
SQLTEX v3.0

Oscar van Eijk

Sep 20, 2024

Contents

1 Introduction 2
1.1 Known limitations . 2

2 Installing SQLTEX 2
2.1 Requirements . 3
2.2 Installation . 3

2.2.1 Linux . 3
2.2.2 Windows . 4
2.2.3 OpenVMS . 4

2.3 Configuration . 4
2.4 Create replace files . 7

2.4.1 Regular expressions . 8

3 Write your SQLTEX file 9
3.1 SQL statements . 10
3.2 Opening the database . 10

3.2.1 Prompt for password and/or username 11
3.3 Reading a single field . 11

3.3.1 Define variables . 11
3.4 Reading rows of data . 12

3.4.1 Output rows on separate lines 12
3.4.2 Store data in an array . 13

3.5 Loop context . 13
3.5.1 If-endif control block . 14

3.6 Get input from external programs 15
3.7 Output multiple documents . 15
3.8 Update database records . 16

4 Process your SQLTEX file 16
4.1 Parameters . 16
4.2 Command line options . 16

1

5 SQLTEX errors and warnings 18

6 Copyright and disclaimer 20

7 History 20
7.1 Changes that require updates in your input files 22

7.1.1 Multi-document mode since v2.2 22

1 Introduction

SQLTEX is a preprocessor to enable the use of SQL statements in LATEX. It is
a perl script that reads an input file containing the SQL commands, and writes
a LATEX file that can be processed with your LATEX package.

The SQL commands will be replaced by their values. It’s possible to select a
single field for substitution substitution in your LATEX document, or to be used
as input in another SQL command.

When an SQL command returns multiple fields and or rows, the values can
only be used for substitution in the document.

1.1 Known limitations

� The LATEX \includeonly directive is ignored; all documents included with
\include will be parsed and written to the output file.

� Currently, only 9 command- line parameters (1-9), and 10 variables (0-9)
can be used in SQL statements.

� Replace files can hold only 1,000 items.

2 Installing SQLTEX

Since v3.0, SQLTEX is part of TEX Live and doesn’t need further installation.
If you are using a different LaTeX distro, please follow the steps below for your
OS.

Before installing SQLTEX, you need to have it. The latest version can always
be found at https://github.com/oveas/sqltex. The download consists of
this documentation, an installation script for Unix (install), and the Perl
script sqltex, and a replace- file (SQLTeX r.dat) for manual installation on
non- unix platforms1.

1on Unix, this file will be generated by the install script

2

https://github.com/oveas/sqltex

2.1 Requirements

SQLTEX requires the following software:

� Perl v5.10 or higher (http://perl.org/)

� Perl-DBI (http://dbi.perl.org/)

� The DBI driver for your database
(see: http://search.cpan.org/search?query=DBD%3A%3A&mode=module)

� Getopt::Long (https://metacpan.org/pod/Getopt::Long)

� Term::ReadKey (https://metacpan.org/pod/Term::ReadKey)

2.2 Installation

If you are using a TEX Live distribution, SQLTEX is already available. For all
other distros, follow the steps in this section.

First unpack the archive in a location of your choice and continue with one
if the subsections below depending on you operating system.

2.2.1 Linux

Go to the top directory where the archive was unpacked (‘cd sqltex-3.0’) and
execute the following commands:

$./configure [options]

$ make

$ [sudo] make install

In the last command, sudo is only required if the install destination (PREFIX,
see below) is outside the own user environment.

For configure, the following options are user buy SQLTEX (type ./configure
--help for a full list):

--prefix=PREFIX install architecture-independent files in PREFIX. Default is
/usr/local.

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX. De-
fault is PREFIX.

The directives above are used by the ones below:

--bindir=DIR Location of the SQLTEX script. Default is EPREFIX/bin

--sysconfdir=DIR Location of the Configuration- and replacefiles. Default is
PREFIX/etc

3

http://perl.org/
http://dbi.perl.org/
http://search.cpan.org/search?query=DBD%3A%3A&mode=module
https://metacpan.org/pod/Getopt::Long
https://metacpan.org/pod/Term::ReadKey

--datarootdir=DIR Data root, used by the directives below. Default is PREFIX/share

--mandir=DIR Location of the SQLTEX manpage. Default is DATAROOTDIR/man

--docdir=DIR Documentation root, used by pdfdir below. Default is DATAROOTDIR/doc/sqltex

--pdfdir=DIR Location of SQLTEX.pdf. Default is DOCDIR

After installation, the archive and unpack- directory can be removed.

2.2.2 Windows

Note:Since v3.0, the binary SQLTEX.EXE for Windows is not included in the dis-
tribution anymore2

The files sqltex-3.0\sqltex, sqltex-3.0\src\SQLTeX.cfg and
sqltex-3.0\src\SQLTeX r.dat must be placed manually in the directory of
your choice, all in the same direcrtory.

