package it is suggested that its name is build
from letters, hyphens and slashes, and is always structured as follows:
(package-name)/(property-name).

\property_record:nN \property_record:nN {(label)} (clist var)

\property_record:nn \property_record:nn {(label)} {(clist)}

\property_record: (nV|ee) ITEX 2--interface: see \RecordProperties.
Writes the list of properties given by the (clist) to the .aux file with the (label)
specified.

\property_ref:nn x \property_ref:nn {(label)} {(property)}

\property ref:ee * IXTEX 2¢-interface: see \RefProperty.
Expands to the value of the (property) for the (label), if available, and the de-
fault value of the property otherwise. If (property) has not been declared with
\property_new:nnnn an error is issued. The command raises an internal, expandable,
local flag if the reference can not be resolved.

\property_item:nn * \property_item:nn {(label)} {(property)?}

\property._item:ee Retrieves the value of the (property) for the (label) like \property_ref:nn but

New: 2025-11-20 the result is returned within the \unexpanded primitive (\exp_not:n), which means that
the (value) does not expand further when appearing in an e-type or x-type argument
expansion. This allows for example to handle values containing user commands which
are not safe in an expansion context.

\property_ref:nnn * \property_ref:nnn {(label)} {(property)} {(local default)}

\property ref:een TEX 2¢-interface: see \RefProperty.
Expands to the value of the (property) for the (label), if available, and to (Iocal
default) otherwise. If (property) has not been declared with \property_new:nnnn an
error is issued. The command raises an internal, expandable local flag if the reference
can not be resolved.

\property_ref_undefined_warn: \property_ref_undefined_warn:

XTEX 2¢-interface: not provided.
Triggers the standard warning

LaTeX Warning: There were undefined references.
at the end of the document if there was a recent \property_ref:nn or \property_-
ref :nnn which couldn’t be resolved and so raised the flag. “Recent” means in the same
group or in some outer group!

74

\property_ref_undefined_warn:n \property_ref_undefined_warn:n {(label)}
\property_ref_undefined_warn:e

¥TEX 2¢-interface: not provided.
Triggers the standard warning
LaTeX Warning: There were undefined references.
at the end of the document if (Iabel) is not known. At the point where it is called it
also issues the warning
Reference ‘(label)’ on page (page) undefined.

\property_ref_undefined_warn:nn \property_ref_undefined_warn:nn {(label)} {(property)}
\property_ref_undefined_warn:ee

KTEX 2¢-interface: see \RefUndefinedWarn.
Triggers the standard warning

LaTeX Warning: There were undefined references.
at the end of the document if the reference can not be resolved. At the point where it is
called it also issues the warning

Reference ‘(label)’ on page (page) undefined
if the label is unknown, or the more specific

Property ‘(property)’ undefined for reference ‘(label)’ on page (page)
if the label is known but doesn’t provide a value for the requested property.

\property_if_exist_p:n
\property_if_exist_p:e
\property_if_exist:nTF
\property_if_exist:eTF

* \property_if_exist_p:n {(property)}

* \property_if_exist:nTF {(property)} {(true code)} {(false code)}
* IXTREX 2c-interface: \IfPropertyExistsTF.

* Tests if the (property) has been declared.

\property_if_recorded_p:n
\property_if_recorded_p:e
\property_if_recorded:nTF
\property_if_recorded:elF

* \property_if_recorded_p:n {(label)}

* \property_if_recorded:nTF {(label)} {(true code)} {(false code)}
*

*

BTEX 2¢-interface: \IfLabelExistsTF

Tests if the (1abel) is known. This is also true if the label has been set with the standard
\label command.

\property_if_recorded_p:nn * \property_if_recorded_p:nn {(label)} {(property)}
}{

\property_if_recorded p:ee * \property_if_recorded:nnTF {(label)

(property)} {(true code)} {(false code)}

\property_if_recorded:nnTF *
\property_if_recorded:eeTF x*

IXTEX 2¢-interface: \IfPropertyRecordedTF.
Tests if the label (1abel) is known and if it provides a value of the (property).

7.7 Auxiliary file interfaces

\new@label@record \new@label@record {(label)} {(data)}

This is a command only for use in the .aux file. It loads the key—value list of (data) to
be available for the (label).

0]

\NewProperty
\SetProperty

\RecordProperties

\RefProperty =

\IfPropertyExistsTF
\IfPropertyExistsT
\IfPropertyExistsF

\IfLabelExistsTF
\IfLabelExistsT
\IfLabelExistsF

\IfPropertyRecordedTF
\IfPropertyRecordedT
\IfPropertyRecordedF

\RefUndefinedWarn

7.8 KTEX 2¢ interface

The LaTeXe interfaces always expand label and property arguments. This means that
one must be careful when using active chars or commands in the names. UTF8-chars are
protected and should be safe, similar most babel shorthands.

\NewProperty {(property)} {(setpoint)} {(default)} {(code)}
\SetProperty {(property)} {(setpoint)} {(default)} {(code)}

Sets the (property) to have the (default) specified, and at the (setpoint) (either now
or shipout) to write the result of the (code) as part of a label. The (code) should
be expandable. The expansion of (code) (the value of the property) is written to the
.aux file and read back from there at the next compilation (at which point normally the
standard IATEX catcode régime with @ a letter is active).

\RecordProperties {(label)} {(clist)}

Writes the list of properties given by the (clist) to the .aux file with the (label)
specified. Similar to the standard \label command the arguments are expanded. So
(clist) can be a macro containing a list of properties. Also similar to the standard
\label command, the command is surrounded by an \@bsphack/\@esphack pair to
preserve spacing.

\RefProperty [(local default)] {(label)} {(property)}

Expands to the value of the (property) for the (label), if available, and the default
value of the property or — if given — to (local default) otherwise. If {{property)} has
not been declared an error is issued.

\IfPropertyExistsTF {(property)} {(true code)} {(false code)}

Tests if the (property) has been declared.

\IfLabelExistsTF {(label)} {(true code)} {(false code)}

Tests if the (1abel) has been recorded. This is also true if a label has been set with the
standard \label command.

\IfPropertyRecordedTF {(label)} {(property)} {(true code)} {(false code)}

Tests if the label and a value of the (property) for the (1abel) are both known.

\RefUndefinedWarn {(label)} {(property)}

Triggers the standard warning

LaTeX Warning: There were undefined references.
at the end of the document if the reference for (1abel) and (property) can not be
resolved. At the point where it is called it also issues the warning

Reference ‘(label)’ on page (page) undefined
if the label is unknown, or the more specific

Property ‘(property)’ undefined for reference ‘(label)’ on page (page) if
the label is known but doesn’t provide a value for the requested property.

76

7.9 Pre-declared properties

abspage (shipout) The absolute value of the current page: starts at 1 and increases monotonically
at each shipout.

page (shipout) The current page as given by \thepage: this may or may not be a numerical
value, depending on the current style. Contrast with \abspage. You get this value also
with the standard \label/\pageref.

pagenun (shipout) The current page as arabic number. This is suitable for integer operations and
comparisons.

label (now) The content of \@currentlabel. This is the value that you get also with the
standard \label/\ref.

title (now) The content of \@currentlabelname. This command is filled beside others by the
nameref package and some classes (e.g. memoir).

target (pnow) The content of \@currentHref. This command is normally filled by for example
hyperref and gives the name of the last destination it created.

pagetarget (shipout) The content of \@currentHpage. This command is filled for example by a
recent version of hyperref and then gives the name of the last page destination it created.

counter (pow) The content of \@currentcounter. This command contains after a \refstepcounter
the name of the counter.

xpos (shipout) This stores the z and y coordinates of a point previously stored with
YPOS \pdfsavepos/\savepos. E.g. (if bidi is used it can be necessary to save the position
before and after the label):

\tex_savepos:D
\property_record:nn{myposition}{xpos,ypos}
\tex_savepos:D

7

Part 111
Design-level tools

78

Chapter 8

INTEX’s socket management

8.1 Introduction

A T¥TEX source file is transformed into a typeset document by executing code for each
command or environment in the document source. Through various steps this code
transforms the input and eventually generates typeset output appearing in a “galley”
from which individual pages are cut off in an asynchronous way. This page generating
process is normally not directly associated with commands in the input®® but is triggered
whenever the galley has received enough material to form another page (giving current
settings).

