Last update: Thu Nov 13 02:00:18 MST 2025
Return to index directory
Math
-
$; $, C_11(1134)1136
-
$ - 2 $, C_3(325)329, C_6(626)626
-
$ - 2$, C_7(698)701
-
$0$, C_2(167)167
-
$ 0 \leq \mathrm {dir} $, C_3(322)325
-
$ 0^\circ $, C_2(167)167
-
$1$, C_2(167)167, C_6(570)572, C_12(1264)1269
-
$ (1 + 2^{-i}) $, C_3(322)325
-
$ (1 + \epsilon) $, C_8(758)759
-
$ (1 + \mathrm {dir}^{-k}) $, C_3(322)325
-
$ 1 / X $, C_1(42)55
-
$ [1, 2] $, C_9(858)861
-
$ [1, 2]$, C_9(858)861
-
$ 16$, C_8(831)835
-
$2$, C_1(72)79, C_1(82)86, C_2(176)180, C_3(360)361, C_5(503)507,
C_5(511)511, C_10(798)801, C_10(1049)1053, C_12(1221)1226
-
$^2$, C_8(546)559
-
$ 2 - 1$, C_8(752)757
-
$ 2.3$, C_9(858)861
-
$ 2^n $, C_5(593)598, C_8(758)759
-
$ 2^n + 1 $, C_7(801)803
-
$ 2^n \times 2^n $, C_1(72)75, C_7(801)803
-
$ 2^{p - 1} \leq m < 2^p$, C_8(749)751
-
$3$, C_3(214)221, C_6(570)572, C_6(582)582, C_8(862)862,
C_12(1308)1308
-
$ 3000$, C_2(167)167
-
$4$, C_1(80)92, C_12(1227)1227
-
$ 40 $, C_11(1101)1109
-
$ 45^\circ $, C_2(167)167
-
$ 5.55$, C_12(1221)1226
-
$ 720 \, 000$, C_2(167)167
-
$ 90^\circ $, C_2(167)167
-
$ A = (r - 1) p^2 $, C_2(190)190
-
$B$, C_6(606)610
-
$b$, C_8(681)692
-
$C$, C_2(229)231
-
$ c = b + F(a b) $, C_9(693)693
-
$ \cos (x) $, C_3(322)325
-
$d$, C_3(294)297, C_8(681)692
-
$ (d, k) $, C_12(1214)1216
-
$ (d, r) $, C_6(552)555
-
$ \dot {y} = A y^n $, C_11(1151)1153
-
$ \epsilon \rightarrow 0 $, C_8(758)759
-
$H$, C_10(957)960, C_10(1192)1196, C_12(1303)1306
-
$ i : s_i = \sum_j x_{j, i} \leq m $, C_8(749)751
-
\ifx \undefined \circled \def \circled #1{(#1)}\fi # \ifx \undefined \mathrm \def \mathrm #1{{\rm #1}}\fi # \ifx \undefined \reg \def \reg {\circled{R}}\fi # \ifx \undefined \TM \def \TM {${}^{\sc TM}$} \fi},
0(0)0--0
-
$j$, C_3(294)297
-
$ j = 1, 2, \ldots {}, m - 1$, C_8(749)751
-
$k$, C_2(89)101, C_4(474)474, C_6(606)610, C_7(750)753,
C_11(1270)1275
-
$ L U $, C_2(199)201
-
$ L^2 $, C_1(98)102
-
$ \ln (1 + 2^{-i}) $, C_3(322)325
-
$ \log_2 x $, C_9(858)861
-
$ \log_2 x$, C_9(858)861
-
$M$, C_7(759)763
-
$m$, C_2(89)101, C_3(263)269, C_3(322)325, C_6(482)490, C_7(667)680,
C_8(681)692
-
$ M / 2 \leq X > M / 2$, C_8(752)757
-
$ M = \prod m_i$, C_8(752)757
-
$ m_1, \ldots {}, m_n $, C_8(752)757
-
$ \mathrm {dir} $, C_3(322)325
-
$ \mathrm {error}_{i + 1} = O((\mathrm {error}_i)^2)$, C_8(702)706
-
$ \mathrm {GF}(2^m) $, C_3(283)285, C_12(1573)1578
-
$ \mathrm {radix} = 2^m $, C_3(322)325
-
$ m_i$, C_8(752)757
-
$N$, C_1(95)97, C_3(288)292, C_3(331)335, C_5(536)542, C_5(550)552,
C_6(610)612, C_10(1196)1203, C_11(1189)1196
-
$n$, C_1(98)100, C_3(263)269, C_4(474)474, C_5(458)473, C_5(480)493,
C_5(593)598, C_6(482)490, C_7(657)658, C_7(801)803,
C_8(681)692, C_9(858)861
-
$ n = 3$, C_5(593)598
-
$ n = 4$, C_9(858)861
-
$ n \geq 1 $, C_12(1552)1558
-
$ n \rightarrow \infty $, C_8(758)759
-
$ O(n) $, C_10(721)727
-
$ O(n \log n) $, C_8(758)759
-
$P$, C_1(98)100
-
$p$, C_1(98)100, C_3(322)325, C_5(500)523, C_7(633)639,
C_11(1105)1115
-
$ p + 1 $, C_3(322)325
-
$ P_x$, C_8(752)757
-
$Q$, C_3(319)320
-
$q$, C_12(1192)1195
-
$ Q R $, C_2(147)153, C_8(836)836
-
$R$, C_4(352)358, C_4(359)360, C_11(1120)1121
-
$r$, C_3(294)297, C_3(322)325
-
$ r = 2^n $, C_12(1552)1558
-
$S$, C_12(1264)1269
-
$ s_i$, C_8(749)751
-
$ s_i = \sum_k a_{i, k} 2^k, a_{i, k} = 0, 1, k = 0, 1, \ldots {}, p - 1 $,
C_8(749)751
-
$ s_{i, k}$, C_8(749)751
-
$ s_{i, k} {2^{i + k}}$, C_8(749)751
-
$ \sin (x) $, C_3(322)325
-
$T$, C_3(331)335, C_12(1212)1221, C_12(1227)1227
-
$t$, C_3(294)297
-
$ \tan (x) $, C_3(322)325
-
$ \tan^{-1}(2^{-i}) $, C_3(322)325
-
$X$, C_1(42)55, C_8(752)757, C_8(831)835
-
$ x_{j + 1, i} \leq x_{j, i}$, C_8(749)751
-
$ x_j = \sum_i x_{j, i} 2^i, x_{j, i} = 0, 1, i = 0, 1, \ldots {}, n - 1 $,
C_8(749)751
-
$ x_{j, i} $, C_8(749)751
-
$ x_{j, i}'$, C_8(749)751
-
$ x_j, j = 1, 2, \ldots {}, m $, C_8(749)751
-
$ x^P + x^k + 1$, C_2(89)101
-
$Y$, C_8(831)835
-
$y$, C_8(749)751
-
$ y \exp (x) $, C_3(322)325
-
$ y + \ln (x) $, C_3(322)325
-
$ y = \sum_j x_j$, C_8(749)751
-
$ y / x $, C_3(322)325
-
$ y / x^{1 / 2} $, C_3(322)325
-
$Z$, C_1(55)67