Entry Schiermeyer:1998:AMI from lncs1998a.bib
Last update: Fri Mar 23 02:19:19 MDT 2018
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Schiermeyer:1998:AMI,
author = "Ingo Schiermeyer",
title = "Approximating maximum independent set in
$k$-clique-free graphs",
journal = j-LECT-NOTES-COMP-SCI,
volume = "1444",
pages = "159--??",
year = "1998",
CODEN = "LNCSD9",
ISSN = "0302-9743 (print), 1611-3349 (electronic)",
ISSN-L = "0302-9743",
bibdate = "Mon Feb 4 12:02:39 MST 2002",
bibsource = "http://link.springer-ny.com/link/service/series/0558/tocs/t1444.htm;
http://www.math.utah.edu/pub/tex/bib/lncs1998a.bib",
URL = "http://link.springer-ny.com/link/service/series/0558/bibs/1444/14440159.htm;
http://link.springer-ny.com/link/service/series/0558/papers/1444/14440159.pdf",
acknowledgement = ack-nhfb,
}
Related entries
- $k$,
1367(0)179,
1373(0)105,
1373(0)432,
1403(0)462,
1432(0)222,
1433(0)13,
1443(0)682,
1444(0)77
- approximating,
1367(0)179,
1367(0)249,
1412(0)153,
1444(0)49,
1444(0)77,
1444(0)135,
1444(0)147,
1444(0)169,
1449(0)45,
1450(0)562
- graph,
1357(0)270,
1363(0)95,
1366(0)94,
1373(0)1,
1373(0)25,
1373(0)172,
1373(0)216,
1373(0)276,
1373(0)287,
1373(0)421,
1373(0)618,
1376(0)223,
1378(0)110,
1380(0)206,
1380(0)216,
1380(0)226,
1380(0)239,
1380(0)249,
1382(0)138,
1382(0)302,
1383(0)65,
1383(0)174,
1385(0)61,
1388(0)392,
1397(0)172,
1397(0)172-1,
1401(0)449,
1407(0)3,
1408(0)201,
1408(0)201,
1412(0)9,
1412(0)69,
1412(0)96,
1412(0)137,
1414(0)424,
1415(0)149,
1422(0)96,
1424(0)316,
1427(0)219,
1432(0)210,
1442(0)281,
1443(0)118,
1443(0)283,
1444(0)1,
1449(0)25,
1449(0)251,
1449(0)261,
1449(0)269,
1449(0)289,
1449(0)309,
1450(0)543,
1450(0)553,
1450(0)616,
1450(0)732
- independent,
1366(0)261,
1403(0)437,
1415(0)568,
1430(0)193,
1443(0)176,
1444(0)1,
1450(0)562
- maximum,
1377(0)105,
1380(0)216,
1412(0)195,
1412(0)310,
1412(0)325,
1432(0)1,
1449(0)25,
1450(0)562
- set,
1357(0)161,
1360(0)1,
1363(0)287,
1367(0)249,
1369(0)222,
1373(0)477,
1373(0)618,
1377(0)105,
1379(0)151,
1379(0)211,
1386(0)110,
1394(0)360,
1394(0)388,
1394(0)401,
1396(0)256,
1397(0)93,
1401(0)397,
1401(0)403,
1401(0)972,
1406(0)379,
1407(0)34,
1407(0)156,
1407(0)369,
1412(0)69,
1415(0)21,
1420(0)104,
1420(0)124,
1421(0)333,
1423(0)216,
1423(0)514,
1424(0)24,
1424(0)25,
1424(0)45,
1424(0)60,
1424(0)123,
1424(0)275,
1424(0)290,
1424(0)444,
1424(0)444-1,
1424(0)467,
1424(0)475,
1424(0)529,
1424(0)545,
1424(0)601,
1424(0)605,
1424(0)609,
1424(0)617,
1424(0)z-1,
1424(0)z-8,
1424(0)z-12,
1424(0)z-14,
1424(0)z-18,
1430(0)205,
1436(0)109,
1436(0)241,
1443(0)176,
1444(0)1,
1447(0)345,
1449(0)2,
1449(0)309,
1450(0)465,
1450(0)483,
1450(0)562,
1450(0)589