As part of this transformation input data may get stored in some form and later
reused, for example, as part of the output routine processing.

8.2 Configuration of the transformation process

There are three different major methods offered by IXTEX to configure the transformation
process:

e through the template mechanism,
e through the hook mechanism, or
e through sockets and plugs.

They offer different possibilities (with different features and limitations) and are intended
for specific use cases, though it is possible to combine them.

8.2.1 The template mechanism

The template mechanism is intended for more complex document-level elements (e.g.,
headings such as \section or environments like itemize). The template code implements
the overall processing logic for such an element and offers a set of parameters to influence
the final result.

The document element is then implemented by (a) selecting a suitable template
(there may be more than one available for the kind of document element) and (b) by

38Excepts for directives such as \newpage.

79

setting its parameters to desired values. This then forms a so-called instance which is
executed when the document element is found in the source.

By altering the parameter values (in a document class or in the document preamble)
or, if more drastic layout changes are desired, by selecting a different template and
then adjusting its parameters, a wide variety of layouts can be realized through simple
configuration setups without the need to develop new code.

The target audience of this method are therefore document class developers or users
who wish to alter an existing layout (implemented by a document class) in certain (minor)
ways.

The template mechanism is currently documented as part of the xtemplate package
and one more elaborate implementation can be found as part of the latex-1lab code for
lists (to be documented further).

8.2.2 The hook mechanism

Hooks are places in the kernel code (or in packages) that offer packages the possibility to
inject additional code at specific points in the processing in a controlled way without the
need to replace the existing code block (and thereby overwriting modifications/extensions
made by other packages). The target audience is therefore mainly package developers,
even though some hooks can be useful for document authors.

Obviously, what can reasonably be added into a hook depends on the individual hook
(hopefully documented as part of the hook documentation), but in general the idea be-
hind hooks is that more than one package could add code into the hook at the same time.
Perhaps the most famous hook (that BTEX had for a very long time) is begindocument
into which many packages add code to through \AtBeginDocument{({code)} (which is
nowadays implemented as a shorthand for \AddToHook{begindocument}{{code)}). To
resolve possible conflicts between injections by different packages there is a rule mech-
anism by which code chunks in a hook can be ordered in a certain way and by which
incompatible packages can be detected if a resolution is impossible.

In contrast to template code, there is no standard configuration method through
parameters for hooks, i.e., the code added to a hook “is” the configuration. If it wants
to provide for configuration through parameters it has to also provide its own method to
set such parameters in some way. However, in that case it is likely that using a hook is
not the right approach and the developer better calls a template instance instead which
then offers configuration through a key/value interface.

In most cases, hooks do not take any arguments as input. Instead, the data that
they can (and are allowed to) access depends on the surrounding context.

For example, the various hooks available during the page shipout process in I TEX’s
output routine can (and have to) access the accumulated page material stored in a box
named \ShipoutBox. This way, code added to, say, the shipout/before hook could
access the page content, alter it, and then write it back into \ShipoutBox and any other
code added to this hook could then operate on the modified content. Of course, for such
a scheme to work the code prior to executing the hook would need to setup up data in
appropriate places and the hook documentation would need to document what kind of
storage can be accessed (and possibly altered) by the hook.

There are also hooks that take arguments (typically portions of document data) and
in that case the hook code can access these arguments through #1, #2, etc.

The hook mechanism is documented in 1thooks-doc.pdf.

80

8.2.3 The socket mechanism

In some cases there is code that implements a certain programming logic (for example,
combining footnotes, floats, and the text for the current page to be shipped out) and
if this logic should change (e.g., footnotes to be placed above bottom floats instead of
below) then this whole code block needs to be replaced with different code.

In theory, this could be implemented with templates, i.e., the code simply calls some
instance that implements the logic and that instance is altered by selecting a different
templates and/or adjusting their parameters. However, in many cases customization
through parameters is overkill in such a case (or otherwise awkward, because parameter-
ization is better done on a higher level instead of individually for small blocks of code)
and using the template mechanism just to replace one block of code with a different one
results in a fairly high performance hit. It is therefore usually not a good choice.

In theory, it would also be possible to use a hook, but again that is basically a misuse
of the concept, because in this use case there should never be more than one block of
code inside the hook; thus, to alter the processing logic one would need to set up rules
that replace code rather than (as intended) execute all code added to the hook.

For this reason KTEX now offers a third mechanism: “sockets” into which one can
place exactly one code block — a “plug”.

In a nutshell: instead of having a fixed code block somewhere as part of the code,
implementing a certain programming logic there is a reference to a named socket at this
point. This is done by first declaring the named socket with:

\NewSocket{(socket-name) H {number-of-inputs)}

This is then referenced at the point where the replaceable code block should be executed
with:

\UseSocket{(socket-name)}

or, if the socket should take a number of inputs (additional arguments beside the name)
with

\UseSocket{(socket-name)}{{arg;)}. .. {(arg(nunber-ot-inputs))+

In addition, several code blocks (a.k.a. plugs) implementing different logic for this
socket are set up, each with a declaration of the form:

\NewSocketPlug{(socket-name)}{(socket-plug-name){{code)+
Finally, one of them is assigned to the socket:
\AssignSocketPlug{(socket-name)}{(socket-plug-name)}

If the programming logic should change, then all that is necessary is to make a new as-
signment with \AssignSocketPlug to a different {(socket-plug-name)}. This assignment
obeys scope so that an environment can alter a socket without the need to restore the
previous setting manually.

If the socket takes inputs, then those need to be provided to \UseSocket and in that
case they can be referenced in the (code) argument of \NewSocketPlug with #1, #2, etc.

In most cases a named socket is used only in a single place, but there is, of course,
nothing wrong with using it in several places, as long as the code in all places is supposed
to change in the same way.

81

Examples
We start by declaring a new socket named foo that expects two inputs:
\NewSocket{foo}{2}

Such a declaration has do be unique across the whole ITEX run. Thus, if another
package attempts to use the same name (regardless of the number of inputs) it will
generate an error:

\NewSocket{foo}{2}
\NewSocket{foo}{1}

Both declarations would therefore produce:
! LaTeX socket Error: Socket ’foo’ already declared!

You also get an error if you attempt to declare some socket plug and the socket name
is not yet declared, e.g.,

\NewSocketPlug{baz}{undeclared}{some code}
generates
! LaTeX socket Error: Socket ’baz’ undeclared!
Setting up plugs for the socket is done like this:

\NewSocketPlug{foo}{plug-A}

{\begin{quote}\itshape foo-A: #1!#2\end{quote}}
\NewSocketPlug{foo}{plug-B}

{\begin{quote}\sffamily foo-B: #22\end{quote}}

This will set up the plugs plug-A and plug-B for this socket.
We still have to assign one or the other to the socket, thus without doing that the
line

\UseSocket{foo}{hello}{world}

produces nothing because the default plug for sockets with 2 inputs is noop (which grabs
the additional arguments and throws them away).*’
So let’s do the assignment

\AssignSocketPlug{foo}{plug-A}
and then

\UseSocket{foo}{hello}{world}
will properly typeset

foo-A: hellolworld
and after

\AssignSocketPlug{foo}{plug-B}

391f socket foo would have been a socket with one input, then the default plug would be identity, in
which case the socket input would remain without braces and gets typeset!

82

and another call to
\UseSocket{foo}{hello}{world}
we get
foo-B: world?
If we attempt to assign a plug that was not defined, e.g.,
\AssignSocketPlug{foo}{plug-C}
then we get an error during the assignment
! LaTeX socket Error: Plug ’plug-C’ for socket ’foo’ undeclared!

and the previous assignment remains in place.

To see what is known about a socket and its plugs you can use \ShowSocket or
\LogSocket which displays information similar to this on the terminal or in the transcript
file:

Socket foo:

number of inputs = 2

available plugs = noop, plug-A, plug-B

current plug = plug-B

definition = \long macro:#1#2->\begin {quote}\sffamily
foo-B: #2\textsuperscript {2}\end {quote}

Details and semantics

In this section we collect some normative statements.

e From a functional point of view sockets are like simple TEX macros, i.e., they
expect 0 to 9 mandatory arguments (the socket inputs) and get replaced by their
“expansion”

e A socket is “named” and the name consists of ASCII letters [a-z], [A-Z], [0-9],
[-/e] only

o Socket names have to be unique, i.e., there can be only one socket named (name).
This is ensured by declaring each socket with \NewSocket.

