Entry Lerat:1989:DSN from lnm1985.bib
Last update: Sat Oct 14 02:53:33 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Lerat:1989:DSN,
author = "A. Lerat",
title = "Difference schemes for nonlinear hyperbolic systems
--- a general framework",
journal = j-LECT-NOTES-MATH,
volume = "1402",
pages = "12--29",
year = "1989",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0083865",
ISBN = "3-540-51746-4 (print), 3-540-46800-5 (e-book)",
ISBN-13 = "978-3-540-51746-7 (print), 978-3-540-46800-4
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "65M06 (35L65)",
MRnumber = "1033273 (91b:65108)",
MRreviewer = "R{\'e}mi Vaillancourt",
bibdate = "Thu May 15 18:46:23 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1985.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0083865/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0083863",
book-URL = "http://www.springerlink.com/content/978-3-540-46800-4",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
}
Related entries
- 35L65,
1151(0)9,
1256(0)154,
1270(0)1,
1270(0)135,
1270(0)150,
1270(0)152,
1270(0)163,
1270(0)172,
1270(0)181,
1270(0)210,
1270(0)221,
1285(0)99,
1306(0)38,
1306(0)131,
1402(0)147,
1402(0)185
- 65M06,
1402(0)1
- difference,
1139(0)236,
1154(0)1,
1154(0)41,
1154(0)120,
1154(0)148,
1192(0)333,
1233(0)103,
1250(0)138,
1270(0)52,
1270(0)128,
1329(0)158,
1386(0)22,
1386(0)69,
1394(0)122
- general,
1122(0)85,
1130(0)174,
1139(0)108,
1151(0)132,
1171(0)139,
1186(0)252,
1189(0)38,
1192(0)181,
1200(0)19,
1212(0)195,
1229(0)4,
1233(0)182,
1238(0)33,
1241(0)95,
1242(0)77,
1253(0)162,
1258(0)23,
1294(0)190,
1294(0)210,
1300(0)12,
1309(0)84,
1330(0)19,
1330(0)44,
1350(0)259,
1375(0)183,
1385(0)269,
1389(0)254,
1392(0)27,
1399(0)10,
1402(0)128
- hyperbolic,
1151(0)157,
1167(0)228,
1192(0)387,
1201(0)138,
1210(0)216,
1223(0)160,
1223(0)208,
1223(0)243,
1230(0)63,
1237(0)73,
1241(0)10,
1241(0)85,
1256(0)214,
1270(0)41,
1270(0)150,
1270(0)152,
1270(0)195,
1270(0)238,
1275(0)235,
1324(0)118,
1324(0)197,
1340(0)23,
1340(0)193,
1342(0)158,
1394(0)44
- nonlinear,
1121(0)85,
1127(0)1,
1134(0)55,
1134(0)78,
1151(0)25,
1151(0)49,
1154(0)148,
1155(0)284,
1192(0)3,
1192(0)49,
1192(0)243,
1192(0)291,
1192(0)333,
1192(0)379,
1192(0)387,
1216(0)55,
1216(0)78,
1223(0)12,
1223(0)61,
1223(0)176,
1224(0)47,
1228(0)23,
1230(0)73,
1230(0)127,
1230(0)138,
1236(0)25,
1248(0)5,
1248(0)15,
1248(0)63,
1248(0)78,
1248(0)127,
1256(0)1,
1260(0)1,
1260(0)61,
1270(0)52,
1285(0)99,
1285(0)110,
1285(0)162,
1288(0)80,
1306(0)202,
1306(0)278,
1334(0)199,
1340(0)239,
1344(0)202,
1365(0)100,
1386(0)69,
1390(0)147,
1394(0)18,
1394(0)30,
1394(0)136,
1396(0)89,
1402(0)1,
1402(0)128,
1402(0)198,
1402(0)227,
1409(0)92
- schemes,
1142(0)18,
1146(0)214,
1185(0)361,
1228(0)149,
1236(0)208,
1270(0)23,
1270(0)41,
1270(0)52,
1270(0)128,
1354(0)11,
1389(0)183
- Vaillancourt, Rémi,
1334(0)129