2.2.3 OpenVMS

On OpenVMS the files must be copied manually to the destination. All files
must reside in the same location:
$ COPY [.SQLTEX-3 0.SRC]SQLTEX. SYS$SYSTEM:SQLTEX.PL

$ COPY [.SQLTEX-3 0.SRC]SQLTEX.CFG SYS$SYSTEM:

$ COPY [.SQLTEX-3 0.SRC]SQLTEX R.DAT SYS$SYSTEM:

$ SET FILE/PROTECTION=(W:RE) SYS$SYSTEM:SQLTEX.PL

Next, define the command SQLTEX by setting a symbol, either in the LOGIN.COM
for all users who need to execute this script, or in some group– or system wide
login procedure, with the command:
$ SQLTEX :== "PERL SYS$SYSTEM:SQLTEX.PL"

2.3 Configuration

The configuration file SQLTeX.cfg is located in /usr/local/etc (linux) or the
same location where SQLTEX is installed (all other operating systems and in
TEX Live distros)3. Multiple configuration files can be created, the command
line option --configfile can be used to select the requested configuration.

Note: Use of the --configfile commandfile option can be disabled on system
wide installations. To do so, the script sqltex must be modified.

2It can be generated with any (portable) perl version for Windows, like Strawberry
Perl (https://strawberryperl.com/), with PAR::Packer (https://metacpan.org/pod/PAR::
Packer) using the command:
pp -o sqltex.exe sqltex

3If a 1.x version of SQLTEX is installed on your system, make sure you save the configu-
ration section, which was inline in older versions

4

https://strawberryperl.com/
https://metacpan.org/pod/PAR::Packer
https://metacpan.org/pod/PAR::Packer

At the top of the file (line 4), set the value for $main::ext cfgfile allowed

to 0.

Some values can be overwritten using command line options (see section 4.2).
When the command line options are omitted, the values from the requested
configuration file will be used.

dbdriver Database driver. The default is mysql. Other supported databases
are Pg, Sybase, Oracle4, Ingres, mSQL, PostgreSQL and ODBC5, but also
others might work without modification.

If your database driver is not support, look for the function db connect

to add support (and please notify me :)

oracle sid Oracle Site Identifier, required when the Oracle database driver is
selected.

odbc driver Specification of the ODBC driver. Default is “SQL Server”

texex The default file extension for LATEX file. When SQLTEX is called, the
first parameter should be the name of the input file. If this filename has
no extension, SQLTEX looks for one with the default extension.

stx An output file can be given explicitly using the ‘--output’ option. When
omitted, SQLTEX composes an output file name using this string.
E.g, if your input file is called db-doc.tex, SQLTEX will produce an
outputfile with the name db-docstx.tex.

def out is in By default, when no output file is specified or an output file
without (relative) path is given, the output file will be generated in the
current directory.
This behaviour changed in version 2.1. In older version, the location of
the output file always was the same as the input file location. To revert
to the old behaviour, set def out is in to ‘1’6.

multi rfile If the commandline option --replacementfile is given, by default
the given replacement file will be parsed and after that the default replace-
ment file will be parsed as well.
If only the given replacement file should be parsed skipping the default
file, set this value to 0.

rfile comment The comment-sign used in replace files. If this is empty, com-
ments are not allowed in the replace files.

4This requires the configuration setting oracle sid
5The actual driver can specified with the configuration setting odbc driver
6Note the pre-v2.1 implementation also contained a bug: if the output file name contained

an absolute or relative path, this path was always taken as relative from the input file location.
In the new implementation, def out is in is ignored if the output file name contains a path.

5

rfile regexploc This must be part of the value rfile regexp below.

rfile regexp Explains how a regular expression is identified in the replace files
(see section 2.4.1).

cmd prefix SQLTEX looks for SQL commands in the input file. Commands are
specified in the same way all LATEX commands are specified: a backslash
(\) followed by the name of the command.
All SQLTEX commands start with the same string. By default, this is the
string sql. When user commands are defined that start with the same
string, this can be changed here to prevent conflicts.

sql open This string is appended to the cmd prefix to get the complete SQLTEX
command for opening a database.
With the default configuration this command is “\sqldb”.

sql field This string is appended to the cmd prefix to get the complete SQLTEX
command to read a single field from the database.
With the default configuration this command is “\sqlfield”.

sql row This string is appended to the cmd prefix to get the complete SQLTEX
command to read one or more rows from the database.
With the default configuration this command is “\sqlrow”.

sql params This string is appended to the cmd prefix to get the complete
SQLTEX command to retrieve a list if fields that will be used as pa-
rameters ($PAR1, see section 4.1) in the multidocument environment (see
section 3.7).
With the default configuration this command is “\sqlparams”.