However, there is no requirement that sockets and hook names have to be different.
In fact, if a certain action that could otherwise be specified as hook code has
to be executed always last (or first) one could ensure this by placing a socket
(single action) after a hook (or vice versa) and using the same name to indicate the
relationship, e.g.,

\UseHook{foo} % different package can add code here
\UseSocket{foo} % only one package can assign a plug

This avoids the need to order the hook code to ensure that something is always
last.

e Best practice naming conventions are ... to be documented

83

o A socket has documented inputs which are

the positional arguments (if any) with a description of what they contain when
used

implicit data (registers and other 2e/expl3 data stores) that the socket is
allowed to make use of, with a documented description of what they contain
(if relevant for the task at hand—mno need to describe the whole IXTEX universe)

information about the state of the TEX engine (again when relevant), e.g. is
called in mmode or vmode or in the output routine or ...

. anything missing?

o A socket has documented results/outputs which can be

what kind of data it should write to the current list (if that is part of its task)

what kind of registers and other 2e/expl3 data stores it should modify and in
what way

what kind of state changes it should do (if any)
. anything else?

o At any time a socket has one block of code (a plug :-)) associated with it. Such
code is itself named and the association is done by linking the socket name to the
code name (putting a plug into the socket).

e The name of a plug consists of ASCII letters [a-z], [A-Z], [0-9], [-/@] only.

Socket plug names have to be unique within on a per socket basis, but it is perfectly

allowed (and sensible in some cases) to use the same plug name with different sockets
(where based on the sockets’ purposes, different actions may be associated with the
plug name). For example noop is a plug name declared for every socket, yet it
action “grab the socket inputs and throw them away” obviously differs depending
on how many inputs the socket has.

e When declaring a plug it is stated for which socket it is meant (i.e., its code can
only be used with that socket). This means that the same plug name can be used
with different sockets referring to different code in each case.

e Configuration of a socket can only be done by linking different code to it. Never-
theless the code linked to it can provide its own means of configuration (but this is
outside of the spec).

Technically execution of a socket (\UseSocket) involves

doing any house keeping (like writing debugging info, ...);
looking up the current code association (what plug is in the socket);

executing this code which will pick up the mandatory arguments (happens at
this point, not before), i.e., it is like calling a csname defined with

\def\foo#1#2...{...#1...#2...}

do some further house keeping (if needed).

o A socket is typically only used in one place in code, but this is not a requirement,
i.e., if the same operation with the same inputs need to be carried out in several
places the same named socket can be used.

84

\NewSocket
\socket_new:nn

\NewSocketPlug
\socket_new_plug:nnn
\socket_set_plug:nnn

\AssignSocketPlug
\socket_assign_plug:nn

Command syntax

We give both the ITEX 2¢ and the L3 programming layer command names.

\NewSocket {(socket-name)} {(number-of-inputs)}
\socket_new:nn {(socket-name)} {(number-of-inputs)}

Declares a new socket with name (socket-name) having (number-of-inputs) inputs.
There is automatically a plug noop declared for it, which does nothing, i.e., it gobbles
the socket inputs (if any). This is made the default plug except for sockets with one
input which additionally define the plug identity and assign that as their default.

This identity plug simply returns the socket input without its outer braces. The
use case for this plug are situations like this:

\UseSocket{tagsupport/footnote}{(code)}

If tagging is not active and the socket contains the plug identity then this returns
(code) without the outer braces and to activate tagging all that is necessary is to change
the plug to say tagpdf so that it surrounds (code) by some tagging magic. This is the
most common use case for sockets with one input, which is why they have this special
default.

The socket documentation should describe its purpose, its inputs and the expected
results as discussed above.

The declaration is only allowed at top-level, i.e., not inside a group.

\NewSocketPlug {(socket-name)} {(socket-plug-name)} {(code)}
\socket_new_plug:nnn {(socket-name)} {(socket-plug-name)} {(code)}
\socket_set_plug:nnn {(socket-name)} {(socket-plug-name)} {(code)}

Declares a new plug for socket (socket-name) that runs (code) when executing. It
complains if the plug was already declared previously.

The form \socket_set_plug:nnn changes an existing plug. As this should normally
not be necessary, we currently have only an L3 layer name for the few cases it might be
useful.

The declarations can be made inside a group and obey scope, i.e., they vanish if the
group ends.

\AssignSocketPlug {(socket-name)} {(socket-plug-name)}
\socket_assign_plug:nn {(socket-name)} {(socket-plug-name)}

Assigns the plug (socket-plug-name) to the socket (socket-name). It errors if either
socket or plug is not defined.
The assignment is local, i.e., it obeys scope.

85

\UseSocket

\socket_use:
\socket_use:
\socket_use:
\socket_use:
\socket_use:

\UseSocket {(socket-name)}
nw \socket_use:nnn {(socket-name)} {(socket-argi:)} {(socket-arg:)}

Executes the socket (socket-name) by retrieving the (code) of the current plug assigned
to the socket. This is the only command that would appear inside macro code in packages.
For performance reasons there is no explicit check that the socket was declared!

The different L3 programming layer commands are really doing the same thing: they

nn
nnn
nnnn

grab as many arguments as defined as inputs for the socket and then pass them to the
plug. The different names are only there to make the code more readable, i.e., to indicate
how many arguments are grabbed in total (note that no runtime check is made to verify
that this is actually true). We only provide them for sockets with up to 3 inputs (most
likely those with zero or one input would have been sufficient). If you happen to have a
socket with more inputs, use \socket_use:nw.

\socket_use_expandable:nw x \socket_use_expandable:n {(socket—name)}
\socket_use_expandable:n «*

Fully expandable variant of \socket_use:n. This can be used in macro code to retrieve
code from sockets which need to appear in an expandable context.

This usually requires the plug to only contain expandable code and should therefore
only be used for sockets which are clearly documented to be used in an expandable
context. This command does not print any debugging info when \DebugSocketsOn is
active and should therefore be avoided whenever possible.

For performance reasons there is no explicit check that the socket was declared!

\ShowSocket \ShowSocket {(socket-name)}

\LogSocket

\socket_show:n {(socket-name)}

\socket_show:n Displays information about the socket (socket-name) and its state then stops and waits

\socket_log:n

for further instructions — at the moment some what rudimentary.

\LogSocket and \socket_log:n only differ in that they don’t stop.

It is sometimes necessary/helpful to know if a particular socket or plug exists (or is
assigned to a certain socket) and based on that take different actions.

\IfSocketExistsTF

\socket_if_exist:nTF *

*x \IfSocketExistsTF {(socket-name)} {(true code)} {(false code)}

If socket (socket-name) exists then execute (true code) otherwise (false code). Vari-

ants with only T or F are also available.

\IfSocketPlugExistsTF

* \IfSocketPlugExistsTF {(socket-name)} {(plug-name)}

\socket_if_plug_exist:nnTF * {(true code)} {(false code)}

If plug (pIlug-name) for socket (socket-name) exists then execute (true code) otherwise
(false code). Variants with only T or F are also available.

\IfSocketPlugAssignedTF * \IfSocketPlugAssignedTF {(socket-name)} {(plug-name)}
\socket_if_plug_assigned:nnTF x {(true code)} {(false code)}

If plug (plug-name) is assigned to socket (socket-name) then execute (true code)
otherwise (false code). Variants with only T or F are also available.

86

\DebugSocketsOn
\DebugSockets0ff
\socket_debug_on:

\socket_debug_off:

\DebugSocketsOn ... \DebugSocketsOff

Turns debugging of sockets on or off.

Rationale for error handling

The errors during the declarations are produced to help with typos—after all, such dec-
larations might be part of a document preamble (not that likely, but possible). However,
\UseSocket is not doing much checking, e.g.,

\UseSocket{mispelled-socket}{hello}{world}

will generate a rather low-level error and then typesets “helloworld” because there is no
dedicated runtime check if mispelled-socket is a known socket.

