Entry LePage:1989:AMI from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{LePage:1989:AMI,
author = "Raoul LePage",
title = "Appendix Multidimensional infinitely divisible
variables and processes. {Part I}: Stable case",
journal = j-LECT-NOTES-MATH,
volume = "1391",
pages = "153--163",
year = "1989",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0083389",
ISBN = "3-540-51548-8 (print), 3-540-48244-X (e-book)",
ISBN-13 = "978-3-540-51548-7 (print), 978-3-540-48244-4
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
bibdate = "Thu May 15 18:46:23 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0083389/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0083374",
book-URL = "http://www.springerlink.com/content/978-3-540-48244-4",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- appendix,
1128(0)187,
1132(0)312,
1169(0)113,
1169(0)126,
1194(0)34,
1216(0)97,
1258(0)16,
1258(0)35,
1258(0)104,
1258(0)191,
1309(0)116,
1327(0)202,
1389(0)16,
1395(0)18
- case,
1111(0)169,
1134(0)14,
1134(0)36,
1152(0)42,
1152(0)65,
1152(0)95,
1183(0)195,
1216(0)55,
1232(0)78,
1232(0)124,
1237(0)161,
1245(0)87,
1274(0)1,
1277(0)120,
1305(0)136,
1334(0)269,
1336(0)7,
1354(0)209,
1378(0)133,
1378(0)185,
1382(0)91,
1382(0)98,
1390(0)33,
1394(0)18,
1412(0)1,
1412(0)22,
1412(0)183,
1412(0)263
- divisible,
1064(0)116,
1153(0)226,
1155(0)47,
1379(0)36,
1379(0)86,
1383(0)170,
1391(0)47
- infinitely,
1153(0)226,
1155(0)47,
1192(0)275,
1379(0)36,
1384(0)91,
1391(0)47
- LePage, Raoul,
1153(0)323,
1391(0)148
- multidimensional,
1155(0)47,
1192(0)367,
1214(0)40,
1215(0)329,
1237(0)217,
1303(0)69,
1334(0)111,
1412(0)1
- part,
1125(0)15,
1130(0)360,
1199(0)48,
1232(0)89,
1232(0)151,
1262(0)124,
1342(0)112,
1380(0)19,
1390(0)147
- process,
1109(0)39,
1109(0)207,
1130(0)174,
1136(0)40,
1136(0)57,
1136(0)74,
1136(0)207,
1153(0)40,
1153(0)128,
1153(0)329,
1155(0)1,
1155(0)102,
1158(0)208,
1159(0)230,
1163(0)83,
1186(0)160,
1193(0)4,
1193(0)73,
1203(0)51,
1203(0)75,
1203(0)90,
1203(0)197,
1210(0)130,
1212(0)1,
1212(0)52,
1212(0)69,
1212(0)94,
1212(0)112,
1212(0)136,
1212(0)165,
1212(0)175,
1221(0)50,
1230(0)86,
1236(0)172,
1242(0)374,
1250(0)1,
1250(0)128,
1250(0)171,
1250(0)184,
1303(0)107,
1303(0)154,
1308(0)28,
1308(0)66,
1316(0)234,
1322(0)17,
1322(0)73,
1322(0)134,
1322(0)156,
1322(0)173,
1325(0)16,
1325(0)101,
1351(0)201,
1362(0)101,
1372(0)186,
1379(0)75,
1379(0)107,
1379(0)141,
1379(0)185,
1379(0)254,
1390(0)171,
1390(0)225,
1391(0)59,
1391(0)239,
1396(0)229,
1412(0)183,
1412(0)280
- stable,
1153(0)369,
1155(0)242,
1155(0)349,
1157(0)6,
1157(0)47,
1172(0)80,
1176(0)21,
1194(0)19,
1194(0)34,
1194(0)80,
1203(0)90,
1204(0)56,
1210(0)24,
1213(0)1,
1213(0)6,
1233(0)23,
1233(0)69,
1250(0)269,
1271(0)243,
1273(0)363,
1286(0)174,
1298(0)35,
1328(0)1,
1346(0)113,
1389(0)1,
1389(0)16,
1389(0)66,
1391(0)74,
1391(0)148,
1391(0)239,
1404(0)35,
1412(0)1,
1412(0)172,
1412(0)229
- variable,
1121(0)123,
1146(0)161,
1148(0)16,
1155(0)144,
1155(0)349,
1158(0)104,
1163(0)135,
1165(0)281,
1174(0)69,
1188(0)45,
1198(0)133,
1210(0)24,
1233(0)11,
1233(0)36,
1233(0)57,
1241(0)95,
1268(0)1,
1302(0)74,
1307(0)31,
1340(0)70,
1348(0)72,
1354(0)11,
1391(0)1,
1403(0)1,
1412(0)22,
1412(0)103,
1412(0)194