Entry Quillen:1973:FGG from lnm1970.bib
Last update: Sat Oct 14 02:51:54 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Quillen:1973:FGG,
author = "Daniel Quillen",
title = "Finite generation of the groups {$ K_i $} of rings of
algebraic integers",
journal = j-LECT-NOTES-MATH,
volume = "341",
pages = "179--198",
year = "1973",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0067056",
ISBN = "3-540-06434-6 (print), 3-540-37767-0 (e-book)",
ISBN-13 = "978-3-540-06434-3 (print), 978-3-540-37767-2
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "18F25",
MRnumber = "0349812 (50 \#2305)",
MRreviewer = "T. Y. Lam",
bibdate = "Fri May 9 19:07:46 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1970.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0067056/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0067048",
book-URL = "http://www.springerlink.com/content/978-3-540-37767-2",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- 18F25,
341(0)3,
341(0)57,
341(0)73,
341(0)85,
341(0)148,
341(0)166,
341(0)205,
341(0)266,
341(0)317,
342(0)74,
342(0)155,
342(0)308,
342(0)328,
342(0)337,
342(0)474,
343(0)1,
343(0)52,
343(0)57,
343(0)266,
343(0)301,
343(0)412,
343(0)471,
343(0)478,
353(0)1,
353(0)131,
353(0)161
- algebraic,
155(0)88,
156(0)210,
161(0)10,
168(0)1,
168(0)153,
171(0)27,
183(0)165,
184(0)223,
185(0)1,
185(0)76,
188(0)71,
196(0)68,
197(0)176,
203(0)91,
203(0)153,
203(0)204,
207(0)102,
209(0)164,
221(0)131,
234(0)184,
262(0)35,
262(0)40,
262(0)51,
266(0)273,
274(0)137,
293(0)170,
311(0)167,
317(0)1,
341(0)73,
341(0)85,
341(0)166,
341(0)259,
341(0)266,
342(0)1,
342(0)74,
342(0)122,
342(0)308,
342(0)487,
343(0)52,
343(0)57,
343(0)266,
343(0)412,
353(0)161,
366(0)1,
366(0)76,
378(0)89,
383(0)307,
386(0)75,
388(0)106,
399(0)22,
412(0)288,
414(0)1,
414(0)131,
429(0)94
- finite,
129(0)46,
131(0)57,
131(0)97,
131(0)267,
143(0)97,
143(0)249,
160(0)64,
160(0)133,
160(0)219,
161(0)20,
168(0)90,
168(0)250,
193(0)111,
196(0)1,
196(0)42,
196(0)114,
198(0)31,
217(0)12,
218(0)146,
228(0)253,
234(0)184,
246(0)145,
247(0)309,
255(0)98,
262(0)2,
285(0)23,
291(0)103,
296(0)102,
319(0)9,
319(0)26,
336(0)63,
337(0)253,
337(0)439,
348(0)108,
351(0)120,
353(0)84,
363(0)21,
363(0)89,
363(0)118,
363(0)153,
363(0)207,
363(0)215,
369(0)144,
372(0)103,
372(0)226,
382(0)105,
383(0)234,
386(0)218,
395(0)149,
401(0)55,
406(0)109,
418(0)103,
428(0)44,
430(0)261
- generation,
306(0)129,
319(0)133,
330(0)46
- integer,
251(0)273
- Lam, T. Y.,
342(0)447
- Quillen, Daniel,
341(0)85
- ring,
115(0)1,
123(0)1,
130(0)33,
147(0)69,
147(0)109,
155(0)151,
177(0)32,
208(0)122,
210(0)49,
237(0)58,
237(0)93,
237(0)110,
246(0)1,
246(0)73,
246(0)145,
246(0)213,
246(0)323,
246(0)565,
248(0)1,
249(0)54,
249(0)84,
255(0)145,
303(0)13,
308(0)5,
311(0)17,
311(0)26,
311(0)57,
311(0)61,
311(0)78,
311(0)153,
311(0)167,
311(0)243,
319(0)75,
319(0)156,
327(0)56,
327(0)103,
327(0)116,
341(0)3,
341(0)211,
342(0)109,
342(0)135,
342(0)347,
351(0)5,
351(0)40,
351(0)53,
351(0)72,
351(0)120,
351(0)144,
351(0)155,
353(0)95,
353(0)113,
353(0)180,
380(0)1,
380(0)65,
380(0)112,
399(0)180,
412(0)94,
429(0)8,
429(0)94