The reason is that if the misspelling is in the code, then this is a programming error
in the package and for speed reasons IATEX does not repeately make runtime checks for
coding errors unless they can or are likely to be user introduced.

87

Chapter 9

Templates: Prototype
document functions

9.1 Introduction

There are three broad “layers” between putting down ideas into a source file and ending
up with a typeset document. These layers of document writing are

1. authoring of the text with mark-up;
2. document layout design;
3. implementation (with TEX programming) of the design.

We write the text as an author, and we see the visual output of the design after the
document is generated; the TEX implementation in the middle is the glue between the
two.

ITEX’s greatest success has been to standardise a system of mark-up that balances
the trade-off between ease of reading and ease of writing to suit almost all forms of
technical writing. It’s other original strength was a good background in typographical
design; while the standard IATEX 2¢ classes look somewhat dated now in terms of their
visual design, their typography is generally sound (barring the occasional minor faults).

However, IXTEX 2¢ has always lacked a standard approach to customising the visual
design of a document. Changing the looks of the standard classes involved either:

o Creating a new version of the implementation code of the class and editing it.

o Loading one of the many packages to customise certain elements of the standard
classes.

e Loading a completely different document class, such as KOMA-Script or memoir,
that allows easy customization.

All three of these approaches have their drawbacks and learning curves.

The idea behind Ittemplates is to cleanly separate the three layers introduced at
the beginning of this section, so that document authors who are not programmers can
easily change the design of their documents. Ittemplates also makes it easier for I TEX
programmers to provide their own customizations on top of a pre-existing class.

88

9.2 What is a document?

Besides the textual content of the words themselves, the source file of a document contains
mark-up elements that add structure to the document. These elements include sectional
divisions, figure/table captions, lists of various sorts, theorems/proofs, and so on. The
list will be different for every document that can be written.

Each element can be represented logically without worrying about the formatting,
with mark-up such as \section, \caption, \begin{enumerate} and so on. The output
of each one of these document elements will be a typeset representation of the information
marked up, and the visual arrangement and design of these elements can vary widely in
producing a variety of desired outcomes.

For each type of document element, there may be design variations that contain
the same sort of information but present it in slightly different ways. For example, the
difference between a numbered and an unnumbered section, \section and \sectionx,
or the difference between an itemized list or an enumerated list.

There are three distinct layers in the definition of “a document” at this level

1. semantic elements such as the ideas of sections and lists;
2. a set of design solutions for representing these elements visually;
3. specific variations for these designs that represent the elements in the document.

In the parlance of the template system, these are called types, templates, and instances,
and they are discussed below in sections 9.4, 9.5, and 9.7, respectively.

9.3 Types, templates, and instances

By formally declaring documents to be composed of mark-up elements grouped into types,
which are interpreted and typeset with a set of templates, each of which has one or more
instances with which to compose each and every semantic unit of the text, we can cleanly
separate the components of document construction.

All of the structures provided by the template system are global, and do not respect

TEX grouping.

9.4 Template types

An template type (sometimes just “type”) is an abstract idea of a document element that
takes a fixed number of arguments corresponding to the information from the document
author that it is representing. A sectioning type, for example, might take three inputs:
“title”, “short title”, and “label”.

Any given document class will define which types are to be used in the document,
and any template of a given type can be used to generate an instance for the type.
(Of course, different templates will produce different typeset representations, but the
underlying content will be the same.)

89

\NewTemplateType

\DeclareTemplateInterface

\NewTemplateType {(template type)} {(no. of args)}
This function defines an (template type) taking (number of arguments), where the
(type) is an abstraction as discussed above. For example,

\NewTemplateType{sectioning}{3}

creates a type “sectioning”, where each use of that type will need three arguments.

9.5 Templates

A template is a generalized design solution for representing the information of a specified
type. Templates that do the same thing, but in different ways, are grouped together by
their type and given separate names. There are two important parts to a template:

o the parameters it takes to vary the design it is producing;
e the implementation of the design.

As a document author or designer does not care about the implementation but rather only
the interface to the template, these two aspects of the template definition are split into two
independent declarations, \DeclareTemplateInterface and \DeclareTemplateCode.

\DeclareTemplateInterface

{(type)} {(template)} {(no. of args)}

{(key 1list)}
A (template) interface is declared for a particular (type), where the (number of
arguments) must agree with the type declaration. The interface itself is defined by
the (key list), which is itself a key—value list taking a specialized format:

(key1) : (key typel) ,
(key2) : (key type2) ,
(key3) : (key type3) = (default3) ,
(key4) : (key type4) = (default4) ,

Each (key) name should consist of ASCII characters, with the exception of ,, = and :.
The recommended form for key names is to use lower case letters, with dashes to separate
out different parts. Spaces are ignored in key names, so they can be included or missed
out at will. Each (key) must have a (key type), which defines the type of input that
the (key) requires. A full list of key types is given in Table 1. Each key may have a
(default) value, which will be used in by the template if the (key) is not set explicitly.
The (default) should be of the correct form to be accepted by the (key type) of the
(key): this is not checked by the code. Expressions for numerical values are evaluated
when the template is used, thus for example values given in terms of em or ex will be set
respecting the prevailing font.

90

Key-type Description of input

boolean true or false

choice{(choices)} A list of pre-defined (choices)

commalist A comma-separated list

function{(N)} A (protected) function definition with N arguments (N from 0 to 9)
instance{(name)} An instance of type (name)

integer An integer or integer expression

length A fixed length

muskip A math length with shrink and stretch components
real A real (floating point) value

skip A length with shrink and stretch components
tokenlist A token list: any text or commands

Table 1: Key-types for defining template interfaces with \DeclareTemplateInterface.

\KeyValue \KeyValue {(key name)}

There are occasions where the default (or value) for one key should be taken from another.
The \KeyValue function can be used to transfer this information without needing to know
the internal implementation of the key:

\DeclareTemplateInterface { type } { template } { no. of args }
{
key-name-1 : key-type = value ,
key-name-2 : key-type = \KeyValue { key-name-1 },

91

\DeclareTemplateCode

\AssignTemplateKeys

Key-type Description of binding

boolean Boolean variable, e.g. \1_tmpa_bool

choice List of choice implementations (see Section 9.6)
commalist Comma list, e.g. \1_tmpa_clist

function Function taking N arguments, e.¢g. \use_i:nn

instance

integer Integer variable, e.g. \1_tmpa_int
length Dimension variable, e.g. \1_tmpa_dim
muskip Muskip variable, e.g. \1_tmpa_muskip
real Floating-point variable, e.g. \1_tmpa_£p
skip Skip variable, e.g. \1_tmpa_skip

tokenlist Token list variable, e.g. \1_tmpa_t1

Table 2: Bindings required for different key types when defining template implementa-
tions with \DeclareTemplateCode. Apart from choice and function all of these accept
the key word global to carry out a global assignment.

\DeclareTemplateCode

{(type)} {(template)} {(no. of args)}

{(key bindings)} {(code)}
The relationship between a templates keys and the internal implementation is created
using the \DeclareTemplateCode function. As with \DeclareTemplateInterface, the
(template) name is given along with the (type) and (number of arguments) required.
The (key bindings) argument is a key—value list which specifies the relationship between
each (key) of the template interface with an underlying (variable).

N

(key1) = (variablel),
(key2) = (variable2),
(key3) = global (variable3),
(key4) = global (variabled4),

N

With the exception of the choice, code and function key types, the (variable) here
should be the name of an existing IXTEX3 register. As illustrated, the key word “global”
may be included in the listing to indicate that the (variable) should be assigned globally.
A full list of variable bindings is given in Table 2.

The (code) argument of \DeclareTemplateCode is used as the replacement text for
the template when it is used, either directly or as an instance. This may therefore accept
arguments #1, #2, etc. as detailed by the (number of arguments) taken by the type.

\AssignTemplateKeys

In the final argument of \DeclareTemplateCode the assignment of keys defined by
the template may be delayed by including the command \AssignTemplateKeys. If
this is mot present, keys are assigned immediately before the template code. If an
\AssignTemplateKeys command is present, assignment is delayed until this point. Note
that the command must be directly present in the code, not placed within a nested
command /macro.