sql update This string is appended to the cmd prefix to get the complete
SQLTEX command to update one or more rows in the database.
With the default configuration this command is “\sqlupdate”.

sql start This string is appended to the cmd prefix to get the complete SQLTEX
command start a section that will be repeated for every row from an array
(see section 3.5).
With the default configuration this command is “\sqlstart”.

sql use This string is appended to the cmd prefix to get the complete SQLTEX
command use a named variable from the array that is currently being
processed in a loop context (see section 3.5).
With the default configuration this command is “\sqluse”.

sql end This string is appended to the cmd prefix to get the complete SQLTEX
command to end a loop context (see section 3.5).
With the default configuration this command is “\sqlend”.

sqlsystem allowed Set this to “1” to allow the use of the \sqlsystem com-
mand (see section 3.6).

6

repl step Replacing strings (see section 2.4 below) is done two steps, to prevent
values from being replaced twice. This setting—followed by a three-digit
integer - “000” to “999”—is used in the first step and replaces values
from the first column. In the second step, values from the second column
replace the temporary value.
If the first column in the replace file contains a character sequence that
occurs in this temporary value, or if query results might contain the full
string followed by three digits, this value might need to be changed in
something unique.

alt cmd prefix In loop context, this setting is used internally to differenti-
ate between sql statements to process immediately and sql statements on
stack.
Normally, this setting should never change, but if the value for cmd prefix

has been changed and a conflict is found, the message “Configuration
item ’alt cmd prefix’ cannot start with <conflicting value> ” in-
dicates this setting should change as well.

2.4 Create replace files

Replace files can be used to substitute values in the output of your SQL com-
mands with a different value. This is especially useful when the database con-
tains characters that are special characters in LATEX, like the percent sign (‘%’),
underscore (‘ ’) etc.

When SQLTEX is installed, it comes with a standard file—SQLTeX r.dat—
which is located in /usr/local/etc7 (linux) or the same location where SQLTEX
is installed (all other operating systems and in TEX Live distros).

Example:

$ \$

_ _

% \%

& \&

< \texttt{<}

> \texttt{>}

{ \{

} \}

\#

~ \~{}

\ \ensuremath{\backslash}

These are all single character replacements, but you can add your own re-
placements that consist of a single character or a character sequence (or even
regular expressions, see section 2.4.1).

7if a replace file with that name already exists, it will be stored there as SQLTeX r.dat.new

7

To do so, enter a new line with the character(string) that should be replaced,
followed by one or more TAB-character(s) (not blanks!) and the character(string)
it should be replaced with.
That last one can be empty if the input character(string) should be ignored,
but the TAB after the input character(string) is mandatory!

If the first non-blank character is a semicolon (‘;’), the line is considered a
comment line8. Blank lines are ignored.

The contents of the file are case sensitive, so of you add the line:
LaTeX \LaTeX\

the word “LaTeX” will be changed, but “latex” is untouched.

Different replace files can be created. To select a different replace file for
a certain SQLTEX source, use the commandline option ‘--replacementfile
filename ’. To disable the use of replace files, use ‘no-replacementfile’.

2.4.1 Regular expressions

The replace file can include regular expressions, which are recognized by a pat-
tern given in the configuration setting rfile regexp. A part of the pattern,
configurable as rfile regexploc, will be the actual regular expression.

By default, rfile regexploc is “...” and rfile regexp is “re(...)”.
If the sequence of three dots can appear anywhere else in the replace file,
rfile regexploc can be changed to any other sequence of characters, e.g.
“regexpHere”.
This also requires rfile regexp to be changed. Its new value has to be “re(regexpHere)”

Both in the default configuration and with the modification example given
above, the key for regular expressions is re(<regular expression >), e.g.:
re(<p.*?>) \paragraph*{}

will replace all HTML <p> variants (<p style=’font-size: normal’>, <p align=’center’>
etc)

An example replacement file using regular expressions to handle HTML
codes could look like this:

& \&

 \textbf{

 }

 \textit{

 }

re(<br.*?/?>) \\

re(<p.*?>) \paragraph*{}

</p> \\[0pt]

8in the default configuration. See the description for rfile comment in section 2.3 to change
of disable comment lines.

