Entry Luneburg:1965:KDP from lnm1960.bib
Last update: Sat Mar 2 02:18:53 MST 2019
Top |
Symbols |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
Y |
Z
BibTeX entry
@Article{Luneburg:1965:KDP,
author = "Heinz L{\"u}neburg",
title = "{$ S(q) $ als kollineationsgruppe des
$3$-dimensionalen projektiven Raumes {\"u}ber $ {\rm
GF}(q)$}. ({German}) [{$ S (q) $} as a collineation
group of $3$-dimensional projective space over {$ {\rm
GF} (q) $}]",
journal = j-LECT-NOTES-MATH,
volume = "10",
pages = "72--79",
year = "1965",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0082221",
ISBN = "3-540-03353-X (print), 3-540-37137-0 (e-book)",
ISBN-13 = "978-3-540-03353-0 (print), 978-3-540-37137-3
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
bibdate = "Thu May 8 17:39:14 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1960.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0082221/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0082211",
book-URL = "http://www.springerlink.com/content/978-3-540-37137-3",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
language = "German",
}
Related entries
- $ S (q) $,
10(0)96
- $ S(q) $,
10(0)96
- $3$,
110(0)27,
110(0)191
- über,
1(0)iv--30,
6(0)23,
14(0)iv--196,
29(0)99,
29(0)147,
57(0)22,
57(0)67,
59(0)43,
59(0)48,
59(0)72,
69(0)v--180,
96(0)84,
111(0)27,
111(0)81,
111(0)96
- 3-540-03353-X,
10(0)1,
10(0)11,
10(0)17,
10(0)26,
10(0)39,
10(0)47,
10(0)53,
10(0)59,
10(0)68,
10(0)80,
10(0)86,
10(0)91,
10(0)96
- 3-540-37137-0,
10(0)1,
10(0)11,
10(0)17,
10(0)26,
10(0)39,
10(0)47,
10(0)53,
10(0)59,
10(0)68,
10(0)80,
10(0)86,
10(0)91,
10(0)96
- 978-3-540-03353-0,
10(0)1,
10(0)11,
10(0)17,
10(0)26,
10(0)39,
10(0)47,
10(0)53,
10(0)59,
10(0)68,
10(0)80,
10(0)86,
10(0)91,
10(0)96
- 978-3-540-37137-3,
10(0)1,
10(0)11,
10(0)17,
10(0)26,
10(0)39,
10(0)47,
10(0)53,
10(0)59,
10(0)68,
10(0)80,
10(0)86,
10(0)91,
10(0)96
- als,
10(0)96,
29(0)38,
37(0)100,
55(0)156,
57(0)76,
57(0)102
- collineation,
10(0)96,
84(0)10,
84(0)25
- dimensional,
71(0)21,
92(0)32,
109(0)154
- kollineationsgruppe,
10(0)96
- Lüneburg, Heinz,
10(0)1,
10(0)11,
10(0)17,
10(0)26,
10(0)39,
10(0)47,
10(0)53,
10(0)59,
10(0)68,
10(0)80,
10(0)86,
10(0)91,
10(0)96,
84(0)iv--119,
84(0)1,
84(0)10,
84(0)18,
84(0)21,
84(0)25,
84(0)27,
84(0)35,
84(0)44,
84(0)61,
84(0)69,
84(0)81,
84(0)86,
84(0)93,
84(0)96,
84(0)104,
84(0)108
- projective,
10(0)47,
10(0)53,
20(0)137,
47(0)78,
52(0)9,
56(0)34,
71(0)127,
82(0)51,
82(0)57,
82(0)76,
82(0)89,
83(0)6,
84(0)10,
84(0)69,
84(0)81,
110(0)23
- projektiven,
10(0)53,
84(0)10,
84(0)81
- Raum,
14(0)7,
66(0)23