Entry Chaperon:1988:IMP from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Chaperon:1988:IMP,
author = "Marc Chaperon",
title = "Invariant manifolds and a preparation lemma for local
holomorphic flows and actions",
journal = j-LECT-NOTES-MATH,
volume = "1345",
pages = "95--110",
year = "1988",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0081397",
ISBN = "3-540-50226-2 (print), 3-540-45957-X (e-book)",
ISBN-13 = "978-3-540-50226-5 (print), 978-3-540-45957-6
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "58F21 (32L05)",
MRnumber = "980954 (90c:58151)",
MRreviewer = "Dominique Cerveau",
bibdate = "Thu May 15 18:46:23 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0081397/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0081393",
book-URL = "http://www.springerlink.com/content/978-3-540-45957-6",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- 32L05,
1295(0)59
- 58F21,
1125(0)87,
1151(0)115,
1167(0)141,
1331(0)140,
1331(0)161
- action,
1126(0)1,
1132(0)30,
1132(0)152,
1132(0)289,
1132(0)331,
1138(0)23,
1138(0)77,
1138(0)95,
1146(0)214,
1167(0)1,
1167(0)168,
1167(0)228,
1172(0)1,
1172(0)163,
1196(0)18,
1197(0)1,
1217(0)26,
1217(0)79,
1217(0)115,
1217(0)143,
1217(0)167,
1234(0)160,
1267(0)13,
1271(0)73,
1271(0)237,
1298(0)120,
1298(0)237,
1328(0)28,
1342(0)7,
1343(0)7,
1361(0)53,
1366(0)87,
1375(0)6,
1375(0)89,
1375(0)132,
1410(0)1,
1411(0)52
- Cerveau, Dominique, 1265-0-vi,
1345(0)73,
1345(0)294
- Chaperon, Marc,
1125(0)1
- flow,
1127(0)156,
1134(0)1,
1158(0)52,
1158(0)201,
1163(0)7,
1186(0)292,
1192(0)327,
1192(0)361,
1192(0)399,
1203(0)1,
1203(0)66,
1209(0)8,
1228(0)122,
1228(0)135,
1228(0)166,
1228(0)315,
1285(0)155,
1306(0)131,
1321(0)175,
1325(0)61,
1325(0)125,
1331(0)59,
1339(0)142,
1342(0)112,
1342(0)261,
1342(0)329,
1402(0)30,
1402(0)56,
1402(0)69,
1403(0)225
- holomorphic,
1164(0)161,
1165(0)196,
1165(0)281,
1194(0)90,
1198(0)47,
1198(0)206,
1268(0)29,
1268(0)189,
1276(0)253,
1276(0)276,
1277(0)290,
1339(0)127,
1345(0)1,
1345(0)129,
1345(0)233,
1345(0)246,
1369(0)225
- invariant,
1125(0)64,
1137(0)16,
1137(0)60,
1138(0)8,
1146(0)127,
1163(0)161,
1167(0)50,
1167(0)217,
1167(0)241,
1172(0)116,
1179(0)236,
1185(0)388,
1186(0)271,
1197(0)73,
1198(0)172,
1209(0)100,
1214(0)85,
1218(0)167,
1222(0)1,
1233(0)156,
1240(0)259,
1242(0)368,
1243(0)283,
1267(0)13,
1271(0)109,
1271(0)143,
1271(0)229,
1273(0)134,
1275(0)10,
1276(0)108,
1278(0)8,
1278(0)18,
1278(0)62,
1278(0)81,
1278(0)95,
1286(0)135,
1293(0)1,
1296(0)42,
1314(0)46,
1314(0)68,
1317(0)1,
1324(0)30,
1327(0)73,
1331(0)47,
1331(0)86,
1340(0)84,
1346(0)57,
1347(0)103,
1350(0)44,
1350(0)87,
1369(0)275,
1386(0)54,
1408(0)1,
1408(0)156,
1410(0)177,
1410(0)202
- lemma,
1113(0)74,
1113(0)85,
1114(0)26,
1114(0)30,
1114(0)154,
1192(0)203,
1209(0)37,
1246(0)115,
1248(0)162,
1249(0)142,
1376(0)105
- local,
1119(0)67,
1123(0)63,
1126(0)96,
1136(0)9,
1142(0)126,
1147(0)88,
1151(0)9,
1163(0)41,
1163(0)131,
1166(0)74,
1166(0)99,
1170(0)1,
1174(0)100,
1183(0)1,
1183(0)101,
1183(0)170,
1183(0)195,
1183(0)241,
1185(0)289,
1193(0)4,
1196(0)23,
1204(0)95,
1206(0)259,
1228(0)7,
1237(0)239,
1243(0)1,
1245(0)128,
1247(0)176,
1247(0)218,
1247(0)221,
1271(0)143,
1292(0)127,
1302(0)137,
1303(0)213,
1306(0)160,
1309(0)48,
1310(0)88,
1313(0)48,
1313(0)65,
1313(0)86,
1313(0)104,
1313(0)129,
1317(0)283,
1345(0)302,
1353(0)25,
1354(0)11,
1366(0)11,
1378(0)133,
1378(0)185,
1382(0)62,
1382(0)81,
1382(0)91,
1393(0)96,
1394(0)136,
1409(0)99,
1411(0)137