Entry Okninski:1988:NPS from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Okninski:1988:NPS,
author = "Jan Okni{\'n}ski",
title = "{Noetherian} property for semigroup rings",
journal = j-LECT-NOTES-MATH,
volume = "1328",
pages = "209--218",
year = "1988",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0100926",
ISBN = "3-540-19474-6 (print), 3-540-39278-5 (e-book)",
ISBN-13 = "978-3-540-19474-3 (print), 978-3-540-39278-1
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "16A27",
MRnumber = "959755 (89j:16017)",
MRreviewer = "Donald S. Passman",
bibdate = "Thu May 15 18:46:23 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0100926/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0100908",
book-URL = "http://www.springerlink.com/content/978-3-540-39278-1",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- 16A27,
1217(0)253,
1328(0)69,
1361(0)269
- Noetherian,
1146(0)355,
1183(0)101,
1183(0)241,
1296(0)235,
1296(0)247,
1318(0)124,
1328(0)8,
1404(0)137,
1404(0)220,
1404(0)246
- Okni{\'n}ski, Jan,
1320(0)251
- Passman, Donald S.,
1142(0)256
- property,
1109(0)103,
1112(0)197,
1122(0)85,
1131(0)3,
1132(0)1,
1134(0)49,
1144(0)18,
1146(0)340,
1155(0)131,
1155(0)223,
1158(0)25,
1163(0)1,
1163(0)161,
1166(0)65,
1166(0)95,
1166(0)169,
1177(0)1,
1179(0)247,
1189(0)38,
1189(0)70,
1189(0)142,
1190(0)331,
1192(0)109,
1192(0)259,
1200(0)51,
1203(0)66,
1210(0)125,
1212(0)106,
1221(0)141,
1233(0)69,
1237(0)125,
1237(0)145,
1237(0)239,
1238(0)98,
1248(0)1,
1248(0)142,
1250(0)171,
1256(0)169,
1256(0)192,
1258(0)23,
1258(0)150,
1267(0)96,
1274(0)131,
1276(0)79,
1281(0)52,
1281(0)118,
1285(0)55,
1287(0)132,
1296(0)235,
1303(0)275,
1305(0)67,
1312(0)25,
1315(0)74,
1331(0)161,
1333(0)31,
1344(0)133,
1348(0)208,
1359(0)218,
1364(0)72,
1382(0)70,
1388(0)141,
1391(0)191,
1395(0)173,
1396(0)142,
1398(0)110,
1401(0)201,
1403(0)57,
1403(0)113,
1412(0)229,
1412(0)280
- ring,
1135(0)101,
1142(0)112,
1142(0)150,
1142(0)190,
1142(0)211,
1142(0)256,
1142(0)289,
1146(0)288,
1146(0)340,
1146(0)355,
1163(0)107,
1163(0)131,
1163(0)135,
1176(0)1,
1176(0)56,
1176(0)88,
1176(0)129,
1176(0)169,
1176(0)215,
1176(0)249,
1178(0)1,
1178(0)98,
1183(0)56,
1183(0)101,
1183(0)195,
1183(0)241,
1185(0)231,
1197(0)51,
1197(0)73,
1197(0)83,
1197(0)149,
1213(0)236,
1213(0)350,
1217(0)253,
1220(0)178,
1240(0)259,
1268(0)111,
1273(0)134,
1273(0)232,
1296(0)125,
1296(0)228,
1296(0)235,
1296(0)247,
1298(0)237,
1320(0)251,
1328(0)1,
1328(0)8,
1328(0)33,
1328(0)38,
1328(0)69,
1328(0)82,
1328(0)94,
1328(0)106,
1328(0)165,
1328(0)187,
1328(0)227,
1348(0)107,
1348(0)118,
1350(0)1,
1352(0)34,
1371(0)108,
1371(0)149,
1371(0)190,
1371(0)228,
1375(0)191,
1398(0)140,
1404(0)137,
1404(0)220,
1404(0)246,
1404(0)296
- semigroup,
1136(0)40,
1184(0)1,
1184(0)25,
1184(0)98,
1184(0)122,
1184(0)163,
1184(0)204,
1184(0)247,
1184(0)292,
1184(0)333,
1184(0)369,
1184(0)376,
1184(0)379,
1184(0)400,
1197(0)51,
1221(0)16,
1223(0)61,
1248(0)63,
1248(0)85,
1248(0)108,
1260(0)61,
1272(0)39,
1281(0)118,
1303(0)149,
1320(0)1,
1320(0)28,
1320(0)97,
1320(0)121,
1320(0)141,
1320(0)162,
1320(0)176,
1320(0)205,
1320(0)235,
1320(0)244,
1321(0)89,
1342(0)172,
1354(0)209,
1372(0)1,
1379(0)21,
1379(0)107,
1379(0)135,
1379(0)217,
1391(0)99,
1396(0)107