92

\SetKnownTemplateKeys \SetKnownTemplateKeys {(type)} {(template)} {(keyvals)}

\SetTemplateKeys
\UnusedTemplateKeys

\SetTemplateKeys {(type)} {(template)} {(keyvals)}
\UnusedTemplateKeys % all (keyvals) unused by previous \SetKnownTemplateKeys

In the final argument of \DeclareTemplateCode one can also overwrite (some of)
the current template key value settings by using the command \SetKnownTemplateKeys
or \SetTemplateKeys, i.e., they can overwrite the template default values and the values
assigned by the instance.

The \SetKnownTemplateKeys and \SetTemplateKeys commands are only supported
within the code of a template; using them elsewhere has unpredictable results. If they
are used together with \AssignTemplateKeys then the latter command should come first
in the template code.

The main use case for these commands is the situation where there is an argument
(normally #1) to the template in which a key/value list can be specified that overwrites
the normal settings. In that case one could use

\SetKnownTemplateKeys{(type) H (template)}{#1}

to process this key/value list inside the template.

If \SetKnownTemplateKeys is executed and the (keyvals) argument contains keys
not known to the (template) they are simply ignored and stored in the tokenlist
\UnusedTemplateKeys without generating an error. This way it is possible to apply
the same key/val list specified by the user on a document-level command or environment
to several templates, which is useful, if the command or environment is implemented by
calling several different template instances.

As a variation of that, you can use this key/val list the first time, and for the
next template instance use what remains in \UnusedTemplateKeys (i.e., the key/val
list with only the keys that have not been processed previously). The final process-
ing step could then be \SetTemplateKeys, which unconditionally attempts to set the
(keyvals) received in its third argument. This command complains if any of them are
unknown keys. Alternatively, you could use \SetKnownTemplateKeys and afterwards
check whether \UnusedTemplateKeys is empty.*’

For example, a list, such as enumerate, is made up from a blockenv, block, list,
and a para template and in the single user-supplied optional argument of enumerate
key/values for any of these templates might be specified.

In fact, in the particular example of list environments, the supplied key/value list
is also saved and then applied to each \item which is implemented through an item
template. This way, one can specify one-off settings for all the items of a single list
(on the environment level), as well as to individual items within that list (by specify-
ing them in the optional argument of an \item). With \SetKnownTemplateKeys and
\SetTemplateKeys working together, it is possible to provide this flexibility and still
alert the user when one of their keys is misspelled.

On the other hand you may want to allow for “misspellings” without generating an
error or a warning. For example, if you define a template that accepts only a few keys,
you might just want to ignore anything specified in the source when you use this template
in place of a different one, without the need to alter the document source. Or you might

40Using \SetTemplateKeys exposes the inner structure of the template keys when generating an er-
ror. This is something one may want to avoid as it can be confusing to the user, especially if sev-
eral templates are involved. In that case use \SetKnownTemplateKeys and afterwards check whether
\UnusedTemplateKeys is empty; if it is not empty then generate your own error message.

93

\DeclareTemplateCopy

just generate a warning message, which is easy, given that the unused key/values are
available in the \UnusedTemplateKeys variable.

\DeclareTemplateCopy
{(type)} {(template2)} {(templatel)}

Copies (templatel) of (type) to a new name (template2): the copy can then be edited
independent of the original.

9.6 Multiple choices

The choice key type implements multiple choice input. At the interface level, only the
list of valid choices is needed:

\DeclareTemplateInterface { foo } { bar > { 0 }
{ key-name : choice { A, B, C } }

where the choices are given as a comma-list (which must therefore be wrapped in braces).
A default value can also be given:

\DeclareTemplateInterface { foo } { bar } { 0 }
{ key-name : choice { A, B, C} =4}

At the implementation level, each choice is associated with code, using a nested
key—value list.

\DeclareTemplateCode { foo } { bar } { 0 }

{
key-name =
{
A = Code-A ,
B = Code-B ,
C = Code-C
}
}
{...}

The two choice lists should match, but in the implementation a special unknown choice
is also available. This can be used to ignore values and implement an “else” branch:

\DeclareTemplateCode { foo } { bar } { 0 }

{
key-name =
{
A = Code-A ,
B = Code-B ,
C = Code-C ,
unknown = Else-code
}
}
{...}

94

\DeclarelInstance

\InstanceValue x

The unknown entry must be the last one given, and should not be listed in the interface
part of the template.

For keys which accept the values true and false both the boolean and choice key
types can be used. As template interfaces are intended to prompt clarity at the design
level, the boolean key type should be favored, with the choice type reserved for keys
which take arbitrary values.

9.7 Instances

After a template is defined it still needs to be put to use. The parameters that it expects
need to be defined before it can be used in a document. Every time a template has
parameters given to it, an instance is created, and this is the code that ends up in the
document to perform the typesetting of whatever pieces of information are input into it.

For example, a template might say “here is a section with or without a number that
might be centered or left aligned and print its contents in a certain font of a certain size,
with a bit of a gap before and after it” whereas an instance declares “this is a section
with a number, which is centered and set in 12 pt italic with a 10 pt skip before and a
12 pt skip after it”. Therefore, an instance is just a frozen version of a template with
specific settings as chosen by the designer.

\DeclarelInstance
{(type)} {(instance)} {(template)} {(parameters)}

This function uses a (template) for an (type) to create an (instance). The (instance)
will be set up using the (parameters), which will set some of the (keys) in the
(template).

As a practical example, consider a type for document sections (which might include
chapters, parts, sections, etc.), which is called sectioning. One possible template for
this type might be called basic, and one instance of this template would be a numbered
section. The instance declaration might read:

\DeclareInstance { sectioning } { section-num } { basic }
{

numbered

true ,
justification = center ,

font =\normalsize\itshape ,
before-skip = 10pt ,
after-skip = 12pt ,

}

Of course, the key names here are entirely imaginary, but illustrate the general idea of
fixing some settings.

\InstanceValue {(type)} {(instance)} {(key)}

Expands to the current value for the (key) stored in the (instance) of (type). If the
(instance) does not exist, the expansion is empty. The result is returned within the
\unexpanded primitive (\exp_not:n),

95

\IfInstanceExistsT
\IfInstanceExistsF
\IfInstanceExistsTF

\DeclareInstanceCopy

\UseInstance

\UseTemplate

\IfInstanceExistsTF {(type)} {(instance)} {(true code)} {(false code)}

Tests if the named (instance) of a (type) exists, and then inserts the appropriate code
into the input stream.

\DeclareInstanceCopy
{(type)} {(instance2)} {(instancel)}

Copies the (values) for (instancel) for an (type) to (instance2).

9.8 Document interface

After the instances have been chosen, document commands must be declared to use those
instances in the document. \UselInstance calls instances directly, and this command
should be used internally in document-level mark-up.

\UseInstance

{(type)} {(instance)} (arguments)
Uses an (instance) of the (type), which will require (arguments) as determined by the
number specified for the (type). The (instance) must have been declared before it can
be used, otherwise an error is raised.

\UseTemplate {(type)} {(template)}
{(settings)} (arguments)
Uses the (template) of the specified (type), applying the (settings) and absorbing
(arguments) as detailed by the (type) declaration. This in effect is the same as creating
an instance using \DeclareInstance and immediately using it with \UseInstance, but
without the instance having any further existence. This command is therefore useful
when a template needs to be used only once.
This function can also be used as the argument to instance key types:

\DeclareInstance { type } { template } { instance }
{
instance-key =
\UseTemplate { type2 } { template2 } { <settings> }

9.9 Changing existing definitions

Template parameters may be assigned specific defaults for instances to use if the instance
declaration doesn’t explicit set those parameters. In some cases, the document designer
will wish to edit these defaults to allow them to “cascade” to the instances. The alterna-
tive would be to set each parameter identically for each instance declaration, a tedious
and error-prone process.

96

\EditTemplateDefaults \EditTemplateDefaults
{(type)} {(template)} {(new defaults)}

Edits the (defaults) for a (template) for an (type). The (new defaults), given as
a key—value list, replace the existing defaults for the (template). This means that the
change will apply to instances declared after the editing, but that instances which have
already been created are unaffected.