8

<sup> $^{

</sup> }$

re(<span.*?>) \textsl{

 }

re(<h1.*?>) \section{

re(<h2.*?>) \subsection{

re(<h3.*?>) \subsubsection{

re(</h\d>) }

3 Write your SQLTEX file

For SQLTEX, you write your LATEX document just as you’re used to. SQLTEX
provides you with some extra commands that you can include in your file.
The basic format9 of an SQLTEX command is:
\sqlcmd [options]{SQL statement}

All SQLTEX commands can be specified anywhere in a line, and can span
multiple lines. When SQLTEX executes, the commands are read, executed, and
their results—if they return any—are written to the output:

Input file:
\documentclass[article]
\pagestyle{empty}
\sqldb[oscar]{mydb}
\begin{document}

Output file:
\documentclass[article]
\pagestyle{empty}

\begin{document}

Above you see the SQLTEX command \sqldb was removed. Only the com-
mand was removed, not the newline character at the end of the line, so an empty
line will be printed instead. The example below shows the output if an SQLTEX
command was found on a line with other LATEX directives:

Input file:
\documentclass[article]
\pagestyle{empty}\sqldb[oscar]{mydb}
\begin{document}

Output file:
\documentclass[article]
\pagestyle{empty}
\begin{document}

In these examples the SQLTEX commands did not return a value. When
commands actually read from the database, the returned value is written in-
stead:

9in this document, in all examples will be assumed the default values in the configuration
section as described in section 2.3, have not been changed

9

Input file:
This invoice has \sqlfield{SELECT
COUNT(*) FROM INVOICE LINE

WHERE INVOICE NR = 20190062} lines.

Output file:
This invoice has 3 lines

3.1 SQL statements

This document assumes the reader is familiar with SQL commands. This section
only tells something about implementing them in SQLTEX files, especially with
the use of command parameters and variables. Details about the SQLTEX
commands will be described in the next sections.

Let’s look at a simple example. Suppose we want to retrieve all header
information from the database for a specific invoice. The SQL statement could
look something like this:
SELECT ∗ FROM INVOICE WHERE NR = 20190062;

To implement this statement in an SQLTEX file, the \sqlrow command should
be used (see section 3.4):

First, it is important to know that SQL statements should not contain
the ending semicolon (;) in any of the SQLTEX commands. The command
in SQLTEX would be:
\sqlrow{SELECT ∗ FROM INVOICE WHERE NR = 20190062}

Next, SQLTEX would be useless if you have to change your input file every
time you want to generate the same document for another invoice.

Therefore, you parameters or variables can be used in your SQL statement.
Parameters are given at the command line (see section 4.1), variables can be
defined using the \sqlfield command as described in section 3.3.1.

Given the example above, the invoice number can be passed as a parameter
by rewriting the command as:
\sqlrow{SELECT ∗ FROM INVOICE WHERE NR = $PAR1}
or as a variable with the code line:
\sqlrow{SELECT ∗ FROM INVOICE WHERE NR = $VAR0}

Note you have to know what datatype is expected by your database. In the
example here the datatype is integer. If the field “invoice nr” contains a
varchar type, the $PARameter or $VARiable should be enclosed by quotes:
\sqlrow{SELECT ∗ FROM INVOICE WHERE NR = ’$PAR1’}

3.2 Opening the database

Before any information can be read from a database, this database should be
opened. This is done with the \sqldb command. \sqldb requires the name of
the dabatase. Optionally, a username, password and remote database host can
be given.
The format of the command is:
\sqldb[user=username,passwd=password,host=host]{database}

10

The command can be used anywhere in your input file, but should occur
before the first command that tries to read data from the database.

If the keywords user, passwd and host are omitted, SQLTEX assumes the
options are given in this order:
\sqldb[username,password,host]{database}

Default host is localhost, the default user is the current user.

Note: The \sqldb command cannot span multiple lines!

3.2.1 Prompt for password and/or username

If a password is omitted, SQLTEX will try connect to the database without a
password, unless the commandline option --password is given (see section 4.2).

Forcing a user to enter a database password when SQLTEX runs can be
achieved by specifying ? as password:
\sqldb[user=dbUser,passwd=?]{database}

When different database users should be able to use the same SQLTEX file,
the username can also be a question mark, forcing SQLTEXto prompt for a
username:
\sqldb[user=?,passwd=?]{database}

3.3 Reading a single field

When a single field of information is to be read from the database, the command
\sqlfield is used. By default, the command in the input file is replaced by its
result in the output file.
The SQL command is enclosed by curly braces. Square brackets can optionally
be used to enter some extra options. Currently, the only supported option is
setvar (see section 3.3.1).

The full syntax or the \sqlfield command is:
\sqlfield[options]{SELECT fieldname FROM tablename WHERE your where-clause }
By default, the SQLTEX command is replaced with the value returned by the
SQL query. This behaviour can be changed with options.

3.3.1 Define variables

The \sqlfield can also be used to set a variable. The value returned by the
SQL query is not displayed in this case. Instead, a variable is created which can
be used in any other SQL query later in the document (see also section 3.1).

Therefore, the option [setvar=n] is used, where n is an integer between 0
and 9.

Suppose you have an invoice in LATEX. SQLTEX is executed to retrieve the
invoice header information from the database for a specific customer. Next, the
invoice lines are read from the database.

