Entry Semaev:1998:ELR from lncs1998a.bib
Last update: Fri Mar 23 02:19:19 MDT 2018
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Semaev:1998:ELR,
author = "I. A. Semaev",
title = "Evaluation of Linear Relations between Vectors of a
Lattice in {Euclidean} Space",
journal = j-LECT-NOTES-COMP-SCI,
volume = "1423",
pages = "311--??",
year = "1998",
CODEN = "LNCSD9",
ISSN = "0302-9743 (print), 1611-3349 (electronic)",
ISSN-L = "0302-9743",
bibdate = "Tue Feb 5 11:52:18 MST 2002",
bibsource = "http://link.springer-ny.com/link/service/series/0558/tocs/t1423.htm;
http://www.math.utah.edu/pub/tex/bib/lncs1998a.bib",
URL = "http://link.springer-ny.com/link/service/series/0558/bibs/1423/14230311.htm;
http://link.springer-ny.com/link/service/series/0558/papers/1423/14230311.pdf",
acknowledgement = ack-nhfb,
}
Related entries
- Euclidean,
1367(0)313,
1389(0)58,
1405(0)64,
1406(0)296,
1406(0)426,
1416(0)479,
1423(0)77,
1443(0)682
- evaluation,
1357(0)348,
1371(0)49,
1377(0)231,
1379(0)286,
1384(0)5,
1385(0)158,
1388(0)55,
1388(0)549,
1389(0)359,
1389(0)372,
1397(0)38,
1401(0)223,
1401(0)535,
1401(0)932,
1401(0)975,
1406(0)175,
1407(0)796,
1411(0)213,
1416(0)727,
1416(0)877,
1417(0)89,
1417(0)159,
1421(0)254,
1423(0)338,
1429(0)148,
1433(0)244,
1445(0)418,
1450(0)167
- Lattice,
1391(0)151,
1391(0)220,
1401(0)183,
1401(0)213,
1401(0)963,
1423(0)567,
1431(0)50
- linear,
1372(0)1,
1373(0)61,
1373(0)128,
1373(0)298,
1378(0)172,
1380(0)239,
1384(0)52,
1386(0)110,
1388(0)387,
1393(0)273,
1396(0)43,
1397(0)124,
1401(0)857,
1403(0)319,
1407(0)469,
1407(0)862,
1412(0)229,
1414(0)78,
1414(0)115,
1414(0)129,
1414(0)275,
1414(0)360,
1415(0)647,
1415(0)677,
1415(0)696,
1420(0)124,
1421(0)1,
1423(0)299,
1424(0)111,
1432(0)169,
1433(0)162,
1438(0)135,
1443(0)1,
1444(0)15,
1450(0)825
- relation,
1373(0)183,
1379(0)17,
1382(0)318,
1404(0)79,
1404(0)107,
1404(0)203,
1404(0)223,
1415(0)210,
1415(0)367,
1424(0)139,
1424(0)139-1,
1424(0)283,
1424(0)387,
1429(0)132,
1441(0)46,
1443(0)17,
1443(0)309
- space,
1357(0)446,
1367(0)313,
1370(0)4,
1370(0)22,
1370(0)204,
1370(0)208,
1388(0)330,
1398(0)37,
1404(0)107,
1404(0)157,
1404(0)337,
1407(0)226,
1408(0)20,
1413(0)251,
1416(0)280,
1416(0)795,
1422(0)315,
1422(0)315-1,
1423(0)179,
1424(0)115,
1424(0)131,
1424(0)290,
1427(0)88,
1429(0)197,
1434(0)286,
1443(0)796,
1448(0)104,
1449(0)45,
1450(0)72,
1450(0)580
- vector,
1389(0)390,
1398(0)137,
1398(0)143,
1401(0)863,
1401(0)866,
1401(0)869,
1407(0)469,
1424(0)361