\EditInstance \EditInstance
{(type)} {(instance)} {(new values)}

Edits the (values) for an (instance) for an (type). The (new values), given as a key—
value list, replace the existing values for the (instance). This function is complementary
to \EditTemplateDefaults: \EditInstance changes a single instance while leaving the
template untouched.

9.9.1 Expanding the values of keys

To allow the user to apply expansion of values when the key is set, key names can be
followed by an expansion specifier. This is given by appending : and a single letter
specifier to the key name. These letters are the normal argument specifiers for expl3,
thus they may be one of n (redundant but supported), o, V, v, e, N (again redundant) or
c. Expansion of a control sequence name is particularly useful when you need to refer to
an internal I TEX 2¢ or an L3 programming layer variable, e.g.,

key-a:c = Qitemdepth , % use \@itemdepth as the value
key-b:v @itemdepth % use the current value of \@itempdepth as the value

9.10 Getting information about templates and in-
stances

\ShowInstanceValues \ShowInstanceValues {(type)} {(instance)}

Shows the (values) for an (instance) of the given (type) at the terminal.

\ShowTemplateCode \ShowTemplateCode {(type)} {(template)}

Shows the (code) of a (template) for an (type) in the terminal.

\ShowTemplateDefaults \ShowTemplateDefaults {(type)} {(template)}

Shows the (default) values of a (template) for an (type) in the terminal.

\ShowTemplateInterface \ShowTemplateInterface {(type)} {(template)}

Shows the (keys) and associated (key types) of a (template) for an (type) in the
terminal.

97

\ShowTemplateVariables \ShowTemplateVariables {(type)} {(template)}

Shows the (variables) and associated (keys) of a (template) for an (type) in the
terminal. Note that code and choice keys do not map directly to variables but to
arbitrary code. For choice keys, each valid choice is shown as a separate entry in the
list, with the key name and choice separated by a space, for example

Template ’example’ of type ’example’ has variable mapping:
> demo unknown => \def \demo {7}

> demo ¢ => \def \demo {c}

> demo b => \def \demo {b}

> demo a => \def \demo {a}.

would be shown for a choice key demo with valid choices a, b and c, plus code for an
unknown branch.

98

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
.............. 32, 32,
32,

/after (hook)
/before (hook)
\(addto-cmd)

A/foo (hook)
\abspage
abspage
\ActivateGenericHook
\AddEverypageHook
\AddThispageHook
\AddToHook
\AddToHookNext
\AddToHookNextWithArguments
\AddToHookWithArguments
after (hook)
\AfterEndEnvironment
\Alph
\arabic
\AssignSocketPlug

\AssignTemplateKeys
\AtBeginDocument
\AtBeginDvi
\AtBeginEnvironment
\AtBeginShipout
\AtBeginShipoutAddToBox
\AtBeginShipoutAddToBoxForeground . .
\AtBeginShipoutBox
\AtBeginShipoutDiscard
\AtBeginShipoutFirst
\AtBeginShipoutInit
\AtBeginShipoutNext
\AtBeginShipoutOriginalShipout
\AtBeginShipoutUpperLeft
\AtBeginShipoutUpperLeftForeground
\AtEndDocument
\AtEndDvi
\AtEndEnvironment
\AtEndOfClass
\AtEndOfPackage
\AtEndPreamble
\AtNextShipout

babel/(language)/afterextras (hook)

34

22
57

22
27
27
58
58
81
92
21
60
27
60
59
59
59

60

28
60

22

\BeforeBeginEnvironment
\begin
begindocument (hook)

begindocument/before (hook)
begindocument/end (hook)
\bfdefault
bfseries (hook)
\bfseries
bfseries/defaults (hook)
bool commands:
\1_tmpa_bool
\botmark
\box

\caption
\chaptermark
class (hook)
class/ (hook)
class/.../after
class/.../before
class/(name)/after (hook)
class/(name)/before (hook)
class/after (hook)
class/after
class/before (hook)
class/before
\ClearHookNext
\ClearHookRule
\clearpage
clist commands:
\1_tmpa_clist
cmd (hook)
cmd/(name)/after (hook)
cmd/(name)/before (hook)
cmd/foo/before (hook)
cmd/include/after (hook)
cmd/include/before (hook)
cmd/section/after (hook)
cmd/section/before (hook)
counter
\csname
\CurrentFile
\CurrentFilePath
\CurrentFilePathUsed

16, 22, 22, /1,
27, 38,

99

80, 80, 25, 25, 25, 28, .

62

92
42
41
38
40
35

35

\CurrentFileUsed

\DebugHooksOf f
\DebugHooksOn
\DebugMarksOf f
\DebugMarksOn
\DebugShipouts0ff
\DebugShipoutsOn
\DebugSockets0ff
\DebugSockets0On
\DeclareDefaultHookRule
\DeclareHookRule
\DeclareInstance
\DeclareInstanceCopy
\DeclareTemplateCode
\DeclareTemplateCopy
\DeclareTemplateInterface
dim commands:
\1_tmpa_dim
\DisableGenericHook
\DisableHook
\DiscardShipoutBox
\document

\documentclass

\edef
\EditInstance
\EditTemplateDefaults
\end
\endcsname
enddocument (hook)
\enddocument
enddocument/afteraux (hook)
enddocument/afterlastpage (hook)
enddocument/end (hook)

enddocument/info (hook)
\endgraf

env (hook)
env/(env)/after (hook)

env/(env)/before (hook)
env/(env)/begin (hook)

env/{env)/end (hook)
env/document/after (hook)

env/document/before (hook)
env/document/begin (hook)

env/document/end (hook)
env/quote/after (hook)
\ERROR
\errorstopmode
\everypar
\EveryShipout

20

95
96
93
94
92

92

57
28
10

68
97
97
20

24
29
29
29
29

22
27
27

, 27
, 27

30
28
28
30
20

exp commands:

\exp_not:n 68
expand@font@defaults (hook) 30
\ExplSyntaxOn 39

F
file (hook) 13, 22
file commands:

\1_file_search_path_seq 33
file/.../after 32
file/.../before 32
file/(file name)/after (hook) 33, 33
file/(file name)/before (hook) 33, 83
file/(filename)/after (hook) 32
file/(filename)/before (hook) 32
file/(package name).sty/after (hook) 3/
file/(package name).sty/before (hook) 3/
file/after (hook) 32, 33, 3/
file/after 32
file/array.sty/after (hook) 33
file/before (hook) 32, 33, 34
file/before 32
\FirstMark 64
\firstmark 62
foo (socket) 82, 82
fp commands:

\l_tmpa_fp 92

G
\glossary 63
H
\hboxX 59
hook commands:

\hook_activate_generic:n 16

\hook_debug_off: 18

\hook_debug_on: 18

\hook_disable_generic:n 16

\hook_gclear_next_code:n 17

\hook_gput_code:nnn 17

\hook_gput_code_with_args:nnn ... 17

\hook_gput_next_code:nn 17

\hook_gput_next_code_with_-

AYESINN . . .t 17
\hook_gremove_code:nn 17
\hook_gset_rule:nnnn 18
\hook_if_empty:nTF 18
\hook_if_empty_p:n 18
\hook_log:n 18
\hook_new:n 16
\hook_new_pair:nn 15
\hook_new_pair_with_args:nn 16
\hook_new_pair_with_args:nnn 16
\hook_new_reversed:n 15

\hook_new_reversed_with_args:nn .
\hook_new_with_args:nn
\hook_show:n
\hook_use:n
\hook_use :nnw
\hook_use_once:n

\hook_use_once:nnw
Hooks:
Jafter, 32, 32,
/before 32
A/foo 13
after Lo oo oo
babel/(language)/afterextras
begindocument 80, 80, 25, 25, 25, 28,
begindocument/before
begindocument/end
bfseries 30,
bfseries/defaults 30,
class
class/
class/(name)/after
class/(name)/before
class/after
class/before
emd ... 16, 22, 22, 41,
cmd/(name)/after 27, 38
cmd/(name)/before 27, 38
cmd/foo/before
cmd/include/after
cmd/include/before
cmd/section/after 41,
cmd/section/before
enddocument 24, 25,
enddocument/afteraux
enddocument/afterlastpage
enddocument/end
enddocument/info
EOV . vt 13,
env/({env)/after 26, 26,
env/(env)/before 26, 26,
env/(env)/begin 26,
env/(env)/end 26,
env/document/after
env/document/before
env/document/begin
env/document/end
env/quote/after 20,
expand@font@defaults
file 13,
file/(file name)/after 38
file/(file name)/before 33

file/(filename)/before
file/(package name).sty/after ...

