Entry Schurmann:1986:CLT from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Schurmann:1986:CLT,
author = "Michael Sch{\"u}rmann",
title = "A central limit theorem for coalgebras",
journal = j-LECT-NOTES-MATH,
volume = "1210",
pages = "153--157",
year = "1986",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0077181",
ISBN = "3-540-16806-0 (print), 3-540-44852-7 (e-book)",
ISBN-13 = "978-3-540-16806-5 (print), 978-3-540-44852-5
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "46L50 (60B99)",
MRnumber = "879003 (88h:46119)",
MRreviewer = "A. Bartoszewicz",
bibdate = "Fri May 9 19:07:52 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0077181/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0077166",
book-URL = "http://www.springerlink.com/content/978-3-540-44852-5",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- 46L50,
1111(0)3,
1136(0)9,
1136(0)46,
1136(0)57,
1136(0)67,
1136(0)136,
1136(0)177,
1158(0)245,
1203(0)177,
1204(0)186,
1210(0)174,
1247(0)33,
1250(0)160,
1303(0)6,
1303(0)52,
1303(0)69,
1303(0)128,
1303(0)149,
1303(0)154,
1303(0)232,
1303(0)251,
1303(0)261,
1321(0)101,
1321(0)124,
1372(0)169,
1372(0)175,
1372(0)183,
1390(0)77,
1391(0)16,
1391(0)112,
1391(0)125,
1391(0)178,
1396(0)1,
1396(0)7,
1396(0)59,
1396(0)68,
1396(0)99,
1396(0)107,
1396(0)128,
1396(0)158,
1396(0)221,
1396(0)256,
1396(0)270,
1396(0)279,
1396(0)295
- 60B99,
1136(0)177,
1203(0)1,
1203(0)66,
1210(0)58,
1210(0)163,
1210(0)174,
1379(0)179,
1379(0)185,
1391(0)99,
1391(0)112,
1396(0)7,
1396(0)221
- Bartoszewicz, A.,
1210(0)174,
1396(0)1,
1396(0)128
- central,
1109(0)55,
1136(0)177,
1148(0)28,
1148(0)39,
1153(0)15,
1155(0)144,
1158(0)104,
1169(0)56,
1193(0)44,
1193(0)73,
1193(0)113,
1197(0)60,
1210(0)1,
1210(0)174,
1221(0)50,
1250(0)75,
1379(0)107,
1391(0)74,
1396(0)7
- limit,
1109(0)55,
1136(0)151,
1136(0)177,
1145(0)75,
1145(0)94,
1148(0)28,
1148(0)39,
1151(0)35,
1153(0)15,
1153(0)40,
1153(0)297,
1155(0)144,
1155(0)190,
1155(0)284,
1158(0)104,
1159(0)242,
1191(0)212,
1193(0)44,
1193(0)73,
1193(0)113,
1199(0)37,
1199(0)48,
1199(0)90,
1199(0)159,
1210(0)1,
1210(0)174,
1212(0)187,
1215(0)129,
1218(0)123,
1221(0)50,
1230(0)26,
1233(0)1,
1233(0)57,
1243(0)262,
1247(0)246,
1250(0)75,
1258(0)88,
1285(0)55,
1289(0)240,
1322(0)28,
1322(0)156,
1325(0)16,
1331(0)150,
1331(0)196,
1340(0)11,
1379(0)107,
1391(0)74,
1396(0)7,
1396(0)20,
1396(0)229,
1407(0)77,
1412(0)194