Last update: Wed Jun 11 02:00:46 MDT 2025
Return to index directory
Math
-
$0$, 457(z)z--99999999
-
$1$, 457(z)z--99999999, 470(z)z--99999999
-
$2$, 457(z)z--99999999, 463(z)z--99999999, 471(z)z--99999999
-
$ (2 + 1)$, 457(z)z--99999999, 465(z)z--99999999
-
$ 2 \times 2 $, 467(z)z--99999999
-
$ A X B = C $, 460(z)z--99999999
-
$ \alpha $, 467(z)z--99999999
-
$B$, 457(z)z--99999999
-
$c$, 459(z)z--99999999
-
$ C^0 $, 460(z)z--99999999
-
$ C^1 $, 457(z)z--99999999, 464(z)z--99999999
-
$D$, 463(z)z--99999999
-
$E$, 469(z)z--99999999
-
$ H_\infty $, 457(z)z--99999999
-
$ H({\rm curl}^2) $, 459(z)z--99999999
-
\ifx \undefined \bioname \def \bioname #1{{{\em #1\/}}} \fi # \ifx \undefined \booktitle \def \booktitle #1{{{\em #1}}} \fi # \ifx \undefined \circled \def \circled #1{(#1)}\fi # \ifx \undefined \cprime \def \cprime {$\mathsurround=0pt '$}\fi # \ifx \undefined \mathbb \def \mathbb #1{{\bf #1}}\fi # \ifx \undefined \mathbf \def \mathbf #1{{\bf #1}}\fi # \ifx \undefined \mathrm \def \mathrm #1{{\rm #1}}\fi # \ifx \undefined \ocirc \def \ocirc #1{{\accent'27#1}}\fi # \ifx \undefined \reg \def \reg {\circled{R}}\fi},
0(0)0--0
-
$K$, 466(z)z--99999999, 468(z)z--99999999
-
$k$, 453(z)z--99999999, 454(z)z--99999999, 457(z)z--99999999
-
$ k / n(G) $, 461(z)z--99999999
-
$ (k1, k2, \ldots {}, k m) $, 470(z)z--99999999
-
$ L1 $, 457(z)z--99999999
-
$ l_{1 / 2} $, 453(z)z--99999999
-
$ L^2 $, 457(z)z--99999999
-
$ L_2 $, 460(z)z--99999999
-
$ l^2 $, 453(z)z--99999999
-
$ L_\infty $, 459(z)z--99999999
-
$M$, 470(z)z--99999999
-
$ \mathbb {R} $, 454(z)z--99999999
-
$ \mathcal {M} $, 461(z)z--99999999
-
$n$, 454(z)z--99999999, 457(z)z--99999999
-
$ n \colon {G} $, 454(z)z--99999999
-
$ (n1, n2, \ldots {}, n m) $, 470(z)z--99999999
-
$p$, 463(z)z--99999999, 466(z)z--99999999
-
$q$, 467(z)z--99999999
-
$R$, 459(z)z--99999999
-
$ R_0 $, 457(z)z--99999999
-
$ \rho $, 457(z)z--99999999
-
$ R^n $, 457(z)z--99999999
-
$ R^s $, 462(z)z--99999999
-
$s$, 465(z)z--99999999
-
$t$, 471(z)z--99999999
-
$ \tilde W_2 (m, m - 1) $, 453(z)z--99999999
-
$ \varphi $, 457(z)z--99999999
-
$w$, 453(z)z--99999999