11

You could pass the invoice number as a parameter to SQLTEX for use in
your queries, but that could change every month. It is easier to :

� pass the customer number as a parameter,

� retrieve the current date (assuming that is the invoice date as stored in
the database by another program), and store it in a variable:
\sqlfield[setvar=0]{SELECT DATE FORMAT(NOW(), "%Y-%m-%d")}
This creates a variable that can be used as $VAR0,

� retrieve the invoice number using the customer number (a command line
parameter, see also section 4.1) and the variable containing the invoice
date. Store this invoice number in $VAR1:
\sqlfield[setvar=1]{SELECT NR FROM INVOICES

WHERE CUST NR = ’$PAR1’ AND INVOICE DATE = ’$VAR0’}

� use $VAR1 to retrieve all invoice information.

The SQL queries used here do not display any output in your LATEX docu-
ment.

3.4 Reading rows of data

When an SQL query returns more information than one single field, the SQLTEX
command \sqlrow should be used. As with the \sqlfield, command, SQLTEX
replaces the command with the values it returns, but \sqlrow accepts different
options for formatting the output.

By default, fields are separated by a comma and a blank (‘, ’), and rows by
a newline character (‘\\’). To change this, the options “fldsep” and “rowsep”
can be used.

e.g. In a tabular environment the fields should be separated by an amper-
sand (&), perhaps a line should separate the rows of information. (\\ \hline).
To do this, the options can be used with \sqlrow as shown here:
\sqlrow[fldsep=&,rowsep=\\ \hline]{SELECT I.NR, A.NR, A.PRICE, I.AMOUNT,

(A.PRICE * I.AMOUNT) FROM ARTICLE A, INVOICE LINE I WHERE I.NR = $VAR1

AND I.ARTICLE NR = A.NR}

This will produce an output like:
1 & 9712 & 12 & 1 & 12 \\ \hline 2 & 4768 & 9.75 & 3 & 29.25 \\ \hline
3 & 4363 & 1.95 & 10 & 19.5 \\ \hline 4 & 8375 & 12.5 & 2 & 25 \\ \hline

3.4.1 Output rows on separate lines

Some LATEX packages require input on a separate line. If this output is to be
read from a database, this can be set with the rowsep option using the fixed
text “NEWLINE”.

12

Changing the example from section 3.4 above to:
\sqlrow[fldsep=&,rowsep=\\ \hline NEWLINE]{SELECT I.NR, A.NR, A.PRICE,

I.AMOUNT, (A.PRICE * I.AMOUNT) FROM ARTICLE A, INVOICE LINE I WHERE

I.NR = $VAR1 AND I.ARTICLE NR = A.NR}

would produce the following result:
1 & 9712 & 12 & 1 & 12 \\ \hline
2 & 4768 & 9.75 & 3 & 29.25 \\ \hline
3 & 4363 & 1.95 & 10 & 19.5 \\ \hline
4 & 8375 & 12.5 & 2 & 25 \\ \hline

3.4.2 Store data in an array

The \sqlrow command can also be used to store the data in an array. The
value returned by the SQL query is not displayed in this case. Instead, an
array is created which can be used later in the document in a loop context (see
section 3.5).

Therefore, the option [setarr=n] is used, where n is an integer between 0
and 9.

3.5 Loop context

In a loop context, an array is filled with data from the database using \sqlrow.
Later in the document, the data can be used in a text block that will be written
to the output file once for every record retrieved.

The text block is between the \sqlstart{n } and \sqlend{n } commands,
where n is the sequence number of the array to use10.

Multiple text blocks can occur in the document, but they can not be nested!

In the example below, data for unpaid invoices is stored in an array identified
with sequence number 0:
\sqlrow[setarr=0]{SELECT I.NR AS nr

, I.DUE DATE AS date

, I.TOTAL AS amount

, C.NAME AS customer

FROM INVOICE I

LEFT OUTER JOIN CUSTOMER C

ON C.NR = I.CUST NR

WHERE I.PAY DATE IS NULL}

To use this data, a text block must start with: \sqlstart{0}
Between this command and the first occurrence of \sqlend{}, an unlimited
amount11 of LATEX text can be written. Within this text, every occurrence

10in \sqlend, the sequence number is ignored, but required by syntax.
11limited by your computer’s memory only

13

of \sqluse{<field name >} will be replaced with the matching field from the
current row, e.g.:

\sqlstart{0}

\begin{flushright}

Regarding: invoicenumber \sqluse{nr}

\end{flushright}

Dear \sqluse{customer},

On \today, the invoice with number \sqluse{nr}, payable before

\sqluse{date}, was not yet received by us.

We kindly request you to pay the amount of \texteuro\sqluse{amount}

as soon as possible.

\newpage

\sqlend{}

3.5.1 If-endif control block

In the loop context, parts of the document can be enabled if certain conditions
are met, using a control block with \sqlif{condition(s) } and \sqlendif{}.

