Entry Chern:1985:RMA from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Chern:1985:RMA,
author = "S. S. Chern and R. S. Hamilton",
title = "On {Riemannian} metrics adapted to three-dimensional
contact manifolds",
journal = j-LECT-NOTES-MATH,
volume = "1111",
pages = "279--308",
year = "1985",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0084596",
ISBN = "3-540-15195-8 (print), 3-540-39298-X (e-book)",
ISBN-13 = "978-3-540-15195-1 (print), 978-3-540-39298-9
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "53C15 (53C25)",
MRnumber = "797427 (87b:53060)",
MRreviewer = "I. Vaisman",
bibdate = "Fri May 9 19:07:49 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0084596/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0084581",
book-URL = "http://www.springerlink.com/content/978-3-540-39298-9",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- 53C15,
1165(0)108,
1209(0)133,
1209(0)157,
1410(0)77,
1410(0)212
- 53C25,
1111(0)269,
1156(0)74,
1201(0)165,
1263(0)97,
1277(0)120,
1410(0)52,
1410(0)77
- contact,
1203(0)197,
1209(0)210,
1334(0)173,
1410(0)77,
1410(0)212
- dimensional, three-,
1121(0)19,
1191(0)216,
1192(0)345,
1228(0)135,
1334(0)309
- metric,
1111(0)269,
1155(0)102,
1155(0)180,
1186(0)74,
1193(0)113,
1201(0)165,
1201(0)202,
1233(0)32,
1233(0)125,
1246(0)154,
1263(0)171,
1267(0)177,
1275(0)235,
1277(0)120,
1314(0)31,
1339(0)20,
1351(0)193,
1354(0)155,
1365(0)120,
1372(0)186,
1402(0)128,
1410(0)212,
1411(0)1
- Riemannian,
1156(0)74,
1156(0)219,
1161(0)1,
1201(0)89,
1201(0)108,
1201(0)122,
1201(0)202,
1207(0)21,
1209(0)1,
1209(0)143,
1210(0)58,
1214(0)40,
1214(0)171,
1250(0)98,
1255(0)53,
1255(0)228,
1316(0)328,
1322(0)93,
1339(0)1,
1339(0)106,
1365(0)120,
1366(0)188,
1410(0)212
- three-dimensional,
1121(0)19,
1191(0)216,
1192(0)345,
1228(0)135,
1285(0)46,
1334(0)309
- Vaisman, I.,
1298(0)1