Entry Shekhtman:1987:GRP from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Shekhtman:1987:GRP,
author = "Boris Shekhtman",
title = "On the geometry of real polynomials",
journal = j-LECT-NOTES-MATH,
volume = "1287",
pages = "161--175",
year = "1987",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0078904",
ISBN = "3-540-18500-3 (print), 3-540-47991-0 (e-book)",
ISBN-13 = "978-3-540-18500-0 (print), 978-3-540-47991-8
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "41A65 (41A10 41A45 46B20)",
MRnumber = "920825 (88k:41034)",
MRreviewer = "E. W. Cheney",
bibdate = "Thu May 15 18:46:23 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0078904/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0078895",
book-URL = "http://www.springerlink.com/content/978-3-540-47991-8",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- 41A10,
1114(0)16,
1237(0)134,
1287(0)21,
1287(0)83,
1287(0)105,
1287(0)117,
1287(0)176,
1329(0)291,
1354(0)1,
1354(0)79
- 41A65,
1129(0)1,
1129(0)21,
1354(0)98
- 46B20,
1153(0)96,
1153(0)249,
1166(0)1,
1166(0)15,
1166(0)38,
1166(0)99,
1166(0)106,
1166(0)116,
1166(0)158,
1206(0)167,
1267(0)21,
1267(0)53,
1267(0)75,
1267(0)122,
1267(0)157,
1317(0)44,
1317(0)84,
1317(0)201,
1317(0)232,
1317(0)239,
1317(0)250,
1317(0)271,
1321(0)129,
1332(0)43,
1332(0)64,
1332(0)150,
1354(0)98,
1376(0)64,
1376(0)105,
1376(0)113,
1376(0)274,
1376(0)278
- Cheney, E. W.,
1129(0)1
- geometry,
1111(0)3,
1111(0)59,
1125(0)1,
1130(0)76,
1139(0)122,
1146(0)317,
1149(0)255,
1161(0)193,
1174(0)52,
1181(0)1,
1201(0)14,
1201(0)266,
1206(0)1,
1206(0)167,
1207(0)21,
1207(0)144,
1209(0)190,
1212(0)69,
1214(0)131,
1240(0)135,
1241(0)73,
1255(0)34,
1255(0)96,
1255(0)173,
1263(0)134,
1263(0)228,
1267(0)122,
1276(0)25,
1311(0)23,
1311(0)156,
1317(0)224,
1319(0)1,
1324(0)186,
1334(0)42,
1334(0)309,
1339(0)226,
1353(0)25,
1357(0)359,
1369(0)1,
1369(0)183,
1376(0)138,
1389(0)195,
1408(0)305,
1410(0)77,
1410(0)121
- polynomial,
1114(0)16,
1135(0)225,
1141(0)193,
1144(0)146,
1146(0)340,
1171(0)36,
1171(0)63,
1171(0)84,
1171(0)92,
1171(0)101,
1171(0)120,
1171(0)139,
1171(0)164,
1171(0)174,
1171(0)204,
1171(0)211,
1179(0)60,
1199(0)127,
1230(0)103,
1237(0)41,
1265(0)14,
1265(0)105,
1276(0)1,
1276(0)303,
1278(0)95,
1281(0)18,
1287(0)21,
1287(0)70,
1287(0)83,
1287(0)132,
1298(0)237,
1305(0)24,
1305(0)40,
1305(0)57,
1305(0)73,
1305(0)80,
1305(0)91,
1305(0)111,
1305(0)128,
1305(0)136,
1326(0)69,
1326(0)182,
1329(0)20,
1329(0)32,
1329(0)46,
1329(0)73,
1329(0)98,
1329(0)125,
1329(0)158,
1329(0)193,
1329(0)203,
1329(0)222,
1329(0)236,
1329(0)251,
1329(0)255,
1329(0)261,
1329(0)291,
1345(0)11,
1345(0)124,
1345(0)192,
1348(0)118,
1350(0)104,
1352(0)1,
1354(0)1,
1354(0)79,
1354(0)111,
1354(0)140,
1359(0)93,
1369(0)222,
1369(0)286,
1371(0)228,
1379(0)185,
1387(0)163,
1395(0)84,
1403(0)198,
1406(0)67,
1411(0)155
- real,
1130(0)76,
1130(0)395,
1153(0)369,
1164(0)1,
1167(0)268,
1171(0)221,
1208(0)18,
1221(0)16,
1232(0)89,
1243(0)15,
1267(0)185,
1268(0)83,
1275(0)197,
1307(0)31,
1332(0)43,
1333(0)110,
1334(0)42,
1346(0)341,
1347(0)153,
1364(0)1,
1369(0)235,
1370(0)57,
1370(0)103,
1370(0)171,
1391(0)164,
1392(0)1,
1392(0)27,
1392(0)56,
1392(0)75,
1392(0)95,
1392(0)109,
1392(0)139,
1392(0)178,
1402(0)69