Conditions can be up to 2 conditions separated by an and (&&) or or (||).
The condition(s) consist of an left value and an right value seperated by 1

of the following comparisson operators: ‘==’, ‘!=’, ‘<’,. ‘>’, ‘<=’ or ‘>=’.
Numeric values will be used as is. When the value is text, it is expected to be
the name of a field and ‘\sqluse{}‘ will be called to retrieve the value.

Example:
\sqlif{article nr == 123 && \stock < 5}
Stock is below threshold, please reorder.

\sqlendif{}

Note the conditions are very basic with the following limitations:

� A maximum of 2 conditions is supported per if-statement.

� Only numeric comparissons are supported.

� If-elsif blocks cannot be nested.

When checks are needed that are not supported by SQLTEX, a workaround
can be implemented in the SQL code.

14

3.6 Get input from external programs

The \sqlsystem command can be used to call commands at the operating sys-
tem or external scripts and use their output in the location where the command
was given. Any command arguments can be given in the command line.

When used in a loop context (see section 3.5), \sqluse can also be used to
provide data to the script. If command arguments must be given for database
access, the following tags can be used:

<SRV> Name of the database server.

<USR> Username to connect to the database.

<PWD> Password to connect to the database.

<DB> Name of the database.

They will be replaced by the credentials for connecting to the database (see
section 3.2).

Example:
\sqlsystem{./add vat --usr <USR> --db <DB> --pwd <PWD> ←↩
--inv \sqluse{invoice nr}}

By default, use of this command is disallowed. To enable it, set the value of
sqlsystem allowed to “1” in the configuration file (see also section 2.3.

If the command is disabled, occurances of this command will be replaced
by the fixed text “use of the \sqlsystem command is disallowed in the

configuration”.

Note: The \sqlsystem command cannot span multiple lines!

3.7 Output multiple documents

A single input file can be created to generate more output files using the
--multidoc-numbered or --multidoc-named commandline option.

The input document must contain the command \sqlsetparams without
any options. The query that follows can return an unlimited number of rows:
\sqlsetparams{SELECT NR, CUST NR FROM INVOICES WHERE REMINDERS = $PAR1}

By processing this command, SQLTEX builds a list with all values retrieved
and processes the input file again for each row.
In those runs, the queries are executed as described in the previous sections,
using the returned fields to replace $MPARn placeholders, where n starts with 1
and represents the fields in the order as they have been retrieved:
\sqlrow{SELECT * FROM INVOICES WHERE NR = $MPAR1}
\sqlrow{SELECT * FROM CUSTOMER WHERE CUST NR = $MPAR2}

The options --multidoc-numbered or --multidoc-named cannot be used
together.

15

Without these options, a parameter can be given and a single output document
will be created, ignoring the \sqlsetparams command.

With the --multidoc-numbered option, output filenames will be numbered
filename 1.tex to filename n.tex.
With the --multidoc-named option, output filenames will be numbered
filename parameter.tex, where parameter is the first value taken from the
database ($MPAR1, the invoice number nr in the example above).
Note the parameter will not be formatted to be filename-friendly!

3.8 Update database records

Since version 1.5, SQLTEX supports database updates as well:
\sqlupdate{UPDATE INVOICE SET REMINDERS = REMINDERS + 1, LAST REMINDER

= NOW() WHERE NR = $VAR1}
This command accepts no options.

By default, the update statements will be ignored. To actually process them,
the commandline options --updates must be given!

4 Process your SQLTEX file

To process your SQLTEX file and create a LATEX file with all information
read from the database, call SQLTEX with the parameter(s) and (optional)
commandline options as described here.

4.1 Parameters

SQLTEX accepts more than one parameter. The first parameter is required;
this should be the input file, pointing to your LATEX document containing the
SQLTEX commands.

By default, SQLTEX looks for a file with extension ‘.tex’.

All other parameters are used by the queries, if required. If an SQL query
contains the string $PARn 12, it is replaced by that parameter (see also sec-
tion 3.1).

4.2 Command line options

SQLTEX accepts the following command- line options:

--configfile file, -c file SQLTEX configuration file. Default is SQLTeX.cfg
in the systems default location (see section 2.3).

12where n is a number between 1 and 9. Note parameter ‘0’ cannot be used, since that
contains the filename!

16

--file-extension string, -E string replace input file extension in out-
putfile: input.tex will be input.string .
For further notes, see option --filename-extend below.

--filename-extend string, -e string add string to the output filename:
input.tex will be inputstring.tex. This overwrites the configuration
setting stx.
In string, the values between curly braces {} will be substituted:

Pn parameter n

M current monthname (Mon)

W current weekday (Wdy)

D current date (yyyymmdd)

DT current date and time (yyyymmddhhmmss)

T current time (hhmmss)

e.g., the command
sqltex --filename-extend {P1} {W} my file code

will read ‘my file.tex’ and write ‘myfile code Tue.tex’.
The same command, but with option ---file-extension would create
the outputfile my file. code Tue

The options --file-extension and --filename-extend cannot be used
together or with --output.