(
(
file/(filename)/after
(
(

16
16
18
21
16

16

34
13
27
38
28
28
30
30
22
3/
34
34
34
34
42
41

, 38

40
35
35

30
28
30
20
30
33
33
34

101

identity (plug)

file/(package name).sty/before .. 34

file/after 32, 33, 34
file/array.sty/after 33
file/before 32, 33, 34
include 22, 35
include/(name)/after 35
include/(name)/before 35
include/(name)/end 35
include/(name)/excluded 35, 35
include/after 35
include/before 35
include/end 35
include/excluded 35, 35
insertmark 31, 63
mdseries 30
mdseries/defaults 30
myhook 6
normalfont 30
package 22
package/ 34
package/(name)/after 34
package/(name)/before 34
package/(package name)/after &/
package/(package name)/before ... 3/
package/after 34, 34
package/before 34, 34
para/after 47
para/before 47
para/begin 47, 49
para/end 47, 48
rmfamily 30, 30, 30
selectfont 31
sffamily 30
shipout 55, 56, 56, 57, 57
shipout/... 54, 57
shipout/after
....... 54, 54, 54, 56, 56, 56, 58, 58
shipout/background

......... 54, 55, 56, 57, 59, 59, 60
shipout/before
80, 54, 54, 54, 54, 55, 55, 55,

56, 56, 56, 57, 57, 57, 57, 58, 58, 60, 60

shipout/firstpage
......... 54, 54, 54, 55, 56, 56, 56

shipout/foreground
......... 54, 55, 56, 57, 59, 59, 60

shipout/lastpage
....... 29, 54, 54, 56, 56, 56, 56, 56

test 23, 23

toplevel 25, 0, 6

ttfamily 30

I

\IfHookEmptyF 1
\IfHOOKEmptyT 1
\IfHoOKEmptyTF 14
\IfInstanceExistsF 96
\IfInstanceExistsT 96
\IfInstanceExistsTF 96
\IfLabelExistsF 76
\IfLabelExistsT 76
\IfLabelExistsTF 76
\IfMarksEqualF 64
\IfMarksEqualT 64
\IfMarksEqualTF 64
\ifnum 58
\IfPropertyExistsF 76
\IfPropertyExistsT 76
\IfPropertyExistsTF 76
\IfPropertyRecordedF 76
\IfPropertyRecordedT 76
\IfPropertyRecordedTF 76
\IfSocketExistsTF 86
\IfSocketPlugAssignedTF 86
\IfSocketPlugExistsTF 86
\ignorespaces 28
\immediate 29
include (hook) 22, 35
\include 35
include/.../after 35
include/.../before 35
include/.../end 35
include/(name)/after (hook) 35
include/(name)/before (hook) 35
include/(name)/end (hook) 35
include/(name)/excluded (hook) 35, 85
include/after (hook) 35
include/after 35
include/before (hook) 35
include/before 35
include/end (hook) 35
include/end 35
include/excluded (hook) 35, 35
\includeonly 35
\indent 49
\IndentBox 49
\index 63
\input 33
\insert 45
\InsertMark 31
insertmark (hook) 31, 63
insertmark 63
\InstanceValue 95
int commands:

\int_use:N 58

\l_tmpa_int 92
\item 44

K
\KeyValue 91
L
\label 76
label 77
\lastbox 5%
\LastMark 64
\leftmark 62
\listfiles 29
\LoadPackageWithOptions 33
\LogHoOkc.o.u..o.. 14
\LogSocket 83
M
\marginpar 47
\mark 62
mark commands:
\mark_clear_structure:n 71
\mark_copy_structure:nn 70
\mark_debug_off: 67
\mark_debug_on: 67
\mark_get_marks_for_reinsertion:nNN
.......................... 71
\mark_if_eq:nnnnnnTF 64
\mark_if_eq:nnnnTF 64
\mark_insert:nn 71
\mark_new_class:n 63

\mark_set_structure_to_err:n ... 70
\mark_update_structure_from_-

material:inn 70
\mark_use_first:nn 64
\mark_use_last:nn 6/
\mark_use_top:nn 64

mark internal commands:
__mark__update_dblcol_structures:

.......................... 70
__mark_update_dblcol_structures

.......................... 71
__mark_update_singlecol_-

structures: 70

\markboth 62
\markright 62
mdseries (hook) 30
\mdseries 30
mdseries/defaults (hook) 30
muskip commands:

\1_tmpa_muskip 92
myhook (hook) 6
N
\newcommand 39
\NewCommandCopy 41
\NewDocumentCommand 42

102

\NewDocumentEnvironment 26
\newenvironment 26
\NewHook 25
\NewHookPair 40
\NewHookWithArguments 3
\NewMarkClass 63
\newmarks 69
\NewMirroredHookPair 3
\NewMirroredHookPairWithArguments ... &
\Dewpage 79
\NewProperty 76
\NewReversedHook 3
\NewReversedHookWithArguments 3
\NewSocket 83
\NewSocketPlug 85
\NewTemplateType 90
\noindent, 49
noop (plug) 82, 84, 85
normalfont (hook) 30
\normalfont 30
\normalsize 7
(@)

\OmitIndent 49
\openin 32
P
package (hook) 22
package/ (hook) 34
package/.../after 34
package/.../before 34
package/(name)/after (hook) 34
package/(name)/before (hook) 34
package/(package name)/after (hook) . 34
package/(package name)/before (hook) 34
package/after (hook) 34, 34
package/after 34
package/before (hook) 34, 34
package/before 34
PABE - i e 77
Pagenuma.a.. .. 77
\pageref, 77
pagetarget 77
\par 48

para commands:
\para_end: 48
\g_para_indent_box 49
\para_omit_indent: 49
\para_raw_end: 49
\para_raw_indent: 49
\para_raw_noindent: 49
para/after (hook) 47
para/after 47
para/before (hook) 47

para/before 47
para/begin (hook) 47, 49
para/begin 47
para/end (hook) 47, 48
para/end 47
\paracntvalue 50
\parbox, 47
\parindent 44
\parskip 47
\pdfsavepos 77
Plugs:
identity 82, 85, 85, 85
NOOD v v ot vt 82, 84, 85
tagpdf 85
\PopDefaultHookLabel 10
pre commands:
pre_shipout_filter 57
\PreviousTotalPages 58
property commands:
\property_gset:nnnn 74
\property_if_exist:nTF 75
\property_if_exist_p:n 75
\property_if_recorded:nnTF 75
\property_if_recorded:nTF 75
\property_if_recorded_p:n 75
\property_if_recorded_p:nn 75
\property_item:nn 74
\property_new:nnnn 74
\property_record:nN 74
\property_record:nn 74
\property_ref:nn 74
\property_ref:nnn 74
\property_ref_undefined_warn: ... 7/

\property_ref_undefined_warn:n .. 75
\property_ref_undefined_warn:nn . 75

\PushDefaultHookLabel 10
\put 59
R
\RawIndent 49
\RawNoindent 49
\RawParEnd 49
\RawShipout 59
\ReadonlyShipoutCounter 58
\RecordProperties 76
\ref 73
\RefProperty 74
\refstepcounter 48
\RefUndefinedWarn 75
\relaxii 45
\RemoveFromHook 6
\RequirePackage 10
\rightmark 62
rmfamily (hook) 30, 30, 30

103

\rmfamily
\Roman

\savepos
\section
\sectionmark
selectfont (hook)
\selectfont
\SetDefaultHookLabel
\SetKnownTemplateKeys

