Entry Chong:1989:RES from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
              
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Chong:1989:RES,
  author =       "C. T. Chong",
  title =        "Recursively enumerable sets in models of {$ \Sigma_2
                 $} collection",
  journal =      j-LECT-NOTES-MATH,
  volume =       "1388",
  pages =        "1--15",
  year =         "1989",
  CODEN =        "LNMAA2",
  DOI =          "https://doi.org/10.1007/BFb0083664",
  ISBN =         "3-540-51527-5 (print), 3-540-48220-2 (e-book)",
  ISBN-13 =      "978-3-540-51527-2 (print), 978-3-540-48220-8
                 (e-book)",
  ISSN =         "0075-8434 (print), 1617-9692 (electronic)",
  ISSN-L =       "0075-8434",
  MRclass =      "03F30 (03D25 03D30)",
  MRnumber =     "1015723 (90i:03067d)",
  MRreviewer =   "A. M. Dawes",
  bibdate =      "Thu May 15 18:46:23 MDT 2014",
  bibsource =    "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
  URL =          "http://link.springer.com/chapter/10.1007/BFb0083664/",
  acknowledgement = ack-nhfb,
  book-DOI =     "https://doi.org/10.1007/BFb0083663",
  book-URL =     "http://www.springerlink.com/content/978-3-540-48220-8",
  fjournal =     "Lecture Notes in Mathematics",
  journal-URL =  "http://link.springer.com/bookseries/304",
}
Related entries
- $ \Sigma_2 $,
1141(0)49
 
- 03D25,
1141(0)1,
1141(0)49,
1141(0)203,
1141(0)271,
1388(0)178
 
- 03D30,
1141(0)89,
1141(0)121,
1141(0)193,
1141(0)245,
1141(0)260,
1141(0)315,
1141(0)357,
1333(0)37,
1388(0)153,
1388(0)178
 
- 03F30,
1130(0)32,
1130(0)208,
1130(0)317,
1141(0)65,
1141(0)245,
1388(0)178
 
- Chong, C. T.,
1141(0)49
 
- collection,
1388(0)178
 
- Dawes, A. M.,
1130(0)32,
1130(0)341,
1141(0)245,
1141(0)260
 
- enumerable,
1141(0)1,
1141(0)203
 
- model,
1109(0)148,
1111(0)111,
1130(0)76,
1130(0)157,
1136(0)74,
1136(0)162,
1138(0)23,
1138(0)77,
1138(0)95,
1139(0)253,
1139(0)280,
1151(0)42,
1151(0)183,
1182(0)269,
1182(0)272,
1186(0)258,
1191(0)212,
1192(0)193,
1194(0)41,
1203(0)101,
1212(0)59,
1212(0)112,
1212(0)216,
1212(0)238,
1214(0)231,
1233(0)134,
1250(0)120,
1251(0)175,
1264(0)20,
1286(0)193,
1292(0)89,
1292(0)165,
1292(0)182,
1303(0)103,
1322(0)28,
1325(0)132,
1330(0)44,
1348(0)130,
1385(0)238,
1390(0)132,
1396(0)149,
1401(0)55,
1401(0)167
 
- recursively,
1141(0)1,
1141(0)203
 
- set,
1111(0)111,
1130(0)69,
1130(0)385,
1135(0)1,
1141(0)148,
1141(0)193,
1141(0)203,
1141(0)233,
1146(0)355,
1151(0)35,
1153(0)96,
1153(0)226,
1170(0)44,
1174(0)69,
1179(0)146,
1179(0)273,
1182(0)151,
1182(0)188,
1190(0)181,
1201(0)89,
1203(0)214,
1206(0)242,
1238(0)10,
1241(0)34,
1249(0)106,
1256(0)294,
1265(0)14,
1265(0)105,
1266(0)24,
1267(0)5,
1267(0)157,
1275(0)149,
1275(0)215,
1285(0)73,
1287(0)105,
1292(0)32,
1292(0)182,
1317(0)224,
1329(0)193,
1331(0)196,
1334(0)60,
1342(0)220,
1344(0)207,
1347(0)82,
1347(0)103,
1348(0)257,
1350(0)266,
1354(0)98,
1358(0)7,
1388(0)16,
1395(0)21,
1401(0)68,
1412(0)194