--force, -f force overwrite of existing files. By default, SQLTEX exits with
a warning message it the outputfile already exists.

--help, -h print this help message and exit.

--multidoc-numbered, -m Multidocument mode; create one document for each
parameter that is retrieved from the database in the input document (see
section 3.7). This option cannot be used with --output.

--multidoc-named, -M Same as --multidoc-numbered, but with the param-
eter in the filename instead of a serial number (see section 3.7).

--null-allowed, -N NULL return values allowed. By default SQLTEX exits if
a query returns an empty set.

--output file, -o file specify an output file. Cannot be used with --file-extension,
--filename-extend or the --multidoc options.

--skip-empty-lines, -S All SQLTEX commands will be removed from the
input line or replaced by the corresponding value. The rest of the input
line is written to the output file. This includes lines that only contain
a SQLTEX command (and a newline character). This will result in an
empty line in the output file.
By specifying this option, these empty lines will be skipped. Lines that
were empty in the input will be written.

17

--write-comments, -C LATEX comments in the input file will be skipped by
default. With this option, comments will also be copied to the output file.

--prefix prefix, -p prefix prefix used in the SQLTEX file. Default is sql
(see also section 2.3 on page 6. This overwrites the configurarion setting
cmd prefix.

--password [password], -P [password] database password. The value is
optional; if omitted, SQLTEX will prompt for a password. This overwrites
the password in the input file.

--quiet, -q run in quiet mode.

--replacementfile replace, -r replace Specify a file that contains the re-
place characters (see section 2.4).
Default is SQLTeX r.dat in the systems default location (see section 2.4).
This default file will always be used after the given replacement file, unless
multi rfile is set to 0 in the configuration (see secion 2.3).

--no-replacementfile, -R Do not use a replace file. --no-replacementfile
and --replacementfile file are handled in the same order as they
appear on the command line, overwriting each other.
For backwards compatibility, -rn is also still supported.

--sqlserver server, -s server SQL server to connect to. Default is localhost.

--updates, -u if the input file contains updates, process them.

--username user, -U user database username. This overwrites the user-
name in the input file.

--version, -V print version number and exit.

5 SQLTEX errors and warnings

no input file specified

SQLTEX was called without any parameters.
Action: Specify at least one parameter at the commandline. This parameter
should be the name of your input file.

File input filename does not exist

The input file does not exist.
Action: Make sure the first parameter points to the input file.

outputfile output filename already exists

The outputfile cannot be created because it already exists.
Action: Specify another output filename with command line option -e, -E or
-o, or force an overwrite with option -f (see also section4.2).

18

no database opened at line line nr

A query starts at line line nr, but at that point no database was opened yet.
Action: Add an \sqldb command prior to the first query statement.

insufficient parameters to substitute variable on line line nr

The query starting at line line nr uses a parameter in a where- clause with
$PARn , where n is a number bigger than the number of parameters passed to
SQLTEX˙
Action: Specify all required parameters at the command line.

trying to substitute with non existing on line line nr

The query starting at line line nr requires a variable $VARn in itswhere- clause,
where n points to a variable that has not (yet) been set.
Action: Change the number or set the variable prior to this statement.

trying to overwrite an existing variable on line line nr

At line line nr, a \sqlfield query tries to set a variable n using the option
[setvar=n], but $VARn already exists at that point.
Action: Change the number.

no result set found on line line nr

The query starting at line line nr returned a NULL value. If the option -N

was specified at the commandline, this is just a warning message. Otherwise,
SQLTEX exits.
Action: None.

result set too big on line line nr

The query starting at line line nr, called with \sqlfield returned more than
one field.
Action: Change your query or use \sqlrow instead.

no parameters for multidocument found on line line nr

SQLTEX is executed in multidocument mode, but the statement on line line nr
did not provide any parameters for the documents.
Action: Check your query.

too many fields returned in multidocument mode on line nr

In multidocument mode, the lis of parameters retrieved on line line nr returned
more than one fields per row.
Action: Check your query.

start using a non-existing array on line line nr

An \sqlstart command occurs, but refers to a non-existing array.
Action: Check the sequence number of the array filled with \sqlrow[setarr=n]
and retrieved with \sqlstart{n } in your input file.

19

\sqluse command encountered outside loop context on line line nr

Data from array is used, but the current input file position is not in the context
where this data is available.
Action: Check the presence and positions of the \sqlstart and \sqlend com-
mands in your input file.

unrecognized command on line line nr

At line line nr, a command was found that starts with “\sql”, but this command
was not recognized by SQLTEX˙
Action: Check for typos. If the command is a user- defined command, it will
conflict with default SQLTEX commands. Change the SQLTEX command prefix
(see section 2.3).

no sql statements found in input filename

SQLTEX did not find any valid SQLTEX commands.
Action: Check your input file.

