Entry Herve:1971:CAI from lnm1970.bib
Last update: Sat Oct 14 02:51:54 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Herve:1971:CAI,
author = "Michel Herv{\'e}",
title = "Complex analysis in infinite dimensional vector
spaces",
journal = j-LECT-NOTES-MATH,
volume = "198",
pages = "56--90",
year = "1971",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0070698",
ISBN = "3-540-05472-3 (print), 3-540-36654-7 (e-book)",
ISBN-13 = "978-3-540-05472-6 (print), 978-3-540-36654-6
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
bibdate = "Fri May 9 19:07:43 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1970.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0070698/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0070695",
book-URL = "http://www.springerlink.com/content/978-3-540-36654-6",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- analysis,
170(0)209,
170(0)212,
183(0)177,
202(0)1,
212(0)79,
229(0)81,
244(0)89,
255(0)10,
266(0)17,
266(0)151,
266(0)255,
272(0)83,
294(0)230,
306(0)13,
306(0)88,
306(0)93,
306(0)137,
309(0)48,
322(0)122,
322(0)298,
324(0)30,
337(0)253,
362(0)107,
363(0)207,
395(0)149,
399(0)94,
399(0)123,
399(0)189,
419(0)71
- complex,
155(0)35,
155(0)110,
155(0)115,
155(0)141,
183(0)128,
185(0)242,
196(0)114,
209(0)213,
230(0)134,
232(0)57,
266(0)167,
274(0)159,
285(0)134,
296(0)139,
298(0)234,
299(0)205,
320(0)37,
320(0)153,
324(0)57,
326(0)1,
326(0)265,
358(0)74,
364(0)109,
394(0)31,
399(0)94,
399(0)123,
409(0)279,
412(0)133,
412(0)288,
418(0)13
- dimensional,
140(0)84,
144(0)76,
192(0)282,
285(0)115,
298(0)291,
364(0)13,
364(0)69,
364(0)101,
364(0)145,
364(0)186,
365(0)210,
396(0)92,
400(0)108,
425(0)1
- Hervé, Michel,
185(0)63,
198(0)1,
198(0)31,
364(0)41
- infinite,
140(0)84,
160(0)45,
160(0)125,
161(0)75,
189(0)63,
196(0)43,
228(0)207,
271(0)137,
273(0)85,
285(0)115,
299(0)323,
319(0)75,
348(0)108,
364(0)13,
364(0)41,
364(0)69,
364(0)101,
364(0)145,
364(0)186,
411(0)54,
411(0)140,
425(0)1,
430(0)390
- vector,
136(0)254,
185(0)47,
196(0)107,
209(0)191,
230(0)1,
261(0)93,
266(0)255,
275(0)131,
286(0)34,
332(0)77,
364(0)58,
369(0)37,
378(0)172,
380(0)112,
384(0)20,
414(0)17,
415(0)149,
427(0)53,
427(0)123