\SetProperty
\SetTemplateKeys
sffamily (hook)
\sffamily
shipout (hook)
\shipout
shipout commands:
\1_shipout_box
\1_shipout_box_dp_dim
\1_shipout_box_ht_dim
\1_shipout_box_ht_plus_dp_dim . ..
\1_shipout_box_wd_dim
\shipout_debug_off:
\shipout_debug_on:
\shipout_discard:
\g_shipout_readonly_int
\g_shipout_totalpage_int
\g_shipout_totalpages_int
shipout/... (hook)
shipout/after (hook)
54, 54, 54, 56, 56, 56, 58,

shipout/after
shipout/background (hook)
54, 55, 56, 57, 59, 59,

shipout/background
shipout/before (hook)
80, 54, 54, 54, 54, 55, 55, 55,

56, 56, 56, 57, 57, 57, 57, 58, 58, 60,
shipout/before
shipout/firstpage (hook)
54, 54,

shipout/firstpage
shipout/foreground (hook)
54, 55,

shipout/foreground
shipout/lastpage (hook)
29, 54, 54,
shipout/lastpage
\ShipoutBox
\ShowHook

\ShowInstanceValues
\ShowSocket
\ShowTemplateCode

31

5/

54
58
58
57
58
58
58

58
55

60

55

\ShowTemplateDefaults 97
\ShowTemplateInterface 97
\ShowTemplateVariables 98
skip commands:

\l_tmpa_skip 92
\small i 7
socket commands:

\socket_assign_plug:nn 85

\socket_debug_off: 87

\socket_debug_on: 87

\socket_if_exist:nTF 86

\socket_if_plug_assigned:nnTF ... 86

\socket_if_plug_exist:nnTF 86

\socket_log:n 86

\socket_new:nn 85

\socket_new_plug:nnn 85

\socket_set_plug:nnn 85

\socket_show:n 86

\socket_use:n 86

\socket_use:nn 86

\socket_use:nnn 86

\socket_use:nnnn 86

\socket_use:nw 86

\socket_use_expandable:n 86

\socket_use_expandable:nw 86
Sockets:

foo ... L 82, 82
\special 56
\strut 31
\subsectionmark 68

T
tagpdf (plug) 85
target 77
test (hook) 23, 23
TEX and ETEX 2 commands:

\@begindocumenthook 25

\@begindvi 60

\@begindvibox 55

\@bsphackc...... 76

\@cclv 60

\@currentHpage 77

\@currentHref 77

\@currentcounter 7

\@currentlabel 77

\@currentlabelname 77

\@currenvir 50

\@esphackc...... 76

\@firstofone 5

\@input 32

\@kernel@after@(hook) 24

\@kernel@after@para@after 48

\@kernel@after@paraGend 48

\@kernel@before@(hook) 24

\@kernel@before@para@before
\@kernel@before@para@begin
\@opcol
\@outputbox
\@@end
\AddToHook
\AddToHookNext
\AddToHookNextWithArguments
\AddToHookWithArguments
\apptocmd
\botmark
\declare@file@substitution
\DeclareRobustCommand
\def
\disable@package@load
\expand@font@defaults
\if@firstcolumn
\input@path
\new@label@record
\newcommand
\NewDocumentCommand
\on@line
\patchcmd
\pretocmd
\protected@edef
\reenable@package@load
\section
\topmark
\topmark(s)
\undeclare@file@substitution
\unexpanded
tex commands:
\tex_savepos:D
\thepage
title
tl commands:
\1_tmpa_t1
toplevel (hook)

48
47
71
71
29
38
38
38
38
39

36
40
40
36
30
71
33
75
40
40
50
40
39
68
36
41
69
69
36
64
73

77
77

\TopMark
\topmark
totalpages
ttfamily (hook)
\ttfamily
\typeout

\unitlength
\unpenalty
\unskip
\UnusedTemplateKeys
\unvcopy
use commands:
\use_i:nn
\UseHook
\UseHookWithArguments
\UseInstance
\UseOneTimeHook
\UseOneTimeHookWithArguments
\usepackage
\UseSocket
\UseTemplate
\usetikzlibrary

\vbox

105

77

77

	Contents
	I Hooks
	1 LaTeX's hook management
	1.1 Introduction
	1.2 Package writer interface
	1.2.1 LaTeX2ε interfaces
	Declaring hooks
	Special declarations for generic hooks
	Using hooks in code
	Updating code for hooks
	Hook names and default labels
	The top-level label
	Defining relations between hook code
	Querying hooks
	Displaying hook code
	Debugging hook code

	1.2.2 L3 programming layer (expl3) interfaces
	1.2.3 On the order of hook code execution
	1.2.4 The use of "reversed" hooks
	1.2.5 Difference between "normal" and "one-time" hooks
	1.2.6 Generic hooks provided by packages
	1.2.7 Hooks with arguments
	1.2.8 Private LaTeX kernel hooks
	1.2.9 Legacy LaTeX2ε interfaces

	1.3 LaTeX2ε commands and environments augmented by hooks
	1.3.1 Generic hooks
	Generic hooks for all environments
	Generic hooks for commands
	Generic hooks provided by file loading operations

	1.3.2 Hooks provided by \begin{document}
	1.3.3 Hooks provided by \end{document}
	1.3.4 Hooks provided by \shipout operations
	1.3.5 Hooks provided for paragraphs
	1.3.6 Hooks provided in NFSS commands
	1.3.7 Hook provided by the mark mechanism

	2 LaTeX's hook management for files
	2.1 Introduction
	2.1.1 Provided hooks
	2.1.2 General hooks for file reading
	2.1.3 Hooks for package and class files
	2.1.4 Hooks for \include files
	2.1.5 High-level interfaces for LaTeX
	2.1.6 Kernel, class, and package interfaces for LaTeX
	2.1.7 A sample package for structuring the log output

	3 Hook management for commands
	3.1 Introduction
	3.2 Restrictions and operational details
	3.2.1 Patching
	Timing

	3.2.2 Command copies
	3.2.3 Grouping
	3.2.4 Commands that look ahead

	3.3 Package author interface
	3.3.1 Arguments and redefining commands

	4 Paragraph building and hooks
	4.1 Introduction
	4.1.1 The default processing done by the engine

	4.2 The new mechanism implemented for LaTeX
	4.2.1 The provided hooks
	4.2.2 Altered and newly provided commands
	4.2.3 Examples
	Testing the mechanism
	Mark the first paragraph of each itemize

	4.2.4 Some technical notes
	Glue items between paragraphs (found with fancypar)

	5 The shipout routine: hooks and interfaces
	5.1 Introduction
	5.1.1 Overloading the \shipout primitive
	5.1.2 Provided hooks
	5.1.3 Legacy LaTeX commands
	5.1.4 Special commands for use inside the hooks
	5.1.5 Provided LuaTeX callbacks
	5.1.6 Information counters
	5.1.7 Debugging shipout code

	5.2 Emulating commands from other packages
	5.2.1 Emulating atbegshi
	5.2.2 Emulating everyshi
	5.2.3 Emulating atenddvi
	5.2.4 Emulating everypage

	II Run data and page design
	6 The marks mechanism
	6.1 Introduction
	6.2 Design-level and code-level interfaces
	6.2.1 Use cases for conditionals
	6.2.2 Understanding regions
	6.2.3 Debugging mark code

	6.3 Application examples
	6.4 Legacy LaTeX2ε interface
	6.4.1 Legacy design-level and document-level interfaces
	6.4.2 Legacy interface extensions

	6.5 Notes on the mechanism
	6.6 Public interfaces for packages such as multicol
	6.7 Internal functions for the standard output routine of LaTeX

	7 Recording and cross-referencing document properties
	7.1 Introduction
	7.2 Design discussion
	7.3 Handling unknown labels and properties
	7.4 Rerun messages
	7.5 Open points
	7.6 Code interfaces
	7.7 Auxiliary file interfaces
	7.8 LaTeX2ε interface
	7.9 Pre-declared properties

	III Design-level tools
	8 LaTeX's socket management
	8.1 Introduction
	8.2 Configuration of the transformation process
	8.2.1 The template mechanism
	8.2.2 The hook mechanism
	8.2.3 The socket mechanism
	Examples
	Details and semantics
	Command syntax
	Rationale for error handling

	9 Templates: Prototype document functions
	9.1 Introduction
	9.2 What is a document?
	9.3 Types, templates, and instances
	9.4 Template types
	9.5 Templates
	9.6 Multiple choices
	9.7 Instances
	9.8 Document interface
	9.9 Changing existing definitions
	9.9.1 Expanding the values of keys

	9.10 Getting information about templates and instances

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