6 Copyright and disclaimer

The SQLTEX project is available from GitHub: https://github.com/oveas/
sqltex

For bugs, questions and comments, please use the issue tracker available at
https://github.com/oveas/sqltex/issues

Copyright© 2001-2024 - Oscar van Eijk, Oveas Functionality Provider

This software is subject to the terms of the LaTeX Project Public License; see
http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html.

7 History

v3.0 released: Sep 20, 2024

� Made it possible to run SQLTEX directly from the distribution with-
out configure and make [install] to make integration in TEX Live
possible.

� Renamed the script to sqltex. For backwards compatibility, during
installation on linux a symbolic link SQLTeX is created.

� The SQLTeX.exe binary is no longer included in the distribution (see
footnote 2 on page 4).

� Removed support for the --use-local-config commandline option.
The options --configfile and --replacementfile can be used in-
stead.

20

https://github.com/oveas/sqltex
https://github.com/oveas/sqltex
https://github.com/oveas/sqltex/issues
http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html

� Added an option to disable the --configfile command line option
(see note on page 4).

� Added the --skip-empty-lines and --write-comments command-
line options.

� Added support for multiple replacement files.

� Fix: ordering in the replacement file.

v2.2 released: Jul 31, 2024

� Extended the default replace file (see 2.4) with more special charac-
ters (e.g. with diacritics) and HTML tags.

� Issue #6 (https://github.com/oveas/sqltex/issues/6): added
support for ODBC drivers

� Issue #8 (https://github.com/oveas/sqltex/issues/8): added
support for parameter-driven in \sqlsetparams statements (multi-
document mode).
Note: This requires an update of your input files for multi-document
mode that have been created before v2.2. Refer to section 7.1.1 for
details.

� Added the \sqlsystem command.

� Added the \sqlif-\sqlendif control block.

v2.1 released: Jan 21, 2022

� Fix bug #2 (https://github.com/oveas/sqltex/issues/2): stan-
dard path management for output files.
See config item def out is in in section 2.3 to revert to pre v2.1
behaviour.

� Fix: help was not displayed on Windows

� Implemented ’?’ as password in dbopen

� Implemented ’?’ as username in dbopen

� Implemented long options

� Allow overwriting variables in multidocument mode

� Added simple automated regression tests

� Added a man page for linux users

� Rewrote the installation procedure, now using autotools on linux.

� On linux, change the default installation directory to /usr/bin and
store the configuration- and replacement files is /etc.

� Added option --use-local-config.

v2.0 released: Jan 12, 2016

� Fix: Oracle support using ORASID

21

https://github.com/oveas/sqltex/issues/6
https://github.com/oveas/sqltex/issues/8
https://github.com/oveas/sqltex/issues/2

� Fix: Ensure replacements are handled in the same order as they
appear in the replacements file

� Separate configuration file(s)

� Added the options -c and -M

� Support for regular expressions in replace files

� Implemented support for the LATEX \input and \include directives

� Implemented loop context

� Skip commentlines

� Project moved from local CVS to GitHub

v1.5 released: Nov 23, 2007

� Support for multiple databases

� Implemented database updates (sqlupdate)

� Implemented multiple output documents (option -m)

v1.4.1 released: Feb 15, 2005
Fix: removed leading whitespaces added to database results before replace

v1.4 released: May 2, 2002
Implemented replace files

v1.3 released: Mar 16, 2001
First public release

7.1 Changes that require updates in your input files

7.1.1 Multi-document mode since v2.2

Up until v2.1, the statement in \sqlsetparams could return only one field per
row and the statement itself could not handle parameters. The placeholder
$PAR1 was reserved for the subsequent statements.

Since v2.2 it is possible to retrieve multiple values per row. They will replace
the placeholders $MPARn in the subsequent statements, while $PARn placeholders
can now also be used for regular parametes in the \sqlsetparams statement
itself.

This means, in input documents created before v2.2, all “$PAR1” placehold-
ers must be replaced by “$MPAR1”.

22

	Introduction
	Known limitations

	Installing SQLTeX
	Requirements
	Installation
	Linux
	Windows
	OpenVMS

	Configuration
	Create replace files
	Regular expressions

	Write your SQLTeX file
	SQL statements
	Opening the database
	Prompt for password and/or username

	Reading a single field
	Define variables

	Reading rows of data
	Output rows on separate lines
	Store data in an array

	Loop context
	If-endif control block

	Get input from external programs
	Output multiple documents
	Update database records

	Process your SQLTeX file
	Parameters
	Command line options

	SQLTeX errors and warnings
	Copyright and disclaimer
	History
	Changes that require updates in your input files
	Multi-document mode since v2.2

